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In this thesis, we discuss two problems that involve concave minimization problems with bi-

nary variables.

For the first problem, we compare the Lagrangian relaxation method and our reformulation

method in solving the location model with risk pooling (LMRP) with constant customer demand

rate and equal standard deviation of daily demand.

Our new method is to reformulate the original non-linear model for the LMRP as a linear

one. In the reformulation, we introduce a set of parameters representing the increase in the cost

of the non-linear part for each additional cost assigned to a potential facility site, and a set of

new decision variables indicating how many customers are assigned to each facility. Then we get

a linear model by replacing the none-linear part of the original objective function by the sum of

the additional costs from 0 to the number of customers assigned.

The algorithms are tested on problems with 5 to 500 potential facilities and randomly gen-

erated locations. The computation time of the Lagrangian method grows slower as the number

of potential sites increases than the linear method does. Though the new method takes more

time than the Lagrangian method, it may have better efficiency for solving problems with special

patterns in the distance matrix or other special structure.

In the second half of this thesis, we discuss a general multiple-square-root pricing problem.

We test a heuristic that involves sorting, similar to the method for solving the Lagrangian sub-

problem for the LMRP, and we explore conditions under which the heuristic could be optimal.

The accuracy rates for this method are decreasing at a slow rate as the number of the square root

terms grows, while it stays high when the number is not too big.

1



Chapter 1

Introduction

1.1 The Location Model with Risk Pooling

The location model with risk pooling (LMRP) is introduced by [3]. This problem chooses facility

locations in order to minimize the total cost of building the facilities, transporting goods from

facilities to customers and holding inventory to take advantage of economies of scale and protect

against uncertain demand. So there are four parts in the objective function; the construction

cost, the transportation cost, the cycle stock cost and the safety stock cost. This problem can

be solved quite efficiently using Lagrangian relaxation when the ratio of the demand variance to

mean is the same for every customer.In our thesis, we consider a further special case in which we

assume all facilities share the same customer demand rate and standard deviation of daily demand.

Our work was motivated by the modeling approach used in the Maximum Expected Covering

Location Problem (MEXCLP). MEXCLP is introduced by [2]. This model is a kind of covering

problem; it decides the number of vehicles in each location in order to maximize the expected

number of demands that can be covered, given that vehicles may be unavailable (in use). The

model assumes that there is an equal probability that a vehicle is busy at any location. As the

objective function is the expected number of demands, the decision variables that choose the num-

ber of vehicles in each location appear in an exponential term. This makes the objective function

non-linear, just like the LMRP problem. Daskin introduces a set of parameters to represent the
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increase in the expected coverage for each additional vehicle, as well as a set of binary decision

variables to indicate whether the customer is covered a specific numbers of times. By using the

sum of all the benefits of adding a new vehicle to represent the expected coverage, he changes the

problem into one that is linear and easy to solve. So we apply the same idea to convert the LMRP

into a linear mixed-integer programming problem and compare it with the Lagrangian method

of [3] to see if it will give us a more efficient method.

1.2 Multiple-Square-Root Minimization Problem

The Multiple-Square-Root Minimization Problem (MSR) has an objective functions that consists

of a sum of a linear term and at least two square root terms. The Lagrangian sub-problem for

the LMRP is a typical MSR problem, and there are other MSR problem in real life. A simple

example is that we add other concave cost besides the safety stock cost to the LMRP, such as the

labor cost and even minimize the negation of the revenue. To solve the Lagrangian sub-problem

for the LMRP problem, [3] and [6] assumes the ratio of the demand variance to mean is the same

for every customer and collapse the two square root terms into one, then use a sorting algorithm

to solve the resulting sub-problem. Our focus is on the two-square-root problem in which this

assumption does not hold. We address this problem along two directions. The first is to relax the

assumption in the LMRP’s Lagrangian method and the second one is to add a condition for the

parameters that makes the sorting method always optimal.

The remainder of this thesis is organized as following. In Chapter 2 we review relevant related

literature. The reformulated linear model is described in Chapter 3. Chapter 4 outlines the com-

putational results and a comparison of solution times for the linear and Lagrangian methods. The

Multiple-square-root Minimization problem is analysed in Chapter 5. In Chapter 6, we present

our conclusions and outline directions for future work.
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Chapter 2

Literature Review

In 2002 [3] introduced the LMRP(Location Model with Risk Pooling). The original motivation of

the model was a study of a Chicago-area blood bank system. Compared with the UFLP model,

the LMRP takes cycle stock and safety stock into account. So there are two more non-linear

terms in the objective function. [3] then proposed a Lagrangian method to solve this model for

a special case in which the ratio of the demand variance to the demand mean is identical for all

retailers. Then in 2003, Shen et al [6] presented a different algorithm for solving the LMRP. They

reformulated the model into a set covering problem and applied a column generation algorithm

to solve it. The computational results shows that this algorithm is fast, but still slower than the

Lagrangian method. Snyder, Daskin and Teo [8] presented a stochastic version of the LMRP prob-

lem, and they developed a Lagrangian method for this problem. They also discussed the influence

of changing the key parameters. Ozsen [4] considered the interdependence between capacity and

inventory management in the LMRP. The Lagrangian sub-problem is also a non-linear integer

program. They proposed an efficient algorithm for the continuous relaxation of this sub-problem.

The Maximum Expected Covering Location Problem (MEXCLP) is introduced by Daskin [1]

and [2]. The MEXCLP chooses locations of facilities that can sometimes be unavailable and

Daskin artfully replaces the none-linear term in the objective function by a sum of linear terms.

That linearizes the model and makes it easier to solve. In our thesis we apply this method to the

LMRP problem.

4



A couple of special cases of the Multiple-Square-Root Minimization problem are presented by

Shen et al [5]. They listed problems like [7] and [6] which all had at least two concave (square

root) terms in the objective function. Shu developed an efficient algorithm to solve this kind of

problem in [7] through a corresponding concave minimization problem defined on a polyhedron.

In our thesis, we try to find under what condition the sorting algorithm for the LMRP Lagrangian

sub-problem can be applied to the general two square root pricing problem.
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Chapter 3

Model Formulation

3.1 Maximum Expected Covering Location Problem

As we mentioned in the Introduction chapter, our approach for solving concave binary minimiza-

tion problems is inspired by a reformulation strategy that is sometimes used to solve other binary

optimization problems in which the objective function contains a non-linear function of the sum

of the binary variables. The basic idea is to introduce auxiliary parameters and binary variables

and use their product to represent the none-linear part, and use these to linearize the objective

function.

