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Abstract

Classical Information Theory solves the problem of maximizing the quantity of information that

can be reliably transmitted over the given (imperfect) channel, without dealing with the questions of

where the information comes from and what it’s going to be used for. If the information is to be used

to make decisions, and the goal is to maximize the decision quality (e.g. by minimizing the properly

defined loss) by making use of available information sources, then one needs to know what specific

information is to be requested from a source so that, on one hand, the source would be able to fulfill

the request accurately and, on the other hand, the information obtained would have a large impact on

the decision quality for the specific problem at hand. It can be said that the developed methodology

complements the classical Information Theory in that it deals–in the context of quantitative decision

making at least–with the first and last link of the full “information chain”: extracting it from the

source and using it to obtain the best possible decision. The classical Information Theory describes

the middle link of that chain–in case a transmission of the information obtained from the source

over some channel is involved. The middle link just happens to be largely independent of the end

links and can be treated separately, while the end links are rather closely connected and therefore

have to be treated together. It is curious to note that a similar state of affairs can often be observed

in material supply chains: for example, if some raw material has to be extracted, transported and
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used to make a certain product, then the material to be extracted depends on the product that needs

to be made and the given material can be extracted best from a certain source. The transportation

task, however, has a more universal character and can usually be considered in abstraction from the

nature of the particular material.

In classical Information Theory, the main question is two-fold: what is the maximum (theoret-

ical) speed of accurate transmission for the given channel and how that speed can be (practically)

achieved. The first part of the main question is addressed by calculating the channel capacity and

the second part of the main question is addressed by designing appropriate codes for input sym-

bols. The main question being addressed in the proposed approach is also two-fold: what is the

maximum decision quality (for the given problem) that can be achieved by using the available in-

formation source(s) and what is the practical way of achieving that quality. The first part of this

question is addressed by computing the pseudo-energy/loss efficient frontier for the given problem

and (source specific) pseudo-temperature function, and the second part is addressed by designing

appropriate questions (that lie on the efficient frontier) as means of extracting information from the

source(s) optimally with respect to the decision making problem being solved.

2



Chapter 1

Introduction

1.1 Overview

When uncertainty is present, several approaches to decision making are used depending on the

problem at hand. If the main difficulty lies in a large number of possible solutions as well as a

complex structure of the feasible region then optimization methods are usually used (stochastic

[6], robust [2, 4] or, more recently, risk-averse [16, 54, 3]). The information available about the

unknown problem parameters is usually assumed to be fixed. If the number of possible solutions

is relatively small and the main difficulty lies in the process of updating the initial information,

decision theoretic methods are appropriate. In Markov decision processes and stochastic optimal

control, additional assumptions (such as Markovian or Gaussian property) are made which allows

one to obtain solutions with special properties making it possible to handle the dynamic aspect of

the problem efficiently.

In many practically important decision making problems where uncertainty about input data is

3



1.1. OVERVIEW

present and optimization methods are appropriate, sources of additional information are in principle

available. Often, information that such sources possess fails to be taken advantage of due to its

perceived and factual imprecision and to the lack of a methodology that allows for this in a controlled

and regular fashion.

This is the main motivation for the approach developed here: the need to efficiently add “lit-

tle pieces” of useful information to the information already present in a decision making problem

formulation. A typical situation when such ability is needed arises in industrial product portfo-

lio selection problems. An electronics manufacturing company, for example, has to choose which

products to schedule for production (and which currently produced products to phase out) in the

next quarter. The candidate products are characterized with the respective production costs (that are

relatively well known at the time of the decision) and future demands (that are very uncertain at

the same time). There are also relations between production costs and demands of various products

that can be written as constraints. A stochastic optimization formulation can typically be developed

with a probability measure obtained from historic data. On the other hand, decision makers know

that there exists other useful information that is “spread around the organization” which consistently

fails to get utilized because of the inability of decision makers and analysts to properly extract it.

Moreover, the above-mentioned inability to extract additional pieces of useful information often re-

sults in decisions being made simply based on decision makers’ intuition and qualitative judgement

because of the perceived imprecision of the available probability measure.

In what follows, we initiate development of a unified theoretical framework for optimal infor-

mation acquisition in general purpose decision making problems including those with large and

complex feasible regions to address such a situation. The approach begins with the assumption that

4



1.1. OVERVIEW

one or several information sources are available that are capable of providing potentially various

(i.e. qualitatively different) “bits” of additional information on top of what’s already contained in

the initial probability measure. The assumption of having available such “multi-purpose” informa-

tion sources is made to describe primarily human experts that possess a certain “picture” of the way

the investigated system will likely develop in the future and capable of internally “processing” that

picture to answer specific questions concerning possible future outcomes. Generally speaking, any

source has finite capability that manifests itself in answering easy questions with higher accuracy

than difficult ones. Difficulty of various questions is source-specific: what is easy for one source

can be difficult for another and vice versa.

On the other hand, information contained in an answer to any question carries a certain value

of information with respect to the given decision making problem. The latter measures the im-

provement in the value of the problem objective resulting from the information contained in the

answer. The decision maker would naturally be interested in maximizing this value of information

[30] and can achieve this goal by carefully choosing a question that would be sufficiently easy for

the source to yield an accurate answer and, at the same time, relevant to the problem at hand so that

the resulting value of information would have the highest possible value.

This naturally leads to an important question the decision maker appears to be facing: how the

information source should be optimally “aligned” with the given problem, or, more precisely, what

question the decision maker should ask the information source so that the respective answer would

have the largest positive effect on the solution quality for the given problem. More generally, if

several information sources are available the decision maker would want to know what question(s)

and, possibly, in what order the sources should be asked so that the combined effect of the respective

5



1.2. RELATED WORK

answers on the solution quality can be maximized. In other words, here the overall problem is that of

optimal “alignment” of a system of information sources to the given decision making problem. What

can make that latter problem more difficult is that optimal question(s) to be asked a given source

might in general depend on the number and properties (“expertise”) of other available sources.

If such a methodology is to be developed, it seems logical to begin with (i) a quantitative frame-

work describing information sources, questions and answers, (ii) study relationships between ques-

tions and the value of information of answers of the given source to these questions and (iii) use

the results of (i) and (ii) to develop algorithms for choosing optimal questions and thus optimizing

the process of acquiring additional information from the available source(s) for the decision making

problem of interest.

1.2 Related Work

The idea of obtaining additional information to improve the quality of decisions in situations charac-

terized with uncertainty is obviously not an entirely new idea and it has been pursued, for instance,

in the area of statistical decision making. Applications to innovation adoption [44], [35], fashion

decisions [20] and vaccine composition decisions for flu immunization [40] can be mentioned in

this regard. It’s interesting to observe that the amount of information in these applications is typi-

cally measured simply as the number of relevant observations which can be either costless or costly,

depending on the model. Some authors [19, 17] introduced various models (e.g. effective infor-

mation model) for accounting for the actual, or effective, amount of information contained in the

received observations. The common theme of this line of work is to try to find an optimal trade-off

6



1.2. RELATED WORK

between the amount of additional information obtained and the suitably measured degree of achiev-

ing the original goal. Thus, for instance, in [40], waiting longer allows the decision makers to obtain

more precise forecast of which flu virus strains are going to be predominant but leaves less time for

actual vaccine production. The difference of the proposed approach is that it explicitly describes

and allows to optimize over not just the quantity of additional information but also its content and

is based on explicit description of properties of information sources. As another example of this

overall line of research, one should mention the recent work on optimal decision making in the

absence of the knowledge of the distribution shape and parameters [31, 41, 1]. Instead, the decision

maker observes historic data and updates the solution according to an algorithm whose purpose is

to minimize the difference in objective relative to a complete knowledge of the uncertain parameter

distribution. Thus an optimal usage of the available information is also explicitly considered.

This work can also be looked upon as an attempt to make Information Theory methods useful

for optimization and decision making under uncertainty. The field of Information Theory, born from

Shannon’s work on the theory of communications [57] has had great success in a number of fields

– besides communications itself which it revolutionized – that include statistical physics [33, 34],

computer vision [60], climatology [45, 59], physiology [37] and neurophysiology [10]. The rela-

tively new field of Generalized Information Theory (see e.g. [38]) is concerned with problems of

characterizing uncertainty in frameworks that are more general than classical probability such as

Dempster-Shafer theory [56]. There it was shown, for example, [43, 27] that the minimal uncer-

tainty measure satisfying consistency requirements (such as general subadditivity and additivity for

combining uncertainty for independent subsystems) is obtained by maximizing Shannon entropy

7



1.2. RELATED WORK

over all classical probability distributions consistent with the given (generalized) belief specifica-

tion.

In Chapter 2, we use an axiomatic approach to determine the overall form of the question dif-

ficulty function. Chapter 3 uses a similar axiomatic approach to determine the overall form of the

answer depth function. Together question difficulty and answer depth can be thought of as a logical

development of the entropy concept of information theory. The axiomatic approach was first used,

besides Shannon himself, in [18] to derive the most general form of the entropy function. Later,

[52] used a different set of axioms to find the one-parameter family of functions (later called Rényi

entropies) that included standard (Shannon) entropy as a special case. The concept of structural

entropy was introduced in [28] and used for classification purposes. Also known as Havrda-Charvat

entropy, it was more recently obtained by axiomatic means in [58] where axiomatization of parti-

tion entropy was discussed on rather general grounds (see also [32] for closely related work). It was

shown in [58] that Shannon entropy, Havrda-Charvat entropy and Gini index all obtain as particular

cases of general partition entropy that satisfies a system of reasonable axioms.

The approach developed here can be interpreted as a theory of information exchange between

the decision maker/analyst and information source(s). Similarly, it can be thought of as a devel-

opment of a general theory of inquiry that goes back to the work of Cox [13, 14]. This line of

work received more attention recently resulting in a formulation of the calculus of inquiry [39] that

constructs a distributive lattice of questions dual to the Boolean lattice of logical assertions. The

definition of questions adapted in Chapter 2 corresponds to the particular subclass of questions – the

partition questions – defined in [39]. The work here goes beyond that on the calculus of inquiry in

that it introduces the concept of pseudo-energy as a measure of source specific difficulty of various

8



1.2. RELATED WORK

questions to the given information source. One could say that it develops a quantitative theory of

knowledge as opposed to the theory of information.

Explicit consideration of information sources that lies at the core of the proposed methodology

is similar in spirit to analyzing and using information provided by human experts. In fact, in many

practically relevant applications the role of multi-purpose information sources used in the proposed

approach will likely be played by experts. In existing research literature, the problem of optimal

usage of information obtained from human experts has been addressed mostly in the form of updat-

ing the decision maker’s beliefs given probability assessment from multiple experts [22, 23, 11, 12]

and, in particular, optimal combining of expert opinions, including experts with incoherent and

missing outputs [47]. Closely related to the approach initiated here are the investigations on using

and combining information of experts that partition the event differently [7] and on rules of updating

probabilities based on outcomes of partially similar events [8]. The latter investigations essentially

consider experts that provide qualitatively different information. The dependence of the quality of

experts’ output on the particular partition was also studied in [21]. Here, the emphasis is on op-

timizing on the particular type of information (i.e. partition) for the given expert(s) and the given

decision making problem.

Evaluating a source’s ability to answer various questions is closely related to the evaluation

of probability forecasts by scoring rules. A scoring rule measures the accuracy of a forecast by

computing a score based on how the forecast compares to the actual realization of the uncertain

event. An early application of this is the Brier, or quadratic, score that evaluates probabilistic

weather forecasts [9]. Scoring rules also provide an incentive for the forecaster to provide truthful

probabilities and share a connection to subjective probability theory (e.g. [25, 55]. See [61, 5, 24]

9



1.3. MOTIVATION: DECISION MAKING UNDER UNCERTAINTY

for a more thorough discussion of scoring rules and literature reviews. More closely aligned to the

work here has been the development of scoring rules that also take into consideration the decision

problem at hand, in particular [36]. They start with a decision problem and find scoring rules to fit

the problem in a way that aligns interests of the expert and the decision maker. In contrast, to these

scoring rules that measure the forecast with a single aggregated scalar value, our work introduces a

pseudo-temperature function that evaluates the source over the entire state space. In this way, when

there are multiple sources of information, the proper source can be chosen based on which one can

more accurately answer the specified questions.

Methodologically, Chapter 6 borrows heavily from the field of probability metrics and scenario

reduction in stochastic optimization. More details, along with relevant references, can be found in

Appendix B and C.

1.3 Motivation: Decision Making Under Uncertainty

In decision making under uncertainty, the goal is to choose the best decision given the available

information, according to a suitable criterion. One of the most widely used criteria is that of opti-

mizing the expected objective function given the probability distribution that describes the available

information. The problem so formulated can be formally written as

minx∈XEP f(ω, x) =

∫
Ω
f(ω, x)P (dω). (1.1)

Here X ⊂ D is the set of all feasible solutions, i.e. the set satisfying all (deterministic) constraints

that are present in the problem formulation, where D is the space to which all solutions belong

10



1.3. MOTIVATION: DECISION MAKING UNDER UNCERTAINTY

(e.g. a suitable Euclidean space). Ω has the meaning of a space of possible values of input data

parameters that are not known with certainty. It is often referred to as a parameter space. P is

a fixed initial probability measure (with a suitable sigma-algebra assumed) on Ω that describes the

initial state of the uncertainty and that can in principle be modified by querying information sources.

The function f : Ω × D → R is assumed to be integrable on Ω for each x ∈ X . For example, in

the context of stochastic optimization, X is the set of feasible first-stage solutions and f(ω, x) is

the best possible objective value for the first stage decision x in case when the random outcome ω

is observed.

We are interested, given the problem (1.1) and an information source capable of providing

answers to our questions, in obtaining the best possible solution to problem (1.1), suitably modified

by the source’s answer(s). To make this desideratum a bit more specific, let L(P ) be the expected

loss corresponding to measure P defined as follows.

L(P ) =

∫
Ω
f(ω, x∗P )P (dω)−

∫
Ω
f(ω, x∗ω)P (dω),

where x∗P is a solution of (1.1) and x∗ω is a solution of minx∈Xf(ω, x) for the given ω.

Let Q be the set of all possible (suitably defined) questions that can be directed towards the

source of information, and let A(Q) be its answer to a particular question Q ∈ Q. Further, let Pa be

the measure on Ω conditional on reception of a particular value a of the answer A. One can think

of Pa as the measure updated by the value a, from the original measure P . Then the expected loss

following question Q and answer A = A(Q) can be found as

L(P,Q,A(Q)) =
∑
a

Pr(A(Q) = a)

(∫
Ω
f(ω, x∗Pa

)Pa(dω)−
∫
Ω
f(ω, x∗ω)Pa(dω)

)
, (1.2)
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where the sum is over all possible values a of the answer A.

Our goal then can be stated as that of finding, for the given problem (1.1) and a given information

source, the question(s) Q ∈ Q that would make the corresponding expected loss (1.2) as small as

possible:

minQ∈QL(P,Q,A(Q)). (1.3)

Informally speaking, the problem is about finding the question(s) that is “aligned” optimally with

both the information source’s “strengths” and the particular decision making problem. Changing the

purely “optimization” component of the problem (the function f(ω, x) and the set X) while keeping

the “information” component (the space Ω and the measure P ) the same will in general change the

optimal question(s) Q for the same information source. Thus the main goal can also be described as

that of finding an optimal alignment between the optimization and information components of the

problem (where the information source itself is included in the latter).

1.4 Preliminaries

In the following we denote by Ω the base space consisting of all possible outcomes of potential

interest to the decision maker. We will often refer to it, as mentioned earlier, as parameter space.

Ω can be finite or infinite, such as a closed subset of a Euclidean space Rs. We denote by F a

sigma-algebra on Ω. Let P be a fixed probability measure on (Ω,F). We will usually refer to it –

and other measures – as a measure on Ω, omitting an explicit specification of F unless needed.

Let C ∈ F be a (measurable) subset of Ω. We denote by PC the conditional measure on Ω
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defined as

PC(D) =
P (D ∩ C)

P (C)
, (1.4)

for arbitrary D ∈ F.

A partition C = {C1, . . . , Cr} of Ω is a collection of (measurable) subsets Cj ∈ F of Ω such

that Cj ∩ Cl = ∅ for j ̸= l and ∪r
j=1Cj = Ω. A partition C̃ is a refinement of C if every set from

C̃ is a subset of some set from C. In such a case, C is a coarsening of C̃. Given measure P on

Ω, we call partition Cf (P ) the finest partition of Ω associated with measure P if P (C) > 0 for all

C ∈ Cf (P ) and there exists at least one set of zero measure in any refinement of Cf (P ). In case Ω

is a closed subset of a Euclidean space and F is a Borel algebra, it is easy to see that finest partitions

do not exist if measure P has a continuous support or has a component with continuous support.

It is also clear that if the measure P has discrete support there exist many partitions of Ω that are

finest for P .

C ′

3

C
′

3
∩ C

′′

1

Ω

C
′
∩C

′′

C
′

1
∩ C

′′

1
C

′

2
∩ C

′′

1

C ′

1
∩ C ′′

2
C ′

2
∩ C ′′

2

Ω

C
′′

2

C
′′

Ω

C
′

C ′

1

C ′

3
∩ C ′′

2

C
′′

1

C ′

2

Figure 1.1: Two partitions of Ω and the corresponding joint partition.

Let C′ = {C ′
1, . . . , C

′
r} and C′′ = {C ′′

1 , . . . , C
′′
s } be two partitions of Ω. Then partition
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C = C′ ∩C′′ is defined as the partition that consists of all sets of the form C ′
i ∩ C ′′

j : C′ ∩C′′ =

{C ′
1 ∩ C ′′

1 , C
′
1 ∩ C ′′

2 , . . . , C
′
r ∩ C ′′

s } (see Fig. 1.1 for an illustration). Obviously, some of the sets

constituting partition C′ ∩C′′ may be empty. Clearly, partition C′ ∩C′′ is a refinement of both C′

and C′′.

If D is a subset of Ω and C′ = {C ′
1, . . . , C

′
r} is a partition of Ω, the partition C′

D = {D ∩

C ′
1, . . . , D ∩ C ′

r} of D will be called the partition of D induced by the the partition C′ of Ω (see

Fig. 1.2).

Ω

C
′

C ′

1
C ′

2
C ′

3

Ω

C ′

1
∩D C ′

2
∩D

D

C ′

3
∩D

C
′

D

Figure 1.2: Partition C′
D of set D ⊂ Ω induced by a partition C′ of Ω.

Besides standard partitions of Ω, we will also need incomplete partitions C = {C1, . . . , Cr}

such that ∪r
i=1Ci ̸= Ω. For any partition C, we will use the notation Ĉ ≡ ∪r

i=1Ci. Clearly, partition

C is complete if and only if Ĉ = Ω.

Let now C′ = {C ′
1, . . . , C

′
r} and C′′ = {C ′′

1 , . . . , C
′′
s } be two incomplete partitions of Ω that

are completely disjoint, i.e. such that Ĉ ′ ∩ Ĉ ′′ = ∅. Then the partition C = C′ ∪ C′′ is defined

as partition consisting of all subsets in the constituent partitions: C = {C ′
1, . . . , C

′
r, C

′′
1 , . . . , C

′′
s }.

Clearly, partition C′ ∪ C′′ may be complete or incomplete (it would be complete if and only if

Ĉ ′ ∪ Ĉ ′′ = Ω). In case Ĉ ′ ∩ Ĉ ′′ ̸= ∅, the partition C′ ∪C′′ is not defined.

For an arbitrary complete partition C = {C1, . . . , Cr}, it is straightforward to show that the
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following decomposition of the measure P into the corresponding conditional measures is valid.

P =
r∑

j=1

P (Cj)PCj . (1.5)

1.5 Outline

Chapter 2 is devoted to a discussion of the question difficulty function, but starts with a discus-

sion of the overall information exchange framework in section 2.2. In particular, the main theorem

establishing the overall shape of the question difficulty function that is required to satisfy certain

reasonable postulates is proved in section 2.3. Additionally, relationships between different ques-

tions are explored in section 2.4. Section 2.5 contains simple numerical examples illustrating the

results obtained in the chapter. Finally, a conclusion summarizing the main results is given.

In Chapter 3, the overall form of the answer depth function is derived from a set of plausible

postulates. Section 3.3 describes the main relationship between question difficulty and answer depth

for main types of possible questions. In section 3.4, a special class of answers – the quasi-perfect

answers – is discussed. Section 3.5 is devoted to relationship between different questions and, in

particular, the relative depth of an answer to one question with respect to another question is intro-

duced. Section 3.6 contains simple numerical example illustrating concepts and results discussed

earlier in the article. Finally, a short summary of main results.

Chapter 4, the concept of an information source model is introduced and section 4.2 proposes

several simple models. Section 4.3 describes the process of estimating – assuming the overall ideal

gas question difficulty model – the pseudo-temperature function defined on the parameter space.

Section 4.4 presents some numerical examples and finally a brief summary of the results.
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Chapter 5 relates the informational characteristics of a source developed in Part I to solution

quality characteristics of the problem and formulates the problem of optimal information acquisi-

tion. In section 5.2, we study maps from the parameter space of the problem to its solution space

and some of their properties that are needed for later developments. In section 5.3, we relate the

loss of a decision making/optimization problem with uncertainty to the characteristics of questions

and answers, establishing, in particular, the value of minimum loss achievable with the help of a

given depth answer to a particular question. Section 5.4 presents an example illustrating the results

obtained in the earlier sections. Finally, a brief conclusion.

Finally, in Chapter 6, approximate solution methods based on the method of probability metrics

and its application to scenario reduction in stochastic optimization are developed. Section 6.2 de-

velops the main theoretical framework for the use of scenario reduction methods for optimization of

additional information acquisition. Section 6.3 develops specific algorithms for determining the ef-

ficient frontier and optimizing information acquisition. Section 6.4 provides an example illustrating

the use of methods developed in previous sections. A conclusion summarizes the main results.
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Part I

Information Exchange
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Chapter 2

Question Difficulty

2.1 Introduction

The problem of optimal decision making in environments characterized with both uncertainty and

presence of information sources is considered in a general setting. This motivates searching for

quantitative measures of question difficulty that would allow for maximizing the effect of additional

information the information sources are capable of supplying. In this chapter, the concept of ques-

tion difficulty for questions identified with partitions of problem parameter space is introduced and

the overall form of question difficulty function is derived that satisfies a particular system of reason-

able postulates. It is found that the resulting difficulty function depends on a single scalar function

on the parameter space that can be interpreted – using parallels with classical thermodynamics – as a

temperature-like quantity, with the question difficulty being similar to thermal energy. Quantitative

relationships between different questions are also explored.
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2.2. OVERALL FRAMEWORK: MAIN INGREDIENTS

2.2 Overall Framework: Main Ingredients

The main components of the information exchange framework developed here are information

sources, decision maker’s questions and corresponding source’s answers. Below, we discuss them

in turn with some emphasis on questions which are the main subject of the current chapter.

2.2.1 Information Source

Assume that a source of additional information is available that is capable of answering specific

questions concerning input data for problem (1.1). This implies that the source’s answers are capable

of modifying the initial measure P on Ω. The overall idea that we would like to formalize can be

summarized as a set of – loosely formulated at this point – reasonable assumptions.

• The source has a finite capacity (appropriately defined).

• Questions that can be given to the source have, in general, different degrees of detalization

(elaborateness) and difficulty.

• A question’s degree of difficulty is related to the question degree of detalization but in general

does not coincide with it.

• The quality of source’s answers is directly related to the degree of difficulty of the corre-

sponding questions.

• The source “tries equally hard” to answer any question it receives. The result is that it answers

questions well (with low error probabilities) if the question difficulty does not exceed its

capacity and the quality of its answers progressively degrades as the difficulty exceeds the

source’s capacity.
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2.2.2 Questions

A question is a request for new information on top of what is already known. The latter is repre-

sented by the measure P on the parameter space Ω and is assumed to be common knowledge. Since,

in the context discussed, any information is represented by some measure on Ω – with a measure

concentrated on a single element of Ωcorresponding to a state of full knowledge – a question can be

associated to a specific request for an updated measure on Ω. Therefore we identify a question with

a (possibly incomplete) partition of Ω.

Definition: A question is a partition C = {C1, C2, . . . , Cr} where Cj , j = 1, . . . , r are subsets

of Ω such that Ci ∩ Cj = ∅ for i ̸= j and ∪r
j=1Cj ⊆ Ω.

Note that we allow for incomplete partitions for which ∪r
j=1Cj is a proper subset of Ω. For any

partition C, we denote the union of all subsets in C by Ĉ:Ĉ ≡ ∪r
j=1Cj . Thus for any complete

partition C, Ĉ = Ω.

In everyday terms, a complete partition can be interpreted as a multiple-choice question (e.g.

“Is this apple red, green or yellow?”. An incomplete partition consisting of a single subset can

be associated with a free-response question, e.g. “What color is this apple?” Incomplete partitions

consisting of several subsets can be interpreted as combinations of these two kinds – as mixed

questions, e.g. “What fruit is it and is it red, green or yellow?”. In the given more narrow context

– when the parameter space Ω and measure P on it are precisely known to the information source

– the interpretation of an incomplete partition as a free-response (or mixed) question is not quite

correct since if the source is presented with a description of a subset C of Ω the question becomes

implicitly multiple-choice: “Is the random outcome ω in C or not?”. In order to accurately model

real free-response questions (as they are usually understood), more complicated models are likely
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needed. From the more narrow point of view adapted here, incomplete questions are best thought of

as an auxiliary construction that helps in determining the difficulty of complete questions that can

be unambiguously defined and interpreted.

In the following, we will use the terms “partition” and “question” interchangeably. We will also

use terms “multiple-choice question”, ”free-response question” and “mixed question” to mean com-

plete partition, incomplete partition consisting of a single set and incomplete partitions consisting

of more than one set, respectively.

Given a question C, we are interested in quantifying its degree of difficulty, i.e. finding, for the

given parameter space Ω and measure P on Ω, a function G: C → R that assigns larger values

to more difficult questions. We use the notation G(Ω,C, P ) to emphasize the dependence of the

question difficulty on Ω and P .

The particular shape of the function G(Ω,C, P ) could conceivably range in a fairly broad do-

main and would have to be approximated and estimated using experimental data such as observed

performance of a source on various questions. On the other hand, due to the very fact of possibly

wide range of shapes of the question difficulty function it makes sense to try to limit that range

somewhat by imposing reasonable restrictions on the properties of the difficulty function. Such

imposed restrictions can naturally be termed postulates. Then the validity of such postulates can

be tested by observing a source’s performance (such as empirical error probabilities) on various

question of this type.
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2.2.3 Perfect Answers

While a detailed discussion of answers will be given in Chapter 3, here we introduce a concept of

a perfect answer to a question C as an answer that provides an exhaustive reply to C. Specifically,

we have the following definition.

Definition: Given a question C = {C1, . . . , Cr}, the perfect answer V ∗(C) is a message that

takes one of the values in the set {s1, . . . , sr} such that the measure P j ≡ P V ∗(C)=sj updated by a

reception of value sj of V ∗(C) is equal to the conditional measure PCj .

Informally speaking, a perfect answer to C completely resolves the uncertainty associated with

the partition C, i.e. places a random outcome ω in one of the subsets in C with certainty but other-

wise does no more (since the resulting measure on the subset Cj is the conditional measure PCj ).

One can say that a perfect answer is the most basic type of an answer to a given question. It is

convenient to think of a question difficulty G(Ω,C, P ) as an amount of pseudo-energy (the term

‘motivated by certain parallels with thermodynamics) contained in C. Then it is natural to require

that the depth of a perfect answer V ∗(C) be equal to the difficulty of C. In other words, the amount

of pseudo-energy contained in a perfect answer to C is equal to that in C.

If question C is complete and V ∗(C) is the corresponding perfect answer it is reasonable to

assume that V ∗(C) does not change the original measure P on average, or, in other words, that the

original measure P is a “valid” one that only gets refined by the answer to C. Formally speaking,

this assumption means that
r∑

j=1

Pr(V ∗(C) = sj)PCj = P, (2.1)

from which it follows – by evoking (1.5) – that Pr(V ∗(C) = sj) = P (Cj). We will call (2.1) the

consistency condition for answer V ∗(C).
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For incomplete question, the condition (2.1) has to be modified to read

r∑
j=1

Pr(V ∗(C) = sj)PCj = PĈ , (2.2)

from which it follows that Pr(V ∗(C) = sj) =
P (Cj)

P (Ĉ)
.

