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Abstract

We consider a system, where a random flow of customers is served by agents invited on-

demand. Each invited agent arrives into the system after a random time, and leaves it with

some probability after each service completion. Customers and/or agents may be impatient.

The objective is to design a real-time adaptive invitation scheme that minimizes customer

and agent waiting times.

We study some aspects of the SGD method with a fixed, large learning rate and pro-

pose a novel assumption of the objective function, under which this method has improved

convergence rates. We also propose a convergence analysis of SGD within a diminishing

learning rate regime without bounded gradient assumption in the strongly convex case.

We propose the SARAH algorithm for solving finite-sum minimization problems in the

strongly convex, convex, and nonconvex cases. We also consider a general stochastic opti-

mization problem by using the SARAH algorithm with inexactness.

1



Introduction

This dissertation contains three parts: A Service System with On-Demand Agents (Part

I: Chapter 1), Stochastic Gradient Algorithms (Part II: Chapters 2 and 3), and SARAH

Algorithm (Part III: Chapters 4, 5 and 6). This work appears as [55, 56, 52, 53, 51, 54] .

In part I, we consider a system, where a random flow of customers is served by agents

invited on-demand. Each invited agent arrives into the system after a random time, and

leaves it with some probability after each service completion. Customers and/or agents

may be impatient. The objective is to design a real-time adaptive invitation scheme that

minimizes customer and agent waiting times. We consider a queue-length-based feedback

scheme, study it in the asymptotic regime where the customer arrival rate goes to infinity;

and derive a variety of sufficient conditions for the system local stability at the desired

equilibrium point. Under these conditions, simulations show good overall performance of

the scheme.

In part II, we study some aspects of the Stochastic Gradient Algorithm (or Stochastic

Gradient Descent or SGD). In Chapter 2, we consider a standard stochastic gradient descent

(SGD) method with a fixed, large step size and propose a novel assumption on the objective

function, under which this method has improved convergence rates (to a neighborhood of

the optimal solution set). We then empirically demonstrate that these assumptions hold

for logistic regression and standard deep neural networks on classical data sets. Thus our

analysis helps to explain when efficient behavior can be expected from the SGD method

in training classification models and deep neural networks. In Chapter 3, we propose a

convergence analysis of SGD within a diminishing learning rate regime without bounded

gradient assumption in the strongly convex case, which results in more relaxed conditions

2



than those in [13]. We then move on the asynchronous parallel setting, and prove conver-

gence of the Hogwild! algorithm in the same regime, obtaining the first convergence results

for this method in the case of diminished learning rate.

In part III, we propose the SARAH algorithm for solving finite-sum minimization prob-

lems. We study SARAH as well as its practical variant SARAH+ for the convex case in

Chapter 4. The linear convergence rate of SARAH is proven under a strong convexity as-

sumption. We also prove a linear convergence rate (in the strongly convex case) for an inner

loop of SARAH, a property that SVRG does not possess. In Chapter 5, we also consider a

mini-batch version of SARAH for solving empirical loss minimization problems in the case of

nonconvex losses. We provide a sublinear convergence rate (to stationary points) for general

nonconvex functions and a linear convergence rate for gradient dominated functions, both

of which have some advantages compared to other modern stochastic gradient algorithms

for nonconvex losses. In Chapter 6, we consider the SARAH algorithm with inexactness.

Instead of computing a full gradient at each outer iteration, we only compute a subset of

samples. We also consider a general stochastic optimization problem.

3



Part I

A Service System With

On-demand Agents
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Chapter 1

A service system with on-demand

agents

We study a system where a random flow of customers is served by servers (called agents)

invited on-demand. Each invited agent arrives into the system after a random time; after

each service completion, an agent returns to the system or leaves it with some fixed prob-

abilities. Customers and/or agents may be impatient, that is, while waiting in queue, they

leave the system at a certain rate (which may be zero). We consider the queue-length-based

feedback scheme, which controls the number of pending agent invitations, depending on the

customer and agent queue lengths and their changes. The basic objective is to minimize

both customer and agent waiting times.

We establish the system process fluid limits in the asymptotic regime where the customer

arrival rate goes to infinity. We use the machinery of switched linear systems and common

quadratic Lyapunov functions to approach the stability of fluid limits at the desired equi-

librium point, and derive a variety of sufficient local stability conditions. For our model,

we conjecture that local stability is in fact sufficient for global stability of fluid limits; the

validity of this conjecture is supported by numerical and simulation experiments. When

local stability conditions do hold, simulations show good overall performance of the scheme.

5



1.1 Introduction

Consider a service system where a random flow of customers arrive exogenously. Servers,

called agents, can be invited on-demand at any time. Invited agents arrive into the system

not immediately, but after a random delay. When a customer is matched with an agent, a

service occurs. After completing the service, the agent can either leave the system or return

to serve more customers. Customers and/or agents may be impatient, that is, they abandon

the system if their wait in queue exceeds some random patience time. The objective is to

keep waiting times of both customers and agents small. Such system is schematically shown

in Figure 1.1.

The model we consider is a generalized version of that in [55, 58]. In [58], there is no

abandonment for both queues, and agents always leave the system after service completions.

The model in [55] also has no abandonment, but, like in our model, an agent may return to

the system after a service completion. Thus, our model is more realistic in many scenarios

because customer abandonment is a key factor for call center operations (see e.g. [21, 80]).

More specifically, the model in this chapter is as follows. Customers arrive as a Poisson

process and join a customer queue if no agent is available. Agents can be invited into

the system exogenously, and join an agent queue after a random exponentially distributed

time. There is an infinite pool of potential agents, which can be invited to serve customers.

Customer service times are i.i.d. exponential. After the service completion, the customer

leaves the system while the agent can return to the agent queue with some fixed probability.

The matching of customers and agents is done in first-come-first-served (FCFS) order. The

head-of-the-line customer and agent are matched immediately and together go to service,

that is, there cannot be non-zero number of customers and agents simultaneously in the

customer and agent queues. Customers and/or agents may be impatient and the patience

times are independently exponentially distributed.

The model is primarily motivated by call/contact centers (see [75]), where agents that

we consider are highly skilled. It is not reasonable to set a fixed working schedule for

these agents since their time is very valuable. Instead, they are invited on-demand in real

time. The purpose is to design a real-time adaptive agent invitation scheme that minimizes

6



customer and agent waiting times. However, designing an effective, simple and robust agent

invitation strategy is non-trivial due to randomness in agent behavior.

We study a feedback-based adaptive scheme of [75, 58, 55], called queue-length-based

feedback scheme, which controls the number of pending agent invitations, depending on the

customer and/or agent queue lengths and their changes. The algorithm analysis in this

chapter is substantially more challenging due to greater generality of our model. Just like

in [55, 58], we consider a “stylized” version of the invitation scheme to make the analysis

more tractable. Our simulation experiments in section 1.7.2 show that the behavior of the

stylized scheme is very close to that of the more practical version of the queue-length-based

feedback scheme.

We consider the system in the asymptotic regime where the customer arrival rate goes

to infinity while the distributions of the agent response times, the service times and the

patience times are fixed. We show convergence of the fluid-scaled process to the fluid limit

(Theorem 1.4.1), which satisfies a system of differential equations. The key property of

interest is the convergence of the fluid limit trajectories to the equilibrium point (at which

the queues are zero). This property is referred to as global stability of the fluid limits.

Establishing global stability appears to be very challenging, due to the fact that fluid limits

have complicated behavior – there are two domains where they follow different ODEs, and a

“reflecting” boundary. In this chapter, we focus on the local stability of fluid limits, defined

as the stability of the dynamic system which describes fluid limit trajectories away from the

boundary. The main results in this chapter (Theorem 1.4.2) give sufficient local stability

conditions; the proof uses the machinery of switched linear systems and common quadratic

Lyapunov functions [39, 74]. Theorem 1.4.2 implies many useful sufficient local stability

conditions (Corollaries 1.4.1 - 1.4.12) for special cases, including those where customers

never abandon or agents certainly leave the system after service completions. (Some of

these corollaries – namely, Corollaries 1.4.9, 1.4.10 and 1.4.12 – strengthen the results

in [55] for the non-abandonment system.) These sufficient local stability conditions are

robust and easy to achieve in practice. Finally, we conjecture that, for our model, local

stability is in fact sufficient for global stability, based on a large number of numerical and

simulation experiments. Our simulation experiments also show good overall performance

7



of the feedback scheme when the local stability conditions do hold.

The model has many applications, or potential applications. For a general discussion of

modern call/contact centers and their management, see, e.g. [2, 45]. Another example is

telemedicine [7], where “agents” are doctors, invited on-demand to serve patients remotely.

The model also arises in other applications, such as crowdsourcing-based customer service

(see e.g. [20, 9]), taxi-service system, buyers and sellers in a trading market, and assembly

systems. The model has relation to classical assemble-to-order models, where customers are

orders and “invited agents” are products, which cannot be produced/assembled instantly.

The model is also related to “double-ended queues” (see e.g. [29, 41]) and matching systems

(see e.g. [24]); although in such models arrivals of all types into the system are typically

exogenous, as opposed to being controlled.

Organization. The rest of the chapter is organized as follows. Some background facts

on switched linear systems and common quadratic Lyapunov functions are given in section

1.2. In section 1.3, we describe the model and algorithm in detail. Section 1.4 states the

main results of the chapter, which are proved in sections 1.5 and 1.6. Section 1.7 provides

numerical and simulation experiments; it also contains our conjectures about global and

local stability of fluid limits, supported by these experiments. A discussion of the results

and future work is in section 1.8.

Basic notation: Symbols N, Z, R, R+ denote the sets of natural, integer, real, real non-

negative numbers, respectively. Rd denotes the d-dimensional vector space. Rd×d denotes

the set of all d×d real matrices. The standard Euclidean norm of a vector x ∈ Rn is denoted

‖x‖. For a vector a and matrix A, we write their transposes as aT and AT , respectively.

For a matrix A, we write its inverse and determinant as A−1 and det(A), respectively.

We write x(·) to mean the function (or random process) (x(t), t ≥ 0). For a real-valued

function x(·) : R+ → R, we use either x′(t) or (d/dt)x(t) to denote the derivative, and

for x(·) : R+ → Rd, (d/dt)x(t) = (x′1(t), . . . , x
′
d(t)). For x ∈ R, x+ = max{x, 0} and

x− = −min{x, 0}; and sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sgn(x) = −1 if x < 0.

For x, y ∈ R, we denote x ∧ y = min{x, y} and x ∨ y = max{x, y}. a ⇔ b means “a is

equivalent to b”; a ⇒ b means “a implies b”. We write xr → x ∈ Rn to denote ordinary

convergence in Rn. For a finite set of scalar functions fn(t), t ≥ 0, n ∈ N, a point t is called
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regular if for any subset N0 ⊆ N, the derivatives

d

dt
max
n∈N0

fn(t) and
d

dt
min
n∈N0

fn(t)

exist. (To be precise, we require that each derivative is proper: both left and right derivatives

exist and are equal.)

Abbreviations: u.o.c. means uniform on compact sets convergence of functions, with

the argument determined by the context (usually in [0,∞)); w.p.1 means with probability

1 ; i.i.d. means independent identically distributed ; RHS means right hand side; FSLLN

means functional strong law of large numbers; CQLF means common quadratic Lyapunov

function; LTI system means linear time-invariant system.

1.2 Switched Linear Systems and CQLF

Common quadratic Lyapunov functions for switched linear systems play an important role

in deriving our results. In this section, we provide some necessary background.

Consider a switched linear system

ΣS : u′(t) = A(t)u(t) , A(t) ∈ A = {A1, . . . , Am} (1.1)

where A is a set of matrices in Rn×n, and t→ A(t) is a mapping from nonnegative real

numbers into A. (Usually, as in [74], this mapping is required to be piecewise constant with

only finitely many discontinuities in any bounded time-interval. In our case this additional

condition is not important, because our switched system will have a continuous derivative;

see equation (1.8) below.) For 1 ≤ i ≤ m, the ith constituent system of the switched linear

system (1.1) is the linear time-invariant (LTI) system

ΣAi : u′(t) = Aiu(t). (1.2)

The origin is an exponentially stable equilibrium of the switched linear system Σs if there

exist real constants C > 0, a > 0 such that ‖u(t)‖ ≤ Ce−at‖u(0)‖ for t ≥ 0, for all solutions
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u(t) of the system (1.1) (see [27, 74]).

A symmetric square n×n matrix M with real coefficients is positive definite if zTMz > 0

for every non-zero column vector z ∈ Rn. A symmetric square n × n matrix M with real

coefficients is negative definite if zTMz < 0 for every non-zero column vector z ∈ Rn. A

square matrix A is called a Hurwitz matrix (or stable matrix ) if every eigenvalue of A has

strictly negative real part. The following fact is the Hurwitz criterion of matrices in R3×3

(see [62]).

Proposition 1.2.1 ([62]). Let L(λ) = det(A − λI) = 0 be the characteristic equation of

matrix A in R3×3:

L(λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0 , a0 > 0. (1.3)

Matrix A is Hurwitz if and only if a1, a2, a3 are positive and a1a2 > a0a3.

The function V (u) = uTPu is a quadratic Lyapunov function (QLF) for the system

ΣA : u′(t) = Au(t) if (i) P is symmetric and positive definite, and (ii) PA+ATP is negative

definite. Let {A1, . . . , Am} be a collection of n × n Hurwitz matrices, with associated

stable LTI systems ΣA1 , . . . ,ΣAm . Then the function V (u) = uTPu is a common quadratic

Lyapunov function (CQLF) for these systems if V is a QLF for each individual system (see

[39, 74]).

The following facts will be used in the proof of our main results (Theorem 1.4.2).

Proposition 1.2.2 ([39, 74]). The existence of a CQLF for the LTI systems is sufficient

for the exponential stability of the switched linear system.

Proposition 1.2.3 ([39, 74]). Let A1 and A2 be Hurwitz matrices in Rn×n, and the differ-

ence A1 − A2 has rank one. Then two systems u′(t) = A1u(t) and u′(t) = A2u(t) have a

CQLF if and only if the matrix product A1A2 has no negative real eigenvalues.

