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Abstract

The replacement of ~quipment has been studied in various situations. Previous research has'

focused on models to determine replacement schedules for individual pieces of equipment while

little work examines replacing numerous pieces of equipment under a budget constraint. We in

vestigate both of these problems by looking at the costs associated with delaying or accelerating

the replacement of the individual asset if the budget allocated for the suggested replacement

period does not allow for replacement. We investigate the use of two previously developed dy

namic programming models to determine the method which would more easily facilitate finding

alternative replaceFlent schedules through sensitivity analysis.

Keywords: Equipment replacement, sensitivity analysis, dynamic programmmg, medical

equipment



Chapter 1

Introdllction

This thesis considers the problem of replacing a large number of different assets under a common

budget constraint. We focus our research on an application in medical equipment, although it

is general for other replaccment models. The problem to be analyzed has two parts. First, we

scck to find thc optimal rcplaccment schcdule for individual pieces of equipment that havc been

rcqucstcd to bc replaccd. Our dynamic programming modcl recommcnds thc optimal timc for

rcplaccmcnt of cach piccc. Howcvcr, ,duc to budgct constraints, cquipmcnt may havc to bc

rcplaccd at an earlicr or later time. Thus, we calculate the costs associated with delaying or

accelcrating thc rcplaccment of each individual piccc of equipmcnt through a dcsigncd sensitivity

analysis. Sccond, wc combinc our individual assct solutions to dctcrminc thc best solution for

all assets under t he budget constraint.

\Vhen considering thc rcplaccment of cquipmcnt, thcre arc two major moti"ations: obsoles

cence and deterioration. Equipment can become obsolcte duc to new equipment bcing on the

market which may be more technologically advanced.The rate at which technology advances

and the improycments in the equipmcnt is a reason for considcring equipment replacement in

the medical industr~·. Deterioration of equipment can also occur with time. as operating and

maintenance costs increase and sah-age "alues decrease. At some point the costs of maintaining

equipment ma~' exceed the costs of replacing the equipmCl1t. In this thesis \\'(' consider the case

\\·here asset s de! ('riora! e wi th time and savings can be made through periodic replacemcllt.



1.1 Problem Description

In our problem, a set of heterogenous medical equipment is proposed to be replaced. Each piece

of equipment i& defined by its age i at time j with projected operating and maintenance costs

(G,J ) and salvage values (SiJ) through its maximum age N. The asset must be replaced when

it reaches age N. Furthermore, the purchase cost, Pj, estimated operating and maintenance

costs and a salvage values are known for the potential replacement asset in each period JET

, where T represents the problem horizon.

As stated previously there are two parts to the problem. First, the optimal replacement

schedule for each equipment is identified. Second, due to budgetary constraints, we may not

be able to replace all assets proposed to be replaced in a particular year. The use of sensi

tivity analysis will be investigated at this point. Hence, the costs associated with delaying or

accelerating th,~ replacement need to be calculated.

1.2 Literature Review

Cllrister and Scarf (1994) investigate a model which optimizes the replacement schedule of

medical equipment. The model presented in this paper incorporates parameters and variables

important to medical equipment. As mentioned by Cllrister and Scarf, the replacement decision

for medical equipment has certain characteristic features:

1. The decision to replacc equipment. may be one ~'ear, I{ years or only when forced by

teclmical obsolesccnce.

2. Replaccment ma~' be driwn by technical obsolcscence. change in medical requiremcnts or

technological dcwlopments.

3. The repl,:ccmcnt age of equipment should be related to usage .

•J. :\11 clfec:s due to equipmCl1t failure and its una\'ailability arc termed penalties,

5. Old equipment may not be scmped. hut retained for usc.
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6. Equip!nent is always in demand.

The mod~l presented by Christel' and Scarf seeks find the values for 1( (remaining life of

the asset) and L (economic life of the new asset) which minimizes the expected discounted cost

per unit of usage over a period of (I( + L), such that, {C(N; 1(, L)} is the total discounted cost

of replacing the equipment of age N after 1( years and again after L years.

A budget constraint may prohibit the equipment from being replaced at the optimal time.

Christel' and Scarf propose a method of calculating the cost of delaying the replacement. Given

the optima! replacement to be (l( *, L*), they propose the cost to delay by one year to be:

{C(N; 1( * +1, L*) - C(N; 1(*, L*)}.

We genel alize the work of Clll'ister and Scarf in that we allow for more than one replacement

in the time ~ 1( + L). Furthermore, we examine the cost of delaying or accelerating a decision

to meet the budget constraint.