2.3 Question Difficulty Function

Our goal in this section is to derive a general form of the question difficulty function G(Ω,C, P )

and – along the way – establish the set of parameters it can depend upon. In many fields of scientific

inquiry, when faced with a new phenomenon, linear models are often explored first both because of

their simplicity and because of their role as elementary building blocks for more complicated mod-

els. We will attempt to do same in our situation. Besides linearity, we will – somewhat implicitly

– assume that the parameter space is isotropic, i.e. the pseudo-energy amount does not depend on

the orientation of subsets in C in the parameter space. Later on, both of these basic assumption –

linearity and isotropy – can be relaxed and more general models can be obtained.

As has been mentioned earlier, in the model adapted here, incomplete (free-response and mixed)

questions are to be understood as auxiliary constructions, while complete (multiple-choice) ques-

tions have a clear meaning. For a free-response question C ⊂ Ω, the difficulty function G(Ω, C, P )

can be interpreted as conditional difficulty of any complete question C containing the subset C

given that the random outcome ω is in C. For example, if the subset C1 represents apple, C2 – pear

and C3 - peach so that C1 ∪ C2 ∪ C3 = Ω, then G(Ω, C1, P ) can be interpreted as the difficulty of

the question “Is it an apple, a pear, or a peach?”, or, equivalently “What kind of fruit is it?” (since
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the source knows that the possible types are apple, pear and peach), provided that an apple is shown

to the source.

One reasonable and almost obvious requirement that can be imposed on the question difficulty

function G(Ω,C, P ) is that of certainty, i.e. the difficulty of a question should vanish if there is

no new knowledge to acquire given the original state of it. Formally speaking, G(Ω,C, P ) = 0

whenever P (Cj) = 1 for some value of the index j. One can say that in this case the question is

already answered at the time of its formulation. These are questions of the kind “Is this red apple

red, green or yellow?” for complete (multiple-choice) questions or “What color is this red apple?”

for incomplete (free-response) questions. Thus we obtain

Postulate Q1 (Certainty). Suppose C = {C1, . . . , Cr} and P (Cj) = 1 for some value of j.

Then G(Ω,C, P ) = 0.

Note that Postulate Q1 implies neither linearity nor isotropy and should be included even if

these two basic assumptions are relaxed.

The second postulate we propose is of the same universal variety. It simply requires that the

question difficulty function be continuous in all its arguments (which are yet to be determined).

Postulate Q2 (Continuity). The function G(Ω,C, P ) is continuous in all its arguments.

Again, it seems to be reasonable to keep Postulate Q2 even if more general models are desired.

The next postulate states that, for questions that have both free-response and multiple-choice

components, i.e. for questions that are incomplete but consist of several subsets, the difficulty is

additive: the overall difficulty of the question is the sum of the difficulty of the free-response part and

the difficulty of the multiple-choice part given the free-response part has been answered perfectly.

Formally, we obtain the following.
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Postulate Q3 (Mixed question decomposition). Let C = {C1, . . . , Cr} be such that Ĉ =

∪r
j=1Cj ̸= Ω. Then

G(Ω,C, P ) = G(Ω, Ĉ, P ) +G(Ĉ,C, PĈ).

This postulate describes the difficulty of questions of the sort “What kind of fruit is it and is

it red, green or yellow?”. It states that the difficulty of the overall question is additive: it is equal

to the sum of difficulties of two questions: “What fruit is it?” and “Is this apple red, green or

yellow?” assuming the correct answer to the first question was “Apple”. This postulate may likely

be changed or relaxed when more general models are considered.

The next postulate states the mean value property of incomplete questions: the difficulty of the

question C ∪C′ obtained by taking the union of two incomplete non-overlapping partitions C and

C′ is equal to the arithmetic mean value of the difficulties of the constituents questions with respect

to the original measure P .

Postulate Q4 (Mean value). Let C and C′ be two incomplete questions such that Ĉ ∩ Ĉ ′ = ∅.

Then

G(Ω,C ∪C′, P ) =
P (Ĉ)G(Ω,C, P ) + P (Ĉ ′)G(Ω,C′, P )

P (Ĉ ∪ Ĉ ′)
.

This postulate can be interpreted as follows. Let C and C′ each consist of a single subset:

C = {C} and C′ = {C ′} for C ⊂ Ω, C ′ ⊂ Ω. Assume also that C ∪ C ′ = Ω, so that {C,C ′} is a

complete question. Then the statement of Postulate Q4 would read

G(Ω, {C,C ′}, P ) = P (C)G(Ω, C, P ) + P (C ′)G(Ω, C ′, P ), (2.3)

which is consistent with the interpretation of the difficulty G(Ω, C, P ) of a free-response question
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as difficulty of a multiple-choice question containing C as one of possible answers given that C

is true (that is conditioned on ω ∈ C). For instance, let C represent an apple and C ′ a pear and

assume these are the only two possible types of fruit. Then expression (2.3) states that the difficulty

of the question “What kind of fruit is it?” (which, given the structure of Ω and the measure P is

equivalent to the question “Is it an apple or a pear?”) is equal to the difficulty of the same question

in case an apple is shown times the probability that an apple can be shown plus the same expression

for the pear. Thus G(Ω, {C,C ′}, P ) is the expected value of the multiple-choice question difficulty

where the expectation is taken over possible correct answers. From this point of view, Postulate Q4

sounds rather natural and generic. However, the real meaning of Postulate Q4 is in that it states that

the conditional difficulties are independent of the number and measures of other options (subsets).

Postulate Q4 assigns the same conditional difficulty G(Ω, C, P ) to the subset C ⊂ Ω regardless of

the complete partition it is a member of. For instance, if C ⊂ Ω represents an apple then, in the case

the source is shown an apple, the difficulty of the question “Is it an apple or not?” would be the

same as that of “What kind of a fruit is it?” even if the number of possible choices (types of fruit)

is large. It is easy to see that this, while not unreasonable, still is a rather strong assumption which

may not be true for realistic information sources. Postulate Q4 can be thought of as an expression

of linearity of the difficulty function and it can be fully expected that it will be relaxed or modified

in more general models.

To state the next postulate we need to introduce a new concept. We say that the parameter space

Ω is homogeneous if the question difficulty function depends only on its subset measures for any

question C in Ω: G(Ω,C, P ) = f(P (C)) where P (C) stands for the vector (P (C1), . . . , P (Cr)).

More generally, we say that a subset D ⊆ Ω is homogeneous if G(D,C, PD) = f(PD(C)) as
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long as Ĉ ⊆ D. In particular, any atom (minimal set) of the sigma-algebra F is homogeneous.

Postulate 5 then states that a free-response question can be posed in stages without changing its

overall difficulty as long as all the intermediate questions lie inside a homogeneous subset of the

parameter space.

Postulate Q5 (Homogeneous free-response sequentiality). Let D ⊂ Ω be a homogeneous subset

of the parameter space and let C be a question such that Ĉ ⊂ D. Then

G(Ω,C, P ) = G(Ω, D, P ) +G(D,C, PD).

To get a little more “feel” for this postulate think of a question asking to identify a certain animal

species. The gradual approach to such a question would involve asking intermediate questions about

the class the animal belongs to, order, suborder, superfamily, family, and, finally, the species itself.

In case the original question is of “harder than average” variety it would be easier to answer the

question in stages compared to answering it right away. On the other hand, if the original question

is an easy one (easier than other similar questions) it can be easier to answer it without resorting

to the intermediate “guiding” questions. A good example of the latter would be a question about

a domestic cat that an average person would be able to answer easily and correctly whereas the

“guiding” questions about class, order etc. would likely present some difficulty. Respectively, if all

such questions are equally hard (for the same measure) then it would make sense to believe that the

intermediate “guiding” questions would not change the difficulty of the original question just like

the postulate states.

Finally, it certainly makes sense to require that if D ⊂ Ω is homogeneous and C ⊂ D then

f(PD(C)) = G(Ω, C, PD) should be a decreasing function of its argument PD(C). Indeed, a
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free-response question about something “rare” should be more difficult. We thus obtain Postulate 6.

Postulate Q6 (Homogeneous free-response monotonicity). Suppose D ⊂ Ω is homogeneous

and C ⊂ D. Then f(PD(C)) = G(Ω, C, PD) is a decreasing function of its argument PD(C).

In order to get still more insight into the proposed set of postulates for the question difficulty

function consider the following alternative postulate.

Postulate Q3′ (Multiple-choice sequentiality). Let C = {C1, . . . , Cr} be a complete question

and let C̃ be its refinement. Then

G(Ω, C̃, P ) = G(Ω,C, P ) +
r∑

j=1

P (Cj)G(Cj , C̃Cj , PCj ).

Postulate Q3′ states that if a multiple-choice question is made more detailed the difficulty of

the resulting question can be obtained as a sum of the difficulty of the original question and the

average (with respect to the measure P ) of difficulties of conditional detalizations. For instance if

the original question was “Is it an apple or a pear?” and the detalization sounds like “Is it an apple

or a pear and is its color red, green or yellow?” then Postulate Q3′ says that the difficulty of the

detailed question is equal to the difficulty of the original question plus the average of difficulties

of questions “Is this apple red, green or yellow?” and the question “Is this pear red, green or

yellow?”. This postulate may seem to be somewhat more reasonable and grounded in experience

compared to, for instance, the Mean value postulate. It turns out though that Postulate Q3′ is implied

by Postulate Q3 and Postulate Q4 as the following lemma shows.

Lemma 2.1 Suppose Postulate Q3 and Postulate Q4 hold. Then Postulate Q3′ holds as well.
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Proof: Let C̃ be a refinement of C = {C1, . . . , Cr}. Then we can write

G(Ω, C̃, P )
(a)
=

r∑
j=1

P (Cj)G(Ω, C̃Cj , P )

(b)
=

r∑
j=1

P (Cj)(G(Ω, Cj , P ) +G(Cj , C̃Cj , PCj ))

=

r∑
j=1

P (Cj)G(Ω, Cj , P ) +

r∑
j=1

P (Cj)G(Cj , C̃Cj , PCj )

(c)
= G(Ω,C, P ) +

r∑
j=1

P (Cj)G(Cj , C̃Cj , PCj ),

where (a) follows from the Postulate Q4 since C = ∪r
j=1C̃Cj , (b) follows from Postulate Q3 and

(c) follows from Postulate Q4.

Thus we see that Postulates Q3 and Q4 can be regarded as a somewhat stronger version of the

Multiple-choice sequentiality property expressed by Postulate Q3′.

If we now demand that Postulates Q1 through Q6 hold for the question difficulty function

G(Ω,C, P ) the question is what form this function can possibly take. The answer is given in

the following theorem.

Theorem 2.1 Let the function G(Ω,C, P ) where C = {C1, . . . , Cr} satisfy Postulates Q1 through

Q6. Then it has the form

G(Ω,C, P ) =

∑r
j=1 u(Cj)P (Cj) log

1
P (Cj)∑r

j=1 P (Cj)
,

where u(Cj) =

∫
Cj

u(ω) dP (ω)

P (Cj)
and u: Ω → R is an integrable nonnegative function on the parame-

ter space Ω.
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Proof: We can assume, without loss of generality, that there exists a (complete) partition D =

{D1, . . . , DN} of Ω into homogeneous subsets Dj , j = 1, . . . , N .

Let D ⊂ Ω be a homogeneous subset of the parameter space and let C ⊂ D be a (free-

response) question lying inside of D. Furthermore, let C ′ ⊂ C be another question inside of C.

Then, according to Postulate Q5,

G(Ω, C, P ) = G(Ω, D, P ) +G(D,C, PD), (2.4)

and, since C is homogeneous as well,

G(D,C ′, PD) = G(D,C, PD) +G(C,C ′, PC). (2.5)

Using the form of G(·) for homogeneous subsets, we obtain from (2.5)

f(PD(C
′)) = f(PD(C)) + f(PD(C

′)/PD(C)),

from which it follows, using standard additivity arguments, monotonicity and continuity of the func-

tion f(·) (which follow from Postulates Q6 and Q2, respectively) that f(x) = −c log x where c > 0

is a constant (see [52] for details). Since the constant c may depend on the particular homogeneous

subset D we can denote it by u(D) and obtain that

G(D,C, PD) = −u(D) logPD(C), (2.6)

for any C ⊆ D whenever D is homogeneous.
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Substituting (2.6) into (2.4) we can obtain

G(Ω, C, P ) = G(Ω, D, P ) + f(P (C)/P (D)) = G(Ω, D, P )− u(D) log
P (C)

P (D)
,

or, equivalently,

G(Ω, C, P )−G(Ω, D, P ) = −u(D) logP (C)− u(D) logP (D), (2.7)

where C is an arbitrary subset of D. Then it follows from (2.7) and continuity of the function G

(Postulate Q1) that

G(Ω, C, P ) = −u(D) logP (C) + v(D), (2.8)

for any C ⊆ D whenever D is a homogeneous subset of Ω. Here v(D) is an arbitrary function

of D. Setting P (C) = 1 in (2.8) and making use of Postulate Q1, we obtain that v(D) ≡ 0 and

therefore

G(Ω, C, P ) = −u(D) logP (C). (2.9)

Now let D = {D1, . . . , DN} be a complete partition of Ω into homogeneous subsets Dj ,

j = 1, . . . , N . Let C ⊂ Ω be a free-response question. Then C = ∪N
j=1C ∩ Dj , and since Dj is

homogeneous and C ∩Dj ⊆ Dj , we obtain using (2.9) that

G(Ω, C ∩Dj , P ) = −u(Dj) logP (C ∩Dj). (2.10)
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On the other hand, by Postulate Q3,

G(Ω, C, P ) = G(Ω,DC , P )−G(C,DC , PC), (2.11)

where

G(Ω,DC , P ) = − 1

PC

N∑
j=1

u(Dj)P (C ∩Dj) logP (C ∩Dj), (2.12)

(using the identity C = ∪N
j=1C ∩Dj , expression (2.10) and Postulate Q4), and analogously,

G(C,DC , PC) = −
N∑
j=1

u(Dj)
P (C ∩Dj)

P (C)
log

P (C ∩Dj)

P (C)
, (2.13)

Substituting (2.12) and (2.13) into (2.11) we obtain

G(Ω, C, P ) = −
N∑
j=1

P (C ∩Dj)

P (C)
u(Dj) logP (C). (2.14)

We can rewrite (2.14) as

G(Ω, C, P ) = −u(C)P (C) logP (C), (2.15)

where

u(C) ≡
N∑
j=1

P (C ∩Dj)u(Dj)

P (C)
(2.16)

can be thought of as the definition of function u: F → R for inhomogeneous subsets of Ω. If we

define the function u(ω) on Ω by

u(ω) =
N∑
j=1

u(Dj)IDj (ω),
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where ID(ω) is the indicator function of a subset D ⊆ Ω, then the expression (2.16) can be written

as

u(C) =

∫
C u(ω)dP (ω)

P (C)
. (2.17)

Finally, if C = {C1, . . . , Cr} is an arbitrary question, we can use (2.15) and Postulate Q4 to obtain

G(Ω,C, P ) =
−
∑r

j=1 u(Cj)P (Cj) logP (Cj)∑r
j=1 P (Cj)

,

where the “weights” u(Cj) of the subsets Cj are given by (2.17).

Theorem 2.1 establishes the general form of the question difficulty function if isotropy and

linearity conditions are imposed. It appears that the Postulate Q4 (Mean value) is the most restricting

one of all. It is also the one, as mentioned above, that imposes the linearity constraint on the question

difficulty function. The result depends on the measure P and and integrable function u on the

parameter space Ω that can be thought of as an attribute of the parameter space. Note that while the

measure is extensive, i.e. the measure of a union of two disjoint subsets of Ω is the sum of individual

measures (P (C ∪ C ′) = P (C) + P (C ′) if C ∩ C ′ = ∅), the function u represents an intensive

quantity in that it averages for a union of two disjoint subsets (u(C ∪ C ′) = P (C)u(C)+P (C′)u(C′)
P (C)+P (C′) ).

One can say, loosely speaking, that while measure is similar to volume, u is similar to temperature

if physics analogies are to be used. In fact, Appendix A describes some insightful parallels between

question difficulty on one hand and thermal energy (heat) on the other. These parallels suggest that

the function u(·) can be thought of as temperature-like quantity that is allowed to be different at

different points of the parameter space. In the following, we refer to the function u(ω) as intensity

or pseudo-temperature. For the same reason, as mentioned earlier in the paper, it is convenient to
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think of question difficulty as the amount of pseudo-energy associated with the question.

It is also convenient to introduce the entropy of question C as

H(Ω,C, P ) =

∑r
j=1 P (Cj) log

1
P (Cj)∑r

j=1 P (Cj)
, (2.18)

which differs from the pseudo-energy (difficulty) in that it does not involve the pseudo-temperature

u(·). It is easy to see that, for any complete question C = {C1, . . . , Cr}, the expression (2.18) for

question entropy coincides with Shannon entropy of the probability distribution P (C) =

(P (C1), . . . , P (Cr)) generated by partition C and measure P on Ω. Moreover, for any complete

question C, the pseudo-energy G(Ω,C, P ) is equal to the weighted entropy (studied in [26]) of the

same distribution P (C) with the corresponding weights given by the subset pseudo-temperature

values u(Cj), j = 1, . . . , r.

It is also easy to see that for a free-response question C ⊂ Ω, the relationship between pseudo-

energy and entropy is simply

G(Ω, C, P ) = u(C)H(Ω, C, P ),

that is identical to the relationship that exists between thermal energy (heat) and entropy in thermo-

dynamics for reversible processes.

A remark on units of pseudo-energy and pseudo-temperature seems to be in order. It is clear,

since the expression for question difficulty is linear in u(·), multiplication of pseudo-temperature

function u(·) by any (positive) overall constant would multiply the difficulty of any question by

the same constant. A particular choice of this constant corresponds to the choice of units in which
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pseudo-temperature and pseudo-energy is measured. If just a single information source is consid-

ered this choice seems to be largely arbitrary. It appears to be convenient to adapt the convention in

which the average pseudo-temperature of the parameter space Ω is equal to 1, i.e. to set the overall

scale of u(·) by demanding that
∫
Ω u(ω)dP (ω) = 1. If two or more information sources need to be

compared a different convention turns out to be useful. This issue is discussed further in Chapter 4

where information source models are considered.

2.4 Relationships Between Questions

In this section, we assume that all questions are complete (multiple-choice). If C′ and C′′ are

two arbitrary (complete) questions, the expression
∑

C′∈C′ P (C ′)G(C ′,C′′
C′ , PC′) will be denoted

G(Ω,C′′
C′ , P ) and called the conditional difficulty of C′′. Using this notation, the sequentiality

property expressed by Postulate Q3′ can be rewritten as

G(Ω, C̃, P ) = G(Ω,C, P ) +G(Ω, C̃C, P ), (2.19)

where C̃ is an arbitrary refinement of C.

If C′ and C′′ are two arbitrary (complete) questions and C = C′ ∩ C′′ then obviously C is a

refinement of both C′ and C′′. One can then write the sequentiality property (2.19) as

G(Ω,C, P ) = G(Ω,C′, P ) +G(Ω,CC′ , P ). (2.20)

But it is easy to see that the partition induced by C = C′ ∩ C′′ on any set C ′ in C′ is exactly the

same as the partition induced on that set by C′′. Therefore, the term G(Ω,CC′ , P ) in (2.20) can
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be equivalently written as G(Ω,C′′
C′ , P ) and we arrive at the chain rule for the question difficulty

which we formulate as a lemma.

Lemma 2.2 If C′ and C′′ are two arbitrary complete questions and P is a measure on Ω then

G(Ω,C′ ∩C′′, P ) = G(Ω,C′, P ) +G(Ω,C′′
C′ , P ).

Again, let C′ and C′′ be two (complete) questions on Ω and let C = C′ ∩C′′ be the resulting

combined question. Then the pseudo-energy overlap J(Ω, (C′;C′′), P ) between C′ and C′′ can

be defined as the difference between the sum of difficulties of C′ and C′′ and that of the combined

question C′ ∩C′′:

J(Ω, (C′;C′′), P ) = G(Ω,C′, P ) +G(Ω,C′′, P )−G(Ω,C′ ∩C′′, P ) (2.21)

The definition (2.21) can be illustrated by a Venn diagram (see Fig. 2.1). Note that J(Ω, (C′;C′′), P )

is symmetric with respect to C′ and C′′.
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′′, P )

G(Ω,C′, P )

Figure 2.1: Venn diagram for pseudo-energy overlap.

One can make use of the sequentiality property of pseudo-energy to rewrite expression for the
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pseudo-energy overlap as follows.

J(Ω, (C′;C′′), P ) = G(Ω,C′, P ) +G(Ω,C′′, P )−G(Ω, (C′,C′′), P )

= G(Ω,C′, P ) +G(Ω,C′′, P )−G(Ω,C′′, P )−G(Ω,C′
C′′ , P )

= G(Ω,C′, P )−G(Ω,C′
C′′ , P ).

We formulate this result as a lemma.

Lemma 2.3 If C′ and C′′ are two arbitrary questions and P is a measure on Ω then the pseudo-

energy overlap J(Ω, (C′;C′′), P ) can be found as

J(Ω, (C′;C′′), P ) = G(Ω,C′, P )−G(Ω,C′
C′′ , P ).

Clearly, due to symmetry, the expression for the pseudo-energy overlap stated in Lemma 2.3

can be equivalently written as J(Ω, (C′;C′′), P ) = G(Ω,C′′, P )−G(Ω,C′′
C′ , P ).

If an expression for the pseudo-energy overlap as a function of the measure P and the pseudo-

temperature function u(ω) is desired the definition (2.21) together with Theorem 2.1 can be used to

obtain

J(Ω, (C′;C′′), P ) =

r′∑
i=1

r′′∑
j=1

u(C ′
i ∩ C ′′

j )P (C ′
i ∩ C ′′

j ) log
P (C ′

i ∩ C ′′
j )

P (C ′
i)P (C ′′

j )
. (2.22)

We will be interested in exploring relationships between different questions: given two distinct

questions, we would like to know to what degree they are similar to each other. More specifically,

if a perfect answer to one question is available, how the difficulty of the other question is affected.
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To answer this question, let C′ and C′′ be two arbitrary complete questions on Ω and let V ∗(C′)

be a perfect answer to C′. We would like to find an expression for the conditional difficulty of C′′

given V ∗(C′). Clearly, since a reception of value s′j of V (C′) updates the measure P to PC′
j
, the

difficulty of C′′ given V (C ′) = s′j is equal to

G(Ω,C′′, PC′
j
) = G(C ′

j ,C
′′
C′

j
, PC′

j
), (2.23)

since subsets of zero measure do not contribute to the difficulty function. Therefore the overall

(expected) difficulty G(Ω,C′′, V ∗(C′)) of question C′′ given a perfect answer V ∗(C′) to C′ can

be written as

G(Ω,C′′, V ∗(C′)) =

r′∑
j=1

Pr(V ∗(C′) = sj)G(Ω,C′′, PC′
j
)

(a)
=

r′∑
j=1

P (C ′
j)G(C ′

j ,C
′′
C′

j
, PC′

j
) = G(Ω,C′′

C′ , P )

(b)
= G(Ω,C′′, P )− J(Ω, (C′;C′′), P ),

(2.24)

where (a) follows from (2.23) and the consistency condition (2.1) – which implies that

Pr(V ∗(C′) = sj) = P (Cj); (b) follows from Lemma 2.3.

We see from (2.24) that the conditional difficulty of C′′ can be represented as a difference of

the standard (unconditional) difficulty and the pseudo-energy overlap J(Ω, (C′;C′′), P ). Thus the

latter provides a measure of reduction of difficulty of a question that is due to a perfect knowledge of

an answer to another question. Such a measure can naturally be termed relative depth of an answer

V (C′) (which in general may not be perfect) with respect to question C′′. We can formulate the

result just obtained as a lemma.
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Lemma 2.4 The relative depth of a perfect answer V ∗(C′) to question C′ with respect to question

C′′ is equal to the pseudo-energy overlap between questions C′ and C′′.

The result of Lemma 2.4 has a clear intuitive interpretation: If two distinct questions are close,

i.e. “almost about the same thing” then knowing a (perfect) answer to one of them nearly answers

the other one – reduces the difficulty of it to a small value compared to the initial difficulty. The

pseudo-energy overlap quantifies the notion of closeness for two arbitrary questions.

2.5 Examples

We consider an example with a finite parameter space first. Let Ω consist of 8 elements, correspond-

ing to green, yellow and red apples (denoted GA, Y A and RA, respectively), green, yellow and red

pears (denoted GPr, Y Pr and RPr), and yellow and red peaches (denoted Y Pc and RPc). Let all

elements be equiprobable so that P (·) = 1
8 for all ω ∈ Ω. The function u(ω) describes the relative

difficulty of respective free-response questions. Let u(GA) = u(GPr) = 1 reflecting the observa-

tion that the green (cold) color is easier to tell from the both yellow and red (warm) colors on one

hand, and an apple and a pear are also easy to distinguish from each other because of a different

overall shape on the other hand. (Recall that there is no green peach that could be possibly confused

with a green apple.) Let u(Y Pr) = u(RPr) = 1.5 reflecting the observation that yellow and red

pears can be possibly confused with each other but not with anything else because of either their

warm color (compared to green pears) or their distinct shape (compared to red or yellow apples or

peaches). Finally, let u(Y A) = u(RA) = u(Y Pc) = u(RPc) = 2 as these four combinations

appear to be the hardest to distinguish from each other as they all possess a warm color and round

shape. Normalizing the values of u(·) so that
∫
Ω u(ω)dP (ω) = 1 one obtains u(GA) = u(GPr) =
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8
13 , u(Y Pr) = u(RPr) = 12

13 and u(Y A) = u(RA) = u(Y Pc) = u(RPc) = 16
13 .

The difficulties of free-response questions corresponding to individual elements of Ω can be

found as follows: G(Ω, GA, P ) = G(Ω, GPr, P ) = 8
13 · log 8 = 24

13 , G(Ω, Y Pr, P ) =

G(Ω, RPr, P ) = 12
13 · log 8 = 36

13 and G(Ω, Y A, P ) = G(Ω, RA, P ) = G(Ω, Y Pc, P ) =

G(Ω, RPc, P ) = 16
13 · log 8 = 48

13 . The difficulty of the exhaustive multiple choice question (that

asks to determine the type and color of the fruit presented to the source) can be found as an expec-

tation of the difficulties of all these free-response questions. Denoting the corresponding (finest)

partition of Ω by Cf we obtain

G(Ω,Cf , P ) =
∑
ω∈Ω

P (ω)G(Ω, ω, P ) = 3.

Now let us consider difficulties of other multiple-choice questions. Let first of such questions be

“Is the fruit green or not?”. Let Cg = {GA,GPr} ⊂ Ω be the subset consisting of all green fruit

(apples and pears) and let Cg = Ω \ Cg be the subset containing fruit of all other colors (red and

yellow). The values u(·) for the sets in this partition are u(Cg) =
8
13 and u(Cg) =

1
3 ·

12
13+

2
3 ·

16
13 = 44

39 .

The measures are P (Cg) =
1
4 and P (Cg) =

3
4 . Thus the difficulty of the question “Is the fruit green

or not?” can be found as

G(Ω, {Cg, Cg}, P ) = u(Cg)P (Cg) log
1

P (Cg)
+ u(Cg)P (Cg) log

1

P (Cg)
= 0.66

Consider another question with subset measures (and thus entropy) equal to those of {Cg, Cg}.

Let this question be “Is the fruit a peach or not?”. The corresponding partition is {CPc, CPc}

where CPc = {Y Pc,RPc} and CPc = Ω \ CPc. The values of function u(·) on these subsets are
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u(CPc) =
16
13 and u(CPc) =

1
3 · 8

13 + 1
3 · 12

13 + 1
3 · 16

13 = 12
13 . The measures are P (CPc) =

1
4 and

P (CPc) =
3
4 . The difficulty of the question {CPc, CPc} is

G(Ω, {CPc, CPc}, P ) = u(CPc)P (CPc) log
1

P (CPc)
+ u(CPc)P (CPc) log

1

P (CPc)
= 0.90

We see that this question is somewhat more difficult than the question on whether the fruit is

green. The main reason for this difference is that to answer the question on whether the fruit is a

peach one might need to have to distinguish a peach from an apple of similar (warm) color which is

relatively difficult while answering the question on whether the fruit is green does not involve any

“hard” decisions since the color itself is distinct.

