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Abstract

Historically, polynomials are among the most popular class of functions used for empirical

modeling in science and engineering. Polynomials are easy to evaluate, appear naturally in

many physical (real-world) systems, and can be used to accurately approximate any smooth

function. It is not surprising then, that the task of solving polynomial optimization prob-

lems; that is, problems where both the objective function and constraints are multivariate

polynomials, is ubiquitous and of enormous interest in these fields. Clearly, polynomial op-

timization problems encompass a very general class of non-convex optimization problems,

including key combinatorial optimization problems.

The focus of the first three chapters of this document is to address the solution of

polynomial optimization problems in theory and in practice, using a conic optimization ap-

proach. Convex optimization has been well studied to solve quadratic constrained quadratic

problems. In the first part, convex relaxations for general polynomial optimization prob-

lems are discussed. Instead of using the matrix space to study quadratic programs, we

study the convex relaxations for POPs through a lifted tensor space, more specifically,

using the completely positive tensor cone and the completely positive semidefinite ten-

sor cone. We show that tensor relaxations theoretically yield no-worse global bounds for a

class of polynomial optimization problems than relaxation for a QCQP reformulation of the

POPs. We also propose an approximation strategy for tensor cones and show empirically

the advantage of the tensor relaxation.

In the second part, we propose an alternative SDP and SOCP hierarchy to obtain global
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bounds for general polynomial optimization problems. Comparing with other existing SDP

and SOCP hierarchies that uses higher degree sum of square (SOS) polynomials and scaled

diagonally sum of square polynomials (SDSOS) when the hierarchy level increases, these

proposed hierarchies, using fixed degree SOS and SDSOS polynomials but more of these

polynomials, perform numerically better. Numerical results show that the hierarchies we

proposed have better performance in terms of tightness of the bound and solution time

compared with other hierarchies in the literature.

The third chapter deals with Alternating Current Optimal Power Flow problem via a

polynomial optimization approach. The Alternating Current Optimal Power Flow (ACOPF)

problem is a challenging non-convex optimization problem in power systems. Prior research

mainly focuses on using SDP relaxations and SDP-based hierarchies to address the solution

of ACOPF problem. In this Chapter, we apply existing SOCP hierarchies to this prob-

lem and explore the structure of the network to propose simplified hierarchies for ACOPF

problems. Compared with SDP approaches, SOCP approaches are easier to solve and can

be used to approximate large scale ACOPF problems.

The last chapter also relates to the use of conic optimization techniques, but in this case

to pricing in markets with non-convexities. Indeed, it is an application of conic optimization

approach to solve a pricing problem in energy systems. Prior research in energy market

pricing mainly focus on linear costs in the objective function. Due to the penetration of

renewable energies into the current electricity grid, it is important to consider quadratic

costs in the objective function, which reflects the ramping costs for traditional generators.

This study address the issue how to find the market clearing prices when considering

quadratic costs in the objective function.
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Chapter 1

Convex Relaxations for

Polynomial Optimization

1.1 Introduction

Polynomials appear in a wide variety of areas in science. It is not surprising then that

polynomial optimization has recently been a very active field of research [cf., 5]. Here,

the interest is the class of non-convex, non-linear POPs. Clearly, a non-convex quadratic

program (QP) belongs to this class of problems, and its study has been widely addressed

in the literature. For example, to address the solution of QPs, semidefinite programming

(SDP) [cf., 113] relaxations have been actively used to find good bounds and approximate

solutions for general [see, e.g. 30, 80, 117] and important instances of this problem such

as the max-cut problem and the stable set problem (see e.g., [32, 33, 47, 90]). In [58],

less computationally expensive second order cone programming (SOCP) [cf., 4] relaxations

have also been proposed to approximate non-convex QPs.

The early work linking convex optimization and polynomial optimization in [86, 102]

reveals the possibility to use conic optimization to obtain global or near-global solutions for

non-convex POPs in which higher than second-order polynomials are used. In the seminal

work of Parrilo [89] and Lasserre [66], SDP is used to obtain the global or near-global
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optimum for POPs. Besides SDP approximations, other convex approximations to address

the solution of POPs have been investigated using linear programming (LP) and SOCP

techniques [2, 67, 68, 91, 121]. These techniques are at the core of the well-known area of

Polynomial Optimization [cf., 5].

Alternatively, it has been shown that several NP-hard optimization problems can be

expressed as linear programs over the convex cone of copositive matrices and its dual cone,

the cone of completely positive matrices, including standard quadratic problems [20], stable

set problems [32, 39], graph partitioning problems [93], and quadratic assignment prob-

lems [94]. In [27], Burer shows the much more general result that every quadratic problem

with linear and binary constraints can be rewritten as such a problem. Completely positive

relaxations for general quadratically constrained quadratic programs (QCQPs) have been

studied in [8, 29]. In [11], CP reformulation for QCQPs and quadratic program with com-

plementarity constraints (QPCCs) are discussed without any assumptions on the feasible

regions. Although copositive/completely positive cones are not tractable in general, recent

advances on obtaining algorithms ([3, 26, 35], etc.) to approximate copositive/completely

positive cones provide an alternative way to globally solve quadratic POPs. Recently,

Bomze shows in [18] that copositive relaxation provides stronger bounds than Lagrangian

dual bounds in quadratically and linearly constrained QPs.

A natural thought is whether one can extend the copositive programming or completely

positive programming reformulations for QPs to POPs. In [9], Arima et al. proposed

the moment cone relaxation for a class of polynomial optimization problems (POPs) to

extend the results on the completely positive cone programming relaxation for the quadratic

optimization. Recently, Pena et al. show in [92] that under certain conditions general POPs

can be reformulated as a conic program over the cone of completely positive tensors, which

is a natural extension of the cone of completely positive matrices in quadratic problems.

This tensor representation was originally proposed in [38], and is now the focus of active

research [see, e.g., 53, 56, 78, 106]. In [92], it is also shown that the conditions for the

equivalence of POPs and the completely positive conic programs, when applied to QPs,

4



lead to conditions that are weaker than the ones introduced in [27].

In [64], we study completely positive (CP) and completely positive semidefinite (CPSD)

tensor relaxations for POPs. Our main contributions are: 1) We extend the results for

QPs in [18] to general POPs by using CP and CPSD tensor cones. In particular, we

show that CP tensor relaxations provide tighter bounds than Lagrangian relaxations for

general POPs. 2) We provide tractable approximations for CP and CPSD tensor cones

that can be used to globally approximate general POPs. 3) We prove that CP and CPSD

tensor relaxations yield tighter bounds than completely positive and positive semidefinite

matrix relaxations for quadratic reformulations of some classes of POPs. 4) We provide

preliminary numerical results on more general cases of POPs and show that the approx-

imation of CP tensor cone programs can yield tighter bounds than relaxations based on

doubly nonnegative (DNN) matrices [cf., 14] for completely positive matrix relaxation to

the reformulated quadratic programs.

The remainder of the chapter is organized as follows. We briefly introduce the basic con-

cepts of tensor cone and tensor representation of polynomials in Section 1.2. Lagrangian,

completely positive semidefinite tensor, and completely positive tensor relaxations for PO

problems are discussed in Section 1.3. In Section 1.4, we discuss a quadratic approach to

general POPs; that is, when auxiliary decision variables are introduced to the problem

to reformulate it as a Quadratically Constrained Quadratic Program (QCQP). Then, the

completely positive relaxations is applied to the resulting QCQPs and the bounds are com-

pared with those obtained from the tensor relaxations for a class of POPs. In Section 1.5,

Linear Matrix Inequality (LMI) approximation strategies for the positive semidefinite and

completely positive tensor cones are developed and a comparison of tensor relaxations with

matrix relaxations obtaining using the quadratic approach is done by obtaining numerical

results on several POPs. Lastly, Section 1.6 summarizes the results and provides future

working directions.
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1.2 Preliminaries

1.2.1 Basic Concepts and Notations

We first introduce basic concepts and notations used throughout the chapter. Follow-

ing [92], we start by defining tensors.

Definition 1. Let Tn,d denote the set of tensors of dimension n and order d in Rn, that

is

Tn,d = Rn ⊗ · · · ⊗ Rn︸ ︷︷ ︸
d

,

where ⊗ is the tensor product.

A tensor T ⊆ Tn,d is symmetric if the entries are independent of the permutation of its

indices. We denote Sn,d ⊆ Tn,d as the set of symmetric tensors of dimension n and order

d. For any T 1, T 2 ∈ Tn,d, let 〈·, ·〉n,d denote the tensor inner product defined by

〈T 1, T 2〉n,d =
∑

{i1,...,id}∈{1,...,n}d
T 1
(i1,...,id)

T 2
(i1,...,id)

.

Definition 2. For any x ∈ Rn, let the mapping Rn → Sn,d be defined by

Md(x) = x⊗ · · · ⊗ x︸ ︷︷ ︸
d

.

Definition 1 and 2 are natural extensions of matrix notations to higher order. For

example, Tn,2 is the set n× n matrices, while Sn,2 is the set of n× n symmetric matrices,

〈·, ·〉n,2 is the Frobenius inner product and M2(x) = xxT for any x ∈ Rn. In general, Md(x)

is the symmetric tensor whose (i1, ..., id) entry is xi1 · · ·xid .

Proposition 1. Let En,d be all 1 tensor with dimension n and order d and e ∈ Rn be the

all one vector, then

〈En,d,Md(x)〉n,d = (eTx)d,∀x ∈ Rn.

6



Proof. By the definition of Md(·) and 〈·, ·〉n,d,

〈En,d,Md(x)〉n,d =
∑

k1+k2+···+kn=d

(
d

k1, k2, . . . , kn

)
xk11 x

k2
2 · · ·xknn = (eTx)d,

where
(

d
k1,k2,...,kn

)
is the multinomial coefficient.

Proposition 2. For x ∈ Rn, y ∈ Rn,

〈Md(x),Md(y)〉n,d = (xT y)d.

Proof. Let x, y ∈ Rn be given and z ∈ Rn be defined as zi = xiyi, i = 1, ..., n, and let

e ∈ Rn be the all one vector, from the definition of Md(·) and 〈·, ·〉n,d,

〈Md(x),Md(y)〉n,d =
∑

{i1,...,id}∈{1,...,n}d
Md(x)(i1,...,id)Md(y)(i1,...,id)

=
∑

{i1,...,id}∈{1,...,n}d
xi1xi2 · · ·xid · yi1yi2 · · · yid

=
∑

{i1,...,id}∈{1,...,n}d
(xi1yi1)(xi2yi2) · · · (xidyid)

= 〈En,d,Md(z)〉n,d

= (eT z)d (from Proposition 1)

= (xT y)d.

Analogous to positive semidefinite and copositive matrices of order 2, positive semidef-

inite and copositive tensors can be defined as follows.

Definition 3. Define the K-semidefinite (or set-semidefinite) symmetric tensor cone of

dimension n and order d as:

Cn,d(K) = {T ∈ Sn,d : 〈T,Md(x)〉n,d ≥ 0, ∀x ∈ K}.

7



For K = Rn, Cn,d(Rn) denotes the positive semidefinite (PSD) tensor cone. For K = Rn+,

Cn,d(Rn+) denotes the copositive tensor cone.

Similar to the one-to-one correspondence of n × n PSD matrices to nonnegative ho-

mogeneous quadratic polynomials of n variables, there is also a one-to-one correspondence

of PSD tensors with dimension n and order d to nonnegative homogeneous polynomials

with n variables and degree d [cf., 78]. Note that there is no nonnegative homogeneous

polynomial with odd degree. Thus it follows that there is no PSD tensor with odd order.

Next we discuss the dual cones of Cn,d(Rn+) and Cn,d(Rn), following the discussion in [78]

and [92].

Definition 4. Given any cone C of symmetric tensors, the dual cone of C is

C∗ = {Y ∈ Sn,d : 〈X,Y 〉 ≥ 0,∀X ∈ C},

and if C∗ = C, then cone C is self-dual.

The dual cones of the positive semidefinite tensor cone and copositive tensor cone have

been studied in [78] and [92]. More formally,

Proposition 3.

(a) C∗n,d(Rn+) = conv{Md(x) : x ∈ Rn+}.

(b) C∗n,2d(Rn) = conv{M2d(x) : x ∈ Rn}.

Similar to the completely positive matrix cone C∗n,2(Rn+), we call C∗n,d(Rn+) the completely

positive (CP) tensor cone. It is well known that the positive semidefinite matrix cone is

self-dual, however, in general, the positive semidefinite tensor cone is not self-dual [cf.,

78]. Thus, here we name C∗n,2d(Rn) as the completely positive semidefinite (CPSD) tensor

cone. Before formally stating that C∗n,2d(Rn) 6= Cn,2d(Rn) in general, we first introduce the

homogeneous sum of square (SOS) tensor cone of dimension d and order 2d as

Cn,2d(SOS) = {Tn,2d : 〈Tn,2d,M2d(x)〉 =
∑
i

λi
(
〈T in,d,Md(x)〉

)2
, for some λi ≥ 0}.

8



Similarly, there is a one-to-one corresponding relationship between homogeneous SOS ten-

sors with dimension n and order 2d and homogeneous SOS polynomials with dimension n

and degree 2d. Next we discuss the relationships between nonnegative and sum of square

polynomials from the perspective of tensor representation and reveal the relationship be-

tween SOS and CPSD tensors.

Proposition 4 ([78, Prop. 5.8 (i)]).

C∗n,2d(Rn) ⊆ Cn,2d(SOS) ⊆ Cn,2d(Rn).

Proof. Let T ∈ C∗n,2d(Rn), by Proposition 3, T =
∑

i λiM2d(y
i), yi ∈ Rn, λi ≥ 0,

∑
i λi = 1.

Then ∀x ∈ Rn,

〈T,M2d(x)〉n,2d =

〈∑
i

λiM2d(y
i),M2d(x)

〉
n,2d

=
∑
i

λi
〈
M2d(y

i),M2d(x)
〉
n,2d

=
∑
i

λi(x
T yi)2d (from Proposition 2)

=
∑
i

[√
λi(x

T yi)d
]2
.

Take zik = xky
i
k, then xT yi = eT zi where e ∈ Rn is an all one vector. Therefore,

〈T,M2d(x)〉n,2d =
∑
i

[√
λi(e

T zi)d
]2

=
∑
i

[√
λi〈En,d,Md(z

i)〉n,d
]2
, (from Proposition 1)

therefore C∗n,2d(Rn) ⊆ Cn,2d(SOS). By the definition of homogeneous SOS tensor cone, it

is clear that Cn,2d(SOS) ⊆ Cn,2d(Rn).

The proof of Proposition 4 can be seen as an alternative proof for Proposition 5.8 (i)

in [78] using the tensor notations introduced here. Well studied sum of square polynomial
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optimization reveals that a nonnegative multivariate homogeneous polynomial is a homoge-

neous sum of square polynomial if it is quadratic, that is C∗n,2(Rn) = Cn,2(SOS) = Cn,2(Rn).

This statement coincides with the self-duality of the PSD matrix cone. Luo et al. showed

in [78] that C∗n,2d(Rn) ( Cn,2d(SOS) for d ≥ 2. On the other hand, the Motzkin polyno-

mial together with isomorphism between homogeneous polynomials and tensors shows that

Cn,2d(SOS) ( Cn,2d(Rn) when d ≥ 2.

1.2.2 Tensor Representation of Polynomial Optimization

In section 1.2.1, we discussed that some homogeneous polynomials can be expressed as

tensor inner product with Md(x). Next, we introduce a tensor representation for general

polynomials that are not necessarily homogeneous. Define R[x] as the ring of polynomials

with real coefficients in Rn, and let Rd[x] := {p ∈ R[x] : deg(p) ≤ d} denote the set of

polynomials with dimension n and degree at most d. For simplicity, we use Md(1, x), x ∈ Rn

to represent Md((1, x
T )T ), x ∈ Rn throughout this paper. For any p(x) ∈ Rd[x], we can

write p(x) as

p(x) = 〈Td(p),Md(1, x)〉n+1,d, (1.1)

where Td(·) is the mapping of coefficients of p(x) in terms of Md(1, x) in Sn+1,d. Following

[92], define Td : Rd[x]→ Sn+1,d as

Td

 ∑
β∈Zn+:|β|≤d

pβx
β


i1,...,id

:=
α1! · · ·αn!

|α|! pα,

where α is the (unique) exponent such that xα := xα1
1 · · ·xαnn = xi1 · · ·xid (i.e., αk is

the number of times k appears in the multi-set {i1, . . . , id}) and |α| =
∑n

i=1 αi. For any

polynomial p(x) ∈ Rd[x], let p̃(x) denote the homogenous component of p(x) with highest

degree, then it follows

p̃(x) = 〈Td(p),Md(0, x)〉n+1,d. (1.2)
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Equation (1.1) and (1.2) allow us to represent any multivariate polynomials with their

tensor forms and provide the possibility to study the boundedness of general polynomials

with their tensor representations.

Theorem 1. Let µ ∈ R, we have

(a) Let p(x) ∈ Rd[x]. Then p(x) ≥ µ for all x ∈ Rn+ if and only if Td(p−µ) ∈ Cn+1,d(Rn+1
+ ).

(b) Let p(x) ∈ R2d[x]. Then p(x) ≥ µ for all x ∈ Rn if and only if T2d(p − µ) ∈

Cn+1,2d(Rn+1).

Proof. For (a), assume Td(p−µ) ∈ Cn+1,d(Rn+1
+ ). By Definition 3, 〈Td(p−µ),Md(1, x)〉n+1,d ≥

0,∀x ∈ Rn+, then

p(x)− µ = 〈Td(p− µ),Md(1, x)〉n+1,d ≥ 0, ∀x ∈ Rn+. (1.3)

For the other direction, assume p(x) ≥ µ,∀x ∈ Rn+, then by (1.3), 〈Td(p−µ),Md(1, x)〉n+1,d ≥

0,∀x ∈ Rn+. Thus, for any (x0, x) ∈ R++ × Rn+,

〈Td(p− µ),Md(x0, x)〉n+1,d = x0〈Td(p− µ),Md(1,
x

x0
)〉n+1,d ≥ 0. (1.4)

Furthermore, due to continuity, for k > 0,

〈Td(p− µ),Md(0, x)〉 = lim
k→+∞

〈Td(p− µ),Md(1/k, x)〉 ≥ 0, (1.5)

where the last inequality follows from (1.4). From (1.4), (1.5), and Definition 3, it follows

that Td(p− µ) ∈ Cn+1,d(Rn+1
+ ).

The proof of (b) is similar to the proof of (a).

Corollary 1. Let µ ∈ R, we have

(a) Let p(x) ∈ Rd[x]. Then inf{p(x) : x ∈ Rn+} = sup{µ ∈ R : Td(p− µ) ∈ Cn+1,d(Rn+1
+ )}.

(b) Let p(x) ∈ R2d[x]. Then inf{p(x) : x ∈ Rn} = sup{µ ∈ R : T2d(p−µ) ∈ Cn+1,2d(Rn+1)}.
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Theorem 1 and Corollary 1 generalize the key Lemma 2.1 and Corollary 2.1 in [18] for

polynomials with degree higher than two using tensor representation. Moreover, Corollary 1

can be seen as a convexification of an unconstrained (possibly non-linear non-convex) POP

to a linear conic program over CP and CSDP tensor cones. In the next section, we will

discuss the convex relaxations for general constrained polynomial optimization problems.

1.3 Relaxations of POPs

Let pi ∈ Rd[x], i = 0, . . . ,m. Consider two general POPs with polynomial constraints:

z+ = inf p0(x)

s.t. pi(x) ≤ 0, i = 1, . . . ,m

x ∈ Rn+,

(1.6)

and

z = inf p0(x)

s.t. pi(x) ≤ 0, i = 1, . . . ,m,

(1.7)

where d = max{deg(pi) : i ∈ {0, 1, . . . ,m}}. Problems (1.6) and (1.7) represent general

POPs, which encompass a large class of non-linear non-convex problems, including non-

convex QPs with binary variables (i.e., binary constraints can be written in the polynomial

form xi(1 − xi) ≤ 0, −xi(1 − xi) ≤ 0). Naturally, we have z ≤ z+ since the feasible set

of problem (1.6) is a subset of problem (1.7). Next we show that the results of Bomze for

quadratic problems [18] can be extended to POPs of form (1.6) and (1.7).

