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Abstract

The Inmate Transportation Problem (ITP) is a common complex problem in any correctional

system. In this project we studied the present policies and practices used by the Pennsylvania

Department of Corrections (PADoC) to transport inmates between 25 different state Correctional

Institutions (CIs) across the state of Pennsylvania. As opposed to the current practice of manu-

ally deciding about transportation we propose a mathematical optimization approach.

We develop a weighted multi-objective mixed integer linear optimization (MILO) model. The

MILO model optimizes the transportation of the inmates within a correctional system. Partic-

ularly, the MILO model assigns inmates, who needs to be transported from a particular CI to

another, to routes and vehicles while considering all legal restrictions and best business practices.

By using real data instances, we tested the performance of the MILO model and show that the

transportation need in a correctional system can be organized efficiently using classic vehicle rout-

ing and assignment optimization models. As a proof of concept, this master’s thesis proves that

operations research is an effective tool to solve a complicated business problem in a correctional

system, and save significant time and money along with ensuring safety of people involved in

transportation.

Keywords: inmate transportation problem; mixed integer linear optimization; multi-objective

optimization; vehicle routing problem
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Chapter 1

Introduction

According to the International Centre for Prison Studies, the U.S. incarcerates 698 people for

every 100,000 of its population. Having approximately 4.5% of the world’s population, the U.S.

has 21.4 % of the world’s incarcerated population [27].

Population Management of the inmates is one of the most critical operations within a cor-

rectional system involving the inmate assignment to CIs and transportation within CIs. The

efficient management of the inmate population and transportation results in substantial savings.

Appropriate assignment of the inmates to the CIs is a key element of population management.

It can lead to significant savings and enhancing the security of the CIs. Assignment system was

optimized with the help of Inmate Assignment and Decision Support System (IADSS) [25] which

was developed studying the assignment and scheduling operation within the PADoC. Another

significant monetary savings can be achieved by optimizing the transportation of inmates within

CIs. The transportation category of expenditure throughout the PADoC encompasses the price of

fuel, the fixed and variable costs for using a vehicle, and the cost of labor. Security of the staff and

inmates is the most important aspect of the transportation. In particular, we want to curtail the

total transportation cost without compromising security and considering all the regulations and

business practices. Here, we study the inmate transportation process and develop a mathematical

optimization model for the Inmate Transportation Problem (ITP). This complex problem can be

studied in the framework of a novel formulation of the classic vehicle routing problem [4].

Conventionally, inmate transportation planning has been a manual and subjective process at

2



CHAPTER 1. INTRODUCTION 3

the PADoC, where a staff member creates trips and assigns inmates to those trips considering all

the transportation criteria and policies. While the general guidelines are known, the large number

of possible routes, and the complexity of the transportation problem makes it extremely difficult,

if not impossible, to manually determine optimal routes for a fleet of vehicles.

In this thesis, we formulate a multi-objective mixed integer linear optimization (MILO) model

for the ITP. The model is validated by solving various datasets of PADoC. The goal of the ITP

is to optimize the inmate transportation process to achieve the following objectives:

• reduce the number of inmates not transported in the given time period,

• reduce the total number of seats used for the inmate transportation.

1.1 Literature Review

In this chapter, we provide the relevant literature related to the ITP. We provide traditional

model and definitions of Linear Optimization (LO), Mixed Integer Linear Optimization (MILO),

Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP).

Mathematical optimization has been around for more than 150 years, though much of the

field has matured in the second half of the 20th century due to the advent of computers and

the growth of computational speed. “Famous French mathematician Joseph Fourier in 1823 and

Belgian mathematician de la Vallee Paussin in 1911 each wrote a paper on linear optimization”

writes Dantzig in 2002 [9].

LO formulation of a problem which can be equivalent to the general LO problem was first

formulated by Leonid Kantorovich in Mathematical Methods in the Organization and Planning

of Production [14] in 1939. In recognition of his pioneering work in the 1940’s with LO he was

awarded the Nobel Prize in Economics along with T. Koopmans in 1975. Since then many people

have worked on LO [1].

In a general form of a LO model, x represents the vector of decision variables, c and b are

vectors of known data based on the problem at hand, A is the coefficient matrix. cT is the

transpose of the vector c. In LO problem the objective is either to minimize or maximize certain

objectives which are expressed as a linear function. In problem (1.1), the objective is to minimize
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cTx, the two sets of inequalities Ax ≤ b and x ≥ 0 are the constraints which specify a polyhedron

over which the objective function needs to be optimized:

min cTx

s.t. Ax ≤ b,

x ≥ 0.

(1.1)

Since 1950’s, a wide variety of complex technological and business problems have been op-

timized using LO. A case of sustainable intensification [2] uses stochastic optimization, which

was first introduced in Linear Programming under Uncertainty [8], studies a diversification in

agriculture strategy reducing the overall production risk and increase profitability of organic

farms. Large-Scale Portfolio Optimization [22] proposes a practical algorithm for large-scale

mean-variance portfolio optimization to create a portfolio of stocks and options for investment, in

order to minimize the risk associated with the total investment. Thousands of papers have been

published since then and Operations Research (OR) have grown into becoming one of the most

important disciplines for decision making.

Frequently, real numbers as a solution doesn’t make sense when it comes to making decisions.

For an instance, a value of 16.33 staff member doesn’t make sense when trying to find the optimal

number of staff individuals needed to do a certain job. Discrete values, for such staff assignment

problem, would be more appropriate while making business decisions. Thus, optimization with

integer variables was formalized as Integer Optimization (IO). The general form of an IO problem

is similar to the general form of an LO problem (1.1), only here the second inequality becomes

x ∈ N, as seen in equation (1.2), where N denotes the set of nonnegative integers. If not all the

variables are required to be integer the problem becomes a Mixed Integer Linear Optimization

(MILO) problem. Much of the developments in MILO started along with LO, early in the second

half of the 20th century. The classic assignment problem using MILO and the algorithms employed

to solve it were studied extensively during the 1950s [7, 20]. Kuhn [15] suggests the —by now

well-known— Hungarian method for solving the assignment problem. Assignment models have

been used in a large variety of applications of optimization including transportation models.



CHAPTER 1. INTRODUCTION 5

min cTx

s.t. Ax ≤ b,

x ∈ N.

