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Abstract

The primary focus of this dissertation is on hierarchical decision problems, a general problem class

that allows incorporation of multiple decision-makers (DMs). A variety of real-world problems

involve DMs with potentially conflicting objectives, and the assumption of a single DM limits the

utility of standard models for such applications. In particular, we study problems with two levels

for which a subset of the variables is required to take on integer values.

In mathematical programming terminology, this problem is formalized as mixed integer bilevel

program (MIBLP), and the variables are divided into groups defined by their controlling DM. A

key component of these models is the dependence of the lower-level DM’s feasible region on the

upper-level solution. From this perspective, an MIBLP can be viewed as a mixed integer linear

program (MILP) into which a second parametric MILP has been embedded. We focus our study

on the theoretical properties of MIBLPs, in order to determine how its structure can be exploited

for algorithm design. In addition, because of the computational challenges the general problem

presents, we examine special cases that are more amenable toalgorithmic development.

The first such case is that of the pure integer bilevel linear program (IBLP). In the first portion

of this work, we develop a branch-and-cut framework and an accompanying open source solver,

MibS, for this problem class. Our algorithm can be seen as a generalization of the well-known

branch-and-cut algorithm for MILP, but invokes specialized cutting planes to separate solutions that

satisfy integrality constraints, but are bilevel infeasible.

After developing our pure integer framework, we return to the general case and examine its compu-

tational complexity and place it within the so-called polynomial hierarchy. Next, we examine the

extent to which methods developed for the well-studied continuous version of the problem (BLP)

can be extended to MIBLP. The majority of BLP solution methods rely on the assumption that all

decision variables are continuous and, thus, cannot be readily applied to the mixed integer case.

However, in an effort to bridge this gap, we use intuition gained from studying the relationship be-

tween linear programs (LPs) and MILPs. In particular, we draw heavily on the recently-developed

mixed integer extensions of LP duality theory to develop single-level reformulations of MIBLP.

For some particular special cases, these methods yield problems to which known methods can be

1



applied, but the general reformulation requires the application of the subadditive dual, and cannot

solved directly. In order to overcome this, we use approximations of the lower-level value func-

tion to derive an exact algorithm reminiscent of Benders’ decomposition and the integer L-shaped

method. The inherent difficulty of these problem means that finding exact solutions to large in-

stances will likely be prohibitively expensive. Thus, we provide two heuristic methods, each of

which attempts to balance upper- and lower-level optimality, that can be used to be find good solu-

tions to general problems with little computational effort.

In the final section of this dissertation, we study an application in critical infrastructure protection,

namely that of designing an early warning system to monitor the structural integrity of a munici-

pal water system. The Steiner arborescence problem used to determine the optimal placement of

acoustic sensors within the system is described, and a novelcutting plane algorithm is presented.

Then, using this model as illustrative example, we demonstrate the utility of interdiction problems

in performing a type of systematic sensitivity analysis of our optimal design to the underlying graph

structure. Interdiction problems, a class of MIBLPs used tomodel the effect that can be exerted

on an MILP through variable bound altercation are of particular interest in our work for a number

of reasons, most notably their applicability for problems in homeland security and unique problem

structure. We describe several methods based on this special structure and show how one might

develop a problem-specific customization for MibS.

2



Chapter 1

Introduction

In this dissertation, we study the theoretical properties of hierarchical decision models, a class of

decision problems with rich application potential. Many real-world decision problems involve mul-

tiple, independent decision-makers (DMs), whose interests are not necessarily aligned, and models

that assume centralized control are limiting in such settings. A hierarchical model, however, is com-

prised of several levels of DMs, whose decisions are made sequentially and may affect the options

available to those lower in the hierarchy and the payoff of those higher in the hierarchy.

A common example of such a model is that faced by the federal government. Policy decisions

made at the federal level affect future decisions made by state and local governments, each of which

acts in its own self-interest in reaction to federal directives. Decisions made by the state and local

governments, in turn, affect the degree to which the federalgovernment accomplishes its original

objective. Thus, in order to perform an accurate analysis, the federal government must consider

the reaction of the lower-level bodies, and make policy decisions accordingly. The same analysis

applies in the corporate setting, where company policy is set at the highest level and interpreted and

applied in smaller organizational units.

Such a modeling framework also provides a natural representation of single-round (or static)Stack-

elberg games. Stackelberg games, first introduced byvon Stackelberg(1934), provide the game-

theoretic foundation for modeling the behavior of economicmarkets and resource competition

(Senn, 1996). As in a hierarchical decision model, the defining characteristic of a Stackelberg game

is its sequential nature. Traditionally, a Stackelberg game is played over several rounds, where each

player selects a new strategy at each iteration. The game is continued until an equilibrium is reached,

where no player can improve his situation by changing his strategy, or a specified number of rounds

has been played. If the game consists of a single-round, thenit is known as astatic Stackelberg

game. These games are often analyzed from the perspective of the first player, whose goal is to

choose the optimal strategy, in light of the expected behavior of his competitors. Viewed from this

3



perspective, we can see close connections between hierarchical decision models andalgorithmic

game theory(see, e.g.,Nisan et al., 2007), an emerging subfield of game theory concerned with

methods for computing equilibria.

Of particular interest in this research are applications inhomeland security and critical infrastruc-

ture protection. Traditionally, standard mathematical programming frameworks, such as linear and

mixed integer linear programming, have been the modeling frameworks of choice for these disci-

plines, and can be used to model a variety of problems facing the decision-makers charged with pro-

tecting private or public systems. In fact, one such class ofproblems to which we devote significant

attention is that of early warning system design. Early warning systems are used to monitor criti-

cal infrastructure, in order maintain system stability, orrecognize and react to a system disruption.

Typically, these problems involve the installation of sensors that monitor a subset of the system and

transmit data to a central hub for analysis. Thus, determining the optimal placement of the sensors

within the system, in order to provide maximum coverage and,thus, maximum protection, becomes

of immediate interest. Sensor technology varies widely from application to application, but the gen-

eral idea remains relatively similar; placing sensors at strategic locations within the system allows

us to monitor the health of the system, and react accordinglywhen (accidental or intentional) dis-

ruption occurs. A common example of this problem class is used to protect urban water systems

via installation of sensors designed to detect contamination in the water network (e.g.,Ostfeld and

Salomons, 2004; Berry et al., 2005; Carr et al., 2006; Berry et al., 2006a,b; Krause et al., 2008).

While single-level modeling frameworks are appropriate for modeling a wide range of infrastructure

protection problems, they are not suitable for all settings; one can easily imagine problems for which

none of the well-known frameworks is appropriate, and modeling choice should be made carefully.

For example, a natural question that arises in infrastructure protection is “how vulnerable is this

system to disruption by an adversary?”. Another interesting question is “how sensitive is the system

design to the (potentially dynamic) system structure?”. Answering these questions is difficult if one

is limited to the traditional mathematical programming frameworks, due to the standard assumption

that all decision variables are controlled by a single entity. However, each can be posed directly

as aninterdiction problem, a hierarchical model class that allows us to model the effect that an

external entity can exert via delay or disruption of the system. Here, the adversarial nature of the

hierarchy members results in problems for which the objective functions are in direct opposition

(i.e., zero-sum).

The majority of research on interdiction models has focusedon thenetwork interdiction problem

(Wollmer, 1964; McMasters and Mustin, 1970; Ghare et al., 1971; Wood, 1993; Cormican et al.,

1998; Israeli and Wood, 2002; Held and Woodruff, 2005; Janjarassuk and Linderoth, 2008), in

which the lower-level decision-maker represents an entityoperating a network of some sort. The

upper-level decision-maker (or interdictor) attempts to reduce the network performance as much

4



1.1. MODELING WITH MULTIPLE DECISION-MAKERS

as possible via the removal (complete or otherwise) of portions (subsets of arcs or nodes) of the

network. Applications of these models are limited to problems for which the an underlying net-

work structure can be assumed, but the range of application is much broader once one drops this

assumption. In fact, the underutilization of this problem class provided the initial motivation for our

study of hierarchical models. We study a generalization of these network interdiction models that

incorporates the “interdiction” of lower-level decision variables in depth, and demonstrate its utility

in sensitivity and systems analysis (see Chapter4).

1.1 Modeling with Multiple Decision-makers

From a modeling perspective, traditional mathematical programs are limited by their underlying

assumptions of a single DM and a single objective. Our interest in interdiction models led us to

consider alternative extensions of linear and mixed integer linear programming that provide greater

flexibility with respect to competing individuals or objectives. One way to overcome the latter

limitation is with the framework ofMultiobjective programming. Multiobjective programming is

a generalization of traditional mathematical programmingin which multiple, conflicting objective

functions can be introduced, and enables the study of tradeoffs among the multiple objectives con-

trolled by a single DM. A particularly relevant applicationof this method is given byWatson et al.

(2004), who utilize multiobjective programming to generalize the mixed integer linear programming

formulation of sensor location optimization problem ofBerry et al.(2005) and study the tradeoff

between multiple performance objectives.

While multiobjective programming relaxes the latter assumption of a single objective, it remains

limited by the former assumption of a single DM. This limiting assumption prevents us from accu-

rately capturing the interactions among different DMs. Clearly, the implications of this limitation

are of particular concern for adversarial problems, a classlikely to be encountered in problems of

homeland security.

The framework ofmultilevel programming, on the other hand, allows us to model these more gen-

eral decision problems. In a multilevel program, the variables are divided into groups, each of

which is controlled by a different DM. Under the assumptionsof perfect informationand individ-

ual rationality of the DMs, the higher-level DMs will be able to predict the reaction of lower-level

DMs to decisions made above them. In this context, the assumption of individual rationality im-

plies that each DM will choose the best solution with respectto a given objective, subject to a set

of specified constraints. That is, each DM will solve a mathematical program to optimality. Here,

perfect information means that each lower-level DM is awareof the actions taken by those above

him. Further, this assumption implies that each DM is aware of the parameters defining the mathe-

matical programs to be solved at lower levels of the decisionhierarchy. This allows us to collapse

5



1.2. APPLICATIONS OF BILEVEL PROGRAMMING

the entire hierarchy into a single optimization model in which the decisions made at the highest

level effectively determine the outcome for the entire system. The broader focus of this dissertation

is on the theoretical properties and the resulting algorithmic implications of multilevel programs, a

modeling class that subsumes interdiction models, and formalizes the hierarchical decision models

in a mathematical programming setting. In particular, we focus on techniques for analyzingmixed

integer bilevel linear programs(MIBLPs), in which (1) there are two DMs, (2) the constraintsare

linear functions, and (3) a subset of the variables may be required to take on integer values.

1.2 Applications of Bilevel Programming

We have seen how one subclass of bilevel programming can be used to model problems involv-

ing adversarial DMs. More generally, bilevel models are extremely useful for modeling systems

designed by one entity, but controlled by another. In this case, the parties are not necessarily in

opposition, but may still have different objectives. One example of such a system is that encoun-

tered in highway toll pricing. In a toll pricing problem, thesystem operator seeks to maximize the

revenue obtained from tolls imposed on a local road system. The revenue gained depends directly

on the decisions made by the system users (drivers), over whom the operator has no control. Thus,

the operator must determine the toll prices under the assumption the users will maximize their own

individual utilities (Labbè et al., 1998a,b). Of course, the applicability of the bilevel programming

framework is not limited to highway toll pricing models, butcan be applied to the more general

problem of determining how one can can influence behavior through tariff imposition (Brotcorne

et al., 2000).

As in the interdiction literature, this field of study has typically been limited to road systems that

can be modeled as networks, thereby allowing convenient reformulations of the resulting bilevel

program. However, the bilevel framework has also been applied, for example, to the problem of

determining optimal tax credits for biofuel production (Bard et al., 1998, 2000). In such an appli-

cation, the government provides tax credits to the petro-chemical industry to encourage increased

production of biofuels from farm crops, a process that is typically more expensive than producing

fuel from hydrocarbon-based raw materials. The government(leader) seeks to minimize the total

amount of tax credits paid out, while incentivizing the agricultural sector (follower) to set aside a

certain level of its land for nonfood crops to be used for biofuel production. Under the assumption

that the agriculture industry is neutral to the type of cropsproduced as long as profit is maximized,

the government can effectively set the prices paid by industry via the tax credit. Assumptions of

continuous production variables have again limited the utility of bilevel programming in this ap-

plication area. For example,Bard et al.(2000) describe an extension of their model in which the
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petro-chemical industry may choose to produce all biofuelsfrom nonfood crops. The new formula-

tion requires binary variables in the upper-level problem.One could also imagine model extensions

requiring discrete decisions in the lower-level. For example, if there exists a fixed cost for producing

a particular type of crop, production would occur only if theprofit outweighed the sum of the fixed

and operational costs. In order to accurately model such a scenario, lower-level binary variables

would be necessary.

The bilevel modeling paradigm can also be used to perform a wide range of worst-case analyses

where the highest-level DM does not represent a true decision-making entity, but allows the in-

clusion into the model of circumstances that cannot be controlled, such as the weather or world

events at large. The question to be answered in such cases is “what is the worst that can happen?”.

Taking the opposite point of view, the same paradigm can be used to analyze systems in which the

upper-level DM is an individual trying to influence the course of some natural process that operates

according to a principle of optimality because of the laws ofphysics, for instance (i.e., electricity

travels by a path of least resistance). In this way, such models could be used, for example, by a

participant in an electricity market to model the effect of changes in their own supply of electricity

on power flows through the network in order to determine theiroptimal production level (Bienstock

and Verma, 2008). A similar application arises in the biomedical field, where we can model the

effect of opening and closing pathways of blood flow to the heart for the treatment of conditions

such as atrial fibrillation. This application is discussed further in Chapter5. We also see related

applications of bilevel programming in the biotechnology literature. In one such application (see,

e.g.,Burgard et al., 2003; Pharkya et al., 2003), bilevel programming is used to determine optimal

strategies for microbial strain engineering leading to increased production of chemicals or biochem-

icals. That is, by knocking out specific genes and, thus, prohibiting certain cellular reactions, one

can develop microbial strains with improved production capability. Here, the lower-level DM is

not a true decision-making entity, but rather is used to represent metabolic behavior, controlled by

internal cellular objectives.

Finally, there are deep connections between bilevel programming and the decision framework that

drives the well-studied branch-and-bound algorithm. Branch and bound is a “divide and conquer”

approach to solving mathematical programs. Fundamentally, branch and bound is a method that

enumerates the set of feasible solutions to a mathematical programming problem. To improve

efficiency, a divide and conquer approach is used to eliminate portions of the feasible region by

computing bounds on the optimal objective value. The feasible region is partitioned using branch-

ing methods based on logical disjunctions, and performancedepends on both the quality of the

bounds used and the effectiveness with which branching disjunctions are chosen. The problem of

determining the disjunction whose imposition results in the largest bound improvement within a

branch-and-bound framework based on disjunctive programming is itself a bilevel program (Lodi
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and Ralphs, 2009). Thus, the study of bilevel programs may lead to improved methods for solving

single-level programs.

In recent years, bilevel programming has been recognized asan important field within mathematical

programming, allowing the analysis of a much broader range of systems. However, in each of the

fields described above, the utility of bilevel programming has been primarily limited to systems that

can be modeled with continuous lower-level variables or network models. Such models typically

allow for convenient single-level reformulations that canbe solved by existing optimization meth-

ods. As in traditional mathematical programming, it is clear that introducing integer variables into a

bilevel program yields a much richer modeling framework. Next, we formally describe our problem

framework.

1.3 Definitions and Notation

A linear program(LP) is the problem of minimizing the value of a linear objective function repre-

sented byc ∈ Qn over the polyhedral feasible region

SLP = {x ∈ Rn | Ax ≥ b, x ≥ 0} ,

whereA ∈ Qm×n, andb ∈ Rm. That is, the goal of linear programming is to determine

zLP = min
x∈SLP

cx. (LP)

A mixed integer linear program(MILP) is a natural generalization of an LP in which a specified

subset of the decision variables are required to have integer values. Without loss of generality,

we assume this subset is indexed 1 throughp ≤ n. Thus, the canonical MILP instance can be

represented by the quadruple(A, b, c, p) and has feasible region

SMILP =
{

x ∈ Zp × Rn−p | Ax ≥ b
}

.

The goal of solving MILP is then to determine

zMILP = min
x∈SMILP

cx. (MILP)

A mixed integer bilevel linear program(MIBLP) is a generalization of a mixed integer linear pro-

gram in which some of the variables are controlled by a secondary DM. Letx ∈ X ⊆ R
n1

+ represent

the variables controlled by theupper-level DM, or leader, and lety ∈ Y ⊆ Rn2

+ represent the vari-

ables controlled by thelower-level DM, or follower. X andY specify the integrality restrictions

8



1.3. DEFINITIONS AND NOTATION

on the decision variables. As before, we assume the upper- and lower-level integer variables are

indexed 1 top1 and 1 top2, respectively, and define

X = (Zp1 × Rn1−p1) and Y = (Zp2 × Rn2−p2).

The canonical MIBLP is then the problem of determining

zMIBLP = min
{

c1x + d1y | x ∈ PU ∩X, y ∈ argmin{d2y | y ∈ SL(x) ∩ Y }
}

, (1.1)

where

PU =
{

x ∈ Rn1 | A1x ≥ b1, x ≥ 0
}

is theupper-level feasible region,

SL(x) =
{

y ∈ Rn2 | G2y ≥ b2 −A2x, y ≥ 0
}

is the lower-level feasible regionwith respect to a givenx ∈ Rn1, A1 ∈ Qm1×n1 , b1 ∈ Rm1 ,

A2 ∈ Qm2×n1, G2 ∈ Qm2×n2 , andb2 ∈ Rm2. The region obtained by dropping the optimality

requirement for the lower-level variables is given by

ΩI = {(x, y) ∈ (X × Y ) | x ∈ PU , y ∈ SL(x)} .

ΩI is often referred to as thejoint feasible region. If we also remove the conditionsx ∈ X and

y ∈ Y , we obtain

Ω = {(x, y) ∈ (Rn1 × Rn2) | x ∈ PU , y ∈ SL(x)} .

In later chapters, we letA = [A1|A2]T , G = [0|G2]T , andb = [b1|b2]T for convenience. For each

upper-level solutionx ∈ (PU ∩X), the follower’srational reaction setis

M I(x) = argmin{d2y | y ∈ SL(x) ∩ Y }.

Thebilevel feasible setis defined as

FI = {(x, y) | x ∈ (PU ∩X), y ∈M I(x)},

and often called theinducible region. (MIBLP) can be restated more simply as the problem of

determining

zMIBLP = min
(x,y)∈FI

c1x + d1y. (MIBLP)

Because MILP is a special case of MIBLP, it is clear that MIBLPis also anNP-hard problem.
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Since the literature dealing with the complexity of MIBLP islimited, we examine questions of

complexity in Chapter3. In addition, we investigate special cases of MIBLP that maybe amenable

to more effective solution methodologies than the general formulation. That defined byX = Rn1

andY = Rn2 (i.e.,p1 = p2 = 0) is one such case. This special form of (MIBLP) is called a bilevel

linear program (BLP). We denote the feasible region of a BLP asF , which results from dropping

all integrality restrictions fromFI . Formally, BLP is stated as

zBLP = min
(x,y)∈F

c1x + d1y. (BLP)

BLP is a special case of a mathematical program with equilibrium constraints (MPEC), studied

extensively byLuo et al.(1996).

In order to ensure the problem is well-posed and has a solution, some technical assumptions are

necessary. First, we assume thatΩI is nonempty and compact. This assumption is consistent with

the literature (Moore and Bard, 1990) and allows us to apply Theorem1.1 (see, e.g.,Rudin, 1976),

which guarantees that an optimal solution to the standard mathematical program

min
(x,y)∈ΩI

c1x + d1y

exists.

Theorem 1.1 (Weierstrass’ Theorem)If f : Rn → R is a continuous function, andS is a

nonempty, closed and bounded subset ofRn, then there exists somêx ∈ S such thatf(x̂) ≤ f(x)

for all x ∈ S. Similarly, there exists somēx ∈ S such thatf(x̄) ≥ f(x) for all x ∈ S.

We also assume that, for every action by the upper-level DM, the problem faced by the lower-level

DM is feasible and its LP counterpart is bounded. That is,(SL(x) ∩ Y ) 6= ∅ and

min
y∈S(x)

d2y

has a finite optimal solution, for allx ∈ X.1

As noted inMoore and Bard(1990), the assumption of lower-level feasibility is somewhat restric-

tive, especially in the case where the upper- and lower-level are in direct conflict (i.e.d1 = −d2).

For example, if the goal of the upper-level DM is to disrupt the operation of system controlled by the

lower-level DM (as in an interdiction problem), decisions that result in infeasible lower-level prob-

lems can be seen to be optimal. In this case, we may wish to relax the assumption(SL(x)∩Y ) 6= ∅.
Methods for relaxing this assumption are discussed in Chapter 2. On the other hand, in some ap-

plications, it is unlikely that this assumption restricts the set of possible solutions. For example,
1It is clear that if the LP counterpart of the lower-level problem is bounded, so is its integer version.
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in both the government and corporate systems described above, choosing upper-level solutions that

result in an empty lower-level feasible region will likely be eliminateda priori, since it is in the

best interest of both DMs to have a functioning system. Further, this assumption is consistent with

the current infrastructure protection philosophy based ongoal of understanding and mitigating the

effects of an inevitable attack, rather than focusing on theunrealistic goal of attempting to prevent

all attacks.

We also assume the lower-level DM issemi-cooperative, and will allow the upper-level DM to

choose among alternative members ofM I(x), in the case that this set is not a singleton. This is

often referred to as theoptimistic formulationof the problem. The main alternative in the litera-

ture is thepessimistic formulation, where one assumes the upper-level DM chooses the lower-level

solution alternative corresponding to the worst outcome with respect to upper-level objective func-

tion, yielding a risk-averse formulation of the problem. The choice of the optimistic formulation is

consistent with the majority of the literature and, in contrast to the pessimistic formulation, allows

single-level reformulations in which the lower-level problem is replaced with appropriate equilib-

rium constraints (Dempe, 2003). Again, one might question this assumption in the context of a truly

adversarial lower-level DM. However, we note that such an scenario would often be zero-sum, in

which case the two formulations would yield identical objective values. It is, of course, possible to

imagine situations which are not zero-sum, but in which the lower-level DM would prefer a solu-

tion that is worst with respect to the upper-level objective. In this case, the pessimistic formulation

may be more appropriate, but solving such problems remains asignificant challenge. The reader

is referred toLoridan and Morgan(1996) for further insight on and discussion of the pessimistic

formulation. For a broader perspective of the implicationson the level DM cooperation within a

competitive atmosphere, the reader is referred to the manuscript of Başar and Olsder(1999).

The mixed integer interdiction problem(MIPINT) is a generalization of the network interdiction

model in which we broaden the class of lower-level systems tothose that can be described by any

MILP. In MIPINT, there exists a binary upper-level variablefor each lower-level variable. These

binary variables represent the upper-level decision to interdict the corresponding lower-level vari-

ables. Mathematically, the effect of interdiction is modeled using a variable upper bound constraint

(VUB)

y ≤ U(e− x)

in the lower-level problem, whereu ∈ Rn is a vector of natural upper bounds on the vectory, U =

diag(u), ande is ann-dimensional column vector of ones. The model we consider isequivalent to

the mixed integer linear system interdiction problem described inIsraeli(1999). Formally, MIPINT
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is the problem of determining

zMIPINT = max
x∈P INT

U
∩Bn

min
y∈S INT

L
(x)∩Y

dy (MIPINT)

where

P INT
U =

{

x ∈ Rn | A1x ≤ b1
}

S INT
L (x) =

{

y ∈ Rn | G2y ≥ b2,−y ≥ −U(e− x), y ≥ 0
}

andY = (Zp × Rn−p) ⊆ Rn. Both the network interdiction problem and MIPINT are examples of

zero-sum bilevel programs.

(MIPINT) is, in fact, a special case of (MIBLP). To see this, let̄c1 = 0, d̄1 = −d, Ā1 = −A1,

b̄1 = −b1, d̄2 = d,

Ḡ2 =

[

G2

−In×n

]

, Ā2 =

[

0

−U

]

, and b̄2 =

[

b2

−U

]

.

Then, we can formulate (MIPINT) as

zMIPINT = min
{

c̄1x + d̄1y | x ∈ P̄U ∩ X̄, y ∈ argmin{d̄2y | y ∈ S̄L(x) ∩ Ȳ }
}

,

where

P̄U =
{

x ∈ Rn1 | Ā1x ≥ b̄1, x ≥ 0
}

,

S̄L(x) =
{

y ∈ Rn2 | Ḡ2y ≥ b2 − Ā2x, y ≥ 0
}

,

X̄ = Bn1 ,

Ȳ = (Zp2 × Rn2−p2),

n1 = n2 = n, andp2 = p.

As previously mentioned, the existing literature on interdiction models focuses on variations of

the network interdiction problem, where applications are limited to scenarios in which the lower-

level system can be described by a network model. A common example of network interdiction is

the problem of maximizing the shortest path. In theMaximum Shortest Path Problem(MSPP), the

follower attempts to move through a network along a shortestpath. The leader’s goal is to maximize

the length of that shortest path by removing network arcs. Let G = (N,A) be a graph in which

the follower moves a commodity from the source nodes ∈ N and the sink nodet ∈ N . We define

δ−(i) andδ+(i) as the set of arcs directed out of and into nodei, respectively. The length of arc

k ∈ A is given by0 < ck < ∞, and the resource required to interdict this arc is0 < rk. The total
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interdiction budgetavailable to the leader isr0. One formulation of this problem is

max
x∈PU∩B|A

∑

k∈A

ckyk (MSPP)

subject to y ∈ argmin {
∑

k∈A

ckyk :

∑

k∈δ−(i)

yk −
∑

k∈δ+(i)

yk =



















1 for i = s

0 ∀i ∈ N \ {s, t}

−1 for i = t

,

0 ≤ yk ≤ uk(1− xk) ∀k ∈ A } ,

wherePU = {x | rx ≤ r0}. A similar formulation of this problem by studied byIsraeli and Wood

(2002).

1.4 Previous Work

As discussed above, the initial motivation for multilevel programming in the literature arose from

economic models of hierarchical competition, where bilevel programs are particularly well-suited

for analyzing markets dominated by a large entity ormarket-maker. Bilevel programs subsequently

proved their utility in both the private (Koopmans, 1951; Charnes et al., 1967; Cyert and March,

1955) and public (Beltramo, 1983) markets. Koopmans(1951) and Charnes et al.(1967) study

hierarchical systems in the context of resource allocation. Cyert and March(1955) describe a pricing

model in a oligopolistic market, based on the behavior of decision-makers at different levels within

a firm’s organizational structure.Bracken and McGill(1973) formalize the notion of a bilevel

program by describing a mathematical program whose constraints contain optimization problems.

Their model is limiting, however, since only the lower-level payoff function, rather than the set

of feasible solutions, is dependent on decisions made at thehigher level. Military applications

of this model are given inBracken and McGill(1974a) and a solution algorithm is suggested in

Bracken and McGill(1974b). Some geometric results have been derived for the general multilevel

programming problem (Benson, 1989) but, due to its inherent difficulty, finding theoretical and

computational results for even the bilevel linear model hasproved quite challenging. Research on

this special case composes the majority of the remaining multilevel programming literature.

1.4.1 Bilevel Linear Programs
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Falk (1973) studies the linear max-min (LMM) problem, a zero-sum bilevel problem, and suggests

a branch-and-bound solution algorithm.Bard and Falk(1982) reformulate the bilevel program as a

separable nonconvex program, when the lower-level problemis convex for fixed upper-level vari-

ables. A branch-and-bound algorithm that yields a global optimal solution to its piecewise linear

approximation is described and several structural resultsare given. Namely, a single-level optimiza-

tion problem is given that determines the existence of an optimal solution to the bilevel program.

Candler and Townsley(1982) show that, ifΩ is bounded and lower-level solutions are unique, solu-

tions to BLPs occur at extreme points ofΩ. Bialas and Karwan(1982) andBard(1984a) generalized

this result, assuming only boundedness ofΩ. Savard(1989) provides a further generalization, show-

ing the same result for BLPs with upper-level constraints and no assumption onΩ. It is important

to note that this result does not hold for quadratic or integer bilevel programs.Bard(1984b) proves

that solving the linear bilevel program is equivalent to maximizing a linear function over a piece-

wise linear constraint set and gives necessary first order optimality for general bilevel programs.

Bard (1983) gives a grid search algorithm for solving general bilevel programs (i.e. functions are

not restricted to be linear). InBard (1988), the case defined by all convex functions is considered

and results similar to those found inBard(1984b) for the linear case are given.

Fortuny-Amat and McCarl(1981) andBard and Moore(1990) study bilevel programs with quadratic

objective functions and linear constraints. In each, an algorithm designed to exploit the optimal-

ity conditions of the lower-level LP, replacing its objective with appropriate Karush-Kuhn-Tucker

(KKT) conditions to yield a single-level problem, is suggested. In Fortuny-Amat and McCarl

(1981), binary variables are introduced to eliminate the resulting nonlinear constraints and a mixed

integer program is solved. On the other hand,Bard and Moore(1990) suggest a branch-and-

bound solution methodology, where the complementarity constraints are relaxed to yield an LP,

and branching is performed on the KKT multipliers.Ben-Ayed and Blair(1990) discuss the diffi-

culties in finding exact solutions to bilevel linear programs and give a shorter proof of the problem’s

complexity than those given previously.Hansen et al.(1992) derive necessary optimality condi-

tions on the tightness of the lower-level constraints and suggest new branching rules to be used in

a branch-and-bound solution framework.Judice and Faustino(1992) give an algorithm based on

solving a series of linear complementarity problems. For anoverview of bilevel linear programming

solution methods and applications, the reader is referred to the work ofAnandalingam and Friesz

(1992).

1.4.2 Mixed Integer Bilevel Linear Programs

Although bilevel linear programming has received increased attention recently, the literature on

MIBLPs remains scarce.Moore and Bard(1990) introduce a general model, describe associated
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computational challenges, and suggest a branch-and-boundalgorithm, but the vast majority of the

remaining mixed integer bilevel programming literature isrestricted to various special cases.Bard

and Moore(1992) develop a specialized algorithm for binary bilevel programs. Dempe(2001)

considers the case in which all upper-level variables are continuous and all lower-level variables are

integer and utilizes a cutting plane approach to approximate the lower-level feasible region.Wen

and Yang(1990) consider the opposite case, where the lower-level problemis a linear program and

the upper-level problem is an integer program. Linear programming duality is used to derive exact

and heuristic solutions. One application of this special case was noted previously, for improving

production of biochemicals. In their model,Burgard et al.(2003) utilize binary upper-level variables

to represent yes/no decisions regarding the gene knockoutsand reformulate the the problem using

lower-level duality. Rather than using KKT conditions, they instead enforce lower-level primal and

dual feasibility and require the primal and dual objectivesto be equal. However, they neglect to

include the lower-level primal variables in the dual objective and, thus, erroneously state that a

MILP formulation has been derived. Recently,Köppe et al.(2009) developed a parametric integer

programming approach for problems with pure integer lower-level problems.

1.4.3 Interdiction Problems

Interdiction problems have received a fair amount of attention in the literature, primarily due to their

applicability in enemy network disruption planning. The original motivation, however, stemmed

from an interest in performing sensitivity analysis on flow networks, with the goal of determining

a transportation network’s sensitivity to road closure (Wollmer, 1964). The interdiction model we

study in Chapter4 is reminiscent of this application, but the utility of the interdiction for sensitivity

analysis has been largely overlooked in the literature. Instead, the majority of the research has its

roots in military or homeland security applications.McMasters and Mustin(1970) andGhare et al.

(1971) study models for effective interdiction of a military supply network, whileWood(1993) and

Washburn and Wood(1995) were motivated by the disruption of drug trafficking networks. In each,

the interdictor attempts to minimize the maximum achievable flow on the underlying network;Wood

(1993) gives an integer programming formulation of the problem and a proof ofNP−completeness.

Natural generalizations of maximum flow interdiction result by allowing partial arc interdictionLim

and Smith(2007), multiple upper-level objectives (Royset and Wood, 2007), stochastic interdiction

success (Cormican et al., 1998; Held and Woodruff, 2005; Janjarassuk and Linderoth, 2008), or

uncertain network structure (Morton et al., 2007). Israeli (1999) gives a comprehensive review

of interdiction algorithms and studies deterministic shortest path interdiction in depth.Israeli and

Wood(2002) study a closely related problem, in which interdiction by the leader causes an increase

dk > 0 in the length of an arc; the goal of the follower is to find the minimum length path in the

resulting network. The problem is formulated as a bilevel program, and a decomposition solution
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methodology is provided. More recently, deviations from lower-level network problems have been

studied (Salmerón et al., 2009; Brown et al., 2009, e.g.,), but the treatment of general MILP in-

terdiction appears to be limited to the Ph.D. thesis ofIsraeli (1999), in which a penalty function

reformulation is introduced and solved via decomposition methods.

1.5 Related Problems

MPEC. A very closely related class of problems is that of Mathematical Programming with Equi-

librium Constraints (MPEC). In fact, as noted above, BLP is aspecial case of MPEC, in which the

equilibrium constraints arise from an optimization problem; the relationship between the two prob-

lem classes in detail byColson et al.(2005a). MPEC generalizes BLP, by dropping the assumption

of linear constraints and objective functions and allowingequilibrium constraints arising from more

general conditions than those resulting from an LP.

Formally, letC : Rn → Rm be a set-valued map such that, for eachx ∈ Rn, C(x) is a closed

convex subset ofRn. Then, for functionsF : Rn+m → R andf : Rn+m → Rm, nonempty closed

setZ ⊆ Rn+m, the standard MPEC formulation is

min F (x, y)

subject to (x, y) ∈ Z (MPEC)

y ∈ S(x),

where, for eachx ∈ XMPEC, S(x) is the solution set of the variational inequality (VI) defined by

(f(x, ·), C(x)), andXMPEC = {x ∈ Rn | (x, y) ∈ Z for somey ∈ Rm}.

In addition to those described in the bilevel literature, examples of MPEC can be found in robotics

(Pang and Trinkle, 1996; Pang et al., 2005), facility location and production (Miller et al., 1992),

engineering design (Klarbring et al., 1995; Klarbring and Rönnqvist, 1995; Koc̆vara and Outrata,

1990, 1995), machine learning (Mangasarian, 1996; Kunapuli, 2008), trade reform (Harrison et al.,

1997), economics (Scarf, 1973), electricity market modeling (Smeers, 1997; Hobbs, 2001; Hobbs

and Helman, 2004), structural mechanics (Maier and Novati, 1990; Tin-Loi and Misa, 1999; Tin-Loi

and Pang, 1993), and options pricing (Huang and Pang, 1998; Benson et al., 2006).

A variety of solution methods exist for MPECs. Active set methods (Fukushima and Tseng, 2002;

Izmailov and Solodov, 2008; Fukushima and Tseng, 2007; Liu and Ye, 2007; Chen and Goldfarb,

2007; Judice et al., 2007; Ralph, 2009) rely on solving a series of subproblems, whose complemen-

tarity conditions have been explicitly satisfied. Constraint regularization methods (Facchinei et al.,

1999; Fukushima and Pang, 1999; Scholtes, 2001) attempt to put the constraints in a more tractable
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form, often resulting in relaxations of the original problem, while penalty function methods (Man-

gasarian, 1976; Marcotte and Zhu, 1995; Mangasarian and Pang, 1997; Scheel and Scholtes, 2000)

penalize constraint violation. Recently, sequential quadratic programming (SQP) (Liu et al., 1998;

Jiang and Ralph, 1999; Jian, 2005; Fletcher et al., 2006; Liu et al., 2006) and filter methods (Fletcher

and Leyffer, 2002a,b; Etoa, 2010) have been shown to be computationally effective. Other methods,

with roots in traditional nonlinear methods include interior point (Byrd et al., 1999; Liu and Sun,

2004; Benson et al., 2006) and trust region (Scholtes and Stöhr, 1999; Colson et al., 2005b) algo-

rithms. Implicit programming approaches (Outrata, 1994; Outrata and Zowe, 1995; Outrata et al.,

1998) have also gotten some attention in the literature, but tendto require fairly strict assumptions

on the problem (Luo et al., 1996). Unfortunately, the majority of the problems considered in the

MPEC literature do not have integral variables and, thus, the solution methods are not applicable

to the discrete problems we consider here. The reader is referred to the surveys byFerris and Pang

(1997), Ferris and Kanzow(2002), Colson et al.(2005a), andHu et al.(2009) and the monograph

by Luo et al.(1996) for further background on MPECs.

Multiobjective Programs. As discussed above, multiobjective programming is anotherframe-

work used to model multiple objectives. Formally, the multiobjective program is defined as:

vminx∈S [f1(x), f2(x), . . . , fk(x)], (1.2)

where the operatorvmin means the goal of solving (1.2) is to findefficientsolutions in the feasible

regionS. We sayx̂ ∈ S is efficient if there is no otherx ∈ S such thatfi(x) ≤ fi(x̂) for

i = 1, . . . , k andfi(x) < fi(x̂) for somei. That is there is nox ∈ S that dominateŝx. Further,

x̂ ∈ S is consideredstrongly efficientif it is efficient and

fi(x̂) < fi(x) for all i.

Let SE denote the set of efficient solutions andYE denote the image ofSE in the outcome space

(i.e. YE = f(SE)). YE is the set of Pareto outcomes.

We are particularly interested in thebiobjective mixed integer linear program(BMILP):

vminx∈S [cx, dx], (1.3)

whereX = Zp × Rn−p, S = {x ∈ X | Ax ≥ b, x ≥ 0}, c, d ∈ Qn, b ∈ Rm, andA ∈ Qm×n.

One approach to finding efficient solutions to (1.3) is to convert it into a single-objective problem by

taking a convex combination ofc andd, to yield a so-calledweighted-sum subproblem(Geoffrion,
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1968)

min
x∈S

δcx + (1− δ)dx, (1.4)

for 0 ≤ δ ≤ 1. Solutions to (1.4) for fixed δ are guaranteed to be efficient, but the converse does

not hold. Thus, solving (1.4) is not sufficient if we must find all efficient solutions. However, it is a

very straightforward approach and will yield, in most cases, a suitable number of efficient solutions.

The reader is referred toRalphs et al.(2006) for a discussion of alternative methods that guarantee

generation of the entire solution set.

The primary difference between multiobjective and multilevel programming is the assumption that

a single DM controls both objectives, in the former case. Thus, in multiobjective programming, the

two objectives are optimized over a common feasible region.It has been shown, for problems in

which upper-level variables appear in the lower-level objective, solutions to BLPs are not efficient

in general (Bialas and Karwan, 1982; Bard, 1984b; Wen and Hsu, 1989). It is quite easy to see, by

way of an example, that this result also applies to our setting.

Example 1. Consider the following MIBLP instance:

min
x∈B2

− 3(x1 + x2)− 2(y1 + y2)

subject to x1 + x2 ≤ 1 (1.5)

y ∈ argmin
{

−4y1 − 5y2 | −x1 − y1 ≥ −1,−x2 − y2 ≥ −1, y ∈ B2
}

,

It is easy to see, by inspection, that both(x1, y1) = ((1, 0), (0, 1)) and(x2, y2) = ((0, 1), (1, 0)) are

optimal for (1.5). While both result in an upper-level objective value of−5, they have lower-level

objective values of−5 and−4, respectively. Thus,(x2, y2) cannot be efficient.

However, we also observe from the previous example that, although, solutions to MIBLPS are not

efficient in general, there may be alternative upper-level solutions that yield efficient bilevel feasible

solutions. This observation motivates a heuristic method for MIBLP that relies on determining

efficient solutions to a related multiobjective program (see Chapter3). Wen and Lin(1996) give a

method for obtaining efficient pair of upper- and lower-level decisions when the DMs are willing to

cooperate, but such solutions are not guaranteed to be feasible for the original bilevel problem.

Stochastic Programs with Integer Recourse. Stochastic programming is a framework for mod-

eling mathematical programs in which the data is uncertain.In other words, these problems arise

when a subset of the parameters in a deterministic program are replaced with random variables. One

common method for modeling problem uncertainty is throughtwo-stage stochastic programming.

In a two-stage stochastic program, first-stage (or anticipatory) decisions must be made before the
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outcomes of the random parameters are known. After the uncertainty is revealed, second-stage (or

recourse) decisions are made in reaction to the outcome. As in bilevelprogramming, the decisions

are sequential in theory, but the goal is to determine the decisions that yield the minimum expected

objective values at the first- and second-stage “here and now.”

Formally, the two-stage mixed integer stochastic programming problem is defined as:

z2SP = min {cx + EξQξ(x) | x ∈ P ∩X} (1.6)

wherec ∈ Rn1,

P = {Ax ≥ b, x ≥ 0},

A ∈ Rn1×m1 , b ∈ Rm1 . For anyξ,

Qξ(x) = min{dy |Wy ≥ ω(ξ)− Tx, y ∈ Y },

whereW ∈ Rm2×n2 andT (ξ) ∈ Rm2×n1. The vectorξ is a random variable from the probability

space(Ξ,F,P) and describes the realization of the uncertain scenarios. For eachξ ∈ Ξ, ω(ξ) ∈
Rm2 . Generally,W andT are referred to as therecourse matrixandtechnology matrix, respectively.

As before, we assume the first- and second-stage integer variables are indexed1 to p1 ≤ n1 and1

to p2 ≤ n2, respectively, and defineX = Zp1 × Rn1−p1 andY = Zp2 × Rn2−p2. As in Kong et al.

(2006), the following assumptions are made on (1.6):

(A1) The random variableξ follows a discrete distribution with finite support.

(A2) The first-stage feasibility set(P ∩X) is nonempty and bounded.

(A3) Qξ(x) is finite for allx ∈ (P ∩X) andξ ∈ Ξ.

We define the functions

φ(β) = min{cx | x ∈ P(β) ∩X},

whereP(β) = {x | Ax ≥ b, Tx ≥ β}; and

ϕ(β) = min{qy | y ∈ S(β) ∩ Y },

whereS(β) = {y |Wy ≥ β}, for all β ∈ Rm2 . This allows us to reformulate (1.6) as:

z2SP = min {φ(β) + Eξϕ(ω(ξ)− β) | β ∈ B} , (2SP)

whereB = {β | Tx = β, x ∈ X}. Variablesβ are the so-calledtender variables. Assumption(A1)

guarantees thatB is finite. In the continuous version of (1.6) (i.e.,p1 = p2 = 0), ϕ is a piecewise
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linear and convex function on{x | Ax ≥ b, x ≥ 0, x ∈ X} for each realizationω(ξ). Thus, under

Assumption(A1), Qξ(x) is also piecewise linear and convex, implying that (1.6) is the problem

of minimizing a convex function over a set of linear constraints. Assumption(A2) is a standard

assumption, and ensures that(P ∩X) is a finite set. The final assumption defines a property known

as relatively complete recourseand guarantees thatQξ(x) is feasible for allx ∈ (X ∩ P) and

ξ ∈ Ξ. The reader is referred to the survey paper ofSchultz et al.(1996), for further insight into

the implications of these assumptions, as well as an overview of two-stage stochastic programming

results. A comprehensive review of the stochastic programming literature is provided byKall and

Wallace(1994) andBirge and Louveaux(1997).

