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Stefan M. Wild

iii



Acknowledgements

I am extremely grateful to Katya Scheinberg for her guidance and support as my Ph.D.

advisor over the past five years, and I cannot sufficiently articulate how profound an impact

she has had on my development as a mathematician. I am also particularly grateful to

Stefan Wild and Jeff Larson, who served as mentors during two summers that I spent at

Argonne National Laboratory, where I will be returning for a postdoctorate and, hopefully,

great future collaborations. I thank the faculty of the Department of Industrial and Systems

Engineering at Lehigh University, particularly Frank Curtis and Martin Takáč, who have
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Abstract

In recent years, there has been a tremendous increase in the interest of applying tech-

niques of deterministic optimization to stochastic settings, largely motivated by problems

that come from machine learning domains. A natural question that arises in light of this

interest is the extent to which iterative algorithms designed for deterministic (nonlinear,

possibly non-convex) optimization must be modified in order to properly make use of in-

herently random information about a problem. This thesis is concerned with exactly this

question, and adapts the model-based trust-region framework of derivative-free optimiza-

tion (DFO) for use in situations where objective function values or the set of points selected

by an algorithm to be objectively evaluated are random.

In the first part of this thesis, we consider an algorithmic framework called STORM

(STochastic Optimization with Random Models), which as an iterative method, is essen-

tially identical to model-based trust-region methods for smooth DFO. However, by im-

posing fairly general probabilistic conditions related to the concept of fully-linearity on

objective function models and objective function estimates, we prove that iterates of algo-

rithms in the STORM framework exhibit almost sure convergence to first-order stationary

points for a broad class of unconstrained stochastic functions. We then show that algo-

rithms in the STORM framework enjoy the canonical rate of convergence for unconstrained

non-convex optimization. Throughout the thesis, examples are provided demonstrating

how the mentioned probabilistic conditions might be satisfied through particular choices

of model-building and function value estimation.

In the second part of the thesis, we consider a framework called manifold sampling,

intended for unconstrained DFO problems where the objective is nonsmooth, but enough

1



is known a priori about the structure of the nonsmoothness that one can classify a given

queried point as belonging to a certain smooth manifold of the objective surface. We par-

ticularly examine the case of sums of absolute values of (non-convex) black-box functions.

Although we assume in this work that the individual black-box functions can be determin-

istically evaluated, we consider a variant of manifold sampling wherein random queries are

made in each iteration to enhance the algorithm’s “awareness” of the diversity of manifolds

in a neighborhood of a current iterate. We then combine the ideas of STORM and manifold

sampling to yield a practical algorithm intended for non-convex `1-regularized empirical

risk minimization.
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Chapter 1

Introduction

Derivative free optimization (DFO) [21] has grown in the past couple decades as a field

of nonlinear optimization which addresses the optimization of black-box functions. By

black-box functions, we mean functions whose zeroth-order value can be (approximately)

computed through some numerical procedure or an experiment, but their closed-form ex-

pressions and derivatives are not available or else cannot be approximated accurately or

efficiently. A reasonable question to ask is whether and when the machinery of derivative-

free optimization, which assumes inherent error in the computation of first (and higher)

order derivative information, can be applied to stochastic optimization [54, 67], where errors

in derivative information are typically the result of stochasticity as opposed to numerical

noise.

This thesis is concerned with addressing precisely this question. We will consider a

well-studied trust-region DFO framework and extend it to consider a fairly general and

adaptable framework, called STORM (STochastic Optimization with Random Models),

which encompasses many typical situations of stochastic optimization. In particular, sup-

pose there exists a deterministic “target” function f : Rn → R which we seek to minimize.

For convenience, we will further suppose that this f has Lipschitz continuous gradient

∇f (although we do not assume ∇f is computable) and is bounded below. For whatever

reason, e.g. deterministic noise arising from a discretization or an iterative process, or

stochastic noise arising from a simulation or Monte Carlo sampling, we assume we cannot

3



compute f(x) for a given x ∈ Rn directly, but instead only have access to a noisy observa-

tion f̃(x, ξ(x)) where ξ(x) is a random variable with a distribution that may or may not

be dependent on the argument x.

Continuing in this generality, we now suppose that there exist two certain machineries.

The first machinery (model-building) accepts as input a probability α, a Euclidean ball

centered at x0 with radius δ > 0 (B(x0, δ)), and access to a set of input-observation pairs

{(x, f̃(x, ξ(x)))}. In turn, this model-building machinery outputs a model m of f such that

the worst-case error quantity

max
y∈B(x0,δ)

|m(y)− f(y)|

is comparable to the error made by a linear Taylor model of f (i.e. O(δ2)) with probability

α. We can only require such a probabilistic bound to hold for this model-building machinery

since we have not assumed anything more specific about the random variables ξ(x)

The second machinery (estimate-computation) accepts as input a probability β, a con-

stant accuracy parameter εF , a parameter δ, two points x0, xs ∈ Rn, and access to input-

observation pairs (x, f̃(x, ξ(x))). In turn, this second machinery outputs estimates f̄(x0)

and f̄(xs) so that

|f̄(x0)− f(x0)| < εF δ
2 and |f̄(xs)− f(xs)| < εF δ

2

hold simultaneously with probability β. The strength of STORM compared to many

stochastic optimization methods from the point of view of analysis is that the failure of

these two machineries, i.e. the generation of an arbitrarily poor-quality model or estimate,

is occasionally permissible with fixed probability 1− α or 1− β, respectively.

The thesis is organized as follows. In Chapter 2, we will discuss the work in [17]. We

will formalize the machineries just mentioned and describe the STORM algorithmic frame-

work, which makes use of these machineries. Provided that model-building and estimate-

computation machineries as described exist for the target function f and the random

variables ξ(x), we prove that there exists a choice of α, β, and εF so that the iterates of

STORM will globally converge almost surely to a first-order stationary point of the tar-

4



get function f . We will provide some rudimentary examples of biased noise scenarios and

demonstrate empirically that the method can be made to apply to scenarios of both biased

and unbiased noise.

In Chapter 3, we will prove results about the theoretical convergence rate of STORM.

Having established the almost sure convergence of STORM in Section 2, it is natural to

question the worst-case iteration complexity required to reach an ε-accurate iterate Xk. In

the non-convex case, given an ε > 0, this means we are interested in an upper bound on the

number of iterations of STORM required before an iterate Xk satisfies ‖∇f(Xk)‖ ≤ ε. As is

typical in non-convex optimization, we will prove that the iteration complexity of STORM

to encounter such an iterate is O(1/ε2) iterations. To acheive this, we show how STORM

generates a stochastic process of iterates that can be coupled with (upper bounded by) a

certain renewal-reward process. We then proceed to analyze that renewal-reward process

to prove our result.

In Chapter 4, we consider a particular case of yielding a model-building machinery.

Under the assumption of subgaussian (hence, unbiased) stochastic noise, we consider linear

least-squares regression models and show how, as a function of the noise and sampling rates,

such regression models satisfy Taylor-like error bounds on the trust region. We analyze

different sampling methods for the design of the regression models. Most significantly, we

prove a result that demonstrates how, with high probability, random uniform sampling in

the trust region leads to models roughly as accurate as a forward-difference (or central-

difference) gradient computed from averaged function values at the same sampling rate.

Moreover, we demonstrate that the common theoretical tool in derivative-free optimization

of using strongly well-poised designs (for instance, aggregating multiple random rotations

of a forward-difference gradient) does not yield theoretical guarantees as strong as those

from other sampling methods, as the assumption of a strongly well-poised set is quite

general.

In Chapter 5, we will discuss an algorithm intended for the minimization of a sum of ab-

solute values of black-box functions, which we call manifold sampling. Manifold sampling

couples the DFO trust-region framework with a scheme similar to approximate gradient

5



sampling, but wholly different. The underlying assumption on the nonsmooth objective

(which certainly holds true for `1 functions) is that the function is almost everywhere dif-

ferentiable, and we can identify smooth manifolds in the immediate neighborhood of any

given point based on the values returned by the black-box function being optimized. By

building a smooth “master model”, which incorporates gradient information from identi-

fied manifolds in a neighborhood of the current iterate on each iteration, the algorithm

behaves like a smooth trust-region method. We prove that the algorithm iterates cluster

around Clarke stationary points. The version of a manifold sampling algorithm that we

will describe here can benefit from the use of random sampling (and thus, random mod-

els), and hence, although we will assume the black box functions can be computed without

noise in Chapter 5, the fact that master models can be random fits into the scope of this

thesis. We will suggest theoretically and demonstrate empirically that random models in

this context have the capability to outperform deterministic models, particularly in terms

of robustness.

In Chapter 6, we will propose a variant of STORM, coupled with the ideas of manifold

sampling from Chapter 5, to yield an algorithm for solving an `1-regularized non-convex

empirical risk minimization problem, a problem of interest in machine learning. We will

demonstrate that in this problem setting, this variant of STORM, which we call HAIL-

STORM, tends to yield classifiers at least as good as those found by well-tuned stochastic

gradient descent methods in the same number of data passes, but with virtually no param-

eter tuning. Moreover, we demonstrate the importance of solving this problem in terms of

robustness of classifiers to misclassification noise.

Lastly, in Chapter 7, we will provide some concluding remarks and directions for future

work.

6



Chapter 2

STORM

2.1 Introduction

In this chapter1, using methods developed for DFO, we aim to solve

min
x∈Rn

f(x) (2.1)

where f(x) is a function which is assumed to be smooth and bounded from below, but

the value of which can only be computed with some noise. Let f̃ be the noisy computable

version of f , which takes the form

f̃(x) = f(x, ε),

where the noise ε is a random variable.

In recent years, some DFO methods have been extended to and analyzed for stochastic

functions [24, 48]. Additionally, stochastic approximation methodologies started to incor-

porate techniques from the DFO literature [15]. The analysis in all that work assumes

some particular structure of the noise, including the assumption that the noisy function

values give an unbiased estimator of the true function value.

1The work in this Chapter is joint work with Ruobing Chen and Katya Scheinberg. A published version
can be found in [17] and an earlier version can be found in the last chapter of Ruobing Chen’s PhD thesis
[16].
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There are two main classes of methods in this setting of stochastic optimization:

stochastic gradient (SG) methods (such as the well known Robbins-Monro method) and

sample average approximation (SAA) methods. The former (SG) methods work roughly

as follows: they obtain a realization of an unbiased estimator of the gradient at each itera-

tion and take a step in the direction of the negative gradient. The step sizes progressively

diminish and the iterates are averaged to form a sequence that converges to a solution.

These methods typically have very inexpensive iterations, but exhibit slow convergence,

with the convergence rate being strongly dependent on the choice of algorithmic parame-

ters, particularly the sequence of step sizes. Many variants exist that average the gradient

information from past iterations and are able to accept sufficiently small, but nondecreasing

step sizes [3, 41]. SG methods have enjoyed extraordinary popularity with their application

in the field of machine learning (e.g., see an extensive survey on the subject in [10]). Many

sophisticated variants, that involve acceleration and other techniques have been developed

and have been shown to be efficient in practice [33, 47, 56]. However, the majority of these

methods aim exclusively at convex functions and may not converge in non-convex settings.

Variance reduction techniques, such as in [23, 40], have been proposed for cases where f(x)

is a finite sum of convex functions, a much more restrictive setting than what we consider

here. While some variants of the above methods exist for non-convex problems (e.g. [34]),

the convergence remains slow, and parameter tuning remains necessary in most cases.

The second class of methods, SAA, is based on sample averaging of the function and

gradient estimators, which is applied to reduce the variance of the noise. These methods

repeatedly sample the function value at a set of points in hopes to ensure sufficient accuracy

of the function and gradient estimates. For a thorough introduction and references therein,

see [58]. The optimization method and sampling process are usually tightly connected in

these approaches; hence, again, algorithmic parameters need to be specially chosen and

tuned. SAA methods tend to be more robust with respect to parameters and enjoy faster

convergence at a cost of more expensive iterations. Practical success has been demon-

strated for specially designed methods for problems of particular structure (see, e.g. [52]).

However, very few SAA methods have been developed specifically for trust region meth-

8



ods and general non-convex problems. Moreover, none of the methods mentioned above

are applicable in the case of biased noise, and they suffer significantly in the presence of

outliers.

We will show that a standard, efficient, unconstrained optimization method - in this

case, a trust region method - can be applied, with very small modifications, to stochastic

nonlinear (not necessarily convex) functions and can be guaranteed to converge to first-

order stationary points as long as certain conditions are satisfied. We present a general

framework, where we do not specify any particular sampling technique. The framework is

based on the trust region DFO framework [21], and its extension to probabilistic models [4].

In terms of this framework and the certain conditions that must be satisfied, we essentially

assume that

• the local models of the objective function constructed on each iteration satisfy some

first-order accuracy requirement with sufficiently high probability,

• and that function estimates at the current iterate and at a potential next iterate are

sufficiently accurate with sufficiently high probability.

The main novelty of this work is the analysis of the framework and the resulting weaker,

more general, conditions for convergence compared to prior work. In particular,

• we do not assume that the probabilities of obtaining sufficiently accurate models and

estimates are increasing (they simply need to be above a certain constant) and

• we do not assume any distribution of the random models and estimates. In other

words, if a model or estimate is inaccurate, it can be arbitrarily inaccurate, i.e. the

noise present in function evaluations can have nonconstant bias.

It is also important to note that while our framework and model requirements are borrowed

from prior work in DFO, this framework applies to derivative-based optimization as well.

Later in the chapter we will discuss different settings which will fit into the proposed

framework.

This chapter consists of two main parts. In the first part, we propose and analyze a trust

region framework, which utilizes random models of f(x) at each iteration to compute the
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next potential iterate. It also relies on (random, noisy) estimates of the function values at

the current iterate and the potential iterate to gauge the progress that is being made. The

convergence analysis then relies on requirements that these models and these estimates

are sufficiently accurate with sufficiently high probability. Beyond these conditions, no

assumptions are made about how these models and estimates are generated. The resulting

method is a stochastic process that is analyzed with the help of martingale theory. The

method is shown to converge to first-order stationary points with probability one.

In the second part of this chapter, we consider various scenarios under different as-

sumptions on the noise-inducing component ε and discuss how sufficiently accurate random

models can be generated. In particular, we show that in the case of unbiased noise, that

is when E[f(x, ε)] = f(x) and Var[f(x, ε)] ≤ σ2 < ∞ for all x, sample averaging tech-

niques give us sufficiently accurate models. Although we will prove convergence under the

discussed framework that essentially says we have the ability to compute both sufficiently

accurate models and estimates with constant, separate probabilities, it is not necessarily

easy to estimate what these probabilities ought to be for a given problem. While we provide

some guidance on the selection of sampling rates in an unbiased noise setting in Section 5,

our numerical experiments show that the bounds on probabilities suggested by our theory

to be necessary for almost sure convergence are far from tight.

We also discuss the case where E[f(x, ε)] 6= f(x), and where the noise bias may depend

on x or on the method of computation of the function values. One simple setting, which

is illustrative, is as follows. Suppose we have an objective function, which is computed by

a numerical process, whose accuracy can be controlled (for instance by tightening some

stopping criterion within this numerical process). Suppose now that this numerical process

involves some random component (such as sampling from a large dataset and/or utilizing

a randomized algorithm). It may be known that with sufficiently high probability this

numerical process produces a sufficiently accurate function value - however, with some

small (but nonzero) probability the numerical process may fail and hence no reasonable

value is guaranteed. Moreover, such failures may become more likely as more accurate

computations are required (for instance because an upper bound on the total number of
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iterations is reached inside the numerical process). Hence the probability of failure may

depend on the current iterate and state of the algorithm. Here we simply assume that such

failures do not occur with probability higher than some constant (which will be specified

in our analysis), conditioned on the past. However, we do not assume anything about the

magnitude of the inaccurate function values. As we will demonstrate later in this chapter,

in this setting, E[f(x, ε)] 6= f(x).

2.2 Comparison with related work

There is a very large volume of work on SG and SAA, most of which is quite different from

our proposed analysis and method. However, we will mention a few works here that are

most closely related to this chapter and highlight the differences. The three methods exist-

ing in the literature we will compare with are by Deng and Ferris [24], SPSA (simultaneous

perturbations stochastic approximation) [70, 71], and SCSR (sampling controlled stochas-

tic recursion) [35]. These three settings and methods are most closely related to our work

because they all rely on using models of the (possibly non-convex) objective function that

can both incorporate second-order information and whose accuracy with respect to a “true”

model can be dynamically adjusted. In particular, Deng and Ferris apply the trust-region

model-based derivative free optimization method UOBYQA [60] in a setting of sample path

optimization [64]. In [70] and [71], the author applies an approximate gradient descent and

Newton method, respectively, with gradient and Hessian estimates computed from specially

designed finite differencing techniques, with a decaying finite differencing parameter. In

[35] a very general scheme is presented, where various deterministic optimization algorithms

are generalized as stochastic counterparts, with the stochastic component arising from the

stochasticity of the models and the resulting step of the optimization algorithm. We now

compare some key components of these three methods with those of our framework, which

we hereforth refer to as STORM (STochastic Optimization with Random Models).

Deng and Ferris: The assumptions of the sample path setting are roughly as follows:

on each iteration k, given a collection of points Xk = {xk1, . . . , xkp} one can compute noisy

function values f(xk1, ε
k), . . . , f(xkp, ε

k). The noisy function values are assumed to be re-
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alizations of an unbiased estimator of true values f(xk1), . . . , f(xkp). Then, using multiple,

say Nk, realizations of εk, average function values fNk(xk1), . . . , fNk(xkp) can be computed.

A quadratic model mNk
k (x) is then fit into these function values, and so a sequence of

models {mNk
k (x)} is created using a nondecreasing sequence of sampling rates {Nk}. The

assumption on this sequence of models is that each of them satisfies a sufficient decrease

condition (with respect to the true model of the true function f) with probability 1− αk,

such that
∑∞

k=1 αk <∞. The trust region maintenance follows the usual scheme like that

in UOBYQA, hence the step sizes taken by the algorithm can be increased or decreased

depending on the observed improvement of the function estimates.

SPSA: The first-order version of this method assumes that f(x, ε) is an unbiased

estimate of f(x), and the second-order version, 2SPSA, assumes that an unbiased estimate

of ∇f(x), g(x, ε) ∈ Rn, can be computed. Gradient (in the first-order case) and Hessian

(in the second-order case) estimates are constructed using an interesting randomized finite

differencing scheme. The finite difference step is assumed to be decaying. An approximate

steepest descent direction or approximate Newton direction is then constructed and a step

of length tk is taken along this direction. The sequence {tk} is assumed to be decaying in

the usual Robbins-Monro way, that is tk → 0,
∑

k tk = ∞. Hence, while no increase in

accuracy of the models is assumed (the models only need to be accurate in expectation), the

step size parameter and the finite differencing parameter need to be tuned. Decaying step

sizes often lead to slow convergence, as has been observed often in stochastic optimization

literature.

SCSR: This is a very general scheme which can include multiple optimization methods

and sampling rates. The key ingredients of this scheme are a deterministic optimization

method, and a stochastic variant that approximates it. The stochastic step (in their work,

recursion) is assumed to be a sufficiently accurate approximation of the deterministic step

with increasing probability (the probabilities of failure in each iteration are summable).

This assumption is stronger than the one in this chapter. In addition, another key as-

sumption made for SCSR is that the iterates produced by the base deterministic algorithm

converge to the unique optimal minimizer x∗. Not only do we not assume here that the
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minimizer/stationary point is unique, but we also do not assume a priori that the iterates

form a convergent sequence, since they may not do so in a non-convex setting.

STORM: Like the Deng and Ferris method, we utilize a trust-region, model-based

framework, where the size of the trust region can be increased or decreased according to

empirically observed function decrease and the size of the observed approximate gradients.

The desired accuracy of the models is tied only to the trust-region radius in our case, while

for Deng and Ferris, it is tied to both the radius and the size of true model gradients (the

second condition is harder to ensure). In either method, this desired accuracy is assumed

to hold with some probability - in STORM, this probability remains constant throughout

the progress of the algorithm, while for Deng and Ferris, this probability must converge to

1 sufficiently rapidly.

There are three major advantages to our results. First of all, in the case of unbiased

noise, the sampling rate is directly connected to the desired accuracy of the estimates and

the probability with which this accuracy is achieved. Hence, for the STORM method, the

sampling rate may increase or decrease according to the trust region radius, eventually

increasing only when necessary, i.e. when the noise becomes dominating. For all the other

methods listed here, the sampling rate is assumed to increase monotonically. Secondly,

in the case of biased noise, we can still prove convergence of our method, as long as the

desired accuracy is achieved with a fixed probability. In other words, we allow for noise

to be arbitrarily dominating with a small, but fixed, probability on each iteration. This

allows us to consider new models of noise which cannot be handled by any of the other

methods discussed here. In addition, STORM incorporates first- and second-order models

without changing the algorithm - the step size parameter (i.e., the trust region radius) and

other parameters of the method are chosen similarly to the standard choices for parameters

used in the trust-region methods, which have proven to be very effective in practice for

unconstrained nonlinear optimization. In Section 2.7 we show that the STORM method

is very effective in different noise settings and is very robust with respect to sampling

strategies.

Finally, we point to [48], which proposes a very similar method to the one in this chapter.
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Both methods were developed based on the trust-region DFO method with random models

for deterministic functions analyzed in [4] and extended to the stochastic setting. Some

of the assumptions in this chapter were inspired by an early version of [48]. However,

the assumptions and the analysis in [48] are quite different from what appears in this

chapter. In particular, they rely on the assumption that f(x, ε) is an unbiased estimate

of f(x), hence their analysis does not extend to the biased case. Also they assume that

the probability of having an accurate model at the k-th iteration is at least 1 − αk, such

that αk → 0, while for our method this probability can remain bounded away from zero.

Similarly, they assume that the probability of having accurate function estimates at the

k-th iteration also converges to 1 sufficiently rapidly, while in our case it is again constant.

Their analysis, as a result, is very different from ours, and does not generalize to various

stochastic settings (they only focus on a derivative-free setting with additive noise). The

advantage of their method is that they do not need to put a restriction on acceptable

step sizes when the norm of the model gradient is small. We, on the other hand, impose

such a restriction in our method and use it in the proof of our main result. However,

as we discuss later in this chapter, this restriction can be relaxed at the cost of a more

complex algorithm and analysis. In practice, we do not implement this restriction, hence

our basic implementation is virtually identical to that in [48] except that we implement a

variety of model-building strategies, while only one such strategy (regression models based

on randomly rotated orthogonal samples sets) is implemented in [48] 2. Thus we do not

directly compare the empirical performance of our method with the method in [48] since

we view it as more or less the same method.

We conclude this section by introducing some frequently used notations and their mean-

ings. The rest of this chapter is organized as follows. In Section 2.3 we introduce the trust

region framework, followed by Section 2.4, where we discuss the requirements on our ran-

dom models and function estimates. The main convergence results are presented in Section

2.5. In Section 2.6, we discuss various noise scenarios and how sufficiently accurate mod-

els and estimates can be constructed in these cases. Finally, we present computational

2We will discuss this particular aspect of model-building in further detail in Chapter 4.
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experiments based on these various noise scenarios in Section 2.7.

Notations. Let ‖ · ‖ denote the Euclidean norm and B(x,∆) denote the ball of radius

∆ around x, i.e., B(x,∆) : {y : ‖x − y‖ ≤ ∆}. Probability sample spaces are denoted by

Ω, according to the context, and a sample from that space is denoted by ω ∈ Ω. As a rule,

when we describe a random process within the algorithmic framework, uppercase letters,

e.g. the k-th iterate Xk, will denote random variables, while lowercase letters will denote

realizations of the random variable, e.g. xk = Xk(ω) is the k-th iterate for a particular

realization of our algorithm.

We also list here, for convenience, several constants that are used in this chapter to

bound various quantities. These constants are denoted by κ with subscripts indicating

quantities that they are meant to bound.

κef “error in the function value”,

κeg “error in the gradient”,

κEef “expectation of the error in the function value”,

κfcd “fraction of Cauchy decrease”,

κbhm “bound on the Hessian of the models”,

κet “error in Taylor expansion”.

2.3 Trust Region Method

We consider the trust-region class of methods for minimization of unconstrained functions.

They operate as follows: at each iteration k, given the current iterate xk and a trust-region

radius δk, a (random) model mk(x) is built, which serves as an approximation of f(x) in

B(xk, δk). The model is assumed to be of the form

mk(xk + s) = fk + g>k s+ s>Hks. (2.2)

It is possible to generalize our framework to other forms of models, as long as all conditions

on the models, described below, hold. We consider quadratic models for simplicity of the
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presentation and because they are the most common. The model mk(x) is (approximately)

minimized in B(xk, δk) to produce a step sk. (Random) estimates of f(xk) and f(xk + sk)

are obtained, denoted by f0
k and fsk respectively. The achieved reduction is measured by

comparing f0
k and fsk ; if reduction is deemed sufficient, then xk + sk is accepted as the

next iterate xk+1. Otherwise, the iterate remains xk. The trust-region radius δk+1 is then

updated by either increasing or decreasing δk according to the outcome of the iteration.

The details of the algorithm are presented in Algorithm 1.

Algorithm 1: Stochastic DFO with Random Models

1 (Initialization): Choose an initial point x0 and an initial trust-region radius
δ0 ∈ (0, δmax) with δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 > 0, set k ← 0.

2 (Model construction): Build a model mk(xk + s) = fk + g>k s+ s>Hks that
approximates f(x) on B(xk, δk) with s = x− xk.

3 (Step calculation): Compute sk = arg min
s:‖s‖≤δk

mk(s) (approximately) so that it

satisfies condition (2.3).
4 (Estimates calculation): Obtain estimates f0

k and fsk of f(xk) and f(xk + sk),
respectively.

5 (Acceptance of the trial point): Compute ρk =
f0
k − fsk

mk(xk)−mk(xk + sk)
. If

ρk ≥ η1 and ‖gk‖ ≥ η2δk, set xk+1 = xk + sk; otherwise, set xk+1 = xk.
6 (Trust-region radius update): If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set

δk+1 = min{γδk, δmax}; otherwise δk+1 = γ−1δk; k ← k + 1 and go to step 1.

The trial step computed on each iteration has to provide sufficient decrease of the

model; in other words it has to satisfy the following standard fraction of Cauchy decrease

condition:

Assumption 2.3.1. For every k, the step sk is computed so that

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
(2.3)

for some constant κfcd ∈ (0, 1].

If progress is achieved and a new iterate is accepted in the k-th iteration, then we refer

to the iteration as a successful iteration. Otherwise, the iteration is unsuccessful (and no

step is taken). Hence a successful iteration occurs when ρk ≥ η1 and ‖gk‖ ≥ η2δk. However,

a successful iteration does not necessarily yield an actual reduction in the true function
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f . This is because the values of f(x) are not accessible in our stochastic setting and the

step acceptance decision is made merely based on the estimates of f(xk) and f(xk + sk). If

these estimates, f0
k and fsk , are not accurate enough, a successful iteration can result in an

increase of the true function value. Hence we consider two types of successful iterations -

those where f(x) is in fact decreased proportionally to f0
k −f sk which we call true successful

iterations, and all other successful iterations, where the decrease of f(x) can be arbitrarily

small or even negative, which we call false successful iterations. Our setting and algorithmic

framework do not allow us to determine which successful iterations are true and which ones

are false; however, we will be able to show that true successful iterations occur sufficiently

often for convergence to hold if the random estimates f0
k and fsk are sufficiently accurate.

A trust region framework based on random models was introduced and analyzed in [4].

In that paper, the authors introduced the concept of probabilistically fully-linear models

to determine the conditions that random models should satisfy for convergence of the

algorithm to hold. However, the randomness in the models in their setting arises from the

construction process, and not from the noisy objective function. It is assumed in [4] that

the function values at the current iterate and the trial point can be computed exactly and

hence all successful iterations are true in that case. In our case, it is necessary to define a

measure for the accuracy of the estimates f0
k and fsk (which, as we will see, generally has

to be tighter than the measure of accuracy of the model). We will use a modified version

of the probabilistic estimates introduced in [48].

2.4 Probabilistic Models and Estimates

The models in this chapter are functions which are constructed on each iteration, based

on random samples of the stochastic function f̃(x) (and possibly its derivatives). Hence,

the models themselves are random and so is their behavior and influence on the iterations.

Hence, Mk will denote a random model in the k-th iteration, while we will use the notation

mk = Mk(ω) for its realizations. As a consequence of using random models, the iterates Xk,

the trust-region radii ∆k and the steps Sk are also random quantities, and so xk = Xk(ω),

δk = ∆k(ω), sk = Sk(ω) will denote their respective realizations. Similarly, let random
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quantities {F 0
k , F

s
k} denote the estimates of f(Xk) and f(Xk + Sk), with their realizations

denoted by f0
k = F 0

k (ω) and fsk = F sk (ω). In other words, Algorithm 1 results in a stochastic

process {Mk, Xk, Sk,∆k, F
0
k , F

s
k}. Our goal is to show that, under certain conditions on the

sequences {Mk} and {F 0
k , F

s
k}, the resulting stochastic process has desirable convergence

properties with probability one. In particular, we will assume that modelsMk and estimates

F 0
k , F

s
k are sufficiently accurate with sufficiently high probability, conditioned on the past.

To formalize conditioning on the past, let FM ·Fk−1 denote the σ-algebra generated by

M0, · · · ,Mk−1 and F0, · · · , Fk−1 and let FM ·Fk−1/2 denote the σ-algebra generated by

M0, · · · ,Mk and F0, · · · , Fk−1.

To formalize sufficient accuracy, let us recall a measure for the accuracy of deterministic

models introduced in [20] and [21] (with the exact notation introduced in [8]).

Definition 2.4.1. Suppose ∇f is Lipschitz continuous. A function mk is a κ-fully linear

model of f on B(xk, δk) provided, for κ = (κef , κeg) and ∀y ∈ B,

‖∇f(y)−∇mk(y)‖ ≤ κegδk, and (2.4)

|f(y)−mk(y)| ≤ κefδ
2
k.

In this chapter, we extend the following concept of probabilistically fully-linear models

which was proposed in [4].

Definition 2.4.2. A sequence of random models {Mk} is said to be α-probabilistically

κ-fully linear with respect to the corresponding sequence {B(Xk,∆k)} if the events

Ik = {Mk is a κ-fully linear model of f on B(Xk,∆k)} (2.5)

satisfy the condition

P (Ik|FMk−1) ≥ α,

where FMk−1 is the σ-algebra generated by M0, · · · ,Mk−1.

These probabilistically fully-linear models have the very simple properties that they

are fully-linear (i.e., accurate enough) with sufficiently high probability conditioned on
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the past, and they can be arbitrarily inaccurate otherwise. This property is somewhat

different from the properties of models typical to stochastic optimization (such as, for

example, stochastic gradient-based models), where assumptions on the expected value and

the variance of the models is imposed. We will discuss this in more detail in Section 2.6.

In this chapter, aside from sufficiently accurate models, we require estimates of the

function values f(xk), f(xk + sk) that are sufficiently accurate. This is needed in order to

evaluate whether a step is successful, unlike the case in [4] where the exact values f(xk)

and f(xk + sk) are assumed to be available. The following definition of accurate estimates

is a modified version of that used in [48].

Definition 2.4.3. The estimates f0
k and fsk are said to be εF -accurate estimates of f(xk)

and f(xk + sk), respectively, for a given δk if

|f0
k − f(xk)| ≤ εF δ2

k and |fsk − f(xk + sk)| ≤ εF δ2
k. (2.6)

We now modify Definitions 2.4.2 and 2.4.3 and introduce definitions of probabilistically

accurate models and estimates which we will use throughout the remainder of the chapter.

Definition 2.4.4. A sequence of random models {Mk} is said to be α-probabilistically

κ-fully linear with respect to the corresponding sequence {B(Xk,∆k)} if the events

Ik = {Mk is a κ-fully linear model of f on B(Xk,∆k)} (2.7)

satisfy the condition

P (Ik|FM ·Fk−1 ) ≥ α,

where FM ·Fk−1 is the σ-algebra generated by M0, · · · ,Mk−1 and F0, · · · , Fk−1.

