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Abstract

Many classical facility location models, like the uncapacitated fixed-charge location problem

(known as UFLP), implicitly assume that the facilities will operate well all the time. How-

ever, in fact, facilities may fail sometimes due to natural or economic factors. The reliability

fixed-charge location problem (RFLP) is based on the UFLP, taking failures into account. Both

the UFLP and the RFLP assume that facilities are uncapacitated, which is obviously not true

in reality. Capacity limits in reality may mean that customers have to be served from facilities

much farther than their regularly assigned facilities at different levels. In this thesis, we present

a model for choosing facility locations to minimize expected cost, while also taking into account

both the possible failures and the capacity of facilities. The goal is to choose facility locations

that are both inexpensive under traditional objective functions and also reliable under capacity

constraints. This capacitated reliability approach is new in the facility location literature. We

formulate a capacitated reliability model based on the RFLP and present an exact Lagrangian

relaxation algorithm to solve it.
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Chapter 1

Introduction

Facility location is one of the oldest classes of supply chain management problems. There are two

roles played in the system: facilities and customers. The facilities in the supply chain may be

plants, warehouses, or distribution centers and the customers may be consumers or downstream

retailers. Usually facility location problems involve two stages: first, deciding which candidate

facilities should be open; second, choosing which facility to serve which customer.

The uncapacitated fixed-charge location problem (UFLP) is a classical facility location prob-

lem that selects facility locations and customer assignments in order to balance the trade-off

between initial setup costs and day-to-day transportation costs. However, some of the construct-

ed facilities may fail due to disruptions caused by natural disasters, terrorist attacks or labor

strikes. One notable example is Hurricanes Katrina and Rita in 2005 on the U.S. Gulf Coast,

which destroyed facilities at almost all levels of the supply chain.

When a facility failure occurs, some customers have to be reassigned to farther facilities that

incur greater transportation costs. Thus some facility location models that minimize fixed and

transportation costs as well as hedge against facility failures were developed. Snyder and Daskin

[23] first introduced the reliable fixed-charged location problem (RFLP) model based on the UFLP

and presented a Lagrangian relaxation algorithm to solve it. The strategy for handling facility

disruptions in this model is to assign each customer to a set of facilities in sequence so that

each customer would be served by a first backup facility if its primary facility fails, a second

backup if its first backup fails, and so on. And the objective function is a weighted sum of

2



the day-to-day transportation cost under normal curcumstances and the expected transportation

cost, taking disruptions into account. Realistically, no company would accept a supply network

with high normal operating costs just to hedge against very rare facility disruptions. Snyder and

Daskin [23] constructed the trade-off curve for the RFLP using a 49-node dataset to demonstrate

empirically that substantial improvements in reliability are often possible with minimal increases

in operating cost. The steepness of the left part of the curve indicates that large improvements

in reliability can be attained without large increases in UFLP cost.

However, the RFLP model in [23] has a significant drawback in that it assumes the facilities

are uncapacitated. Although this assumption is quite common in facility location models, it is

actually unrealistic. Besides, capacity really has a significant influence on the facility choices

and the objective value. We can see how it works from comparisons between the results of the

UFLP and the CFLP (the capacitated fixed-charge location problem) with the 49-node set in

Table 1.1. In the CFLP case, all facility have a capacity of 300, which is still greater than the

highest demand. Obviously, capacity increases the total cost and the CFLP also needs more time

to solve in CPLEX. It is clear from classical optimization theory that any minimization problem

will have a greater optimal objective function value when extra constraints are added..

Capacity has the same effect on the RFLP. In the reliability context, backup facilities can

only serve the customers of failed facilities if they have enough extra capacity to satisfy the

customers’ demand. That makes the capacitated version different from the uncapacitated model

and also more complicated than traditional capacitated facility location models. There are many

possible ways to model the capacity constraints and to formulate them mathematically, since the

traditional notion of capacity is complicated by the multiple levels of service in reliability models.