Two-stage stochastic programming problems are not generally associated with bilevel program-

ming. However, it is easy to observe the similarities by examining the mathematical formulations.

In fact, algorithms developed for bilevel programs can be used to solve two-stage stochastic pro-

grams. Conversely, two-stage stochastic programming algorithms are able to solve a particular

special case of the bilevel program.

Parametric Mathematical Programs. Sensitivity analysis is another method for dealing with

uncertainty in input data. The goal of sensitivity analysisis to understand how the optimal solutions

and objective values change in mathematical programs as theinput data is varied. In particular,

once an optimal solution is found, information gleaned froma related mathematical program allows

us to predict the effects of changing the objective function, constraint matrix, and right-hand-side

values. Generally, we are interested in determining conditions under which the current solution

remains optimal, despite changes to the problem data. Further, sensitivity analysis describes how

to obtain new optimal solutions when these conditions are violated, without resolving the problem

from scratch.

Parametric programming is a method for performing systematic sensitivity analysis. In particular,

parametric programming is used to obtain the set of optimal solutions over a range of input values.

For example, we can formulate theparametric program:

min
{

cx | Ax ≥ (b + θb′), x ≥ 0, x ∈ X
}

, (1.7)

parameterized by the scalarθ. The goal of “solving” (1.7) is to determine an optimal solution and

objective value for each value ofθ. Similarly, we can define models based on the parameterization

of the objective function:

min
{

(c + ϕc′)x | Ax ≥ b, x ≥ 0, x ∈ X
}

, (1.8)
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and the constraint matrix:

min
{

cx | (A + λA′)x ≥ b, x ≥ 0, x ∈ X
}

, (1.9)

whereϕ andλ parameterize (1.8) and (1.9), respectively. The goal of parametric programming is to

determine the global dependence on the problem parameter, allowing us to construct theparametric

functionz, which yields the optimal value of as a function of the parameter. As we will see next,

understanding how the solutions to (1.7) evolve as we changeθ is essential to developing algorithms

for MIBLPs.

1.6 Computational Challenges of MIBLP

The fact that MIBLP isNP-hard (see Section1.3indicates that solving MIBLPs in practice is likely

to be challenging. A natural approach to developing algorithms for solving MIBLPs is to consider

generalizations of the techniques that are used for MILPs. In particular, we would like to be able to

generalize the paradigm of LP-based branch and bound used tosolve MILPs, by replacing the LP

relaxation with the BLP obtained from relaxing integralityrestrictions. Unfortunately, as we will

see next, this method does not yield a valid relaxation, and there is no immediately apparent way to

obtain such a generalization.

In a branch-and-bound algorithm for a standard MILP, integrality constraints are removed and the

resulting LP, called the LP relaxation, which is easily seento be a relaxation of the original MILP,

is solved. The solution to the LP relaxation yields useful information about the original problem. In

particular, in algorithms for solving MILPs, we frequentlyuse the following properties.

(P1) If the LP relaxation has no feasible solution, then neither does the original problem.

(P2) If the LP relaxation has a solution, then the objective value is a valid lower bound on the that

of the original problem.

(P3) If the solution to the LP relaxation is integral, then itis optimal for the original problem.

Properties(P2)and(P3)result from the fact that the set of feasible solutions for the original MILP

is contained in the corresponding set for the relaxation. However, for a MIBLP, this is not the case.
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Figure 1.1: The feasible region of a MIBLP.

Example 2. Consider the instance of (MIBLP), from Moore and Bard(1990),

min
x∈Z+

− x− 10y

subject to y ∈ argmin {y : 25x− 20y ≥ −30

−x− 2y ≥ −10 (1.10)

−2x + y ≥ −15

2x + 10y ≥ 15

y ∈ Z+ } ,

illustrated in Figure1.1. In the figure, the polyhedron represents the setΩ, while the integer points

in this polyhedron comprise the discrete setΩI . Within each ofΩ andΩI , we have indicated points

that satisfy the optimality constraint on the lower-level variables (i.e. the bilevel feasible solutions).

These are denotedF andFI , respectively. From the figure, it is easy to see thatF ⊆ Ω, FI ⊆ ΩI ,

andΩI ⊆ Ω. It is not the case, however, thatFI 6⊆ F , which implies that the set of feasible

solutions to the MIBLP is not contained in that of the corresponding BLP and, hence, that this BLP

does not yield a relaxation of the original problem. In this example, optimizing over the continuous

regionF yields theintegersolution(8, 1), with the upper-level objective value−18. However, the

true solution to the MIBLP is(2, 2), with upper-level objective value−22.

Example2 allows us to make two important observations:

(O1) The objective value obtained by relaxing integrality is not a valid bound on the solution value

of the original problem, since we may have

min
(x,y)∈F

c1x + d1y > min
(x,y)∈FI

c1x + d1.
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(O2) Even when solutions tomin(x,y)∈F c1x + d1y are inFI , they are not necessarily optimal.

Thus, except in certain special cases, only Property(P1)can be generalized. This implies that we

cannot simply generalize MILP branch and bound for MIBLP by substituting the LP relaxation with

the BLP obtained by dropping the integrality constraints ina MIBLP.

Figure1.1 also illustrates an important difference between the continuous and integer versions of

bilevel programming. It is well-known (Candler and Townsley, 1982; Bialas and Karwan, 1982;

Bard, 1984a; Savard, 1989) that if a solution to (BLP) exists, it occurs at an extreme point ofΩ. This

property has been exploited to develop algorithms based on vertex enumeration (Papavassilopoulos,

1982; Candler and Townsley, 1982; Bialas and Karwan, 1982; Dempe, 1987; Chen and Florian,

1992; Chen et al., 1992; Tuy et al., 1994). However, we can easily see from the figure, this property

does not hold when we add integrality constraints on the variables. This is analogous to the situation

one encounters when comparing linear and integer programming.

While Figure1.1demonstrates the difficulties of applying known algorithmic methods to MIBLPs,

it also offers some insight into potential novel solution methods. It is easy to see, by inspection, that

the setFI is equivalent to the set{(v1, y
∗
1), . . . , (vk, y∗k)}, wherey∗i is the optimal solution to the

MILP

min y

s.t. − 20y ≥ −30− 25vi

2y ≥ −10 + vi (1.11)

y ≥ −15 + 2vi

10y ≥ 15− 2vi

y ∈ Z+

and{v1, v2, . . . , v8} = {1, 2, . . . , 8}. In other words, if we knew the optimal solution of (1.11) for

eachv, we could use this information to generateFI and develop an algorithm to solve (1.10). In

fact, for this simple example, we could simply replace the lower-level optimality conditions with a

constraint of the formy = z(vi), wherez(vi) is a function that returnsy∗i givenvi. In more general

terms,z(vi) returns the optimal value of the lower-level problem for a particular right-hand-side.

This provides further evidence that understanding the dependence of optimal lower-level solutions

on the upper-level decision vector is crucial to designing effective methods for solving MIBLPs,

and motivates our study of the MILP value function.

A bilevel program can be thought of as an optimization problem into which a second parametric

optimization has been embedded. Thus, a natural method for developing algorithms for bilevel

programs is to study the structure of the function that returns the optimal solution value of the
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lower-level problem for a given upper-level solution. Thisis essentially the goal of parametric

programming. Much of the work described in this dissertation has its basis in exploiting the structure

of this so-calledvalue functionof the lower-level problems to develop algorithmic methods. In

Chapter3, we describe the theoretical properties of the MILP value function and demonstrate its

utility in bilevel algorithm design.

1.7 Major Contributions

Over the past several decades, there have been many great accomplishments in the development

of theory and methodology for solving large-scale mixed integer programs. In this dissertation,

our goals are to 1) continue this development and 2) leverageknown results for the development

of analogous techniques for mixed integer bilevel programs. Further, we utilize knowledge gained

from comparing linear and mixed integer linear programs to bridge the gap between continuous and

discrete bilevel programs. The primary contributions of this dissertation are:

• Development of a branch-and-cut framework for pure integerbilevel linear programs.

• Development and distribution of an open source bilevel solver package based on our algo-

rithmic framework which allows for easy incorporation of additional algorithmic components

and problem-specific customization.

• Demonstration of solver customization using specialized methods developed for interdiction

models, a class of models which encompasses the network interdiction problem and is of

particular importance for applications in homeland security.

• Development of a theoretical algorithm for MIBLP based on iterative approximation of the

lower-level value function.

• Provision of two novel heuristic methods for MIBLP that yield good solutions without a large

computational expense.

• Derivation of a novel branch-and-cut algorithm for a class of Steiner Arborescence Problems

with an application in infrastructure protection.

1.8 Outline

The remainder of this dissertation is as follows. In Chapter2, we develop and branch-and-cut frame-

work for pure integer BLPs (IBLPs). In this chapter, we also provide the implementation details of
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our solver, generalizations of known enhancements for MILPalgorithms, and computational results

on a set of randomly-generated IBLPs. Then, in Chapter3, we return to the general formulation

of MIBLP. First, an analysis of the problem complexity is provided. Then, using the mixed-integer

extensions of LP duality theory, we provide several single-level reformulations of MIBLP and an

exact algorithm based on iterative approximations of the lower-level value function derived from

lower-level dual solutions. Due to the inherent difficulty of these problems, finding exact solutions

to large instances is a major challenge. To this end, we provide two novel heuristics, which can be

used to find good solutions quickly, and demonstrate their usefulness with computational results. In

Chapter4, we focus on applications of (MIPINT), beginning with a detailed study of one particular

early warning system (EWS), and an ILP used to optimize its design, and a discussion of the util-

ity of MIPINT in a particular type of sensitivity analysis. In this chapter, we also demonstrate the

foundations of problem-specific customization by way of (MIPINT) and provide several specialized

methods that exploit the problem’s structure. Finally, in Chapter5 we motivate further study by de-

scribing new applications of bilevel programming, provideconclusions, and suggest directions for

further research.
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Chapter 2

Pure Integer Bilevel Linear

Programming

In the previous chapter, we described several applicationsof discrete bilevel programs and illustrated

the computational challenges these problems present. It isclear that developing solution methods

for (MIBLP) that are analogous to those in the MILP literature is an important, yet ambitious, task.

In this chapter, we initially focus on the development of such methods for the pure integer version

of MIBLP, an important special case of the canonical problem. In particular, we develop a branch-

and-cut framework for this problem class that leverages knowledge of the well-known branch and

cut, an algorithm of ILP, employing modifications where necessary to deal with the more general

form of the bilevel programming problem.

The pure integer version of (MIBLP), referred to henceforth as theinteger bilevel linear program

(IBLP), is the problem of determining:

zIBLP = min
(x,y)∈FI

c1x + d1y, (IBLP)

where

FI = {(x, y) | x ∈ (PU ∩ Zn1), y ∈M I(x)},

and

M I(x) = argmin{d2y | y ∈ SL(x) ∩ Zn2},

which results from settingp1 = n1 andn2 in (MIBLP). For the remainder of this chapter, we

assume that all data necessary to define an instance of (IBLP) is integer. That is,A1 ∈ Zm1×n1,

b1 ∈ Zm1 , A2 ∈ Zm2×n1 , G2 ∈ Zm2×n2 , andb2 ∈ Zm2 . Further, we maintain the assumptions

given in Chapter1:
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(A1) ΩI is nonempty and compact;

(A2) for each upper-level solution, the follower’s rational reaction set is nonempty; and

(A3) the linear relaxation of the lower-level problemminy∈S(x) d2y has a finite optimal solution,

for all x ∈ X.

As with many classes of mathematical programs, the most obvious route to achieving global op-

timality is the development of bounding procedures that canbe used to drive a branch-and-bound

algorithm. As discussed in Chapter1, however, the bounding, fathoming, and branching procedures

employed in traditional LP-based branch-and-bound algorithms cannot be applied in a straightfor-

ward way. In Section2.1, we describe how to overcome these challenges to develop a generalized

branch-and-cut algorithm for IBLPs that follows the same basic paradigm used in ILP.

2.1 Polyhedral Approaches to IBLP

As we have seen in Section1.6, developing a branch-and-bound method for solving IBLP is not

as straightforward as mimicking LP-based branch and bound.We cannot get a valid bound simply

by dropping integrality restrictions on the variables. However, we show that the general framework

can still be applied in our setting, once suitable modifications are made to obtain a valid relaxation.

Further, we describe classes of inequalities that can be used in a branch-and-cut framework to sep-

arate problems that are integer feasible but not bilevel feasible. The method by which we arrive at

these inequalities can be considered analogous to those used in ILP, in the sense that they are based

on disjunctions arising from the integrality restrictionson the variables.

2.1.1 Bounding

We have already observed that the BLP

min
(x,y)∈F

c1x + d1y, (2.1)

obtained by removing the integrality restriction on all decision variables, is not a valid relaxation and

does not provide a valid bound on the original problem. This is because removing the integrality

restriction on the lower-level variables may actually cause solutions that were previously bilevel

feasible to become infeasible. Further complicating matters is the fact that verifying the feasibility

of a given solution is itself anNP-hard problem that involves solving the lower-level problem, a

standard ILP.
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Although (2.1) does not provide a valid bound, it is easy to see that that infeasibility of this BLP

also implies infeasibility of the original instance. This result is given in the following proposition.

Proposition 2.1 If F = ∅, thenFI = ∅.

Proof. Suppose, for sake of contradiction, this is not the case. This implies thatF = ∅, but there

exists some(x̂, ŷ) ∈ FI . By definition,(x̂, ŷ) ∈ F I impliesx̂ ∈ (PU∩X) andŷ ∈M I(x̂). Clearly,

x̂ ∈ (PU ∩X) implies x̂ ∈ PU , soPU is not empty. Also,̂y ∈ M I(x̂) implies ŷ ∈ (SL(x̂) ∩ Y ).

This, in turn, implieŝy ∈ SL(x̂) and, therefore,SL(x̂) 6= ∅. SinceSL(x̂) 6= ∅, we must also have

argmin{d2y | y ∈ SL(x̂)} 6= ∅

Combining these impliesF 6= ∅ and we have a contradiction.

Although removing the integrality restrictions on all variables does not result in a valid relaxation,

removing integrality conditions and the requirementy ∈M I(x) doesyield the relaxation

min
(x,y)∈Ω

c1x + d1y, (LR)

similar to one suggested byMoore and Bard(1990). The resulting bound can be used in combi-

nation with a standard variable branching scheme to yield analgorithm that solves (IBLP). Not

surprisingly, however, the bound is too weak to be effectiveon interesting problems.

In order to improve upon the bounds yielded by (LR) and to avoid the potential difficulties associated

with being forced to branch when faced with an infeasible integer solution, we consider here a

branch-and-cut algorithm based on the iterative generation of linear inequalities valid forFI and

augmentation of the linear system describingΩ until an optimal member ofFI is exposed or we

choose to branch. The procedures we suggest are analogous tothose used in the case of ILP but

also address the fact that integer solutions may not be feasible in this setting.

2.1.2 Generating Valid Inequalities

An inequality defined by(π1, π2, π0) is called avalid inequalityfor FI if π1x + π2y ≤ π0 for all

(x, y) ∈ FI . Unlessconv(FI) = Ω, there exist inequalities that are valid forFI , but are violated

by some members ofΩ. Clearly, except in trivial instances, we can expectconv(FI) 6= Ω. In fact,

in contrast to ILP, even complete generationconv(ΩI) is insufficient to solve the problem. This is

illustrated in Figure2.1. In the figure, the shaded region represents convex hull ofFI . The closure

of conv(ΩI) is shown by the dashed line outsideconv(FI). It is clear from the picture that there

exist inequalities valid forF I that are violated by members ofΩI .
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Figure 2.1: Comparing the convex hulls ofΩI andFI .

In order to generate inequalities that separate members ofFI from Ω andΩI , we must use infor-

mation not contained in the linear description ofΩ. For a point(x, y) to be feasible for a (IBLP), it

must satisfy three conditions:

(C1) (x, y) ∈ Ω ,

(C2) (x, y) ∈ (Zn1 × Zn2) , and

(C3) y ∈M I(x).

This is in contrast to standard ILPs, where we have only the first two conditions. However, the

methodology can be seen as equivalent to that used for ILPs. In order to derive inequalities for

ILPs, we utilize the integrality conditions, since the linear description alone is insufficient. Here,

we have an additional feasibility condition, so it is natural to assume that Conditions(C1)and(C2)

alone will not suffice.

Because the first requirement is enforced by requiring membership in Ω, we must derive valid

inequalities from the other two conditions. We start with the following straightforward, but useful

observations.

Observation 2.1 If the inequality(π1, π2, π0) is valid forΩI , it is also valid forFI .

Observation 2.2 Let (x, y) ∈ Ω such thaty 6∈ M I(x). If the inequality(π1, π2, π0) is valid for

ΩI \ {(x, y)}, it is also valid forFI .

Observation2.1 is derived from the relationshipFI ⊆ ΩI and allows us to separate fractional

solutions to the LP resulting from removal of the lower-level optimality and integrality restrictions.

Observation2.2states that we can separate points that are integer but not bilevel feasible. From these

observations, we can derive classes of valid inequalities to be used in a cutting plane procedure.
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To initialize the cutting plane procedure, we must first solve the relaxation

min
(x,y)∈Ω

c1x + d1y. (LR)

If the solution(x̂, ŷ) to (LR) does not satisfy condition(C2)above, we may apply standard branch-

ing techniques used to separate points inΩ \ΩI from ΩI ⊇ FI . In theory, we can also employ any

standard cutting plane techniques used in ILP algorithms (seeCornuéjols(2008) for an overview)

to separate the fractional point. However, the bilevel cut generation method we introduce here relies

heavily on the integrality of the data defining the problem. Thus, we restrict these methods to those

which result in new inequalities with only integer coefficients. Developing methods for employing

the full set of ILP cutting plane methods in congruence with bilevel programming branch and cut is

an area of future research.

If (x̂, ŷ) satisfies condition(C2), then we must check whether it satisfies condition(C3). This is

done by solving the lower-level problem

min
y∈SL(x)∩Y

d2y (2.2)

with the fixed upper-level solution̂x. Let the solution to this ILP bey∗. If d2ŷ = d2y∗, then ŷ

is also optimal for (2.2) and we conclude that(x̂, ŷ) is bilevel feasible. Otherwise, we must again

generate an inequality separating(x̂, ŷ) fromFI . In either case, however,(x̂, y∗) is bilevel feasible

and provides a valid lower bound on the optimal solution value of the original IBLP.

Now supposed2ŷ > d2y∗. In this case,(x̂, ŷ) does not satisfy condition(C3) and is therefore not

bilevel feasible. We may still use(x̂, y∗) to bound the original problem, but we would like to add an

inequality to (LR) that is valid forFI and violated by(x̂, ŷ). We describe one such inequality next.

Based on the above discussion, the following result describes a method for generating valid inequal-

ities for IBLPs.

Proposition 2.2 LetX = Zn1 andY = Zn2 . Let (x̂, ŷ) ∈ ΩI be a basic feasible solution to(LR).

Let I be the set of constraints that are binding at(x̂, ŷ), Then

π1x + π2y ≥ π0 + 1, (2.3)

where(π1, π2) =
∑

i∈I(ai, gi) andπ0 =
∑

i∈I bi, is valid forFI .

Proof. The fact that(x̂, ŷ) is a basic feasible implies that there existn = n1 + n2 linearly inde-

pendent constraints in the description ofΩ that are binding at(x̂, ŷ). Thus, the systema′ix + g′iy =

bi, i ∈ I has a unique solution, namely(x̂, ŷ). This, in turn, implies that(x̂, ŷ) is the unique point
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of intersection between the hyperplane defined by the equation π1x + π2y = π0 and the setΩI . It

follows that the inequalityπ1x + π2y ≥ π0 is valid for ΩI . Because the face ofΩ induced by this

inequality does not contain any other members ofΩI and there does not exist(x, y) ∈ Zn1 × Zn2

such thatπ1x + π2y ∈ (π0 + 1, π0), this implies that the inequalityπ1x + π2y ≥ π0 + 1 is valid for

ΩI \ {(x̂, ŷ)}. Applying Observation2.2yields the result.

Example 3. An example of the cutting plane procedure is illustrated in Figure2.2for the instance

min {−y | y ∈ argmin {y | x− y ≥ −2, 2x + y ≥ 2,−3x + y ≥ −3,−y ≥ −3, x, y ∈ Z+}} .

In the figure, we can see the bilevel feasible regionFI = {(0, 2), (1, 0), (2, 3)}. Also shown in the

1 2 3

2

3

1

x− 2y ≥ −5

x

y

F

x− 2y ≥ −4

Figure 2.2: An example of the bilevel feasibility cut.

figure is the bilevel feasible regionF of the corresponding BLP. In this example, we start with the

integer point(1, 3), an optimal solution to the LP

min {−y | x− y ≥ −2, 2x + y ≥ 2,−3x + y ≥ −3,−y ≥ −3, x, y ∈ R+} .

It is easy to see that this point is not bilevel feasible, because the rational choice for the lower-level

DM would bey = 0, whenx = 1. Thus, we require a cut that separates(1, 3). Combining the

constraints active at(1, 3) yields the half-space{(x, y) ∈ Zn1 × Zn2 | x− 2y ≥ −5} and applying

the procedure described above, we obtain the new inequality

x− 2y ≥ −4,

which is valid forFI , but not satisfied by(1, 3). Note that after adding this cut, the optimal solution
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is obtained in the next iteration. Without the cutting planeprocedure we have just described, we

would be forced to branch after producing this solution in a branch-and-bound framework.

In order to solve problems of interesting size, additional classes of valid inequalities derived from

Condition (C3) are necessary. In the following chapter, we describe one such class for MIBLPs

that utilizes information from the value function of the lower-level MILP. Then, in Chapter4, we

describe two such classes for bilevel problems with binary upper-level variables. Derivation of such

classes is another important area of future research.

2.1.3 Branching

As we have described, an important advantage of our algorithm over its predecessor fromMoore

and Bard(1990), is the fact that, in the case of IBLP, we are not forced to branch after producing an

infeasible integer solution. Therefore, we are free to employ the well-developed branching strate-

gies used in algorithms for traditional ILP, such as strong branching, pseudocost branching, or the

recently introduced reliability branching (Achterberg et al., 2005). Of course, it is also possible to

branch using disjunctions obtained from violations of Condition (C3). Examples of disjunctions on

which we can branch are described in Chapter3, for MIBLPs, and in Chapter4, for interdiction

problems.

2.1.4 Branch and Cut

Putting together the procedures of the preceding three sections, we obtain a branch-and-cut algo-

rithm that consists of solving the linear relaxation (LR), iteratively generating valid inequalities to

improve the bound, and branching when necessary. In addition to the obvious advantage of produc-

ing potentially improved bounds, an advantage of this approach over the one proposed byMoore

and Bard(1990) is that it relies only on the solution of standard ILPs, rather than BLPs. Further,

if we are able to obtain cutting planes to separate integer bilevel infeasible solutions, the algorithm

preserves all the usual rules of fathoming and branching. Ittherefore allows us to immediately lever-

age our knowledge of how to solve standard ILPs. The general framework of such an algorithm is

described next.

Let

min
(x,y)∈FI

t

c1x + d1y. (IBLPt)

be the IBLP defined at nodet of the branch-and-cut tree. To process nodet, we first solve the LP

zt
LP = min

(x,y)∈Ωt

c1x + d1y. (LPt)

32



2.1. POLYHEDRAL APPROACHES TO IBLP

and denote its solution by(xt, yt) (if it exists). If either the LP is infeasible or the optimal value

of (LPt) is greater than the current lower boundL, we can fathom the current node. Otherwise,

we can either generate valid inequalities to separate the current solution fromFI or branch. If

(xt, yt) ∈ ΩI , we check for bilevel feasibility. If the solution is feasible, we can stop. Otherwise,

we can either add cuts, to separate the current solution fromΩI \ {(xt, yt)}, or branch. In the

case of an IBLP, we have the choice of adding cuts of the form (2.3), or branching on the integer

variables as inMoore and Bard(1990). On the other hand, in the mixed integer case, we can use the

disjunctions obtained from the lower-level value functionto define a branching rule (see Chapter3).

If a fractional solution is found, we either add cuts to separate the current solution fromΩt∩(X×Y )

and iterate or else we branch. A general outline of the node processing subroutine is given in

Algorithm 2.1. A description of our implementation of this algorithm is given in Section2.3.

Algorithm 2.1 Node Processing Loop

1: Solve (LPt). If (LPt) has an optimal solution, denote it(xt, yt). Then:

• If (LPt) is infeasible, so is (IBLPt) and the current node can be pruned.

• If zt
LP ≥ L, the current node can be pruned.

• If (xt, yt) ∈ ΩI , go to Step2, else go to Step4.

2: Fix x← xt, and solve
zt

LL = min
y∈SL(xt)∩Y

d2y.

If zt
LL = d2yt setL← c1xt + d1yt and prune the current node; else go to Step3.

3: Either set
Ωt+1 = Ωt ∩ {(x, y) ∈ Rn1 × Rn2 | π1x + π2y ≥ π0},

where(π1, π2, π0) is a valid inequality forFI , sett← t + 1, and go to Step1, or branch using
a valid disjunction.

4: Add cuts valid forΩt ∩ (X × Y ) to separate the current fractional solution. Resolve the new
LP and let(x̂, ŷ) be its optimal solution. If(x̂, ŷ) ∈ ΩI , set(xt, yt)← (x̂, ŷ) and go to Step2;
else branch.

As described above, the combination of a cut generation procedure with the branching and bound-

ing techniques yields a full branch-and-cut algorithm. Alternatively, in the case of IBLP, we can

view our algorithm as a pure cutting plane algorithm, where ablack-box solver provides solutions

(x, y) ∈ ΩI . Since all variables in our formulation are integer, using cutting planes of the form

(2.3), yields a finite algorithm.

Theorem 2.3 Let X = Zn1 andY = Zn2. Suppose the cutting plane algorithm described above

is implemented using only cuts of the form(2.3). Then, the algorithm finds an optimal solution or

shows that(IBLP) is infeasible.
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Proof. For the cutting plane algorithm to be finite, we require two conditions. First, the polyhedral

regionΩ must be bounded. This is taken care of by assumption. Suppose,

{(x, y) ∈ X × Y | A1x ≥ b1, A2x + G2y ≥ b2 ⊆ {(x, y) ∈ X × Y |
∑

j∈N1

xj +
∑

j∈N2

yj ≤ k}

whereN1 = {1, . . . , n1} andN2 = {1, . . . , n2}, for some suitably large integerk. This implies

that the cardinality ofΩI is finite (i.e., the number of feasible points(x, y) ∈ Ω ∩ (Zn1 × Zn2) is

finite) Second, the black-box integer programming solver used to solve the relaxation

min
(x,y)∈ΩI

c1x + d1y (2.4)

must terminate after a finite number of iterations. But, thisalso follows from our assumption of

boundedness and definition ofX andY . Because the number of integer points inΩ is finite, we

can find an optimal solution to, or prove infeasibility for, any ILP subproblem in finite time using

complete enumeration (i.e., pure branch and bound). Further, since, by definition, each application

of the cutting plane procedure either returns a bilevel feasible solution, or cuts off the current point,

it must be called a finite number of times. The result follows.

Note that our algorithm can be also used as pure branch-and-bound, if branching is performed on

integer variables, and will be finite as long asΩ is bounded.

In Section2.3, we describe the implementation of our algorithm, and the resulting solver, MibS, and

provide some computational results. First, however, we introduced some algorithmic enhancements

designed to improve the algorithm’s performance.

2.2 Additional Components

The procedures described in this dissertation provide the foundations for development of a full algo-

rithmic framework. However, it is well-known that the addition of algorithmic enhancements, such

as primal heuristics and preprocessing techniques, can greatly improve the performance of a stan-

dard algorithm for ILPs. A full set of generalized methodologies for IBLPs requires the addition of

heuristic and preprocessing techniques paralleling thosethat have been developed for solving ILPs

over the last two decades. Our preliminary experimentationhas shown that such methodologies

have the potential to provide significant computational improvement. Further, specialized methods

exploiting problem-specific structure can be used to tailoran algorithm and increase its effectiveness

on a particular problem class. In this chapter, we describe some heuristic and preprocessing tech-

niques for the general version of IBLP. In the Chapter4, we demonstrate methods for incorporating
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problem-specific customizations into our solver frameworkfor problems with binary upper-level

variables.

2.2.1 Primal Heuristics

For IBLPs, it is quite straightforward to develop methods for finding feasible solutions. For example,

we can simply find a vector that satisfies the upper-level constraints and solve the resulting lower-

level ILP to get a bilevel feasible solution. In fact, this isexactly how solutions are obtained from

the bilevel feasibility check discussed in this chapter. However, our initial computational experience

suggested that these solutions are not of high quality with respect to the upper-level objective. This

is not surprising, since the lower-level objective is not typically included in the relaxation problems

used in these algorithms. Further, it is unlikely that fixingthe upper-level solution arbitrarily will

improve upon the solutions generated as by-products of the bilevel feasibility check. Thus, we

consider methods for improving upon the solutions obtainedin this manner, as well as external

techniques to generate good feasible solutions throughoutthe course of the algorithm.

Improving Objective Cut. Each time a bilevel feasibility check is performed, a feasible solution

is generated. Formally, one way to determine whether a vector pair (x̂, ŷ) ∈ ΩI (i.e., an integer

solution to (LR)) is bilevel feasible is by solving the lower-level problem

min
y∈SL(x̂)∩Y

d2y. (2.5)

This yields the bilevel feasible solution(x̂, y∗), wherey∗ is optimal for (2.5). Of course, if we

discover thatd2ŷ = d2y∗, thenŷ ∈ argmin{d2y | y ∈ (SL(x̂) ∩ Y )} and we potentially have two

feasible solutions (i.e., if̂y 6= y∗). However, although(x̂, ŷ) is optimal for

min
(x,y)∈ΩI

c1x + d1y, (2.6)

we have no guarantee on the quality of(x̂, y∗) with respect to the upper-level objective. Because,

the lower-level objective does not appear anywhere in (2.6), the solutions will, in general, be far

from bilevel feasible (i.e.,d2ŷ ≫ d2y∗).

In order to improve solutions to the relaxation problem in this sense, we can use local search meth-

ods. Using the information gained from the bilevel feasibility check, we add the cut

d2y ≤ d2y∗
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to the current relaxation and reoptimize over

ΩI ∩ {(x, y) ∈ (X × Y ) | d2y ≤ d2y∗}.

This method attempts to drive the solution towards bilevel feasibility, while maintaining its quality

with respect to the upper-level objective. It is important to note solutions to this new problem are

not guaranteed to be bilevel feasible, and a second bilevel feasibility check is necessary. Due to the

nature of the bilevel feasibility check, we are always guaranteed to generate a feasible solution using

this method. In practice, computational experimentation should be performed to ensure that the

increase in time necessary to solve the additional ILPs warrants the use of this heuristic. However,

if the lower-level problems are relatively small, the additional time should be minimal.

Lower-level Priority. Another method for driving solutions towards feasibility is to give tempo-

rary priority to the lower-level DM. In other words, we can attempt to find solutions(x, y) ∈ ΩI

such thaty ∈ M I(x) by replacing the upper-level objective with that of the lower-level DM and

optimizing overΩI . Formally, this method is based on solving problems of the form:

min
(x,y)∈ΩI

d2y. (2.7)

Here, we are essentially allowing the lower-level DM to choose the upper-level decisionx that

is best with respect to the lower-level objective. Solutions to (2.7) are guaranteed to be feasible.

However, it is unlikely that these solutions will be good with respect to the upper-level objective.

Thus, we must again consider methods for balancing feasibility and upper-level optimality. In order

to improve these solutions, we can add cuts of the form

c1x + d1y ≤ L

to (2.7), whereL is the value of the best known feasible solution. Note that once cuts are added

to the original set of linear constraints, we are not guaranteed feasibility because we have added

an unnatural restriction to the lower-level problem. Thus,we must test for bilevel feasibility after

resolving. Again, performing this check guarantees that wewill eventually generate a feasible

solution using this heuristic.

2.2.2 Preprocessing Techniques

Preprocessing methods have proved quite useful for decreasing the computational effort required

for solving difficult ILPs (see, e.g.,Savelsbergh(1994)). The methods employed in the ILP litera-

ture can be directly applied to the relaxationmax(x,y)∈ΩI c1x + d1y to speed up the generation of
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integer solutions. However, in order to be truly effective,preprocessing techniques should be tai-

lored to account for the special structure of IBLP. The generalization of known MILP preprocessing

techniques, as well as the creation of novel techniques developed specifically for IBLP is an impor-

tant area of future research. We describe one method that allows us to fix variables before entering

the branch-and-bound phase of our algorithm here. This technique utilizes information from the

optimal basis of the LP relaxation

min
(x,y)∈Ω

c1x + d1y, (LR)

In a manner similar to that used for MILPs, we fix variables based on this basis information and a

known bound for IBLP.

Reduced cost fixing is a well-known method used in LP-based branch and bound for MILPs. Let

zLP be the current value of the LP relaxation (i.e., the optimal value of (LR) at the current tree

node),L the best known solution, and̄cj the reduced cost of some nonbasic variablej. Then, if

| c̄j |≥ L− zLP ,

variablej can be fixed to its current value. The same method can be applied for IBLP branch and

bound, since we use an LP relaxation method. However, as noted in Atamturk et al.(1995), this

method is very dependent on the quality of the relaxation andincumbent solution. As we have

discussed, the bound obtained by (LR) is fairly weak. The addition of cutting planes will improve

the quality of this bound, but we still do not expect reduced cost fixing to yield results as powerful

for IBLPs as those seen in MILP solvers.

2.3 Solver Implementation

A primary goal of this dissertation research was the development of an open source package called

the Mixed Integer Bilevel Solver (MibS) to be distributed through the Computational Infrastructure

for Operations Research (COIN-OR) repository (Lougee-Heimer, 2003). The branch-and-cut algo-

rithm described in Section2.1.4was implemented in C++, utilizing standard software components

available from COIN-OR. In particular, the implementationuses the COIN-OR High Performance

Parallel Search (CHiPPS) described inXu et al.(2009) to perform the branch and bound, the MILP

solver framework BLIS (part of CHiPPS), the COIN-OR LP Solver (CLP) for solving the LPs that

arise in branch and cut, the COIN-OR Branch and Cut for solving the lower-level ILPs, the Cut

Generation Library (CGL) for generating cutting planes, and the Open Solver Interface (OSI) for

interfacing with CHiPPS and CBC.
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2.3.1 Class Description

The primary classes the comprise MibS are as follows:

• MibSModel : The model class is derived from the virtual BLIS classBlisModel and stores

information about the original problem.

• MibSCutGenerator : The cut generation class is derived from the virtual BLIS class

BlisConGenerator , and is used to generate cuts of the form described in Section2.1.2,

when CHiPPS finds integer, bilevel infeasible solutions.

• MibSSolution : The solution class is derived from the virtual BLIS classBlisSolution

and is used to store and print integer bilevel feasible solutions.

• MibSBilevel : The bilevel class is specific to MibS and is used to transformsolutions re-

turned by CHiPPS into a format convenient for our setting. The main function of

MibSBilevel is to test bilevel feasibility of given solution, by solvingthe lower-level prob-

lem at a fixed upper-level solution.

• MibSHeuristic : This class is also specific to MibS and is generate heuristicsolutions to

improve the lower bound and increase the algorithm’s speed.

An effort has been made to keep this framework as general as possible, allowing for easy intro-

duction of enhancements generated from future research. Inparticular, it is quite easy for users

to add their own heuristics, preprocessing methods, and cutting planes. In addition, the manner

through which one defines solver parameters is intuitive anddesigned to make problem-specific

tuning straightforward. As stated above, MibS will be made available to the community via the

COIN-OR repository. The first release of MibS includes the branch-and-cut algorithm of Sec-

tion 2.1.4, as well as the algorithmic enhancements described thereafter. The specialized methods

provided in Chapter4 are also part of MibS, and demonstrate how one might customize the solver

a particular problem structure. We also intend to include the test sets described below, in order to

make replication of our results and comparison with future solvers relatively easy.

2.3.2 Practical Assumptions

In Chapter1, we made two basic assumptions to guarantee the problem was well posed and has a

solution. These assumptions were made to ease the exposition, but may be prohibitive in practice.

We discuss methods for relaxing them here.

The first of these assumptions is that the feasible regionFI is nonempty and compact. This guar-

antees that a solution to (IBLP) exists. However, checking such the checking the validity of this
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assumption is not straightforward. In particular, no methods for determining ifFI is closed are

readily available. Thus, we must consider the possibility that a problem fails to satisfy this assump-

tion and escapes detection. A common method for overcoming this type difficulty is to replaceFI

with its closure. This is the method we employ in our implementation. That is, we effectively,

restate (IBLP) as:

min
(x,y)∈cl(FI)

c1x + d1y.

The second assumption made ensures that the lower-level DM will have some room to react for

eachx ∈ X. However, as discussed in Chapter1, this may be restrictive in certain applications. In

fact, for applications in which the DMs are in direct opposition, creating an infeasible lower-level

problem may be the primary goal of the upper-level DM. One wayto relax this is to use the standard

convention

min{d2y | y ∈ SL(x) ∩ Y } =∞ if S(x) ∩ Y = ∅.

This, in turn, results inzIBLP = −∞ (if d1 = −d2), as desired. We can to implement this conven-

tion in practice is by introducing an artificial variable to capture the infeasibility of the lower-level

problem. By assigning this variable a sufficiently large (small) objective function value, we can

entice the upper-level to choosex such that the resulting lower-level problem is feasible (infeasi-

ble). This is similar to the “big-M” method used in finding initial bases for LPs (Bertsimas and

Tsitsiklis, 1997). This is not currently a built-in feature of MibS, since it may not be suitable for all

applications. However, it is quite easy to modify a bilevel model to include this artificial variable

before reading it into the solver. If this is done, MibS will yield the appropriate solution. In the

current version, the solver implicitly assumes this assumption is satisfied since candidate solutions

are obtained from the LP relaxation.

2.4 Computational Results

2.4.1 Illustrative Instances

To our knowledge, the only other general IBLP algorithm proposed in the literature has been that of

Moore and Bard(1990) 1. We do not have the test set ofMoore and Bard(1990) or an implementa-

tion of their algorithm available, so a comprehensive comparison to their algorithm is not feasible.

In order to providesomebasis for comparison, we did examine the branch-and-cut tree constructed

by our algorithm on the examples given in their original paper. The results below reflect thevanilla

version of MibS, absent of the algorithmic enhancements described above.

1The algorithm ofMoore and Bard(1990) is capable of solving mixed integer problems, as well, but provides a nice
comparison nonetheless.
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(b) The resulting branch-and-cut tree.

Figure 2.3: Illustrating the implementation on Example4

Example 4.

min
x∈Z+

x + 2y

subject to y ∈ argmin {y :−x + 2.5y ≤ 3.75

x + 2.5y ≥ 3.75 (2.8)

2.5x + y ≤ 8.75

y ∈ Z+ }

The feasible region of the IBLP (2.8) and our branch-and-cut tree are shown in Figure2.3. In this

simple case, our algorithm generated a total of seven nodes,and processed five, while the same

example in the paper ofMoore and Bard(1990) required twelve nodes. Of course, this comparison

is only a single instance, but examination of the two search trees does provide some evidence for

our intuition that certain aspects of Moore and Bard’s algorithm, such as the requirement to branch

on integer variables, result in a less efficient search.
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Example 5. We also tested our algorithm on the the IBLP examined in Chapter 1 from

Moore and Bard(1990):

min
x∈Z+

− x− 10y

subject to y ∈ argmin {y : 25x− 20y ≥ −30

−x− 2y ≥ −10

−2x + y ≥ −15

2x + 10y ≥ 15

y ∈ Z+ } .

The branch-and-cut tree resulting from their algorithm wasnot provided, so we are unable to per-

form a comparison as above. However, for illustration purposes, the feasible region and the resulting

branch-and-cut tree is shown in Figure2.4.
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(a) The feasible region of Example5.
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(b) The resulting branch-and-cut tree.

Figure 2.4: Illustrating the implementation on Example5

2.4.2 Problem Generation and Results

In this section, we describe the computational experimentsperformed and the results obtained using

our solver implementation. These results demonstrate boththe difficulty of the problems discussed

in this dissertation, as well as the benefits of our algorithmic framework. To our knowledge, a stan-

dard test bed for IBLPs does not exist. Thus, in order to test our algorithm it was necessary to derive

such a test bed. As previously mentioned, all instances usedfor our tests will be included as part of

the first MibS release through COIN-OR. Below, we present theresults of our algorithm on a set of

randomly-generated IBLP problem instances. Then, in Chapter 4, we examine the computational

benefit of applying the specialized interdiction methods via three variants of (MIPINT).
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To create the IBLP instances, we first created ILP instances with two objectives and then randomly

chose a set of lower-level columns. All coefficients were chosen in the range[−50, 50], and it was

assumed that all ILP rows were controlled by the lower-levelDM (as in the examples fromMoore

and Bard(1990)). Five tests sets were created, categorized by the number of total columns, total

rows, andlower-level columns. The test sets are summarized in Table2.1.

Problem Class Num Rows Num Cols Num Lower
1 20 20 5
2 20 20 10
3 20 20 15
4 30 20 10
5 40 20 10

Table 2.1: IBLP Instance Class Description.

The results obtained using thevanilla version of MibS (i.e., without any algorithmic enhancements),

as well as those obtained after employing the primal heuristics of Section2.2.1, are summarized in

Table2.2. In the table, we denote the number of instances solved within our limit of 30000 CPU

seconds and the average optimality gap of those instances for which optimality was not proven by

No. OptimalandAvg. Gap (%), respectively. Also shown are the average number of nodes inour

search tree and the number of bilevel feasibility cuts of theform (2.3) generated during the search,

denotedAvg. No. NodesandNo. Cuts, respectively. Note that only cuts of the form (2.3) were

used in these experiments—no generic MILP cuts were used. Finally, in the column titledAvg.

CPU (s), we provide the average CPU time required for those instances solved to optimality. All

computational tests were performed on an AMD Opteron Processor 6128 with 32GB of memory.