Karabakal et. al. (1994) introduces a model which includes the replacement of different

assets unde;: a budget constraint, called the Capital Rationing Replacement Problem (CRRP).

They propose a finite horizon, deterministic version of CRRP as a zero-one integer program

and use Lagrangian rela.xation to solve this problem.

The fon~lUlation of their model can be represented by a network. In this representation,

nodes represent the end of periods and arcs represent decisions to be made. Associated with

each arc are two parameters, length (net present value benefit of replacement, "aeij) and resource

consumption (purchase cost. Pac;). In their example they illustrate a piece of equipment with a

three ~'ear Flanning horizon. The asset has two challengers: challenger 1 can be used unt il the

end of the horizon time. and challenger 0 has a remaining life of two periods. The problelll to

be soh'ed is to find the longl'st path from the initial asset's first node to the final assets's last

node. so that no budget constraints are \'iolated. In their model. the~' consider the replacelllent

of equipment \\'ith multiple challengers. They suggest the use of Lagrangian rela.'xation to sol\'('

the integer program obt [lined from their lllodei.

1



In a later paper, they discuss a dual heuristic for solving large, realistically sized problems.

In this paper by Karabakal et.al (2000) I they propose to solve the individual replacement

problems i~;noring the budget constraints. The next step would be to solve the Lagrangian dual

problem in an attempt to eliminate or reduce budget violations. In their results they were able

to solve problems with as many as 100 to 500 assets.

Miguel and Rodriguez (2006) introduce a model based on an artificial neural network that

guarantees a warning when a piece of medical equipment requires replacement. The model

was developed using event tree theory. The model included factors, such as, usage time over

useful life, service cost over acquisition cost, and unavailability. The model, however, could not

predict certain cases:

• Items which have already reached the end of their useful life, but maintenance costs and

maiI:tenance parameters are of adequate intervals.

• !'.Iedical equipment which have not reached its useful life, but maintenance costs or main

tenance parameters are not in adequate intervals.

The main purpose of this article was to propose a more robust model for thc retircmcnt of a

piccc of equipmcnt from hospital inycntory, using artificial neural network. Thc modcl was used

to tcst m2dical equipment to determine with greater precision whether the equipment should

be repaired or replaced.

1.3 Research Motivation

The moth'ation for this research project comes from a local hospital tr~'ing to ensure the optimal

replacemcnt schedule for their equipment replacement. It was obvious from historical data that

some equipment in in\"Cntor~' should have alread~' been replaced. For example. operation and

maintenallce costs for some equipmcnt \\'as exceeding the cost of rcplacing then1- In this thesis

\\'c scck t;) propose a model which \\'ill help in dcciding thc optimal replacement schedule for

cach indi ddual piccc of equipmCl1t.
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Along with trying to decide on the optimal replacement for each equipment, the hospital

also has a limited budget each year for equipment replacement. So our motivation is to find

the optimal replacement schedule for a number of pieces of equipment when given a budget

constrair.t in each year. Due to the budget constraints equipment suggested to be replaced in

a particular may not be replaced. Hence, sensitivity analysis is used to determine the costs

associated with delaying the replacement or replacing the equipment early as the budget allows.

This thesis proceeds as follows. In Chapter 2, we discuss our sub-problem of solving the

optimal replacement solution for each piece of medical equipment. In Chapter 3, the optimal

replacement results found in Chapter 2 are used to formulate the model to analyze the replace

ment of all equipment under a budget constraint. Sensitivity of the model is also considered

to determine the cost of delaying or accelerating the replacement of the equipment. In Chap

ter 4, cc..~e study results are presented using data collected from medical equipment. Finally,

conclusiuns and future studies are stated in Chapter 5.



Chapter 2

Single Asset Replacement Problem

In thif: chapter we focus on two previously developed methods using dynamic programming to

find the optimal replacement schedule for equipment. First, we examine the Bellman model,

proposed in 1955. \Ve then look at an alternative approach given by Wagner (1975) to calculate

the optimal replacement for an asset. Finally we compare both models to determine on the best

model to be used when considering calculating the costs of delaying or accelerating replacement.

2.1 Bellman's Model

In a representative network for Bellman's model, a node represents the age of the asset, which

is the state of the system. When moving from period to period, the decision is whether to keep

or replace the asset. If a decision to keep the asset is made, then the state transitions from an

asset ,)f age 11 to age 11 + 1. If a decision to replace the asset is made then the state transitions

from 71 to 1. This means that the old asset is sold and a new asset replaces it and is used for

one period. Figure 2.1 shows a representation of the Bellman model, the nodes represent the

st at es of the asset. i.e. the age of the asset and the arcs represent the decisions. The decision

to keep an asset is repre."ent cd by an up\\'ard arc from any node and the decision to replace is

H'pre."{'ntcd by a dO\vm\"[mi arc from any node labeled wit h age 1.

