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— ‘ Abstract

The replacement of 2quipment has been studied in various situations. Previous research has"
focused on models ta determine replacement schedules for individual pieces of equipment while
little work examines replacing numerous pieces of equipment under a budget constraint. We in-
vestigate both of these problems by looking at the costs associated with delaying or accelerating
the replacement of the individual asset if the budget allocated for the suggested replacement
period does not allow for replacement. We investigate the use of two previously developed dy-
namic programming models to determine the method which would more easily facilitate finding
alternative replacerient schedules through sensitivity analysis.

Keywords: Equipment replacement, sensitivity analysis, dynamic programming, medical

equipment



Chapter 1

Introduction

This thesis considers the problem of replacing a large number of different assets under a common
budget constraint. We focus our research on an application in medical equipment, although it
is general for other replacement models. The problem to be analyzed has two parts. First, we
seek to find the optimal replacement schedule for individual pieces of equipment that have been
requested to be replaced. Our dynamic programming model recommends the optimal time for
replacement of each piece. However, due to budget constraints, equipment may have to be
replaced at an earlier or later time. Thus, we calculate the costs associated with delaying or
accelerating the replacement of each individual piece of equipment through a designed sensitivity
analysis. Sccond, we combine our individual asset solutions to determine the best solution for
all assets under the budget constraint.

When considering the replacement of equipment, there are two major motivations: obsoles-
cence and deterioration. Equipment can become obsolete due to new equipment being on the
market which may be more technologically advanced. The rate at which technology advances
and the improvements in the equipment is a reason for considering equipment replacement in
the medical industry. Deterioration of equipment can also occur with time. as operating and
maintenance costs increase and salvage values decrease. At some point the costs of maintaining
cquipment may exceed the costs of replacing the equipment. In this thesis we consider the case

where assets deteriorate with time and savings can be made through periodic replacement.



1.1 Problem Description

In our problem  a set of heterogenous medical equipment is proposed to be replaced. Each piece
of equipment is defined by its age 7 at time j with projected operating and maintenance costs
(Cij) and salvage values (S;;) through its maximum age N. The asset must be replaced when
it reaches age N. Furthermore, the purchase cost, p;, estiinated operating and maintenance
costs and a salvage values are known for the potential replacement asset in each period j € T
, where T represents the problem horizon.

As stated previously there are two parts to the problem. First, the optimal replacement
schedule for each equipment is identified. Second, due to budgetary constraints, we may not
be able to replace all assets proposed to be replaced in a particular year. The use of sensi-
tivity analysis will be investigated at this point. Hence, the costs associated with delaying or

accelerating the replacement need to be calculated.

1.2 Literature Review

Christer and Scarf (1994) investigate a model which optimizes the replacement schedule of
niedical equipment. The model presented in this paper incorporates parameters and variables
important to medical equipment. As mentioned by Christer and Scarf, the replacement decision

for medical equipment has certain characteristic features:

1. The decision to replace equipment, may be one vear, I vears or only when forced by

technical obsolescence.

[

. Replacement may be driven by technical obsolescence, change in medical requirements or

technological developments.
3. The repli:cement age of equipment should be related to usage.
4. All effec:s due to equipment failure and its unavailability are termed penalties.

5. Old equipment may not be scraped. but retained for use.

3




6. Equipment is always in demand.

The moda] presented by Christer and Scarf seeks find the values for K (remaining life of
the asset) and L (economic life of the new asset) which minimizes the expected discounted cost
per unit of usage over a period of (K + L), such that, {C(N; K, L)} is the total discounted cost
of replacing the equipment of age N after K years and again after L years.

A budget constraint may prohibit the equipment from being replaced at the optimal time.
Christer and Scarf propose a method of calculating the cost of delaying the replacement. Given
the optima: replacement to be (K%, L*), they propose the cost to delay by one year to be:
{C(N; K % +1, L¥) - C(N; K, L%)}.

We geneialize the work of Christer and Scarf in that we allow for more than one replacement
in the time (X + L). Furthermore, we examine the cost of delaying or accelerating a decision
to meet the budget constraint.

