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Dr. Mayuresh Kothare

Dr. Sven Leyffer

Dr. Katya Scheinberg

iii



Acknowledgements

This dissertation would have been impossible to complete without the guidance of my

advisor Dr. Tamás Terlaky. I would like to give my deep thank to him for his consistently

insightful guidance through my overall Ph.D. process. Dr. Terlaky is not only an advisor for

me, but also a mentor for many aspects in my life. I would also thank my Ph.D. committee

members, Dr. Frank E. Curtis, Dr. Zoltán Horváth, Dr. Mayuresh Kothare, Dr. Sven
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Abstract

Invariant set is an important concept in the theory of dynamical systems and it has a wide

range of applications in control and engineering. This thesis has four parts, each of which

studies a fundamental problem arising in this field. In the first part (Chapter 2), we propose

a novel, simple, and unified approach to derive sufficient and necessary conditions, which are

referred to as invariance conditions for simplicity, under which four classic families of convex

sets, namely, polyhedra, polyhedral cones, ellipsoids, and Lorenz cones, are invariant sets

for linear discrete or continuous dynamical systems. This novel method establishes a solid

connection between optimization theory and dynamical systems. In the second part (Chap-

ter 3), we propose novel methods to compute valid or largest uniform steplength thresholds

for invariance preserving of three classic types of discretization methods, i.e., forward Eu-

ler method, Taylor type approximation, and rational function type discretization methods.

These methods enable us to find a pre-specified steplength threshold which preserves in-

variance of a set. The identification of such steplength threshold has a significant impact in

practice. In the third part (Chapter 4), we present a novel approach to ensure positive local

and uniform steplength threshold for invariance preserving on a set when a discretization

method is applied to a linear or nonlinear dynamical system. Our methodology not only

applies to classic sets, discretization methods, and dynamical systems, but also extends

to more general sets, discretization methods, and dynamical systems. In the fourth part

(Chapter 5), we derive invariance conditions for some classic sets for nonlinear dynamical

systems. This part can be considered as an extension of the first part to a more general

case.
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Chapter 1

Introduction

1.1 Background

Positively invariant sets play a key role in the theory and applications of dynamical systems.

Stability, control and preservation of constraints of dynamical systems can be formulated,

somehow in a geometrical way, with the help of positively invariant sets. For a given

dynamical system, both of continuous or discrete time, a subset of the state space is called

positively invariant set for the dynamical system if the system state at a certain time is in

the invariant set, then forward in time all the states remain within the positively invariant

set. Geometrically, the solution trajectories cannot escape from a positively invariant set if

the initial state belongs to the set. The dynamical system is often a controlled system for

which the maximal (or minimal) positively invariant set is to be constructed.

It is well known, see e.g., Blanchini [12], Blanchini and Miani [14], and Polanski [51],

that Lyapunov stability theory is a powerful tool in obtaining many important results in

control theory. The basic framework of Lyapunov stability theory synthesizes the identifi-

cation and computation of a Lyapunov function of a dynamical system. Usually positive

definite quadratic functions serve as candidate Lyapunov functions. Sufficient and neces-

sary conditions for positive invariance of a polyhedral set with respect to discrete dynamical

systems were first proposed by Bitsoris [8, 9]. A novel positively invariant polyhedral cone

was constructed by Horváth [37]. The Riccati equation was proved to be connected with el-

lipsoidal sets as invariant sets of linear dynamical systems, see e.g., Lin et al. [44] and Zhou

2



et al. [82]. Birkhoff [7] proposed a necessary condition for positive invariance on a convex

cone for linear discrete systems. A sufficient and necessary condition for positive invariance

on a nontrivial convex set for linear discrete systems was derived by Elsner [24]. Stern [63]

studied the properties of positive invariance on a proper cone for linear continuous systems.

For a more general case, the mapping from a polyhedral cone to another polyhedral cone

was studied by Haynsworth, Fiedler and Pták [30], and the mapping from a convex cone

to another convex cone in finite-dimensional spaces was studied by Tam [67, 68]. Here we

note that when the two cones are the same, then this is equivalent to positive invariance for

discrete systems. The concept of cross positive matrices, which was introduced by Schnei-

der and Vidyasagar [58], was used as tool to prove positive invariance of a Lorenz cone

by Loewy and Schneider [45]. The existence and construction of common invariant cones

for families of real matrices was studied by Rodman, Seyalioglu, and Spitkovsky [55]. Posi-

tively invariant sets with cone properties with respect to continuous systems were studied by

Tarbouriech and Burgat [69]. According to Nagumo’s theorem [48] and the theory of cross

positive matrices, Stern and Wolkowicz [64] presented sufficient and necessary conditions for

a Lorenz cone to be positively invariant with respect to a linear continuous system. A novel

proof of the spectral characterization of real matrices that leave a polyhedral cone invariant

was proposed by Valcher and Farina [72]. The spectral properties of the matrices, e.g., the-

orems of Perron-Frobenius type, were connected to set positive invariance by Vandergraft

[58]. Approximating the minimal robust positively invariant set of an asymptotically stable

discrete system was studied by Rakovic et al. [53]. For hyperchaotic Lorenz-Haken systems,

Li et al. [43] investigated the estimation of ultimate bound and positively invariant set. For

finding certain invariant sets of a given system, one may refer to Kouramas et al. [41],

Pluymers et al. [50], Yu and Liao [76], Zhang et al. [77], etc. Zhao [81] derives a sufficient

criteria for invariant sets and periodic attractors of non-autonomous systems.

Now we introduce the basic concepts related to invariant sets for dynamical systems.

Dynamical Systems: Discrete and continuous linear dynamical systems are respec-

tively described by the following equations:

xk+1 = Adxk, (1.1)

3



ẋ(t) = Acx(t), (1.2)

where Ad, Ac ∈ Rn×n are constant real matrices, xk, x(t) ∈ Rn are referred to as state

variables for k ∈ N, and t ∈ R, respectively. We may assume, without loss of generality,

that neither Ad nor Ac is the zero matrix.

Similarly, discrete and continuous autonomous dynamical systems in general forms are

respectively described by the following equations:

xk+1 = fd(xk), (1.3)

ẋ(t) = fc(x(t)), (1.4)

where fd, fc : Rn → Rn are continuous functions, and xk, x ∈ Rn are referred to as state

variables.

Invariant Sets: The study of invariant sets is one of the main subjects of in this

thesis, thus now we introduce invariant sets, see, e.g., [13], for both discrete and continuous

systems.

Definition 1.1.1. A set S ⊆ Rn is an invariant set for the discrete system (1.1) (or 1.3)

if xk ∈ S implies xk+1 ∈ S, for all k ∈ N.

Definition 1.1.2. A set S ⊆ Rn is an invariant set for the continuous system (1.2) (or

(1.4)) if x(0) ∈ S implies x(t) ∈ S, for all t ≥ 0.

In fact, the sets given in Definition 1.1.1 and 1.1.2 are conventionally referred to as

positively invariant sets. Since only positively invariant sets are considered in this thesis,

we simply call them invariant sets. One can prove the following properties: the operators

A (or1 for all t ≥ 0, eAt) leave S invariant if S is an invariant set for the discrete (or

continuous) systems.

Proposition 1.1.3. [4, 17] The set S is an invariant set for the discrete system (1.1) if

and only if AS ⊆ S. Similarly, the set S is an invariant set for the continuous system (1.2)

if and only if for all t ≥ 0, eAtS ⊆ S.

1The exponential function with respect to a matrix is defined as eAt =
∑∞

k=0
1
k!
Aktk.
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Some well known examples of invariant sets are equilibrium point, limit cycle [49], etc.

Here we point out that the concept of stability [40] is one of the most important properties

of invariant sets. Intuitively, we say an invariant set to be stable for a dynamical system

if any trajectories of the system starting close to the set remain close to it as time moves

forward, and unstable if they do not. We say an invariant set is asymptotically stable for a

dynamical system if it is stable and in addition any trajectories of the system starting close

to the set converge to the set as t→∞.

1.2 Motivations

The motivations of this thesis are presented in this section. Although the definition of

invariant sets may be used as the tool of verification if a set is indeed an invariant set of

a given dynamical system, it is usually not efficient, or even impossible to directly use the

definition in many cases. For example, the invariance of a set of a discrete system means

that any point xk in the set implies xk+1 is also in the set, then one has to verify this

property for all points in the set. This would require the verification of infinitely many

points, which is usually not an easy task. Therefore, to derive sufficient, or sufficient and

necessary conditions for sets to be invariant sets of a dynamical system is important both

from the theoretical and practical perspectives. In particular, we are interested in sufficient

and necessary conditions under which a set is an invariant set for a dynamical system.

Here we consider both continuous and discrete dynamical systems. A good verification

condition has the following characteristics: simple and efficient to verify, i.e., one can easily

and efficiently prove or disprove the invariance of a set for a dynamical system.

Numerous mathematical methods are developed to directly solve continuous systems,

but, in practice, one usually needs to solve a continuous system by applying certain dis-

cretization methods. Assume that a set is an invariant set for a continuous system. Then it

should also be an invariant set for the discrete system which is obtained by a discretization

method, i.e., discretization should preserve invariance. However, this is not always true

for every steplength used in the discretization method. Thus it is desirable to prove the

existence of a steplength threshold which only depends on the set and the discretization

5



method, and all steplengths smaller than or equal to the threshold preserves the invariance

of the set. This threshold is referred to as invariance preserving steplength threshold. Be-

sides investigating the existence of such threshold, we are also interested in finding large

invariance preserving steplength thresholds. This is because a large invariance preserving

steplength has several advantages in practice, e.g., larger steplength implies that the dis-

cretized system is smaller in size. Finding a predictable invariance preserving steplength

depends on properties of the dynamical system and the set. We are choosing some classic

sets and linear dynamical systems, as well as using special discretization methods, to find

the largest possible invariance preserving steplength threshold via establishing optimization

models.

We are going to establish the theoretical foundation of invariance preserving, in which

we focus on the existence of invariance preserving steplength threshold. We are interested

in identifying general classes of sets, dynamical systems, and discretization methods with

invariance preserving property. This is an important open question. In particular, we are

going to investigate and find sufficient conditions, which ensure that when sets, dynamical

systems, and discretization methods satisfy those conditions, then an invariance preserving

steplength threshold exists. This research has significant theoretical impact, since we are

considering the existence of uniform, i.e., global, rather than local invariance preserving

steplength thresholds.

Set Invariance: Let us give an example of an invariant set: consider the normalized

state space model of a double-integrator [13]:

x′(t) =

 0 1

0 0

x(t) +

 0

1

u(t), (1.5)

where x1(t), x2(t) are the state variables and u(t) is the control variable. Further, we assume

that the state variables x1(t) and x2(t) satisfy the constraints |x1(t)| ≤ 25 and |x2(t)| ≤ 5

for all t ≥ 0. Let S = {(x1, x2) | |x1| ≤ 25, |x2| ≤ 5}. Now if we choose the linear state

6



feedback control law, see, e.g., [62], as follows: u(t) = − 1
25(x1(t) + x2(t)), then we have

x′(t) =

 0 1

− 1
25 − 1

25

x(t). (1.6)

The solution of (1.6) is given as

x1(t) = e−
t

50

(
α cos(3

√
11

50 t) +
√

11
33 (α+ 50β) sin(3

√
11

50 t)
)
,

x2(t) = e−
t

50

(
β cos(3

√
11

50 t)−
√

11
33 (2α+ β) sin(3

√
11

50 t)
)
,

(1.7)

where α and β depend on the initial state. If we set x1(0) = 25, x2(0) = 5, then we can

show that (x1(t), x2(t)) will move outside of S. Now we define an ellipsoid as follows:

E = {(x1, x2) | x2
1 + 25x2

2 ≤ 1}.

One can show that for any (x1(0), x2(0)) ∈ E , we have (x1(t), x2(t)) ∈ E for all t ≥ 0,

i.e., E is an invariant set for system (1.6). Clearly, we have E ⊂ S, so the trajectory of

system (1.6) cannot escape from S if (x1(t), x2(t)) ∈ E . This means that to ensure that the

state variable x(t) is always in the feasible region S, we can choose the initial state x(0)

from E . The way of verifying that the ellipsoid is an invariant set requires to derive the

solution of the system. However, if we can find an equivalent condition which only depends

on the system and the set to verify whether the set is an invariant set for the system, then

we do not need to solve the system. Such an equivalent condition, which is referred to as

invariance condition, will significantly reduce the difficulty of verifying if a set is indeed an

invariant set.

Invariance Preserving: In this thesis, we also study invariance preserving discretiza-

tion methods, i.e., numerical methods which ensure that both the continuous and its dis-

cretized systems share the same invariant set. Let us consider the example presented at

the beginning of this section, i.e., the double-integrator given as in (1.5). If we use a dis-

cretization method to solve the continuous system, then we hope that the ellipsoid is also an

invariant set for the discrete system. This means that not only the continuous trajectories,
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but also the discrete state variables stay in S. If the discretization method cannot preserve

invariance, then the ellipsoid is not an invariant set for the discrete system.

Let us give another example about invariance preserving, see, e.g., [38]. Consider a heat

transformation with a fixed temperature Tb on the boundary of the heated body. Let us

denote T (t, x) the temperature at time t and position x. Then φ(t, x) = T (t, x)−Tb satisfies

the following heat equation:

φt(t, x) = σφxx(t, x), (1.8)

where σ is the diffusion coefficient. A basic rule in thermodynamics is that the heat moves

only from warmer position to colder position, and reverse direction move cannot occur.

Let Tmin = minx T (0, x) and Tmax = maxx T (0, x), then, according to the thermodynamics

rule, we have Tmin ≤ T (t, x) ≤ Tmax for all t. This yields that φ(t, x) ∈ [φmin, φmax], where

φmin = Tmin−Tb and φmax = Tmax−Tb, for all t. In practice, numerical methods that solve

the heat equation require the discretization for both the spatial variable, xk, and the time

variable, tn, i.e., φ(tn, xk) := φn,k. In the discretization for the spatial variable, we have

φ(t, xk) := φk(t), k = 1, 2, ..., N, which yields a dynamical system

h′(t) = Dh(t), (1.9)

where h(t) = (φ1(t), φ2(t), ..., φN (t))T and D is usually a tridiagonal matrix, e.g., by us-

ing finite difference method. To ensure that the aforementioned thermodynamics rule is

satisfied, we need that h(t) ∈ P for all h(0) ∈ P, where P = [φmin, φmax]N , i.e., P is an in-

variant set for the dynamical system (1.9). Then for the discretization of the time variable,

one needs discretization methods which are invariance preserving while the aforementioned

thermodynamics rule is satisfied, i.e., φn,k ∈ [φmin, φmax] for any φ(0, x) ∈ [φmin, φmax].

Invariance Preserving Numerical Methods: Now we consider the effects of Euler

methods on the continuous system, i.e., given a vector xk in S, we investigate conditions

that ensure that xk+1 obtained by using the forward or the backward Euler methods is also

in S. A geometric interpretation of the forward Euler method is that xk+1 is on the tangent

line of x(t). For a convex set S, it is well known that the tangent space at any xk on the
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boundary of S is a supporting hyperplane to S, see e.g., [54]. Figure 1.1 illustrates the

effects of the Euler methods on two classes of trajectories. In these two cases, the convex

sets include the trajectory on its boundary, and include the region above the curves. The

left side subfigure of Figure 1.1 shows that the forward and backward Euler methods lead

the discrete steps direct outside and inside the convex set, respectively. The right side

subfigure of Figure 1.1 shows that the discrete steps for both Euler methods are on the

boundary.

Figure 1.1: The left figure illustrates when x(t) is a curve, the right figure illustrates when
x(t) is a line.

Characteristics Preserving: Mathematical modeling of many problems from the

real world often leads to differential equations in continuous form. When we solve these

differential equations numerically, we not only need to obtain a good approximation of the

differential equations, but also hope to preserve the basic characteristics of these mathe-

matical variables and models. Invariance preserving is one of the latter type requirements.

In fact, there are various characteristics preserving topics, e.g., positivity preserving, strong

stability preserving, area preserving, etc, which are widely studied in recent decades.

1. Positivity Preserving: Positivity preserving is an important topic in the numerical

analysis community, see, e.g., [37, 38, 39, 78, 79, 80]. Positivity preserving is equivalent to

invariance preserving in the positive orthant, i.e., consider the positive orthant, which is a

polyhedral cone. Let us assume that the positive orthant is an invariant set for a continuous

system, and assume that it is also an invariant set for the discrete system which is obtained
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by using a discretization method with a certain steplength. In practice, many variables,

e.g., energy, density, mass, etc, are nonnegative. When these variables are used in some

mathematical models in a continuous form, e.g., in the heat equation, one should choose

appropriate discretization method with appropriate steplength such that solution of the the

discretized systems are also nonnegative.

2. Strong Stability Preserving (SSP): Strong stability preserving (SSP) numerical meth-

ods are developed to solve ordinary differential equations, see, e.g., [26, 27], etc. Particularly,

SSP numerical method are used for the time integration of semi-discretizations of hyper-

bolic conservation laws. It is well known that the exact solutions of scalar conservation

laws holds the property that total variation does not increase in time, see, e.g., [27]. SSP

methods are also referred to as total variation diminishing methods. These are higher order

numerical methods that also preserve this property.

3. Area Preserving-Symplectic Methods: Intuitively, a map from the phase-plane to itself

is said to be symplectic if it preserves areas. In mathematics, a matrix M ∈ R2n×2n is called

symplectic if it satisfies the condition MTΩM = Ω, where Ω =

 0 In

−In 0

 . A symplectic

map is a real-linear map T that preserves a symplectic form f , i.e., f(Tx, Ty) = f(x, y) for

all x, y, see, e.g., [47]. A numerical one-step method xn+1 = D∆t(xn) is called symplectic if,

when applied to a Hamiltonian system, the discrete flow x → D∆t(x) is a symplectic map

for all sufficiently small step sizes, see, e.g., [25, 46], etc. There is one compelling example

that shows symplectic methods are the right way to solve planetary trajectories. If we solve

the trajectory of the earth using forward Euler method, then the discrete trajectory will

spiral away from the sun. If we use backward Euler method, then the discrete trajectory

will sink into the sun. If we use symplectic methods, then the discrete trajectory will stay

on the original continuous trajectory.

1.3 Main Results

In this section, the main results and novelties of this thesis are presented. The main intellec-

tual challenge of this research is to establish a strong connection among optimization theory,
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dynamical systems, and numerical analysis. Our fundamental studies will bring a unified

novel optimization theory based deep understanding of invariant sets of dynamical systems

and invariance preserving discretization methods. Due to the introduction of optimization

theory and algorithms, the verification of an invariant set becomes more efficient; we are

deriving novel characterizations of invariance preserving discretization methods; providing

optimization models to compute optimal invariance preserving discretization step sizes; and

open avenues to construct optimal invariant sets for dynamical systems.

In Chapter 2, we deal with dynamical systems in finite dimensional spaces and introduce

a novel and unified method for the determination of whether a set is a positively invariant

set for a linear dynamical system. Here the sets are polyhedral sets, ellipsoids, and Lorenz

cones. In addition, we formulate optimization methods to check the resulting equivalent

conditions.

The main tool in the continuous time case is the explicit computation of the tangent

cones of the positively invariant sets and their application along the lines of the Nagumo

Theorem 7.2.5. This theorem says that a set is positively invariant, under some conditions

on solvability of the underlying differential equation, if and only if at each point of the

set, the vector field of the differential equation points toward the tangent cone at that

point. The resulting conditions are constructive in the sense that they can be checked

by well established optimization methods. Our unified approach is based on optimization

methodology. The analysis in the discrete case is based on the theorems of alternatives of

optimization, namely on the Farkas Lemma 7.2.1 and the S -lemma 7.2.2. Let us mention

that the technique with the tangent cones in the continuous time case and the theorem of

alternatives of optimization in the discrete case show common features.

First, in Chapter 2, we consider various sets as candidates for positively invariant sets

with respect to a discrete system. Sufficient and necessary conditions for the four types of

sets are derived using the Farkas Lemma 7.2.1 and the S -lemma 7.2.2, respectively. The

Farkas Lemma and the S -lemma are frequently referred to as Theorems of the Alternatives in

the optimization literature. Note that the approach based on the Farkas Lemma is originally

due to Hennet [31]. Our approach, based on the S -lemma for ellipsoids and Lorenz cones,

is not only simpler compared to the traditional Lyapunov theory based approach, but also
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highlights the strong relationship between dynamical system and optimization theories.

It also enables us to extend invariance conditions to any set represented by a quadratic

inequality. Such sets include nonconvex and unbounded sets. Positively invariant sets for

continuous systems are linked to the ones for discrete systems by applying Euler method.

The forward Euler method or backward Euler method is used to discretize a continuous

system to a discrete system. Then, sufficient and necessary conditions under which the

four types of convex sets are positively invariant sets for the continuous systems are derived

by using Euler methods and the corresponding sufficient and necessary conditions for the

discrete systems.

The main novelty of Chapter 2 is that we propose a simple, novel, unified approach,

different from the traditional Lyapunov stability theory approach, to derive invariance con-

ditions for the four types of sets to be positively invariant sets with respect to discrete

systems. Our approach is based on the so-called Theorems of Alternatives, i.e., Farkas

Lemma and S -lemma. For discrete systems, the Farkas lemma is used for polyhedral sets,

while the S -lemma is used for ellipsoids and Lorenz cones. We also establish a frame-

work according to Euler methods to derive invariance conditions for the four types of sets

with respect to the continuous systems to be positively invariant. Although some theorems

presented in Chapter 2 are known, there is no existing chapter considering invariance con-

ditions for the four types of sets, and both for discrete and continuous dynamical systems

together in a unified framework. We also strengthen the power of Euler methods as a tool to

study invariance conditions to build connection between continuous and discrete dynamical

systems.

In Chapter 3, we consider three types of discretization methods on polyhedra and we

aim to derive valid thresholds of the steplength in terms of explicit form or obtained by

using efficiently computable algorithms. The popularity of polyhedra as invariant sets is

due to the fact that the state and control variables are usually represented in terms of linear

inequalities. First, we propose an optimization model to find the largest steplength threshold

for the forward Euler method. We note that some results on the use of the forward Euler

method to analyze invariance for continuous dynamical systems can be found in [14, 15].

For Taylor approximation type discretization methods, i.e., the coefficient matrix of the
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discrete system is derived from the Taylor expansion of eAc∆t, we present an algorithm to

derive a valid steplength threshold for invariance preserving. In particular, the algorithm

aims to find the first positive zeros of some polynomial functions related to the system

and the polyhedron. For general rational function type discretization methods, i.e., the

coefficient matrix of the discrete system is a rational function with respect to Ac and ∆t,

we derive a valid steplength threshold for invariance preserving that can be computed by

using analogous methods as for the case of Taylor approximation type methods. This

steplength threshold is related to the steplength threshold for the forward Euler method

and the radius of absolute monotonicity of the discretization method. We note that this

result is similar to the one presented in [38, 39], where Runge-Kutta methods are considered.

In Chapter 4, our focus is to find conditions, in particular steplength thresholds for

the discretization methods, such that the considered discretization method is invariance

preserving for the given linear or nonlinear dynamical system. This topic is of great interest

in the fields of dynamical systems, partial differential equations, and control theory. A

basic result is presented in [16], which considers linear problems and invariance preserving

on the positive orthant from a perspective of numerical methods. For invariance preserving

on the positive orthant or polyhedron for Runge-Kutta methods, the reader is refereed to

[37]. A similar concept named strong stability preserving (SSP) used in numerical methods

is studied in [26, 59]. These papers deal with invariance preserving of general sets and

they usually use the assumption that the Euler methods are invariance preserving with a

steplength threshold τ0. Then the uniform invariance preserving steplength threshold for

other advanced numerical methods, e.g., Runge-Kutta methods, is derived in terms of τ0.

Therefore, to make the results applicable to solve real world problems, this approach requires

to check whether such a positive τ0 exists for Euler methods.

In Section 4.2 first we prove that for the forward Euler method, a local invariance pre-

serving steplength threshold exists for a given polyhedron when a linear dynamical system

is considered. For the backward Euler method we prove that a local steplength threshold

exists for polyhedron, ellipsoid, and Lorenz cone. These proofs are using elementary con-

cepts. We also quantify a valid local steplength threshold for the backward Euler method.

Second, we prove that a uniform invariance preserving steplength threshold exists for poly-
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hedra when the forward or backward Euler method is applied to linear dynamical systems.

For the backward Euler method, we also quantify the optimal uniform steplength threshold.

In Section 4.3 we first prove that a uniform steplength threshold exists, and also quantify

the optimal uniform steplength threshold for ellipsoids or Lorenz cones when the backward

Euler method is applied to linear dynamical systems. Moreover, we extend the results about

the invariance preserving steplength threshold for the backward Euler method to general

proper cones. Finally, we present our main results about uniform steplength thresholds.

These results are natural extensions from the proofs used to analyze Euler methods. We

quantify the optimal uniform steplength threshold of the backward Euler method for convex

sets. We also extend the results of steplength thresholds to general compact sets and proper

cones when a general discretization method is applied to linear or nonlinear dynamical sys-

tems. In particular, the existence of steplength thresholds depends on a condition that is

stronger than the existence of local steplength threshold2. It also depends on a Lipschitz

condition when the set is a compact set, and on a homogeneity condition, when the set is

a proper cone.

The main novelty of Chapter 4 is establishing the foundation of characterizing invari-

ance preserving discretization methods in dynamical systems and differential equations. As

mentioned before, several existing results on invariance preserving of advanced numerical

methods, e.g., Runge-Kutta methods, require the existence of a positive steplength thresh-

old for Euler methods. In Chapter 4, we present the results for special classical sets. Our

general results about steplength threshold for general discretization methods for linear and

nonlinear dynamical systems on convex sets, compact sets, and proper cones not only play

an important role in theoretical, but also show the potential of significant impacts in prac-

tice. These general results provide theoretical criteria for the verification of the existence of

invariance preserving steplength threshold for discretization methods. Once the existence is

ensured by our results, this also motivates one to further investigate the possibility to find

the optimal steplength threshold, which has several advantages in practice. Such advantages

include computational efficiency and smaller size of discrete systems.

In Chapter 5, we derive invariance condition of some classical convex sets for discrete

2In particular, this condition requires that if xk is in the set, then xk+1 is in the interior of the set.
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and continuous nonlinear systems. This chapter is an extension of Chapter 2 from linear

systems to nonlinear systems. The main tools we used are the nonlinear Farkas Lemma and

the S -lemma. We also propose optimization methods to verify if these invariance conditions

hold.

