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Abstract

The primary focus of this dissertation is the design, analysis and implementation of stochas-

tic optimal control of grid-level storage. It provides stochastic, quantitative models to aid

decision-makers with rigorous, analytical tools that capture high uncertainty of storage

control problems. The first part of the dissertation presents a p-periodic Markov Deci-

sion Process (MDP) model, which is suitable for mitigating end-of-horizon effects. This

is an extension of basic MDP, where the process follows the same pattern every p time

periods. We establish improved near-optimality bounds for a class of greedy policies, and

derive a corresponding value-iteration algorithm suitable for periodic problems. A parallel

implementation of the algorithm is provided on a grid-level storage control problem that

involves stochastic electricity prices following a daily cycle. Additional analysis shows that

the optimal policy is threshold policy. The second part of the dissertation is concerned with

grid-level battery storage operations, taking battery aging phenomenon (battery degrada-

tion) into consideration. We still model the storage control problem as a MDP with an

extra state variable indicating the aging status of the battery. An algorithm that takes

advantage of the problem structure and works directly on the continuous state space is

developed to maximize the expected cumulated discounted rewards over the life of the

battery. The algorithm determines an optimal policy by solving a sequence of quasiconvex

problems indexed by a battery-life state. Computational results are presented to compare

the proposed approach to a standard dynamic programming method, and to evaluate the

impact of refinements in the battery model. Error bounds for the proposed algorithm

are established to demonstrate its accuracy. A generalization of price model to a class of

Markovian regime-switching processes is also provided. The last part of this dissertation is

1



concerned with how the ownership of energy storage make an impact on the price. Instead

of one player in most storage control problems, we consider two players (consumer and sup-

plier) in this market. Energy storage operations are modeled as an infinite-horizon Markov

Game with random demand to maximize the expected discounted cumulated welfare of

different players. A value iteration framework with bimatrix game embedded is provided

to find equilibrium policies for players. Computational results show that the gap between

optimal policies and obtained policies can be ignored. The assumption that storage levels

are common knowledge is made without much loss of generality, because a learning algo-

rithm is proposed that allows a player to ultimately identify the storage level of the other

player. The expected value improvement from keeping the storage information private at

the beginning of the game is then shown to be insignificant.

2



Chapter 1

Introduction

1.1 Energy Storage Systems

Over the past few years, research and development in the power system has increased in

energy storage techniques. One of the reasons behind this phenomenon is that renew-

able energy plays a more important role for the electrical power grid. According to a

report published by the Energy Information Administration [1], the percentage of energy

generated from renewables has increased from 9.49% in 2006 to 13.35% in 2015. In addi-

tion, estimates of the potential market for energy storage in the United States are quite

large [33]. According to a white paper from Electric Power Research Institute (EPRI)

[80] published in 2010, there is more than 128 gigawatts (GW) of grid-level energy storage

installed worldwide. Among all Energy Storage Systems (ESS), Pumped Hydroelectric

Storage (PHS) has the percentage of installed capacity around 99%, while Compressed Air

Energy Storage (CAES), flywheels and battery storage together constitute the remaining

1% [111, 80].

The energy storage system are very useful to deal with inherent intermittency of re-

newable energy generation, for example, wind, solar, wave energy [15, 5, 27, 23]. Benefit

may be derived from the devices by charging them when the price is low and discharging

it when the price is high [5, 30, 10]. Other benefits may also be derived from providing

ancillary services such as regulation [23, 37, 26]. As a result, researchers have focused

3



on energy storage techniques, regarding them as a way to integrate renewable energy re-

sources. With proper energy storage techniques, power system operators may be able to

balance the difference between demand and supply, provide backup energy, in addition to

the flexibility on the demand side provided by demand response [61, 5].

Researchers have been increasingly taking storage into consideration in Optimal Power

Flow (OPF) and Unit Commitment (UC). In [16], an OPF model with storage is provided

and shows how storage system optimize of power generation across multiple time periods.

In [99], a stochastic electricity market model is established (which is similar to a Unit

Commitment problem). The results show the effects of wind power generation on system

operation as well as on economic value of investments in energy storage system (CAES in

their case).

Although different kinds of energy storage techniques are developing rapidly in the

recent years, most newer storage technologies are still in the development phase and could

not be deployed yet. There are still lots of challenges to integrate storage [64]. In addition,

storage devices like lithium batteries are too expensive to be deployed massively within

the power grid. However, with a better control system, storage operators may be able to

reduce running cost, increase revenue and provide reliable services. Due to those reasons,

many researchers have sought to establish a more profitable and reliable storage system by

providing practical and efficient optimal control methods.

During the last decade, the application of control theory to grid-level storage problems

has increased sharply. Sioshansi et al. [109] establish a dynamic programming model to

maximize the profit of four services by controlling the operation of multiple distributed

energy storage resources. The services include: energy and ancillary services sales, backup

energy supply and transformer loading relief. In [91], Secomandi studies the optimal trading

policy for a capacitated storage asset. In this paper, the author uses gas as the commodity,

while the charge and discharge rates are limited. Powell et al. [67] provides a stochastic,

dynamic program to model hourly dispatch and energy allocation in a grid with storage.

In their paper, variations come from wind, solar and demand, and they use hydroelectric

storage to smooth energy production over different time scales. Van De Ven et al. [104]

4



formulate a dynamic program to study an optimal battery control policy, to let the end-user

minimize the total discounted cost. The uncertainty comes from demand and price. In [28],

optimal control policies for single and multiple batteries are studied. Single battery case has

an optimal policy with threshold structure and can be obtained by dynamic programming.

Multiple batteries case is extended by a method to map the optimal solution of single

case to multiple batteries case. In Su et al. [97], the expected magnitude of residual

power imbalance process is minimized. The authors model the power imbalance problem

as an infinite horizon stochastic control problem and the optimal policy turns out to be

a greedy policy. In addition, short time scale and long time scale approximations for

power imbalance are also provided as well as the corresponding necessary storage capacity.

Dicorato et al. [21], Teleke et al. [100] and Brekken et al. [11] provide models to integrate

a battery storage system with a large wind farm to improve dispatchability. Cruise et al.

[18] provide a nonlinear programming model and a Lagrangian-based algorithm to solve

it. P Malysz et al. [62] provide a MIP formulation to solve energy storage operation in

grid-connected electricity microgrid.

When we deal with stochastic control of energy storage problems, most often we need to

establish a price model. As electricity prices have unique characteristics compared to other

commodity prices, many different models have been proposed and studied in the literature.

In [46], a mean-reverting price process is incorporated to an energy commitment problem

where wind farms and storage devices exist. However, since the demand of energy varies

during days, throughout months and across years, the impact from stochastic demand also

results in seasonality effects on electricity prices. In [63], a mean-reverting jump diffusion

stochastic process is adopted as the electricity price model that incorporates seasonality

effects and price spikes. A diversity of models for electricity prices are discussed in detail

in [48, 58, 29, 45]. In Appendix B, we describe several price models. We also present a

p-periodic Markov Decision Process model in Chapter 2 which captures seasonality effects.

5



1.2 Battery Energy Storage System

As we mentioned in the previous section, in 2010, 99% of installed energy capacity is

Pumped Hydroelectric Storage. However, according to the Department of Energy [17],

there are around 1630 energy storage projects all over the world, and about 824 projects

of them (around 50%) are using battery technology as the storage method, such as Lead

Acid, Lithium Ion and Zinc Bromine flow. The main advantages of Battery Energy Storage

Systems (BESS) are their rapid response time, and their high energy densities.

Storage batteries are rechargeable electrochemical systems for storing energy [34]. They

deliver chemical energy in the form of electric energy. Different types of batteries and their

properties are introduced in detail in [23, 42]. Lead-acid batteries are the oldest and mature

type of rechargeable batteries which are used mostly in grid-level storage. However, the

technology has a low cycle life and battery operational lifetime. Nickel-based batteries have

longer lifetimes than lead-acid, but the cost is 10 times more and the energy efficiency is

also lower than lead-acid batteries. Zinc bromine (ZnBr) battery belongs to a class called

flow battery [15], which has non-self-discharge capacity. A main drawback of ZnBr system

is that it need a third pump system to circulate bromine complexes, which introduce extra

installation and operation cost. Lithium-based battery battery storage systems seem to

be a very promising technology. They have high energy density, high efficiency, and low

self-discharge rates.

The charge/discharge mechanism for batteries can be described as follows: during the

discharge process, once a load is connected, chemical energy is generated by electrochemical

reactions in a basic cell, between two electrodes plunged into an electrolyte. Electrons from

one electrode move to the other through an external electric load, where the electric energy

is delivered. The process is reversed during charging [34].

A rechargeable battery can be charged and discharged many times. However, any

battery has its lifetime, which means there is a limit on the number of charge/discharge

cycles (we call it life cycles in the subsequent chapters). Hence, there is a significant

difference when we model a BESS and a PHS. In addition, the impact of aging not only

affects the life of the battery storage, but also the capacity of the battery. According to

6



[12], temperature and state of charge (SOC) will affect the life cycles of the battery. In

addition, for lead-acid battery, from Peukert’s Law, the rate of charge will also have an

influence on the available capacity of battery [24].

1.3 Outline of Contribution

In Chapter 2, we formulate and solve a p-Periodic Markov Decision Process model for

a grid-level storage control problem. We present computational results. We establish a

tighter bound for the near-optimal solution. And we discuss the structure of the optimal

policy.

In Chapter 3, we incorporate the aging phenomenon into a grid-level battery operation

problem. Instead of the periodic MDP model used in Chapter 2, we use an infinite horizon

MDP model in this chapter. An efficient and accurate algorithm for solving the model is

established. We provide structural results for the optimal policy. We report on related

computational results.

In Chapter 4, we discuss the impact on electricity prices from storage decisions.

In Chapter 5, we summarize our work so far, and our current ongoing research.

Whereas the material of Chapters 4 is ready for submission, most material of Chapter

2 has been published in

Yuhai Hu and Boris Defourny. Near-optimality bounds for greedy periodic policies with

application to grid-level storage. In Adaptive Dynamic Programming and Reinforcement

Learning (ADPRL), 2014 IEEE Symposium on, pages 1–8. IEEE, 2014

and the work of Chapter 3 has been published in

Yuhai Hu and Boris Defourny. Optimal price-threshold control for battery operation

with aging phenomenon: a quasiconvex optimization approach. Annals of Operations Re-

search, pages 1–28, 2017
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Chapter 2

p-Periodic Markov Decision

Process

Most work of this chapter has been published in paper

Y. Hu and B. Defourny. Near-optimality bounds for greedy periodic policies with

application to grid-level storage. In IEEE Symposium on Adaptive Dynamic Programming

and Reinforcement Learning (ADPRL-2014), pages 1–8, December 2014.

2.1 Introduction

For stochastic dynamic programs with seasonality effects, such as inventory or storage

problems with daily demand patterns, rolling-horizon look-ahead policies [75] often appear

as a well-suited class of policies. A drawback of look-ahead policies, however, is that end-

of-horizon effects can be detrimental to the optimality of the decisions. For instance, the

case opposing JP Morgan Ventures Energy Corporation (JPMVEC) to the Federal Energy

Regulatory Commission (FERC) exposed bidding strategies that were designed to exploit

flaws in the market clearing algorithm of the California Independent System Operator

(CAISO); one flaw was directly related to the truncation of the planning horizon [31].
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2.1.1 Motivation

Two countermeasures are classically considered to mitigate end-of-horizon effects. The first

countermeasure is the introduction of a terminal reward function. This essentially amounts

to approximate the value function around the state at the terminal stage — and this is

an art that requires domain knowledge. The second countermeasure is the extension of

the horizon over which the look-ahead is performed. This amounts to assume that end-

of-horizon effects die out by the time the backward optimization reaches the first stages.

A challenge of this approach is the increased complexity of the look-ahead optimization

problem, and in certain contexts, the unavailability of data relative to the extended horizon

— for instance, longer-term forecasts may not be available; for a multistep bidding problem,

market participants may not have been required to submit offers further in the future; etc.

This chapter is motivated by the synthesis of these two mitigation strategies. We

consider policies that solve a discounted periodic dynamic program, over an infinite horizon,

constructed by replicating the look-ahead problem or by appending a steady-state cycle

to the look-ahead. The rationale is that the structure of a policy optimal for a finite-

horizon Markov decision problem on p stages is the same as the one for an infinite-horizon,

discounted p-periodic Markov decision problem. However, the cyclo-stationary extension

could significantly improve the approximation of the future reward process. Early use of

this strategy can be found in the water reservoir operations literature [98, 107].

2.1.2 Contributions and Related Work

Periodic dynamic programs have of course been considered earlier [82, 106, 103], as well as

variations thereof [41]. In particular, it is known that an optimal p-periodic Markov policy

can be derived using p value functions coupled by a Bellman-type recursion. Periodic

dynamic programs can be viewed as dynamic programs with stationary reward and state-

transition functions over a state space augmented with the position of time in the cycle,

and therefore results from abstract dynamic programming are directly available [6].

The contribution of this chapter is twofold.

• We study the near-optimality of nonstationary policies greedy for periodic approxi-

9



mate value functions, and provide bounds that are tighter than the general bounds

used with stationary value functions on an augmented state space or specialized

bounds established for periodic Markov Decision Processes.

• We formulate a periodic Markov Decision Process model for a grid-level energy stor-

age control problem where random electricity prices follow daily patterns. The idea

is to recalibrate the model every day and then solve it for operations on the next day

in a rolling-horizon fashion. A numerical example with a daily cycle of 24 periods is

provided.

2.1.3 Organization

In this chapter, we provide a p-Periodic Markov Decision Process model without aging

phenomenon considered. We are concerned with the subproblem to be solved by the

proposed class of policies, and we develop effective methods to solve periodic dynamic

programs. Most of work in this chapter has been published in [39]. In particular, in

addition to the results published in [39], we discuss the threshold-policy structure of the

optimal policy.

This chapter is organized as follows. Section 2.2 defines the periodic Markov Decision

Problem, and recalls the optimality conditions. Section 2.3 establishes bounds useful to

control the near-optimality of periodic policies based on periodic approximate value func-

tions. Section 2.4 describes a value-iteration algorithm, based on the results of the previous

section. Section 2.5 formulates a simple model for optimizing grid-level storage operations

given day-ahead and historical electricity prices, based on the periodic Markov Decision

Process framework. It also reports on numerical work carried out to evaluate the effective-

ness of a parallel implementation of the value iteration algorithm. Section 2.6 concludes

the present chapter.
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2.2 Periodic Discounted Problems

In this section, we recall the mathematical formulation and optimality conditions of the

p−periodic discounted Markov Decision Problem (p-MDP).

“Periodic” refers to the way the reward and state transition functions vary cyclically

over time — this is distinct from the notion of “periodic state” in the theory of Markov

chains.

In our formulation, the state space and the action space are periodic. This proves to

be useful to adapt the states to the time-dependent characteristics of the problem.

2.2.1 Problem Formulation

For some integer p ≥ 1 referred to as the cycle length, let

{(Si,Ai, Pi, Ri)}i=0,...,p−1

define a p-periodic Markov Decision Process (p-MDP):

• {Si}i=0,...,p−1 form a base collection of finite state spaces, such that the state St at

time t ≥ 0 is in Si where i = mod (t, p), or equivalently, t = i+kp for some integer

k ≥ 0;

• {Ai}i=0,...,p−1 form a base collection of finite action spaces, such that the action At

at time t ≥ 0 is in Ai where i = mod (t, p).

• Pi : Si×Ai×Si+1 7→ [0, 1] for i = 0, . . . , p−2 and Pp−1 : Sp−1×Ap−1×S0 7→ [0, 1],

form a base collection of state transition probability functions, such that Prob(St+1 =

s′ | St = s,At = a) = Pi(s, a, s
′) where i = mod (t, p).

• Ri : Si × Ai 7→ R for i = 0, . . . , p − 1 form a base collection of bounded reward

functions, such that the reward at time t given St = s, At = a, is rt = Ri(s, a) where

i = mod (t, p).

We then define ι(t) = mod (t, p) and define (St,At, Pt, Rt) for t ≥ p, where St = Sι(t),

At = Aι(t), Pt = Pι(t), and Rt = Rι(t).
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When p = 1, the problem of course reduces to a stationary MDP (S ,A , P,R).

Consider the class Π of admissible nonstationary Markov policies

π = {Aπt }t≥0, (2.1)

where Aπt : St 7→ At is the decision rule at time t, that maps the current state s to an

action a = Aπt (s) selected from a subset At(s) ⊂ At that represents a set of admissible

actions given s. To streamline the notation, we just write a ∈ At instead of a ∈ At(s) in

the sequel.

Let γ ∈ (0, 1) be a discount factor, and s ∈ S0 an initial state. We consider the p-

periodic Markov Decision Problem consisting in maximizing the expected discounted total

return by the choice of an admissible nonstationary policy π:

V ∗0 (s) = max
π∈Π

Eπ[
∑∞

t=0γ
tRt(St, A

π
t (St))|S0 = s], (2.2)

where Eπ emphasizes that the probability distribution of St depends on π.

2.2.2 Optimality Conditions

For brevity, we use the short-hand P tss′(a) = Pt(s, a, s
′). For all t, and for a fixed nonsta-

tionary policy π, the expected discounted cumulated reward-to-go at time t when being in

state s and following policy π is given by

V π
t (s) = Rt(s,A

π
t (s)) + γ

∑
s′∈St+1

P tss′(A
π
t (s))V π

t+1(s′). (2.3)

V π
0 (s) is the value of policy π when starting from state s.

Due to the periodic structure of the problem, Bellman’s principle of optimality leads
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to a system of equations involving p value functions only,

Vi(s) = max
a∈Ai

[Ri(s, a) + γ
∑

s′∈Si+1

P iss′(a)Vi+1(s′)]

for i = 0, 1, . . . , p− 2,

Vp−1(s) = max
a∈Ap−1

[Rp−1(s, a) + γ
∑
s′∈S0

P p−1
ss′ (a)V0(s′)]. (2.4)

These equations are written more compactly as

Vi = Ti Vi+1 for i = 0, 1, . . . , p− 2,

Vi = Ti V0 for i = p− 1,

where the operators Ti are defined from (2.4). By induction,

V0 = (T0T1 . . . Tp−1) V0,

V1 = (T1 . . . Tp−1T0) V1,

. . .

Vp−1 = (Tp−1T0 . . . Tp−2)Vp−1,

showing that Vi is a fixed point of the operator

Ti = (TiTi+1 . . . Tp−1T0 . . . Ti−1) . (2.5)

The operator Ti inherits the contractive mapping property of the operators Ti (Section

2.4.2 provides more details), and therefore, the system (2.4) admits a unique solution

V ∗ = (V ∗0 , V
∗

1 , . . . V
∗
p−1) , (2.6)

which we refer to as the optimal periodic value function.

We say that a policy π = {Aπt }t≥0 is greedy for a periodic value function V =
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(V 0, . . . , V p−1) when

Aπt (s) ∈ arg max
a∈Ai

[Ri(s, a) + γ
∑

s′∈Si+1

P iss′(a)Vi+1(s′)]

for t = i+ kp with i ∈ {0, 1, . . . , p− 2},

Aπt (s) ∈ arg max
a∈Ai

[Ri(s, a) + γ
∑
s′∈S0

P iss′(a)V0(s′)]

for t = i+ kp with i = p− 1. (2.7)

Let π∗ be a policy greedy for V ∗ as defined by (2.6). Then π∗ is nonstationary but

periodic with cycle length p, and by definition of Ti, it is optimal for the problem (2.2).

Without loss of optimality, the search over the class Π of nonstationary policies is thus

reduced to a search over the class Πp of p-periodic admissible policies π, such that Aπt = Aπi

with i = ι(t):

V ∗0 (s) = max
π∈Πp

Eπ[
∑∞

t=0γ
tRt(St, A

π
t (St))|S0 = s] . (2.8)

A policy π ∈ Πp is uniquely defined by (Aπ0 , . . . , A
π
p−1).

2.3 Near-optimality bounds for greedy policies

This section establishes upper error bounds for the difference between the optimal return

and the return of a policy greedy with respect to a periodic approximate value function.

This situation covers the case of a policy greedy with respect to a periodic approximate

value function obtained by value iteration.

The error bounds can be evaluated numerically under the assumption that the periodic

optimal value function is known. As this assumption is not met in practice, we establish

upper bounds to be used when the optimal value function is unknown.
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2.3.1 Error bound for difference between optimal and approximate value

functions

Let V ∗ = (V ∗0 , . . . , V
∗
p−1) be the optimal periodic value function (2.6), and π∗ ∈ Πp the

optimal p-periodic policy greedy for V ∗.

In many cases, the value functions V ∗i are difficult or even impossible to evaluate. In

order to overcome such situations, it is common to use approximate value functions.

Let Ṽ = (Ṽ0, . . . , Ṽp−1) denote a periodic approximate value function, and let π̃ ∈ Πp

be a p-periodic policy greedy for Ṽ , that is,

π̃i ∈ argmax
a∈Ai

[Ri(s, a) + γ
∑

s′∈Si+1

P iss′(a)Ṽi+1(s′)]

for i = 0, . . . , p− 2,

π̃p−1 ∈ argmax
a∈Ap−1

[Rp−1(s, a) + γ
∑
s′∈S0

P p−1
ss′ (a)Ṽ0(s′)]. (2.9)

Let V π∗
i denote the “value” of policy π∗ at time i, and let V π̃

i denote the “value” of policy

π̃ at time i, as defined by (2.3), where “value” at time i means the expected cumulated

reward-to-go obtained by following the policy from time i onwards. By definition of π∗

and V ∗, we have V π∗
i ≡ V ∗i , but in the case of π̃, in general we have

V π̃
i 6≡ Ṽi .

Definition 2.3.1. Given an optimal policy π∗ associated to V ∗ and a policy π̃ greedy for

Ṽ , the function L̃i : Si 7→ R is defined as the difference between the expected reward-to-go

at time i of those two policies: For all s ∈ Si,

L̃i(s) = V ∗i (s)− V π̃
i (s) . (2.10)

In particular, L̃0(s) quantifies the suboptimality of policy π̃ for the periodic MDP

started from initial state s.

Assumption. In each time period i, the value function V ∗i is approximated by Ṽi, and
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for all s ∈ Si, the difference between those value functions is bounded by εi:

|V ∗i (s)− Ṽi(s)| ≤ εi . (2.11)

To visualize the assumption,

Figure 2.1: Interpretation of assumption 2.11

Under the assumption above, we provide the following proposition. The mechanism of

the proof is based on [93].