Karabakal et. al. (1994) introduces a model which includes the replacement of different
assets under a budget constraint, called the Capital Rationing Replacement Problem (CRRP).
They propcse a finite horizon, deterministic version of CRRP as a zero-one integer program
and use Lagrangian relaxation to solve this problem.

The forrulation of their model can be represented by a network. In this representation,
nodes represent the end of periods and arcs represent decisions to be made. Associated with
cach arc are two parameters, length (net present value benefit of replacement, 7,.;) and resource
consumption (purchase cost, P,). In their example they illustrate a picce of equipment with a
three vear planning horizon. The asset has two challengers: challenger 1 can be used until the
end of the horizon time. and challenger 0 has a remaining life of two periods. The problem to
be solved is to find the longest path from the initial asset’s first node to the final assets’s last
node. so that no budget constraints are violated. In their model. they consider the replacement
of equipment with multiple challengers. They suggest the use of Lagrangian relaxation to solve

the integer program obtained from their model.



In a later paper, they discuss a dual heuristic for solving large, realistically sized problems.
In this paper by Karabakal et.al (2000), they propose to solve the individual replacement
problems ignoring the budget constraints. The next step would be to solve the Lagrangian dual
problem in an attempt to eliminate or reduce budget violations. In their results they were able
to solve problems with as many as 100 to 500 assets.

Miguel and Rodriguez (2006) introduce a model based on an artificial neural network that
guarantees a warning when a piece of medical equipment requires replacement. The model
was developed using event tree theory. The model included factors, such as, usage time over
useful life, service cost over acquisition cost, and unavailability. The model, however, could not

predict certain cases:

e Items which have already reached the end of their useful life, but maintenance costs and

maintenance parameters are of adequate intervals.

o Medical equipment which have not reached its useful life, but maintenance costs or main-

tenance parameters are not in adequate intervals.

The main purpose of this article was to propose a more robust model for the retirement of a
piece of equipment from hospital inventory, using artificial neural network. The model was used
to test meadical equipment to determine with greater precision whether the equipment should

be repaired or replaced.

1.3 Research Motivation

The motivation for this rescarch project comes from a local hospital trving to ensure the optimal
replacement schedule for their equipment replacement. It was obvious from historical data that
some cquipment in inventory should have already been replaced. For example. operation and
maintenaiice costs for some equipment was exceeding the cost of replacing them. In this thesis
we seek to propose a model which will help in deciding the optimal replacement schedule for

cach individual piece of equipment.



Along with trying to decide on the optimal replacement for each equipment, the hospital
also has a limited budget each year for equipment replacement. So our motivation is to find
the optirnal replacement schedule for a number of pieces of equipment when given a budget
constrairt in each year. Due to the budget constraints equipment suggested to be replaced in
a particular may not be replaced. Hence, sensitivity analysis is used to determine the costs
associated with delaying the replacement or replacing the equipment early as the budget allows.

This thesis proceeds as follows. In Chapter 2, we discuss our sub-problem of solving the
optimal replacement solution for each piece of medical equipment. In Chapter 3, the optimal
replacement results found in Chapter 2 are used to formulate the model to analyze the replace-
ment of all equipment under a budget constraint. Sensitivity of the model is also considered
to determine the cost of delaying or accelerating the replacement of the equipment. In Chap-
ter 4, cese study results are presented using data collected from medical equipment. Finally,

conclusions and future studies are stated in Chapter 5.
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Chapter 2

Single Asset Replacement Problem

In this chapter we focus on two previously developed methods using dynamic programming to
find the optimal replacement schedule for equipment. First, we examine the Bellman model,
proposed in 1955. We then look at an alternative approach given by Wagner (1975) to calculate
the optimal replacement for an asset. Finally we compare both models to determine on the best

model to be used when considering calculating the costs of delaying or accelerating replacement.