Proposition 1.2.4 ([73]). If A−11 is non-singular, the product A1A2 has no negative eigen-

values if and only if A−11 + τA2 is non-singular for all τ ≥ 0.
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1.3 Model and Algorithm

1.3.1 Model

Our model is a generalization of that considered in [55, 58]. Customers arrive according to a

Poisson process of rate Λ > 0, and join a customer queue waiting for an available agent and

are served in the order of their arrival. There is an infinite pool of ’potential’ agents, which

can be invited to serve customers. After a potential agent is invited, it becomes a ’pending’

agent; we refer to such an event as an invitation. A pending agent ’accepts’ its invitation and

becomes ’active’ agent after a random, exponentially distributed, time with mean 1/β; we

refer to such an event as an acceptance. Upon acceptance events, the new active agents join

the (active) agent queue. The customer and agent queues cannot be positive simultaneously:

the head-of-the-line customer and agent are immediately matched, leave their queues, and

together go to service. Each service time is an exponentially distributed random variable

with mean 1/µ; after the service completion, the customer leaves the system, while the

corresponding agent either remains active and rejoins the agent queue – this occurs with

probability α ∈ [0, 1) – or leaves the system with probability 1−α. Thus, there are two ways

in which agents join the queue – when an agent becomes active (upon acceptance event)

and already active agents rejoining the queue after service completions. The patience times

of customers and agents are independent sequences of i.i.d. exponential random variables

with rate δ ≥ 0 and θ ≥ 0, respectively. When its patience time expires while a customer

or server wait in queue, they leave the system. (The model in [55] is a special case of ours,

with δ = 0 and θ = 0; in other words, customers and agents certainly wait in their queues

until they are matched. The model in [58] is a special case of ours, with δ = 0, θ = 0 and

α = 0.) Figure 1.1 depicts such a system.

Let X(t) be the number of pending agents at time t. Let Y (t) = Qa(t) − Qc(t) be the

difference between the agent and customer queue lengths at time t. (Note that Qa(t) =

Y +(t) and Qc(t) = Y −(t).) Let Z(t) be the number of customers (or agents) in service at

time t. The system state at time t is (X(t), Y (t), Z(t)).
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Figure 1.1: An agent invitation system

1.3.2 Algorithm

The queue-length-based feedback scheme in [55, 58, 75], referred to as the actual scheme,

maintains a “target” Xtarget(t) for the number of pending agents X(t). Xtarget(t) is changed

by ∆Xtarget(t) = [−γ∆Y (t)− εY (t)∆t] at each time t when Y (t) changes by ∆Y (t) (+1 or

−1), where γ > 0 and ε > 0 are the algorithm parameters and ∆t is the time duration from

the previous change of Y . New agent invitations occur (i.e., the number of pending agents

increases) if and only if X(t) < Xtarget(t), where X(t) is the actual number of pending

agents; therefore, X(t) ≥ Xtarget(t) holds at all times. In addition, Xtarget(t) ≥ 0; i.e. if

an update of Xtarget(t) makes it negative, its value is immediately reset to zero. Note that

Xtarget(t) is not necessarily an integer.

Just like in [55, 58], to simplify our theoretical analysis, we consider a “stylized” version

of the actual scheme, referred to as the stylized scheme, which has the same basic dynamics,

but keeps Xtarget(t) integer and assumes that X(t) = Xtarget(t) at all times; the latter is

equivalent to assuming that not only agents can be invited instantly, but pending agents

can be removed from the system at any time. Formally, the stylized scheme is defined as

follows. There are six types of mutually independent, and independent of the past, events

that affect the dynamics of X(t), Y (t) and Z(t) in a small time interval [t, t+ dt]:

• a customer arrival with probability Λdt+ o(dt),

• an acceptance with probability βX(t)dt+ o(dt),

• an additional event (we will call it a type-3 event) with probability ε|Y (t)|dt+ o(dt);
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unlike other events, it is triggered by the algorithm itself, as opposed to other events

triggered by customers’ and/or agents’ “movement” in the system,

• a service completion with probability µZ(t)dt+ o(dt),

• an abandonment in the customer queue with probability δY −(t)dt+ o(dt),

• an abandonment in the agent queue with probability θY +(t)dt+ o(dt).

The changes at these event times are described as follows:

• Upon a customer arrival, if Y (t) > 0, Z(t) changes by ∆Z(t) = 1; and if Y (t) ≤ 0,

Z(t) changes by ∆Z(t) = 0. Y (t) changes by ∆Y (t) = −1, and X(t) changes by a

random quantity with average γ > 0. For example, if γ = 1.7 and ∆Y (t) = −1, then

∆X(t) = 2 with probability 0.7 and ∆X(t) = 1 with probability 0.3. Note that if γ

is integer, ∆X(t) = γ w.p.1. To simplify the exposition, we assume that γ > 0 is an

integer.

• Upon an acceptance event, if Y (t) < 0, Z(t) changes by ∆Z(t) = 1; and if Y (t) ≥ 0,

Z(t) changes by ∆Z(t) = 0. Y (t) changes by ∆Y (t) = 1, and X(t) changes by

∆X(t) = −(γ∧X(t)), that is, the change is by −γ but X(t) is kept to be nonnegative.

• Upon a type-3 event, if X(t) ≥ 1, the change ∆X(t) = −sgn(Y (t)) occurs; and if

X(t) = 0, the change ∆X(t) = 1 occurs if Y (t) < 0 and ∆X(t) = 0 if Y (t) ≥ 0.

• Upon a service completion, (a) if the agent returns to the agent queue (with probability

α), then if Y (t) < 0, the change ∆Z(t) = 0 occurs; and if Y (t) ≥ 0, the change

∆Z(t) = −1 occurs; Y (t) changes by ∆Y (t) = 1, and ∆X(t) = −(γ ∧ X(t)). (b) If

the agent leaves the system (with probability 1−α), then Z(t) changes by ∆Z(t) = −1.

• Upon a customer abandonment, Y (t) changes by ∆Y (t) = 1, and X(t) changes by

∆X(t) = −(γ ∧X(t)).

• Upon an agent abandonment, Y (t) changes by ∆Y (t) = −1, and X(t) changes by

∆X(t) = γ.
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Let V (t) = Y +(t)+Z(t) be the total number of agents in the system at time t. Obviously,

(X(t), Y (t), V (t)) is a random process with states being 3-dimensional integer vectors. How-

ever, very informally, the basic dynamics of (X(t), Y (t), V (t)) under the stylized scheme

can be thought of as described by the following ODE


(d/dt)X = −γ(d/dt)Y − εY

(d/dt)Y = βX − Λ + αµZ + δY − − θY +

(d/dt)V = βX − (1− α)µZ − θY +.

(1.4)

ODE (1.4) is only to provide the basic intuition for the system dynamics – it is not used in

the analysis.

1.4 Main Results

We consider a sequence of systems, indexed by a scaling parameter r →∞. In the system

with index r, the arrival rate is Λ = λr, while the parameters α, β, µ, δ, θ, ε, γ do

not depend on r. The corresponding process is (Xr(t), Y r(t), Zr(t)), t ≥ 0. The desired

system operating point, at which (Xr(t), Y r(t), Zr(t)) should be centered is given by (λr(1−

α)/β, 0, λr/µ). The explanation of this choice is as follows. If an invitation scheme works

as desired, Y r(t) should be close to 0; the number of customer-agent pairs Zr(t) should be

close to its average value, which is λr/µ, so that the customers leave the system at rate

λr; finally, Xr(t) should be close to the value χ, such that the total average rate at which

agents join the agent queue, which is χβ+ [(λr)/µ]µα, is equal to the customer arrival rate

λr – this gives χ = λr(1− α)/β.

However, instead of considering process (Xr(t), Y r(t), Zr(t)), we will consider process

(Xr(t),

Y r(t), V r(t)), which is more convenient for the analysis. (Recall that Zr(t) = V r(t) −

(Y r(t))+.) Then the natural centering value for V r(t) is same as for Zr(t), namely λr/µ.
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We define fluid-scaled process with centering as

(X̄r(t), Ȳ r(t), V̄ r(t)) = r−1
(
Xr(t)− λr(1− α)

β
, Y r(t), V r(t)− λr

µ

)
, t ≥ 0. (1.5)

Theorem 1.4.1. Consider a sequence of processes (X̄r(·), Ȳ r(·), V̄ r(·)), r → ∞, with de-

terministic initial states such that (X̄r(0), Ȳ r(0), V̄ r(0))→ (x(0), y(0), v(0)) for some fixed

(x(0), y(0), v(0)) ∈ R3, x(0) ≥ −λ(1−α)
β . Then, these processes can be constructed on a

common probability space, so that the following holds. W.p.1, from any subsequence of r,

there exists a further subsequence such that

(X̄r(·), Ȳ r(·), V̄ r(·))→ (x(·), y(·), v(·)) u.o.c. as r →∞ (1.6)

where (x(·), y(·), v(·)) is a locally Lipschitz trajectory such that at any regular point t ≥ 0



x′(t) =


−γy′(t)− εy(t), if x(t) > −λ(1−α)

β

[−γy′(t)− εy(t)] ∨ 0, if x(t) = −λ(1−α)
β

y′(t) = βx(t) + αµ(v(t)− y+(t)) + δy−(t)− θy+(t)

v′(t) = βx(t)− (1− α)µ(v(t)− y+(t))− θy+(t).

(1.7)

A limit trajectory (x(·), y(·), v(·)) specified in Theorem 1.4.1 will be called a fluid limit

starting from (x(0), y(0), v(0)).

Remark 1.4.1. Equations (1.7), which a fluid limit must satisfy, are very natural. They

can be thought of as rescaled centered versions of the (informal) equations (1.4). In addition,

(1.7) includes a “reflection” (or, “regulation”) at the boundary x = −λ(1−α)
β , i.e. condition

x(t) ≥ −λ(1−α)
β is “enforced” as all times. This additional condition is the centered rescaled

version of the condition Xr(t) ≥ 0, which obviously must hold at all times.
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Consider a dynamic system (x(t), y(t), v(t)) ∈ R3:


x′(t) = −γy′(t)− εy(t)

y′(t) = βx(t) + αµ(v(t)− y+(t)) + δy−(t)− θy+(t)

v′(t) = βx(t)− (1− α)µ(v(t)− y+(t))− θy+(t).

(1.8)

Note that the RHS of (1.8) is continuous. This dynamic system describes the dynamics

of fluid limit trajectories when the state is away from the boundary x = −λ(1−α)
β . System

(1.8) is a generalization of the system considered in [55], referred to as a non-abandonment

system, which is a special case of ours with δ = 0 and θ = 0.

We say that the fluid limit is globally stable if every fluid limit trajectory converges to

the equilibrium point (0, 0, 0); and it is locally stable if every trajectory of the dynamic

system (1.8) converges to the equilibrium point (0, 0, 0). Note that exponential stability of

the system (1.8) implies local stability.

The following theorem is the main result of this chapter. It provides sufficient exponential

stability conditions for the system (1.8).

Theorem 1.4.2 (Sufficient exponential stability conditions). For any set of positive β, µ,

ε, γ, non-negative δ and θ, and α ∈ [0, 1), such that either (i)

γ > max

{
αµ− δ
β

,

√
(2− α)εµ+ αεδ

βµ

}
, (1.9)

or (ii)

γ > max

{
αµ− δ +

√
(αµ− δ)2 + 4αµ2

2β
,

√
max

{
αε(δ − µ)

βµ
, 0

}}
(1.10)

holds, a common quadratic Lyapunov function (CQLF) of the system (1.8) exists, and

the system (1.8) is exponentially stable.

In other words, conditions (1.9) and (1.10) are sufficient for local stability of our system.

Theorem 1.4.2 implies the following useful sufficient local stability conditions (Corollaries

1.4.1 - 1.4.12) for special cases. Figure 1.2 depicts the connection between these results.
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Figure 1.2: Result’s diagram

Corollary 1.4.1. Given all other parameters are fixed, the system (1.8) is exponentially

stable for all sufficiently large γ.

Corollary 1.4.2. If αµ ≤ δ, then the system (1.8) is exponentially stable under condition

γ >

√
(2− α)εµ+ αεδ

βµ
. (1.11)

Corollary 1.4.3. If αµ ≤ δ, then the system (1.8) is exponentially stable for all sufficiently

small ε.

Corollary 1.4.4. If αµ > δ and ε ≤ (αµ−δ)2µ
(2−α)µβ+αδβ , then the system (1.8) is exponentially

stable under condition

γ >
αµ− δ
β

. (1.12)

Corollary 1.4.5. If αµ > δ and ε > (αµ−δ)2µ
(2−α)µβ+αδβ , then the system (1.8) is exponentially

stable under condition

γ >

√
(2− α)εµ+ αεδ

βµ
. (1.13)
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Corollary 1.4.6. If αµ ≥ δ, then the system (1.8) is exponentially stable under condition

γ >
αµ− δ +

√
(αµ− δ)2 + 8βε

2β
. (1.14)

Corollary 1.4.7. If µ > δ, then the system (1.8) is exponentially stable under condition

γ >
αµ− δ +

√
(αµ− δ)2 + 4αµ2

2β
. (1.15)

(Note that this condition does not depend on ε.)

We also have the following result for the system where agents do not return to the agent

queue after service completions.

Corollary 1.4.8. If α = 0, then the system (1.8) is exponentially stable for all positive β,

µ, ε, γ, and δ ≥ 0, θ ≥ 0.

Let us consider a special case when δ = 0, referred to as a customer non-abandonment

system. Then, Corollaries 1.4.4, 1.4.5, 1.4.6, and 1.4.7 imply the following sufficient local

stability conditions of the customer non-abandonment system.

Corollary 1.4.9. If δ = 0, α ∈ (0, 1), and ε ≤ α2µ2

(2−α)β , then the system (1.8) is exponentially

stable under condition

γ >
αµ

β
. (1.16)

Corollary 1.4.10. If δ = 0, α ∈ (0, 1), and ε > α2µ2

(2−α)β , then the system (1.8) is exponen-

tially stable under condition

γ >

√
(2− α)ε

β
. (1.17)

Corollary 1.4.11. If δ = 0, and α ∈ [0, 1), then the system (1.8) is exponentially stable

under condition

γ >
αµ+

√
α2µ2 + 8βε

2β
. (1.18)
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Note that if θ = 0, then Corollary 1.4.11 is a simpler, equivalent version of the sufficient

local stability condition in [55] for the non-abandonment system (Theorem 3 in [55]). More-

over, condition (1.10) in Theorem 1.4.2 implies the following result, which does not depend

on ε, for the non-abandonment system.

Corollary 1.4.12. If δ = 0, and α ∈ [0, 1), then the system (1.8) is exponentially stable

under condition

γ >
(α+

√
α2 + 4α)µ

2β
. (1.19)

Having a variety of these sufficient local stability conditions is useful, because some or

others may be easier to verify/ensure, depending on the scenario. Note that γ and ε are con-

trol parameters, while all other parameters are those of the system – they can be potentially

measured/estimated in real time. It is not easy to give an intuitive meaning/interpretation

of the above local stability conditions. Perhaps Corollary 1.4.1 is the easiest to interpret:

if magnitude γ of the system response to changes in the queue length is large enough, this

is sufficient for local stability.

Remark 1.4.2. We note that our local stability results apply to more general systems,

exhibiting same local behavior. For example, suppose the total number of potential agents

is not infinite, by finite, scaling with r as κr, where κ > λ(1− α)/β. Then, the fluid limits

of such system satisfy the same ODE (1.8) in the vicinity of the origin, and therefore our

local stability results apply as is.

1.5 Proof of Theorem 1.4.1

The proof of Theorem 1.4.1 is a generalization of the proof of Theorem 1 in [58]. However,

it requires additional technical details – we present it here for completeness.