One model that uses this approach is the maximum expected covering loction problem (MEX-

CLP) by [2]. The MEXCLP chooses locations of facilities that can sometimes be unavailable (e.g.,

because the ambulance located there is busy on another call). A demand node is covered by a

facility if it is within a certain coverage radius of it. The goal of the MEXCLP is to locate at

most P facilities to maximize the total expected coverage of the demand nodes.

The MEXCLP assumes that the probability that a facility is unavailable at any time is given

by q. It also assumes that facility unavailabilities are independent, so if there are n facilities that

cover a demand node, then the probability that all of them are unavailable is given by qn. Since

the number of covering facilities, n, is not known a priori, we have to express it in terms of the
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decision variables as
∑

j∈J aijXj , where aij is a parameter that equals 1 if facility j covers demand

node i and 0 otherwise. Then the model can be formulated as follows:

Parameters:

J set of potential facilities, indexed by j,

I set of customer nodes, indexed by i,

q the probability that a facility is unavailable at any time,

P the maximum number of the facilities can be chosen,

hi the demand generated at node i,

aij =


1 if a facility at j can cover demands at customer node i,

0 otherwise,

Decision Variables:

Xj the number of facilities to be built at j

Then the model can be formulated as follows:

Maximize
∑
i∈I

hi

(
1− q

∑
j∈J aijXj

)
subject to

∑
j∈J

Xj ≤ P

Xj ∈ 0, 1 ∀j ∈ J

3.2 Linearization of Maximum Expected Covering Location Prob-

lem

In the original formulation, the probability that the demand of a customer node i is covered is

given by 1−q
∑

j∈J aijXj , which is a non-linear function of Xj . Instead of computing the probability

directly, [2] proposes adding up the benefits of each new facility. We now summarize his approach.

Figure (3.1) shows how we compute the probability by adding up benefits. The x-axis is the

number of facilities that cover the demand node and the y-axis is the probability. Assume there

are k facilities that can cover the demand node. We first compute the benefit of adding the

7



Figure 3.1: Adding up benefits to compute probability

(n+ 1)st facility (assuming we already have n facilities) (n = 0, 1, ..., P − 1) and then we can add

them up from n = 1 to k.

The availability probability for n facilities is 1−qn. Thus the benefit of adding another source

to cover the node from n facilities is (1 − qn+1) − (1 − qn) = qn(1 − q). We introduce a new

variable Zjk to represent the number of times covered, which we define to be 1 if demand node i

is covered k or more times, and 0 if not. The model then can be formulated as follows.

Maximize
P∑
k=1

∑
i∈I

hiq
k−1(1− q)Zjk

subject to
∑
j∈J

aijXj −
P∑
k=1

Zik ≥ 0 ∀i ∈ I

∑
j∈J

Xj ≤ P

Xj ∈ 0, 1 ∀j ∈ J

Zjk ∈ 0, 1 ∀j ∈ J ; k = 1, 2, ..., P.
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In this model, we add up the benefits to replace the none-linear part of the objective function

and that gives us a linear formulation. In what follows we propose a similar method to reformulate

the LMRP model as a linear one.

3.3 The Location Model with Risk Pooling

The LMRP model is an extension of the UFLP that considers uncertain demand. Besides the

fixed cost of opening locations and the variable transportation cost, it also includes the cost of

cycle stock and safety stock. As a result, the LMRP is structured much like the UFLP model,

with two extra non-linear terms in the objective function. Despite its concave objective function,

the LMRP problem can be solved by Lagrangian relaxation quite efficiently, just like the UFLP,

assuming that the ratio of the customer demand rate µ and the standard deviation of daily de-

mand σ are constant. We use the following notations:

Parameters:

I set of retailers, indexed by i,

J set of candidate DC sites, indexed by j,

µi mean daily demand of retailer i, for each i ∈ I,

σ2
i variance of daily demand of retailer i, for each i ∈ I,

fj fixed (daily) cost of locating a DC at candidate site j, for each j ∈ J ,

Kj fixed cost for DC j to place an order from the supplier, including fixed components of both

ordering and transportation costs, for each j ∈ J ,

dij cost per unit to ship between retailer i and candidate DC site j, for each i ∈ I and j ∈ J .

Θ a constant parameter that captures the safety stock costs at candidate sites.

Decision Variables:

Xj =


1 if we locate at candidate site j,

0 if not,

Yij =


1 if demands at retailer i are assigned to a DC at candidate site j,

0 if not.

9



Then the model is formulated as follows.

Minimize
∑
j∈J

fjXj +
∑
i∈I

dijYij +Kj

√∑
i∈I

µiYij + Θ

√∑
i∈I

σ2
i Yij


subject to

∑
j∈J

Yij = 1 ∀i ∈ I

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J

Xj ∈
{

0, 1
}
, ∀j ∈ J

Yij ∈
{

0, 1
}
, ∀i ∈ I, ∀j ∈ J.

3.4 Linearization of LMRP

To make the objective function linear, we introduce a new parameter γjk to represent the cost of

safety and cycle stock cost that k retailers are assigned to DC j, that is

γjk = Kj

√
kµ+ Θ

√
kσ2.

Also we introduce a new decision variable

Zjk =


1, if exactly k retailers are assigned to DC j,

0, if not

To associate Zjk with its meaning using linear constraints, we add the constraints

|I|∑
k=0

kZjk =
∑
i∈I

Yij ∀j ∈ J

|I|∑
k=0

Zjk = 1 ∀j ∈ J.

The second constraint says that only one of the Zjk can be equal to 1 for each j and the first

constraint makes sure that the 1 appears when k =
∑

i∈I Yij , which is just how we define the
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meaning of Zjk.

