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Abstract

Inventory management is a fudamental problem in supply chain management. It is widely

used in practice, but it is also intrinsically hard to optimize, even for relatively simple in-

ventory system structures. This challenge has also been heightened under the threat of

supply disruptions. Whenever a supply source is disrupted, the inventory system is para-

lyzed, and tremenduous costs can occur as a consequence. Designing a reliable and robust

inventory system that can withstand supply disruptions is vital for an inventory system’s

performance.

First we consider a basic type of inventory network, an assembly system, which pro-

duces a single end product from one or several components. A property called long-run

balance allows an assembly system to be reduced to a serial system when disruptions are

not present. We show that a modified version is still true under disruption risk. Based

on this property, we propose a method for reducing the system into a serial system with

extra inventory at certain stages that face supply disruptions. We also propose a heuristic

for solving the reduced system. A numerical study shows that this heuristic performs very

well, yielding significant cost savings when compared with the best-known algorithm.

Next we study another basic inventory network structure, a distribution system. We

study continuous-review, multi-echelon distribution systems subject to supply disruptions,

with Poisson customer demands under a first-come, first-served allocation policy. We de-

velop a recursive optimization heuristic, which applies a bottom-up approach that sequen-

tially approximates the base-stock levels of all the locations. Our numerical study shows

that it performs very well.

Finally we consider a problem related to smart grids, an area where supply and demand

1



are still decisive factors. Instead of matching supply with demand, as in the first two parts

of the dissertation, now we concentrate on the interaction between supply and demand. We

consider an electricity service provider that wishes to set prices for a large customer (user

or aggregator) with flexible loads so that the resulting load profile matches a predetermined

profile as closely as possible. We model the deterministic demand case as a bilevel problem

in which the service provider sets price coefficients and the customer responds by shifting

loads forward in time. We derive optimality conditions for the lower-level problem to obtain

a single-level problem that can be solved efficiently. For the stochastic-demand case, we ap-

proximate the consumer’s best response function and use this approximation to calculate

the service provider’s optimal strategy. Our numerical study shows the tractability of the

new models for both the deterministic and stochastic cases, and that our pricing scheme is

very effective for the service provider to shape consumer demand.

2



Chapter 1

Introduction

Supply chains have expanded around the world along with the globalization of the economy.

Supply chain have reached a greater level of complexity and vastness than ever before. This

change has brought many advantages, as well as new challenges. Supply chains have become

more vulnerable to disruptins, such as those caused by extreme weather, natural disasters,

or labor strikes. Supply disruptions have brought a huge negative impact on the supply

chain itself. Multi-echelon inventory systems are hard systems to analyze when compared to

a single echelon system. The optimal inventory policy, and allocation policy if required, are

still unknown for many types of multi-echelon inventory systems. Part of our research aims

to contribute to the understanding of multi-echelon systems under the threat of disruptions

by proposing simple and efficient algorithms which can approximate the optimal inventory

policies for these systems.

In our first topic, we study assembly systems. These systems have been studied rel-

atively thoroughly, and there are existing algorithms for finding the optimal base-stock

levels for them. However, assembly systems subject to supply disruptions are a relatively

less studied area. The optimal inventory policy is unknown, and no exact algorithm is

available currently. We propose an inventory policy for assembly systems subject to supply

disruptions, and develop a simple heurisitic algorithm for optimizing base-stock levels of

this policy. The main idea behind our proposed inventory policy and algorithm is the non-

equivalence of assembly systems and serial systems under disruptions. When disruptions

are not present, it is well known that every assembly system is equivalent to a corresponding

3



serial system when operated optimally. But this equivalence is broken when the supply is

under disruption risk. We study another property of assembly systems under disruption risk

when operated optimally, which is similar to the original equivalence between assembly and

serial systems. With this new property, we reduce the assembly system under disruption

risk into an “almost serial” system, which has a simpler structure to facilitate our analysis.

We develop a simple heuristic procedure for optimizing the base-stock levels in this “almost

serial” system, to approximate the base-stock levels for the original assembly system under

supply risk.

In our second topic, we study distribution systems subject to supply disruptions. Dis-

tribution systems are one of the most difficult inventory network topologies to analyze and

most previous approaches in the existing literature are heuristics. For distribution systems

without supply disruption risk, the optimal inventory and allocation policies are unknown;

exact algorithms are computationally expensive; and most exisiting work focuses on a rela-

tively simple structure, one warehouse multiple retailer (OWMR) system. On top of these

difficulties, supply disruptions add another layer of difficulty. We consider distribution

systems with more than just two echelons, and we also take supply disruptions into con-

sideration. We analyze the effects of supply disruptions on inventory levels, and develop

a heuristic algorithm utilizing these effects to optimize base-stock levels in a multi-echelon

distribution system under supply risks, assuming a FIFO allocation policy and a base-stock

inventory policy. The main idea behind our recursive algorithm is to analyze the effect of

one stage’s inventory level on its successor’s inventory level, so that we can incorporate its

successor’s cost when calculating its base-stock level. This algorithm is easy to implement,

and it also yields good performance.

In the last chapter, we turn our attention to energy systems. Instead of merely providing

enough supply to meet the demand with as little cost as possible as in the first two parts

of the dissertation, now we concentrate on the interaction between supply and demand.

The previous two chapters study a problem in which items can be stored to satisify future

demand, whereas in an electric grid, supply and demand have to be exactly matched at all

times. Since electricity service providers purchase electricity from the day-ahead market,

any deviation in load from this purchased amount might result in some extra costs. Thus

4



we focus on the problem of how an electricity service provider should set prices so that

the consumer reacts to this price and the resulting load profile matches a predetermined

profile as closely as possible. We study both deterministic and stochastic demand cases. We

analyze the consumer’s best response function, and use it to calculate the service provider’s

optimal strategy. Our numerical study shows the tractability of our new models for both

cases.

5



Chapter 2

Management of an Assembly

System Subject to Supply

Disruptions

2.1 Introduction

2.1.1 Assembly Inventory Systems

Inventory systems widely exist in our daily life, supermarkets, online store warehouses,

and factories. It has become an indispensable part of modern life. Inventory systems can

take various structures. The most comon ones are serial systems, assembly systems, and

distribution systems. In a serial system, each location has one customer and one supplier.

The system is connected like a string of locations with an outside supplier in the beginning,

and an outside customer at the end. In an assembly system, there can be several different

suppliers for each location, each supplying a different subcomponent or raw material. And

these subcomponents are assembled into components to satisfy customer demand. There

is a single final product at the end location of the assembly system. In contrast to an

assembly system, in a distribution system, there can be several different customers for each

location, and only one supplier. It is the exact mirror image of an assembly system. All

three network structures can represent the configuration of either a production system or a

6



transportation system. They are building blocks for more complicated network structures.

Refer to Figures 2.1, 2.2 and 2.3 for examples of a serial system, assembly system and

distribution system. The serial system has the simplest network structure among all three.

Figure 2.1: Example of a serial system

Figure 2.2: Example of an assembly system

Figure 2.3: Example of a distribution system

It has been extensively studied and relatively well understood. Clark and Scarf [16] studied

the problem of determining optimal policies in a multi-echelon model. For a serial system

with N echelons, their algorithm recursively optimizes N nested convex functions. More

research followed this algorithm. We provide a brief summary of the literature on serial

inventory systems in section 2.2.2. van Houtum [84] provides an excellent review of multi-

echelon inventory theory. We refer the reader to it for more details.

In this chapter, we consider an assembly system, where exactly one location receives

demand from an outside source, and orders from multiple other locations. This location

assembles components from other locations into final products to satisfy the outside demand.

In order to produce one final product, this location needs one unit of each component from

all of its suppliers. These other locations also order from their multiple suppliers, assemble

7



subcomponents from their respective suppliers into components to meet the demand from

the final single location, and similarly for all other upstream locations. The most upstream

locations order from outside sources which are assumed to have sufficient supply capacity.

Hence, the goods are assembled during their flow from upstream to downstream. In contrast,

information flows in the opposite direction, from downstream to upstream. We call a

location that satisfies the demand of location i a predecessor of i, and the location that

places an order to i as the successor of i. In an assembly system, each location has only one

successor and has at least one predecessor. The outside demand in each period occuring at

the end location is assumed to be a random variable.

One issue for inventory systems with multiple locations is the control mechanism. It is

mostly about information: which location knows what information, when do they know it,

and how do they use it. Typically, there are two types of control mechanisms, centralized

control and decentralized control. In centralized control, there is only one decision maker

who knows all the information, and makes all the decisions for every location. It could

be either an outside entity or one of the locations in the inventory system. The other

mechanism is decentralized control, in which every participants is its own decision maker.

Each location in the supply chain determines when to order, and how much to order for

itself. In our work, we assume centralized control for this assembly system, as in a factory,

it is more common that the manufacturing of every component is under centralized control.

2.1.2 Supply Disruptions

As companies have increasingly started sourcing globally, supply chains have become more

widely spread around the globe. This benefits companies in various ways, but it also

increases the risk of possible supply disruptions. Despite how much effort is spent on keeping

the supply chain functioning normally, supply disruptions inevitably happen from time to

time. Whenever a disruption happens, it has a major impact on the whole supply chain.

For example, when a massive earthquake and tsunami happened in Japan in 2011 [43][77],

the Sendai Nikon plant was severely damaged in this disaster. The plant closure had an

impact directly on camera and lens production, as well as further afield. To deal with this,

Nikon had to react proactively. It shifted this production to Notion VTEC to resume its

8



normal operations with minimum delay. There are also countless other examples showing

the profound impact of supply disruptions. This shows the importance for companies to

have better strategies in preparing for supply disruptions.

There are three typical categories of supply uncertainty. The first one is supply disrup-

tions, such as the Nikon’s production in the Japan 2011 earthquake and tsuanami. When

a company’s supply is disrupted, its supply process comes to a halt, or it won’t receive

any new items that were supposed to be delivered until the supply disruption process is

completely over. The second one is yield uncertainty. It means the actual amount of items

delivered by the supplier could be a random number dependent on the ordered quantity. For

example, among each batch of products delivered, some products might have defects, which

makes them unwanted. The number of defective products could be a random variable. The

third form of supply uncertainty is leadtime uncertainty. When the leadtime is stochastic,

the delivery of products takes a random amount of time, but the exact amount of products

ordered would arrive. For our study, we only consider the first type, supply disruptions.

Disruptions can happen routinely due to various reasons such as natural disasters, ma-

chine breakdowns, labor strikes and so on. Disruptions could either halt the transportation

process, or cause malfunction in the production process in some facilities. Most inventory

models can handle demand uncertainty relatively well. However, they do not provide same

level of protection against supply uncertainty, especially supply disruptions. Even though

supply disruptions can not be prevented, it is still cruicial for companies to plan ahead, so

that possible damage is minimized. There are different tactics to mitigate supply disruptions

as summarized in Tomlin [82].

• Passive Acceptance: This is the default strategy against supply disruption risks. The

company passively accepts supply risks, and it sources from the unreliable supplier

exclusively without any extra inventory to protect against supply disruptions.

• Inventory Mitigation: The company sources from the unreliable supplier exclusively,

but it carries some extra inventory to mitigate supply disruptions, in addition to the

inventory for regular demand.

• Sourcing Mitigation: The company sources exclusively from a reliable supplier. Then

9



there is no risk of supply disruptions.

• Contingent Rerouting: The company sources exclusively from an unrelialbe supplier

when it is available, and it carries no extra inventory to mitigate supply disruptions in

addition to the inventory for regular demand. When the supplier becomes unavailable

due to supply disruptions, it reroutes to a reliable supplier to replenish its inventory.

• Mixed Strategy: The company could choose a combination of tactics to mitigate the

effect of supply disruptions. For example, the company could source exclusively from

an unrelialbe supplier when it is available, and carry some extra inventory to mitigate

supply disruptions in addition to the inventory for regular demand. It could also

reroute to a reliable supplier to replenish its inventory during a supply disruption.

The best tactic for each company is determined by the nature of the disruptions, as well as

the company’s goals. In this work we only focus on the use of inventory mitigation to tackle

supply disruptions. With sufficient inventory on hand, excess stockout cost, expediting cost,

and loss of goodwill cost can be reduced, but too much inventory can also cost a fortune. It

is necessary to reach a balance between stocking enough inventory to protect against supply

disruptions and keeping a low inventory level to save cost.

In this work, we address this issue, for an assembly system with a single end product, for

which one or several components, or the end product itself, is under supply risk. Disruption

of assembly components or subassemblies could be a worse problem than that of an end

product to be sold at a retail store. In an assembly system, every component is necessary,

and a shortage of one component could shut down the whole manufacturing system. It can

not only disrupt final product delivery, but also incur extra cost for other components or

subassemblies as they would have no option but to wait. It would be beneficial to find a

good inventory policy to deal with disruption risks in assembly systems.

We build a model of an assembly system that produces one final end product to satisfy

stochastic outside demand, with some locations in the system under supply risk. If there is

no disruption and every supplier is perfectly reliable, it is well known that the system can

be reduced to an equivalent serial system (Rosling [65]). However, this simple and exact

equivalence does not hold if there is a potential supply disruption (DeCroix [18]). The
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presence of disruptions interferes with a key concept called long-run balance. Inspired by

the violation of long-run balance, we explore what other properties hold for the optimal

policy. The new property we identify suggests a way to reduce the assembly system into

a serial system with some extra stages. Even though the original system and the reduced

system are not strictly equivalent, this reduced system still provides us with an easier

approximate way to deal with the assembly system. We propose an inventory policy for

the original system based on the reduced system. We also propose an algorithm for this

inventory policy based on the classical recursive algorithm for serial systems, so that an

approximation of the inventory policy parameters for the original assembly system can be

obtained easily. We test it on a set of instances, and find it yields good solutions, with

significant cost savings achieved on the examples tested.

2.2 Literature Review

In this section, we review the existing work on serial systems, assembly systems, and inven-

tory models with supply risks.

2.2.1 Serial Systems

A serial system is the simplest network structure among all multi-echelon systems. We want

to determine optimal inventory policies for all locations so that the average total inventory

cost is minimized. This research was initiated by Clark and Scarf [16]. The authors consider

a serial system with stochastic demand but no supply disruptions under periodic review with

constant leadtime. They determine the optimality of order-up-to (base-stock) policies based

on echelon stock calculations to minimize the total inventory cost, and propose a recursive

algorithm for computing the optimal base-stock levels. They argue that the optimal ordering

decisions are such that they keep the echelon inventory position at a constant level. The

echelon inventory position is the amount obtained by adding the local inventory positions

at the location and all its downstream locations. Axsater and Rosling [7] compare local and

echelon inventory policies for multi-echelon serial systems. They argue that a local stock

policy can always be replaced by an equivalent echelon stock policy.
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Following the study by Clark and Scarf [16], many other researchers have contributed

to serial inventory theory. Federgruen and Zipkin [23] extend the result of Clarf and Scarf

[16] to the infinite horizon case, for both discounted costs, as well as average costs. They

show that the infinite horizon problem is much easier to solve compared to the finite hori-

zon problem. The authors also study normally distributed demand, and acheive further

simplifications. Chen and Zheng [14] establish a lower bound and evaluate its performance

for a one-warehouse multi-retailer system by comparing it with simple, heuristic policies.

It proves to be good for small sized problems. This paper also offers a simplified proof for

the optimality results of serial and assembly systems.

The algorithm of Clark and Scarf [16] calculates the exact base-stock levels for serial

systems. It requires minimizing N nested convex functions recursively. It can only be

implemented numerically, and closed form solutions are not available. Shang and Song [73]

develop a simple but accurate heuristic to identify the key determinants of the optimal

policy. Their heuristic minimizes the lower and upper bounds functions for the echelon cost

functions, and the minimizer forms the upper and lower bounds for the optimal solutions.

Their heuristic takes the simple average of the solution bounds, but the average error of the

heuristics is surprisingly good, with only 0.24% gap.

2.2.2 Assembly Systems

Schmidt and Nahmias [71] consider an assembly system where two components are assem-

bled into one final product. They find the optimal ordering policy for both the components

and the end product, using dynamic programming. The optimal policy has a complex

structure, where the optimal order for one componenet depends on the inventory status of

the other.

Rosling [65] studies a general assembly system over an infinite horizon. He shows that the

system should satisfy a condition called long-run balance when operated optimally. This

condition allows the system to be reduced to an equivalent serial system. The resulting

serial system can be solved optimally with the algorithms developed by Clark and Scarf

[16], Federgruen and Zipkin [23], Chen and Zheng [14].

Bollapragada et al. [9] study an assembly system with local base-stock policies where
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component suppliers has random production capacity. Their model minimizes the cost

under service onstraints. They propose a decomposition approach to find near-optimal

base-stock levels, and reaches only 0.66% average error across the instances tested.

2.2.3 Supply Disruption

There are many papers on supply disruption. We briefly review the exisiting literature on

inventory models under supply disruption risks. They can be categorized into two groups:

single supplier models and multiple supplier models.

Single Supplier Models

Single supplier models assume there is only one unreliable supplier to order from, and no

sourcing mitigation is available. Meyer et al. [53] are the first to consider supply disruptions.

They consider a single stage production/storage system facing constant demand, and subject

to stochastic failure and repair. They formulate the average inventory level in the storage

tank for the general case, as well as Poisson failures with exponential repair times, and

Poisson failures with constant repair times. Posner et al. [62] consider the same problem

with a compound Poisson demand process, and derive an explicit closed form solution for

the steady-state distribution of the inventory level.

Parlar et al. [61] model the disruption as a two-state continuous time Markov chain.

They determine the optimal reorder point, as well as the optimal order quantity. In their

work, it was assumed that the state of the system was identified at a cost, so how long to

wait before the next order during the off state is another decision variable. The objective

cost function is constructed by the renewal reward theorem. This paper also considers a

random yield problem.

Ross et al. [66] considers a problem with time dependent disruption probability, as

well as time dependent demand. It is modeled as a two-dimensional non-homogeneous

continuous-time Markov chain, and solved numerically to evaluate the total cost of different

ordering policies, some of which are time dependent while others are not. They compare

the proposed policies under different cost, demand and disruption parameter settings. They

find non-stationary policies have a better balance between cost and robustness.
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Moinzadeh et al. [56] study a system with a constant production rate and demand rate,

but subject to random disruption. The time interval between disruptions is exponentially

distributed, and there is positive production setup cost and/or setup time. The authors

propose a procedure to find optimal values for an (s, S) policy. This work also indicates

that setup cost reduction is more effective when the system is more reliable, and setup cost

reduction in an unreliable system would lead to higher safety stock level.

Liu and Cao [51] examine a production-inventory system with a compound Poisson

process and general demand size distribution. They suggest one condition to ensure that

the steady state distribution of the inventory process exists, and derive an expression for

it, then compute the cost for exponentially distributed demand sizes.

Gupta [32] studies a (Q, r) model with Poisson demand and with exponentially dis-

tributed lengths of on and off periods. Unmet demands are lost. He analyzes two cases:

one with negligible leadtime but arbitrary number of size-Q outstanding orders; and an-

other with constant leadtime but at most one outstanding order. The author formulates an

exact expression to minimize total cost. His computation indictates that ignoring supply

uncertainty or approximate modeling could be costly.

Mohebbi [54] considers a continuous-review inventory system with compound Poisson

demand and Erlang distributed leadtime under loast sales. He calculates exact analytical

expressions for the case when demand sizes are exponentially distributed.

Parlar [60] considers a continuous-review inventory model with random demand and

random leadtime. The supplier availability is determined by an alernating renewal process.

The author develops the average cost objective function using the renewal reward theorem

by identifying regnerative cycles of the inventory position process. An algorithm is provided

to find the optimal q and r for the (q, r) policy.

Arreola-Risa et al. [2] explore a problem where unmet demand is partially lost and

partially backordered. The authors apply an (s, S) policy, and propose an algorithm to

compute optimal values of the policy parameters. They also show how the optimal policy

parameters would change as the severity of the supply disruption changes, or the behavior

of unmet demand changes.

Özekici and Parlar [57] consider an infinite-horizon periodic-review inventory model with
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unreliable suppliers where the demand, supply and cost parameters change randomly. Their

study shows that an environment dependent base-stock policy is optimal when there is no

fixed ordering cost, and a two-parameter environment-dependent (s, S) policy is optimal

under some conditions.

Güllu et al. [31] study a periodic review inventory model with deterministic dynamic

demand and nonstationary supply unavailability. The authors show the optimality of an

order-up-to policy, and provide a newvendor-like formula to calculate the order-up-to level.

Li et al. [50] investigate a periodic review model with random demand and unreliable

supply. Both the lost sales case and the backorder case are studied, for the discounted cost

criteria, as well as the long-run average cost. They derive structural properties and bounds

on the optimal policy for the linear cost model.

Multiple Supplier Models

Parlar and Perry [59] analyze (Q, r) models with supply uncertainty with single and multiple

suppliers. The authors calculate the average cost objective function for the case of single

and multiple suppliers with concepts from renewal reward processes. They also show that

as the number of suppliers increases, the model reduces to the classical EOQ model.

Tomlin and Wang [83] consider a multiple product setting in which a company can

invest in product-dedicated resources and totally flexible resources. The authors consider

four different strategies: a single-source dedicated strategy, a single-source flexible strategy,

a dual-source dedicated, and a dual-source flexible strategy. They investigate how product

portfolio, resources, and the firm influence the design strategy through a numerical study.

They also show that dual sourcing is preferred when supply chain reliability decreases.