(1.2)

Unlike LOs which can be solved efficiently [24], MILO problems in many cases are extremely

difficult to solve. Much work has been done on solving MILO problems. The Branch and Bound

(B&B) algorithm developed in early 1950’s is widely used to solve MILO models. The B&B

method was first proposed in “An Automatic Method of Solving Discrete Programming Problems”

[17] for discrete optimization and since then has become the most commonly used tool for solving

NP-hard integer optimization problems. Later, Gomory showed how to systematically generate

the cutting planes [12]. Cuts yield another tool, when repeatedly added to an existing system of

inequalities, guarantee that the optimal solution of the continuous problem will be integer.

Transportation optimization has been extensively studied in the past under the umbrella of

TSP and VRP. The TSP was considered mathematically already in the 1930s, e.g., by Flood who

was looking to solve a school bus routing problem [6, 18]. He later formalized the problem in

1956 in his paper “Traveling-Salesman Problem” [11]. The goal of the TSP model is to find the

shortest possible route which visits each city once in a given set of cities while returning to the

origin city. The general form of a traveling salesman problem is shown in problem (1.3). Here,

the set of n cities to be visited is V = {1, .., n} and for all i, j ∈ V , xij is the decision variable

which is 1 if a path of the tour goes from city i to city j; 0, otherwise. Here, cij is the distance

between city i and city j. For all i ∈ V , a dummy variable ui is introduced [3] to eliminate sub

tours and enforces that all the cities are visited only once as represented in the last inequality in

the optimization model (1.3).
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min
n∑
i=1

n∑
j 6=i,j=1

cijxij

s.t.
n∑

i=1,i 6=j
xij = 1 j ∈ V,

n∑
j=1,j 6=i

xij = 1 i ∈ V,

ui − uj + nxij ≤ n− 1 2 ≤ i 6= j ≤ n,

xij ∈ {0, 1} i, j ∈ V, i 6= j,

ui ∈ N i ∈ V.

(1.3)

The TSP is an NP-hard problem [3]. The most direct solution would be to try all permutations

i.e. all possible ordered combination of the cities and see which one has the minimum distance.

This approach would yield enumerating n! possible routes, where n is the number of cities. Thus

for 20 cities the number of possible permutations is already more than 2× 1018, which is beyond

the capacity of today’s most powerful computers. Various branch and cut algorithms have been

developed in the past [21] to solve large scale instances of TSP with significant advances [3].

Heuristics for the TSP have made significant advances in recent years achieving near optimal

solutions of large scale TSP’s [23].

VRP is a combinatorial optimization problem which finds the optimal set of routes for a

fleet of vehicles to traverse in order to deliver to a given set of customers and return back to

depot. Dantzig in his paper “The Truck Dispatching Problem” [5] formulated a generalization of

TSP first as a VRP. There are different mathematical optimization formulations for a variety of

VRPs depending on the nature of problem [16, 26]. VRP has many variants depending on what

application need to be solved. The capacitated VRP has a capacity attached to a vehicle; VRP

with time windows has time limitation attached to delivery at various locations, and in the open

VRP vehicles do not have to return to their depots.

Like TSP, VRP is difficult to solve and various algorithms based on branch and cut, and

also on heuristics have been employed to solve large scale instances of VRP [10]. Every logistic

operation today has its own version of VRP to solve depending on its unique features of operation.

As far as we know, until recently there has been no application of OR methodologies, in

the field of corrections. The first known application of OR in the field of corrections was an
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assignment model which assigns inmates to different CIs across the State of Pennsylvania [19].

Li et al. [19] created a decision tree model which gives a ranked ordered list of CIs for an inmate

while considering all the business regulations.

This was further studied extensively in the later study of the inmate assignment and schedul-

ing of the treatment programs which lead to developing the award winning IADSS [25]. The

IADSS simultaneously assigns a batch of inmates to the most appropriate CIs and schedules

their rehabilitation programs during the course of their sentence while considering all the legal

requirements and best operational practices.

Due to the nature of the ITP, as discussed in detail in Chapter 2 and Chapter 3, we have

formulated a weighted multi-objective MILO model to solve the ITP at the PADoC optimally.

This thesis is structured as follows. Chapter 2 contains the problem description. It explains

the transportation guidelines and business constraints that the PADoC follows in order to assign

inmates to routes and vehicles. It further explains the manual way of assignment and scheduling

of these routes and vehicles. Chapter 3 contains the mathematical optimization model. Here, first

we define the terms used to develop the mathematical model. Then we discuss the development

of the mathematical model which is used to solve the real data instances. In Chapter 4 we discuss

the results that we got by testing and validating the model, and we compare the results to that

of the manual way of transportation. Further, in Chapter 5 we discuss the anticipated benefits

and impacts of utilizing the proposed multi-objective MILO approach. Finally, in Chapter 6, we

summarize the main findings of this thesis, and discuss potential improvements and opportunities

for future research. Detailed computational results are presented in the Appendix A.



Chapter 2

Problem Description

In this chapter, we discuss the transportation process, guidelines and constraints that the PADoC

considers while transporting inmates.

The Office of Population Management (OPM) is responsible for the transportation of inmates

at the PADoC. There are 25 CIs in PA, which are managed and operated by the PADoC as

shown in Figure 2.1. On average 35,000 transportations are scheduled annually, yielding about

650 transportations in a week.

Conventionally, a staff member of OPM with his experience and judgment manually makes

the decisions about the transportation of inmates. The decisions are made in two steps. First,

the routes are specified for the vehicles, and then inmates are assigned to the vehicle based on

their origin and destination CIs. One of the critical restrictions of the manual assignment is that

there is a small set of predefined routes, which are fixed to a certain day of the week, and the trips

are currently scheduled based only on those predefined routes. The limited number of predefined

routes in the current policy significantly limits the flexibility of the transportation decisions. This

manual way of planning for the transportation is clearly not efficient.

Next, we define ITP. Given a time horizon, the set of inmates who need to be transported

within the PADoC are identified. For each inmate the origin and the destination is predefined.

In other words, the decision about the assignment of an inmate to a CI is made prior to deciding

on his/her transportation. In the ITP, we decide on the vehicles used at each transportation day,

their routes, and the number of inmates that are going to be assigned to the vehicles at each day.