In order to prove Theorem 1.4.1, it suffices to show that w.p.1 from any subsequence of

r, we can choose a further subsequence, along which a u.o.c. convergence to a fluid limit

holds.

Let Ni(·), i = 1, . . . , 8 be mutually independent unit-rate Poisson processes. N1 is the
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process which drives customer arrivals. N2 is the process which drives the acceptance of

invitations. N3 is the process which drives the service completions with agents leaving the

system. N4 is the process which drives the service completions with agents returning the

agent queue. N5 and N6 are the processes which drive type-3 events, when variable Y r(t)

is negative and positive, respectively. N7 is the process which drives the abandonment of

customers. N8 is the process which drives the abandonment of agents. Given the initial

state (Xr(0), Y r(0), V r(0)), we construct the process (Xr(·), Y r(·), V r(·)), for all r, on the

same probability space via a common set of independent Poisson process [59] as follows:

Xr(t) = Gr(t) +

(
− min

0≤s≤t
Gr(s)

)
∨ 0, (1.20)

Gr(t) = Xr(0) + γN1(λrt)− γN2

(
β

∫ t

0
Xr(s)ds

)
− γN4

(
αµ

∫ t

0
(V r(s)− (Y r(s))+)ds

)
− γN7

(
δ

∫ t

0
(Y r(s))−ds

)
+ γN8

(
θ

∫ t

0
(Y r(s))+ds

)
+

+N5

(
ε

∫ t

0
(Y r(s))−ds

)
−N6

(
ε

∫ t

0
(Y r(s))+ds

)
, (1.21)

Y r(t) = Y r(0) +N2

(
β

∫ t

0
Xr(s)ds

)
−N1(λrt) +N4

(
αµ

∫ t

0
(V r(s)− (Y r(s))+)ds

)
+

+N7

(
δ

∫ t

0
(Y r(s))−ds

)
−N8

(
θ

∫ t

0
(Y r(s))+ds

)
, (1.22)

V r(t) = V r(0) +N2

(∫ t

0
βXr(s)ds

)
−N3

(∫ t

0
(1− α)µ(V r(s)− (Y r(s))+)ds

)
−

−N8

(
θ

∫ t

0
(Y r(s))+ds

)
. (1.23)

W.p.1, for any r, relations (1.20)-(1.23) uniquely define the realization of (Xr(·), Y r(·),

V r(·)) via the realizations of the driving processes Ni(·). Relation (1.20), the “reflection”

at zero, corresponds to the property that Xr(t) cannot become negative.

The functional strong law of large numbers (FSLLN) holds for each Poisson process Ni:

Ni(rt)

r
→ t , r →∞ , u.o.c., w.p.1. (1.24)

We consider the sequence of associated fluid-scaled processes with centering (X̄r(·), Ȳ r(·),

V̄ r(·)) as defined in (1.5). Let a constant m > ‖(x(0), y(0), v(0)‖ be fixed. For each
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r, on the same probability space as (X̄r(·), Ȳ r(·), V̄ r(·)), let us define a modified fluid-

scaled process (X̄r
m(·), Ȳ r

m(·), V̄ r
m(·)). Let (X̄r

m(·), Ȳ r
m(·), V̄ r

m(·)) start from the same initial

state as (X̄r(·), Ȳ r(·), V̄ r(·)) , i.e., (X̄r
m(0), Ȳ r

m(0), V̄ r
m(0)) = (X̄r(0), Ȳ r(0), V̄ r(0)). The

modified process (X̄r
m(·), Ȳ r

m(·), V̄ r
m(·)) follows the same path as (X̄r(·), Ȳ r(·), V̄ r(·)) un-

til the first time t, such that ‖(X̄r(t), Ȳ r(t), V̄ r(t))‖ ≥ m. Denote this time by τ rm. We

then freeze the process (X̄r
m(·), Ȳ r

m(·), V̄ r
m(·)) at the value (X̄r(τ rm), Ȳ r(τ rm), V̄ r(τ rm)), i.e.

(X̄r
m(t), Ȳ r

m(t), V̄ r
m(t)) = (X̄r(τ rm), Ȳ r(τ rm), V̄ r(τ rm)) for all t ≥ τ rm.

Lemma 1.5.1. Fix (x(0), y(0), v(0)) and a finite constant m > ‖(x(0), y(0), v(0))‖. Then,

w.p.1 for any subsequence of r, there exists a further subsequence, along which (X̄r
m, Ȳ

r
m, V̄

r
m)

converges u.o.c. to a Lipschitz continuous trajectory (xm, ym, vm), which satisfies properties

(1.7) at any regular time t ≥ 0 such that ‖(xm(t), ym(t), vm(t))‖ < m.

Proof. For the modified fluid-scaled processes (X̄r
m(·), Ȳ r

m(·), V̄ r
m(·)), we define the asso-

ciated counting processes for upward and downward jumps. For t ≤ τ rm,

X̄r↑
m (t) = r−1γN1(λrt) + r−1γN8

(
θr

∫ t

0
(Ȳ r
m(s))+ds

)
+ r−1N5

(
εr

∫ t

0
(Ȳ r
m(s))−ds

)
,

(1.25)

X̄r↓
m (t) = r−1γN2

(
βr

∫ t

0

[
X̄r
m(s) +

λ(1− α)

β

]
ds

)
+

+ r−1γN4

(
αµr

∫ t

0

[
V̄ r
m(s) +

λ

µ
− (Ȳ r

m(s))+
]
ds

)
+

+ r−1γN7

(
δr

∫ t

0
(Ȳ r
m(s))−ds

)
+ r−1N6

(
εr

∫ t

0
(Ȳ r
m(s))+ds

)
, (1.26)

Ȳ r↑
m (t) = r−1N2

(
βr

∫ t

0

[
X̄r
m(s) +

λ(1− α)

β

]
ds

)
+

+ r−1N4

(
αµr

∫ t

0

[
V̄ r
m(s) +

λ

µ
− (Ȳ r

m(s))+
]
ds

)
+

+ r−1N7

(
δr

∫ t

0
(Ȳ r
m(s))−ds

)
, (1.27)

Ȳ r↓
m (t) = r−1N1(λrt) + r−1N8

(
θr

∫ t

0
(Ȳ r
m(s))+ds

)
(1.28)

V̄ r↑
m (t) = r−1N2

(
βr

∫ t

0

[
X̄r
m(s) +

λ(1− α)

β

]
ds

)
, (1.29)

V̄ r↓
m (t) = r−1N3

(
(1− α)µr

∫ t

0

[
V̄ r
m(s) +

λ

µ
− (Ȳ r

m(s))+
]
ds

)
+
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+ r−1N8

(
θr

∫ t

0
(Ȳ r
m(s))+ds

)
, (1.30)

and for t > τ rm, all these counting processes are frozen at their values at time τ rm, that is,


X̄r↑
m (t) = X̄r↑

m (τ rm) , X̄r↓
m (t) = X̄r↓

m (τ rm) ,

Ȳ r↑
m (t) = Ȳ r↑

m (τ rm) , Ȳ r↓
m (t) = Ȳ r↓

m (τ rm) ,

V̄ r↑
m (t) = V̄ r↑

m (τ rm) , V̄ r↓
m (t) = V̄ r↓

m (τ rm).

(1.31)

Using the relations (1.20)-(1.23) and the fact that for 0 ≤ t ≤ τ rm the original process

(X̄r, Ȳ r, V̄ r) and the modified process (X̄r
m, Ȳ

r
m, V̄

r
m) coincide, we have for all t ≥ 0,

X̄r
m(t) = Ḡrm(t) +

(
−λ(1− α)/β − min

0≤s≤t
Ḡrm(s)

)
∨ 0, (1.32)

Ḡrm(t) = X̄r(0) + X̄r↑
m (t)− X̄r↓

m (t), (1.33)

Ȳ r
m(t) = Ȳ r(0) + Ȳ r↑

m (t)− Ȳ r↓
m (t), (1.34)

V̄ r
m(t) = V̄ r(0) + V̄ r↑

m (t)− V̄ r↓
m (t). (1.35)

The counting processes X̄r↑
m (·), X̄r↓

m (·), Ȳ r↑
m (·), Ȳ r↓

m (·), V̄ r↑
m (·), V̄ r↓

m (·) are non-decreasing.

Using FSLLN (1.24) and the fact that the processes X̄r
m(·), Ȳ r

m(·), and V̄ r
m(·) are uniformly

bounded by construction, we see that w.p.1. for any subsequence of r, there exists a further

subsequence along which the set of trajectories (X̄r↑
m (·), X̄r↓

m (·), Ȳ r↑
m (·), Ȳ r↓

m (·), V̄ r↑
m (·), V̄ r↓

m (·))

converges u.o.c. to a set of non-decreasing Lipschitz continuous functions (x↑m(·), x↓m(·), y↑m(·),

y↓m(·), v↑m(·), v↓m(·)). But then the u.o.c. convergence of (X̄r
m(·), Ȳ r

m(·), V̄ r
m(·), Ḡrm(·)) to a set

of Lipschitz continuous functions (xm(·), ym(·), vm(·), gm(·)) holds, where

xm(t) = gm(t) +

(
−λ(1− α)/β − min

0≤s≤t
gm(s)

)
∨ 0, (1.36)

gm(t) = x(0) + x↑m(t)− x↓m(t), (1.37)

ym(t) = y(0) + y↑m(t)− y↓m(t), (1.38)

vm(t) = v(0) + v↑m(t)− v↓m(t), (1.39)

22



and the following holds for t before fluid trajectory hits ‖(xm(t), ym(t), vm(t))‖ = m

x↑m(t) = γλt+ γθ

∫ t

0
y+m(s)ds+ ε

∫ t

0
y−m(s)ds, (1.40)

x↓m(t) = γβ

∫ t

0

(
xm(s) +

λ(1− α)

β

)
ds+ γαµ

∫ t

0

(
vm(s) +

λ

µ
− y+m(s)

)
ds+

+ γδ

∫ t

0
y−m(s)ds+ ε

∫ t

0
y+m(s)ds, (1.41)

y↑m(t) = β

∫ t

0

(
xm(s) +

λ(1− α)

β

)
ds+ αµ

∫ t

0

(
vm(s) +

λ

µ
− y+m(s)

)
ds+ δ

∫ t

0
y−m(s)ds,

(1.42)

y↓m(t) = λt+ θ

∫ t

0
y+m(s)ds, (1.43)

v↑m(t) = β

∫ t

0

(
xm(s) +

λ(1− α)

β

)
ds, (1.44)

v↓m(t) = (1− α)µ

∫ t

0

(
vm(s) +

λ

µ
− y+m(s)

)
ds+ θ

∫ t

0
y+m(s)ds. (1.45)

Hence,



x′m(t) =



−γβxm(t)− γαµ(vm(t)− y+m(t)) + γθy+m(t)− γδy−m(t)− εym(t),

if xm(t) > −λ(1−α)
β ,

[−γβxm(t)− γαµ(vm(t)− y+m(t)) + γθy+m(t)− γδy−m(t)− εym(t)] ∨ 0,

if xm(t) = −λ(1−α)
β ,

y′m(t) = βxm(t) + αµ(vm(t)− y+m(t)) + δy−m(t)− θy+m(t),

v′m(t) = βxm(t)− (1− α)µ(vm(t)− y+m(t))− θy+m(t).

(1.46)

It is easy to verify that, at any regular time t ≥ 0 such that ‖(xm(t), ym(t), vm(t))‖ < m,

properties (1.7) hold for the trajectory (xm(·), ym(·), vm(·)). �

Conclusion of the proof of Theorem 1.4.1. It is easy to see that

d

dt
‖(xm(t), ym(t), vm(t))‖ ≤ C‖(xm(t), ym(t), vm(t))‖ for any m and some C > 0. (1.47)
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From Gronwall’s inequality [19], we have

‖(xm(t), ym(t), vm(t))‖ ≤ ‖(x(0), y(0), v(0))‖eCt for all t ≥ 0 (1.48)

For a given (x(0), y(0), v(0)), let us fix Tl > 0 and choose ml > ‖(x(0), y(0), v(0)‖eCTl .

For this Tl > 0, there exists a subsequence rl, along which (X̄r, Ȳ r, V̄ r) converges uni-

formly to (xml , yml , vml), which satisfies properties (1.7), at any t ∈ [0, Tl]. The limit

trajectory (xml , yml , vml) does not hit ml in [0, Tl]. Subsequence rl = {rl1, rl2, . . . } is such

that, w.p.1, for all sufficiently large r along the subsequence rl, (X̄r(t), Ȳ r(t), V̄ r(t)) =

(X̄r
ml

(t), Ȳ r
ml

(t), V̄ r
ml

(t)) at any t ∈ [0, Tl].

We consider a sequence T1, T2, . . . , → ∞. We construct a subsequence r∗ by using

Cantor’s diagonal procedure [67] from subsequences r1, r2, . . . (r1 ⊇ r2 ⊇ . . . ) correspond-

ing to T1, T2, . . . , respectively (i.e. r∗1 = r11, r∗2 = r22, . . . ). Clearly, for this subsequence

r∗, w.p.1, (X̄r, Ȳ r, V̄ r) converges u.o.c. to (x, y, v), which satisfies properties (1.7), at any

regular point t ∈ [0,∞). �

1.6 Proof of Theorem 1.4.2

In order to prove Theorem 1.4.2, it suffices to show that LTI systems of the switched linear

system (1.8) have a CQLF.

The system (1.8) is a switched linear system with m = 2. (Note that y+ = y if y ≥ 0

and y+ = 0 if y < 0, and y− = 0 if y ≥ 0 and y− = −y if y < 0.) Namely, for y ≥ 0,


x′(t) = (−γβ)x(t) + (γαµ+ γθ − ε)y(t) + (−γαµ)v(t)

y′(t) = (β)x(t) + (−αµ− θ)y(t) + (αµ)v(t)

v′(t) = (β)x(t) + ((1− α)µ− θ)y(t) + (−(1− α)µ)v(t)

(1.49)
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and for y < 0,


x′(t) = (−γβ)x(t) + (γδ − ε)y(t) + (−γαµ)v(t)

y′(t) = (β)x(t) + (−δ)y(t) + (αµ)v(t)

v′(t) = (β)x(t) + (−(1− α)µ)v(t)

(1.50)

We can rewrite the systems above as two LTI systems u′(t) = A1u(t) and u′(t) = A2u(t),

where u(t) = (x(t), y(t), v(t))T and

A1 =


−γβ γαµ+ γθ − ε −γαµ

β −αµ− θ αµ

β (1− α)µ− θ −(1− α)µ

 , A2 =


−γβ γδ − ε −γαµ

β −δ αµ

β 0 −(1− α)µ

 . (1.51)

Lemma 1.6.1. Matrix A1 in (1.51) is Hurwitz for all positive β, γ, µ, ε, δ ≥ 0, θ ≥ 0 and

α ∈ [0, 1).