-
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t =a t =1 t =2 t =3

Figure 2.1: Bcllman's dynamic programming modcl for singlc assct rcplaccment problcm

Defining \~ (i) as the minimum expected net present value cost of an asset of age i at

time t, when employing optimal replacement decisions through the horizon T. The recursive

formulation can be written as:

{

Kecp :
\~(i) = min

Rcplacc:

(2.1 )

The bO\lndar~' condition for the final period (where the asset is sold) is:

\ tU) = -STU)

Jn t h{' modeL the decision at each st at (' i in period j is whet l1{'r to keep t h{' asset. ate (i).

the cost of operat ing nnd maint nining equipment at time t for n mnchine of nge i. or replacing

it for sah',1g{' \'alue StU) and purchnse cost Pt. Keeping the asset results in n state of i + 1 \\'hilc

rcplaecml'1lt result s in st at e I. Operat ing and maint{'nuncc cost s ,He assumed to occur at the



end of the period and all costs are discounted with the periodic discount rate G.

2.2 Wagner's Model

\Vagner (1975) presented an alternative dynamic programming formulation in which the state

of the system is the time period. In this representation there is only one state per period, but

the number of decisions per state increases. The decisions in the Wagner model can be seen in

Figure 2.2. The nodes represent the time period and the arcs represent decisions of how long

to retain the asset. I<OI is the decision to keep the initial (old) asset for one period and HoJ

represents the decision to replace the old asset with the new one in period one. The optimal

decision is found by calculating the minimum cost path from node 0 to node 4.

The dynamic programming formulation is:

C(t) =. min {C(t - j)) + Ct-j,dt > 0
J=J...l1lln{t,M}

The boundary condition for the final period: C(O) = 0

Where:

C (t) = the minimum present value cost of reaching node t from any other node.

~1 = maximum service life of the asset.

(2.2)

To solw the recursion forward, the solution from the previous nodes arc required. The state

C(i - j) is used in the solution of state C(t),where j represents the number of periods of service

fOJ t he asset. The cost of this decision is c.

9



Figure 2.2: Wagner's dynamic programming model for single asset replacement problem

The nodes represent the time period and the arcs represent decisions of how long to retain

the asset. /(01 is the decision to keep the asset for one period and ~I represents the decision

to replace the old asset with the new one in period one. The optimal decision is found by

calculating the minimum cost path from node 0 to node 4.

2.3 Determining Alternative Replacement Solutions

Both dynamic programming models can solve the replacement problem efficiently. The Bellman

l.lOdel has at most N states in any of T periods with two decisions per state, leading to a worst

rim time of O(2NT). For Wagner's model, there is at most 1 state in T periods with N nHLximum

decisions, defining O(NT). While Wagner's is (slightly) more efficient, it may not be best for

our application, as shown below.

2.3.1 Sensitivity Analysis in Belhnan's rvlodel

;\n example of the Bellman model is shown in Figure 2.3. \'o( 11) defines the opt imal solnt ion

\'alue and the red lines indicate the optimal decisions for that piece of equipment through time

t =3. In Figurl' 2.3 the optimal replacement schedule is to keep the equipment for two periods

and then replace in it (I\:I\:R). :\ote the from our recursion equation (2.1). we can \\Tite this as:

10



l/"( )_Co(n,n+1) C1(n+1,n+2) V2(n+2)
Vo n - + 2 + 2

0' 0' 0'
(2.3)

where Co(n, n + 1) is the cost of keeping the equipment from age n to n + l.

The blue lines depict an alternative the path to be taken if the asset replacement was delayed

by one year. The cost of delaying a replacement by one year (i.e. replacing the equipment after

the third period (KKK)) is calculated as follows:

D l C ( )
Co(n,n+1) C1(n+1,n+2) C2(n+2,n+3) V3 (n+3) (2.4)

e ay ost 1 year = + 2 + 3 + 3
0' 0' 0' 0'

The value of V3 (n + 3) is known from the solution of Bellman's model.