1.4 The Structure of the Thesis

In Chapter 2 we propose a novel, simple, and unified approach to explore sufficient and nec-

essary conditions under which four classic families of convex sets, i.e., polyhedra, polyhedral

cones, ellipsoids, and Lorenz cones, are invariant sets for a linear discrete or continuous dy-

namical system.

In Chapter 3 we propose novel methods to compute valid or largest uniform steplength

thresholds for invariance preserving for three classic types of discretization methods, i.e.,

Taylor approximation type, rational function type discretization methods, and Euler meth-

ods.

In Chapter 4 we propose a theory of studying the existence of local and uniform

steplength thresholds for invariance preserving on a set when a discretization method is

applied to a linear or nonlinear dynamical system. We not only consider classic sets, dis-

cretization methods, and dynamical systems, but also extend to more general sets, i.e.,

convex sets, compact sets, proper cones, discretization methods, and dynamical systems.

In Chapter 5, we derive invariance conditions of some classic sets for nonlinear dynamical

systems. One can consider this chapter as an extension of the first part to a general case.

Finally, Chapter 6 summarizes the results of this thesis and presents the future research.

1.5 Notations and Conventions

To avoid unnecessary repetitions, the following notations and conventions are used in this

thesis. A dynamical system, positively invariant, and sufficient and necessary condition for

positive invariance are called a system, invariant, and invariance condition, respectively.

The sets considered in this chapter are non-empty, closed, and convex sets if not specified
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otherwise. The interior and the boundary of a set S is denoted by int(S) and ∂S, respec-

tively. When a matrix Q is positive definite, positive semidefinite, negative definite, or

negative semidefinite matrix, then it is denoted by Q � 0, Q � 0, Q ≺ 0, or Q � 0, respec-

tively. The i-th row of a matrix G is denoted by GTi . The eigenvalues of a real symmetric

matrix Q, whose eigenvalues are always real, are ordered as λ1 ≥ λ2 ≥ ... ≥ λn, and the

corresponding eigenvectors are denoted by u1, u2, ..., un. The spectrum of Q is represented

by λ(Q) = max{|λi(Q)|}, and inertia{Q} = {α, β, γ} indicates that the number of positive,

zero, and negative eigenvalues of Q are α, β, and γ, respectively. The index set {1, 2, ..., n}

is denoted by I(n). The inner product of vectors x, y ∈ Rn is denoted by xT y.
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Chapter 2

Invariance Conditions for Classical

Convex Sets

2.1 Introduction

In this chapter, we propose a novel, simple, and unified approach to explore sufficient and

necessary conditions, i.e., invariance conditions, under which four classic families of convex

sets, namely, polyhedra, polyhedral cones, ellipsoids, and Lorenz cones, are invariant sets

for a linear discrete or continuous dynamical system. For discrete dynamical systems, we

use the Theorems of Alternatives, i.e., the Farkas Lemma and S -lemma, to obtain simple

and general proofs to derive invariance conditions. This novel method establishes a solid

connection between optimization theory and dynamical system. Also, using the S-lemma

allows us to extend invariance conditions to any set represented by a quadratic inequality.

Such sets include nonconvex and unbounded sets. For continuous dynamical systems, we

use the forward or backward Euler method to obtain the corresponding discrete dynamical

systems while discretization preserves invariance. This enables us to develop a novel and

elementary method to derive invariance conditions for continuous dynamical systems by

using the ones for the corresponding discrete systems.
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2.2 Invariance Conditions

In this section, we present invariance conditions, i.e., sufficient and necessary conditions

under which polyhedral sets, ellipsoids, and Lorenz cones are invariant sets for discrete and

continuous systems. For each convex set, the invariance conditions for discrete systems are

first derived by using the Theorems of Alternatives, i.e., the Farkas Lemma 7.2.1 or the

S-lemma 7.2.2. Then the invariance conditions for continuous systems are derived by using

a discretization method to discretize the continuous system and applying the invariance

conditions for the obtained discrete systems.

We use Euler methods to discretize the continuous system (1.2) to derive a discrete

system, because for sufficiently small step size they preserve the invariance of a set, i.e.,

a set, which is an invariant set for a continuous system, is also an invariant set for the

corresponding derived discrete system. Here we formally present these results as follows.

The first statement can be found in [10, 13], and the second statement can be found in [67].

Theorem 2.2.1. [10, 13, 67] Assume a polyhedron P, polyhedral cone CP , ellipsoid E or

Lorenz cone CL is an invariant set for the continuous system (1.2). Then

• there exists a τ̂ > 0, such that P (or CP) is also an invariant set for the discrete

system xk+1 = (I +Ac∆t)xk for all 0 ≤ ∆t ≤ τ̂ , and

• there exists a τ̃ > 0, such that P (CP , E or CL) is also an invariant set for the discrete

system xk+1 = (I −Ac∆t)−1xk for all 0 ≤ ∆t ≤ τ̃ .

Remark 2.2.2. The first statement in Theorem 2.2.1 means that the forward Euler method

preserves the invariance of a polyhedral set, while the second statement means that the

backward Euler method preserves the invariance of polyhedral set, ellipsoid, and Lorenz

cone.

Proposition 1.1.3 allows us to use the Theorems of Alternatives 7.2.1 and 7.2.2 to derive

invariance conditions for discrete systems. According to Proposition 1.1.3, to prove that a

set S is an invariant set for a discrete system, we need to prove AS ⊆ S, which is equivalent

to (Rn \ S) ∩ (AS) = ∅. Since we assume that S is a closed set, we have that Rn \ S is

an open set. Open sets are usually represented by strict inequalities. As the Theorems
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of Alternatives include strict inequalities, they provide the proper tools to characterize

invariance conditions for continuous and discrete systems. This is one of the statements in

the Theorems of Alternatives 7.2.1 or 7.2.2.

2.2.1 Polyhedral Sets

Since every polyhedral set has two different representations as shown in Section 7.1, we

present the invariance conditions for both forms, respectively.

2.2.1.1 Invariance Conditions for Discrete Systems

Let a polyhedral set P be given as in (7.1). The invariance condition of a polyhedral set P

for a discrete system is presented in Theorem 2.2.4. The study of invariance condition of

polyhedral sets for discrete system can be traced back to Bitsoris in [8, 9], who consider a

special class of polyhedral sets, normally those polyhedral sets which are symmetric with

respect to the origin. We give a more straightforward proof here by using the Farkas Lemma

for polyhedral sets in the form of (7.1). It was brought to our attention recently that the

result is the same as the one presented by Hennet [31], which also uses the Farkas Lemma.

To keep the chapter self-contained, we also present the proof of this important result.

Definition 2.2.3. A matrix H is called a nonnegative matrix, denoted by H ≥ 0, if

Hij ≥ 0 for all i, j. A matrix L is called an essentially nonnegative matrix1, denoted

by L≥o0, if Lij ≥ 0 for i 6= j.

Theorem 2.2.4. (Hennet [31]) A polyhedron P given as in (7.1) is an invariant set

for the discrete system (1.1) if and only if 2 there exists a matrix H ∈ Rm×m, such that

H ≥ 0, HG = GAd and Hb ≤ b.

Proof. We have that P is an invariant set for the discrete system (1.1) if and only if AdP ⊆

P, which is the same as P ⊆ P ′ = {x | GAdx ≤ b}. Note that P ⊆ P ′ if and only if for

1An essentially nonnegative matrix is also called Metzler matrix, see e.g., [19], or quasipositive matrix,
see, e.g., [5].

2One can also show the “if” part as follows: let x ∈ P, i.e., Gx ≤ b. Since H ≥ 0, HG = GAd and Hb ≤ b,
we have GAdx = HGx ≤ Hb ≤ b, i.e., Adx ∈ P.
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every i ∈ I(m), we have

{x |Gx ≤ b} ∩ {x | (GAd)Ti x > bi} = ∅,

i.e., the inequality system Gx ≤ b and (GAd)
T
i x > bi has no solution. According to the

Farkas Lemma 7.2.1, this is equivalent to that there exists a vector hi ≥ 0, such that

hTi G = (GAd)i, and hTi b ≤ bi. We let H = [hT1 ;hT2 ; ...;hTm], then we have H ≥ 0, HG = GAd

and Hb ≤ b. The proof is complete.

We highlight that Castelan and Hennet [19] present an algebraic characterization of the

matrix G satisfying the conditions in Theorem 2.2.4. They prove that given A and G, there

exists a matrix H satisfying HG = GA if and only if the kernel of G is an A-invariant

subspace. Observe that the existence of matrix H such that HG = GA,Hb ≤ b, and x ≥ 0

can be verified by solving the linear inequality system or interior point methods (IPMs). If

IPMs are used, then the verification can be done in polynomial time.

The invariance condition of a polyhedral set given as in (7.2) for discrete systems is

provided in Theorem 2.2.5. Note that a similar result is presented in [13], which considers

only the case when the set is a polytope. Invariance condition of a polytope is presented in

[13], while invariance condition of a polyhedral cone is presented in [70]. Here we integrate

these two results in one theorem.

Theorem 2.2.5. A polyhedron P given as in (7.2) is an invariant set for the discrete system

(1.1) if and only if there exists a matrix L ∈ R(`1+`2)×(`1+`2), such that L ≥ 0, XL = AdX

and 1̃L = 1̄, where X = [x1, ..., x`1 , x̂1, ..., x̂`2 ], 1̃ = (1`1 , 0`2), 1̄ = 1`1+`2.

Proof. Note that P given as in (7.2) is an invariant set for the discrete system if and only if

Adx
i ∈ P, for all i ∈ I(`1), and A(O+P) ⊆ O+P, where O+P denotes the recession cone of

P. Since O+P is generated by the vectors x̂j , where j ∈ I(`2), we have Ad(O
+P) ⊆ O+P,

which can be rewritten as Adx̂
j ∈ P, for all j ∈ I(`2). Then for all p1 ∈ I(`1), there exist

θip1 , θ
j
p1 ≥ 0, such that

∑`1
p1=1 θ

i
p1 = 1,

∑`1
p1=1 θ

j
p1 = 1, and for all p2 ∈ I(`2), there exist
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θ̂ip2 , θ̂
j
p2 ≥ 0, such that

Adx
i =

`1∑
p1=1

θip1x
p1 +

`2∑
p2=1

θ̂ip2x
p2 , Adx̂

j =

`2∑
p2=1

θ̂jp2x
p2 . (2.1)

Let L = [θ1, .., .θ`1 , θ̂1, ..., θ̂`2 ], then the theorem is immediate by (2.1).

Observe again that the condition in Theorem 2.2.5 is also a linear inequality system,

thus this condition can be verified in polynomial time by using IPMs.

A polyhedral cone is a special polyhedral set, thus we have the following invariance

condition of a polyhedral cone for discrete systems.

Corollary 2.2.6. 1). A polyhedral cone CP given as in (7.3) is an invariant set for the

discrete system (1.1) if and only if there exists a matrix H ∈ Rm×m, such that H ≥ 0 and

HG = GAd.

2). A polyhedral cone CP given as in (7.4) is an invariant set for the discrete system

(1.1) if and only if there exists a matrix L ∈ R`×`, such that L ≥ 0 and XL = AdX, where

X = [x̂1, ..., x̂`].

Verifying if a polyhedral set is an invariant set: For a given polyhedral set and a dis-

crete system, according to Theorem 2.2.4 (Theorem 2.2.5, or Corollary 2.2.6), to determine

whether the set is an invariant set for the system is equivalent to verify the existence of a

nonnegative matrix H (or L), which is actually a linear optimization problem. Rather than

computing H (or L) directly, it is more efficient to independently solve all the small sub-

problems. Let us choose polyhedron P as given in (7.1) and Theorem 2.2.4 as an example to

illustrate this idea. We can independently examine the feasibility of the subproblems. Find

hi ∈ Rn, such that hTi G = GTi Ad, hi ≥ 0, and hTi b ≤ bi, for all i ∈ I(m). Clearly, these are

linear feasibility problems which can be considered as special cases of linear optimization

problems, see, e.g., [34]. A linear optimization problem can be solved in polynomial time,

e.g., by using interior point methods [56]. In fact, we note that for each i, we can write

hTi G = GTi Ad, hi ≥ 0, and hTi b ≤ bi in the form of Āx = b, x ≥ 0, where A ∈ R2×(m+1) and

b ∈ R2. So each of this problem has exactly 2 equality constraints. For such problem, the
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number of constraint is at most m(m+ 1)/2, then all finite pivot algorithms are also poly-

nomial time. Actually, this is strongly polynomial time. If all of these linear optimization

problems are feasible, then their solutions form a nonnegative matrix H that satisfies the

condition in Theorem 2.2.4. Otherwise, we can conclude that the set is not an invariant set

for the system, and computation is terminated at the first infeasible subproblem.

2.2.1.2 Invariance Conditions for Continuous Systems

According to the results presented in Chapter 3, we have that both the forward and back-

ward Euler methods are invariance preserving for a polyhedral set. Blanchini [10, 13]

presents the connection between invariant sets for continuous and discrete systems by us-

ing the forward Euler method. The discrete system obtained by using the forward Euler

method is refered to as Euler Approximating System [10, 13]. We first present the following

invariance condition which is obtained by using Nagumo’s Theorem 7.2.5. For x ∈ P, let

Ix denote the set of indices of the constraints which are active at x, i.e., the corresponding

linear inequality holds as equality at x. Clearly, we have x ∈ ∂P if and only if Ix 6= ∅.

Lemma 2.2.7. Let a polyhedron P be given as in (7.1), and Ix 6= ∅. Then P is an invariant

set for the continuous system (1.2) if and only if for every x ∈ ∂P, i.e., GTi x = bi, for i ∈

Ix, we have

GTi Acx ≤ 0, i ∈ Ix. (2.2)

Proof. The tangent cone at x, where GTi x = bi for i ∈ Ix, is TP(x) = {y |GTi y ≤ 0, i ∈ Ix}

(see [35, p.138]). Then the lemma immediately follows from Nagumo’s Theorem 7.2.5.

We now present another invariance condition of a polyhedron in the form of (7.1) for the

continuous system (1.2). The following theorem can also be found in Castelan and Hennet

[19, Proposition 1].

Theorem 2.2.8. A polyhedron P given as in (7.1) is an invariant set for the continuous

system (1.2) if and only if there exists a matrix H̃ ∈ Rm×m, such that H̃ ≥o 0, H̃G = GAc

and H̃b ≤ 0.
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Proof. We first consider the “if” part. Note that if H̃G = GAc, then we have H̃T
i Gx =

GTi Acx, for every i ∈ I(n). Since H̃≥o0 and x ∈ ∂P,

when j = i, we have h̃ii ∈ R and GTi x = bi,

when j 6= i, we have h̃ij ≥ 0 and GTj x ≤ bj ,
(2.3)

where h̃ij is the (i, j)-th entry of H̃. According to (2.3), we have
∑m

j=1 h̃ij(G
T
j x − bj) ≤ 0,

i.e., H̃T
i Gx ≤ H̃T

i b. Since H̃b ≤ 0, we have H̃T
i b ≤ 0. Then, we have GTi Acx = H̃T

i Gx ≤

H̃T
i b ≤ 0. According to Lemma 2.2.7, we have that P is an invariant set for the continuous

system.

Now we consider the “only if” part. According to Theorem 2.2.1, we have that there

exists a τ̂ > 0, such that P is also an invariant set for the discrete system xk+1 = (I +

Ac∆t)xk, for every 0 ≤ ∆t ≤ τ̂ . Then, according to Theorem 2.2.4, there exists a matrix

H(∆t) ≥ 0, such that H(∆t)G = G(I +Ac∆t), and H(∆t)b ≤ b, i.e.,

H(∆t)− I
∆t

G = GAc, and
H(∆t)− I

∆t
b ≤ 0. (2.4)

Clearly H̃ = H(∆t)−I
∆t for ∆t > 0 satisfies this theorem.

We consider the invariance condition of the polyhedron in the form of (7.2) for the

continuous system (1.2). For an arbitrary convex set in Rn, we have the following conclusion

Lemma 2.2.9. Let S be a convex set in Rn. For any ` ∈ N and x, y1, y2, ..., y` ∈ S satisfying

x =
∑`

i=1 βiy
i, where

∑`
i=1 βi = 1 and βi > 0 for every i ∈ I(`), we have TS(yi) ⊆ TS(x)

for every i ∈ I(`).

Proof. We denote cone(x,S) = {α(y − x) | y ∈ S, α ≥ 0}, then we have that TS(x) is the

same as the topological closure of cone(x, S). Let Φ(x) denote the face of S generated by x,

i.e., the set {y ∈ S |µx+ (1−µ)y ∈ S for some µ > 1}. We first show that for any x, u ∈ S,

if u ∈ Φ(x), then TS(u) ⊆ TS(x). In fact, by definition of Φ(x) there exists µ > 1, such that

v := µx+ (1− µ)u ∈ S. Then we have x = (1− α)u+ αv for some α, 0 < α < 1. Note that

for any y ∈ S, we have (1−α)y+αv ∈ S and [(1−α)y+αv]−x = (1−α)(y−u). It follows

that cone(u,S) ⊆cone(x,S). By taking the closure of both sides, we have TS(u) ⊆ TS(x).
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Since
∑`

i=1 βi = 1 and βi > 0 for every i ∈ I(`), yi ∈ Φ(x), for every i ∈ I(`) we have

yi ∈ Φ(x), the lemma follows immediately.

For the polyhedron P given as in (7.2), a vertex of P is given as xi, for some i ∈ I(`1),

and an extreme ray of P is represented as xi+αx̂j , α > 0, for some i ∈ I(`1) and j ∈ I(`2).

Applying Lemma 2.2.9 to P, we have the following Corollary 2.2.10 about the relationship

between tangent cones at a vector and the vertices and extreme rays of P. Note that

TP(x) = Rn for every x ∈ int(S), thus Corollary 2.2.10 is only nontrivial for x ∈ ∂P.

Corollary 2.2.10. Let a polyhedron P be given as in (7.2), and x ∈ P be a point in P

given as in formula (7.2). Let I1 = {i ∈ I(`1) | θi > 0} and I2 = {j ∈ I(`2) | θ̂j > 0}. Then

TP(xi) ⊆ TP(x) and TP(xi + αx̂j) = TP(xi + x̂j) ⊆ TP(x) for i ∈ I1, j ∈ I2, and α > 0,

where xi + αx̂j is an extreme ray of P.

Let us consider a polytope P̃ generated by {x1, x2, ..., x`1} as its vertices. Then, accord-

ing to [10], we have that TP̃(xi) can be generated as a conic combination of xp − xi for all

p ∈ I(`1), i.e., TP̃(xi) = {y|y =
∑`1

p=1,p 6=i αp(x
p − xi), αp ≥ 0}. Let αi =

∑`1
p=1,p 6=i αp. Then

we have

TP̃(xi) =
{
y|y =

`1∑
p=1

αpx
p, αp ≥ 0, p 6= i,

`1∑
p=1

αp = 0
}
.

By a similar argument, we have that the exact representations of the tangent cones at

vertices or extreme rays of P given as in (7.2) are presented in Lemma 2.2.11.

Lemma 2.2.11. Let a polyhedron P be given as in (7.2), and I ′1 = {i ∈ I(`1) | for any

j ∈ I(`2), xi + x̂j is not an extreme ray.}, I ′′1 = I(`1)\I ′1, then

1). For every i ∈ I ′1, we have

TP(xi) = {y ∈ Rn | y =

`1∑
p=1

αpx
p, αp ≥ 0, p 6= i,

`1∑
p=1

αp = 0}.

2). For every i ∈ I ′′1 , we have

TP(xi) = {y ∈ Rn | y =

`1∑
p=1

αpx
p +

`2∑
q=1

α̂qx̂
q, αp, α̂q ≥ 0, p 6= i,

`1∑
p=1

αp = 0}.
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3). For every i ∈ I ′′1 and j ∈ I(`2) such that xi + x̂j is an extreme ray, we have

TP(xi + x̂j) = {y ∈ Rn | y =

`2∑
q=1

α̂qx̂
q, α̂q ≥ 0, j 6= q}.

Lemma 2.2.12. Let C be a closed convex cone. If x+ αy ∈ C for all α > 0, then x, y ∈ C.

The following lemma presents an invariance condition for a polyhedron in the form of

(7.2) for the continuous system (1.2).

Lemma 2.2.13. Let a polyhedron P be given as in (7.2). Then P is an invariant set for the

continuous system (1.2) if and only if Acx
i ∈ TP(xi) and Acx̂

j ∈ TP(xi + x̂j) for i ∈ I(`1)

and j ∈ I(`2), respectively, where xi + αx̂j for α ≥ 0 is an extreme ray of P.

Proof. We first consider the “only if” part. According to Nagumo’s Theorem 7.2.5, for any

i ∈ I(`1) and j ∈ I(`2) when xi + αx̂j for α ≥ 0 is an extreme ray, we have Acx
i ∈ TP(xi)

and Ac(x
i + αx̂j) ∈ TP(xi + x̂j). By Lemma 2.2.12, this implies that Acx̂

j ∈ TP(xi + x̂j).

For the “if” part, we choose x ∈ P. We represent x as x =
∑

i∈I1 θix
i+
∑

j∈I2 θ̂j x̂
j , where

I1 = {i ∈ I(`1) | θi > 0} and I2 = {j ∈ I(`2) | θ̂j > 0}. Then according to Corollary 2.2.10,

we have Acx =
∑

i∈I1 θiAcx
i+
∑

j∈I2 θ̂jAcx̂
j ∈ (∪i∈I1TP(xi))∪ (∪j∈I2TP(xi+ x̂j)) ⊆ TP(x).

Finally, the “if” part follows by Nagumo’s Theorem 7.2.5.

By Lemma 2.2.11 and Lemma 2.2.13, the following corollary is immediate.

Corollary 2.2.14. Let a polyhedron P be given as in (7.2). Then P is an invariant set for

the continuous system (1.2) if and only if for xi, i ∈ I(`1), there exist αip, α̂
i
q ≥ 0 for p 6= i,

αii ≤ 0, and α̂ii ∈ R, such that

Acx
i =

`1∑
p=1

αipx
p +

`2∑
q=1

α̂iqx̂
q, and

`1∑
p=1

αip = 0, (2.5)

for x̂j, j ∈ I(`2), there exist α̂jq ≥ 0 for q 6= j, and α̂jj ∈ R, such that Acx̂
j =

∑`2
q=1 α̂

j
qx̂q.

Theorem 2.2.15. A polyhedron P given as in (7.2) is an invariant set for the continuous

system (1.2) if and only if there exists a matrix L̃ ∈ R(`1+`2)×(`1+`2), such that L̃≥o0,

XL̃ = AcX, and 1̄L̃ = 0̄, where X = [x1, ..., x`1 , x̂1, ..., x̂`2 ], 1̄ = [1`1 , 0`2 ].
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Proof. This proof is similar to the one given in Theorem 2.2.8. We denote the i-th column

of L̃ by (l1,i, ..., l`1+`2,i)
T .

For the “if” part, we consider xi with i ∈ I(`1). Since L̃≥o0, XL̃ = AcX, and 1̄L̃ = 0̄,

we have Acx
i =

∑`1
p=1 lp,ix

i +
∑`2

q=1 l`1+q,ix̂
q, with

∑`1
p=1 lp,i = 0, and lp,i ≥ 0, for p 6= i.

The argument for x̂j with j ∈ I(`2) is similar. Then, according to Corollary 2.2.14, we have

that P is an invariant set for the continuous system.

For the “only if” part, the proof is similar to the one in Theorem 2.2.8. According to

Theorem 2.2.1 and Theorem 2.2.5, we know that there exists a nonnegative matrix L(∆t)

and a scalar τ̂ > 0, such that XL(∆t) = (I + ∆tAc)X, 1̄L(∆t) = 1̄, for 0 ≤ ∆t ≤ τ̂ , i.e.,

X
L(∆t)− I

∆t
= AX, 1̄

L(∆t)− I
∆t

= 0̄.

Let L̃ = L(∆t)−I
∆t , the theorem is immediate.

Since the invariance conditions for a polyhedral cone given in the two different forms

can be obtained by similar discussions as above, we only present these invariance conditions

without providing the proofs.

Corollary 2.2.16. The following two statements hold:

1. A polyhedral cone CP given as in (7.3) is an invariant set for the continuous system

(1.2) if and only if there exists a matrix H̃ ∈ Rm×m, such that H̃ ≥o 0 and H̃G = GAc.

2. A polyhedral cone CP given as in (7.4) is an invariant set for the continuous system

(1.2) if and only if there exists a matrix L̃ ∈ R`×`, such that L̃ ≥o 0 and XL̃ = AcX,

where X = [x̂1, ..., x̂`].

Verifying if a polyhedral set is an invariant set for a continuous system: Analogous to the

discussion in Section 2.2.1.1, according to Theorem 2.2.15 and Corollary 2.2.16, verifying if

a polyhedron given as in (7.2) or polyhedral cone given as in (7.4) is an invariant set for the

continuous system (1.2) can be done by solving a series of linear optimization problems.
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2.2.2 Ellipsoids

In this section, we consider invariance conditions for ellipsoids, which are represented by a

quadratic inequality.

2.2.2.1 Invariance Conditions for Discrete Systems

The S -lemma 7.2.2 and Proposition 1.1.3 are our main tools to obtain the invariance con-

dition of an ellipsoid for a discrete system. First, we present a technical lemma.

Lemma 2.2.17. Let Q be an n×n real symmetric matrix and let α be a given real number.

Then xTQx ≥ α for all x ∈ Rn if and only if Q � 0, and α ≤ 0.

Theorem 2.2.18. An ellipsoid E given as in (7.5) is an invariant set for the discrete

system (1.1) if and only if

∃µ ∈ [0, 1], such that ATdQAd − µQ � 0. (2.6)

Proof. According to Proposition 1.1.3, to prove this theorem is equivalent to prove E ⊆ E ′,

where E = {x |xTQx ≤ 1} and E ′ = {x |xTATdQAdx ≤ 1}. Clearly, E ⊆ E ′ holds if and only

if the following inequality system has no solution:

−xTATdQAdx+ 1 < 0, xTQx− 1 ≤ 0. (2.7)

Note that the left sides of the two inequalities in (2.7) are both quadratic functions, thus,

according to the S -lemma, we have that (2.7) has no solution is equivalent to that there

exists µ ≥ 0, such that −xTATdQAdx+ 1 + µ(xTQx− 1) ≥ 0, or equivalently,

xT (µQ−ATdQAd)x ≥ µ− 1, for all x ∈ Rn. (2.8)

The theorem follows by applying Lemma 2.2.17 to (2.8).