So the linear model is:

Minimize
∑
j∈J

{
fjXj +

∑
i∈I

dijYij +
∑
k∈J

γjkZjk

}
(3.1)

subject to
∑
j∈J

Yij = 1 ∀i ∈ I (3.2)

Yij ≤ Xj ∀i ∈ I, ∀j ∈ J (3.3)

|I|∑
k=0

kZjk =
∑
i∈I

Yij ∀j ∈ J (3.4)

|I|∑
k=0

Zjk = 1 ∀j ∈ J (3.5)

Xj ∈
{

0, 1
}
, ∀j ∈ J (3.6)

Yij ∈
{

0, 1
}
, ∀i ∈ I, ∀j ∈ J (3.7)

Zjk ∈
{

0, 1
}
, ∀j ∈ J,∀k = 0, ..., |I|. (3.8)

From these two formulations, we can see although the second method is linear,it has many more

constraints than the original formulation. On the other hand, it can be solved by an off-the-

shelf MIP solver and does not require Lagrangian relaxation as in the original LMRP. So it’s

hard to say which computation time would be shorter only by looking at the models. We will

test randomly generated examples and compare the solution time of the two methods in Chapter 4.

3.5 The Lagrangian Relaxation Method for the LMRP

Similar to the UFLP, we solve the LMRP by relaxing the assignment constraints equation (3.2)

to obtain the following Lagrangian sub-problem:

Minimize
∑
j∈J

fjXj +
∑
i∈I

dijYij +Kj

√∑
i∈I

µiYij + Θ

√∑
i∈I

σ2
i Yij

+
∑
i∈I

λi

1−
∑
j∈J

Yij



11



= Minimize
∑
j∈J

fjXj +
∑
i∈I

(dij − λi)Yij +Kj

√∑
i∈I

µiYij + Θ

√∑
i∈I

σ2
i Yij

+
∑
i∈I

λi

subject to Yij ≤ Xj ∀i ∈ I, ∀j ∈ J

Xj ∈
{

0, 1
}
, ∀j ∈ J

Yij ∈
{

0, 1
}
, ∀i ∈ I, ∀j ∈ J.

Although the sub-problem is a concave integer minimization problem, it can be solved rela-

tively efficiently, using a sorting method developed by [3] and [6]. The algorithm relies on the

assumption that the ratio of the demand variance to the demand mean is a constant for all re-

tailers. That is, for all i ∈ I, σ2
i /µi = γ for some constant γ ≤ 0. Then we can collapse two

square root terms into one and apply the sorting algorithm to solve the resulting sub-problem. In

the multiple square root pricing problem, we focus on the two-square-root problem in which this

assumption does not hold.

The optimal objective function value of the Lagrangian sub-problem gives us a lower bound

of the original problem; then we need an upper bound. There are many ways to find a feasible

solution to get the upper bound; in this paper, we use a simple algorithm to generate the solution

from the sub-problem result. This is shown in the appendix.

Finally, we recursively update λ to get a smaller gap between the lower and upper bound.

Our stopping condition in the computational tests in this thesis is when the number of iterations

is over 500 or the gap is less than or equal to 5 percent of the upper bound. There is no limit for

cpu time since the first stopping condition includes it.

12



Chapter 4

Computational Results

4.1 Test on Random Instances

In this section, we outline computational results from 10 experiments with |I| and |J | ranging

from 5 to 500 in increments of 5. Tables (4.4) and (4.5) show a sample of our random data set with

data scale of 5. Our data set has |I| = |J | and we define data scale as |I| (the number of retailers).

The parameters are generated randomly in Excel and the distributions are shown in Table 4.2. We

also saved the upper bound and the lower bound at each iteration during the Lagrangian method.

This shows the interval change of each iteration and helps us choose a suitable stopping condition.

We implemented the Lagrangian method in C++ and the linearization method in AMPL with

CPLEX version 12.4.0.0. Table (4.1) is the comparison of the solution time for the linearization

and Lagrangian methods. The linearization method has a similar solution time as the Lagrangian

method when the number of facilities is small. However, the solution time increases faster with

the number of facilities for the linearized method than it does for the Lagrangian method. So for

larger scale problems (which are more practical) the Lagrangian method will have better perfor-

mance.

In our experiments, for one specific data set, CPLEX gets stuck when it tries to solve the

linearization problem. It takes over 90 seconds while the other samples with the same data scale

13



only need 2.91 seconds on average. When we use the Lagrangian method to solve the same prob-

lem, the method also stopped because the number of iterations is over 500. The reason that the

Lagrangian method can’t solve this kind of data set in a small number of iterations is that the

Lagrangian relaxation’s optimal value can’t reach the original problem’s optimal value, and the

gap is over 5 percent, but the reason why the gaps are large for this data set is not clear. Similarly,

we still can’t understand why CPLEX also gets stuck for this data set.

The gap between the upper bound and the lower bound is not large; it is on average 4.3

percent. However, there is a significant increase in the gap when the data scale grows larger.

Figure (4.2), Figure (4.3) and Table (4.1) are the comparison of the average solution time

for the Lagrangian method and the linearization method. In the figure, the lower line (blue)

represents the solution time for the Lagrangian method and the upper line (orange) is for the

linearization method.

Figure (4.4), Figure (4.5) and Table (4.2) are the comparison of the Maximum solution time

for the Lagrangian method and the linearization method.

Figure 4.1: Average solution time for data scale 5 to 100
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Data Scale Lagrangian Method Linearized Method

5 0.039 0.264
10 0.055 0.373
15 0.105 0.422
20 0.081 0.447
25 0.096 0.472
30 0.171 0.567
35 0.133 0.623
40 0.109 0.729
45 0.153 0.815
50 0.175 0.873
55 0.169 1.151
60 0.213 1.626
65 1.948 1.559
70 0.172 1.597
75 0.225 2.142
80 0.240 2.458
85 0.289 3.121
90 0.246 5.722
95 20715 5.215
100 0.373 4.965
150 0.726 31.408
200 7.645 300.122
250 10.753 193.101
300 2.540 650.172
350 3.750 397.260
400 27.234 166.028
450 59.588 397.333
500 71.281 364.518

Table 4.1: Average solution time comparison

Based on the results, we can see that the gap between the lower and upper bounds is accept-

able, even in the cases that stopped due to the 500-iterations limit. Additionally, when the scale

is not large, we can get results from the Lagrangian method with a tiny gap, say 0.5 percent. So

it can be concluded that the Lagrangian method is reliable.