Definition 2.4.5. A sequence of random estimates {F 0
k , F

s
k} is said to be β-probabilistically

εF -accurate with respect to the corresponding sequence {Xk,∆k, Sk} if the events

Jk = {F 0
k , F

s
k are εF -accurate estimates of f(xk) and f(xk + sk), respectively, for ∆k}

(2.8)
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satisfy the condition

P (Jk|FM ·Fk−1/2) ≥ β,

where εF is a fixed constant and FM ·Fk−1/2 is the σ-algebra generated by M0, · · · ,Mk and

F0, · · · , Fk−1.

Motivated by Definitions 2.4.4 and 2.4.5, we will make later an assumption in our

analysis that our method has access to a sequence of α-probabilistically κ-fully linear

models, for some fixed κ = (κef , κeg) and to a sequence of β-probabilistically εF -accurate

estimates, for some fixed, sufficiently small εF . This will imply that the model and the

estimate accuracy are both assumed to be proportional to δ2
k (with some probability); we

remark now that the condition on the estimates will be somewhat tighter due to an upper

bound on εF . However, we will see that this upper bound is not too small.

Procedures for obtaining probabilistically fully-linear models and probabilistically ac-

curate estimates under different models of noise are discussed in Section 2.6.

2.5 Convergence Analysis

We now present first-order convergence analysis for the general framework described in

Algorithm 1. Towards that end, we assume that the function f and its gradient are

Lipschitz continuous in regions considered by the algorithm realizations.

Assumption 2.5.1 (Assumptions on f). Let x0 and δmax be given. Let L(x0) define the set

in Rn which contains all iterates of our algorithm. Assume that f is bounded from below on

L(x0). Assume also that the function f and its gradient ∇f are L-Lipschitz continuous on

the set Lenl(x0), where Lenl(x0) defines the region considered by the algorithm realizations

Lenl(x0) =
⋃

x∈L(x0)

B(x; δmax).

Remark 2.5.1. In the case of deterministic functions L(x0) = {x ∈ Rn : f(x) ≤ f(x0)},

because algorithm iterates never increase the objective function value, hence they do not step
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outside the initial level set. However, here we allow iterates to increase the function value,

because the true function value is not known. Such iterates, as we will see, may happen

with some (relatively small) probability, hence the algorithm can venture outside the initial

level set. Hence we choose to make the assumption above, which of course depends on the

algorithmic behavior. Clearly, if we assume a global Lipschitz constant and global lower

bound, then the above assumption always holds. If we prefer to weaken this assumption,

then there are several algorithmic remedies possible; however, they will make our analysis

more complicated and we choose to leave it for future work.

The second assumption provides a uniform upper bound on the model Hessian.

Assumption 2.5.2. There exists a positive constant κbhm such that, for every k, the

Hessian Hk of all realizations mk of Mk satisfy

‖Hk‖ ≤ κbhm.

Note that since we are concerned with convergence to a first-order stationary point

in this chapter, the bound κbhm can be chosen to be any nonnegative number, including

zero. Allowing a larger bound will give more flexibility to the algorithm and may allow

better Hessian approximations, but as we will see in the convergence analysis, this imposes

restrictions on the trust region radius and some other algorithmic parameters.

We now state the following result from martingale literature (see [27], Exercise 5.3.1)

that will be useful later in our analysis.

Theorem 2.5.1. Let Gk be a submartingale, i.e., a sequence of random variables which,

for every k,

E[Gk|FGk−1] ≥ Gk−1,

where FGk−1 = σ(G0, . . . , Gk−1) is the σ-algebra generated by G0, . . . , Gk−1, and E[Gk|FGk−1]

denotes the conditional expectation of Gk given the past history of events FGk−1.

Assume further that Gk −Gk−1 ≤M <∞, for every k. Then,

P

({
lim
k→∞

Gk <∞
}
∪
{

lim sup
k→∞

Gk =∞
})

= 1. (2.9)
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We now prove some auxiliary lemmas that provide conditions under which decrease of

the true objective function f(x) is guaranteed. The first lemma states that if the trust-

region radius is small enough relative to the size of the model gradient and if the model

is fully linear, then the step sk provides a decrease in f(x) proportional to the size of the

model gradient. Note that the trial step may still be rejected if the estimates f0
k and fsk

are not accurate enough.

Lemma 2.5.1. Suppose that a model mk of the form (2.2) is a (κef , κeg)-fully linear model

of f on B(xk, δk). If

δk ≤ min

{
1

κbhm
,
κfcd
8κef

}
‖gk‖,

then the trial step sk leads to an improvement in f(xk + sk) such that

f(xk + sk)− f(xk) ≤ −
κfcd

4
‖gk‖δk. (2.10)

Proof. Using the Cauchy decrease condition, the upper bound on the model Hessian, and

the fact that ‖gk‖ ≥ κbhmδk, we have

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
=
κfcd

2
‖gk‖δk.

Since the model is κ-fully linear, one can express the improvement in f achieved by sk

as

f(xk + sk)− f(xk)

= f(xk + sk)−m(xk + sk) +m(xk + sk)−m(xk) +m(xk)− f(xk)

≤ 2κefδ
2
k −

κfcd
2
‖gk‖δk

≤ −
κfcd

4
‖gk‖δk,

where the last inequality is implied by δk ≤
κfcd
8κef
‖gk‖.

The next lemma shows that for δk small enough relative to the size of the true gradient

∇f(xk), the guaranteed decrease in the objective function provided by sk is proportional
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to the size of the true gradient.

Lemma 2.5.2. Under Assumption 2.5.2, suppose that a model is (κef , κeg)-fully linear on

B(xk, δk). If

δk ≤ min

 1

κbhm + κeg
,

1
8κef
κfcd

+ κeg

 ‖∇f(xk)‖, (2.11)

then the trial step sk leads to an improvement in f(xk + sk) such that

f(xk + sk)− f(xk) ≤ −C1‖∇f(xk)‖δk, (2.12)

where C1 =
κfcd

4 ·max
{

κbhm
κbhm+κeg

,
8κef

8κef+κfcdκeg

}
.

Proof. The definition of a κ-fully-linear model yields that

‖gk‖ ≥ ‖∇f(x)‖ − κegδk.

Since condition (2.11) implies that ‖∇f(xk)‖ ≥ max
{
κbhm + κeg,

8κef
κfcd

+ κeg

}
δk, we have

‖gk‖ ≥ max

{
κbhm,

8κef
κfcd

}
δk.

Hence, the conditions of Lemma 2.5.1 hold and we have

f(xk + sk)− f(xk) ≤ −
κfcd

4
‖gk‖δk. (2.13)

Since ‖gk‖ ≥ ‖∇f(x)‖ − κegδk and δk satisfies (2.11), we also have

‖gk‖ ≥ max

{
κbhm

κbhm + κeg
,

8κef
8κef + κfcdκeg

}
‖∇f(xk)‖. (2.14)

Combining (2.13) and (2.14) yields (2.12).

We now prove a lemma that states that if a) the estimates are sufficiently accurate, b)

the model is fully-linear, and c) the trust-region radius is sufficiently small relative to the
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size of the model gradient, then a successful step is guaranteed.

Lemma 2.5.3. Under Assumption 2.5.2, suppose that mk is (κef , κeg)-fully linear on

B(xk, δk) and the estimates {f0
k , f

s
k} are εF -accurate with εF ≤ κef . If

δk ≤ min

{
1

κbhm
,

1

η2
,
κfcd(1− η1)

8κef

}
‖gk‖, (2.15)

then the k-th iteration is successful.

Proof. Since δk ≤ ‖gk‖
κbhm

, the Cauchy decrease condition and the uniform bound on Hk

immediately yield that

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
κbhm

, δk

}
=
κfcd

2
‖gk‖δk. (2.16)

The model mk being (κef , κeg)-fully linear implies that

|f(xk)−mk(xk)| ≤ κefδ
2
k, and (2.17)

|f(xk + sk)−mk(xk + sk)| ≤ κefδ
2
k. (2.18)

Since the estimates are εF -accurate with εF ≤ κef , we obtain

|f0
k − f(xk)| ≤ κefδ2

k, and |fsk − f(xk + sk)| ≤ κefδ2
k. (2.19)

We have

ρk =
f0
k − fsk

mk(xk)−mk(xk + sk)

=
f0
k − f(xk)

mk(xk)−mk(xk + sk)
+

f(xk)−mk(xk)

mk(xk)−mk(xk + sk)
+
mk(xk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

+
mk(xk + sk)− f(xk + sk)

mk(xk)−mk(xk + sk)
+

f(xk + sk)− fsk
mk(xk)−mk(xk + sk)

,

which, combined with (2.16)-(2.19), implies

|ρk − 1| ≤
8κefδ

2
k

κfcd‖gk‖δk
≤ 1− η1,
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where we have used the assumption δk ≤
κfcd(1−η1)

8κef
‖gk‖ to deduce the last inequality.

Hence, ρk ≥ η1. Moreover, since ‖gk‖ ≥ η2δk, the k-th iteration is successful.

Finally, we state and prove a lemma which guarantees an amount of decrease of the

objective function on a true successful iteration.

Lemma 2.5.4. Under Assumption 2.5.2, suppose that the estimates {f0
k , f

s
k} are εF -

accurate with εF < 1
4η1η2κfcd min

{
η2

κbhm
, 1
}

. If a trial step sk is accepted (a successful

iteration occurs), then the improvement in f is bounded below as follows

f(xk+1)− f(xk) ≤ −C2δ
2
k, (2.20)

where C2 = 1
2η1η2κfcd min

{
η2

κbhm
, 1
}
− 2εF > 0.

Proof. An iteration being successful indicates that ‖gk‖ ≥ η2δk and ρ ≥ η1. Thus,

f0
k − fsk ≥ η1(mk(xk)−mk(xk + sk))

≥ η1
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
≥ 1

2
η1η2κfcd min

{
η2

κbhm
, 1

}
δ2
k.

Then, since the estimates are εF -accurate, we have that the improvement in f can be

bounded as

f(xk + sk)− f(xk) = f(xk + sk)− f sk + fsk − f0
k + f0

k − f(xk) ≤ −C2δ
2
k,

where C2 = 1
2η1η2κfcd min

{
η2

κbhm
, 1
}
− 2εF > 0.

To prove convergence of Algorithm 1, we will need to assume that the models {Mk}

and estimates {F 0
k , F

s
k} are sufficiently accurate with sufficiently high probability.

Assumption 2.5.3. Given values of α, β ∈ (0, 1) and εF > 0, there exist κeg and κef such

that the sequence of models {Mk} and estimates {F 0
k , F

s
k} generated by Algorithm 1 are,

respectively, α-probabilistically (κef , κeg)- fully-linear and β-probabilistically εF -accurate.
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Remark 2.5.2. Note that this assumption is a statement about the existence of constants

κ = (κef , κeg) given an α, β and εF - we will determine exact conditions on α, β and εF

in Theorem 2.5.2 and Lemma 2.5.1 below.

The following theorem states that the trust-region radius converges to zero with prob-

ability 1.

Theorem 2.5.2. Let Assumptions 2.5.1 and 2.5.2 be satisfied and assume that in Algo-

rithm 1 the following holds.

• The step acceptance parameter η2 is chosen so that

η2 ≥ max

{
κbhm,

8κef
κfcd(1− η1)

}
. (2.21)

• The accuracy parameter of the estimates satisfies

εF ≤ min

{
κef ,

1

8
η1η2κfcd

}
. (2.22)

Then α and β can be chosen so that, if Assumption 2.5.3 holds for these values, then

the sequence of trust-region radii generated by Algorithm 1, {∆k}, satisfies

∞∑
k=0

∆2
k <∞ (2.23)

almost surely.

Proof. We base our proof on properties of the random function Φk = νf(Xk) + (1− ν)∆2
k,

where ν ∈ (0, 1) is a fixed constant, which is specified below. A similar function is used

in the analysis in [48], but the analysis itself is different. The overall goal is to show that

there exists a constant σ > 0 such that for all k

E[Φk+1 − Φk|FM ·Fk−1 ] ≤ −σ∆2
k < 0. (2.24)

Since f is bounded from below and ∆k > 0, we have that Φk is bounded from below for

all k; hence if (2.24) holds on every iteration, then by summing (2.24) over k ∈ (1,∞) and
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taking expectations on both sides we can conclude that (2.23) holds with probability 1.

Hence, to prove the theorem we need to show that (2.24) holds on each iteration.

Let us pick some constant ζ which satisfies

ζ ≥ κeg + max

{
η2,

8κef
κfcd(1− η1)

}
. (2.25)

We now consider two possible cases: ‖∇f(xk)‖ ≥ ζδk and ‖∇f(xk)‖ < ζδk. We will show

that (2.24) holds in both cases and hence it holds on every iteration. Given ζ we now select

ν ∈ (0, 1) such that

ν

1− ν
> max

{
4γ2

ζC1
,

4γ2

η1η2κfcd
,
γ2

κef

}
, (2.26)

with C1 defined as in Lemma 2.5.2.

As usual, let xk, δk, sk, gk, and φk denote realizations of random quantities Xk, ∆k,

Sk, Gk, and Φk, respectively.

Let us consider any realization of Algorithm 1. Note that on all successful iterations,

xk+1 = xk + sk and δk+1 = min{γδk, δmax} with γ > 1, hence

φk+1 − φk ≤ ν(f(xk+1)− f(xk)) + (1− ν)(γ2 − 1)δ2
k. (2.27)

On all unsuccessful iterations, xk+1 = xk and δk+1 = 1
γ δk, i.e.

φk+1 − φk = (1− ν)(
1

γ2
− 1)δ2

k ≡ b1 < 0. (2.28)

For each iteration and each of the two cases we consider, we will analyze the four possible

combined outcomes of the events Ik and Jk as defined in (2.7) and (2.8), respectively.

Before presenting the formal proof let us outline the key ideas. We will show that,

unless both the model and the estimates are bad on iteration k, our choice of ν ∈ (0, 1)

being sufficiently close to 1 causes the decrease in φk on a successful iteration (2.27) to

be greater than the decrease in φk on an unsuccessful iteration (which is equal to b1,

according to (2.28)). When the model and the estimates are both bad, an increase in φk
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may occur. This increase is bounded by a value proportional to δ2
k when ‖∇f(xk)‖ < ζδk.

When ‖∇f(xk)‖ ≥ ζδk, though, the increase in φk may be proportional to ‖∇f(xk)‖δk.

However, since iterations with good models and good estimates will provide decrease in φk

also proportional to ‖∇f(xk)‖δk, then by choosing values of α and β close enough to 1, we

can ensure that φk decreases in expectation.

We now present the proof.

Case 1: ‖∇f(xk)‖ ≥ ζδk.

a. Ik and Jk are both true, i.e., both the model and the estimates are good on iteration

k. From the definition of ζ, we know

‖∇f(xk)‖ ≥
(
κeg + max

{
η2,

8κef
κfcd(1− η1)

})
δk.

Then since the model mk is κ-fully linear and, from η2 > κbhm, εF ≤ κef and

0 < η1 < 1, it is easy to show that the condition (2.11) in Lemma 2.5.2 holds.

Therefore, the trial step sk leads to a decrease in f as in (2.12).

Moreover, since

‖gk‖ ≥ ‖∇f(xk)‖ − κegδk ≥ (ζ − κeg)δk ≥ max

{
η2,

8κef
κfcd(1− η1)

}
δk,

and the estimates {f0
k , f

s
k} are εF -accurate, with εF ≤ κef , the condition (2.15)

in Lemma 2.5.3 holds. Hence, iteration k is successful, i.e. xk+1 = xk + sk and

δk+1 = γδk.

Combining (2.12) and (2.27), we get

φk+1 − φk ≤ −νC1‖∇f(xk)‖δk + (1− ν)(γ2 − 1)δ2
k ≡ b2, (2.29)

with C1 defined in Lemma 2.5.2. Since ‖∇f(xk)‖ ≥ ζδk we have

b2 ≤ [−νC1ζ + (1− ν)(γ2 − 1)]δ2
k < 0, (2.30)
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for ν ∈ (0, 1) satisfying (2.26).

b. Ik is true and Jk is false, i.e., we have a good model and bad estimates on iteration

k.

In this case, Lemma 2.5.2 still holds, that is sk yields a sufficient decrease in f ; hence,

if the iteration is successful, we obtain (2.29) and (2.30). However, the step can be

erroneously rejected, because of inaccurate probabilistic estimates, in which case we

have an unsuccessful iteration and (2.28) holds. Since (2.26) holds, the right hand

side of the first relation in (2.30) is strictly smaller than the right hand side of the

first relation in (2.28) and therefore, (2.28) holds whether the iteration is successful

or not.

c. Ik is false and Jk is true, i.e., we have a bad model and good estimates on iteration k.

In this case, iteration k can be either successful or unsuccessful. In the unsuccessful

case, (2.28) holds. When the iteration is successful, since the estimates are εF -

accurate and (2.22) holds, then by Lemma 2.5.4, (2.20) holds with C2 ≥ 1
4η1η2κfcd.

Hence, in this case, we have

φk+1 − φk ≤ [−νC2 + (1− ν)(γ2 − 1)]δ2
k. (2.31)

Again, due to the choice of ν satisfying (2.26) we have that, as in case (b), (2.28)

holds whether the iteration is successful or not.

d. Ik and Jk are both false, i.e., both the model and the estimates are bad on iteration

k.

Inaccurate estimates can cause the algorithm to accept a bad step, which may lead

to an increase both in f and in δk. Hence in this case φk+1 − φk may be positive.

However, combining the Taylor expansion of f(xk) at xk + sk and the Lipschitz

continuity of ∇f(x) we can bound the amount of increase in f , hence bounding

φk+1− φk from above. By adjusting the probability of outcome (d) to be sufficiently

small, we can ensure that in expectation Φk is sufficiently reduced.
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In particular, from Taylor’s Theorem and the L-Lipschitz continuity of ∇f(x) we

have, respectively,

f(xk)− f(xk + sk) ≥ ∇f(xk + sk)
>(−sk)−

1

2
Lδ2

k, and

‖∇f(xk + sk)−∇f(xk)‖ ≤ Lsk ≤ Lδk.

From this we can derive that any increase of f(xk) is bounded by

f(xk + sk)− f(xk) ≤ C3‖∇f(xk)‖δk,

where C3 = 1 + 3L
2ζ . Hence, the change in function φ is bounded:

φk+1 − φk ≤ νC3‖∇f(xk)‖δk + (1− ν)(γ2 − 1)δ2
k ≡ b3. (2.32)

Now we are ready to take the expectation of Φk+1 − Φk for the case when

‖∇f(Xk)‖ ≥ ζ∆k. We know that case (a) occurs with a probability at least αβ (conditioned

on the past) and in that case φk+1−φk = b2 < 0 with b2 defined in (2.29). Case (d) occurs

with probability at most (1−α)(1− β) and in that case φk+1 − φk is bounded from above

by b3 > 0. Cases (b) and (c) occur otherwise and in those cases φk+1−φk is bounded from

above by b1 < 0, with b1 defined in (2.28). Finally we note that b1 > b2 due to our choice

of ν in (2.26).

Hence, we can combine (2.28), (2.29), (2.31), and (2.32), and use B1, B2, and B3 as

random counterparts of b1, b2, and b3, to obtain the following bound

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}]

≤ αβB2 + [α(1− β) + (1− α)β]B1 + (1− α)(1− β)B3

= αβ[−νC1‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k]

+[α(1− β) + (1− α)β](1− ν)(
1

γ2
− 1)∆2

k

+(1− α)(1− β)[νC3‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k].
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Rearranging the terms we obtain

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}]

≤ [−νC1αβ + (1− α)(1− β)νC3]‖∇f(Xk)‖∆k

+[αβ − 1

γ2
(α(1− β) + (1− α)β) + (1− α)(1− β)](1− ν)(γ2 − 1)∆2

k

≤ [−C1αβ + (1− α)(1− β)C3]ν‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k,

where the last inequality holds because αβ − 1
γ2 (α(1− β) + (1− α)β) + (1− α)(1− β) ≤

[α+ (1− α)][(β + (1− β)] = 1.

Let us choose 0 < α ≤ 1 and 0 < β ≤ 1 so that they satisfy

(αβ − 1
2)

(1− α)(1− β)
≥ C3

C1
(2.33)

which implies

[C1αβ − (1− α)(1− β)C3] ≥ 1

2
C1 ≥ 2

(1− ν)(γ2 − 1)

νζ
,

where the last inequality is the result of (2.26). We note that the quantity 1
2 in the

numerator of (2.33) was chosen so that the first inequality of the above expression holds:

see Remark 2.5.5 following the proof for a brief discussion about this choice.

Recall that ‖∇f(Xk)‖ ≥ ζ∆k, hence

[−C1αβ + (1− α)(1− β)C3]ν‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k

≤ 1

2
[−C1αβ + (1− α)(1− β)C3]ν‖∇f(Xk)‖∆k ≤ −

1

4
C1ν‖∇f(Xk)‖∆k.

In summary, we have

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}] ≤ −
1

4
C1ν‖∇f(Xk)‖∆k (2.34)

and

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}] ≤ −
1

2
(1− ν)(γ2 − 1)∆2

k. (2.35)
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For the purposes of this lemma and the liminf-type convergence result, which will follow,

bound (2.35) is sufficient. We will use bound (2.34) in the proof of the lim-type convergence

result.

Case 2: Let us consider now the iterations when ‖∇f(xk)‖ < ζδk. First we note

that if ‖gk‖ < η2δk, then we have an unsuccessful step and (2.28) holds. Hence, we now

assume that ‖gk‖ ≥ η2δk and again consider four possible outcomes. We will show that in

all situations, except when both the model and the estimates are bad, (2.28) holds. In the

remaining case, because ‖∇f(xk)‖ < ζδk, the increase in φk can be bounded from above

by a multiple of δ2
k. Hence by selecting appropriate values for probabilities α and β we will

be able to establish the bound on expected decrease in Φk as in Case 1.

a. Ik and Jk are both true, i.e., both the model and the estimates are good on iteration

k.

The iteration may or may not be successful, even though Ik is true. On successful

iterations, the good model ensures reduction in f . Applying the same argument as

in the case 1(c) we establish (2.28).

b. Ik is true and Jk is false, i.e., we have a good model and bad estimates on iteration

k.

On unsuccessful iterations, (2.28) holds. On successful iterations, ‖gk‖ ≥ η2δk and

η2 ≥ κbhm imply that

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
≥ η2

κfcd
2
δ2
k.

Since Ik is true, the model is κ-fully-linear, and the function decrease can be bounded
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as

f(xk)− f(xk + sk)

= f(xk)−mk(xk) +mk(xk)−mk(xk + sk) +mk(xk + sk)− f(xk + sk)

≥ (η2
κfcd

2
− 2κef )δ2

k ≥ κefδ2
k

due to (2.21).

It follows that, if the k-th iterate is successful, then

φk+1 − φk ≤ [−νκef + (1− ν)(γ2 − 1)]δ2
k. (2.36)

Again by choosing ν ∈ (0, 1) so that (2.26) holds, we ensure that the right hand

side of (2.36) is strictly smaller than that of (2.28), hence (2.28) holds, whether the

iteration is successful or not.

Remark: η2 may need to be a relatively large constant to satisfy (2.21). This is due

to the fact that the model has to be sufficiently accurate to ensure decrease in the

function if a step is taken, since the step is accepted based on poor estimates. Note

that η2 restricts the size of ∆k, which is used both as a bound on the step size and

the control of the accuracy. In general it is possible to have two separate quantities

(related by a constant) - one to control the step size and another to control the

accuracy. Hence, it is possible to modify our algorithm to accept steps larger than

‖gk‖/η2. This will make the algorithm more practical, but the analysis much more

complex. In this chapter, we choose to stay with the simplest version, but keep in

mind that the condition (2.26) is not terminally restrictive.

c. Ik is false and Jk is true, i.e., we have a bad model and good estimates on iteration

k.

This case is analyzed identically to the case 1(c).

d. Ik and Jk are both false, i.e., both the model and the estimates are bad on iteration
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k.

Here we bound the maximum possible increase in φk using the Taylor expansion and

the Lipschitz continuity of ∇f(x).

f(xk + sk)− f(xk) ≤ ‖∇f(xk)‖δk +
1

2
Lδ2

k < C3ζδ
2
k.

Hence, the change in function φ is

φk+1 − φk ≤ [νC3ζ + (1− ν)(γ2 − 1)]δ2
k. (2.37)

We are now ready to bound the expectation of φk+1−φk as we did in Case 1, except that

in Case 2 we simply combine (2.37), which holds with probability at most (1− α)(1− β),

and (2.28), which holds otherwise:

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ < ζ∆k}]

≤ [αβ + α(1− β) + (1− α)β](1− ν)(
1

γ2
− 1)∆2

k

+(1− α)(1− β)[νC3ζ + (1− ν)(γ2 − 1)]∆2
k

≤ (1− ν)(
1

γ2
− 1)∆2

k + (1− α)(1− β)[νC3ζ + (1− ν)(γ2 − 1

γ2
)]∆2

k

If we choose probabilities 0 < α ≤ 1 and 0 < β ≤ 1 so that the following holds,

(1− α)(1− β) ≤ γ2 − 1

γ4 − 1 + 2γ2C3ζ · ν
1−ν

, (2.38)

then

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ < ζ∆k}] ≤ −
1

2
(1− ν)(

1

1− γ2
)∆2

k. (2.39)

In conclusion, combining (2.35) and (2.39), and noting that 1− 1
γ2 < γ2 − 1 we have

E[Φk+1 − Φk|FM ·Fk−1 }] ≤ −
1
2(1− ν)(1− 1

γ2 )∆2
k < 0,
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which implies that (2.24) holds with σ = −1
2(1 − ν)(1 − 1

γ2 − 1) < 0. This concludes the

proof of the theorem.

To summarize the conditions on the probabilities involved in Theorem 2.5.2 to ensure

that the theorem holds, we state the following as a corollary.

Corollary 2.5.1. Let all assumptions of Theorem 2.5.2 hold. The statement of Theorem

2.5.2 holds if the α and β are chosen to satisfy the following conditions:

(αβ − 1
2)

(1− α)(1− β)
≥

1 + 3L
2ζ

C1
(2.40)

and

(1− α)(1− β) ≤ γ2 − 1

γ4 − 1 + γ2 (3L+ 2ζ) ·max
{

4
ζC1

, 4
η1η2κfcd

, 1
κef

} , (2.41)

with C1 =
κfcd

4 ·max
{

κbhm
κbhm+κeg

,
8κef

8κef+κfcdκeg

}
and ζ = κeg + η2.

Proof. The proof follows simply from combining the expression for C3 and condition (2.26)

with (2.33) and (2.38).

Clearly, choosing α and β sufficiently close to 1 will satisfy the conditions given in

(2.40) and (2.41).

Remark 2.5.3. We will briefly illustrate through a simple example how these algorithmic

parameters scale with problem data.

Recall that L is the Lipschitz constant of ∇f and of f over Lenl(x0). It is reasonable

to expect that κef and κeg are quantities that scale with L, since Taylor models satisfy this

condition, as do polynomial interpolation and regression models based on well-poised data

sets [21]. Let us assume for the sake of an example that κef = κeg = 10L. The bound

on model Hessians κbhm can be chosen to be arbitrarily small, at the expense of limiting

the class of models; however, it is clearly reasonable to choose κbhm as something that

scales with L if this information is available. Let us assume that κbhm = 10L, as well.

In a standard trust-region method, a common choice of algorithmic parameters would use

κfcd = 1
2 , γ = 2, and η1 = 1

2 .
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The reader can verify that with these parameter choices and previous assumptions,

Lemma 2.5.1 states that we must choose η2 ≥ 32L. The intermediate constants satisfy

ζ ≥ 42L and C1 = 2
17 . Without loss of generality, we will simply accept ζ = 42L.

Given the above values of the constants, we have

max

{
4

ζC1
,

4

η1η2κfcd
,

1

κef

}
≤ 1

L
,

and so

(αβ − 1
2)

(1− α)(1− β)
≥ 9 (2.42)

and

(1− α)(1− β) ≤ 1

440
. (2.43)

To generalize, supposing that κef , κeg, and κbhm scale linearly with L, then η2, εF , and

the expressions relating to α and β in Corollary 2.5.1 are all functions in L satisfying

η2 ≥ Θ(L), (2.44)

εF ≤ Θ(L), (2.45)

αβ

(1− α)(1− β)
≥ Θ(1), (2.46)

and

(1− α)(1− β) ≤ Θ(1), (2.47)

where we use the notation Θ(·) to indicate the O(·) relationship with moderate constants.

Remark 2.5.4. Recall our remark made earlier in Theorem 2.5.2, case 2(b), on how η2

bounds our step sizes. Indeed, if η2 ≥ Θ(L) has to be imposed this may force the algorithm to

take small step sizes throughout. However, as mentioned earlier, the analysis of Theorem

2.5.2 can be modified by introducing a tradeoff between the size of η2 and the accuracy

parameters εF and κef (as both of these constant parameters can be made smaller). It also

may be advantageous to choose η2 dynamically. Exploring this is a subject for future work.
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In the practical implementations that we will discuss in Section 6, we do not make use of

the algorithmic parameter η2 at all, and so even though η2 is effectively arbitrarily close to

0, the algorithm still works.

Remark 2.5.5. Note that if β = 1, then ∆k → 0 for α ≥ 1
2 , which is the case shown in

[4]. This is because, in our discussion of Case 1, the condition (2.33) via an appropriate

adjustment to (2.26) could be written as

[C1αβ − (1− α)(1− β)C3] ≥ θ1C1 ≥ θ2
(1− ν)(γ2 − 1)

νζ
,

where θ1 is positive and arbitrarily close to zero and θ2 > 1 is arbitrarily close to one. In the

proof we provided, we chose values of θ1 = 1
2 and θ2 = 2 for simplicity of the presentation.

2.5.1 The liminf-type convergence

We are ready to prove a liminf-type first-order convergence result, i.e., that a subsequence

of the iterates of Algorithm 1 drive the gradient of the objective function to zero. The proof

follows closely that given in [4], the key difference being the assumption on the quality of

the function estimates.

Theorem 2.5.3. Let the assumptions of Theorem 2.5.2 and Corollary 2.5.1 hold. Then

the sequence of random iterates generated by Algorithm 1, {Xk}, almost surely satisfies

lim inf
k→∞

‖∇f(Xk)‖ = 0.

Proof. We prove this result by contradiction conditioned on the almost sure event ∆k → 0.

Let us thus assume that there exists ε′ such that, with positive probability, we have

‖∇f(Xk)‖ ≥ ε′, ∀k.

Let {xk} and {δk} be realizations of {Xk} and {∆k}, respectively for which ‖∇f(xk)‖ ≥

ε′ for all k. Since lim
k→∞

δk = 0 (because we conditioned on ∆k → 0), there exists k0 such
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that for all k ≥ k0,

δk < b := min

{
ε′

2κeg
,

ε′

2κbhm
,
κfcd(1− η1)ε′

16κef
,
ε′

2η2
,
δmax

γ

}
. (2.48)

We define a random variable Rk with realizations rk = logγ

(
δk
b

)
. Then for the realization

{rk} of {Rk}, rk < 0 for k ≥ k0. The main idea of the proof is to show that such

realizations occur only with probability zero, hence obtaining a contradiction with the

initial assumption of ‖∇f(xk)‖ ≥ ε′ for all k.

We first show that Rk is a submartingale. Recall the events Ik and Jk in Definitions 2.4.2

and 2.4.5. Consider some iterate k ≥ k0 for which Ik and Jk both occur, which happens

with probability P (Ik ∩ Jk) ≥ αβ. Since (2.48) holds, we have exactly the same situation

as in Case 1(a) in the proof of Theorem 2.5.2. In other words, we can apply Lemmas 2.5.2

and 2.5.3 to conclude that the k-th iteration is successful, hence, the trust-region radius is

increased. In particular, since δk ≤ δmax
γ , δk+1 = γδk. Consequently, rk+1 = rk + 1.

