
Lehigh University
Lehigh Preserve

Theses and Dissertations

2019

Distributed Algorithms in Large-scaled Empirical
Risk Minimization: Non-convexity, Adaptive-
sampling, and Matrix-free Second-order Methods
Xi He
Lehigh University, heeryerate@gmail.com

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
He, Xi, "Distributed Algorithms in Large-scaled Empirical Risk Minimization: Non-convexity, Adaptive-sampling, and Matrix-free
Second-order Methods" (2019). Theses and Dissertations. 4352.
https://preserve.lehigh.edu/etd/4352

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4352?utm_source=preserve.lehigh.edu%2Fetd%2F4352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Distributed Algorithms in Large-scaled Empirical Risk
Minimization: Non-convexity, Adaptive Sampling, and

Matrix-free Second-order Methods

by

Xi He

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Industrial and Systems Engineering

Lehigh University

January 2019

c© Copyright by Xi He 2018

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Date

Dr. Martin Takáč, Dissertation Advisor

Committee Members:

Dr. Martin Takáč, Committee Chair

Dr. Katya Scheinberg

Dr. Frank E. Curtis

Dr. Martin Jaggi

iii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisor Dr. Martin Takáč for

his continuous support of my overall Ph.D. process, for his patience, motivation, immense

knowledge and brainstorm ideas. I would never forget the very first time when he helped

me accelerate my naive code to let it run ten times faster, like a magic. Dr. Martin Takáč

is not only an advisor for me, but a mentor for many aspects in my life. All the relevant

research and this dissertation are certainly impossible to complete without the constant and

generous help from him.

Besides my advisor, I would also thank all my dissertation committee members: Dr. Katya

Scheinberg, Dr. Frank E. Curtis, and Dr. Martin Jaggi, not only for your insightful com-

ments and encouragement, but the hard questions which help me to understand and widen

my research in various perspectives. My deep thanks would also go to our Optimization

and Machine Learning (OptML) group at Lehigh University. I always feel extremely lucky

to be a member of OptML, where I’m able to exchange ideas and discuss interests with all

members. Without the year by year’s weekly seminar and insightful discussion, I would be

definitely not able to build my addictive interests in the field of optimization.

I’m also grateful to Rachael Tappenden, Albert Berahas, and Dheevatsa Mudiger. With all

their endless help, I would be able to stay on the right track towards my interests. Also,

I would like to especially thank Ioannis Akrotirianakis, Amit Chakraborty, Neo Hsin-Chan

Huang, Shuo Li, Eric Zhu, Maxence G Hardy, who provided me opportunities to join their

team as an intern. With more touch of real-world applications matching what I have learned,

I would, therefore, be clear on my future direction.

All my friends at Lehigh University deserve special thanks, Chenxin Ma, Yuhai Hu, Wei Xia,

iv

Yinan Liu, Rui Shi, Miao Bai, Choat Inthawongse, Mohammadreza Samadi, Hiva Ghanbari,

and many others. I can’t stop to recall all the fun we have had in the last several years

and all their support and kindness, they make my life at Bethlehem so wonderful. I would

also borrow the place to thank my previous advisor, Qingzhi Yang and all my friends back

at Nankai University, China. Without your encouragement and understanding, any of the

overseas life would not happen.

Finally, I am deeply indebted to my family for their tremendous love and consistently sup-

porting of all my decisions. They have been always with me throughout my whole Ph.D.

period. Wishing you all my family and friends good health and happiness forever.

v

Contents

Acknowledgments iv

List of Tables x

List of Figures xi

Abstract 1

1 Dual Free Adaptive Mini-batch SDCA for Empirical Risk Minimization 3

1.1 Introduction . 3

1.1.1 Contributions . 5

1.1.2 Outline . 7

1.2 The Adaptive Dual Free SDCA Algorithm . 7

1.2.1 Adaptive dual free SDCA as a reduced variance SGD method. 9

1.3 Convergence Analysis . 10

1.3.1 Case I: All loss functions are convex 10

1.3.2 Case II: The average of the loss functions is convex 14

1.4 Heuristic adfSDCA . 15

1.5 Mini-batch adfSDCA . 17

1.5.1 Efficient single coordinate sampling . 17

1.5.2 Nonuniform Mini-batch Sampling . 17

1.5.3 Mini-batch adfSDCA algorithm . 20

1.5.4 Expected Separable Overapproximation 21

1.6 Numerical experiments . 23

vi

1.6.1 Comparison for a variety of adfSDCA approaches 24

1.6.2 Mini-batch adfSDCA . 27

1.6.3 adfSDCA for non-convex loss . 28

1.7 Conclusion . 29

2 Large-scale Distributed Hessian-Free Optimization for Deep Neural Net-

works 31

2.1 Introduction . 31

2.2 Deep Neural Network in Distributed Environment 33

2.3 Distributed Hessian-free Optimization Algorithms 35

2.3.1 Distributed HF optimization framework 35

2.3.2 Dealing with Negative Curvature . 36

2.4 Numerical Experiments . 39

2.4.1 Comparison of Distributed SGD and Distributed Hessian-free Variants 39

2.4.2 Scaling Properties of Distributed Hessian-free Methods 42

2.5 Conclusion . 43

3 Steps towards Successful Training of Deep Neural Networks Using Second

order Optimization Methods 44

3.1 Introduction . 44

3.1.1 Fully Connect Deep Neural Network 47

3.1.2 Deep Convolutional Neural Network 47

3.2 Second order Methods for Deep Neural Networks 47

3.2.1 First Order Oracle . 48

3.2.2 Second Order Oracle . 52

3.2.3 Algorithms for Training Neural Networks 55

3.2.4 Saddle-points Issue on Training Neural Networks 56

3.2.5 Almost Sure Convergence to a Local Minimizer 56

3.3 Inexact Stochastic Newton CG Method (SINNC) 59

3.3.1 Early Terminated CG for Indefinite System 59

3.4 Inexact Stochastic Trust Region Method . 61

vii

3.4.1 Steihaug Conjugate Gradient Descent Method 61

3.4.2 Accelerated SINTR with Adding Momentum 62

3.5 Numerical Results . 64

3.5.1 Comparison Results Among Various Escaping Approachs 65

3.5.2 Generalization Gap and Sharp Minima 67

3.5.3 Eigenvalue Evolution Along the Training Process 68

3.5.4 Accelerated SINTR with Adding Momentum 68

3.5.5 Performance Comparison on the Full Dataset 69

3.5.6 The eigenvalue distribution evolution for SINTR+ on different dataset 69

3.5.7 Discussion of Results . 70

3.6 Conclusion . 71

4 Efficient Distributed Hessian Free Algorithm for Large-scale Empirical

Risk Minimization via Accumulating Sample Strategy 72

4.1 Introduction . 72

4.2 Problem Formulation . 75

4.3 Distributed Accumulated Newton-CG Method 76

4.4 Complexity Analysis . 80

4.5 Numerical Experiments . 84

4.6 Conclusion . 88

5 UCLibrary: A Unconstrained Optimization Library for Nonlinear Prob-

lems 89

5.1 Introduction . 89

5.2 Tour of the UCLibrary . 89

5.3 List of Main Modules . 92

6 Conclusion 94

Bibliography 96

viii

A Proofs in Chapter 1 107

A.1 Preliminaries and Technical Results . 107

A.2 Proof of Lemmas 1.3.1 and 1.3.5 . 110

A.3 Proof of Lemma 1.3.2 . 112

A.4 Proof of Theorems 1.3.3 and 1.3.6 . 113

A.5 Proof of Corollary 1.3.4 . 114

A.6 Proof of Theorems 1.5.5 and 1.5.6 . 115

B Proof in Chapter 3 119

C Proof in Chapter 4 124

C.1 Technical Proofs . 124

C.1.1 Practical stopping criterion . 125

C.2 Proof of Theorem 4.4.4 . 126

C.3 Proof of Corollary 4.4.5 . 127

C.4 Details Concerning Experimental Section . 128

C.5 Additional Plots . 128

D Notation and Symbols 133

Biography 135

ix

List of Tables

1.1 A list of datasets used in the numerical experiments, see [11]. 23

3.1 A list of datasets used in the numerical experiments. 65

C.1 A list of datasets used in the numerical experiments. 128

C.2 Summary of two convolutional neural network architecture. 129

x

List of Figures

1.1 Toy demo illustrating how to obtain a non-uniform mini-batch sampling with

batch size b = 2 from n = 4 coordinates. 20

1.2 A comparison of the number of epochs versus the duality gap for the various

algorithms. 25

1.3 A comparison of the number of epochs versus the relative primal object value

for SGD, dfSDCA, adfSDCA(+) and SVRG. 26

1.4 Comparing absolute value of dual residuals at each epoch between dfSDCA

and adfSDCA. 27

1.5 Comparing the number of iterations of various batch size on different losses. . 28

1.6 Comparing adfSDCA for two cases on quadratic loss. 29

2.1 Model (left) and data (right) parallelism. 33

2.2 A simple 2D example which has one saddle point (0, 0) and two local mini-

mizer (0, 1) and (0,−1). 37

2.3 Performance comparison among SGD and Hessian-free variants. 39

2.4 Performance comparison among various size of mini-batches on different meth-

ods (3 plots above). The neural network has two hidden layers with size 400,

150. 40

2.5 Number of iterations required to obtain training error 0.02 as a function of

batch size for second order methods. 41

2.6 Performance scaling of different part in distributed HF on upto 32 nodes

(1,152 cores). 43

xi

3.1 Evolution of angles between two adjacent iterative points (bottom row) and

the corresponding optimization performance of SINTR and SINTR+. 64

3.2 Objective value and Training error evolution on various methods on sub-

cifra10 dataset starting with a nearly saddle point. 65

3.3 Objective value, Gradient norm and Training error evolution on SINTR+ and

ASGD in first 300 iterations . 66

3.4 Second order methods will converge to flatter minimizer. The first row is the

result for CIFRA10 and the second is result of MNIST. 67

3.5 The evolution of eigenvalues for SINTR+ and ASGD on sub-mnist dataset . . 68

3.6 Objective value and Training error evolution on various methods. 69

3.7 The distribution of eigenvalues for SINTR+ on sub-MNIST dataset. 70

3.8 The distribution of eigenvalues for SINTR+ on sub-CIFRA10 dataset. 70

4.1 Performance of different algorithms on a Logistic Regression problem with

rcv1 as dataset. 83

4.2 Comparison between DANCE and SGD with various hyper-parameters set-

ting on Cifar10 dataset and vgg11 network. 85

4.3 Comparison between DANCE and Adam on Mnist dataset and NaiveCNet. . 86

4.4 Performance of DANCE algorithm with different number of computing nodes. 88

C.1 Performance of different algorithms on a Logistic Regression problem with

gisette as dataset. 129

C.2 Comparison between DANCE and SGD with various hyper-parameters on

Mnist dataset and NaiveCNet. 130

C.3 Comparison between DANCE and with momentum for various hyper-parameters

on Cifar10 dataset and vgg11 network. 131

C.4 Comparison between DANCE and SGD with momentum for various hyper-

parameters on Mnist dataset and NaiveCNet. 132

xii

Abstract

The rising amount of data has changed the classical approaches in statistical modeling

significantly. Special methods are designed for inferring meaningful relationships and hid-

den patterns from these large datasets, which build the foundation of a study called Ma-

chine Learning (ML). Such ML techniques have already applied widely in various areas and

achieved compelling success.

In the meantime, the huge amount of data also requires a deep revolution of current tech-

niques, like the availability of advanced data storage, new efficient large-scale algorithms

and their distributed/parallelized implementation.

There is a broad class of ML methods can be interpreted as Empirical Risk Minimization

(ERM) problems. When utilize various loss functions and likely necessary regularization

terms, one could approach their specific ML goals by solving ERMs as separable finite sum

optimization problems. There are circumstances where nonconvex component is introduced

into the ERMs which usually makes the problems hard to optimize. Especially, in recent

years, neural networks, a popular branch of ML, draw numerous attention from community.

Neural networks are powerful and highly flexible inspired by the structured functionality of

the brain. Typically, neural networks could be treated as large-scale and highly nonconvex

ERMs.

While as nonconvex ERMs become more complex and larger in scales, optimization using

stochastic gradient descent (SGD) type methods proceeds slowly regarding its convergence

rate and incapability of being distributed efficiently. It motivates researchers to explore more

advanced local optimization methods such as approximate-Newton/second-order methods.

In this dissertation, first-order stochastic optimization for the regularized ERMs in Chapter1

1

is studied. Based on the development of stochastic dual coordinate accent (SDCA) method,

a dual free SDCA with non-uniform mini-batch sampling strategy is investigated [30, 29].

We also introduce several efficient algorithms for training ERMs, including neural networks,

using second-order optimization methods in a distributed environment. In Chapter 2, we

propose a practical distributed implementation for Newton-CG methods. It makes training

neural networks by second-order methods doable in the distributed environment [28]. In

Chapter 3, we further build steps towards using second-order methods to train feed-forward

neural networks with negative curvature direction utilization and momentum acceleration.

In this Chapter, we also report numerical experiments for comparing second-order methods

and first-order methods regarding training neural networks . The following Chapter 4 pur-

pose an distributed accumulative sample-size second-order methods for solving large scale

convex ERMs and nonconvex neural networks [35]. In Chapter 5, a python library named

UCLibrary is briefly introduced for solving unconstrained optimization problems. This dis-

sertation is all concluded in the last Chapter 6.

2

Chapter 1

Dual Free Adaptive Mini-batch

SDCA for Empirical Risk

Minimization

1.1 Introduction

In this chapter we study the `2-regularized Empirical Risk Minimization (ERM) problem,

which is widely used in the field of machine learning. The problem can be stated as follows.

Given training examples (x1, y1), . . . , (xn, yn) ∈ Rd × R, loss functions φ1, . . . , φn : R → R

and a regularization parameter λ > 0, `2-regularized ERM is an optimization problem of

the form

min
w∈Rd

P (w) :=
1

n

n∑
i=1

φi(w
Txi) +

λ

2
‖w‖2, (1.1)

where the first term in the objective function is a data fitting term and the second is a

regularization term that prevents over-fitting.

Many algorithms have been proposed to solve problem (1.1) over the past few years,

including SGD, [84], SVRG and S2GD, [36, 64, 40] and SAG/SAGA, [79, 18, 76]. However,

another very popular approach to solving `2-regularized ERM problems is to consider the

following dual formulation

3

max
α∈Rn

D(α) := − 1

n

n∑
i=1

φ∗i (−αi)−
λ

2
‖ 1

λn
XTα‖2, (1.2)

where XT = [x1, . . . , xn] ∈ Rd×n is the data matrix and φ∗i denotes the Fenchel conjugate

of φi, namely, φ∗i (u) = maxz(zu − φi(z)). It is also known that P (w∗) = D(α∗), which

implies that for all w and α, we have P (w) ≥ D(α), and hence the duality gap, defined

to be P (w(α)) − D(α), can be regarded as an upper bound on the primal sub-optimality

P (w(α))−P (w∗). The structure of the dual formulation (1.2) makes it well suited to a multi-

core or distributed computational setting, and several algorithms have been developed to

take advantage of this including [32] [93, 34, 49, 94, 73, 13, 104].

A popular method for solving (1.2) is Stochastic Dual Coordinate Ascent (SDCA). The

algorithm proceeds as follows. At iteration t of SDCA a coordinate i ∈ {1, . . . , n} is chosen

uniformly at random and the current iterate α(t) is updated to α(t+1) := α(t) + δ∗ei, where

δ∗ = arg maxδ∈RD(α(t) + δei). Much research has focused on analysing the theoretical

complexity of SDCA under various assumptions imposed on the functions φ∗i , including the

pioneering work of Nesterov in [60] and others including [75, 95, 58, 57, 47, 94, 93].

A modification that has led to improvements in the practical performance of SDCA is the

use of importance sampling when selecting the coordinate to update. That is, rather than

using uniform probabilities, instead coordinate i is sampled with an arbitrary probability

pi, see for example [105, 13].

In many cases algorithms that employ non-uniform coordinate sampling outperform

naïve uniform selection, and in some cases help to decrease the number of iterations needed

to achieve a desired accuracy by several orders of magnitude, see for example [105, 13].

Notation and Assumptions. In this chapter we use the notation [n]
def
= {1, . . . , n},

as well as the following assumption. For all i ∈ [n], the loss function φi is L̃i-smooth with

L̃i > 0, i.e., for any given β, δ ∈ R, we have

|φ′i(β)− φ′i(β + δ)| ≤ L̃i|δ|. (1.3)

In addition, it is simple to observe that the function φi(xTi ·) : Rd → R is Li smooth, i.e.,

4

∀w, w̄ ∈ Rd and for all i ∈ [n] there exists a constant Li ≤ ‖xi‖2L̃i such that

‖∇φi(xTi w)−∇φi(xTi w̄)‖ ≤ Li‖w − w̄‖. (1.4)

We will use the notation

L = max
1≤i≤n

Li, and L̃ = max
1≤i≤n

L̃i. (1.5)

Throughout this chapter we let R+ denote the set of nonnegative real numbers and we let

Rn+ denote the set of n-dimensional vectors with all components being real and nonnegative.

1.1.1 Contributions

In this section the main contributions of this chapter are summarized (not in order of

significance).

Adaptive SDCA. We modify the dual free SDCA algorithm proposed in [83] to allow

for the adaptive adjustment of probabilities and a non-uniform selection of coordinates. Note

that the method is dual free, and hence in contrast to classical SDCA, where the update is

defined by maximizing the dual objective (1.2), here we define the update slightly differently

(see Section 1.2 for details).

Allowing non-uniform selection of coordinates from an adaptive probability distribution

leads to improvements in practical performance and the algorithm achieves a better conver-

gence rate than in [83]. In short, we show that the error after T iterations is decreased by

a factor of
∏T
t=1(1− θ(t)) ≥ (1− θ∗)T on average, where θ∗ is an uniformly lower bound for

all θ(t). Here 1 − θ(t) ∈ (0, 1) is a parameter that depends on the current iterate α(t) and

the nonuniform probability distribution. By changing the coordinate selection strategy from

uniform selection to adaptive, each 1−θ(t) becomes smaller, which leads to an improvement

in the convergence rate.

Non-uniform sampling procedure. Rather than using a uniform sampling of co-

ordinates, which is the commonly used approach, here we propose the use of non-uniform

sampling from an adaptive probability distribution. With this novel sampling strategy, we

5

are able to generate non-uniform non-overlapping and proper (see Section 1.5) samplings

for arbitrary marginal distributions under only one mild assumptions. Indeed, we show that

without the assumption, there is no such non-uniform sampling strategy. We also extend

our sampling strategy to allow the selection of mini-batches.

Better convergence and complexity results. By utilizing an adaptive probabilities

strategy, we can derive complexity results for our new algorithm that, for the case when

every loss function is convex, depend only on the average of the Lipschitz constants Li. This

improves upon the complexity theory developed in [83] (which uses a uniform sampling) and

[14] (which uses an arbitrary but fixed probability distribution), because the results in those

works depend on the maximum Lipschitz constant. Furthermore, even though adaptive

probabilities are used here, we are still able to retain the very nice feature of the work in

[83], and show that the variance of the update naturally goes to zero as the iterates converge

to the optimum without any additional computational effort or storage costs. Our adaptive

probabilities SDCA method also comes with an improved bound on the variance of the

update in terms of the sub-optimality of the current iterate.

Practical aggressive variant. Following from the work of [13], we propose an efficient

heuristic variant of adfSDCA. For adfSDCA the adaptive probabilities must be computed

at every iteration (i.e., once a single coordinate has been selected), which can be computa-

tionally expensive. However, for our heuristic adfSDCA variant the (exact/true) adaptive

probabilities are only computed once at the beginning of each epoch (where an epoch is one

pass over the data/n coordinate updates), and during that epoch, once a coordinate has

been selected we simply reduce the probability associated with that coordinate so it is not

selected again during that epoch. Intuitively this is reasonable because, after a coordinate

has been updated the dual residue associated with that coordinate decreases and thus the

probability of choosing this coordinate should also reduce. We show that in practice this

heuristic adfSDCA variant converges and the computational effort required by this algorithm

is lower than adfSDCA (see Sections 1.4 and 1.6).

Mini-batch variant. We extend the (serial) adfSDCA algorithm to incorporate a

mini-batch scheme. The motivation for this approach is that there is a computational cost

associated with generating the adaptive probabilities, so it is important to utilize them

6

effectively. We develop a non-uniform mini-batch strategy that allows us to update multiple

coordinates in one iteration, and the coordinates that are selected have high potential to

decrease the sub-optimality of the current iterate. Further, we make use of ESO framework

(Expected Separable Overapproximation) (see for example [74], [73]) and present theoretical

complexity results for mini-batch adfSDCA. In particular, for mini-batch adfSDCA used with

batchsize b, we derive the optimal probabilities to use at each iteration, as well as the best

step-size to use to guarantee speedup.

1.1.2 Outline

This chapter is organized as follows. In Section 1.2 we introduce our new Adaptive Dual

Free SDCA algorithm (adfSDCA), and highlight its connection with a reduced variance

SGD method. In Section 1.3 we provide theoretical convergence guarantees for adfSDCA in

the case when all loss functions φi(·) are convex, and also in the case when individual loss

functions are allowed to be nonconvex but the average loss functions
∑n

i=1 φi(·) is convex.

Section 1.4 introduces a practical heuristic version of adfSDCA, and in Section 1.5 we present

a mini-batch adfSDCA algorithm and provide convergence guarantees for that method.

Finally, we present the results of our numerical experiments in Section 1.6. Note that the

proofs for all the theoretical results developed in this chapter are left to the appendix.

1.2 The Adaptive Dual Free SDCA Algorithm

In this section we describe the Adaptive Dual Free SDCA (adfSDCA) algorithm, which

is motivated by the dual free SDCA algorithm proposed by [83]. Note that in dual free

SDCA two sequences of primal and dual iterates, {w(t)}∞t=0 and {α(t)}∞t=0 respectively, are

maintained. At every iteration of that algorithm, the variable updates are computed in such

a way that the well known primal-dual relational mapping holds; for every iteration t:

w(t) =
1

λn

∑n

i=1
α

(t)
i xi. (1.6)

The dual residue is defined as follows.

7

Definition 1.2.1 (Dual residue, [13]). The dual residue κ(t) = (κ
(t)
1 , . . . , κ

(t)
n)T ∈ Rn asso-

ciated with (w(t), α(t)) is given by:

κ
(t)
i

def
= α

(t)
i + φ′i(x

T
i w

(t)). (1.7)

The Adaptive Dual Free SDCA algorithm is outlined in Algorithm 1.1 and is described

briefly now; a more detailed description (including a discussion of coordinate selection and

how to generate appropriate selection rules) will follow. An initial solution α(0) is chosen,

and then w(0) is defined via (1.6). In each iteration of Algorithm 1.1 the dual residue κ(t)

is computed via (1.7), and this is used to generate a probability distribution p(t). Next, a

coordinate i ∈ [n] is selected (sampled) according to the generated probability distribution

and a step of size θ(t) ∈ (0, 1) is taken by updating the ith coordinate of α via

α
(t+1)
i = α

(t)
i − θ

(t)(p
(t)
i)−1κ

(t)
i . (1.8)

Finally, the vector w is also updated

w(t+1) = w(t) − θ(t)(nλp
(t)
i)−1κ

(t)
i xi, (1.9)

and the process is repeated. Note that the updates to α and w using the formulas (1.8) and

(1.9) ensure that the equality (1.6) is preserved.

Also note that the updates in (1.8) and (1.9) involve a step size parameter θ(t), which

will play an important role in our complexity results. The step size θ(t) should be large

so that good progress can be made, but it must also be small enough to ensure that the

algorithm is guaranteed to converge. Indeed, in Section 1.3.1 we will see that the choice of

θ(t) depends on the choice of probabilities used at iteration t, which in turn depend upon a

particular function that is related to the suboptimality at iteration t.

The dual residue κ(t) is informative and provides a useful way of monitoring subop-

timality of the current solution (w(t), α(t)). In particular, note that if κi = 0 for some

coordinate i, then by (1.7) αi = −φ′i(wTxi), and substituting κi into (1.8) and (1.9) shows

that α(t+1)
i ← α

(t)
i and w

(t+1)
i ← w(t), i.e., α and w remain unchanged in that iteration.

8

Algorithm 1.1 Adaptive Dual Free SDCA (adfSDCA)
1: Input: Data: {xi, φi}ni=1

2: Initialization: Choose α(0) ∈ Rn
3: Set w(0) = 1

λn

∑n
i=1 α

(0)
i xi

4: for t = 0, 1, 2, . . . do
5: Calculate dual residual κ(t)

i = φ′i(x
T
i w

(t)) + α
(t)
i , for all i ∈ [n]

6: Generate adaptive probability distribution p(t) ∼ κ(t)

7: Sample coordinate i according to p(t)

8: Set step-size θ(t) ∈ (0, 1) as in (1.20)
9: Update: α(t+1)

i = α
(t)
i − θ(t)(p

(t)
i)−1κ

(t)
i

10: Update: w(t+1) = w(t) − θ(t)(nλp
(t)
i)−1κ

(t)
i xi

11: end for

On the other hand, a large value of |κi| (at some iteration t) indicates that a large step

will be taken, which is anticipated to lead to good progress in terms of improvement in

sub-optimality of current solution.

The probability distributions used in Algorithm 1.1 adhere to the following definition.

Definition 1.2.2. (Coherence, [13]) Probability vector p ∈ Rn is coherent with dual residue

κ ∈ Rn if for any index i in the support set of κ, denoted by Iκ := {i ∈ [n] : κi 6= 0}, we

have pi > 0. When i /∈ Iκ then pi = 0. We use p ∼ κ to represent this coherent relation.

1.2.1 Adaptive dual free SDCA as a reduced variance SGD method.

Reduced variance SGD methods have became very popular in the past few years, see for

example [41, 36, 76, 18]. It is show in [83] that uniform dual free SDCA is an instance of

a reduced variance SGD algorithm (the variance of the stochastic gradient can be bounded

by some measure of sub-optimality of the current iterate) and a similar result applies to

adfSDCA in Algorithm 1.1. In particular, note that conditioned on α(t−1), we have

E[w(t)|α(t−1)]
(1.9)
= w(t−1) − θ(t−1)

λ

n∑
i=1

pi
npi

((
∇φi(xTi w(t−1)) + α

(t−1)
i

)
xi

)
(1.6)
= w(t−1) − θ(t−1)

λ

(
∇
(1

n

n∑
i=1

φi(x
T
i w

(t−1))
)

+ λw(t−1)
)

(1.1)
= w(t−1) − θ(t−1)

λ
∇P (w(t−1)). (1.10)

9

Combining (1.9) and (1.10) and replace t− 1 by t gives

E
[

1

npi
κ

(t)
i xi|α

(t)

]
= ∇P (w(t)), (1.11)

which implies that 1
npi
κ

(t)
i xi is an unbiased estimator of ∇P (w(t)). Therefore, Algorithm 1.1

is eventually a variant of the Stochastic Gradient Descent method. However, we can prove

(see Corollary 1.3.4 and Corollary 1.3.7) that the variance of the update goes to zero as the

iterates converge to an optimum, which is not true for vanilla Stochastic Gradient Descent.

1.3 Convergence Analysis

In this section we state the main convergence results for adfSDCA (Algorithm 1.1). The

analysis is broken into two cases. In the first case it is assumed that each of the loss functions

φi is convex. In the second case this assumption is relaxed slightly and it is only assumed

that the average of the φi’s is convex, i.e., individual functions φi(·) for some (several) i ∈ [n]

are allowed to be nonconvex, as long as 1
n

∑n
j=1 φj(·) is convex. The proofs for all the results

in this section can be found in the Appendix.

1.3.1 Case I: All loss functions are convex

Here we assume that φi is convex for all i ∈ [n]. Define the following parameter

γ
def
= λL̃, (1.12)

where L̃ is given in (1.5). It will also be convenient to define the following potential function.

For all iterations t ≥ 0,

D(t) def
= 1

n‖α
(t) − α∗‖2 + γ‖w(t) − w∗‖2. (1.13)

The potential function (1.13) plays a central role in the convergence theory presented in

this chapter. It measures the distance from the optimum in both the primal and (pseudo)

dual variables. Thus, our algorithm will generate iterates that reduce this suboptimality

10

and therefore push the potential function toward zero.

Also define

vi
def
= ‖xi‖2 for all i ∈ [n]. (1.14)

We have the following result.

Lemma 1.3.1. Let L̃, κ(t)
i , γ, D(t), and vi be as defined in (1.5), (1.7), (1.12), (1.13) and

(1.14), respectively. Suppose that φi is L̃-smooth and convex for all i ∈ [n] and let θ ∈ (0, 1).

Then at every iteration t ≥ 0 of Algorithm 1.1, a probability distribution p(t) that satisfies

Definition 1.2.2 is generated and

E
[
D(t+1)|α(t)

]
− (1− θ)D(t) ≤

n∑
i=1

(
− θ
n

(
1− θ

p
(t)
i

)
+

θ2viγ

n2λ2p
(t)
i

)
(κ

(t)
i)2. (1.15)

Note that if the right hand side of (1.15) is negative, then the potential function decreases

(in expectation) in iteration t:

E
[
D(t+1)|α(t)

]
≤ (1− θ)D(t). (1.16)

The purpose of Algorithm 1.1 is to generate iterates (w(t), α(t)) such that the above holds.

To guarantee negativity of the right hand term in (1.15), or equivalently, to ensure that

(1.16) holds, consider the parameter θ. Specifically, any θ that is less than the function

Θ(·, ·) : Rn+ × Rn+ → R defined as

Θ(κ, p)
def
=

nλ2
∑

i∈Iκ κ
2
i∑

i∈Iκ(nλ2 + viγ)p−1
i κ2

i

, (1.17)

will ensure negativity of the right hand term in (1.15). Moreover, the larger the value of θ,

the better progress Algorithm 1.1 will make in terms of the reduction inD(t). The function Θ

depends on the dual residue κ and the probability distribution p. Maximizing this function

w.r.t. p will ensure that the largest possible value of θ can be used in Algorithm 1.1. Thus,

we consider the following optimization problem:

max
p∈Rn+,

∑
i∈Iκ pi=1

Θ(κ, p). (1.18)

11

One may naturally be wary of the additional computational cost incurred by solving the

optimization problem in (1.18) at every iteration. Fortunately, it turns out that there is an

(inexpensive) closed form solution, as shown by the following Lemma.

Lemma 1.3.2. Let Θ(κ, p) be defined in (1.17). The optimal solution p∗(κ) of (1.18) is

p∗i (κ) =

√
viγ + nλ2|κi|∑

j∈Iκ
√
vjγ + nλ2|κj |

, for all i = 1, . . . , n. (1.19)

The corresponding θ by using the optimal solution p∗ is

θ = Θ(κ, p∗) =
nλ2

∑
i∈Iκ κ

2
i

(
∑

i∈Iκ

√
viγ + nλ2|κi|)2

. (1.20)

Proof. This can be verified by deriving the KKT conditions of the optimization problem in

(1.18). The details are moved to Appendix for brevity.

