
Lehigh University
Lehigh Preserve

Theses and Dissertations

5-1-2018

Quadratic Optimization for Nonsmooth
Optimization Algorithms: Theory and Numerical
Experiments
Baoyu Zhou
Lehigh University, baoyu.zhou@outlook.com

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Thesis is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Zhou, Baoyu, "Quadratic Optimization for Nonsmooth Optimization Algorithms: Theory and Numerical Experiments" (2018).
Theses and Dissertations. 4334.
https://preserve.lehigh.edu/etd/4334

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4334?utm_source=preserve.lehigh.edu%2Fetd%2F4334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Quadratic Optimization for Nonsmooth Optimization Algorithms:

Theory and Numerical Experiments

by

Baoyu Zhou

A Thesis

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Master of Science

in

Industrial and Systems Engineering

Lehigh University

May 2018

c© Copyright by Baoyu Zhou 2018

All Rights Reserved

ii

This thesis is accepted and approved in partial fulfillment of the requirements for the Master

of Science.

Date

Thesis Advisor

Co-Advisor

Chairperson of Department

iii

Acknowledgements

This research is supported by Lehigh University. I am thankful to Frank E. Curtis and Andreas

Wächter, who provided me with selfless technical support. I would like to show my gratitude to

Yue Hu and Xingyu Wang, who always give me reasonable suggestions on my research. I gratefully

thank Yihe Zhuo, who gives me both courage and spiritual support. I especially appreciate the

assistance from Mu Tao and Sheng Zhou, who provide me with their endless love. At any time,

they never let me down and give me as much support as they can.

iv

Contents

Acknowledgements iv

List of Tables vii

Abstract 1

1 Introduction 2

2 Mathematical Background 4

2.1 Optimality Conditions . 4

2.2 Cholesky Factorization Updates . 6

2.2.1 Row/column addition . 6

2.2.2 Row/column deletion . 8

2.3 Eigen-decomposition . 10

3 Algorithm 12

3.1 Algorithm Basics . 12

3.2 Algorithm Details . 15

4 Convergence of the Algorithm 17

5 Numerical Test and Analysis 30

6 Conclusion 39

Bibliography 40

v

Biography 41

vi

List of Tables

5.1 Parameter default values in different cases . 31

5.2 Results of test #n of W with condition number (99000n+ 1) in case 1 32

5.3 Results of test #n of W with condition number (297000n+ 1) in case 1 33

5.4 Results of test #n of W with condition number (495000n+ 1) in case 1 33

5.5 Results of test #n of W with condition number (990000n+ 1) in case 1 34

5.6 Results of test #n of W with condition number (99000n+ 1) in case 2 34

5.7 Results of test #n of W with condition number (297000n+ 1) in case 2 35

5.8 Results of test #n of W with condition number (495000n+ 1) in case 2 35

5.9 Results of test #n of W with condition number (990000n+ 1) in case 2 36

5.10 Results of test #n of W with condition number (99000n+ 1) in case 3 36

5.11 Results of test #n of W with condition number (297000n+ 1) in case 3 37

5.12 Results of test #n of W with condition number (495000n+ 1) in case 3 37

5.13 Results of test #n of W with condition number (990000n+ 1) in case 3 38

vii

Abstract

Nonsmooth optimization arises in many scientific and engineering applications, such as optimal

control, neural network training, and others. Gradient sampling and bundle methods are two ef-

ficient types of algorithms for solving nonsmooth optimization problems. Quadratic optimization

(commonly referred to as QP) problems arise as subproblems in both types of algorithms. This

thesis introduces an algorithm for solving the types of QP problems that arise in such methods.

The proposed algorithm is inspired by one proposed in a paper written by Krzysztof C. Kiwiel

in the 1980s. Improvements are proposed so that the algorithm may solve problems with addi-

tional bound constraints, which are often required in practice. The solver also allows for general

quadratic terms in the objective. Our QP solver has been implemented in C++. This thesis not

only covers the theoretical background related to the QP solver; it also contains the results of

numerical experiments on a wide range of randomly generated test problems.

1

Chapter 1

Introduction

In various nonsmooth optimization algorithms such as in the class of bundle methods (see [3]),

QP subproblems arise in the following form:

min
(x,z)∈Rn×R

z +
1

2
(x− x1)TH(x− x1)

s.t. fj + gTj (x− xj) ≤ z for all j ∈ {1, . . . ,m} and ‖x− x1‖∞ ≤ δ,
(1.1)

where H ∈ Rn×n is a given symmetric positive definite matrix, {fj}mj=1 is a set of scalar values,

{gj}mj=1 and {xj}mj=1 are sets of real vectors in Rn, and δ is a nonnegative scalar. The dual of this

problem can be written as

min
(ω,γ)∈Rm×Rn

1

2
(Gω + γ)TW (Gω + γ)− bTω + δ‖γ‖1

s.t. 1Tω = 1 and ω ≥ 0,

(1.2)

where W = H−1, G is a matrix whose columns are the elements of {gj}mj=1, and b is a real vector

whose values are easily computed using the values {(fj , gj , xj)}mj=1. In this thesis, we present,

analyze, and test an algorithm for solving the QP (1.2). Letting (ω∗, γ∗) be a solution of this

problem, the solution of (1.1) can be recovered as x∗ = x1 −W (Gω∗ + γ∗).

Theoretical background related to the proposed QP solver is introduced in Chapter 2, includ-

ing KKT conditions of problem (1.2) and information about Cholesky factorization updates and

Eigen-decompositions. The basis for the proposed method is that proposed by Kiwiel in [1]. We

2

have improved the algorithm to make it feasibly solve QP problems with bound constraints and

general quadratic terms. Details of the algorithm are mentioned in Chapter 3. Chapter 4 covers

a proof of convergence of the algorithm. Results of numerical experiments using a C++ imple-

mentation of our QP solver are given in Chapter 5. We state concluding remarks in Chapter 6.

3

Chapter 2

Mathematical Background

In this chapter, we provide background on mathematical concepts that are needed to understand

our QP solver and our implementation of it.

2.1 Optimality Conditions

One can solve the optimization problem (1.2) by solving its optimality conditions, i.e., conditions

such that, if they are satisfied, then one confirms that a solution of problem (1.2) has been

obtained. The optimality conditions for (1.2) are referred to as Karush-Kuhn-Tucker (KKT)

conditions [2]. For problem (1.2), these conditions take the form

ωT (b−GTW (Gω + γ))− bj + gTj W (Gω + γ) ≥ 0 for all j ∈ {1, . . . ,m}, (2.1a)

δ1 +W (Gω + γ) ≥ 0, (2.1b)

δ1−W (Gω + γ) ≥ 0, (2.1c)

1− 1Tω = 0, ω ≥ 0, (2.1d)

max{γ, 0}T (δ1 +W (Gω + γ)) = 0, and (2.1e)

max{−γ, 0}T (δ1−W (Gω + γ)) = 0. (2.1f)

Here, (2.1a)–(2.1c) and (2.1d) are known as primal and dual feasibility conditions while (2.1e)–

(2.1f) are complementarity conditions.

4

One can rewrite (2.1) by breaking it down in terms of which elements of the variable vectors

are positive or negative. In particular, for a solution (ω, γ) of (2.1), let S ⊆ {1, . . . ,m} =: J

be the indices corresponding to positive elements of ω, let P ⊆ {1, . . . , n} =: I be the indices

corresponding to positive elements of γ, and let N ⊆ I be the indices corresponding to negative

elements of γ. Notice that there are no negative elements of ω since (2.1d) requires that ω ≥ 0.

Also, notice that, by definition, P ∩N = ∅. With these definitions and defining γ̄P∪N such that

[γ̄P∪N]i =

γi if i ∈ P ∪N

0 otherwise,

(2.2)

the KKT conditions (2.1) become

ωTS (bS −GT:,SW (G:,SωS + γ̄P∪N))− bj + gTj W (G:,SωS + γ̄P∪N) ≥ 0 for all j ∈ J , (2.3a)

δ + [W (G:,SωS + γ̄P∪N)]i ≥ 0 for all i ∈ I, (2.3b)

δ − [W (G:,SωS + γ̄P∪N)]i ≥ 0 for all i ∈ I, (2.3c)

1TωS = 1, (2.3d)

γi(δ + [W (G:,SωS + γ̄P∪N)]i) = 0 for all i ∈ P, and (2.3e)

γi(δ − [W (G:,SωS + γ̄P∪N)]i) = 0 for all i ∈ N . (2.3f)

Simplifying further since γP 6= 0 and γN 6= 0, one obtains that

ωTS (bS −GT:,SW (G:,SωS + γP∪N))− bj + gTj W (G:,SωS + γP∪N) ≥ 0 for all j ∈ J , (2.4a)

δ + [W (G:,SωS + γP∪N)]i ≥ 0 for all i ∈ I \ P, (2.4b)

δ − [W (G:,SωS + γP∪N)]i ≥ 0 for all i ∈ I \ N , (2.4c)

1TωS = 1, (2.4d)

δ + [W (G:,SωS + γP∪N)]i = 0 for all i ∈ P, and (2.4e)

δ − [W (G:,SωS + γP∪N)]i = 0 for all i ∈ N . (2.4f)

5

2.2 Cholesky Factorization Updates

As we will see later, our QP algorithm involves updating estimates of the optimal index sets S, P,

and N corresponding to (2.3) in each iteration. When some element is added to/removed from

S, P, or N , an implementation of our algorithm can be made efficient by adding/removing rows

and columns of a Cholesky factorization of a particular matrix.