8
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Figure 2.1: The Map of Pennsylvania shows 25 State CIs of the PADoC and their Placement in
one of the States Three Main Regions
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Vehicles visit a sequence of CIs and they need to return to their starting CI, because the

vehicles are maintained by the respective CIs, and the drivers need to return home at the end of

the day. Trips should be scheduled in the time window [7 a.m., 7 p.m.]. This means that every

route should start and finish at the same CI, and transport inmates within the time frame of

the 12 hours. Considering the travel time limit, there are a few pairs of CIs which can not be

visited in a single trip. In order to be able to transport inmates between any two arbitrary CIs,

the PADoC has one transfer hub. The transfer hub is located in the central region of the state to

assist in the transportation process. By introducing a transfer hub, an inmate can be transported

through two trips with two different vehicles. Such combined trips helps reduce the total cost of

transportation.
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The time horizon adds another level of complexity to the problem. Right now the time

horizon considered for the trips is a week. The time horizon depends on the frequency of the

transportation days and the number of inmates which need to be transported. The MILO model

allows to consider longer time horizon.

Another important element is to consider the custody level of inmates. Not all of the trans-

portation vehicles are equipped with the needed security to transport high custody level inmates.

The ones that can transport these high custody level inmates have special seat types, and seat

type capacities are given for each vehicle.

In addition, other limitations and constraints need to be considered before creating trips and

assigning inmates to them. The limitations and constraints are listed as follows:

• Capacity of CIs,

• Capacity and type of vehicle along with it’s location,

• Qualification of vehicles to transport high custody level inmates,

• Time horizon of the trips,

• Separations of inmates from other inmates or staff,

• Special conditions for inmates with medical condition and mental instability,

• Special cases, such as court hearing trips,

• CIs are gender specific, thus separate transports are required for different genders.



Chapter 3

Model Development

In this chapter, we introduce the MILO mathematical model. Specifically, the model constructs

the optimal routes for a fleet of vehicles and minimizes the total number of seats used for trans-

portation, while ensuring that maximum number of inmates are assigned to routes in the given

time horizon. We also define the terms and assumptions that we have used to develop the MILO

model.

Definition 3.0.1. A route is a sequence of CIs which starts and ends at the same CI. The

starting CI of a route is the origin of the route, and two consecutive CIs of the route form a leg.

Example 3.0.2. Let {1, 2, 3, 4} be set a of CIs. A route can be 1-2-3-2-1 or 4-2-3-4 or 1-2-4-3-1

or any other loop. The route 1-2-4-3-1 has the origin ‘1’ and legs are ‘1-2’, ‘2-4’, ‘4-3’ and ‘3-1’.

Definition 3.0.3. A trip is specified with a vehicle along with its capacity and location at a given

CI, a given transportation day, and a route. The given CI is the origin and the final destination

of the trip.

Example 3.0.4. If a vehicle with capacity 40 is located at CI 4. Then a trip scheduled on day 1,

e.g., can be Vehicle 40 Day1 4-2-3-4. The origin and final destination of this trip is ‘4’.

Definition 3.0.5. A potential trip is a trip where the vehicle with its capacity, the origin CI,

and the transportation day is specified, but the route is not specified.

In ITP, we define the set of potential trips. One of the main decisions to be made is to assign

a route –if any– to potential trips and use those trips for inmate transportation.

11
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3.1 Assumptions

In this section, we discuss the various assumptions that we have considered to develop the MILO

model.

Due to various policy restrictions and business practices we limited the set of possible routes.

We used Google Maps API to calculate the pessimistic travel time between the facilities to create

the distance matrix, which is then further used to create routes. In order to comply with the

business practices as mentioned in Chapter 2, we made the following assumptions in generating

the set of possible routes:

• Every route should start and end at the same CI.

• The overall time of a route should not exceed 12 hours.

• We allocate a predefined time duration for getting on and off the vehicle at each CI, except

the route origin.

• We only consider routes starting from a CI with a vehicle.

• The hub may only be visited at most once in a route.

• No consecutive pairs of CIs should be visited more than once.

• Only the legs that are currently used by the PADoC are considered in generating the set of

the routes. In this case the vehicles will travel only on the paths that are approved by the

PADoC.

Example 3.1.1. If the predefined route for a set of CIs {1, 2, 3, 4} is 1-2-3-4-3-2-1, then

we are only considering legs 1-2, 2-3, 3-4 and so forth. We are not considering 1-3 as a

possible leg in our routes, since there is no approved direct path to visit from CI 1 to 3.

For assigning inmates to trips we have considered following inmate specific assumptions:

• We do not consider special cases of inmate transfer types, such as medical transfer, since

such requests form a small percentage of the total transportation requests, and are handled

with different vehicles.
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• We do not consider over night stay for an inmate, i.e., all the inmates assigned to a trip will

reach their destination at the same day.

One hub is used for inmate transportation as a transfer point within the PADoC CIs. Adding

a transfer point is necessary, because considering all the route assumptions it is clear that there

is no acceptable route for inmates to move between some CI pairs which are at the furthest to

each other. Furthermore, using the hub helps to reduce the cost of the transportation. The time

horizon considered for the MILO mathematical model is a week.

We have two main objectives. We aim to minimize the number of the allocated trips and

minimize the number of inmates not assigned to a trip.

3.2 Mathematical Model

In this section, we present the multi-objective MILO model for the ITP. As mentioned earlier, we

have three main decisions to make. We need to allocate trips for transportation, assign routes to

the allocated trips, and specify the number of inmates that are going to be transported on each

trip.

A natural modeling option for routing problems with a hub and multiple depots is using

binary variables. Here, our main decision variables are both binary and integer. Binary variables

represent if a trip used for the transportation of inmates has a route or not. Integer variables are

used to define the number of inmates assigned to a trip.

We first explain the constraints for allocating inmates to routes without using the hub and

then the ones which use the hub, and finally the objectives of the problem.

3.2.1 Constraints without considering the hub

First, we define the general constraints. Let P be the set of all the potential trips. The constraints

in (3.1) ensures that at most one route is allocated to a potential trip. Here, let xpr for all p ∈ P

and r ∈ R be a binary variable and is equal to 1 if route r is allocated to potential trip p;

otherwise, xpr = 0
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∑
r∈R

xpr ≤ 1 ∀p ∈ P. (3.1)

Second, we define the constraints for direct transportation, i.e., without using the hub for

transportation.