The green lines show the path if the asset was replaced at in an earlier year. The cost of

:"eplacing equipment one year earlier (i.e. replacing the equipment after the first period (KRI\))

is calculated as follows:

I l ( )
Co(n, n + 1) C1(n + 1,1) C2 (1,2) \13 (2)

Rep ace Ear y 1 year = + 2 + 3 + -3-
Q Q Q Q

(2.5)

Again, the value of \13(2) is known from the solution of Bellman's model. Thus, alternative

replacement schedule can be formed quite easily. If budget constraints exist of the first TI

periods, we can easily determine alternative replacement schedules over TI.

11



IT]

V3 (n+3)

C2 (n+2. n+3) ,.y
~...", ~,. optimal replacement

delay replacement

replace earf;'

t =0 t =1 t =2 t =3

Figure 2.3: Altcrnativc replaccmcnt schcdulcs from Bcllman's i\lodcl

2.3.2 Sensitivity Analysis in Wagner's Model

An example of the Wagner model is shown in Figure 4.1. The red lines show the optimal

solution for that piece of equipment through time t =3. In Figure 4.1 the optimal solution

shown in the Wagner model is to replace the equipment at the end of period two (KKR), as in

our previous example. As indicated in Figure ,1.1 by the red path, the optimal solution is the

summation of the path em and the minimum of all paths from node 2 through the end of the

horizon. or:

C(2) = em + min

12

s..r + qT!
tl J () j

(2.6)



The blue lines depict the path to be taken if the asset replacement was delayed by one year.

The cost of delaying a replacement by one year is calculated as follows:

Delay Cost (1 year) = C03 + min

£lli + C(5)
QO QO

SlI + CrT)or CT

(2.7)

The green lines show the path if the asset was replaced at in an earlier year. The cost of

replacing equipment one year earlier as shown by the green path in Figure 4.1 is calculated as

follows:

Sf + C(~)
o 0

Replace Early (1 year) = em + min £It + C(~)
o 0

~+ CCp
o 0

(2.8)

c (0.3)
r--------------~

",I '"''

,,' ( ro, 2) ',\, ,. ,
t'/'" "",

./ ,C(4)

[Q}------J1l, c(1.4) 2 ~F-(~~~) 4
({D," r~,"'", \'.... ,.. ,.... ...... , ~'

',:-,". .-' ffi'C(5)...... .. " \.... ' ........_-"\:.,._--' \ 5
":::::,',u,'\U , '_\~

c (1 '~"'----------"-~
C(T)

del",; rep:a~eme~:

rep'ace ea'~;

Figure :?..l: Alternatin' Rcplaccmcnt Schedules from \Yagncr'~ ~rodel
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2.3.3 Bellman Model used in our analysis

\\Then comparing equations (2.4) and (2.7) it should be clear that more calculations are required

if the sensitivity analysis is performed using Wagner's model than with Bellman's. This is due

to the fact that Bellman's model has a larger state space and thus more information is saved.

If Wagner's model were to be used to calculate the cost of delay, a minimum from the set

must be determined.

· Gnj V(j)
Replace (R year) = Gon + mm{-. + --. }

) 0:) 0:)
(2.9)

Where R is the year chosen for the equipment to be replaced, and the mmllllum path

IS chosen given that 0: is the discount factor. When considering the general case for this

replacement model, it can easily be seen that calculating the minimum cost after choosing to

replace at a particular time would be very tedious as the cost over all paths fram the replacement

node must be known through the end of the horizon.

When considering Bellman's model it can easily be seen in Figure 2.3 that the paths can

easily be identified and the cost for replacing at a particular time can be calculated using one

path. No minimum cost path from a set must be identified and the calculation is very simple

and can easily be calculated. Thus, we move forward using Bellman's model.

1,1



Chapter 3

Multiple Asset Replacement with

Budget Constraints

In this chapter, we take the results obtained from our dynamic programming model to construct

an integer program to find the optimal replacement schedules for a number of assets under a

budget constraint. Using the Bellman dynamic programming model, the costs for each individ

ual equipment replacement schedule was found. The costs associated with the optimal solution

and, as shown in section 2.3.1 the costs of delaying the replacement or replacing the equipment

at an earlier time is also calculated. We make an assumption that a piece of equipment, i, can

only be replaced once over the periods in which a budget constraint exists.