Let FI·Jk−1 = σ(I0, · · · , Ik−1) ∩ σ(J0, · · · , Jk−1). For all other outcomes of Ik and Jk,

which occur with total probability of at most 1− αβ, we have δk+1 ≥ γ−1δk. Hence

E[rk+1|FI·Jk−1] ≥ αβ(rk + 1) + (1− αβ)(rk − 1) ≥ rk,

because αβ > 1/2 as a consequence of the assumptions from Corollary 2.5.1. This implies

that Rk is a submartingale.

Now let us construct another submartingale, Wk, on the same probability space as Rk

which will serve as a lower bound on Rk and for which

{
lim sup
k→∞

Wk =∞
}

holds almost

surely. Define indicator random variables 1Ik and 1Jk such that 1Ik = 1 if Ik occurs,

1Ik = 0 otherwise, and similarly, 1Jk = 1 if Jk occurs, 1Jk = 0 otherwise. Then define

Wk =

k∑
i=0

(2 · 1Ik · 1Jk − 1).
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Notice that Wk is a submartingale since

E[Wk|FI·Jk−1] = E[Wk−1|FI·Jk−1] + E[2 · 1Ik · 1Jk − 1|FI·Jk−1]

= Wk−1 + 2E[1Ik · 1Jk |F
I·J
k−1]− 1

= Wk−1 + 2P (Ik ∩ Jk|FI·Jk−1)− 1

≥ Wk−1,

where the last inequality holds because αβ ≥ 1/2. Since Wk only has ±1 increments, it

has no finite limit. Therefore, by Theorem 2.5.1, we have

{
lim sup
k→∞

Wk =∞
}

.

By the construction of Rk and Wk, we know that rk− rk0 ≥ wk−wk0 . Therefore, Rk is

positive infinitely often with probability one. This implies that the sequence of realizations

rk such that rk < 0 for k ≥ k0 occurs with probability zero. Therefore our assumption that

‖∇f(Xk)‖ ≥ ε′ holds for all k with positive probability is false and

lim inf
k→∞

‖∇f(Xk)‖ = 0

holds almost surely.

2.5.2 The lim-type convergence

In this subsection we show that limk→∞ ‖∇f(Xk)‖ = 0 almost surely.

We now state an auxiliary lemma, which is similar to the one in [4], but requires a

different proof since here the function values f(Xk) can increase with k, while in the case

considered in [4], function values are monotonically nonincreasing.

Lemma 2.5.5. Let the same assumptions that were made in Theorem 2.5.3 hold. Let

{Xk} and {∆k} be sequences of random iterates and random trust-region radii generated

by Algorithm 1. Fix ε > 0 and define the sequence {Kε} consisting of the natural numbers

39



k for which ‖∇f(Xk)‖ > ε (note that Kε is a sequence of random variables). Then,

∑
k∈{Kε}

∆k < ∞

almost surely.

Proof. From Theorem 2.5.2 we know that
∑

∆2
k < ∞ and hence ∆k → 0 almost surely.

For each realization of Algorithm 1 and a sequence {δk}, there exists k0 such that δk ≤

ε/ζ, ∀k ≥ k0, where ζ is defined as in Theorem 2.5.2. Let K0 be the random variable

with realization k0 and let K denote the sequence of indices k such that k ∈ Kε and

k ≥ K0. Then for all k ∈ K, Case 1 of Theorem 2.5.2 holds, i.e., ‖∇f(Xk)‖ ≥ ζ∆k, since

‖∇f(Xk)‖ ≥ ε for all k ∈ K. From this and from (2.34) we have

E[Φk+1 − Φk|FM ·Fk−1 ] ≤ −1

4
C1νε∆k, ∀k ≥ k0.

Recall that Φk is bounded from below. Hence, summing the above inequality for all

k ∈ K and taking the expectation, we have that

∑
k∈K

∆k < ∞

almost surely. Since Kε ⊆ K ∪ {k : k ≤ K0} and K0 is finite almost surely, the lemma

follows.

We are now ready to state the lim-type result.

Theorem 2.5.4. Let the same assumptions as in Theorem 2.5.3 hold. Let {Xk} be a

sequence of random iterates generated by Algorithm 1. Then, almost surely,

lim
k→∞

‖∇f(Xk)‖ = 0.

Proof. The proof of this result is almost identical to the proof of the same theorem in [4];

hence we will not present the proof here. The key idea of the proof is to show that if the
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theorem does not hold, then with positive probability

∑
k∈{Kε}

∆k = ∞, (2.49)

with Kε defined as in Lemma 2.5.5. This result is shown using Lipschitz continuity of

the gradient and does not depend on the stochastic nature of the algorithm. Since (2.49)

contradicts the almost sure result of Lemma 2.5.5, the theorem is proven.

2.6 Constructing models and estimates in different stochas-

tic settings.

We now discuss various settings of stochastic noise in the objective function and how

α-probabilistically κ-fully linear models and β-probabilistically εF -accurate estimates can

be obtained in these settings.

Recall that we assume that for each x we can compute the value of f̃(x), which is the

noisy version of f ,

f̃(x) = f(x, ω),

where ω is a random variable inducing the noise.

Simple stochastic noise. Let us first consider a somewhat general setting of unbiased

noise, i.e.,

Eω[f(x, ω)] = f(x), ∀x,

and

Varω[f(x, ω)] ≤ V <∞, ∀x.

This is a typical noise assumption in stochastic optimization literature. In the case of

unbiased noise as above, constructing estimates and models that satisfy our assumptions

is fairly straight-forward. First, let us consider the case where only noisy zeroth-order

function estimates are available (i.e. gradient information is unavailable), and we want to

construct a model that is κ-fully linear in a given trust region B(x0, δ) with some sufficiently
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high probability, α.

One can employ standard SAA techniques to reduce the variance of the function esti-

mates. In particular, let f̄p(x, ω) = 1
p

∑p
i=1 f(x, ωi), where ωi are the i.i.d. realizations of

the noise ω. Then, by Chebyshev inequality, for any v > 0,

P (|f̄p(x, ω)− f(x)]| > v) = P (|f̄p(x, ω)− Eω[f(x, ω)]| > v) ≤ V

pv2
.

In particular, we want v = κ′efδ
2 for some κ′ef > 0 and V

pv2 ≤ 1−α′ for some α′, which can

be ensured by choosing p ≥ V
(κ′ef )2(1−α′)δ4 .

We now construct a fully linear model as follows: given a well-poised set3 Y of n + 1

points in B(x0, δ), at each point yi ∈ Y , we compute f̄p(y
i, ω) and build a linear interpo-

lation model m(x) such that m(yi) = f̄p(y
i, ω), for all i = 1, . . . , n + 1. Hence, for any

yi ∈ Y , we have

P (|m(yi)− f(yi)]| > κ′efδ
2) ≤ 1− α′.

Moreover, the events {|m(yi)− f(yi)]| > κ′efδ
2} are independent, hence

P ( max
i=1..n+1

{|m(yi)− f(yi)]|} > κ′efδ
2) ≤ 1− (α′)n+1.

It is easy to show using, for example, techniques described in [21], that m(x) is a κ-

fully linear model of Eω[f(x, ω)] in B(x0, δ) for appropriately chosen κ = (κeg, κef ), with

probability at least α = (α′)n+1.

Computing the β-probabilistically εF -accurate estimates of f(x, ω) can be done analo-

gously to the construction of the models described above.

The majority of stochastic optimization and SAA methods focus on derivative-based

optimization where it is assumed that, in addition to f(x, ω), ∇xf(x, ω) is also available,

3See [21] for details on well-poised sets and how they can be obtained. We will approach this topic in
much further detail in Chapter 4.
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and that the noise in the gradient computation is also independent of x, that is 4

Eω[∇xf(x, ω)] = ∇f(x), ∀x

and

Varω[‖∇xf(x, ω)‖] ≤ V <∞, ∀x.

In the case where noisy gradient values are available, the construction of fully linear

models in B(x0, δ) is simpler. Let ∇̄fp(x, ω) = 1
p

∑p
i=1∇f(x, ωi). Again, by an extension

of the Chebyshev inequality, for p such that

p ≥ max{ V

κ2
ef (1− α′)δ4

,
V

κ2
eg(1− α′)δ2

},

P (‖∇̄fp(x0, ω)−∇f(x0)]‖ > κegδ) = P (‖∇̄fp(x0, ω)− Eω[∇f(x0, ω)]‖ > κegδ) ≤ 1− α′,

and

P (|f̄p(x0, ω)− f(x0)| > κefδ
2) = P (|f̄p(x0, ω)− Eω[f(x0, ω)]| > κefδ

2) ≤ 1− α′.

Hence the linear expansion m(x) = f̄p(x
0, ω)+∇̄fp(x0, ω)>(x−x0) is a κ-fully linear model

of f(x) = Eω[f(x, ω)] on B(x0, δ) for appropriately chosen κ = (κeg, κef ), with probability

at least α = (α′)2.

There are many existing SG and SAA methods with convergence guarantees for stochas-

tic optimization with i.i.d. or unbiased noise. Some of these methods have been shown

to achieve the optimal sampling rate [35], i.e. they converge to the optimal solution while

sampling the gradient at the best possible rate. We will explore convergence rates further

in Chapter 3. Our contribution in this chapter is a method which applies in non-i.i.d. noise

regimes, as we will discuss below. In Section 2.7, however, we will demonstrate that sim-

ple implementations of STORM can have superior numerical behavior compared to more

standard SAA approaches, even in i.i.d. noise regimes, so the idea is at least competitive

4In general, the variance of the gradient estimate and the function estimate are not the same, but for
simplicity, we bound both here by V .
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in practice.

Function computation failures. Now, let us consider a more complex noise case. Sup-

pose that the function f(x) is computed (as it often is, in black-box optimization) by some

numerical method that includes a random component. Such examples are common in

machine learning applications, for instance, where x is a vector of hyperparameters of a

learning algorithm and f(x) is the expected error of the resulting classifier. In this case,

for each value of x, the classifier is obtained by solving an optimization problem, up to a

certain accuracy, on a given training set. If a randomized coordinate descent algorithm or

a stochastic gradient descent algorithm is used to train the classifier for a given vector of

hyperparameters x, then the resulting classifier is sufficiently close to the optimal classi-

fier with some known probability under certain conditions, e.g. strong convexity of a loss

function. However, in the case where the training optimizer fails to produce a sufficiently

accurate solution, the resulting error is difficult to estimate. Usually, it is possible to know

the upper bound on the value of this inaccurate objective function but nothing else may

be known about the distribution of this value. Moreover, it is likely that the probability

of obtaining an accurate estimate of f(x) depends on x; for example, after k iterations of

randomized coordinate descent, the error between the true f(x) and the computed f̃(x) is

bounded by some value, with probability α, where the value depends on α, k, and x [63].

Another example is solving a system of nonlinear black-box equations. Assume that we

seek x such that
∑

i(fi(x))2 = 0, for some functions fi(x), i = 1, . . . ,m that are computed

by numerical simulation, with noise. As is often done in practice (and is supported by

our theory) the noise in the function estimate is reduced as the algorithm progresses, for

example, by reducing the size of a discretization or convergence tolerance within the black-

box computation. These adjustments for noise reduction usually increase the workload

of the simulation. With the increase of the workload, there is an increased probability

of failure of the black-box code. Hence, as the sum of the squares of estimates of fi(x)

becomes smaller, the more likely it becomes that the computation of the estimated sum

will fail and some inaccurate value is returned.

These two examples show that the noise in f̃(x) may be large with some positive
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probability, which may depend on x. Hence, let us consider the following, idealized, noise

model

f̃(x) = f(x, ω) =

 f(x), w.p. 1− σ(x)

ω(x) ≤ V w.p. σ(x),

where σ(x) is the probability with which the function f(x) is computed inaccurately, and

ω(x) is some random function of x, for which only an upper bound V is known. This case

is idealized, because we assume that with probability 1− σ(x), f(x) is computed exactly.

It is trivial to extend this example to the case when f(x) is computed with an error, but

this error can be made sufficiently small.

For this model of function computation failures we have

Eω[f(x, ω)] = (1− σ(x))f(x) + σ(x)E[ω(x)] 6= f(x), ∀σ(x) > 0.

and it is clear, that for any σ(x) > 0, unless E[ω(x)] ≡ some constant, optimizing

Eω[f(x, ω)] does not give the same result as optimizing f(x). Hence applying Monte-Carlo

sampling within an optimization algorithm solving this problem is not a correct approach.

We now observe that constructing α-probabilistically κ-fully linear models and

β-probabilistically εF -accurate estimates is trivial in this case, assuming that σ(x) ≤ σ

for all x, when σ is small enough. In particular, given a trust region B(x0, δ), sampling

a function f(x) on a sample set Y ⊂ B(x0, δ) well-poised for linear interpolation will

produce a κ-fully linear model in B(x0, δ) with probability at least (1−σ)|Y |, since with this

probability all of the function values are computed exactly. Similarly, for any s ∈ B(x0, δ),

the function estimates F 0 and F s are both correct with probability at least (1 − σ)2.

Assuming that (1 − σ)|Y | ≥ α and (1 − σ)2 ≥ β, where α and β satisfy the assumptions

of Theorem 2.5.2 and Lemma 2.5.1 and αβ ≥ 1
2 as in Theorem 2.5.3, we observe that the

resulting models satisfy our theory.

Remark 2.6.1. We assume here that the probability of failure to compute f(x) is small

enough for all x. In the machine learning example provided above, it is often possible

to control the probability σ(x) in the computation of f(x), for example by increasing the
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number of iterations of a randomized coordinate descent or stochastic gradient descent

method. In the case of the black-box nonlinear equation solver, the probability of code

failure is expected to be quite small. There are, however, examples of black box optimization

problems where the computation of f(x) fails all the time for specific values of x. This is

often referred to as hidden constraints [55]. Clearly our theory does not apply here, but we

believe there is no local method that can provably converge to a local minimizer in such a

setting without additional information about these specific values of x.

2.7 Computational Experiments

In this section, we will discuss the performance of several variants of our proposed method

(varied in the way the models are constructed), henceforth only referred to as STORM

(STochastic Optimization using Random Models), that target various noisy situations dis-

cussed in the previous section. We note that a comparison of STORM to the SPSA method

of [70] and the classical Kiefer-Wolfowitz method in [42] has been reported in [16] and

shows that STORM significantly outperformed these two methods, while no special tuning

of SPSA or Kiefer-Wolfowitz was applied. Since a trust-region based method, which is able

to use second-order information, is likely to outperform stochastic gradient-like methods

in many settings, we omit such comparison here.

Throughout this section, all proposed algorithms were implemented in Matlab and all

experiments were performed on a laptop computer running Ubuntu 14.04 LTS with an

Intel Celeron 2955U @ 1.40GHz dual processor.

2.7.1 Simple stochastic noise

In these experiments, we used a set of 53 unconstrained problems adapted from the CUTEr

test set, each being in the form of a sum of squares problem, i.e.

f(x) =
m∑
i=1

(fi(x))2, (2.50)
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where for each i ∈ {1, . . . ,m}, fi(x) is a smooth function. Two different types of noise will

be used in this first subsection, which we will refer to as multiplicative noise and additive

noise. In the multiplicative noise case, for each i ∈ {1, . . . ,m}, we generate some ωi from

the uniform distribution on [−σ, σ] for some parameter σ > 0, and then compute the noisy

function

f̃(x, ω) =
m∑
i=1

((1 + ωi)fi(x))2. (2.51)

The key characteristic of this noise is that for each x, we have Eω[f(x, ω)] = f(x),

however the variance is nonconstant over x and scales with the magnitudes of the compo-

nents fi(x). Thus, one should expect that if an algorithm is minimizing a function of the

form (2.51), the accuracy of the estimates of f(x) based on a constant number of samples

of f̃(x, ω) should increase, assuming that the algorithm produces a decreasing sequence

{f(xk)}∞k=1. While this behavior is not supported by theory, because we do not know how

quickly f(xk) decreases, our computational results show that a constant number of samples

is indeed sufficient for convergence.

The other type of noise we will test is additive, i.e. we additively perturb each compo-

nent in (2.50) by some ωi uniformly generated in [−σ, σ] for some parameter σ > 0. That

is,

f̃(x, ω) =
m∑
i=1

(fi(x) + ωi)
2 (2.52)

Note that the noise is additive only in terms of the component functions, but not in

terms of the objective function. Moreover, Eω[f(x, ω)] = f(x) +
∑m

i E(ωi)
2. However, the

constant bias term does not affect optimization results, since minxEω[f(x, ω)] = minx f(x).

In our first set of experiments for these two noisy settings, we compare a version of

STORM to a version of a SAA-based trust-region algorithm, which we will call “TR-

SAA”, which is similar to a trust-region algorithm presented in [24]. Another similar

method, with convergence guarantees, has been recently proposed in [68]. In their work,
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they use a Bayesian scheme to select a sufficiently large sample complexity for computing

average function values at a current interpolation set. Here, in TR-SAA, we simplify this

approach, by increasing sample complexity in each iteration proportionally to the decrease

of the trust region radius δk. A description of TR-SAA is given in Algorithm 6 in the

Appendix.

There are two particular aspects of TR-SAA that we would like to draw attention to:

in the estimate calculation step, the computation of f0
k is performed before the model mk

is constructed, and mk is built to interpolate f0
k ; hence the quality of estimate f0

k and

that of the model mk are not independent. Additionally, the quality of the model mk

is dependent on that of mk−1 because the function estimates are reused. Both of these

aspects are violations of the guiding assumptions of STORM. Thus, we also propose TR-

SAA-resample, which is the same algorithm as TR-SAA except that at each iteration, the

function estimate at every interpolation point is recomputed as an average of function eval-

uations, independent of past function evaluations. While TR-SAA-resample may overcome

TR-SAA’s issue of the dependence of mk on mk−1, it still doesn’t satisfy the assumptions

of STORM because of the dependence of f0
k on mk.

Thus, finally in Algorithm 7, stated in the Appendix, we propose a version of STORM,

STORM-unbiased, comparable to TR-SAA in terms of per-iteration sample complexity. In

Algorithm 7, the models mk and mk−1 are entirely independent since a new regression set is

drawn in each iteration. Additionally, in the estimates calculation step, the computations

of f0
k and fsk are completely independent of the model mk. For these reasons, Algorithm

7 is more in line with the theory analyzed in this chapter than the SAA scheme given in

Algorithm 6. We will further comment on the quality of least-squares regression models in

Algorithm 7 in great detail in Chapter 4.

For each of the 53 problems, the best-known value of the noiseless f(x) obtained by

a solver is recorded as f∗. We recorded the number of function evaluations required by a

solver to obtain a function value f(xk) < f ′ such that

1− τ < f(x0)− f ′

f(x0)− f∗
. (2.53)
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Figure 2.1: Performance profiles (τ = 10−3) comparing STORM-unbiased, TR-SAA, and
TR-SAA-resample on the testset.

This number was averaged over 10 runs for each problem. In the profiles shown in Fig-

ure 2.7.1, τ = 10−3. In all the experiments, a budget of 1000(n + 1) noisy function

evaluations was set, where n is the problem dimension. For the choice of initialization, the

same parameters were used in all of TR-SAA, TR-SAA-resample, and STORM-unbiased:

δmax = 10, δ0 = 1, γ = 2, η1 = 0.1, η2 = 0.001, pmin = 10.

Note that even though we have ignored the theoretical prescription derived in Section

2.6 that the sample rate should scale with 1/δ4
k, we note that STORM-unbiased performs

extremely well compared to the TR-SAA method. Although we chose to sample at a rate

so that pk was on the order of 1/δk, this particular sample rate was chosen after testing

various other rates on the same set of test functions, and seemed to work relatively well

for both STORM-unbiased and TR-SAA.
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Function computation failures. In these experiments, we used the same 53 sum-of-

squares problems as in the unbiased noise experiments described above, but introduced

biased noise. For each component in the sum in (2.50), if |fi(x)| < ε for some parameter

ε > 0, then fi(x) is computed as

fi(x) =

 fi(x) w.p. 1− σ

V w.p. σ

for some parameter σ > 0 and for some “garbage value” V . If fi(x) ≥ ε, then it is

deterministically computed as fi(x). This noise is biased, with bias depending on x, and

as such we should not expect any sort of averaging to work well here. Once the garbage

value V was chosen with sufficiently large magnitude, the relative magnitude of V did not

significantly affect the results, and so in the experiments illustrated below V = 10000 was

used. Obviously, the intention here was that such a large value will cause STORM to see a

trial step as unacceptable, when it may, in fact, decrease the true function value if taken.

We propose the version of STORM presented as Algorithm 8 in the Appendix.

The key feature of Algorithm 8 is that on each iteration, the interpolation set changes

minimally as in a typical DFO trust region method, but the interpolated function values

are computed afresh. Intuitively, this is the right thing to do, since if a “garbage value”

is computed at some point in the algorithm to either construct a model or provide a

function value estimate, we do not want its presence to affect the computation of models in

subsequent iterations. No averaging is performed, as it can only cause harm in this setting.

Since we are not aware of any other optimization algorithm that is designed for this

noise regime, we performed no comparisons, but experiment to discover how the method

works as a function of the probability of failure on our test set. On the test set of 53

problems, we ran Algorithm 8 a total of 30 times and report the average percentage of

the 53 instances that are solved in the sense of (2.53) with τ = 10−3 within a budget of

10000(n+ 1) function evaluations, where f∗ was computed by Algorithm 8 with σ = 0. In

order to standardize the probability of failure over the test set, we define the probability of

success p and then take σ on a function with m components as σ = 1− p(1/m). The results
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Figure 2.2: Average percentage of problems solved as a function of probability of success
p.

are summarized in Figure 2.7.1.

This experiment suggests that the practical threshold at which STORM fails to make

progress may be looser than that suggested by theory. We will illustrate this idea through

a simple example. Consider the minimization of the simple quadratic function

f(x) =

n∑
i=1

(xi − 1)2. (2.54)

The minimizer uniquely occurs at the vector of all 1s. Now consider the minimization

of this function under our setting of computation failure where we vary the probability

parameter σ and fix ε = 0.1. Suppose on each iteration of STORM, the interpolation set

contains (n+ 1)(n+ 2)/2 points. Then, the probability of obtaining the correct quadratic

model in the worst case where for all i, |xi − 1| < ε is precisely α = ((1 − σ)n)
(n+1)(n+2)

2 .

Likewise, the probability of obtaining the correct function evaluation for F0 and Fs on

each iteration in the worst case is β = ((1− σ)n)2. Now, supposing we initialize STORM

with the zero vector in Rn, it is reasonable to assume that all iterates will occur near the

unit cube [0, 1]n, and so we can use simple calculus to estimate a Lipschitz constant of the

function over the relevant domain as 2
√
n, and the Lipschitz constant of the gradient is

constantly 2. These also serve as reasonable estimates of κef and κeg, respectively. Using
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Figure 2.3: Minimizing a simple quadratic function (dimension n = 2 in the left, n = 10
in the right) where with probability 1− σ, a coordinate is computed incorrectly.

parameter choices γ = 2, η1 = 0.1, η2 = 1, we can use the bounds in (2.40) and (2.41) to

solve for the smallest allowable (1−σ) for which our algorithm can guarantee convergence.

For n = 2, our theory suggests that we can safely lower bound (1 − σ) > 0.9592 (which

implies α ≈ 0.6069 and β ≈ 0.8467), and for n = 10, we can lower bound (1− σ) > 0.9990

(which implies α ≈ 0.5233 and β ≈ 0.9806).

In Figure 2.7.1 for n = 2, 10, we plot an indicated level of (1− σ) on the x-axis against

the proportion of 100 randomly-seeded instances with that level of (1− σ) that Algorithm

8 managed to find a solution x∗ satisfying f(x∗) < 10−5 within 104 many function evalu-

ations using the discussed parameter choices. The red line shows the level of (1− σ) that

our theory predicted in the previous paragraph. As we can see, (1− σ) can be quite a bit

smaller than predicted by our theory before the failure rate becomes unsatisfactory. As

a particular example, in the n = 10 case, when (1 − σ) = .998, the corresponding proba-

bilities are α ≈ 0.266782 and β ≈ 0.960751, and yet 100% of the instances were solved to

the required level of accuracy. In other words, even though the models are eventually only

accurate on roughly 27% of the iterations, we still see satisfactory performance.

52



2.7.2 Stochastic gradient based method comparison

In this subsection, we show how STORM applies to empirical risk minimization in machine

learning. We will consider this in greater detail later in Chapter 6. Consider a training

dataset of N samples, {(xi, yi)}i=1...N , where xi ∈ Rm is a vector of m real-valued and

yi ∈ {−1, 1} indicates a positive or negative label respectively. We will train a linear

classifier and bias term (w, β) ∈ Rm+1 by minimizing the smooth (convex) regularized

logistic loss

f(w, β) =
1

N

N∑
i=1

fi(w, β) + λ‖w‖2 =
1

N

N∑
i=1

log(1 + exp(−yi(wTxi + β))) + λ‖w‖2.

As in the typical machine learning setting, we will assume that N >> m, and so

computing f(w, β), ∇f(w, β), and ∇2f(w, β) exactly are prohibitive. Hence we will only

compute estimates of these quantities by considering a sample I ⊂ {1, . . . , N} of size

|I| = n << N , yielding

fI(w, β) =
1

|I|
∑
i∈I

fi(w, β) + λ‖w‖2, ∇fI(w, β) =
1

|I|
∑
i∈I
∇fi(w, β) + 2λw,

∇2fI(w, β) =
1

|I|
∑
i∈I
∇2fi(w, β) + 2λIn.

Thus we can construct models based on sample gradient and Hessian information and we

present the appropriate variant of STORM as Algorithm 9 in the Appendix.

We compare Algorithm 9 with an implementation of the well-known Adagrad method

from the Ada-whatever package [26]. We compare against this particular solver because it

is a well-understood stochastic gradient method used by the machine learning community

that, like our algorithm, takes adaptive step sizes, but unlike our algorithm, does not

compute estimates of the loss function, but only computes averaged stochastic gradients.

For the choice of initialization in Algorithm 9, the following parameters were used:

δmax = 10, δ0 = 1, x0 = 0, γ = 2, η1 = 0.1, η2 = 0.001, pmin = m + 2, pmax = N . Adagrad

53



1 1.5 2 2.5 3 3.5 4 4.5 5

log
10

(samples observed)

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

lo
g

1
0
(l
o

g
is

ti
c
 l
o

s
s
)

a9a, N = 32561

STORM with stochastic Hessians

STORM with only stochastic gradients

Adagrad

1 2 3 4 5 6

log
10

(samples observed)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lo
g

1
0
(l
o

g
is

ti
c
 l
o

s
s
)

covtype-scale, N =581012

STORM with stochastic Hessians

STORM with only stochastic gradients

Adagrad

1 1.5 2 2.5 3 3.5 4 4.5 5

log
10

(samples observed)

-2.5

-2

-1.5

-1

-0.5

0

lo
g

1
0
(l
o

g
is

ti
c
 l
o

s
s
)

mnist, N = 100000

STORM with stochastic Hessians

STORM with only stochastic gradients

Adagrad

1 1.5 2 2.5 3 3.5 4 4.5 5

log
10

(samples observed)

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(l
o

g
is

ti
c
 l
o

s
s
)

shuttle, N = 43500

STORM with stochastic Hessians

STORM with only stochastic gradients

Adagrad

Figure 2.4: Trajectory of training logistic loss on four datasets.

was also given the same initial point and an initial step size of δ0 = 1. We remark that in

practice, one would need to tune the parameters of Adagrad a bit for a particular problem,

but for a fair comparison, we chose only to run Adagrad on these default settings.

We implemented two versions of Algorithm 9: one which uses stochastic Hessians, and

a second where we do not compute stochastic Hessians, effectively setting Hk = 0 on each

iteration, yielding a trivial subproblem in the step calculation.

We set the maximum budget of data evaluations for each solver equal to the size of

the training set, thus comparing various solvers’ performance with a budget of roughly one

full pass through the dataset. For the two implementations of STORM, we plot in Figure

2.4 the true training loss function value at the end of each successful iteration, while for

Adagrad, we simply plot the true training loss function value over an evenly spaced array

of function evaluation counts.

Notice that, as expected, the true function values produced by Adagrad can vary widely

54



over this horizon, but implementations of STORM tend to yield fairly stable decreasing

trajectories over its successful iterations.
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Chapter 3

Theoretical Convergence Rate of

STORM

3.1 Introduction

Having introduced the STORM algorithmic framework in Chapter 2, we now analyze its

theoretical convergence rate1. Particularly driven by applications in machine learning (ML)

domains, where stochastic gradient descent (SGD) arguably remains the method of choice

even for non-convex problems, there has been an interest in convergence rates for SGD on

non-convex problems. However, theoretical convergence rate results for SGD methods on

non-convex problems have lagged behind the theoretical results for convex problems, for

which SGD methods were primarily intended. A notable paper [33] is the first to provide

convergence rates guarantees of some sort for a randomized stochastic gradient method in a

non-convex setting. The particular method that they analyze, however, utilizes a carefully

chosen step size and a randomized stopping scheme, which are quite different from what

is used in practice. Additional work in the general ML task of minimizing a (possibly)

very large sum of non-convex functions has led to analysis of stochastic variance-reduced

gradient (SVRG) methods [40], for which convergence rates have been proven when the

stochastic gradients are at least supposed to be Lipschitz continuous [1, 61].

1The work in this Chapter is joint work with Jose Blanchet, Coralia Cartis, and Katya Scheinberg. This
Chapter is a distillation of the key ideas found in [9]
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Rather than limiting ourselves to an objective consisting of a large sum of functions in

this chapter, we consider the same general stochastic unconstrained, possibly non-convex,

optimization problem from (2.1)

min
x∈Rn

f(x)

where f(x) is a function which is assumed to be smooth and bounded from below, and

whose value can only be computed with some noise. As before, let f̃ be the noisy com-

putable version of f , which takes the form f̃(x) = f(x, ξ) where the noise ξ is a random

variable. Note that, as it was unnecessary in the convergence analysis of STORM, we do not

make the typical unbiasedness assumptions that f(x) = Eξ[f(x, ξ)] and Var[f(x, ξ)] < σ2.

Instead, throughout the analysis in this chapter, we will continue to assume as in Chapter

2 that at each iteration, we can obtain a sufficiently accurate model and pair of function

estimates with a sufficiently high probability p, conditioned on the past. We can interpret

p as p = αβ, where α and β are from the definitions of α-probabilistically fully-linear mod-

els and β-probabilistically εF -accurate estimates, respectively. This means that we allow

(arbitrary) errors in function (and possibly gradient) estimates with some small probability

throughout the algorithm. We show that the expected number of iterations required to

achieve ‖∇f(x)‖ ≤ ε is bounded by O(ε−2/(2p−1)), which is an improvement on the result

in [33] and a similar result as in [1], in terms of dependence on ε. However, in the specific

form of the sum-of-functions problem analyzed in [1], the occasional computation of a “full

gradient” is performed; since such an object may not be well-defined for the problem given

in (2.1), a direct comparison of the rates for the two methods is not really possible. Our

result is a natural extension of the standard, best-known worst-case complexity of any

first-order method for general non-convex optimization [57].

Our result does not yet provide a termination criterion that would guarantee that

‖f(x̄)‖ ≤ ε, where x̄ is the last iterate returned by the algorithm. However, we believe

the analysis provides a foundation for establishing such a criterion. In particular, while we

simply bound the expected iteration complexity in this chapter, bounding the tail of the

complexity distribution ought to follow from the analysis here.
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3.2 STORM as a Random Process

We recall Algorithm 1 from Chapter 2. Algorithm 1 generates a random process; the

sources of randomness are the random models and random estimates constructed on each

iteration, based on some random information obtained from the stochastic function f(x, ξ).