From Table (4.1), the linearization method becomes slower than the Lagrangian method on

average when the data scale is large. From Table (4.4), we see that the maximum solution time

of the ten samples has a similar trend as the average solution time. However, there do exist in-

stances for which the linearization method runs faster. The solve-speed depends on the instances;
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Lagrangian Method Linearized Method

5 0.078 0.420
10 0.086 0.828
15 0.125 0.623
20 0.192 0.803
25 0.202 0.733
30 0.233 0.826
35 0.187 1.022
40 0.162 1.483
45 0.329 1.891
50 0.245 1.623
55 0.227 1.92
60 0.297 2.427
65 6.935 2.895
70 0.502 2.798
75 0.643 4.052
80 0.582 6.304
85 0.636 8.471
90 0.721 12.567
95 9.028 15.465
100 1.873 13.981
150 2.234 90.385
200 21.43 639.293
250 28.388 293.233
300 8.449 1243.54
350 14.284 1539.455
400 53.293 324.144
450 19.116 567.342
500 20.101 597.369

Table 4.2: Maximum solution time comparison

for further research, we will test on larger scale problems and real world instances.

4.2 Test on Benchmark Instances

As in real life, the data such as distance, fixed cost of opening a new facility and the demand of

different places are not always independent, so it is necessary to compare the computation time

not only on random data sets, but also on examples that come from more realistic instances.

Our data comes from [3] and we use two data sets. For the 88-node dataset, representing
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Figure 4.2: Average solution time for data scale 150 to 450

Parameters Generated from distribution

dij Uniform[0,500]
fj Uniform[0,15]
Kj Uniform[0,25]
Θ Inverse Normal
σ2 Uniform[0,1]
µ Uniform[0,2]

Table 4.3: Data distribution for LMRP

the 50 largest cities in the 1990 U.S. census along with the 48 capitals of the continental U.S.

minos duplicates, the mean demand was obtained by dividing the population data by 1000 and

rounding the result to the nearest integer. Fixed facility location costs were obtained by dividing

the facility location costs by 100. For the 150-node dataset, representing the 150 largest cities in

the continental U.S. for the 1990 census, the mean demand was obtained in the same manner.

The fixed facility costs were all set to 100, one thousandth of the value in the dataset given by [3].

These changes were made to allow us to deal with smaller numbers.

For the 88-node dataset, the solution time for the Lagrangian method is 0.203 s and it takes

CPLEX 2.435 s. For the 150-node dataset, the solution time for the Lagrangian method is 0.539

s and it takes CPLEX 19.673 s. We see that the solution time for both methods is a little bit

smaller than the average of the random samples and the Lagrangian method is still much faster
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Figure 4.3: Bounds from Lagrangian Method

j(i) fj Kj Θ µ σ2

1 6.7899 20.1892 -0.6551 0.1004 1.4484
2 8.3984 10.8181 -0.6551 0.1004 1.4484
3 5.4865 24.0214 -0.6551 0.1004 1.4484
4 3.2355 14.2425 -0.6551 0.1004 1.4484
5 8.7225 10.2614 -0.6551 0.1004 1.4484

Table 4.4: Sample test data for LMRP

than the linearization method. So the randomness of the initial instances may not have much

influence on the comparison of these two methods.

18



Figure 4.4: Maximum solution time for data scale 5 to 100

dij 1 2 3 4 5

1 313.0018 427.8025 148.3325 269.3765 47.4767
2 307.9506 275.2097 240.9874 236.6587 39.4540
3 210.9449 216.0247 295.6569 200.8956 55.5366
4 228.2597 245.9648 386.1843 321.6904 185.5226
5 83.5940 316.4902 476.5017 329.6392 48.3012

Table 4.5: Sample test data for LMRP

Figure 4.5: Maximum solution time for data scale 150 to 450
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Chapter 5

Multiple Square Root Minimization

Problem

5.1 Model Introduction

In the LMRP model, the Lagrangian sub-problem can be written as

Minimize
∑
j∈J

fjXj +
∑
i∈I

(dij − λi)Yij +Kj

√∑
i∈I

µiYij + Θ

√∑
i∈I

σ2
i Yij

+
∑
i∈I

λi

subject to Yij ≤ Xj ∀i ∈ I, ∀j ∈ J

Xj ∈
{

0, 1
}
, ∀j ∈ J

Yij ∈
{

0, 1
}
, ∀i ∈ I, ∀j ∈ J.

To solve this sub-problem, we can divide the objective function into three parts. The X part

contains
∑

j∈J fjXj , the Y part contains
∑

i∈I
{

(dij−λi)Yij +Kj

√∑
i∈I µiYij + Θ

√∑
i∈I σ

2
i Yij

}
and the λ part contains

∑
i∈I λi. Since the λ part has no decision variables, it can be ignored for

the optimization. To minimize the objective function, we decide the value for Xj as follows: for

each j, if fj plus the minimum value of the Y part for that j is negative, we set Xj to 1 and set

Yij to achieve the minimum value; else, we set Xj and Yij to 0. Therefore the problem reduces
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to finding the minimum value for the Y part. For given j ∈ J , let bi = dij − λi, c1
i = K2

j µi,

c2
i = Θ2σ2

i and yi = Yij . Then the Y part minimization problem can be abstracted into

minimize
∑
i∈I

biyi +

√∑
i∈I

c1
i yi +

√∑
i∈I

c2
i yi.

In [3] and [6], an efficient sorting method was introduced to solve this problem under the condition

that c1
i /c

2
i = constant for all i. This allows the two square-root terms to be combined into one,

which is requires for the algorithms in [3] and [6]. From the original notation, this condition means

that the ratio of the demand variance to the demand mean is a constant for all retailers. This is

approximately true for many realistic cases. However, in some cases demand variance can be influ-

enced by factors other than the demand mean and that will violate the condition. One example is

selling wine; the demand mean is mostly related to the population that drinks the wine while the

demand variance can be influenced by the climate. People tend to buy more when the grapes are

good because of good climate, so places with stable climate tend to have a lower demand variance.

As we mentioned in the last paragraph, the method in [3,6] works under the condition that

c1
i /c

2
i = constant, let’s say γ, for all i. Now the y part can be rewritten as follows:

∑
i∈I

biyi +

√∑
i∈I

c1
i yi +

√∑
i∈I

c2
i yi

=
∑
i∈I

biyi +

√∑
i∈I

γc2i yi +

√∑
i∈I

c2
i yi

=
∑
i∈I

biyi + (1 +
√
γ)

√∑
i∈I

c2
i yi.

We get rid of one of the square root terms in this way. So the minimization problem of the Y

terms can be written as:

(P ) minimize
∑
i∈I

biyi +

√∑
i∈I

ciyi (5.1)
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subject to yi ∈ {0, 1} ∀i ∈ I, (5.2)

where ci ≡ c2
i

[3] and [6] proved that (P ) can be solved efficiently by a sorting method, in O(|I| log |I|) time.

