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Abstract

Renewable power generation resources are one of the biggest trends emerging the

power systems world. The inherent variability of these power sources brings chal-

lenges in terms of planning, reliability and feasibility factors. Classical formulations

of Optimal Power Flow systems tries to generate power for a system at minimal

cost, considering devices and transmission constraints.

This work evaluates the impact of different levels of renewable ”green” energy in

terms of the two most common optimization models in power systems planning: Unit

Commitment and Economic Dispatch, under different time modelling and transmis-

sion assumptions.In this thesis a full user-friendly tool in AIMMS was built with

4 datasets based on the IEEE RTS-96 Test Cases with Wind and Solar profiles

incorporated from the state of Texas. This tool will be available to the academic

community for power systems planning research purposes, with capacity to expand.

Our analysis finds that, under high renewable resource penetration levels, more

factors have to be considered in planning, such as ramping, under and over gener-

ation, storage behaviour, transmission line limits and start-up, shut-down profiles.

It is also suggested that, under deep sub-hourly levels, the classic formulation of

unit commitment is not efficient and, therefore it is necessary to incorporate new

optimization techniques.
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Chapter 1

Introduction

By many accounts, renewables resources will likely play a key role in the electric

grid system for many countries in the next decades [30]. Variable renewable energy

(VRE) (e.g., wind and solar) have random intermittent output, and thus do not

behave like the dispatchable resources used for the vast majority of today’s elec-

tricity generation. The variability of these sources has led to concerns regarding

the reliability of an electric grid that derives a large fraction of its energy from

these sources as well as the cost of reliably integrating large amounts of variable

generation into the electric grid. To address these concerns, the electricity grid

may incorporate additional technologies that provide one or more of the following

attributes: fast ramping capabilities, load shifting, demand response, energy stor-

age, and more. Which technologies and grid configurations prevail are likely to be

impacted by several factors including economics (i.e. the costs and benefits of each

technology are weighed relative to the other available options), reliability, local and

regional policies and other region-specific resource constraints.

Underpinning many of the economic and reliability studies used to assess various

technologies are optimization and simulation models. These models make numerous

approximations when determining optimal Economic Dispatch and power flow, the

consequences of which are not fully understood, especially with substantially more

variable renewable resources and different grid configurations.

The first goal of this thesis is to investigate and attempt to characterize the
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subtleties that arise when making certain approximations to model day-ahead and

real-time dispatch decisions. The investigated scenarios represent instances of real-

world grid configurations on a shorter scale with different levels of renewable resource

penetration.

In general, power system models can be classified according to different features,

that include:

1. Time frame: decade, year, hour, sub hour

2. Scale: global, national, regional, local

3. Deterministic vs stochastic

4. Optimization vs Simulation

5. Algorithmic vs Heuristic

In its current form, the software developed in this thesis considers two of the most

prominent optimization models: Economic Dispatch (ED) and Unit Commitment

(UC).

Economic Dispatch (ED) models are often deterministic linear optimization mod-

els that attempt to determine the minimum cost output of available generators to

meet system load (demand), subject to transmission and operational constraints, in

every time period over a fixed time horizon. These models are typically formulated

with a resolution of one hour or less with a short time horizon. Without trans-

mission or operational constraints, ED models are simple to solve. Generators are

first sorted in ascending order according to their marginal costs (forming a so-called

“merit-order curve”) and then dispatched in that same order until system load is

met. The marginal cost of the final generator needed to meet load determines the

system marginal cost, the cost of delivering one additional MWh of energy onto the

system. With transmission, operational, and/or environmental constraints, however,

these models require more sophisticated optimization algorithms to determine the

optimal generation allocation. For most representations of transmission constraints,
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linear optimization models suffice. For detailed AC transmission formulations, non-

convex nonlinear NP-hard models arise. Historically, these models are hard to solve

in a practical amount of time, which is one of the reasons Economic Dispatch is so

popular with grid planners nowadays.

Unit Commitment (UC) models most often refer to mathematical programs that

attempt to schedule generators to meet system load in the future based on some

forecast of net load (load minus generation from renewable sources). Whereas ED

models typically assume generator availability has already been determined (and,

thus, is an input to an ED model), a UC model must determine on/off decisions for

each generator in the fleet in each future time period. Consequently, UC models are

often formulated as mixed-integer linear programs and are more difficult to solve

than ED models. Stochastic and robust UC models include an additional layer of

complexity by assuming that forecasted parameters are uncertain. The presence of

additional binary variables in the model considerably increases the solution time.

So, usually UC models are solved for less than a 24 hour horizon, on an hourly

level. However, one of the goals for this project is evaluate what happens in terms

of solution quality and time when the horizon is bigger and the time granularity is

shorter.

A secondary goal of this thesis is the development of an open-source software

tool for power systems optimization. Why develop another power systems software

tool? There are a number of existing tools available in the power systems community

(see the references given in [17]). For example, one of the most popular open-source

tools is MatPower [45], which is advertised as a tool “for solving power flow and

optimal power flow problems” and thus is not ideal for multi period problems. In

addition, one of the major drawbacks of Matlab is that it lacks a user-friendly

algebraic modelling interface. Instead, one must enter constraints as vectors or

matrices, which is less natural than the algebraic models that students are taught

and practitioners use in the optimization community. Especially for starters, having

a user-friendly intuitive tool with a simpler method can be much more powerful

than a powerful technical one with a hard interface with which to interact.

The tool developed in this project more closely resembles the work done for
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Minpower [17], an open-source toolkit coded in Python that relies on Pyomo [20].

AIMMS provides a free academic license and thus can facilitate power systems op-

timization and analysis. It has plug-ins to all major optimization solvers and other

features, as well as the ability to easily change and expand one’s models to study

new systems and configurations.

6



Chapter 2

Literature Review

As mentioned previously, power planning is a popular topic in Operations Research,

and it is becoming even more challenging with the increase of wind and solar in the

grid. Cain et al. [7] divides power flow formulations into 3 major categories: Power

Flow (PF), Economic Dispatch (ED) and Optimal Power Flow (OPF) and describe

them based on the assumptions and operational constraints, as shown in Table 2.1 .

Table 2.1: Optimal Power Flow Categories.

Category Name
Constraints Costs
Voltage

Transmission Contingency Losses Generator
Angle Magnitude

OPF ACOPF x x x x x
OPF DCOPF x x x x
OPF DOPF x x x x
OPF SCED x x x x x
OPF SCOPF x x x x x x
PF PF x x x
ED ED x x

Yamin [42] discusses different techniques to solve the Unit Commitment and Eco-

nomic Dispatch problems, categorizing them in deterministic, heuristic or stochastic,

pointing out the computational challenges and the quality of results for each one of

them.

7



Bertsimas et al. [4] proposes a two-stage robust optimization to mitigate demand

and variability uncertainties to solve UC when renewable resources are a major ele-

ment in the field. The authors point out the advantages of the method by comparing

to traditional planning methods.

Padhy [28] formulates the Unit Commitment problem as a general optimization

problem and presents a bibliographical survey of the main techniques in the last

30 years, from exhaustive methods such as priority listing, dynamic programming,

mixed integer-programming up to complex heuristics like fuzzy programming, ge-

netic algorithms and evolutionary programming. However the authors state that

further testing is required for those methods.

Connolly et al. [10] review 68 tools to power grid planning with renewable re-

sources, discussing, at the end, goals, limitations and features of 37 tools. The

authors emphasize that, although all the tools are essential to accurate power plan-

ning with renewable resources, there is no perfect tool, and it should be chosen

accordingly to project goals, data limitations, horizon and other features.