We will discuss the details of our approach to modeling capacity when we discuss the model in

Section 3.2. In any case, the capacitated version of the model will obviously result in higher

transportation costs than the uncapacitated model and may also influence the facility locations

Model # Opened facilities Optimal value CPLEX time # iterations

49 UFLP 7 1133294.887 0.13 294
49 CFLP 10 1205975.537 1.03 2052

Table 1.1: UFLP and CFLP results comparison
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themselves. We will confirm these suggestions in our computational study in Chapter 5.

The remainder of this thesis is structured as follows. We review the related literature in

Chapter 2. In Chapter 3, we formulate a capacitated model based on the RFLP. In Chapter 4,

we propose a Lagrangian relaxation algorithm to solve the problem. We present computational

results in Chapter 5 and a summary in Chapter 6.

4



Chapter 2

Literature Review

In this chapter, we present an overview of other studies related to this thesis. We first review the

development of research on facility location models. Then we shall focus on the models handling

possible system failures due to facility disruptions. Last, we introduce models taking capacity

into account.

Facility location models have been extensively studied in the literature. They typically try

to determine where to locate the facilities among a set of candidate sites, and how to assign

customers to the facilities, so that the total cost can be minimized [7, 14]. One of the first facility

location models was formulated in 1909 when A. Weber introduced the famous Weber problem

[26]. Most facility location problems are modeled as integer programming problems. Daskin [7]

and Drezner [8] give extensive discussions of these models and their solution algorithms.

Reliability issues considering uncertainty in supply chain design arose in the 1980s. The

uncertainties can be generally classified into three categories: provider-side uncertainty, receiver-

side uncertainty, and in-between uncertainty [28]. Most of the existing literature focuses on

receiver-side and in-between uncertainties such as randomness in demand or leadtime [3, 9, 16,

22, 27]. An extensive review is given on these stochastic facility location problems in [22].

However, receiver-side and in-between uncertainties don’t typically change the network once

the facilities have been built [28]. On the other hand, if a facility fails, customers originally

assigned to it have to be reassigned to other (operational) facilities, and thus the transportation

cost changes (usually increases). Thus, system failures due to facility disruptions in supply chain
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design has gained increasing attetion. This topic is related to network reliability theory [4, 19, 20],

which aims to improve the probability that a network remains functional after some links are

disconnected.

Snyder and Daskin [23] presented the P -median and fixed-charge problems based on level

assignments, where the candidate sites are subject to random disruptions with uniform failure

probability. They formulated their problem as a linear integer program and proposed a Lagrangian

relaxation solution method. In contract, Berman et al. [2] and Zhan et al. [28] give a more general

model with different failure probabilities for candidate sites. They prove that the solution to the

stochastic P -median problem coincides with the deterministic problem as the failure probabilities

approach zero. They also propose heuristics with bounds on the worst-case performance. Jeon,

Snyder, and Shen [11] include inventory cost as another factor that have an effect on the decisions.

[17, 18, 24] also addressed the fortification of existing facilitiesto increase their reliability.

These models typically focus on the interdiction-fortification framework based upon the P -median

facility location problem. They are generally formulated as bilevel programming models. Their

main focus is to identify the existing critical facilities to protect under the threat of disruption

[28].

Since we plan to combine reliability and capacity together into one model, reviewing capac-

itated facility location models is necessary. The capacitated version of the UFLP is called the

capacitated facility location problem (CFLP). Kuehn and Hamburger [12] gave one of the earliest

models and a heuristic procedure for CFLP. Akinc and Khumawala [1] developed branch-and-

bound procedures for this problem using the linear programming relaxation and Nauss [15] also

did it through Lagrangian relaxation. Snyder and Ülker [25] presented a scenario-based capac-

itated reliable model. They used scenarios to represent uncertain events and in each scenario,

the problem resembles the formulation of the CFLP. Gade [10] presented the scenario-based ca-

pacitated reliable model as a two-stage stochastic program with relatively complete recourse and

proposed a sampling based procedure known as the Sample Average Approximation (SAA) to

approximately solve this model.