Tomlin [82] studies a single-product setting in which a company can source from one

unreliable supplier and one reliable but more expensive supplier. He finds that a supplier’s

disruption profile-the percentage uptime-disruption length-the uptime length, are key fac-

tors in deciding the optimal strategy. He also shows that a mixed mitigation strategy, i.e.

partial sourcing from the reliable supplier and carrying inventory, is optimal if the firm

is risk averse, or the unreliable supplier only has finite capacity. He also discusses the

conditions under which contingent rerouting is optimal.
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Dada et al. [17] consider a single period newsvendor problem with multiple suppliers

under supply risks. With some probability, unreliable suppliers can deliver an amount

strictly less than the amount ordered. The authors show that cost takes precedence over

reliability, which means a given supplier is chosen only if all less expensive suppliers are

chosen, even if this supplier is more reliable. But the relative size of orders to a given

supplier depends on its reliability.

Chopra et al. [15] study a model where a company has a perfectly reliable suplier,

and another supplier subject to both random yield and disruption risk. The authors argue

the importance of planning for the right forms of supply uncertainty that a company faces.

They show that if the supply uncertainty mostly comes from yield uncertainty, the company

should order more from the unreliable supplier to acheive lower cost; and if the supply

uncertainty mostly comes from disruptions, it is better to order more from the reliable

source.

Schmitt and Snyder [72] consider a firm facing both supply disruptions and yield uncer-

tainty. The authors argue the importance of analyzing inventory models under supply risk

for a sufficiently long time horizon. They study a problem in which a firm has an unreli-

able supplier which could be completely disrupted, and is also subject to yield uncertainty.

They consider one case where only one unreliable supplier exists, and a second case where

a second reliable but more expensive supplier is available. They develop models for both

cases and compare the results to those found when a single-period approximation is used.

The results demonstrate that a single-period approximation is not accurate, as it causes

increases in cost and under-utilizes the unreliable supplier.

Snyder et al. [76] provides an excellent review on supply chain disruptions. They summa-

rize the existing work into six different categories: evaluating supply disruptions, strategic

decisions, sourcing decisions, contracts and incentives, inventory, and facility location.

This work is built on the literature on optimal inventory policies for assembly systems

with random demand but no supply disruptions. There are several relevant works on this

topic. Rosling [65] showed that an assembly system can be reduced to an equivalent serial

system for stochastic demand with no supply disruptions. He introduced the notion of

long-run balance, which ensure that components arrive at the assembly point in a matched
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way, so nothing is left over. It is optimal to preserve this long-run balance under an optimal

inventory policy. DeCroix [18] explained why the assembly system cannot be reduced to a

serial system if disruptions are present, and he proposed a method to replace some subsys-

tems of an assembly system by a series structure, as well as a heuristic to solve this problem.

Clark & Scarf [16] initiated a recursive algorithm for computing the optimal base-stock lev-

els for a serial system with stochastic demand but no supply disruptions. Federgruen &

Zipkin [23] and Chen & Zheng [14] kept working on this topics. Zipkin [88] provides a more

detailed description of the recursive algorithm and these results.

Our work is closest to that of DeCroix [18]. We consider inventory policies for a periodic

review assembly system with stochastic demand under supply risk. We explore why this

system can’t be reduced to a serial system, and what implication it has for the optimal

inventory policy. We build our work on the reason for this non-equivalence, and propose

a new policy to deal with it. Based on this policy, we propose a method to partially

reduce the assembly system into a serial system. Also, a heuristic algorithm is suggested

for determining the parameters of the reduced system.

2.3 Model Basics

We consider an assembly network with N stages which are indexed by i = 1, 2, · · · , N .Stage

1 is the final product. Each stage i orders from its predecessors, or assembles from subcom-

ponents obtained from its predecessors, and meets the demand from its successor. Each

stage i might have one immediate successor which is denoted as S(i), and all of its down-

stream stages are denoted by the set A(i). It might also have multiple immediate predeces-

sors denoted as P(i). Stages without predecessors order from outside suppliers. Without

loss of generality, we assume each stage i requires exactly 1 component from each of its

immediate predecessors to produce item i. Stage i requires a leadtime li for the delivery to

stage i, or assembly of item i.

This work considers a periodic review case, and in each period t, the system sees a

stochastic demand Dt for the end product. Assume the random demand is stationary over

time. In each period, the unmet demand for the end product is backordered with a cost of
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Figure 2.4: Example of general assembly system

p per item per period. In addition, every unit of item i in the system, either in transit from

i, or in inventory at stage i, incurs a cost of Hi per period. Define the echelon holding cost

as the extra cost incurred when predecessor items are assembled, i.e. hi = Hi−
∑

k∈P(i)Hk.

There is no fixed ordering cost in this model.

In this system, a subset J of stages are subject to stochastic supply disruptions among

their predecessors. In the beginning of each period, the state of supply availability for each

i ∈ J is examined. If the suppler of any stage i is unavailable, stage i can not place any new

order, or the assembly process of new units of item i cannot be initiated. Previously shipped

items or items already in the assembly process are not affected, and stage i’s predecessors

can still observe the whole system’s state to make their own decisions. The disruption

status for i’s suppliers is governed by a two-state discrete-time Markov chain. For stage

i, its supply disruption status turns from available in the current period to unavailable in

the next period with probability βi. If it is unavailable, it becomes available in the next

period with probability γi. The probability of being disrupted for k consecutive periods is

denoted as πik. For the sake of simplicity, this work only focuses on the case with only one

unreliable supplier. The case with multiple unreliable suppliers would be the same, only

differs in some notation and conditions.

The events in each period happen in the following order: (1) pipeline orders arrive; (2)

the state of the system is observed; (3) ordering decisions are made; (4) customer demand

is observed; (5) costs are charged. See Figure 2.5.
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Figure 2.5: Sequence of events

In this work, we use the concept of echelon inventory, which is basically the same as it is

in serial systems. Ii includes the inventory that is stored at stage i and all of its successors,

and it also includes the unit i that has already been assembled into other product.The

notation used in this model, which is based on the notation of Rosling [65], is as follows:

Mi : total leadtime for item i and all its successors: Mi = li +
∑

k∈A(i) lk, ∀i = 1, 2, · · · , N .

We assume the stages are indexed in a way such that Mi ≥Mi−1,∀i;

Li : equivalent leadtime for item i: Li = Mi −Mi−1;

si : echelon base-stock level of item i for the state when every supplier is available;

Xi,t : echelon inventory position of item i in period t after pipeline order arrives and before

the ordering decision is made;

Yi,t : echelon inventory position of item i in period t after the ordering decision is made;

X l
i,t : echelon on hand inventory of item i in period t after pipeline order arrives and before

the ordering decision is made:

X l
i,t = Yi,t−li −

t−1∑
k=t−li

Dk

XL
i,t : echelon inventory position of item i in period t ordered Li periods ago or earlier:

XL
i,t = Yi,t−Li −

t−1∑
k=t−Li

Dk

X ′i,t : local on hand inventory of extra item i, which is not assembled due to shortage of

other items, and is stored at stage i in period t after pipeline order arrives and before the

customer demand is observed, ∀i ∈ J . X ′i,t is included in Xi,t;
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α : discount rate for cost in each period.

Here we know that Xi,t = Yi,t−1 − Dt as the echelon inventory faces outside demand

directly, and Yi,t ≥ Xi,t, as negative orders are not allowed. Also, the assembly ordering

decision for item i is constrained by its immediate predecessors, Yi,t ≤ Xj,t, ∀j ∈ P(i).

When the supplier is available, the system functions the same way as an assembly system

without supply risk.

Our goal is to find a policy that minimizes the expected inventory cost per period over

an infinite horizon. In each period, the inventory level of the end product 1 is X1,t − Dt,

so there is inventory holding cost Hi(X1,t −Dt)+, as well as backorder cost p(X l
1,t −Dt)−,

for item 1. For other stages, the amount of item i at stage i is Xi,t −Dt, so the respective

holding cost is hi(Xi,t − Dt). Summing up all costs in terms of echelon holding cost, and

following similar computations about echelon inventory cost and local inventory cost as in

Zipkin [88], we have the following total cost in period t:

N∑
i=1

[hi(Xi,t −Dt)] + (p+H1)[X1,t −Dt]−

Let Ȳi,t denote an upper bound for Yi,t, the echelon inventory position for item i in

period t after ordering decisions are made. Let K be the set of stages that order directly

from outside suppliers. There are different values for Ȳi,t for different disruption scenarios:

Ȳi,t =


∞ if supply is available in period t, and i ∈ K

mink∈P(i){Xk,t} if supply is available in period t, and i /∈ K

Xi,t if supply is unavailable in period t

Then taking expected values overDt, and summing over all periods, the assembly problem

formulation is as follows:

min
Yi,t

E

[ ∞∑
t=1

αt−1

(
N∑
i=1

[hi(Xi,t −Dt)] + (p+H1)[X1,t −Dt]−
)]

s.t. Xi,t ≤ Yi,t ≤ Ȳi,t
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Here we assume that hi > 0, ensuring the holding costs financially and physically increase

from upstream to downstream as product goes through the assembly system. We also

assume
∑N

i=1 hi < p+H1, which ensures it is always cheaper to hold inventory rather than

to stock out.

2.4 Policy Properties

The assembly system as formulated in the previous section is computationally intractable.

The expectation is very hard to calculate, and the constraint involves random variables.

One possible approach is dynamic programming. However, the state space is trememduous,

since it would be necessary to keep track of all order shipments, as well as disruption

status. Curse of dimentionality would make this problem prohibitively difficult to solve. As

discussed above, Rosling [65] solves the problem of assembly systems without disruptions.

He shows that the assembly system is equivalent to a serial system when operated optimally,

and each stage follows a base-stock policy. The algorithm to find the base-stock levels

of serial system is already well-known. This greatly simplifies the problem of assembly

systems without disruptions. If a similar equivalence or modification could be applied to

the assembly system with supply disruptions, it could facilitate the analysis a great deal.

In Rosling’s work, there is a key concept called long-run balance which leads to the

equivalence between assembly systems and serial systems. Define XM−µ
i,t to be the echelon

inventory position of item i at time t that is ordered Mi − µ periods ago or earlier:

XM−µ
i,t = Yi,t−(Mi−µ) −

t−1∑
k=t−(Mi−µ)

Dk

The original long-run balance in Rosling [65] is defined as follows: item i is in long-run

balance in period t if

XM−µ
i,t ≤ XM−µ

i+1,t , ∀µ = 0, 1, · · · ,Mi − 1.

If this condition holds for all i = 1, 2, · · · , N − 1, we say that the system is in long-run

balance. This concept says that in long-run balance the inventory positions equally close
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to the end item increase with i, i.e., with total leadtime. This means that for item i and

j in the assembly system, if i is upstream from j, then there should be at least as many

units of item i as item j, since item i is cheaper and also takes a longer time to obtain.

Moreover, even though long-run balance does not state this explicitly, item i and i + 1

should be ordered in a perfectly matched way when the system is operated optimally. This

means the same amount of both items should reach their common successor in the same

period, since any extra units would incur some unnecessary cost. According to Rosling’s

argument, the optimal inventory policy for an assembly system without disruptions would

follow this long-run balance, and as a consequence, the assembly system is equivalent to a

serial system.

However, this might not be true for some items if the assembly system is under disruption

risk. To demonstrate this, consider the three-stage system in Figure 2.6.

Figure 2.6: Assembly system example

Stage 1 needs both item 2 and item 3 to assemble item 1, while stages 2 and 3 order from

outside suppliers. If we want to keep the long-run balance for stage 2 and 3 for µ = M2, we

would require:

Y2,t = XM−M2
2,t ≤ XM−M2

3,t = Y3,t−(M3−M2) −
t−1∑

k=t−(M3−M2)

Dk = Y3,t−1 −Dt−1

This implies that the inventory position of item 2 should never exceed the inventory position

of item 3 ordered 1 period ago. Otherwise, there would be some extra units of item 3, as no

more units of item 2 would arrive during the same period. Without disruptions, it would

be optimal to keep this long run balance as it would prevent storing extra units. But under

disruption risk, this might not hold. For the case when stage 2 is disrupted and cannot

meet the demand from stage 1, it might be useful to have some extra units of item 2 at
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stage 2. When a disruption happens, stage 2 might not place any new order to its supplier,

but it could satisfy the demand from stage 1 using this extra units, so that stage 1 could

keep assembling item 1 as it can still receive components from stage 3. In this case, Y2,t

could be larger than XM−M2
3,t , which violates long-run balance.

Due to the lack of long-run balance, an assembly system subject to supply disruptions

cannot be reduced into an equivalent serial system. However, this concept still provides

us some insight on how to find good solutions for the base-stock levels. Although the

optimal policy does not preserve long-run balance for the entire system, the optimal policy

still preserves item-specific long-run balance for some stages, as stated in the following

Proposition.

Proposition 2.1 (DeCroix [18]): For each item i such that {{i} ∪ A(i)}∩J = ∅, the

optimal ordering policy in each period satisfies Yi,t ≤ max
{
XM−Mi
k,t , Xi,t

}
for all k > i.

For each item i such that {{i} ∪A} ∩ J 6= ∅, the optimal ordering policy in each period

satisfies Yi,t ≤ max
{
XM−Mi
j,t , Xi,t

}
,∀j > i, such that max {k :∈ {{i} ∪ A(i)} ∩ J} = max

{k :∈ {{j} ∪A(j)} ∩ J}.

Proof. See DeCroix [18].

This Proposition states that item-specific long-run balance is preserved by the optimal

ordering policy for stages unaffected by disruptions. As for stages affected by disruptions,

the optimal policy preserves iterm-specific long-run balance relative to other stages which

are affected by disruptions at the same downstream stages. DeCroix [18] introduces partial

reduction of the assembly system based on this partial preservation of long-run balance.

Our policy differs from DeCroix [18]’s by recognizing that, as explained previously, it

might be cheaper to store some extra units i at stage i, if stage i is under supply disruption

risk. Consider the system in Figure 2.6. When a disruption happens to stage 2’s supplier,

stage 2 stops ordering new items, while stage 3 is functioning normally. Stage 1 could still

utilize the extra units of item 2 to continue the assembly process to meet the demand,

and this extra inventory of item 2 would not be replenished until the disruption is over.

The following Proposition characterizes the condition under which it is optimal to hold this

extra inventory at stages with supply disruption risk.
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Proposition 2.2: For stage i facing supply disruptions, there exists a cost pi such that

it is optimal to keep some extra units of i at stage i if and only if

∞∑
k=0

πikF
k+1(si)Hj <

∞∑
k=1

πik[1− F k+1(si)]pi;

where F k is the cdf of k consecutive periods’ worth of demand, and pi is a cost related

to the shortage of one unit i for one unit time, which is dependant on si. Moreover, it is

optimal for this extra inventory to follow a base-stock policy.

Proof. Assume the cost incurred by a shortage of item i is pi per item per unit time. As

stage i faces supply disruption risks, it has two choices, either to store some extra units i in

addition to si or not. If stage i stores one extra unit of item i, stage i will not be disrupted

with probability πi0, and the extra unit of i will be not used with a probability of F 1(si);

with probability πi1, stage i will be disrupted for one period, and the extra unit of i will be

not used with a probability of F 2(si); with probability πi2, stage i will be disrupted for two

periods, and the extra unit of i will be not used with probability F 3(si); and so on. So the

expected probability of holding this unit is
∑∞

k=0 π
i
kF

k+1(si). The expected cost of holding

one extra unit is
∑∞

k=0 π
i
kF

k+1(si)Hi. Similarly, with probability
∑∞

k=1 π
i
k[1 − F k+1(si)],

there will be a demand for the extra unit of i. The expected cost for not holding one extra

unit is
∑∞

k=1 π
i
k[1− F k(si)]pi. So if

∞∑
k=0

πikF
k+1(si)Hi <

∞∑
k=1

πik[1− F k+1(si)]pi,

it is better to accept the stockout, and otherwise it is optimal to carry some extra units of

item i.

If the condition holds, it would be better for stage i to hold some extra units of item i.

We denote Dk as k consecutive periods’ worth of demand. For the extra amount of inventory

i, it would only be used when demand is greater than si. With probability πi0F
1(si), there

will be a demand of D1− si for this extra inventory i; with probability πi1F
2(si), there will

be a demand of D2− si for it; with probability πi2F
3(si), there will be a demand of D3− si

for it; similarly with probability πinF
n+1(si), there will be a demand of Dn+1−si for it, and
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so on. So this is exactly the same as a single stage system with supply disruptions, except

the probabilities are different. The optimality of base-stock policy for this type of system

is well known.

We denote the base-stock level for the extra inventory of item i as s′i. This extra safety

inventory is replenished whenever the disruption is over and the unreliable supplier has

enough inventory to replenish. Once the supplier is disrupted and no more new units are

coming in, it is utilized to satisfy demand from downstream.

With the possible extra units to protect against supply disruptions, long-run balance

does not necessarily hold when the system is operated optimally. But if the amount of extra

units is excluded from consideration, everything else functions in a way such that long-run

balance is preserved, just as though there is no supply uncertainty. We call this generalized

item-specific long-run balance, which is stated in the following Proposition:

Proposition 2.3: For any item i, it is optimal to stay in generalized item-specific long

run balance:

XM−µ
i,t −

∑
j∈A(i)∪{i}

X ′j,t ≤ X
M−µ
k,t −

∑
j∈A(k)∪{k}

X ′j,t, ∀k > i, ∀µ = 0, 1, · · · ,Mi − 1.

Proof. The amount of extra units of item i stored at stage i is X ′i,t, and the amount of

all possible extra inventories of stage i’s downstream stages is
∑

j∈A(i)X
′
j,t. So XM−µ

i,t −∑
j∈A(i)∪{i}X

′
j,t could be considered as the amount of echelon inventory that is flowing in

the system since Mi − µ periods ago, while all the extra inventory still stays in the system.

During the period when stage i and k’s supply is available, they both function the same

as the case with no disruptions. This is because XM−µ
i,t = Yi,t−(Mi−µ) −

∑t−1
j=t−(Mi−µ)Dj ,

and Yi,t−(Mi−µ) is not affected as there is no supply disruption, and Dj is independant of

the system. So the system satisfies long-run balance, if the extra amounts
∑

j∈A(i)∪{i}X
′
j,t

and
∑

j∈A(k)∪{k}X
′
j,t are excluded from consideration.

Next consider the case where stage i’s supply is disrupted, and stage k’s supply is

available. As Mk > Mi, stage k is to the upstream of stage i. Its ordering decision is not

affected by stage i’s supply status, and it can keep ordering normally. Stage i can no longer
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make any new order, as its supplier is currently unavailable. So XM−µ
i,t −

∑
j∈A(i)∪{i}X

′
j,t

decreases by Dt for period t + 1, while XM−µ
k,t −

∑
j∈A(k)∪{k}X

′
j,t varies by Yk,t−(Mi−µ) −

Xk,t−(Mi−µ) −Dt. Because Yk,t ≥ Xk,t, we have:

XM−µ
i,t+1 −

∑
j∈A(i)∪{i}

X ′j,t+1

=XM−µ
i,t −

∑
j∈A(i)∪{i}

X ′j,t −Dt

≤XM−µ
k,t −

∑
j∈A(k)∪{k}

X ′j,t −Dt

≤XM−µ
k,t −

∑
j∈A(k)∪{k}

X ′j,t−1 + (Yk,t−(Mi−µ) −Xk,t−(Mi−µ))−Dt

=XM−µ
k,t+1 −

∑
j∈A(k)∪{k}

X ′j,t+1

The first equality is true because stage i is facing supply disruption, XM−µ
i,t −

∑
j∈A(i)∪{i}X

′
j,t

decreases by Dt for period t + 1; the first inequality is true based on the assumption that

the generalized long-run balance holds for period t; the second inequality holds because

Yk,t−(Mi−µ) ≥ Xk,t−(Mi−µ); the second equality holds because XM−µ
k,t −

∑
j∈A(k)∪{k}X

′
j,t

varies by Yk,t−(Mi−µ) −Xk,t−(Mi−µ) −Dt for period t+ 1.

Next consider the case where stage i’s supply is available, and stage k’s supply is un-

available. As stage i is to the downstream of stage k (not necessarily j’s successor), stage i

should make its ordering decision based on stage k’s inventory level and pipeline inventory.

This is the same as the case where there is no disruption.

Finally, consider the case where both stage i’s and stage k’s supply are disrupted. This

case is trivial as they can not make any new order during disruption, and the generalized

item-specific long run balance is preserved from any case it was in.

Combining both Proposition 2.1 and Proposition 2.3, we can see that every item satisfies

long-run balance, excluding the extra inventory for disruption risk. However, these stages

also satisfy long-run balance if we exclude all the extra items stored but not assembled yet.

This generalized long-run balance allows us to reduce the assembly system partially into

a serial system. The following algorithm explains which parts of the system can be reduced
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into a serial system, which parts cannot, and how the reduction works. It is almost the

same as Rosling’s approach of reducing an assembly system to a serial system, with some

modifications.

Partial Series Reduction Algorithm

1. Form a new serial system with stages labeled i = 1, 2, · · · , N .

2. The leadtime for item i is given by Li = Mi −Mi−1, and the holding cost coefficient

becomes hi.