Consider now the question “What color is the given fruit?” on one hand and “What type is

the given fruit?” on the other. The former question can be represented as the partition Cc =

{Cg, Cy, Cr} where Cg = {GA,GPr}, Cy = {Y A, Y Pr, Y Pc} and Cr = {RA,RPr,RPc}; the

latter question can be identified with the partition Ct = {CA, CPr, CPc} where CA = {GA, Y A,

RA}, CPr = {GPr, Y Pr,RPr} and CPc = {Y Pc,RPc}. The values of u(·) on these subsets

are u(Cg) =
8
13 , u(Cy) =

1
3 ·

12
13 +

2
3 ·

16
13 = 44

39 , u(Cr) = u(Cy) =
44
39 ; u(CA) =

1
3 ·

8
13 +

2
3 ·

16
13 = 40

39 ,

u(CPr) = 1
3 · 8

13 + 2
3 · 12

13 = 32
39 , u(CPc) = 16

13 . The measures are P (Cg) = 1
4 , P (Cy) = 3

8 ,

P (Cr) =
3
8 ; P (CA) = P (CPr) =

3
8 , P (CPc) =

1
4 . Thus the difficulties of these two questions are

G(Ω,Cc, P ) = u(Cg)P (Cg) log
1

P (Cg)
+ u(Cy)P (Cy) log

1

P (Cy)

+ u(Cr)P (Cr) log
1

P (Cr)
=

11

13
log

8

3
+

2

13
log 4 = 1.51,
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and

G(Ω,Ct, P ) = u(CA)P (CA) log
1

P (CA)
+ u(CPr)P (CPr) log

1

P (CPr)

+ u(CPc)P (CPc) log
1

P (CPc)
=

9

13
log

8

3
+

4

13
log 4 = 1.60,

respectively.

The question about color turns out to be slightly easier than that about type. Qualitatively, the

main reason for this difference is that the relatively rare event (that the fruit is green and that it is

a peach, respectively) that gives a larger contribution to the difficulty because of the log 1
P (·) factor

has smaller average value of pseudo-temperature u(·) in the case of the question about the fruit

color.

The pseudo-energy overlap between the “color” and “type” questions can be calculated using

the expression (2.22):

J(Ω, (Cc;Ct), P ) =
6

13
log

4

3
+

7

13
log

8

9
= 0.100,

indicating that while a perfect knowledge of the fruit color helps answering the question about its

type, the reduction of difficulty of the “type” question due to the knowledge of color is relatively

mild so the question about the fruit type remains almost as hard as it was before the color became

known.

For an example with infinite parameter space, consider Ω = [0, 1]2 with uniform measure P

(see Fig. 2.2 for an illustration). Let u(ω) = 3
2(ω

2
1+ω2

2) where ω1 and ω2 are coordinates on Ω. Let

us consider three different questions: Ci = {Ci, Ci}, where C1 = {ω : ω1 ∈ [12 , 1], ω2 ∈ [12 , 1]},
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C

C

C 1

2

3

(1,0)

(0,1) (1,1)

(0,0)

Figure 2.2: The parameter space Ω = [0, 1]2 and subsets Ci, i = 1, 2, 3.

C2 = {ω : ω1 ∈ [0, 12 ], ω2 ∈ [0, 12 ]}, C3 = {ω : ω1 ∈ [0, 12 ], ω2 ∈ [12 , 1]}. It is easy to see that

P (Ci) =
1
4 for i = 1, 2, 3.

For question C1, we have u(C1) =
3
2

∫ 1
1
2
dω1

∫ 1
1
2
dω2(ω

2
1 + ω2

2) =
7
4 . Then, using the normal-

ization condition u(C1)P (C1) + u(C1)P (C1) = 1, we can obtain u(C1) =
3
4 , which allows us to

compute the difficulty:

G(Ω, {C1, C1}, P ) = u(C1)P (C1) log
1

P (C1)
+ u(C1)P (C1) log

1

P (C1)

=
7

16
log 4 +

9

16
log

4

3
= 1.108.

For question C2, we obtain u(C2) =
3
2

∫ 1
2
0 dω1

∫ 1
2
0 dω2(ω

2
1 + ω2

2) =
1
4 , and, making use of the

normalization condition, u(C2) =
5
4 . The difficulty function value for this question becomes

G(Ω, {C2, C2}, P ) = u(C2)P (C2) log
1

P (C2)
+ u(C2)P (C2) log

1

P (C2)
= log

4

3
= 0.514.

Finally, for question C3, we have u(C3) = 3
2

∫ 1
2
0 dω1

∫ 1
1
2
dω2(ω

2
1 + ω2

2) = 1, and, obviously,
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u(C3) = 1. The difficulty function is

G(Ω, {C3, C3}, P ) = u(C3)P (C3) log
1

P (C3)
+ u(C3)P (C3) log

1

P (C3)

=
3

4
log

4

3
+

1

4
log 4 = 0.811.

We see that, among these three questions C1 turns out to be the most difficult while difficulty

of C2 is the smallest of the three. The reason is that C1 includes a small measure (rare) set in

the region of high values of pseudo-temperature u(ω). On the other hand, the rare subset in C2 is

located in the region of small values of u(ω). Question C3 is naturally placed between these two

extremes: its rare subset is located in the region of moderate values of the field u(ω) so that the

difficulty weight of this subset is equal to the average for the whole parameter space.

The overlaps between these questions can easily be computed using expression (2.22).

J(Ω, (C1;C2), P ) =
1

2
log

4

3
+

1

2
log

8

9
= 0.123,

J(Ω, (C1;C3), P ) =
11

16
log

4

3
+

5

16
log

8

9
= 0.232,

and

J(Ω, (C2;C3), P ) =
5

16
log

4

3
+

11

16
log

8

9
= 0.013,

showing that the most difficult questions – C1 and C3 – also exhibit the largest overlap which

agrees with the common sense derived notion that knowledge of a perfect answer to a more difficult

question can give more help in answering another question.

It is interesting to consider the limit in which the measure of the rare set approaches zero. For
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this purpose, let C1 = {ω : ω1 ∈ [1 − a, 1], ω2 ∈ [1 − a, 1]}, C2 = {ω : ω1 ∈ [0, a], ω2 ∈ [0, a]}

and C3 = {ω : ω1 ∈ [0, a], ω2 ∈ [1 − a, 1]} and let Ci = {Ci, Ci} for i = 1, 2, 3. Let u(ω) =

n+1
2 (ωn

1 + ωn
2 ) where n ≥ 2 is an integer and ω ∈ Ω = [0, 1]2. Then repeating the calculations for

the previously considered example, taking the limit a → ∞ and retaining only terms of the lowest

order in a we obtain

G(Ω, {C1, C1}, P ) ≃ (n+ 1)a2 log
1

a
+ log e · a2 ≃ (n+ 1)a2 log

1

a
,

G(Ω, {C2, C2}, P ) ≃ log e · a2,

and

G(Ω, {C3, C3}, P ) ≃ 2a2 log
1

a
+ log e · a2 ≃ 2a2 log

1

a
.

Again, we can see that the question C1 ends up being the most difficult one, with C2 being the least

difficult. It’s interesting to note that, to leading order in a, the difficulty of C1 and C3 behaves as

a2 log 1
a (with only a numerical coefficient being different), while the difficulty of C2 behaves as

a2. A related observation is that, in this limit, the difficulty of both C1 and C3 is dominated by the

rare subset while that of C2 is dominated by the larger subset with measure approaching 1 since the

contribution of the rare subset is diminished by the low value of pseudo-temperature u(·) over that

subset.
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2.6 Conclusion

This chapter initiated development of a quantitative general framework for the description of the

process of information extraction from information sources capable of providing answers to given

questions. The main motivation for such a framework is the need for optimal decision making

in situations characterized with incomplete information and availability of additional information

sources. The framework is expected to be especially useful when the knowledge that the informa-

tion sources possess is of a relatively “loose” variety, i.e. cannot be readily represented in a form

admitting direct use in a mathematical formulation. A typical example of such a source would be a

human expert who can express a preference for one of the two regions in the parameter space but

would find it difficult to produce an accurate probability distribution over the parameter space.

The three main components of the proposed framework are questions, answers and information

sources. The present chapter’s subject is questions and, in particular, question difficulty functions.

The purpose of the latter is measuring the degree of accuracy the given source can achieve on

various questions. The idea is that a source would answer easy questions well but its answers’

accuracy would decrease with increasing difficulty of questions. The overall form of the question

difficulty function is in general determined by the constraints the difficulty function is required to

satisfy. The latter constraints depend on the overall properties imposed on the difficulty function.

Here, we assumed the question difficulty to be linear and isotropic on the parameter space. The

resulting form was then derived from a system of postulates expressing the desired properties along

with more general consistency requirements.

It turns out that the resulting question difficulty function depends on a single scalar quantity u(·)

defined on the parameter space and can be interpreted – using parallels with thermodynamics – as an
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energy-like quantity while the function u(·) takes on the role of temperature that is allowed to take

different values at different points of the parameter space. It is interesting to contrast the resulting

difficulty function to the corresponding Shannon entropy that is a purely informational quantity

measuring the minimum expected number of bits required to communicate a (perfect) answer to the

question under consideration. Using parallels with thermodynamics, while the former is similar to

thermal energy, the latter can be likened to entropy. It is also worth noting that the linear isotropic

model – in thermodynamics terms – can be interpreted as that of ideal gas. We expect that other

more involved (anisotropic, for instance) versions of question difficulty function would still allow

useful interpretations in thermodynamics terms with the difficulty function being similar to thermal

energy associated with an appropriate thermodynamical system.
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Chapter 3

Answer Depth

3.1 Introduction

The difficulty of a decision maker’s questions was considered in the previous chapter. Here, infor-

mation sources’ answers are investigated. In particular, the concept of answer depth is introduced

that quantifies the amount of suitably defined effort required to provide an answer of a given ac-

curacy. The overall form of the answer depth function is derived by demanding that it satisfy a

particular set of postulates expressing, besides some reasonable consistency conditions, the linear-

ity and isotropy properties. The latter properties justify calling the resulting information exchange

model the “ideal gas model” making use of potentially fruitful parallels with classical thermody-

namics.
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3.1.1 Answers

Given a question C, a source is capable of providing an answer. Since any information in this

context can be represented by some measure on P , it is reasonable to think of an answer to question

C as a message the reception of which implies certain changes in the initial measure P . In an

extreme case, a message can change the original measure to a measure supported at a single element

of Ω – this describes a complete resolution of the initial uncertainty and to the best possible answer

to the corresponding (exhaustive) question.

Thus, given a question C, it makes sense to define an answer V (C) to it as a message that can

take values in the set {s1, s2, . . . , sm}, where sk, k = 1, . . . ,m is some symbolic string the length

of which does not play an important role in the present context. Then, the conditional measure

P V (C)=sk ≡ P k is in general different from the original measure P following a reception of the

value sk of message V (C). Additionally, care has to be taken to ensure that the answer V (C) is

indeed an answer to the specific question C and not some other question. To achieve this we can

require that a reception of V (C) leave the relative likelihood of the elements inside every subset in

C unchanged. Therefore probability is only “redistributed” between the members of C. This way,

an answer can’t provide more information than what was requested in the question. We arrive at the

following definition.

Definition: An answer to the question C = {C1, . . . , Cr} is a message V (C) that takes values

in the set {s1, s2, . . . , sm} and such that P k
Cj

= PCj for all k = 1, . . .m and all j = 1, . . . , r.

Following this definition, it is straightforward to show that for V (C) to be an answer to a

multiple-choice question C, it is necessary and sufficient for the updated measures P k, k = 1, . . . ,m,
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to take the form

P k =

r∑
j=1

pkjPCj , (3.1)

where pkj , k = 1, . . . ,m, j = 1, . . . , r are nonnegative coefficients such that
∑r

j=1 pkj = 1 for

k = 1, . . . ,m.

For incomplete (free-response and mixed) questions, the expression (3.1) gets slightly modified

to account for the set Ĉ = Ω \ Ĉ and takes the form

P k =

r∑
j=1

pkjPCj + p̄kPĈ
, (3.2)

where
∑r

j=1 pkj + p̄k = 1. For pure free-response questions, r = 1.

While the function G(Ω,C, P ) measures difficulty of questions, it would be desirable to de-

velop a measure of the amount of difficulty in C that is resolved by the answer V (C). As men-

tioned earlier, the question difficulty can be interpreted as the amount of pseudo-energy associated

with the question. Therefore, it is natural to think that a perfect answer would contain an amount

of pseudo-energy equal to the amount in the question it answers. Any other answer would contain

somewhat less pseudo-energy, as long as it is an answer to C and not some other – possibly more

difficult – question.

In the following we denote the amount of pseudo-energy contained in the answer V (C) – the

depth of V (C) – by Y (Ω,C, P, V (C)) to emphasize its dependence on Ω and the initial measure

P .
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3.2 Answer Depth Function

In this section, our goal is to derive the general form of the answer depth function by imposing

certain plausible requirements it has to satisfy. These requirements that we call Postulates are similar

to those stated in Postulates Q1 through Q6 for questions (see Chapter 2).

Information in V (C) is conveyed by modifying the original measure P and it modifies P dif-

ferently for each value of the message V (C). Therefore, the depth function for the message V (C)

should be the weighted average of the conditional values of the depth:

Y (Ω,C, P, V (C)) =

m∑
k=1

Pr(V (C) = sk)Y (Ω,C, P, P k), (3.3)

where P k is the measure modified by the reception of V (C) = sk and Y (Ω,C, P, P k) is the

conditional depth that depends on the modified measure P k.

We now impose reasonable requirements on conditional depth functions Y (Ω,C, P, P k) which

are formulated as postulates as before.

The first such requirement is that the conditional depth should vanish if the measure is not mod-

ified at all, i.e. if P k = P . On the other hand, if the modified measure assigns larger probabilities

to all subsets in C (which can happen only for incomplete – free-response and mixed – questions)

then the conditional depth should be strictly positive. This is the content of Postulate A1.

Postulate A1 (Correct direction). Let C = {C1, . . . , Cr} be any question. Then

Y (Ω,C, P, P ) = 0 if P k(Cj) = P (Cj) for all j = 1, . . . r and Y (Ω,C, P, P k) > 0 if P k(Cj) >

P (Cj) for all j = 1, . . . r.

The second part of the postulate says that, for a free-response question for instance, if upon
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reception of the value sk of V (C) the set Ck has a higher probability than before, then the value sk

has a positive amount of pseudo-energy. For example, if the original question was “What kind of

fruit is it?” with “Pear” being the correct answer then in case the answer sounds like “It looks a lot

like a pear” or “It’s either a pear or an apple”, such an answer is assigned positive pseudo-energy

as it moves “in the right direction” towards the correct answer.

The next postulate parallels Postulate Q2 for questions.

Postulate A2 (Continuity). The function Y (Ω,C, P, P k) is continuous in all parameters it may

depend upon.

The next postulate follows from the notion that V (C) is an answer to precisely the question

C and therefore the depth of V (C) cannot exceed the difficulty of C. The property is easiest to

formulate for free-response questions C ⊂ Ω.

Postulate A3 (Free-response complete answer). Let C be a free-response question and suppose

P k(C) = 1. Then

Y (Ω, C, P, P k) = G(Ω, C, P ).

This postulate expresses a simple desideratum that an exhaustive correct answer to a question

should convey exactly the amount of information requested by the question. For instance, if the

question is “What fruit is it?” with “Apple” as a correct answer then the answer “Apple” should

carry all the information the question was asking for.

The next three postulates parallel Postulates Q3 through Q5.

Postulate A4 (Mixed answer decomposition) Let C = {C1, . . . , Cr} be a mixed question. Then

Y (Ω,C, P, P k) = Y (Ω, Ĉ, P, P k) + Y (Ĉ,C, PĈ , P
k
Ĉ
).
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This postulate states that the amount of pseudo-energy contained in a particular answer (value

of V (C) to a mixed question C) can be represented as a sum of two components: the pseudo-energy

of the same answer to the (free-response) question Ĉ and that of the same answer assuming the free-

response part has been answered correctly. For example, if the question C is “What kind of fruit is

it and is it red, green or yellow?” then Postulate A4 says that the depth of any particular answer to

C is equal to the sum of the depth of the same answer to the question “What kind of fruit is it?”

and the depth of the same answer to the question “Is this apple red, green o yellow?” (assuming

the fruit in question was indeed an apple).

Postulate A5 (Mean value). Let C and C′ be two incomplete questions such that Ĉ ∩ Ĉ ′ = ∅.

Then

Y (Ω,C ∪C′, P, P k) =
P k(Ĉ)Y (Ω,C, P, P k) + P k(Ĉ ′)Y (Ω,C′, P, P k)

P k(Ĉ ∪ Ĉ ′)
.

This postulate expresses the linearity property of the answer depth function, similarly to the

analogous postulate for question difficulty. We expect that it will be modified (or dropped) when

more general models of information exchange are considered.

Just as it was done for questions, we say that the subset D of Ω is homogeneous if the conditional

depth function depends only on measures of partition C whenever Ĉ ⊆ D, i.e. Y (D,C, PD, P
k
D) =

f(PD(C), P k
D(C)). In particular, any atom (minimal set) of F is homogeneous. The next postulate

concerns answers to free-response questions located inside homogeneous regions of the parameter

space Ω.

Postulate A6 (Homogeneous free-response sequentiality). Let D ⊆ Ω be a homogeneous subset
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of the parameter space and let C be a free-response question such that C ⊆ D. Then

Y (Ω, C, P, P k) = Y (Ω, D, P, P k) + Y (D,C, PD, P
k
D).

This postulate states that, whether a free-response question located inside a homogeneous region

of the parameter space is answered in stages or right away, the overall effort required of the answerer

(to achieve certain fixed accuracy) is the same. For example, let the question be “What species does

this animal belong to?”. Instead of answering this question right away the source could answer a

question about the order first, then suborder, then superfamily, family and only then about the actual

species. In general, it is clear that the effort required to answer the original question right away

could be more (i.e. if the animal is exotic) or less (i.e. if the animal is common like a domestic cat)

than that required to answer the same question in stages to the same accuracy. Postulate A6 sates

that the effort would be the same if all questions involved are located inside a homogeneous region.

We expect that this postulate would be retained (perhaps in a modified form) when more general

information exchange models are considered.

We can now state the main result about the possible shape of answer conditional depth function

Y (Ω,C, P, P k). It is formulated as a theorem.

Theorem 3.1 Let Postulates A1 through A6 hold. Then the conditional answer depth function

Y (Ω,C, P, P k) has the following form

Y (Ω,C, P, P k) =

∑r
j=1 u(Cj)P

k(Cj) log
Pk(Cj)
P (Cj)∑r

j=1 P
k(Cj)

,

where u(Cj) =

∫
Cj

u(ω)dPk(ω)

Pk(Cj)
and the integrable function u: Ω → R is the same that is used in
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characterizing the question difficulty function G(·).

Proof: The proof is similar to that of main theorem in sections 2.3. We can assume without loss

of generality that there exists a complete partition D = {D1, . . . , DN} of Ω such that every subset

in D is homogeneous.

Let D be a homogeneous subset of Ω and let C ′ ⊂ C ⊂ D be two subsets of D. Then, by

Postulate A6,

Y (Ω, C, P, P k) = Y (Ω, D, P, P k) + Y (D,C, PD, P
k
D), (3.4)

and

Y (D,C ′, PD, P
k
D) = Y (D,C, PD, P

k
D) + Y (C,C ′, PC , P

k
C). (3.5)

Since D is homogeneous it follows from (3.5) that

f(PD(C
′), P k

D(C
′)) = f(PD(C), P k

D(C)) + f(PD(C
′)/PD(C), P k

D(C
′)/P k

D(C)).

Then standard arguments using Postulates A1 and A2 (see [52] for details) lead to the conclusion

that the function f(·) has the form

f(p, q) = c log
q

p
,

where c is a positive constant. Going back to the function Y we obtain

Y (D,C, PD, P
k
D) = u′(D) log

P k
D(C)

PD(C)
, (3.6)

where u′(D) > 0 is a constant that can possibly depend on the particular homogeneous subset D.
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Substituting (3.6) into (3.4) we arrive at

Y (Ω, C, P, P k)− Y (Ω, D, P, P k) = Y (D,C, PD, P
k
D) = u′(D) log

P k
D(C)

PD(C)

= u′(D) log
P k(C)

P (C)
− u′(D) log

P k(D)

P (D)
,

from which it follows (using continuity of Y and the fact that the subset C ⊂ D is arbitrary) that

Y (Ω, C, P, P k) = u′(D) log
P k(C)

P (C)
+ v′(D),

for any C ⊂ D whenever D is homogeneous. Here v′(D) is another constant that can possibly

depend on the homogeneous subset D. We can now use Postulate A3 to conclude that u′(D) =

u(D) for all homogeneous sets D and that v(D′) ≡ 0. This leads to the following expression for

the conditional depth function of a free-response answer lying inside a homogeneous subset:

Y (Ω, C, P, P k) = u(D) log
P k(C)

P (C)
. (3.7)

Now let D = {D1, . . . , DN} be a (complete) partition of Ω such that every subset in D is

homogeneous. Let C ⊂ Ω be a free-response question. Using Postulate A5, we can write

Y (Ω,DC , P, P
k) =

∑N
j=1 u(Dj)P

k(C ∩Dj) log
Pk(C∩Dj)
P (C∩Dj)

P k(C)
, (3.8)

and

Y (C,DC , PC , P
k
C) =

N∑
j=1

u(Dj)
P k(C ∩Dj)

P k(C)
log

P k(C ∩Dj)/P
k(C)

P (C ∩Dj)/P (C)
. (3.9)
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An application of Postulate A4 now yields

Y (Ω, C, P, P k) = Y (Ω,DC , P, P
k)− Y (C,DC , PC , P

k
C)

=
N∑
j=1

u(Dj)
P k(C ∩Dj)

P k(C)
log

P k(C)

P (C)
= u(C) log

P k(C)

P (C)
,

where

u(C) ≡
N∑
j=1

P k(C ∩Dj)u(Dj)

P k(C)
=

∫
C u(ω)dP k(ω)

P k(C)
. (3.10)

Here, the function u: Ω → R is defined as

u(ω) =
N∑
j=1

u(Dj)IDj (ω),

and therefore is the same exact function that was used to describe the question difficulty function G.

Finally, let C = {C1, . . . , Cr} be an arbitrary question on Ω. An application of Postulate A5

yields

Y (Ω,C, P, P k) =

∑r
j=1 u(Cj)P

k(Cj) log
Pk(Cj)
P (Cj)∑r

j=1 P
k(Cj)

, (3.11)

where u(Cj) is given by (3.10).

Having found the expression for conditional depth function we can now use it to obtain the

unconditional (expected) answer depth Y (Ω,C, P, V (C)). We formulate the result as a corollary.

Corollary 3.1 The answer depth function Y (Ω,C, P, V (C)) has the form

Y (Ω,C, P, V (C)) =

m∑
k=1

Pr(V (C) = sk)

∑r
j=1 u(Cj)P

k(Cj) log
Pk(Cj)
P (Cj)∑r

j=1 P
k(Cj)

,
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where P k ≡ P V (C)=sk is the measure on Ω conditioned on reception of V (C) = sk and u(Cj) is

as defined in Theorem 3.1.

In the following, we will often use the notation Pr(V (C) = sk) ≡ vk for the sake of brevity.

3.3 Relationship Between Difficulty and Depth

Theorems 2.1 and 3.1 (together with Corollary 3.1) establish the overall form that question difficulty

and answer depth, respectively, can take. The conditional depth function Y (Ω,C, P, P k) depends,

besides the original measure P , on the updated measure P k ≡ P V (C)=sk .

3.3.1 Multiple-choice Questions

For multiple-choice (complete) questions, it makes sense to assume that the original measure P is

a “valid” one in the sense that it does not change on average upon reception of the answer message

V (C). More formally speaking, for any question C = {C1, . . . , Cr},

P =
m∑
k=1

Pr(V (C) = sk)P
k, (3.12)

The expression (3.12) can be thought of as a condition of consistency of the answer message V (C)

with the original measure P and can be used for determining probabilities vk ≡ Pr(V (C) = sk) of

various values of the answer message V (C).
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Note that, taking into account the form (3.1) of the updated measures P k the consistency con-

dition (3.12) can be written as

m∑
k=1

vkpkj = P (Cj), j = 1, . . . , r. (3.13)

Let us assume the consistency condition (3.12) holds and consider the answer depth function

given by Corollary 3.1. Since for a multiple-choice question
∑r

j=1 P
k(Cj) = 1, we can write

Y (Ω,C, P, V (C)) =
m∑
k=1

vk

r∑
j=1

u(Cj)P
k(Cj) log

P k(Cj)

P (Cj)

=
m∑
k=1

vk

r∑
j=1

u(Cj)P
k(Cj) logP

k(Cj)−
m∑
k=1

vk

r∑
j=1

u(Cj)P
k(Cj) logP (Cj)

(a)
=

m∑
k=1

vk

r∑
j=1

u(Cj)P
k(Cj) logP

k(Cj) +G(Ω,C, P )
(b)

≤ G(Ω,C, P ),

where (a) follows from (3.12) and Theorem 2.1, and (b) follows from the inequality logP k(Cj) ≤ 0.

It is also clear that the inequality (b) becomes an equality if and only if, for every value sk of the

answer message, either P k(Cj) = 0 or logP k(Cj) = 0 for every value of the index j. For the latter

to be true it is necessary and sufficient that, for all values of k,

P k(Cj) = δf(k),j , (3.14)

where f : {1, 2, . . . ,m} → {1, 2, . . . , r} is a map from the set of possible values of index k to that

of index j. Substituting (3.14) into (3.12) we obtain

P (Cj) =
m∑
k=1

vkδf(k),j =
∑

k:f(k)=j

vk. (3.15)
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It is easy to see that without loss of generality one can define an equivalent message V ′(C) such

that V ′(C) = sj whenever V (C) = sk such that f(k) = j. Then (3.15) becomes simply

P (Cj) = Pr(V ′(C) = sj). (3.16)

A perfect answer to a multiple-choice question is defined C = {C1, . . . , Cr} as the message

V (C) = {s1, . . . , sr} such that P k(Cj) = δk,j , and, as a consequence, Pr(V (C) = sj) = P (Cj).

Then we can state the result obtained above as a lemma.

Lemma 3.1 Let C be a multiple-choice question and assume the condition (3.12) for any answer

V (C) holds. Then Y (Ω,C, P, V (C)) ≤ G(Ω,C, P ) with the inequality being tight if and only if

the answer V (C) is perfect (up to trivial equivalences).

3.3.2 Free-response Questions

Let C ⊂ Ω be a free-response question. We can write the depth function for a corresponding answer

V (C) as follows.

Y (Ω, C, P, V (C)) =
m∑
k=1

Pr(V (C) = sk)u(C) log
P k(C)

P (C)

= u(C)

m∑
k=1

Pr(V (C) = sk) logP
k(C)− u(C) logP (C)

m∑
k=1

Pr(V (C) = sk)

= u(C)

m∑
k=1

Pr(V (C) = sk) logP
k(C) +G(Ω, C, P )

(a)

≤ G(Ω, C, P ),

where (a) follows from that the inequality logP k(C) ≤ 0. It is straightforward to see that for the

inequality (a) to become an equality it is necessary and sufficient that P k(C) = 1 for all values k of
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the answer message. Clearly, in that case, we can define an equivalent message V ′(C) that takes a

single value s so that P s(C) = 1.

A perfect answer V (C) to a free-response question C is defined to be a message taking a single

value s such that P s(C) = 1.

We can again state the result obtained above as a lemma.

Lemma 3.2 Let C be a free-response question and V (C) an answer to it. Then Y (Ω, C, P, V (C)) ≤

G(Ω, C, P ) with the inequality being tight if and only if the answer V (C) is perfect (up to trivial

equivalences).

