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Abstract

This thesis proposes a mathematical program that models the energy consumption

and energy demand values using a time-of-use electricity rate structure. Using large

commercial or industrial machines with electrical motors, the model will determine

which machines will be turned on and off during a certain amount of time. Through

the Integer Program, we show that by letting machines run longer and staggering

the starts of machines, the electricity costs for a typical day can be greatly reduced.

Also, we add a parameter that specifies the total running time of each machine

which prevents a loss in productivity for a business. We test our model with both

random parameters as well as with an example that uses values from the refrigeration

industry. We show by using an optimized running schedule for all machines that

energy costs can be greatly reduced compared to a typical un-optimized machine

run schedule.
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Chapter 1

Introduction

1.1 General Introduction

In this thesis we are discussing the commerical load scheduling problem using a

time-of-use schedule with electricity demand charges. A time-of-use schedule pro-

vides different electricity consumption charges based on the time of the day, usually

defined as peak, off peak, and partial peak. Typically, peak charges will be dur-

ing the times where the electricity company experiences the highest energy demand

from its customers. Off-peak charges are usually the night time and early hours of

the day and partial peak is generally experienced during the morning hours, i.e. 8

A.M. to 12 P.M. Our goal is to create a mathematical program that will reduce the

electricity costs for a large scale commercial application. Unlike most residential
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electricity rates, large commercial electricity rates take into account the electric-

ity consumed in kilowatt hours as well as the electricity demand during the day

measured in kilowatts. Electricity demand is the amperage draw associated with

starting up large machines, while electricity consumption is the electricity required

to keep a machine running after it has started. For utility companies, the maximum

demand is typically measured in 15-minute or 30-minute intervals, although a 60-

minute interval may at times be utilized [3]. The utility company charges demand

rates based on the maximum amount of demand realized during a fifteen or thirty

minute segment of the month. For example, suppose if a company’s maximum de-

mand for the month is 15 kW and a utility company charges $10.00 per kW. Then,

the company would be charged $150.00 for their demand charge. In our model we

will assume that the demand charge is the maximum demand realized during one

time period and the demand cost is charged daily. Therefore, it would it would be

in the firm’s best interest to spread out the start up of machines in order to reduce

the firm’s energy demand, in turn reducing their electricity costs.

Electricity consumption rates using the schedule proposed by Pacific Gas and

Electric Company utilize a time-of-use schedule [2]. With a time of use schedule,

consumption charges may be time differentiated by season and/or time of day [3].

Typically, time-of-use rate structures incorporate an on-peak and off-peak pricing

scheme where electricity costs more during the day time hours then it does at night.
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For example, a utility company may charge $.10 per kWh from the hours of 10 AM

to 6 PM then $.08 per kWh otherwise. Utility companies such as Pacific Gas and

Electricity Company implement a peak, partial peak, off-peak rate structure where

peak is from 1 PM to 7 PM, partial peak is 10 AM to 1 PM and 7 PM to 10 PM,

and off peak is all other hours. Here the utility company may charge $0.16 kWh for

peak, $0.14 for partial peak, and $0.12 for off peak hours. Also, the time-of-use rate

schedule by Pacific Gas and Electric Company incorporates seasonal rates based

on summer and winter where the consumption as well as the demand charges are

lower during the winter compared to summer. Summer electricity costs will be more

than those electricity costs charged during the winter due to cooling loads and higher

stresses on the power grid. Although our model can handle both summer and winter

electricity rate schedules, we will use only the summer rates in our simulations.

We should also note that commercial rate structures vary depending upon the

type of voltage delivered to the firm. A typical rate structure will list different

costs for primary, secondary, and transmission voltages. For example, a house will

generally use 115 volt and 230 volt which are known as secondary voltages. In a

commercial setting, a firm will generally use 460 volt, if the voltage is available

by the service provider, which is a secondary voltage as well. The primary and

transmission voltages are much higher such as 230,000 volts for transmission and

20,780 volts for primary.
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Customers that take service at the transmission voltage level will have trans-

formers within their facility to achieve the voltage that they need for operation.

That is, the utility company does not have to provide any voltage transformations

for customers that utilize transmission voltages. For primary voltages, the utility

company provides some voltage transformations in order to service the customers

that desire primary voltages. Lastly, in order to achieve secondary voltages, a utility

company must provide several voltage transformations to service households, small

businesses, etc.. Therefore, different demand charges are necessary for each of the

voltage levels which reflects the necessary voltage transformation costs that the util-

ity company accrues in order to provide the different voltage levels [3]. Hence, the

demand charge increases for each level of electricity transformation. The A-10 TOU

rate schedule [2] also implements a fixed charge that takes into account the cost of

the electricity metering device, however we will ignore this in the model.

For this problem we will be using the refrigeration industry to obtain data on

energy demand and energy consumption by different refrigeration systems. In the

refrigeration industry, as in most industries, they do not use kilowatts to describe

how much electricity is required to start up a machine or run one. Hence we will

define three new terms referred to as rated load amps, maximum continuous current,

and locked rotor amps. The maximum continuous current, or MCC, of a compressor

is the value at which the interal overload protector of a compressor’s motor will trip
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and turn off the compressor [1]. Manufacturers of refrigeration compressors meticu-

lously test their machines to find out the value at which the compressor’s overload

protector will trip and stop the compressor from running. Hence, if the maximum

continuous current of a compressor was 35 amps and compressor drew 36 amps the

overload protector would trip and the compressor would shut off. The MCC is an

important value used to find the rated load amperage of a compressor. The rated

load amperage (RLA) is a mathematical calcuation specified by Underwriters Lab-

oratories (UL) that uses the MCC value to derive the RLA value of a compressor.

Since compressor amperage draws vary based on extraneous factors such as ambient

temperature, the RLA value is the accepted amp draw that a compressor will exhibit

when it’s running [1]. Locked rotor amperage, or LRA, is the amperage required

to energize a compressor in a locked state, when it’s off, to a running state. An-

other term is known as full load amperage, or FLA, which is used more frequently

with fan motor running amperages. Since the amperage draw of compressors and

machines in general change based upon conditions, we use the RLA values as am-

perage required to run a compressor in our model. Using the amperage found in

the literature provided by Heat Transfer Products Group ([4], [5], [6], and [7]), and

using our assumption that the electricity supply is 460 volt, we can transform the

amperage draws into kilowatts by:
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kW =
A× V

1000

Where A is the amperage value obtained for a machine’s RLA and LRA values,

and V is the voltage which we assumed is 460 volt.