The results in [14] are weaker because they require a fixed sampling distribution p

throughout all iterations. Here we allow adaptive sampling probabilities as in (1.19), which

enables the algorithm to utilize the data information more effectively, and hence we have

a better convergence rate. Furthermore, the optimal probabilities found in [13] can be

only applied to a quadratic loss function, whereas our results are more general because the

optimal probabilities in (1.19) can used whenever the loss functions are convex, or when

individual loss functions are non-convex but the average of the loss functions is convex (see

Section 1.3.2).

Before proceeding with the convergence theory we define several constants. Let

C0
def
= 1

n‖α
(0) − α∗‖2 + γ‖w(0) − w∗‖2, (1.21)

where γ is defined in (1.12). Note that C0 in (1.21) is equivalent to the value of the potential

function (1.13) at iteration t = 0, i.e., C0 ≡ D(0). Moreover, let

M
def
= Q

(
1 +

γQ

λ2n

)
where Q

def
=

1

n

n∑
i=1

‖xi‖2
(1.14)

=
1

n

n∑
i=1

vi. (1.22)

Now we have the following theorem.

12

Theorem 1.3.3. Let L̃, κ(t)
i , γ, D(t), vi, C0 and Q be as defined in (1.5), (1.7), (1.12),

(1.13), (1.14), (1.21) and (1.22), respectively. Suppose that φi is L̃-smooth and convex for

all i ∈ [n], let θ(t) ∈ (0, 1) be decided by (1.20) for all t ≥ 0 and let p∗ be defined via (1.19).

Then, setting p(t) = p∗ at every iteration t ≥ 0 of Algorithm 1.1, gives

E[D(t+1)|α(t)] ≤ (1− θ∗)D(t), (1.23)

where

θ∗
def
=

nλ2∑n
i=1(viγ + nλ2)

≤ θ(t). (1.24)

Moreover, for ε > 0, if

T ≥
(
n+

L̃Q

λ

)
log

(
(λ+ L)C0

2λL̃ε

)
, (1.25)

then E[P (w(T))− P (w∗)] ≤ ε.

Similar to [83], we have the following corollary which bounds the quantity E[‖ 1
npi
κ

(t)
i xi‖2]

in terms of the sub-optimality of the points α(t) and w(t) by using optimal probabilities.

Corollary 1.3.4. Let the conditions of Theorem 1.3.3 hold. Then at every iteration t ≥ 0

of Algorithm 1.1,

E

∥∥∥∥∥κ(t)
i xi
npi

∥∥∥∥∥
2

|α(t−1)

 ≤ 2M(E[‖α(t) − α∗‖2|α(t−1)] + LE[‖w(t) − w∗‖2|α(t−1)]).

Note that Theorem 1.3.3 can be used to show that both E[‖α(t) − α∗‖2] and E[‖w(t) −

w∗‖2] go to zero as e−θ∗t. We can then show that E[‖ 1
npi
κ

(t)
i xi‖2] ≤ ε as long as t ≥

Õ(1
θ∗ log(1

ε)). Furthermore, we achieve the same variance reduction rate as shown in [83],

i.e., E[‖ 1
npi
κ

(t)
i xi‖2] ∼ Õ(‖κ(t)‖2).

For the dual free SDCA algorithm in [83] where uniform sampling is adopted, the param-

eter θ should be set to at most min λ
λn+L̃

, where L̃ ≥ maxi vi · L. However, from Corollary

1.3.3, we know that this θ is smaller than θ∗, so dual free SDCA will have a slower conver-

gence rate than our algorithm. In [14], where they use a fixed probability distribution pi

for sampling of coordinates, they must choose θ less than or equal to mini
pinλ

Livi+nλ
. This is

consistent with [83] where pi = 1/n for all i ∈ [n]. With respect to our adfSDCA Algorithm

13

1.1, at any iteration t, we have that θ(t) is greater than or equal to θ∗, which again implies

that our convergence results are better.

1.3.2 Case II: The average of the loss functions is convex

Here we follow the analysis in [83] and consider the case where individual loss functions φi(·)

for i ∈ [n] are allowed to be nonconvex as long as the average 1
n

∑n
j=1 φj(·) is convex. First

we define several parameters that are analogous to the ones used in Section 1.3.1. Let

γ̄
def
=

1

n

n∑
i=1

L2
i , (1.26)

where Li is given in (1.4), and define the following potential function. For all iterations

t ≥ 0, let

D̄(t) def
=

1

n
‖α(t) − α∗‖2 + γ̄‖w(t) − w∗‖2. (1.27)

We also define the following constants

C̄0
def
=

1

n
‖α(0) − α∗‖2 + γ̄‖w(0) − w∗‖2, (1.28)

and

M̄
def
= Q

(
1 +

γ̄Q

λ2n

)
. (1.29)

Then we have the following theoretical results.

Lemma 1.3.5. Let Li, κ
(t)
i , γ̄, D̄(t), and vi be as defined in (1.4), (1.7), (1.26), (1.27) and

(1.14), respectively. Suppose that every φi, i ∈ [n] is Li-smooth and that the average of the

n loss functions 1
n

∑n
i=1 φi(w

Txi) is convex. Let θ ∈ (0, 1). Then at every iteration t ≥ 0 of

Algorithm 1.1, a probability distribution p(t) that satisfies Definition 1.2.2 is generated and

E[D̄(t+1)|α(t)]− (1− θ)D̄(t) ≤
n∑
i=1

(
− θ
n

(
1− θ

p
(t)
i

)
+

θ2viγ̄

n2λ2p
(t)
i

)
(κ

(t)
i)2. (1.30)

Theorem 1.3.6. Let L, κ(t)
i , γ̄ D̄(t), vi, and C̄0 be as defined in (1.5), (1.7), (1.26), (1.27),

(1.14), and (1.28) respectively. Suppose that every φi, i ∈ [n] is Li-smooth and that the

14

average of the n loss functions 1
n

∑n
i=1 φi(w

Txi) is convex. Let θ(t) ∈ (0, 1) using (1.20) for

all t ≥ 0 and let p∗ be defined via (1.19). Then, setting p(t) = p∗ at every iteration t ≥ 0 of

Algorithm 1.1, gives

E
[
D̄(t+1)|α(t)

]
≤ (1− θ∗)D̄(t), (1.31)

where

θ∗ =
nλ2∑n

i=1(viγ̄ + nλ2)
≤ θ(t).

Furthermore, for ε > 0, if

T ≥
(
n+

γ̄Q

λ2

)
log

(
(λ+ L)C̄0

2γ̄ε

)
, (1.32)

then E[P (w(T))− P (w∗)] ≤ ε.

We remark that, Li ≤ L for all i ∈ [n], so γ̄ ≤ L2, which means that a conservative

complexity bound is

T ≥
(
n+

L2Q

λ2

)
log

(
(λ+ L)C̄0

2γ̄ε

)
.

We conclude this section with the following corollary.

Corollary 1.3.7. Let the conditions of Theorem 1.3.6 hold and let M̄ be defined in (1.29).

Then at every iteration t ≥ 0 of Algorithm 1.1,

E

[∥∥∥κ(t)
i xi
npi

∥∥∥2
|α(t−1)

]
≤ 2M̄(E[‖α(t) − α∗‖2|α(t−1)] + LE[‖w(t) − w∗‖2|α(t−1)]).

1.4 Heuristic adfSDCA

One of the disadvantages of Algorithm 1.1 is that it is necessary to update the entire prob-

ability distribution p ∼ κ at each iteration, i.e., every time a single coordinate is updated

the probability distribution is also updated. Note that if the data are sparse and coordi-

nate i is sampled during iteration t, then, one need only update probabilities pj for which

xTj xi 6= 0; unfortunately for some datasets this can still be expensive. In order to overcome

15

this shortfall we follow the recent work in [13] and present a heuristic algorithm that allows

the probabilities to be updated less frequently and in a computationally inexpensive way.

The process works as follows. At the beginning of each epoch the (full/exact) nonuniform

probability distribution is computed, and this remains fixed for the next n coordinate up-

dates, i.e., it is fixed for the rest of that epoch. During that same epoch, if coordinate i is

sampled (and thus updated) the probability pi associated with that coordinate is reduced

(it is shrunk by pi ← pi/s), where s is the shrinkage parameter. The intuition behind this

procedure is that, if coordinate i is updated then the dual residue |κi| associated with that

coordinate will decrease. Thus, there will be little benefit (in terms of reducing the sub-

optimality of the current iterate) in sampling and updating that same coordinate i again.

To avoid choosing coordinate i in the next iteration, we shrink the probability pi associated

with it, i.e., we reduce the probability by a factor of 1/s. Moreover, shrinking the coordinate

is less computationally expensive than recomputing the full adaptive probability distribu-

tion from scratch, and so we anticipate a decrease in the overall running time if we use

this heuristic strategy, compared with the standard adfSDCA algorithm. This procedure is

stated formally in Algorithm 1.2. Note that Algorithm 1.2 does not fit the theory established

in Section 1.3. Nonetheless, we have observed convergence in practice and a good numerical

performance when using this strategy (see the numerical experiments in Section 1.6).

Algorithm 1.2 Heuristic Adaptive Dual Free SDCA (adfSDCA+)
1: Input: Data: {xi, φi}ni=1, probability shrink parameter s
2: Initialization: Choose α(0) ∈ Rn
3: Set w(0) = 1

λn

∑n
i=1 α

(0)
i xi

4: for t = 0, 1, 2, . . . do
5: if mod (t, n) == 0 then
6: Calculate dual residue κ(t)

i = φ′i(x
T
i w

(t)) + α
(t)
i , for all i ∈ [n]

7: Generating adapted probabilities distribution p(t) ∼ κ(t)

8: end if
9: Select coordinate i from [n] according to p(t)

10: Set step-size θ(t) ∈ (0, 1) as in (1.20)
11: Update: α(t+1)

i = α
(t)
i − θ(t)(p

(t)
i)−1κ

(t)
i

12: Update: w(t+1) = w(t) − θ(t)(nλp
(t)
i)−1κ

(t)
i xi

13: Update: p
(t+1)
i = p

(t)
i /s

14: end for

16

1.5 Mini-batch adfSDCA

In this section we propose a mini-batch variant of Algorithm 1.1. Before doing so, we

stress that sampling a mini-batch non-uniformly is not easy. We first focus on the task of

generating non-uniform random samples and then we will present our minibatch algorithm.

1.5.1 Efficient single coordinate sampling

Before considering mini-batch sampling, we first show how to sample a single coordinate

from a non-uniform distribution. Note that only discrete distributions are considered here.

There are multiple approaches that can be taken in this case. One naïve approach is to

consider the Cumulative Distribution Function (CDF) of p, because a CDF can be computing

in O(n) time complexity and it also takes O(n) time complexity to make a decision. One

can also use a better data structure (e.g. a binary search tree) to reduce the decision cost

to O(log n) time complexity, although the cost to set up the tree is O(n log n). Some more

advanced approaches like the so-called alias method of [44] can be used to sample a single

coordinate in only O(1), i.e., sampling a single coordinate can be done in constant time but

with a cost of O(n) setup time. The alias method works based on the fact that any n-valued

distribution can be written as a mixture of n Bernoulli distributions.

In this chapter we choose two sampling update strategies, one each for Algorithms 1.1

and 1.2. For adfSDCA in Algorithm 1.1 the probability distribution must be recalculated at

every iteration, so we use the alias method, which is highly efficient. The heuristic approach

in Algorithm 1.2 is a strategy that only alters the probability of a single coordinate (e.g.

pi = pi/s) in each iteration. In this second case it is relatively expensive to use the alias

method due to the linear time cost to update the alias structure, so instead we build a binary

tree when the algorithm is initialized so that the update complexity reduces to O(log(n)).

1.5.2 Nonuniform Mini-batch Sampling

Many randomized coordinate descent type algorithms utilize a sampling scheme that assigns

every subset of [n] a probability pS , where S ∈ 2[n]. In this section, we consider a particular

type of sampling called a mini-batch sampling that is defined as follows.

17

Definition 1.5.1. A sampling Ŝ is called a mini-batch sampling, with batchsize b, consistent

with the given marginal distribution q := (q1, . . . , qn)T , if the following conditions hold:

1. |S| = b;

2. qi
def
=
∑

S∈Ŝ P ({S : i ∈ S}) = bpi,

where P ({S : i ∈ S}) represents the probability of mini-batch sampling S containing the

coordinate i.

Here we are going to derive a proper sampling strategy over coordinate i such that

i ∈ S ∈ Ŝ and Definition 1.5.1 is satisfied. Note that we study samplings Ŝ that are non-

uniform since we allow qi to vary with i. The motivation to design such samplings arises

from the fact that we wish to make use of the optimal probabilities that were studied in

Section 1.3.

We make several remarks about non-uniform mini-batch samplings below.

1. For a given probability distribution p, one can derive a corresponding mini-batch

sampling only if we have pi ≤ 1
b for all i ∈ [n]. This is obvious in the sense that

qi = bpi =
∑

S∈Ŝ P ({S : i ∈ S}) ≤
∑

S∈Ŝ P (S) = 1.

2. For a given probability distribution p and a batch size b, the mini-batch sampling may

not be unique and it may not be proper, see for example [74]. (A proper sampling

is a sampling for which any subset of size b must have a positive probability of being

sampled.)

In Algorithm 1.3 we describe an approach that we used to generate a non-uniform mini-

batch sampling of batchsize b from a given marginal distribution q. Without loss of gener-

ality, we assume that the qi ∈ (0, 1) for i ∈ [n] are sorted from largest to smallest.

We now state several facts about Algorithm 1.3.

1. Algorithm 1.3 will terminate in at most n iterations. This is because the update rules

for qi (which depend on rk at each iteration), ensure that at least one qi will reduce to

become equal to some qj < qi (i.e., either qik+1−1 = qb or qjk+1+1 = qb) and since there

are n coordinates in total, after at most n iteration it must hold that qi = qj for all

18

Algorithm 1.3 Non-uniform mini-batch sampling
1: Input: Marginal distribution q ∈ Rn with qi ∈ (0, 1) ∀i ∈ [n] and batchsize b such that∑n

i=1 qi = b. Define qn+1 = 0
2: Output: A mini-batch sampling S (Definition 1.5.1)
3: Initialization: Index set i, j ∈ Nn, and set k = 1.
4: for k = 1, . . . , n do
5: ik = mini{i : pi = qb}, jk = maxi{i : pi = qb}
6: Obtain rk:

rk =

{
min

{
jk−ik+1
jk−b (qik−1 − qb),

jk−ik+1
b−ik+1

(qb − qjk+1)
}
, ik > 1

j
b (qb − qjk+1), ik = 1

(1.33)

7: Update qi:

qi =

{
qi − rk, i ∈ [0, ik − 1],

qi − b−ik+1
jk−ik+1

rk, i ∈ [ik, jk]
(1.34)

8: Terminate if q = 0, and set m = k
9: end for

10: Select K ∈ [m] randomly with discrete distribution (r1, . . . , rm)
11: Choose b− iK + 1 coordinates uniformly at random from iK to jK , denote it by W
12: S = {1, . . . , iK − 1} ∪W

i, j ∈ [n]. Note that if the algorithm begins with qi = qj for all i, j ∈ [n], which implies

a uniform marginal distribution, the algorithm will terminated in a single step.

2. For Algorithm 1.3 we must have
∑m

i=1 ri = 1, where we assume that the algorithm

terminates at iteration m ∈ [1, n], since overall we have
∑m

i=1 bri =
∑n

i=1 qi = b.

3. Algorithm 1.3 will always generate a proper sampling because when it terminates, the

situation pi = pj > 0, for all i 6= j, will always hold. Thus, any subset of size b has a

positive probability of being sampled.

4. It can be shown that this algorithm works on an arbitrary given marginal probabilities

as long as qi ∈ (0, 1), for all i ∈ [n].

Figure 1.1 is a sample illustration of Algorithm 1.3, where we have a marginal distribution

for 4 coordinates given by (0.8, 0.6, 0.4, 0.2)T and we set the batchsize to be b = 2. Then,

the algorithm is run and finds r to be (0.2, 0.4, 0.4)T . Afterwards, with probability r1 = 0.2,

we will sample 2-coordinates from (1, 2). With probability r2 = 0.4, we will sample 2-

coordinates which has (1) for sure and the other coordinate is chosen from (2, 3) uniformly

19

at random and with probability r3 = 0.4, we will sample 2-coordinates from (1, 2, 3, 4)

uniformly at random.

Note that, here we only need to perform two kinds of operations. The first one is to

sample a single coordinate from distribution d (see Section 1.5.1), and the second is to

sample batches from a uniform distribution (see for example [74]).

r3 = 0.4

r2 = 0.4

r1 = 0.2

q1 = 0.8 q2 = 0.6 q3 = 0.4 q4 = 0.2

r3/2 r3/2 r3/2 r3/2

r2

r2/2 r2/2

r1

r1

Figure 1.1: Toy demo illustrating how to obtain a non-uniform mini-batch sampling with
batch size b = 2 from n = 4 coordinates.

1.5.3 Mini-batch adfSDCA algorithm

Here we describe a new adfSDCA algorithm that uses a mini-batch scheme. The algorithm

is called mini-batch adfSDCA and is presented below as Algorithm 1.4.

Algorithm 1.4 Mini-Batch adfSDCA
1: Input: Data: {xi, φi}ni=1

2: Initialization: Choose α(0) ∈ Rn and set batchsize b
3: for t = 0, 1, 2, . . . do
4: Calculate dual residue κ(t)

i = φ′i(x
T
i w

(t)) + α
(t)
i , for all i ∈ [n]

5: Generate the adaptive probability distribution p(t) ∼ κ(t)

6: Choose mini-batch S ⊂ [n] of size b according to probabilities distribution p(t)

7: Set step-size θ(t) ∈ (0, 1) as in (A.36)
8: for i ∈ S do
9: Update: α(t+1)

i = α
(t)
i − θ(t)(bp

(t)
i)−1κ

(t)
i

10: end for
11: Update: w(t+1) = w(t) −

∑
i∈S θ

(t)(nλbp
(t)
i)−1κ

(t)
i xi

12: end for

Briefly, Algorithm 1.4 works as follows. At iteration t, adaptive probabilities are gener-

ated in the same way as for Algorithm 1.1. Then, instead of updating only one coordinate,

a mini-batch S of size b ≥ 1 is chosen that is consistent with the adaptive probabilities.

Next, the dual variables α(t)
i , i ∈ S are updated, and finally the primal variable w is updated

according to the primal-dual relation (1.6).

20

In the next section we will provide a convergence guarantee for Algorithm 1.4. As was

discussed in Section 1.3, theoretical results are detailed under two different assumptions on

the type of loss function: (i) all loss function are convex; and (ii) individual loss functions

may be non-convex but the average over all loss functions is convex.

1.5.4 Expected Separable Overapproximation

Here we make use of the Expected Separable Overapproximation (ESO) theory introduced

in [74] and further extended, for example, in [72]. The ESO definition is stated below.

Definition 1.5.2 (Expected Separable Overapproximation, [72]). Let Ŝ be a sampling with

marginal distribution q = (q1, · · · , qn)T . Then we say that the function f admits a v-ESO

with respect to the sampling Ŝ if ∀x, h ∈ Rn, we have v1, . . . , vn > 0, such that the following

inequality holds E[f(x+ h[Ŝ])] ≤ f(x) +
∑n

i=1 qi(∇if(x)hi + 1
2vih

2
i).

Remark 1.5.3. Note that, here we do not assume that Ŝ is a uniform sampling, i.e., we do

not assume that qi = qj for all i, j ∈ [n].

The ESO inequality is useful in this chapter because the parameter v plays an important

role when setting a suitable stepsize θ in our algorithm. Consequently, this also influences

our complexity result, which depends on the sampling Ŝ. For the proof of Theorem 1.5.5

(which will be stated in next subsection), the following is useful. Let f(x) = 1
2‖Ax‖

2, where

A = (x1, . . . , xn). We say that f(x) admits a v-ESO if the following inequality holds

E[‖AhŜ‖
2] ≤

n∑
i=1

viqih
2
i . (1.35)

To derive the parameter v we will make use of the following theorem.

Theorem 1.5.4 ([72]). Let f satisfy the following assumption f(x+h) ≤ f(x)+〈∇f(x), h〉+
1
2h

TATAhT , where A is some matrix. Then, for a given sampling Ŝ, f admits a v-ESO,

where v is defined by vi = min{λ′(P(Ŝ)), λ′(ATA)}
∑m

j=1A
2
ji, i ∈ [n].

Here P(Ŝ) is called a sampling matrix (see [74]) where element pij is defined to be pij =∑
{i,j}∈S,S∈ŜP (S). For any matrix M , λ′(M) denotes the maximal regularized eigenvalue of

21

M , i.e., λ′(M) = max‖h‖=1{hTMh :
∑n

i=1Miih
2
i ≤ 1}. We may now apply Theorem 1.5.4

because f(x) = 1
2‖Ax‖

2 satisfies its assumption. Note that in our mini-batch setting, we

have PS∈Ŝ(|S| = b) = 1, so we obtain λ′(P(Ŝ)) ≤ b (Theorem 4.1 in [72]). In terms of

λ′(ATA), note that λ′(ATA) = λ′(
∑m

j=1 xjx
T
j) ≤ maxj λ

′(xjx
T
j) = maxj |Jj |, where |Jj | is

number of non-zero elements of xj for each j. Then, a conservative choice from Theorem

1.5.4 that satisfies (1.35) is

v′i = min{b,max
j
|Jj |}‖xi‖2, i ∈ [n]. (1.36)

Now we are ready to give our complexity result for mini-batch adfSDCA (Algorithm

1.4). Note that we use the same notation as that established in Section 1.3 and we also

define

Q′
def
=

1

n

n∑
i=1

v′i. (1.37)

Theorem 1.5.5. Let L̃, κ(t)
i , γ D(t), v′i, C0 and Q′ be as defined in (1.5), (1.7), (1.12),

(1.13), (1.36), (1.21) and (1.37), respectively. Suppose that φi is L-smooth and convex for

all i ∈ [n]. Then, at every iteration t ≥ 0 of Algorithm 1.4, run with batchsize b we have

E[D(t+1)|α(t)] ≤ (1− θ∗)D(t), (1.38)

where θ∗ = nλ2b∑n
i=1(v′iγ+nλ2)

. Moreover, it follows that whenever

T ≥
(
n

b
+
L̃Q′

bλ

)
log

(
(λ+ L̃)C0

λL̃ε

)
, (1.39)

we have that E[P (w(T) − P (w∗))] ≤ ε.

It is also possible to derive a complexity result in the case when the average of the n loss

functions is convex. The theorem is stated now.

Theorem 1.5.6. Let L, κ(t)
i , γ̄ D̄(t), v′i, C̄0 and Q′ be as defined in (1.5), (1.7), (1.26),

(1.27), (1.36), (1.28) and (1.37) respectively. Suppose that every φi, i ∈ [n] is Li-smooth and

that the average of the n loss functions 1
n

∑n
i=1 φi(w

Txi) is convex. Then, at every iteration

22

t ≥ 0 of Algorithm 1.4, run with batchsize b, we have

E[D̄(t+1)|α(t)] ≤ (1− θ∗)D̄(t), (1.40)

where θ∗ = nλ2b∑n
i=1(v′iγ̄+nλ2)

. Moreover, it follows that whenever

T ≥
(
n

b
+
Q′ 1n

∑n
i=1L

2
i

bλ

)
log

(
(λ+ L̃)C̄0

γ̄ε

)
, (1.41)

we have that E[P (w(T))− P (w∗)] ≤ ε.

These theorems show that in worst case (by setting b = 1), this mini-batch scheme

shares the same complexity performance as the serial adfSDCA approach (recall Section

1.2). However, when the batch-size b is larger, Algorithm 1.4 converges in fewer iterations.

This behavior will be confirmed computationally in the numerical results given in Section

1.6.

1.6 Numerical experiments

Here we present numerical experiments to demonstrate the practical performance of the

adfSDCA algorithm. Throughout these experiments we used two loss functions, quadratic

loss φi(wTxi) = 1
2(wTxi − yi)2 and logistic loss φi(wTxi) = log(1 + exp(−yiwTxi)). Note

that these two losses have Lipschitz gradient. The regularization parameter λ in (1.1)

is set to be 1/
√
n, where n is the number of samples of the dataset. The experiments

were run using datasets from the standard library of test problems (see [11] and http:

//www.csie.ntu.edu.tw/~cjlin/libsvm), as summarized in Table 1.1.

Dataset #samples #features #classes sparsity
mushrooms 8, 124 112 2 18.8%
ijcnn1 49, 990 22 2 59.1%
rcv1 20, 242 47, 237 2 0.16%
news20 19, 996 1, 355, 191 2 0.034%

Table 1.1: A list of datasets used in the numerical experiments, see [11].

23

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

1.6.1 Comparison for a variety of adfSDCA approaches

In this section we compare the adfSDCA algorithm (Algorithm 1.1) with both dfSCDA,

which is a uniform variant of adfSDCA described in [83], and also with Prox-SDCA from

[87]. We also report results using Algorithm 1.2, which is a heuristic version of adfSDCA,

used with several different shrinkage parameters.

Figure 1.2 compares the evolution of the duality gap for the standard and heuristic

variant of our adfSDCA algorithm with the two state-of-the-art algorithms dfSDCA and

Prox-SDCA. For these problems both our algorithm variants out-perform the dfSDCA and

Prox-SDCA algorithms. Note that this is consistent with our convergence analysis (recall

Section 1.3). Now consider the adfSDCA+ algorithm, which was tested using the parameter

values s = 1, 10, 20. It is clear that adfSDCA+ with s = 1 shows the worst performance,

which is reasonable because in this case the algorithm only updates the sampling probabili-

ties after each epoch; it is still better than dfSDCA since it utilizes the sub-optimality at the

beginning of each epoch. On the other hand, there does not appear to be an obvious differ-

ence between adfSDCA+ used with s = 10 or s = 20 with both variants performing similarly.

We see that adfSDCA performs the best overall in terms of the number of passes through

the data. However, in practice, even though adfSDCA+ may need more passes through the

data to obtain the same sub-optimality as adfSDCA, it requires less computational effort

than adfSDCA.

In Figure 1.3, we compare SGD, SVRG, dfSDCA and our proposed adfSDCA(+) al-

gorithm in terms of the number of passes through the data and total running time. For

the SGD and SVRG algorithms, the duality gap is not directly computable. Hence, in this

numerical experiment, the relative primal objective value P (w)− P (ŵ) is used as the stop-

ping condition, where ŵ is the optimal weight given by the best run among all algorithms.

The SGD algorithm is implemented using the same set-up as in [85], where a diminishing

step-size is used, and SVRG is implemented following [36].

We remark that for the SVRG algorithm, the user must tune its two hyper-parameters,

namely, the number of iterations in the inner loop, and the step-size. Proper tuning of these

hyper-parameters is essential to get the best performance from the SVRG algorithm. In this

24

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1, Quadratic Loss

Passes through data

D
u

a
lit

y
 G

a
p

dfSDCA

adfSDCA

adfSDCA+, s=1

adfSDCA+, s=10

adfSDCA+, s=20

Prox−SDCA

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

ijcnn1, Quadratic Loss

Passes through data

D
u

a
lit

y
 G

a
p

dfSDCA

adfSDCA

adfSDCA+, s=1

adfSDCA+, s=10

adfSDCA+, s=20

Prox−SDCA

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

news20, Quadratic Loss

Passes through data

D
u

a
lit

y
 G

a
p

dfSDCA

adfSDCA

adfSDCA+, s=1

adfSDCA+, s=10

adfSDCA+, s=20

Prox−SDCA

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1, Logistic Loss

Passes through data

D
u

a
lit

y
 G

a
p

dfSDCA

adfSDCA

adfSDCA+, s=1

adfSDCA+, s=10

adfSDCA+, s=20

Prox−SDCA

2 4 6 8 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

ijcnn1, Logistic Loss

Passes through data
D

u
a

lit
y
 G

a
p

dfSDCA

adfSDCA

adfSDCA+, s=1

adfSDCA+, s=10

adfSDCA+, s=20

Prox−SDCA

Figure 1.2: A comparison of the number of epochs versus the duality gap for the various
algorithms.

experiment, we tuned the hyper-parameters for SVRG, and we used SVRG+ to denote the

best performing SVRG variant, and we use m to denote the corresponding ‘best’ number of

inner loop iterations. As a means of comparison, we also plot the performance of the SVRG

algorithm using m/2 and 2m inner loop iterations (i.e., SVRG without optimal tuning).

Figure 1.3 shows that, for the rcv1 dataset with a quadratic loss, adfSDCA is the

best performing algorithm in terms of the number of passes through the data; it is even

better than the ‘best’ tuned SVRG algorithm. For the ijcnn1 dataset with a quadratic

loss, SVRG+, the optimally tuned SVRG algorithm, performs better than the adfSDCA

algorithm. However, tuning the hyper-parameters for SVRG is not free, and this is a com-

putational cost that is not required for adfSDCA. This highlights one of the benefits of

adfSDCA, which does not require parameter tuning, and the specific step-size needed is

given explicitly in Theorem 1.3.1.

We also present plots showing the total running time for these algorithms. We follow the

set up in [13], and present the running time results using the heuristic algorithm adfSDCA+

with the shrinkage parameter set to s = 5 (see Section 1.4). Recall that the rcv1 dataset

25

0 5 10 15 20

Passes through data

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
l
a
t
i
v
e

P
r
i
m
a
l

O
b
j

ijcnn1, Quadratic Loss

dfSDCA

adfSDCA

SGD

SVRG+

SVRG, 2m

SVRG, m/2

0 5 10 15 20

Passes through data

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
l
a
t
i
v
e

P
r
i
m
a
l

O
b
j

rcv1, Quadratic Loss

dfSDCA

adfSDCA

SGD

SVRG+

SVRG, 2m

SVRG, m/2

0 2 4 6 8 10

Runing time

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
l
a
t
i
v
e

P
r
i
m
a
l

O
b
j

ijcnn1, Quadratic Loss

dfSDCA

adfSDCA+, s=5

SGD

SVRG+

SVRG, 2m

SVRG, m/2

0 50 100 150 200 250

Runing time

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
e
l
a
t
i
v
e

P
r
i
m
a
l

O
b
j

rcv1, Quadratic Loss

dfSDCA

adfSDCA+, s=5

SGD

SVRG+

SVRG, 2m

SVRG, m/2

Figure 1.3: A comparison of the number of epochs versus the relative primal object value
for SGD, dfSDCA, adfSDCA(+) and SVRG. SVRG+ denotes the parameter-tuned, best
performing SVRG algorithm, where m denotes the corresponding number of inner loop
iterations. We also show results for the SVRG agorithm using both m/2 and 2m inner loop
iterations, to demonstrate the performance of SVRG without optimal tuning.

has n = 20, 242 and d = 47, 237, so the number of samples is comparable to the number

of features. For this experiment, Figure 1.3 shows that the total running time needed for

adfSDCA+ is much less than SVRG. However, for the ijcnn1 dataset, SVRG outperforms

adfSDCA+ in terms of running time. To gain some insight into why this is happening, recall

that the ijcnn1 dataset has n = 49, 990 and d = 22, so the number of samples is much

more than the number of features. Note that adfSDCA+ must compute the residuals for

each coordinate at every iteration, and because the number of samples is far greater than

the number of feature, there is a high running time overhead for this non-uniform sampling

of coordinates for adfSDCA+. This suggests that it is beneficial to use adfSDCA when the

number of features is comparable with the number of samples.