2.1 Bellman’s Model

In a representative network for Bellman's model, a node represents the age of the asset, which
is the state of the system. When moving from period to period, the decision is whether to keep
or replace the asset. If a decision to keep the asset is made, then the state transitions from an
asset of age n to age n+ 1. If a decision to replace the asset is made then the state transitions
from n to 1. This means that the old asset is sold and a new asset replaces it and is used for
one period. Figure 2.1 shows a representation of the Bellman model, the nodes represent the
states of the asset. i.e. the age of the asset and the arcs represent the decisions. The decision
to keep an asset is represented by an upward arc from any node and the decision to replace is

represented by a downward are from any node labeled with age 1.
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Figure 2.1: Bellman's dynamic programming model for single asset replacement problem

Defining Vi(7) as the minimum expected net present value cost of an asset of age i at

time t, when employing optimal replacement decisions through the horizon T. The recursive

formulation can be written as:

Keep:  a[Ci(i) 4+ vear (7 + 1))
Vi(7) = min (2.1)

Replace : P — §,(i) + a[Cy(0) + fr41(1)]
The Houndary condition for the final period (where the asset is sold) is:

V(1) = =Sr(J)

In the model. the decision at each state 7 in period j is whether to keep the asset, at Cy(7).
the tost of operating and maintaining equipment at time ¢ for a machine of age 7. or replacing
it for salvage value S;(7) and purchase cost P;. Keeping the asset results in a state of 74 1 while

replacement results in state 1. Operating and maintenance costs are assumed to occur at the

s



end of the period and all costs are discounted with the periodic discount rate a.

2.2 Wagner’s Model

Wagner (1975) presented an alternative dyné;nic programming formulation in which the state
of the system is the time period. In this representation there is only one state per period, but
the number of decisions per state increases. The decisions in the Wagner model can be seen in
Figure 2.2. The nodes represent the time period and the arcs represent decisions of how long
to retain the asset. Ky, is the decision to keep the initial (old) asset for one period and Ry,
represents the decision to replace the old asset with the new one in period one. The optimal
decision is found by calculating the minimum cost path from node 0 to node 4.
The dynamic programming formulation is:

C(t) = min ~ {C(t — 7))+ ¢}t >0 (2.2)

j=l..min{t,Af}

The boundary condition for the final period: C(0) = 0
Where:
C (t) = the minimum present value cost of reaching node t from any other node.
M = maximum service life of the asset.
To solve the recursion forward, the solution from the previous nodes are required. The state
C(i — j) is used in the solution of state C(t),where j represents the number of periods of service

for the asset. The cost of this decision is c.
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Figure 2.2: Wagner’s dynamic programming model for single asset replacement problem

The nodes represent the time period and the arcs represent decisions of how long to retain
the asset. Ky, is the decision to keep the asset for one period and Ry; represents the decision
to replace the old asset with the new one in period one. The optimal decision is found by

calculating the minimum cost path from node 0 to node 4.

2.3 Determining Alternative Replacement Solutions

Both dynamic programming models can solve the replacement problem efficiently. The Bellman
rniodel has at most N states in any of T periods with two decisions per state, leading to a worst
run time of 0(2NT). For Wagner’s model, there is at most 1 state in T periods with N maximum
decisions, defining O(NT). While Wagner’s is (slightly) more efficient, it may not be best for

our application, as shown below.,

2.3.1 Sensitivity Analysis in Bellman’s Model

An example of the Bellman model is shown in Figure 2.3. 145(n) defines the optimal solution
value and the red lines indicate the optimal decisions for that picce of equipment through time
t =3. In Figure 2.3 the optimal replacement schedule is to keep the equipment for two periods

and then replace in it (IKKR). Note the from our recursion equation (2.1). we can write this as:

10



Co(n,n +1) N Ci(n+1,n+2) N Vo(n + 2)

Vs —
o(n) a a? a?

(2.3)

where Cy(n,n + 1) is the cost of keeping the equipment from age n to n + 1.
The blue lines depict an alternative the path to be taken if the asset replacement was delayed

by one year. The cost of delaying a replacement by one year (i.e. replacing the equipment after

the third period (KKK)) is calculated as follows:

Coln,n + 1) JrCl(n+1,n+2) +C’g(n+2,n+3) +V3(Tl+3)

Delay Cost (1 year) = > 3 3
a a o a

(2.4)

The value of Vj(n + 3) is known from the solution of Bellman’s model.
The green lines show the path if the asset was replaced at in an earlier year. The cost of

-eplacing equipment one year earlier (i.e. replacing the equipment after the first period (KRK))

is calculated as follows:

C()(?l,n + 1) n C](Tl + 1, 1) n 02(1,2) n ‘/3(2)

Replace Early (1 year) = . . =

(2.5)

Again, the value of V3(2) is known from the solution of Bellman's model. Thus, alternative
replacement schedule can be formed quite easily. If budget constraints exist of the first 77

periods, we can easily determine alternative replacement schedules over 77.