Kassakian et al. [22] discuss the main changes and challenges in the power system

for future years. One of important changes is the increase of VRE, that might have

substantial impacts in operating costs, primarily due to the necessity of more reserve

generation with different time responses. To mitigate this increase in the operating

costs, 3 suggestions were proposed: improve wind and solar forecasting techniques,

expand the cooperation and interconnections among regions and reduce decision

horizon and resolution levels, to capture more realistic ramping and reserve effects.

Palmintier and Webster [29] study the impact of UC models with expansion

planning, highlighting that ignoring operating constraints on expansion planning

with VRE could provide higher operating costs and emissions. Hargreaves et al. [18]

propose a method that combines simulation and stochastic UC to capture precisely

the challenges of expanding the capacity with VRE.

Under a scenario where VRE have considerable penetration in the power system,

it is necessary to study their impact. Deane et al. [11] evaluates the UC and ED

results at different temporal resolutions under one year. The authors discuss that

sub-hourly resolutions can deal more accurately with non-thermal inflexibilities,
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renewable demand variabilities and ramping behaviours than one-hour resolution.

One of the alternatives studied in the literature is the use of storage devices to

stock energy when the demand is lower than the capacity and use it on an abrupt

peak demand, avoiding the use of conventional generators. Safaei and Keith [34]

study different storage technologies and their impact on the emission grid at a 15

minute time resolution, without transmission constraints and forecast errors. The

main insights are that cheap storage does not have major impact in the cost of

reducing the carbonization, and seasonal storage is not economically justifiable. In

the other hand, Harris et al. [19] study the viability of seasonal storage by analysing

UC results of different storage scenarios and technologies on a city level, concluding

that seasonal storage can bring operational benefits and reduce operating costs and

fuel emissions at peak load. O’Dwyer and Flynn [26] investigate the effect of storage

for ED and stochastic UC planning under a sub-hourly resolution, concluding that

storage can improve system stability and reduce cyclical ramping rates for NVRE,

saving operation costs.

This work will analyze the impact of green energy under 60, 15 and 5-minute time

levels, for different levels of renewable resources penetrations, and will compare them

in terms of parameters widely used in the power systems world. The differential in

this work is that we are using a very known dataset with additional wind and solar

power profiles from real data, having AIMMS as the supporting tool to provide all

the modeling, data process and optimization. The models used in this thesis were

widely explored in the literature, and there is nothing different in the formulations.

However, some new assumptions were made to improve performance, especially on

a small sub-hourly level with a considerable number of renewable generators.

Most of previous studies consider data from existing plants and evaluates storage

as another feature to handle VRE variabilities, along with other energy sources. In

our work, storage devices are studied under a hypothetical scenario that all the

energy comes from renewable resources, and therefore there is no ramping flexibility

at peak load. This work tries to estimate how much storage is necessary to guarantee

power supply.

9
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Chapter 3

Development

3.1 Data

3.1.1 Reliability Test System Data

To evaluate the proposed models and compare them with the existing literature, it

was necessary to use a representative dataset that could be a baseline for the power

systems analysis tests. The Institute of Electrical and Electronics Engineers (IEEE)

developed a dataset that could allow researchers to compare reliability evaluation

techniques, known as IEEE RTS [41].

The first version was developed in 1976 with load data, known as RTS-76, and

two other versions were released with data improvements, RTS-86 and RTS-96. Only

the RTS-96 has production costs for generating units, a required parameter for the

proposed models in this thesis.

The system is divided into 3 areas with 24 buses each, connected by high capacity

transmission lines. The topology and the buses relative geographic positions are

shown in Figure 3.1 [41].
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Figure 3.1: RTS-96 Topology.
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The dataset describes a peak load for each bus. The absolute load in every hour

is a percentage of the peak load based on 3 components: the week of year, the day

of week an the hour of the day. The hourly peak changes according to the season

and if it is in a weekend or not. For example, the peak load of bus 101 is 108MW.

On 01/07 at 12:00 PM the load is:

Lb=108 = (Lyearweek=27 = 75.5%)× (Ldayofweek=friday = 94%)

× (Lhour=12PM = 93%)× 108 = 71.28MW (3.1)

Figure 3.2 displays the total system load throughout the month of July.

Figure 3.2: Total System Load (MW) in July 2015.

To generate instances with sub-hourly load profiles, the load during intra-hour

periods is constructed using linear interpolation plus an additional perturbation,

which follows a uniform [−Pr,+Pr]%, where Pr is a parameter in the range of

[0,100] %. The objective is to capture the ramping behaviour of NVRE on a sub

hourly level. Figure 3.3 shows a difference between load curves on a 60-minute and

15-minute planning level.

13



Figure 3.3: System Load (MW) for 5 Days in July With 15- and 60-minute Resolution.

The original RTS-96 system has 87 generators distributed across the test field,

with the distribution described in Figure 3.4. Sync generators are not considered

for this study.

Figure 3.4: Total Number of Generators per Type.

The total peak load is 8550 MW while the total generation capacity is 9975 MW.
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3.1.2 Renewable Generators Data

Although RTS-96 has most of the necessary data for this project, it does not con-

tain any wind and solar generation information, the two fastest growing renewable

sources in the world. This discrepancy is interesting in its own right as it reveals

how much technology has changed in the two decades since the RTS-96 data set was

published.

Since wind and solar energy are expected to play a prominent role in the future

grid (e.g., India has pledged to install 100 GW of solar capacity by 2022 [13], while

Germany has already installed 45 GW of wind capacity, or roughly 25 % of its total

installed capacity[15], wind and solar profiles were also included in our test instances.

Historical data for both sources was taken from the website of the Electric Reliability

Council of Texas (ERCOT), the independent system operator that manages the flow

of electric grid for the vast majority of Texas.

The wind and solar profiles define the generation capacity for these renewable

resources in a full year, and it is based on historical availability from the last 5 years

in Texas. The geographic renewable potential in Texas were considered for each bus

in the system, both for solar and wind generators.

15



Wind Profile

Figure 3.5, adapted from [38] shows the Texas Annual Average Wind speed and

the relative geographic positions of RTS-96 buses [41]. The flat northern border is

known as the “panhandle” because the state of Oklahoma, north of Texas, is shaped

like a pan. The handle of this pan is where most of the wind potential resides. As

a result, most of the new generators are being installed in northwest [38].

Figure 3.5: Wind Potential for Texas with RTS-96 Bus Locations.

To build the wind potential, each bus was associated with a Texas city or region

along with the average historical wind generation for the past 5 years. The studied

data is freely shared by ERCOT [12]. Therefore each location has a wind potential

on an hourly level throughout an entire year. In sub-hourly levels the availability

16



follows the interpolation between the hours followed by a uniform perturbation,

using the same logic as with load. That said, the real generation for any wind

generator is a factor of the percentage of the nameplate capacity followed by the

profile where it is located. Figure 3.6 shows the wind profile for the bus 122 in the

month of January.

Figure 3.6: Wind Profile for Bus 122 in January.
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Solar Profile

Figure 3.7, adapted from [25], displays the NREL’s solar incidence report in the

state of Texas and the relative geographic positions of RTS-96 buses.

Figure 3.7: Solar Potential for Texas with RTS-96 Bus Locations.

It is important to notice that the highest incidence profile in the state of Texas is

located in the west, followed by the northeast and center. The solar profile analysis

follows the same logic developed in the wind case. However, only buses located in

the mentioned area had their profiles built. As an example, the solar profile for bus

112 (in far northeast of Texas) on January is shown in Figure 3.8.

18



Figure 3.8: Solar Profile for Bus 112 in January.