Typically, in large commercial applications, the electricity draw to start a ma-

chine greatly exceeds the electricity required to keep a machine running. Hence,

during typical usage, the costs for electricity demand will exceed the electricity con-

sumption costs. Spreading out machine start ups may decrease the demand charge

however, it may also reduce the productivity of the firm. Here we will model a

company trying to reduce its energy costs while preventing loss of productivity.

1.2 Typical Refrigeration System

Later in this thesis we provide an example using the integer progam with refrigera-

tion equipment electrical data. We have modeled refrigeration systems that would

be typical for a medium sized supermarket and recorded the corresponding electrical

data for each of the refrigeration systems. Before we run the model, it is imperative

to discuss refrigeration systems and the industry’s methods for making refrigeration

systems more energy efficient.

To begin, a refrigeration cycle is a “sequence of thermodynamic processes through
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which a refrigerant passes, in a closed or open system, to absorb heat at a relatively

low temperature level” [9]. In order to explain this definition in greater detail, we

provide the diagram in Figure 1.1.

Compressor

Condenser

Receiver
Evaporator

Expansion 

Valve

Solenoid Valve

Thermostat

Hot Air Cold Air

Warm Air

Figure 1.1: Traditional Refrigeration System

From our definition, the refrigeration cycle is an open or closed system (Figure

1.1 is a closed system), where a refrigerant passes through. There are a myriad

of different types of refrigerants that are used in refrigeration systems based on

the application. Some trade names that may sound familiar include Freon and

Puron which are typical for air conditioning and high temperature refrigeration

applications. The refrigeration cycle begins at the compressor which compresses

the refrigerant from a low temperature, low pressure vapor, into a high pressure,

high temperature gas. The refrigerant then travels to the condenser where it is

cooled from a high temperature gas into a high temperature liquid. As seen in the
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diagram, the high pressure, high temperature liquid flows through the liquid line

until it reaches the “metering device”. At the metering device, also known as an

expansion valve, the refrigerant is injected into the evaporator at a low pressure.

The refrigerant then “boils off” inside the evaporator coil, creating a cooling effect

as it evaporates into a low pressure, low temperature vapor. The evaporator coil,

inside the refrigerated space, provides the cooling necessary to reach the temperature

desired. The low temperature, low pressure vapor then travels back through the

suction line to the compressor where the refrigeration cycle beings once again. From

the Figure 1.1, the refrigerant absorbs the heat in the refrigerated space, travels

through the compressor, then the heat is rejected through the condenser, which is

consistent with the definition of a refrigeration cycle.

The refrigeration cycle continues until the thermostat inside the refrigerated

space is satisfied, i.e. it reached the temperature set point. When the thermostat

is satisfied, a solenoid valve on the liquid line closes which cuts off the refrigerant

flow to the evaporator. The compressor continues to operate, or pump down, until

most of the refrigerant in the suction line has been compressed which creates low

pressure in the suction line. The drop in pressure trips a switch in the compressor

that turns it off. From now on we refer to the compressor turning on and off

as compressor cycling. As discussed previously, every time a refrigeration cycle

begins, energy demand is realized due to energy required to start the compressor,
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i.e. changing it from a rotor locked state to a running state. Once the compressor

is running, it utilizes significantly less energy than the energy required to start

the compressor. An increase in compressor cycles also reduces the longevity of

the refrigeration compressor. Therefore, in order to reduce the number of cycles,

a mechanical method known as hot gas bypass for compressor capacity control is

utilized. By reducing the number of cycles, the compressor will demand less energy

to start during a time period as well as prevent excessive wear on the compressor.

Next we discuss that by controlling the capacity of the compressor using hot gas

bypass, the cycling of the compressor is also reduced.

1.2.1 Hot Gas Bypass Capacity Control

Hot gas bypass, or HGBP for short, utilizes a mechanical method for capacity control

that prevents the refrigeration compressor from cycling. In a given twenty-four

hour period, a compressor may cycle twenty times or even more given the cooling

demands of the refrigerated space. The cycling of the compressor leads to large

temperature deviations in the refrigerated structure which is unacceptable in some

applications such as blood and plasma banks. The HGBP method essentially hinders

the refrigeration system from turning off even after the cooling requirements of the

refrigerated structure have been satisfied.

Hot gas bypass begins to influence the closed system once the cooling demands

10



of the refrigerated structure have been satisfied. Once the cooling load has been

satisfied, a solenoid closes which restricts flow of refrigerant to the evaporator as

discussed in Section 1.2.1. Instead of the compressor pumping down, the hot gas

line solenoid valve opens and feeds the evaporator with hot gas. By feeding the

evaporator hot gas a “false load” is created in the room which eventually leads to

the thermostat calling for cooling. Once the thermostat calls for cooling in the room

the normal refrigeration cycle begins again.

Energy savings are realized here by preventing the compressor from cycling. As

discussed in the introduction, energy demand is realized every time the compressor

starts. HGBP prevents the compressor from turning off therefore the number of

starts are greatly reduced or nonexistent in some instances. Although HGBP pre-

vents compressor cycling, energy is still being consumed by the compressor. More

recent electrical and mechanical methods not only prevent the compressor from

cycling, but also address the issue of the compressor constantly consuming energy.

1.2.2 Cylinder Unloading

Several types of refrigeration compressors, much like an automobile, utilize pistons or

cylinders to compress the refrigerant gas. In the industry today, these compressors

have two, three, four, six, or eight pistons typically. Cylinder unloading is used

for capacity control by “[interrupting] the gas flow, and the corresponding pistons
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operate in the ‘idle mode’ without gas pressure” [8]. During full load operation, the

compressor will operate with all cylinders. However, during part load operation,

a mechanical mechanism prevents gas flow to certain cylinders putting them into

an idle state. For example, if we were to have a four cylinder compressor, cylinder

unloading would prevent gas flow to a pair of those cylinders when refrigeration

conditions allow for part load operation. Cylinder unloading is a relatively simple

idea which keeps the compressor running through part load operation instead of

turning off. Not only does it prevent the compressor shutting off, but it also cuts

down on the compressor energy consumption.

A single compressor has a power consumption factor of 1 during full load op-

eration i.e. all cylinders are being utilized. If a compressor is unloaded, its power

consumption factor will decrease based on how many cylinders of a compressor are

unloaded. For instance with a three cylinder compressor, with two cylinders un-

loaded, it achieves a power consumption factor of approximately 0.4 at ten degrees

Celsius. Note that the power consumption factor is dependent upon temperature

since the compressor requires more energy to compress lower temperature refrigerant

gas. Therefore, cylinder unloading not only cuts down the amount of compressor cy-

cles, but also the power consumption of the compressor during part load conditions.

