
Lehigh University
Lehigh Preserve

Theses and Dissertations

2014

A Subproblem Algorithm for the Adaptive
Augmented Lagrangian Method
Wenda Zhang
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Zhang, Wenda, "A Subproblem Algorithm for the Adaptive Augmented Lagrangian Method" (2014). Theses and Dissertations. Paper
1692.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=preserve.lehigh.edu%2Fetd%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1692?utm_source=preserve.lehigh.edu%2Fetd%2F1692&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A Subproblem Algorithm for the Adaptive Augmented Lagrangian

Method

by

Wenda Zhang

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial and Systems Engineering

Lehigh University

April 2014

c© Copyright by Wenda Zhang 2014

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of the re-

quirements for the degree of Master of Science.

Date

Frank E. Curtis, Thesis Advisor

Chairperson of Department

iii

Acknowledgements

I’d like to express my deepest appreciation to Professor Frank E. Curtis for the instructive guidance

throughout the work on the thesis. He provided me new ideas to explore and, more importantly,

a systematic and rational way of exploring them. Without his advice, this thesis would not have

been possible. I thank Zheng Han for his aid on the numerical experiments. I’d also like to

give special thanks to Mr. Douglas Adams who gave, in my opinion, the best advice to anybody

facing an unknown or difficult situation, whether it’s hitchhiking in the galaxy, or trying to write

a thesis: Don’t panic.

iv

Contents

Acknowledgements iv

List of Tables vii

List of Figures viii

Abstract 1

1 Introduction 2

2 An Adaptive Augmented Lagrangian Algorithm 4

2.1 Basic Augmented Lagrangian Algorithm . 5

2.2 An Adaptive AL Trust Region Approach . 7

3 An Active Set Projected CG Method 14

3.1 The Projected CG Method . 15

3.1.1 First Stage: Cauchy Point Computation . 15

3.1.2 Second Stage: Subspace Minimization . 16

3.2 Estimating the Active Set . 19

4 Numerical Experiments 22

4.1 Implementation Details . 22

4.2 Comparison with CPLEX’s QP Solver . 24

4.3 Different Steering Step . 27

4.4 Different Value of the Parameter κ3 . 29

v

5 Conclusion 31

Bibliography 33

Biography 34

vi

List of Tables

4.1 Parameter values used in ASPCG . 23

4.2 Parameter values used in AAL and BAL . 24

4.3 Termination condition tally comparing AAL-A, AAL-C, BAL-A, and BAL-C. 25

4.4 Number of the final penalty parameter values are in the given ranges comparing

AAL-A, AAL-C, BAL-A, and BAL-C. 26

4.5 Termination condition tally comparing AAL-A and AAL-Cauchy. 28

4.6 Number of the final penalty parameter values are in the given ranges comparing

AAL-A and AAL-Cauchy. 28

4.7 Termination condition tally comparing different κ3. 30

4.8 Number of the final penalty parameter values are in the given ranges comparing

different κ3. 30

vii

List of Figures

4.1 Performance profiles comparing AAL-A, AAL-C, BAL-A, and BAL-C. 25

4.2 Performance profiles comparing AAL-A and AAL-Cauchy. 27

4.3 Performance profiles comparing different κ3. 29

viii

Abstract

An adaptive augmented Lagrangian algorithm is presented to overcome some undesirable behavior

of traditional augmented Lagrangian methods. While the method has previously been proposed,

the goal in this thesis is to improve its practical performance. In particular, we propose an active

set projected conjugate gradient (ASPCG) method for solving the subproblems of the adaptive

augmented Lagrangian algorithm. The proposed ASPCG algorithm first estimates the optimal

active set and then performs a projected conjugate gradient method to produce the exact or at

least a good approximate solution updating the active set estimate when appropriate. We perform

a series of numerical experiments to determine if the proposed algorithm is superior in some

critical performance measures to the solver originally implemented in the adaptive augmented

Lagrangian algorithm. In addition, we conduct experiments to monitor the performance of the

adaptive augmented Lagrangian algorithm when some of its key features are modified.

1

Chapter 1

Introduction

The method of multipliers, or the augmented Lagrangian (AL) method, is an important algorithm

for solving constrained optimization problems. However, basic AL approaches share one critical

disadvantage when they are used to solve nonlinear problems: they can perform poorly if the initial

choices of the penalty parameter or Lagrange multipliers is poor. If the penalty parameter is too

large or the estimates of the optimal multipliers are not close to the optimal ones, the algorithm

may be stalled at a point with little or no progress made towards a solution. An adaptive AL

(AAL) method has been proposed by Curtis, Jiang and Robinson [2] to address this disadvantage.

In the adaptive AL method, it is required that each trial step yields a sufficiently large reduction

in linearized constraint violation, or the penalty parameter will be decreased to place a higher

emphasis on minimizing the constraint violation. This procedure ensures the progress towards

constraint satisfaction, even when the current iterate is far away from the feasible region.

An important part of the AAL algorithm is the computation of the steering step and trial

step from their respective QP subproblems. Here, the subproblems can be treated as two very

similar bound-constrained QPs, and they can be solved by the same algorithm. The quality of the

solutions and the efficiency of computing the solutions affect directly the performance of the AAL

algorithm. The purpose of this thesis is to present a viable method for solving the subproblems in

the hope of improving the practical performance of the original AAL algorithm, and analyze its

performance within the framework of the AAL algorithm under various conditions. We introduce

an iterative strategy for estimating the optimal active set [6] for the bound-constrained QP with

2

a projected conjugate gradient (projected CG) method [3, 7]. The projected CG method allows

elements to be added to the active set estimate quickly, and we also allow elements to exit the

estimate based on violations of the KKT conditions. This should, in theory, produce an accurate

estimate of the optimal active set so that the projected CG method could compute an accurate

approximate solution for the subproblem.

The thesis is organized as follows. In Chapter 2, we outline a traditional and the adaptive

AL algorithm, discuss the inefficiencies troubling the traditional method, and show how the new

procedures in the adaptive method help to overcome such disadvantage. In Chapter 3, we present

a projected CG method with procedures to estimate the optimal active set for the subproblem.

In Chapter 4, we provide numerical results that compare the performance of AAL as implement-

ed in [2] and traditional AL method with our proposed algorithm to show the effectiveness of

our approach. We also explore the performance of AAL with our proposed algorithm when the

meaning of a “sufficiently large” reduction in constraint violation is varied. Finally, in Chapter 5,

we further analyze and discuss the proposed subproblem solver and the AAL algorithm as a whole.

Notation. Once a function is defined, we often drop the dependency on its arguments when

using it again later. We use subscripts in these cases to denote the iteration number of an algo-

rithm during which the function is used. For example, we use fk instead of f(xk), where f is a

defined function and xk is the current primal iterate.