We can also consider an ellipsoid as an invariant set for a system in the following

perspective. Invariance of a bounded set for a system is possible only if the system is non-

expansive, which means that for discrete system (1.1), all eigenvalues of Ad are in a closed
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unit disc of the complex plane. Then it becomes clear that (2.6) has a solution only if (1.1)

is non-expansive, i.e., the trajectory of (1.1) is non-expansive. One can conclude from this

that there is an invariant ellipsoid for (1.1) if and only if (2.6) has a solution for a positive

definite Q. Moreover, the smallest µ solving (2.6) is the largest eigenvalue of WATdQAdW ,

where W is the symmetric positive definite square root of Q−1, i.e., W 2 = Q−1.

We now present two examples such that condition (2.6) does not hold for µ 6∈ [0, 1].

First, let Q be positive definite and µ < 0, then ATdQAd − µQ is always a positive definite

matrix. Thus condition (2.6) does not hold. Second, let Q be positive definite and µ > 1,

consider the discrete system xk+1 = −xk. One can prove that {x |xTQx ≤ 1} is an invariant

set for this discrete system. However, in this case, we have ATdQAd−µQ = (1−µ)Q, which

is always a negative definite matrix. Thus condition (2.6) does not hold either.

Apart from its simplicity, another advantage of the approach given in the proof of

Theorem 2.2.18 is that it obtains a sufficient and necessary condition. Also, this approach

highlights the close relationship between the theory of invariant sets and the Theorem of

Alternatives, which is a fundamental result in the theory of optimization.

Corollary 2.2.19. Condition (2.6) holds if and only if

∃ ν ∈ [0, 1], such that Q̃ =

 Q−1 Ad

ATd νQ

 � 0. (2.9)

Proof. First, Q � 0 yields Q−1 � 0. By Schur’s lemma [18], Q̃ � 0 if and only if its Schur

complement νQ−ATd (Q−1)−1Ad = νQ−ATdQAd � 0, i.e., if (2.6) holds.

Corollary 2.2.20. Condition (2.6) holds if and only if

ATdQAd −Q � 0. (2.10)

Proof. The “if” part is immediate by letting µ = 1 in (2.6). For the “only if” part, we let

ν = 1 − µ, which, by reformulating (2.6), yields ATdQAd − Q � −νQ � 0, for ν ∈ [0, 1],

where the second “ �” holds due to the fact that ν ≥ 0 and Q � 0.

The left side of (2.10) is called the Lyapunov operator [17] in discrete form or Stein
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transformation [61] in dynamical systems. Corollary 2.2.20 is consistent with the invariance

condition of an ellipsoid for discrete systems given as in [13, 17]. The invariance condition

presented in [13] is the same as (2.10) without the equality. This is since contractivity rather

than invariance of a set for a system is analyzed in [13]. Lyapunov method is used to derive

condition (2.10) in [17]. Apparently, condition (2.10) is easier to apply than condition (2.6),

since the former one involves only the ellipsoid and the system.

The attentive reader may observe that the positive definiteness assumption for matrix

Q is never used in the proof of Theorem 2.2.18. That assumption was only needed to

ensure that the set S is convex. Recall that the quadratic functions in the S -lemma are

not necessarily convex, thus we can extend Theorem 3.16 to more general sets which are

represented by a quadratic inequality.

Theorem 2.2.21. A set S = {x ∈ Rn |xTQx ≤ 1}, where Q ∈ Rn×n, is an invariant set

for the discrete system (1.1) if and only if

∃µ ∈ [0, 1], such that ATdQAd − µQ � 0. (2.11)

The proof of Theorem 2.2.21 is the same as that of Theorem 2.2.18, so we do not

duplicate that proof here. A trivial example that satisfy the condition in is given by choosing

Q to be any indefinite matrix, Ad = I, and we choose µ = 1. It is easy to see that for

this choice condition (2.11) holds. Further exploring the implications of possibly using

nonconvex and unbounded invariant sets is far from the main focus of this chapter, so this

topic remains the subject of further research.

Verifying if an ellipsoid for S = {x ∈ Rn|xTQx ≤ 1} is an invariant set: Conditions

(2.9) and (2.11) are semidefinite optimization feasibility problems, so they can be solved in

polynomial time, e.g., by using SeDuMi [65].

2.2.2.2 Invariance Conditions for Continuous Systems

We first present an interesting result about the solution of continuous system.

Proposition 2.2.22. The solution of the continuous system (1.2) is on the boundary of the

ellipsoid E given as in (7.5) (or the Lorenz cone CL given as in (7.6)) whenever x0 ∈ ∂E(or
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x0 ∈ ∂CL) if and only if

k−1∑
i=0

1

(k − 1)!

(
k − 1

i

)
(Aic)

TQAk−i−1
c = 0, for k = 2, 3, .... (2.12)

Proof. We consider only ellipsoids, and the proof for Lorenz cones is analogous. The solution

of (1.2) is given as x(t) = eActx0, thus x(t) ∈ ∂E if and only if xT0 (eAct)TQeActx0 = 1, which

can be expanded, by substituting eAct =
∑∞

i=0
1
i!A

i
ct
i, as

∞∑
k=1

tk−1xT0 Q̃k−1x0 = 1, where Q̃k−1 =

k−1∑
i=0

1

(i)!(k − i− 1)!
(Aic)

TQAk−i−1
c ,

for any xT0 Qx0 = 1 and t ≥ 0. Thus, Q̃k−1 = 0, for k ≥ 2. Also, note that 1
(k−1)!

(
k−1
i

)
=

1
(i)!(k−i−1)! , thus condition (2.12) is immediate.

In particular, when k = 2, condition (2.12) yields ATc Q + QAc = 0. The left hand side

of this equation is called Lyapunov operator in continuous form. The following invariance

conditions is first given by Stern and Wolkowicz [64], where they consider only Lorenz cones

and their proof is using the concept of cross-positivity. Here we present a simple proof.

Lemma 2.2.23. [64] An ellipsoid E given in the form of (7.5) (or a Lorenz cone CL given

in the form of (7.6)) is an invariant set for the continuous system (1.2) if and only if

(Acx)TQx ≤ 0, for all x ∈ ∂E ( or x ∈ ∂CL). (2.13)

Proof. We consider only ellipsoids, and the proof is analogous for Lorenz cones. Note that

∂E = {x |xTQx = 1}, thus the outer normal vector of E at x ∈ ∂E is Qx. Then we have

TE(x) = {y | yTQx ≤ 0}, thus this theorem follows by Theorem 7.2.5.

We now present a sufficient and necessary condition that an ellipsoid is invariant for the

continuous system.

Theorem 2.2.24. An ellipsoid E given as in (7.5) is an invariant set for the continuous

system (1.2) if and only if

ATc Q+QAc � 0. (2.14)
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Proof. According to Lemma 2.2.23, we have that condition (2.13) holds, i.e., E is an invariant

set for the continuous system if and only if

xT (ATc Q+QAc)x ≤ 0, for all x ∈ ∂E . (2.15)

Clearly (2.14) implies (2.15). Now assume (2.15) holds, then for all nonzero y ∈ Rn, there

exists an x ∈ ∂E and γ > 0, such that y = γx. Then yT (ATc Q + QAc)y = 1
γ2
xT (ATc Q +

QAc)x ≤ 0, which yields condition (2.14).

The presented method in the proof of Theorem 2.2.24 is simpler than the traditional

Lyapunov method to derive the invariance condition. However, the approach in the proof

cannot be used for Lorenz cones, since the origin is not in the interior of Lorenz cones.

2.2.3 Lorenz Cones

A Lorenz cone CL given as in (7.6) can also be represented by a quadratic form, but the

way to obtain the invariance condition of a Lorenz cone for discrete systems is much more

complicated than that for an ellipsoid. The difficulty is mainly due to the existence of the

second constraint in (7.6).

2.2.3.1 Invariance Conditions for Discrete Systems

The representation of the nonconvex set CL ∪ (−CL) = {x |xTQx ≤ 0} involves only the

quadratic form, which is almost the same as an ellipsoid. We can first derive the invariance

condition of this set for discrete system. Recall that the S -lemma does not require that the

quadratic functions have to be convex, thus the S -lemma is still valid for the nonconvex

set.

Theorem 2.2.25. The nonconvex set CL∪(−CL) is an invariant set for the discrete system

(1.1) if and only if

∃µ ≥ 0, such that ATdQAd − µQ � 0. (2.16)

Proof. The proof is closely following the ideas in the proof of Theorem 2.2.18. The only

difference is that the right side in (2.8) is 0 rather than 1 − µ, which is why the condition
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µ ≤ 1 is absent in this case.

The invariance condition for CL ∪ (−CL) shown in (2.16) is similar to the one proposed

by Loewy and Schneider in [45]. They proved by contradiction using the properties of

copositive matrices that when the rank of Ad is greater than 1, AdCL ⊆ CL or −AdCL ⊆ CL

if and only if (2.16) holds. They also concluded (see [45, Lemma 3.1]) that when the rank

of Ad is 1, AdCL ⊆ CL if and only if there exist two vectors x, y ∈ CL, such that Ad = xyT .

The following example shows that for the given Ad and Q, only µ = 1 satisfies condition

(2.16). Let Ad = Q = diag{1, ..., 1,−1}. Then the Lorenz cone is an invariant set for

the system, since such a Lorenz cone is a self-dual cone3. The left hand side in (2.16) is,

however, now simplified to (1− µ)Q which is negative semidefinite only for µ = 1, because

inertia{Q} = {n− 1, 0, 1}.

In the case of ellipsoids, we used Schur’s lemma, see, e.g., [56], to simplify invariance

condition (2.6) to (2.9), which was further simplified to the parameter free invariance con-

dition (2.10). Although conditions (2.6) and (2.16) are similar, it seems to be impossible to

develop a parameter free condition analogous to (2.10) for Lorenz cones. This is due to the

fact that matrix Q for a Lorenz cone is neither positive nor negative semidefinite.

To find the scalar µ in (2.16) is essentially a semidefinite optimization (SDO) problem,

and it is shown to be solve in polynomial time, see, e.g., [73]. Various celebrated SDO

solvers, e.g., SeDuMi [65], CVX [28], and SDPT3 [71] have been shown robust performance

in solving a SDO problems numerically.

Corollary 2.2.26. If λ1(ATdQAd) ≤ 0, then the Lorenz cone CL given as in (7.6) is an

invariant set for the discrete system (1.1).

Corollary 2.2.26 gives a simple sufficient condition such that a Lorenz cone is an invariant

set, but it is only valid when the A is a singular matrix. In fact, if A is nonsingular, by

Sylvester’s law of inertia [36], we have that λ1(ATdQAd) > 0. When λ1(ATdQAd) ≤ 0, we

have that the rank of Ad is no more than 1. This is because, if the rank is larger than 1,

then range(Ad) ∩ span{u1, u2, ..., un−1} must be a nonzero subspace, because for example

3A self-dual cone is a cone that coincides with its dual cone, where the dual cone for a cone C is defined
as {y | xT y ≥ 0, ∀x ∈ C}.
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Adx is a nonzero vector in the intersection. Then xT (ATdQAd)x > 0, so we cannot have

λ1(ATdQAd) < 0.

The interval of the scalar µ in (2.16) can be tightened by incorporating the eigenvalues

and eigenvectors of Q. Such a tighter condition is presented in Corollary 2.2.27.

Corollary 2.2.27. If condition (2.16) holds, then

max
{

0, max
1≤i≤n−1

{uTi ATdQAdui
λi

}}
≤ µ ≤

uTnA
T
dQAdun
λn

. (2.17)

Proof. Multiplying condition (2.16) by uTi from the left and ui from the right, we have

uTi A
T
dQAdui − µuTi Qui ≤ 0. Since uTi Qui = λiu

T
i ui = λi > 0, for i ∈ I(n − 1), and

uTnQun = λn < 0, condition (2.17) follows immediately.

Corollary 2.2.27 presents tighter bounds for the scalar µ in (2.17) in terms of an algebraic

form. The existence of a scalar µ implies that the upper bound should be no less than the

lower bound in (2.17). However, this is not always true. We now present a geometrical

interpretation of the interval of the scalar µ, that can be directly derived from Corollary

2.2.27.

Corollary 2.2.28. The relationship between the vector Adui, and the scalars uTi A
T
dQAdui,

and µ are as follows:

• If Adun /∈ CL ∪ (−CL), then µ satisfying (2.17) does not exist.

• If Adui ∈ CL ∪ (−CL) for all i ∈ I(n− 1), then

– if Adun ∈ ∂CL ∪ (−∂CL) and (2.17) holds, then µ = 0.

– if Adun ∈ int CL ∪ (−int CL) and (2.17) holds, then µ ∈
[
0,

uTnA
T
dQAdun
λn

]
.

• Let I = {i | Adui /∈ CL ∪ (−CL)}. If the set I ⊆ I(n− 1) is nonempty, then

– if Adun ∈ ∂CL ∪ (−∂CL), then µ satisfying (2.17) does not exist.

– if Adun ∈ int (CL) ∪ (−int(CL)), then

∗ if there exist i∗ ∈ I, such that
uT
i∗A

T
dQAdui∗

λi∗
>

uTnA
T
dQAdun
λn

, then µ satisfying

(2.17) does not exist.
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∗ otherwise, if (2.17) holds, then µ ∈
[

maxi∈I

{
uTi A

T
dQAdui
λi

}
,
uTnA

T
dQAdun
λn

]
.

We now consider the invariance condition of a Lorenz cone CL given as in (7.6), which

is a convex cone and can handle expansive systems.

Lemma 2.2.29. [64] A Lorenz cone CL, given as in (7.6), can be written as TC∗L, where

C∗L is the standard Lorenz cone and T is the nonsingular matrix,

T =
[ u1√

λ1
, ...,

un−1√
λn−1

,
un√
−λn

]
. (2.18)

Lemma 2.2.30. A Lorenz cone CL given as in (7.6) is an invariant set for the discrete

system (1.1) if and only if the standard Lorenz cone C∗L is an invariant set for the following

discrete system

xk+1 = T−1AdTxk, (2.19)

where T is defined by (2.18).

Proof. The Lorenz cone CL is an invariant set for (1.1) if and only if AdCL ⊆ CL. This holds

if and only if AdTC∗L ⊆ TC∗L, which is equivalent to T−1AdTC∗L ⊆ C∗L.

The invariance condition of a Lorenz cone for discrete systems is presented in Theorem

2.2.31. Although we have developed such invariance condition independently, it was brought

to our attention recently that the invariance condition is the same as the one proposed by

Aliluiko and Mazko in [1]. But our proof is more straightforward.

Theorem 2.2.31. A Lorenz cone CL (or −CL), given as in (7.6), is an invariant set for

the discrete system (1.1) if and only if

uTnAdun ≥ 0, uTnAdQ
−1ATd un ≤ 0 and ∃µ ≥ 0, such that ATdQAd − µQ � 0, (2.20)

where un is the eigenvector corresponding to the unique negative eigenvalue λn of Q.

Proof. Since AdCL ⊆ CL if and only Ad(−CL) ⊆ −CL, we only present the proof for CL.

For an arbitrary x ∈ CL, by Theorem 2.2.25, we have that Adx ∈ CL or Adx ∈ −CL if and
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only if condition (2.16) is satisfied. To ensure that only Adx ∈ CL holds, some additional

conditions should be added.

According to Lemma 2.2.30, we may consider C∗L and the discrete system (2.19), where

the coefficient matrix, denoted by Ã, can be explicitly written as

Ã = T−1AdT =


uT1 Adu1 · · ·

√
− λ1
λn
uT1 Adun

...
. . .

...√
−λn
λ1
uTnAdu1 · · · uTnAdun

 .

Then, according to Theorem 2.2.25, condition (2.16) is equivalent to

∃µ ≥ 0, such that (T−1AT )T ĨT−1AT − µĨ � 0, (2.21)

where Ĩ = diag{1, ..., 1,−1}. Note that T TQT = Ĩ, condition (2.21) is equivalent to

∃µ ≥ 0, such that ATdQAd − µQ � 0.

Recall that we denote the i-th row of a matrix M by MT
i . Also, the second constraint in

the formulae of C∗L requires that for every x ∈ C∗L the last coordinate in x is nonnegative.

Since ÃC∗L ⊆ C∗L, we have ÃTnx ≥ 0, for all x ∈ C∗L. Note that C∗L is a self-dual cone, we have

ÃTnx ≥ 0, for all x ∈ C∗L if and only if Ãn ∈ C∗L. Now we have

ÃTn =
√
−λn

( 1√
λ1
uTnAdu1,

1√
λ2
uTnAdu2, ...,

1√
−λn

uTnAdun

)
=
√
−λnuTnAdT. (2.22)

Substituting the value of ÃTn given by the right side of (2.22) into the first inequality in the

formulae of C∗L, we have

−λn(T TATd un)T Ĩ(T TATd un) ≤ 0. (2.23)

Since λn < 0 and T ĨT T =
∑n

i=1
uiu

T
i

λi
= Q−1, where the second equality is due to the

spectral decomposition of Q−1, we have that (2.23) is equivalent to uTnAdQ
−1ATd un ≤ 0.

Also, substituting (2.22) into the second inequality in the formulae of C∗L yields uTnAdun ≥ 0.

The proof is complete.
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Remark 2.2.32. The inequality system uTnAdQ
−1ATd un ≤ 0 and uTnAdun ≥ 0 holds if and

only if uTnAdx ≥ 0, for all x ∈ CL.

Proof. Since xTQx ≤ 0 can be written as xTUΛ
1
2 ĨΛ

1
2UTx ≤ 0, we have x ∈ CL if and only

if Λ
1
2UTx ∈ C∗L. Similarly, since Q−1 = UΛ−

1
2 ĨΛ−

1
2UT , we have that uTnAdQ

−1ATd un ≤ 0

can be written as uTnAdUΛ−
1
2 ĨΛ−

1
2UTATd un ≤ 0, which yields Λ−

1
2UTATd un ∈ C∗L ∪ (−C∗L).

Since the set C∗L is a self-dual cone, we have (Λ−
1
2UTATd un)T (Λ

1
2UTx) ≥ 0, which can be

simplified to uTnAdx ≥ 0, for all x ∈ CL.

The normal plane of the eigenvector un that contains the origin separates Rn into two

half spaces. Corollary 2.2.32 presents a geometrical interpretation that Ad transforms the

Lorenz cone CL to the half space that contains eigenvector un, i.e., AdCL ⊆ {y | uTny ≥ 0}.

Moreover, note that uTnAcx = (ATd un)Tx, which shows that the vector ATd un is in the dual

cone of CL.

Corollary 2.2.33. If condition (2.20) holds, then

0 ≤ µ ≤
uTnA

T
dQAdun
λn

. (2.24)

Proof. The proof is analogous to the one given in the proof of Corollary 2.2.27.

The interval for the scalar µ in condition (2.24) is wider and simpler than the one

presented in Corollary 2.2.27. Analogous to Corollary 2.2.28, we present an intuitive geo-

metrical interpretation of µ for Lorenz cones.

Corollary 2.2.34. The relationship between the vector Acun, and the scalars uTnA
T
dQAdun,

and µ are as follows:

• If Adun /∈ CL ∪ (−CL), then µ satisfying (2.24) does not exist.

• If Adun ∈ ∂CL ∪ (−∂CL) and (2.24) holds, then µ = 0.

• If Adun ∈ int (CL) ∪ (−int (CL)) and (2.24) holds, then µ ∈
[
0,

uTnA
T
dQAdun
λn

]
.
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2.2.3.2 Invariance Conditions for Continuous Systems

Now we consider the invariance condition of Lorenz cones for continuous systems. We

also need to analyze the eigenvalue of a sum of two symmetric matrices for the invariance

conditions for continuous systems. The following lemma is a useful tool in our analysis.

It shows the fact that the spectrum of a matrix is stable under a small perturbation by

another matrix. Since the statement is obvious, we omit the proof.

Lemma 2.2.35. Let M and N be two symmetric matrices. Then

• if there exists a τ̂ > 0, such that M + τN � 0, for 0 < τ ≤ τ̂ , then M � 0.

• if M ≺ 0, then there exists a τ̂ > 0, such that M + τN � 0, for 0 < τ ≤ τ̂ .

Similar to the case for discrete system, we first consider the invariance condition of the

nonconvex set CL ∪ (−CL) for the continuous system.

Theorem 2.2.36. The nonconvex set CL ∪ (−CL) is an invariant set for the continuous

system (1.2) if and only if

∃ η ∈ R, such that ATc Q+QAc − ηQ � 0. (2.25)

Proof. For the “if” part, i.e., condition (2.25) holds, then for every x ∈ ∂CL ∪ (−∂CL), we

have (Acx)TQx = (Acx)TQx− η
2x

TQx = 1
2x

T (ATc Q+QAc−ηQ)x ≤ 0. Thus, by Nagumo’s

Theorem 7.2.5, the set CL ∪ (−CL) is an invariant set for continuous system.

Next, we prove the “only if” part. According to Theorem 2.2.1, there exists a τ̂ > 0, such

that for every 0 ≤ ∆t ≤ τ̂ , CL ∪ (−CL) is also an invariant set for xk+1 = (I − Ac∆t)−1xk.

By Theorem 2.2.25 and (I −Ac∆t)−1 = I +Ac∆t+A2
c∆t

2 + · · · , we have

∃ µ(∆t) ≥ 0, such that
1− µ(∆t)

∆t
Q+ (ATc Q+QAc) + ∆tK(∆t) � 0,

where K(∆t) = (ATc QAc+(A2
c)
TQ+QA2

c)+∆t((A2
c)
TQAc+A

T
c QA

2
c+(A3

c)
TQ+QA3

c)+· · · .

Since Q and Ac are constant matrices, and applying the fact that ‖M‖ = ‖MT ‖, ‖M+N‖ ≤
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‖M‖+ ‖N‖ and ‖MN‖ ≤ ‖M‖‖N‖, we have

‖K(∆t)‖ ≤
∞∑
i=3

i‖Q‖‖Ac‖i−1(∆t)i−3 = ‖Q‖‖Ac‖2
∞∑
i=0

(i+ 3)(∆t‖Ac‖)i

= ‖Q‖‖Ac‖2
3− 2∆t‖Ac‖

(1−∆t‖Ac‖)2
≤ 8‖Q‖‖Ac‖2,

where ∆t ≤ 5
4‖A‖

−1 such that (3 − 2∆t‖Ac‖)/(1 − ∆t‖Ac‖)2 ≤ 8. Also, applying the

relationship between spectral radius ρ(Ac) and its induced norm, ρ(Ac) ≤ ‖Ac‖ (see [21]),

to K(∆t), we have

|λi(K(∆t))| ≤ ρ(K(∆t)) ≤ ‖K(∆t)‖ ≤ 8‖Q‖‖Ac‖2, for i ∈ I(n),

i.e., the eigenvalues of K(∆t) are bounded. Let us denote η(∆t) = µ(∆t)−1
∆t .Then according

to Lemma 2.2.35 and taking ∆t→ 0, we have

ATc Q+QAc − η(∆t)Q � 0. (2.26)

According to (2.26), we have η(∆t) is bounded for all ∆t. Therefore4, we can take a sub-

sequence {∆t`} such that η(∆t`) → η as ∆t` → 0, which yields (2.25). The proof is

complete.

The approach in the proof of Theorem 2.2.36 can be also used to prove Theorem 2.2.24.

The only remaining invariance condition is the one of a Lorenz cone for continuous system.

Theorem 2.2.37. A Lorenz cone CL (or −CL) is an invariant set for the continuous system

(1.2) if and only if (2.25) holds.

Proof. Consider the continuous system with x0 ∈ CL, according to Theorem 2.2.36, the

trajectory x(t) will stay in CL ∪ (−CL) if condition (2.25) is satisfied. If x(t) would move

over to −CL, then x(t) must go through the origin, i.e., x(t∗) = 0 for some t∗ ≥ 0. Note that

x(t) = eAc(t−t∗)x(t∗) = 0 for any t > t∗, i.e., the origin is an equilibrium point, which means

CL is an invariant set for the continuous system. Thus the theorem is immediate.

4Here we use the fact that every bounded sequence in a Euclidean space has a convergent subsequence,
see, e.g., [57].
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In fact, a direct proof of Theorem 2.2.37 can be given as follows: one can also prove

that the second and third conditions in (2.20) hold by choosing sufficiently small ∆t. To be

specific, for the second condition in (2.20), we have

uTn (I −∆tAc)
−1un ≥ 0, if and only if ‖un‖2 +

∞∑
i=1

(∆t)iuTnA
i
cun ≥ 0, (2.27)

where the second term, when ∆t < ‖A‖−1, can be bounded as follows:
∣∣∑∞

i=1(∆t)iuTnA
i
cun
∣∣ ≤

‖un‖2 ∆t‖Ac‖
(1−∆t‖Ac‖) . Thus, we can choose ∆t < 0.5‖Ac‖−1, such that condition (2.27) holds.

Similarly, the third condition in (2.20) can be transformed to

uTn (I −∆tAc)
−1Q−1(I −∆tAc)

−Tun ≤ 0, if and only if
1

λn
‖un‖2 +K(∆t) ≤ 0, (2.28)

where we use the fact that un is the eigenvector corresponding to the eigenvalue λ−1
n of Q−1,

and K(∆t) = ∆tuTn (AcQ
−1 + Q−1ATc )un + (∆t)2uTn (AcQ

−1Ac + A2
cQ
−1 + Q−1A2T

c )un +

· · · . We note that inertia{Q} = {n − 1, 0, 1} implies inertia{Q−1)} = {n − 1, 0, 1}, then

we have that Q−1 exists, which yields the following: |K(∆t)| ≤ ‖u‖2(2∆t‖Ac‖‖Q−1‖ +

3∆t2‖Ac‖2‖Q−1‖+· · · ) = ‖u‖2‖Q−1‖2∆t‖Ac‖−(∆t‖Ac‖)2
(1−∆t‖Ac‖)2 .We can choose ∆t ≤ min{0.5‖Ac‖−1, (‖Ac‖(1−

4λn‖Q−1‖)−1}, such that (2.28) holds. In fact,

1

λn
‖un‖2 +K(∆t) ≤ ‖uk‖2

( 1

λn
+ ‖Q−1‖2∆t‖Ac‖ − (∆t‖Ac‖)2

(1−∆t‖Ac‖)2

)
≤ ‖u‖2

( 1

λn
+ ‖Q−1‖ 4∆t‖Ac‖

1−∆t‖Ac‖

)
≤ 0.