Proposition 1. Let V ∗ = (V ∗0 , . . . , V
∗
p−1) be the optimal periodic value function (2.6), let π∗

be the associated optimal policy, and let π̃ be a policy greedy for Ṽ = (Ṽ0, . . . , Ṽp−1), where

Ṽ satisfies the assumption (2.11) for i = 0, . . . , p − 1. Then for all states s, L̃i(s) ≤ Li,

where

Li =

∑i
k=0 γ

p+k−i(2εk) +
∑p−1

k=i+1 γ
k−i(2εk)

1− γp
. (2.12)

Before establishing Proposition 1, we note that each Li in (2.12) depends on all the εk,

but the weighting differs among each i. In the stationary case (p = 1), the bound reduces

to

L̃0 ≤ 2ε0γ/(1− γ) .

With ε = maxi εi, the bound also reduces to

L̃i ≤
2ε
∑p

k=1 γ
k

1− γp
=

2ε

1− γp
γ(1− γp)

1− γ
=

2εγ

1− γ
,

which is a bound known in the literature (see e.g. [6]). The bound (2.12) is tighter, since

it does not replace εi by ε. In fact, 2εi is the length of the interval where the difference

V ∗i (s)−Ṽi(s) lies, according to the assumption which is equivalent to −εi ≤ V ∗i (s)−Ṽi(s) ≤
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εi. Now, if instead we assume that

εi ≤ V ∗i (s)− Ṽi(s) ≤ εi for all s ∈ Si ,

then Proposition 1 applies by formally setting

2εk = εk − εk . (2.13)

Proof of Proposition 1. For each period i, there exists a state, say zi, that achieves the

maximal loss L̃i at this period:

L̃i(zi) ≥ L̃i(s) for all s ∈ Si .

To this state zi corresponds the optimal action

a = Aπ
∗
i (zi),

and the action of the policy greedy for Ṽ ,

b = Aπ̃i (zi).

Momentarily let us assume i ≤ p− 2. Since π̃ is greedy for Ṽ , we have

Ri(zi, a) + γ
∑

s′∈Si+1

P izis′(a)Ṽi+1(s′)

≤ Ri(zi, b) + γ
∑

s′∈Si+1

P izis′(b)Ṽi+1(s′) .
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From the assumption |V ∗i+1(s)− Ṽi+1(s)| ≤ εi+1 we have

Ri(zi, a) + γ
∑

s′∈Si+1

P izis′(a)(V ∗i+1(s′)− εi+1)

≤ Ri(zi, b) + γ
∑

s′∈Si+1

P izis′(b)(V
∗
i+1(s′) + εi+1) ,

which is equivalent to

Ri(zi, a)−Ri(zi, b) ≤ 2γεi+1

+ γ
∑

s′∈Si+1

[P izis′(b)V
∗
i+1(s′)− P izis′(a)V ∗i+1(s′)] . (2.14)

On the other hand, we have, by definition of L̃i,

L̃i(zi) = V ∗i (zi)− V π̃
i (zi) = Ri(zi, a)−Ri(zi, b)

+γ
∑

s′∈Si+1

[P izis′(a)V ∗i+1(s′)− P izis′(b)V
π̃
i+1(s′)] . (2.15)

Combining (2.14) and (2.15), we obtain (for i = 0, . . . , p− 2)

L̃i(zi) ≤ 2γεi+1 + γ
∑
s′

P izis′(b)[V
∗
i+1(s′)− V π̃

i+1(s′)]

= 2γεi+1 + γ
∑
s′

P iziy(b)L̃i+1(s′)

≤ 2γεi+1 + γ
∑
s′

P izis′(b)L̃i+1(zi+1)

= 2γεi+1 + γL̃i+1(zi+1) , (2.16)

where the second inequality results from the definition of zi+1.

Similarly, for i = p− 1, we obtain

L̃p−1(zp−1) ≤ 2γε0 + γL̃0(z0) . (2.17)
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By induction,

L̃i(zi) ≤ 2γεi+1 + 2γ2εi+2 + · · ·+ 2γp−1−iεp−1

+ 2γp−iε0 + · · ·+ 2γp−1εi−1 + 2γpεi + γpL̃i(zi)

= 2

p−1∑
k=i+1

γk−iεk + 2

i∑
k=0

γp−i+kεk + γpL̃i(zi) ,

and finally,

L̃i(s) ≤ L̃i(zi) ≤
2
∑i

k=0 γ
p−i+kεk + 2

∑p−1
k=i+1 γ

k−iεk

1− γp
.

2.3.2 Bounding εk

From the analysis above, we may obtain an upper bound for the suboptimality of a periodic

policy greedy for the periodic approximate value function Ṽ . However, in practice, the

optimal periodic value function V ∗ is unknown, and therefore we cannot compute the εk’s

of the assumption. Fortunately, we may bound εk using quantities obtained in the course

of one iteration of the value iteration algorithm. The mechanism of the proof is based on

results from the theory of value iteration presented for instance in [6].

Definition 2.3.2. Given Ṽ ` = (Ṽ `
0 , . . . , Ṽ

`
p−1), let Ṽ `+1 be defined by one value-iteration

performed as follows:

Ṽ `+1
i (s) = max

a∈Ai

[Ri(s, a) + γ
∑

s′∈Si+1

P iss′(a)Ṽ `
i+1(s′)]

= (TiṼ
`
i+1)(s) for i = 0, . . . , p− 2,

Ṽ `+1
i (s) = max

a∈Ai

[Ri(s, a) + γ
∑
s′∈S0

P iss′(a)Ṽ `
0 (s′)]

= (TiṼ
`

0 )(s) for i = p− 1.

Definition 2.3.3. Define δi as the maximal change of the value function relative to period i
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using the update described in Definition 2.3.2, over all states s ∈ Si:

δi = max
s∈Si

∣∣∣Ṽ `+1
i (s)− Ṽ `

i (s)
∣∣∣

=

 maxs∈Si
|(TiṼ `

i+1)(s)− Ṽ `
i (s)| for i = 0, . . . , p− 2

maxs∈S0 |(TiṼ `
0 )(s)− Ṽ `

i (s)| for i = p− 1 .

Proposition 2. Let Ṽ ` be an approximation to the optimal periodic value function V ∗,

and let δi be defined as above. In this situation,

εi = max
s∈Si

|V ∗i (s)− Ṽ `
i (s)|

admits for i = 0, . . . , p− 1 the upper bound

εi ≤
∑i−1

k=0 γ
p+k−iδk +

∑p−1
k=i γ

k−iδk
1− γp

.

Based on the assumption 2.1, we can also interpret 2 as following:

Figure 2.2: Interpretation of 2

Before establishing Proposition 2, we note that in the stationary case (p = 1), the

expression reduces to

ε0 ≤ δ0/(1− γ).

With δ = maxi δi, the bound also reduces to

εi ≤
δ

1− γp
p−1∑
k=0

γk =
1

1− γp
1− γp

1− γ
=

δ

1− γ
,

which is a bound known in the literature. The bound in Proposition 2 is tighter, since it
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does not replace δi by δ. In fact, if instead of δi from Definition 2.3.3, we define

δi = max
s∈Si

(Ṽ `+1
i (s)− Ṽ `

i (s)), (2.18)

δi = min
s∈Si

(Ṽ `+1
i (s)− Ṽ `

i (s)), (2.19)

and consider εi, εi as defined in (2.13), then the result of Proposition 2 translates to

εi ≤
∑i−1

k=0 γ
p+k−iδk +

∑p−1
k=i γ

k−iδk
1− γp

,

εi ≥
∑i−1

k=0 γ
p+k−iδk +

∑p−1
k=i γ

k−iδk

1− γp
.

Corollary 2.3.4. The value for 2εk in Proposition 1 can be set to

2εk =

∑i−1
k=0 γ

p+k−i(δk − δk) +
∑p−1

k=i γ
k−i(δk − δk)

1− γp
. (2.20)

As a preliminary to the proof of Proposition 2, we recall the following properties of the

operators Ti .

1. Monotonicity: Vi+1 � V ′i+1 implies TiVi+1 � TiV
′
i+1, in the sense that Vi+1(s) ≥

V ′i+1(s) for all s ∈ Si+1 implies (TiVi+1)(s) ≥ (TiV
′
i+1)(s) for all s ∈ Si.

2. Uniform-shift: Let 1i : Si 7→ R denote the constant-valued function defined on Si

with value one. Then for any c ∈ R, it holds that that

Ti(Vi+1 + c1i+1) = TiVi+1 + γc1i,

since for all s ∈ Si,

max
a∈Ai

[Ri(s, a) + γ
∑

s′∈Si+1

P iss′(s
′)(Vi+1(s) + c)]

= max
a∈Ai

[Ri(s, a) + γ
∑

s′∈Si+1

P iss′(s
′)(Vi+1(s))] + γc.
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Proof of Proposition 2. By definition of δi−1, we have

Ṽ `
i−1 + δi−11i−1 � Ti−1Ṽ

`
i . (2.21)

Applying Ti−2 to both sides of the inequality, and using the uniform-shift and monotonicity

properties of Ti−2, we get

Ti−2Ṽ
`
i−1 + γδi−11i−2 � Ti−2Ti−1Ṽ

`
i .

By definition of δi−2, we deduce

Ṽ `
i−2 + δi−21i−2 + γδi−11i−2 � Ti−2Ti−1Ṽ

`
i . (2.22)

By repeating this process to cover a single cycle, we obtain the inequalities

Ṽ `
i + (γ0δi + γ1δi+1 + · · ·+ γp−i−1δp−1+

γp−iδ0 + · · ·+ γp−1δi−1)1i

� TiTi+1 · · ·Tp−1T0 · · ·Ti−1Ṽ
`
i .

By induction over an infinite number of cycles, we obtain

Ṽ `
i + [(γ0 + γp + γ2p + · · · )δi+

(γ1 + γp+1 + γ2p+1 + · · · )δi+1+

· · ·+

(γp−1 + γ2p−1 + γ3p−1 + · · · )δi−1]1i

= Ṽ `
i +

(
γ0

1− γp
δi +

γ1

1− γp
δi+1 + · · ·+ γp−i−1

1− γp
δp−1

+
γp−i

1− γp
δ0 + · · ·+ γp−1

1− γp
δi−1

)
1i

� lim
N→∞

(TiTi+1 · · ·Tp−1T0 · · ·Ti−1)N Ṽ `
i = lim

N→∞
T Ni Ṽ `

i

= V ∗i ,
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where the last equality comes from the convergence of the value iteration algorithm for

finding the fixed point V ∗i of the operator Ti as defined in (2.5).

Rearranging the terms of the inequality above, we obtain

1

1− γp

(
i−1∑
k=0

γp+k−iδk +

p−1∑
k=i

γk−iδk

)
1i � V ∗i − Ṽ `

i .

Over all states, this implies

∑i−1
k=0 γ

p+k−iδk +
∑p−1

k=i γ
k−iδk

1− γp
≥ max

s∈Si

(V ∗i (s)− Ṽ `
i (s)) . (2.23)

A similar reasoning starting from the inequality

Ṽ `
i−1 − δi−11i−1 � Ti−1Ṽ

`
i

leads to

−
∑i−1

k=0 γ
p+k−iδk +

∑p−1
k=i γ

k−iδk
1− γp

≤ min
s∈Si

(V ∗i (s)− Ṽ `
i (s))

which together with (2.23) implies

∑i−1
k=0 γ

p+k−iδk +
∑p−1

k=i γ
k−iδk

1− γp
≥ max

s∈Si

|V ∗i (s)− Ṽ `
i (s)|

= εi .

2.4 Value iteration

In this section, we describe a value iteration algorithm suitable for periodic Markov Decision

Processes in finite state-action spaces. The algorithm outputs a periodic value function Ṽ

such that a periodic policy greedy for Ṽ is guaranteed to be (at least) η-optimal.
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2.4.1 Iteration mechanism

The optimality condition V0 = (T0 . . . Tp−1)V0 suggests a value iteration algorithm for

solving the p-periodic Markov Decision Problem.

Given η > 0, the algorithm returns a periodic value function Ṽ = (Ṽ0, . . . Ṽp−1) such

that a policy greedy for Ṽ is guaranteed to be (at least) η-optimal.

1. Initialization: Guess an initial value function Ṽ `
0 for ` = 0 (for instance, Ṽ `

0 ≡ 0).

2. Value iteration: Compute successively

Ṽ `+1
p−1 = Tp−1Ṽ

`
0 ,

Ṽ `+2
p−2 = Tp−2Ṽ

`+1
p−1 ,

. . .

Ṽ `+p
0 = T0Ṽ

`+p−1
1 .

For i = 0, . . . , p− 1, compute δi, δi from (2.18),(2.19), and 2εi from (2.20).

Compute L0 from (2.12).

3. Set `← `+ p and repeat Step 2 until the stopping criterion L0 ≤ η is met.

The value-iteration algorithm utilizes the bounds of Section 2.3 which are adapted to

each value function in the cycle.

As it can be seen from (2.10), L̃0(s) ≤ η indicates that a policy greedy with respect

to the current value function Ṽ ` is η-optimal. This does not imply that Ṽ `
0 represent the

value of the policy, that is, that Ṽ `
0 has converged to V ∗0 . To see this, consider the example

of a policy greedy with respect to V ∗ + c1 where c1 is a constant-valued function: this

policy is optimal and its value is V ∗0 (s) where s is the initial state.

2.4.2 Convergence rate

For a function Vi : Si 7→ R, we consider the sup-norm

||Vi||∞,i = max
s∈Si

|Vi(s)|,
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where we write max instead of sup because Si is finite.

Proposition 3. The rate of convergence of the value iteration algorithm is governed by

||T k0 V0 − V ∗0 ||∞,0 ≤ γkp||Ṽ 0
0 − V ∗0 ||∞,0 ,

computed using ` = kp iterations.

Proof. The mapping Ti = (TiTi+1 . . . Tp−1T0 . . . Ti−1) is contractive with modulus γp, in

the sense that for all functions Vi, V
′
i from Si to R,

||TiVi − TiV ′i ||∞,i ≤ γp||Vi − V ′i ||∞,i . (2.24)

To see this, note first that the mappings Ti are contractions with modulus γ, in the sense

that, for i = 0, . . . , p−2, the following property holds for all functions Vi+1, V
′
i+1 from Si+1

to R:

||TiVi+1 − TiV ′i+1||∞,i ≤ γ||Vi+1 − V ′i+1||∞,i+1 ,

and for i = p− 1, the following property holds for all functions V0, V
′

0 from S0 to R:

||Tp−1V0 − Tp−1V
′

0 ||∞,p−1 ≤ γ||V0 − V ′0 ||∞,0 .

Then, by using the contractive property of the operators Tk successively for k = i, i +

1, . . . , p− 1, 0, . . . , i− 1, one gets

||TiVi − TiV ′i ||∞,i

= ||(TiTi+1 . . . Ti−1)Vi − (TiTi+1 . . . Ti−1)V ′i ||∞,i

≤ γ||(Ti+1 . . . Ti−1)Vi − (Ti+1 . . . Ti−1)V ′i ||∞,i+1

≤ · · · ≤ γp||Vi − V ′i ||∞,i .
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In particular, for V ′i = V ∗i , we have TiV ∗i = V ∗i and therefore

||TiVi − V ∗i ||∞,i ≤ γp||Vi − V ∗i ||∞,i .

It remains to set i = 0 and iterate k times the mapping T0 to get the result.

2.5 Application to grid-level storage operations

We consider a grid-level storage control problem where the goal is to operate a battery to

exchange electricity with the power grid at the current hourly spot price. The problem

is formulated as p-periodic Markov Decision Process where the goal is to maximize the

expected net proceeds from the purchase and selling of electricity over an infinite horizon.

A very appealing feature of the periodic Markov Decision Process model proposed in

this chapter is that its computational tractability will not be affected by adopting shorter

time periods, for instance periods of 5 minutes or less, making it suitable for various storage

devices with different physical characteristics (power and energy capacities) or operating

at different time scales.

In our numerical implementation, we use C as our programming language, with OpenMP

for parallel computations.

2.5.1 Model Description

The state St is the current price Sprice
t and the battery energy charge level Sbattery

t . The

decision At is the power at which we charge (At < 0) or discharge the battery (At > 0).

The instantaneous reward Rt is the revenue over the time period: price × energy injected

to the grid,

Rt(St, At) = Sprice
t At ∆t

where ∆t is the time period duration (1 hour).

The discount factor γ is set to 0.99. Hence the weight of the reward of tomorrow’s
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hour-1 is γ24 = 0.78, and the weight of the reward of next week’s hour-1 is γ168 = 0.18.

The stochastic hourly price process is modeled as a cyclo-stationary process with a

cycle length of p = 24 hours. The means are chosen to match the day-ahead prices posted

by the independent system operator on the day preceding the exploitation of the policy.

For the price volatility, we use the historical volatility of prices on similar days, although

using implied volatility of options on forward contracts should yield better predictive dis-

tributions. Inter-hour correlations are neglected, but as the current price is in the state,

specifying an order-1 Markov model for the price would simply change the state transition

probabilities without increasing the complexity of the periodic MDP.

The hourly prices are assumed to follow a lognormal distribution LN(µi, σ
2
i ). Other

distributions could easily be accommodated. We formulate the problem on parameters

estimated from PJM price data for one day of 2013, with historical volatilities estimated

from prices of the corresponding month. The estimated parameters µi, σi are given in

Table 2.1, along with the corresponding mean prices exp(µi + σ2
i /2).

For the battery, we use the parameters of a GM Chevy Volt battery pack repurposed

for energy storage by ABB, having Cbattery = 10 kWh of usable capacity [4]. We assume

a power rating of P battery = 5 kW, such that a full charge over the 10 kWh range can be

done in 2 hours if desired. Intermediate charge and discharge rates are allowed, including

the null injection At = 0 (pure storage).

The battery state transition function is given by

Sbattery
t+1 = Sbattery

t −At ∆t,

with a state-dependent action space defined by the constraints

−P battery ≤ At ≤ P battery (power capacity),

Sbattery
t − Cbattery ≤ At ∆t ≤ Sbattery

t (energy capacity).

A more detailed battery model could easily be accommodated.
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Table 2.1: Hourly prices: Lognormal parameters

Hour i µi

1–6 3.24 3.06 2.54 2.39 -1.13 -0.57

7–12 2.82 3.15 3.26 3.39 3.82 3.8

13–18 3.82 3.97 4.16 3.94 3.84 3.86

19–24 3.86 3.75 3.75 3.53 3.47 3.41

Hour i σi

1–6 0.14 0.25 0.59 0.78 1.21 1.07

7–12 0.25 0.16 0.2 0.3 0.24 0.23

13–18 0.28 0.4 0.33 0.35 0.27 0.19

19–24 0.21 0.26 0.25 0.12 0.12 0.11

Hour i expected price exp(µi + σ2
i /2) [$/MWh]

1–6 25.79 22.00 15.09 14.79 0.67 1.00

7–12 17.31 23.64 26.58 31.03 46.94 45.90

13–18 47.43 57.40 67.66 54.67 48.25 48.33

19–24 48.52 43.98 43.87 34.37 32.37 30.45
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2.5.2 Finite State Approximation

For each hour i, the support of the price distribution is partitioned into N = 20 cells

[ci,j−1, ci,j) of probability 1/N , and discrete price levels sprice
i,j are determined by computing

the conditional expectation of the price given the cell:

ci,j = F−1
i (j/N) = exp(µi + σiΦ

−1(j/N)), (2.25)

j = 0, . . . , N,

sprice
i,j = E[Sprice

i | ci,j−1 ≤ Sprice
i ≤ ci,j ]

=

∫ ci,j

ci,j−1

xfi(x)dx
/∫ ci,j

ci,j−1

fi(x)dx

=
eµi+σ

2
i /2
(

Φ(Φ−1( jN )− σi)− Φ(Φ−1( j−1
N )− σi)

)
1/N

,

where F−1
i and fi denote the inverse cumulative distribution function (inverse cdf) and

probability density function (pdf) of the price, and Φ and Φ−1 denote the cdf and inverse

cdf of the standard normal distribution, respectively.

By so doing, the rewards associated to the discrete prices will give the correct expected

rewards for the original continuous distribution conditionally to being in the cell.

As for the battery state, we partition the operating range into a uniform grid of 50

discrete levels.
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Figure 2.3: A typical discretized price state.

Figure 2.3 shows the discretized price levels who approximates the Lognormal distri-

bution. Each time period we have 20 price levels and each price level has probability

0.05.
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2.5.3 Results
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Figure 2.4: Near-optimal periodic policy, from hour 1 (midnight to 1am) to hour 24. X-axis:
charge level state (indexed from 1 to 50), Y-axis: period-dependent price state (indexed
from 1 to 20). White: Charge at maximal rate (buy), Black: Discharge at maximal rate
(sell), Gray: intermediate actions.

Figure 2.4 shows the near-optimal periodic policy returned by the value iteration algorithm,

corresponding to the problem data of Table 2.1. The periodic policy and the price cells ci,j

should be loaded into the battery controller and recomputed periodically, typically every

day. Actions in real-time would be selected according to the charge level and the price-cell

index hit by the spot price.
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Figure 2.5: Running time (seconds) for different problem sizes and number of cores.

31



Figure 2.5 depict the running times for computing a near-optimal periodic policy, as

a function of the number of cores used in our parallel implementation. The results of our

experiments are consistent with parallel computing theory, which predicts that the more

cores we use, the less efficiency gains we should get [83].
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Figure 2.6: The threshold policy of 24 time periods

Figure 2.7: The threshold policy of 13th period

Figure 2.6 shows the threshold policy of the whole 24 time periods and particularly,
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Figure 2.7 shows the threshold policy of time period 13. The region under blue line is

the region where we charge and the target charge level (which may not be reached due to

power rate) is on the blue line along the horizontal direction, i.e., S′2 is the target level for

state S2. And the region above the green line is the discharging region where the target

charge level is on the green line along the horizontal direction, i.e., S′1 is the target level

for state S1. Finally, the region between green and blue line is where we do nothing. The

proof of the property of threshold policy is provided in the Appendix A in detail.

2.6 Conclusion and future work

In this chapter, we revisit the framework of periodic Markov Decision Processes, motivated

by the use of cyclo-stationary models to approximate the expected return of reward pro-

cesses in non-stationary environments subject to seasonal effects. We apply the approach

to a grid-level storage control problem to obtain a near-optimal periodic policy, computed

efficiently by combining various techniques proposed in the chapter.

Although the numerical example demonstrates the effectiveness of the approach for a

cycle of 24 periods of 1 hour, cycles defined on a much larger number of periods can be

accommodated without losing tractability, for instance 1440 periods of 5 minutes for a

daily cycle. This favorable property of the approach proposed in this chapter comes from

the choice of considering policies based on the greedy optimization of value functions.