3

Chapter 2

An Adaptive Augmented Lagrangian

Algorithm

A general nonlinear optimization problem can be converted to one with equality constraints and

bound constraints

min
x∈Rn

f(x) subject to c(x) = 0, l ≤ x ≤ u, (2.1)

where we assume the objective function f : Rn → R and constraint function c : Rn → Rm to be

twice continuously differentiable. A first-order optimal primal-dual solution of problem (2.1) is

found by locating a pair (x, y) satisfying


FL(x, y) = x− P [x−∇x`(x, y)] = x− P [x− (∇f(x)−∇c(x)y)] = 0

∇y`(x, y) = −c(x) = 0

(2.2)

where `(x, y) is the Lagrangian of problem (2.1) defined as

`(x, y) := f(x)− c(x)T y, (2.3)

4

and P is a projection operator defined by

(P [x])i =


li if xi ≤ li,

ui if xi ≥ ui,

xi otherwise.

(2.4)

However, it is not guaranteed that we can find a feasible solution, so if (2.1) is infeasible, it is

commonly preferred for the algorithm to settle by finding a stationary point for 1
2‖c(x)‖22 subject

to the bound constraints, which correspond to the problem

min
x∈Rn

v(x) subject to l ≤ x ≤ u, where v(x) :=
1

2
‖c(x)‖22. (2.5)

A first-order necessary condition for (2.5) is that a point x satisfies

FFeas(x) := x− P [x−∇xv(x)] = x− P [x−∇c(x)c(x)] = 0. (2.6)

The point x is an infeasible stationary point for problem (2.1) if v(x) > 0 when (2.6) holds.

In this chapter, we discuss Augmented Lagrangian algorithms that focus on solving (2.1), or at

least (2.5). Section 2.1 examines the procedures of a basic AL approach, and Section 2.2 describes

an adaptive AL method that will be the basic framework for all the discussion later.

2.1 Basic Augmented Lagrangian Algorithm

The Augmented Lagrangian method combines the standard Lagrangian function ` with the

quadratic penalty function. In terms of the problem we are trying to solve, we apply a bound-

constrained Augmented Lagrangian approach, which incorporates only the equality constraints

from (2.1) into the augmented Lagrangian, that is,

L(x, y, µ) := µ`(x, y) + v(x) = µ(f(x)− c(x)T y) +
1

2
‖c(x)‖22,

5

where µ is the penalty parameter scaling the Lagrangian function. In each iteration of the AL

method, the penalty parameter µ is fixed at some value µk, the Lagrange multiplier vector y

is fixed at an estimate yk, and we minimize the augmented Lagrangian function L(x, y, µ) with

respect to x, the minimizer of which we denote as

x(y, µ) := arg min
x∈Rn

L(x, y, µ) subject to l ≤ x ≤ u. (2.7)

If a solution for the problem in (2.7) can be found, it must satisfy the first-order optimality

condition

FAL(x, y, µ) = P [x−∇xL(x, y, µ)]− x = 0, (2.8)

where ∇xL(x, y, µ) is the gradient of the augmented Lagrangian with respect to x at (x, y, µ),

that is,

∇xL(x, y, µ) = µ(∇f(x)−∇c(x)π(x, y, µ)), where π(x, y, µ) := y − 1

µ
c(x). (2.9)

For a solution x(y, µ) of (2.7), notice that if c(x(y, µ)) = 0 holds, then together with (2.8), we have

(2.2) satisfied for the original problem. This suggests that such a solution x(y, µ) is a first-order

optimal solution for (2.1). We now outline the structure of a basic AL algorithm in Algorithm 1.

The constraint violation c(x) is checked when (2.7) is solved; if it is sufficiently small, the

penalty parameter is not changed for the next iteration, the Lagrangian multiplier estimates are

updated using the function π and the tolerance t is tightened; otherwise, we decrease the penalty

parameter to place more emphasis on reducing constraint violation in subsequent iterations.

However, notice that while the penalty parameter should be updated when constraint violation

is large, we do not have a good idea on what xk+1 should be in such a case. We can certainly

update the primal point like we do if the constraint violation is small, but how much progress

that can be achieved by setting xk+1 ← x(yk, µk) is uncertain when the penalty parameter µk

has been deemed large. We can also choose to maintain the current value xk+1 = xk and dismiss

the potential progress that can be made by updating the primal point. In any case, the only sure

progress made is the update of the penalty parameter.

Due to this flaw, the basic AL algorithm may not be very efficient at times, especially when

6

Algorithm 1 Basic Augmented Lagrangian Algorithm

1: Choose constants {γµ, γt} ⊂ (0, 1), initial tolerance t0 > 0 and initial penalty parameter
µ0 > 0.

2: Choose initial point x0 and multipliers y0.
3: Set k ← 0, and j ← 0.
4: loop
5: if (2.2) is satisfied, then
6: return : the first-order optimal solution (xk, yk).

7: if (2.6) and v(xk) > 0 holds, then
8: return : the infeasible stationary point xk.

9: Find a point x(yk, µk) that satisfies (2.8).
10: if ‖c(x(yk, µk))‖ ≤ tj , then
11: Set xk+1 ← x(yk, µk).
12: Set yk+1 ← π(xk+1, yk, µk).
13: Set µk+1 ← µk.
14: Set tj+1 ← γttj .
15: Set j ← j + 1.
16: else
17: Choose xk+1 ← xk or xk+1 ← x(yk, µk).
18: Set yk+1 ← π(xk+1, yk, µk).
19: Set µk+1 ← γµµk.

20: Set k ← k + 1.

the penalty parameter is too large or the Lagrange multiplier y is not an accurate estimation of

the optimal multiplier. That’s why we choose to apply an adaptive approach towards updating

the penalty parameter and minimizing the objective function, which we will discuss in the next

section.

2.2 An Adaptive AL Trust Region Approach

In this section, we present an Adaptive AL (AAL) trust region method that will be the main

framework for the algorithms we discuss the Chapter 3, which are used to solve the subproblems

in the AAL trust region approach. The main idea of this approach is to evaluate the reduction in

constraint violation with a certain trial step against the reduction obtained by a step that solely

tries to minimize constraint violation, a step that we call a feasibility step. If the reduction in

the former case is not sufficiently large comparing with the latter case, and the current constraint

violation is not so small that it doesn’t matter if the trial step produces enough reduction, then

the penalty parameter is decreased to place more emphasis on reducing constraint violation for

7

the next trial step.

To be specific, each iteration of the algorithm produces a trial step sk by finding a step

minimizing the augmented Lagrangian from the current primal point xk. It is desirable for this

step to make progress in terms of (2.1), and that means on top of minimizing the augmented

Lagrangian, this step should be one reducing constraint violation sufficiently. As we explained

earlier, a feasibility step rk is thus computed before the trial step with the objective of minimizing

constraint violation, to help us find a trial step sk that makes enough progress on both the

augmented Lagrangian and constraint violation.

Feasibility Step Subproblem

In order to compute the feasibility step, we first introduce an approximation function for the

constraint violation measure, that is,

qv(s, x) :=
1

2
‖c(x) +∇c(x)s‖22 ≈ v(x+ s).