The sorting method works as follows:

Let I− = {i ∈ I|bi < 0} and I−1 = {i ∈ I−|bi > 0}

1. Set yi = 0 for all i ∈ I−.

2. Set yi = 1 for all i ∈ I− such that ci = 0.

3. Sort the elements in I−1 in increasing order of bi/ci.

4. For each r ∈ {0} ∪ I−1 ,compute

Sr =
r∑
i=1

bi +

√√√√ r∑
i=1

ci.

(If r = 0, then Sr = 0.)

5. Choose the r that minimizes Sr and set yi = 1 for i = 1, ..., r

The proof for this sorting method only uses the concave property of the square root function

and the process also works if we replace the square root terms with any concave function terms.

So all the results hold if the functions are any concave function rather than square roots.

Without the condition that c1
i /c

2
i = constant, we cannot combine the two square root terms

into one in the Y part. So the sorting method provided by [3] and [6] does not work in these

cases. Our focus is on identifying conditions under which the problem can be solved by the sorting

method for problems with two or more square root terms.
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5.2 Model Formulation

The general form of the multiple square root (MSR) minimization problem is as follows:

(PP )minimize min
∑
i∈I

biyi +

√∑
i∈I

c1
i yi +

√∑
i∈I

c2
i yi + ...+

√∑
i∈I

cmi yi (5.3)

=
∑
i∈I

biyi +

m∑
t=1

√∑
i∈I

ctiyi

subject to yi ∈
{

0, 1
}
.

Throughout the analysis below, we assume that cti > 0 for all i ∈ I and t ∈
{

1, ...,m
}

. In the

case of the LMRP, this assumption holds as long as all of the demand variances are positive. If

the assumption does not hold, one can approximate it by setting cti = ε, for small ε, if it equals 0.

Furthermore, we will assume that cti ≥ 1 for all i ∈ I and t ∈
{

1, ...,m
}

. This assumption is not

restrictive, since if 0 < cti < 1 we can multiply the objective function by some constant M without

changing the optimal solution; cti then becomes M2cti. For large enough M , all coefficients are

greater than or equal to 1.

Let I− =
{
i ∈ I|bi ≤ 0

}
. Obviously, if i /∈ I− then y∗i = 0 in any optimal solution y∗. Assume

without loss of generality that the elements of I− are sorted such that

b1∑m
t=1 c

t
1

≤ b2∑m
t=1 c

t
2

≤ ... ≤ bn∑m
t=1 c

t
n

,

where n = |I−|.

Consider the two square root problem, i.e., m = 2. As shown in [3] and [6], if
c1i
c2i

= constant

for all i, then the sorting method discussed above works. On the other hand, we know that

without this constraint, the sorting method does not hold in general. The question we are inter-

ested in is whether the sorting method is guaranteed to work if the c1
i /c

2
i ratios are ”close enough”.

Suppose that
cti
c1i

= (1 + αi)c t ∈ {2, ...,m} and ∀i ∈ I with αi ∈ [α, ᾱ] for some constants

23



αi, α, ᾱ, c. Our aim is to identify values for α and ᾱ, which guarantee that the sorting method

works.

5.3 Model Analysis

In this section, we modify the proof of the correctness of the sorting method introduced by [3]

and [6] to the MSR problem and discuss the bottleneck of the proof.

we assume without loss of generality that the elements of I−1 = {i ∈ I−|bi < 0} are indexed

and sorted such that

b1∑m
t=1 c

t
1

≤ b2∑m
t=1 c

t
2

≤ ... ≤ bn∑m
t=1 c

t
n

. (5.4)

Conjecture 5.1. There exists an optimal solution y∗ to (PP) such that the following property

holds: if y∗k = 1 for some k ∈ I−1 , then y∗l = 1 for all l ∈ {1, ..., k − 1}.

Start of Proof : Let y∗ be an optimal solution to (PP). Assume (for a contradiction) that

y∗k = 1 but y∗l = 0 for some l ∈ {1, ..., k − 1}. Assume that y∗ is the optimal solution with the

greatest number of components set to 1. We will find a new optimal solution with one more

component set to one, thus contradicting our assumption.

Let y′i =


1, if i = l

y∗i , otherwise,

y
′′=
i


0, if i = k

y∗i , otherwise.

Let z∗; z′; z′′ be the objective values corresponding to y∗; y′; y′′, respectively. Let R =

{i ∈ I− \ {k, l}|y∗i = 1}, and let Ct =
∑

i∈R c
t
i. Clearly,

z′ − z∗ = bl +
m∑
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]
(5.5)

z∗ − z′′ = bk +

m∑
t=1

[√
Ct + ctk −

√
Ct
]
. (5.6)
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Then from equation (5.5), we have:

z′ − z∗∑m
t=1 c

t
l

=
bt∑m
t=1 c

t
l

+

∑m
t=1(

√
Ct + ctk + ctl −

√
Ct + ctk)∑m

t=1 c
t
l

. (5.7)

Also, from equation (5.6), we have:

z∗ − z′′∑m
t=1 c

t
k

=
bk∑m
t=1 c

t
k

+

∑m
t=1(

√
Ct + ctk −

√
Ct)∑m

t=1 c
t
k

. (5.8)

Since z′ ≤ z∗ and z′′ ≤ z∗,
z′ − z∗∑m
t=1 c

t
l

> 0, (5.9)

and

z∗ − z′′∑m
t=1 c

t
k

< 0. (5.10)

If we can identify a condition such that

z′ − z∗∑m
t=1 c

t
l

≤ z∗ − z′′∑m
t=1 c

t
k

, (5.11)

then we can say there exists a contradiction in inequalities (5.9), (5.10) and (5.11). Then Conjec-

ture 5.1 would be proved.

From the convexity of the square root function, we have

√
Ct + ctk + ctl −

√
Ct + ctk

ctl
≤

√
Ct + ctk −

√
Ct

ctk
(5.12)

it is sufficient to find a condition that makes

∑m
t=1

(√
Ct + ctk + ctl −

√
Ct + ctk

)
∑m

t=1 c
t
l

≤

∑m
t=1

(√
Ct + ctk −

√
Ct
)

∑m
t=1 c

t
k

. (5.13)

An instance that satisfies inequality (5.13) must satisfy (5.11). Since bl∑m
t=1 c

t
l
≤ bk∑m

t=1 c
t
k

by the

way I− is sorted.
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Here comes the bottleneck, since inequality (5.13) doesn’t hold for all cases. In Section 5.4 we give

a sufficient condition that ensures inequality (5.13) holds, and in Section 5.5 we try an alternate

approach.