The ability to accommodate short duration periods is especially important for battery

storage control problems, for two related reasons. First, in contrast to hydro storage,

the capacity of batteries is tiny. Profitable operations can thus come from increasing the

frequency of profitable charge-discharge cycles during the day, in addition to providing

regulation services for the system operator. Second, if wholesale electricity spot prices

are updated every five minutes, it makes sense to have a control policy adapted to this

time resolution. The spot price fed into the battery storage control problem can then be

interpreted as the expected average spot price over the next 5 minutes. The charging action

determined by the model should be implemented at a uniform rate over the next 5 minutes.

As the 5-min spot price is much more volatile than the hourly spot price, operating the
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battery at the 5-minute time scale is much more effective than operating it at the one-hour

time scale.

The present work can be extended in several directions. The theoretical analysis could

be extended to handle the case of an approximate evaluation of the Bellman iterations,

and to handle approximate periodic value functions of a given approximation architecture.

The value of a periodic policy used in a rolling-horizon fashion for appropriate classes of

nonstationary problems could be studied in theory and numerically. The concept of using

a cyclo-stationary reward process to approximate value functions at a terminal stage could

be adapted to other approaches to stochastic optimization besides the Markov Decision

Process framework.

A more realistic model for the battery should be implemented, to include the limited

life cycles for batteries. We will discuss this model in the next chapter.
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Chapter 3

Battery Operation with Aging

The material of this chapter has been published in paper

Yuhai Hu and Boris Defourny. Optimal price-threshold control for battery operation

with aging phenomenon: a quasiconvex optimization approach. Annals of Operations Re-

search, pages 1–28, 2017

3.1 Introduction

With renewable energy having an increasing impact on power grid operations, research and

development has been very active in energy storage technology [27, 96]. Meanwhile, more

attention has been given to improve the operation of energy storage devices [57, 63]. While

the basic strategy for market-based energy storage operations is to buy at low prices and

sell at high prices [104], with battery storage the charging-discharging cycles also count

against the life of the storage device [71]. The battery-life effect may affect optimal storage

operations much more significantly than with other storage technologies. Therefore, the

present paper focuses on optimal control algorithms for storage devices where aging induced

by operations is significant.

3.1.1 Contributions and Related Work

The structure of optimal policies for battery operation problems is well known and has

been analyzed previously, see e.g. [79, 104, 38, 92, 53, 54]. However, since batteries are
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expensive to replace — see e.g. [2] — the aging phenomenon is expected to have a strong

influence on the overall return on investment. Batteries experience degradations in terms

of capacity fading and increased resistance with time. The factors affecting degradation

include operation temperature, depth of discharge, and state-of-charge [49]. [71] provide

a model which takes capacity degradations into account, through a so-called degradation

function. In their analysis, they assume that the lost capacity is replaced immediately and

model this as an instantaneous penalty. Our approach differs in that with our model the

stage of deterioration of the battery is being tracked through an additional state variable,

and the goal is to maximize the expected profit from operations over the entire battery

life.

The contributions of this chapter can be summarized as follows:

• We incorporate the aging phenomenon into a grid-level battery operation problem

and formulate it as a Markov Decision Process with expected cumulated discounted

rewards [84, 77, 44] where random electricity prices follow a given distribution. The

optimal policy for this problem has the structure of a threshold policy, similarly

to many problems admitting an optimal monotone policy [101, 36] that are often

encountered in inventory theory.

• The value of modeling the end-of-life of the battery in the optimal control problem,

versus neglecting it, is assessed in our computational work.

• We provide an algorithm for optimizing the set of state-dependent thresholds defining

the policy. The algorithm is based on solving a sequence of quasiconvex optimization

problems. The algorithm could be viewed as a policy-iteration scheme that utilizes

problem structure to determine optimal parameters in the optimal order, owing to

the decomposition of the global optimization problem into subproblems that can be

solved to near-optimality. Under the assumption that the prices are independent and

identically distributed (i.i.d.), the proposed algorithm works directly in the contin-

uous state space, and finds the exact optimal thresholds within the tolerance of the

quasiconvex optimization subroutine.
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• Computational results confirm that the proposed algorithm is faster and more accu-

rate than general-purpose dynamic programming algorithms such as value iteration.

With the proposed algorithm, there are no details to tune (such as the details of

the finite state space approximation for value iteration), and the complexity is not

affected by the discount factor.

• We provide the error analysis of the propagation of suboptimal solutions caused by

the finite tolerance of the optimization subroutine. If the absolute tolerance of the

subroutine solving the quasiconvex optimization problems is ε ≥ 0, the error on the

value function of the problem is bounded by ε/(1−γ), where γ ∈ (0, 1) is the discount

factor.

• We later extend our threshold optimization approach to a more general type of price

process, in particular, to a class of Markovian regime-switching processes. Our anal-

ysis establishes the global convergence and locally quadratic convergence of the se-

quence of iterates used to find the optimal thresholds.

Relating our results back to the existing algorithmic literature on dynamic program-

ming, we note that the error bound for the proposed algorithm is the same as the error

bound of approximate value iteration, which is known to be lim supk→∞ ||Jk − J∗|| ≤

ε/(1− γ), see e.g. [8], where in this expression J∗ is the optimal value function, Jk is the

approximate value function at iteration k assuming that sups |Jk(s) − [TJk−1](s)| ≤ ε,

and TJk−1 denotes the update of the approximate value function Jk−1 by exact Bellman

iteration. There is a difference in those bounds, however, in that with approximate value

iteration ε can be relatively large (it is the largest approximation error among all states)

while with the proposed approach, ε is related to the user-controlled tolerance of the opti-

mization subroutine.

Concerning the convergence rate result, we recall that under ideal conditions, policy

iteration converges to an optimal policy at a quadratic rate [78]. However, as pointed out by

[87], these conditions involve an exact optimization for each state. The algorithm proposed

here operates over the parameters of a parametric policy, belonging to a class containing
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an optimal policy. The resulting problem, being finite-dimensional, can be solved to an

arbitrary precision, thereby circumventing the impossibility, in a continuous state space,

of finding an optimal decision for each state individually.

3.1.2 Organization

The chapter is organized as follows. Section 3.2 formulates the Markov Decision Process

model for the battery operation problem. Section 3.3 provides the results related to the

structure of the optimal policy. Section 3.4 develops the procedure that finds a sequence of

optimal thresholds describing the optimal policy by maximizing a sequence of quasiconcave

objective functions. Section 3.5 provides our error analysis for the purpose of showing

that the proposed scheme is robust with respect to the finite tolerance of the optimization

subroutine. Section 3.6 refines the battery model to take into account capacity deterioration

and charging inefficiencies. Section 3.7 compares the proposed algorithm to the classical

value iteration algorithm, illustrates the effect of variants in the battery model, and assesses

the economic value of having the battery controlled by a policy aware of finite-life effects.

Section 3.8 extends the price process model to a Markovian regime-switching model and

establishes convergence rate results. Finally, Section 3.9 concludes.

3.2 Model Description

This section describes the Markov Decision Process of the battery operation problem sub-

ject to battery aging. The time horizon for this problem is infinite, as battery aging is

assumed not to occur when the battery is idle. The problem is described using the follow-

ing notation.

• S is the state space. The state at time t, denoted St, has three components: the

charge level ct ∈ {0, 1}, the remaining life nt ∈ {0, 1, . . . , N} interpreted as a number

of remaining charging cycles, and the market price pt, assumed to follow a given

exogenous distribution. Thus, St = (ct, nt, pt).

• A is the decision space. The decision at time t, denoted At, is either −1 (discharge),
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0 (idle), or +1 (charge). It is convenient to write D for the subset of S × A of

feasible state-action pairs. The set of admissible decisions when being in state s is

then denoted D(s) = {a ∈ A : (s, a) ∈ D}.

• P is the state transition probability function, that describes for each (s, a) ∈ D the

probability of going to the next state St+1 when being in state St = s and choosing

action At = a.

• R : S ×A 7→ R is the reward function, such that the reward at time t given St = s,

At = a, is rt = R(s, a).

The goal for this problem is to maximize the expected return over the infinite horizon, that

is, to maximize the expected discounted sum of instantaneous rewards:

V (s) = max
π

Eπ

[ ∞∑
t=0

γtR(St, A
π(St))

∣∣∣ S0 = s

]
, (3.1)

where γ ∈ (0, 1) is the discount factor, and π is the policy that maps states to admissible

decisions, as at = Aπ(st) ∈ D(st). Without loss of optimality we assume that the policy is

stationary, see e.g. [77].

The transition function can be described as follows.

• The price follows a known distribution. The prices are independent and identically

distributed (i.i.d) among time periods. (This is revisited in Section 3.8.)

• When nt ≥ 1, whenever the battery is discharged (at = −1) the remaining life cycle

counter nt is decremented of one unit. During charge or idle operations, the remaining

life cycle counter does not change. Thus,

(ct+1, nt+1) =


(ct + at, nt) if at ∈ {0, 1},

(ct + at, nt − 1) if at = −1.

(3.2)

• nt = 0 is a terminal state (end of battery life). By the transition rule above, the

charge level always becomes ct = 0 when entering nt = 0. The price pt continues to
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evolve but we may as well assume the full state process St is stopped when entering

nt = 0.

The reward function is described as

R(st, at) = pt(−at) (3.3)

under the convention that at is admissible in state st. In states with ct = 1, at ∈ {−1, 0}.

In states with nt ≥ 1 and ct = 0, at ∈ {0, 1}. (The battery storage model is revisited in

Section 3.6.)

3.3 Threshold Policy

In this section, we analyze the properties of the problem modeled in Section 3.2. Proposi-

tion 4 shows that there are price thresholds that determine the optimal decisions.

Proposition 4. For each remaining life cycles n ≥ 1,

a) There exists a critical price level θ1,∗
n , depending on n, such that an optimal action in

each state St = (ct, nt, pt) for ct = 1 is

Aπ(1, nt, pt) =


−1 if pt ≥ θ1,∗

nt ,

0 if pt < θ1,∗
nt .

b) There exists a critical price level θ0,∗
n , depending on n, such that an optimal action in

each state St = (ct, nt, pt) for ct = 0 is

Aπ(0, nt, pt) =


1 if pt ≤ θ0,∗

nt ,

0 if pt > θ0,∗
nt .

Proof of Proposition 4. (For convenience, in this proof we omit the subscript t in ct, nt, pt

and st, at. The next price is still written pt+1.)
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The instantaneous reward R(s, a) defined in (3.3) only depends on the price state

variable p and the decision a, so for simplicity we use the shorthand notation R(p, a). We

write the value function (3.1) as

V (c, n, p) = max
a∈A(c,n)

Q(c, n, p, a)

where

Q(c, n, p, a) = R(p, a) + γE[V (c+ a, n− 1{n≥1,a=−1}, pt+1)].

Note that V (c, 0, p) = 0 since there is no future reward when n attains 0.

Fix some arbitrary prices p, p′ such that p < p′. Whenever a = 0 we have Q(c, n, p, a) =

Q(c, n, p′, a) = E[V (c, n, pt+1)] since R(·, 0) = 0 and the distribution of pt+1 does not

depend on p.

If c = 1 then

Q(1, n, p,−1) = p+ γE[V (0, n− 1, pt+1)]

< p′ + γE[V (0, n− 1, pt+1)] = Q(1, n, p′,−1).

Thus if c = 1 and a = −1 is optimal at price p, meaning Q(1, n, p,−1) ≥ Q(1, n, p, 0),

we also have

Q(1, n, p′,−1) > Q(1, n, p,−1) ≥ Q(1, n, p, 0) = Q(1, n, p′, 0),

that is, a = −1 is also optimal at any price p′ > p. Hence there exists a critical threshold

price θ1,∗
n such that a = 0 if p < θ1,∗

n and a = 1 if p ≥ θ1,∗
n .

If c = 0 then

Q(0, n, p, 1) = −p+ γE[V (1, n, pt+1)]

> −p′ + γE[V (1, n, pt+1)] = Q(0, n, p′, 1).

Thus if c = 0 and a = 1 is optimal at price p′, meaning Q(0, n, p′, 1) ≥ Q(0, n, p′, 0), we
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also have

Q(0, n, p, 1) > Q(0, n, p′, 1) ≥ Q(0, n, p′, 0) = Q(0, n, p, 0),

that is, a = 1 is also optimal at any price p < p′. Hence there exists a critical threshold

price θ0,∗
n such that a = 0 if p > θ0,∗

n and a = 1 if p ≤ θ0,∗
n .

The optimal thresholds can be related to the optimal value function (3.1). This is done

in Proposition 5, below. First, we state two simple properties of the value function.

Lemma 3.3.1. The value function V (c, n, p) is nondecreasing in n for each fixed (c, p).

Proof. Fix c and p. If n < n′ then V (c, n, p) ≤ V (c, n′, p) since it is always possible, starting

from n′, to pretend we are starting at n′′ = n, use the corresponding optimal policy, and

then remain forever idle (a = 0) when n′′ reaches 0, even though n′ − n cycles remain in

reality.

Lemma 3.3.2. Assuming the price is always nonnegative, the value function V (c, n, p) is

nondecreasing in c for each fixed (n, p). In fact, 0 ≤ V (1, n, p)− V (0, n, p) ≤ p.

Proof. Fix c, c′ such that 0 = c < c′ = 1. We have V (c′, n, p) ≥ V (c, n, p) since from c′ it is

always possible to pretend we are starting from c and use the corresponding policy, except

that the first time the policy prescribes at = 1 assuming ct = 0, which costs pt, we use

at = 0 at ct = 1, which costs 0. In both cases we arrive at ct+1 = 1 and nt+1 = n. This

establishes V (1, n, p)− V (0, n, p) ≥ 0 assuming pt is always nonnegative.

We also have

p+ V (0, n, p) = p+ max{Q(0, n, p, 0), Q(0, n, p, 1)}

= p+ max{γE[V (0, n, pt+1)],−p+ γE[V (1, n, pt+1)]}

= max{p+ γE[V (0, n, pt+1)], γE[V (1, n, pt+1)]}

≥ max{p+ γE[V (0, n− 1, pt+1)], γE[V (1, n, pt+1)]}

= max{Q(1, n, p,−1), Q(1, n, p, 0)} = V (1, n, p),

where the inequality is due to Lemma 3.3.1. Thus V (1, n, p)− V (0, n, p) ≤ p.
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Proposition 5. There exist optimal price thresholds θ0,∗
n , θ1,∗

n that can be expressed using

the optimal value function (3.1):

θ0,∗
n = γ(E[V (1, n, pt+1)]− E[V (0, n, pt+1)]), (3.4)

θ1,∗
n = γ(E[V (1, n, pt+1)]− E[V (0, n− 1, pt+1)]). (3.5)

In particular, θ1,∗
n − θ0,∗

n = γ(E[V (0, n, pt+1)]− E[V (0, n− 1, pt+1)]) ≥ 0.

Proof. Fix n. An optimal threshold θ0,∗
n at life n can be uniquely chosen as

θ0,∗
n = argmaxp{p : Q(0, n, p, 1) ≥ Q(0, n, p, 0)}

= argmaxp{p : −p+ γE[V (1, n, pt+1)] ≥ γE[V (0, n, pt+1)]}

= argmaxp{p : −p+ γE[V (1, n, pt+1)] = γE[V (0, n, pt+1)]}

= γ(E[V (1, n, pt+1)]− E[V (0, n, pt+1)]).

Similarly, an optimal threshold θ1,∗
n at life n can be uniquely chosen as

θ1,∗
n = argminp{p : Q(1, n, p,−1) ≥ Q(1, n, p, 0)}

= argminp{p : p+ γE[V (0, n− 1, pt+1)] ≥ γE[V (1, n, pt+1)]}

= argminp{p : p+ γE[V (0, n− 1, pt+1)] = γE[V (1, n, pt+1)]}

= γ(E[V (1, n, pt+1)]− E[V (0, n− 1, pt+1)]).

The sign of (θ1,∗
n − θ0,∗

n ) is due to Lemma 3.3.1 applied to each p = pt+1.

This section concludes with a few remarks.

• Proposition 5 shows that the existence of two distinct thresholds is due to the

finiteness of the battery life. Indeed, if n → ∞, we have limn→∞ V (0, n, pt+1) =

limn→∞ V (0, n− 1, pt+1) and thus limn→∞(θ1,∗
n − θ0,∗

n ) = 0. Furthermore, if n→∞,

the single inequality in the proof of Lemma 3.3.2 becomes an equality, leading to
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limn→∞[V (0, n, pt+1)− V (1, n, pt+1)] = p. It then follows from (3.4) and (3.5) that

lim
n→∞

θ1,∗
n = lim

n→∞
θ0,∗
n = γE[pt+1], (3.6)

recovering a known result for battery operations without life limit constraints.

• Independently of the state of charge, the battery is necessarily idle when the price

remains in the interval (θ0,∗
nt , θ

1,∗
nt ). This because the battery remains idle when ct = 0

and the price is above θ0,∗
nt , and when ct = 1 and the price is below θ1,∗

nt .

• Proposition 5 shows that θ0,∗
n ≤ θ1,∗

n for all n, and Equation (3.6) suggests that when

a new storage device is put in service with n sufficiently large, the two thresholds

coincide. This can suggest that as the battery ages (n→ 0), the spread (θ1,∗
n − θ0,∗

n )

widens. The existence of an optimal policy for which the spread widens monotoni-

cally with n will be formally established by Proposition 10 in Section 3.4, and also

illustrated in Section 3.7. Since the spread widens, the storage device is expected to

spend more time sitting idle as it ages.

3.4 Analysis

Dynamic programming methods such as value iteration, policy iteration or linear optimiza-

tion can solve the model described in Section 3.2, or at least a finite-state approximation

thereof. However, we seek to avoid an explicit computation of the value function, due to

the following shortages:

• If the price state variable is discretized, the determination of the optimal thresholds

is inaccurate.

• Convergence may be slow, especially when the discount factor is close to 1.

• There is limited value in establishing the structure of an optimal policy if ultimately,

numerical calculations are unable to exploit it.
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In this section, we analyze the problem of directly finding the optimal thresholds with-

out constructing a value function such as V (c, n, p). This section establishes that we can

calculate the optimal thresholds by maximizing a sequence of quasiconcave functions.

3.4.1 Threshold Policy Evaluation

In this section, we fix a threshold policy π described by some arbitrary thresholds θ0
n and

θ1
n for 1 ≤ n ≤ N , and we evaluate the expected value of this policy:

V π(s) = Eπ

[ ∞∑
t=0

R(St, A
π(St))

∣∣∣ S0 = s

]
. (3.7)

We assume that the prices pt are independent and identically distributed (i.i.d.) (The

price process model is extended in Section 3.8.) We assume that pt admits a probability

density function (pdf) denoted f . The corresponding cumulative distribution function

(cdf) is denoted F .

At the beginning of period t, the price pt is posted. The state (ct, nt, pt) is known, and

so is the action at since we fixed the policy. As we know at, at the beginning of period t

we can also predict the next state of charge ct+1 and the next remaining life nt+1. The

only part of the next state that remain uncertain is the next price pt+1 (denoted p′ in the

sequel).

Let πn be the probability that charging will occur at the next period, given that the

remaining life will be n at the next period, the next state of charge will be c = 0, and given

the price of the current period. Noting that the next price and next action are independent

of the current price conditionally to knowing n and c, charging will occur if the next price

p′ is less than or equal to θ0
n, thus

πn = Prob(p′ ≤ θ0
n) =

∫ θ0n
0 f(p)dp = F (θ0

n) . (3.8)

Let e0
n denote the expected price at the next period, if charging occurs at the next period,

the remaining life at the next period is n, and knowing the current price. By the same
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token we have

e0
n = E[p′ | p′ ≤ θ0

n] =
∫ θ0n

0 pf(p)dp
/
πn. (3.9)

Similarly, let ρn be the probability that discharging will occur at the next period, given

that the remaining life will be n at the next period, the next state of charge will be c = 1,

and knowing the current price. Discharging will occur if the next price p′ is greater than

or equal to θ1
n, thus

ρn = Prob(p′ ≥ θ1
n) =

∫∞
θ1n
f(p)dp = 1− F (θ1

n). (3.10)

Let e1
n denote the expected price at the next period, if discharging occurs at the next

period, the remaining life at the next period is n, and knowing the current price. We have

e1
n = E[p′ | p′ ≥ θ1

n] =
∫∞
θ1n
pf(p)dp

/
ρn. (3.11)

Let V̄ c,π
n with c ∈ {0, 1}, 1 ≤ n ≤ N , denote the expected value function at the next

state, when the next state of charge is c, the next remaining-life state is n, the current

price is known, and we follow policy π. By the same logic as before,

V̄ 0,π
n := Ep′ [V π(0, n, p′)], (3.12)

V̄ 1,π
n := Ep′ [V π(1, n, p′)]. (3.13)

We evaluate V̄ c,π
n by backward induction, as follows. If charging occurs at the next period,

the expected reward is −e0
n. If discharging occurs at the next period, the expected reward

is e1
n. If the battery remains idle, the reward is 0. For convenience, set V̄ 0,π

0 = 0; then by

backward induction, with n = 1, . . . , N ,

V̄ 1,π
n = (1− ρn)[0 + γV̄ 1,π

n ] + ρn[e1
n + γV̄ 0,π

n−1], (3.14)

V̄ 0,π
n = (1− πn)[0 + γV̄ 0,π

n ] + πn[−e0
n + γV̄ 1,π

n ]. (3.15)
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Equivalently,

V̄ 0,π
n =

−πne0
n

1− γ(1− πn)
+

γπnV̄
1,π
n

1− γ(1− πn)
, (3.16)

V̄ 1,π
n =

ρne
1
n

1− γ(1− ρn)
+

γρnV̄
0,π
n−1

1− γ(1− ρn)
. (3.17)

The value function (3.7) for policy π can then be obtained from the values V̄ c,π
n , noting

that the value of being in state s = (c, n, p) and following policy π is

V π(s) =



−p+ γV̄ 1,π
n if c = 0 and p ≤ θ0

n,

γV̄ 0
n if c = 0 and p > θ0

n,

p+ γV̄ 0,π
n−1 if c = 1 and p ≥ θ1

n,

γV̄ 1,π
n if c = 1 and p < θ1

n.

(3.18)

We stress that the entities intervening in (3.8–3.18), namely πn, ρn, e0
n, e1

n, V̄ 0,π
n , V̄ 1,π

n ,

all depend on the policy π under evaluation, which is parameterized by the thresholds

θ = {θ0
n, θ

1
n}1≤n≤N . That is, these entities depend on θ.