Figure 1.4 shows the estimated density function of the dual residue |κ(t)| after 1, 2, 3, 4

and 5 epochs for both uniform dfSDCA and our adaptive adfSDCA. One observes that

the adaptive scheme is pushing the large residuals towards zero much faster than uniform

26

dfSDCA. For example, notice that after 2 epochs, almost all residuals are below 0.03 for

adfSDCA, whereas for uniform dfSDCA there are still many residuals larger than 0.06. This

is evidence that, by using adaptive probabilities we are able to update the coordinate with a

high dual residue more often and therefore reduce the sub-optimality much more efficiently.

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

mushrooms, Quadratic Loss, dfSDCA

Duality residuals

K
e

rn
e

l
d

e
n

si
ty

 f
u

n
c

ti
o

n

epoch = 1

epoch = 2

epoch = 3

epoch = 4

epoch = 5

0 0.02 0.04 0.06 0.08 0.1
0

20

40

60

80

100

120

140

mushrooms, Quadratic Loss, adfSDCA

Duality residuals

K
e

rn
e

l
d

e
n

si
ty

 f
u

n
c

ti
o

n

epoch = 1

epoch = 2

epoch = 3

epoch = 4

epoch = 5

Figure 1.4: Comparing absolute value of dual residuals at each epoch between dfSDCA and
adfSDCA.

1.6.2 Mini-batch adfSDCA

Here we investigate the behavior of the mini-batch adfSDCA algorithm (Algorithm 1.4). In

particular, we compare the practical performance of mini-batch adfSDCA using different

mini-batch sizes b varying from 1 to 32. Note that if b = 1, then Algorithm 1.4 is equivalent

to the adfSDCA algorithm (Algorithm 1.1). Figures 1.5 shows that, with respect to the

different batch sizes, the mini-batch algorithm with each batch size needs roughly the same

number of passes through the data to achieve the same sub-optimality. However, when

considering the computational time, the larger the batch size is, the faster the convergence

will be. Recall that the results in Section 1.5 show that the number of iterations needed by

Algorithm 1.4 used with a batch size of b is roughly 1/b times the number of iterations needed

by adfSDCA. Here we compute the adaptive probabilities every b samples, which leads to

roughly the same number of passes through the data to achieve the same sub-optimality.

27

0 2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

ijcnn1, Quadratic Loss

Passes through data
D

u
a

lit
y
 G

a
p

b = 1 (adfSDCA)

b = 2

b = 4

b = 8

b = 16

b = 32

0 100 200 300 400
10

−8

10
−6

10
−4

10
−2

10
0

ijcnn1, Quadratic Loss

Runing time

D
u

a
lit

y
 G

a
p

b = 1 (adfSDCA)

b = 2

b = 4

b = 8

b = 16

b = 32

0 2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

10
0

rcv1, Logistic Loss

Passes through data

D
u

a
lit

y
 G

a
p

b = 1 (adfSDCA)

b = 2

b = 4

b = 8

b = 16

b = 32

0 50 100 150 200 250 300
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

rcv1, Logistic Loss

Runing time
D

u
a

lit
y
 G

a
p

b = 1 (adfSDCA)

b = 2

b = 4

b = 8

b = 16

b = 32

Figure 1.5: Comparing the number of iterations of various batch size on different losses.

1.6.3 adfSDCA for non-convex loss

Here we investigate the behavior of adfSDCA when applied to problems that involve some

nonconvex loss functions. We describe the experimental set-up now. Suppose that we have

convex loss functions φi(xTi w), where i ∈ [n]. Then, it is possible to construct nonconvex

loss functions by subtracting a quadratic from each of the convex losses as follows:

φ̄i(x
T
i w) = φi(x

T
i w)− Ci‖w‖2. (1.42)

Note that if Ci > 0 is large enough (up to the Lipschitz gradient constant of φi(xTi w)), the

new loss φ̄i(xTi w) derived by (1.42) will be nonconvex. On the other hand, if Ci < 0, we will

have the new loss being strongly convex.

Now, functions of the form (1.42) will satisfy the requirements of Case II in Section 3.2

(i.e., that the individual loss functions can be nonconvex, but that the average over all the

losses is convex) as long as some of the hyperparameters Ci are large enough to make (1.42)

nonconvex and
∑n

i=1Ci = 0. Using this set-up, we present a numerical experiment to show

the practical performance of adfSDCA. The quadratic loss is applied in this experiment

28

due to that the new loss (1.42) would be nonconvex when Ci > 0, since the Hessian of

each quadratic loss of xi has the smallest eigenvalue 0. In particular, we let Ci = 0.01 ×

(−1)i, where i ∈ [n]. We use the mushrooms and ijcnn1 datasets for this experiment, and

because these datasets both have an even number of samples, the property that
∑n

i=1Ci = 0

will hold. The results of this experiment are shown in Figure 8, where we compare the

performance of adfSDCA with respect to the running time and number of passes over the

data. Figure 8 shows that adfSDCA performs well on such problems and is able to find an

accurate solution (where the duality gap is less than 10−10) in less than 20 passes over the

data.

0 5 10 15 20

Passes through data

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

D
u
a
l
i
t
y

G
a
p

ijcnn1, Quadratic Loss

adfSDCA-convex

adfSDCA-nonconvex

0 5 10 15 20

Passes through data

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

D
u
a
l
i
t
y

G
a
p

mushrooms, Quadratic Loss

adfSDCA-convex

adfSDCA-nonconvex

Figure 1.6: Comparing adfSDCA for two cases on quadratic loss.

1.7 Conclusion

In this chapter, we present dual free SDCA variants with adaptive probabilities for Empir-

ical Risk Minimization problems. The theoretical complexity of the proposed methods is

analyzed in two cases: when the individual loss functions are all convex and when the av-

erage over the losses is convex but individual loss functions may be nonconvex. A heuristic

variant of adfSDCA is proposed to reduce the computational effort required and its practical

convergence performance is demonstrated via a numerical experiment. We also extend our

convergence theory to cover a mini-batch adfSDCA variant and a novel nonuniform sampling

strategy for mini-batches is developed. Our experimental results show speedups in terms of

the number of passes through the data and/or running time of the proposed methods, when

compared with the original dual free SDCA, as well as other state-of-art primal methods.

29

The numerical experiments related to the use of mini-batches match our theoretical analysis

and suggest that using mini-batches is beneficial in practice.

Acknowledgement

We would like to thank Professor Alexander L. Stolyar for his insightful help with Algo-

rithm 1.3.

30

Chapter 2

Large-scale Distributed Hessian-Free

Optimization for Deep Neural

Networks

2.1 Introduction

Deep learning has shown great success in many practical applications, such as image classi-

fication [43, 89, 27], speech recognition [31, 81, 1], etc. Stochastic gradient descent (SGD),

as one of the most well-developed method for training neural network, has been widely

used. Besides, there has been plenty of interests in second order methods for training deep

networks [51]. The reasons behind these interests are multi-fold. At first, it is generally

more substantial to apply weight updates derived from second order methods in terms of

optimization aspect, meanwhile, it takes roughly the same time to obtain curvature-vector

products [39] as it takes to compute gradient which make it possible to use second order

method on large scale model. Furthermore, computing gradient and curvature information

on large batch (even whole dataset) can be easily distributed across several nodes. Recent

work has also been used to reveal the significance of identifying and escaping saddle point

by second order method, which helps prevent the dramatic deceleration of training speed

around the saddle point [17].

31

Line search Newton-CG method (also known as the truncated Newton Method), as one

of the practical techniques to achieve second order method on high dimensional optimization,

has been studied for decades [65]. Recent work to apply Newton-CG method has been proved

as a practical and successful achievement on training deep neural network[51, 39]. Indeed,

for Newton-CG method, at each iteration, an approximated Hessian matrix is constructed,

and naïve conjugate gradient (CG) method is applied to obtain a descent direction. The

naïve CG method is, however, designed to solve positive definite systems, i.e., it requires

the approximate Hessian matrix to be positive definite. Otherwise, the CG iteration is

terminated as soon as a negative curvature direction is generated. Note that Newton-CG

method does not require explicit knowledge of Hessian matrix, and it requires only the

Hessian-vector product for any given vector. One special case for using Hessian-vector

product is to train deep neural network, also known as Hessian-free optimization, and such

Hessian-free optimization is exactly used in Marten’s HF [51] methods.

As discussed in [17], identifying and escaping saddle points significantly improve training

performance. This implies the necessity to use negative curvature direction. Conventionally

with Newton-CG methods, the negative curvature direction is simply ignored, which may

lead to unsatisfactory training. In this chapter, we highlight the importance of the using

of negative curvature direction and the its impact therein on training, with a small demo

example. we go to further derive ways to find negative curvature direction and propose a

novel algorithm to use such negative curvature effectively.

Moreover, it is well known that traditional SGD method is inherently sequential and be-

comes very expensive (time-to-train) to apply on very large data sets. More detail discussion

can be found in [102], wherein Momentum SGD (MSGD) [92], ASGD and MVASGD [70],

are considered as alternatives. However, it is shown that these methods have limited scaling

potential, due to the limited concurrency. However, unlike SGD, Hessian-free methods (in

this work, we are focus on full gradient and stochastic Hessian-vector product evaluation)

can be distributed naturally, allow for large mini-batch sizes (increased parallelism) while

improving convergence rate and also the better the quality of solution - we are therefore

motivated to develop a distributed variant of Hessian-free optimization.

In this chapter, we explore the Hessian-free methods to develop more robust and scalable

32

Hidden Layer 1

Hidden Layer 2

Output

Input

Forward Propagation

Hidden Layer 1

Hidden Layer 2

Output

Backward Propagation

No
de

 1

No
de

 1

No
de

 2

No
de

 2

Al
l S

am
pl

es

Al
l S

am
pl

es

Al
l S

am
pl

es

Al
l S

am
pl

es

Exchange Activation

Exchange Activation

Exchange Deltas

Exchange Deltas

Hidden Layer 1

Hidden Layer 2

Output

Input

Forward Propagation

Hidden Layer 1

Hidden Layer 2

Output
Backward Propagation

No
de

 1

No
de

 1

No
de

 2

No
de

 2

Pa
rti

al
 S

am
pl

es

Pa
rti

al
 S

am
pl

es

Pa
rti

al
 S

am
pl

es

Pa
rti

al
 S

am
pl

es

Hidden Layer 1

Hidden Layer 2

Hidden Layer 1

Hidden Layer 2

Exchange Gradient

Figure 2.1: Model (left) and data (right) parallelism.

solver for deep learning. We discuss novel ways to utilize negative curvature information to

accelerate training speed. This is different with original Marten’s HF, where the negative

curvature is ignored by either using Gauss-Newton Hessian approximation or truncated

Newton method. We perform experimental evaluations on two datasets without distortions

or pre-training: hand written digits recognition (MNIST) and speech recognition (TIMIT).

Additionally, we explore Hessian-free methods in a distributed context. Its potential

scaling property is discussed, showcasing scaling potential of distributed Hessian-free method

and how it allows taking advantage of more computing resources without being limited by

the expensive communication.

2.2 Deep Neural Network in Distributed Environment

Training DNNs can be parallelized using the following two strategies - model parallelism

(we split weights across many computing nodes) and data parallelism (when the data is

partitioned across nodes).

Let us briefly explain how data and model parallelism works and what are the bottle-

necks if SGD is implemented in a distributed way choosing either parallelism approach as

depicted in Figure 2.1.

Model Parallelism. In the model parallelism the weights of network are split across

N nodes. In one SGD iteration all nodes work on the same data but each is responsible

only for some of the features. Hence after each layer they have to synchronize to have the

activations needed for the portion of the model they have for in next layer. For the backward

33

pass they have to also synchronize after each layer and exchange the δ’s used to compute

gradients. After gradients are computed they can be applied to weights stored locally.

If a mini-batch of size b is used and the weights for hidden layer have dimensions d1×d2,

then each node (if split equally) will have to store d1×d2
N floats. The total amount of data

exchanged over network for this single layer is d1 × b. If we consider a deeper network with

dimensions d1, d2, . . . , dl then the total number of floats to be exchanged in one epoch of SGD

is approximately 2 × n
b × b

∑
i di and total number of communications (synchronizations)

needed per one epoch is 2× l × n
b .

Data Parallelism. The other natural way how to implement distributed SGD for DNN

is to make a copy of weights on each node and split the data across N nodes, where each

node owns roughly n/N samples. When a batch of size b is chosen, on each node only b
N

samples are propagated using forward and backward pass. Then the gradients are reduced

and applied to update weights. We then have to make sure that after each iteration of SGD

all weights are again synchronized. In terms of data sent over the network, in each iteration

of SGD we have to reduce the gradients and broadcast them back. Hence amount of data

to be send over the network in one epoch is n
b × log(N)×

∑l
i=1 d0 × di, where d0 = d is the

dimension of the input samples. Total number of MPI calls per epoch is hence only n
b × 2

which is considerably smaller then for the model parallelism approach.

Limits of SGD. As it can be seen from the estimates for amount of communication

and the frequency of communication, choosing large value of b in the data parallelism will

minimize communication and for data parallelism also amount of data sent. However, as

it was observed e.g. in [93] SGD (even for convex problem) can benefit from mini-batch

only for small batch size b. After increasing b above a critical value b̃, number of iterations

needed to achieve a desired accuracy will not be decreased much if the batch size b > b̃.

Quite naturally this can be observed also for training DNN [16, 102, 88].

Benefits of Distributed HF. As we will show in following sections, distributed HF

need less synchronizations/communications per epoch. SGD requires synchronization af-

ter each update (mini-batch). In distributed HF, we only need synchronize once for one

full-gradient computing and other several times (much less than what we need of SGD, con-

sidering its limitation of using mini-batch size) which is related to number of CG iterations.

34

2.3 Distributed Hessian-free Optimization Algorithms

In this Section we describe a distributed Hessian-free algorithms. We assume that the size

of the model is not huge and hence we choose data parallelism paradigm. We assume that

the samples are split equally across K computing nodes (MPI processes).

2.3.1 Distributed HF optimization framework

Within this Hessian-free optimization approach, for the sake of completeness, we first state

the general Hessian-free optimization method [51] in Algorithm 2.1. Here θ ∈ RN is the

Algorithm 2.1 The Hessian-free optimization method
1: for k = 1, 2, . . . do
2: gk = ∇f(θk)
3: Compute/adjust damping parameter λ
4: Define Bk(d) = H(θk)d+ λd
5: pk = CG-Minimize(Bk,−gk)
6: θk+1 = θk + pk
7: end for

parameters of this neural network. At k-th iteration, full gradient of error function f(θk) is

evaluated and (approximated) Hessian matrix is defined as H(θk). Based on this (approxi-

mated) Hessian and a proper damping parameter, which aims to make the damped Hessian

matrix Bk positive definite and/or avoid Bk being singular. Following this, a quadratic

approximation of f around θk is constructed as

mk(d) := f(θk) + gTk d+
1

2
dTBkd. (2.1)

If Bk is positive definite, then we can obtain Newton step dk by letting dk := arg mindm(d) =

−B−1
k gk. Otherwise, we solve mindm(d) by CG method and choose the current iteration

whenever a negative curvature direction is encountered, i.e., exist a vector p, such that

pTBkp < 0. If the negative curvature direction is detected at the very first CG iteration,

the steepest descent direction −gk is selected as a descent direction.

Marten [51] modified Algorithm 2.1 in several ways to make it suitable for DNNs. Within

neural network, Hessian-vector can be calculated by a forward-backward pass which is

roughly twice the cost of a gradient evaluation. On the other side, due to non-convexity

35

of error function f , Hessian matrix is more likely to be indefinite and therefore a Gauss-

Newton approximated Hessian-matrix is used. Note that Gauss-Newton is positive semi-

definite matrix but it can be treated as a good approximation only if the current point is

close to local minimizer, which motivates our work to design a Hybrid approach. Moreover,

pre-conditioning and a CG-backtracking technique is used to decrease the number of CG

iterations and obtain best descent direction. However, it is claimed in [98] that such tech-

niques are not very helpful and even tend to make the degrade performance owing to the

increased compute and storage requirements. Therefore, we skip these steps and directly

move on to our distributed HF algorithm depicted in Algorithm 2.2. For example, to calcu-

Algorithm 2.2 Distributed Hessian-Free Algorithm
1: Initialization: θ0 (initial weights), λ (initial damping parameter), δ0 (starting point for CG solver),

N (number of MPI processes), distributed data
2: for k = 1, 2, . . . do
3: Calculate gradient ∇f[i](θk) on each node i = 0, . . . , N − 1

4: Reduce ∇f[i](θk) to root node to obtain full gradient gk = 1
N

∑N−1
i=0 ∇f[i](θk)

5: Construct stochastic (approximated) Hessian-vector product operator Gk(v)
• Calculate Hessian-vector product ∇2f[i](θk)v corresponding to one Mini-batch on each node

i = 0, . . . , N − 1
• Reduce ∇2f[i](θk)v to root node to obtain Gk(v) = 1

N

∑N−1
i=0 ∇

2f[i](θk)v
6: Solve (Gk + λI)(v) = −gk by CG(BI-CG) method with starting point 0 or ηδk−1 (λ is damping and

η is decay)
7: Use CG solution sk or possible negative curvature direction dk to find the best descent direction δk
8: Update λ by Levenberg-Marquardt method (Marten 2010)
9: Find αk satisfying f(θk + αkδk) ≤ f(θk) + cαkg

T
k δk (c is a parameter)

10: Update θk+1 = θk + αkδk
11: end for

late full gradient (or Hessian vector product needed by CG solver), each node is responsible

for computing the gradient (Hessian vector product) based on data samples stored locally.

A reduction step is followed to aggregate them to a root node.

2.3.2 Dealing with Negative Curvature

As mentioned in [17], to minimize a non-convex error functions over continuous, high di-

mensional spaces, one may encounter proliferation of saddle points which are surrounded by

high error plateaus. One shortage coming from the use of first-order methods like SGD is

that it can not recognize curvature information, and therefore dramatically slow down the

learning rate around such saddle points. The saddle-free Newton method (SFN) [17] is then

proposed to identify and escape such saddle points. However, they build an exact Hessian

36

to accomplish SFN on a small size neural network. However, this is impractical or even

infeasible for medium or large scaled problems. In this chapter, we propose another method

to exploit the local non-convexity of the error function even for a large size network.

A negative curvature direction at current point θ of function f is defined as a vector

such that the direction is descent (gTd ≤ 0) and also is dominant in the negative eigenspace

(dTHd < 0), where g,H are gradient and Hessian of f at point θ.

One naïve way how to find a negative curvature direction is to choose an eigenvector u

associated with a negative eigenvalue of H. Then a possible curvature direction is chosen

from {−u,+u} to ensure that gTd ≤ 0. Note that if positive semi-definite, no negative

curvature direction can be found. In general, it is computationally expensive to find an

eigenvector associated with smallest eigenvalue. Therefore a parameter µ ∈ (0, 1) is chosen

and a sufficient negative descent direction should satisfy dTHd ≤ min(0, µλmin(H)), where

λmin(H) is the smallest eigenvalue of H.

−2

−1

0

1

2

−2

−1

0

1

2

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2.2: A simple 2D example which has one saddle point (0, 0) and two local minimizer
(0, 1) and (0,−1).

In other words, we intend to find negative curvature directions, (i.e., direction d such that

dTH(x)d < 0). Actually, along with those negative directions, the approximated quadratic

model is unbounded below, which shows potential of reduction at such direction (at least

locally, while the quadratic approximation is valid). It was shown in [67] that if algorithms

uses negative curvature directions, it will eventually converge to second order critical point.

We show a 2D example [61] in Figure 2.2, where the function is f(x, y) = 0.5x2+0.25y4−

37

0.5y2. It is easy to obtain that

∇f = (x, y3 − y)T , and ∇2f =

1 0

0 3y2 − 1

 (2.2)

and therefore three stationary points are obtained. Starting with any initial point of

the form (x, 0)T , the (stochastic) gradient descent method will always converge to saddle

point (0, 0)T . Actually, even for common second order method (Naïve Newton method [65],

Truncated Newton method [65, 51], Saddle Free Newton method [17]), they all converge

to saddle point (0, 0)T . The reason is that none of such algorithm can provide a direction

along y-axis, which is a negative curvature direction. In this 2D-example, negative curvature

direction can be chosen as d = (0,−1)T (the eigenvector associated to negative eigenvalue

−1 of ∇2f) at saddle point (0, 0)T and therefore, we escape saddle point (0, 0)T and achieve

local minimum.

We are now ready to show an improved method to find a possible negative curvature by

stabilized bi-conjugate gradient descent (Bi-CG-STAB, Algorithm 2.3), which is a Krylov

method that can be used to solve unsymmetrical or indefinite linear system [77]. The benefits

of using Bi-CG-STAB is that we can use exact stochastic Hessian information (which may

not be positive definite) instead of using Gauss-newton approximation, which will lose the

curvature information. It is shown in [51] that HF-CG is unstable and usually fails to

convergence. The reason behind that is a fact that HF-CG ignores negative curvature.

At the point where the Hessian has relative large amount of negative eigenvalues, it is also

inefficient to find a descent direction by restarting the CG solver and modifying the damping

parameter.

To use BI-CG-STAB, we set a fixed number of CG iterations [39] and choose the candi-

dates of descent direction for CG-backtracking [51] by letting d̃ = −sign(gTd)d. Therefore,

at each CG iteration, either an inexact CG solution where d̃THd̃ > 0, gT d̃ < 0 is found or

an negative curvature direction where d̃THd̃ < 0, gT d̃ < 0 is found.

38

Algorithm 2.3 Bi-CG-STAB Algorithm
1: Compute r0 := b−Ax0. Choose r∗0 such that (r0, r

∗
0) 6= 0

2: p0 := r0, k := 0
3: if Termination condition not satisfied then
4: αj := (rj , r

∗
0)/(Apj , r

∗
0)

5: sj := rj − αjApj
6: γj := (sj , Asj)/(Asj , Asj)
7: xj+1 := xj + αjpj + γjsj
8: rj+1 := sj − γjAsj
9: βj :=

(rj+1,r
∗
0)

(rj ,r∗0) ×
αj
γj

10: pj+1 := rj+1 + βj(pj − γjApj)
11: end if

50 100 150 200 250 300 350 400 450 500

10
−2

10
−1

MNIST, 3 layers

Number of Iteration

O
b

je
c

ti
v
e

 V
a

lu
e

SGD(128)

hess−cg(512)

ggn−cg(512)

hess−bicgstab(512)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

MNIST, 3 layers

Effective Passing over Data

O
b

je
c

ti
v

e
 V

a
lu

e

SGD(128)

hess−cg(512)

ggn−cg(512)

hess−bicgstab(512)

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

MNIST, 3 layers

Number of Communications

O
b

je
c

ti
v

e
 V

a
lu

e

SGD(128)

hess−cg(512)

ggn−cg(512)

hess−bicgstab(512)

Figure 2.3: Performance comparison among SGD and Hessian-free variants.

2.4 Numerical Experiments

We train MNIST (images) and TIMIT (speech) dataset with various number of hidden

layers and hidden units. Note that we do not do any distortions or pre-training for these

two dataset as we are interested in scaling and stability of the methods.

2.4.1 Comparison of Distributed SGD and Distributed Hessian-free Vari-

ants

In Figure 2.3 we train MNIST dataset with one hidden layers of 400 units, with N = 16

MPI processes and compare the performance of four algorithms in terms of the objective

value vs. iterations (left), effective passes over data – epochs (middle) and number of

communications (right). Note that for presentation purposes we count one epoch of SGD

as "one iteration", even-though it is n/(N × b) iterations. If we look on the evolution of

objective value vs. iterations, all algorithms looks very comparable, however, if we check

the evolution of objective value vs. epochs, we see that each iteration of second order

method requires multiple epochs (one epoch for computing full gradient and possibly many

39

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Tr
a

in
 E

rr
o

r

SGD, b=64

SGD, b=128

ggn−cg, b=512

hess−bicgstab, b=512

hess−cg, b=512

hybrid−cg, b=512

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Tr
a

in
 E

rr
o

r

SGD, b=64

SGD, b=128

ggn−cg, b=1024

hess−bicgstab, b=1024

hess−cg, b=1024

hybrid−cg, b=1024

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Tr
a

in
 E

rr
o

r

SGD, b=64

SGD, b=128

ggn−cg, b=2048

hess−bicgstab, b=2048

hess−cg, b=2048

hybrid−cg, b=2048

100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Te
st

 E
rr

o
r

SGD, b=64

SGD, b=128

ggn−cg, b=512

hess−bicgstab, b=512

hess−cg, b=512

hybrid−cg, b=512

100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Te
st

 E
rr

o
r

SGD, b=64

SGD, b=128

ggn−cg, b=1024

hess−bicgstab, b=1024

hess−cg, b=1024

hybrid−cg, b=1024

100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Te
st

 E
rr

o
r

SGD, b=64

SGD, b=128

ggn−cg, b=2048

hess−bicgstab, b=2048

hess−cg, b=2048

hybrid−cg, b=2048

Figure 2.4: Performance comparison among various size of mini-batches on different methods
(3 plots above). The neural network has two hidden layers with size 400, 150.

more for a line-search procedure). This can be seen as the trade-off due larger mini-batch

sizes, because of which the number of updates within an epoch (one-pass through all the

samples) is reduced. We currently looking into methods to address this issue which typical

of large-batch second order methods. We would like to stress, that in a contemporary high

performance clusters each node is usually massively parallel (e.g. in our case 2.65 Tflops)

and communication is usually a bottleneck. The very last plot in Figure 2.3 shows the

evolution of objective value with respect to communication. As it is apparent, SGD needs

in order of magnitude more communication (for 1 epoch it needs n/(Nb) communications).

However, increasing b would decrease number of communications per epoch, but it would

significantly decrease the convergence speed. We can also see that SGD got stuck around

training error 0.01, whereas second order methods continues to make significant additional

progress.

In Figure 2.4 we show how increasing the size of a batch, i.e., from 512 to 2048 is

accelerating convergence of second order methods. On contrary, increasing batch size for

SGD from b = 64 to b = 128 (beyond which the SGD-performance largely deteriorates).

This also implies that increasing batch size to decrease communication overhead of SGD will

slow down the method. Hybrid-CG is a method that uses Hessian information and Gauss-

Newton information alternatively. At the beginning, when the starting point may be far

away from local minimizer, we use Hessian-CG method and whenever a negative curvature

40

10
1

10
2

10
3

10
2

10
3

MNIST, 4 layers

Size of Mini−batch

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

ggn−cg

hess−bicgstab

hess−cg

hybrid−cg

Figure 2.5: Number of iterations required to obtain training error 0.02 as a function of batch
size for second order methods.

is encountered, we turn to use Gauss-Newton Hessian approximation for next iteration, and

after this iteration, Hessian-CG is used again. The intuition behind it is that we want to use

the exact Hessian information as much as possible but also expected to have a valid descent

direction at each iteration. From Figure 2.4, we observe that unlike SGD method, Hessian-

free variants (except Hessian-CG), are able to make further progress by reducing objective

value of error functions, as well as training error continuously. Meanwhile, our proposed

Hessian-Bi-CG-STAB outperforms other Hessian-free variants, which shows consistently in

all three figures (and others figures in Appendix). If we consider the scaling property in

terms of mini-batch, we can see that as the size of mini-batch increase, Hessian-free variants

actually performs better. The intuition behind it is that larger b is making the stochastic

Hessian approximation much closer to the true Hessian. Figure 2.4 right shows scaling of

convergence rate as a function of mini-batch. In the plot, b represents the size of mini-batch

and the y-axis is the number of iteration the algorithm needed to hit training error 0.04. We

see that as we increase the size of mini-batches, it takes less iteration to achieve a training

error threshold. The reason is that with a larger mini-batches, we are able to approximate

the Hessian more accurate and it is then good to find an aggressive descent direction.

41

2.4.2 Scaling Properties of Distributed Hessian-free Methods

Let us now study scaling properties of existing and proposed distributed Hessian-free meth-

ods. All experiments in this section were done on the large TIMIT speech recognition

data-set, with 360 features, 1973 classes, and 1013950 samples. The samples are split into

two parts, where we use 70% as training data-set and 30% as testing data-set. The network

is set to have 3 fully-connected hidden layers with 512 units each. In Figure 2.6 (top-left)

we show the scaling or all studied second order methods with respect to the number of

nodes. Each node has two sockets, which correspond to two non-uniform memory (NUMA)

regions. To exploit this we run a MPI rank per socket and within the socket we use the

multi-threaded Intel MKL functions for the BLAS kernels (sgemm, sgemv), which make up

the core compute - to utilize the available 18 cores.

The picture on left shows how the duration of one iteration scale with number of nodes for

various size of batch size. Observe, that the scaling is almost linear for values B ≥ 4096.

Actually, the small batch size is the primary bottleneck for scaling because of the limited

parallelism. Hence this larger batch-size (increased parallelism) is essential for scaling to

larger number of nodes. As was show in 2.4 large batch-size are generally only beneficial

for second order methods (as opposed to SGD). Figure 2.6 (top, last 3 plots) shows the

speed-up property of the 3 main components of the second order algorithm. Note that

both gradient computation and line search inherit similar behavior as the total cost of one

iteration. In case of CG, we see that the time of one CG is increasing with increasing size

of nodes. The reason for it is that Hessian-vector product is evaluated only for one batch

(whose time should be independent from the number of nodes used) but the communication

time is naturally increased with mode nodes. It reminds us to remark that the time of com-

munication in this case is comparable to the local compute and hence the pictures suggest

very bad scaling. Let us stress that the time of one CG is in order of magnitude smaller

then computing of full gradient or line search procedure. As an immediate next step, we are

looking into more comprehensive characterization of the compute and bottleneck analysis

of both single and multi-node performance. Figure 2.6 (bottom) shows the each batch size

the time of 3 major components of the algorithm.

42

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
O

n
e

 G
ra

d
ie

n
t

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
O

n
e

 C
G

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
O

n
e

 L
in

e
 S

e
a

rc
h

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

TIMIT, T=18, b=512

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

TIMIT, T=18, b=1024

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

TIMIT, T=18, b=4096

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

10
3

TIMIT, T=18, b=8192

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

Figure 2.6: Performance scaling of different part in distributed HF on upto 32 nodes (1,152
cores).

2.5 Conclusion

In this chapter, we revisited HF optimization for deep neural network, proposed a distributed

variant with analysis. We showed that unlike the parallelism of SGD, which is inherently

sequential, and has limitation (large batch-size helps to scale but leads to slows convergence).

Moreover, a cheap way to detect curvature information and use negative curvature direction

by using BI-CG-STAB method is discussed. It is known that to use of negative curvature

direction is essential on improving the training performance. Furthermore, a Hybrid variant

is discussed and applied. We show a significant speed-up by applying distributed HF in

numerical experiment and the basic comparison among SGD and other HF method shows

competitive performance.

43

Chapter 3

Steps towards Successful Training of

Deep Neural Networks Using Second

order Optimization Methods

In this Chapter, we explore second order algorithms developed for the very recent useful areas

of machine learning, namely deep learning networks. First we discussed the general form of

the deep neural network in mathematic formula and some brief discussion of recent work and

our work. Then a more detailed introduction in terms of different network architectures and

first/second order oracles as the supportive of our algorithms are discussed. The following

content discussed mainly on our proposed second order algorithms and observation obtained

from our numerical experiments. The conclusion and future word are stated at the end of

this Chapter.