G,j is the cost associated with replacing equipment i at time j. The optimal cost is found ill

our dynamic programming model and it includes all costs oYer the horizon, discounted to time

zero. The costs associated wit h a dela~' in the replacement or replacing earlier is also calculated

using our Bellman network as seen in the pre\'ious chapter. Thus. a piece of equipment i may

be defined b~' a number of variables, such as ,[.o..T,l' etc.. signif~'ing replacements at time zero.

one. etc. \\'ith a.ssociated costs c,o.c,}. etc. P,) is the purcha.<;e cost of equipment i at time, It

is the cost of purchasing new equipment if the old nssct needs to be replnced. :-'1 is 1ll1mbcr of

pieces of equipml'llt being illw.-;tigated. X, is thl' maximum ngc of equipment i while. Il, is the

current age of equipment i and T is the ma..~il1l\lm horizol1 considered in each problem. The

15



integer program is as follows:

!If rnin(N -n"T)

min L L C ij X 1j

i=J j=O

subject to:

(3.1 )

!If

LPijXij ~ B j

i=J

rnin(N -n"T)

L Xij = 1
j=O

Xij E {O, I}

X t) is a zero - one decision variable:

Vj

Vi

(3.2)

(3.3)

(3.4)

if replace equipment i at time j

otherwise

(3.5 )

The objective of this integer program (3.1) is to find the minimum cost replacement schedules

for all equipment i within the given j time periods. Every time period has a respective budget

constraint Bj . The first constraint (3.2) ensures that the purchase costs of new equipment

acquired at that particular time j should be less than the budget allocated for that time j. The

second constraint (3.3) ensures that equipment i is replaced only once 0\'Cr the horizon. (This

is similar to an assignment constraint.) The fourth constraint (3.'1) ensures that the results for

replacement is given in an integer form.

For a T period problem with ,U assets having a ma.ximum age N, there is a ma.XJIuum

of .1f.rT integer \'ariables. Furt hermore, there is a maximum of T budget const raint sand .1/

assignment const raint s.

16



Chapter 4

Case Study

We illustrate our two-stage approach with a case study from our hospital partner. We use data

given to us from the hospital along with assets requested to be replaced at time zero. We then

analyze each individual asset to find it's optimal replacement schedule. Then we calculate the

cost to delay and accelerate replacement of the equipment. We then use this results to form our

integer program to analyze the optimal replacement schedule of all pieces of equipment given

a budget constraint.

4.1 Single Asset Solution

To illustrate the single asset solution, we chose a 13-year old Infant warmer, that could be

retained a total of 20 years. Using Bellman's model with the costs given in Table '1.1. the

optimal replacement schedule was determined to be after one or more period of use (age 1·1).

0:ow. we demonstrate how the cost to replace a year earlier and the cost to delay replacement

by a year arc calculated. In a similar manner, costs for the equipment to be replaced in two.

three ~'e(HS etc. can abo be calculated. The purchase cost of new equipment (challenger) is

812.920.00.

The optimal :-olution is to replace at time 1. ,,'ith the total net present "aluc cost (\0(1)) gi\'Cn

a,-; 812.321.00. The cost to repbce one pl'riod earlier, o\'Cr a 20 period horizon (i.e. at time

17



zero) is calculated as follows:

Co(13,1) C j (1,2) V2(2)
Replace Early (1 year) = + 2 + -2-

Q Q Q
(4.1 )

R l ' E 'l ( J') _ ((812,920 - 81.35) + 8641) 864 81,564 - 8 390 (4.2)
ep ace aT y 1 yeaT - () + ( )2 + ( )2 - 14, .1.05 1.05 1.05

The cost to replace at aIle period later, (i.e. at time two) is calculated as follows:

D l C ( )
Co(13, 14) C j (14,15) C2(15,1) C3(1,2) V4(15) (4.3)

e ay ost 1 year = + 2 + 3 + 4 + -,j-
Q Q Q Q Q

D 'l C. ( ,.) _ 8641 8668 ((812,920 - 80.34) + 8695)
c ay ost 1 ycw - ( ) + ( )2 + ()3 +

1.05 1.05 1.05 (4.4)
864 81,151

(1.05)4 + (1.05)4 =813,977

IS



12,084

12,148
0]

12,211
em

,[lli 1,568

[I],/ V2(15) 1,568,,
[I],

,,
1,564

12,324 II] 1,~6113
1,555 ,/ V2(2)

-- ill'...... ,.... 1 ,,'

1,151

IT]
OJ V4 (2)

1,162 1,096

OJ

Figure 4.1: Case example using Bellman's r.lodel
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Age (i) C(i) S(i) C(i) S(i)
1 317 5522 64 6460
2 344 2761 69 4199
3 371 1380 74 2729
4 398 690 79 1774
5 425 345 84 1153
6 452 173 89 750
7 479 86 94 487
8 506 43 99 317
9 533 22 104 206
10 560 11 109 134
11 587 6 114 87
12 614 3 119 57
13 641 2 124 37
14 668 1 129 24
15 695 0 134 16
16 722 0 139 10
17 749 0 144 7
18 776 0 149 4
19 803 a 154 3
20 830 a 159 2

Table 4,1: Costs and salvage values for old and replacement assets

From this solution we define Cw, Cll and C12 as 814,390,812,324 and 813,977 for the integer

program.