3.4.2 Threshold Policy Optimization

Consider V̄ 1,π
n in (3.17). Observe that ρn and e1

n only depend on θ1
n, while V̄ 0,π

n−1 does not

depend on θ1
n, and actually only depends on θ1

k and θ0
k for k = 1, . . . , n − 1. Also observe

that since γρn/(1 − γ(1 − ρn)) is nonnegative by virtue of 0 < γ < 1 and 0 ≤ ρn ≤ 1,

we can maximize V̄ 1,π
n by first having V̄ 0,π

n−1 maximized, and then maximizing V̄ 1,π
n over θ1

n

only.

The same reasoning applies to V̄ 0,π
n in (3.16): we can maximize V̄ 0,π

n by first having

V̄ 1,π
n maximized, and then maximizing V̄ 0,π

n over θ0
n only, since πn and e0

n only depend

on θ0
n, while V̄ 1,π

n only depends on θ1
n and on θ0

k and θ1
k for k = 1, . . . , n − 1, and since

γπn/(1− γ(1− πn)) is nonnegative.

Therefore we essentially have V̄ 0,π
n := V̄ 0(θ0

n, V̄
1,π
n ), V̄ 1,π

n := V̄ 1(θ1
n, V̄

0,π
n−1), and we can

determine optimal threshold parameters θ0,∗
n , θ1,∗

n by setting V̄ 0,∗
0 = 0 for convenience and
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solving the nested scalar maximization problems for n = 1, . . . , N ,

V̄ 1,∗
n = max

θ1n
V̄ 1(θ1

n, V̄
0,∗
n−1) = max

θ1n

ρne
1
n + γρnV̄

0,∗
n−1

1− γ(1− ρn)

= max
θ1n

∫∞
θ1n
pf(p)dp+ γ(1− F (θ1

n))V̄ 0,∗
n−1

1− γF (θ1
n)

, (3.19)

V̄ 0,∗
n = max

θ0n
V̄ 0(θ0

n, V̄
1,∗
n ) = max

θ0n

−πne0
n + γπnV̄

1,∗
n

1− γ(1− πn)

= max
θ0n

−
∫ θ0n

0 pf(p)dp+ γF (θ0
n)V̄ 1,∗

n

1− γ(1− F (θ0
n))

. (3.20)

Hence we have a chain of optimization problems to solve in the following order:

0
θ1,∗17−→ V̄ 1,∗

1

θ0,∗17−→ V̄ 0,∗
1

θ1,∗27−→ V̄ 1,∗
2

θ0,∗27−→ V̄ 0,∗
2 . . .

θ1,∗N7−→ V̄ 1,∗
N

θ0,∗N7−→ V̄ 0,∗
N .

The following lemma is used in the proof of Proposition 6 below.

Lemma 3.4.1. V̄ 0,π
n is upper-bounded by

V̄ 0,∗
∞ =

1

1− γ

[
γµF (γµ)−

∫ γµ

0
pf(p)dp

]
where µ := E[pt+1].

In particular, this implies the inequality

(1− γ)V̄ 0,π
n ≤ γµ. (3.21)

Proof of Lemma 3.4.1. By definition, V̄ 0,π
n ≤ V̄ 0,∗

n . From Lemma 3.3.1, we know that

V (0, n, p) ≤ V (0, n + 1, p) for each p. In particular, V (0, n, p) ≤ limn′→∞ V (0, n′, p).

Therefore, by the monotone convergence theorem,

V̄ 0,∗
n = E[V (0, n, pt+1)] ≤ E[ lim

n′→∞
[V (0, n′, pt+1)]] = lim

n′→∞
V̄ 0,∗
n′ := V̄ 0,∗

∞ .

By (3.6), V̄ 0,∗
∞ is attained at θ = limn→∞ θ

0
n = limn→∞ θ

1
n = γµ, where µ = E[pt+1].
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Define

ρ = lim
n→∞

ρn = 1− F (γµ), π = lim
n→∞

πn = F (γµ),

e0 = lim
n→∞

e0
n =

∫ γµ

0
pf(p)dp/π, e1 = lim

n→∞
e1
n =

∫ ∞
γµ

pf(p)dp/ρ.

Note the relations ρ = 1−π and πe0 +ρe1 = µ, which do not hold for finite n. Substituting

(3.17) into (3.16) with n→∞, we get

V̄ 0,∗
∞ =

−πe0

1− γ(1− π)
+

γπ

1− γ(1− π)

[
µ− πe0

1− γπ
+
γ(1− π)V̄ 0,∗

∞
1− γπ

]
.

After some simple manipulations the solution reduces to

V̄ 0,∗
∞ =

π(γµ− e0)

1− γ
=
γµF (γµ)−

∫ γµ
0 pf(p)fp

1− γ
.

(3.21) is due to V̄ 0,∗
n ≤ V̄ 0,∗

∞ , γµ ≥ 0, F (γµ) ≤ 1, and
∫ γµ

0 pf(p)fp ≥ 0.

Proposition 6. The function V̄ 0(θ0
n, V̄

1,∗
n ) is quasiconcave in the threshold θ0

n. Further-

more, if the price distribution is supported on (0,+∞), then V̄ 0(θ0
n, V̄

1,∗
n ) is strictly quasi-

concave in θ0
n.

Similarly, the function V̄ 1(θ1
n, V̄

0,∗
n−1) is quasiconcave in θ1

n, and strictly quasiconcave in

θ1
n if the price distribution is supported on (0,+∞).

Proof. The partial derivative of V̄ 0 with respect to θ0
n is

∂V̄ 0

∂θ0
n

=
f(θ0

n)g(θ0
n, V̄

1,∗
n )

[1− γ(1− F (θ0
n))]2

,

where we have defined

g(θ0
n, V̄

1,∗
n ) := γ(1− γ)V̄ 1,∗

n − (1− γ)θ0
n − γθ0

nF (θ0
n) + γ

∫ θ0n

0
pf(p)dp. (3.22)

If we can show that there is a point θ0
n such that ∂V̄ 0

∂θ0n
≥ 0 on (0, θ0

n) and ∂V̄ 0

∂θ0n
≤ 0 on

(θ0
n,∞), then we will have showed that the function V̄ 0 is quasiconcave in θ0

n, see e.g. [9].
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If the inequalities are strict, we will have showed that the function is strictly quasiconcave.

Clearly, the denominator is positive: [1− γ(1− F (θ0
n))]2 > 0, since 0 < γ < 1. Clearly,

f(θ0
n) ≥ 0, and if the price is supported on (0,+∞), then f(θ0

n) > 0 on that interval.

Therefore we are left with studying the sign of g.

We have

g(0, V̄ 1,∗
n ) = γ(1− γ)V̄ 1,∗

n ≥ 0,

assuming V̄ 1,∗
n ≥ 0 since the always-idle policy attains the zero expected value.

The partial derivative of g with respect to θ0
n is

∂g

∂θ0
n

= −(1− γ)− γF (θ0
n)− γθ0

nf(θ0
n) + γθ0

nf(θ0
n)

= −1 + γ(1− F (θ0
n)) < 0.

Therefore g(θ0
n, V̄

1,∗
n ) is decreasing in θ0

n, and considering the sign of g at 0, we can

conclude that there exist a critical θ0
n such that g(θ0

n, V̄
1,∗
n ) > 0 on (0, θ0

n) and g(θ0
n) < 0

on (θ0
n,∞). It follows that V̄ 0 is quasiconcave in θ0

n, and strictly quasiconcave provided

f(θ0
n) > 0 on (0,+∞).

The proof is similar for V̄ 1, except that it requires Lemma 3.4.1. The proof of the

quasiconcavity V̄ 1 in θ1
n relies on the following expressions:

∂V̄ 1

∂θ1
n

=
f(θ1

n)h(θ1
n, V̄

0,∗
n−1)

(1− γF (θ1
n))2

,

where h(θ1
n, V̄

0,∗
n−1) := −θ1

n − γ(1− γ)V̄ 0,∗
n−1 + θ1

nγF (θ1
n) + γ

∫ ∞
θ1n

pf(p)dp, (3.23)

h(0, V̄ 0,∗
n−1) = −γ(1− γ)V̄ 0,∗

n−1 + γE[pt+1],
∂h

∂θ1
n

= −1 + γF (θ1
n).

Equation (3.21) in Lemma 3.4.1 is used to assert that h(0, V̄ 0,∗
n−1) ≥ 0. Therefore, since

∂h/∂θ1
n < −(1− γ) < 0, there exists a critical θ1

n such that h > 0 on (0, θ1
n) and h < 0 on

(θ1
n,∞).

First-order optimality conditions for quasiconvex optimization problems are well known

but rely on a generalization of the notion of subdifferential [32, 47]. If the problem is strictly
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quasiconvex, then the usual subdifferential or gradient is sufficient to express first-order

optimality conditions.

The proof of Proposition 6 shows that the objective is not strictly quasiconcave due to

the possibility of having regions where the probability density function of the price is zero.

This leads to the following result.

Proposition 7. Sufficient optimality conditions for the thresholds θ0
n, θ1

n are given by the

implicit equations

g(θ0,∗
n , V̄ 1,∗

n ) = 0, (3.24)

h(θ1,∗
n , V̄ 0,∗

n−1) = 0, (3.25)

with the functions g and h defined by (3.22) and (3.23). The solutions to (3.24) and (3.25)

are unique.

Proof. Without loss of optimality, we can always restrict the thresholds to lie on the set

where the density of the price is nonzero. Therefore, for maximizing V̄ 0 and V̄ 1, we can

replace the necessary conditions ∂V̄ 0/∂θ0
n = 0 and ∂V̄ 1/∂θ1

n = 0 by the sufficient conditions

(3.24), (3.25).

The uniqueness of the solution to each equation follows from the implicit function

theorem [25] applied separately to each equation, where

∂g

∂θ0
n

= −1 + γ(1− F (θ0
n)) < 0,

∂h

∂θ1
n

= −1 + γF (θ1
n) < 0,

showing that the partial derivatives are invertible.

Proposition 8. Let the thresholds θ0,∗
n , θ1,∗

n be determined by (3.24) and (3.25). Then we

have

V̄ 1,∗
n = V̄ 0,∗

n−1 + θ1,∗
n /γ, V̄ 0,∗

n = V̄ 1,∗
n − θ0,∗

n /γ.
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Table 3.1: Algorithm for optimizing the thresholds.

Let V̄ 0,∗
0 = 0. Then for n = 1, . . . , N :

1. Solve h(θ1
n, V̄

0,∗
n−1) = 0 given by (3.23) to find θ1,∗

n .

2. Compute V̄ 1,∗
n = V̄ 0,∗

n−1 + θ1,∗
n /γ.

3. Solve g(θ0
n, V̄

1,∗
n ) = 0 given by (3.22) to find θ0,∗

n .

4. Compute V̄ 0,∗
n = V̄ 1,∗

n − θ0,∗
n /γ.

Proof. From (3.23), h(θ1,∗
n , V̄ 0,∗

n−1) = 0 implies in particular

∫∞
θ1,∗n

pf(p)dp = θ1,∗
n /γ + (1− γ)V̄ 0,∗

n−1 − θ
1,∗
n F (θ1,∗

n ).

This expression is then substituted into the objective in (3.19).

From (3.22), g(θ0,∗
n , V̄ 1,∗

n ) = 0 implies in particular

∫ θ0,∗n

0 pf(p)dp = (1− γ)(θ0,∗
n /γ − V̄ 1,∗

n ) + θ0,∗
n F (θ0,∗

n ).

This expression is then substituted into the objective in (3.20).

Alternatively, we use (3.4) and (3.5) to directly show the result.

Our algorithm for determining optimal thresholds is based on Propositions 7 and 8. It

is summarized in Table 3.1.

Proposition 9. Suppose g(θ0,∗
n , V̄ 1,∗

n ) = 0 and h(θ1,∗
n , V̄ 0,∗

n−1) = 0. Then the solution θ0 to

g(θ0, Ṽ 1) = 0 for Ṽ 1 in a neighborhood of V̄ 1,∗
n , and the solution θ1 to h(θ1, Ṽ 0) = 0 for

Ṽ 0 in a neighborhood of V̄ 0,∗
n−1, admit first-order expansions described as

θ0 = θ0,∗
n +

(1− γ)γ

1− γ(1− F (θ0,∗
n ))

(Ṽ 1 − V̄ 1,∗
n ) + o(|Ṽ 1 − V̄ 1,∗

n |),

θ1 = θ1,∗
n −

(1− γ)γ

1− γF (θ1,∗
n )

(Ṽ 0 − V̄ 0,∗
n−1) + o(|Ṽ 0 − V̄ 0,∗

n−1|).
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Proof of Proposition 9. This follows from implicit differentiation applied to the implicit

equation g(θ0
n, V̄

1
n ) = 0 in a neighborhood of the solution (θ0,∗

n , V̄ 1,∗
n ) and from implicit

differentiation of h(θ1
n, V̄

0
n−1) = 0 in a neighborhood of the solution (θ1,∗

n , V̄ 0,∗
n−1), noting

that ∂g/∂θ0
n < 0, ∂h/∂θ1

n < 0, and ∂g/∂V̄ 1
n = γ(1− γ) = −∂h/∂V̄ 0

n−1.

Proposition 10. The calculated optimal thresholds are such that θ0,∗
n is nondecreasing in

n and θ1,∗
n is nonincreasing in n.

Proof of Proposition 10. From Lemma 3.3.1 at each p = pt+1 we have V̄ 1,∗
n − V̄ 1,∗

n−1 =

E[V (1, n, pt+1)−V (1, n−1, pt+1)] ≥ 0 and V̄ 0,∗
n −V̄ 0,∗

n−1 = E[V (0, n, pt+1)−V (0, n−1, pt+1)] ≥

0, that is, V̄ 1,∗
n − V̄ 1,∗

n−1 ≥ 0 and V̄ 0,∗
n − V̄ 0,∗

n−1 ≥ 0.

The threshold θ0,∗
n is defined by the implicit equation g(θ0,∗

n , V̄ 1,∗
n ) = 0. From the proof

of Proposition 6, g is decreasing in θ0
n. It can be seen from (3.22) that g is increasing in V̄ 1,∗

n .

Therefore, since the threshold θ0,∗
n−1 is described by the implicit equation g(θ0,∗

n−1, V̄
1,∗
n−1) = 0,

it follows that V̄ 1,∗
n−1 ≤ V̄

1,∗
n implies θ0,∗

n−1 ≤ θ
0,∗
n .

Similarly, θ1,∗
n is defined by h(θ1,∗

n , V̄ 0,∗
n−1) = 0. From the proof of Proposition 6, h is

decreasing in θ1
n. It can be seen from (3.23) that h is decreasing in V̄ 0,∗

n−1. Therefore, since

the threshold θ1,∗
n+1 is defined by g(θ1,∗

n+1, V̄
0,∗
n ) = 0, it follows that V̄ 0,∗

n ≥ V̄ 0,∗
n−1 implies

θ1,∗
n+1 ≤ θ

1,∗
n .

Recall from Proposition 5 that θ1,∗
n −θ0,∗

n ≥ 0, and from (3.6) that limn→∞(θ1,∗
n −θ0,∗

n ) =

0. Proposition 10 allows us to conclude that as n increases, θ1,∗
n − θ0,∗

n monotonically

decreases to 0.

It also follows from Proposition 10 that V̄ 1,∗
n−1−V̄

0,∗
n−1 ≤ V̄

1,∗
n −V̄ 0,∗

n , given (3.4) combined

with θ0,∗
n−1 ≤ θ

0,∗
n .

3.5 Error Analysis

This section evaluates the propagation of errors when the steps of the algorithm summarized

in Table 3.1 are not carried out exactly.
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Given Ṽ 0
n−1, let

Ṽ 1,∗
n = max

θ1n
V̄ 1
n (θ1

n, Ṽ
0
n−1), θ̃1,∗

n = argmax
θ1n

V̄ 1
n (θ1

n, Ṽ
0
n−1)

be the exact optimal value to the perturbed optimization problem obtained by replac-

ing V̄ 0,∗
n−1 by Ṽ 0

n−1 in (3.19), and the corresponding optimal solution uniquely defined by

g(θ̃1,∗
n , Ṽ 0

n−1) = 0. In particular we have V̄ 1(θ̃1,∗
n , Ṽ 0

n−1) = Ṽ 1,∗
n .

It is assumed that a near-optimal value Ṽ 1
n can be found for the perturbed optimization

problem, in the sense that

Ṽ 1
n + ε ≥ Ṽ 1,∗

n for some ε > 0. (3.26)

We denote by θ̃1
n the near-optimal solution that attains Ṽ 1

n = V̄ 1(θ̃1
n, Ṽ

0
n−1).

Similarly, let

Ṽ 0,∗
n = max

θ0n
V̄ 0
n (θ0

n, Ṽ
1
n ), θ̃0,∗

n = argmax
θ0n

V̄ 0
n (θ0

n, Ṽ
1
n )

be the exact optimal value to the perturbed optimization problem obtained by replac-

ing V̄ 1,∗
n by Ṽ 1

n in (3.20), and the corresponding optimal solution uniquely defined by

h(θ̃0,∗
n , Ṽ 1

n ) = 0. In particular we have V̄ 0(θ̃0,∗
n , Ṽ 1

n ) = Ṽ 0,∗
n .

It is assumed that a near-optimal value Ṽ 0
n can be found for the perturbed optimization

problem, in the sense that

Ṽ 0
n + ε ≥ Ṽ 0,∗

n for some ε > 0. (3.27)

We denote by θ̃0
n the near-optimal solution that attains Ṽ 0

n = V̄ 0(θ̃0
n, Ṽ

1
n ).

Lemma 3.5.1. The function cγ(x) := x
1−γ(1−x) defined over x ∈ [0, 1] satisfies 0 ≤ cγ(x) ≤

1.

Proof. Assume x ∈ [0, 1] and 0 < γ < 1. The function cγ is increasing since dcγ/dx =

(1 − γ)/[1 − γ(1 − x)]2 > 0, thus its minimum and maximum are attained at x = 0 and
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x = 1 respectively.

Lemma 3.5.2. Suppose |Ṽ 0
n−1 − V̄

0,∗
n−1| ≤ δn. Then we have |Ṽ 1

n − V̄
1,∗
n | ≤ γδn + ε.

Proof. By definition of Ṽ 1
n and Ṽ 1,∗

n , we have

0 ≤ Ṽ 1,∗
n − Ṽ 1

n = V̄ 1(θ̃1,∗
n , Ṽ 0

n−1)− V̄ 1(θ̃1
n, Ṽ

0
n−1) ≤ ε. (3.28)

By definition of Ṽ 1,∗
n , for any θ1

n we have

Ṽ 1,∗
n = V̄ 1(θ̃1,∗

n , Ṽ 0
n−1) ≥ V̄ 1(θ1

n, Ṽ
0
n−1). (3.29)

First, consider the case where V̄ 0,∗
n−1 ≥ Ṽ 0

n−1 and thus V̄ 0,∗
n−1 − Ṽ 0

n−1 ≤ δn. We will

establish that 0 ≤ V̄ 1,∗
n − Ṽ 1

n ≤ γδn + ε.

From (3.16), for any fixed θ1
n we have

V̄ 1(θ1
n, V̄

0,∗
n−1)− V̄ 1(θ1

n, Ṽ
0
n−1) =

γρn
1− γ(1− ρn)

(V̄ 0,∗
n−1 − Ṽ

0
n−1).

Lemma 3.5.1 with x = ρn ∈ [0, 1] then implies

0 ≤ V̄ 1(θ1
n, V̄

0,∗
n−1)− V̄ 1(θ1

n, Ṽ
0
n−1) ≤ γ(V̄ 0,∗

n−1 − Ṽ
0
n−1). (3.30)

We then proceed with evaluating

V̄ 1,∗
n − Ṽ 1

n

= V̄ 1(θ1,∗
n , V̄ 0,∗

n−1)− V̄ 1(θ̃1
n, Ṽ

0
n−1)

≤ V̄ 1(θ1,∗
n , V̄ 0,∗

n−1)− V̄ 1(θ̃1,∗
n , Ṽ 0

n−1) + ε by rightmost inequality of (3.28)

≤ V̄ 1(θ1,∗
n , V̄ 0,∗

n−1)− V̄ 1(θ1,∗
n , Ṽ 0

n−1) + ε by (3.29) with θ1
n = θ1,∗

n

≤ γ(V̄ 0,∗
n−1 − Ṽ

0
n−1) + ε by rightmost inequality of (3.30) with θ1

n = θ1,∗
n

≤ γδn + ε.
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We also have

V̄ 1,∗
n − Ṽ 1

n = V̄ 1(θ1,∗
n , V̄ 0,∗

n−1)− V̄ 1(θ̃1
n, Ṽ

0
n−1)

≥ V̄ 1(θ1,∗
n , V̄ 0,∗

n−1)− V̄ 1(θ̃1,∗
n , Ṽ 0

n−1) by leftmost inequality of (3.28)

≥ V̄ 1(θ̃1,∗
n , V̄ 0,∗

n−1)− V̄ 1(θ̃1,∗
n , Ṽ 0

n−1) by definition of V̄ 1,∗
n

≥ 0 by (3.30) with θ1
n = θ̃1,∗

n .

Second, consider the case where V̄ 0,∗
n−1 ≤ Ṽ 0

n−1 and thus Ṽ 0
n−1 − V̄

0,∗
n−1 ≤ δn. We will

establish that ε ≤ Ṽ 1
n − V̄

1,∗
n ≤ γδn.

From (3.16) and Lemma 3.5.1 we have, for any θ1
n,

0 ≤ V̄ 1(θ1
n, Ṽ

0
n−1)− V̄ 1(θ1

n, V̄
0,∗
n−1) ≤ γ(Ṽ 0

n−1 − V̄
0,∗
n−1). (3.31)

We then proceed with evaluating

Ṽ 1
n − V̄ 1,∗

n = V̄ 1(θ̃1
n, Ṽ

0
n−1)− V̄ 1(θ1,∗

n , V̄ 0,∗
n−1)

≤ V̄ 1(θ̃1,∗
n , Ṽ 0

n−1)− V̄ 1(θ1,∗
n , V̄ 0,∗

n−1) by (3.29)

≤ V̄ 1(θ̃1,∗
n , Ṽ 0

n−1)− V̄ 1(θ̃1,∗
n , V̄ 0,∗

n−1) by definition of V̄ 1,∗
n

≤ γ(Ṽ 0
n−1 − V̄

0,∗
n−1) by rightmost inequality of (3.31) with θ1

n = θ̃1,∗
n

≤ γδn.

We also have

Ṽ 1
n − V̄ 1,∗

n = V̄ 1(θ̃1
n, Ṽ

0
n−1)− V̄ 1(θ1,∗

n , V̄ 0,∗
n−1)

≥ V̄ 1(θ̃1,∗
n , Ṽ 0

n−1)− ε− V̄ 1(θ1,∗
n , V̄ 0,∗

n−1) by (3.28)

≥ V̄ 1(θ̃1,∗
n , Ṽ 0

n−1)− V̄ 1(θ̃1,∗
n , V̄ 0,∗

n−1)− ε by definition of V̄ 1,∗
n

≥ −ε by leftmost inequality of (3.31) with θ1
n = θ̃1,∗

n .

