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Abstract

Wave farms utilize wave energy converters (WEC) and related devices to generate

electricity using ocean waves. Past research has shown that the layout of wave en-

ergy converters can have a dramatic impact on the total output of the wave farm,

as evaluated by the q-factor. The q-factor expresses the efficiency of the mechani-

cal power absorbed by the WECs, which can be used as an approximation for the

electrical power produced by WECs, as a function of the locations of the WECs and

their hydrodynamic properties. Past studies have proposed several procedures for

optimizing wave farm layouts. However, the solutions obtained in previous research

tend to degrade rapidly as the ocean state (wave heading direction and wave num-

ber) changes. This thesis presents a procedure to optimize the layout of a wave farm

using a two-step genetic algorithm. The two-step genetic algorithm is introduced and

tested. Furthermore, in order to improve the robustness of the solution, a preliminary

study of wave farm layout under uncertainty is presented and computational results

are discussed.

1



Chapter 1

Introduction

1.1 Wave Energy

Energy is one of the most important sources for social and economic development.

The total U. S. energy consumption was 78.1 quadrillion BTU in 1980, 84.5 quadrillion

BTU in 1990, 98.8 quadrillion BTU in 2000, 100.3 quadrillion BTU in 2005 and 97.7

quadrillion BTU in 2010 [7]. Although the energy consumption growth decreased

in recent years due to the economic crisis [7], as the economy recovers and grows,

more and more energy will be needed. The growing energy consumption results in

the emission of by-products of using fossil fuels, which contributes greatly to global

warming. As the effect of global warming get worse, more and more renewable and

green energy is desired. Wave energy is one of the most promising renewable energy

source for countries with rich ocean resources.

Wave power transfers the energy from sea surface waves to usable power, usually

electricity, which is easy to transmit and utilize. Wave power technology is not ma-

ture and not commercially applied at present. The known first attempt to use wave

power goes back to 1890 [18] and the first experimental wave farm was opened in
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Portugal in 2008 [16].

A device for wave energy transformation is called wave energy converter (WEC).

There are five categories of WECs in general. The first kind is known as an attenua-

tor. This kind of converter is made of a series of floating sections. As waves pass, the

sections will move up and down relative to each other. This makes the liquid (usually

oil) within the sections flow and drives the electricity generator. One example of such

a WEC is Pelamis [11]. The second kind of converter is a point absorber, for example

the PowerBouy [12]. Usually, a point absorber consists of two parts. The two compo-

nents move relative to each other as waves pass, which drives the electricity generator.

The third kind of converter is called a terminator. One example of a terminator is

the oscillating water column, such as WaveRoller [14]. The water enters a chamber

and the wave motion drives the water column to move up and down. This forces the

air go through the turbine that is used to generate electricity. The fourth kind is

called an overtopping device, such as Water Dragon [13]. An overtopping device has

containers to store water from waves and the level of the stored water is higher than

the ocean surface. Then the water is released. The falling water will drive the elec-

tricity generator. The fifth kind is an ocean thermal energy converter. This kind of

device uses the temperature difference between surface water and the water beneath

to make water move and drive the electricity generator. However, this kind of WEC

does not generate energy using the exciting forces of waves. The discussion in this

thesis is mainly based on the study of transforming the exciting forces of the wave to

electrical energy. We focus on point absorbers, but many of the contents discussed in

this thesis can be adapted to other types of WECs.

Wave power can be viewed as a branch of hydropower. Hydropower is the practice

of deriving power from falling or running water with corresponding devices, such as
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mills and dams. Another promising branch of hydropower is tidal power, which con-

verts the energy of rising and falling tides into a useful form of power. Unlike wave

power, tidal power is a more mature technology. Tidal power is more predictable

than wind power, wave power and solar power. Although the cost of tidal power is

high, new technology and research is addressing this problem.

1.2 Ocean Waves

Before discussing wave energy conversion in more detail, we first discuss how waves

are modeled. Ocean waves are the movement of sea water driven by the wind over the

water surface or earthquakes under the water. Ocean wave can be viewed as a sum of

sine waves with their own frequencies, amplitudes and directions. Each component

is described in terms of two parameters, wave heading direction β and wave number

k. A wave with a single sine wave that has fixed and constant parameters is called a

regular wave. Waves, in practice, are usually irregular waves that consist of multiple

sine waves with their own parameters.

For the convenience of discussion, our attention will be restricted to regular waves

in this thesis. For deterministic waves, this means that β and k are known. For

stochastic waves, we assume that β and k follow a given probability distribution,

such as normal or log-normal distribution. (Ocean waves are more commonly mod-

eled using their spectral density, which gives a statistical description of the wave

component frequencies. However, since we are considering only regular waves, there

is only a single wave component, and we describe its parameters using common dis-

tributions for convenience.)
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1.3 Literature Review

The study of wave energy conversion started in the 1970s. Several aspects of wave

energy have been addressed in the literature.