11
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Figure 2.3: Alternative replacement schedules from Bellman’s Model

2.3.2 Sensitivity Analysis in Wagner’s Model

An example of the Wagner model is shown in Figure 4.1. The red lines show the optimal
solution for that piece of equipment through time t =3. In Figure 4.1 the optimal solution
shown in the Wagner model is to replace the equipment at the end of period two (KKR), as in
our previous example. As indicated in Figure 4.1 by the red path, the optimal solution is the

summation of the path cgy and the minimum of all paths from node 2 through the end of the

horizon. or:

C(2) = ca; + min ﬁ (2.6)




The blue lines depict the path to be taken if the asset replacement was delayed by one year.

The cost of delaying a replacement by one year is calculated as follows:

Delay Cost (1 year) = cp3 + min

obk;:?
Q

L c)

al

Q

5

B

[ Cc(T)
|oF 5T

The green lines show the path if the asset was replaced at in an earlier year. The cost of

replacing equipment one year earlier as shown by the green path in Figure 4.1 is calculated as

follows:

(

c(3
3+

; c(
a5

Replace Early (1 year) = cg; + min . ap 90122

optmat replacement

________ deley replacement

........ rep'ace early

Figure 2.4: Alternative Replacement Schedules from Wagner's Model
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2.3.3 Bellman Model used in our analysis

When comparing equations (2.4) and (2.7) it should be clear that more calculations are required
if the sensitivity analysis is performed using Wagner’s model than with Bellman’s. This is due
to the fact that Belliman’s model has a larger state space and thus more information is saved.

If Wagner’s model were to be used to calculate the cost of delay, a minimum from the set

must be determined.

Vo)

Replace (R year) = Cor + mill{g% + } (2.9)
i a

Where R is the year chosen for the equipment to be replaced, and the minimum path
is chosen given that a is the discount factor. When considering the general case for this
replacement model, it can easily be seen that calculating the minimuin cost after choosing to
replace at a particular time would be very tedious as the cost over all paths from the replacement
node must be known through the end of the horizon.

When considering Bellman’s model it can easily be seen in Figure 2.3 that the paths can
casily be identified and the cost for replacing at a particular time can be calculated using one
path. No minimum cost path from a set must be identified and the calculation is very simple

and can easily be calculated. Thus, we move forward using Belliman’s model.
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Chapter 3

Multiple Asset Replacement with

Budget Constraints

In this chapter, we take the results obtained fromn our dynamic programming model to construct
an integer program to find the optimal replacement schedules for a number of assets under a
budget constraint. Using the Bellman dynamic programming model, the costs for each individ-
ual equipment replacement schedule was found. The costs associated with the optimal solution
and, as shown in section 2.3.1 the costs of delaying the replacement or replacing the equipment
at an carlier time is also calculated. We make an assumption that a piece of equipment, 7, can
only be replaced once over the periods in which a budget constraint exists.

C;; is the cost associated with replacing equipment i at time j. The optimal cost is found in
our dynamic programming model and it includes all costs over the horizon, discounted to time
zero. The costs associated with a delay in the replacement or replacing earlier is also calculated
using our Bellman network as seen in the previous chapter. Thus. a picce of equipment 7 may
be defined by a number of variables, such as r,9.24;. ete.. signifving replacements at time zero.
one. ete. with associated costs Cy.Cy. ete. P is the purchase cost of equipment 7 at time. It
is the cost of purchasing new equipment if the old asset needs to be replaced. M is number of
pieces of equipment being investigated. .\, is the maximum age of equipment i while. n, is the

current age of equipment 7 and T is the maximum horizon considered in each problem. The

—
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integer program is as follows:

M min(N-n,,

7)
min Z Z CijTyj (3.1)
i=1 =0
subject to:
M
Z Pjri; < B; V) (3.2)
i=1

min(N-n,,T)

Yoo omy=1 Vi (3.3)

i=0

Zij € {O, 1} (34)

z,; is a zero - one decision variable:

1 if replace equipment i at time j
Lij = (3.9)
0 otherwise
The objective of this integer program (3.1) is to find the minimum cost replacement schedules
for all equipment ¢ within the given j time periods. Every time period has a respective budget
constraint B;. The first constraint (3.2) ensures that the purchase costs of new equipment
acquired at that particular time j should be less than the budget allocated for that time j. The
second constraint (3.3) ensures that equipment i is replaced only once over the horizon. (This
is similar to an assignment constraint.) The fourth constraint (3.4) ensures that the results for
replacement is given in an integer form.
For a T period problem with M assets having a maximum age N, there is a maximum
of MrT integer variables. Furthermore, there is a maximum of T budget constraints and M

assignment constraints.

16




Chapter 4

Case Study

We illustrate our two-stage approach with a case study from our hospital partner. We use data
given to us from the hospital along with assets requested to be replaced at time zero. We then
analyze each individual asset to find it's optimal replacement schedule. Then we calculate the
cost to delay and accelerate replacement of the equipment. We then use this results to form our
integer program to analyze the optimal replacement schedule of all pieces of equipment given

a budget constraint.

4.1 Single Asset Solution

To illustrate the single asset solution, we chose a 13-year old Infant warmer, that could be
retained a total of 20 years. Using Bellman’s model with the costs given in Table 4.1, the
optimal replacement schedule was determined to be after one or more period of use (age 14).
Now. we demonstrate how the cost to replace a year earlier and the cost to delay replacement
by a vear are calculated. In a similar manner, costs for the equipment to be replaced in two.

three vears ete. can also be calculated. The purchase cost of new equipment (challenger) is

s

12.920.00.
The optimal solution is to replace at time 1. with the total net present value cost (15(1)) given

as §12.321.00. The cost to replace one period earlier. over a 20 period horizon (i.e. at time



zero) is calculated as follows:

Go(13,1)  Gi(1,2) | Va(2)

Replace Early (1 year) = 2

a a? !

(($12,920 — $1.35) + $641)  $64  $1,564

l N s > ol fd
Replace Early (1 year) (1.05) + (1.05)2 + (1.05)2

= $14,390. (4.2)

The cost to replace at one period later, (i.e. at time two) is calculated as follows:

Co(13,14 Ci(14,15 (15,1 Cs(1,2 Vi(15
0(’)+ l(7)+2(’)+ 3(»)+4()

Delay Cost (1 year) = - = = o " (4.3)
$641 5668 $12,920 — $0.34) + S695
Delay Cost (1 year) =(1 05) + (1.05)2 + { (105)° ) )

64 S1,151 (44)

= $13,977

(105 © (1.05)°




1568

1151

V4 (2)

1,096

Figure 4.1: Case example using Bellman’s Model




Table 4.1: Costs and salvage values for old and replacement assets
Age (i) | C(1) | S(i) | C(1) | S(x)
317 | 5522 | 64 | 6460
344 | 2761 { 69 | 4199
371 | 1380 | 74 | 2729
398 | 690 | 79 | 1774
425 | 345 | 84 | 1153
452 { 173 | 89 | 750
479 | 86 94 | 487
506 | 43 99 | 317
533 | 22 | 104 | 206
560 | 11 | 109 | 134

DD P = e e e b b e e
O@OO\IOMACOMHO@OONQUAC’JMH

587 6 114 | 87
614 3 119 | 57
641 2 124 | 37
668 1 129 | 24
695 0 134 | 16
722 0 139 | 10
749 0 144 7
776 0 149 4
803 0 154 3
830 0 159 2

From this solution we define Cy, C1; and Cy as $14,390, $12,324 and $13,977 for the integer

program.

4.2 Solutions to 10 Multiple Asset Problem

Using the results from section 4.1 we now construct the integer program. The replacement
costs for each asset i are placed in the objective function to be minimized. The values for the
purchase costs and budget are entered into the constraints.