Hence, cylinder unloading is more efficient than the hot gas bypass method. Unfor-

tunately, cylinder unloading can only be applied to large compressors, therefore it
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is not suitable for every application. However, note also that there are other ways

to “unload” compressors without cylinders using different methods that will not

be discussed in this master’s thesis. A new electronic method has been developed

recently which provides a larger application range than cylinder unloading.

1.2.3 Electronic Compressor Speed Control

A compressor with a frequency inverter or a variable speed compressor utilizes an

electronic control that varies the speed of the compressor based on the cooling

demands of the refrigerated space. The electronic control varies the speed of the

compressor motor which provides step-less capacity control of the refrigeration com-

pressor. This differs from cylinder unloading where capacity control is dependent

upon the compressor’s quantity of cylinders. Therefore, cylinder unloading provides

stepped capacity control. Note with variable speed compressors, the definitions of

full load operation and part load operation vary from the definitions in Section 1.2.3.

The compressor operates at full load when it is running at its maximum designed

speed. Part load operation occurs when the compressor is running at some speed

less than its maximum.

Some manufacturers incorporate a soft starter into their electronic control which

prevents the compressor from drawing large amperage to start which relates to a
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large spike in energy demand. In addition, some manufacturers claim that by uti-

lizing a variable speed control, the capacity of the compressor can be reduced to

ten percent of the published full load capacity. Therefore, when a typical refrigera-

tion system would complete its cycle, a system utilizing a variable speed compressor

would run at reduced load until higher cooling demands were realized. Similar to

compressor unloading, electronic speed control prevents cycling of a compressor as

well as reduces the compressor’s energy consumption through part load operation.

Unfortunately, compressors with variable speed controls or frequency inverters are

expensive compared to their mechanical counterparts. Therefore there is some de-

bate as to whether or not the costs inhibit the benefits of variable speed compressors.

1.2.4 Refrigeration Conclusion

Through this section we discussed several ways to promote cost savings using elec-

tronic or mechanical means to control the cycling of the compressor. HGBP utilizes

a mechanical method that kept the compressor cycling. The two latter methods

utilize mechanics and electronics to not only prevent the cycling of the compres-

sor but reduce the energy consumption as well. All of these methods have their

own limitations due to application and cost. However, these methods illustrate the

importance of using capacity control to reduce the amount of compressor cycles,

leading to possible cost savings which we investigate later.
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Chapter 2

Literature Review

There is a large amount of scholarly articles dealing with the management of elec-

tricity and trying to optimize costs or minimize the demand on a power grid. Two

topics of particular interest are Multi-Agent Home Automation Systems (MAHAS)

and Electricity Management Controllers (EMC). The purpose of these devices is to

allow the agents, i.e. devices or appliances, to cooperate and coordinate their actions

in order to find an acceptable near optimal solution for power management [10]. In

their paper they propose an algorithm to reduce energy costs by postponing or de-

laying starts of appliances all while taking into account the comfort of the inhabitant

that lives in the residence. Cohen [11] demonstrates that it may be beneficial to

a utility company to control the running of appliances to reduce the strain on the

electrical grid during times of peak load. Using a dynamic programming approach,
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he shows how a utility company could level out the energy load throughout the day

by controlling a residential area’s usage of appliances, i.e. air conditioners and hot

water heaters.

There is a large body of literature on load management or load control. Hu,

Chen and Bak-Jensen [12] discusses optimizing energy loads by managing consumer

energy demand in Denmark. Denmark uses a time-of-use electricity rate schedule

where electricity prices are set the day before through market trading and then

those prices are implemented the following day [12]. Therefore, consumers know

the time-of-use rate schedule beforehand. Using a linear program, they model the

energy costs of a consumer during the day with an objective to minimize those costs.

Since the consumers know the rate schedule, they can “reduce the consumption near

the price peaks in order to reduce the energy costs” [12]. The authors show a price

curve plotted against time with large price spikes. By using the LP, the authors

show that program shifts energy consumption away from the peaks in order to reduce

costs. Therefore, by shifting consumption, the end user will experience energy costs

savings.

Luo, Kumar, Sottile, and Yingling [13], discuss a MILP formulation for load side

demand control. Here the authors focus on the demand component of electricity

costs instead of consumption costs. Their MILP considers loads that are on at time

t then decides whether or not to shed those loads, when it needs to be shed, and
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when operation of that load shall resume [13]. The MILP also looks at loads that are

off and schedules when those loads are to resume again. The authors implement the

model using constraints that set bounds on the minimum and maximum downtime

for each of the loads, likewise for the up time. The authors also utilize three variables

for each of the loads, one binary variable for off and on, another that tracks the time

on, and lastly one that tracks the time off. By tracking the time off and time on, the

authors can figure out the production of each of the loads over the time horizon. The

model also utilizes a maximum demand constraint which enforces that the system

demand must not exceed the max demand value. The authors apply their model to a

coal mine case study where they model the electricity demand costs. Using demand

control by shedding loads can reduce demand costs all while reducing any loss in

productivity associated with load shedding [13]. Also, by preventing machines from

constantly stopping and starting, the wear on the machines can be reduced [13].

Mohsenian-Rad, Wong, Jatskevich, and Schober [15] propose a model similar to

that proposed by Hu, Chen, and Bak-Jensen. Their model proposes the shifting

of energy consumption as in [12], however they propose that consumers will not

change their consumption habits without incentive. They explain that most energy

consumption in the United States occurs in buildings and “there are two general

approaches for energy consumption management in buildings: reducing consump-

tion and shifting consumption”[15]. In their paper, they propose the use of energy
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consumption devices similar to those proposed in [10] and [11] where there is an

electronic controller in each household and in all households in the neighborhood

are connected to one local controller. The algorithm they propose solves the energy

consumption schedule for each household in the neighborhood, then communicates

it back to the local controller. This process continues until each household achieves

its own maximum payoff, or reduction in energy costs. The authors explain that

the energy consumption schedule changes by shifting soft appliances such as dish-

washers, clothes driers, etc. [15]. By shifting these appliances, households are able

to achieve the maximum payoff or cost savings. Hard appliances such as lighting,

air conditioners, refrigerators, etc. are not allowed to be rescheduled in their model.