4.2 Solutions to 10 Multiple Asset Problenl

Using the results from section .1.1 we now construct the integer program. The replacement

costs for each asset i are placed in the objecti\'e function to be minimized. The ,'alues for the

purcha.se costs and budget arc entered into the constraints.

The following is an example with 10 pieces of equipment from our case study. The optimal

replacement cost suggested b~' our d~'namic program for each piece of equipment is gi,'en in

bold. all other costs \\'ere calculated by computing the cost to delay or accelerate replacement

to that particular tiIlle period. Rec,111 that .r,) is a zero - one decision yariable. \\'here it is one

if equipment i is replaced at time j and zero othef\\'ise, For our initial solution. \\'l' assuIlled
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the following budgets:

Table 4.2: Budgets used for years 0-17 for initial solution
Year Budget

0 11000
1 11000
2 12000
3 15000
4 15000
5 16000
6 18000
7 19000
8 18000
9 18000
10 18000
11 13000
12 13000
13 10000
14 10000
15 10000
16 10000
17 10000

mill

{ 3920XlO + 3740xIl +

4670.T20 + 3190x21 +

,1630.T30 + 3290X31 +

3670.T.1O + 3530X41 + 3730.T.12 + 3980.T43 + '1270X41 + ·1600.T'15 + ·1950.T,lG + 5330.T.li + 5730.T,IS

+ 6150.T49 + 6590.T410 + 70,1O.Tm +

15·120.Tr,o + 14520.T51 + 15390.T52 + 16,150.T53 + 17730.T54 + 19250.Tc,5 + 21000.T56 + 22950.T5i

+ 25090.T,,~ + 27·100.Tr,9 + 29860.T,,1O + 32·HO.Tr,11 + 35120.T512 + 37880.T513 + ·10700.T"I.1 +

·135·1O.Tm + ·16370 .T"16 + ·19130.T"li+

1·1070.Te,0 + 13900.T61 + l·1OlO.T(i2 + 1·1170.T6.1 + 1-I-130.T61 + 1,1820.T(i;, + 15JlO.T66 + 15990.T6i

+ 16760.T6~ + 17630.T69 + 18590.T61O + 19610.T611 + 20750.T612 + 21910.T(i]3 + 23100.T6]1 +

2,1290.T6];' + 25160.T6]6 + 26570.T6]7 +

10930.T70 + 10800.T71 + 10920.T72 + 11130.T7J + 11,lOO.T71 + 11730.T7r, + 12120.T76 + 12560.T77
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+ 13040x78 13560x79 + 1411Ox71O +

3030xso + 2950xSl + 3040xS2 + 3140xs3 + 3270xS4 + 3420xS5 + 3590xS6 + 3770xS7 + 3960xss

+ 4170xs9 + 4380xSlO + 461OxS11 + 4840xS12 +

3320X90 + 3250X91 + 3230X92 +

14080XlOO + 13950XlOl + 13790XlO2 + 13270XlO3 + 12960XlO4 }

subject to:

2160XlO + 2340X20 + 2340X30 + 2360X40 + 8670X50 + 8670X60 + 8100x7o + 2060xso + 2060X90

+ 12620XlOO ~ 11000

2160X11 + 2340X21 + 2340X31 + 2360X41 + 8670X51 + 8670X61 + 8100x71 + 2060xSl + 2060X91