No. Optimal Avg. Gap (%) Avg. No. Nodes Avg. No. Cuts Avg. CPU (s)
Class Vanilla Full Vanilla Full Vanilla Full Vanilla Full Vanilla Full

1 9 9 25.10 25.04 116755.40 104156.40 50168.20 43879.70 128.31 198.23
2 5 5 31.88 34.49 462590.60 294798.30 229046.50 135170.30 1596.71 3787.24
3 2 2 46.61 49.45 479245.90 231665.80 285278.40 132728.10 166.73 600.82
4 5 5 61.32 61.55 439927.80 286957.90 235215.60 153211.00 771.89 3101.58
5 6 6 24.34 25.28 347703.70 190189.10 139005.20 79750.50 108.47 414.09

Table 2.2: Comparison of results with and without heuristicmethods.

From this table, we observe that the ability of our solver to find an optimal solution appears to be

dependent on the percentage of lower-level columns in an instance. In each of the tables, we can

see that the solver was able to prove optimality within the time limit for only 2 out of 10 instances

in Test Set 3, the test set for which this percentage is highest. On the other hand, in Test Set 1,

the percentage of lower-level columns is lowest, and both versions of the solver were able to prove

optimality 9 out of 10 times. When one compares the results ofTest Sets 1, 2, and 3, this relationship

becomes even more evident. Each of these sets has 20 total rows and columns, but the number of
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2.4. COMPUTATIONAL RESULTS

lower-level columns increases by five from Test Set 1 to Test Set 2, and again from Test Set 2 to

Test Set 3. From the results, we can see that the number of problems solved to optimality decreases

as this number increases. Further evidence of this relationship is found in the results of Test Sets 2,

4, and 5, each of which has 10 out of 20 lower-level columns. One might expect to see the problem

difficulty increase with the number of total rows, but these results appear to indicate otherwise, since

roughly the same number of problems were solved in each of these sets.

In addition, we observe that the addition of our heuristic methods significantly reduces the average

number of tree nodes and cuts required to solve the IBLPs. On the other hand, the full version of

MibS is not able to solve any more instances to optimality than the vanilla version and, on average,

requires more computing time. The additional computing time is likely a direct result of the time

required to find the heuristic solutions. Assuming this is the case, one might question whether the

reduction in nodes and cuts required results simply becausethe additional time required for the

heuristics prevents the solver from proceeding as quickly and, thus, generating as many tree nodes

and feasibility cuts within the time allotted. However, in Table2.3, we provide the relevant results

for those instances for which optimality was proven, and we can see the observation still holds.

The fact that the full version of MibS is not able to provide more optimal solutions or a significant

change in optimality gap is evidence that improved cutting plane methods are required for solving

larger instances. In Chapter4 we derive specialized methods for interdiction problems, but the

development of methods for general IBLPs and MIBLPs is an essential area of future work.

No. Optimal Avg. No. Nodes Avg. No. Cuts
Class Vanilla Full Vanilla Full Vanilla Full

1 9 9 143309.25 127569.25 3877.22 3909.33
2 5 5 484782.60 3200059.40 62199.00 62093.40
3 2 2 422551.00 311383.00 9290.50 9299.00
4 5 5 515762.60 336843.20 21359.00 21317.00
5 6 6 281901.17 132110.50 3543.67 3527.83

Table 2.3: Comparison on instances solved to optimality.

The complete set of results for the vanilla and full versionsof MibS are provided in Tables2.4and

2.5, respectively. From these tables, we can see that the time required to solve the instances in our

test set is quite volatile. Many of the instances failed to reach optimality within the allotted time,

while others were solved in less than a minute. It is likely that this wide range is a result of the way

in which we generated our instances—because the coefficients of the upper and lower objective

functions were chosen randomly, no control was exerted overthe degree to which they coincided.

This choice was deliberate, since we sought to test the performance of our solver on a generic IBLP.

However, determining how the relationship between the two objective functions affects the difficulty

of an MIBLP is an interesting area of future work. We considerthis issue for certain special classes

in the following chapter, but do not address the general case.
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Instance Obj. Value No. Nodes Depth Gap (%) No. Cuts CPU (s)
miblp-20-20-50-0110-5-1 -548 20621 30 — 3846 60.62
miblp-20-20-50-0110-5-2 -558 913215 45 25.10 466498 LIM
miblp-20-20-50-0110-5-3 -477 101 10 — 3 0.14
miblp-20-20-50-0110-5-4 -753 187 14 — 3 0.22
miblp-20-20-50-0110-5-5 -392 97 17 — 3 0.11
miblp-20-20-50-0110-5-6 -1061 232185 38 — 31235 1091.91
miblp-20-20-50-0110-5-7 -547 213 17 — 35 0.35
miblp-20-20-50-0110-5-8 -936 271 18 — 6 0.32
miblp-20-20-50-0110-5-9 -877 205 16 — 5 0.24
miblp-20-20-50-0110-5-10 -340 459 24 — 48 0.85
miblp-20-20-50-0110-10-1 -353 741172 46 47.01 475682 LIM
miblp-20-20-50-0110-10-2 -659 5019 32 — 937 15.82
miblp-20-20-50-0110-10-3 -618 45449 39 — 6156 120.31
miblp-20-20-50-0110-10-4 -597 775159 44 25.66 291809 LIM
miblp-20-20-50-0110-10-5 -1003 31 8 — 4 0.06
miblp-20-20-50-0110-10-6 -672 586626 48 26.22 407028 LIM
miblp-20-20-50-0110-10-7 -618 827234 50 36.85 457158 LIM
miblp-20-20-50-0110-10-8 -667 75329 38 — 17236 997.46
miblp-20-20-50-0110-10-9 -256 703953 39 — 286662 6849.91
miblp-20-20-50-0110-10-10 -429 865934 46 23.64 347793 LIM
miblp-20-20-50-0110-15-1 -289 631835 45 60.64 422190 LIM
miblp-20-20-50-0110-15-2 -645 686790 59 23.22 421883 LIM
miblp-20-20-50-0110-15-3 -593 482219 44 20.21 159567 LIM
miblp-20-20-50-0110-15-4 -396 378201 49 36.42 287079 LIM
miblp-20-20-50-0110-15-5 -75 233108 54 90.11 167495 LIM
miblp-20-20-50-0110-15-6 -596 677582 54 40.38 468935 LIM
miblp-20-20-50-0110-15-7 -471 855197 41 27.99 360242 LIM
miblp-20-20-50-0110-15-8 -242 798795 62 73.87 546812 LIM
miblp-20-20-50-0110-15-9 -584 46307 33 — 18137 324.33
miblp-20-20-50-0110-15-10 -251 2425 26 — 444 9.12
miblp-30-20-50-0110-10-1 -471 9533 30 — 984 22.05
miblp-30-20-50-0110-10-2 -478 84885 36 — 19902 770.26
miblp-30-20-50-0110-10-3 -678 801376 48 23.28 485021 LIM
miblp-30-20-50-0110-10-4 207 792137 44 178.03 460991 LIM
miblp-30-20-50-0110-10-5 -135 3 1 — 0 0.01
miblp-30-20-50-0110-10-6 -171 973272 42 60.41 695335 LIM
miblp-30-20-50-0110-10-7 -375 355485 38 — 85303 3055.75
miblp-30-20-50-0110-10-8 -461 578398 43 16.33 189672 LIM
miblp-30-20-50-0110-10-9 -672 801446 48 28.56 414342 LIM
miblp-30-20-50-0110-10-10 -168 2743 27 — 606 11.38
miblp-40-20-50-0110-10-1 -198 265 19 — 47 0.73
miblp-40-20-50-0110-10-2 -120 738229 49 75.44 436226 LIM
miblp-40-20-50-0110-10-3 -675 56779 37 — 10051 409.27
miblp-40-20-50-0110-10-4 -270 13153 29 — 2952 52.75
miblp-40-20-50-0110-10-5 -537 697 19 — 29 1.52
miblp-40-20-50-0110-10-6 -425 4997 29 — 1207 25.00
miblp-40-20-50-0110-10-7 -975 811699 47 14.55 394306 LIM
miblp-40-20-50-0110-10-8 -849 945827 42 4.15 339321 LIM
miblp-40-20-50-0110-10-9 -800 879806 40 3.22 198937 LIM
miblp-40-20-50-0110-10-10 -398 25585 29 — 6976 161.56

Table 2.4: Results from IBLPs without heuristic methods.
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Instance Obj. Value No. Nodes Depth Gap (%) No. Cuts CPU (s)
miblp-20-20-50-0110-5-1 -548 20573 31 — 3845 142.24
miblp-20-20-50-0110-5-2 -561 788371 45 25.04 403902 LIM
miblp-20-20-50-0110-5-3 -477 101 10 — 3 0.19
miblp-20-20-50-0110-5-4 -753 187 14 — 3 0.27
miblp-20-20-50-0110-5-5 -392 97 17 — 3 0.18
miblp-20-20-50-0110-5-6 -1061 231109 38 — 30949 1636.73
miblp-20-20-50-0110-5-7 -547 213 17 — 35 1.35
miblp-20-20-50-0110-5-8 -936 271 18 — 6 0.37
miblp-20-20-50-0110-5-9 -877 205 16 — 5 0.32
miblp-20-20-50-0110-5-10 -340 437 24 — 46 2.42
miblp-20-20-50-0110-10-1 -321 330155 46 53.16 208459 LIM
miblp-20-20-50-0110-10-2 -659 5001 32 — 937 44.87
miblp-20-20-50-0110-10-3 -618 45445 39 — 6157 309.46
miblp-20-20-50-0110-10-4 -597 506129 44 26.45 188933 LIM
miblp-20-20-50-0110-10-5 -1003 35 10 — 6 0.85
miblp-20-20-50-0110-10-6 -657 151122 45 28.97 103710 LIM
miblp-20-20-50-0110-10-7 -657 692239 48 33.16 353899 LIM
miblp-20-20-50-0110-10-8 -667 66773 38 — 15872 3637.47
miblp-20-20-50-0110-10-9 -256 710493 39 — 287495 14943.56
miblp-20-20-50-0110-10-10 -405 440591 45 30.72 186235 LIM
miblp-20-20-50-0110-15-1 -234 201617 43 69.21 123930 LIM
miblp-20-20-50-0110-15-2 -645 423894 57 23.63 256045 LIM
miblp-20-20-50-0110-15-3 -593 99818 43 23.71 39409 LIM
miblp-20-20-50-0110-15-4 -323 85857 47 49.83 57090 LIM
miblp-20-20-50-0110-15-5 -75 32545 46 90.46 23278 LIM
miblp-20-20-50-0110-15-6 -596 287340 50 41.73 197862 LIM
miblp-20-20-50-0110-15-7 -471 560396 40 29.34 232520 LIM
miblp-20-20-50-0110-15-8 -301 576523 61 67.69 378549 LIM
miblp-20-20-50-0110-15-9 -584 46243 33 — 18154 1164.63
miblp-20-20-50-0110-15-10 -251 2425 26 — 444 37.01
miblp-30-20-50-0110-10-1 -471 8283 31 — 776 38. 68
miblp-30-20-50-0110-10-2 -478 85005 36 — 19902 2950.18
miblp-30-20-50-0110-10-3 -678 609115 46 23.59 331295 LIM
miblp-30-20-50-0110-10-4 207 365112 43 173.61 213973 LIM
miblp-30-20-50-0110-10-5 -135 3 1 — 0 0.00
miblp-30-20-50-0110-10-6 -171 766072 42 61.24 554528 LIM
miblp-30-20-50-0110-10-7 -375 349685 38 — 85301 9422.16
miblp-30-20-50-0110-10-8 -461 141237 42 20.21 48691 LIM
miblp-30-20-50-0110-10-9 -672 542324 47 29.10 277038 LIM
miblp-30-20-50-0110-10-10 -168 2743 27 — 606 33.96
miblp-40-20-50-0110-10-1 -198 265 19 — 47 2.45
miblp-40-20-50-0110-10-2 -117 408981 47 76.52 241787 LIM
miblp-40-20-50-0110-10-3 -675 56311 37 — 9956 1649.93
miblp-40-20-50-0110-10-4 -270 12883 29 — 2952 132.49
miblp-40-20-50-0110-10-5 -537 695 19 — 29 3.96
miblp-40-20-50-0110-10-6 -425 4997 29 — 1207 104.67
miblp-40-20-50-0110-10-7 -1028 508318 45 10.81 223631 LIM
miblp-40-20-50-0110-10-8 -830 572806 42 7.44 229471 LIM
miblp-40-20-50-0110-10-9 -797 311050 41 6.33 81449 LIM
miblp-40-20-50-0110-10-10 -398 25585 29 — 6976 591.02

Table 2.5: Results from IBLPs with heuristic methods.
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Chapter 3

Mixed Integer Bilevel Linear

Programming

In the previous chapter, we described an algorithmic framework for IBLP. In theory, a branch-and-

cut framework could be used to solve the more general problemof MIBLP, if one were able to

derive suitable cutting plane methods. However, the results given in Chapter2 rely heavily on the

assumption that all decision variables are integral and, thus, are not applicable to MIBLP. Deriving

cutting plane methods for the general case appears to be a much less straightforward endeavour. It

is clear, however, that the general form allows us to capturea much wider range of applications and,

thus, understanding this problem is an area of important research. Towards this end, we consider

the general MIBLP problem in this chapter. We first review known results on complexity, provide

some new results on the general problem and interesting special cases, and place MIBLP in the

overall complexity landscape. Then, we utilize duality theory and value function methods to derive

several single-level reformulations that can be solved viadirect methods or provide insight into

the problem structure. Using this insight, we derive an algorithm for the general MIBLP based

on iterative approximations of the lower-level value function. Finally, we suggest some heuristic

methods that are useful in finding reasonably good solutionsto MIBLP with little computational

effort.

Recall, from Chapter1, the canonical instance:

zMIBLP = min
(x,y)∈FI

c1x + d1y, (MIBLP)

where the feasible regionFI is contained inX×Y , for X = Zp1×Rn1−p1 andY = Zp2×Rn2−p2.

In what follows, we often further define our problem by specifying p1 andp2 (i.e., settingp1 = n1

andp2 = n2 yields a BLP) and introducing additional variable bounds (i.e., when combined with
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integrality constraints, upper bounds of one yield binary restrictions). Rather than providing a

complete taxonomy of all cases, however, we choose to note particular special cases that have

convenient properties for reformulation or algorithm design. The reader is referred to the work of

Vicente et al.(1996), Dempe(2001), andH. Gümüş and Floudas(2005) for a comparison among

the subclasses defined by different forms forX andY .

3.1 Problem Complexity

As noted in Chapter1, we gain insight into the complexity of MIBLP by consideringits well-

known special cases. For example, removing integrality restrictions on the variables (i.e., setting

X = Rn1 andY = Rn2) yields a BLP, a knownNP−hard problem. Similarly, removing the lower-

level variables (i.e., settingn2 = 0) yields an MILP, another knownNP−hard problem. Thus,

its clear that MIBLP is alsoNP−hard. However, the computational issues discussed in Chapter 1

taken together with the challenges found in algorithm design suggest that MIBLP is characterized

by complexity challenges not shared by its well-known special cases. For this reason, we explore

the complexity of the general problem in some depth here, butalso focus considerable attention on

those lesser-known special cases that have computationally attractive properties. Before beginning

this discussion, however, we define the decision problems ofseveral relevant problems and provide

some basic results on BLP. For the remainder of this discussion, we assume all data necessary to

specify instances of our problems is rational. This impliesthat we can, in theory, scale all data

appropriately and form equivalent problems using only integer data, simplifying the exposition.

The decision versions of several problems relevant to our discussion are defined below. We adopt

the notationΠ1 ∝ Π2, from Garey and Johnson(1979), to denote that there exists a polynomial

transformation fromΠ1 to Π2. Additionally, we letYΠ denote the set of instances for which the

answer to the decision problemΠ is yes.

BILEVEL LINEAR PROGRAMMING (DBLP)

INSTANCE: Rational vectorsc1 ∈ Qn1, d1, d2 ∈ Qn2 , b1 ∈ Qm1 , b2 ∈ Qm2 , rational matrices

A1 ∈ Qm1×n1 , A2 ∈ Qm2×n1, G2 ∈ Qm2×n2 , and integerL ∈ Z.

QUESTION: Do there exist vectorsx ∈ R
n1

+ andy ∈ R
n2

+ such thatA1x ≥ b1, y ∈ argmin{d2y |
G2y ≥ b2 −A2x, y ∈ R

n2

+ }, andc1x + d1y ≤ L?

MIXED INTEGER BILEVEL LINEAR PROGRAMMING (DMIBLP)

INSTANCE: Rational vectorsc1 ∈ Qn1, d1, d2 ∈ Qn2 , b1 ∈ Qm1 , b2 ∈ Qm2 , rational matrices

A1 ∈ Qm1×n1 , A2 ∈ Qm2×n1, G2 ∈ Qm2×n2 , and integerL ∈ Z.
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QUESTION: Do there exist vectorsx ∈ Z
p1

+ ×R
n1−p1

+ andy ∈ (Zp2

+ ×R
n2−p2

+ ) such thatA1x ≥ b1,

y ∈ argmin
{

d2y | G2y ≥ b2 −A2x, y ∈ (Zp2

+ × R
n2−p2

+ )
}

, andc1x + d1y ≤ L?

MIXED INTEGER LINEAR PROGRAMMING (DMILP)

INSTANCE: Rational vectorsc ∈ Qn, b ∈ Qm, rational matrixA ∈ Qm×n, and integerB ∈ Z.

QUESTION: Does there exist a vectorz ∈ (Zp
+ × R

n−p
+ ) such thatAz ≥ b andcz ≤ B?

MIXED INTEGER INTERDICTION (DMIPINT)

INSTANCE: Rational vectorsd ∈ Qn, u ∈ Qn, b1 ∈ Qm1 , b2 ∈ Qm2 , rational matricesA1 ∈
Qm1×n, G2 ∈ Qm2×n, and integerL ∈ Z.

QUESTION: Do there exist vectorsx ∈ Bn and y ∈ (Zp
+ × R

n−p
+ ) such thatA1x ≤ b1 and

y ∈ argmin
{

dy | G2y ≥ b2,−y ≥ −U(e− x), y ∈ (Zp
+ ×R

n−p
+ )

}

, anddy ≥ L?

BINARY KNAPSACK PROBLEM (DKNAP)

INSTANCE: A finite set of itemsJ and, for each item, a size defined by the vectorr ∈ Z
|J |
+ and a

value defined byv ∈ Z
|J |
+ , and positive integersR ∈ Z andB ∈ Z.

QUESTION: Does there exist a subset ofJ ′ ⊆ J such that
∑

j∈J ′ rj ≤ R and
∑

j∈J ′ vj ≥ B?

A crucial element of our analysis is the fact that LPs can be solved in polynomial time via the

ellipsoid method. This is formalized in the following result.

Theorem 3.1 (Khachian (1979)) (LP) with all integer data can be solved in polynomial time using

the ellipsoid method.

The following are well-known properties of BLP. However, for completeness, we restate them here.

Theorem 3.2 (Jeroslow(1985)) BLP is in the complexity classNP−hard.

Theorem 3.3 DBLP is in the complexity classNP.

Proof. To show DBLP∈ NP, we must show that it can be solved by a nondeterministic polynomial-

time algorithm. Letx ∈ R
n1

+ andy ∈ R
n1

+ be given. Then, given an instance of DBLP, we can use

the following algorithm to check bilevel feasibility. We first check the requirementsc1x′+d1y′ ≤ L

andA1x′ ≥ b1, which can be done in polynomial time. Assuming these are satisfied, we solve the

lower-level problem (in polynomial-time via ellipsoid algorithm) with x = x′ to yield lower-level

solutiony∗. If d2y′ = d2y∗, thenI ∈ YDBLP .
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Using the result above, and those given inAudet et al.(1997), allows us to establish the following

result.

Theorem 3.4 The decision version of BLP is in the complexity classNP-complete.

This result follows from the fact that DBLP is in the classNP, by Theorem3.3, and the reformu-

lation from mixed integer binary programming (MIB) given inAudet et al.(1997), which yields

a polynomial reduction from the decision version of MIB to DBLP by replacing the optimization

problems with their decision counterpart.

It is also well-known, and clear from our discussion above, that MIBLP isNP−hard, but we again

include a separate proof for completeness.

Theorem 3.5 MIBLP is in the complexity classNP-hard.

Proof. Clearly, if we can show that DMIBLP isNP-hard, we will also have shown MIBLP is

NP-hard. In order to show DMIBLP isNP-hard, we show that there exists a polynomial reduction

from the decision version of MILP (DMILP), a knownNP-complete problem, to DMIBLP. Thus,

we must show that there exists a functionf , computable in polynomial time, that maps an instance

of DMILP to DMIBLP and such that an instanceI ∈ YDMILP if and only if f(I) ∈ YDMIBLP .

We can definef as follows. Suppose an instance of DMILP is defined byc ∈ Qn, A ∈ Qm×n

and b ∈ Qm and integerB. Then, we can define an instance of DMIBLP by settingL = B,

A1 = A, b1 = b, c1 = c, and all remaining problem parameter matrices and vectors to zero.

This yields an instance of DMIBLP withn1 = n andn2 = 0 and a vacuous lower-level problem.

Clearly, this transformation can be completed in polynomial time. Thus, it remains to show that

there exists a vectorz ∈ (Zp × Rn−p) such thatAz ≤ b andcz ≤ B if and only if there exist

vectorsx ∈ (Zp1

+ × R
n1−p1

+ ) andy ∈ (Zp2

+ × R
n2−p2

+ ) such thatc1x + d1y ≤ L. Suppose that

ẑ ∈ (Zp
+ × R

n−p
+ ) is a vector such thatAẑ ≥ b andcẑ ≤ B. Then, settingx = ẑ andy = 0

yieldsA1x = Aẑ ≥ b = b1. Since the lower-level problem optimality condition is trivially satisfied

for all (x, y), the vector(ẑ, 0) is feasible for DMIBLP andc1x + d1y = cx = cẑ ≤ B = L.

Conversely, suppose(x̂, ŷ) is a solution to DMIBLP. This impliesAx̂ = A1x̂ ≥ b1 = b and

cx̂ = c1x̂ + d1ŷ ≤ L = B. Thus, DMILP∝ DMIBLP.

So far, we have established that both BLP and MIBLP areNP−hard. This is neither surprising,

nor terribly elucidating. The following result provides more insight into the difference between the

continuous and mixed integer problems.

Theorem 3.6 UnlessP = NP, the decision version of MIBLP (DMIBLP) is not in the complexity

classNP.
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Proof. SupposeP 6= NP and, by way of contradiction, that DMIBLP is inNP. This implies

that there exists a nondeterministic polynomial time algorithm that solves DMIBLP. This, in turn,

implies that there exists a polynomial time algorithm to test the condition

y ∈ argmin
{

d2y | G2y ≥ b2 −A2x, y ∈ (Zp2

+ × R
n2−p2

+ )
}

, (3.1)

for fixedx ∈ (Zp1

+ ×R
n2−p2

+ ). LetOPT (x) denote the optimal lower-level objective value when the

upper-level decision isx (i.e.,OPT (x) = d2y for y satisfying condition (3.1)). Then, this condition

can be stated as the following decision problem, which we denote FEASCHECK:

Does there exist a vectory ∈ (Zp2

+ × R
n2−p2

+ ) such thatG2y ≥ b2 −A2x andd2y ≤ OPT (x)?

We proceed by demonstrating a polynomial reduction from FEASCHECK to the following, known

NP−complete decision problem, which is the complement of DMILP:

Does there exist a vectorz ∈ (Zp2

+ × R
n2−p2

+ ) such thatGz ≥ b anddz > L?

Suppose an instance of this problem is specified byd ∈ Qn2, G ∈ Qm2×n2 , andb ∈ Qm2 and

L = −OPT (x) − ǫ, for some smallǫ > 0. Then, we can specify FEASCHECK by setting

d2 = −d, G2 = G, b2 − A2x = b, which can clearly be done in polynomial time. Thus, it remains

to show that there exists a vectorz ∈ (Zp2

+ × R
n2−p2

+ ) such thatGz ≥ b and OPT (x) < dz

if and only there existsy ∈ (Zp2

+ × R
n2−p2

+ ) such thatG2y ≥ b2 − A2x andd2y ≤ OPT (x).

Let ẑ ∈ (Zp2

+ × R
n2−p2

+ ) such thatGz ≥ b anddz > L be given. Then, settingy = x̂ yields

G2y = Gz ≥ b = b2 − A2x andd2y = −dẑ < −L = OPT (x) + ǫ ≤ OPT (x), which clearly

implies the desired condition. Conversely, supposeŷ satisfies the conditions of FEASCHECK.

Then, settingz = ŷ yieldsGz = G2ŷ ≥ b2−A2x = b anddz = −d2ŷ ≥ −OPT (x) = L+ǫ > L,

as desired. Thus, FEASCHECK is at least as hard as this mixed integer decision problem and, unless

P = NP, we have a contradiction.

The relationship between the complexity of MIBLP and BLP is illustrated in Figure3.1. The pre-

vious result provides some explanation for the additional difficulty of MIBLP. In order to fully

understand the differences in complexity, however, we mustemploy the notion ofpolynomial-time

hierarchy(P−hierarchy), defined in terms of anondeterministic oracle Turing machines, described

by Meyer and Stockmeyer(1972) andStockmeyer(1977). A nondeterministic oracle Turing ma-

chine is defined as a nondeterministic Turing machine augmented with an oracle tape. As described

in Garey and Johnson(1979), a nondeterministic oracle Turing machine with an oracle for problem
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DMIBLP

NP−hard

NP−complete

NP

P

DBLP

Figure 3.1: The relationship between MIBLP and BLP complexity, assumingP 6= NP.

∏

can be thought of as a nondeterministic algorithm containing a subroutine for
∏

that can be

run in constant time. Following the notation inStockmeyer(1977), let M(B) denote the language

accepted by the nondeterministic oracle Turing machineM with oracleB. Then, the polynomial

hierarchy can be defined as follows.

Definition 3.1 The polynomial-time hierarchy (P−hierarchy) is
{
∑p

k,
∏p

k,∆
p
k : k ≥ 0

}

, where

∑p
0 =

∏p
0 = ∆p

0 = P;

and fork ≥ 0,

• ∑p
k+1 = NP(

∑p
k),

• ∏p
k+1 = coNP(

∑p
k),

• ∆p
k+1 = P(

∑p
k).

Also, definePH =
⋃∞

k=0

∑p
k.

The P−hierarchy is illustrated in Figure3.2. In the figure, the darker classes are contained in

the lighter classes, and incomparable classes are given thesame color. Note that none of these

inclusions is known to be strict. We have the following result for thebinary integer bilevel linear

program(BIBLP), which results from (MIBLP) if we setX = Bn1 andY = Bn2.
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∑p

1NP

∆
p

2

NP
NP

∏p

2

∏p

1

coNP
P

NP

PH

coNP
NP

∑p

2P

Figure 3.2: The polynomial-hierarchy, assumingP 6= NP. (Rothe, 2005)

Theorem 3.7 DBIBLP is in the complexity class
∑p

2.

Theorem3.7follows from the more general result ofJeroslow(1985), which states that the problem

of checking optimality for ak−level binary LP is in
∏p

k. Given an upper-level objective valuēz

and a candidate solution̄x, this problem can be posed as the question “isOPT ≥ z̄”, whereOPT

denotes the optimal solution of the program, for which the answer is yes when̄x is optimal. We

can ask the complementary question “isOPT < z̄”, for which the answer is no when̄x is optimal.

When,k = 2, under the assumption of rational data, this is equivalent to DBIBLP. SinceBIBLP

is a special case of MIBLP, we are able to state the following.

Theorem 3.8 DMIBLP is
∑p

2.

Combining this with the results above on BLP, provides some insight into the complexity of the

bilevel programs with integer variables.

We can show that MIPINT isNP−hard using the same method as in the proof of Theorem3.5.

However, in this case, we use a transformation to the decision version of thebinary knapsack prob-

lem instead.

Theorem 3.9 MIPINT is in the complexity classNP-hard.

Proof. As in the previous proof, it suffices to show that there existsa polynomial reduction from the

decision version of the knapsack problem (DKNAP) to DMIPINT. Suppose an instance of DKNAP
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is defined as above. Then, we can define an instance of DMIPINT by settingA1 = [r | 0]T ,

b1 = [R | 0], d = −v, U = In×n, G2 = 0, andb2 = 0. Thus, we have an instance of MIPINT

with n = |J |, m1 = 1, andm2 = 0. Also defineL = B −∑

j∈J vj . Suppose there exists a subset

J ′ ⊆ J such that
∑

j∈J ′ rj ≤ R and
∑

j∈J ′ vj ≥ B. Setxj = 1 for all j ∈ J ′ andxj = 0 for all

j ∈ (J \J ′). Clearly, this is a feasible upper-level solution. Then, the resulting lower-level problem

is:

min{−py | y(J\J ′) ≤ 1, yJ ′ = 0, y ∈ Z |J | × R|J |−p}.

Sincev ∈ Z|J |, the optimal lower-level solution is to setyj = 1 for all j ∈ (J \ J ′), yielding

dy = −∑

j∈(J\J ′) vj = B −∑

j∈J vj = L. Conversely, suppose there exists a vectorx ∈ Bn such

thatxj = 1 for all j ∈ K ′ andxj = 0 for all j ∈ (K \K ′), for someK ′ ⊆ K = {1, . . . , n}, and

rx ≤ R. Suppose also that there exists a vector

y ∈ argmin
{

−vy | y(K\K ′) ≤ 1, yJ ′ = 0, y ∈ Z |K| × R|(K\K ′)|
}

anddy ≥ L. If we setJ = K andJ ′ = K ′, clearly the condition
∑

j∈J ′ rj ≤ R is satisfied.

Further
∑

j∈J ′ vj =
∑

j∈J vj −
∑

j∈(J\J ′) vj =
∑

j∈J vj + dy ≥ ∑

j∈J vj + L = B. Thus,

DKNAP ∝ DMIPINT

Of course, the fact that the Maximum Shortest Path Problem (MSPP), a knownNP−complete prob-

lem (Wood, 1993), is a special case of MIPINT implies that MIPINT isNP−hard, but the indepen-

dent proof may provide additional insight for the reader. From the proof of Theorem3.6we gained

the intuition that the nature of the lower-level problem is akey component of a bilevel program’s

complexity. Namely, when checking feasibility requires solution of a MILP, the bilevel program is

not in NP, unlessP = NP. This intuition holds for MIPINT, as well; interdiction of aMILP (or

ILP) is not inNP, but interdiction of an LP is. Below, we see the role the lower-level problem plays

in our ability to reformulate the problem and solve it via direct methods.

3.2 Reformulations and Exact Solution Methods

It is clear that each of the problems discussed above poses significant algorithm design challenges.

Thus, obtaining exact solutions for large instances of suchproblems will likely require further re-

search or significant solver customization. In the following chapter, we demonstrate methods for

solver customization via MIPINT and our solver MibS. Later in this chapter, we consider an alter-

native approach to finding exact solutions, namely arrivingat good solutions quickly via heuristic

methods.
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In this section, we describe single-level reformulations possible through the application of optimal-

ity conditions. Several of the reformulations given can be solved using existing methods, for which

solvers are readily available. However, for the general case, the reformulation we derive via op-

timality conditions yields a problem for which known methods are not applicable. In the second

half of this section, we describe how approximations of the value function can lead to practical

methods for this case. For each methodology, we examine special cases of the general problem for

which a further simplification is possible. Before considering dual reformulations, however, we first

describe one fairly trivial special case for which well-known methods can immediately be applied.

3.2.1 Separable Problems

Intuitively, it is clear that the presence of the lower-level variables in the upper-level objective func-

tion is the essential element that makes the analysis and design of algorithms for MIBLP difficult.

This is formalized in the following discussion, where we seethat, if these variables are not present,

we have a much closer relationship to traditional MILP. We note that under the assumptions made

in Chapter1, we need only consider upper-level feasibility, but the following results hold without

this assumption.

Let d1 = 0 in (MIBLP), a special case hereafter called MIBLP(d1 = 0), and denote the optimal

value of (MIBLP) by zMIBLP . We have the following result.

Theorem 3.10 Let

zMILP = min
(x,y)∈ΩI

c1x. (3.2)

If d1 = 0, then we havezMIBLP = zMILP .

Proof. Let (x∗, y∗) be an optimal solution to (3.2) with value c1x∗. (x∗, y∗) optimal implies

(x∗, y∗) ∈ ΩI . Thus, there exists somex ∈ (PU ∩ X), namelyx∗, and somey ∈ M I(x∗),

namelyy∗. So,FI 6= ∅. Since,c1x is the same for any choice ofy, we just need to show thatx∗

is optimal for the upper-level DM in (MIBLP). Suppose it’s not. That means there exists somex̂

such that̂x ∈ (PU ∩X) with c1x̂ < c1x∗. But, this contradicts the optimality ofx∗ for (3.2). On

the other hand, consider some solution(x′, y′) that is optimal for (MIBLP). (x′, y′) optimal implies

(x′, y′) ∈ FI , which implies(x′, y′) ∈ ΩI . Thus,(x′, y′) is feasible for (3.2). Since, again, the

objective valuec1x is the same for anyy, the existence of̄x such thatc1x̄ < c1x′ contradicts the

optimality ofx′.

In fact, in this special case, we can solve the MIBLP by simplysolving two MILPs. For this reason,

we refer to problems of this type asseparable problems. Let (x̂, ŷ) be a solution to (3.2), and
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3.2. REFORMULATIONS AND EXACT SOLUTION METHODS

consider the lower-level problem of (MIBLP):

min{d2y | G2y ≥ b2 −A2x̂, y ∈ Z
p2

+ × R
n2−p2

+ }. (3.3)

Let y∗ be an optimal solution to (3.3). Clearly, (x̂, y∗) is feasible for (MIBLP).1 And, since the

upper-level objective does not depend ony, this solution must also be optimal for (MIBLP), since

(3.2) is a valid upper bound on (MIBLP).

This sequential solution method for this class of problems is similar to the lexicographic method for

solving multiobjective problems (see, e.g.,Waltz(1967); Stadler(1988); Rentmeesters et al.(1996);

Sun et al.(1998); Korhonen and Siitari(2007)). In the lexicographic method, objective functions

are ranked by importance, and optimization is performed according to this ordering. Formally, for

the biobjective problem

vminx∈S[f1(x), f2(x)], (3.4)

using the lexicographic method means first solving the problem

min
x∈S

f1(x), (3.5)

to obtain the optimal valuef∗
1 . Then, a new feasible region is defined as:

S1 = {x ∈ S | f1(x) = f∗
1}

and the second problem

min
x∈S1

f2(x), (3.6)

is solved. This is essentially the method described above for this special class of bilevel program-

ming. However, one important difference exists. In lexicographic optimization, the underlying

feasible regionS is the same for each objective function, regardless of rank.However, in a bilevel

program, the lower-level feasible region does not include the upper-level constraints.

3.2.2 MILP Duality and the Value Function

Duality theory can be thought of as the study of methods for generating lower-bounding approxima-

tions for value function of mathematical programs. Not surprisingly, evaluating the value function

z at even a single point is anNP−hard problem in general. Given the difficulty of constructing the

value function, we often focus our attention on developing methods to find the best approximation

for z. In what follows, we use results from duality theory extensively. LP duality is a well-studied

1Of course, this relies on the assumption that no lower-levelvariables appear in the upper-level constraints.
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field and has proven invaluable in the development of effective algorithms and sensitivity analysis

methods for LP. In theory, the majority of the results from LPduality generalize to the MILP case,

but obtaining practical implementations of such methods isquite difficult. Historically, the impact of

duality theory has been primarily limited to problems with continuous variables. Recently, however,

new advances have been made that demonstrate that similar practical benefits can be obtained from

dual information in discrete problems. The interested reader is referred toGuzelsoy and Ralphs

(2007) andGuzelsoy(2009) for a full review of duality theory and the more recent advances that

lead to tractable MILP duality results.

In the bilevel programming literature, there is evidence ofa similar roadblock encountered when

discrete variables appear in the lower-level problems. As described above, several solution methods

for BLP rely on replacing the requirementy ∈ argmin{d2y | y ∈ SL(x)} with the appropriate

optimality conditions. Typically, these optimality conditions are derived from LP duality theory

and, thus, are not readily applied to MIBLP. However, in thisdissertation, we utilize the relationship

between LP and MILP duality to bridge the gap between BLP and MIBLP. Following the work in the

MILP literature, we demonstrate that many of the same methods can be applied when the lower-level

variables are discrete, by applying the appropriate theoretical generalizations. Below, we describe

the primary relevant results connecting LP and MILP dualitytheory to provide a foundation for the

analogous connections we draw in subsequent chapters.

LP Duality. Recall the linear programming problem of determining:

zLP = min
x∈SLP

cx, (LP)

where

SLP = {x ∈ Rn | Ax ≥ b, x ≥ 0} .

Changing any member of the triple(A, b, c) yields a perturbation of the LP. In many applications,

it is natural to consider changes to the right-hand-side (RHS) vectorb, becauseb can be thought of

as the resources available to the system being modeled. In a bilevel program, the upper-level DM

can indirectly alter the resources available to the lower-level DM through the vectorA2x. That is,

a change in the upper-level decision vector results in a perturbation of the lower-level RHS. As we

saw in Section1.6, understanding the effect this has on the solution to the bilevel program can lead

to a method for solving bilevel programs.

Consider the parameterized version of (LP):

zLP (v) = min
x∈SLP (v)

cx, (LP(v))
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where

SLP (v) =
{

x ∈ Rn
+ | Ax ≥ v

}

,

for all v ∈ Rn. The LP value functionzLP : Rm → R ∪ {±∞} returns the optimal value of (LP)

for eachv ∈ Rm. By convention, we sayzMILP = +∞ if d 6∈ ΩMILP = {v ∈ Rm | SIP (v) 6= ∅}
andzMILP = −∞ if the objective value is unbounded.

By definition, we call a functionF , such that

F (v) ≤ zLP (v),∀v ∈ Rm,

a weak dualfunction. If (LP(v)) has a finite optimal solution and for fixedb ∈ R, F (b) = zLP (b),

we sayF is astrong dualfunction. This means that, for the RHSb, F yields an exact approximation

of zLP , and can be used as a substitute for the value function itself. The associateddual problemis:

max{F (b) | F (v) ≤ zLP (v), v ∈ Rm, F : Rm → R}, (3.7)

which returns the “best” dual function with respect to the lower bound atb.

It is well-known (Bertsimas and Tsitsiklis, 1997, see, e.g.,) that restrictingF to the class of linear

functions allows us to rewrite (3.7) as a second LP:

max{ub | uA ≤ c, u ∈ Rm
+}. (3.8)

Further, if the primal problem is bounded, the optimal solution of (3.8) yields a strong dual function.

The reader is referred toGuzelsoy(2009) for a full review on the implications of this result. Utilizing

this relationship allows us to write the LP value function as:

zLP (v) = max{uv | uA ≤ c, u ∈ Rm2

+ }. (3.9)

The functionzLP is piecewise-linear and convex overΩLP = {v ∈ Rm | SLP (v) 6= ∅}, where

SLP (v) = {y ∈ Rn2

+ | Ax ≥ v}. For a fixed right-hand-sideb, an optimal solutionu∗ to (3.8) is a

subgradientof zLP at b. In other words,

zLP (b) + u∗(v − b) ≤ zLP (v), ∀v ∈ ΩLP .

Further, for a sufficiently small neighborhood ofb, u∗ remains optimal andzLP (v) = u∗v. This

relationship is illustrated in Figure3.3. One important by-product of this relationship is our ability

to approximate the value of a linear program using a set of dual solutions. Suppose the dual feasible
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zLP

b zLP (b) + u∗(v − b)
v

Figure 3.3: A slice of the value functionzLP and the subgradient atb.

set{u ∈ Rm | uA ≤ c} is a polytope and letR be its set of extreme points. Then, we can write

zLP (v) = max
ρ∈R
{ρv}, ∀v ∈ Rm, (3.10)

We refer to (3.10) as theextreme point formof the LP value function. Maximizing over a subset of

R yields an approximation for the value function. This approximation is illustrated in Figure3.4,

where we see a slice of the LP value function and the portions of the approximation derived from

different dual solutions.

One application of this technique is the well-knownBenders decomposition algorithm. In this

context, Benders algorithm can be seen as the iterative generation of gradientsρ ∈ R. We apply a

similar idea to MIBLP later in this chapter. The consequences of linear programming duality results

have been used extensively for the development of efficient algorithms. Unfortunately, as we will

see next, mixed integer programming does not enjoy as many convenient qualities.

MILP Duality. The parameterized version of (MILP) is defined as:

zMILP (v) = min
x∈SMILP (v)

cx, (MILP(v))

where,

SMILP (v) = {x ∈ Z
p
+ × R

n−p
+ | Ax ≥ v}

for all v ∈ Rm. As in the LP case, the MILP value functionzMILP : Rm → R∪ {±∞} returns the

optimal value of the program as a function of the RHS vector. As before, we letzMILP = +∞ if d 6∈
ΩMILP = {v ∈ Rm | SIP (v) 6= ∅} andzMILP = −∞ if the objective value is unbounded. The
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ρ2v

zLP

ρ1v
ρ3v

v

Figure 3.4: An approximation of value functionzLP .

function zMILP is known to be piecewise polyhedral, butnonconvex. Further,Blair and Jeroslow

(1977) andBlair (1995) show thatzMILP is defined by the value function of a related pure integer

program and a linear correction term obtained from the coefficients of the continuous variables.

Their construction utilizes a special class of functions, namelyGomory functions, a subset of the

class ofChv́atal functions.

Definition 3.2 Chv́atal functions are the smallest set of functionsCm such that

(i) If h ∈ Lm, whereLm is the set of linear functionsf : Rm → R, thenh ∈ Cm.

(ii) If h1, h2 ∈ Cm andα, β ∈ Q+, thenαh1 + βh2 ∈ Cm.

(iii) If h ∈ Cm, then⌈h⌉ ∈ Cm.

Gomory functions are the smallest set of functionsGm ⊆ Cm that satisfy(i)-(iii) , and

(iv) If h1, h2 ∈ Gm, thenmax{h1, h2} ∈ Gm.

Let E consist of the index sets of dual feasible bases of

min







n
∑

i=p+1

cixi |
n

∑

i=p+1

aixi ≤ v, xi ≥ 0,∀i ∈ [p + 1, n]







, (3.11)

the linear program obtained by dropping the integral variables from (MILP), for a fixedv ∈ ΩMILP .

SinceA is rational, we can chooseM ∈ Z+ such that for anyE ∈ E , MA−1
E aj ∈ Zm for all
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j = 1, . . . , p, whereaj is the jth column ofA. For E ∈ E , let uE be the corresponding basic

feasible solution to the dual of

min







1

M

n
∑

i=p+1

cixi |
1

M

n
∑

i=p+1

aixi ≤ v, xi ≥ 0,∀i ∈ [p + 1, n]







. (3.12)

Forv andE, let ⌊v⌋E = AE⌊A−1
E v⌋. Then, we have the following result.