Condition (2.25) is the same as the one presented in [64], where the proof is much more

complicated than ours. Finding the value of η in Theorem 2.2.36 and 2.2.37 is essentially

a semidefinite optimization problem. For example, we can use the following semidefinite

optimization problem:

max{η ∈ R | ATc Q+QAc − ηQ � 0}. (2.29)

When the optimal solution η∗ of (2.29) exists, then by Theorem 2.2.37 we can claim that the

Lorenz cone is an invariant set for the continuous system. Various celebrated SDO solvers,

e.g., SeDuMi, CVX, and SDPT3, can be used to solve SDO problem (2.29).
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Corollary 2.2.38. If condition (2.25) holds, then

max
1≤i≤n−1

{
uTi (ATc +Ac)ui

}
≤ η ≤ uTn (ATc +Ac)un. (2.30)

Proof. The proof is similar to the one presented in the proof of Corollary 2.2.27 by noting

that uTi (ATc Q+QAc)ui = 2(Acui)
TQui, and Qui = λiui.

We now present some simple examples to illustrate the invariance conditions presented

in Section 2.2. Since it is straightforward for discrete systems, we only present examples

for continuous systems. The following two examples consider polyhedral sets for continuous

systems.

Example 2.2.39. Consider the polyhedron P = {(ξ, η) | ξ + η ≤ 1,−ξ + η ≤ 1, ξ − η ≤

1,−ξ − η ≤ 1}, and the continuous system ξ̇ = −ξ, η̇ = −η.

The solution of the system is ξ(t) = ξ0e
−t, η(t) = η0e

−t, so (ξ(t), η(t)) ∈ P for all t ≥ 0,

i.e., the polyhedron is an invariant set for the continuous system provided that (ξ0, η0) ∈ P.

This can also be verified by Theorem 2.2.8. We have

H = −I4, G =



1 1

−1 1

1 −1

−1 −1


, b =



1

1

1

1


, Ac = −I2,

which satisfy HG = GAc and Hb ≤ 0. Thus Theorem 2.2.8 yields that P is an invariant

set for this continuous system.

Example 2.2.40. Consider the polyhedral cone CP generated by the extreme rays x1 =

(1, 1, 1)T , x2 = (−1, 1, 1)T , x3 = (1,−1, 1)T , and x4 = (−1,−1, 1)T , and the continuous

system ξ̇ = ξ, η̇ = η, ζ̇ = ζ.

The solution of the system is ξ(t) = ξ0e
t, η(t) = η0e

t, ζ(t) = ζ0e
t, thus one can easily

verify that the polyhedral cone is an invariant set for this continuous system provided that
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(ξ0, η0, ζ0) ∈ CP . This can also be verified by Corollary 2.2.16. We have

X =


1 −1 1 −1

1 1 −1 −1

1 1 1 1

 , L̃ = I4, Ac = I3,

which satisfy that XL̃ = AcX. Thus Corollary 2.2.16 yields that CP is an invariance set for

this continuous system.

The following two examples consider ellipsoids and Lorenz cones for continuous systems.

Example 2.2.41. Consider the ellipsoid E = {(ξ, η) | ξ2 + η2 ≤ 1}, and the system ξ̇ =

−η, η̇ = ξ.

The solution of the system is ξ(t) = α cos t + β sin t and η(t) = α sin t − β cos t, where

α, β are two parameters depending on the initial condition. The solution trajectory is a

circle, thus the system is invariant on this ellipsoid. Also, we have

Ac =

 0 −1

1 0

 , Q = I2, ATc Q+QAc =

 0 0

0 0

 � 0,

which shows that, according to Theorem 2.2.24, the ellipsoid is an invariant set for this

continuous system.

Example 2.2.42. Consider the Lorenz cone CL = {(ξ, η, ζ) | ξ2 + η2 ≤ ζ2, ζ ≥ 0}, and the

system ξ̇ = ξ − η, η̇ = ξ + η, ζ̇ = ζ.

The solution is ξ(t) = et(α cos t + β sin t), η(t) = et(α sin t − β cos t) and ζ(t) = γet,

where α, β, γ are three parameters depending on the initial condition. It is easy to verify

that this Lorenz cone is an invariant set for the continuous system. Also, by letting η ≤ −2,

we have

Ac =


1 −1 0

1 1 0

0 0 1

 , Q = I3, ATc Q+QAc + ηQ =


η + 2 0 0

0 η + 2 0

0 0 η + 2

 � 0,
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which shows that, according to Theorem 2.2.37, the Lorenz cone is an invariant set for this

continuous system.
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Chapter 3

Steplength Threshold for

Invariance Preserving

3.1 Introduction

In this chapter, steplength thresholds for invariance preserving of three types of discretiza-

tion methods on a polyhedron are considered. First, we show that, for the forward Euler

method, the largest steplength threshold for invariance preserving can be computed by

solving a finite number of linear optimization problems. Second, for Taylor approximation

type discretization methods we prove that a valid steplength threshold can be obtained

by finding the first positive zeros of a finite number of polynomial functions. Further, a

simple and efficient algorithm is proposed to numerically compute the steplength threshold.

For rational function type discretization methods we derive a valid steplength threshold for

invariance preserving, which can be computed by using an analogous algorithm as in the

first case. The relationship between the latter two types of discretization methods and the

forward Euler method is studied.

In this chapter, candidate invariant sets are restricted to convex polyhedron in Rn. A

polyhedron P in Rn can be characterized as the intersection of a finite number of half spaces.

Let us rewrite Definition 7.1.1 as follows:
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Definition 3.1.1. A polyhedron P in Rn is defined as

P = {x ∈ Rn | gT1 x ≤ b1, gT2 x ≤ b2, ..., gTmx ≤ bm} := {x ∈ Rn |Gx ≤ b}, (3.1)

where g1, g2, ..., gm ∈ Rn, b ∈ Rm, and GT = [g1, g2, ..., gm] ∈ Rn×m.

Two classical subsets of polyhedra are extensively studied in many applications. One is

called polytope, which is a bounded polyhedron. The other one is called polyhedral cone,

a polyhedron with b = 0 in (3.1), and the origin is its only vertex.

Given a system and a polyhedron, the invariance condition indicates sufficient and nec-

essary condition such that the polyhedron is an invariant set for the system. There are

many such equivalent invariance conditions, e.g., [8, 19]. A novel and unified approach to

derive these invariance conditions is proposed in Chapter 2. We will use to Theorem 2.2.8

and Theorem 2.2.4 in our analysis.

From the theoretical perspective, when a discretization method is applied to a continuous

system, the invariant polyhedron for the continuous system should also be an invariant set

for the discrete system. This means that conditions in Theorem 2.2.8 and Theorem 2.2.4

are satisfied simultaneously, when the system, polyhedron, and discretization method are

given. However, this is not always true. Intuitively, the smaller steplength used in the

discretization method has larger possibility to yield that the polyhedron is also an invariant

set for the discrete system. For the sake of self-contained presentation, the formal definitions

of invariance preserving and steplength threshold are introduced as follows.

Definition 3.1.2. Assume a polyhedron P is an invariant set for the continuous system

(1.2), and a discretization method is applied to the continuous system to yield a discrete

system. If there exists a τ > 0, such that P is also an invariant set for the discrete system

for any steplength ∆t ∈ [0, τ ], then the discretization method is invariance preserving

for ∆t ∈ [0, τ ] on P, and τ is a uniform invariance preserving steplength threshold

of this discretization method on P.

For simplicity, we use steplength threshold to indicate uniform invariance steplength

threshold for simplicity throughout this chapter. The steplength threshold in Definition
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4.1.1 implies that any value smaller than this threshold is also a valid steplength threshold.

This is a key reason why the problem of finding a valid steplength threshold is not an easy

problem. In the interval [0, τ ], one needs to check every ∆t in this interval, which means

that there are infinitely many values to be considered. In certain cases, a discretization

method may be invariance preserving on a set in the form of [0, τ1]∪ [τ2, τ3], where τ1 < τ2.

Here we are only interested in finding τ1. We also note that the steplength threshold in

Definition 4.1.1 is uniform on P, i.e., τ needs to be a valid steplenth threshold for every

initial point in P. This is another key reason why the problem of finding a valid steplength

threshold is not an easy problem.

Since a continuous system is usually solved by using various discretization methods

in practice, invariance preserving property of the chosen discretization method plays an

important role. Further, a larger steplength threshold has many advantages in practice.

For example, for larger steplength, the size of the discretized system is smaller, which yields

that the computation is less expensive. Thus, we introduce the key problem in the chapter:

Find a valid (if possible the largest) steplength threshold τ > 0, such that a

discretization method is invariance preserving for every ∆t ∈ [0, τ ] on P.

3.2 Computing Steplength Threshold

In this section, we present the approaches for computing a valid (or largest) steplength

threshold such that three classes of discretization methods are invariance preserving on a

polyhedron. These three classes of discretization methods are considered in the following

order: forward Euler method, Taylor approximation type discretization methods, and ra-

tional function type discretizatin methods. For the forward Euler method, we derive the

largest steplength threshold for invariance preserving. The Taylor approximation type rep-

resents a family of explicit methods. The rational function type is an extended family of the

Taylor approximation type, which also includes some implicit methods. The relationship

between these discretization methods and the forward Euler method is also studied.
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3.2.1 Forward Euler Method

As an illustration, we consider the simplest discretization method, the forward Euler method,

in this section. For simplicity, a polytope, i.e., a bounded polyhedron, is chosen as the in-

variant set for the forward Euler method. A polytope can be defined in terms of convex

combination of its vetices, i.e.,

P = conv{x1, x2, ..., x`} =
{
x |x =

∑̀
i=1

λix
i,

∑̀
i=1

λi = 1, λi ≥ 0
}
, (3.2)

where {xi} are the vertices of P. For polytope, we have a simple invariance condition, which

relies on a simple form of tangent cone. A sufficient and necessary condition under which a

polytope is an invariant set for the continuous system is presented in Lemma 3.2.1.

Lemma 3.2.1. [10] The polytope P defined as in (3.2) is an invariant set for the continuous

system (1.2) if and only if Acx
i ∈ TP(xi), for i = 1, 2, ..., `, where TP(xi) is the tangent

cone at xi, which can be given

TP(xi) = {y | y =
∑
j 6=i

γj(x
j − xi), γj ≥ 0}. (3.3)

Corollary 3.2.2. The polyhedron P defined as in (3.2) is an invariant set for the continuous

system (1.2) if and only if there exist γ
(i)
j ≥ 0, j = 1, 2, ..., `, such that

Acx
i =

∑
j 6=i

γ
(i)
j (xj − xi), for all i = 1, 2, ..., `. (3.4)

Let εi =
(∑

j 6=i γ
(i)
j

)−1
for i = 1, 2, ..., ` (let εi =∞, when

∑
j 6=i γ

(i)
j = 0), then

xi + ∆tAcx
i ∈ P for any ∆t ∈ [0, εi]. (3.5)

Proof. According to Lemma 3.2.1 and Equation (3.3), Equation (3.4) is immediate. Ac-

cording to (3.4) and εi
∑

j 6=i γ
(i)
j = 1, we have

εiAcx
i =

∑
j 6=i

εiγ
(i)
j (xj − xi) =

∑
j 6=i

εiγ
(i)
j xj −

∑
j 6=i

εiγ
(i)
j xi =

∑
j 6=i

εiγ
(i)
j xj − xi. (3.6)
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According to (3.6), we have xi + εiAcx
i =

∑
j 6=i ε

iγ
(i)
j xj , which is a convex combination of

{xj}, thus xi + εiAcx
i ∈ P. For any ∆t ∈ [0, εi], by the convexity of P, we have

xi + ∆tAcx
i =

∆t

εi
(xi + εiAcx

i) +
εi −∆t

εi
xi ∈ P,

which completes the proof.

We now consider the calculation of εi, where εi is defined as in Corollary 3.2.2. By the

formula of εi, we need to compute γ
(i)
j , j = 1, 2, ..., `, such that (3.4) is satisfied. In fact,

this can be achieved by solving the following optimization problem:

min
{∑
j 6=i

γ
(i)
j |

∑
j 6=i

γ
(i)
j (xj − xi) = Acx

i, γ
(i)
j ≥ 0.

}
(3.7)

Since x1, x2, ..., xk, and Ac are known, optimization problem (3.7) is a linear optimization

problem. One may obtain different values of γ̂
(i)
j , j = 1, 2, ..., `, by choosing other objective

functions in (3.7). The advantage by using the current objective function in (3.7) is that

this optimization problem yields the largest εi that satisfies (3.4). This is since the objective

function in (3.7) is (εi)−1. Thus, the value of εi obtained by solving the optimization problem

(3.7) is the largest possible value of εi.

An alternative is presented by the following discussion. Equation (3.3) implies that Axi

is a feasible direction, i.e., xi + τ iAcx
i ∈ P, for sufficiently small τ i > 0. Then we can

formulate the following linear optimization problem for i = 1, 2, ..., `:

max
{
τ i |

∑̀
j=1

u
(i)
j x

j = xi + τ iAcx
i,
∑̀
j=1

u
(i)
j = 1, u

(i)
j ≥ 0

}
. (3.8)

Optimization problems (3.7) and (3.8) are equivalent problems, i.e., we claim that τ i is

equal to εi. Observing that
∑n

j=1 β
(i)
j = 1 for the first constraint in (3.8), we have

τ iAcx
i =

∑̀
j=1

u
(i)
j x

j −
∑̀
j=1

u
(i)
j x

i =
∑̀
j=1

τ i
u

(i)
j

τ i
xj −

∑̀
j=1

τ i
u

(i)
j

τ i
xi = τ i

∑̀
j=1

u
(i)
j

τ i
(xj − xi), (3.9)

i.e., Acx
i =

∑
j 6=i

u
(i)
j

τ i
(xj − xi). This, by letting

u
(i)
j

τ i
= γ

(i)
j gives the first constraint in (3.7).
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According to the argument for εi above, we have the following theorem.

Theorem 3.2.3. Assume that the polytope P defined as in (3.2) is an invariant set for

the continuous system (1.2), and the forward Euler method is applied to (1.2). Then,

τ = mini=1,2,...,`{εi}, where εi is defined as in Corollary 3.2.2, is the largest steplength

threshold τ > 0 for invariance preserving of the forward Euler method on P.

Proof. For any x ∈ P, and ∆t ∈ [0, τ ], we have x + ∆tAcx =
∑`

i=1 λi(x
i + ∆tAcx

i).

According to Corollary 3.2.2 and 0 ≤ ∆t ≤ τ ≤ εi, we have xi + ∆tAcx
i ∈ P. Thus we have

x+ ∆tAcx ∈ P. The proof is complete.

3.2.2 Taylor Approximation Type Discretization Methods

We now consider the Taylor approximation type discretization methods. Note that the

solution of the continuous system (1.2) is explicitly represented as x(t) = eActx0, thus one

can use the Taylor approximation to numerically solve the continuous system. The p-order

Taylor approximation of eAc∆t is given as follows:

eAc∆t ≈ I +Ac∆t+
1

2!
A2
c∆t

2 + · · ·+ 1

p!
Apc∆t

p =

p∑
i=0

1

i!
Aic∆t

i := Ad. (3.10)

The discrete system obtained by applying the Taylor approximation type discretization

methods is given as xk+1 = Adxk, where Ad is defined by (3.10). In fact, the Taylor

approximation type methods form a family of discretization methods. For example, p =

1 corresponds to the forward Euler method, p = 2 corresponds to Heun’s method, the

midpoint method, or generalized Runge-Kutta 2nd order methods, p = 3 corresponds to

the classical 3rd order Runge-Kutta method, p = 4 corresponds to classical 4th order

Runge-Kutta method, etc, see, e.g., [32].

3.2.2.1 Existence of Steplength Threshold

Our approach to derive steplength threshold is based on the invariance conditions presented

in Theorem 2.2.8 and Theorem 2.2.4. The basic idea is that we build the relationship

between these two invariance conditions of the continuous and discrete systems. In fact,
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conditions in Theorem 2.2.8 and Theorem 2.2.4 are essentially linear feasibility problems

[56]. The unknowns in the two invariance conditions are the matrix H and H̃ given by

Theorem 2.2.8 and Theorem 2.2.4, respectively. Thus, the key is to find relationship between

those matrices.

Lemma 3.2.4. [36] Assume H satisfies the condition in Theorem 2.2.8, then there exists

γ > 0, such that Ĥ = H + γI ≥ 0.

Proof. Since H ≥o 0, we can choose γ > max{0,−min{hii, 1 ≤ i ≤ n}}, which yields

H + γI ≥ 0. The result is immediate by taking Ĥ = H + γI,

We note that γ in Lemma 3.2.4 is not unique, e.g., any value greater than a valid γ is

also valid. We will show more about the effect of γ to the steplength threshold in Section

3.2.3, and the way to derive a larger steplength threshold based on γ is also presented.

Lemma 3.2.5. Assume H satisfies the condition in Theorem 2.2.8, and define

H̃(∆t) = I +H∆t+
1

2!
H2∆t2 + · · ·+ 1

p!
Hp∆tp =

p∑
i=0

1

i!
H i∆ti. (3.11)

a). For the γ and Ĥ given in Lemma 3.2.4, we have

H̃(∆t) = f0(∆t)I + f1(∆t)Ĥ + ...+ fp(∆t)Ĥ
p, (3.12)

where

fi(∆t) =

p∑
k=i

(−1)k−i

k!

(
k

i

)
γk−i∆tk, for i = 0, 1, ..., p, (3.13)

and
p∑
i=0

γifi(∆t) = 1. (3.14)

b). Let τ = mini=0,...,p{τi}, where τi is the first positive zero of fi(∆t). Then for all

∆t ∈ [0, τ ], the matrix H̃(∆t) satisfies the condition in Theorem 2.2.4, where Ad is

defined by (3.10).

Proof. a). According to Lemma 3.2.4, there exists γ > 0, such that Ĥ = H + γI ≥ 0. The

matrix H̃(∆t) given by (3.11) is represented in terms of ∆t. By substituting H = Ĥ − γI
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into (3.11), we now reformulate H̃(∆t) in terms of Ĥ, i.e.,

H̃(∆t) = I + (Ĥ − γI)∆t+
1

2!
(Ĥ2 − 2γĤ + γ2I)∆t2 + · · ·

+
1

p!
(Ĥp − pγĤp−1 + · · ·+ (−1)pγpI)∆tp.

(3.15)

According to (3.15), the coefficients of Ĥ i, for i = 0, 1, ..., p, is given as

1

i!
∆ti +

−1

(i+ 1)!

(
i+ 1

i

)
γ∆ti+1 +

(−1)2

(i+ 2)!

(
i+ 2

i

)
γ2∆ti+2 + · · ·+ (−1)p−i

p!

(
p

i

)
γp−i∆tp,

which is the same as (3.13).

We note that
∑p

i=0 γ
ifi(∆t) is equivalent to replacing I and Ĥ in (3.12) by 1 and γ,

respectively. Then, according to (3.15), we have

p∑
i=0

γifi(∆t) =

p∑
i=0

1

i!
(γ∆t)i

i∑
k=0

(−1)k
(
i

k

)
. (3.16)

For i > 0, we have
∑i

k=0(−1)k
(
i
k

)
= (x− 1)i|x=1 = 0, implying that the right hand side of

(3.16) equals to 1, thus (3.14) follows immediately.

b). We note that for every i the first term of fi(∆t) given as in (3.13) is 1
i!∆t

i. Then

we can write

fi(∆t) =
∆ti

i!

(
1 +O(∆t)

)
. (3.17)

Thus, we have that there exists a τi > 0, i.e., the first positive zero of fi(∆t), where τi may

be infinity, such that fi(∆t) ≥ 0 for all ∆t ∈ [0, τi]. Then we let

τ = min
i=0,1,...,p

{τi}, (3.18)

thus we have fi(∆t) ≥ 0 for all ∆t ∈ [0, τ ] and i = 0, 1, ..., p. According to (3.12), and by

noting that Ĥ i ≥ 0 for any i = 1, 2, ..., p, we have that H̃(∆t) ≥ 0 for all ∆t ∈ [0, τ ], where

τ is defined by (3.18). Thus, we have proved that the first condition in Theorem 2.2.4 is

satisfied.
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By recursively using HG = GAc, for any i, we have

H iG = H i−1(HG) = H i−1GAc = H i−2(HG)Ac = H i−2GA2
c = ... = GAic. (3.19)

Then, according to (3.19), and substituting (3.11) and (3.10), we have

H̃(∆t)G =

p∑
i=0

1

i!
H iG∆ti =

p∑
i=0

1

i!
GAi∆ti = G

p∑
i=0

1

i!
Ai∆ti = GAd.

Thus, we have proved that the second condition in Theorem 2.2.4 is satisfied.

Since H satisfies the condition in Theorem 2.2.8, we have Hb ≤ 0. Also, note that

H = Ĥ − γI, thus we have (Ĥ − γI)b ≤ 0, i.e., Ĥ
γ b ≤ b. Since Ĥ

γ ≥ 0, we have

(Ĥ
γ

)i
b ≤ b, i.e., Ĥ ib ≤ γib, for any i = 1, 2, ..., p. (3.20)

Then, according to (3.20) and (3.14), we have

H̃(∆t)b = (f0(∆t)I + f1(∆t)Ĥ + · · ·+ fp(∆t)Ĥ
p)b

≤ (f0(∆t) + γf1(∆t) + · · ·+ γpfp(∆t))b

≤ b.

Thus, we have proved that the third condition in Theorem 2.2.4 is satisfied. The proof is

complete.

Lemma 3.2.5 presents an important relationship between the two matrices H and H̃

corresponding to the continuous and discrete systems invariance conditions. This relation-

ship is explicitly represented in (3.11), which is derived from the Taylor approximation

(3.10). We note that Kraaijevanger [42] uses a simpler approach to study the polynomial

approximation to exponential function related to numerical methods for solving initial value

problems, which is motivated by positivity and contractivity problems. In fact, one can show

that the functions given as in (3.13) are coming from Taylor expansion of an exponential

function. One may refer to [42] for more detailed discussions. According to Lemma 3.2.5,

Theorem 2.2.8 and Theorem 2.2.4, we have the following theorem.
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Theorem 3.2.6. Assume a polyhedron P, given as in (3.1), is an invariant set for the

continuous system (1.2), and a Taylor approximation type discretization method (3.10) is

applied to the continuous system (1.2). Then, the steplength threshold τ > 0 as given in

Lemma 3.2.5 is a valid steplength threshold for invariance preserving for the given Taylor

approximation type discretization method (3.10) on P.

According to the proof of Lemma 3.2.5, we have that a valid τ requires fi(∆t) ≥ 0 for

all ∆t ∈ [0, τ ] and all i = 0, 1, ..., p, where fi(∆t) is given by (3.13). Since each fi(∆t) can

be represented in the form of (3.17), the following corollary is immediate.

Corollary 3.2.7. The value of τ given in Theorem 4.3.9 (or Lemma 3.2.5) is a valid

steplength threshold for invariance preserving on P for the Taylor approximation type dis-

cretization methods (3.10). To compute τ , one needs to find the first positive zeros of finitely

many polynomial functions in the form

f(∆t) = 1 + α1∆t+ α2∆t2 + ...+ αq∆t
q, αq 6= 0, (3.21)

where α1, α2, ..., αq ∈ R and q ∈ N.

In fact, Lemma 3.2.5 can be extended to a more general case for polynomial approxi-

mation rather than Taylor type discretization methods.

Theorem 3.2.8. Assume H satisfies the condition in Theorem 2.2.8, and define

H̃(∆t) = I + σ1H∆t+ σ2H
2∆t2 + · · ·+ σpH

p∆tp =

p∑
i=0

σiH
i∆ti. (3.22)

a). For the γ and Ĥ given in Lemma 3.2.4, we have

H̃(∆t) = f0(∆t)I + f1(∆t)Ĥ + ...+ fp(∆t)Ĥ
p, (3.23)

where

fi(∆t) =

p∑
k=i

(−1)k−iσk

(
k

i

)
γk−i∆tk, for i = 0, 1, ..., p, (3.24)
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and
p∑
i=0

γifi(∆t) = 1. (3.25)

b). Let τ = mini=0,...,p{τi}, where τi is the first positive zero of fi(∆t). Then for all

∆t ∈ [0, τ ], the matrix H̃(∆t) satisfies the condition in Theorem 2.2.4, where Ad is

defined by (3.10).

Proof. a). According to Lemma 3.2.4, there exists a γ > 0, such that Ĥ = H+γI ≥ 0. The

matrix H̃(∆t) given by (3.22) is represented in terms of ∆t. By substituting H = Ĥ − γI

into (3.22), we now reformulate H̃(∆t) in terms of Ĥ, i.e.,

H̃(∆t) = I + σ1(Ĥ − γI)∆t+ σ2(Ĥ2 − 2γĤ + γ2I)∆t2 + · · ·

+ σp(Ĥ
p − pγĤp−1 + · · ·+ (−1)pγpI)∆tp.

(3.26)

According to (3.26), the coefficient of Ĥ i, for i = 0, 1, ..., p, is given as

σi∆t
i − σi+1

(
i+ 1

i

)
γ∆ti+1 + σi+2

(
i+ 2

i

)
γ2∆ti+2 + · · ·+ (−1)p−iσp

(
p

i

)
γp−i∆tp,

which is the same as (3.24).

We note that
∑p

i=0 γ
ifi(∆t) is equivalent to replacing I and Ĥ in (3.23) by 1 and γ,

respectively. Then, according to (3.26), we have

p∑
i=0

γifi(∆t) =

p∑
i=0

αi(γ∆t)i
i∑

k=0

(−1)k
(
i

k

)
. (3.27)

For i > 0, we have
∑i

k=0(−1)k
(
i
k

)
= (x− 1)i|x=1 = 0, implying that the right hand side of

(3.27) equals to 1, thus (3.25) follows immediately.

The proof for Part b) is the same as the one presented for Part b) in Lemma 3.2.5, thus

we are not repeating the proof here.