3.1 Introduction

Deep neural networks models has been used for achieving state-of-the-art results on a wide

variety of tasks including image-classification and objects recognition [20, 43], Natural Lan-

guage Processing [31], speech recognition [26], etc. In the past few decades, many different

neural network architectures have been considered to apply on real-world applications Con-

volutional Neural Networks (CNNs) for processing data with a known grid-like structure, or

44

Recurrent Neural Networks (RNNs) for addressing tasks involving time dimension in data.

The development of pre-training, better forms of initialization [53], fruitful variants of train-

ing techniques and improved hardware have made it possible to train very deep network and

achieve excellent performance.

At the core of training deep neural networks exists a complex and highly nonconvex

optimization problem. For a muti-label classification problem, given n sample-label pairs

(xi, yi)
n
i=1, we construct neural network models h with respect to parameter θ to obtain the

predicted labels ŷi = h(xi, θ) for each input sample xi. If we denote the loss function for the

i-th sample by f(ŷi, yi), the overall training loss for the entire sample set is then defined by

F (X,Y ; θ) =
1

n

n∑
i=1

f(ŷi, yi), (3.1)

where the loss function fi(θ)
·

= f(ŷi, yi) may include the squared error ‖ŷi − yi‖2/2 and

the cross-entropy error −
∑

j(yij log(ŷij) + (1 − yij) log(1 − ŷij)). Note that all of the loss

functions are nonnegative. The ultimate goal is then to minimize the overall training loss

(3.1) to obtain the best parameter θ∗ such that the least classification error on both the

validation and testing datasets is achieved.

Currently, the most popular methodologies to train networks are in the category of

first-order (or gradient-based) optimization framework, like mini-batch stochastic gradient

method (MSGD), mini-batch stochastic gradient method with momentum (ASGD) [92], and

other variants such as Adagrad [22], Adadelta [101], Adam [38], etc. There are also plenty of

practical improving techniques to enhance the training performance, such as drop-out [90],

batch normalization [33], layer normalization [2], to name but a few.

Challenges. In training neural networks, especially when addressing deep neural networks

with a large amount of data samples, one of the main challenges is the relatively slow training

rate after some initial success as empirical evidence shown in [17]. Besides, computational

results claim that it is more likely to achieve better training/testing performance when the

optimization algorithms could help converge to a local minimizer of training loss function

defined in (3.1). However, since the models defined by deep neural networks are always

45

highly non-convex, the number of saddle points increases exponentially as the number of

hidden layers and corresponding neurons increases. Within the neighborhood of saddle

points, the first-order methods may hardly make progress due to the nearly zero gradient

of the loss function. Therefore, the first-order methods suffer to escape from saddle points

and show frustrating slow convergence rate after initial progress. Recent work [59] suggests

to add noise to the stochastic gradients to prevent slowdown near a saddle point. We will

also discuss the noising method later. In this chapter, our focus is on the second order

(curvature-based) methods which were also highlighted in [17].

The second order methods, as an alternative to training deep neural network, were widely

discussed in recently years. Examples include Hessian-free optimization in [51, 52], L-BFGS

optimization in [5] and saddle-free Newton (SFN) method in [17]. The extensions of the

original work including the improvement of the preconditioning matrix for conjugate gradient

(CG) solver [78], as well as the parallel/distributed variants for second order methods [28].

Among the previous works, either fully connected feed forward neural networks (DNNs) or

recurrent neural networks (RNNs) were considered.

Our main objective in this chapter is to explore second order methods and take advan-

tage of the negative curvature information to help escape saddle point efficiently. In thic

chapter, Inexact Stochastic Newton-CG method (SINNC) and Inexact Stochastic Trust Re-

gion method (SINTR) are proposed. We develop efficient ways to detect negative curvature

directions which can be used to overcome the saddle point issue described in [17]. We also

record the full Hessian eigenvalues distribution for visualizing the efficiency of our algorithms

in terms of escaping the saddle points and compare it with also first-order approaches which

will get stuck near saddle points. By visualizing the performance with respect to local min-

imal convergence, it clearly shows that our proposed second order methods will escape the

saddle while the first-order can hardly do this. Around the saddle point where the Hes-

sian contains negative eigenvalues, we are likely to get the negative descent direction and

converge to a semi-positive or nearly zero Hessian second order stationary point.

46

3.1.1 Fully Connect Deep Neural Network

Deep learning networks play an important role among various tools used for the machine

learning problems. They could be applied on both supervised learning like image classifica-

tion or speech classification and also unsupervised learning like auto-encoder for finding the

patterns and compressed representations of the data.

The good generalization properties of deep learning networks make it possible to tackle

complex problems where it is not efficient to abstract the underlined patterns and feature

representations.

We set a common used hand-written digits dataset named MNIST as an example for

illustration how the networks performed on the particular dataset. The MNIST dataset

consists of the pixel data of 60000 hand-written digits and all digits are range from 0-9. As

an small dataset for quick test of neural network performance, the MNIST dataset is used

widely.

The fully connected network is constructed by connecting every neuron in the previous

layer, and each connection has it’s own weight. It’s a general purpose of connection pattern

where no assumptions among the features are considered in the data.

3.1.2 Deep Convolutional Neural Network

Deep convolutional neural networks [43, 45, 89] are widely used in tasks like image classi-

fication, speech recognition, objective detection, etc. Such networks aim to track problems

with local similarity, where common feature representations could be shared among different

samples and equally likely to occur anywhere. In a convolutional layer, each neuron is only

connected to a few nearby neurons in the previous layer. The same set of weights (filter) is

used for deriving every neuron.

3.2 Second order Methods for Deep Neural Networks

In this Section, we follow Martens’ notation [51] to derive necessary oracles needed for

constructing the second order methods, mainly on loss value, gradient, and Hessian-vector

multiplication evaluation. Note that we mainly focused on network structure for supervised

47

learning like classification problem. As introduced in Section 3.1, a neural network could be

denoted by a function f(X;W), where X is the input fed into network andW represents the

set of weight matrix Wl and bias vector bl, ∀l ∈ [L] := {1, 2, . . . , L}. L is the total number

of layers and l represents a specific layer in the network.

We derive these oracles for fully connected layers (FC), convolutional layers (Conv), and

also loss layers(Loss), so that they could be applied on both fully connected network and

convolutional neural network. The input is representing as a matrix X ∈ Rd×N , where d is

the number of input features and N is the number of batch size we fed into networks, i.e.,

N samples are used for evaluating these oracles. Assume we are now at layer l, we are going

to derive the needed oracles in the following Section.

3.2.1 First Order Oracle

Loss value evaluation (lth → (l + 1)th layer):

• FC: For the fully connected layer, the input is formulated as a matrix al ∈ Rnl×N ,

and we further have

sl+1 = W T
l al + bl, (3.2)

where sl+1 ∈ Rnl+1×N are the units value before activation of the next layer and

Wl ∈ Rnl×nl+1 is the connected weights between layer l and l+ 1, and bl ∈ Rnl+1×N is

the bias term. Each layer computes the activations as

al+1 = φl+1(sl+1), (3.3)

where φl+1 adds non-linearity on each unit of the (l + 1)th layer. We denote unction φ

by the non-linear activation functions. The common used activation function including

sigmoid function, tanh function or Relu function and its variants (PRelu, LRelu), as

follows:

φ(x) =

1
1+e−x , sigmoid,

ex−e−x
ex+e−x , tanh,

max{0, x}, Relu.

(3.4)

48

The φl : Rnl → Rnl is then defined as a vectorized function for applying the activation

function φ to each unit of lth layer, respective.

• Conv: For the convolutional layer, the input is formulated as a 4d tensor al ∈

RN×dl×hl×wl , where nl = dl×hl×wl is the number of units at the lth layer input, also

dl, hl, wl are remarked as depth, height, and width of layer input, respectively. The

units value of the (l + 1)th layer sl+1 ∈ RN×dl+1×hl+1×wl+1 is then computed as

(sl+1)(p,i,j,p̂) =

Îl∑
î=0

Ĵl∑
ĵ=0

dl∑
k̂=0

(Wl)(p̂,̂i,ĵ,k̂)(al)(p,i+î,j+ĵ,k̂) + (bl)(p,i,j,p̂) (3.5)

for (p, i, j, p̂) ∈ [N, dl, hl, wl], whereWl ∈ Rdl+1,Îl,Ĵl,dl is the filter weights between layer

l and l+ 1, and b ∈ RN×dl+1×hl+1×wl+1 is the bias term. We also denote this operator

as sl+1 = convf(Wl, al) + bl and the operator will be used in second order oracle as

well. It follows with

al+1 = φl(sl+1). (3.6)

for getting the output of (l + 1)th layer.

• Loss: For the loss layer, the input is formulated as a matrix al ∈ RnL×N where nL

is the number of units of the last layer and y are the expected output provided by

original data. Then the loss value of the network is derived as

f(X;W) = `(aL, y). (3.7)

where ` could be chosen as the square loss where

`(al, y) =
1

2N

N∑
i=1

‖(al)i − yi‖2

or softmax-cross-entropy loss if for probabilistic classification problem where

`(al, y) =
1

N

N∑
i=1

nL∑
j=1

yij log(softmax((aL)i)j)

and softmax(a) := ea/
∑nL

i=1 e
a,∀a ∈ RnL is the softmax operator to normalize a into

49

[0, 1].

Note that by following the procedure, one could derive the total loss value. The final

loss of the network is average sum of losses for each sample (each batch). Therefore the

gradient can be computed by summing the gradient for different sample. Many studies

use first order information in order to train the network. The most popular method is

named Stochastic Gradient Descent (SGD) method, since the stochastic gradient would be

computed separately regarding each sample (each batch). Whenever it comes a new sample,

one could easily update the gradient and update the weights in the network by a cheap

iteration of SGD.

In practice, the most important methodology to compute the (stochastic) gradient is

name back-propagation described as follows. By applying the chain rule at each layer for

propagating the error through the network, the gradient in terms of all weights and bias can

be obtained.

Gradient evaluation ((l + 1)th → lth layer):

• Loss: For the loss layer, the gradient of update is derived based on activations given

by the forward propagation. Therefore we have

∂f

∂aL
= ∇aLf(aL, y), (3.8)

where aL ∈ RnL×N is the output the last layer (Lth layer).

• Conv: For the convolutional layer, the gradient of update is derived as follows, the

input is a 4d-tensor ∂f
∂al

at layer l, and the output is another 4d-tensor ∂f
∂al−1

at layer

l − 1. We denote ◦ by the operator for computing the elementwise product of two

vector. By applying the chain rule, the wanted gradient ∂f
∂Wl

and ∂f
∂bl

could be derived

50

as follows:

∂f

∂sl
=
∂f

∂al
◦ φ′(sl), (3.9)

∂f

∂Wl
= convbw(

∂f

∂sl
, al−1), (3.10)

∂f

∂bl
= convbw(

∂f

∂sl
, Il−1), (3.11)

∂f

∂al−1
= convba(Wl,

∂f

∂sl
), (3.12)

where It−1 is defined as the all one element 4d tensor of the same size as al−1. And

similar to the operator convf , the operator convbw for calculating ∂f
∂Wl

is defined as

following:

(
∂f

∂Wl
)(p,i,j,k) =

hl∑
î=0

wl∑
ĵ=0

dl−1∑
k̂=0

(
∂f

∂sl
)(p,̂i,ĵ,k)(al−1)(p,i+î,j+ĵ,k̂), (3.13)

for (p, i, j, k) ∈ [dl, Îl, Ĵl, dl−1] and the operator convba for calculating ∂f
∂al−1

is defined

as following:

(
∂f

∂al−1
)(p,i,j,k) =

Î∑
î=0

Ĵ∑
ĵ=0

dl∑
k̂=0

(Wl)(k,̂i,ĵ,k̂)(
∂f

∂sl
)(p,i−î,j−ĵ,k), (3.14)

for (p, i, j, k) ∈ [N,wl−1, hl−1, dl−1].

• FC: For the fully connected layer, the input is a matrix ∂f
∂al
∈ Rnl×N and the gradient

of update ∂f
∂Wl

and ∂f
∂bl

are derived as following

∂f

∂sl
=
∂f

∂al
◦ φ′(sl) (3.15)

∂f

∂Wl
=
∂f

∂sl
aTl−1 (3.16)

∂f

∂bl
=
∂f

∂sl
(3.17)

∂f

∂al−1
= Wl

∂f

∂sl
(3.18)

From which, we have prepared all necessary oracles to train neural network by first-order

methods.

51

3.2.2 Second Order Oracle

Beyond the first order oracle, to make use of the power of second order method, one could also

derive second order oracle for the networks. Note that to exact represent Hessian matrix (or

stochastic Hessian) can be impractical since the huge number of parameters involved when

training neural networks. On the other hand, since we could apply numerical algorithms such

as Conjugate Gradient (CG) descent as sub-routine in second order optimization framework.

It indicates that only the Hessian-vector multiplication is needed to use second order models.

The so-called R-operator is then introduced for computing Hessian-vector multiplications

[69].

Deriving R-Operator for Second order Information: In order to derive the second

order algorithm for training neural network. Pearlmutter[69] observed that Hessian-vector

multiplications (denoted by Hv) can be simply viewed as a directional derivative of gradient

∇f with respect to direction (v) as

Hv = lim
v→0

∇wf(w + rv)−∇wf(w)

r
=

∂

∂r
f(w + rv)|r=0. (3.19)

The R-operator is used to simplify the notation regarding the quantity as

Rvf(w) =
∂

∂r
f(w + rv)|r=0. (3.20)

It is then straightforward to show the following properties of this R-operator

Rv(af(w) + bg(w)) = aRvf(w) + bRvg(w), (3.21)

Rv(f(w)g(w)) = Rvf(w) · g(w) +Rvg(w) · f(w), (3.22)

Rv(f(g(w))) = f ′(g(w))Rvg(w), (3.23)

Rvw = v. (3.24)

Note that Hv = ∇2f(w)v = Rv∇f(w) and the properties listed above, one could then

obtain Hessian-vector multiplication by applying the R-operator to the gradient compu-

52

tation methods. That’s to say, one could apply the first order oracle in Section 3.2.1 to

further derive the second order oracle. We also discussed those second order oracles for

different type of layers. Note that at the 0th layer a0 = X is constant function, therefore we

have Ra0 = 0. The input vector v is represented by (RWl,Rbl)Ll=1, and the Hessian-vector

multiplication Hv is represented by (R ∂f
∂Wl

,R ∂f
∂bl

)Ll=1.

R-value evaluation (lth → (l + 1)th layer):

• FC: For the fully connected layer, the input is formulated as a matrix al ∈ Rnl×N ,

and we further have

Rsl+1 = RW T
l al +W T

l Ral +Rbl, (3.25)

where Rsl+1 ∈ Rnl+1×N is the R-unit value before activation of the next layer and

Wl ∈ Rnl+1×nl is the connected weights between layer l and l + 1, RWl ∈ Rnl+1×ni

and Rbl ∈ Rnl+1×N construct the vector v between lth layer and (l + 1)th layer. The

activations as following

Ral+1 = Rsl+1 · φ′l(sl+1). (3.26)

• Conv: For the convolutional layer, the input is formulated as a 4d tensor al ∈

RN×dl×hl×wl , where nl = dl×hl×wl is the number of units at the lth layer input, also

dl, hl, wl are remarked as depth, height, and width of layer input, respectively. The

units value of the (l + 1)th layer sl+1 ∈ RN×dl+1×hl+1×wl+1 is then computed as

Rsl+1 = convf(RWl, al) + convf(Wl,Ral) +Rbl, (3.27)

where sl+1 ∈ RN×dl+1×hl+1×wl+1 is the unit value before activation of the next layer,

Wl ∈ Rdl+1,Î,Ĵ ,dl is the filter weights between layer l and l+1, and b ∈ RN×dl+1×hl+1×wl+1

is the bias term.

It follows with

Ral+1 = Rsl+1 · φ′l(sl+1). (3.28)

• Loss: For the loss layer, the input is formulated as a matrix al ∈ RnL×N where nL is

the number of neuron of the last layer. Note that we also have the loss value of the

53

network

f(X;W) = `l(al, y), (3.29)

where `l is the vectorized loss functions defined the same as previous section.

In practice, the most important methodology to compute the (stochastic) gradient is

name back-propagation described in the following algorithm. The algorithm implements

the chain rule at each layer in order to propagate the error through the network, it also can

be referred as automatic differential.

Loss: For the loss layer, the gradient of update is derived based on activations give by

the forward propagation. Therefore we have R ∂f
∂aL
∈ RnL×N and

R ∂f

∂aL
= (∇2

aL
f) ◦ φ′(sL) +WL ·

∂f

∂aL
◦ φ′′(sL) ◦ sL. (3.30)

Conv: For the convolutional layer, the gradient of update is derived based on the known

R ∂f
∂al

as follows

R ∂f
∂sl

= R ∂f

∂al
◦ φ′(sl) +Wl ·

∂f

∂al
◦ φ′′(sl) ◦ RsL, (3.31)

R ∂f

∂Wl
= convbw(R ∂f

∂sl
, al−1) + convbw(

∂f

∂sl
,Ral−1) (3.32)

R ∂f
∂bl

= convbw(R ∂f
∂sl

, Il−1) (3.33)

R ∂f

∂al−1
= convba(Wi,R

∂f

∂sl
) + convba(RWl,

∂f

∂sl
) (3.34)

FC: For the fully connected layer, the gradient of update is derived based on given R ∂f
∂aL

as following

R ∂f
∂sl

= R ∂f

∂al
◦ φ′(sl) +Wl ·

∂f

∂al
◦ φ′′(sl) ◦ RsL, (3.35)

R ∂f

∂Wl
= R ∂f

∂sl
aTl−1 +

∂f

∂sl
· RaTl−1 (3.36)

R ∂f
∂bl

= R ∂f
∂sl

ITl−1 (3.37)

R ∂f

∂al−1
= Wi · R

∂f

∂sl
+RWl ·

∂f

∂sl
. (3.38)

54

By continuously following those operators, one could derive the Hessian-vector multipli-

cation represented by (R ∂f
∂Wl

,R ∂f
∂bl

)Ll=1. We now have prepared all necessary oracles to train

neural network by second order methods.

3.2.3 Algorithms for Training Neural Networks

In this section, we briefly review the algorithms for training the network using second order

information. As we know in [65], the most common second order algorithms for solving

the unconstrained optimization problems is try to construct a reasonable second order ap-

proximation model of the original function and find the optimal point of the approximated

model. With respect of a minimization problem minx∈Rn f(x), at iterates xk, a quadratic

model mk(d) is built as

mk(d) = f(xk) +∇f(xk)
Td+

1

2
dTkBkdk, (3.39)

where Bk is the approximated Hessian information at current point xk. Depending on

how accurate the Bk is approximated to true Hessian, one could solve the problem for

achieve a good iterates for the next step. Considering that under neural works setting, it’s

impractical to derive the exact Hessian Hk or approximated Hessian Bk exactly. Therefore,

the use of conjugate gradient methods are much more popular among researchers, since in

conjugate gradient methods, the full representation of the matrix Bk is not required and

only matrix-vector multiplication is needed (derived in Section 3.2.2).

One issue that arise from the using of conjugate gradient method is the requirement of

the positive definiteness of the Hessian approximation, otherwise, the algorithm would be

broken down unexpectedly. In order to overcome the issue, Martens’ [51] proposed the use of

positive semi-definite approximation of the Hessian for the training process. The generalized

Gauss Newton (GN) matrix is used in his work. The GN matrix-vector multiplication could

be computed by applying the R-operator along with the back-propagation as well. However,

one other issue comes out that since GN is only the semi-positive definite approximation to

the actually Hessian, therefore, it may stop at a saddle point rather than a local minimum.

In other words, as it ignores the negative curvature direction of a non-convex problem, a

55

good convergence guarantee of local optimal is not obtained. Therefore, we aim to purpose

algorithm which would still use conjugate gradient method while able to explore negative

curvature information for further reduce the sub-optimality.

3.2.4 Saddle-points Issue on Training Neural Networks

In the paper [17], the saddle point issue is fully discussed in the field of training neural

networks. Experimental results claims that by escaping saddle points and achieve a local

minima of the train loss, one could achieve better performance of the networks. As stated

in [12], these local optimum could achieve the equal performance as global optimum, which

stress the importance of finding a local minimum and throw the request of escaping saddle

point. As stated in [17], the number of saddle point increases exponentially along with the

number of parameters. All the above illustrate that it’s important to escape saddle point

and achieve the local minimum for better training performance of neural network. Rong

Ge els’ [24] proposed the type of strictly saddle function and proved that the stochastic

gradient descent methods with noise would converge to local minimum in polynomial time

almost surely. Others work include the use of cubic regularization [62] which involves a

lower bounded third-order subproblem, the saddle-free method proposed by [17] that use

the absolute Hessian and trust region framework.

3.2.5 Almost Sure Convergence to a Local Minimizer

To the best of our knowledge, there haven’t been a close and full understanding of neural

network in the field of optimization. However, empirically, as discussed in [17], one key

point to improve neural network performance could be to escape numerous saddle points.

That is to say, one should look for an at least second order stationary point to improve the

training performance, where a second order stationary point is defined such that its gradient

of the objective function is zero and its Hessian is positive semi-definite. Recent work that

tries to achieve this include the, SFN (saddle-free Newton) method [17] and MSGD with

added noise [59], etc. It is known that, gradient-based algorithms are usually much sensitive

to the curvature condition [65] and therefore a proper learning rate is always required to

avoid dramatic oscillations and/or slow converge rate for those gradient-based algorithms.

56

However, the second order algorithms provide a much more powerful and elegant solution

to handle the curvature issue. Within the selective rescaling of gradient alone different

curvature direction, not only could we guarantee to find a descent direction, also we could

use line-search to expect sufficient reduction at each iteration.

We are now showing how second order methods could help us convergence to a local

minimizer almost surely. Several assumptions are claimed in the following subsection serving

for Theorem 3.2.5.

Assumption 3.2.1. The function F is twice continuously differentiable and bounded below

on the level set.

Assumption 3.2.2 (Lipschitz continuity). For any subset S ⊂ [n], there exists a constant

MS depending on the size of S, such that for any feasible θ and θ̂, we have ‖HS(θ) −

HS(θ̂)‖2 ≤MS‖θ − θ̂‖2.

Proposition 3.2.3 (Bounded Hessian). For any i ∈ [n], and θ ∈ C, if both Assumption 3.2.1

and Assumption 3.2.2 hold, we have that ‖∇2fi(θ)‖ is uniformly upper bounded by a constant

K, i.e., maxi∈[n] ‖∇2fi(θ)‖2 ≤ K.

Lemma 3.2.4. Assume that at each iteration t, St ⊂ [n] is sampled independently and

sufficiently large. For a fixed accuracy threshold ε, starting from 0, the direction dt generated

by SteihaugCG 1 solver will share at least the same reduction as the Cauchy point for the

approximate model mt(d).

We are now showing that there exists a c1 ∈ (0, 1], such that

mt(0)−mt(d) ≥ c1(mt(0)−mt(d
C)).

Theorem 3.2.5. Assume that at each iteration t, St ⊂ [n] is sampled independently and

sufficiently large such that Assumptions 3.2.2 holds, which indicates θ∗ ∈ C. The sequence

generated by Algorithm 3.2 (the Algorithm is described in Section 3.4) will converge to the

first order stationary point.
1The detailed SteihaugCG will be explained in Section 3.4.

57

Proof. At t-th iteration, we denote dC by the Cauchy-point of the approximated model,

where

dC = arg min
d∈span∇F ,‖d‖≤∆

mt(d).

From Lemma 4.5 [65], we know that the reduction of the approximation model at Cauchy

point is bounded by

mt(0)−mt(d
C) ≥ 1

2
‖gt‖min(rt,

‖gt‖
‖HSt‖

) ≥ 1

2
‖gt‖min(rt,

‖gt‖
K

).

The first-order stationary point convergence is then given by Theorem 4.9 of [65] since there

are more model reduction by the early terminated SteihaugCG solver solution than the

reduction obtained from Cauchy-point.

Convergence to a local minimizer. In [46] it was shown that gradient descent, when

applied to minimization of any h ∈ C2, will converge to strict saddle point with probability

zero.2 However, if we have a non-convex quadratic function and use exact Newton method,

we can converge to a saddle point just in one step. To utilize their results in our setting one

has to realize that both algorithms presented in this chapter are using just a sub-sampled

Hessian and also the Newton/Trust-region step is computed inexactly. Following the proofs

in [46]. One see that if we start the algorithm from a random initial point, there is a

zero probability that we would end-up in a point which lies in the subspace of a saddle

point which corresponds to only positive eigenvalues. Moreover, since function (3.1) is more

complex than a simple quadratic function and hence it is even less likely that we should

be sent to a point which would be attracted and not escape a strict saddle point (actually

due to a random choice of sub-sampled Hessian we can see that we are basically randomly

perturbing the solution and hence almost surely it will not end up in the lower-dimensional

positive eigen-space).
2ŵ is a strict saddle point if ŵ is a stationary point ‖∇h(ŵ)‖ = 0 and λmin(∇2h(ŵ)) < 0.

58

3.3 Inexact Stochastic Newton CG Method (SINNC)

We first state our SINNC algorithm as in Algorithm 3.1. At each iteration, the full gradient

is computed and used for finding an inexact stationary point corresponding to stochastic

Hessian. We force the direction to be descent by flipping its sign if necessary. The Amijo line

search is then followed to ensure sufficient reduction of the loss function at each iteration.

Note that unlike the Martens’ original method [51], which is actually truncated Newton-CG

method [65], we do consider negative curvature information indicated from the stochastic

Hessian matrix. And it’s also different from the saddle-free Newton (SFN) method proposed

in [17]. Our proposed method unitize the stochastic Hessian-vector product but there is no

need to evaluate the full Hessian, which is required by SFN methods.

Algorithm 3.1 Inexact Stochastic Newton-CG Method (SINNC)
1: Input: Sample and label pairs (xi, yi)

n
i=1, an initial iterate θ0, an initial CG starter d0

and CG iteration limit kmax, constant c ∈ (0, 1), sample size β ∈ [n].
2: for t = 0, 1, 2, . . . do
3: Evaluate full gradient gt = ∇F (θt).
4: Generate batch St ∈ [n] randomly so that |St| = β.
5: Apply the matrix-free CG solver to obtain an inexact solution dt of the possible

indefinite linear system
HStd = −gt.

6: Decide descent direction as
pt = −sgn(gTt dt)dt,

where sgn(x) = 1, if x ≥ 0, sgn(x) = −1 if x < 0.
7: Choose learning rate ηt as the largest element in the set {1, c, c2, ...} such that

F (θt + ηtpt) ≤ F (θt) + cηtg
T
t pt.

8: Update θt+1 = θt + ηtpt.
9: end for

3.3.1 Early Terminated CG for Indefinite System

To train neural network by second order methods, the stochastic Hessian matrix and stochas-

tic general Gaussian-Newton matrix are adopted as the approximation of the Hessian matrix

[51], and further build the stochastic quadratic approximated model depending on them.

59

Since training a deep neural network always involves a very large number of parameters, the

exact solution of minimizing the quadratic approximation is prohibitive. Instead, we try to

achieve a reasonable inexact solution in a computationally cost effective manner. Since the

conjugate gradient method (CG) is often used to achieve an increasingly accurate solution

after several iterations, we have decided to apply CG to minimize our quadratic model.

A known deficiency of the CG method is that it becomes unstable when an indefinite

Hessian matrix is encountered during the minimization of the quadratic model. The reason

behind is that with an indefinite Hessian matrix, we may not find a conjugate direction.

Several strategies have been proposed to deal that deficiency [65], such as to modify the

indefinite Hessian matrix so that the matrix can be positive and apply the CG solver after-

ward, or to apply a trust region approach which can always find a descent direction, or to use

truncated Newton method, which terminates CG iteration whenever the negative curvature

is encountered. In this chapter, we applied an early-terminated CG solver in order to find

an inexact solution for the quadratic model. With a good initial point, one could build a

sequence of conjugate directions (See definition 3.3.1). From which, we could guarantee to

reduce the residue of the system until the terminated condition is satisfied.

Definition 3.3.1. Let A ∈ Rn×n be symmetric and nonsingular. We say that the vectors

u, v ∈ Rn\{0}, u 6= v are HS-conjugate if uTAv = 0, uTAu 6= 0 and vTAv 6= 0.

We are going to prove that within this early terminated CG method, we could get an

approximated solution even for indefinite matrix and the proof is left at Appendix.

Lemma 3.3.2. Given the stochastic matrix HS ∈ Rn×n is symmetric and nonsingular,

for any x0 ∈ Rn such that p0 = HSx0 + g and pT0 HSp0 6= 0, let {pi}n−1
i=0 be a sequence

of nonzero HS-conjugate directions. Denote Pk = (p0, . . . , pk−1). Then the sequence xk

generated according to the rule

xk+1 = xk + αkpk and αk = −(HSxk + g)T pk
pTkHSpk

can be written as xk = x0 + Pky, where y is the unique solution of

P Tk HSPky − P Tk p0 = 0.

60

Denote x∗ by the solution of HSx+ g = 0, since we assume HS is nonsingular and then

x∗ = −HT
S g. Further we could show that the residue of ‖x∗−x0‖HS decrease monotonically,

which indicates that we obtain more accurate solution along with the early terminated CG

solver.

3.4 Inexact Stochastic Trust Region Method

In this Section, we propose an inexact stochastic trust region method using stochastic

Hessian-vector product and SteihaugCG solver to help escape saddle point.Trust region

methods are commonly used to enforce global convergence to such nonconvex optimization

problems. It relies on solving a bounded quadratic minimization problem mt(d) at each

iterate θt, which is constructed by using the approximated Hessian information. The bound

Ω of the quadratic model is chosen so that mt(d) remains a reasonable approximation of

F for any d ∈ Ω. Usually, it is a hard problem to find the exact solution of the quadratic

model, therefore, we rely on SteihaugCG which is introduced by [91] to obtain a reasonable

inexact solution.

SteihaugCG is a powerful CG variant to resolve the indefinite subproblem issue [65].

Followed by result of [100], we are able to show that SteihaugCG with stochastic Hessian

approximation (which is probably indefinite), would give as least the same reduction as

Cauchy point (see Theorem 3.2.5). There are also other variants that aim to use trust

region method for training deep neural network [97]. Note that the SFN method proposed

by [17] need to evaluate the full Hessian H exactly to accomplish eigenvalue/eigenvector

decomposition in order to build absolute Hessian |H| in their trust region based framework.

Our approach therefore saves much computation and it would be practical to apply in the

real training.

3.4.1 Steihaug Conjugate Gradient Descent Method

61

Algorithm 3.2 Inexact Stochastic Trust Region Method (SINTR)
1: Input: Sample and label pairs: (xi, yi)

n
i=1, initial parameter θ0, initial trust region

radius r0 ∈ (0, R). Given constants η0, η1, γ1, γ2, and ε, where 0 ≤ η0 < η1 < 1,
0 < γ1 < 1 < γ2, ε > 0. Sample size β ∈ [n].