Let C be the set of all the CIs at the PADoC, let R be the set of all possible routes, and let

Kri be the set of the stops corresponding to CI i in route r. For all i, j ∈ C and p ∈ P, let yijp be

the number of inmates moving directly from the inmate’s origin CI i to destination CI j in trip

p. Also, for all r ∈ R, let ηr be the number of stops or CIs in the route r. For all p ∈ P, r ∈ R

and 1 ≤ n1 < n2 ≤ ηr, let uprn1n2 be the number of inmates going from the n1-th CI to the n2-th

CI in route r and trip p. The constraints in (3.2) makes sure that the number of inmates directly

moving between any two CIs in a trip is equal to the sum of all the inmates moving between those

two CIs in the route allocated to the trip

yijp =
∑
r∈R

∑
n1∈Kri

∑
n2∈Krj

uprn1n2 ∀i, j ∈ C,∀p ∈ P, i 6= j. (3.2)

Now we define the constraints to balance the number of inmates at each CI by introducing a

state variable. Let R′ be the set of routes which goes through the hub or visits the hub. Let gprn

be an integer variable for all p ∈ P, r ∈ R and n ≤ ηr, which is the number of inmates at the n-th

CI in route r and trip p. The constraints in (3.3) represent the balance equation corresponding

to the first stop of a route in a trip

gpr0 =
ηr∑
n=1

upr0n ∀p ∈ P, r ∈ R \ R′. (3.3)

The constraints in (3.4) enforce that the number of inmates at each CI should be equal to the

number of inmates at the previous stop visited in the route plus number of inmates getting on

the trip on that stop minus the number of inmates getting off the trip on that stop

gprn = gpr,n−1 +
∑
n2>n

uprnn2 −
∑
n1<n

uprn1n ∀p ∈ P, r ∈ R \ R′, n < ηr. (3.4)

Furthermore, we have capacity constraints for direct transportations. Let Sp for all p ∈ P be
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the seat capacity of the vehicle used in trip p. The constraints in (3.5) enforce a bound on the state

variable gprn for every CI, making sure that at any given point of time during the transportation

the number of inmates on a trip does not exceed the capacity of the vehicle

gprn ≤ Spxpr ∀p ∈ P, r ∈ R, n ≤ ηr. (3.5)

The constraints in (3.6) ensure that the number of inmates moving between any two arbitrary

CIs does not exceed the capacity of the vehicle for all trips used for transportation

uprn1n2 ≤ Spxpr ∀p ∈ P, r ∈ R, 0 ≤ n1 < n2 ≤ ηr. (3.6)

We also need to put a bound on the number of inmates moving between any two consecutive

CIs in a trip. Let, wijr be a binary parameter for all i, j ∈ C and r ∈ R, which is equal to 1 if

CI i is before CI j in route r; 0, otherwise. The constraints in (3.7) ensure that the number of

inmates moving between any two consecutive CIs is not more than Smax, the maximum capacity

of the vehicle

yijp ≤ Smax
∑
r∈R

wijrxpr ∀i, j ∈ C, p ∈ P, i 6= j. (3.7)

3.2.2 Constraints considering the hub

In this section, we define the constraints for the transportation of the inmates who need to go

through the hub. Here, inmates need to be assigned to two separate trips. The first trip transports

inmates to the hub, and the second trip picks them up from the hub to transport them to their

final destination.

The general constraint (3.1) also holds true for all the transportation through the hub.

For all r ∈ R′, let ηhr be the stop number of the hub. Constraints (3.8)-(3.10) are equivalent

to constraint (3.4) for the transportation through the hub. Here, there are three constraints as

opposed to one for the direct transportation. Constraints (3.8)-(3.10) enforce that the number of

inmates getting on at each stop is equal to the number of inmates at the previous stop plus the

ones that are getting on at the stop minus the ones that are getting off at that stop.
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Here, the state variable is the same gprn for all p ∈ P, r ∈ R and 1 ≤ n ≤ ηr. For all p ∈ P,

r ∈ R′, 1 ≤ n ≤ ηhr and i ∈ C, let vprni be the number of inmates in trip p and route r moving

from the n-th CI to the hub with final destination i. Similarly, for all p ∈ P, r ∈ R′, ηhr ≤ n ≤ ηr

and i ∈ C, let vprni be the number of inmates in trip p and route r moving from the hub to the

n-th CI with origin i.

Similar to transportation through the hub, constraints in (3.8) represent the balance equation

corresponding to the first stop of a route in a trip

gpr0 =
ηr∑
n=1

upr0n +
∑
i∈C

vpr0i ∀p ∈ P, r ∈ R′. (3.8)

The constraints in (3.9) represent the case when the n-th stop is before the hub and
∑

i∈C vprni

is the total number of inmates getting on the trip p and route r, and are getting off at the hub

gprn = gpr,n−1 +
∑
n2>n

uprnn2 −
∑
n1<n

uprn1n +
∑
i∈C

vprni ∀p ∈ P, r ∈ R′, n < ηhr . (3.9)

The constraints in (3.10) represent the case when the n-th stop is the hub, where the inmates

get off and get on

gprηhr = gpr,ηhr−1 +
∑

n2>ηhr

uprηhr n2
−

∑
n1<ηhr

uprn1ηhr
−

∑
i∈C

∑
n1<ηhr

vprn1i +
∑
i∈C

∑
n2>ηhr

vprn2i ∀p ∈ P, r ∈ R′.
(3.10)

The constraints in (3.11) represent the case when the n-th stop is after the hub and
∑

i∈C vprni

is the total number of inmates getting on trip p and route r at the hub

gprn = gpr,n−1 +
∑
n2>n

uprnn2 −
∑
n1<n

uprn1n −
∑
i∈C

vprni ∀p ∈ P, r ∈ R′, n > ηhr . (3.11)

Let T be the set of the days of the transportation and let Pt be the set of all the potential

trips corresponding to day t ∈ T . The constraints in (3.12) enforce that at each transportation
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day the total number of inmates getting off a trip at the hub is equal to the total number of

inmates getting on a trip

∑
p∈Pt

∑
r∈R′

∑
n1∈Kri

vprn1j =
∑
p∈Pt

∑
r∈R′

∑
n2=Krj

vprn2i ∀i, j ∈ C, t ∈ T , i 6= j. (3.12)

Furthermore, constraints (3.13) and (3.14) are the capacity constraints for the transportation

of inmates through the hub

vprn1i ≤ Spxpr ∀p ∈ P, r ∈ R′, 1 ≤ n1 ≤ ηhr , i ∈ C, (3.13)

vprn2i ≤ Spxpr ∀p ∈ P, r ∈ R′, ηhr ≤ n2 ≤ ηr, i ∈ C. (3.14)

3.2.3 Objective Function

The ITP is a multi-objective problem. The PADoC primarily uses two types of vehicles to

transport inmates between CIs, buses and vans. Here, we consider two main objectives, to reduce

the number of inmates not transported in a given week and to reduce the total number of seats

utilized for the inmate transportation. For all i, j ∈ C, let N ij be the number of inmates not

assigned to any trip which is defined in equation (3.15)