3.1.3 Costs

For our models, the costs were developed based on the RTS-96 data and some

benchmark values widely used in the industry for power generation studies. There

are two type of costs associated with generation:

• Generation Cost ($/MW ): Cost to generate 1MW of a specific unit group.

• Start-up Cost ($/MW ): Cost to change the state of a specific generator type

from off to on.

3.1.4 Scenarios Description

This project covered 3 different generator scenarios in the same load profile. The

distribution is adapted from Shavel et al. [36], that describes the technical and

economical potentials of exploring natural gas and VRE in the state of Texas [36].

Scenario 1: Reference

This scenario captures the existing ERCOT capacity mix. 88% of generation comes

from non-renewable energy sources. The remaining capacity is filled by wind gener-

ators, located in the buses that have the Texas Northwest’s wind potential (Buses

19



111-124).

Scenario 2: Stronger Federal Carbon Rule

Scenario 2 is built based on column “2032 Total” of Table IV-10 in [36]. This

scenario is described as follows:

“Our scenario with a strong federal carbon rule requires existing coal

plants to capture and sequester 90% of their CO2 output.(...) As one

would expect, this case shows that most of the ERCOT coal plant fleet

retires in 2025, the year we assume the carbon rule goes into effect.

At this point, 16 GW of coal capacity providing more than 30% of all

ERCOT energy rapidly shifts to gas and renewable supply sources: 6

GW of new CC capacity and 3 GW of new wind capacity. In the next

several years, another 3 GW of CC capacity is added, along with another

19 GW of wind. Solar becomes rapidly cost-effective in this scenario and

quickly rises to over 8 GW installed by 2029. For the remainder of the

scenario horizon, all additional load growth is met by solar and wind

additions.”

In essence, 44% of the generation is provided by natural gases, followed by 42%

of NVRE and 14% of other sources. Most of the wind generators are located at

buses 111-124, with some in 211-224. Solar generators are at buses 101-110.

Scenario 3: “Almost Green World”

This scenario is an extreme case of Scenario 2. All coal, nuclear and oil/steam

generators have been retired and are no longer a part of the system. The grid runs

entirely on wind and solar, with advanced natural gas combined cycle generators

used primarily for ramping, flexibiliy and backup, i.e, to complete the demand when

there is not enough wind and solar to fulfil the load. Wind and solar generators are

located throughout the map, following the concentration based on wind and solar

profiles from Figures 3.7 and 3.5.
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Scenario 4: “Green World”

In this scenario all the natural gases are replaced by battery storage. The generation

is 100% provided by wind and solar generators, with nameplate capacity bigger

than Scenario 3. To mitigate the transmission generation limits, wind generators

are located all over the field, while solar generators are still located in north east.

There is no decision to turn on and off any generator, and the main decision is only

how the storage behaviours in order to minimize under generation.

Generation per Scenario

The nameplate capacity of the base case scenario described by Shavel et al. [36]

is 82,949 MW, where for RTS-96 is close to 10,000 MW. Therefore all absolute

generator type capacities were adapted to the new baseline and the rates by type

were mantained. The result is in Table 3.1.

Table 3.1: Capacity of Each Generator Type Expressed in MW as a Percentage of Total

Capacity in the 4 Scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

MW % MW % MW % MW %

Nuclear 660 6 440 4 0 0 0 0

Coal 2530 23 220 2 0 0 0 0

Oil/Gas 1650 15 880 8 0 0 0 0

NGCC 4180 38 4400 40 2287 21 0 0

NGTC 2090 6 440 4 404 3 0 0

Wind 660 12 3630 33 7934 60 8000 61

Solar 1320 0 900 9 2824 16 5452 59

Total 11000 100 11000 100 13452 100 17900 100
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3.2 Models

This section describes the Unit Commitment and Economic Dispatch models used

in this project

3.2.1 Indices and Sets

g ∈ G Set of generators

b ∈ B Set of buses

sd ∈ SD Set of storage devices

g ∈ GNR Subset of non-renewable generators

g ∈ GR Subset of renewable generators

gt ∈ GT Set of generator types

u ∈ U Set of unit groups

l ∈ L Set of transmission lines

rr ∈ RR Set of reserve requirements

rp ∈ RP Set of reserve products

t ∈ T Set of time periods

g ∈ Gb Set of generators in each bus b
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3.2.2 Parameters

Db,t Load at bus b in time t

Cg Generation cost for generator g ($ / MW) t

Sg Start-up cost for generator g

Rup
g Ramp up limit for generator g

Rdown
g Ramp down limit for generator g

Gmax
g Maximum generation capacity for generator g

Gmin
g Minimum generation capacity for generator g

Tmin
l Minimum transmission of transmission line l

Tmax
l Maximum transmission of transmission line l

PR
g,t Power generation of renewable generator g in time t

Uup
g Minimum uptime of generator g (hours)

Udown
g Minimum downtime of generator g (hours)

STmax
sd Maximum storage capacity of storage device sd (MW)

ST ramp
sd Maximum storage capacity of storage device sd (MW)

3.2.3 Variables

PNR
g,t Power generation of non-renewable generator g in time t (MW)

Ti,j,t Power transmitted from bus i to bus j in time t (MW)

T loss
i,j,t Power loss in transmission from bus i to bus j in time t (MW)

Sg,t On/off status of generator g at time n

Son
g,t Start-up status of generator g at time n

Soff
g,t Shut-down status of generator g at time n

V −b,t Under generation slack variable at each bus b in time t

V +
b,t Over generation slack variable at each bus b in time t

STmax
sd,t Amount of energy stored in storage device sd in time t

ST ch
sd,t Amount of energy charged in device sd in time t

ST disch
sd,t Amount of energy discharged in device sd in time t
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3.2.4 Models

The Economic Dispatch model satisfies the load and transmission requirements at a

minimum cost, following operational requirements such as generation, transmission

and ramp limits. In this model, we assume that the commitment decisions have been

already made. The main objective function of the studied models is to minimize

operational costs over the planning horizon, including fuel, start-up, storage and

other variable costs.

The types of constraints that manage the optimal dispatching are:

• Load Constraints: For each time period, the amount of power produced

and discharge from storage should be equal to the total load and amount

charged into a storage. Alternatively, in a node, this equation also considers

the inbound and outbound power transmitted.

• Ramping Constraints: Each generator has technical limitations that limits

the amount of increase and decrease from one period to the next. This is

especially important when there are considerable load and VRE fluctuations

in consecutive periods.

• Generator Limit Constraints: When turned on, each generator must pro-

duce within a minimum and maximum power limit, under normal operating

conditions.

• Transmission Constraints: Transfer of power between buses is bounded by

the nominal power capacity of the transmission line

• Reserve Constraints: Each non-renewable generator must produce an am-

mount of reserve to satisfy operational and reliability parameters.

• Storage Constraints: As well as generators, the charging and discharging

rates in storage devices also have technological limits, like total capacity and

ramp rates.
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Simple Economic Dispatch Model

min
∑
t∈T

∑
g∈GNR

PNR
g,t Cg +

∑
t∈T

∑
b∈B

V −b,t +
∑
t∈T

∑
b∈B

V +
b,t (3.2a)

s.t.
∑
t∈T

PNR
g,t +

∑
t∈T

PR
g,t +

∑
t∈T

V −b,t =
∑
t∈T

Db,t +
∑
t∈T

V +
b,t ∀t ∈ T (3.2b)

PNR
g,t − PNR

g,t−1 ≤ Rup
g ∀t ∈ T, g ∈ GNR (3.2c)

PNR
g,t−1 − PNR

g,t ≤ Rdown
g ∀t ∈ T, g ∈ GNR (3.2d)

Gmin
g ≤ PNR

g,t ≤ Gmax
g ∀t ∈ T, g ∈ GNR (3.2e)

The constraint (3.2b) states the energy balance in every time. The constraints

(3.2d) and (3.2c) state that every generator has to obey the ramp limits. The

constraint (3.2e) states the generation limits for each generator. The use of slack

variables V −b,t and V +
b,t is necessary to always have feasible solutions, and it is im-

portant for scenarios where there is a huge renewable penetration, when there is an

abrupt variation of generation and there is a over or under generation.