6



Chapter 3

The Capacitated Reliable

Fixed-charged Location Problem

In this chapter we introduce a capacitated reliable fixed-charge location model. The objective

is to minimize the sum of the fixed cost and the expected transportation cost (cumputed using

failure probabilities). We assume that each candidate site has the same failure probability and

they can fail simultaneously. Capacity constraints are at the heart of this model so we explain

how we formulate them and give the reason why we formulate in this way.

3.1 Notation

Let I be the set of customers and J the set of potential facility sites. Let hi be the demand at

customer i, cij the transportation cost from facility j to customer i, fj the fixed cost to open

facility j, and vj the capacity of facility j.

All candiadate facilities in J have a uniform failure probability q. But their failures occur

independently from each other. Usually the failure probabilty is estimated based on historical

statistics, like the percentage of time that the facility is in a disruption status in the long run.

Although this assumption is unrealistic, it makes the model easier to solve.

The penalty θi related with each customer i represents the cost of not serving the customer

i, per unit of demand. θi can be interpreted as a lost-sales cost. It is incurred when all facilities
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fail or θi is less than some cij if facility j hasn’t failed. In order to model this more easily, we can

add an emergency facility u that won’t be disrupted and we let xu=1 as a forced constraint. This

emergency facility’s fixed cost is 0 and the transportation cost ciu equals θi for every customer

i ∈ I. From this point forward, the set J is assumed to contain u, as well.

The system’s reliability is based on the levels assignments strategy. We use r (r=0,1...,|J |-1) to

denote the level at which a facility serves a given customer. When r=0, it is a primary assignment.

If r=1, it is a first backup, and so on. If some customer i’s level-r assigned facility failed, the

level-(r + 1) assigned facility would serve the customer as backup. The emergency facility will

serve customers if all opened facilities failed or the penalty was less than the transportation cost

to the remaining facilities.

There are two sets of decision variables in this model:

xj =


1 if facility j ∈ J is selected

0 otherwise

yijr =


1 if customer i is assigned to facility j as a level-r assignment

0 otherwise

However, we need to clarify that the level r in CRFLP cannot be interpreted as meaning

that there are r closer opened facilities, as in RFLP. That’s because we also have to consider

the capacity constraints. The closest facility in the remaining ones may not have enough excess

capacity, thus we move to the next closest one and check its capacity until some facility satisfies

the constraint.

3.2 Formulation

The objective function of the CRFLP is given by

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J
j 6=u

|J |−1∑
r=0

hicijq
r(1− q)yijr +

∑
i∈I

|J |−1∑
r=0

hiciuq
ryiur·

This function is the sum of the fixed cost and the expected transportation cost. The first item

8



calculates the total fixed cost. The second item calculates the expected transportation cost for

non-emergency facilities. Facility j serves customer i if and only if its lower-level assigned facilities

are all disrupted with probability qr, and if j remains available, which occurs with probabilty 1−q.

The third item calculates the expected transportation cost for the emergency facility u. Since the

emergency facility is unfailable, it serves customers at level r with probabilty qr.

For notational convenience, we define

ψijr =


hicijq

r, if j = u

hicijq
r(1− q), if j 6= u

Then the CRFLP can be formulated as an IP as follows:

(CRFLP)

min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

|J |−1∑
r=0

ψijryijr (3.1)

s.t.
∑
j∈J

yijr +
r−1∑
s=0

yius = 1 ∀i ∈ I, r = 0, ..., |J | − 1 (3.2)

yijr ≤ xj ∀i ∈ I, j ∈ J, r = 0, ..., |J | − 1 (3.3)

|J |−1∑
r=0

yijr ≤ 1 ∀i ∈ I, j ∈ J (3.4)

∑
i∈I

|J |−1∑
r=0

hiyijr ≤ vj ∀j ∈ J (3.5)

xu = 1 (3.6)

xj ∈ {0, 1} ∀j ∈ J (3.7)

yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, ..., |J | − 1 (3.8)

Constraints (3.2) indicate that each customer i must be served by some facility j at level r

or by the emergency facility u at a level s < r. (By convention we take
∑r−1

s=0 yijr = 0 if r = 0.)

