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Abstract

In this dissertation our objective is to characterize and measure the impact of var-

ious sources of uncertainty in the electricity market from the end-user perspective

and develop optimization methodologies to mitigate the final impact.

In Chapter 2, we study interruptible load contracts from the perspective of a

participating manufacturing company. We develop a production planning frame-

work that mitigates the uncertainty created by the contractual clauses. We present

a mathematical modeling approach and computational results.

In Chapter 3, we conduct an experiment using real time electricity prices from

the two regional U.S. markets to test the for inherent patterns in real-time loca-

tional marginal prices (LMPs) that could be used for constructing the uncertainty

sets for the optimization problems. We present the statistical results and findings

to characterize these patterns. Next, another experiment is conducted to compare

the information content of various data selection rules and the accuracy of various

forecasting techniques.

In Chapter 4, we conduct an experiment to quantify the value of information

using two problem classes: the production planning problem and the job shop

scheduling problem. We present various mathematical models to represent a lim-

ited set of protoypical optimization problems for each problem class, a comparison

1



of various methods that can be used to construct these optimization problems,

simulations of these models with real prices, and finally a numerical analysis of

the impact of price uncertainty on optimal solutions. In this chapter, the value

of information is quantified as the reflection of the price uncertainty on the op-

timal objective function value’s deviation from a solution obtained by solving an

optimization problem with imperfect information.

Our findings indicate that depending on the production and the manufacturing

environment, the impact of the price uncertainty on the optimal solutions varies

significantly. Without conducting a similar analysis to ours, negotiating terms and

prices purely based on price uncertainty may be speculative, illusory and mislead-

ing for the contract taking parties.
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Chapter 1

Introduction

In this dissertation our objective is to characterize and measure the impact of var-

ious sources of uncertainty in the electricity market from the end-user perspective

and develop optimization methodologies to mitigate the final impact. The end-

user, a manufacturing company in our case, is usually the market participant with

the least amount of market power. This is due to the fact that most of the electric-

ity markets are still heavily regulated and vertically integrated. When monopolistic

entities control the generation, the transmission, the distribution and the trade of

the electricity, the power procurement menu for the end-user is usually very lim-

ited. However the situation is changing with increasing deregulation, competition,

market restructuring and penetration of the renewable energy resources. Under

these circumstances, the least the end-user can only do better by measuring and

characterizing the reflection of the uncertainty in electricity prices and availability

onto the production/manufacturing output and optimize her operations accord-

ingly.

1



In Chapter 2, we provide a production planning framework for rate-paying in-

dustrial production companies whose production operations strongly depend on

electricity. The problem we study is an operational-level, aggregate production

and inventory planning problem with electricity supply uncertainty and determin-

istic demand. In particular, our methodology provides a feasible production plan,

if one exists under the given production and storage capabilities, that satisfies cus-

tomer demands under all possible interruption scenarios using no information on

uncertainty other than the contractual clauses. Our modeling approach has several

benefits. First, the interruption uncertainty framework we describe allows differ-

ent contract rules and operational rules to be embedded in the production planning

problem simultaneously. We first develop a robust optimization model to solve this

problem. We show that this problem can be modeled as a single linear program.

Next we develop a novel heuristic that has roots on list processing and works at

least an order of magnitude faster than the linear programming approach under

certain assumptions.

In Chapter 3, we conduct an empirical study to characterize the LMPs in two

regional U.S. markets: ISONE and PJM. The intent of this study is to analyze the be-

haviour, time-dependence and patterns of prices. The data shows that for accurate

forecasts, one needs to choose the data horizon in close proximity of the forecast

target date. We analyze the data, the daily price profiles and intraday price cor-

relations using different time scales such as days, weeks, months and years. We

provide aggregate statistics and test the data for independence, stationarity and

normality. Finally, an experiment is conducted to test the accuracy of dynamically

fit ARIMA models for price forecasts. The ARIMA models are fit using rolling time

windows with different horizon lengths since one of the objectives of this study to

2



test the information content of different horizons from the perspective of the op-

timization problem. Two different horizon selection rules are compared using five

horizon lengths and various error measures. As a result we conclude that dynami-

cally fit ARIMA models with varying horizons in the proximity of the forecast date

(i.e. short data horizons) is the better choice for forecasting daily prices.

In Chapter 4, we conduct an experiment to measure the value of the infor-

mation from the production planner’s perspective. Various demand scenarios and

rolling time horizons of varying length for the electricity price data are used to cre-

ate and compare optimization instances of various mathematical models under the

assumption that a production planning problem is solved at the beginning of the

week, i.e. before the actual prices are revealed. The production planner may use

various approaches in anticipation of the uncertainty and the value of information

regarding the price uncertainty is quantized using optimization models assuming

that, first the production planner chooses a methodology such as using the data for

estimation and solving an LP using the estimated cost; or using the data to calculate

various statistics and use these statistical calculations to create robust optimization

instances; or use the prior week’s prices as an estimator for the current week. The

details of the models that were investigated in this study are summarized next.

The baseline model is a simple linear production planning model. First for

all weeks and demand scenarios, the baseline LP is solved to find the true objec-

tive function value and the optimal production plan. Next for any given week,

instances of this LP is created using various estimation rules (such as the prior

week’s prices, estimated prices obtained with dynamically fit ARIMA models) and

solved. Similarly a simple robust optimization model with a budget of uncertainty

is instantiated using various statistics obtained from the rolling time horizon and

solved. There are five such variations for the robust optimization model. Finally

3



a stochastic optimization model is instantiated and solved. For linear programs

and robust models, the obtained production plan is combined with actual prices

to calculate the would-be optimal objective function value where the deviation of

this value from the true objective function value is calculated and used to compare

these approaches. For the stochastic programming model, the objective function

is directly used in the deviation calculations. Furthermore a job-shop scheduling

model is also developed and tested using the electricity prices. Unlike the previous

models, this model is only used analyze the impact of the electricity price uncer-

tainty on processing schedule changes and calculate the optimal objective function

value statistics. Our findings indicate that estimates for current week’s prices ob-

tained by using ARIMA models with short time horizons and using past week’s

price directly as an estimate and coupling this estimate with simpler mathematical

models is slightly favorable to using complicated optimization models where the

data is used to construct an uncertainty set and this uncertainty set is embedded in

the model.

4



Chapter 2

Planning under Interruption

Uncertainty

2.1 Introduction

Under deregulation, the electricity industry is continuously evolving and changing

as different markets, such as the derivative, forward and spot markets, become

more common. Within these markets, the availability of diversified services and

pricing menus is increasing. Participants in these markets have developed and

adopted many financial instruments for electricity transactions so that electricity is

produced, priced and traded more efficiently. Interruptible load contracts (ILCs)

are one type of these instruments which are employed to increase demand-side

involvement so that the adverse effects of supply shortages at the utility are miti-

gated.

As defined in Baldick et al. [2006], an interruptible load contract between a

utility and an industrial/commercial customer allows the utility to interrupt part

5



or all of the supply of electricity to the customer over some period of time in ex-

change for some form of monetary reward. Typically, the maximum number of

interruptions that can occur during the specified time interval is defined in the

contract. Usually the utility does not physically interrupt the customer, but rather

gives the customer advance notice to reduce loads or face a significantly increased

cost rate during the interruption period.

Companies that participate in such ILCs benefit from the discounted rate struc-

ture, while the electricity utility enjoys the benefits of priority service. As defined

in Chao and Wilson [1987], priority service refers to a menu of contingent con-

tracts in which service provision is prioritized according to the customer’s val-

uation of the service under supply scarcity. This helps the utility to reduce its

exposure to spot market prices in the event of supply shortages. However, cus-

tomers now bear additional risks that arise from the interruption of power, such

as backorder costs, reduced production and storage capacities. Participation in

ILCs requires flexibility from customers in order to be able to honor this require-

ment along with their requirement to satisfy the demand. To do this, customers

must account for potential interruptions in their production plans. As demon-

strated in a report by California Public Utilities Commission [2001], some compa-

nies that participated in ILCs were unable to honor the load reduction require-

ment due to a lack of capabilities and/or a lack of necessary planning. This was

one of the triggering events that caused the California electricity crisis in 2001

[California Public Utilities Commission, 2001].

The purpose of this chapter is to provide a production planning framework for

rate-paying industrial production companies whose production operations strongly

6



depend on electricity. The problem we study is an operational-level, aggregate pro-

duction and inventory planning problem with electricity supply uncertainty and de-

terministic demand. In particular, our methodology provides a feasible production

plan, if one exists under the given production and storage capabilities, that satis-

fies customer demands under all possible interruption scenarios. Furthermore, we

avoid using any probability distribution to characterize the interruptions, since our

objective is to guarantee feasibility in any possible interruption realization, and

since the distribution of interruptions is typically unknown. Therefore we use the

only pieces of information that are available to the industrial company through the

ILC: the length of the planning horizon (which is equal to the duration of the ILC),

the unit length of interruptions, the limit on the number of interruptions and the

reward scheme.

Our modeling approach has several benefits. First, the interruption uncertainty

framework we describe allows different contract rules and operational rules to be

embedded in the production planning problem simultaneously. Companies might

have different operational procedures in the event of interruptions, such as lim-

iting the production in post-interruption recovery or prohibiting production level

increases in some periods. Second, the methodology we describe can be used for

different types of ILCs, possibly with different reward schemes, such as the pay-

in-advance and pay-as-you-go schemes described by Baldick et al. [2006]. Third,

information regarding the utility’s interruption dispatch behavior can easily be em-

bedded into our production planning framework.

Although a number of papers on ILCs have appeared in the literature (see

§2.2.1), these papers all consider the problem faced by the interrupting party, that

is, the power provider, which can be a power generator or the utility. We chose to

consider the impact of ILCs on the production planning process of the interrupted

7



party, that is, the industrial company.

Our study is motivated by an air-separation process, and many of the elements

in our model come from that setting; however, the robust methodology we provide

is not restricted to this setting. In an air-separation process, a mass production

system is used to produce liquid nitrogen and liquid oxygen in large volumes using

special-purpose equipment. Both products are produced simultaneously through

a single process. Virtually the only raw material needed is air, which is available

in very large quantities at a very low cost, leaving electricity as the most critical

resource that is required for production. The products generated by the air sepa-

ration process are critical for medical treatment in hospitals, as well as for other

high-impact applications. The availability of the products is therefore critical and

this motivates the assumption in our model that stockouts are not allowed under

any interruption scenario.

The remainder of this chapter is organized as follows. We review the litera-

ture on ILCs and production planning under supply uncertainty in §2. In §3, we

formulate the robust production planning problem under supply uncertainty. §4
gives a real world application of the robust model in which we demonstrate how

to construct the uncertainty set in such a way that it includes interruption-related

operational rules. Computational results for both models are discussed in §5. §6
concludes the chapter and discusses future research.

8



2.2 Literature Review

2.2.1 Interruptible Load Contracts

The literature on ILCs is focused on pricing and has its roots in the body of research

on service priority [Tschirhart and Jen, 1979, Chao and Wilson, 1987]. The former

paper studies the impact of the division of customers into priority classes in which

interruptible service is priced according to service reliability. The latter extends this

study by adding an optimal price menu for better segmentation. Strauss and Oren

[1993] further extends these studies by introducing an early notification option.

Caves and Herriges [1992] addresses the optimal interruption dispatch behavior

of the utility within a stochastic dynamic programming (SDP) framework when

there is a limit on the interruptions that can be called.

Kamat and Oren [2002] studies the design and pricing of financial contracts

for interruptible electricity service, emulating three types of ILCs using financial

instruments such as forwards and options. Baldick et al. [2006] further extends

the works by Caves and Herriges [1992], and Kamat and Oren [2002] and creates

a structural model that is calibrated using temperature data. This model is then

embedded into an SDP framework, which is used to valuate the ILC and to find the

optimal interruption dispatch policy under different reward schemes. The authors

also explore the performance of ILCs under retailer competition.

Fahrioğlu and Alvarado [2000, 2001] study incentive-compatible ILCs and de-

scribe a methodology for the electricity utility to estimate the customer demand

and the value of interruptibility for the customer through utility data. The authors’

objective is to design the contract incentives in a way that enables the revelation

of the customers’ actual valuation of the interruption.
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2.2.2 Production Planning Literature

According to Rosenhead et al. [1972], decision-making can be classified into three

different categories: certainty, risk, and uncertainty. In the certainty case, all

decision-making elements are deterministic and known. Risk and uncertainty arise

when the complete information that describes a situation to its full extent is lost.

In risk situations, the information that the decision-maker has still contains some

descriptive elements, such as probability distributions, that explain the situation to

some extent. In the absence of these descriptive elements, uncertainty arises. Con-

sistent with these definitions, we use the term “uncertainty” throughout this chap-

ter to refer to problems in which no probabilistic information is available about the

random parameters. Our problem is an operational-level, aggregate production

and inventory planning problem with supply uncertainty.

Production planning under supply uncertainty has received a lot of attention

from the supply chain, production and inventory theory communities. For exam-

ple, Chao [1987] develops an optimal dynamic inventory policy in the presence of

market disruptions. The model is based on the framework of a continuous-time

Markov decision process with a finite state space in which the rate of inventory

accumulation or reduction can be continuously adjusted. An economic analysis is

provided for both elastic and inelastic demand. Weiss and Rosenthal [1992] de-

velops an optimal inventory policy for EOQ systems where the start time of the

disruption is known beforehand but the duration is unknown.

Parlar et al. [1995] studies a continuous-review stochastic inventory problem
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with random demand and random lead-time where supply availability is an alter-

nating renewal process 1. Arreola-Risa and DeCroix [1998] consider a continuous-

review inventory system in which partial backorders are allowed2. Güllü et al.

[1997] study a periodic-review inventory model, shows the optimality of an order-

up-to policy, and obtains a newsboy-like formula that determines the optimal order-

up-to levels under deterministic dynamic demand and stochastic supply unavail-

ability.

Most of the related work on supply uncertainty in the supply chain literature

focuses on either random yields in the supply processes or complete supply disrup-

tions, with known probabilistic information about disruptions. We refer the reader

to Snyder et al. [2010], Peidro et al. [2009], Yano and Lee [1995] for through re-

views of the literature on supply uncertainty under various supply chain settings.

For a general review of production planning under uncertainty, see Mula et al.

[2006].

2.2.3 Robust Optimization

One of the seminal works in robust optimization is by Soyster [1973], who pro-

posed a linear model to construct a solution that is feasible for all the data that

belong to a convex set. Optimizing over the worst-case scenario might produce

solutions that are too conservative, and Soyster’s approach has been criticized for

being ultraconservative by Bertsimas and Sim [2004].

To cure over-conservativeness, El Ghaoui and Lebret [1997], El Ghaoui et al.

[1998], Ben-Tal and Nemirovski [2000], Ben-Tal and Nemirovski [2002] consider

uncertain convex optimization problems under ellipsoidal uncertainty sets. One

1See also Parlar and Perry [1996], Parlar [1997], Gürler and Parlar [1997]
2See also Moinzadeh and Aggarwal [1997]
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drawback of this methodology is that the complexity of the original problem, with

no uncertainty included, is increased when it is transformed into its robust counter-

part (RC). To a limited extent, Kouvelis and Yu [1996] extend robust optimization

to include discrete variables. When the objective is to optimize the worst-case per-

formance over a set of scenarios, they show that the RCs of many polynomially

solvable discrete optimization problems are NP-hard. Methodologies other than

Soyster’s require us to make additional assumptions on the structure of the un-

certainty set and in this study we focus on uncertainty sets that can be directly

constructed from contractual rules. Therefore, we construct an uncertainty poly-

hedron using only the contract rules, and for this type of construction Soyster’s

methodology is appropriate. Another benefit of using this approach is the ease of

incorporating the impact of interruptions on production modes.

Bertsimas and Sim [2003, 2004, 2006] introduce and study the “budget of un-

certainty” concept. This approach provides a mechanism to control the level of

conservativeness by allowing only a subset (the size of which is controlled by the

“budget of uncertainty”) of the uncertain parameters to deviate from their nominal

values simultaneously. Furthermore, the RC preserves the complexity of its nomi-

nal problem and thus can easily be extended to discrete optimization problems.

The studies we have mentioned until now are all static decision-making prob-

lems, in the sense that all the decision variables are determined before the realiza-

tion of uncertainty, i.e., “here and now” decisions. Ben-Tal et al. [2004] introduce

and study the adjustable RC (ARC) of multistage uncertain linear programming

(LP) problems in which some of the decisions can be delayed until after some of

the uncertain parameters have been observed, i.e., “wait-and-see decisions.” The

authors use the intersection of ellipsoids to define the uncertainty set and find that,

often, the ARC is significantly less conservative than the usual RC. However, in most
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cases the ARC is NP-hard. To address this issue, the authors introduce affinely ad-

justable RCs (AARC) in which the wait-and-see decisions are formulated as affine

functions of the uncertain parameters. Ben-Tal et al. [2006] further extends AARCs

to include controlled deterioration in performance for large deviations in the uncer-

tain data. For detailed theoretical background we refer to Ben-Tal and Nemirovski

[2008], Ben-Tal et al. [2009].

2.3 Robust Production-Planning Models

2.3.1 Electricity Supply, Prices and Interruptions

Following the setting in Baldick et al. [2006], we allow the utility to place mul-

tiple interruptions over the planning horizon. We assume that every interruption

lasts for exactly one period; however, multiple consecutive interruptions are al-

lowed, as long as the total number of interrupted periods does not exceed the

maximum specified by the contract. The uncertainty in the model stems from a

lack of information regarding the exact timing of interruptions. Furthermore, we

assume there is no prior historical information available to the company regarding

interruptions. Moreover, we assume that the production company has production

equipment that can be shut down instantly; therefore, there are no depreciation-

and maintenance-related costs caused by interruptions. Other than the machinery

and labor, the majority of the variable production cost is comprised by electricity

consumption. Typically, air separation plants, aluminum foundries and paper mills

have such cost characteristics [Sioshansi, 2008]. We also assume that the company

can only purchase electricity from the utility and that electricity is only used for

production.
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2.3.2 Production Setting

We consider a company that has multiple plants and, due to technological and

physical reasons, production and storage capacities of the plants are limited. All

processing tasks are performed in batch mode and the processing time is negligible;

however, there is a finite daily production capacity. The plants are geographically

distinct, but each plant has the capability to serve the other plants’ customers. This

means the demand for products is aggregated over all plants. This is depicted in

Figure 2.1 for a two-plant example.

Figure 2.1: Demand Aggregation and Contribution of Plants

In general, the utility charges a fixed rate for electricity, as is typical of a fixed-

price retail contract. As an incentive for participating in the ILC, the electricity re-

tailer offers two types of rewards: pay-as-you-go and pay-in-advance, as defined in

Baldick et al. [2006]. In a pay-as-you-go scheme, the utility pays a penalty for each

interruption it dispatches. In a pay-in-advance scheme, there is no per-interruption

penalty for the utility, however, the utility provides an overall discount in the elec-

tricity price for the contract horizon. For both payment schemes, the maximum
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number of interruptions that can be dispatched is contractually defined, though

the exact times of the interruptions are not known in advance (by either party). In

this study, we assume that the industrial company has accepted the pay-in-advance

scheme, and therefore it faces a discounted fixed rate, r.

In our setting, the industrial company has negotiated a joint ILC contract for all

plants, and this contract stipulates that at most one plant will be interrupted in a

given period, where interruptions last exactly one period. The production planning

horizon is equal to the contract horizon, which is terminated by the expiration of

the contract. The objective of the industrial company is to minimize production

costs subject to the following constraints:

• Daily production in each plant is less than or equal to the daily capacity;

• Inventory capacity is limited;

• Daily aggregated demand must be satisfied through production and accumu-

lated inventory, i.e., no stock-outs are allowed.

The industrial company plans its production anticipating the interruptions, and the

production plan is set at the beginning of the planning horizon. Once the produc-

tion plan is set, it cannot be changed until the end of the horizon. In particular,

the production plan cannot be changed in reaction to interruptions, other than to

zero out the production at an interrupted plant. A robust solution for this problem

has one important characteristic: It stays feasible under all possible interruption

scenarios. We use these characteristics as our foundation for the robust modeling

approach. A production planner can choose to “robustify” the aggregated inventory

over plants, i.e., make sure that the sum of the inventory levels at different plants
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stays non-negative throughout the horizon, or s/he can choose to “robustify” indi-

vidual inventories, i.e., make sure that individual inventories at plants are never

exhausted throughout the horizon. In our model, we robustify the aggregated in-

ventory over plants, but we describe how the same logic can be used to robustify

individual inventories in §2.3.4. Robustifying individual inventories produces more

conservative and potentially more costly solutions given that inventory at the other

plants can no longer be used as a buffer for the adverse effects of an interruption

at a particular plant. We enforce the at-most-one-interruption-per-period rule and

denote the maximum number of interruptions as K. We use the notation in Table

2.1 throughout the remainder of the chapter.

Indices & Sets

p plant index, p ∈ P := {1, . . . , P}
t time index, t ∈ T := {1, . . . , T}
g product index, g ∈ G := {1, . . . , G}
U uncertainty set

Parameters

cprop,g production capacity at plant p for product g
cinvp,g inventory capacity at plant p for product g

inv0,p,g initial inventory of product g at plant p
dt,g aggregated demand for product g in period t
K maximum number of interruptions
v power-to-unit conversion factor (units/kWh)

r electricity price ($/kWh)

Variables

z(·) objective function value
xt,p,g amount of product g produced at plant p in period t
wt,p,g amount of demand for product g satisfied by plant p in period t

invt,p,g inventory of product g at plant p at the end of period t

Table 2.1: Notation
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2.3.3 Deterministic Production Planning Model

In this section, we present the deterministic production planning model, which

contains no interruptions. We will use this model as a baseline and introduce the

impact of interruptions in §2.3.4.

Note that Table 2.1 contains two sets of production-related decision variables,

xt,p,g and wt,p,g. The former represents the production of product g at plant p in

period t, while the latter represents the demand for product g in period t that is

satisfied by plant p. The two quantities may differ because production in period t

may be used to satisfy demand or to be stored in inventory for future periods. The

w variables are represented in Figure 2.1 by the arrows labeled “Contribution of

Plant p.”

Using this notation, we characterize the inventory levels that accumulate in

each time period in (2.1a)–(2.1b). In (2.1a), the ending inventory in period t is

calculated from the initial horizon inventory by adding the total production and

subtracting the total items used to satisfy demand through period t. (Recall that

the plants maintain separate inventories.) Equation (2.1b) reflects the relationship

between the ending inventories in periods t− 1 and t.

invt,p,g =
t∑

i=1

xi,p,g −
t∑

i=1

wi,p,g + inv0,p,g (2.1a)

= invt−1,p,g + xt,p,g − wt,p,g ∀t, p, g (2.1b)

We first present the deterministic production planning model, which we refer to as

the Outer Problem (OP ). (An “inner problem”, solved by the interrupting party,
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will be discussed in §2.3.4.)

OP : min
P∑

p=1

T∑

t=1

G∑

g=1

vrxt,p,g (2.2a)

s.t. invt,p,g = invt−1,p,g + xt,p,g − wt,p,g ∀t, p, g (2.2b)

P∑

p=1

wt,p,g ≥ dt,g ∀t, g (2.2c)

xt,p,g ≤ cprop,g ∀t, p, g (2.2d)

P∑

p=1

invt,p,g ≥ 0 ∀t, g (2.2e)

invt,p,g ≤ cinvp,g ∀t, p, g (2.2f)

xt,p,g, wt,p,g ≥ 0 ∀t, p, g (2.2g)

The objective function (2.2a) is simply the cost of electricity used for production—

the multiplier v converts production units to electricity consumption (in kWh).

Constraints (2.2d) and (2.2f) enforce the production and inventory capacities.

Constraints (2.2b) and (2.2c) enforce the relationship between actual demand,

dt,p,g, and the demand-satisfaction variable, wt,p,g. In particular, for each time pe-

riod and product, the sum of the units coming from all plants must equal the ag-

gregated demand. Constraints (2.2e) enforce the no-stock-out condition on pooled

inventory. Finally, constraints (2.2g) are non-negativity constraints.

2.3.4 Robust Simple Model

In this section, we robustify the OP against interruptions, giving rise to a problem

we refer to as the Robust Outer Problem (ROP ). Since we have no information
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regarding the utility’s interruption dispatch policy, the robust problem must ensure

feasibility in all possible interruption scenarios. An interruption scenario is defined

by the times and locations of all K interruptions and may be constructed as follows.

One would first choose K interruption times from the set t = 1, ..., T . There are
(
T

K

)
such choices of interruption times. For a given interrupted time period, exactly

one of the plants must be interrupted (due to the contractual agreement). There

are PK such possibilities. Therefore, there are exactly
(
T

K

)
PK interruption scenar-

ios, which is combinatorial in size. The stochastic programming approach, which

depends on individual scenarios rather than on a description of the uncertainty set,

is computationally expensive. Hence, we use the robust optimization approach for

handling the uncertainty. Note that the analysis above assumes that a scenario has

exactly K interruptions. It is possible that fewer than K interruptions will occur

over the horizon, but since we are interested in optimizing over the worst case, it

is sufficient to assume that exactly K interruptions occur.

The uncertainty set, U , contains all of the uncertainty scenarios. Our objective

is to ensure that the aggregate inventory level is non-negative in every scenario.

Another way to think about U is as the feasible set of an optimization problem

aimed at determining the minimum inventory levels as a function of the (a priori

unknown) interruptions and the production levels given by x. Consequently, we

introduce a separate class of variables, ξt,p, to model the utility’s choice of inter-

ruptions, and we describe the aggregate inventory as a function of those variables

subject to constraints derived from the contract clauses. The ξt,p are defined as

ξt,p =







1 if an interruption occurs in period t at plant p

0 otherwise.
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Then,

U =

{

ξ ∈ {0, 1}T×P

∣
∣
∣
∣

P∑

p=1

ξt,p ≤ 1 ∀t,
P∑

p=1

T∑

t=1

ξt,p ≤ K
}

.

Each ξ ∈ U corresponds to an interruption scenario since the vector ξ charac-

terizes the time and location of every interruption. The first constraint ensures

that no simultaneous interruptions occur, while the second constraint ensures that

the number of interruptions doesn’t exceed the contractual limit. Therefore, we

replace the inventory constraint (2.2e) with

min
ξ∈U

{
P∑

p=1

invt,p,g(ξ)

}

≥ 0 ∀t, g (2.4)

This approach allow us to embed the uncertainty into the OP to obtain the ROP ,

which is formulated below in (2.5a)–(2.5g).

This relationship between the company and the utility can be thought of as a

leader-follower game in which the utility is the follower. This is reflected in the

relationship between (2.4) and the ROP , formulated in (2.5a)–(2.5g) below. In

particular, the company solves the ROP at the beginning of the planning horizon.