Economic Dispatch with Transmission Constraints

In this case, the model has to consider transmission limits and losses, without trans-

mission costs associated. The objective function (3.2a) remains the same, and the

constraints (3.2c), (3.2d) and (3.2e) are also used. The constraint (3.2b) is replaced

by:

∑
g∈Gb

PNR
g,t +

∑
g∈Gb

PR
g,t +

∑
bin∈B

Tbin,b,t + V −b,t

= Db,t + V +
b,t +

∑
bout∈B

Tb,bout,t∀b ∈ B, t ∈ t
(3.3a)

Tmin
l ≤ Tbin,bout,t ≤ Tmax

l ∀b ∈ B, t ∈ t (3.3b)

Constraint (3.3a) guarantees that the energy balance is always satisfied for every

bus: everything that is generated and received from other buses should be equal to

what is loaded and sent throughout the line with the respective losses. If this balance
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is not satisfied then under and over generation slack variables become non-zero. This

bounds could also be written according to the difference of phase angles, followed by

the susceptance law. In pratice, this would just limit the transmission limits, while

adding more complexity to the model. Thus simplifying this law by just limiting the

transmission of real power makes it simple and comply with the project objectives.

The constraint (3.3b) defines the transmission bounds for each line.

Economic Dispatch model with Unit Commitment commitment constraints

Unit Commitment is the decision that considers the sets of generators that are turned

on and off for the planned time horizon. The model includes decision variables to

capture “on” and “off” states for thermal generators in each time period,along with

the start-up and shut-down decisions. [29]. The set of constraints are added to the

previous model, and the binary nature of the variables makes the problem an MIP,

naturally harder to solve computationally [27].

Sg,t = Son
g,t − Soff

g,t + Sg,t ∀g ∈ GNR, t ∈ T (3.4a)

Constraint (3.4a) specifies the logical condition between the binary variables,

assuring that a generator can not be on if it was not turned on. The same is valid

for turning it off. Constraints (3.6a) and (3.6b) forces the generator to follow their

minimum downtime and uptime periods when they are turned on or off.

When there is the decision of turning the generator on or off, ramping and

transmitting only apply if the generator is on in a certain time period. Therefore

these constraints have the corresponding binary variable, as shown in (3.5).

PNR
g,t − PNR

g,t−1 ≤ Rup
g Sg,t ∀t ∈ T, g ∈ GNR (3.5a)

PNR
g,t−1 − PNR

g,t ≤ Rdown
g Sg,t ∀t ∈ T, g ∈ GNR (3.5b)

Gmin
g Sg,t ≤ PNR

g,t ≤ Gmax
g Sg,t ∀t ∈ T, g ∈ GNR (3.5c)

In the Unit Commitment model, each generator must satisfy a minimum period

to remain on or off whether or not there is a state change in a certain period. Down
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time constraints are useful for maintenance of a generating unit once has been shut

down. Uptime constraints are useful to guarantee stability and to reduce equipment

degradation.

t+Uup
g −1∑
i=t

Sg,t ≥ Son
g,iU

up
g ∀g ∈ GNR, t ∈ T (3.6a)

t+Udown
g −1∑
i=t

(1− Sg,t) ≥ Soff
g,i Udown

g ∀g ∈ GNR, t ∈ T (3.6b)

The ramping constraints (3.2c) and (3.2d) are replaced by constraints (3.7a) and

(3.7b).

PNR
g,t − PNR

g,t−1 ≤ Rup
g (1− Son

g,t) + max(Rup
g , Gmin

g )Son
g,t ∀t ∈ T, g ∈ GNR (3.7a)

PNR
g,t−1 − PNR

g,t ≤ Rdown
g (1− Soff

g,t ) + max(Rdown
g , Gmin

g )Soff
g,t ∀t ∈ T, g ∈ GNR (3.7b)

Economic Dispatch/Unit Commitment with Storage Constraints

Under a scenario where renewable resources are the major source of energy, storage

devices are crucial to address fluctuations and uncertainties in generation, so they

are an important key to keep the system stable [26]. When storage devices are

available in the system, their operations are governed by constraints (3.8a), (3.8b)

and (3.8c).

STmax
sd,t = STmax

sd,t−1 + ST ch
sd,t − ST disch

sd,t ∀sd ∈ SD, t ∈ t (3.8a)

(ST ch
sd,t − ST ch

sd,t−1) + (ST disch
sd,t − ST disch

sd,t−1) ≥ −ST ramp ∀sd ∈ SD, t ∈ t (3.8b)

(ST ch
sd,t − ST ch

sd,t−1) + (ST disch
sd,t − ST disch

sd,t−1) ≤ ST ramp ∀sd ∈ SD, t ∈ t (3.8c)

The load balance constraint at each bus (3.3a) also is modified, by incorporating

the storage charging and discharging variables for storage devices located at the

specific bus, as defined in equation (3.9a)
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∑
g∈Gb

PNR
g,t +

∑
g∈Gb

PR
g,t +

∑
bin∈B

Tbin,b,t + V −b,t + ST ch
sd∈b,t

= Db,t + V +
b,t +

∑
bout∈B

Tb,bout,t + ST disch
sd∈b,t∀b ∈ B, t ∈ t

(3.9a)

In the case where there is no transmission constraints, the storage is incorporat-

ing in the general balance constraint (3.2b).

∑
t∈T

PNR
g,t +

∑
t∈T

PR
g,t +

∑
t∈T

V −b,t +
∑

sd∈SD

ST disch
sd,t

=
∑
t∈T

Db,t +
∑
t∈T

V +
b,t +

∑
sd∈SD

ST ch
sd,t∀t ∈ T

(3.10a)

It is important to highlight the difference between storage, reserve and slack

variables in the power systems planning context. Rebours and Kirschen [31] defines

reserve as the capacity of generating active power that was still not committed yet

during each time period, and it is used mainly to regulate the frequency, improve

system stability and security and respond to unexpected events. Storage is the

capability to retain the excess of power generated that was not used and can be

used afterwards, either to respond to a low demand, an unexpected peak or a power

outage from other generators. Both reserve and storage plays an important key

the more VREs are present in the power system. Slack variables guarantees the

optimal solution even in the case where there is an unbalance between demand and

generation, and it is also an important parameters of analysis when wind and solar

is available. In simple storage models, where storage capacity is considered infinite,

slack variables can indicate bottlenecks in the transmission system, either indicating

a failure in transmission of excess power from generator to the storage device or the

necessary power from the storage device to a specific load. When transmission

constraints is neglected, the over generation slack variable V +
b,t is not necessary, once

every generation excess is stored for future uses.
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3.3 Assumptions

The following assumptions were made in the model and data during the research

and development process:

1. The load profile is deterministic. There is no forecast error and no variability

in the hourly levels peak. For sub-hourly levels all the analysis were made

assuming a ±20% of perturbation

2. In the Economic Dispatch model, the generation is upper bounded only. All

generators can produce from 0 up to their maximum capacity

3. All generators are assumed to be on and ready to generate according to their

ramping policies at time zero.

4. There is no voltage angle constraint in the model.

5. The model covers the DC version of the ED and UC problems, i.e., only active

power is the set of study. There is no reactive power in the developed models.