3.3.3 Mixed Questions

Finally, let C = {C1, . . . , Cr} where Ĉ = ∪r
i=jCj ⊂ Ω be a mixed question. We define a perfect

answer V (C) to a mixed question as a message taking values in the set {s1, . . . , sr} such that

P j(Cj) = 1 for j = 1, . . . , r.

For any answer to a mixed question we demand that the following consistency with the original

knowledge condition holds

m∑
k=1

Pr(V (C) = sk)P
k(Cj) = γP (Cj), (3.17)

where

γ =
P s(Ĉ)

P (Ĉ)
=

∑r
j=1 P

k(Cj)∑r
j=1 P (Cj)

, (3.18)

for all values of k characterizes the free-response component of V (C). Then it is straightforward to

prove a result analogous to that of Lemmas 3.1 and 3.2.
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Lemma 3.3 If C is a mixed question and V (C) is an answer to it such that condition (3.17) holds.

Then Y (Ω,C, P, V (C)) ≤ G(Ω,C, P ) with the inequality becoming tight if and only if the answer

V (C) is perfect.

Proof: We can write the depth function for V (C) as follows.

Y (Ω,C, P, V (C)) =

m∑
k=1

vk

∑r
j=1 u(Cj)P

k(Cj) log
Pk(Cj)
P (Cj)∑r

j=1 P
k(Cj)

(a)
=

∑m
k=1

∑r
j=1 vku(Cj)P

k(Cj) log
Pk(Cj)
P (Cj)

γP (Ĉ)

=
1

γP (Ĉ)

m∑
k=1

r∑
j=1

vku(Cj)P
k(Cj) logP

k(Cj)

− 1

γP (Ĉ)

m∑
k=1

r∑
j=1

vku(Cj)P
k(Cj) logP (Cj)

(b)
=

1

γP (Ĉ)

m∑
k=1

r∑
j=1

vku(Cj)P
k(Cj) logP

k(Cj)−
1

P (Ĉ)

r∑
j=1

u(Cj)P (Cj) logP (Cj)

=
1

γP (Ĉ)

m∑
k=1

r∑
j=1

vku(Cj)P
k(Cj) logP

k(Cj) +G(Ω,C, P )
(c)

≤ G(Ω,C, P ),

where (a) follows from (3.18), (b) follows from (3.17) and (c) follows from the inequality

logP k(Cj) ≤ 0. Using the same arguments as those employed for the proof of Lemma 3.1 we

arrive at the statement of this lemma.

3.4 Quasi-perfect Answers to Complete Questions

Let the question C = {C1, . . . , Cr} be complete (multiple-choice) and let V (C) be an answer to

C. If V (C) is perfect, its depth Y (Ω,C, P, V (C)) is equal to the difficulty G(Ω,C, P ) of C as

Lemma 3.1 states. Here we would like to consider some simple classes of imperfect answers. To
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make the form of an imperfect answer more specific let us assume such an answer to resemble a

perfect one in that the number of possible values it can take is equal to r and each message sk,

k = 1, . . . , r expresses a degree of preference towards the subset Ck. Let ek be the error probability

associated with sk, i.e. ek = P (C̄k), where C̄k = Ω\Ck. Let us also make the additional assumption

that the error associated with sk is “proportionally distributed” between the sets Cj j ̸= k, i.e.

P k(Cj) =
ekP (Cj)

P (C̄k)
=

ekP (Cj)
1−P (Ck)

. Obviously, both of these assumptions can be stated in the following

way

P k = (1− ek)PCk
+
∑
j ̸=k

ekP (Cj)

1− P (Ck)
PCj ,

implying that the coefficients pkj in (3.1) have the form

pkj =

(
1− ek

1− P (Ck)

)
δk,j +

ekP (Cj)

1− P (Ck)
. (3.19)

To further simplify the analysis and provide more concise description of errors associated with

imperfect answers, we make a further assumption: that the error probability ek constitutes the same

fraction of P (C̄k) for all values of k, i.e. ek = α(1 − P (Ck)), k = 1, . . . , r, where 0 ≤ α ≤ 1.

Under this assumption, the error associated with the answer V (C) that we will denote by Vα(C) is

fully described by a single parameter α. The coefficients pkj in (3.19) become

pkj = (1− α)δk,j + αP (Cj), (3.20)

and the updated measure P k becomes simply

P k = αP + (1− α)PCk
. (3.21)

63



3.4. QUASI-PERFECT ANSWERS TO COMPLETE QUESTIONS

We see that for α = 0 the measure P k turns into the conditional measure PCk
making the answer

perfect, and for α = 1 each measure P k becomes the original measure P thus rendering the answer

Vα(C) empty, i.e. possessing vanishing depth.

Substituting (3.21) into the general expression for the answer depth and using the fact that in

this case vk = P (Ck), k = 1, . . . , r, we can obtain

Y (Ω,C, P, Vα(C)) =
r∑

k=1

u(Ck)P (Ck)(1− α+ αP (Ck)) log
1− α+ αP (Ck)

P (Ck)

+ α logα

r∑
k=1

u(Ck)P (Ck)(1− P (Ck)),

(3.22)

It is easy to see that the expression (3.22) becomes G(Ω,C, P ) for α = 0 and vanishes for α = 1.

In the following we will call answers characterized by updated measures of the form (3.21)

and depth functions given by (3.22) the quasi-perfect answers. Their advantage is that they allow

to smoothly interpolate between perfect and empty answers using just a single parameter α taking

values on the interval [0, 1].

Substituting (3.20) into the consistency condition (3.13) it is easy to see that for quasi-perfect

answers

vj = P (Cj), (3.23)

for j = 1, . . . , r, regardless of the value of error probability α.
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3.5 Relationships Between Questions

It was also shown in section 2.4 that the pseudo-energy overlap can be interpreted as the reduction

of difficulty of question C′′ due to the knowledge of a perfect answer V ∗(C′) to question C′,

G(Ω,C′′, V ∗(C′)) = G(Ω,C′′, P )− J(Ω, (C′;C′′), P ), (3.24)

where the conditional difficulty G(Ω,C′′, V ∗(C′)) is defined (for any answer V ∗(C′) to question

C′) as

G(Ω,C′′, V ∗(C′)) =
m′∑
k=1

Pr(V ∗(C′) = sk)G(Ω,C′′, P ′k). (3.25)

It would be interesting to find out how the relation (3.24) generalizes for the case of an arbitrary

answer to question C′. Clearly, since a reception of value s′k of V (C ′) updates the measure P to

P ′k, the difficulty of C′′ given V (C ′) = s′k is equal to

G(Ω,C′′, P ′k) = −
r′′∑
j=1

u(C ′′
j )P

′k(C ′′
j ) logP

′k(C ′′
j )

= −
r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) logP

′k(C ′′
j ),

and therefore the overall (expected) difficulty G(Ω,C′′, V (C′)) of question C′′ given an answer
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V (C′) to C′ can be written – denoting Pr(V (C′) = s′k) by v′k – as

G(Ω,C′′, V (C′)) ≡
m′∑
k=1

v′kG(Ω,C′′, P ′k)

= −
m′∑
k=1

v′k

r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) logP

′k(C ′′
j )

=

m′∑
k=1

v′k

 r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) logP

′k(C ′′
j )

+

r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) logP (C ′′

j )−
r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) logP (C ′′

j )


= −

m′∑
k=1

v′k

r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) log

P ′k(C ′′
j )

P (C ′′
j )

−
r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) logP (C ′′

j )

= G(Ω,C′′, P )−
m′∑
k=1

v′k

r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) log

P ′k(C ′′
j )

P (C ′′
j )

.

(3.26)

We see from (3.26) that the conditional difficulty of C′′ can be represented as a difference of

the standard (unconditional) difficulty and another expression that can be appropriately denoted

Y (Ω,C′′, P, V (C′)) and called the relative depth of the answer V (C′) with respect to question C′′:

G(Ω,C′′, V (C′)) = G(Ω,C′′, P )− Y (Ω,C′′, P, V (C′)), (3.27)

where the relative depth Y (Ω,C′′, P, V (C′)) is given by

Y (Ω,C′′, P, V (C′)) =

m′∑
k=1

v′k

r′′∑
j=1

r′∑
l=1

u(C ′
l ∩ C ′′

j )P
′k(C ′

l ∩ C ′′
j ) log

P ′k(C ′′
j )

P (C ′′
j )

. (3.28)
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Using the expression (3.1) for the updated measures P ′k we find that

P ′k(C ′
l ∩ C ′′

j ) = pkl
P (C ′

l ∩ C ′′
j )

P (C ′
l)

(3.29)

and

P ′k(C ′′
j ) =

r′∑
l=1

pkl
P (C ′

l ∩ C ′′
j )

P (C ′
l)

, (3.30)

and, substituting (3.29) and (3.30) into (3.28) we obtain for the relative depth:

Y (Ω,C′′, P, V (C′)) =
m′∑
k=1

v′k

r′∑
l=1

r′′∑
j=1

u(C ′
l ∩ C ′′

j )p
′
kl ·

P (C ′
l ∩ C ′′

j )

P (C ′
l)

log
r′∑
i=1

p′ki ·
P (C ′

i ∩ C ′′
j )

P (C ′
i) · P (C ′′

j )
.

(3.31)

We can summarize the result just obtained as a lemma.

Lemma 3.4 Let C′ and C′′ be two arbitrary complete questions on Ω and let V (C′) be an answer

to C′. Then the conditional difficulty of C′′ given the answer V (C′) can be found as

G(Ω,C′′, V (C′)) = G(Ω,C′′, P )− Y (Ω,C′′, P, V (C′)),

where the relative depth of V (C′) is given by the expression (3.31).

Suppose now that V ∗(C′) is a perfect answer to C′ which implies that m′ = r′ and p′kl =

δk,l. Substituting this into (3.31) and performing the sum over k while making use of the answer

consistency condition (3.13) we obtain

Y (Ω,C′′, P, V ∗(C′)) =

r′∑
l=1

r′′∑
j=1

u(C ′
l ∩ C ′′

j )P (C ′
l ∩ C ′′

j ) log
P (C ′

l ∩ C ′′
j )

P (C ′
l)P (C ′′

j )
, (3.32)
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which coincides with the expression (2.22) for the pseudo-energy overlap between questions C′ and

C′′. We thus recover the result (3.24).

Now let Vα(C
′) be a quasi-perfect answer to question C′ characterized by error probability α.

Substituting expressions (3.20) and (3.23) into (3.31) we obtain, after some straightforward algebra

Y (Ω,C′′, P, Vα(C
′)) = (1− α)

r′∑
l=1

r′′∑
j=1

u(C ′
l ∩ C ′′

j )P (C ′
l ∩ C ′′

j ) log

[
(1− α)

P (C ′
l ∩ C ′′

j )

P (C ′
l)P (C ′′

j )
+ α

]

+ α
r′∑
l=1

r′′∑
j=1

u(C ′
l ∩ C ′′

j )P (C ′
l ∩ C ′′

j )
r′∑

k=1

P (C ′
k) log

[
(1− α)

P (C ′
k ∩ C ′′

j )

P (C ′
k)P (C ′′

j )
+ α

]
.

(3.33)

It is easy to see that for α = 0, expression (3.33) reduces to (3.32) which is the overlap between

questions C′ and C′′, and for C′′ coinciding with C′ the relative depth (3.33) becomes the depth

Y (Ω,C′, P, Vα(C
′)) (given by expression (3.22)) of quasi-perfect answer to C′ characterized by

the same value of error probability α. To see that it is sufficient to set C ′′
j = C ′

j (and hence

P (C ′
l ∩ C ′′

j ) = δl,jP (C ′
l)) in (3.33), one must make use of the (obvious) identity

∑
k ̸=j P (C ′

k) =

1− P (C ′
j).

3.6 Examples

Let us revisit the example with a finite parameter space from Chapter 2. The parameter space

Ω consists of 8 elements, corresponding to green, yellow and red apples (denoted GA, Y A and

RA, respectively), green, yellow and red pears (denoted GPr, Y Pr and RPr), and yellow and

red peaches (denoted Y Pc and RPc). The elements are equiprobable so that P (·) = 1
8 for all

ω ∈ Ω. The function u(ω) describes the relative difficulty of respective free-response questions. The

observation that the green (cold) color is easier to distinguish from both the yellow and red (warm)
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colors is reflected in u(GA) = u(GPr) = 1. On the other hand, an apple and a pear are also easy to

distinguish from each other because of a different overall shape. (Recall that there is no green peach

that could possibly be confused with a green apple.) The observation that yellow and red pears can

possibly be confused with each other but not with anything else because of either their warm color

(compared to green pears) or their distinct shape (compared to red or yellow apples or peaches) is

reflected in u(Y Pr) = u(RPr) = 1.5. Finally, u(Y A) = u(RA) = u(Y Pc) = u(RPc) = 2 as

these four combinations appear to be the hardest to distinguish from each other as they all possess

a warm color and round shape. Normalizing the values of u(·) so that
∫
Ω u(ω)dP (ω) = 1 we

obtain u(GA) = u(GPr) = 8
13 , u(Y Pr) = u(RPr) = 12

13 and u(Y A) = u(RA) = u(Y Pc) =

u(RPc) = 16
13 .

Consider, the question “Is the fruit green or not?”. Let Cg = {GA,GPr} ⊂ Ω be the subset

consisting of all green fruit (apples and pears) and let Cg = Ω \ Cg be the subset containing fruit

of all other colors (red and yellow). The partition is Cg = {Cg, Cg}. The values u(·) for the sets

in this partition are u(Cg) =
8
13 and u(Cg) =

1
3 · 12

13 + 2
3 · 16

13 = 44
39 . The measures are P (Cg) =

1
4

and P (Cg) =
3
4 . The second similar question is “Is the fruit a peach or not?”. The corresponding

partition is CPc = {CPc, CPc} where CPc = {Y Pc,RPc} and CPc = Ω \ CPc. The values of

function u(·) on these subsets are u(CPc) = 16
13 and u(CPc) = 1

3 · 8
13 + 1

3 · 12
13 + 1

3 · 16
13 = 12

13 .

The measures are P (CPc) =
1
4 and P (CPc) =

3
4 . Let Vα(Cg) and Vα(CPc) be the corresponding

quasi-perfect answers. The depth functions of these answers can be computed using (3.22) as (see

Fig. 3.1 for an illustration)

Y (Ω,Cg, P, Vα(Cg)) =
2

13

(
1− 3

4
α

)
log(4− 3α) +

11

13

(
1− 1

4
α

)
log

4− α

3
+

15

52
α logα,
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and

Y (Ω,CPc, P, Vα(CPc)) =
4

13

(
1− 3

4
α

)
log(4− 3α) +

9

13

(
1− 1

4
α

)
log

4− α

3
+

21

52
α logα.

Consider the question “What color is the given fruit?” on one hand and “What type is the given

fruit?” on the other. The former question can be represented as the partition Cc = {Cg, Cy, Cr}

where Cg = {GA,GPr}, Cy = {Y A, Y Pr, Y Pc} and Cr = {RA,RPr,RPc}; the latter ques-

tion can be identified with the partition Ct = {CA, CPr, CPc} where CA = {GA, Y A,RA},

CPr = {GPr, Y Pr,RPr} and CPc = {Y Pc,RPc}. The values of u(·) on these subsets are

u(Cg) =
8
13 , u(Cy) =

1
3 · 12

13 + 2
3 · 16

13 = 44
39 , u(Cg) = u(Cy) =

44
39 ; u(CA) =

1
3 · 8

13 + 2
3 · 16

13 = 40
39 ,

u(CPr) = 1
3 · 8

13 + 2
3 · 12

13 = 32
39 , u(CPc) = 16

13 . The measures are P (Cg) = 1
4 , P (Cy) = 3

8 ,

P (Cr) = 3
8 ; P (CA) = P (CPr) = 3

8 , P (CPc) = 1
4 . Let Vα(Cc) and Vα(Ct) be quasi-perfect

answers to questions Cc and Ct. The depth of these answers can be found using the expression

(3.22). The results are (see Fig. 3.1)

Y (Ω,Cc, P, Vα(Cc)) =
2

13

(
1− 3

4
α

)
log(4− 3α) +

11

13

(
1− 5

8
α

)
log

8− 5α

3
+

67

104
α logα,

and

Y (Ω,Ct, P, Vα(Ct)) =
4

13

(
1− 3

4
α

)
log(4− 3α) +

9

13

(
1− 5

8
α

)
log

8− 5α

3
+

69

104
α logα.

Let us consider the second example from section 2.5. The parameter space is Ω = [0, 1]2 ⊂ R2.

Let the pseudo-temperature function be u(ω) = 3
2(ω

2
1 + ω2

2) (so that the hard questions are located

towards the upper-right corner of Ω). Consider the following three subsets of Ω: C1 = {ω : ω1 ∈
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Figure 3.1: Answer depth as function of α for quasi-perfect answers to questions on the finite
parameter space (left) and infinite parameter space (right).

[12 , 1], ω2 ∈ [12 , 1]}, C2 = {ω : ω1 ∈ [0, 12 ], ω2 ∈ [0, 12 ]}, C3 = {ω : ω1 ∈ [0, 12 ], ω2 ∈ [12 , 1]} and

let Ci = {Ci, Ci} for i = 1, 2, 3 be three complete questions on Ω. Let V (Ci) be a quasi-perfect

answer to question Ci, i = 1, 2, 3 characterized by error probability α. We can use the expression

(3.22) to obtain the depth of these answers (see Fig. 3.1 for an illustration).

Y (Ω,C1, P, V (C1)) =
7

16

(
1− 3

4
α

)
log (4− 3α) +

9

16

(
1− 1

4
α

)
log

4− α

3
+

15

32
α logα,

Y (Ω,C2, P, V (C2)) =
1

16

(
1− 3

4
α

)
log (4− 3α) +

15

16

(
1− 1

4
α

)
log

4− α

3
+

9

32
α logα,

and

Y (Ω,C3, P, V (C3)) =
1

4

(
1− 3

4
α

)
log (4− 3α) +

3

4

(
1− 1

4
α1

)
log

4− α

3
+

3

8
α logα.

In all these examples, we see that, as expected, the depths of answers to more difficult questions
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is higher for the same accuracy (value of error probability α). In other words, it takes more effort

on the part of the information source to answer a more difficult question with the same accuracy.

Equivalently, the same amount of effort (measured by pseudo-energy) yields a lower accuracy an-

swer to a more difficult question. We can see from Fig. 3.1 that, for instance, a quasi-perfect answer

of depth equal to 0.4 to the question “Is the fruit green?” has an error probability of around 0.18,

but an equally deep (i.e. of the same depth) answer to the more difficult question “Is the fruit a

peach or not?” has a larger error probability of around 0.24.

Let us turn to relative depth of answers. Consider the above example again. The relative depth

Y (Ω,C′′, P, Vα(C
′)) of a quasi-perfect answer Vα(C

′) with respect to question C′′ can be readily

computed using the expression (3.33). We obtain, for questions C1 and C2,

Y (Ω,C2, P, Vα(C1)) =

(
1

2
− 7

32
α

)
log

(
4

3
(1− α) + α

)
+

(
1

2
+

13

64
α

)
log

(
8

9
(1− α) + α

)
+

1

64
α logα,

Y (Ω,C1, P, Vα(C2)) =

(
1

2
− 1

32
α

)
log

(
4

3
(1− α) + α

)
+

(
1

2
− 5

64
α

)
log

(
8

9
(1− α) + α

)
+

7

64
α logα.

Likewise, for questions C1 and C3, we have

Y (Ω,C3, P, Vα(C1)) =

(
11

16
− 5

16
α

)
log

(
4

3
(1− α) + α

)
+

(
5

16
+

1

4
α

)
log

(
8

9
(1− α) + α

)
+

1

16
α logα,
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and

Y (Ω,C1, P, Vα(C3)) =

(
11

16
− 7

32
α

)
log

(
4

3
(1− α) + α

)
+

(
5

16
+

7

64
α

)
log

(
8

9
(1− α) + α

)
+

7

64
α logα.

Finally, for questions C2 and C3, expression (3.33) yields

Y (Ω,C3, P, Vα(C2)) =

(
5

16
+

1

16
α

)
log

(
4

3
(1− α) + α

)
+

(
11

16
− 1

8
α

)
log

(
8

9
(1− α) + α

)
+

1

16
α logα,

and

(Ω,C2, P, Vα(C3)) =

(
5

16
− 1

32
α

)
log

(
4

3
(1− α) + α

)
+

(
11

16
+

1

64
α

)
log

(
8

9
(1− α) + α

)
+

1

64
α logα.

These relative depth curves are shown in Fig. 3.2. We can see, in particular, that the relative

depth Y (Ω,C′′, P, Vα(C
′)) is not in general symmetric in the two questions unless α = 0 or α = 1.

In the former case the relative depth reduces to the overlap J(Ω, (C′;C′′), P ) which is symmetric

and in the latter case the relative depth simply vanishes. Further, it can be seen from Fig. 3.2 that the

relative depth can in fact be negative meaning that it is possible that the knowledge of an (imperfect)

answer to a question may make another question more difficult. It would be interesting to establish

general conditions under which relative depth is nonnegative. Another useful observation is that if

for a pair of questions C′ and C′′, question C′ is the more difficult one of the two then it appears that
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Figure 3.2: Relative depth of quasi-perfect answers as function of α.

the inequality Y (Ω,C′′, P, Vα(C
′)) > Y (Ω,C′, P, Vα(C

′′)) holds for 0 < α < 1 implying that

a quasi-perfect answer to a more difficult question results in a higher reduction of difficulty of the

other question. It would be of interest to see if this property holds in the general case or exceptions

are possible.

3.7 Conclusion

The subject of the present chapter is answers that the information source can give in response to

questions. In particular, any answer to a question can be assigned the amount of pseudo-energy

that measures the answer depth, i.e. the amount of “work” the source has to do in order to answer

the question to the given accuracy. Clearly, the higher the desired accuracy is the more “work” the
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source would have to do and the higher the answer depth is. Also, if properly defined, it makes

sense that the answer depth has to be bounded by the question difficulty from above reaching that

bound if and only if the answer is fully correct. In this chapter, the overall form of the answer

depth function was established in the way similar to how it was done for the question difficulty

in Chapter 2. Namely, reasonable postulates were formulated that the answer depth function had

to satisfy. The proposed system of postulates expressed the linearity and isotropy properties of

the answer depth function. One can say therefore that the latter is obtained within the “ideal gas

model” that was already used in the previous chapter. It turns out that the resulting depth function is

described, besides appropriate probability measures, by a scalar function on the problem parameter

space that has to be the same pseudo-temperature function describing the corresponding question

difficulty.

In addition to answer depth, the relative depth of an answer to one question with respect to an-

other question was defined that can be used to determine how an answer to one question reduces the

difficulty of a different question. It is expected that the relative depth will become especially useful

when the optimal additional information acquisition process with multiple information sources is

studied in later publications.
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Chapter 4

Information Source Models

4.1 Introduction

The two previous chapters established the first two parts of a quantitative framework for the descrip-

tion of information exchange between the decision maker and information sources: the concepts of

question difficulty and answer depth. This chapter explores the third component of the framework,

i.e. quantitative models of information sources. The concept of a source model is introduced and

several different models are proposed. The source model parameters and the pseudo-temperature

function on the problem parameter space characterizing question difficulty and answer depth in the

overall “ideal gas” information exchange model can be estimated from the observed source perfor-

mance on a set of sample questions. Optimization based methods for such estimation are discussed.
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4.1.1 Information Source

In addition to the knowledge of the probability measure P that embodies the original state of infor-

mation available to the decision maker, an information source is assumed to be capable of answering

questions of the form C discussed above. The answers V (C) modify the original measure P on Ω.

The questions differ from each other in the degree of difficulty that can be measured – under cer-

tain assumptions – by the question difficulty function whose general form is given in Theorem 2.1.

The source’s answers can be characterized by their depth Y (Ω,C, P, V (C)) whose general form

is established in Corollary 3.1. As was mentioned earlier, both the question difficulty and answer

depth functions depend, besides the original and updated measures on Ω, on an integrable pseudo-

temperature function u: Ω → R whose value at a point ω ∈ Ω has the meaning of the “local

difficulty” at that point. Therefore, if the function u(ω) is given then the difficulty of any question

can be computed for any original measure P on Ω. On the other hand, in any real application, the

function u(ω) cannot be known since it is not directly observable. What can be observed is the

information source’s actual performance: the proportion of correct answers. From that, the error

probabilities can be estimated. This means that the function u(ω) has to be estimated from the

knowledge of error probabilities exhibited by the information source in response to some particular

questions. Informally speaking, the error probabilities tell us indirectly what questions are easy and

which are hard for the information source. If we assume that the postulates discussed in Chapters 2

and 3 are valid (that is if the linear isotropic model is adequate) then the function u(ω) can be found

that would reproduce – within estimation error – the observed (estimated) error probabilities. The

estimated function u(ω), in turn, would allow for computation of difficulties of other questions that

have not been given to the source before.
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Let us recall the general assumptions that were made about the information source:

(i) Questions that can be given to the source have different degrees of detalization and difficulty.

(ii) A question’s degree of difficulty is related to the question degree of detalization but in general

does not coincide with it.

(iii) The quality of source’s answers is directly related to the degree of difficulty of the corre-

sponding questions.

(iv) The source has a finite capacity.

(v) The source “tries equally hard” to answer any question it receives. Therefore, the source

answers those questions well (i.e. with low error probabilities) whose difficulty does not

exceed the source’s capacity. As the difficulty exceeds the source’s capacity the quality of its

answers progressively degrades.

Assumptions (i) and (ii) are subsumed by question difficulty postulates: the degree of detaliza-

tion for the question C = {C1, . . . , Cr} can be identified with the number of subsets in the cor-

responding partition (in the “topological” sense) or with the expression −
∑r

j=1 P (Cj) logP (Cj)

(in the “metric” sense) and its difficulty is given by G(Ω,C, P ). The latter is different from the

“metric” degree of detalization by virtue of the presence of function u(ω) and reduces to it for the

case of constant u.

Assumption (iii) implies that the source answers questions in such a way that the quality of

its answers measured by the answer depth function is in direct relation to the question difficulty –

measured by the question difficulty function. More precisely, for the given information source, the

answer depth has to be a function of the corresponding question difficulty. Assumptions (iv) and
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(v) then imply that this function is non-decreasing and is bounded from above. We formalize these

observations by adapting the following main hypothesis.

Hypothesis S1. For the given information source and any question C, the corresponding answer

depth is a function of the question difficulty:

Y (Ω,C, P, V (C)) = h(G(Ω,C, P )),

where h(·) is a non-decreasing function of its argument that’s bounded from above.

The hypothesis S1 essentially states that the question difficulty and answer depth are exhaustive

characterizations of the pseudo-energy content of questions and answers, respectively. If two dif-

ferent questions have the same difficulty, the information source will answer them equally well, i.e.

the depth of answers will be the same.

It is natural to call the particular form of function h(·) the model of the source. In practice, the

overall form of h(·) has to be postulated. Then the values of parameters needed full specification of

h(·) and the function u(ω) can be estimated from the observed performance of the source on sample

questions.

4.2 Possible Source Models

As was mentioned above, the model of the source is described by a non-decreasing function h(·)

where the role of the argument is played by the question difficulty G(·). The function h(·) should

also be bounded from above if one assumes (as we do) that a source has a finite (effective) informa-

tional capacity. Let us now describe some possible models.
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4.2.1 Simple Capacity Model

In this model, the information source is characterized by a single parameter that can be called the

pseudo-energy capacity and denoted by Ys. Under this model, the source can provide perfect an-

swers to questions whose difficulty does not exceed Ys and, for questions with difficulty exceeding

Ys, the error probabilities increase in such a way that the depth of the corresponding answer stays

equal to Ys. Put slightly differently, the information source provides answers whose depth is con-

stant unless the question is too easy for the source in which case the depth of the answer is limited

by the difficulty of the question. Formally speaking, the function h(x) for this model takes the

following form.

h(x) =


x if x ≤ Ys

Ys if x > Ys.

(4.1)

In reality, while one wouldn’t expect a perfect fit of empirical data to (4.1), large deviations could

indicate either inadequacy of the linear isotropic model of question difficulty or that of the capacity

model (4.1) of the information source.

4.2.2 Modified Capacity Models

The main drawback of the simple capacity model described above is that the information source is

postulated to provide perfect answers to questions whose difficulty is below the source’s capacity.