From the two cases, it follows that the inequality of the proposition is verified.
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Lemma 3.5.3. Suppose |Ṽ 1
n − V̄

1,∗
n | ≤ δ′n. Then we have |Ṽ 0

n − V̄
0,∗
n | ≤ γδ′n + ε.

The proof of Lemma 3.5.3 is almost identical to the proof of Lemma 3.5.2 and is thus

omitted.

The results of Lemmas 3.5.2 and 3.5.3 remain valid under the assumption that |Ṽ 1
n −

Ṽ 1,∗
n | ≤ ε and |Ṽ 0

n − Ṽ 0,∗
n | ≤ ε. Those inequalities are slightly weaker than (3.26) and

(3.27) and correspond to the case where the optimal value is not estimated precisely. The

corresponding proof works by replacing 0 by −ε in the lefthand side of (3.28).

Proposition 11. Let the algorithm in Table 3.1 be implemented, except that V̄ 0,∗
n−1 is re-

placed by Ṽ 0
n−1 following (3.27), and V̄ 1,∗

n is replaced by Ṽ 1
n following (3.26). We initialize

with Ṽ 0
0 = 0. Then, the propagation of errors among iterations is such that

|V̄ 1,∗
n − Ṽ 1

n | ≤
1− γ2n−1

1− γ
ε and |V̄ 0,∗

n − Ṽ 0
n | ≤

1− γ2n

1− γ
ε,

guaranteeing that |V̄ c,∗
n − Ṽ c

n | ≤ ε/(1− γ) for all n and for c = 0, 1.

Proof. Using Lemma 3.5.2 and Lemma 3.5.3 alternatively, starting from V 0,∗
0 = Ṽ 0

0 = 0,

we obtain

|V̄ 1,∗
1 − Ṽ 1

1 | ≤ γ · 0 + ε = ε,

|V̄ 0,∗
1 − Ṽ 0

1 | ≤ γε+ ε,

|V̄ 1,∗
2 − Ṽ 1

2 | ≤ γ(γε+ ε) + ε = γ2ε+ γε+ ε,

|V̄ 0,∗
2 − Ṽ 0

2 | ≤ γ3ε+ γ2ε+ γε+ ε,

and thus in general for n ≥ 1,

|V̄ 1,∗
n − Ṽ 1

n | ≤
2n−2∑
k=0

γkε =
1− γ2n−1

1− γ
ε, |V̄ 0,∗

n − Ṽ 0
n | ≤

2n−1∑
k=0

γkε =
1− γ2n

1− γ
ε.
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Table 3.2: Algorithm for optimizing the price thresholds under battery capacity deteriora-
tion and inefficiencies.

Set (C0/C1)V̄ 0,∗
0 = 0 for convenience. Then for n = 1, . . . , N :

1. Solve h(θ1,∗
n , (ηdisn )−1(Cn−1/Cn)V̄ 0,∗

n−1) = 0 with h given by (3.23) to find θ1,∗
n .

2. Compute V̄ 1,∗
n = (Cn−1/Cn)V̄ 0,∗

n−1 + (ηdisn /γ)θ1,∗
n .

3. Solve g(θ0,∗
n , ηchn V̄

1,∗
n ) = 0 with g given by (3.22) to find θ0,∗

n .

4. Compute V̄ 0,∗
n = V̄ 1,∗

n − θ0,∗
n /(γηchn ).

3.6 Extensions of the Storage Device Model

This section considers modifications of the storage device model, so as to represent other

non-ideal characteristics of battery storage. It shows how the results of the previous sections

can be extended to solve the modified problem.

First, we now recognize that charging cycles adversely affect storage capacity. The

battery model is completed by a capacity function C that describes the storage capacity

as a function of the remaining cycles:

Cn = C(n). (3.32)

We assume C is nondecreasing in n, and nonnegative.

Second, we now recognize that energy losses occur during the charging and discharging

operations. We suppose that the cost of charging a unit-capacity battery is (ηch
n )−1pt > pt,

and the reward of discharging a unit-capacity battery is ηdis
n pt < pt, where ηch

n , η
dis
n ∈ (0, 1]

are the charging and discharging efficiency coefficients, possibly dependent on the remaining

life n.

Proposition 12. Suppose the storage device has non-ideal characteristics: a deteriorating

storage capacity C(n), and charging and discharging efficiencies ηchn , η
dis
n ∈ (0, 1]. Then,

optimal thresholds can be computed by the algorithm in Table 3.2.
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Proof. Observe that if the capacity of the battery is a constant β, the reward function

defined for a unit capacity battery is scaled by β, and so are the value functions. Further-

more, the threshold policy for the unit-capacity device is still optimal for the β-capacity

device.

Suppose we keep the convention that V̄ 1
n and V̄ 0

n are defined for unit-capacity storage

devices. Then, (3.16) and (3.17) become

CnV̄
0,π
n =

−(ηch
n )−1Cnπne

0
n

1− γ(1− πn)
+

γπnCnV̄
1,π
n

1− γ(1− πn)
,

CnV̄
1,π
n =

ηdis
n Cnρne

1
n

1− γ(1− ρn)
+
γρnCn−1V̄

0,π
n−1

1− γ(1− ρn)
.

We get the optimal threshold θ1,∗
n by maximizing the scaled objective

V̄ 1
n /η

dis
n =

ρne
1
n

1− γ(1− ρn)
+
γρn(ηdis

n )−1(Cn−1/Cn)V̄ 0,∗
n−1

1− γ(1− ρn)
,

that is, by solving h(θ1,∗
n , (ηdis

n )−1(Cn−1/Cn)V̄ 0,∗
n−1) = 0. The optimal V̄ 1,∗

n is then described

as

V̄ 1,∗
n = (Cn−1/Cn)V̄ 0,∗

n−1 + (ηdis
n /γ)θ1,∗

n .

Similarly, we get the optimal threshold θ0,∗
n by maximizing the scaled objective

ηch
n V̄

0
n =

−πne0
n

1− γ(1− πn)
+

γπnη
ch
n V̄

1,∗
n

1− γ(1− πn)
,

that is, by solving g(θ0,∗
n , ηch

n V̄
1,∗
n ) = 0. The optimal V̄ 0,∗

n is then described as

V̄ 0,∗
n = V̄ 1,∗

n − (γηch
n )−1θ0,∗

n .
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3.7 Computational Results

Our computational results are presented in this section.

We consider a problem where the discount factor is γ = 0.999, and the battery has a

life of N = 2000 cycles. We assume the price follows a lognormal distribution LN(µ0, σ
2
0)

with µ0 = 4 and σ0 = 0.50. Thus, the optimal price threshold for the infinite-life battery

is θ∗∞ = γE[pt+1] = γ exp(µ0 + σ2
0/2) = 61.8059. We also consider a variant of the problem

where γ = 0.9999 and thus θ∗∞ = 61.8616.

Our codes are written in Matlab and are run on a pc equipped with a 2.80GHz Intel

Xeon processor.

3.7.1 Performance of the Proposed Algorithm

We compare the proposed approach to the value iteration algorithm from the literature [8],

in terms of accuracy and computational speed. Both algorithms have access to the density

f and cumulative distribution function F of the price.

The value iteration (VI) algorithm approximates the continuous price state into discrete

price states for the purpose of assigning a decision to each price level. Thus, in value

iteration there is a tradeoff between accuracy and complexity. We use a uniform grid of

price states pm = 0.00, 0.01, . . . , 500.00, noting that Prob(pt+1 > 500) < 10−5. The price

pm is assigned the probability wm = F ((pm+1+pm)/2)−F ((pm+pm−1)/2). By convention,

for pm = 0 we have pm−1 = 0, and for pm = 500 we have pm+1 = ∞. We also take

advantage of the analysis of the paper, by maximizing the discrete-price approximation

VVI of V (c, n, p) sequentially: for a fixed n, we use the following iteration over k until

convergence,

V k+1
VI (1, n, pm) = max{+ pm + γ

∑
iw

iV ∗VI(0, n− 1, pi),

0 +
∑

iw
iV k

VI(1, n, p
i)} for all m,

V k+1
VI (0, n, pm) = max{ − pm + γ

∑
iw

iV k+1
VI (1, n, pi),

0 +
∑

iw
iV k

VI(0, n, p
i)} for all m.
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Table 3.3: Price thresholds calculated by Value Iteration.

Life state n

10 50 100 500 1000 2000

γ = 0.999

{
θ1,∗
n 131.61 95.76 83.15 64.37 62.11 61.82

θ0,∗
n 33.78 44.46 49.80 60.12 61.60 61.80

γ = 0.9999

{
θ1,∗
n 194.31 148.74 131.19 95.67 83.13 72.92

θ0,∗
n 23.76 30.43 34.06 44.61 49.91 55.11

Note that only
∑

iw
iV ∗VI(0, n−1, pi) is transferred to the next fixed-point problem relative

to the next n. Intermediate variables (not shown) store sums calculated once. In summary,

we solve small fixed-point problems to converge to V ∗VI(·, n, ·), for n = 1, . . . , N , instead of

maximizing VVI via a single large fixed-point problem.

The results are reported in Tables 3.3 and 3.4. It can be seen from the tables that

the threshold values are very close. In terms of computational times however, for the

case γ = 0.999 it takes 9.6 seconds to solve the problem with value iteration, compared

to 0.75 seconds to solve the problem exactly with the proposed threshold optimization

algorithm. Thus, the proposed algorithm is significantly faster.

If we reduce the number of price states to accelerate value iteration, the accuracy starts

deteriorating, relatively to the exact results of Table 3.4. For instance, if we truncate the

price distribution at 350 instead of 500, noting that P(pt+1 > 350) ' 10−4, we obtain

θ1
10 = 131.55 instead of the exact value 131.6191, while the computational time is reduced

to 6.7 seconds.

It is well known that the complexity of value iteration or policy iteration is greatly

affected by the proximity to 1 of the discount factor, see [88]. This is confirmed here,

where we observe that value iteration now takes 40 seconds if the discount factor is set to

γ = 0.9999. Unlike value iteration, the complexity of the proposed algorithm is independent

of the discount factor, and it takes a similarly short time of 0.78 seconds to compute the

thresholds with γ = 0.9999.
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Table 3.4: Price thresholds calculated by our algorithm.

Life state n

10 50 100 500 1000 2000

γ = 0.999

{
θ1,∗
n 131.6191 95.7515 83.1412 64.3610 62.1062 61.8106

θ0,∗
n 33.7848 44.4674 49.8020 60.1277 61.6049 61.8028

γ = 0.9999

{
θ1,∗
n 194.4449 148.7545 131.1973 95.6708 83.1240 72.9190

θ0,∗
n 23.7513 30.4317 34.0608 44.6154 49.9148 55.1110

3.7.2 Impact of Non-Ideal Battery Characteristics

We illustrate the impact of the deteriorating battery capacity and of inefficiencies on the

optimal price thresholds. Using γ = 0.999 and the same lognormal distribution for the

price, the capacity deterioration is described by specifying the capacity when n cycles

remain,

Cn = n/(100 + n) for n = 1, . . . , N.

In particular, limn→∞Cn = 1. The efficiencies are ηch
n = ηdis

n = 0.9. (Hence the round-

trip efficiency is ηch
n η

dis
n = 0.81.) The impact of the model modifications are presented

in Figure 3.1. Since the threshold computation algorithm works by rescaling the value

functions that parameterize the equations h = 0 and g = 0, and since the impact of

altering the value function is well understood (proof of Proposition 10), we expect to see a

greater value for the difference θ1,∗
n − θ0,∗

n , which is indeed an effect visible on the figure.

We also report some indicators on the usage of the battery device. We report the

probability πn = F (θ0,∗
n ) that a discharged battery buys energy, and the probability ρn =

1− F (θ1,∗
n ) that a charged battery sells energy, as a function of n. This is done in Figure

3.2a for the three battery models described above. As the number of remaining cycles

decreases, the probability of battery operation (charging or discharging) decreases.

It is useful to relate the probabilities πn, ρn to the expected number of periods the

battery occupies state n, i.e. to the expected n-th cycle time. This cycle time is equal to

τn :=
∑∞

i=0(i+ 1)πin(1− πn) +
∑∞

j=0(j + 1)ρjn(1− ρn) = 1/πn + 1/ρn,
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Figure 3.1: Comparison of price thresholds, as a function of n. Continuous line: base case
corresponding to Table 3.4 (γ = 0.999). Dashed: With capacity deterioration. Dotted:
With capacity deterioration and charging-discharging inefficiency.
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where i and j correspond to the time spent idle before charging and discharging respectively.

We also show, on Figure 3.2b, the expected discounted profit of the n-th charge-

discharge cycle, assuming the time is set to 0 when entering state n. This profit, denoted v̄n,

is defined in three steps, with i and j interpreted as the idle times,

v̄1
n =

∑∞
j=0(1− ρn)jρnγ

j(ηdise1
n) = ρn(ηdise1

n)/[1− γ(1− ρn)]

v̄0
n =

∑∞
i=0(1− πn)iπnγ

i(−(e0
n/η

ch) + γv̄1
n) =

πn(−e0
n/η

ch + γv̄1
n)

1− γ(1− πn)
,

v̄n = Cn · v̄0
n.

3.7.3 Economic Value of the Finite-Life Model

Finally, we comment on the value of taking into account the finiteness of the battery life

in formulating the battery control problem, and on the impact of the discount factor γ.

To do this, we adopt the thresholds that are optimal for an infinite-life battery (N →

∞), and compute the value of the objective (3.7) under this policy. For the perfectly

efficient battery with infinite life, the thresholds are given by (3.6). Table 3.5 compares

those values to the optimal objective values attained by the policy aware of the finiteness of

battery life. The difference in expected values underscores the importance of implementing

the control law optimized with the correct assumptions on battery life. When γ = 0.999,

we have γN = 0.1352 if N = 2000, indicating that the objective will not weight much the

return obtained at the end of the battery life. When γ = 0.9999, we have γN = 0.8187 if

N = 2000, which explains that in this case, the value of taking into account the finiteness

of the battery life is now clearly visible.

3.8 Extension of the Price Model

This section considers an extension of the price process to a regime-switching price model,

in order to be able to capture more realistic price processes.

We assume that the price pt, conditionally to being in state mt = m, has density fm

(cdf: Fm), where mt ∈ {1, ...,M} is a finite-state Markov chain. The state mt is used to
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Table 3.5: Value of taking into account the finite life of the storage device.

Battery life N

10 50 100 500 1000 2000

γ = 0.999

V̄ 0,π
N | θcn = θc∞ 496 2287 4144 10655 11986 12174

V̄ 0,∗
N | θcn = θc,∗n 1230 3936 5985 11191 12057 12175

Improvement 147.97% 72.12% 44.44% 5.03% 0.59% 0.01%

γ = 0.9999

V̄ 0,π
N | θcn = θc∞ 644 3185 6284 28218 49625 78187

V̄ 0,∗
N | θcn = θc,∗n 1990 7460 12773 39862 60335 84689

Improvement 208.99% 134.22% 103.28% 41.27% 21.58% 8.31%

indicate the regime for the price process. The one-step state transition probability matrix

for mt is denoted T ∈ RM×M . Thus:

Prob(mt+1 = j | mt = i) = Tij , Prob(pt ≤ p | mt = m) = Fm(p). (3.33)

The regime state can be used as a device to distinguish periods of low prices versus

price spikes, periods of low versus high price volatility, the time index of a seasonal process,

etc. See [65] and [108] for discussions.

In the limit case where the densities fm degenerate to a single point, mt becomes a

sufficient statistic for pt, and the price process degenerates to a finite-state Markov chain.

From the conditional independence assumption in (3.33), an optimal policy can still be

described using a finite number of thresholds, now indexed by the state m. Thus, we can

restrict the search to policies such that

at = Aπ(ct, nt, pt,mt) =


1 if ct = 0 and pt ≤ θ0

nt,mt
,

−1 if ct = 1 and pt ≥ θ1
nt,mt

,

0 otherwise,

(3.34)

where θ0
n,m, θ1

n,m are the threshold parameters describing a policy π.
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3.8.1 Threshold Policy Evaluation

Generalizing previous definitions, let V̄ c,π
n,m be the expected value function at the successor

state when the current regime state is m, the next state of charge is c ∈ {0, 1}, the next

remaining-life state is n, and the policy π is followed. Thus, the expectation is over the

next regime state and price. It is easy to verify on the two-regime case (M = 2) that by

backward induction,

 V̄ 0,π
n,1

V̄ 0,π
n,2

 =

 T11 T12

T21 T22


 (1− πn,1)[0 + γV̄ 0,π

n,1 ] + πn,1[−e0
n,1 + γV̄ 1,π

n,1 ]

(1− πn,2)[0 + γV̄ 0,π
n,2 ] + πn,2[−e0

n,2 + γV̄ 1,π
n,2 ]

 ,
 V̄ 1,π

n,1

V̄ 1,π
n,2

 =

 T11 T12

T21 T22


 (1− ρn,1)[0 + γV̄ 1,π

n,1 ] + ρn,1[e1
n,1 + γV̄ 0,π

n−1,1]

(1− ρn,2)[0 + γV̄ 1,π
n,2 ] + ρn,2[e1

n,2 + γV̄ 0,π
n−1,2]

 ,
where

πn,m = Fm(θ0
n,m), e0

n,m =
∫ θ0n,m

0 pfm(p)dp
/
πn,m, (3.8’-3.9’)

ρn,m = 1− Fm(θ1
n,m), e1

n,m =
∫∞
θ1n,m

pfm(p)dp
/
ρn,m. (3.10’-3.11’)

By convention, πn,me
0
n,m := 0 if πn,m = 0, and ρn,me

1
n,m := 0 if ρn,m = 0. This arises if one

respectively never charges or never discharges when being in regime m.

We can write this in vector form, as follows (the extension to M > 2 is then immediate).

Let Diag(x) denote the diagonal matrix with diagonal x. Let I be the identity matrix.

Define

V̄
c,π
n =

 V̄ c,π
n,1

V̄ c,π
n,2

 , ecn =

 ecn,1

ecn,2

 , πn =

 πn,1

πn,2

 , ρn =

 ρn,1

ρn,2

 ,
Dπn = Diag(πn), Dρn = Diag(ρn).

From the expression V̄
0,π
n = T (I −Dπn)γV̄

0,π
n + TDπn(−e0

n + γV̄
1,π
n ) and similarly from
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the expression V̄
1,π
n = T (I −Dρn)γV̄

1,π
n + TDρn(e1

n + γV̄
0,π
n−1) we obtain

V̄
0,π
n = A−1

πnTDπn(−e0
n + γV̄

1,π
n ), Aπn = I − γT (I −Dπn), (3.16’)

V̄
1,π
n = A−1

ρn TDρn(e1
n + γV̄

0,π
n−1), Aρn = I − γT (I −Dρn). (3.17’)

We stress that (3.8’-3.9’), (3.10’-3.11’), (3.16’), (3.17’) are valid for a policy described by

any, not necessarily optimal, θ = {θ0
n, θ1

n}1≤n≤N (where θcn =

 θcn,1

θcn,2

 if M = 2.)

3.8.2 Threshold Policy Optimization

Let the notation V̄
0,π
n = V̄

0
(θ0
n, V̄

1
n) stress that there is a functional relation between

(θ0
n, V̄

1
n) and V̄

0,π
n , given by (3.16’). Let V̄

0,∗
n = V̄

0
(θ0,∗
n , V̄

1,∗
n ) denote the optimal expected

value function attained by a policy with optimal parameters θ0,∗
n . Similarly let V̄

1,∗
n =

V̄
1
(θ1,∗
n , V̄

0,∗
n−1) with optimal parameters θ1,∗

n . By backward induction, if V̄
1,∗
n is optimal,

then each V̄ 0,π
n,m is maximized by optimizing over θ0

n.

For convenience, in the sequel we write V̄
0
n instead of V̄

0
even though the index n does

not alter the function. We adopt the approach of seeking to optimize V̄ 0
n,m for all m at the

same time. To do this, we evaluate the derivative of V̄ 0
n,i with respect to θ0

n,j for each i, j,

that is, we evaluate the Jacobian matrix J0
n with elements J0

n,ij .

Let f0
n denote the vector with m-th element f0

n,m = fm(θ0
n,m).

Proposition 13. The Jacobian matrix J0
n with elements J0

n,ij = ∂V̄ 0
n,i/∂θ

0
n,j, evaluated at

(θ0
n, V̄

1,∗
n ), is described by

J0
n = A−1

πnT Diag(f0
n) Diag(γ(V̄

1,∗
n − V̄

0
n)− θ0

n). (3.35)

Equivalently,

J0
n = A−1

πnT Diag(f0
n) Diag(A−1

πn g(θ0
n, V̄

1,∗
n )), (3.36)
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where

g(θ0
n, V̄

1,∗
n ) = γ(I − γT )V̄

1,∗
n − (I − γT )θ0

n − γTDπnθ
0
n + γTDπne

0
n. (3.22’)

Proof. Calculus is done using the differential operator d, in order to identify the Jacobian

matrix J0
n via dV̄

0
n = J0

ndθ
0
n, see [60] Chapter 9. We define b0

n = −e0
n + γV̄

1,∗
n , thus from

(3.16’), V̄
0
n = A−1

πnTDπnb
0
n. Then

dV̄
0
n = d(A−1

πnTDπnb
0
n)

= d(A−1
πn )TDπnb

0
n +A−1

πnT d(Dπn)b0
n +A−1

πnTDπndb
0
n. (3.37)

We have ∂πn,m/∂θ
0
n,m = f0

n,m. From ∂e0
n,m/∂θ

0
n,m = (θ0

n,m−e0
n,m)f0

n,m/πn,m and ∂e0
n,m/∂θ

0
n,j =

0 for j 6= m we obtain

db0
n = −de0

n = D−1
πn Diag(e0

n − θ0
n) Diag(f0

n)dθ0
n.

We calculate, for any fixed vector x ∈ RM ,

d(Dπn)x = Diag(f0
n) Diag(dθ0

n)x = Diag(x) Diag(f0
n)dθ0

n,

d(Aπn)x = γT d(Dπn)x = γT Diag(x) Diag(f0
n)dθ0

n,

d(A−1
πn )x = −A−1

πn d(Aπn)A−1
πnx = −A−1

πn γT Diag(A−1
πnx) Diag(f0

n)dθ0
n.