6. A transmission loss of 1 % per 100 miles is assumed, which is a coarse repre-

sentation of reality, but can be easily modelled withing a mixed-integer linear

program. This percentage was estimated based on the work of Short et al.

[37].

7. The load profiles for buses are positively correlated, and are ruled by the hour,

day of week, season and day of week type (weekend or not).

8. The following costs are not presented in the model: transmission, maintenance

and emission.

9. There are no maintenance factors in generators, like MTTR and MTBF, as

well as scheduling. All generators are able to produce power 24 hours per day

in ED model and if they are turned on in UC. The same assumptions are made

to transmission lines.
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10. The generation cost is linear per MW.

11. Although the reserve requirements of NVRE is described in this thesis, they

are not considered in this work. Therefore there is no reserve requirement and

capacity for NVRE.

12. The generation of renewable resources are not in the decision variables. The

developed models only decides the generation for non-renewable resources.

Therefore the generation is considered a deterministic parameter, not a vari-

able in the model.

13. The load profile is the same for every year.

14. The peak load is constant and deterministic. No stochastic factor is considered

in this study.

15. Heath rates are assumed constant as a function of power output.

16. For the storage scenarios, it is assumed unlimited storage capacity. Thus all

the over generated power is stored for future uses.

17. The storages are assumed to be 100% efficient, so everything is stored is in-

stantly available to fulfil the load.

3.4 Implementation

3.4.1 Software Selection

During the briefing process, it was necessary to choose the software platform that

matches our project goals, such that it allows the development, run an analysis the

project feasible time. 3 options were considered:

30



MATPOWER

MATPOWER is a powerful tool designed to solve AC and DC Power Flow (PF) and

Optimal Power Flow (PF) problems. It is an add-on to MATLAB, and is mainly

used for education and research, with some small use on industry. [45] Although

Zimmerman et al. states that is is possible to dispatch the generators on a minimal

quadratic or linear cost, it has limitations on committing them, i.e., solving the

UC problem in a multi-period environment. MATPOWER is very powerful on a

single time period, but it can provide computational challenges for multi-periods

on a larger horizon. Therefore we concluded this tool was not appropriate for this

project.

PLEXOS R©

PLEXOS R©is a commercial tool for power systems planning, widely used in the

power industry for energy resources planning and analysis. It provides an academic

license, although the process of obtaining one is long. One of reasons for not using

it was the commercial nature of the tool, which could lead to challenges in make

everything developed in this thesis available to the academic community.

AIMMS

AIMMS is a mathematical programming tool designed to solve optimization prob-

lems. It is as powerful as other optimization tools like AMPL and GAMS. Some

features include [6]:

• Easy-to-use design of complex parameters

• Intuitive representation of calendar and time horizons

• Set of optimization tools to solve LP, QP, NLP and MINLP problems

• GUI to build end-user interfaces
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• Open Data Base Connectivity (OBDC) and OLE interfaces, allowing data

exchange between most common databases, such as Oracle, SQL Server, etc.

Due to the easiness of use, the fact that an academic license provides 100% of

the tool functionality, and the previous experience of the members of this project,

AIMMS was chosen as the supporting tool for this work. The software features are

described in next section.

3.5 Software Features

This section briefly cover all the screens and features developed in AIMMS for this

project.

Data Import

The data import section allows the user to import all the data necessary for our

model using the AIMMS specific structure for data text exchange. More details on

how prepare the data can be found at [6].

Figure 3.9: Data Import Page in AIMMS.
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Data Settings

After the data has been imported, the user has the chance to add/edit and view

some data in an intuitive way. In Network Page, it is possible to see the location of

buses (in yellow), as well as locations of generators by type. The user can change

the list to see whatever type he/she wants. In Data Buses Page, it is possible to

edit the peak load of each bus in the system. The Costs Page has the start-up and

variable cost for each generator type and unit group. In General Data Page the user

can add, edit and remove the main components of the system, i.e., buses, generators

and unit groups, as well as changing general configurations, such as horizon dates,

granularity and perturbation level for load and wind profiles under a sub-hourly

level.

It is possible also to see the total load over time. In Generators Specification

Page it is possible to configure the main parameters that define a generator, such as

its type, unit group and the bus where it is located. In Wind and Solar Availability

Page it is possible to view the Wind and Solar profile for the selected bus in the

node, as well as locations that have either solar or wind profile mapped (marked with

the blue ball). Lastly, the Summary Page summarizes the total generation capacity

and load, as well as total number of generators and its capacity per generator type.
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Figure 3.10: Data Section Pages.
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Optimization and Results

The optimization section contains all the required settings to run the optimization,

as well as the tables and graphs to analyse the results in an intuitive way. The

user has the option either to solve the Economic Dispatch or Unit Commitment

problems, with or without the following features:

• Ramping Constraints

• Transmission Constraints

• Reserve Constraints

• Slack Variables

• Transmission Losses (if “Transmission Constraints” is chosen)

In Demand, Load and Transmission, it is possible to see, for every bus in every

time period, the load, generation and transmission flows in and out. It also is

possible to see this same flow in a graphic way in Transmission Map section, for

each time time period, as well as the location of VRE(in green) and active(red) and

inactive(gray) NVRE. The Average Load Distribution contains the graph displaying

the average load for each generator type within a day, while in Load Distribution

Page it is possible to see the generation distribution per time period, as well as the

total load, being useful to identify over and under generation. The Power Output

Result details the generation by each generator, in a table. Finally, the Location

Marginal Prices page contains the Shadow Prices by time period for each location,

and it is useful to identify potential investments or bottlenecks.

The Average Ramping page is useful to compare the ramping behaviour of the

generator sources, expressed as:

Rampgt∈GT =
PNR
g,t − PNR

g,t−1

Gmax
g

(3.11)
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In other words, it expresses the average ramping grouped by each generator

type, normalized by its maximum capacity. It avoids the misunderstanding of high-

capacity generators being ramped more quickly than the lower ones.

Figure 3.11: Optimization Section Pages.
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Chapter 4

Analysis

Our analysis has the primary goal of determining the impact of the following com-

ponents in the UC and ED models:

• Time granularity: 1 hour, 15 minutes and 5 minutes.

• Transmission: with or without transmission constraints.

• Level of VRE: Scenarios 1, 2 and 3.

With all possible combinations of these factors, there are 18 UD and 18 ED data

sets to analyse. These are defined as test cases. The scenario name format in the

graphs and analysis follows the following pattern: “Scenario Name” “Time Granu-

larity” “Transmission Constraints ON/OFF (TY/TN)” “Model Type (UC/ED)”.

For example, Scenario2 15 TY UC test case represents the Unit Commitment model

run on a 15-minute level with transmission constraints on in the generator profiles

of Scenario 2.

The following metrics are outputs of analysis:

• Power Output per generation type over time

• Optimization Parameters

• Transmission Results
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• Ramping Results

• Unit Commitment Results

All the tests were run on a Intel Core 2 Duo processor with 3.0 GB of RAM mem-

ory running under Windows 10 operating system, using CPLEX 12.6.0, executed

under AIMMS 4.19.

4.1 Power Output per Generation Type

Figures 4.1, 4.2 and 4.3 show the power production for each generator type for

each model type (UC or ED), granularity (60, 15 and 5 minutes) and transmission

constraints on and off. Each combination of these factors are defined as instance.

Each figure represents the result for each scenario described in the Data Section. All

instances represent the same time period of one week of July, with the same load

profile. The generator legend are described at the bottom of the figures, and to make

the curves more analysis friendly, all the x-axis were removed. In a general result,

for each scenario the instances led to very similar results, with minor particularities,

as it will be described by each scenario.