The feasibility step is defined as the solution of the following quadratic trust-region subproblem

min
r∈Rn

qv(r, xk) subject to l ≤ xk + r ≤ u, ‖r‖2 ≤ θk, (2.10)

where δ > 0 is a constant and both

θk := θ(xk, δk) := min{δk, δ‖FFeas(xk)‖2} ≥ 0 (2.11)

and δk > 0, the current trust region radius, are set dynamically within the algorithm. Equation

(2.11) makes sure the trust region radius θk approaches zero as the algorithm approaches station-

ary points of the constraint violation measure, keeping the step from being too large when the

constraint violation is small.

To ensure progress is made by a solution of the subproblem, we compute a Cauchy step rCk for

the subproblem so that we can evaluate the progress made by a solution of (2.10). The Cauchy

8

step is defined as

rCk := P [xk − βk∇ckck]− xk, (2.12)

where βk is chosen so that the resulting Cauchy point produces a sufficient reduction in qv. In

this case, it is required that

∆qv(r
C
k , xk) := qv(0, xk)− qv(rCk , xk) ≥ −εr(rCk)T∇ckck and ‖rCk ‖2 ≤ θk (2.13)

holds for some εr ∈ (0, 1). We now show the process of computing such a Cauchy step, as well as

auxiliary nonnegative scalar quantities Γk and εk, which later will be used during the computation

of the trial step sk, in Algorithm 2.

Algorithm 2 Cauchy step computation for subproblem (2.10)

Require: θk ≥ 0.
1: Choose constants {εr, γ} ⊂ (0, 1).
2: Compute lk as the smallest nonnegative integer that satisfies ‖P [xk − γlk∇ckck]− xk‖2 ≤ θk.
3: if lk > 0, then
4: Set Γk ← min{2, 1

2(1 + ‖P [xk − γlk∇ckck]− xk‖2/θk)}.
5: else
6: Set Γk ← 2.

7: Set βk ← γlk , εk ← 0, and compute rCk with (2.12).
8: while (2.13) is not satisfied, do

9: Set βk ← γβk, and εk ← max{εk,−
∆qv(rCk ,xk)

(rCk)T∇ckck
}.

10: Compute rCk with (2.12).

11: return : (rCk , εk,Γk)

Trial Step Subproblem

Now we can proceed to identify the subproblem that computes the trial step sk. Again, we need

first introduce the approximate function of the augmented Lagrangian, that is,

qL(s, x, y, µ) := µq`(s, x, y) + qv(s, x) ≈ L(x+ s, y, µ),

where q`(s, x, y) is an approximation of the Lagrangian,

q`(s, x, y) :=
1

2
sT (∇2

xx`(x, y))s+∇x`(x, y)T s+ `(x, y) ≈ `(x+ s, y).

9

The trial step sk is defined as the solution of the following quadratic trust region subproblem

min
s∈Rn

qL(s, xk, yk, µk) subject to l ≤ xk + s ≤ u, ‖s‖2 ≤ Θk, (2.14)

where

Θk := Θ(xk, yk, µk, δk,Γk) := Γk min{δk, δ‖FAL(xk, yk, µk)‖2} ≥ 0. (2.15)

Similar to (2.10), the trust-region radius is set up this way so that when the algorithm approaches

stationary points of the augmented Lagrangian, the radius goes to zero.

Also similar to the procedure of solving the feasibility step subproblem, we compute a Cauchy

point, this time for (2.14), as

sCk := P [xk − αk∇xL(xk, yk, µk)]− xk, (2.16)

where αk > 0 is chosen so that the resulting Cauchy point produces a sufficient reduction in qL.

In this case, it is required that

∆qL(sCk , xk, yk, µk) ≥ −
εr + εk

2
(sCk)T∇xL(xk, yk, µk) and ‖sCk ‖2 ≤ Θk (2.17)

where

∆qL(sCk , xk, yk, µk) := q(0, xk, yk, µk)− q(sCk , xk, yk, µk).

We can now show the procedure for computing the Cauchy step in Algorithm 3.

Algorithm 3 Cauchy step computation for subproblem (2.14)

1: Set constants {εr, γ} ⊂ (0, 1) and εk (Obtained from Algorithm 2).
2: Set αk ← 1 and compute sCk with (2.16).
3: while (2.17) is not satisfied, do
4: Set αk ← γαk and compute sCk with (2.16).

5: return : sCk

Notice that if we used the infinity norm to define the trust-region constraints of both sub-

problems, the trust-region constraints become bound constraints. In this case, both subproblems

can be viewed as quadratic bound-constrained optimization problems. The two subproblems con-

10

stitute a very large part of the computational cost for the AAL algorithm; that is why we focus

on the implementation of algorithms that can efficiently solve bound-constrained QPs, which we

will be discussing in Chapter 3. For now, we are content with having the solutions of the two

subproblems, a feasibility step rk and a trial step sk.

An Iteration of the Adaptive AL Trust Region Algorithm

We can now describe all the essential procedures of the AAL trust region algorithm, and show

the entirety of it in Algorithm 4. Parts of an iteration of the AAL trust-region algorithm, the

termination conditions, are very similar to that of the basic AL algorithm. For this reason, we

will focus on the procedures that are not present in Algorithm 1.

The purpose of the while loop in line 10 is to detect if a feasible descent direction for L(·, yk, µk)

from xk exists. When FAL(xk, yk, µk) = 0, then no such direction exists and we won’t be able to

compute a step towards a bound-constrained minimizer of the augmented Lagrangian L(·, yk, µk).

Next, recall at the beginning of Section 2.2, we discussed the ideal trial step sk for the AL

algorithm, and the fundamental idea of how to find it. Now, with the Cauchy point for both

subproblems found, we can present a set of conditions that the computed trial step must satisfy:

∆qL(sk, xk, yk, µk) ≥ κ1∆qL(sCk , xk, yk, µk) > 0, (2.18a)

∆qv(rk, xk) ≥ κ2∆qv(r
C
k , xk), (2.18b)

∆qv(sk, xk) ≥ min{κ3∆qv(rk, xk), vk −
1

2
(κttj)

2}, (2.18c)

where we define constants {κ1, κ2, κ3, κt} ⊂ (0, 1), and tj > 0 is the tolerance of the constraint

violation similar to that of Algorithm 1.

Equations (2.18a) and (2.18b) ensure the solutions we have yield at least some fraction of the

progress that the two Cauchy points make, in constraint violation and the augmented Lagrangian,

respectively. Equation (2.18c) ensures the trial step sk yields a sufficient reduction in constraint

violation compared to the feasibility step rk. Notice that the second term of the right-hand side

of (2.18c) can be very small or even negative, which in turn allows the right-hand side to be small

or negative. This means that the trial step can produce a small decrease in constraint violation

11

Algorithm 4 Adaptive Augmented Lagrangian Trust Region Algorithm

1: Choose {γ, γµ, γt, γT , γδ, κ1, κ2, κ3, κt, εr, ηs} ⊂ (0, 1) and ηvs ∈ (ηs, 1).
2: Choose {δ, δmin, δmax, ε} ⊂ (0,∞) and Γδ > 1.
3: Choose (x0, y0) and {µ0, δ0, t0, t1, T1} ⊂ (0,∞).
4: Set k ← 0, and j ← 1.
5: loop
6: if (2.2) is satisfied, then
7: return : the first-order optimal solution (xk, yk).