Constraints (3.3) prevent customers being assigned to an unconstructed facility. Constraints (3.4)

require that a facility can only serve a customer at no more than one level. Constraints (3.6) force
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the emergency facility u to be opened. Constraints (3.7) and (3.8) are integrality constraints.

It’s necessary to discuss constraints (3.5) especially. Obvously the right part of the inequality

should be the capacity of facility j. Each facility j can serve different customers in different levels.

So when we formulate the constraints, the left part of the inequality must take all levels and all

customers into account. Initially we formulated the left part in the same way as the transportation

cost in the objective function—calculating the expected value of demand that may be assigned

to the facility j. Then the formulation would be as follows:

∑
i∈I

|J |−1∑
r=0

hiyijrq
r(1− q) ≤ vj ,∀j 6= u (3.9)

The expected value can be a good estimate of the demand assigned to facilities, however, it is

not appropriate to be used to check if the constraints are violated. For example, supose facility 1

just has two assignments: it serves customer 1 at level 0 and serves customer 2 at level 1 in a given

solution. Faciliti’s capacity is 700 and its failure probability is 0.05. Customer 1’s demand is 500

and customer 2’s demand is 300. Then the expected demand assigned to facility 1 is 532 because

the failure probability is only 0.05. If we use (3.9) as capacity constraints, these assignments

for facility 1 are feasible. But once customer 2’s primary facility is disrupted, facility 1 must

handle the additional demand. Thus facility 1 needs to supply 800 in total which is beyond its

capacity. That’s why we formulate (3.5) in that way. Then the capacity constraints can guarantee

all possible demand can be handled.

10



Chapter 4

Lagrangian Relaxation Algorithm

4.1 Lower Bound

We solve (CRFLP) by relaxing constraint(3.2) using Lagrangian relaxation. For given Lagrange

multipliers λir, the subproblem is as follows:

(CRFLR-LRλ)

min
∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

|J |−1∑
r=0

ψijryijr +
∑
i∈I

|J |−1∑
r=0

λir

1−
∑
j∈J

yijr −
r−1∑
s=0

yius

 (4.1)

yijr ≤ xj ∀i ∈ I, j ∈ J, r = 0, ..., |J | − 1| (4.2)

|J |−1∑
r=0

yijr ≤ 1 ∀i ∈ I, j ∈ J (4.3)

∑
i∈I

|J |−1∑
r=0

hiyijr ≤ vj ∀j ∈ J (4.4)

xu = 1 (4.5)

xj ∈ {0, 1} ∀j ∈ J (4.6)

yijr ∈ {0, 1} ∀i ∈ I, j ∈ J, r = 0, ..., |J | − 1 (4.7)

As in [23], the non-fixed-cost portion of the objective function(4.1) can be re-written as follows:

11



∑
i∈I

∑
j∈J

|J |−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J |−1∑
r=0

λir −
∑
i∈I

|J |−1∑
r=0

r−1∑
s=0

λiryius

=
∑
i∈I

∑
j∈J

|J |−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J |−1∑
r=0

λir −
∑
i∈I

|J |−1∑
s=0

s−1∑
r=0

λiryius

(by swapping the indices r and s in the last term)

=
∑
i∈I

∑
j∈J

|J |−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J |−1∑
r=0

λir −
∑
i∈I

∑
r=0,...,|J |−1
s=0,...,|J |−1

r<s

λisyiur

=
∑
i∈I

∑
j∈J

|J |−1∑
r=0

(ψijr − λir)yijr +
∑
i∈I

|J |−1∑
r=0

λir −
∑
i∈I

|J |−1∑
r=0

(

|J |−1∑
s=r+1

λis)yiur

Thus, the objective function can be written as

∑
j∈J

fjxj +
∑
i∈I

∑
j∈J

|J |−1∑
r=0

ψ̃ijryijr +
∑
i∈I

|J |−1∑
r=0

λir (4.8)

where

ψ̂ijr =


ψijr − λir, if j 6= u

ψijr − λir −
|J |−1∑
s=r+1

λis, if j = u.