4.1.1 Scenario 1

For scenario 1 the generation profile was the same for nuclear, coal and oil sources

for the Economic Dispatch model. When the model is solved with transmission

constraints, NGCC-New generators are no longer sufficient to handle the demand

at peak load, so they need to be complemented by NGCC-Old ones. The reason

for this is that the transmission limits on power transmission, which does not allow

NGCC-New generators to fill all the remaining demand at peak, thus NGCC-Old

generators must supply it. As for Unit Commitment, different time levels led to

minor difference in Oil and NGCC-Old behaviours. Still, the base sources (Nuclear,

Coal and Oil) had predominantly the same conduct. These differences are better

explored in the section 4.5.
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Figure 4.1: Power Output for Scenario 1.

4.1.2 Scenario 2

For Scenario 2, in all instances Coal, Oil and Nuclear generators were set to run

throughout the whole planning horizon, where NGCC-New generators were chosen

to handle peak load and renewable resources variabilities across the time. There are

two main differences in the plannings per scenario: in Economic Dispatch models,

at the beginning of horizon it is observed a minor ramp of Nuclear, Coal and Oil

generators. The deeper the time planning level goes, more was the ramp. After that

their generation remain stable during the whole period. In Unit Commitment levels,

that does not happen. It was also observed a minor decrease in their generation
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during a period of low demand and high wind generation on the intance S2-5-TN-UC.

This can be explained by the minimum generation levels of NGCC-New generators,

so it was more economically beneficial to reduce the generation of cheaper generators

then turning off and on some NGCC-New afterwards. However, the same behaviour

was not observed on a 60 and 15 minutes level.

Figure 4.2: Power Output for Scenario 2.
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4.1.3 Scenario 3

Figure 4.3: Power Output for Scenario 3.

Scenario 3 is perhaps the most challenging and uncertain set to plan, especially

because of high variable resource penetration and their variability over time. In all

configurations the demand was not entirely met, especially in peak hours and low

wind generation.

Also, transmission assumptions made a very important key in the power plan-

ning results: there is a considerable difference in the generation for non-renewable

resources when comparing transmission on and off, for both optimization models.

The transmission is a bottleneck in two cases: to fulfil the demand at peak levels
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and to transmit energy coming from renewable resources.

When comparing the generation between UC and ED instances NGCC-New

generators are the predominant source of NVRE, having NCTG-Old as a support to

peak and low wind and solar generation moments. The UC model decided to turn

on most of NGCC-Generators and keep them running at a minimal level during

low demand when transmission is not consider. For the other case the generation

is bounded by line transmission limits, so the solution turns on generators from

other locations. Thus, although the system is able to fulfill most of the demand in

Scenario 3, it is not able to transmit it.
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4.1.4 Scenario 4 Storage Analysis

Figure 4.4: Storage Device Profile Status for Scenario 4.

Scenario 4 deserves special analysis, since all the energy comes from intermittent

sources and there are storage devices in the system (which was not the case in the

previous scenarios). As an extreme case, for the same RTS-96 load, the objective

is to use storage to avoid under-generation which can incur several penalties. One

common question, which was the object of study of Safaei and Keith [34] is: how

much storage is necessary in a green world to guarantee power supply? Figure 4.4

displays the results of the optimization models to Economic Dispatch, segmented by

4 categories: the power generated by wind and solar, the power charged, the power

discharged and the power not charged (over generation slack). Since there is no

NVRE generator and it is assumed that all renewable generators are on permanently

there was no reason to run this scenario under Unit Commitment instances. We

observed no significant difference in between instances with or without transmission,

since, in this scenario, storage devices were spread all over the network to minimize

transmission limit bounds, which would be the case in ideal situations. However,

it is important to mention that even with unlimited capacity there was some over
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generation in isolated periods, and the reason is as follows: there was an abrupt

ramping in VRE generation higher than the ramping limits for the storage devices,

so they were not able to store it.

To estimate the amount of load that was satisfied by storage devices, we calcu-

lated the area of each instance described in Figure 4.4 of the total load (Generation

+ Discharge) and the Discharge curve itself, then divided both values. Figure 4.5

shows that in average nearly 47% of the load had to be filled by storage devices,

which corresponds to 4018.5 MW in a period of 7 days.

Figure 4.5: Percentage of Load Filled by Storage Devices per Instance.
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4.2 Optimization Results

Table 4.1 describes the number of variables and parameters for each studied instance.

Table 4.1: Optimization Model Parameters.

Instance Number of Variables Number of Constraints

S1 15 TN ED 137,086 201,059

S1 15 TN UC 185,667 (86,580 integer) 202,382

S1 15 TY ED 240,982 235,691

S1 15 TY UC 289,563 (86,580 integer) 237,014

S1 5 TN ED 410,686 602,339

S1 5 TN UC 556,227 (259,380 integer) 606,542

S1 5 TY ED 721,942 706,091

S1 5 TY UC 867,483 (259,380 integer) 710,294

S1 60 TN ED 34,486 50,579

S1 60 TN UC 46,707 (21,780 integer) 50,822

S1 60 TY ED 60,622 59,291

S1 60 TY UC 72,843 (21,780 integer) 59,534

S2 15 TN ED 126,504 169,313

S2 15 TN UC 251,083 (135,642 integer) 260,034

S2 15 TY ED 230,400 203,945

S2 15 TY UC 354,979 (135,642 integer) 294,666

S2 5 TN ED 378,984 507,233

S2 5 TN UC 752,203 (406,362 integer) 779,394

S2 5 TY ED 690,240 610,985

S2 5 TY UC 106,3459 (406,362 integer) 883,146

S2 60 TN ED 31,824 42,593

S2 60 TN UC 63,163 (34,122 integer) 65,274

S2 60 TY ED 57,960 51,305

S2 60 TY UC 89,299 (34,122 integer) 73,986

S3 15 TN ED 115,441 136,124

S3 15 TN UC 251,083 (135,642 integer) 235,984

S3 15 TY ED 219,337 170,756

S3 15 TY UC 354,979 (135,642 integer) 270,616

S3 5 TN ED 345,841 407,804

S3 5 TN UC 752,203 (406,362 integer) 707,344

S3 5 TY ED 657,097 511,556

S3 5 TY UC 1,063,459 (406,362 integer) 811,096

S3 60 TN ED 29,041 34,244

S3 60 TN UC 63,163 (34,122 integer) 59,224

S3 60 TY ED 55,177 42,956

S3 60 TY UC 89,299 (34,122 integer) 67,936

S4 15 TN ED 101,973 32,184

S4 15 TY ED 205,869 66,816

S4 5 TN ED 305,493 96,504

S4 5 TY ED 616,749 200,256

S4 60 TN ED 25,653 8,064

S4 60 TY ED 51,789 16,776

45



Unit Commitment has many more variables than Economic Dispatch models,

and reaching sub-hourly levels can lead to hundreds of thousands, even millions

of variables. This affects the solution time in a non-linear way, as it can be seen

in Figures 4.7, 4.8 and 4.9. These graphs shows two important aspects of the

optimization: the solution time and the final objective function in terms of the

instance baseline for that scenario.

The UC model test was done as follows: at first, we realize it had a considerable

increase in solution time when transmission constraints are active, compared to

when they are not. With transmission constraints off, the solver was able to reach

the integer solution with 1 % of optimality gap (the difference between the actual

solution and the linear programming relaxation) in 60-minutes, except for Scenario

1 on a 5-minute level with transmission on. In that case, even running under a 12G

GB RAM memory machine, there was memory overflow. In this case the optimality

MIP gap was set to 10%. The optimal gaps for Unit Commitment instances are

described better in Figure 4.6.