2: for t = 0, 1, 2, . . . do
3: Evaluate full gradient gt = −∇F (θt).
4: Generate batch St ∈ [n] randomly so that |St| = β.
5: Build an approximation of F (θ) at θt, using stochastic Hessian HSt

mt(d) := F (θt) + gTt d+
1

2
dTHStd.

6: Apply early terminated Steihaug CG solver to obtain an inexact minimizer of
mt(d), i.e.,

dt = SteihaugCG(HSt , gt, rt, ε),

Note that in this case, dt is always a descent direction.
7: Set ρt = F (θt)−F (θt+dt)

mt(0)−mt(dt) ,
θt+1 = θt + dt, rt+1 = min{γ2rt, R}, ρt > η1,

θt+1 = θt + dt, rt+1 = rt, ρt ∈ [η0, η1],

θt+1 = θt, rt+1 = γ1rt, Otherwise.

8: end for

3.4.2 Accelerated SINTR with Adding Momentum

To further explore the advantages of second order methods, we are going to propose a novel

momentum for improving the escaping efficiency. Note that in our proposed Algorithm 3.1,

although we are able to escape the saddle point, it usually takes many iterations to ac-

complish this. The algorithm described at Algorithm 3.4 is to reduce the iterates need for

escaping. The difference between Algorithm 3.4 and Algorithm 3.2 is that we are making

the SINTR+ moves as far as possible from the starting point.

We achieve this heuristics in two steps. 1) As long as we derived the descent direction dt

from Algorithm 3.2, instead of using it directly with step-size equal to 1, an extra line search

is followed. Since we notice that around the saddle, the objective value always changes very

tiny, we therefore remove the sufficient reduction requirement for convergence guarantee and

aim to choose the largest step-size along dt. 2) After we achieve the furthest move along the

descent direction dt, we also add extra momentum for further performance improving. The

momentum is accumulated from the previous direction. This actually helps since we notice

62

Algorithm 3.3 Steihaug CG Solver for Possible Indefinite System: d =
SteihaugCG(Bt, gt,∆)

1: Input: Initial point d0 = 0, and let p0 = r0 = −gt − Btd0 = −gt, radius ∆, max cg
iterations kmax

2: if ‖r0‖ ≤ ε then
3: return: d = d0

4: end if
5: for k = 0, 1, 2, . . . do
6: if pTkBtpk ≤ 0 then
7: break
8: end if
9: αk =

rTk rk
pTkBtpk

10: dk+1 = dk + αkpk
11: if ‖dk+1‖ ≥ ∆ then
12: break
13: end if
14: rk+1 = rk − αkBtpk
15: if ‖rk+1‖ ≤ ε‖r0‖ then
16: break
17: end if
18: βk =

rTk+1rk+1

rTk rk

19: pk+1 = rk+1 + βkpk
20: if k = kmax then
21: break
22: end if
23: end for
24: Find τ such that d = dk + τpk and ‖d‖ = ∆
25: return: d

that near the saddle, the angles between any two adjacent iterates are very tiny in some

iterations (See Figure 3.1). It then motivated us to try future move along the momentum

direction νt. As stated in 1), as long as we could verify that νt is a descent direction, we

find the largest step-size for the momentum direction. The update for current iterate is then

defined as the sum of descent direction dt movement and extra momentum descent direction

νt. As shown in Figure 1, the reduction in the objective function by using SINTR+, is

achieved when there is substantial increase in the angle between consecutive iterations. In

contrast SINTR cannot sufficiently decrease the objective since the angles of consecutive

iterations are always small and do not fluctuate enough.

63

0 50 100 150 200 250 300

Iteration/epoch

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

sub-cifra10,SINTR

0 50 100 150 200 250 300

Iteration/epoch

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

sub-cifra10,SINTR+

0 50 100 150 200 250 300

Iteration/epoch

0

0.2

0.4

0.6

0.8

1

1.2

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085
sub-cifra10,SINTR

0 50 100 150 200 250 300

Iteration/epoch

0

0.2

0.4

0.6

0.8

1

1.2

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085
sub-cifra10,SINTR+

Figure 3.1: Evolution of angles between two adjacent iterative points (bottom row) and the
corresponding optimization performance of SINTR and SINTR+.

Algorithm 3.4 Accelerated SINTR with Adding Momentum (SINTR+)
1: Input: Initial momentum parameter ν0 = −e, constant 0 < c1 < c2 < ∞. Descent

direction dt derived from Algorithm 3.2. Momentum parameter c ∈ (0, 1).
2: Choose learning rate ηt ∈ (c1, c2) as the largest element such that

F (θt + ηtdt) ≤ F (θt).

3: Update θ̂t+1 = θt + ηtdt.
4: Set νt = cνt−1 + ηtdt and flip its sign so that νt is a descent direction at θ̂t+1.
5: Choose momentum parameter γt ∈ (c1, c2) as the largest element such that

F (θ̂t+1 + γtνt) ≤ F (θ̂t+1).

6: Update θt+1 = θ̂t+1 + γtνt.

3.5 Numerical Results

We show our numerical experiments and results discussion in this Section . Our purpose is

to illustrate the performance of different algorithms in terms of escaping saddle points and

show consistent evidence why we believe that the second order methods will success in the

field of training deep neural networks.

We will track the evolution of the full Hessian at each iterates of various algorithms.

By doing this, we are able to show the curvature information evolution of the training loss

function. Note that it is highly computational demanding to obtain the exact full Hessian in

general, letting alone to identify the exact eigenvalues distribution of the Hessian. Therefore,

64

0 50 100 150 200 250 300

0.04

0.05

0.06

0.07

0.08

0.09

sub−cifra10

Iteration/epoch

O
b

je
c

ti
v

e
 V

a
lu

e

MSGD

NSGD

ASGD

Martens−G

Martens−H

SINNC

SINTR+

0 50 100 150 200 250 300

0.91

0.92

0.93

0.94

0.95

0.96

0.97

sub−cifra10

Iteration/epoch

Tr
a

in
 A

c
c

u
ra

c
y

MSGD

NSGD

ASGD

Martens−G

Martens−H

SINNC

SINTR+

Figure 3.2: Objective value and Training error evolution on various methods on sub-cifra10
dataset starting with a nearly saddle point (gradient norm close to 10−6). Within the first-
order methods like MSGD, ASGD and NSGD, there are not much difference among them in
terms of escaping saddles and they are all worse than the second order methods. SINTR+
performance the best.

we down sample MNIST and CIFRA10 dataset to have a reasonable number of parameters

for our evaluation. We also do experiments on the full MNIST, CIFRA10 to show the

superior performance of our purposed algorithms. The dataset set description and network

setting (FC1, FC2, FC3) are shown at Table 3.1. The detailed configuration can be found

in Appendix.

Dataset #Features #Classes #Samples Networks
sub-MNIST 100 2 640 FC1
sub-CIFRA10 1024 10 6400 FC2
MNIST 784 10 60000 FC3
CIFRA10 3072 10 50000 FC3

Table 3.1: A list of datasets used in numerical experiments. The prefix sub stands for a
down-sampled version of corresponding dataset. All dataset are fitted into the classification
model.

3.5.1 Comparison Results Among Various Escaping Approachs

We highlight the performance of common used training methods including MSGD, ASGD[92],

NSGD[59], Martens-H[51], Martens-G[51], and also our proposed SINNC, SINTR and SINTR+

methods. All algorithms are fine-tuned to show their best performance. In this experiment,

we choose the starting point such that its norm of full gradient ∇F is very tiny (around

10−6), which indicates that it is very close to a saddle point. We concern the evolution of

loss objective function value F , norm of full gradient ∇F , training accuracy Acc on all the

algorithms and show comparison of different escaping performance in Figure 3.2.

It’s claimed in [24] that for a strict saddle function, which is defined such that at any

65

0 50 100 150 200 250 300

Iteration/epoch

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

sub-cifra10,SINTR+

0 50 100 150 200 250 300

Iteration/epoch

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

sub-cifra10,ASGD

0 50 100 150 200 250 300

Iteration/epoch

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

sub-cifra10,SINTR+

0 50 100 150 200 250 300

Iteration/epoch

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

sub-cifra10,ASGD

Figure 3.3: Objective value, Gradient norm and Training error evolution on SINTR+ and
ASGD in first 300 iterations
stationary point that is not a local minimizer, there must be at least one negative eigenvalue

at the point, the naive MSGD method with a suitable noise will almost surely converge

to a local minimizer. While in practical, it would be hard to find a suitable noise [59] to

achieve the best performance. As one could see from the plot, at nearly saddle point, there

is not much progress made by the NSGD approach. It is clearly to show that eventually,

our proposed approaches perform much better in terms of escaping.

In Figure 3.3, the left column is the performance of SINTR+ (Algorithm 3.4) and the

right row is the performance of ASGD. One could clearly identify how the escaping happens

during the training process. Within SINTR+ method, at roughly every 10 iterations, the

norm of gradient with go down hill to quit small (gradually decrease) and suddenly, the norm

of gradient will jump up together with a decrease of loss objective value and an increase

of training accuracy. While when looks at the ASGD algorithm, after 20 iterations, where

the first escaping happens, the norm of gradient decrease quit slow and therefore shows a

very small progress with respect to the objective value and training error. One could clearly

identify that, using our proposed algorithm, we achieve the loss error to 0.05 and training

accuracy to 95.2%, while using ASGD, we only achieve loss error as 0.079 and training

accuracy to 92.0%, which is almost the same performance as our starting point.

66

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

λ

Flattness of minimizer

F

‖∇F ‖
Accuracy

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

alpha

Flattness of SINTR+ minimizer

F

‖∇F ‖

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

alpha

Flattness of MSGD minimizer

F

‖∇F ‖

−3 −2 −1 0 1 2 3
0

2

4

6

8

λ

Flattness of minimizer

F

‖∇F ‖
Accuracy

−30 −20 −10 0 10 20 30
0

0.05

0.1

0.15

0.2

alpha

Flattness of SINTR+ minimizer

F

‖∇F ‖

−30 −20 −10 0 10 20 30
0

0.05

0.1

0.15

0.2

alpha

Flattness of MSGD minimizer

F

‖∇F ‖

Figure 3.4: Second order methods will converge to flatter minimizer. The first row is the
result for CIFRA10 and the second is result of MNIST.
3.5.2 Generalization Gap and Sharp Minima

In this experiment, we show flat minimizer evidence for second order methods (see Fig-

ure 3.4). The definition of flat minimizer and model generation is defined from [37]. Start-

ing from a random point, we run MSGD and SINTR+ for a long time to achieve their

stable saddle point, denoted by θMSGD and θSINTR+, respectively. In the first figure, we

let θ(λ) = λθMSGD + (1− λ)θSINTR+ and compute (F,∇F,Acc) with respect to each θ(λ).

Note that when λ = 0, we are at SINTR+ minimizer and when λ = 1, we are at MSGD

minimizer. It shows clearly that along the direction from SINTR+ minimizer to MSGD

minimizer, SINTR+ achieve a flatter minimizer (see the three curves around λ = 0). The

other two experiments is design to test gradient norm, loss objective value and training

accuracy by letting θ(α) = θ+αξ, where ξ is a normalized vector sampled from the unit ball

with normal distribution. In both figures, 20 random directions are adding to both SINTR+

minimizer and MSGD minimizer. One could see clearly that SINTR+ minimizer is flatter

and more robust than MSGD minimizer.

Thinking about the Taylor expansion of the loss function near the saddle point, for

(stochastic) gradient based algorithm, we could end up with a point where the norm of

gradient is close to zero (near the first-order critical point). As we do not have information

of second order term, therefore, by the expansion, with a small perturbation of the saddle

67

point, we still may have the dramatic change of loss function value and gradient. However,

this is not the case if we could minimize the loss function till second order critical point,

where the Hessian is small, and therefore the second order term is nearly zero. This could

be also verified by the next section.

3.5.3 Eigenvalue Evolution Along the Training Process

Considering that computing the exact full Hessian is computationally demanding, therefore

we train on dataset sub-mnist and sub-cifra10, and limit the size of the network structure

used in the experiment. Starting from a nearly saddle point where the norm of gradient is

quite small, our algorithm would be able to escape in first 100 epochs in both case. If we

check the right figure of top row, where the norm of positive eigenvalues ‖Λ+‖ and norm of

negative eigenvalues ‖Λ−‖ of full Hessian at each iterative points. Obviously, as it is shown

in Figure 3.5, both value reduce to around zero, which means the Hessian goes to zero along

the training process.

0 20 40 60 80 100
10

−20

10
−15

10
−10

10
−5

10
0

Iteration

sub−mnist,SINTR+

F
F

−

− F

‖∇F ‖

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration

sub−mnist,SINTR+

‖Λ+‖
‖Λ−‖

0 20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

Iteration

sub−mnist,ASGD

F
F

−

− F

‖∇F ‖

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration

sub−mnist,ASGD

‖Λ+‖
‖Λ−‖

Figure 3.5: The evolution of eigenvalues for SINTR+ and ASGD on sub-mnist dataset

3.5.4 Accelerated SINTR with Adding Momentum

Note that in SINTR+ algorithm, we also consider to add momentum. This is motivated

by the following observation when we look at the angle evolution between two adjacent

68

iterative points. In Figure 3.1, we apply Algorithm 3.2 and Algorithm 3.4 on sub-cifra10,

respectively. At the first two rows, we record objective value, norm of gradient, and training

accuracy for both algorithms, where it is clear to see the escaping happens. Moreover, it

shows consistently that before the escaping happen, the angle between two adjacent point

are quite small and when escaping happens, there is a dramatic change of the angles. This

observation motivates us to have a large momentum to speed-up the escaping efficiency.

Therefore, we add the momentum and make it adjustable. At each iteration, we would

always use the maximum allowed momentum measured by objective value reduction.

3.5.5 Performance Comparison on the Full Dataset

In this Section, we compare various algorithms on full dataset CIFRA10 as shown in Fig-

ure 3.6. The detailed network structure is showing in Table 3.1 and Appendix. In figure

3.6, CIFRA10 is tested on different methods with their best hyper-parameters tuning. The

stochastic Hessian-vector is evaluated based on 64 samples at each iterations.

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

cifra10

Iteration/epoch

O
b

je
c

ti
v

e
 V

a
lu

e

MSGD

NSGD

ASGD

Martens−G

Martens−H

SINNC

SINTR+

0 50 100 150 200 250 300

0.2

0.3

0.4

0.5

0.6

0.7

cifra10

Iteration/epoch

Tr
a

in
 A

c
c

u
ra

c
y

MSGD

NSGD

ASGD

Martens−G

Martens−H

SINNC

SINTR+

Figure 3.6: Objective value and Training error evolution on various methods.

3.5.6 The eigenvalue distribution evolution for SINTR+ on different dataset

We show the eigenvalue distribution evolution of full Hessian along the training process in

the following Figures 3.7 and 3.8. Considering that to evaluate the exact eigenvalues is

very computation demanding, we therefore do experiments on down-sampled dataset, i.e.

sub-MNIST and sub-CIFRA10. We train two different models up to 100 iterations. The

objective loss value and norm of positive/negative eigenvalues are reported at the first row

of each figure. The second and third row collected the evolution of full Hessian eigenvalues

at each iteration.

69

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration

sub−mnist,SINTR+

F

−

− F

‖∇F ‖

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration

sub−mnist,SINTR+

‖Λ+‖
‖Λ−‖

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

2 neg
2 pos
4 neg
4 pos
6 neg
6 pos
8 neg
8 pos
10 neg
10 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

12 neg
12 pos
14 neg
14 pos
16 neg
16 pos
18 neg
18 pos
20 neg
20 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

22 neg
22 pos
24 neg
24 pos
26 neg
26 pos
28 neg
28 pos
30 neg
30 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

32 neg
32 pos
34 neg
34 pos
36 neg
36 pos
38 neg
38 pos
40 neg
40 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

42 neg
42 pos
44 neg
44 pos
46 neg
46 pos
48 neg
48 pos
50 neg
50 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

52 neg
52 pos
54 neg
54 pos
56 neg
56 pos
58 neg
58 pos
60 neg
60 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

62 neg
62 pos
64 neg
64 pos
66 neg
66 pos
68 neg
68 pos
70 neg
70 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension
E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

72 neg
72 pos
74 neg
74 pos
76 neg
76 pos
78 neg
78 pos
80 neg
80 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

82 neg
82 pos
84 neg
84 pos
86 neg
86 pos
88 neg
88 pos
90 neg
90 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−mnist,SINTR+

92 neg
92 pos
94 neg
94 pos
96 neg
96 pos
98 neg
98 pos
100 neg
100 pos

Figure 3.7: The distribution of eigenvalues for SINTR+ on sub-MNIST dataset, where extra
line search and momentum is used. The legend, for example 42 neg, means the negative
eigenvalues distribution at 42 iteration.

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration

sub−cifra10,SINTR+

F

−

− F

‖∇F ‖

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

Iteration

sub−cifra10,SINTR+

‖Λ+‖
‖Λ−‖

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

2 neg
2 pos
4 neg
4 pos
6 neg
6 pos
8 neg
8 pos
10 neg
10 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

12 neg
12 pos
14 neg
14 pos
16 neg
16 pos
18 neg
18 pos
20 neg
20 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

22 neg
22 pos
24 neg
24 pos
26 neg
26 pos
28 neg
28 pos
30 neg
30 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

32 neg
32 pos
34 neg
34 pos
36 neg
36 pos
38 neg
38 pos
40 neg
40 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

42 neg
42 pos
44 neg
44 pos
46 neg
46 pos
48 neg
48 pos
50 neg
50 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

52 neg
52 pos
54 neg
54 pos
56 neg
56 pos
58 neg
58 pos
60 neg
60 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

62 neg
62 pos
64 neg
64 pos
66 neg
66 pos
68 neg
68 pos
70 neg
70 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

72 neg
72 pos
74 neg
74 pos
76 neg
76 pos
78 neg
78 pos
80 neg
80 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

82 neg
82 pos
84 neg
84 pos
86 neg
86 pos
88 neg
88 pos
90 neg
90 pos

0 200 400 600

10
−20

10
−10

10
0

Weights Dimension

E
ig
e
n
v
a
lu
e
s

sub−cifra10,SINTR+

92 neg
92 pos
94 neg
94 pos
96 neg
96 pos
98 neg
98 pos
100 neg
100 pos

Figure 3.8: The distribution of eigenvalues for SINTR+ on sub-CIFRA10 dataset, where
extra line search and momentum is used. The legend, for example 42 neg, means the negative
eigenvalues distribution at 42 iteration.

3.5.7 Discussion of Results

All of our results indicate that learning a deep neural networks in second order methods can

be achieved effectively and performed better than first-order methods. Since the traditional

line search technique does not apply for stochastic optimization algorithms, the common

70

practice in MSGD is either to use a diminishing step size, or to tune a fixed step size by

hand, which can be time consuming in practice. Within second order methods, we could

avoid the delicate tuning of hyper-parameters and pre-training.

3.6 Conclusion

In this chapter, we build steps to use second order method for training deep neural net-

work efficiently. A new second order trust region optimization method is proposed to help

escaping saddle point and achieve better accuracy. Note that our method does not require

the approximation of Hessian to be semi-positive definite and fewer heuristics is needed to

achieve a good performance. It will reduce the effect of tuning hyper-parameters. Further

competitive performance of second order methods would need to utilize the distributed/-

parallel setting [99]. We also have the preliminary result on the naive distributed setting at

[28], which shows a potentially good performance.

71

Chapter 4

Efficient Distributed Hessian Free

Algorithm for Large-scale Empirical

Risk Minimization via Accumulating

Sample Strategy

4.1 Introduction

In the field of machine learning, solving the expected risk minimization problem has received

lots of attentions over the last decades, which is in the form of

min
w∈Rd

L(w) = min
w∈Rd

Ez[f(w, z)], (4.1)

where z is a d + 1 dimensional random variable containing both feature variables and a

response variable. f(w, z) is a loss function with respect to w and any fixed value of z.

In most practical problems, the distribution of z is either unknown or leading great

difficulties to evaluate the expected loss. One general idea is to estimate the expectation

with a statistical average over a large number of independent and identically distributed

data samples of z, which is denoted by {z1, z2, . . . , zN} where N is the total number of

72

samples. Thus, the problem in (4.1) can be rewritten as the Empirical Risk Minimization

(ERM) problem

min
w∈Rd

LN (w) = min
w∈Rd

1

N

N∑
i=1

fi(w), (4.2)

where fi(w) = f(w, zi).

A lot of studies have been done on developing optimization algorithms to find an optimal

solution of above problem under different setting. For example, [4, 61, 21, 48] are some of

the gradient-based methods which require at least one pass over all data samples to evaluate

the gradient ∇LN (w). As the sample size N becomes larger, these methods would be less

efficient compared to stochastic gradient methods where the gradient is approximated based

on a small number of samples [76, 19, 86, 42, 63].

Second order methods are well known to share faster convergence rate by utilizing the

Hessian information. Recently, several papers [10, 80, 55] have studied how to apply second

orders methods to solve ERM problem. However, evaluating the Hessian inverse or a good

approximation of it is always computationally costly, leading to a significant difficulty on

applying these methods on large scale problems.

The above difficulty can be addressed by applying the idea of adaptive sample size meth-

ods [56, 23, 54], which is based on the following two facts. First, the empirical risk and

the statistical loss have different minimizers, and it is not necessary to go further than the

difference between the mentioned two objectives, which is called statistical accuracy . More

importantly, a smaller ERM problem with a smaller subset of samples should have a solution

which is close to the solution of the problem with full samples.

Following the idea of adaptive sample size, the complexity of Newton’s method can be re-

duced [54] if the dimension d is small, but it is impractical to compute the Hessian inverse for

large dimensional problems. In order to decrease the cost of computing the Hessian inverse,

[23] proposed the k-Truncated Adaptive Newton (k-TAN) approach. In this method, the

inverse of such approximated Hessian is calculated by increasing the sample size adaptively

and using a rank-k approximation of the Hessian. The cost per iteration is O((log k+n)d2).

Again, note that either when d is large, or in the case when k is close to d, this method can

be quite inefficient. In this method, the Hessian approximation is done by truncating the

73

eigenvalue decomposition of the Hessian which requires to store the full Hessian matrix for

calculating the k-largest eigenvalues and associated eigenvectors. Therefore, calculation of

the Newton step, which needs the computation of Hessian inverse in the mentioned methods,

cannot be practical for high dimensional problems. The number of samples in new empirical

risk is geometrically increased by rate of α > 1. This problem is again solved until its

statistical accuracy, and this process repeats till the number of samples is at least equal to

the number of full samples, and the final solution is the one with the error not larger than

the statistical accuracy of the full dataset. Therefore, utilizing these two features results in

lower computational complexity.

In this chapter, we propose an increasing sample size second-order method which solves the

Newton step in ERM problems more efficiently. Our proposed algorithm, called Distributed

Accumulated Newton Conjugate gradiEnt (DANCE), starts with a small number of sam-

ples and minimizes their corresponding ERM problem. This subproblem is solved up to a

specific accuracy, and the solution of this stage is used as a warm start for the next stage

in which we solve the next empirical risk with a larger number of samples, which contains

all the previous samples. Such procedure is run iteratively until either all the samples have

been included, or we find that it is unnecessary to further increase the sample size. Our

DANCE method combines the idea of increasing sample size and the inexact damped New-

ton method discussed in [103] and [50]. Instead of solving the Newton system directly, we

apply preconditioned conjugate gradient (PCG) method as the solver for each Newton step.

Also, it is always a challenging problem to run first order algorithms such as SGD and Adam

[38] in a distributed fashion. The DANCE method is designed to be easily parallelized and

shares the strong scaling property, i.e., linear speed-up property. Since it is possible to split

gradient and Hessian-vector product computations across different machines, it is always

expected to get extra acceleration via increasing the number of computational nodes. We

formally characterize the required number of communication rounds in order to reach the

statistical accuracy of the full dataset.We show that, under distributed setting, DANCE is

communication efficient in both theory and experiments.

We organize this chapter as following. In Section 4.2, we introduce the necessary assump-

tions and the definition of statistical accuracy. Section 3 describes the proposed algorithm

74

and its distributed version. Section 4 explores the theoretical guarantees on complexity of

DANCE. In Section 5, we demonstrate the outstanding performance of our algorithm in

practice. In Section 6, we close the chapter by concluding remarks.

4.2 Problem Formulation

In this chapter, we focus on finding the optimal solution w∗ of the problem in (4.1). As

described earlier, due to difficulties in the expected risk minimization, as an alternative, we

aim to find a solution for the empirical loss function LN (w), which is the empirical mean

over N samples. Now, consider the empirical loss Ln(w) associated with n ≤ N samples. In

[8] and [6], it has been shown that the difference between the expected loss and the empirical

loss Ln with high probability (w.h.p.) is upper bounded by the statistical accuracy Vn, i.e.,

w.h.p.

sup
w∈Rd

|L(w)− Ln(w)| ≤ Vn. (4.3)

In other words, there exists a constant ϑ such that the inequality (4.3) holds with probability

of at least 1 − ϑ. Generally speaking, statistical accuracy Vn depends on n (although it

depends on ϑ too, but for simplicity in notation we just consider the size of the samples),

and is of the order Vn = O(1/nγ) where γ ∈ [0.5, 1] [96, 7, 3].

For problem (4.2), if we find an approximate solution wn which satisfies the inequality

Ln(wn)−Ln(ŵn) ≤ Vn, where ŵn is the true minimizer of Ln, it is not necessary to go further

and find a better solution (a solution with less optimization error). The reason comes from

the fact that for a more accurate solution the summation of estimation and optimization

errors does not become smaller than Vn. Therefore, when we say that wn is a Vn-suboptimal

solution for the risk Ln, it means that Ln(wn) − Ln(ŵn) ≤ Vn. In other words, wn solves

problem (4.2) within its statistical accuracy.

It is crucial to note that if we add an additional term in the magnitude of Vn to the

empirical loss Ln, the new solution is also in the similar magnitude as Vn to the expected

loss L. Therefore, we can regularize the non-strongly convex loss function Ln by cVn‖w‖2/2

75

and consider it as the following problem:

min
w∈Rd

Rn(w) :=
1

n

n∑
i=1

fi(w) +
cVn
2
‖w‖2. (4.4)

The noticeable feature of the new empirical risk Rn is that Rn is cVn-strongly convex, where

c is a positive constant. Thus, we can utilize any practitioner-favorite algorithm. Specifically,

we are willing to apply the inexact damped Newton method, which will be discussed in the

next section. Due to the fact that a larger strong-convexity parameter leads to a faster

convergence, we could expect that the first few steps would converge fast since the values

of cVn in these steps are large (larger statistical accuracy), as will be discussed in Theorem

4.4.4. From now on, when we say wn is an Vn-suboptimal solution of the risk Rn, it means

that Rn(wn)−Rn(w∗n) ≤ Vn, where w∗n is the true optimal solution of the risk Rn. Our final

aim is to find wN which is VN -optimal solution for the risk RN which is the risk over the

whole dataset.

4.3 Distributed Accumulated Newton-CG Method

The goal in inexact damped Newton method, as discussed in [103], is to find the next iterate

based on an approximated Newton-type update. It has two important differences comparing

to Newton’s method. First, as it is clear from the word “damped”, the learning rate of the

inexact damped Newton type update is not 1, since it depends on the approximation of

Newton decrement. The second distinction is that there is no need to compute exact Newton

direction (which is very expensive to calculate in one step). Alternatively, an approximated

inexact Newton direction is calculated by applying an iterative process to obtain a direction

with desirable accuracy under some measurements.

In order to utilize the important features of ERM, we combine the idea of increasing

sample size and the inexact damped Newton method. In our proposed method, we start with

handling a small number of samples, assume m0 samples. We then solve its corresponding

ERM to its statistical accuracy, i.e. Vm0 , using the inexact damped Newton algorithm. In

the next step, we increase the number of samples geometrically with rate of α > 1, i.e., αm0

76

samples. The approximated solution of the previous ERM can be used as a warm start point

to find the solution of the new ERM. The sample size increases until it equals the number

of full samples.

Consider the iterate wm within the statistical accuracy of the set with m samples, i.e.

Sm for the risk Rm. In DANCE, we increase the size of the training set to n = αm and

use the inexact damped Newton to find the iterate wn which is Vn-suboptimal solution for

the sample set Sn, i.e. Rn(wn) − Rn(w∗n) ≤ Vn after Kn iterations. To do so, we initialize

w̃0 = wm and update the iterates according to the following

w̃k+1 = w̃k − 1
1+δn(w̃k)vk, (4.5)

where vk is an εk-Newton direction. The outcome of applying the update in (4.5) for k = Kn

iterations is the approximate solution wn for the objective function Rn, i.e., wn := w̃Kn .

To properly define the approximate Newton direction vk, first consider that the gradient

and Hessian of the objective function Rn can be evaluated as

∇Rn(w) =
1

n

n∑
i=1

∇fi(w) + cVnw (4.6)

and

∇2Rn(w) =
1

n

n∑
i=1

∇2fi(w) + cVnI, (4.7)

respectively.

Indeed, the favorable descent direction would be the Newton direction

−∇2Rn(w̃k)
−1∇Rn(w̃k);

however, the cost of computing this direction is prohibitive. Therefore, we use vk which is

an εk-Newton direction satisfying the condition

‖∇2Rn(w̃k)vk −∇Rn(w̃k)‖ ≤ εk. (4.8)

As we use the descent direction vk which is an approximation for the Newton step, we also

77

redefine the Newton decrement δn(w̃k) based on this modification. To be more specific, we

define

δn(w̃k) := (vTk∇2Rn(w̃k)vk)
1/2

as the approximation of (exact) Newton decrement (∇Rn(w̃k)
T∇2Rn(w̃k)

−1∇Rn(w̃k))
1/2,

and use it in the update in (4.5).

In order to find vk which is an εk-Newton direction, we use Preconditioned CG (PCG).

As it is discussed in [103, 66], PCG is an efficient iterative process to solve Newton system

with the required accuracy. The preconditioned matrix that we considered is in the form of

P = H̃n+µnI, where H̃n = 1
|An|

∑
i∈An ∇

2Rin(w), An ⊂ Sn, and µn is a small regularization

parameter. In this case, vk is an approximate solution of the system P−1∇2Rn(w̃k)vk =

P−1∇Rn(w̃k). The reason for using preconditioning is that the condition number of matrix

P−1∇2Rn(w̃k) may be close to 1 in the case when H̃n is close to ∇2Rn(w̃k); consequently,

PCG can be faster than CG. The PCG steps are summarized in Algorithm 4.2. In every

iteration of Algorithm 4.2, a system needs to be solved in step 10. Due to the structure of

matrix P , and as it is discussed in [50], this matrix can be considered as |An| rank 1 updates

on a diagonal matrix, and now, using Woodbury Formula [71] is a very efficient way to solve

the mentioned system. The following lemma states the required number of iterations for

PCG to find an εk-Newton direction vk.