Some researchers focus on the control of wave energy converters. Nolan et al. [20]

have developed a semi-analytical solution methodology based on mathematical mod-

els to determine optimal damping profiles for a heaving WEC. Falcao [6] has applied

a stochastic model to optimize the rotational speed control of an oscillating water

column. Guang et al. [15] found that deterministic sea wave prediction combined

with optimal constrained control can improve the efficiency of a WEC dramatically.

Some researchers focus on the characterization and forecast of the waves. For

example, Gordon [21] has tested the ability of various time-series models to predict

energy from sea waves.

Some researchers focus on energy storage and transmission. Li et al. [25] have

simulated a novel hybrid power generation and energy storage system in both time-

domain and frequency-domain. Tereke [1] has connected multiple WECs to a power

distribution station to check if multiple WECs would stabilize the output and improve

the integrity of the network.

The literature that is most relevant to this thesis is concerned with the layout of

devices Evans [8] has introduced the concept of q-factor which is used to evaluate the

layout. (See Section 1.4 for a more detailed explanation of the q-factor.) Evans [8]

and Falnes [9] have formulated an expression for the absorbed power independently,

which is used to approximate the q-factor. Those results became the foundation of

later research. However, the calculation of absorbed power is of great difficulty, as
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we discuss in Section 1.4. An approximation is desired. A lot of research has been

done on this aspect. For example, McIver [17] has presented the point absorber ap-

proximation. He also compared the point-absorber theory and the plane-wave theory.

Fitzgerald and Thomas [10] have presented a numerical optimization procedure that

can produce either symmetric or asymmetric layouts, with a particular focus on five-

device problems under a small-body approximation. Rather than using approximate

methods, some researchers have developed exact methods. For instance, Child and

Venugopal [4] proposed an exact procedure to calculate the q-factor and two heuris-

tics for optimizing the wave farm layouts to maximize the q-factor.

This thesis will focus on the wave farm layout problem.

1.4 q-factor

While several wave energy converters are located near one another in a wave farm,

the devices do not generate electricity independently. They interact with each other

in terms of generating new kinds of waves. When the incident wave, the wave that

occurs due to a natural force, such as wind, hits the devices, two kinds of waves will

occur. One of them is a radiated wave. A radiated wave happens when a device is

hit by waves and begins to move up and down. The motion of the device produces

the radiated wave. The other type of wave is a scattered waves. A scattered wave is

the wave that the device reflects when the device is hit by waves. The effect of these

three kind of wave, incident wave, radiated wave and scattered waves, could be either

constructive or destructive to the overall electricity output.

Two similar layouts of N = 5 are shown in Figure 1.1. The red layout is obtained
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by moving every WEC in blue layout slightly. They are very similar but with very

different q-factors (which will be defined later in this section). The blue layout has

q = 2.7770 while the red layout has q = 0.9796. Due to the interaction, the layout

of devices has a considerable effect on the total amount of absorbed power. And the

relative location of the devices determines whether the interaction effect between each

pair of devices is constructive or destructive.

Figure 1.1: Two Similar Layouts with N = 5

The q-factor, also called interaction factor, is used to measure the quality of the

layout. The q-factor is calculated with (1.1).

q =

∑N
j=1 Pj

N × P0

(1.1)

In this function, Pj is the mean mechanical power absorbed by jth wave energy

converters and P0 represents the mean mechanical power absorbed by a single isolated

wave energy converters. N is the number of WECs. The actual quantity needed here

is the output electrical power for each device, rather than the absorbed mechanical

power. However, the calculation of output electrical power is of great difficulty, since

it requires configuration information, such as mechanical and electrical properties, of

7



the devices. On the other hand, the calculation of absorbed mechanical power needs

no such properties. In using the q-factor, an assumption has been made implicitly

that a constant portion of the absorbed mechanical power is transferred to the out-

put electrical power. Therefore, the absorbed mechanical power of each device can

be used to approximate the output electrical power.

The mean power absorbed during a wave period by a layout with N devices

has been shown by Evans [8] and Falnes [9] independently. If the hydrodynamic

coefficients, the coefficients used to represent the hydrodynamic forces acting on the

device, of all the devices in the layout are known, the mean absorbed power P is

given by

P =
1

4
(X∗U + U ∗X)− 1

2
U ∗BU (1.2)

In this formula, U is the complex velocity vector (N×1). Complex velocity is the

derivative of complex potential, which is used to describe fluid in fluid mechanics, in

terms of an ideal fluid. X is the complex wave exciting force vector (N × 1). Wave

exciting force is the force that causes the motion of devices. The ∗ denotes the com-

plex conjugate transpose. B is the radiation damping matrix (N × N). Radiation

damping means that vibrating energy of motion is converted and emitted in the form

of radiated waves or other types of waves.