Theorem 3.11 (Blair (1995)) For the MILP(MILP), there is ah ∈ Gm such that

zMILP (d) = min
E∈E

h(⌊v⌋E) + uE(v − ⌊v⌋E) (3.13)

for anyv ∈ ΩMILP , whereGm is the set of Gomory functions.

Equation (3.13) is the so-calledJeroslow Formula. This result utilizes the value function of a pure

integer program (i.e.,p = n), which can be described by a particular Gomory function (Blair and

Jeroslow, 1982), but is still difficult to construct in general.

Using the notion of duality as a bounding method, we can writethe MILP dual problem:

max{F (b) | F (v) ≤ zMILP (v), v ∈ Rm, F : Rm → R}. (3.14)

The value function of the LP relaxation of (MILP) is given by

FLP (v) = max{uv | uA ≤ c, v ∈ Rm
+}. (3.15)

If we define

F (v) =







FLP (v) for v ∈ ΩMILP

0 otherwise
,

whereΩMILP = {v ∈ Rm | S(v) 6= ∅}, F : Rm → R, and the LP relaxation is bounded,F is

feasible for (3.14) (i.e., a weak dual). Such a function provides the best piecewise-linear, convex

bounding function forzMILP and is strong forsomeRHS, but is not necessarily strong for a given

RHS (see Figure3.5).

The dual problem (3.14) as stated above is too general to be useful. Motivated by thesubadditivity

of the MILP value function,Johnson(1973, 1974, 1979), suggested limiting the set of dual functions

to one which is more structured. LetΓm be the set of functionsF : Rm → R that are subadditive2,

2A functionF is subadditiveover domainΘ if F (λ1) + F (λ2) ≥ F (λ1 + λ2) for all λ1, λ2, λ1 + λ2 ∈ Θ.
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zMILP (v)

v

zLP (v)

Figure 3.5: The value function of the LP relaxation of a MILP and zMILP .

nonincreasing, and for whichF (0) = 0. Thesubadditive dualof (MILP) is:

max F (b)

F (aj) ≤ cj, ∀j = 1, . . . , p (3.16)

F̄ (aj) ≤ cj, ∀j = p + 1, . . . , n

F ∈ Γm

where

F̄ (v) = lim sup
δ→0+

F (δv)

δ
, ∀v ∈ Rm.

F̄ is theupper v-directional derivativeof F at zero. As noted inGuzelsoy and Ralphs(2007), F̄

is only required in (3.16) if p < n and ensures that solutions to the subadditive dual have gradients

that do not exceed those of the value function near zero. The subadditive dual enjoys many of the

nice properties of the LP dual problem. We briefly review these properties next.

As with linear programming, a feasible solution to (3.16) can be used to bound the objective value

of (MILP).

Theorem 3.12 (Weak Duality byJeroslow(1978, 1979)) If F is feasible to(3.16) andx is feasi-

ble to(MILP), thencx ≥ F (b).

The following result shows that (3.16) is a strong dual for (MILP).

Theorem 3.13 (Jeroslow(1978, 1979); Wolsey(1981)) If either (MILP) or (3.16) has a finite op-

timal value, then there exists an optimal primal feasible solution x∗ and an optimal dual feasible

solutionF ∗ such thatcx∗ = F ∗(b). Further,

(i) If (MILP) is infeasible, either(3.16) is infeasible or unbounded from above.
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(ii) If (3.16) is infeasible, either(MILP) is infeasible or unbounded from below.

The subadditive dual (3.16) can also be used to generalize complementary slackness conditions.

Theorem 3.14 (Complementary Slackness byJeroslow(1978); Johnson(1979); Wolsey(1981))

If x∗ is feasible to(MILP) andF ∗ is feasible to(3.16), thenx∗ andF ∗ are optimal if and only if

(F ∗(aj)− cj)x
∗
j = 0, for j = 1, . . . , p (3.17)

(F̄ ∗(aj)− cj)x
∗
j = 0, for j = p + 1, . . . , n

and

p
∑

j=1

F ∗(aj)x∗
j +

n
∑

j=p+1

F̄ ∗(aj)x∗
j = F ∗(b) (3.18)

F ∗(b−
p

∑

j=1

ajx∗
j ) + F̄ ∗(b−

n
∑

j=p+1

ajx∗
j) = 0.

The first condition is analogous to the well-known LP complementary slackness conditions. The

second condition, sometimes referred to ascomplementary linearity, holds trivially if F andF̄ are

linear (Llewellyn and Ryan, 1993).

In theory, appropriate optimality conditions for the lower-level problem can be applied directly to

the bilevel program, immediately yielding a single-level reformulation. If the resulting formulation

can be solved with an existing method, we can solve the bilevel program with a black-box method.

However, as we will see next, reformulating the problem in this manner often leads to a problem

for which no solution method is known. In this case, we can enforce lower-level optimality in-

directly through iterative approximation of the MILP valuefunction. In what follows, we adopt

some additional notation, to simplify the exposition. Let MIBLP℧U

℧L
a special case of the canonical

problem defined by conditions℧U and℧L on the upper- and lower-level variables, respectively.

For example, the MIBLP in which all upper-level variables are binary and all lower-level variables

continuous would be written MIBLPB
n1

Rn2
, and our canonical problem would be MIBLPX

Y . If either,

or both, of the conditions are left blank, it should be assumed that the restrictions on the variables

are as stated in (MIBLP).

3.2.3 Reformulations

One well-known approach to single-level reformulation found in the BLP literature relies on replac-

ing the optimality constraint on the lower-level variableswith appropriate KKT conditions (see e.g.
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Fortuny-Amat and McCarl, 1981; Bard and Moore, 1990). If the lower-level problem is a LP (as

in BLP), this means replacing the optimality constraint with primal feasibility, dual feasibility, and

complementary slackness conditions. In theory, we can apply the same method to (MIBLP) using

MILP duality theory. Below, we demonstrate how to apply an analogous technique for MIBLP,

using the subadditive dual described in the previous section. After introducing the general reformu-

lation, we provide several special cases for which the the method yields more useful reformulations.

General MIBLP. As shown above, the subadditive dual has many of the same properties of the

LP dual. For fixed̂x, the lower-level MILP is:

min{d2y | G2y ≥ b2 −A2x̂, y ∈ Z
p2

+ × R
n2−p2

+ }. (3.19)

The associated subadditive dual is then:

max F (b2 −A2x̂)

F ((g2)j) ≤ d2
j , ∀j = 1, . . . , p2 (3.20)

F̄ ((g2)j) ≤ d2
j , ∀j = p2 + 1, . . . , n2

F ∈ Γm

whereg2
j andF̄ are defined as in Section3.2.2. Applying the duality results given in Section3.2.2

yields the following result.

Proposition 3.15 If y∗ is an optimal feasible solution for(3.19) andF ∗ is an optimal dual feasible

solution for(3.20), theny∗ andF ∗ must satisfy

G2y∗ ≥ b2 −A2x̂ (3.21a)

F ∗(g2
j ) ≤ d2

j , ∀j = 1, . . . , p2 (3.21b)

F̄ ∗(g2
j ) ≤ d2

j , ∀j = p2 + 1, . . . , n2 (3.21c)

(F ∗(g2
j )− d2

j)y
∗
j = 0, ∀j = 1, . . . , p2 (3.21d)

(F̄ ∗(g2
j )− d2

j)y
∗
j = 0, ∀j = p2 + 1, . . . , n2 (3.21e)

p2
∑

j=1

F ∗(g2
j )y

∗
j +

n2
∑

j=p2+1

F̄ ∗(g2
j )y

∗
j = F ∗(b2 −A2x̂) (3.21f)

F ∗(b2 −
p2

∑

j=1

(g2)j)y∗j ) + F̄ ∗(b2 −
n2
∑

j=p2+1

(g2)j)y∗j ) = 0 (3.21g)

for anyx = x̂.
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Proof. If y∗ is feasible for (3.19) andF ∗ is feasible for (3.20), then (3.21a)-(3.21c) must be sat-

isfied. Sincey∗ and F ∗ are optimal solutions for (3.19) and (3.20), respectively, we can apply

Theorem3.14, which yields (3.21d)-(3.21g).

Proposition3.15 implies that we can replace the lower-level problem with optimality conditions

(3.21), give control of all variables to the upper-level DM, and introduce the following equivalent

single-level reformulation of (MIBLP):

max c1x + d1y

subject to A1x ≤ b1

−A2x−G2y ≤ −b2

F (g2
j ) ≤ d2

j , ∀j = 1, . . . , p2

F̄ (g2
j ) ≤ d2

j , ∀j = p2 + 1, . . . , n2 (MIBLP-1)

(F (g2
j )− d2

j )yj = 0, ∀j = 1, . . . , p2

(F̄ (g2
j )− d2

j )yj = 0, ∀j = p2 + 1, . . . , n2

p2
∑

j=1

F (g2
j )yj +

n2
∑

j=p2+1

F̄ (g2
j )yj = F (b2 −A2x̂)

F (b−
p2

∑

j=1

(g2)jyj) + F̄ (b−
n2
∑

j=p2+1

(g2)jyj) = 0

x ∈ Z
p1

+ × R
n2−p2

+ , y ∈ Z
p2

+ × R
n2−p2

+ , F ∈ Γm2 .

Removing the complementarity terms

(F (g2
j )− d2

j )yj = 0,∀j = 1, . . . , p2

(F̄ (g2
j )− d2

j )yj = 0,∀j = p2 + 1, . . . , n2

and

p2
∑

j=1

F (g2
j )y∗j +

n2
∑

j=p2+1

F̄ (g2
j )y∗j = F (b2 −A2x̂)

F (b−
p2

∑

j=1

(g2)jyj) + F̄ (b−
n2
∑

j=p2+1

(g2)jyj) = 0
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from (MIBLP-1) yields thesubadditive relaxation problem

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y∗ ≥ b2 (SRP)

F (g2
j ) ≤ d2

j , ∀j = 1, . . . , p2

F̄ (g2
j ) ≤ d2

j , ∀j = p2 + 1, . . . , n2

x ∈ Z
p1

+ × R
n2−p2

+ , y ∈ Z
p2

+ × R
n2−p2

+ , F ∈ Γm2 .

Proposition 3.16 (SRP) provides a valid lower bound on(MIBLP-1).

Proof. Let (x∗, y∗, F ∗) be an optimal solution to (MIBLP-1). Suppose, for sake of contradiction,

c1x∗ + d1y∗ < z∗SRP

wherez∗SRP is the optimal objective value of (SRP). However, this immediately leads to a contra-

diction since the fact that(x∗, y∗, F ∗) is feasible for (MIBLP-1) implies that(x∗, y∗, F ∗) is feasible

for (SRP).

The difficulty inherent in the employment of this formulation is that both (MIBLP-1) and (SRP)

involve solving an optimization problem for which one of the“variables” is a subadditive function.

There are no direct methods for solving such optimization problems. If, however, we were able to

solve a problem of the form (SRP) we could immediately generalize the complementarity branch-

and-bound algorithm given inBard and Moore(1990). If all variables in the lower-level problem

are required to be integer, we can use the linear representation of the subadditive dual to transform

(MIBLP-1) into something more amenable to traditional optimizationsolvers.

Pure Integer Lower-level Problems. Suppose, for allx, the lower-level problem is a bounded

pure integer program (i.e. MIBLPZn1 ) andb2 −A2x ∈ Q
m2

+ . Then, for fixedx = x̂, (3.20) reduces

to

max F (b2 −A2x̂)

F ((g2)j) ≤ d2
j , ∀j = 1, . . . , n2 (3.22)

F ∈ Γm.
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Further, suppose we scaleG2 andb2 −A2x̂ to be integer. Then, we can reformulate (3.22) as:

max η(b̂)

η(λ) + η(µ) ≥ η(λ + µ),∀0 ≤ λ ≤ b̂, 0 ≤ µ ≤ b̂, 0 ≤ λ + µ ≤ b̂ (3.23)

η((g2)j) ≤ d2
j , ∀j = 1, . . . , n2

η(0) = 0.

whereb̂ = b2 − A2x̂ andη : {α | α ≤ b̂} → R. This follows from the fact that, if the primal

problem is a bounded pure integer program, we can substitutethe subadditive function with the

values it takes over the finite domain{λ ∈ Z
m2

+ | λ ≤ b̂} and a set of constraints which ensure that

η is subadditive (Gomory, 1969; Johnson, 1979).

This immediately leads to a mixed integer nonlinear programming (MINLP) reformulation of MIBLPZn2 :

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2

η(λ) + η(µ) ≥ η(λ + µ),

∀0 ≤ λ ≤ b2 −A2x, 0 ≤ µ ≤ b2 −A2x, 0 ≤ λ + µ ≤ b2 −A2x

η(g2
j ) ≤ d2

j , ∀j = 1, . . . , n2 (MIBLPZn2 -2)

(η(g2
j )− d2

j )yj = 0, ∀j = 1, . . . , n2

η(0) = 0

x ∈ Z
p1

+ ×R
n2−p2

+ , y ∈ Zn2

+ .

In the MINLP (MIBLPZn2 -2), the variablesη represent the actual values of the subadditive function

over its domain. The constraints

η(λ) + η(µ) ≥ η(λ + µ),∀0 ≤ λ ≤ b2 −A2x, 0 ≤ µ ≤ b2 −A2x, 0 ≤ λ + µ ≤ b2 −A2x

η(g2
j ) ≤ d2

j , ∀j = 1, . . . , n2

η(0) = 0

enforce the subadditive requirement onη : {α | α ≤ b̂} → R. It can be shown that the row

dimension of this MINLP can be reduced using a discrete analog of Farkas’ Lemma (Lasserre,

2004a,b, 2009). Applying this method may yield an MINLP reformulation of MIBLPZn2 that can

be solved via direct methods. Exploring the computational properties of this problem is an area of

interesting future research.
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Not surprisingly, another case for which this reformulation method is simplified is that of a contin-

uous lower-level problem. In fact, in this case, the method is greatly simplified since we can return

to familiar LP dual for the reformulation.

Continuous Lower-level Problems. The underlying approach used in the BLP depends only on

the structure ofY . Thus, we can easily apply the same approach to MIBLP, if the lower-level prob-

lem is continuous (i.e.,Y = Rn2). This yields the single-level MINLP reformulation of MIBLPRn2 :

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2

uG2 ≤ d2 (MIBLPRn2 -1)

u(b2 −G2y −A2x) = 0

(d2 − uG2)y = 0

x ∈ X, y ∈ R
n2

+ , u ∈ R
m2

+ .

Of course, if the upper-level variables are also continuous, MIBLPRn2 is equivalent to (BLP), and

the reformulation (MIBLPRn2 -1) reduces to thelinear program with equilibrium constraints(LPEC)

reformulation of (BLP) (see e.g.Judice and Faustino, 1992). A variety of solution methods have

been suggested for LPECs, including branch and bound (Fortuny-Amat and McCarl, 1981; Bard

and Falk, 1982; Bard and Moore, 1990), and interior point methods (Luo et al., 1996). The reader

is referred toVicente and Calamai(1994) andLuo et al.(1996) for a comprehensive review of such

solution methods. In fact, this reformulation method is notlimited to MIBLPRn2 , but only requires

PL(x) to be a convex polyhedral set, a property shared by a variety of MPECs (Luo et al., 1996).

Audet et al.(1997) show that a BLP can be reformulated as standard MILP, in which all integer

variables are binary. Their reformulation utilizes the LPEC reformulation of BLP as an intermediate

step, and a common modeling trick to replace the nonlinear complementarity conditions. As before,

this reformulation technique does not depend on the structure of X, but only requires continuous

variables in the lower-level. Thus, we use apply the same general method for the mixed integer case,

substituting (MIBLPRn2 -1) in the intermediate step.

Let en be ann−dimensional column vector of ones and suppose the optimal value of (MIBLPRn2 -1)
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is finite. Applying the methodology ofAudet et al.(1997) to (MIBLPRn2 -1) yields the MILP:

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2

− uG2 ≥ −d2 (3.24)

−A2x−G2y − Lλ ≥ −Len2
− b2

− u + Lλ ≥ 0

uG2 − Lµ ≥ d2

− y − Lµ ≥ −Lem2

x ∈ X, y ∈ Rn2

+ , u ∈ Rm2

+ , λ ∈ Bm2 , µ ∈ Bn1.

for some large finite constantL > 0. It is easy to see that whenλi = 1, we have:

a2
i x + g2

i y = b2
i

ui ≤ L

for i = 1 . . . ,m2. Alternatively, whenλi = 0:

a2
i x + g2

i y ≤ b2
i + L

ui = 0.

Sinceλ ∈ Bm2 , the combination of these constraints enforces the complementarity condition

u(b2 −G2y −A2x) = 0.

A similar argument shows how the condition(d2 − uG2)y = 0 is enforced. This result is stated

formally in the following proposition.

Proposition 3.17 Suppose the optimal value of(MIBLPRn2 -1) is bounded, and let(x∗, y∗) be a

finite optimal solution. There exists a large finite constantL > 0 andu ∈ Rm2

+ , λ ∈ Bm2 , µ ∈ Bn1,

such that(x∗, y∗, u∗, λ∗, µ∗) is an optimal solution of(3.24). On the other hand, for such an

L, if (x∗, y∗, u∗, λ∗, µ∗) is an optimal solution of(3.24), then (x∗, y∗) is an optimal solution of

(MIBLPRn2 -1).

If X = Rn1, (3.24) reduces to the MILP formulation inAudet et al.(1997) and provides a single-

level reformulation (BLP).
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Audet et al.(1997) also describe how to reformulate MIBLPs as BLPs, when all upper-level integer

variables are binary and all lower-lever variables are continuous. In the following example, we

demonstrate how to extend their method to yield a MILP reformulation of MIBLPB
p1×R

n1−p1

Rn2
.

Binary upper-level and Continuous Lower-level. Let X = (Bp1 × Rn1−p1) and Y = Rn2.

Applying the methods ofAudet et al.(1997) yields a BLP reformulation of MIBLPB
p1×R

n1−p1

Rn2
:

min c1x + d1y

subject to A1x ≥ b2

0 ≤ xi, ∀i ∈ [p1 + 1, n1]

0 ≤ xi ≤ 1, ∀i ∈ [1, p1]

γ = 0 (3.25)

y ∈ argmin
{

d2y + eT
n1−p1

γ :A2x + G2y ≥ b2

−γi ≥ −xi, ∀i ∈ [1, p1]

−γi ≥ −(1− xi), ∀i ∈ [1, p1]

y ≥ 0 }

We can use (3.25) to reformulate MIBLPB
p1×Rn1−p1

Rn2
as a MILP.

Let xI = {xi | i ∈ [1, p1]}. Consider the lower-level problem of (3.25), for fixed x̂:

min d2y + eT
p1

γ

subject to G2y ≥ b2 −A2x̂

− γ ≥ −x̂I (3.26)

− γ ≥ −(1− x̂I)

y ≥ 0.

The dual of (3.26) is given by:

max u(b2 −A2x̂)− v1x̂I − v2(1− x̂I)

subject to uG2 ≤ d2

− v1 = e (3.27)

− v2 = e

u, v1, v2 ≥ 0.

Applying the reformulation method of (MIBLPRn2 -1), where we utilize the lower-level optimality
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conditions, to (3.25) yields:

min c1x + d1y

subject to A1x ≥ b2

0 ≤ xi, ∀i ∈ [p1 + 1, n1]

0 ≤ xi ≤ 1, ∀i ∈ [1, p1]

γ = 0

A2x + G2y ≥ b2

γi ≤ xi, ∀i ∈ [1, p1]

γi ≤ (1− xi), ∀i ∈ [1, p1] (3.28)

uG2 ≤ d2

− v1 = e

− v2 = e

u(b2 −G2y −A2x) = 0

v1
i (γi − xi) = 0, ∀i ∈ [1, p1]

v2
i (γi − 1 + xi) = 0, ∀i ∈ [1, p1]

(d2 − uG2)y = 0

y, u, v1, v2 ≥ 0.

Then, applying the reformulation method of (3.24) to the complementarity problem (3.28) yields
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the MILP reformulation of MIBLPB
p1×Rn1−p1

Rn2
:

min c1x + d1y

subject to A1x ≥ b2

xi ≤ 1, ∀i ∈ [1, p1]

γ = 0

A2x + G2y ≥ b2

γi ≤ xi, ∀i ∈ [1, p1]

γi ≤ (1− xi), ∀i ∈ [1, p1]

uG2 ≤ d2

− v1 = e

− v2 = e (MIBLPBp1×Rn1−p1

Rn2
-1)

A2x + G2y + Lλ1 ≤ Lem2
+ b2

u− Lλ1 ≤ 0

− γi + Lλ2
i ≤ Lep1

− xi, ∀i ∈ [1, p1]

v1
i − Lλ2

i ≤ 0 ∀i ∈ [1, p1]

− γi + Lλ3
i ≤ Lep1

− (1− xi), ∀i ∈ [1, p1]

v2
i − Lλ3

i ≤ 0 ∀i ∈ [1, p1]

− uG2 + Lµ ≤ −d2

y + Lµ ≤ Len2

x ∈ Rn1

+ , y ∈ Rn2

+ , u ∈ Rm2 , v1, v2 ∈ R
p1

+

λ1 ∈ Bm2, λ2, λ3 ∈ Bp1, µ ∈ Bn2 ,

for some large finite constantL > 0.

Proposition 3.18 (Audet et al. (1997)) Suppose the optimal value of(3.25) is bounded, and let

(x∗, y∗, γ∗) be a finite optimal solution. There exists a large finite constant L > 0 and u ∈
Rm2 , v1, v2 ∈ R

p1

+ , λ1 ∈ Bm2 , λ2, λ3 ∈ Bp1, µ ∈ Bn2, such that

(x∗, y∗, γ∗, u∗, v1∗ , v2∗ , λ1∗ , λ2∗ , λ3∗ , µ∗)

is an optimal solution of(MIBLPBp1×Rn1−p1

Rn2
-1). On the other hand, for such anL, if

(x∗, y∗, γ∗, u∗, v1∗ , v2∗ , λ1∗ , λ2∗ , λ3∗ , µ∗)
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is an optimal solution of(MIBLPBp1×Rn1−p1

Rn2
-1), then(x∗, y∗, γ∗) is an optimal solution of(3.25).

Combining the previous arguments yields the following result.

Theorem 3.19 LetX = Bp1×Rn1−p1 andY = Rn2. If (x∗, y∗) is an optimal solution of(MIBLP),

then there exists a large finite constantL > 0 and u ∈ Rm2 , v1, v2 ∈ R
p1

+ , λ1 ∈ Bm2 , λ2, λ3 ∈
Bp1, µ ∈ Bn2, such that

(x∗, y∗, γ∗, u∗, v1∗ , v2∗ , λ1∗ , λ2∗ , λ3∗ , µ∗)

is an optimal solution of(MIBLPBp1×Rn1−p1

Rn2
-1). On the other hand, for such anL, if

(x∗, y∗, γ∗, u∗, v1∗ , v2∗ , λ1∗ , λ2∗ , λ3∗ , µ∗)

is an optimal solution of(MIBLPBp1×Rn1−p1

Rn2
-1), then(x̂∗, ŷ∗) is an optimal solution of(MIBLP).

Audet et al.(2007) provide an alternative reformulation of the LPEC reformulation of BLP that is

convenient for disjunctive cut generation. This method is also applicable to MIBLPRn2 .

Disjunctive Reformulation for Continuous Lower-level Problems. Let

CCk(x, y, u) :=







uk(b
2 −G2y −A2x)k = 0 1 ≤ k ≤ m2,

yk−m2
(d2 − uG2) = 0 1 ≤ k −m2 ≤ n2.

Then, substitution yields the reformulation of (MIBLPRn2 -1):

min
x

c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2 (MIBLPRn2 -2)

uG2 ≤ d2

CCk(x, y, u) = 0, k = 1, 2, . . . ,m2 + n2

x ∈ X,u ∈ Rm2

+ , y ∈ Rn2

+ .

The reformulations (MIBLPB
p1×R

n1−p1

Rn2
-1) and (MIBLPRn2 -2) are straightforward applications of

methods borrowed from the BLP literature. Each is useful in its ability to solve bilevel programs

via direct methods, but both are limited by their reliance ona continuous lower-level problem. On

the other hand, the reformulation (MIBLP-1) can be applied to the general case, but may be limited

by computational difficulties in all but simple cases. Previously, we have alluded to the potential
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utility of the lower-level value function for MIBLP algorithm design. In the next section, we de-

scribe methods for approximating the value function, allowing us to enforce optimality conditions

indirectly, and yielding the foundations of a a solution framework.

3.2.4 Exact Solution Methods

Here, we describe algorithms based on iterative approximation methods for the lower-level value

function. We begin with an exact reformulation of the problem that would be possible if we knew

the full value function. However, since this will likely notbe the case for problems of interest, we

develop iterative methods that ensure lower-level optimality for a subset of upper-level solutions,

leading to algorithms that enforce a strong bound when necessary.

In the previous section, we used the optimality conditions on the lower-level problems to yield

single-level reformulations. Alternatively, we can use the lower-level value function to reformulate

the problem:

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2 (3.29)

d2y = zMILP (b2 −A2x)

x ∈ Z
p1

+ × Rn1−p1, y ∈ Z
p2

+ × R
n2−p2

+

where

zMILP (b2 −A2x) = min{d2y | G2 ≥ b2 −A2x, y ≥ 0, y ∈ Z
p2

+ ×R
n2−p2

+ }. (3.30)

As described previously, determining the structure of the value function is very difficult in general.

However, one may be able to discover enough of the structure to compute a function that approxi-

mates the value function. Next, we discuss method based on approximations of the value function.

The underlying idea of these methods is that, if we are able tofind strong approximations, we can

effectively represent the value function using a series of bounding functions. Algorithmically, we

begin with simple approximations, then iteratively improve them by generating new functions for

additional values of the right-hand side(b2−A2x). These methods can be seen as a way of enforcing

optimality conditions indirectly. First, we describe an upper-bounding method that can be applied

to the general MIBLP. Then, we describe a special case of the problem for which a lower-bounding

method can be used. Each of the algorithms presented are theoretical in nature and would require

additional research to be transformed into practical methods.

73



3.2. REFORMULATIONS AND EXACT SOLUTION METHODS

General MIBLP. One way to obtain upper bounds on the lower-level objective value is to consider

restrictionsof the problem. An obvious restriction of the lower-level problem results from fixing

the integer variables, yielding an LP with the value function:

zC(β) = min{d2
CyC | G2

CyC ≥ β, yC ≥ 0}. (3.31)

whereI = {1, . . . p2}, C = {p2 + 1, . . . , n2}. We assume throughout that the function (3.31)

is finite. This assumption can easily be relaxed, but requires a different method of obtaining a

restriction.

Theorem 3.20 (Guzelsoy(2009)) Let (x̂, yx̂) ∈ FI be a bilevel feasible solution to(MIBLP).

More precisely, letyx̂ be an optimal solution to the lower-level problem when the upper-level solu-

tion is fixed tox̂. Define the function

f x̂(v) = d2
Iy

x̂
I + zC(v −G2

Iy
x̂
I ). (3.32)

Then,f x̂ satisfiesf x̂(v) ≥ zIP (v) for all v ∈ Rm2 with f x̂(b2 − A2x̂) = zIP (b2 − A2x̂). Hence,

f x̂ is a strong upper-bounding function.

Suppose we knew the upper-bounding functionfx for some finite subsetJ ⊆ (PU ∩ X) of the

upper-level decisions. Then, we have a relaxation of (MIBLP):

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2 (3.33)

d2y ≤ f x̂(b2 −A2x), ∀x̂ ∈ J

x ∈ X, y ∈ Y.

This follows from inequality

zMILP (b2 −A2x) = min
x̂∈(PU∩X)

f x̂(b2 −A2x) ≤ min
x̂∈J

f x̂(b2 −A2x).

It is clear that if the setJ is large, the approximation quickly becomes unmanageable.However,

we expect only a small subset of the constraints to be bindingat optimality. This is similar to the

rationale that supports Benders’ Reformulation for MILP. Next, we consider methods based on this

intuition that employ these bounds as they are needed. In order to derive these methods, we utilize

reformulations of (3.33) that result from the extreme point form of the LP value function.
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Before proceeding, however, we note that ifY = Rn2, the bound (3.32) reduces to

f x̂(v) = zC(v), (3.34)

which is the value function of the lower-level LP. Thus, we can rewrite the inequality

d2y ≤ min
x̂∈J

f x̂(b2 −A2x).

as

d2y ≤ max
ρ∈R
{ρ(b2 −A2x)},

since the setR is the same for allx ∈ J . We now return to the general case,y ∈ Y , and consider

alternative methods for utilizing the approximations.

One way we can use the value function approximations is to obtain disjunctions to be used in

branch-and-cut framework. Consider the upper-bounding function for somêx ∈ (PU ∩X), and the

corresponding optimal lower-level solutionyx̂:

f x̂(v) = d2
Iy

x̂
I + zC(v −G2

Iy
x̂
I ), (3.35)

wherezC is defined as above. Recall thatzC can be written

zC(β) = max
ρ∈R
{ρβ}, (3.36)

whereR is the set of extreme points of the dual polyhedron

{u ∈ Rm2 | uG2
C ≤ d2

C , u ≥ 0}. (3.37)

For fixedx̂ ∈ (PU ∩X), the upper-bounding function obtained by Theorem3.20is

f x̂(v) = d2
Iy

x̂
I + max

ρ∈R

{(

ρ(v −G2
Iy

x̂
I

)}

,

whereyx̂ ∈ argmin{d2y | y ∈ SL(x̂) ∩ Y } is the lower-level solution obtained during the bilevel

feasibility check. For eachρ ∈ R, we define

Λρ =
{

v ∈ Rm2 | f(v) = d2
Iy

x̂
I + ρ

(

v −G2
Iy

x̂
I

)}

.

In other words,Λρ is the set of right-hand-sides for whichρ is the optimal dual solution of the

continuous relaxation of the lower-level problem withyI = yx̂
I . Then, we have a disjunction of the
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form:

{

v ∈ Λ1

d2y ≤ d2
Iy

x̂
I + ρ

(

v −G2
Iy

x̂
I

)

}

∨

· · ·
∨

{

v ∈ ΛR

d2y ≤ d2
Iy

x̂
I + ρ

(

v −G2
Iy

x̂
I

)

}

,

whereR = {ρ1, . . . ρR}. This disjunction can which can be used in a branching scheme, or cut

generation routine to separate the integer bilevel infeasible point(x̂, ŷ) ∈ ΩI . In theory, this dis-

junction can be applied to yield a branch-and-cut algorithmfor solving (MIBLP). However, devel-

oping practical methods for branching or cut generation over a disjunction of this form remains an

open question.

Another way to use the upper-bounding functions is to solve relaxations of (3.33), derived by drop-

ping the bounding function for some (or all)x ∈ (PU∩X), and iteratively adding constraints as they

are found to be violated. Such a method is described next. We demonstrate this method using the

upper-bounding function obtained by applying Theorem3.20, but note that any appropriate strong

upper-approximation will suffice. In particular, alternative methods for restricting the lower-level

problem will yield different approximations which can replace or augment the approximation used

here.

Let J ⊆ (PU ∩X) be some finite set of feasible upper-level decisions. As described above, for each

J ⊆ (PU ∩X), we have a relaxation of (MIBLP):

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2 (3.38)

d2y ≤ f x̂(b2 −A2x) ∀x̂ ∈ J

x ∈ X, y ∈ Y.

We refer to (3.38) as themaster problem. Since the approximation is strong, we are guaranteed that

the constraint for̂x ∈ J

d2y ≤ f x̂(b2 −A2x) (3.39)

will be tight for somex ∈ J . In particular, this constraint will be binding at the lower-level RHS

(b2 −A2x̂) for which it was obtained. Thus, for any upper-level solution x̂ ∈ J , we are guaranteed

to satisfy the original constraint

d2y = zMILP (b2 −A2x̂).
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This, in turn, ensures satisfaction of the conditiony ∈ M I(x̂) and, thus, that bilevel feasibility

conditions are met. Because (3.38) is a relaxation of (3.33) and, thus, of (MIBLP), solutions to

(3.38) are optimal for (MIBLP), if they are feasible. A iterative approximation algorithm using this

relaxation is summarized in Algorithm3.1.

Algorithm 3.1 Iterative Upper Approximation

1: Initialization. SetJ1 = ∅ andt← 1.
2: Iteration t. Solve (3.38) with J = J t to obtain(xt, yt). Setx = xt and solve the lower-level

problem, for fixedx.

(i) If d2yt = zMILP (b2 −A2xt), stop.(xt, yt) is an optimal solution.

(ii) If d2yt > zMILP (b2−A2xt), apply Theorem3.20with x = xt to obtain upper-bounding
functionf t. SetJ t+1 = J t ∪ {t} andt← t + 1.

Algorithm 3.1 outlines a procedure for iteratively improving the value function approximation.

However, (3.38) contains a piecewise linear constraint and, thus, cannot be solved by traditional

methods. However, it is possible to reformulate this problem, as we see next.

Let yx̂ denote the optimal lower-level solution obtained for the RHSb2 −A2x̂ and

δx̂
ρ̂ =







1 ρ̂ ∈ argmaxρ∈R{ρ(b2 −A2x̂)}

0 otherwise,

for fixed x̂ ∈ (PU ∩X). Note we can model constraint (3.39) with the system:

d2y ≤ d2
Iy

x̂
I + zx̂ (3.40)

zx̂ ≥ ρ(b2 −A2x−G2
Iy

x̂
I ), ∀ρ ∈ R (3.41)

zx̂ ≤M x̂
ρ (1− δx̂

ρ ) + ρ(b2 −A2x−G2
Iy

x̂
I ), ∀ρ ∈ R (3.42)

∑

ρ∈R

δx̂
ρ = 1 (3.43)

δx̂
ρ ∈ B, ∀ρ ∈ R, (3.44)

where

M x̂
ρ ≥ max

x∈(PU∩X)
{ρ(b2 −A2x−G2

Iy
x̂
I )}, ρ ∈ R,

or some other suitable upper bound. This follows from the fact that (3.42) enforces

zx̂ ≤ ρ(b2 −A2x−G2
Iy

x̂
I ),
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if δx̂
ρ = 1, (3.43) ensures that will be the case for someρ, for all x̂ ∈ J , and (3.41) forceszx̂ to be at

least as large asmaxρ∈R{ρ(b2 − A2x̂−G2
Iy

x̂
I )}. Thus, equality will hold for at least oneρx̂ ∈ R,

and must hold for that which achieves the maximum.

Thus, we can rewrite (3.38) as:

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2 (3.45)

d2y ≤ d2
Iy

x̂
I + zx̂, ∀x̂ ∈ J

zx̂ ≥ ρ(b2 −A2x−G2
Iy

x̂
I ), ∀x̂ ∈ J, ρ ∈ R

zx̂ ≤M x̂
ρ (1− δx̂

ρ ) + ρ(b2 −A2x−G2
Iy

x̂
I ), ∀x̂ ∈ J, ρ ∈ R

∑

ρ∈R

δx̂
ρ = 1, ∀x̂ ∈ J

x ∈ X, y ∈ Y, δx̂
ρ ∈ B,∀x̂ ∈ J, ρ ∈ R.

Note that to solve this subproblem, as written, one would need to generate all extreme points of

the dual polyhedron, a problem known as thevertex enumeration problem. A survey of existing

methods and complexity can be found inAvis et al. (1997). One promising algorithm is that of

Avis and Fukuda(1992), which has several advantages. Namely, the algorithm requires very little

storage space above that required to represent the dual polyhedron, does not produce duplicate

vertices, and has a running time that is polynomial in the size of the dual polyhedron. Of course,

the vertex enumeration problem difficult, in general, and its complexity is largely dependent on the

nature of the polyhedron (see, e.g.,Fukuda et al., 1997; Bussieck and Lübbecke, 1998; Goodman

and O’Rourke, 2004). However, substituting anyR′ ⊆ R in (3.45) yields a relaxation of the

original problem. Thus, algorithmically, we can initialize with someR′ ⊆ R, and apply a constraint

generation algorithm to solve the subproblem.

Single Constraint in the Lower Level. In this section, we consider the special case of (MIBLP)

in which the lower-level problem contains only a single equality constraint. That is, for fixed̂x, the

lower-level problem is that of determining

min{d2y | g2y = b2 − a2x, y ≥ 0, y ∈ Y }. (3.46)

Let

ηC = min

{

d2
i

g2
i

| g2
i > 0, i ∈ [p2 + 1, n2]

}

and ζC = max

{

d2
i

g2
i

| g2
i < 0, i ∈ [p2 + 1, n2]

}

.
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zL(v)

0
v

→ ζC

→ ηC

Figure 3.6: An upper-bounding function forzMILP .

Then, in this case, we have the following closed form of the upper-bounding function:

f(b2 − a2x) = min
{

d2
CyC | g2

CyC = b2 − a2x, yC ≥ 0
}

=







ηC(b2 − a2x), if b2 − a2x ≥ 0

ζC(b2 − a2x), if b2 − a2x < 0.

This bound is a special case of Theorem3.20, and effectively just the maximal subadditive extension

of the value functioncarried to the right-hand-sideG2
Iy

∗
I (Guzelsoy, 2009). The bounding function

is illustrated in Figure3.6.

In this case, the lower-level value function is defined as:

zMILP (b2 − a2x) = min
y∈SL(v)

d2y

whereSL(v) = {y ∈ Z
p2

+ × R
n2−p2

+ | g2y = v}. We can apply the results ofGuzelsoy and Ralphs

(2006) to find the structure of our value function and derive disjunctions valid for MIBLPs.

In general,zMILP is piecewise-linear and can be written as the value functionof a pure integer pro-

gram and an appropriate linear correction term (see Theorem3.11). Guzelsoy and Ralphs(2006)

show how to apply this property to MILPs with a single equality constraint, to more fully character-

ize zMILP . Let ηC andζC be defined as above andt+, t− ∈ C be such

ηC =
d2

t+

gt+
if ηC <∞,
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and

ζC =
d2

t−

gt−
if ζC > −∞,

respectively. Also, letT = {t+ | ηC <∞} ∪ {t− | ζC > −∞}.

Proposition 3.21 (Guzelsoy and Ralphs(2006)) Let

f(v) = min{d2
IyI + d2

T yT | g2
I + g2

T yT = v, yI ∈ ZI
+, yT ∈ RT

+},

whereI = N \ C. Thenf(v) = zMILP (v) for all v ∈ R.

This result implies sufficiency of the two continuous variables to describezMILP , and is used to

simplify theJeroslow Formula.

Let M ∈ Z+ be such that for anyt ∈ T ,
Mg2

j

g2
t

∈ Z, for all j ∈ I (which exists by rationality ofg2).

Also, let

h(q) = min d2
IyI +

1

M
d2

T yT + z(φ)w

s.t g2
IyI +

1

M
g2
T yT + φw = q

yI ∈ ZI
+, yT ∈ ZT

+, w ∈ Z+

for all q ∈ R, whereφ = − 1
M

∑

t∈T g2
t . Finally, for t ∈ T , define

ω(v) = h(⌊v⌋t) +
d2

t

g2
t

(v − ⌊v⌋t)

for all v ∈ R, where⌊v⌋t =
g2

t

M
⌊Mv

g2
t
⌋. Guzelsoy and Ralphs(2006) apply Theorem3.11, to obtain

zMILP (v) = min
t∈T

ωt(v), ∀v ∈ R, (3.47)

which yields the result thatzMILP can be described by a finite number of linear segments which

coincides with eitherωt+ or ωt− , and whose slope is eitherηC or ζC .

Figure3.7 illustrates the structure of the value function for the single-constraint case. With knowl-

edge of this special structure, we can derive bounds on the value of the lower-level objective func-

tion as the upper-level solution varies. As stated earlier,for each solution(x̂, ŷ) to (LR), we may

check for bilevel feasibility by solving the lower-level problem with a fixed upper level solution.

Each bilevel feasibility check yields a bilevel feasible pair (x̂, y∗), wherey∗ ∈ argmin{d2y | y ∈
PL(x̂)∩ Y }. In other words, each bilevel feasibility check yields the value ofzMILP (b2 −A2x̂) =

d2y∗, wherezMILP is the value function of the lower-level problem. Because the value function is
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→ ζC

0
v

z(v)

→ ηC

Figure 3.7: The value function of a MILP.

f(v̂, ζC)

0
v

v̂

f(v̂, ηC)

Figure 3.8: Linear bounding functions for the value function.

piecewise linear with segments whose gradients alternate between two values, we can extend this

information to determine the equation of the line on which the bilevel feasible point lies.

Let v̂ = b2 − a2x̂ and consider the affine functionsf(v̂, ηC)} andf(v̂, ζC) illustrated in Figure3.8

with slopesηC andζC , respectively, and each passing through the point(v̂, zMILP (v̂)). From the

figure, it is easy to see that, for anyv ≤ v̂,

zMILP (v) ≤ max{f(v̂, ηC), f(v̂, ζC)} = f(v̂, ζC).

Similarly, for anyv ≥ v̂,

zMILP (v) ≤ max{f(v̂, ηC), f(v̂, ζC)} = f(v̂, ηC),

wheref(v̂, ζC) = ζC v̂ + zMILP (v̂) andf(v̂, ηC) = ηC v̂ + zMILP (v̂). Thus, if(x̂, ŷ) ∈ (X × Y )

is a solution to (LR) such that̂y 6∈M I(x̂) (i.e.,(x̂, ŷ) is not bilevel feasible), then after substitution,

81



3.2. REFORMULATIONS AND EXACT SOLUTION METHODS

we obtain the valid disjunction

a2x ≥ a2x̂

ζCa2x + d2y ≤ ζCa2x̂ + d2y∗
OR

a2x ≤ a2x̂

ηCa2x + d2y ≤ ηCa2x̂ + d2y∗,

which is violated by(x̂, ŷ), but satisfied by all members ofFI . This disjunction can be used directly

as a branching rule to to be applied whenever solutions(x̂, ŷ) ∈ (X×Y ) to (LR) that are not bilevel

feasible.

Alternatively, we can use this disjunction to generate a disjunctive cut by considering the two poly-

hedra, denotedP1 andP2, that result if we combine this disjunction with the original set of con-

straints inΩ:

P1 =



































A1x ≥ b1

a2x + g2y = b2

a2x ≥ a2x̂

−ζCa2x− d2y ≥ −ζCa2x̂− d2y∗

x, y ≥ 0



































and

P2 =



































A1x ≥ b1

a2x + g2y = b2

−a2x ≥ −a2x̂

−ηCa2x− d2y ≥ −ηCa2x̂− d2y∗

x, y ≥ 0.



