For a symmetric positive definite M , there exists a unique upper triangular R such that

M = RTR. (2.5)

In the following subsections, we discuss how to update R to R̄ such that M̄ = R̄T R̄, where M̄ is

obtained by adding (deleting) a row/column pair to (from) M . We also show how to update a

solution of RTx = y to a solution of R̄T x̄ = ȳ by adding (deleting) an element of y corresponding

to the row/column pair.

2.2.1 Row/column addition

Consider partitioning M and R such that

M11 M12

MT
12 M22

 =

RT11 0

RT12 RT22

R11 R12

0 R22

 . (2.6)

Consider also partitions for M̄ and R̄ so that

M̄ =

M11 a M12

aT b cT

MT
12 c M22

 =

R̄T11 0 0

uT v 0

R̄T12 w R̄T22

R̄11 u R̄12

0 v wT

0 0 R̄22

 . (2.7)

Considering (2.7), we have M11 = R̄T11R̄11. After combining with (2.6), we have

R̄11 = R11. (2.8)

6

Reconsidering (2.7), we then have

RT11u = a (2.9)

and

v =
√
b− ‖u‖2. (2.10)

Moreover, we have

MT
12 = R̄T12R̄11 = R̄T12R11, (2.11)

meaning that from (2.6) we know

R̄12 = R12. (2.12)

From (2.7), we have

c = R̄T12u+ wv = RT12u+ wv, (2.13)

which means

w =
1

v
(c−RT12u). (2.14)

At last, we need to determine R̄22 such that

R̄T22R̄22 = M22 − R̄T12R̄12 − wwT

= M22 −RT12R12 − wwT

= RT22R22 − wwT .

(2.15)

This shows that R̄22 can be obtained from R22 with a rank-one update.

Now let’s consider the linear system RTx = y. We can partition x and y such that

RT11 0

RT12 RT22

x1
x2

 =

y1
y2

 . (2.16)

7

Similarly, we can partition the linear system R̄T x̄ = ȳ such that

RT11 0 0

uT v 0

RT12 w R̄T22

x̄1

x̄0

x̄2

 =

y1

y0

y2

 . (2.17)

Combining (2.16) and (2.17), then we have

x̄1 = x1 (2.18)

and

x̄0 =
1

v
(y0 − uT x̄1)

=
1

v
(y0 − uTx1).

(2.19)

We also have

R̄T22x̄2 = y2 −RT12x̄1 − wx̄0

= y2 −RT12x1 − wx̄0

= RT22x2 − wx̄0.

(2.20)

Hence, we can use (2.20) to compute x̄2.

2.2.2 Row/column deletion

Consider the original matrix M = RTR with a partition such that:

M11 m12 M13

mT
12 m22 mT

23

MT
13 m23 M33

 =

RT11 0 0

rT12 r22 0

RT13 r23 RT33

R11 r12 R13

0 r22 rT23

0 0 R33

 . (2.21)

After deleting the row/column pair, we have M̃ = R̃T R̃ as:

M11 M13

MT
13 M33

 =

R̃T11 0

R̃T12 R̃T22

R̃11 R̃12

0 R̃22

 . (2.22)

8

Combining (2.21) and (2.22), we easily have

R̃11 = R11 and R̃12 = R13. (2.23)

We also have

R̃T22R̃22 = M33 − R̃T12R̃12

= M33 −RT13R13

= r23r
T
23 +RT33R33.

(2.24)

For the linear equation RTx = y, which could be written as

RT11 0 0

rT12 r22 0

RT13 r23 RT33

x1

x2

x3

 =

y1

y2

y3

 , (2.25)

we want to solve the new linear equation

R̃T11 0

R̃T12 R̃T22

x̃1
x̃2

 =

y1
y3

 . (2.26)

From (2.23), (2.25), and (2.26), we have

x̃1 = x1, (2.27)

and

R̃T22x̃2 = y3 − R̃T12x̃1

= y3 −RT13x1

= r23x2 +RT33x3.

(2.28)

The relations in (2.24) and (2.28) could be written together in a linear system as

[
R̃T22 0

]R̃22 x̃2

0 ∗

 =

[
r23 RT33

] rT23 x2

R33 x3

 . (2.29)

9

We can apply Givens rotations to

 rT23 x2

R33 x3

 to calculate R̃22 and x̃2 simultaneously.

The original matrix

 rT23 x2

R33 x3

 is in the form as

a ∗ · · · ∗ ∗

b ∗ · · · ∗ ∗

0 ∗ ∗
...

...

...
. . .

. . .
. . .

...

0 · · · 0 ∗ ∗

.

After the first rotation, the matrix would be changed into the form as

ã ∗ · · · ∗ ∗

0 c · · · ∗ ∗

0 d ∗
...

...

...
. . .

. . .
. . .

...

0 · · · 0 ∗ ∗

,

where (a, b) in first column would be changed into (ã, 0).

After the second rotation, (c, d) in second column would be changed into (c̃, 0). Following this

way, eventually, we would have the final matrix as

R̃22 x̃2

0 ∗

 .
2.3 Eigen-decomposition

To test the performance of our proposed QP solver, we generate challenging problems. One way

we used to do this is to make W in (1.2) more ill-conditioned. We did this in the following manner.

10

We can always write a symmetric positive definite matrix W0 as

W0 = QΛ0Q
T , (2.30)

where Q is a orthonormal matrix and Λ0 is a diagonal matrix with eigenvalues of W0. Supposing

that such a Q has been computed, when we want W with some condition number τ , we first make

Λ = diag(λ1, . . . , λn), where λ1 ≤ λ2 ≤ . . . ≤ λn and τ = λn
λ1

. Then we could set

W = QΛQT . (2.31)

In this manner, we could generate a random symmetric positive definite matrix W with a partic-

ular condition number of τ as we want.

11

Chapter 3

Algorithm

This chapter contains two sections. We first mention some basic ideas of our algorithm. Then we

introduce the detailed algorithm step by step.

3.1 Algorithm Basics

In each iterate of the algorithm, we compute the solution of the linear system

GT:,SWG:,S GT:,SW:,P GT:,SW:,N 1

WP,:G:,S WP,P WP,N 0

WN ,:G:,S WN ,P WN ,N 0

1T 0 0 0

ωS

γP

γN

z

=

bS

−δ1

δ1

1

(3.1)

based on current choices of the index sets S, P, and N .

There are two important things in the algorithm:

1) We update our choices of the index sets S, P and N in each iteration. Some specific indices

are appended to/deleted from the sets to improve the objective function value. The algorithm

terminates when the current index sets S, P, and N are optimal. Then we can also get a solution

(ω, γ) satisfying (2.1), which is an optimal solution for (1.2) as well.

2) In each iteration, before we try to append some j /∈ S into index sets S, we should always

12

make sure the matrix in (3.1) will be invertible. We can do a rank-deficiency check by solving

(
G:,S 0 0

0 I 0

0 0 I

T

W W:,P W:,N

WP,: WP,P WP,N

WN ,: WN ,P WN ,N

G:,S 0 0

0 I 0

0 0 I

+

1

0

0

[
1T 0 0

])
ωS

γP

γN

=

G:,S 0 0

0 I 0

0 0 I

T

W W:,P W:,N

WP,: WP,P WP,N

WN ,: WN ,P WN ,N

gj

0

0

+

1

0

0

 ,
(3.2)

and then check whether

1TωS = 1 and G:,SωS = gj . (3.3)

We can solve (3.1) and (3.2) by Cholesky factorization update mentioned in Chapter 2. Main-

taining an upper triangular matrix R satisfying

RTR =

G:,S 0 0

0 I 0

0 0 I

T

W W:,P W:,N

WP,: WP,P WP,N

WN ,: WN ,P WN ,N

G:,S 0 0

0 I 0

0 0 I

+

1

0

0

[
1T 0 0

]
, (3.4)

13

then by solving

RT

ω1

γ1,P

γ1,N

 =

1

0

0

RT

ω2

γ2,P

γ2,N

 =

bS

−δ1

δ1

z =

∥∥∥∥∥∥∥∥∥∥∥∥

ω1

γ1,P

γ1,N

∥∥∥∥∥∥∥∥∥∥∥∥

2

+

ω1

γ1,P

γ1,N

T
ω2

γ2,P

γ2,N

− 1

/
∥∥∥∥∥∥∥∥∥∥∥∥

ω1

γ1,P

γ1,N

∥∥∥∥∥∥∥∥∥∥∥∥

2

R

ωS

γP

γN

 = (1− z)

ω1

γ1,P

γ1,N

+

ω2

γ2,P

γ2,N

(3.5)

and

RT

ω3

γ3,P

γ3,N

 =

G:,S 0 0

0 I 0

0 0 I

T
W W:,P W:,N

WP,: WP,P WP,N

WN ,: WN ,P WN ,N

gj

0

0

+

1

0

0

R

ωS

γP

γN

 =

ω3

γ3,P

γ3,N

 ,
(3.6)

we can get solutions of (3.1) and (3.2) separately.