3. For stage i with unreliable supplier j, there is one extra stage i′ at the same location as

i, with the same holding cost. Stage i can order from stage i+ 1 to replenish its inventory

when its supplier is not disrupted, and do nothing when its supply is disrupted. It satisfies

demands from stage i− 1. The extra stage i′ can only replenish its inventory from j when

a disruption is over, and stage S(i) can order from i′ when stage i is out of inventory due

to a supply disruption. The leadtime for i′ is li, and the leadtime for S(i) is lS(i).

For the system shown in Figure 2.4, if only stage 3 is under disruption risk, it can be

reduced to the system in Figure 2.7.

Figure 2.7: Reduced system of assembly system in Figure 2.4.

In the original system, stage 3 stores some extra units of item 3. When there is no supply

disruption present in the system, the whole system functions as a regular assembly system

does. When there is supply disruption at stage 3’s supplier, stage 3 can utilize the extra

inventory stored at itself to satisfy the demand from stage 1. In comparison, in the reduced

system, stage 2′ stores some inventory of item 2, and it only orders from stage 4 when the

supplier is available. When there is no supply disruption present at the system, the whole

system functions as a regular serial system does. When there is a supply disruption present

in the system, stage 2 would experience a supply disruption. Once its inventory is depleted,
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stage 1 can order from stage 2′ instead.

With this new way of reducing the assembly system, we can get a simplified inventory

system, which acts as a serial system when there is no disruption, and acts as a different

serial system when supply disruptions happen. A natural question is whether these two

systems are equivalent to each other when operated optimally. Even though equivalence

would be a valuealbe insight into the original assemblu system and would facilitate our

analysis, unfortunately it does not hold under supply risks. The following Proposition

shows the non-equivalence of the optimal policies for the original system and the reduced

system.

Proposition 2.4: The reduced system is not equivalent to the original assembly system

in general when operated optimally. However, the two systems are equivalent when operated

optimally for the special case where stage i is under supply disruption risk, and every other

stage k satisfies one of the following three conditions: 1) Mi − li ≥ Mk, 2) Mi ≤ Mk − lk,

3) Mi = Mk and li = lk

Proof. The equivalence is not true, because the reduced system provides an intermediate

stage for storing inventories during disruptions. Because of the assumption that the holding

cost at downstream stages is always higher than that at upstream stages, one intermediate

stage would save some cost versus storing inventory at downstream stages. For our example

in Figure 2.4., when a disruption for stage 2’s supplier happens, stage 3 could either keep

ordering and receiving new inventories, or it could stop ordering until the disruption is over.

For the reduced system in Figure 2.7., stage 4 in the reduced system is stage 5 and 6

in the original system, and stage 2 in the reduced system is stage 3 in the orginal system.

In the reduced system, item 4 could be shipped to stage 3 and assembled into item 3. The

holding cost for item 3 at stage 3 is cheaper than the holding cost for item 2 at stage 2.

Correspondingly, this means in the original system, the inventory shipped from stage 5 and

6 could be stored somewhere before it reaches stage 3, at a lower cost than H3. So the

reduced system adds this intermediate stage to acheive a lower holding cost, which does not

exist in the original system. Thus these two systems generally are not equivalent to each

other.
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The equivalence holds for the special case where stage i faces supply disruption risks, and

if stage k has a leadtime which overlaps with stage i’s, then they should be the exact same

distance away from the end product, and their suppliers have to be at the same distance

away from the end product too. For this case, when a disruption happens, stage k would

stop ordering, because it is cheaper to store inventory at its predecessor by assumption.

And once the disruption is over, stage i’s and k’s suppliers resume shipping in a perfectly

matched manner, or resume the assembly process. For this case, this two systems are

equivalent.

This Proposition gives us a sense of how far away our inventory policy is from the

optimal inventory policy. We know that for unreliable suppliers, it would be optimal to hold

extra inventory, and the extra inventory should follow a base-stock policy. One unanswered

question is: for any stage k that overlaps with stage i’s leadtime, should stage k keep

ordering or not when stage i is experiencing supply disruption? The answer depends on the

specific model settings. It might be better for stage k to keep ordering if the leadtime for

k is much longer than that of item i and the disruption is short. Also it might be better

for stage k to wait to order until i’s supply disruption is over if the leadtime for both items

k and i are close, and the disruption is long. This is relative to both the disruption profile

and the system configuration, and we do not yet have a definite answer to this question.

2.5 Order-up-to Levels

2.5.1 Order-up-to Quantity

For an assembly system with supply risks, the optimal ordering policy involves determining

whether locations thatare not affected by a current disruption should continue to order

during the disruption. From our numerical experiments (see section 2.7.2), delaying ordering

seems to happen relatively rarely. So we assume all locations continue ordering during

supply disruptions. This section considers what the optimal order-up-to levels are under

this assumption.

As stated previously, X ′i,t follows a base-stock policy with a base-stock level of s′i, and
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Yi,t −
∑

j∈A(i)∪{i}X
′
j,t follows the generalized item-specific long-run balance. The modified

base-stock policy is as follows:

Yi,t =

 min{si +
∑

j∈A(i) s
′
j , X

L
i+1,t} ifXi,t ≤ si +

∑
j∈A(i) s

′
j

Xi,t ifXi,t > si +
∑

j∈A(i) s
′
j

This policy also uses the upper bound XL
i+1,t to preserve generalized item-specific long-run

balance, which is required for the system reduction. We shall discuss how to calculate si

and s′i using the reduced system in section 2.6.

2.5.2 Delay Ordering Decision

Normally a stage orders from its supplier to increase its echelon inventory to the optimal

order-up-to level. But in some instances it might order 0 from its supplier, even though its

supplier may have enough inventory on-hand. As explained previously, this happens if its

leadtime overlaps with a stage under supply risk. Such a stage needs to decide whether it

should order any new inventory when a supply disruption is present in the system. There

is no definite answer to this question. It depends on the circumstances respective. This

decision comes second to calculating the order-up-to levels.

2.6 Heuristic Method

As stated above, inventory optimization for an assembly system under supply risk is a

large scale problem. Solving it exactly would require dynamic programming over the whole

time horizon. Calculating the optimal policy parameters would require keeping a record of

outstanding inventories, on hand inventories, and backorders in each period in the dynamic

programming algorithm. A one-unit increase in leadtime would lead to the dimension of the

state space increasing by one. This would result in a huge stage space that is prohibitively

large to solve. Even worse, due to the disruption process, there might be some items shipped

to the next stage but not being assembled. This would further increase the dimension of

the state space. It is impossible to solve this exactly by dynamic programming within a

reasonable time. As a result, a heuristic policy that is easy to compute and implement is
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more desireable.

As mentioned previously, there is some connection between assembly systems with dis-

ruptions and serial systems. Although these two systems are not equivalent to each other,

we still can use the base-stock levels for the reduced “almost-serial” system to approximate

the base-stock levels for the original assembly system with supply disruption risks. The

algorithm for serial systems without disruptions is not directly applicable to this problem.

However, a variation would make a good heuristic for assembly systems with disruptions,

due to the resemblance. Recall that for an assembly system without disruptions, the optimal

policy is a modified base-stock policy, and the corresponding base-stock levels are obtained

by a recursive algorithm. We adapt this algorithm to our “almost-serial” system with some

extra stages. For convenience of notation, we use k to denote the smallest-indexed stage

under supply disruption risk.

2.6.1 Recursion for Regular Stages

For the reduced system, we propose a recursive heuristic, based on the recursive algorithm

for serial systems, which provides a method to obtain si, ∀i = 1, · · · , N . Let DLi be the

random demand in Li consecutive periods. A regular stage refers to any stage that does

not have any unreliable suppliers. Then for stages i = 1, 2, · · · , k − 1, we follow the same

recursive algorithm as for a serial system, as in Zipkin [88]:

C∗0(x) = (p+H1)[x]−

Ĉ∗i (x) = hix+ C∗i−1(x)

C∗i (y) = E[Ĉ∗i (y −DLi)]

s∗i = arg min{C∗i (y)}, ∀i ∈ N

C∗i (x) = C∗i (min{s∗i , x}),∀i ∈ N

2.6.2 Recursion for Stages with Unreliable Supplier

Stage k has an unreliable supplier from our assumption. We will need s∗k as well as s′∗k ,

the extra-units base-stock level. When a disruption happens and sk gets depleted, or after
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the disruption ends and while sk is being replenished, s′k is in use. This happens with a

probability of βk
βk+γk

, which is determined by stage k’s supply disruption profile. When

s′k is in use, stage k works like a single stage inventory system with disruptions. As a

modification, we have:

Ĉ∗k(x) = h′kx+
βk

βk + γk
C∗k−1(x)

C∗k(y) =
∞∑
n=0

πknEDn+Lk [Ĉ∗k(y −Dn+Lk)]

s′∗k = arg min
y
{C∗k(y)}

where πk0 = γk
βk+γk

and πkm = βkγk
βk+γk

(1− γk)m−1.

Similarly with a probability of βk
βk+γk

there is no disruption for stage k. So the algorithm

for s∗k is mostly the same as for non-disrupted stages.

Ĉ∗k(x) = hkx+
γk

βk + γk
C∗k−1(x)

C∗k(y) = E[Ĉ∗k(y −DLk)]

s∗k = arg min
y
{C∗k(y)}

C∗k(x) = C∗k(min{s∗k, x})

2.6.3 Recursion for Unreliable Suppliers

After obtaining s∗k and s′∗k from section 2.6.1 and 2.6.2, we proceed to stage k’s predecessor,

stage i. This stage follows the same algorithm as other reliable stages. But as i is an

unreliable supplier, it places orders in a different manner than its downstream stages does

because the demand it receives follows a different distribution due to the disruption. The

demand mean would remain the same, while the variance would change for its upstream

suppliers. To illustrate how the variance changes due to the supply uncertainty, here we

show how it changes assuming the demand for the final product has a normal distribution

N(µ, σ2). If stage i is not a supplier for k, the calculation for s∗i would use the same demand

variance σ.
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Stage k orders from i in a different way due to the disruption. This disruption is

a Markov process, so as calculated before, the pmf of the disruption process stage k is:

πk0 = γk
βk+γk

, and πkn = βkγk
βk+γk

(1 − γk)n−1. So the probability Pn of seeing n consecutive

periods’ demand is:

Pn = πkn

As the demand in each period has a normal distribution N(µ, σ2), the demand which stage

i sees in one period is D ∼ N(µ,
∑∞

n=1 n
2P 2

nσ
2).

This subsection discusses the demand seen by an unreliable supplier. With the assump-

tion of normally distributed demand, this computation yields a better approximation of the

demand it sees. For general demand, we can make the approximation that the unreliable

supplier would see the same demand as its successor.

2.7 Numerical Experiments

In this section we conduct a numerical study. It first explores how well the inventory policy

and the heuristic recursive algorithm perform when compared to the solutions generated by

DeCroix’s inventory policy and algorithm for modest-sized problems.

2.7.1 Comparison to DeCroix’s Policy

The ordering policy proposed in this work differs from DeCroix’s policy mostly by its in-

ventory policy structure. Here we test the performance of these two ordering policies, with

parameters obtained from the corresponding algorithms.

In order to show the effect of different assembly system structures, we consider several

different systems. Here we assume demand in each period is normally distributed, D ∼

N(µ = 20, σ2 = 4). System 1 is shown in Figure 2.8.
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Figure 2.8: Assembly system 1 for comparison to DeCroix’s Policy

For this two echelon system, we assume l = [1, 1, 2, 3, 4], and assume that only stage 3

faces supply risk, i.e., J = {3}. In this system, we use different echelon holding costs, as

well as different disruption parameters. The unit backorder cost is fixed at p = 100 for all

cases. We test all 60 combinations of holding cost and disruption parameters for system 1

are shown in Table 2.1.

(h1, h2, h3, h4, h5) Average disruption length 1
γi

Average time between disruption 1
βi

(1, 1, 1, 1, 1) 1.33 2
(1, 1, 1, 5, 1) 2 5
(1, 1, 5, 1, 1) 4 10
(1, 5, 1, 1, 1) 8
(5, 1, 1, 1, 1)

Table 2.1: System 1 parameters for performance test

We also consider system 2, with three echelons shown in Figure 2.9. We assume demand

in each period is normally distributed D ∼ N(µ = 20, σ2 = 4), l = [1, 1, 1, 1, 1], and again

assume J = {3}.

Figure 2.9: Assembly system 2 for comparison to DeCroix’s Policy

We test all 48 combinations of the holding cost and disruption parameters for system 2
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shown in Table 2.2.

(h1, h2, h3) Average disruption length 1
γi

Average time between disruption 1
βi

(1, 1, 1) 1.33 2
(1, 1, 5) 2 5
(1, 5, 1) 4 10
(5, 1, 1) 8

Table 2.2: System 2 parameters for performance test

We also test this policy on a more general assembly system, system 3 in Figure 2.4. For

this general system, we assume l = [1, 1, 2, 2, 2, 3, 5], and again assume J = {3}. Demand

in each period is normally distributed, D ∼ N(µ = 20, σ2 = 4) as well, and the backorder

cost remains the same at p = 100 among all cases. We also test different echelon holding

cost and disruption parameters for this system. We test all 84 possible combinations of

parameters shown in Table 2.3. For each of the 60 instances for system 1, and 48 instances

(h1, h2, h3, h4, h5, h6, h7) Average disruption length Average time between disruption
(1, 1, 1, 1, 1, 1, 1) 1.33 2
(1, 1, 1, 1, 1, 5, 1) 2 5
(1, 1, 1, 1, 5, 1, 1) 4 10
(1, 1, 1, 5, 1, 1, 1) 8
(1, 1, 5, 1, 1, 1, 1)
(1, 5, 1, 1, 1, 1, 1)
(5, 1, 1, 1, 1, 1, 1)

Table 2.3: System 3 parameters for performance test

for system 2, and 84 instances for the system 3, we compute the base-stock levels using the

recusrive algorithm proposed in section 2.6 as well as DeCroix’s algorithm, and calculate

the respective average inventory cost per period by simulation. For each instance tested,

the system is simulated for 5 trials, 2000 periods per trial, for both DeCroix’s policy and

our heuristic policy. For both policies, we subtract the averge pipeline inventory holding

cost, as it is a constant for both policies. We focus on the inventory holding cost at all

stages, as well as the backorder cost at the final stage.

A comparison of the results of the 2 policies for these 3 systems with a total 192 different

parameter settings, is given in Fig 2.10.
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Figure 2.10: Assembly system for comparision to DeCroix’s algorithm

The horizontal axis shows the average cost per period for DeCroix’s policy, while the

vertical axis shows the average cost per period for our heuristic policy. The dotted line in

the graph is y = x. Any markers below this dotted line represent instances for which our

heuristic policy outperforms DeCroix’s policy, and vice versa for markers above the line.

The graph clearly shows that for most of the instances tested, it is beneficial to have some

extra inventory to prepare for supply disruptions. Some instances are further away from

the origin, and they tend to stay far away from the dotted line. These are the instances

where supply disruptions have a large impact on total cost, and our inventory policy and

parameters have much better performance for these instances. Some instances are located

closer to the origins; they are less affected by supply disruptions.

To explore this comparison further, we calculate the performance as measured by the

ratio between the two policies:

Ratio =
Average cost per period for our heuristic policy

Average cost per period for DeCroix’s policy

If the ratio is less than 1, it means that our policy achieves lower cost. It also suggests that

it is better to have extra inventory of the unreliable item. The statistics for the performance
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ratio are reported in Table 1.4., which gives the average, minimum, and maximum ratio

between the average cost of solutions returned by the two policies, as well as the percentage

of instances in which our policy performs better. One can see that our policy performs

System 1 System 2 System 3
Average 0.470 0.197 0.723

Min 0.158 0.069 0.242
Max 1.515 0.410 1.720

Percentage of ratios less than 1 95.0% 100.0% 76.2%

Table 2.4: Parameters for performance test 1

generally better. For system 1, 3 out of 60 tested instances indicate that the system benefits

from extra inventory. For system 2, surprisingly, every instances shows it is better to have

extra inventory. And for system 3, 64 out of 84 instances holds extra inventory.

The value of extra inventory

We tested three different assembly system. Each shows a different likelihood that extra

inventories will be used to buffer against disruptions. The amount of savings achieved from

extra inventory also varies. For system 1, the average savings is 53.0%, while the savings

for system 2 reaches a significant 80.3%. For system 3, the average savings for all instances

reaches a savinsg of 27.7%. If we only consider the cases in which no extra inventory is

prefered for system 3, the saving reaches 46.0%. In general, if extra inventory is suitable

for a system, it would result in a significant amount of cost savings.

Factors in choosing extra inventory

Even though more than 88.0% of instances tested show a benefit from extra inventories,

there are still some instances which do not. It is necessary to understand under which

circumstances extra inventories is undesirable.

The biggest factor in determining the value of extra inventory is inventory holding cost.

There are three instances in which system 1 holds no extra inventory. All of them occur

when the stage under supply risk has a high holding cost.

The second factor is the assembly system structure. As shown in the Figure 2.10.,

system 2 requires extra inventory for all of its instances. Both system 1 and 3 show that
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when the stage 3 which is under supply risk, has a large holding cost, it is more likely to

have no extra inventory.

The third factor is the average time between disruptions. Our numerical experiments

show that no extra inventory is prefered for the instances with longer average time between

disruptions. This is equivalent to saying if supply disruptions happen less frequently, it

would be less likely to require extra inventory.

The fourth factor is the average disruption length. The numerical experiments also

show that instances with shorter average disruption length are less likely to require extra

inventory.

All of these factors coincide with our intuition. If supply disruptions happen more

frequently, or last longer, it is more likely to require extra inventory to mitigate the dis-

ruptions. The conditions under which it is optimal to hold extra inventory are not easy to

characterize explicitly. Numerical experiments are recommended to determine whether it

is better to hold extra inventory or not.

2.7.2 The Value of Delaying Ordering

According to Proposition 2.4, the reduced “almost-serial” system is not equivalent to the

original system. For the case where stage i faces supply disruptions, stage j needs to make

a decision on whether it should keep ordering when stage i’s supply is disrupted, if i and

j’s leadtimes overlap with each other. Consider the simple case where stage i and j are at

equal distance from the end product, in terms of total leadtime Mi and Mj . If lj ≤ li, then

stage j could just make its ordering decision based on pipeline inventory from stage i. If

lj > li, and stage i’s supply is disrupted, stage j needs to consider whether it should keep

ordering or not. This is what we explore in this numerical experiment.

In this numerical experiment, our goald is to show that instances exist for which it is

better to delay ordering item j when stage i’s supply is disrupted. This happens rarely,

but there are some examples. To find one instance, we still work with system 1 in Figure

2.8., with h = (1, 1, 1, 5, 1), p = 15. We consider the case where J = {3}, β3 = 1/51 and

γ3 = 1/50. As discussed, we only need to decide if stage 4 and stage 5’s predecessor should

postpone shipping or not, if stage 3’s supply is disrupted.
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We compute the average inventory cost per period by simulation for both cases: postpone

ordering or continue ordering. The system is simulated for 25 trials, 2000 periods per trial.

The average cost per period for the case with continued ordering is 21569.9, while the

average cost per period for the case with delayed ordering is 19399.6. Continuing ordering

incurs 11% more cost than delaying ordering. This verifies our argument in Proposition 2.4

that the reduced system is not equivalent to the original system.

This example provides a few insights about when this could happen. First, the important

factor affecting the decision is the relative ratio of the holding cost to the stockout cost.

If the stockout cost is very large compared to the holding cost, very likely it is better to

continue ordering when a disruption happens, so that any stockouts would be mitigated as

soon as the disruption is over. In our example, the local holding cost for item 1 is 9, while

the stockout cost is 15, which is relatively small. So delayed ordering is prefered in this

example.

Second, another factor is the disruption length. If a disruption lasts very long, it is

possible to delay ordering, as any new inventory would sit in the system. The cost for

holding this new inventory during a disruption might overwhelm the benefits from meeting

backorders when the disruption is over. Our example chooses an exaggerated expected

disruption length of 50 to emphasize this point.

Third, instances for which delaying ordering is optimal are rare. Normally they can could

be ignored. To confirm this, we calculated the value of delaying ordering for the system

with the settings in Table 2.1, and p = 100. All instances are shown to be better if all stages

continue shipping when a disruption is present in the system. More important, because our

policy encourages any stage with unreliable supply to store some extra inventory, natually

it tends to be better to keep ordering during disruptions as we want to utilize this extra

inventory to mitigate disruptions.

In conclusion, it is usually better to keep ordering with supply disruption’s presence at

the system. We only need to examine the instances where the stockout cost is relatively

small compared to the holding cost, or the average disruption length is very long.
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2.8 Conclusion and Future Work

In this chapter, we study inventory management for an assembly system where some stages

are under supply risk. An assembly system without supply disruptions can be reduced to a

serial system. However this is not true for the case with supply disruptions. We explain the

reasons for this and build our policy accordingly. It might be optimal for stages to store

extra units of inventory if they are under supply risk, and we explore how to manage this

extra inventory. This extra inventory should also follow a base-stock policy, be utilized when

a disruption happens in the system, and get replenished when the disruption is over. Thus

we have our heuristic policy for assembly systems with supply risk. The long-run balance

property through the entire system is destroyed by the disruption, but if this amount of

extra inventory is excluded from consideration, we have a generalized item-specific long-

run balance. These results allow us to present a method for reducing an assembly system

with supply risk to a serial system plus some extra stages. Although these two systems

are generally not equivalent to each other, the reduced system still provides an approach

to calculate the base-stock levels for our heuristic policy. Due to the inherent difficulty

in calculating the optimal parameters for assembly systems with disruption, we build our

heuristic algorithm for it based on the recursion for serial systems with no disruptions.