+ 12620XlOl ~ 11000

2360x.12 + 8670X52 + 8670X62+ 8100x72 + 2060xS2 + 2060X92 + 12620X102 ~ 12000

2360x.13 + 8670X53 + 8670X63 + 8100x73 + 2060xS3 + 12620X103 ~ 15000

2360x.14 + 8670X5.1 + 8670X6'1 + 8100x7'1 + 2060xS'1 + 12620XlO1 ~ 15000

2360x,15 + 8670X55 + 8670X65 + 8100x75 ~ 16000

2360x'l6 + 8670X56 + 8670X66 + + 8100x76 ~ 18000

2360.T,17 + 8670X57 + + 8670X67 + 8670;r67 + 8100xn + 2060xS7 ~ 18000

2360.T'1S + 8670x;,s + 8670X6S + 8100x7s + 2060xss ~ 18000

2360x,jg + 8670x;,9 + 8670.T69 + 8100.T79 ~ 18000

2360.T410 + 8670.r;'10 + 8670.r610 + 8100.r71O ~ 18000

2360.r,lll + 8670.r;'11 + 8670;r611 + 2060.TSll ~ 13000

8670.r'>12 + 8670.rG12 + 2060.r812 ~ 13000

8670.r;'13 + 8670.rG13 ~ 10000

8670.r',11 + 8670.TG14 ~ 10000

8670.r',l:; + 8670.r(,1:; ~ 10000

8670 .r:;lG + 8670.rG1G ~ 10000

8670.r:;17 + S670.rG17 ~ 10000

,rJli + .rll = 1



X50 + X51 + X52 + X53 + X54 + X55 + X56 + X57 + X58 + X59 + X510 + X511 + X512 + X513 + X514

+ X515 + X516 + X517 =1

+ X615 + X616 + X617 =1

X70 + X7l + Xn + X73 + X7.j + X75 + X76 + Xn + X78 + X79 + X7l0 = 1

XSO + XS1 + X82 + X83 X8·j + X85 + X86 + XS7 + Xss + XS9 + XSlO + X811 + X812 = 1

X90 + X91 + X92 =1

XlOO + XlOl + X102 + X103 + XlO.j =1

Xij E {O, I}

The optimal solution found as S 73,460.00 using A!\lPL and CPLEX. The optimal replace-

ment schedule is given in Table 4.3:

Table 4.3: Optimal replacement periods for each asset.

Equipment Replacement year
1 1
2 1
3 1
,1 1
5 2
6 3
I 0
8 0
9 2
10 ·1

This optimal decision suggests that assets 7 and S should be replaced in year O. assets 1-·1

should be replaced after the 1st ~·ear. assets 5 and 9 should be replaced in ~'ear 2 and asset 10

replaced in ~·ear·1. In t he next sect ion "'e furt her im'est igat e the opt imal replacement schedule

when t he budget for each year is changed.
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4.3 Sensitivity of Budget Constraints

In this section we iuvestigate changes in the optimal replacement schedule if the budget con-

straints are adjusted. The sensitivity analysis of the budget constraint is important as the

budget may vary from year to year. The budget in a later year may be uncertain and hence,

there must be an easy way of evaluating the replacement schedule if budget constraints were

to change.

The following tables show various budget constraints used and the replacement schedule

obtained because of these changes in the budget.

Table 4.4: Four different sets of budgets used for years 0-17
Year Budget 1 Budget 2 Budget 3 Budget 4

0 9000 13000 9000 5000
1 9000 13000 9000 5000
2 10000 14000 7000 6000
3 13000 17000 8000 7000
,1 13000 17000 17000 13000
5 14000 18000 16000 13000
6 16000 20000 15000 12000
7 16000 20000 15000 12000
8 16000 20000 15000 12000
9 16000 20000 15000 12000
10 16000 20000 15000 12000
11 11000 15000 12000 10000
12 11000 15000 12000 10000
13 8000 12000 5000 3000
1·1 8000 12000 5000 3000
15 8000 12000 5000 3000
16 8000 12000 5000 3000
17 SOOO 12000 5000 3000



Table 4.5: Optimal Replacement Schedule for Budgets 1 - 4

Equipment Budget 1 Budget 2 Budget 3 Budget 4

1 1 1 1 0
2 1 1 1 1
3 1 1 1 1
4 0 1 2 0
5 2 2 0 5
6 3 3 5 6
7 5 0 6 7
8 1 1 1 2
9 0 2 2 2
10 4 4 4 2

solution cost 874,410 873,380 875,450 880,450

The budget for each year was changed in four different instances and each time the optimal

replacement schedule changed. It is obvious from this analysis that our model can easily

calculate the new optimal replacement schedule if the budget constraints were to be changed

for any reason.

Next we investigate an even more realistic problem. In this problem we consider that the

budget constraints for the first 5 years are known, the later years have not been assigned a

budget and so we allow for zero budget in those time periods. The following table shows 4

different budgets used, for all cases the budget is zero after time = 4.