There are actually two optimization problems while optimizing the absorbed power

P . One of them is the layout problem for the devices. The other is the control prob-

lem, represented in (1.2) by the matrix U , the control variables. However, (1.2) is

very non-convex and nonlinear. It’s very difficult to optimize both the layout problem

and the control problem at the same time. It also requires the hydrodynamic coeffi-

cients, which are hard to calculate, to solve this problem. As Fitzgerald and Thomas

[10] mentioned, it’s very challenging to determine the exciting force and analytic so-
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lutions are only available for simple geometries. For problems with two optimization

problems, one option is to optimize one of the sub-problems first and then optimize

the other sub-problem.

It’s easy to solve if a fixed layout is given. When the devices are unconstrained

and the control of each device is optimal, the maximum absorbed mechanical power,

also shown by Evans [8], is given by

P =
1

8
X∗B−1X (1.3)

This optimal value is achieved by

U =
1

2
B−1X (1.4)

The layout optimization problem is the goal of this thesis. The objective function

for this problem is (1.3). However, this problem is difficult to optimize, because (1.3)

is non-convex, and also because it requires the calculation of the hydrodynamic coef-

ficients X and B, which are difficult to compute. Therefore, a simpler approximation

is desired.

1.5 The Point-absorber Approximation

In the point-absorber approximation, the devices are assumed to be small enough

and widely spread. In this case, the scattered waves are very weak due to the small

size of the devices and the scattered waves will fade while traveling from one device

to others. Therefore, the scattered waves can be neglected when they hit another

device. The calculation of the q-factor using point-absorber theory is presented as
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following. This function is given by Evans [8]:

q =
1

N
L∗J−1L, (1.5)

where the column vector L = {Lm,m = 1, 2, ...N} has elements

Lm = eikdm cos(β−αm) (1.6)

and the matrix J = {Jmn,m = 1, 2, ...N n = 1, 2, ...N} has elements

Jmn = J0(kdmn) (1.7)

Here J0(x) is the Bessel function of the first kind of order zero. dmn indicates the

relative distance between the mth and nth devices. dm and αm are the polar coordi-

nates of the mth device related to a fixed origin.

This function indicates that the q-factor only depends on the location information

(polar coordinates) of each buoy dm and αm, the wave number k and the wave heading

direction β. It’s worth noting that this function is independent of the hydrodynamic

coefficients X and B, which are difficult and time-consuming to calculate and require

specialized software and tools, such as WAMIT [24]. Typically, it takes ten minutes

or more to calculate X and U for a single layout. Usually, in order to get a better

solution, there are many possible layouts to evaluate, which will take a considerable

amount of time. Rather than (1.3), (1.5) is more attractive and convenient to calcu-

late.

When q > 1, the constructive effect is greater than the destructive effect, which

is desired. When q = 1, the constructive effect is equal to the destructive effect.
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When q < 1, the destructive effect is greater than the constructive effect. Typically,

the q-factor is less than 2 or 3, indicating that a wave farm with a good layout can

absorb 2 or 3 times as much power as the same number of WECs operating in isolation.

1.6 Alternative q-factor Expression

One natural approach that comes to mind for any optimization problem is to solve

it with optimization software, such as AMPL [3]. In order to do that, a simpler ex-

pression, in polynomial form, is needed due to the existence of complex numbers.

After writing down the polynomial form of the q-factors in the cases of N = 2, 3, 4,

some patterns can be found. The expressions for the q-factors if N = 2, 3, 4 are shown

in (1.8), (1.9) and (1.10), respectively. Those equations are obtained by expanding

the matrix algebra in (1.5).

q(2) = L1L
∗
1H11 + L1L

∗
2H21 + L2L

∗
1H12 + L2L

∗
2H22 (1.8)

q(3) = L1L
∗
1H11 + L1L

∗
2H21 + L1L

∗
3H31

+L2L
∗
1H12 + L2L

∗
2H22 + L2L

∗
3H32

+L3L
∗
1H13 + L3L

∗
2H23 + L3L

∗
3H33

(1.9)
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q(4) = L1L
∗
1H11 + L1L

∗
2H21 + L1L

∗
3H31 + L1L

∗
4H14

+L2L
∗
1H12 + L2L

∗
2H22 + L2L

∗
3H32 + L2L

∗
4H24

+L3L
∗
1H13 + L3L

∗
2H23 + L3L

∗
3H33 + L3L

∗
4H34

+L4L
∗
1H41 + L4L

∗
2H42 + L4L

∗
3H43 + L4L

∗
4H44

(1.10)

Extending this pattern, a general expression for N devices can be obtained, as in

(1.11).

q =
∑

m=1,2,...N,n=1,2,...N

LmL
∗
nHmn, (1.11)

We conjecture that (1.11) holds for all N , though we have been unable to prove

it rigorously.