(4.9)

As in the RFLP, this problem separates by j, but now computing the benefit βj is a little

more complicated because of the capacity constraint. In particular, for each j ∈ J we need to

solve a problem of the form

12



min βj =
∑
i∈I

|J |−1∑
r=0

ψ̃ijryijr (4.10)

s.t.
∑
i∈I

|J |−1∑
r=0

hiyijr ≤ vj (4.11)

|J |−1∑
r=0

yijr ≤ 1 ∀i ∈ I (4.12)

yijr ∈ {0, 1} ∀i ∈ I, r = 0, ..., |J | − 1 (4.13)

The subproblem for each j ∈ J is similar to the multiple choice knapsack problem (MCKP

[21]). Algorithms based on the linear programming relaxation or a branch-and-bound algorithm

[6, 21] can be implemented to solve the MCKP. But there are two differences between the MCKP

and the subproblem above. First, the coefficients in the objective function of the MCKP are

nonnegative while ψ̃ijr here may be negative. Second, constraints(4.12) are inequalities in the

subproblem above while they are strict equalities in the MCKP. So we instead call CPLEX to

solve this subproblem in our MATLAB code.

The solution to every subproblem for each j gives us the beneifits βj and the assignments yijr.

If βj + fj < 0 for any j, we set xj = 1. And the emergency facility u has been forced open by

constraint (3.6). We set yijr according to the solution to the subproblems above. The optimal

objective value for (CRFLR-LRλ) is

∑
j∈J

(βj + fj)xj +
∑
i∈I

|J |−1∑
r=0

λir,

and this summation gives us a lower bound for the optimal objective value of (CRFLP).

4.2 Upper Bound

One cannot obtain feasible solutions as in the RFLP by opening the facilities that are open in

the lower bound solution and then assigning customers to level-r facilities in increasing order of

distance. It’s more tricky for the CRFLP because of the capacity constraints. We need to check

13



the remaining capacity of each facility after every assignment.

We propose to first open the facilities according to the lower bound solution. Second, at level

0, we first let an opened facility j serve its local customers (customers i for which cij = 0), if

any, and then assign the rest of the customers to their nearest facilities which still have enough

excess capacity. At the higher levels, we select a customer in a random sequence and assign it

to its nearest facility which still can satisfy the additional demand (Please remember to update

the capacity for facilities after every assignment). If a customer was assigned to the emergency

facility at some level, we don’t need to do the assignment for it in higher levels.

4.3 Multiplier Updating

Indeed the Lagrangian relaxation algorithm cannot give an optimal objective value exactly. It

only provides us a lower bound (LB) and an upper bound (UB). Both the LB and the UB are

determined by the Lagrange multiplier λ. So it’s important to find an appropriate value of λ to

obtain a very tight gap.

The Lagragian relaxation algorithm involves many iterations to update the multipliers λ.

Often, subgradient optimization is used to adjust λ. In particular, we compute a step-size ∆t at

each iteration as follows:

∆t =
αt(UB − Lt)∑

i∈I
∑|J |−1

r=0 (1−
∑

j∈J yijr −
∑r−1

s=0 yius)
. (4.14)

We set α to 2 initially and halve it if the lower bound hasn’t been improved after 20 consecutive

iterations. Lt denotes the lower bound found at iteration t and UB represents the best known

upper bound. The step direction at iteration t is calculated by

1−
∑
j∈J

yijr −
r−1∑
s=0

yius,

which equals the violation in the constraint.