This problem anticipates the interruptions and determines optimal production lev-

els while maintaining feasibility in all interruption scenarios. The scenarios are

determined by a virtual “opponent” whose objective is to sabotage the company’s

production so that the demand is not satisfied. The opponent does this by solving
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an inner optimization problem (IOP ), which aims to cause infeasibilities by plac-

ing interruptions carefully throughout the time horizon. The IOP for a given t and

g is given by (2.4). This problem is embedded into the constraints of the ROP ;

thus, the ROP contains constraints that can only be instantiated, evaluated, and

enforced by solving the optimization problems described in (2.4). Note that the

feasible region that contains the opponent’s possible interruption decisions is not

affected by the production decisions made by the company in the ROP .

Once a plant is interrupted, all production ceases. The ROP anticipates the

opponent’s behavior, so that all “optimal” actions of the opponent (worst-case sce-

narios for the planner) are considered and a production plan that ensures non-

negative inventory, which implies feasibility in all possible scenarios, is found if

one exists. This is characterized in constraint (2.5e) of the ROP . Furthermore, all

outer problem variables are regarded as parameters in all inner problems.

The opponent solves as many optimization problems as there are inventory

pools; that is, one for each (t, g) ∈ T × G. The feasible region is the same for

all IOP s; it is constructed using only the contractual obligations on interruptions.

However the objective functions of a given IOP is the inventory level of the corre-

sponding product at the corresponding time period, which is jointly characterized

by production and interruption decisions. A negative inventory level for some (t, g)

would mean success for the opponent since it would imply a stock-out for the com-

pany, which in turn implies the infeasibility of the production plan. The set of

feasible actions of the opponent is characterized by the uncertainty set, U , and

each scenario in this uncertainty set corresponds to a possible action in the arsenal

of the opponent.

Since production and inventory decisions belong to the planner while inter-

ruption decisions belong to the electricity utility, the bi-level modeling approach is
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appropriate for our problem. We formulate the bi-level form robust outer problem

(ROP ) as:

ROP : min

P∑

p=1

T∑

t=1

G∑

g=1

vrxt,p,g (2.5a)

s.t. wt,p,g ≤ invt−1,p,g + xt,p,g ∀t, p, g (2.5b)

P∑

p=1

wt,p,g ≥
P∑

p=1

dt,p,g ∀t, g (2.5c)

xt,p,g ≤ cprot,p ∀t, p, g (2.5d)

min
ξ∈U







P∑

p=1

invt,p,g(ξ)






≥ 0 ∀t, g (2.5e)

invt,p,g ≤ cinvp,g ∀t (2.5f)

xt,p,g, wt,p,g ≥ 0 ∀t, p, g (2.5g)

Constraints (2.5e) state that, for each t and g, the pooled inventory at plants,
P∑

p=1

invt,p,g, must be non-negative in every possible interruption scenario ξ. To ro-

bustify the individual inventories instead of the pooled inventory, one can replace

constraints (2.5e) with

min
ξ∈U
{invt,p,g(ξ)} ≥ 0 ∀t, p, g.

Other than (2.5e), the ROP is identical to the OP . Moreover, note that setting

K = 0 reduces the ROP to the OP .

In general bi-level programs (BLPs) are non-convex [Dempe, 2002] due to the
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fact that feasible regions of lower level problems are not necessarily convex and

connected. In our case the ROP is a bi-level mixed-integer problem which is obvi-

ously non-convex. However we can represent inventory levels as bi-linear functions

of x and ξ (as in (2.6, 2.7)), and we can convert the BLP into an LP using the op-

timality conditions of the inner problems; this approach is described in detail later

in this section.

The opponent evaluates the quality of his interruption decisions by their effect

on the actual production and inventory; however, the actual production is decided

by the planner, not the opponent. Therefore, the impact of the opponent’s interrup-

tion decision on the production plan needs to be represented in the inner problem.

To this end, we define an auxiliary variable x̄t,p,g for the inner problem as:

x̄t,p,g = (1− ξt,p)xt,p,g ∀t, p, g (2.6)

Intuitively, x̄t,p,g represents the actual production of product g at plant p in period

t—as planned, if there is no interruption (ξt,p = 0) or zero, if there is (ξt,p = 1).

Note that from the IOP ’s perspective only ξt,p is a variable and xt,p,g is a parame-

ter. For the sake of compactness we write the bi-linear term invt,p,g(ξ) as invt,p,g.

Inserting (2.6) into (2.1a) gives the actual objective for each IOP :

invt,p,g =
t∑

i=1

x̄i,p,g −
t∑

i=1

wi,p,g + inv0,p,g. (2.7)

Then the IOP (t, g) ∀t, g becomes:

min
U







P∑

p=1

invt,p,g






. (2.8)
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These inner optimization problems, which capture the uncertainty, need to be

solved simultaneously within the ROP . Note that the feasible region, U , is non-

empty and bounded; therefore the IOP s are always feasible with finite optimum.

However, the binary variables ξ prevent using linear duality directly as suggested

by Soyster [1973]. Instead, we relax the integrality of the uncertainty set to obtain

the relaxed uncertainty set, UR:

UR =






ξ ∈ [0, 1]T×P

∣
∣
∣
∣
∣
∣

P∑

p=1

ξt,p ≤ 1 ∀t, ∑P
p=1

∑T
t=1 ξt,p ≤ K






. (2.9)

The following holds since U ⊂ UR:

min
UR







P∑

p=1

invt,p,g






≤ min

U







P∑

p=1

invt,p,g






∀t, g. (2.10)

Replacing U with UR in (2.8) gives us the relaxed inner optimization problem

(RIOP). This relaxation allows us to convert the ROP from a BLP to an LP (as we

will show below) and effectively reduce the complexity of the problem. In general,

due to this relaxation, the real impact of interruptions on inventory levels will

be amplified. This is clearly demonstrated in inequality (2.10). An intuitive way

of describing this is as follows: with this linear relaxation, the planner no longer

perceives the opponent’s interruption strategies, ξ, as 0−1 decisions but continuous

decisions in [0, 1]. The inventory levels obtained by solving the RIOP s will be

lower bounds for the inventory levels obtained by solving the IOP s. Tightening the

uncertainty set using cuts or providing the tightest linear programming relaxation

of IOP mitigates the impact of the relaxation. However, it turns out that for this
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problem, these modifications are not required; the relaxation is actually equivalent

to the original problem, because of the following:

Proposition 2.3.1. The constraint matrix of IOP is totally unimodular (TU).

The proof of Proposition (2.3.1) is given in Appendix A.1. This property com-

pletely cures the side-effects of the relaxation, i.e., all basic feasible solutions of

IOP s are integral, which implies that the optimal solutions of RIOP are integral.

Moreover, there is no duality gap:

min
UR







P∑

p=1

invt,p,g






= min

U







P∑

p=1

invt,p,g






∀(t, g) (2.11)

Therefore,

z∗(DRIOP (t, g)) = z∗(RIOP (t, g)) = z∗(IOP (t, g)) ∀(t, g). (2.12)

Following Soyster’s approach and noting that the problems ROP , IOP and RIOP

are all bounded, we replace U with UR in constraints (2.5e) to obtain RIOP (t, g).

The explicit form and the dual variables corresponding to the constraints are given
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below:

RIOP (t, g): min

P∑

p=1

(

(1− ξt,p)xt,p,g +
t−1∑

t̂=1

(
(1− ξt̂,p)xt̂,p,g − wt̂,p,g

)
+ inv0,p,g

)

s.t.

P∑

p=1

ξt̂,p ≤ 1 ∀t̂ Dual: β
t,g

t̂
≤ 0

P∑

p=1

T∑

t̂=1

ξt,p ≤ K γt,g ≤ 0

0 ≤ ξt̂,p ≤ 1 ∀t̂, p θ
t,g

t̂,p̂
≤ 0

The objective function of RIOP (t, g) can be written as:

P∑

p=1





t∑

t̂=1

(−ξt̂,pxt̂,p,g) +
t∑

t̂=1

xt̂,p,g −
t−1∑

t̂=1

wt̂,p,g + inv0,p,g



 , (2.14)

where

P∑

p=1





t∑

t̂=1

xi,p,g −
t−1∑

t̂=1

wt̂,p,g + inv0,p,g



 (2.15)

is a constant from the perspective of RIOP (t, g).

The dual variables (β, γ, θ) are superscripted with t, g since they belong to the

problem for given t and g, i.e., one IOP must be solved for each t, g. The explicit
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form of the dual problem, called DRIOP (t, g), is given below:

DRIOP (t, g): max Kγt,g +
T∑

t̂=1



β
t,g

t̂
+

P∑

p̂=1

θ
t,g

t̂,p̂



+

P∑

p=1

( t∑

t̂=1

xt̂,p,g −
t−1∑

t̂=1

wt̂,p,g + inv0,p,g

)

s.t. γt,g + β
t,g

t̂
+ θ

t,g

t̂,p̂
≤ −xt̂,p̂,g ∀t̂ ≤ t, ∀p̂

γt,g + β
t,g

t̂
+ θ

t,g

t̂,p̂
≤ 0 ∀t̂ > t, ∀p̂

γt,g ≤ 0 β
t,g

t̂
≤ 0 θ

t,g

t̂,p̂
≤ 0 ∀t̂, p̂

By weak duality, z(DRIOP (t, g)) ≤ z(RIOP (t, g)) for all t, g since DRIOP (t, g) is

a maximization problem and RIOP (t, g) is a minimization problem. By enforcing

z∗(DRIOP (t, g)) ≥ 0 for all t, g, we force the lower bounds on the real worst-case

inventory levels to be greater than or equal to zero. By embedding DRIOP (t, g)

into the ROP , we obtain the following:

ROP : min

P∑

p=1

T∑

t=1

G∑

g=1

vrxt,p,g

s.t. wt,p,g ≤
t∑

i=1

xi,p,g −
t−1∑

i=1

wi,p,g + inv0,p,g ∀t, p, g

P∑

p=1

wt,p,g ≥
P∑

p=1

dt,p,g ∀t, g

xt,p,g ≤ cprop,g ∀t, p, g

Kγt,g +

T∑

t̂=1

(βt,g
t̂

+

P∑

p̂=1

θ
t,g

t̂,p̂
)+

27



P∑

p=1

( t∑

t̂=1

xt̂,p,g −
t−1∑

t̂=1

wt̂,p,g + inv0,p,g

)

≥ 0 ∀t, g

γt,g + β
t,g

t̂
+ θ

t,g

t̂,p̂
≤ −xt̂,p̂,g ∀t, g, ∀t̂ ≤ t, ∀p̂

γt,g + β
t,g

t̂
+ θ

t,g

t̂,p̂
≤ 0 ∀t, g, ∀t̂ > t, ∀p̂

t∑

i=1

xi,p,g −
t−1∑

i=1

wi,p,g + inv0,p,g ≤ cinvp,g ∀t, p, g

xt,p,g, wt,p,g ≥ 0 ∀t, p, g

γt,g ≤ 0 β
t,g

t̂
≤ 0 θ

t,g

t̂,p̂
≤ 0 ∀t, g, t̂, p̂

Proposition 2.3.2. If the ROP is solved to optimality, then the following hold:

• DRIOP (t, g) and RIOP (t, g) are feasible for all t, g.

• z(DRIOP (t, g)) = z(RIOP (t, g)) ≥ 0 for all t, g.

Proof. When the ROP is solved to optimality, this implies the feasibility of the

ROP . Therefore DRIOP (t, g) is feasible for all t, g 3.

Furthermore, z(DRIOP (t, g)) ≥ 0 for all t, g, since the opposite would imply

that the ROP is infeasible. But IOP (t, g) is feasible for all t, g since U 6= ∅, hence

all subproblems are primal and dual feasible. By strong duality, all subproblems

are solved to optimality.

3Since the constraints of DRIOP (t, g) are contained in those of the ROP .
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2.3.5 Robust Methodology in Canonical Form

The approach we have described in the previous sections is in fact suitable for a

general class of bi-level programs with following characteristics: (i) the outer prob-

lem is an LP, (ii) the inner problems are also LPs with common feasible regions. To

clarify this connection, in this section we describe our approach using the canonical

LP form. We start with the canonical formulation considering no uncertainty. We

consider two subsets of constraints to distinguish the constraints that are directly

affected by uncertainty (2.18c) from those that are not (2.18b).

min cTx (2.18a)

s.t. Ax ≥ b (2.18b)

hi(x) ≥ 0 ∀i ∈ I (2.18c)

x ∈ R
n
+ (2.18d)

Then we introduce the uncertainty by reformulating constraints (2.18c) as inner

problems (2.19c) which transforms the initial formulation to a bi-level problem:

min cTx (2.19a)

s.t. Ax ≥ b (2.19b)

min
ξ∈U
{f i(x, ξ)} ≥ 0 ∀i ∈ I (2.19c)

x ∈ R
n
+ (2.19d)
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where

U = {ξ ∈ R
p
+|Hξ ≥ r}, (2.20a)

f i(x, ξ) = xTGiξ + xTdi + ξT (qi) ∀i ∈ I. (2.20b)

In (2.20a), H is the constraint coefficient matrix for the inner problems; in (2.20b),

Gi are the matrices; and in (2.20a), di and (qi) are constant vectors of dimension n

and p respectively. These help us represent the bi-linear form f i(x, ξ) in a compact

manner. Note that we assumed that, when reformulated using the inner problem

variables, constraints (2.18c) will be written as the optimization problem (2.19c).

The objective function in bi-linear form is given in (2.20b) and is linear from the

perspective of the inner problem since the x variables are fixed. Therefore the inner

problems are convex optimization problems with linear objectives, which implies

the optimality conditions of the inner problems are all linear. The inner problem i

is:

min
(
xT (Gi) + (qi)T

)
ξ (2.21a)

s.t. Hξ ≥ r Dual V ar. : λi ≥ 0 (2.21b)

ξ ∈ R
p
+ (2.21c)
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We first take the dual of each inner problem i,

max rTλi (2.22a)

s.t. HTλi ≤ xT (Gi) + (qi)T (2.22b)

λi ∈ Rm
+ (2.22c)

and enforce the dual feasibility conditions in the outer problem. By weak duality,
(
GTx

)T
ξ ≥ rTλ, and the outer problem becomes

min cTx (2.23a)

s.t. Ax ≥ b (2.23b)

xTdi + rTλi ≥ 0 ∀i ∈ I (2.23c)

HTλi ≤ xT (Gi) + (qi)T ∀i ∈ I (2.23d)

λi ∈ Rm
+ ∀i ∈ I, x ∈ Rn

+ (2.23e)

2.3.6 Numerical Example

Consider an instance of the ROP with 2 plants, 7 time periods and 2 products.

The production capacity is cprop,g = 5 · 105 and the inventory capacity is cinvp,g = 106.

K = 3 interruptions are expected. Since we assumed a fixed rate for electricity, we

solve the numerical instances of ROP with cost vectors where all the elements of

the vector are identical to the fixed rate. The production cost times the conversion

31



factor is 1, i.e., vr = 1. However, the ROP is general enough to handle the case

where the cost rate of electricity changes for each time period. The demand data

and the optimal solution of the ROP are given in Table 2.3. Since we assumed the

plants are identical, in Table 2.3 we observe identical production levels for both

plants. Furthermore, we also observe identical production levels for all time peri-

ods, but this behavior is not observed for all data sets. We tested these solutions

under all possible interruption scenarios and confirmed that, indeed, the produc-

tion plan is feasible, i.e., no stock-outs occur. The behavior of the solution under

two sample interruption scenarios is given in Tables 2.4 and 2.5. In the first sce-

nario (Table 2.4), plant 1 is interrupted three times consecutively at the beginning

of the horizon. In the second scenario (Table 2.5), plant 1 is interrupted in periods

5 and 7, and plant 2 is interrupted in period 6. In the interrupted time periods, the

planned production levels for both products are replaced with 0 and the inventory

pool levels for each time period/product are calculated using the updated produc-

tion levels. The ROP provides a production plan such that under any interruption

scenario, the inventory pool levels will be always non-negative. If the number of

interruptions in a scenario is less than the anticipated level of interruptions, K,

the ending inventory pool level will be positive unless there is at least one period

where the demand is 0. Since we assumed identical plants, we have reported the

robust solution that provides identical production levels for both plants. In general

there can be multiple robust solutions and cases where the robust optimal model

assigns different production levels to different plants depending on the constraints.

32



Data Total Demand

Period Prod. 1 Prod. 2

1 78337 22086

2 113422 21967

3 172944 42249

4 122049 55444

5 147796 34464

6 140045 38057

7 129098 35711

Table 2.2: Demands for Products

Solution Product 1 Product 2

Period Plant 1 Plant 2 Plant 1 Plant 2

1 63972 63972 4544 4544

2 63972 63972 4544 4544

3 63972 63972 4544 4544

4 63972 63972 4544 4544

5 63972 63972 4544 4544

6 63972 63972 4544 4544

7 63972 63972 4544 4544

Table 2.3: Optimal Robust Solution

2.3.7 Robust Production Planning Heuristic

Depending on the magnitude of the input sets, the ROP may be a very large prob-

lem. For example, if there are 10 products, 10 plants, and 100 periods, the ROP

has approximately one million variables and one million constraints. This problem

may be difficult to solve exactly. Therefore, in this section we propose a heuristic

that mimics the solution of the ROP . This heuristic is a variant of list scheduling

augmented with an auxiliary linear program and applies only to the special case

in which the plants are all identical. It also assumes that the production cost is

fixed in all periods and the same at all plants. The heuristic evaluates the damage

that would be caused by an interruption on each day, using each day’s demand
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Product 1

Period Plant 1 Plant 2 Total Production Inventory Pool Demand

0 - - - 200000 -

1 0 63972 63972 185635 78337

2 0 63972 63972 136185 113422

3 0 63972 63972 27213 172944

4 63972 63972 127944 33108 122049

5 63972 63972 127944 13255 147796

6 63972 63972 127944 1154 140045

7 63972 63972 127944 0 129098

Product 2

Period Plant 1 Plant 2 Total Production Inventory Pool Demand

0 - - - 200000 -

1 0 4544 4544 182458 22086

2 0 4544 4544 165034 21967

3 0 4544 4544 127328 42249

4 4544 4544 9087 80972 55444

5 4544 4544 9087 55594 34464

6 4544 4544 9087 26624 38057

7 4544 4544 9087 0 35711

Table 2.4: Scenario 1: 3 consecutive interruptions at the beginning of the horizon
at plant 1

and its position in the horizon. Note that interruptions earlier in the horizon are

more dangerous since early interruptions give the plants less time to build up their

inventory. Therefore, the heuristic tries to “front-load” the production schedule to

anticipate the most problematic interruptions.

We have assumed each product is subject to individual production and inven-

tory capacity constraints at each plant; however, this might not need to be true in

general. There might be conditions that affect the entire set of products such as
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Product 1

Period Plant 1 Plant 2 Total Production Inventory Pool Demand

0 - - - 200000 -

1 63972 63972 127944 249607 78337

2 63972 63972 127944 264129 113422

3 63972 63972 127944 219128 172944

4 63972 63972 127944 225023 122049

5 0 63972 63972 141199 147796

6 63972 0 63972 65126 140045

7 0 63972 63972 0 129098

Product 2

Period Plant 1 Plant 2 Total Production Inventory Pool Demand

0 - - - 200000 -

1 4544 4544 9087 187001 22086

2 4544 4544 9087 174121 21967

3 4544 4544 9087 140959 42249

4 4544 4544 9087 94602 55444

5 0 4544 4544 64682 34464

6 4544 0 4544 31168 38057

7 0 4544 4544 0 35711

Table 2.5: Scenario 2: Plant 1 is interrupted in periods 5 and 7, and plant 2 is
interrupted in period 6

joint inventory and capacity constraints:

∑

g∈G

xt,p,g ≤ cpro ∀t, p (joint capacity) (2.24)

∑

g∈G

invt,p,g ≤ cinv ∀t, p (joint inventory) (2.25)

The formulation given for ROP does not contain constraints of these types, there-

fore one can effectively replace the given formulation with a set of formulations,

each for a single product. In Algorithm 1, we describe a heuristic that can be

applied when the outer problem is separable in terms of products.
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Our heuristic consists of two steps. In the first step, the heuristic calculates, for

each period t, the aggregate demand faced so far by all plants, represented by the

non-decreasing sequence {at}. Next, for each period t, the heuristic calculates the

number of available production slots in periods 1, . . . , t, assuming that the maxi-

mum possible number of interruptions occur by time t (at most one per period).

This quantity is represented by the increasing sequence {st}. Up to time period

t = K there can be one interruption per time period, hence s1 = 1(p − 1), s2 =

2(p − 1), . . . , sK = K(p − 1). For time periods t > K, st = tp − K, so the num-

ber of available production slots for each time period t can be characterized as

st = tp−min{t,K}. Next, for each time period t, the heuristic calculates the “aver-

age production” required on each available plant to be able to satisfy the running

total demand at and characterizes it as the sequence {lt} where lt =
at
st

. Then,

the heuristic determines the period t∗ with the largest lt value, in an attempt to

detect the period in which infeasibility is most likely, accounting for the timing of

the interruptions and the quantity of the demands.

In the second step, the heuristic compares t∗ to K. If t∗ ≤ K then it assigns the

production levels as lt∗ at each plant for all time periods up to t∗. Then it updates

initial inventory as inv0+t∗(p−1)lt∗−at∗ , which is calculated assuming t∗ interrup-

tions happened so far, therefore it updates the number of interruptions as K− t∗. If

t∗ > K then again it assigns the production levels to lt∗ at each plant for all time pe-

riods up to t∗. But this time, it updates the initial inventory as inv0+(t∗p−K)lt∗−at∗ .

Finally, it updates the set of time periods as T : {ord(t∗ + 1), . . . , (T )}, where

ord(t∗ + 1) = 1, . . . , ord(T ) = T − t∗. After this step the heuristic goes back to step

one and continues recursively until K = 0. When there are no interruptions left,

it solves the standard production planning problem (2.2a)-(2.2g) and merges its

solution into the production plan. This heuristic takes at most K iterations, where
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Algorithm 1 Robust Production Planning Heuristic: Single Product

Require: Indices, Sets and Parameters as defined in Table 2.1

STEP 1

at :=
t∑

i=1

di ∀t ∈ T

st := pt−min {t,K} ∀t ∈ T
lt :=

at
st
∀t ∈ T

t∗ = argmax
t∈T

lt

STEP 2
if t∗ ≤ K then
∀t ≤ t∗, ∀p xt,p ← lt∗

inv0 ← inv0 + t∗(p− 1)lt∗ − at∗
if max

t,p
xt,p > cprop OR ∃t̂ ∈ {1, . . . , t∗}, p̂ ∈ P s.t. invt̂,p̂ > cinvp̂ then

Declare Failure and HALT
end if

K ← K − t∗

T ← {ord(t∗ + 1), . . . , ord(T )}
Go to STEP 1

else
∀t ≤ t∗, ∀p xt,p ← lt∗

inv0 ← inv0 + (t∗p−K)lt∗ − at∗
K ← 0
T ← {ord(t∗ + 1), . . . , ord(T )}
Update parameters in Table 2.1 according to T
Solve Standard Production Planning Problem (2.2) to obtain:
yt,p ∀t ∈ T , p (the optimal solution)

if max
t,p

xt,p > cprop OR ∃t̂ ∈ {1, . . . , t∗}, p̂ ∈ P s.t. invt̂,p̂ > cinvp̂ OR Problem

(2.2) is Infeasible then
Declare Failure and HALT

end if
∀t > t∗, ∀p xt,p ← yt,p

end if
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each iteration consists of the aforementioned two steps. In step 2 of every iteration,

the algorithm compares xt,p values to cprop and inventory levels to cinvp . If xt,p > cprop

or invt,p > cinvp then the algorithm declares failure and terminates. Because of this

termination rule, by construction every solution built by this heuristic is a feasible

solution to ROP. The heuristic is summarized in Algorithm 1.

For the data given in Table 2.3, our heuristic calculates the exact optimal so-

lution for the robust problem, as given in Table 2.3. Further numerical results

are reported in §2.3.8, and again, the heuristic found the optimal solution in all

instances tested. While our numerical results are hopeful on the optimality of

this heuristic, we were unable to prove or disprove the optimality of the heuristic.

Hence it stays as our conjecture that Algorithm 1 is actually an exact algorithm for

finding the optimal solution of the ROP under the following conditions: (i) Prod-

ucts are not jointly constrained, i.e., ROP is separable in products, (ii) Plants are

identical, (iii) Production costs and capacities are fixed throughout the horizon,

(iv) Inventory capacities are fixed throughout the horizon. In all of the instances

that we have tested, the heuristic either found the optimal solution or declared

failure in the infeasible instances.

2.3.8 Computational Results

In this section, we report the results of a computational study designed to test

the effectiveness of the robust model (ROP ) as well as the heuristic presented in

§2.3.7. Tables A.1 and A.2 summarize the computational results for a setting with

2 Plants, 5 Demand Patterns, inv0 = 2 · 105 and various time periods such as:

T ∈ {5 · 20, . . . , 5 · 25}
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Experiments are conducted to observe the behaviour under 20% and 40% inter-

ruption rates. For each instance type, i.e., a horizon length and an interrup-

tion rate, we created 5 random instances in which the demands are generated as

dt ∼ unif(0, 3cpro). Costs and capacities are as defined in the numerical example

given in §2.3.6. We modeled all of the problems using AMPL and solved them to

optimality using the solver Gurobi 4.0. The heuristic was implemented in Matlab

r2010a.

The first column reports the instance name in the form T .di, where i = 1, . . . , 5

is the random demand pattern. The next column reports the total demand for

that instance. The table then lists, for the 20% interruption rate (K = 0.2T ), the

optimal objective value (found by Gurobi) and the associated CPU time and the

objective value of the solution found by the heuristic (Algorithm 1) and the asso-

ciated CPU time. The column labeled “∆” reports the optimality gap, where ∆ =

|z(ALG1)− z(ROP )|. The column labeled “Ψ” reports the ratio of total production

to total demand (expressed as a percentage); that is, Ψ =
Total Production

Total Demand
. The

last set of columns repeats this information for the 40% interruption rate.

Our heuristic found the optimal solution for the ROP for every instance (within

the tolerance of ∆ ≤ 1). Moreover, on average it executes an order of magnitude

(10×) faster than solving the ROP directly with Gurobi. Note also from Tables A.1

and A.2 that Ψ is greater for K = 0.4T than for K = 0.2T ; that is, as the number of

interruptions increases, so does the total production. This result is also displayed

in Figure 2.2, which plots Ψ for K = 0.2T (lower point) and for K = 0.4T (upper

point) for each instance.
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Figure 2.2: Total Production to Total Demand Ratio (Ψ) from Tables A.1 and A.2

2.4 Production Modes

So far, we have assumed a very simple form for the interruptions and the firm’s

reaction to them. However, interruptions might have more complicated effects

on production, at more than just the interrupted plant, and/or in more than just

the interrupted period. In this section, we show how to embed operational rules

that govern how the system operates during or after interruptions into the ROP .

Each plant may operate in various production modes that are governed by the op-

erational rules. In §2.3, we considered only the simplest possible operational rule

(no production is allowed at interrupted plants) and only two production modes
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(interrupted and unaffected).