The following is an example with 10 picces of equipment from our case study. The optimal
replacement cost suggested by our dynamic program for each picce of equipment is given in
bold. all other costs were calculated by computing the cost to delay or accelerate replacement
to that particular time period. Recall that r,; is a zero - one decision variable. where it is one

if equipment 7 is replaced at time j and zero otherwise. For our initial solution. we assumed

20




the following budgets:

Table 4.2: Budgets used for years 0-17 for initial solution

Year | Budget
0 11000
1 11000
2 12000
3 15000
4 15000
5 16000
6 18000
7 19000
8 18000
9 18000
10 18000
11 13000
12 13000
13 10000
14 10000
15 10000
16 10000
17 10000

min
{ 3920210 + 3740z, +
4670799 + 3190z +
4630130 + 32903 +
3670z40 + 3530z4; + 3730z42 + 3980743 + 427014, + 1600245 + 4950245 + 5330747 + 57301,
+ 6150149 + 65902410 + 704014, +
15120150 + 14520751 + 153905, + 16450753 + 17730055 + 1925055 + 21000755 + 229505
+ 25090755 + 27400750 + 29860r500 + 32440r5;; + 351207510 + 37880153 + 1070015, +
13540515 + 46370 156 + 19130757+
110700 + 1390016; + 1401014y + 14170x63 + 1443006y + 14820165 + 15310r66 + 15990767
+ 16760res + 1763010 + 18590r610 + 19640x6; + 20750612 + 21910263 + 2310026y, +
24200r615 + 254601656 + 26570r¢); +

10930770 + 1080007, + 10920r7; + 11130r73 + 1140007 + 1173055 + 121200+ + 125607~

21




+ 13040xz75 13560279 + 14110z7,0 +

3030zgy + 2950zg; + 3040z + 3140zg3 + 3270xs4 + 3420285 + 3590xg6 + 3770zg7 + 3960xgs
+ 4170xg9 + 4380zg;0 + 4610zg,; + 4840zg;2 +

3320zg0 + 3250x¢; + 3230zg; +

14080z100 + 13950x10; + 13790z100 + 13270z103 + 12960204 }

subject to:

2160zx19 + 2340zo9 + 2340x3¢ + 2360z 4 + 8670x59 + 8670xgg + 8100z7g + 2060xgg + 2060zgg

2160z, + 2340z9; + 2340z3; + 2360z, + 8670x5, + 8670z6, + 8100x7; + 2060xs; + 2060z,
+ 12620z0; < 11000

2360zx42 + 867052 + 8670z¢2+ 8100x72 + 2060z + 20609y + 12620z, < 12000
2360x43 + 8670x53 + 8670xe3 + 8100z73 + 2060zs3 + 12620z,03 < 15000

2360z44 + 867054 + 8670x6y + 8100z7, + 2060xgy + 12620105 < 15000

2360z 45 + 8670zs55 + 8670xg; + 8100x7; < 16000

2360z46 + 8670x56 + 8670x¢; + + 8100z7 < 18000

2360z 47 + 8670x57; + + 8670z¢7; + 8670x67 + 8100z77 + 2060xs7; < 18000

2360x45 + 8670x55 + 8670x¢s + 8100x73 + 2060xss < 18000

2360zx49 + 8670x59 + 8670xg9 + 8100x79 < 18000

2360x410 + 8670x510 + 86701610 + 8100x7;9 < 18000

2360x41; + 8670x51, + 8670x6;; + 2060xs;; < 13000

8670r512 + 8670r612 + 206050 < 13000

867053 + S670x63 < 10000

8670r514 + 86701614 < 10000

86701515 + 8670ra15 < 10000

8670 516 + 86701616 < 10000

86701517 + 8670r6; < 10000

T+ = 1

Iy + I =]