It is well-known that if(ui, vi, wi, zi) are multipliers for the constraints describing polyhedronPi,

then the following inequalities are valid forP1 andP2, respectively:

u1A1x + v1a2x + w1a2x− z1ζCa2x + v1g2y − z1d2y ≥
u1b1 + v1b2 + w1a2x̂− z1(ζCa2x̂ + d2y∗)

u2A1x + v2a2x− w2a2x− z2ηCa2x + v2g2y − z2d2y ≥
u2b1 + v2b2 − w2a2x̂− z2(ηCa2x̂ + d2y∗).

Given inequalitiesπ1
1x + π1

2y ≥ π1
0 andπ2

1x + π2
2y ≥ π2

0 valid for P1 andP2, the disjunctive

procedure constructs an inequalityαx + βy ≥ γ that is valid forconv(P1 ∪P2) by selectingα, β,

andγ such that

α ≥ max{π1
1 , π

2
1}, β ≥ max{π1

2 , π
2
2}, and γ ≤ min{π1

0 , π
2
0}.

It is then possible to formulate a linear program that will generate the most-violated valid inequality
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that can be derived from a given disjunction, as in the well-known lift-and-project algorithm studied

by Balas et al.(1993), Balas et al.(1996), Balas and Perregaard(2003), andCornuéjols(2008), and

based on the earlier work ofBalas(1979).

This linear program, the so-calledcut generation LP, is given by:

min αx̂ + βŷ − γ

s.t. α− u1A1 − v1a2 − w1a2 + z1ζCa2 ≥ 0

α− u2A1 − v2a2 + w2a2 + z2ηCa2 ≥ 0

β − v1g2 + z1d2 ≥ 0

β − v2g2 + z2d2 ≥ 0 (3.48)

γ − u1b1 − v1b2 − w1a2x̂ + z1(ζCa2x̂− d2y∗) ≤ 0

γ − u2b1 − v2b2 + w2a2x̂ + z2(ηCa2x̂− d2y∗) ≤ 0

m1
∑

i=1

u1
i + v1 + w1 + z1 +

m1
∑

i=1

u2
i + v2 + w2 + z2 = 1

u1, u2, v1, v2, w1, w2, z1, z2 ≥ 0.

Recourse Problems. An interesting special case of (MIBLP) arises when the upper-level objec-

tive depends only on the value of the lower-level problem. These problems are referred to asobjec-

tive value problems, or recourse problems. Continuous recourse problems are studied inShimizu

et al.(1997) andPatriksson and Wynter(1997), but the treatment of the integer version appears to

be limited to the related work in the stochastic programmingliterature (see, e.g.,Caroe and Tind,

1998; Kong et al., 2006).

Formally, we define the recourse version of MIBLP as:

min
(x,y)∈FI

c1x + az(x), (3.49)

wherez(x) is the optimal value of the lower-level problem for fixedx anda is a nonnegative scalar.

Intuitively, on might expect this version of the problem to be easier to solve than the general case,

because the objectives of the upper- and lower-level DMs in agreement. Further, problems of the

form (3.49) do not require a lower-level solutiony ∈ Y , but rather only itsvalue, to evaluate the

upper-level objective. Because of the special structure ofthese problems, we are able to develop

more compact single-level reformulations and effective algorithms. In this section, we consider

the case of (3.49) wherea = 1, which is precisely MIBLP withd1 = d2. Before addressing this

problem in detail, however, we first describe a general method of bounding the MILP value function

from below.
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zMILP (v)

0
v

Figure 3.9: A lower-approximation of the value functionzMILP .

The bound described next is particularly convenient because it is generated as a natural by-product

of the bilevel feasibility check. In particular, if we use branch and bound to solve the lower-level

problem, for fixed upper-level solutionx ∈ X, we obtain the bound directly from the resulting

search tree. A similar bound results if the lower-level problem is solved with branch and cut, rather

than branch and bound, but the analogous results require theassumption that a subadditive repre-

sentation is known for each cut generated. In practice, thisis generally not the case. Further, it

makes the exposition quite a bit more complicated. The reader is referred toGuzelsoy and Ralphs

(2007) for more details on the branch-and-cut case.

Suppose the lower-level MILP (3.19) has a finite optimum and has been solved to optimality by

branch and bound for somêx ∈ (PU ∩ X). Let T be the set of feasibly pruned leaf nodes of the

resulting tree and let̂wx̂
t = (wx̂

t , wx̂
t , wx̂

t ) be the solution of the dual of the LP relaxation at leaft

(i.e. that which allowed us to prune the node). Then, we have the following.

Theorem 3.22 (Guzelsoy and Ralphs(2007)) If we define the function

F x̂(v) = min
t∈T

wx̂
t v + wx̂

t ℓx̂
t − wx̂

t ux̂
t , (3.50)

thenF x̂(b2 −A2x̂) = zMILP (b2 −A2x̂), whereux̂
t , ℓx̂

t ∈ Zn2 are the branching bounds applied to

the integer variables in the LP relaxation att.

F x̂ is, in fact, an optimal dual solution to a particular dual of (3.19) (Guzelsoy and Ralphs, 2007).

The bounding function is illustrated in Figure3.9. It is clear that changing the right-hand-side of

the primal problem does not affect the constraints of the dual problem. Thus, any function that is

optimal for the dual problem associated with a particular right-hand-side remains feasible for all
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other right-hand-sides. Further, by weak duality, the objective value of the dual problem evaluated

at any feasible solution yields a lower bound on the primal problem. In other words,F x̂ satisfies

F x̂(v) ≤ zMILP (v) for all v = b2−A2x such thatS(x) 6= ∅. We can derive a global approximation

by taking the maximum over a set of such lower-bounding functions. Suppose we knew the lower-

bounding functionF x̂ for all x̂ ∈ (PU ∩X). Then, in theory, we could rewrite (MIBLP) as:

min c1x + d1y

subject to A1x ≥ b1

A2x + G2y ≥ b2 (3.51)

d2y = max
x̂∈(PU∩X)

F x̂(b2 −A2x)

x ∈ X, y ∈ Y.

While such a reformulation may be of theoretical interest, it does not appear to offer any immediate

assistance in the way of computation. Obtaining all such functionsF x̂, requires solving the lower-

level problem for allx ∈ (PU ∩ X), which already provides the solution to the original problem.

Further, there is no obvious way to form a useful relaxation of (3.51), since we require equality in the

optimality constraint, thus constraint generation methods are not immediately applicable. However,

this reformulation method may be useful for special cases ofthe general MIBLP. For example, if

the lower-level problem is an LP, (3.50) reduces to

F x̂(v) = wx̂v, (3.52)

since the problem will be solved at the root node. Note that, sincewx̂ is the optimal dual solution

for the RHSv, (3.52) is simply the value function of the lower-level LP. After demonstrating how

the reformulation (3.51) can be simplified for general recourse problems, we use thisknowledge to

reduce the problem even further for problems with continuous lower-level variables.

When we require only the value of the lower-level objective,rather than the actual lower-level

solution, (3.51) reduces to:

min c1x + θ

subject to A1x ≥ b1

θ ≥ F x̂(b2 −A2x), ∀x̂ ∈ PU ∩X (3.53)

x ∈ X.

Note that, in this formulation, we have dropped the lower-level constraints and the requirement

of equality for the bounding constraint. We are able to drop the lower-level constraints because
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we do not require the lower-level solutiony explicitly, and have assumed thatS(x) 6= ∅, for all

x ∈ X. This assumption could easily be relaxed, since lower-level feasibility will necessarily be

checked during each bilevel feasibility check, but would require the addition of a feasibility cut to

the algorithm below.

On the other hand, we are able to relax the bounding conditionbecause it will be satisfied at op-

timality. Suppose(x∗, θ∗) is optimal for (3.53). To satisfy the original constraint, we require the

constraint

θ∗ ≥ max
x̂∈PU∩X

F x̂(b2 −A2x∗)

to be tight. Suppose this was not the case, and

θ∗ > F x̂(b2 −A2x∗), ∀x̂ ∈ PU ∩X.

This contradicts the optimality of(x∗, θ∗) since, certainly, setting

θ = max
x̂∈PU∩X

F x̂(b2 −A2x∗)

would yield a better upper-level objective value. By Theorem 3.22, we have

zMILP (b2 −A2x∗) = F x∗
(b2 −A2x∗),

because the lower bound is guaranteed to be tight for the RHS for which it was obtained. Thus, at

optimality,

zMILP (b2 −A2x∗) = max
x̂∈(PU∩X)

F x̂(b2 −A2x∗),

as originally required.

As written, (3.53) still requires a bound for each upper-level solutionx̄ ∈ (PU ∩ X). However,

this formulation naturally lends itself to a constraint generation algorithm, starting with the obvious

relaxation that arises by substituting a subsetJ ⊆ (PU ∩X):

min c1x + θ

subject to A1x ≥ b1

θ ≥ F x̂(b2 −A2x), ∀x̂ ∈ J (3.54)

x ∈ X.

An algorithm then proceeds as follows. For each solution(x̄, θ̄) to themaster problem(3.54), we
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perform the standard bilevel feasibility check by solving the lower-level problem

zMILP (b2 −A2x̄) = min
y∈S(x̄)∩Y

d2y.

If θ̄ ≥ zMILP (b2−A2x̄), we have found an optimal solution, else we add a cut of the form described

in Theorem3.22and iterate. This constraint generation algorithm is similar to the well-known Ben-

ders’ decomposition algorithm for LP and the recent decomposition algorithms for stochastic pro-

grams with integer recourse (Caroe and Tind, 1998; Kong et al., 2006). The method is summarized

in Algorithm 3.2.

Algorithm 3.2 Iterative Lower Approximation

1: Initialization. SetJ1 = ∅ andt← 1.
2: Iteration t. Solve (3.54) with J = J t to obtain(xt, θt). Setx = xt and solve the lower-level

problem, for fixedx.

(i) If θt ≥ zMILP (b2 −A2xt), stop.(xt, θt) is an optimal solution.

(ii) If θt < zMILP (b2 − A2xt), apply Theorem3.22with x = xt to obtain lower-bounding
functionF t. SetJ t+1 = J t ∪ {t} andt← t + 1.

Note that, dropping the assumption of lower-level feasibility would require a third condition in

Step2 of Algorithm 3.2 to cover the possibility of infeasibility. However, the algorithm would

proceed in a similar manner and, if infeasibility was detected, the required feasibility cut would be

immediately available from the lower-level dual information.

As we alluded to when describing the lower-bounding method,an even further simplification is

possible whenY = Rn2 . Suppose this is the case and that the lower-level dual feasible set{u ∈
Rm2 | uG2 ≤ d2} is a polytope. Recall that the LP value function can be written as:

zLP (v) = max
ρ∈R
{ρv}, ∀v ∈ R

m2

+ , (3.55)

whereR is the set of extreme points of the lower-level dual feasibleset. Using this form of the

value function allows us to define the LP analog of (3.53):

min c1x + θ

subject to A1x ≥ b1

θ ≥ ρ(b2 −A2x),∀ρ ∈ R (3.56)

x ∈ X.

Note that substituting anyR′ ⊆ R in (3.56) yields a relaxation. Thus, algorithmically, we can
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MIBLP

MIPINT

LP

BLP

MILP

IBLP

BIBLP

ILP

BLP(d1 = 0)

MIBLP(d1 = 0)

MIBLPRn2

Figure 3.10: Relationships between integer problems.

initialize with someR′ ⊆ R, and iteratively improve our approximation, in a manner similar to the

L-shaped Methodof Slyke and Wets(1969), using the same general method as that described in

Algorithm 3.2.

We have examined several different methods of reformulating MIBLPs, with the intent of discover-

ing relationships among the problem subclasses and determining which variants may be approach-

able via direct methods. The relationships we have discovered are illustrated in Figure3.10. Note

that the relationships shown in the figure are not meant to delineate among complexity classes, but

rather show equivalence between variants of MIBLP and knownproblem classes. While some of

the cases discussed above may be suitable for exact solutionmethods, it is likely that such difficult

problems are more effectively tackled by heuristic methods, especially as the problem dimension

grows. In the following section, we introduced two such methods.

3.3 Heuristic Methods

It should be clear from our discussions of the computationaldifficulties of solving MIBLPs and

MIBLP complexity, that solving the general problem to optimality will be a challenge for problems

88



3.3. HEURISTIC METHODS

of interesting size. As an alternative to the development ofexact solution methods, we introduce

two heuristic methods that can be used to arrive a good solutions in reasonable computing time.

Both heuristic methods described in this section are based in an attempt to balance the upper- and

lower-objectives, which can be seen as a balance between optimality and feasibility.

3.3.1 Efficient Solutions

In Chapter2, we presented several heuristics and, during this presentation, discussed the need to

balance feasibility and optimality. In essence, we must achieve a balance between the quality of the

solutions, with respect to the upper-level objective, and satisfaction of the constrainty ∈M I(x). In

contrast to the heuristic methods of Chapter2, this method attempts to obtain this balance directly,

rather than adjusting solutions that favor one condition orthe other. To accomplish this, we borrow

technology from the multicriteria programming literatureto generate feasible solutions derived from

efficient solutions to a related multicriteria program:

vmin(x,y)∈ΩI [c1x + d1y, d2y]. (3.57)

As described in Chapter1, the goal of (3.57) is to generate solutions(x̂, ŷ) that are nondominated,

or efficient, with the following properties:

• There is no other(x, y) ∈ ΩI such that

c1x + d1y ≤ c1x̂ + d1ŷ and d2y ≤ d2ŷ.

• At least one of

c1x + d1y < c1x̂ + d1ŷ or d2y < d2ŷ

holds.

Because solutions to (3.57) are efficient, they are good candidates for providing a balance between

the conditions discussed above.

In our implementation, we find efficient solutions to (3.57) using the weighted-sum subproblem

(Geoffrion, 1968):

min
(x,y)∈ΩI

δ(c1x + d1y) + (1− δ)d2y, (3.58)

for 0 ≤ δ ≤ 1. Recall that solutions to (3.58) for fixed δ are guaranteed to be efficient, but the

converse does not hold. However, for the purposes of a heuristic method, generating a portion of

the efficient set is sufficient.
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Let P (δ) denote the subproblem defined by (3.57) with the objective replaced by

f = δf1 + (1− δ)f2,

wheref1 = c1 + d1y andf2 = d2y, as in (3.58). Let π = (x, y)δ denote a solution toP (δ). The

outcome ofP (δ) is defined as:

zδ = f(πδ) = (f1(π
δ), f2(π

δ)).

Let

δpq =
z∗2 − zq

2

y∗1 − zp
1 + z∗2 − zq

2

, (3.59)

andN be the cardinality of the set of efficient solutions. We callz∗ = (z1, zN ) the ideal point. We

can then use Algorithm3.3 to generate a set of efficient solutions to (3.57). Each member ofL is

Algorithm 3.3 Weighted Sums

1: SolveP (1) andP (0) to identify optimal outcomesz1 andzN , respectively, andz∗ = (z1, zN ).
SetI = {(z1, zN )} andL = {(π1, z1, ), (πN , zN )}.

2: While I 6= ∅ do:

• Remove any(zp, zq) from I.

• Computeδpq as in (3.59) and solveP (δpq). If the outcome iszp or zq, thenzp andzq are
adjacent in the list(z1, z2, . . . , zN ).

• Otherwise, a new outcomezr is generated. Add(πr, zr) toL. Add (zp, zr) and(zr, zq)
to I.

a potential candidate for a good bilevel feasible solution.However, we must take one more step to

ensure feasibility for (MIBLP). As in our standard bilevel feasibility check, for eachπr ∈ L, we

fix the upper-level portion of the solutionxr and solve the resulting lower-level problem to obtain

yr∗ . Combiningxr andyr∗ yields a bilevel feasible solution to the original problem.In practice,

we select from among these feasible solutions that which hasthe lowest upper-level solution value.

The heuristic methods discussed in Chapter2 are primarily meant to be embedded in another algo-

rithmic framework, such as branch and cut, in order to improve its speed. This method can also be

used in the same manner. However, it can also be implemented as a stand-alone heuristic algorithm.

One major advantage to this algorithm is its applicability to nonlinear problems. Solutions to (3.58)

are still guaranteed to be efficient if the objective functions and constraints are nonlinear (Eswaran

et al., 1986; Geoffrion, 1968). Thus, this algorithm can be used to find feasible solutionsto mixed

integer bilevelnonlinear programs (MIBNPs). One such problem is discussed in Chapter5. We

demonstrate the effectiveness of the heuristic in Section3.4.
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3.3.2 Stationary Point Heuristic

Rather than attempting to balance optimality and feasibility by a combined objective function, we

can instead construct solutions composed of upper- and lower-level solutions of high quality with

respect to their individual objective functions. We have seen that solutions to the underlying MILP

are typically infeasible, due to their suboptimality with respect to the resulting lower-level problem.

On the other hand, solutions found by optimizing with respect to the lower-level objectived2y over

ΩI are unlikely optimal for the original (upper-level) objective. Thus, we introduce a heuristic

aimed at finding an equilibrium between the dual objectives,by combining upper-and lower-level

solution components and iterating until we find a solution which cannot be improved with respect

to either objective.

Recall the lower-level problem, for fixedx ∈ X:

zLL(x) = min
y∈S(x)

d2y. (3.60)

In a similar manner, we can define theconstrained upper-level problem, for fixedy ∈ Y :

min c1x + d1y

subject to A1x ≥ b1

A2x ≥ b2 −G2y (3.61)

x ∈ X.

The main idea of the heuristic is to alternate between solutions to (3.60) and (3.61) until we arrive

at a solution(x̂, ŷ) to (3.61) that is optimal for (3.60), with x = x̂. The heuristic is summarized in

Algorithm 3.4.

Algorithm 3.4 Stationary Point Heuristic
1: Initialization. Solve

min
(x,y)∈ΩI

c1x + d2y

to obtain an initial solution(x0, y0). Setx = x0 and solve (3.60), for fixedx, to obtainy∗
0

. If
zLL(x0) = d2y0, terminate with optimal solution(x0, y0), else fixy1 = y∗

1

and sett← 1.
2: Iteration t. Solve (3.61) with y = yt to obtain(xt, yt). Setx = xt and solve (3.60), for fixed

x, to obtainy∗
t
.

(i) If d2yt = zLL(xt), stop.(xt, yt) is an optimal solution.

(ii) If d2yt > zLL(xt), fix yt+1 = y∗
t
. Sett← t + 1.
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3.4 Computational Results

In this section, we examine the performance of our heuristicmethods on the problem classes de-

scribed in Chapter2. In order to provide some insight into the quality of the solutions generated,

we compare the objective values found by the heuristics to the lower bound provided by solving the

underlying MILP:

min
(x,y)∈ΩI

c1x + d1y,

as well as upper bounds on the optimal solution value derivedfrom simple heuristic methods. The

first of these upper bounds is obtained by simply fixing the upper-level portion of a solution to

(3.4) and solving the lower-level problem. We get our second feasible solution by optimizing over

ΩI with respect to the lower-level objective function, just asin the Lower-level Priority Heuristic

described in Section2.2.1. In the tables below, these bounds are denotedMILP Bound, Easy Bound,

and Lower Obj. Bound, respectively. The results from the Weighed Sums Heuristicare shown

Table3.1 and those from the Stationary Point Heuristic are in Table3.2. All computational tests

were performed on an AMD Opteron Processor 6128 with 32GB of memory.

Of the instances tested, the average gap between the Weighted Sums objective value and that of the

underlying MILP is approximately 45%, while the improvement over the best objective obtained

by the simple heuristics is approximately 41%. For the Stationary Point Heuristic, the average gap

over the MILP bound and the improvement over the simple heuristics was found to be approximately

54% and 10%, respectively. These results seem to imply that the Weighted Sums Heuristic performs

better, especially when one considers the negligible difference in computation time. However, for

larger instances, the required computational effort may bea larger consideration. In this case, one

may prefer to use the Stationary Point Heuristic, as it required roughly half the computation time,

on average.

We also compared the objective values found by the Weighted Sums and Stationary Point methods to

the best known value obtained by our solver, MibS. A full comparison is shown in Table3.3, where

the minimum value obtained by the heuristic methods is in bold. From the table, we can see that the

best objective value obtained by MibS is always less than that obtained by the heuristic methods.

However, in 11 of the 50 instances tested, at least one of the heuristics performs just as well as

MibS. The average increase in objective value over the best known MibS solution, hereafterMibS

gap, is approximately 34%, but in 24 out of 50 instances the MibS gap is less than 10%, suggesting

that a large amount of computational effort can be avoided, with fairly minimal solution quality

detriment. These results demonstrate that the heuristic methods find reasonably good solutions with

very little computational effort.

From Table3.3, we can also see that that Weighted Sums Heuristic obtained alower objective value
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than that of the Stationary Point Heuristic in 25 instances,while the reverse was true only 6 times.

Further, for those instances in which the Weighted Sums Heuristic performed better, it tended to

beat the Stationary Point Heuristic by approximately 74%, on average. On the other hand, when the

Stationary Point Heuristic yielded the better solution, itwas only about 2% better than the Weighted

Sums solution, on average.

The performance profiles (Dolan and Moré, 2002) for the MibS gap are shown in Figure3.11. The

results were altered slightly, to improve the effectiveness of the presentation. First, each MibS gap

was increased by a smallǫ, to ensure that the gaps of zero would be handled accurately.Second,

all instances for which the heuristics obtained equal objectives were removed from the performance

profile, to provide a better comparison on those instances for which their performance differs. From

the figure, we can see that the Weighted Sums Heuristic resulted in a smaller MibS gap in 80% of

the instances, and clearly dominates the Stationary Point Heuristic, with respect to solution quality,

on our test set.

STATIONARY_POINT

 0.2

 0.4

 0.6

 0.8

 1

 1  4  16  64  256  1024

WEIGHTED_SUMS

 0

Figure 3.11: Performance Profiles for the two heuristic methods.
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Instance CPU (s) No. Subproblems Weighted Sums Obj. MILP Bound Easy Bound Lower Obj. Bound
miblp-20-20-50-0110-5-1 2.92 23 -502.0 -642.0 -502.0 358.0
miblp-20-20-50-0110-5-2 1.33 15 -460.0 -863.0 -405.0 -67.0
miblp-20-20-50-0110-5-3 1.06 13 -477.0 -477.0 -477.0 60.0
miblp-20-20-50-0110-5-4 0.94 5 -753.0 -753.0 -753.0 -560.0
miblp-20-20-50-0110-5-5 1.17 15 -392.0 -392.0 -392.0 -75.0
miblp-20-20-50-0110-5-6 5.18 23 -1061.0 -1166.0 -938.0 -40.0
miblp-20-20-50-0110-5-7 0.93 17 -547.0 -551.0 -502.0 635.0
miblp-20-20-50-0110-5-8 4.23 19 -936.0 -936.0 -936.0 156.0
miblp-20-20-50-0110-5-9 0.64 13 -689.0 -889.0 -689.0 -339.0
miblp-20-20-50-0110-5-10 1.5 15 -290.0 -374.0 -290.0 417.0
miblp-20-20-50-0110-10-1 2.67 21 -232.0 -779.0 -119.0 -16.0
miblp-20-20-50-0110-10-2 0.66 13 -634.0 -709.0 -360.0 -269.0
miblp-20-20-50-0110-10-3 3.39 27 -451.0 -659.0 -254.0 338.0
miblp-20-20-50-0110-10-4 3.65 25 -579.0 -892.0 -579.0 -55.0
miblp-20-20-50-0110-10-5 0.91 21 -1003.0 -1003.0 -1003.0 414.0
miblp-20-20-50-0110-10-6 5.43 25 -589.0 -964.0 -589.0 17.0
miblp-20-20-50-0110-10-7 3.62 25 -591.0 -1078.0 -440.0 -199.0
miblp-20-20-50-0110-10-8 5.12 44 -231.0 -760.0 -231.0 293.0
miblp-20-20-50-0110-10-9 0.28 17 -121.0 -428.0 176.0 318.0
miblp-20-20-50-0110-10-10 2.46 23 162.0 -721.0 162.0 623.0
miblp-20-20-50-0110-15-1 2.57 21 -14.0 -841.0 67.0 140.0
miblp-20-20-50-0110-15-2 7.13 19 -629.0 -874.0 -525.0 -241.0
miblp-20-20-50-0110-15-3 4.64 27 -593.0 -836.0 -321.0 -94.0
miblp-20-20-50-0110-15-4 3.66 19 13.0 -688.0 13.0 13.0
miblp-20-20-50-0110-15-5 3.57 31 373.0 -840.0 548.0 614.0
miblp-20-20-50-0110-15-6 0.64 17 -569.0 -1151.0 -569.0 -569.0
miblp-20-20-50-0110-15-7 2.99 17 -443.0 -782.0 -387.0 -131.0
miblp-20-20-50-0110-15-8 0.87 17 -158.0 -1000.0 182.0 138.0
miblp-20-20-50-0110-15-9 0.48 11 -563.0 -803.0 -544.0 -317.0
miblp-20-20-50-0110-15-10 0.37 11 -118.0 -345.0 85.0 185.0
miblp-30-20-50-0110-10-1 0.96 7 -401.0 -528.0 -296.0 -223.0
miblp-30-20-50-0110-10-2 1.57 17 -169.0 -581.0 -122.0 193.0
miblp-30-20-50-0110-10-3 3.49 25 -638.0 -961.0 74.0 237.0
miblp-30-20-50-0110-10-4 1.16 19 437.0 -374.0 437.0 437.0
miblp-30-20-50-0110-10-5 0.02 2 -135.0 -135.0 -135.0 -123.0
miblp-30-20-50-0110-10-6 0.61 13 -168.0 -660.0 -90.0 426.0
miblp-30-20-50-0110-10-7 1.7 15 -361.0 -536.0 -278.0 -116.0
miblp-30-20-50-0110-10-8 6.2 19 -450.0 -646.0 -417.0 -74.0
miblp-30-20-50-0110-10-9 6.24 35 -323.0 -1028.0 -177.0 319.0
miblp-30-20-50-0110-10-10 1.33 13 -160.0 -275.0 -104.0 87.0
miblp-40-20-50-0110-10-1 0.68 11 -198.0 -237.0 -121.0 25.0
miblp-40-20-50-0110-10-2 1.88 19 -85.0 -578.0 -58.0 -78.0
miblp-40-20-50-0110-10-3 2.35 17 -513.0 -766.0 -299.0 19.0
miblp-40-20-50-0110-10-4 1.19 13 -236.0 -371.0 -199.0 90.0
miblp-40-20-50-0110-10-5 1.48 15 -316.0 -550.0 -316.0 -50.0
miblp-40-20-50-0110-10-6 2.06 21 -372.0 -485.0 -261.0 637.0
miblp-40-20-50-0110-10-7 3.2 31 -911.0 -1275.0 -433.0 315.0
miblp-40-20-50-0110-10-8 4.14 19 -682.0 -961.0 -542.0 -411.0
miblp-40-20-50-0110-10-9 3.15 15 -603.0 -916.0 -568.0 -506.0
miblp-40-20-50-0110-10-10 1.49 21 -395.0 -515.0 -395.0 403.0

Table 3.1: Results from the Weighted Sums Heuristic.
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Instance CPU (s) No. Subproblems Stationary Point Obj. MILP Bound Easy Bound Lower Obj. Bound
miblp-20-20-50-0110-5-1 1.43 6 -502.0 -642.0 -502.0 358.0
miblp-20-20-50-0110-5-2 1.27 3 -489.0 -863.0 -405.0 -67.0
miblp-20-20-50-0110-5-3 0.17 0 -477.0 -477.0 -477.0 60.0
miblp-20-20-50-0110-5-4 0.42 0 -753.0 -753.0 -753.0 -560.0
miblp-20-20-50-0110-5-5 0.18 0 -392.0 -392.0 -392.0 -75.0
miblp-20-20-50-0110-5-6 0.32 1 -1010.0 -1166.0 -938.0 -40.0
miblp-20-20-50-0110-5-7 0.24 2 -502.0 -551.0 -502.0 635.0
miblp-20-20-50-0110-5-8 0.49 0 -936.0 -936.0 -936.0 156.0
miblp-20-20-50-0110-5-9 0.59 7 -689.0 -889.0 -689.0 -339.0
miblp-20-20-50-0110-5-10 0.1 1 -290.0 -374.0 -290.0 417.0
miblp-20-20-50-0110-10-1 0.39 2 -152.0 -779.0 -119.0 -16.0
miblp-20-20-50-0110-10-2 0.36 2 -567.0 -709.0 -360.0 -269.0
miblp-20-20-50-0110-10-3 0.95 3 -254.0 -659.0 -254.0 338.0
miblp-20-20-50-0110-10-4 0.78 1 -592.0 -892.0 -579.0 -55.0
miblp-20-20-50-0110-10-5 0.05 0 -1003.0 -1003.0 -1003.0 414.0
miblp-20-20-50-0110-10-6 9.67 7 -589.0 -964.0 -589.0 17.0
miblp-20-20-50-0110-10-7 1.48 6 -454.0 -1078.0 -440.0 -199.0
miblp-20-20-50-0110-10-8 1.49 3 -231.0 -760.0 -231.0 293.0
miblp-20-20-50-0110-10-9 0.14 1 157.0 -428.0 176.0 318.0
miblp-20-20-50-0110-10-10 0.57 3 162.0 -721.0 162.0 623.0
miblp-20-20-50-0110-15-1 0.49 2 67.0 -841.0 67.0 140.0
miblp-20-20-50-0110-15-2 1.49 3 -525.0 -874.0 -525.0 -241.0
miblp-20-20-50-0110-15-3 0.79 3 -357.0 -836.0 -321.0 -94.0
miblp-20-20-50-0110-15-4 0.85 1 13.0 -688.0 13.0 13.0
miblp-20-20-50-0110-15-5 0.97 2 548.0 -840.0 548.0 614.0
miblp-20-20-50-0110-15-6 0.12 1 -569.0 -1151.0 -569.0 -569.0
miblp-20-20-50-0110-15-7 5.02 3 -387.0 -782.0 -387.0 -131.0
miblp-20-20-50-0110-15-8 0.44 1 114.0 -1000.0 182.0 138.0
miblp-20-20-50-0110-15-9 0.2 1 -544.0 -803.0 -544.0 -317.0
miblp-20-20-50-0110-15-10 0.16 1 85.0 -345.0 85.0 185.0
miblp-30-20-50-0110-10-1 0.88 2 -308.0 -528.0 -296.0 -223.0
miblp-30-20-50-0110-10-2 0.41 2 -122.0 -581.0 -122.0 193.0
miblp-30-20-50-0110-10-3 0.72 1 30.0 -961.0 74.0 237.0
miblp-30-20-50-0110-10-4 0.15 1 437.0 -374.0 437.0 437.0
miblp-30-20-50-0110-10-5 0.03 0 -135.0 -135.0 -135.0 -123.0
miblp-30-20-50-0110-10-6 0.06 1 -90.0 -660.0 -90.0 426.0
miblp-30-20-50-0110-10-7 0.65 2 -365.0 -536.0 -278.0 -116.0
miblp-30-20-50-0110-10-8 6.32 6 -450.0 -646.0 -417.0 -74.0
miblp-30-20-50-0110-10-9 0.94 3 -177.0 -1028.0 -177.0 319.0
miblp-30-20-50-0110-10-10 0.47 1 -104.0 -275.0 -104.0 87.0
miblp-40-20-50-0110-10-1 0.18 1 -131.0 -237.0 -121.0 25.0
miblp-40-20-50-0110-10-2 0.54 2 -85.0 -578.0 -58.0 -78.0
miblp-40-20-50-0110-10-3 0.61 1 -485.0 -766.0 -299.0 19.0
miblp-40-20-50-0110-10-4 0.6 2 -236.0 -371.0 -199.0 90.0
miblp-40-20-50-0110-10-5 0.69 2 -525.0 -550.0 -316.0 -50.0
miblp-40-20-50-0110-10-6 0.6 2 -380.0 -485.0 -261.0 637.0
miblp-40-20-50-0110-10-7 0.57 2 -693.0 -1275.0 -433.0 315.0
miblp-40-20-50-0110-10-8 1.99 2 -682.0 -961.0 -542.0 -411.0
miblp-40-20-50-0110-10-9 1.71 2 -568.0 -916.0 -568.0 -506.0
miblp-40-20-50-0110-10-10 0.18 1 -398.0 -515.0 -395.0 403.0

Table 3.2: Results from the Stationary Point Heuristic.
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Instance MibS Obj. Weighted Sums Obj. Stationary Point Obj Best Heuristic Increase (%)
miblp-20-20-50-0110-5-1 -548 -502 -502 -502 8.39
miblp-20-20-50-0110-5-2 -561 -460 -489 -489 12.83
miblp-20-20-50-0110-5-3 -477 -477 -477 -477 —
miblp-20-20-50-0110-5-4 -753 -753 -753 -753 —
miblp-20-20-50-0110-5-5 -392 -392 -392 -392 —
miblp-20-20-50-0110-5-6 -1061 -1061 -1010 -1061 —
miblp-20-20-50-0110-5-7 -547 -547 -502 -547 —
miblp-20-20-50-0110-5-8 -936 -936 -936 -936 —
miblp-20-20-50-0110-5-9 -877 -689 -689 -689 21.44
miblp-20-20-50-0110-5-10 -340 -290 -290 -290 14.71
miblp-20-20-50-0110-10-1 -353 -232 -152 -232 34.28
miblp-20-20-50-0110-10-2 -659 -634 -567 -634 3.79
miblp-20-20-50-0110-10-3 -618 -451 -254 -451 27.02
miblp-20-20-50-0110-10-4 -597 -579 -592 -592 0.84
miblp-20-20-50-0110-10-5 -1003 -1003 -1003 -1003 —
miblp-20-20-50-0110-10-6 -672 -589 -589 -589 12.35
miblp-20-20-50-0110-10-7 -657 -591 -454 -591 10.05
miblp-20-20-50-0110-10-8 -667 -231 -231 -231 65.37
miblp-20-20-50-0110-10-9 -256 -121 157 -121 52.73
miblp-20-20-50-0110-10-10 -429 162 162 162 137.76
miblp-20-20-50-0110-15-1 -289 -14 67 -14 95.16
miblp-20-20-50-0110-15-2 -645 -629 -525 -629 2.48
miblp-20-20-50-0110-15-3 -593 -593 -357 -593 —
miblp-20-20-50-0110-15-4 -396 13 13 13 103.28
miblp-20-20-50-0110-15-5 -75 373 548 373 597.33
miblp-20-20-50-0110-15-6 -596 -569 -569 -569 4.53
miblp-20-20-50-0110-15-7 -471 -443 -387 -443 5.94
miblp-20-20-50-0110-15-8 -301 -158 114 -158 47.51
miblp-20-20-50-0110-15-9 -584 -563 -544 -563 3.60
miblp-20-20-50-0110-15-10 -251 -118 85 -118 52.99
miblp-30-20-50-0110-10-1 -471 -401 -308 -401 14.86
miblp-30-20-50-0110-10-2 -478 -169 -122 -169 64.64
miblp-30-20-50-0110-10-3 -678 -638 30 -638 5.90
miblp-30-20-50-0110-10-4 207 437 437 437 111.11
miblp-30-20-50-0110-10-5 -135 -135 -135 -135 —
miblp-30-20-50-0110-10-6 -171 -168 -90 -168 1.75
miblp-30-20-50-0110-10-7 -375 -361 -365 -365 2.67
miblp-30-20-50-0110-10-8 -461 -450 -450 -450 2.39
miblp-30-20-50-0110-10-9 -672 -323 -177 -323 51.93
miblp-30-20-50-0110-10-10 -168 -160 -104 -160 4.76
miblp-40-20-50-0110-10-1 -198 -198 -131 -198 —
miblp-40-20-50-0110-10-2 -120 -85 -85 -85 29.17
miblp-40-20-50-0110-10-3 -675 -513 -485 -513 24.00
miblp-40-20-50-0110-10-4 -270 -236 -236 -236 12.59
miblp-40-20-50-0110-10-5 -537 -316 -525 -525 2.23
miblp-40-20-50-0110-10-6 -425 -372 -380 -380 10.59
miblp-40-20-50-0110-10-7 -1028 -911 -693 -911 11.38
miblp-40-20-50-0110-10-8 -849 -682 -682 -682 19.67
miblp-40-20-50-0110-10-9 -800 -603 -568 -603 24.63
miblp-40-20-50-0110-10-10 -398 -395 -398 -398 —

Table 3.3: Comparison against optimal solutions.
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Chapter 4

Applications in Interdiction

In this chapter, we discuss applications of bilevel programming. In particular, we describe the

problem class whose utility in homeland security and infrastructure protection protection planning

originally lead us to study discrete bilevel programs. Thisclass of problems can be used to model

methods aimed at attack prevention and mitigation, enemy operations disruption, or early warning

system (EWS) design, for example, and encompasses network interdiction models, a problem class

of crucial importance for homeland security applications.Recall from Chapter1, the formulation

of MIPINT:

zMIPINT = max
x∈P INT

U
∩Bn

min
y∈S INT

L
(x)∩Y

dy (MIPINT)

where

P INT
U =

{

x ∈ Rn | A1x ≤ b1
}

S INT
L (x) =

{

y ∈ Rn | G2y ≥ b2,−y ≥ −U(e− x), y ≥ 0
}

andY = (Zp×Rn−p) ⊆ Rn. Aside from their wide applicability, the interdiction models described

in this chapter are of interest because of their special structure, which can be exploited for more

effective algorithm design. Before describing the algorithmic methods that result, however, we first

introduce a particular EWS and discuss the ILP used to optimize its design. After studying the

underlying problem in depth, we motivate a particular bilevel extension of the model that can be

used to conduct a form of systematic sensitivity analysis, thereby further illustrating the utility of

interdiction problems.

The EWS design problem we consider is that of optimizing a novel acoustic leakage detection

system for urban water distribution networks. The system iscomposed of detectors and transpon-

ders placed in water hydrants, with the goal of providing a desired coverage under given budget

restrictions. We model the problem as a particular Prize-Collecting Steiner Arborescence (PCSA)
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4.1. LEAKAGE DETECTION SENSOR LOCATION

problem, and present a branch-and-cut-and-bound approachwhich exploits its special structure. Af-

ter presenting the exact algorithm, we demonstrate how to obtain approximations of provably high

quality, by employing a suitable stopping criteria, and test both the exact and approximate algorithm

on series of problems composed of both real water distribution networks and randomly-generated

instances. Implicit in our model is the assumption that any number of detectors may be installed, as

long as it is beneficial to do so. We test the sensitivity of ouralgorithm to this assumption by intro-

ducing a detector limit and systematically altering its value. We then present the bilevel extension

of the model used for an alternative sensitivity analysis and describe specialized methods to solve

the resulting bilevel program. Two novel classes of valid inequalities for bilevel problems with bi-

nary upper-level variables are derived, and a greedy interdiction heuristic method is suggested. The

combination of the methods described here yields a solver customization for interdiction problems.

This customization has been implemented in MibS. After describing the methods, we provide results

from the customized solver for both the full customization,as well as the heuristic as a standalone

method.

4.1 Leakage Detection Sensor Location

In this section, we describe a model whose goal is to find the most effective strategy for monitoring

the structural integrity of a water distribution network. In particular, we seek to determine the op-

timal placement, with respect to installation cost and resulting benefit, of leakage detection sensors

within the water network. This system is one example of an EWS–an alarm is triggered when a

possible vulnerability in the system is discovered, allowing us the opportunity to investigate before

a major disruption occurs.

It is clear that leakages can be a major concern in urban waterdistribution networks - the damage

caused by a leaky pipe in the network can range from sizable water loss to catastrophic damage to

people and buildings, depending on the size and location of the leak. Therefore, development of

an effective monitoring system for early detection of waterlosses is of significant importance to

network managers.

Here, we consider the optimization of a network of acoustic water leakage sensors and accompany-

ing radio relays being tested by the city of Lausanne, Switzerland. Various such systems have been

proposed in the past. The particular technology underlyingthe following is calledLORNO, and is

composed of acoustic sensors placed at various hydrants andtransponders that store and transmit

the monitored and received information from other transponders to a central station. Each acoustic

sensor “hears” problematic signals within a neighborhood defined by its placement and dependent

on local network topology and geometry; such a neighborhoodmust be estimated for each potential

placement. For each each hydrant within the system, we have the option of installing
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4.1. LEAKAGE DETECTION SENSOR LOCATION

• a sensor and a transponder,

• a transponder only, or

• nothing at all.

Clearly, installing a sensor with no means of communication(i.e. a transponder) is not sensible, but

supplementary transponders may be needed to carry all information to the central station, and can

be installed at a lower cost than the full system.

For a given city, this gives rise to a family of combinatorialoptimization problems. One example is:

Given the set of hydrants and the neighborhood covered by each sensor, find a minimum cost

placement of sensors covering the entire network, as well asof transponders enabling the

corresponding information to be transmitted to a central station.

Another version is:

For a given budget, find a maximum utility placement of sensors and transponders, where utility is

measured by the information transmitted and the location from where it is collected.

Such optimal placement problems in a water distribution network have been formulated as directly

as ILPs (seeCarr et al., 2006). However, the problems we consider here are more specific and

contain a hard constraint, namely that which ensures that the solution induces a connected subgraph

of a given network, in order to transmit data to the central station. These connectivity constraints

lead us to model the problems posed above as variants of Steiner’s Problem and the Prize Collecting

Steiner’s Problem, respectively. These problems known to be NP−hard , except for special graphs

(e.g.Margot et al., 1994), but polyhedral approaches like those described byJohnson et al.(2000),

Fischetti(1991), Goemans and Williamson(1995), andGoemans and Williamson(1997) may help

to find optimal or good approximate solutions.

In this section, we present a novel branch-and-bound-and-cut approach for solving these problems

and compare it with others from the literature. Our approachis initially tested on real data from

Lausanne’s water supply network. Then, in order to provide better-founded empirical validation of

our approach, we also test it on specially-constructed water supply systems, tailored to be realistic.

For a more concise description of this problem and the resulting methodological approach, the

reader is referred to the paper ofProdon et al.(2010).

The remainder of the section is structured as follows. First, we give a description of theLORNO

system and mathematical formulations of the optimization problems. We next describe our approach

for solving the Prize Collecting Steiner Arborescence Problem. Then, we present and discuss our

computational results, both on real-world and realistically-simulated models. Finally, we describe a

bilevel extension of the model that allows a specific type of sensitivity analysis to be performed.
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4.1. LEAKAGE DETECTION SENSOR LOCATION

4.1.1 The Leakage Problem

The motivation for this work arises from problems experienced by the the city of Lausanne, Switzer-

land. In the Lausanne water distribution network, water losses of approximately 20% have been

experienced. In other cities, this loss proportion is knownto be as high as 50%. Such losses may

have many different causes, such as leaky or broken pipes or unregistered utilization, resulting from

exercises performed by local fire departments. In a region where water supply is not a problem,

losses due to unregistered utilization are not crucial, butbroken pipes have the potential to cause

serious damage and related cost (e.g., traffic perturbation, floods, water distribution break-down,

contamination). In a distribution system, leaks are often the best available sign that a pipe is not

structurally stable, making leak detection crucial for thenetwork manager.