For example, consider the following operational rule: Once a plant recovers

from an interruption, for one period the plant is in “recovery mode” in which its

production rate is temporarily reduced. This rule may be imposed, for example, to

give the interrupted plant time to ramp its production back to normal. (Such an

operational rule is imposed for the air-separation plants that motivated this study.)

This rule induces 3 production modes: interrupted, recovery and unaffected. The

application of this logical rule for a given interruption scenario is depicted in Figure

2.3.

Figure 2.3: Interruptions and Associated Production Modes
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We attempt to provide as general a framework as possible for modeling opera-

tional rules. LetM denote the set of production modes, and let

ξm,t,p =







1, if plant p is in production mode m in period t

0, otherwise

for m ∈ M, t ∈ T , p ∈ P. The ξ variables indicate which production mode each

plant is in, and they are a generalization of the ξ variables in 2.3.4. A production

mode is defined by its effect on the production rate; in particular, let θm be the

fraction of the normal production rate that a plant experiences when in production

mode m. If θm = 0, the production is completely interrupted; if θm = 1, the plant

is functioning normally; and if 0 < θm < 1, the plant is operating at a reduced

rate. The θ parameters may be indexed by p and t if they are plant- and/or period-

dependent, but for ease of exposition we assume they depend only on m. Next, we

relate the actual production to the planned production levels and the production

modes, in a generalization of (2.6):

x̄t,p,g =
∑

m∈M

θmξm,t,pxt,p,g ∀t, p, g

Finally, the operational rules that govern the production modes must be repre-

sented as linear constraints on the ξ variables, and these constraints must be added

to the uncertainty set U .

To take an example, consider the “recovery mode” outlined above, and suppose

that a plant in recovery mode experiences half its normal production rate. Then

we haveM = {I, R, U}, θI = 0, θR = 0.5, and θU = 1. The operational rules can
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be enforced by including the following constraints in U :

ξI,t,p + ξR,t,p + ξU,t,p = 1 ∀t, p (2.26a)

ξR,t,p ≥ ξI,t−1,p − ξI,t,p ∀t, p (2.26b)

ξR,t,p ≤ ξI,t−1,p ∀t, p (2.26c)

Constraints (2.26a) require each plant to be in exactly one recovery mode in each

period. Constraints (2.26b-2.26c) require plant p to be in recovery mode in period

t if and only if it was interrupted in period t − 1 but it is not interrupted in period

t. This approach for embedding operational rules into the ROP maintains the

tractability of the problem.

As long as the opponent’s decision space (U) does not depend on the outer

problem variables, i.e., the production variables x, and the opponent’s objective

function can be expressed as a bi-linear function of outer problem variables and

inner problem variables, our methodology can continue to be used to combine the

outer and inner problems into one linear program. In contrast, if the opponent’s

feasible region depends on the outer variables, then the resulting model will be

nonlinear in general, although this may not be insurmountable. The inner prob-

lems can be reformulated as a set of optimality conditions, still one can cast the

BLP as a single non-linear program and choose the appropriate solution method

depending on the structure of this new non-linear program. Moreover, if the inner

problems are non-convex optimization problems, then this approach is not appro-

priate since the optimality conditions of the inner problems are necessary but not

sufficient for inner problem optimality. quantity requires twice as much resource

compared to unaffected mode, then possible values of θ are {0, 0.5, 1}. In this case,
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we need to define more binary variables:

2.5 Conclusion

In this chapter, we present a production planning framework for a rate-paying

industrial production company whose production operations strongly depend on

electricity. The problem we study is an operational-level, aggregate production and

inventory planning problem with electricity supply uncertainty and deterministic

demand. We assume that participation in an ILC provides a discounted and fixed

rate to the production company, which effectively mitigates the negative impact

of electricity price volatility but introduces supply uncertainty into the production

system in the form of interruptions. Our robust production planning model ac-

counts for this electricity supply uncertainty. In this model, we separate production

decisions and interruption decisions, since production decisions belong to the in-

dustrial company while interruption decisions belong to the electricity retailer. The

model can be solved using standard optimization techniques and software, but we

also developed a heuristic that attempts to mimic the solution of the robust opti-

mization model for a special case. In our computational experiment, our heuristic

found the optimal solution for every instance approximately ten times faster than

the optimization approach.

The interruption uncertainty framework we describe allows different contract

rules and operational rules to be embedded into the production planning problem

simultaneously. As we discussed in §2.4, it is straightforward to embed operational

procedures that companies may implement in the case of interruptions, such as lim-

iting the production in post-interruption recovery or prohibiting production level
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increases in some periods. Similarly, our framework could be used under differ-

ent types of ILCs, such as the pay-in-advance and pay-as-you-go reward schemes

described by Baldick et al. [2006]. Moreover, information regarding the utility’s

optimal interruption dispatch behavior can be embedded into our Stackelberg-like

production planning framework. However, the extent to which the theoretical re-

sults and computational performance presented above will be preserved under dif-

ferent ILC types or interruption dispatch behaviors is a topic for future study. An

important future avenue for study is to include demand uncertainty into the model.
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Chapter 3

Empirical Analysis

3.1 Introduction

Our contribution in this chapter is an experimentation effort using real prices from

the real-time markets in ISO New England (ISONE) and The PJM Interconnection,

L.L.C. (PJM) regional transmission operators (RTOs). Throughout this dissertation,

we use the terms “RTO” and “real-time market” interchangeably. The objective of

this experiment is to test the for inherent patterns in real-time locational marginal

prices (LMPs) that could be used for constructing the uncertainty sets for the opti-

mization problems which are studied in §4. First, the data is visually described and

LMP data from PJM and ISONE is analyzed using daily and weekly price curves.

The aggregate statistics, the correlation between hourly prices, and the dependence

and stationarity of hourly price series are analyzed using different time scales such

as days, weeks, months and years. Next the data is analyzed for price spikes using

spike detection thresholds. Finally, an experiment is conducted to test the accuracy

of dynamically fit ARIMA models for price forecasts. The ARIMA models are fit
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using rolling time windows with different horizon lengths since one of the objec-

tives of this study to test the information content of different horizons from the

perspective of the optimization problem. Two different horizon selection rules are

compared using five horizon lengths and various error measures.

The results show that daily price profiles in both markets are significantly time

dependent. Short term data is found to be a good candidate for describing daily

and weekly patterns. The one-step difference hourly price time series1 are found to

be stationary in both markets. Intraday prices and same-hour inter-day prices are

found to be highly correlated; however, the two markets show different patterns

in terms of intraday price correlation. Dynamically fit ARIMA models with short

time horizons as input are found to be appropriate for forecasting daily prices, and

the experimental results show that for a fixed list of horizons, the ARIMA models

that would be fit will be of different parameters with different horizon lengths. It

is also observed that for short term horizons, ARIMA models with constant mean

terms are fit while for longer horizons ARIMA models with drift terms were fit.

3.1.1 Electricity Markets

We begin by providing an overview of RTOs and the markets.

PJM

Founded in 1927, PJM, is an independent, federally regulated RTO headquartered

at Valley Forge, Pa. Prior to beginning of operation of the competitive wholesale

market in 1997, PJM LLC [a] was a vertically integrated entity. It covers an area

of 214,000 square miles that contains all or parts of Delaware, Indiana, Illinois,

1We slice the price data into multiple time series using different horizons.
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Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania,

Tennessee, Virginia, West Virginia and the District of Columbia, with 6,145 substa-

tions and 61,591 miles of transmission lines. It has an installed generation capacity

of 185,600 MW. PJM operates a centrally dispatched, competitive wholesale elec-

tric power market which has more than 700 participants (electricity buyers, sellers

and traders) and serves about 60 million customers. According to State of the Mar-

ket Reports [PJM LLC, e] in the first three months of 2011, PJM had total billings

of $9.58 billion.

For prior history of FERC Regulations and PJM Markets refer to PJM LLC [b].

PJM received full RTO status from the Federal Energy Regulatory Commission

(FERC) in December 2002. As an RTO, PJM meets independence, scope and re-

gional configuration, operational authority and short term reliability characteristics

required by FERC. According to PJM LLC [b], as an RTO, PJM provides the follow-

ing functions:

• Tariff administration and design

• Congestion management

• Parallel path flow

• Ancillary services

• OASIS, Total Transmission Capability (TTC) and Available Transmission Ca-

pability (ATC)

• Market monitoring

• Planning and expansion
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• Inter-regional coordination

PJM operates the energy market, the capacity market, the ancillary services

market, and the Financial Transmission Rights (FTRs) market to fulfill its functions

as an RTO [PJM LLC, c],[PJM LLC, d].

ISONE

ISONE was created by FERC in 1997 to oversee the restructuring of New Eng-

land’s wholesale electric power industry. At the time the New England Power Pool

(NEPOOL) was facilitating the cooperation and the coordination of vertically in-

tegrated market participants, mainly private and municipal utilities that worked

together to ensure electricity supply dependability, within six states: Maine, New

Hampshire, Vermont, Massachusetts, Connecticut and Rhode Island. With the sup-

port of the New England Conference of Public Utilities Commissioners (NECPUC)

and the New England Power Pool (NEPOOL), ISONE was found as an autonomous

and financially independent system operator to administer the whole power mar-

ket [ISONE, a],[ISONE, b].

ISONE implemented wholesale markets and it serves an area of 128,000 square

miles, with more than 350 generators, 32,000 MW of generating capacity and

8,000 miles of transmission lines. ISONE wholesale electric power market has more

than 500 participants (electricity buyers, sellers and traders) and serves about 6.5

million households and businesses (a population of 14 million people).

In 2003, ISONE added new markets and services per adoption of the Stan-

dard Market Design. During the August 2003 system failures, New England’s grid

stayed operational while much of the Northeast, Midwest and Canada was affected

severely. In 2005, FERC designated ISO New England as the regional transmission
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organization for the six-state region. In this role, ISO New England continues to

fulfill its responsibilities, but with broader authority over the day-to-day operation

of the transmission system and greater independence to manage the power grid

and wholesale markets.

In 2010, a volume of $9.1 billion was traded in wholesale electricity markets

which includes the energy market, the capacity market, and the ancillary services

market.

Energy

The role of PJM in the energy market is to coordinate and monitor market partic-

ipant’s electricity trade and delivery activities to provide open, fair and equitable

access. LMPs are used to valuate the energy in a way that the time and location

of the delivery is accounted for. LMP methodology combines the system-level en-

ergy cost, the congestion and marginal losses. Given two different locations with

different levels of congestion, the LMP is higher in the congested area. There

are two components of the Energy Market: Day-Ahead markets (forward market)

and Real-Time markets (spot market). Day ahead market participants submit their

hourly generation offers, demand bids and scheduled transactions to the auction

for the next day to the market operator, and the market operator balances the prices

and the transmissions. The next day, according to the operating conditions of the

transmission systems and the actualized prices, current LMPs are calculated and

published in five-minute intervals. The transactions are settled hourly. The market

participants also have the option to participate in two-settlement markets where

participants submits their generation/demand bids and scheduled transactions in

the day-ahead market. Then they settle in the spot market based on deviations of
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the real time prices from the day-ahead positions. PJM also operates a Day-Ahead

Scheduling Reserve Market where supplemental, thirty-minutes reserves that may

be needed to deal with unanticipated system conditions during the actual operating

day. The reserves are traded in a forward fashion.

The role of ISONE in the energy market is to coordinate the commitment and

dispatch of generation and demand resources and facilitate electric energy trad-

ing to provide open, fair and equitable access. Similar to PJM, it consists of the

Day-Ahead Market and the Real-Time Market. Locational marginal pricing is used

to set the prices on the power grid in a way that congestion, transmission loss

and electricity production costs are accounted for. The day-ahead clearing price

is determined through an auction process where market participants submit their

hourly generation offers, demand bids and scheduled transactions to the auction.

Starting from the lowest price, generators are selected until the necessary supply

to meet the demand and contingencies is committed. The price offered by the last

chosen generator is set as the “wholesale clearing price” and all previously selected

generators are awarded the clearing price. Day ahead markets and two-settlement

markets let the market participants hedge against real-time price fluctuations.

For Day Ahead Markets, ISONE publishes a weekly report containing descrip-

tive statistics for Locational Marginal Prices (LMPs) at the Hub, Load Zones, and

External Nodes; a graph comparing day-ahead cleared demand, day-ahead cleared

MWs (defined as the sum of cleared fixed demand, price sensitive demand and vir-

tual bids, minus cleared virtual offers), forecast load, and actual load; and a graph

that compares the variable production costs (based on fuel costs) for hypothetical

gas and oil plants with the energy component of the LMP. For Real Time Markets,

it publishes information about bid-in and cleared demand, virtual demand and vir-

tual supply, as well as exhibits showing hourly day-ahead LMPs for the Hub, the
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eight Load Zones, and the five External Nodes [ISONE, c].

Capacity Market

The capacity markets exists to ensure the availability of resources to maintain re-

gional power grid reliability. In this market, Reliability Pricing Model (RPM) which

is developed by PJM, is implemented. In this model utilities and electricity suppli-

ers are required to have necessary and adequate generation resources (capacity) to

meet customer demand and safety reserves three years before it is needed. It also

includes incentives to motivate development and deployment of Demand Response

(DR) and energy efficiency programs. Load serving entities (LSEs) and generators

can fulfill these requirements through capacity obtained through contracts, auc-

tions or generating capacity owned/installed. All these elements are included in

the RPM in such a way that locational transmission and capacity constraints are

accounted for.

Similarly, the ISONE Capacity Market provides the necessary environment to

ensure that enough supply exists to satisfy regional reliability and contingency re-

quirements2. ISONE holds an annual auction for the projected capacity require-

ments for the next three years. This provides a means to include long-term signals

in investment decisions for new generation and demand resources. An uncommon

feature of this market is the fact that it allows bids from demand-side resources

along with power plants for the necessary supply requirements.

2Reliability Requirements and Contingency Requirements differ in the sense that former is de-
signed to ensure additional reserves that are required to ensure day-to-day smooth operation while
the latter is designed to mitigate contingencies such as blackouts, line failures, . . ., etc.
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Ancillary Services

In PJM, ancillary services encompasses two markets which operate to ensure and

support the reliability of the transmission system: regulation services and syn-

chronized reserve services. Regulation service provides the necessary mechanism

to correct the short-term adjustments required for the stability of the power sys-

tem. Matching generation and load along with output frequency adjustments are

two mechanisms that are provided by this service. Synchronized reserve service

provides the necessary mechanisms to provide synchronized emergency power on

short notice. LSEs can meet their obligation to provide both services by in-house

generation, by bi-lateral contracts and by market purchases.

In ISONE, ancillary services operate to ensure and support the reliability of the

transmission grid where unforeseen transmission line and power plant failures may

cause catastrophic failure. Furthermore, the minute-to-minute balance of electric-

ity flow partially depends on these systems. Forward and Real-Time Operating

Reserves provide an additional layer of protection of reliability through access to

resources that can be called on quick notice. It also include reserves that can be

acquired through Demand Side Management (DSM) and Demand Response (DR)

programs that allow inclusion of the locational component of the price to address

heavy demand and congestion. System frequency control is achieved through reg-

ulation of power plant output, and voltage support services provide a necessary

means to maintain transmission voltages within safe limits. Some specific power

plants provide black start capability for restarting the system after system-wide

blackouts.
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Financial Transmission Rights

Financial Transmission Rights (FTRs) help market participants hedge their price

risk at the time of delivery. The holder of the FTRs has a right to collect a fee

according to hourly energy-price differences across a transmission path in the Day-

Ahead Market. In the PJM market, there are three types of FTR auctions: long-

term (1-3 years), annual and monthly. FTRs can also be bought from a secondary

market.

3.2 Literature Review

For select articles on the market characteristics for various energy markets, test-

ing market structures, auctioning and bidding strategies, operational strategies,

forecasting prices and modeling the risk of power portfolios, refer to Sorokin et al.

[2012a], Sorokin et al. [2012b]. For similar studies to ours, see Longstaff and Wang

[2004], Shawky et al. [2003], Popova [2004].

Future prices are required to conduct a complete analysis from the financial

perspective. However the objective of this chapter to conduct an analysis which will

be used to construct uncertainty sets for operational level optimization problems.

More importantly the impact of the price uncertainty on the final operational cost

will be measured through deviations in the optimal objective function value.

3.3 Data & Empirical Analysis

In this section, hourly Real-Time LMPs in PJM, [PJM LLC, f], and ISONE, [ISONE,

d], are described, analyzed and compared. To be consistent with the production
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planning model, daily and weekly scopes are used. ISONE real time LMPs (prices)

covers the interval from 2003-05-03 to 2011-10-06 (452 weeks) while PJM prices

covers the interval from 2004-05-03 to 2011-10-30 (392 weeks). One of our ob-

jectives is to investigate the impact of using this information to structure the price

uncertainty sets for the optimization model and compare it to the cases where more

granular information can be acquired and used in a streaming manner.

All computations are done in CRAN-R from [R Development Core Team, 2011]

and the following packages:

data.table [Dowle et al., 2012], plyr [Wickham, 2011],

forecast [Rob J. Hyndman and Schmidt, 2012],

fields [Furrer et al., 2012], matrixStats [Bengtsson et al., 2011],

lubridate [Grolemund and Wickham, 2011], timeDate [Wuertz et al., 2011],

reshape [Wickham and Hadley, 2007], diagnostic [Zeileis and Hothorn, 2002],

zoo [Zeileis and Grothendieck, 2005], xts [Ryan and Ulrich, 2011],

tseries [Trapletti and Hornik, 2011], and timeSeries [Wuertz and Chalabi, 2011].

All tables and plots are made using:

xtable [Dahl, 2012], corrplot [Wei, 2011],

ggplot2 [Wickham, 2009] and gridExtra [Auguie, 2012].

The data can be framed using different time perspectives, such as yearly, sea-

sonal, monthly, weekly and daily data views. In this study, weekly and daily views

are found more appropriate since the optimization problems that are used are

usually instantiated using weekly and daily horizons. Any systematic component

which comes into effect in time intervals larger than a week is irrelevant from

the perspective of the optimization model instance. Hence the data is tested for

stationarity, independence and systematic components only for daily and weekly

perspectives.
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3.3.1 Aggregate Statistics

Hourly statistics aggregated over all years are given in Table 3.1 and depicted in

Figure 3.1. Tables B.1 and B.2 provide the hourly statistics for ISONE and PJM

markets from the weekly perspective and can be found in Appendix B. Both mar-

kets have similar hourly LMP profiles when means and quantiles are considered.

The negative values in minimum prices for the early hours in the day might be

evidence for some generation inflexibility. When power plants have high start-up

and shut-down costs, or due to system requirements, the operators might settle for

negative LMPs, which means the power generators are paying the market to keep

the generators remained on. This does not occur in the ISONE market. Prices in the

ISONE market are higher in general, and price differences in the two markets are

most pronounced in the early hours of the day. However, during the peak hours

the gap becomes less than 4 %. The volatility in prices is slightly higher in the

ISONE market but for hours 12, 13, 14, 18 and 19 the volatility difference in the

two markets is less than 5 %. The daily pattern is clear in the aggregated data.

Stationarity

Let {Pd,h} be the price process indexed on days and hours. For testing stationarity,

we used the original price process and a set of subprocesses that we constructed

using the same hours on different days. Formally,

Pd,h = {P1,1, P1,2, . . . , P1,24, P2,1, . . . , P2,24, . . .} (3.1)

P h
d = {P 1

1 , P
1
2 , . . .} ∀h ∈ {1, . . . , 24} (3.2)
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Hour mean Std.Dev. min Q1 median Q3 max mean Std.Dev. min Q1 median Q3 max

1 51.59 23.49 0 39.81 47.97 56.80 398.60 33.88 16.25 -12.61 25.50 30.04 37.40 227.47
2 44.54 12.01 0 37.99 44.75 51.34 153.68 32.92 17.03 -19.13 24.52 29.05 36.41 219.03
3 54.56 35.10 0 41.50 50.27 60.48 998.41 30.24 16.41 -26.22 23.13 27.60 34.05 217.74
4 50.49 13.88 0 42.85 49.79 57.84 166.16 28.55 16.13 -38.44 22.09 26.73 32.67 192.98
5 50.26 20.56 0 40.76 48.36 58.27 645.99 29.74 15.44 -45.63 23.15 27.40 33.09 177.55
6 60.78 18.13 0 49.99 58.12 69.10 175.98 34.91 20.03 -26.76 25.95 30.50 37.88 235.55
7 73.05 28.78 0 56.64 68.69 86.78 341.39 46.94 31.10 -39.62 28.95 37.76 56.33 272.99
8 94.21 37.77 10.96 72.43 93.06 115.13 856.06 49.40 31.01 -32.58 30.68 39.97 58.22 430.69
9 61.50 18.14 0 50.76 61.27 71.05 195.12 50.38 24.55 -0.16 33.63 42.53 60.28 223.95
10 55.97 46.36 0 41.45 51.41 63.14 1015.86 53.99 25.34 16.15 36.37 46.13 64.35 223.30
11 63.15 23.10 0 48.53 61.83 75.73 297.92 58.49 27.66 18.43 38.38 50.24 71.60 248.35
12 65.32 19.37 0 56.48 64.34 74.47 238.57 58.74 28.75 14.94 38.81 50.32 70.94 354.84
13 61.67 21.35 0 49.82 58.03 72.17 295.79 58.83 30.71 12.93 37.80 49.08 72.02 397.82
14 79.37 31.83 0 58.87 74.81 95.40 288.08 60.37 35.04 5.81 37.07 48.85 72.20 395.71
15 100.74 40.14 0 79.49 93.91 115.55 403.23 59.70 39.10 2.83 35.51 46.25 71.65 502.87
16 65.10 17.39 0 54.29 62.54 72.52 210.88 60.48 44.63 7.01 34.71 45.42 71.96 716.44
17 50.91 20.26 0 37.06 46.05 60.55 234.58 64.70 46.50 16.55 36.62 49.82 77.32 770.65
18 35.60 13.84 0 28.97 33.92 39.95 260.33 69.33 43.57 19.14 39.62 58.11 86 763.78
19 44.59 24.93 0 30.07 37.41 51.58 278.74 64.44 35.06 15.22 39.36 54.51 78.69 423.11
20 45.83 19.03 0 34.45 41.84 51.55 221.66 61.75 30.86 15.81 39.51 52.80 74.61 247.08
21 53.20 29.36 0 38.32 44.42 58.01 499.71 64.39 32.36 18.77 40.95 55.36 78.08 345.89
22 53.53 27.27 0 36.15 44.80 61.13 253.27 57.07 27.76 17.99 37.16 48.62 69.34 222.05
23 45.71 17.38 0 36.54 41.23 49.37 315.65 42.23 18.05 12 30.67 36.60 47.26 159.87
24 45.86 29.15 0 34.25 39.83 49.60 558.55 37.41 16.45 -1.62 27.80 32.60 41.55 191.62

ISONE Hourly Statistics PJM Hourly Statistics

Table 3.1: Hourly Statistics
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Figure 3.1: PJM vs ISONE Hourly Statistics
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The following tests are conducted on the ISONE market hourly price time series

using the R Development Core Team [2011] functions:

• Stationarity: null hypothesis that an observable series is trend stationary,

kpss.test [Kwiatkowski et al., 1992]

• Stationarity: null hypothesis that an observable series is level stationary,

kpss.test [Kwiatkowski et al., 1992]

• Unit Roots: the hypothesis that the time series has a unit root,

adf.test [Banerjee et al., 1993],[Said and Dickey, 1984],

pp.test [Banerjee et al., 1993],[Perron, 1988].

For both of the time series configurations, stationarity (both level and trend) is

rejected; however, the null hypothesis that the series has a unit root is also rejected.

Below are the results for KPSS level and trend stationarity tests along with a unit

root test.

KPSS Test for Level Stationarity

KPSS Level = 8.5123, Truncation lag parameter = 63,

p-value = 0.01

KPSS Test for Trend Stationarity

KPSS Trend = 6.3332, Truncation lag parameter = 63,

p-value = 0.01

Augmented Dickey-Fuller Test

Dickey-Fuller = -19.0718, Lag order = 42,

p-value = 0.01

Phillips-Perron Unit Root Test

Dickey-Fuller Z(alpha) = -12851.81, Truncation lag parameter = 21,
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p-value = 0.01

However, by taking one-step differences, kpss-test fails to accept the null hypothesis

that the time series has a unit root (i.e. non-stationary) at α = 0.05 level. So kpss-

test finds the one-step difference stationary and, Dickey-Fuller test rejects the null

hypothesis that there is a unit root, which are given below:

KPSS Test for Level Stationarity

KPSS Level = 7e-04, Truncation lag parameter = 63,

p-value = 0.1

KPSS Test for Trend Stationarity

KPSS Trend = 7e-04, Truncation lag parameter = 63,

p-value = 0.1

Augmented Dickey-Fuller Test

Dickey-Fuller = -53.9025, Lag order = 42,

p-value = 0.01

Phillips-Perron Unit Root Test

Dickey-Fuller Z(alpha) = -51161.41, Truncation lag parameter = 21,

p-value = 0.01

The results are similar for the PJM Market.

Independence

The hourly price data is clearly not a time series with independent elements. The

hourly autocorrelations are revealed in Figure 3.2, where one can clearly observe

the dependence of the hourly prices on the next day’s prices for the same hour. In

Figures 3.3 and 3.4 intraday hourly Pearson [1901], Kendall [1938], and Spearman
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[1907] correlations are compared for P h
d configurations (first row) and one-step

difference P h
d configurations (second row). The Pearson correlation coefficient is

more sensitive to linear relationships whereas Kendall describes how similar the

ranks are when the data is ranked by each of the quantiles. Spearman correlation

coefficients are more sensitive monotone yet linear associations and relationships.

In the ISONE market, for P h
d configurations Pearson correlation coefficient for

hourly prices are highly correlated, whereas Kendall’s rank-τ coefficient detects less

correlation among all hours compared to the other two coefficients and Spearman

coefficient detects higher correlation among all hours. By visual inspection, one can

see two blocks where correlations are clustered together. For the 1-step difference

P h
d configuration, one can observe that the correlation among all hours are reduced

significantly and the matrices are almost diagonal, yet clusters of correlated hours

are still observable. In the PJM market, hourly correlations are weaker compared

to those in the ISONE market. The block structures that can be observed in the

ISONE market are replaced by less emphasized local patches in the correlation

matrix.
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3.3.2 Larger Time Scales

In this section, we present the data using weekly and monthly perspectives, where

it is analyzed separately for different days of the week. In Figures B.1 and B.2 every

hour within a week is labeled; where 0 stands for Sunday and 6 stands for Saturday.

The prices for the whole week are represented in a single curve, which fits the scope

of the production planning problem’s cost vector. In boxplots, the lower end of the

middle rectangle corresponds to the first quantile and the top end corresponds to

the third quantile. The ends of the whiskers corresponds to Q1 − 1.5 IQR and

Q3 + 1.5 IQR where IQR stands for the inter-quantile range. ISONE has slightly

higher but less volatile hourly prices compared to the PJM market. In the PJM

market peak hours are more pronounced and prices have a skewed distribution

due to medians being closer to the lower hinges.