1.3.1 Lagrangian relaxations

Let ui ≥ 0 be the Lagrangian multiplier of the inequality constraints pi(x) ≤ 0 for i =

1, ..,m and vi ≥ 0 for constraints xi ∈ R+ for i = 1, ..., n, so the Lagrangian function for
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problem (1.6) is

L+(x;u, v) := p0(x) +

m∑
i=1

uipi(x)− vTx,

so the Lagrangian dual function of problem (1.6) is

Θ+(u, v) := inf{L+(x;u, v) : x ∈ Rn},

with its optimal value

zLD,+ = sup{Θ+(u, v) : (u, v) ∈ Rm+ × Rn+},

We also use a Semi-Lagrangian dual function to represent the nonnegative variable

constraints of problem (1.6),

Θsemi(u) := inf{L(x;u) : x ∈ Rn+},

with its optimal value

zsemi = sup{Θsemi(u) : u ∈ Rm+},

Similarly, let ui ≥ 0 be the Lagrangian multiplier of the inequality constraints pi(x) ≤ 0

for i = 1, ...,m, so the Lagrangian function for problem (1.7) is

L(x;u) := p0(x) +
m∑
i=1

uipi(x),

so the Lagrangian dual function of problem (1.7) is

Θ(u) := inf{L(x;u) : x ∈ Rn},

and the dual optimal value is

zLD = sup{Θ(u) : u ∈ Rm+},
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from weak duality theory, we have zLD ≤ z. Thus we have the following relationship:

Θ+(u, v) = inf{L+(x;u, v) : x ∈ Rn}

≤ inf{L+(x;u, v) : x ∈ Rn+}

= inf{L(x;u)− vTx : x ∈ Rn+}

≤ inf{L(x;u) : x ∈ Rn+} = Θsemi(u),

where the second inequality holds because x, v ∈ Rn+ always implies vTx ≥ 0. Therefore,

we have:

zLD,+ ≤ zsemi ≤ z+,

where the latter inequality holds by weak duality.

1.3.2 CPSD tensor relaxation for free variables

Consider following conic program:

zSP = inf 〈Td(p0), X〉

s.t. 〈Td(pi), X〉 ≤ 0, i = 1, . . . ,m

〈Td(1), X〉 = 1

X ∈ C∗n+1,d(Rn+1),

(1.8)

and its conic dual problem is

zSD = sup{µ : Td(p0)− µTd(1) +
m∑
i=1

uiTd(pi) ∈ Cn+1,d(Rn+1), u ∈ Rm+}. (1.9)

For simplicity, we use 〈·, ·〉 represent the tensor inner product of appropriate dimension

and order.

Proposition 5. Problem (1.8) is a relaxation of problem (1.7) with zSP ≤ z.

Proof. Let x ∈ Rn be a feasible solution of problem (1.7). It follows that X = Md(1, x) is
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a feasible solution of problem (1.8) directly by applying (1.1). Also p(x) = 〈Td(p0), X〉 is

a direct result of (1.1) with the same objective value.

Theorem 2. For problem (1.7), its Lagrangian dual function optimal value satisfies,

zLD = sup{µ : (µ, u) ∈ R× Rm+ , Td(L(x;u)− µ) ∈ Cn+1,d(Rn+1)}

and zLD = zSD ≤ zSP ≤ z.

Proof. By Corollary 1 (b),

Θ(u) = inf{L(x;u) : x ∈ Rn}

= sup{µ : Td(L(x;u)− µ) ∈ Cn+1,d(Rn+1)},

then

zLD = sup{Θ(u) : u ∈ Rm+}

= sup{µ : (µ, u) ∈ R× Rm+ , Td(L(x;u)− µ) ∈ Cn+1,d(Rn+1)}.

From (1.9), we have

zSD = sup{µ : Td(p0)− µTd(1) +
m∑
i=1

uiTd(pi) ∈ Cn+1,d(Rn+1), u ∈ Rm+}

= sup{µ : Td(p0 +

m∑
i=1

uipi − µ) ∈ Cn+1,d(Rn+1), u ∈ Rm+}

= sup{Θ(u) : u ∈ Rm+}

= zLD.

Furthermore, zSD ≤ zSP ≤ z holds directly from weak conic duality and Proposition 5.

From Theorem 2, the Lagrangian dual optimal value has no duality gap if and only if

conic program itself has no duality gap and positive semidefinite tensor relaxation is tight.
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1.3.3 CP and CPSD tensor relaxations for nonnegative variables

Consider following conic programs:

zCP = inf 〈Td(p0), X〉

s.t. 〈Td(pi), X〉 ≤ 0, i = 1, . . . ,m

〈Td(1), X〉 = 1

X ∈ C∗n+1,d(R
n+1
+ ),

(1.10)

and

zSP,+ = inf 〈Td(p0), X〉

s.t. 〈Td(pi), X〉 ≤ 0, i = 1, . . . ,m

〈Td(−xi), X〉 ≤ 0, i = 1, . . . , n

〈Td(1), X〉 = 1

X ∈ C∗n+1,d(Rn+1),

(1.11)

and their conic dual problems

zCD = sup{µ : Td(p0)− µTd(1) +

m∑
i=1

uiTd(pi) ∈ Cn+1,d(Rn+1
+ ), u ∈ Rm+}. (1.12)

zSD,+ = sup{µ : Td(p0−µ)+

m∑
i=1

uiTd(pi)+

n∑
i=1

viTd(−xi) ∈ Cn+1,d(Rn+1), u ∈ Rm+ , v ∈ Rn+}.

(1.13)

Proposition 6. Problem (1.10) and problem (1.11) are relaxations for problem (1.6) with

zCP ≤ z+ and zSP,+ ≤ z+.

Theorem 3. For problem (1.6), its Semi-Lagrangian dual function optimal value and its

Lagrangian dual function optimal value satisfy

zsemi = sup{µ : (µ, u) ∈ R× Rm+ , Td(L(x;u)− µ) ∈ Cn+1,d(Rn+1
+ )},

zLD,+ = sup{µ : (µ, u, v) ∈ R× Rm+ × Rn+, Td(L+(x;u, v)− µ) ∈ Cn+1,d(Rn+1)},
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and

(a) zLD,+ ≤ zsemi = zCD ≤ zCP ≤ z+.

(b) zLD,+ = zSD,+ ≤ zSP,+ ≤ z+.

Proof. By Corollary 1,

Θsemi(u) = inf{L(x;u) : x ∈ Rn}

= sup{µ : Td(L+(x;u)− µ) ∈ Cn+1,d(Rn+1)},

Θ+(u, v) = inf{L+(x;u, v) : x ∈ Rn}

= sup{µ : Td(L+(x;u, v)− µ) ∈ Cn+1,d(Rn+1)},

then

zsemi = sup{Θsemi(u) : u ∈ Rm+}

= sup{µ : (µ, u) ∈ R, Td(L(x;u)− µ) ∈ Cn+1,d(Rn+1
+ )}.

zLD,+ = sup{Θ+(u, v) : u ∈ Rm+ , v ∈ Rn+}

= sup{µ : (µ, u, v) ∈ R× Rm+ × Rn, Td(L+(x;u, v)− µ) ∈ Cn+1,d(Rn+1)}.

For (a), from (1.12), we have,

zCD = sup{µ : Td(p0)− µTd(1) +

m∑
i=1

uiTd(pi) ∈ Cn+1,d(Rn+1
+ ), u ∈ Rm+}

= sup{µ : Td(p0(x) +

m∑
i=1

uipi(x)− µ) ∈ Cn+1,d(Rn+1
+ ), u ∈ Rm+}

= sup{µ : (µ, u) ∈ R× Rm+ , Td(L(x;u)− µ) ∈ Cn+1,d(Rn+1
+ )}

= sup{Θsemi(u) : u ∈ Rm+}

= zsemi.

And zCD ≤ zCP ≤ z+ is an immediate result of weak conic duality and Proposition 6. For
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(b), from (1.13), we have

zSD,+ = sup{µ : Td(p0 − µ) +
m∑
i=1

uiTd(pi) +
n∑
i=1

viTd(−xi) ∈ Cn+1,d(Rn+1), u ∈ Rm+ , v ∈ Rn+}

= sup{µ : Td(p0(x) +
m∑
i=1

uipi(x)−
n∑
i=1

vTx− µ) ∈ Cn+1,d(Rn+1), u ∈ Rm+ , v ∈ Rn+}

= sup{µ : (µ, u, v) ∈ R× Rm+ × Rn+, Td(L+(x;u, v)− µ) ∈ Cn+1,d(Rn+1)}

= sup{Θ+(u, v) : u ∈ Rm+ , v ∈ Rn+}

= zLD,+.

And zSD,+ ≤ zSP,+ ≤ z+ holds directly from weak conic duality and Proposition 6.

1.4 Quadratic Reformulation for POPs and its Relaxations

Section 1.3 showed that CP and CPSD tensor relaxations are tighter than Lagrangian relax-

ations for general POPs. In this section, we will compare CP and CPSD tensor relaxations

with quadratic approach for POPs. For general POPs, a classic approach to obtain relax-

ations is to reformulate them as quadratic programs by introducing additional variables

and constraints to address the higher degree terms in polynomials. And a well-studied SDP

relaxation or CP relaxation on quadratic constrained quadratic program (QCQP) can then

be applied to the reformulated QCQP. Also as discussed in this paper, general POPs can

be relaxed directly by conic programs over the CP or the CPSD tensor cones. In general,

it is difficult to compare these two relaxations. In this section, we will focus on POPs with

degree 4 and apply these two relaxations and show some specific cases in which tensor cone

relaxations of POPs give tighter bounds than convex relaxations of QCQP reformulation

of POPs.
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1.4.1 QCQP Reformulation of POP

A general QCQP reformulation technique of POPs, including how to add additional vari-

ables, is discussed in [92]. In this section, the main focus is on some classes of 4th degree

POPs, so we use a specific reformulation approach here. We will introduce additional

variables to represent the quadratic terms (i.e. the square of single variable and the mul-

tiplication of two variables) of the original variables. Consider the following POPs:

sup p0(x)

s.t. pi(x) ≤ di, i = 1, . . . ,m0,

qj(x) ≤ 0, j = 1, . . . ,m1,

x ∈ Rn+,

(1.14)

where p0(x) ∈ R4[x], qj ∈ R2[x] (Recall Rd[x] := {p ∈ R[x] : deg(p) ≤ d}) and pi(x)

are homogeneous polynomials of degree 4. Problem (1.14) can encompass a large class of

4th degree optimization problems, including problem with 4th degree objective function

and linear/quadratic(binary) constraints and so on. This type of optimization problems

also appears in many real life problems, such as biquadratic assignment problem [81, 96],

Alternating Current Optimal Power Flow (ACOPF) problem [22, 44, 65, 71], etc.

Define an index set

S = {(a, b, c) ∈ N3 : a = 1, . . . , n, b = a, . . . , n, c = (n+ 1− a

2
)(a− 1) + b− a+ 1} (1.15)

as the index for the additional variables, so that it is from 1 to |S| =
(
n+1
2

)
, which is

the maximum number of additional variables needed to reformulate 4th degree polyno-

mials using 2nd degree polynomials. Specifically, introducing additional variables yc =
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xaxb,∀(a, b, c) ∈ S, the QCQP reformulation of problem (1.14) can be represented as

sup q0(x, y)

s.t. hi(y) ≤ di, i = 1, . . . ,m0,

qj(x) ≤ 0, j = 1, . . . ,m1,

yc − xaxb = 0,∀(a, b, c) ∈ S,

x ∈ Rn+, y ∈ R|S|+ ,

(1.16)

where q0(x, y) and hi(y) are the reformulated quadratic polynomials with original variables

x and additional variables y by replacing xaxb with yc, ∀(a, b, c) ∈ S, note that hi(y) are

homogeneous polynomials of degree 2. It is clear that p0(x) = q0(x, y), pi(x) = hi(y), i =

1, . . . ,m0, therefore problem (1.14) and (1.16) are equivalent. As pi(x) and hi(y) are

homogeneous polynomials, then it follows that

p̃i(x) = pi(x) = hi(y) = h̃i(y), i = 1, . . . ,m0. (1.17)

To make the formula clear and easy to represent in a conic program, let z = (x, y) ∈ Rn+|S|+ ,

then (1.16) is equivalent to

sup q0(z)

s.t. hi(z) ≤ di, i = 1, . . . ,m0,

qj(z) ≤ 0, j = 1, . . . ,m1,

zn+c − zazb = 0,∀(a, b, c) ∈ S,

z ∈ Rn+|S|+ .

(1.18)

Example 1. QP Reformulation
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Consider the following univariate program,

sup x4 + x3 + x2 + x+ 1

s.t. x4 ≤ 1,

x2 − x− 2 ≤ 0,

− x+ 1 ≤ 0,

x ∈ R+.

(1.19)

Let y = x2 and z = (x, y) ∈ R2
+, then problem (1.19) is equivalent to

sup y2 + xy + y + x+ 1 sup z22 + z1z2 + z2 + z1 + 1

s.t. y2 ≤ 1, s.t. z2 ≤ 1,

y − x− 2 ≤ 0, ≡ z2 − z1 − 2 ≤ 0,

− x+ 1 ≤ 0, − z1 + 1 ≤ 0,

x ∈ R+, y ∈ R+. z ∈ R2
+.

1.4.2 CP matrix relaxations for QCQP

Consider the following CP matrix relaxations for problem (1.18),

sup 〈T2(q0(z)), Z〉

s.t. 〈T2(hi(z)), Z〉 ≤ di, i = 1, . . . ,m0,

〈T2(qj(z)), Z〉 ≤ 0, j = 1, . . . ,m1,

〈T2(1), Z〉 = 1,

Z1,n+c+1 − Za+1,b+1 = 0, ∀(a, b, c) ∈ S,

Z ∈ C∗n+r+1,2(Rn+r+1
+ ).

(1.20)

where r = |S| is the number of additional variables in problem (1.18). Problem (1.20) is

a natural CP tensor relaxation of problem (1.18) and by relaxing the equality constraints
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Z1,c+n+1 − Za+1,b+1 = 0,∀(a, b, c) ∈ S into inequality constraints, we have the following

CP tensor relaxation,

sup 〈Td(q0(z)), Z〉

s.t. 〈T2(hi(z)), Z〉 ≤ di, i = 1, . . . ,m0,

〈T2(qj(z)), Z〉 ≤ 0, j = 1, . . . ,m1,

〈T2(1), Z〉 = 1,

Z1,c+n+1 − Za+1,b+1 ≤ 0, ∀(a, b, c) ∈ S,

Z ∈ C∗n+r+1,2(Rn+r+1
+ ),

(1.21)

Proposition 7. If problem (1.20) is feasible and the coefficients of q0(z) in problem (1.20)

are nonnegative, then problems (1.20) and (1.21) are equivalent.

Proof. It is clear that if the coefficients of objective function q0(z) are nonnegative, at

optimality of problem (1.21), Z1,k+n+1 = Zi+1,j+1 holds. And the same objective function

values are obtained for problems (1.20) and (1.21).

Recall the CP tensor relaxation (1.10) for general POPs and apply it directly to prob-

lem (1.18), then we have the following conic program,

sup 〈Td(p0(x)), X〉

s.t. 〈Td(pi(x)), X〉 ≤ di, i = 1, . . . ,m0,

〈Td(qj(x)), X〉 ≤ 0, j = 1, . . . ,m1,

〈Td(1), X〉 = 1,

X ∈ C∗n+1,d(R
n+1
+ ),

(1.22)

Problem (1.20) and (1.22) can be seen as two different relaxations for some classes POPs

with a form of problem (1.14). Problem (1.20) characterizes the polynomials with higher

degree than 2 by reformulating them as quadratic polynomials. SDP and CP matrix

relaxations for the reformulated QCQP are well studied in literature [cf., 5, 18, 19, 20,
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27, 29, 58, 113]. However, the introduce of additional constraints Z1,c+n+1 − Za+1,b+1 =

0,∀(a, b, c) ∈ S in problem (1.20) may ruin some exact relaxation conditions for QCQP.

Problem (1.22) characterizes the polynomials with degree higher than 2 by using higher

order tensors which avoids introducing additional variables and constraints. Next we will

show that under some conditions, the latter relaxations will provide tighter bounds for

problem (1.14).

Lemma 1 ([92, Lemma 2]). For any d > 0 and n > 0, C∗n+1,d(R
n+1
+ ) = conic(Md({0, 1} ×

Rn+)).

Theorem 4. Consider a feasible problem (1.14) where the coefficients of p0(x) are non-

negative, then problem (1.20) is a relaxation of problem (1.22).

Proof. By Proposition 7, problems (1.20) and (1.21) are equivalent. For any feasible solu-

tion X ∈ C∗n+1,4(R
n+1
+ ) to problem (1.22), by Lemma 1,

X =

n1∑
s=1

λsM4(1, us) +

n0∑
t=1

γtM4(0, vt),

for some n0, n1 ≥ 0, λs, γt > 0 and us, vt ∈ Rn+. Then by using (1.1),

1 = 〈T4(1), X〉 =

n1∑
s=1

λs,

di ≥ 〈T4(pi), X〉 =

n1∑
s=1

λspi(us) +

n0∑
t=1

γtp̃i(vt), i = 1, ...,m0,

0 ≥ 〈T4(qj), X〉 =

n1∑
s=1

λsqj(us) +

n0∑
t=1

γtq̃j(vt), j = 1, ...,m1,

(1.23)

with an objective function value of
∑n1

s=1 λsp0(us) +
∑n0

t=1 γtp̃0(vt). Recall the index set S

in (1.15), and construct a vector of ws, w
′
t for s = 1, ..., n1, t = 1, ..., n0 as follows:

(ws)c = (us)a(us)b, (a, b, c) ∈ S,

(w′t)c = (vt)a(vt)b, (a, b, c) ∈ S.
(1.24)
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Next we show

Z =

n1∑
s=1

λsM2(1, (us, ws)) +

n0∑
t=1

γtM2(0, (vt, w
′
t)), (1.25)

is a feasible solution to problem (1.20). Clearly, Z ∈ C∗n+r+1,2(R
n+r+1
+ ), and from equa-

tion (1.24) and (1.25), we have

Z1,c+n+1 =

n1∑
s=1

λs(ws)c =

n1∑
s=1

λs(us)a(us)b,∀(a, b, c) ∈ S,

Za+1,b+1 =

n1∑
s=1

λs(us)a(us)b +

n0∑
t=1

γt(vt)a(vt)b, ∀(a, b, c) ∈ S,

which indicates that Z1,c+n+1 ≤ Za+1,b+1, ∀(a, b, c) ∈ S. From equations (1.17) and (1.23),

〈T2(1), Z〉 =

n1∑
s=1

λs = 1,

〈T2(hi), Z〉 =

n1∑
s=1

λshi(ws) +

n0∑
t=1

γth̃i(w
′
t)

=

n1∑
s=1

λspi(us) +

n0∑
t=1

γtp̃i(vt) ≤ di, i = 1, ...,m0,

〈T2(qj), Z〉 =

n1∑
s=1

λsqj(us) +

n0∑
t=1

γtq̃j(vt) ≤ 0, j = 1, ...,m1,

with an objective value of

n1∑
s=1

λsq0(us, ws) +

n0∑
t=1

γtq̃0(vt, w
′
t) =

n1∑
s=1

λsp0(us) +

n0∑
t=1

γtq̃0(vt, w
′
t),

under the condition that p0(x) has nonnegative coefficients and x ∈ Rn+,

n0∑
t=1

γtq̃0(vt, w
′
t) ≥

n0∑
t=1

γtp̃0(vt).

Therefore, from any feasible solution to problem (1.22), we can construct a feasible solution

to problem (1.21) with a larger objective function value, which indicates that problem (1.20)

is a relaxation for problem (1.22).
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Theorem 4 illustrates that theoretically the CP tensor relaxation can provide tighter

bounds than QCQP approches for a class of POPs. In next section, we will introduce some

approximation strategies for CP and CPSD tensor programs to address the intractability.

1.5 Numerical Comparison of Two Relaxations of PO

Unlike the tractability of the PSD matrix cone, the CPSD tensor cone is not tractable in

general to our knowledge. Also similar to the intractability of completely positive matrices

of dimension greater than 5, the CP tensor cone is also not tractable in general. In this

section, we will discuss and develop tractable approximations for CP and CPSD tensor

cones, and then use these approximations to address some POPs to show it provides better

bounds than approximations for QCQP reformulation.

1.5.1 Approximation of CP and CPSD Tensor Cones

Before presenting results, let us introduce some more notations. For T = Md(x), x ∈ Rn,

denote T(i1,...,id) as the element in (i1, ..., id) position, where (i1, ..., id) ∈ {1, . . . , n}d. To be

more specific, ij with j = 1, ..., d means the choice of {x1, ..., xn} in the jth position in the

tensor product, i.e. i1 = 2 means choosing x2 as the first position in the tensor product.

To illustrate, let x ∈ R3 and let

T 1 = M2(x) =


x21 x1x2 x1x3

x1x2 x22 x2x3

x1x3 x2x3 x23

 ,

then T 1
(1,2) = x1x2 and it is in the (1,2) position in T 1. Also for T = Md(x), x ∈ Rn, when

d > 2, let T(i1,...,id−2,·,·) denote the matrix in (i1, ..., id−2, ·, ·) position, where (i1, ..., id−2, ·, ·)

represents the matrix

(T(i1,...,id−2,·,·))jk = Ti1,...,id−2,j,k, j, k = 1, . . . , n,
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for example, let T 2 = M3(x), x ∈ R3, then

T 2
(1,·,·) =


x31 x21x2 x21x3

x21x2 x1x
2
2 x1x2x3

x21x3 x1x2x3 x1x
2
3

 , T 2
(2,·,·) =


x21x2 x1x

2
2 x1x2x3

x1x
2
2 x32 x22x3

x1x2x3 x22x3 x2x
2
3

 .