3.2.2.2 Computing Steplength Threshold

We now consider the value of τ , i.e., the steplength threshold. In this section, we present

an algorithm to numerically compute τ . In particular, this algorithm aims to find the first
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positive zero of a polynomial function in the form of (3.21).

Lemma 3.2.9. Let f(∆t) be given as in (3.21). There exists a τ∗ > 0, such that f(∆t) ≥ 0

for all ∆t ∈ [0, τ∗].

Proof. Since f(0) = 1 > 0, and f(∆t) is a continuous function, the lemma is immediate.

Let f(∆t) be given as in (3.21). If α1, α2, ..., αq ≥ 0, then f(∆t) ≥ 0 for all ∆t ≥ 0,

which implies τ∗ =∞ in Lemma 3.2.9. Also, since f(∆t) is dominated by αq∆t
q for ∆t� 1,

we have that τ∗ =∞ implies αq > 0. Therefore, the largest τ∗ that satisfies Lemma 3.2.9 is

the first positive zero of f(∆t), otherwise, we have τ∗ =∞. In fact, we can find a predicted

large t∗ > 0, such that if there is no zeros of f(∆t) in [0, t∗], then we have τ∗ = ∞. Note

that this case only occurs when αq∆t
q dominates f(∆t). This is presented in the following

lemma.

Lemma 3.2.10. Let f(∆t) be given as in (3.21) and αq > 0. Let α∗ = max{1, |α1|, |α2|,

..., |αq−1|} and t∗ = α∗

αq
+ 1. Then, if f(∆t) has no real zero in [0, t∗], then f(∆t) > 0 for

all ∆t > 0.

Proof. Since f(∆t) has no real zero in [0, t∗], we have f(∆t) > 0 on [0, t∗]. Thus, we only

need to prove that the following holds:

αq∆t
q > |1 + α1∆t+ α2∆t2 + ...+ αq−1∆tq−1|, for all ∆t ∈ (t∗,∞].

Note that t∗ = α∗

αq
+ 1 implies αq = α∗

t∗−1 >
α∗

∆t−1 for all ∆t ∈ (t∗,∞]. Then we have

|1 + α1∆t+ α2∆t2 + ...+ αq−1∆tq−1| ≤ α∗(1 + ∆t+ ∆t2 + ...+ ∆tq−1)

= α∗
∆tq − 1

∆t− 1
< αq(∆t

q − 1) < αq∆t
q.

The proof is complete.

In fact, the value t∗ given in Lemma 3.2.10 can be considered as one of the termination

criteria of the algorithm to find the first positive zero of f(∆t), where f(∆t) is defined by

(3.21).
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The Sturm sequence {si(t)} of f(t) and the Sturm Theorem presented in the following

definition play a key role in our algorithm. The Sturm Theorem aims to give the number of

real zeros of a univariate polynomial function in an interval by using the property of Sturm

sequence on the end points of the interval.

Definition 3.2.11. [66] Let f(t) be a univariate polynomial function. The Sturm se-

quence {si(t)}, i = 1, 2, ..., of f(t) is defined as

s0(t) = f(t), s1(t) = s′(t), si(t) = −rem(si−2(t), si−1(t)), i ≥ 2,

where s′(t) is the derivative of s(t) with respect to t, and si(t) is the negative of the remainder

of the division when si−2(t) is divided by si−1(t).

For the sake of simplicity, we introduce the following definition and notation, which are

used in the statement of the Sturm Theorem.

Definition 3.2.12. For a sequence {νi}, i = 1, 2, ..., q, the number of sign changes,

denoted by #{νi}, is the number of the times of the signs change (zeros are ignored) from

ν1 to νq.

For example, if a sequence is given as {νi} = {1, 0, 3,−2, 0, 2,−1, 0,−3}, then the

signs of the sequence are {+, 0,+,−, 0,+,−, 0,−}. By eliminating all zeros, we have

{+,+,−,+,−,−}, which has 3 sign changes, i.e., #{νi} = 3.

Theorem 3.2.13. [66] (Sturm Theorem) Let f(t) be a univariate polynomial function.

If α < β and f(α), f(β) 6= 0. Then the number of distinct real zeros of f(t) in the interval

[α, β] is equal to |#{si(α)} −#{si(β)}|, where {si(t)} is the Sturm sequence of f(t).

According to Lemma 3.2.10 and Theorem 3.2.13, we now propose our algorithm to

numerically find the first positive zero of f(∆t) where f(∆t) is defined by (3.21). Let us

denote #f [δ] the number of positive zeros of f(∆t) at the interval [0, δ]. The value of #f [δ]

can be computed by the Sturm Theorem 3.2.13. The basic idea in our algorithm is by using

the bisection method to shrink the interval, which contains the first positive zero of f(t),

by factor 2 in each iteration. Our algorithm is presented as follows.
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Step 0: [Initial Inputs] Set t◦ = 1. Iterate t◦ = t◦

2 until #f [t◦] = 0.

Let t∗ be given as in Lemma 3.2.10.

Step 1: [Initial Setting] Set tl = t◦, tr = t∗, and ε > 0 be the precision.

Step 2: [Termination 1] If #f [tr] = 0, then τ =∞.

Step 3: [Termination 2] If #f [tr] = 1 and f(tr) = 0, then τ = t∗.

Step 4: [Bisection Method] Set tm = tl+tr
2 .

Repeat until |tl − tr| < ε:

• [Termination 3] If #f [tm] = 1 and f(tm) = 0, then τ = tm.

• [Update tr] If #f [tm] = 1 and f(tm) 6= 0, or #f [tm] > 1, then set tr = tm.

• [Update tl] If #f [tm] = 0, then set tl = tm.

End

Step 5: [Termination 4] If Step 4 is terminated at |tl − tr| < ε, then τ = tl.

The correctness of the termination condition in Step 2 is ensured by Lemma 3.2.10. If

neither of the termination conditions in Step 2 and 3 are satisfied, then it means that the

first positive zero of f(t) exists and is located in the interval (tl, tr). The second case in Step

4 means that the first positive zero of f(t) is located in the interval (tl, tm). Analogously,

the third case in Step 4 means that the first positive zero of f(t) is located in the interval

(tm, tr). In Step 5, we conclude that the first positive zero of f(t) is located in the interval

(tl, tr). Recall that we are interested to find a value τ , such that f(t) ≥ 0 for all [0, τ ], thus

we return tl, i.e., the left end of the interval.

Remark 3.2.14. If all coefficients σi ≥ 0 for i = 1, 2, ..., p in (3.22), then the algorithm

is also applicable to compute a valid steplength threshold for invariance preserving for the

polynomial approximation (3.22).
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3.2.3 Rational Function Type Discretization Methods

The previous discussion is mainly about a steplength threshold for invariance preserving for

a Taylor approximation type discretization methods as specified in (3.10). In this section, we

consider more general discretization methods, which are refereed to as the rational function

type discretization methods. To be specific, these discretization methods when applied to

the continuous system, yield the discrete system

xk+1 = r(Ac∆t)xk, (3.28)

where r(t) : R→ R is a rational function defined as

r(t) =
g(t)

h(t)
=
λ0 + λ1t+ · · ·+ λpt

p

µ0 + µ1t+ · · ·+ µqtq
, (3.29)

where λ0, λ1, ..., λp ∈ R, µ0, µ1, ..., µq ∈ R, and p, q ∈ N. It is clear that Taylor approxi-

mation type discretization methods belong to this type. Some implicit methods are also in

this type, e.g., the backward Euler method, Lobatto methods [29], etc.

Definition 3.2.15. [33] Let r(t) be given as in (3.29), and let M be a matrix. Assume

h(M) is nonsingular, then1

r(M) := (h(M))−1g(M) = g(M)(h(M))−1. (3.30)

3.2.3.1 Existence of Steplength Threshold

In this subsection, our analysis uses the so called radius of absolute monotonicity of a

function.

Definition 3.2.16. [60] Let r(t) : R → R. If ρ = max{κ | r(i)(t) ≥ 0 for all i = 1, 2, ...,

and t ∈ [−κ, 0]}, where r(i)(t) is the ith derivative of r(t), then ρ is called the radius of

absolute monotonicity of r(t).

1The definition of a matrix function may refer to Chapter 1 in [33]. By using the definition of ma-
trix functions, and the fact that both h(x) and g(x) are polynomial functions, one can easily verify that
g(M)h(M) = h(M)g(M). Multiplying this identity from left and right by the inverse of h(M) gives the
commuting relationship in (3.30).
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The radius of absolute monotonicity of a function is extensively used in the analysis of

positivity, monotonicity, and contractivity of discretization methods for ordinary differential

equations, see e.g., [38, 42, 60].

Theorem 3.2.17. Assume r(t) is a rational function with r(0) = 1. Let ρ be the radius

of absolute monotonicity of r(t). Assume ρ > 0, and assume a polyhedron P be given as

in (3.1) is an invariant set for the continuous system (1.2), and the rational function type

discretization method given as in (3.28) is applied to the continuous system (1.2). Then

τ = ρ
γ , where γ is given in Lemma 3.2.4, is a valid steplength threshold for invariance

preserving of the rational function type discretization method given as in (3.28) on P.

Proof. The framework of this proof is similar to the one presented for Lemma 3.2.5. Since

P is an invariant set for the continuous system, according to Lemma 3.2.4, there exists an

H, and γ > 0, such that

H + γI ≥ 0, HG = GAc, and Hb ≤ 0. (3.31)

To ensure P is also an invariant set for the discrete system, we need to prove that there

exists an H̃(∆t) ∈ Rm×m, such that

H̃(∆t) ≥ 0, H̃(∆t)G = Gr(Ac∆t), and H̃(∆t)b ≤ b. (3.32)

Let H̃(∆t) = r(H∆t). Now we prove that H̃(∆t) satisfies (3.32).

For the first condition in (3.32), we use the Taylor expansion of r(t) at the value −ρ as

r(t) =

∞∑
i=0

r(i)(−ρ)

i!
(t+ ρ)i. (3.33)

By substituting t = H∆t into (3.33) we have

H̃(∆t) = r(H∆t) =
∞∑
i=0

r(i)(−ρ)

i!
(H∆t+ ρI)i =

∞∑
i=0

r(i)(−ρ)

i!
(∆t)i

(
H +

ρ

∆t
I
)i
. (3.34)

Since ρ is the radius of absolute monotonicity of r(t), we have r(i)(−ρ)
i! ≥ 0 for all i. Also,
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according to (3.31), and ∆t ≤ ρ
γ , i.e., ρ

∆t ≥ γ, so we have H + ρ
∆tI ≥ H + γI ≥ 0. Then we

have (H + ρ
∆tI)i ≥ 0 for all i. According to (3.34), we have H̃(∆t) ≥ 0 for ∆t ≤ ρ

γ , thus

the first condition in (3.32) is satisfied.

According to Definition 3.2.15, the second condition in (3.32) can be rewritten as

(h(H∆t))−1g(H∆t)G = Gg(Ac∆t)(h(Ac∆t))
−1,

i.e.,

g(H∆t)Gh(Ac∆t) = h(H∆t)Gg(Ac∆t). (3.35)

According to (3.29), we have

h(H∆t)Gg(Ac∆t) =

p∑
i=1

q∑
j=1

λiµjH
iGHj∆ti+j ,

g(H∆t)Gh(Ac∆t) =

q∑
j=1

p∑
i=1

λiµjH
jGH i∆ti+j .

(3.36)

By recursively using HG = GAc, for any i, j, we have

H iGAjc = GAi+jc = H i+jG = HjGAic. (3.37)

According to (3.36) and (3.37), we have that (3.35) is true, i.e., the second condition (3.32)

is satisfied.

For the third condition in (3.32) we have

H̃(∆t)b = r(H∆t)b =

∞∑
i=0

r(i)(−ρ)

i!
(H∆t+ ρI)ib

=
∞∑
i=0

r(i)(−ρ)

i!
(H∆t+ ρI)i−1(H∆t+ ρI)b

≤
∞∑
i=0

r(i)(−ρ)

i!
(H∆t+ ρI)i−1ρb ≤

∞∑
i=0

r(i)(−ρ)

i!
ρib = r(0)b = b.

Thus, the third condition in (3.32) is also satisfied. The proof is complete.

The assumption r(0) = 1 in Theorem 3.2.17 is a fundamental condition for most dis-
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cretization methods. This is since for steplength ∆t = 0 the coefficient matrix of the discrete

system is the identity matrix.

3.2.3.2 Computing Steplength Threshold

The steplength threshold given in Theorem 3.2.17 is related to ρ and γ. Recall that γ is

given in Lemma 3.2.4, thus we only consider the computation of ρ.

Since r(t) is a rational function, all of its derivatives r(i)(t) have the same format, i.e.,

they are represented as quotients of two polynomial functions. Now recall that the radius

of absolute monotonicity ρ is defined as r(i)(t) ≥ 0 for t ∈ [−ρ, 0]. This requires that the

polynomial function in the numerator of r(i)(t) is nonnegative for t ∈ [−ρ, 0]. Thus, a valid ρ

is the negative of the first negative real zero of this polynomial function. Then an algorithm

similar to the one presented in Section 3.2.2.2 can be proposed to numerically compute ρ.

Due to the space consideration, we are not repeating the algorithm here.

3.2.4 Parameter and Steplength Threshold

According to Theorem 4.3.9 and Theorem 3.2.17, we have that the parameter γ plays an

important role to derive a large valid steplength threshold. In this section, we consider the

effect of γ to the steplength threshold.

3.2.4.1 Best Parameter

Let us first consider the case for Taylor approximation type discretization methods. By

simple modification, we have that fi(∆t) defined in (3.13) can be written as

fi(∆t) = ∆ti
p∑
k=i

(−1)k−i

k!

(
k

i

)
(γ∆t)k−i, for i = 0, 1, ..., p, (3.38)

which means that smaller γ will yield larger steplength threshold for Taylor type discretiza-

tion method given as in (3.10). Similarly, according to Theorem 3.2.17, we also have that

smaller γ will yield larger steplength threshold for the rational function type discretization

methods (3.28). Thus we prefer the smallest possible γ, which in fact can be computed by
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solving the following optimization problem

min{γ |H + γI ≥ 0, HG = GAc, and Hb ≤ 0}. (3.39)

In optimization problem (3.39), the variables are H and γ, while G,Ac and b are known,

thus problem (3.39) is a linear optimization problem, which can be easily solved by existing

optimization algorithms, e.g., simplex methods [6] or interior point methods [56]. If IPMs

are used, then (3.39) can be solved in polynomial time. In particular, if there exists anH ≥ 0

such that HG = GAc and Hb ≤ 0, then the optimal solution, denoted by γ∗, of (3.39) is

nonpositive. In this case, according to (3.38), we have fi(∆t) ≥ 0 for all ∆t ≥ 0. Then

according to the proof of Lemma 3.2.5, we have that the steplength threshold for invariance

preserving for Taylor approximation type discretization methods (3.10) on polyhedron P

is infinity. Similarly, if γ∗ ≤ 0, according to Theorem 3.2.17, we have that the steplength

threshold for invariance preserving for rational function type discretization methods (3.28)

on polyhedron P is also infinity. Thus, we have the following theorem.

Theorem 3.2.18. If the optimal solution of (3.39) is nonpositive, then the steplength

threshold for invariance preserving on the polyhedron P is infinity for both Taylor approxi-

mation type discretization methods (3.10) and rational function type discretization methods

(3.28) (For rational functional type discretization method, we assume the radius of absolute

monotonicity is positive).

One should note that the steplength thresholds given in Theorem 4.3.9 and Theorem

3.2.17 may not be the largest steplength thresholds. For example, for Taylor approximation

type discretization methods, we aim to find the first positive zeros of finitely many poly-

nomial functions. In fact, the first positive zeros may not be the best in some cases. For

example, if the function is given as f(∆t) = (∆t− 1)2(∆t− 2)2, then its first positive zero

is 1. Then, by our methods, we have τ = 1. However, it is clear that f(∆t) ≥ 0 for any

∆t ≥ 0. Thus, in this case, we have τ =∞.

If the first zero, ∆t∗, of a function is a local minimum of this function, i.e., f ′(∆t∗) = 0,

then the first zero should not be used for computing the steplength threshold. This is since

the function is tangent to the x axis at the first zero. To verify if a zero is a local minimum,
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one can check the first order and second order directives f ′(∆t∗) and f ′′(∆t∗). If f(∆t∗) = 0

and f ′(∆t∗) < 0, then we can say that ∆t∗ is not a local minimum, and thus it is a valid

positive zero. If f(∆t∗) = 0, f ′(∆t∗) = 0, and f ′′(∆t∗) > 0, we can say that ∆t∗ is a local

minimum. Then we have to make ∆t to be larger, and use an algorithm similar to the one

presented in Section 3.2.2.2 to find the next zero of f(∆t), and verify again if that is a local

minimum. This procedure used to be repeated until the first valid positive zero is found.

3.2.4.2 Relation to the Forward Euler Method

The following lemma presents the relationship between γ that satisfies the constraints in

(3.39) and the operator I + γ−1Ac on P. Recall that I + ∆tAc is the coefficient matrix of

the discrete system by using the forward Euler method.

Lemma 3.2.19. Assume γ > 0. The conditions H + γI ≥ 0, HG = GAc, and Hb ≤ 0 are

satisfied if and only if (I + γ−1Ac)P ⊆ P.

Proof. “⇒ ” For x ∈ P, i.e., Gx ≤ b, we have

G(I + γ−1Ac)x = Gx+ γ−1GAcx

= Gx+ γ−1HGx ← since HG = GAc

= γ−1(H + γI)Gx

≤ γ−1(H + γI)b ← since Gx ≤ b and H + γI ≥ 0

= b+ γ−1Hb ≤ b ← since Hb ≤ 0.

Thus we have (I + γ−1Ac)x ∈ P, i.e., (I + γ−1Ac)P ⊆ P.

“⇐ ” We note that (I+γ−1Ac)P ⊆ P means that P is an invariant set for the following

discrete system:

xk+1 = (I + γ−1Ac)xk.

Then we have that there exists an H̃ ∈ Rm×m, such that H̃ ≥ 0, H̃G = G(I + γ−1Ac), and

H̃b ≤ b. Let Ĥ = γH̃, and then we have

Ĥ ≥ 0, ĤG = G(γI +Ac), and Ĥb ≤ γb,

62



i.e.,

(Ĥ − γI) + γI ≥ 0, (Ĥ − γI)G = GAc, and (Ĥ − γI)b ≤ 0.

Thus replacing Ĥ − γI by H, completes the proof.

We highlight that the forward Euler method is used to analyze invariance in continuous

dynamical systems in [14, 15]. In [14], the largest domain of attraction of a continuous

dynamical system is approximated with arbitrarily precision by using a polyhedral domain

of attraction of a discrete dynamical system. This discrete dynamical system is obtained by

the forward Euler method and referred to as Euler approximating system in [14]. The value

of γ−1 in Lemma 3.2.19 can be considered as the step size of the forward Euler method for

preserving the invariance of polyhedral set P, and the value of γ is easily quantified. The

existence of a step size for preserving the contractivity of a set is also presented in [14] for

the forward Euler method. A similar result to Lemma 3.2.19 is presented in [15], which

is an extension of [23], for (A,B)-invariance condition. The forward Euler method is also

applied to build the connection between continuous and discrete dynamical systems. The

value of the step size of the forward Euler method in [15] for (A,B)-invariance condition is

computed in a similar way to the one given as in Lemma 3.2.19.
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Chapter 4

Theory of Invariance Preserving

In this chapter, we consider the existence of local and uniform invariance preserving steplength

thresholds on a set when a discretization method is applied to a linear or nonlinear dynam-

ical system. For the forward or backward Euler method, the existence of local and uniform

invariance preserving steplength thresholds is proved when the invariant sets are polyhe-

dra, ellipsoids, or Lorenz cones. Further, we also quantify the steplength thresholds of the

backward Euler methods on these sets for linear dynamical systems. Finally, we present

our main results on the existence of uniform invariance preserving steplength threshold of

general discretization methods on general convex sets, compact sets, and proper cones both

for linear and nonlinear dynamical systems.

4.1 Introduction

In this chapter, we consider discrete and continuous linear dynamical systems which are

respectively given as in (1.1) and (1.2). For simplicity, we use A to indicate the matrix Ac

in the continuous system (1.2) in this chapter.

The following definition introduces the concepts of invariance preserving and steplength

threshold.

Definition 4.1.1. Assume a set S is an invariant set for the continuous system (1.2), and

a discretization method is applied to the continuous system to yield a discrete system.

• For a given xk ∈ S, if there exists a τ(xk) > 0, such that xk+1 ∈ S for ∆t ∈ [0, τ(xk)],

64



where xk+1 is obtained by using the discretization method, then the discretization

method is locally invariance preserving at xk, and τ(xk) is a local invariance

preserving steplength threshold for this discretization method at xk.

• If there exists a τ > 0, such that S is also an invariant set for the discrete system

for any steplength ∆t ∈ [0, τ ], then the discretization method is uniformly invari-

ance preserving on S and τ is a uniform invariance preserving steplength

threshold for this discretization method on S.

The forward and backward Euler methods are simple first order discretization methods

that are usually applied to solve ordinary differential equations numerically with initial con-

ditions. The forward Euler method, which is an explicit method, is conditionally stable. On

the other hand, the backward Euler method, which is an implicit method, is unconditionally

stable, see, e.g., [32].

4.2 Local Steplength Threshold

In this section, we prove the existence of an invariance preserving local steplength threshold

when the invariant sets are polyhedra, ellipsoids, and Lorenz cones.

4.2.1 Existence of Local Steplength Threshold

We first consider polyhedral sets and the forward and backward Euler methods for linear

systems.

Lemma 4.2.1. Assume that a polyhedron P, given as in (7.1), is an invariant set for the

continuous system (1.2), and xk ∈ P. Then there exists a τ(xk) > 0, such that xk+1 ∈ P

for all ∆t ∈ [0, τ(xk)], where xk+1 is obtained by the forward Euler method.

Proof. Since int(P) is an open set, we have that the statement is true for xk ∈ int(P). For

any xk ∈ ∂P, we have xk+1 = (I+A∆t)xk = xk+∆tAxk. According to Nagumo’s Theorem

7.2.5, see e.g., [48], we have Axk ∈ TP(xk). Then the statement is also true for xk ∈ ∂P.

In fact, the proof of Lemma 4.2.1 is also applicable for nonlinear systems, thus a similar
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conclusion about the local steplength threshold can be obtained for nonlinear systems too.

Now we turn our attention to the backward Euler method.

Lemma 4.2.2. Assume that a polyhedron P, given as in (7.1), is an invariant set for the

continuous system (1.2), and xk ∈ P. Then there exists a τ(xk) > 0, such that xk+1 ∈ P

for all ∆t ∈ [0, τ(xk)], where xk+1 is obtained by the backward Euler method.

Proof. Since P is an invariant set for the continuous system (1.2), we have G(eAtx) ≤ b for

all t ≥ 0. By substituting eAt = I+At+ 1
2A

2t2 + · · · , we have Gx+tGAx+ t2

2!GA
2x+ · · · ≤ b

for all t ≥ 0, which, for all t ≥ 0, can be written as

GTi x+ tGTi Ax+ t2

2!G
T
i A

2x+ t3

3!G
T
i A

3x+ · · · ≤ bi, for i ∈ I(n). (4.1)

For the backward Euler method we need to prove that for given Gxk ≤ b there exists a

τ(xk) > 0, such that G(I−A∆t)−1xk ≤ b, for ∆t ∈ [0, τ(xk)], which, by using (I−A∆t)−1 =

I +A∆t+A2∆t+ · · · , is equivalent to

GTi xk + ∆tGTi Axk + (∆t)2GTi A
2xk + (∆t)3GTi A

3xk + · · · ≤ bi, for i ∈ I(n), (4.2)

for ∆t ∈ [0, τ(xk)]. For i ∈ I(n), we denote the bound for ∆t by τi(xk) ≥ 0, such that (4.2)

holds. We have the following three cases:

• If GTi xk < bi, then τi(xk) > 0 due to the fact that int(P) is an open set.

• If there exists an ` ≥ 1, such that GTi xk = b,GTi Axk = 0, ..., GTi A
`−1x = 0, and

GTi A
`xk < 0, then according to (4.2), we have τi(xk) > 0.

• If neither of the above two cases is true, then we have GTi xk = b,GTi A
jxk = 0 for all

j = 1, 2, ..., which yields τi(xk) =∞.

Let τ(xk) = mini∈I(n){τi(xk)}. Since I(n) = n is finite, we have τ(xk) > 0. Clearly, when

∆t ∈ [0, τ(xk)], we have xk+1 = (I −A∆t)−1xk ∈ P. The proof is complete.

We now consider ellipsoids and Lorenz cones. If the trajectory of the continuous system

is on the boundary of a given ellipsoid or Lorenz cone, then according to the fact that the
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forward Euler method yields the tangent line of the trajectory at the given point xk, we

have that the forward Euler method is not invariance preserving for any ∆t > 0. Thus, we

only consider the backward Euler method for ellipsoids and Lorenz cones.

Lemma 4.2.3. Assume that an ellipsoid E, given as in (7.5), is an invariant set for the

continuous system (1.2), and xk ∈ E. Then there exists a τ(xk) > 0, such that xk+1 ∈ int(E)

for all ∆t ∈ [0, τ(xk)], where xk+1 is obtained by the backward Euler method.

Proof. It is easy to show that Axk = 0 implies xk+1 = xk, thus we consider the case of

Axk 6= 0. Since int(E) is an open set, it is trivial to find τ(xk) > 0 for xk ∈ int(E). Thus

we consider only the case when xk ∈ ∂E , i.e., xTkQxk = 1.

Since E is an invariant set for the continuous system, we have xTk (eAt)TQ(eAt)xk ≤ 1

for all t ≥ 0. By substituting eAt = I +At+ 1
2A

2t2 +O(t3), we have

xTkQxk + txTk (ATQ+QA)xk + t2(1
2x

T
k (A2T +A2)xk + (Axk)

TQ(Axk)) +O(t3) ≤ 1

for all t ≥ 0, which, by noting that xTkQxk = 1, is equivalent to

xTk (ATQ+QA)xk + t(1
2x

T
k (A2TQ+QA2)xk + (Axk)

TQ(Axk)) +O(t2) ≤ 0 (4.3)

for all t ≥ 0. If xTk (ATQ+QA)xk = 0, then (4.3) implies

1
2x

T
k (A2TQ+QA2)xk + (Axk)

TQ(Axk) ≤ 0. (4.4)

Since Axk 6= 0 and Q > 0, then (Axk)
TQ(Axk) � 0, which, according to (4.4), yields

1
2x

T
k (A2TQ+QA2)xk < 0. (4.5)

For the discrete system obtained by the backward Euler method, by using (I−A∆t)−1 =

I +A∆t+A2∆t+O((∆t)3), we have

xTk+1Qxk+1 =1 + ∆txTk (ATQ+QA)xk

+ (∆t)2(xTk (A2T +A2)xk + (Axk)
TQ(Axk)) +O((∆t)3).