A model proposed by Middelberg, Zhang, and Xia [14] also utilizes the idea

of load shifting to reduce energy consumption costs. The authors model a series of

conveyor belts from a South African Colliery by using a binary integer programming

method. Their objective is to reduce the operational electricity costs. In order to

reduce electricity costs, the model shifts electricity demand from peak TOU periods

to those periods that are less expensive or the off-peak periods [14] similar to [12]

and [15]. By utilizing this approach, they show that with the South African case

study, there was a 49% reduction in the cumulative energy costs during 5 weekdays

in a high-demand season [14]. However, they also showed that the total energy that

was consumed during peak TOU periods over the five days was reduced from 25%
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to 8% compared to the non-optimal data from the case study.

Ashok and Banerjee [16], take the shifting principles proposed in [12] amd [15]

and applies that idea to an industrial setting. They propose a mixed integer linear

program to reduce energy costs based on a case study for a typical flour mill. The

authors use a myriad of constraints such as production, storage, process flow, se-

quential, maximum demand, downtime of machines, and electrical load to properly

model a flour mill’s production. The objective of the model is to reduce energy con-

sumption costs while the constraints ensure that the flour production is optimized as

well. They claim “the proposed model is capable of analyzing the industry response

to different tariffs, operational strategies like two or three shift operation, variation

of equipment size or storage capacity and adoption of new technologies”[16]. By

implementing the model, the authors claim that in the case study the plant would

experience an energy cost reduction of 29% by implementing their model. The cost

savings is a result of spreading out the peak energy consumption times to take ad-

vantage of the part-peak and off peak electricity costs proposed by the time-of-use

energy schedule they used for their case study.

Roos and Lane [17] propose a linear program that is applied to the industrial

setting as in [16]. They propose that “the purpose of this paper is to add more

insight into the electricity cost saving potential of real time pricing (RTP) through

intelligent demand management” [17]. Instead of using a time-of-use schedule, the
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electricity prices are variable for specific time periods throughout the day. Since the

utility company provides the consumer with the pricing information beforehand,

Roos and Lane propose an intelligent demand system similar to the EMC devices

proposed in [10] and [11]. Through linear programming optimization, the authors

propose a “load scheduling strategy that may result in minimum electricity costs

to the end user” [17]. The objective is to reduce the electricity costs to the end

user under real-time pricing electricity rates. Through intelligent demand manage-

ment which describes the optimal load scheduling, an end user could experience

substantial electricity costs savings.

Mohseninan-Rad and Leon Garcia [18] propose a model for residential consumers

that also uses real-time-pricing (RTP) as discussed in [17]. The authors claim, “the

lack of knowledge among users about how to respond to time-varying prices and the

lack of effective home automation systems are two major barriers for fully utilizing

the benefits of real-time pricing tariffs” [18]. Although the RTP schedule allows

consumers to shift their higher energy demand appliances to times where energy

rates are lower, these shifts are done manually by the consumer. The authors propose

a model that will optimally schedule consumer appliances in order to minimize

the consumer’s total electricty costs. The authors make the assumption that each

residential consumer is equipped with a smart meter with an energy scheduling unit

similar to the EMC devices discussed in [10], [11], and [17]. The authors devise
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a linear program that reduces consumer electricity costs while also minimizing the

time between when a device is called to turn on and when the linear program

schedules the appliance to turn on. Since the electricity costs may not be known

for the entire day to the end user, the authors propose an equation that predicts

the electricity costs during the day based on past electricty cost data. By utilizing

the schedule proposed by the linear program, an end user can experience reduced

electricity costs.

A model for demand response using real-time-pricing was proposed by Conejo,

Morales, and Baringo which applies to a household or small business. Similar to

the pricing scheme in Denmark [12], the consumer knows beforehand the electricity

rate they will receive for the following hour therefore, they can adjust their con-

sumption pattern accordingly [19]. Using a linear program algorithm, the authors

were able to provide electricity consumption results based on a typical 24 hour day

for a household or small business. They claim that by implementing their linear

program algorithm into an EMS as discussed by [10], [11], [17], and [18], consumers

would be able to reduce their energy consumption costs by optimizing their energy

consumption patterns.

In [15], the authors stated that most of the energy consumption of the United

States occurs in buildings. A paper by Braun [20] explains that “the use of a build-

ing’s thermal storage for load shifting can significantly reduce operational costs,
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even though the total zone loads may increase” [20]. As discussed in Section 1.2,

the author proposes using efficient cooling systems that utilize part load operation.

Also, the model he proposes takes advantage of the thermal mass of the building, i.e.

how well insulated it is, as well as a time-of-use electricity rate structure. Braun pro-

poses a mathematical program where the objective is to reduce both the energy and

demand costs of cooling a building by precooling the building during pre-workday

hours. Essentially, the model precools the building before it will be occupied by

workers during the working hours, i.e. cooling the building to some temperature

lower than the normal thermostat set point such as 72 degrees. Therefore, for some

hours of the working day, the building will not need to be cooled since the program

relies on the thermal properties of the building structure. Also, by precooling the

building in the early morning hours, the air conditioning system does not work as

hard since there is no one in the building and the outside ambient temperature will

not put a large thermal load on the building. Therefore, the model shifts the de-

mand and energy charges by shifting the load to the early morning hours to precool

the building and to take advantage of the off peak energy rate. Hence, energy sav-

ings are realized by using efficient equipment utilizing part load operation as well

as precooling the building during off-peak hours.

Our model will deal with commercial load scheduling similar to the papers pro-

posed by the authors we’ve discussed. Our model will shift the electrical loads from

22



peak times to partial peak or low peak times similar to [12], [15], and [16], . How-

ever the models proposed by most of the authors in this review neglect to take into

account the demand charges associated with running large electrical motors. In

[14] they discuss reducing energy demand and energy consumption simultaneously

similar to our model. The main difference is the application of the model proposed

in [14] and the model we propose. The model for the commercial load scheduling

problem is much more general and takes into account both the demand costs and

consumption costs through the scope of a time-of-use schedule. As shown in many

of the papers discussed previously, consumers can take advantage of the time-of-use

schedule by shifting energy loads from peak periods to periods where electricity is

cheaper. Also, similar to the model in [14], our model staggers starts preventing

large energy demand charges which can be quite substantial at times. By taking into

account both the energy consumption costs and energy demand costs, we provide an

integer program that can greatly reduce energy costs for a commercial or industrial

firm that uses large machines with electrical motors.
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Chapter 3

Problem Definition

For the commerical load scheduling problem using a time-of-use schedule with elec-

tricity demand charges we are given a set of N machines that have energy consump-

tion and demand parameters pn and an, respectively. We assume that each machine

n is independent of the others, i.e. one machine does not need another machine to

be running in order to operate. The energy consumption parameter pn will take

on the value of the running load amps of machine n. As described earlier, we will

transform the running load amp values into kilowatt hours. The an values, or energy

demand, will use the locked rotor amperages of machine n. The values of an will

be converted into kilowatts. We assume that the initial start up amperage an for

machine n is not included as part of the machine’s power consumption pn. That is

an appliance starts up instantly and its start up amperage is not observed as part
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of the machine’s energy consumption.