In these expressions, L∗
m stands for the mth element in matrix L∗, where ∗ denotes

complex conjugate transpose. Hmn stands for the element in the mth row and nth

column in the matrix H , where H is the inverse matrix of J . As we know, Lm and

L∗
m can be expressed as (1.12) and (1.13), where Am = kdm cos(β − αm).

Lm = eiAm = cosAm + i sinAm (1.12)

L∗
m = e−iAm = cosAm − i sinAm (1.13)

Therefore, we have

LmL
∗
mHmm = eiAme−iAmHmm = e0Imm = Hmm (1.14)

LmL
∗
nHnm = eiAme−iAnHnm = ei(Am−An)Hnm (1.15)

12



As a consequence, in general, the terms can be combined as

LnL
∗
mHmn + LmL

∗
nHnm = Hmn cos(Am − An) +Hnm cos(An − Am) (1.16)

(1.11) can be simplified using (1.16). To obtain

q =
∑

m=1,2,...N,n=1,2,...N

Hmn cos(Am − An) (1.17)

However, optimization software can’t handle integration, inverting matrices and

Bessel functions. And there is no efficient approximation for H for N ≥ 5. Therefore,

(1.17) is useful for optimization software that can handle the calculation mentioned

above or that is able to interact with other mathematical software, such as Matlab.

So the original expression for the q-factor (1.5) is used in the following discussion.

In addition to the point-absorber approximation, there are also other methods

of approximation. McIver [17] has compared the point-absorber theory to the plane

wave theory [22]. And Child and Venugopal [4] have addressed an exact procedure

to determine the q-factor.

1.7 Symmetric Layout vs. Asymmetric Layout

Although there is no proof yet, the results of our two-step genetic algorithm, which

will be introduced in Section 2.2, indicate that symmetric layouts tend to perform

better than asymmetric ones.

The q-factors for the top five solutions obtained by our two-step genetic algorithm

for both symmetric and asymmetric layouts with N = 5 devices, with fixed wave

13



heading direction and wave number are shown in Table 1.1. The symmetric layouts

tend to have better q-factors than the asymmetric layouts. The results presented by

Fitzgerald and Thomas [10] also show this trend. So only symmetric layouts will be

included in the following discussion.

Table 1.1: Symmetric Layouts vs. Asymmetric Layouts
Ordinals Symmetric Asymmetric
1th 2.7777 2.6666
2nd 2.6730 2.5828
3rd 2.5892 2.5425
4th 2.5502 2.5381
5th 2.5425 2.4946
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Chapter 2

Wave Farm Layout Problem

The wave farm layout problem is an optimization problem that tries to maximize

the power output of the wave farm by optimizing the layout of WECs. The output

is approximated using q-factor and the point-absorber approximation discussed in

Chapter 1. In order to satisfy the precondition of the point-absorber approximation,

a minimum distance between any pair of WECs is required.

The objective of this problem varies when attention is paid to different aspects.

When there is no uncertainty, the wave direction and wave number are constants

and the maximum q-factor is desired. However, in reality, waves are usually stochas-

tic. Since WECs represent long-term investments, wave farm operators will typically

want to maximize the average output over a long time horizon, during which the

ocean environment will change stochastically. In this case, one wishes to maximize

the expected q-factor. In some cases, wave farm operators may be risk averse and

may want to optimize the worst-case performance. In this case, the minimum q-factor

is the objective to be maximized.

As mentioned in Section 1.5, there is no effective approximation foe the wave farm
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layout problem that can be used in commercial optimization software. A customized

algorithm is needed to solve the problem. Figure 2.1 plots the objective function

(q-factor) as the location of device 1 changes, keeping the locations of the other four

devices fixed, for the best layout of N = 5 reported by our two-step genetic algorithm.

The surface is very non-convex and nonlinear, which means that we are likely to find

local optimal solutions when a convex optimization algorithm is used. Although

there are some global optimization solvers, such as LGO [2], that are designed for

non-convex problems, those solvers can’t solve the wave farm layout problem, not

only because they can’t handle the calculation mentioned in Section 1.6 (actually,

this could be solved by connecting solvers to other mathematical software) but also

because there are too many local maxima to find the global optima. Therefore, a

heuristic that is good at finding the global optimal solution is needed to solve this

problem. In this case, a genetic algorithm is chosen.