8: if (2.6) and v(xk) > 0 holds, then
9: return : the infeasible stationary point xk.

10: while FAL(xk, yk, µk) = 0, do
11: Set µk ← γµµk.

12: Define θk by (2.11), and compute (rCk , εk,Γk).
13: Define Θk by (2.15), and compute sCk .
14: Compute solutions rk to (2.10) that satisfies (2.18b), and sk to (2.14) that satisfies (2.18a)
15: while (2.18c) is not satisfied or FAL(xk, yk, µk) = 0, do
16: Set µk ← γµµk and define Θk by (2.15).
17: Compute sCk , and sk that satisfies (2.18a).

18: Compute ρk from (2.19).
19: if ρk ≥ ηvs, then
20: Set xk+1 ← xk + sk and δk+1 ← min{δmax,Γδδk}.
21: else if ρk ≥ ηs, then
22: Set xk+1 ← xk + sk and δk+1 ← δk.
23: else
24: Set xk+1 ← xk and δk+1 ← max{δmin, γδδk}.
25: if ‖ck+1‖2 ≤ tj , then
26: if (2.20) is satisfied, then
27: Set ŷk+1 ← π(xk+1, yk, µk).
28: else
29: Set ŷk+1 ← yk.

30: if min{‖FL(xk+1, ŷk+1)‖, ‖FAL(xk+1, yk, µk)} ≤ Tj , then
31: Set tj+1 ← min{γttj , t1+ε

j } and Tj+1 ← γTTj .
32: Set yk+1 ← ŷk+1.
33: Set j ← j + 1.
34: else
35: Set yk+1 ← yk.

36: else
37: Set yk+1 ← yk.

38: Set µk+1 ← µk.
39: Set k ← k + 1.

12

or even an increase, as long as the current constraint violation is sufficiently small relative to the

tolerance tj . If (2.18c) is not satisfied by the current sk, we reduce the penalty parameter and

compute the trial step again, until (2.18) is satisfied.

With the trial step sk, we want to know if it produces enough reduction in the actual augmented

Lagrangian relative to our approximate function. Thus, we compute the ratio

ρk ←
L(xk, yk, µk)− L(xk + sk, yk, µk)

∆qL(sk, xk, yk, µk)
. (2.19)

The success of reducing the actual augmented Lagrangian is determined with the help of constants

ηs ∈ (0, 1) and ηvs ∈ (ηs, 1). If ρk ≥ ηs, then the step is considered to be successful; and the trial

step is accepted. If ρk ≥ ηvs, then the step is considered to be very successful; we can be more

aggressive with the trust region radius δk so it is expanded for the next iteration. On the other

hand, if ρk < ηs, then the step does not produce enough reduction in the augmented Lagrangian;

so the step is waved off and the trust region radius is reduced for the next iteration.

At last, the updated multiplier vector yk+1 needs to be defined. If the constraint violation at

xk+1 is not sufficiently small compared to a tolerance value tj , then yk+1 simply remains the same

as yk. If the constraint violation is sufficiently small, we check the condition

‖FL(xk+1, π(xk+1, yk, µk))‖2 ≤ ‖FL(xk+1, yk)‖2; (2.20)

if it is satisfied, we set ŷk+1 ← π(xk+1, yk, µk); otherwise, we set ŷk+1 ← yk. With ŷk+1 calculated,

we then check if ‖FL(xk+1, ŷk+1)‖ or ‖FAL(xk+1, yk, µk)‖ is sufficiently small compared to some

tolerance value Tj > 0. If it is, new tolerance values tj+1 < tj and Tj+1 < Tj are calculated, and

we set yk+1 ← ŷk+1. Otherwise, we set yk+1 ← yk.

We conclude the description of Algorithm 4 by noting that (2.2) and (2.6) are theoretical

conditions, and that in practical implementations positive tolerances should be used in the place

of 0 for both. It should also be noted that for convergence guarantees, the algorithm in [2] controls

the magnitudes of the computed multiplier estimates, but we do not include the procedure here

as it is not included in our implementation.

13

Chapter 3

An Active Set Projected CG Method

In lines 14 and 17 of Algorithm 4, we need to solve the two trust-region subproblems to get the

trial step sk and the steering step rk. The computation of the two is central to the adaptive

Augmented Lagrangian trust region method we discussed previously, and also constitutes most

of the algorithm’s computational costs. In this chapter, we present a variant of the projected

CG method to compute the exact, or at least a good approximate solution of the trust region

subproblem.

As mentioned before, if we treat the trust region as an infinity norm constraint, the subprob-

lems are just bound-constrained QPs. The projected CG method allows active set estimates to

change rapidly between iterations and is often efficient when the constraints have such a simple

form. That is the reason we chose it for our trust-region subproblems. For future reference, a

general bound-constrained QP has the form

min
x

q(x) =
1

2
xTGx+ xT c (3.1a)

subject to l ≤ x ≤ u (3.1b)

where G is symmetric and {l, u} are vectors of lower and upper bounds of x, respectively.

A basic projected CG method involves cheap calculations and has convergence guarantees,

but it may be inefficient, especially when it is unable to quickly identify the optimal active set.

Thus, we combine the projected CG method with an active set update for an active set projected

14

CG method to get the exact, or at least a good approximate solution. In the rest of this chapter,

we will describe the projected CG method and the active set estimation strategy in detail.

3.1 The Projected CG Method

The projected CG method consists of two stages. In the first stage, we search along the steepest

descent direction from the origin point, and choose the Cauchy step sC [5] as an initial estimate

solution of the original problem. In the second stage, we estimate the active set at the optimal

solution of the QP x∗ and use a projected CG method [3, 7] to compute a solution of the original

problem. We will discuss estimation of the active set in detail later.

3.1.1 First Stage: Cauchy Point Computation

The Cauchy step sC is obtained by projecting the steepest descent direction onto the feasible

region. Recall the projection operator P in (2.4), starting from the origin point, the Cauchy

direction can be written as

sC(α) := P [−α∇q(0)], (3.2)

where α ≥ 0 is the step size.

The step size α is chosen so that the Cauchy step sC(α) produces a sufficient reduction. In

this case, we require that

q(sC(α)) ≤ µpg∇q(0)T sC(α) (3.3)

must be satisfied with some constant µpg ∈ (0, 1
2).

An iterative scheme is used to guarantee the Cauchy point sC(α) is chosen in a finite number

of evaluations. Given α(0), we will generate a sequence of step sizes of the form

α(k+1) = βα(k),

where we either have β > 1 or β < 1 so the sequence is increasing or decreasing, respectively.

The value of β is determined by α(0). If the initial step size α(0) fails to satisfy condition (3.3),

the sufficient reduction condition, we choose β < 1 so the trial step size decreases until (3.3) is

15

satisfied. If the initial step size α(0) satisfies (3.3), we choose β > 1 so the trial step size increase

until it fails to satisfy (3.3). We then set the step size as the last one that satisfies (3.3). We then

calculate the Cauchy step sC with (3.2). The complete procedure is shown in Algorithm 5.