TheLORNOsystem (Hinni, 2010), hereafterLORNO, has been developed to detect leaks in a water

distribution network.LORNOrelies on recognizing the unusual noises that arise in the pipes due to

the leaks. It consists of units placed in the hydrants and a central server for data collection. Each

full unit is composed of an auditory component, installed within the hydrant, and a radio transmitter

installed on external portion of the hydrant. The auditory function is comprised of an acoustic sensor

coupled with electronic chips for signal analysis. The acoustic sensor is capable of receiving signals

from all pipes within a certain surrounding area, whose breadth depends on the network topology,

and measuring the amount of water drawn from the hydrant in which it is placed. This data is

transmitted via radio signals to the central server, and a leak report is generated if the values do not

match the stored reference data. In order to limit electricity consumption, low power transmitters,

capable of communicating with neighboring hydrants located within a certain distance - 200 to 500

meters, depending on the physical obstacles - are used. Thus, the signals must be transmitted from

hydrant to hydrant, through what we call the communication network, until the server is reached.

Based on historical data and professional experience, the engineer’s rule-of-thumb suggests that

equipping half of the hydrants in a water network with fullLORNOunits is sufficient for leak

detection, and even equipping one third of the hydrants already provides good coverage. However,

if a hydrant is unable to transmit its signal to the central server, because it lies outside of the feasible

communication range, its information is lost. Thus, havinga connected communication network

is essential. In order to achieve a connected network and ensure that all data collected may be

transmitted, it is also possible to equip a hydrant with onlya radio transmitter, rather than the full

installation. Thus, for each hydrant, the system operator must decide if he will equip it with a full

LORNOunit, a radio transmitter only, or nothing at all.

Figure4.1 shows an example of a mid-sized water distribution network in Lausanne, Switzerland.

The network contains 173 hydrants, represented in the figurewith stars. In Figure4.1(a), the physi-

cal pipe network is shown. Here, the edges correspond to the actual pipes that connect the hydrants
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(a) The physical pipe network. (b) The communication network.

Figure 4.1: A water distribution network in Lausanne, Switzerland.

in the network. On the other hand, in Figure4.1(b), the edges indicate that two hydrants are able

to communicate, and the graph represents a mathematical description of the communication ability

among the hydrants. The optimization problem facing the system operator is then the following:

choose a subset of hydrants to equip with a fullLORNOunit and possibly a subset of hydrants

to equip with a radio transmitter only, in order to get a connected communication network, and

minimize (maximize) the expected cost (profit).

The cost of installing aLORNOsystem consists of two components. There is a fixed price for the

necessary software and the overhead for the central server,as well as a cost proportional to the

number ofLORNOunits that must be acquired. For our modeling purposes, we decompose the

cost of installing aLORNOunit into the cost of the radio transmitter plus the cost of the rest of the

installation. It is important to note that the cost of installing eachunit is identical. To some extent,

this is due to the pricing strategy of theLORNOproducer. However, while one could imagine that

certain below-ground installations may be more challenging, and thus more costly, it is reasonable

to assume that the cost of installing the transmitter would be independent of location. We will see

the implications of this cost structure in the following sections.

The profit of installing aLORNOunit is more difficult to quantify. The benefit of installing a

LORNOunit at a particular site depends on the probability of a pipebreaking at that site, and the

potential damage caused by such an event. These quantities may vary depending on material and

age of the pipes and, of course, on the surrounding environment (presence of residences, industry,

hospitals, electricity, or telecom cables, and so on). In the real-world data available from Lausanne,

these factors had not been evaluated, and we use only the natural assumption that the benefit of

one unit is proportional to the length of the pipes within itsneighborhood. However, determining

more accurate benefit forLORNO, and other types of sensors measuring network stability, isan
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interesting area of future work.

We also assume that the pipes are discretized into small enough pieces such that each is “scanned”

entirely, or not at all, from a given hydrant. Note that such apiece may be heard by more than

one hydrant, but the corresponding benefit should be countedonly once. Here, it is tacitly assumed

that redundant detection is not necessary to protect against equipment failure, since it tests itself

continually by sending around appropriate signals. It should be noted, however, that this feature

is specific toLORNO, and if one wishes to model an alternate system, this functionality should be

verified before proceeding.

4.1.2 The LORNO Sensor Location Model

We model the optimization problem as a rooted PCSA problem ina directed graphG = (V,E),

constructed as follows. LetH be the set of hydrants andR the set of pipe pieces. For each hydrant

hi ∈ H we introduce two nodeshi andhi and for each pipe pieceri ∈ R, a node denoted alsori.

Denote these node sets byH,H andR, respectively. Then,V = {r0} ∪H ∪H ∪R, wherer0 is a

special node, the root. It is easier to draw these nodes at different levels: the rootr0 at level0, H at

level1, H at level2 andR at level3. The arcs of graphG are decomposed into four types:

(i) Arcs (r0, hi), for hi ∈ H, with zero cost

(ii) Opposite arcs{(hi, hj), (hj , hi)} for each pair of hydrants that can communicate by radio

station (i.e., for each edge in the communication network),with the costc(hi,hj)
andc(hj ,hi)

of radio installation on hydranthj andhi, respectively.

(iii) An arc (hi, hi) for each hydrant, with the costc(hi,hj)
of auditory installation (i.e. the cost of

LORNOminus the cost of radio installation) on hydranti

(iv) An arc (hi, rj), for each regionrj ∈ R that can be heard by hydranthi, with costc(hi,rj) < 0

representing the benefit of hearing regionrj.

An example of the graph can be seen in Figure4.2. The elements of the network given by the graph

and its weights have the following interpretation. Noder0 represents the central station, which

will actually be located in the vicinity of some hydrant. Thechoice of this hydrant may be free

or restricted. This is modeled by an appropriate choice of arcs leavingr0 . Level 1 represents the

communication network, while Level2 represents the auditory components of theLORNOsystem.

Note that the only way to reach a nodehi from r0 is by usinghi. Finally, Level3 represents the

regions we are interested in monitoring. Note that this level may be further simplified by aggregating

all nodes with the same set of predecessors in a single node with the sum of the benefits, so that the
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Figure 4.2: ALORNOnetwork

complexity does not depend on the discretization used, but only on the network’s topology. Now,

one can see that each solution to the optimization problem corresponds to an arborescence inG,

by choosing some spanning tree in the subgraph of the connection network induced by the nodes

used and choosing arbitrarily whichLORNOunit hears a region in case of multiple possibilities.

Conversely, each rooted arborescence inG having at most one arc leavingr0 defines such a solution.

Thus the problem can be formulated as that of finding an optimal r0-rooted arborescenceT =

(VT , ET ) with the property of having exactly one arc leavingr0
1 and, as an arborescence has

exactly one arc entering each of its nodes, we report the costof each node (positive or negative) on

each of its entering arcs, thereby getting a standard PCSA problem.

4.1.3 Solving Prize-Collecting Steiner Arborescence Problems

Definitions and formulation. The prize-collecting Steiner problem was originally defined on an

undirected graph, with non-negative benefits associated with its nodes and non-negative costs with

its edges, as the problem of finding an optimal connected subgraph; there will then be a tree among

the optimal solutions. The rooted version ensures a given node r0 will be part of the solution.

This definition extends in a straightforward manner to a rooted directed graph, in which we are

looking for an optimal Steiner arborescence, with the property that all costs and benefits can then

be transferred with appropriate signs on the correspondingincoming arcs.

1For simplicity, we discard the theoretically possible solution of installing nothing.
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The well-knowncut formulationof the PCSA problem is introduced inFischetti(1991):

min
∑

(i,j)∈E

cijxij (4.1a)

subject to
∑

(j,i)∈E

xji = yi, ∀i ∈ V − {r0} (4.1b)

x
(

δ−(S)
)

≥ yk, ∀k ∈ S,∀S ⊂ V − {r0} (4.1c)
∑

(r0,i)∈E

xr0i = 1 (4.1d)

xij, yi ∈ {0, 1}, ∀i ∈ V − {r0},∀(i, j) ∈ E (4.1e)

wherecij is the cost of including edge(i, j) in the solution,x(A) =
∑

e∈A xe,

xij =







1 if (i, j) ∈ ET

0 otherwise
, yi =







1 if i ∈ VT

0 otherwise
,

and

δ−(S) = {(i, j) ∈ E|i ∈ S, j ∈ S}.

Here, constraints (4.1b) enforce that each nodei in the solution must have exactly one incoming

arc, while constraint (4.1d) implies that exactly one arc leavesr0. The constraints (4.1c), which we

call connectivity constraints, ensure that, if the solution contains nodek, it also contains a path from

the rootr0 to k and, thus, at least one arc in each cut induced by a node setS containingk and not

r0. Ljubic et al.(2005) use this formulation as a starting point to solve PCSA problems, and we use

their ideas extensively here. Not surprisingly, the difficulty inherent in this formulation is managing

the connectivity constraints (4.1c). There are an exponential number of these constraints, so only

those truly necessary for a given instance should be used. This structure naturally lends itself to a

cut generation algorithm.

Relaxing all but some(S,R) connectivity constraints (4.1c) (i.e., selecting a subsetL of valid pairs
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(S, k)), yields the following formulation, denotedcurrent program(CP):

min
∑

(i,j)∈E

cijxij (4.2a)

subject to
∑

(j,i)∈E

xji = yi, ∀i ∈ V − {r0} (4.2b)

∑

(r0,i)∈E

xr0i = 1 (4.2c)

x
(

δ−(S)
)

≥ yk, ∀(S, k) ∈ L (4.2d)
∑

(j,i)∈E

xji ≤
∑

(i,j)∈E

xij, ∀i 6∈ R ∪ {r0} (4.2e)

yi ≤ 1− xr0j, ∀i < j, {i, j} ⊂ H (4.2f)

xij + xji ≤ yi, (xij ≤ yi), ∀(i, j) ∈ E, i ∈ V − {r0} (4.2g)

xij, yi ∈ {0, 1}, ∀i ∈ V − {r0},∀(i, j) ∈ E, (4.2h)

Due to the symmetric structure of the communication networkand to the symmetries in the cost

function, many equivalent solutions exist. In order to combat this symmetry, we have added some

symmetry breaking constraints (4.2f), which force a connection between the root and the node of

the communication network in the solution with smallest index.

We have also added constraints (4.2e) and (4.2g) for strengthening the relaxed LP formulation.

The constraints (4.2e) ensure that there are at least as many arcs leaving as there are arcs entering

an internal node, which is valid for any arborescence. We also experimented with both forms of

constraints4.2g, the stronger form,xij +xji ≤ yi, avoiding cycles of length 2, and the weaker form

xij ≤ yi, forcing use of both end nodes with each choice of edge.

The connectivity cuts, i.e. the pairs(S, k), introduced at the root node are obtained in the following

way:

(i) For ri ∈ R, i = 1, . . . , |R| we consider the adjacent verticeshi ∈ H and form the cuts

associated with the subsetSi =
{

ri, hi1, hi2, . . . , hik

}

.

(ii) For ri ∈ R, i = 1, . . . , |R| we consider the adjacent verticeshi ∈ H and their predecessors

in H and form the cuts associated with the subsetSi =
{

ri, hi1, . . . , hik, hi1, . . . , hik

}

.

(iii) If the connection network is not connected, we build for each connected componentHi the set

Si =
{

hj |hj ∈ Hi ∩H
}

of nodes in that component and add a cut(Si, k) for eachk ∈ Si.

For example, in Figure4.2, for r = 15, we would haveS1 = {15, 7, 8} for type 1, S2 =

{15, 7, 8, 1, 2} for type 2, andS3 = {1, 2, 3, 4} for type 3. The motivation for this choice is that

these are constraints whose associated dual variables may have a positive value.
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4.1.4 Branch-and-bound algorithm

The approach used inLjubic et al. (2005) to solve PCSA is to solve the linear relaxation of the

current program, find violated connectivity constraints, introduce them in the current program, and

iterate until all connectivity constraints are satisfied bythe current solution. Finally, branch and

bound is used if the optimal solution found so far is not integer. Finding the most violated connec-

tivity constraint for a given terminal noderi can be done efficiently by solving a max flow problem.

If the maximumr − ri flow value is less thanyi, the corresponding minimum cut produces such a

violated constraint.

Unfortunately, due to two special properties of our instances, this approach is ineffective in solving

problems of interesting size. First, our instances tend to have a very large number of terminal nodes,

roughly |V |/2, meaning a lot of violated constraints are found, typicallywith the same amount of

violation. We have no good criteria for choosing among them and adding all violated constraints

to the current problem results in huge memory requirements.Second, the special cost structure of

the communication network (i.e. all arcs have identical cost) yields very poor convergence when

applying the method ofLjubic et al.(2005).

In order to overcome these difficulties we use an approach based on finding integer solutions to

the current program, using standard branch-and-bound methods. If the integer solution found is an

arborescence we are done. Otherwise, the special structureof our instance allows either to find an

arborescence with the same value, and thus we are done, or to find effective connectivity cuts, which

we add to the current problem and iterate in the same way. Though it may seem counterintuitive to

solve a series of ILPs, rather than LPs, this method was shownto be very effective for our problem

instances, specifically due to the following property.

Let Gsol = (Vsol, Asol) denote the graph associated with the solution to the currentproblem (4.2),

G the LORNOnetwork, andG(S) the subgraph ofG induced by the nodes inS. Recall the the

special form of the networks (see Figure4.2) we consider:

(P1) All arcs are either directed from leveli to leveli + 1, i = 0, . . . , 2, or have both end nodes in

H (at level 1), thus all circuits are entirely contained inG(H).

(P2) All arcs having both end nodes inH have the same cost.

We have the following result.

Proposition 4.1 (Prodon et al. (2010)) If Gsol is not an arborescence butG(Vsol ∩ H) is a con-

nected graph, then there exists an arborescence with the same value as the current solution to the

current problem(4.2).

106



4.1. LEAKAGE DETECTION SENSOR LOCATION

10

19

2

r0

1 3

18

87 9

13 14 15 16 17

4

(a) A disconnected solution to CP.
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(b) A connected solution with the same cost.

Figure 4.3: Illustrating the connection process.

Proof. From (4.2b) and (4.2c), it follows

|Vsol| =
∑

i∈V

yi = 1 +
∑

i∈V −r

yi = 1 +
∑

i∈V −r

∑

(j,i)∈E

xji = 1 + |Asol|.

Thus, ifGsol is not an arborescence, then it is disconnected. From (4.2b) and (4.2g), we have that if

the solution contains a nodei 6= r0 , it also contains exactly one arc(j, i) and also nodej. Thus it

contains a path going (backward) fromi either tor0 or to a nodek contained in a circuit which is,

from the precedent property, entirely contained inG(H). We also have

∣

∣Vsol ∩H
∣

∣ =
∑

i∈H

∑

(j,i)∈E

xji = 1 +
∑

i∈H

∑

j∈H

xji.

That is, the solution has inG(H) a number of arcs equal to its number of nodes minus one. If

G(Vsol ∩ H) is connected, it contains a spanning tree which has the same number of arcs as the

solution inG(H). Replacing the arcs of the solution inG(H) by such a spanning tree (properly

oriented) gives an arborescence with the same value asGsol.

This process is illustrated in Figure4.3. On the left, a solution of the current problem associated

with the network in Figure4.2 is shown. This solution is not connected, but can be transformed in

a connected solution with the same cost, as shown on the right. This result leads to Algorithm4.1.

It is important to note that one of the reasons our instances are difficult to solve is the fact that

all arcs in the communication network have the same weight. This leads to solutions to the LP
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Algorithm 4.1 LORNO Branch and Cut
1: Solve the current problem (4.2) (using branch and bound).
2: Find the connected componentsC1, . . . , Cl of Gsol. If Gsol is connected, STOP, else go to

Step3.
3: Find the connected components ofG(Vsol ∩H). If G(Vsol ∩H) is connected, go to Step4, else

go to Step5.
4: Find a spanning treeT of G(Vsol ∩H), replace the arcs ofAsol contained inG(H) by those of

T properly oriented, prune if necessary the leaves which are not in R and terminate with this
solution.

5: Insert the cut
x(δ−(Ci)) ≥ yk, k ∈ Ci

into (4.2), for all i = 1, . . . , l, and return to Step1.

relaxation that are not connected graphs. The approach described here aims at overcoming this

difficulty by searching for trees with the same weight as the current solution. An additional benefit

of this approach is that it allows us to easily find approximation solutions. That is, feasible solutions

whose value is guaranteed to be at mostα times the optimal one. In fact, it suffices to stop the

branch-and-bound procedure as soon as the gap first hitsα. This becomes particularly important

when finding an optimal solution is no longer possible withinreasonable computing time. We

investigate the potential loss of solution quality resulting from applying a stopping criteria as part

of our presentation of results in the following section.

4.1.5 Computational experiments

With our algorithms, we were able to successfully process three real-world instances, stemming

from the water distribution network of the city of Lausanne and surrounding region, the largest

instance comprising 606 hydrants. While determining a solution for the problems facing the city

of Lausanne was the primary goal of the work, we also tested our approach on a set of random

instances. Below we give results from fifty such instances.

Problem generation. As described above, the PCSA instances dealt with in the present study

have a special structure. We were therefore led to develop a procedure enabling us to generate

random problem instances having the required characteristics. We proceed as follows. First, we

generate a planar representation of a planar graph representing the pipe network. Then, we choose

a number of hydrants and their locations, and compute the pipe portions that could be monitored by

each hydrants, ifLORNOequipped. Then, we generate a communications network and, build the

correspondingLORNOnetwork (i.e. where our Steiner arborescence lives). In order to do this, we

first generaten uniformly-distributed points in a square of side length proportional to
√

n. Then,

the Delaunay triangulation of this set of points (a sparse planar connected graph, containing the
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optimal spanning tree and easy to compute, see e.g.de Berg et al., 2000) is computed, yielding

a graphGD on n nodes, in which a minimum euclidean length spanning treeSD is determined.

For each edgee in E(GD), a probabilitype proportional to its length is assigned. Then, edges

e ∈ E(GD) − E(SD) are randomly eliminated with probabilitype, until a desired average node

degreeda is achieved. This process yields a planar graphG′
D with n nodes and average degreeda.

We then add|H| hydrants to randomly-chosen edges of this graph. The position of each hydrant

on the edge is also determined randomly, at a location close to the center of the edge. For each

hydrant, a node is added to the graph and the associated edge is split, creating two new edges and

one new node. Then, the communication network is generated by adding an edge between hydrants

h1, h2 ∈ H with probability

ph1,h2
=



















0 d(h1, h2) > r2

p2 r1 ≤ d(h1, h2) ≤ r2

p1 r1 > d(h1, h2).

Finally, we determine for each edge, the set of hydrants fromwhich it can be heard. An edge

e = (e1, e2) is audible by hydranth if d(h, e1) < rL andd(h, e2) < rL. Results are reported below

for instances generated with|H| = n/2, and

da = 2.3, r1 = 250, r2 = 400, p1 = 0.8, and p2 = 0.5.

The name of each instance in the following tables follows thenaming convention established by the

main data:r1-10050 means that it is a random instance, the seed of the random generator was

1, 100 points have been generated in the plane and50 hydrants have been placed in the resulting

graph.

Algorithms. The branch-and-cut algorithm, denoted CONN, was implemented in C/C++, using

the libraries available from the Computational Infrastructure for Operations Research (COIN-OR)

repository (Lougee-Heimer, 2003). The Open Solver Interface (OSI) was used to interface withthe

integer and linear programming solvers. All results reported here reflect the use of OSI CPLEX

interface, where CPLEX 9.1 was used to solve the integer and linear programming instances gen-

erated throughout the course of the algorithm. The algorithm was tested on an Intel Xeon 2.4GHz

processor with 4GB of memory.

After carefully examining our preliminary results, we realized that a significant amount of running

time was being spent on proving the optimality of solutions to CP that would eventually be discarded

because of constraint violation.

As mentioned previously, the design of our algorithm allowsthe ability to change the optimality
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requirements of CP solutions without altering the overall structure of the algorithm. Aside from the

ability to get good solutions quickly, this also allows us tochange our optimality gap dynamically

within the algorithm. The cut generation routine requires only a feasible solution to produce valid

cuts. Thus, it is possible to widen the optimality gap in the early iterations of the algorithm and

generate several rounds of cuts in a much smaller amount of CPU time. In order to test the benefit

of this procedure, we experimented with a slight variant of the branch-and-cut algorithm denoted

GAPCONN, where we systematically modify the optimality requirement during the course of the

algorithm. We refer to algorithms of this type asdynamic, while the standard algorithms can be

described asstatic. As already described, the objective function comprises aneasily quantifiable

component, namely the investment costs, and one which is less so, corresponding to the drawn

benefits. These are quantized by the cost of a fullLORNOunit and that of a transponder unit,

respectively. Rather than using a relative gap measure for stopping criteria, we selected to use an

absolute gap. We chose to bound the gap successively by the cost of a full LORNOunit, that of

a transponder unit and byǫ, a sufficiently small parameter to prove optimality. Note that for our

numerical examples these values make good sense, since theyadd up to at most a fraction of a

percent of the objective function value.

To evaluate the effectiveness of our separation routine, weimplemented an alternate algorithm sim-

ilar to that described inLjubic et al. (2005). In this algorithm, denoted FLOW, a modification of

Goldberg’s maximum flow algorithm (Cherkassky, 1997) is used find violated constraints with re-

spect to solutions of the LP-relaxation of CP. In the case that such a solution does not violate any

constraints, an integer programming solver is called to findan integer solution to CP. If the result-

ing integer solution is also feasible to the original problem, it must be optimal. Else, new violated

inequalities are added to CP, and the algorithm continues. This algorithm was also implemented in

C/C++, using COIN-OR’s libraries to interface with CPLEX 9.1.

As mentioned previously, in addition to the comparison of separation routines, we also experimented

with the form of the constraints (4.2g). The algorithms included in our experiments are summarized

in Table4.1.

CONN FLOW GAPCONN
xij + xji ≤ yi CONN2 FLOW2 GAPCONN2

xij ≤ yi CONN4 — GAPCONN4

Table 4.1: The algorithm variants used in the computationalstudy.
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4.1.6 Results

We present here results from two classes of experiments. Thefirst consists of a series of tests where

we compare the algorithmic variants on data instances of increasing size. In each table, the set of

columns labeledIterationsgives the number of number of algorithmic loops necessary tofind the

optimal solution. The group of columns labeledCPU secgives the running time of the algorithms

on the platform described above. Unless otherwise noted, all results presented represent a CPLEX

optimality gap of1 × 10−4. For the algorithms in which the gap is changed dynamically,this

corresponds to a choice ofǫ = 1× 10−4.

For this study, a maximum running time of 5000 CPU seconds wasallotted. In the tables, instances

that were not solved within this time limit are indicated with a dash in the corresponding row of the

table. Note that the set of unsolved instances includes boththose instances that exceeded the time

limit, as well as those whose memory requirements were too large for the resources available. We

do not differentiate between these two types of unsolved instances in the presentation of our results.

However, we do note that the FLOW algorithm frequently failsdue to memory requirements. This

suggests that if this algorithm is used, unnecessary cuts should be removed dynamically throughout

the course of the algorithm.

The complete output for the experimental study is shown in Table 4.3. From the table, we can see

that the dynamic variants of the branch-and-cut algorithm (GAPCONN2 and GAPCONN4) clearly

dominate their static counterparts. Further, there is no problem that GAPCONN2 is able to solve that

GAPCONN4 cannot. Thus, we can say that GAPCONN4 is the most robust, with respect to number

of problems solved, of all the branch-and-cut variants. Additionally, in Section4.1.6, we compare

the performance of GAPCONN2 and GAPCONN4 across different optimality requirements, and

see that when the optimality gap is equal to the cost of a fullLORNOinstallation, GAPCONN4 is

able to solve all but two problems in our test set.

It is not immediately obvious, however, how the branch-and-cut variants compare to FLOW2, since

there are problems that FLOW2 is able to solve where all branch-and-cut algorithms fail. However,

a comparison between FLOW2 and GAPCONN4 shows that this occurs only twice in the entire test

set. Additionally, the total number of problems solved by each of the branch-and-cut algorithms is

significantly higher than that by FLOW2.

The results are summarized in Table4.2. In this table, we report the average number of instances

solved, the average required iterations and average CPU time required for each algorithm. Table4.2

gives further evidence that GAPCONN4 is the most robust of all algorithm variants, solving almost

90% of the problems in the test set, but also shows that it requires the second highest average CPU

time. FLOW2 is the fastest algorithm, on average, but solvesonly 54% of the problems. CONN4

seems to yield the best balance between speed and robustness, solving 80% of the test problems,
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Success Ratio Avg No. Iter. Avg CPU sec
CONN2 0.78 7.85 249.15
CONN4 0.80 7.38 118.49
FLOW2 0.54 66.30 154.52
GAPCONN2 0.82 15.54 331.41
GAPCONN4 0.88 20.43 318.15

Table 4.2: Summary results for all algorithms.

with the second lowest average CPU time. This table also suggests that, for the problems we study

here, the weaker form of constraint (4.2g) is preferable to the stronger form since, for both the

static and dynamic variants, using this form yielded a higher success rate and a lower average

speed. It should be noted, however, that the results in Table4.2 may be somewhat misleading,

since the averages do not account for those instances that remain unsolved by each algorithm. The

performance profiles shown in Figure4.4provide a more equitable comparison.

Figure 4.4: Performance profiles of each of the solvers described.

From the figure, we can see that CONN2 achieved the minimum solution time on the largest number

of problems (roughly 40%). Thus, in a loose sense, we can say this algorithm is the fastest. Finding

points of intersection within the plot allows us to determine those values ofτ for which a subset of

the algorithms is equivalent with respect to running time. From the plot, we can see that CONN2,

CONN4, GAPCONN2, GAPCONN4 will all solve a given problem within a factor of 4 of the fastest

algorithm roughly 70% of the time.

In fact, for a range of values ofτ between 3.5 and 4, the algorithms CONN2 and CONN4 are
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Iterations CPU sec
Instance CONN2 CONN4 FLOW2 GCONN2 GCONN4 CONN2 CONN4 FLOW2 GCONN2 GCONN4
r1-10050 1 3 1 2 3 0.780 0.432 0.540 1.320 0.492
r2-10050 1 2 4 1 2 0.428 1.044 0.712 0.468 1.352
r3-10050 6 8 47 6 7 8.005 16.313 3.804 8.165 16.585
r4-10050 4 5 — 41 6 2.356 2.192 — 31.550 3.216
r5-10050 2 1 28 2 1 1.160 0.720 7.708 1.360 0.988
r6-10050 1 1 19 1 1 0.340 0.324 1.832 0.428 0.408
r7-10050 20 13 168 11 15 38.994 15.877 19.881 10.553 16.281
r8-10050 2 1 3 2 1 1.000 0.300 0.524 1.080 0.360
r9-10050 — — 146 — — — — 82.513 — —
r10-10050 4 4 4 5 3 3.748 2.692 0.620 5.568 3.560
r1-200100 — — — 51 22 — — — 991.814 110.323
r2-200100 1 5 53 1 5 8.028 10.229 66.240 11.601 9.845
r3-200100 — — — — — — — — — —
r4-200100 — — — — 110 — — — — 1128.250
r5-200100 1 1 29 1 1 3.852 4.300 14.301 4.748 4.752
r6-200100 2 3 7 2 3 5.616 10.097 4.412 6.712 11.145
r7-200100 3 1 73 3 1 9.253 5.228 75.293 11.697 5.728
r8-200100 3 2 103 3 2 6.756 5.368 129.632 8.129 7.176
r9-200100 3 3 9 4 4 5.400 11.109 4.240 7.828 16.285
r10-200100 1 4 — 1 4 5.784 19.433 — 8.065 19.973
r1-300150 3 9 — 3 9 13.197 52.631 — 19.201 61.420
r2-300150 1 6 48 1 6 17.081 51.199 54.579 27.918 57.000
r3-300150 7 7 33 18 31 43.075 40.911 26.370 106.323 152.254
r4-300150 2 4 — 2 6 38.286 106.547 — 47.807 107.479
r5-300150 54 81 — 76 362 381.604 903.728 — 560.043 3850.540
r6-300150 2 5 73 4 7 25.490 44.879 128.984 41.183 55.572
r7-300150 — — — 21 23 — — — 565.779 846.493
r8-300150 3 10 — 3 7 25.774 162.306 — 34.490 76.277
r9-300150 — — 70 — — — — 56.452 — —
r10-300150 2 9 — 5 8 22.445 100.690 — 45.923 73.241
r1-400200 3 1 31 6 1 47.439 27.070 58.040 67.664 33.910
r2-400200 1 6 — 2 6 46.519 59.192 — 51.271 87.137
r3-400200 1 2 35 1 4 32.934 63.120 80.733 32.546 91.018
r4-400200 — — — — — — — — — —
r5-400200 79 2 — — 2 2586.150 29.058 — — 45.847
r6-400200 8 22 186 20 37 106.175 229.622 535.125 238.467 516.076
r7-400200 5 7 — 6 9 79.577 215.217 — 99.922 265.701
r8-400200 9 6 89 11 15 98.942 82.037 238.915 66.496 263.248
r9-400200 — 10 — 116 9 — 94.446 — 2284.760 134.308
r10-400200 — — — — — — — — — —
r1-500250 25 12 — 29 17 2727.330 605.638 — 2084.730 610.334
r2-500250 2 6 — 3 10 97.542 251.568 — 139.333 310.511
r3-500250 15 10 186 44 23 2181.300 772.440 1099.330 1304.160 692.931
r4-500250 15 5 64 113 5 605.138 133.924 202.733 4192.560 222.622
r5-500250 3 2 128 3 9 73.285 80.161 474.438 90.942 160.966
r6-500250 — — — — — — — — — —
r7-500250 1 2 — 2 3 69.864 77.853 — 75.961 86.357
r8-500250 — — — — 70 — — — — 2909.050
r9-500250 6 5 — 7 7 190.108 193.848 — 186.352 293.374
r10-500250 4 9 153 4 22 106.075 255.872 803.998 113.095 638.072

Table 4.3: Results from all variants on the full test set.
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almost indistinguishable with respect to running time. This is not so surprising, since these two

solvers differ only in the form of the constraints (4.2g). From the larger values ofτ , we can see

the probability that the solvers solve a problem within our test set. GAPCONN4 is the most likely

to solve a random instance, solving approximately 90% of theproblems tested. GAPCONN2 and

CONN4 both solve roughly 80% of the instances, and CONN2 is successful 75% of the time. From

the plots, we can also see that the probability of success does not significantly increase forτ > 5

for any of our solvers, except GAPCONN4. Thus, if GAPCONN2, CONN2 or CONN4 is able to

solve an instance, it is likely that it will solve the instance within five times the speed of the fastest

solver. Figure4.4confirms our earlier assertion that the flow algorithm is dominated by all variants

of the branch-and-cut algorithm. FLOW2 is the fastest solver only 15% of the time and solves only

half of the instances in the test set.

In the formulation described previously, we have assumed that we are free to install as many full

LORNOinstallations as desired. However, this may not be a realistic assumption, since this number

may be limited by physical or financial constraints. In orderto test the sensitivity of our algorithm

to this assumption, a second computational test was performed. We add the constraint

∑

i∈H

yi ≤ B (4.3)

to the formulation and apply the solution algorithms for varying boundsB on the number of installed

auditory components. Due the increased difficulty of these restricted problems, we chose to relax

our optimality requirements. As mentioned previously, thedesign of our algorithm allows the user to

change the desired optimality gap without alteration of thealgorithm. For this experiment, we used

an optimality gap equal to the cost of oneLORNOinstallation. These results are also presented in

tabular format, as before. Here, we have two additional columns, labeledB andObj, which indicate

the limit placed on the number of fullLORNO installations and the resulting optimal objective

value, respectively. The data used for the experiment consisted of both a real water network from

Lausanne, as well as a randomly-generated instance with similar characteristics. The full results

are shown in Table4.4. Aside from testing the sensitivity of our algorithm, this study allows us

to examine the inherent tradeoff that exists between the installation limit and the resulting benefit.

Figure4.5 illustrates this relationship for both data instances. Theportions of the tradeoff curves in

Figure4.5in which we are most interested are those with a steep slope. These areas represent critical

points, where small increases inB yield substantial increases in the optimal benefit. Assuming the

budget constraint (4.3) is somewhat flexible, these critical points indicate whereit is worthwhile

to increase the installation limit, assuming an increase isphysically possible. In Section4.2.3,

we perform a similar analysis on a set of interdiction problems, via multicriteria programming.

Analyses of this type are particularly relevant to applications facing government DMs. Due to
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dail r1-300150
GAPCONN2 GAPCONN4 GAPCONN2 GAPCONN4

B Iter CPU sec Obj Iter CPU sec Obj B Iter CPU sec Obj Iter CPU sec Obj
45 — — — — — — 55 — — — — — —
47 15 5166.830 -2083350 23 2862.860 -2083350 57 47 999.510 -3064700 64 3058.000 -3064700
49 12 628.147 -2117540 8 213.957 -2117540 59 18 342.893 -3099980 9 383.148 -3100240
51 4 174.463 -2149400 2 81.645 -2150150 61 13 176.339 -3131050 21 978.061 -3131320
53 1 65.984 -2180740 1 66.388 -2180740 63 19 166.990 -3157350 34 715.033 -3157610
55 1 46.515 -2206060 1 70.976 -2206060 65 24 202.717 -3181040 7 117.647 -3181040
57 1 47.531 -2224240 1 73.185 -2225680 67 8 33.002 -3199500 7 108.987 -3200220
59 1 42.639 -2242660 1 63.808 -2243540 69 7 24.373 -3216620 5 62.208 -3216620
61 1 42.079 -2258840 1 69.864 -2258840 71 3 20.285 -3228980 6 69.136 -3228980
63 1 57.576 -2271700 1 67.428 -2271700 73 3 9.397 -3240300 3 39.331 -3240300
65 1 51.567 -2281670 1 68.800 -2281670 75 3 12.941 -3249670 2 35.974 -3249670
67 1 59.312 -2286980 1 60.852 -2286980 77 5 17.605 -3256390 2 44.183 -3256390
69 1 52.735 -2287640 1 55.947 -2287640 79 5 15.209 -3256390 3 52.935 -3256390

Table 4.4: Results from budget study.
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Figure 4.5: Tradeoff between the installation budget and the objective value.
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limited availability of funds, it is crucial to ensure that the allocated funds are being used effectively.

On the other hand, if there is significant societal benefit realized with a slight increase in the budget,

the government may be able to allocate additional funding toachieve this benefit.

The Cost of Optimality. In this section, we compare the cost of proving optimality for GAP-

CONN2 and GAPCONN4. Tables4.5 and4.6 show the full sets of results for the two algorithms.

In each table, we see the required iterations and CPU time, aswell as the objective value for each

value of optimality gap discussed in the previous section. We denote these values byLORNO, the

cost of a fullLORNOinstallation,TRANS, the cost of installing a radio transponder only, andEPS, a

sufficiently small parameter that yields “true” optimality. For GAPCONN2, the results indicate that,

on average, moving fromLORNO-optimality to TRANS-optimality requires approximately 107%

more CPU time, while improving the objective by only 0.007%.Further, to achieve EPS-optimality,

GAPCONN2 requires approximately 162% more CPU time than forLORNO-optimality, and yields

only a 0.012% objective improvement. The results for GAPCONN4 are less dramatic, but show

a similar tendency. For GAPCONN4, the average difference inruntime betweenLORNO- and

TRANS-optimality is approximately 37% with a 0.005% objective improvement, and obtaining

EPS-optimality requires a 59% increase in CPU time and yields a 0.007% objective improvement.

Thus, we can conclude that, for these instances, employing an optimality gap does not significantly

decrease solution quality, but results in much faster computing times.

4.1.7 Sensitivity to Graph Structure

In the previous section, we conduct one type of sensitivity analysis; namely, we analyze the sensi-

tivity of our solution quality to the number of hydrants we are able to install. In this section, we

describe another method for conducting sensitivity analysis.

Suppose we seek to understand the benefit of individual hydrants in our monitoring system. Put

another way, suppose we wish to determine the effect of removing a node from the communication

graph on our ability to monitor the water network. If we find that certain hydrants within the

network are crucial to our ability to monitor the system, protecting those crucial hydrants may be

worthwhile. This idea is illustrated in examples that follow. In Example6, we consider removal an

above-ground hydrant from the network and, in Example7 removal of a below-ground hydrant is

considered.

Example 6. Removal of an above-ground hydrant.Consider theLORNOnetwork shown in Fig-

ure 4.6(a). We can find connected solution with one fullLORNO installation, as shown in Fig-

ure4.6(b). Let c = ch + ch be the cost of a fullLORNOinstallation. Recall that costc(hi,rj) < 0
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LORNO TRANS EPS
Instance Iterations CPU sec Objective Iterations CPU sec Objective Iterations CPU sec Objective
r1-10050 1 0.848 -960341 1 0.876 -960341 2 1.320 -961061
r2-10050 1 0.464 -890994 1 0.468 -890994 1 0.468 -890994
r3-10050 3 0.764 -1062120 3 0.792 -1062120 6 8.165 -1062120
r4-10050 37 30.074 -1139590 40 31.478 -1140310 41 31.550 -1141030
r5-10050 2 1.344 -957468 2 1.356 -957468 2 1.360 -957468
r6-10050 1 0.420 -1113020 1 0.428 -1113020 1 0.428 -1113020
r7-10050 10 7.152 -813227 10 7.176 -813227 11 10.553 -813227
r8-10050 2 1.072 -1023130 2 1.080 -1023130 2 1.080 -1023130
r9-10050 8 6.296 -969108 8 6.316 -969108 — — —
r10-10050 5 4.772 -987484 5 4.820 -987484 5 5.568 -987484
r1-200100 7 27.214 -2209600 51 967.125 -2210320 51 991.814 -2210320
r2-200100 1 9.421 -2080110 1 9.505 -2080110 1 11.601 -2080110
r3-200100 14 78.121 -1910670 — — — — — —
r4-200100 57 274.581 -2027370 — — — — — —
r5-200100 1 4.708 -2166220 1 4.732 -2166220 1 4.748 -2166220
r6-200100 2 6.676 -2017630 2 6.700 -2017630 2 6.712 -2017630
r7-200100 3 11.665 -2008300 3 11.689 -2008300 3 11.697 -2008300
r8-200100 3 5.836 -2010260 3 6.416 -2010260 3 8.129 -2010260
r9-200100 3 3.548 -2176660 4 3.892 -2177380 4 7.828 -2177380
r10-200100 1 6.552 -2086780 1 8.053 -2086780 1 8.065 -2086780
r1-300150 3 13.077 -3256390 3 13.233 -3256390 3 19.201 -3256390
r2-300150 1 19.161 -3131920 1 27.606 -3131920 1 27.918 -3131920
r3-300150 17 105.683 -3133680 17 105.807 -3133680 18 106.323 -3134400
r4-300150 2 47.331 -2725630 2 47.487 -2725630 2 47.807 -2725630
r5-300150 76 551.646 -3048320 76 551.802 -3048320 76 560.043 -3048320
r6-300150 3 36.258 -3098540 4 37.302 -3099260 4 41.183 -3099260
r7-300150 21 458.725 -3134060 21 499.796 -3134060 21 565.780 -3134060
r8-300150 3 16.913 -3114700 3 17.121 -3114700 3 34.490 -3114700
r9-300150 12 97.430 -3029640 12 97.586 -3029640 — — —
r10-300150 4 33.390 -3161470 5 40.239 -3162190 5 45.923 -3162190
r1-400200 5 66.032 -4290830 5 66.236 -4290830 6 67.664 -4291550
r2-400200 1 45.059 -4273880 2 51.003 -4274600 2 51.271 -4274600
r3-400200 1 32.438 -4105300 1 32.514 -4105300 1 32.546 -4105300
r4-400200 — — — — — — — — —
r5-400200 68 658.465 -4178710 187 2132.825 -4179430 — — —
r6-400200 15 184.216 -3880780 15 184.440 -3880780 20 238.467 -3881500
r7-400200 5 79.665 -4269060 6 89.642 -4269780 6 99.922 -4269780
r8-400200 11 66.416 -4324840 11 66.468 -4324840 11 66.496 -4324840
r9-400200 29 303.971 -4091240 116 2278.291 -4091960 116 2284.763 -4091960
r10-400200 5 70.220 -3987600 7 108.671 -3987600 — — —
r1-500250 15 350.346 -5196930 16 468.133 -5196930 29 2084.723 -5197650
r2-500250 2 90.938 -5257910 2 91.294 -5257910 3 139.333 -5257910
r3-500250 31 685.811 -5040440 44 1278.000 -5041160 44 1304.158 -5041160
r4-500250 100 3346.910 -5420330 113 4192.203 -5421050 113 4192.555 -5421050
r5-500250 3 66.344 -5236380 3 72.665 -5236380 3 90.942 -5236380
r6-500250 — — — — — — — — —
r7-500250 1 64.088 -5088330 2 75.521 -5089050 2 75.961 -5089050
r8-500250 18 399.773 -5030270 — — — — — —
r9-500250 3 101.246 -5154660 7 185.963 -5155070 7 186.351 -5155070
r10-500250 4 110.307 -5401620 4 112.843 -5401620 4 113.095 -5401620

Table 4.5: Comparing the cost of optimality for GAPCONN2.
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LORNO TRANS EPS
Instance Iterations CPU sec Objective Iterations CPU sec Objective Iterations CPU sec Objective
r1-10050 3 0.488 -961061 3 0.492 -961061 3 0.492 -961061
r2-10050 2 1.348 -890994 2 1.352 -890994 2 1.352 -890994
r3-10050 4 2.056 -1062120 4 2.080 -1062120 7 16.585 -1062120
r4-10050 2 0.668 -1140310 2 0.696 -1140310 6 3.216 -1141030
r5-10050 1 0.972 -957468 1 0.980 -957468 1 0.988 -957468
r6-10050 1 0.400 -1113020 1 0.404 -1113020 1 0.408 -1113020
r7-10050 14 11.037 -813227 14 11.061 -813227 15 16.281 -813227
r8-10050 1 0.356 -1023130 1 0.356 -1023130 1 0.360 -1023130
r9-10050 15 10.957 -968388 25 16.057 -969108 — — —
r10-10050 3 2.348 -987484 3 2.372 -987484 3 3.560 -987484
r1-200100 22 86.185 -2210320 22 89.534 -2210320 22 110.323 -2210320
r2-200100 5 7.020 -2080110 5 7.140 -2080110 5 9.845 -2080110
r3-200100 34 253.704 -1910670 — — — — — —
r4-200100 110 1121.570 -2028090 110 1121.666 -2028090 110 1128.246 -2028090
r5-200100 1 4.732 -2166220 1 4.744 -2166220 1 4.752 -2166220
r6-200100 3 11.125 -2017630 3 11.137 -2017630 3 11.145 -2017630
r7-200100 1 5.700 -2008300 1 5.720 -2008300 1 5.728 -2008300
r8-200100 2 4.764 -2010260 2 5.216 -2010260 2 7.176 -2010260
r9-200100 4 12.429 -2177380 4 12.541 -2177380 4 16.285 -2177380
r10-200100 4 18.497 -2086790 4 19.965 -2086790 4 19.973 -2086790
r1-300150 9 52.667 -3256390 9 52.867 -3256390 9 61.420 -3256390
r2-300150 6 50.579 -3131920 6 56.616 -3131920 6 57.000 -3131920
r3-300150 19 83.625 -3133680 19 83.833 -3133680 31 152.254 -3134400
r4-300150 3 44.267 -2724910 6 107.263 -2725630 6 107.479 -2725630
r5-300150 357 3757.180 -3047600 361 3839.161 -3047600 362 3850.542 -3048320
r6-300150 5 43.099 -3098540 7 51.791 -3099260 7 55.571 -3099260
r7-300150 23 357.806 -3134060 23 667.617 -3134060 23 846.492 -3134060
r8-300150 7 55.731 -3114700 7 55.944 -3114700 7 76.277 -3114700
r9-300150 6 35.250 -3028920 40 347.438 -3029640 — — —
r10-300150 8 64.168 -3162190 8 64.380 -3162190 8 73.241 -3162190
r1-400200 1 33.786 -4291550 1 33.870 -4291550 1 33.910 -4291550
r2-400200 6 86.541 -4274600 6 86.857 -4274600 6 87.137 -4274600
r3-400200 2 67.876 -4104580 3 90.242 -4104580 4 91.018 -4105300
r4-400200 — — — — — — — — —
r5-400200 2 34.474 -4180150 2 34.730 -4180150 2 45.847 -4180150
r6-400200 37 515.456 -3881500 37 515.764 -3881500 37 516.076 -3881500
r7-400200 7 212.777 -4269060 9 244.911 -4269780 9 265.700 -4269780
r8-400200 4 84.905 -4323400 11 153.734 -4324120 15 263.249 -4324840
r9-400200 9 121.748 -4091960 9 122.028 -4091960 9 134.309 -4091960
r10-400200 3 56.243 -3987600 5 101.106 -3987600 — — —
r1-500250 17 580.528 -5197650 17 609.634 -5197650 17 610.334 -5197650
r2-500250 5 173.587 -5257190 10 279.890 -5257910 10 310.512 -5257910
r3-500250 22 482.546 -5041160 22 482.962 -5041160 23 692.931 -5041160
r4-500250 5 197.368 -5421050 5 222.194 -5421050 5 222.622 -5421050
r5-500250 9 138.053 -5236380 9 138.509 -5236380 9 160.966 -5236380
r6-500250 — — — — — — — — —
r7-500250 2 63.268 -5088330 3 83.061 -5089050 3 86.357 -5089050
r8-500250 68 2442.070 -5030270 70 2505.382 -5030990 70 2909.051 -5030990
r9-500250 2 146.837 -5154660 7 277.413 -5155070 7 293.374 -5155070
r10-500250 19 527.873 -5400900 20 573.680 -5400900 22 638.072 -5401620

Table 4.6: Comparing the cost of optimality for GAPCONN4.
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(a) TheLORNOnetwork.
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(b) A connected solution with one full installation.