Daily and weekly periodicity are clearly present in both plots. Since our objec-

tive is not to determine a prediction model, but to measure the sensitivity of the

optimal production solution to given prices and develop a method to appropriately

select and structure the data into an uncertainty set, prices are used in their raw

form.

Next a weekly breakdown of the data from monthly and seasonal perspectives

are presented in Figures B.3, B.4 and B.5. During shoulder seasons, fall and spring,

prices tend to be statistically lower with less volatility. The data shows that 2009

Fall and Spring were the best amongst all others for both markets. In terms of

price quantiles, Summer 2008 and Fall 2005 were the worst for both markets. Both

markets show similar levels for monthly comparison of prices in two markets, for

instance, in 2008, December and January are found to be the months with the most

intraday variability in the PJM market. Furthermore, the monthly change in the
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hourly price profile is more evident in years 2008, 2010 and 2011 in both markets.

The prices increase significantly in the afternoon for summer months compared to

the rest.

3.3.3 Spikes

Due to inherent daily patterns, choosing a method to identify spikes becomes tricky.

If one were to accept that there is a daily price profile, then peak price points within

the day are not spikes but rather a realization of the price characteristics for that

specific hour. Since the data is analyzed from the hourly perspective, two ideas to

detect spikes are combined: First, calculate a dynamic threshold price point and

identify a spike whenever prices pass that threshold. Second, filter the data to

identify high spike percentages or anomalous maximum prices.

For identifying a threshold, the ratios of the day-ahead LMPs and real-time

LMPs are analyzed. Instead of using the Q3 + 1.5IQR formula for the thresholds,

which is depicted by the top end of the boxplot whiskers, 2 Q3 is used as a conser-

vative approximation as the spike threshold. This quantity seems to coincide with

the maximum prices for non-peaking hours but to fall short of maximum prices

observed. Maximum prices above $300/MWh are also identified as spikes, since

that price point looks like a natural cut-off point for the data (see Figure 3.5).

A summary of results with notable maximum prices or high spike percentages

are given in Tables B.3 and B.4. For every (year, hour) pair, “size” indicates the

number of data points that belong to that specific pair, “threshold” indicates the

twice the median of all prices, “N” indicates number of spikes identified. The rest

of the columns provide statistical information about the subset of prices that are

flagged as spikes. For a comparison of dynamically calculated spike counts refer to
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Figure B.6.

Two different threshold calculation methods are tested, and yearly aggregated

results are presented for both methods in Table B.5. The first method calculates

the threshold as twice the median of the prices minus the standard deviation for

all prices within a year. The second method is similar to the first one, with the

only difference being the multiplier of the median is now three. One important

observation from these tables is the significant spike volatility in 2006, which is

detected with both the high threshold and the low threshold in ISONE and PJM

markets. In 2010 and 2011, the number of spikes detected by both thresholds

increased; however, the volatility is not as severe compared to 2006 spikes. The

PJM market is more spiky in all years which is evident from the spike counts given

in Table B.5 and depicted in Figure B.6. Even though there is no significant pattern

in the yearly price thresholds, other than the fact that the thresholds are high for
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years with high volatility such as 2006 and 2008, both of the threshold methods

flag more spikes for years 2010 and 2011 in both markets. While both markets

have similar high/low threshold levels, the PJM market shows a higher number of

spikes, which is evident in Figure B.6. In this figure, a comparison of daily spike

counts for both markets is presented from a year-hour perspective. The daily spike

profile is flatter for ISONE; however, for PJM it changes from year to year.

3.4 Forecasting and Information Criteria

3.4.1 ARIMA Models and Error Measures

The final step in this analysis is an experiment to find an appropriate model for

daily forecasts and an appropriate data horizon. We test dynamically calculated

ARIMA models [Mills, 1991] with different horizon lengths of {20, . . . , 25} days. For

each day and horizon length, the R package forecast [Rob J. Hyndman and Schmidt,

2012] is used to fit an ARIMA model. Next, the fitted ARIMA model is used to fore-

cast the prices for the day in question in a rolling manner. forecast automatically

estimates ARIMA parameters using the following algorithms:

• p: Order of autoregressive component, q: Moving average;

(selected using Hyndman-Khandakar algorithm [Hyndman et al., 2007])

• d: Order of integrated component, (MLE Estimation) (constant trend, d=0;

linear trend, d=1; quadratic trend, d=2)

For comparing the candidate ARIMA models, forecast use Akaike’s information cri-

terion, Akaike [1973]. This criterion is based on the entropy and calculated using

the formula 2k − 2ln(L), where k is the number of parameters used in the models
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and L is the maximum likelihood estimate. The objective of this experiment is to

evaluate the forecasting performance of the dynamically configured ARIMA models

in both markets by using different in horizon lengths.

The algorithm is as follows: For every daily price instance pi, auto-fit an ARIMA

model using horizon lengths hj ∈ {20, 21, 22, . . . , 25}. The accuracy of the forecast

which is characterized using error measures such as ME, RMSE, MAE, MPE, MAPE

and MASE which are formulated below [Hyndman and Koehler, 2006]. Let At be

the actual price and Bt the forecast price at time t. Then

et =At − Bt (3.3)

kt =100 et/At (3.4)

lt =
et

1
n−1

∑n

i=2 |Ai −Ai−1|
(3.5)

Mean Error mean(et) (3.6)

Root Mean Square Error mean(e2t ) (3.7)

Mean Absolute Error
√
MSE (3.8)

Mean Percentage Error mean(|et|) (3.9)

Mean Absolute Percentage Error mean(|kt|) (3.10)

Mean Absolute Scaled Error mean(|lt|) (3.11)
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3.4.2 Horizon Selection and Evaluation

Horizons are evaluated according to two rules. The first rule chooses the ones3

that score lowest on most of the measures, and the second rule calculates a final

measure, which is the product of the absolute values of all above measures and

chooses the minimum. Figure 3.6 presents the the hourly data from the ISONE

Market starting from 2003-03-03, Hour 1 until 2003-04-03, Hour 24.

The forecasting accuracy is measured using the real prices realized on day

2003-04-04. The forecasts for different horizons are given in Figure 3.7. The

calculated errors and horizon decisions by both rules are given in Table 3.2. Both

horizons, namely 2-day and 8-day horizons, capture the the actual prices with very

high confidence, which can be observed in Figure 3.7. Note that for shorter time

horizons, the fitted model has a constant mean, while for the 32-day horizon a

model with a drift term is fit.

Horizon ME RMSE MAE MPE MAPE MASE

2 days -0.98 6.50 5.33 -3.83 11.09 0.42

8 days -0.18 6.59 5.23 -2.29 10.78 0.44

Table 3.2: Horizons and Errors Choosen by Rules

The results for both markets are summarized above in the confusion matrices.

The matrices show the number of cases where the column value is chosen by Rule

2 and the row value is chosen by Rule 1. The second rule tends to choose shorter

horizons while offering similar error measures as the first rule.

3Plural, since there can be ties.
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ISONE DATA PJM DATA

Rule 2 Rule 2

Rule 1 1 2 4 8 16 Rule 1 1 2 4 8 16

1 300 57 51 64 59 1 265 39 34 42 47

2 65 233 47 44 58 2 46 183 44 42 47

4 44 54 250 48 54 4 44 54 194 69 51

8 41 53 52 276 66 8 52 52 47 219 57

16 48 43 56 65 310 16 37 35 55 64 290

32 87 89 119 157 242 32 84 88 100 145 186

mismatch mismatch

[1] 0.2215837 [1] 0.2223451

For instance, there were 300 cases in the ISONE market where both rules chose

the 1-day horizon, 65 cases where Rule 2 chose the 1-day horizon and Rule 1 chose

the 2-day horizon and so forth. Rule 2 never chose the 32-day horizon in both mar-

kets, and it tends to balance all six measures, while Rule 1 tends to choose horizons

in which one of the error measures might be extremely off while others are favor-

able. This is due to the fact that Rule 1 is based on the number of favorable error

scores, regardless of how unfavorable the remaining error metric scores are. Rule 2

outperforms Rule 1 in both markets and provides the better data horizon selection

with respect to the MASE error measure. The performances are summarized in Ta-

ble 3.3. Values less than 1 mean that the forecasting method used provides a better

performance compared to using the Bt = At−1 method. Both rules perform better

in the ISONE market in terms of minimum, median and worst-case maximum value

of MASE.
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market rule mean Std.Dev. min Q1 median Q3 max

ISONE 1 0.947 0.557 0.0521 0.608 0.828 1.123 8.912

ISONE 2 0.980 0.528 0.0521 0.652 0.875 1.173 8.912
PJM 1 0.891 0.504 0.0994 0.596 0.784 1.068 10.274
PJM 2 0.926 0.462 0.0994 0.624 0.837 1.117 4.215

Table 3.3: MASE for Rule 1 and 2 in both markets

3.5 Identified Cues for the Uncertainty Set

The daily perspective clearly demonstrates that there are changing daily price pro-

files in both markets. This can be observed in the yearly-hourly overlay of LMPs

colored according to the month; which is depicted in Figure B.7. In this figure,

spikes are filtered out to make sure hours that are more variable are emphasized.

There is a clear separation of highly volatile hours from hours with less volatil-

ity. Following years with large fluctuations, the daily range of prices decreases,

yet daily patterns in different months might be similar or substantially different

according to years. Furthermore, existence of negative prices in PJM creates an in-

teresting situation from the customer’s perspective. Mainly by producing at those

hours, a manufacturer would be making money by using electricity. For instance in

2009-06-07 in an interval from 4:00 AM to 6:00 AM the prices were in the range

between −$45 /MWh, −$4.5 /MWh which provides a two hour window where

manufacturer can actually earn money just from producing. While such occasions

are not frequent and only 0.5 % of the PJM data set displays negative prices, these

incidents can be observed in all years and almost all months.

By using intraday quantiles and standard deviations, one can easily identify the

peaking hours; however the data shows that throughout years and seasons, price

ranges and peaking hours can change significantly (compare ISONE 2003 to ISONE
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2011 data) in the daily profiles. Intraday prices and same-hour inter-day prices are

found to be highly correlated; however, the two markets show different patterns in

terms of intraday price correlation. Furthermore, after significantly volatile years,

there is evidence for actions taken (by regulation or by market participants) which

would mitigate the situation for the next year. There are at least two such cycles

that can be observed in both ISONE and PJM data.

The data suggests that uncertainty sets constructed by aggregating the data

over years or months will obscure the characteristics of the data that is significantly

dependent on the chosen time frame. Therefore, in both markets, short term data is

found to be a good candidate for describing daily and weekly patterns. Interpreting

the data using long time scales is hard due to the changes in regulation, the markets

and market features.

The one-step difference hourly price time series are found to be stationary in

both markets. Intraday prices and same-hour inter-day prices are highly corre-

lated. Dynamically fit ARIMA models with short time horizons as input are found

appropriate for forecasting the daily prices, and the experimental results show that

for a fixed list of horizons, the ARIMA models that would be fit will be of differ-

ent parameters with different horizon lengths. It is also observed that for short

term horizons, ARIMA models with constant mean terms are fit while for longer

horizons ARIMA models with drift terms were fit.
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Chapter 4

The Value of Information:

A Production Model and

A Scheduling Model

4.1 Introduction

In this chapter, an experiment is conducted to quantify the value of information

from two perspectives: a production planner’s perspective and a job shop sched-

uler’s perspective. In this research, the value of information is quantified as the

reflection of the price uncertainty on the optimal objective function value’s devia-

tion from a solution obtained by solving an optimization problem with imperfect

information.

For the production planner’s perspective, various demand scenarios and rolling

time horizons of varying length for electricity price data are used to create and com-

pare optimization instances of various mathematical models under the assumption
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that a production planning problem is solved at the beginning of the week, i.e.

before the actual prices are revealed. There are alternative approaches to a pro-

duction planner can take. Some of them are: (1) The production planner uses the

data for estimation and solves an LP using the estimated cost, (2) uses the data

to calculate various statistics and use these statistical calculations to create robust

optimization instances; (3) uses the prior week’s prices as an estimator for the

current week. The details of the models that were investigated in this study are

summarized next.

Let us define the data selection approaches first. Given a scope (week/day) i,

p0i is the vector that contains the actual prices that are observed in that scope. We

use a weekly scope for production planning problems. p1i is the vector that contains

the actual prices that were observed in scope i− 1, hence it characterizes the past

scope’s prices for any given scope. p2i is the vector that contains the price estimate

obtained by dynamically fitting an ARIMA model for scope i using variable length

horizons, say li, which means using the data in Qi = {p0j s.t. i− li ≤ j ≤ i− 1} for

fitting and forecasting for scope i. All of the pi vectors can be modularly used with

the baseline LP model.

Due to the non-stationary nature of the LMPs, ARIMA models using different

horizon lengths (2 weeks, 4 weeks and 8 weeks) are used to estimate the current

week’s prices. Except for the fact that now time horizons are in terms of weeks, this

approach is exactly the same approach used in Chapter 3. For instance, choosing

an eight week horizon for the week of 2000-08-31 means selecting the electricity

prices from past eight weeks prior to day 2000-08-31. These prices are depicted in

Figure 4.2.

Next we define the optimization models. The baseline model is a deterministic

linear production planning model, which we call the standard production planning
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model, [SPP]. The details of [SPP] is given in §4.3.3. Note that this model takes

the prices as the objective function vector and the demand scenario as the right

hand side vector. Next a robust optimization model with a budget of uncertainty,

[RPP], is developed. This model is described in in §4.3.3 and it takes a nominal

cost vector, a cost deviation vector and a demand scenario right hand side vector

as parameters. Lastly, a stochastic programming model [SOPP], also in §4.3.3, is

developed. The parameters for this model are multiple cost vectors depending on

the horizon and a single demand scenario vector.

First for all weeks i and demand scenarios d1,...,10, the [SPP]i is solved using p0i

as the objective function coefficients and d as the right hand side to find the true

objective function value, z∗0,i, and the optimal production plan, S∗
0,i. Note the there

is no index for the demand scenario, and the reason is we have dropped it for the

ease of exposition. Next [SPP]i is solved using p1i and p2i . Say the corresponding

optimal solution vectors are S∗
1,i and S∗

2,i. Now the deviations in [SPP]i+ p1i and

[SPP]i+ p2i are:

ρSPP
i,1 =

|z∗0,i − (p0i )
TS∗

1,i|
z∗0,i

∀i (4.1)

ρSPP
i,2 =

|z∗0,i − (p0i )
TS∗

2,i|
z∗0,i

∀i (4.2)

Similarly [RPP]i is instantiated using the data in Qi. Five different approaches

which are discussed in §4.3.2 are used to calculate various statistics on Qi where

these statistics are used to calculate nominal and deviation vectors. Using these

vectors [RPP]i, i ∈ (1, . . . , 5) are instantiated and solved to obtain

ρRPP
i,j 1 ≤ j ≤ 5 ∀i (4.3)
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Finally [SOPP] is instantiated using Qi. This time all the price vectors in Qi

are used as scenarios for the [SOPP]. For [SPP] and [RPP] instances, the obtained

production plan, S∗, is combined with actual prices, p0, to calculate the would-be

optimal objective function value; however, this is not the case for [SOPP] since

this model only gives information about the expected objective function value.

Therefore the corresponding ρSPP is calculated as

ρSOPP
i =

|z∗0,i − z(SOPP (Qi))
∗|

z∗0,i
∀i (4.4)

For the scheduler’s perspective, a job-shop scheduling model is developed and

tested using the electricity prices in a similar fashion to the production planning

models using a daily scope. Due to prohibitive computation times and model com-

plexity, a single 0-1 Integer Programming Model (BIP) is first solved with real prices

to obtain the baseline, true solutions. Next, the BIP is solved with forecast prices

in a rolling fashion. As for forecasting techniques, the past week’s prices and dy-

namically fit varying horizon ARIMA models are used.

4.2 Literature Review

Sorokin et al. [2012a,b] contains an exhaustive list of optimization models and

approaches on different aspects of operational planning in power markets from

various perspectives such as power generators, power marketers and customers.

Zhu et al. [2010], Karwan and Keblis [2007], and Ierapetritou et al. [2002] pro-

vide models that are similar to ours in terms of problem setting, practicality and

uncertainty1.

1Also see Engell et al. [2010]
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A robust optimization model developed by Conejo and Carrion [2006] is rele-

vant to our research since it addresses robust power procurement. Another similar

model worth mentioning is by Zheng et al. [2010] where the authors discuss a

portfolio optimization problem occurring in the energy market. Energy distribut-

ing public services have to decide how much of the requested energy demand has

to be produced in their own power plant, and which complementary amount has to

be bought from the spot market and from load following contracts. This problem

is formulated as a mixed-integer linear programming problem. These two models

were initially found appropriate for our assessment since they both simultaneously

cover day-to-day power asset execution and operational planning. Refer to relevant

papers for the results.

All data manipulation and statistical computational implementations are done

in [R Development Core Team, 2011] using the following packages in addition

to the packages we have used in §3: gputools [Buckner et al., 2011], rje [Evans,

2012], slam [Hornik et al., 2011] and Matrix [Bates and Maechler, 2012].

The optimization model components such as the objective functions, constraint

matrices, right hand sides and such are built in [R Development Core Team, 2011],

the optimization instances are solved in Gurobi 4.6.1 [Gurobi Optimization, 2012]

and the results are then transferred back to R. We have written the interfaces to

Gurobi libraries in C++ and registered as R plugins using inline [Sklyar et al.,

2010] and Rcpp [Eddelbuettel and François, 2011]. Just recently, after we have

finished writing the interfaces and finished running the simulations, Gurobi started

supporting R in version 5.0.
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4.3 Data & Data Selection

4.3.1 Demand Data

10 demand scenarios which are given in Table C.1 and depicted in Figure 4.1 are

used. The scenarios start from a perfectly predictable pattern (a sine curve) in sce-

nario 1 and more noise is introduced progressively for each scenario. The formulas

that are used to create each scenario are given below:

sce1 100 sin π/42

sce2 100 sin π/84

sce3 100 sin π/84 + 10 U [−1, 1]

sce4 100 sin π/84 + 10 N(0, 1)

sce5 100 sin π/42 + 100 sin π/84 + 30 U [−1, 1] + 10 N(0, 1)

sce6 100 sin π/42 + 100 sin π/84 + 10 U [−1, 1] + 30 N(0, 1)

sce7 100 U [−1, 1]

sce8 100 N(0, 1)

sce9 100 U [−1, 1] + 100 N(0, 1)

sce10 100 sin π/42 + 100 sin π/84 + 100 U [−1, 1] + 100 N(0, 1)

Four demand signals, {sin π/42, sin π/84, U [−1, 1], N(0, 1)}, are mixed in ten dif-

ferent ways to obtain the above demand scenarios. The sin curves are used to

shaped the demand while uniform and normal random variables are used to intro-

duce noise to the curves. To remove the negative demands, the final mixture matrix

is translated by the absolute value of the smallest negative demand. Note that the
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Figure 4.1: Demand Data

same demand for a given week is used along with price curves from both PJM

and ISONE markets in optimization problems. It is also assumed that the demand

process is independent of the electricity prices and the objective of the comparison

is to measure the potency of different joint data selection and optimization rules.

The demand scenario statistics are presented in Table 4.1.

4.3.2 Price Data: Selection & Usage

Robust Uncertainty Sets

The robust approach described by Bertsimas et al. [2010] is used for building

[RPP] prototypes. Every price point has a lower bound and an upper bound. Fol-

lowing the budget of uncertainty concept of [Bertsimas et al., 2010], for a prede-

fined fraction of the time, the prices will be realized at their upper bounds. If the
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Demand Stats for Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

mean 407.29 407.29 407.36 407.21 407.43
Std.Dev. 70.92 70.92 71.35 73.43 103.65

min 307.29 307.29 300.51 278.68 201.05
Q1 337.95 336.58 335.72 334.99 344.89

median 407.29 407.29 405.92 412.86 406.80
Q3 476.63 478.00 475.36 478.63 474.70
max 507.29 507.29 516.86 524.68 614.83

Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10

mean 407.12 408.02 406.48 407.21 407.21
Std.Dev. 107.48 53.64 98.47 107.23 154.97

min 157.82 309.91 118.40 167.74 0.00
Q1 335.66 362.47 344.94 324.90 296.10

median 409.86 405.08 399.75 400.62 402.58
Q3 477.83 452.31 464.93 481.40 521.48
max 631.19 505.83 657.06 690.07 795.49

Table 4.1: Demand Statistics for Each Scenario

fraction is defined as 7 %, there will be 12 points within 168 price points that will

be realized as their maximum value. A 10 % spike fraction is chosen for our exper-

iment hence for this approach, lower and upper bounds for each price point have

to be defined. In our notation, nominal LMPs are c̄, and the deviations are ĉ. We

test five different methods to determine the lower bounds (lb) and upper bounds

(ub) of price points:

1. lb=min, ub=max

2. lb=Quantile 1, ub=Quantile 3

3. µ± σ

4. µ± 1.96 σ

5. µ± 6 σ

Once lb and ub are calculated, the nominal curve is set as c̄=(ub+lb)/2 and the

deviation is set as ĉ=(ub-lb)/2. Depending on the uncertainty set selected, the

robust model is named as RPP.1, RPP.2, . . . , RPP.5.
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4.3.3 Production Planning Models

In this section, we formulate the standard production planning model [SPP], the

robust production planning model [RPP], and the stochastic production planning

model [SOPP].

Standard Production Planning Model

[SPP ] min cTx+ [10 eT ]inv (4.5a)

s.t. inv0 = 0, inv168 = 0 (4.5b)

invi = invi−1 + xi − di ∀i ∈ {1...168} (4.5c)

x ≥ 0, inv ≥ 0, (4.5d)

where e = [1, . . . , 1]T168×1. The vector c denotes the weekly LMPs. The vectors x, inv

are the production and inventory variables respectively. The parameter d gets its

value from the demand scenario set. For ISONE, there are 452 instances of vector

c. This model is used due to its simplicity and to be able to isolate the effects of

price changes on the production values. Further constraining this model would

dampen the effect of the price uncertainty. 2

2Consider a hypothetical case where the inv variables all have an upper bound of 0. This would
be equivalent to just in time production, where the demand for a certain hour, would be met by the
production in that particular hour, no matter what the price is. Therefore, it wouldn’t be possible
to measure the impact of the LMPs on the production schedules, since they would be irrelevant.
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Robust Production Planning Model

The robust production planning model is formulated as follows:

[RPP ] min c̄Tx+ [10 eT ]inv +
{max
η∈U ĉT (η · x)

}
(4.6a)

s.t. inv0 = 0, inv168 = 0 (4.6b)

invi = invi−1 + xi − di ∀i ∈ {1...168} (4.6c)

x ≥ 0, inv ≥ 0, (4.6d)

η is the robust multiplier vector for the production variables, x and η · x represents

an element-wise multiplication. Let frac be the number of hours (analogous to

budget of uncertainty in the objective) in which LMPs hit their maximum value.

Then the inner problem is:

max ĉT η · x (DUAL) (4.7a)

s.t. ηt ≤ 1 αt (4.7b)

− ηt ≤ 1 βt (4.7c)

ηt − vt ≤ 0 γt (4.7d)

− ηt − vt ≤ 0 θt (4.7e)

0 ≤ vt ≤ 1 ρt (4.7f)
∑

t

vt ≤ frac ψ (4.7g)
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The dual is as follows:

min
∑

t

(αt + βt + ρt) + ψ frac (4.8a)

s.t. αt − βt + γt − θt = ĉt ∗ xt (4.8b)

− γt − θt + ρt + ψ ≥ 0 (4.8c)

Inserting the dual back into the main problem using strong duality, we get the

following model:

min c̄Tx+ [10 eT ]inv +
∑

i

(αi + βi + ρi) + ψ frac (4.9a)

s.i. inv0 = 0, inv168 = 0 (4.9b)

invi = invi−1 + xi − di ∀i ∈ {1...168} (4.9c)

αi − βi + γi − θi = ĉi xi ∀i ∈ {1...168} (4.9d)

x ≥ 0, inv ≥ 0, α, β, γ, θ, ρ, ψ ≥ 0. (4.9e)

Stochastic Production Planning Model

In the [SOPP] prototype, we allow the cardinality of the price scenario set, N , to be

either 2,4 or 8 weeks. For each demand scenario, the prices from the appropriate

horizon length are collected in the uncertainty set. In the stochastic model, the

objective is to minimize the expected cost. The difference of this approach is that it

is only informative, in the sense that one uses only the resulting objective function
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to measure the deviation of from the real cost. The resulting optimal solution

vector of [SOPP] is not an actual production plan, but multiple production plans,

the number of which depends on the cardinality of the price scenario set, stitched

together. In the previous models and techniques the resulting production schedule

were used to assess the proximity to real optimal cost.

For [SOPP] we assume equal probabilities for each scenario. For instance, when

LMP information of the past 8 weeks is included, both scenarios have a probability

of 1
8
.

[SOPP ] min
1

N

{
N∑

S=1

cTxS + [10 eT ]invS
}

(4.10a)

s.t. inv0,S = 0, inv168,S = 0 (4.10b)

invi,S = invi−1,S + xi,S − di,S ∀i ∈ {1...168} S ∈ {1, . . . , N} (4.10c)

x ≥ 0, inv ≥ 0, (4.10d)

The resulting formulation clearly has a block angular structure and is separable.

4.4 Numerical Study

4.4.1 Baseline Solutions

First the SPP Model with actual prices for all of the demand scenarios and for all of

the price instances to obtain is solved to obtain a comparison baseline. A solution

summary for one price and one demand instance is demonstrated as an example

below in Figures C.6 and C.7. In this example, the prices for the week of 2009-

08-31 for ISONE and PJM markets are used. Demand scenario ten is used Figure
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4.1. In the ISONE solution, the production is in just-in-time mode until the latest

and the lowest price point. For that instant it is maxed out to cover the demand

until the 75th hour. When the LMPs are spiking towards the end, one can observe

the model chooses to produce right before the spikes. In the PJM market a similar

behaviour can be observed. These models represent the “real” optimal solutions,

where LMPs for a particular week are perfectly known at the beginning of the week.

The objective function values for each week will be used as the baseline to measure

the ρ value of the proposed methodology. The progression of the optimal objective

function values for every week for each demand scenario are given in Figures C.8,

C.9 and summarized in Table 4.2. For all of the demand scenarios, the progression

of the objective function values has a similar statistics and patterns. One interest-

ing observation is, when the optimal weekly solution vectors are overlayed on top

of each other, one can observe the original demand signal and integer multipliers

of this signal in the resulting graph. This may have connections to Wagner-Whitin

algorithm, Wagner and Whitin [1958], however we do not investigate. This phe-

nomenon is most clear for the demand scenarios 1:3 and it can be observed in

Figures C.1 and C.2. This is due to the fact that, there is no upper bound for the

inventory so the production that occurs to meet a particular demand at some time

is exactly equal to the demand quantity, i.e. demand quantities are not divided

amongst time points.