As before, Mk will denote a random model in the k-th iteration, while we will use the

notation mk = Mk(ω) for its realizations. As a consequence of using random models, the

iterates Xk, the trust-region radii ∆k and the steps Sk are also random quantities, and so

xk = Xk(ω), δk = ∆k(ω), sk = Sk(ω) will denote their respective realizations. Similarly,

let random quantities {F 0
k , F

s
k} denote the estimates of f(Xk) and f(Xk + Sk), with their

realizations denoted by f0
k = F 0

k (ω) and fsk = F sk (ω). In other words, Algorithm 1 results

in a stochastic process {Mk, Xk, Sk,∆k, F
0
k , F

s
k}. Our goal is to show that under essentially

the same assumptions on the sequences {Mk} and {F 0
k , F

s
k} as in Chapter 2, the resulting

stochastic process has a desirable convergence rate.

The key to the convergence analysis given in Section 2.5, and hence its extension here,

lies in the assumption that the accuracy (but not necessarily the probability with which

the accuracy holds) improves in coordination with the perceived progress of the algorithm.

The main challenge of the convergence rate analysis that we will perform in this chapter

lies in the fact that, while in the deterministic case (see [37] for a convergence rate analysis

of trust-region methods for deterministic functions utilizing random models), the function

f(x) never increases from one iteration to another, this can easily happen in the stochastic

case. The analysis is based on properties of supermartingales where the increments of a

supermartingale depend on the change in the true function value between iterates (which

as we will show, tend to decrease). To make the analysis simpler, we need a technical

assumption that these increments are bounded from above. Hence, we summarize our

assumptions on f in Assumption 3.2.1:

Assumption 3.2.1. We assume that all iterates xk generated by Algorithm 1 satisfy

xk ∈ X , where X is an open bounded set in Rn. We also assume that f and its gradient
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∇f are L-Lipschitz continuous for all x ∈ X and that

0 ≤ f(x) ≤ Fmax ∀x ∈ X

The assumptions of Lipschitz continuity and boundedness of f from below and above in

any bounded set are standard, and were in fact cast in the previous chapter, see 2.5.1. Here

for simplicity and without loss of generality, we assume in 3.2.1 that the lower bound on

f is nonnegative. The additional assumption in 3.2.1 that xk remains in a bounded set is

necessary, to ensure an upper bound on f(xk). In the deterministic case, the iterates remain

in the level set f(x) ≤ f(x0), which is often assumed to be bounded; in the stochastic case,

keeping iterates in a bounded set can be enforced by minor modifications to Algorithm 1

or, alternatively, shown to hold with overwhelming probability for a sufficiently large X

containing f(x0).

3.2.1 Assumptions on the algorithm

We remind the reader of our previous definitions of α-probabilistically κ-fully linear models

and β-probabilistically εF -accurate estimates given in Definitions 2.4.4 and 2.4.5, respec-

tively. Throughout this chapter, we will use the same notation used in those definitions.

Having recalled these definitions, we now state some assumptions that will be necessary

in our convergence rate analysis.

Assumption 3.2.2. The following hold for the quantities used in Algorithm 1

1. The model Hessians ‖Hk‖2 ≤ κbhm for some κbhm ≥ 1, for all k, deterministically.

2. The constant η2 is chosen to satisfy η2 ≥ max{κbhm,
6κef
κfcd
}.

3. The sequence of random models Mk generated by Algorithm 1 is

α-probabilistically κ-fully linear, for some κ = (κef , κeg) and for a sufficiently large

α ∈ (0, 1).

4. The sequence of random estimates {F 0
k , F

s
k} generated by Algorithm 1 is

β-probabilistically εF -accurate for εF ≤ 1
4η1η2 and for a sufficiently large β ∈ (0, 1).
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We remark that in Assumption 3.2.2, (1.) is simply a restatement of Assumption

2.5.2, (2.) is immediately implied by (2.21) (the constant given here simply works more

transparently in the subsequent analysis), (3.) is unchanged from Assumption 2.5.3, and

(4.) is virtually unchanged from Assumption 2.5.3, while the condition on εF is immediately

implied by (2.22).

Let us define additional random indicator variables Gk = 1{Ik ∩ Jk} and

Bk = 1 − 1{Ik ∪ Jk}. Hence, Gk = 1 on iterations for which both the models and the

estimates are sufficiently accurate and Bk = 1 when neither are sufficiently accurate. Due

to Assumption 3.2.2,

P{Gk = 1|FM ·Fk−1 } ≥ αβ and P{Bk = 1|FM ·Fk−1 } ≤ (1− α)(1− β).

Choosing constants To further simplify expressions for various constants we will as-

sume that η1 = 0.1 and κfcd = 0.5, both of which are typical values for these constants.

This will imply the choice η2 = 12κef and εF = 3
10κef to satisfy Assumption 3.2.2. We will

also assume that γ < 2, which is, again, standard. To simplify expressions further we will

consider κef , κeg ≥ 20. It is clear that if either κef or κeg happens to be smaller, some-

what better bounds than the ones we derive here will result. We are interested in deriving

bounds for the case when κeg may be large. The analysis can be performed for any other

values of the above constants, hence the choice here is done merely for convenience and

simplicity of presentation.

We now seek to bound the expected number of steps that Algorithm 1 takes until

‖∇f(Xk)‖ ≤ ε occurs. We will cite various intermediate results from Section 2.5 that led

to Theorem 2.5.3.

3.3 Stopping time of a stochastic process

We consider a random process

Φk = νf(xk) + (1− ν)∆2
k
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where ν ∈ (0, 1) is a deterministic, large enough constant, which we will define later.

Clearly Φk ≥ 0. Denote realizations of Φk by φk. Let Vk = Φk+1 − Φk.

Given a stochastic process {Xk}, we say T is a stopping time for {Xk} provided that

P (T <∞) = 1 and the random event {T = k} is determined conditioned on X1, . . . , Xk.

Define a random time

Tε = inf{k ≥ 0 : ‖∇f(Xk)‖ ≤ ε}.

The following is an immediate consequence of Theorem 2.5.3:

Theorem 3.3.1. Tε is a stopping time for the stochastic process Xk defined by Algorithm

1.

As stated, our goal is to bound the expected stopping time E(Tε). Towards this end,

define

∆ε =
ε

ζ
and ζ = κeg + max

{
η2,

8κef
κfcd(1− η1)

}
, (3.1)

which with our choice of algorithmic parameters implies ζ = κeg + 160κef .

Conditioned on ‖∇f(Xk)‖ ≥ ε, or equivalently, conditioned on Tε > k, whenever

∆k ≤ ∆ε, we have

ζ∆k ≤ ‖∇f(Xk)‖. (3.2)

For simplicity and without loss of generality, we assume that there exist integers i, j with

i, j > 0 such that ∆0 = γi∆ε and ∆max = γj∆ε.

From the analysis in Chapter 2, we have the following two results.

Lemma 3.3.1. (∆k ≤ ∆ε) Let Assumptions 3.2.1 and 3.2.2 hold. Let α and β satisfy

αβ

(1− α)(1− β)
≥ max

{
1

2
, 2 +

(2κeg + 320κef + 3L)16κeg
κeg + 160κef

}

and

ν = max

{
1

2
, 1−

κeg + 160κef
8(γ2 − 1/γ2)κeg + κeg + 160κef

}
. (3.3)
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Conditioned on Tε > k, whenever ∆k ≤ ∆ε, we have

∆k+1 ≥ min(∆max, γ∆k)Gk + γ−1∆k(1−Gk)

E[Vk|FM ·Fk−1 ] ≤ −Θ1‖∇f(Xk)‖∆k ≤ −Θ1ε∆k,
(3.4)

where Θ1 = 1
64κeg

(under the assumption that κeg ≥ 20).

Proof. The proof is an immediate consequence of the analysis of Case 1 (‖∇f(Xk)‖ ≥ ζ∆k)

in Theorem 2.5.2 and Corollary 2.5.1, due to the definition of ∆ε and (3.2). The only

difference is in the particular choice of constants given in Assumption 3.2.2. The dynamics

given in (3.4) follow from the definitions of Gk and Vk.

To quickly recall the main idea of Case 1 in Theorem 2.5.2, the models and estimates

are accurate at iteration k in this Case, and so a successful step is guaranteed; hence,

∆k+1 = min(∆max, γ∆k) and f(Xk) − f(Xk+1) is bounded from below by a constant

multiple (here, Θ1) of ∆k‖∇f(Xk)‖ ≥ ∆kε. On the other hand, if Bk = 1, i.e., the models

and estimates are both inaccurate, then in the worst case, the algorithm accepts a bad step.

In this worst case, f(Xk)−f(Xk+1) may be negative, but it is at least bounded from below

by a constant multiple of −∆k‖∇f(Xk)‖. As for the trust region parameter, ∆k+1 will

increase if the false step is taken, but may decrease if it rejected; hence, ∆k+1 ≥ γ−1∆k.

Finally if exactly one of the model or estimates are inaccurate, then in the worst case, the

step will be rejected, resulting in f(Xk)− f(Xk+1) ≥ 0 and ∆k+1 = γ−1∆k.

Lemma 3.3.2. (∆k > ∆ε) In addition to the assumptions of Lemma 3.3.1, let

(1− α)(1− β)

≤ min
{

2κeg+160κef
10κeg+1600κef+16κeg(2κeg+320κef+3L) ,

1
2+2κeg+320κef+6L

}
.

Conditioned on Tε > k, whenever ∆k > ∆ε, we have

∆k+1 ≥ ∆ε

E[Vk|FM ·Fk−1 ] ≤ −Θ2ε∆ε,
(3.5)

for Θ2 = min
{

γ2−1
(2κeg+320κef )γ2 ,

1
80κeg

}
.
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Proof. As in the proof of Lemma 3.3.1, except the result is a consequence of Case 2

(‖∇f(Xk)‖ < ζ∆k) of Theorem 2.5.2.

Similarly, we quickly recall the main idea of Case 2 in Theorem 2.5.2. If Bk = 0, then

in the worst case f(Xk)−f(Xk+1) ≥ 0, ∆k+1 = γ∆k, and thus Vk = Φk+1−Φk is bounded

from above by a constant multiple (here, Θ2) of −∆2
k ≤ −ε∆ε. On the other hand, if

Bk = 1, then a bad step may be taken and f(Xk)− f(Xk+1) may be negative, but is once

again bounded from below by a constant multiple (again, Θ2) of −∆k‖∇f(Xk)‖ ≤ −ε∆ε.

Based on the stochastic process {Vk,∆k} described by (3.4) and (3.5), we consider a

renewal process, where renewals are defined by the iterations where ∆k = ∆ε and consider

the sum of Vk obtained between two renewals.

Here we will make use of the assumption in Assumption 3.2.1 that there exists a constant

Fmax such that f(Xk) ≤ Fmax at every iteration k. The immediate consequence of this

assumption is that the Vk process has bounded increments. In particular, we get that for

any k,

|Vk| = |Φk −Φk−1| ≤ ν|(f(Xk)− f(Xk−1))|+ (1− ν)|(∆2
k −∆2

k−1)| ≤ Fmax + ∆2
max. (3.6)

To summarize the behavior of the ∆k process from Lemmas 3.3.1 and 3.3.2, we introduce

an auxiliary Wk birth-death process defined by

P (Wk = 1|FM ·Fk−1 ) = p ≡ αβ

P (Wk = −1|FM ·Fk−1 ) = 1− p.
(3.7)

Then we can write

∆k+1 ≥ min(∆ke
λWk ,∆ε), (3.8)

where λ = ln(γ). Observing that Θ2 ≤ Θ1, by Lemmas 3.3.1 and 3.3.2 we have

E(Vk|FM ·Fk−1 , Tε > k) ≤ −Θ2ε∆k (3.9)
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or, equivalently,

E(Φk|FM ·Fk−1 , Tε > k) ≤ Φk−1 −Θ2ε∆k (3.10)

from which we conclude that, conditioned on Tε > k, Φk is a supermartingale.

We define the renewal process {An} as follows: A0 = 0 and

An = inf{m > An−1 : ∆m ≥ ∆ε}. Naturally, the interarrival times of this renewal process

are given for all k ≥ 1 by

τn = An −An−1,

As a final piece of notation, we define the counting process

N(k) = max{n : An ≤ k},

which is the number of renewals that occur before time k.

First, we have a lemma which relies on the simple structure of the process {Wk} to

bound E[τn].

Lemma 3.3.3. Let the random process ∆k satisfy (3.7) and (3.8) and let τn be defined as

above. Then, for all n

E[τn] ≤ p/(2p− 1)

Proof. We have

E[τn] = E[τn|∆An−1 > ∆ε]P{∆An−1 > ∆ε}+ E[τn|∆An−1 = ∆ε]P{∆An−1 = ∆ε}(3.11)

≤ max{E[τn|∆An−1 > ∆ε],E[τn|∆An−1 = ∆ε]} (3.12)

By (3.8), we trivially have

E[τn|∆Ak−1
> ∆ε] = 1. (3.13)

Bounding the other term in (3.11) is less trivial, but is still simple, after observing that

conditioned on ∆An−1 = ∆ε, the process {∆An−1 ,∆An−1+1, . . . ,∆An} is a geometric random

walk between two returns to the same state (i.e. ∆ε). The expected number of steps

between such two returns is well known and can be easily estimated via properties of
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ergodic Markov chains. In particular, under the assumption p > 1/2 we have

E[τn|∆Ak−1
> ∆ε] ≤ p/(2p− 1). (3.14)

Substituting (3.13) and (3.14) into (3.11) completes the proof.

We now bound the number of renewals that can occur before time Tε.

Lemma 3.3.4.

E[N(Tε)] ≤
Φ0

Θ2ε∆ε
+

∆0

∆ε
.

Proof. For ease of notation, let k ∧ Tε = min{k, Tε}. Consider the sequence of random

variables

Rk∧Tε = Φk∧Tε + Θ2ε

k∧Tε∑
j=0

∆j ,

where Θ2 is as in (3.10). Observe that Rk∧Tε is a supermartingale with respect to FM ·Fk−1 .

Indeed, by (3.10),

E[Rk∧Tε |FM ·Fk−1 ] = E[Φk∧Tε |FM ·Fk−1 ] + E

Θ2ε

k∧Tε∑
j=0

∆j |FM ·Fk−1


≤ Φk−1 −Θ2ε∆k + Θ2ε

k∧Tε∑
j=0

∆j

= Φk−1 + Θ2ε

(k−1)∧Tε∑
j=0

∆j = R(k−1)∧Tε .

Moreover, for all k ≥ Tε,

|Rk∧Tε | = |RTε | ≤ Fmax + ∆max + Θ2ε

Tε∑
j=0

∆j .

which implies that |Rk∧Tε | is almost surely bounded, since Tε is almost surely bounded.

Since Tε is a stopping time, it follows from the Optional Stopping Theorem (see e.g. The-
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orem 6.4.1 of [66]) that

Θ2εE

 Tε∑
j=0

∆j

 ≤ E[RTε ] ≤ E[R0] = Φ0 + Θ2ε∆0. (3.15)

By the definition of the counting process N(k), and since the renewal times An when

∆k ≥ ∆ε are a subset of the iterations 0, 1, . . . , Tε, we have

Θ2ε

Tε∑
j=0

∆j ≥ Θ2εN(Tε)∆ε. (3.16)

Inserting (3.16) in (3.15),

E(N(Tε)) ≤
Φ0 + Θ2ε∆0

Θ2ε∆ε
,

which concludes the proof.

We now state the following well-known theorem from stochastic processes literature.

Theorem 3.3.2. Wald’s Equation (inequality form). Suppose {Yn} is a sequence of

independent random variables with E[|Yn|] ≤ Y <∞ for all n. If N is a stopping time for

the process {
∑k

n=0 Yn} and if E[N ] <∞, then

E

[
N∑
n=1

Yn

]
≤ E[N ]Y.

For a proof, see for instance Corollary 6.2.3 of [66]. We now apply this theorem to

An =
∑n

i=0 τi and obtain the main result of this chapter.

Theorem 3.3.3. Let assumptions of Lemma 3.3.1 and 3.3.2 hold. Then

E[Tε] ≤
αβ

2αβ − 1

(
Φ0(κeg + 160κef )

Θ2ε2
+

∆0(κeg + 160κef )

ε
+ 1

)
.

Proof. Since Tε is a stopping time for our main stochastic process, then N(Tε) + 1 is

a stopping time for the renewal process {An : n ≥ 0}. We know that the interarrival

times τn are independent, and we know that E[|τn|] ≤ p
2p−1 < ∞ by Lemma 3.3.3 for all
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n < NTε+1. Therefore, by Wald’s equation,

E[AN(Tε)+1] ≤ p

2p− 1
E[N(Tε) + 1].

Since AN(Tε)+1 ≥ Tε, we have by Lemmas 3.3.3 and 3.3.4 that

E[Tε] ≤ E[τ1]E[N(Tε) + 1] ≤ p

2p− 1

(
Φ0

Θ2ε∆ε
+

∆0

∆ε
+ 1

)
.

The result is obtained by observing that ∆ε = ε/ζ and substituting the expression in (3.1)

for ζ.
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Chapter 4

On α-probabilistically Fully-Linear

Models

4.1 Introduction

In this chapter1, we address the concept of probabilistically fully-linear models defined in

Definition 2.4.4, and offer guidance as to practical means to construct such models under

some typical assumptions on stochasticity.

It has been noted in DFO literature [8, 21] that, within a DFO trust-region framework,

using least-squares regression models often leads to better results than using interpolation

models in the presence of noise. In [19, 21] regression models are shown to be fully-

linear (fully-quadratic) if the sample set satisfies some geometric conditions. However, this

result assumes that the function f(x) being modeled is deterministic. In [48], the authors

advocate the use of regression models for stochastic f(x) and show that such models can be

made probabilistically fully-linear, relying on results from [19, 21] and on their assumptions

on f(x). Aside from that work, there has been no systematic study in the derivative-free

or stochastic optimization literature on the quality of local models based on least-squares

regression from the point of view of an optimization algorithm. Hence, the goal of this

chapter is to improve on results given in [48] and provide bounds on the accuracy of least-

1The work in this Chapter is unpublished joint work with Dávid Pál, Francesco Orabona, and Katya
Scheinberg.
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squares regression models for various choices of sample sets.

We are concerned with constructing a local model of a smooth function f(·) : Rn → R

centered about a point y0 ∈ Rn. However, we assume f(·) cannot be computed exactly,

and we only have access to a noisy estimator of f , which we will denote in this chapter by

f̃ . In particular, we assume

f̃(x) = f(x) + ξ(x), (4.1)

where ξ(x) is once again a random variable (whose distribution may or may not depend

on x). We will state explicitly our assumptions on ξ in the next section.

The remainder of this chapter is organized as follows: in Section 4.2, we analyze the

bound on the error between a local least-squares regression model (centered around x = 0,

under some assumptions on f(0)) and the stochastic function under three different cases of

choices of sample sets. In Section 4.3, we summarize the results and compare the bounds

and their dependence on problem dimension and sampling rates. In Section 4.4, we provide

a simple extension which allows us to build local models around any x (as opposed to x = 0).

We conclude with Section 4.5, where we present some numerical experiments that illustrate

our analysis.

4.2 Local Error Bound for Linear Least-Squares Models

In this section, we will focus on constructing a local linear least-squares approximation of

f(x) in B(0,∆) given a set of p > n many points {y1, y2, . . . , yp} ⊂ B(0,∆) and correspond-

ing noisy function evaluations at those points, {f̃(y1), f̃(y2), . . . , f̃(yp)}. We also assume,

for now, that f(0) = 0, for simplicity of presentation. We will extend our bounds to local

models in more general B(x,∆) in Section 4.4 by using simple shifts of the variables and

function values.
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Using notation

Y =



(y1)>

(y2)>

...

(yp)>


, F̃ =



f̃(y1)

f̃(y2)

...

f̃(yp)


,

the least-squares problem is defined as

min
w∈Rn

‖Y w − F̃‖, (4.2)

and is well-known to admit a closed-form solution ŵ = (Y >Y )−1Y >F̃ , provided Y has full

column rank.

Due to our interest in fully-linear models, we will evaluate the quality of 〈ŵ, x〉 as

an approximation of f(x) in B(0,∆). In particular, we aim to bound the following two

quantities:

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉|, sup
x∈B(0,∆)

‖∇f(x)− ŵ‖. (4.3)

Towards this goal, we will evaluate these two errors incurred by ŵ with respect to similar

errors of some theoretical linear models, such as the first-order Taylor model, which may not

be computable given the stochasticity of f(x). In particular, we will consider a theoretical

model w∗ of f that admits a “good” absolute error on B(0,∆) (for example, w∗ = ∇f(0)).

We will denote this theoretical worst-case absolute error as ε, i.e.

sup
x∈B(0,∆)

|f(x)− 〈w∗, x〉| ≤ ε. (4.4)

Of course, if f(x) is smooth and w∗ = ∇f(0), then ε ∈ O(∆2). Our goal is to show

that, given ε, the least-squares solution ŵ does not admit a much worse absolute error than

w∗, i.e.

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| ≤ O(ε). (4.5)

Moreover, we want the constants hidden in the big-O notation of O(ε) to be as small as

possible.
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We will now define a few additional pieces of notation to be used in this chapter. Let

us define a vector of model values associated with the generally unknowable w∗,

b∗ = Y w∗ =



〈w∗, y1〉

〈w∗, y2〉
...

〈w∗, yp〉


. (4.6)

We will suppose that each sample point yi, i ∈ 1, . . . , p can be decomposed into the sum

of a deterministic component and a stochastic component

f̃(yi) = f(yi) + ηi,

where ηi is a realization of the random variable ξ(yi). In vector notation, F̃ = F +η, where

F = [f(y1), . . . , f(yp)]> and η = [η1, . . . , ηp]
>. We now formally state our assumption on

η (and hence on ξ(x)):

Assumption 4.2.1. The random variables ηi are pairwise independent and are each σ-

subgaussian, i.e.

Eηi [e
ληi ] ≤ exp(σ2λ2/2) ∀λ ∈ R, ∀i ∈ {1, . . . , p}. (4.7)

It is easy to see by taking derivatives of the moment generating function in (4.7) that

Assumption 4.2.1 is a sufficient condition for each ηi having mean 0 and bounded variance,

i.e. E(ηi) = 0 and Var(ηi) ≤ σ2.

4.2.1 Decomposition Theorem and Initial Bounds

We now state and prove a simple decomposition theorem, which bounds the left hand side

in (4.5) by three key error terms:

• the unavoidable error incurred by some theoretical linear model, such as a Taylor

model, in the sense of (4.4),
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• the approximation error incurred by using ŵ instead of w∗ - a term that is independent

of the noise, but does depend on the sample set Y , in particular on the smallest

eigenvalue of the matrix Y >Y , and

• the stochastic error, which is the direct result of noise and depends on both Y and η.

In the following subsections we will bound these error terms for different selections of Y .

Theorem 4.2.1. Suppose y1, y2, . . . , yp ∈ B(0,∆) have full column rank. Then

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| ≤ ε

(
1 +

∆
√
p√

λmin(Y >Y )

)
+ sup
x∈B(0,∆)

|x>(Y >Y )−1Y >η|. (4.8)

Proof. For any x ∈ B(0,∆),

|f(x)− 〈ŵ, x〉|

≤ |f(x)− 〈w∗, x〉| + |〈w∗, x〉 − 〈ŵ, x〉|

= ε + |x>[(Y >Y )−1(Y >Y )]w∗ − x>(Y >Y )−1Y >F̃ |

= ε + |x>(Y >Y )−1Y >b∗ − x>(Y >Y )−1Y >(F + η)|

≤ ε + sup
x∈B(0,∆)

|x>(Y >Y )−1Y >(b∗ − F )|+ sup
x∈B(0,∆)

|x>(Y >Y )−1Y >η|

We bound the middle term as

sup
x∈B(0,∆)

|x>(Y >Y )−1Y >(b∗ − F )| ≤ sup
x∈B(0,∆)

‖x‖‖(Y >Y )−1Y >‖‖b∗ − F‖

≤
∆ε
√
p√

λmin(Y >Y )
,

where we used in the second inequality the fact that (Y >Y )−1Y > is the pseudoinverse of

Y .

Analogously, it is simple to derive the following result for the error between the true

gradient and the model gradient:

72



Theorem 4.2.2. Suppose y1, y2, . . . , yp ∈ B(0,∆) have full column rank. Then

sup
x∈B(0,∆)

‖∇f(x)− ŵ‖ ≤ ‖∇f(x)− w∗‖+
ε
√
p√

λmin(Y >Y )
+ ‖(Y >Y )−1Y >η‖. (4.9)

4.2.2 General stochastic error bound

Having provided a decomposition of an error bound into unavoidable, approximation, and

stochastic error terms in Theorems 4.2.1 and 4.2.2, we will now provide a general prob-

abilistic large deviation bound specifically on the stochastic error term. That is, we will

yield an upper bound on the stochastic error term that holds with probability α and de-

pends on the least eigenvalue of the covariance matrix Y >Y , the problem dimension n, α

itself, and the σ from Assumption 4.2.1, the latter of which can be viewed as a bound on

the standard deviation of the noise.

We first need a lemma that can be viewed as a version of Hoeffding’s inequality for

n-dimensional random variables:

Lemma 4.2.1. Let a vector of additive noise η satisfy Assumption 4.2.1. Then with

probability at least α,

(Y >η)>(Y >Y )−1Y >η < 4σ2

(
n ln(2)

2
+ ln

(
1

1− α

))
.

Proof. We will proceed by showing that for all t ≥ 0,

Pη[(Y >η)>(Y >Y )−1Y >η ≥ σ2t] ≤ exp

(
− t

4
+
n ln(2)

2

)
. (4.10)

By Assumption 4.2.1, for any λ ∈ Rn,

E[exp(〈λ, Y >η〉)] = E

[
exp

(
p∑
i=1

ηi〈λ, yi〉

)]

=

p∏
i=1

E[exp(ηi〈λ, yi〉)] ≤
p∏
i=1

exp(σ2(〈λ, yi〉)2/2).

(4.11)
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Letting Σ = σ2Y >Y , (4.11) can be expressed more succinctly as

E[exp(〈λ, Y >η〉)] ≤ exp

(
1

2
λ>Σλ

)
. (4.12)

for all λ ∈ Rn. We can thus conclude from (4.12) that for all λ ∈ Rn,

E
[
exp

(
〈λ, Y >η〉 − 1

2
λ>Σλ

)]
≤ 1. (4.13)

Now suppose λ ∼ N(0,Σ−1), i.e. λ is a random variable having a multivariate normal

distribution with mean 0 and covariance Σ−1. Suppose further that λ is independent of η.

Then, the density of λ is given by

d(λ) =
1√

(2π)n det(Σ−1)
exp

(
−1

2
λ>Σλ

)
,

and so computing the conditional expectation over λ,

Eλ,η
[
exp

(
〈λ, Y >η〉 − 1

2λ
>Σλ

)]
=

∫
Rn

Eη
[
exp

(
〈λ, Y >η〉 − 1

2
λ>Σλ

)]
d(λ)dλ

≤
∫
Rn
d(λ)dλ = 1,

(4.14)

where the inequality comes from (4.13). Manipulating the middle term of (4.14),

∫
Rn

Eη
[
exp

(
〈λ, Y >η〉 − 1

2
λ>Σλ

)]
d(λ)dλ

=

∫
Rn

Eη
[
exp

(
〈λ, Y >η〉

)]
exp

(
−1

2
λ>Σλ

)
d(λ)dλ

=
1√

(2π)n det(Σ−1)

∫
Rn

Eη
[
exp

(
〈λ, Y >η〉

)]
exp

(
−λ>Σλ

)
dλ,

we see that (4.14) can be written as

∫
Rn

Eη
[
exp

(
〈λ, Y >η〉 − λ>Σλ

)]
dλ ≤

√
(2π)n det(Σ−1). (4.15)

Through some straightforward linear algebraic manipulation, the left hand side of (4.15)
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can be rewritten so that (4.15) becomes

∫
Rn

Eη

[
exp

(
−1

2

[(
λ− 1

2
Σ−1Y >η

)>
(2Σ)

(
λ− 1

2
Σ−1Y >η

)]
+

1

4
(Y >η)>Σ−1Y >η

)]
dλ

≤
√

(2π)n det(Σ−1).

(4.16)

Observing that the density of a multivariate normal distribution with mean 1
2Σ−1Y >η and

covariance 1
2Σ−1 is

d′(λ) =
1√

(2π)n det(1
2Σ−1)

exp

(
−1

2

[(
λ− 1

2
Σ−1Y >η

)>
(2Σ)

(
λ− 1

2
Σ−1Y >η

)])
,

we conclude from (4.16) that

Eη
[
exp

(
(Y >η)>Σ−1Y >η

4

)]
≤
√

(2π)n det(Σ−1)√
(2π)n det(1

2Σ−1)
≤ 2n/2, (4.17)

where we have used properties of the determinant function to obtain the latter inequality.

By Markov’s inequality, for any t ≥ 0,

Pη[(Y >η)>Σ−1Y >η ≥ t] = P
[
exp

(
(Y >η)>Σ−1Y >η

4

)
≥ exp(t/4)

]

≤ exp(−t/4)Eη
[
exp

(
(Y >η)>Σ−1Y >η

4

)]

≤ exp(−t/4) · 2n/2

= exp(−t/4 + n ln(2)/2),

(4.18)

where the last inequality is from (4.17). Recalling our notational choice of Σ = σ2Y >Y ,

we see that setting the right hand side of (4.18) to 1−α and solving for t, we have proven

the lemma.

Using this lemma, it is now simple to yield a probabilistic large deviation bound on the
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stochastic noise term.

Theorem 4.2.3. Let the vector of additive noise η satisfy Assumption 4.2.1. With prob-

ability at least α,

sup
x∈B(0,∆)

|x>(Y >Y )−1Y >η| < 2σ∆

√
1

λmin(Y >Y )

[
n ln(2)

2
+ ln

(
1

1− α

)]
.

Additionally, with probability at least α,

‖(Y >Y )−1Y >η‖ < 2σ

√
1

λmin(Y >Y )

[
n ln(2)

2
+ ln

(
1

1− α

)]
.

Proof. We have

sup
x∈B(∆)

|x>(Y >Y )−1Y >η| = sup
x∈B(∆)

|x>(Y >Y )−1/2(Y >Y )−1/2Y >η|

≤ sup
x∈B(∆)

‖x>(Y >Y )−1/2‖‖(Y >Y )−1/2Y >η‖

= sup
x∈B(∆)

‖x>(Y >Y )−1/2‖
√

(Y >η)>(Y >Y )−1Y >η

< ∆

√
1

λmin(Y >Y )

[
2σ

√
n ln(2)

2
+ ln

(
1

1− α

)]
w.p. α,

where the latter inequality is from the magnitude of the eigenvector corresponding to

λmin(Y >Y ) and Lemma 4.2.1. The second result follows trivially from x ∈ B(0,∆).

Up to this point, all the results we have proven hold for any general sample set Y .

In fact, Theorems 4.2.1, 4.2.2, and 4.2.3 are stated in such a way that once one provides

a lower bound on λmin(Y >Y ) for an arbitrary sample set Y , then the upper bounds on

the various error terms are immediate. To illustrate this, we will consider three common

instances of sample sets Y and explicitly derive the error bounds implied by Theorems

4.2.1 and 4.2.2. In all cases, we will suppose Y is sampled from B(0,∆).

4.2.3 A Baseline Design - Sampling Unitary Matrices

The first form of sampling we propose in this section is the following: let u1, u2, . . . , un

denote the columns of U , an n-dimensional unitary (i.e. UU> = U>U = In) matrix. For
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an arbitrary k ∈ N, we sample (deterministically or randomly) k such unitary matrices

U1, U2, . . . , Uk, yielding a total of p = kn many samples. We define the jth sample as

yj = ∆uli where j = (l − 1)n + i for l = 1, 2, . . . , k, and i = 1, 2, . . . , n. We shall refer to

this as the identity design, since it can be seen as a generalization of Monte Carlo sampling

along the standard coordinate directions of an identity matrix. If U1 = U2 = · · · = Uk,

then the least-squares solution to 4.2 is essentially a finite difference gradient, with ∆

serving as the width of the finite difference (recall that we assume f(0) = 0 for now).