N ij = Nij −
∑
p∈P

yijp +
∑
p∈P

∑
r∈R′

∑
n1∈Kri

vprn1j ∀i, j ∈ C, i 6= j. (3.15)

Our aim is to minimize the weighted sum of the two objectives of the MILO model presented

in (3.16). Here, α is the weight of the total seats used for transportation

α
∑
p∈P

∑
r∈R

Spxpr +
∑

i,j∈C|i 6=j
N ij . (3.16)

3.2.4 MILO Model

In this section, we present the mathematical optimization model for the ITP. The lists of sets,

decision variables and parameters of the ITP are summarized in Table 3.1. We utilize the weighted

sum method to combine the two objectives. The MILO model is as follows:
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minα
∑
p∈P

∑
r∈R

Spxpr +
∑

i,j∈C|i 6=j
N ij

subject to∑
r∈R

xpr ≤ 1 ∀p ∈ P,

yijp =
∑
r∈R

∑
n1∈Kri

∑
n2∈Krj

uprn1n2 ∀i, j ∈ C, p ∈ P, i 6= j,

gpr0 =
ηr∑
n=1

upr0n ∀p ∈ P, r ∈ R \ R′,

gprn = gpr,n−1 +
∑
n2>n

uprnn2 −
∑
n1<n

uprn1n ∀p ∈ P, r ∈ R \ R′, n < ηr,

gpr0 =
ηr∑
n=1

upr0n +
∑
i∈C

vpr0i ∀p ∈ P, r ∈ R′,

gprn = gpr,n−1 +
∑
n2>n

uprnn2 −
∑
n1<n

uprn1n +
∑
i∈C

vprni ∀p ∈ P, r ∈ R′, n < ηhr ,

gprηhr = gpr,ηhr−1 +
∑

n2>ηhr

uprηhr n2
−

∑
n1<ηhr

uprn1ηhr
−

∑
i∈C

∑
n1<ηhr

vprn1i +
∑
i∈C

∑
n2>ηhr

vprn2i ∀p ∈ P, r ∈ R′,

gprn = gpr,n−1 +
∑
n2>n

uprnn2 −
∑
n1<n

uprn1n −
∑
i∈C

vprni ∀p ∈ P, r ∈ R′, n > ηhr ,

gprn ≤ Spxpr ∀p ∈ P, r ∈ R, 1 ≤ n ≤ ηr,

uprn1n2 ≤ Spxpr ∀p ∈ P, r ∈ R, 1 ≤ n1 < n2 ≤ ηr,∑
p∈Pt

∑
r∈R′

∑
n1∈Kri

vprn1j =
∑
p∈Pt

∑
r∈R′

∑
n2=Krj

vprn2i ∀i, j ∈ C, t ∈ T , i 6= j,

vprn1i ≤ Spxpr ∀p ∈ P, r ∈ R′, 1 ≤ n1 ≤ ηhr , i ∈ C,

vprn2i ≤ Spxpr ∀p ∈ P, r ∈ R′, ηhr ≤ n2 ≤ ηr, i ∈ C,

Nij =
∑
p∈P

yijp +
∑
p∈P

∑
r∈R′

∑
n1∈Kri

vprn1j +N ij ∀i, j ∈ C, i 6= j,

yijp ≤ Smax
∑
r∈R

ωijrxpr ∀i, j ∈ C, p ∈ P, i 6= j,

xpr = {0, 1} ∀p ∈ P, r ∈ R,

yijp ∈ N ∀i, j ∈ C, p ∈ P, i 6= j,

gprn ∈ N ∀p ∈ P, r ∈ R, 1 ≤ n ≤ ηr,

vprnj ∈ N ∀p ∈ P, r ∈ R′, 1 ≤ n ≤ ηr, j ∈ C,

vprni ∈ N ∀p ∈ P, r ∈ R′, 1 ≤ n ≤ ηr, i ∈ C,

uprn1n2 ∈ N ∀p ∈ P, r ∈ R, 1 ≤ n1 < n2 ≤ ηr,

N ij ∈ N ∀i, j ∈ C, i 6= j.
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Table 3.1: The sets, decision variables, and parameters of the MILO model

Sets

C Set of all CIs

R Set of all possible routes

R′ Set of all possible routes visiting the hub

T Set of days of the transportation

Pt Set of the potential trips on day t

P Set of the all the potential trips (P =
⋃
t∈T
Pt)

Kri Set of the stops corresponding to CI i on route r

Variables

xpr 1, if route r is assigned to potential trip p; 0, otherwise

yijp Number of inmates moving directly (without going to the hub) from CI i to CI j on

trip p

uprn1n2 Number of inmates directly going from the n1-th CI to the n2-th CI of route r on

trip p

vprn1j Number of inmates on trip p going from the n1-th CI of route r to the hub with final

destination j

vprn2i Number of inmates on trip p going from the hub to the n2-th CI of route r with

origin i

gprn Number of inmates on the vehicle at the n-th CI of route r on trip p

N ij Number of inmates that need to move from CI i to CI j, but not assigned to any

trip

Parameters

Nij Number of inmates that need to move from CI i to CI j

Sp Number of seats of the vehicle of trip p

Smax Maximum number of available seats among all the vehicles

ηr Number of stops (CIs) on route r

ηhr Stop number of the hub on route r if the route visits the hub; ∞, otherwise

ωijr 1, if CI i is before CI j on router; 0, otherwise
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The ITP is a multi-objective optimization problem. We had to specify and fine-tune the

weights of the objectives and ensure robustness of the model in assigning inmates to trips for

various datasets.

As it is clear from the decisions that we have to make, the two objectives are competing.

The more the number of trip the less the number of inmates not going to be transported and

vice-versa. In addition, the decisions are dependent on the number of inmates who need to move

and the CIs they need to move from and to i.e. Nij .



Chapter 4

Computational Results

In this chapter, we discuss our computational experiments with the MILO model, and compare

the performance of the MILO model with that of the manual transportation process. For testing

of the model we used a dataset of 4682 inmates which were transported between 1st April 2018

to 26th May 2018. As mentioned earlier in Chapters 2 and 3, the transportation of inmates is

scheduled on a weekly basis. The number of inmates which were transported in each week between

1st April 2018 to 26th May 2018 are presented in Table 4.1.