Algorithm 5 Cauchy step computation for Projected CG method

1: Choose constant β1 ∈ (0, 1), β2 > 1 and µpg ∈ (0, 1).
2: Set α← 1 and compute sC(α) with (3.2).
3: if (3.3) is satisfied, then
4: while (3.3) is satisfied, do
5: Set αtemp ← α, and then α← β2α.
6: Compute sC(α) with (3.2).

7: Set α← αtemp.
8: else
9: while (3.3) is not satisfied, do

10: Set α← β1α.
11: Compute sC(α) with (3.2).

12: return : sC(α)

3.1.2 Second Stage: Subspace Minimization

First, we define the working setW to be the set of bound constraints that are active at x. Once we

have an estimationW of the optimal active set A(x∗) and x0 as a starting point (the Cauchy step

sC gives the initial estimationW and x0), we try to convert the problem to a equality-constrained

QP which can be solved by many efficient algorithms, including the one we will be using for this

stage: the projected CG method. We leave the discussion of estimating the active set for later,

and focus on solving the QP with a working set W for now.

We modify the original problem by fixing the value of components xi0 where i ∈ W, and try to

compute the remaining components of x from the subproblem (superscripts indicating components

of a vector)

min
x

q(x) =
1

2
xTGx+ xT c (3.4a)

subject to xi = xi0, i ∈ Wk, (3.4b)

li ≤ xi ≤ ui, i 6∈ Wk. (3.4c)

If the working set W is the same as A(x∗), solving (3.4) exactly is equivalent to solving (3.1)

16

exactly, and at the solution, only the equality constraints will be active. Notice that in this case

the problem now can be regarded as an equality-constrained QP with (3.4a) and (3.4b), which

can be rewritten in the general form

min
x

1

2
xTGx+ xT c

subject to ATx = b.

Here, b would be a vector of all fixed values of xi0, i ∈ W, and AT is the matrix of constraint

gradients. Note that problem of this form can be solved by a projected CG method, the solution

of which, in the case, will also be the solution for (3.1).

However, even if the working set is different from the optimal active set, we can still use the

projected CG to solve (3.4a) and (3.4b), to obtain an approximate solution that will help us find

the exact solution. Algorithm 6 shows the procedure of the projected CG method, but we need

to first show how projections are handled in the algorithm.

Algorithm 6 Projected CG Method

1: Set the starting point x0.
2: Compute r0 ← Gx0 + c, g0 ←Mprojr0, d0 ← −g0, and choose κtol > 0.
3: Set K ← 0.
4: loop
5: if dTGd ≤ 0, then
6: return : xs ← xK + θdK where θ > 0 is the largest value for xs to be feasible.

7: Set αK ← rTKgK/d
T
KGdK .

8: Set xK+1 ← xK + αKdK .
9: if xiK+1, where i 6∈ W, encounters a bound, then

10: return : xs ← xK+1.

11: Set rK+1 ← rK + αKGdK .
12: Set gK+1 ← PrK+1.

13: if gTK+1rK+1 ≤ κtol(gT0 r0)
1
2 , then

14: return : xs ← xK+1.

15: Set βK+1 ← (rK+1)T gK+1/r
T
KgK .

16: Set dK+1 ← −gK+1 + βK+1dK .
17: Set K ← K + 1.

Notice that because of the nature of bound constraints, AT will have a very simple form. We

17

define the scaled n× n projection matrix Mproj as

Mproj = Z(ZTZ)−1ZT = I −A(ATA)−1AT ,

where Z is a null-space basis of AT . In this implementation, we calculate projections g = Mprojr

by solving an augmented system of the form

 I A

AT 0


g
v

 =

r
0

 . (3.5)

Because AT has a very simple form, we can compute g to obtain an explicit result. Assume the

current working set is W, solving (3.5) shows that g can be expressed as

gi =


0 i ∈ W,

ri otherwise.

(3.6)

The explicit result means no linear system is needed to be solved, and we can compute g very

efficiently.

Because we have to accommodate the constraints in (3.4c) for the cases where the working

set is different from the optimal active set, and there is the possibility of indefiniteness in the

quadratic model, we use modified stop tests that are different than standard trust-region CG.

We (a) terminate when negative curvature appears, and find a solution along the direction of the

current step; (b) terminate if a bound in (3.4c) is encountered; or (c) terminate if gTKrK is smaller

than a prescribed tolerance. In particular, when negative curvature is detected, it is preferred to

search along the direction of the current step until a bound is encountered to obtain the largest

feasible step.

We end this section by noting that in line 9, if the algorithm stops because a bound is en-

countered, we don’t consider xs a solution. Instead we will expand the active set and try to run

projected CG with a new working set and new starting point. The details of this strategy will be

discussed in the next section.

18

3.2 Estimating the Active Set

For bound-constrained QPs, we define an active set at a feasible point x as

A(x) := {i |xi = li or xi = ui}.

Here we use superscript to represent the components in a vector. The working set W at x is then

defined as

W ← A(x). (3.7)

In order to compute the optimal solution x∗ of the bound-constrained QP with the projected CG

method, the optimal active set A(x∗) is necessary. The Cauchy step sC gives us the first working

set

W ← A(sC),

but it may not be the same with the optimal active set A(x∗). An iterative approach is applied,

so that by adding or removing elements, it modifies the working set with each iteration and

eventually reaches the optimal active set. We summarize this active set projected CG method in

Algorithm 7, and present the detail of the iterative approach as follows.

First, we discuss how to add elements to the working set W. During Algorithm 6, if a

component of xK violates its bounds, then the algorithm is terminated. Then, we define a new

point x̃s as

x̃s ← P [xs]. (3.8)

We effectively project the current point xs to the bounds to obtain x̃s so that it remains feasible

to the bound-constrained QP. Instead of using it as an approximate solution, we use x̃s in (3.7)

to update the working set W. By doing this, those components that violate their bounds in xK

will be added to the working set; then we regard x̃s as the new starting point for Algorithm 6, so

along with the new working set, Algorithm 6 can be started again to repeat the process we just

described.

We need to be able to remove elements from the current working set as well. If Algorithm 6

finds a solution xs for (3.4) with a working set W that is different from A(x∗), the solution may

19

Algorithm 7 Active Set Projected CG Method

1: Use Algorithm 5 to find the Cauchy point sC .
2: Set k ← 0.
3: Set starting point x0 ← sC , and initialize working set W ← A(x).
4: loop
5: if number of elements in W is the same as x0, then
6: Use Algorithm 6 to compute xs.
7: while Algorithm 6 terminates because a bound is encountered, do
8: Define x̃s by (3.8).
9: Update the working setW by (3.7) with x̃s, and set the new starting point x0 ← x̃s.

10: Use Algorithm 6 to compute xs.

11: else
12: Set xs ← x0.

13: Compute the Lagrange multipliers zl and zu at xs.
14: if zil < 0 or ziu < 0 holds for some i ∈ W, then
15: UpdateW by removing the element corresponding to the most negative multiplier from

the working set.
16: else
17: return the first-order optimal solution x∗ ← xs.