(4.6)
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Then we consider the following two cases:

• If xTk (ATQ+QA)xk < 0, then xTk+1Qxk+1 < 1 for sufficiently small ∆t.

• If xTk (ATQ+QA)xk = 0, then, according to (4.5), we have

xTk (A2TQ+QA2)xk + (Axk)
TQ(Axk) ≤ 1

2x
T
k (A2TQ+QA2)xk < 0,

i.e., the coefficient of (∆t)2 in (4.6) is negative, which yields xTk+1Qxk+1 < 1 for

sufficiently small ∆t.

Thus, there exists a τ(xk) > 0 such that xk+1 ∈ int (E) for all ∆t ∈ [0, τ(xk)]. The proof

is complete.

Now we are ready to extend the result of Lemma 4.2.3 to the case of Lorenz cones.

Lemma 4.2.4. Assume that a Lorenz cone CL, given as in (7.6), is an invariant set for the

continuous system (1.2), and xk ∈ CL. Then there exists a τ(xk) > 0, such that xk+1 ∈ CL

for all ∆t ∈ [0, τ(xk)], where xk+1 is obtained by the backward Euler method.

Proof. Since xk = 0 implies xk+1 = 0, we consider only the case of xk 6= 0. The idea of the

proof is similar to the proof of Lemma 4.2.3. Since inequality (4.3) also holds for CL, we

have xTk (ATQ+QA)xk ≤ 0. If xTk (ATQ+QA)xk = 0, then (Axk)
TQxk = 0, i.e., the inner

product of Axk and Qxk is 0. This shows that Axk is in the tangent plane of CL at xk,

since Qxk is the normal direction at xk with respect to CL. The intersection of the tangent

plane and the cone is a half line, thus we consider the following two cases:

• If Axk ∈ ∂CL, i.e., (Axk)
TQ(Axk) = 0, then Axk is in the intersection of the cone CL

and the tangent plane of cone CL at xk. Also, since this intersection is a half line, we

have Axk = λkxk for some λk > 0, i.e., the vector xk is an eigenvector of A. Thus,

we have xk+1 = xk + λk∆txk + (λk∆t)
2xk + · · · = xk

1−λk∆t , for ∆t ∈ [0, λ−1
k ), which

implies that xk+1 ∈ ∂CL for all ∆t ∈ [0, λ−1
k ).

• If Axk /∈ ∂CL, i.e., (Axk)
TQ(Axk) > 0, then the rest of the proof is analogous to the

proof of Lemma 4.2.3, which leads to the conclusion that xk+1 ∈ int(CL).
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Thus, there exists a τ(xk) > 0, such that xk+1 ∈ CL for all ∆t ∈ [0, τ(xk)]. The proof is

complete.

4.2.2 Computation of Local Steplength Threshold

Lemma 4.2.3 and 4.2.4 show the existence of a valid steplength threshold such that xk+1

obtained by the backward Euler method is also in the invariant set. In fact, given xk ∈ E

(or CL), we can quantify the steplength threshould.

For simplicity we consider only the case of E . To ensure xk+1 ∈ E , we need

xTk+1Qxk+1 = xTkQxk + ∆txTk (ATQ+QA)xk + · · · ≤ 1. (4.7)

We introduce the following notations to represent the sum of the remaining infinitely many

terms starting from the first, second, and third term in (4.7), respectively.

σ1 = ∆txTk (ATQ+QA)xk + σ2,

σ2 = (∆t)2xTk (A2TQ+ATQA+QA2)xk + σ3,

σ3 = (∆t)3xTk (A3TQ+A2TQA+ATQA2 +QA3)xk +O((∆t)4).

Now we use the fact that ‖M + N‖ ≤ ‖M‖ + ‖N‖ and ‖MN‖ ≤ ‖M‖‖N‖, where M and

N are matrices of appropriate dimensions. For simplicity we denote ‖A‖∆t by α̃. We can

bound σ1 as

|σ1| ≤ ‖Q‖‖xk‖2
(
2α̃+ 3α̃2 + · · ·

)
= ‖Q‖‖xk‖2 2α̃−α̃2

(1−α̃)2
, (4.8)

where (4.8) holds when α̃ ≤ 1, i.e., ∆t ≤ 1
‖A‖ . Similarly, for σ2 and σ3, we have

|σ2| ≤ ‖Q‖‖xk‖2 3α̃2−2α̃3

(1−α̃)2
, and |σ3| ≤ ‖Q‖‖xk‖2 4α̃3−3α̃4

(1−α̃)2
, (4.9)

where ∆t ≤ 1
‖A‖ . We now consider the following three cases.

1). If xTkQxk := δ1 < 1, i.e., xk ∈ int(E), then to ensure that (4.7) holds, we let
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|σ1| ≤ 1− δ1, which is true when

2α̃−α̃2

(1−α̃)2
≤ 1−δ1
‖Q‖‖xk‖2

, i.e., ∆t ≤ 1
‖A‖(1−

1√
1+β1

) := γ1, (4.10)

where β1 = (1− δ1)‖Q‖−1‖xk‖−2 > 0.

2). If xTkQxk = 1, i.e., xk ∈ ∂E , and xTk (ATQ+QA)xk := −δ2 < 0, then to ensure that

(4.7) holds, we let |σ2| ≤ δ2∆t, which is true when

3α̃2−2α̃3

(1−α̃)2
≤ δ2‖A‖∆t
‖A‖‖Q‖‖xk‖2

, i.e., ∆t ≤ 1
‖A‖(

2β2+3−
√

4β2+9
2β2+4 ) := γ2, (4.11)

where β2 = δ2‖A‖−1‖Q‖−1‖xk‖−2 > 0.

3). If neither of the previous two cases hold, then according to (4.2.1) we have xTk (A2TQ+

ATQA+QA2)xk := −δ3 < 0. Then to ensure that (4.7) holds, we let |σ3| ≤ δ3(∆t)2, which

is true when

4α̃3−3α̃4

(1−α̃)2
≤ δ3(‖A‖∆t)2
‖A‖2‖Q‖‖xk‖2

, i.e., ∆t ≤ 1
‖A‖(

β3+2−
√
β3+4

β3+3 ) := γ3, (4.12)

where β3 = δ3‖A‖−2‖Q‖−1‖xk‖−2 > 0.

Clearly, we have γ1, γ2, γ3 ∈ (0, 1
‖A‖), which is consistent with conditions (4.8) and (4.9).

The analysis for a cone CL can be done analogously. The results are summarized in the

following lemma.

Lemma 4.2.5. Assume that an ellipsoid E, given as in (7.5) (or a Lorenz cone CL, given

as in (7.6)), is an invariant set for the continuous system (1.2), and xk ∈ E (or xk ∈ CL).

Then xk+1 ∈ int(E) (or int(CL)), where xk+1 is obtained by the backward Euler method with

• ∆t ∈ [0, γ1), if xk ∈ int(E) (or int(CL)),

• ∆t ∈ [0, γ2), if xk ∈ ∂E (or ∂CL) and (Axk)
TQxk < 0,

• ∆t ∈ [0, γ3), if xk ∈ ∂E (or ∂CL) and (Axk)
TQxk = 0,

where γ1, γ2 and γ3 are defined as in (4.10), (4.11), and (4.12), respectively.
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Note that γ1, γ2, or γ3 might be quite small. Let us consider an ellipsoid as an example.

If xk is sufficiently close to the boundary, then we have xTkQxk := δ1 ≈ 1, which yields that

γ1 ≈ 0.

We now present two simple examples, in which the forward Euler method is not invari-

ance preserving, while the backward Euler method is invariance preserving.

Example 4.2.6. Consider the ellipsoid E = {(ξ, η) | ξ2 + η2 ≤ 1} and the system ξ̇ =

−η, η̇ = ξ.

The solution of this system is ξ(t) = α cos t+β sin t and η(t) = α sin t−β cos t, where α, β

are two parameters that depend on the initial condition. The solution trajectory is a circle,

thus E is an invariant set for the system. If we apply the forward Euler method, the discrete

system is ξk+1 = ξk−∆tηk, ηk+1 = ∆tξk+ηk. Thus, we obtain ξ2
k+1+η2

k+1 = (1+(∆t)2)(ξ2
k+

η2
k) > ξ2

k + η2
k, which yields (ξk+1, ηk+1) /∈ E for every ∆t > 0 when (ξk, ηk) ∈ ∂E . If we

apply the backward Euler method, the discrete system is ξk+1 = 1
1+(∆t)2

(ξk−∆tηk), ηk+1 =

1
1+(∆t)2

(∆tξk + ηk). Thus we obtain that ξ2
k+1 + η2

k+1 = 1
1+(∆t)2

(ξ2
k + η2

k) ≤ ξ2
k + η2

k, which

yields (ξk+1, ηk+1) ∈ E for every ∆t ≥ 0, when (ξk, ηk) ∈ E .

Example 4.2.7. Consider the Lorenz cone CL = {(ξ, η, ζ) | ξ2 + η2 ≤ ζ2, ζ ≥ 0} and the

system ξ̇ = ξ − η, η̇ = ξ + η, ζ̇ = ζ.

The solution of the system is ξ(t) = et(α cos t + β sin t), η(t) = et(α sin t − β cos t) and

ζ(t) = γet, where α, β, γ are three parameters depending on the initial condition. It is easy

to show that CL is an invariant set for the system. If we apply the forward Euler method,

the discrete system is

 ξk+1

ηk+1

ζk+1

 =

 1 + ∆t −∆t 0

∆t 1 + ∆t 0

0 0 1 + ∆t


 ξk

ηk

ζk

 .

However, if we choose any (ξk, ηk, ζk) ∈ ∂CL, then we have (ξk+1, ηk+1, ζk+1) /∈ CL, since

ξ2
k+1 + η2

k+1 = (1 + (1 + ∆t)2)(ξ2
k + η2

k) > (1 + ∆t)2(ξ2
k + η2

k) = ζ2
k+1, for all ∆t > 0. If we
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apply the backward Euler method, the discrete system is

 ξk+1

ηk+1

ζk+1

 =
1

ω

 (1−∆t)2 −∆t(1−∆t) 0

∆t(1−∆t) (1−∆t)2 0

0 0 (1−∆t)2 + ∆t2


 ξk

ηk

ζk

 ,

where ω = (1 − ∆t)((1 − ∆t)2 + ∆t2). If we choose any point (ξk, ηk, ζk) ∈ CL, then we

have (ξk+1, ηk+1, ζk+1) ∈ CL, since ξ2
k+1 + η2

k+1 = 1
ω2 ((1−∆t)4 + ∆t2(1−∆t)2)(ξ2

k + η2
k) ≤

1
ω2 ((1 − ∆t)2 + ∆t2)2(ξ2

k + η2
k) ≤

1
ω2 ((1 − ∆t)2 + ∆t2)2z2

k = ζ2
k+1 for all ∆t > 0, and

ζk+1 = 1
ω ((1−∆t)2 + ∆t2)ζk ≥ 0 for all ∆t ∈ [0, 1).

4.3 Uniform Steplength Threshold

In the analysis of Section 4.2, the invariance preserving steplength threshold depends on

the given xk. However, such a changing steplength threshold is not practical, i.e., with

such changing threshold one has to sequentially modify the value of invariance preserving

∆t as xk is changing. Thus, it is important to obtain a uniform steplength threshold for

invariance preserving that depends only on the given invariant set.

4.3.1 Uniform Steplength Threshold for Linear Systems

We first consider polyhedral sets and the forward Euler method. Note that a similar results

for polytopes is presented in [11]. For the forward Euler method, Theorem 3.2.3 already

presents the existence of uniform steplength threshold threshold. Thus, we now consider

the polyhedron and the backward Euler method. Note that a similar result can be found

in [39].

Theorem 4.3.1. Assume that a polyhedron P, given as in (3.1), is an invariant set for

the continuous system (1.2). Then there exists a τ̂ > 0, such that for every xk ∈ P and

∆t ∈ [0, τ̂ ], we have xk+1 ∈ P, where xk+1 is obtained by the backward Euler method, i.e.,

P is an invariant set for the discrete system.

Proof. Let τ̄ = sup{τ | I − A∆t is nonsingular for every ∆t ∈ [0, τ ]}. Recall that, see, e.g.,

[54] p. 44, the relative interior and the relative boundary of a set S are denoted by ri(S)
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and rb(S), respectively. Note that P is a closed set, thus for every xk ∈ P, one has either

xk ∈ ri(P) or xk ∈ rb(P). We consider the following two cases:

Case 1). xk ∈ ri(P). For every τ > 0, we can reformulate xk+1 = (I − A∆t)−1xk as

xk+1 + ∆t
τ xk+1 = xk + ∆t

τ (xk+1 + τAxk+1), i.e.,

xk+1 = τ
τ+∆txk + ∆t

τ+∆t(xk+1 + τAxk+1). (4.13)

Note that τ
τ+∆t + ∆t

τ+∆t = 1, τ
τ+∆t > 0, and ∆t

τ+∆t > 0, thus xk+1 is a convex combination of

xk and x̄ = xk+1 + τAxk+1. Further, we observe that x̄ is the vector obtained by applying

the forward Euler method at xk+1 with steplength τ.

Now we are going to prove that xk+1 ∈ ri(P) for every ∆t ∈ [0, τ̄). This proof is by

contradiction. Let us assume that there exists a τ̄1 ∈ [0, τ̄), such that xk+1 = (I−Aτ̄1)xk ∈

rb(P). We now choose a τ > 0, which is not larger than the threshold given in Theorem ??,

thus we have x̄ ∈ P and

xk+1 = τ
τ+τ̄1

xk + τ̄1
τ+τ̄1

x̄, (4.14)

which, by noting that xk ∈ ri(P), implies that xk+1 ∈ ri(P). This contradicts to the

assumption that xk+1 ∈ rb(P).

Case 2). xk ∈ rb(P). There exists a y ∈ ri(P), such that x̄εk = xk + εy ∈ ri(P), for every

ε ∈ (0, 1). By a similar discussion as in Case 1), we have that x̄εk+1 = (I −A∆t)x̄εk ∈ ri(P),

for every ∆t ∈ [0, τ̄). By letting ε→ 0, we have that x̄εk+1 → xk+1 ∈ P.

We prove that every τ̂ ∈ (0, τ̄) satisfies the theorem. The proof is complete.

Remark 4.3.2. The proof of Theorem 4.3.1 also quantifies the value of the invariance

preserving uniform steplength threshold τ̂ , i.e., τ̂ ∈ (0, τ̄), where τ̄ = sup{τ | I − A∆t is

nonsingular for every ∆t ∈ [0, τ ]}.

Corollary 4.3.3. Assume that a polyhedral cone CP is an invariant set for the continuous

system (1.2). Then there exists a τ̂ > 0, such that for every xk ∈ CP and ∆t ∈ [0, τ̂ ],

we have xk+1 ∈ CP , where xk+1 is obtained by the backward Euler method, i.e., CP is an

invariant set for the discrete system.
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Theorem 4.3.4. Assume that an ellipsoid E, given as in (7.5), is an invariant set for

the continuous system (1.2). Then there exists a τ̂ > 0, such that for every xk ∈ E and

∆t ∈ [0, τ̂ ], we have xk+1 ∈ E, where xk+1 is obtained by the backward Euler method, i.e.,

E is an invariant set for the discrete system.

Proof. In the backward Euler method, the coefficient matrix is (I − A∆t)−1, where ∆t is

the steplength. Given any xk ∈ E , according to Lemma 4.2.3, there exists a τ(xk) > 0, such

that xk+1 ∈ int(E) for every ∆t ∈ (0, τ(xk)]. In our proof, we need to bound the magnitude

of the coefficient matrix (I − A∆t)−1. We consider the eigenvalues of (I − A∆t)−1, which

are (1− λi(A)∆t)−1, for i = 1, 2, ..., n. To bound (1− λi(A)∆t)−1, we need |λi(A)∆t| < 1.

Note that any positive τ < τ(xk) is also a bound for ∆t, thus, for example, we can choose

0 < ∆t ≤ τ̂(xk) := min{τ(xk),
1

2|λi(A)|} = min{τ(xk),
1

2ρ(A)}, where ρ(A) is the spectral

radius (see, e.g. [36]) of A, which yields |1 − λi(A)∆t| ≥ 1
2 . Thus, we need to have that

‖(I −A∆t)−1‖ is uniformly bounded by 2 on E for every ∆t ∈ (0, τ̂(xk)].

Since xk+1 = (I−Aτ̂(xk))
−1xk ∈ int(E), we can choose a positive R(xk+1), such that the

open ball δ(xk+1, R(xk+1)) ⊂ int(E). It is easy to verify that the open ball δ(xk,
1
2R(xk+1))

is mapped into δ(xk+1, R(xk+1)) by the backward Euler method. This is because for x̃k ∈

δ(xk,
1
2R(xk+1)), we apply the backward Euler method at x̃k with τ̂(xk) to yield x̃k+1 =

(I −Aτ̂(xk))
−1x̃k. Then we have

‖x̃k+1 − xk+1‖ ≤ ‖(I −Aτ̂(xk))
−1‖‖x̃k − xk‖ ≤ 2‖x̃k − xk‖ ≤ R(xk+1),

i.e., x̃k+1 ∈ δ(xk+1, R(xk+1)) ⊂ int(E). Therefore, we have that τ̂(xk) is a uniform bound

for ∆t at every point in δ(xk,
1
2R(xk+1)).

Obviously, ∪xk∈Eδ(xk, 1
2R(xk+1)) is an open cover of the ellipsoid E . Since E is a

compact set, according to [57], there exists a finite subcover ∪mk=1δ(xk,
1
2R(xk+1)) of E .

For each open ball δ(xk,
1
2R(xk+1)), there is a uniform bound τ̂(xk), thus, we have that

τ̂ = mink=1,...,m{τ̂(xk)} is an invariance preserving uniform bound for ∆t for the backward

Euler method at every point in E . The proof is complete.

We now consider to quantify a uniform steplength threshold of the backward Euler
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method for invariance preserving for ellipsoids. We need some technical results.

Lemma 4.3.5. [36] Let M � 0 (M � 0, M ≺ 0, or M � 0) and N be a nonsingular

matrix. Then NTMN � 0 (NTMN � 0, NTMN ≺ 0, or NTMN � 0).

Lemma 4.3.6. If Q � 0, ATQ+QA � 0, then

• for P = QA, we have xTPx ≤ 0 for every x ∈ Rn.

• for every t ≥ 0, I −At is nonsingular.

Proof. For x 6= 0, 2xTPx = 2xT (QA)x = xT (ATQ+QA)x ≤ 0, that proves the first part.

For the second part, since I−At = I− tQ−1P = Q−1(Q− tP ), the singularity of I−At

is equivalent to that of Q− tP. Assume that the latter one is singular. Then there exists an

x 6= 0, such that (Q− tP )x = 0. Then 0 = xT (Q− tP )x = xTQx− txTPx > 0, where the

last inequality is due to Q � 0 and the first part. This is a contradiction, thus the proof is

complete.

The following theorem presents a uniform invariance preserving steplength threshold of

the backward Euler method for ellipsoids. The form of the threshold coincides with the one

for polyhedra given in Remark 4.3.2. Further, the uniform steplength threshold is proved

to be ∞.

Theorem 4.3.7. Assume that an ellipsoid E is an invariant set for the continuous system

(1.2). Let τ̄ = sup{τ | I − A∆t is nonsingular for every ∆t ∈ [0, τ ]}. Then τ̄ = ∞, and

thus for every xk ∈ C and ∆t ≥ 0 we have that xk+1 ∈ E, where xk+1 is obtained by the

backward Euler method, i.e., E is an invariant set for the discrete system.

Proof. We have that E is an invariant set for the discrete and continuous systems if and

only if ATQA − Q � 0 and ATQ + QA � 0, respectively. Then by Lemma 4.3.6, we have

that τ̂ =∞. It is easy to see that the theorem is equivalent to that ATQ+QA � 0 implies

that

(I − tA)−TQ(I − tA)−1 −Q � 0 (4.15)

holds for every t ≥ 0, According to Lemma 4.3.5, to prove (4.15) is equivalent to prove
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Q− (I − tA)TQ(I − tA) � 0, i.e.,

ATQ+QA− tATQA � 0. (4.16)

Since Q � 0, we have ATQA � 0, thus (4.16) is true. The proof is complete.

Remark 4.3.8. In Theorem 4.3.7, if we assume A is a symmetric matrix, then we have

τ̄ = 1
λ1(A) , where λ1(A) is the largest real eigenvalue of A.

By using an analogous discussion as the one presented in the proof of Theorem 4.3.7,

one can show that other discretization methods, e.g., Padé[1,1], Padé[2,2], etc., see e.g., [2],

also allow some uniform invariance preserving steplength thresholds.

To establish a uniform invariance preserving steplength threshold for the backward Euler

method for the Lorenz cone CL, we first consider the case when no eigenvector of the

coefficient matrix A in (1.2) is on the boundary of CL.

Theorem 4.3.9. Assume that a Lorenz cone CL, given as in (7.6), is an invariant set for

the continuous system (1.2), and no eigenvector of the coefficient matrix A in (1.2) is on

∂(CL). Then there exists a τ̂ > 0, such that for every xk ∈ CL and ∆t ∈ [0, τ̂ ], we have

xk+1 ∈ CL, where xk+1 is obtained by the backward Euler method, i.e., CL is an invariant

set for the discrete system.

Proof. If xk = 0, then for every ∆t ≥ 0 we have xk+1 = 0 ∈ CL. We now consider the case

when xk 6= 0. Our proof has two steps.

The first step of the proof is considering a uniform bound for ∆t on a base (see [3] page

66) of the Lorenz cone CL. For every xk ∈ CL, to have xk+1 = (I −A∆t)−1xk ∈ CL, we need

to have

xTk+1Qxk+1 =xTkQxk + ∆txTk (ATQ+QA)xk

+ (∆t)2xTk (A2TQ+ATQA+QA2)xk + · · · ≤ 0.

(4.17)

Let us take a hyperplaneH such thatH intersected with CL is a compact set 0 /∈ C+
L = H∩CL.

In fact, C+
L is a base1 of the Lorenz cone CL. For every xk ∈ C+

L , we consider the following

1In practice, a possible way to obtain a base can be done as follows: we first take a hyperplane through
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four cases:

Case 1): In this case, xk ∈ int(CL) ∩ C+
L , thus we have xTkQxk < 0. Consequently, due

to (4.17), xk+1 ∈ int(CL) for sufficiently small ∆t.

Case 2): In this case, xk ∈ ∂(CL) ∩ C+
L , and xTk (ATQ + QA)xk < 0, thus we have

xTkQxk = 0. Since the constant term is zero and the first order term is negative in (4.17),

we have xk+1 ∈ int(CL) for sufficiently small ∆t.

Case 3): In this case, xk ∈ ∂(CL) ∩ C+
L , xTk (ATQ + QA)xk = 0, and Axk /∈ ∂(CL) ∪

(−∂(CL)), thus we have xTkQxk = 0, and xTk (A2TQ + ATQA + QA2)xk < 0. The last

inequality is due to the proof of Lemma 4.2.4. Since the constant term is zero, the first order

term is also zero, and the second order term is negative in (4.17), we have xk+1 ∈ int(CL)

for sufficiently small ∆t.

Case 4): In this case, xk ∈ ∂(CL) ∩ C+
L , xTk (ATQ + QA)xk = 0, and Axk ∈ ∂(CL) ∪

(−∂(CL)). However, since xk is nonzero, we have seen in the proof of Lemma 4.2.4 that in

this case xk is an eigenvector of A. This violates the assumption of this theorem, thus this

case is not possible.

Therefore, for every xk ∈ C+
L , there exists a τ(xk) > 0, such that xk+1 ∈ int(CL) for

every ∆t ∈ (0, τ(xk)]. Also, note that C+
L is a compact set, thus, according to a similar

argument as in the proof of Theorem 4.3.4, we have a uniform bound for ∆t, denoted by

τ̂(C+
L ), on CL+, such that for every xk ∈ C+

L , we have xk+1 ∈ CL for every ∆t ∈ [0, τ̂(C+
L )].

The second step of the proof is extending the uniform bound of the steplength from C+
L

to CL. Let 0 6= xk ∈ CL. Then, because C+
L is a base of CL, there exists a scalar γ > 0, such

that γxk = x̃k ∈ C+
L . Then we have

xk+1 = (I −A∆t)−1xk = (I −A∆t)−1γ−1x̃k = γ−1x̃k+1.

Since x̃k+1 ∈ CL for every ∆t ∈ [0, τ(C+
L )], we have xk+1 ∈ CL, for every ∆t ∈ [0, τ(C+

L )].

Therefore, τ(C+
L ) is a uniform bound for the steplength ∆t for the backward Euler

method at every point of CL. The proof is complete.

the origin that intersects C only by the origin. Then shift the hyperplane to x∗, where x∗ is an interior point
of C. The intersection of the shifted hyperplane and C is a base of C. The base of C is a compact set.

77



Now, in a more general setting, we consider the uniform invariance preserving steplength

threshold on a general proper cone for linear dynamical systems.

Definition 4.3.10. [45] A convex cone C is called proper if it is nonempty, closed, and

pointed.

We recall the concept of a matrix to be cross-positive on a proper cone, which is first

proposed by Schneider and Vidyasagar in [58].

Definition 4.3.11. [58] Let C ∈ Rn be a proper cone and C∗ be the dual cone of C. The

matrix M ∈ Rn×n is called cross-positive on C if for all x ∈ C, y ∈ C∗ with xT y = 0, the

inequality xTMy ≥ 0 holds.

The properties of cross-positive matrices are thoroughly studied in [58]. The following

lemma, which directly follows from Theorem 2 and Lemma 6 in [58], is useful in our analysis.