21
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Table 4.1: The total number of inmates transported in each week between 1st April 2018 to 26th

May 2018

Date Number of Week Inmates transported

1st April 2018 - 7th April 2018 Week 1 550

8th April 2018 - 14th April 2018 Week 2 530

15th April 2018 - 21st April 2018 Week 3 668

22nd April 2018 - 28th April 2018 Week 4 657

29th April 2018 - 5th May 2018 Week 5 499

6th May 2018 - 12th May 2018 Week 6 554

13th May 2018 - 19th May 2018 Week 7 581

20th May 2018 - 26th May 2018 Week 8 643

Total number of inmates transported 4682

For computational experiments a computer with Dual Intel Xeon R© CPU E5-2630 @ 2.20

GHz (20 cores) and 64 GB of RAM is used. Gurobi [13] is used to solve the MILO model with

its default parameters and is set to use 10 threads. The solution time limit of Gurobi is set to

43,200 seconds, i.e. 12 hours for all datasets.

There are two vehicle types, buses and vans, available at the CIs. Depending on their make

and model, the capacities of these buses and vans are different. The capacities of buses are

generally larger than those of the vans. Since we minimize the total number of seats used for

transportation, the model tends to minimize the number of allocated trips with buses as opposed

to vans.

For comparison between the output of the model and the manual way of organizing trans-

portation, we looked at the following indicators:

• Total number of trips allocated.

• Total number of buses and vans used in allocated trips.

• Total number of seats in the vehicles used in allocated trips.
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• Total number of inmates transported and not transported.

• Percentage of inmates using the hub for transportation compared to that of the total inmates

transported.

If an inmate uses the hub in order to be transported to the destination CI then that inmate

is considered to take two trips. One trip drops the inmate at the hub, and another trip

picks the inmate up from the hub to drop at the destination CI.

• Seat utilization ratio.

The seat utilization ratio is the ratio of the total number of inmates transported to the

total number of seats used in trips for the transportation. The seat utilization ratio can be

greater than one, since multiple inmates can occupy the same seat in a trip, as they get on

and get off at different stops. We consider two types of seat utilization ratio:

– Without hub.

This represents the utilization ratio when we consider the inmates moving from the

hub as occupying one seat.

– With hub.

This represents the ratio when the inmate who is moving through the hub is considered

to take two seats instead of a single seat.

The results of the manual allocation of the trips and the assignment of the inmates to the

trips for 8 weeks are presented in Table A.1. The average number of the trips scheduled during

the 8 weeks is 38.75. The seat utilization ratio with hub and without hub for all the weeks are

presented in Figure 4.1.

The results of the MILO model with 1800 seconds time limit are presented in Tables A.2-

A.9. The parameter α is the coefficient used in the objective function to penalize the allocation

of vehicles for transportation. As α increases, the penalty associated with allocating a vehicle

for transportation increases. Thus, the number of the allocated trips and more importantly

the number of allocated buses for transportation decreases as α increases. There is a trade-off

between the two objectives of the model: minimize the number of the inmates not transported

and minimize the number of seats used in the allocated trips. The relative penalty of not assigning
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Figure 4.1: Seat utilization ratio in manual transportation process

inmates to trips decreases as α increases. Thus, the number of inmates that are not assigned to

a trip increases as α increases. Additionally, the number of inmates assigned to a trip increases,

thus the utilization ratio increases. We tested the MILO model for α = 0.10, α = 0.25, α = 0.50,

α = 0.75 and α = 1.00.

The results of the MILO model with 43200 seconds (12 hours) time limit is presented in

Tables A.10-A.17. As we can see in the results, none of the data and α instances are solved to

global optimality. The gap has decreased for all the instances with different values of α as the

time limit increases. Though the improvements differ from an instance to another. The biggest

improvement is seen when α = 0.1 while the smallest improvement is seen when α = 1. As the

decisions about inmate transportation are made on a weekly basis we can let the solver run for

longer time duration (e.g., 12 hours) to obtain a better solution.

One of the most important decisions to make is to select the appropriate value for α. Since

there is a trade off we need to make sure that we select an α which leads to a small number

of inmates not transported with the smallest possible number of trips necessary to transport

the inmates. Figure 4.2 is a plot illustrating the pay off between the percentage of inmates not

transported and the relative co-efficient α for the 8 weeks of data. In the figure we can see that

as α increases the percentage of inmates not transported increases. Since for the data that we
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consider, all the inmates are already transported in those respective weeks, we need to make sure

that the number of inmates not transported is small. Thus, we can say that any α ≤ 0.25 would

be appropriate, as for all weeks for α ≤ 0.25, less than 5% of inmates were not transported i.e.

not assigned to any trip.

In addition, we need to make sure that value of α does not compromise on the number of trips

allocated to transport the set of inmates who need to be transported in a given week. Figure 4.3

is a plot which illustrates seat utilization with hub, for all values of α, for the 8 weeks of data. In

the figure we can see that there is a significant improvement in seat utilization for all values α,

particularly α = 0.25 and α = 0.10.

Figure 4.2: Inmates not transported to total inmates who need to be transported
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Figure 4.3: Seat utilization rate for all values of α and manual transportation

Figures 4.4, 4.5 and 4.6, represent the total number of trips scheduled each week for α = 0.1,

α = 0.25 and α = 1.00, respectively. The striped bars represents the number of the trips scheduled

manually to transport the inmates. In Figure 4.6 we can see the number of buses allocated for

the transportation of inmates are ≤ 5 for all weeks, but the inmates that did not move are

significantly more, see Tables A.10-A.17 for more details. In the figures we can also see that there

is a significant drop for the number of trips scheduled with α = 0.10 to α = 0.25. The biggest

improvement is obtained in week 5, the total number of trips were 26 for α = 0.1 and 22 for

α = 0.25, while the manual transportation had 38 trips scheduled.
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Figure 4.4: Number of trips allocated for α = 0.10

Figure 4.5: Number of trips allocated for α = 0.25
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Figure 4.6: Number of trips allocated for α = 1.00

After evaluating the trade-off between the two objectives for different values of α, the most

appropriate value of α was determined to be 0.25. On average for, α = 0.25, 25.13 trips were

allocated each week for transportation and less than 1.4% of inmates were not transported. The

inmates who were not assigned to any trip can further be transported in the following week. The

average results of the MILO model for all weeks with α = 0.25, and the average of the manual

transportation schedule are presented in Tables 4.2 and 4.3, respectively.