Let us give an example for the estimation procedure using automated ARIMA.

Given the 8-week history before 2009-08-31, automated ARIMA fits the following

models:

MODEL AIC VALUE

ARIMA(0,1,0) : 9988.885
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ISONE Objective Stats for Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

mean 3.827544e+06 3.827306e+06 3.828388e+06 3.826102e+06 3.839213e+06
Std.Dev. 1.137495e+06 1.138537e+06 1.137875e+06 1.137131e+06 1.144011e+06

min 1.628839e+06 1.617861e+06 1.629808e+06 1.627454e+06 1.619847e+06
Q1 3.020936e+06 3.009510e+06 3.021104e+06 3.019421e+06 3.001192e+06

median 3.662170e+06 3.653735e+06 3.663521e+06 3.659914e+06 3.678063e+06
Q3 4.321423e+06 4.333839e+06 4.322160e+06 4.320348e+06 4.331212e+06
max 8.357823e+06 8.476668e+06 8.361970e+06 8.354465e+06 8.517080e+06

Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10

mean 3.834641e+06 3.825164e+06 3.802305e+06 3.810742e+06 3.832140e+06
Std.Dev. 1.142476e+06 1.137176e+06 1.129541e+06 1.133274e+06 1.143546e+06

min 1.615140e+06 1.638061e+06 1.614524e+06 1.624211e+06 1.614163e+06
Q1 3.001991e+06 3.010140e+06 2.994547e+06 3.000348e+06 3.016979e+06

median 3.672771e+06 3.650434e+06 3.624010e+06 3.632398e+06 3.661117e+06
Q3 4.327014e+06 4.307442e+06 4.278379e+06 4.292487e+06 4.332229e+06
max 8.502068e+06 8.367972e+06 8.292916e+06 8.334392e+06 8.515891e+06

PJM Objective Stats for Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

mean 3.137882e+06 3.145205e+06 3.138770e+06 3.136757e+06 3.164376e+06
Std.Dev. 8.231876e+05 8.256538e+05 8.235892e+05 8.226660e+05 8.313057e+05

min 1.745212e+06 1.735550e+06 1.746321e+06 1.745993e+06 1.742129e+06
Q1 2.514336e+06 2.508433e+06 2.514639e+06 2.513200e+06 2.526135e+06

median 2.988951e+06 3.006458e+06 2.990120e+06 2.988832e+06 3.019086e+06
Q3 3.607752e+06 3.612891e+06 3.608127e+06 3.606116e+06 3.631880e+06
max 6.192862e+06 6.199714e+06 6.193827e+06 6.186768e+06 6.295933e+06

Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 10

mean 3.160350e+06 3.129131e+06 3.109000e+06 3.117880e+06 3.160467e+06
Std.Dev. 8.293845e+05 8.227337e+05 8.132936e+05 8.172428e+05 8.295300e+05

min 1.739916e+06 1.723565e+06 1.720281e+06 1.731370e+06 1.737143e+06
Q1 2.523994e+06 2.501918e+06 2.487937e+06 2.491905e+06 2.521550e+06

median 3.010493e+06 2.979770e+06 2.960016e+06 2.970150e+06 2.995675e+06
Q3 3.623121e+06 3.586126e+06 3.567741e+06 3.568434e+06 3.613529e+06
max 6.283106e+06 6.248204e+06 6.177622e+06 6.187270e+06 6.308363e+06

Table 4.2: Baseline Objective Function Value Statistics for Each Scenario

ARIMA(0,1,2) : 9897.353

ARIMA(0,1,4) : 9896.282

ARIMA(1,1,0) : 9923.892

ARIMA(0,1,1) : 9902.669

ARIMA(1,1,2) : 9899.684

ARIMA(0,1,0) with drift : 9990.913

ARIMA(1,1,4) : 9899.361

ARIMA(0,1,2) with drift : 9899.416

ARIMA(2,1,0) : 9898.868
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ARIMA(0,1,3) : 9897.738

ARIMA(2,1,2) : 9894.865

ARIMA(0,1,4) with drift : 9898.343

ARIMA(0,1,5) : 9898.283

ARIMA(3,1,0) : 9899.42

ARIMA(1,1,0) with drift : 9925.936

ARIMA(0,1,1) with drift : 9904.724

ARIMA(1,1,1) : 9900.117

ARIMA(1,1,3) : 9899.531

ARIMA(1,1,2) with drift : 9901.75

ARIMA(2,1,1) : 9899.136

ARIMA(3,1,2) : 9897.022

ARIMA(0,1,3) with drift : 9899.801

ARIMA(1,1,4) with drift : 9901.426

ARIMA(4,1,0) : 9901.683

ARIMA(2,1,0) with drift : 9900.925

ARIMA(5,1,0) : 9904.55

ARIMA(2,1,3) : 9895.287

ARIMA(0,1,5) with drift : 9900.346

ARIMA(3,1,1) : 9899.832

ARIMA(1,1,1) with drift : 9902.18

ARIMA(4,1,1) : 9903.46

ARIMA(1,1,3) with drift : 9901.593

ARIMA(2,1,1) with drift : 9901.2

ARIMA(2,1,2) with drift : 9896.914

ARIMA(3,1,0) with drift : 9901.484

ARIMA(3,1,2) with drift : 9899.071
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ARIMA(4,1,0) with drift : 9903.746

ARIMA(5,1,0) with drift : 9906.614

ARIMA(2,1,3) with drift : 9897.332

ARIMA(3,1,1) with drift : 9901.899

ARIMA(4,1,1) with drift : 9905.519

The data used for estimation, the forecast and the real prices are illustrated in

Figure C.3. All models assumes non-stationarity and allows for the drift terms.

Corresponding AIC values are listed in the right. These models are compared ac-

cording to their AIC values and the model with the maximum AIC value is chosen.

ARIMA(2,1,2)

Coefficients:

ar1 ar2 ma1 ma2

0.9625 -0.4337 -1.2176 0.5979

s.e. 0.1663 0.0818 0.1577 0.1008

sigma^2 estimated as 92.23: log likelihood=-4943.75

AIC=9897.5 AICc=9897.54 BIC=9923.51

By using this method the following production plan depicted in Figure 4.3 is ob-

tained. Evaluating the production solution obtained from estimation using real

prices, it is observed that, if one were to follow that schedule, the actualized objec-

tive function value would be 2.045318 % greater than the real optimal cost.
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Figure 4.3: Optimal Solution Comparison: S∗([SPP ] + p0) vs S∗([SPP ] + p1)

4.4.2 Value of the Information

For comparing the previously introduced data selection and modeling approaches,

we have conducted a simulation and calculated the ρ values for all price instances

in ISONE and PJM markets. Basically, everything is calculated in a large for-loop.

All optimization models are initialized before the simulation so that we don’t re-

calculate the components that will stay the same throughout the loop. For the

LP approaches (last week’s price and estimated price), the constraint matrix stays

the same, only the objective function coefficients change. For the robust LP ap-

proaches (RPP.1-5), uncertainty sets change for all rolling windows so the dualized

constraint right hand sides change along with the nominal objective coefficients.

For the stochastic LP approach only objective coefficients change. For each itera-

tion the time windows are set according to each horizon and the price statistics for

each hour are calculated. Then the appropriate objective function and right hand
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side vectors for all of the models are constructed, the models are solved and the

results are recorded in a rolling fashion. Overall results are presented in Figures

C.4, C.5 and Table 4.3. In both markets, in terms of ρ values, the following perfor-

mance in descending order is observed: [SPP] + p2, [RPP.3], [RPP.4], [RPP.1] or

[RPP.2], [SPP] + p1, [SOPP].

In ISONE market, [SPP] + p2 is found to be the best approach. On average, the

ρ values are less than 5 % on average. However in PJM market ρ values are larger

due to reduced forecasting accuracy. [SPP] + p2 approach still performs better

than the other approaches. However, due to highly volatile market, the ρ values

are around 10 % of the optimality on average. Regardless of the approach, PJM

market provides lower optimal objective function values due to the lower prices

which is evident from Table 4.2. Even in the case where PJM prices are increased

by 10 %, optimal production costs in the PJM market are around 90 % of what they

would be in the ISONE market.
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[SPP] + p1 [SPP] + p2 RPP.1 RPP.2 RPP.3 RPP.4 RPP.5 SOPP

mean 6.868946e-02 4.788795e-02 6.215265e-02 6.215238e-02 5.455468e-02 5.861122e-02 7.336887e-02 1.273968e-01
Std.Dev. 6.213379e-02 5.864475e-02 5.689801e-02 5.689813e-02 5.532790e-02 5.588585e-02 5.775638e-02 1.110870e-01

min 5.153874e-03 2.001152e-04 1.744689e-03 1.744689e-03 1.963270e-03 2.904568e-03 8.926670e-03 1.652865e-06
Q1 3.282688e-02 1.613529e-02 3.008254e-02 3.008254e-02 2.514818e-02 2.838942e-02 3.983608e-02 4.678760e-02

median 5.372225e-02 3.176688e-02 4.672603e-02 4.672603e-02 4.075348e-02 4.445811e-02 5.811349e-02 9.709147e-02
Q3 8.242418e-02 5.747404e-02 7.617543e-02 7.617543e-02 6.450988e-02 6.911318e-02 8.860490e-02 1.753278e-01

max 6.621553e-01 6.507335e-01 6.526531e-01 6.526531e-01 6.580398e-01 6.735431e-01 6.896353e-01 7.369913e-01

ISONE Aggregate Summary of ρ Values

[SPP] + p1 [SPP] + p2 RPP.1 RPP.2 RPP.3 RPP.4 RPP.5 SOPP

mean 1.256682e-01 1.002800e-01 1.233003e-01 1.232992e-01 1.108869e-01 1.166368e-01 1.393535e-01 1.408342e-01
Std.Dev. 7.768015e-02 8.878317e-02 7.746448e-02 7.746437e-02 7.826571e-02 7.814301e-02 7.969383e-02 1.160820e-01

min 1.999689e-02 2.716156e-03 1.671855e-02 1.671855e-02 1.221175e-02 1.428012e-02 2.770020e-02 5.634148e-06
Q1 7.022129e-02 4.322721e-02 6.951197e-02 6.951197e-02 5.907297e-02 6.525821e-02 8.592444e-02 5.101813e-02

median 1.105309e-01 8.178784e-02 1.106421e-01 1.106421e-01 9.486954e-02 1.009599e-01 1.229888e-01 1.108401e-01
Q3 1.657080e-01 1.272263e-01 1.551851e-01 1.551851e-01 1.415035e-01 1.475089e-01 1.721503e-01 2.048446e-01

max 7.470098e-01 9.886768e-01 8.168622e-01 8.168622e-01 8.435617e-01 8.332765e-01 8.459896e-01 8.153722e-01

PJM Aggregate Summary of ρ Values

Table 4.3: Aggregate Summary of Proximities
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4.5 Job Shop Scheduling Model

In this section, a job-shop scheduling model ([JSP]) prototype is used to conduct

an extensive numerical study using the real spot prices. The nature of this model

is significantly different from the previous ones in the sense that there are no de-

mands, the resources are more limited yet the decisions to be made are similar:

instead of “when to produce” it is “when and where to process”. There are no

alternative sources of electricity procurement other than the spot market. This

model is developed purely for assessing the impact of spot prices on the sched-

ules. For assessing the operational impact on a job-shop environment, we develop

a novel model for scheduling multiple machines, jobs and processes. This model

captures the inherent complexity of scheduling machine-mode changes, schedul-

ing the production process and product movements within machinery. While it

is not appropriate for the large-scale problems due to the inherent complexity of

the problem (NP-Complete, Garey et al. [1976]), this model is used to assess the

impact of the price uncertainty on the operational schedules. Our objective is to

find a feasible schedule within the given time horizon and processing capabilities

that require minimum cost and finding the optimal start times. implies and facility

requires finding the correct configuration of the machines during the production

horizon.

4.5.1 Notation

• Processes: Tasks to be performed, p ∈ P

• Products: A sequetial instantiation of processes, e ∈ E

• Machines: Facilities capable of hosting multiple jobs, f ∈ F

96



• Capabilities: Machines with different sets of processing capabilities, cf ⊂ P

• Horizon: T time units, t ∈ {1, ..., T}

The notable differences from classical job shop models are listed as: (1) The

model integrates configuration of the production environment since machines can

change modes. (2) The objective is to minimize energy cost of mode changes and

processing.

Classical scheduling problems, depending on the shop environment, may have

single/multiple machines that are similar/dissimilar where the objective is to find

a sequence of visits/start times of products to minimize tardiness/minimize maxi-

mum job length/minimize total time spent/minimize maximum tardiness . . . [Pinedo,

2012]. Job-shop scheduling problems are the most general problems which are

amongst the notoriously hard combinatorial optimization problems.

This problem is a variant of job-shop scheduling. In our model, a task is a pro-

cess execution for a unit length of time, jobs are sets of tasks with precedence con-

straints and machines are processing centers where execution occurs. Furthermore

machines may or may not have the equivalent processing capabilities. Machines

with different processes and process transition costs are allowed in this model. A

setup time of one unit for a machine to change current processing capability is in-

curred, along with the power requirement. Machines can process multiple products

simultaneously and product movements require one unit of time. In this setting,

each product is represented as a sequence of processes that needs to finished in

order for completion. Each task takes exactly one unit of time. Products can be

moved from machine to machine at no cost within negligible time. The facility net-

work is fully connected, so products can be moved from every facility to every other

facility. The objective is to find the optimal starting time and facility of each task in
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each product sequence which incurs the minimum power cost. Facilities consume

power to change modes, i.e. facp,p
′

f . Every facility has a different capability set and

each facility can be in only one mode at a given time. For a product task to be able

to be processed by the facility, the facility’s mode must match the current product

process, i.e. if the 3rd task of product 1 is process 2, then this task can only start at

a facility which is in mode 2. Furthermore, if multiple different jobs are present at

the facility simultaneously with their respective task processes matching the facility

mode, these tasks can be processed simultaneously. Therefore, routing of products,

scheduling of job tasks and machine modes are integrated in one model.

The variables are given below and are explained in the next paragraph:

• Start Time: βe,k
t,f , xe,k

t ∈ {0, 1}

• Product Location and Movement: α̂e,t, α
f,f ′

e,t ,yet,f ∈ {0, 1}

• Machine Mode: γ̂t,f , γp,p′

t,f ,zpt,f ∈ {0, 1}

The βe,k
t,f variables are non-zero if the kth process of sequence e starts at time t at

facility f . These variables are aggregated over f to create the xe,k
t variables since a

task can only start in a single facility for any given time. The location of the product

is captured in variables yet,f which are non-zero if sequence e is at facility f at time

t. The αf,f ′

e,t track movement of the products and are non-zero if yet,f = yet+1,f ′ = 1,

for f ′ 6= f . These variables are aggregated over f to create the α̂e,t variables which

are non-zero if the product e is moving at time t. The zpt,f variables capture machine

modes at facilities and are non-zero if facility f is in mode p at time t. The γp,p′

t,f

variables track mode changes at facilities and are non-zero if zpt,f = zp
′

t,f = 1, for

p′ 6= p. They are aggregated over modes to obtain the γ̂t,f variables, which simply

track if a machine is changing mode at time t or not. The [JSP] is given below and
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price stands for the daily price vector:

[JSP ] min
∑

t,f

pricet
( ∑

{e,k}

β
e,k
t,f +

∑

{p,p′}

γ
p,p′

t,f fac
p,p′

f

)
(4.11a)

∑

t

x
e,k
t = 1 ∀e, k (4.11b)

∑

k

x
e,k
t ≤ 1 ∀e, t (4.11c)

∑

f

yet,f = 1 ∀e, t (4.11d)

∑

p

z
p
t,f = 1 ∀t, f (4.11e)

∑

f

β
e,k
t,f − x

e,k
t = 0 ∀e, k, t, f (4.11f)

∑

f

x
e,k′

t′ + x
e,k
t ≤ 1 ∀e, k, t ∀k′ > k ∀t′ ≤ t− 1 (4.11g)

β
e,k
t,f − yet,f ≤ 0 ∀e, t, f (4.11h)

β
e,k
t,f − yet+1,f ≤ 0 ∀e, t, f (4.11i)

β
e,k
t,f − z

e,k
t,f ≤ 0 ∀e, k, t, f (4.11j)

β
e,k
t,f + α̂e

t ≤ 1 ∀e, t (4.11k)

β
e,k
t,f + γ̂et ≤ 1 ∀t, f (4.11l)

γ̂t,f − γp,p
′

t,f ≥ 0 ∀t, f, p 6= p′ (4.11m)

z
p
t,f − γ

p,p′

t,f ≥ 0 ∀t, f, p 6= p′ (4.11n)

z
p
t+1,f − γ

p,p′

t,f ≥ 0 ∀t, f, p 6= p′ (4.11o)

z
p
t,f + z

p′

t+1,f + γ
p,p′

t,f ≥ −1 ∀t, f, p 6= p′ (4.11p)

α̂e,t − αf,f ′

e,t ≥ 0 ∀e, t, f 6= f ′ (4.11q)

yet,f − αf,f ′

e,t ≥ 0 ∀e, t, f 6= f ′ (4.11r)

yet+1,f − αf,f ′

e,t ≥ 0 ∀e, t, f 6= f ′ (4.11s)
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− yet+1,f ′ − yet,f + α
f,f ′

e,t ≥ −1 ∀e, t, f 6= f ′ (4.11t)

The constraints [4.11b] states that every task should have a start time. The con-

straints [4.11c] enforces the fact that the tasks of a process can not start simulta-

neously. The constraints [4.11d] states that every product must be at exactly one

facility in each time period. The constraints [4.11e] states that every facility must

be in exactly one mode in each time period. The constraints [4.11f] states that β

variables are aggregated to obtain x variables. The constraints [4.11g] enforces

that the steps that follow a certain task can not start earlier than that task.

The constraints [4.11h-l] enforce that a product needs to be at the facility at

times t and t + 1, the mode of the facility should match the mode of the current

product task, the facility should not be changing modes and the product should

not be moving, if the kth task of product e is to be started at time t at facility f . The

constraints [4.11m-p] govern the facility modes whereas The constraints [4.11q-t]

govern product movement.

4.5.2 Model Stats, Possible Reductions, Infeasibility Certificates

Depending on the length of the time horizon and the product sequence length,

tasks can be restricted to certain time windows in preprocessing. These windows

naturally arise and can be used to reduce the problem size. Combined with the

fact that mode changes or movements both require a unit of time, this piece of

information is used to do initial capacity assessments. By exploiting the fact that a

movement and mode change both requires a unit of time, one can develop supple-

mentary models that would provide infeasibility certificates. One possible method
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for assessing infeasibility is as follows. Let:

ei := {P(1), P(2), P(3), ..., P(ki)} (4.12a)

where ei stands for the ith job and ki stands for the number of tasks for job i.

Noting that some of the job tasks might be the same, first calculate the total num-

ber of unique processes, ai, that are required for the job as well as ai,l, which

indicates the number of times process l has to be performed for product i. Next

calculate the number of process changes, bi. Note that if all the unique process

are repeated in clustered blocks, the minimum number of process changes would

be required; however, if processes alternate at every step, the maximum number

of process changes will occur. The importance of this observation is that, depend-

ing on the particular ordering of the sequences in the jobs the required time can

change significantly. For instance, for a sequence where the same processes are

clustered together to follow each other, the minimum time requirement would be

ki + ai − 1. However if the processes are alternating, even with only 2 processes,

it would be 2 ki − 1. So the minimum time requirements can be generalized as

follows: di = ki + bi − 1.

This piece of information can be used in two ways: first to construct the time

windows and to construct a supplementary model to assess the capacity of the

processing environment and time horizon.

First solving the following auxiliary problem one can assess the feasibility of
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the processing environment in the preprocessing stage:

[JSP −A] min 1 (4.13a)
∑

{t,f}

xt,f,pl ≥
∑

i

ai,l ∀l ∈ {1, ..., p} (4.13b)

∑

pl∈Cf

xt,f,pl = 1 ∀t, f (4.13c)

γ̂t,f − γp,p
′

t,f ≥ 0 ∀t, f, p 6= p′ (4.13d)

z
p
t,f − γ

p,p′

t,f ≥ 0 ∀t, f, p 6= p′ (4.13e)

z
p
t+1,f − γ

p,p′

t,f ≥ 0 ∀t, f, p 6= p′ (4.13f)

z
p
t,f + z

p′

t+1,f + γ
p,p′

t,f ≥ −1 ∀t, f, p 6= p′ (4.13g)

This simple capacity check does not create a proper infeasibility certificate, i.e. a

feasible solution to this model does not imply the original model has a feasible

solution since it ignores product movements. However, if the original problem is

infeasible in the sense that the current processing environment does not provide

enough capacity or the time horizon is too short to be able to have a solution, it

would be detected by the infeasibility of this problem.

Next, given job i, one can calculate the latest starting times using the minimum

time requirements, di. If di ≥ T +1, the problem is infeasible. Otherwise the latest

start time for task 1 of job i is T−di+1; for task 2, it is T−di+2, ... , for task ki, it is

T−di+ki. This implies all the β, x variables that correspond to time points after the

latest start time can be safely set to 0. The solution of the supplementary capacity

checking problem can be used as a starting point; however, it doesn’t guarantee

a feasible start since it ignores product movements and order structure of the job

sequences.
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4.6 Numerical Study

The [JSP] may have significantly different instances depending on the production

environment and problem parameters. To demonstrate the significance of this, con-

sider a very simple problem where there are only two processes and two products

with the following process sequences:

{e1} := {P1, P1, P1, P2, P2, P2} (4.14a)

{e2} := {P2, P2, P2, P1, P1, P1} (4.14b)

If there is only one machine with processing capability {P1, P2}, the optimal solu-

tion can be characterized as the following sequence:

P1, P1, P1

∣
∣
∣

∣
∣
∣P2, P2, P2,

︸ ︷︷ ︸

{e1}

P2, P2, P2

∣
∣
∣

∣
∣
∣P1, P1, P1

︸ ︷︷ ︸

{e2}

(4.15a)

where the separating double lines indicate process mode changes. The minimal

completion time is 14 time units, i.e. any time horizon with T ≤ 13 is infeasible.

Let us introduce another machine with the same capabilities.

M1 P1, P1, P1
︸ ︷︷ ︸

{e1}

>> P1, P1, P1
︸ ︷︷ ︸

{e2}

(4.16a)

M2 P2, P2, P2
︸ ︷︷ ︸

{e2}

>> P2, P2, P2,
︸ ︷︷ ︸

{e1}

(4.16b)

where >> stands for the product movement from one machine to another. By
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keeping machine 1 in mode P1 and machine 2 in mode P2 at all times, now a min-

imal completion time of 7 time units is achieved considering the 1 unit movement

time of product 1 to machine 2 and product 2 to machine 1 at time interval 3. If

the process sequences were changed to

{e1} := {P1, P2, P1, P2, P1, P2} (4.17a)

{e2} := {P2, P1, P2, P1, P2, P1}, (4.17b)

the minimal completion time in both one- and two-machine environments would

be 12 time units. Even for an example as simple as this, small changes in machine

numbers, processing capabilities, product tasks, order of product tasks and other

parameters of the problem usually affect the problem structure, its feasibility and

the corresponding optimal solution significantly. Hence, to be able to conduct a

similar experiment as earlier, the scope of the problem is constrained to one single

instance with 4 processes, 2 products of 7 tasks each and 2 facilities. The notation

for the production environment and the product tasks is given below:

P = {P1, P2, P3, P4} (4.18a)

M = {M1 = {P1, P2, P3},M2 = {P2, P3, P4}} (4.18b)

{e1} = {P1, P2, P3, P4, P3, P2, P4} (4.18c)

{e2} = {P1, P4, P2, P3, P3, P4, P1} (4.18d)

Each process draws the same level of power rate in each machine. We instantiated

this problem using two random seeds where power requirements are randomly
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chosen. For the first instance the requirements are {400, 200, 400, 100} MWs re-

spectively; however process mode changes in different machines draw different

amounts of power. The facility mode switch requirements for the first instance are

(MWs):

facility 1 facility 2

1 2 3 2 3 4

1 0 300 800 2 0 100 100

2 600 0 200 3 800 0 100

3 300 200 0 4 100 300 0

4.6.1 Example Solution

An example solution for the price curve in Figure 4.4 is given in Table 4.4 for

instance 1. The first product starts being processed at facility 1 at hours 3, 5, 7,

travels to facility 2 at hour 8, gets processed at hour 9, travels back to facility 1 at

hour 10, gets processed at hours 11, 19, travels to facility 2 to be processed at hour

23. The schedule for product 2 can be read in a similar way. Products 1 and 2 are

processed simultaneously at hours 5, 7 in facility 1.
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Product Hour Facility Process

1 3 1 1

1 5 1 2
1 7 1 3
1 9 2 4

1 11 1 3
1 19 1 2
1 23 2 4

2 1 1 1
2 3 2 4

2 5 1 2
2 7 1 3
2 8 1 3

2 10 2 4
2 23 1 1

Table 4.4: Example Schedule for the price curve in Figure 4.4
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Figure 4.4: Day 100, ISONE
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4.6.2 Results

In this section, the results of the numerical study using the model [JSP ] and the

data selection methods p1 and p2. The forecasting power of using p1 and p2 method-

ologies in PJM and ISONE markets are tested and are characterized as a summary

of the previously defined accuracy measures, in Tables C.2, C.4, C.6, C.8, C.3, C.5,

C.7, C.9. These tables can be found in §C.2. The [JSP] is instantiated twice using

different random seeds, hence the instances are similar yet different in terms of

power requirements. The first instance is solved using the first 1583 curves from

the PJM market and the first 1808 curves from the ISONE market which implies

around 58 % of the data is used for instance 1 and the rest is is used for instance

2. Next the ρ values are calculated. The statistical summary of ρ values are given

in Tables 4.5 and 4.6.

instance ρ mean Std.Dev. min Q1 median Q3 max

1 ρ
[JSP ]
p1

1.18 1.70 -5.19 0.81 1.02 1.32 58.85

1 ρ
[JSP ]

p2
1.36 2.35 -6.01 0.91 1.15 1.51 84.06

2 ρ
[JSP ]

p1
1.29 2.56 -33.69 1.02 1.14 1.37 70.27

2 ρ
[JSP ]
p2

1.35 2.26 -45.13 1.10 1.23 1.49 42.27

Table 4.5: PJM: ρ
[JSP ]
p1

vs ρ
[JSP ]
p2

statistics, anomalies allowed, instances 1,2

In ISONE market instance 2 ρ values are significantly better than the instance

1 ρ values. By using these tables it is hard to separate p1 and p2 data selection rules

since the results show conflicting results for different markets. For instance, in

PJM market, p1 is the best choice for both instances; however, both data selection

rules perform equally worse in ISONE market for instance 1 whereas for instance

2, again p1 is the better choice.
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instance ρ mean Std.Dev. min Q1 median Q3 max

1 ρ
[JSP ]
p1

1.85 1.88 0.56 1.43 1.65 1.96 76.83

1 ρ
[JSP ]

p2
1.85 1.25 0.92 1.47 1.68 1.97 47.07

2 ρ
[JSP ]

p1
0.48 0.38 0.05 0.25 0.37 0.54 5.21

2 ρ
[JSP ]
p2

0.61 0.46 0.02 0.32 0.46 0.70 4.48

Table 4.6: ISONE: ρ
[JSP ]
p1

vs ρ
[JSP ]
p2

statistics, anomalies allowed, instances 1,2

In PJM market for instances 1 and 2, the mean ρ value is around 1.36 if one

were to use [JSP]+p2, which implies on average by using this policy, one will end

up paying 36 % more than the best achievable cost. The anomalous cases are

present in both markets as one can observe in the minimum and maximum val-

ues of ρ in Tables 4.5 and 4.6. In PJM market, the cases with ρ ≥ 3 are tagged

as anomalous and in ISONE market, the cases with ρ ≥ 5 are tagged as anoma-

lous. These cases usually correspond to extreme spikes, negative prices and days

where both forecasting methodologies failed significantly. The percentage of the

anomalous cases are summarized next.