Based on our numerical results, we study several questions related to our heuristic policy.

First we show that our heuristic policy can generate cost that are significantly smaller than

those from the current state-of-the-art policy. This makes extra inventory a very important

factor in assembly systems with disruptions. We also explore what might affect the decision

of whether to hold extra inventory or not. If the holding cost for stages with unreliable

suppliers is relatively low compared to the stockout cost, it is better to hold extra inventory.

And if the disruptions last longer, or the disruptions happen more frequently, extra inventory

is prefered. Our numerical experiments show that extra inventory is optimal for a majority

of instances tested. It is therefore beneficial to consider extra inventory when managing an

assembly system under supply risk.
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Chapter 3

Management of a Distribution

System under Supply Risk

3.1 Introduction

As mentioned in the previous chapter, the three most commonly studied types of inventory

systems are: serial systems, assembly systems, and distribution systems. The previous

chapter focuses on inventory policies for an assembly system under supply risks. In this

chapter, we move onto another important structure: distribution systems under supply

risks.

A distribution system is the mirror image of an assembly system. One location, which

is called the root location, receives inventory from an outside source, and send inventories

to other locations. Other locations that have received inventories send inventories to their

own customer locations. This goes on until inventories reach the last locations, which are

called leaves, where outside customer demands are satisfied. Information flows upwards

from leaf nodes to the root node. The outside demand at each leaf node is assumed to be a

random variable that follows a stationary Poisson distribution. The root node replenishes

its inventory from an outside source which is assumed to have sufficient inventories. All

the demand from downstream stages consititues the demand process of their suppliers. As

before, we refer to a location that satisifies the demand of location i as the predecessor of
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i, and the location that places an order to i as the successor of i. In a distribution system,

each location has only one predecessor and at least one successors, except for the leaves.

One aspect of distribution systems that is not present in assembly and serial systems

is the allocation policy. When a stage has sufficient inventory on hand, it can meet the

demands from its successors. However, if it does not have enough inventory on hand,

some of the demand it faces won’t be satisfied. Among all demands, which one should be

satisfied first needs to be decided. The allocation policy becomes an important question

for distribution systems. However, the optimal allocation policy is unknown (Gurbuz et al.

[34]). Our model is a continuous review model, and we assume demand at any node can

occur at any time. When a stage receives an order from one of its successors, we assume it

fills the orders sequentially, i.e. a First-Come-First-Served policy. This means that when a

stage has one unit of product on hand, it will send this unit to the successor who requested

it first, even though there might be some other successors which might need this unit more.

If the system is centralized, the decision maker needs to know which successor has priority

or more severe consequences, and allocate units accordingly. Since the optimal allocation

policy is hard to determine, we consider a decentralized mechanism, where FCFS allocation

policy is a direct consequence.

One of the simplest distribution systems is the so-called one-warehouse, multiple-retailers

(OWMR) system. It has only two echelons, where the root node is called warehouse, with

the remaining nodes known as retailers. Even for the OWMR system, the simplest distri-

bution network structure, there is no simple, elegant method to solve this problem. The

most popular method for the OWMR is the projection method. The algorithm searches

over all possible values s′0 of the base-stock level for the warehouse. Assuming there are N

retailers, for each given s′0, the algorithm chooses the optimal s′j , j = 1, · · · , N , for all re-

tailers. This algorithm divides the total system cost function into N convex single variable

functions, which enables fast computation of the base-stock levels at the retailers. However,

the system cost function is not a convex function of s0. Consequently, the algorithm has

to conduct exhaustive search to find the optimal warehouse base-stock levels. There are

some other heuristic procedures in the literature related to the projection method, and we

provide a short review of them.
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The projection method can be generalized to general distribution systems. But the

computational cost becomes prohibitively expensive. This chapter considers distribution

systems under supply risks. This supply risk makes the system even harder to solve. In

this chapter, we assume leadtimes for all stages are deterministic, but some locations are

under supply disruption risks. For a stage with an unreliable supplier, supply disruptions

occur according to a stationary Poisson process, and during a disruption no more new

orders can be placed to its supplier. However, previous shipments are not affected. The

end of this supply disruption also occurs according to a stationary Poisson process. Once

the supplier becomes available, it uses its on-hand inventory to meet the backorders. If

there is more demand than the on hand inventory, it still applies an FCFS allocation policy

to meet the backordered demands. Hence this system is a continuous review decentralized

distribution system under supply risks, and each stage implements a base-stock policy for

its inventory. There is a linear ordering cost with no fixed ordering cost. There is an be

inventory holding cost at all locations, and a backorder cost only at all the leaf nodes.

Unsatisfied demands at non-leaf nodes are backordered without any cost. Assuming an

infinite horizon, our objective is to minimize the long run expected inventory cost per unit

time. For this chapter, we also assume a decentralized control mechanism. Thus each

location in the distribution system observes its own inventory position, and makes ordering

decisions following a local base-stock policy.

We consider distribution systems with more than two echelons, and we also consider

supply disruptions in our model. We analyze the effects of supply disruptions on inventory

levels, and develop a heuristic algorithm utilizing these effects to optimize base-stock levels

in a multi-echelon distribution system under supply risks, assuming FIFO allocation policy

and base-stock inventory policy. The main idea behind our recursive algorithm is to analyze

the inventory shortage at each stage due to supply disruptions as well as stockouts at its

predecessor, so that we can incorporate its successor’s costs when calculating its base-

stock level. This algorithm is easy to implement, and it also yields solutions within a 3%

optimality gap on the instances tested.
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3.2 Literature Review

In this section, we briefly review the literature related to our work. Since we discussed the

literature on serial systems, assembly systems and inventory models with supply uncertainty

in the previous chapter, we skip them in this part of the review even though they are closely

related to distribution systems. We only focus on distribution systems in this review.

3.2.1 One-Warehouse, Multiple-Retailer Systems

The one-warehouse, multiple-retailer (OWMR) system is a special case of general distri-

bution systems. It has only two echelons: one warehouse, and multiple retailers. It is

the simplest distribution system. Thus many paper have focused on it. There are two

main difficulties related to this problem: determining the optimal replenishment policy, as

well as finding the most cost-effective allocation policy in case of insufficient supply at the

warehouse.

The first work on the decentralized OWMR problem, known as METRIC, is by Sher-

brook [74] and was applied by the US Air Force to manage aircraft engine inventories. The

metric model approximates outstanding orders by Poisson random variables, which means

the backorder level at the warehouse can be approximated as Possion too, and permits a

simple evaluation of different policies. Simon [75] as well as Kruse and Kaplan [42] charac-

terize exact expressions for the stationary distributions of stock on hand, stock in repair,

and backorders at both warehouse and retailers.

Graves [28] presents an exact model for finding the steady-state distribution of the net

inventory level at each site, assuming compound Poisson demand and deterministic ship-

ment time. He approximates the outstanding orders by a negative binomial distribution

using a two-moment approximation, which is more accurate than the METRIC approxima-

tion in general. Axsäter [3] provides simple recursive procedures to calculate the holding

cost and backorder cost for different policies. He uses an inventory cost function to reflect

the inventory holding cost and bakcorder cost incurred on an average unit.

Gallego et al. [25] develop an approximation algorithm called the restriction-decomposition

heuristic. It decomposes the system into more manageable newsvendor-type subsystems. It
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works in a top-down manner, starting by computing the base-stock levels at the root loca-

tion, or the warehouse, first, and then working on retailer locations. In contrast, Rong et al.

[64] propose a recursive optimization heuristic and a decomposition-aggregation heuristic,

which act in a bottom-up way.

Svoronos and Zipkin [78] study the same problem but under slightly different assump-

tions: they assume stochastic leadtimes, and that orders do not cross in time, which means

the queues in each in-transit system observe FIFO. They describe methods for approxi-

mating the steady-state behavior of the system. The results indicate that the transit time

variance has a large impact on system performance. A system with large transit-time vari-

ances will need larger inventories to prepare against stockouts when compare with a system

that has fixed leadtime.

In addition to the work on base-stock policies mentioned above, there is some work

focused on other inventory policies. Svoronos and Zipkin [78] study the problem where all

locations follow a continuous review (R,Q) policy. They apply a decomposition technique

for this system: approximating each location as a single location inventory system. They

estimate the long-run average inventory at each location, and the backorders at the retail-

ers, then use these estimates to minimize total cost. The results suggest the approximation

works very well. Andersson et al. [1] study the same problem. The authors investigate

a coordinated but still decentralized control procedure. The procedure is based on an

approximation: replacing the stochastic leadtime observed by retailers by their averages.

This enables the decomposition of the multi-echelon inventory problem into a number of

coordinated single-echelon inventory problems. The decision at the warehouse affects the

retailers through the marginal cost increase with respect to the increase in leadtime. This

information can be used as a shortage cost at the warehouse to determine its near-optimal

reorder point. Axsäter [4] considers a problem in which each location implements a con-

tinuous review (R,Q) policy, and each retailer faces a compound Poisson demand process

and constant leadtime. The author calculates the complete probability distributions of the

retailer inventory levels to evaluate control policies exactly.

Other authors consider periodic-review distribution networks. These models can be

formulated using dynamic programming. However, such models becomes hard to solve due
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to the huge state space. Consequently, approximations for the optimal policy parameters

have been developed for this type of problem. Eppen and Schrage [20] consider the OWMR

problem under periodic review assuming the warehouse does not hold inventory. Under the

assumption that every incoming order at the warehouse is large enough that it can satisify

the same percentage of demands at all retailers, they derives approximately optimal policies

and inventory costs. Erkip et al. [21] study the same problem with correlated demand, not

only across retailers, but also in time. The authors formulate the optimal safety stock

explicitly as a function of the level of correlation through time. Jackson [40] studies the

same problem, relaxing the assumption that the warehouse does not hold inventory. The

author considers a single order cycle, and develops the exact cost model, as well as an

approximate of the cost model which is similar to the projection algorithm in the case of

identical retailers. Federgruen and Zipkin [23] consider the periodic review OWMR problem

with the assumption that the warehouse does not hold inventory. This problem natually

leads to a dynamic program which has a huge state space. The authors approximate it

systematically with a single location inventory problem using a key concept called myopic

allocation.

The second important question to be addressed for distribution systems is the allocation

policy. Axsäter and Rosling [7] compare local and echelon stock policies for multi-echelon

inventory control. Their major results are for serial and assembly systems. The authors

show that for (Q, r)-rules, echelon stock policies are in general better than local stock poli-

cies. But this is not the case for distribution systems. Axsäter and Juntti [5] use simulation

to study distribution systems with stochastic demand. The results show that echelon stock

policies do not always outperforms local stock policies. It depends on the structure of the

system. One standard allocation method widely used in the literature assumes that the

incoming orders are always large enough that stockouts can be acheived with equal proba-

bilities at all successors, and negative allocations to retailers are permitted. Many existing

papers adopt this allocation policy, including Eppen and Schrage [20]. Federgruen and

Zipkin [23] use an allocation policy called myopic allocation which minimizes the expected

cost in the current period, ignoring costs in all subsequent periods. Federgruen and Zipkin

[24] adopt same allocation policy. van Houtum et al. [84] use a similar idea called relaxed
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myopic allocation. Verrijdt and de Kok [85] also use this allocation method.

However, the standard allocation policy does not always work well. Axsäter et al. [6]

argue the standard allocation policy might not be a good approach, especially when there

are significant differences among retailers, in terms of their demand characteristics and

service requirements. The authors propose a virtual assignment ordering rule for warehouse

replenishments, and a two-step allocation rule for allocating inventories to retailers, which

yield great improvements. There are also some other allocation policies. Jackson [40]

examines a “ship-up-to-S” policy in which the warehouse restores the retailer’s inventory

position to a preset value S if there is sufficient inventory. McGavin et al. [52] study a two-

interval allocation policy to minimize expected lost sales per retailer while ignoring inventory

holding costs. Graves [29] introduces an allocation scheme called virtual allocation, which

can be viewed as an equitable allocation policy in which the order that has been outstanding

longest is satisfied first. Cachon [12] uses random allocation in which all orders received by

warehouse are shuffled randomly, then satisfied in that sequence. Gurbuz et al. [33] present

a centralized ordering policy which orders for all retailers simultaneously. It works just

as though only the warehouse orders, allocates, and distribute inventories to retailers, but

does not carry any inventory itself. One retailer’s order might be postponed or expedited

to save total ordering and shipping cost. Our model use a first-come, first-served policy in

a continuous review setting to facilitate our analysis.

3.2.2 Distribution Systems

There are two typical approaches in multi-echelon inventory theory: stochastic service and

guaranteed service models. The stochastic service model assumes the delivery time between

stages can vary depending on the availability at the supplier stage, while the guaranteed

service model assumes that each stage has a guaranteed service or delivery time by assuming

the demand is bounded. Graves and Willems [30] discuss the differences between them,

and compare them in terms of their underlying assuptions, computational and modeling

implications, as well as the nature of results produced.

First we discuss the stochastic service approach. Lee and Billington [45] develop a multi-

echelon inventory model for a Hewlett-Packard supply chain. The authors model a supply
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chain as a set of SKU-locations where each location could uses a single stage base-stock level

as an input. The single stage base-stock level is a function of the replenishment leadtime,

which can be obtained with approximate expressions developed in the paper. Ettl et al.

[22] consider a similar problem, making a clear distinction between nominal and actual

leadtimes, where the nominal time is the replenishment time a stage experiences when its

supplier carries enough inventory on hand, while the actual leadtime is the replenishment

time a stage experiences accounting for possible supplier backorders. The authors develop

an approximation of the actual leadtime random variable, and use this approximation to

determine the base-stock levels to acheive service level targets. Glasserman and Tayur [27]

consider the same problem with different assumptions on capacity limits, which require the

system to follow a modified base-stock policy. The authors derive the problem formulation,

and develop estimates of the objective derivatives to conduct a gradient based search to

find the optimal base-stock levels. Zhao [86] studies the problem with compound Poisson

demand processes. The author characterizes backorder delays for each unit of demand, and

proposes approximations and decompositions to evaluate the system efficiency and optimize

base-stock levels.

The guaranteed service model is studied by Inderfurth and Minner [39]. The authors

study multi-stage inventory systems under a periodic review base-stock policy. The authors

assume every location satisifies a service level constraint, and no internal delays occur. They

formulate the problem and derive optimal policy properties for it. They observe that safety

stock coverage times can only take values from extreme points of the solution set.

In addition, we note that some papers mentioned previously in the context of OWMR

systems also apply to general distribution systems, including Sherbrook [74], Grave [28],

Lee and Moinzadeh [47][46], Svoronos and Zipkin [78][79].

In this work, we consider a distribution network, with a first-come, first-served (FCFS)

allocation policy employed at all stages, operating under the stochastic service model. This

problem is inherently difficult to solve, as most algorithms give a heuristic solution and the

best known exact algorithm requires an exhaustive search over the solution space. Since

the optimal policy structure is unknown, we will choose a reasonable policy, a base-stock

policy, and then find near optimal parameters for this policy. In this work, we minimize the
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average inventory cost per unit time for an infinite-horizon continuous-review model with

Poisson customer demand. We suggest a heuristic algorithm to find the base-stock levels

at each inventory location.

3.3 Preliminaries

We consider a distribution system (V,E) with N = |V | stages, indexed from upstream

to downstream with stage 1 being the furthest upstream supplier. V is the collection of

stages or locations in this distribution system, while E is the collection of supplier-customer

relationships. Each stage i ∈ V orders from its predecessor P(i) = {j ∈ V : (j, i) ∈ E} (or

outside supplier) and meets the demand from its successors S(i) = {j ∈ V : (i, j) ∈ E}. A

stage might have multiple immediate successors, but at most one immediate predecessor.

We define a set L := {i ∈ V : S(i) = ∅} to represent the leaf nodes, which meet outside

demands. Each stage i requires products from its immediate predecessor to satisfy demands

observed from downstream customers, and delivery from P(i) to i takes a deterministic

leadtime of li. However, due to stock outs and possible supply disruptions, it might take

longer than li for an order to actually arrive from the time that it was placed. We also use

Di to denote the leadtime demand seen by stage i, which is the demand seen by stage i

during a period with length li.

Figure 3.1: Example of Distribution System

This work considers a continuous review model without fixed ordering cost. Demand

at leaf node i is a Poisson process with rate λi, and for non-leaf nodes λi =
∑

j∈S(i) λj .
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During a stockout or supply disruption, unsatisfied demands at each stage are backordered,

but only backorders at leaf nodes are charged a penalty cost of bi per item per unit time.

All locations can carry inventories, and every unit at stage i or in transit to i incurs a

cost of Hi per unit per unit time. Define the echelon holding cost incurred at stage i as

hi = Hi −HP(i) per unit per unit time, where Hi is the local holding cost for stage i. hi is

the holding cost increment due to storing it at stage i from storing it at i’s supplier.

In this model, a subset J ⊆ V is under supply disruption risk, which means that only

the supply of the nodes in J may be disrupted. Whenever i ∈ J wants to order a new

item, it checks the disruption status of its supplier P(i). If it is experiencing a supply

disruption, the order to P(i) is backordered, but previous shipments are not affected. The

occurrence of a supply disruption at stage i is a Poisson process with rate βi, and the

end (or cease) of a supply disruption is also a Poisson process with rate γi. Equivalently,

disruptions follow a continuous-time Markov process with two states representing normal

and disrupted operation. For node j /∈ J , its supply is still available even if it shares the

same supplier with node i ∈ J and i’s supply is disrupted.

We use Ii to denote the local on-hand inventory level at node i, and denote the backorder

level by Bi. We denote the local inventory level at stage by ILi, which is ILi = Ii − Bi.

We also denote the shortage at stage i only due to a current supply disruption at P(i)

by WP(i),i. BP(i),i reprsents the shortage at stage i only due to backorders at stage P(i),

excluding the portion of shortage due to supply disruptions.

Figure 3.2: Inventory shortages due to supply disruption and supply backorder
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In this graph, the red section on the horizontal axis represents supply disrupted interval,

and the green section represents an available interval. There are some differences between

BP(i),i and WP(i),i. As shown in the graph, WP(i),i is the shortage increment when supply

is disrupted, and BP(i),i is the shortage increment when supply is available. For example,

if stage i’s supply is disrupted from t0, and it has been disrupted untill the current time

t1, then WP(i),i(t1) equals the demand quantity i sees from t0 to t1. And when this supply

disruption ends at t1, all the inventory at P(i) is used to mitigate WP(i),i(t1). During this

supply disruption interval, BP(i),i(t1) could be non-zero. It equals BP(i),i(t0) in this supply

disruption interval. When the supply disruption is over at t1, BP(i),i will not decrease until

WP(i),i decreases to 0 first. The inventory shortage at i for any given time t is WP(i),i(t) +

BP(i),i(t).

As the optimal ordering policy structure is unknown, we study a reasonable alternative,

a base-stock policy, in this work. The decision variables are si, the local inventory base-stock

level at stage i,∀i ∈ V . We also denote the echelon base-stock level as Si =
∑

j∈S(i) sj .

According to “conservation of flow”, as in Zipkin [88], the inventory level ILi is composed

of several parts. Every time stage i orders, it brings the echelon inventory position to Si.

But not all of these items are on hand at stage i. There is a shortage of WP(i),i + BP(i),i

due to either disruption or backorders at its predecessor; part of the inventory ILi is still

en route to i, which is accounted for the leadtime demand Di; and part of the inventory is

located in its downstream stages, and this amount is
∑

j∈S(i) Sj −
∑

j∈S(i)Wi,j , since the

total local inventory positions at its downstream stages are
∑

j∈S(i) Sj and
∑

j∈S(i)Wi,j is

not shipped due to supply disruptions. Thus we have the following equations for ILi:

ILi = Si −BP(i),i −WP(i),i +
∑
j∈S(i)

Wi,j −Di −
∑
j∈S(i)

Sj (3.1)

Ii =

Si −BP(i),i −WP(i),i +
∑
j∈S(i)

Wi,j −Di −
∑
j∈S(i)

Sj

+

(3.2)

Bi =

BP(i),i +WP(i),i −
∑
j∈S(i)

Wi,j +Di +
∑
j∈S(i)

Sj − Si

+

(3.3)

In this work, we are trying to find the base-stock levels at all stages so that the total
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expected inventory cost per unit time is minimized. There is a purchasing cost for each

item, and a holding cost for pipeline inventory, but we omit these costs from the calculation,

as their expectations are constant. We let S = {Si}i∈V . So the long run expected inventory

cost per unit time is:

C(S) =
∑
i∈V

HiE[Ii] +
∑
i∈L

biE[Bi]

3.4 Heuristic

The heuristic proposed in this work is similar to the recursive algorithm for finding the

optimal base-stock levels in serial systems. The recursive algorithm starts from the stage

facing customer demands and solves for the optimal base-stock level at each stage in a

recursive manner. We propose a heuristic for distribution systems in a similar way, which

incorporates the effects of supply disruptions. Before we introduce this heuristic, we analyze

the key random variables related to supply disruptions.

3.4.1 Estimation of WP(i),i

WP(i),i represents the shortage of items at stage i due to a current disruption from supplier

P(i). It captures the effect of supply disruption on inventory level and backorder level. The

distribution of WP(i),i is one key aspect of our heuristic algorithm.

Since WP(i),i only increases during disrupted intervals, and decreases during available

intervals, it is natural to consider the case when stage i’s supply is disrupted and the case

when it is not separately.