Definition 5. Let T = Md(x), x ∈ Rn. For any (i1, . . . , id−2) ∈ {1, . . . , n}d−2, T(i1,...,id−2,·,·)

is a principal matrix if Ik ⊆ {0, . . . , d − 2} is even for all k = 1, . . . , n, where Ik is an

ordered set of the number of appearance ij = k, ∀j = 1, . . . , d− 2 where k = 1, ..., n.

For example, let T 3 = M8(x), x ∈ R3, then

T 3
(1,1,2,2,3,3,·,·), T

3
(1,2,2,2,1,2,·,·), T

3
(2,3,2,1,3,1,·,·) are principal matrices;

T 3
(1,1,1,2,3,3,·,·), T

3
(1,2,2,2,2,2,·,·), T

3
(2,3,2,2,3,1,·,·) are not principal matrices.

Notice the symmetry of symmetric tensors, T(i1,...,id−2,·,·) with the same Ik, k = 1, ..., n are

equal. Next we will discuss the approximation strategies for the CP and the CPSD tensor

cones based on PSD and DNN matrices.

Definition 6. A symmetric matrix X is called doubly nonnegative (DNN) if and only if

X � 0 and X ≥ 0, where X ≥ 0 indicates every element of X is nonnegative.

Proposition 8. For any symmetric tensor T ,

(a) If T ∈ C∗n,d(Rn+), then T(i1,...,id) ≥ 0, T(i1,...,id−2,·,·) � 0,∀i = 1, ..., n.

(b) If T ∈ C∗n,d(Rn), for all principal matrices T(i1,...,id−2,·,·), T(i1,...,id−2,·,·) � 0, ∀i = 1, ..., n.

Proof. For part (a), by Proposition 3 (a), T =
∑

i λiMd(x
i), where xi ∈ Rn+, λi ≥ 0,

∑
i λi =

1, then it is clear that T(i1,...,id) ≥ 0, and

T(i1,...,id−2,·,·) =
∑
i

λi

n∏
k=1

(xik)
Ik(xi(xi)T ), (1.26)
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as xi(xi)T � 0, ∀i and
∏n
k=1(x

i
k)
Ik ≥ 0, then T(i1,...,id−2,·,·) � 0. For part (b), noticing that

the number of appearance Ik, k = 1, ..., n is even if T(i1,...,id−2,·,·) is a principal matrix, then

it follows proof of (a) with
∏n
k=1(x

i
k)
Ik ≥ 0 in (1.26).

Take T ∈ C∗2,4(R2
+) as an example to illustrate Proposition 8, by Proposition 3 (a),

T =
∑

i λiM4(x
i), where λi ≥ 0,

∑
i λi = 1 and xi ∈ R2

+, then for any y ∈ R2,

yTT(1,2,·,·)y = yT
∑
i

λiM4(x
i)(1,2,·,·)y = xi1x

i
2

∑
i

(yTxi)2 ≥ 0,

which indicates that T(1,2,·,·) is a 2× 2 positive semidefinite matrix.

Next we discuss the approximation of the CPSD and the CP tensor cones. Based on

Proposition 8, we define the following tensor cones,

KSDPn,d = {T ∈ Sn,d : T(i1,...,id−2,·,·) � 0, ∀(i1, . . . , id−2) ∈ {1, . . . , n}d−2},

KLn,d = {T ∈ Sn,d : T(i1,...,id) ≥ 0, ∀(i1, . . . , id) ∈ {1, . . . , n}d},

KDNNn,d = {T ∈ Sn,d : T(i1,...,id−2,·,·) � 0, T(i1,...,id−2,·,·) ≥ 0, ∀(i1, . . . , id−2) ∈ {1, . . . , n}d−2}.

It is easy to see these cones are convex closed cones with the following relationship,

C∗n,d(Rn) ⊆ KSDPn,d

C∗n,d(Rn+) ⊆ KDNNn,d ⊆ KLn,d.
(1.27)

Consider the following conic program,

[TP-K] inf 〈Td(p0), X〉

s.t. 〈Td(pi), X〉 ≤ 0, i = 1, . . . ,m

〈Td(1), X〉 = 1

X ∈ Kn+1,d.

From (1.27), problem [TP-K] is a tractable relaxation for problem (1.8) and (1.10) by
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choosing appropriate tractable cones, and thus provides relaxations to globally approximate

general POPs. It follows that

z[TP-KSDP ] ≤ zSP ≤ z,

z[TP-KL] ≤ z[TP-KDNN ] ≤ zCP ≤ z+.

1.5.2 Numerical results on general cases

In Section 1.5.1, several tractable approximations for the CP and the CPSD tensor cones

have been developed to provide relaxations for CP and CPSD tensor programs. In this

section, we will provide numerical results on more general POP cases in order to compare

the bounds of two relaxation approaches discussed in Section 1.4.2. Denote [QPL] and

[QPDNN ] as the linear relaxation and DNN relaxation for problem (1.20) similar to [TP-

KL] and [TP-KDNN ] , and denote [QPSDP ] for the SDP relaxation for the quadratic

reformulation problem (1.7). Recall the number of additional variables r =
(
n+1
2

)
. In

Table 1.5.1, we compare the two approaches in terms of number and size of PSD matrices.

PSD matrix size PSD matrix number Number of variables

[QPSDP ] (1 + n+ r)× (1 + n+ r) 1 O(n4)

[TP-KSDP ] (1 + n)× (1 + n) n O(n3)

[QPDNN ] (1 + n+ r)× (1 + n+ r) 1 O(n4)

[TP-KDNN ] (1 + n)× (1 + n) O(n2) O(n4)

Table 1.5.1: Program size comparison

Followings are some test problems for the comparison. Note that there preliminary

results are on small scale problems, only bounds are compared as the time difference is

negligible. All the numerical experiments are conducted on a 2.4 GHz CPU laptop with

8 GB memory. We implement all the models with YALMIP in Matlab . We use SeDuMi as
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the SDP solver and CPLEX as the LP solver. For Example 5 and 6, we use Couenne as the

global solver.

Example 2.

Consider the following problem,

min

(
n∑
i=1

xi

)4

s.t. x41 = 1,

xi ≥ 0, i = 1, ..., n.

(1.28)

By observation, the optimal value is 1, with an optimal solution x∗1 = 1, x∗k = 0, k =

2, ..., n. The QCQP reformulation of (1.28) with least number of additional variables is

min y21

s.t. y1 =

(
n∑
i=1

xi

)2

,

y2 = x21,

y22 = 1,

xi ≥ 0, i = 1, ..., n,

y1, y2 ≥ 0.

(1.29)

Relaxation [TP-KL] can be directly applied to (1.28) and gives an optimal value of

1 while [QPL] for (1.29) gives an optimal value of 0, which means the approximation by

using tensor relaxation is tight.

Example 3. Bi-quadratic POPs

Bi-quadratic problem and its difficulty have been studied in [75]. Consider the following
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specific bi-quadratic POPs,

min
x∈Rn,y∈Rm

p0 =
∑

1≤i<j≤n
1≤a<b≤m

xixjyayb

s.t. ‖x‖2 = 1, ‖y‖2 = 1,

(1.30)

where ‖ · ‖ is the standard 2-norm in Euclidean spaces. It is clear that problem (1.30) is

equivalent to

min
x∈Rn,y∈Rm

p0 =
1

4
[xT (ene

T
n − In)x][yT (eme

T
m − Im)y]

s.t. ‖x‖2 = 1, ‖y‖2 = 1,

where en, em are all-one vectors of appropriate dimension and In, Im are diagonal matrices

of dimension n×n and m×m. It is then easy to see the optimal value is −1
4(max{n,m}−1).

By defining an index set

S(n) = {(i, j, k) ∈ N3 : i = 1, . . . , n− 1, j = i+ 1, . . . , n, k = (n− i

2
)(i− 1) + j − i}

for additional variables, we can reformulate problem (1.30) as a quadratic problem by

introducing additional variables,

min
∑

1≤k≤|S(n)|
1≤c≤|S(m)|

wkzc

s.t. wk = xixj ,∀(i, j, k) ∈ S(n),

zc = yayb,∀(a, b, c) ∈ S(m),

‖x‖2 = 1, ‖y‖2 = 1,

(1.31)

where w, z ∈ Rm with |S(n)| = n(n−1)/2, |S(m)| = m(m−1)/2. Let u =

[
x; y;w; z

]
, and
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a positive semedefinite relaxation can be applied to problem (1.31),

min
∑

n+m+1≤p≤n+m+|S(n)|
n+m+|S(n)|+1≤q≤n+m+|S(n)|+|S(m)|

Qpq

s.t. un+m+k = Qij , ∀(i, j, k) ∈ S(n),

un+m+|S(n)|+c = Qn+a,n+b, ∀(a, b, c) ∈ S(m),

n∑
i=1

Qii = 1,

n+m∑
i=n+1

Qii = 1,1 uT

u Q

 ∈ C∗n+m+|S(n)|+|S(m)|+1,2(R
n+m+|S(n)|+|S(m)|+1).

(1.32)

Note that problem (1.32) is a simple SDP relaxation for problem (1.30). More elaborated

SDP relaxations that provide bounds with guaranteed performance are discussed for this

type of problem in [75].

Proposition 9. Problem (1.32) is unbounded.

Proof. Let ū be a (n + m + |S(n)| + |S(m)|) × 1 all-zero vector and let Q̄ be a (n + m +

|S(n)|+ |S(m)|)× (n+m+ |S(n)|+ |S(m)|) matrix such that

Q̄11 = Q̄n+1,n+1 = 1, Q̄n+m+1,n+m+1 = Q̄n+m+|S(n)|+1,n+m+|S(n)|+1 = M2,

Q̄n+m+1,n+m+|S(n)|+1 = Q̄n+m+|S(n)|+1,n+m+1 = −M,

where M is a positive number and let all other entries for Q̄ be 0. It is clear that (ū, Q̄) is

a feasible solution to problem (1.32). However, as M →∞, the objective function goes to

−∞, thus the problem is unbounded.

Proposition 9 tells that relaxation [QPSDP ] for problem (1.30) will fail to provide a
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bound. However, a CPSD tensor cone can be directly applied to problem (1.30),

min 〈T4(p0), X〉

s.t. 〈T4(‖x‖2), X〉 = 1,

〈T4(‖y‖2), X〉 = 1,

〈T4(1), X〉 = 1,

X ∈ C∗n+m+1,4(Rn+m+1).

(1.33)

Problem [TP-KSDP ] can be used to approximate problem (1.33) and the results are listed

in Table 1.5.2. In Table 1.5.2, we can see that relaxation [TP-KSDP ] can provide the

optimal value for problem (1.32) while relaxation [QPSDP ] for the QCQP reformulation

of problem (1.32) fails to give a bound.

(n,m) Optimal [TP-KSDP ] (n,m) Optimal [TP-KSDP ]

(2,2) -0.25 -0.25 (2,10) -2.25 -2.25

(3,3) -0.50 -0.50 (3,9) -2.00 -2.00

(4,4) -0.75 -0.75 (4,8) -1.75 -1.75

(5,5) -1.00 -1.00 (5,7) -1.50 -1.50

(6,6) -1.25 -1.25

(7,7) -1.50 -1.50

(8,8) -1.75 -1.75

(9,9) -2.00 -2.00

(10,10) -2.25 -2.25

Table 1.5.2: Relaxation comparisons for Example 3

Example 4. Non-convex QCQP
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Consider the following nonconvex QCQP,

min f0(x) = −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t. f1(x) = x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

f2(x) = 2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

f3(x) = x1 + 2x2 − 6 ≤ 0,

x1, x2 ≥ 0

(1.34)

The optimal solution of the example is x∗ = (0, 0.6667)T with f0(x
∗) = −6.4444 (see [119]).

A semidefinite relaxation and a copositive relaxation has been studied in [119], which gives

a bound of -103.43 and -26.67 respectively for problem (1.34) (refer to Table 2 in [119],

(SDP+RLT) is actually a DNN relaxation for copositive programming).

For tensor relaxations, we manually add valid inequalities to make the problem a 4-th

degree POP,

min f0(x) = −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t. f1(x) = x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

f2(x) = 2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

f3(x) = x1 + 2x2 − 6 ≤ 0,

x2f2(x) ≤ 0,

x21f1(x) ≤ 0,

x1, x2 ≥ 0

(1.35)

then [TP-KDNN ] can be used to approximate Problem (1.35), we obtain a bound of−12.83,

which provides better bounds than SDP relaxation and completely positive relaxation on

problem (1.34). We also add the valid inequalities x2f2(x) ≤ 0, x21f1(x) ≤ 0 directly

to problem (1.34) by reformulating problem (1.35) as a quadratic program by adding

additional variables and constraints as in (1.16):
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min f0(x) = −8x21 − x1x2 − 13x22 − 6x1 − x2

s.t. − y1 = x21 + x1x2 + 2x22 − 3x1 − 3x2 − 7 ≤ 0,

− y2 = 2x1x2 + 33x1 + 15x2 − 10 ≤ 0,

f3(x) = x1 + 2x2 − 6 ≤ 0,

y3 = x21,

− x2y2 ≤ 0,

− y1y3 ≤ 0,

x1, x2, y1, y2, y3 ≥ 0.

In addition to adding valid inequalities to strengthen the tensor relaxation, adding positive

semidefinite (PSD) reformulation linearization technique (RLT) constraints can further

strengthen the relaxations. Similar to second order RLT introduced in [28], with the

constraint 〈T4(1), X〉 = 1 and conic constraint X ∈ C∗3,4(R3), for a quadratic constraint

c0 + c10x1 + c01x2 + c11x
2
1 + c12x1x2 + c22x

2
2 ≥ 0, following PSD-RLT constraints for CP

tensor relaxation of problem (1.35) can be constructed,

(c0 + c10x1 + c01x2 + c11x
2
1 + c12x1x2 + c22x

2
2)X(0,0,·,·)

=c0X(0,0,·,·) + c10X(1,0,·,·) + c01X(2,0,·,·) + c11X(1,1,·,·) + c12X(1,2,·,·) + c22X(2,2,·,·) � 0,

(1.36)

where X(0,0,·,·) � 0 as discussed in Section 1.5.1. Note that the PSD-RLT can’t be used in

the CP relaxations on the QCQP reformulation. With the PSD-RLT constraints based on

constraints, the optimal value is obtained at -6.4444. A comparison of bounds is listed in

Table 1.5.3.
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Without Valid Inequalities With Valid Inequalities

SDP COP [QPDNN ] [TP-KDNN ]

Bound -103.43 -26.67 -26.67 -12.83

Table 1.5.3: Relaxation comparisons for Example 4

Example 5. Random Objective Function on a Feasible Region

In this example, we will present our preliminary numerical results on randomly gener-

ated 4th degree POPs with feasible regions. The test problem is

min Randomly generated 4th degree homogenous polynomial of 3 variables

s.t. (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≥ 0.22,

(x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≤ 0.62,

0 ≤ x1, x2, x3 ≤ 1,

(1.37)

The coefficients in the objective function are integers in the range [−5, 5]. The first

and second constraints make the problem nonconvex and it is easy to see the problem is

feasible. We use [TP-KDNN ] to directly approximate problem (1.37) and [QPDNN ] to

approximate the QCQP reformulation of problem (1.37). We denote ratio as the improve

ratio similar to that in [119] and

ratio =
[TP-KDNN ] − [QPDNN ]

fopt − [QPDNN ]
.

We also add PSD-RLT constraints for (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≥ 0.22

and (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2 ≤ 0.62 to problem (1.37). In Table 1.5.4, the

relaxation [TP-KDNN ] with PSD-RLT constraints provides the tightest bounds where for

instances optimal values are obtained. Relaxation [TP-KDNN ] provides tighter bounds

than [QPDNN ] for most test instances. For instances 8,9,18 and 20, relaxation [TP-
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KDNN ] gives the optimal objective value, while [QPDNN ] is not tight. For instances 15

and 17, [TP-KDNN ] and [QPDNN ] give the same bound. An average of 50% improve ratio

implies that [TP-KDNN ] provides tighter bounds than [QPDNN ] for Problem (1.37). In

Table 1.5.4, relaxation [TP-KDNN ] provides tighter bounds than [QPDNN ] for most test

instances. For instances 8,9,18 and 20, relaxation [TP-KDNN ] gives the optimal objective

value, while [QPDNN ] is not tight. For instances 15 and 17, [TP-KDNN ] and [QPDNN ]

give the same bound. An average of 50% improve ratio implies that [TP-KDNN ] provides

better relaxations than [QPDNN ] for Example 5.
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Test No. [QPDNN ] [TP-KDNN ] ratio [TP-KDNN ] + Couenne

1 -4.6732 -3.2860 36.82% -0.9055∗ -0.9055∗

2 -8.8748 -5.2725 78.15% -4.2654∗ -4.2654∗

3 -5.6429 -4.1135 76.76% -3.6477∗ -3.6477∗

4 -3.5507 -2.1173 53.59% -0.8761∗ -0.8761∗

5 -11.0434 -9.5248 37.81% -7.0268∗ -7.0268∗

6 -12.6822 -10.5600 24.46% -4.0055∗ -4.0055∗

7 -3.0709 -2.4427 45.84% -1.7005∗ -1.7005∗

8 0 0.0122 100% 0.0122∗ 0.0122∗

9 -1 0.0091 100% 0.0091∗ 0.0091∗

10 -5.2621 -1.9963 83.15% -1.3345∗ -1.3345∗

11 -0.8450 -0.8438 0.30% -0.4922∗ -0.4922∗

12 -3.5894 -2.9945 100% -1.4597∗ -1.4597∗

13 -0.8554 -0.7762 11.70% -0.1787∗ -0.1787∗

14 -6.1631 -2.6502 81.87% -1.8723∗ -1.8723∗

15 -0.2666 -0.2666 0 -0.1487∗ -0.1487∗

16 -6.0238 -5.6216 10.16% -2.0645∗ -2.0645∗

17 -4.9579 -4.9579 0 -4.0253∗ -4.0253∗

18 0 0.0080 100% 0.0080∗ 0.0080∗

19 -12.1584 -10.7368 16.94% -3.7659∗ -3.7659∗

20 -0.6545 0.0112 100% 0.0112∗ 0.0112∗

∗: Optimal value is obtained.

[TP-KDNN ] +: [TP-KDNN ] with PSD-RLT constraints.

Table 1.5.4: Relaxation comparisons for Example 5

Example 6. Numerical Results on Random Generated Polynomial Problems

In this example, we present our preliminary numerical results on randomly generated
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polynomial optimization problems. The objective function is a 4th degree homogenous

polynomial of 3 variables, with two 4th degree polynomial inequality constraints, a linear

inequality constraint and nonnegative variables. The coefficients in the objective function

are integers in the range [−5, 5] and the coefficients of the two polynomial constraints are

integers in the range [−10, 10] and the coefficients of linear constraint are integers in the

range [0, 5], with a right hand side coefficient in the range [5, 15]. We generated problems

and send them to Couenne, for those problems which are feasible in Couenne, we use

[TP-KDNN ] to directly approximate Example 6 and [QPDNN ] to approximate the QCQP

reformulation of Example 6. Note that the convexity of these problems is not tested.

Results are shown in Table 1.5.5, and we can clearly see that relaxation [QPDNN ] fail to

give a valid bound for instances 1,3,6,7,8 and 10, while tensor relaxation [TP-KDNN ] can

provide a valid lower bound for all tested instances.

Test No. Couenne [TP-KDNN ] [QPDNN ]

1 -0.1790 -0.1852 Unbounded

2 10.9275 7.8888 0

3 -158.751 -245.7888 Unbounded

4 1.3041 1.1044 0

5 2.5418 1.9276 0

6 0.7107 -2.0031 Unbounded

7 1.0663 -6.6609 Unbounded

8 -8.0284 -56.0924 Unbounded

9 0.0275 0.0272 0

10 8.0032 2.4765 Unbounded

Table 1.5.5: Relaxation comparisons for Example 6
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1.6 Conclusion

This chapter presents convex relaxations for general POPs over CP and CPSD tensor

cones discussed in [64]. Bomze showed that completely positive matrix relaxation beats

Lagrangian relaxations for quadratic programs with both linear and quadratic constraints

in [18]. A natural question is whether similar results hold for general POPs that are not

necessarily quadratic. Introducing CP and CPSD tensors to reformulate or relax general

POPs, we generalize Bomze’s results in QPs to general POPs, that is, the CP tensor re-

laxation beats Lagrangian relaxation bounds for general POPs with degree higher than 2.

These results provide another way of using symmetric tensor cones to globally approxi-

mate nonconvex POPs. Burer in [27] showed that every quadratic programs with linear

constraints and binary variables can be reformulated as CP programs and programs with

quadratic constraints can be relaxed by CP programs, with approximation approaches for

CP matrix programs. Note that one can reformulate general POPs as QPs by introduc-

ing additional variables and constraints and then apply Burer’s results to obtain global

bounds on general POPs. Pena et al. generalize Burer’s results in [92] that under cer-

tain conditions a general POP can be reformulated as a conic program over CP tensors.