Alternatively, an identity design with {U l}kl=1 generated by random rotations of In is

considered to be a productive way to generate sample sets for model-based DFO algorithms

which use regression models. This idea of random rotations has been successfully used in

[48] for stochastic black-box problems.

With any identity design, we observe that Y >Y = k∆2In, and so λmin(Y >Y ) = k∆2 =

(p∆2)/n. Thus, we can immediately conclude the following from Theorems 4.2.1 and 4.2.2:

Theorem 4.2.4. Let Assumption 4.2.1 hold and suppose Y is a sample of size p = kn

sampled in the identity design. Then, with probability at least α,

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| ≤ ε(1 +
√
n) + 2σp−1/2

√
n2 ln(2)

2
+ n ln

(
1

1− α

)
.

Additionally, with probability at least α,

sup
x∈B(0,∆)

‖∇f(x)− ŵ‖ ≤ ‖∇f(x)− w∗‖+
ε
√
n

∆
+

2σ

∆
√
p

√
n2 ln(2)

2
+ n ln

(
1

1− α

)
.
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Proof. Beginning with the decomposition of error in Theorem 4.2.1,

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| ≤ ε

(
1 +

∆
√
p√

λmin(Y >Y )

)
+ sup
x∈B(0,∆)

|x>(Y >Y )−1Y >η|

≤ ε(1 +
√
n) + sup

x∈B(∆)
|x>(Y >Y )−1Y >η|

≤ ε(1 +
√
n) + 2σ∆

√
1

λmin(Y >Y )

[
n ln(2)

2
+ ln

(
1

1− α

)]

= ε(1 +
√
n) + 2σ

√
n

p

[
n ln(2)

2
+ ln

(
1

1− α

)]
w.p. α,

where the third inequality is due to Theorem 4.2.3 and holds with probability α. The first

result is immediate and the second is derived analogously using Theorem 4.2.2.

We remark that Theorem 4.2.4 implies that for any α, even as p → ∞, there is an

amount of unavoidable error present; that is, there is an additional amount ε
√
n over the

unavoidable ε error incurred by the theoretical model w∗ in (4.4). Any remaining error

beyond this ε(1 +
√
n) is contributed by the stochastic error term, which decays at a rate

of O(1/
√
p).

4.2.4 Sampling from a Uniform Distribution on B(0,∆)

We now turn our attention to sampling Y from the uniform distribution on B(0,∆). We

will refer to this as the uniform design case. As in Section 4.2.3, we have only to obtain

a lower bound on λmin(Y >Y ) and insert this bound into the results from Theorems 4.2.1,

4.2.2, and 4.2.3. Given that Y is now a random matrix with each row being an independent

sample from a uniform distribution on B(0,∆), the bound on λmin(Y >Y ), and hence the

overall error bound, will have to hold with some probability. Contrast this with the identity

design, in which only the stochastic error bound was probabilistic while the approximation

error bound was global. Towards establishing a probabilistic large deviation bound for

λmin(Y >Y ), we state and prove the following lemma.
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Lemma 4.2.2. Suppose Z ∈ Rn is a random vector with uniform distribution on B(0,∆).

Then,

E[ZZ>] =
∆2

n+ 2
In.

Proof. Consider E[ZiZj ], the expected value of the product of the ith and jth coordinates

of Z. When i 6= j, E[ZiZj ] = E[ZiE[Zj |Zi]] = E[Zi · 0] = 0.

When i = j,

E[ZiZj ] = E[Z2
i ] =

1

n
E[‖Z‖2] =

1

n

∫ ∆

0
z2d‖Z‖(z)dz, (4.19)

where d‖Z‖(z) denotes the density of ‖Z‖, which has support on [0,∆]. Recalling that the

volume of an n-dimensional ball of radius ∆ is

V (n,∆) =
πn/2∆n

Γ(n2 + 1)

and defining the surface area of an n-dimensional ball of radius z by

A(n, z) =
2πn/2zn−1

Γ(n2 )
,

we see that the density in (4.19) can be expressed as

1

n

∫ ∆

0
z2d‖Z‖(z)dz =

1

n

∫ ∆

0
z2 A(n, z)

V (n,∆)
dz =

1

∆n

∫ ∆

0
zn+1dz =

1

n+ 2
∆2.

The result follows.

We state the following concentration inequality from [31] without proof.

Lemma 4.2.3. Let Z, y1, y2, . . . , yp be i.i.d. random vectors in Rn. Let λ denote the

minimum eigenvalue of E[ZZ>] and let λmin(Y >Y ) denote the minimum eigenvalue of

Y >Y . If p ≥ 16n
λ2 , then

P
[
λmin(Y >Y )

p
<
λ

2

]
≤ exp

(
−λ

2p

8

)
.
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Equivalently, for any α ∈ (0, 1), if p ≥ 8
λ2 max{2n, ln(1/(1−α))}, then with probability

at least α,

λmin(Y >Y ) ≥ pλ

2
.

The following probabilistic bound on λmin(Y >Y ) follows immediately from Lemmas 4.2.2

and 4.2.3.

Theorem 4.2.5. Let Y be an i.i.d. sample of size p drawn from a uniform distribution on

B(∆). For any α ∈ (0, 1), if p ≥ 16(n+ 2)2∆−4 max{2n, ln(1/(1− α))}, then

λmin(Y >Y ) ≥ p∆2

2(n+ 2)

holds with probability at least α.

Theorem 4.2.5 gives us the desired probabilistic lower bound on λmin(Y >Y ). Thus, we

have the following result, the proof of which is analogous to the one given for Theorem

4.2.4.

Theorem 4.2.6. Let α ∈ (0, 1). Let Assumption 4.2.1 hold with constant σ and suppose Y

is an i.i.d. sample of size p ≥ 16(n+2)2∆−4 max{2n, ln(1/(1−α))} drawn from a uniform

distribution on B(0,∆). Then, with probability at least α, the following bound holds:

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| ≤ ε(1 +
√

2(n+ 2)) +
2σ
√
p

√
2(n+ 2)

[
n ln(2)

2
+ ln

(
1

1− α

)]
.

Additionally, with probability at least α,

sup
x∈B(0,∆)

‖∇f(x)− ŵ‖ ≤ ‖∇f(x)− w∗‖+
ε
√

2(n+ 2)

∆
+

2σ

∆
√
p

√
2(n+ 2)

[
n ln(2)

2
+ ln

(
1

1− α

)]
.

Notice that, as in the identity design case, we have established a bound on the ap-

proximation error which is in O(ε
√
n). The obvious difference is that the bound in this

uniform design case can only hold probabilistically, while the bound in the identity case

was deterministic. Once again, we observe an unavoidable amount of error in O(ε
√
n) that

results from committing to linear regression models, while the stochastic error once again

can be made arbitrarily small by increasing the sample size, decaying at a rate in O(1/
√
p).
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4.2.5 Strongly Λ-poised sample sets

In the DFO literature, it has become increasingly commonplace to measure the quality of

a design matrix Y in terms of something known as Λ-poisedness, or, in the case of least-

squares regression, strong Λ-poisedness. In [21], it has been shown that if a model-based

algorithm such as Algorithm 1 uses regression models built on strongly Λ-poised sample

sets, and there is no stochastic noise, then the algorithm converges to a first (or second)

order stationary point. In [8], the authors rely on strongly Λ-poised sample sets to con-

struct models of a stochastic function f(x) to yield a convergent algorithm. Essentially,

Λ-poisedness can be used to bound the quantity λmin(Y >Y ); using this bound, the au-

thors of [8] (under some conditions) are able to derive probabilistically fully-linear models,

which ensures convergence. The actual sample sets that they propose using in numerical

experiments are composed of multiple randomly rotated identity matrices, which is what

we called the identity design case in this chapter, but are also properly strongly 1-poised

sets. Hence, our results for the identity design case will apply to their analysis, but as

we will show here, these bounds are better than the general bounds that hold for strongly

Λ-poised sets. In [68], the authors’ convergence theory depends critically on the choice of

interpolation (as opposed to regression) set on a given iteration being Λ-poised. In that

work, they maintain a Λ-poised set of n+ 1 (or more) design points and use Monte Carlo

sampling at those design points. This can also be viewed as a strongly Λ-poised sample set

with replicated sample points. The goal of this section is to show that we can apply the

same framework of analysis as in the previous two design cases to compute error bounds

for regression models constructed on strongly Λ-poised sample sets. However, we will show

that the bounds we obtain have a strictly worse dependence on n, because we are not

exploiting any special properties of these general sets as we did in the identity design and

uniform design cases.

In the case of linear models, which is the focus of this chapter, we have the following

specialized definition of strong Λ-poisedness:

Definition 4.2.1. A set of points {y1, . . . , yp} ∈ B(0,∆) is strongly Λ-poised for regression
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in B(0,∆) provided for all x ∈ B(0,∆), there exists some λ(x) ∈ Rp satisfying

Y >λ(x) = x, ‖λ(x)‖ ≤ n+ 1
√
p

Λ. (4.20)

Observe that Λ is always greater than or equal to 1. In [21], Definition 4.2.1 is stated

for the scaled case of ∆ = 1; in this chapter, we chose to have the radius ∆ be explicitly

present. Thus, the definition presented here is slightly different, but is equivalent in the

case of linear models. This choice in presentation makes direct comparisons to the other

two designs discussed so far immediately clear. We now demonstrate through Lemma 4.2.4

that the condition number λmin(Y >Y ) that we have used in our bounds thus far can be

directly related to the concept of strong Λ-poisedness.

Consider the reduced singular value decomposition Y = Û Σ̂V̂ >, so that Û ∈ Rp×n, Σ̂ ∈

Rn×n, and V̂ ∈ Rn×n. We prove the following bound that we need on

1

λmin(Y >Y )
=

1

λmin(V̂ Σ̂Û>Û Σ̂V̂ >)
=

1

λmin(Σ̂2)
= ‖Σ̂−1‖2,

which can be seen as a special case of Theorem 2.8 in [19].

Lemma 4.2.4. If Y is strongly Λ-poised for regression in B(0,∆), then Σ̂ is nonsingular

and satisfies

‖Σ̂−1‖ ≤ (n+ 1)Λ

∆
√
p

.

Conversely, if Σ̂ is nonsingular and ‖Σ̂−1‖ ≤ Λ, then Y is strongly Λ-poised for regression

in B(0,∆).

Proof. Let Y be strongly Λ-poised for regression in B(0,∆). Towards contradiction, sup-

pose Σ̂ is singular. Then, there exists w′ 6= 0 with w′ ∈ Ker(Y ). Thus, for all x ∈ Im(Y >),

which is a subspace orthogonal to Ker(Y ), we must have 〈w′, x〉 = 0. By the definition

of Y being Λ-poised for regression in B(∆), we see that for all x ∈ B(0,∆), x ∈ Im(Y >),

as witnessed by some λ(x) such that Y >λ(x) = x. So, we in fact have 〈w′, x〉 = 0 for all

x ∈ B(0,∆), i.e. w′ defines a linear function that is constantly zero on all of B(∆). It

follows that w′ = 0, and this is a contradiction.
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As for the bound on ‖Σ̂−1‖, observe that

‖Σ̂−1‖ = ‖Σ̂−1V̂ >‖ = max
‖w‖=1

‖Σ̂−1V̂ >w‖, (4.21)

where the latter equality follows from the definition of induced matrix norm. Let w̄ denote

a maximizer of the optimization problem given in (4.21). Then,

Y >λ(x) = x ⇐⇒ (Û Σ̂V̂ >)>λ(x) = x ⇐⇒ λ(x) = Û Σ̂−1V̂ >x. (4.22)

So, by strong Λ-poisedness and (4.22),

‖Û Σ̂−1V̂ >x‖ = ‖λ(x)‖ ≤ n+ 1
√
p

Λ. (4.23)

We now conclude from (4.21) and (4.23) that

n+ 1
√
p

Λ ≥ max
x∈B(∆)

‖Û Σ̂−1V̂ >x‖ = max
‖w‖=1

‖Σ̂−1V̂ >(∆w)‖ = ∆‖Σ̂−1‖.

If follows that ‖Σ̂−1‖ ≤ (n+1)Λ
∆
√
p , as we meant to show.

As for the converse statement, suppose Σ̂ is nonsingular and ‖Σ̂−1‖ ≤ (n+1)Λ
∆
√
p . Then,

for any x ∈ B(∆), the minimum-norm solution to the system in (4.20) (which exists by

nonsingularity of Σ̂) satisfies

‖λ(x)‖ ≤ ‖Û Σ̂−1V̂ >‖‖x‖ ≤ ‖Σ̂−1‖∆ ≤ (n+ 1)Λ
√
p

.

Thus, Y is strongly Λ-poised for regression in B(0,∆).

From our remarks, the following Theorem is an immediate consequence of Lemma 4.2.4:

Theorem 4.2.7. Let Y be Λ-poised for regression in B(0,∆). Then,

1

λmin(Y >Y )
≤ (n+ 1)2Λ2

p∆2
.

Thus, supposing Λ = 1 so that Y is “perfectly” poised, the bound on λmin(Y >Y ) is

83



worse, by a factor of n, than the bounds we have derived for the identity and uniform

design case in Sections 4.2.3 and 4.2.4. Recall that the identity design is strongly 1-poised.

Using this bound in Theorem 4.2.7, we can once again easily establish an upper bound

on the total error between the regression model and f(x), similarly to Theorems 4.2.4 and

4.2.6.

Theorem 4.2.8. Let Assumption 4.2.1 hold. Suppose Y is a Λ-poised set in B(0,∆) in

the regression sense and Y is of size p. Let α ∈ (0, 1). Then, with probability at least α,

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| < ε (1 + (n+ 1)Λ) +
2σ(n+ 1)Λ
√
p

√
n ln(2)

2
+ ln

(
1

1− α

)
.

Additionally, with probability at least α,

sup
x∈B(0,∆)

‖∇f(x)− ŵ‖ ≤ ‖∇f(x)−w∗‖+
ε(n+ 1)Λ

∆
+

2σ(n+ 1)Λ

∆
√
p

√
n ln(2)

2
+ ln

(
1

1− α

)
.

By Lemma 4.2.4, we see that if λmin(Y >Y ) is bounded from below, then Y is strongly

Λ-poised in the regression sense for some Λ ≥ 1. We will not formalize the following idea

here, but this implies that in the uniform case, our probabilistic bound on λmin(Y >Y )

provided in Theorem 4.2.5 can be interpreted as giving a minimum probability with which

a set is well-poised for regression for a suitable Λ.

4.3 Ensuring α-probabilistically κ-fully linear models

Let us summarize the error bounds we derived in Theorems 4.2.4, 4.2.6, and 4.2.8. We

observe that each bound can be decomposed into two parts - a deterministic part of the

form Cdε, where ε is as in (4.4), and a stochastic part of the form Csσ, where σ is the noise

parameter defined in Assumption 4.2.1. That is, the bound is generally expressed as

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| < Cdε+ Csσ, sup
x∈B(0,∆)

‖∇f(x)− ŵ‖ < Cd
ε

∆
+ Cs

σ

∆
, (4.24)
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where the values of Cd and Cs in each case are given in Table 4.3. We define the constant

Ω(n, α) = 2

√
n ln(2)

2
+ ln

(
1

1− α

)
,

to clarify presentation, as this function of n and α appears in the stochastic error term for

all three bounds that we derived. We remark once again that the dependence on sample

size p in Cs is the same for all design cases, as is theoretically expected. We also remark

once again that the dependence on n in Cd is strictly worse for the general Λ-poised set

design by a factor of
√
n. Again, this is likely due to the fact that in this general case,

no particular structure of the sample set could be exploited in the analysis that led to an

upper bound, as we were able to do with the identity and uniform design cases.

We now return to the question of constructing an α-probabilistically κ-fully linear

model. We will now fix the theoretical model w∗ as ∇f(0), the first-order Taylor model of

f(x) centered at 0, and so we naturally obtain

ε = sup
x∈B(0,∆)

|f(x)− 〈w∗, x〉| ≤ κT∆2, (4.25)

and

sup
x∈B(0,∆)

‖∇f(x)− w∗‖ ≤ κT∆, (4.26)

where κT is the local Lipschitz constant of ∇f(x) in B(0,∆). We use this upper bound on

ε in (4.25) and the upper bound on ‖∇f(x)−w∗‖ in (4.26) to prove the following theorem

regarding minimum rates at which to sample to obtain an α-probabilistically κ-fully linear

model of f(x). Since we assume that n, σ, and κT are function-dependent constants, we

choose to express the minimum sampling rate pmin as a function of the probability α

Cd Cs

Identity design 1 +
√
n Ω(n, α)

√
np−1/2

Uniform design 1 +
√

2(n+ 2) Ω(n, α)
√

2(n+ 2)p−1/2

Λ-poised set design 1 + (n+ 1)Λ Ω(n, α)(n+ 1)Λp−1/2

Table 4.1: Values of Cd and Cs in various design cases.
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and a trust-region radius ∆. We additionally express pmin as a function of a constant

M > 1, a multiplicative constant indicating the additional amount of stochastic error we

are willing to incur over the unavoidable error and the approximation error. That is, if the

deterministic part of the error is Cdε, then we will seek to reduce the stochastic part of the

error to (M − 1)Cdε.

Theorem 4.3.1. Let Assumption 4.2.1 hold. Refer to Table 4.3 for values of Cd and

pmin(α,∆) in each design case. Let M > 1, let κef = κeg = MCdκT , let α ∈ (0, 1), and

let ∆ > 0. If p ≥ pmin(α,∆) and ŵ is built from p samples in the appropriate design case,

then with probability α,

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉| ≤ κef∆2

Additionally, with probability α,

sup
x∈B(0,∆)

‖∇f(x)− ŵ‖ ≤ κeg∆

Proof. Consider Theorems 4.2.4, 4.2.6, and 4.2.8 for the identity, uniform, and strongly

Λ-poised design cases respectively (the results of which were summarized in Table 4.3) and

then use both (4.25) and (4.26). The bound pmin(α,∆) follows immediately in the identity

and strongly Λ-poised design caes. In the uniform case, the second term in the maximum

of pmin(α,∆) comes from the requirement given in Theorem 4.2.5.

Cd pmin(α,∆)

Identity design 1 +
√
n

nΩ(n, α)2σ2

(M − 1)2C2
dκ

2
T∆4

Uniform design 1 +
√

2(n+ 2) max

{
2(n+ 2)Ω(n, α)2σ2

(M − 1)2C2
dκ

2
T∆4

,
16(n+ 2)2 max{2n, ln(1/(1− α))}

∆4

}

Λ-poised set design 1 + (n+ 1)Λ
(n+ 1)2Λ2Ω(n, α)2σ2

(M − 1)2C2
dκ

2
T∆4

Table 4.2: Values of Cd and pmin(α,∆) in each design case.

We remark that because the uniform design depends on probabilistic bounds on the

λmin(Y >Y ) term, pmin(α,∆) in the uniform design case scales with n in the worst case
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as O(n3), while in both the identity and Λ-poised set design case, pmin(α,∆) scales with

O(n). However, it is worth noting that this O(n3) term in the maximum of pmin(α,∆) in

the uniform design case does not have a dependence on σ,M , or κT . Thus, respectively, in

situations where σ is large (high levels of noise are present), M is close to 1 (we require the

stochastic error term to be quite small), or κT is small (the true function f is locally “flat”,

i.e. it has a small Lipschitz constant in B(0,∆)), then the O(n3) term will be dominated

anyway.

4.4 Constructing Affine Models

So far, we have restricted our analysis to the case where x ∈ B(0,∆) and f(0) = 0 by

solving the problem in (4.2), i.e.

min
w∈Rn

‖Y w − F̃‖,

where we have assumed each row in Y comes from B(0,∆). However, as motivated in

the introduction, we are interested in generating models in a trust region with generally

nonzero center points y0, to be interpreted as the current iterate of a trust region algorithm.

Moreover, if f(y0) 6= 0, then we have to consider affine models of f in the trust region, i.e.

models of the form w0 + 〈w, x− y0〉. Let

Φ(Y ) =



1 y0
1 . . . y0

n

1 y1
1 . . . y1

n

1 y2
1 . . . y2

n

...
...

...

1 yp1 . . . ypn


, F̃0 =



f̃(y0)

f̃(y1)

f̃(y2)

...

f̃(yp)


,

where yj = (yj1, y
j
2, . . . , y

j
n) is an element of B(y0,∆) for j = 1, 2, . . . , p.

We replace the problem in (4.2) with

min
w∈Rn+1

‖Φ(Y )w − F̃0‖. (4.27)
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Performing one iteration of Gaussian elimination to the system of equations Φ(Y )w =

F̃0, one obtains the augmented matrix



1 y0
1 . . . y0

n f̃(y0)

0 y1
1 − y0

1 . . . y1
n − y0

n f̃(y1)− f̃(y0)

0 y2
1 − y0

1 . . . y2
n − y0

n f̃(y2)− f̃(y0)

...
...

...
...

0 yp1 − y0
1 . . . ypn − y0

n f̃(yp)− f̃(y0)


.

Our strategy in the sequel is to choose w0 = f̃(y0) and then solve (in the least-squares

sense) the reduced system



y1
1 − y0

1 . . . y1
n − y0

n f̃(y1)− f̃(y0)

y2
1 − y0

1 . . . y2
n − y0

n f̃(y2)− f̃(y0)

...
...

...

yp1 − y0
1 . . . ypn − y0

n f̃(yp)− f̃(y0)


. (4.28)

Observe that each row in the matrix (4.28) now belongs to B(0,∆) since each yj ∈

B(y0,∆). Thus, it is possible to recover the key results in Theorems 4.2.4, 4.2.6, and 4.2.8.

In particular, these theorems were concerned with the use of ŵ, the least-squares solution

to (4.2), to produce a global bound

sup
x∈B(0,∆)

|f(x)− 〈ŵ, x〉|.

Denote the least squares solution to (4.28) by ˆ̂w. Then, we are now interested in obtaining

a global bound on

sup
x∈B(y0,∆)

|(f(x)− f(y0)− (w0 + 〈 ˆ̂w, x− y0〉)|. (4.29)
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By a change of variables s = x− y0, (4.29) can be bounded as

sup
x∈B(y0,∆)

|(f(x)− f(y0))− (w0 + 〈 ˆ̂w, x− y0〉)|

= sup
s∈B(0,∆)

|f(y0 + s)− f(y0)− (w0 + 〈 ˆ̂w, s〉)|

≤ |f(y0)− w0|+ sup
s∈B(0,∆)

|f(y0 + s)− 〈 ˆ̂w, s〉|.

(4.30)

The second summand in the bound given in (4.30) can be immediately bounded using the

various results given in Section 4.2. Hence, it is natural to seek an upper bound on the first

summand |f(y0)−w0| that is at most on the same order as the upper bound on the second.

Recall that our overall goal is essentially to obtain a O(∆2) bound on the approximation

of f(x). Thus, we need an estimate w0 of f(y0) such that we can bound the centering

error |f(y0) − w0| by a constant times ∆2. Clearly, this can be achieved by averaging a

sufficiently large sample of the unbiased estimator f̃(y0). Specifically, due to Chebyshev’s

theorem and Assumption 4.2.1, we obtain the following lemma.

Lemma 4.4.1. Let Assumption 4.2.1 hold. Denote f̃p(·) =
∑p

j=1 f̃(·, ξ(·)), a random

variable denoting the sum of p realizations of the noisy function value at ·. Given ∆ >

0, κaff > 0, α′ ∈ (0, 1) and

p ≥ σ2

κ2
aff(1− α′)∆4

, (4.31)

then with probability α,

|f(·)− f̃p(·)| ≤ κaff∆2 (4.32)

The following corollary of Theorem 4.3.1 and Lemma 4.4.1 summarizes the main result

of this chapter.

Corollary 4.4.1. Let Assumption 4.2.1 hold. Consider a ball B(y0,∆). Let α
′
, α
′′ ∈ (0, 1).

Let M > 1. Suppose a point estimate w0 of f(y0) is available satisfying

|f(y0)− w0| ≤ κaff∆2
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with probability α
′
. For either the identity, uniform, or strongly Λ-poised set design, let

Cd and pmin(α
′′
,∆) be taken from Table 4.3. Denote ŵ as the least-squares linear model

of f(y0 + s) in B(0,∆) built on p ≥ pmin(α
′′
,∆) samples in the appropriate design. Then,

w0 + 〈ŵ, x− y0〉 is a (MCdκT + κaff ,MCdκT )-fully linear model of f(·) in B(y0,∆) with

probability at least α
′
+ α

′′ − 1.

4.5 A Numerical Experiment

We will briefly illustrate, using a similar experimental setup as in Section 2.7, an empirical

preference for using a uniform design in generating regression models in STORM as opposed

to an identity design. We reiterate that because the identity design that we chose to analyze

in this chapter yields a 1-strongly poised set for regression, there is no need to consider

general Λ-strongly poised sets. Using the same benchmark set of 53 unconstrained sum-

of-squares problems from Section 2.7.1, we once again consider generating component-wise

additive noise ωi ∼ U([−σ, σ]) for some parameter σ > 0. That is, given a function f with

m components, the noisy function evaluation f̃(x, ω) is once again defined as

f̃(x, ω) =
m∑
i=1

(fi(x) + ωi)
2.

We will recall Algorithm 7 in the Appendix, but with the following modifications:

• In Line 4 (Regression set update), instead of always uniformly sampling a regression

set Yk ⊂ B(xk, δk), we will use whichever design is appropriate for the experiment.

• In Line 6 (Model building), we will not construct a model Hessian. That is, we will

only fit a model gradient gk through regression as we have throughout this section,

and fix Hk = 0. The constant fk in the model building step will be estimated afresh

in each iteration as fk =

pk∑
i=1

f̃(xk, ωi).

We have selected fairly standard constants for a trust-region method in Algorithm 7, namely

δ0 = 1, δmax = 100, γ = 0.5, η1 = 10−3, η2 = 10−3, and pmin = n+1. To yield three different

methods, in Line 4 of Algorithm 7, we use as the regression set
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1. a uniform design, as in the original statement of Algorithm 7 (uniform design),

2. dpk/ne copies of a single random unitary matrix (repeated identity design), or

3. dpk/ne random unitary matrices (random identity design).

In the experiment, for each problem, we set the maximum budget to 1000(n+ 1) function

evaluations.

In Figure 4.5, we show data profiles [55] for the experiment. In this experiment, unlike

in Section 2.7, when we define the percentage of problems “solved” with respect to τ > 0

in the ratio

1− τ < f(x0)− f ′

f(x0)− f∗
,

we define f∗ as the best true function value found by any of the three different methods

within their computational budget. We notice in this experiment that there is a definite

preference in terms of speed and robustness for using a uniform design in regression model-

building, particularly as the noise becomes more dominant (i.e. σ = 10).
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Figure 4.1: Data profiles comparing different regression designs in Algorithm 7.
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Chapter 5

Manifold Sampling for `1

Non-convex Optimization

5.1 Introduction

Temporarily turning away from stochastic problems, this chapter1 addresses the uncon-

strained optimization problem min {f(x) : x ∈ Rn} when f is deterministic and is of the

form

f(x) =
r∑
i=1

|Fi(x)| = ‖F (x)‖1 (5.1)

and the function F : Rn → Rr is sufficiently smooth, as formalized in the following as-

sumption.

Assumption 5.1.1. The function f is of the form (5.1), each Fi is continuously differen-

tiable, and each ∇Fi is Lipschitz continuous with Lipschitz constant Li; define

L =
∑r

i=1 Li.

Minimizing the function (5.1) is a special case of more general composite nonsmooth

optimization

minimize {f(x) = fs(x) + h(F (x)) : x ∈ Rn} , (5.2)

1The work in this Chapter is joint work with Jeffrey Larson and Stefan M. Wild. A version of this
Chapter has been published in [49].
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where fs and F are smooth but h is nonsmooth with known structure. We find that

including fs and∇fs obscures the development of the framework so we do not include them;

straightforward modifications can accommodate minimizing fs(x) + ‖F (x)‖1. We focus

on the objective function (5.1) in order to succinctly introduce, analyze, and empirically

study a general algorithmic framework. Although the form of h studied here is convex, our

framework does not require this.

Furthermore, this framework—which we refer to as manifold sampling—does not re-

quire the availability of the Jacobian ∇F . As a result, manifold sampling is applicable both

when inexact values for ∇F (x) are available and in the derivative-free case, when only the

values F (x) are available. In Section 5.2 we motivate the use of the term manifold in the

context of functions of the form (5.1) and show that these manifolds can be determined

without using Jacobian information. We also review the literature in composite nonsmooth

optimization.

Section 5.3 introduces our manifold sampling algorithm. The algorithm uses a smooth

model M of the mapping F and proceeds like a traditional trust-region algorithm until it

encounters an area of possible nondifferentiability. In the case of the function (5.1), a signal

for potential nondifferentiability is directly obtained from the signs of the r component

functions at the current iterate. We also propose different mechanisms for incorporating

such sign information from the current iterate and nearby points.

Let M : Rn → Rr denote an approximation to F and let ∇M : Rn → Rn×r denote the

Jacobian of M . Under minimal assumptions, in Section 5.4 we show that our algorithm’s

smooth, local model of the function f ,

mf (xk + s) ≈ f(xk) +
〈
s,Proj

(
0,∇M

(
xk
)
∂h
(
F
(
xk
)))〉

, (5.3)

generates descent directions at the current point xk. Furthermore, we prove that all clus-

ter points of the algorithm are Clarke stationary points. We show in Section 5.5 that

convergence again holds when using sign information from stochastically generated points.

This stochastic sampling proves to be beneficial in practice, as our numerical tests in

Section 5.6 demonstrate. Our experiments also underscore the relative robustness of four

94



variants of the proposed manifold sampling algorithm. The tested deterministic variants

include one that performs efficiently when function evaluations occur sequentially as well

as variants that can exploit concurrent function evaluations.

5.2 Background

We now introduce notation and provide context for our manifold sampling algorithm. We

follow the convention throughout this chapter that finite sets are denoted by capital Roman

letters while (possibly) infinite sets are denoted by capital calligraphic letters.

5.2.1 Nonsmooth Optimization Preliminaries

We define the set of points at which a function f is differentiable by D ⊆ Rn and its com-

plement by Dc. In smooth optimization, a first-order necessary condition for x to be a local

minimum of f is that ∇f(x) = 0. In nonsmooth optimization, if x ∈ Dc, then one needs

a more generalized first-order necessary condition; we achieve this with the generalized

gradient ∂f , which is a set-valued function referred to as the Clarke subdifferential.

The Clarke directional derivative at x in the direction d is given by

f◦(x; d) = lim sup
y→x,t↓0

f(y + td)− f(y)

t
. (5.4)

The Clarke subdifferential at x is the set of linear support functions of f◦(x; d) when viewed

as a function of d ∈ Rn:

∂f(x) = {v ∈ Rn : f◦(x; d) ≥ 〈v, d〉 for all d ∈ Rn} . (5.5)

By using the definitions (5.4) and (5.5), one can show (see, e.g., [18, Proposition 2.3.2])

that if f is locally Lipschitz near x and attains a local minimum or maximum at x, then

0 ∈ ∂f(x). Thus, 0 ∈ ∂f(x) can be seen as a nonsmooth analogue of the first-order neces-

sary condition ∇f(x) = 0. This condition, 0 ∈ ∂f(x), is referred to as Clarke stationarity.

Furthermore, as a consequence of Rademacher’s theorem, if f is locally Lipschitz, then
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Dc is a set of Lebesgue measure zero in Rn. In such cases, an equivalent definition (see,

e.g., [18, Theorem 2.5.1]) of the Clarke subdifferential is

∂f(x) = co

{
lim
yj→x

∇f(yj) : {yj : j ≥ 1} ⊂ D
}
, (5.6)

where co denotes the convex hull of a set. Equation (5.6) says that ∂f(x) is the convex hull

of all limits of gradients of f at differentiable points in an arbitrarily small neighborhood

about x.