In our model we are using a time horizon with T discrete time periods, hence we

define the rate schedule ct which specifies the cost of electricity per kilowatt hour

at time t. If the time periods are not hourly, we simply convert ct to correspond to

the time periods we specify, i.e. if the time periods are 15 minutes we will divide

the values of ct by 4. Since we are using a time of day rate schedule, the prices will

fluctuate with different values of t. We also define the parameter PLOAD which is

the price per kilowatt of energy demanded. Hence, if we have an energy demand

of 10 kilowatts, and PLOAD is $10.00 per kilowatt, our energy demand cost equals

$100.00.

We define our decision variable as xnt where xnt is a binary variable. The variable

xnt takes on the value 1 when machine n runs at time t and zero otherwise. Now

we specify our maximum demand variable DLOAD which is the maximum value of

the sum of n machines specified to run at time t over all values of t ∈ T or:

DLOAD ≡ max
t∈T

(

∑

n∈N

an · xnt

)

Utility companies have different ways of calculating DLOAD such as averaging the

daily demand loads over a month’s time to derive DLOAD [3]. However, we assume

that DLOAD is the maximum over the time horizon T .

The parameter βn specifies the desired number of periods of operation for each
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machine n. βn takes on values between 0 and T for all n ∈ N . However, in our

model we allow βn to be violated using a variable yn where 0 ≤ yn ≤ βn for all

n ∈ N . The variable yn allows the model to choose if a machine can run less than

the desired number of periods specified by βn, but we assign an associated cost ζn

for violating βn. ζn can be thought of as the cost to the firm for not running machine

n the desired number of periods as specified by βn. We assume that the penalty

cost ζn is a constant term, however it may be different for each n. We also assume

that a machine n can run for consecutive time periods. In other words, the machine

may start, then run for several time periods before turning off. Hence, we do not

observe the starting amperage draw for each time period that the machine is on.

Therefore, we define the binary variable ψnt as follows:

ψnt =



















1 if appliance n is on at time t and was on at time t− 1;

0 otherwise

For example if machine n is running during time periods t, t+ 1, . . ., t+ 5, ψnt

constrains the model to only count the starting amperage draw during time period

t instead of during each time period t, t+ 1, . . ., t+ 5.

We specify the objective function as follows:

C = DLOADPLOAD +
∑

t∈T

∑

n∈N

ctpnxnt + ζn
∑

n∈N

yn
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Therefore the IP can be written as:

minDLOADPLOAD +
∑

t∈T

∑

n∈N

ctpnxnt + ζn
∑

n∈N

yn (3.1)

s.t. DLOAD ≥
∑

n∈N

an · xnt ∀n ∈ N, t = 1 (3.2)

DLOAD ≥
∑

n∈N

an · (xnt − ψnt) ∀t ∈ {2 . . . T} (3.3)

0 ≤ yn ≤ βn ∀n ∈ N (3.4)

∑

t∈T

xnt = βn − yn ∀n ∈ N (3.5)

ψnt ≤ xnt ∀n ∈ N, ∀t ∈ {2 . . . T} (3.6)

ψnt ≤ xn,t−1 ∀n ∈ N, ∀t ∈ {2 . . . T} (3.7)

ψnt ≥ xnt + xn,t−1 − 1 ∀n ∈ N, ∀t ∈ {2 . . . T} (3.8)

xnt ∈ {0, 1} ∀n ∈ N, ∀t ∈ T (3.9)

ψnt ∈ {0, 1} ∀n ∈ N, ∀t ∈ T (3.10)

(3.1) is the sum of the demand cost, consumption cost, and the penalty cost

for all machines n ∈ N over the time horizon T . The consumption costs are only

accounted for when xnt is equal to 1 or machine n runs at time t. Otherwise, xnt

will equal zero and the consumption charge for machine n at time t will be zero.

Combined, (3.2) and (3.3) is the maximum demand observed over the time horizon
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T . Note with (3.3) that the right hand term utilizes the variable ψnt. As stated

previously, ψnt equals 1 if machine n is running at time t and was also running at

time t− 1. This forces (3.3) to not account for starting amperage draws, or locked

rotor amperages, if a machine is running during consecutive time periods. Lastly,

we have (3.5) enforcing the amount of periods a machine n will run over the time

horizon. Again, we allow (3.5) to be violated using the variable yn which can take on

any value between βn and 0. This constraint allows the program to decide if we can

decrease a machines desired periods of operation in order to reduce the total costs.

However, we introduce the penalty term ζn which may represent lost productivity

as a result of not running a machine the specified number of periods βn.
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Chapter 4

Numerical Results

4.1 Experimental Design

First we run the model using randomly generated data for the terms pn, an, βn and

ζn. The uniform distribution is used to randomly generate these terms. Then T is

set to 24 which would correspond to 60 minute time intervals if the time horizon was

a single day and the demand charge PLOAD = 10.88 per kW which is specified by

the A-10 schedule [2]. Then we use the values of cn in Table 4.1 for the consumption

costs.

Note however that we put bounds on the terms pn, an, βn and ζn as described

in the Table 4.2.

We set the values of an to be randomly distributed over the interval [1, 20] which
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Time Period Cost
t = 1 . . . 9 Off-Peak 0.12687
t = 10 . . . 12 Part Peak 0.14301
t = 13 . . . 19 Peak 0.15257
t = 20 . . . 24 Off-Peak 0.12687

Table 4.1: Actual Time-of-Use Costs [2]

Paramter Distribution
pn Uniform(1, 20)
an Uniform(pn + 1, 130)
βn Uniform(1, 24)
ζn Uniform(an, 200)

Table 4.2: Variable Distributions

corresponds to small to medium machine rated load amp draws. To insure that

the an values were not less than the pn values, we set an to be randomly generated

within the interval [pn + 1, 2(pn)]. This is true since the locked rotor amperages are

never less than the rated load amperages of a machine. Thirdly, we set the values of