Disrupted Interval

For the case when the supply is disrupted, we have the following results.

Proposition 2.1. Assume stage i’s supply stage P(i) is disrupted at time t. Then

P (WP(i),i(t) = n|stage P(i) is disrupted at time t) =
γiλ

n
i

(γi + λi)n+1
.

Proof. Let t0 be the unknown start time of the disruption. Because the occurrence of a
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supply disruption at stage i is a Poisson process, the probability density function of the

current disruption starting from time t0 is given by γie−γi(t−t0) due to the Poisson process’s

memoryless property.

Denote D(t) as the cumulative demand in [0, t]. Since the demand seen by stage i has

a Poisson distribution with rate λi, the demand during t − t0 time units has a Poisson

distribution with rate λi(t− t0), i.e.,

P (D(t)−D(t0) = n) = e−λi(t−t0) [λi(t− t0)]n

n!
.

Therefore, we have:

P (WP(i),i(t) = n|stage P(i) is disrupted at time t)

=
∫ t

t0=−∞
P (D(t)−D(t0) = n|disruption started at time t0)γie−γi(t−t0)dt0

=
∫ t

t0=−∞
γie
−(γi+λi)(t−t0) [λi(t− t0)]n

n!
dt0

=
∫ t

t0=−∞
− γiλ

n
i

(γi + λi)n+1
e−(γi+λi)(t−t0) [(γi + λi)(t− t0)]n

n!
d(γi + λi)(t− t0)

=− γiλ
n
i

(γi + λi)n+1

∫ 0

x=∞
e−x

xn

n!
dx

=
γiλ

n
i

(γi + λi)n+1

The last equality holds because e−x x
n

n! is the pdf of the Erlang distribution with k =

n+ 1, λ = 1.

Recovery Interval and Regular Interval

The case when the supply is available is more complicated. For the sake of simplicity, here

we only discuss the case where li = 0 and assume the last disruption ended at time t1. The

case in which li > 0 is similar except that time is shifted. Here we define WP(i),i(t+) =

limε→0WP(i),i(t+ ε).

Assume stage i’s supply has been disrupted from t0 untill the current time t1. There

are two cases for times with no disruption.
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Figure 3.3: Recovery intervals and regular intervals in supply available intervals

Case 1 is the regular interval, which refers to the time interval where WP(i),i(t1) has been

fully replenished, and everything performs just like the system is reliable and no disruption

has ever happened, or WP(i),i(t
+
1 ) = 0. Case 2 is the recovery interval, which refers to the

time interval in which a disruption has just ended, but stage i has not yet fully replenished

WP(i),i(t1) yet, i.e. WP(i),i(t
+
1 ) > 0. We let P ′ denote the long-run probability that stage i

is in recovery interval.

When the supply disruption ends at t1, there are two different possibilities forWP(i),i(t
+
1 ).

If ILP(i)(t1) ≥ WP(i),i(t1), stage i goes into a regular interval immediately. The shortage

due to the supply disruption is immediately mitigated, and WP(i),i(t
+
1 ) = 0. WP(i),i has the

probability mass function:

P (WP(i),i(t
+
1 ) = n|stage i is in regular interval) = 0, ∀n > 0

With probability P ′, ILP(i)(t1) < WP(i),i(t1), and stage i enters a recovery interval. If

ILP(i)(t1) > 0, only an amount ILP(i)(t1) of inventory is available to replenish the shortage

WP(i),i(t1), and

WP(i),i(t
+
1 ) = WP(i),i(t1)− ILP(i)(t1)

If ILP(i)(t1) ≤ 0, there is no inventory on hand to do anything, and

WP(i),i(t
+
1 ) = WP(i),i(t1)
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WP(i),i(t
+
1 ) does not have a simple, concise pmf during a recovery interval, as it involves

WP(i),i(t1) and ILP(i)(t1). This complicates the calculation for WP(i),i. We would prefer an

easier approach for its pmf, which we develop next.

The Long-Run Probability of Being in a Recovery Interval

With probability P ′ stage i is in a recovery interval, and WP(i),i is relatively hard to compute

in this interval. Let us to consider the probability of being in the recovery interval.

As discussed in last paragraph, this recovery interval depends on ILP(i)(t1) andWP(i),i(t1).

We explore their relationship here. Assume the local inventory transit position of stage P(i)

equals y. According to “conservation of flow” (3.1), we need to consider

ILP(i)−WP(i),i = y−
∑

j∈S(P(i))

Sj−DP(i)−BP(P(i)),P(i) +
∑

j∈S(P(i)),j 6=i

WP(j),j−WP(P(i)),P(i)

If this is positive and the disruption ends at t1, stage i will go into a the regular interval,

otherwise it goes into a recovery interval. The first part y−
∑

j∈S(P(i)) Sj−Di−BP(P(i)),P(i)

is the inventory level for stage i during times with no disruption, and it is assumed to

have a much greater probability of being positive than being negative, since the stockout

cost is normally higher than the holding cost. The remaining terms,
∑

j∈S(P(i)),j 6=iWP(j),j

and WP(P(i)),P(i)(t1), are random variables depending on the disruption profiles, and their

distributions are relatively hard to analyze, as they are interconnected with each other,

especially during this recovery interval.

One simple way to address this difficulty is to assume

P ′ = 0.

This assumption is saying ILP(i) −WP(i),i > 0 at all times, and when a supply disruption

for stage i is over, it enters a regular period immediately. In other words, there is no more

recovery period. This assumption can also be interpreted in another way: when stage i’s

supply is disrupted, its supplier P(i) can not ship any new inventory to i, but P(i) can keep

ordering to prepare for the large demand caused by WP(i),i; once the disruption is over,
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P(i) can mitigate the shortage caused by the disruption immediately. This simplifies our

computation, and we have

P (WP(i),i(t) = n|stage i is not disrupted at time t) = 0, ∀n > 0.

This concludes the computation for the probability mass function of WP(i),i. Obviously, our

approach for calculating P ′, and thus the distribution of WP(i),i, is approximate.

3.4.2 Estimation of BP(i),i

The computation of BP(i), and therefore BP(i),i, is another key part to our heuristic al-

gorithm. For stage P(i), assume its echelon inventory transit position equals y, and the

amount of inventory in transit to P(i) is DP(i). According to “conservation of flow” (3.1),

we have

ILP(i) = y −DP(i) −BP(P(i)),P(i) +
∑

j∈S(P(i))

WP(i),j −WP(P(i)),P(i) −
∑

j∈S(P(i))

Sj .

This gives us a way to calculate BP(i):

BP(i) =

y −DP(i) −BP(P(i)),P(i) +
∑

j∈S(P(i))

WP(i),j −WP(P(i)),P(i) −
∑

j∈S(P(i))

Sj

− .
In this equation, it is obvious that BP(i) is related to BP(P(i)),P(i), while BP(P(i)),P(i) is

related to SP(P(i)). But SP(P(i)) is unknown when calculating BP(i), thus it makes this hard

to calculate. A simple way to deal with this difficulty is to approximate BP(P(i)),P(i) with

0, which greatly simplifies the problem.

BP(i),i is defined as the shortage at stage i only due to backorders at stage P(i), excluding

the portion of shortage due to supply disruptions. Therefore the backorder at stage P(i) is

BP(i) =

y −DP(i) +
∑

j∈S(P(i))

WP(i),j −WP(P(i)),P(i) −
∑

j∈S(P(i))

Sj

− .
Moreover, these backorders are shared proportionally among its successors S(P(i)). Hence
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we have

BP(i),i ∼ Bin

(
BP(i),

λi∑
j∈S(P(i)) λj

)
, ∀i ∈ 1, 2, · · · , N.

3.4.3 Recursive Optimization Heuristic

The system cost can be evaluated with the introduction of three auxiliary functions. Ĉi(x)

is the echelon cost at stage i when the local inventory level equals x, including the inventory

holding cost for the subtree rooted at stage i and the backorder cost in the subtree. Ci(y)

represents the expected echelon inventory cost at stage i when its echelon inventory transit

position equals y. Ci(v) is defined as the expected cost when the inventory shortage at P(i)

due to stage i is v. Ci(v) is defined differently from the classical literature to facilitate the

computation here.

For serial systems, the classical algorithm (Clark and Scarf [16]) start from the location

facing direct outside customer demand, and moving upward to its suppliers. It recursively

finds the optimal base-stock levels for each stage by optimizing covex single-variable func-

tions. Similarly, we apply this idea to distribution systems under supply disruptions.

The Recursive Optimization Heuristic

1. For leaf nodes i ∈ L, we have

Ĉi(x) = hix+ (Hi + bi)x−

Ci(y) = EWP(i),i
EDi [Ĉi(y −Di −WP(i),i)]

Si = arg min
y
Ci(y)

Ci(v) = Ci(Si − v)

2. For non leaf nodes i ∈ V \ L, we have

Ĉi(x,Bi) = hix+
∑
j∈S(i)

Cj(Bi,j)

Ci(y|S) = EBi(y)EWP(i),i
EDi [Ĉi(y −Di −WP(i),i,Bi(y))]

Si = arg min
y

Ci(y)
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Ci(v) = Ci(Si − v)

Here Bi = {Bi,j}j∈S(i) denotes the random vector of inventory shortage at location S(i)

due to stockouts at stage i. Similar to the algorithm introduced by Clark & Scarf [16] for

serial systems, this algorithm also works in a bottom-up fashion. It first starts from every

leaf node. For any non-leaf node i, once the base-stock levels for all its successors have been

determined, the algorithm finds the base-stock level for i by finding y that minimizes Ci(y).

This recursive optimization heuristic does not guarante an optimal solution for the

distribution system, neither for the leaf nodes, nor for the non-leaf nodes. This algorithm

assumes that the leaf nodes are completely independent from each other, while in fact a

shortage at one leaf node i might require more inventory from its predecessor P(i), thus

P(i)’s other successors might be affected. Although our heuristic algorithm does not find

the optimal base-stock levels necessarily, it still yields good performance according to our

numerical studies.

3.5 Numerical Experiments

In this section, we test how well our recursive optimization algorithm performs, and compare

it with the solution found by coordinate descent method with bisection search.

We test our algorithms on several different distribution system structures. System 1

that we consider is shown in Figure 3.4.

Figure 3.4: One-Warehouse, Four-Retailer System

58



This is a one-warehouse, four-retailer system, with retailer 2, 3, 4 and 5 ordering from

the warehouse, stage 1. All stages are under supply risk. The leadtime is [l1, l2, l3, l4, l5] =

[2, 3, 2, 2, 2], and the penalty cost is p = 100 per unit per time for stages 2, 3, 4, and 5.

The demand rate is [λ2, λ3, λ4, λ5] = [2.5, 7.5, 3.5, 4.5]. In this system, we use different

combinations of local inventory holding cost, and disruptions parameters. We test all 48

combinations of the holding cost and disruption parameters are shown in Table 3.1.

(h1, h2, h3, h4, h5) Average disruption length Average time between disruption
(1, 10, 5, 5, 5) (0.4, 0.667, 0.667, 0.667, 0.667) (4, 2, 2, 2, 2)
(1, 5, 10, 5, 5) (0.667, 0.4, 0.667, 0.667, 0.667) (2, 4, 2, 2, 2)
(1, 5, 5, 10, 5) (0.667, 0.667, 0.4, 0.667, 0.667) (2, 2, 4, 2, 2)

(0.667, 0.667, 0.667, 0.4, 0.667) (2, 2, 2, 4, 2)

Table 3.1: System 1 parameters for performance test

For this instance, we calculate the base-stock levels with the recursive optimization al-

gorithm. The computation time for this algorithm is within 5 seconds on average, relatively

fast. But to evaluate the solution quality is relatively hard. First, there is no way to cal-

culate the exact expected inventory cost per time unit, even given the base-stock levels for

each stage. Instead we test the solution’s performance by simulation. We simulate this five

stage distribution system in C++ with the given parameter settings, generating random

samples for both demand and disruption. The simulation runs for 5000 time units, and this

simulation process takes a relatively longer time. Second, there is no way to calculate the

optimal base-stock levels for this system directly. For small sized problems, it is possible

to use exhaustive search over all possible base-stock level vectors. However, this is too

cumbersome even for a five stage system, as it would take hundreds of hours to find the

optimal base-stock levels for merely one instance. Instead, we use coordinate descent search

for finding base-stock levels for comparison. For each line search, we use bisection search

to find the minimum for each coordinate.

We refer to the parameter settings using the notation (c1, c2, c3), which means this

instance has the c1-th holding cost, c2-th average disruption length, and c3-th average

time between disruptions from Table 3.1. For these 48 different instances, we obtain the

computational results in the following table.
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Instance No. Algorithm Coordinate Descent Gap Computation Time

(1,1,1) 333.768 329.499 0.012956033 4.496026

(1,1,2) 333.009 329.851 0.009574020 4.366212

(1,1,3) 308.458 306.550 0.006224107 4.365593

(1,1,4) 330.603 327.463 0.009588870 4.301088

(1,2,1) 337.905 333.360 0.013633909 4.305687

(1,2,2) 355.055 347.097 0.022927309 4.216075

(1,2,3) 329.633 319.244 0.032542507 4.246899

(1,2,4) 346.966 339.083 0.023247995 4.222778

(1,3,1) 307.282 302.340 0.016345836 4.276114

(1,3,2) 322.625 310.933 0.037602956 4.207488

(1,3,3) 318.835 307.254 0.037691942 4.248709

(1,3,4) 319.746 308.142 0.037657963 4.230181

(1,4,1) 335.449 329.306 0.018654382 4.257256

(1,4,2) 347.150 337.525 0.028516406 4.205890

(1,4,3) 326.937 314.893 0.038247913 4.225795

(1,4,4) 350.924 341.150 0.028650154 4.218673

(2,1,1) 342.002 336.730 0.015656461 4.296909

(2,1,2) 342.261 338.022 0.012540604 4.252085

(2,1,3) 315.098 312.570 0.008087788 4.316965

(2,1,4) 339.198 335.299 0.011628427 4.242342

(2,2,1) 347.866 342.257 0.016388270 4.290649

(2,2,2) 366.298 357.876 0.023533291 4.229326

(2,2,3) 337.434 328.568 0.026983760 4.275360

(2,2,4) 358.139 349.842 0.023716421 4.256779

(2,3,1) 312.373 308.201 0.013536621 4.331191

(2,3,2) 329.810 319.203 0.033229638 4.301468

(2,3,3) 327.840 314.592 0.042111688 4.284425

(2,3,4) 325.333 316.049 0.029375192 4.259284
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(2,4,1) 344.516 337.509 0.020760928 4.313255

(2,4,2) 359.321 347.992 0.032555346 4.297210

(2,4,3) 334.140 323.564 0.032685960 4.278498

(2,4,4) 361.498 351.254 0.029164081 4.214616

(3,1,1) 334.754 329.820 0.014959675 4.330365

(3,1,2) 334.232 330.598 0.010992202 4.285378

(3,1,3) 309.052 306.962 0.006808660 4.290658

(3,1,4) 330.307 327.441 0.008752722 4.293266

(3,2,1) 339.091 334.174 0.014713892 4.337701

(3,2,2) 355.292 348.496 0.019500941 4.276365

(3,2,3) 329.798 320.623 0.028616163 4.280471

(3,2,4) 347.332 339.982 0.021618792 4.247018

(3,3,1) 307.573 302.460 0.016904715 4.378230

(3,3,2) 323.790 312.020 0.037721941 4.354901

(3,3,3) 318.402 307.977 0.033849930 4.303414

(3,3,4) 319.513 308.387 0.036078045 4.269379

(3,4,1) 332.715 328.757 0.012039287 4.323005

(3,4,2) 345.317 337.847 0.022110600 4.245490

(3,4,3) 323.507 314.854 0.027482579 4.314054

(3,4,4) 347.390 341.030 0.018649386 4.356956

Max 366.298 357.876 0.042111688 4.496026

Min 307.282 302.34 0.006224107 4.205890

Average 334.282 326.972 0.022433673 4.285781

Table 3.2: System 1 test results

Based on our simulation for these 48 different instances, the recursive optimization

algorithm finds a set of base-stock levels that yield a performance with an average 2.24%

gap, and 4.21% maximum gap, as well as 0.62% minimum gap.

We also tested our algorithm on a three-echelon system, as shown in Figure 3.5.
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Figure 3.5: Three-Echelon Distribution System

This is a three-echelon system, with retailer 4 and 5 ordering from warehouse stages 2

and 3 repectively, and warehouses 2 and 3 replenishing from factory 1. All stages are under

supply risk. The leadtime is [l1, l2, l3, l4, l5] = [2, 3, 2, 2, 2], and the penalty cost is p = 100 per

unit per time for stages 2, 3, 4, and 5. The demand rate is [λ4, λ5] = [3.5, 4.5]. In this system,

we use different combinations of local inventory holding cost and disruptions parameters,

as well. We test all 64 combinations of the holding cost and disruption parameters shown

in Table 3.3.

(h1, h2, h3, h4, h5) Average disruption length Average time between disruption
(1, 2, 1.75, 3.5, 4.5) (0.4, 0.667, 0.667, 0.667, 0.667) (4, 2, 2, 2, 2)
(1, 1.75, 2, 4.5, 3.5) (0.667, 0.4, 0.667, 0.667, 0.667) (2, 4, 2, 2, 2)
(1, 2, 1.75, 4.5, 3.5) (0.667, 0.667, 0.4, 0.667, 0.667) (2, 2, 4, 2, 2)
(1, 1.75, 2, 3.5, 4.5) (0.667, 0.667, 0.667, 0.4, 0.667) (2, 2, 2, 4, 2)

Table 3.3: System 1 parameters for performance test

As before we calculate the base-stock levels with the recursive optimization algorithm

for this system, and we use coordinate descent search for finding the optimal base-stock

levels. We compare the simulated average inventory cost using base-stock levels from our

heuristic and from the coordinate descent method. For these 64 different instances, we

obtain computational results in the following table in the same manner.

Instance No. Algorithm Coordinate Descent Gap Computation Time

(1,1,1) 308.396 302.036 0.021057093 1.481445

(1,1,2) 304.971 299.720 0.017519685 1.486538

(1,1,3) 303.963 298.081 0.019732891 1.452269

(1,1,4) 294.931 286.088 0.030910070 1.443500

(1,2,1) 306.048 300.147 0.019660366 1.440851
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(1,2,2) 312.724 303.027 0.032000449 1.465480

(1,2,3) 309.259 299.317 0.033215621 1.448981

(1,2,4) 296.830 287.158 0.033681806 1.442139

(1,3,1) 303.164 293.958 0.031317399 1.433473

(1,3,2) 307.494 294.734 0.043293275 1.448619

(1,3,3) 311.498 296.015 0.052304782 1.489318

(1,3,4) 296.352 280.741 0.055606413 1.446018

(1,4,1) 286.437 277.243 0.033162244 1.425333

(1,4,2) 288.599 279.009 0.034371651 1.439938

(1,4,3) 288.602 276.773 0.042738995 1.428596

(1,4,4) 290.254 278.865 0.040840550 1.439884

(2,1,1) 307.625 301.618 0.019915920 1.420893

(2,1,2) 303.804 299.125 0.015642290 1.428191

(2,1,3) 301.719 298.728 0.010012453 1.438345

(2,1,4) 290.480 286.358 0.014394569 1.464393

(2,2,1) 304.051 299.472 0.015290244 1.443602

(2,2,2) 310.703 302.720 0.026370904 1.453025

(2,2,3) 305.646 299.822 0.019424859 1.444528

(2,2,4) 294.778 287.044 0.026943604 1.460868

(2,3,1) 299.936 295.313 0.015654577 1.431490

(2,3,2) 304.683 296.120 0.028917331 1.470644

(2,3,3) 307.555 298.763 0.029428008 1.465821

(2,3,4) 289.819 282.747 0.025011760 1.450274

(2,4,1) 281.925 277.775 0.014940149 1.429031

(2,4,2) 285.395 279.086 0.022605935 1.437430

(2,4,3) 282.934 277.970 0.017858042 1.452474

(2,4,4) 288.605 279.692 0.031867197 1.449941

(3,1,1) 308.962 300.307 0.028820507 1.440473

(3,1,2) 304.020 297.244 0.022796087 1.428477
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(3,1,3) 304.209 297.598 0.022214531 1.439822

(3,1,4) 291.834 284.895 0.024356342 1.439082

(3,2,1) 304.126 298.004 0.020543348 1.424192

(3,2,2) 309.830 300.876 0.029759768 1.462393

(3,2,3) 306.835 297.962 0.029778965 1.448338

(3,2,4) 293.952 284.981 0.031479292 1.458598

(3,3,1) 303.446 294.137 0.031648518 1.449693

(3,3,2) 307.043 294.369 0.043054805 1.473040

(3,3,3) 309.401 295.798 0.045987464 1.454740

(3,3,4) 293.276 280.149 0.046857208 1.472656

(3,4,1) 283.271 276.152 0.025779281 1.454977

(3,4,2) 285.619 277.041 0.030962926 1.468801

(3,4,3) 285.372 275.561 0.035603732 1.601772

(3,4,4) 290.929 277.052 0.050088070 1.574551

(4,1,1) 308.950 303.869 0.016721021 1.569934

(4,1,2) 306.557 301.975 0.015173442 1.700061

(4,1,3) 303.354 300.262 0.010297673 1.610240

(4,1,4) 293.577 288.850 0.016364895 1.751267

(4,2,1) 307.762 302.271 0.018165818 1.567337

(4,2,2) 315.225 305.199 0.032850697 1.809944

(4,2,3) 309.815 302.248 0.025035732 1.689135

(4,2,4) 297.656 289.494 0.028194021 1.642737

(4,3,1) 301.523 296.104 0.018301002 1.691942

(4,3,2) 306.878 297.534 0.031404814 1.773961

(4,3,3) 309.065 298.952 0.033828173 1.454972

(4,3,4) 292.896 283.678 0.032494589 1.672950

(4,4,1) 285.092 280.100 0.017822206 1.432178

(4,4,2) 288.374 281.460 0.024564769 1.573679

(4,4,3) 286.164 280.129 0.021543646 1.511542
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(4,4,4) 288.932 281.758 0.025461566 1.604674

Max 315.225 305.199 0.055606413 1.809944

Min 281.925 275.561 0.010012453 1.420893

Average 299.2675781 291.2699063 0.027556969 1.498460781

Table 3.4: System 2 test results

Based on our simulation for these 64 different instances, the recursive optimization

algorithm finds a set of base-stock levels that yield a performance with an average 2.76%

gap, and 5.56% maximum gap, as well as 1.00% minimum gap.