Figure 2.1: q-factor vs. location of device 1
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2.1 Genetic Algorithm

A genetic algorithm is a heuristic that simulates the process of evolution. This heuris-

tic (also sometimes called a metaheuristic) is routinely used to generate useful solu-

tions to optimization and search problems [19]. A genetic algorithm usually works

in four steps. First of all, a population, namely a set of random feasible solutions,

is generated. Usually, a selected objective function is used to evaluate the quality

of each solution. Secondly, part of the population, usually the solutions with the

better objective function values, will be selected and become parents. Thirdly, those

parents will exchange their genes, i. e. part of the solution, randomly with each

other to generate a set of new solutions, called children. This step is called crossover.

Then mutation may happen to the new solutions so that the solutions may change

by chance. In addition, a procedure is needed to check and guarantee the feasibility

of the solution. Fourthly, the parents and the new children constitute the new pop-

ulation. Then selection, crossover and mutation will happen to the new population

again and again until a termination criterion is met. As the problem changes, the

objective function and crossover procedure vary accordingly.

The speed of a genetic algorithm depends on the complexity of the objective func-

tion, the size of the problem (number of variables) and the parameters (number of

iterations and termination condition).

2.2 Two-step Genetic Algorithm

Our preliminary implementation of a basic genetic algorithm showed that the quality

of the results depend heavily on the quality of the solutions in the initial population.

Motivated by this, we devised a two-step genetic algorithm in which the best results
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from several runs of the basic genetic algorithm become the initial population for

another basic genetic algorithm. Table 2.1 compares the q-factors of the best solutions

found by ten runs of the basic genetic algorithm and the two-step genetic algorithm.

The basic genetic algorithm solutions from the first column form the initial population

of the two-step genetic algorithm. Note that the results in the second column are much

better than those in the first column.

Table 2.1: Basic Genetic Algorithm vs. Two-step Genetic Algorithm
Number Basic GA Two-step GA
1 2.1418 2.7770
2 1.8457 2.6730
3 1.8023 2.5892
4 1.7177 2.5425
5 1.7042 2.5391
6 1.6470 2.3716
7 1.6121 2.3069
8 1.5826 2.3068
9 1.5525 2.2154
10 1.4987 2.1865

2.2.1 Basic Genetic Algorithm for Wave Farm Layout Prob-

lem

We first discuss the basic genetic algorithm in this section, then in Section 2.2.2

discuss the two-step genetic algorithm. Usually, the implementation of a genetic al-

gorithm highly depends on the problem it deals with. The implementation details for

the wave farm layout problem are introduced in the following steps.
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Population Encoding

For the wave farm layout problem, a solution contains the locations of N devices.

The location of a device is described in a coordinate system. Therefore, two (N × 1)

vectors, PX1 and PY 1, are used to store the population. PX1 is used to store

x-coordinates and PY 1 is used to store y-coordinates. As mentioned in Section 1.7,

only symmetric layouts are discussed in this thesis. So the devices that are symmetric

to each other will be called a pair. And the locations of a pair are defined as a piece

of gene. Once the location of a device changes due to feasibility checking, crossover or

mutation, the location of the other device in the same pair will also change accordingly.

Initial Population

The initial population is commonly generated randomly. For our genetic algorithm,

the location of devices is generated randomly within a 40 × 40 square. After the

initial population generation, a check will be performed to ensure the feasibility of

solutions. In the wave farm layout problem, feasibility means a device is not too

close to other devices. We check from the first device to the last device one by

one and regenerate the location of a device if it is too close to the previous ones until

the minimum distance is met. We choose the size of initial population as one hundred.

Selection

The objective function values of each solution in the sets PX1 and PY 1 are calcu-

lated and stored in the set PQ1. The elements in PQ1 will be sorted in decreasing

order. The best fifty solutions will be selected as parents and stored in BX and BY .
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Crossover

We pair parents randomly. The paired parents swap odd-number genes to produce

new solutions. Those new solutions are called children. The parents and the children

will constitute the one hundred individuals in the new population PX2 and PY 2.

Mutation

Mutation will happen to every gene in every individual in PX2 and PY 2 with prob-

ability 20%. After mutation, feasibility will be checked and infeasible solutions will

be fixed by re-mutating the genes that cause the infeasibility. Finally, the solutions

in PX2 and PX2 will be saved as PX1 and PY 1.

Termination Condition

The selection, crossover and mutation procedures continue until the termination con-

dition is met. The termination condition is that the number of iterations in which no

improved solution is found exceeds L1.