A natural question is which reformulations or relaxations will provides better bounds for

general POPs. In this paper, we showed that the bound of CP tensor relaxations is better

than the bound of CP matrix relaxations for the quadratic reformulation of some classes

of general POP. This validates the advantages of using tensor cones for convexification of

nonconvex POPs . We also provide some tractable approximations of the CP tensor cone

as well as CPSD tensor cone, which allows the possibility to compute the bounds of these

tensor relaxations. Some preliminary numerical results on small scale POPs showed that

these tensor cone approximations can provide bounds for global optimum of the original

POPs. More importantly, in the experiments, the bounds obtained by CP or CPSD tensor

cone programs yield better bounds than the CP or SDP matrix relaxations for quadratic

reformulation of general POPs with similar computational efforts.
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As future work we plan to characterize the classes of POPs in which the CP and CPSD

tensor cone relaxations provide better bounds than the CP and PSD matrix relaxations

for quadratic reformulations of POPs. Also, more POP instances with larger sizes can be

tested and numerical comparisons on these more complicated POP cases can be made by

developing appropriate code to address these problems.
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Chapter 2

Alternative LP and SOCP

Approaches for PO

2.1 Introduction

Many real-world problems can be modeled as a polynomial optimization problem (POP),

thus devising new approaches to globally solve POPs is an active area of research [see,

e.g., 5, 17, for recent surveys in this area]. In his seminal work, Lasserre [66] showed that

semidefinite programming (SDP) [110] relaxations based on sum of square (SOS) polyno-

mials [see, e.g., 17] can provide global bounds for POPs. However, the SDP constraints

are computationally expensive and thus even using low-orders of the hierarchy to approx-

imate large-scale POPs becomes computationally intractable in practice [69]. To improve

the computational performance of the SDP based hierarchies to approximate the solution

of POPs, prior work has focused on exploiting the problem’s sparsity [60] and symmetry

[34, 42], improving the relaxation by generating and adding appropriate valid inequalities

[46], using bounded SOS polynomials [70] and more recently by devising more compu-

tationally efficient hierarchies such as linear programming (LP) and second-order cone

programming (SOCP) hierarchies [2, 36, 37, 45, 91].

Here, we consider alternative ways to use SOCP restrictions of the SOS condition
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introduced by Ahmadi and Majumdar [2]. In particular, we show that SOCP hierarchies

can be effectively used to strengthen hierarchies of LP relaxations for general POPs. Such

hierarchies of LP relaxations have received little attention in the POP literature (a few

noteworthy exceptions are [32, 36, 37, 68, 121]). However, in [61] we show that this solution

approach is substantially more effective in finding solutions of certain POPs for which the

more common hierarchies of SDP relaxations are known to perform poorly [see, e.g., 45].

Furthermore, when the feasible set of the POP is compact, these SOCP hierarchies converge

to the POP’s optimal value. Note that for the well-known SDP based hierarchies introduced

by Lasserre [66], the quadratic module (QM) [5] associated with the feasible set of the POP

is required to be Archimedean [17], which implies the compactness of the POP’s feasible

set.

The remainder of the chapter is organized as follows. We briefly review several convex

approximations of POPs in Section 2.2. The proposed approximation strategies and hier-

archies are presented in Section 2.3. Numerical results based on the proposed hierarchies

are presented in Section 2.4. Section 2.5 provides some concluding remarks.

2.2 Preliminaries

The following notation is used throughout the chapter: let Rd[x] := Rd[x1, . . . , xn] be the

set of polynomials in n variables with real coefficients of degree at most d. We define

SOS2d :=

{
k∑
i=1

pi(x)2 : pi(x) ∈ Rd[x], k ∈ Z+

}
,

as the cone of SOS polynomials in R2d[x] . For any S ⊆ Rn, let Pd(S) be the cone of

polynomials in Rd[x] of degree at most d that are non-negative over the set S [see, e.g.,

17]. We consider the following general POP,
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min
x

f(x)

s.t. gi(x) ≥ 0, i = 1, . . . ,m,

x ∈ Rn,

(PP-P)

where the degree of the program is d = max{deg(f), deg(g1), . . . ,deg(gm)}. Given S =

{x ∈ Rn : gi(x) ≥ 0, i = 1, . . . ,m}, problem (PP-P) can be equivalently rewritten as the

following conic program [see, e.g., 23],

max
x,λ

λ

s.t. f(x)− λ ∈ Pd(S),

x ∈ Rn, λ ∈ R.

(PP-D)

In general, solving (PP-P) is NP-hard [85]. Problem (PP-D) is a (linear) conic program

whose complexity is captured in the cone Pd(S), which is not tractable in general. Consid-

ering a sequence of tractable cones Kr ⊆ Kr+1 ⊆ · · · ⊆ Pd(S), then the following convex

program

max
x,λ

λ

s.t. f(x)− λ ∈ Kr,

x ∈ Rn, λ ∈ R

(2.1)

provides a lower bound for (PP-D), and hence a lower bound for (PP-P). Above, by

tractable we mean that inclusion on the set can be expressed as a linear matrix inequalities

(LMI) [5]. As r increases in (2.1), a tighter bound is achieved. The choice of the tractable

cone Kr is a key factor in obtaining good approximation bounds for (PP-D), and in turn

for (PP-P).

For this purpose, in his seminal work, Lasserre [66] proposed a hierarchy of LMI relax-
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ations to approximate Pd(S), where

Kr =

{
p(x) ∈ R2r[x] : p(x) = s0(x) +

m∑
i=1

si(x)gi(x), s0(x) ∈ SOS2r, si(x) ∈ SOS2br−deg(gi)/2c

}
,

(2.2)

and r ≥ dd/2e is the level of the hierarchy. In this case, problem (2.1) is equivalent to

max
x,si(x)

λ

s.t. f(x)− λ = s0(x) +
m∑
i=1

si(x)gi(x),

s0(x) ∈ SOS2r, si(x) ∈ SOS2br−deg(gi)/2c, i = 1, . . . ,m,

λ ∈ R.

(QM-SOSr)

Problem (QM-SOSr) can be reformulated as a SDP [see, e.g., 17]. Under some condi-

tions related to the compactness of the set S (more precisely, when the quadratic module

generated by the set of polynomials {g1(x), . . . , gm(x)} is Archimedean), the hierarchy of

problems (QM-SOSr) converges to the global solution of (PP-P) as r → ∞ [66]. How-

ever, as r increases, the size of the positive semidefinite matrices required to reformulate

(QM-SOSr) as a SDP increases exponentially. As a result, this approach is computation-

ally expensive for large-scale problems [see, e.g., 44] or even for small-scale problems that

require the solution of high levels of the hierarchy to obtain tight approximations of the

POP of interest [see, e.g., 2, 46, 70].

Ahmadi and Majumdar [2] recently proposed a restriction of the SOS condition to ad-

dress this shortcoming of the SDP-based hierarchies. The restriction of the SOS condition

is done by introducing the use of diagonally dominant sum of square (DSOS) polynomi-

als and scaled diagonally dominant sum of square (SDSOS) polynomials instead of SOS

polynomials in (QM-SOSr).

Definition 7 (DSOS polynomials [2]). Let J be an index set, mi(x) ∈ Rd[x] be a monomial
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for all i ∈ J , and αi, βij ∈ R+ for all i, j ∈ J . Then

p(x) =
∑
i

αimi(x)2 +
∑
i,j

βij(mi(x)±mj(x))2, (2.3)

is a DSOS polynomial in R2d[x]. Equivalently, DSOS polynomials can be defined as those

that can be constructed from a diagonally dominant matrix (DD). Namely, let z(x) be a

vector with the monomials mi(x) for all i ∈ J , and Q ∈ R|J |×|J | be a (symmetric) diagonally

dominant matrix. Then p(x) = zT (x)Qz(x) is a DSOS.

Let DSOS2d be the set of all DSOS polynomials in R2d[x]. Then it is clear from

(2.3) that DSOS2d ⊆ SOS2d. Thus, using DSOS polynomials instead of SOS polynomials

in (QM-SOSr) provides a hierarchy of lower bounds for the SOS hierarchy. Moreover

the resulting DSOS hierarchy is computationally easier to solve. Namely, recall that a

symmetric matrix A ∈ Rn×n is DD if Aii ≥
∑

j 6=i |Aij |,∀i = 1, . . . , n. Thus the associated

DSOS hierarchy

max
λ,di(x)

λ

s.t. f(x)− λ = d0(x) +
m∑
i=1

di(x)gi(x),

d0(x) ∈ DSOS2r, di(x) ∈ DSOS2br−deg(gi)/2c,

λ ∈ R,

(QM-DSOSr)

can be reformulated as a LP. As proposed by Ahmadi and Majumdar [2], the DSOS hi-

erarchy (QM-DSOSr) can be strengthened by considering scaled diagonally dominant sum

of square (SDSOS) polynomials.

Definition 8 (SDSOS polynomials [2]). Let J be an index set, mi(x) ∈ Rd[x] be a mono-

mial for all i ∈ J , and αi, βi, βj ∈ R+ for all i, j ∈ J . Then

p(x) =
∑
i

αimi(x)2 +
∑
i,j

(βimi(x)± βjmj(x))2, (2.4)
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is a SDSOS polynomial in R2d[x]. Equivalently, SDSOS polynomials can be defined as those

that can be constructed from a scaled diagonally dominant matrix (SDD). Namely, let z(x)

be a vector with the monomials mi(x) for all i ∈ J , and Q ∈ R|J |×|J | be a (symmetric)

scaled diagonally dominant matrix. Then p(x) = zT (x)Qz(x) is a SDSOS.

Let SDSOS2d be the set of all SDSOS polynomial in R2d[x]. Then it is clear from (2.4)

that DSOS2d ⊆ SDSOS2d ⊆ SOS2d. Thus, using SDSOS polynomials instead of SOS

polynomials in (QM-SOSr) provides a hierarchy of lower bounds for the SOS hierarchy

that is tighter than the (QM-DSOSr) hierarchy. Moreover the resulting SDSOS hierarchy

is computationally easier to solve than the associated SDP-based hierarchy. Namely, notice

that a symmetric matrix A ∈ Rn×n is SDD if

A =
∑

i,j∈{1,...,n}

Aij , for some Aij � 0, with Aijkl = 0 for any k, l ∈ {1, . . . , n} \ {i, j}. (2.5)

Above, we use the common notation A � 0 to indicate that the matrix is positive semidefi-

nite. Notice that because the Aij matrices in (2.5) have only nonzero elements at positions

k, l ∈ {i, j}, then it follows that

Aij � 0 ⇐⇒ Aijii +Aijjj ≥

∥∥∥∥∥∥∥∥∥∥


2Aijij

Aijii −A
ij
jj


∥∥∥∥∥∥∥∥∥∥
2

⇐⇒


Aijii +Aijjj

2Aijij

Aijii −A
ij
jj

 ∈ L3, (2.6)

where Ln denotes the second-order cone or Lorentz cone of dimension n [see, e.g., 23]. Thus

the associated SDSOS hierarchy

max
λ,di(x)

λ

s.t. f(x)− λ = d0(x) +

m∑
i=1

di(x)gi(x),

d0(x) ∈ SDSOS2r, di(x) ∈ SDSOS2br−deg(gi)/2c,

λ ∈ R,

(QM-SDSOSr)
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can be reformulated as a second-order cone program. Ahmadi and Majumdar [2] have

shown that the approximation hierarchies (QM-DSOSr) and (QM-SDSOSr) can be success-

fully used to approximate POPs arising in control, combinatorics, and general non-linear

non-convex optimization [2]. Hierarchies (QM-DSOSr) and (QM-SDSOSr) are computa-

tionally easier to solve than (QM-SOSr), however, their bounds might not be as good as

the one obtained with the (QM-SOSr) hierarchy of the same order [see, e.g., 62].

2.3 Alternative Hierarchies for Polynomial Optimization

Lasserre’s hierarchy [66] has been shown to provide very tight bounds for multiple classes

of POPs. However, this approach becomes computationally intractable for large-scale

problems or even for small-scale problems that require the solution of high levels of the

hierarchy to obtain good approximations for the solution of the problem of interest. Loosely

speaking, this intractability stems from the fact that the size of the SDP reformulation of

the SOS conditions in (QM-SOSr) grows exponentially with the dimension of the decision

variables of the problem n, as well as the level of the hierarchy r.

A key building block behind the convergence properties of the hierarchy defined by

(QM-SOSr) is a representation theorem for polynomials in Pd(S) by Putinar [95] that

makes use of SOS polynomials [see, e.g., 17, 66]. Other convergent SDP hierarchies can

be constructed similarly using the representation theorem by Schmüdgen [101], when the

set S is compact. Besides these SOS representation theorems, there are however well-

known representations theorems for non-negative polynomials that use polynomials with

non-negative coefficients (instead of SOS polynomials) in the representation. Examples of

these are the representation theorem of Hardy et al. [49], when the set S is a polytope,

and Pólya’s Theorem [49], when the set S = Rn+.

Theorem 5 (Pólya [49]). Let p(x) ∈ Rn[x] be a multivariate polynomial. Then p(x) > 0

for all x ≥ 0⇒ (1 +
∑n

i=1 xi)
r p(x) =

∑
α∈Nn cαx

α for some r ≥ 0, cα ≥ 0 for all α ∈ Nn.

In stating Theorem 5, we make use of the common notation xα := xα1
1 · · ·xαnn for
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any x ∈ Rn, and α ∈ Nn. Note that in Theorem 5, the non-negativity of the polynomial

is certified using polynomials with non-negative coefficients. As a result, this type of

representation theorems can be used to construct hierarchies of LP problems that converge

to the optimal solution of (PP-P) (when the required conditions on the set S are satisfied).

Such approach has been used in [32, 68, 121]. It is worthy to mention that Pólya’s approach

is also used in [36, 37], to address the solution of POPs.

Here, we take advantage of this type of computationally easier LP hierarchy approach to

address the solution of certain classes of POPs for which the more common SDP hierarchy

is known to perform poorly [see, e.g., 45]. In particular, we use a representation theorem for

non-negative polynomials in a semi-algebraic set recently introduced in [91] to construct

a converging hierarchy of LPs for POPs. Formally, consider the following optimization

problem:

zr,LP := max
λ,cα,β

λ

s.t.

1 +
n∑
i=1

xi +
m∑
j=1

gj(x)

r

(f(x)− λ) =
∑

(α,β)∈I

cα,βx
αg(x)β

cα,β ∈ R+ for all (α, β) ∈ I,

λ ∈ R,

(Po-LPr)

where

I := {(α, β) ∈ Nn+m : ‖(α, β)‖1 ≤ rmax{deg(gi) : i = 1, . . . ,m}+ deg(f)}.

By matching the coefficients of each monomial in the left-hand side and the right-hand side

of equation (Po-LPr), the resulting problem is a LP with decision variables λ ∈ R, cα,β ∈

R+, for all (α, β) ∈ I. Similar to the (QM-SOSr) hierarchy, but under milder conditions,

the resulting bound zr,LP of (Po-LPr), obtained at each level of the hierarchy converges

as r increases.
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Theorem 6 (Peña et al. [91]). Let S = {x ∈ Rn+ : gi(x) ≥ 0, i = 1, . . . ,m} be a compact

set, then as r →∞, zr,LP converges to the global optimum of (PP-P).

Thus, Theorem 6 provides the convergence guarantee of the (Po-LPr) hierarchy to

the optimal value of (PP-P) with a compact feasible set in R+
n . This allows us to use LP

techniques to globally solve non-convex problems. However, this type of LP approximations

for POPs are known to provide very weak approximation bounds for the objective value of

the POP of interest [see, e.g., 32, 68]. To address this, we next propose the use of DSOS,

SDSOS and SOS polynomials with fixed degree (degree 2) instead of the non-negative

constant cα,β in the definition of the hierarchy (Po-LPr).

For a general POP (PP-P) with feasible set S ⊆ Rn+, consider the following hierarchies

of optimization problems:

max
λ,pα,β

λ

s.t.

1 +
n∑
i=1

xi +
m∑
j=1

gj(x)

r

(f(x)− λ) =
∑

(α,β)∈I′
pα,β(x)xαg(x)β,

pα,β(x) ∈ SOS2, for all (α, β) ∈ I ′,

λ ∈ R,

(Po-SOSr)

max
λ,pα,β

λ

s.t.

1 +

n∑
i=1

xi +

m∑
j=1

gj(x)

r

(f(x)− λ) =
∑

(α,β)∈I′
pα,β(x)xαg(x)β,

pα,β(x) ∈ SDSOS2, for all (α, β) ∈ I ′,

λ ∈ R,

(Po-SDSOSr)
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max
λ,pα,β

λ

s.t.

1 +
n∑
i=1

xi +
m∑
j=1

gj(x)

r

(f(x)− λ) =
∑

(α,β)∈I′
pα,β(x)xαg(x)β,

pα,β(x) ∈ DSOS2, for all (α, β) ∈ I ′,

λ ∈ R,

(Po-DSOSr)

where r ≥ 0 and

I ′ := {(α, β) ∈ Nn+m : ‖(α, β)‖1 ≤ rmax{deg(gi) : i = 1, . . . ,m}+ deg(f)− 2}.

Similar to Lasserre’s hierarchy (QM-SOSr), problem (Po-SOSr) can be reformulated as a

SDP. In turn, similar to the hierarchies (QM-DSOSr) and (QM-SDSOSr) (cf., Section 2.2),

the optimization problems (Po-DSOSr) and (Po-SDSOSr) can be reformulated as a LP

and as a SOCP respectively. Note that in the hierarchies discussed in Section 2.2, as

the level of the hierarchy r increases, the complexity of checking that a fixed number,

m + 1, of polynomials are SOS, SDSOS, or DSOS increases. Instead in the hierarchy

defined in (Po-SOSr), (Po-SDSOSr) and (Po-DSOSr), the complexity of checking that the

involved polynomials are SOS, SDSOS, or DSOS does not change as the degree of these

polynomials is fixed to 2. Instead, it is the number of these polynomials that increases as

the level of the hierarchy increases (a similar approach has been used in [70]). This turns

out to be key to obtain the results presented later in next section on the performance of

the hierarchies (Po-SOSr), (Po-SDSOSr) and (Po-DSOSr).

Clearly, the hierarchies (Po-SOSr), (Po-SDSOSr), and (Po-DSOSr) provide tighter

bounds on the associated POP than the LP based hierarchy (Po-LPr). As a result, under

the same conditions of Theorem 6, these hierarchies will converge as r →∞ to the global

optimal solution of (PP-P). Below, we state this formally.
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Proposition 10. Consider problem (PP-P) with a compact feasible region and assume that

S ⊆ Rn+ whose global optimal objective function is z∗, and let zr,DSOS, zr,SDSOS, zr,SOS

be the optimal value of hierarchies (Po-DSOSr), (Po-SDSOSr) and (Po-SOSr) respectively,

then it follows that for any r = 1, 2, . . . :

zr,LP ≤ zr,DSOS ≤ zr,SDSOS ≤ zr,SOS ≤ z∗.

Moreover,

lim
r→∞

zr,DSOS = lim
r→∞

zr,SDSOS = lim
r→∞

zr,SOS = z∗.

Proof. The inequalities zr,DSOS ≤ zr,SDSOS ≤ zr,SOS follow from DSOS2d ⊆ SDSOS2d ⊆

SOS2d. It is easy to see zr,LP ≤ zr,DSOS since all the nonnegative constants belong to

DSOS0. By Theorem 6, limr→∞ zr,LP = z∗ when the feasible region of (PP-P) is compact.

Thus limr→∞ zr,DSOS = limr→∞ zr,SDSOS = limr→∞ zr,SOS = z∗ follows.

2.4 Numerical Results

To illustrate the performance of the hierarchies discussed in Section 2.3, we test the

Lasserre-type hierarchies and the proposed hierarchies in this article on some relevant POP

instances. We use APPS [43] together with Matlab to implement all the hierarchies. Nu-

merical experiments are conducted on an AMD Opteron 2.0 GHz(x16) Linux machine with

32 GB memory. We use MOSEK [6] as the LP and SOCP solver. Also, we use SeDuMi [108]

as the SDP solver, to exploit its well-known precision for solving SDPs.

Due to the different approach used in the Lasserre-type hierarchies and the hierarchies

proposed in Section 2.3, with the same r, the degree of the polynomials involved in the

problem might not be equal. Thus, to make it easier to compare the results obtained from

each hierarchy, instead of reporting the hierarchy level r, we report the maximum degree

d̂ of the polynomials involved in the formulation as r increases in each of them.

In the tables of numerical results that follow, the symbol (*) indicates that the reported
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value is the optimal objective value of the problem. We use “T” as the solution time in

seconds for each hierarchy and “Infeas.” to indicate that the optimization problem is

infeasible. The symbol (�) indicates that the solver runs out of memory. Lastly the symbol

(◦) indicates that generating the program that matches coefficient in the hierarchy in

Matlab runs out of memory.

2.4.1 Illustrative Examples

We begin by testing a set of POPs from [46], which are highly non-convex and require a

high level of Lasserre’s hierarchy to converge to their global optimum.