On the other hand, in many situations, it is reasonable to expect that a source will make some error

answering even relatively simple questions. The modified capacity models’ goal is to allow for finite

error probabilities for answers to questions with difficulties below the source capacity. This model

depends on more than one parameter: besides the capacity Ys, there is also a parameter describing
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4.2. POSSIBLE SOURCE MODELS

the approach by the function h(·) of its maximum value Ys. The simplest of such models is the

linear modified capacity model described by

h(x) =


bx if x ≤ Ys

b

Ys if x > Ys
b .

(4.2)

where b ≤ 1 is the second parameter. Under this model, the source makes errors even on questions

with difficulties below the capacity with error probabilities gradually increasing with question dif-

ficulties. Once the question difficulty exceeds the capacity of the source, the corresponding answer

depth stays equal to the capacity Ys.

The linear modified capacity model can be naturally generalized to the polynomial modified

capacity model in which the function h(·) approaches its maximum value according to a polynomial

law. To describe it, let pq(x) = a0 + a1x + . . . + aqx
q be an order q polynomial and let x∗q be the

smallest positive root of the equation pq(x)−Ys = 0. Then the polynomial modified capacity model

has the form

h(x) =


pq(x) if x ≤ x∗q

Ys if x > x∗q .

(4.3)

Demanding that h(0) = 0 and h(x) ≤ x for all x ≥ 0 leads to a0 = 0 and 0 ≤ a1 ≤ 1. For q = 2,

the polynomial modified capacity model (4.3) reduces to the quadratic modified capacity model that

is most conveniently written in the form

h(x) =


bx− γ

Ys
x2 if x ≤ G2

Ys if x > G2,

(4.4)
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where 0 < b ≤ 1 and (assuming γ > 0 so that h(x) is concave) γ ≤ b
4 ; G2 =

b−
√

b2−4γ
2γ Ys. In this

model Ys has the meaning of the source capacity and the coefficients b and γ are pure numbers (i.e.

their numerical values do not depend on the choice of units of pseudo-temperature u(·) and capacity

Ys).

Another simple model that belongs to the class of modified capacity models is the exponential

modified capacity model

h(x) = Ys(1− e−
θ
Ys

x) (4.5)

that depends on two parameters: capacity Ys and 0 < θ ≤ 1 that controls the speed with which

the function h(x) approaches its upper bound Ys. The coefficient θ is a pure number in the sense

described above. One of the advantages of the exponential model (4.5) is that it is described by a

single analytical function that allows the corresponding estimation problem that is discussed in the

next section to avoid binary variables.

4.3 Estimation of Model Parameters and Function u(ω)

First, let us note that both question difficulty and answer depth functions are linear in u(ω) and

therefore multiplying u(ω) by any constant would result in both difficulty and depth being multi-

plied by the same constant without changing any of the coefficients pkj , k = 1, . . . ,m, j = 1, . . . , r

and therefore answer error probabilities. This means that the function u(ω) is really defined up to a

single multiplicative constant the choice of which is equivalent to a choice of units in which u(ω)

(and the difficulty/depth functions) are measured. We use two different conventions that turn out to

be convenient.
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4.3. ESTIMATION OF MODEL PARAMETERS AND FUNCTION U(ω)

• The normalized u(·) convention in which
∫
Ω u(ω)dP (ω) = 1 for every information source.

This convention is convenient because if u(ω) ≡ 1 the difficulty of question C reduces to

Shannon entropy of the distribution P (C) = (P (C1, . . . , P (Cr)).

• The unit source capacity convention in which the units of u(ω) are chosen in such a way that,

for each information source, the capacity is unity: Ys = 1. This convention is especially

convenient for comparing different information sources to each other. Indeed, in this case,

functions u(ω) for any two sources can be directly compared to each other showing clearly

the relative degree of “expertise” of each source in various regions of Ω and also giving a

sense of “absolute” quality of each source.

If the function u(ω) is known, then Theorem 2.1 gives – for the given measure P – the difficulty

of any question C. Then for any answer V (C) to C the knowledge of updated measures P k allows

one to find the depth of V (C). On the other hand, a given source model Y = h(G) lets one predict

the depth of the source’s answer to any question before measures P k can be estimated. Thus in order

to be able to predict the depth of source’s answer to various questions – and hence possibly solve the

problem (1.3) – one needs to know (i) the function u(ω) and (ii) the source model described by the

function h(·). Since these functions cannot be directly measured or observed, the only way to find

these two functions in any realistic application is to estimate them from the source’s performance

on a certain set of sample questions.

Let D = {D1, . . . , DNd
} be a partition of Ω to be used for discretizing the weight function

u(ω): we assume that u(ω) takes a constant value equal to ui on subset Di. Let wi = P (Di) and

let Ni ⊂ {1, . . . , Nd} be the index set of the subsets in D that are immediate neighbors of (i.e. have

a common boundary with) subset Di. We assume that the partition D is sufficiently fine so that any
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partition C used for estimating u(ω) can be considered a coarsening of D.

Further, let C1, . . . ,CK be a set of questions that the source has answered and its answers

have been compared with actual outcomes in Ω. Let us denote by G1, . . . , GK the difficulties of

these questions and let Y1, . . . , YK be the corresponding answer depth values that were computed

using the estimated error probabilities. For the sake of simplicity, we assume that the answers of the

source are quasi-perfect (see (3.20) and (3.21) for the form of coefficients pkj and updated measures

P k) with the corresponding (estimated) error probabilities being equal to α1, . . . , αK , respectively.

Let us denote zi = |Yi − h(Gi)|, i = 1, . . . ,K where the function h(·) is given by the suit-

able information source model. The quantities zi measure the absolute values of deviations of the

empirical data from the chosen source model, vanishing values of all variables zi corresponding to

a perfect fit. In addition to minimizing the sum of the deviations (i.e. maximizing the fit), it makes

sense to demand that the quantities uj , j = 1, . . . , Nd, describe a reasonably smooth function u(ω).

This can be achieved, for instance, by putting an upper bound on the gradient of u(ω) or, equiva-

lently, by putting a corresponding term in the objective function. To make it more precise, let N(D)

be the set of neighbors in the partition D (i.e. N(D) = {(i, j) : j ∈ Ni, i = 1, . . . Nd}) and let U

be the desired upper bound on the difference of two values of u on neighboring sets of partition D.

Then if the capacity model h(·) is postulated, the following formulation of the estimation problem
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for the function u(ω) and the parameters of model h(·) is obtained.

minimize
K∑
i=1

zi + λU

subject to Yi − h(Gi) ≤ zi, i = 1, . . . ,K

h(Gi)− Yi ≤ zi, i = 1, . . . ,K

uj − uk ≤ U, (j, k) ∈ N(D)

uk − uj ≤ U, (j, k) ∈ N(D)

(4.6)

The decision variables in (4.6), besides zi, are uj , j = 1, . . . , Nd and the parameters of function

h(·). The parameter λ controls the trade-off between the objective of maximizing the fit and that of

maximizing smoothness of u(ω) (understood as minimizing the maximum gradient of u(ω)). The

difficulties Gi, i = 1, . . . ,K are expressed via the decision variables as follows

Gi = −
ri∑
j=1

logP (Cj)
∑

{l:Dl⊂Cj}

ulwl. (4.7)

For the values of the depth function for the corresponding answers, let us assume, for simplicity that

the answers are quasi-perfect implying that their errors can be characterized with a single probability

αi, i = 1, . . . ,K. Then the depth Yi can be written as

Yi =

ri∑
j=1

(1− αi + αiP (Cj)) log
1− αi + αiP (Cj)

P (Cj)

∑
{l:Dl⊂Cj}

ulwl

+ αi logαi

ri∑
j=1

P (Cj)

1−
∑

{l:Dl⊂Cj}

ulwl

 .

(4.8)
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Note that in general, (4.6) is a potentially complex nonlinear optimization problem where non-

linearity is introduced by the function h(·). For the case of the simple capacity model the problem

(4.6) can be written as

minimize
K∑
i=1

zi + λU

subject to Yi − Ys ≤ zi +Myi, i = 1, . . . ,K

Ys − Yi ≤ zi +Myi, i = 1, . . . ,K

Gi − Yi ≤ zi +M(1− yi), i = 1, . . . ,K

uj − uk ≤ U, (j, k) ∈ N(D)

uk − uj ≤ U, (j, k) ∈ N(D)

yi ∈ {0, 1}, i = 1, . . . ,K.

(4.9)

In this formulation, M is a large number, yi, i = 1, . . .K are auxiliary binary variables. The main

decision variables in the formulation (4.9) are the values uj , j = 1, . . . , Nd and the capacity value

Ys. Since both (4.7) and (4.8) are linear in the variables ul, the optimization problem (4.9) is mixed-

linear with K binary variables. Therefore, it can at least be solved efficiently for moderate values

K of sample questions used for estimating model parameter Ys and the (discretized) function u(ω).
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The formulation (4.9) can be modified easily from the simple to the modified capacity model.

The resulting formulation is as follows

minimize
K∑
i=1

zi + λU

subject to Yi − Ys ≤ zi +Myi, i = 1, . . . ,K

Ys − Yi ≤ zi +Myi, i = 1, . . . ,K

bGi − Yi ≤ zi +M(1− yi), i = 1, . . . ,K

uj − uk ≤ U, (j, k) ∈ N(D)

uk − uj ≤ U, (j, k) ∈ N(D)

yi ∈ {0, 1}, i = 1, . . . ,K.

(4.10)

The additional decision variable in (4.10) is b ≤ 1. The values Gi and Yi, i = 1, . . .K are given

by expressions (4.7) and (4.8), respectively. The formulation (4.10), just like (4.9), is a mixed-

linear optimization problem with K binary variables and thus can at least be solved efficiently for

moderate values of the number K of sample questions.

The formulation for the quadratic modified capacity model (4.4) can be easily obtained from

(4.10) by replacing the constraints bGi−Yi ≤ zi+M(1−yi), i = 1, . . . ,K with bGi+cG2
i −Yi ≤

zi + M(1 − yi), i = 1, . . . ,K. Recalling that Gi is a linear function of the decision variables ul,

we see that the resulting problem is that of quadratic optimization with K binary variables that

enter the formulation in a linear fashion. Even though such problems can’t in general be solved as

efficiently as mixed-linear optimization problems of equal size, they can still be solved to optimality

for moderate values of parameters K and Nd.
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As mentioned earlier, the exponential capacity model has the advantage over other models dis-

cussed here in that it obviates the need for binary variables even though it becomes severely nonlin-

ear:

minimize
K∑
i=1

zi + λU

subject to Yi − Ys(1− e−θGi) ≤ zi, i = 1, . . . ,K

Ys(1− e−θGi)− Yi ≤ zi, i = 1, . . . ,K

uj − uk ≤ U, (j, k) ∈ N(D)

uk − uj ≤ U, (j, k) ∈ N(D).

(4.11)

Besides the quantities zi, i = 1, . . . ,K, ul, l = 1, . . . , Nd and the source capacity Ys, another

decision variable is the parameter 0 < θ ≤ 1
Ys

.

It is worth noting that in estimation of the pseudo-temperature function and model parameters

the error probabilities are themselves estimated values. That introduces obvious imprecision in esti-

mation of pseudo-temperature and source model parameters. In fact, one can think of the procedure

described in this section as similar to point estimation of parameters in classical statistics. For more

information about the pseudo-temperature function, confidence intervals would be needed. The

width of such confidence intervals would obviously depend on the precision with which error prob-

abilities are known and therefore on the sample size used in error probability estimation. Practically,

such confidence intervals may turn out to be sufficiently wide to effectively invalidate precise esti-

mation of the shape of pseudo-temperature function. The practical approach instead could be that

of the hypothesis testing type: a null (default) hypothesis about the shape of the pseudo-temperature

function would be stated (i.e. that the pseudo-temperature is constant or linear) and then tested using

standard statistical methods.
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Just like in probability estimation, expert opinion can be used for estimating pseudo-temperature

function. Since pseudo-temperature admits a simple intuitive interpretation (as local “degree of

difficulty”) experts should find it easy enough to give useful estimates of pseudo-temperature. If, in

addition, some data about observed source performance is available, it can be used in conjunction

with expert estimates, for instance, by using these estimates as a null hypothesis and using observed

data for the purpose of testing it.

4.4 Examples

To illustrate the process of estimation of the pseudo-temperature u(ω) and source model parameters,

consider an example in which Ω = [0, 1]2 ⊂ R2, and the measure P is uniform continuous on Ω.

Consider the set of sample (complete) questions illustrated in Fig. 4.1. Our goal is, given the error

parameters αi for quasi-perfect answer Vαi(Ci) to question Ci, i = 1, . . . , 10, estimate the function

u(ω) and the parameter(s) of the chosen information source model.

We adapt the modified linear source model and use formulation (4.10) to estimate u(ω), and

parameters Ys and b of the model. We do this for different values of error probabilities.
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Figure 4.1: Sample questions.
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4.4. EXAMPLES

First consider data shown in Table 4.1. In this and following tables, the first column contains

the index i of question Ci from Fig. 4.1, the second column shows the corresponding error prob-

ability αi, and the last two columns contain the question difficulty G(Ω,Ci, P ) and answer depth

Y (Ω,Ci, P, Vαi(Ci)), respectively, obtained from the estimated values of u(ω) and parameters of

the source model. In the lower part of Table 4.1, the resulting value of the objective of problem

(4.10) along with the estimated values of parameters Ys and b are shown.

The error probability values shown in Table 4.1 result in a perfect fit (z = 0) with the esti-

mated pseudo-temperature function u(ω) (shown in Fig. 4.2). We can see that the resulting pseudo-

temperature function increases for the larger values of coordinates ω1 and ω2 on Ω reflecting the

fact that, for instance α1 > α4, implying that question C1 has higher difficulty (larger value of

pseudo-energy) than C4 in spite of these two questions having same value of entropy. This means

that the smaller measure subset in C1 has to have higher pseudo-temperature which we indeed see.

It is also worth noting that questions C5 and C6 were answered with equal accuracy suggesting that

these questions are of equal difficulty. This in fact is a necessary condition for a perfect fit within

the ideal gas question difficulty model since in this model any complete question with all subsets of

equal measure would have the same difficulty (pseudo-energy) regardless of the pseudo-temperature

function form.

Consider now data shown in Table 4.2. The resulting pseudo-temperature u(ω) is shown in

Fig. 4.3. We see that in this case the perfect fit could not be achieved by any pseudo-temperature

function, in particular because questions C5 and C6 were answered with slightly different accuracy

whereas these two questions necessarily have equal pseudo-energy content (equal difficulty) within

the ideal gas question difficulty model.
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Table 4.1: Sample question error probabilities, fitted values of the difficulty and depth functions,
and estimated model parameter values for the modified linear model when perfect fit is possible.

i αi G(Ω,Ci, P ) Y (Ω,Ci, P, Vαi
(Ci))

1 0.265 1.106 0.516
2 0.143 0.803 0.516
3 0.143 0.803 0.516
4 0.077 0.533 0.404
5 0.210 1.000 0.516
6 0.210 1.000 0.516
7 0.253 1.102 0.516
8 0.116 0.761 0.516
9 0.253 1.102 0.516

10 0.116 0.761 0.516∑Nd

i=1 zi = 0; U = 0.13; Ys = 0.52; b = 0.76.

Table 4.2: Sample question error probabilities, fitted values of the difficulty and depth functions,
and estimated model parameter values for the modified linear model when perfect fit is not possible,
with small misfit.

i αi G(Ω,Ci, P ) Y (Ω,Ci, P, Vαi
(Ci))

1 0.238 1.057 0.531
2 0.157 0.856 0.531
3 0.129 0.794 0.531
4 0.084 0.538 0.399
5 0.189 1.000 0.549
6 0.230 1.000 0.484
7 0.227 1.055 0.531
8 0.127 0.806 0.531
9 0.278 1.200 0.525

10 0.127 0.806 0.531∑Nd

i zi = 0.07; U = 0.43; Ys = 0.53; b = 0.74.
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Figure 4.2: The estimated pseudo-temperature (left) and the fitted values of difficulty and depth
(right) for the data of Table 4.1.

Now, consider the data shown in Table 4.3. As can be seen from Fig. 4.4, the fit that could

be achieved to the ideal gas question difficulty model (with the linear modified information source

model) is relatively (at least compared to the previous example) poor, possibly indicating that the

ideal gas model may not be adequate in this case and that a different model (for example, anisotropic

– to be able to model different pseudo-energy content of questions C5 and C6) may be needed.

Let us now turn to comparing different sources. Suppose Ω = [0, 1] with P being a uniform

continuous measure on Ω. Let sample questions be as follows. C1 = {[0, 1/2], (1/2, 1]}, C2 =

{[0, 1/3], (1/3, 1]}, C3 = {[0, 2/3], (2/3, 1]}, C4 = {[0, 1/4], (1/4, 1]}, C5 = {[0, 3/4], (3/4, 1]}.

Let source 1 accuracy be described by error probabilities (assuming quasi-perfect answers as before)

shown in Table 4.4. Then, using the modified capacity model and formulation (4.10), we can esti-

mate the pseudo-temperature function u(·) and the model parameters Ys and b. The results – as well

as fitted values of the question difficulty and answer depth – are shown in Table 4.4.

Table 4.5 shows error probabilities achieved on the same set of sample questions by a different

source 2, along with the resulting fitted values of difficulty and depth functions and the estimated
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Figure 4.3: The estimated pseudo-temperature (left) and the fitted values of difficulty and depth
(right) for the data of Table 4.2.

model parameter values. Looking at Tables 4.4 and 4.5 we can see, for example, that source 1

shows better overall performance on all questions, but there exist questions (question 5, for instance)

that appear to be easier for source 2. Indeed, the estimated pseudo-temperature functions shown

in Fig. 4.5 (in the unit source capacity convention) clearly demonstrate that the overall pseudo-

temperature is significantly higher for source 2 thus making the majority of sample questions more

difficult for it (which is reflected in higher error probabilities). On the other hand, while the pseudo-

temperature function for source 1 is (mostly) increasing on the interval [0, 1], it is a decreasing

function on the same interval for source 2. In particular, there exist regions of Ω = [0, 1] where the

pseudo-temperature for source 2 is lower than that for source 1. This means that some questions

can be easier for source 2, question 5 from the sample set being an example.
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Table 4.3: Sample question error probabilities, fitted values of the difficulty and depth functions,
and estimated model parameter values for the modified linear model when perfect fit is not possible,
with larger misfit.

i αi G(Ω,Ci, P ) Y (Ω,Ci, P, Vαi
(Ci))

1 0.371 0.418 0.118
2 0.086 0.488 0.358
3 0.200 0.589 0.312
4 0.107 1.750 1.281
5 0.126 1.000 0.661
6 0.293 1.000 0.399
7 0.354 0.585 0.180
8 0.162 1.320 0.812
9 0.354 0.590 0.182

10 0.162 1.219 0.746∑Nd

i zi = 1.51; U = 0.56; Ys = 1.28; b = 0.73.

Table 4.4: Sample question error probabilities, fitted values of the difficulty and depth functions,
estimated model parameter values for the modified linear model, for information source 1.

i αi G(Ω,Ci, P ) Y (Ω,Ci, P, Vαi
(Ci))

1 0.090 1.000 0.735
2 0.070 0.678 0.525
3 0.153 1.174 0.735
4 0.070 0.528 0.408
5 0.146 1.131 0.735∑Nd

i zi = 0.09; U = 0.54; Ys = 0.74; b = 0.77.

Table 4.5: Sample question error probabilities, fitted values of the difficulty and depth functions,
estimated model parameter values for the modified linear model, for information source 2.

i αi G(Ω,Ci, P ) Y (Ω,Ci, P, Vαi
(Ci))

1 0.300 0.933 0.386
2 0.350 1.000 0.331
3 0.170 0.415 0.229
4 0.350 1.115 0.386
5 0.080 0.585 0.434∑Nd

i zi = 0.18; U = 0.56; Ys = 0.39; b = 0.74.
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Figure 4.4: The estimated pseudo-temperature (left) and the fitted values of difficulty and depth
(right) for the data of Table 4.3.
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Figure 4.5: Estimated pseudo-temperature functions for information source 1 (solid blue line) and
source 2 (dashed red line).
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4.5 Conclusion

This is the third and final chapter devoted to the development of an information exchange model as

part of a larger quantitative framework describing the process of additional information acquisition

in decision making problems under uncertainty. The proposed framework is based on the assump-

tion that the decision maker has access to one or more sources of information capable of answering

questions concerning the problem parameter space, or, equivalently, the space of uncertain problem

parameters (input data). The question difficulty function introduced and studied in Chapter 2 can

serve as a quantitative measure of the degree of difficulty of various questions for the given source.

The main idea is that the knowledge of this function of the source allows the decision maker to pre-

dict the degree of accuracy of the source’s possible answers to various questions and thus enables

the decision maker to determine the particular question(s) that need to be asked to the given source

in order to maximize the answer’s impact on the solution quality for the given problem. The answer

depth function studied in Chapter 3 provides a quantitative measure of the “amount of work” the

source has to do in order to provide an answer of given accuracy to the question at hand. Roughly

speaking, the main idea here is that the source would not be able to answer difficult question accu-

rately because the answer depth required to make the answer accurate would exceed the source’s

capability. And it is the latter that is the main subject of the present chapter.

The main goal of the present chpater is twofold: to study possible models of information sources

and to propose methods for estimation of model parameters from the observed source’s performance

on sample questions. Information source models quantitatively express the idea that an information

source can answer easy question more accurately than difficult ones. More precisely, the source’s

answer depth is limited just by question difficulty for questions that are easy enough and by the
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source’s capability for more difficult questions. This simple and natural idea is quantified by the

information source model that is a functional dependence of the answer depth on the question dif-

ficulty. It is easy to see that such a function has to be nondecreasing and has to approach a finite

value for large values of the argument. In this paper, several such functions were proposed.

As was shown, both the question difficulty and answer depth functions are described, besides

appropriate probability measures, by a scalar function on the problem parameter space – termed

pseudo-temperature using parallels with thermodynamics. In real applications, this function needs

to be estimated along with source model parameters, from the observed source performance on a

set of sample questions. In this paper, optimization based algorithms for estimating the pseudo-

temperature function (using a suitable discretization of the parameter space) and the chosen source

model parameters were proposed.

Finally, it is worth mentioning that the developments in Part I were all based on the assumption

that both the question difficulty and answer depth possess linearity and isotropy (on the problem

parameter space) properties that – using parallels with thermodynamics – were referred to as the

“ideal gas model”. While this particular assumption leads to a concise and attractive form of the

difficulty and depth functions, it is entirely possible that more general (i.e. anisotropic) models

would be required for accurate description of performance of realistic information sources. Such

generalizations will be the subject of future research.
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Optimization of Additional Information
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Chapter 5

Main Framework

5.1 Introduction

When additional information sources are available in decision making problems that allow stochas-

tic optimization formulations, an important question is how to optimally use the information the

sources are capable of providing. Here, a framework is developed that relates information charac-

teristics of a source to solution quality characteristics of the problem and formulates the problem

of optimal information acquisition. The problem is that of minimization of the expected loss of the

solution subject to (pseudo-energy) capacity constraints of the information source.

5.2 Maps and their properties

In what follows, we make use of maps from Ω into X with discrete image sets. Let G be the set

of all such maps. Since the image set of all maps from G is assumed to be discrete, any such map
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g ∈ G can be uniquely described by the corresponding partition C = {C1, . . . , Cr} of Ω and the

corresponding image set I = {x1, . . . , xr} such that g(ω) = xj for all ω ∈ Cj . We will sometimes

write g = (C, I) whenever the components of a map (partition and image set) need to be made

explicit.

The following maps from the set G are important special cases that will be referred to later.

• Optimal (“zero loss”) map g0: g0(ω) = x∗ω, where x∗ω is the solution of minx∈Xf(ω, x). It

simply maps each scenario into the corresponding (deterministic) optimal solution.

• All-to-one maps gx: gx(ω) = x for all ω ∈ Ω. These map all elements of Ω into some single

element of X .

• For the given measure P on Ω, the stochastic optimal map gP : gP (ω) = x∗P , where x∗P is a

solution of (1.1). Obviously, it is just a special case for of all-to-one maps gx.

• For the given measure P and a (complete) partition C = {C1, . . . , Cr} of Ω, the stochastic

subset optimal map gC,P : gC,P (ω) = x∗PCj
for all ω ∈ Cj , j = 1, . . . , r. (Here x∗PCj

is

an optimal solution of problem (1.1) with measure P replaced with the conditional measure

PCj .) In the following, we denote by C the set of all maps of the form gC,P for all possible

partitions C of Ω and will sometimes refer to maps from the set C as subset optimal maps.

Next, we define some useful functionals to be used later.

Let P be any probability measure on Ω and x an arbitrary element of the solution space X . We

define the suboptimality of x with respect to P as follows:

S(x, P ) = EP f(ω, x)− EP f(ω, x
∗
P ) =

∫
Ω
(f(ω, x)− f(ω, x∗P ))P (dω), (5.1)
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i.e. suboptimality of x w.r.t. P is the difference in objective values of problem (1.1) if x is used

instead of the optimal solution x∗P .

If P is an arbitrary measure on Ω and g ∈ G is an arbitrary map from Ω into X we define the

loss of g with respect to P as

L(g, P ) = EP f(ω, g(ω))− EP f(ω, x
∗
ω) =

∫
Ω
(f(ω, g(ω))− f(ω, x∗ω))P (dω). (5.2)

In particular if g = gP is the stochastic optimal map corresponding to the measure P , the loss

L(gP , P ) is the traditional expected value of perfect information (EVPI). If g = g0 is the optimal

map, the loss is equal to zero for any measure P : L(g0, P ) = 0.

Finally, for any measure P and map g ∈ G we define the gain of g with respect to P as follows:

B(g, P ) = EP f(ω, x
∗
P )− EP f(ω, g(ω)) =

∫
Ω
(f(ω, x∗P )− f(ω, g(ω)))P (dω). (5.3)

The gain functional of a map g measures the decrease in loss that can be achieved by the map g,

compared to the best all-to-one map gP . In particular the largest possible gain obtains by an optimal

map g0, and for this map, the value of gain is equal to the loss of gP , as it should since any optimal

map has zero loss. It is also clear that, while suboptimality and loss are always nonnegative, gain

can take both positive and negative values. For example the gain of any all-to-one map gx is negative

unless x = x∗P (in which case the gain vanishes).

The following lemma states an elementary but useful relationship between gain and loss for an

arbitrary map g from Ω into X .
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Lemma 5.1 For any map g ∈ G and any measure P on Ω,

B(g, P ) + L(g, P ) = L(gP , P ),

where gP is the stochastic optimal map for the measure P .

Proof: Using definitions of gain and loss we can write

B(g, P ) + L(g, P ) =

∫
Ω
(f(ω, x∗P )− f(ω, g(ω)))P (dω) +

∫
Ω
(f(ω, g(ω))− f(ω, x∗ω))P (dω)

=

∫
Ω
(f(ω, x∗P )− f(ω, x∗ω))P (dω) = L(gP , P )

The statement of Lemma 5.1 can be rewritten as B(g, P ) = L(gP , P ) − L(g, P ) and, in fact

can be used as a definition of the gain of arbitrary map g ∈ G: the gain is equal to the decrease of

the value of loss compared to the loss of the best all-to-one map gP .

Let f(P) → R be a real-valued functional on the suitably restricted set P of measures on Ω.

For the later developments it turns out to be convenient to introduce the following notation. Let

C = {C1, . . . , Cr} be a partition of Ω (a question), and let V (C) be an answer to C that can take

values in the set {s1, . . . , sm}.

We denote by f(PC) the expected value of the functional f(·) over the set of conditional mea-

sures {PCj}, j = 1, . . . , r:

f(PC) =
r∑

j=1

P (Cj)f(PCj ), (5.4)

and by f(PV (C)) – the expected value of f(C) over the set of updated measures {P k}, k =
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1, . . . ,m:

f(PV (C)) =

m∑
k=1

Pr(V (C) = sk)f(P
k) =

m∑
k=1

vkf(P
k), (5.5)

Then we can define suboptimality, loss and gain functionals for a given question C and an

answer V (C) using the just introduced notational convention (5.4) and (5.5).