5.2.2 Manifolds of (5.1)

The signs of the component functions Fi play a critical role in our focus on functions

satisfying Assumption 5.1.1. We let sgn be the scalar function that returns the values 1,

−1, and 0 for positive, negative, and null arguments, respectively, and we define

sign : Rn → {−1, 0, 1}r by

sign (x) =

[
sgn(F1(x)) sgn(F2(x)) · · · sgn(Fr(x))

]>
.

We say that sign(x) returns the sign pattern of a point x. There exist 3r possible sign

patterns for any x ∈ Rn; by indexing these possible sign patterns, we define

patq ∈ {−1, 0, 1}r for each q ∈ {1, . . . , 3r}.

For any x ∈ Rn, its manifold M(x) is the maximal topologically connected set satisfying

M(x) = {y ∈ Rn : sign(y) = sign(x)} .

We define the union of all manifolds with the same sign pattern patq as a manifold set

and denote it by Mq =
⋃

{x:sign(x)=patq}
M(x). Letting B(x, ε) = {x : ‖x‖ ≤ ε} denote the

ball of radius ε around a point x, we say that a manifold set Mq is active at x provided

that Mq ∩ B(x, ε) 6= ∅ for all ε > 0.

We note that if Assumption 5.1.1 is satisfied, then the function f is locally Lipschitz. By

using chain rule results (dependent on regularity conditions; see, e.g., [18, Definition 2.3.4])
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that are ensured by Assumption 5.1.1, the subdifferential of f at a point x is

∂f(x) =
∑

i:Fi(x)6=0

sgn(Fi(x))∇Fi(x) +
∑

i:Fi(x)=0

co {−∇Fi(x),∇Fi(x)} , (5.7)

where addition is understood to be setwise. Consequently, f is differentiable at x if and

only if Fi(x) = 0 implies ∇Fi(x) = 0 for i ∈ {1, . . . , r}. This observation motivates our

definition of the nondifferentiable set of Fi, given by

Dci = {x ∈ Rn : Fi(x) = 0 and ∇Fi(x) 6= 0}. (5.8)

Note that for a function satisfying Assumption 5.1.1, Dc = ∪ri=1Dci . Our algorithmic

framework in Section 5.3 is predicated on a relaxation of Dci that does not require the

(exact) derivative ∇Fi(x).

5.2.3 Related Work

The analogue to steepest descent for nonsmooth optimization involves steps along the

negative of the minimum-norm element of the subdifferential, −Proj
(
0, ∂f(xk)

)
. The

algorithm that we propose is related to cutting-plane and bundle methods [43], in that the

subdifferential in this step is approximated by a finite set of generators.

A class of methods for nonsmooth optimization related to our proposed algorithm is

that of gradient sampling. Such methods exploit situations when the underlying nonsmooth

function is differentiable almost everywhere by using local gradient information around a

current iterate to build a stabilized descent direction [11]. Kiwiel proposes gradient sam-

pling variants in [45], including an approach that performs a line search within a sampling

trust region. Such methods use the fact that, under weak regularity conditions (such as

those given in Assumption 5.1.1), the closure of the set co
{
∇f(y) : y ∈ B(xk,∆) ∩ D

}
is a

superset of ∂f(xk). Gradient sampling methods employ a finite sample set {y1, . . . , yp} ⊂

B(xk,∆) ∩ D and approximate ∂f(xk) by co{∇f(y1), . . . ,∇f(yp)}. The negative of the

minimum-norm element of this latter set is used as the search direction.

Constructing this set is more difficult when ∇f is unavailable. A nonderivative version
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of the gradient sampling algorithm is shown in [46] to converge almost surely to a first-

order stationary point. However, the analysis depends on the use of a Gupal estimate of

Steklov averaged gradients as a gradient approximation. Such an approach requires 2n

function evaluations to compute each approximate gradient. In effect, a single gradient

approximation is as expensive to compute as a central-difference gradient approximation,

and the approximations must be computed for each point near the current iterate. With

this motivation, Hare and Nutini [39] propose an approximate gradient-sampling algorithm

that uses standard (e.g., central difference, simplex) gradient approximations to solve finite

minimax problems of the composite form minimize maxi Fi(x). Similar to our focus on

the form (5.1), Hare and Nutini [39] model the smooth component functions Fi and use

the particular, known structure of their subdifferential co {∇Fj(x) : j ∈ arg maxi Fi(x)}

within their convergence analysis. Both [39] and [46] employ a line search strategy for

globalization. Our method employs a trust-region framework that links the trust-region

radius with the norm of a model gradient, which can serve as a stationarity measure.

Other methods also exploit the general structure in composite nonsmooth optimization

problems (5.2). When the function h is convex, typical trust-region-based approaches (e.g.,

[12, 29, 30, 74]) solve the nonsmooth subproblem

minimize
{
h
(
F (xk) + 〈s,∇M(xk)〉

)
: s ∈ B(xk,∆)

}
. (5.9)

The model M is a Taylor expansion of F when derivatives are available. In this case,

Griewank et al. [38] propose building piecewise linear models using∇F from recent function

evaluations. These nonsmooth models are then minimized to find future iterates and ∇F

information for subsequent models. When derivatives are unavailable, recent work has used

sufficiently accurate models of the Jacobian [32, 36]. We follow a similar approach in our

approximation of ∇F but employ a fundamentally different subproblem, locally minimizing

smooth models related to (5.3). In contrast to (5.9), our subproblem does not rely on the

convexity of h.

There also exist derivative-free methods for nonsmooth optimization unrelated to gradi-

ent sampling. For example, a generalization of mesh adaptive direct search [2] finds descent
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directions for nonsmooth problems by generating an asymptotically dense set of search di-

rections. Similar density requirements exist for general direct search methods [59]. One of

the derivative-free methods in [32] employs a smoothing function fµ(x) parameterized by

a smoothing parameter µ > 0 satisfying

lim
z→x,µ↓0

fµ(z) = f(x),

for any x ∈ Rn. By iteratively driving µ→ 0 within a trust-region framework, the authors

prove convergence to Clarke stationary points and provide convergence rates. We note that

the Steklov averaged gradients in [46] are also essentially smoothing convolution kernels.

Our proposed method requires neither a dense set of search directions nor smoothing

parameters.

5.3 Manifold Sampling Algorithm

In order to prove convergence of our algorithm, the models mFi must sufficiently approx-

imate Fi in a neighborhood of xk. We require the models to be fully linear in the trust

region, a notion formalized in the following assumption.

Assumption 5.3.1. For i ∈ {1, . . . , r}, let mFi denote a twice continuously differentiable

model intended to approximate Fi on some B(x,∆). For each i ∈ {1, . . . , r}, for all x ∈ Rn,

and for all ∆ > 0, there exist constants κi,ef and κi,eg, independent of x and ∆, so that

∣∣Fi(x+ s)−mFi(x+ s)
∣∣ ≤ κi,ef∆

2 ∀s ∈ B(0,∆)∥∥∇Fi(x+ s)−∇mFi(x+ s)
∥∥ ≤ κi,eg∆ ∀s ∈ B(0,∆).

Furthermore, for i ∈ {1, . . . , r} there exists κi,mh so that ‖∇2mFi(x)‖ ≤ κi,mh for all x ∈

Rn. For these constants, define κf =
∑r

i=1 κi,ef , κg =
∑r

i=1 κi,eg, and κmh =
∑r

i=1 κi,mh.

Assumption 5.3.1 is nonrestrictive, and one can derive classes of models satisfying

the assumption both when ∇Fi is available inexactly and when ∇Fi is unavailable. For

instance, in the latter case, the assumption holds when mFi is a linear model interpolating
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Fi at a set of sufficiently affinely independent points (see, e.g., [21, Chapter 10]); in this

case, κi,ef and κi,eg scale with n and the respective Lipschitz constants of mFi and ∇mFi .

If ∇Fi is available inexactly, then a model mFi that uses the inexact gradient while still

satisfying Assumption 5.3.1 is a suitable model as well.

5.3.1 Algorithmic Framework

We now outline our algorithm, which samples manifolds (as opposed to gradients or gra-

dient approximations) in order to approximate the subdifferential ∂f(xk). When xk is

changed, the r component function values Fi(x
k) are computed, immediately yielding

sign(xk). Then, r component models, mFi , approximating Fi near xk are built. Using

the value of sign(xk), we infer a set of generators, Gk, using the manifolds that are po-

tentially active at xk. The set of generators contains information about the manifolds

active at (or around) the current iterate; our procedures (Algorithm 3 and Algorithm 4)

for constructing Gk are detailed in Section 5.3.2. The set co
(
Gk
)

is then used as an

approximation to ∂f(xk).

We let gk denote the minimum-norm element of co
(
Gk
)
,

gk = Proj
(

0, co
(
Gk
))

, (5.10)

which can be calculated by solving the quadratic optimization problem

minimize

{
1

2
λ>(Gk)>Gkλ : e>λ = 1, λ ≥ 0

}
, (5.11)

where the columns of Gk are the generators in Gk. A solution λ∗ to (5.11) is a set of

weights on the subgradient approximations that minimize ‖Gλ‖2. That is, gk = Gkλ∗.

Suppose there are t ≤ 3r generators in Gk and define the matrix

P k =

 pat1 · · · pat>

 .
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Then, since the qth generator in Gk (alternatively, the qth column of Gk) is given by

∇M(xk)patq, we have Gk = ∇M(xk)P k. Thus, to maintain the property that the master

model gradient is the optimal solution to (5.10), we consider a set of weights wk = P kλ∗

and define a smooth master model mf
k : Rn → R,

mf
k(x) =

r∑
i=1

wkim
Fi(x). (5.12)

We make a few observations about this choice of wk. Firstly, as intended by construc-

tion,

∇mf
k(xk) =

r∑
i=1

wki∇mFi(xk) =

r∑
i=1

∇mFi(xk)(P kλ∗)i = ∇M(xk)P kλ∗ = Gkλ∗ = gk.

Secondly, wki ∈ [−1, 1] for each i ∈ {1, . . . , t} due to the constraints on λ in (5.11). Thirdly,

notice that if Gk contains exactly one generator (i.e., t = 1), then λ∗ = 1 is the trivial

solution to (5.11) and so the master model in this case is simply

mf
k(x) =

r∑
i=1

(sign(xk))im
Fi(x) = 〈M(x), sign(xk)〉.

In the kth iteration, the master model will be used in the trust-region subproblem

minimize
{
mf
k(xk + s) : s ∈ B(0,∆k)

}
. (5.13)

Provided the solution xk + sk of (5.13) belongs to a manifold that was included in the

construction of gk, we apply a ratio test to determine the successfulness of the proposed

step, as in a standard trust-region method. If the manifold containing xk + sk is not

contributing a generator in Gk, we augment Gk and construct a new gk. Since there are

finitely many manifolds (at most 3r in the case of (5.1)), this process of adding to Gk will

terminate.
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Our ratio test quantity

ρk =
〈F (xk), sign(xk + sk)〉 − 〈F (xk + sk), sign(xk + sk)〉
〈M(xk), sign(xk + sk)〉 − 〈M(xk + sk), sign(xk + sk)〉

(5.14)

is different from the usual ratio test of actual reduction to predicted reduction in that

it considers the function decrease from the perspective of the manifold of the trial step

xk + sk. In particular, our numerator is more conservative than the actual reduction since

〈F (xk)− F (xk + sk), sign(xk + sk)〉 −
(
f(xk)− f(xk + sk)

)
= 〈F (xk)− F (xk + sk), sign(xk + sk)〉

−
(
〈F (xk), sign(xk)〉 − 〈F (xk + sk), sign(xk + sk)〉

)
= 〈F (xk), sign(xk + sk)− sign(xk)〉 ≤ 0,

where the inequality holds because Fi(x
k)[sign(xk)]i = |Fi(xk)| ≥ uiFi(x

k) for any i and

for all ui ∈ [−1, 1].

We now state our framework in Algorithm 2, which includes assumptions on algorithmic

parameters. We note that an input to the algorithm is a parameter κmh ≥ 0 bounding the

curvature of the component models. It is always possible to construct fully linear models

that are linear (i.e., ∇2mFi = 0); see [73, Algorithm 2 and Theorem 4.5] for an example

of how a linear fully linear model can be augmented into a nonlinear fully linear model

with bounded curvature. Consequently, the choice of the parameter κmh does not affect

our ability to construct fully linear models.

It is necessary for convergence that the steps sk achieve a Cauchy-like decrease; however,

unlike in a typical trust-region method, this sufficient decrease is needed in the denominator

of ρk, and not in the step obtained from minimizing (5.13). That is, we require

〈M(xk)−M(xk + sk), sign(xk + sk)〉 ≥ κd

2
‖gk‖min

{
∆k,
‖gk‖
κmh

}
. (5.15)

Notice that the solution to (5.13) does not necessarily satisfy (5.15). However, a Cauchy-

like point given in the following lemma always satisfies (5.15).
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Algorithm 2: Manifold sampling.

1 Set parameters η1 ∈ (0, 1), κmh ≥ 0, 1
η2
∈ (κmh,∞), κd ∈ (0, 1), γdec ∈ (0, 1), and

γinc ≥ 1
2 Choose initial iterate x0 and trust-region radius ∆0 > 0; set k = 0
3 while true do
4 For each Fi, build a model mFi that is fully linear in B(xk,∆k) and satisfies∑r

i=1 ‖∇2mFi(x)‖ ≤ κmh for all x ∈ Rn
5 Build a set of generators Gk (from Algorithm 3 or Algorithm 4)
6 while true do

7 Build master model mf
k using the models mFi and (5.12)

8 if ∆k ≥ η2‖∇mf
k(xk)‖ then

9 break (go to Line 24)
10 end

11 Approximately solve (5.13) to obtain sk

12 Evaluate f(xk + sk)

13 if ∇M(xk)sign(xk + sk) ∈ Gk then
14 if xk + sk satisfies (5.15) then
15 break (go to Line 24)
16 else

17 sk ← −κj
∗

d ∆k
∇M(xk)sign(xk+sk)

‖∇M(xk)sign(xk+sk)‖ for j∗ defined in (5.16)

18 go to Line 12

19 end

20 else
21 Gk ← Gk ∪∇M(xk)sign(xk + sk)
22 end

23 end

24 if ∆k < η2‖∇mf
k(xk)‖ (acceptable iteration) then

25 Update ρk through (5.14)
26 if ρk > η1 (successful iteration) then
27 xk+1 ← xk + sk, ∆k+1 ← γinc∆k

28 else
29 xk+1 ← xk, ∆k+1 ← γdec∆k

30 end

31 else
32 xk+1 ← xk, ∆k+1 ← γdec∆k

33 end
34 k ← k + 1

35 end
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Lemma 5.3.1. For any patq satisfying ∇M(xk)patq ∈ Gk, if M(·)patq is twice contin-

uously differentiable, κmh ≥ maxs∈B(0,∆k)

∥∥∇2M(xk + s)patq
∥∥, κmh > 0,∥∥∇M(xk)patq

∥∥ > 0, and κd ∈ (0, 1), then setting sk = −κj
∗

d ∆k
∇M(xk)patq

‖∇M(xk)patq‖ , for

j∗ = max

{
0,

⌈
logκd

(∥∥∇M(xk)patq
∥∥

∆k
κmh

)⌉}
, (5.16)

satisfies
∥∥sk∥∥ ≤ ∆k and (5.15).

Proof. The result follows immediately from [72, Lemma 4.2] and the fact that because

∇M(xk)patq ∈ Gk, we must have ‖∇M(xk)patq‖ ≥ ‖gk‖.

Iteratively constructing the master model and identifying manifolds gives a metric ‖gk‖

to measure progress to Clarke stationarity, but each iteration of Algorithm 2 seeks sufficient

decrease only in a manifold that lies in an approximate steepest descent direction. Note

that any looping introduced by Line 18 in Algorithm 2 will terminate due to there being a

finite number of manifolds in B(xk,∆k) (at most 3r) and Lemma 5.3.1.

5.3.2 Generator Sets

We complete our description of our manifold sampling algorithm by showing how the set

of generators Gk is built so that co
(
Gk
)

approximates ∂f(xk). Given the definition of

the Clarke subdifferential in (5.6) and the known form of the subdifferential in (5.7), we

know that the extreme points of ∂f(x) must be the limits of sequences of gradients at

differentiable points from manifolds that are active at x. Therefore, the extreme points of

∂f(x) are a subset of ∇F (x)patq over q ∈ {1, . . . , 3r}.

An approximation

∇M(x) =
[
∇mF1(x), . . . ,∇mFr(x)

]
of the Jacobian ∇F induces an approximation ∇M(x)patq to ∇F (x)patq for any q ∈

{1, . . . , 3r}. Since ∇Fi may not be known exactly, we relax the dependence on ∇Fi in (5.8)

and consider −∇mFi(x) and ∇mFi(x) for each i for which Fi(x) = 0.

This is the motivation for our first procedure for forming the generator set Gk. Al-

104



gorithm 3 initializes Gk with ∇M(xk)sign(xk) and then triples the size of Gk for each i

satisfying sgn(Fi(x
k)) = 0 and ∇Fi(xk) 6= 0. Our analysis of Algorithm 2 will show that

this strategy can be used to approximate the subdifferential ∂f(xk).

Algorithm 3: Forming generator set Gk using possibly active manifolds at xk.

1 Input: xk and ∇M(xk)

2 Gk ← {∇M(xk)sign(xk)}
3 for i = 1, . . . , r do
4 if sgn(Fi(x

k)) = 0 then
5 Gk ← Gk ∪ {Gk +∇mFi(xk)} ∪ {Gk −∇mFi(xk)}
6 end

7 end

We also propose a second approach for constructing Gk that uses sign patterns of points

near xk and not just sign(xk). Although this approach is inspired by gradient sampling, we

note that we are not approximating the gradient at any point other than xk. We naturally

extend our definition of active manifolds by saying that a manifold set Mq is active in a

set S provided there exists x ∈ S such that Mq is active at x. We denote such a sample

set at iteration k by Y (xk,∆k) ⊂ B(xk,∆k). This set can come, for example, from the set

of points previously evaluated by the algorithm that lie within a distance ∆k of xk.

We can now state Algorithm 4, which constructs generators based on the set of mani-

folds active in Y (xk,∆k). Intuitively, this additional manifold information obtained from

sampling can “warn” the algorithm about sudden changes in gradient behavior that may

occur within the current trust region.

Algorithm 4: Forming generator set Gk using possibly active manifolds in Y (xk,∆k).

1 Input: xk, ∇M(xk), and Y (xk,∆k) = {xk, y2, . . . , yp}
2 Initialize Gk using Algorithm 3 with inputs xk and ∇M(xk)
3 for j = 2, . . . , p do
4 Gk = Gk ∪∇M(xk)sign(yj)
5 end

Other reasonable approaches for constructing Gk exist. For our analysis, a requirement

for Gk is given in Assumption 5.3.2.
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Assumption 5.3.2. Given xk and ∆k > 0, the constructed set Gk satisfies

∇M(xk)sign(xk) +
∑

i:[sign(xk)]
i
=0

ti∇mFi(xk) : t ∈ {−1, 0, 1}r

 ⊆ Gk,

Gk ⊆

∇M(xk)sign(y) +
∑

i:[sign(y)]i=0

ti∇mFi(xk) : t ∈ {−1, 0, 1}r, y ∈ B(xk; ∆k)

 .

Clearly, a set Gk produced by Algorithm 3 or Algorithm 4 will satisfy Assumption 5.3.2.

Furthermore, any generator set satisfying Assumption 5.3.2 has |Gk| ≤ 3r.

5.4 Analysis

We now analyze Algorithm 2.

5.4.1 Preliminaries

We first show a result linking elements in a set similar to the form of Gk to the subdiffer-

entials of f at nearby points. Subsequent results will establish cases when our construction

of the generator set Gk satisfies the suppositions made in the statement of the lemma.

Lemma 5.4.1. Let Assumptions 5.1.1 and 5.3.1 hold, and let x, y ∈ Rn satisfy

‖x− y‖ ≤ ∆k. Suppose that T ⊆ T ′ for T = {patqs : s = 1, . . . , j} and

T ′ = {patq
′
s′ : s′ = 1, . . . , j′} for

G = {∇M(x)p : p ∈ T} and ∂f(y) = co
{
∇F (y)p′ : p′ ∈ T ′

}
.

Then for each g ∈ co (G), there exists v(g) ∈ ∂f(y) satisfying

‖g − v(g)‖ ≤ (κg + L)∆k, (5.17)

where κg and L are defined in Assumption 5.3.1 and Assumption 5.1.1, respectively.

Proof. Let g ∈ co (G) be arbitrary. Since co (G) is finitely generated (and thus com-

pact and convex), g can be expressed as a positive convex combination of N ≤ n + 1
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of its generators due to Caratheodory’s theorem. Without loss of generality (by reorder-

ing as necessary), let these generators be the first N elements in G. That is, there exist

λq1 , . . . , λqN ∈ (0, 1] with
∑N

s=1 λqs = 1 so that

g =
N∑
s=1

λqs∇M(x)patqs . (5.18)

By supposition, ∇F (ys)patqs ∈ ∂f(ys) for s = 1, . . . , N . Since ∂f(y) is convex, we

have that v(g) ∈ ∂f(y), where v(g) is defined as

v(g) =
N∑
s=1

λqs∇F (y)patqs ,

using the same λqs as in (5.18) for s = 1, . . . , N . Observe that for each s,

‖∇M(x)patqs −∇F (y)patqs‖ = ‖(∇M(x)−∇F (x) +∇F (x)−∇F (y))patqs‖

≤ ‖∇M(x)−∇F (x)‖+ ‖∇F (x)−∇F (y)‖

≤ (κg + L)∆k.

Applying the definitions of g and v(g) and recalling that
∑N

s=1 λqs = 1 yields the expression

(5.17).

The approximation property in Lemma 5.4.1 can be used to motivate the use of the

master model gradient in (5.10); as we shall see in Section 5.4.2, descent directions for the

smooth master model will eventually identify descent directions for the nonsmooth function

f .

5.4.2 Analysis of Algorithm 2

The next lemma demonstrates that because the master model gradient is chosen as gk from

(5.10), the sufficient decrease condition in (5.15) ensures a successful iteration, provided

∆k is sufficiently small.
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Lemma 5.4.2. Let Assumptions 5.1.1 and 5.3.1 hold. If

∆k < min

{
κd(1− η1)

4κf
, η2

}
‖gk‖, (5.19)

then iteration k of Algorithm 2 is successful.

Proof. Notice that, whenever gk 6= 0, the bound on ∆k is positive by the algorithmic

parameter assumptions in Algorithm 2 and that ∆k < η2‖gk‖ ensures that the iteration is

acceptable. Suppressing superscripts on xk, sk, and wk for space, the definition of ρk in

(5.14) yields

|ρk − 1|

=

∣∣∣∣ 〈F (x), sign(x+ s)〉 − 〈F (x+ s), sign(x+ s)〉
〈M(x), sign(x+ s)〉 − 〈M(x+ s), sign(x+ s)〉

− 1

∣∣∣∣
=

∣∣∣∣〈F (x)−M(x), sign(x+ s)〉 − 〈F (x+ s)−M(x+ s), sign(x+ s)〉
〈M(x)−M(x+ s), sign(x+ s)〉

∣∣∣∣ . (5.20)

The numerator of (5.20) satisfies

|〈F (x)−M(x), sign(x+ s)〉 − 〈F (x+ s)−M(x+ s), sign(x+ s)〉|

≤ |〈F (x)−M(x), sign(x+ s)〉|+ |〈F (x+ s)−M(x+ s), sign(x+ s)〉|

≤ 2κf∆
2
k. (5.21)

By construction, the denominator of (5.20) always satisfies (5.15). Therefore, using (5.21)

and (5.15) in (5.20) yields

|ρk − 1| ≤
4κf∆

2
k

κd‖gk‖min
{

∆k,
‖gk‖
κmh

} ≤ 4κf∆k

κd‖gk‖
< 1− η1,

where the second inequality is implied by the algorithmic parameter assumption 1
η2
> κmh

and the last inequality is a result of (5.19). Thus, ρk > η1, and iteration k is successful.

The next result shows that the trust-region radius converges to zero.

108



Lemma 5.4.3. Let Assumptions 5.1.1 and 5.3.1 hold. If {xk,∆k} is generated by Algo-

rithm 2, then ∆k → 0.

Proof. On successful iterations k, ρk > η1 and thus,

〈F (x)− F (x+ s), sign(x+ s)〉 > η1 (〈M(x)−M(x+ s), sign(x+ s)〉)

≥ η1
κd

2
‖gk‖min

{
∆k,

∥∥gk∥∥
κmh

}
≥ η1

κd

2
‖gk‖∆k

>
η1κd

2η2
∆2
k,

where the second inequality follows from (5.15), and the last two inequalities follow from the

algorithmic parameter assumption 1
η2
> κmh and acceptability of all successful iterations.

If there are infinitely many successful iterations, let {kj} index them. Notice that on any

iteration,

〈F (xk), sign(xk + sk)〉 ≤ 〈F (xk), sign(xk)〉 = f(xk),

since, for any i, Fi(x
k)[sign(xk)]i = |Fi(xk)| ≥ tiFi(xk) for all ti ∈ {−1, 0, 1}.

Since f is bounded below by zero by Assumption 5.1.1 and f(xk) is nonincreasing in

k, having infinitely many successful iterations implies that

∞ >
∞∑
j=0

f(xkj )− f(xkj + skj ) >
∞∑
j=0

〈F (xkj )− F (xkj + skj ), sign(xkj + skj )〉

>
∞∑
j=0

η1κd

2

∥∥∥gkj∥∥∥∆kj

>

∞∑
j=0

η1κd

2η2
∆2
kj
. (5.22)

Thus, ∆kj → 0 provided {kj} is an infinite subsequence of successful iterations. Since

∆k increases by γinc on successful iterations, for any successful iterate ki,

γinc∆ki ≥ ∆j ≥ ∆ki+1
for all ki < j ≤ ki+1. Therefore, ∆k → 0 if the number of successful

iterations is infinite.

If there are only finitely many successful iterations, then there is a last successful
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iteration kj′ , and the update rules of the algorithm will monotonically decrease ∆k on all

iterations k > kj′ .

Regardless of whether Algorithm 2 has an infinite or a finite number of successful

iterations, ∆k → 0.

The next lemma is a liminf-type result for the master model gradients.

Lemma 5.4.4. Let Assumptions 5.1.1 and 5.3.1 hold. If {xk,∆k} is generated by Algo-

rithm 2, then for all ε > 0, there exists a k(ε) such that ‖gk(ε)‖ ≤ ε. That is,

lim inf
k→∞

‖gk‖ = 0.

Proof. To arrive at a contradiction, suppose that there exist j and ε > 0 so that for all k ≥ j,

‖gk‖ ≥ ε. By Lemma 5.4.2, since Algorithm 2 requires that ∇M(xk)sign(xk + sk) ∈ Gk

before sk can possibly be accepted, any iteration satisfying ∆k ≤ C‖gk‖ will be successful,

where

C = min

{
κd(1− η1)

4κf
, η2

}
.

Hence, by the contradiction hypothesis, any k ≥ j satisfying ∆k ≤ Cε is guaranteed to

be successful and ∆k+1 = γinc∆k ≥ ∆k. Therefore ∆k ≥ γdecCε for all k, contradicting

Lemma 5.4.3.

Before showing that every cluster point of {xk} is a Clarke stationary point, we recall

basic terms and a theorem.

Motivated by the subdifferential operator ∂f(x), we first formalize the notion of a limit

superior of a set mapping (i.e., one that maps a vector to a set of vectors). For a set

mapping D : Rn → Rn, the limit superior of D as x→ x̄ is defined by the set mapping

lim sup
x→x̄

D(x) = {y : ∃{xk : k ≥ 1} → x̄ and {yk : k ≥ 1} → y with yk ∈ D(xk)}.

A set mapping D is said to be outer semicontinuous at x̄ provided

lim sup
x→x̄

D(x) = D(x̄).
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The following result is given as Proposition 7.1.4 in [28].

Theorem 5.4.1. If a function f : Rn → R is Lipschitz continuous, then the set mapping

∂f(x) is everywhere outer semicontinuous.

Lemma 5.4.5. Let Assumptions 5.1.1–5.3.2 hold and take {xk,∆k, g
k} to be a sequence

generated by Algorithm 2. For any subsequence of acceptable iterations {kj} such that

lim
j→∞

‖gkj‖ = 0,

and
{
xkj
}
→ x∗ for some point x∗, then 0 ∈ ∂f(x∗).

Proof. Since ∆k → 0 by Lemma 5.4.3 and
{
xkj
}

converges to x∗, for k sufficiently large,

only manifolds active at x∗ are in Gk by Assumption 5.3.2. Setting T (in Lemma 5.4.1) to

be the sign patterns in Gk and T ′ to be the sign patterns necessary for building ∂f(x∗),

Assumption 5.3.2, Lemma 5.4.3, and Theorem 2.3.9 from [18] thus guarantee T ⊆ T ′ when

k is sufficiently large. Therefore, by Lemma 5.4.1, there exists v(gkj ) ∈ ∂f(x∗) for each gkj

so that

‖gkj − v(gkj )‖ ≤ (κg + L)∆kj .

Thus, by the acceptability of every iteration indexed by kj ,

‖gkj − v(gkj )‖ ≤ (κg + L)η2‖gkj‖,

and so

‖v(gkj )‖ ≤ (1 + (κg + L)η2) ‖gkj‖.

Since
∥∥gkj∥∥ → 0 by assumption, therefore v(gkj ) → 0. Since ∂f is everywhere outer

semicontinuous by Theorem 5.4.1, 0 ∈ ∂f(x∗).

We now prove the promised result.

Theorem 5.4.2. Let Assumptions 5.1.1–5.3.2 hold. If x∗ is a cluster point of a sequence

{xk} generated by Algorithm 2, then 0 ∈ ∂f(x∗).
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Proof. Suppose that there are only finitely many successful iterations, with k′ being the

last.

To establish a contradiction, suppose 0 /∈ ∂f(xk
′
). By the continuity of each component

Fi granted by Assumption 5.1.1, there exists ∆̄ > 0 so that for all ∆ ∈ [0, ∆̄), the manifold

sets active in B(xk
′
, ∆̄) are precisely the manifold sets active at xk

′
; that is,

{
lim

yj→xk′
sign(yj) : lim

j→∞
yj = xk

′
, {yj : j ≥ 1} ⊂ Mq

}
=
{

sign(y) : y ∈ B(xk
′
,∆)

}
.

for all ∆ ≤ ∆̄.

Since every iteration after k′ is assumed to be unsuccessful, ∆k′ decreases by a factor

of γdec in each subsequent iteration and there exists a least k′′ ≥ k′ so that ∆k′′ < ∆̄.

Therefore, by Assumption 5.3.2, ∇M(xk)sign(xk+sk) ∈ Gk holds the first time Line 13 of

Algorithm 2 is reached in iteration k ≥ k′′. Consequently, the conditions for Lemma 5.4.1

hold; and thus, for each k ≥ k′′, there exists v(gk) ∈ ∂f(xk
′
) so that

‖v(gk)−gk‖ ≤ (κg +L)∆k. By supposition, since 0 /∈ ∂f(xk
′
), there is a nonzero minimum-

norm element v∗ ∈ ∂f(xk
′
). We thus conclude the following:

‖gk‖ ≥ ‖v(gk)‖ − (κg + L)∆k ≥ ‖v∗‖ − (κg + L)∆k for all k ≥ k′′. (5.23)

Since every iteration after k′′ is unsuccessful, ∆k will decrease by a factor of γdec and

xk+1 = xk
′

for each k ≥ k′′.