Therefore overall, (3.37) becomes

dV̄
0
n = −A−1

πn γT Diag(A−1
πnTDπnb

0
n) Diag(fn0 )dθ0

n

+A−1
πnT Diag(b0

n) Diag(fn0 )dθ0
n

+A−1
πnT Diag(e0

n − θ0
n) Diag(f0

n)dθ0
n

= A−1
πnT Diag(y0

n) Diag(f0
n)dθ0

n (y0
n defined below)
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where we have defined

y0
n := −γA−1

πnTDπnb
0
n + b0

n + e0
n − θ0

n

= −γV̄ 0
n + (−e0

n + γV̄
1,∗
n ) + e0

n − θ0
n

= γ(V̄
1,∗
n − V̄

0
n)− θ0

n. (3.38)

By identification via dV̄
0
n = J0

ndθ
0
n, we get (3.35).

To get (3.36) and (3.22’), we use y0
n = A−1

πnAπny
0
n and

g(θ0
n, V̄

1,∗
n ) := Aπny

0
n

= γAπnV̄
1,∗
n − γTDπn(−e0

n + γV̄
1,∗
n )−Aπnθ

0
n

= γ(Aπn − γTDπn)V̄
1,∗
n + γTDπne

0
n −Aπnθ

0
n

= γ(I − γT )V̄
1,∗
n + γTDπne

0
n − (I − γT + γTDπn)θ0

n.

From Proposition 13 the following remarks are in order:

• At optimality, the Jacobian matrix must be identically zero. To see this, note that

at any optimal V̄ 0
n,i, the threshold policy needs to satisfy ∂V̄ 0

n,i/∂θ
0
n,j = 0 for all j to

be optimal.

• From (3.35), the Jacobian matrix is identically zero if γ(V̄
1,∗
n − V̄

0
n)− θ0

n = 0. Thus

a threshold vector θ0,∗
n satisfying

θ0,∗
n = γ(V̄

1,∗
n − V̄

0,∗
n ) (3.4’)

is optimal.

• From (3.4’), Step 4 in Table 3.1 generalizes to V̄
0,∗
n = V̄

1,∗
n − θ0,∗

n /γ.

• It is easy to check thatAπn is strictly row diagonally dominant, with positive diagonal

elements. HenceAπn is invertible, and furthermore, A−1
πn is nonnegative, see e.g. [73].

69



• From (3.36), the Jacobian matrix is identically zero if

g(θ0
n, V̄

1,∗
n ) = 0. (3.24’)

• Equation (3.36) eliminates V̄
0
n from (3.35), to eliminate a recursion that would oth-

erwise appear in the second-order differentiation (used in Prop. 14 below).

• It is easy to see that (3.22’) reduces to (3.22) in the case M = 1, where necessarily

T = 1, Dπn = πn = F (θ0
n), and Aπn = 1− γ(1− πn).

The following proposition is the counterpart of Proposition 7. Let Jg,θ0n denote the Jaco-

bian matrix of g with respect to θ0
n, evaluated at θ0

n.

Proposition 14. A sufficient optimality condition for the thresholds θ0
n is given by the

implicit equation (3.24’). At any θ0
n we have Jg,θ0n = −Aπn. The solution θ0,∗

n is unique,

assuming the thresholds lie on the support of the price distributions.

Proof. The Jacobian matrix of g with respect to θ0
n can be identified by calculating

dg = −(I − γT )dθ0
n + γT d(Dπn)(−θ0

n + e0
n)− γTDπndθ

0
n + γTDπnde

0
n

= (−I + γT − γTDπn)dθ0
n + γT Diag(−θ0

n + e0
n) Diag(f0

n)dθ0
n

+ γTDπn [D−1
πn Diag(θ0

n − e0
n) Diag(f0

n)dθ0
n] (cf. Proof of Prop. 13)

= −(I − γT (I −Dπn))dθ0
n

= −Aπndθ
0
n,

thus the Jacobian matrix of g is Jg,θ0n = −Aπn , which is strictly row diagonally dominant

and thus invertible. The uniqueness of the solution to g(θ0
n, V̄

1,∗
n ) = 0 then follows from

the implicit function theorem.

Several methods can be used to solve the implicit equation (3.24’). The following

proposition furnishes a simple iterative procedure.
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Proposition 15. To find the solution θ0,∗
n to g(θ0,∗

n , V̄
1,∗
n ) = 0 for a fixed V̄

1,∗
n , let the

sequence of iterates (θ0,k
n , V̄

0,k
n ), k = 1, 2, . . . , be defined by

θ0,k+1
n = γ(V̄

1,∗
n − V̄

0,k
n ), (3.39)

where V̄
0,k
n is the value relative to θ0,k

n given by (3.16’) with V̄
1,π
n set to V̄

1,∗
n , and the other

entities computed for θ0,k
n .

Then, it holds that the sequence of iterates θ0,k
n converges to θ0,∗

n . Additionally, if θ0,k
n

is sufficiently close to θ0,∗
n , the rate of convergence is quadratic.

Proof. Newton’s method is used to solve the nonlinear system g(θ0
n, V̄

1,∗
n ) = 0. Assuming

a full Newton step, the update is

θ0,k+1
n = θ0,k

n − J−1

g,θ0,kn
g(θ0,k

n , V̄
1,∗
n )

= θ0,k
n − [−A−1

πk
n

][Aπk
n
y0,k
n ] with y0,k

n defined as in (3.38)

= θ0,k
n + γ(V̄

1,∗
n − V̄

0,k
n )− θ0,k

n

= γ(V̄
1,∗
n − V̄

0,k
n ).

Theorem 11.2 in [69] ensures that for a starting point θ0,1
n sufficiently close to a solution θ0,∗

n

with J
g,θ0,∗n

nonsingular, the sequence of iterates converges to θ0,∗
n . Now, since Jg,θ0n =

−Aπn is strictly diagonally dominant for any θ0
n, we have ‖J−1

g,θ0n
‖∞ < 1/mini{|Aπn,ii | −∑

j 6=i |Aπn,ij |}, see [105]. Each row of T (I −Dπn) has the sum of its elements between 0

and 1, implying that each row of Aπn has the sum of its elements between 1 − γ and 1.

Therefore, for any θ0
n arbitrarily far from θ0,∗

n ,

‖J−1
g,θ0n
‖∞ < 1/(1− γ), (3.40)

which implies θ0,k+1
n − θ0,∗

n = o(‖θ0,k
n − θ0,∗

n ‖) (through the proof of Theorem 11.2). More-

over, since g is differentiable and thus in particular Lipschitz continuous, by the cited

Theorem 11.2 it holds that for θ0,k
n sufficiently close to θ0,∗

n we have θ0,k+1
n − θ0,∗

n =

O(‖θ0,k
n − θ0,∗

n ‖2), indicating convergence of the quadratic kind.
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We conclude this section with the following remarks.

• The results for optimizing V̄
1
n in (3.17’) over θ1

n given V̄
0,∗
n−1 are established similarly.

Let f1
n denote the vector with m-th element fm(θ1

n,m). Let J1
n denote the Jacobian

matrix of V̄
1
n with respect to θ1

n. Let Jh,θ1n be the Jacobian matrix of the function

h (defined below) with respect to θ1
n. Then we have

J1
n = A−1

ρn T Diag(f1
n) Diag(γ(V̄

1
n − V̄

0,∗
n−1)− θ1

n)

= A−1
ρn T Diag(f1

n) Diag(A−1
ρn h(θ1

n, V̄
0,∗
n−1)),

h(θ1
n, V̄

0,∗
n−1) = −θ1

n − γ(I − γT )V̄
0,∗
n−1 + γT (I −Dρn)θ1

n + γTDρne
1
n. (3.23’)

A sufficient optimality condition for the thresholds θ1
n is given by the implicit equation

h(θ1
n, V̄

0,∗
n−1) = 0. (3.25’)

We have Jh,θ1n = −Aρn , which is always invertible, so the solution θ1,∗
n is unique,

assuming the thresholds lie on the support of the price distributions.

• The solution θ1,∗
n to h(θ1,∗

n , V̄
0,∗
n−1) = 0 for a fixed V̄

0,∗
n−1 can be obtained via the

sequence of iterates (θ1,k
n , V̄

1,k
n ), k = 1, 2, . . . , defined by

θ1,k+1
n = γ(V̄

1,k
n − V̄

0,∗
n−1), (3.41)

where V̄
1,k
n is the value relative to θ̄

1,k
n obtained via (3.17’) with V̄

0,π
n−1 set to V̄

0,∗
n−1.

• The overall algorithm for determining all the optimal thresholds is described by

Table 3.1 of Section 3.4, with all the entities in Table 3.1 now referring to the entities

in bold letters defined in the present section. If the implicit equations are solved

by the iterative method described in Proposition 15, then Step 2 is a byproduct of

Step 1, and Step 4 is a byproduct of Step 3. Since the convergence is quadratic, only

a few iterations are typically needed to complete Step 1 and Step 3. What is more,

θc,∗n+1 tends to be close to θc,∗n , making θc,1n+1 = θc,∗n a natural starting point of the
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iteration for θc,∗n+1.

• Non-ideal battery characteristics are handled exactly as in Section 3.6, so it is easy

to combine the results obtained so far. The starting point is the policy evaluation

step to calculate the expected value functions per unit of capacity,

CnV̄
0,π
n = A−1

πnTDπn(−Cne0
n/η

ch
n + γCnV̄

1,π
n ),

CnV̄
1,π
n = A−1

ρn TDρn(Cne
1
nη

dis
n + γCn−1V̄

0,π
n−1). (3.42)

The overall optimization algorithm for determining the optimal thresholds under

non-ideal battery characteristics is described by Table 3.2 of Section 3.6, with all the

entities in the table now referring to the entities in bold letters defined in the present

section.

3.8.3 Illustration

We illustrate the behavior of the optimal policy on a simple regime-switching price process

with two regimes.

As in Section 3.7.2, the battery has efficiency parameters ηch
n = 0.9, ηdis

n = 0.9. The

capacity deteriorates following Cn = n/(100 + n).

The Markov chain governing the regime mt has T =

 0.90 0.10

0.95 0.05

. The price pt follows

LN(µmt , σ
2
mt

) with µ1 = 2, σ1 = 0.7 for regime 1 and µ2 = 4, σ2 = 0.5 for regime 2. The

discount factor is γ = 0.999.

Figure 3.3 depicts the behavior of the optimal policy on a sample path of the price

process over t = 1, . . . , 100. The charging and discharging decisions are marked with

triangles on the sample path. On Figure 3.3a, the battery starts from nt = 1000 at t = 1

and attains nt = 981 at t = 100. On Figure 3.3b, the battery starts from n1 = 50 and

attains n100 = 43. Thus the battery completes 19 cycles in case (a) but only 7 cycles in

case (b).

If we were to operate the battery using the optimal thresholds but assuming 1000 cycles

remain while actually 50 remain, the policy, being more active, would exhaust the battery
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(a) Starting from n = 1000 remaining cycles.
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(b) Starting from n = 50 remaining cycles.

Figure 3.3: Simulation of the optimal policy on the same sample path of a price process
but starting from two different ages. Decisions: Charge (N), Discharge (H).

sooner and attain C50V̄
0,π|n1=1000

50,1 = 265 calculated using the recursion (3.42). This is

to be compared to the optimal value with the correct assumption of 50 cycles remaining,

equal to C50V̄
0,π|n1=50

50,1 = 485. Thus, there is high value in considering battery aging when

optimizing operations.

3.9 Conclusion

This chapter considers the market-based battery operation problem with aging phenomenon.

The problem is formulated as an infinite-horizon Markov Decision Process with a contin-

uous price state and a discrete remaining life state. An efficient optimization algorithm

is proposed which exploits the structure of the optimal policy and is based on solving a

sequence of optimization problems. An error analysis and a computational study demon-

strate the performance of the algorithm in terms of accuracy and efficiency. Since the

algorithm is fast, it would be practical to embed it into a rollout scheme used as a policy

for approximately solving more complex problems.

While the stochastic price models used in this chapter are simple, the solution to the

stochastic optimal control problem is already sufficient to offer managerial insights. In

particular, the awareness of the finiteness of the battery life dramatically increases the

optimal price spread required for storage operations. The spread widens when the battery
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approaches its end-of-life. Capacity deterioration compounds the widening effect. This

behavior contrasts with the optimal price spread caused by the need for compensating for

inefficiencies during a single storage cycle, which is present as soon as the storage device

is put into service. This suggests that the contribution of storage devices to market-based

operations could sharply decrease when devices near their end-of-life, with the typical price

spreads of the market becoming insufficient to justify participation. Decreased participation

could thus occur much sooner than expected from a count of remaining cycles.
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Chapter 4

On the Price Impact of

Distributed Energy Storage

4.1 Introduction

Given installed electricity storage devices for consumers and suppliers, we are concerned

with the problem of managing the inflows and outflows of electricity between the power

grid and the storage devices, to maximize the expected discounted cumulated welfare of

consumers and suppliers in the market over an infinite horizon.

In this chapter, two key aspects that are taken into consideration are (i) the sensitivity

of the supply and demand to electricity prices, that are to be determined endogenously

to maintain the power balance, and (ii) the sensitivity of the demand curve to exogenous

stochastic factors.

Furthermore, since prices affect in opposite directions the utility of the demand and

the utility of the supply, and since storage actions influence prices, an issue that arises

for determining optimal battery operations and equilibrium prices is the role of ownership

of battery capacity. The repartition between the demand side and the supply side is

therefore expected to play a role, inasmuch as market participants are expected to behave

strategically.

Our problem relates closely to storage management problems found in the commodity
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storage literature [72, 85], for which rational expectation (RE) models have been proposed.

[110] provides a stochastic valuation of energy storage framework and an energy storage

optimization model. However, this deterministic model does not consider price uncertainty.

[95] considers the impact of large storage devices on the electricity price, thus on the

welfare on generators and consumers separately. Welfare effects from storage in different

market are studies [94]. To capture the recursive relationship between decisions and future

expected prices, the RE model is formulated as an optimal control problem [56], which can

in theory be solved by dynamic programming, possibly by exploiting a favorable structure

[35]. Otherwise, approximate dynamic programming (ADP) techniques are needed to solve

the dynamic program heuristically [76, 7]. [43] describes approximate solution techniques

that are applied to solve RE models.

In the context of managing energy storage resources, several stochastic models have

been proposed and investigated, often using an exogenous stochastic processes for the

price, [112, 14]. In these models, the value of energy storage devices comes from buying

low price energy and selling high price energy. However, in reality, electricity prices are

affected by the supply and demand of energy. Hence, if storage devices are connected to the

grid, they also balance supply and demand and have an influence on the electricity prices.

While the influence on prices may be negligible for a single device acting in isolation, it

would be imprudent to ignore the impact on prices of large ensembles of devices working

in a coordinated fashion, e.g. to correct for imbalances.

To address a variety of questions related to the presence of energy storage, several

market equilibrium models have been proposed [89, 109, 59, 26, 51, 50, 20, 3]. In these

models, the prices are produced as a byproduct of balancing supply and demand, following

the logic of the spot pricing of electricity [90]. However, a limitation of existing equilibrium

models, sometimes apparent only when it comes to the numerical work, lies in the use of

net demand curves whose evolution is deterministic, in contrast to the stochastic dynamic

programming framework adopted here where the net demand curve is kept stochastic within

the numerical solution algorithm. Keeping uncertainty at each stage of the multistage

storage problem is critical to justify energy storage economically, otherwise conventional
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generation can be planned to be started up with any lead time to adapt production and

reserves to net demand variations at minimal cost.

The chapter is organized as follows. Section 4.2 provides an introduction on Nash equi-

librium and bimatrix games. Section 4.2.3 formulates the Markov Game model. Section

4.3 provides the value iteration framework to obtain equilibrium policies for both players.

Section 4.4 shows the numerical experiments and generalizes the basic model to implicit

curve and non-perfect efficiency cases. Section 4.5 discusses the effect of incomplete in-

formation on charge level. Section 4.6 presents the impact from the ownership of energy

storage. Section 4.7 concludes.

4.2 Technical Methods

We formulate our model as a Markov game in Section 4.2.4. During each time period in

the Markov game, we deal with bimatrix games and find Nash equilibrium. In this section,

we introduce related concepts and algorithms in the literature.

4.2.1 Markov Games

A typical Markov game Γ = [S,N,A, T,R, γ] includes state space S, a set of players N =

{1, 2, ..., n}, a set of actions for each player in each state {Ai,s}i∈N,s∈S , a transition function

T : S ×A× S 7→ [0, 1] giving transition probabilities, a reward function R : S ×A 7→ Rn

and a discount factor γ.

A stationary policy πi for player i is a mapping πi : S×A 7→ [0, 1] assigning probabilities

to state-action pairs in the sense that in state s the action a is chosen with probability

πi(s, a).

The value of the set of policies π = {πi}i∈N for player i can be described by

V i
π(s) =

∑
a∈A

π(s, a)Qiπ(s, a) ,

Qiπ(s, a) = Ri(s, a) + γ
∑
s′∈S

T (s, a, s′)V i
π(s′) .
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A Nash equilibrium set of policies π∗ will be such that

V
{π∗1 ,...,π∗i−1,π

∗
i ,π
∗
i+1,...,π

∗
n}

i (s) ≥ V {π
∗
1 ,...,π

∗
i−1,πi,π

∗
i+1,...,π

∗
n}

i (s)

for all s ∈ S and each i ∈ N.

Several algorithms have been proposed in the literature to solve Markov games. [70]

discuss challenges to solve Markov games in multi-agent systems. [55] describes several

Value Iteration based reinforcement-learning algorithms to find a Nash equilibrium in mul-

tiagent Markov games. Although some theoretical guarantees under certain assumptions

are provided, convergence results in the general Markov game case remain unknown.

[113] show that value iteration may not be sufficient to learn an equilibrium policy in

general Markov games. In 2012, [19] provide a polynomial-time algorithm called FolkEgal

to find a Nash equilibrium for repeated two-players stochastic games.

4.2.2 Nash Equilibrium and Bimatrix Games

In this section, we discuss several algorithms that have been introduced to find Nash

equilibria in finite bimatrix games.

A bimatrix game is a simultaneous game for two players where each player has a finite

number of possible actions. There are two payoff matrices A,B for the two players. A,B

are m× n matrices where m,n are cardinalities of action space of row player and column

player. If the row player selects the i-th action and the column player selects the j-th

action, the payoff to the row player is A[i, j] and that to the column player is B[i, j]. The

players can also play mixed strategies. A mixed strategy for row player is a probability

vector x with length m such that
∑m

i=1 xi = 1, and that for column player is a probability

vector y with length n such that
∑n

i=1 yi = 1. The expected payoff of the row player is

xTAy and the expected payoff of the column player is xTBy.
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Assume we maximize the revenue for both players. If there is a pair (x∗, y∗) such that

(x∗)TAy∗ ≥ xTAy∗, ∀ x ,

(x∗)TBy∗ ≥ (x∗)TBy, ∀ y ,

then (x∗, y∗) is a Nash equilibrium.

A bimatrix game is called zero-sum game if A+B = 0. Otherwise, it is a non-zero-sum

game.

In 1950, Nash proved that every finite game has a mixed strategy Nash equilibrium

[68]. A variety of methods for finding a Nash equilibrium have been provided since then.

[52] provide an algorithm to find a Nash equilibrium for a bimatrix games. This algorithm

is a pivoting algorithm and referred to as the Lemke-Howson algorithm nowadays. The

main idea is to formulate the problem as a special case of linear complementarity problem

(LCP) and use the Lemke-Howson to solve the LCP. The LCP formulation is described as

follows:

w = Mz + q, w ≥ 0, z ≥ 0, wT z = 0 ,

where

M = −

 0 A

BT 0

 , q =

 em

en

 , w =

 em −Ay

en −BTx

 , z =

 x

y

 .

The vectors em, en refer to the vectors of all 1′s of size m and n respectively. More

details can be found in [66].

[74] provide a search method, referred to as Porter, Nudelman and Shoham (PNS) for

computing a Nash equilibrium. The idea is to eliminate conditionally dominated actions

and use heuristics to determine as quickly as possible the support of the mixed strategies,

i.e. the set of decisions with a nonzero probability to be chosen. This algorithm can be

generalized to n−players games.
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[86] present a mixed integer programming (MIP) formulation to find a Nash equilibrium.

Four different formulations are provided. Their first formulation makes it possible to specify

a supplementary objective that can be used to select an equilibrium among the set of

mixed equilibria, such as maximizing the payoff of a given player, or minimizing the payoff

difference between the two players.

4.2.3 Model Description and Assumptions

In our model, there are two players in the market, the consumer and the supplier, both

of whom control storage devices. There could be multiple storage devices, which are

distributed. We aggregated them by owner type, i.e. consumer or supplier. Storage device

owners influence the electricity price through operating their own storage devices until an

equilibrium price is attained that balances supply and demand of power including the net

power injection from storage.

Our basic setting corresponds to a full information stochastic game, which can be

generalized to incomplete information game, see Section 4.5.

The full information game is played as follows. The initial state X0 is given. At stage

t = 0, 1, ..., the current state Xt is revealed to both players. The state consists of state

variables described in Section 4.2.4. Then both players make their decisions at the same

time. Based on the current state and decisions from both players, the next state Xt+1 is

drawn according to a transition function and corresponding probability and . Rewards for

both players at stage t are computed and then the game proceeds to stage t+ 1.

First, we describe the supply curve, demand curve as follows:

St = fs(Pt), Dt = fd(Pt),
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where Pt is the price at time t. The quantity of energy1 change for the storage is

Ht = h(Pt) = St −Dt . (4.1)

Note that if Ht > 0, the storage device is being charged while Ht < 0 means that is being

discharged. Since we have two players in the market, the value of energy change in equation

(4.1) is aggregated, consisting of two parts: energy from supplier’s storage Hs
t and that

from consumer’s storage Hc
t ,

Ht = Hs
t +Hc

t .

We assume that the supply curve s is nondecreasing in the price and the demand curve d

is nonincreasing in the price. This assumption is natural since in general, if price increases,

there is less demand and more supply. Based on the equation (4.1), the function h giving

the net energy being charged is nondecreasing in the price. We strengthen these conditions

by requiring that h is continuous and increasing in price Pt. It then follows that h has an

inverse h−1 which is continuous and increasing in Ht. The increasing property means that

higher prices are obtained with more energy withdrawn to charge the storage devices. The

continuity assumption implies that any target price in a price interval can be obtained by

adjusting the quantity of energy withdrawn for charging storage devices.

The demand curve s is assumed to depend on exogenous random variables. One example

is provided in Section 4.2.5.

4.2.4 Model Formulation

In this section, we formulate the mathematical model. The problem is described using the

following notation.