Therefore the multipliers λ are updated by the following equation:

14



λt+1
ir = λtir + ∆t

1−
∑
j∈J

yijr −
r−1∑
s=0

yius

 . (4.15)

The Lagrangian process terminates when (UB − Lt)/Lt < ε, for some optimality tolerance ε

specified by the user.
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Chapter 5

Computational Results

5.1 Effect of Capacity

In Chapter 1, we discuss that capacity constraints may increase the transportation cost and even

influence the initial facility location decision. In this section, we use different instances to test

the impact of capacity on the solution. We use three datasets (see [7]) derived from 1990 census

data: a 49-node dataset, an 88-node dataset and a 150-node dataset. All three datasets consist

of cities in the United States mainland.

We set demands hi to the population of the state in which the city is, divided by 105, for

the 49-node set and to the city population divided by 104 for the other two. The 49-node and

88-node sets’ fixed cost fj equals the median home value in the city and the 150-node set’s equals

105 for all j. The transportation cost dij is calculated as the great-circle distance on the earth’s

surface. The emergency cost θi is 104 for all i. In both the RFLP and the CRFLP, the failure

probability q is set to 0.05 and the set I of customers and the set J of facilities are equal. In

Model # Opened facilities Optimal value CPLEX time # iterations

49 RFLP 9 1,195,380 35.760 18,974
49 CRFLP 21 2,901,583 231.350 20,257

88 RFLP 13 1,707,662 793.840 60,878
88 CRFLP 28 4,750,590 1,401.940 56,031

150 RFLP 13 2,307,951 7,947.140 194,008
150 CRFLP 45 7,908,872 27,993.300 24,197

Table 5.1: RFLP and CRFLP results comparison
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our initial experiment on the CRFLP, we chose to use very tight facility capacities in order to

highlight the effect of capacity restrictions; in this experiment we set vj equal to (X + 1) × hj ,

where X is drawn from U [0, 1]. The emergency facility’s capacity is unlimited and fixed cost is 0.

We coded (RFLP) and (CRFLP) in AMPL Version 20070505) on the three sets above and

solved them on a machine in Lehigh University’s COR@L Lab with 32GB RAM and an AMD

Opteron 2.0 GHz (x16) processor, running under Linux. IBM ILOG CPLEX (version 12.6) is

used to solve these models in AMPL. The optimality tolerance is set to 5%.

Table 5.1 compares the solution and the CPLEX performance of the RFLP and the CRFLP

using the three datasets. The columns marked “# Opened facilities” and “Optimal value” show

how many facilities are open and how much the total expected cost is. The columns marked

“CPLEX time” and “# iterations” give the CPU time (in seconds) and how many simplex itera-

tions it takes to find the optimal solution using CPLEX. Both the number of opened facilities and

the total expected cost increase significantly in the CRFLP. First, that’s because more opened

facilities occur much more fixed cost. Second, the transportation cost may also increase since

customers have to be assigned to farther facilities when the nearer ones don’t have enough excess

capacity even more facilities are opened. At the same time, CPLEX needs more time to solve the

capacitated models. However, the number of simplex iterations may not increase (Especially for

the 150-node set, the number of simplex iterations in the capacitated model is much less than in

the uncapacitated model). This is probably due to the fact that capacity constraints make each

iteration longer but more effective.

Capacity # Opened facilities Optimal value CPLEX time # iterations

(X + 1)× hj 21 3,002,600 87.965 20,257
(X + 2)× hj 20 2,139,062 148.657 21,526
(X + 3)× hj 15 1,532,239 159.898 29,659
(X + 4)× hj 13 1,385,746 116.815 20,851
(X + 5)× hj 13 1,336,669 90.466 20,452
(X + 6)× hj 12 1,319,645 86.505 20,457
(X + 7)× hj 12 1,300,510 70.017 22,315
(X + 8)× hj 12 1,276,014 96.058 27,071
(X + 9)× hj 11 1,242,381 88.158 25,293
(X + 10)× hj 10 1,221,228 71.437 24,334

Table 5.2: CRFLP results using different capacity levels
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Figure 5.1: CRFLP results using different capacity levels