Example 7. Consider the following quadratic POP with 5 variables:

min
x∈R5

2x1 − x2 + x3 − 2x4 − x5

s.t. (x1 − 2)2 − x22 − (x3 − 1)2 − (x5 − 1)2 ≥ 0,

x1x3 − x4x5 + x21 ≥ 1,

x3 − x22 − x24 ≥ 1,

x1x5 − x2x3 ≥ 2,

x1 + x2 + x3 + x4 + x5 ≤ 14,

xi ≥ 0, i = 1, . . . , 5.

As shown in Table 2.4.1, the (QM-SOSr) hierarchy converges to the global optimum

when d̂ = 8 with a computational time of 49.82 seconds, while the hierarchy (Po-SOSr)

converges to global optimum when d̂ = 6 with only 8.21 seconds of computational time.

Hierarchies (QM-SDSOSr) and (QM-DSOSr) fail to converge to the global optimum up to

d̂ = 8. However, the hierarchy (Po-SDSOSr) also converges to the global optimum when

d̂ = 8 with 13.28 seconds of computational time. The hierarchy (Po-DSOSr) provides a

weaker bound than hierarchy (Po-SDSOSr) and does not converge to the problem’s global

optimum when d̂ = 8.
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Although the degree d̂ provides an approximate measure of the size (variables and

constraints) involved in the formulations of the hierarchies’ problems, a better comparison

of the hierarchies can be done by illustrating the trade-off between the solution time and

the quality of the bound obtained from each hierarchy. In Figure 2.4.1 (left), the different

line plots show the bound and solution time associated with increasing orders of each of the

hierarchies. Clearly, within one second, the (Po-SDSOSr) hierarchy gives the best bound;

within ten seconds, the (Po-SOSr) hierarchy gives the optimal value while there is still a

gap between the problem’s optimal value (illustrated by the dashed horizontal line) and

the bounds obtained by other hierarchies. Clearly, the hierarchies proposed in Section 2.3

have better performance over the Lasserre-type hierarchies for this problem.

(QM-SOSr) (QM-SDSOSr) (QM-DSOSr) (Po-SOSr) (Po-SDSOSr) (Po-DSOSr)

d̂ Bound T Bound T Bound T Bound T Bound T Bound T

2 -25.00 0.35 -25.00 0.12 -25.00 0.01 -6.63 0.74 -7.40 0.03 -25.00 0.02

4 -6.01 1.22 -6.35 0.15 -25.00 0.09 -2.35 1.53 -2.96 0.19 -6.14 0.05

6 -2.40 6.75 -4.46 1.85 -14.39 1.46 ∗-1.57 8.21 -1.72 0.71 -2.93 0.74

8 ∗-1.57 49.82 -2.81 15.00 -7.49 18.62 ∗-1.57 13.28 -1.86 15.49

∗: Optimal value is obtained.

Table 2.4.1: Bound and time comparison of different hierarchies for Example 7.

In Table 2.4.1, note that for the same level of hierarchies (Po-DSOSr) and (Po-SDSOSr),

the linear representation of DSOS2 introduces more decision variables than the SOCP

representation of SDSOS2. This explains why the running time of the LP-based hierarchy

can be larger than the running time of the SOCP-based hierarchy.
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Example 8. Consider the following quadratic POP with 10 variables:

min
x∈R10

− x1 − x2 + x3 − 2x4 − x5 + x6 + x7 − x8 + x9 − 2x10

s.t. (x3 − 2)2 − (x5 − 1)2 − 2x6 + x28 − (x9 − 2)2 ≥ −4,

− x22 + x3x10 − x24 + x6x7 ≥ 1,

x1x8 − x2x3 + x4x7 − x5x10 ≥ 2,

10∑
i=1

xi ≤ 5,

xi ≥ 0, i = 1, . . . , 10.

As shown in Table 2.4.2, Lasserre’s hierarchy (QM-SOSr) and hierarchy (QM-SDSOSr)

converge to the global optimum at the third level when d̂ = 6 with a computational

time of 2369.50 seconds and 72.43 seconds respectively. In contrast, hierarchy (Po-SOSr)

converges to the global optimum when d̂ = 4 with 8.27 seconds of computational time. The

hierarchy (Po-SDSOSr) also converges to the global optimum when d̂ = 4 with 2.23 seconds

of computational time. Similar to Example 1, hierarchies (QM-DSOSr) and (Po-DSOSr)

provide the weakest bound and the problem’s global optimum is not reached by d̂ = 6, but

the hierarchy (Po-DSOSr) provides tighter bounds with less computational time than the

hierarchy (QM-DSOSr) at each level.

As discussed previously, a better comparison among the different hierarchies can be

obtained by illustrating the trade-off between the solution time and the quality of the

bound obtained from each hierarchy. In Figure 2.4.1 (right), the different line plots show

the bound and solution time associated with increasing orders of each of the hierarchies.

Notice that within one second, the (Po-DSOSr) gives the best bound. Also, within ten

seconds, only the (Po-SOSr) and (Po-SDSOSr) hierarchies obtain the problem’s optimal

value (illustrated by the dashed horizontal line), and the (Po-SDSOSr) hierarchy takes less

computational time than the (Po-SOSr) hierarchy.
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(QM-SOSr) (QM-SDSOSr) (QM-DSOSr) (Po-SOSr) (Po-SDSOSr) (Po-DSOSr)

d̂ Bound T Bound T Bound T Bound T Bound T Bound T

2 -10.00 0.09 -10.00 0.04 -10.00 0.02 -7.76 0.17 -7.76 0.04 -10.00 0.02
4 -7.76 25.89 -7.76 1.34 -10.00 0.47 ∗-5.18 8.27 ∗-5.18 2.23 -5.59 0.16
6 ∗-5.18 2369.50 ∗-5.18 72.43 -8.28 63.09 -5.19 35.29

∗: Optimal value is obtained.

Table 2.4.2: Bound and time comparison of different hierarchies for Example 8.
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Figure 2.4.1: Bound and time comparison of different hierarchies for Example 7 (left) and
Example 8 (right).

Example 9. Consider the following quadratic POP with 15 variables:

min
x∈R15

x1 − x2 + x3 − x4 − x5 + x6 + x7 − x8 + x9 − x10 + x11 − x12 + x13 − x14 + x15

s.t. (x1 − 2)2 − x22 + (x3 − 2)2 − (x4 − 1)2 − (x5 − 1)2 + (x6 − 2)2 − (x7 − 1)2 − x28

− (x9 − 2)2 − (x10 − 1)2 + x211 − x212 + (x13 − 2)2 + x214 − (x15 − 1)2 ≥ 0,

− x1x7 − x4x5 − x23 + x6x9 + x10x12 ≥ 1,

x2x3 − x8x11 − x214 + x5x15 ≥ 2,

15∑
i=1

xi ≤ 10,

xi ≥ 0, i = 1, . . . , 15.
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(QM-SOSr) (QM-SDSOSr) (QM-DSOSr) (Po-SOSr) (Po-SDSOSr) (Po-DSOSr)

d̂ Bound T Bound T Bound T Bound T Bound T Bound T

2 -10.00 0.09 -10.00 0.02 -10.00 0.02 -8.07 0.27 -8.74 0.06 -10.00 0.02
4 -8.06 2754.30 -8.29 10.17 -10.00 2.27 ∗-7.43 640.60 ∗-7.43 59.85 -8.22 0.51
6 ◦ ◦ ◦ ◦ ◦ ◦ -7.64 2340.00

∗: Optimal value is obtained.
◦: Matlab runs out of memory while formulating LMI.

Table 2.4.3: Bound and time comparison of different hierarchies for Example 9.

The results for Example 3 are shown in Table 2.4.3. Lasserre’s hierarchy (QM-SOSr)

and the hierarchy (QM-SDSOSr) fail to provide the problem’s global optimal value when

d̂ = 4. Matlab runs out of memory when generating the LMI for Lasserre-type hier-

archies when d̂ = 6. In contrast, hierarchies (Po-SOSr) and (Po-SDSOSr) converge to

the global optimum when d̂ = 4 with 640.60 and 59.85 seconds of computational time

respectively. Similar to Example 1 and 2, hierarchies (QM-DSOSr) and (Po-DSOSr) pro-

vide the weakest bound and the problem’s global optimum is not reached when d̂ = 6.

However, the (Po-DSOSr) hierarchy provides tighter bounds with less computational time

than (QM-DSOSr) when d̂ = 2 and d̂ = 4.

2.4.2 Numerical Results on Global Optimization Library

Next, we compare Lasserre-type hierarchies with the proposed hierarchies on some problems

from the GLOBAL Library available at http://www.gamsworld.org/global/globallib.

htm. These problems have been used as benchmark in [59, 114, 115].

In Figure 2.4.2, we show the performance of different hierarchies for problem ex2_1_1

and problem ex3_1_4. Similar to Figure 2.4.1, the different line plots show the bound

and and solution time associated with increasing orders of each of the hierarchies. Clearly,

for problem ex2_1_1, within one second, the (Po-SOSr) and (Po-SDSOSr) hierarchies give

the optimal value while the bounds obtained by other hierarchies is not tight. Overall,

the (Po-SDSOSr) has the best performance in terms of bound and computational time for
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Figure 2.4.2: Bound and time comparison of different hierarchies for ex2 1 1 (left) and
ex3 1 4 (right).

problem ex2_1_1. For problem ex3_1_4, within one second, only the (Po-SDSOSr) reaches

the optimal value, again, the (Po-SDSOSr) has the best performance in terms of bound

and computational time for problem ex3_1_4.

Table 2.4.4 shows the bound and time comparison of all hierarchies applied to different

test problems. Column 1 shows the name of the problem and column 2 states the number

of variables in the problem and its degree, while the degree of each hierarchy d̂ is listed

in column 3. The results for the Lasserre-type hierarchies are given in columns 4-9 while

the remaining columns show the results for the proposed hierarchies in Section 2.3. We

can see that for problems ex_2_1_2, ex_2_1_3, ex2_1_4, and ex2_1_5, the Lasserre-type

hierarchies (QM-SOSr), (QM-SDSOSr), and (QM-DSOSr) are infeasible when d̂ = 2 and

provide the optimal solution when d̂ = 4. In contrast, the proposed hierarchies give the

optimal value when d̂ = 2.
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The time to obtain the optimal value is greatly reduced by using (Po-SOSr) over

(QM-SOSr) for problem ex_2_1_3. For problems ex_2_1_7 and ex2_1_10 with rela-

tively large numbers of variables (20 variables), the Lasserre-type hierarchies are infea-

sible when d̂ = 2, which means that the Lasserre-type hierarchies fail to give a bound,

however, by using the hierarchies proposed here, the optimal value for problem ex2_1_10

and a global lower bound for problem ex_2_1_7 are obtained when d̂ = 2. The hierar-

chy (QM-SOSr) runs out of memory when d̂ = 4 for problems ex_2_1_7 and ex2_1_10.

For ex_2_1_7, the hierarchy (QM-SDSOSr) gives a bound when d̂ = 4; however, it is weaker

than the ones obtained from the hierarchies (Po-SOSr), (Po-SDSOSr) and (Po-DSOSr)

when d̂ = 2. Matlab runs out of memory when formulating the LMI for the hierar-

chies (Po-SOSr), (Po-SDSOSr) and (Po-DSOSr) when d̂ = 4 for ex_2_1_7, due to a large

number of constraints in ex_2_1_7. For other cases, our proposed hierarchies mostly con-

verge to global optimum with a smaller d̂ than that of Lasserre-type hierarchies.

From Table 2.4.4, one can notice that in some instances of the problems, there is no im-

provement in the bound obtained by using the sequentially tighter (Po-SOSr), (Po-SDSOSr)

and (Po-DSOSr) hierarchies. For some problems (like ex2 1 2), this is due to the hierar-

chy (Po-DSOSr) providing the problem’s optimal solution. For other problems (like ex2 1 1),

this is a result of the structure of the problem, which results in hierarchies (Po-SOSr)

and (Po-SDSOSr) not helping to improve the bounds. For example, for problem ex2 1 1,

the objective function is given by f(x1, . . . , x5) = 42x1 + 44x2 + 45x3 + 47x4 + 47.5x5 −

50(x21+x22+x22+x24+x25). Since there are no cross-variable terms, the bound obtained from

the hierarchies (Po-SOSr), (Po-SDSOSr) does not take advantage of providing a tighter

formulation of the POP for cross-variable monomials. On the other hand, it is clear that

in problems like ex3 1 4, the tighter (Po-SOSr), (Po-SDSOSr) hierarchies provide better

bounds than the (Po-DSOSr) hierarchy.
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2.4.3 Numerical Results on Problems with More Variables

Consider the following non-convex problem,

min
∑
|α|≤2

cαx
α

s.t.
n∑
i=1

x2i ≤ 1,

n∑
i=1

x2i ≥ 0.62,

xi ≥ 0, i = 1, . . . , n,

(2.7)

where cα are randomly generated in [−1, 1]. We construct this nonconvex problem inspired

by [116] to test the performance of the proposed hierarchies. The problem is to find the

minimal value of a polynomial on the Euclidean unit ball intersected with the positive or-

thant while excluding the Euclidean ball with radius 0.6. We use instances with relatively

large number of variables n ∈ [20, 30, 50, 100, 150] and compare the Lasserre-type hierar-

chies with the hierarchies proposed in Section 2.3. Note that it will be computationally

expensive to run higher levels of the hierarchies for large-scale problems. The purpose of

this comparison mainly focuses on the bound obtained for quadratic programs when d̂ = 2.

Similar to the figures in previous sections, in Figure 2.4.3, we plot the performance of

all hierarchies for problem (2.7) with n = 20. Clearly, only the (Po-SOSr) obtains the

optimal value with n = 20. Unlike the instances in Section 2.4.1 and Section 2.4.2, the

increasing order of the hierarchies doesn’t improve the bound significantly, thus the lines

in Figure 2.4.3 are flat.

Table 2.4.5 lists the bound and time of all hierarchies for problem (2.7) with different

n. The results for n ≥ 30 and d̂ = 4 are not listed since Matlab runs out of memory when

formulating the LMI for these cases. Column 2 is the upper bound we obtain from a global

optimization solver, BARON [98]; columns 4-15 list the results by running Lasserre-type hi-

erarchies and the proposed hierarchies. The optimal value (indicated by ∗) is obtained when
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the upper bound obtained by BARON is equal to any of the lower bound from the six hierar-

chies. It is clear that our proposed hierarchies (Po-SOSr), (Po-SDSOSr), and (Po-DSOSr)

yield tighter bounds than corresponding the Lasserre-type hierarchies. For cases with

n = 20, 30, 50, 100, the hierarchy (Po-SOSr) converges to the global optimum when d̂ = 2.

For the case with n = 150, SOS-based hierarchies (QM-SOSr) and (Po-SOSr) fail to give

a bound due to the computationally difficult SDP constraints. SOCP-based hierarchies

can be used to obtain global bounds, in which case our proposed hierarchy (Po-SDSOSr)

improves the bounds obtained from (QM-SDSOSr) by approximately 100%. LP-based hi-

erarchies provide the worst bounds among the same type of hierarchies, however, the bound

obtained by the LP-based hierarchy (Po-DSOSr) is even tighter than the bound obtained

by SOCP-based hierarchy (QM-SDSOSr).

10−1 100 101 102

−4

−3

−2

Time (s.)

B
o
u
n
d

QM-SOSr
QM-SDSOSr
QM-DSOSr
Po-SOSr
Po-SDSOSr
Po-DSOSr

Optimal Value

Figure 2.4.3: Bound and time comparison of different hierarchies for problem (2.7) with
n = 20.

2.5 Concluding Remarks

In this paper, we propose alternative LP, SOCP and SDP approximation hierarchies to

obtain global bounds for general POPs, by using SOS, SDSOS and DSOS polynomials to

strengthen existing LP hierarchy for POPs. Comparing with the classic Lasserre’s hierar-

chy, the LP and SOCP approximation hierarchies are shown to be computationally more
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BARON (QM-SOSr) (QM-SDSOSr) (QM-DSOSr) (Po-SOSr) (Po-SDSOSr) (Po-DSOSr)

(n, d) UB d̂ LB T LB T LB T LB T LB T LB T

(20,2) ∗-1.39 2 -1.92 2.18 -3.40 0.22 -4.25 0.01 ∗-1.39 0.46 -1.91 0.04 -2.89 0.01
4 � � -3.29 11.99 -4.25 3.39 -1.56 16.67 -2.63 4.02

(30,2) ∗-1.96 2 -2.21 2.61 -4.82 0.16 - 6.40 0.01 ∗-1.96 2.08 -2.91 0.06 -4.93 0.01

(50,2) ∗-2.06 2 -2.90 43.99 -8.30 1.82 -11.38 0.38 ∗-2.06 50.26 -4.32 0.15 -6.38 0.01

(100,2) ∗-3.02 2 -3.89 1606.00 -16.56 1.12 -20.47 0.01 ∗-3.02 1824.30 -8.49 0.45 -11.92 0.04

(150,2) -3.58 2 � � -25.02 0.90 -29.12 0.04 � � -12.66 1.11 -16.42 0.09

LB,UB: lower bound, upper bound.
∗: Optimal value is obtained.
�: Solver runs out of memory.

Table 2.4.5: Bound and time comparison of different hierarchies for problem (2.7).

efficient to find the global optimum of POPs for which Lasserre’s hierarchy is known to per-

form poorly. In particular, this shows that the relaxation approach introduced by Ahmadi

and Majumdar [2] produces better results as a way to strengthen LP-based hierarchies for

POPs. Furthermore, these hierarchies are shown to converge as the level of the hierarchy

increases to the global optimum of the corresponding POP. Unlike other hierarchies pro-

posed in the literature, this property is obtained whenever the feasible set of the POP is

compact but the quadratic module of the polynomials defining the problem’s feasible set is

not necessarilyArchimedean.

The fact that the hierarchies considered here are based on using LP and SOCP allows

for the future use of column generation approaches in order to be able to address the

solution of larger-scale POPs.
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Chapter 3

Alternative SOCP Hierarchies for

ACOPF Problems

3.1 Introduction

The Alternating Current Optimal Power Flow (ACOPF) problem is a challenging opti-

mization problem in power systems. Several optimization methods have been devised to

efficiently solve different variations of this problem. However, the ACOPF problem con-

tinues to be challenging. This is mainly due to the large-scale size of real systems and the

nonlinearities and the nonconvexities in the underlying formulation.

One solution approach that has been actively investigated to address the global solution

of the ACOPF relies on reformulating the problem as a polynomial program (PP); that

is an optimization problem whose objective and constraints can be written in terms of

polynomials on the decision variables. Then, a hierarchy of semidefinite programming

(SDP) [cf., 5] relaxations can be used to obtain globally optimal solutions under mild

conditions [44, 57, 82, 83]. This hierarchy of SDP relaxations is based on the seminal

work of Lasserre [66], who showed that SDP relaxations based on sum of square (SOS)

polynomials can provide global bounds for a general class of PPs. However, the associated

SDP relaxations are computationally expensive and thus, even using the hierarchy’s low-
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order relaxations to approximate large-scale PPs like the ACOPF becomes computationally

intractable in practice [69].

To improve the computational performance of the SDP based hierarchies, prior work

has focused on exploiting the problem structure through sparsity [60] and symmetry [34],

improving the relaxation through the generation of valid inequalities [46], and more recently

through devising more computationally efficient hierarchies based on the use of linear

programming (LP) and second-order cone programming (SOCP) relaxations of the problem

of interest [2, 45, 91].

Rather than using the computationally expensive SDP hierarchy, in [62] and [65], we

explore the use of LP and SOCP hierarchies for solving the ACOPF problem and show

that the SOCP approach that is proposed in this paper can be used to obtain solutions

for ACOPF within limited computational time. Furthermore, we show that the first-order

SOCP hierarchy obtained by weakening the more common hierarchy of SDP relaxations for

this problem is equivalent to solving the conic dual of the SOCP approximations of ACOPF

that have been recently proposed in [22, 54, 105], which provide the optimal solution of the

ACOPF problem for special network topologies. In turn, the SOCP hierarchy approach

provides a natural hierarchy of increasingly stronger SOCP approximations for the ACOPF

problem.

Following the notations and concepts introduced in Section 2.2 in Chapter 2, we briefly

introduce polynomial programming approaches for ACOPF as well as applying the pro-

posed LP and SOCP based hierarchies in Chapter 2 to the ACOPF problem in next section.

3.2 ACOPF Formulation

In this section, we apply the LP and SOCP hierarchies to the alternating current optimal

flow problem and we exploit the network structure of electricity transmission grids to spe-

cialize the proposed SOCP approximations for the ACOPF problem and obtain improving

results. The results are then compared to the SDP based hierarchy [66] and to the SOCP
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relaxation that is proposed in [22].

3.2.1 ACOPF problem as a Polynomial Program

To formulate the ACOPF problem as a polynomial problem, we follow the same notation

as in [71, 83], that is, we consider an undirected graph P (N,E) where each vertex n ∈ N

is called a “bus” and each edge e ∈ E is called a “branch”. The subset G ⊆ N denotes the

set of generators. Additionally, we define the following parameters:

• P−k , P+
k , Q−k , Q+

k , V −k and V +
k are respectively the limits on active and reactive

generation capacity and the absolute value of the voltage at bus k.