Proof. The characteristic equation of A1 is

λ3 + (βγ + µ+ θ)λ2 + (βε+ βγµ+ µθ)λ+ βεµ = 0. (1.52)

By Proposition 1.2.1, it suffices to verify that

βγ + µ+ θ > 0 , βε+ βγµ+ µθ > 0 , βεµ > 0, and (1.53)

(βγ + µ+ θ)(βε+ βγµ+ µθ)− βεµ = β2γ2µ+ β2γε+ βγµ2+

+2βγµθ + βθε+ µ2θ + µθ2 > 0. (1.54)

The conditions (1.53) and (1.6) are obviously true. �

Lemma 1.6.2. For positive β, γ, µ, ε, δ ≥ 0, θ ≥ 0 and α ∈ [0, 1), matrix A2 in (1.51) is

Hurwitz if and only if

(
βγ + δ

µ
+ (1− α)

)(
βγµ+ δµ(1− α)

βε
+ 1

)
> 1 (1.55)
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Proof. The characteristic equation of A2 is

λ3 + (βγ + µ(1− α) + δ)λ2 + (βε+ βγµ+ δµ(1− α))λ+ βεµ = 0. (1.56)

By Proposition 1.2.1, it suffices to verify that

βγ + µ(1− α) + δ > 0 , βε+ βγµ+ δµ(1− α) > 0 , βεµ > 0, (1.57)

and (βγ + µ(1− α) + δ)(βε+ βγµ+ δµ(1− α))− βεµ > 0, which is equivalent to (1.55)

since

(βγ + µ(1− α) + δ)(βε+ βγµ+ δµ(1− α))− βεµ > 0

⇔ (βγ + δ + µ(1− α))(βγµ+ δµ(1− α) + βε) > βεµ

⇔
(
βγ + δ

µ
+ (1− α)

)(
βγµ+ δµ(1− α)

βε
+ 1

)
> 1.

The conditions (1.57) are obviously true. �

It is easy to see that Lemma 1.6.2 implies the following result.

Corollary 1.6.1. Matrix A2 in (1.51) is Hurwitz if

γ >
αµ− δ
β

. (1.58)

(Note that γ > 0 by definition.)

Lemma 1.6.3. Matrix A2 in (1.51) is Hurwitz under the condition either (1.9) or (1.10).

Proof. This easily follows by applying Corollary 1.6.1.

Lemma 1.6.4. Matrix product A1A2 has no negative eigenvalues under the condition either

(1.9) or (1.10).

Proof. With the help of MATLAB symbolic calculation, it can be shown that A1 is
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non-singular and

A−11 =


− θ
βε −

(αε−ε+γθ)
βε

α
β

−1
ε −γ

ε 0

−1
ε

(ε−γµ)
εµ − 1

µ

 . (1.59)

By Proposition 1.2.4, to demonstrate that the product A1A2 has no negative eigenvalues,

it will suffice to show that [A−11 + τA2] is non-singular for all τ ≥ 0. We have

det[A−11 + τA2] = [β2ε2µ2τ3+

+(β2ε2 + β2γ2µ2 − 2βεµ2 + δµ2θ + αβεµ2 + βδγµ2 − αδµ2θ + βγµ2θ − αβδεµ− αβδγµ2)τ2

+(µ2 − αµ2 + β2γ2 − 2βε+ δθ + βδγ + αδµ+ βγθ − αµθ − αβγµ)τ + 1]/(−βεµ). (1.60)

To show det[A−11 + τA2] 6= 0 for all τ ≥ 0, it will suffice to show that the numerator of

the ratio (1.60) is strictly positive. We can represent the numerator of the ratio (1.60) as

follows.

(a) Under the condition (1.9), the numerator of the ratio (1.60) is

β2ε2µ2τ3 + (βετ − 1)2+

+[(β2γ2µ2 − 2βεµ2 − αβδεµ+ αβεµ2) + δµ2θ(1− α) + βδγµ2(1− α) + βγµ2θ]τ2+

+[µ2(1− α) + βγ(βγ − αµ+ δ) + αδµ+ (βγ − αµ+ δ)θ]τ
(1.62)-(1.63)

> 0, (1.61)

since the condition (1.9) implies

γ >
αµ− δ
β

⇒ βγ − αµ+ δ > 0, (1.62)

and γ >

√
(2− α)εµ+ αεδ

βµ
⇒ β2γ2µ2 − 2βεµ2 − αβδεµ+ αβεµ2 > 0. (1.63)

Hence, the numerator of the ratio (1.60) is strictly greater than 0 under the condition

(1.9).
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(b) Under the condition (1.10), the numerator of the ratio (1.60) is

(βετ − 1)2µ2τ + (βετ − 1)2+

+[(β2γ2µ2 − αβδεµ+ αβεµ2) + δµ2θ(1− α) + βδγµ2(1− α) + βγµ2θ]τ2+

+[(β2γ2 − βγ(αµ− δ)− αµ2) + αδµ+ (βγ − αµ+ δ)θ]τ
(1.65)-(1.66)

> 0, (1.64)

since the condition (1.10) implies

γ >
αµ− δ +

√
(αµ− δ)2 + 4αµ2

2β
>
αµ− δ
β

⇒ β2γ2 − βγ(αµ− δ)− αµ2 > 0 and βγ − αµ+ δ > 0 (1.65)

and γ >

√
max

{
αε(δ − µ)

βµ
, 0

}
⇒ β2γ2µ2 − αβδεµ+ αβεµ2 > 0. (1.66)

Hence, the numerator of the ratio (1.60) is strictly greater than 0 under the condition

(1.10).

Therefore, A1A2 has no negative eigenvalues under the condition either (1.9) or (1.10).

�

Conclusion of the proof of Theorem 1.4.2. By Lemma 1.6.1, A1 is Hurwitz for all positive

β, γ, µ, ε; δ ≥ 0, θ ≥ 0; and α ∈ [0, 1). By Lemma 1.6.3, A2 is Hurwitz under the condition

either (1.9) or (1.10). It is easy to verify that the difference A1 − A2 has rank one. By

Lemma 1.6.4, A1A2 has no negative real eigenvalues under the condition either (1.9) or

(1.10). Hence, by Proposition 1.2.3, two LTI systems u′(t) = A1u(t) and u′(t) = A2u(t)

have a CQLF. Therefore, the system (1.8) is exponentially stable under the condition either

(1.9) or (1.10). �

1.7 Numerical and Simulation Experiments and Conjectures

In this section, we present some numerical and simulation experiments. These results are

for both stylized and actual schemes, and all results are for the true system which includes

boundary X ≥ 0. We also put forward some conjectures based on these experiments.

In all simulations, we always assume r = 1000, but specify only the actual arrival rate Λ =
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λr. On the plots labeled ’fluid’, X(t), Y (y), V (t) are replaced by their fluid approximations

X(t) = rx(t) +
λr(1− α)

β
, Y (t) = ry(t), V (t) = rv(t) +

λr

µ
,

respectively, where (x(·), y(·), v(·) is the corresponding fluid limit.

1.7.1 Stylized Scheme

Example 1.7.1. Consider the following set of parameters, which satisfies condition (1.9):

Λ = 2000 , α = 0.5 , β = 3 , µ = 2 , γ = 1 , ε = 1.5 , δ = 1 , θ = 0.1

with four initial conditions: (a) (X(0), Y (0), Z(0)) = (0, 0, 0); (b) (X(0), Y (0), Z(0)) =

(0, 2000, 0); (c) (X(0), Y (0), Z(0)) = (2000,−2000, 1000); (d) (X(0), Y (0), Z(0)) = (2000,

4000, 1000). The red line of the figure is the fluid approximation and the blue one is the

simulation experiment. We see the converging trajectories on the Figure 1.3. Note that

Figures 1.3b and 1.3d show that the trajectory hits the boundary on X. We also did

the numerical/simulation experiments with many different sets of parameters satisfying the

condition (1.9). All results, including those not shown on Figure 1.3, suggest the global

stability of the system.

Example 1.7.2. We use sets of parameters:

Λ = 2000 , α = 0.9 , β = 0.05 , µ = 0.5 , ε = 1 , δ = 0.01 , θ = 0.01

with four different values of γ (γ1 = 1, γ2 = 5, γ3 = 10, and γ4 = 20) (Figure 1.4). The

sets of parameters with γ1 = 1 and γ2 = 5 do not satisfy the condition (1.9) while the sets

of parameters with γ3 = 10 and γ4 = 20 satisfy the condition (1.9). We consider an initial

condition (X(0), Y (0), Z(0)) = (1000, 6000, 2000). On the Figures 1.4b, 1.4c and 1.4d, we

see that the trajectories converge. However, Figure 1.4a shows the trajectory that never

converges under the set of parameters with γ1 = 1.

With many numerical/simulation experiments, the results, including those not shown on

Figure 1.4, suggest both local and global stability of the system for all sufficiently large γ.
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(a) (X(0), Y (0), Z(0)) = (0, 0, 0) (b) (X(0), Y (0), Z(0)) = (0, 2000, 0)

(c) (X(0), Y (0), Z(0)) = (2000,−2000, 1000) (d) (X(0), Y (0), Z(0)) = (2000, 4000, 1000)

Figure 1.3: Stylized scheme: Comparison of fluid approximations with simulations in Example 1.7.1

Our simulation experiments show that the fluid trajectory provides a very good approx-

imation for the behavior of stylized scheme.

1.7.2 Actual Scheme

Example 1.7.3. We conduct a simulation experiment for the actual scheme with the same

set of parameters as in Example 1.7.1:

Λ = 2000 , α = 0.5 , β = 3 , µ = 2 , γ = 1 , ε = 1.5 , δ = 1 , θ = 0.1

with two initial conditions (X(0), Y (0), Z(0), Xtarget(0)) = (0, 0, 0, 0) and (X(0), Y (0),

Z(0), Xtarget(0)) = (0, 0, 0, 1000). (Note that this set of parameters satisfies the condition

(1.9).) The results are shown in Figures 1.5 and 1.6. We see that the magnitude of the

difference between Xtarget and the actual number of invited agents X is very small (except
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(a) γ = 1 (b) γ = 5

(c) γ = 10 (d) γ = 20

Figure 1.4: Stylized scheme: Comparison of fluid approximations with simulations in Example 1.7.2

at time 0) and can be negligible compared to their values. This explains why the trajectories

of Xtarget and X are well approximated by the fluid trajectory, obtained for the stylized

scheme.

For the stylized scheme, the results suggest the global stability of our system for all

sufficiently large γ. However, the problem with large γ is that the behavior of the stylized

scheme may significantly deviate from the behavior of the actual scheme, as illustrated by

the following example.

Example 1.7.4. Consider the following set of parameters:

Λ = 2000 , α = 0.7 , β = 0.5 , µ = 3 , ε = 1 , δ = 1 , θ = 2

with two values of γ (γ1 = 10, γ2 = 20); and an initial condition (X(0), Y (0), Z(0),

Xtarget(0)) = (0, 0, 0, 1000) (Figure 1.7). These results show that the behavior of the actual
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(a) Fluid vs. X(t) and Xtarget(t) (b) X(t)−Xtarget(t)

Figure 1.5: Actual scheme: (X(0), Y (0), Z(0), Xtarget(0)) = (0, 0, 0, 0)

(a) Fluid vs. X(t) and Xtarget(t) (b) X(t)−Xtarget(t)

Figure 1.6: Actual scheme: (X(0), Y (0), Z(0), Xtarget(0)) = (0, 0, 0, 1000)

scheme deviates substantially from the behavior of the fluid trajectory with large γ.

Since αµ > δ and ε ≤ (αµ−δ)2µ
(2−α)µβ+αδβ , then we choose γ = 2.3 such that γ > αµ−δ

β (Corollary

1.4.4). We can see that, with a “good” value of γ, the behavior of the actual scheme deviates

negligibly from the behavior of the fluid trajectory (Figure 1.8a) and the difference between

Xtarget and X is not large compared to their values (Figure 1.8b).

1.7.3 Global vs. Local Stability of Fluid Limits

In this chapter, we have derived some sufficient local stability conditions for the fluid limits.

Based on a variety of simulation experiments above for the stylized scheme, we conjecture

that local stability is sufficient for global stability of fluid limits for our model. In the next

example, we compare the behavior of fluid limits for the system without boundary (given

by (1.8)) with that of the system with boundary (given by (1.7)).
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(a) γ = 10 (b) γ = 20

Figure 1.7: Problem with large γ of the actual scheme

(a) γ = 2.3 (b) X(t)−Xtarget(t)

Figure 1.8: A “good” value of γ for the actual scheme

Example 1.7.5. Consider two set of parameters, which satisfy the local stability conditions,

so that the trajectory of the system (1.8) converges to the equilibrium point (0, 0, 0) (Figure

1.9). The red line of the figure is the trajectory of the system (1.7), which may hit the

boundary X = 0, and the black one is the trajectory of the system (1.8), for which there is

no boundary.

With many experiments, the results, including those not shown in Figure 1.9, further

suggest the global stability of the fluid limits, when the local stability holds.

1.7.4 Summary of Conjectures, based on Numerical and Simulation Ex-

periments.

Conjecture 1.7.1. Our system is globally stable if it is locally stable.
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(a) Set 1 (b) Set 2

Figure 1.9: Fluid trajectories of the systems (1.7) and (1.8)

Conjecture 1.7.2. Given all other parameters are fixed, our system is globally stable for

all sufficiently large γ.

Obviously, Conjecture 1.7.1 is stronger than Conjecture 1.7.2 because we have proved

the local stability when γ is large in this chapter. We note again, however, that in a

practical application the value of γ should not be made too large, because the stylized

scheme behavior, which we studied in this chapter, may substantially deviate from the

behavior of the actual scheme, where uninviting pending agents are not allowed.

1.8 Discussion and Further Work

In this chapter, we study a feedback-based agent invitation scheme for a model with ran-

domly behaving agents and possible abandonment of customers and agents. This model is

motivated by a variety of existing and emerging applications. The focus of the chapter is

on the stability properties of the system fluid limits, arising as asymptotic limits of the sys-

tem process, when the system scale (customer arrival rate) grows to infinity. The dynamic

system, describing the behavior of fluid limit trajectories has a very complex structure – it

is a switched linear system, which in addition has a reflecting boundary. We derived some

sufficient local stability conditions, using the machinery of switched linear systems and

common quadratic Lyapunov functions. Our simulation and numerical experiments show

good overall performance of the feedback scheme, when the local stability conditions hold.

They also suggest that, for our model, the local stability is in fact sufficient for the global
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stability of fluid limits. Verifying these conjectures, as well as expanding the sufficient local

stability conditions, is an interesting subject for future research. Further generalizations of

the agent invitation model are also of interest from both theoretical and practical points of

view.
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Part II

Stochastic Gradient Algorithms
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Chapter 2

When Does the Stochastic

Gradient Algorithm Work Well?