Lemma 4.3.1. (Lemma 4 in [103]) Suppose Assumption 4.4.2 holds and ‖H̃n−∇2Rn(w̃k)‖ ≤

µn. Then, Algorithm 4.2, after Cn(εk) iterations calculates vk such that ‖∇2Rn(w̃k)vk −

∇Rn(w̃k)‖ ≤ εk, where

Cn(εk) =

√

(1 + 2µn
cVn

) log

2

√
cVn+L
cVn

‖∇Rn(w̃k)‖

εk

 . (4.9)

Note that εk has a crucial effect on the speed of the algorithm. When εk = 0, then

vk is the exact Newton direction, and the update in (4.5) is the exact damped Newton

step (which recovers the update in Ada Newton algorithm in [54] when the step-length is

78

Algorithm 4.1 DANCE
1: Initialization: Sample size increase constant α, initial sample size n = m0 and wn = wm0

with ‖∇Rn(wn)‖ < (
√

2c)Vn
2: while n ≤ N do
3: Update wm = wn and m = n
4: Increase sample size: n = min{αm,N}
5: Set w̃0 = wm and set k = 0
6: repeat
7: Calculate vk and δn(w̃k) by Algorithm 4.2 PCG
8: Set w̃k+1 = w̃k − 1

1+δn(w̃k)vk
9: k = k + 1

10: until satisfy stop criteria leading to Rn(w̃k)−Rn(w∗n) ≤ Vn
11: Set wn = w̃k
12: end while

Algorithm 4.2 PCG
1: Input: w̃k ∈ Rd, εk, and An
2: Let H = ∇2Rn(w̃k), P = 1

|An|

∑
i∈An

∇2Rin(w̃k) + µnI

3: Set r(0) = ∇Rn(w̃k), u(0) = s(0) = P−1r(0)

4: Set v(0) = 0, t = 0
5: repeat
6: Calculate Hu(t) and Hv(t)

7: Compute γt = 〈r(t),s(t)〉
〈u(t),Hu(t)〉

8: Set v(t+1) = v(t) + γtu
(t), r(t+1) = r(t) − γtHu(t)

9: Compute βt = 〈r(t+1),s(t+1)〉
〈r(t),s(t)〉

10: Set Ps(t+1) = r(t+1), u(t+1) = s(t+1) + βtu
(t)

11: Set t = t+ 1
12: until ‖rt+1‖ ≤ εk
13: Output: vk = v(t+1), δn(w̃k) =

√
vTkHv

(t) + γtvTkHu
(t)

1). Furthermore, the number of total iterations to reach VN -optimal solution for the risk

RN is K, i.e. K = Km0 + Kαm0 + · · · + KN . It means that when we start with the

iterate wm0 with corresponding m0 samples, after K iterations, we reach the point wN with

statistical accuracy of VN for the whole dataset. In Theorem 4.4.4, the required rounds of

communication to reach the mentioned statistical accuracy will be discussed.

Our proposed method is summarized in Algorithm 4.1. We start with m0 samples, and

an initial point wm0 which is an Vm0− suboptimal solution for the risk Rm0 . In every

iteration of outer loop of Algorithm 4.1, we increase the sample size geometrically with rate

of α in step 4. In the inner loop of Algorithm 4.1, i.e. steps 6-10, in order to calculate the

approximate Newton direction and approximate Newton decrement, we use PCG algorithm

79

which is shown in Algorithm 4.2. This process repeats till we get the point wN with statistical

accuracy of VN .

Stopping Criteria Here we discuss two stopping criteria to fulfill the 10th line of Algo-

rithm 4.1. At first, considering w∗n is unknown in practice, we can use strong convexity

inequality as Rn(w̃k) − Rn(w∗n) ≤ 1
2cVn
‖∇Rn(w̃k)‖2 to find a stopping criterion for the in-

ner loop, which satisfies ‖∇Rn(w̃k)‖ < (
√

2c)Vn. Another stopping criterion is discussed

by [103], using the fact that the risk Rn is self-concordant. This criterion1 can be writ-

ten as δn(w̃k) ≤ (1 − β)
√
Vn , where β ≤ 1

20 . The later stopping criterion implies that

Rn(w̃k)−Rn(w∗n) ≤ Vn whenever Vn ≤ 0.682.

Distributed Implementation Similar to the algorithm in [103], Algorithms 4.1 and 4.2

can also be implemented in a distributed environment. Suppose the entire dataset is stored

acrossM machines, i.e., each machine storesNi data samples such that
∑M

i=1Ni = N . Under

this setting, each iteration in Algorithm 4.1 can be executed on different machines in parallel

with
∑M

i=1 ni = n, where ni is the batchsize on ith machine. To implement Algorithm 4.2

in a distributed manner, a broadcast operation is needed at each iteration to guarantee

that each machine will share the same w̃k value. Moreover, the gradient and Hessian-

vector product can be computed locally and later reduce to the master machine. With the

increasing of batch size, computation work on each machine will increase while we still have

the same amount of communication need. As a consequence, the computation expense will

gradually dominate the communication expense before the algorithm terminates. Therefore

the proposed algorithm could take advantage of utilizing more machines to shorten the

running time of Algorithm 4.2.

4.4 Complexity Analysis

In this section, first we define the self-concordant function, and after that we study the

convergence properties of our algorithm. Self-concordant functions have the property that
1See section C.1.1 for the proof.

80

its third derivative can be controlled by its second derivative. By assuming that function

f : Rd → R has continuous third derivative, we define self-concordant function as follows.

Definition 4.4.1. A convex function f : Rd → R is Mf -self-concordant if for any w ∈

dom(f) and u ∈ Rd we have

|uT (f
′′′

(w)[u])u| ≤Mf (uT∇2f(w)u)
3
2 , (4.10)

where f ′′′(w)[u] := limt→0
1
t (∇

2f(w + tu) − ∇2f(w)). As it is discussed in [61], any

self-concordant function f with parameter Mf can be rescaled to become standard self-

concordant (with parameter 2). Some of the well-known empirical loss functions which are

self-concordant are linear regression, Logistic regression and squared hinge loss. In order to

prove our results the following conditions are considered in our analysis.

Assumption 4.4.2. The loss functions f(w, z) are convex w.r.t w for all values of z. In

addition, their gradients ∇f(w, z) are L−Lipschitz continuous

‖∇f(w, z)−∇f(w′, z)‖ ≤ L‖w − w′‖, ∀z. (4.11)

Assumption 4.4.3. The loss functions f(w, z) are self-concordant w.r.t w for all values of

z.

The immediate conclusion of Assumption 4.4.2 is that both L(w) and Ln(w) are convex

and L-smooth. Also, we can note that Rn(w) is cVn-strongly convex and (cVn +L)-smooth.

Moreover, by Assumption 4.4.3, Rn(w) is also self-concordant. As it is discussed in [103] we

use the following auxiliary function, which will be used in the analysis of the self-concordant

function:

ω(t) = t− log(1 + t), t ≥ 0, (4.12)

In the rest of this section, we analyze the upper bound for the number of communication

rounds needed to solve every subproblem up to its statistical accuracy.

We analyze the case when we have wm which is a Vm-suboptimal solution of the risk

81

Rm, and we are interested in deriving a bound for the number of required communication

rounds to ensure that wn is a Vn-suboptimal solution for the risk Rn. We use the analysis

of DiSCO algorithm discussed in [103] to find the mentioned bounds.

Theorem 4.4.4. Suppose that Assumptions 4.4.2 and 4.4.3 hold. Consider wm which sat-

isfies Rm(wm)− Rm(w∗m) ≤ Vm and also the risk Rn corresponding to sample set Sn ⊃ Sm

where n = αm, α > 1. Set the parameter εk (the error in (4.8)) as following2

εk = β(cVn
L+cVn

)1/2‖∇Rn(w̃k)‖, (4.13)

where β ≤ 1
20 . Then, in order to find the variable wn which is an Vn-suboptimal solution for

the risk Rn, i.e Rn(wn) − Rn(w∗n) ≤ Vn, the number of communication rounds Tn satisfies

in the following:

Tn ≤Kn (1 + Cn(εk)) , w.h.p. (4.14)

where Kn =
⌈
Rn(wm)−Rn(w∗n)

1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉
. Here dte shows the smallest nonnegative

integer larger than or equal to t.

As a result, the update in (4.5) needs to be done for Kn = O(log2 n) times in order to

attain the solution wn which is Vn-suboptimal solution for the risk Rn. Also, based on the

result in (4.14), by considering the risk Rn, we can note that when the strong-convexity

parameter for the mentioned risk (cVn) is large, less number of iterations (communication

rounds) are needed (or equally faster convergence is achieved) to reach the iterate with

Vn-suboptimal solution; and this happens in the first steps.

Corollary 4.4.5. Suppose that Assumptions 4.4.2 and 4.4.3 hold. Further, assume that wm

is a Vm-suboptimal solution for the risk Rm and consider Rn as the risk corresponding to

sample set Sn ⊃ Sm where n = 2m. If we set parameter εk (the error in (4.8)) as (4.13),
2It is shown in [103] that with this tolerance, the inexact damped Newton method has linear convergence

rate

82

then with high probability T̃n communication rounds

T̃n ≤
(⌈(3+

(
1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

Vm

1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉)

(
1 +

⌈√
1 + 2µ

cVn
) log2

(
2(cVn+L)
βcVn

)⌉)
, (4.15)

are needed to reach the point wn with statistical accuracy of Vn for the risk Rn.

0 2 4 6 8 10 12 14

epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

ERM, rcv1
DANCE
Restart
Disco
CoCoA+

0 2 4 6 8 10 12 14

epochs
0.80

0.85

0.90

0.95

1.00

1.05

tr
ai
ni
ng

 a
cc

ur
ac

y

ERM, rcv1

DANCE
DANCE*
Restart
Disco
CoCoA+

0 2 4 6 8 10 12 14

epochs
0.80

0.85

0.90

0.95

1.00

1.05

te
st
in
g
ac

cu
ra
cy

ERM, rcv1

DANCE
Restart
Disco
CoCoA+

0 20 40 60 80 100

running time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

lo
ss

ERM, rcv1
DANCE
Disco
CoCoA+

0 20 40 60 80 100

running time
0.80

0.85

0.90

0.95

1.00

1.05

tr
ai
ni
ng

 a
cc

ur
ac

y

ERM, rcv1

DANCE
DANCE*
Disco
CoCoA+

0 20 40 60 80 100

running time
0.80

0.85

0.90

0.95

1.00

1.05

te
st
in
g
ac

cu
ra
cy

ERM, rcv1

DANCE
Disco
CoCoA+

Figure 4.1: Performance of different algorithms on a Logistic Regression problem with rcv1
as dataset. For DANCE algorithm, we set c = 0.1 in (4.4), and the regularization parameter
is set to be 10−4 for others. For figures in the middle where the y-axis represents training
accuracy, the plot DANCE is the training accuracy based on the entire training set, while
the plot DANCE* represents the training accuracy based on the current sample size.

By Corollary 4.4.5, it is shown that3 after T̃ rounds of communication we reach a point

with the statistical accuracy of VN of the full training set, where T̃ is bounded as following:

T̃ ≤

(
2 log2

N
m0

+
((3+

(
1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

1
2
ω(1/6)

1−(
1

2γ)
log2

N
m0

1− 1
2γ

Vm0

)
+ log2

N
m0

log2(2ω(1/6)
VN

)

)
(

1 +
⌈√

(1 + 2µ
cVN

) log2

(
2
β + 2L

βc .
1
VN

)⌉)
w.h.p., (4.16)

where m0 is the size of the initial training set. Note that the result in (4.16) implies that the
3The proof of this part is in section C.3.

83

overall rounds of communication to obtain the statistical accuracy of the full training set is

of T̃ = O(γ(log2N)2
√
Nγ log2N

γ). Hence, when γ = 1, we have T̃ = O((log2N)3
√
N), and

for γ = 0.5, the result is T̃ = O((log2N)3N
1
4). The rounds of communication for DiSCO

algorithm in [103]4 is T̃DiSCO = O((RN (w0) − RN (w∗N) + γ(log2N))
√
Nγ log2N

γ) where

γ ∈ [0.5, 1]. Comparing these bounds shows that the complexity of DANCE is independent

of the choice of initial variable w0 and the suboptimality RN (w0)−RN (w∗N), while the overall

complexity of DiSCO depends on the initial suboptimality. In addition, implementation of

each iteration of DiSCO requires processing all the samples in the dataset, while DANCE

only operates on an increasing subset of samples at each phase. Therefore, the computation

complexity of DANCE is also lower than DiSCO for achieving the statistical accuracy of the

training set.

4.5 Numerical Experiments

In this section, we present numerical experiments on several large real-world datasets to show

that our restarting DANCE algorithm can outperform other existed methods on solving

both convex and non-convex problems. Also, we compare the results from utilizing different

number of machines to demonstrate the strong scaling property for our algorithm. All the

algorithms are implemented in Python with PyTorch [68] library and we use MPI for Python

[15] for setting distributed environment5. For all plots in this section, a vertical pink dashed

lines represents a restarting in our DANCE algorithm. Note that the ERM loss function

changes whenever a restarting is encountered.

Convex problems First, we compare our DANCE algorithm with two other distributed

optimization algorithms CoCoA+ [49] and DiSCO [103], on solving convex problems. We

choose these two algorithms in consideration of attaining a fair comparison between dis-

tributed first-order (CoCoA+) method and distributed second-order (DiSCO) approach.

The experiments in this section are performed on a cluster with 16 Xeon E5-2620 CPUs

(2.40GHz).
4In order to have fair comparison, we put f = RN , ε = VN , and λ = cVN in their analysis, and also the

constants are ignored for the communication complexity.
5All codes to reproduce these experimental results are available at anonymous link.

84

0 20 40 60 80 100

epochs

0

10
0

lo
ss

vgg11, Cifar10
SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE
Restart

0 20 40 60 80 100

epochs
0

1.1 × 10
0

tr
ai
ni
ng

 a
cc

ur
ac

y

vgg11, Cifar10

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE
Restart

0 20 40 60 80 100

epochs
0

1.1 × 10
0

te
st
in
g
ac

cu
ra
cy

vgg11, Cifar10

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE
Restart

0 200 400 600 800 1000

running time

0

10
0

lo
ss

vgg11, Cifar10
SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE

0 200 400 600 800 1000

running time
0

1.1 × 10
0

tr
ai
ni
ng

 a
cc

ur
ac

y

vgg11, Cifar10

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE

0 200 400 600 800 1000

running time
0

1.1 × 10
0

te
st
in
g
ac

cu
ra
cy

vgg11, Cifar10

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE

Figure 4.2: Comparison between DANCE and SGD with various hyper-parameters setting
on Cifar10 dataset and vgg11 network. vgg11 represents [89] a 28 layers convolutional
neural network (see details at Appendix C.4). Figures on the top and bottom show how loss
values, training accuracy and test accuracy are changing with respect to epochs and running
time. Note that we force both algorithms to restart (double training sample size) after
achieving the following number of epochs: 0.2, 0.8, 1.6.3.2, 6.4, 12, 24, 48, 96. For SGD, we
varies learning rate from 0.01, 0.001, 0.0001 and batchsize from 128, 512. One could observe
that SGD is sensitive to hyper-parameter settings, while DANCE has few hyper-parameters
to tune but shows competitive performance.

In this chapter, we use logistic regression model on two binary classification tasks based

on datasets rcv1 and gisette [11] as our convex case. We leave the details of these two

datasets in Appendix C.4. The two datasets is chosen following the principle from [103],

since those two datasets show different relations between number of features and number

of data samples (larger and smaller). We use logistic loss function defined as fi(w) :=

log(1 + exp(−yiwTxi)), where xi ∈ Rd is data sample and yi ∈ {−1, 1} is binary label

corresponding to xi, i ∈ [m]. Then we minimize the empirical loss function as (4.4). Note

that there is a fixed `2-regularization parameter λ = 10−4 in DiSCO and CoCoA+ and we

set c = 0.1 in (4.4) to form the `2-regularization parameter for our DANCE method.

We run our algorithm and compare algorithms with different datasets using 8 nodes.

The starting batchsize on each node for our DANCE algorithm is set to 16 while other

two algorithms go over the whole dataset at each iteration. For DANCE implementation,

number of samples used to form the new ERM loss are doubled from previous iteration

after each restarting. Furthermore, restarting happens whenever the norm of loss gradient

85

0 5 10 15 20 25 30

epochs

0

10
0

lo
ss

NaiveCNet, Mnist
DANCE
Restart
Adam-64
Adam-128

0 5 10 15 20 25 30

epochs
0.6

0.7

0.8

0.9

1.0

tr
ai
ni
ng

 a
cc

ur
ac

y

NaiveCNet, Mnist

DANCE
Restart
Adam-64
Adam-128

0 5 10 15 20 25 30

epochs
0.6

0.7

0.8

0.9

1.0

te
st
in
g
ac

cu
ra
cy

NaiveCNet, Mnist

DANCE
Restart
Adam-64
Adam-128

0 5 10 15 20 25 30

running time

0

10
0

lo
ss

NaiveCNet, Mnist
DANCE
Adam-64
Adam-128

0 5 10 15 20 25 30

running time
0.6

0.7

0.8

0.9

1.0

tr
ai
ni
ng

 a
cc

ur
ac

y

NaiveCNet, Mnist

DANCE
Adam-64
Adam-128

0 5 10 15 20 25 30

running time
0.6

0.7

0.8

0.9

1.0

te
st
in
g
ac

cu
ra
cy

NaiveCNet, Mnist

DANCE
Adam-64
Adam-128

Figure 4.3: Comparison between DANCE and Adam on Mnist dataset and NaiveCNet. For
DANCE, the initial batchsize is 1024. For Adam, the learning rate is 10−4 and the batchsize
is either 64 or 128.
is lower than 1/

√
m.

From Figure 4.1, we observe consistently that the DANCE algorithm has a better per-

formance over the other two in the beginning stages. Both loss value and training accuracy

under our DANCE algorithm converges to optimality by passing a small number of samples.

It suggests that the DANCE can find a good solution in a warm starting manner regard-

ing each restarting step. Compared with DiSCO, our restarting approach helps to reduce

computation expense at the beginning iterations, where the second order methods usually

performs less efficiently than the first order methods. Also, our algorithm converges fast

when it is close to optimal solution, while the first order method become weak since the

gradient vanishes around the optimal solution.

Non-convex problems Even though the complexity analysis in Section 4.4 only cov-

ers the convex case, the DANCE algorithm is also able to handle nonconvex problems

efficiently. In this section, we compare our method with several stochastic first order al-

gorithms, stochastic gradient descent (SGD), SGD with momentum (SGDMom), and Adam

[38], on training convolution neural networks (CNNs) on two image classification datasets

Mnist and Cifar10, we leave the details of datasets and the CNNs architecture applied on

each dataset in Appendix C.4. To perform a fair comparison with those first order variants,

86

we assume the data comes in an online streaming manner, e.g., only a few data samples can

be accessed at the beginning, and new data samples will come at a fixed rate. Such setting

happens a lot in industrial production, where business data is collected as a streaming. We

feed new data samples to all algorithms only if the amount of new data samples equals to

the number of existed accessible data samples. The experiments in this section are run on

an AWS p2.xlarge instance with an NVIDIA K80 GPU.

In Figure 4.2, we compare DANCE algorithm with the build-in SGD optimizer in pyTorch

on Cifar dataset to train a 28 layers CNN (Vgg11) architecture. Note that there are several

hyper-parameters we need to tune for SGD to reach the best performance, such as batch

size and learning rate, which is not necessary for our DANCE algorithm. Since we have

the online streaming data setting, we don’t need to determine a restarting criterion. The

results show that SGD is sensitive to hyper-parameters tuning, i.e., different combination

of hyper-parameters affect the performance of SGD a lot and tune them well to achieve the

best performance could be painful. However, our DANCE algorithm does not have such

weakness and its performance is comparable to SGD with the best parameters setting. We

also show that the DANCE algorithm leads to a faster decreasing on the loss value, which is

similar to our convex experiments. Again, this is due to fast convergence rate of the second

order methods. One could also found the additional experiments regarding the comparison

with SGD with momentum and Adam in terms of Mnist with NaiveCNet at Appendix C.5.

Regarding Figure 4.3, the performance of build-in Adam optimizer and our DANCE

algorithm are compared regarding Mnist dataset and a 4 layer NaiveCNet (see the details

in Appendix C.4). In this experiment, we do not assume that the data samples follow an

online streaming manner for Adam, i.e., the Adam algorithm does not have a restarting

setting and therefore it runs on whole dataset directly. Also, this experiment is performed

only on CPUs. We set the learning-rate for Adam as 10−4 and varies the running batch-size

from 64 and 128. The evolution of loss, training accuracy, testing accuracy with respect to

epochs and running time regarding the whole dataset are reported in Figure 4.3 for different

algorithms. One could observe that under the same epochs, Adam eventually achieves the

better testing accuracy, while if we look at running time, our DANCE algorithm would be

faster due to the distributed implementation. The strong scaling property of our algorithm

87

1 2 4 8 16
nodes

1
2
4

8

16

sp
ee

d-
up

Strong Scaling on Vgg11, Cifar10
Sample size=256
Sample size=512
Sample size=1024
Sample size=2048
Sample size=4096

Figure 4.4: Performance of DANCE algorithm with different number of computing nodes.

is also reported in the following experiment.

Strong scaling Finally, we demonstrate that our DANCE algorithm shares a strong scal-

ing property. As shown in Figure 4.4, whenever we increase the number of nodes, we can

always obtain acceleration towards optimality. We use the starting batchsize from 256 upto

4096, and the speed-up compared to serial run (1 node) is reported. It indicates that

as we increase the batchsize, the speed-up becomes closer to ideal linear speed-up. Since

our restarting approach will increase sampling size along the training process, after several

restarting, we are able to reach a strong scaling performance asymptoticly.

4.6 Conclusion

We proposed an efficient distributed Hessian free algorithm DANCE with increasing sample

size strategy to solve the empirical risk minimization problem. Our algorithm can converge

to a low statistical accuracy in very few epochs and also be implemented in a distributed

environment naturally. We analyzed the communication-efficiency of our algorithm, and

showed that our algorithm is more efficient than DiSCO algorithm [103] in communica-

tion. Numerical experiments are presented to demonstrate the advantages of our proposed

algorithm on both convex and non-convex problems.

88

Chapter 5

UCLibrary: A Unconstrained

Optimization Library for Nonlinear

Problems

5.1 Introduction

The UCLibrary1 is a highly Python-based library of a collections of nonlinear optimization

algorithms on unconstrained problems. It solves minimization problem of the form

min
x∈Rn

f(x) (5.1)

where f ∈ C2 and almost always nonconvex. It relies on the standard Cutest test

problems set [25] and users are free and able to introduce new test functions easily.

5.2 Tour of the UCLibrary

Here we exemplify a instance as to solve a problem in Cutest problem set.

Single Run

1https://bitbucket.org/xih314/mreleven/src/master/

89

https://bitbucket.org/xih314/mreleven/src/master/

import ...

config.read(’config.ini’)

problem = CutestProblem(’ROSENBR’)

demo = Demo(problem)

problem.setInitialPoint()

optim = optimizers.Cubic(problem, lr=False,

mode=’exact’, adaptive=True)

for _ in range(config.max_iters):

optim.step()

if optim.terminationCondition(mode=’first_order’,

tol=config.tol):

break

demo.addContourTrace(optim)

demo.drawPerformancePlot(optim)

demo.showPlot()

−−−−−−−−−−−−−−−−−−

Default initial point by Cutest...

Cubic−exact−adaptive

(’cholesky_decomp_counter’, 132)

(’cholesky_linear_solver_counter’, 292)

(’hess_counter’, 30)

(’step_counter’, 30)

(’grad_counter’, 30)

Multiple Run

90

import ...

def run(problem, optim, demo):

for _ in range(config.max_iters):

optim.step()

if optim.terminationCondition(mode=’first_order’,

tol=config.tol):

break

demo.addContourTrace(optim)

demo.drawPerformancePlot(optim)

config.read(’config.ini’)

problem = CutestProblem(’ROSENBR’)

problem.setInitialPoint()

demo = Demo(problem)

for mode in [’exact’, ’krylov’]:

optim = optimizers.Cubic(problem, lr=False,

mode=mode, adaptive=True)

run(problem, optim, demo)

optim = optimizers.TrustRegion(problem, mode=’cauchy’)

run(problem, optim, demo)

demo.showPlot()

91

0 20 40 60 80 100
iters

0

5

10

15

20

25

f(x
)

GD-0.99-amijo,100 iters
GD-0.99-strong_wolfe,100 iters
Newton-min_eig-exact-strong_wolfe,100 iters
Newton-min_eig-cg-strong_wolfe,100 iters
Cubic-exact-adaptive,30 iters
Cubic-krylov-adaptive,30 iters
Cubic-cauchy-adaptive,100 iters
Cubic-adaNT-adaptive,30 iters
TR-exact,33 iters
TR-cauchy,100 iters
TR-adaNT,46 iters

0 20 40 60 80 100
iters

10−3

10−2

10−1

100

101

102

223
f(x

)22

ROSENBR

−1.0 10.5 0.0 0.5 1.0
x1

10.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x2

1.
1

2.
2

3.3

4.4

5.6

5.6

6.7
6.7

7.
8

7.8

8.9

8.9

10.0 10
.010
.0

ROSENBR
GD-0.99-amijo,100 iters
GD-0.99-strong_wolfe,100 iters
Newton-min_eig-exact-strong_wolfe,100 iters
Newton-min_eig-cg-strong_wolfe,100 iters
Cubic-exact-adaptive,30 iters
Cubic-krylov-adaptive,30 iters
Cubic-cauchy-adaptive,100 iters
Cubic-adaNT-adaptive,30 iters
TR-exact,33 iters
TR-cauchy,100 iters
TR-adaNT,46 iters

0.00

1.11

2.22

3.33

4.44

5.56

6.67

7.78

8.89

10.00

5.3 List of Main Modules

Gradient Based Solver, optimizer.GD

• Vanilla GD

• Nesterov’s acceleration

• Heavy Ball acceleration

• Dynamic momentum

• Optimal momentum

• Static momentum

• Restart scheme

Practical Curvature based, optimizer.Newton

• Constant damping

92

• Levenberg–Marquardt damping

• Truncated hessian

Trust Region, optimizer.TrustRegion

• Vanilla TR

Cubic Regularization, optimizer.Cubic

• Vanilla CR

• Adaptive CR

• CRm (CR with momentum)

Line Search, LineSearch

• Backtracking (Amijo linesearch)

• Strong-wolfe

Subsolvers, SubRoutine

• Exact solver for positive definite matrix

• Cauchy point

• Dog-leg

• CG for positive positive definite matrix

• Steinghaug-Toint CG

• Generalized Lanczos trust region

• exact tridiagonal matrix subsolver

• exact regularized subproblem solver

• AdaNT

93

Chapter 6

Conclusion

Empirical risk minimization problems are important both in the theory and practical ap-

plications of machine learning. In this dissertation, we mainly studied several aspects for

solving such problems.

The first is how adaptive sampling strategy can help improve the performance of ERMs.

The answers could be revealed partially in Chapter 1 and Chapter 4. In Chapter 1, an

importance sampling strategy is purposed for dual-free SDCA method, and then the strategy

is generalized to mini-batch dual-free SDCA method. We show both in theoretical and

empirical that using non-uniform adaptive sampling is beneficial in practice. In Chapter 4,

an increasing sample size strategy is employed for optimizing the large-scaled ERMs. By

considering that the decent performance of second-order method is usually achieved when

the initial point is closer to the optimal, we purpose intuitively an increasing samples size

strategy. We start from a relative small scale problem, which, is considering easy to solve.

The output of the small scale problem could be then utilized as the starting point of next

stage, with more samples including all samples from last stage. The efficiency of the purposed

method is confirmed in the convex setting. Numerical experiments are done on both convex

and nonconvex cases, which show a competitive performance comparing to the gradient

based methods.

The second is how to handle the non-convexity raised from the nonconvex ERMs and/or

training neural networks. In Chapter 1, we investigated dual-free SDCA on a special class of

non-convex loss, where the single loss is non-convex but the average loss among all samples

94

is convex. The complexity results of convergence are derived under the setting. Meanwhile,

since SDCA is gradient-based methods, therefore it is relative easy without annoying neg-

ative curvature. Move to a more general nonconvex family, i.e. in Chapter 2, Chapter 3,

and Chapter 4, all the efforts are to make the matrix-free second-order methods works well

in practical, especially when training neural networks. Chapter 2, Chapter 3 and Chapter 4

focus on variants of Newton-CG methods to address the negative curvature.

The last Chapter 5 introduces a python-based library for unconstrained optimization

problem for all purposed methods in this dissertation (in deterministic setting) and also

other relevant methods from literature. It builds a fair platform on comparing various

methods for solving unconstrained optimization.

95

Bibliography

[1] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper,

Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos,

et al. Deep speech 2: End-to-end speech recognition in english and mandarin.

arXiv:1512.02595, 2015.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv:1607.06450, 2016.

[3] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity, classification,

and risk bounds. Journal of the American Statistical Association, 101(473):138–156,

2006.

[4] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[5] Albert S Berahas, Jorge Nocedal, and Martin Takáč. A multi-batch l-bfgs method for

machine learning. arXiv:1605.06049, 2016.

[6] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-

ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[7] olivier Bousquet. Concentration Inequalities and Empirical Processes Theory Applied

to the Analysis of Learning Algorithms. PhD thesis, Biologische Kybernetik, 2002.

[8] Olivier Bousquet and Léon Bottou. The tradeoffs of large scale learning. In Advances

in Neural Information Processing Systems 20, pages 161–168, 2008.

96

[9] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[10] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic

quasi-newton method for large-scale optimization. SIAM Journal on Optimization,

26(2):1008–1031, 2016.

[11] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[12] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann

LeCun. The loss surfaces of multilayer networks. In AISTATS, 2015.

[13] Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent

with adaptive probabilities. In 32nd International Conference on Machine Learning,

2015.

[14] Dominik Csiba and Peter Richtárik. Primal method for erm with flexible mini-batching

schemes and non-convex losses. arXiv:1506.02227, 2015.

[15] Lisandro D Dalcin, Rodrigo R Paz, Pablo A Kler, and Alejandro Cosimo. Parallel

distributed computing using python. Advances in Water Resources, 34(9):1124–1139,

2011.

[16] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan,

Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey. Distributed

deep learning using synchronous stochastic gradient descent. arXiv:1602.06709, 2016.

[17] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli,

and Yoshua Bengio. Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization. In Advances in neural information processing

systems, pages 2933–2941, 2014.

[18] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gra-

dient method with support for non-strongly convex composite objectives. In Advances

in Neural Information Processing Systems, pages 1646–1654, 2014.

97

[19] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gra-

dient method with support for non-strongly convex composite objectives. In Advances

in Neural Information Processing Systems 27, pages 1646–1654, 2014.

[20] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,

and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual

recognition. In ICML, pages 647–655, 2014.

[21] Dmitriy Drusvyatskiy, Maryam Fazel, and Scott Roy. An optimal first order method

based on optimal quadratic averaging. SIAM Journal on Optimization, 28(1):251–271,

2018.

[22] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159, 2011.

[23] Mark Eisen, Aryan Mokhtari, and Alejandro Ribeiro. Large scale empirical risk min-

imization via truncated adaptive Newton method. arXiv preprint arXiv:1705.07957,

2017.

[24] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—

online stochastic gradient for tensor decomposition. In Proceedings of The 28th Con-

ference on Learning Theory, pages 797–842, 2015.

[25] Nicholas IM Gould, Dominique Orban, and Philippe L Toint. Cutest: a constrained

and unconstrained testing environment with safe threads for mathematical optimiza-

tion. Computational Optimization and Applications, 60(3):545–557, 2015.