Table 4.2: Average results for all weeks with α = 0.25

Trips Seats used Buses Vans
Inmates

not moved

Inmates

moved

% moved

with hub

Utilization ratio

Without hub With hub

25 481 10 15 8 577 39.63 1.20 1.68
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Table 4.3: Average results for all weeks for manual transportation

Trips Seats used Buses Vans Inmates moved
% moved

with hub

Utilization ratio

Without hub With hub

39 912 21 18 585 57.55 0.64 1.00

In the worst case the MILO model, for α = 0.25, allocates 12 buses and 16 vans to transport

inmates in a week. While the worst case for the manual transportation process schedules 22

buses and 21 vans for inmate transportation in a week. The worst case for both the manual

transportation and the MILO model are presented in Table 4.4.

Table 4.4: Worst case scenarios for manual transportation and the MILO model

Number of Buses Number of Vans

Manual 22 21

MILO model 12 16

As seen in Table 4.2 and 4.3, in average weekly transportation of inmates can be done by

using just about half of the buses and 3 fewer vans. The optimized transportation significantly

improve the seat utilization ratio, while the only disadvantage is that in average less than 1.4 %

of inmates are not assigned to trips on a week. In addition, for the worst case as seen in Table 4.4,

the MILO model uses 10 less buses and 5 fewer vans to transport inmates in a week as compared

to the manual transportation.



Chapter 5

Benefits and Impact

In this chapter, we quantify the expected savings that can be achieved by using the MILO model

for the inmate transportation process. We have identified two main areas of savings that can be

achieved by optimizing the transportation process. In order to compute the savings, we compare

the average and the worst case scenarios of manual transportation and MILO model output. For

average, we compare the results in Table 4.3 for manual transportation and Table 4.2 for the

MILO model output. While for the worst case scenario we compare the results presented in Table

4.4.

• Gas & Maintenance:

It was reported by the PADoC in 2013 that the gas and maintenance costs for 21 buses was

$500,000.

– Average:

Using the MILO model, the number of the buses used for transportation reduced from

21 to 10. The model reduces the number of buses by 11. Thus, the savings from the

gas and maintenance is projected to be $261,900 annually.

– Worst Case:

The number of buses used for transportation reduced by 10. In the worst case scenario

the MILO model projects a saving of $238,000 annually.

• Salary:

30
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Each bus and van, used for the transportation, needs three and two correctional officers,

respectively. The average salary and benefits of a correctional officer is $135,000.

– Average:

Since the number of buses and vans used for transportation reduced from 21 to 10 and

18 to 15, respectively. There is a reduction of 11 bus-trips and 3 van-trips. This would

translate in a saving of 39 man-day which can translate to 7.5 full-time correctional

officer positions. Thus, the saving from the salary would be $1,012,500, annually.

– Worst Case:

For the worst case, the number of buses and vans used for transportation reduced by 10

and 5, respectively. This could translate in a saving of 40 man-day which is equivalent

to 8 full-time correctional officer positions. Thus, the saving would be $1,080,000,

annually.

The projected quantified savings in one year and over five years for a week in average are

summarized in Table 5.1. The quantified savings for the comparison between the worst case

scenario of the manual transportation process and the worst case scenario of the MILO model

output is presented Table 5.2.

Table 5.1: Quantified savings for a week in average

Savings One Year ($) Five years ($)

Gas & Maintenance 261,900 1,309,500

Salary 1,012,500 5,062,500

Sum 1,274,400 6,372,000
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Table 5.2: Quantified savings for the worst case scenarios

Savings One Year ($) Five years ($)

Gas & Maintenance 238,000 1,190,000

Salary 1,080,000 5,400,000

Sum 1,318,000 6,590,000

In addition to this, since the optimized schedule would use the hub less than what was done

manually. The cost of using the hub less can also contribute to significant savings.

Another big saving can be achieved by reducing overtime salaries of correctional officers re-

quired in transports. Often trips are scheduled for irregular time which are leading to required

extra hours for the correctional officers. Overtime salaries are usually very high as compared to

normal work hour salaries. The discussions we have had with the PADoC shows that overtime

payments have become a significant monetary burden on the PADoC. To quantify the savings

for reduced use of the hub and reduced overtime payment requires the collection and analysis of

additional data. The quantification of these savings remains for future analysis.

Conventionally the PADoC uses a set of about 40 routes to transfer inmates, out of these

predefined routes some routes are also fixed to a certain day of the week. The model, since it

considers only the number of inmates who wants to move and the resources (vehicles) available

to move them assigns inmates to routes from a set of about 1200 routes. Changing the routes

and letting the model decide which route to take can make the entire transportation safer, as the

routes might change every week depending on the inputs and resources.



Chapter 6

Summary and Future Work

In this thesis, we studied the inmate transportation process as a proof of concept at the PADoC

as it is done manually, and suggest an alternative to optimize the process system-wide. We

developed a multi-objective MILO model to optimize the ITP. Numerical results demonstrate

that significant savings can be achieved by using the model for the ITP. Throughout the model

development and discussions with the Office of Population Management at the PADoC, we realized

that transportation indeed is a crucial operation at the PADoC.

The work presented here can be advanced further to incorporate additional elements of trans-

portation which we have not considered here. Some of those are listed below.

• Flexible and longer time horizons can be considered for assigning inmates to trips for better

results.

• More flexible routes can be used in the future for optimal trip assignments.

• Incorporating other petition types such as medical trips and court hearings.

• PADoC has recently started GPS tracking of vehicles on the road, studying real time move-

ment of vehicles can be further used to obtain better solutions.

• Using the model and further testing it might help us determine better locations of vehicles,

thus changing the input to enhance system performance.
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• A GUI based decision support system can be developed to assist PADoC personnel to do

trip assignments.

• Integrating the transportation system with the IADSS (Inmate Assignment and Decision

Support System[25]) can further help in achieving a system-wide optimal operation.
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Appendix A

MILO Model Output

Table A.1: Week 1 output received from the PADoC database

Week Trips Seats used Buses Vans
Inmates

moved

% moved

with hub

Utilization ratio

Without hub With hub

Week 1 42 948 21 21 550 58 0.58 0.93

Week 2 40 943 21 19 530 53 0.56 0.85

Week 3 37 931 22 16 668 52 0.72 1.09

Week 4 39 862 19 20 657 55 0.76 1.16

Week 5 38 823 18 20 499 62 0.61 0.96

Week 6 40 925 20 20 554 70 0.60 1.01

Week 7 36 912 22 14 581 58 0.64 0.98

Week 8 38 955 21 17 643 52 0.67 0.99

38



APPENDIX A. MILO MODEL OUTPUT 39

Table A.2: Week 1 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 27 557 12 15 2 548 43 0.98 1.41 33.40