If (3.3) is satisfied, then the matrix in (3.1) would not be invertible. In such a case, we perform

a swap to use such j to substitute some j′ ∈ S. If (3.3) is not satisfied, then we can skip the swap

step and simply append the newly index to S.

14

Our algorithm is formally stated in the next subsection. In Step 1, we initialize the solution

estimate by selecting index sets (S,P,N), whose corresponding solution of (3.1) satisfies positive-

negative sign constraints. Generally speaking, we can always set S including only one element

and both P and N being empty to satisfy our goal. Then we go to Step 2.

In Step 2, we always check whether the current feasible solution satisfies KKT conditions. If

so, we can conclude that our current solution is the optimal solution; if not, we could find such

j /∈ S or i /∈ P ∪ N that by including the index into (S,P,N), we can potentially improve the

objective function value. Then we go to Step 3.

Step 3 is mainly the pre-test for our new index candidate, to check whether appending the

index into current index sets would result in rank-deficiency or not. If so, we go to Step 5 to do

column exchange to remove some index from a current index set to avoid rank-deficiency; if not,

we would go to Step 4 to append the index into the current index sets without an exchange.

No matter if the algorithm performs a column exchange or column augmentation, we always

go to Step 6 to solve (3.1) corresponding to the new index sets, say (S1,P1,N1). If the solution

satisfies ωS1 > 0, γP1 > 0 and γN1 < 0, we get a feasible solution for the new index sets, meaning

we can go back to Step 2 again to check whether the (new) current solution is optimal or not. If

the solution violates one of inequalities above, we have to go to Step 7 to remove an index (or

more) from the index sets corresponding to a zero element after taking a convex combination of

the previous and current trial solution. Then we go back to Step 6 again to check whether the

solution of (3.1) corresponding to the new index sets satisfies those inequalities or not. If yes, we

go to Step 2 to continue on the next iterate; if not, we have to go to Step 7 to delete more indices.

3.2 Algorithm Details

We provide details of the algorithm for the QP Solver as follows:

15

Algorithm 1 QP Solver

1: procedure : (Initialization) Choose (S,P,N) such that the solution (ω̂S , γ̂P , γ̂N , ẑ) of (3.1)
has ω̂S ≥ 0, γ̂P ≥ 0, and γ̂N ≤ 0. Set the remaining elements of these vectors to zero.

2: (Termination check) if (2.4) holds, then termination. Otherwise, if i /∈ P ∪N exists such that
(2.4b) or (2.4c) violates, then choose i. Otherwise, choose j /∈ S such that (2.4a) violates.

3: (Rank-deficiency check) Solve (3.2) for (ω̃S , γ̃P , γ̃N). If[
1T

G:,S

]
ω̃S =

[
1
gj

]
,

then go to step 5; otherwise, continue.
4: (Column augmentation) Append i to P or N or j to S as appropriate based on the choice in

Step 2. Append a zero element to ω̂S , γ̂P or γ̂N corresponding to the newly added index. Go
to Step 6.

5: (Column exchange) Replace ω̂S by ω̂S − tω̃S where

t← min
k
{ω̂k/ω̃k : ω̃k > 0, k ∈ S}.

Find some index corresponding to a zero element of ω̂S . Delete this element along with
the corresponding index from S. Append j to S. Append an element with value t to ω̂S
corresponding to the newly added index.

6: (Subproblem solution) Solve (3.1) for (ω̄S , γ̄P , γ̄N , z̄). If ω̄S > 0, γ̄P > 0 and γ̄N < 0, then set
(ω̂S , γ̂P , γ̂N) = (ω̄S , γ̄P , γ̄N) and go to Step 2; otherwise, continue.

7: (Column deletion) Replace (ω̂S , γ̂P , γ̂N) by t(ω̄S , γ̄P , γ̄N) + (1− t)(ω̂S , γ̂P , γ̂N) where

t1 ← min{1,min
k
{ω̂k/(ω̂k − ω̄k) : ω̄k < 0, k ∈ S}},

t2 ← min{1,min
k
{γ̂k/(γ̂k − γ̄k) : γ̄k < 0, k ∈ P}},

t3 ← min{1,min
k
{γ̂k/(γ̂k − γ̄k) : γ̄k > 0, k ∈ N}},

and t← min{t1, t2, t3}.

Find some index corresponding to a zero element of (ω̂S , γ̂P , γ̂N). Delete this element along
with the corresponding index from S, P, or N . Go to Step 6.

16

Chapter 4

Convergence of the Algorithm

In this chapter, we are going to prove that under some assumptions, the algorithm always finds

the optimal solution of (1.2) in a finite number of steps.

Our first lemma shows that if the current index sets S, P and N are optimal, then the solution

obtained in Step 6 by solving (3.1) corresponding to S, P and N is optimal.

Lemma 4.1. If S, P, and N are chosen as the index sets corresponding to the solution of (2.4),

the inequalities in (2.4b) and (2.4c) are satisfied strictly, and the inequalities in (2.4a) are satisfied

strictly only if j ∈ J \S, then by solving the linear system (3.1) and setting ωJ\S ← 0 and

γI\(P∪N) ← 0, one obtains the solution (ω, γ) for (2.1).

Proof. For (ω∗, γ∗) satisfying KKT conditions (2.1), knowing optimal sets S, P and N under

assumptions we have made, combining (2.2), we would have a unique (ω∗S , γ
∗
P∪N) satisfying (2.4).

We first want to prove there is some (ω∗S , γ
∗
P , γ

∗
N , z

∗) related to (ω∗S , γ
∗
P∪N), being the solution of

(3.1). Let z∗ = ω∗TS (bS −GT:,SW (G:,Sω
∗
S + γ∗P∪N)) and consider (2.4a), because of the assumption

made in the statement of the lemma, we know that

z∗ = bj − gTj W (G:,Sω
∗
S + γ∗P∪N) for all j ∈ S. (4.1)

This leads to

bS = z∗1+GT:,SW (G:,Sω
∗
S + γ∗P∪N)

= z∗1+GT:,SWG:,Sω
∗
S +GT:,SW:,Pγ

∗
P +GT:,SW:,Nγ

∗
N .

(4.2)

17

Hence, (ω∗S , γ
∗
P , γ

∗
N , z

∗) satisfies the first equation in (3.1).

Consider the last three equations in (2.4). First, (2.4d) is the last equation in (3.1). Second,

(2.4e) is the same as

0 = δ1 + [W (G:,Sω
∗
S + γ∗P∪N)]P

= δ1 +WP,:(G:,Sω
∗
S + γ∗P∪N)

= δ1 +WP,:G:,Sω
∗
S +WP,Pγ

∗
P +WP,Nγ

∗
N ,

(4.3)

which means (ω∗S , γ
∗
P , γ

∗
N , z

∗) satisfies the second equation in (3.1). In a similar way, (2.4f) is the

same as

0 = δ1− [W (G:,Sω
∗
S + γ∗P∪N)]N

= δ1−WN ,:(G:,Sω
∗
S + γ∗P∪N)

= δ1− (WN ,:G:,Sω
∗
S +WN ,Pγ

∗
P +WN ,Nγ

∗
N),

(4.4)

so the third equation in (3.1) is satisfied by (ω∗S , γ
∗
P , γ

∗
N , z

∗) as well. Overall, (2.4d)-(2.4f) are the

same as the last three equations in (3.1) and (ω∗S , γ
∗
P , γ

∗
N , z

∗) is a solution of (3.1).

Let (ωS , γP , γN , z) be the solution of (3.1), then we know z = ωTS (bS−GT:,SW (G:,SωS+γP∪N)).

To finish the whole proof, all we need to show is

z > bj − gTj W (G:,SωS + γP∪N), for all j ∈ J \S (4.5a)

Wi,:(G:,SωS + γP∪N) > −δ, for all i ∈ I\P (4.5b)

Wi,:(G:,SωS + γP∪N) < δ, for all i ∈ I\N . (4.5c)

Assume (4.5) is violated by (ωS , γP , γN , z), which also means (ωS , γP , γN , z) 6= (ω∗S , γ
∗
P , γ

∗
N , z

∗).

Because S, P, and N are all optimal sets, then for (ω∗S , γ
∗
P , γ

∗
N , z

∗), we have

z∗ > bj − gTj W (G:,Sω
∗
S + γ∗P∪N), for all j ∈ J \S (4.6a)

Wi,:(G:,Sω
∗
S + γ∗P∪N) > −δ, for all i ∈ I\P (4.6b)

Wi,:(G:,Sω
∗
S + γ∗P∪N) < δ, for all i ∈ I\N . (4.6c)

Because (ωS , γP , γN , z) and (ω∗S , γ
∗
P , γ

∗
N , z

∗) are both solutions of (3.1), then (ωαS , γ
α
P , γ

α
N , z

α) =

α(ωS , γP , γN , z) + (1− α)(ω∗S , γ
∗
P , γ

∗
N , z

∗) are all the solutions of (3.1) for any α ∈ (0, 1). The in-

18

equalities in (4.6) are strict, so when α goes down to 0, we always have (ωαS , γ
α
P , γ

α
N , z

α) satisfying

(4.6). So (ωαS , γ
α
P , γ

α
N , z

α) is a solution of (2.4). Because there is only a unique solution satis-

fying (2.4), we can conclude (ωαS , γ
α
P , γ

α
N , z

α) = (ω∗S , γ
∗
P , γ

∗
N , z

∗), which means (ωS , γP , γN , z) =

(ω∗S , γ
∗
P , γ

∗
N , z

∗), leading to a contradiction.