Figure 4.6: Optimality Gap for Unit Commitment Instances (%).
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Scenario 1

In scenario 1, as expected the cheapest and fastest solution was found when no

transmission is considered. It can be seen that the 15 minute level led to a better

solution than ones at 60 minutes. In general, it is expected that the lower is the time

granularity, the more realistic is the demand variation between the periods, making

the planning more accurate. The only exception was in the instance S1 T5 TN UC,

that reached a value only 0.15 % from the baseline, but took 20 minutes to solve.

In general the solution times for Unit Commitment are much higher than Eco-

nomic Dispatch instances, due to the binary variables. However, the instance

S1 60 TN UC took only 8 seconds to reach the optimal solution. The extreme

case found was for the S1 5 TY UC instance, which took almost 13 hours to reach

a 9% of gap, a solution not practical either in terms of final cost and solving time.

Figure 4.7: Solution Parameters - Scenario 1. Baseline: $658, 218, 352.9.

Scenario 2

In scenario 2 all the solutions were relatively close to each other, with the maximum

solution as only 3.7 % of the baseline. The cheapest solution was found in the

instance S2 5 TN UC, indicating that, even with more demand and wind variability

under sub-hourly level the solver was able to make a better plan.
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It is easy to see that all the instances with transmission have a solution at least

3.5 % of the baseline, with results similarly closer to each other. This indicates that

in this case transmission limits play an important part in power planning, as was

observed in Figure 4.2.

In general, Unit Commitment instances reached the optimal solutions in times

closer to the ones in Scenario 1, except for the 5 minute level. The no-transmission

version took 29 minutes, whereas with transmission, took almost 2 hours. So, al-

though it seems advantageous to plan the power distribution under sub-hourly levels

for this scenario, solution time can be a problem.

Figure 4.8: Solution Parameters - Scenario 2. Baseline: $593, 607, 635.3.

Scenario 3

Scenario 3 presented different behaviour in terms of the final objective function,

because of the under and over generation presented in most of instances, as observed

in Figure 4.3. In terms of solution time, Scenario 3 presents better results in all

instances compared to Scenarios 2 and 1. One can explain it based on the lower

NVRE presence in the generation distribution, and consequently the number of

decision variables. The highest solution time was set to the instance S3 5 TY UC,

that took 18 minutes to solve for a weekly base. This result suggests that sub-hourly
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levels are more attractive to solve in this case.

Figure 4.9: Solution Parameters - Scenario 3. Baseline: $264, 009, 305, 965.

Recall that the penalty for the under and over generation slack variables in this

case is 100,000 per MW, which explains why the baseline objective function is so

large. To endorse this argument, this difference is also described by type of cost in

Figure 4.10. It shows that gap between transmission on and off constraints is nearly

50 %.

Figure 4.10: Generation Profile Cost for All Instances in Scenario 3.
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4.3 Transmission Results

Figure 4.11: Maximum Utilization per Transmission Line, Scenario and Model Type(%).
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The influence of transmission constraints in the results described here depends on

the distribution of generators in the field and the transmission lines physical limits.

Figure 4.11 shows the maximum utilization of each one of the 36 transmission lines

in the field, per Unit Commitment and Economic Dispatch.

In Scenario 1 it is clear that more than 85 % of the transmission lines had their

maximum utilization under 60%, with 41 lines not even used for transmission. This

can be explained by the spread distribution of high capacity NVRE generators across

the field, especially Oil and Coal, and the few VRE generator locations, as explained

in section 3.1.4. It is also possible to see that Unit Commitment and Economic

Dispatch instances presented nearly the same utilization behaviour, except for 7

lines.

The same behaviour is seen in Scenario 2: low average utilization of lines and

proximity between UC and ED, except for few more lines with 100% of maximum

utilization capacity. Still, this result also suggests that transmission lines are not a

boundary here.

As for Scenario 3, both Unit Commitment and Economic Dispatch solutions

suggests that the line is not balanced, i.e., the generators are not able to generate

enough power in their locations, even though there are still lines with low or no

utilization. One can state that most of the low used lines are in locations where

there is no wind or solar located. Therefore, for generation capacity expansion

planning, this area can be very attractive. Another aspect regarding this metric is

the difference in terms of utilization between UC and ED: the line utilization for

UC is 13 % more than the ED instances. This can suggest that Unit Commitment

decided to turn on and use different generations in its power planning compared to

EC, and transmission limits might be a reason for that.

4.4 Ramping Results

Another goal of this project is to evaluate the impact on non-renewable genera-

tors ramping when the power planning done at different granularities for different
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scenarios. The average ramping is normalized by the generator type maximum ca-

pacity. The normalization was necessary to avoid the idea of low-capacity generators

ramping less than high-capacity ones. The results are displayed in Figure 4.12.

Figure 4.12: Average Ramping of Non-renewable Generators, Normalized by their Max-

imum Capacity.

The ramping results for the Economic Dispatch model seem to follow a pattern:

the closer is the time scale, higher is the average ramping. They also suggest that the

more VREs are in the system, the more is the difference between time granularities.

This result make sense; sub-hourly levels can capture the small variances in loads

and the intermittence of energy sources more accurately.

In Scenario 1 there is no significant difference between Unit Commitment and

Economic Dispatch instances in terms or ramping, except in the case of NGCC-

New generators. The reason for this is the absence of minimum generation in ED
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models and the use of this type of generator only during peak levels. The instance

S1 5 TN ED generated a bigger average ramping result for NGCC-New generators.

The optimal solution decided to not ramp the base generators during peak levels

and let the NGCC-handle all the variabilites. Also, the fact that it is used only

during peak and then it is shutdown might be another reason.

In Scenario 2, although transmission is not a bottleneck in the sense that it pro-

vides generation gaps, it definitely changed the generation profile of each individual

NGCC-New generator. When transmission constraints are enabled, the solution

provides less intermittent generation than when it is not. This was also observed

in Unit Commitment instances, as observed in Figure 4.13. The same applies for

sub-hourly planning levels. A generation profile as seen in S2 60 TN ED definitely

can increase the maintenance costs, due to this constant ramps.

Figure 4.13: Generation Profile for 3 Individual NGCC-New Generators for a 60-minute

Level.
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In Scenario 3, again, the transmission bottleneck also affects the ramping capa-

bility of generators in the sense that it limits NGCC-New generators from responding

to quick load and VREs variations. It is observed that the ramping profile is very

similar between ED and UC instances when transmission is off. When it is on,

NGCT-Old has a slight increase in its ramping, and the same is true for 5-minute

level for NGCC-New generators.

4.5 Unit Commitment Binary Variables Results

The last analysis of this report discusses the start up/shutdown behavior of NVRE

types provided by Unit Commitment results. Figures 4.14, 4.15 and 4.16 demon-

strate the number of active generators over time.

Scenario 1 is the one that has the most different startup profile between the 6

instances. In General, the number of Oil and Nuclear active generators are set,

although some minor changes were observed in peak hours for Oil. Some Coal and

NGCC-New generators are shutdown in low demand times. When transmission

is off, 5 NGCC-New generators were turned on during peak hours, whereas when

transmission is on,, only 4. To fill this gap, in average 2 NGCC-Old generators are

turned on, while NGCT-Old are used only to respond to quick unexpected ramping

events.

Figure 4.14: Number of Active Generators by Type over Time for Scenario 1.
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Figure 4.15: Number of Active Generators by Type over Time for Scenario 2.

Figure 4.16: Number of Active Generators by Type over Time for Scenario 3.