5.4 A Sufficient Condition

As we assumed in Section 5.2,
cti
c1i

= (1 + αi)c t ∈ {1, ...,m} and ∀i ∈ I with αi ∈ [α, ᾱ]. So we

change the format of inequality (5.13) and associate it with our assumption.

First note that

√
Ct + ctk + ctl −

√
Ct + ctk

=

(√
Ct + ctk + ctl −

√
Ct + ctk

)(√
Ct + ctk + ctl +

√
Ct + ctk

)
√
Ct + ctk + ctl +

√
Ct + ctk

=

(
Ct + ctk + ctl

)
−
(
Ct + ctk

)√
Ct + ctk + ctl +

√
Ct + ctk

=
ctl√

Ct + ctk + ctl +
√
Ct + ctk

. (5.14)

Given the assumption, we have:

ctl ≤ c (1 + ᾱ) c1
l√

Ct + ctk + ctl +
√
Ct + ctk ≥

√
c
√

1− α
(√

C1 + c1
k + c1

l +
√
C1 + c1

k

)
.

Since all the terms are greater than zero, we have:

ctl√
Ct + ctk + ctl +

√
Ct + ctk

≤
c (1 + ᾱ) c1

l
√
c
√

1− α
(√

C1 + c1
k + c1

l +
√
C1 + c1

k

) . (5.15)

26



Simplifying the right hand side term, we have:

c (1 + ᾱ) c1
l

√
c
√

1− α
(√

C1 + c1
k + c1

l +
√
C1 + c1

k

)
=
√
c

1 + ᾱ√
1− α

c1
l

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
(√

C1 + c1
k + c1

l +
√
C1 + c1

k

)(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
=
√
c

1 + ᾱ√
1− α

c1
l

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
c1
l

=
√
c

1 + ᾱ√
1− α

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
. (5.16)

Combining (5.14), (5.15) and (5.16), we have:

√
Ct + ctk + ctl −

√
Ct + ctk ≤

√
c

1 + ᾱ√
1− α

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
.

This holds for any t ∈ {1, ...,m}. Summing over t, we get:

m∑
t=1

(√
Ct + ctk + ctl −

√
Ct + ctk

)
≤ m
√
c

1 + ᾱ√
1− α

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
. (5.17)

Given the assumption, we also have:

m∑
t=1

ctl ≥ mc(1− α)c1
l , (5.18)

since all the terms are positive, inequality (5.17) and (5.18) imply

∑m
t=1

(√
Ct + ctk + ctl −

√
Ct + ctk

)
∑m

t=1 c
t
l

≤
m
√
c 1+ᾱ√

1−α

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
mc(1− α)c1

l

=
(1 + ᾱ)

(√
C1 + c1

k + c1
l −

√
C1 + c1

k

)
√
c
√

(1− α)3c1
l

. (5.19)
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Similarly we have

√
Ct + ctk −

√
Ct

=

(√
Ct + ctk −

√
Ct
)(√

Ct + ctk +
√
Ct
)

√
Ct + ctk +

√
Ct

=

(
Ct + ctk

)
−
(
Ct
)√

Ct + ctk +
√
Ct

=
ctk√

Ct + ctk +
√
Ct
. (5.20)

Given the assumption, we have:

ctk ≥ c (1− α) c1
k√

Ct + ctk +
√
Ct ≤

√
c
√

1 + ᾱ

(√
C1 + c1

k +
√
C1

)
.

Since all the terms are greater than zero, we have:

ctk√
Ct + ctk +

√
Ct
≥

c (1− α) c1
k

√
c
√

1 + ᾱ
(√

C1 + c1
k +
√
C1
) . (5.21)

Simplifying the right hand side term, we have:

c (1− α) c1
k

√
c
√

1 + ᾱ
(√

C1 + c1
k +
√
C1
)

=
√
c

1− α√
1 + ᾱ

c1
k

(√
C1 + c1

k −
√
C1
)

(√
C1 + c1

k +
√
C1
)(√

C1 + c1
k −
√
C1
)

=
√
c

1− α√
1− ᾱ

c1
k

(√
C1 + c1

k −
√
C1
)

c1
k

=
√
c

1− α√
1 + ᾱ

(√
C1 + c1

k −
√
C1

)
. (5.22)

Combining (5.20), (5.21) and (5.22), we have:

√
Ct + ctk −

√
Ct ≥

√
c

1− α√
1 + ᾱ

(√
C1 + c1

k −
√
C1

)
.
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This holds for any t ∈ {1, ...,m}. Summing over t, we get:

m∑
t=1

(√
Ct + ctk −

√
Ct
)
≥ m
√
c

1− α√
1 + ᾱ

(√
C1 + c1

k −
√
C1

)
. (5.23)

Given the assumption, we also have:

m∑
t=1

ctk ≤ mc(1 + ᾱ)c1
k, (5.24)

since all the terms are positive, inequality (5.23) and (5.24) imply

∑m
t=1

(√
Ct + ctk −

√
Ct
)

∑m
t=1 c

t
k

≥
m
√
c 1−α√

1+ᾱ

(√
C1 + c1

k −
√
C1
)

mc(1 + ᾱ)c1
k

=
(1− α)

(√
C1 + c1

k −
√
C1
)

√
c
√

(1 + ᾱ)3c1
k

. (5.25)

From inequalities (5.19) and (5.25), we can see that if we have

(1 + ᾱ)
(√

C1 + c1
k + c1

l −
√
C1 + c1

k

)
√
c
√

(1− α)3c1
l

≤
(1− α)

(√
C1 + c1

k −
√
C1
)

√
c
√

(1 + ᾱ)3c1
k

(5.26)

then inequality (5.13) will hold. In other word, Conjecture (5.1) holds if we impose (5.16) as

an additional condition.
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Inequality (5.26) can be reformulated as

√
(1 + ᾱ)5√
(1− α)5

≤

√
C1+c1k−

√
C1

c1k√
C1+c1k+c1l−

√
C1+c1k

c1l

=

(√
C1+c1k−

√
C1
)(√

C1+c1k+
√
C1
)

c1k

(√
C1+c1k+

√
C1
)

(√
C1+c1k+c1l−

√
C1+c1k

)(√
C1+c1k+c1l +

√
C1+c1k

)
c1l

(√
C1+c1k+c1l +

√
C1+c1k

)

=

c1k

c1k

(√
C1+c1k+

√
C1
)

c1l

c1l

(√
C1+c1k+c1l +

√
C1+c1k

)

=

√
C1 + c1

k + c1
l +

√
C1 + c1

k√
C1 + c1

k +
√
C1

. (5.27)

For the right hand side of inequality (5.27), finding the minimum value of

√
C1+c1k+c1l +

√
C1+c1k√

C1+c1k+
√
C1

over all k, l, call it R∗, is easy to accomplish through a simple iterative procedure.