From these numerical experiments on these two different network structures, we can

see that our recursive heuristic algorithm does provide relatively fast solutions to problems

with different parameter settings, normally within seconds. It reaches average gaps of 2.24%

and 2.74% respectively, which means it find solutions with good quality for both network

structures.

3.6 Conclusion and Future Work

In this work, we introduce the recursive optimization heuristic to calculate the base-stock

levels for a distribution inventory system under supply disruption risk. The main idea is

to modify the classical recursive algorithm for serial systems to adapt to our distribution

system under supply risk. We analyze the effects of supply disruptions on the inventory

shortage for each stage first, then incorporate the effects into our recursive optimization

algorithm. Our recursive algorithm works in a “bottom-up” way, which starts from leaf

nodes, then moves upstream toward the root node. Whenever it calculates the base-stock

level for a stage, it takes the inventory cost at all its successors into consideration.

We assess the performance of the heuristic by comparing the results from it and the

results obtained by implementing a coordinate descent search. Our heuristic not only pro-

vides results very close to optimal, but also yields solution relatively fast. Finding the exact

base-stock levels for multi-echelon systems takes days or more of computational time, while
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our recursive algorithm finds solutions within seconds.

For research directions, we plan to investigate whether the Decomposition-Aggregation

heuristic (Rong et al. (2012)) can be applied to distribution systems with supply risk. It

works very well for the case without supply risk. We can examine whether the effects of

disruptions can be incorporated into their heuristics or not, and if so, how well it would per-

form. Our heuristics could possibly be applied to more generalized settings. Other possible

extensions we plan to work on are fixed ordering costs, as well as stochastic leadtimes.
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Chapter 4

A Bilevel Model for Retail

Electricity Pricing with Flexible

Loads

4.1 Introduction

In the USA, traditional electric utility and transmition systems were designed in an inte-

grated way to serve customers. This worked extremely well for decades until the deregula-

tion of electricity markets. As the economy grows, demand and supply vary continuously.

However, electricity is hard to store by nature, and it has to be available on demand. Bal-

ancing this supply-demand relationship requires a large number of financial transactions.

Consequently there is a physical requirement for a controlling agency to coordinate the

dispatch of electricity units to match actual demand across the power grid. Independent

System Operators (ISO) and Regional Transmission Organizations (RTO) were established

to handle the vastly increased number of transactions that take place in a competitive en-

vironment. The day-ahead energy market emerged after the deregulation of electricity. It

is a financial market where participants purchase and sell electricity for the following day

under binding day-ahead prices. If there is a difference between the amount purchased

from the day-ahead market and the amount required, electricity can also be purchased from
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the real-time market. The prices in the real-time market are determined by the location

marginal price (LMP) algorithm to balance electricity demand from available generation

units. Real-time prices are often higher than those in the day-ahead market.

Electricity service providers (utilities, electricity retailers, etc.) provide electricity to

users. One of their main tasks is to satisfy all demand from consumers. But aggregated

daily consumer demand profiles typically exhibit significant some peaks, which would incur

large costs for grid operators, as a great amount of generation capacity is reserved but

rarely used. Traditionally consumers receive a flat rate electricity price all day long. This

makes consumers indifferent to the time of day for their electricity consumption. For many

utilities, peak demand occurs during afternoon and early evening as a result of flat prices.

A huge amount of resources have to be allocated to prepare for peak hour usage, and the

cost to satisfy peak demand is also tremendous.

If the service provider is allowed to fluctuate its prices, and the consumer is capable of

responding to price fluctuations, marginal-cost based prices will encourage more efficient

energy usage, and thus help to mitigate these problems. Therefore, service providers use

demand response programs to encourage consumers to shift demand from peak hours to

off-peak hours, or ideally to generate demand that matches the available supply. Typically

demand response programs aim at some of the following objectives: reducing peak hour

consumption, shifting loads to adjacent non-peak hours, and decrease peak-to-average ratios

in load demand. It is believed that demand response may have a huge impact as smart grids

are put into practice.

There are two common types of demand response programs. One is direct load control.

In this approach, the electricity service provider can remotely control the operations of

certain appliances, based on an agreement between the service provider and the consumer.

For example, it may adjust the operations of thermal comfort equipment, refrigerators, etc.,

to accommodate its other concerns. However, this raises great concerns on users’ privacy

when it comes to residential customers, and its implementation is limited. The alternative

approach is smart pricing, where consumers are allowed and encouraged to manage their

own loads. Service providers normally set the price high during the peak hours, and set the

price low in the off-peak hours. So there are incentives for consumers to reduce short-term
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demand when capacity is tight, increase usage when capacity is abundant, or even delay

non-urgent electricity demand from peak hours to non-peak hours.

Real-time pricing (RTP), critical-peak pricing (CPP), and time-of-use (TOU) pricing

are among the most popular pricing schemes. For a typical real-time pricing scheme, the

electricity prices vary at different times of the day. They would normally be higher in peak

hours like afternoon and early evening. The consumer is expected to respond to the time-

differentiated prices by shifting their own loads from the high price hours to the low price

hours.

To better estimate potential peak hour demand and shift demand from peak hours to

non-peak hours, utilities need to understand demand as well as its patterns responding

to price variation among different hours of the day. For TOU pricing, electricity prices

are announced for each specific time period in a day in advance. Customers know this

pricing information in advance, which allows them to decide their usage in response to

price variations throughout a day. Typically demand peaks form during afternoon and

early evening under flat rate pricing. Under TOU pricing, while the price effects of hourly

pricing might discourage customers from concentrating consumption during peak hours, it

might inadvertently encourage customers to delay demand to adjacent hours, thus forming

a new “rebound” peak and leaving the service provider no better off even than flat rates.

As a result of day ahead pricing, the possibility of a rebound peak could increase since price

rate adjustment is not permitted after the price has been announced in advance.

CPP are very similar to TOU pricing, except for certain peak days, when prices could

reflect the actual generation or purchasing cost in the wholesale market. CPP has the same

problem as TOU pricing, in that a rebound peak might form during adjacent hours to peak

hours. RTP, also known as dynamic pricing, allows electricity prices to vary as often as

hourly. Customers receive price signals on an advanced basis, which reflect the utility’s

generation or purchasing cost in the wholesale market. Taylor et al. [81] showed hourly

RTP tariffs have been implemented successfully for large industrial and commercial firms.

We investigate a special type of RTP, where the price is dependant on the actual electricity

consumption quantity. Higher electricity costs occur as a result of more consumption. This

pricing mechanism discourages consumers from concentrating their load at a specific time,
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and encourage them to evenly spread out their consumptions.

There has be various demand side management work focusing on the interaction between

the utility company and end users, by implementing different pricing schemes. Typically,

each user is expected to respond to the time-differentiated price set by the utility company

by shifting its loads, and the utility company tries to either minimize total cost or maximize

total social wellfare. We provide a brief review on this literature in section 4.2.1. In contrast,

we consider the interaction between the utility and the consumer from a new perspective.

In this work, we consider a service provider and a large electricity consumption entity.

The service provider’s objective is to encourage this entity to generate a demand profile

that the service provider has identified a priori as desirable. The service provider may also

take deviation from the desired load profile into consideration. If the actual demand is

greater than the desired amount, this demand surplus has to been satisfied by purchasing

more electricity from the real-time market, which results in increased costs. If the actual

demand is less than the desired amount, some generating unit has to be put back into spin-

ning reserve, which also results in some extra cost or underutilization that would diminish

system performance. Meanwhile, the electricity consumer’s objective is to determine when

to operate its own devices to minimize the total cost, accounting for the exogenous electric-

ity cost as given by the service provider, as well as the inconvenience of delaying certain

devices’ operation when needed. We consider both deterministic and stochastic demand in

this work.

This problem can be naturally modeled as a bilevel programming problem: the service

provider (the leader) sets prices, and the consumer (the follower) makes his own consumption

decisions based on the electricity prices. Normally bilevel programming problems cannot

be solved directly. In our work, we investigate the properties of the lower level problem.

For the deterministic demand case, we analyze the optimality conditions. These conditions

allow us to write the lower level problem in terms of the optimality conditions, and the

whole problem can be reduced into a single level problem. This newly obtained single level

problem can be solved easily in CPLEX. For the stochastic demand case, we investigate

the best response function of the follower, and approximate its best response function to

facilitate calculating the leader’s optimal strategy.
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4.2 Literature Review

Our work studies the interaction between the electricity service provider and electricity

consumer. There are several research fields related to our topic.

4.2.1 Demand Side Management

Demand-side management (DSM) is fundamental in upgrading the aging power grid into a

more reliable and economically operated smart grid. It has a much needed positive impact

in smoothing peak hour demand, lowering generation cost, and so on. Many works model-

ing demand side management have already been undertaken. Hobbs et al. [37] present a

bilevel model where the electric utility at the upper level tries to minimize costs or maximize

benefits while controlling electric rates and subsidizing energy conservation programs, while

the lower level maximizes consumers’ net benefits by consuming electricity and investing in

conservation. It also considers factors such as free riders and rebound effect. Hamalainen et

al. [35] examines a model in which a coalition of consumers can be set up in a hierarchical

framework. The coalition buys electricity from a wholesale market, and its objective is to

optimize the total welfare of the coalition. The individual consumers optimize dynamically

their own consumption based on the price. A Time-of-Use pricing program is considered

for this model. A simulation is used to find the optimal Time-of-Use price based on the

optimal marginal price. Lavigne et al. [44] study the electricity market under different

pricing mechanisms. They present a heuristic decomposition technique to solve pure com-

petition, regulated and Stackelberg-type (tempered monopoly) equilibria. Energy sectors

are modeled through activity analysis models. An application to the province of Quebec is

presented.

Mohsenian-Rad et al.[55] studies demand-side management programs focusing on an

energy consumption scheduling game, where the users play the game by scheduling their

household appliances and load. The utility company can adopt pricing tariffs at different

times and energy levels. They include the interactions among the users. A distributed

algorithm is proposed to find the Nash Equilibrium. Their results show the users can

maintain privacy and they would have an incentive to participate in the energy consumption
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scheduling game. Samadi [68] consider a real-time pricing algorithm to encourage energy

consumption interaction among subscribers and the energy provider. The authors formulate

the real-time pricing problem as an optimization problem to maximize the aggregated users’

utility, which is each user’s preferences and engergy consumption patterns. Tarasak [80]

extends their work to include the effect of load uncertainty. The authors derive the optimal

prices under three types of load uncertainty: bounded uncertainty model, Gaussian model

and unknown distribution model. They also show its influences on power consumption

and generating capacity. Samadi [70][69] further extend this work by proposing a Vickrey-

Clarke-Groves (VCG) mechanism which aims to maximize the aggregate utility functions

of all users minus the total energy cost. This mechanism requires each user to provide its

demand information, while the energy provider will determine each user’s electricity bill

payment. The authors study some properties of this mechanism and show it could benefit

both users and utility companies.

Zhu et al. [87] study an electricity consumption scheduling mechanism for residential

load management using linear integer programming. The authors minimize peak hourly

load to achieve a balanced daily load schedule. Huang et al. [38] study an operation scheme

that allows the utility to perform demand response and power procurement jointly, to

maximize social welfare. The authors develop a low complexity algorithm called the welfare

maximization algorithm to perform power procurement and dynamic pricing jointly. Their

results show this algorithm reaches a close to optimal utility. Bu et al. [11] consider a

problem in which multiple electricity retailers can co-exist in the system, and they can

compete or cooperate with each other to reach the highest revenue, either individually or

together. The authors consider traditional fixed rate users and opportunistic electricity users

who can change their own demand, or even turn to another retailer. They present two game

formulations, and some results to show the effectiveness of the proposed real-time pricing

scheme. Bu et al. [10] study the interaction between the retailer and electricity customers

as a four-stage Stackelberg game. Simulation results show the effectiveness of the proposed

scheme, as well as the effects of system parameters on procurement and price decisions. Li et

al. [49] study the effect of demand side mangement in reducing peaks and adapting elastic

demand to fluctuating generation. The authors show that time-varying prices can align
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individual optimality with social optimality, which means when each household optimizes

its own benefits, social welfare is maximized automatically. They propose a distributed

algorithm to jointly compute the optimal prices and demand schedules.

Gatsis and Giannakis [26] study the problem of minimizing the electricity provider cost

plus the total user dissatisfaction, subject to the individual load constraints. The authors

solve this problem by a distributed subgradient method with Lagrange multipliers. Lee et

al. [48] present a design of an electricity consumption scheduler for a demand respsonse

system. The authors also evaluate its performance in smart grid homes or buildings, aiming

at reducing the peak load in them and system wide networks. Qian et al. [63] investigate a

real time pricing scheme to reduce the peak-to-average ratio through demand response by

solving a two stage optimization problem. The user maximizes the gap betwen its quality-

of-usage and payment, while the retailer maiximizes its profits. The authors develop a

simulated-annealing-based price control algorithm to solve the optimization problem.

Kishore and Snyder [41] consider the electricity conumption both within a home and

across several within a neighborhood. They provide an optimizaiton model to schedule

appliance to take advantage of lower electricity rates at off peak hours, but simulation

indicates resulting solution might be more picky thereby negating the benefits. Then they

provides a distributed scheduling mechanism to shape peak load. And they also introduce an

EMC optimizaiton model that account for electricity capacity constraints based on dynamic

programming.

Palensky and Dietrich [58] present an overview for demand side management, and ana-

lyze several types of demand side managment. We refer to this paper for more details on

demand-side management.

4.2.2 Mathematical Programs with Equilibrium Constraints (MPEC)

A large body of literature considers the interaction between the electricity service provider

and electricity consumers. This interaction can be captured using game theory, and for-

mulated as a bilevel programming problem. This overlaps with many works mentioned

previously, and some existing work formulate this intrinsically hard problem as an MPEC.

They are closely related to our work, and thus we provide a brief review o them.
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Hobbs et al. [36] works on an oligopolistic market with several dominant generating

firms in an electric power network. They model a single firm as a MPEC while the lower

level problem of maximizing social welfare is replaced by its KKT conditions. A penalty

interior point method is used to solve the single firm problem. The paper also includes

numerical examples for multi-firm Nash equilibria in which each player solves an MPEC of

the single-firm type.

Bjørndal and Jørnsten [8] study a Stackelberg game for a network-constrained energy

market. They reformulate equilibrium conditions of the associated MPEC into disjunctive

constraints, and nonlinear terms are linearized, so that the MPEC can be reformulated as

a mixed-integer linear program.

Chen et al. [13] proposes a Real-Time Pricing based power scheduling scheme as demand

response for residential power usage. This scheme also considers the Stackelberg game

between service provider and enery management controller. The equilibrium is obtained by

information exchange between them. The simulation indicates that the scheme could both

save cost for consumer, and reduce peakload and variance between demand and supply.

Saad et al. [67] provide a review of game theory applied to smart grid. This pa-

per summarizes the potential of applying game theory for addressing relevant and timely

open problems, including micro-grid systems, demand-side management, and communica-

tions. We refer to this paper for more details, especially on game theory applications for

demand-side management. Dempe et al. [19] summarize the main directions of research

and applications of bilevel programming. This paper provides a good review of MPECs,

especially useful for solving other MPEC problems.

Most modeling studies focus on maximizing total social welfare or minimizing total

cost for the game leader. In our work, we consider something similar but different. In a

deregulated electricity market, an electricity generation and consumption plan is determined

in a day-ahead market. Any new demand must be satisfied by purchasing electricity from

the real-time market at an extra cost. Consumers who produce with less demand than

expected would also probably incur extra costs for the service provider as some generators

would be sent to spinning reserve. The service provider must satisfy all the demand from

the consumer, but it would also prefer this consumption profile to be as close as possible
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to the predesigned demand profile. We are more interested in how close the real demand

profile can get to the predetermined demand profile using the pricing scheme to encourage

the consumer to shift loads.

4.3 Stackelberg Game Model

Consider a smart power system with a huge demand customer. Assume it has enough

demands in each time period so that the demand in each period can be considered to be

infinitely divisible. We also assume that the customer is equipped with a smart meter,

which can receive real-time pricing signals and schedule the devices’ operations. As there

are so many demands, we only consider load scheduling in the aggregate scale.

This work considers a time horizon of T periods. In period t, the consumer has an

original unshifted deterministic demand Dt, and the service provider has a desired load

Ot > 0. We relax te deterministic demand assumption in section 4.6. The amount of

demand that occurs at time i, that is shifted to time t, is denoted as xti. Assume there is a

constant inconvenience cost C per unit per period for delaying demand.

We assume teprice charged by the service provider is a quadratic function of the load,

equal to atx2 + btx, wher x is the load. The service provider can determine the electricity

price scheme by picking pricing parameters at and bt. If the service provider sees a total

load of
∑

i≤t x
t
i from all customers at time t, then the total electricity cost charged at time

t is:

at

∑
i≤t

xti

2

+ bt
∑
i≤t

xti.

We assume at and bt can be chosen within the intervals [aL, aU ] and [bL, bU ], respectively.

We use this pricing scheme to discourage large concentrations of electricity consumption in

any specific period. The electricity unit price increases simultanously as the consumption

increases due to the second order term in this pricing function. We use A+
t , A

−
t to denote

the surplus and deficit respectively from the desired load profile at time t.
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This problem can be formulated as a bilevel programming problem:

min
at,bt,A

+
t ,A

−
t ,x̄

t

∑
t

(
A+
t +A−t

)
(4.1)

s.t. A+
t −A

−
t =

∑
i

x̄ti −Ot, ∀t (4.2)

A+
t , A

−
t ≥ 0, ∀t (4.3)

aL ≤ at ≤ aU , ∀t (4.4)

bL ≤ bt ≤ bU , ∀t (4.5)

x̄ti = arg minxti
∑

t at
(∑

i x
t
i

)2 +
∑

t bt
∑

i x
t
i +
∑

t,iC(t− i)xti

s.t.
∑

t≥i x
t
i = Di, ∀i

xti = 0, ∀i > t

xti ≥ 0, ∀i, t

(4.6)

The upper level problem objective function (4.1) says that the service provider minimizes

the total deviation from the desired load profile throughout the time horizon, by deciding

the pricing parameters. Constraint (4.2) requires that A+
t or A−t equals the deviation of

the scheduled demand from the desired load profile at time t. The objective function of the

lower level problem (4.6) minimizes the total cost accounting for the electricity cost as well

as the inconvenience cost, given a fixed pricing scheme. The first constraints for the lower

level problem require all demand occurring at time i to be satisfied, and the demand can

only be shifted forward. The second constraints of the lower level problem indicate that the

load cannot be shifted backward.

This is a very straightforward model of the problem introduced before. The leader makes

a decision on price, and the follower reacts by scheduling demands based on the price to

minimize cost. It is a concise and compact formulation for this problem. But it is inherently

a hard problem to solve, simply because it is a nonlinear bilevel programming problem. If

the demand is stochastic in each period, it would only make the problem even worse. In

that case, the lower level problem itself is hard to solve. Dynamic programming would be

necessary in order to solve it. But it would become computationally prohibitive. So at first

we only consider fixed demand Dt in each period t to simplify the problem.
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4.4 Optimality Conditions for Lower Level Problem

One way to deal with a bilevel programming problem is to reduce the lower level problem

into some constraints, and then put these constraints back into the original problem, so

that it becomes a single level problem which might be solvable. KKT conditions are a

natural choice for this purpose. However, if there are some special properties of the lower

level problem, it might be worthwhile to explore them, as they might give better constraints

than the KKT conditions.

4.4.1 Properties of Optimal Solution for Lower Level Problem

Now we consider the lower level problem. First we introduce the notion of marginal price

P ti :

P ti =
d

dxti

at
∑
j≤t

xtj

2

+ bt
∑
j≤t

xtj + C(t− i)xti


=2at

∑
j≤t

xtj + bt + C(t− i)

If we increase (or decrease) xti by a very small amount ε, then the total cost would increase (or

decrease) by P ti ε. Demand occurring at time i can be scheduled in periods i+1, i+2, · · · , t∗i ,

where t∗i = argmax{t|xti > 0, xt+1
i = 0}. t∗i is an interesting time point for P ti . We will

abbreviate t∗i as t∗ since i is fixed. There are some nice properties for P ti ,∀t ≤ t∗, and for

P ti , ∀t > t∗:

Proposition 4.1. (Optimality conditions for lower level problem): Let t∗ = argmax

{t|xti > 0, xt+1
i = 0}. Then the optimal solution for the lower level problem satisfies

P ii = P i+1
i = · · · = P t

∗−1
i = P t

∗
i

and

P ti ≥ P t
∗
i , ∀t > t∗.
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Figure 4.1: Segment of time horizon based on P ti

This Proposition states that the marginal price remains constant between i and t∗ (see

Figure 3.1.). We don’t know how it behave for t > t∗, as in the light shaded area. But we

do know P ti ≥ P t
∗
i , ∀t > t∗ for certain. The demand requested at time i can be scheduled

after t∗.