Figure 4.6: TheLORNOnetwork and corresponding solution from Example6.

represents the benefit of hearing regionj and, is thus, the same for allhi such that(hi, rj) ∈ E.

The solution shown in Figure4.6(b)has a total cost of

c− (c8,11 + c8,12 + c8,13 + c8,14 + c8,15) .

However, if we remove the underground hydrant represented by vertex8, we have the resulting

network shown in Figure4.7(a). In order to maintain the same level of coverage, we require four
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(a) The network after a hydrant is removed.
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(b) A connected solution on the new graph.

Figure 4.7: The resulting network and solution after removal of a below-groundhydrant.

full LORNOinstallations. Such a solution is shown in Figure4.7(b). This solution has a total cost
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of

4c− (c6,11 + c7,12 + c10,13 + c9,14 + c10,15) ,

an increase of3c over the previous solution.

Example 7. Removal of an below-ground hydrant.Now, consider theLORNOnetwork shown

in Figure4.8(a). We can find connected solution with two fullLORNOinstallations and one radio
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(a) TheLORNOnetwork.
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(b) A connected solution with 3 above-ground hydrants.

Figure 4.8: TheLORNOnetwork and corresponding solution from Example7.

installation, as shown in Figure4.7(b). The solution shown in Figure4.9(b)has a total cost of

2c + ch − (c8,11 + c8,12 + c8,13 + c8,14 + c8,15) .

However, if we remove the above-ground hydrant representedby vertex3, we have the resulting

network shown in Figure4.9(a). In order to maintain the same level of coverage, we require two

additional radio installationsLORNO installations. A solution is shown in Figure4.7(b). This

solution has a total cost of

2c + 3ch − (c6,11 + c7,12 + c10,13 + c9,14 + c10,15) ,

an increase of2ch over the previous solution.

One way to quantify the benefit of a hydrant is to determine theloss in total leak detection benefit

if it is removed from the system. Of particular interest are those hydrants whose removal results in

the largest loss in leak detection benefit. One question we may seek to answer is: What are thep

worst hydrants to remove, with respect to leak detection? Wecan employ the bilevel programming
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(a) The resulting network after the hydrant is removed.
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(b) Example of a connected solution on the new graph.

Figure 4.9: The resulting network and solution after removal of anabove-groundhydrant.

framework to answer such a question. In particular, we will model the problem as a ILP interdiction

problem.

Bilevel programs have previously been used to plan interdiction efforts against terrorist groups op-

erating on a physical network (Wood, 1993; Israeli, 1999; Israeli and Wood, 2002). In these appli-

cations, the analyst generally adopts the point of view of the law enforcement agency attempting to

reduce the effectiveness of the terrorist group’s operations. However, we can also use these models

from the opposite perspective, where we adopt the operator’s point of view, in order to determine

the sensitivity of our leak detection abilities to the structure of our network.

Interdicting the LORNO Network. Suppose we have a total interdiction budgetp, and the cost of

interdicting each hydrant is one (i.e., we are simply interested in the number of hydrants interdicted).

In other words, we are interested in the effect of removing any p hydrants. Let

wi =







1 if hydranti is interdicted

0 otherwise
.

Then, we can define an interdiction model which yields the worst-case outcome of resulting from

removal ofp hydrants from the water network. For the sensitivity analysis described above, it may

be desirable to simply setp = 1, to determine the single hydrant whose removal would have the

greatest impact on cost (benefit). After adding the necessary interdiction constraints, we have the
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following network design interdiction formulation, an special case of (MIPINT) (and IBLP):

maxmin
∑

(i,j)∈E

cijxij

subject to
∑

i∈H

wi ≤ p

∑

(j,i)∈E

xji = yi, ∀i ∈ V − {r0}

∑

(r0,i)∈E

xr0i = 1

x
(

δ−(S)
)

≥ yk, ∀(S, k) ∈ L
∑

(j,i)∈E

xji ≤
∑

(i,j)∈E

xij, ∀i 6∈ R ∪ {r0}

yi ≤ 1− xr0j, ∀i < j, {i, j} ⊂ H

xij + xji ≤ yi, (xij ≤ yi), ∀(i, j) ∈ E, i ∈ V − {r0}
yi ≤ 1− wi, ∀i ∈ V − {r0}
xij, yi ∈ {0, 1}, ∀i ∈ V − {r0},∀(i, j) ∈ E,

wi ∈ {0, 1}, ∀i ∈ V − {r0}.

Here, we assume that the central server cannot be removed, since this would effectively render

the system useless. Other than this caveat, we allow removalof any hydrant (above- or below-

ground) in theLORNOnetwork, but note that several of the algorithms in this dissertation rely

on the additional assumption of feasibility on the lower-level problem, meaning we only consider

hydrants whose removal does not prevent a connected communication network. In this application,

those hydrants whose removal does result in such an infeasible lower-level problem is likely of

interest, but we can easily modify the algorithmic assumptions to include this case (see Chapter2).

It is important to note that this formulation does not yield the resulting level of protection upon re-

moval of the hydrants from the current,LORNO-monitored network. Rather, it provides the lowest-

cost connected communication network that can be designed without these hydrants available. If a

hydrant is removed from the network, and theLORNOsensor optimization problem is not resolved,

it is possible that we are left with a disconnected network, rendering some (or all) of the remaining

sensors useless. In Chapter2, we provided an algorithm to solve the general IBLP. In the follow-

ing section, we describe specialized methods for interdiction problems aimed at exploiting problem

structure meant to improve the performance of our algorithmon interdiction problems.

122



4.2. GENERAL INTERDICTION PROBLEMS

4.2 General Interdiction Problems

In this section, we demonstrate methods for incorporating problem-specific customizations into our

solver framework. In order to illustrate such methods, we derive several methods that exploit the

structure of (MIPINT), thereby leading to more effective algorithm design. While these methods

have important computational implications for interdiction problems, they are also meant as an

example of how users of MibS can supplement the built-in methods to yield better results for their

own applications.

4.2.1 Cutting Plane Methods

In this section, we describe two methods for generating cutting planes. These methods are, in

fact, applicable to a slightly wider range of problems than those covered by (MIPINT), since their

derivation relies only on the requirementX = Bn1.

No-good Cuts. During preliminary computational experiments with MibS oninterdiction prob-

lems, we discovered that our algorithm frequently generates sequences of integer bilevel infeasible

solutions of the form

(x̂, y1), (x̂, y2), . . . , (x̂, yk)

such thatyi 6∈ M I(x̂) for i < k. In particular, the bilevel feasibility cut (2.3) of Chapter2 (by

design) separates only the current integer point, allowingfor this type of sequence generation.

If x ∈ Bn1, information obtained from the lower-level problem can be used to avoid this problem.

While checking bilevel feasibility, we obtain an optimal solution y∗ and associated optimal value

zL(x̂) for the lower-level problem

min
y∈SL(x̂)∩Y

d2y

and, thus, a feasible solution to (IBLP). This leads to the implication

x = x̂⇒ d2y = zL(x̂).

Therefore, if we store the solution(x̂, y∗), we can add a cut that separates(x̂, y) for y ∈ Y from

ΩI .

Let I0 := {i | x̂i = 0} andI1 := {i | x̂i = 1}. Note that forx ∈ Bn1, we have that

∑

i∈I0

xi +
∑

i∈I1

(1− xi) = 0
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if and only if x = x̂. Otherwise,

∑

i∈I0

xi +
∑

i∈I1

(1− xi) ≥ 1.

Thus, adding the cut
∑

i∈I0

xi +
∑

i∈I1

xi ≥ 1− |I1| ,

imposesx 6= x̂.

Increasing Objective Cuts. Let Y = Z
p2

+ × R
n2−p2

+ , and

SL(x̂) =
{

G2y ≥ b2 −A2x̂, y ∈ Y
}

. (4.4)

SupposeSL(x̂) ⊆ SL(x) for somex ∈ (PU ∩X). Then, it is clear that

min
y∈SL(x)

d2y = zMILP (x) ≤ zMILP (x̂) = min
y∈SL(x̂)

d2y

sincey ∈ SL(x) implies y ∈ SL(x̂). Thus,zMILP (x̂) yields an upper bound on the lower-level

objective function for such anx.

Note that, forSL(x̂) ⊆ SL(x), we only requireb2 − A2x ≤ b2 − A2x̂. Thus, ifA2 ∈ Rm2×n1

+ ,

SL(x̂) ⊆ SL(x) for anyx ≥ x̂. Alternatively, if A2 ∈ Rm2×n1

− , SL(x̂) ⊆ SL(x) for anyx ≤ x̂.

This is formalized in the following proposition.

Proposition 4.2 LetY = Z
p2

+ × R
n2−p2

+ , andSL(x̂) be defined as in(4.4). Then, if:

(i) A2 ∈ R
m2×n1

+ , SL(x̂) ⊆ SLL(x) for all x ≥ x̂

(ii) A2 ∈ Rm2×n1

− , SL(x̂) ⊆ SLL(x) for all x ≤ x̂

In either case, we have

min
y∈SL(x)

d2y = zMILP (x) ≤ zMILP (x̂) = min
y∈SL(x̂)

d2y.

One case for which we know these conditions to hold is (MIPINT). Recall from Chapter1:

S INT
L (x) =

{

y ∈ Rn | G2y ≤ b2,−y ≥ −U(e− x), y ≥ 0
}

.
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Corollary 4.3 Let

zINT
MILP (x) = min{d2y | y ∈ (S INT

L (x) ∩ Y )}.

Then,

zINT
MILP (x) ≤ zINT

MILP (x̂),

for all x ≤ x̂.

Proof. (MIPINT) satisfies Condition(ii) of Proposition4.2.

Note that these do not depend onX = Bn1. However, when all upper-level variables are binary,

generating valid inequalities from these results becomes more simple. We will see this next.

Using the results above, we would like to derive a cut to separate solutions that are integer, but not

bilevel feasible. Let(x̂, ŷ) ∈ ΩI be a solution to (LR) andy∗ ∈ argmin{d2y | y ∈ (SL(x̂) ∩ Y )}
be an optimal lower-level solution determined during the bilevel feasibility check. Also, suppose

thatA2 ∈ R
m2×n2

− . 2 Then, we have the following implication:

x ≤ x̂⇒ d2y ≤ d2y∗.

It is possible to model this implication by introducing indicator variablesδi ∈ B for i = 1, . . . , n1+1

and the set of constraints

xi − (mi − ǫ)δi ≥ x̂i + ǫ, ∀i = 1, . . . n1 (4.5)
n1
∑

i=1

δi − ǫδn1+1 ≤ n1 − ǫ (4.6)

d2y + Mδn1+1 ≤M + d2y∗, (4.7)

wherem is a lower bound onxi − x̂i, M is an upper bound ond2y − d2y∗, and ǫ is a small

tolerance. Here,mi = li − ui, whereli andui are natural upper and lower bounds onxi, and

M = max{d2y | (x, y) ∈ ΩI} − d2y∗ will suffice. While, (4.5)-(4.7) can be used for the general

caseX = Z
p1

+ × R
n1−p1

+ , it is likely that mi ≪ 0 for somei andM ≫ d2y∗. This may cause

computational difficulties when implemented.

However, ifX = Bn1, we can use the special structure to derive a more “well-behaved” imple-

mentation. As before, letI0 := {i | x̂i = 0} andI1 := {i | x̂i = 1}. For x ∈ Bn1, we have

that
∑

i∈I0

xi = 0

2Proposition4.2also covers the caseA2 ∈ R
m2×n2

+ , but we omit the results here since they are analogous.
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if and only if x ≤ x̂. Otherwise, we have

∑

i∈I0

xi ≥ 1.

Thus, applying the results above yields the disjunction

∑

i∈I0
xi ≤ 0

d2y ≤ d2y∗
OR

∑

i∈I0
xi ≥ 1,

which is violated by(x̂, ŷ), but satisfied by all members ofFI . Disjunctions of this type can be

applied directly as a branching rule used whenever solutions (x̂, ŷ) ∈ X × Y to (LR) that are not

bilevel feasible.

Alternatively, we can use this disjunction to generate a disjunctive cut using the same methodology

as discussed previously in Section3.2.4. The two polyhedra, denotedP1 andP2, that result if we

combine this disjunction with the original set of constraints inΩ:

P1 =



































−A1x ≤ −b1

−A2x−G2y ≤ −b2

∑

i∈I0
xi ≤ 0

d2y ≤ d2y∗

x, y ≥ 0



































and

P2 =



























−A1x ≤ −b1

−A2x−G2y ≤ −b2

−∑

i∈I0
xi ≤ −1

x, y ≥ 0



























Let (ui, vi, wi, zi) be multipliers for the constraints definingPi. The following inequalities are valid

for P1 andP2, respectively:

−u1A1x− v1A2x+w1
∑

i∈I0

xi − v1G2y+z1d2y ≤ u1b1−v1b2 +z1d2y∗

−u2A1x− v2A2x−w2
∑

i∈I0

xi − v2G2y ≤ u2b1−v2b2 − w2 .
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As in Chapter3, we derive thecut generation LP:

min αx̂ + βŷ − γ

s.t. α + u1A1 + v1A2 − w1eI0 ≤ 0

αu2A1 + v2A2 + w2eI0 ≤ 0

β + v1G2 − z1d2 ≤ 0

β + v2G2 ≤ 0 (4.8)

γ + u1b1 + v1b2 − z1d2y∗ ≥ 0

γ + u2b1 + v2b2 + w2 ≥ 0

m1
∑

i=1

u1
i +

m2
∑

i=1

v1
i + w1 + z1 +

m1
∑

i=1

u2
i +

m2
∑

i=1

v2
i + w2 + z2 = 1

u1, u2, v1, v2, w1, w2, z1, z2 ≥ 0,

whereeI0 is a row vector such thateI0
i = 1 if i ∈ I0 andei = 0 otherwise. This is formalized in the

following result.

Theorem 4.4 Let X = Bn1, Y = Z
p2

+ × R
n2−p2

+ , I0 := {i | x̂i = 0} andI1 := {i | x̂i = 1}. Let

eI0 andeI1 be row vectors such that

eI0
i =







1 if i ∈ I0

0 otherwise
and eI1

i =







1 if i ∈ I1

0 otherwise
.

Finally, let (x̂, ŷ) ∈ ΩI be a solution to(LR) andy∗ ∈ argmin{d2y | y ∈ PL(x̂) ∩ Y }. Then, if:

(i) A2 ∈ R
m2×n1

+ and(α∗, β∗, γ∗, u∗, v∗, w∗, z∗) is a solution to

α + u1A1 + v1A2 + w1eI1 ≤ 0

α + u2A1 + v2A2 − w2eI1 ≤ 0

β + v1G2 − z1d2 ≤ 0

β + v2G2 ≤ 0 (4.9)

γu1b1 − v1b2 + |I1|w1 − z1d2y∗ ≥ 0

γu2b1 − v2b2 − (|I1| − 1)w2 ≥ 0

m1
∑

i=1

u1
i +

m2
∑

i=1

v1
i + w1 + z1 +

m1
∑

i=1

u2
i +

m2
∑

i=1

v2
i + w2 + z2 = 1

u1, u2, v1, v2, w1, w2, z1, z2 ≥ 0,
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such thatα∗x̂ + β∗ŷ > γ∗, thenα∗x̂ + β∗ŷ ≤ γ∗ is a valid cutting plane separating(x̂, ŷ)

from conv(FI).

(ii) A2 ∈ R
m2×n1

− and(ᾱ, β̄, γ̄, ū, v̄, w̄, z̄) is a solution to

α + u1A1 + v1A2 − w1eI0 ≤ 0

α + u2A1 + v2A2 + w2eI0 ≤ 0

β + v1G2 − z1d2 ≤ 0

β + v2G2 ≤ 0 (4.10)

γu1b1 + v1b2 − z1d2y∗ ≥ 0

γu2b1 + v2b2 + w2 ≥ 0

m1
∑

i=1

u1
i +

m2
∑

i=1

v1
i + w1 + z1 +

m1
∑

i=1

u2
i +

m2
∑

i=1

v2
i + w2 + z2 = 1

u1, u2, v1, v2, w1, w2, z1, z2 ≥ 0,

such thatᾱx̂ + β̄ŷ > γ̄, thenᾱx̂ + β̄ŷ ≤ γ̄ is a valid cutting plane separating(x̂, ŷ) from

conv(FI).

One way we can utilize these cuts is by considering maximal and minimal upper-level solutions.

For example, ifA2 ∈ R
m2×n1

− , let SL(x̂) such that̂x is maximal with respect to
∑n1

i=1 xi. In other

words,

x̂ ∈ argmax
{

eT
n1

x | SLL(x) 6= ∅
}

.

4.2.2 Greedy Interdiction

Now, we describe a heuristic method for generating feasiblesolutions which exploits the special

structure of (MIPINT) and utilizes sensitivity information obtained from solving the lower-level LP

relaxation. Note that finding feasible solutions for interdiction problems is straightforward under

our assumptions, since we must only specify a feasible interdiction plan and solve the resulting

lower-level problem. That is, choosing a set of indicesI ∈ {1, . . . , n1} such thatA1xI ≤ b1 and

solving

min
y∈Y
{d2y | G2y ≥ b2, y ≤ U, yi = 0, i ∈ I}

yields a feasible MIPINT solution. Of course, the choice ofI will dictate the quality of such a

solution. Thus, a variety of heuristics could be derived by following this basic framework and

specifying methods for choosingI. One obvious method is to choose interdiction variables which

give the greatest immediate decrease in the lower-level objective. That is, at iterationt of the
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algorithm, we add variablej to the current interdiction setIt, where

j ∈ argminj∈N\It−1 d2
j .

We must, of course, maintain upper-level feasibility throughout the course of the algorithm, so must

check
∑

i∈It

a1
ijxi ≤ b1

j , j = 1, . . . ,m1

at each iteration. If this condition is not satisfied, we discardj and move to the next-best interdiction

choice. Once an interdiction variable is chosen, it is kept for the remainder of the algorithm. This

heuristic is summarized in Algorithm4.2. One potential variation of this algorithm would involve

replacing previously-chosen interdiction variables based on a specified criteria. This method can

Algorithm 4.2 Greedy Interdiction

1: SetI0 = ∅, N0 = {1, . . . , n}, andt = 1.
2: While N 6= ∅ do:

• Let jt = argminj∈N\It−1 d2
j with ties broken arbitrarily.

• If
∑

i∈It

a1
ijxi > b1

j ,

for anyj = 1, . . . ,m1, stop.It−1 is a greedy solution.

• If
∑

i∈It

a1
ijxi ≤ b1

j , j = 1, . . . ,m1,

setIt = It−1 ∪ {jt}.

also be used as a stand-alone algorithm. When embedded in an exact algorithmic framework, it is

necessary to modify the algorithm to ensure that interdiction plans are not repeated. One way in

which to implement such a modification is to add randomness toStep2.

4.2.3 Computational Results

As mentioned previously, determining effective methods for solving (MIPINT) is of interest for

several reasons. First, MIPINTs have important applications in infrastructure protection and other

in homeland security problems; especially for analyzing systems where network interdiction models

are limited by their assumption on system structure. Second, MIPINT can be used to perform a

type of sensitivity analysis to determine the effect of removing variables from the model. Through

such an analysis, we may discover that the optimal solution,or the model itself, is heavily reliant
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on a small number of decision variables. This would suggest that perhaps a solution with less

vulnerability may be worth the potential degradation in objective value. Further, it allows us to

examine the inherent vulnerability in the system and, potentially, discover ways in which it can be

made more robust. Finally, using instances of MIPINT allowsus to demonstrate the effectiveness

of our specialized methods for interdiction problems.

We tested our branch-and-cut algorithm on two sets of interdiction problems with special structure.

In the first set, the lower-level problems were binary knapsack problems with a single constraint. In

the second, the lower-level were composed of assignment constraints. In addition, we also tested

our algorithm on more general instances of MIPINT, where thelower-level problems are randomly-

generated MILPs. Each of these tests is discussed below. Allcomputational tests were performed

on an Intel Xeon 2.4GHz processor with 4GB of memory.

Knapsack Interdiction. For the knapsack interdiction, the goal of the upper-level DM was to

minimize the maximum profit achievable by the lower-level DMby fixing a subset of the variables

in the lower-level problem to zero. A cost was associated with the fixing of each lower-level vari-

able to zero and the upper-level problems contained a singleconstraint, representing the available

interdiction budget.

To create these instances, data files describing bicriteriaknapsack problems were taken from the

Multiple Criteria Decision Makinglibrary (Figueira, 2000). The first objective in each file was used

to define a lower-level objective function, while the secondobjective provided a budget constraint.

We chose instances with no correlation between the two objectives. The available budget was chosen

to be ⌈∑n
i=1 ai/2⌉, whereai is the cost of interdicting lower-level variablei. For a knapsack

problem withn items, this construction yielded a problem with2n variables andn + 2 constraints.

Summarized results of two sets of runs on the knapsack set – one in which we used maximum

infeasibility branching to select branching candidates and one in which we used strong branching –

are shown in Table4.7, where the results for each problem size reflect the average of 20 instances.

In each case, all results shown reflect the use of the specialized methods described in this chapter,

as well as the general heuristic methods provided in Chapter2.

Implicit in the formulation of the knapsack interdiction problems described above is the assumption

that the interdiction budget is fixed. However, as suggestedin our analysis of theLORNOsystem,

this may not be the case in a real application. Rather, we may wish to understand the tradeoff

between the interdiction budget and the resulting effect onthe follower’s objective function value.

One way to gain this understanding in the interdiction setting is via the multiobjective framework

described in Chapter1 and used to motivate a heuristic in Chapter3.
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Table 4.7: Summary results from the knapsack interdiction.
Maximum Infeasibility Strong Branching

2n Avg Nodes Avg Depth Avg CPU (s) Avg Nodes Avg Depth Avg CPU (s)
20 359.30 8.65 9.32 358.30 8.65 11.07
22 658.40 9.85 18.50 658.20 9.85 18.92
24 1414.80 10.85 46.03 1410.80 10.75 46.46
26 2725.00 12.05 97.55 2723.50 12.05 100.17
28 5326.40 12.90 214.97 5328.60 12.95 220.26
30 10625.00 14.05 482.70 10638.00 14.10 538.32

Biobjective Interdiction Problems. Suppose rowi of upper-level constraint system represents

the interdiction budget constraint. LetA1
i represent theith row ofA1 and letA1

−i andb1
−i represent

the upper-level constraint matrix and right hand side afterremoving theith row. Then, for each

i = 1, . . . ,m1, we can define a biobjective version of MIPINT (BMIPINT):

vmaxx∈P INT
U−i

∩Bn,y∈S INT
L

[dy,−A1
i x] (BMIPINTi)

where

P INT
U−i

=
{

x ∈ Rn | A1
−ix ≤ b1

−i

}

.

(BMIPINTi) is an example ofbiobjective mixed integer bilevel linear program(BMIBLP).

In order to illustrate how one might use a BMIBLP, or BMIPINT in this case, to perform tradeoff

analysis, we return to our knapsack test set. Moving our budget constraint to the to the objective

yields an instance of BMIPINT, which can then be converted toa standard MIPINT instance using

the single-level reformulation (1.4). Recall that solutions to the resulting subproblem are guaranteed

to be efficient, and systematic variation of the weightingδ will yield a portion of the efficient set. In

our setting, this means that the solution that results from each weightingδ is an efficient interdiction

plan.

Figure 4.10(a)illustrates how the optimal interdiction plans change as wevary the weightingδ.

In the figure, each column represents a potential activity tobe undertaken by the system operator

(lower-level DM). The rows correspond to different weightings ofδ (indicated by the values at the

right of the figure). In each row, the black dots represent activities that are interdicted by the at-

tacker and the hashed dots represent activities undertakenby the follower. The white dots represent

actions neither taken by the follower nor interdicted by theattacker. In this example, the objectives

were to minimize the amount of resources consumed by the upper-level and maximize the effect of

interdiction (on the lower-level problem). These objectives were given weightsδ and1− δ, respec-

tively. Examining the figure, from top to bottom, we can see how asδ increases, (1− δ decreases),

decisions become more contingent on resource consumption,and less aggressive interdiction plans

131



4.2. GENERAL INTERDICTION PROBLEMS

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

0.000

0.233

0.274

0.299

0.341

0.380

0.423

0.515

1.000

(a) Interdiction plans evolution. (b) Tradeoff curve for MIPINT.

Figure 4.10: Illustrating the tradeoff between the interdiction expense and effectiveness.

are implemented. Visually, this is seen by the appearance ofless black dots, which indicates a more

passive interdiction strategy, and more hashed dots, whichindicates greater flexibility for the lower-

level DM. In the extreme cases, whereδ lies on the boundary of[0, 1], we have placed all emphasis

on one objective or another. For example, whenδ = 0, effectively, we are saying that money is no

object, and we are only concerned with the effect of the interdiction efforts. In this case, it is clear

that we should interdict all of the defender’s possible decisions, to ensure the maximum effect. On

the other hand, whenδ = 1, our only concern is the consumption of the resources, with no weight

being placed on the effect of the interdiction strategy. In this case, there is no reason to take any ac-

tion, since doing nothing will provide the lowest interdiction cost. An example of the tradeoff curve

generated by the algorithm for one particular instance is shown in Figure4.10(b). From this curve,

we see the effect of the interdiction on the lower-level DM’sability to achieve her objective. On the

far left side of the plot, no resources have been spent on interdiction, the follower is allowed to act

freely, and achieves the best possible scenario for herself. This point corresponds to the last row in

Figure4.10(a). On the other hand, the far right hand side shows the case where the upper-level DM

is not limited by interdiction resources and can, therefore, completely prevent the defender from

operating her system. This point corresponds to the top row of Figure4.10(a). The portions of the

curve in which we are most interested are those areas with a steep slope. These areas represent crit-

ical points, where small increases in the planned interdiction budget yield very substantial increases

in effectiveness. Assuming the budget is somewhat flexible,these critical points determine where

it is worthwhile to increase the planned resources for the interdiction effort. Alternatively, we may

discover that, although the full budget allocated is being used, a significant portion of the resources

is being used for a very small marginal increase in effectiveness. Then, we may wish to forgo this

increase and allocate the resources to alternative efforts, where they can be used more effectively.
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4.2. GENERAL INTERDICTION PROBLEMS

Assignment Interdiction. As in the knapsack interdiction described above, the goal ofthe upper-

level DM in assignment interdiction is to maximize the minimum cost achievable by the lower-level

DM by fixing a subset of the variables in the lower-level problem to zero. As before, a cost was

associated with the interdicting each lower-level variable. The upper-level problems contained a

single knapsack constraint, representing the available interdiction budget.

Data files obtained fromMultiple Criteria Decision Makinglibrary (Figueira, 2000) were also used

to create these instances. In this case, the original problems represented bicriteria assignment prob-

lems. Again, the objectives were used to define a lower-levelobjective function and budget con-

straint. The budget for the assignment problems was chosen to be a fixed percentage of
∑n

i=1 ai.

Each problem contains 50 (i.e.2n, n = 25) variables and 45 (i.em + n + 1,m = 20) inequality

constraints. Note that, in a loose sense, the difficulty of these problems is determined by the number

of possible upper-level solutions; thus, budgets were chosen to yield interesting problems that could

be handled on a single processor. The results for the assignment set are shown in Table4.8, where

the results again reflect the same specialized interdictionmethods and primal heuristics as in the

knapsack test set. All tests were performed on an AMD OpteronProcessor 6128 with 32GB of

memory.

Instance Obj. Value No. Nodes Depth Gap (%) No. Cuts CPU (s)
2AP05-1 -36 7045 25 — 3460 39.95
2AP05-2 -46 19607 24 — 3992 80.17
2AP05-3 -46 3431 25 — 1370 16.08
2AP05-4 -25 4313 25 — 1382 17.61
2AP05-5 -38 3743 25 — 1294 16.85
2AP05-6 -32 2355 25 — 1008 12.85
2AP05-7 -49 3391 25 — 1598 18.22
2AP05-8 -41 3543 25 — 2154 22.23
2AP05-9 -54 1917 25 — 1142 11.18
2AP05-10 -46 5085 25 — 2348 26.99
2AP05-11 -36 759 25 — 290 3.18
2AP05-12 -49 5445 27 — 3008 33.85
2AP05-13 -74 1985 25 — 884 9.77
2AP05-14 -68 4621 25 — 2854 28.43
2AP05-15 -48 2845 25 — 1264 15.34
2AP05-16 -34 2317 25 — 706 10.54
2AP05-17 -66 8909 25 — 4628 56.78
2AP05-18 -35 7615 25 — 3230 39.82
2AP05-19 -39 2317 25 — 1114 13.04
2AP05-20 -42 2117 25 — 830 10.46
2AP05-21 -47 1897 25 — 1230 12.06
2AP05-22 -62 1741 25 — 990 9.77
2AP05-23 -68 2543 26 — 962 12.42
2AP05-24 -76 51 16 — 10 0.12
2AP05-25 -45 9457 26 — 3882 47.96

Table 4.8: Results from assignment test set.

133



4.2. GENERAL INTERDICTION PROBLEMS

ILP Interdiction. We also tested our algorithms on a set of randomly-generatedIPINT instances.

In these problems, the goal of the upper-level DM is to minimize the maximum cost solution achiev-

able by the lower-level DM, who is solving a random ILP. As in the previous two examples, a cost

was associated with the interdiction of each lower-level variable and the upper-level problems con-

tained a single knapsack constraint, representing the available interdiction budget. In order to create

these instances, we first generated a set ILPs of the desired size, with randomly-chosen coefficients

in the range[−50, 50]. From these ILPs, we created IPINT instances by setting interdiction costs

for each lower-level variable.

We assigned costs in two ways for these test problems. Initially, we assigned a unit cost to the

interdiction of each lower-level variable. Such a cost structure is appropriate if we are concerned

with questions such as “what are thek most crucial variables in the lower-level problem?”, similar

to that asked in Section4.1.7. For these problems, we allow up three lower-level variables to be

interdicted. We also generated a second set of IPINT instances with randomly-selected costs and

interdiction budget. In order to allow comparison between the two instance classes, we chose the

interdiction budgets in the second class such that the number of variable interdictions allowed was

approximately the same in the first class. The ILP classes we interdicted for these experiments are

summarized in Table4.9. The column and row dimensions of the full IPINT are equal to2n and

m + n + 1, respectively, wheren andm are the corresponding dimensions of the ILP instance.

Problem Class Num Rows Num Cols
1 10 10
2 15 10
3 20 20

Table 4.9: ILP Classes Interdicted.

We used these instances to test the performance of our exact algorithm, with the additional methods

described in this chapter, as well as the greedy algorithm asa standalone heuristic. All tests were

performed on an AMD Opteron Processor 6128 with 32GB of memory. A summary presentation

of the results is given in Table4.10. The summary results are useful for comparing the average

difficulty of the two test sets. We can conclude that, on average, the random instances require less

computational effort than their symmetric counterparts.

Avg. No. Nodes Avg. Depth Avg. Gap (%) Avg. No. Cuts Avg. CPU (s)
Class Symmetric Random Symmetric Random Symmetric Random Symmetric Random Symmetric Random

1 13255.20 13199.40 23.00 23.60 — — 13327.40 10828.80 187.12 162.42
2 58639.40 54055.20 24.30 24.60 — — 49633.20 35861.00 583.62 452.66
3 364098.70 559028.00 46.20 47.40 161.23 160.78 294524.40 249707.80 — —

Table 4.10: Summary results from the IPINT instances.

The complete results from the exact solver on the instances with symmetric and randomly-chosen
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costs are shown Table4.11and Table4.12, respectively. In Table4.13, a subset of the results from

both test sets are shown together. From this table, we can compare the effect of the interdiction and

the required computational effort for the two test sets. Notsurprisingly, when the interdiction costs

are not symmetric, we see significant differences in the resulting lower-level objective functions for

several of the instances, since the set of feasible interdiction plans is different, in general.

Instance Obj. Value No. Nodes Depth Gap (%) No. Cuts CPU (s)
miblp-10-10-50-0110-0-1 0 875 15 — 1090 10.24
miblp-10-10-50-0110-0-2 542 1595 25 — 2172 281.78
miblp-10-10-50-0110-0-3 168 5153 23 — 6524 76.25
miblp-10-10-50-0110-0-4 212 3809 20 — 3846 45.85
miblp-10-10-50-0110-0-5 54 14931 29 — 14568 247.22
miblp-10-10-50-0110-0-6 89 4033 24 — 4702 60.87
miblp-10-10-50-0110-0-7 0 1009 17 — 1312 10.04
miblp-10-10-50-0110-0-8 99 2161 23 — 2878 36.33
miblp-10-10-50-0110-0-9 35 2453 17 — 2536 26.30
miblp-10-10-50-0110-0-10 0 96533 37 — 93646 1076.33
miblp-15-10-50-0110-0-1 19 1399 17 — 1764 25.27
miblp-15-10-50-0110-0-2 0 251 10 — 334 2.62
miblp-15-10-50-0110-0-3 47 727 15 — 872 7.20
miblp-15-10-50-0110-0-4 10 11355 24 — 11476 115.37
miblp-15-10-50-0110-0-5 267 6965 25 — 7552 426.43
miblp-15-10-50-0110-0-6 6 20813 30 — 18268 180.07
miblp-15-10-50-0110-0-7 96 263 11 — 352 4.08
miblp-15-10-50-0110-0-8 75 25307 32 — 23898 409.66
miblp-15-10-50-0110-0-9 0 411127 41 — 353148 3815.48
miblp-15-10-50-0110-0-10 8 108187 38 — 78668 850.02
miblp-20-20-50-0110-0-1 526 244598 45 162.57 261042 LIM
miblp-20-20-50-0110-0-2 162 419998 42 143.40 353910 LIM
miblp-20-20-50-0110-0-3 200 323470 38 159.05 321920 LIM
miblp-20-20-50-0110-0-4 315 430951 48 158.36 362260 LIM
miblp-20-20-50-0110-0-5 218 407914 41 170.00 389212 LIM
miblp-20-20-50-0110-0-6 133 1009676 68 116.28 494430 LIM
miblp-20-20-50-0110-0-7 310 336973 43 147.54 305098 LIM
miblp-20-20-50-0110-0-8 376 325434 39 232.51 318276 LIM
miblp-20-20-50-0110-0-9 325 65567 35 152.09 68352 LIM
miblp-20-20-50-0110-0-10 873 76406 63 170.49 70744 LIM

Table 4.11: Exact results from IPINTs with symmetric costs.
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Instance Obj. Value No. Nodes Depth Gap (%) No. Cuts CPU (s)
miblp-10-10-50-0110-0-1 11 975 15 — 926 9.19
miblp-10-10-50-0110-0-2 607 1929 26 — 1866 234.46
miblp-10-10-50-0110-0-3 210 3425 23 — 3962 47.05
miblp-10-10-50-0110-0-4 210 2767 21 — 2616 30.86
miblp-10-10-50-0110-0-5 122 12389 30 — 10906 194.77
miblp-10-10-50-0110-0-6 89 3965 25 — 3930 52.86
miblp-10-10-50-0110-0-7 0 1045 18 — 1114 8.52
miblp-10-10-50-0110-0-8 99 1713 23 — 2028 26.47
miblp-10-10-50-0110-0-9 35 2699 17 — 2250 24.85
miblp-10-10-50-0110-0-10 0 101087 38 — 78690 995.19
miblp-15-10-50-0110-0-1 28 1347 18 — 1174 19.70
miblp-15-10-50-0110-0-2 0 219 10 — 242 2.00
miblp-15-10-50-0110-0-3 51 721 16 — 674 5.39
miblp-15-10-50-0110-0-4 10 10815 24 — 8802 91.11
miblp-15-10-50-0110-0-5 415 5433 24 — 5852 321.75
miblp-15-10-50-0110-0-6 6 20149 31 — 15076 153.56
miblp-15-10-50-0110-0-7 99 245 12 — 252 3.41
miblp-15-10-50-0110-0-8 75 27595 32 — 19252 338.08
miblp-15-10-50-0110-0-9 0 377649 41 — 250354 2949.34
miblp-15-10-50-0110-0-10 8 96379 38 — 56932 642.23
miblp-20-20-50-0110-0-1 538 493866 46 164.39 262674 LIM
miblp-20-20-50-0110-0-2 160 718853 43 142.18 305730 LIM
miblp-20-20-50-0110-0-3 200 517380 39 157.51 249392 LIM
miblp-20-20-50-0110-0-4 331 757069 48 161.57 338806 LIM
miblp-20-20-50-0110-0-5 218 685632 42 172.33 320710 LIM
miblp-20-20-50-0110-0-6 43 973159 65 105.13 297378 LIM
miblp-20-20-50-0110-0-7 264 565006 46 140.46 315354 LIM
miblp-20-20-50-0110-0-8 409 628377 46 245.71 267310 LIM
miblp-20-20-50-0110-0-9 300 116540 36 147.92 72416 LIM
miblp-20-20-50-0110-0-10 878 134398 63 170.56 67308 LIM

Table 4.12: Exact results from IPINTs with random costs.
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Obj. Value Avg. No. Nodes Avg. No. Cuts
Instance Symmetric Random Symmetric Random Symmetric Random

miblp-10-10-50-0110-0-1 0 11 875 975 1090 926
miblp-10-10-50-0110-0-2 542 607 1595 1929 2172 1866
miblp-10-10-50-0110-0-3 168 210 5153 3425 6524 3962
miblp-10-10-50-0110-0-4 212 210 3809 2767 3846 2616
miblp-10-10-50-0110-0-5 54 122 14931 12389 14568 10906
miblp-10-10-50-0110-0-6 89 89 4033 3965 4702 3930
miblp-10-10-50-0110-0-7 0 0 1009 1045 1312 1114
miblp-10-10-50-0110-0-8 99 99 2161 1713 2878 2028
miblp-10-10-50-0110-0-9 35 35 2453 2699 2536 2250
miblp-10-10-50-0110-0-10 0 0 96533 101087 93646 78690
miblp-15-10-50-0110-0-1 19 28 1399 1347 1764 1174
miblp-15-10-50-0110-0-2 0 0 251 219 334 242
miblp-15-10-50-0110-0-3 47 51 727 721 872 674
miblp-15-10-50-0110-0-4 10 10 11355 10815 11476 8802
miblp-15-10-50-0110-0-5 267 415 6965 5433 7552 5852
miblp-15-10-50-0110-0-6 6 6 20813 20149 18268 15076
miblp-15-10-50-0110-0-7 96 99 263 245 352 252
miblp-15-10-50-0110-0-8 75 75 25307 27595 23898 19252
miblp-15-10-50-0110-0-9 0 0 411127 377649 353148 250354
miblp-15-10-50-0110-0-10 8 8 108187 96379 78668 56932
miblp-20-20-50-0110-0-1 526 538 244598 493866 261042 262674
miblp-20-20-50-0110-0-2 162 160 419998 718853 353910 305730
miblp-20-20-50-0110-0-3 200 200 323470 517380 321920 249392
miblp-20-20-50-0110-0-4 315 331 430951 757069 362260 338806
miblp-20-20-50-0110-0-5 218 218 407914 685632 389212 320710
miblp-20-20-50-0110-0-6 133 43 1009676 973159 494430 297378
miblp-20-20-50-0110-0-7 310 264 336973 565006 305098 315354
miblp-20-20-50-0110-0-8 376 409 325434 628377 318276 267310
miblp-20-20-50-0110-0-9 325 300 65567 116540 68352 72416
miblp-20-20-50-0110-0-10 873 878 76406 134398 70744 67308

Table 4.13: Comparison of results from IPINTs with different cost structures.
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The results from the greedy heuristic are shown in Tables4.14 and 4.15. As in Chapter3, we

compare the objective values found by the heuristic to the lower bound provided by solving the

underlying MILP:

min
(x,y)∈ΩI

c1x + d1y,

as well as the upper bounds obtained from the simple heuristic methods. Note that, for interdic-

tion problems, the bounds obtained from the simple heuristic methods are likely to be equivalent,

assuming that the solution to the underlying MILP does not contain any nonnegative upper-level

variables. For all instances tested, these bounds were, in fact, identical and only one is shown. In

the tables below, the bounds are denotedMILP Bound, Easy Boundand have the same interpretation

as in Chapter3.