• S+
lm is the limit on the absolute value of the apparent power of a branch (l,m) ∈ E.

• P dk and Qdk are the active and reactive power demand respectively.

• c2k, c1k, c0k are nonnegative coefficients for the power generation cost function.

We also define the following decision variables:

• P gk and Qgk: active and reactive power generated at bus k.

• Plm and Qlm: active and reactive power flow on branch (l,m).

Given a complex voltage Vi at bus i, let <Vi denote the real part of Vi and =Vi denote the

imaginary part. The power flow equations are

P gk = P dk + <Vk
n∑
i=1

(<yik<Vi −=yik=Vi) + =Vk
n∑
i=1

(=yik<Vi −<yik=Vi),

Qgk = Qdk + <Vk
n∑
i=1

(−=yik<Vi −<yik=Vi) + =Vk
n∑
i=1

(<yik<Vi −=yik=Vi),

Plm = blm(<Vl=Vm −<Vm=Vl) + glm(<Vl2 + =Vm2 −=Vl=Vm −<Vl<Vm),

Qlm = blm(<Vl=Vm −=Vl=Vm −<Vl2 −=Vl2) + glm(<Vl=Vm −<Vm=Vl −<Vm=Vl)

− b̄lm
2

(<Vl2 + =Vl2).
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Additionally, the network admittance matrix and other related matrices are defined as

follows:

yk = eke
T
k y,

ylm = (j
b̄lm
2

+ glm + jblm)ele
T
l − (glm + jblm)ele

T
m,

Yk =
1

2

<(yk + yTk ) =(yTk − yk)

=(yk − yTk )) <(yk + yTk )

 ,

Ȳk = −1

2

=(yk + yTk ) <(yk − yTk )

<(yTk − yk) =(yk + yTk )

 ,

Mk =

ekeTk 0

0 eke
T
k

 ,

Ylm =
1

2

<(ylm + yTlm) =(yTlm − ylm)

=(ylm − yTlm) <(ylm + yTlm)

 ,

Ȳlm = −1

2

=(ylm + yTlm) <(yTlm − ylm)

<(yTlm − ylm) =(ylm + yTlm)

 .
where ek is the kth standard basis vector in R|N |. Let x := [<Vk =Vk]T be the vector of

variables in addition to the variables P gk , Plm and Qlm. The ACOPF can be formulated as
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the following degree-2 PP:

min
∑
k∈G

(
c2k(P

g
k )2 + c1k(P

d
k + tr(Ykxx

T )) + c0k

)
(3.1)

s.t. P−k ≤ tr(Ykxx
T ) + P dk ≤ P+

k , ∀k ∈ G, (3.2)

Q−k ≤ tr(Ȳkxx
T ) +Qdk ≤ Q+

k , ∀k ∈ G, (3.3)

(V −k )2 ≤ tr(Mkxx
T ) ≤ (V +

k )2, ∀k ∈ N, (3.4)

P 2
lm +Q2

lm ≤ (S+
lm)2, ∀(l,m) ∈ E, (3.5)

P gk = tr(Ykxx
T ) + P dk , ∀k ∈ G, (3.6)

Plm = tr(Ylmxx
T ), ∀(l,m) ∈ E, (3.7)

Qlm = tr(Ȳlmxx
T ), ∀(l,m) ∈ E. (3.8)

(PP-OPF)

The objective function (3.1) minimizes the cost of power generation. Constraints (3.2),

(3.3), and (3.4) set limits on the active power, reactive power, and voltage on each bus.

Constraints (3.5) set a limit on the apparent power flow at every branch. Constraints (3.6)

define the power generated while constraints (3.7), (3.8) define the active and reactive

power flow. Problem (PP-OPF) is a PP of degree two and the proposed hierarchies are

applicable to this problem. Additionally, the ACOPF problem exhibits a structure that can

be exploited to improve the computational performance of the solution approach discussed

here.

3.2.2 ACOPF Problem as a Second Order Cone Program

By exploring the structure of the quadratic formulation of the ACOPF, we have the fol-

lowing observations:

Proposition 11. Let Xori denote the set of x variables in (PP-OPF) and let Xext denote

the set of P gk , Plm, and Qlm variables. Then for vi ∈ Xori and vj ∈ Xext, vivj does not
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appear in the quadratic model (PP-OPF).

Proposition 11 allows us to develop specific hierarchies of tractable conic programming

relaxations that take advantage of the structure of ACOPF problem. Note that such

structure is also exploited in the related conic programming relaxations for the ACOPF

problem studied in [22].

Additionally, some product terms of variables in Xori do not appear based on the

network structure. For instance, buses i and j are connected if (i, j) ∈ E, and thus the

network structure can be used to delete products of variables that are not needed in the

formulation.

Proposition 12. For any k ∈ G, the term tr(Ykxx
T ) in the objective function (3.1) is

equivalent to

tr(Ykxx
T ) = αk<V 2

k + βk=V 2
k +

∑
j:(k,j)∈E

(γkj1 <Vk<Vk + γkj2 <Vk=Vj

+ γkj3 =Vk<Vj + γkj4 =Vk=Vj),∀k ∈ N,

where αk, βk, γ
kj
1 , γ

kj
2 , γ

kj
3 , γ

kj
4 are parameters.

Proof. Directly follows by exploring the structure of Yk, k ∈ G.

Proposition 12 uses the branch information in the network to simplify the hierar-

chies of tractable conic programming relaxations considered here by removing unnecessary

monomial terms in the definitions of (QM-DSOSr) and (QM-SDSOSr). Only the cross

product of voltages of two connected buses appears in tr(Ykxx
T ) and the same goes for

tr(Ȳkxx
T ), which means that there is no need to generate all the monomials in the right

hand side of hierarchies (QM-DSOSr) and (QM-SDSOSr). Since electricity transmission

grids are normally sparse graphs then the computational effort of solving the (QM-SDSOSr)

(or (QM-DSOSr)) hierarchy is reduced significantly thanks to the reduction in the num-

ber of SOCP (or LP) constraints required in the hierarchy formulation. Additionally,

the structure of the SOCP relaxation of ACOPF can be easily exploited since in each
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SOCP constraint of (QM-SDSOSr), only a combination of two monomials is involved.

For example, if the cross product mimj does not appear in the model, then for d0(x) in

hierarchy (QM-SDSOSr) the SOCP constraint related to (βimi + βjmj)
2 is not needed.

3.2.3 Duality in ACOPF Formulations

It has been shown in [44, Theorem 1] that the first level of the SDP hierarchy obtained by

using the (QM-SOSr) on (PP-OPF) is equivalent to the conic dual of the SDP relaxation for

the ACOPF problem that is considered in [71, Optimization 3]. In this section, we show

that the first level of the (QM-SDSOSr) hierarchy of the ACOPF problem is the conic

dual problem of the SOCP relaxation of the ACOPF problem that is presented in [22].

Intuitively, this result follows from the fact that the conic dual of the SDD matrices is

the set of symmetric matrices A ∈ Rn×n such that every 2 × 2 principal submatrix of A

is positive semidefinite. Similar to (2.6), the latter condition can be formulated using the

second-order cone, which corresponds to the relaxation approach used in [22]. Below, we

state this result formally.

Theorem 7. The first level of the SOCP hierarchy obtained by using the (QM-SDSOSr)

hierarchy on (PP-OPF) is equivalent to the conic dual of the SOCP relaxation for the

ACOPF problem considered in [22].

Proof. The basic idea is to derive the Lagrangian dual problem of the SOCP relaxation

for the ACOPF problem considered in [22] and compare it with the first level of SOCP

hierarchy discussed in this paper. First, problem (PP-OPF) is reformulated as a PP of the

form given in (QM-SDSOSr). We notice that since not all the monomials appear in the

polynomial formulation then using the first level of the SOCP hierarchy (r = 2), one can
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approximate (PP-OPF) as

max ϕ

s.t.
∑
k∈N

(
c2k(P g

k )2 + c1k(P d
k + tr(Ykxx

T )) + c0k
)
− ϕ = S(x) + S(P g) + S(P,Q)

+
∑
k∈N

λk
(
P+
k − P d

k − tr(Ykxx
T )
)

+
∑
k∈N

λk
(
−P−k + P d

k + tr(Ykxx
T )
)

+
∑
k∈N

γk
(
Q+

k ]−Qd
k − tr(Ȳkxx

T )
)

+
∑
k∈N

γ
k

(
−Q−k +Qd

k + tr(Ȳkxx
T )
)

+
∑
k∈N

µk

(
(V +

k )2 − tr(Mkxx
T )
)

+
∑
k∈N

µ
k

(
(−V −k )2 + tr(Mkxx

T )
)

+
∑

(l,m)∈L
alm

(
(S+

lm)2 − P 2
lm −Q2

lm

)
+
∑
k∈G

bk
(
P g
k − tr(Ykxx

T )− P d
k

)
∑

(l,m)∈L
clm

(
Plm − tr(Ylmxx

T )
)

+
∑

(l,m)∈L
dlm

(
Qlm − tr(Ȳlmxx

T )
)
,

(3.9)

where S(x) is an SDSOS polynomial based on the branch information, and S(P g), S(P,Q)

are SDSOS polynomials as a function of P gk , Plm and Qlm respectively. Furthermore, by

observation of the monomials in the objective function and constraints of (PP-OPF) , we

remove some unnecessary monomials in S(x), S(P g) and S(P,Q) for simplicity. To be more

specific, the following terms are not needed:

xk,∀k ∈ N in S(x),

P g
i P

g
j ,∀i, j ∈ N, i 6= j in S(P g),

Pl1,m1
Pl2,m2

,∀(l1,m1), (l2,m2) ∈ E, (l1,m1) 6= (l2,m2),

Ql1,m1
Ql2,m2

,∀(l1,m1), (l2,m2) ∈ E, (l1,m1) 6= (l2,m2),

Pl1,m1Ql2,m2 ,∀(l1,m1), (l2,m2) ∈ E in S(P,Q).

The variables α, β, θ, αk, βk, θlm, δim, λk, λk, γk, γk, µk, µk and alm are non-negative vari-

ables and α1
lm, α2

lm, β1k, β2k, θ1lm, θ2lm, δ1lm, δ2lm, bk, clm and dlm are free variables. As dis-

cussed in Section 2.2, an SDSOS polynomial has a natural second order cone representation,
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so we can write S(x), S(P g) and S(P,Q) as

S(x) = α+
∑
k∈N

αkx
2
k +

∑
(l,m)∈E

 xl

xm

T

Alm

 xl

xm

 ,

S(P g) = β +
∑
k∈N

βk(P g
k )2 +

∑
k∈N

 1

P g
k

T

Bk

 1

P g
k


S(P,Q) = θ +

∑
(l,m)∈E

(θlmP
2
lm + δlmQ

2
lm)

+
∑

(l,m)∈E

(  1

Plm

T

C1
lm

 1

Plm

+

 1

Qlm

T

C2
lm

 1

Qlm

),
Define η as η = α + β + θ, for ease of notation. By equating the coefficients of the

monomials of Problem (3.9) and substituting some of the variables, we have the following
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second-order cone program:

max
∑
k∈G

c1kP
d
k −

∑
k∈N

B
(11)
k − η −

∑
(l,m)∈E

(C
1(11)
lm − C2(11)

lm ) +
∑
k∈G

c0k −
∑
k∈N

λk(P+
k − P d

k )

−
∑
k∈N

λk(−P−k + P d
k )−

∑
k∈N

γk(Q+
k −Qd

k)−
∑
k∈N

γ
k
(−Q−k +Qd

k)−
∑
k∈N

µk(V +
k )2

+
∑
k∈N

µ
k
(V −k )2 −

∑
k∈G

2B
1(12)
k P d

k −
∑

(l,m)∈L
(θlm + C

1(22)
lm )(S+

lm)2

s.t. A
(12)
ij =

∑
(l,m)∈L

2C
1(12)
lm Y

(ij)
lm +

∑
(l,m)∈L

2C
2(12)
lm Ȳ

(ij)
lm +

∑
k∈N

c1kY
(ij)
k +

∑
k∈N

(
λkY

(ij)
k

−λkY (ij)
k + γkȲ

(ij)
k − γ

k
Ȳ

(ij)
k + 2B

1(12)
k Y

(ij)
k

)
, ∀(i, j) ∈ E,

αi +
∑

i:(i,j)∈E
A

(11)
ij +

∑
j:(i,j)∈E

A
(22)
ij =

∑
k∈N

c1kY
(ii)
k +

∑
(l,m)∈L

(
2C

1(12)
lm Y

(ii)
lm +2C

2(12)
lm Ȳ

(ii)
lm

)
+
∑
k∈N

(
λkY

(ii)
k − λkY (ii)

k + γkȲ
(ii)
k − γ

k
Ȳ

(ii)
k + 2B

1(12)
k Y

(ii)
k + µk − µk

)
, ∀i ∈ N,

c2k = βk +B
(22)
k , ∀k ∈ N,

θlm + C
1(22)
lm − δlm − C2(22)

lm = 0, ∀(l,m) ∈ E,

η ≥ 0,

αk, βk, λk, λk, γk, γk, µk, µk
≥ 0, ∀k ∈ N,

θlm, δlm ≥ 0, ∀(l,m) ∈ E,

Bk � 0, ∀k ∈ N,

Alm, C
1
lm, C

2
lm � 0, ∀(l,m) ∈ E,

(3.10)

where Bk, Alm, C
1
lm, C

2
lm are 2 × 2 positive semidefinite matrices. From Equation (2.6),

Bk, Alm, C1
lm, C

2
lm � 0 can be represented as second order cone constraints, so Prob-

lem (3.10) is a second order cone program.

Next we derive the dual of ProblemR2 in [22]. In [22], the authors also use the notations

in [71]. Also note that for ease of presentation, the authors omit some refinements (such

as the shunt element) in their model.

Let Z12
k = Z21

k =
√
ck2
∑

e∈E tr(Y e
kWe) + bk be the non-diagonal element of matrix Zk,

and we present the model of Problem R2 in [22] derived from Optimization 3 in [71] as
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follows:

min
∑
k∈N

αk

s.t. P−k ≤
∑
e∈E

tr(Y e
kWe) + P d

k ≤ P+
k , ∀k ∈ N,

Q−k ≤
∑
e∈E

tr(Ȳ e
kWe) +Qd

k ≤ Q+
k , ∀k ∈ N,

(V −k )2 ≤
∑
e∈E

tr(Me
kWe) ≤ (V +

k )2, ∀k ∈ N,

Zk =

αk − ck1
∑
e∈E

tr(Y e
kWe)− ak Z12

k

Z21
k 1

 � 0, k ∈ N

Z1
lm =

 S2
lm,max

∑
e∈E

tr(Y e
kWe)∑

e∈E
tr(Y e

kWe) 1

 � 0, ∀(l,m) ∈ E

Z2
lm =

 S2
lm,max

∑
e∈E

tr(Ȳ e
kWe)∑

e∈E
tr(Ȳ e

kWe) 1

 � 0, ∀(l,m) ∈ E

We � 0, ∀e ∈ E,

(3.11)

where tr(YkW ) in Optimization 3 [71] is replaced by
∑

e∈E tr(Y e
kWe) to take the branch

structure into account and we relax constraint (5) in Optimization 3 [71] to two second-

order cone constraints Z1
lm, Z

2
lm. So basically, optimization problem (3.11) is a relaxation of

Optimization 3 in [71] in terms of the variable We. The Lagrangian function of optimization
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problem (3.11) is

L(W,Z, α, λ, γ, µ, η,A,B,C) =
∑
k∈G

αk +
∑
e∈E

tr(We, Ae) +
∑
k∈N

tr(Zk, Bk)

+
∑
(l,m)∈E

(
tr(Z1

lm, C
1
lm) + tr(Z2

lm, C
2
lm)
)

+
∑
k∈N

λk

(
P+
k − P dk −

∑
e∈E

tr(Y e
kWe)

)

+
∑
k∈N

λk

(
−P−k + P dk +

∑
e∈E

tr(Y e
kWe)

)
+
∑
k∈N

γk

(
Q+
k −Qdk −

∑
e∈E

tr(Ȳ e
kWe)

)

+
∑
k∈N

γ
k

(
−Q−k +Qdk +

∑
e∈E

tr(Ȳ e
kWe)

)
+
∑
k∈N

µk

(
(V +
k )2 −

∑
e∈E

tr(M e
kWe)

)

+
∑
k∈N

µ
k

(
(−V −k )2 +

∑
e∈E

tr(M e
kWe)

)
,

where Ae, Bk, C
1
lm, C

2
lm are 2× 2 positive semidefinite matrices and λ, γ, µ, η are nonnega-

tive Lagrangian multipliers. Therefore the Lagrangian dual problem of optimization prob-

lem (3.11) is

max
λ,γ,µ,η,A,B,C

min
W,Z�0,α

L(W,Z, α, λ, γ, µ, η, A,B,C)

s.t. λ, γ, µ, η ≥ 0

Ae � 0, ∀e ∈ E,

Bk � 0, ∀k ∈ N,

C1
lm, C

2
lm � 0, ∀(l,m) ∈ E.

(3.12)

Once expanded, problem (3.12) has the same structure to the first level SOCP hierarchy

for (PP-OPF) given in (3.9), with exactly the same conic constraints.

Furthermore, for this pair of dual SOCP problems, strong duality holds.

Theorem 8. Strong duality holds between the first level of the SOCP hierarchy obtained

by using (QM-SDSOSr) on (PP-OPF) and the SOCP relaxation for the ACOPF problem

considered in [22].
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Proof. The basic idea is to try to find a strictly feasible solution for the dual problem. In

order to prove strong conic duality, we need to find a strict feasible solution for either the

primal or dual problem. For the dual SOCP problem (3.9), consider the following point,

η > 0,

αk = |E|max + 1− |Ek| > 0, βk = c2k − ε > 0, ∀k ∈ N,

θlm = δlm = 1, ∀(l,m) ∈ E,

λk = c1k + Λ > 0, λk = Λ, γ
k

= γk = 1, ∀k ∈ N,

µk = 1 +
1 + |E|max
|N | > 0, µ

k
= 1, ∀k ∈ N,

Bk =

ε 0

0 ε

 � 0, ∀k ∈ N,Alm =

0.5 0

0 0.5

 � 0,

C1
lm = C2

lm =

1 0

0 1

 � 0, ∀(l,m) ∈ E.

(3.13)

In (3.13), |Ek| is the number of edges whose endpoints contain node k, |E|max = max{|Ek|,

k ∈ N}, for a fixed graph, |Ek|, |E|max are parameters; ε is a sufficient small positive number

such that c2k − ε > 0,∀k ∈ N , as c2k is a positive parameter; Λ is a sufficient large positive

number such that c1k + Λ > 0. We substitute (3.13) into the constraints in Problem (3.9)

and it is easy to verify that it satisfies all the constraints. Thus it is straightforward to

see that the point is in the interior of the feasible set, which means point (3.13) is a strict

feasible point for problem (3.9). Therefore, strong duality holds for Theorem 8.

3.2.4 Numerical Results on ACOPF Instances

In this section we apply the LP and the SOCP hierarchies to solve the polynomial program-

ming formulation of the ACOPF problem (PP-OPF), and then we compare the results to

the ones that are obtained using the SDP hierarchy based on Lasserre’s approach [66]. The

SDP, SOCP, and LP based hierarchies are implemented in Matlab, and SeDuMi is used to
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solve the SDP programs while MOSEK is used to solve the SOCP and LP programs. The

ACOPF instances are taken from [25, 111] and the results are summarized in Table 3.2.1. In

computing the gaps, the best known bounds for the ACOPF instances are taken from [44].

Table 3.2.2 presents computational results of the structured SOCP approach where the

structure of the ACOPF problem is exploited and a computational comparison with opti-

mization problem R2 of [22]. In Tables 3.2.1, and 3.2.2, - indicates that the problem was

not solved within one hour of computational time and ? implies that Matlab ran out of

memory while generating the hierarchy. From Tables 3.2.1-3.2.2, the SDP hierarchy (3rd,

Best SDP hierarchy SOCP hierarchy LP hierarchy
Instance Bound Bound Time (s.) Gap Bound Time (s.) Gap Bound Time (s.) Gap

case9Q 5297.4 5296.71 49.59 0.01% 5230.49 0.09 1.25% 4448.00 0.05 16.02%
case14 8081.7 8081.52 1.59 0.002% 7677.48 0.17 4.99% 6859.31 0.07 15.12%
case30 574.5 - - - 567.96 0.48 1.55% 373.93 0.36 35.18%
case39 41889.1 - - - 41276.26 0.95 1.40% 3495.12 0.40 91.65%
case57 41712.0 - - - 41144.28 1.69 1.42% 38822.46 0.28 6.98%
case118 129372.4 - - - 126001.18 8.17 2.82% 96774.44 0.49 25.36%
case300 720031.0 - - - 706616.52 81.69 1.82% ? ? ?

Table 3.2.1: Computational time comparison of first level SDP, SOCP and LP approxima-
tion.