18: Set the new starting point x0 ← xs.

not satisfy the KKT conditions for the original problem (3.1), which include

Gx+ c− zl + zu = 0 (3.9a)

l ≤ x ≤ u (3.9b)

zl, zu ≤ 0 (3.9c)

zTl (l − x) = 0 (3.9d)

zTu (x− u) = 0. (3.9e)

The quantities zl and zu are the vectors of Lagrange multipliers corresponding to the lower bound

constraints and upper bound constraints respectively. For a solution xs, (3.9b) is satisfied. As-

suming (3.9a), (3.9d) and (3.9e) are satisfied as well, we can compute both zl and zu. More

specifically, we must have {zil , ziu} = 0 where i 6∈ W, because those Lagrange multipliers corre-

spond to inactive bounds. So whether or not the KKT conditions are satisfied only depends on

{zil , ziu} where i ∈ W. If {zil , ziu} ≥ 0 for all i ∈ W, then (3.9c) is satisfied. That means the KKT

conditions are satisfied. In this case, we have W = A(x∗) and the exact solution for the original

20

problem is xs.

If, on the other hand, zil < 0 or ziu < 0 holds for some i ∈ W, then (3.9c) is violated. We deal

with this violation by removing one element i, corresponding to i such that zil < 0 or ziu < 0, from

the working set W and start Algorithm 6 from the current point xs with the new working set.

According to [6], the rate of decrease in the objective function when one constraint is removed

is proportional to the magnitude of the Lagrange multiplier for that constraint. So we choose to

remove the element corresponding to the most negative multiplier from the working set.

Notice in line 5 the condition requires that Algorithm 6 will be used only when the working

set does not have the same number of elements as in x0. Otherwise, we can see from (3.6) that

no search direction from x0 can be found for Algorithm 6. When this happens, we simply skip

Algorithm 6 and check the KKT conditions at this point.

21

Chapter 4

Numerical Experiments

In this chapter we describe in detail the implementation of Algorithm 7 in Matlab, which will be

referred to as ASPCG from now on, as a subproblem algorithm for the adaptive AL algorithm, and

provide some results from numerical experiments. In Section 4.2, we compare the performance

of ASPCG and Cplex’s QP solver on a subset of the inequality constrained CUTEr [4] test prob-

lems. In Section 4.3 and Section 4.4, we explore and examine the performance of ASPCG when

different values of certain parameters or different conditions are employed in the implementation

of Algorithm 4.

4.1 Implementation Details

We already have the implementation of Algorithm 4 and a trust-region variant of Algorithm 1 by

Curtis, Jiang and Robinson [2] in Matlab, which will be referred to by AAL and BAL respectively,

hereinafter. For the most part we will keep the implementations unchanged, and focus only

on one critical component for both implementations: the algorithm for solving the trust region

subproblem (2.14), and in the case of AAL, subproblem (2.10) as well. To be more specific, we

focus on the part of the implementation for solving the subproblems in the case of inequality

constrained problems, where our active set projected CG method can be implemented.

The original implementations of AAL and BAL use Cplex’s QP solver to solve the subproblems.

The trust-region constraint of each subproblem is converted into an infinite norm trust-region

constraint, and then the bound-constrained QPs are solved by Cplex. Since the conversion of

22

the subproblems is necessary for ASPCG as well, we believe it is fair to compare the performance

of the two.

There is one thing that is different between using Cplex’s QP solver and ASPCG. Since Cplex

requires the QP to be convex, the original implementations AAL and BAL add multiples of ten

times the identity matrix to the Hessian of the QP when negative curvature is detected, until

Cplex can successfully return a solution. The algorithm we introduced in Chapter 3 does not

need this procedure, so ASPCG differs slightly from Algorithm 6 and Algorithm 7 in dealing with

negative curvature. If negative curvature occurs, ASPCG will simply terminate and use the current

step xK as the solution. The motivation for this implementation is to avoid unnecessary practical

complications. For example, in some cases, the trust-region of a subproblem can become so big

that expanding the current step xK until a bound is encountered may be counterproductive.

As previously noted, the termination conditions for AAL and BAL should be practical variants of

the theoretical ones. Both algorithms will terminate with a message of “optimal solution found”

when

‖FL(xk, yk)‖∞ ≤ κopt and ‖ck‖∞ ≤ κfea, (4.1)

and terminate with an infeasible stationary point when

‖FFeas‖∞ ≤ 10−1κopt, ‖ck‖∞ > κfea, and µk < µmin. (4.2)

Note that the implementation would only return an infeasible stationary point when the penalty

parameter is small enough. In addition, we also set the algorithms to terminate if (4.1) and (4.2)

are not satisfied within an iteration limit kmax and a CPU time limit tmax.

Table 4.1 and Table 4.2 below summarize the input parameter values that were chosen in

algorithms BAL, AAL and ACPG.

Par. Val. Par. Val. Par. Val. Par. Val.

β1 5e-01 β2 2e+00 µpg 1e-04 κtol 1e-08

Table 4.1: Parameter values used in ASPCG

Note that the implementation we use does not change the condition in line 10 of Algorithm 4

to make it more practical. The purpose of this condition has been discussed in Section 2.2; but

23

Par. Val. Par. Val. Par. Val. Par. Val.

γµ 5e-01 κ3 1e-04 Γδ 6e-01 κopt 1e-05

γt 5e-01 κt 9e-01 µ0 1e-01 κfea 1e-07

γT 5e-01 ηs 1e-02 t1 1e+00 µmin 1e-20

γδ 5e-01 ηvs 9e-01 T1 1e+00 κmax 2e+03

κF 9e-01 δ 1e+04 δ0 1e+00 tmax 1.8e3

κ1 1e+00 κ2 1e+00 δR 1e-04 ε 5e-01

Table 4.2: Parameter values used in AAL and BAL

during initial numerical tests, we realized that a poorly chosen positive tolerance may drive down

the value of the penalty parameter unnecessarily. So the condition remains unchanged in the

implementation, so it is only satisfied when no feasible descent directions for L(·, yk, µk) from xk

exist.

4.2 Comparison with CPLEX’s QP Solver

In this section we observe the difference in performance between ASPCG and Cplex’s QP solver,

when they are used as the subproblem solver in AAL and BAL. For this purpose, we choose a subset

of the CUTEr test problems. The subset is chosen in the following way. First, the subproblem

solver will only be used in the case of an inequality-constrained problem, so we eliminated all other

types of problems. Second, we eliminated all problems with more than 1000 variables, as they

become too large for the implementations in Matlab to handle. Third, we eliminated problems

that can’t be solved by both AAL and BAL with either subproblem solver. This leaves us with a

subset of 353 problems.

In order to fully examine the difference in performance, we will use both AAL and BAL with

both ASPCG and Cplex’s QP solver for subproblems on the test problems. So we will be testing

a total of 4 different implementations. We will call AAL with ASPCG as AAL-A, AAL with Cplex as

AAL-C, BAL with ACPG as BAL-A, and BAL with Cplex as BAL-C hereinafter.

To measure the performance, we use performance profiles introduced by Dolan and Moré [1].