So (4.5) is satisfied by (ωS , γP , γN , z), for the unique solution of original problem, we have

(ωS , γP , γN , z) = (ω∗S , γ
∗
P , γ

∗
N , z

∗). Hence, by setting ωJ\S ← 0 and γI\(P∪N) ← 0, we would get

the solution of (2.1).

Our second lemma is to prove that under some appropriate assumptions, through column

augmentation process, the objective function value would always be improved by iterates of the

algorithm.

Lemma 4.2. Let the current iterate have index sets as S0, P0 and N0, which are not optimal.

Assume the newly added index passed the rank-deficiency check (Step 3) and we go to Step 4

(column augmentation) in the algorithm. After doing Step 4, we always go through Step 6 and

Step 7 (if necessary), then we will get (ω̂S′0 , γ̂P ′0 , γ̂N ′0) as a feasible solution of (3.1) with a no

worse objective value, where S ′0, P ′0 and N ′0 are the index sets at next iterate. If we finish the

current iterate without column deletion processes, or by solving (3.1) at Step 6, the solution’s

element corresponding to the newly added index being positive for S0 and P0 or being negative for

N0, we will always get the (ω̂S′0 , γ̂P ′0 , γ̂N ′0) with a better objective value.

Proof. We first want to show that given index sets S, P and N , and (ω′S , γ
′
P , γ

′
N , z

′) as the solution

of (3.1), then by setting

[ω′]j =

[ω′S]j , if j ∈ S;

0 , otherwise;

and [γ′]i =

[γ′P∪N]i , if i ∈ P ∪N ;

0 , otherwise,

(4.7)

and

ωj =

[ωS]j , if j ∈ S;

0 , otherwise;

and γi =

[γP∪N]i , if i ∈ P ∪N ;

0 , otherwise,

(4.8)

where 1TωS = 1, ωS ≥ 0, γP ≥ 0 and γN ≤ 0, if ω′S > 0, γ′P > 0 and γ′N < 0, we would get a

no worse objective value with (ω′, γ′) than with (ω, γ); or else, for some t ∈ [0, 1), we would have

19

(ω′′, γ′′) = t(ω′, γ′) + (1 − t)(ω, γ) where ω′′S ≥ 0, γ′′P ≥ 0 and γ′′N ≤ 0, has a no worse objective

value than with (ω, γ).

First, in condition of ω′S > 0, γ′P > 0 and γ′N < 0, we have the objective function value with

(ω′, γ′) as

f ′ =
1

2
(Gω′ + γ′)TW (Gω′ + γ′)− bTω′ + δ‖γ′‖1

=
1

2
(G:,Sω

′
S + γ′)TW (G:,Sω

′
S + γ′)− bTSω′S + δ‖γ′‖1

=
1

2
ω′TS G

T
:,SWG:,Sω

′
S + ω′TS G

T
:,SW:,Pγ

′
P + ω′TS G

T
:,SW:,Nγ

′
N +

1

2
γ′TP WP,Pγ

′
P + γ′TP WP,Nγ

′
N

+
1

2
γ′TNWN ,Nγ

′
N − bTSω′S + δ1Tγ′P − δ1Tγ′N .

(4.9)

We also have the objective function value with (ω, γ) as

f =
1

2
(Gω + γ)TW (Gω + γ)− bTω + δ‖γ‖1

=
1

2
(G:,SωS + γ)TW (G:,SωS + γ)− bTSωS + δ‖γ‖1

=
1

2
ωTSG

T
:,SWG:,SωS + ωTSG

T
:,SW:,PγP + ωTSG

T
:,SW:,NγN +

1

2
γTPWP,PγP + γTPWP,NγN

+
1

2
γTNWN ,NγN − bTSωS + δ1TγP − δ1TγN .

(4.10)

Because (ω′S , γ
′
P , γ

′
N , z

′) satisfies (3.1) corresponding to index sets S, P and N , then we have

bTSω
′
S = ω′TS G

T
:,SWG:,Sω

′
S + ω′TS G

T
:,SW:,Pγ

′
P + ω′TS G

T
:,SW:,Nγ

′
N + z′ (4.11a)

−δ1Tγ′P = γ′TP WP,:G:,Sω
′
S + γ′TP WP,Pγ

′
P + γ′TP WP,Nγ

′
N (4.11b)

δ1Tγ′N = γ′TNWN ,:G:,Sω
′
S + γ′TNWN ,Pγ

′
P + γ′TNWN ,Nγ

′
N (4.11c)

bTSωS = ωTSG
T
:,SWG:,Sω

′
S + ωTSG

T
:,SW:,Pγ

′
P + ωTSG

T
:,SW:,Nγ

′
N + z′ (4.11d)

−δ1TγP = γTPWP,:G:,Sω
′
S + γTPWP,Pγ

′
P + γTPWP,Nγ

′
N (4.11e)

δ1TγN = γTNWN ,:G:,Sω
′
S + γTNWN ,Pγ

′
P + γTNWN ,Nγ

′
N (4.11f)

20

Combining (4.9), (4.10) and (4.11), we would have

f ′ − f = −1

2
ω′TS G

T
:,SWG:,Sω

′
S − z′ − γ′TP WP,:G:,Sω

′
S − γ′TNWN ,:G:,Sω

′
S −

1

2
γ′TP WP,Pγ

′
P

− γ′TP WP,Nγ′N −
1

2
γ′TNWN ,Nγ

′
N −

1

2
ωTSG

T
:,SWG:,SωS − ωTSGT:,SW:,PγP

− ωTSGT:,SW:,NγN −
1

2
γTPWP,PγP − γTPWP,NγN −

1

2
γTNWN ,NγN + ωTSG

T
:,SWG:,Sω

′
S

+ ωTSG
T
:,SW:,Pγ

′
P + ωTSG

T
:,SW:,Nγ

′
N + z′ + γTPWP,:G:,Sω

′
S + γTPWP,Pγ

′
P + γTPWP,Nγ

′
N

+ γTNWN ,:G:,Sω
′
S + γTNWN ,Pγ

′
P + γTNWN ,Nγ

′
N

= −1

2
(G:,Sω

′
S −G:,SωS)TW (G:,Sω

′
S −G:,SωS)− 1

2
(γ′ − γ)TW (γ′ − γ)

− (G:,Sω
′
S −G:,SωS)TW (γ′ − γ)

= −1

2
(G:,Sω

′
S + γ′ −G:,SωS − γ)TW (G:,Sω

′
S + γ′ −G:,SωS − γ)

≤ 0,

(4.12)

because W is a positive definite matrix. Hence, f ′−f = 0 if and only if G:,Sω
′
S+γ′ = G:,SωS+γ.

Second, if some inequality among ω′S > 0, γ′P > 0 and γ′N < 0 is violated, we have the objective

function value with (ω′′, γ′′) as

f ′′ =
1

2
(Gω′′ + γ′′)TW (Gω′′ + γ′′)− bTω′′ + δ‖γ′′‖1

=
1

2
(G:,Sω

′′
S + γ′′)TW (G:,Sω

′′
S + γ′′)− bTSω′′S + δ‖γ′′‖1

=
1

2
(t(G:,Sω

′
S + γ′) + (1− t)(G:,SωS + γ))TW (t(G:,Sω

′
S + γ′) + (1− t)(G:,SωS + γ))

− (tbTSω
′
S + (1− t)bTSωS) + t(δ1Tγ′P − δ1Tγ′N) + (1− t)(δ1TγP − δ1TγN)

(4.13)

21

Combining (4.10), (4.13) and (4.11), we would have

f ′′ − f =
t2

2
(G:,Sω

′
S + γ′)TW (G:,Sω

′
S + γ′) + t(1− t)(G:,Sω

′
S + γ′)TW (G:,SωS + γ)

+
t2 − 2t

2
(G:,SωS + γ)TW (G:,SωS + γ)− t(bTSω′S − bTSωS)

+ t((δ1Tγ′P − δ1Tγ′N)− (δ1TγP − δ1TγN))

=
t2

2
(G:,Sω

′
S + γ′)TW (G:,Sω

′
S + γ′)− t2(G:,Sω

′
S + γ′)TW (G:,SωS + γ)

+
t2

2
(G:,SωS + γ)TW (G:,SωS + γ) + t((G:,Sω

′
S + γ′)TW (G:,SωS + γ)

− (G:,SωS + γ)TW (G:,SωS + γ)− ω′TS GT:,SWG:,Sω
′
S − ω′TS GT:,SW:,Pγ

′
P − ω′TS GT:,SW:,Nγ

′
N

+ ωTSG
T
:,SWG:,Sω

′
S + ωTSG

T
:,SW:,Pγ

′
P + ωTSG

T
:,SW:,Nγ

′
N − γ′TP WP,:G:,Sω

′
S − γ′TP WP,Pγ′P

− γ′TP WP,Nγ′N − γ′TNWN ,:G:,Sω
′
S − γ′TNWN ,Pγ′P − γ′TNWN ,Nγ′N + γTPWP,:G:,Sω

′
S

+ γTPWP,Pγ
′
P + γTPWP,Nγ

′
N + γTNWN ,:G:,Sω

′
S + γTNWN ,Pγ

′
P + γTNWN ,Nγ

′
N)

= (
t2

2
− t)(G:,Sω

′
S + γ′ −G:,SωS − γ)TW (G:,Sω

′
S + γ′ −G:,SωS − γ)

≤ 0,

(4.14)

because W is positive definite and t2

2 − t ≤ 0 for t ∈ [0, 1). Hence, f ′′ − f = 0 if G:,Sω
′
S + γ′ =

G:,SωS + γ or t = 0.