R2 SOCP hierarchy Structured SOCP Structured SOCP Level 2
instance Bound Time(s) Bound Time(s) Bound Time(s) Bound Time(s)

case9Q 5220.01 0.14 5230.49 0.09 5220.01 0.01 5298.89 27.15
case14 7661.05 0.15 7677.48 0.17 7659.96 0.08 7953.84 48.75
case30 567.79 0.43 567.96 0.48 567.79 0.31 ? ?
case39 41283.67 0.55 41276.26 0.95 41278.11 0.51 ? ?
case57 41157.72 0.38 41144.28 1.69 41157.72 0.26 ? ?
case118 126072.18 0.95 126001.18 8.17 126050.17 0.71 ? ?
case300 706779.64 2.62 706616.52 81.69 706779.64 1.57 ? ?

Table 3.2.2: Computational time comparison of R2 with SOCP and structured SOCP
approximation.

4th, and 5th columns in Table 3.2.1) provides solutions for instances up to 14 buses within

1 hour using the first level of the hierarchy. By using the SOCP hierarchy (6th, 7th, and

8th columns in Table 3.2.1), we obtained lower bounds for instances of up to 300 buses us-

ing the first level of the hierarchy with an average gap of 2% from the best known bounds.
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Furthermore, the computational times for the SOCP approach are substantially reduced

when the structure of the ACOPF problem is exploited as described in Table 3.2.2, while

obtaining a comparable lower bound to R2. Note that there are slight numerical differences

in the bounds due to numerical errors in the solvers.

3.3 Concluding Remarks

In this chapter, we applied the recently proposed LP and SOCP approximation hierarchies

to the ACOPF problem. Numerical results on ACOPF instances from the literature show

that the use of these hierarchies, together with the sparsity structure of the problem,

allow the computation of global bounds for large-scale ACOPF problems where the SDP

hierarchy fails to provide such bounds. Moreover, the first level of the SOCP hierarchy

is shown to be equivalent to the dual of the SOCP relaxations proposed in [22] for these

problems.

The fact that the hierarchies considered here are based on using LP and SOCP allows

for the future use the column generation approaches recently proposed in [1] to address the

solution of larger-scale ACOPF problems.
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Chapter 4

Pricing in Non-Convex Markets

with Quadratic Costs

The presence of non-convexities is inherent to markets with economies of scale, start-up

and/or shut-down costs, avoidable costs, indivisibilities, and minimum supply requirements

[e.g., 21]. These non-convexities make the problem of finding appropriate prices that result

in a market equilibrium challenging. This issue has been addressed in classical work by

Gomory and Baumol [48], Scarf [99, 100], Starr [107]. Continued work in this area has been

recently reviewed by Liberopoulos and Andrianesis [74] and Van Vyve et al. [112]. Here, we

focus on considering the effect of non-convexities, and also potential convex quadratic costs

that affect market prices. As discussed below, these market characteristics are particularly

important in deregulated electricity markets with high penetration of renewable energy

sources. We exemplify on the rest of the article using the electricity market. However note

that this features are common to other network market economies.

Consider a deregulated electricity market [see, e.g., 88, 97], where a market maker

or independent system operator (ISO) receives offers with information about generation

constraints, marginal generation costs, and fixed commitment costs, from generators par-

ticipating in the clearing process. Based on this information, the ISO decides the generators

that should be available (committed) in the market, as well as their appropriate compen-
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sation.

Due to the potential existence of non-convexities, related to start-up/shut-down costs

and minimum output requirements (amongst others), it is difficult for market operators,

e.g., ISOs, to obtain the appropriate compensation values for committed generators. Fur-

thermore, there can be long-term substantial differences when using different market pricing

techniques [50]. One way in which ISOs can obtain an estimate of the correct compen-

sation values is by finding the shadow (dual) prices associated to the linear programming

relaxation [cf., 31] of the mixed-integer linear program (MILP) [cf., 31] associated to the

market’s unit commitment problem (UC) [cf., 51]. The generators’ compensation values are

then computed by adding uplift payments [cf., 55]. However, these uplift payments may be

significant enough to modify the suppliers’ incentives [74]. To address this issue, a num-

ber of alternative pricing schemes have been recently developed by Bjørndal and Jörnsten

[16], Garcı et al. [41], Hogan and Ring [52], Liberopoulos and Andrianesis [74], O’Neill

et al. [88], Ruiz et al. [97]; Araoz and Jörnsten [7]; among others [see, 74, for a recent

review]. However, to the best of our knowledge, none of these approaches directly consider

potential ramping costs in the electricity market.

The penetration of renewable energy sources such as wind and solar into the electricity

market has been steadily increasing. The U.S. Energy Information Administration esti-

mates that in the U.S., the percentage of energy generated from renewable energy sources

has increased from 9.5% in 2006 to 13.3% in 2015, reaching close to 47% in the ERCOT

system (Texas) and surpassing hydroelectric generation [40]. As a result, ISO’s commit-

ment decisions require conventional generators to ramp up or down regularly due to the

variability and uncertainty in the power that renewable sources can provide throughout

a given day [see, e.g., 104]. At the same time, ramping results in substantial wear and

tear costs [see, e.g., 73]. Therefore, considering these ramping costs in the computation of

compensation values is becoming necessary to internalize externalities nowadays absorbed

by conventional (dispatchable) units, and provide adequate settlement prices for the all

participants in the electricity market.
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In order to take into account ramping costs in the electricity market, we extend the

seminal results introduced by O’Neill et al. [88] to obtain appropriate prices in markets

with non-convexities. O’Neill et al. [88] show that after solving the MILP associated

with the ISO’s UC, the desired clearing prices can be obtained from the shadow prices

of the demand and capacity constraints of the linear program resulting from fixing the

commitment (binary) variables of the ISO’s UC to their optimal value.

Here, we extend this approach by considering ramping costs (or more generally, quadratic

convex costs) into the formulation of the unit commitment problem in [63]. Then, using

convex optimization techniques [cf., 23], we obtain the market-clearing prices in the pres-

ence of ramping costs from the dual variables values (shadow prices) associated with the

optimal solution of an appropriate convex optimization problem. That is, we obtain a set

of market clearing prices that satisfies incentive compatibility, i.e., the Walrasian market

equilibrium conditions assure that suppliers would not want to change their energy dis-

patch at these prices. With these results in hand, we perform numerical experiments to

show the impact of ramping costs on the clearing prices of a market with non-convexities.

The pricing results are mainly motivated by an ISO seeking to obtain clearing prices in

an electricity market in which ramping becomes more prevalent, e.g., due to the presence

of renewable energy sources. However, following O’Neill et al. [88], we use the general

formulation of a market in which the auctioneer is buying and/or selling a commodity,

and has an objective of maximizing the value to participants, when potential quadratic

commodity costs (e.g., in a labor market [13]) or quadratic transaction costs (e.g., in a

finance market [24, 87] are present in the market).

It is worth mentioning that related advances on obtaining market-clearing prices in

markets with non-convexities have been done recently. For example, consider the work

of Zoltowska [120], who considers demand shifting bids and transmission constraints in

the market; Ye et al. [118], who consider non-convexities arising when considering flexible

demand options from the point of view of the customer (e.g., the option to forgo demand);

Sioshansi and Nicholson [103], who consider market non-convexities in both centrally- and
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self-committed and markets; Van Vyve et al. [112], who propose a new model to obtain

prices in a market with non-convexities by combining the approaches used in both the

US and European electricity markets; and Muatore [84], who proposes an algorithm to

find market-clearing prices in markets with non-convexities that provide incentives to both

maintain and increase generating capacity.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the market’s

assignment problem in the presence of convex quadratic costs. Furthermore, we generalize

the results of O’Neill et al. [88] to obtain clearing prices for the market. In Section 4.3, we

illustrate our results by computing and analyzing the clearing prices associated to Scarf’s

classical market problem [100] when potential ramping costs are taken into account. In

Section 4.4, we offer concluding remarks.

4.1 Introduction

In today’s advanced economies, it has been widely believed that in the presence of noncon-

vexities (binary decision variables) in the cost function, it is not possible to guarantee the

existence of prices that will allow the market to clear, unless the solution to the relaxed

convex problem just happens to produce an integral solution (e.g. assignment problems).

The economics and management science literature has occasionally addressed the prob-

lem of finding dual price interpretations to integer programs and MIPs. Motivated by the

electric power markets in which nonconvexities arise from the operating characteristics of

generators, O’Neill et al. in [88] discussed the existence of market clearing prices and the

economic interpretation of strong duality for integer programs in the economic analysis of

markets with nonconvexities (indivisibilities). They showed that the optimal solution to a

linear program that solves the mixed integer program has dual variables that: (1) have the

traditional economic interpretation as prices; (2) explicitly price integral activities; and (3)

clear the market in the presence of nonconvexities.

Consider an auction market (like electric power markets) that can be represented by a
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Primal Mixed Integer Program (PIP). The formulation below assumes that the auctioneer

is buying and/or selling a set of goods, and has an objective of maximizing the value to

bidders. The auctioneer is simply a computer code that finds a solution to the problem:

4.2 Market problem with convex quadratic costs

Consider a market, where the auctioneer is buying and/or selling a commodity, and has

an objective of maximizing the value to participants, when potential transaction convex

quadratic costs are present in the market. Following O’Neill et al. [88],1 the market’s assign-

ment problem can be formulated as the following mixed-integer quadratic program (MIQP)

[cf., 72]:

p∗MIQP = min
n∑
k=1

ckxk + dkzk + rk(xk − x0k)2

s.t.

n∑
k=1

akxk = b0,

gkxk + hkzk ≥ bk, k = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . , n,

xk ≥ 0, k = 1, . . . , n,

(4.1)

where for any market bidder k = 1, . . . , n: xk ∈ R+ represents the units of commodity

provided by the bidder; zk ∈ {0, 1} indicates whether the bidder is committed or not

to provide units of the commodity; ck, dk ∈ R, are the variable and fixed costs (i.e.,

commodity and start-up) associated with the bidder’s activities respectively; ak ∈ Rreflects

the production or demand characteristics of the bidder in the market-clearing constraint∑n
k=1 akxk = b0, where b0 ∈ R is the amount of commodity to be auctioned, with b0 6= 0

in a one-sided auction and b0 = 0 in a two-sided auction; gk, hk ∈ R reflect restrictions

on the bidder’s operations (e.g., production of a particular plant is limited to the capacity

of that plant); bk ∈ R represents the right hand sides of the internal constraints of the

1We also follow the terminology used in terms of sellers as “bidders”. Note however that in an auction,
buyers submit bids to purchase a product and suppliers submit offers to sell a product.
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bidder. Also, in an extension of the market assignment problem in O’Neill et al. [88, Sec.

5], rk ∈ R+ denotes the quadratic costs associated with the deviation of the commodity

provided by bidder k = 1, . . . , n from a target or previous commodity production level

x0k ∈ R. The parameters rk ∈ R+, x
0
k ∈ R can also be used to model quadratic commodity

costs, as well as quadratic transaction costs.

Notice that by assuming that rk ≥ 0 for k = 1, . . . , n, one ensures that (4.1) has a

convex quadratic objective. Also, note that if rk = 0 for k = 1, . . . , n, problem (4.1) is

equivalent to the PIP problem in O’Neill et al. [88, Sec. 5] when bidders are assumed to

provide a single commodity. This single-commodity assumption is made here for ease of

presentation and to identify the commodity with power in electricity markets. However,

all the results presented thereof extend in straightforward fashion to the more general

multi-commodity market considered in O’Neill et al. [88].

In what follows, we assume that problem (4.1) is feasible; that is, there is an assignment

of the bidders that satisfies both the operating constraints of the bidders as well as the

market-clearing constraint. Also, without loss of generality, we assume that ak 6= 0, k =

1, . . . , n (i.e., bidders that do not contribute to the market-clearing are not considered),

and rk > 0, k = 1, . . . , n (i.e., bidders that do not incur ramping costs do not need a

corresponding quadratic constraint in formulation (4.2) below).

By introducing the auxiliary variables yk ∈ R+, k = 1, . . . , n, the market assignment

problem (4.1) can be reformulated as:

p∗MIQP = min
n∑
k=1

ckxk + dkzk + rkyk

s.t.

n∑
k=1

akxk = b0,

gkxk + hkzk ≥ bk, k = 1, . . . , n,

yk ≥ (xk − x0k)2, k = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . , n,

xk, yk ≥ 0, k = 1, . . . , n.

(4.2)
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This follows from the fact that for any optimal solution of (4.2), the constraints yk ≥

(xk − x0k)2, k = 1, . . . , n, are tight. Now let Kn+1 ⊆ Rn+1 denote the second-order (or

Lorentz) cone [cf., 4] in dimension n+ 1; that is,

Kn+1 = {(w0, w) ∈ Rn+1 : w0 ≥ ‖(w1, w2, . . . , wn)‖2}, (4.3)

where ‖ · ‖2 represents the Euclidean norm. Note that like Rn or Rn+, the cone Kn+1

is a closed convex cone [cf., 12]. Moreover, Rn, Rn+, Kn+1 are self-dual cones; that is,

(Rn)∗ = Rn, (Rn+)∗ = Rn+, (Kn+1)∗ = Kn+1, where for any convex set, the dual cone of

S ⊆ Rn is equal to S∗ = {u ∈ Rn : uᵀw ≥ 0 for all w ∈ S}. Here, for any u,w ∈ Rn,

uᵀw =
∑n

i=1 uiwi denotes the usual inner product in Rn. The self-duality of Rn, Rn+,

and Kn+1 is key in deriving an appropriate set of shadow prices, or the dual problem

associated with the continuous relaxation (i.e., when zi ∈ {0, 1} is replaced by zi ∈ [0, 1]

for k = 1, . . . , n) of problem (4.2).

From the definition (4.3), it is not difficult to see [cf., 76, eq. (7)] that for any k =

1, . . . , n,

yk ≥ (xk − x0k)2 ⇔
(
yk + 1, yk − 1, 2(xk − x0k)

)
∈ K3.

Thus, problem (4.2) can be reformulated as the following mixed-integer second-order cone

program (MISOCP) [109]:

p∗MISOCP = min

n∑
k=1

ckxk + dkzk + rkyk

s.t.

n∑
k=1

akxk = b0,

gkxk + hkzk ≥ bk, k = 1, . . . , n,(
yk + 1, yk − 1, 2(xk − x0k)

)
∈ K3, k = 1, . . . , n,

zk ∈ {0, 1}, k = 1, . . . , n,

xk, yk, zk ≥ 0, k = 1, . . . , n.

(4.4)
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Similar to problem (4.4) above, a MISOCP is an optimization problem that besides

a linear objective and linear constraints, has second-order cone constraints, as well as

integer or binary variables. Problems with second-order cone constraints are widely used

in applications in engineering and science. In particular, this type of constraints appear

in structural design problems [76, Sec. 3.5], electrical engineering [15, 77], healthcare [79],

and supply chain management [10]. In many instances, this is a result of the need to

take into account the uncertainty of problem parameters and obtain solutions that are

robust; that is, perform well in different scenarios [see, e.g., 79]. Moreover the solution of

MISOCP problems can be obtained using commercial MISOCP solvers like MOSEK, CPLEX,

and Gurobi.

Following O’Neill et al. [88], we next use the optimal solution of (4.4) to obtain the

shadow (dual) prices associated with the market-clearing and bidder operational constraints

in (4.4). Namely, let

z∗ = argminz∈{0,1}n{(4.4)}; (4.5)

that is, z∗ ∈ {0, 1}n is the vector of optimal values of the binary variables in (4.4). After

replacing zk = z∗k, k = 1, . . . , n in (4.4), we obtain the following second-order conic program

(SOCP) [cf., 76]:

p∗SOCP = min
n∑
k=1

ckxk + dkzk + rkyk

s.t.
n∑
k=1

akxk = b0, (p0)

gkxk + hkzk ≥ bk, (qk) k = 1, . . . , n,(
yk + 1, yk − 1, 2(xk − x0k)

)
∈ K3, (γk, αk, βk) k = 1, . . . , n,

zk = z∗k, (pk) k = 1, . . . , n,

xk, yk ≥ 0, k = 1, . . . , n.

(4.6)

Similar to problem (4.6) above, a SOCP is an optimization problem that besides a linear
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objective and linear constraints, has second-order cone constraints. The key characteristic

of SOCPs that are used here, is the fact that SOCPs are convex optimization problems.

This follows from the fact that the second-order cone constraint (w0, w) ∈ Kn+1 is a convex

constraint. As a result, there is a rich duality theory (which generalizes linear programming

duality) for these problems, as well as polynomial-time solution algorithms [cf., 4]. In turn,

these algorithms can be used together with branch & bound techniques [cf., 31] to solve

MISOCP problems like (4.4).

Notice that in (4.6), we have associated the dual variables: p0 with the market-clearing

constraint, qk with the k-th bidder’s operation constraint, pk with the k-th bidder’s com-

mitment constraint, and (γk, αk, βk) with the k-th second-order constraint, for k = 1, . . . , n.

Also, for ease of notation, let u ∈ Rn represent the vector of variables uk, k = 1, . . . , n.

With this notation [cf., 4], the dual SOCP corresponding to the primal SOCP problem (4.6)

can be obtained by constructing the Lagrangean dual of (4.6). Namely, let

L(x, y, z, p0, p, q, γ, α, β) =

n∑
k=1

Lk(xk, yk, zk, p0, pk, qk, γk, αk, βk), (4.7)

where

Lk(xk, · · · , βk) = ckxk + dkzk + rkyk + p0(
1
k b0 − akxk)− qk(gkxk + hkzk − bk)

+pk(z
∗
k − zk)− (yk + 1, yk − 1, 2(xk − x0k))ᵀ(γk, αk, βk)

= (ck − akp0 − gkqk − 2βk)xk + (dk − hkqk − pk)zk
+(rk − γk − αk)yk + 1

k b0p0 + bkqk + z∗kpk − γk + αk + 2βkx
0
k,

(4.8)

for k = 1, . . . , n, where p0 ∈ (R)∗ = R, q ∈ (Rn+)∗ = Rn+, p ∈ (Rn)∗ = Rn, and

(γk, αk, βk) ∈ (K3)∗ = K3, for all k = 1, . . . , n, are the dual variables or lagrangian multi-

pliers associated to each of the constraints in problem (4.6).
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From (4.7) and (4.8), it follows that the dual problem of (4.6):

max
p0 ∈ R, p ∈ Rn, q ∈ Rn+,

(γk, αk, βk) ∈ K3, k = 1, . . . , n

min
x≥0,y≥0,z≥0

L(x, y, z, p, q, u, v, w, γ, α, β),

is equivalent to

d∗SOCP = max b0p0 +

n∑
k=1

(
bkqk + z∗kpk − γk + αk + 2βkx

0
k

)
s.t. ck − akp0 − gkqk − 2βk ≥ 0, k = 1, . . . , n,

dk − hkqk − pk ≥ 0, k = 1, . . . , n,

rk − γk − αk ≥ 0, k = 1, . . . , n,

(γk, αk, βk) ∈ K3, k = 1, . . . , n,

qk ≥ 0, k = 1, . . . , n.

(4.9)

In Proposition 13 below, we show that strong duality holds between (4.6) and (4.9), and

that their optimal objectives are attained. For this purpose, we introduce, for any set S ⊆

Rn the notion of its interior; that is, int(S) = {w ∈ S : for any u ∈ Rn, there exists ε >

0, such that w + εu ∈ S}.

Proposition 13. Assume that (4.1) is feasible, and ak 6= 0, ck ≥ 0, rk > 0, for all

k = 1, . . . , n. Then

p∗MIQP = p∗MISOCP = p∗SOCP = d∗SOCP.

Proof. From the discussion above, it is clear that problems (4.1), (4.4), and (4.6) are

equivalent. Therefore, p∗MIQP = p∗MISOCP = p∗SOCP. It then remains to show both p∗SOCP

and d∗SOCP are attained and strong duality holds between (4.6) and (4.9); that is, p∗SOCP =

d∗SOCP. For this purpose, we first show that both (4.6) and (4.9) are strictly feasible [cf.,

4].

Notice that from the feasibility of (4.1), the fact that the feasible set of (4.1) is closed,

and that the objective of (4.1) is bounded below by min{0, kmink=1,...,n{dk}}, it follows
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from Weierstrass’ Theorem that (4.1) has an optimal solution. Let x∗ ∈ Rn+, z∗ ∈ {0, 1}n

be the optimal solution of (4.1), and consider any vector y ∈ Rn+ such that yk > (x∗k−x0k)2,

for k = 1, . . . , n. It is easy to see that (x∗, y, z∗) ∈ R2n
+ × {0, 1}n is feasible for (4.6).