# Anomalies in PJM:

# Percentage of data with negative prices (profitable production)

[1] 0.004424779

# Percentage of data where scheduling according to ARIMA estimates

# incurs a cost that is at least 3 x the real optimal cost

[1] 0.0140118

# Percentage of data where scheduling according to last week’s prices

# incurs a cost that is at least 3 x the real optimal cost

[1] 0.01696165
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# Anomalies in ISONE:

# Percentage of data with negative prices (profitable production)

[1] 0

# Percentage of data where scheduling according to ARIMA estimates

# incurs a cost that is at least 5 x the real optimal cost

[1] 0.002873563

# Percentage of data where scheduling according to last week’s prices

# incurs a cost that is at least 5 x the real optimal cost

[1] 0.002554278

Next the data points that are tagged as anomalous are removed from the

dataset and forecasting accuracy statistics and ρ values are recalculated. For fore-

casting accuracy, in Tables C.2, C.4, C.3, C.5, the anomalous observations are in-

cluded in accuracy calculations and in Tables C.6, C.8, C.7, C.9, those observations

are excluded. In Tables 4.7 and 4.8, the results of ρ recalculations are presented.

instance ρ mean Std.Dev. min Q1 median Q3 max

1 ρ
[JSP ]

p1
1.09 0.42 0.02 0.81 1.01 1.30 2.98

1 ρ
[JSP ]
p2

1.24 0.48 0.09 0.91 1.14 1.49 2.98

2 ρ
[JSP ]

p1
1.24 0.36 0.03 1.02 1.14 1.35 2.93

2 ρ
[JSP ]

p2
1.34 0.38 0.38 1.10 1.23 1.47 2.99

Table 4.7: PJM: ρ
[JSP ]
p1

vs ρ
[JSP ]
p2

statistics, anomalies removed, instances 1,2

With anomalies removed, the ρ values in both markets has improved. However

the results of the previous analysis with anomalies included are still valid.
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instance ρ mean Std.Dev. min Q1 median Q3 max

1 ρ
[JSP ]
p1

1.79 0.56 0.56 1.43 1.65 1.96 4.82

1 ρ
[JSP ]

p2
1.80 0.51 0.92 1.47 1.68 1.95 4.73

2 ρ
[JSP ]

p1
0.48 0.36 0.05 0.25 0.37 0.54 3.61

2 ρ
[JSP ]
p2

0.61 0.46 0.02 0.32 0.46 0.69 4.48

Table 4.8: ISONE: ρ
[JSP ]
p1

vs ρ
[JSP ]
p2

statistics, anomalies removed, instances 1,2

4.7 Conclusion

In this chapter, an experiment is conducted to compare various optimization mod-

els and data selection approaches to measure the impact of the price uncertainty

on the optimal solutions of two classes of operational problems: production plan-

ning and job-shop scheduling. For each class of problem, some specific instances

are chosen and the models are simulated using real prices from ISONE and PJM

markets. For instantiating the problem classes, representative optimization model

templates such as Linear Programming, Robust Optimization and Stochastic Pro-

gramming are used. Due to this fact, we don’t claim that, for different modeling

approaches, the numerical results will be similar. However the templates we have

chosen have two important characteristics: First, the models capture the gist of

the problem class and chosen optimization methodology; second, the models are

kept simple so that the dependence on the particular characteristics of the chosen

production/scheduling setting is weak.

For the simulation part of the experiment, different horizons for estimation

accuracy are compared. The reason for this comparison is to test the hypothesis

that there might be common time intervals within years where the forecasts con-

sistently require more data which can be classified as a pattern. However the same
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patterns, if there are any, might not be valid for the optimal production plans and

schedules. We didn’t test the formal hypothesis. So it stays as our conjecture;

however, the automatically fit ARIMA models show significant changes in terms of

selected model parameters depending on the time horizon chosen for a particular

day and the time horizon length, which in our opinion is supporting evidence.

For production planning problems, our findings indicate that using [SPP]+p1

or [SPP]+p2 is favorable to using [RPP.1-5] or SOPP. The [SPP]+pi i = {1, 2} is

advantageous for the following reasons:

• The uncertainty modeling step and optimization step are modular in the

sense that one can change either of them without affecting the other step.

In the latter approach, a change in the uncertainty model may also require a

significant change in the optimization model.

• Both steps can be unified in a simulation optimization approach which pro-

vides a flexible decision making-foundation. The latter approach is by con-

struction integrated which implies it might not be easily separated as the

former approach.

• The latter approach might be favorable when the uncertainty is well-structured

or well-known, integration with the optimization model does not cause emer-

gent complexity and data size is relatively small. However as shown in §3,

the uncertainty in electricity prices in both markets is quite hard to model

and depends significantly on the time interval selected.

• In the former approach, optimization models are considerably smaller, which

makes a significant impact since some of these models are mixed integer
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linear (or quadratic) models. In the latter approach, due to the model’s in-

tegrated nature, there are usually more constraints and variables required

to weave the uncertain parameters into the optimization model. The nature

of the uncertainty might be very sophisticated and complex. For example

statistical methods may fail to identify the underlying factors, the majority

of the forecasting models may fail to provide accurate estimates or the un-

certainty may have a well-characterizable structure; however, the statistical

characterization may be too complex for integration into mathematical mod-

els. In these cases the resulting complexity will emerge from the complexity

of the uncertainty and complexity of the optimization, which will render the

integrated estimation-optimization approach inapplicable.

• Since optimization problems are instantiated for specific price instances, the

former approach is naturally parallelizable and more appropriate for massive

data sets.

For the job scheduling model, we found that, using last week’s prices as esti-

mates is favorable to using ARIMA estimates. Comparing ρ values of production

planning and scheduling problems, we observe significant differences. For the pro-

duction planning problems, [SPP]+p2 is found to be best approach in both markets.

This method performs better in ISONE market compared to PJM market, however

only marginally. The ρ values are significantly higher for the [JSP] which indicates

this model is more sensitive to price uncertainty compared to production planning

models.

112



Chapter 5

Conclusion & Future Study

The interruption uncertainty framework we describe in Chapter 2 allows different

contract rules and operational rules to be embedded into the production planning

problem simultaneously. As we discussed in §2.4, it is straightforward to embed op-

erational procedures that companies may implement in the case of interruptions,

such as limiting the production in post-interruption recovery or prohibiting pro-

duction level increases in some periods. Our study shows that the right modeling

approach coupled with simple heuristic rules is very effective solving in this prob-

lem. Our framework could be used under different types of ILCs, such as the pay-

in-advance and pay-as-you-go reward schemes described by Baldick et al. [2006].

Moreover, information regarding the utility’s optimal interruption dispatch behav-

ior can be embedded into our Stackelberg-like production planning framework.

However, the extent to which the theoretical results and computational perfor-

mance presented above will be preserved under different ILC types or interruption

dispatch behaviors is a topic for future study. An important future avenue for study

is to include demand uncertainty into the model.
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In Chapter 3, we conducted an empirical analysis of electricity market prices

in the PJM and ISONE markets using different time scales and horizons. The daily

perspective clearly shows that there are changing daily price profiles in both mar-

kets. By using intraday quantiles and standard deviations, one can easily identify

the peaking hours; however, the data shows that through out years and seasons,

peaking hours can change significantly. Intraday prices and same-hour inter-day

prices are found to be highly correlated however two markets show different pat-

terns in terms of intraday price correlation. Furthermore, after significantly volatile

years, there is evidence for actions taken (by regulation or by market participants)

which would mitigate the situation for the next year. The data suggests that uncer-

tainty sets constructed by aggregating the data over years or months will obscure

the characteristics of the data that is significantly dependent on the chosen time

frame. Therefore in both markets, short term data is found to be a good candidate

for describing daily and weekly patterns. Dynamically fit ARIMA models with vary-

ing short horizons are found to be accurate in terms of forecasting daily LMPs. Au-

tomatically fit ARIMA models show significant changes in terms of selected model

parameters depending on the time horizon chosen for a particular day and the time

horizon length. For future study, we aim to focus on using the machine learning

techniques to dynamically structure the uncertainty sets and optimization prob-

lems. Our initial experiments with this approach were not successful in terms of

identifying spikes however clustering price curves and extracting the information

from the attributes (i.e. labels) of these curves still looks like a promising way to

structure the uncertainty sets.

In Chapter 4, an experiment is conducted to compare various optimization
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models and data selection approaches and to measure the impact of the price un-

certainty on the optimal solutions of two classes of operational problems: produc-

tion planning and job-shop scheduling. For each class of problem, specific instances

are chosen and the models are simulated using real prices from the ISONE and

PJM markets. For instantiating the problem classes, representative optimization

model templates such as Linear Programming, Robust Optimization and Stochas-

tic Programming are used. For the simulation part of the experiment, different

horizons for estimation accuracy are compared. Our findings indicate that using

ARIMA models with short time horizons to estimate the objective function coupled

with simpler mathematical models is slightly favorable to using complicated opti-

mization models where the data is used to construct an uncertainty set and this

uncertainty set is embedded in the model. As for future study, using pattern recog-

nition to identify representative price curves and measuring the proximity of the

representative optimal solutions to real the optimal solutions is another direction

we are planning to explore.
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Appendix A

Proofs and Tables

A.1 Proof of Proposition 2.3.1

Note that for given t, g, IOP (t, g) is:

min
U

{
P∑

p=1

invt,p,g

}

≥ 0 ∀t, g (A.1)

where

U =

{

ξ ∈ {0, 1}T×P

∣
∣
∣
∣

P∑

p=1

T∑

t=1

ξt,p ≤ K ,

P∑

p=1

ξt,p ≤ 1 ∀t
}

(A.2)

Before proving Proposition 2.3.1 (total unimodularity of the constraint matrix

of IOP ), we first give three well known properties of TU matrices (see, e.g.,

Hoffman and Kruskal [1956]).

Lemma A.1.1. A matrix A is TU ⇐⇒ AT is TU.

Lemma A.1.2. A matrix A is TU ⇐⇒ [A I] is TU.
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Lemma A.1.3. Let A be an m× n matrix whose rows can be partitioned into two

disjoint sets B and C with the following properties:

1. Every column of A contains at most two non-zero entries;

2. Each entry is 0, 1, or −1;

3. If two non-zero entries in a column of A have the same sign, then the row of one

is in B, and the other in C;

4. If two non-zero entries in a column of A have opposite signs, then the rows of

both are in B, or both in C.

Then A is TU.

Consider the constraint matrix A defined by U . It has the following form:

A =








eT

AT ... IT

IT×P








(A.3)

where

eT = [1...1]T×P

. The first row of A, eT , captures the coefficients from the second inequality in U .

The second part, which is constructed by repeating IT P times, captures the coeffi-

cients from the first set of inequalities in U . Finally, IT×P is an identity matrix and

captures the coefficients from the upper-bound inequalities for ξt,p. Now, define Â
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such that

Â =




eT

IT ... IT



 (A.4)

Observe that Â is TU since it satisfies the conditions of Lemma A.1.3. The first

two conditions of Lemma A.1.3 are satisfied trivially. For the third condition, all

the nonzero elements of Â are positive, therefore one can construct an appropriate

partition of the rows by putting the first row of Â in the set B and the rest of the

rows in the set C. The fourth condition doesn’t apply since there are no negative

elements in Â. Now, by Lemma A.1.1, ÂT is also TU. By Lemma A.1.2, we can

augment this matrix with IT×P to obtain AT = [ÂT IT×P ] and still retain the TU

property. Finally, by Lemma A.1.1, we see that A is indeed TU. �

A.2 Tables
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Total Demand Z(ALG1) Time Z(ROP) Time ∆ Ψ

Problem (units) (units) (millisecs) (units) (millisecs)

5.d1 1,796,364 1,896,364.0 153.6 1,896,364 0 0 105.57%
5.d2 2,026,226 2,105,192.0 1.6 2,105,192 0 0 103.90%
5.d3 2,049,154 2,054,615.6 3.1 2,054,615 0 0.6 100.27%
5.d4 2,082,395 2,182,395.0 0.4 2,182,395 0 0 104.80%
5.d5 1,965,692 2,065,692.0 0.4 2,065,692 0 0 105.09%
10.d1 3,106,557 3,401,842.2 4.1 3,401,842 0 0.2 109.51%
10.d2 2,555,252 2,650,541.8 0.4 2,650,541 0 0.8 103.73%
10.d3 2,611,483 2,679,425.6 0.4 2,679,425 0 0.6 102.60%
10.d4 3,264,872 3,563,316.0 0.6 3,563,316 0 0 109.14%
10.d5 3,187,867 3,555,612.0 0.6 3,555,612 10 0 111.54%
20.d1 5,411,358 6,321,459.0 0.8 6,321,459 10 0 116.82%
20.d2 4,492,461 5,301,452.0 0.6 5,301,452 10 0 118.01%
20.d3 5,135,481 5,937,552.0 3.5 5,937,552 10 0 115.62%
20.d4 5,360,054 5,877,101.5 0.6 5,877,101 10 0.5 109.65%
20.d5 5,821,935 6,987,935.0 0.6 6,987,935 10 0 120.03%
40.d1 10,151,455 12,311,710.5 1.7 12,311,710 40 0.5 121.28%
40.d2 10,533,148 11,843,507.1 1.5 11,843,507 40 0.1 112.44%
40.d3 10,224,667 12,492,212.0 1.1 12,492,212 50 0 122.18%
40.d4 10,389,448 12,639,871.4 1.1 12,639,871 40 0.4 121.66%
40.d5 10,252,456 11,444,351.6 1.1 11,444,351 50 0.6 111.63%
80.d1 20,538,055 24,389,433.0 3.2 24,389,433 190 0 118.75%
80.d2 20,586,039 24,093,313.8 1.9 24,093,313 180 0.8 117.04%
80.d3 21,014,425 25,910,897.5 3 25,910,897 190 0.5 123.30%
80.d4 18,607,001 22,115,780.0 2.5 22,115,779 180 1 118.86%
80.d5 20,092,741 23,837,931.0 1.8 23,837,931 190 0 118.64%

160.d1 38,474,902 44,946,580.7 6.4 44,946,580 860 0.7 116.82%
160.d2 42,893,082 50,718,101.4 5.7 50,718,101 880 0.4 118.24%
160.d3 43,904,907 51,734,708.0 3.5 51,734,708 890 0 117.83%
160.d4 41,125,495 48,696,578.7 4.3 48,696,578 850 0.7 118.41%
160.d5 38,225,164 44,297,082.3 3.3 44,297,082 890 0.3 115.88%

Table A.1: 20% Interruption Rate

Total Demand Z(ALG1) Time Z(ROP) Time ∆ Ψ

Problem (units) (units) (millisecs) (units) (millisecs)

5.d1 1,796,364 2349731.0 7.4 2,349,731 0 0 130.80%
5.d2 2,026,226 2605192.0 1 2,605,192 0 0 128.57%
5.d3 2,049,154 2321216.0 0.4 2,321,215 0 1 113.28%
5.d4 2,082,395 2562477.0 0.4 2,562,477 0 0 123.05%
5.d5 1,965,692 2565692.0 0.5 2,565,692 0 0 130.52%

10.d1 3,106,557 4182983.0 0.5 4,182,983 0 0 134.65%
10.d2 2,555,252 3142691.3 0.5 3,142,691 0 0.3 122.99%
10.d3 2,611,483 3014353.8 0.5 3,014,353 0 0.8 115.43%
10.d4 3,264,872 4254910.0 3.7 4,254,910 0 0 130.32%
10.d5 3,187,867 4522948.0 0.5 4,522,948 0 0 141.88%
20.d1 5,411,358 7239097.0 1.3 7,239,097 10 0 133.78%
20.d2 4,492,461 5959097.5 0.8 5,959,097 10 0.5 132.65%
20.d3 5,135,481 6995207.0 0.8 6,995,207 10 0 136.21%
20.d4 5,360,054 7087144.3 1.2 7,087,144 10 0.3 132.22%
20.d5 5,821,935 8178779.2 1.1 8,178,779 10 0.2 140.48%
40.d1 10,151,455 13936488.9 2.1 13,936,488 50 0.9 137.29%
40.d2 10,533,148 14473102.0 1.1 14,473,101 40 1 137.41%
40.d3 10,224,667 14368459.0 1.8 14,368,459 50 0 140.53%
40.d4 10,389,448 14484549.9 1.5 14,484,549 30 0.9 139.42%
40.d5 10,252,456 13686400.1 1.1 13,686,400 50 0.1 133.49%
80.d1 20,538,055 27693071.0 4.8 27,693,071 190 0 134.84%
80.d2 20,586,039 27865140.3 2.9 27,865,140 190 0.3 135.36%
80.d3 21,014,425 31301283.0 1.9 31,301,283 180 0 148.95%
80.d4 18,607,001 26346772.0 4.2 26,346,771 180 1 141.60%
80.d5 20,092,741 27710980.0 1.7 27,710,979 180 1 137.92%
160.d1 38,474,902 51751744.7 6.7 51,751,744 870 0.7 134.51%
160.d2 42,893,082 59498000.3 11 59,498,000 950 0.3 138.71%
160.d3 43,904,907 59081412.7 4 59,081,412 870 0.7 134.57%
160.d4 41,125,495 57495417.0 2.6 57,495,417 870 0 139.80%
160.d5 38,225,164 53016172.0 2.7 53,016,171 870 1 138.69%

Table A.2: 40% Interruption Rate
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Appendix B

Empirical Study: Tables and Plots

whour mean Std.Dev. min Q1 median Q3 max

1 1.00 45.08 20.75 0.00 31.52 40.03 54.26 154.30

2 2.00 43.25 21.22 0.00 30.07 38.66 51.52 166.42

3 3.00 41.79 21.12 0.00 30.08 38.62 48.67 161.32

4 4.00 40.23 21.50 0.00 29.02 37.91 47.16 177.85

5 5.00 41.10 21.66 0.00 30.55 38.07 48.47 170.69

6 6.00 46.07 24.56 0.00 32.39 40.47 52.62 233.80

7 7.00 59.45 32.04 0.00 40.33 50.03 69.59 253.27

8 8.00 63.63 30.49 0.00 43.57 55.52 75.06 217.34

9 9.00 64.63 29.27 0.00 45.28 58.10 75.41 243.81

10 10.00 67.56 28.82 18.48 48.02 60.15 78.80 208.16

11 11.00 70.37 30.09 22.07 50.02 62.95 81.18 243.19

12 12.00 70.31 30.90 19.91 49.73 62.67 81.58 263.41

13 13.00 67.64 29.72 20.37 48.65 60.40 78.84 250.21

14 14.00 69.09 33.20 19.52 48.06 60.73 78.34 307.40

15 15.00 66.11 30.21 20.11 46.36 58.45 75.42 248.38

16 16.00 65.97 34.19 20.77 46.39 57.27 73.75 268.50

17 17.00 73.78 46.38 21.48 50.17 63.78 84.37 645.99

18 18.00 77.92 38.11 22.68 51.75 67.04 93.58 288.71

19 19.00 73.69 34.92 19.83 50.23 64.45 87.12 308.22

20 20.00 71.18 29.78 24.15 51.57 63.19 82.90 210.62

21 21.00 67.76 27.39 25.06 48.91 61.03 78.98 209.43

22 22.00 58.76 24.54 21.63 42.31 52.27 67.37 216.62

23 23.00 48.74 18.99 19.69 34.99 45.09 58.23 151.10

24 24.00 46.05 19.18 1.19 33.10 41.64 53.77 142.65

25 25.00 47.07 20.75 0.00 32.97 41.88 56.21 150.47

26 26.00 45.09 20.80 0.00 31.46 40.42 52.74 151.98

27 27.00 41.12 19.52 0.00 29.49 37.69 48.46 110.08

28 28.00 40.03 19.91 0.00 29.41 37.16 47.76 139.42

29 29.00 42.57 21.23 0.00 31.14 39.06 51.38 149.18

30 30.00 47.67 23.29 0.00 33.95 42.20 55.36 198.77
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31 31.00 60.14 28.89 16.96 42.42 53.42 67.11 243.24

32 32.00 63.61 28.81 11.75 46.72 57.38 72.79 288.08

33 33.00 62.48 24.37 21.07 45.66 57.66 72.00 181.25

34 34.00 64.44 26.38 21.94 47.40 58.32 74.19 241.94

35 35.00 68.20 31.69 25.02 49.12 61.55 78.53 337.12

36 36.00 68.29 30.33 23.74 50.07 61.76 78.39 359.61

37 37.00 65.89 26.64 25.42 48.74 59.56 75.33 205.51

38 38.00 67.52 30.49 23.01 48.38 59.94 75.86 252.68

39 39.00 66.62 32.79 23.56 46.46 58.67 74.75 269.66

40 40.00 65.33 30.95 25.84 46.47 58.13 73.54 264.51

41 41.00 72.59 52.29 24.82 49.15 63.19 81.39 901.61

42 42.00 76.70 53.92 12.27 50.28 65.65 86.82 937.63

43 43.00 73.26 48.94 23.95 49.85 63.78 84.68 856.06

44 44.00 68.19 26.38 28.64 49.23 62.69 78.64 186.33

45 45.00 66.02 25.96 23.32 50.11 59.62 75.64 251.06

46 46.00 58.67 21.86 20.83 43.62 54.98 67.79 205.76

47 47.00 49.62 18.19 10.11 36.96 46.59 57.20 120.89

48 48.00 47.35 19.22 9.42 34.82 42.31 55.59 129.69

49 49.00 47.89 20.47 17.86 34.56 43.24 54.63 138.52

50 50.00 45.51 18.88 2.85 33.15 41.18 52.79 133.70

51 51.00 43.45 20.64 0.00 30.48 38.66 51.62 196.21

52 52.00 41.24 18.76 0.00 29.90 37.66 50.34 136.90

53 53.00 43.26 19.92 0.00 31.64 39.59 50.73 152.74

54 54.00 46.91 18.46 0.00 35.02 42.24 54.95 147.31

55 55.00 59.16 24.61 18.28 41.62 54.23 71.20 198.65

56 56.00 63.56 26.55 21.34 45.20 58.09 74.15 258.07

57 57.00 63.47 25.31 22.09 46.68 59.51 74.26 281.46

58 58.00 66.01 28.27 23.46 48.47 59.43 76.40 341.29

59 59.00 67.21 26.64 27.16 49.84 61.63 77.89 235.59

60 60.00 68.13 28.48 29.39 50.58 61.90 79.04 329.37

61 61.00 68.29 36.05 28.68 48.57 60.59 76.01 544.50

62 62.00 70.30 53.48 28.07 48.45 60.23 77.30 998.49

63 63.00 67.47 53.03 28.67 46.98 57.89 74.09 1015.86

64 64.00 67.97 53.60 28.10 47.01 57.83 73.58 1001.31

65 65.00 73.70 59.20 27.90 50.36 62.18 81.41 1014.02

66 66.00 77.07 54.61 26.55 50.50 65.50 90.89 920.29

67 67.00 70.14 29.91 22.01 48.25 63.50 83.01 279.22

68 68.00 68.08 27.09 23.88 49.11 62.63 78.86 212.98

69 69.00 67.86 27.58 26.62 50.12 62.09 78.50 248.29

70 70.00 59.10 22.44 22.53 42.82 54.31 68.20 161.76

71 71.00 50.45 18.61 16.05 36.87 46.19 58.30 133.11

72 72.00 47.94 19.26 3.23 35.62 43.52 55.47 153.10

73 73.00 48.35 19.69 5.70 35.95 42.94 56.13 154.18

74 74.00 46.62 19.75 2.98 34.14 41.53 54.75 149.98

75 75.00 43.52 21.92 0.00 31.48 38.57 50.88 229.99

76 76.00 41.87 19.61 0.00 29.91 37.46 49.88 141.16

77 77.00 44.21 19.44 0.00 32.47 39.45 52.15 185.75

78 78.00 47.54 21.02 0.00 34.11 42.28 55.70 203.05

79 79.00 59.85 31.58 0.00 41.01 52.86 68.42 353.78

80 80.00 62.27 28.11 0.00 43.88 56.60 72.20 302.36

81 81.00 63.02 26.39 0.00 45.14 58.05 72.07 266.94

82 82.00 65.84 26.36 24.83 47.71 60.28 76.61 195.43
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83 83.00 67.95 27.95 15.63 49.26 62.35 79.03 222.42