The arguments above have shown that after proceeding through Step 6 and Step 7 in turn,

we would always at least get a no worse objective function value.

Then we consider the column augmentation process. We know that at current iterate’s Step 2,

positive and negative index sets for ω and γ are S0, P0 and N0. Let (ωS0 , γP0 , γN0 , z0) be the

solution of (3.1) corresponding to index sets S0, P0 and N0, then we know ωS0 > 0, γP0 > 0

and γN0 < 0. Because they are not optimal sets, we know there is some j0 /∈ S0 violating (2.4a)

or i1 /∈ P0 violating (2.4b) or i2 /∈ N0 violating (2.4c), which passes Step 3 and goes to Step 4.

Following by Step 4, we append the corresponding index into index sets and append a zero element

to (ωS0 , γP0 , γN0) corresponding to the newly added index, then we get the newly index sets to

22

be S1, P1 and N1 and (ω′S1 , γ
′
P1
, γ′N1

), where

[ω′S1]j =

[ωS0]j , if j ∈ S0;

0 , if j = j0;

and [γ′P1
]i =

[γP0]i , if i ∈ P0;

0 , if i = i1;

and [γ′N1
]i =

[γN0]j , if i ∈ N0;

0 , if i = i2.

(4.15)

Let (ωS1 , γP1 , γN1 , z1) be the solution of (3.1) corresponding to index sets S1, P1 and N1. Set

[γn]i =

[γPn∪Nn]i , if i ∈ Pn ∪Nn;

0 , otherwise;

and [γ′n]i =

[γ′Pn∪Nn

]i , if i ∈ Pn ∪Nn;

0 , otherwise;

(4.16)

and

[ωn]j =

[ωSn]j , if j ∈ Sn;

0 , otherwise;

and [ω′n]j =

[ω′Sn]j , if j ∈ Sn;

0 , otherwise.

(4.17)

If ωS1 > 0, γP1 > 0 and γN1 < 0, no column deletion processes are needed, the index sets

of next iterate are directly S ′0 = S1, P ′0 = P1 and N ′0 = N1. Moreover, we also have ω′0 = ω1

and γ′0 = γ1., then the only thing needs to be proved is (ω1, γ1) has a better objective value than

(ω0, γ0).

Assume we append j0 into S0, then we know P1 = P0 andN1 = N0. Because (ωS1 , γP1 , γN1 , z1)

is a solution of (3.1) corresponding to S1, P1 and N1, then we know G:,S1ωS1 +γ1 6= G:,S1ω
′
S1 +γ′1,

or else, we would have

z1 = bj1 − gTj1W (G:,S1ωS1 + γ1)

= bj1 − gTj1W (G:,S1ω
′
S1 + γ′1)

= bj1 − gTj1W (G:,S0ωS0 + γ0)

= z0,

(4.18)

23

for some j1 ∈ S0. And then we have

bj0 − gTj0W (G:,S0ωS0 + γ0) = bj0 − gTj0W (G:,S1ω
′
S1 + γ′1)

= bj0 − gTj0W (G:,S1ωS1 + γ1)

= z1

= ωTS01z0

= ωTS0(bS0 −GT:,S0W (G:,S0ωS0 + γ0)),

(4.19)

which contradicts the assumption we have made that j0 violates (2.4a). So G:,S1ωS1 + γ1 6=

G:,S1ω
′
S1 + γ′1, because appending zero elements to ωS0 does not change objective function value,

then from what we have shown above, we know (ω1, γ1) has a better objective function value than

(ω0, γ0).

Or if we append i1 into P0, then we know S1 = S0 and N1 = N0. Because (ωS1 , γP1 , γN1 , z1) is

a solution of (3.1) corresponding to S1, P1 and N1, then we know G:,S1ωS1 + γ1 6= G:,S1ω
′
S1 + γ′1,

or else, we would have

0 > δ +Wi1,:(G:,S0ωS0 + γ0)

= δ +Wi1,:(G:,S1ω
′
S1 + γ′1)

= δ +Wi1,:(G:,S1ωS1 + γ1)

≥ 0,

(4.20)

which leads to a contradiction. So G:,S1ωS1 +γ1 6= G:,S1ω
′
S1 +γ′1, because appending zero elements

to γP0 does not change objective function value, then from what we have shown above, we know

(ω1, γ1) has a better objective function value than (ω0, γ0).

In a similar way, if we append i2 into N0, then we know S1 = S0 and P1 = P0. Because

(ω′S1 , γ
′
P1
, γ′N1

) is a solution of (3.1) corresponding to S1, P1 and N1, then we know G:,S1ωS1 +γ1 6=

24

G:,S1ω
′
S1 + γ′1, or else, we would have

0 > δ −Wi2,:(G:,S0ωS0 + γ0)

= δ −Wi2,:(G:,S1ω
′
S1 + γ′1)

= δ −Wi2,:(G:,S1ωS1 + γ1)

≥ 0,

(4.21)

which leads to a contradiction. So G:,S1ωS1 +γ1 6= G:,S1ω
′
S1 +γ′1, because appending zero elements

to γN0 does not change objective function value, then from what we have shown above, we know

(ω1, γ1) has a better objective function value than (ω0, γ0).

So if after the column augmentation process, we directly get index sets of the next iterate, we

can always make an improvement on the objective function value.

If some inequality among ωS1 > 0, γP1 > 0 and γN1 < 0 is violated, which means we need go

further into column deletion processes.

Assume beginning from index sets as S1, P1 and N1, after a column deletion process, we get

index sets as S2, P2 and N2. Set (ωS2 , γP2 , γN2 , z2) as a solution of (3.1) corresponding to S2,

P2 and N2. Let (ω′′S1 , γ
′′
P1
, γ′′N1

) = t(ωS1 , γP1 , γN1) + (1− t)(ω′S1 , γ
′
P1
, γ′N1

), where t takes the value

from Step 7 in Algorithm, then we know ω′′S1 ≥ 0, γ′′P1
≥ 0 and γN1 ≤ 0. Some zero element lies in

ω′′S1 , γ′′P1
and γ′′N1

, which is the only difference between (ω′′S1 , γ
′′
P1
, γ′′N1

) and (ω′S2 , γ
′
P2
, γ′N2

). Then

we have

[ω′S2]j =

[ω′′S1]j , if j ∈ S1;

0 , otherwise;

and [γ′P2
]i =

[γ′′P1

]i , if i ∈ P1;

0 , otherwise;

and [γ′N2
]i =

[γ′′N1

]j , if i ∈ N1;

0 , otherwise;

(4.22)

so 1Tω′S2 = 1, ω′S2 ≥ 0, γ′P2
≥ 0 and γ′N2

≤ 0. After removing the index corresponding to the zero

element, we update S1, P1 and N1 to S2, P2 and N2.

Because 1Tω′S1 = 1, ω′S1 ≥ 0, γ′P1
≥ 0 and γ′N1

≤ 0, which satisfies the condition of statement

we have proved at the beginning. From what we have proved before, we know that (ω′′1 , γ
′′
1) has

a no worse objective function value than (ω0, γ0) and (ω′′1 , γ
′′
1) takes the same objective function

value with (ω′2, γ
′
2). So (ω′2, γ

′
2) has a no worse function value than (ω0, γ0).

25

After getting S2, P2 and N2, we can always keep updating index sets through the column

deletion process till Sk, Pk and Nk, where (ωSk , γPk
, γNk

, zk) satisfying (3.1) corresponding to Sk,

Pk and Nk and ωSk > 0, γPk
> 0 and γNk

< 0. Because Sk, Pk, Nk containing finite elements in

total, if we can go through column deletion process enough times, there is always some natural

number k0 ≥ 2 satisfying that Sk0 containing only one element j′, where we know ωj′ = 1 and

both Pk0 and Nk0 being empty. Then we can just set k = k0. Or else, the current iterate’s column

deletion process would be terminated at some k = k1, where 2 ≤ k1 < k0. Knowing the definition

of (ω′′1 , γ
′′
1), (ω2, γ2) and (ω′2, γ

′
2), then in a similar way, we can define (ω′′l−1, γ

′′
l−1), (ωl, γl) and

(ω′l, γ
′
l) for all natural number l that 2 ≤ l ≤ k. Then we know (ω′l, γ

′
l) has a no worse objective

function value than (ω′l−1, γ
′
l−1) and (ωk, γk) has the same objective value with (ω′k, γ

′
k). Hence,

(ωk, γk) has a no worse performance than (ω′2, γ
′
2), which is no worse than (ω0, γ0). From the

Algorithm, S ′0 = Sk, P ′0 = Pk, N ′0 = Nk, and ωS′0 = ωSk , γP ′0 = γPk
, γN ′0 = γNk

. Therefore,

(ω′0, γ
′
0) has a no worse objective function value than (ω0, γ0).