Furthermore, we have that

yk + 1 > ‖(yk − 1, 2(x∗k − x0k))‖2,

for k = 1, . . . , n. Thus, (x∗, y, z∗) ∈ R2n
+ ×{0, 1}n is a strictly feasible solution for (4.6); that

is, (x∗, y, z∗) ∈ R2n
+ ×{0, 1}n is feasible for (4.6), and (yk + 1, yk − 1, 2(x∗k − x0k)) ∈ int(K3),

k = 1, . . . , n. Thus, problem (4.6) is strictly feasible. Now consider the assignment

p0 = mink=1,...,n

{
ck−gk
ak

}
,

(pk, qk, γk, αk, βk) =
(
dk − hk − 1, 1, 12rk,

1
4rk,−1

4rk
)
,

(4.10)

for k = 1, . . . , n. Clearly, (4.10) is feasible for (4.9), with

γk =
1

2
rk >

1

2
√

2
rk = ‖(αk, βk)‖2,

for k = 1, . . . , n. That is, (4.10) is a feasible solution for (4.9), and (γk, αk, βk) ∈ int(K3),

k = 1, . . . , n. Thus, problem (4.9) is strictly feasible. The result then follows from SOCP

duality [see, e.g., 4, Thm. 13].

Now let us consider the individual problems associated to the bidders in the market.

For each bidder k = 1, . . . , n, let t0 be the unit commodity price and tk be the price

reflecting the commitment action offered to individual k by the auctioneer. Define the
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following problem,

min ckxk + dkzk + rk(xk − x0k)2 − t0(akxk)− tkzk

s.t. gkxk + hkzk ≥ bk,

xk ≥ 0,

zk ∈ {0, 1};

which similar to problem (4.1) is equivalent to the following MISOCP:

p∗MISOCPk
(t0, tk) = min ckxk + dkzk + rkyk − t0(akxk)− tkzk

s.t. gkxk + hkzk ≥ bk,

(yk + 1, yk − 1, 2(xk − x0k)) ∈ K3,

xk, yk ≥ 0,

zk ∈ {0, 1}.

(4.11)

Following O’Neill et al. [88], below we define both the market-clearing prices and associated

market-clearing contracts between the auctioneer and the bidders.

Definition 9. A competitive equilibrium for the market is a set of prices {t∗0, t∗k} and

allocations {x∗k, z∗k}, such that

(a) At the prices {t∗0, t∗k}, the allocations {x∗k, z∗k} solve (4.11) for all k = 1, . . . , n;

(b) The market clears:
∑n

k=1 akx
∗
k = b0.

Definition 10. Let Tk be a contract between the auctioneer and bidder k ∈ {1, . . . , n} with

the following terms:

(a) Bidder k operates following zk = z∗k, xk = x∗k.

(b) Bidder k receives an amount from the auctioneer that is equal to the following payment:

p∗0akxk + p∗kzk.
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In what follows, we refer to T = {Tk for k = 1, . . . , n}, to describe the market-clearing

contracts between the auctioneer and the bidders. Below, we provide the main result

of the article; namely, a characterization of the market-clearing prices for a market with

non-convexities and convex quadratic costs.

Theorem 9. Assume that (4.1) is feasible, and ak 6= 0, ck ≥ 0, rk > 0, for all k = 1, . . . , n.

Let {x∗k, y∗k, z∗k} for all k = 1, . . . , n be an optimal solution to (4.1). Also, let p∗0, and

{p∗k, q∗k, γ∗k , α∗k, β∗k} for all k = 1, . . . , n be an optimal solution to (4.9). If in (4.11) we

define t0 = p∗0 and tk = p∗k for all k = 1, . . . , n, then the prices {p∗0, p∗k} and allocations

{x∗k, z∗k} for all k = 1, . . . , n represent a competitive equilibrium.

Proof. Note that {x∗k, y∗k, z∗k} for all k = 1, . . . , n is also an optimal solution of (4.6).

From the Karush-Kuhn-Tucker (KKT) conditions associated to the optimal solutions of

both (4.6) and (4.9), it follows that:

0 ≤ (ck − akp∗0 − gkq∗k − 2β∗k)⊥x∗k ≥ 0, k = 1, . . . , n, (4.12)

0 ≤ (dk − hkq∗k − p∗k)⊥z∗k ≥ 0, k = 1, . . . , n,

0 ≤ (rk − γ∗k − α∗k)⊥y∗k ≥ 0, k = 1, . . . , n, (4.13)

0 = p∗0(b0 −
n∑
k=1

akx
∗
k),

0 ≤ q∗k⊥(gkx
∗
k + hkz

∗
k − bk) ≥ 0, k = 1, . . . , n, (4.14)

0 = p∗k(z
′
k − z∗k), k = 1, . . . , n,

(y∗k + 1, y∗k − 1, 2(x∗k − x0k))⊥(γ∗k , α
∗
k, β
∗
k), k = 1, . . . , n, (4.15)

where the notation u⊥w, for u,w ∈ R denotes the complementary slackness between u

and w. Now consider the following problem under the contract T ; that is, each individual

bidder k is offered prices {p∗0, p∗k}, then each participant k = 1, . . . , n solves (4.11) with
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t0 = p∗0, tk = p∗k, k = 1, . . . , n to minimize their operation cost. That is, each bidder solves

p∗MISOCPk
(p∗0, p

∗
k) = min ckxk + dkzk + rkyk − p∗0(akxk)− p∗kzk

s.t. gkxk + hkzk ≥ bk,

(yk + 1, yk − 1, 2(xk − x0k)) ∈ K3,

xk, yk ≥ 0,

zk ∈ {0, 1}.

(4.16)

Clearly, (xk, yk, zk) = (x∗k, y
∗
k, z
∗
k) is feasible for (4.16), and the objective value of this

solution, denoted p̂MISOCPk(p∗0, p
∗
k), is

p̂MISOCPk(p∗0, p
∗
k) =ckx

∗
k + dkz

∗
k + rky

∗
k − p∗0akx∗k − p∗kz∗k.

Using the complementarity equations (4.13), (4.14), and (4.15), it follows that

p̂MISOCPk(p∗0, p
∗
k) =ckx

∗
k + dkz

∗
k + rky

∗
k − p∗0akx∗k − p∗kz∗k − q∗k(gkx∗k + hkz

∗
k − bk)

− (rk − γ∗k − α∗k)y∗k − (y∗k + 1, y∗k − 1, 2(x∗k − x0k))ᵀ(γ∗k , α
∗
k, β
∗
k),

=(ck − akp∗0 − gkq∗k − 2β∗k)x∗k + (dk − p∗k − hkq∗k)z∗k + y∗k(γ
∗
k + α∗k)

− (y∗kγ
∗
k + γ∗k + y∗kα

∗
k − α∗k − 2β∗kx

0
k),

=q∗kbk − γ∗k + α∗k + 2β∗kx
0
k.

Next we show that (xk, yk, zk) = (x∗k, y
∗
k, z
∗
k) is the optimal solution for problem (4.16). Let

(xk, yk, zk) ∈ R2
+×{0, 1} be a feasible solution of (4.16). It follows that gkxk+hkzk−bk ≥ 0,

yk ≥ 0 and (yk + 1, yk − 1, 2(xk − x0k)) ∈ K3. Therefore

q∗k(gkxk + hkzk − bk) ≥ 0

yk(rk − γ∗k − α∗k) ≥ 0,

(yk + 1, yk − 1, 2(xk − x0k))ᵀ(γ∗k , α
∗
k, β
∗
k) ≥ 0,

(4.17)
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since the feasibility of p∗0, and {p∗k, q∗k, γ∗k , α∗k, β∗k} for all k = 1, . . . , n, for (4.9) ensures that

q∗k ≥ 0, rk − γ∗k − α∗k ≥ 0, and (γ∗k , α
∗
k, β
∗
k) ∈ K3 = (K3)∗. Also, from the fact that p∗0, and

{p∗k, q∗k, γ∗k , α∗k, β∗k} for all k = 1, . . . , n is feasible for (4.9), xk, zk ∈ R+, it follows that:

(ck − akp∗0 − gkq∗k − 2β∗k)xk ≥ 0,

(dk − hkq∗k − p∗k)zk ≥ 0.

(4.18)

Now let pMISOCPk denote the objective value of (4.16) associated with the feasible solution

(xk, yk, zk) ∈ R2
+ × {0, 1}; that is

pMISOCPk = ckxk + dkzk + rkyk − p∗0akxk − p∗kzk.

Using (4.17) and then (4.18), we have

pMISOCPk ≥ ckxk + dkzk + rkyk − p∗0akxk − p∗kzk − q∗k(gkxk + hkzk − bk)

−yk(rk − γ∗k − α∗k)− (ykγ
∗
k + γ∗k + ykα

∗
k − α∗k + 2β∗kxk − 2β∗kx

0
k)

= (ck − akp∗0 − gkq∗k − 2β∗k)xk + (dk − hkq∗k − p∗k)zk + q∗kbk − γ∗k + α∗k + 2β∗kx
0
k

≥ q∗kbk − γ∗k + α∗k + 2β∗kx
0
k

= p̂MISOCPk(p∗0, p
∗
k).

This shows that (x∗k, y
∗
k, z
∗
k) is the optimal solution for (4.16). Furthermore, the solution

(x∗k, y
∗
k, z
∗
k) satisfies the market-clearing condition

∑n
k=1 akx

∗
k = b0, therefore, (x∗k, y

∗
k, z
∗
k)

provides a market-clearing allocation.

4.3 Scarf’s market instance

As an example of a market with non-convexities, consider a problem proposed by Scarf

[100]. The objective is to minimize the total cost subject to satisfying the demand in an

electricity market. Two types of plants are available to provide the electricity in the market.

The characteristics of each type of plant, including costs and operational constraints, are
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summarized in Table 4.3.1.

(type 1 plant) (type 2 plant)
Characteristics Smokestack High Tech

Capacity 16.00 7.00
Construction cost 53.00 30.00
Marginal cost 3.00 2.00
Average cost at capacity 6.31 6.28
Total cost at capacity 101.00 44.00

Table 4.3.1: Characteristics of Smokestack and High Tech plants [88].

Scarf’s market problem can be formulated as the following mixed-integer linear program

min

5∑
i=1

(3x1i + 53z1i) +

10∑
j=1

(2x2j + 30z2j)

s.t.
5∑
i=1

x1i +
10∑
j=1

x2j = D,

x1i − 16z1i ≤ 0, i = 1, . . . , 5,

x2j − 7z2j ≤ 0, j = 1, . . . , 10,

x1i, x2j ≥ 0, i = 1, . . . , 5, j = 1, . . . , 10,

z1i, z2j ∈ {0, 1}, i = 1, . . . , 5, j = 1, . . . , 10,

(4.19)

where D is the total demand. The market-clearing price for this problem is studied

in [88]. Table 4.3.2 summarizes the optimal solution of (4.19) for different values of the

demand. It is clear that as the demand increases, the number of plants of different types

used can change dramatically. For example, when the demand is 56, all type 1 plants are

closed and eight (8) type 2 plants are open; however, when the demand is 60, two (2) type 1

plants are open whereas now only four (4) type 2 plants are open. The market-clearing

prices in Table 4.3.3 are obtained from the dual (shadow) prices of the linear program

obtained from (4.19) by fixing its binary variables to their optimal value [cf., 88]. Note

that for all the instances with different demand, the market-clearing prices remain the

same.
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Units of type Unit’s output

Demand 1 2 1 2 Total Cost

56 0 8 0 56 352
58 1 6 16 42 365
60 2 4 32 28 378
62 3 2 48 14 391
64 4 0 64 0 404
66 2 5 31 35 419
68 3 3 47 21 432
70 0 10 0 70 440

Table 4.3.2: Optimal solution of Scarf’s market problem (4.19) [88].

Commodity Price Plant 1 Start-up Price Plant 2 Start-up Price

3 53 23

Table 4.3.3: Market-clearing price of Scarf’s problem.

Now we consider a modified Scarf problem with quadratic ramping costs,

min
5∑
i=1

(3x1i + 53z1i + r1(x1i − x01i)2)

+
10∑
j=1

(2x2j + 30z2j + r2(x2j − x02j)2)

s.t.

5∑
i=1

x1i +

10∑
j=1

x2j = D,

x1i − 16z1i ≤ 0, i = 1, . . . , 5,

x2j − 7z2j ≤ 0, j = 1, . . . , 10,

x1i, x2j ≥ 0, i = 1, . . . , 5, j = 1, . . . , 10,

z1i, z2j ∈ {0, 1}, i = 1, . . . , 5, j = 1, . . . , 10,

(4.20)

where x01i, x
0
2j , for all i = 1, . . . , 5, j = 1, . . . , 10, are set to be the optimal unit’s generation

outputs, obtained after solving (4.19) with a demand D = 55. The quadratic terms in

the objective function can be interpreted as the ramping costs of moving from the original

output plan set from (4.19) with a demand D = 55. It is clear that by setting D = 55

in (4.20), regardless of the values assigned to r1, r2, problem (4.20) has the same optimal

solution.
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After setting r1 = r2 = 0.1, we can see from Table 4.3.4 that in most cases, the number

of type 1 plants and type 2 plants with full capacity remain the same as a result of the

ramping costs (in contrast with Table 4.3.2). Note that as the demand increases, a type 2

plant with partial capacity is opened for production for D ≥ 64. Table 4.3.5 summarizes

the market-clearing prices obtained using the results in Section 4.2. In order to maintain a

competitive equilibrium, the market-clearing prices vary from case to case. In contrast with

the start-up prices obtained by O’Neill et al. [88], note that from the results of Table 4.3.5,

it follows that the start-up price can differ for type 2 plants producing at full capacity, and

type 2 plants producing at partial capacity. Specifically, the start-up price of type 2 plants

producing at full capacity changes with the demand, whereas the start-up price of type-2

plants producing at partial capacity remains constant at 30 for demands between 56 to 68.

The start-up price for closed type 2 plants is the same as the price for type 2 plants with

full capacity. The unit commodity price varies in a small range but it does not remain the

same. The start-up price for all type 1 plants remains mostly equal to 53, but this price is

different for some demand levels (e.g., compare D = 60 and D = 62).

Type 1 Output Type 2 Output
Partial Full Partial Full Cost

Demand No. Prod. No. Prod. No. Prod. No. Prod. Ramp Total

56 3 45.00 0 0 1 4.00 1 7 1.90 377.90
58 3 46.50 0 0 1 4.50 1 7 2.10 383.60
60 0 0 3 48 1 5.00 1 7 2.50 389.50
62 0 0 3 48 1 7.00 1 7 4.90 395.90
64 3 47.40 0 0 2 9.60 1 7 4.62 429.02
66 0 0 3 48 2 11.00 1 7 6.05 435.05
68 0 0 3 48 2 13.00 1 7 8.45 441.45
70 1 15.00 3 48 0 0 1 7 22.50 467.50

Table 4.3.4: Optimal solution of modified Scarf’s problem with r1 = 0.1, r2 = 0.1.

Tables 4.3.6 and Table 4.3.7 show that after setting r1 = 0.1, r2 = 0.3 in (4.20), similar

conclusions as in the case r1 = r2 = 0.1 can be reached. However, with a higher ramping

cost on type 2 plants, we can see that with demand values between 64 to 68, instead of

operating one more type 2 plant to satisfy the demand, the optimal solution suggests to

operate an additional type 1 plant instead.
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Plant 1 Start-up Price Plant 2 Start-up Price
Demand Unit Price Partial Full & Closed Partial Full & Closed

56 2.80 53.00 53.00 30 24.40
58 2.90 53.00 53.00 30 23.70
60 3.00 53.00 53.00 30 23.00
62 3.40 46.60 46.60 30 20.20
64 2.96 53.00 53.00 30 23.28
66 3.10 51.40 51.40 30 22.30
68 3.30 48.20 48.20 30 20.90
70 6.00 53.00 5.00 2 2.00

Table 4.3.5: Market-clearing price of modified Scarf’s problem with r1 = 0.1, r2 = 0.1.

Type 1 Output Type 2 Output
Partial Full Partial Full Cost

Demand No. Prod. No. Prod. No. Prod. No. Prod. Ramping Total

56 3 47.4 0 0 1 1.6 1 7 0.78 379.18
58 0 0 3 48 1 3.0 1 7 2.70 385.70
60 0 0 3 48 1 5.0 1 7 7.50 394.50
62 0 0 3 48 0 0 2 14 14.70 405.70
64 1 9.0 3 48 0 0 1 7 4.62 435.10
66 1 11.0 3 48 0 0 1 7 12.10 445.10
68 1 13.0 3 48 0 0 1 7 16.90 455.90
70 1 15.0 3 48 0 0 1 7 22.50 467.50

Table 4.3.6: Optimal solution of modified Scarf’s problem with r1 = 0.1, r2 = 0.3.

Start-up Compensation
Type 1 Output Type 2 Output

Demand Unit Price Partial Full & Closed Partial Full & Closed

56 2.96 53.00 53.00 30.00 23.28
58 3.80 40.20 40.20 30.00 17.40
60 5.00 21.00 21.00 30.00 9.00
62 6.20 1.80 1.80 30.00 0.60
64 4.80 53.00 24.20 10.40 10.40
66 5.20 53.00 17.80 7.60 7.60
68 5.60 53.00 11.40 4.80 4.80
70 6.00 53.00 5.00 2.00 2.00

Table 4.3.7: Market-clearing price of modified Scarf’s problem with r1 = 0.1, r2 = 0.3.

Figures 4.3.1 and 4.3.2 compare the solutions obtained from the three cases discussed

thus far; that is when r1 = r2 = 0, when r1 = r2 = 0.1, and when r1 = 0.1, r2 = 0.3.

Next we consider an extreme case where the parameter of ramping cost is relatively

large. With r1 = r2 = 1, similar analysis can be applied from the analysis with r1 = r2 =

0.1. However, with a relative large ramping cost parameter, the unit commodity price
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Figure 4.3.1: Comparison of optimal solution of (4.20) for different values of ramping costs
r1, r2 (r1 = 0, r2 = 0 indicates no ramping costs).

Table 4.3.8: Optimal solution of modified Scarf’s problem with r1 = r2 = 1.

Type 1 Output Type 2 Output
Partial Full Partial Full Cost

Demand No. Prod. No. Prod. No. Prod. No. Prod. Ramp Total

56 0 0 3 48 1 1 1 7 1.0 380.0
58 0 0 3 48 1 3 1 7 9.0 392.0
60 0 0 3 48 1 5 1 7 25.0 412.0
62 0 0 3 48 1 7 1 7 49.0 440.0
64 0 0 3 48 2 9 1 7 40.5 465.5
66 0 0 3 48 2 11 1 7 60.5 489.5
68 0 0 3 48 2 13 1 7 84.5 517.5
70 0 0 3 48 3 15 1 7 75.0 542.0
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Figure 4.3.2: Unit commodity prices obtained from the solution of (4.20), for different
values of ramping costs r1, r2 (r1 = 0, r2 = 0 indicates no ramping costs).

as well as start-up price can change dramatically. It is interesting to see that when the

demand becomes 58, the start-up prices for type 1 plant, type 2 plant with full capacity and

closed type 2 plant are negative, which means these plants need to pay instead of getting

paid to open in exchange for a very high commodity price (compared with Table 4.3.3 and

Table 4.3.5).

Now consider the case in which r1 = r2 = 1 and D = 60 in (4.20), as an example to

illustrate that the dual prices obtained by using the methodology of Section 4.2, result in

a competitive equilibrium. For any j = 1, . . . , n, the individual problem for a type 2 plant

j committed by the central operator to produce at partial capacity is

min 2x2j + 30z2j + (x2j − 0)2 − 12x2j − 30z2j

s.t. x2j − 7z2j ≤ 0,

x2j ≥ 0,

z2j ∈ {0, 1},

and its optimal solution is (x∗2j , z
∗
2j) = (5, 1), which matches the optimal solution in Ta-

ble 4.3.8. It is not difficult to check, given the dual prices in Table 4.3.9, that the optimal
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solution for every individual problem matches its corresponding solution in Table 4.3.8,

verifying Theorem 9.

Plant 1 Start-up Price Plant 2 Start-up Price
Demand Unit Price Partial Full & Closed Partial Full & Closed

56 4 37 37 30 16
58 8 -27 -27 30 -12
60 12 -91 -91 30 -40
62 16 -155 -155 30 -68
64 11 -75 -75 30 -33
66 13 -107 -107 30 -47
68 15 -139 -139 30 -61
70 12 -91 -91 30 -40

Table 4.3.9: Market-clearing price of modified Scarf’s problem with r1 = r2 = 1.

4.4 Conclusion

We consider the problem of obtaining appropriate market-clearing prices when the market

has both non-convexities and convex quadratic costs. Our results show that by using

convex optimization techniques, the work of [88] on pricing in markets with non-convexities,

can be extended to markets in which both non-convexities and convex quadratic costs

arise. For the electricity market these two features arise due to generator fixed costs (or

other operational constraints), and ramping or quadratic generation costs. Considering

both of these characteristics have become increasingly important due the high penetration

of renewable energy sources (RES). This is due to the output volatility of RES, which

requires conventional generators to ramp up or down more frequently. Besides electricity

markets, non-convexity features appear in other markets such as the financial and labor

market [13, 24]. Thus our results have an impact in a wide range of potential markets.

Furthermore, we believe that the techniques outlined here can be used to extend other

pricing methodologies for markets with non-convexities [74, see,] that aim to obtain prices

with different characteristics. Finally, in the context of electricity markets, it is natural

to consider how the consideration of ramping costs affect prices in an electrical network

with congested lines. Addressing these questions provides intriguing directions for future
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research work in this area.
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