[ ]
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T3g + 31 =1
Tao + Tay + Ta2 + Tz Taa + Tys + Tap + La7 + Tag + Tyg + Taio + Tan =1
Tsg + Ts1 + Tso + Tsz + Tsg + Tss + Tse + Ts7 + Tsg + Tsg + Tsio + Tsin + Tsiz + Tsig + Tsig
+ Ts1s + Tsi6 + Tz =1
Zeo + Tey + T2 + Tez + Teg + Les + Tee + Te7 + Tes + Teg + Leio + Teun + Tei2 + Te1z + Leig
+ Ze1s + Ze1s + Zoiz =1
I70 + T + Too + T3 + Teq + Tos + Ty + Trr + T + Trg + Tip =1
Tgo + g1 + Tg2 + Tgz Ty + Tss + Tsg + Te7 + Tss + Lgg + Tsio + Tan + gz =1
Tgg + Tg1 + Tgo =1
Tioo + T + Tyo2 + Tyoz + Tios =1
z;; € {0,1}
The optimal solution found as $ 73,460.00 using AMPL and CPLEX. The optimnal replace-

ment schedule is given in Table 4.3:

Table 4.3: Optimal replacement periods for each asset.

Equipment | Replacement year
1 1
2 1
3 1
q 1
5 2
6 3
7 0
8 0
9 2
10 4

This optimal decision suggests that assets 7 and 8 should be replaced in vear 0. assets 1-
should be replaced after the 1st vear. assets 5 and 9 should be replaced in vear 2 and asset 10
replaced in vear 4. In the next section we further investigate the optimal replacement schedule

when the budget for each vear is changed.



4.3 Sensitivity of Budget Constraints

In this section we investigate changes in the optimal replacement schedule if the budget con-
straints are adjusted. The sensitivity analysis of the budget constraint is important as the
budget may vary from year to year. The budget in a later year may be uncertain and hence,
there must be an easy way of evaluating the replacement schedule if budget constraints were
to change.

The following tables show various budget constraints used and the replacement schedule

obtained because of these changes in the budget.

Table 4.4: Four different sets of budgets used for years 0-17
Year | Budget 1 | Budget 2 | Budget 3 | Budget 4

0 9000 13000 9000 5000
1 9000 13000 9000 5000
2 10000 14000 7000 6000
3 13000 17000 8000 7000

4 13000 17000 17000 13000
) 14000 18000 16000 13000
6 16000 20000 15000 12000
7 16000 20000 15000 12000
8 16000 20000 15000 12000
9 16000 20000 15000 12000
10 16000 20000 15000 12000
11 11000 15000 12000 10000
12 11000 15000 12000 10000

13 8000 12000 5000 3000
14 8000 12000 5000 3000
15 8000 12000 5000 3000
16 S000 12000 5000 3000

17 S000 12000 5000 3000




Table 4.5: Optimal Replacement Schedule for Budgets 1 - 4

Equipment | Budget 1 | Budget 2 | Budget 3 | Budget 4
1 1 1 1 0
2 1 1 1
3 1 1 1 1
4 0 1 2 0
5 2 2 0 5
6 3 3 5 6
7 5 0 6 7
8 1 1 1 2
9 0 2 2 2
10 4 4 4 2
solution cost { $74,410 | $73,380 | S$75450 | $80,450

The budget for each year was changed in four different instances and each time the optimal
replacement schedule changed. It is obvious from this analysis that our model can easily
calculate the new optimal replacement schedule if the budget constraints were to be changed
for any reason.

Next we investigate an even more realistic problem. In this problem we consider that the
budget constraints for the first 5 years are known, the later years have not been assigned a
budget and so we allow for zero budget in those time periods. The following table shows 4

different budgets used, for all cases the budget is zero after time = 4.



Table 4.6: Four different sets of budgets used for years 0-4 and with unknown budgets for years 5 -
17

Year | Budget 5 | Budget 6 | Budget 7 | Budget 8
0 10000 13000 9000 11000
1 10000 13000 9000 12000
2 10000 14000 7000 13000
3 13000 17000 8000 10000
4 13000 17000 17000 10000
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0
16 0 0 0 0
17 0 0 0 0

Table 4.7: Optimal Replacement Schedule for Budgets 5 - 8

Equipment | Budget 5 | Budget 6 Budget 7 Budget 8

1 1 1 infeasible solution 1

2 1 1 1

3 1 1 1

| 3 1 1

5 0 2 0

6 2 3 4

7 3 0 3

8 3 1 1

9 1 2 0

10 B 4 2
solution cost | S$74.110 | S$73.380 no solution S74,790

In these results again we see that the optimal replacement schedule is for cach different set
of budget constraint is varied. As can be seen from the results. due to zero budget in vears 3 -

17 all equipment are forced to be replaced at times 0 - 4. For the budget constraint set 7 the
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results were given to be an infeasible solution. No basis was found when trying to solve and
using these budget constraints.