Namely, for an arbitrary x ∈ X , the suboptimality of solution x with respect to question C (and

initial measure P ) is given by

S(x, PC) =

s∑
i=1

P (Cj)S(x, PCj ), (5.6)

and the suboptimality of x with respect to answer V (C) to question C (and initial measure P ) reads

S(x, PV (C)) =

m∑
k=1

vkS(x, P
k). (5.7)

Likewise, for an arbitrary map g ∈ G, and question C, the loss and gain of g with respect to C

are given by

L(g, PC) =
r∑

j=1

P (Cj)L(g, PCj ), (5.8)

and

B(g, PC) =

r∑
j=1

P (Cj)B(g, PCj ), (5.9)

respectively.
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The loss and gain functionals for a map g ∈ G with respect to answer V (C) are defined analo-

gously:

L(g, PV (C)) =
m∑
k=1

vkL(g, P
k), (5.10)

and

B(g, PV (C)) =
m∑
k=1

vkB(g, P k), (5.11)

respectively.

The following representation for the expected loss L(g, P ) will be useful later.

Lemma 5.2 For any map g = (C, I) ∈ G, the expected loss L(g, P ) can be written as

L(g, P ) =

r∑
j=1

P (Cj)L(g, PCj ) = L(g, PC).

Proof:

L(g, P ) =

∫
Ω
(f(ω, g(ω))− f(ω, x∗ω))P (dω) =

r∑
j=1

∫
Cj

(f(ω, g(ω))− f(ω, x∗ω))P (dω)

=
r∑

j=1

P (Cj)

∫
Cj

1

P (Cj)
(f(ω, g(ω))− f(ω, x∗ω))P (dω)

=

r∑
j=1

P (Cj)

∫
Cj

(f(ω, g(ω))− f(ω, x∗ω))PCj (dω)

(a)
=

r∑
j=1

P (Cj)L(g, PCj )
(b)
= L(g, PC),

where (a) follows directly from the definition of the expected loss for the measure PCj and (b)
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follows from the definition (5.8) of L(g, PC).

Let g = (C, I) ∈ C be a subset optimal map. Then the EVPI for the problem (1.1) can be

decomposed in a convenient way.

Lemma 5.3 For any map gC,P ∈ C, the EVPI L(gP , P ) of the problem (1.1) can be decomposed

as

L(gP , P ) = S(x∗P , PC) + L(gC,P , P ).

Proof: We have

L(gP , P ) =

∫
Ω
(f(ω, x∗P )− f(ω, x∗ω))P (dω)

=

∫
Ω
(f(ω, x∗P )− f(ω, x∗ω) + f(ω, gC,P (ω))− f(ω, gC,P (ω)))P (dω)

=

∫
Ω
(f(ω, x∗P )− f(ω, gC,P (ω)))P (dω) +

∫
Ω
(f(ω, gC,P (ω))− f(ω, x∗ω))P (dω)

=

r∑
j=1

P (Cj)

∫
Cj

1

P (Cj)
(f(ω, x∗P )− f(ω, gC,P (ω)))P (dω)

+

r∑
j=1

P (Cj)

∫
Cj

1

P (Cj)
(f(ω, gC,P (ω))− f(ω, x∗ω))P (dω)

(a)
=

r∑
j=1

P (Cj)

∫
Cj

(
f(ω, x∗P )− f(ω, x∗PCj

)
)
PCj (dω)

+
r∑

j=1

P (Cj)

∫
Cj

(f(ω, gC,P (ω))− f(ω, x∗ω))PCj (dω)

(b)
=

r∑
j=1

P (Cj)S(x
∗
P , PCj ) +

r∑
j=1

P (Cj)L(gC,P , PCj )

(c)
= S(x∗P , PC) + L(gC,P , PC)

(d)
= S(x∗P , PC) + L(gC,P , P ),

105



5.3. EFFECT OF ADDITIONAL INFORMATION ON SOLUTION QUALITY

where (a) follows from the definition of the conditional measure PCj , (b) follows from the defini-

tions of S(x∗P , PCj ) and L(g, PCj ), (c) follows from the notational convention (5.4) for functionals

of measures, and (d) follows from Lemma 5.2.

5.3 Effect of additional information on solution quality

5.3.1 Pseudo-energy-loss efficient frontier

Let us consider the set G of maps from Ω into X . Each map g = (C(g), I(g)) from this set can

be characterized by the corresponding loss L(g, P ) with respect to the original measure P and

the value G(Ω,C(g), P ) – the difficulty of the corresponding question. We will be interested –

for reasons that will become clear shortly – in finding the efficient frontier in the Euclidean plane

with coordinates (G(Ω,C(g), P ), L(g, P )). In other words, we will be looking for the set O of

Pareto-optimal maps that can be found by solving the following parametric optimization problem

minimize
g∈G

L(g, P )

subject to G(Ω,C(g), P ) ≤ γ

(5.12)

for all values of the parameter γ.

The first observation we can make is that to find the set O of Pareto-optimal maps it is sufficient

to consider the set of subset-optimal maps C as the following proposition asserts.

Proposition 5.1 O ⊂ C
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Proof: Let g = (C, I) where I = {x1, x2, . . . , xr}. Suppose that g /∈ C. Then there ex-

ists at least one C ∈ C such that g(C) ̸= x∗PC
. Without loss of generality we can assume that

C = C1. Consider a different map g′ = (C, I ′) such that I ′ = {x∗PC1
, x2, . . . , xr}. Obviously,

G(Ω,C(g′)P ) = G(Ω,C(g)P ) (since C(g′) = C(g)). On the other hand,

L(g′, P )− L(g, P ) = P (C1)(L(g
′, PC1)− L(g, PC1)) < 0,

since L(g′, PC1) takes the minimum value among all maps with the same partition C. We thus find

that L(g′, P ) < L(g, P ) which means that g /∈ O.

It follows from Proposition 5.1 that one needs to look no further than the set C of subset optimal

maps. Such maps are uniquely characterized by the corresponding partition C only (up to simple

equivalences). Therefore the task of finding maps that belong to the set C is equivalent to that of

finding the corresponding partitions of the set Ω.

5.3.2 Optimal information acquisition

Let us now address the optimal information acquisition problem (1.3): what question(s) need to be

asked the given information source in order to obtain the minimum possible loss for (1.1). Given a

question C = {C1, . . . , Cr} to an information source and its answer V (C) taking values in the set

{s1, . . . , sm}, we denote by L(sk), k = 1, . . . ,m the minimum conditional expected loss given that

V (C) = sk and by L(V (C)) the minimum expected loss that the decision maker can achieve given

the answer V (C). The latter can be found as

L(V (C)) =

m∑
k=1

Pr(V (C) = sk)L(sk), (5.13)
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i.e. as an expectation over possible values of the answer V (C).

Clearly, if no answer was received – and the decision maker has to choose a solution x ∈ X

based on the original information only – the minimum expected loss will be equal to the EVPI of

the original problem: L(∅) = L(gP , P ).

If the decision maker poses a question C = {C1, . . . , Cr} to the information source and receives

a particular value sk of answer V (C), the original measure P on Ω gets updated to P k ≡ P V (C)=sk .

Therefore in order to minimize loss for the given value sk of answer V (C) the decision maker needs

to choose the solution x∗
Pk – the solution minimizing the expectation EPkf(ω, x) over all (feasible)

values of x.

Perfect answers

First, let us assume that the information source can provide a perfect answer to C. Then the follow-

ing result can be obtained.

Proposition 5.2 Let C = {C1, . . . , Cr} be a complete question and gC,P ∈ C be a corresponding

subset optimal map. If the decision maker is given a perfect answer V ∗(C) to C then

L(V ∗(C)) = L(gC,P , P ).

Proof: For the given value sj of the answer, P j = PCj , j = 1, . . . , r. Therefore the deci-

sion maker can achieve the smallest possible loss by choosing the solution x∗PCj
. The resulting
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conditional loss will be

L(sj) =

∫
Cj

(f(ω, x∗PCj
)− f(ω, x∗(ω))) dPCj (ω). (5.14)

Taking the expectation of (5.14) over possible values of the answer V ∗(C) we obtain

L(V ∗(C))
(a)
=

r∑
j=1

P (Cj)L(sj) =

r∑
j=1

P (Cj)

∫
Cj

(f(ω, x∗PCj
)− f(ω, x∗ω)) dPCj (ω)

(b)
=

r∑
j=1

P (Cj)

∫
Cj

(f(ω, gC,P (ω))− f(ω, x∗ω)) dPCj (ω)

=

r∑
j=1

P (Cj)L(gC,P , PCj )
(c)
= L(gC,P , PC)

(d)
= L(gC,P , P ),

where (a) follows from that for a perfect answer consistent with the original measure, Pr(V ∗(C) =

sj) = P (Cj), (b) follows from that the map gC,P is subset optimal, (c) follows from the definition

(5.8), and (d) follows from Lemma 5.2.

Combining the result of Proposition 5.2 with Lemma 5.2 (valid for any g ∈ G) and Lemma 5.3

(valid for any g ∈ C) we can find the value of the largest loss reduction due to a perfect answer to

question C. The result is formulated as a corollary.

Corollary 5.1 Given a perfect answer to question C, the largest possible reduction in expected loss

a decision maker can achieve is equal to

L(∅)− L(V ∗(C)) = B(gC,P , P ) = S(x∗P , PC),

where gC,P ∈ C is a subset optimal map corresponding to question C.
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Imperfect answers

Now, let us relax the assumption of availability of a perfect answer to question C. Instead, we

assume that the decision maker can obtain an answer V (C) which is in general imperfect. First, we

formulate a useful auxiliary result.

Lemma 5.4 Let V (C) be an answer to question C and let gC,P ∈ C be a corresponding subset

optimal map. Then

S(x∗P , PC) = S(x∗P , PV (C)) +B(gC,P , PV (C)).
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Proof:

S(x∗P , PC) =

r∑
j=1

P (Cj)S(x
∗
P , PCj ) =

r∑
j=1

P (Cj)

∫
Cj

(f(ω, x∗P )− f(ω, gC,P (ω)))PCj (dω)

(a)
=

r∑
j=1

r∑
k=1

pkjvk

∫
Cj

(f(ω, x∗P )− f(ω, gC,P (ω)))PCj (dω)

(b)
=

r∑
j=1

r∑
k=1

pkjvk

∫
Ω
(f(ω, x∗P )− f(ω, gC,P (ω)))PCj (dω)

=

r∑
k=1

vk

∫
Ω

r∑
j=1

pkj(f(ω, x
∗
P )− f(ω, gC,P (ω)))PCj (dω)

(c)
=

r∑
k=1

vk

∫
Ω
(f(ω, x∗P )− f(ω, gC,P (ω)))P

k(dω)

=

r∑
k=1

vk

∫
Ω
(f(ω, x∗P )− f(ω, gC,P (ω)) + f(ω, x∗Pk)− f(ω, x∗Pk))P

k(dω)

=

r∑
k=1

vk

∫
Ω
(f(ω, x∗P )− f(ω, x∗Pk))P

k(dω)

+

r∑
k=1

vk

∫
Ω
(f(ω, x∗Pk)− f(ω, gC,P (ω)))P

k(dω)

(d)
=

r∑
k=1

vkS(x
∗
P , P

k) +
r∑

k=1

vkB(gC,P , P
k)

(e)
= S(x∗P , PV (C)) +B(gC,P , PV (C)),

where (a) follows from (3.13), (b) follows from the fact that measure PCj vanishes outside of Cj ,

(c) follows from (3.1), (d) follows from the definitions (5.1) and (5.3) of suboptimality and gain,

and (e) follows from the definitions (5.7) and (5.11).

Combining the result of Lemma 5.4 with that of Lemma 5.3, we obtain a useful decomposition

of the EVPI of the original problem which we formulate as a corollary.

Corollary 5.2 Let V (C) be an answer to question C and gC,P ∈ C a corresponding subset optimal
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map. Then

L(gP , P ) = S(x∗P , PV (C)) +B(gC,P , PV (C)) + L(gC,P , P ).

Now we can determine the minimum expected loss L(V (C)) that’s obtainable with the help of

an answer V (C) to question C. We state the result as a proposition.

Proposition 5.3 Let C = {C1, . . . , Cr} be a complete question and gC,P ∈ C be a corresponding

subset optimal map. If the decision maker is given a (generally imperfect) answer V (C) to C then

L(V (C)) = B(gC,P , PV (C)) + L(gC,P , P ).

Proof: The value sk of answer V (C) implies that the measure on Ω is equal to P k. Therefore

the the decision maker can achieve minimum loss by using the stochastic optimal solution x∗
Pk . The

resulting minimum loss will be

L(sk) = L(gPk , P k), (5.15)

where gPk is the all-to-one map gPk(ω) = x∗
Pk for all ω ∈ Ω.

The minimum expected loss L(V (C)) can be obtained by substituting (5.15) into (5.13):

L(V (C)) =

m∑
k=1

vkL(gPk , P k). (5.16)
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On the other hand, we can decompose the EVPI L(gP , P ) as follows.

L(gP , P ) =

∫
Ω
(f(ω, x∗P )− f(ω, x∗ω))P (dω) =

m∑
k=1

vk

∫
Ω
(f(ω, x∗P )− f(ω, x∗ω))P

k(dω)

=
m∑
k=1

vk

∫
Ω
(f(ω, x∗P )− f(ω, x∗ω) + f(ω, x∗Pk)− f(ω, x∗Pk))P

k(dω)

=
m∑
k=1

vk

∫
Ω
(f(ω, x∗P )− f(ω, x∗Pk))P

k(dω)

+

m∑
k=1

vk

∫
Ω
(f(ω, x∗Pk)− f(ω, x∗ω))P

k(dω)

=

m∑
k=1

vkS(x
∗
P , P

k) +

m∑
k=1

vkL(gPk , P k)

= S(x∗P , PV (C)) +

m∑
k=1

vkL(gPk , P k) (5.17)

Comparing (5.16) with (5.17) we can obtain

L(V (C)) = L(gP , P )− S(x∗P , PV (C)). (5.18)

Finally, using the decomposition of EVPI of Corollary 5.2 in (5.18) yields

L(V (C)) = B(gC,P , PV (C)) + L(gC,P , P ).

It is easy to see that, for perfect answer V ∗(C) to question C, the gain B(gC,P , PV (C)) in

Proposition 5.3 vanishes (since B(gC,P , PV ∗(C)) = B(gC,P , PC) = 0) and the result of Proposi-

tion 5.2 is recovered.

The amount of maximum reduction of loss due to answer V (C) to question C can be obtained

by combining the result of Proposition 5.3 with that of Corollary 5.2. The result is formulated as a
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corollary.

Corollary 5.3 Given a (generally imperfect) answer to question C, the largest possible reduction

in expected loss a decision maker can achieve is equal to

L(∅)− L(V (C)) = S(x∗P , PV (C)).

5.3.3 Pseudo-energy-loss correspondence

Comparing results obtained in this section with the corresponding pseudo-energy values discussed

in Chapters 2 and 3, we can make several interesting observations regarding their correspondence

that reveal a rather clear picture. We assume that the measure P admits existence of a finest partition

of Ω. Let Cf (P ) be such finest partition. We can then summarize the observations made in the

previous sections as follows.

• The initial loss is equal to EVPI L(gP , P ). In order to reduce it to zero, one needs to com-

pletely resolve the underlying uncertainty by answering the exhaustive question Cf (P ) about

possible outcomes on Ω perfectly. The required pseudo-energy is equal to G(Ω,Cf (P ), P ).

• A perfect answer to question C (that, as a partition, is some coarsening of Cf (P )) requires

G(Ω,C, P ) worth of pseudo-energy from an information source and allows the decision

maker to reduce the loss by the amount equal to S(x∗P , PC) = B(gC,P , P ).

• If the source is able to produce only an imperfect answer V (C) to question C the corre-

sponding amount of pseudo-energy is equal to the answer depth Y (Ω,C, P, V (C)). Such an
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answer can reduce the initial loss L(gP , P ) by the amount of S(x∗P , PV (C)).

• The difference of depths (pseudo-energy contents) between a perfect and and imperfect an-

swers to question C is equal to G(Ω,C, PV (C)). The corresponding difference in loss re-

ductions (values of information) is B(gC,P , PV (C)). The latter quantity can be naturally

interpreted as a price the decision maker pays for imperfection of the answer he/she receives

to question C.

• Given a perfect answer to question C, the residual pseudo-energy measuring the degree of

difficulty of resolving the remaining uncertainty is equal to G(Ω,Cf (P )C, P ). The corre-

sponding residual loss is simply L(gC,P , P ).

• Given an imperfect answer to question C, the residual pseudo-energy measuring the degree

of difficulty of resolving the remaining uncertainty is equal to G(Ω,Cf (P ), PV (C)) – the

difficulty of the exhaustive question Cf (P ) given the answer V (C) to question C. The

corresponding residual loss is equal to
∑m

k=1 vkL(gPk , P k).

Table 5.1 shows the correspondence between pseudo-energy and loss related quantities dis-

cussed above. We see that for every loss related quantity there is a corresponding pseudo-energy

quantity, meaning that in order to reduce the loss by a certain amount the corresponding pseudo-

energy has to be made available in the form of an answer to some question. Depending on the

structure of the question, the amount of loss reduction and, respectively, the amount of residual

loss can vary in size. The goal of the decision maker is to find the specific question(s) that would

maximize the effect of the given information source (characterized by its pseudo-temperature func-

tion and source model parameters such as capacity) on the given problem. More specifically, the
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decision maker would want to find the specific question C that would result in the smallest possible

minimum expected loss L(V (C)) where V (C) is the answer that the source can provide to question

C. Formally, this information acquisition optimization problem can be written as

minimize
C

L(V (C))

subject to Y (Ω,C, P, V (C)) = h(G(Ω,C, P ))

(5.19)

where minimization is performed over all possible partitions of the parameter space Ω. The ex-

pression for the minimum loss L(V (C)) is given either by Proposition 5.2 (for perfect answers) or

Proposition 5.3 (for imperfect answers).

If a source is capable of perfect answers (for instance, in the simple linear model) solution of

problem (5.19) reduces to finding the efficient frontier: if L∗(G) is the expression describing the ef-

ficient frontier (abstracting from its true discrete structure) and Ys is the capacity of the information

source, then the minimum in (5.19) is equal to L∗(Ys) and is achieved by the question C lying on

the efficient frontier such that G(Ω,C, P ) = Ys.

If a source cannot provide perfect answers (likely a more realistic scenario), one would need

to consider questions with difficulty exceeding the source capacity (G(Ω,C, P ) > Ys) in order to

minimize the expected loss. The search for an optimal question in this case becomes somewhat

more complicated as the error structure for the source’s answers needs to be taken into account.

If answers are assumed, for instance, to be quasi-perfect, optimal question(s) can be readily found

approximately provided the efficient frontier is already known. An illustration is provided in the

next section.
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Pseudo-energy Loss Comments

G(Ω,Cf (P ), P ) L(gP , P ) exhaustive question difficulty/total
initial loss (EVPI)

G(Ω,C, P ) S(x∗
P , PC) = B(gC,P , P ) question difficulty/loss reduction

due to perfect answer

Y (Ω,C, P, V (C)) S(x∗
P , PV (C)) answer depth/loss reduction due to

that answer

G(Ω,C, PV (C)) B(gC,P , PV (C)) residual difficulty/“price” of
answer imperfection

G(Ω,Cf (P )C, P ) L(gC,P , P ) residual pseudo-energy/loss given
perfect answer to C

G(Ω,Cf (P ), PV (C))
∑m

k=1 vkL(gPk , P k) residual pseudo-energy/loss given
an imperfect answer to C

Table 5.1: Correspondence between pseudo-energy and loss related quantities.

The correspondence between pseudo-energy and loss quantities shown in Table 5.1 can be il-

lustrated by comparing decompositions of the exhaustive question difficulty G(Ω,Cf (P ), P ) (ex-

pression (5.20)) and the EVPI L(gP , P ) (expression (5.21)) on the other hand. It is also shown in

Fig. 5.1.

G(Ω,Cf (P ),PV (C))︷ ︸︸ ︷
Y (Ω,C, P, V (C)) +G(Ω,C, PV (C))︸ ︷︷ ︸

G(Ω,C,P )

+G(Ω,Cf (P )C, P ) = G(Ω,Cf (P ), P )
(5.20)

∑m
k=1 vkL(gPk ,P

k)︷ ︸︸ ︷
S(x∗P , PV (C)) +B(gC,P , PV (C))︸ ︷︷ ︸

S(x∗
P ,PC)=B(gC,P ,P )

+L(gC,P , P ) = L(gP , P )
(5.21)
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S(x∗

P , PV (C))

L(gC,P , P )

G(Ω,C, P )

B(gC,P , PV (C))

∑
k vkL(gPk , P k)

Y (Ω,C, P, V (C)) G(Ω,C, PV (C)) G(Ω,Cf (P )C, P )

G(Ω,C, P )

G(Ω,Cf (P ), PV (C))

S(x∗

P , PC)

L(g, P )

Figure 5.1: The efficient frontier and correspondence between pseudo-energy and objective func-
tion (loss) quantities. A Pareto-optimal map g ∈ O on the efficient frontier is shown.

5.4 Examples

5.4.1 Toy example

To illustrate the concepts introduced in previous sections, let us consider a very simple example.

Let Ω be the interval [0, a] and let X be the real line R. Let the integrand f(ω, x) have the following

form: f(ω, x) = (x−ω)2 and let the original measure P be the uniform continuous distribution on

[0, a].

It is obvious that the optimal solution for the given realization ω is simply x∗ω = ω. The

stochastic optimal map is gP (ω) = a
2 ∈ X for all ω ∈ Ω. Therefore the EVPI of the problem (1.1)

is

L(gP , P ) =
1

a

∫ a

0

(
(x∗P − ω)2 − (x∗ω − ω)2

)
dω =

1

a

∫ a

0

(a
2
− ω

)2
dω =

a2

12
.
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Let C =
{[

0, a2
)
,
[
a
2 , a
]}

and C′ =
{[

0, a4
)
∪
[
a
2 ,

3a
4

)
,
[
a
4 ,

a
2

)
∪
[
3a
4 , a

]}
be two r = 2 parti-

tions of Ω. Let us consider several different r = 2 maps g ∈ G (see Fig. 5.2 for an illustration).

• g1 =
(
C,
{
a
4 ,

3a
4

})
= gC,P . The measures PC1 and PC2 are uniform on C1 and C2 respec-

tively. We have x∗PC1
= a

4 and x∗PC2
= 3a

4 . Thus g1 ∈ C. Note that in this case g1 ∈ O as well

as it lies on the efficient frontier in (G,L) coordinate plane (see Fig. 5.3 for an illustration).

• g2 = (C, {0, a}). For this map, the partition is the same as that for g1, but the image set is

different. This map is therefore not subset-optimal: g2 /∈ C.

• g3 =
(
C′,
{
3a
8 ,

5a
8

})
= gC′,P . For this map’s partition both subsets C ′

1 and C ′
2 consist of two

connected components. It is easy to check that x∗PC1
= 3a

8 and x∗PC2
= 5a

8 and thus g3 ∈ C.
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X

X0

5a

8

3a

8

a

C2C1

C2C1

C1

a

2

a

g2

a

g3

a

g1

0

0

0

Ω

Ω

Ω

C1 C2C2

a

4

3a

4

X

Figure 5.2: Maps g1, g2 and g3. The partitions for g1 and g2 consist of connected sets only. Each
element of the partition for g3 consists of two connected sets.
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The loss for these three maps can be found as follows. For g1,

L(g1, P ) =
1

2
· 2
a

∫ a/2

0

(a
4
− ω

)2
dω +

1

2
· 2
a

∫ a

a/2

(
3a

4
− ω

)2

dω =
a2

48
,

for g2,

L(g2, P ) =
1

2
· 2
a

∫ a/2

0
(0− ω)2 dω +

1

2
· 2
a

∫ a

a/2
(1− ω)2 dω =

a2

12
,

and for g3,

L(g3, P ) =
1

2
· 2
a

(∫ a/4

0

(
3a

8
− ω

)2

dω +

∫ 3a/4

a/2

(
3a

8
− ω

)2

dω

)

+
1

2
· 2
a

(∫ a/2

a/4

(
5a

8
− ω

)2

dω +

∫ a

3a/4

(
5a

8
− ω

)2

dω

)
=

13a2

192
.

Fig. 5.3 shows the efficient frontier and maps g1, g2 and g3 in (G,L) coordinate plane. We see

that g1 ∈ O lies on the efficient frontier while g2 and g3 are located above it.

Since g1, g3 ∈ C we have (as Lemma 5.3 states) S(x∗P , PC) = a2

12 − a2

48 = a2

16 for g1 and

S(x∗P , PC′) = a2

12 − 13a2

192 = a2

64 for g3. For g2, the suboptimality is the same as that for g1. Note

that, since g2 /∈ C, S(x∗P , PC) + L(g3, P ) = 7a2

48 ̸= L(gP , P ).

For this one-dimensional example it turns out to be straightforward to find maps on the efficient

frontier. Indeed, it is obvious that partitions for such maps have to consist of connected sets only. It

is also clear that the order in which subsets Cj appear on the interval [0, a] does not matter because

the integrand in (1.1) f(ω, x) depends on |ω − x| only. So, for the fixed value of r, any map

g ∈ C that can lie on the efficient frontier can be uniquely characterized by the subset measures

wj = P (Cj), j = 1, . . . , r. Given the values wj , the expected loss of the corresponding map can
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Pseudo-energy

Loss

1

2.50

g2

g3

g1

Figure 5.3: Maps g1, g2 and g3 on (G,L) coordinate plane. All possible maps for this problem lie
in the shaded region, at or above the efficient frontier.

be written as

L(g, P ) =
r∑

j=1

wj
(wja)

2

12
=

a2

12

r∑
j=1

w3
j .

In order to find the optimal values of wj yielding the smallest loss for the question difficulty

G(Ω,C, P ) not exceeding h the following optimization problem needs to be solved.

minimize
r∑

j=1

w3
j

subject to −
r∑

j=1

u(Cj)wj logwj ≤ h

r∑
j=1

wj = 1

wj ≥ 0, j = 1, . . . , r,

(5.22)
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where u(Cj) is the pseudo-temperature of subset Cj and h is a nonnegative parameter. Since the

function −
∑r

j=1 u(Cj)wj logwj is concave, (5.22) is a global optimization problem. However it

can easily be solved to optimality for moderate values of the partition size r. We consider two cases:

constant pseudo-temperature function u(ω) ≡ 1 and linear pseudo-temperature u(ω) = 2
aω. We

can assume that Cj = [aw̃j , a(w̃j + wj)]. In the former case, u(Cj) = 1, j = 1, . . . , r and in the

latter case,

u(Cj) = 2w̃j + wj , (5.23)

where w̃j =
∑j−1

l=1 wl if j > 1 and w̃1 = 0.

The resulting efficient frontier is shown in Fig. 5.4.
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Figure 5.4: Efficient frontier for the toy example: constant pseudo-temperature case (dotted line)
and linear pseudo-temperature case (solid line).

Let us now consider imperfect answers to questions C in the same example. For simplicity, we
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set r = 2 for questions and assume the pseudo-temperature to be constant on Ω. We also assume all

answers to be quasi-perfect so that the updated measures P k, k = 1, 2 have the form (3.21).

The stochastic optimal solutions x∗
Pk for measures P k can be found as

x∗Pk = argmin
x

∫
Ω
f(ω, x)P k(dω).

We have

x∗P 1 = argmin
x

(
1− α(1− w1)

w1a

∫ w1a

0
(x− ω)2dω +

α

a

∫ a

w1a
(x− ω)2dω

)
=

1

2
(w1a+ α(1− w1)a) =

1

2
a(w1 + αw2),

and, analogously,

x∗P 2 =
1

2
a(w2 + αw1).

We can now find the suboptimalities:

S(x∗P , P
1) =

∫
Ω
(f(ω, x∗P )− f(ω, x∗1(α)))P

(α)
1 (dω)

=
a2

12

(
(3− 6w1 + 3w2

1)(1 + α2) + α(−6 + 12w1 − 6w2
1)
)
,

and, analogously,

S(x∗P , P
2) =

a2

12

(
(3− 6w2 + 3w2

2)(1 + α2) + α(−6 + 12w2 − 6w2
2)
)
.
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The suboptimality S(x∗P , PV (C)) is then

S(x∗P , PV (C)) = w1S(x
∗
P , P

(α)
1 ) + w2S(x

∗
P , P

(α)
2 )

=
a2

12
(1− w3

1 − w3
2)(1− α)2.