For every t ∈ 1, ...,m,

Step 1: Let l = argmin
1≤i≤k−1

{cti}.

Step 2: Let k = argmin
2≤i≤n

{
√
C1+c1k+c1l +

√
C1+c1k√

C1+c1k+
√
C1

}.

For the left hand side of inequality (5.17), the value is decided by (1+ᾱ)
(1−α) and the smallest

value of this fraction can also be determined from the dataset easily. Given our assumption in

Section 5.2, the smallest value of c (1 + ᾱ) should be the largest ratio of c1
i and cti, for all i ∈ I

and t ∈ 2, ...,m; call it r̄. Also, the largest value of c (1 + ᾱ) should be the smallest ratio of c1
i′

and ct
′
i′ , for all i′ ∈ I and t′ ∈ 2, ...,m; call it r. So

(1 + ᾱ)

(1− α)
=
c (1 + ᾱ)

c (1− α)
≥ r̄

r
.
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As a result, in a given dataset, if we have
(
r̄
r

)2.5
≤ R∗, then inequality (5.27) holds for all k, l,

and so inequality (5.13) holds. In this case conjecture (5.1) holds, and the sorting method method

can be applied to the data set.

The following theorem summaries our analysis:

Theorem 5.4.1. If a data set has the property that
(
r̄
r

)2.5
≤ R∗, then there exists an optimal

solution y∗ to (PP) such that the following property holds: if y∗k = 1 for some k ∈ I−1 , then y∗l = 1

for all l ∈ {1, ..., k − 1}.

If the condition in Theorem (5.4.1) holds, then the sorting method can be applied.

5.5 An Alternate Analytical Approach

There is another direction for finding the condition. Continuing the logic from the Section 5.3,

let’s start from the simplest case, the two square root case.

First we subtract the left hand side from the right hand side of inequality (5.13);

(
√
C1+c1k+c1l +

√
C2+c2k+c2l−

√
C1+c1k−

√
C2+c2k)

c1l +c2l
− (
√
C1+c1k+

√
C2+c2k−

√
C1−

√
C2)

c1k+c2k

=
(
√
C1+c1k+c1l +

√
C2+c2k+c2l−

√
C1+c1k−

√
C2+c2k)(c1k+c2k)−(

√
C1+c1k+

√
C2+c2k−

√
C1−

√
C2)(c1l +c2l )

(c1l +c2l )(c1k+c2k)
.

The denominator is larger than zero as ck and cl are larger than zero. For the numerator,

we need to compare (
√
C1 + c1

k + c1
l +

√
C2 + c2

k + c2
l )(c

1
k + c2

k) + (
√
C1 +

√
C2)(c1

l + c2
l ) and

(
√
C1 + c1

k +
√
C2 + c2

k)(c
1
k + c2

k + c1
l + c2

l ).

From here we can see that if we do not add a condition on the relation between c1
k+c2

k and c1
l +c2

l ,

the difference between the previous terms can be either positive or negative. So we first add the

simple condition that
∑m

t=1 c
t
l =

∑m
t=1 c

t
k.

So the problem changes to comparing
√
C1 + c1

k + c1
l +
√
C2 + c2

k + c2
l +
√
C1+
√
C2 and 2(

√
C1 + c1

k

+
√
C2 + c2

k). As these terms are all positive, we can square them without changing their magni-

tude relation.

The left hand side becomes

C1 + c1
k + c1

l + C2 + c2
k + c2

l + C1 + C2 + 2
[
(
√
C1 + c1

k + c1
l

√
C2 + c2

k + c2
l ) + (

√
C1
√
C2)+

(
√
C1 + c1

k + c1
l

√
C1) + (

√
C2 + c2

k + c2
l

√
C2) + (

√
C1 + c1

k + c1
l

√
C2) + (

√
C2 + c2

k + c2
l

√
C1).
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The right hand side becomes

4(C1 + c1
k + C2 + c2

k + 2(
√
C1 + c1

k

√
C2 + c2

k)),

which can be written as the same pattern as the left hand side,

C1 + c1
k + C2 + c2

k + C1 + c1
k + C2 + c2

k + 2
[
(
√
C1 + c1

k

√
C2 + c2

k) + (
√
C1 + c1

k

√
C2 + c2

k)+

(
√
C1 + c1

k

√
C1 + c1

k) + (
√
C2 + c2

k

√
C2 + c2

k) + (
√
C1 + c1

k

√
C2 + c2

k) + (
√
C1 + c1

k

√
C2 + c2

k)

The difference between these two sides is

(
√
C1 + c1

k + c1
l

√
C2 + c2

k + c2
l ) + (

√
C1
√
C2) + (

√
C1 + c1

k + c1
l

√
C1) + (

√
C2 + c2

k + c2
l

√
C2) +

(
√
C1 + c1

k + c1
l

√
C2) + (

√
C2 + c2

k + c2
l

√
C1)− 4(

√
C1 + c1

k

√
C2 + c2

k).

This term’s value is near 0 but can be positive or negative for different data sets. We tried to

add some conditions to make this term always negative, but no sufficient condition was found.

However, if we only impose the simple condition that
∑m

t=1 c
t
l =

∑m
t=1 c

t
k, the sorting method

often finds the optimal solution, and when it does not, the error is usually small. This will be

shown in the next section.