2.2.2 Two-step Genetic Algorithm

The two-step genetic algorithm will use PX3 and PY 3 to store the top ten solutions

from ten runs of the basic genetic algorithm. This is the first step. In the second step,

another run of the basic genetic algorithm will be executed. This second run of the

genetic algorithm will use PX3 and PY 3 as the initial population. The limit on the

is with no improvement in the second step is L2. The termination condition for the

basic genetic algorithm in the second step is more rigorous, which means L2 ≥ L1.

The solution found by the two-step genetic algorithm will be stored in PX4 and
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PY 4.

2.2.3 Improvement Step

The way the genetic algorithm works is to search for the best random points from the

solution surface. Those points, usually, are not precisely the local optimal solutions.

The solutions in PX4 and PY 4 are just the best solutions from the random points.

Those points are close to local optima. So a search for locally optimal solutions is

implemented after the two-step genetic algorithm. The procedure for the search is to

try find a better solution around the genetic algorithm solution. For each solution, a

search for better solutions is performed by moving the solution within a (2×2) square.

If better solutions are found, the best solution will replace the present solution and

we keep searching until no better solution is found within the square. Otherwise, the

search will stop and store the present solution as the local maximum.

2.3 Greedy Algorithm

In order to verify the effectiveness of the genetic algorithm, a greedy algorithm has

also been implemented to find a solution. A greedy algorithm makes the locally opti-

mal choice at each stage [5]. In our case, the greedy algorithm searches for a solution

to the N -WEC problem by keeping the solution to the (N − 1)-WEC problem fixed

and finding the best single WEC to add to it. With the objective function of max-

imizing the q-factor for N = 2, 3, ..., 7, the solutions found by both algorithms are

listed in Table 2.2.

It shows that the solutions found by the genetic algorithm are much better than
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Table 2.2: Genetic Algorithm vs. Greedy Algorithm
N Greedy Alg. Two-step Genetic Alg.
2 1.6744 1.6744
3 1.8230 1.9880
4 1.9076 2.1776
5 1.9732 2.7770
6 1.9907 2.7955
7 2.0359 3.0703

the ones found by the greedy algorithm, especially for N ≥ 3. A plot of the device

locations of solutions for N = 2, 3, 5 found by the two-step genetic algorithm is given

in Figure 2.2.

Figure 2.2: Best Layouts of N = 2, 3, 5

The figure shows that the layouts for different N are not similar to each other.

This means that the solutions to the problem are not nested. The greedy algorithm

is therefore not suitable for this problem and genetic algorithm works better.
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2.4 Disadvantage of Genetic Algorithm

The genetic algorithm can not guarantee the optimality of the solution with a single

run. In this case, a number of runs are needed before we can be confident that a near-

optimal solution has been obtained. However, this becomes a serious issue when the

size of the problem increases. The run time of the genetic algorithm highly depends

on the size of the problem (the number of variables, or the number of devices). And

the solution surface becomes more non-convex and nonlinear as the number of vari-

ables increases, which means it is harder to find optimal and near-optimal solutions.

2.5 q-factor Conjecture

If we take a layout for N WECs and duplicate it, the q-factor for the 2N -WEC layout

will equal the q-factor for the N -WEC layout if we move the two sets of N devices

very far from each other (so they don’t have hydrodynamic interactions). This also

means that the 2N -WEC layout has a feasible solution that is at least as good as the

N -WEC layout. Plots of q-factor as the duplicate set moves away for N = 2, 5 are in

Figure 2.3 and Figure 2.4. The straight line stands for the best q-factor values. The

optimality of the solution for N = 2 had been proved by Snyder [23] mathematically.

The solution of N = 5 is the best solution reported by the two-step genetic algorithm

and also found by Fitzgerald and Thomas [10]. The points above the line indicate

that there are many better feasible solutions for the 2N -WEC layout than simply

moving the duplicated set far away.

If the q-factor is expressed as a function of the number of devices q(N), we can

conclude that a problem with 2N devices always has a better solution than the
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Figure 2.3: Move added set as N = 2

Figure 2.4: Move added set as N = 5
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problem with N devices, namely

qopt(2N) ≥ qopt(N) (2.1)

where the subscript opt stands for optimal solution.

If the conclusion above is extended in a more general way, another conjecture can

be made: the optimal q-factor in the case of N + 1 devices is always at least as good

as the optimal q-factor in the case of N devices, i. e.

qopt(N + 1) ≥ qopt(N) (2.2)
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Chapter 3

Computational Analysis

For a given number of devices, the optimal layout changes when attention is paid

to different aspects (different objective function). The case of five devices has been

a major object of study in the past. The discussion in Section 3.2, Section 3.3 and

Section 3.4 will therefore focus on the case of five devices (N = 5).