The new value of the expected loss, according to Corollary 5.2, is

L(gP , P )− S(x∗P , PV (C)) =
a2

12
− a2

12
(1− w3

1 − w3
2)(1− α)2

=
a2

12

(
1− (1− w3

1 − w3
2)(1− α)2

)
(5.24)

Note that for α = 0 we recover the expression L(gC,P , P ) = a2

12 (w
3
1 +w3

2) for a perfect answer

and for α = 1 the new value of the loss is simply L(gP , P ) = a2

12 since α = 1 describes the case in

which the answer V (C) carries no new information and the updated measure is simply P .

Fig. 5.5 shows the dependence of the expected loss (5.24) on answer depth with the error pa-

rameter α ranging from 0 to 1 for several values of subset measures w1 and w2 for the r = 2 case.

The part of the efficient frontier that can be achieved for r = 2 is also shown (solid bold line). It is

interesting to observe that, for the same amount of pseudo-energy, lower values of the expected loss

can be achieved with imperfect answers to more difficult questions.

5.4.2 Inventory example

A company has to decide on the order quantity x of a certain product and is required to satisfy an

uncertain demand ω. The cost of ordering is c > 0 per unit of product. If the demand is larger than

the ordered quantity, the shortage has to be covered by back ordering at a higher cost b > c. If the
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Pseudo-energy

Loss

Figure 5.5: Dependence of the expected loss on the added information for r = 2 partitions. The
solid curve corresponds to the error-free message case with w1 varying from 0 to 0.5. The dashed
line shows the w1 = w2 = 0.5 case with α varying from 1 to 0 (from left to right on the figure). The
dotted line is the same for w1 = 1−w2 = 0.7 case, and the dash-dotted line is for w1 = 1−w2 =
0.9 case.

demand turns out to be lower than the ordered quantity, the extra units are held in storage at unit

cost of h > 0. Thus the total cost has the form

f(ω, x) = cx+ b[x− ω]+ + h[ω − x]+, (5.25)

where [y]+ = max{y, 0} for any real y. We assume that both x and ω are continuous variables, for

convenience. It is well-known that if the measure on the parameter space Ω is described by a cdf

F (·) then the optimal solution of the problem

minxEP f(ω, x), (5.26)
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is given by x∗P = F−1
(

b−c
b+h

)
.

Let us assume that the probability measure P is uniform on Ω = [0, a]. Then, clearly, x∗P =

a b−c
b+h (and therefore gP (ω) = a b−c

b+h for all ω ∈ Ω). Consider partitions of Ω such that P (Cj) = wj ,

j = 1, . . . , r and all sets Cj are connected. Just like in the previous example, we can assume,

without loss of generality that Cj = [aw̃j , a(w̃j +wj)], where w̃j =
∑j−1

l=1 wl if j > 1 and w̃1 = 0.

It is straightforward to show that the EVPI of this problem is

L(gP , P ) =
a

2
· (b− c)(c+ h)

b+ h
.

and, for the partition C = {C1, . . . , Cr}, x∗PCj
= a

(
w̃j + wj

b−c
b+h

)
, and

L(gC,P , P ) = L(gC,P , PC) =

r∑
j=1

P (Cj)L(gC,P , PCj ) =

r∑
j=1

wj
awj

2
· (b− c)(c+ h)

b+ h

=
a

2
· (b− c)(c+ h)

b+ h

r∑
j=1

w2
j =

 r∑
j=1

w2
j

L(gP , P )

The efficient frontier, just like in the previous example can be found by solving the optimization

problem (5.22). Fig. 5.6 shows the efficient frontier for the case of constant pseudo-temperature

function which leads to u(Cj) = 1 for j = 1, . . . , r and for the case of linear increasing pseudo-

temperature function u(ω) = 2
aω which leads to u(Cj) = 2w̃j + wj , j = 1, . . . , r.

Let us now consider quasi-perfect answers Vα(C) to question C with partitions C as described

before. Consider the case r = 2 only, for simplicity. Then C1 = [0, w1a] and C2 = [w1a, a]. The
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Figure 5.6: Efficient frontier for the inventory example: constant pseudo-temperature case (dotted
line) and linear increasing pseudo-temperature case (solid line).

optimal solutions to (5.26) with the original measure P replaced with P k can be shown to be

x∗P 1 =


w1a

1−αw2
· b−c
b+h if α < 1

w2
· c+h
b+h

a
α

(
α− c+h

b+h

)
if α ≥ 1

w2
· c+h
b+h ,

(5.27)

and

x∗P 2 =


a
(
1− w2

1−αw1
· c+h
b+h

)
if α < 1

w1
· b−c
b+h

a
α · b−c

b+h if α ≥ 1
w1

· b−c
b+h .

(5.28)

The suboptimalities S(x∗P , P
k) for k = 1, 2 can then be calculated. The resulting expressions are

too lengthy (and not very illuminating) to be given here. The resulting loss can be found as

B(gC,P , PV (C)) + L(gC,P , P ) = L(gP , P )− S(x∗P , PV (C)), (5.29)
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and the pseudo-energy content of answer Vα(C) is simply Y (Ω,C, P, Vα(C)) given by (3.22). Let

us set, for definiteness, c = 1, b = 1.5, h = 0.1 and a = 100. Then the EVPI of the original

problem is L(gP , P ) = 17.19. Let us also consider two information sources, described by the

modified linear model, with equal capacity of Ys = 0.2 (in the average unit pseudo-temperature

calibration) and same value of parameter b = 0.8. The first source is characterized by a constant

pseudo-temperature function u(ω) ≡ 1 and the second has linear increasing pseudo-temperature

u(ω) = 2
a · ω. The second source can be said to have relatively more “knowledge” about lower

values of possible demand.

We are interested in finding, for each source, an r = 2 question C = {C1, C2} an answer

to which would help the decision maker minimize the expected loss. This can easily be done nu-

merically, for example, by graphing the loss (5.29) against the answer depth Y (Ω,C, P, Vα(C)),

for different questions C (in this case, uniquely characterized by a single parameter w1). It turns

out (see Fig. 5.7 for an illustration) that the minimum loss at Y (Ω,C, P, Vα(C)) = Ys = 0.2 is

achieved for w1 = 0.25 for the first source and w1 = 0.21 for the second source. The minimum

loss itself turns out to be equal to L(V (C)) = 15.48 for the first source and L(V (C)) = 13.27 for

the second source, representing, respectively, 10% and 23% loss reduction from the original EVPI

of 17.19. Clearly, the reason the second source is able to help the decision maker significantly more

is that the latter is capable of utilizing the particular “expertise” of the second source by asking a

question that is easy for the source and thus can be answered relatively well (with error probability

α = 0.21). On the other hand, the first source answers its “best” question with error probability

of α = 0.56 which results – expectedly – in a lower loss reduction. Note that the difficulty of the

optimal question is equal to 0.80 for the first source and 0.41 for the second source, while the depth
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of the respective answer is equal to 0.2 (the source’s capacity) in both cases. Note also that, in the

modified linear model, a source can provide an answer of depth equal to capacity Ys whenever the

question difficulty exceeds the value Ys/b, i.e. the question has to be sufficiently difficult for the

source so that the latter can provide an answer of maximum depth.

Loss

Pseudo-energy

Loss

Pseudo-energy

Figure 5.7: Loss vs. pseudo-energy (for r = 2 questions only) for a source with constant pseudo-
temperature (left) and a source with linear increasing pseudo-temperature (right). On both plots,
the solid line is obtained by varying the parameter w1 from 0 to 1. The dashed line is obtained
by fixing a value of w1 and varying α from 0 to 1. The value of w1 (characterizing the optimal
question) is chosen so that the point of intersection of the dashed line and the vertical dotted line
(source capacity) has the lowest possible value of the vertical coordinate. The latter is equal to the
minimum expected loss L(V (C)).

5.5 Conclusion

In this chapter, we built on results obtained in Part I and explored the relationship between the

pseudo-energy content of information sources’ answers to decision maker’s questions and the re-

sulting minimum loss the decision maker can achieve for the problem being solved. For this purpose,

we studied maps from the problem parameter space Ω to its set X of feasible solutions. We defined

and studied several functionals of such maps, elements of the feasible solution set and probability

measures on the parameter space. It was shown that the minimum loss the decision maker can
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achieve upon reception of an information source’s answer to a certain question can be expressed via

these functionals. On the other hand, the pseudo-energy content of such answers can be obtained

if the source characteristics (such as pseudo-temperature function) are known. Therefore, to each

answer there corresponds a point in the pseudo-energy – loss coordinate plane and the problem of

optimal information acquisition can in principle be solved by finding – among all answers to all

possible questions – the answer (and the corresponding question) that would yield the minimum

loss but have depth not exceeding the source’s capacity (so that the source can actually provide this

answer). This problem appears to be rather complicated and it appears to be easier to begin from a

search for a subset of Pareto-optimal questions, i.e. questions that lie on the efficient frontier in the

pseudo-energy – loss coordinate plane. Put slightly differently, we imagine that a source can provide

a perfect answer to each question and search for questions that would give the minimum loss value

for each value of imaginary source capacity. If such efficient frontier is found, an optimal question

(the answer to which for the given source would yield the smallest loss) can be found approximately

by considering questions on the efficient frontier with difficulties of least the source capacity.

Thus the problem of additional information acquisition optimization reduces to that of finding

question that lie on the efficient frontier in the pseudo-energy – loss coordinate plane. It appears that

the latter problem is too complex to be solved exactly for any realistic size problem. Fortunately, it

turns out that methods based on probability metrics that were used in scenario reduction approaches

to stochastic optimization can be of use for approximate efficient frontier determination as well.
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Chapter 6

Solution Methods

6.1 Introduction

In this chapter, approximate solution methods for the problem of optimal information acquisition are

developed making use of the method of probability metrics and its application to scenario reduction

in stochastic optimization.

6.2 Information Acquisition Optimization

In the following, we assume that the (initial) probability measure P is supported at a discrete set

{ω1, . . . , ωN} ≡ ΩN ⊂ Ω:

P =
N∑
i=1

piδωi , (6.1)
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where δω is a Dirac delta that puts a unit mass at ω. Points ωi ∈ ΩN are usually referred to as

scenarios. The scenario reduction methodology (see Appendix C) is often used in stochastic opti-

mization to lower computational complexity of various practically important problems. In scenario

reduction approach, the original discrete measure P given by (6.1) is said to be reduced to another

discrete measure Q given by

Q =

M∑
j=1

qjδω̃j , (6.2)

if the support {ω̃1, . . . , ω̃M} of Q is a subset of ΩN .

For later convenience, we denote by RM (ΩN ) the set of all scenario reduction maps from the

set of measures of the form (6.1) supported at ΩN into the set of all measures of the form (6.2)

supported at some subset of ΩN of cardinality M < N satisfying the additional property that we

call simplicity. A map ν ∈ RM (ΩN ) is called simple if there exists a partition {S1, . . . , SM} of the

set of scenarios ΩN such that ν(ωi) = ω̃j for all ωi ∈ Sj and qj =
∑

{i:ωi∈Sj} pi. In such a case we

write Q = ν(P ) and Sj = ν−1(ω̃j) for j = 1, . . . ,M .

Additionally, if c: Ω × Ω → R+ is some symmetric cost function, we call a map ν ∈

RM (ΩN ) c-optimal if c(ωi, ν(ωi)) ≤ c(ωi, ν(ωj)), ∀i, j ̸= i. It is shown in [29] that the Monge-

Kantorovich functional (see Appendix A) µ̂c(P,Q) is minimized for all measures Q supported at

{ω̃1, . . . , ω̃M} = ν(ΩN ) if the corresponding simple scenario reduction map is c-optimal.

In the following we call measures P and Q C-equivalent for some partition C of Ω if P (C) =

Q(C) for all C ∈ C. It is easy to see that measures P and Q are C-equivalent for all possible

partitions C if and only if P = Q but two distinct measures can easily be C-equivalent for a

specific partition C. In particular, any two measures on Ω are C-equivalent if C is the trivial

partition C = {Ω}.
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Given measure P on Ω and some measure Q that was obtained from P by a reduction, let us

denote by Q(Q|P ) the virtual pseudo-energy content of measure Q relative to P . It is defined as

follows

Q(Q|P ) = G(Ω,Cf (P ), P )−G(Ω,Cf (Q), Q), (6.3)

i.e. Q(Q|P ) is the difference between the difficulties of exhaustive questions associated with mea-

sures P and Q, respectively. One can think about the virtual pseudo-energy of Q relative to P as

an amount pseudo-energy a source would need to supply in order to obtain a new state in which

the hardest possible question has a difficulty equal to G(Ω,Cf (Q), Q). Since no question is in fact

answered in going from measure P to the reduced measure Q we call this pseudo-energy virtual.

We can now introduce the virtual difficulty of question C for measure Q with respect to measure

P :

GP (Ω,C, Q) = Q(Q|P ) +G(Ω,C, Q). (6.4)

In particular, GP (Ω,C, P ) = G(Ω,C, P ), i.e. the virtual difficulty of C for measure P relative to

P reduces just to the standard difficulty of C.

It also turns out to be useful to introduce the relative expected loss for partitions of Ω and

measures Q obtained from the original measure P by a (simple) scenario reduction operation. In

other words, we assume that there exists ν ∈ RM (ΩN ) for some value of M < N such that

Q = ν(P ). The relative (to measure P ) expected loss of partition C and measure Q is then defined

as follows.

LP (C, Q) =
∑
C∈C

P (C)L(gC,Q, P ), (6.5)

where gC,Q is the subset-optimal map for partition C and measure Q. In particular, if C is the
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trivial partition C = {Ω}, the loss of Q relative to P is simply1 LP (Q) = L(gQ, P ). If the measure

Q coincides with P , the loss relative to P is just the standard expected loss of the corresponding

subset-optimal map: LP (C, P ) = L(gC,P , P ).

Let us now consider the following construction. Reduce the original measure P to Q that is

supported at r points: Q = ν(P ), where ν ∈ Rr(ΩN ). Let Q =
∑r

j=1 qjδω̃j and let Sj the

preimage of ω̃j under map ν: ν(ωi) = ω̃j for all ωi ∈ Sj . Then let C be a partition of Ω such that

Sj ⊂ Cj for j = 1, . . . , r. We say that the partition C is generated by the map ν ∈ Rr(ΩN ), or,

equivalently by the reduction of measure P to Q. Let Ĉ be an arbitrary coarsening of C.

We are interested in the location of points P , Q, (C, P ), (C, Q), (Ĉ, P ) and (Ĉ, Q) on the

plane with coordinates (GP (Ω, ·), LP (·)). First of all, it is clear that GP (Ω, P ) = 0 and LP (P ) =

L(gP , P ) where L(gP , P ) is the EVPI of problem (1.1). Second, it is also clear that

GP (Ω,C, Q) = Q(Q|P ) +G(Ω,C, Q)

= G(Ω,Cf (P ), P )−G(Ω,Cf (Q), Q) +G(Ω,C, Q)

= G(Ω,Cf (P ), P )

(6.6)

since C = Cf (Q) by construction of Q. In words, the virtual difficulty of the question C for

measure Q where the partition C was generated by a reduction of the original measure P to Q is

equal to the difficulty of the exhaustive question for the original measure P .

To obtain relationships between relative expected losses the following two auxiliary lemmas are

needed.

Lemma 6.1 Let cij = cji, i, j = 1, . . . , N be a symmetric matrix with elements cij satisfying the

1Here and later we omit the trivial partition from the list of arguments of G(·) and L(·).
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triangle inequality cij ≤ cik + ckj . Let {pi}Ni=1 be a probability distribution. Then

N∑
i=1

N∑
j=1

pipjcij ≤ 2min
i

N∑
j=1

pjcij .

Proof: Let i∗ = argmini
∑N

j=1 pjcij (so that mini
∑N

j=1 pjcij =
∑N

j=1 pjci∗j). Then we can

write

N∑
i=1

N∑
j=1

pipjcij
(a)

≤
N∑
i=1

N∑
j=1

pipj(cii∗ + ci∗j)

=

N∑
i=1

N∑
j=1

pipjcii∗ +

N∑
i=1

N∑
j=1

pipjci∗j

=

N∑
j=1

pj

N∑
i=1

pici∗i +

N∑
i=1

pi

N∑
j=1

pjci∗j

(b)
= 2min

i

N∑
j=1

pjcij ,

where (a) follows from the triangle inequality satisfied by the elements cij and (b) follows from the

definition of i∗.

The second lemma states a useful probability metrics result. Let P =
∑N

i=1 piδωi be a discrete

support probability measure on Ω and let Q =
∑M

i=1 qiδω̃i be another such measure. Let ζc(P,Q) be

a Fortet-Mourier metric for some cost function c : Ω× Ω → R+ that satisfies conditions described

in Appendix B. Finally, let C = {C1, . . . , Cr} be a partition of Ω such that the measures P and Q

are C-equivalent.

Lemma 6.2 Under assumptions described above,
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1. ζc(P,Q) ≤
∑r

j=1wjζc(PCj , QCj ), where wj = P (Cj) = Q(Cj).

2. If Q is generated by some map ν ∈ Rr(ΩN ) that is ĉ-optimal, where ĉ is the reduced cost

function defined as in (B.8) then

ζc(P,Q) =
∑r

j=1wjζc(PCj , QCj ).

Proof: The first statement actually holds true for any measures P,Q ∈ Pc(Ω) (see Appendix B

for the definition of Pc(Ω)). Indeed, let f∗(ω) ∈ Fc be the function that achieves the maximum of

∣∣∣∣∫
Ω
f(ω)P (dω)−

∫
Ω
f(ω)Q(dω)

∣∣∣∣ .
Let f∗

j (ω) be the restriction of f∗(ω) to Cj . Clearly, f∗
j (ω) ∈ Fc(Cj). We can write

ζc(P,Q) =

∣∣∣∣∫
Ω
f∗(ω)P (dω)−

∫
Ω
f∗(ω)Q(dω)

∣∣∣∣
(a)
=

r∑
j=1

wj

∣∣∣∣∣
∫
Cj

f∗(ω)dPCj (ω)−
∫
Cj

f∗(ω)dQCj (ω)

∣∣∣∣∣
(b)
=

r∑
j=1

wj

∣∣∣∣∣
∫
Cj

f∗
j (ω)dPCj (ω)−

∫
Cj

f∗
j (ω)dQCj (ω)

∣∣∣∣∣
(c)

≤
r∑

j=1

wjζc(PCj , QCj ),

where (a) follows from the definition of conditional measures PCj and QCj , (b) follows from

the definition of functions f∗
j (ω), and (c) follows from that f∗

j (ω) ∈ Fc(Cj) and definition of

ζc(PCj , QCj ).

To prove the second statement, we can use the duality result (B.5) described in Appendix B

together with (B.10) that relates the values of Kantorovich-Rubinstein and Monge-Kantorovich

functionals. Let ν ∈ Rr(ΩN ) be the map that generates partition C, and let ω̃j = ν(ωi) for all
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ωi ∈ Cj . Note also that qj =
∑

{i:ωi∈Cj} pi = wj , j = 1, . . . , r. We can write

r∑
j=1

wjζc(PCj , QCj )
(a)
=

r∑
j=1

wjµ̂ĉ(PCj , QCj )
(b)
=

r∑
j=1

wj

∑
{i:ωi∈Cj}

pi
wj

ĉ(ωi, ω̃j)

=
r∑

j=1

∑
{i:ωi∈Cj}

piĉ(ωi, ω̃j)
(c)
= µ̂ĉ(P,Q)

(d)
= ζc(P,Q),

where (a) and (d) follow from (B.5) and (B.10), (b) follows from that QCj is supported at a single

point ω̃j , (c) follows from the way measure Q was constructed as a reduction of the measure P with

a ĉ-optimal map ν ∈ Rr(ΩN ).

Now, assume that the integrand f(ω, x) in (1.1) is in class Fc defined in Appendix B (expression

(B.3)) for some symmetric cost function c : Ω × Ω → R+ that satisfies the conditions described

in Appendix B. The following proposition describes a relation between relative expected losses for

measures P and Q.

Proposition 6.1 Let C be a partition of Ω generated by a reduction of a measure P with support at

ΩN ⊂ Ω to Q by means of a ĉ-optimal map ν ∈ Rr(ΩN ) and let Ĉ any coarsening of C (including

C itself). Then

LP (Ĉ, Q) ≤ LP (Ĉ, P ) + 2ζc(P,Q),

Proof: Let wj = P (Ĉj) = Q(Ĉj) be the measure of subsets in Ĉ and let Pj ≡ PĈj
and
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Qj ≡ QĈj
be the corresponding subset measures

LP (Ĉ, Q) =

r∑
j=1

wj

[∫
Ĉj

f(ω, x∗Qj
)Pj(dω)−

∫
Ĉj

f(ω, x∗ω)Pj(dω)

]

=

r∑
j=1

wj

[∫
Ĉj

f(ω, x∗Qj
)Pj(dω)−

∫
Ĉj

f(ω, x∗ω)Pj(dω)

+

∫
Ĉj

f(ω, x∗Pj
)Pj(dω)−

∫
Ĉj

f(ω, x∗Pj
)Pj(dω)

]
(a)
= LP (Ĉ, P ) +

r∑
j=1

wj

[∫
Ĉj

f(ω, x∗Qj
)Pj(dω)−

∫
Ĉj

f(ω, x∗Pj
)Pj(dω)

]

= LP (Ĉ, P ) +

r∑
j=1

wj

[∫
Ĉj

f(ω, x∗Qj
)Pj(dω)−

∫
Ĉj

f(ω, x∗Pj
)Pj(dω)

+

∫
Ĉj

f(ω, x∗Qj
)Qj(dω)−

∫
Ĉj

f(ω, x∗Qj
)Qj(dω)

]
(b)
= LP (Ĉ, P ) +

r∑
j=1

wj

[
v(Qj)− v(Pj) +

∫
Ĉj

f(ω, x∗Qj
)(Pj −Qj)(dω)

]

≤ LP (Ĉ, P ) +

r∑
j=1

wj |v(Qj)− v(Pj)|+
r∑

j=1

wj

∣∣∣∣∣
∫
Ĉj

f(ω, x∗Qj
)(Pj −Qj)(dω)

∣∣∣∣∣
(c)

≤ LP (Ĉ, P ) +
r∑

j=1

wjζc(Pj , Qj) +
r∑

j=1

wjζc(Pj , Qj)

= LP (Ĉ, P ) + 2
r∑

j=1

wjζc(Pj , Qj)

(d)
= LP (Ĉ, P ) + 2ζc(P,Q),

where (a) follows from the definition of LP (Ĉ, P ), (b) follows from the definition of the optimal

objective values v(Pj) and v(Qj), (c) follows from that the integrand f(ω, x) is in Fc and definition

(B.4) of Fortet-Mourier metric ζc, and (d) follows from Lemma 6.2.

If we use the trivial partition Ĉ = {Ω} (which is obviously a coarsening of any C) in Proposi-

tion 6.1 we can obtain an upper bound on the relative loss of Q with respect to P which we formulate
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as a corollary.

Corollary 6.1 The loss of reduced measure Q relative to P can be bounded from above as

LP (Q) ≤ L(gP , P ) + 2ζc(P,Q),

where L(gP , P ) ≡ LP (P ) is the EVPI of the original problem (1.1).

The following proposition relates the expected loss of a subset-optimal map based on a partition

generated by a reduction of the original measure P to measure Q to the Fortet-Mourier distance

between P and Q.

Proposition 6.2 Let C be a partition of Ω generated by a reduction of a measure P supported at

the discrete set ΩN ⊂ Ω to measure Q by means of a ĉ-optimal map ν ∈ Rr(ΩN ). Then

LP (C, P ) ≡ L(gC,P , P ) ≤ 2ζc(P,Q),

Proof: Let wj = P (Cj) = P (Qj), j = 1, . . . , r be measures of subsets in C and let Pj and Qj
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be the corresponding subset measures.

L(gC,P , P ) =

r∑
j=1

wjL(gPj , Pj) =

r∑
j=1

wj

∫
Cj

(
f(ω, x∗Pj

)− f(ω, x∗ω)
)
Pj(dω)

=

r∑
j=1

wj

∑
{i:ωi∈Cj}

pi
wj

(
f(ωi, x

∗
Pj
)− f(ωi, x

∗
ωi
)
)

(a)
=

r∑
j=1

wj

 ∑
{i:ωi∈Cj}

(Pj)i v(Pj)−
∑

{i:ωi∈Cj}

(Pj)i v(δωi)


=

r∑
j=1

wj

∑
{i:ωi∈Cj}

(Pj)i (v(Pj)− v(δωi))

(b)

≤
r∑

j=1

wj

∑
{i:ωi∈Cj}

(Pj)i ζc(Pj , δωi)

(c)
=

r∑
j=1

wj

∑
{i:ωi∈Cj}

(Pj)i µ̂ĉ(Pj , δωi) =
r∑

j=1

wj

∑
{i:ωi∈Cj}

(Pj)i
∑

{k:ωk∈Cj}

(Pj)k ĉ(ωi, ωk)

(d)

≤ 2

r∑
j=1

wj min
{k:ωk∈Cj}

∑
{i:ωi∈Cj}

(Pj)i ĉ(ωi, ωk) = 2

r∑
j=1

wj min
{k:ωk∈Cj}

µ̂ĉ(Pj , δωk
)

(e)
= 2

r∑
j=1

wjµ̂ĉ(Pj , Qj) = 2

r∑
j=1

wjζc(Pj , Qj)
(f)
= 2ζc(P,Q),

where (Pj)i ≡ pi
wj

for ωi ∈ Cj , (a) follows from the definition of optimal values v(Pj) and v(δωi),

(b) follows from the upper bound (B.11), (c) follows from the duality relation (B.5) and from the re-

lation (B.10) between the Kantorovich-Rubinstein and Monge-Kantorovich functionals, (d) follows

from Lemma 6.1 (since ĉ is a metric and {(Pj)i}{i:ωi∈Cj} is a probability distribution), (e) follows

from that Q = ν(P ), where ν is ĉ-optimal, and (f) follows from Lemma 6.2.

Fig. 6.1 shows the locations of various points on (GP (Ω, ·, ·), LP (·, ·)) coordinate plane. Sev-

eral useful observations can now be made.
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2µ̂(P,Q)

Q

(Ĉ, Q)

2µ̂(P,Q)

2µ̂(P,Q)

(C, Q)

LQ(·, ·)

(Ĉ, P )

(C, P )

2µ̂(P,Q)

P

LP (·, ·)

LP (gP , P )

G(Ω,Cf (P ), P )

GP (Ω, ·, ·)

Figure 6.1: Pseudo-energy (including virtual pseudo-energy) vs. relative loss.

• The result of Proposition 6.2 suggests that good (near-optimal) partitions of Ω can be gener-

ated by a reduction of the original measure P to a measure Q that is (i) supported at a few

points and (ii) has a low value of the Fortet-Mourier metric ζc(P,Q) = µ̂ĉ(P,Q). The latter

value of the Monge-Kantorovich functional µ̂ĉ(P,Q) with the reduced cost ĉ can be readily

computed as that of a minimum-cost transportation problem.

• For a wide class of linear multi-period two stage stochastic optimization problems, the rele-

vant cost function c is given by cp (see Appendix B, expression (B.12)) with p = l+1 where

l is the number of periods. The corresponding minimum cost transportation problem can be

easily solved exactly for fixed support of measure Q and approximately if the support itself

needs to be optimized (see Appendix C for details).

• The optimality “price” one pays for scenario reduction from the original measure P to a

simpler measure Q – which can be thought of as adding information that’s minimally rele-

vant to the problem in question without actually finding it – can be estimated by the amount
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2µ̂ĉ(P,Q). This implies, in particular that one could do a scenario reduction before starting

the search for the efficient frontier. In fact, scenario reduction and additional information ac-

quisition are complementary to each other in the sense of information: scenario reduction, as

already mentioned can be thought of as an addition of information that’s minimally relevant

as opposed to information acquisition optimization, where one looks for small amounts of

maximally relevant information.