Consider elements in (ωS1 , γP1 , γN1 , z1), which is the solution of (3.1) corresponding to index

sets S1, P1 and N1.

If we append j0 /∈ S0 to get S1 and ωj0 ≥ 0. Then from definition of t in Algorithm Step 7, we

know in the first iteration of column deletion process, we would have t > 0. Because j0 violates

(2.4a) strictly, we have already shown that in such condition, G:,S1ωS1 + γ1 6= G:,S1ω
′
S1 + γ′1.

So after the first iteration of column deletion process, we would know (ω′2, γ
′
2) having a better

objective function value than (ω0, γ0). So we would always get a better objective function value

at the next iterate comparing to the current one.

Similarly, in the condition of appending i1 /∈ P0 to get P1 and γi1 ≥ 0, or appending i2 /∈ N0

to get N1 and γi2 ≤ 0, we would get t > 0 and G:,S1ωS1 + γ1 6= G:,S1ω
′
S1 + γ′1 in the first iteration

of column deletion process as well. So in these two conditions, we will have a better objective

value at the next iterate as well.

The third lemma is to prove that under some appropriate assumptions, through column ex-

change process, the objective function value would always be improved by iterates of the algorithm.

Lemma 4.3. Let the current index sets be S0, P0 and N0, which are not optimal. Assume the

newly added index does not pass the rank-deficiency check (Step 3) and we go to Step 5 (column

26

exchange) in Algorithm. After doing Step 5, we always go through Step 6 and Step 7 (if necessary),

then we will get (ω̂S′0 , γ̂P ′0 , γ̂N ′0) as a feasible solution of (3.1) with a better objective value, where

S ′0, P ′0 and N ′0 are the index sets at next iterate.

Proof. Given index sets S0, P0 and N0, let (ωS0 , γP0 , γN0 , z) be the solution of (3.1), and we can

get (ω, γ) by setting

ωj =

[ωS0]j , if j ∈ S0;

0 , otherwise;

and γi =

[γP0∪N0]i , if i ∈ P0 ∪N0;

0 , otherwise.

(4.23)

Because the newly added index does not pass the rank-deficiency check, then for some newly

added index j0 ∈ J \S0, we would have (ω̃S0 , γ̃P0 , γ̃N0) as the solution of (3.2). Similarly, we can

define (ω̃, γ̃) by setting

ω̃j =

[ω̃S0]j , if j ∈ S0;

−1 , if j = j0;

0 , otherwise;

and γ̃i =

[γ̃P0∪N0]i , if i ∈ P0 ∪N0;

0 , otherwise.

(4.24)

We know (ω̃S0 , γ̃P0 , γ̃N0) should satisfy

(
G:,S0 0 0

0 I 0

0 0 I

T

W W:,P0 W:,N0

WP0,: WP0,P0 WP0,N0

WN0,: WN0,P0 WN0,N0

G:,S0 0 0

0 I 0

0 0 I

+

1

0

0

[
1T 0 0

])
ω̃S0

γ̃P0

γ̃N0

=

G:,S0 0 0

0 I 0

0 0 I

T

W W:,P0 W:,N0

WP0,: WP0,P0 WP0,N0

WN0,: WN0,P0 WN0,N0

gj0

0

0

+

1

0

0

 ,
(4.25)

and

1T ω̃S0 = 1 and G:,S0ω̃S0 = gj0 (4.26)

at the same time.

27

Assuming that for current iterate, the matrix

GT:,S0WG:,S0 GT:,S0W:,P0 GT:,S0W:,N0 1

WP,:G:,S0 WP0,P0 WP0,N0 0

WN0,:G:,S0 WN0,P0 WN0,N0 0

1T 0 0 0

is

with the full column rank. After combining (4.25) and (4.26), we would have

GT:,S0WG:,S0 GT:,S0W:,P0 GT:,S0W:,N0

WP0,:G:,S0 WP0,P0 WP0,N0

WN0,:G:,S0 WN0,P0 WN0,N0

ω̃S0

γ̃P0

γ̃N0

 =

GT:,S0WG:,S0 GT:,S0W:,P0 GT:,S0W:,N0

WP0,:G:,S0 WP0,P0 WP0,N0

WN0,:G:,S0 WN0,P0 WN0,N0

ω̃S0

0

0

 ,
(4.27)

which leads to
GT:,S0W:,P0 GT:,S0W:,N0

WP0,P0 WP0,N0

WN0,P0 WN0,N0

γ̃P0

γ̃N0

 =

0

0

0

 . (4.28)

Because of the full column rank assumption above, we would have γ̃P0 = γ̃N0 = 0.

We have shown in the proof of Lemma 4.2 that we would always get a no worse objective

function value by proceeding Step 6 and Step 7 by turn, so if we can prove through the column

exchange process, we would always make an improvement, which means (ω − tω̃, γ) has a better

performance than (ω, γ) on the objective function value, where t = min{ωk/ω̃k : ω̃k > 0, k ∈ S0},

then we can claim to finish the whole proof.

We have known that the γ part does not change through column exchange process, and

moreover, because of

[
G:,S0 gj0

]ωS0 − tω̃S0
t

 = G:,S0ωS0− tG:,S0ω̃S0 + tgj = G:,S0ωS0 =

[
G:,S0 gj0

]ωS0
0

 , (4.29)

which means G(ω − tω̃) = Gω. So to make a comparison of objective function value, we only

need to show bT (ω − tω̃) > bTω, which equally means bTS0(ωS0 − tω̃S0) + tbj0 > bTS0ωS0 . From the

definition of t, we know t > 0, then we only need to show bj0 > bTS0ω̃S0 .

28

Combining (3.1) and (2.4a), we would know that

bTS0ω̃S0 = gTj0(WG:,S0ωS0 +W:,P0γP0 +W:,N0γN0) + z

= gTj0(WG:,S0ωS0 +W:,P0γP0 +W:,N0γN0)

+ ωTS0(bS0 −GT:,S0(WG:,S0ωS0 +W:,P0γP0 +W:,N0γN0))

< bj0 ,

(4.30)

and that’s exactly what we want to prove.

Combining lemmas we have already proved above, in the end, we want to show that under

some appropriate assumptions, the algorithm would always be terminated and give the optimal

solution of (1.2) in finite steps.

Theorem 4.4. Beginning with any index set S, P and N , under assumption that whenever going

to Step 7, we always have t > 0 in the first iteration of column deletion process. Then following

the Algorithm, we would always finish in finite steps with some (ωS∗ , γP∗ , γN ∗), where S∗, P∗

and N ∗ are optimal sets, and by setting ωJ\S∗ ← 0 and γI\(P∗∪N ∗) ← 0, we obtains the solution

(ω, γ) for (2.1).

Proof. If S, P and N are not optimal sets, then we know there must be some j0 /∈ S violating

(2.4a) or some i1 /∈ P violating (2.4b) or some i2 /∈ N violating (2.4c). Then by the inclusion of

corresponding index, after we go through Step 4, Step 6 and Step 7 or Step 5, Step 6 and Step 7

in Algorithm, from Lemma 4.2 and Lemma 4.3, we could always update index sets S, P and N

to S ′, P ′ and N ′, where the solution of (3.1) corresponding to such sets after update has a better

objective function value. Because there are only finite choices of combination of sets on S, P and

N . Knowing that if current sets are not the optimal one, by solving (3.1) corresponding to such

index sets go through the Algorithm, we can always have a better objective function value and

a better combination of index sets. So we would always stop with the optimal index set choice.

Then from Lemma 4.1, we know with the optimal index set S∗, P∗ and N ∗, one can obtain the

solution (ω, γ) for (2.1) by setting ωJ\S∗ ← 0 and γI\(P∗∪N ∗) ← 0, which means (ω, γ) is also the

optimal solution we try to find.

29

Chapter 5

Numerical Test and Analysis

We do numerical tests for checking the performance of the solver, to see whether it can solve

problems correctly. Moreover, we also keep challenging it to see its limitation.

To generate test problems, we first need to generate following parameters: W as Hessian

inverse matrix, G as gradient list of sample points, δ as bounded radius and b as linear term list

corresponding to each sample points.