Proof. Suppose {xti} is the optimal solution to the lower-level problem and {P ti } is the

corresponding marginal price. We first prove that, for all i ≤ t∗, P t
∗−1
i = P t∗i . As Ot > 0,

it is reasonable for us to assume, for an optimal solution, that the load allocated to period

t should be close to Ot, or at least that there is load assigned to period t, i.e.
∑

i x
t∗−1
i > 0.

Then if P t
∗
i > P t

∗−1
i , the cost would decrease if we shift a small load ε from t∗ to t∗ − 1,

contradicting our assumption that x is optimal. Similarly, if P t
∗
i < P t

∗−1
i , the cost decreases

if we shift ε from t∗−1 to t∗. Thus, P t
∗
i = P t

∗−1
i . We can generalize this to t∗−1, t∗−2, · · · , i.

Then we have:

P ii = P i+1
i = · · · = P t

∗−1
i = P t

∗
i .

If there is any t > t∗ which satisfies P ti ≤ P t
∗
i , as in the darker block in the light shaded

area of Fig. 3.1., the cost can be reduced by shifting load from t∗ to t, which contradicts
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our assumption that x is optimal. So

P ti ≥ P t
∗
i , ∀t > t∗.

This Proposition divides the time horizon based on xti into two parts, t ≤ t∗ and t > t∗.

We don’t know how it behaves for t > t∗, as in the light shaded area, but we know enough

to proe this result. Now we are going to generalize the result to xti for all i. But first we

need another concept, period-wise marginal price pt:

P t = 2at
∑
i≤t

xti + bt + Ct.

P t represents the marginal price for increasing electricity consumption at time t, and is

independent of i as there is no term −Ci. As the next Proposition shows, based on Pt, the

time horizon is divided into n+ 1 parts, and each part has equal marginal electricity price.

Proposition 4.2. There exists a set of n numbers i1, · · · , in, where 1 ≤ n < T , such

that 1 < i1 < i2 < · · · < in ≤ T , and the optimal solutions for the lower level problem

satisfy:

P 1 = P 2 = . . . = P i1−1

≤P i1 = P i1+1 = . . . = P i2−1

≤Pi2 = Pi2+1 = · · · = Pi3−1

≤ . . .

≤P in = P in+1 = . . . = P T

Moreoever, ∀i, t where i < t, if there exists any ik among these n numbers i1, · · · , in, which

satisfy i < ik < t, then

xti = 0.
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Figure 4.2: Segment of time horizon based on P t

This Proposition indicates that P t increases in stages. It stays constant for several

periods, then increases. And it repeats this pattern. Demand requested within each stage

can only be assigned within its stage (see figure 4.2).

Proof. First we will prove that for optimal solutions, P 1 ≤ P 2 ≤ · · · ≤ P T . Based on

Proposition 4.1, we have

P 1
1 = P 1 − C ≤ P 2

1 = P 2 − C.

Obviously, P 1 ≤ P 2 is true. Similarly we have P i ≤ P i+1,∀i = 2, · · · , T − 1. So

P 1 ≤ P 2 ≤ · · · ≤ P T .

Before proving the second part of the Proposition, we need to introduce a set of binary

variables zt and break points {i1, i2, · · · , in}. Starting from t = 2, if P t−1 < P t, we assign

zt = 1 and set one of the break points to t, otherwise zt = 0 and we do nothing with the

break points. Repeating this until the end of the horizon, we get a set of z1, z2, · · · , zT ,

which satisfies zi1 = zi2 = · · · = zin = 1 and other zi = 0, where n < T and 1 ≤ i1 < i2 <
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· · · < in ≤ T . Most importantly:

P 1 = P 2 = . . . = P i1−1

≤P i1 = P i1+1 = . . . = P i2−1

≤Pi2 = Pi2+1 = · · · = Pi3−1

≤ . . .

≤P in = P in+1 = . . . = P T

To prove the second part of the Proposition, it is necessary to show that xti = 0, ∀i <

ik < t. Here we still denote t∗i = argmax {t|xti > 0, xt+1
i = 0}. Then

xti = 0, ∀t∗i < t.

So if t∗i < ik for any ik that is greater than i, then the claim is true. For simplicity, assume

there is only one ir which satisfies i < ir < t∗i . Then by the assumption of ir, we know that

zir = 1 and P ir−1 < P ir . Because i < ir < t∗i , we can shift some load ε from x
t∗i
i to xir−1

i ,

and the total cost would be reduced by ε(P t
∗
i −P ir−1) = ε(P ir −P ir−1) > 0. So there can’t

be any ir which satisfies i < ir < t∗i .

This Proposition gives a better idea how the marginal price should behave for the optimal

solution. It shows that the total time horizon can be divided into several sections such that

the marginal price stays the same within each section, and it only increases overall. This

provides better insight into the optimal solutions, which gives us a better way to formulate

the lower level problem.

4.4.2 Formulating Optimality Conditions as Constraints

Our original problem is a bilevel problem, which is hard to compute directly. We would like

to reformulate it into a single level problem, which would require reformulating the lower

level problem by its optimality conditions. That’s our purpose for Proposition 4.1 and

Proposition 4.2. Next, we are going to formulate the optimality conditions in Proposition
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4.2 as constraints.

Following the previous argument in Proposition 4.2, the lower level problem has to meet

two conditions. The first condition suggests the whole time horizon is divided into sections

such that the marginal price stays the same within each section, and it only increases overall.

The first constraint is

P t − P t−1 ≥ 0, ∀t > 1.

This constraint ensures that the marginal price is non-decreasing along the time horizon.

The second constraint is:

P t − P t−1 ≤Mzt, ∀t > 1

for large M , where zt is a binary variable that equals 1 if period t is a breakpoint, as

in Proposition 4.2. This constraint makes sure that the marginal price remains the same

within each section, and it can only increase at the breakpoints.

The second condition in Proposition 4.2 gives constraints on xti, making sure that the

demand incurred within a time horizon section is only scheduled within that time horizon

section. It is equivalent to the following condition:

xti ≤M(1− zj), ∀i < j ≤ t.

These constraints require xti to be 0 if there is a break point between i and t. If there is

not a break point between i and t, it means t lies within the time horizon section, so part

of the load can be assigned to time t, and there is no constraint on it.

Based on Proposition 4.1 and Proposition 4.2, we have the following formulation for the

lower level problem:

min
xti,Pt,zt

1

s.t.
∑
t≥i

xti = Di, ∀i (4.7)

xti ≤M(1− zj), ∀i < j ≤ t (4.8)

P t − P t−1 ≤Mzt, ∀t > 1 (4.9)
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P t − P t−1 ≥ 0, ∀t > 1, (4.10)

P t = 2at
∑
j

xtj + bt + Ct, ∀t (4.11)

xti = 0, ∀i > t (4.12)

xti, P
t ≥ 0, ∀i, t (4.13)

zt ∈ {0, 1}, ∀t (4.14)

But Proposition 4.1 and Proposition 4.2 provide necessary conditions for an optimal solu-

tion. In order to replace the lower level problem with this new formulation, we also need

to show there are sufficient conditions for optimality. In order to prove this, we need to

introduce the KKT conditions for the lower level problem:

∑
t

xti = Di, ∀i (4.15)

xti ≥ 0, ∀i, t (4.16)

µti ≥ 0, ∀i, t (4.17)

2at
∑
j

xtj + bt + C(t− i)− µti + λi = 0, ∀i, t (4.18)

µtix
t
i = 0, ∀i, t (4.19)

Proposition 4.3 Any solution that satisfies the new formulation also satisfies the KKT

conditions for the lower level problem.

Proof. The first two KKT conditions (4.15) and (4.16) are obvious, as they are still required

in (4.7) and (4.13).

The fourth KKT condition (4.18) is equivalent to P ti + λi = µti. The KKT conditions

require µti ≥ 0 and µtix
t
i = 0,∀i, t. These conditions would be true if we can show that both

of the following two are true:

P ti + λi ≥ 0

and

(P ti + λi)xti = 0.
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P ti + λi ≥ 0 is obvious as Proposition 4.1 states P ti is increasing in t. Complementary

slackness requires that if xti > 0, then P ti + λi = 0; and if xti = 0, then P ti + λi ≥ 0.

The second half is true as just mentioned. The first half is true because the condition in

Proposition 4.2 indicates that P ii = P i+1
i = · · · = P ik−1

i and xii, x
i+1
i , · · · , xik−1

i ≥ 0, and

xik−1
i = · · · = xTi = 0, where ik is the smallest among all ij , j = 1, 2, · · · , n, such that ij > i.

So if xti > 0, then P ti = −λi, where λi = −P ii .

As argued in the proof, the new formulation provides sufficient conditions for the KKT

conditions, so it also provides sufficient conditions for optimality. In conclusion, our new

formulation is equivalent to the lower level problem.

Incorporating this new formulation of the lower level problem back into the original

problem, the bilevel programming problem can be formulated as:

min
at,bt,A

+
t ,A

−
t ,x

t
i,zt,Pt

∑
t

A+
t +A−t

s.t. A+
t −A

−
t =

∑
i

xti −Ot, ∀t

∑
t≥i

xti = Di, ∀i

xti ≤M(1− zj), ∀i < j ≤ t

P t − P t−1 ≤Mzt, ∀t > 1

P t − P t−1 ≥ 0, ∀t > 1,

P t = 2at
∑
j

xtj + bt + Ct, ∀i, t

xti = 0, ∀i > t

xti, P
t ≥ 0, ∀i, t

zt ∈ {0, 1}, ∀t

A+
t , A

−
t ≥ 0, ∀t

aL ≤ at ≤ aU , ∀t

bL ≤ bt ≤ bU , ∀t
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4.4.3 Linearizing Nonlinear Constraints

The newly formulated problem is a mixed integer problem with nonlinear constraints. The

nonlinearity makes the problem very hard to solve. From our preliminary numerical exper-

iments, it can be solved within minutes for a small scale problem with T = 20 using the

solver Couenne. But once the problem size goes up to a reasonable size such as T = 240,

it becomes very slow, and the computation time would exceed the time limit easily. Elimi-

nating the nonlinearity would have a profound role in simplifying the problem and speeding

up computation.

Carefully examing the problem, there is only one nonlinear constraint:

P t = 2at
∑
j

xtj + bt + Ct, ∀t. (4.20)

Luckily, this is the only nonlinear constraint. The nonlinear component comes from the

product of at and
∑

j x
t
j . Notice that the variables at only appear in this constraint. There

are not any additional constraints for at. In other words, at is determined uniquely by this

constraint. If the values of the other variables P t, xtj , bt are obtained from solving this model,

then there would be a unique solution for at. And since there are upper and lower bounds

for at, these can be incorporated into the constraints, replacing the nonlinear constraints

by linear constraints.

As the upper bound (or lower bound) for at is aU (or aL), we have the following condi-

tions:

P t ≤ 2aU
∑
j

xtj + bt + Ct, ∀t (4.21)

and

P t ≥ 2aL
∑
j

xtj + bt + Ct, ∀t. (4.22)

Replacing the nonlinear constraint (4.20) with these two new linear constraints (4.21) and

(4.22), we have the following problem:

min
bt,A

+
t ,A

−
t ,x

t
i,zt,Pt

cost =
∑
t

A+
t +A−t
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s.t.A+
t −A

−
t =

∑
i

xti −Ot, ∀t

∑
t≥i

xti = Di, ∀i

xti ≤M(1− zj), ∀i < j ≤ t

P t − P t−1 ≤Mzt, ∀t > 1

P t − P t−1 ≥ 0, ∀t > 1,

P t ≤ 2aU
∑
j

xtj + bt + Ct, ∀t

P t ≥ 2aL
∑
j

xtj + bt + Ct, ∀t

xti = 0, ∀i > t

xti ≥ 0, ∀i, t

zt ∈ {0, 1}, ∀t

A+
t , A

−
t , P

t ≥ 0, ∀t

bL ≤ bt ≤ bU , ∀t

After solving the whole model, at can be computed easily as:

at =
P t − bt − Ct∑

j x
t
j

.

This new formulation solves the same Stackelberg problem, based on the assumption that

the inconvenience cost is the same for every demand, and the price parameter at is bounded.

This work reduces a bilevel programming problem with nonlinear constraints into a single

level linear mixed integer problem. The original problem is very hard to solve, and it cannot

be coded as an input for any solver. The final problem is a regular MIP with O(T ) binary

variables and O(T 2) continuous variables. It can be solved within seconds for a moderate

sized problem.
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4.5 Consumer with Local Storage

This section deal with the case consumer in which the integrates local storage into his

system. That is, the customer has one load that is a storage unit which can be used to

store energy when prices are low and to draw power locally during those times when prices

may be high, etc. Intuitively, similar results should still hold.

We still use same notations under the same assumptions. Now assume there is a storage

unit for the customer. Denote the amount of electricity available at the storage unit as st,

where s ≤ st ≤ s̄. And the amount of energy variation in period t is yt. If yt > 0, electricity

is bought and injected into the storage unit, and if yt < 0, electricity is withdrawn from the

storage unit and consumed.

The service provider can determine the electricity pricin scheme by picking pricing pa-

rameters at and bt. If the service provider sees a total load of
∑

i≤t x
t
i from all customers

at time t, then the total electricity cost charged at time t is:

at

∑
i≤t

xti + yt

2

+ bt

∑
i≤t

xti + yt

 .

So the whole problem can be formulated as a bilevel programming problem:

min
at,bt,A

+
t ,A

−
t ,x̄

t

∑
t

(
A+
t +A−t

)
s.t. A+

t −A
−
t =

∑
i

x̄ti −Ot, ∀t

A+
t , A

−
t ≥ 0, ∀t

aL ≤ at ≤ aU , ∀t

bL ≤ bt ≤ bU , ∀t
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x̄ti = arg minxti,st,yt
∑

t at
(∑

i x
t
i + yt

)2 +
∑

t bt
(∑

i x
t
i + yt

)
+
∑

t,iC(t− i)xti

s.t.
∑

t≥i x
t
i = Di, ∀i

xti = 0, ∀i > t

xti ≥ 0, ∀i, t

st = st−1 + yt, ∀t

s ≤ st ≤ s̄, ∀t

Everything is the same as the original model, except the cost function modification for the

game follower and storage transition function. If we denote P t = 2at
(∑

j x
t
j + y

)
+ bt + ct,

then we have similar results as the case without local storage.

Proposition 4.3. There exists a set of n numbers i1, · · · , in, where 1 ≤ n < T , such

that 1 < i1 < i2 < · · · < in ≤ T , and the optimal solutions for the lower level problem

satisfy:

P 1 = P 2 = . . . = P i1−1

≤P i1 = P i1+1 = . . . = P i2−1

≤P i2 = P i2+1 = · · · = P i3−1

≤ . . .

≤P in = P in+1 = . . . = P T

Moreoever, ∀i, t where i < t, if there exists any ik among these n numbers i1, · · · , in, which

satisfy i < ik < t, then:

xti = 0.

Formulating the Optimality Conditions

Proposition 4.3 is still constructed in the same way using two constraints. The first one is:

P t − P t−1 ≤Mz0
t , ∀t > 1.
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The second condition is:

xti ≤M(1− z0
j ), ∀i < j ≤ t.

Repeat the work we have done for the case without local storage, we have the following

formulation for the lower level problem:

min
xti,Pt,P̄t,z

i
t,st,yt

1

s.t.
∑
t≥i

xti = Di, ∀i (4.23)

P̄ t = 2at

∑
j

xtj + yt

+ bt, ∀t (4.24)

P t = P̄ t + Ct, ∀t (4.25)

P t − P t−1 ≥ 0, ∀t > 1, (4.26)

P̄t − P̄t+1 = µt1 − µt2, ∀t < T (4.27)

P̄T = µT1 − µT2 (4.28)

xti ≤M(1− z1
j ), ∀i < j ≤ t (4.29)

P t − P t−1 ≤Mz1
t , ∀t > 1 (4.30)

µt1 ≤Mz2
t , ∀t (4.31)

st − s ≤M(1− z2
t ), ∀t (4.32)

µt2 ≤Mz3
t , ∀t (4.33)

s̄− st ≤M(1− z3
t ), ∀t (4.34)

z2
t + z3

t ≤ 1, ∀t (4.35)

st = st−1 + yt, ∀t (4.36)

s ≤ st ≤ s̄, ∀t (4.37)

µt1, µ
t
2, x

t
i, P

t ≥ 0, ∀i, t (4.38)

xti = 0, ∀i > t (4.39)

zit ∈ {0, 1}, ∀i = 1, 2, 3, ∀t (4.40)
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Asymmetrical Information Regaring Storage

The case when the utility does not know whether the customer has local storage is captured

in the original model. Intuitively, if the customer will not sell any electricity back to the

utility, the utility would reach a lower deviation. Typically, the utility would set the price

high if the demand is higher than the desired load, and set the price low if the demand

is lower than the desired load. The storage unit would give the customer a chance to

require less electricity when the price is high, and request more electricity when the price is

low. That is same as saying, if the customer has a storage unit, and the utility thinks the

customer doesn’t, this will not hurt the utility.

4.6 Random Demand

The model we have so far solves the case with deterministic demand. However, the demand

is never deterministic in reality. It flunctuates from day to day, hour to hour, minute to

minute. It is vital to study how the model might be modified to handle stochastic demand.

In this section, we add stochastic loads to our model for pricing and demand response.

Suppose the total load in period t has some probability distribution function ft(·) whose

parameters (mean, variance, etc.) may be different in each period. Demands are indepen-

dent across periods. It would be very hard to formulate and solve the leader’s problem

accurately while accounting for this stochasticity. Therefore, we focus on an approach in

which the follower solves a more accurate problem (e.g., accounting for stochasticity) while

the leader uses a more naive approach (e.g., ignoring stochasticity and assuming the follower

does too).

4.6.1 Folding Horizon

In this section, we suppose that the follower solves his problem on a folding horizon basis.

That is, in period 1 he solves the problem for periods 1, · · · , T . In period 2 he solves the

problem for periods 2, · · · , T , updating the parameters to reflect what happened in period

1. In general, in period t he solves the problem for periods t, · · · , T updating the parameters

to reflect what happened in periods 1, · · · , t − 1. The ending period stays the same. The
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leader, on the other hand, solves the problem once, in period 1, for the horizon 1, · · · , T .

This seems plausible since the service provider must announce tomorrow’s prices for the

entire day and can’t change the prices once announced, whereas the follower can modify his

consumption decisions based on how the stochastic loads are realized over time. Assume

that the follower realizes the load in period t before he has to make consumption decisions;

that is, when he solves the problem in period t, Dt is deterministic but Ds is stochastic for

s = t+ 1, · · · , T .

4.6.2 Consumer’s Policy

The consumer needs to solve the following problem for every period n.

min
xnti

∑
t≥n

at

(∑
i

xnti

)2

+
∑
t,i≥n

btx
nt
i +

∑
t,i≥n

C(t− i)xnti

s.t.
∑
t≥i

xnti = Di, ∀i > n

∑
t≥n

xntn = D̄n +
∑
t≥n

xn−1,t
n−1

xnti = 0, ∀i > t

xnti ≥ 0, ∀i, t

Here
∑

t≥n x
n−1,t
n−1 is the delayed unmet demand from previous period t < n. It is constant

since n is fixed. D̄n is the actual demand in period n, which is also a constant. We can

ignore
∑

t≥n x
n−1,t
n−1 , and include it in D̄n, as the demand to be met in period n. For period

t > n, Dt represents the random demand in the future. This problem is equivalent to the

following dynamic programming (DP) problem for each period n:

fn(y) = min
x

anx
2 + bnx+ C(y − x) + f̄n+1(y − x) (4.41)

f̄n(x) =EDn (fn+1(x+Dn+1)) (4.42)

For each period, the solution to fn(y) can be obtained with exact dynamic programming.

It follows a policy that is very similar to a base-stock policy. Figure 4.3 shows a plot of
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xn(y) v.s. y, where xn(y) is the minimizer in (4.41) and (4.42).

Figure 4.3: Consumer’s best response function

This plot indicates how the consumer allocates his demand during a given period. If

the total demand y, including delayed unmet demand from the previous period, as well as

new demand in period t, is less than st, it is all satisfied in the current period. If the total

demand y is greater than st, then only a part of it is satisfied, while the rest is delayed until

the next period.

4.6.3 Difficulty with the Optimal Response Function

The optimal response function for the electricity consumer can be formulated as

g(x) =

 x x ≤ st

αx+ (1− α)st x > st.

Here α is the slope at which x increases when x > st. For this policy, there are two

parameters to be found: st and α.