[26] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with

deep recurrent neural networks. In 2013 IEEE international conference on acoustics,

speech and signal processing, pages 6645–6649. IEEE, 2013.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. arXiv:1512.03385, 2015.

98

[28] Xi He, Dheevatsa Mudigere, Mikhail Smelyanskiy, and Martin Takáč. Distributed

hessian-free optimization for deep neural network. 34th AAAI Workshop on Distributed

Machine Learning, 2017.

[29] Xi He and Martin Takáč. Dual free sdca for empirical risk minimization with adaptive

probabilities. NIPS Workshop on Optimization in Machine Learning, 2015.

[30] Xi He, Rachael Tappenden, and Martin Takáč. Dual free adaptive minibatch sdca for

empirical risk minimization. Frontiers in Applied Mathematics and Statistics, 4(33),

2018.

[31] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,

et al. Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. Signal Processing Magazine, IEEE, 29(6):82–97, 2012.

[32] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam

Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceed-

ings of the 25th international conference on Machine learning, pages 408–415. ACM,

2008.

[33] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv:1502.03167, 2015.

[34] Martin Jaggi, Virginia Smith, Martin Takáč, Jonathan Terhorst, Sanjay Krishnan,

Thomas Hofmann, and Michael I Jordan. Communication-efficient distributed dual

coordinate ascent. In Advances in Neural Information Processing Systems, pages 3068–

3076, 2014.

[35] Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro

Ribeiro, and Martin Takáč. Efficient distributed hessian free algorithm for large-

scale empirical risk minimization via accumulating sample strategy. arXiv preprint

arXiv:1810.11507, 2018.

99

[36] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Advances in Neural Information Processing Systems, pages 315–

323, 2013.

[37] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and

Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap

and sharp minima. arXiv:1609.04836, 2016.

[38] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[39] Ryan Kiros. Training neural networks with stochastic hessian-free optimization.

arXiv:1301.3641, 2013.

[40] Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč. mS2GD: Mini-batch semi-

stochastic gradient descent in the proximal setting. arXiv preprint arXiv:1410.4744,

2014.

[41] Jakub Konečný and Peter Richtárik. Semi-stochastic gradient descent methods.

arXiv:1312.1666, 2013.

[42] Jakub Konečnỳ and Peter Richtárik. Semi-stochastic gradient descent methods. Fron-

tiers in Applied Mathematics and Statistics, 3:9, 2017.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[44] Richard A Kronmal and Arthur V Peterson Jr. On the alias method for generating

random variables from a discrete distribution. The American Statistician, 33(4):214–

218, 1979.

[45] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time

series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

100

[46] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient

descent only converges to minimizers. In Conference on Learning Theory, pages 1246–

1257, 2016.

[47] Ji Liu, Stephen J Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar.

An asynchronous parallel stochastic coordinate descent algorithm. The Journal of

Machine Learning Research, 16(1):285–322, 2015.

[48] Chenxin Ma, Naga Venkata C Gudapati, Majid Jahani, Rachael Tappenden, and

Martin Takáč. Underestimate sequences via quadratic averaging. arXiv preprint

arXiv:1710.03695, 2017.

[49] Chenxin Ma, Virginia Smith, Martin Jaggi, Michael I Jordan, Peter Richtárik, and

Martin Takáč. Adding vs. averaging in distributed primal-dual optimization. In 32th

International Conference on Machine Learning, ICML 2015, 2015.

[50] Chenxin Ma and Martin Takáč. Distributed inexact damped Newton method: Data

partitioning and load-balancing. arXiv preprint arXiv:1603.05191, 2016.

[51] James Martens. Deep learning via hessian-free optimization. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), pages 735–742, 2010.

[52] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-

free optimization. In Proceedings of the 28th International Conference on Machine

Learning (ICML-11), pages 1033–1040, 2011.

[53] Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv:1511.06422, 2015.

[54] Aryan Mokhtari, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, and Alejan-

dro Ribeiro. Adaptive Newton method for empirical risk minimization to statistical

accuracy. In Advances in Neural Information Processing Systems 29, pages 4062–4070,

2016.

[55] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory

bfgs. Journal of Machine Learning Research, 16(1):3151–3181, 2015.

101

[56] Aryan Mokhtari and Alejandro Ribeiro. First-order adaptive sample size methods to

reduce complexity of empirical risk minimization. In Advances in Neural Information

Processing Systems 30, pages 2057–2065, 2017.

[57] I Necoara and Dragos Clipici. Parallel random coordinate descent method for com-

posite minimization. submitted to SIAM Journal on Optimization, 2013.

[58] Ion Necoara and Dragos Clipici. Efficient parallel coordinate descent algorithm for

convex optimization problems with separable constraints: application to distributed

mpc. Journal of Process Control, 23(3):243–253, 2013.

[59] Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol

Kurach, and James Martens. Adding gradient noise improves learning for very deep

networks. arXiv preprint arXiv:1511.06807, 2015.

[60] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization

problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[61] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, vol-

ume 87. Springer Science & Business Media, 2013.

[62] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its

global performance. Mathematical Programming, 108(1):177–205, 2006.

[63] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method

for machine learning problems using stochastic recursive gradient. In Proceedings of

the 34th International Conference on Machine Learning, pages 2613–2621, 2017.

[64] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques.

In Advances in Neural Information Processing Systems, pages 1574–1582, 2014.

[65] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &

Business Media, 2006.

[66] Jorge Nocedal and Stephen J Wright. Sequential quadratic programming. Springer,

2006.

102

[67] Alberto Olivares, Javier M Moguerza, and Francisco J Prieto. Nonconvex optimization

using negative curvature within a modified linesearch. European Journal of Operational

Research, 189(3):706–722, 2008.

[68] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[69] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation,

6(1):147–160, 1994.

[70] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by

averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[71] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical recipes: the art of scientific computing, 3rd Edition. Cambridge University

Press, 2007.

[72] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling ii: Ex-

pected separable overapproximation. arXiv preprint arXiv:1412.8063, 2014.

[73] Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate as-

cent with arbitrary sampling. In Advances in Neural Information Processing Systems,

pages 865–873, 2015.

[74] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data

optimization. Mathematical Programming, pages 1–52, 2012.

[75] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-

coordinate descent methods for minimizing a composite function. Mathematical Pro-

gramming, 144(1-2):1–38, 2014.

[76] Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method

with an exponential convergence _rate for finite training sets. In Advances in Neural

Information Processing Systems, pages 2663–2671, 2012.

103

[77] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.

[78] Tara N Sainath, Lior Horesh, Brian Kingsbury, Aleksandr Y Aravkin, and Bhuvana

Ramabhadran. Accelerating hessian-free optimization for deep neural networks by

implicit preconditioning and sampling. In Automatic Speech Recognition and Under-

standing (ASRU), 2013 IEEE Workshop on, pages 303–308. IEEE, 2013.

[79] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the

stochastic average gradient. arXiv preprint arXiv:1309.2388, 2013.

[80] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-Newton method

for online convex optimization. In Artificial Intelligence and Statistics, pages 436–443,

2007.

[81] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. On parallelizability of

stochastic gradient descent for speech dnns. In Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on, pages 235–239. IEEE, 2014.

[82] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory

to Algorithms. Cambridge University Press, New York, USA, 2014.

[83] Shai Shalev-Shwartz. SDCA without duality. arXiv:1502.06177, 2015.

[84] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos:

Primal estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–

30, 2011.

[85] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for

regularized loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.

[86] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for

regularized loss minimization. Journal of Machine Learning Research, 2013.

[87] Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate

ascent for regularized loss minimization. Mathematical Programming, pages 1–41, 2014.

104

[88] Christopher J Shallue, Jaehoon Lee, Joe Antognini, Jascha Sohl-Dickstein, Roy

Frostig, and George E Dahl. Measuring the effects of data parallelism on neural

network training. arXiv preprint arXiv:1811.03600, 2018.

[89] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv:1409.1556, 2014.

[90] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[91] Trond Steihaug. The conjugate gradient method and trust regions in large scale opti-

mization. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[92] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-

tance of initialization and momentum in deep learning. In Proceedings of the 30th

international conference on machine learning (ICML-13), pages 1139–1147, 2013.

[93] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch primal

and dual methods for svms. In In 30th International Conference on Machine Learning,

ICML 2013, 2013.

[94] Martin Takáč, Peter Richtárik, and Nathan Srebro. Distributed mini-batch sdca. arXiv

preprint arXiv:1507.08322, 2015.

[95] Rachael Tappenden, Martin Takáč, and Peter Richtárik. On the complexity of parallel

coordinate descent. arXiv preprint arXiv:1503.03033, 2015.

[96] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business

media, 2013.

[97] Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In AIS-

TATS, pages 1261–1268, 2012.

105

[98] Simon Wiesler, Jinyu Li, and Jian Xue. Investigations on hessian-free optimization for

cross-entropy training of deep neural networks. In INTERSPEECH, pages 3317–3321,

2013.

[99] Yue Yu, Jinrong Jiang, and Xuebin Chi. Using supercomputer to speed up neural

network training. In Parallel and Distributed Systems (ICPADS), 2016 IEEE 22nd

International Conference on, pages 942–947. IEEE, 2016.

[100] Yaxiang Yuan. On the truncated conjugate gradient method. Mathematical Program-

ming, 87(3):561–573, 2000.

[101] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv:1212.5701,

2012.

[102] Sixin Zhang. Distributed stochastic optimization for deep learning. PhD thesis, New

York University, 2016.

[103] Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant em-

pirical loss. In Proceedings of the 32nd International Conference on Machine Learning,

pages 362–370, 2015.

[104] Yuchen Zhang and Lin Xiao. Disco: distributed optimization for self-concordant empir-

ical loss. Proceedings of the 32nd International Conference on International Conference

on Machine Learning (ICML-15), pages 362–370, 2015.

[105] Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for

regularized loss minimization. Proceedings of the 32nd International Conference on

Machine Learning (ICML-15), pages 1–9, 2015.

106

Appendix A

Proofs in Chapter 1

A.1 Preliminaries and Technical Results

Recall that w∗ denotes an optimum of (1.1) and define α∗i = −φ′i(xTi w∗). To simplify the

proofs we introduce the following variables

A(t) = 1
n‖α

(t) − α∗‖2 and B(t) = ‖w(t) − w∗‖2. (A.1)

At the optimum w∗, it holds that 0 = ∇P (w∗) = 1
n

∑n
i=1 φ

′
i(x

T
i w
∗)xi + λw∗, so w∗ =

1
λn

∑n
i=1 α

∗
i xi. Define u(t)

i
def
= −φ′i(xTi w(t)), and therefore we have κ(t)

i = α
(t)
i − u

(t)
i and

u∗i = α∗i .

The following two lemmas will be useful when proving our main results.

Lemma A.1.1. Let A(t) and B(t) be defined in (A.1), and let vi = ‖xi‖2 for all i ∈ [n].

Then, conditioning on α(t), the following hold for given θ:

E[A(t+1)|α(t)]−A(t) = −θA(t) +
θ

n

n∑
i=1

(
(u

(t)
i − α

∗
i)

2 −
(
1− θ

pi

)
(κ

(t)
i)2

)
, (A.2)

E[B(t+1)|α(t)]−B(t) = −2θ
λ (w(t) − w∗)T∇P (w(t)) +

n∑
i=1

θ2vi
n2λ2pi

(
κ

(t)
i

)2
. (A.3)

107

Proof. Note that at iteration t, only coordinate i (of α) is updated, so

A(t+1) = 1
n‖α

(t+1) − α∗‖2 ≡ 1

n

∑
j 6=i

(α
(t)
j − α

∗
j)

2 +
1

n
(α

(t+1)
i − α∗i)2. (A.4)

Using ((1− t)a+ tb)2 = (1− t)a2 + tb2 − t(1− t)(a− b)2, we have,

A(t+1) −A(t) (A.4)
= 1

n(α
(t+1)
i − α∗i)2 − 1

n(α
(t)
i − α

∗
i)

2

= 1
n

(
α

(t)
i −

θ
pi
κ

(t)
i − α

∗
i

)2
− 1

n(α
(t)
i − α

∗
i)

2

= 1
n

((
1− θ

pi

)
(α

(t)
i − α

∗
i) + θ

pi
(u

(t)
i − α

∗
i)
)2
− 1

n(α
(t)
i − α

∗
i)

2

= 1
n

(
1− θ

pi

)
(α

(t)
i − α

∗
i)

2 + θ
npi

(u
(t)
i − α

∗
i)

2 −
(

1− θ
pi

)
θ
npi

(κ
(t)
i)2 − 1

n(α
(t)
i − α

∗
i)

2

=− θ
npi

(α
(t)
i − α

∗
i)

2 + θ
npi

(
(u

(t)
i − α

∗
i)

2 −
(

1− θ
pi

)
(κ

(t)
i)2

)
. (A.5)

Taking expectation over i ∈ [n], conditioned on α(t), gives the first result.

To obtain the second result consider

B(t+1) −B(t) (A.1)
= ‖w(t+1) − w∗‖2 − ‖w(t) − w∗‖2

(1.9)
= ‖w(t) − θ

nλpi
κ

(t)
i xi − w

∗‖2 − ‖w(t) − w∗‖2

= − 2θ
nλpi

κ
(t)
i x

T
i (w(t) − w∗) + θ2vi

n2λ2p2i
(κ

(t)
i)2.

Recall that E[1
npi
κ

(t)
i xi] = ∇P (w(t)) by (1.11). Thus, taking expectation over i ∈ [n],

conditioned on w(t), gives (A.3).

The following Lemma and proof are similar to [14, Lemma 4] and [85, Lemma 1].

Lemma A.1.2. Assume that each φi is L̃i-smooth and convex. Then, for every w

1

L̃

(1

n

n∑
i=1

‖φ′i(xTi w)− φ′i(xTi w∗)‖2
)
≤ 1

n

n∑
i=1

1

L̃i
‖φ′i(wTxi)− φ′i(xTi w∗)‖2

≤ 2
(
P (w)− P (w∗)− λ

2‖w − w
∗‖2
)
. (A.6)

108

Proof. Let z, z∗ ∈ R. Define

gi(z)
def
= φi(z)− φi(z∗)− φ′i(z∗)(z − z∗). (A.7)

Because φi is L̃i-smooth, so too is gi, which implies that for all z, ẑ ∈ R,

gi(z) ≤ gi(ẑ) + g′i(ẑ)(z − ẑ) + L̃i
2 (z − ẑ)2. (A.8)

By convexity of φi, gi is nonnegative, i.e., gi(z) ≥ 0 for all z. Hence, by non-negativity and

smoothness gi is self-bounded (see Section 12.1.3 in [82] or set z = ẑ − 1
L̃i
g′i(ẑ) in (A.8) and

rearrange):

‖g′i(z)‖2 ≤ 2L̃igi(z), ∀z. (A.9)

Differentiating (A.7) w.r.t. z and combining the result with (A.9), used with z = xTi w and

z∗ = xTi w
∗, gives

‖φ′i(xTi w)− φ′i(xTi w∗)‖2 = ‖g′i(xTi w)‖2 ≤ 2L̃igi(x
T
i w). (A.10)

Multiplying (A.10) through by 1/(nL̃i) and summing over i ∈ [n] shows that

1

n

n∑
i=1

1

L̃i
‖φ′i(xTi w)− φ′i(xTi w∗)‖2 ≤

2

n

n∑
i=1

gi(x
T
i w)

=
2

n

n∑
i=1

φi(x
T
i w)− φi(xTi w∗)− φ′i(xTi w∗)(xTi w − xTi w∗)

= 2
(
P (w)− λ

2‖w‖
2 − P (w∗) + λ

2‖w
∗‖2 − λ(w∗)T (w − w∗)

)
= 2

(
P (w)− P (w∗)− λ

2‖w − w
∗‖2
)
,

where we have used the fact that ∇P (w∗) = φ′(xTi w
∗)xi + λw∗ = 0. The first inequality

follows because L̃ = maxi L̃i.

109

A.2 Proof of Lemmas 1.3.1 and 1.3.5

Proof of Lemma 1.3.1. In this case it is assumed that every loss function is convex and we

set γ = λL̃ (1.12). For convenience, define the following quantities:

C1
def
=

θ

n

n∑
i=1

(u
(t)
i − α

∗
i)

2 − 2γθ
λ ∇P (w(t))T (w(t) − w∗) (A.11)

C2
def
=

n∑
i=1

(
− θ

n(1− θ
pi

) + θ2viγ
n2λ2pi

)
(κ

(t)
i)2 (A.12)

Recall that A(t), B(t) and D(t) are defined in (A.1) and (1.13), respectively, and γ is defined

in (1.12). Then,

E[D(t+1)|α(t)]−D(t) = E[A(t+1) −A(t)|α(t)] + γE[B(t+1) −B(t)|α(t)]

(A.2),(A.3)
= − θA(t) + θ

n

n∑
i=1

(
(u

(t)
i − α

∗
i)

2 −
(

1− θ
pi

)
(κ

(t)
i)2

)
+ γ

(
− 2θ

λ ∇P (w(t))T (w(t) − w∗) +
n∑
i=1

θ2vi
n2λ2pi

(κ
(t)
i)2

)
(A.11),(A.12)

= − θA(t) + C1 + C2. (A.13)

Now, by recalling that α∗i = φ′i(x
T
i w
∗) and ui = φ′i(x

T
i w) in (A.6), we have,

C1
(A.11)

=
θ

n

n∑
i=1

(u
(t)
i − α

∗
i)

2 − 2γθ
λ ∇P (w(t))T (w(t) − w∗)

(A.6)

≤ 2θL̃
(
P (w(t))− P (w∗)− λ

2‖w
(t) − w∗‖2

)
− 2γθ

λ ∇P (w(t))T (w(t) − w∗)

γ=λL̃
= −γθ‖w(t) − w∗‖2 + 2θL̃

(
P (w(t))− P (w∗)−∇P (w(t))T (w(t) − w∗)

)
≤ −γθ‖w(t) − w∗‖2, (A.14)

where the last inequality follows from convexity of P (w), i.e.,

P (w(t))− P (w∗) ≤ ∇P (w(t))T (w(t) − w∗).

110

Combining (A.13) and (A.14) gives

E[D(t+1)|α(t)]−D(t) ≤ −θA(t) − γθ‖w(t) − w∗‖2 + C2 = −θD(t) + C2.

Rearranging gives the result.

Proof of Lemma 1.3.5. For this result we assume that the average of the loss functions

1
n

∑
φi(·) is convex. Note that one can define parameters C̄1 and C̄2 that are analogous to

C1 and C2 in (A.11) and (A.12) but with γ replaced by γ̄. Then, the same arguments as

those used in (A.13) can be used to show that

E[D̄(t+1)|α(t)]− D̄(t) ≤ −θA(t) + C̄1 + C̄2. (A.15)

Now, note that by Lipschitz continuity of φ′(·) one has

(u
(t)
i − α

∗
i)

2 =
(
φ′i(x

T
i w)− φ′i(xTi w(t))

)2
≤ L2

i ‖w∗ − w(t)‖2. (A.16)

Further, since the average of the losses is convex, P (w) is strongly convex, so

P (w∗)− P (w(t)) ≥ ∇P (w(t))T (w∗ − w(t)) + λ
2‖w

∗ − w(t)‖2 (A.17)

and since w∗ is the minimizer

P (wt)− P (w∗) ≥ λ
2‖w

(t) − w∗‖2. (A.18)

Now, adding (A.17) and (A.18) gives

∇P (w(t))T (w(t) − w∗) ≥ λ‖w(t) − w∗‖2. (A.19)

111

Therefore,

C̄1 =
θ

n

n∑
i=1

(u
(t)
i − α

∗
i)

2 − 2γ̄θ

λ
∇P (w(t))T (w(t) − w∗)

(A.16),(A.19)
≤ θ

n

n∑
i=1

L2
i ‖w(t) − w∗‖2 − 2γ̄θ‖w(t) − w∗‖2

(1.26)
≤ − γ̄θ‖w(t) − w∗‖2. (A.20)

Thus, from (A.15) and (A.20) we have that E[D(t+1)|α(t)]−D(t) ≤ −θD(t) + C̄2, which

is the desired result.

A.3 Proof of Lemma 1.3.2

Proof. This is easy to verify by derive KKT conditions of optimization problem (1.18), which

is
−(nλ2

∑
i∈Iκ κ

2
i)(
∑

i∈Iκ(nλ2 + viγ)p−1
i κ2

i)
−2(−(nλ2 + viγ)p−2

i κ2
i) + µ = 0, ∀i ∈ Iκ∑

i∈Ik pi = 1

where µ is the Lagrange multiplier.

By comparing the |Ik| equations in the first equality from the KKT conditions above,

we have
pi
pj

=

√
nλ2 + viγ|κi|√
nλ2 + vjγ|κj |

, for all i, j ∈ Iκ. (A.21)

Considering
∑

i∈Iκ pi = 1, we show that the optimal probabilities (1.19). (1.20) can be

further derived by combine (1.19) and (1.18).

112

A.4 Proof of Theorems 1.3.3 and 1.3.6

Proof of Theorem 1.3.3. Note that substituting p∗ (where p∗ is defined in Lemma 1.3.2) into

Θ(κ, p∗) in (1.17) and using the Cauchy-Schwartz inequality, i.e., (aT b)2 ≤ ‖a‖2‖b‖2, gives

Θ(κ, p∗) =
nλ2

∑
i∈Iκ κ

2
i

(
∑

i∈Iκ

√
viγ + nλ2|κi|)2

=
nλ2

∑n
i=1 κ

2
i

(
∑n

i=1

√
viγ + nλ2|κi|)2

≥ nλ2∑n
i=1(viγ + nλ2)

(1.24)
= θ∗.

(A.22)

The above confirms that θ∗ in (1.17) is a (constant) global lower bound of Θ(κ, p∗) at every

iteration. Thus, using the arguments following Lemma 1.3.1, setting p(t) = p∗ (as computed

in Lemma 1.3.2) at each iteration gives

E
[
D(t+1)|α(t)

]
≤ (1− θ∗)D(t). (A.23)

That is, (1.16) used with θ ≡ θ∗ holds. Because (A.23) holds at every iteration of Algo-

rithm 1.1, one can show that

E
[
D(t)

]
≤ (1− θ∗)tC0 ≤ e−θ

∗tC0, (A.24)

where C0 is defined in (1.21). Now, note that P (w) is (L+λ)-smooth, i.e., P (w)−P (w∗) ≤
λ+L

2 ‖w − w
∗‖2, so

D(t) = 1
n‖α

(t) − α∗‖2 + γ‖w(t) − w∗‖2 ≥ γ‖w(t) − w∗‖2 ≥ 2γ
λ+L(P (w(t))− P (w∗)).

This means that we must find T for which

E[P (w(T))− P (w∗)] ≤ λ+L
2γ e

−θ∗TC0 ≤ ε. (A.25)

Subsequently, the expression for T in (1.25) is obtained by multiplying through by eθ∗T /ε,

taking natural logs, rearranging and noting that

1

θ∗
=

∑n
i=1(viγ + nλ2)

nλ2
= n+

γ

nλ2

n∑
i=1

vi
(1.12)

= n+
L̃

nλ

n∑
i=1

vi
(1.22)

= n+
L̃Q

λ
.

113

Proof of Theorem 1.3.6. Here we assume that the average loss 1
n

∑n
i=1 φi(·) is convex, but

that individual loss functions φi(·) may not be. The proof of this result is almost identical

to the proof of Theorem 1.3.3, but with the parameters defined in Section 1.3.2. Similarly

to (A.25) we must find T for which

E[P (w(T))− P (w∗)] ≤ λ+L
2γ̄ e

−θ∗T C̄0 ≤ ε, (A.26)

where γ̄ = 1
n

∑n
i=1 L

2
i is defined in (1.26) and C̄0 is defined in (1.28). The expression T in

(1.32) is obtained by multiplying through by eθ∗T /ε, taking natural logs, rearranging and

noting that
1

θ∗
=

∑n
i=1(viγ̄ + nλ2)

nλ2
= n+

γ̄

λ2

(1

n

n∑
i=1

vi

) (1.22)
= n+

γ̄Q

λ2
.

A.5 Proof of Corollary 1.3.4

Proof. Recall that w∗ denotes the minimizer of (1.1) and α∗i = −φ′(xTi w∗). Let Assump-

tion 1.4 hold. Then

∥∥∥ 1

npi
κ

(t)
i xi

∥∥∥2 (1.14)
=

1

n2p2
i

(κ
(t)
i)2vi

(1.19)
=

1

n2

(∑
j∈Iκ

√
nλ2 + vjγ|κ(t)

j |√
nλ2 + viγ|κ(t)

i |

)2

(κ
(t)
i)2vi

(CS)

≤ 1

n2

∑n
j=1(nλ2 + vjγ)

∑n
j=1(κ

(t)
j)2

(nλ2 + viγ)(κ
(t)
i)2

(κ
(t)
i)2vi

=

∑n
j=1(nλ2 + vjγ)

n2(nλ2 + viγ)
‖κ(t)‖2vi

(1.22)
=

n2λ2 + γnQ

n2(nλ2 + viγ)
‖κ(t)‖2vi. (A.27)

Taking the (conditional) expectation of (A.27) gives

114

E
[∥∥∥ 1

npi
κ

(t)
i xi

∥∥∥2 ∣∣∣α(t−1)

]
=

n∑
i=1

pi

(
n2λ2 + γnQ

n2(nλ2 + viγ)
‖κ(t)‖2vi

)

≤
n∑
i=1

(
n2λ2 + γnQ

n2(nλ2 + viγ)
‖κ(t)‖2vi

)

≤
n∑
i=1

(
n2λ2 + γnQ

n3λ2
‖κ(t)‖2vi

)

=

(
n2λ2 + γnQ

n2λ2
‖κ(t)‖2

)(
1

n

n∑
i=1

vi

)
(1.22)

= Q

(
1 +

γQ

nλ2

)
‖κ(t)‖2. (A.28)

Finally

‖κ(t)‖2 = E
[
‖κ(t)‖2|α(t−1)

]
= E

[n∑
i=1

(
α

(t)
i + φ′i(x

T
i w

(t))
)2
|α(t−1)

]
= E

[n∑
i=1

(
α

(t)
i − α

∗ − φ′i(xTi w∗) + φ′i(x
T
i w

(t))
)2
|α(t−1)

]
≤ 2E[‖α(t) − α∗‖2|α(t−1)] + 2LE[‖w(t) − w∗‖2|α(t−1)].

Combining the last step with (A.28) gives the result.

The proof of Corollary 1.3.7 is essentially identical, but with the notation established in

Section 1.3.2, so we omit it for brevity.

A.6 Proof of Theorems 1.5.5 and 1.5.6

Recall that A(t) and B(t) are defined in (A.1). To prove Theorem 1.5.5 we need the following

two conditions to hold,

EŜ
[
A(t+1) −A(t)|α(t)

]
=− θA(t) +

θ

n

n∑
i=1

(
(u

(t)
i − α

∗
i)

2 −
(

1− θ
bpi

)
(κ

(t)
i)2

)
, (A.29)

EŜ
[
B(t+1) −B(t)|α(t)

]
≤− 2θ

λ
∇P (w(t))T (w(t) − w∗) +

n∑
i=1

θ2vi(κ
(t)
i)2

n2λ2bpi
. (A.30)

115

Note that EŜ
[
A(t+1) −A(t)|α(t)

]
=
∑n

i=1 bpi(A
(t+1) − A(t)), and so (A.29) is obtained by

using arguments similar to those used in the proof of (A.2). To show (A.30), first we have

B(t+1) −B(t) = ‖w(t+1) − w∗‖2 − ‖w(t) − w∗‖2

= ‖w(t) −
∑
i∈S

θ

nλbpi
κ

(t)
i x

T
i − w∗‖2 − ‖w(t) − w∗‖2

= − 2θ

nλ

∑
i∈S

κ
(t)
i

bpi
xTi (w(t) − w∗) +

θ2

n2λ2
‖
∑
i∈S

κ
(t)
i

bpi
xi‖2. (A.31)

Therefore, we have

EŜ
[
B(t+1) −B(t)|α(t)

]
= EŜ

[
− 2θ

nλ

∑
i∈S

κ
(t)
i

bpi
xTi (w(t) − w∗) +

θ2

n2λ2
‖
∑
i∈S

κ
(t)
i

bpi
xi‖2|α(t)

]

= − 2θ

nλ

n∑
i=1

κ
(t)
i x

T
i (w(t) − w∗) +

θ2

n2λ2
EŜ‖

∑
i∈S

κ
(t)
i

bpi
xi‖2. (A.32)

Note that from Section 1.5.4 we have

EŜ‖
∑
i∈S

κ
(t)
i

bpi
xi‖2 ≤

n∑
i=1

bpiv
′
i

(
κ

(i)
i

bpi

)2

=
n∑
i=1

v′i(κ
(t)
i)2

bpi
, (A.33)

where v′i is defined in (1.36). We can then derive (A.30) by using (A.33) and ∇P (w(t)) =

1
n

∑n
i=1 κ

(t)
i xi.

Proof of Theorem 1.5.5. Define

C(θ, p(t), κ(t))
def
=

n∑
i=1

(
− θ
n

(
1− θ

bpi

)
+

θ2v′iγ

n2λ2bpi

)
(κ

(t)
i)2. (A.34)

116

Then

EŜ [D(t+1) −D(t)|α(t)] = EŜ [A(t+1) −A(t)|α(t)] + γEŜ [B(t+1) −B(t)|α(t)]

(A.29),(A.30)
≤ −θA(t) +

θ

n

n∑
i=1

((
u

(t)
i − α

∗
i)

2 − (1− θ

bpi

)
(κ

(t)
i)2

)

+γ

(
− 2θ

λ
∇P (w(t))T (w(t) − w∗) +

n∑
i=1

θ2v′i(κ
(t)
i)2

n2λ2bpi

)
(A.14)
≤ −θA(t) − θγ‖w(t) − w∗‖2) + C(θ, p(t), κ(t))

= −θD(t) + C(θ, p(t), κ(t)). (A.35)

We can then derive the optimal probabilities to ensure that C(θ, p(t), κ(t)) ≤ 0, i.e.,

θ ≤ Θ(p(t), κ(t)) :=
nλ2b

∑
i∈I(κ(t))(κ

(t)
i)2∑

i∈I
κ(t)

(nλ2 + viγ)(p
(t)
i)−1(κ

(t)
i)2

(A.36)

and then making θ as large as possible. Indeed, to have largest θ we arrive at the same

optimal probabilities as in Lemma 1.3.2. Using these optimal probabilities we find a fixed

θ∗ such that

θ∗
def
=

nλ2b∑n
i=1(nλ2 + viγ)

. (A.37)

Furthermore, the complexity result in this mini-batch setting follows: E[P (wt)−P (w∗)] ≤ ε

holds if

T ≥
(
n

b
+
L̃Q′

bλ

)
log

(
(λ+ L)C0

λL̃ε

)
. (A.38)

Proof of Theorem 1.5.6. Define

C̄(θ, p(t), κ(t))
def
=

n∑
i=1

(
− θ
n

(
1− θ

bpi

)
+

θ2v′iγ̄

n2λ2bpi

)
(κ

(t)
i)2. (A.39)

117

Now

EŜ [D̄(t+1) − D̄(t)|α(t)] = EŜ [A(t+1) −A(t)|α(t)] + γ̄EŜ [B(t+1) −B(t)|α(t)]

(A.29),(A.30)
≤ −θA(t) +

θ

n

n∑
i=1

((
u

(t)
i − α

∗
i)

2 − (1− θ

bpi

)
(κ

(t)
i)2

)

+γ̄

(
− 2θ

λ
∇P (w(t))T (w(t) − w∗) +

n∑
i=1

θ2v′i(κ
(t)
i)2

n2λ2bpi

)
(A.20)
≤ −θA(t) − θγ̄‖w(t) − w∗‖2) + C̄(θ, p(t), κ(t))

= −θD(t) + C̄(θ, p(t), κ(t)). (A.40)

Similar arguments to those made in the final stages of the proof of Theorem 1.5.6 can be

used to show that if T is given by the expression in (1.41) then E[P (wt)− P (w∗)] ≤ ε.