5.6 A Lower Bound Based on the Sufficient Condition

As we discussed in Theorem 5.4.1, if a data set has the property that
(
r̄
r

)2.5
≤ R∗, then there

exists an optimal solution y∗ to (PP) such that the following property holds: if y∗k = 1 for some

k ∈ I−1 , then y∗l = 1 for all l ∈ {1, ..., k− 1}. From the Theorem we can see that in a data set, the

value of R∗
(
r̄
r

)−2.5
will decide whether this data set holds the property. Let’s name this number

as R. So when R ≥ 1, the property holds and the sorting method can be applied to this data

set. In this section, we discuss a method to get a lower bound through the sorting method when

0 < R < 1 and the gap between the lower bound and optimal solution.

Conjecture 5.2. There exists a lower bound zlb = z′+
(

1−R
R

)
min{bi (i ∈ 1, ...k − 1)} to (PP)

such that z′ is the objective value of a feasible solution y′ that the following property holds: if

y
′=1
k for some k ∈ I−1 , then y

′
l=1 for all l ∈ {1, ..., k − 1}.

Start of Proof : Let y∗ be an optimal solution to (PP) and z∗ is it’s objective value. Assume

(for a contradiction) that y∗k = 1 but y∗l = 0 for some l ∈ {1, ..., k − 1} and z∗ < zlb. We will
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find a feasible solution y′ with the following property: if y
′=1
k for some k ∈ I−1 , then y

′
l=1 for all

l ∈ {1, ..., k − 1} that breaks the inequality, thus contradicting our assumption.

From Equation(5.5) we have:

z′ − z∗ = bl +

m∑
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]
,

as 0 < R < 1 we have

R
(
z′ − z∗

)
= R

(
bl +

m∑
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

])

Rz′ −Rz∗ = Rbl +R
m∑
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]

Rz′ −Rz∗ + (1−R) bl = bl +R
m∑
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]
. (5.28)

From the Assumption,

z∗ < zlb

Rz∗ < Rz′ + (1−R)min{bi (i ∈ 1, ...k − 1)}

Rz∗ < Rz′ + (1−R) bl

Rz′ −Rz∗ + (1−R) bl > 0. (5.29)

From Equation(5.28) we have

Rz′ −Rz∗ + (1−R) bl∑m
t=1 c

t
l

=
bl∑m
t=1 c

t
l

+R

∑m
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]
∑m

t=1 c
t
l

. (5.30)

Also, we have Equation (5.8)

z∗ − z′′∑m
t=1 c

t
k

=
bk∑m
t=1 c

t
k

+

∑m
t=1(

√
Ct + ctk −

√
Ct)∑m

t=1 c
t
k

. (5.31)
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Based on the way we sort the data,

bl∑m
t=1 c

t
l

≤ bk∑m
t=1 c

t
k

. (5.32)

According to Inequalities (5.19), (5.25), and (5.26), we can imply that,

R

∑m
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]
∑m

t=1 c
t
l

≤

∑m
t=1(

√
Ct + ctk −

√
Ct)∑m

t=1 c
t
k

. (5.33)

Combining Inequalities (5.32) and (5.33) we have,

bl∑m
t=1 c

t
l

+R

∑m
t=1

[√
Ct + ctk + ctl −

√
Ct + ctk

]
∑m

t=1 c
t
l

≤ bk∑m
t=1 c

t
k

+

∑m
t=1(

√
Ct + ctk −

√
Ct)∑m

t=1 c
t
k

,

so

Rz′ −Rz∗ + (1−R) bl∑m
t=1 c

t
l

≤ z∗ − z′′∑m
t=1 c

t
k

. (5.34)

From Inequality (5.29),

Rz′ −Rz∗ + (1−R) bl∑m
t=1 c

t
l

> 0. (5.35)

Clearly,

z∗ − z′′∑m
t=1 c

t
k

≤ 0. (5.36)

There exists a contradiction in inequalities (5.34), (5.35) and (5.36). As a result, Conjecture 5.2

is proved.

5.7 Test on Random Samples

We generate the parameters in our random samples using uniformly distributed random numbers.

bi was generated from U [−10, 0] and all cki were generated from U [0, 1] and we choose |I| = 10 and

|m| = 2, 3, 4. There are 600 instances in total. We get the optimal value of the sample instances

by enumerating each of the feasible solutions and choosing the ones with the smallest objective

value. Then we apply the sorting method to the same instance and compare the result with the

enumeration method. Both methods were implemented in MATLAB.
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We can see that in most of the two square root cases, 94 out of 100, the sorting method find

the optimal solution. In these samples, 42 instances satisfy the sufficient condition (5.17) and for

each of these instances, the sorting method finds the optimal solution, as predicted by Theorem

(5.4.1). In the three square root cases, the sorting method works in 73 out of 100 data sets and 15

of them meet condition (5.17). When there are four square root terms, the sorting method works

in 56 out of 100 data sets, and there are only 6 cases that meet condition (5.17). The results are

shown in Table 5.2. This shows that the sufficient condition is correct, but not many data sets

satisfy it. However, this condition allows slight changes in the ratio of the multiple-square-root

parameters, which is typical of realistic data sets. For further research, relaxing the condition so

that it applies to more realistic data sets can be a direction.

For the alternate analytical approach in Section 5.5; the accuracy rates are shown in Table 5.1.

We can see that as the complexity of the problem goes up with more square roots, the accuracy

rate goes down. However, the rates are acceptable when the number of square roots is not large.

For future research, we will search for additional sufficient conditions to guarantee the optimality

of the sorting method.

Number of Accuracy rate Average error Average error
square root terms for all instances for failed instances

2 0.93 0.9875 0.8514
3 0.87 0.9493 0.7483
4 0.62 0.8853 0.7048

Table 5.1: Accuracy rate for the alternate analytical approach

Number of Satisfaction rate Average error Average error
square root terms for all instances for failed instances

2 0.42 0.9856 0.7314
3 0.15 0.9347 0.6026
4 0.06 0.8653 0.6892

Table 5.2: Satisfaction rate for the sufficient condition
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Chapter 6

Conclusions and Future Research

In this thesis, we discuss two problems that involve concave minimization problems with binary

variables.

Our linearization of the LMRP requires longer solution time on average than the Lagrangian

method does. However, it performs better in some special instances.

As for the MSR problem, we discuss a sufficient condition that guarantees the sorting method

works, and an alternate analytical approach that makes the sorting method often find the optimal

solution while the average error is low.

For future research, we would like to determine under what conditions the linearization method

will have a shorter solution time than the Lagrangian method does. Searching for relatively re-

laxed sufficient conditions to guarantee that the sorting method works for the MSR problem is

also a direction.
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