84 84.00 67.95 28.92 27.45 48.56 61.02 77.63 215.78

85 85.00 66.34 28.38 26.24 47.79 59.88 75.64 218.78

86 86.00 67.23 35.87 26.82 47.47 58.55 75.61 499.71

87 87.00 64.17 29.13 5.98 45.39 57.44 73.34 270.74

88 88.00 63.49 27.89 0.00 44.54 57.69 73.37 216.48

89 89.00 68.05 29.85 18.89 48.05 61.51 78.48 223.66

90 90.00 70.66 32.19 23.85 48.76 62.73 83.11 265.49

91 91.00 68.17 28.75 26.31 48.92 61.80 81.69 256.81

92 92.00 68.31 30.56 26.50 48.79 61.70 80.83 377.80

93 93.00 67.62 27.12 27.72 48.61 62.02 77.69 208.07

94 94.00 60.63 23.38 24.23 44.09 56.34 68.67 196.08

95 95.00 51.57 18.66 21.30 38.58 48.40 60.00 135.74

96 96.00 48.97 19.86 14.74 35.05 44.19 57.57 149.57

97 97.00 48.55 19.33 0.00 35.43 44.64 56.77 125.67

98 98.00 46.42 19.71 0.00 33.11 42.37 55.61 146.52

99 99.00 43.65 19.59 0.00 31.54 40.60 51.67 149.79

100 100.00 41.70 19.11 0.00 30.27 38.71 49.39 125.47

101 101.00 43.86 18.75 0.00 32.83 39.80 51.23 117.08

102 102.00 47.60 20.85 0.00 34.12 42.42 55.69 183.57

103 103.00 59.46 29.38 7.41 40.81 52.20 68.73 261.37

104 104.00 63.77 28.50 0.00 44.08 56.31 75.11 200.16

105 105.00 64.69 27.06 20.25 46.27 58.35 76.63 251.46

106 106.00 67.45 27.28 23.72 48.91 61.49 78.08 240.24

107 107.00 70.28 30.64 27.53 49.83 63.66 80.88 356.70

108 108.00 69.40 29.34 27.47 50.23 61.51 80.38 265.31

109 109.00 67.83 33.55 26.88 48.72 61.23 77.31 422.29

110 110.00 68.32 36.38 28.07 48.44 60.84 76.88 558.55

111 111.00 65.33 33.61 22.59 45.62 59.15 74.11 474.29

112 112.00 63.66 31.57 24.99 44.17 57.23 72.17 455.18

113 113.00 67.41 29.10 26.11 47.73 60.73 77.23 201.00

114 114.00 69.90 51.95 28.50 48.15 60.30 81.60 998.41

115 115.00 63.77 25.69 13.11 45.67 59.44 75.96 267.88

116 116.00 61.46 23.58 24.05 45.26 56.22 71.17 246.02

117 117.00 61.22 22.22 23.56 45.88 56.13 72.75 178.31

118 118.00 57.90 20.43 20.26 43.42 54.13 65.95 145.30

119 119.00 53.04 19.26 11.50 39.48 50.24 61.03 146.26

120 120.00 51.96 20.06 17.41 38.10 47.09 60.30 143.70

121 121.00 52.72 21.31 19.13 38.46 47.09 61.56 137.36

122 122.00 51.75 23.16 2.91 36.03 45.80 60.46 175.14

123 123.00 49.07 23.40 0.00 33.64 43.34 56.83 211.88

124 124.00 46.49 21.18 0.00 33.03 41.27 55.46 129.62

125 125.00 46.31 22.47 0.00 32.86 41.33 55.41 211.37

126 126.00 46.14 20.96 0.00 32.88 41.05 56.33 131.33

127 127.00 45.93 22.63 0.00 32.95 41.42 54.89 204.46

128 128.00 48.48 21.66 0.00 34.83 44.28 58.18 148.74

129 129.00 60.43 25.53 17.99 42.36 55.51 73.22 221.65

130 130.00 66.89 29.95 23.41 47.38 61.56 79.03 297.92

131 131.00 68.99 34.65 26.97 48.76 63.49 78.36 398.60

132 132.00 67.44 31.45 23.36 48.23 60.82 76.51 359.18

133 133.00 63.91 28.47 11.09 46.06 57.66 74.75 267.10

134 134.00 59.14 23.25 6.82 44.06 53.23 69.47 186.26
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135 135.00 56.75 22.88 17.62 41.54 51.51 66.57 192.40

136 136.00 57.69 25.92 21.81 41.89 51.38 66.78 266.60

137 137.00 64.33 31.46 22.53 44.41 56.31 74.81 303.36

138 138.00 69.26 32.67 22.88 47.19 60.88 83.61 251.97

139 139.00 66.33 27.86 22.84 46.89 59.61 80.06 221.29

140 140.00 63.54 24.51 17.35 46.78 58.05 74.33 169.44

141 141.00 63.96 25.20 24.05 46.13 58.40 75.61 189.92

142 142.00 59.26 23.11 22.10 42.05 54.24 70.69 177.53

143 143.00 54.39 21.19 20.91 38.95 50.13 63.53 175.95

144 144.00 52.96 21.93 19.87 37.81 47.77 61.09 183.52

145 145.00 49.94 21.00 9.29 35.87 44.45 57.84 154.41

146 146.00 47.32 23.50 0.00 33.62 43.37 55.72 157.70

147 147.00 46.67 22.92 0.00 33.30 42.05 54.45 197.26

148 148.00 43.60 21.20 0.00 31.96 39.48 51.05 169.59

149 149.00 42.64 20.38 0.00 31.29 38.71 50.80 149.41

150 150.00 42.65 21.18 0.00 30.68 38.68 51.59 141.92

151 151.00 40.16 21.36 0.00 28.62 36.83 48.73 156.13

152 152.00 40.64 19.43 0.00 29.38 36.32 50.46 148.09

153 153.00 49.61 21.36 0.00 35.73 44.73 58.63 189.48

154 154.00 56.18 25.15 9.56 39.61 49.94 65.05 196.74

155 155.00 58.82 26.39 18.19 42.38 52.95 66.45 278.74

156 156.00 60.45 26.33 16.36 43.61 54.37 69.25 232.42

157 157.00 60.30 25.51 5.13 43.55 55.85 68.54 214.40

158 158.00 57.83 24.66 0.00 41.82 53.13 67.68 214.68

159 159.00 55.14 22.77 0.00 39.76 50.73 65.17 173.51

160 160.00 55.98 23.95 0.00 39.99 51.35 66.17 181.92

161 161.00 64.84 30.25 0.00 43.94 58.66 75.83 218.51

162 162.00 72.75 37.34 0.00 47.09 64.83 88.58 260.77

163 163.00 71.77 34.64 0.00 47.63 64.45 86.80 258.29

164 164.00 70.77 33.68 0.00 47.88 63.69 82.77 275.28

165 165.00 70.48 34.42 13.79 48.97 62.77 82.47 335.89

166 166.00 59.56 24.76 17.51 42.09 53.38 70.78 192.50

167 167.00 50.35 20.32 15.93 35.89 46.16 58.75 152.31

168 168.00 46.64 18.85 0.00 33.14 42.87 54.99 151.50

Table B.1: ISONE Aggregate Week-Hourly Statistics
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whour mean Std.Dev. min Q1 median Q3 max

1 1.00 31.19 15.20 -12.61 23.83 28.43 34.80 156.57

2 2.00 29.20 14.51 0.00 23.24 27.25 32.77 128.16

3 3.00 27.04 14.01 -19.47 21.68 25.75 31.93 133.41

4 4.00 26.78 15.69 -12.48 20.30 25.44 30.78 143.01

5 5.00 28.38 15.67 -5.36 22.22 26.50 31.30 177.55

6 6.00 34.91 20.84 -20.45 25.35 29.93 37.89 200.08

7 7.00 51.38 32.72 -3.60 30.88 41.29 62.08 228.86

8 8.00 53.11 37.79 -17.85 33.33 42.47 61.44 430.69

9 9.00 52.94 26.93 12.77 35.18 44.60 61.69 223.95

10 10.00 57.24 26.55 16.69 38.69 48.01 69.10 182.36

11 11.00 63.65 27.70 19.64 42.74 56.92 78.63 193.66

12 12.00 64.02 29.14 23.12 42.63 56.45 78.38 205.55

13 13.00 63.17 29.33 24.77 40.90 55.44 77.01 199.95

14 14.00 65.26 34.81 23.05 40.53 56.62 79.33 245.57

15 15.00 63.47 41.63 22.62 39.11 50.64 75.59 484.35

16 16.00 64.75 42.51 22.23 37.58 50.38 79.00 363.47

17 17.00 68.69 43.27 22.96 40.04 53.39 85.32 378.19

18 18.00 74.87 38.38 23.77 45.18 61.53 99.21 239.82

19 19.00 69.87 36.18 21.88 41.48 59.09 90.94 239.37

20 20.00 67.48 32.58 21.87 42.62 59.04 83.75 187.17

21 21.00 68.87 32.83 22.99 44.88 61.80 83.75 221.43

22 22.00 57.60 26.05 21.92 38.49 50.34 69.47 182.93

23 23.00 41.09 15.87 18.93 30.30 36.44 45.99 111.86

24 24.00 35.76 13.71 -1.62 27.62 31.82 41.00 120.02

25 25.00 32.65 13.29 -2.65 25.70 29.76 36.61 97.60

26 26.00 32.30 15.09 0.00 24.11 29.07 36.25 137.53

27 27.00 29.49 15.40 -26.22 22.63 27.32 33.32 118.12

28 28.00 27.40 15.02 -38.44 21.39 26.46 31.90 126.83

29 29.00 30.22 14.93 -32.49 23.67 27.75 33.57 108.30

30 30.00 36.79 19.19 0.00 27.45 31.66 39.08 198.30

31 31.00 53.84 30.25 14.22 33.85 44.63 64.31 251.59

32 32.00 54.80 29.36 19.86 35.06 47.03 63.33 218.96

33 33.00 50.48 21.29 23.03 35.24 44.23 59.82 157.29

34 34.00 53.76 23.34 25.89 37.39 47.42 59.83 175.57

35 35.00 59.10 26.24 25.17 40.15 52.55 70.49 209.70

36 36.00 60.04 26.64 25.29 40.16 52.94 71.38 195.92

37 37.00 62.23 35.18 16.85 39.68 52.48 74.08 397.82

38 38.00 65.21 39.89 5.81 40.23 53.85 75.46 395.71

39 39.00 65.73 45.34 2.83 37.78 51.05 77.69 502.87

40 40.00 67.22 59.56 7.01 36.74 50.45 79.67 716.44

41 41.00 72.49 66.67 23.40 39.40 56.29 83.97 770.65

42 42.00 76.58 62.58 19.96 44.42 63.71 89.16 763.78

43 43.00 69.13 35.69 20.73 43.62 60.37 81.43 255.71

44 44.00 65.66 29.70 24.11 42.44 57.77 81.05 166.64

45 45.00 66.53 29.08 26.85 44.90 58.33 79.03 210.64

46 46.00 58.91 28.25 26.31 38.32 50.65 71.52 222.05

47 47.00 42.74 17.68 18.76 31.52 37.47 47.64 128.93

48 48.00 38.38 15.75 14.41 28.42 33.73 42.33 111.86

49 49.00 34.65 15.42 -8.39 26.30 31.10 38.34 136.20

50 50.00 33.73 18.13 0.00 24.82 29.32 36.82 180.07

51 51.00 30.49 14.81 -5.16 23.47 28.12 35.05 138.48
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52 52.00 29.07 14.02 -11.74 22.72 27.34 33.05 145.23

53 53.00 31.07 13.64 -9.31 24.57 28.80 33.89 154.93

54 54.00 38.71 18.68 9.15 28.09 33.02 41.11 166.43

55 55.00 55.82 30.68 -3.33 35.40 46.30 65.73 202.29

56 56.00 56.43 29.39 3.82 36.06 47.46 66.09 194.30

57 57.00 52.43 21.54 23.73 36.77 45.84 63.18 165.11

58 58.00 56.04 23.59 26.81 39.20 49.54 68.71 169.54

59 59.00 60.64 26.70 28.03 40.55 52.77 74.00 206.31

60 60.00 61.11 27.93 26.63 42.03 52.16 72.48 245.21

61 61.00 61.62 30.57 25.32 40.30 52.90 72.56 262.82

62 62.00 65.55 38.37 25.28 40.40 55.74 75.02 342.20

63 63.00 65.39 41.69 3.12 38.67 51.80 78.03 325.92

64 64.00 66.87 50.33 24.07 36.62 49.83 78.09 472.53

65 65.00 71.78 54.40 22.90 39.36 57.09 83.63 675.06

66 66.00 75.51 49.59 26.85 43.56 62.45 90.99 590.03

67 67.00 71.19 40.28 26.31 42.81 61.53 87.95 423.11

68 68.00 67.57 33.88 28.54 44.27 58.40 81.33 247.08

69 69.00 69.88 32.92 28.75 45.44 60.73 84.85 214.00

70 70.00 61.39 28.98 27.66 39.61 53.05 74.69 201.87

71 71.00 43.79 18.80 14.82 31.76 37.99 50.48 133.32

72 72.00 38.56 16.75 13.84 28.49 33.77 43.77 159.10

73 73.00 35.01 20.00 0.57 25.56 30.30 37.42 227.47

74 74.00 33.91 18.99 -18.58 25.24 29.88 36.73 219.03

75 75.00 30.75 15.73 -5.29 24.03 27.91 33.53 173.44

76 76.00 29.97 16.83 -11.18 23.55 26.82 32.56 192.98

77 77.00 31.27 15.23 1.32 24.34 27.77 33.62 171.73

78 78.00 37.94 18.82 9.50 28.04 32.52 39.30 153.54

79 79.00 56.34 34.01 14.58 34.78 45.49 62.79 228.45

80 80.00 57.61 33.14 22.18 36.48 47.32 68.59 234.68

81 81.00 53.68 23.68 22.32 36.21 47.26 65.03 173.88

82 82.00 56.52 24.79 26.27 38.72 48.57 67.51 169.05

83 83.00 61.73 26.89 22.91 41.05 53.47 75.91 179.22

84 84.00 61.05 28.19 27.65 41.40 53.28 72.13 204.51

85 85.00 61.84 28.73 27.34 40.08 52.80 77.22 218.58

86 86.00 65.18 35.47 9.74 40.16 52.66 83.31 275.48

87 87.00 64.31 39.47 9.30 38.36 49.99 79.23 342.39

88 88.00 63.74 45.62 15.68 36.57 48.63 77.47 483.34

89 89.00 67.16 41.91 16.55 38.70 51.74 86.03 368.68

90 90.00 69.99 36.18 19.14 42.35 61.19 87.93 240.47

91 91.00 67.06 34.97 15.22 41.77 59.90 81.69 261.34

92 92.00 65.75 33.18 19.78 43.93 57.69 78.64 216.94

93 93.00 69.52 36.74 21.15 42.73 62.15 85.55 345.89

94 94.00 60.51 30.27 20.98 39.23 50.32 72.65 215.21

95 95.00 43.02 18.53 12.00 31.12 36.91 47.20 137.28

96 96.00 38.26 17.06 3.36 27.90 32.90 41.99 119.62

97 97.00 34.09 14.81 1.01 25.80 30.41 37.89 118.86

98 98.00 32.73 14.63 -1.52 24.75 29.05 36.04 124.79

99 99.00 30.41 15.10 -11.90 23.46 27.77 33.75 131.19

100 100.00 28.59 15.50 -34.43 22.34 26.75 32.67 127.14

101 101.00 30.82 13.62 0.00 23.95 28.20 34.06 113.78

102 102.00 36.34 18.05 2.59 27.21 31.52 39.77 170.09

103 103.00 51.66 31.75 -5.10 32.80 41.62 58.55 272.99
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104 104.00 54.32 30.68 -11.57 34.41 42.84 62.50 213.80

105 105.00 55.00 24.97 22.91 36.11 47.80 66.19 178.74

106 106.00 56.62 25.10 22.81 37.70 49.97 67.38 202.48

107 107.00 62.46 29.22 23.03 41.05 55.22 73.52 194.74

108 108.00 60.37 29.74 22.43 40.66 52.41 72.48 354.84

109 109.00 59.66 29.81 21.89 38.90 50.61 70.89 229.37

110 110.00 62.29 34.02 18.85 39.10 51.23 76.68 293.85

111 111.00 61.85 36.78 20.23 37.21 47.56 78.03 328.32

112 112.00 60.00 37.99 19.72 35.43 45.23 72.88 256.18

113 113.00 61.72 36.92 19.16 37.06 47.58 73.31 229.54

114 114.00 65.67 35.94 25.16 39.01 55.14 83.85 262.17

115 115.00 57.86 31.54 22.28 37.57 48.16 66.95 316.57

116 116.00 52.95 24.62 20.82 36.43 43.40 62.66 187.91

117 117.00 56.99 30.45 19.45 37.28 46.58 65.94 266.16

118 118.00 55.02 27.16 22.88 36.33 46.01 65.02 200.12

119 119.00 42.43 17.49 18.98 30.93 36.54 47.44 117.29

120 120.00 39.60 18.36 18.67 28.67 33.54 43.49 143.15

121 121.00 36.75 17.26 7.67 27.18 31.07 40.24 155.90

122 122.00 37.01 17.71 8.10 26.59 31.41 42.51 134.97

123 123.00 34.58 18.78 0.00 25.04 29.63 38.16 162.88

124 124.00 31.61 18.75 -20.65 23.33 28.05 35.38 162.34

125 125.00 31.21 17.51 -6.47 23.19 27.59 34.16 163.15

126 126.00 33.89 21.21 -18.89 24.18 28.95 36.56 197.56

127 127.00 33.28 19.66 -30.55 24.37 29.86 36.56 128.25

128 128.00 39.12 21.77 -32.58 27.52 33.12 43.12 189.42

129 129.00 49.32 28.49 -0.16 31.60 40.27 58.83 219.32

130 130.00 56.09 30.08 17.88 34.28 46.56 68.78 223.30

131 131.00 58.28 30.27 22.68 35.94 47.55 74.01 248.35

132 132.00 57.55 31.53 19.57 36.22 46.49 69.19 251.29

133 133.00 54.72 31.52 20.26 34.86 44.27 63.90 222.08

134 134.00 52.05 29.93 17.71 33.23 41.77 61.39 182.82

135 135.00 50.73 32.94 18.52 31.36 38.94 56.97 243.99

136 136.00 52.49 34.45 18.78 31.05 39.55 60.24 254.50

137 137.00 56.54 33.35 21.47 32.41 44.74 67.89 213.44

138 138.00 61.16 34.12 23.96 35.45 50.68 75.42 207.28

139 139.00 57.21 30.07 23.20 35.57 49.29 67.94 234.46

140 140.00 54.71 27.05 21.63 35.87 46.44 65.64 234.83

141 141.00 55.80 27.04 23.68 36.41 47.73 66.16 173.67

142 142.00 52.22 24.91 23.17 34.16 44.63 62.32 183.23

143 143.00 42.24 19.42 12.08 30.46 36.17 47.94 142.18

144 144.00 36.57 16.32 3.63 27.31 32.28 40.39 133.80

145 145.00 32.84 16.43 -6.02 25.46 29.61 35.59 153.28

146 146.00 31.57 18.56 -19.13 23.95 28.04 34.95 146.38

147 147.00 28.92 19.41 -13.93 21.73 26.61 32.55 217.74

148 148.00 26.39 16.16 -28.22 19.83 26.02 31.25 125.42

149 149.00 25.21 16.20 -45.63 18.82 25.16 30.41 172.14

150 150.00 25.75 20.51 -26.76 18.30 25.61 31.06 235.55

151 151.00 26.25 20.84 -39.62 18.09 25.66 31.59 140.08

152 152.00 30.38 20.62 -21.40 21.98 27.50 33.71 160.58

153 153.00 38.82 20.28 6.41 27.85 32.46 41.92 183.84

154 154.00 41.67 19.10 16.15 30.09 35.26 45.94 159.71

155 155.00 43.58 20.60 18.43 30.59 36.27 48.48 141.81
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156 156.00 47.03 24.61 14.94 31.81 38.23 51.45 178.34

157 157.00 48.54 26.56 12.93 31.93 39.27 54.28 167.91

158 158.00 47.04 26.02 14.86 30.90 36.84 54.48 163.78

159 159.00 46.40 28.86 17.79 30.14 35.85 51.46 198.00

160 160.00 48.28 32.40 18.88 29.63 35.99 53.99 253.94

161 161.00 54.48 36.71 21.04 31.38 39.95 61.90 249.31

162 162.00 61.52 37.94 24.70 34.55 49.98 75.39 281.86

163 163.00 58.74 32.59 19.78 35.37 47.60 70.43 184.15

164 164.00 58.14 30.22 15.81 35.76 49.21 70.76 193.89

165 165.00 63.12 33.48 18.77 36.62 53.77 77.96 196.52

166 166.00 53.82 27.27 17.99 34.49 44.54 64.84 169.15

167 167.00 40.33 18.25 17.56 28.93 34.84 45.10 159.87

168 168.00 34.76 16.44 0.80 25.94 30.47 39.12 191.62

Table B.2: PJM Aggregate Week-Hourly Statistics
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year hour size threshold percentage N mean Std.Dev. min Q1 median Q3 max

2004 7 366 114.72 0.01 4 210.04 97.81 138.32 155.92 174.03 228.16 353.78
2004 8 366 119.05 0.01 5 187.79 71.03 126.78 130.15 189.37 190.29 302.36
2008 10 366 205.08 0.01 3 270.53 61.66 228.35 235.14 241.94 291.62 341.29
2003 11 304 118.35 0.02 5 192.39 117.43 124.65 125.78 133.76 179.18 398.60
2008 11 366 221.63 0.02 6 285.11 63.41 222.42 236.14 268.69 326.39 379.94
2011 11 303 119.96 0.04 11 171.57 65.82 120.94 132.94 153.68 181.05 356.70
2008 12 366 220.01 0.01 4 327.89 45.26 263.41 312.88 344.27 359.29 359.61
2006 13 365 148.36 0.01 2 363.67 255.73 182.84 273.25 363.67 454.08 544.50
2011 13 303 121.59 0.04 11 201.21 92.80 129.60 142.13 146.91 226.16 422.29
2006 14 365 146.98 0.01 2 574.96 598.96 151.43 363.19 574.96 786.73 998.49
2008 14 366 209.12 0.02 7 250.67 40.36 214.68 223.03 226.99 279.77 307.40
2010 14 365 121.68 0.05 18 177.34 87.36 123.95 130.79 154.85 176.94 499.71
2011 14 303 122.28 0.03 8 229.73 143.47 132.49 134.05 180.44 256.13 558.55
2006 15 365 142.12 0.01 2 590.52 601.51 165.19 377.86 590.52 803.19 1015.86
2011 15 303 117.54 0.03 8 179.65 120.02 118.75 127.58 139.56 150.80 474.29
2006 16 365 140.08 0.01 2 602.10 564.57 202.89 402.50 602.10 801.70 1001.31
2011 16 303 115.04 0.03 8 193.20 113.51 118.66 128.07 147.28 195.26 455.18
2004 17 366 139 0.01 3 471.14 220.33 223.66 383.71 543.76 594.88 645.99
2005 17 365 224.94 0.01 2 322.38 26.89 303.36 312.87 322.38 331.88 341.39
2006 17 365 157.80 0.01 2 957.82 79.49 901.61 929.71 957.82 985.92 1014.02
2008 17 366 211.41 0.02 9 266.66 69.10 214.56 221.29 229.39 289.89 403.23
2010 17 365 139.46 0.05 17 167.99 42.27 139.65 141.63 146.26 182.16 306.25
2003 18 304 127.12 0.02 5 322.13 378.67 129.22 135.02 167.70 180.28 998.41
2004 18 366 144.22 0.02 8 285.94 261.84 145.37 152.99 185.62 266.74 920.29
2006 18 365 173.36 0.01 4 441.95 341.13 193.12 231.46 318.52 529.01 937.63
2004 19 366 138.81 0.01 3 281.42 25.78 256.81 268.01 279.22 293.72 308.22
2005 19 365 215.66 0 1 856.06 856.06 856.06 856.06 856.06 856.06
2004 20 366 131.22 0.01 3 242.24 123.56 135.94 174.46 212.98 295.39 377.80
2011 21 303 113.99 0.04 11 178.47 73.34 122.88 131.97 134.05 195.42 335.89

ISONE Yearly-Hourly Spike Statistics

Table B.3: ISONE Yearly-Hourly Spike Statistics

1
3
3



year hour size threshold percentage N mean Std.Dev. min Q1 median Q3 max

2007 8 365 140.56 0.03 10 198.87 85.94 146.01 150.35 173.26 191.98 430.69
2011 12 310 104.51 0.03 8 188.03 75.49 123.64 132.15 176.56 204.77 354.84
2006 13 365 136.72 0.02 8 191.36 87.14 136.98 145.90 157.74 183.94 397.82
2006 14 365 135.72 0.03 10 228.17 89.08 138.96 153.28 214.72 270.12 395.71
2006 15 365 139.18 0.04 13 220.83 109.70 142.21 152.22 169.28 271.48 502.87
2007 15 365 171.42 0.02 8 266.22 92.38 178.23 226.53 245.35 263.69 484.35
2008 15 366 207.32 0.02 8 236.53 34.14 207.86 215.63 223.62 246.88 310.29
2011 15 310 112.15 0.07 21 178.23 69.76 112.48 129.76 151.44 197.43 348.25
2006 16 365 130.86 0.04 13 264.04 147.06 132.58 151.24 210.54 372.55 627.55
2007 16 365 175.56 0.01 5 275.24 115.15 191.24 196.61 246.23 269.59 472.53
2008 16 366 203.12 0.02 8 290.83 92.93 204.08 232.54 254.22 322.13 483.34
2010 16 365 115.94 0.06 23 167.43 49.46 118.37 136.41 157.40 183.35 346.75
2011 16 310 115.27 0.08 25 195.65 124.35 117.16 126.72 156.79 240.33 716.44
2006 17 365 144.46 0.03 12 298.97 170.60 150.41 183.94 243.02 359.22 752.37
2007 17 365 192.34 0.02 6 328.83 180.54 199.28 230.88 246.87 346.26 675.06
2008 17 366 218.74 0.02 9 256.78 34.13 220.45 234.07 255.49 266.36 335.04
2011 17 310 128.50 0.08 25 191.52 125.79 133.08 139.35 162.36 187.70 770.65
2006 18 365 163.54 0.02 6 313.02 231.27 164.45 183.51 207.16 321.75 763.78
2007 18 365 196.62 0.01 4 302.97 191.51 197.13 208.05 212.37 307.29 590.03
2008 18 366 230.71 0.01 5 255.13 45.46 230.96 233.51 235.10 239.82 336.25
2010 18 365 142.60 0.04 14 189.03 49.81 150.36 155.94 168.92 200 311.77
2011 18 310 131.61 0.07 23 186.45 122.59 131.85 140.48 150.80 174.51 730
2007 19 365 183.84 0.03 10 233.72 71.94 190.38 191.33 200.84 249.59 423.11
2008 19 366 211.69 0.01 5 248.30 41.33 213.48 219.02 239.37 253.06 316.57
2007 21 365 179.16 0.01 3 241.92 90.28 183.35 189.94 196.52 271.20 345.89

PJM Yearly-Hourly Spike Statistics

Table B.4: PJM Yearly-Hourly Spike Statistics
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Low Spike Threshold

year size threshold($/MWh) percentage N mean Std.Dev. min Q1 median Q3 max

2003 7296 85.57 0.04 262 117 64.20 85.59 92.77 104.86 124.15 998.41
2004 8784 94.54 0.02 187 140.49 90.63 94.61 100.71 110.19 137.97 920.29
2005 8760 155.53 0.02 195 182.24 54.27 155.54 164.34 173.25 184.78 856.06
2006 8760 107.04 0.02 192 161.67 153.49 107.47 114.65 125.08 143.36 1015.86
2007 8760 131.74 0.02 140 156.49 32.71 131.78 137.32 143.61 160.18 297.92
2008 8784 155.05 0.03 305 193.12 41.16 155.14 166.48 180.92 202.25 403.23
2009 8760 75.24 0.06 544 95.47 23.96 75.26 80.35 87.88 101.97 261.37
2010 8760 84.20 0.07 594 119.59 38.61 84.22 92.64 107.37 133.47 499.71
2011 7272 79.67 0.06 471 122.60 55.92 79.70 87.12 103.17 139.40 558.55