Define the constant

c = ‖v∗‖min

{
(1− η1)

4 κf
κd

+ (κg + L)(1− η1)
,

1

κmh + κg + L

}
.

By Lemma 5.4.2, success is guaranteed within t =

⌈
logγdec

c

∆k′′

⌉
many iterations after

iteration k′′ since (5.23) and the definition of c imply that

∆k′′+t ≤ min

{
κd(1− η1)

4κf
, η2

}
‖gk′′+t‖.
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This is a contradiction, thus proving the result when there are finitely many successful

iterations.

Now suppose there are infinitely many successful iterations. We will demonstrate that

there exists a subsequence of successful iterations {kj} that simultaneously satisfies both

xkj → x∗ and ‖gkj‖ → 0.

Suppose first that xk → x∗. Then, every subsequence xkj → x∗, and so we can use the

sequence of subgradient approximations {gkj} from Lemma 5.4.4, and we have the desired

subsequence.

Now, suppose xk 6→ x∗. We will show that lim inf max{‖xk − x∗‖, ‖gk‖} = 0. We

proceed by contradiction. The contradiction hypothesis, along with the definition of x∗

being a cluster point of {xk}, implies that there exists ν̄ > 0 and iteration k̄, so that for

the infinite set K = {k : k ≥ k̄, ‖xk−x∗‖ ≤ ν̄},
{
xk
}
k∈K → x∗ and ‖gk‖ > ν̄ for all k ∈ K.

From (5.22), we have that

η1κd

2

∑
k∈K
‖gk‖‖xk+1 − xk‖ ≤ η1κd

2

∞∑
k=0

‖gk‖‖xk+1 − xk‖ <∞, (5.24)

since on successful iterations, ‖xk+1 − xk‖ ≤ ∆k, while on unsuccessful iterations,

‖xk+1 − xk‖ = 0. Since ‖gk‖ > ν̄ for all k ∈ K, then we conclude from (5.24) that

∑
k∈K
‖xk+1 − xk‖ <∞. (5.25)

Since xk 6→ x∗, there exists some ν̂ > 0 so that for any kstart ∈ K satisfying

‖xkstart − x∗‖ ≤ ν̄, there a first index kend > kstart satisfying ‖xkend − xkstart‖ > ν̂ and

{kstart, kstart + 1, . . . , kend − 1} ⊂ K.

By (5.25), for ν̂ there exists N ∈ N such that

∑
k∈K
k≥N

∥∥∥xk+1 − xk
∥∥∥ ≤ ν̂.
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Taking kstart ≥ N , by the triangle inequality, we have

ν̂ < ‖xkend − xkstart‖ ≤
∑

i∈{kstart,kstart+1,...,kend−1}

‖xi+1 − xi‖ ≤
∑
k∈K
k≥N

∥∥∥xk+1 − xk
∥∥∥ ≤ ν̂.

Thus, ν̂ < ν̂, a contradiction, and therefore lim inf max{‖xk − x∗‖, ‖gk‖} = 0.

Therefore, by Lemma 5.4.5, in either the case where xk → x∗ or xk 6→ x∗, there exists

a subsequence of subgradients satisfying ‖v(gkj )‖ → 0 and xkj → x∗. Since ∂f(x∗) is outer

semicontinuous, we have that 0 ∈ ∂f(x∗).

5.4.3 Concerning Termination Certificates

One would hope that (on acceptable iterations), a small master model gradient norm would

signal that necessary conditions for proximity to stationarity are satisfied, analogous to how

a small gradient norm serves as such a signal in smooth optimization. Although this is not

always so, we provide exact theoretical conditions under which a similar statement holds

for Algorithm 2. This approach emulates a stopping criterion used in [39], which likewise

cannot generally be shown to be a necessary condition of proximity to stationarity.

Lemma 5.4.6. Let Assumptions 5.1.1 and 5.3.1 hold. Suppose that at iteration k, Line 25

of Algorithm 2 is reached with ‖gk‖ < ε for some ε > 0 and also let

Gk = {∇M(xk)patqs : s = 1, . . . , j} be the generator set at iteration k. Additionally,

suppose there exists y ∈ B(xk,∆k) so that ∂f(y) = co
{
∇F (y)patq

′
s′ : s′ = 1, . . . , j′

}
with

{patq1 , . . . ,patqj} ⊆ {patq
′
1 , . . . ,pat

q′
j′}. Then,

min
v∈∂f(y)

‖v‖ < (1 + (κg + L)η2)ε,

where κg is as in Assumption 5.3.1 and L is as in Assumption 5.1.1.

Proof. By the algorithmic parameter assumptions in Algorithm 2, η2 > 0. Since Line 25

is reached with ‖gk‖ < ε, it must be that ∆k
η2
≤ ‖gk‖ < ε. By Lemma 5.4.1 and the
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suppositions, there exists v(gk) ∈ ∂f(y) so that

‖gk − v(gk)‖ ≤ (κg + L)∆k < (κg + L)η2ε.

Applying the triangle inequality yields

‖v(gk)‖ < (1 + (κg + L)η2)ε,

from which the desired result follows.

We note that the assumptions that the iteration is acceptable and that y lies within ∆k

of xk directly tie the result to both the master model gradient ‖gk‖ and the trust-region

radius ∆k. A termination certificate consisting of these two quantities is analogous to the

“optimality certificates” used in [11]. In both cases, the certificate can be interpreted as

indicating that two of three necessary conditions are satisfied so that there is a point y ∈

B(xk,∆k) so that an element of ∂f(y) is as small in norm as suggested in Lemma 5.4.6. The

third necessary condition, which is not as straightforward to check, is that the algorithm’s

iterates have become sufficiently clustered around y so that the manifolds active at y are

a superset of the manifolds active in B(xk,∆k).

We remark here that this dependence on knowing all the manifolds active in a given

trust region is what makes a straightforward analysis of rates based on ‖gfk‖ elusive. There-

fore, a comparison of the theoretical worst-case complexity of Algorithm 2 with the rates

proven for the nonsmooth methods in [32] is currently elusive.

5.5 Manifold Sampling as a Stochastic Algorithm

Thus far, no restrictions have been placed on the sample set Y (xk,∆k), apart from its

containment in B(xk,∆k). In this section, we consider what happens when Y (xk,∆k)

includes stochastically sampled points, a strategy that results in Section 5.6 show is fruitful

when Gk is built by using Algorithm 4.

If random points are added to Y (xk,∆k), the sequence of generator sets {Gk : k ≥ 1}
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will be a realization of a random variable denoted {G̃k : k ≥ 1}. Consequently, the

algorithm will be inherently stochastic; the sequence of iterates produced by Algorithm 2

will be random variables {x̃k : k ≥ 1} with realizations {xk : k ≥ 1}. Similarly, we denote

by {∆̃k : k ≥ 1}, {s̃k : k ≥ 1}, and {g̃k : k ≥ 1} sequences of random trust-region radii, trial

steps, and master model gradients with respective realizations {∆k : k ≥ 1}, {sk : k ≥ 1},

and {gk : k ≥ 1}.

We show in Theorem 5.5.1 that the results from Section 5.4 hold for any realization of

Algorithm 2. Note that Assumption 5.1.1 is unaffected by stochasticity in Y (xk,∆k) (and

Gk is similarly unaffected on any iteration). In particular, we note that Assumption 5.3.1

ensures that the quality of the component models holds in a deterministic fashion. As-

sumption 5.3.2 has the stochastic analogue of assuming that every iterate in any realization

satisfies the deterministic Assumption 5.3.2. This is nonrestrictive since Assumption 5.3.2

requires that Gk satisfy conditions depending not on Y (xk,∆k) but only on the sign pat-

terns in B(xk,∆k), which is a deterministic set at any iteration.

Theorem 5.5.1. Let X∗ denote the union of all cluster points x∗ over all realizations

{(xk,∆k, s
k,Gk, gk) : k ≥ 1} in the σ-algebra generated by {(x̃k, ∆̃k, s̃

k, G̃k, g̃k) : k ≥ 1}.

Let Assumptions 5.1.1 and 5.3.1 hold, let Assumption 5.3.2 hold for each (xk,∆k) in any

realization {(xk,∆k) : k ≥ 1}, and let Algorithm 2 be initialized with (x̃0, ∆̃0) = (x0,∆0).

Then, for every x∗ ∈ X∗, 0 ∈ ∂f(x∗).

Proof. The proof follows the same argument as in Section 5.4.

Let {(xk,∆k, s
k,Gk, gk) : k ≥ 1} be an arbitrary realization of the random sequence

{(x̃k, ∆̃k, s̃
k, G̃k, g̃k) : k ≥ 1} produced by the stochastic algorithm.

Lemma 5.4.1 is independent of the realization, and Theorem 5.4.1 holds independently

of Algorithm 2. Lemma 5.4.2 holds deterministically for any k where ∆k and ‖gk‖ (pro-

duced by Gk) satisfy ∆k < C‖gk‖.

Lemma 5.4.3 depends only on f being bounded below (a result of Assumption 5.1.1),

and thus we get ∆k → 0 for the arbitrary realization.

Lemma 5.4.4 holds if Y (xk,∆k) is stochastic, thereby producing stochastic Gk, because

the realization {(∆k, g
k) : k ≥ 1} having lim infk→∞ ‖gk‖ 6= 0 would similarly contradict
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∆k → 0 (Lemma 5.4.3).

We can now prove the theorem. Suppose {xk : k ≥ 1} has a cluster point x∗. Then,

having proved that all the lemmata hold for the arbitrary realization, a direct application of

Theorem 5.4.2 to that particular realization gives us that 0 ∈ ∂f(x∗). Since the realization

of {(x̃k, ∆̃k, s̃
k, G̃k, g̃

k) : k ≥ 1} was arbitrary, we have shown the desired result.

5.6 Numerical Results

We now examine the performance of variations of the manifold sampling algorithm outlined

in Algorithm 2. Throughout this section, we use x(j,p,s) to denote the jth point evaluated

on a problem p by an optimization solver s. For derivative-based versions of Algorithm 2,

such points correspond solely to the trust-region subproblem solutions (Line 11) and points

possibly sampled when constructing the generator set (Line 5); for derivative-free versions,

evaluated points may additionally include evaluations performed to ensure that the com-

ponent models are fully linear in the current trust region (Line 4). We drop the final

superscript (s) when the point is the same for all solvers.

5.6.1 Implementations

In our first tests, we focus on the derivative-free case, when only zeroth-order information

(function values) of F is provided to a solver; we view such problems as a more challenging

test of the manifold sampling algorithm, since the component model approximations are

not directly obtained from derivative information.

In our implementations of Algorithm 2, the sampling set Y (xk,∆k) is used for construc-

tion of both the component models and, when using Algorithm 4, the generator sets. All

our implementations employ linear models, mFi , of each component function Fi. The linear

models are constructed so that mFi interpolates Fi at xk and is the least-squares regression

model for the remainder of the sampling set, Y (xk,∆k)\xk. At the beginning of iteration k,

we set Y (xk,∆k) to be all points previously evaluated by the algorithm that lie in B(xk,∆k).

If this results in an underdetermined interpolation (i.e., rank
(
Y (xk,∆k)− xk

)
< n), then

additional points are added to Y (xk,∆k) as described below.
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We tested four variants of Algorithm 2, which differ from one another in how they

construct the generator set Gk and how they add points to the sampling set Y (xk,∆k):

Center Manifold Sampling (CMS): Uses Algorithm 3 to build the generator set Gk;

this generator set does not depend on the sampling set Y (xk,∆k), which is used

solely for constructing the component models. For building these models, the set of

scaled coordinate directions, {xk + ∆ke1, . . . , x
k + ∆ken}, are added to the sample

set Y (xk,∆k) in cases of underdetermined interpolation.

Greedy Deterministic Manifold Sampling (GDMS): Uses Algorithm 4 to build the

generator set Gk. Additional points are not added to the sample set Y (xk,∆k)

unless the linear regression is underdetermined. In the underdetermined case,

n−rank(Y (xk,∆k)−xk) directions D in the null space of Y (xk,∆k)−xk are generated

by means of a (deterministic) QR factorization. After evaluating F along these scaled

directions, the associated points xk + ∆kD are added to the sample set Y (xk,∆k).

Deterministic Manifold Sampling (DMS): Uses Algorithm 4 to build the generator

set and adds scaled coordinate directions, {xk + ∆ke1, . . . , x
k + ∆ken}, to the sample

set Y (xk,∆k) every iteration.

Stochastic Manifold Sampling (SMS): Uses Algorithm 4 to build the generator set

and adds a set of n points randomly generated from a uniform distribution on

B(xk,∆k) to the sample set Y (xk,∆k) every iteration.

The strategy used to add points to the sample set Y (xk,∆k) in the deterministic vari-

ants ensures the full linearity of the models required in Assumption 5.3.1. For the stochas-

tic variant SMS, however, the realized sample set Y (xk,∆k) results in models that do not

necessarily satisfy Assumption 5.3.1. Consequently, Theorem 5.5.1 may not hold for our

implementation since such a sample set does not guarantee that the realized models are

fully linear (see, e.g., [21, 48]).

In all cases, the weights defining the master model in Line 7 of Algorithm 2 are cal-

culated by solving the quadratic program (5.11) via the subproblem solver used in [22],

which is based on a specialized active set method proposed in [44].
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We compared the above variants with a modified version of the minimax method of

Grapiglia et al. [36], which we denote GYY. We adjusted the code used in [36] to solve `1-

problems by changing the nonsmooth subproblem linear program (5.9). We also adjusted

stopping tolerances to prevent early termination: we decreased the minimum trust-region

radius to 10−32 and removed the default criterion of stopping after 10 successive iterations

without a decrease in the objective.

As a baseline, we also tested two trust-region algorithms for smooth optimization. The

codes L-DFOTR and Q-DFOTR are implementations of the algorithm described in [21] using,

respectively, linear and quadratic regression models defined by an appropriately sized,

deterministic sample set. These implementations may not converge to a stationary point

since they assume a smooth objective function, but they serve as important comparators

since they are more efficient at managing their respective sample sets.

By design, all seven of the codes tested employ a trust-region framework, and thus the

parameters across the methods can be set equal. The parameter constants were selected

to be ∆0 = max
{

1,
∥∥x(0,p)

∥∥
∞
}

, η1 = 0.25, η2 = 1, γdec = 0.5, and γinc = 2.

5.6.2 Test Problems

We consider the `1 test problems referred to as the “piecewise smooth” test set in [55]. This

synthetic test set was selected in part because of the availability of the Jacobian ∇F (x)

for each problem, and thus the subdifferential in (5.7); this is useful for benchmarking

purposes. The set is composed of 53 problems of the form (5.1) ranging in dimension from

n = 2 to n = 12, with the number of component functions, r, ranging from n to 65.

A standard starting point, x(0,p), is provided for each problem p in the test set. We

note that the objective f is nondifferentiable at x(0,p) for five problems (numbers 9, 10, 29,

30, and 52).

For all test problems, there is neither a guarantee that there is a unique minimizer x∗

with 0 ∈ ∂f(x∗) nor a guarantee that f(x∗) = f(y∗) for all x∗, y∗ with 0 ∈ ∂f(x∗)∩∂f(y∗).

A budget of 1000(n + 1) function evaluations was given to each solver for each n-

dimensional problem. Solvers were terminated short of this budget only when ∆k fell
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Figure 5.1: Sample trajectories of function values on problem 11 (left), which has n = r = 4,
and problem 52 (right), which has n = r = 8. In SMS, 30 runs were performed: the
upper band shows the largest function value obtained at the indicated number of function
evaluations and the lower band shows the least function value obtained; the median values
are indicated in the line segment connecting the 25th and 75th quantiles of the function
values.

below 10−32. We note, however, that for virtually every solver and problem, no successful

iterations were found after ∆k fell below 10−18; this result is unsurprising given that the

experiments were run in double precision.

Figure 5.1 shows typical trajectories of the best function value found on two problems

where min f(x) = 0. The sole stochastic solver (SMS) was run 30 times; Figure 5.1 shows

that there is little variability in the value of the solution found by SMS across the 30

instances (on these two problems). This is not the case in Figure 5.2 (left), which shows

the trajectory on problem 31; here we see that at least one instance of SMS finds a best

function value different from that of the majority of SMS instances. In each of these

instances, the smooth solvers L-DFOTR and Q-DFOTR struggle to find solutions with

function values comparable to those found by the nonsmooth solvers.

5.6.3 Measuring Stationarity

The behavior seen in Figure 5.2 (left) suggests that the function values found by a solver

may not indicate whether the solver has found a stationary point. We now measure the

ability of a solver to identify points close to Clarke stationarity.
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Figure 5.2: Best function value (left) and stationary measure Ψ(x) (right) found in terms
of the number of function evaluations performed for problem 31, a problem with n = 8
dimensions and r = 8 components. The stationary measure indicates that all instances of
SMS find a stationary point, despite the function values associated with these stationary
points being different.

Lemma 5.4.6 does not guarantee that (∆k, ‖gk‖) provides a measure of stationarity. In-

stead, we will employ the stationarity measure used for nonsmooth composite optimization

in [74] and more recently in [36]. This measure considers the maximum decrease obtained

from directional linearizations of f at x,

Ψ(x) = max
d:‖d‖≤1

f(x)− ‖F (x) +∇F (x)>d‖1. (5.26)

From the fact that f is Clarke regular (see, e.g., [18]), a cluster point x∗ of {xk} being

Clarke stationary is equivalent to the condition lim infk→∞Ψ(xk) = 0. Such a stationary

measure is also readily computed for our benchmark problems since the Jacobian ∇F is

known. For example, when the Euclidean norm on d in (5.26) is changed to an `∞ norm,

Ψ(xk) can be obtained by solving the linear optimization problem

minimized,s

{
e>s : s ≥ F (xk) +∇F (xk)>d, s ≥ −F (xk)−∇F (xk)>d, d ∈ [−1, 1]n

}
.

The importance of using the stationary measure Ψ is highlighted in Figure 5.2, where

we see the performance of seven algorithms on problem 31. Most of the manifold sampling
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implementations find the same (and largest) amount of function-value decrease, but GYY

and an SMS instance converge to a point with a relatively worse function value. Even so,

these points all have similar stationary behavior. L-DFOTR and Q-DFOTR fail to find a

stationary point.

5.6.4 Measuring Performance across the Set

For comparing the performance of algorithms across the entire test set, we use the data

profiles described in [55]. Let S denote the set of solvers we wish to compare, and let P

denote the set of test problems. Let tp,s denote the number of function evaluations required

for solver s ∈ S to satisfy a convergence criterion on problem p ∈ P . We use the convention

that tp,s =∞ if the convergence criterion is not satisfied within the budget of evaluations.

For κ ≥ 0, the data profile for solver s is then defined by

ds(κ) =
1

|P |
|{p ∈ P : tp.s ≤ κ(np + 1)}| ,

where np is the dimension of problem p.

We first examine the convergence criterion in [55], which is based on the best function

value found by an algorithm. In particular, given a tolerance τ > 0, we will say that solver

s has converged on problem p when an x(j,p,s) ∈ Rnp has been found such that

f(x(j,p,s)) ≤ fp + τ(f(x(0,p))− fp), (5.27)

where fp is the least function value obtained across all evaluations of all solvers in S for

problem p and where x(0,p) is an initial point common to all solvers. The parameter τ

determines how accurate one expects a solution to be in terms of the achievable decrease

f(x(0,p))− fp.

Figure 5.3 (left) shows that all manifold sampling implementations and GYY success-

fully find points with function values better than 99.9% of the best-found decrease for over

90% of the problems. For the smaller τ , the solvers’ performances are more distinguishable.

SMS finds decrease at least as good as (1− 10−7)% of the best-performing method on 75%
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Figure 5.3: Data profiles based on the function value convergence measure (5.27) for τ =
10−3 (left) and τ = 10−7 (right).

of the problems, while GDMS and GYY do so for 85% of the problems. The relative success

of GDMS over the other deterministic solvers highlights the importance of judiciously us-

ing the budget of function evaluations. The quick plateau behavior for the smooth solvers

L-DFOTR and Q-DFOTR indicate that these solvers are efficient on the problems that they

are able to solve.

Our next convergence criterion relates to the stationarity measure Ψ defined in (5.26).

Given a tolerance τ > 0, we say that convergence has occurred when

Ψ(x(j,p,s)) ≤ τΨ(x(0,p)). (5.28)

Using (5.28) to test for convergence in Figure 5.4, we gain additional insight into the

performance of the solvers. Figure 5.4 (left) shows that Q-DFOTR and L-DFOTR do not

find points with Ψ values less than one-thousandth of the stationary measure at x(0,p) on

a majority of the benchmark problems, while the other solvers do so for over 95% of the

problems. For the more restrictive τ , CMS and DMS perform nearly identically, while SMS

and GDMS are shown to be even more robust. GYY is relatively faster at finding small Ψ

values in the initial 150(n+1) function evaluations. Note that the data profiles for SMS are

improved when moving from function value measures (Figure 5.3) to stationarity measures

(Figure 5.4). We attribute this behavior to the fact that some stochastic instances find
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Figure 5.4: Data profiles based on the Ψ convergence measure (5.28) for τ = 10−3 (left)
and τ = 10−7 (right).

stationary points with relatively worse function values (recall Figure 5.2).

Before proceeding, we note that although these tests show that GDMS is efficient when

evaluations are performed sequentially, the other variants have the ability to utilize n+ 1

evaluations concurrently and therefore might prove more useful in a parallel setting.

5.6.5 Comparison with Gradient Sampling

We also compare the performance between a variant of manifold sampling that uses some

gradient information (SMS-G) and GRAD-SAMP, a MATLAB implementation of gradient

sampling from [11] that uses gradient information at every evaluated point. This code was

run with its default settings and a budget of 1000(n + 1) Jacobian (and hence gradient)

evaluations. Since GRAD-SAMP does not proceed from a nondifferentiable initial point,

the five problems with nondifferentiable starting points were perturbed by machine epsilon.

We also extended the set of sampling radii in GRAD-SAMP from
{

10−4, 10−5, 10−6
}

to{
10−4, 10−5, . . . , 10−16

}
to avoid early termination.

As suggested by its name, SMS-G is SMS from Section 5.6.1 with the following modifica-

tions. The model building step, Line 4 in Algorithm 2, directly uses the Jacobian ∇F (xk)

and thus M(x) = F (xk) + ∇F (xk)(x − xk). Since the default settings in GRAD-SAMP

samples min(n+ 10, 2n) gradients per iteration, SMS-G has this manifold sampling rate as

opposed to the n points sampled each iteration by SMS.
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Figure 5.5: Data profiles based on the function value convergence measure (5.27) for τ =
10−3 (left) and τ = 10−7 (right). Note that SMS samples n points per iteration while
SMS-G and GRAD-SAMP sample min {n+ 10, 2n} points per iteration.

Notice that because SMS-G computes a new Jacobian only immediately following a

successful iteration, it incurs at most one Jacobian evaluation per iteration. The manifold

sampling step and the evaluation of the trial point in SMS-G require only function evalu-

ations (i.e., not Jacobian evaluations), and so SMS-G incurs at most min(n + 11, 2n + 1)

function evaluations per iteration. On the other hand, GRAD-SAMP can require a bundle of

min(n+ 11, 2n+ 1) gradient (and hence Jacobian) and corresponding function evaluations

per iteration. Thus, in our data profiles measured in terms of function evaluations, every

function evaluation used by GRAD-SAMP entails a Jacobian evaluation; SMS-G function

evaluations include a Jacobian only evaluation for a fairly small (always less than 20%)

proportion of the function evaluations. That is, each function evaluation within gradient

sampling includes a “free” Jacobian evaluation that is not accounted for in the presented

data profiles. SMS-G uses a “free” Jacobian evaluation on fewer than 20% of the function

evaluations.

Data profiles are shown in Figure 5.5 and Figure 5.6 for an experiment where 30 stochas-

tic runs were performed for both solvers. We also compare results with 30 instances of the

Jacobian-free SMS described in Section 5.6.1. The gradient sampling method performs

significantly worse than either manifold sampling method. Furthermore, the similar per-

formance exhibited by the Jacobian-based SMS-G and the Jacobian-free SMS indicates that
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Figure 5.6: Data profiles based on the Ψ convergence measure (5.28) for τ = 10−3 (left)
and τ = 10−7 (right).

the performance of SMS-G would likely further improve if the sampling rate were reduced.

5.7 Discussion

The driving force behind the proposed manifold sampling algorithm is that search directions

are computed by using a finitely generated set,

co

∇M(xk)sign(yj) +
∑

i:[sign(yj)]i=0

ti∇mFi(xk) : t ∈ {−1, 0, 1}r, yj ∈ Y (xk; ∆k)

 ,

which differs from the finitely generated set used by gradient sampling,

co
{
∇M(yj)sign(yj) : yj ∈ D ∩ Y (xk; ∆k)

}
.

Our tests on `1 functions show that the manifold sampling strategies compare favorably

with a gradient sampling approach.

Our presentation in Sections 5.3 and 5.4 focused on the case of (5.2) when fs = 0. Since

the presence of a nontrivial fs does not affect the manifolds of f , such fs can naturally be

addressed by a shift of the generator set to∇fs(xk)+Gk, inclusion of fs in the master model

(e.g., ∇mf (xk + s) =
〈
s,Proj

(
0,∇fs(xk) +∇M

(
xk
)
∂h
(
F
(
xk
)) )〉

), and an analogous

to ρk.

Furthermore, although the present work targets composite problems (5.2) for the par-
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ticular nonsmooth function h(u) = ‖u‖1, the approach can be extended to other functions

h, provided one can classify points into smooth manifolds (either with zeroth-order infor-

mation or inexact first-order information). In the case of `1 functions, this classification was

determined by the trivial evaluation of the sign pattern of F (y) for a sample y ∈ Y (x,∆).

In the case of minimax objective functions of the form

h(u) = max
i=1,...,r

ui or max
i=1,...,r

|ui|,

this classification is determined by what Hare and Nutini refer to as the “active set” at

a point [39]. In general, in any setting where the form of the subdifferential ∂h at any

point is known, a setting that subsumes much of the work in the nonsmooth composite

optimization literature, an analogous version of Algorithm 2 can be proposed.

In particular, the manifold sampling approach does not rely on convexity of the func-

tion h. This is in contrast to methods that solve the nonsmooth subproblem (5.9). An

example of such a method is the GYY code modified from [36], which we showed can slightly

outperform manifold sampling on `1 problems.

We are also interested in efficient and greedy updates of sample sets for manifolds

and/or models in both settings where function (and Jacobian) evaluations are performed

sequentially and concurrently. Our implementation of GDMS is a first step in this direction.

Furthermore, natural questions arise about the tradeoff between the richness of manifold

information required to reach early termination of the inner while loop in Algorithm 2

and the efficiency to guarantee that the sample set is, for example, well poised for model

building.
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Chapter 6

HAILSTORM for Non-convex

Empirical Risk Minimization

6.1 Non-convex Empirical Risk Minimization

In this short chapter, we will consider the well-known task of empirical risk minimization

for binary (linear) classification. That is, we assume that data is generated from some

unknown distribution of features and binary labels on X × {−1, 1}, where X ⊆ Rd, and

we seek a classifier (w,w0) ∈ Rd × R such that

E(x,y)∼X×{−1,1}I[sign(w>x+ w0) = y]

is maximized, where I[·] denotes an indicator function. To simplify notation, we will

suppose that the d-th feature of each datapoint xi is the constant 1, and thus the bias

term w0 is simply part of the classifier vector w. For empirical risk minimization, we then

assume we are given a training set of pairs {(xi, yi)}ni=1 ∼ X × {−1, 1}

Based solely on this description of the binary classification task, one expects that, as-

suming the training set is indeed a representative sample of the distribution on X×{−1, 1},

the classifier w obtained by solving the following optimization problem will generalize and

maximize predictive ability on unseen datapoints coming from X × {−1, 1}:
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min
w

1

n

n∑
i=1

I[sign(yi(w>xi)) = −1]. (6.1)

However, because the indicator function I[·] is discontinuous, and moreover has zero

gradient everywhere its gradient is defined, methods of continuous optimization cannot

optimize (6.1) directly. It has been shown (see e.g. [7, 69]) that the solution of (6.1) is

an NP-hard problem. Therefore, a majority of successful applications of optimization to

machine learning use a convex approximation of (6.1) such as the smooth logistic loss of

logistic regression,

min
w

1

n

n∑
i=1

log
(

1 + exp
(
−yi(w>xi)

))
, (6.2)

or the nonsmooth hinge loss used in support vector machines (SVMs). This is largely

motivated by the fact that globally optimal solutions to approximations like (6.2) can

be obtained efficiently. There also exist certain statistical guarantees [5] regarding the

quality of classifiers obtained from solving convex problems such as (6.2) in terms of their

performance on the actual problem (6.1).

Despite these positive results, a good deal of work (see in particular [25, 53]) has

exhibited that these convex approximations suffer from a lack of robustness in the presence

of misclassification error, i.e. generalization severely degrades in instances where the labels

yi in the training set are incorrect or “flipped”, as we will demonstrate through numerical

experiments in this chapter.

A natural alternative to consider, then, is the use of non-convex loss functions in

empirical risk minimization. In particular, we will consider the following version of a well-

known non-convex (but continuous and smooth) problem approximating (6.1), which we

will refer to throughout this chapter as sigmoidal loss:

min
w
`K(w) ,

1

n

n∑
i=1

[
2 exp[−Kyi(w>xi)]

1 + exp[−Kyi(w>xi)]
− 1

]
, (6.3)

parameterized by K, a control on the smoothness of the approximation of (6.1). See Figure

6.1.

Note that the range of the objective in (6.3) has been rescaled to (−1, 1). For an

129



-1 -0.5 0 0.5 1

x
1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

-0.1 -0.05 0 0.05 0.1

w
2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

lo
s
s

K=100, w
1
=-0.05

-0.1 -0.05 0 0.05 0.1

w
2

0

0.1

0.2

0.3

0.4

0.5

0.6

lo
s
s

K=1000, w
1
=-0.05

-0.1 -0.05 0 0.05 0.1

w
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

lo
s
s

01-loss, w
1
=-0.05

Figure 6.1: (Top left): A synthetic random two-dimensional dataset. Green circles have positive labels
and red crosses have negative labels. Datapoints satisfying x1 − x2 > 0 are labelled negative, otherwise
they are labelled positive. (Top right): A contour plot of the value of the indicator loss with respect to
the synthetic data. Observe that plotting artifacts obscure the fact that the contour plot is constant along
any given ray, and so any vector in the direction [−0.05; 0.05] is optimal with no loss. Observe also that if
the constant function value along a given ray is θ, then the function value along the negative of said ray is
1 − θ. (Bottom row): Slices of the contour plot when w1 is fixed to −0.05 for K = 100, K = 1000, and
“K =∞” in the sigmoidal loss from (6.3)

explanation of practical reasons (in the context of neural networks) to use such a loss

function as opposed to a loss function with range in [0, 1], see [50].

As is standard practice in machine learning, we may want to add some form of reg-

ularization to the problem given in (6.3) to prevent overfitting. The standard choices of

regularized problems use `1-regularization

min
w
`K,1(w) ,

1

n

n∑
i=1

[
2 exp[−Kyi(w>xi)]

1 + exp[−Kyi(w>xi)]
− 1

]
+
λ

2
‖w‖1 (6.4)

or `2-regularization

min
w
`K,2(w) ,

1

n

n∑
i=1

[
2 exp[−Kyi(w>xi)]

1 + exp[−Kyi(w>xi)]
− 1

]
+
λ

2
‖w‖22, (6.5)
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where in both (6.4) and (6.5), λ > 0 is a constant.

As can be observed in Figure 6.1, however, as K →∞, `2 regularization (6.5) becomes

meaningless since (6.1) is scale-invariant with respect to w. Thus, we will focus our at-

tention on the `1-regularized problem (6.4). However, (6.4) is a nonsmooth problem and

so a direct of application of the STORM algorithm should not work. Thus, we propose

a hybrid of STORM and manifold sampling, which we call HAILSTORM (Hierarchical

Approximations to Indicator Loss via STORM), to solve the special case of problem (6.4).