An essential difference in Scenario 2 is between time granularities, especially

when transmission constraints are active. Under 15 and 5 minute levels the solution

with transmission turned on and off more NGCC-New generators, respecting their

minimum up and downtime, in order to fulfill sub-hourly load variability while

generating at minimal cost. This incurs more start-up and shutdown costs, as well

as maintenance costs. Also, we observed a minor use of NGCT-Old generators, for

the same reason as Scenario 1.

In Scenario 3, the quick up and downtime requirements for gas generators allows
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solutions to quickly start-up and shut-down when it is convenient. It is noticed that

NGCT-Old generators are activated only during peak demand, and deactivated af-

terwards, whereas NGCC-New are activated also in low wind and solar variability.

As previously discussed, the transmission limits in this scenario limits the num-

ber of 4 NGCC-New generators running at the same time, compared to 6 when

transmission is not considered.
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Chapter 5

Conclusions

5.1 Discussions

As discussed in the introduction, this thesis had the main objective to evaluate the

impact on Unit Commitment and Economic Dispatch classic views under different

configurations. The rise and necessity of the world to use more green energy rather

than traditional sources could bring several challenges in terms or power planning,

under different aspects, as can be observed in the Analysis section.

In the power systems planning field, it is common to use default test cases from

IEEE to test different methodologies, like power flow techniques, reliability tests

and so on. However,the RTS-96 was developed 20 years ago, a time that renewable

energy was just starting to emerge and be studied. That is why we decided to

update the generation profile, adding more green sources not present originally in

the model, like natural gas, wind and solar. All the new parameters, costs, modelling

and technical details were extracted and analysed from real data and academically

trusted sources. Therefore, one could argue that all the results discussed in the

analysis section are valid and represent real-world power systems, on a smaller scale.

The results presented in the Analysis section could lead to the following ques-

tions:

• Which model should I use ?
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• What is the ideal time level ? Hourly or sub-hourly levels ?

• What should be my planning horizon ?

• Should I have storage or not ?

There are no easy answers for these questions. Even two simple and well-know

models, are Economic Dispatch to and Unit Commitment, can lead to different

results under different configurations, scenarios and perspectives, as we can see in

the Analysis section. This chapter highlights some findings that might help in

answering that questions.

The first discussion is the difference between the use of Economic Dispatch and

Unit Commitment models in different VRE levels. First, sub-hourly levels instances

of Economic Dispatch were able to capture with more precision the fluctuations of

load demand, allowing the planner to be more specific. Also, as we were able to

see in the Scenario 3, the more is the penetration of intermittent power sources, the

more different is the power behaviour of non-renewable sources between different

time scales. As discussed in section 4.4, differences in average ramping in Scenario 3

for different instances of ED suggests that hourly planning could lead to an under-

estimation of the ramping behaviour for NRVEs in the system. Therefore the first

important conclusion is: the more VRE’s in the system, more necessary is the need

forpower planning at sub-hourly levels.

Economic Dispatch is a model that is easy to solve since it is a LP and there is

not too much complexity increase when solved under sub-hourly levels. Nevertheless

the same is not true for Unit Commitment. As shown in section 4.2, at a 5-minute

level the solver took minutes, sometimes even hours to reach an acceptable gap, with

a power profile generation slightly close to the hourly levels. Of course this thesis

solved this problem over one week, using the traditional modelling. In a scenario

of high VRE penetration, it is necessary to use smarter techniques of commiting

generators rather than just solving the MIP. One of these is the rolling horizon

algorithm, described by Tuohy et al. [39], which divides the problem into small MIP

problems, solves them in a period and uses the result as an input to solve the next
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one. Unit Commitment levels does not lead itself to solving under sub-hourly levels,

due to the computational burden.

There are two additional aspects regarding Unit Commitment that are important

to mention. First, more generator start-ups and shut-downs were observed in Sce-

nario 2. This incurs more maintenance and repair costs. To mitigate this, one can

limit the number of start-ups and shut-downs for the study as constraints, although

it would add more complexity to the model. Second, as discussed in section 4.4,

sometimes it is necessary to understand the generation profile for each individual

generator.

The proximity of solution quality between models at different time granularity

indicates that it might not be a vantage to run them under a different time level

on a long planning horizon. So, either runs it on a 60-minute level, or reduce the

planning horizon. Under high penetration levels, the 5 minute level seems to be

more reasonable to solve, and has to be considered carefully. Of course this project

assumed that the wind and solar availability are deterministic parameters of the

model. This can change when these variables are stochastic, or when the start-up /

shut-down decisions also apply to green generators.

Another important aspect is how do deal with slack variables in the system.

Although they are important to always reach a feasible solution in the planning,

during our numerical runs of all the instances we faced some numerical issues with

them, specially in Scenario 3. A lower penalty led the solver to choose to pay

the penalty instead of turning on a generator, ramp and generate power during

peak levels. On the other hand, when we set these penalties to a big value, e.g.

$ 100,000,000.00 per MW, it impacted the solver negatively in terms of solution

time, specially in Unit Commitment levels. Therefore, it is necessary to estimate

wisely what would be the penalty to not generate or curtail power, issues that are

important under a high penetration of VREs.

From scenarios 2 and 3 and 4 , the transmission system is an important parameter

that can not be neglected in the dispatch decisions, specially for quick ramp events.

We noticed that, in some moments when there was an abrupt variation of wind

and solar supply, although there were available generators to respond to it, their
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generation was bounded by transmission line limits. Therefore, in the real world

transmission adds complexity to the optimization model, but overlooking it can

lead to wrong planning decisions. Also, that applies to other non-linear parameters

not considered in this thesis, such as reactive power, voltage angle, heat and other

transmission properties. The results suggests that, in a position where solving time

and computational resources are restricted, it is better to solve the model on an

hourly level with transmission constraints than solving on a sub-hourly without

them.

Storage devices are an important key to allow more green world penetration,

either to store all the remaining generation or supply at peak time and low wind

and solar demand. In the studied scenario, almost 50% of the load was supplied

from storage devices, under distributed unlimited storage capacity with a nameplate

generation capacity at double the peak load. In a major scale as a real-world situa-

tion, this might not be economically feasible, due to implementation, maintenance

and deployment costs of storage devices. Still, they should be definitely a feature

to consider in capacity expansion planning studies. Without them it is impossible

to guarantee power supply in a green world, no matter how much is the installed

capacity of solar and wind resources.

5.2 Future Improvements

This project had the achievement of building a full test scenario that represents a real

power planning system, with capability to explore and analyse the data intuitively

under a powerful mathematical modelling tool. To make this work even more rich,

the following future improvements are suggested:

• Implement additional power planning techniques , and evaluate them under

different time planning levels. There are a lot of different advanced techniques

that have proven to be useful, as discussed in the Literature Review section.

One technique suggested to implement is the rolling horizon for Unit Commit-

ment decisions.
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• Explore more the storage device scenario, and use them with expansion plan-

ning models to evaluate the impact of building them instead of generators.

Also, add more constraints, such as capacity, ramping, start-up and shut-down

levels, etc.

• Explore more the transmission limits, adding more physical restrictions, like

voltage angle, reactive power, transmission outage rates. Also, evaluate the

transmission reliability system tests, such as the N-1 reliability test.

• This work considered all the demand and renewable energy forecasts as ac-

curate. A suggestion is add forecast errors, and evaluate what would be the

impact of them in power planning. So it is suggested to embed a simulation

factor in the developed system, and evaluate the impact over different VRE

levels.

• Also, model the costs changing over time. The beauty of UC and ED is to

plan the generation according to the current costs, and they can change over

the time planning.

• Add UC and ED modelling to robust and stochastic optimization, making

costs, demand and generation uncertain and evaluate it in terms of perfor-

mance and solution quality.
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