• X is the state space. The state at time t, denoted Xt, has three components: the

1We think of supply and demand as power. Then Ht is the total net power that is withdrawn from the
grid by the storage devices. We need exact balance at all times, hence (4.1). The model is simplified by
assuming the prices and power injections or withdrawals are held constant during a period of time, then
one can view St and Dt as power integrated over one time period, that is, energy.
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stored energy level for consumer Xc
t and the stored energy level for supplier Xs

t and

a demand curve state Wt. Thus, Xt = (Xc
t , X

s
t ,Wt). As mentioned earlier, it’s a full

information game where each player can observe the full state.

• H = H c ×H s is the decision space. The decision at time t, denoted Ht, has two

components: the storage decision from consumer Hc
t and supplier Hs

t . From the

discussion later in section (4.3), we may have mixed strategies (probability vectors

for possible actions), denoted as (uc, us). Let U c : X ×H c 7→ (0, 1] be the decision

probability function of consumer c, such that p = U c(x,Hc) is the probability that

consumer c choose action Hc while being in state x. Let U s : X ×H s 7→ (0, 1] be the

decision probability function of supplier s, such that p = U s(x,Hs) is the probability

that supplier s choose action Hs while being in state x. Assuming the decision space

H is discrete and consumer’s action Hc ∈ {Hc
1, H

c
2, ...,H

c
m} (m possible actions in

total), then consumer’s probability vector uc can be computed as uci = U c(x,Hc
i ), i =

1, 2...,m. Similar results can be obtained for supplier, usi = U s(x,Hs
i ), i = 1, 2, ..., n.

• P : X × H × X 7→ [0, 1] is the state transition probability function, such that

Prob(Xt+1 = x′ | Xt = x,Ht = a) = P (x, a, x′) .

• Rc : X ×H 7→ R is the reward function for consumer such that the reward at time

t given Xt = x, Hc
t = ac, Hs

t = as is rct = Rc(x, ac, as).

Rs : X ×H 7→ R is the reward function for supplier such that the reward at time t

given Xt = x, Hs
t = ac, Hs

t = as is rst = Rs(x, ac, as).

The detail of definition of reward function Rc, Rs is described later in this section.

The charge levels of consumer and supplier are kept track of through Xc
t , X

s
t , which

represents the quantities of stored energy at the beginning of each time period t. Then,

the different between two consecutive time periods is

Xc
t+1 −Xc

t = gc(Hc
t ) ,

Xs
t+1 −Xs

t = gs(Hs
t ) .
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In particular, if the storage devices have perfect efficiency, we have gc(Hc
t ) = Hc

t and

gs(Hs
t ) = Hs

t . The generalized inefficiency model is discussed further in Section 4.4.5.

With storage capacities Kc and Ks for consumer’s and supplier’s storage devices and

since charge levels must be nonnegative, it is straightforward that 0 ≤ Xc
t ≤ Kc and

0 ≤ Xs
t ≤ Ks. We scaled the energy units by Xc

t , X
s
t ,K

c,Ks so that one unit of power

during one time period corresponds to one unit of energy.

Both players want to maximize their expected reward along the infinite horizon

V c
πc,πs = E [

∑∞
t=0 γR

c
t | X0] ,

V s
πc,πs = E [

∑∞
t=0 γR

s
t | X0] .

We are looking for policies π∗c , π
∗
s such that

V c
π∗c ,π

∗
s
≥ V c

πc,π∗s
∀πc ,

V s
π∗c ,π

∗
s
≥ V c

π∗c ,πs
∀πs.

This is a stochastic dynamic program over an infinite horizon where γ ∈ (0, 1) is the

discount factor and X0 is the initial state.

Define demand reward Rdt , consumer’s storage reward Rcst , generation reward Rgt and

supplier’s storage reward Rsst as

Rdt =
∫ Dt

0 [fd
−1(q)− Pt]dq ,

Rgt =
∫ St

0 [Pt − fs−1(q)]dq ,

Rcst = −PtHc
t ,

Rsst = −PtHs
t ,

where fd
−1, fs

−1 are inverse function of fd, fs defined in Section 4.2.3.

Then consumer’s reward function Rct is the sum of demand reward Rdt and consumer’s

storage reward Rcst while supplier’s reward function Rst is the sum of generation reward Rgt
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and supplier’s storage reward Rsst

Rct = Rdt +Rcst , (4.2)

Rst = Rgt +Rsst .

4.2.5 Demand and Supplier Curve

In theory, the curve functions related to demand and supply can be either closed-form

functions or implicit function. In our basic model, we assume a closed-form expression for

the equilibrium price as a function of the demand and supply. In particular, the inverse

function of supply curve is quadratic and that of demand curve is linear, as follows:

fs
−1(q) = cq + dq2, fd

−1(q) = b− aq ,

where a, c, d > 0 are fixed parameters and b is an random variable with an i.i.d Normal

distribution. The detail of analytic solutions for equilibrium price and reward functions

can be found in Appendix C.1.

More general, if the curves are represented in implicit functions, we can still find the

equilibrium price numerically, which is described in Section 4.4.4.

4.3 Algorithms

In the example mentioned in 4.2.5, we assume the actions for both players are known. In

this section, we show how these actions can be obtained by finding a Nash Equilibrium.

As we mentioned in section 4.2, a mixed Nash Equilibrium strategy is guaranteed to exist

in finite games.

For most one-objective function MDP problems, we enumerate all the possible actions

for each state and pick the most profitable action. Since we have two players in our problem,

we find the optimal actions for both players through finding the Nash equilibrium. We

discretize the state space, including the charge levels for both storage devices as well as

the distribution parameter for demand curve. With discretized charge levels, we obtain
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discretized action space for both players.

We provide the Value Iteration framework to solve the Markov game. However, value

iteration schemes are not guaranteed to find an equilibrium for non-zero sum Markov games

[113]. In Section 4.4.3, we show numerically the gap between the equilibrium policy and

the sub-optimal policy we get is very small.

1. Initialization: Guess initial value functions V c
0 (x), V s

0 (x) for all possible states (for

instance, V c
0 (x) ≡ 0, V s

0 (x) ≡ 0 for ∀ x). Set iteration k = 1.

2. For all state x and actions Hc
i , H

s
j (i is the index for consumer’s action and j is that

for supplier), compute the pure-strategy cumulated cost-to-go values

Ak,ij(x) = Rc(x,Hc
i , H

s
j ) + γE[V c

k−1(x′)|x,Hc
i , H

s
j ] , (4.3)

Bk,ij(x) = Rs(x,Hc
i , H

s
j ) + γE[V s

k−1(x′)|x,Hc
i , H

s
j ] .

3. For each state x, find the optimal strategies (probability vectors) uc(x), us(x) for

both players by solving the bimatrix game with payoff matrices (Ak, Bk), see Section 4.2.

Then the value functions can be updated based on

V c
k (x) = (uc(x))>Ak(x)us(x) , (4.4)

V s
k (x) = (uc(x))>Bk(x)us(x) .

4. Set k ← k + 1 and repeat Step 2 until a maximum iteration number is reached. We

obtain the policy U c, U s.

We use the PATH Solver [22] to find Nash equilibrium in our Value Iteration framework.

PATH is provided by Ferris et al., which solves linear complementarity problem. This solver

is efficient but it stops whenever it finds a Nash equilibrium (Multiple Nash equilibriums are

possible for some A,B) and due to the LCP formulation, there is no easy way of specifying

a selection process when several equilibria exist.
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4.4 Numerical Experiments

In this section, we show numerical results on a linear/piecewise linear curves case and

discuss the sub-optimality of policies obtained. Another simpler case study is shown in C.2

4.4.1 Parameters setting

We use a linear demand curve and piecewise linear supply curve,

d−1(q) = b− 60q

where b has a Normal Distribution N (800, 602), which is approximated by a discrete dis-

tribution with 61 different states.

Capacities for both storages are Kc = Ks = 0.4, discretized with step length 0.05.

4.4.2 Numerical Results
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Figure 4.1: Bellman residual for both players as a function of iteration. red: consumer.
blue: supplier. Inset graph: first 20 iterations.

Figure (4.1) shows the difference between two consecutive stages’ value functions for both

players. In this particular case, the policy stabilizes after first 20 iterations.

Figure (4.2) shows charging amount and (4.3) show the next charge levels for both play-

ers when the value iteration algorithm stops. When mixed strategy occurs, the weighted

mean of decision is shown. These policies are highly dependent on the curvature of demand
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and supplier curves. It instructs the decision makers how they should behave in different

situations.
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Figure 4.2: Charging amount for both players (y-axis) as a function of the demand curve
level (parameter b as x-axis). red: consumer. blue: supplier.
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Figure 4.3: Next charge levels for both players (y-axis) as a function of the demand curve
level (parameter b as x-axis). red: consumer. blue: supplier.

4.4.3 Sub-optimality of Policy

After the value iteration stops, we obtain policy U c, U s for both players. With these fixed

policies, we can compute the value of the policy for consumer and supplier as V c(U c, U s)
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and V s(U c, U s). By the definition of Nash equilibrium policy, if U c and U s are equilibrium

policy, we should have

V c(U c, U s) ≥ V c(Û c, U s) ,

V s(U c, U s) ≥ V s(U c, Û s) ,

where Û c and Û s are some policies other than U c and U s.

When we fix the policy for supplier U s, we can compute the optimal policy for consumer.

This is equivalent to a traditional one-player game where optimal policy is guaranteed

through value iteration. We denote the optimal policy as Û c and the new value of policy

is V c(Û c, U s).

Then we compute the difference

V c(Û c, U s)− V c(U c, U s) .

Table 4.1: fix supplier’s policy

old policy new policy difference percent

consumer 279142.73 279142.78 +0.05 0%

supplier 180706.58 180671.11 -35.47 -0.02%

In Table 4.1, The gain for consumer is very small while the loss for supplier is around

0.02%. This means both players have little intention to change their current policies.

Similarly, if we fixed consumer’s policy U c, we compute the optimal policy for supplier,

denoted as Û s. Then we compute the difference

V s(U c, Û s)− V s(U c, U s) .
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Table 4.2: fix consumer’s policy

old policy new policy difference percent

consumer 279142.73 279132.41 -10.32 -0.004%

supplier 180706.58 180706.64 +0.06 0%

Hence, we can conclude that both players are very unlikely to deviate from the current

policy and the policies from our framework is very close to the Nash equilibrium policies.

4.4.4 Extensions: Implicit Curve for Demand and Supply

In Section 4.2.5, we assume the demand and response curve are given explicitly. So we can

compute the price and rewards in closed form. In general, we may find the equilibrium

price Pt by solving equation (4.1)

Ht = fs(Pt)− fd(Pt)

numerically, e.g. by zero-finding using Brents method. A data driven example is provided

in Section 4.6.

4.4.5 Extensions: Storage Devices with Non-Perfect Efficiency

In the basic model in Section 4.2.4, we assume the storage devices have perfect efficiency.

We can generalize this model into inefficiency case easily.

gc(y) =


ηcchy y ≥ 0

1
ηcdis

y y < 0

, gs(y) =


ηschy y ≥ 0

1
ηsdis

y y < 0

. (4.5)

ηcch, η
c
dis ∈ (0, 1] are consumer’s efficiency parameters for charging and discharging re-

spectively while ηsch, η
s
dis ∈ (0, 1] are those of supplier’s. Thus, different storage technologies

can be modeled with different efficiency parameters.
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4.5 Incomplete Information Game

The Markov game described in Section 4.2.4 is a full information game, where both players

know the supply curve, the demand curve and charge levels of both storages. In this

section, we investigate the consequences of not sharing the charge level information.

4.5.1 Model Description and Assumption

This section is based on Section 4.2.4. The storage capacity Ki are still common knowledge.

The main difference is that the charge level is not shared to the other player, which makes

the problem no longer a full information game. The game is played as follows.

1. As the game begins, each player starts with his own charge level cit=1 (where i is the

index for players). For player i, he also maintains an uncertainty set [lb−i1 , ub−i1 ] =

[0,K−i] of the other player −i.

2. At time period t, the demand curve and the supply curve information are revealed.

Both players make their decisions at the same time, then they are able to observe

the price (which depends on their actions).

3. Based on the new information (and older observation), they may update their uncer-

tainty set [lbit, ub
i
t].

4. Based on transition functions, charge levels are updated. In addition, the rewards

for both players are computed and the game proceeds to the next time period t+ 1.

4.5.2 Estimation of the Other Player’s Charge Level

At time period t, after the players make their decisions Hc
t , H

s
t , they observe the equilibrium

price Pt . Based on equation (4.1)

Hc
t +Hs

t = Ht = St −Dt = fs(Pt)− fd(Pt) ,

where fs and fd are known supply and demand curve, they can compute the other player’s

action (in closed form or numerically). Note that the other player’s charge level is still
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unknown.

However, based on the uncertainty charge level set and actions of the other player, it

is possible for each player to estimate the other player’s charge level. For simplicity, in the

following context, we assume we plays as the consumer and the following algorithm shows

how one can get a good estimation of the supplier’s charge level.

Table 4.3: Update Uncertainty Set Algorithm

Algorithm: Updated Uncertainty Set

Data: Capacity Ks, Uncertainty Set [lbt, ubt],

Action Quantity Hs
t

Update:

lbt+1 = max{0,min{lbt +Hs
t ,K

s}}

ubt+1 = max{0,min{ubt +Hs
t ,K

s}}

With the Update Uncertainty Set algorithm above, we have following propositions:

Proposition 16. The uncertainty charge level set is non-expansive, i.e.,

ubt+1 − lbt+1 ≤ ubt − lbt . (4.6)

Proof. We discuss the possible Hs
t case by case

• If Hs
t = 0, then ubt+1 = ubt and lbt+1 = lbt. Inequality (4.6) holds as equality.

• If Hs
t > 0, then lbt+1 = lbt +Hs

t . Since ubt+1 = min{ubt +Hs
t ,K

s}

– if ubt+1 = ubt +Hs
t , inequality (4.6) holds as equality.

– if ubt+1 = Ks < ubt +Hs
t , clearly, ubt+1 − lbt+1 < ubt − lbt.

• If Hs
t < 0, then ubt+1 = ubt +Hs

t . Since lbt+1 = max{lbt +Hs
t , 0}

– if lbt+1 = lbt +Hs
t , inequality (4.6) holds as equality.

– if lbt+1 = 0 > lbt +Hs
t , clearly, ubt+1 − lbt+1 < ubt − lbt.
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Hence, we finish our proof.

Note that we don’t have to store all the historical actions of the other player if we

maintain our uncertainty set every time period.

Proposition 17. For some finite time period T , if

|
∑T

t=1H
s
t | ≥ ε

for some ε > 0, then we can guarantee that there exist δ = Ks − ε such that

ubT − lbT ≤ δ ,

we call this property almost sure contraction.

In particular, if ε = Ks, which indicates that δ = 0, ubT = lbT , the charge level of the

other player is known exactly.

Proof. Assume at time period t = 1, we have uncertainty set [lb, ub] where lb ≥ 0, ub ≤ Ks,

then at time period T , we have uncertainty set

Ω = [lb+
∑T

t=1H
s
t , ub+

∑T
t=1H

s
t ] .

• If
∑T

t=1H
s
t > 0, then the lower bound lbT = lb+

∑T
t=1H

s
t ≥ 0+ ε while upper bound

ubT ≤ Ks. Hence, the range of the uncertainty set ubT − lbT ≤ Ks − ε = δ.

• If
∑T

t=1H
s
t < 0, then the lower bound lbT ≥ 0 while upper bound ubT = ub +∑T

t=1H
s
t ≤ ub − ε ≤ Ks − ε. Hence, the range of the uncertainty set ubT − lbT ≤

Ks − ε = δ.

The δ = 0 case means that during the T time periods, if the cumulated action
∑T

t=1H
s
t

of the supplier is Ks (charged an amount corresponding to his capacity Ks) or −Ks (dis-

charged an amount corresponding to his capacity Ks), then we can conclude immediately

his charge level is Ks (if charge) or 0 (if discharge).
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4.5.3 Impact of incomplete information

In last section, we discuss that as a player (consumer), how we can estimate the other

player’s (supplier’s) charge level as the game proceed. This raises a question whether

knowing this information will affect the overall rewards for each player and the total welfare.

Pessimistic Decision

From proposition 17, we can see that as the game proceeds long enough, both players

are most probably certain about the other player’s charge level, making the problem as a

full information game, which has been studied in Section 4.2.4. Here, we are interested

in the time periods where information is incomplete. We assume the two players adopt a

pessimistic approach based on their uncertainty set when they are not sure about the other

player’s charge level.

Assume we’ve computed the pay-off matrices A(s), B(s) for each state s = (xc, xs, w),

we show how we select our pessimistic action as a consumer.

• Our current charge level xc is known as well as the demand curve information w. We

have the uncertainty set of supplier’s charge level X̂s = [lbs, ubs].

• For each xs ∈ X̂s, we obtain the pay-off matrix A(xs), which depends on xs. For each

fixed xs, the pay-off matrix A(xs) has dimension m× n, where m,n are numbers of

possible actions for consumer and supplier respectively, m = |H c|, n = |H s|. Hence,

the matrix of A(X̂s) has dimension m×n× k, where k = |X̂s|, the cardinality of the

uncertainty set of supplier’s charge level.

• The pessimistic action for consumer is

Hc∗ = arg max
Hc∈H c

min
Hs∈H s,xs∈X̂s

A(X̂s) .

Similarly, we can obtain the pessimistic action for supplier

Hs∗ = arg max
Hs∈H s

min
Hc∈H c,xc∈X̂c

B(X̂c) .
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Figure 4.4: Distribution of time duration of incomplete information game

If the consumer takes the pessimistic action, he is guaranteed to get pay-off at least

Ap no matter which charge level the supplier is at and what he chooses, where Ap =

maxHc∈H c minHs∈H s,xs∈X̂s A(X̂s).

Simulation and Numerical Results

We use similar parameter setting from Section 4.4.1. The initial uncertainty set is the

interval [0,Ki]. The simulation is described as follows:

1. At each time period t, the random parameter b is drawn according to the discretized

normal distribution approximation.

2. For uncertainty case, players adopt pessimistic actions described in section 4.5.3,

uncertainty set are updated.

3. For certainty case, players adopt actions based on the optimal policy.

4. If both uncertainty set have length 1, simulation stops (game enters full information

phase).

Figure 4.4 shows the distribution of time duration of incomplete information game. We

can see the two players basically know each other’s charge level after 40 time periods.

Table 4.4 shows the comparison of rewards for both players between certainty case (full

information) and uncertainty case (incomplete information). In particular, this simulation
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stops at iteration 10.

Table 4.4: Reward comparison between full and incomplete information game

Full Incomplete

consumer 24.86 24.88

supplier 14.82 14.81

There are no big difference (less than 0.1%) in the cumulated rewards for certainty case

and uncertainty case for both players.

Figure 4.5 shows an example of the evolution of uncertainty set. We stopped the

simulation when both players know the other player charge level exactly.

0 20 40 60 80 100

0

10

20

30
consumer

0 20 40 60 80 100
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30
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Figure 4.5: Evolution of uncertainty set

4.5.4 Summary

Based on the numerical results, we conclude that

• The cumulated rewards of each player doesn’t have much difference even if they don’t

know the other player’s charge level at the beginning.

• This difference will be diminished even more as the game enters the full information

phase.
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• Overall, keeping the charge level as long as possible may benefit a little, but not much

(as we can see in Table 4.4), it is not recommended to keep this information private.

4.6 Impact of storage ownership on the price

In this section, we discuss the impact of the storage ownership on the price. For the extreme

cases, where only one of them controls energy storage device, the device owner holds the

whole power to affect the price by operating the device. However, when both of them

control some storage devices, they try to affect the price to achieve their best interests.

4.6.1 Parameter setting

In our numerical work, we assume there are 8 units of storage in total. The parameters are

the same as those in Section 4.4.1. We discuss 9 different cases, where consumer-supplier

ownership are [.8, 0], [.7, .1], [.6, .2], . . . , [0, .8].

4.6.2 Numerical Results

All the following rewards are approximated on simulation with time period length T = 200,

R̄t = 1
1−γT E

∑T−1
t=0 γtRt .

With different distribution of ownership, the price volatility is shown in Fig 4.6, with the

increases of supplier’s ownership, the volatility of price increases.
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The total cumulated rewards are shown in Fig. 4.7. With more storage ownership over

his competitor, the player increases his reward. Compared to consumer, when supplier

controls more storage, he intends to increase the variance of price. We believe this is due

to the very steep curvature for the supplier curve. Instead, in this simulation, consumer

favors more stable price.
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Figure 4.7: Cumulated reward as a function of storage ownership

4.7 Conclusion

This chapter considers the impact of distributed energy storage ownership under uncer-

tainty on the price. The problem is formulated as an infinite-horizon Markov Game with

a random demand curve. A value iteration framework is provided to find the sub-optimal

equilibrium policies for both players. The actions at each iteration are obtained by solv-

ing bimatrix games. A computational study demonstrates the gap between the policies

obtained from our approach and the Nash equilibrium policies is very small. Another

computational study shows that the benefit from hiding charge level information is not

significant. Thus, it is suggested to share the information with each other. The impact

99



of storage ownership study offers insights about how much storage a player will need if he

wants to make a real impact on the price and his profits.
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Chapter 5

Conclusion

In this dissertation, we present models for stochastic optimal control of grid-level storages,

especially battery storages. In the basic storage operation problem, storage device owner

is the decision maker. The owner makes profit by buying and selling energy from the

grid, given the price varies during different time periods. The stochasticity comes from the

uncertainty of price or the uncertainty of demand and supplier. A popular way to model

a storage operation problem is Markov Decision Process (MDP). An infinite horizon MDP

with discount factor can be formulated naturally and the objective function is to maximize

the expected discounted total profit for the device owner. Classical algorithms for solving

MDP problems include value iteration and policy iteration.

We propose several MDP-based models in different market settings and provide re-

lated algorithms and analysis to find the optimal or sub-optimal policies. Corresponding

numerical experiments perform well and give us more insights about the model.

• In Chapter 2, we extend basic MDP model into p-periodic MDP model, which is

suitable for mitigating end-of-horizon effects. The idea is to recalibrate the model

every p time periods in a rolling-horizon fashion. We provide a tighter bound with

stationary value functions on an augmented state space than general bounds. An

implementation on grid-level storage operation problem where price follows daily

patterns is studied.

• In Chapter 3, battery degradation (aging phenomenon) is incorporated in the MDP
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model. We introduce an extra state variable remaining life cycle to denote the aging

status of the battery. Electricity price is assumed to follow a given independent

and identically distributed distribution or a Markovian regime-switching process.

Compared to value iteration, by utilizing the problem structure, we provide a faster

and more accurate algorithm to solve the problem. The algorithm returns the optimal

policies by solving a sequence of quasiconvex optimization problems.