6.2 HAILSTORM

As is necessary for any STORM algorithm, we first describe a means of constructing mod-

els and obtaining function value estimates. We will not prove that the model construc-

tion and function value estimation schemes proposed in this section do, in fact, yield α-

probabilistically fully-linear models or β-probabilistically accurate estimates, respectively,

but we will indicate that similar constructions have been considered previously in the

literature when appropriate.

To obtain stochastic estimates of the sigmoidal loss given in (6.3), given a sample of

indices S ⊆ {1, 2, . . . , n}, we define

`KS (w) ,
1

|S|
∑
i∈S

[
2 exp[−Kyi(w>xi)]

1 + exp[−Kyi(w>xi)]
− 1

]
. (6.6)

6.2.1 Function Value Estimates (Adaptive Sampling)

To obtain function value estimates, we propose the use of adaptive sampling ; i.e. given a

classifier w to evaluate, we will randomly sample without replacement S ⊆ {1, 2, . . . , n}

large enough such that the standard error of `KS (w) is (approximately) decreased to O(δ2),

in line with the definition of fully-linearity. In particular, given an algorithmic parame-

ter κf > 0 and an algorithmically-determined radius δ, we want to satisfy the following

condition on standard error:

σ̂(w, S)√
|S|

≤ κfδ2, (6.7)
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where σ̂(w, S) denotes the standard deviation

σ̂(w, S) ,

√√√√ |S|∑
i=1

(`Ki (w)− `KS (w))2

|S|
.

Although one could consider an algorithm for computing function value estimates where

one starts with an initial sample S0 and gradually augments the sample until the condition

(6.7) is satisfied (which is essentially what is proposed for Monte Carlo sampling in the

ASTRO-DF framework [68]), this may be costly in terms of time, since computing the

standard error as side information incurs an additional cost over simple function evaluation.

Thus, following the same basic idea of dynamic sample sizes as in [13], we propose defining

within the STORM algorithm a nondecreasing variable sample size Sk to be used in the k-

th iteration to obtain the estimates f0
k and fsk necessary in the general STORM framework

in Algorithm 1. That is, having obtained the standard error σ̂(wk, Sk−1) , σ̂k−1 in the

(k − 1)-th iteration as a byproduct of computing the estimate fsk−1 or f0
k in successful

or unsuccessful iterations respectively, we draw in the k-th iteration a new set of random

samples Sk satisfying

|Sk| = min

{
n,max

{⌈
σ̂2
k−1

κ2
fδ

4
k

⌉
, |Sk−1|, k

}}
(6.8)

for the computations of f0
k and fsk . The insistence in (6.8) that |Sk| grow at least as fast

as k is a matter of practicality.

6.2.2 Random Models (Mini-Batch Stochastic Gradients)

In terms of computing random models intended to be probabilistically fully-linear, we follow

a similar method of dynamic sample sizes for computing mini-batch stochastic gradients,

which is more directly in line with [13]. That is, given a classifier w and a trust region

parameter δ, we attempt to ensure that a sufficiently large sample S is selected so that the

standard error of the gradient ∇`KS (w) is in O(δ). That is, given a parameter κg > 0, we
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seek a sample S such that √
‖Var(w, S)‖1

|S|
≤ κgδ, (6.9)

where the vector-valued operator Var is defined as

Var(w, S) =
1

|S| − 1

∑
i∈S

(∇`KS (w)−∇`Ki (w))2,

with the square taken component-wise. Using the same sort of estimation that led to

the sample size prescription (6.8) for computing function value estimates, the size of the

mini-batch stochastic gradient in the k-th iteration is chosen to satisfy

|Sk| = min

{
n,max

{⌈
‖Var(w, Sk−1)‖1

κ2
gδ

2

⌉
, |Sk−1|, k

}}
. (6.10)

6.2.3 Manifold Sampling to Handle Nonsmoothness

In most adaptations of stochastic gradient methods to handle the nonsmoothness caused

by an `1-regularization term, proximal operators [65] are used, which in the `1 case reduces

to so-called soft-thresholding, see e.g. [6]. Here, since STORM uses a trust-region frame-

work, we can make use of a greatly-simplified variant of the manifold sampling algorithm

described in Chapter 5.

Let h(·) = λ
2‖ · ‖1. In a trust-region framework, on the kth iteration, we can easily

determine a superset of the smooth manifolds induced by h that intersect the current

trust-region B(wk, δk). Consider the active indices J ∗ = {j : |(wk)j | < δk}. Additionally

define J + = {j : (wk)j ≥ δk} and J − = {j : (wk)j ≤ −δk}. Then, letting g = ∇`K(wk),

where `K(·) is the sigmoidal loss in (6.3), the master model gradient of `K,1(wk) with

respect to the active manifolds represented in J ∗ is given as g + y∗ where y∗ is a solution

to
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min
y∈Rd

(g + y)>(g + y)

s. to yj = −λ ∀j ∈ J −

yj = λ ∀j ∈ J +

−λ ≤ yj ≤ λ ∀j ∈ J ∗

(6.11)

Observe that (6.11) is a convex bound-constrained quadratic optimization problem,

a well-studied problem for which fast solvers exist in practice. Since for any w, every

generator of the subdifferential ∂h(w) has all of its entries as ±λ, we see that (6.11) is

just a specialized case of the minimum-norm element problem cast in (5.11). Thus, in our

proposed algorithm, we will solve one quadratic optimization problem of the form (6.11)

per iteration to obtain y∗, and simply replace the (stochastic) gradient ∇`K(wk) (∇`KSk in

the stochastic case) with ∇`K(wk) + y∗ (respectively, ∇`KSk(wk) + y∗).

In terms of a ratio test for step acceptance, as in the ratio test used for manifold

sampling (5.14), we will insist that decrease in the objective be made from the perspective

of the manifold of the trial step wk + sk. That is, we define

ρk ,
`KSk(wk)− `KSk(wk + sk) +

λ

2
(〈wk, sign(wk + sk)〉 − ‖wk + sk‖1)

mk(wk)−mk(wk + sk) +
λ

2
(〈wk, sign(wk + sk)〉 − ‖wk + sk‖1)

, (6.12)

where mk(·) = 〈∇`KSk(wk) + y∗, ·〉. Once again, this is simply a specialized version of the

ρk presented in Algorithm 2, since given w we can define the jth “component model” as

wj for j = 1, 2, . . . , d, and this “model” choice yields zero approximation error.

We recall that Algorithm 2 from Chapter 5 was for deterministic nonsmooth functions,

and no results were proven about variants of that method where the component functions

were stochastic. We believe that because Algorithm 2 iteratively considers smoothed ob-

jectives in a derivative-free trust-region framework, the analysis of STORM in Chapter 2

could likely be adapted and applied to a stochastic variant of Algorithm 2 under similar as-

sumptions on stochasticity of the component functions. Seeing if the analysis truly carries

over in such a way is a subject for future work.
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Algorithm 5: HAILSTORM(w0, δ0,K, λ)

(Initialization): Choose γ > 1, η1 ∈ (0, 1), η2 > 0, εF > 0, κf > 0, κg > 0, ε > 0,
δmax ≥ δ0.
k ← 0.
(Model construction): Compute a stochastic gradient ∇`KSk(wk) such that Sk
satisfies (6.10).
gk ← ∇`KSk(wk) + y∗, where y∗ is the optimal solution to (6.11).
(Step calculation): sk ← −δkgk/‖gk‖.
(Estimates calculation): Obtain independent estimates `KSk(wk) and

`KSk(wk + sk) so that Sk satisfies (6.8) for the respective estimates of `K(wk) and

`K(wk + sk).
(Acceptance of the trial point): Compute ρk as in (6.12).
if ρk ≥ η1 and ‖gk‖ ≥ η2δk then
wk+1 ← wk + sk

else
wk+1 ← wk.

end if
(Trust-region radius update):
if ρk ≥ η1 and ‖∇`KSk(wk)‖ ≥ η2δk then
δk+1 ← min{γδk, δmax}

else
δk+1 = γ−1δk.

end if
(Iterate) k ← k + 1, go to step 1.

We present a statement of HAILSTORM in Algorithm 5.

6.3 Computational Experiments

6.3.1 Comparison with Stochastic Gradient Descent Methods

We first demonstrate that HAILSTORM finds high-quality local minima to the sigmoidal

loss objective. We will illustrate this with two well-known datasets from LIBSVM [14],

namely the adult (a9a) and the web (w8a) dataset. These datasets are pre-split into

a training and testing dataset. We compare the performance of HAILSTORM with a

stochastic mini-batch gradient descent (SGD) method and a stochastic reduced variance

gradient (SVRG) method. It has been shown in independent papers [1, 61] that SVRG

with a fixed step-size converges to first-order stationary points of a non-convex objective

under mild assumptions.
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The mini-batch size for both of these methods and both datasets was set to dn2/3e.

We used a decaying step-size sequence η0(1 + η1k)−1, where k is the number of iterations,

and we tuned the parameters on the training set by selecting the value of η0 ∈ [10−7, 3 ·

10−7, 10−6, 3 · 10−6, . . . , 1, 3, 10] and the value of η1 ∈ [0, 1/3, 1/2, 1] that led to the best

final value of the training loss after 50 data passes. Meanwhile, for HAILSTORM, we

simply implemented Algorithm 5 in Matlab with fixed parameter choices γ = 2, η1 =

10−3, η2 = 10−3, κf = 103, κg = 103, ε = 10−8, δmax = 10, and δ0 = 1. All three algorithms

(SGD, SVRG, and HAILSTORM) are given as an initial point w0, an approximate global

minimizer to the deterministic logistic loss problem (6.2) with the same regularization

parameter λ as the problem we intend to solve, namely (6.5) with K = 1.

In this experiment, we run HAILSTORM exactly once with a single random seed. Thus,

this very simple experiment demonstrates that with no parameter tuning whatsoever (and

hence at a significantly lower overall cost), HAILSTORM tends to find as high quality

solutions as the best-tuned versions of SGD or SVRG. We show in Figures 6.2 and 6.3 the

performance of all three algorithms over 50 effective data passes. For SGD and SVRG,

an effective data pass is counted as the number of times a single data point was accessed

divided by the number of points n in the dataset (and hence represents the same effort as

computing a full gradient). To yield a fair comparison, in HAILSTORM we count every

access to a datapoint as a single access regardless of whether the access is being used to

compute a function value or a gradient value. Arguably, this comparison is in fact biased

against HAILSTORM, since the overhead of computing a function value is strictly less

than the overhead needed to compute a gradient value.

The observed behavior in Figures 6.2 and 6.3 is likely due to the fact that STORM

(and hence, HAILSTORM) is “function-value aware”; while it is theoretically guaranteed

to find first-order stationary points provided the sequence of models and estimates are α-

probabilistically fully linear and β-probabilistically accurate respectively, it is more inclined

than the “function value-blind” SGD and SVRG methods to escape a local solution of

poor objective quality. Comparatively, we see that while a well-tuned run of SVRG has a

fairly stable trajectory in decreasing gradient norm, as is predicted by its theory, it gets
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Figure 6.2: Results of the discussed experiment for `2-regularization parameter λ = 10−3 (top row) and
λ = 10−6 (bottom row) on the w8a dataset . The left image shows the trajectory of training loss, the
middle image shows the trajectory of the loss function gradient norm ‖∇`(w)‖, and the right image shows
the trajectory of the holdout testing error.
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Figure 6.3: Same as in Figure 6.2, but on the a9a dataset.

stuck in poor-quality minima. On the other hand, and as is often observed in practice,

a well-tuned run of SGD tends to find high-quality minima, although with wild gradient

norm trajectories. Our implementation of HAILSTORM appears to be a good negotation

between these two extremes. We reiterate that we only ran HAILSTORM once with a

single random seed in each of these illustrations, and yet it consistently exhibits relatively
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Figure 6.4: Results of the discussed experiment for `1-regularization parameter λ = 10−3 (top row) and
λ = 10−6 (bottom row) on the w8a dataset . The left image shows the trajectory of training loss and the
right image shows the trajectory of the holdout testing error.

good performance in all the criteria of training loss, gradient norm, and testing error.

We also make comparisons between our nonsmooth Algorithm 5 (i.e. λ > 0 in (6.4),

proximal stochastic mini-batch gradient descent (prox-SGD), and proximal SVRG (prox-

SVRG). For a good summary of convergence results surrounding prox-SGD and prox-

SVRG, see [62]. We use the same parameters, tuning methods (or lack thereof in HAIL-

STORM’s case), and initializations as in the previous experiment. We illustrate the results

in Figures 6.4 and 6.5. We omit a comparison of “gradient norms” since the notion of sub-

gradient inherently differs between a proximal operator method and a manifold sampling

method (which deliberately overestimates the subdifferential).
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Figure 6.5: Same as in Figure 6.4, but on the a9a dataset.

6.3.2 Sigmoidal Loss vs. Logistic Loss

We now demonstrate the benefits of using the solutions to (6.4) obtained by HAILSTORM

after a reasonable number of data passes, as opposed to using the globally optimal solution

to a deterministic (`1-regularized) logistic loss problem

min
w

1

n

n∑
i=1

log
(

1 + exp
(
−yi(w>xi)

))
+
λ

2
‖w‖1. (6.13)

As motivated in Section 6.1, we are particularly interested in the robustness of learned

classifiers in the presence of misclassification errors. Towards this end, we consider, in ad-

dition to the a9a and w8a datasets, 8 well-known datasets from the UCI Machine Learning

Repository [51]. A summary description of the datasets used is given in Table 6.1. For

the a9a and w8a datasets, to avoid confusion, we only made use of the training set in our

experimental design, ignoring the given testing set.
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n (# of samples) 32561 683 351 19020 768 4435 2100 270 43500 49749
d (dimension) 123 9 14 10 8 36 19 13 9 300

Table 6.1: Problem data for UCI/LIBSVM datasets.

For a single run of the experiment we do the following for each dataset.

1. Randomly split the dataset into a training set Ttr and testing set Tte of size d0.8ne

and b0.2nc respectively.

2. Contaminate the training set Ttr by choosing a fraction p ∈ [0, 1] and multiplying

the {−1, 1}-label of a randomly selected dp|Ttr|e many points in Ttr by −1, i.e. by

“flipping” the label of a fraction p of the training set.

3. Further randomly split the (already contaminated) training set Ttr into a training

set Ttr2 and validation set Tval of sizes d0.8|Ttr|e and b0.2|Ttr|c respectively.

4. For different values of an `1-regularizer λ ∈ {0, 1/n, 1/d, 1}, train a classifier using

Ttr2 by solving (6.13) to (approximate) global optimality.

5. Identify the value of λ from Step 4 that yields a classifier w∗log with the highest

accuracy on Tval. Denote this value of the regularization parameter by λ∗, and

record the accuracy of w∗log on Tte.

6. For K ∈ {1, 2, 10, 20, 100, 200}, run HAILSTORM(w∗log, 1,K, λ
∗) using Ttr2.

7. Identify the value of K from Step 6 that yields a classifier w∗sig with the highest

accuracy on Tval, and record the error made by w∗sig on Te.

Thus, this experiment is intended to demonstrate that by using a reasonable classifier

(i.e. one learned by optimizing logistic loss (6.13)) as an initial point, running HAIL-

STORM on a regularized sigmoidal loss problem (6.4) with a well-chosen value of the

smoothing parameter K can improve the generalization error of that classifier. A sum-

mary of results of running this experiment 40 times with fraction of flips p = 0, 0.125, 0.25
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no flips 1/8 flips 1/4 flips

logistic sigmoidal logistic sigmoidal logistic sigmoidal

a9a 15.28± 0.01 15.34± 0.01 15.50± 0.01 15.58± 0.01 15.90± 0.01 16.04± 0.01

breast-cancer 3.66± 0.04 3.57± 0.04 4.65± 0.04 4.19± 0.04 5.28± 0.06 4.50± 0.05

ionosphere 13.07± 0.12 13.04± 0.12 14.62± 0.14 13.95± 0.15 17.52± 0.18 16.86± 0.14

magic 20.98± 0.02 20.37± 0.02 21.32± 0.02 20.48± 0.02 21.65± 0.02 20.69± 0.02

pima 33.44± 0.13 23.68± 0.09 34.07± 0.11 27.15± 0.19 34.07± 0.11 31.90± 0.19

satimage 9.20± 0.02 9.06± 0.03 9.21± 0.02 9.06± 0.03 9.30± 0.02 9.06± 0.03

segment 0.23± 0.01 0.23± 0.01 1.33± 0.02 0.59± 0.01 2.35± 0.03 1.37± 0.02

statlog-heart 15.62± 0.19 15.12± 0.17 17.04± 0.20 16.85± 0.18 25.49± 0.37 20.80± 0.23

statlog-shuttle 3.51± 0.01 2.36± 0.00 8.03± 0.01 2.48± 0.00 8.92± 0.01 2.52± 0.00

w8a 1.44± 0.01 1.28± 0.00 1.49± 0.00 1.47± 0.00 1.66± 0.00 1.64± 0.00

Table 6.2: Test errors (in %) of classifiers trained by logistic and cross-validated sigmoidal
loss with cross-validated `1 regularization. Each entry represents mean error ± one stan-
dard error.

no flips 1/8 flips 1/4 flips

logistic sigmoidal logistic sigmoidal logistic sigmoidal

a9a 15.32± 0.01 15.33± 0.01 15.54± 0.01 15.62± 0.01 15.93± 0.01 16.02± 0.02

breast-cancer 3.92± 0.06 3.65± 0.06 4.66± 0.06 3.75± 0.05 5.17± 0.08 4.31± 0.06

ionosphere 14.33± 0.14 14.33± 0.13 17.67± 0.14 16.52± 0.16 21.52± 0.19 18.86± 0.17

magic 20.90± 0.02 20.28± 0.02 21.24± 0.02 20.38± 0.02 21.58± 0.02 20.70± 0.02

pima 23.05± 0.10 23.40± 0.12 24.97± 0.12 26.06± 0.13 34.07± 0.11 27.15± 0.19

satimage 9.05± 0.03 9.05± 0.03 9.14± 0.03 9.12± 0.03 9.31± 0.03 9.23± 0.03

segment 0.27± 0.01 0.27± 0.01 1.53± 0.02 0.63± 0.02 2.52± 0.04 1.09± 0.02

statlog-heart 15.99± 0.16 15.99± 0.18 18.58± 0.19 17.22± 0.17 24.01± 0.29 22.22± 0.26

statlog-shuttle 3.47± 0.01 2.36± 0.01 7.99± 0.01 2.51± 0.01 8.90± 0.01 2.58± 0.01

w8a 1.49± 0.01 1.33± 0.00 1.49± 0.00 1.46± 0.00 1.67± 0.00 1.67± 0.00

Table 6.3: Test errors (in %) of classifiers trained by logistic and cross-validated sigmoidal
loss with no regularization. Each entry represents mean error ± one standard error.

is given in Table 6.2. As a form of control, we also ran the experiment to see the effects of

using no regularization at all, by effectively only considering λ = 0 in in Step 4, meaning

that HAILSTORM is not making use of any of the manifold sampling machinery. The

results of that experiment are shown in Table 6.3. In all experiments, when running HAIL-

STORM in Step 6 of the experiment, we used all the same algorithmic parameters as in

Section 6.3.1.

We remark that in the `1-regularization experiment summarized in Table 6.2, with

the exception of the a9a dataset, there is a consistent preference to use HAILSTORM as

a post-processing method after minimizing logistic loss, particularly in noisier regimes of

misclassification error. Comparing the results of using cross-validated `1-regularization to

not using regularization is a bit more mixed, as is frequently observed to be the case in

practice. For instance, just focusing on the very noisy regime (1/4 flips) and comparing

the results of the sigmoidal loss with or without regularization, we see that using cross-
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validation with regularization improves generalization error in a statistically significant way

on the datasets ionosphere, satimage, statlog-heart, statlog-shuttle, and w8a, but actually

hinders generalization error in a statistically significant way on breast-cancer, pima, and

segment.
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Chapter 7

Conclusion

In the first part of this thesis, Chapters 2-4, we extended the well-known framework of

model-based trust-region methods for DFO to a new framework, STORM. In Chapter 2,

we considered STORM as a method for minimization of a general unconstrained stochastic

objective function f . We assumed that f was sufficiently smooth, but that any query of

the function value f(·) would be contaminated by stochastic noise. In a break with the

majority of stochastic optimization literature, our assumptions on the distribution of the

noise were virtually nonexistent. Instead, we proved that provided one can generate what

we called an α-probabilistically fully-linear sequence of models and a β-probabilistically εF -

accurate sequence of function value estimates during the course of a STORM algorithm,

then the iterates of the STORM algorithm converge almost surely to a first-order stationary

point. This break from conventional assumptions on noise distributions allowed us to yield

provably convergent algorithms even in situations where noise is occasionally dominating,

where we explicitly quantify through α and β what is meant by dominating.

In Chapter 3, we then extended the analysis performed in Chapter 2 to prove expected

global convergence rates of a STORM algorithm. In particular, recognizing that the iterates

{Xk} (and intermediate quantities, e.g. the trust-region radii {∆k}) of STORM describe

a stochastic process, we defined a stopping time Tε as the number of iterates before the

first time ‖∇f(Xk)‖ ≤ ε is satisfied. We then proved that in expectation, Tε ∈ O(1/ε2),

where the big-O contains an explicit (and intuitive) dependence on the parameters α and
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β from the respective definitions of α-probabilistically fully-linear and β-probabilistically

εF -accurate. This Chapter leads to some very interesting open questions. In particular,

although we proved a bound on the expectation of Tε, bounds on higher moments (and

hence, for instance, variance) of Tε are still questionable. It is at least trivial to show

from our results that all higher moments are at least bounded. We believe the analysis

performed here is a meaningful stepping stone to such analyses of higher moments. Directly

related to this question, and of relevance to practical algorithms, the analysis performed

here does not seem to immediately yield stopping criteria for a STORM algorithm. That

is, although we can guarantee expected ε-stationarity in O(1/ε2) iterations, this does not

suggest that any form of observed ε-criticality in a single realization of iterates yielded

by a STORM algorithm should encourage the optimizer to stop the algorithm, as the

measurements indicating ε-criticality are quite possibly the result of noise. Moreover, in

the spirit of stochastic gradient methods, without better understanding the higher moments

or tail distribution of Tε, we have no strong theoretical basis to stop the algorithm within a

predefined number T ∈ O(1/ε2) of iterations, since we can’t quantify the probability that

T ≥ Tε via this analysis alone. This issue is of great importance, and is of great theoretical

and practical interest.

In Chapter 4, we considered the problem of generating α-probabilistically fully-linear

models by analyzing a particular noise regime (σ-subgaussian noise) and limiting ourselves

to regression models on various design stencils. Under different design stencils, with a

particular interest in Monte Carlo sampling on a finite-difference coordinate stencil and

random uniform sampling in a ball, we gave theoretical minimum sampling rates necessary

to guarantee probabilistically fully linear models on a given ball. Most importantly, we

showed that the minimum sampling rates for finite-difference coordinate stencils and ran-

dom uniform sampling are roughly the same, only differing by a small numerical constant.

As demonstrated in the computational experiment of this Chapter, however, we see a prac-

tical preference for random uniform sampling. In this Chapter, we also exhibited in this

context a theoretical weakness of the standard strongly Λ-poised regression set definition in

the DFO literature; in particular, when trying to yield meaningful bounds in this minimum
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sampling context, the definition is simply too general and the obtained bounds are strictly

worse.

In Chapter 5, we changed our focus to deterministic black-box nonsmooth functions, f .

However, we assumed that the nonsmoothness was such that any query of a function value

at a point would identify that point’s membership to a smooth manifold of f . This led to

yet another extension of the model-based trust-region framework for DFO problems that we

called “manifold sampling”. On each iteration, manifold sampling uses (possibly randomly)

sampled manifold membership information to construct smooth “master models”, which

are treated like the usual smooth local models of trust-region methods, but with slight

modifications in the acceptance test. We saw numerical evidence suggesting a preference for

master models constructed using random queries (hence, yielding random models), and as

such, this work fits within the scope of this thesis. Throughout this Chapter, we limited our

attention to sums of absolute values of smooth (non-convex) black-box functions, because

this is one instance in which manifold membership is immediate via sign patterns. In

future work, it is of interest to find other interesting classes of problems that have not

been previously studied for which manifold membership can be determined from the black-

box. Another possible direction of future work is to extend the analysis to the case where

evaluations of the component functions in the absolute sum are subject to stochastic noise,

like in the assumptions of STORM, but we assume that we can build α-probabilistically

fully-linear models of the individual component functions for an appropriate α.

Finally, in Chapter 6, we considered `1-regularized sigmoidal loss minimization prob-

lems from machine learning. We proposed HAILSTORM, an algorithm that can be seen

as a variant of STORM that uses adaptive sampling methods to compute stochastic gra-

dient models and function value estimates. HAILSTORM includes a manifold sampling

step to handle the presence of the nonsmooth `1-regularization term, as opposed to the

proximal points common in line-search methods. We did not prove any convergence results

for HAILSTORM, but because the `1 term is deterministic given an iterate classifier wk,

the convergence of HAILSTORM should be straight-forward to demonstrate. This is a

subject of future work.
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Appendix A

Appendix

Algorithm 6: TR-SAA

1 (Initialization): Choose an initial point x0 and an initial trust-region radius
δ0 ∈ (0, δmax) with δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0,∞),
pmax = (n+ 1)(n+ 2)/2, pmin ≥ n+ 1. Set k ← 0. Select some initial interpolation
set Y0 ⊂ B(xk, δk) so that |Y0| ≤ pmax and x0 ∈ Y0. Compute an averaged function
value estimate f̄(y) = 1

pmin

∑pmin
i=1 f̃(y, ωi) at each y ∈ Y0.

2 while true do
3 (Update sample rate): Set sample rate pk = max{pmin + k, 1/δ2}.
4 (Update interpolation value estimates): For each y ∈ Yk ∩ Yk−1, compute

f̄(y) = 1
pk

[
∑pk

i=pk−1+1 f̃(y, ωi) + pk−1f̄(y)] and for each y ∈ Yk \ Yk−1, compute

f̄(y) = 1
pk

∑pk
i=1 f̃(y, ωi) .

5 (Model building): Build a quadratic model mk(xk + s) = fk + g>k s+ s>Hks
with s = x− xk that interpolates f̄(y) at the points of Yk.

6 (Step calculation): Compute sk = arg min
s:‖s‖≤δk

mk(s) (approximately) so that

sk satisfies (2.3).
7 (Estimate calculation): Compute new estimate fsk = 1

pk

∑pk
i=1 f̃(xk + sk, ωi) of

f(xk + sk). Denote the current estimate of f(xk) by f0
k .

8 (Acceptance of the trial point): Compute ρk =
f0
k − fsk

mk(xk)−mk(xk + sk)
.

9 If ρk ≥ η1 and ‖gk‖ ≥ η2δk, then xk+1 ← xk + sk; otherwise, xk+1 ← xk.
10 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γδk, δmax}; otherwise

δk+1 ← γ−1δk.
11 (Interpolation set update): Augment Yk with xk + sk. If |Yk| > pmax, remove

the point of Yk furthest from xk+1.
12 (Iterate): k ← k + 1.

13 end
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Algorithm 7: STORM for unbiased noise

1 (Initialization): Choose an initial point x0 and an initial trust-region radius
δ0 ∈ (0, δmax) with δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0,∞), pmin;
Set k ← 0. Select a regression set Y0 ⊂ B(xk, δk) satisfying |Y0| = pmin.

2 while true do
3 (Update sample rate): Choose a sample rate pk = max{pmin + k, 1/δ2}.
4 (Regression set update): Uniformly sample a regression set Yk ⊂ B(xk, δk)

satisfying |Yk| = pk.
5 (Compute new regression value estimates): For each y ∈ Yk, compute a

single estimate f̃(y, ω).
6 (Model building): Build a quadratic model mk(xk + s) = fk + g>k s+ s>Hks

with s = x− xk that regresses f̃(y) at the points of Yk.
7 (Step calculation): Compute sk = arg min

s:‖s‖≤δk
mk(s) (approximately) so that

sk satisfies (2.3).
8 (Estimates calculation): Compute new estimates f0

k =
∑pk

i=1 f̃(xk, ωi) and

fsk =
∑pk

i=1 f̃(xk + sk, ωi) of f(xk) and f(xk + sk).

9 (Acceptance of the trial point): Compute ρk =
f0
k − fsk

mk(xk)−mk(xk + sk)
.

10 If ρk ≥ η1 and ‖gk‖ ≥ η2δk, then xk+1 ← xk + sk; otherwise, xk+1 ← xk.
11 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γδk, δmax}; otherwise

δk+1 ← γ−1δk.
12 (Iterate): k ← k + 1.

13 end
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Algorithm 8: STORM for biased noise

1 (Initialization): Choose an initial point x0 and an initial trust-region radius
δ0 ∈ (0, δmax) with δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1), η2 ∈ (0,∞),
p0 ≥ n+ 1, pmax = (n+ 1)(n+ 2)/2. Set k ← 0. Select an interpolation set
Y0 ⊂ B(xk, δk) satisfying |Y0| = p0.

2 while true do
3 (Compute new interpolation value estimates): For each y ∈ Yk, compute

a (new) estimate f̃(y, ω).
4 (Model building): Build a quadratic model mk(xk + s) = fk + g>k s+ s>Hks

with s = x− xk that interpolates f̃(y) at the points of Yk.
5 (Step calculation): Compute sk = arg min

s:‖s‖≤δk
mk(s) (approximately) so that

sk satisfies (2.3).
6 (Estimates calculation): Compute new estimates f0

k = f̃(xk, ωi) and

fsk = f̃(xk + sk, ωi) of f(xk) and f(xk + sk).

7 (Acceptance of the trial point): Compute ρk =
f0
k − fsk

mk(xk)−mk(xk + sk)
.

8 If ρk ≥ η1 and ‖gk‖ ≥ η2δk, then xk+1 ← xk + sk; otherwise, xk+1 ← xk.
9 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γδk, δmax}; otherwise

δk+1 ← γ−1δk.
10 (Interpolation set update): Augment Yk with xk + sk. If |Yk| > pmax, remove

the point of Yk furthest from the new trust region center xk+1.
11 (Iterate): k ← k + 1.

12 end
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Algorithm 9: STORM for minimizing logistic loss

1 (Initialization): Choose an initial point x0 = (w0, β0) and an initial trust-region
radius δ0 ∈ (0, δmax) with δmax > 0. Choose constants γ > 1, η1 ∈ (0, 1),
η2 ∈ (0,∞), p0, pmax; Set k ← 0.

2 while true do
3 (Determine sample rate): Choose a sample rate pk. In our implementation,

we will use pk = min{pmax,max{100 ∗ k + p0, d1/δ2
ke}}.

4 (Model building): Uniformly (without replacement) draw a sample
Ik ⊂ {1, . . . , N}. Compute a stochastic gradient gk = ∇fIk(w, β) and stochastic
Hessian Hk = ∇2fIk(w, β). Define a quadratic model mk(s) = g>k s+ 1

2s
>Hks.

and stochastic Hessian
5 (Step calculation): Compute sk = arg min

s:‖s‖≤δk
mk(s) (approximately) so that

sk satisfies (2.3).
6 (Estimates calculation): Draw new samples I0

k , I
s
k and compute estimates

f0
k = fI0

k
(xk) and fsk = fIsk(xk + sk) of f(xk) and f(xk + sk), respectively.

7 (Acceptance of the trial point): Compute ρk =
f0
k − fsk

mk(xk)−mk(xk + sk)
.

8 If ρk ≥ η1 and ‖gk‖ ≥ η2δk, then xk+1 ← xk + sk; otherwise, xk+1 ← xk.
9 (Trust-region radius update): If ρk ≥ η1, δk+1 ← min{γδk, δmax}; otherwise

δk+1 ← γ−1δk.
10 (Iterate): k ← k + 1.

11 end
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