Here we explore the optimality condition for minimizing the expected deviation. If

st > Ot, the total expected deviation is:

F (st, α) =
∫ Ot

0
(Ot− x)ft(x)dx+

∫ st

Ot

(x−Ot)f(x)dx+
∫ +∞

st

(αx+ (1− α)st −Ot) ft(x)dx

92



where y = Ot
α + α−1

α st, which satisfies αy + (1− α)st = Ot. If st ≤ Ot, the total deviation

is:

F (st, α) =
∫ st

0
(Ot − x)ft(x)dx+

∫ y

st

(Ot − αx− (1− α)st) ft(x)dx

+
∫ +∞

y
(αx+ (1− α)st −Ot) ft(x)dx

For the case st > Ot, taking the partial derivatives with respect to st and α, we have:

∂F (st, α)
∂st

=(st −Ot)f(st) +
∫ +∞

st

(1− α)ft(x)dx− (αst + (1− α)st −Ot) ft(st)

=(1− α)
∫ +∞

st

ft(x)dx

∂F (st, α)
∂α

=
∫ +∞

st

(x− st) ft(x)dx

So obviously ∂F (st,α)
∂st

> 0, and ∂F (st,α)
∂α > 0. In order to let the deviation be as small as

possible, st and α should be as small as possible, if st > Ot. This is equivalent to saying st

should be less than or equal to Ot.

For the case st ≤ Ot, again taking the partial derivatives with respect to st and α, we

have:

∂F (st, α)
∂st

=(Ot − st)f(st) +
∫ y

st

(α− 1)ft(x)dx− (Ot − αst − (1− α)st) f(st)

+
∫ +∞

y
(1− α)ft(x)dx

=−
∫ y

st

(1− α)ft(x)dx+
∫ +∞

y
(1− α)ft(x)dx

∂F (st, α)
∂α

=−
∫ y

st

(x− st)ft(x)dx+
∫ +∞

y
(x− st)ft(x)dx

The necessary condition for the deviation to reach its minimum is ∂F (st,α)
∂st

= 0 and ∂F (st,α)
∂α =

0, which are equivalent to:

∫ st+
Ot−st
α

st

ft(x)dx =
∫ +∞

st+
Ot−st
α

ft(x)dx
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and ∫ st+
Ot−st
α

st

(x− st)ft(x)dx =
∫ +∞

st+
Ot−st
α

(x− st)ft(x)dx.

But ∫ st+
Ot−st
α

st

(x− st)ft(x)dx <
∫ st+

Ot−st
α

st

Ot − st
α

ft(x)dx

and ∫ +∞

st+
Ot−st
α

Ot − st
α

ft(x)dx <
∫ +∞

st+
Ot−st
α

(x− st)ft(x)dx.

This means
Ot − st
α

∂F (st, α)
∂st

<
∂F (st, α)

∂α
.

This equality shows that ∂F (st,α)
∂st

and ∂F (st,α)
∂α can not equal 0 at the same time. Even if

they could, the equations ∂F (st,α)
∂st

= 0 and ∂F (st,α)
∂α = 0 are very hard to solve, with st and

α in the integration upper bound and lower bound.

4.6.4 Approximation of Optimal Response Function

Due to the difficulty of computing the original optimal response function for the electricity

consumer, we need to find an approximation for this best response function, which is easy

to use but also yields good results.

We propose to approximate the electricity consumer’s response with

g(x) = min{x, st}.

This response function chooses to satisify all the load request if the total load request is

less than st, or satisify exactly st if the total load request is at least st. This functions very

similarly to a base-stock policy.

Choice of st

In this model, the electricity service provider still prefers to have as little deviation as

possible. If the game leader could force the follower to choose any st, a proper st which

minimizes the total weighted deviation would be his target. Here we explore which st would
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minimize the weighted deviation. The only thing that can be changed is st. The game leader

considers two problems:

min
st

λ−
∫ st

0
(Ot − x)ft(x)dx+ λ+

∫ +∞

st

(Ot − st)ft(x)dx

s.t. st ≤ Ot

and

min
st

λ−
∫ Ot

0
(Ot − x)ft(x)dx+ λ+

∫ st

Ot

(x−Ot)f(x)dx+ λ+

∫ +∞

st

(st −Ot)ft(x)dx

s.t. st > Ot

In this expected deviation, both Ot and ft are given in advance. The partial derivative with

respect to st of the objective function in the first problem is:

−λ−
∫ +∞

st

ft(x)dx for st ≤ Ot

And the partial derivatives with respect to st of the objective function in the second problem

is:

λ+

∫ +∞

st

ft(x)dx for st > Ot

This indicates that the deviation is decreasing for st ≤ Ot, and increasing for st > Ot. The

minimum is obtained when st = Ot. So ideally, the game leader would set at, bt in a way

such that the follower would set st = Ot.

Merits of Response Function Approximation

This approximation of the optimal response function greatly simplifies the problem. First,

originally we have two parameters to decide: the slope and intercept. Now we have only one

parameter to calcualte. Second, this one parameter has a very simple target, just to match

st with Ot. It is simple, intuitive, and straightforward. Third, with only one parameter

to manipulate, the electricity provider has a better chance to acheive its goal, i.e., to set
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at, bt such that st = Ot. Because higher electricity cost discourages demand and vice versa,

st is a monotonically decreasing function of at and bt. We can use bisection search to find

apporpriate values of at, bt such that st = Ot.

4.6.5 Algorithm for Finding at and bt

So far, our analysis provides a goal for the electricity service provider in determining its

pricing parameters at and bt. The optimal at and bt are the ones that make st = Ot.

If we consider st as a function of at and bt, then st is a monotonely decreasing function

of at and bt. An increase in at and bt would raise the electricity cost in period t, thus en-

couraging more demand to be delayed into the next period, which means st would decrease.

This monotonicity allows an easier search for good at and bt. In our numerical experiments,

we fix at first, then search over all bt. If the resulting st is smaller than Ot, bt needs to

be decreased, and vice versa. Bisection search is utilized to speed up this search. If no

bt > 0 can reach the point where st = Ot, that means st < Ot, and the price should be

reduced further. In this case we decrease at by 10%, and search for bt which yields st = Ot.

We repeat this process iteratively - fixing at, solving for bt, decreasing at if no good bt are

available, until we finally find a pair of (at, bt) with the resulting st equal to Ot.

Another related issue is how to find st given at and bt. st is one parameter of the

electricity consumer’s best response function

g(x) =

 x x ≤ st

αx+ (1− α)st x > st.

This best response function is obtained by solving electricity consumer’s problem in period

t:

fn(y) = min
x

anx
2 + bnx+ C(y − x) + f̄n+1(y − x) (4.43)

f̄n(x) =EDn (fn+1(x+Dn+1)) (4.44)

Thus we solve this problem starting from the last period T , and moving backward to period
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T − 1, · · · , 1.

The algorithm we used to search for (at, bt) is summarized in the following pseudocode

in Table 4.1.

Steps
1: Initialization:

set at = ā, b1t = 2b̄, b2t = b̄, b3t = b̄/2
calculate s1

t with b1t , s
2
t with b2t , s

3
t with b3t by solving (4.43) (4.44)

2: for t = T − 1 to 1 do
3: while |s2

t −Ot| > ε1 and b2t > ε2 do
4: if Ot ≤ s1

t do
set b3t = b1t , b

1
t = 2b1t , b

2
t = (b1t + b3t )/2

5: else if s1
t < Ot ≤ s2

t do
set b3t = b2t , b

2
t = (b1t + b3t )/2

6: else if s2
t < Ot ≤ s3

t do
set b3t = b2t , b

2
t = (b1t + b3t )/2

7: else if s3
t < Ot do

set b1t = b3t , b
3
t = b3t /2, b

2
t = (b1t + b3t )/2

8: end if
update s1

t , s
2
t and s3

t correspondingly by solving (4.43) (4.44)
9: end while
10: if b2t < ε2 do
11: set at = 0.9at, b1t = 2b̄, b2t = b̄, b3t = b̄/2
12: calculate s1

t with b1t , s
2
t with b2t , s

3
t with b3t

13: go to 3
14: end if
15: set at = a2

t , bt = b2t
16: end for

Table 4.1: Flow chart of algorithm: search for at and bt

4.7 Numerical Experiments

In this section, we test how our models handle the interaction between the electricity supplier

and electricity consumer. The orginal problem is very hard to solve. So one important thing

is how hard it is to solve our models. Furthermore, our model provides a pricing scheme

for the electricity provider which incentives the consumer to react in an expected way. The

effectiveness of this pricing scheme is another thing we test in this section.

We have built models for the case where the demand is deterministic, the case where

there is electricity storage in the system with deterministic demand, as well as the case
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where demand is stochastic. Since the case with electricity storage is very similar to the case

without it, we only test the case with deterministic demand, and the case with stochastic

demand in our numerical studies.

4.7.1 Deterministic Demand Model

For the model with only deterministic demand and no electricity storage, the final model

is a linear mixed integer programming problem, which can be solved using any commercial

solver. We implement this MIP problem in AMPL, and solves it using CPLEX 12.2.0.0.

First we test how fast this model can be solved. In these numerical experiments, demand

in each period is a uniformly distributed random variable on [0, 100]. The predetermined

load profile is set to be the average, i.e., 50 in every period. The problem size is determined

by one factor - the total number of periods. We test this model for different sizes as listed

in Table 4.2, which also lists the CPU time. For moderate sized problems, the problem can

Number of Periods 100 150 200
Running time (seconds) 14.8 27.1 122.2

Table 4.2: Running time for deterministic demand model

be solved within a couple of minutes. The running time is acceptable. But as the number

of periods increases, the problem becomes increasingly hard to solve. On the other hand,

T values larger than 150 or so are less likely in practice, since service provider paln prices

for one day at a time.

Next we test how well the pricing scheme works. For each given demand and prede-

termined load profile, there is a minimum possible deviation. Note that the predetermined

load profile might be greater than the actual load, in which case there is no way to delay

the actual load to match the predetermined load profile; or the actual load could be too

big, in which case when it comes to the last period, it has to be satisfied, thus bringing the

allocated amount much higher than the desired amount. Thus for any given pair of demand

and predetermined load profile, there is a minimum possible deviation. Our objective is to

get as close as possible to this minimum deviation.

We pick a random set of data with a total of 50 periods. Demand Dt is uniformly
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distributed from [0, 100], and the objective Ot is uniformly distributed between 30 and 70.

For this set of data, the minimum deviation is 547. We test how the feasible region for

(at, bt, C) affects the deviation.

bt C at Deviation
500 ≤ bt ≤ 600 50 1 822
500 ≤ bt ≤ 600 25 1 694.67
500 ≤ bt ≤ 600 5 1 590.5
500 ≤ bt ≤ 600 5 1 ≤ at ≤ 2 554.2
400 ≤ bt ≤ 600 5 1 ≤ at ≤ 2 547
500 ≤ bt ≤ 600 25 1 ≤ at ≤ 2 651
500 ≤ bt ≤ 600 25 5 ≤ at ≤ 7.5 636
500 ≤ bt ≤ 600 5 5 ≤ at ≤ 7.5 593
400 ≤ bt ≤ 600 5 5 ≤ at ≤ 7.5 571.4

Table 4.3: Deterministic model experiments with different parameter settings

Based on our experiments, only one set of bounds on the parameters, (1 ≤ at ≤ 2, 400 ≤

bt ≤ 600, C = 5), achieves this minimum deviation. It has the largest feasible region

among all given combinations of parameter bounds. This set of parameter bounds has

more pricing power, specifically because C = 5, which puts more weight on at and bt, or in

other words, gives at and bt more choices to achieve the minimum deviation. The proper

choice of (at, bt, ct) depends on the preference of the consumer in delaying load, as well as

the electricity service provider’s limits on determing the electricity price.

4.7.2 Stochastic Demand Model

For the stochastic demand case, our analysis does not reduce the original bilevel prob-

lem into a single level problem directly. It provides a strategy that is easy to implement

for the electricity service provider to determine its pricing schemes. The algorithm is de-

scribed in Table 4.1, and we implement this algorithm in Matlab. The problem we study

in this chapter is about the utility company and electricity consumer. Thus, we obtain

our numerical experiement data from NYISO to make it more realistic. NYISO provides

ISO load forecast data, and integrated real time actual load from item P-7 and P-58C at

mis.nyiso.com/public/, which is available publicly. Since the ISO makes its plan accord-

ing to its load forecast, we assume this forecast is the desired load level Ot in our model.
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And the integrated real time actual load is Dt used in our model. NYISO makes a forecast

for each hour for the coming few day, and it provides real time actual load for every 15

minute interval. We use integrated hourly demand to be consistent with the prediction

data. NYISO divides New York state into 11 regions. We use the integrated actual load

data and forecast data for 01.25.2014 through 02.01.2014 for the Millward region to test

our model.

As in section 4.7.1, we test how fast can each set of data can be solved with the stochas-

tic demand model, and we test how well this pricing scheme works. For each set of data, we

first solve the problem for the electricity service provider based on the demand forecast, cal-

culating the pricing parameters for it, and obtaining the consumer’s best response function

in the meantime. With the consumer’s best response function, and actual consumer demand

data, we can calculate how the consumer would allocate his load according to the pricing

information using the best response function. Thus we can get the actual deviation for this

set of forecast-demand information. We report the running time, minimum deviation, and

actual deviation for each set of data in the Table 4.4.

Date Computational
Time (seconds)

Minimum
Deviation

Actual
Deviation

Actual/Minimum
Deviation Ratio

Jan 25 603.76 642.80 643.70 1.0014
Jan 26 610.88 1590.50 1609.70 1.0121
Jan 27 563.27 750.10 760.30 1.0136
Jan 28 729.27 6399.40 6399.40 1.0000
Jan 29 578.83 2589.10 2589.10 1.0000
Jan 30 600.45 578.90 579.80 1.0016
Jan 31 369.92 712.50 714.00 1.0021
Feb 01 315.02 628.20 629.90 1.0027

Table 4.4: Performance of stochastic demand model

Our numerical experiments yield very good results, attaining errors of less than 2%

verse the minimum deviation. On one hand, this indicates that this pricing scheme is

working properly: second order pricing has great power in discouraging consumption from

concentrating in peak hours, and encouraging consumption in off-peak hours. On the other

hand, it shows there is great flexibility in this pricing scheme, as it works well for every

single day we test. For some day, it is easier to provide incentives to the consumer such that

the actual load matches the predetermined load, and for other days it is harder to acheive.
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However, according to our experiments, there always exists a set of price parameters for

each day to match the actual load with predetermined load exactly. Our search algorithm

is always capable of finding such at and bt.

Choice of Pricing Parameters

Our pricing scheme is very effective in providing incentive to consumers, and it also provides

a lot of flexibility to the service provider. Picking a good pricing scheme among many

candidates is an interesting problem. According to our price search algorithm, at always

increases with t. For example, Figure 4.3 plots at v.s. t for our experiment on Jan 30th’s

demand and load data.

Figure 4.4: Price Parameter at for Jan 30th

Due to our search strategy, we start with the last period, then move backward. So if

we have decreased at for the current period t, then it would be harder to push demand to

period t when deciding at−1. That is why at−1 is smaller than at, and thus this trend of

increasing at appears. However, there is no such general trend for bt. Because at has a

much larger impact on the total cost, especially when the amount of load is high, it plays

a more dominant role in affecting the consumer’s behavior. bt provides less incentive, and

its effect comes second to at’s. Figure 4.4 plot bt v.s. t from our experiment on Jan 30th’s

demand and load data.
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Figure 4.5: Price Parameter bt for Jan 30th

As can be seen from this graph, bt fluctuates from the first hour to the last hour of Jan

30th. It appears to be varying randomly. If we take a closer look, we can observe that when

at stays at a constant level, bt increases as t increase. This is for the same reason that at

increases over time. When at increases, bt decreases. This is a direct result of our search

algorithm. As we move from the last hour to the first hour, whenever bt gets too small, we

decrease at to acheive our goal. Thus we get this pattern of bt’s behavior.

4.8 Conclusion and Future Work

In this chapter, we study the interaction between an electricity service provider and a

large electricity consumer. We introduce a second order pricing scheme for the service

provider to discourage consumption concentration. The consumer reacts to this pricing

scheme by allocating its own demand. We study both the deterministic demand case and

the stochastic demand case. For the deterministic demand case, the optimality condition

for the consumer’s problem is developed, and brought back into the original problem. The

resulting problem is a single level linear MIP, which can be solved using exisiting commercial

software. For the stochastic demand case, the consumer’s optimal response function is

analyzed and approximated, such that the service provider’s approximate strategy can be

easily calculated. The numerical experiments show the effectiveness of our pricing schemes,
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and tractability of our models.

Our model studies the most important question of how to decide the pricing parameters

such that the consumer would react in a prefered way. There are still several other interest-

ing questions to be explored. The first question concerns what happens if the consumer has

different preferences for various loads. The demand for lighting is obviously more impor-

tant than the demand for the dish-washer. How to integrate this demand difference into our

model is one interesting problem. The second question is what pricing parameters might

be best. As shown in the numerical experiments, it seems there is more than just one set of

pricing parameters that can attain the minimum deviation. Which are more practical and

which are easier to implement? That is another topic that deserves further research.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

Multi-echelon inventory systems are hard systems to analyze when compared to single

echelon systems. The optimal inventory policy, and the allocation policy if required, are still

unknown for many different types of multi-echelon inventory systems. Our work contributes

to the research on designing a reliable and robust supply chain to prepare for possible

supply disruptions. Among the three most fundamental inventory network structures, we

studied both the assembly system and the distribution system. For the assembly system,

we investigated the reason why an assembly sytem can not be reduced to a serial system

in the presence of disruptions. The long-run balance property that leads to the reduction

of an assembly system without supply risk is now interfered with by supply risk. We

discovered that even though this long-run balance property does not hold, a similar concept

called generalized item-specific long-run balance holds for assembly systems under supply

risks when operated optimally. This result allowed us to present a method for reducing an

assembly system with disruptions to an “almost serial” system with some extra stages, and

propose an inventory policy based on this reduction. Even though the “almost serial” system

obtained is not equivalent to the original one, it provides us with a method of approximating

the optimal policy for the original system. We proposed a recursive algorithm to facilitate

the computation of the inventory policy. This allows for easier comparison of the impact

of different disruptions across systems with different structures. Significant savings were
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acheived by our inventory policy with base-stock levels from our recursive algorithm, when

compared with the best known policy and algorithm.

Following our work on assembly systems, we moved on to distribution systems under

supply risk. As another important type of inventory system, a distribution system is also

difficult to optimize its inventory policy. We considered a general distribution model under

continuous review where a first-come, first-served allocation policy is implemented. We

proposed a heuristic procedure to approximate the base-stock levels of distribution system

under supply risk. The main idea behind this heuristic is to analyze the effect of supply

disruptions and stockouts at a stage on inventory shortages at the stage’s successors. We

incorporated this information into a classical algorithm for serial systems, which computes

the base-stock levels in a bottom-up way. Our numerical experiments demonstrated the

effectiveness of this approach by reaching a 3% gap on average when compared to a bisection

search based coordinate descent search.

Our last chapter shed light on a different topic - smart grid. We focus more on the

interaction between an electricity service provider and an electricity consumer. We inves-

tigated the problem of how the service provider should determine the pricing scheme such

that the electricity consumer reacts to this pricing scheme so that the shifted actual load

is as close to a predetermined load profile as possible. This problem was formulated as a

nonlinear bilevel problem. We studied the lower level problem, for both the deterministic

demand case and the stochastic demand case. For the deterministic demand case, the lower

level problem can be reformulated in terms of its optimality conditions. This allows us to

bring it back to the upper level problem, and the whole problem was reduced into a linear

single level problem which makes it solvable. For the stochastic demand case, we studied

the best response function for the consumer, and approximated this best response function

to facilitate calculating the electricity service provider’s optimal strategy. The numerical

experiments validate our analysis, as well as the tractability of our models.
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5.2 Future Work

Inventory mangement is an area with plenty of questions to be answered. We studied

two basic forms of inventory systems: assembly systems and distribution systems with

supply risks. In reality, however, an inventory system is typically a combination of assembly

systems, distribution systems, and serial systems. How to generalize our research to a more

generic inventory network structure is one topic worth exploring.

For assembly systems, our work showed that the reduced “almost serial” system is not

equivalent to the original system. This is related to the situation in which where a stage

should keep shipping orders to its successor when a supply disruption is present in the

system. To answer this question better, we need to explore further the conditions under

which continuing shipping yields better results. And if continuing shipping is favored, is

this the reduced system equivalent to the original system when operated optimally?

For distribution systems, we are interested in investigating how to apply the Decomposition-

Aggregation heuristic (Rong et al. (2012)) to distribution systems with supply risk. This

heuristic performed very well for the case without supply risk. We would like to know how

this heuristic perform if it can be applied to the case with supply disruptions. In addi-

tion, more general settings, such as fixed ordering costs, and stochastic leadtimes, are some

possible extensions worth considering.

Our work on smart grid provides a prototype for further understanding the interaction

between service suppliers and electricity consumers. We work under the assumption of

uniform load delaying cost, where in fact this cost might be different for different consumers.

Integrating heterogeneous delaying cost is an interesting question. Our model also provides

an approach for studying other objectives for service providers on the basis of interactions

between it and the consumer. It would be helpful to understand how the service provider and

consumer would behave if the service provider uses other objectives. Finally, what kind of

pricing schemes are most effective? We only studied a second order pricing scheme. Picking

a good set of parameters for it is a hard question. How can this be done optimally? Do

there exist some other pricing schemes that are more powerful in affecting load allocation?

These are interesting questions to be studied in future research.
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