Lemma 4.3.12. [58] Let C ∈ Rn be a proper cone, and denote the following two sets

of matrices: ΣC = {M |M is cross-positive on C }, and ΠC = {M | (M + αI)(C\{0}) ⊆

int(C) for some α ≥ 0 }. Then the closure of ΠC is ΣC .

Lemma 4.3.13. Let C ∈ Rn be a proper cone, and denote ΩC = {M |MC ⊆ C}. Then ΩC

is closed.

Proof. Let {Mi} be a sequence of matrices in ΩC , such that limi→∞Mi = M. We choose an

arbitrary x ∈ C. For every i, since MiC ⊆ C, we have Mix = yi ∈ C. Since C is closed, we

have Mx = limi→∞Mix = limi→∞ yi = ȳ ∈ C. The proof is complete.

The existence of a uniform invariance preserving steplength threshold for a proper cone

is presented in the following theorem.

Theorem 4.3.14. Assume that a proper cone C ∈ Rn is an invariant set for the continuous

system (1.2). Then there exists a τ̂ > 0, such that for every xk ∈ C and ∆t ∈ [0, τ̂ ], we have

xk+1 ∈ C, where xk+1 is obtained by the backward Euler method, i.e., C is an invariant set

for the discrete system.
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Proof. Since C is an invariant set for the continuous system, we have eAtC ⊆ C for every

t ≥ 0. According to Theorem 3 in [58], this is equivalent to that the coefficient matrix A is

cross-positive on C. Then by Lemma 4.3.12, there exists a sequence of matrices {Ai}, where

(Ai + αiI)C ⊆ C for some αi ≥ 0, such that limi→∞Ai = A. For simplicity, we introduce

the notation Bi = Ai + αiI, then BiC ⊆ C.

Then we consider (I−A∆t)−1, i.e., the coefficient matrix of the discrete system obtained

by using the backward Euler method. Let τ̄ = sup{τ | I − A∆t is nonsingular for every

∆t ∈ [0, τ ]}, then we have τ̄ > 0. Since limi→∞Ai = A for every 0 < ε1 < ε2 < τ̄, there

exists an integer n̄ > 0, such that for every i > n̄, we have I − Ai∆t is nonsingular for

∆t ∈ [0, τi], where τi ∈ (τ̄ − ε2, τ̄ − ε1). Since {τi}i>n̄ is bounded, it has a convergent

subsequence {τi∗}, i.e., limi∗→∞ τi∗ = τ̂ ∈ [τ̄ − ε2, τ̄ − ε1]. Thus, we have 0 < τ̂ < τ̄ , and

I −A∆t is nonsingular for ∆t ∈ [0, τ̂ ]. For every i∗ we have

(I −Ai∗∆t)−1 = ((1 + αi∗∆t)I −Bi∗∆t)−1 = 1
1+αi∗∆t(I −Bi∗

∆t
1+αi∗∆t)

−1. (4.18)

Since Bi∗C ⊆ C and ∆t
1+αi∗∆t > 0, we have

(I −Bi∗ ∆t
1+αi∗∆t)

−1C = (I + ∆t
1+αi∗∆tBi∗ + ( ∆t

1+αi∗∆t)
2B2

i∗ + ...)C ⊆ C. (4.19)

Since 1 + αi∗∆t > 0, by (4.18) and (4.19), we have (I −Ai∗∆t)−1C ⊆ C for ∆t ∈ [0, τi∗ ].

Finally, since (I − A∆t)−1 = limi∗→∞(I − Ai∗∆t)−1, according to Lemma 4.3.13, we

have (I −A∆t)−1C ⊆ C for ∆t ∈ [0, τ̂ ]. The proof is complete.

In fact, according to the proof of Theorem 4.3.14, we can also give the exact value of a

uniform bound for the steplength for a proper cone.

Corollary 4.3.15. Assume that a proper cone C ∈ Rn is an invariant set for the continuous

system (1.2). Let τ̄ = sup{τ | I − A∆t is nonsingular for every ∆t ∈ [0, τ ]} and τ̂ ∈ (0, τ̄).

Then for every xk ∈ C and ∆t ∈ [0, τ̂), we have xk+1 ∈ C, where xk+1 is obtained by the

backward Euler method, i.e., C is an invariant set for the discrete system.

Proof. For every ∆t ∈ [0, τ̂), we choose 0 < ε1 < ε2 < τ̄ −∆t. Then, by an argument similar

to the proof of Theorem 4.3.14, we have that τ̂ ∈ [τ̄ − ε2, τ̄ − ε1] is a uniform bound of the
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steplength. Note that ∆t < τ̄ − ε2 ≤ τ̂ , and we can choose ε2 > 0 sufficiently small, then

the corollary is immediate.

Let us take an example to illustrate Corollary 4.3.15.

Example 4.3.16. Consider the cone C = {(ξ, η) | ξ2 ≤ η2, η ≥ 0}, and the system ξ̇ =

3ξ − η, η̇ = −ξ + 3η.

The solution of the system is ξ(t) = 1
2(αe2t − βe4t), η(t) = 1

2(αe2t + βe4t), where α, β

depend on the initial condition. Clearly, C is an invariant set for the system. It is easy

to compute τ = sup {∆t | I −A∆t is nonsingular} = 1
4 . When the backward Euler method

is applied, we have ξk+1 = γ((1− 3∆t)ξk −∆tηk), ηk+1 = γ(−∆tξ + (1 − 3∆t)ηk), where

γ = ((1− 3∆t)2 + (∆t)2)−1. To ensure that ξ2
k+1 ≤ η2

k+1, we let (1 − 3∆t)2 − (∆t)2 ≥ 0,

which yields that ∆t ≤ 1
4 . Note that the other solution that ∆t ≥ 1

2 is not applicable.

Since a Lorenz cone is a proper cone, the following corollary is immediate.

Corollary 4.3.17. Assume that a Lorenz cone CL, given as in (7.6), is an invariant set

for the continuous system (1.2). Then there exists a τ̂ > 0 such that for every xk ∈ CL and

∆t ∈ [0, τ̂ ] we have xk+1 ∈ CL, where xk+1 is obtained by the backward Euler method, i.e.,

CL is an invariant set for the discrete system. Moreover, τ̂ ∈ [0, τ̄), where τ̄ is given as in

Corollary 4.3.15.

4.3.2 General Results for Uniform Steplength Threshold

The property that the backward Euler method has a uniform invariance preserving steplength

threshold for plays a significant role in the proof of Theorem 4.3.1, thus we now generalize

the conclusion to closed and convex sets. By a similar proof of Theorem 4.3.1, the following

theorem is immediate.

Theorem 4.3.18. Let S be a closed and convex set. Assume that S is an invariant set

for the continuous system (1.2), and let τ̄ = sup{τ | I − A∆t is nonsingular for every

∆t ∈ [0, τ ]}. Assume that there exists a τ̃ > 0, such that for every xk ∈ S and ∆t ∈ [0, τ̃ ],

we have xk + ∆tAxk ∈ S. Then for every xk ∈ S and ∆t ∈ [0, τ̄), we have xk+1 ∈ S, where
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xk+1 is obtained by the backward Euler method, i.e., S is an invariant set for the discrete

system.

The compactness of an ellipsoid plays an important role in the proof of Theorem 4.3.4.

Now we generalize Theorem 4.3.4 to compact sets and a general class of discretization

methods.

Theorem 4.3.19. Let a set S, and a discretization method xk+1 = D(∆t, xk) be given.

Assume that the following conditions hold:

1. The set S is a compact set.

2. For every xk ∈ S, there exists a τ(xk) > 0, such that xk+1 ∈ int(S) for every ∆t ∈

(0, τ(xk)].

3. The Lipschitz condition holds for D(∆t, x) with respect to x, i.e., there exists an L > 0,

such that

‖D(∆t, x̃)−D(∆t, x)‖ ≤ L‖x̃− x‖, for x, x̃ ∈ S. (4.20)

Then there exists a τ̂ > 0, such that for every xk ∈ S and ∆t ∈ [0, τ̂ ], we have xk+1 ∈ S,

i.e., S is an invariant set for the discrete system.

Figure 4.1: The idea of the proof of Theorem 4.3.19.

Proof. Note that every positive τ < τ(xk) is also a bound for ∆t at xk. Then let us define

τ̂(xk) = min{τ(xk), τ̃}, according to Condition 2, we have xk+1 = D(τ̂(xk), xk) ∈ int(S).

Thus we can choose an R(xk+1) > 0, such that the open ball δ(xk+1, R(xk+1)) ⊂ int(S).

According to Condition 3, there exists 0 < L <∞, such that ‖D(∆t, xk)‖ ≤ L for all xk ∈ S

and ∆t ∈ [0, τ̃ ].
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It is easy to verify that by the discretization method the open ball δ(xk,
1
LR(xk+1)) is

mapping into δ(xk+1, R(xk+1)), see Figure 4.1. This is because for every x̃k ∈ δ(xk, 1
LR(xk+1)),

the discretization method applied to x̃k with steplength τ̂(xk) yields x̃k+1 = D(τ̂(xk), x̃k).

Then we have

‖x̃k+1 − xk+1‖ ≤ ‖D(τ̂(x̃k), x̃k)−D(τ̂(xk), xk)‖ ≤ L‖x̃k − xk‖ ≤ R(xk+1), (4.21)

i.e., x̃k+1 ∈ δ(xk+1, R(xk+1)) ⊂ int(S). Therefore, we have that τ̂(xk) is a uniform bound

for ∆t at every point in δ(xk,
1
LR(xk+1)).

Obviously, ∪xk∈Sδ(xk, 1
LR(xk+1)) is an open cover of S. Since S is a compact set,

there exists a finite subcover ∪mk=1δ(xk,
1
LR(xk+1)) of S. A uniform bound for ∆t is the

smallest τ̂(xk) of the finite number of open balls δ(xk,
1
LR(xk+1)), thus, we have that τ̂ =

mink=1,...,m{τ̂(xk)} is a uniform bound for ∆t for the discretization method at every point

in S. The proof is complete.

According to Theorem 4.3.19, the following corollary is immediate.

Corollary 4.3.20. Let a set S, and a discretization method xk+1 = D(∆t)xk be given.

Assume that the following conditions hold:

1. The set S is a compact set.

2. For every xk ∈ S, there exists a τ(xk) > 0, such that xk+1 ∈ int(S) for every ∆t ∈

(0, τ(xk)].

3. There exists a τ̃ > 0, such that ‖D(∆t)‖ is uniformly bounded for every x ∈ S and

∆t ∈ [0, τ̃ ].

Then there exists a τ̂ > 0, such that for every xk ∈ S and ∆t ∈ [0, τ̂ ], we have xk+1 ∈ S,

i.e., S is an invariant set for the discrete system.

The assumption in Theorem 4.3.9 that no eigenvector of the coefficient matrix is on the

boundary of CL excludes the case that xk+1 ∈ ∂(CL). We now generalize Theorem 4.3.9 to

proper cones.
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Theorem 4.3.21. Let a set C, and a discretization method xk+1 = D(∆t, xk) be given.

Assume that the following conditions hold:

1. The set C is a proper cone.

2. For every 0 6= xk ∈ C, there exists a τ(xk) > 0, such that xk+1 ∈ int(C) for every

∆t ∈ (0, τ(xk)].

3. The Lipschitz condition holds for D(∆t, x) with respect to x, i.e., there exists an L > 0,

such that

‖D(∆t, x̃)−D(∆t, x)‖ ≤ L‖x̃− x‖, for x, x̃ ∈ S. (4.22)

4. The function D(∆t, x) is homogeneous of degree p ≥ 1 with respect to x, i.e.,

D(∆t, αx) = αpD(∆t, x), for α ∈ R, x ∈ C. (4.23)

Then there exists a τ̂ > 0, such that for every xk ∈ C and ∆t ∈ [0, τ̂ ] we have xk+1 ∈ C,

i.e., C is an invariant set for the discrete system.

Proof. If xk = 0 then for every ∆t ≥ 0 we have xk+1 = 0 ∈ C. We now consider the case

when xk 6= 0. Our proof has two steps.

Figure 4.2: The idea of the proof of Theorem 4.3.21.

The first step of the proof is considering a uniform bound for ∆t on a base of C. Since

C is a proper cone, we can take a hyperplane H to intersect it with C to generate a base

of C denoted by C+ = H ∩ C. For every xk ∈ C+, there exists a τ(xk) > 0, such that

83



xk+1 ∈ int(C) for every 0 < ∆t ≤ τ(xk). Note that H and C are closed sets, thus C+ is

also a closed set. Also, assume that C+ is unbounded, then C ∩ (−C) contains a half line,

which contradicts that C is a pointed proper cone. Therefore, C+ is a compact set. Then,

according to a similar argument as in the proof of Theorem 4.3.20, we have a uniform bound

for ∆t, denoted by τ̂(C+), on C+, such that for every xk ∈ C+, we have xk+1 ∈ C for every

∆t ∈ [0, τ̂(C+)], see Figure 4.2.

The second step of the proof is extending the uniform bound of the steplength ∆t from

C+ to C. Let 0 6= xk ∈ C. Then, because C+ is a base of C, there exists a scalar γ > 0 such

that γxk = x̃k ∈ C+. Then we have

xk+1 = D(∆t, xk) = D(∆t, γ−1x̃k) = γ−px̃k+1. (4.24)

Since x̃k+1 ∈ C for every ∆t ∈ [0, τ(C+)], we have xk+1 ∈ C for every ∆t ∈ [0, τ(C+)].

Therefore, τ(C+) is a uniform bound for the steplength ∆t for the discretization method

at every point on C. The proof is complete.

Corollary 4.3.22. Let a set C, and a discretization method xk+1 = D(∆t)xk be given.

Assume that the following conditions hold:

1. The set C is a proper cone.

2. For every 0 6= xk ∈ C, there exists a τ(xk) > 0, such that xk+1 ∈ int(C) for every

∆t ∈ (0, τ(xk)].

3. There exists a τ̃ > 0, such that ‖D(∆t)‖ is uniformly bounded for every x ∈ S and

∆t ∈ [0, τ̃ ].

Then there exists a τ̂ > 0, such that for every xk ∈ C and ∆t ∈ [0, τ̂ ], we have xk+1 ∈ C,

i.e., C is an invariant set for the discrete system.
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Chapter 5

Invariance Conditions for

Nonlinear Systems

5.1 Introduction

In this chapter, we consider invariance conditions for some classical convex sets for discrete

and continuous nonlinear systems. This chapter is a generalization of Chapter 2. Dis-

crete and continuous systems in general form are respectively described by the following

equations:

xk+1 = fd(xk), (5.1)

ẋ(t) = fc(x(t)), (5.2)

where fd, fc : Rn → Rn are continuous functions, and xk ∈ Rn for k = 1, 2, ... and x(t) ∈ Rn

for t ≥ 0 are state variables.

5.2 Invariance Conditions

5.2.1 Invariance Conditions for Discrete Systems

First, an invariance condition of polyhedral sets for discrete systems is presented as follows.

Theorem 5.2.1. Let a polyhedron P be given as in (7.1) and the discrete system be given
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as in (5.1), respectively. Assume bi −GTi fd(x) are convex functions for all i ∈ I(m). Then

P is an invariant set for the discrete system (5.1) if and only if there exists a matrix H ≥ 0,

such that

HGx−Gfd(x) ≥ Hb− b, for all x ∈ Rn. (5.3)

Proof. We have that P is an invariant set for the discrete system (5.1) if and only if P ⊆ P ′ =

{x |Gfd(x) ≤ b}. The latter one means that for every i ∈ I(m), the system GTi fd(x) > bi

and Gx ≤ b has no solution. Let us assume to the contrary that there exists an x∗ and

i∗, such that GTi∗fd(x
∗) > bi∗ and Gx∗ ≤ b. Then we have x∗ ∈ P but x∗ /∈ P ′, which

contradicts to P ⊆ P ′. Also, since bi−GTi fd(x) is a convex function, then, according to the

convex Farkas Lemma 7.2.3, we have that there exists a vector Hi ≥ 0 such that

bi −GTi fd(x) +HT
i (Gx− b) ≥ 0, for all x ∈ Rn.

Writing HT
i for all i ∈ I(m) together into a matrix H, we have H ≥ 0 and

b−Gfd(x) +H(Gx− b) ≥ 0, for all x ∈ Rn,

which is the same as (5.3).

In Theorem 5.2.1, we require bi − GTi fd(x) are convex functions for all i. This means

that GTi fd(x) are concave functions for all i. Clearly, when all fd(x) are affine functions, i.e.,

the system is a linear system, we have GTi fd(x) are convex functions. To verify if condition

(5.3) is true, we can use the following optimization problems.

Remark 5.2.2. Consider the following m optimization problems

max
Hi≥0

min
x∈Rn
{HT

i Gx−GTi fd(x)−HT
i b+ bi} i ∈ I(m). (5.4)

If the global optimal objective values of the m optimization problems in (5.4) are all non-

negative, we can claim that condition (5.3) holds.

If the system in Theorem 5.2.1 is a linear dynamical system, one can easily to derive

the invariance condition presented in Chapter 2.
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Example 5.2.3. Let the discrete system be given as ξk+1 = −ξk + 2ηk − ξ2
k, ηk+1 = −2ξk −

ηk+η2
k, and the polyhedron be given as P = {(ξ, η) | ξ−η ≤ −10, 2ξ−η ≤ 10, ξ−2η ≤ −20}.

We first directly show that P is an invariant set for the discrete system, i.e., (ξk+1, ηk+1) ∈

P for all (ξk, ηk) ∈ P. For simplicity, we only prove the first constraint, i.e., ξk+1 − ηk+1 ≤

−10. In fact, we have ξk+1−ηk+1 = −ξ2
k−η2

k+ξk+3ηk = −ξ2
k−(ηk−2.5)2+ξk−2ηk+6.25 ≤

ξk − 2ηk + 6.25 ≤ −20 + 6.25 ≤ −10. The other two constraints can be proved in a similar

manner. On the other hand, one can show that the assumption in Theorem 5.2.1 is satisfied

for this example. Then we can find a suitable H ≥ 0 such that condition (5.3) holds. One

can easily verify that H = [0, 0, 1; 0, 0, 0; 1, 0, 1] satisfies condition (5.3). Then according to

Theorem 5.2.1, we have that P is an invariant set for the discrete system.

We now consider invariance condition of ellipsoids for the discrete system (5.1).

Theorem 5.2.4. Let an ellipsoid E be given as in (7.5) and the discrete system be given as

in (5.1), respectively. Assume (fd(x))TQfd(x) is a concave function. Then E is an invariant

set of the discrete system (5.1) if and only if there exists a β ≥ 0, such that

βxTQx− (fd(x))TQfd(x) ≥ β − 1, for all x ∈ Rn. (5.5)

Proof. The ellipsoid E is an invariant set for the discrete system if and only if E ⊆ E ′, where

E ′ = {x | (fd(x))TQfd(x) ≤ 1}. We also note that E ⊆ E ′ is equivalent to (Rn \ E ′) ∩ E = ∅,

i.e., the inequality system 1− (fd(x))TQfd(x) < 0 and xTQx− 1 ≤ 0 has no solution. Since

(fd(x))TQfd(x) is a concave function, we have that 1−(fd(x))TQfd(x) is a convex function.

Note that xTQx − 1 is also a convex function, according to Theorem 7.2.3, there exists a

β ≥ 0, such that

−(fd(x))TQfd(x) + 1 + β(xTQx− 1) ≥ 0, for all x ∈ Rn,

which is the same as (5.5).

Remark 5.2.5. If we choose x = 0 in condition (5.5), then we have β ≤ 1−(fd(0))TQfd(0),

which can be considered as an upper bound of β.
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Remark 5.2.6. Consider the following optimization problem

max
β≥0

min
x∈Rn
{βxTQx− (fd(x))TQfd(x)− β + 1}. (5.6)

If the optimal objective value of optimization problem (5.6) is nonnegative, we can claim

that condition (5.5) holds.

The parameter β presented in Corollary ?? can be eliminated. In fact, one can show

that ATdQAd − βQ � 0 for β ∈ [0, 1] and Q � 0 is equivalent to ATdQAd − Q � 0, see

Corollary 2.2.20.

Example 5.2.7. Let the discrete system be ξk+1 =
√
ξk+ηk

2 , ηk+1 =
√
ξk−3ηk

2 , and the ellip-

soid be given as E = {(ξ, η) | ξ2 + η2 ≤ 1}.

For any (ξk, ηk) ∈ E , we have ξ2
k+1 +η2

k+1 = ξk−ηk
2 ≤

√
2

2

√
ξ2
k + η2

k < 1, which shows that

E is an invariant set for the discrete system. On the other hand, let f(x) = (f1(x), f2(x))T =

(
√
ξk+ηk

2 ,
√
ξk−3ηk

2 )T and Q = [1, 0; 0, 1]. Then we have that f(x)TQf(x) is a concave func-

tion. If we choose β = 1
4 , then condition (5.5) yields (ξk − 1)2 + (ηk − 1)2 + 1 ≥ 0 for any

(ξk, ηk) ∈ R2. This also shows that E is an invariant set for the discrete system according

to Theorem 5.2.4.

We now consider invariance conditions for more general convex sets for discrete system

(5.1). Let a convex set be given:

S = {x ∈ Rn | g(x) ≤ 0}, (5.7)

where g : Rn → R is a convex function. Then we have the following theorem, which gives

invariance condition for the convex set (5.7) for discrete system (5.1).

Theorem 5.2.8. Let the convex set S be given as in (5.7) and the discrete system be given

as in (5.1), respectively. Assume that there exists x0 ∈ Rn such that g(x) < 0, and that

g(fd(x)) is a concave function. Then S is an invariant set for the discrete system if and
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only if there exists an α ≥ 0, such that

αg(x)− g(fd(x)) ≥ 0, for all x ∈ Rn. (5.8)

Moreover, if g(x) and g(fd(x)) are quadratic functions, then the assumption that g(fd(x))

is a concave function is not required.

Proof. The major tool used in this proof is the convex Farkas Lemma, i.e., Theorem 7.2.3.

Note that to ensure S is an invariant set for the discrete system, we need to prove S ⊆

S ′ = {x | g(fd(x)) ≤ 0}, i.e., (Rn \ S ′)∩ S = ∅. Then the following inequality system has no

solution:

−g(fd(x)) < 0, g(x) ≤ 0.

According to Theorem 7.2.3, there exists an α ≥ 0, such that

−g(fd(x)) + αg(x) ≥ 0, for x ∈ Rn,

which is the same as (5.8). For the case of quadratic functions, we can use a similar argument

and the S -Lemma to prove the last statement.

Remark 5.2.9. The set S given as in (5.7) is represented by only a single convex function.

In fact, the first statement in Theorem 5.2.8 can be easily extended to the set which is

presented by several convex functions, e.g., polyhedral sets.

The first statement in Theorem 5.2.8 requires g(fd(x)) is a concave function given that

g(x) is a convex function. Let us consider x defined in one dimensional space as an example1

to illustrate this case is indeed possbile. Since fd(x) is a convex function, we have f ′′d (x) ≥ 0

for all x ∈ R. For simplicity, we denote h(x) = −g(fd(x)). Then we have

h′′(x) = −g′′(fd(x))(fd(x))2 − g′(fd(x))f ′′d (x). (5.9)

If h′′(x) > 0 for all x ∈ R, then h(x) is a convex function, i.e., g(fd(x)) is a concave function.

1The example uses the following theorem: if g̃(x) is a nondecreasing function, and f̃(x) is a convex
function, then g̃(f̃(x)) is a convex function.
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We now find a sufficient condition such that h′(x) > 0 for all x ∈ R. Assume that g(x) is a

decreasing convex nonlinear function and g(x) has no lower bound, we have g′(x) < 0 and

g′′(x) > 0 for all x ∈ R. Assume fd(x) is a concave function, we have f ′′d (x) < 0. This yields

−g′(fd(x))
g′′d (f(x))

> 0 ≥ (f ′(x))2

f ′′(x) , i.e., h′′(x) > 0.

Remark 5.2.10. Consider the following optimization problem:

max
α≥0

min
x∈Rn
{αg(x)− g(fd(x))}. (5.10)

If the optimal objective value of optimization problem (5.10) is nonnegative, we can claim

that condition (5.8) holds.

We can prove that optimization problem (5.10) can be transformed to a nonlinear op-

timization problem. From here, we assume that g(x) in (5.7) is continuously differentiable.

We illustrate this idea below:

Theorem 5.2.11. Optimization problem (5.10) is equivalent to the nonlinear optimization

problem

max
x,α
{αg(x)− g(fd(x)) |α∇xg(x)−∇xg(fd(x)) = 0, α ≥ 0}. (5.11)

Proof. Since α ≥ 0, and the functions g(x) and −g(fd(x)) are both convex functions, we

have that αg(x) − g(fd(x)) is also a convex function. Also, for α ≥ 0, the optimization

problem

min
x∈Rn
{αg(x)− g(fd(x))}, (5.12)

is a convex optimization problem in Rn, thus problem (5.12) has a Wolfe dual, see, e.g.,

[20, 74] given as follows:

max
x∈Rn
{αg(x)− g(fd(x)) |α∇xg(x)−∇xg(fd(x)) = 0}. (5.13)

Consequently, problem (5.10) is equivalent to the nonlinear optimization problem (5.11).

Remark 5.2.12. One can use a proof similar to the one presented in Theorem 5.2.11 to

derive equivalent nonlinear optimization problems for the optimization problems (5.4) and
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(5.6).

5.2.2 Invariance Conditions for Continuous Systems

In this section, we consider invariance conditions for continuous systems in the form of (5.2).

First, we consider an invariance condition for polyhedral sets given as in (7.1) for con-

tinuous system (5.2). For simplicity, we assume that the origin is in the polyhedral set, thus

we have P = {x ∈ Rn |Gx ≤ b} = {x ∈ Rn | gTi x ≤ bi, i = 1, 2, ...,m}, where b > 0.

Theorem 5.2.13. Let a polyhedral set be given as P = {x ∈ Rn | gTi x ≤ bi, i = 1, 2, ...,m},

where b > 0, and let P i = {x ∈ Rn | gTi x = bi and x ∈ P} for i = 1, 2, ...,m. Then P is an

invariant set for the continuous system (5.2) if and only if

gTi fc(x) ≤ 0, for all x ∈ P i (5.14)

holds for all i = 1, 2, ...,m.