ζn to be randomly distributed over the interval [an, 200]. The interval ensures that

we will not get a solution where the model decides that it’s less expensive to not

run any of the machines. Lastly we set the values of βn to be randomly distributed

over the interval [1, 24] rounded to the next integer.
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N LRA (Amp) RLA (Amp) ζn ($) βn
1 16.301 102.62 132.14 16
2 84.5712 12.8262 190.734 23
3 55.4378 16.1431 194.013 17
4 81.011 16.1431 113.378 8
5 84.1908 8.11649 132.704 6
6 72.0503 16.4512 170.089 4
7 110.196 3.34176 119.898 10
8 49.6543 8.48442 165.985 16
9 117.576 16.8367 149.52 5
10 45.8443 18.0657 48.1491 23

Table 4.3: List of Parameters

4.2 Representative Instance

Using a 2.4 GHz Intel Xeon machine with 4000 MB of memory, we use the solver

CPLEX 12.2 in AMPL to solve the model. We test the results of the Integer Program

solution against a result randomly generated in Excel. In order to obtain the Excel

solution, we use the Bernoulli distribution with p = βn

24
. That is, for each machine

n, we derive a set of random Bernoulli variables. We chose to use p = βn

24
for all

n since we can expect that we will get βn desired periods of operation for each n.

Running the model in AMPL we derive Table 4.2.

After running the solver in AMPL we find it took 220.95 seconds for the solver

to derive the optimal solution. Table 4.4 gives the result of the optimal solution as

well as the solution that was derived in Excel. The table consists of cost values as

well as the percentage of the total cost.

31



Solution Total Cost Demand Consumption Penalty
Excel $2863.56 $2,171.26 %75.82 $117.39 %4.1 $574.19 %20.05
Optimal $678.36 $588.44 %86.74 $89.92 %13.26 $0.00 %0
% Difference %76.32 %72.90 %23.40 %100

Table 4.4: Description of Costs

From Table 4.4 we see that the largest cost component for both the randomly

generated solution and optimized results is the demand costs. These are the costs

that are associated withDLOAD which reflects the maximum energy demand realized

over time. Figure 4.1 shows the optimal and randomly generated demand costs over

time.

DLOAD=433.836

DLOAD=117.756

Figure 4.1: Excel and Optimal Solution DLOAD Values

From Figure 4.1 one can see that the demand, in amperages, is much greater

in the randomly generated values than that of the optimal values. The drastic
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difference in energy demand is directly related to the amount of times each machine

n starts. In Figure 4.2 we show the amount of starts each machine n exhibits.

Figure 4.2: Excel Solution and Optimized Quantity of Machine Starts

As one can see, the randomly generated start quantities are greater than or

equal to the optimized number of starts for each machine n. This translates to

an increase in the amount of energy demanded since every time a machine starts

demand is realized. Since the randomly generated start quantities are so large, the

simulated DLOAD values are much greater than that of the optimized values.

Another interesting component of the total cost is the consumption cost. Table

4.4 shows that the optimized consumption cost is less than that of the randomly

generated consumption cost. In Figure 4.3 we show the consumption costs of both

the optimized solution and the randomly generated cost per hour.

33



Figure 4.3: Randomly Generated and Optimized Consumption Costs

From Figure 4.3 one can see that the optimized costs are higher during the non-

peak hours and are much smaller during the peak hours between periods 13 and 19.

Also note that although the IP costs are optimized, there are times in which the

optimized consumption costs are greater than the randomly generated consumption

costs. However, from Table 4.4 we see that consumption cost is a relatively small

component of the total cost compared to the demand costs that the two solutions

exhibit. Therefore, although the consumption costs for the Excel solution may be

lower than the optimal solution in some instances, the lower randomly generated

consumption costs do not largely affect the total cost of the Excel solution.
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Solution Avg. Total Cost Avg. Demand Avg. Consumption Avg. Penalty
Excel $3,151.67 $2,054.78 $72.31 $1,024.57
Optimal $691.83 $612.90 $75.62 $3.31

Table 4.5: Description of Average Costs

4.3 Extended Numerical Study

Now we generate 110 data sets and solve each in AMPL and compare the results to

a randomly generated solution in Excel using the methods described previously. In

Table 4.5 we provide a chart illustrating the average total cost, demand, consump-

tion, and penalty costs for the random and optimal solutions.

From Figure 4.2 we see that the average total cost for the randomly generated

solutions are much greater than that of the optimized solutions. The large difference

in the average total costs is reflected in the large demand and penalty costs that the

randomly genereated solutions exhibit. In Figure 4.4 we provide a comparison of

the average penalty, consumption, and demand costs as a percentage of the average

total costs.

From Figure 4.4 we see that largest cost components of the average total cost for

the optimized and randomly generated solutions are the demand cost. In fact, we

see that the second largest cost components for the randomly generated solutions

are the average penalty costs while average penalty costs for the optimal solutions

are minimal. If we were to adjust the average total costs so that it doesn’t include
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Figure 4.4: Percentages of Average Total Cost

penalty costs in the Excel solutions, the adjusted average total cost is still far greater

than that of the optimal solutions due to the large demand costs. Interestingly, the

average consumption costs for the randomly generated solutions are less than those

of the optimal solutions. However, we conjecture that the average consumption

costs are less for the Excel solutions due to the randomness of the Excel solution.

Therefore, machines were not run as long as βn specified. By using p = βn

24
in the

Excel solutions we can only expect that each machine will run as long as βn specifies.

By not running machine n the specified number of periods, there is a reduction in

the consumption costs but an increase in the penalty costs which is reflected in

Table 4.5.

The reason for the average demand charges being so large for the randomly

generated solutions is due again to the number of times each machine starts over
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time. For the 110 instances, on average each machine started 4.35 times in the Excel

solutions with a minimum of 2.9 starts and a maximum of 6.4 starts. Compared to

the optimal solutions, on average each machine started 2.12 times with a minimum

of 1.6 starts and a maximum of 2.9 starts. On average, machines in the Excel

solutions started and stopped more frequently, leading to a large average energy

demand cost. Also, we know that machines on average were not run the specified

number of periods due to the large average penalty costs exhibited in Table 4.5.

Hence, although the machines were not run the specified number of periods, the

increased number of starts leads to a large demand cost. For the optimal solutions,

a reduction in the number of starts and an increase in running times led to a much

smaller demand cost. We know that the machines in the optimal solutions ran longer

from the very small average penalty cost exhibited in Table 4.5 and the small number

of starts. Hence, machines ran the specified number of hours as specified by βn for

all n instead of violating the βn constraint. Therefore, by reducing the number of

starts and running the amount of hours specified by βn, the optimal solutions exhibit

smaller demand costs than that of the randomly generated solutions.

On average, the MILP took 197.8297 seconds to solve over the 110 instances.