All the solutions in this chapter are reported by our two-step genetic algorithm

and encoded with Matlab. The version of Matlab is Version 7.11.0.584 (R2010b) run

on an Intel Core i5 CPU, 4.00GB RAM and 32-bit system.

3.1 Maximizing q-factor

In past research, the majority of attention has been paid to the maximum output

that a layout could produce under a deterministic regular wave. We discussed our

own result in this section.

A table and a plot of the best solutions found by the two-step genetic algorithm

for layouts with 2 to 15 devices is shown in Table 3.1 and Figure 3.1. The solution
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Table 3.1: Best Solutions Found by Two-step GA for N = 2, 3, ...15
N q-factor Average Run-time (seconds)
2 1.6744 5.28
3 1.9880 6.37
4 2.1776 12.72
5 2.7777 45.82
6 2.7954 44.93
7 3.0703 86.39
8 2.9979 102.53
9 3.3938 130.87
10 3.2913 148.56
11 3.3670 167.84
12 3.1742 254.29
13 3.1905 938.20
14 3.0290 1025.60
15 2.9364 1563.52

for N = 2 has been proved to be optimal by Snyder [23]. The solution of N = 5 has

also been found by Fitzgerald and Thomas [10] and believed to be optimal.

Figure 3.1: q-factors of N = 2, 3, ...15

The plot shows that q increases with N for N = 2, 3, , 7. This trend stops for

N > 7, in contrast to our conjecture in Section 2.5, but we believe this is because

our GA failed to find optimal solutions for the larger problems. In addition, we make
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the additional conjecture that increase in the optimal q-factor will decrease as N

increases. That is, if we define c = qopt(N + 1) − qopt(N), then we conjecture that c

decreases as N increases (and is always non-negative if our conjecture in Section 2.5

is correct).

However, a wave farm is a long-term investment. A plot of the q-factor as β

changes for the best layout for N = 5 is shown in Figure 3.2. The q-factor for this

layout is high only as the wave heading direction β = 0. It degrades rapidly as ocean

state changes. Rather than high output in one certain sea state, overall output or

average output may be desired. Robustness is an issue that has rarely been covered

in past studies. The objective functions with robustness are discussed in Section 3.2

and Section 3.3.

Figure 3.2: q-factors of N = 5 Best Layout as β Changes
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3.2 Maximizing Expected q-factor

As we know, waves are not deterministic in reality. A good overall output is de-

sired under uncertainty. In this case, an expected overall output is needed to be

maximized when the wave heading direction and wave number changes. The wave

heading direction and wave number under uncertainty are modeled using both normal

and log-normal distribution in order to test both symmetric and asymmetric proba-

bility distribution. In this section, three situations will be discussed, wave heading

direction under uncertainty, wave number under uncertainty and both wave heading

direction and wave number under uncertainty.

3.2.1 Normal Distribution

In the following discussion, the factors under uncertainty follow a normal distribu-

tion, and the mean value of the normal distribution is 0 when β is stochastic and 2.5

when k is stochastic, while the standard deviation varies. In the following figures, SD

stands for standard deviation.

The plot of q-factors vs β for the solutions found when the wave heading direction

is under uncertainty and follows different normal distributions is shown in Figure 3.3.

Although the optimality of solutions can’t be guaranteed, the tendency that the

curves are shorter and flatter as the variance increases is obvious. The larger the

variance is, the larger the chance that the wave heading direction will be very differ-

ent from the mean value. This means the more regular (the variance is smaller) the

waves are, the more energy is obtained.
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Figure 3.3: q-factors vs. β Under Uncertainty

The plot of q-factors vs. k for the solutions found when wave number is under

uncertainty and follows different normal distributions is shown in Figure 3.4. The

curves remain above the q = 1 line for a broader range of k values when the SD of

the distribution increases.

Figure 3.4: q-factors vs. k Under Uncertainty With Normal Distribution

The surface of q-factors is presented in Figure 3.5 when both the wave heading

30



direction and the wave number is under uncertainty. And the surface of q-factor

obtained with the objective function of maximizing the q-factor under the fixed sea

state k = 2.5 and β = 0 is also shown in Figure 3.6. When uncertainty is taken into

account, the q-value for β = 0, k = 2.5 is smaller than it is for the deterministic case,

but on the other hand the solution is more robust, which we can see from the fact

that q > 1 for a larger set of β and k values in Figure 3.4 than in Figure 3.6.

Figure 3.5: q-factors vs. β and k Under Uncertainty With Normal Distribution

3.2.2 Log-normal Distribution

In this section, the factors under uncertainty follow a log-normal distribution, and

the scale value of log-normal distribution is zero while the shape value σ varies.