To generate Hessian inverse matrix W , we first generate a random square matrix P0 in which

all elements have a normal distribution with mean of zero and variation of one. We set a positive

definite matrix

W0 = P T0 P0. (5.1)

Then we can formulate a diagonal matrix Λ0 with eigenvalues of W0 on its diagonal, and a matrix

Q containing all eigenvectors of W0 corresponding to eigenvalues in diagonal matrix W0. The

Hessian inverse matrix W as

W = QΛ0Q
T (5.2)

would be a positive definite matrix with same eigenvalues as the diagonal matrix Λ0. In this

way, combining with the eigen-decomposition method discussed in Chapter 2, we can generate a

positive definite Hessian inverse matrix

W = QΛQT (5.3)

30

with any specific condition number τ we want, where τ = λn
λ1

and Λ = diag(λ1, . . . , λn) for

λ1 ≤ . . . ≤ λn.

The objective function we consider is

f(x) =
1

2
xTHx+ pTx+ q(x)

=
1

2
xTHx+ pTx+ max(Ax+ c),

(5.4)

where H is the quadratic term parameter as a positive definite matrix, p is the linear term

parameter, and q(x) is the maximum of affine terms. Corresponding to each point x, we can

calculate the gradient at such a point by

g(x) =
∂f(x)

∂x
. (5.5)

In such way, we can generate G =

[
g1, . . . , gm

]
as gradient list of sample points. We can

also change test problems by changing number of affine terms and number of active terms, which

would affect value of p and q(x), and then affect value of G as well.

In our case, we set the bounded radius δ as a constant, and we can calculate the linear term

b as

bj = fj + gTj (x− xj) for all j ∈ {1, . . . ,m}. (5.6)

With W , G, δ, b as input parameters, we can generate test cases as follows:

#test # of Variables # of Affine # of Active # of Points
case 1 n = 0, 1, . . . , 19 100 2(n+ 1) n+ 1 10(n+ 1)
case 2 n = 0, 1, . . . , 19 100 5(n+ 1) 3(n+ 1) 10(n+ 1)
case 3 n = 0, 1, . . . , 19 100 8(n+ 1) 5(n+ 1) 10(n+ 1)

Table 5.1: Parameter default values in different cases

We can see that the difference between each cases are the number of affine terms and the

number of active terms. Moreover, in each case, we change the condition number τ to make a

test. Test results are listed in the tables on the following pages.

The “KKT error” term in tables are KKT errors calculated by the solver through sets of

S, P and N in the last iterate of the algorithm. Assuming no numerical errors generated by

31

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 53 1 0 2.04959e-14
1 pass 221 99001 0 1.76868e-08
2 pass 258 198001 0 2.92542e-07
3 pass 277 297001 0 3.70545e-08
4 pass 419 396001 0 1.80613e-07
5 pass 561 495001 0 5.75808e-08
6 pass 494 594001 0 1.54755e-06
7 pass 554 693001 0 6.9386e-08
8 pass 466 792001 0 4.89713e-07
9 pass 649 891001 0 1.8024e-07
10 pass 650 990001 0 4.96854e-07
11 pass 781 1089001 0 2.41946e-07
12 pass 666 1188001 0 1.57253e-07
13 pass 763 1287001 0 2.60467e-07
14 pass 909 1386001 0 1.48671e-07
15 pass 969 1485001 0 3.46551e-07
16 pass 809 1584001 0 5.34827e-07
17 pass 825 1683001 0 3.05614e-07
18 pass 586 1782001 0 3.53792e-07
19 pass 822 1881001 0 5.28535e-07

Table 5.2: Results of test #n of W with condition number (99000n+ 1) in case 1

solving the linear system (3.1), the solver calculates “KKT error” based on (2.4a), (2.4b) and

(2.4c). However, “KKT error (post)” is obtained in another way. After getting the final solution

of (ω, γ), we calculate “KKT error (post)” by mathematical formulas listed in (2.1). So actually,

“KKT error (post)” takes the numerical errors of (3.1) into a consideration, and that’s the reason

why there is always a gap between “KKT error” and “KKT error (post)”. When the gap is small,

it means there is few numerical errors generated when the solver solves (3.1); when the gap is

relatively large, (3.1) would be quite difficult to be solved and there is a few numerical errors

generated.

From results of those tables, we can see that if a case with more sample points and more

ill-condition Hessian inverse matrix, it would take more iterations to be solved. Moreover, the

KKT error’s gap would get larger for such cases as well. Influences of the number of affine terms

and the number of active terms are not really obvious from those tables, no matter in terms of

number of iterations or the difference of KKT errors between two calculation methods. Finally,

more future work needs to be done to make our solver be suitable to better tolerance parameters.

32

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 53 1 0 2.50111e-12
1 pass 222 297001 0 2.64037e-08
2 pass 258 594001 0 1.55093e-07
3 pass 279 891001 0 1.64297e-07
4 pass 422 1188001 0 1.77956e-07
5 pass 570 1485001 0 1.35086e-07
6 pass 496 1782001 0 2.77206e-07
7 pass 585 2079001 0 7.72346e-04
8 pass 467 2376001 0 7.63876e-07
9 pass 651 2673001 0 2.48374e-07
10 pass 633 2970001 0 2.48772e-06
11 pass 786 3267001 0 1.49023e-06
12 pass 667 3564001 0 1.10207e-06
13 pass 774 3861001 0 8.64568e-07
14 pass 876 4158001 0 5.40701e-07
15 pass 975 4455001 0 8.48488e-07
16 pass 806 4752001 0 4.18675e-07
17 pass 835 5049001 0 5.08263e-07
18 pass 586 5346001 0 1.36594e-06
19 pass 832 5643001 0 1.00412e-06

Table 5.3: Results of test #n of W with condition number (297000n+ 1) in case 1

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 53 1 0 2.50111e-12
1 pass 222 495001 0 4.85776e-08
2 pass 258 990001 0 2.91781e-07
3 pass 278 1485001 0 4.41615e-07
4 pass 423 1980001 0 3.43038e-07
5 pass 574 2475001 0 1.48855e-07
6 pass 496 2970001 0 5.34811e-07
7 pass 588 3465001 0 1.76799e-06
8 pass 467 3960001 0 8.92194e-07
9 pass 650 4455001 0 6.8244e-07
10 pass 634 4950001 0 2.16182e-06
11 pass 786 5445001 0 1.59815e-06
12 pass 667 5940001 0 1.06982e-06
13 pass 773 6435001 0 1.83909e-06
14 pass 877 6930001 0 1.14106e-06
15 pass 963 7425001 0 8.52647e-07
16 pass 806 7920001 0 1.11422e-06
17 pass 842 8415001 0 1.49196e-06
18 pass 586 8910001 0 1.26058e-06
19 pass 832 9405001 0 1.10297e-06

Table 5.4: Results of test #n of W with condition number (495000n+ 1) in case 1

33

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 53 1 0 2.41848e-14
1 pass 222 990001 0 1.41042e-07
2 pass 258 1980001 0 2.00477e-07
3 pass 280 2970001 0 3.85716e-07
4 pass 423 3960001 0 5.41879e-07
5 pass 573 4950001 0 2.90797e-07
6 pass 496 5940001 0 1.58849e-06
7 pass 587 6930001 0 6.31762e-06
8 pass 467 7920001 0 1.90159e-06
9 pass 650 8910001 0 9.15481e-07
10 pass 634 9900001 0 7.08061e-06
11 pass 790 10890001 0 3.94528e-06
12 pass 667 11880001 0 2.77469e-06
13 pass 773 12870001 0 4.7428e-06
14 pass 878 13860001 0 3.25919e-05
15 pass 963 14850001 0 1.72691e-06
16 pass 806 15840001 0 3.61096e-06
17 pass 844 16830001 0 2.65478e-06
18 pass 586 17820001 0 6.0632e-06
19 pass 833 18810001 0 3.42443e-06

Table 5.5: Results of test #n of W with condition number (990000n+ 1) in case 1

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 51 1 0 3.60039e-14
1 pass 219 99001 0 1.18862e-08
2 pass 259 198001 0 5.0445e-08
3 pass 331 297001 0 2.65674e-08
4 pass 410 396001 0 8.73165e-08
5 pass 560 495001 0 1.34147e-07
6 pass 446 594001 0 1.15751e-07
7 pass 486 693001 0 2.54205e-05
8 pass 556 792001 0 1.84809e-07
9 pass 537 891001 0 1.59682e-07
10 pass 668 990001 0 1.21861e-07
11 pass 768 1089001 0 1.27333e-07
12 pass 734 1188001 0 2.99128e-07
13 pass 766 1287001 0 6.55171e-07
14 pass 548 1386001 0 5.82181e-06
15 pass 784 1485001 0 1.45456e-07
16 pass 745 1584001 0 3.69139e-06
17 pass 771 1683001 0 5.86195e-07
18 pass 754 1782001 0 9.50517e-07
19 pass 812 1881001 0 2.47392e-07

Table 5.6: Results of test #n of W with condition number (99000n+ 1) in case 2

34

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 51 1 0 3.60039e-14
1 pass 220 297001 0 6.76507e-08
2 pass 267 594001 0 1.70726e-07
3 pass 332 891001 0 1.63935e-07
4 pass 410 1188001 0 2.15746e-07
5 pass 560 1485001 0 4.80348e-07
6 pass 449 1782001 0 1.40397e-07
7 pass 486 2079001 0 4.74921e-07
8 pass 557 2376001 0 5.01606e-07
9 pass 537 2673001 0 7.94379e-07
10 pass 671 2970001 0 7.41799e-07
11 pass 770 3267001 0 5.27525e-07
12 pass 735 3564001 0 7.31532e-07
13 pass 762 3861001 0 3.44509e-06
14 pass 548 4158001 0 2.15655e-06
15 pass 786 4455001 0 2.18594e-06
16 pass 745 4752001 0 1.095e-06
17 pass 772 5049001 0 2.01354e-06
18 pass 755 5346001 0 2.31477e-05
19 pass 813 5643001 0 5.84047e-07