We are also interested in the effects on the solution and optimal objective value when the

capacity changes. Table 5.2 and Figure 5.1 show the results of the CRFLP based on the 49-node

dataset with different capacity levels. The other parameters and the CPLEX’s settings are the

same as above. We use ten sets of data with different capacity values vj . X is drawn from U [0, 1];

then the ten sets of data are: (X + 1)×hj , (X + 2)×hj , (X + 3)×hj ,..., (X + 10)×hj , where hj

is the demand. It’s obvious that the number of opened facilities and the optimal value decrease

as the capacities increase. But the decrease step size is smaller and smaller while the capacities

increase by the same quantity. The number of opened facilities and the optimal value approach

those of the uncapacitated model when the capacity is bigger enough. The CPLEX time and the

number of simplex iterations don’t change in an evident trend but are still more than that in the

uncapacitated model.

Therefore, the capacity impacts the solution indeed. The bigger the capacities are, the less

the cost is. The uncapacitated model can be regarded as a special case in which each candidate

facility’s capacity is big enough to cover all demands. However, the comparisons in this section

are based on the assumption that the fixed cost is unrelated to the capacity. If the fixed cost

was proportional to the capacity, it would be hard to say how the objective value would change.

Maybe we can also choose a capacity for the candidate facilities at the first decision stage.

18



5.2 Algorithm Performance

In this section, we test our algorithm on the three datasets we used in Section 5.1 and five

randomly generated datasets. The five datasets consist of 50, 75, 100, 125 and 150 nodes. In all

datasets, demands hi were drawn from U [0,1000] and rounded to the nearest integer, fixed costs

fj were drawn from U [500,1500] and rounded to the nearest integer, and x and y coordinates

were drawn from U [0,1]. Transportation costs cij equal to the Euclidean distance between i and

j. The emergency cost θi was set to 10.

In all eight datasets, the failure probability q was set to 0.05. The capacities vj were set equal

to (X + 1) × hj , where X is drawn from U [0, 1]. The emergency facility’s capacity is unlimited

and its fixed cost is 0. We executed the Lagrangian relaxation process to an optimality tolerance

of 5%. The algorithm was coded in MATLAB and tested on a machine in Lehigh University’s

COR@L Lab with 32GB RAM and an AMD Opteron 2.0 GHz (x16) processor, running under

Linux. We also coded (CRFLP) based in AMPL (Version 20070505) on the eight sets and solved

them in the same hardware environment. IBM ILOG CPLEX (version 12.6) is used to solve these

models in AMPL. The optimality tolerance is also set to 5%.

Table 5.3 compares the algorithm’s performance and CPLEX’s performance for all the dataset-

s. The “LB”, “UB”, and “Gap” columns give the lower and upper bounds and the percentage

gap. The column marked “# Lag iter.” gives the total number of Lagrangian iterations, and “LR

time” gives the total number of CPU seconds required in the Lagrangian relaxation algorithm.

The column marked “CPLEX time” indicates the CPU time needed in CPLEX and “CPLEX obj”

gives the optimal objective value in CPLEX. The last column gives the relative error calculated

by (UB-CPLEX obj.)/CPLEX obj.

# Nodes LB UB Gap (%) # Lag iter. LR time CPLEX time CPLEX obj. RE(%)
49 2,822,900 2,962,200 4.70 146 446.100 231.350 2,901,583 2.089
88 4,553,100 4,765,400 4.66 482 3,519.100 2,401.940 4,750,590 0.312
150 7,796,739 8,165,671 4.73 1,143 9,395.800 30,414.700 7,908,872 3.247
50 33,702 35,341 4.86 205 578.800 209.920 34,942 1.143
75 52,937 55,574 4.98 468 2,824.700 1,616.380 53,748 3.397
100 69,788 72,683 4.15 643 4,969.600 4,171.960 7,2169 0.712
125 83,856 87,328 4.14 951 7,519.100 13,801.400 86,737 0.681
150 126,567 132,673 4.82 1,343 9,395.800 30,414.700 129,888 0.214

Table 5.3: Algorithm Performance
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From Table 5.3, it is evident that the Lagrangian relaxation algorithm begins to be faster than

CPLEX as the instance becomes larger (contains more nodes). The percentage gap (the column

marked Gap) between the upper bound and the lower bound doesn’t increase as the number of

nodes increases. This is because the termination criterion in our algorithm is that the percentage

gap is less than 5%. Thus the percentage gaps here aren’t in a trend, some of them are just a little

bit less than 5%, some are farther from 5%. If the algorithm terminated after a fixed number

of iterations or a CPU time limit, we would expect this gap to increase as the number of nodes

continues to increase.