The program exhibited a minimum run time of 1.95 seconds and a maximum run

time of 2,380.85 seconds. In Figure 4.5, we show a histogram with the solve time

frequencies.
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Figure 4.5: Frequency of Solve Times for 110 Instances

From Figure 4.5 we see that 55 of the solve times were in the 0 to 50 second

range encompassing 50% of the iterations. In fact 96.4% of the solve times were

between 0 and 1000 seconds and 88.2% of the solve times were between 0 and 500

seconds. From the data it appears long run times resulted when the values of an

and pn were in a small range for all n.

4.4 Refrigeration Example

In this section we use the model to determine the run schedule of refrigeration sys-

tems in order to minimize the electricity costs. We derive the electrical information

from several systems using the literature fromWitt Refrigeration a HTPG USA LLC

company ([4], [5], [6], and [7]). Assuming that the equipment is all 460 volt, we can

use the rated load amperage and locked rotor amperage values from the refriger-

ation literature to derive the corresponding electricity demand and consumption.

Table 4.6 gives the system numbers as well as the corresponding amperage values
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System RLA Value LRA Value RLA Conversion LRA Conversion
1 5.8 41 2.668 18.86
2 10.4 60 4.784 27.6
3 10.2 60 4.692 27.6
4 10.2 60 4.692 27.6
5 14.1 85 6.486 39.1
6 16.1 83 7.406 38.18
7 8.1 52 3.726 23.92
8 10.2 60 4.692 27.6
9 3.4 23 1.564 10.58
10 2.1 15 0.966 6.9

Table 4.6: Amperage to Kilowatt Conversions for Refrigeration Systems

and amperage to kilowatt conversions.

For the refrigeration example, we set T = 96, or each time period is equal to 15

minutes. We use the original model, however we add an additional constraint that

will enforce that each machine n must run at least 30 minutes per hour. We call

this parameter λ which specifies how many periods a machine must run in a certain

time interval. Then we add an additional parameter θ which will be the number

of periods per hour. Hence, in this example, λ = 2 and θ = 4. The additional

constraint for all t ∈ T and n ∈ N is written as follows:

t+θ−1
∑

i=t

xni ≥ λ

The additional constraint is consistent with how actual refrigeration systems

work since it is impractical to allow a refrigeration system to lie idle for a long time
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Solution Total Cost Demand Consumption Penalty
Excel $3,390.96 $2,322.23 $96.71 $972.02
Optimal $997.38 $905.869 $91.49 $0.00

Table 4.7: Description of Costs for Refrigeration Example

period since it will create a large rise in temperature in the cooler or freezer. Also

in the refrigeration industry, it is assumed that low temperature systems run for 18

hours per day and medium and high temperature systems run for 16 hours per day.

In our data, systems 1, 2, 3, 7, and 8 are medium temperature systems and systems

2, 5, 6, 9 and 10 are low temperature. So we set the values of βn = 64 for systems

1, 3, 4, 7, and 8 then set the values of βn = 72 for systems 2, 5, 6, 9, and 10.

After running the model in AMPL we find it took the solver 17,946.7 seconds to

derive the optimal solution. Table 4.7 provides the results to the optimal solution

as well as the results derived in Excel.

From Table 4.7 we see again that the major cost contributor to the total cost is

the demand cost for both the optimal solution and the randomly generated solution.

The DLOAD value for the Excel solution is 464 amps compared to 181 amps for the

optimized solution. Figure 4.6 shows the energy demands for both the optimal and

randomly generated solution over time.

In Figure 4.6 we see that there are large energy demand peaks with the Excel

values especially at t = 1 and t = 96. On the other hand, the energy demand values
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DLOAD=464

DLOAD=181

Figure 4.6: Randomly Generated and Optimal Energy Demand

for the optimal solutions are steady throughout the time period with some points

where there is no energy demand i.e. no systems started at those time periods. In

Figure 4.7 we look at the number of starts each system exhibits.

Figure 4.7: Quantity of Starts for Each Machine

Compared to previous figures of machine starts, in this example, there are no

large deviations between the optimal and randomly generated number of starts. The

small deviation in total start quantities for each machine is a result of the additional
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constraint we imposed in this example. We can also look at the average run time

for each machine.

Figure 4.8: Average Run Times for Each Machine

In Figure 4.8 we see that the average run times are similar for the optimal

solution and randomly generated solution. The reason for the large difference with

system 5 is due to the Excel solution running system 5 for 81 time periods or 1,215

minutes compared to the 72 time periods for the optimal solution. The averages

for the optimal run times are again due to the additional constraint imposed. Each

system will run for a long time, 5-20 time periods, during the off peak hours then

during part and off peak hours each machine will run 1 to 2 time periods at a time

in order to satisfy the additional constraint. Therefore, the additional constraint

causes the reduced average run times for the optimal solution. Now we investigate

the consumption cost of the solutions over the time period in Figure 4.9.
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Figure 4.9: Randomly Generated and Optimal Consumption Costs

For the consumption costs we see that the optimal values are larger especially

between time periods t = 1 . . . 31 and t = 73 . . . 95. The reason that the optimal

consumption costs are higher than those of the randomly generated consumption

costs is that the time periods t = 1 . . . 39 and t = 80 . . . 96 are off-peak costs so it

would make sense to run more machines during these time periods. Also, we see that

the randomly generated consumption values are greater than that of the optimal

during the peak hours where the cost is the highest. Although the Excel solution

has higher consumption costs during the peak hours, the total consumption costs is

close to the total consumption cost for the optimal solution as we see in Table 4.7.

The close consumption costs may be due to the fact that the Excel solution does

not run each system for the amount of time as specified by βn which is reflected

in the penalty cost. Another reason that the consumption costs are more for the

randomly generated version in this example is that the Excel solution runs some

systems much longer than specified by βn. For example system 5 ran for 81 time

periods and system 10 ran for 77 time periods when βn specified a total run time of
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72 for each of those systems.

We see in this example that the total cost is affected mostly by the costs associ-

ated with DLOAD. Upon investigating the average run times of each system and the

number of starts for each system, we find that there is no large difference between

the randomly generated solution and optimal solution. We find that the reason there

is no large difference in Figures 4.7 and 4.8 is due to the additional constraint im-

posed. However, the IP schedules the starts of each system n in order to minimize

DLOAD while the Excel solution is randomized using Bernoulli random numbers.