Table 4.6: Four different sets of budgets used for years 0-4 and with unknown budgets for years 5 
17

Year Budget 5 Budget 6 Budget 7 Budget 8

0 10000 13000 9000 11000
1 10000 13000 9000 12000
2 10000 14000 7000 13000
3 13000 17000 8000 10000
4 13000 17000 17000 10000
5 a 0 a 0
6 a a 0 0
7 0 a a a
8 0 0 a a
9 0 0 a a
10 a 0 0 a
11 0 0 0 0
12 a 0 0 0
13 a 0 0 0
14 0 0 0 a
15 a 0 0 0
16 0 0 0 0
17 0 0 a 0

Table '1. 7: Optimal Replaccmcnt Schcdulc for Budgcts 5 - 8

Equipment Budget 5 Budget 6 Budget 7 Budget 8
1 1 1 infeasible solution 1
2 1 1 1
3 1 1 1
,1 3 1 1
5 0 2 0
6 2 3 ,1

I 3 0 3
8 3 1 1
9 1 2 0
10 ,1 ,1 2

solution cost 87,1.110 873.380 no solution 87,1,790

In these re~ults again \\'l' sec that the optimal replacement schedule is for each difTerent set

of budget constraint is \',Hicd, As can be seen from the results. due to zero budget in ~'ears 5 -

17 all equipment arc forced to be replflced flt times 0 - ,1. For the budget constraint set 7 the



results were given to be an infeasible solution. No basis was found when trying to solve and

using these budget constraints.

Next we investigate an even more another case. In this problem we consider that the budget

constraints for the first 5 years are known, the later years have a budget of $1,000,000. The

following table shows 4 different budgets used:

Year Budget 9 Budget 10 Budget 11 Budget 12
0 10000 13000 9000 11000
1 10000 13000 9000 12000
2 10000 14000 7000 13000
3 13000 17000 8000 10000
4 13000 17000 17000 10000
5 1000000 1000000 1000000 1000000
6 1000000 1000000 1000000 1000000
7 1000000 1000000 1000000 1000000
8 1000000 1000000 1000000 1000000
9 1000000 1000000 1000000 1000000
10 1000000 1000000 1000000 1000000
II 1000000 1000000 1000000 1000000
12 1000000 1000000 1000000 1000000
13 1000000 1000000 1000000 1000000
14 1000000 1000000 1000000 1000000
15 1000000 1000000 1000000 1000000
16 1000000 1000000 1000000 1000000
17 1000000 1000000 1000000 1000000

Table 4.8: Four different sets of budgets used for years 0-4 and with large budgets for years 5 - 17

,,
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Table 4.9: Optimal Replacement Schedule for Budgets 8 - 12

Equipment Budget 9 Budget 10 Budget 11 Budget 12

1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 0 1 2 1
5 2 2 0 0
6 3 3 5 4
7 5 0 5 3
8 1 2 2 1
9 0 2 3 0
10 4 4 4 2

solution cost 874,410 873,380 875,060 874,790

In these results again we see that the optimal replacement schedule is for each different set

of budget constraint is varied. For these cases we only changed the amount of the budget in

years 5 - 17. When compared to the previous results we observe budget 9 to have a different

replacement schedule from budget 5. Six out of the ten pieces of equipment were suggested to

be replaced at a different time. Comparing the results of budget 10 and 6, it is observed only

equipment eight is suggested to have a different replacement time. From the results of budget

7 we saw that the solution was infeasible but when the budgets are changed to budget 11 a

solution is found. The solution for budget 12 is the same as the solution for budget 8.



Chapter 5

Conclusions and Directions for Future

Research

The importance of sensitivity analysis is obvious when budget constraints are involved. As in

our case, some of the equipment being used cost more for the hospital to operate and maintain

than it would cost to replace the equipment. Determining the optimal replacement schedule

for each individual piece of equipment is essential as money can be saved if the equipment is

replaced at the right time.

\Ve were able to successfully determine the most efficient method to use when trying to

determine the costs associated with sensitivity analysis. We were also able to successfully

determine the optimal replacement schedule for a set of equipment suggested to be replaced

at a given time under budget constraints. In trying to determine the most efficient method

to inwstigate sensitivity analysis we illustrated that Bellman's classical model is more efficient

than Wagner's method.

In our case study ,,'e inwstigated the replacement schedule of 10 pieces of equipment. An

al~'Ze the replncement schedules under different budget constraints. The integer program de

wloped in this thesis can be used to anal~'ze multiple pieces of equipment under a budget

constraint.

Fmther anal~'sis into the sensiti\'it~· anal~'sis C<1I1 be donc to find ,111 easier mcthod of cal-



culating the delay or acceleration costs. Also, the sensitivity analysis can further be analyzed

to determine the minimum amount of funds which needs to be allocated each year. Future

work in this area can also analyze larger amounts of equipment for replacement under budget

constraints, using the integer program suggested in chapter 3 to create a model and analyze

a larger data set with varying costs and budget constraints. We did not encounter computa

tional problems but these are possible with larger problems as integer programming has been

proposed.
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