The plot of q-factors vs. β for the solutions found when the wave heading direction

is under uncertainty and follows different log-normal distributions is shown in Fig-

ure 3.7. Figure 3.8 and Figure 3.9 show similar plots as the wave number (Figure 3.8)
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Figure 3.6: q-factors vs. β and k Under No Uncertainty

and both the wave heading and the wave number (Figure 3.9) are under uncertainty.

As in the case of the normal distribution, increasing the variance of the distribution

tends to lower the peaks but increase the range of values for which q > 1.

Figure 3.7: q-factors vs. β Under Uncertainty With Log-normal Distribution
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Figure 3.8: q-factors vs. k Under Uncertainty With Log-normal Distribution

Figure 3.9: q-factors vs. β and k Under Uncertainty With Log-normal Distribution
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3.2.3 Discussion of Stochastic Cases

The plots in Figure 3.3 and Figure 3.7 are of great interest. The shapes of the curves

are very smooth and extraordinarily similar to the probability density curves of the

corresponding distributions that the uncertainty follows. Although the plots in Fig-

ure 3.4 and Figure 3.8 are less smooth, the trends of the curves are still similar to

the probability density curves of the corresponding distributions that the uncertainty

follows. This may suggest that there are relatively simple relationships between k

and β and the q-factor. Unlike the solution shown in Figure 3.2, those solutions have

better q-factors though the most of the ocean states.

The surfaces in Figure 3.5 and Figure 3.9 show that the q-factors with high values

tend to appear near the mean values of k and β. Compared to Figure 3.6, in which the

only obvious peak appears at the ocean state with k = 2.5 and β = 0, the solutions

obtained under uncertainty exhibit more robustness.

3.3 Maximizing Minimum q-factor

As mentioned above, sometimes we need a more stable output and want to optimize

the worst-case performance. In this case, the minimum q-factor in certain range of

wave heading directions is maximized. A plot of q vs. β for the solution obtained by

maximizing minimum q-factor for different range of wave heading directions is shown

in Figure 3.10. The plot shows that the wider the range of the wave heading is, the

lower the level of the q-factor is in the range of wave heading but the wider the range

is in which q > 1.
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Figure 3.10: q-factors for Different Ranges

3.4 Layout Compare

The best solutions with various objective functions are compared in this section. A

plot of the q-factors vs. β for the best solutions for different objective functions is

shown in Figure 3.11.

The curves of q-factor tend to be flatter when the objective function emphasizes

more robustness.

A plot of the locations of WECs for different objective functions with N = 5

is shown in Figure 3.12. The blue stars represent the solution for maximizing q-

factor. The red crosses represent the solution for maximizing the expected q-factor.

The black circles represent the solution for maximizing the minimum q-factor. The

layouts differ greatly. The objective function has a heavy impact on the layout of the

WECs.
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Figure 3.11: q-factors for Different Objective Functions

Figure 3.12: Layouts for Different Objective Functions
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Chapter 4

Conclusion

This thesis first introduces wave energy briefly. Concepts related to wave energy con-

verters and wave models have been presented. Secondly, an overview of key theories,

including the q-factor and the point-absorber approximation, are shown. We focus

on the point-approximation because it makes the calculation of absorbed power much

simpler. An alternative expression of the q-factor has been shown. This expression

may be useful if an efficient approximation is found or powerful optimization soft-

ware is designed. Thirdly, the wave farm layout problem and our two-step genetic

algorithm used to solve the problem have been introduced. The two-step genetic

algorithm shows strong compatibility to multiple objective functions and efficiency

for small scale wave farm layout problem. Several conjectures have been addressed

regarding the q-factor based on the data reported by the two-step genetic algorithm.

Although there are no proofs for the conjectures yet, the study of these conjectures

can illustrate the relationship between k, β and N and the q-factor. Fourthly, a com-

putational analysis is performed. Results for different objective functions are shown.

In addition to maximizing the q-factor as has been study in the past, a preliminary

study of layouts with more robustness have been shown. The solutions for maximiz-

ing the minimum q within some range of wave heading direction and a stochastic
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study on the expected q-factor when the wave number and wave heading direction

are under uncertainty have also been presented. The robustness of the solutions has

rarely been mentioned in the past.

In the future, many studies need to be deepened and extended. More efficient code

is desired to shorten the run time of the two-step genetic algorithm for large-scale

problem. If efficient approximations can be found for the alternative expression of the

q-factor, the calculation and optimization of the q-factor will be much simpler. Proofs

and more discussion are needed for the conjectures. Those conjectures could provide

more knowledge on the layout problem. The study of robustness needed to be deep-

ened that more wave models and uncertainties needed to be discussed. Rather than

simple distributions, it is more valuable to study more realistic models of ocean waves.
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