0.25 28 583 13 15 4 546 41 0.94 1.32 35.50

0.50 24 437 9 15 24 526 39 1.20 1.68 20.80

0.75 22 404 8 14 30 520 36 1.29 1.75 13.20

1.00 18 225 3 15 179 371 16 1.65 1.91 7.72

Table A.3: Week 2 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 29 578 13 16 1 529 33 0.92 1.12 35.10

0.25 29 562 13 16 7 523 35 0.93 1.26 36.20

0.50 28 550 12 16 15 515 34 0.94 1.25 36.90

0.75 23 378 7 16 38 492 32 1.30 1.72 15.70

1.00 18 258 4 14 122 408 26 1.58 1.83 10.40
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Table A.4: Week 3 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 34 769 18 16 2 666 36 0.87 1.18 41.40

0.25 31 642 15 16 17 651 36 1.01 1.38 34.70

0.50 27 482 11 16 61 607 25 1.26 1.58 23.40

0.75 24 404 8 16 96 572 21 1.42 1.72 14.10

1.00 16 249 5 11 225 443 9 1.78 1.95 7.13

Table A.5: Week 4 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 33 736 17 16 9 648 37 0.88 1.21 49.10

0.25 27 510 11 16 35 622 40 1.22 1.71 35.40

0.50 25 458 9 16 60 597 43 1.30 1.86 27.50

0.75 24 418 8 16 104 553 32 1.32 1.75 25.30

1.00 21 284 5 16 211 446 31 1.57 2.06 18.20
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Table A.6: Week 5 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 28 583 13 15 3 496 44 0.85 1.22 40.70

0.25 26 484 10 16 14 485 41 1.00 1.42 34.70

0.50 22 338 6 16 55 444 30 1.31 1.71 25.10

0.75 20 258 4 16 111 388 27 1.50 1.90 19.30

1.00 19 251 4 15 114 385 23 1.53 1.88 12.50

Table A.7: Week 6 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 29 604 13 16 14 540 53 0.89 1.37 46.50

0.25 25 458 9 16 36 518 49 1.13 1.68 33.80

0.50 24 404 8 16 44 510 44 1.26 1.88 19.30

0.75 22 338 6 16 105 449 46 1.33 1.92 18.40

1.00 16 145 1 15 288 266 15 1.83 2.12 13.00
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Table A.8: Week 7 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 31 642 15 16 3 578 45 0.90 1.30 40.20

0.25 27 510 11 16 13 568 48 1.11 1.64 28.90

0.50 24 437 9 15 44 537 38 1.23 1.70 23.80

0.75 20 258 4 16 185 396 21 1.53 1.86 21.50

1.00 19 251 4 15 169 412 22 1.64 2.00 9.75

Table A.9: Week 8 output when Gurobi time-limit is set to 1800 seconds

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 34 762 18 16 5 638 39 0.84 1.17 46.10

0.25 29 649 15 14 9 634 39 0.98 1.36 36.70

0.50 32 696 16 16 7 636 43 0.91 1.31 39.10

0.75 25 444 9 16 59 584 36 1.32 1.78 17.00

1.00 20 272 4 16 198 445 28 1.64 2.09 10.60



APPENDIX A. MILO MODEL OUTPUT 43

Table A.10: Week 1 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 25 444 9 16 1 549 44 1.24 1.78 13.60

0.25 23 430 9 14 4 546 40 1.27 1.78 12.10

0.50 23 430 9 14 1 549 41 1.28 1.80 9.11

0.75 22 404 8 14 14 536 39 1.33 1.85 7.49

1.00 19 265 4 15 129 421 19 1.59 1.89 3.92

Table A.11: Week 2 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 23 430 9 14 0 530 30 1.23 1.60 10.00

0.25 22 437 9 13 1 529 35 1.21 1.63 13.90

0.50 24 418 8 16 10 520 30 1.24 1.61 15.00

0.75 21 312 5 16 65 465 30 1.49 1.94 8.29

1.00 17 251 4 13 116 414 11 1.65 1.82 6.11
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Table A.12: Week 3 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 28 550 12 16 0 668 34 1.12 1.63 14.10

0.25 26 517 11 15 5 663 34 1.28 1.72 12.10

0.50 27 510 11 16 19 649 29 1.27 1.65 13.80

0.75 23 437 9 14 60 608 30 1.39 1.80 9.91

1.00 16 230 4 12 240 428 8 1.86 2.01 5.21

Table A.13: Week 4 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 30 644 14 16 1 656 41 1.02 1.44 33.30

0.25 27 531 11 16 13 644 39 1.21 1.69 25.10

0.50 25 458 9 16 41 616 39 1.34 1.86 19.30

0.75 25 444 9 16 54 603 33 1.36 1.80 15.90

1.00 21 284 5 16 197 460 30 1.62 2.11 12.50
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Table A.14: Week 5 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 26 484 10 16 1 498 43 1.03 1.48 24.70

0.25 22 371 7 15 24 475 41 1.28 1.81 22.30

0.50 22 338 6 16 41 458 30 1.36 1.77 18.20

0.75 21 298 5 16 56 443 30 1.49 1.93 10.10

1.00 19 284 5 14 61 438 29 1.54 2.00 6.00

Table A.15: Week 6 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 30 644 14 16 0 554 49 0.86 1.28 36.60

0.25 26 505 10 16 13 541 52 1.07 1.62 26.70

0.50 24 404 8 16 38 516 51 1.28 1.93 15.10

0.75 22 338 6 16 87 467 46 1.38 2.01 11.70

1.00 19 232 3 16 171 383 40 1.65 2.31 4.86
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Table A.16: Week 7 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 27 510 11 16 2 579 39 1.14 1.58 22.60

0.25 27 510 11 16 2 579 40 1.14 1.59 20.70

0.50 25 444 9 16 27 554 45 1.25 1.82 17.50

0.75 22 371 7 15 48 533 40 1.44 2.01 6.73

1.00 19 251 4 15 159 422 21 1.68 2.03 6.22

Table A.17: Week 8 output when Gurobi time-limit is set to 43,200 seconds (12 hours)

α Trips
Seats

used
Buses Vans

Inmates

not moved

Inmates

moved

% moved

with hub

Seat utilization ratio Opt. gap

%Without hub With hub

0.10 28 571 12 16 1 642 42 1.12 1.59 23.50

0.25 28 550 12 16 5 638 36 1.16 1.58 22.10

0.50 25 491 10 15 18 625 40 1.27 1.79 16.10

0.75 26 470 10 16 15 628 40 1.34 1.87 10.00

1.00 20 272 4 16 193 450 28 1.65 2.12 8.19
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