Therefore, due to the randomness of the Excel solution the DLOAD value is very

large compared to the optimal DLOAD value. This example stresses the importance

of staggering startups of refrigeration systems in order to reduce the demand costs

associated with starting them. Using the methods described in the refrigeration

introduction, such as cylinder unloading and variable speed compressors, we could

run the systems 24 hours a day which would reduce the DLOAD cost, but would

inflate the consumption costs associated with running those systems.
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Chapter 5

Conclusion

In this thesis we proposed an IP that reduces the energy and energy demand costs

associated with running machines a specified number of hours. We have shown

that by using the Integer Progam, we reduce the energy demand realized over the

time period which significantly reduces the total costs. By shifting the starts of

each machine and letting them run for periods of time instead of shutting them on

and off, the IP greatly reduced the total costs compared to the randomly generated

values. By scheduling equipment to run according to the IP, a firm could expect

significant cost savings compared to conventional control methods without a loss in

productivity. Unfortunately, our model does not take into account external factors

such as thermal loads and unexpected loads that could be seen in real world appli-

cations. For example, the refrigeration example does not take into account any of
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the thermal properties of cooling a refrigerated structure.

Some possible extensions to the IP we proposed would be to add additional

constraints to account for thermal loads of air conditioning and refrigeration equip-

ment. Another extension would be to make the machines dependent upon each

other such as seen in large industrial applications. There are other possible exten-

sions that we did not take into account in our mathematical program which could be

explored in future research such as applications to different industries. Also, other

rate structures could be explored, especially for how the demand rate is structured.

Although we did not take into account these possible extensions, we have confirmed

through randomly generated solutions and optimization, that the IP reduces energy

costs greatly by reducing the energy demand costs associated with running large

machines without a significant loss in productivity.

46



Bibliography

[1] J. Tomczyx, “Compressor Amperage Data”. In Air Conditioning, Heating, and

Refrigeration News.(March 7, 2011), 17-18.

[2] “Pacific Gas & Electric - Tariff Book.” 1 June 2010. Web. 22 Aug. 2010.

http://www.pge.com/tariffs/electric.shtml#COMMERCIAL.

[3] L. J. Vogt, P.E., Electricity Pricing: Engineering Principles and Methodologies

(Boca Raton, FL: CRC Press, 2009)

[4] Witt Refrigeration. Web. 12 February 2011. http://www.witthtp.com.

[5] Russell Refrigeration. Web. 12 February 2011. http://www.russellcoil.com.

[6] Kramer Refrigeration. Web. 12 February 2011. http://www.kramerusa.net.

[7] Coldzone Refrigeration. Web. 12 February 2011. http://www.coldzone.com.

[8] Bitzer USA, “Competence in Capacity Control”. Leaflet A-600-2, August 2009.

47



[9] Witt Refrigeration, Division of Heat Transfer Products Group. “Refrigeration

Engineering Manual 110”.

[10] S. Abras, S. Ploix, S. Pesty, and M. Jacomino, “A Multi Agent Home Automa-

tion System dedicated to power management”. In IFIP International Federation

for Information Processing. (Vol. 247, 2007) 233-241.

[11] A. I. Cohen, “An Optimization Method for Load Management Scheduling”. In

IEEE Transactions on Power Systems. (Vol. 3(2), May 1988), 612-618.

[12] W. Hu, Z. Chen, and B. Bak-Jensen, “Optimal Load Response to Time-of-Use

Power Price for Demand Side Management in Denmark”. In Proceedings of the

Asia-Pacific Power and Energy Engineering Conference, APPEEC 2010. IEEE

Press, 2010, 1-4.

[13] Z. Luo, R. Kumar, J. Sottile, and J. C. Yingling, “An MILP Forumlation for

Load-Side Demand Control”. In Electric Machines and Power Systems (Vol.

26(9)), 935-949.

[14] A. Middelberg, J. Zhang, and X. Xia, “An optimal control model for load shift-

ing - With application in energy management of colliery”. In Applied Energy.

(Vol. 86, 2009), 1266-1273.

48



[15] A. Mohsenenian-Rad, V. W.S. Wong, J. Jatskevich, and R. Schober, “Optimal

and Autonomous Incentive-based Energy Consumption Scheduling Algorithm

for Smart Grid”. In Innovative Smart Grid Technologies (ISGT),2010, 1-6.

[16] S. Ashok and R. Banerjee, “An Optimization Model for Industrial Load Man-

agement”. In IEEE Transactions on Power Systems, (Vol. 16(4), November

2001), 879-884.

[17] J.G. Roos and I.E. Lane, “Industrial Power Demand Response Analysis for

One-Part Real-Time Pricing”. In IEEE Transactions on Power Systems, (Vol.

13(1), February 1998), 159-164.

[18] A. Mohsenian-Rad and A. Leon-Garcia, “Optimal Residential Load Control

With Price Prediction in Real-Time Electricity Pricing Environments”. In IEEE

Transactions on Smart Grid, (Vol. 1(2), September 2010), 120-133.

[19] A. J. Conejo, J. M. Morales, and L. Baringo, “Real-Time Demand Response

Model”. In IEEE Transactions on Smart Grid, (Vol. 1(3), December 2010),

236-242.

[20] J. E. Braun “Load Control Using Building Thermal Mass”. In Transactions of

the ASME, (Vol. 125, August 2003), 292-301.

49



Vita

Benjamin A. Mizack, the son of Virginia and Joseph Barry Mizack of Bethlehem,

Pennsylvania, was born on November 16, 1985 in Easton, Pennsylvania. He attended

Notre Dame High School in Easton, Pennsylvania where he graduated in the top 15%

of his class in 2004. In high school, he excelled at academics especially mathematics

as well as athletics. He was a member of the National Honors Society, SADD, and

the Spanish Honors Society and a varsity football player and track athlete. He

attended Moravian College in 2004 where he double majored in mathematics and

economics. In 2008 he graduated with a Bachelors of Science degree in Mathematics

with a focus in Statistics. In the Fall of 2008, he began pursuing a Masters of

Science degree in Applied Mathematics at Lehigh University. He transferred to

the Industrial & Systems Engineering department at Lehigh University during the

Fall of 2009 where he began pursuing his Masters of Science degree in Industrial

Engineering. He currently works at Refrigeration Specialists Company NE LLC as

a senior applications and specifying engineer.

50


	Lehigh University
	Lehigh Preserve
	2011

	Commercial Load Scheduling Through A Time-of-Use Schedule with Electricity Demand Charges
	Benjamin Allen Mizack
	Recommended Citation


	C:/Users/Ben/Documents/Lehigh Documents/Masters Thesis/Masters Thesis Final/Masters Thesis Final.dvi