In this chapter, we consider a general stochastic optimization problem which is often at

the core of supervised learning, such as deep learning and linear classification. We con-

sider a standard stochastic gradient descent (SGD) method with a fixed, large step size

and propose a novel assumption on the objective function, under which this method has

improved convergence rates (to a neighborhood of the optimal solutions). We then empir-

ically demonstrate that these assumptions hold for logistic regression and standard deep

neural networks on classical data sets. Thus our analysis helps to explain when efficient

behavior can be expected from the SGD method in training classification models and deep

neural networks.

2.1 Introduction and Motivation

In this chapter, we are interested in analyzing the behavior of the stochastic gradient al-

gorithm when solving empirical and expected risk minimization problems. For the sake of

generality we consider the following stochastic optimization problem

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (2.1)
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where ξ is a random variable obeying some distribution.

In the case of empirical risk minimization with a training set {(xi, yi)}ni=1, ξi is a real-

ization of a random variable that is defined by the i-th element of the training set. Then,

by defining fi(w) := f(w; ξi) we write the empirical risk minimization as follows:

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (2.2)

More generally ξ can be a random variable defined by a random subset of samples

{(xi, yi)}i∈I drawn from the training set, in which case formulation (2.1) still applies to the

empirical risk minimization. On the other hand, if ξ represents a sample or a set of samples

drawn from the data distribution, then (2.1) represents the expected risk minimization.

Stochastic gradient descent (SGD), originally introduced in [66], has become the method

of choice for solving not only (2.1) but also (2.2) when n is large. Theoretical justification

for using SGD for machine learning problems is given, for example, in [12], where it is shown

that, at least for convex problem, SGD is an optimal method for minimizing expected risk,

which is the ultimate goal of learning. From the practical perspective SGD is often preferred

to the standard gradient descent (GD) method simply because GD requires computation

of a full gradient on each iteration, which, for example, in the case of deep neural networks

(DNN), requires applying backpropagation for all n samples, which can be prohibitive.

Consequently, due to its simplicity in implementation and efficiency in dealing with large

scale datasets, SGD has become by far the most common method for training deep neural

networks and other large scale ML models. However, it is well known that SGD can be

slow and unreliable in some practical applications as its behavior is strongly dependent on

the chosen stepsize and on the variance of the stochastic gradients. While the method may

provide fast initial improvement, it may slow down drastically after a few epochs and can

even fail to move close enough to a solution for a fixed learning rate. To overcome this

oscillatory behavior, several variants of SGD have been recently proposed. For example,

methods such as AdaGrad [18], RMSProp [78], and Adam [30] adaptively select the stepsize

for each component of w. Other techniques include diminishing stepsize scheme [13] and

variance reduction methods [68, 16, 28, 51]. These latter methods reduce the variance of
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the stochastic gradient estimates, by either computing a full gradient after a certain number

of iterations or by storing the past gradients, both of which can be expensive. Moreover,

these methods only apply to the finite sum problem (2.2) but not the general problem

(2.1). On the other hand these methods enjoy faster convergence rates than that of SGD.

For example, when F (w) is strongly convex, convergence rates of the variance reduction

methods (as well as that of GD itself) are linear, while for SGD it is only sublinear. While

GD has to compute the entire gradient on every iteration, which makes it more expensive

than the variance reduction methods, its convergence analysis allows for a much larger

fixed stepsizes than those allowed in the variance reduction methods. In this chapter we are

particularly interested in addressing an observation: a simple SGD with a fixed, reasonably

large, step size can have a fast convergence rate to some neighborhood of the optimal

solutions, without resorting to additional procedures for variance reduction.

Let us consider an example of recovering a signal ŵ ∈ R2 from n noisy observations

yi = ycleani + ei where ycleani = (aTi ŵ)2. Here, ai’s are random vectors and ei’s are noise

components. To recover ŵ from the observation vector y, we solve a non-convex fourth-order

polynomial minimization problem

min
w

{
F (w) =

1

n

n∑
i=1

(yi − (aTi w)2)2

}
.

Note that there are at least two global solutions to this problem, which we denote w∗ and

−w∗. We consider two possible scenarios:

(i) All of the component functions fi(w) = (yi− (aTi w)2)2 have relatively small gradients

at both of the optimal solutions w∗ and −w∗ of the aggregate F (w). In this case this

means that w∗ recovers a good fit for the observations y.

(ii) There are many indices i such that at the optimal solutions of F (w), the associated

gradients ∇fi are large. This happens when w∗ does not provide a good fit, which

can happen when the noise ei is large.

We set n = 100 and generate these two scenarios by setting all the noise components ei to

be small (1% of the energy of yclean) for case (i) or setting only first 40 noise components to
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Figure 2.1: Stochastic Gradient Descent

be large (25% of the energy of yclean) for case (ii). We can observe from Figure 2.1 that SGD

algorithm converges to the optimal solution of F (w) in case (i) depicted in the left figure; but

fails to converge to the solution of F in case (ii) as shown in the right figure. The intuition

behind this behavior is as follows. At every step of SGD, the iterate moves towards to the

optimal solutions of the individual component function that has been randomly chosen on

this iteration. If a majority of component functions fi have their optimal solutions close to

the optimum of the entire problem F , then SGD effectively acts as GD. On the other hand,

if the optimal solutions of a lot of f ′is are far from each other and from the overall optimum,

then iterates of SGD wander randomly in the region around these individual optima, as

shown on the right of Figure 2.1. Hence, SGD cannot work effectively in case (ii), unless

we either reduce the learning rate or reduce the variance of the steps thus attaining more

accurate gradient information.

In this chapter we generalize this result for stochastic problem (2.1) under much weaker

assumptions. In particular, we do not assume that the gradients vanish at the solution, but

that they are bounded by some small constant. Moreover, we do not impose this property

on all stochastic gradients, but assume that it holds with suitably large probability. We then

show that SGD has fast convergence rates in the strongly convex, convex and nonconvex

cases, until some accuracy is reached, where this accuracy is dictated by the behavior of

the stochastic gradients at the optimal solution.

We conjecture that success of SGD for training many machine learning models is the re-

sult of the associated optimization problems having this properties - most of the component
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gradients are suitably small at the solution. To verify this claim, we trained linear classifiers

(via logistic regression) and standard neural networks on several well-known datasets and

subsequently computed the fraction of individual gradients ∇fi(w∗) at the final solution w∗

of F , that were small. The results show that more than 99% of component functions fi

have the vanishing gradient at w∗. More numerical evidence is presented in the Section 2.3.

Hence we base our analysis on the following observation.

Main observation. For many classification problems in supervised learning, majority

of component functions fi have small gradients at the optimal solution w∗ (in the convex

case) or at local minima of F (w) (in the nonconvex case)

In this chapter, based on this observation, we provide theoretical analysis of SGD under

the assumption on the fraction of components with small gradient at the solution. Our

analysis helps explain the good performance of SGD when applied to deep learning. We

summarize the key contributions of the chapter as follows.

• We conjecture that in many instances of empirical risk minimization and expected risk

minimization SGD converges to a neighborhood of a stationary point of F (w) such

that the majority of component functions fi have small gradients at that point. We

verify numerically that this conjecture holds true for logistic regression and standard

deep neural networks on a wide range of data sets.

• We formalize this conjecture as a condition under which we are able to establish

improved convergence rates of SGD with fixed, large step size to a neighborhood of

such stationary point when F (w) is strongly convex, convex and nonconvex.

• Thus we establish that SGD converges fast to a neighborhood of the expected/empirical

risk minimizer and that the size of the neighborhood is determined by some properties

of the distribution of the stochastic gradient at the minimizer.

The remainder of the chapter is organized as follows. The main convergence analysis

for all three cases is carried out in Section 2.2. The computational evidence is presented

in Section 2.3 and implications of our analysis and findings are summarized in Section 2.4.

The proofs are presented in the Appendix.
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2.2 Convergence Analyses of Stochastic Gradient Algorithms

In this section, we analyze the stochastic gradient descent algorithm (SGD) under a novel

condition, based on the observations of the previous section, and derive improved conver-

gence rates for the strongly convex, convex, and non-convex cases. We present each result in

the form of a general theorem with the bound on a certain optimality measure (depending

on the case), followed by the corollary where we demonstrate that improved convergence

rate can be observed until this optimality measure becomes small. The rate and the thresh-

old for optimality measure are dictated by the properties of the stochastic gradient at the

solution.

First we introduce the basic definition of L-smoothness.

Definition 2.2.1. A function φ is L-smooth if there exists a constant L > 0 such that

‖∇φ(w)−∇φ(w′)‖ ≤ L‖w − w′‖, ∀ w,w′ ∈ Rd. (2.3)

For completeness, we state the SGD algorithm as Algorithm 1.

Algorithm 1 Stochastic Gradient Descent (SGD) Algorithm with fixed step size

Initialize w0, choose stepsize η > 0, and batch size b.
for t = 0, 1, 2, . . . do

Generate realizations of random variables {ξt,i}bi=1 i.i.d. with E[∇f(wt; ξt,i)|Ft] =
∇F (wt).
Compute a stochastic gradient

gt =
1

b

b∑
i=1

∇f(wt; ξt,i).

Update the new iterate wt+1 = wt − ηgt.
end for

Let Ft = σ(w0, w1, . . . , wt) be the σ-algebra generated by w0, w1, . . . , wt. We note that

{ξt,i}bi=1 are independent of Ft. Since {ξt,i}bi=1 are i.i.d.1 with E[∇f(wt; ξt,i)|Ft] = ∇F (wt),

we have an unbiased estimate of gradient E[gt|Ft] = 1
b

∑b
i=1∇F (wt) = ∇F (wt).

We now define the quantities that will be useful in our results.

1Independent and identically distributed random variables. We note from probability theory that if
X1, . . . , Xd are i.i.d. random variables then g(X1), . . . , g(Xd) are also i.i.d. random variables if g is measur-
able function.
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Definition 2.2.2. Let w∗ be a stationary point of the objective function F (w). For any

given threshold ε > 0, define

pε := P
{
‖g∗‖2 ≤ ε

}
, (2.4)

where g∗ = 1
b

∑b
i=1∇f(w∗; ξi), as the probability that event ‖g∗‖2 ≤ ε happens for some

i.i.d. random variables {ξi}bi=1. We also define

Mε := E
[
‖g∗‖2 | ‖g∗‖2 > ε

]
. (2.5)

The quantity pε measures the probability that event ‖g∗‖2 ≤ ε happens for some re-

alizations of random variables ξi, i = 1, . . . , b. Clearly, pε is bounded above by 1 and

monotonically increasing with respect to ε. Quantity Mε can be interpreted as the average

bound of large components ‖∇f(w∗; ξ)‖2. As we will see in our results below, quantities pε

and Mε appear in the convergence rate bound of the SGD algorithm. Mε is also bounded

above by Mmax = maxξ ‖∇f(w∗; ξ)‖2, which we assume is finite, hence in all our results

we can replace Mε by Mmax if we want to eliminate its dependence on ε. On the other

hand, the dependence of quantity pε on ε is key for our analysis. Based on the evidence

shown in Section 2.3, we expect pε to be close to 1 for all but very small values of ε. We

will derive our convergence rate bounds in terms of max{ε, 1− pε}. Clearly, as ε decreases,

1 − pε increases and vice versa, but if there exists a small ε for which 1 − pε ≈ ε then our

results show convergence of SGD to an O(ε) neighborhood of the solution, at an improved

rate with respect to ε.

2.2.1 Useful Lemmas

Let {ξi}bi=1 be i.i.d. random variables with E[f(w; ξi)] = F (w). From Definition 2.2.2, we

have

E
[
‖g∗‖2

]
= E

[
‖g∗‖2 | ‖g∗‖2 ≤ ε

]
· P
{
‖g∗‖2 ≤ ε

}
+ E

[
‖g∗‖2 | ‖g∗‖2 > ε

]
· P
{
g∗‖2 > ε

}
≤ pεε+ (1− pε)Mε, (2.6)
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where g∗ = 1
b

∑b
i=1∇f(w∗; ξi).

Lemma 2.2.1 ([49]). Suppose that φ is L-smooth. Then,

φ(w) ≤ φ(w′) +∇φ(w′)T (w − w′) +
L

2
‖w − w′‖2, ∀w,w′ ∈ Rd. (2.7)

Lemma 2.2.2 ([49]). Suppose that φ is L-smooth and convex. Then,

(∇φ(w)−∇φ(w′))T (w − w′) ≥ 1

L
‖∇φ(w)−∇φ(w′)‖2, ∀w,w′ ∈ Rd. (2.8)

Lemma 2.2.3 ([49]). Suppose that φ is L-smooth and convex. Then,

‖∇φ(w)‖2 ≤ 2L(φ(w)− φ(w∗)), ∀w ∈ Rd, (2.9)

where w∗ = arg minw φ(w).

Lemma 2.2.4 ([49]). Suppose that φ is µ-strongly convex. Then,

2µ[φ(w)− φ(w∗)] ≤ ‖∇φ(w)‖2 , ∀w ∈ Rd, (2.10)

where w∗ = arg minw φ(w).

Lemma 2.2.5 ([28]). Suppose that f(w; ξ) is L-smooth and convex for every realization of

ξ. Then,

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)], ∀w ∈ Rd, (2.11)

where ξ is a random variable, and w∗ = arg minw F (w).

Proof. Given any ξ, for all w ∈ Rd, consider

h(w; ξ) := f(w; ξ)− f(w∗; ξ)−∇f(w∗; ξ)
T (w − w∗).
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Since h(w; ξ) is convex by w and ∇h(w∗; ξ) = 0, we have h(w∗; ξ) = minw h(w; ξ). Hence,

0 = h(w∗; ξ) ≤ min
η

[h(w − η∇h(w; ξ); ξ)]

(2.7)

≤ min
η

[
h(w; ξ)− η‖∇h(w; ξ)‖2 +

Lη2

2
‖∇h(w; ξ)‖2

]
= h(w; ξ)− 1

2L
‖∇h(w; ξ)‖2.

Hence,

‖∇f(w; ξ)−∇f(w∗; ξ)‖2 ≤ 2L[f(w; ξ)− f(w∗; ξ)−∇f(w∗; ξ)
T (w − w∗)].

Taking the expectation with respect to ξ, we have

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)].

2.2.2 Convex Objectives

In this section, we analyze the SGD method in the context of minimizing a convex objective

function. We will bound the expected optimality gap at a given iterate in terms of the value

of pε. First, we consider the case when F is strongly convex.

Definition 2.2.3. A function φ is µ-strongly convex if there exists a constant µ > 0 such

that

φ(w)− φ(w′) ≥ ∇φ(w′)T (w − w′) +
µ

2
‖w − w′‖2, ∀w,w′ ∈ Rd. (2.12)

Using this definition, we state the following result for the strongly convex case.

Theorem 2.2.1. Suppose that F (w) is µ-strongly convex and f(w; ξ) is L-smooth and
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convex for every realization of ξ. Consider Algorithm 1 with η ≤ 1
L . Then, for any ε > 0

E[‖wt − w∗‖2] ≤ (1− µη(1− ηL))t‖w0 − w∗‖2 +
2η

µ(1− ηL)
pεε+

2η

µ(1− ηL)
(1− pε)Mε,

(2.13)

where w∗ = arg minw F (w), and pε and Mε are defined in (2.4) and (2.5), respectively.