Table 5.7: Results of test #n of W with condition number (297000n+ 1) in case 2

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 51 1 0 2.20024e-14
1 pass 220 495001 0 2.36311e-07
2 pass 267 990001 0 8.6524e-03
3 pass 332 1485001 0 3.05221e-07
4 pass 412 1980001 0 4.24367e-07
5 pass 561 2475001 0 4.18487e-05
6 pass 451 2970001 0 1.76134e-07
7 pass 486 3465001 0 2.11785e-04
8 pass 557 3960001 0 7.96874e-07
9 pass 538 4455001 0 1.06502e-06
10 pass 673 4950001 0 1.19335e-06
11 pass 770 5445001 0 1.15323e-06
12 pass 735 5940001 0 5.98129e-06
13 pass 762 6435001 0 3.80306e-06
14 pass 548 6930001 0 1.29294e-05
15 pass 810 7425001 0 1.65679e-06
16 pass 768 7920001 0 2.8662e-06
17 pass 772 8415001 0 1.07066e-04
18 pass 758 8910001 0 4.46094e-04
19 pass 811 9405001 0 9.61563e-05

Table 5.8: Results of test #n of W with condition number (495000n+ 1) in case 2

35

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 51 1 0 1.45138e-14
1 pass 220 990001 0 1.29038e-07
2 pass 267 1980001 0 2.20795e-02
3 pass 332 2970001 0 1.32781e-06
4 pass 412 3960001 0 7.91218e-07
5 pass 561 4950001 0 9.21089e-07
6 pass 507 5940001 0 7.18365e-07
7 pass 486 6930001 0 7.97932e-06
8 pass 557 7920001 0 1.30911e-06
9 pass 538 8910001 0 1.00622e-06
10 pass 673 9900001 0 2.77478e-06
11 pass 770 10890001 0 2.012e-06
12 pass 737 11880001 0 4.70322e-06
13 pass 762 12870001 0 1.3687e-06
14 pass 547 13860001 0 1.88306e-06
15 pass 793 14850001 0 4.47286e-06
16 pass 768 15840001 0 7.70952e-06
17 pass 772 16830001 0 4.66185e-06
18 pass 758 17820001 0 5.29101e-05
19 pass 812 18810001 0 2.14049e-06

Table 5.9: Results of test #n of W with condition number (990000n+ 1) in case 2

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 56 1 0 2.27374e-13
1 pass 207 99001 0 1.03075e-08
2 pass 288 198001 0 6.51058e-08
3 pass 405 297001 0 2.65542e-08
4 pass 399 396001 0 1.44411e-07
5 pass 372 495001 0 1.24284e-07
6 pass 522 594001 0 1.54985e-07
7 pass 422 693001 0 2.86496e-07
8 pass 518 792001 0 1.65336e-02
9 pass 408 891001 0 3.27281-07
10 pass 670 990001 0 1.50739e-06
11 pass 586 1089001 0 2.00527e-06
12 pass 583 1188001 0 2.7069e-07
13 pass 604 1287001 0 1.31464e-06
14 pass 676 1386001 0 1.53966e-07
15 pass 707 1485001 0 1.26413e-06
16 pass 800 1584001 0 6.93675e-07
17 pass 526 1683001 0 2.85057e-07
18 pass 785 1782001 0 1.22702e-06
19 pass 819 1881001 0 3.1993e-07

Table 5.10: Results of test #n of W with condition number (99000n+ 1) in case 3

36

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 56 1 0 2.24546e-14
1 pass 209 297001 0 4.93039e-08
2 pass 289 594001 0 1.09413e-07
3 pass 406 891001 0 5.41615e-08
4 pass 397 1188001 0 5.79391e-07
5 pass 373 1485001 0 1.55687e-07
6 pass 526 1782001 0 6.59426e-07
7 pass 417 2079001 0 9.54925e-07
8 pass 519 2376001 0 2.05968e-02
9 pass 411 2673001 0 9.35564e-07
10 pass 673 2970001 0 1.67016e-06
11 pass 585 3267001 0 1.95598e-06
12 pass 576 3564001 0 9.70291e-07
13 pass 605 3861001 0 1.15089e-05
14 pass 676 4158001 0 1.89135e-06
15 pass 709 4455001 0 9.20507e-07
16 pass 799 4752001 0 1.13305e-06
17 pass 531 5049001 0 7.79409e-06
18 pass 786 5346001 0 3.321e-05
19 pass 819 5643001 0 1.54319e-06

Table 5.11: Results of test #n of W with condition number (297000n+ 1) in case 3

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 56 1 0 2.24546e-14
1 pass 209 495001 0 1.87143e-07
2 pass 290 990001 0 1.05544e-07
3 pass 412 1485001 0 1.77369e-07
4 pass 397 1980001 0 7.71802e-07
5 pass 373 2475001 0 9.666e-07
6 pass 526 2970001 0 3.36994e-07
7 pass 417 3465001 0 8.523e-05
8 pass 517 3960001 0 8.00754e-02
9 pass 410 4455001 0 9.65887e-07
10 pass 674 4950001 0 6.61818e-07
11 pass 588 5445001 0 1.07093e-06
12 pass 576 5940001 0 1.60855e-06
13 pass 606 6435001 0 3.60294e-05
14 pass 676 6930001 0 9.30145e-06
15 pass 709 7425001 0 5.79007e-06
16 pass 797 7920001 0 8.0034e-06
17 pass 530 8415001 0 1.61888e-05
18 pass 786 8910001 0 3.07879e-06
19 pass 822 9405001 0 2.31198e-06

Table 5.12: Results of test #n of W with condition number (495000n+ 1) in case 3

37

#test pass/fail #iter τ KKT error KKT error (post)

0 pass 56 1 0 2.27374e-13
1 pass 209 990001 0 1.34971e-07
2 pass 290 1980001 0 3.24727e-07
3 pass 412 2970001 0 1.21153e-06
4 pass 398 3960001 0 1.32122e-06
5 pass 373 4950001 0 6.33012e-07
6 pass 525 5940001 0 9.83376e-07
7 pass 417 6930001 0 1.90572e-04
8 pass 521 7920001 0 4.38307e-06
9 pass 410 8910001 0 1.91779e-06
10 pass 674 9900001 0 2.54539e-06
11 pass 588 10890001 0 1.74972e-05
12 pass 576 11880001 0 2.66447e-06
13 pass 606 12870001 0 1.504e-04
14 pass 676 13860001 0 4.85031e-06
15 pass 709 14850001 0 4.47918e-06
16 pass 799 15840001 0 7.52245e-06
17 pass 530 16830001 0 3.92362e-06
18 pass 787 17820001 0 3.95073e-06
19 pass 822 18810001 0 5.2485e-06

Table 5.13: Results of test #n of W with condition number (990000n+ 1) in case 3

38

Chapter 6

Conclusion

In this thesis, we presented, analyzed, and tested a C++ implementation of a QP solver for

solving problems arising within nonsmooth optimization methods. We first introduced theoretical

background related to our QP Solver. We also talked about basics and details of the algorithm.

Most importantly, we proved some theoretical characteristics of the algorithm, namely, that it

converges to the optimal solution of the original problem. In the end, we build up some test case

problems and run the QP solver on them.

Our future work would still focus on the QP solver itself. We would mainly focus on testing

the solver by more cases and diminishing the gap between KKT error and “KKT error (post)”.

39

Bibliography

[1] K. C. Kiwiel. A Method for Solving Certain Quadratic Programming Problems Arising in

Nonsmooth Optimization. IMA Journal of Numerical Analysis, 6:137–152, 1986.

[2] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York, 2006.

[3] A. Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006.

40

Biography

Baoyu Zhou was born in China on July 29th, 1996. He was named by his parents: Sheng Zhou and

Tao Mu. Baoyu Zhou was admitted into Shanghai Jiao Tong University, one of the best universities

in China, in September 2012. After the four-year undergraduate study, he got his bachelor

degree of Mechanical Engineering in August 2016. Just after his graduation from Shanghai Jiao

Tong University, he came to Lehigh University and became a member of Industrial & Systems

Engineering Department. Hopefully, Baoyu Zhou would get his Master of Science degree in May

2018. Because of his academic performance during the graduate study, Baoyu Zhou earned Lehigh

University Fellowship in 2018. In future, he plans to stay at Lehigh and join Ph.D. program in

Industrial & Systems Engineering Department for his further studies in Operations Research area.

41

	Lehigh University
	Lehigh Preserve
	5-1-2018

	Quadratic Optimization for Nonsmooth Optimization Algorithms: Theory and Numerical Experiments
	Baoyu Zhou
	Recommended Citation

	tmp.1537219812.pdf.HKT1W