A performance profile uses a relative metric for judging performances, such as the number of

iterations, and plots the fraction of problems solved by an algorithm within a multiple of the best

algorithm according to said metric. Generally speaking, if we use the number of iterations as

24

(a) Iterations (b) CPU time

Figure 4.1: Performance profiles comparing AAL-A, AAL-C, BAL-A, and BAL-C.

the metric, a plot line that is on top towards the left side means the algorithm is more efficient,

solving a better fraction of problems with fewer iterations; and a plot line that is on top towards

the right side means the algorithm is more robust, solving more problems, regardless of how many

iterations are taken.

The performance profiles in Figure 4.1 compare AAL-A, AAL-C, BAL-A, and BAL-C in terms

of iterations and CPU time, respectively. These figures show several things. First and foremost,

AAL-A is clearly superior to the rest in both efficiency and reliability on this collection of problems.

Second, the adaptive AL algorithm implementations appear to have better reliability than the

basic AL implementations; efficiency is harder to judge, although efficiency is better in AAL-A than

BAL-A. For AAL-C and BAL-C, the adaptive AL method is more efficient in terms of iterations, but

less efficient in terms of CPU time.

There are many reasons for an implementation to terminate, and Table 4.3 shows how many

times each termination condition is triggered on the problems for each of the four implementa-

tions. Notice that the total number in each column does not add up to 353, which is the number

Cond. AAL-A AAL-C BAL-A BAL-C

Optimal solution found 306 294 277 288
Infeasible stationary point found 1 0 2 1

Reach iteration limit κmax 33 50 60 47
Function evaluation error 5 2 6 3

Reach time limit tmax 8 1 8 10

Table 4.3: Termination condition tally comparing AAL-A, AAL-C, BAL-A, and BAL-C.

25

of problems that are in the test subset, for AAL-C and BAL-C; instead they are 347 and 349,

respectively. This is because during the solution process of certain problems with the two imple-

mentations, some errors cause Matlab to crush and thus no termination condition is triggered.

These problems are considered unsolved in Figure 4.1.

The results in Table 4.3 appear to confirm that AAL-A has the best reliability. But it is

necessary to check on the final value of the penalty parameter for the implementations before

coming to this conclusion. If the penalty parameter is too small after the computation of a

solution, the problem essentially becomes a problem of minimizing the constraint violation and

will regard any feasible point as the optimal solution. Thus, it would be a good feature of an

algorithm if µfinal does not go too small too often. We now present in Table 4.4 the number of

final value µfinal of penalty parameter in each range for the four implementations.

µfinal AAL-A AAL-C BAL-A BAL-C

1e-01 129 128 161 154
[1e-02, 1e-01) 37 39 34 42
[1e-03, 1e-02) 35 46 40 28
[1e-04, 1e-03) 30 39 43 43
[1e-05, 1e-04) 44 35 36 54
[1e-06, 1e-05) 25 25 13 15
[1e-07, 1e-06) 16 14 7 9

(0, 1e-07) 37 21 13 4

Table 4.4: Number of the final penalty parameter values are in the given ranges comparing AAL-A,
AAL-C, BAL-A, and BAL-C.

We observe that the adaptive AL algorithm does cause the final penalty parameter value to

be smaller than the basic AL algorithm. But it is not too small compared to the basic algorithm,

so this could simply be because the adaptive strategy is working. We also note that AAL-A

does not see too much drop in the final penalty parameter value compared to AAL-C, either.

This shows that our subproblem algorithm has better efficiency and reliability than Cplex’s

QP solver, without sacrificing too much on the final penalty parameter value on the test set of

problems. This conclusion may be explained by looking at the strategy for updating the active

set estimates. ASPCG uses a projected CG method to update the active set estimates. As we

mentioned in Chapter 3, this allows the estimates to change rapidly between iterations, which

may be an advantage over the active set method used in Cplex, especially when the initial

26

estimate is not very accurate.

4.3 Different Steering Step

In this section and next, we look further into AAL-A, to observe the performance of our ASPCG

method in different settings of AAL. The main difference between the adaptive AL approach and

the basic one is the computation of a steering step before the trial step that tries to minimize the

augmented Lagrangian. Because of the impact of the steering step on the value of the penalty

parameter, we want to know the behavior of the AAL algorithm when the steering step is computed

differently. In AAL-A, we use ASPCG for the computation of both the steering step and the trial step,

and the implementation computes the exact or, at least, a very good approximate solution of both

subproblems. We now modify AAL-A so the steering step is computed by an implementation of

Algorithm 5, and the solution would be just the Cauchy step. This setup means that the steering

step is now a less accurate approximate solution. We call the new implementation AAL-Cauchy.

AAL-A and AAL-Cauchy were tested on the set of problems we used in Section 4.2.

(a) Iterations (b) CPU time

Figure 4.2: Performance profiles comparing AAL-A and AAL-Cauchy.

The performance profiles in Figure 4.2 compare AAL-A and AAL-Cauchy in terms of iterations

and CPU time, respectively. The difference between the two lines is not very large. With iterations

as the performance metric, AAL-A appears to be superior to AAL-Cauchy in both efficiency and

reliability on this collection of problems. This may be a result of having less accurate steering

steps which may lead to worse progress in some iterations. On the other hand, with CPU time

27

Cond. AAL-A AAL-Cauchy

Optimal solution found 306 300
Infeasible stationary point found 1 0

Reach iteration limit κmax 33 42
Function evaluation error 5 5

Reach time limit tmax 8 6

Table 4.5: Termination condition tally comparing AAL-A and AAL-Cauchy.

µfinal AAL-A AAL-Cauchy µfinal AAL-A AAL-Cauchy

1e-01 129 139 [1e-05, 1e-04) 44 41
[1e-02, 1e-01) 37 41 [1e-06, 1e-05) 25 25
[1e-03, 1e-02) 35 40 [1e-07, 1e-06) 16 18
[1e-04, 1e-03) 30 32 (0, 1e-07) 37 17

Table 4.6: Number of the final penalty parameter values are in the given ranges comparing AAL-A

and AAL-Cauchy.

as the performance metric, AAL-Cauchy sees better efficiency than AAL-A. This may be because

the computational costs of computing the Cauchy point is much less than solving the subproblem

more accurately with ASPCG.

Similar to the previous section, we present in Table 4.5 how many times each termination

condition is triggered on the collection of problems for both implementations; and Table 4.6 shows

the number of final value µfinal of penalty parameter in each range for both implementations.

We can confirm what we learn from Figure 4.2, in Table 4.5, that AAL-A and AAL-Cauchy solves

similar numbers of problems, although AAL-A solves slightly more. But Table 4.6 suggests that

AAL-Cauchy records more µfinal in the range [1e-04, 1e-01] than AAL-A, which, as we discussed

in the last section, is a better distribution of µfinal. We expected these results, since AAL-A has

more accurate steering steps, which, with condition (2.18c) implemented, drives the value of the

penalty parameter down more aggressively. Note that AAL-A clearly records more µfinal in (0,

1e-07) than AAL-Cauchy. This may mean that AAL-A solves more problems than AAL-Cauchy,

simply because it drives penalty parameter small in more cases, and it is only a feasible point

that the implementation finds. Thus, we can’t conclude that AAL-A shows better reliability, or

efficiency, even if the performance profiles suggest so.