Proof. We have

‖wt+1 − w∗‖2 = ‖wt − ηgt − w∗‖2

= ‖wt − w∗‖2 − 2ηgTt (wt − w∗) + η2 ‖gt‖2

= ‖wt − w∗‖2 − 2η
1

b

b∑
i=1

∇f(wt; ξt,i)
T (wt − w∗) + η2

∥∥∥∥∥1

b

b∑
i=1

∇f(wt; ξt,i)

∥∥∥∥∥
2

≤ ‖wt − w∗‖2 − 2η
1

b

b∑
i=1

∇f(wt; ξt,i)
T (wt − w∗) + 2η2

∥∥∥∥∥1

b

b∑
i=1

(∇f(wt; ξt,i)−∇f(w∗; ξt,i))

∥∥∥∥∥
2

+ 2η2

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2

≤ ‖wt − w∗‖2 − 2η
1

b

b∑
i=1

∇f(wt; ξt,i)
T (wt − w∗) + 2η2

1

b

b∑
i=1

‖∇f(wt; ξt,i)−∇f(w∗; ξt,i)‖2

+ 2η2

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2

(2.14)

(2.8)

≤ ‖wt − w∗‖2 − 2η
1

b

b∑
i=1

∇f(wt; ξt,i)
T (wt − w∗)

+ 2η2L
1

b

b∑
i=1

(∇f(wt; ξt,i)−∇f(w∗; ξt,i))
T (wt − w∗) + 2η2

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2

.

Hence, by taking the expectation, conditioned on Ft = σ(w0, w1, . . . , wt) (which is the

σ-algebra generated by w0, w1, . . . , wt), we have

E[‖wt+1 − w∗‖2|Ft] ≤ ‖wt − w∗‖2 − 2η(1− ηL)∇F (wt)
T (wt − w∗)

+ 2η2E

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2 ∣∣∣Ft


(2.12)

≤ (1− µη(1− ηL))‖wt − w∗‖2 − 2η(1− ηL)[F (wt)− F (w∗)]
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+ 2η2E

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2


η≤1/L,(2.6)
≤ (1− µη(1− ηL))‖wt − w∗‖2 + 2η2pεε+ 2η2(1− pε)Mε.

The first inequality follows since

E

[
1

b

b∑
i=1

∇f(wt; ξt,i)
∣∣∣Ft] = E

[
1

b

b∑
i=1

(∇f(wt; ξt,i)−∇f(w∗; ξt,i))
∣∣∣Ft] = ∇F (wt).

We note in the second equality that E
[∥∥∥1

b

∑b
i=1∇f(w∗; ξt,i)

∥∥∥2 ∣∣∣Ft] =

E
[∥∥∥1

b

∑b
i=1∇f(w∗; ξt,i)

∥∥∥2] since ξt,i is independent of Ft. By taking the expectation for

both sides of the above equation, we obtain

E[‖wt+1 − w∗‖2] ≤ (1− µη(1− ηL))E[‖wt − w∗‖2] + 2η2pεε+ 2η2(1− pε)Mε.

Hence, we conclude

E[‖wt+1 − w∗‖2] ≤ (1− µη(1− ηL))t+1‖w0 − w∗‖2 +
2η

µ(1− ηL)
pεε+

2η

µ(1− ηL)
(1− pε)Mε.

The main conclusion is stated in the following corollary.

Corollary 2.2.1. For any ε such that 1 − pε ≤ ε, and for Algorithm 1 with η ≤ 1
2L , we

have

E[‖wt − w∗‖2] ≤ (1− µη)t‖w0 − w∗‖2 +
2η

µ
(1 +Mε) ε.

Furthermore if t ≥ T for T = 1
µη log

(
µ‖w0−w∗‖2
2η(1+Mε)ε

)
, then

E[‖wt − w∗‖2] ≤
4η

µ
(1 +Mε) ε. (2.15)
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Proof. Taking the expectation, conditioning on Ft = σ(w0, w1, . . . , wt) to (2.14), we have

E[‖wt+1 − w∗‖2|Ft] ≤ ‖wt − w∗‖2 − 2η∇F (wt)
T (wt − w∗)

+ 2η2E[‖∇f(wt; ξt,1)−∇f(w∗; ξt,1)‖]

+ 2η2E

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2 ∣∣∣Ft


(2.12),(2.11)

≤ (1− µη)‖wt − w∗‖2 − 2η(1− 2ηL)[F (wt)− F (w∗)]

+ 2η2E

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2


η≤ 1
2L
,(2.6)

≤ (1− µη)‖wt − w∗‖2 + 2η2pεε+ 2η2(1− pε)Mε.

The first inequality follows since {ξi,i}bi=1 are i.i.d. random variables. Hence, we have

E[‖wt+1 − w∗‖2] ≤ (1− µη)t+1‖w0 − w∗‖2 +
2η

µ
pεε+

2η

µ
(1− pε)Mε.

Therefore,

E[‖wt − w∗‖2] ≤ (1− µη)t‖w0 − w∗‖2 +
2η

µ
pεε+

2η

µ
(1− pε)Mε

≤ (1− µη)t‖w0 − w∗‖2 +
2η

µ
(1 +Mε)ε,

where the last inequality follows since 1− pε ≤ ε.

First, we would like to find a T such that

(1− µη)T ‖w0 − w∗‖2 =
2η

µ
(1 +Mε) ε.

Taking log for both sides, we have

T log(1− µη) + log
(
‖w0 − w∗‖2

)
= log

(
2η

µ
(1 +Mε) ε

)
.
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Hence,

T = − 1

log(1− µη)
log

(
µ‖w0 − w∗‖2

2η (1 +Mε) ε

)
≤ 1

µη
log

(
µ‖w0 − w∗‖2

2η (1 +Mε) ε

)
,

where the last inequality follows since −1/ log(1− x) ≤ 1/x for 0 < x ≤ 1. Hence, if t ≥ T

for T = 1
µη log

(
µ‖w0−w∗‖2
2η(1+Mε)ε

)
, then

E[‖wt − w∗‖2] ≤
2η

µ
(1 +Mε) ε+

2η

µ
(1 +Mε) ε =

4η

µ
(1 +Mε) ε.

Note that in Corollary 2.2.1 we assume that η ≤ 1
2L instead of η ≤ 1

L only to simplify

the expressions. (The proof in detail is in the Appendix.) We conclude that under the

assumption 1− pε ≤ ε, Algorithm 1 has linear convergence rate in terms of any such ε.

The following theorem establishes convergence rate bound for Algorithm 1 when the

strong convexity assumption on F (w) is relaxed.

Theorem 2.2.2. Suppose that f(w; ξ) is L-smooth and convex for every realization of ξ.

Consider Algorithm 1 with η < 1
L . Then for any ε > 0, we have

E[F (wt)− F (w∗)] ≤
‖w0 − w∗‖2

2η(1− ηL)t
+

η

(1− ηL)
pεε+

ηMε

(1− ηL)
(1− pε), (2.16)

where w∗ is any optimal solution of F (w), and pε and Mε are defined in (2.4) and (2.5),

respectively.

Proof. If φ is convex, then

φ(w)− φ(w′) ≥ ∇φ(w′)T (w − w′), ∀w,w′ ∈ Rd. (2.17)

From the proof of Theorem 2.2.1, we could have

E[‖wt+1 − w∗‖2|Ft] ≤ ‖wt − w∗‖2 − 2η(1− ηL)∇F (wt)
T (wt − w∗)
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+ 2η2E

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2 ∣∣∣Ft


(2.17),(2.24),(2.6)

≤ ‖wt − w∗‖2 − 2η(1− ηL)[F (wt)− F (w∗)] + 2η2pεε

+ 2η2(1− pε)Mε.

Taking the expectation for both sides of the above equation yields

E[‖wt+1 − w∗‖2] ≤ E[‖wt − w∗‖2]− 2η(1− ηL)E[F (wt)− F (w∗)] + 2η2pεε+ 2η2(1− pε)Mε.

With η < 1
L , one obtains

E[F (wt)− F (w∗)] ≤
1

2η(1− ηL)

(
E[‖wt − w∗‖2]− E[‖wt+1 − w∗‖2]

)
+

η

(1− ηL)
pεε+

ηMε

(1− ηL)
(1− pε).

By summing from k = 0, . . . , t and averaging, we have

1

t+ 1

t∑
k=0

E[F (wk)− F (w∗)] ≤
1

2η(1− ηL)(t+ 1)
‖w0 − w∗‖2

+
η

(1− ηL)
pεε+

ηMε

(1− ηL)
(1− pε).

Since E[F (wk)] is a non-increasing function on k, the sum on the left hand side is larger

than t+ 1 times its last element. Hence,

E[F (wt+1)− F (w∗)] ≤
1

t+ 1

t∑
k=0

E[F (wk)− F (w∗)]

≤ 1

2η(1− ηL)(t+ 1)
‖w0 − w∗‖2 +

η

(1− ηL)
pεε+

ηMε

(1− ηL)
(1− pε).

Again, the convergence rate of SGD is governed by the initial solution and quantities pε

and Mε. Hence we have the following corollary.

Corollary 2.2.2. If f(w; ξ) is L-smooth and convex for every realization of ξ, then for any
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ε such that 1− pε ≤ ε, and η ≤ 1
2L , it holds that

E[F (wt)− F (w∗)] ≤
‖w0 − w∗‖2

ηt
+ 2η (1 +Mε) ε.

Hence, if t ≥ T for T = ‖w0−w∗‖2
(2η2)(1+Mε)ε

, we have

E[F (wt)− F (w∗)] ≤ 4η (1 +Mε) ε. (2.18)

Proof. By Theorem 2.2.2, with η ≤ 1
2L , we have

E[F (wt)− F (w∗)] ≤
‖w0 − w∗‖2

2η(1− ηL)t
+

η

(1− ηL)
pεε+

ηMε

(1− ηL)
(1− pε)

≤ 2‖w0 − w∗‖2

2ηt
+ 2ηpεε+ 2ηMε(1− pε)

≤ ‖w0 − w∗‖2

ηt
+ 2η(1 +Mε)ε.

Similar to the proof of Corollary 2.2.1, we want to find a T such that

‖w0 − w∗‖2

ηT
= 2η(1 +Mε)ε.

It is easy to see that if t ≥ T for T = ‖w0−w∗‖2
(2η2)(1+Mε)ε

, then

E[F (wt)− F (w∗)] ≤ 2η(1 +Mε)ε+ 2η(1 +Mε)ε = 4η(1 +Mε)ε.

Similarly to the strongly convex case, under the key assumption that 1 − pε ≤ ε, we

show that Algorithm 1 achieves O(ε) optimality gap, in expectation, in O(1/ε) iterations.

In Corollary 2.2.2 we again assume that η ≤ 1
2L instead of η < 1

L only to simplify the

expressions and to replace 1
1−ηL term with 2 in the complexity bound.
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2.2.3 Nonconvex Objectives

In this section, we establish expected complexity bound for Algorithm 1 when applied to

nonconvex objective functions. This setting includes deep neural networks in which the

cost function is a sum of nonconvex function components. Despite the nonconvexity of the

objective, it has been observed that deep neural networks can be trained fairly quickly by

SGD algorithms. It has also been observed that after reaching certain accuracy, the SGD

algorithm may slow down dramatically.

For the analysis of the nonconvex case, we need to make an assumption on the rate

of change in the gradients near all local solutions, or at least those to which iterates wt

generated by the algorithm may converge.

Assumption 2.2.1. We assume that there exists a constant N > 0, such that for any se-

quence of iterates w0, w1, . . . , wt of any realization of Algorithm 1, there exists a stationary

point w∗ of F (w) (possibly dependent on that sequence) such that

1

t+ 1

t∑
k=0

E

∥∥∥∥∥1

b

b∑
i=1

∇f(wk; ξk,i)−
1

b

b∑
i=1

∇f(w∗; ξk,i)

∥∥∥∥∥
2 ∣∣∣Fk

 ≤ N 1

t+ 1

t∑
k=0

‖∇F (wk)‖2,

(2.19)

where the expectation is taken over random variables ξk,i conditioned on Ft = σ(w0, w1, . . . ,

wt), which is the σ-algebra generated by w0, w1, . . . , wt. Let W∗ denote the set of all such

stationary points w∗, determined by the constant N and by realizations w0, w1, . . . , wt.

This assumption is made for any realization w0, w1, . . . , wt and states that the average

squared norm of the difference between the stochastic gradient directions computed by

Algorithm 1 at wt and the same stochastic gradient computed at w∗, over any t iterations,

is proportional to the average true squared gradient norm. If w∗ is a stationary point for all

f(w; ξk,i), in other words, ∇f(w∗; ξk,i) = 0 for all realizations of ξk,i, then Assumption 2.2.1

simply states that all stochastic gradients have the same average expected rate of growth

as the true gradient, as the iterates get further away from w∗. Notice that w∗ may not be a

stationary point for all f(w; ξk,i), hence Assumption 2.2.1 bounds the average expected rate

of change of the stochastic gradients in terms of the rate of change of the true gradient. In
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the next section we will demonstrate numerically that Assumption 2.2.1 holds for problems

of training deep neural networks.

We also need to slightly modify Definition 2.2.2.

Definition 2.2.4. Let g∗ = 1
b

∑b
i=1∇f(w∗; ξi) for some i.i.d. random variables {ξi}bi=1.

For any given threshold ε > 0, define

pε := inf
w∗∈W∗

P
{
‖g∗‖2 ≤ ε

}
, (2.20)

where the infimum is taken over the set W∗ defined in Assumption 2.2.1. Similarly, we also

define

Mε := sup
w∗∈W∗

E
[
‖g∗‖2 | ‖g∗‖2 > ε

]
. (2.21)

We know that pε and Mε defined as above exist since pε ≥ 0 and Mε ≤Mmax. This time,

if we assume that 1− pε ≤ ε for some reasonably small ε, this implies that for all stationary

points of F (w) that appear in Assumption 2.2.1 a large fraction of stochastic gradients have

small norm at those points. Essentially, W∗ consists of stationary points to which different

realization of SGD iterates converge.

Theorem 2.2.3. Let Assumption 2.2.1 hold for some N > 0. Suppose that F is L-smooth.

Consider Algorithm 1 with η < 1
LN . Then, for any ε > 0, we have

1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤
[F (w0)− F ∗]

η (1− LηN) (t+ 1)
+

Lη

(1− LηN)
ε+

LηMε

(1− LηN)
(1− pε),

where F ∗ is any lower bound of F ; and pε and Mε are defined in (2.20) and (2.21) respec-

tively.