High Spike Threshold

year size threshold($/MWh) percentage N mean Std.Dev. min Q1 median Q3 max

2003 7296 139.36 0.01 37 197.79 144.15 140.58 147.59 158.36 180.28 998.41
2004 8784 153.41 0 40 254.43 146.96 154.75 182.65 204 261.29 920.29
2005 8760 249.63 0 6 379.79 235.70 252.73 261.68 283.89 331.88 856.06
2006 8760 176.80 0 21 449.83 353.14 177.85 195.12 215.78 901.61 1015.86
2007 8760 209.58 0 14 241.05 29.76 211.88 218.60 228.19 262.11 297.92
2008 8784 249.91 0 28 295.27 45.09 250.21 261.72 274.98 331.31 403.23
2009 8760 122.55 0.01 46 157.35 32.88 122.78 135.45 151.87 161.54 261.37
2010 8760 138.69 0.02 132 175.91 43.45 138.97 148.62 162.89 189.59 499.71
2011 7272 132.87 0.02 135 186.44 68.36 133.12 145.42 161.32 200.21 558.55

ISONE Yearly Spike Statistics: High \ Low Threshold

Low Spike Threshold

year size threshold($/MWh) percentage N mean Std.Dev. min Q1 median Q3 max

2004 5832 83.30 0.03 186 97.08 15.79 83.36 87.32 91.28 100.67 180.10
2005 8760 114.39 0.08 712 145.01 27.60 114.40 123.51 137.40 160.74 287.63
2006 8760 87.31 0.09 786 119.41 58.59 87.41 94.38 103.81 121.45 763.78
2007 8760 116.15 0.05 430 151.45 55.73 116.15 123.57 135.60 159.56 675.06
2008 8784 127.23 0.08 677 162.34 35.57 127.30 137.70 153.15 173.77 483.34
2009 8760 66.28 0.05 478 88.70 23.43 66.28 72.45 81.20 94.81 212.40
2010 8760 72.78 0.10 867 107.46 36.11 72.84 81.88 95.03 121.65 346.75
2011 7440 60.59 0.13 981 100.48 55.30 60.61 69.04 85.09 113.43 770.65

High Spike Threshold

year size threshold($/MWh) percentage N mean Std.Dev. min Q1 median Q3 max

2004 5832 134.88 0 8 149.71 14.14 136.56 139.66 147.96 153.12 180.10
2005 8760 189.58 0.01 51 213.63 21.74 191.12 198.28 206.56 219.80 287.63
2006 8760 147.35 0.01 79 240.47 126.41 147.97 161.26 190.04 272.24 763.78
2007 8760 191.54 0.01 45 266.89 109.37 192.18 201.08 227.08 261.34 675.06
2008 8784 210.17 0.01 55 250.04 47.17 211.56 222.38 234.07 255.51 483.34
2009 8760 107.99 0.01 74 133.24 24.22 108.29 115.57 124.78 144.53 212.40
2010 8760 122.30 0.02 211 158.45 36.51 122.32 132.19 146.27 177.02 346.75
2011 7440 106.24 0.04 285 156.76 75.32 106.69 119.03 136.69 166.33 770.65

PJM Yearly Spike Statistics: High \ Low Threshold

Table B.5: Yearly Spike Stats

1
3
5



hour

N
um

be
r 

of
 IS

O
N

E
 S

pi
ke

s 
(D

yn
am

ic
 T

hr
es

ho
ld

)

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

2004

2007

2010

5 10 15 20

2005

2008

2011

5 10 15 20

2006

2009

5 10 15 20

hour

N
um

be
r 

of
 P

JM
 S

pi
ke

s 
(D

yn
am

ic
 T

hr
es

ho
ld

)

0
20
40
60
80

0
20
40
60
80

0
20
40
60
80

2004

2007

2010

5 10 15 20

2005

2008

2011

5 10 15 20

2006

2009

5 10 15 20

Figure B.6: PJM vs ISONE Yearly-Hourly Spike Counts
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Appendix C

Value of Information

C.1 Demand Scenarios

hour sce1 sce2 sce3 sce4 sce5 sce6 sce7 sce8 sce9 sce10

1 1.00 414.76 411.03 410.07 420.70 410.37 431.63 360.39 466.68 419.79 431.00

2 2.00 422.19 414.76 419.64 425.52 425.32 437.10 381.71 440.59 415.01 437.39

3 3.00 429.54 418.49 431.00 440.17 455.74 474.09 421.86 513.60 528.17 561.62

4 4.00 436.77 422.19 444.93 433.72 473.12 450.71 488.93 376.87 458.51 502.89

5 5.00 443.82 425.88 437.86 447.52 448.22 467.55 347.63 444.29 384.63 439.75

6 6.00 450.68 429.54 458.65 453.35 499.50 488.91 486.97 434.00 513.68 579.32

7 7.00 457.29 433.17 466.18 451.86 504.43 475.79 496.23 353.04 441.97 517.86

8 8.00 463.62 436.77 466.84 475.70 514.82 532.55 439.45 528.08 560.24 646.04

9 9.00 469.64 440.32 472.22 481.24 522.02 540.06 433.11 523.33 549.15 644.53

10 10.00 475.31 443.82 466.54 482.31 492.55 524.08 319.65 477.31 389.67 494.22

11 11.00 480.60 447.28 474.71 496.46 518.81 562.31 348.48 565.97 507.17 620.46

12 12.00 485.47 450.68 479.00 491.06 515.04 539.15 342.60 463.14 398.45 520.02

13 13.00 489.91 454.02 493.65 477.15 535.10 502.08 444.69 279.63 317.04 446.39

14 14.00 493.89 457.29 491.57 488.16 531.21 524.38 384.11 349.96 326.78 463.39

15 15.00 497.39 460.49 502.78 485.14 554.53 519.25 461.26 284.83 338.80 482.10

16 16.00 500.38 463.62 500.33 495.64 551.84 542.46 406.83 359.95 359.49 508.91

17 17.00 502.85 466.67 507.20 496.64 569.08 547.97 450.81 345.25 388.78 543.72

18 18.00 504.78 469.64 514.62 505.20 597.07 578.23 505.67 411.50 509.88 669.72

19 19.00 506.17 472.52 503.77 497.06 555.09 541.67 383.30 316.20 292.20 456.32
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20 20.00 507.01 475.31 512.56 508.59 593.25 585.32 462.78 423.09 478.58 646.32

21 21.00 507.29 478.00 515.98 500.74 597.54 567.06 494.23 341.83 428.77 599.48

22 22.00 507.01 480.60 501.25 524.68 580.72 627.58 349.72 584.02 526.45 699.47

23 23.00 506.17 483.09 509.21 513.34 598.24 606.51 437.62 478.96 509.30 683.98

24 24.00 504.78 485.47 497.29 513.88 569.60 602.78 332.40 498.31 423.42 599.09

25 25.00 502.85 487.75 498.19 506.69 573.18 590.18 360.73 445.71 399.15 575.17

26 26.00 500.38 489.91 498.10 517.20 592.99 631.19 384.51 575.51 552.73 728.44

27 27.00 497.39 491.96 487.65 491.03 546.51 553.26 309.97 343.72 246.39 421.16

28 28.00 493.89 493.89 491.54 489.28 568.82 564.29 383.77 361.13 337.60 510.81

29 29.00 489.91 495.70 497.31 504.24 614.83 628.69 481.23 550.52 624.46 795.49

30 30.00 485.47 497.39 482.28 478.97 559.48 552.86 375.36 342.22 310.29 478.57

31 31.00 480.60 498.95 480.24 478.52 569.10 565.67 403.71 386.55 382.97 547.93

32 32.00 475.31 500.38 477.30 471.38 570.44 558.60 427.20 368.01 387.92 549.03

33 33.00 469.64 501.68 469.51 466.44 560.44 554.30 406.00 375.29 374.00 530.74

34 34.00 463.62 502.85 457.35 460.83 537.56 544.53 344.53 379.38 316.62 468.51

35 35.00 457.29 503.88 463.84 462.23 578.47 575.26 472.76 456.71 522.18 668.78

36 36.00 450.68 504.78 454.05 448.91 556.51 546.22 440.98 389.56 423.25 564.13

37 37.00 443.82 505.55 449.71 438.76 554.68 532.79 466.14 356.69 415.54 550.33

38 38.00 436.77 506.17 428.92 450.20 525.56 568.10 328.88 541.59 463.18 591.54

39 39.00 429.54 506.66 434.02 427.40 540.19 526.95 452.03 385.83 430.57 552.20

40 40.00 422.19 507.01 420.42 420.40 514.80 514.75 389.54 389.33 371.59 486.21

41 41.00 414.76 507.22 421.18 413.76 532.95 518.11 471.48 397.27 461.46 568.86

42 42.00 407.29 507.29 410.23 414.42 523.24 531.61 436.70 478.56 507.97 607.97

43 43.00 399.82 507.22 405.48 399.08 515.99 503.20 463.88 399.93 456.52 548.98

44 44.00 392.39 507.01 393.45 392.01 494.91 492.04 417.90 403.53 414.13 498.95

45 45.00 385.04 506.66 385.63 378.22 479.38 464.55 413.23 339.12 345.07 422.19

46 46.00 377.81 506.17 383.60 374.57 490.82 472.76 465.16 374.86 432.73 502.14

47 47.00 370.76 505.55 361.22 371.36 441.01 461.28 311.96 413.31 317.97 379.69

48 48.00 363.90 504.78 363.45 358.01 454.14 443.27 402.74 348.40 343.85 397.95

49 49.00 357.29 503.88 361.94 362.61 473.14 474.47 453.75 460.44 506.90 553.50

50 50.00 350.96 502.85 354.81 335.77 442.90 404.82 445.84 255.45 294.00 333.22

51 51.00 344.94 501.68 344.49 348.01 441.05 448.08 402.81 437.95 433.47 465.51

52 52.00 339.27 500.38 346.50 323.91 438.67 393.49 479.53 253.65 325.89 350.96

53 53.00 333.98 498.95 332.75 330.98 418.92 415.37 394.91 377.19 364.81 383.16

54 54.00 329.11 497.39 324.00 323.82 398.61 398.25 356.25 354.46 303.42 315.34

55 55.00 324.67 495.70 316.08 318.15 380.80 384.93 321.43 342.08 256.22 262.00

56 56.00 320.69 493.89 312.68 320.12 382.69 397.57 327.18 401.60 321.49 321.49

57 57.00 317.19 491.96 313.52 298.05 371.70 340.76 370.54 215.85 179.11 173.68

58 58.00 314.20 489.91 314.58 325.97 409.71 432.50 411.02 524.95 528.68 518.21
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59 59.00 311.73 487.75 314.97 295.08 385.26 345.48 439.69 240.79 273.19 258.10

60 60.00 309.80 485.47 307.93 305.16 377.75 372.21 388.66 360.94 342.30 322.99

61 61.00 308.41 483.09 316.66 297.25 397.82 358.98 489.87 295.70 378.27 355.19

62 62.00 307.57 480.60 303.44 300.06 360.98 354.22 366.01 332.21 290.93 264.51

63 63.00 307.29 478.00 306.47 328.16 396.42 439.80 399.10 616.01 607.82 578.53

64 64.00 307.57 475.31 304.22 307.74 365.70 372.76 373.77 409.03 375.51 343.81

65 65.00 308.41 472.52 311.42 295.54 369.82 338.06 437.46 278.66 308.83 275.18

66 66.00 309.80 469.64 304.96 293.39 341.22 318.09 358.89 243.23 194.83 159.69

67 67.00 311.73 466.67 311.30 316.23 374.33 384.19 403.00 452.31 448.02 411.84

68 68.00 314.20 463.62 319.53 314.02 386.33 375.30 460.55 405.43 458.70 421.94

69 69.00 317.19 460.49 308.88 314.01 342.27 352.54 324.14 375.48 292.33 255.44

70 70.00 320.69 457.29 328.19 311.39 383.91 350.31 482.35 314.35 389.42 352.82

71 71.00 324.67 454.02 321.45 309.79 346.86 323.55 375.10 258.54 226.36 190.46

72 72.00 329.11 450.68 335.90 318.35 382.11 347.03 475.18 299.77 367.66 332.86

73 73.00 333.98 447.28 330.92 343.99 374.78 400.91 376.63 507.29 476.63 443.31

74 74.00 339.27 443.82 335.95 333.06 359.62 353.84 374.05 345.16 311.92 280.44

75 75.00 344.94 440.32 344.47 331.10 362.71 335.96 402.56 268.85 264.12 234.80

76 76.00 350.96 436.77 358.80 369.65 422.66 444.36 485.73 594.22 672.66 645.80

77 77.00 357.29 433.17 364.58 361.54 409.28 403.21 480.16 449.80 522.67 498.55

78 78.00 363.90 429.54 361.70 361.52 377.17 376.79 385.29 383.43 361.42 340.29

79 79.00 370.76 425.88 376.30 381.34 416.57 426.65 462.75 513.14 568.60 550.66

80 80.00 377.81 422.19 387.03 386.68 429.22 428.52 499.41 495.93 588.06 573.48

81 81.00 385.04 418.49 383.73 378.85 386.12 376.35 394.22 345.37 332.30 321.24

82 82.00 392.39 414.76 396.64 414.45 434.67 470.29 449.79 627.90 670.40 662.97

83 83.00 399.82 411.03 397.82 397.27 395.01 393.91 387.29 381.79 361.79 358.05

84 84.00 407.29 407.29 403.80 393.05 382.57 361.06 372.36 264.84 229.91 229.91

85 85.00 414.76 403.55 419.90 413.32 425.01 411.83 458.71 392.85 444.27 448.00

86 86.00 422.19 399.82 416.25 424.27 398.96 415.00 347.83 428.04 368.58 376.01

87 87.00 429.54 396.09 433.76 452.62 454.09 491.81 449.51 638.09 680.31 691.37

88 88.00 436.77 392.39 429.20 437.82 400.22 417.47 331.63 417.87 342.21 356.78

89 89.00 443.82 388.70 438.73 448.39 414.53 433.85 356.39 452.99 402.09 420.03

90 90.00 450.68 385.04 443.54 449.91 406.25 418.98 335.95 399.57 328.24 349.37

91 91.00 457.29 381.41 452.08 453.95 412.45 416.18 355.22 373.89 321.82 345.93

92 92.00 463.62 377.81 454.80 463.27 407.34 424.28 319.08 403.82 315.60 342.46

93 93.00 469.64 374.26 472.48 477.52 453.02 463.09 435.75 486.05 514.51 543.83

94 94.00 475.31 370.76 482.83 496.06 482.10 508.56 482.54 614.81 690.07 721.55

95 95.00 480.60 367.30 486.17 490.87 467.61 477.01 463.07 510.03 565.81 599.13

96 96.00 485.47 363.90 491.42 497.55 472.00 484.27 466.75 528.08 587.54 622.34

97 97.00 489.91 360.56 489.02 477.60 428.19 405.35 398.34 284.16 275.21 311.11
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98 98.00 493.89 357.29 492.09 503.73 448.34 471.61 389.31 505.68 487.70 524.30

99 99.00 497.39 354.09 503.60 499.59 465.04 457.00 469.46 429.28 491.46 528.35

100 100.00 500.38 350.96 502.48 485.70 435.67 402.13 428.28 260.57 281.55 318.31

101 101.00 502.85 347.91 505.94 508.06 457.96 462.19 438.23 459.39 490.34 526.51

102 102.00 504.78 344.94 501.85 503.20 432.04 434.74 377.93 391.41 362.05 397.20

103 103.00 506.17 342.06 501.58 520.82 441.81 480.29 361.34 553.75 507.80 541.46

104 104.00 507.01 339.27 516.86 499.35 460.89 425.86 505.83 330.68 429.22 460.92

105 105.00 507.29 336.58 509.96 502.99 440.29 426.34 433.99 364.27 390.97 420.26

106 106.00 507.01 333.98 501.27 497.75 407.24 400.19 349.93 314.68 257.32 283.74

107 107.00 506.17 331.49 498.76 504.40 406.37 417.65 333.16 389.58 315.45 338.54

108 108.00 504.78 329.11 504.35 508.80 429.31 438.22 402.91 447.49 443.11 462.42

109 109.00 502.85 326.83 511.33 495.53 440.51 408.92 492.10 334.12 418.93 434.03

110 110.00 500.38 324.67 502.35 508.68 431.98 444.64 427.04 490.33 510.08 520.54

111 111.00 497.39 322.62 506.91 485.31 429.20 386.00 502.52 286.48 381.72 387.14

112 112.00 493.89 320.69 498.53 483.41 410.72 380.49 453.65 302.49 348.85 348.85

113 113.00 489.91 318.88 487.05 504.33 407.32 441.87 378.64 551.41 522.75 516.96

114 114.00 485.47 317.19 484.10 475.31 381.11 363.53 393.58 305.71 292.00 280.09

115 115.00 480.60 315.63 473.56 484.72 371.95 394.26 336.93 448.49 378.13 359.78

116 116.00 475.31 314.20 465.57 471.50 349.19 361.05 309.91 369.18 271.80 246.73

117 117.00 469.64 312.90 473.95 473.73 392.28 391.84 450.40 448.23 491.34 459.30

118 118.00 463.62 311.73 455.69 480.51 361.14 410.79 327.93 576.18 496.81 457.59

119 119.00 457.29 310.70 456.22 473.16 373.34 407.22 396.55 565.95 555.21 508.61

120 120.00 450.68 309.80 453.48 447.37 358.28 346.06 435.31 374.20 402.22 348.12

121 121.00 443.82 309.03 453.66 420.97 352.23 286.85 505.66 178.77 277.13 215.41

122 122.00 436.77 308.41 436.68 461.74 362.59 412.72 406.41 657.06 656.17 586.77

123 123.00 429.54 307.92 429.23 436.21 335.90 349.87 404.16 474.00 470.87 393.75

124 124.00 422.19 307.57 415.66 427.61 308.29 332.18 341.98 461.42 396.11 311.30

125 125.00 414.76 307.36 419.86 414.63 329.99 319.53 458.25 405.95 456.91 364.46

126 126.00 407.29 307.29 406.37 412.39 309.62 321.67 398.07 458.30 449.08 349.08

127 127.00 399.82 307.36 400.04 398.17 298.91 295.18 409.52 390.85 393.09 285.68

128 128.00 392.39 307.57 386.54 396.59 279.33 299.44 348.80 449.36 390.87 276.24

129 129.00 385.04 307.92 379.61 381.04 265.38 268.23 353.02 367.27 313.00 191.37

130 130.00 377.81 308.41 379.73 364.11 270.97 239.74 426.43 270.27 289.41 161.05

131 131.00 370.76 309.03 372.25 380.63 286.87 303.63 422.26 506.07 521.05 386.26

132 132.00 363.90 309.80 355.44 379.10 256.23 303.54 322.70 559.26 474.68 333.80

133 133.00 357.29 310.70 348.00 354.20 229.74 242.15 314.40 376.42 283.52 136.93

134 134.00 350.96 311.73 353.81 338.43 251.44 220.66 435.85 281.96 310.52 158.63

135 135.00 344.94 312.90 353.51 351.36 282.69 278.39 493.01 471.51 557.24 400.50

136 136.00 339.27 314.20 341.23 338.83 251.62 246.81 426.91 402.82 422.44 261.33

141



137 137.00 333.98 315.63 335.20 316.65 228.65 191.55 419.47 233.97 246.15 81.19

138 138.00 329.11 317.19 329.63 329.13 240.59 239.59 412.50 407.50 412.71 244.43

139 139.00 324.67 318.88 334.37 318.36 259.06 227.05 504.31 344.26 441.28 270.24

140 140.00 320.69 320.69 320.84 317.28 231.13 224.01 408.82 373.19 374.72 201.52

141 141.00 317.19 322.62 320.85 305.63 231.92 201.48 443.85 291.63 328.19 153.42

142 142.00 314.20 324.67 316.23 332.23 255.70 287.70 427.60 587.60 607.91 432.20

143 143.00 311.73 326.83 306.51 308.42 212.29 216.12 355.06 374.18 321.95 145.93

144 144.00 309.80 329.11 304.96 293.74 201.05 178.61 358.92 246.74 198.37 22.70

145 145.00 308.41 331.49 312.99 310.38 248.34 243.11 453.15 427.01 472.87 298.19

146 146.00 307.57 333.98 306.62 310.20 234.05 241.21 397.80 433.61 424.12 251.10

147 147.00 307.29 336.58 300.79 297.43 207.23 200.51 342.32 308.71 243.73 73.02

148 148.00 307.57 339.27 312.50 278.68 225.47 157.82 456.63 118.40 167.74 0.00

149 149.00 308.41 342.06 300.51 302.00 213.07 216.06 328.29 343.24 264.24 100.13

150 150.00 309.80 344.94 317.09 315.50 275.03 271.85 480.20 464.34 537.25 377.41

151 151.00 311.73 347.91 314.03 311.14 258.63 252.85 430.22 401.32 424.25 269.31

152 152.00 314.20 350.96 315.35 313.22 260.32 256.07 418.72 397.47 408.90 259.48

153 153.00 317.19 354.09 313.77 322.80 259.32 277.39 373.05 463.37 429.13 285.83

154 154.00 320.69 357.29 319.75 308.82 256.01 234.16 397.92 288.64 279.27 142.67

155 155.00 324.67 360.56 324.68 335.63 288.93 310.85 407.38 516.97 517.06 387.71

156 156.00 329.11 363.90 322.72 329.05 266.52 279.18 343.46 406.76 342.93 221.36

157 157.00 333.98 367.30 334.58 341.06 302.85 315.81 413.22 478.02 483.95 370.65

158 158.00 339.27 370.76 330.78 349.61 287.60 325.27 322.35 510.70 425.76 321.20

159 159.00 344.94 374.26 340.50 347.18 300.81 314.17 362.84 429.64 385.19 289.81

160 160.00 350.96 377.81 345.21 342.17 295.46 289.38 349.83 319.42 261.96 176.15

161 161.00 357.29 381.41 352.99 368.92 330.13 361.99 364.25 523.59 480.54 404.66

162 162.00 363.90 385.04 371.80 343.90 345.35 289.55 486.31 207.27 286.29 220.65

163 163.00 370.76 388.70 369.68 365.31 343.49 334.75 396.54 352.81 342.06 286.93

164 164.00 377.81 392.39 383.41 375.26 377.15 360.84 463.29 381.72 437.72 393.34

165 165.00 385.04 396.09 392.65 383.38 395.02 376.47 483.41 390.68 466.80 433.35

166 166.00 392.39 399.82 390.65 402.59 389.90 413.79 389.91 509.34 491.96 469.58

167 167.00 399.82 403.55 391.09 401.18 371.27 391.44 320.05 420.91 333.67 322.46

168 168.00 407.29 407.29 404.00 411.36 401.49 416.21 374.39 448.01 415.10 415.10

Table C.1: Hourly Demands for 10 Scenarios
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Figure C.6: ISONE Solution
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C.2 Forecasting Accuracy

ME RMSE MAE MPE MAPE

mean -0.00 25.95 19.04 Inf

Std.Dev. 18.62 18.21 13.26
min -155.04 2.04 1.70 -Inf 5.06
Q1 -8.74 14.46 10.42 -30.34 23.55

median -0.21 21.84 15.75 -6.25 33.38
Q3 9.45 32.11 24.06 13.07 47.68

max 154.92 262.86 155.83 Inf Inf

Table C.2: PJM: p1 accuracy statistics, anomalies allowed

ME RMSE MAE MPE MAPE MASE

mean 3.33 20.81 15.85 -Inf Inf 0.93

Std.Dev. 11.05 15.51 11.11 0.46
min -46.60 1.16 0.79 -Inf 2.99 0.10

Q1 -1.22 11.04 8.37 -18.99 21.65 0.62
median 1.41 17.71 13.57 -5.10 30.34 0.84

Q3 7.09 26.23 20.17 0.65 42.05 1.12

max 146.83 264.91 155.41 783.77 Inf 4.22

Table C.3: PJM: p2 accuracy statistics, anomalies allowed

151



ME RMSE MAE MPE MAPE

mean -0.01 21.46 15.98 -Inf Inf
Std.Dev. 17.52 20.42 13.30

min -220.08 3.01 2.16 -Inf 5.22

Q1 -7.26 11.16 8.39 -20.86 17.13
median 0.18 16.49 12.41 -3.04 23.42

Q3 7.23 25.77 19.46 9.36 33.93
max 217.19 400.92 220.08 72.23 Inf

Table C.4: ISONE: p1 accuracy statistics, anomalies allowed

ME RMSE MAE MPE MAPE MASE

mean 2.04 16.15 12.24 -Inf Inf 0.98

Std.Dev. 9.45 14.86 9.66 0.53
min -50.76 2.00 1.71 -Inf 4.96 0.05

Q1 -1.28 8.66 6.84 -10.52 14.38 0.65
median 0.75 12.83 9.96 -2.64 19.29 0.87

Q3 4.50 19.37 14.92 1.36 26.41 1.17

max 145.63 358.29 217.80 84.02 Inf 8.91

Table C.5: ISONE: p2 accuracy statistics, anomalies allowed

ME RMSE MAE MPE MAPE

mean 0.00 25.63 18.83 Inf
Std.Dev. 18.26 17.62 12.94

min -155.04 2.04 1.70 -Inf 5.06
Q1 -8.61 14.35 10.33 -30.14 23.30

median -0.09 21.70 15.57 -6.34 33.07
Q3 9.29 31.83 23.80 12.57 46.73

max 154.92 262.86 155.83 Inf Inf

Table C.6: PJM: p1 accuracy statistics, anomalies removed
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ME RMSE MAE MPE MAPE MASE

mean 3.32 20.54 15.71 -Inf Inf 0.92
Std.Dev. 10.78 14.76 10.77 0.46

min -46.60 1.16 0.79 -Inf 2.99 0.10

Q1 -1.16 10.94 8.30 -18.84 21.52 0.62
median 1.44 17.60 13.47 -5.21 30.02 0.83

Q3 7.09 26.02 20.05 0.58 41.37 1.11
max 146.83 264.91 155.41 783.77 Inf 4.22

Table C.7: PJM: p2 accuracy statistics, anomalies removed

ME RMSE MAE MPE MAPE

mean -0.12 21.22 15.86 -Inf Inf

Std.Dev. 16.96 18.85 12.69
min -220.08 3.01 2.16 -Inf 5.22

Q1 -7.26 11.15 8.38 -20.68 17.11
median 0.17 16.42 12.38 -3.04 23.41

Q3 7.20 25.57 19.35 9.34 33.81

max 157.52 400.92 220.08 72.23 Inf

Table C.8: ISONE: p1 accuracy statistics, anomalies removed

ME RMSE MAE MPE MAPE MASE

mean 1.98 15.92 12.13 -Inf Inf 0.98
Std.Dev. 9.04 12.81 8.76 0.52

min -50.76 2.00 1.71 -Inf 4.96 0.05
Q1 -1.26 8.63 6.83 -10.45 14.36 0.65

median 0.75 12.80 9.94 -2.62 19.25 0.87
Q3 4.50 19.32 14.88 1.39 26.34 1.17

max 145.63 228.81 145.63 84.02 Inf 8.91

Table C.9: ISONE: p2 accuracy statistics, anomalies removed
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