Obviously, our Lagrangian relaxation algorithm took rather more time to solve the CRFLP

than the algorithm to solve the RFLP in [23]. That’s why we used the percentage gap as the only

termination criterion. It’s unclear how long the time limit should be for the algorithm to provide

an acceptable gap. However, our algorithm wouldn’t work well if we narrowed the percentage

gap termination criteria. For example, we tried 1% as the criterion but the algorithm took many

hours to excute. So it’s a disvantage of our algorithm that it can’t provide an upper bound very

close to the optimal value and a corresponding solution.
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Chapter 6

Conclusion

In this thesis we presented a new model that introduced capacity into the reliable facility location

problem. This model was inspired by the reality that all facilities in a supply chain, like ware-

houses, distribution centers or plants, have a limited capacity. By adding capacity constraints

to the RFLP model, we formulated the CRFLP (capacitated reliable facility location problem)

model. Key to our formulation is the form of the capacity constraints, see (3.5). One facility’s

capacity must be large enough to accomodate the additional customers’ demand at all levels as

backups. This is because, once a disruption occurs, what was merely a “probability”now becomes

an emergency that we must handle. Constraints like (3.9) that only consider the expected value

of the assigned demands cannot guarantee that these emergencies can be handled.

This model is solved using Lagrangian relaxation, with better results vs. CPLEX as the num-

ber of nodes in the dataset increses. However, the Lagrangian relaxation algorithm in this thesis

still can be improved in three aspects. First, the subproblem is just similar but not equivalent to

the MCKP; thus, we cannot use existing algorithms to solve it. Calling CPLEX in MATLAB is

a way to solve it, but it limits the code to be run in Linux and it may also require more time.

Second, the method to find the upper bound is not guaranteed to provide the optimal customer

assignments for a given set of opened facilities. This may have an effect on the overall solution

time. Third, the optimality tolerance here cannot be set too small, e.g. 1% or less, otherwise

the termination criteria will be very hard to achieve. If the first two problems can be solved by

implementing new methods, the last one would probably be resolved as well.
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Another limitation of our model is the assumption that the facilities all have the same prob-

ability q of failing. But this unrealistic assumption makes it easier to compute the probability

just knowing that a customer is served by its level-r facility. Otherwise, we need to figure out

its lower-level assignments exactly. [2, 5, 13] have proposed several approaches to relax this as-

sumption. Pijr, the probability that facility j serves customer i at level r, is just the probability

(1− qj) that j remains open if r=0. For other levels, Pijr is equal to

(1− qj)
J−1∑
k=0

qk
1− qk

Pi,k,r−1yi,k,r−1

given that facility k serves customer i at level r − 1. Future research may focus on how to adapt

these methods to apply to our problem.

As we discussed in Section 5.1, we can also introduce new variables that decide how big the

capacity is when we construct the facility. The bigger it is, the more it costs. For example,

we set different capacity levels c1, c2,..., cn,..., cm. Each level n corresponds to a fixed cost fn.

The variable wjn is binary. It equals 1 if we choose cn for facility j. Otherwise, it equals 0.

Thus, we would have
∑

j∈J
∑m

n=1wjnfn in the objective function and
∑m

n=1wjn = 1,∀j ∈ J

in the constraints. Obviously, bigger capacities produce more fixed cost for each facility while

decreasing the number of open facilities and saving some tranportation cost because customers

don’t need to find farther facilities due to insufficient capacities. This trade-off may be worth

further study in the future.
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