Proof. Let us assume that, there exists a local minima w∗ of F (w). We have

E[F (wt+1)|Ft] = E[F (wt − ηgt)|Ft]

(2.7)

≤ F (wt)− η‖∇F (wt)‖2 +
Lη2

2
E

∥∥∥∥∥1

b

b∑
i=1

∇f(wt; ξt,i)

∥∥∥∥∥
2 ∣∣∣Ft
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≤ F (wt)− η‖∇F (wt)‖2 + Lη2E

∥∥∥∥∥1

b

b∑
i=1

(∇f(wt; ξt,i)−∇f(w∗; ξt,i))

∥∥∥∥∥
2 ∣∣∣Ft


+ Lη2E

∥∥∥∥∥1

b

b∑
i=1

∇f(w∗; ξt,i)

∥∥∥∥∥
2 ∣∣∣Ft


≤ F (wt)− η‖∇F (wt)‖2 + Lη2E

∥∥∥∥∥1

b

b∑
i=1

(∇f(wt; ξt,i)−∇f(w∗; ξt,i))

∥∥∥∥∥
2 ∣∣∣Ft


+ Lη2ε+ Lη2(1− pε)Mε.

By summing from k = 0, . . . , t and averaging, we have

1

t+ 1

t∑
k=0

E[F (wk+1)|Fk] ≤
1

t+ 1

t∑
k=0

F (wk)− η
1

t+ 1

t∑
k=0

‖∇F (wk)‖2

+ Lη2
1

t+ 1

t∑
k=0

E

∥∥∥∥∥1

b

b∑
i=1

(∇f(wk; ξk,i)−∇f(w∗; ξk,i))

∥∥∥∥∥
2 ∣∣∣Fk


+ Lη2ε+ Lη2(1− pε)Mε

(2.19)

≤ 1

t+ 1

t∑
k=0

F (wk)− η (1− LηN)
1

t+ 1

t∑
k=0

‖∇F (wk)‖2

+ Lη2ε+ Lη2(1− pε)Mε.

Taking the expectation for the above equation, we have

1

t+ 1

t∑
k=0

E[F (wk+1)] ≤
1

t+ 1

t∑
k=0

E[F (wk)]− η (1− LηN)
1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2]

+ Lη2ε+ Lη2(1− pε)Mε.

Hence, with η < 1
LN , we have

1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤
[E[F (w0)]− E[F (wt+1)]]

η (1− LηN) (t+ 1)
+

Lη

(1− LηN)
ε+

LηMε

(1− LηN)
(1− pε)

≤ [F (w0)− F ∗]
η (1− LηN) (t+ 1)

+
Lη

(1− LηN)
ε+

LηMε

(1− LηN)
(1− pε),

where F ∗ is any lower bound of F .
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Corollary 2.2.3. Let Assumption 2.2.1 hold and pε and Mε be defined as in (2.20) and

(2.21). For any ε such that 1− pε ≤ ε, and for η ≤ 1
2LN , we have

1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤
2[F (w0)− F ∗]

η(t+ 1)
+ 2Lη(1 +Mε)ε.

Hence, if t ≥ T for T = [F (w0)−F ∗]
(Lη2)(1+Mε)ε

, we have

1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤ 4Lη(1 +Mε)ε.

Proof. By Theorem 2.2.3, with η ≤ 1
2LN , we have

1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤
[F (w0)− F ∗]

η (1− LηN) (t+ 1)
+

Lη

(1− LηN)
ε+

LηMε

(1− LηN)
(1− pε)

≤ 2[F (w0)− F ∗]
η(t+ 1)

+ 2Lηε+ 2LηMε(1− pε)

≤ 2[F (w0)− F ∗]
η(t+ 1)

+ 2Lη(1 +Mε)ε.

Similar to the proof of Corollaries 2.2.1 and 2.2.2, we want to find a T such that

2[F (w0)− F ∗]
ηT

= 2Lη(1 +Mε)ε.

It is easy to see that if t ≥ T for T = [F (w0)−F ∗]
(Lη2)(1+Mε)ε

, then

1

t+ 1

t∑
k=0

E[‖∇F (wk)‖2] ≤ 2Lη(1 +Mε)ε+ 2Lη(1 +Mε)ε = 4Lη(1 +Mε)ε.
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2.3 Numerical Experiments

The purpose of this section is to numerically validate our assumptions on pε as defined in

Definition 2.2.2. We wish to show that there exists a small ε satisfying

1− pε ≈ ε. (2.22)

For our numerical experiments, we consider the finite sum minimization problem

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (2.23)

Definition 2.3.1. Let w∗ be a stationary point of the objective function F (w). For any

given threshold ε > 0, define the set Sε and its complement Bε

Sε :=
{
i : ‖∇fi(w∗)‖2 ≤ ε

}
and Bε := [n]\Sε.

We also define the quantity pε := |Sε|
n that measures the size of the set Sε and the upper

bound Mε

1

|Bε|
∑
i∈Bε

‖∇fi(w∗)‖2 ≤Mε.

2.3.1 Logistic Regression for Convex Case

We consider `2-regularized logistic regression problems with

fi(w) = log(1 + exp(−yixTi w)) +
λ

2
‖w‖2,

where the penalty parameter λ is set to 1/n, a widely-used value in the literature [51]. We

conducted experiments on popular datasets covtype, ijcnn1, w8a, a9a, mushrooms,

phishing, skin nonskin from the LIBSVM website 2 and ijcnn2 3. The optimal solution

w∗ of the convex problem (2.23) is found by using the full-batch L-BFGS method [40] with

the stopping criterion ‖∇F (w∗)‖2 ≤ 10−12. We then ran Algorithm 1 using the learning

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
3http://mlbench.org/repository/data/viewslug/ijcnn1/
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rate η = 10−1 and the batch-size b = 1 and 100 epochs. The final solution given by the

SGD algorithm is denoted by wSGD. We report the value of pε defined in Definition 2.3.1

expressed in percentage form for different values of ε.

As we can see from Table 2.1 that ε = 10−3 satisfies (2.22) for all cases. For datasets

covtype, ijcnn1, ijcnn2,phishing and skin nonskin, ε can take a smaller value 10−4.

The small value for ε indicates that SGD with a fixed step size can converge to a small neigh-

borhood of the optimal solution of F . The success of using SGD is illustrated, optimality

gaps F (wSGD)− F (w∗) are small in our experiments.

Table 2.1: Percentage of fi with small gradient value for different threshold ε (Logistic Regression)
(Opt. = F (wSGD)− F (w∗))

Datasets Opt. ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 Train accuracy

covtype 5 · 10−4 100% 100% 100% 99.9995% 54.9340% 0.7562

ijcnn1 1 · 10−4 100% 100% 100% 96.8201% 89.0197% 0.9219

ijcnn2 2 · 10−4 100% 100% 100% 99.2874% 90.4565% 0.9228

w8a 8 · 10−5 100% 99.9899% 99.4231% 98.3557% 92.7818% 0.9839

a9a 4 · 10−3 100% 100% 84.0945% 58.5824% 40.0909% 0.8491

mushrooms 3 · 10−5 100% 100% 99.9261% 98.7568% 94.4239% 1.0000

phishing 2 · 10−4 100% 100% 100% 89.9231% 73.8128% 0.9389

skin nonskin 4 · 10−5 100% 100% 100% 99.6331% 91.3730% 0.9076

We compare convergence rates of SGD (learning rate η = 0.1 < 1
2L) with SVRG [28] and

L-BFGS [40] as shown in Figure 2.2. We can observe that SGD has better performance

than SVRG and L-BFGS in the beginning until it achieves O(ε) accuracy, for the value of ε

consistent to what is indicated in Table 2.1. We note that the values of Mε for all datasets

should not exceed 10−2 according to Table 2.1.

2.3.2 Neural Networks for Nonconvex Case

For experiments with nonconvex problems we train DNNs using two standard network

architectures: feed forward network (FFN) and convolutional neural network (CNN). Con-

figuration of FNN includes 2 dense layers each containing 256 neurons followed by a ReLU

activation. The output layer consists of c neurons with the softmax activation where c is

the number of classes. For CNN, we configure the network to have 2 convolutional layers

followed by 2 dense layers. Convolutional layers contain a convolutional operator followed
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Figure 2.2: The convergence comparisons of SGD, SVRG, and L-BFGS

by a ReLU activation and then a max pooling. The number of filters of both the convolu-

tional operators are set to 64 and the associated filter sizes are 5 × 5. Number of neurons

in dense layers are 384 and 192, respectively, and the activation used in these layers is

again ReLU. Throughout the simulations, we use popular datasets which include MNIST 4

(60000 training data images of size 28× 28 contained in 10 classes), SVHN 5 (73257 training

images of size 32× 32 contained in 10 classes), CIFAR10 (50000 training color images of size

32×32 contained in 10 classes), and CIFAR100 6 (50000 training color images of size 32×32

contained in 100 classes).

4http://yann.lecun.com/exdb/mnist/
5http://ufldl.stanford.edu/housenumbers/
6https://www.cs.toronto.edu/ kriz/cifar.html
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We trained the networks by the popular Adam algorithm with a minibatch of size 32

and reported the values of pε at the last iteration wAdam. In all our experiments, we did not

apply batch normalization and dropout techniques during the training. Since the problem

of interest is nonconvex, multiple local minima could exist. We experimented with 10 seeds

and reported the minimum result (minimum of the percentage of component functions with

small gradient value). Table 2.2 shows the values of pε in terms of percentage for different

thresholds ε. As is clear from the table, pε is close to 1 for a sufficiently small ε. It confirms

that the majority of component functions fi has negligible gradients at the final solution of

F .

Table 2.2: Percentage of fi with small gradient value for different threshold ε (Neural Networks)
(Opt. = ‖∇F (wAdam)‖2)

Datasets Opt. ε = 10−3 ε = 10−5 ε = 10−7 Train accuracy N M

MNIST (FFN) 1.3 · 10−15 100% 100% 99.99% 1.0000 6500 2.1 · 10−8

SVHN (FFN) 3.5 · 10−3 99.94% 99.92% 99.91% 0.9997 12000 500

MNIST (CNN) 1.6 · 10−17 100% 100% 100% 1.0000 6083 6.4 · 10−8

SVHN (CNN) 8.1 · 10−7 99.99% 99.98% 99.96% 0.9999 8068 0.18

CIFAR10 (CNN) 5.1 · 10−20 100% 100% 100% 1.0000 1205 8.7 · 10−14

CIFAR100 (CNN) 5.5 · 10−2 99.50% 99.45% 99.42% 0.9988 984 3000

The value of N is the estimation of N in (2.19), which is shown in Section 2.3.3. We

note that for some datasets and network structures, Adam did not converge to a real local

solution (SVHN-FFN and CIFAR100-CNN) and Table 2.2 shows only an approximation of

the behavior at the local solution.

2.3.3 Nonconvex Assumption Verification

This section shows how to estimate N . We are proving some numerical experiments to

verify Assumption 2.2.1. Let us define

rt =
1
t+1

∑t
k=0

(
1
n

∑n
i=1 ‖∇fi(wk)−∇fi(w∗)‖2

)
1
t+1

∑t
k=0 ‖F (wk)‖2

We show two plots to see behaviors of rt for MNIST (FFN) and CIFAR10 (CNN) (others

are reported in Table 2.2. We can observe from Figure 2.3 that rt is bounded above by a

constant. (Note that rt ≤ N .)
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Figure 2.3: The behaviors of rt

2.4 Conclusions

We have demonstrated that based on the behavior of the stochastic gradient estimates at

or near the stationary points, SGD with fixed step size converges with the same rate as

full gradient descent of the variance reduction methods, until it reaches the accuracy where

the variance in the stochastic gradient estimates starts to dominate and prevents further

convergence. In particular out assumption is that 1 − ε fraction of the stochastic gradient

estimates have squared norm below ε at the solution. Note ε can be made arbitrarily small

by increasing the minibatch size b. Indeed we have the following lemma

Lemma 2.4.1. Let ξ1, . . . , ξb be i.i.d. with E[∇f(w; ξi)] = ∇F (w), i = 1, . . . , b, for all

w ∈ Rd. Then,

E

∥∥∥∥∥1

b

b∑
i=1

∇f(w; ξi)−∇F (w)

∥∥∥∥∥
2
 =

E[‖∇f(w; ξ1)‖2]− ‖∇F (w)‖2

b
. (2.24)

Proof. We are going to use mathematical induction to prove the result. With b = 1, it is

easy to see

E
[
‖∇f(w; ξ1)−∇F (w)‖2

]
= E[‖∇f(w; ξ1)‖2]− 2‖∇F (w)‖2 + ‖∇F (w)‖2

= E[‖∇f(w; ξ1)‖2]− ‖∇F (w)‖2.

Let assume that it is true with b = m − 1, we are going to show it is also true with
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b = m. We have

E

∥∥∥∥∥ 1

m

m∑
i=1

∇f(w; ξi)−∇F (w)

∥∥∥∥∥
2


= E

∥∥∥∥∥
∑m−1

i=1 ∇f(w; ξi)− (m− 1)∇F (w) + (∇f(w; ξm)−∇F (w))

m

∥∥∥∥∥
2


=
1

m2

E

∥∥∥∥∥
m−1∑
i=1

∇f(w; ξi)− (m− 1)∇F (w)

∥∥∥∥∥
2
+ E

[
‖∇f(w; ξm)−∇F (w)‖2

]
+

1

m
E

2

(
m−1∑
i=1

∇f(w; ξi)− (m− 1)∇F (w)

)T
(∇f(w; ξm)−∇F (w))


=

1

m2

E

∥∥∥∥∥
m−1∑
i=1

∇f(w; ξi)− (m− 1)∇F (w)

∥∥∥∥∥
2
+ E

[
‖∇f(w; ξm)−∇F (w)‖2

]
=

1

m2

(
(m− 1)E[‖∇f(w; ξ1)‖2]− (m− 1)‖∇F (w)‖2 + E[‖∇f(w; ξm)‖2]− ‖∇F (w)‖2

)
=

1

m

(
E[‖∇f(w; ξ1)‖2]− ‖∇F (w)‖2

)
.

The third and the last equalities follow since ξ1, . . . , ξb be i.i.d. with E[∇f(w; ξi)] = ∇F (w).

Therefore, the desired result is achieved.

It is easy to see that by choosing large b the relation 1 − pε ≤ ε can be achieved for

smaller values of ε. In the limit for arbitrarily small ε we recover full gradient method and

its convergence behavior.
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Chapter 3

SGD and Hogwild!

Stochastic gradient descent (SGD) is the optimization algorithm of choice in many machine

learning applications such as regularized empirical risk minimization and training deep neu-

ral networks. The classical convergence analysis of SGD is carried out under the assumption

that the norm of the stochastic gradient is uniformly bounded. While this might hold for

some loss functions, it is always violated for cases where the objective function is strongly

convex. In [13], a new analysis of convergence of SGD is performed under the assumption

that stochastic gradients are bounded with respect to the true gradient norm. Here we show

that for stochastic problems arising in machine learning such a bound always holds; and we

also propose an alternative convergence analysis of SGD within a diminishing learning rate

regime, which results in more relaxed conditions than those in [13]. We then move on the

asynchronous parallel setting, and prove convergence of the Hogwild! algorithm in the same

regime, obtaining the first convergence results for this method in the case of a diminished

learning rate.