28

4.4 Different Value of the Parameter κ3

We know that condition (2.18c) ensures that the trial step yields sufficient reduction in constraint

violation compared to the steering step. In the last section, we observed the results of having

inaccurate steering steps. In this section, we change the parameter κ3 in (2.18c) which determines

what fraction of constraint violation reduction of the steering step in trial step is considered

“sufficient”. Table 4.2 shows that so far our implementations use κ3 = 1e-04. We set it to 0.9

and 1e-08, as one value is close to 1 and the other is close to 0, and test the modified AAL-A on

the same test set of problems as in Section 4.2.

We present the performance profiles of AAL-A when κ3 is set at 0.9, 1e-04 and 1e-08, respec-

tively, in Figure 4.3. Notice that larger κ3 shows better efficiency and reliability in the profiles.

However, in Section 4.3, we have seen that performance profiles do not take the final value of

penalty parameter into consideration, and the reliability and efficiency in profiles may be mis-

leading. Compared to the original κ3 = 1e-04, if instead κ3 is set at 0.9, then usually only those

trial steps that produces large reduction in constraint violation are considered valid, and the

penalty parameter may be driven down more aggressively. On the other hand, if we use κ3 =

1e-08, trial steps would be accepted more easily and the penalty parameter decrease would be less

frequent. The flaw for the former case has been discussed, the solution we computed may be for

a feasibility problem instead of the original optimization problem. The flaw for the latter case is

that sometimes the penalty parameter is not decreasing quickly enough, and we may need more

iterations and time to reach a solution.

(a) Iterations (b) CPU time

Figure 4.3: Performance profiles comparing different κ3.

29

Cond. κ3 = 0.9 κ3 = 1e-04 κ3 = 1e-08

Optimal solution found 310 306 296
Infeasible stationary point found 3 1 0

Reach iteration limit κmax 32 33 45
Function evaluation error 3 5 5

Reach time limit tmax 5 8 7

Table 4.7: Termination condition tally comparing different κ3.

µfinal κ3 = 0.9 κ3 = 1e-04 κ3 = 1e-08
1e-01 107 129 133

[1e-02, 1e-01) 37 37 41
[1e-03, 1e-02) 25 35 35
[1e-04, 1e-03) 25 30 25
[1e-05, 1e-04) 60 44 41
[1e-06, 1e-05) 30 25 29
[1e-07, 1e-06) 16 16 15

(0, 1e-07) 53 37 33

Table 4.8: Number of the final penalty parameter values are in the given ranges comparing
different κ3.

So we present in Table 4.7 how many times each termination condition is triggered on the

collection of problems for different κ3; and Table 4.8 shows the number of final value µfinal of

penalty parameter in each range for all cases. First, we can see from Table 4.7 that the results

match what we discussed about the flaw of having smaller κ3, as we can see more problems can’t

be solved in the iteration limit when κ3 change from 0.9 to 1e-08. Second, we can see from

Table 4.8 that when κ3 is set at 0.9, more penalty parameter final values are in the range (0,

1e-04) than the other two cases. This means that more problems that AAL-A solved in this case

are in question as we are not sure how many of those solutions are optimal or just feasible. Thus

we can’t conclude that setting κ3 = 0.9 is better for performance of AAL-A than the other two.

On the other hand, the distribution of final penalty parameter value does not differ much between

settings κ3 = 1e-04 and κ3 = 1e-08. So it is likely that κ3 = 1e-04 is a better setting for the

performance of AAL-A, both in efficiency and reliability, than κ3 = 1e-08.

30

Chapter 5

Conclusion

We have presented, tested, and analyzed an algorithm for the subproblems of the AAL algorithm.

It compute the exact, or at least a good approximate solution for the subproblems by using

a projected CG method that estimates the optimal active set. With the subproblems being

bound-constrained in form, the active set projected CG method we proposed can change the

active set estimates rapidly between iterations; it makes finding the optimal estimate, and then

a solution, quickly, even when the initial active set estimate is far from the optimal one. We

have demonstrated that it outperforms the original subproblem solver implemented in the AAL

algorithm in terms of both iterations and CPU running time over a wide range of problems while

maintaining similar penalty parameter updates. We also show that the AAL algorithm with our

method for solving subproblems is superior to the basic AL algorithm with the same subproblem

solver in terms of iterations and CPU time on those problems.

A potential disadvantage of the AAL algorithm we used is the possibility that the penalty

parameter will be driven too small, even when it is applied to solve problems where a constraint

qualification is satisfied at all solution points. We examined this possibility by testing different

steering steps and values of the parameter κ3 in the AAL algorithm implementation with our

subproblem solver. On the test problems, we showed that a rigorous requirement on the reduction

of constraint violation in the trial step would drive the penalty parameter value down, and a loose

requirement would have the opposite effect. Further inspection is necessary to determine how

many of the solutions found in the implementations we tested are actually optimal, or just feasible

31

points. So we are unable to decide what the best constraint violation reduction requirement in

the implementation would be. For now we only point out that smaller penalty parameter values

are more likely to cause the returned solution to be just a feasible point.

In terms of the implementation of the active set projected CG method, one issue we have to

take into consideration is numerical error in estimating the optimal active set. The theoretical

conditions, which we used in our implementation of the subproblem solver, may cause the estimate

to be very inaccurate in some cases. We didn’t find this to be a persistent issue in our tests, but

it is an important matter to consider in general.

32

Bibliography

[1] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with cops. Tech-

nical Report Technical Memorandum ANL/MCS-TM-246, Argonne National Laboratory, Ar-

gonne, IL, 2000.

[2] Frank E. Curtis, Hao Jiang, and Daniel P. Robinson. An adaptive augmented lagrangian

method for large-scale constrained optimization. Technical Report 12T-016, COR@L Labora-

tory, Department of ISE, Lehigh University, 2013.

[3] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm for large-

scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–900, 1999.

[4] Nicolas I. M. Gould, D. Orban, and Philippe L. Toint. Cuter and sifdec: A constrained and

unconstrained testing environment, revisited. ACM Trans. Math. Software, 29:373–394, 2003.

[5] Chin-Jen Lin and J. Moré. Newton’s method for large bound-constrained optimizaion prob-

lems. SIAM Journal on Optimization, 9(4):1100–1127, 1999.

[6] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, chapter 16, pages 467–480.

Springer, second edition, 2006.

[7] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, chapter 16, pages 461–463.

Springer, second edition, 2006.

33

Biography

Wenda Zhang, born on February 20th, 1989 in Taiyuan, China, graduated in 2012 from Shang-

hai Jiao Tong University in China as an industrial engineering major. He then entered Lehigh

University that fall, and is there now pursuing a Master of Science degree in the industrial and

systems engineering program.

34

	Lehigh University
	Lehigh Preserve
	2014

	A Subproblem Algorithm for the Adaptive Augmented Lagrangian Method
	Wenda Zhang
	Recommended Citation

	tmp.1435161973.pdf.2VIKs