• In Chapter 4, instead of the single player in previous two chapters, we consider

two-players problems. Electricity price now not only depends on the relationship

between demand and supplier, which is stochastic, but also on the decisions of two

storage device owners. The problem is formulated as an infinite-horizon Markov game

and a value iteration framework is proposed to find the sub-optimal policies for both

players. In each iteration, on contrast to return the optimal action by maximizing the

Q function in MDP model, we solve a bimatrix game in Markov game. In addition,

we also study a related incomplete information game and the impact of repartition

of the energy storage.
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Optimal control of end-user energy storage. Smart Grid, IEEE Transactions on,

4(2):789–797, 2013.

[105] J.M. Varah. A lower bound for the smallest singular value of a matrix. Linear Algebra

and its Applications, 11:3–5, 1975.

[106] L. M. M. Veugen, J. van der Wal, and J. Wessels. The numerical exploitation of

periodicity in Markov Decision Processes. OR Spektrum, 5:97–103, 1983.

[107] D. Wang and B. J. Adams. Optimization of real-time reservoir operations with

Markov Decision Processes. Water Resources Research, 22(3):345–352, 1986.

[108] R. Weron. Electricity price forecasting: A review of the state-of-the-art with a look

into the future. International Journal of Forecasting, 30(4):1030–1081, 2014.

[109] Xiaomin Xi and Ramteen Sioshansi. A dynamic programming model of energy stor-

age and transformer deployments to relieve distribution constraints. Computational

Management Science, 13(1):119–146, 2016.

[110] Nanpeng Yu and Brandon Foggo. Stochastic valuation of energy storage in wholesale

power markets. Energy Economics, 64:177–185, 2017.

[111] Behnam Zakeri and Sanna Syri. Electrical energy storage systems: A comparative

life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42:569–596, 2015.

[112] Yangfang Zhou, Alan Scheller-Wolf, Nicola Secomandi, and Stephen Smith. Electric-

ity trading and negative prices: storage vs. disposal. Management Science, 62(3):880–

898, 2015.

113



[113] Martin Zinkevich, Amy Greenwald, and Michael L Littman. Cyclic equilibria in

markov games. In Proceedings of the 18th International Conference on Neural Infor-

mation Processing Systems, pages 1641–1648. MIT Press, 2005.

114



Appendix A

Threshold policy

In Appendix A, we provide some nice properties of the model and some analysis on the

optimal policy. The proof are based on [91].

The state variables are si = (li, pi) and the reward function is (let ∆
k = 1)

Rt+1 =


−pt 1

ηchargeat
, at > 0

0

−ptηdischargeat, at < 0

.

For simplicity, let ηc = ηcharge < 1, ηd = ηdischarge < 1.

Correspondingly, the value function becomes

Vt(lt, pt, at) = max
a∈A

[Rt(lt, pt, at) + γEp̃j+1 [Vt+1(lt + at, p̃j+1)]] .

And VT (lT , pT ) = maxa∈A −pT ηcaT , i.e., discharge or do nothing.

Let

UT (l, p) = 0 ,

Ut(l, p) = γE[Vt+1(l, p̃t+1)|p̃t = p] t ∈ T \{T} .
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A.1 Concavity

In time period t ∈ T . the functions Ut(l, p) and Vt(l, p) are concave in l ∈ L for each given

p.

Proof: By induction.

For time period T : Clearly hold. Discharge as much as possible.

Assume the property holds for t+ 1, i.e., Vt+1(l, pt+1) is concave in x, given pt+1,

Vt+1(lφ, pt+1) ≥ φVt+1(l1, pt+1) + (1− φ)Vt+1(l2, pt+1) .

Consider time period t. Pick φ ∈ [0, 1] and l1, l2. Let lφ = φl1 + (1 − φ)l2, which clearly

is in L. Based on the assumption that price is finite, we know that Ut(l, p) should be

bounded, which implies that it is real value in l ∈ L for each given p. Discounting and

taking expectations on both sides

Ut(l
φ, p) ≥ φUt(l1, p) + (1− φ)Ut(l

2, p) , (*)

which implies that Ut(l, p) is concave in l ∈ L for given p.

Let ai be a feasible action at storage level li, i = 1, 2, and define aφ = φa1 + (1−φ)a2. The

convexity of the storage action set C implies that (lφ, aφ) ∈ C, then

Ut(l
φ + aφ, p) ≥ φUt(l1 + a1, p) + (1− φ)Ut(l

2 + a2, p) .

The reward function Rt(a, p) is piecewise linear and concave in a given p. Combine with

(*), Rt(lt, pt, at) + γEp̃j+1 [Vt+1(lt + at, p̃j+1) is jointly concave in (l, a) ∈ C for given p. By

proposition B-4 in Heyman, Vt(l, p) is concave in l ∈ L for given p. Thus, the property

holds in time period t. We finish our proof.
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A.2 Optimal basestock targets

In each time period, there exist critical storage level bt(p), b̄t(p) ∈ L with bt(p) < b̄t(p),

which depend on price p such that an optimal action in each state (l, p) is

a∗t (l, p) =


(bt(p)− l) ∧ ā if l ∈ [l, bt(p))

0 if l ∈ [bt(p), b̄t(p)]

(b̄t(p)− l) ∧ a if l ∈ (b̄t(p), l̄]

.

where ā, a are maximum charge rate and discharge rate and l̄, l are maximum and minimum

capacity of the device.

Proof. Consider any time period t and pick state (l, p). Relax the ramping constraint

(a ≤ a ≤ ā) First. Let y = l + a be the decision variable, then the optimization problem

without ramping constraint become

max
y

Rt(y − l, p) + Ut(y, p)

Depending on whether y ≥ l or y ≤ l, the respective objective function become

Ut(y, p)− ηcpy + ηcpl , (A.1)

Ut(y, p)− ηdpy + ηdpl . (A.2)

Then, the original problem can be approached by finding optimal solutions to the problems

max
y∈[l,l̄]

Ut(y, p)− ηcpy + ηcpl , (A.3)

max
y∈[l,l]

Ut(y, p)− ηdpy + ηdpl , (A.4)

and taking the optimal solution to the original problem to be the one with the highest

objective function value.
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In particular, at l = l and l = l̄, the original problem become

max
y∈[l,l̄]

Ut(y, p)− ηcpy + ηcpl , (A.5)

max
y∈[l,l̄]

Ut(y, p)− ηdpy + ηdpl , (A.6)

which can be simplified to

max
y∈[l,l̄]

Ut(y, p)− ηcpy , (A.7)

max
y∈[l,l̄]

Ut(y, p)− ηdpy . (A.8)

Let bt(p) and b̄t(p) be optimal solutions to (7),(8) respectively.

Since Ut(y, p) is concave in y given p and so is Ut(y, p) − ηcpy and Ut(y, p) − ηdpy. In

addition, it holds that ηc ≥ ηd. Hence, the optimal solution to (7) bt(p) is never greater

than an optimal solution b̄t(p) to (8). The optimal solution for (7) is ∂Ut(y,p)
∂y − ηcp while

the optimal solution for (8) should be ∂Ut(y,p)
∂y − ηdp.

Consider the original problem for any l ∈ [l, bt(p)). It is clear that bt(p) is an optimal (3).

It also hold that l is an optimal solution to (4). The reason is that b̄j(p) maximizes (2) when

y can take any value in the whole range. But in (4), y ≤ l. We know that b̄j(p) ≥ bj(p) ≥ l

is the optimal solution for (8), which implies that in the range [l, l], (4) is increasing in y,

given p. Hence, l is the optimal solution to (4).

Moreover, l is a feasible solution to (3), so that

Ut(bt(l), p)− ηcpbt + ηcpl ≥ Ut(l, p) .

Thus, we conclude that bj(p) optimize the original problem and a∗j (l, p) = (bj(p)− x) ∧ C̄.

Consider the range l ∈ [bj(p), b̄j(p)], storage level l optimizes both (3) and (4) because

bj(p) and b̄j(p) maximize (8) and (9) on [l, l̄] and l ≤ l ≤ l̄. It follows that a∗j (l, p) = 0.

The case where l ∈ (b̄j(p), l̄] can be dealt with similarly to the first case l ∈ [l, bt(p)).
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A.3 Price monotonicity

Assumption 2: (Spot-price process) For every t ∈ T \T :

(a) The distribution function of random variable p̃t+1 conditional on the spot price is

time period t stochastically increase in p ∈ Pt.

(b) The function δtEt[ 1
ηc p̃t+1|p̃t = p]− ηdp decreases in p ∈ Pt

Proposition 2 If assumption 2 holds, then every time period j ∈ J the optimal basestock

target function bt(p) and b̄t(p) decrease in the spot price p ∈ P .

Proof : By induction. And there are three statements to prove to hold at every iterations.

• the optimal basestock target function bt(p) and b̄t(p) decrease in the spot price p ∈ P

• U ′t(l, p) increase in p ∈ Pt, given l.

• functions U ′t(l, p)− 1
ηc p and U ′t(l, p)− ηdp decrease in p ∈ Pt for each given l.

For stage T :

• The value function is

VT (lT , pT ) = max
a∈A

−pT ηcaT .

It is easy to verify that if pT < 0 bT (p) = l and b̄T (p) = l̄, otherwise, bT (p) = b̄T (p) =

l.

• U ′T (l, p) = 0. Trivial.

• Functions

U ′T (l, p)− 1

ηc
p = − 1

ηc
p

U ′T (l, p)− ηdp = −ηdp

decrease in p, given l.
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Consider j. By proposition 1, the objective functions (7) and (8) are concave in the decision

variable y and bt(p), b̄t(p) are maximal solutions are these two functions. Hence, our goal

is to show that the partial derivative respect to y,

U ′T (y, p)− 1

ηc
p

U ′T (y, p)− ηdp

both decrease in p given y.

In order to achieve this, pick (l, p) ∈ L×P and consider function Ut(l, p) = δtEt[Vt+1(l, p̄t+1)|pt =

p]. Focus on the function Vt+1(l, z) in feasible state (x, z) in stage t+ 1. Consider the op-

timal action. There are five mutually exclusive cases need to be considered.

• Discharge is optimal but b̄t+1(z) cannot be reached from l; that is, only l+ a can be

reached from l

• Discharge is optimal and b̄t+1(z) can be reached from l

• Do nothing is optimal

• Charge is optimal and bt+1(z) can be reached from l

• Charge is optimal and bt+1(z) cannot be reached from l ;that is, only l + ā can be

reached from l

Accordingly, define the following mutually exclusive events:

• A1
t+1(l, z) := {l + a > b̄t+1(z)}

• A2
t+1(l, z) := {l + a < b̄t+1(z), l > b̄t+1(z)}

• A3
t+1(l, z) := {bt+1(z) ≤ l ≤ b̄t+1(z)}

• A4
t+1(l, z) := {l + ā > b̄t+1(z), l < bt+1(z)}

• A5
t+1(l, z) := {l + ā < bt+1(z)}
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Let 1{} equals 1 if its argument is true and 0 otherwise. Then Vt+1(l, z) can be written as

Vt+1(l, z) =[−ηdza+ Ut+1(l + a, z)]1{A1
t+1(l, z)}

+ {−ηdz[b̄t+1(z)− l] + Ut+1(b̄t+1(z), z)}1{A2
t+1(l, z)}

+ Ut+1(l, z)1{A3
t+1(l, z)}

+ {− 1

ηc
z[bt+1(z)− l] + Ut+1(bt+1(z), z)}1{A4

t+1(l, z)}

+ [− 1

ηc
zā+ Ut+1(l + ā, z)]1{A5

t+1(l, z)} .

Consider the function

V ′t+1(l, z) =U ′t+1(l + a, z)1{A1
t+1(l, z)}+ (ηdz)1{A2

t+1(l, z)}

+ U ′t+1(l, z){A3
t+1(l, z)}

+ (
1

ηc
)1{A4

t+1(l, z)}+ U ′t+1(l + ā, z)1{A5
t+1(l, z)} .

Arrange it and define f1
t+1(l, z) and f2

t+1(l, z)

V ′t+1(l, z) =

[U ′t+1(l + a, z)− ηdz]1{A1
t+1(l, z)}

+[ηdz − ηdz]1{A2
t+1(l, z)}

+[ 1
ηc −

1
ηc ]1{A4

t+1(l, z)}

+[U ′t+1(l + ā, z)− 1
ηc z]1{A

5
t+1(l, z)}


= f1

t+1(l, z)

+(ηd)[1{A1
t+1(l, z)}+ 1{A2

t+1(l, z)}]

+U ′t+1(l, z)1{A3
t+1(l, z)}

+( 1
ηc )[1{A4

t+1(l, z)}+ 1{A5
t+1(l, z)}]


= f2

t+1(l, z)

We need to study the behavior of the functions f1
t+1(l, z) and f2

t+1(l, z) in z given l. Consider

the determination of an optimal action in state (l, z) in period t+ 1 as p varies in Pt+1. By

the first induction hypothesis, there exist no more than four ordered prices that depend

121



on l, denoted, with a slightly abuse of notation, by p1
t+1(l), p2

t+1(l), p3
t+1(l), p4

t+1(l) with

p1
t+1(l) < p2

t+1(l) < p3
t+1(l) < p4

t+1(l), that can be used to partition set Pt+1 into mutually

exclusive and exhaustive sets

• P1
t+1(l) := (p4

t+1(l),∞) ∩ Pt+1

• P2
t+1(l) := (p3

t+1(l), p4
t+1(l)] ∩ Pt+1

• P3
t+1(l) := [p2

t+1(l), p3
t+1(l)] ∩ Pt+1

• P4
t+1(l) := [p1

t+1(l), p2
t+1(l)) ∩ Pt+1

• P5
t+1(l) := [0, p1

t+1(l)) ∩ Pt+1

which satisfy the property that z ∈ Pkt+1 if and only if 1{Akt+1(l, z)} = 1 for all k ∈

{1, 2, 3, 4, 5}. Consider different case, we obtain those inequalities as following:

U ′t+1(l + a, z)− ηdz ≤ 0,∀ z ∈ P1
t+1

U ′t+1(l, z) ≤ ηdz,∀ z ∈ P2
t+1

U ′t+1(l + a, z)− ηdz ≥ 0,∀ z ∈ P2
t+1

U ′t+1(l, z) ≥ ηcz, ∀ z ∈ P4
t+1

U ′t+1(l + ā, z)− 1

ηc
z ≤ 0,∀ z ∈ P4

t+1

U ′t+1(l + ā, z)− 1

ηc
z ≥ 0,∀ z ∈ P5

t+1

ηdz ≤ U ′t+1(l, z) ≤ 1

ηc
z, ∀ z ∈ P3

t+1 .

Consider f1
t+1(l, z), given l, this function is positive for z ∈ P5

t+1, zero for z ∈ P2
t+1∪P3

t+1∪

P4
t+1, negative for z ∈ P1

t+1. Moreover, the third induction hypothesis implies that this

function decreases in z ∈ Pt+1. Assumption 2 and Corollary in [102] imply that

δtE[f1
t+1(l, p̄t+1)|p̄t = p]
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decreases in p ∈ Pt.

Consider f2
t+1(l, z), given l, combined with the second induction hypothesis, we have

f2
t+1(l, z) increases in z ∈ Pt+1 and f2

t+1(l, z) ≤ 1
ηc , ∀ z ∈ Pt+1.

Hence, we have

δtE[f2
t+1(l, p̄t+1)|p̄t = p]− 1

ηc
decrease in p ∈ Pt ,

δtE[f2
t+1(l, p̄t+1)|p̄t = p]− ηd decrease in p ∈ Pt .

And from Lemma 7, we have

U ′t+1(l, p)− 1

ηc
= δtE[f1

t+1(p̄t+1)|p̄ = p] + δtE[f2
t+1|p̄t = p]− 1

ηc
,

U ′t+1(l, p)− ηc = δtE[f1
t+1(p̄t+1)|p̄ = p] + δtE[f2

t+1|p̄t = p]− ηc .

Then both U ′t+1(l, p)− 1
ηc and U ′t+1(l, p)− ηc decrease in p ∈ Pt for given l.

Then we show that U ′tl, p increases in p ∈ Pt for given l. We know that

U ′t+1(l + ā, z)1{z ∈ S5
t+1(l)}+

1

ηc
1{z ∈ P4

t+1(l)}

increases in z ∈ P4
t+1(l) ∪ P5

t+1(l).

And

1

ηc
1{z ∈ P4

t+1(l)}+ U ′t+1(l, z)1{z ∈ S3
t+1(l)}+ (ηd)1{z ∈ P2

t+1(l)}

increases in z ∈ S4
t+1(l)} ∪ S3

t+1(l)} ∪ S2
t+1(l)}.

And

U ′t+1(l + a, z)1{z ∈ S2
t+1(l)}+ (ηd)1{z ∈ P1

t+1(l)}

increases in z ∈ S2
t+1(l)}∪S1

t+1(l)}. Thus V ′t+1(l, z) increases in z ∈ Pt+1. And by Corollary

3.9.1(a) in [102], we have Ut(l, pt) = δtE[V ′t+1|p̄t = s] increases in p ∈ Pt

123



Appendix B

Price process

The power industry has become an open, competitive environment and the uncertainty of

price is one of the key components of this environment. In the related literature, many dif-

ferent models have been studied [81]. The complexity of a model depends on the data that

is available. At the time these models were proposed, data on the deregulated electricity

markets was scarce.

According to [58], in order to develop a price process model, the following properties

should be taken into consideration: mean reversion, time of day effects, weekend/weekday

effects, seasonal effects, time-varying volatility and extreme values/price spikes. Several

price models are provided in [58], including mean-reverting process, time-varying mean,

jump-diffusion process, time-dependent jump intensity, ARMAX.

In [13], Burger et al. present a general model called Spot Market Price simulation

(SMaPS-model) that simultaneously takes into account seasonal patterns, price spikes,

mean reversion, price dependent volatilities and long-term non-stationarity.

In my research, in order to incorporate the price process into the battery operation

model, sometimes a relatively simple model has been chosen although a more complicated

model can replace the simpler model. We give 3 examples of stochastic processes for the

price.
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B.1 Periodic Price Model with i.i.d noise

Assuming the price varies periodically with period T subject to i.i.d. noise, we have the

following price process

pt+1 = µj + σjεt+1

where

j = mod(t+ 1, T ) the index of t+ 1 in the cycle of period T

µj = the expected price at time index j in the cycle

σj = the standard deviation of random noise at time index j in the cycle

εt+1 ∼ N(0, 1) a standard normal noise

This process may be the simplest price process we can find. The price at certain

time period t only depends on its own mean and variance. However, if we evaluate the

logarithm of all the data before we use this price model, this model can be extend to

so-called lognormal distribution, which we used in Chapter 2.

B.2 Periodic autoregressive process of order 1

Consider another model where the price is a periodic autoregressive model of order 1

(PAR(1) process) which exhibits mean-reversion to the periodic mean of period T . We can

describe this as follows:

pt+1 − pt = (µj − µi) + κi(µi − pt)∆t + σj
√

∆tεt+1

where

i = mod(t, T ) the index of t in the cycle of period T

j = mod(t+ 1, T ) the index of t+ 1 in the cycle of period T

µj = the expected price at time index j in the cycle

κi = the mean-reversion parameter at time index j in the cycle

σj = the standard deviation of random noise at time index j in the cycle

εt+1 ∼ N(0, 1) a standard normal noise
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Compared with Model 1, prices in Model 2 depend on its mean, variance and its

precedent price. The parameter κ controls the rate at which the price reverts back to the

nominal value µi.

B.3 PAR(1) with spikes

The third model we provide here incorporates a probability of random price spike. To

describe this model, we first define

wbt+1 ∼ B(1, b): A Bernoulli random variable equal to 1 with probability b to indicate a spiking regime.

wεt+1 ∼ N(0, 1) a standard Normal noise.

f = A function to replace a base price by a spike price

Then the model can be described as follows:

pt+1 = wbt+1ξt+1 + (1− wbt+1)f(ξt+1)

(ξt+1 − ξt) = (µj − µi) + κ(µi − ξt)∆t + σj
√

(∆t)w
ε
t+1

The numerical work for this model has not been finished yet, but hopefully, we can obtain

a better prediction of price in a short term.
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Appendix C

Linear and Quadratic Curve Case

Study

C.1 Analytic Solution for Equilibrium Price and Reward

Functions: Linear and Quadratic Curve Case

With fixed a, we obtain

St = fs(Pt) =
−c+

√
c2 + 4dPt
2d

, (C.1)

Dt = fd(Pt) =
b− Pt
a

.

If we know both players’ actions Hc
t , H

s
t , then we know the quantity of aggregated energy

change Ht = Hc
t + Hs

t . By solving equation (4.1), we have the price Pt given known

actions. Plugging Pt back into equations (C.1), we obtain the demand and supply given

known actions as well,

Pt(Ht) =
1

2

(
2b+

a2

d
+
ac

d
+ 2aHt −

a
√
a2 + 2ac+ c2 + 4bd+ 4adHt

d

)
,

Dt(Ht) = −
a+ c+ 2dHt −

√
(a+ c)2 + 4bd+ 4adHt

2d
,

St(Ht) =
1

2d

(
− c+

√
Φ(Ht) + Ψ(Ht)

)
.
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where

Φ(Ht) = 2a2 + c2 + 4bd ,

Ψ(Ht) = 2a(c+ 2dHt −
√

(a+ c)2 + 4bd+ 4adHt) .

In addition, we compute the demand reward Rdt and generation reward Rgt

Rdt =
a

8d2

(
a+ c+ 2dHt −

√
(a+ c)2 + 4bd+ 4adHt

)2
,

Rgt =
1

24d2
(c− Φ(Ht))

2(c+ Φ(Ht)) .

The storage reward for consumer and supplier are

Rcst = −Hc
tPt(Ht) ,

Rsst = −Hs
t Pt(Ht) .

With equation (4.2), we obtain the reward functions for both players given known actions

Hc
t , H

s
t .

C.2 Numerical Experiment: Linear and Quadratic Curve

Case

We use similar setting with Section 4.4.1, instead of the piecewise for supply curve, we use

a simple quadratic curve

s−1(q) = 2q + 0.5q2

where b has a Normal Distribution N (800, 602), which is approximated by a discrete dis-

tribution with 61 different states.

Capacities for both storages are Kc = Ks = 2, discretized with step length 0.1.

In this linear/quadratic case, consumer has tendency to discharge with higher demand
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level b while supplier tries to charge.
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Figure C.1: Charging amount for both players (y-axis) as a function of the demand curve
level (parameter b/100 as x-axis). red: consumer. blue: supplier.
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Figure C.2: Next charge levels for both players (y-axis) as a function of the demand curve
level (parameter b/100 as x-axis). red: consumer. blue: supplier.
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