6.3 Methods for Determining the Efficient Frontier

As was discussed earlier, an approximate solution to the optimal information acquisition problem

(5.19) can be greatly facilitated by finding the efficient frontier L∗(γ) of maps from Ω into X . The

problem of finding the efficient frontier (5.12) appears to still be sufficiently complex to warrant

a search for approximate solutions. Using Proposition 5.1, one can reduce the scope of search to

subset-optimal maps g ∈ C only.

On the other hand, obviously, not all maps in the set C belong to the set O of Pareto-optimal

map defining the efficient frontier. We call partition C optimal if the corresponding map g =

({C1, . . . , Cr}, {x∗P1
, . . . , x∗Pr

}) ∈ C belongs to the set O of Pareto-optimal maps. So the problem

of finding maps in the set O is equivalent to that of searching for optimal partitions of the set Ω.

Proposition 6.2 provides a useful tool for approximating the efficient frontier. We can use the

following algorithm (here and later we assume that the original measure P on Ω has a support at a

discrete set ΩN ⊂ Ω consisting of N points).

(i) Choose an integer parameter r ≥ 2.
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(ii) Choose an appropriate cost function c: Ω× Ω → R+ such that f(ω, x) ∈ Fc for all x ∈ X .

Let ĉ be the corresponding reduced cost function.

(iii) Reduce the original measure P to measure Q supported at r points in the set ΩN , i.e. find a

ĉ-optimal map ν ∈ Rr(ΩN ) such that Q = ν(P ).

(iv) Let C be any partition of Ω generated by the map ν.

(v) Let the map gC,P ∈ C be a subset-optimal map corresponding to partition C.

Varying the value of parameter r from 2 upwards one can obtain a series of maps in the set C

that are (approximately) Pareto-optimal. Step 2 of the above algorithm is essential for its feasibility.

For example, if the problem (1.1) is a linear multi-period stochastic optimization problem, the cost

function of the form (B.12) can be used. In step 3, finding the measure Q supported at r points that

minimizes the value of Monge-Kantorovich functional µ̂ĉ(P,Q) is an NP-hard problem [29] but

approximate algorithm such as fast forward selection algorithm are available (see Appendix B).

Using the algorithm described above, one can obtain one approximately Pareto-optimal map for

each value of the chosen integer parameter. If more Pareto-optimal maps are needed (especially in

the region with lower values of pseudo-energy) additional heuristics can be used. For instance, one

could begin with the algorithm described above for some relatively high value of r and then merge

some of the resulting subsets into one giving rise to a partition with a lower value of r. Clearly,

this can be done in Br − 1 ways, where Bn is the n-th Bell number which is just the number of

all different partitions of a set consisting of n elements and that can be found from the recursive

relation Bn+1 =
∑n

k=0

(
n
k

)
Bk and B0 = 1. (For example, the Bell number for the lower values of

n are B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877, B8 = 4140.)
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We see that if the original chosen value of r is not very high this would lead to a manageable

number of partitions. Additionally, scenario reduction can be used to reduce computational com-

plexity of finding the values x∗PC
for subsets C of resulting partitions. On the other hand, if the

original value of r makes evaluation of all maps that can be obtained this way computationally pro-

hibitive, a heuristic algorithm described by the following pseudo-code can be used. It finds another

partition, with a lower value of r, so that the subset merging procedure can be applied.

Algorithm 1: Approximation to Pareto-optimal boundary.
Input:
C = {C1, . . . , Cr},
{ω1, . . . , ωr|ωi ∈ Ci} ⊂ Ω,
choose an integer n such that 1 ≤ n ≤ r − 2.

Step 0:
J [0] := {1, . . . r},
C′ := {C ′

1, . . . , C
′
n+1} such that C ′

i := ∅, ∀ i,
calculate ĉp(ωi, ωj), ∀ i, j ∈ J [0].

Step k = 1, . . . , n:
foreach i ∈ J [k−1] do

c̄p(i) :=
1

|J [k−1]|
∑

j∈J [k−1] ĉp(ωi, ωj),
end
uk := argmaxi∈J [k−1] c̄p(i),
J [k] := J [k−1]\{uk},
C ′

k := Cuk
.

The goal of the algorithm represented by the pseudo-code is to identify subsets which are locally

compact but as far away from one another as possible. In each step k, we find the average distance

c̄p of each subset center remaining in the index set J [k−1] to only the other remaining centers. The

center, and therefore the associated subset, with the largest average distance is chosen and removed

from the set J [k−1]. The remaining subsets are then merged into a single set.

So far the pseudo-temperature function u has not been taken into account. It is clear, on the other
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hand, that it will in general affect the composition of the set O of Pareto-optimal maps. In order to

properly incorporate the pseudo-temperature function into the heuristics described above, one could

note that the questions difficultly is generally smaller when subsets with high pseudo-temperature

values have large measures as well. In other words, if one wishes to keep the question difficulty low,

one should avoid creating subsets of small measure in regions of the parameter space characterized

with high pseudo-temperature values. To facilitate creation of such subsets, one could, for example

modify the (reduced) cost function ĉ in the following way

ĉ(ωi, ωj) →
ĉ(ωi, ωj)

fc(u(ωi), u(ωj)
, (6.7)

where fc: R+ × R+ → R+ is some increasing function of its arguments. The specific shape of fc

can be determined experimentally, and several shapes can be tried for every given instance assuming

computational resources are not a limiting factor.

6.4 Example

Let us consider an example. The original problem is a that of two-stage linear stochastic optimiza-

tion with simple recourse taken from a well-known textbook [6]. The problem is for a farmer to

allocate the appropriate amount of land between wheat, corn and sugar beets in order to maximize

profits. The farmer knows that at least 200 tons of wheat and 240 tons of corn must be grown for

cattle feed. If not enough is grown to satisfy this demand, both wheat and corn can be bought for

$238 and $210 per ton, respectively. Any excess above the demand can be sold for $170 and $150

per ton of wheat and corn, respectively. It costs $150 per acre to plant the wheat and $230 per acre
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to plant the corn. The farmer can also grow sugar beets that sell for $36 per ton. However, there is a

quota of 6000 tons and any amount grown above this may only be sold at $10 per ton. It costs $260

per acre to plant sugar beets. The farmer has 500 acres available.

The problem can be stated as:

minimize 150x1 + 230x2 + 260x3 + EPQ(x,Ω) (FP)

subject to x1 + x2 + x3 ≤ 500

x1, x2, x3 ≥ 0,

where the second stage problem for a specific scenario can be written

Q(x, s) = minimize{238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4}

subject to ω1(s)x1 + y1 + w1 ≥ 200

ω2(s)x2 + y2 + w2 ≥ 240

w3 + w4 ≤ ω3(s)x3

w3 ≤ 6000

y1, y2, w1, w2, w3, w4 ≥ 0,

where ωi(s) represents the yield of crop i := 1, 2, 3 for wheat, corn, and sugar beets, respectively,

under scenario s; xi are the acres of land to devote to each crop i; y1, y2, are tons of wheat and corn,

respectively, purchased to meet cattle feed requirements; w1, w2, w3, w4 are tons of wheat, corn,

sugar beets below quota, and sugar beets above quota, respectively, sold for profit.
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The problem has been modified in order to create the illustrative example used below. In this

example, only wheat and sugar beet yields are uncertain. Each is allowed to take five different

values of yields resulting in 25 scenarios. For the sake of convenience, we assume that the corn

yield is non-random and is equal to 3 tons per acre, while for both wheat and beets the average yield

equal to 2.5 and 20, respectively, has a probability of 0.30. The yield for both of these cultures

can be either higher or lower than average by 20% with probability 0.20 and also can be higher or

lower than average by 30% with probability 0.15. The yields for wheat and beets are assumed to be

independent.

The resulting uncertain yields are summarized below:

wheat (ω1) [1.75, 2.00, 2.50, 3.00, 3.25] w.p. (0.15,0.20,0.30,0.20,0.15),

corn [3] w.p. (1),

sugar beets (ω2) [14, 16, 20, 24, 26] w.p. (0.15,0.20,0.30,0.20,0.15).

Also, let us assume that the pseudo-temperature function u(ω1, ω2) is given as

u(i, j) = i · j0.5, ∀ i, j ∈ 1, . . . , 5, (6.8)

where i, j are the indices referencing the uncertain yields of wheat and sugar beets, respectively

(where the smallest value of the uncertain yield corresponds to i = 1 (j = 1) and the largest

yield corresponds to i = 5 (j = 5)). The pseudo-temperature function is then normalized so that

EPu(ij) = 1. Fig. 6.2 shows a plot of the pseudo-temperature function.

The efficient frontier can be approximated by using the scenario reduction based algorithm

described in the previous section together with subset merging heuristics. The resulting maps are

shown in Fig. 6.3 for the case of constant pseudo-temperature. The resulting approximate efficient
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Figure 6.2: Pseudo-temperature function given for the farmer land allocation problem with uncer-
tainty residing in the yields of wheat and sugar beets.

frontier both for constant pseudo-temperature function and for the pseudo-temperature given shown

in Fig. 6.2 are shown in Fig. 6.4.

Now consider an information source described by the modified linear model with parameters

b = 0.8 and Ys = 0.2 (which is a rather modest capacity value). We would like to find out how much

the original loss can be reduced by optimally using such an information source. In other words, we

want to solve problem (5.19). For this purpose one can take questions on the (approximate) efficient

frontier and plot parametric curves (Y (Ω,C, P, Vα(C)),L(Vα(C))) where L(Vα(C)) is given by

Proposition 5.3. The question yielding the lowest point of intersection of such a curve with the

vertical line G = Ys will give an approximate solution of problem (5.19).

Results for the case of constant pseudo-temperature are shown in Fig. 6.5. The parametric

curves for three questions (all three with r = 2) are produced. We can see that the lowest value of

the expected loss that can be obtained this way is equal to 7250 which constitutes a reduction of

about 14%.
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Figure 6.3: Maps that are generated by scenario reduction for various values of r (solid dots),
scenario reduction for r = 5 with subsequent subset merging (crosses), scenario reduction to r =
10, reducing to r = 5 using the pseudo-code and subsequent subset merging (circles). Pseudo-
temperature function is set to a constant.

For the case of non-constant pseudo-temperature are shown in Fig. 6.6. Analogously, three

r = 2 questions were chosen on the approximate efficient frontier and the corresponding parametric

curves plotted. The best curve is observed to intersect the vertical line G = 0.2 at the value of

vertical coordinate equal to about 6900 which represents a reduction of about 18% compared to the

EVPI of 8450 of the original problem.

6.5 Conclusion

This chapter develops (approximate) methods for solving the problem of optimizing additional in-

formation acquisition in decision making problems with uncertainty that are typically solved using
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Figure 6.4: Approximate efficient frontiers for the constant pseudo-temperature function (solid line)
and pseudo-temperature shown in Fig. 6.2.

stochastic optimization techniques. It represents a logical continuation of the developments pre-

sented in Chapter 5. The main problem that was formulated there is that of finding an efficient

frontier in pseudo-energy – loss coordinate plane and to determining the question(s) that would

allow to minimize the expected loss for the given (stochastic optimization) problem and a given

information source.

The solution methods proposed in this paper are based on the method of probability metrics and

their application for scenario reduction in stochastic optimization. The main idea is that, informally

speaking, optimal scenario reduction on one hand and optimal information acquisition on the other

hand are complementary. More specifically, in scenario reduction the goal is reproduce the overall

shape of the original probability distribution as faithfully as possible with a small fraction of the

original scenarios. In information acquisition, the goal is to identify the types of uncertainty encoded

by the original probability distribution the reduction of which would have the largest effect on the
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Figure 6.5: Part of approximate efficient frontier and parametric loss curves for quasi-perfect an-
swers to three different questions for the case of constant pseudo-temperature.

solution quality. It turns out that these types of uncertainty are associated with the “overall shape”

of the distribution (as opposed to “local details”) which scenario reduction strives to preserve.

This allows us to develop simple approximate algorithms for determining the efficient frontier

(and for finding optimal questions for the given information source) with the help of existing sce-

nario reduction algorithms. The methods described in this chapter are shown to work for the class

of linear multi-period two stage stochastic optimization problems and should generalize relatively

easily to other problem classes for which scenario reduction based on probability metrics was shown

to be possible such as chance constrained and two-stage integer stochastic optimization problems.
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Figure 6.6: Part of approximate efficient frontier and parametric loss curves for quasi-perfect an-
swers to three different questions for the case of non-constant pseudo-temperature shown in Fig. 6.2.
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Appendix A

Parallels with Thermodynamics

Imagine an ideal gas contained in container A with unit volume V = 1 and held at temperature T

(see Fig. A.1 for an illustration). There is a “marked” molecule. Let C ⊂ A be a part of the original

container that has volume V < 1. We are interested in whether the molecule of interest is located

in C or otherwise. A “constructive” way of reducing this uncertainty is compressing the original

container so that all gas – including the special molecule – is in C with certainty.

The energy conservation law reads dQ = pdV + dU , where dQ is the (infinitesimal) heat

transferred to the gas, pdV is the work done by the gas and dU is the increment of the gas internal

energy. If we insist that the gas be kept at constant temperature T then (since the gas is ideal)

C

A

C

A

Figure A.1: Gas in container A is compressed from original unit volume to volume V < 1. The
marked molecule is shown as a shaded circle.

160



dU = 0 and the energy conservation law reduces to

dQ = pdV. (A.1)

The ideal gas equation of state reads pV = νRT where p is the pressure, ν is the amount of

substance (in moles) and R is the ideal gas constant. We can use the equation of state to express

pressure as a function of the gas volume:

p(V ) =
νRT

V
. (A.2)

Substituting (A.2) into (A.1) we can obtain for the amount of heat transferred to the gas while its

volume is educed from 1 to V at constant temperature T :

∆Q =

∫ V

1
p(V )dV = νRT

∫ V

1

dV

V
= νRT lnV = νRT (ln 2) log V < 0,

implying that the amount of heat equal to

−∆Q = ln 2 νRT log
1

V
> 0 (A.3)

is taken away from the gas. We can note now that V = P (C) where P (·) is the uniform measure

on A describing the initial information on the location of the marked molecule in A. Comparing

expression (A.3) with that for the difficulty of a free-response question C

G(Ω, C, P ) = u(C) log
1

P (C)
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we see that (i) the value u(C) plays the role of temperature and (ii) the question difficulty can be

thought of as the energy-like quantity that is similar to the thermal energy (heat) that has to be taken

away from the system in order to reduce uncertainty about the microstate that can be characterized

by entropy. The latter is related to heat by the relationship dQ = TdS, where S stands for the

thermodynamic entropy. Thus, the higher temperature is the larger the amount of heat that has to be

dissipated in order to reduce entropy. Therefore temperature can be interpreted as (thermal) energy

per unit of entropy. In application to inquiry, respectively, the pseudo-temperature u(·) can be

thought of as the amount of pseudo-energy (difficulty) per unit of Shannon entropy that represents

the purely informational quantity measuring the minimum expected number of bits that is necessary

to communicate a perfect answer to the given question.
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Appendix B

Probability metrics and stability in

stochastic optimization

Consider the problem (1.1). Let P(Ω) be the set of all Borel probability measures on Ω and define

v(P ) = inf

{∫
Ω
f(ω, x) dP (ω) : x ∈ X

}

and

S(P ) =

{
x ∈ X :

∫
Ω
f(ω, x) dP (ω) = v(P )

}

to be the optimal value and optimal solution set of (1.1), respectively.

Let’s also define (as in, for example, [53])

F = {f(·, x) : x ∈ X}
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and

PF(Ω) =

{
Q ∈ P : −∞ <

∫
Ω

inf
x∈X∩ρB

f(ω, x)Q(dω) and

sup
x∈X∩ρB

∫
Ω
f(ω, x)Q(dω) < ∞, for all ρ > 0

}
,

where B is the closed unit ball in Rn.

Then the probability distance of the form

dF,ρ(P,Q) = sup
x∈X∩ρB

∣∣∣∣∫
Ω
f(ω, x)P (dω)−

∫
Ω
f(ω, x)Q(dω)

∣∣∣∣ (B.1)

can be defined on PF(Ω). This distance is called Zolotarev’s pseudometric with ζ-structure [62, 49,

50, 51]. The pseudometric (B.1) would become a metric if the class F were rich enough so that

dF,ρ(P,Q) = 0 implies P = Q.

Theorem 2 in [15] states that if P,Q ∈ PF, S(P ) is nonempty and bounded then there exist

ρ > 0 and δ > 0 such that

|v(P )− v(Q)| ≤ dF,ρ(P,Q) (B.2)

is valid for all Q ∈ PF such that dF,ρ(P,Q) < δ.

The distance dF,ρ in (B.2) is typically difficult to handle since the class of functions F is de-

termined by the specific integrand f(ω, x) for the given instance of problem (1.1). The main idea

underlying the use of the probability metrics method for the study of stability and for scenario re-

duction in stochastic programming is to suitably enlarge the class F so that it still shares its main

analytical properties with functions f(·, x). Such properly enlarged classes are sometimes referred

to as canonical classes and the corresponding metrics are sometimes called canonical metrics.
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Consider, for instance the class Fc of continuous functions defined as

Fc = {f : Ω → R : |f(ω)− f(ω̃)| ≤ c(ω, ω̃), for all ω, ω̃ ∈ Ω} , (B.3)

where c: Ω × Ω → R+ is a continuous symmetric function such that c(ω, ω̃) = 0 if and only if

ω = ω̃. Then the corresponding (pseudo-) metric has the form

ζc(P,Q) ≡ dFc(P,Q) = sup
f∈Fc

∣∣∣∣∫
Ω
f(ω)P (dω)−

∫
Ω
f(ω)Q(dω)

∣∣∣∣ (B.4)

and is known as Fortet-Mourier metric. If the cost function c(ω, ω̃) satisfies additional boundedness

and continuity conditions:

• c(ω, ω̃) ≤ λ(ω) + λ(ω̃) for some λ: Ω → R+ mapping bounded sets into bounded sets,

• sup{c(ω, ω̃) : ω, ω̃ ∈ Bϵ(ω0), ||ω,−ω̃|| ≤ δ} → 0 as δ → 0 for each ω0 ∈ Ω, where

Bϵ(ω0) is the ϵ-ball centered at ω0,

the Fortet-Mourier metric (B.4) admits a dual representation as the Kantorovich-Rubinstein func-

tional [48]:

ζc(P,Q) =
◦
µc(P,Q) = inf

{∫
Ω×Ω

c(ω, ω̃)η(dω, dω̃),

η ∈ P(Ω× Ω), π1η − π2η = P −Q

}
, (B.5)

where π1 and π2 denote projections on first and second components, respectively. It is straight-

forward to show that the Kantorovich-Rubinstein functional (B.5) can be upper-bounded by the
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Monge-Kantorovich functional:

◦
µc(P,Q) ≤ µ̂c(P,Q) = inf

{∫
Ω×Ω

c(ω, ω̃)η(dω, dω̃),

η ∈ P(Ω× Ω), π1η = P, π2η = Q

}
, (B.6)

and that the bounds becomes tight, (i.e.
◦
µc(P,Q) = µ̂c(P,Q)) if the cost function c(ω, ω̃) is a metric

on Ω [42, 46]. The problem of finding the minimum in (B.6) is known the Monge-Kantorovich mass

transportation problem.

Note that if measures P and Q are discrete (P =
∑N

i=1 piδωi and Q =
∑M

j=1 qiδω̃j ), the

Monge-Kantorovich functional (B.6) takes the following form:

µ̂c(P,Q) = min


N∑
i=1

M∑
j=1

c(ωi, ω̃j)ηij : ηij ≥ 0,

N∑
i=1

ηij = qj ,

M∑
j=1

ηij = pi ∀i, j


= max


N∑
i=1

piui +

M∑
j=1

qjvj : ui + vj ≤ c(ωi, ω̃j) ∀i, j


(B.7)

Given the cost function c(ω, ω̃) one can define the reduced cost ĉ(ω, ω̃) on Ω× Ω by

ĉ(ω, ω̃) = inf

{
m−1∑
i=1

c(ωi, ωi+1) : m ∈ N, ωi ∈ Ω, ω1 = ω, ωm = ω̃

}
. (B.8)

It can easily be shown that the reduced cost function ĉ(ω, ω̃) is a metric (since it satisfies the triangle

inequality) on Ω and that ĉ(ω, ω̃) ≤ c(ω, ω̃) with the inequality being tight when c(ω, ω̃) is also a

metric.

It can also be shown (see [50], chapter 4) that if Ω is compact with analytic sublevel sets then

the Kantorovich-Rubinstein functional (B.5) with the reduced cost function ĉ coincides with the
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Kantorovich-Rubinstein functional with the original cost function c (the result referred to as the

reduction theorem):

◦
µĉ(P,Q) =

◦
µc(P,Q). (B.9)

Since the reduced cost is a metric on Ω we have
◦
µĉ(P,Q) = µ̂ĉ(P,Q) and, comparing with (B.9)

we conclude that, for compact parameter spaces with analytic sublevel sets, the equality

◦
µc(P,Q) = µ̂ĉ(P,Q) ≤ µ̂c(P,Q) (B.10)

holds true.

We thus arrive at the following useful stability result. If the integrand in problem (1.1) belongs

to class Fc for all x ∈ X for some cost function c satisfying additional boundedness and continuity

conditions described earlier in the appendix, then the estimate

|v(P )− v(Q)| ≤ ζc(P,Q) =
◦
µc(P,Q) = µ̂ĉ(P,Q) (B.11)

is valid for Borel measures P and Q in Pc(Ω) on compact Ω characterized with analytic sublevel

sets. (Here Pc(Ω) = {Q ∈ P(Ω) :
∫
Ω c(ω, ω0)dQ(ω) < ∞} for some ω0 ∈ Ω.)

The particular function c(ω, ω̃) that plays an important role in the context of convex stochastic

optimization has the form

cp(ω, ω̃) = max{1, ||ω − ω0||p−1, ||ω̃ − ω0||p−1}||ω − ω̃||, (B.12)

for some ω0 ∈ Ω. The corresponding metric ζp ≡ ζcp is referred to as the p-th order Fortet-Mourier
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metric.

To give an example of a class of problems for which the p-th order Fortet-Mourier metric is

relevant, consider linear multi-period stochastic optimization problems of the form

min

{
cy0 + EP

(
min

l∑
j=1

cj(ω)yj

)
,

y0 ∈ X, yj ∈ Yj , Wjjyj = bj(ω)−Wjj−1(ω)yj−1, j = 1, . . . , l

}
, (B.13)

where Yj ⊆ Rnj are polyhedral sets. Problem (B.13) can be written in the form (1.1) with the

integrand f(ω, x) given by

f(ω, x) = cx+ inf


l∑

j=1

cj(ω)yj : yj ∈ Yj , Wjjyj = bj(ω)−Wjj−1(ω)yj−1, j = 1, . . . , l


= cx+Ψ1(ω, x),

where the function Ψ1(ω, x) is defined recursively:

Φj(ω, uj−1) = inf {cj(ω)yj +Ψj+1(ω, yj) : yj ∈ Yj , Wjjyj = uj−1}

Ψj(ω, yj−1) = Φj(ω, bj(ω)−Wjj−1(ω)yj−1)

for j = l, . . . , 1 and Ψl+1(ω, yl) ≡ 0.

It is shown in [53] that if bj(ω)−Wjj−1(ω)x ∈ WjjYj for all pairs (ω, x) (relatively complete

recourse) and ker(Wjj)∩Y ∞
j = {0} for j = 1, . . . , l− 1 (where Y ∞

j denotes the horizon cone1 of

1The horizon cone D∞ for the convex set D ⊆ Rm is defined as the set of all elements xd ∈ Rm such
that x+ λxd ∈ D for all x ∈ D and all λ ∈ R+. In particular, D∞ = {0} if D is bounded.
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Yj) then there exists a constant K̂ such that

|f(ω, x)− f(ω̃, x)| ≤ K̂max{1, ρ, ||ω||l, ||ω̃||l}||ω − ω̃|| (B.14)

for all ω, ω̃ ∈ Ω and x ∈ X ∩ ρB. This implies that 1
K̂max{1,ρ}

f(ω, x) ∈ Fcl+1
for all ω, ω̃ ∈ Ω

and x ∈ X ∩ ρB.

It is now straightforward to obtain the following result ([53]). Let v(P ) be the optimal value of

problem (B.13). Assume that the relatively complete recourse condition for (B.13) is satisfied and

that ker(Wjj) ∩ Y ∞
j = {0} for j = 1, . . . , l − 1. Then there exists a constant K > 0 such that the

estimate

|v(P )− v(Q)| ≤ Kζl+1(P,Q) (B.15)

is valid for any P , Q ∈ Pl+1(Ω). (Here Pl+1(Ω) denotes the set of Borel measures on Ω with finite

(l + 1)-th order moments.)

Specifying the general result (B.11) to the cost function of the form (B.12) with p = l + 1 we

can rewrite the estimate (B.15) for the difference in optimal objective values of problem (B.13) as

|v(P )− v(Q)| ≤ K
◦
µl+1(P,Q) = Kµ̂ĉl+1

(P,Q), (B.16)

where K > 0 is some constant.
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Appendix C

Scenario reduction algorithms

The goal of scenario reduction algorithms is, given a stochastic optimization problem of the

form (1.1) characterized by a discrete measure P =
∑N

i=1 piδωi find the discrete measure Q =∑M
j=1 qiδω̃j such that M < N and the difference in the optimal objective values |v(P ) − v(Q)| is

as small as possible.

If the stochastic optimization problem has the form (B.13) of a linear multi-period problem then,

as discussed earlier in Appendix B, under relatively complete recourse assumption, the upper bound

(B.16) can be shown to hold. This motivates searching for discrete measures Q that minimize the

distance µ̂l+1(P,Q) (or
◦
µl+1(P,Q)).

Thus the optimal scenario reduction problem based on the method of probability metrics can

be formulated as follows [15]. Let J ⊂ {1, 2, . . . , N} and consider the measure Q =
∑

j /∈J qjδωj

supported at points ωj , j ∈ {1, 2, . . . , N} \ J . The measure Q is said to be reduced from P by

deleting scenarios ωj , j ∈ J and by assigning new probabilities qj to the remaining scenarios. The
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optimal reduction concept proposed in [15] seeks the minimum value of the functional

D(J ; q) = µ̂p

 N∑
i=1

piδωi ,
∑
j /∈J

qjδωj

 . (C.1)

It is shown in [15] that, for set J fixed, the optimal weights q are straightforward to find:

qj = pj +
∑
i∈Jj

pi, for each j /∈ J, (C.2)

where Jj := {i ∈ J : j = j(i)} and j(i) ∈ argminj /∈J cp(ωi, ωj) for each i ∈ J . The correspond-

ing minimum of the functional D(J ; q) is

DJ = min
q

{D(J ; q) : qj ≥ 0,
∑
j /∈J

qj = 1} =
∑
i∈J

pimin
j /∈J

cp(ωi, ωj).

On the other hand, the optimal choice of the set J of given cardinality |J | = k

min
J

{DJ =
∑
i∈J

pimin
j /∈J

cp(ωi, ωj) : J ⊂ {1, 2, . . . , N}, |J | = k}

is a combinatorial problem, and it is unlikely that efficient solution algorithms for arbitrary value of

k are available. However cases k = 1 and k = N − 1 are easy to solve to optimality and they can

be used to formulate heuristic algorithms for other values of k. The fast forward scenario reduction

algorithms proposed in [29] proceeds as follows.
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Algorithm 2: Fast forward selection algorithm.
Step 1:
c
[1]
ku := cp(ωk, ωu), k, u = 1, . . . , N ,
z[1]u :=

∑
k=1
k ̸=u

pkc
[1]
ku, u = 1, . . . N ,

u1 ∈ arg min
u∈{1,...,N}

z[1]u , J [1] := {1, . . . , N} \ {u1}.

Step i:
c
[i]
ku := min{c[i−1]

ku , c
[i−1]
kui−1

}, k, u ∈ J [i−1],

z[i]u :=
∑

k∈J [i−1]\{u}

pkc
[i]
ku, u ∈ J [i−1],

ui ∈ arg min
u∈J [i−1]

z[i]u , J [i] := J [i−1] \ {ui}.

Step n+ 1:
Redistribution by (C.2)
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