Proof. Let x ∈ ∂P. Then we have that x is in the relative interior of a face, on the relative

boundary, or a vertex of P. There exists an index set Ix such that x ∈ ∩i∈IxP i. We note

that TP(x) = {y ∈ Rn | gTi y ≤ 0, i ∈ Ix}, then, according to Nagumo Theorem 7.2.5, the

theorem is immediate.

Remark 5.2.14. Let us assume a polyhedral set P be given as in the statement of Theorem

5.2.13. Consider the following m optimization problems:

max{gTi fc(x) | gTi x = bi and x ∈ P}, i = 1, 2, ...,m. (5.15)

If the optimal objective values of the all m optimization problems (5.15) are nonpositive,

then we can claim that (5.14) holds.

Invariance conditions for ellipsoids or Lorenz cones for continuous system (5.2) is pre-

sented in the following theorem.
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Theorem 5.2.15. An ellipsoid E given as in (7.5) (or a Lorenz cone CL given as in (7.6))

is an invariant set for the continuous system (5.2) if and only if

(fc(x))TQx ≤ 0, for all x ∈ ∂E (or x ∈ ∂CL). (5.16)

Proof. For simplicity, we only consider E . The proof for CL is analogous. Note that ∂E =

{x |xTQx = 1}, thus the outer normal vector of E at x ∈ ∂E is fd(x). Then we have that the

tangent cone is given as TE(x) = {y | yTQx ≤ 0}, thus this theorem follows by the Nagumo

Theorem 7.2.5.

Remark 5.2.16. Let us consider an ellipsoid E and the following optimization problem:

max{(fc(x))TQx |xTQx = 1}. (5.17)

If the global optimal objective value of optimization problem (5.17) is nonpositive, then we

can claim that condition (5.16) holds.

Theorem 5.2.17. Let the convex set S be given as in (5.7) and function g(x) is continuously

differentiable. Then S is an invariant set for the continuous system (5.2) if and only if

(∇g(x))T fc(x) ≤ 0, for all x ∈ ∂S. (5.18)

Proof. The outer normal vector at x ∈ ∂S is ∇g(x). Since S is a convex set, we have

TS(x) = {y | (∇g(x))T y ≤ 0}. (5.19)

The proof is immediate by applying Nagumo’s Theorem 7.2.5.

Remark 5.2.18. Consider the following optimization problem:

max{α |α = (∇g(x))T fc(x), g(x) = 0}. (5.20)

If the optimal objective value of optimization problem (5.20) is nonpositive, then we can

claim that condition (5.18) holds.
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We note that the nonlinear optimization problems presented in (5.17) and (5.20) can be

hard to solve, since the optimization problems could be not convex optimization problems.

5.2.3 General Results

In this section, invariance conditions without assumptions are presented. First, we present

the invariance condition for polyhedral sets for discrete systems.

Theorem 5.2.19. Let the polyhedron P be given as in (7.1) and the discrete system be

given as in (5.1). Then P is an invariant set for the discrete system (5.1) if and only if

there exists a matrix H ≥ 0, such that

HGx−Gfd(x) ≥ Hb− b, for all x ∈ P. (5.21)

Proof. Sufficiency: Condition (5.21) can be reformulated as b−Gfd(x) ≥ H(b−Gx), where

x ∈ P, i.e., b−Gx ≥ 0. Since H ≥ 0, we have b−Gfd(x) ≥ 0, i.e., fd(x) ∈ P for all x ∈ P.

Thus P is an invariant set for the discrete system. Necessity: Assume P is an invariant set

for the discrete system, then we have that b − Gx ≥ 0 implies b − Gfd(x) ≥ 0. Thus, we

can choose H = 0.

We now present the invariance condition for ellipsoidal sets for discrete systems.

Theorem 5.2.20. Let the ellipsoid E be given as in (7.5) and the discrete system be given

as in (5.1), respectively. Then E is an invariant set for the discrete system if and only if

there exists a β ≥ 0, such that

βxTQx− (fd(x))TQfd(x) ≥ β − 1, for all x ∈ E . (5.22)

Proof. Sufficiency: Condition (5.22) can be reformulated as 1 − (fd(x))TQfd(x) ≥ β(1 −

xTQx), where x ∈ E . Thus we have 1 − (fd(x))TQfd(x) ≥ 0, i.e., fd(x) ∈ E . Thus E is an

invariant set for the discrete system. Necessity: It is immediate by choosing β = 0.

We now present the invariance condition for convex sets for discrete systems.
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Theorem 5.2.21. Let the convex set S be given as in (5.7) and the discrete system be given

as in (5.1), respectively. Then S is an invariant set for the discrete system if and only if

there exists an α ≥ 0, such that

αg(x)− g(fd(x)) ≥ 0, for all x ∈ S. (5.23)

Proof. Sufficiency: Condition (5.23) can be reformulated as αg(x) ≥ g(fd(x)), where x ∈ S,

i.e., g(x) ≤ 0. According to α ≥ 0, we have g(fd(x)) ≤ 0, i.e., fd(x) ∈ S. Thus S is an

invariant set for the discrete system. Necessity: It is immediate by choosing β = 0.

We note that there is no convexity assumption for the involved in Theorem 5.2.19, The-

orem 5.2.20, and Theorem 5.2.21, we cannot use Wolfe duality to derive the invariance

conditions. The absence of convexity assumptions makes the theorems stronger, however

the nonlinear feasibility problems (5.21), (5.22), and (5.23) are nonconvex, thus their veri-

fication is significantly harder than solving convex feasibility problems and requires harder

optimization problems to be solved.
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Chapter 6

Conclusions and Future Research

In this chapter, we conclude this thesis and propose future research topics.

6.1 Conclusions

Invariant sets are important both in the theory and computational practice of dynamical

systems. In this thesis, we studied four fundamental questions arising in this field. The

first question is: how can we efficiently verify whether a set is an invariant set for a linear

continuous or discrete system. To answer this question, we derived sufficient and necessary

conditions for several classical sets, which have wide range of applications, to be an invari-

ant set for a linear system by presenting a novel, simple, and unified approach, which relies

on optimization theory. Our sufficient and necessary conditions are more straightforward

to use than using the definition directly for the verification of invariant sets. The second

question is that when a discretization method is applied to solve a continuous system, how

can we ensure that the discretization method is invariance preserving, i.e., the invariant

set for the continuous system is also an invariant set for the discretized system. To answer

this question, we studied three classic types of discretization methods for linear system,

and proposed novel approaches to calculate a valid or largest uniform steplength thresh-

old for invariance preserving. These methods have the potential to significantly influence

computational practice as they enable us to identify a pre-specified steplength threshold

for invariance preservation. The third question is an extension of the second question: how
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can we generalize the existence of uniform steplength threshold for invariance preserving for

general sets and systems. To answer this question, we established a novel theory to ensure

positive local and uniform steplength threshold for invariance preserving on a set when a

discretization method is applied to a linear or nonlinear dynamical system. Our method-

ology not only applied to classic sets, discretization methods, and dynamical systems, but

also extended to more general sets, discretization methods, and dynamical systems. The

last question is: how can we extend the first question to nonlinear systems. To answer this

question, we used optimization methodology to derive invariance conditions for some classic

sets for nonlinear dynamical systems.

In Chapter 2, we explore invariance conditions for four classic convex sets, for both

linear discrete and continuous systems. In particular, these four convex sets are polyhedra,

polyhedral cones, ellipsoids, and Lorenz cones, all of which have a wide range of applications

in control theory. In this chapter, we present a novel, simple and unified method to derive

invariance conditions for linear dynamical systems. We first consider discrete systems,

followed by continuous systems, since invariance conditions of the latter one are derived

by using invariance condition of the former one. For discrete systems, to derive invariance

conditions, we introduce the Theorems of Alternatives, i.e., the Farkas Lemma and the S -

lemma. We also show that by applying the S -lemma one can extend invariance conditions

to any set represented by a quadratic inequality. The connection between discrete systems

and continuous systems is built by using the forward or backward Euler methods, while

invariance is preserved with sufficiently small step size. Then we use elementary methods

to derive invariance conditions for continuous systems. In Chapter 2 we not only present

invariance conditions of the four convex sets for continuous and discrete systems by using

simple proofs, but also establishes a framework, which may be used for other convex sets

as invariant sets, to derive invariance conditions for both continuous and discrete systems.

In Chapter 3, we consider invariance preserving steplength thresholds on polyhedron,

when the discrete system is obtained by using special classes of discretization methods.

Many real world problems are studied by developing dynamical system models. In practice,

continuous systems are usually solved by using discretization methods. We particularly

study three classes of discretization methods, which are: the forward Euler method, Taylor
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approximation type, and rational function type. For the forward Euler method we prove

that the largest steplength threshold can be obtained by solving a finite number of linear

optimization problems. For the second class of discretization methods, we show that a valid

steplength threshold can be obtained by finding the first positive zeros of a finite number

of polynomial functions. We also present a simple and efficient algorithm to numerically

compute these positive zeros. For the last class of discretization methods, a valid steplength

threshold for invariance preserving is presented. This steplength threshold depends on the

radius of absolute monotonicity, and can be computed by a method analogous to the one

used in the first case.

In Chapter 4, we propose a theory of the existence of local or uniform invariance pre-

serving steplength thresholds for large class of discretization methods. Existing results

usually rely on the assumption that the explicit Euler method has an invariance preserving

steplength threshold. In this chapter, first we study the existence and the quantification of

local and uniform invariance preserving steplength threshold for Euler methods on special

sets, namely, polyhedra, ellipsoids, or Lorenz cones. Our novel proofs are using only ele-

mentary concepts. We also extend our results and proofs to general convex sets, compact

sets, and proper cones when a general discretization method is applied to linear or non-

linear dynamical systems. Conditions for the existence of a uniform invariance preserving

steplegnth threshold for discretization methods on these sets are presented. In practice, one

can use our results as criteria to check if a discretization method is invariance preserving

with a uniform steplength threshold.

In Chapter 5, we derive invariance condition of some classical sets for nonlinear dy-

namical systems by utilizing methodology analogous to the one presented in Chapter 2.

This is motivated by the fact that most problems in the real world often show nonlinearity

characteristics which are modeled by nonlinear dynamical systems. First, the Theorems of

Alternatives, i.e., the nonlinear Farkas lemma and the S -lemma, together with Nagumo’s

Theorem are utilized to derive invariance conditions for discrete and continuous systems.

Only some standard assumptions are needed to establish invariance of some broadly used

convex sets, including polyhedral and ellipsoidal sets. Second, we establish optimization

framework to computationally verify the invariance conditions. Finally, we derive the in-
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variance conditions for these classic sets for nonlinear systems without any conditions.

6.2 Future Research

We now consider future research directions. One interesting direction is to design novel

invariant sets so that the steplength threshold τ̂ for invariance preserving is large. We

can consider polyhedral cones or Lorenz cones. We are also interested in deriving invari-

ance conditions for the intersections of some convex sets, e.g., the intersections of several

ellipsoids.

6.2.1 Research Direction 1:

For the design of novel invariant conic sets for discrete systems, Horváth [37] has constructed

an invariant polyhedral cone in Rn+, i.e., in the positive orthant of Rn.

Lemma 6.2.1. [37] The following two statements are true:

• Let s ∈ Rn and s > 0, then for every v ∈ Rn there exists the minimum real number,

denoted by σs(v), such that σs(v)s± v ≥ 0.

• Let {sk} be a basis of Rn, s1 > 0. Suppose a vector v =
∑n

k=1 ηksk ∈ Rn is given,

where η1 ≥ 0, and
∑n

k=1 σs1(sk)|ηk| ≤ 2η1. Then v ≥ 0.

An intuitive explanation of Lemma 6.2.1 is given as follows: since s1 > 0 means that s1

is in the interior of Rn+, to ensure v ∈ Rn+, the weight on s1 is required to dominate that on

the other basis vectors. Thus, by Lemma 6.2.1, the following set is constructed.

C =
{
x ∈ Rn|v =

n∑
k=1

ηksi,
n∑
k=1

σs1(sk)|ηk| ≤ 2η1

}
. (6.1)

Although the author mentions that the set C defined in (6.1) is, in fact, a polyhedral cone,

we present the following theorem to prove this statement, and this theorem explicitly gives

the extreme ray of the polyhedral cone. For simplicity, we do not present the proof.

Theorem 6.2.2. The set C defined as (6.1) is a polyhedral cone in Rn, and its extreme

rays are σs1(sk)s1 ± sk, for k = 2, ..., n, where σs1(sk) is defined in Lemma 6.2.1.
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Then, the invariance condition under which a matrix A leaves C invariant is presented

in [37]. In fact, this is the invariance condition for the discrete system.

Theorem 6.2.3. [37] Assume that the eigenvalues of A are real and denoted by λ1 ≥ λ2 ≥

... ≥ λn. The set of the eigenvectors {sk}, where sk corresponds to λk, is a basis of Rn×n.

Let s1 > 0, and the cone C be defined as (6.1). If λ1 ≥ maxk≥2 |λk|, then AC ⊆ C.

The steplength threshold for invariance preserving is also studied in the following theo-

rem.

Theorem 6.2.4. [37] Let A, {λk}, {sk}, and C be given as in Theorem 6.2.3, and assume

λ1 ≤ 0. Let δ ∈ (0,∞], and assume a rational function r(t) is non-negative and strictly

increasing on [−δ, 0], and r(−δ) ≥ |r(t)| for all t ∈ (−∞,−δ). Then r(A∆t)C ⊆ C for every

∆t ∈ [0,−δ/λ1].

According to the discussion above, we now propose the potential method to design

novel Lorenz cones in Rn+ by investigating the eigen-structure of the coefficient matrix of

the dynamical system. Applying similar ideas as in [37], we may use the eigenvalues and

eigenvectors of the coefficient matrix to design Lorenz cones. We use the same notations as

in Theorem 6.2.3. Our idea is presented as follows:

1. similar to Theorem 6.2.3, let s1 > 0.

2. for every sk, k ≥ 2, we choose σ̃k, such that σ̃ks1 ± sk ≥ 0.

3. use {σ̃ks1 ± sk}k≥2 to design an ellipsoid E in Rn+.

4. the Lorenz cone C is designed by choosing E as its base and the origin as its vertex.

Two difficulties immediately arise:

• How to derive the explicit description of the constructed ellipsoid in Step 3? The

difficulty is mainly due to that the constructed ellipsoid has to be in Rn+.

• How to compute τ̂ for a given cone?

6.2.2 Research Direction 2

For the Lorenz cone, we are also interested in considering it in Rn+. This is since several

problems are usually introduced and studied in Rn+ in practice. The so called Dikin ellipsoid

which is originally developed in optimization theory has caught our attention.
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Definition 6.2.5. [22] Let F = Rn+ and x̄ ∈ int(F). The Dikin ellipsoid around x̄ is

Ex̄,δ =
{
x ∈ Rn | (x− x̄)TH(x− x̄) ≤ δ ≤ 1

}
=
{
x ∈ Rn |

n∑
i=1

(xi − x̄i)2

x̄2
i

≤ δ ≤ 1
}
, (6.2)

where H = diag{x̄−2
1 , x̄−2

2 , ..., x̄−2
n }.

One of the most significant property of a Dikin ellipsoid is presented as follows.

Theorem 6.2.6. Let F = Rn+, x̄ ∈ int(P), then Ex̄,δ ⊆ F .

According to the discussion above, we now propose a potential method to design novel

Lorenz cones in Rn+ by using Dikin ellipsoids. By Theorem 6.2.6, we have that x ∈ Ex̄,δ

implies x ≥ 0. Our idea is presented as follows:

1. use a hyperplane to intersect the Dikin ellipsoid through its center, resulting an ellip-

soidal intersection.

2. the intersection is then used as the base of the cone and the origin as its vertex.

Two difficulties immediately arise:

• How to derive an explicit description of the constructed cone? Although the formulaes

of the hyperplane and the Dikin ellipsoid are given, the formula of the constructed

cone is not trivial to obtain especially in high dimensional space.

• How to compute τ̂ for the constructed Lorenz cone? We have deep analysis for poly-

hedral sets, but Lorenz cones are quite different from polyhedral cones. To solve this

difficulty, we might use optimization techniques. By solving appropriate optimization

problems, we can obtain a valid threshold.

Assume Lorenz cones in Rn+ have been designed by either the first or the second method

given as above, a challenge for the constructed Lorenz cones is given as follows:

For a given discretization method, how to choose a “good” invariant cone, where “good”

means having large τ̂? We need to properly choose the position and shape of the constructed

cone, and then compute τ̂ to choose the cone with large τ̂ .
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Figure 6.1: Two different ways to design novel invariant sets.
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Chapter 7

Appendix

In this Appendix, we introduce basic concepts and theorems used in this thesis.

7.1 Basic Concepts

Definition 7.1.1. A polyhedron, denoted by P ⊆ Rn, can be defined as the intersection

of a finite number of half-spaces:

P = {x ∈ Rn |Gx ≤ b}, (7.1)

where G ∈ Rm×n and b ∈ Rm

An equivalently definition of a polyhedral set is given as follows:

Definition 7.1.2. A polyhedron, denoted by P ⊆ Rn, can be defined the set of points that

can be given as the sum of the convex combination of a finite number of points and the conic

combination of a finite number of vectors:

P =
{
x ∈ Rn |x =

`1∑
i=1

θix
i +

`2∑
j=1

θ̂j x̂
j ,

`1∑
i=1

θi = 1, θi ≥ 0, θ̂j ≥ 0
}
, (7.2)

where x1, ..., x`1 , x̂1, ..., x̂`2 ∈ Rn. The vertices of P form a subset of xi, i ∈ I(`1), and the

extreme rays of P are represented as xi + αx̂j , α > 0, for some i ∈ I(`1) and j ∈ I(`2).

We highlight that a bounded polyhedron, i.e., `2 = 0 in (7.2), is called a polytope.
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Definition 7.1.3. A polyhedral cone, denoted by CP ⊆ Rn, can be also considered as a

special class of polyhedra, and it can be defined as:

CP = {x ∈ Rn |Gx ≤ 0}, (7.3)

or equivalently,

CP =
{
x ∈ Rn |x =

∑̀
j=1

θ̂j x̂
j , θ̂j ≥ 0

}
, (7.4)

where G ∈ Rm×n and x̂1, ..., x̂` ∈ Rn. The extreme rays of CP are x̂j , j > 0.

An ellipsoid is defined as follows:

Definition 7.1.4. An ellipsoid, denoted by E ⊆ Rn, centered at the origin, is defined as:

E = {x ∈ Rn |xTQx ≤ 1}, (7.5)

where Q ∈ Rn×n and Q � 0.

We note that any ellipsoid with nonzero center can be transformed to an ellipsoid cen-

tered at the origin.

Definition 7.1.5. A Lorenz cone1, denoted by CL ⊆ Rn, with vertex at the origin, is

defined as:

CL = {x ∈ Rn |xTQx ≤ 0, xTun ≥ 0}, (7.6)

where Q ∈ Rn×n is a symmetric nonsingular matrix with exactly one negative eigenvalue

λn, i.e., inertia{Q} = {n − 1, 0, 1}, and un is the eigenvector corresponding to the only

negative eigenvalue λn.

Similar to ellipsoids, any Lorenz cone with nonzero vertex can be transformed to a

Lorenz cone with vertex at the origin. For every Lorenz cone, given as in (7.6), there

exists an orthonormal basis {u1, u2, ..., un}, i.e., uTi uj = δij , where ui is the eigenvector

corresponding to the eigenvalue, λi, of Q, and δij is the Kronecker delta function, such

1A Lorenz cone is sometimes also called an ice cream cone, a second order cone, or an ellipsoidal cone,
see, e.g., [54].
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that Q = UΛ
1
2 ĨΛ

1
2UT , where U = [u1, u2, ..., un],Λ

1
2 = diag{

√
λ1, ...,

√
λn−1,

√
−λn} and

Ĩ = diag{1, ..., 1,−1}.

Definition 7.1.6. A standard Lorenz cone, denoted by C∗L ⊆ Rn, with vertex at the

origin is defined as:

C∗L = {x ∈ Rn |xT Ĩx ≤ 0, xT en ≥ 0}, (7.7)

where Ĩ = diag{1, ..., 1,−1} and en = (0, ..., 0, 1)T .

7.2 Basic Theorems

In this section, basic theorems related to, or used as tools to study, invariant sets for

dynamical systems are introduced.

The Farkas lemma [56] and the S -lemma [52, 75], both of which are also called the

Theorem of Alternatives, are fundamental tools to derive invariance conditions for discrete

systems. The S -lemma, first proved by Yakubovich [75], is somewhat analogous to a special

case of the nonlinear Farkas lemma, see Pólik and Terlaky [52].

Theorem 7.2.1. (Farkas lemma [56]) Let P ∈ Rm×n, d ∈ Rm, c ∈ Rn, and β ∈ R. Then

the following two statements are equivalent:

1. There is no y ∈ Rm, such that P T y ≤ c and dT y > β;

2. There exists a vector z ∈ Rn, such that z ≥ 0, P z = d, and cT z ≤ β.

Theorem 7.2.2. (S-lemma [52, 75]) Let g1(y), g2(y) : Rn → R be quadratic functions,

and suppose that there is a ŷ ∈ Rn such that g2(ŷ) < 0. Then the following two statements

are equivalent:

1. There exists no y ∈ Rn, such that g1(y) < 0, g2(y) ≤ 0.

2. There exists a scalar ρ ≥ 0, such that g1(y) + ρg2(y) ≥ 0, for all y ∈ Rn.

Theorem 7.2.3. (Convex Farkas lemma [52, 56]) Let h(y), g1(y), g2(y), ..., gm(y) :

Rn → R be convex functions. Assume the Slater condition2 is satisfied. Then the following

2The Slater condition means that there exists a ŷ ∈ Rn, such that gj(ŷ) ≤ 0 for all j when gj(x) is linear
and gj(ŷ) < 0 for all j when gj(x) is nonlinear.
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two statements are equivalent:

1. The inequality systems h(y) < 0, gj(y) ≤ 0, j = 1, 2, ...,m have no solution.

2. There exist β1, β2, ..., βm ≥ 0, such that h(y) +
m∑
j=1

βjgj(y) ≥ 0 for all y ∈ Rn.

The concept of tangent cone plays an important role in the analysis for invariance

conditions for continuous systems.

Definition 7.2.4. Let S ⊆ Rn be a closed convex set, and x ∈ S. The tangent cone of S

at x, denoted by TS(x), is given as

TS(x) =
{
y ∈ Rn

∣∣∣ lim inf
t→0+

dist(x+ ty,S)

t
= 0
}
, (7.8)

where dist(x,S) = infs∈S ‖x− s‖.

The following classic result proposed by Nagumo [48] provides a general criterion to

determine whether a closed convex set is an invariant set for a continuous system. This

theorem, however, is not valid for discrete systems, for which one can find a counterexample

in [13].

Theorem 7.2.5. (Nagumo [13, 48]) Let S ⊆ Rn be a closed convex set, and assume that

the system ẋ(t) = f(x(t)), where f : Rn → Rm is a continuous mapping, admits a globally

unique solution for every initial point x(0) ∈ S. Then S is an invariant set for this system

if and only if

f(x) ∈ TS(x), for all x ∈ ∂S, (7.9)

where TS(x) is the tangent cone of S at x.

Nagumo’s Theorem 7.2.5 has a geometrical interpretation as follows: for any trajectory

that starts in S, it has to go through ∂S if it will go out of S. Then one needs only to

consider the property of this trajectory on ∂S. Note that f(x) is the derivative of the

trajectory, thus (7.9) ensures that the trajectory will point inside S on the boundary, which

means S is an invariant set. The disadvantage of Theorem 7.2.5, however, is that it may

be difficult to verify whether (7.9) holds for all points on the boundary of a given set.
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[39] Z. Horváth. On the positivity step size threshold of Runge-Kutta methods. Applied

Numerical Mathematics, 53:341–356, 2005.

[40] H.K. Khalil. Nonlinear Systems. Prentice Hall, 2001.

[41] K.I. Kouramas, S.V. Rakovic, E.C. Kerrigan, and J.C. Allwright. On the minimal

robust positively invariant set for linear difference inclusions. pages 2296–2301, 2005.

[42] J.F.B.M. Kraaijevanger. Absolute monotonicity of polynomials occurring in the nu-

merical solution of initial value problems. Numerische Mathematik, 48:303–322, 1986.

[43] D. Li, X. Wu, and J. Lu. Estimating the ultimate bound and positively invariant set for

the hyperchaotic Lorenz–Haken system. Chaos, Solitions & Fractals, 39(15):1290–1296,

2009.

[44] Z. Lin, A. Saberi, and A. Stoorvogel. Semi-global stabilization of linear discrete-time

systems subject to input saturation via linear feedback - an ARE-based approach.

IEEE Transactions on Automatic Control, 41(8):1203–1207, 1996.

[45] R. Loewy and H. Schneider. Positive operators on the n-dimensional ice cream cone.

Journal of Mathematical Analysis and Applications, 49(2):375–392, 1975.

[46] D.W. Markiewicz. Survey on symplectic integrators. Technical report, University of

California at Berlekey, 1999.

109



[47] K. Meyer, G. Hall, and D. Offin. Symplectic transformations. Introduction to Hamil-

tonian Dynamical Systems and the N-Body Problem, 90:133–145, 2009.
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[65] J. Sturm, I. Pólik, and T. Terlaky. SeDuMi. http://sedumi.ie.lehigh.edu, Apr.,

2010.

[66] B. Sturmfels. Solving Systems of Polynomial Equations. CBMS Lectures Series, Amer-

ican Mathematical Society, 2002.

[67] B.-S. Tam. Extreme positive operators on convex cones. Five Decades as a Mathemati-

cian and Educator: On the 80th Birthday of Prof. Yung-Chow Wong, (Eds. K.Y. Chan

and M.C. Liu). World Scientific Publishing Company, 1995.

[68] B.-S. Tam. A cone-theoretic approach to the spectral theory of positive linear operators:

the finite-dimensional case. Taiwanes Journal of Mathematics, 5(2):207–277, 2001.

[69] S. Tarbouriech and C. Burgat. Positively invariant sets for constrained continuous-time

systems with cone properties. IEEE Transactions on Automatic Control, 39(2):401–

405, 1994.

[70] A. Tiwari, J. Fung, R. Bhattacharya, and R. M. Murray. Polyhedral cone invariance

applied to rendezvous of multiple agents. In 43rd IEEE Conference on Decision and

Control, pages 165–170, 2004.

111
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