Next we investigate an even more another case. In this problem we consider that the budget
constraints for the first 5 years are known, the later years have a budget of $1,000,000. The

following table shows 4 different budgets used:

Table 4.8: Four different sets of budgets used for years 0-4 and with large budgets for years 5 - 17

Year | Budget 9 | Budget 10 | Budget 11 | Budget 12
0 10000 13000 9000 11000
1 10000 13000 9000 12000
2 10000 14000 7000 13000
3 13000 17000 8000 10000
4 13000 17000 17000 10000
5 1000000 | 1000000 1000000 1000000
6 1000000 { 1000000 1000000 1000000
7 1000000 | 1000000 1000000 1000000
8 1000000 | 1000000 1000000 1000000
9 1000000 | 1000000 1000000 1000000
10 1000000 | 1000000 1000000 1000000
11 1000000 | 1000000 1000000 1000000
12 1000000 | 1000000 1000000 1000000
13 1000000 | 1000000 1000000 1000000
14 1000000 | 1000000 1000000 1000000
15 1000000 | 1000000 1000000 1000000
16 1000000 | 1000000 1000000 1000000
17 | 1000000 | 1000000 1000000 1000000




Table 4.9: Optima! Replacement Schedule for Budgets 8 - 12

Equipment | Budget 9 | Budget 10 | Budget 11 | Budget 12

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 0 1 2 1

5 2 2 0 0

6 3 3 5 4

7 5 0 5 3

8 1 2 2 1

9 0 2 3 0

10 4 4 4 2
solution cost | $74,410 $73,380 $75,060 $74,790

In these results again we see that the optimal replacement schedule is for each different set
of budget constraint is varied. For these cases we only changed the amount of the budget in
years 5 — 17. When compared to the previous results we observe budget 9 to have a different
replacement schedule from budget 5. Six out of the ten pieces of equipment were suggested to
be replaced at a different time. Comparing the results of budget 10 and 6, it is observed only
equipment cight is suggested to have a different replacement time. From the results of budget
7 we saw that the solution was infeasible but when the budgets are changed to budget 11 a

solution is found. The solution for budget 12 is the same as the solution for budget 8.

]
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Chapter 5

Conclusions and Directions for Future

Research

The importance of sensitivity analysis is obvious when budget constraints are involved. As in
our case, some of the equipment being used cost more for the hospital to operate and maintain
than it would cost to replace the equipment. Determining the optimal replacement schedule
for each individual piece of equipment is essential as money can be saved if the equipment is
replaced at the right time.

We were able to successfully determine the most efficient method to use when trying to
determine the costs associated with sensitivity analysis. We were also able to successfully
determine the optimal replacement schedule for a set of equipment suggested to be replaced
at a given time under budget constraints. In trving to determine the most efficient method
to investigate sensitivity analyvsis we illustrated that Bellman'’s classical model is more efhcient
than Wagner's method.

In our case study we investigated the replacement schedule of 10 pieces of equipment. An-
alvze the replacement schedules under different budget constraints. The integer program de-
veloped in this thesis can be used to analvze multiple pieces of equipment under a budget
constraint.

Further analvsis into the sensitivity analvsis can be done to find an easier method of cal-



culating the delay or acceleration costs. Also, the sensitivity analysis can further be analyzed
to determine the minimum amount of funds which needs to be allocated each year. Future
work in this area can also analyze larger amounts of equipment for replacement under budget
constraints, using the integer program suggested in chapter 3 to create a model and analyze
a larger data set with varying costs and budget constraints. We did not encounter computa-

tional problems but these are possible with larger problems as integer programming has been

proposed.
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