Instance CPU (s) Greedy Obj. MILP Bound Easy Bound
miblp-10-10-50-0110-0-1 0.02 44.0 -99.0 208.0
miblp-10-10-50-0110-0-2 0.28 764.0 -202.0 873.0
miblp-10-10-50-0110-0-3 0.05 257.0 -420.0 548.0
miblp-10-10-50-0110-0-4 0.04 225.0 -365.0 444.0
miblp-10-10-50-0110-0-5 0.04 54.0 -300.0 227.0
miblp-10-10-50-0110-0-6 0.05 105.0 -239.0 469.0
miblp-10-10-50-0110-0-7 0.02 0.0 -104.0 147.0
miblp-10-10-50-0110-0-8 0.05 99.0 -360.0 808.0
miblp-10-10-50-0110-0-9 0.04 35.0 -358.0 269.0
miblp-10-10-50-0110-0-10 0.05 0.0 -277.0 290.0
miblp-15-10-50-0110-0-1 0.04 26.0 -140.0 142.0
miblp-15-10-50-0110-0-2 0.01 66.0 -314.0 172.0
miblp-15-10-50-0110-0-3 0.02 228.0 -123.0 261.0
miblp-15-10-50-0110-0-4 0.04 10.0 -167.0 210.0
miblp-15-10-50-0110-0-5 0.13 301.0 -241.0 624.0
miblp-15-10-50-0110-0-6 0.03 6.0 -336.0 305.0
miblp-15-10-50-0110-0-7 0.04 127.0 -241.0 211.0
miblp-15-10-50-0110-0-8 0.11 75.0 -425.0 238.0
miblp-15-10-50-0110-0-9 0.06 0.0 -419.0 149.0
miblp-15-10-50-0110-0-10 0.04 8.0 -524.0 235.0
miblp-20-20-50-0110-0-1 0.31 526.0 -887.0 885.0
miblp-20-20-50-0110-0-2 0.14 276.0 -478.0 302.0
miblp-20-20-50-0110-0-3 0.31 252.0 -409.0 446.0
miblp-20-20-50-0110-0-4 0.47 560.0 -566.0 600.0
miblp-20-20-50-0110-0-5 0.28 288.0 -376.0 585.0
miblp-20-20-50-0110-0-6 0.23 180.0 -859.0 526.0
miblp-20-20-50-0110-0-7 0.59 310.0 -697.0 619.0
miblp-20-20-50-0110-0-8 0.15 398.0 -349.0 571.0
miblp-20-20-50-0110-0-9 1.09 325.0 -707.0 592.0
miblp-20-20-50-0110-0-10 0.79 992.0 -1271.0 1359.0

Table 4.14: Heuristic results from IPINTs with symmetric costs.
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Instance CPU (s) Greedy Obj. MILP Bound Easy Bound
miblp-10-10-50-0110-0-1 0.03 208.0 -99.0 208.0
miblp-10-10-50-0110-0-2 0.28 764.0 -202.0 873.0
miblp-10-10-50-0110-0-3 0.03 462.0 -420.0 548.0
miblp-10-10-50-0110-0-4 0.04 276.0 -365.0 444.0
miblp-10-10-50-0110-0-5 0.05 132.0 -300.0 227.0
miblp-10-10-50-0110-0-6 0.05 105.0 -239.0 469.0
miblp-10-10-50-0110-0-7 0.02 0.0 -104.0 147.0
miblp-10-10-50-0110-0-8 0.05 99.0 -360.0 808.0
miblp-10-10-50-0110-0-9 0.04 35.0 -358.0 269.0
miblp-10-10-50-0110-0-10 0.06 0.0 -277.0 290.0
miblp-15-10-50-0110-0-1 0.05 32.0 -140.0 142.0
miblp-15-10-50-0110-0-2 0.01 66.0 -314.0 172.0
miblp-15-10-50-0110-0-3 0.01 228.0 -123.0 261.0
miblp-15-10-50-0110-0-4 0.03 10.0 -167.0 210.0
miblp-15-10-50-0110-0-5 0.13 473.0 -241.0 624.0
miblp-15-10-50-0110-0-6 0.04 6.0 -336.0 305.0
miblp-15-10-50-0110-0-7 0.04 167.0 -241.0 211.0
miblp-15-10-50-0110-0-8 0.11 75.0 -425.0 238.0
miblp-15-10-50-0110-0-9 0.05 0.0 -419.0 149.0
miblp-15-10-50-0110-0-10 0.02 8.0 -524.0 235.0
miblp-20-20-50-0110-0-1 0.26 686.0 -887.0 885.0
miblp-20-20-50-0110-0-2 0.13 276.0 -478.0 302.0
miblp-20-20-50-0110-0-3 0.3 252.0 -409.0 446.0
miblp-20-20-50-0110-0-4 0.6 560.0 -566.0 600.0
miblp-20-20-50-0110-0-5 0.28 323.0 -376.0 585.0
miblp-20-20-50-0110-0-6 0.24 180.0 -859.0 526.0
miblp-20-20-50-0110-0-7 0.64 264.0 -697.0 619.0
miblp-20-20-50-0110-0-8 0.16 512.0 -349.0 571.0
miblp-20-20-50-0110-0-9 0.69 323.0 -707.0 592.0
miblp-20-20-50-0110-0-10 0.8 1340.0 -1271.0 1359.0

Table 4.15: Heuristic results from IPINTs with random costs.
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The effects of interdiction by the exact and heuristic strategies are summarized in Table4.16. In

this table, the columns titledAvg. Best Effect (%)andAvg. Heuristic Effect (%), show the average

effect on the lower-level problem value that results from the optimal (or best known) and heuristic

interdiction strategies. We define the effect of interdiction as the decrease in the optimal lower-

level solution that results from variable interdiction, and report it as a percentage of the optimal

lower-level objective value.

Symmetric Random
Class Avg. Best Effect (%) Avg. Heuristic Effect (%) Avg. Best Effect (%) Avg. Heuristic Effect (%)

1 79.15 72.23 74.16 56.02
2 83.87 70.59 80.57 65.51
3 49.20 36.82 51.12 30.63

Table 4.16: Summary of heuristic and exact interdiction success.

From the summary presentation, it is clear that the exact solver is able to produce more effective

interdiction strategies, as we would expect, and the difference in effectiveness tends to increase with

the size of the lower-level ILP. However, we can also see fromthe table, that the heuristic strategies

do still have a significant effect on the lower-level DM’s objective value, and provide a reasonable

alternative if a solution is needed quickly. The differencein effectiveness is even less dramatic

for the case of symmetric interdiction costs. A full comparison between the exact and heuristic

methods, for each of the test set variants, is provided in Tables4.17and4.18.

Instance Best Known Greedy Obj. MILP Bound Easy Bound Best Effect (%) Heuristic Effect (%)
miblp-10-10-50-0110-0-1 0 44 -99 208 100.00 78.85
miblp-10-10-50-0110-0-2 542 764 -202 873 37.92 12.49
miblp-10-10-50-0110-0-3 168 257 -420 548 69.34 53.10
miblp-10-10-50-0110-0-4 212 225 -365 444 52.25 49.32
miblp-10-10-50-0110-0-5 54 54 -300 227 76.21 76.21
miblp-10-10-50-0110-0-6 89 105 -239 469 81.02 77.61
miblp-10-10-50-0110-0-7 0 0 -104 147 100.00 100.00
miblp-10-10-50-0110-0-8 99 99 -360 808 87.75 87.75
miblp-10-10-50-0110-0-9 35 35 -358 269 86.99 86.99
miblp-10-10-50-0110-0-10 0 0 -277 290 100.00 100.00
miblp-15-10-50-0110-0-1 19 26 -140 142 86.62 81.69
miblp-15-10-50-0110-0-2 0 66 -314 172 100.00 61.63
miblp-15-10-50-0110-0-3 47 228 -123 261 81.99 12.64
miblp-15-10-50-0110-0-4 10 10 -167 210 95.24 95.24
miblp-15-10-50-0110-0-5 267 301 -241 624 57.21 51.76
miblp-15-10-50-0110-0-6 6 6 -336 305 98.03 98.03
miblp-15-10-50-0110-0-7 96 127 -241 211 54.50 39.81
miblp-15-10-50-0110-0-8 75 75 -425 238 68.49 68.49
miblp-15-10-50-0110-0-9 0 0 -419 149 100.00 100.00
miblp-15-10-50-0110-0-10 8 8 -524 235 96.60 96.60
miblp-20-20-50-0110-0-1 526 526 -887 885 40.56 40.56
miblp-20-20-50-0110-0-2 162 276 -478 302 46.36 8.61
miblp-20-20-50-0110-0-3 200 252 -409 446 55.16 43.50
miblp-20-20-50-0110-0-4 315 560 -566 600 47.50 6.67
miblp-20-20-50-0110-0-5 218 288 -376 585 62.74 50.77
miblp-20-20-50-0110-0-6 133 180 -859 526 74.71 65.78
miblp-20-20-50-0110-0-7 310 310 -697 619 49.92 49.92
miblp-20-20-50-0110-0-8 376 398 -349 571 34.15 30.30
miblp-20-20-50-0110-0-9 325 325 -707 592 45.10 45.10
miblp-20-20-50-0110-0-10 873 992 -1271 1359 35.76 27.01

Table 4.17: Heuristic versus exact results from IPINTs withsymmetric costs.
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Instance Best Known Greedy Obj. MILP Bound Easy Bound Best Effect (%) Heuristic Effect (%)
miblp-10-10-50-0110-0-1 11 208 -99 208 94.71 0.00
miblp-10-10-50-0110-0-2 607 764 -202 873 30.47 12.49
miblp-10-10-50-0110-0-3 210 462 -420 548 61.68 15.69
miblp-10-10-50-0110-0-4 210 276 -365 444 52.70 37.84
miblp-10-10-50-0110-0-5 122 132 -300 227 46.26 41.85
miblp-10-10-50-0110-0-6 89 105 -239 469 81.02 77.61
miblp-10-10-50-0110-0-7 0 0 -104 147 100.00 100.00
miblp-10-10-50-0110-0-8 99 99 -360 808 87.75 87.75
miblp-10-10-50-0110-0-9 35 35 -358 269 86.99 86.99
miblp-10-10-50-0110-0-10 0 0 -277 290 100.00 100.00
miblp-15-10-50-0110-0-1 28 32 -140 142 80.28 77.46
miblp-15-10-50-0110-0-2 0 66 -314 172 100.00 61.63
miblp-15-10-50-0110-0-3 51 228 -123 261 80.46 12.64
miblp-15-10-50-0110-0-4 10 10 -167 210 95.24 95.24
miblp-15-10-50-0110-0-5 415 473 -241 624 33.49 24.20
miblp-15-10-50-0110-0-6 6 6 -336 305 98.03 98.03
miblp-15-10-50-0110-0-7 99 167 -241 211 53.08 20.85
miblp-15-10-50-0110-0-8 75 75 -425 238 68.49 68.49
miblp-15-10-50-0110-0-9 0 0 -419 149 100.00 100.00
miblp-15-10-50-0110-0-10 8 8 -524 235 96.60 96.60
miblp-20-20-50-0110-0-1 538 686 -887 885 39.21 22.49
miblp-20-20-50-0110-0-2 160 276 -478 302 47.02 8.61
miblp-20-20-50-0110-0-3 200 252 -409 446 55.16 43.50
miblp-20-20-50-0110-0-4 331 560 -566 600 44.83 6.67
miblp-20-20-50-0110-0-5 218 323 -376 585 62.74 44.79
miblp-20-20-50-0110-0-6 43 180 -859 526 91.83 65.78
miblp-20-20-50-0110-0-7 264 264 -697 619 57.35 57.35
miblp-20-20-50-0110-0-8 409 512 -349 571 28.37 10.33
miblp-20-20-50-0110-0-9 300 323 -707 592 49.32 45.44
miblp-20-20-50-0110-0-10 878 1340 -1271 1359 35.39 1.40

Table 4.18: Heuristic versus exact results from IPINTs withrandom costs.
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Chapter 5

Conclusions and Research Extensions

In this chapter, we summarize the results and contributionsof the dissertation. In addition, we

suggest future research directions and suggest how to extend the results here to further field of

study. First, however, we describe some interesting application areas, to further motivate the utility

of MIBLP in practice.

5.1 Applications of Interest

5.1.1 Atrial Fibrillation Ablation

Atrial fibrillation (AF) is a form of arrhythmia caused by electrophysiological abnormalities in the

heart’s electrical conduction system (Finta and Haines, 2004). It is the most prevalent form of

arrhythmia, affecting approximately 1% of the population (Waktare, 2002) and is well-known to be

a leading cause of stroke.

In a healthy heart, the heartbeat is controlled primarily bythe sinoatrial (SA) and atrioventricular

(AV) nodes, located in the upper portion of the right atrium and at the intersection of the atria and

the ventricles, respectively. Electrical impulses are sent from the SA node, which acts as a natural

pacemaker, across the atria via electrical conduction, eventually reaching the AV node. In the AV

node, these impulses are delayed for a fraction of a second, then sent across the ventricles, causing

contraction and dictating heart rhythm. In AF, impulses originating from sources other than the SA

node reach the AV node, causing a more rapid activation pattern of ventricle contraction. Clinical

evidence suggests that AF may be the result of impulse cycling within macroreentrant circuits,

electrical or physical pathways in the atria, triggered by asource other than the SA node (Finta and

Haines, 2004). It has recently been observed that the most likely origin of these auxiliary impulses
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is a focal point within the atria. The arrhythmia can be treated by disconnecting this focal point

from the rest of the atria (Veenhuyzen et al., 2004).

AF ablation procedures are intended to block these unwantedimpulses from reaching the AV node.

The most prominent surgical ablation technique is the Cox-Maze procedure (Cox et al., 1991).

This procedure, although known to be extremely effective (Gillinov and McCarthy, 2004) in the

treatment of AF, requires complex intrusive surgery and cardiac arrest to complete. An alternative

procedure is catheter ablation, which does not require opening the heart or surgically incising the

patient. Instead, disconnection from the AV is accomplished by transmitting energy (frequently

radio frequency (RF)) to appropriate locations via catheter insertion. In either ablation procedure,

the treatment of AF requires the disconnection of auxiliarypathways from the AV node. If we

assume that the electrical impulses are traveling via the path of lowest resistance (or energy), we

can model their flow using a mathematical program. Then, the optimal strategy for disconnection is

determined by the solution of an interdiction problem whoselower-level is defined by this program.

Further research is necessary to determine if this is a realistic model with which to guide ablation

surgery. However, even a simple model may yield valuable information in AF treatment.

5.1.2 Corporate Strategy

A straightforward application of bilevel programming is the analysis of decentralized decision mak-

ing within a large company. Although it is likely that the each level of hierarchy within the company

recognizes the benefit of maximizing the overall health of the company, it is certainly plausible that

different levels have different notions of the measurementof health. Additionally, it is easy to

imagine situations where individual components of the company are myopic, in the sense that their

primary goals may reflect the betterment of their division, without due consideration of the effects

on the company as a whole. In this case, it is in the company’s best interest to realize these possibili-

ties and make decisions accordingly. Thus, at the highest level, strategies that consider the behavior

of lower-level decision makers should be considered. Bilevel programming is well suited for this

type of analysis. Of course, as is the case when one compares applications of linear and integer

programming (seeNemhauser and Wolsey(1999) for examples), using the more general model of

mixed integer bilevel linear programming yields more applicability.

The inherent hierarchical structure is readily apparent inthe intra-company model described above.

However, in some applications, the underlying hierarchical structure is not as obvious. One example

of such an application arises when two firms compete for economic market share. In particular, a

decision hierarchy results in analysis of markets dominated by a large entity, or “market-maker.”

In this case, the larger of the two companies has the power to exhibit influence over the other

because of its dominance and ability to make decisions whichaffect the market itself. Thus, a
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hierarchy exists due to the relative influence of the companies, rather than the corporate structure

of a particular company, as in the application described above. Economic analysis was the original

motivation for the study of multilevel programming (Koopmans, 1951; Charnes et al., 1967; Cyert

and March, 1955). However, we describe a different economic application than those considered in

the traditional economic literature.

Suppose the larger company (Company A) wishes to gain a controlling interest in the smaller com-

pany (Company B). Presumably, the lower the value of the Company B (as measured by profit or

stock price, or any number of valuing techniques), the easier this goal will be to obtain. Of course,

Company B would like this value to be as high as possible, to ensure the future health of the com-

pany. This leads to a bilevel optimization problem where Company A seeks to minimize the value of

Company B, while Company B seeks to maximize its own value. Ifwe assume that both companies

value Company B in the same manner, we have zero-sum problem.Alternatively, we may consider

a more general case where the companies have conflicting, butnot necessarily opposite, objectives,

yielding a non-zero-sum model.

We have described a general application of bilevel optimization above. We now suggest a particular

setting in which to apply the general ideas. Suppose CompanyB wishes to determine its marketing

strategy for the upcoming fiscal year. Specifically, supposeCompany B is deciding which demo-

graphic or geographic regions to target, subject to a specified marketing budgetC. We assume that

there exist a finite numberN of potential regions available to Company B. We also assume that

there exists a costci to establish a marketing campaign in regioni and that there is a benefitpi for

marketing the company’s products in regioni. Let

yi =







1 if region i is chosen for the campaign

0 otherwise
.

Then, Company B solves an integer program where it seeks to maximize the marketing benefit
∑N

i=1 piyi subject to the budget constraint
∑N

i=1 ciyi ≤ C. Now, suppose that, due its market

dominance, if Company A targets the same region as Company B,Company B is unable to estab-

lish a worthwhile marketing campaign. Then, Company A can interdict the marketing problem to

be solved by Company B. Assuming that Company A also has some budgetD available for the
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disruption of Company B’s strategy and that interdicting region i has costdi, we have the MIPINT

min
x∈BN

max
y∈BN

N
∑

i=1

piyi

subject to
N

∑

i=1

dixi ≤ D

ciyi ≤ C

yi ≤ 1− xi, i = 1, . . . N,

where

xi =







1 if region i is interdicted

0 otherwise

In this simple model, each company is constrained by a singleknapsack budget constraint. Of

course, we can add additional constraints to make the model more realistic. Also, we can easily

drop the assumption that both companies value the marketingbenefits of each region identically

and introduce separate cost vectors for A and B. This yields anon-zero-sum MIBLP that resembles

a MIPINT in its system of constraints.

5.1.3 Wireless MANET

Another interesting application of multilevel programming arises in cross-layer network design opti-

mization problems. These problems are encountered in mobile ad hoc networks (MANET) consist-

ing of moving nodes, each equipped with cognitive radios that dynamically adjust their transmission

power and constellation size in response to channel and interference states. One example of such

a network exists in the military, where the mobile nodes represent foot soldiers. In this type of

network, the objective is to utilize the minimum amount of transmission power in the network’s

physical layer, while maximizing the capacity of the links among the nodes, thereby throughput, in

the network layer. If this can be achieved in all radios, thenthe maximum amount of throughput can

be attained at the network layer, yielding the greatest amount of communication among the radios.

In this section, we discuss previous attempts at modeling and analyzing this system and motivate the

introduction of several new models which allow for further analysis. The models introduced here

incorporate the relevant aspects of the previous models, while generalizing the modeling framework

in order to provide a more flexible framework and an alternative solution approaches.
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Previous Models. In the past, the problems of finding the optimal cross-layer network design

with respect to network throughput for a mobile ad-hoc wireless network and determining the min-

imum necessary transmit power in the network’s physical layer have been considered as separate

optimization problems. In this section, we consider the traditional models, separately, then refor-

mulate the problem using the frameworks of multicriteria and multilevel programming.

Design Problem Description. A wireless MANET is composed of five layers: physical , medium

access control (MAC), network, transport, and application. We describe joint optimization models

across the first three layers. Our intention is to demonstrate methods for combining the cross layer

design model ofFridman et al.(2008) and an ILP that determines minimum transmission power for

a fixed capacity graph and set of constellation sizes. In the following sections, we discuss each of

these and their roles separately. Then, in Section5.1.3, we describe an optimization model that has

been previously used to determine the optimal network design with respect to network throughput.

Physical Layer. The primary functions of the physical layer of a MANET are to control trans-

mission power and constellation size. In this layer, there exist a set of mobile nodes, each equipped

with a cognitive radio permitting dynamic selection of bothtransmit power and constellation size.

Let N = {1, . . . , n} denote the set of mobile nodes in the network. Letpt ∈ P denote the power

vector, wherept
i is the power of nodei ∈ N at timet, andP is a finite discrete set. We also denote

the constellation vector bymt ∈ M, wheremt
i is the constellation size of nodei at timet, andM

is also a finite discrete set.1 At any timet, a subset of the mobile nodes are transmitting. We denote

this subset byτ t. At time t, theSignal to Interference plus Noise Ratio(SINR) for nodej ∈ N ,

when listening to nodei ∈ N \ {i}, is given by

SINRt
j =

pt
id

−α
ij

∑

k∈τ t\{i} pt
jd

−α
kj + σ2

, (5.1)

wheredij is the distance between nodei and nodej, α > 2 is the path-loss constant, and the

constantσ2 is the additive Gaussian noise to which the channel is subject. We also define theBit

Error Rate(BER) for each receiver:

BERt
j = 2Q

(

√

2SINRt
j sin

π

mt
i

)

. (5.2)

1For example, in the case of the well-known modulation scheme, Quadrature Amplitude Modulation (QAM),M =
{1, 2, 4, . . . , mmax}, wheremmax is the maximum constellation size (Fridman et al., 2008).
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In equation (5.2), Q is theQ Function, Q(Z) = P{Z > z} for Z ∼ N(0, 1), which is estimated

as:

Q(zt) ≈ 1

1
2zt + 1

2

√

zt2 + 8
π

1√
2π

e−
zt2

2 , (5.3)

where

zt =
√

2SINRt
j sin

π

mt
i

.

The maximum allowable BER on any link is given byβ.

The cognitive radios used in MANETs can change both transmission power and constellation size.

Increasing the constellation sizemi:

• increases the capacity of links emanating from nodei,

• increases the chance of symbol decoding error (BER), and

• has no effect on the neighboring nodes (other than link capacity).

On the other hand, increasing the transmission powerpi:

• increases the ratio of ratio of signal to noise (SINR) for transmitteri, and

• decreases the SINR for all other receivers.

Thus, these two functions can be used in a complementary manner to improve network performance.

This relationship motivates our study of multiobjective and multilevel models for this application.

MAC Layer. The primary purpose of the MAC layer is to determine the optimal scheduling for

data transmission. Here, we assume the network uses a slotted protocol. In each slot, a mobile node

can be transmitting, receiving, or idle. Further, for each time slot, there exists an associated power

vector that identifies the available resources for the node set. Let S denote the set of time slots

for each round of scheduling. The duration of each time slot is given by the constantη, and each

transmitteri ∈ N is allowed to transmit in at mostsi of the time slots. In this context, a schedule is

defined by|S| differentN ×N matrices,B1 . . . , Bs, where

Bt
ij =







1 if nodei ∈ N transmits to nodej ∈ N in slot t ∈ S

0 otherwise,

and a feasible schedule is one in which each nodei ∈ N transmits in at least one time slott ∈ S.

Note that, ifBt
ij = 1, thenBERt

j < β. That is, the schedule, by construction, will satisfy the BER
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Figure 5.1: Illustrating the capacity graph construction.(Fridman et al., 2008)

constraint for each attempted reception (Fridman et al., 2008). The nominal capacity of transmitter

i is:

ci =
∑

t∈S

log2 mt
i.

But, since nodei can transmit in at mostsi time slots, theeffective capacityof link (i, j) is given

by:

c̃ij =
si

|S|
∑

t∈S

log2 mt
i. (5.4)

The capacity for a network link, by its transmitting, or source, nodei.

It is important to note that, in our formulation,B is not a free variable and is determined before

the optimization process begins. This is consistent with the work of Fridman et al.(2008), where

the random packing heuristic ofWu et al.(2005) is employed. As noted inFridman et al.(2008),

each time slot yields a disconnected graph onN nodes, where links exist between designated trans-

mission nodes and their potential receivers. The network utilizes successive relaying to transmit

packets from the desired source to sink.

In order to combine the disconnected graphs determine by thescheduleB, we create acapacity

graph G = (V,E) as follows. There exists a vertexi ∈ V for each mobile node with a positive

effective capacity. Then, for each vertex pairi, j ∈ V × V , there exists an edge(i, j) if and only if

i transmits toj in at least one time slot. Formally,

V = {i ∈ N | c̃ij > 0, for somej ∈ N \ {i}}
E = {(i, j) ∈ V × V | Bt

ij = 1, for somet ∈ S}.

Thus, an edge exists inG if it carries transmission in one or more times slots. For each edgee ∈ E,

we assign the capacitỹcij . This process is illustrated in Figure5.1. G defines the available resources

for links in the networks physical layer, and we can send a packet from a nodei to a nodej if there

exists an(i, j)−path inG. It is important to note that, althoughG is directed, in most cases, we

have both edges(i, j) and(j, i), each with an associated capacity.
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Network Layer. The network layer is responsible for managing the transmission of data packets

between a specified source and destination. We consider the flow of several commodities across the

network layer, each with a different source and sink. LetK = {1, . . . , k} be the set of commodities

to be sent across the network. For each commodity,k ∈ K, let σk ∈ N andδk ∈ N be the source

and sink node, respectively. Letxk
e ≥ 0 be the flow of commodityk ∈ K over edgee ∈ E. The

sum of the flow over all edges which terminate at the sink node for commodityk,

∑

i∈N

xk
i,δk

= fk,

yields the totalthroughputfk of the commodity.

Multicommodity Maximum Throughput Design Problem (MMTP). The overall objective of

the design problem is maximize the total amount of commoditysent over the network. In other

words we wish to maximize the sum of all commodity flows,

F (f) =
∑

k∈K

∑

i∈N

xk
i,δk

. (5.5)

For each node pair(i, j), we have the capacity constraint

∑

k∈K

xk
ij ≤ c̃ij =

si

|S|
∑

t∈S

log2 mt
i, (5.6)

which states that we cannot send more flow over any edge than the edge’s capacity will allow,

where c̃ij is given by equation (5.4). Additionally, as mentioned previously, whenever a node is

receiving data, it is required to satisfy the bound on maximum allowable BER. Thus, we introduce

the constraint

Bt
ij · BERt

j ≤ β, ∀i, j ∈ N, t ∈ S, (5.7)

which states that if any nodei is transmitting to nodej in some slott (i.e. Bt
ij = 1), then the BER

for nodej must not exceedβ. In order to make sure the model is well-defined, we must add the

standardflow conservationconstraints,

∑

j∈N

xk
ji =

∑

j∈N

xk
ij, ∀i ∈ N \ {σk, δk}, k ∈ K, (5.8)
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which require the flow out of each node to be equal to the flow into that node, for all commodities

on the network. This yields the MMTP:

max

K
∑

k=1

∑

i∈N

xk
i,δk

subject to
∑

k∈K

xk
ij ≤

si

|S|
∑

t∈S

log2 mt
i, ∀i, j ∈ N

∑

j∈N

xk
ji =

∑

j∈N

xk
ij , ∀i ∈ N \ {σk, δk}, k ∈ K (MMTP)

Bt
ij · BERt

j ≤ β, ∀i, j ∈ N, t ∈ S

p ∈ P,m ∈M, x ≥ 0,

As modeled, (MMTP) is a nonlinear mixed integer program. To highlight the relationship among the

layers, we note that, in the preceding model, the link capacity constraints depend on the underlying

temporal scheduleB. In turn, the feasibility of the underlying temporal schedule depends on the

physical layer power vectorp and the constellation size vectorm. In the following section, we

discuss another model, which determines the minimum necessary transmit power on the physical

level and describe its relationship to (MMTP).

Transmit Power Problem Description. As mentioned above, when designing a wireless net-

work, one must also determine the amount of transmission power to allocate to the links in the

physical layer. Traditionally, this problem has been treated as a separate, unrelated problem from

that described in Section5.1.3. However, it is clear that the problems are, in fact, quite related, since

they are modeling different aspects of the same network and both need to determine a power strat-

egyp. In this section, we describe the integer linear program (ILP) that has been used previously

to determine power allocation. In Section5.1.3, we describe alternative models which combine the

other two models.

In this section, we use the same definition of the power vectorpt as in Section5.1.3. The goal of

the power allocation problem is to minimize the total transmit power,

∑

i∈N

pt
i,

for each time slott ∈ S. Let γ denote a power threshold below which a link cannot communicate

effectively. That is,γ is the minimum QoS requirement for a channel. Thus, in order for the network

to operate effectively, we must have

SINRt
j ≥ γ, j ∈ N. (5.9)

150



5.1. APPLICATIONS OF INTEREST

So, we can model the transmit power problem (TPP) for timet ∈ S as the (ILP):

min
∑

i∈N

pt
i

subject to
pt

id
−α
ij

∑

k∈τ t\{i} pt
kd

−α
kj + σ2

≥ γ, i, j ∈ N, (TPPt)

p ∈ P.

Combined Models. In this cross layer design problem there are, in fact, several performance

measures of importance in addition to total throughput:

• The total network capacity
∑

i,j∈N

c̃ij (5.10)

• The total transmission power
∑

t∈S

∑

i∈N

pt
i (5.11)

• Sum of the node constellation sizes
∑

t∈S

∑

i∈N

mt
i (5.12)

In what follows, we demonstrate how to incorporate objective (5.11) into the optimization model.

We consider two alternative methods of incorporating this objective in the network design problem.

The new models differ in the way in which we define decision-making authority. In Section5.1.3,

we present a biobjective integer nonlinear framework for the network design. Then, in Section5.1.3,

we introduce a mixed integer bilevel nonlinear programmingmodel that provides an alternative view

of the problem.

A Biobjective Integer Programming Model. One way in which we can combine the models

given in Sections5.1.3 and 5.1.3 is to employ the biobjective integer programming framework

discussed in previous chapters. This class of models enables us to study the tradeoffs between two

conflicting objectives by a single DM.

Applying the biobjective framework to our design problem means combining the constraints of

the separate problems, and forming an objective function that incorporates the goal of minimizing
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transmission power, while providing the maximum network performance. This yields thebiobjec-

tive design problem(BODP):

vmax

[

K
∑

k=1

∑

i∈N

xk
i,δk

,
∑

t∈S

∑

i∈N

pt
i

]

subject to
∑

k∈K

xk
ij ≤

si

|S|
∑

t∈S

log2 mt
i, ∀i, j ∈ N (BODP)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij, ∀i ∈ N \ {σk, δk}, k ∈ K,

Bt
ij · BERt

j ≤ β, ∀i, j ∈ N, t ∈ S

p ∈ P,m ∈M, x ≥ 0,

for fixed scheduleB. Note that, in (BODP), the second objective minimizes total transmission

power across all time slots, in contrast to the objective in (TPPt), which considers each slot individ-

ually. In addition, we have removed the constraint

SINRt
j ≥ γ, j ∈ N,

since we assume the network will operate effectively if the BER constraint, which is dependent on

SINR, is satisfied. This model can be solved using an algorithm similar to Algorithm3.3.

A Mixed Integer Bilevel Programming Model Another way to combine the previous models

is to introduce a second DM. As with many mathematical programs, the models described above

are still limited by their assumption of a centralized decision-making structure. However, in this

application, since decisions are made at different times, and potentially in different geographic

locations, it is likely that multiple DMs will be involved. For example, suppose that we wish to

control the network flow and constellation size at a central command unit. This may be the case if

one DM controls the flows for several subunits, each using a MANET. It is reasonable to assume

that this DM would also control the constellation sizes, since they have a direct effect on network

capacity. In this scenario, we assume that the internal algorithms installed in the mobile nodes

determine optimal transmission power for each node and eachtime slot, given a constellation size.

Although the central DM’s primary objective is total throughput, it is reasonable that total power

consumed weighs into his decisions, was well. In fact, thereis most likely some cost, known to the

central DM but not the radios, associated with each unit of power consumed. If we letθt
i denote the

unit cost of power at nodei at timet, then we can construct the central objective function:

K
∑

k=1

∑

i∈N

xk
i,δk
−

∑

t∈S

∑

i∈N

θt
ip

t
i,
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which maximizes the sum of total throughput and negative transmission cost. This leads us to a

natural bilevel program:

max
x≥0,m∈M

K
∑

k=1

∑

i∈N

xk
i,δk
−

∑

t∈S

∑

i∈N

θt
ip

t
i

subject to
∑

k∈K

xk
ij ≤

si

|S|
∑

t∈S

log2 mt
i, ∀i, j ∈ N (BLDPMF)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij , ∀i ∈ N, k ∈ K,

pt ∈ argminpt∈P

{

∑

i∈N

pt
i : Bt

ij · BERt
j ≤ β, ∀i, j ∈ N

}

,∀t ∈ S,

for fixed scheduleB. (BLDP) is amixed integer nonlinear bilevel programwith multiple followers.

Aside from its nonlinearity, this multilevel model differsfrom those described previously because

multiple DMs (i.e. radios) exist at the second level. However, it is show inCalvete and Galé(2007)

that (BLDPMF) is equivalent to thebilevel design problem

max
x≥0,m∈M

K
∑

k=1

∑

i∈N

xk
i,δk
−

∑

t∈S

∑

i∈N

θt
ip

t
i

subject to
∑

k∈K

xk
ij ≤

si

|S|
∑

t∈S

log2 mt
i, ∀i, j ∈ N (BLDP)

∑

j∈N

xk
ji =

∑

j∈N

xk
ij , ∀i ∈ N, k ∈ K,

(p1, . . . , p|S|) ∈ argminpt∈P

{

∑

t∈S

∑

i∈N

pt
i : Bt

ij · BERt
j ≤ β, ∀i, j ∈ N

}

,

since each follower’s problem contains only upper-level variables andpt, and the objective functions

are defined by linear functions. In this situation, we refer to the followers asindependent. While,

in practice, all decisions may be made during deployment, this model gives us a way to predict the

overall performance of the network ahead of time.

Solution Methodology With the exception of the ILP described in Section5.1.3, each of the

models described in the previous sections contains nonlinear functions in its constraints set. Non-

linear programming models already present a difficult classof problems, due to the possibility of

multiple local minima (see e.g.Bazaraa et al.(1979). When combined with integrality restrictions

on the decision variables and modeled as bilevel programs, these models present a significant com-

putational challenge. We have described exact algorithms for mixed integer bilevel linear programs

and pure integer bilevel linear programs. However, to our knowledge, no exact algorithms exist
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for the nonlinear bilevel models of the form (BLDP). Thus, in order to solve these models, we

must either remove the nonlinear functions, using approximations or relaxations, or generalize the

algorithms developed for the linear case to be applied to thecurrent framework. Alternatively, we

can use theEfficient Solutionheuristic method described in Chapter3, since it does not depend on

linearity of the constraints.

5.2 Conclusions and Suggested Future Work

In this dissertation, we have discussed the wide applicability of multilevel programming, moti-

vating the study of these models through applications in homeland security, production planning,

economic market analysis, and algorithm design. We have demonstrated areas in which bilevel

linear programs have made significant contribution by allowing assumptions of a single decision-

maker to be relaxed. However, it has also been argued that these models continue to limit the true

utility of bilevel programming, by constricting its application to those systems for which continuous

lower-level models are appropriate. Thus, the further development of methods for solving models

with discrete variables is essential if we wish to fully realize the benefits of bilevel models.

We have also demonstrated the inherent challenges associated with solving mixed integer bilevel

linear programming problems. It is clear that this is a very difficult class of problems, for which

algorithmic development is not straightforward. However,leveraging the recent advancements in

large-scale integer programming and integer programming duality, we have made some progress

towards the development of an algorithmic framework which can handle these types of problems.

In particular, we have described a theoretical and methodological groundwork of algorithms for

solving MIBLPs directly. We discussed a generalization of the well-known branch-and-cut algo-

rithm used for solving integer programs. By expanding our notion of feasibility, we demonstrated

that the methods are analogous to those used for integer programs, but require cutting planes which

encapsulate the lower-level optimality conditions. In thecase of pure integer bilevel programs, a

simple argument provides one such class of cuts.

By leveraging the newly-developed extensions to LP dualitytheory, we have shown how to derive

single-level integer programming reformulations of the problem, several of which are analogous to

those used to derive reformulations for the continuous problem, For these cases, we have used the

relationship between linear and integer program to illustrate these similarities. For some special

cases of MIBLP, the reformulation methods yield problems that can be solved by known methods,

but reformulations for the general case lead to problems forwhich no direct methods are known.

However, using information obtained during our standard bilevel feasibility check, we have shown

how one can derive iterative approximation methods for the lower-level value function and derived
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theoretical algorithms based on this approach. In order forthese method to have true practical utility,

however, development of effective methods for the resulting subproblems is essential.

The primary advantage of our approaches is the ability to exploit the vast array of existing technol-

ogy for solving integer programs. There are several important research directions stemming from

each of these approaches. Certainly, the branch-and-cut algorithm we have developed would benefit

greatly from additional classes of cutting planes, especially if they utilize information contained

in the lower-level value function or optimality conditions. Further, the use of value function ap-

proximations appears to be a promising area of future work, and different methods for obtaining

approximations will likely lead to significant computational improvements.

From an application perspective, our primary focus has beenon problems in infrastructure pro-

tection. In particular, we have derived methods for solvingthe Steiner arborescence problem that

arises in the design of a particular early warning system used to monitor a Swiss urban water net-

work. Then, using this application as an example, we have described one way in which interdiction

problems can be used for sensitivity analysis, and providedseveral problem-specific methods for

the mixed integer interdiction problem.

To our knowledge, no integer bilevel programming solvers are available to the mathematical pro-

gramming community. Thus, one of the main contributions of this research has been the devel-

opment a bilevel programming solver package to be made available through the COIN-OR repos-

itory. The design of the solver is such that future researchers can easily add additional cutting

planes, branching methods, heuristics, and preprocessingmethods with minimal effort. We hope

this framework will benefit the research community and spur computational experimentation on

and methodological development for integer bilevel programs. The current version of the solver

package contains the branch-and-bound method for IBLP, as well as the customized features de-

rived for interdiction problems. The purpose of this customization is meant to demonstrate the way

in which users can employ enhancements based on problem structure to improve the algorithm’s ef-

fectiveness. There is large amount of work to be done towardsthe development of a complete bilevel

programming solver. The implementation of other known methods, for both continuous and discrete

problems, represents a significant effort in itself. In addition, further customized implementations

should be explored for those problems with a wide array of applications.
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Appendix A

List of Acronyms

AF – Atrial Fibrillation

BER – Bit Error Rate

BIBLP – Binary integer bilevel linear program(ming)

BLP – Bilevel linear program(ming)

BMIBLP – Biobjective mixed integer bilevel linear program

BMILP – Biobjective mixed integer linear program

BMIPINT – Biobjective mixed integer interdiction

CP – Current problem, from a specialized branch–and–cut algorithm

DBLP – Decision version of bilevel linear programming

DKNAP – Decision version of the knapsack problem

DM – Decision-maker

DMIBLP – Decision version of mixed integer bilevel linear programming

DMILP – Decision version of mixed integer linear programming

DMIPINT – Decision version of mixed integer programming interdiction

EWS – Early warning system

GFCPA – Gomory Fractional Cutting Plane Algorithm

IBLP – Integer bilevel linear program(ming)

ILP – Integer linear program(ming)

IP – Integer program(ming)

KKT – Karush-Kuhn-Tucker

LMM – Linear max-min problem

LP – Linear program(ming)

LPEC – Linear program with equilibrium constraints

MAC – Medium access control
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MANET – Mobile ad hoc network

MIBLP – Mixed integer bilevel linear program(ming)

MIBNP – Mixed integer bilevel nonlinear program(ming)

MILP – Mixed integer linear program(ming)

MINLP – Mixed integer nonlinear program(ming)

MIPINT – Mixed integer programming interdiction

MP – Mathematical program(ming)

MPEC – Mathematical program with equilibrium constraints

MSPP – Maximum Shortest Path Problem

PCSA – Prize–collecting Steiner arborescence

RHS – Right-hand-side

SINR – Signal to Interference plus Noise Ratio

Table A.1: List of acronyms used in this dissertation.
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Calvete, H. and C. Galé 2007. Linear bilevel multi-follower programming with independent fol-

lowers.Journal of Global Optimizationpages 409–417.

Candler, W. and R. Townsley 1982. A linear two-level programming problem. Computers and

Operations Research9, 59–76.

Caroe, C. and J. Tind 1998. L-shaped decomposition of two-stage stochastic integer programs with

integer recourse.Mathematical Programming83, 451–464.

Carr, R. D., H. J. Greenberg, W. E. Hart, G. Konjevod, E. Lauer, H. Lin, T. Morrison, and C. A.

Phillips 2006. Robust optimization of contaminant sensor placement for community water sys-

tems.Mathematical Programming107(1-2), 337–356.

Charnes, A., R. Clower, and K. Kortanek 1967. Effective control through coherent decentralization

with preemptive goals.Econometrica35(2), 294–319.

Chen, L. and D. Goldfarb 2007. An active-set method for mathematical programs with linear com-

plementarity constraints. Technical report, Columbia University.

Chen, Y. and M. Florian 1992. On the geometry structure of linear bilevel programs: A dual

approach. Technical Report CRT-867, Centre de Recherche sur les Transports.

Chen, Y., M. Florian, and S. Wu 1992. A descent dual approach for linear bilevel programs. Tech-

nical Report CRT-866, Centre de Recherche sur les Transports.

Cherkassky, B. V. 1997. On implementing the push-relabel method for the maximum flow problem.

Algorithmica19(4), 390–410.

Colson, B., P. Marcotte, and G. Savard 2005a. Bilevel programming: A survey.4OR: A Quarterly

Journal of Operations Research3(2), 87–107.

— 2005b. A trust-region method for nonlinear programming: Algorithm and computational expe-

rience.Computational Optimization and Applications30(3), 211–227.

161



BIBLIOGRAPHY

Cormican, K., D. Morton, and R. Wood 1998. Stochastic network interdiction.Operations Research

46(2), 184–197.
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