118

Appendix B

Proof in Chapter 3

Early Terminated CG Solver on Indefinite System

In this section we provide the proofs of the main Lemmas 3.3.2 and 3.2.4. We start by

proving two technical results in the two following Lemmas.

Lemma B.0.1. If A ∈ Rn×n is symmetric and nonsingular, and the nonzero vectors

p0, . . . , pk are HS-conjugatey, then these vectors are linearly independent.

Proof. Suppose there exist {αi}ki=0, such that 0 =
∑k

i=0 αipi, for any i0 ∈ [k] , we then have

0 = pTi0A(
k∑
i=0

αipi) = αi0p
T
i0Api0 . (B.1)

Therefore, we have αi = 0 for all i ∈ [k].

Lemma B.0.2. Suppose A ∈ Rn×n is symmetric and nonsingular. Let d0 ∈ Rn, for given

HS-conjugate basis p0, . . . , pn−1 of Rn, the sequence generated according to

dk+1 = dk + αkpk (B.2)

with αk = − (Adk−b)T pk
pTkApk

will converges to the unique solution such that Ad = b, where b ∈ Rn.

Proof. Since A is nonsingular, the unique solution of Ad = b is d∗ = A−1b. Therefore one

119

would have

d∗ − d0 =
n−1∑
k=0

α̂kpk. (B.3)

for some nonzero coefficients α̂k. Note also that dn = d0 +
∑n

k=0 αkpk from the iterative

scheme. We will show that α̂k = αk. We can easily derive that pTkA(d∗ − d0) = α̂kp
T
kApk,

and then we have

pTkAd0 = pTkA(d0 +

k∑
i=2

αi−1pi−1) = pTkAdk. (B.4)

Therefore, we have

α̂k =
pTkA(d∗ − d0)

pTkApk
=
pTk (b−Adk)
pTkApk

= αk. (B.5)

This implies that as long as we can derive a sequence of HS-conjugate directions, we will

be able to find the unique solution of the system Ad = b (with b in the range of A) even

when A is not positive definite.

Proof of Lemma 3.3.2

Consider that ∇q(x) = Ax − b, the stationary point is then obtained by letting q(x) =

Ax− b = 0 . According to the definite of Pk, denote σ = (pT0 Ap0, p
T
1 Ap1, . . . , p

T
k−1Apk−1) ∈

Rk,

P Tk APk = diag(σ). (B.6)

Therefore yi = − pTi p0
pTi Api

, i = 0, . . . , k − 1. Note also that

αi = −(Axi − b)T pi
pTi Api

= −
(A(x0 +

∑i−1
j=0 αjpj)− b)T pi
pTi Api

= − pT0 pi

pTi Api
= yi.

Proof of Lemma 3.2.4

We first show that rTk pi = 0 for all i ∈ [k − 1]. Since α0 = rT0 r0/(p
T
0 Btp0), it’s obvious

that

rT1 p0 = (r0 − α0Btp0)T p0 = 0.

120

For i = k − 1, we have

rTk pk−1 = (rk−1 − αk−1Btpk−1)T pk−1 = 0.

And for i ∈ [k − 2], by noting that pi and pk−1 are conjugate direction, recursively, we

have that

rTk pi = (rk−1 − αk−1Btpk−1)T pi = 0.

We then show that ‖dk‖ is monotonic increasing. In fact, we have

‖dk+1‖2 = ‖dk + αkpk‖2 = ‖dk‖2 + α2
k‖pk‖2 + 2αkp

T
k dk,

and we only need confirm that pTk dk ≥ 0, for k = 0, 1, 2,

Note that

pT1 d1 = (r1 + β0p0)T (d0 + α0p0) = α0β0‖p0‖2 ≥ 0

Consequently, we have

pTk dk = (rk + βk−1pk−1)Tdk

= rTk dk + βk−1p
T
k−1(dk−1 + αk−1pk−1)

≥ rk(d0 +
k−1∑
i=1

αipi)

≥ 0.

Therefore, we showed that ‖dk+1‖2 ≥ ‖dk‖2, and therefore, we have ‖d‖ ≥ ‖d1‖ = ‖gt‖.

Detailed Description of Datasets and Experiments

We describe the network architectures and training details for the experimental results

reported of this chapter in this Section. The implementation is based on CPU and could be

easier to build your own solver.

MNIST The MNIST dataset is a set of 28 × 28 binary handwritten digit images. There

121

are 60, 000 samples as training dataset and 10, 000 samples as testing dataset. We use

10, 000 samples as validation set and the hypermeters for training the neural networks

are chosen such that the lowest validation error is achieved. And we then fix all the

hypermeters and use training and validation together and training for a reasonable

long time to obtain the final model parameters.

CIFRA-10 and CIFRA-100 The CIFRA-10 and CIFRA-100 datasets are the set of 32×

32 RGB images, with 10 and 100 categories, respectively. Both of datasets consist

50, 000 training and 10, 000 testing samples, 5, 000 samples from training samples are

abstracted as the validation dataset.

FC1 FC1 is a small fully connected network where we could evaluate the full Hessian and

its eigenvalues explicitly. In this setting, we set three layers network with 5 units in

the hidden layer. By which, we would get the neural network parameter size as 517.

FC2 FC2 is a small fully connected network with three layers and 50 units at hidden layer.

The neural network parameter size is then 51760.

FC3 FC3 is the neural network structure for the full dataset on both MNIST and CIFRA-

10, where we use five layers with three hidden layers of 400, 400 and 150 neurons. The

overall parameter size for MNIST and CIFRA10 is then around 0.3M and 1.5M.

Algorithm Description

MSGD mini-batch stochastic gradient descent

ASGD accelerate mini-batch stochastic gradient descent (mini-batch stochastic gradient

descent with momentum [92])

NSGD noisy mini-batch stochastic gradient descent (mini-batch stochastic gradient descent

with noise [59])

Martens-H Martens’ Hessian-free method with stochastic Hessian matrix and Levenberg-

Marquardt heuristic [51]

122

Martens-G Martens’ Hessian-free method with stochastic Gauss-Newton matrix and Levenberg-

Marquardt heuristic [51]

SINNC Inexact Newton-CG method with stochastic Hessian matrix, Algorithm 3.1

SINTR Inexact Trust-Region method with stochastic Hessian matrix, Algorithm 3.2

SINTR+ Inexact Trust-Region method with stochastic Hessian matrix and extra momen-

tum, Algorithm 3.4

123

Appendix C

Proof in Chapter 4

C.1 Technical Proofs

Before talking about the main results, the following lemma is used in our analysis.

Lemma C.1.1. (Proposition 5 in [54]) Consider the sample sets Sm with size m and Sn with

size n such that Sm ⊂ Sn. Let wm is Vm-suboptimal solution of the risk Rm. If assumptions

4.4.2 and 4.4.3 hold, then the following is true:

Rn(wm)−Rn(w∗n) ≤ Vm + 2(n−m)
n (Vn−m + Vm)+

2(Vm − Vn) + c(Vm−Vn)
2 ‖w∗‖2, w.h.p. (C.1)

If we consider Vn = O(1
nγ) where γ ∈ [0.5, 1], and assume that n = 2m (or α = 2), then

(C.1) can be written as (w.h.p):

Rn(wm)−Rn(w∗n) ≤
[
3 +

(
1− 1

2γ

)(
2 + c

2‖w
∗‖2
)]
Vm. (C.2)

124

C.1.1 Practical stopping criterion

For the risk Rn, the same as [103] we can define the following auxiliary function and vectors:

ω∗(t) = −t− log(1− t), 0 ≤ t < 1. (C.3)

ũn(w̃k) = [∇2Rn(w̃k)]
−1/2∇Rn(w̃k), (C.4)

ṽn(w̃k) = [∇2Rn(w̃k)]
1/2vn. (C.5)

We can note that ‖ũn(w̃k)‖ =
√
∇Rn(w̃k)[∇2Rn(w̃k)]−1∇Rn(w̃k), which is the exact

Newton decrement, and, the norm ‖ṽn(w̃k)‖ = δn(w̃k) which is the approximation of Newton

decrement (and ũn(w̃k) = ṽn(w̃k) in the case when εk = 0). As a result of Theorem 1 in the

study [103], we have:

(1− β)‖ũn(w̃k)‖ ≤ ‖ṽn(w̃k)‖ ≤ (1 + β)‖ũn(w̃k)‖, (C.6)

where β ≤ 1
20 . Also, by the equation in (C.5), we know that ‖ṽn(w̃k)‖ = δn(w̃k).

As it is discussed in the section 9.6.3. of the study [9], we have ω∗(t) ≤ t2 for 0 ≤ t ≤ 0.68.

According to Theorem 4.1.13 in the study [61], if ‖ũn(w̃k)‖ < 1 we have:

ω(‖ũn(w̃k)‖) ≤ Rn(w̃k)−Rn(w∗n) ≤ ω∗(‖ũn(w̃k)‖). (C.7)

Therefore, if ‖ũn(w̃k)‖ ≤ 0.68, we have:

Rn(w̃k)−Rn(w∗n) ≤ ω∗(‖ũn(w̃k)‖) ≤ ‖ũn(w̃k)‖2

(C.6)
≤ 1

(1−β)2
‖ṽn(w̃k)‖2 = 1

(1−β)2
δ2
n(w̃k) (C.8)

Thus, we can note that δn(w̃k) ≤ (1− β)
√
Vn concludes that Rn(w̃k)−Rn(w∗n) ≤ Vn when

Vn ≤ 0.682.

125

C.2 Proof of Theorem 4.4.4

According to the Theorem 1 in [103], we can derive the iteration complexity by starting

from wm as a good warm start, to reach wn which is Vn-suboptimal solution for the risk Rn.

By Corollary 1 in [103], we can note that if we set εk the same as (4.13), after Kn iterations

we reach the solution wn such that Rn(wn)−Rn(w∗n) ≤ Vn where

Kn =
⌈
Rn(wm)−Rn(w∗n)

1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉
. (C.9)

Also, in Algorithm 4.2, before the main loop, 1 communication round is needed, and in

every iteration of the main loop in this algorithm, 1 round of communication happens.

According to Lemma 4.3.1, we can note that the number of PCG steps needed to reach the

approximation of Newton direction with precision εk is as following:

Cn(εk) =
⌈√

1 + 2µn
cVn

) log2

(2

√
cVn+L
cVn

‖∇Rn(w̃k)‖

εk

)⌉
(4.13)

=
⌈√

1 + 2µn
cVn

) log2

(
2(cVn+L)
βcVn

)⌉
. (C.10)

Therefore, in every call of Algorithm 4.2, the number of communication rounds is not larger

than 1 + Cn(εk). Thus, we can note that when we start from wm, which is Vm-suboptimal

solution for the risk Rm, Tn communication rounds are needed, where Tn ≤ Kn(1+Cn(εk)),

to reach the point wn which is Vn-suboptimal solution of the risk Rn, which follows (4.14).

Suppose the initial sample set contains m0 samples, and consider the set

P = {m0, αm0, α
2m0, . . . , N},

then with high probability with T rounds of communication, we reach VN -optimal solution

for the whole data set:

T ≤
|P|∑
i=2

(⌈
RP[i](wP[i−1])−RP[i](w

∗
P[i]

)
1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
VP[i]

)
⌉)(

1 +
⌈√

1 +
2µP[i]

cVP[i]
) log2

(
2(cVP[i]+L)

βcVP[i]

)⌉)
.

(C.11)

126

C.3 Proof of Corollary 4.4.5

The proof of the first part is trivial. According to Lemma C.1.1, we can find the upper

bound for Rn(wm)−Rn(w∗n), and when α = 2, by utilizing the bound (C.2) we have:

Kn =
⌈
Rn(wm)−Rn(w∗n)

1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉

(C.2)
≤
⌈(3+

(
1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

Vm

1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
Vn

)
⌉

︸ ︷︷ ︸
:=K̃n

. (C.12)

Therefore, we can notice that when we start from wm, which is Vm-suboptimal solution

for the risk Rm, with high probability with T̃n communication rounds, where T̃n ≤ K̃(1 +

Cn(εk)), and Cn(εk) is defined in (C.10), we reach the point wn which is Vn-suboptimal

solution of the risk Rn, which follows (4.15).

Suppose the initial sample set contains m0 samples, and consider the set

P = {m0, 2m0, 4m0, . . . , N},

then the total rounds of communication, T̃ , to reach VN -optimal solution for the whole data

set is bounded as following:

T̃ ≤
|P|∑
i=2

(⌈(3+
(

1− 1
2γ

)(
2+

c
2‖w

∗‖2
))

VP[i−1]

1
2
ω(1/6)

⌉
+
⌈

log2(2ω(1/6)
VP[i]

)
⌉)⌉)

(⌈√
1 + 2µ

cVP[i]
) log2

(
2(cVP[i]+L)

βcVP[i]

)⌉)
≤

(
log2

N
m0

+
((3+

(
1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

1
2
ω(1/6)

1−(
1

2γ)
log2

N
m0

1− 1
2γ

Vm0

)

+

|P|∑
i=2

⌈
log2(2ω(1/6)

VP[i]
)
⌉)(⌈√

1 + 2µ
cVN

) log2

(
2
β + 2L

βc .
1
VN

)⌉)

≤

(
2 log2

N
m0

+
((3+

(
1− 1

2γ

)(
2+

c
2‖w

∗‖2
))

1
2
ω(1/6)

1−(
1

2γ)
log2

N
m0

1− 1
2γ

Vm0

)
+ log2

N
m0

log2(2ω(1/6)
VN

)

)(⌈√
1 + 2µ

cVN
) log2

(
2
β + 2L

βc .
1
VN

)⌉)
, w.h.p.

127

where µ = max{µm0 , µαm0 , . . . , µN}.

C.4 Details Concerning Experimental Section

In this section, we describe our datasets and implementation details. Along the whole

Chapter 3, we select four datasets to demonstrate the efficiency of our Algorithm 4.1. Two

of them are for convex loss case for a binary classification task using logistic model and the

other two are non-convex loss for a multi-labels classification task using convolutional neural

networks. The details of the dataset are summarized in Table C.1.

Dataset # of samples # of features # of categories
rcv1 20,242 47,326 2
gisette 7,242 5,000 2
Mnist 60,000 28*28 10
Cifar10 60,000 28*28*3 10

Table C.1: Summary of two binary classification datasets and two multi-labels classification
datasets

In terms of non-convex cases, we select two convolutional structure for the demonstration.

NaiveCNet is a simple two convolutional layer network for Mnist dataset, and Vgg11 is a

relative larger model with 8 convolutional layers. The details of the network architecture is

summarized in Table C.2. Note that for vgg11, a batch normalization layer is applied right

after each convolutional layer.

C.5 Additional Plots

Besides the plots in Section 4.5, we also experimented different data sets, and the other

corresponding settings are described in the main body.

128

Architecture NaiveCNet Vgg11
conv-1 (5× 5× 16), stride=1 (3× 3× 64), stride=1

max-pool-1 (2× 2), stride=2 (2× 2),stride=2
conv- 2 (5× 5× 32), stride=1 (3× 3× 128), stride=1

max-pool-2 (2× 2), stride=2 (2× 2), stride=2
conv- 3 (3× 3× 256), stride=1

max-pool-3 (2× 2), stride=2
conv- 4 (3× 3× 256)

max-pool-4 (2× 2), stride=2
conv- 5 (3× 3× 512), stride = 1

max-pool-5 (2× 2), stride=2
conv- 6 (3× 3× 512), stride = 1

max-pool-6 (2× 2), stride=2
conv- 7 (3× 3× 512), stride = 1

max-pool-7 (2× 2), stride=2
conv- 8 (3× 3× 512), stride = 1

max-pool-8 (2× 2), stride=2
fc 512

output 10 10

Table C.2: Summary of two convolutional neural network architecture.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

ERM, gisette
DANCE
Restart
Disco
CoCoA+

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epochs
0.80

0.85

0.90

0.95

1.00

1.05

tr
ai
ni
ng

 a
cc

ur
ac

y

ERM, gisette

DANCE
DANCE*
Restart
Disco
CoCoA+

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epochs
0.80

0.85

0.90

0.95

1.00

1.05

te
st
in
g
ac

cu
ra
cy

ERM, gisette

DANCE
Restart
Disco
CoCoA+

0 10 20 30 40 50

running time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

ERM, gisette
DANCE
Disco
CoCoA+

0 10 20 30 40 50

running time
0.80

0.85

0.90

0.95

1.00

1.05

tr
ai
ni
ng

 a
cc

ur
ac

y

ERM, gisette

DANCE
DANCE*
Disco
CoCoA+

0 10 20 30 40 50

running time
0.80

0.85

0.90

0.95

1.00

1.05

te
st
in
g
ac

cu
ra
cy

ERM, gisette

DANCE
Disco
CoCoA+

Figure C.1: Performance of different algorithms on a Logistic Regression problem with
gisette as dataset. For DANCE algorithm, we set c = 0.1 in (4.4), and the regularization
parameter is set to be 10−4 for other algorithms. For figures in the middle where the y-axis
represents training accuracy, the plot DANCE is the training accuracy based on the entire
training set, while the plot DANCE* represents the training accuracy based on the current
sample size.

129

0 20 40 60 80 100

epochs

0

10
0

lo
ss

NaiveCNet, Mnist
SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE
Restart

0 20 40 60 80 100

epochs
0.0

0.2

0.4

0.6

0.8

1.0

tr
ai
ni
ng

 a
cc

ur
ac

y

NaiveCNet, Mnist

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE
Restart

0 20 40 60 80 100

epochs
0.0

0.2

0.4

0.6

0.8

1.0

te
st
in
g
ac

cu
ra
cy

NaiveCNet, Mnist

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE
Restart

0 10 20 30 40 50

running time

0

10
0

lo
ss

NaiveCNet, Mnist
SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE

0 10 20 30 40 50

running time
0.0

0.2

0.4

0.6

0.8

1.0

tr
ai
ni
ng

 a
cc

ur
ac

y

NaiveCNet, Mnist

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE

0 10 20 30 40 50

running time
0.0

0.2

0.4

0.6

0.8

1.0

te
st
in
g
ac

cu
ra
cy

NaiveCNet, Mnist

SGD-0.01-512
SGD-0.01-128
SGD-0.001-512
SGD-0.001-128
SGD-0.0001-512
SGD-0.0001-128
DANCE

Figure C.2: Comparison between DANCE and SGD with various hyper-parameters on Mnist
dataset and NaiveCNet. NaiveCNet is a basic CNN with 2 convolution layers and 2 max-pool
layers (see details at Appendix C.4). Figures on the top and bottom show how loss values,
training accuracy and test accuracy are changing with respect to epochs and running time.
We force two algorithms to restart (double training sample size) after achieving the following
number of epochs: 0.075, 0.2, 0.6.1.6, 4.8, 9.6, 18, 36, 72. For SGD, we varies learning rate
from 0.01, 0.001, 0.0001 and batchsize from 128, 512. One can observe that SGD is sensitive
to hyper-parameter settings, while DANCE has few parameters to tune but still shows
competitive performance.

130

0 20 40 60 80 100 120

epochs

0

10
0

lo
ss

vgg11, Cifar10
SGDMom-0.01-0.9
SGDMom-0.01-0.7
SGDMom-0.001-0.9
SGDMom-0.001-0.7
SGDMom-0.0001-0.9
SGDMom-0.0001-0.7
DANCE
Restart

0 20 40 60 80 100 120

epochs
0

1.1 × 10
0

tr
ai
ni
ng

 a
cc

ur
ac

y

vgg11, Cifar10

SGDMom-0.01-0.9
SGDMom-0.01-0.7
SGDMom-0.001-0.9
SGDMom-0.001-0.7
SGDMom-0.0001-0.9
SGDMom-0.0001-0.7
DANCE
Restart

0 20 40 60 80 100 120

epochs
0

1.1 × 10
0

te
st
in
g
ac

cu
ra
cy

vgg11, Cifar10

SGDMom-0.01-0.9
SGDMom-0.01-0.7
SGDMom-0.001-0.9
SGDMom-0.001-0.7
SGDMom-0.0001-0.9
SGDMom-0.0001-0.7
DANCE
Restart

0 100 200 300 400 500 600 700 800

running time

0

10
0

lo
ss

vgg11, Cifar10
SGDMom-0.01-0.9
SGDMom-0.01-0.7
SGDMom-0.001-0.9
SGDMom-0.001-0.7
SGDMom-0.0001-0.9
SGDMom-0.0001-0.7
DANCE

0 100 200 300 400 500 600 700 800

running time
0

1.1 × 10
0

tr
ai
ni
ng

 a
cc

ur
ac

y

vgg11, Cifar10

SGDMom-0.01-0.9
SGDMom-0.01-0.7
SGDMom-0.001-0.9
SGDMom-0.001-0.7
SGDMom-0.0001-0.9
SGDMom-0.0001-0.7
DANCE

0 100 200 300 400 500 600 700 800

running time
0

1.1 × 10
0

te
st
in
g
ac

cu
ra
cy

vgg11, Cifar10

SGDMom-0.01-0.9
SGDMom-0.01-0.7
SGDMom-0.001-0.9
SGDMom-0.001-0.7
SGDMom-0.0001-0.9
SGDMom-0.0001-0.7
DANCE

Figure C.3: Comparison between DANCE and with momentum for various hyper-parameters
on Cifar10 dataset and vgg11 network. Figures on the top and bottom show how loss
values, training accuracy and test accuracy are changing regarding epochs and running
time, respectively. We force two algorithms to restart (double training sample size) after
running the following number of epochs: 0.2, 0.8, 1.6.3.2, 6.4, 12, 24, 48, 96. For SGD with
momentum, we fix the batchsize to be 256 and varies learning rate from 0.01, 0.001, 0.0001
and momentum parameter from 0.7, 0.9. One can observe that SGD with momentum is
sensitive to hyper-parameter settings, while DANCE has few hyper-parameters to tune but
still shows competitive performance.

131

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epochs

0

10
0

lo
ss

NaiveCNet, Mnist
SGDMom-0.01-0.9
SGDMom-0.01-0.8
SGDMom-0.001-0.9
SGDMom-0.001-0.8
SGDMom-0.0001-0.9
SGDMom-0.0001-0.8
DANCE
Restart

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epochs
0.0

0.2

0.4

0.6

0.8

1.0

tr
ai
ni
ng

 a
cc

ur
ac

y

NaiveCNet, Mnist

SGDMom-0.01-0.9
SGDMom-0.01-0.8
SGDMom-0.001-0.9
SGDMom-0.001-0.8
SGDMom-0.0001-0.9
SGDMom-0.0001-0.8
DANCE
Restart

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

epochs
0.0

0.2

0.4

0.6

0.8

1.0

te
st
in
g
ac

cu
ra
cy

NaiveCNet, Mnist

SGDMom-0.01-0.9
SGDMom-0.01-0.8
SGDMom-0.001-0.9
SGDMom-0.001-0.8
SGDMom-0.0001-0.9
SGDMom-0.0001-0.8
DANCE
Restart

0 5 10 15 20 25 30

running time

0

10
0

lo
ss

NaiveCNet, Mnist
SGDMom-0.01-0.9
SGDMom-0.01-0.8
SGDMom-0.001-0.9
SGDMom-0.001-0.8
SGDMom-0.0001-0.9
SGDMom-0.0001-0.8
DANCE

0 5 10 15 20 25 30

running time
0.0

0.2

0.4

0.6

0.8

1.0

tr
ai
ni
ng

 a
cc

ur
ac

y

NaiveCNet, Mnist

SGDMom-0.01-0.9
SGDMom-0.01-0.8
SGDMom-0.001-0.9
SGDMom-0.001-0.8
SGDMom-0.0001-0.9
SGDMom-0.0001-0.8
DANCE

0 5 10 15 20 25 30

running time
0.0

0.2

0.4

0.6

0.8

1.0

te
st
in
g
ac

cu
ra
cy

NaiveCNet, Mnist

SGDMom-0.01-0.9
SGDMom-0.01-0.8
SGDMom-0.001-0.9
SGDMom-0.001-0.8
SGDMom-0.0001-0.9
SGDMom-0.0001-0.8
DANCE

Figure C.4: Comparison between DANCE and SGD with momentum for various hyper-
parameters on Mnist dataset and NaiveCNet. Figures on the top and bottom show how
loss values, training accuracy and test accuracy are changing regarding epochs and running
time, respectively. We force two algorithms to restart (double training sample size) after
running the following number of epochs: 0.075, 0.2, 0.6.1.6, 4.8, 9.6, 18, 36, 72. For SGD with
momentum, we fix the batchsize to be 128 and set learning rate to be 0.01, 0.001, 0.0001
and momentum parameter to be 0.8, 0.9. One could observe that SGD with momentum is
sensitive to hyper-parameter settings, while DANCE has few hyper-parameters to tune but
still shows competitive performance.

132

Appendix D

Notation and Symbols

Basic Objects:

A,B, . . . matrices

a, b, . . . vectors

α, β, . . . parameters

i, j, . . . indices

ξ random variable

ei the unit vector where the i-th element is 1

In or I the n× n identity matrix

λi(A) or λi the i-th (ordered from smallest to largest) eigenvalue of matrix A

Sets:

Rn the real n-dimensional vector space

Rn+ the set of nonnegative vectors or Rn

Ck the set of k-th continuous and differentiable functions in Rn

133

[n] index set {1, 2, . . . , n}

S a sampling subset of [n]

Relations:

A � 0 A is a symmetric positive definite matrix

A � 0 A is a symmetric positive semidefinite matrix

A ≺ 0 A is a symmetric negative definite matrix

A 6� 0 A is a symmetric indefinite matrix

Operators, functions:

E[ξ] expectation of random variable ξ

P[X] probability of event X

∇f(x) or f ′(x) gradient of function f at point x ∈ Rn

∇2f(x) or f ′′(x) Hessian of function f at point x ∈ Rn

∂f(x)
∂xi

partial derivative of f(x) at xi

Rvf(x) direction derivative of f(x) along direction v, i.e., Rvf(x) = ∂
∂rf(x +

rv)|r=0

xT y inner product of x and y

‖x‖ L2-norm of the vector x

‖A‖ 2-norm/spectral norm of the matrix A

|S| number of elements in sampling set S, or cardinal number of sampling

set S

span(x, y, . . .) subspace spanned by vectors {x, y, . . . }

134

Biography

Xi He got his B.S. degree in Mathematics from Nankai University, China, in 2012. He then

pursued his M.S. degree in Computational Mathematics from Nankai University in 2014.

At the same year, he started his Ph.D. program at Industrial and Systems Engineering

department in Lehigh University, USA. He worked with Dr. Martin Takáč in the area of

large-scale optimization in machine learning problems. The research focus of him includes

first-order stochastic primal-dual optimization for convex/nonconvex empirical risk mini-

mization and distributed second-order stochastic optimization for deep neural networks. He

published works to Frontiers in Applied Mathematics and Statistics, AAAI and NIPS work-

shops. During his Ph.D., he also did internships in Siemens Corporation Research, Alliance

Data, and JPMorgan Chase & Co., as a data scientist or quantitative researcher.

135

	Lehigh University
	Lehigh Preserve
	2019

	Distributed Algorithms in Large-scaled Empirical Risk Minimization: Non-convexity, Adaptive-sampling, and Matrix-free Second-order Methods
	Xi He
	Recommended Citation

	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Dual Free Adaptive Mini-batch SDCA for Empirical Risk Minimization
	Introduction
	Contributions
	Outline

	The Adaptive Dual Free SDCA Algorithm
	Adaptive dual free SDCA as a reduced variance SGD method.

	Convergence Analysis
	Case I: All loss functions are convex
	Case II: The average of the loss functions is convex

	Heuristic adfSDCA
	Mini-batch adfSDCA
	Efficient single coordinate sampling
	Nonuniform Mini-batch Sampling
	Mini-batch adfSDCA algorithm
	Expected Separable Overapproximation

	Numerical experiments
	Comparison for a variety of adfSDCA approaches
	Mini-batch adfSDCA
	adfSDCA for non-convex loss

	Conclusion

	Large-scale Distributed Hessian-Free Optimization for Deep Neural Networks
	Introduction
	Deep Neural Network in Distributed Environment
	Distributed Hessian-free Optimization Algorithms
	Distributed HF optimization framework
	Dealing with Negative Curvature

	Numerical Experiments
	Comparison of Distributed SGD and Distributed Hessian-free Variants
	Scaling Properties of Distributed Hessian-free Methods

	Conclusion

	Steps towards Successful Training of Deep Neural Networks Using Second order Optimization Methods
	Introduction
	Fully Connect Deep Neural Network
	Deep Convolutional Neural Network

	Second order Methods for Deep Neural Networks
	First Order Oracle
	Second Order Oracle
	Algorithms for Training Neural Networks
	Saddle-points Issue on Training Neural Networks
	Almost Sure Convergence to a Local Minimizer

	Inexact Stochastic Newton CG Method (SINNC)
	Early Terminated CG for Indefinite System

	Inexact Stochastic Trust Region Method
	Steihaug Conjugate Gradient Descent Method
	Accelerated SINTR with Adding Momentum

	Numerical Results
	Comparison Results Among Various Escaping Approachs
	Generalization Gap and Sharp Minima
	Eigenvalue Evolution Along the Training Process
	Accelerated SINTR with Adding Momentum
	Performance Comparison on the Full Dataset
	The eigenvalue distribution evolution for SINTR+ on different dataset
	Discussion of Results

	Conclusion

	Efficient Distributed Hessian Free Algorithm for Large-scale Empirical Risk Minimization via Accumulating Sample Strategy
	Introduction
	Problem Formulation
	Distributed Accumulated Newton-CG Method
	Complexity Analysis
	Numerical Experiments
	Conclusion

	UCLibrary: A Unconstrained Optimization Library for Nonlinear Problems
	Introduction
	Tour of the UCLibrary
	List of Main Modules

	Conclusion
	Bibliography
	Proofs in Chapter 1
	Preliminaries and Technical Results
	Proof of Lemmas 1.3.1 and 1.3.5
	Proof of Lemma 1.3.2
	Proof of Theorems 1.3.3 and 1.3.6
	Proof of Corollary 1.3.4
	Proof of Theorems 1.5.5 and 1.5.6

	Proof in Chapter 3
	Proof in Chapter 4
	Technical Proofs
	Practical stopping criterion

	Proof of Theorem 4.4.4
	Proof of Corollary 4.4.5
	Details Concerning Experimental Section
	Additional Plots

	Notation and Symbols
	Biography