3.1 Introduction

We are interested in solving the following stochastic optimization problem

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (3.1)
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where ξ is a random variable obeying some distribution.

In the case of empirical risk minimization with a training set {(xi, yi)}ni=1, ξi is a real-

ization of a random variable that is defined by the i-th element of the training set. Then,

by defining fi(w) := f(w; ξi), empirical risk minimization reduces to

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (3.2)

Problem (3.2) arises frequently in supervised learning applications [25]. For a wide range

of applications, such as linear regression and logistic regression, the objective function F

is strongly convex and each fi, i ∈ [n], is convex and has Lipschitz continuous gradi-

ents (with Lipschitz constant L). Given a training set {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R,

the `2-regularized least squares regression model, for example, is written as (3.2) with

fi(w)
def
= (〈xi, w〉 − yi)2 + λ

2‖w‖
2. The `2-regularized logistic regression for binary classifi-

cation is written with fi(w)
def
= log(1 + exp(−yi〈xi, w〉)) + λ

2‖w‖
2, yi ∈ {−1, 1}. It is well

established by now that solving this type of problem by gradient descent (GD) [49, 57] may

be prohibitively expensive and stochastic gradient descent (SGD) is thus preferable. Re-

cently, a class of variance reduction methods [34, 16, 28, 51] has been proposed in order to

reduce the computational cost. All these methods explicitly exploit the finite sum form of

(3.2) and thus they have some disadvantages for very large scale machine learning problems

and are not applicable to (3.1).

To apply SGD to the general form (3.1) one needs to assume existence of unbiased

gradient estimators. This is usually defined as follows:

Eξ[∇f(w; ξ)] = ∇F (w),

for any fixed w. Here we make an important observation: if we view (3.1) not as a general

stochastic problem but as the expected risk minimization problem, where ξ corresponds to

a random data sample pulled from a distribution, then (3.1) has an additional key property:

for each realization of the random variable ξ, f(w; ξ) is a convex function with Lipschitz

continuous gradients. Notice that traditional analysis of SGD for general stochastic problem
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of the form (3.1) does not make any assumptions on individual function realizations. In this

chapter, we derive convergence properties for SGD applied to (3.1) with these additional

assumptions on f(w; ξ) and also extend to the case when f(w; ξ) are not necessarily convex.

Regardless of the properties of f(w; ξ) we assume that F in (3.1) is strongly convex. We

define the (unique) optimal solution of F as w∗.

Assumption 3.1.1 (µ-strongly convex). The objective function F : Rd → R is a µ-strongly

convex, i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w)− F (w′) ≥ 〈∇F (w′), (w − w′)〉+
µ

2
‖w − w′‖2. (3.3)

It is well-known in literature [49, 13] that Assumption 3.1.1 implies

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2 , ∀w ∈ Rd. (3.4)

The classical theoretical analysis of SGD assumes that the stochastic gradients are

uniformly bounded, i.e. there exists a finite (fixed) constant σ <∞, such that

E[‖∇f(w; ξ)‖2] ≤ σ2 , ∀w ∈ Rd (3.5)

(see e.g. [69, 48, 64, 26, 63], etc.). However, this assumption is clearly false if F is strongly

convex. Specifically, under this assumption together with strong convexity, ∀w ∈ Rd, we

have

2µ[F (w)− F (w∗)]
(3.4)

≤ ‖∇F (w)‖2 = ‖E[∇f(w; ξ)]‖2

≤ E[‖∇f(w; ξ)‖2]
(3.5)

≤ σ2.

Hence,

F (w) ≤ σ2

2µ
+ F (w∗) , ∀w ∈ Rd.
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On the other hand strong convexity and ∇F (w∗) = 0 imply

F (w) ≥ µ‖w − w∗‖2 + F (w∗) , ∀w ∈ Rd.

The last two inequalities are clearly in contradiction with each other for sufficiently large

‖w − w∗‖2.

Let us consider the following example: f1(w) = 1
2w

2 and f2(w) = w with F (w) =

1
2(f1(w) + f2(w)). Note that F is strongly convex, while individual realizations are not

necessarily so. Let w0 = 0, for any number t ≥ 0, with probability 1
2t the steps of SGD

algorithm for all i < t are wi+1 = wi − ηi. This implies that wt = −
∑t

i=1 ηi and since∑∞
i=1 ηi = ∞ then |wt| can be arbitrarily large for large enough t with probability 1

2t .

Noting that for this example, E[‖∇f(wt; ξ)‖2] = 1
2w

2
t + 1

2 , we see that E[‖∇f(wt; ξ)‖2] can

also be arbitrarily large.

Recently, in the review paper [13], convergence of SGD for general stochastic optimization

problem was analyzed under the following assumption: there exist constants M and N such

that E[‖∇f(wt; ξt)‖2] ≤M‖∇F (wt)‖2+N , where wt, t ≥ 0, are generated by the algorithm.

This assumption does not contradict strong convexity, however, in general, constants M and

N are unknown, while M is used to determine the learning rate ηt [13]. In addition, the

rate of convergence of the SGD algorithm depends on M and N . In this chapter, we show

that under the smoothness assumption on individual realizations f(w, ξ) it is possible to

derive the bound E[‖∇f(w; ξ)‖2] ≤ M0[F (w) − F (w∗)] + N with specific values of M0,

and N for ∀w ∈ Rd, which in turn implies the bound E[‖∇f(w; ξ)‖2] ≤ M‖∇F (w)‖2 + N

with specific M , by strong convexity of F . We also note that, in [47], the convergence

of SGD without bounded gradient assumption is studied. We then provide an alternative

convergence analysis for SGD which shows convergence in expectation with a bound on

learning rate which is larger than that in [13, 47] by a factor of L/µ. We then use the

new framework for the convergence analysis of SGD to analyze an asynchronous stochastic

gradient method.

In [64], an asynchronous stochastic optimization method called Hogwild! was proposed.

Hogwild! algorithm is a parallel version of SGD, where each processor applies SGD steps
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independently of the other processors to the solution w which is shared by all processors.

Thus, each processor computes a stochastic gradient and updates w without ”locking”

the memory containing w, meaning that multiple processors are able to update w at the

same time. This approach leads to much better scaling of parallel SGD algorithm than a

synchoronous version, but the analysis of this method is more complex. In [64, 44, 15]

various variants of Hogwild! with a fixed step size are analyzed under the assumption that

the gradients are bounded as in (3.5). In this chapter, we extend our analysis of SGD to

provide analysis of Hogwild! with diminishing step sizes and without the assumption on

bounded gradients.

In a recent technical report [35] Hogwild! with fixed step size is analyzed without the

bounded gradient assumption. We note that SGD with fixed step size only converges to a

neighborhood of the optimal solution, while by analyzing the diminishing step size variant

we are able to show convergence to the optimal solution with probability one. Both in [35]

and in this chapter, the version of Hogwild! with inconsistent reads and writes is considered.

3.1.1 Contribution

We provide a new framework for the analysis of stochastic gradient algorithms in the

strongly convex case under the condition of Lipschitz continuity of the individual func-

tion realizations, but without requiring any bounds on the stochastic gradients.

Within this framework we have the following contributions:

• We prove the almost sure (w.p.1) convergence of SGD with diminishing step size. Our

analysis provides a larger bound on the possible initial step size when compared to

any previous analysis of convergence in expectation for SGD.

• We introduce a general recurrence for vector updates which has as its special cases (a)

Hogwild! algorithm with diminishing step sizes, where each update involves all non-

zero entries of the computed gradient, and (b) a position-based updating algorithm

where each update corresponds to only one uniformly selected non-zero entry of the

computed gradient.

• We analyze this general recurrence under inconsistent vector reads from and vector
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writes to shared memory (where individual vector entry reads and writes are atomic

in that they cannot be interrupted by writes to the same entry) assuming that there

exists a delay τ such that during the (t + 1)-th iteration a gradient of a read vector

w is computed which includes the aggregate of all the updates up to and including

those made during the (t− τ)-th iteration. In other words, τ controls to what extend

past updates influence the shared memory.

– Our upper bound for the expected convergence rate is sublinear, i.e., O(1/t),

and its precise expression allows comparison of algorithms (a) and (b) described

above.

– For SGD we can improve this upper bound by a factor 2 and also show that its

initial step size can be larger.

– We show that τ can be a function of t as large as ≈
√
t/ ln t without affecting

the asymptotic behavior of the upper bound; we also determine a constant T0

with the property that, for t ≥ T0, higher order terms containing parameter τ

are smaller than the leading O(1/t) term. We give intuition explaining why the

expected convergence rate is not more affected by τ . Our experiments confirm

our analysis.

– We determine a constant T1 with the property that, for t ≥ T1, the higher order

term containing parameter ‖w0 − w∗‖2 is smaller than the leading O(1/t) term.

• All the above contributions generalize to the non-convex setting where we do not need

to assume that the component functions f(w; ξ) are convex in w.

3.1.2 Organization

We analyse the convergence rate of SGD in Section 3.2 and introduce the general recursion

and its analysis in Section 3.3. Experiments are reported in Section 3.5.

3.2 New Framework for Convergence Analysis of SGD

We introduce SGD algorithm in Algorithm 2.
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Algorithm 2 Stochastic Gradient Descent (SGD) Method

Initialize: w0

Iterate:
for t = 0, 1, 2, . . . do

Choose a step size (i.e., learning rate) ηt > 0.
Generate a realization of the random variable ξt.
Compute a stochastic gradient ∇f(wt; ξt).
Update the new iterate wt+1 = wt − ηt∇f(wt; ξt).

end for

The sequence of random variables {ξt}t≥0 is assumed to be i.i.d.1 Let us introduce our

key assumption that each realization ∇f(w; ξ) is an L-smooth function.

Assumption 3.2.1 (L-smooth). f(w; ξ) is L-smooth for every realization of ξ, i.e., there

exists a constant L > 0 such that, ∀w,w′ ∈ Rd,

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖. (3.6)

Assumption 3.2.1 implies that F is also L-smooth. Then, by the property of L-smooth

function (in [49]), we have, ∀w,w′ ∈ Rd,

F (w) ≤ F (w′) + 〈∇F (w′), (w − w′)〉+
L

2
‖w − w′‖2. (3.7)

The following additional convexity assumption can be made, as it holds for many prob-

lems arising in machine learning.

Assumption 3.2.2. f(w; ξ) is convex for every realization of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ)− f(w′; ξ) ≥ 〈∇f(w′; ξ), (w − w′)〉.

We first derive our analysis under Assumptions 3.2.1, and 3.2.2 and then we derive weaker

results under only Assumption 3.2.1. First, we introduce some useful lemmas as follows.

Lemma 3.2.1 (Generalization of the result in [28]). Let Assumptions 3.2.1 and 3.2.2 hold.

1Independent and identically distributed.
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Then, ∀w ∈ Rd,

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)], (3.8)

where ξ is a random variable, and w∗ = arg minw F (w).

Lemma 3.2.2 ([10]). Let Yk, Zk, and Wk, k = 0, 1, . . . , be three sequences of random

variables and let {Fk}k≥0 be a filtration, that is, σ-algebras such that Fk ⊂ Fk+1 for all k.

Suppose that:

• The random variables Yk, Zk, and Wk are nonnegative, and Fk-measurable.

• For each k, we have E[Yk+1|Fk] ≤ Yk − Zk +Wk.

• There holds, w.p.1,

∞∑
k=0

Wk <∞.

Then, we have, w.p.1,

∞∑
k=0

Zk <∞ and Yk → Y ≥ 0.

3.2.1 Convergence With Probability One

As discussed in the introduction, under Assumptions 3.2.1 and 3.2.2 we can now derive a

bound on E‖∇f(w; ξ)‖2.

Lemma 3.2.3. Let Assumptions 3.2.1 and 3.2.2 hold. Then, for ∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F (w∗)] +N, (3.9)

where N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable, and w∗ = arg minw F (w).

Proof. Note that

‖a‖2 = ‖a− b+ b‖2 ≤ 2‖a− b‖2 + 2‖b‖2, (3.10)
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⇒ 1

2
‖a‖2 − ‖b‖2 ≤ ‖a− b‖2. (3.11)

Hence,

1

2
E[‖∇f(w; ξ)‖2]− E[‖∇f(w∗; ξ)‖2] = E

[
1

2
‖∇f(w; ξ)‖2 − ‖∇f(w∗; ξ)‖2

]
(3.11)

≤ E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2]
(6.21)

≤ 2L[F (w)− F (w∗)] (3.12)

Therefore,

E[‖∇f(w; ξ)‖2]
(3.10)(3.12)

≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2].

Using Lemma 3.2.3 and Super Martingale Convergence Theorem [10] (Lemma 3.2.2),

we can provide the sufficient condition for almost sure convergence of Algorithm 2 in the

strongly convex case without assuming any bounded gradients.

We note that if {ξi}i≥0 are i.i.d. random variables, then E[‖∇f(w∗; ξ0)‖2] = · · · =

E[‖∇f(w∗; ξt)‖2]. We have the following results for Algorithm 2.

Theorem 3.2.1 (Sufficient conditions for almost sure convergence). Let Assumptions 3.1.1,

3.2.1 and 3.2.2 hold. Consider Algorithm 2 with a stepsize sequence such that

0 < ηt ≤
1

2L
,
∞∑
t=0

ηt =∞ and
∞∑
t=0

η2t <∞.

Then, the following holds w.p.1 (almost surely)

‖wt − w∗‖2 → 0.

Proof. Let Ft = σ(w0, ξ0, . . . , ξt−1) be the σ-algebra generated by w0, ξ0, . . . , ξt−1, i.e., Ft

contains all the information of w0, . . . , wt. Note that E[∇f(wt; ξt)|Ft] = ∇F (wt). By
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Lemma 3.2.3, we have

E[‖∇f(wt; ξt)‖2|Ft] ≤ 4L[F (wt)− F (w∗)] +N, (3.13)

where N = 2E[‖∇f(w∗; ξ0)‖2] = · · · = 2E[‖∇f(w∗; ξt)‖2] since {ξi}i≥0 are i.i.d. random

variables. Note that wt+1 = wt − ηt∇f(wt; ξt). Hence,

E[‖wt+1 − w∗‖2|Ft] = E[‖wt − ηt∇f(wt; ξt)− w∗‖2|Ft]

= ‖wt − w∗‖2 − 2ηt〈∇F (wt), (wt − w∗)〉+ η2tE[‖∇f(wt; ξt)‖2|Ft]
(3.3)(3.13)

≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 − 2ηt[F (wt)− F (w∗)]

+ 4Lη2t [F (wt)− F (w∗)] + η2tN

= ‖wt − w∗‖2 − µηt‖wt − w∗‖2 − 2ηt(1− 2Lηt)[F (wt)− F (w∗)] + η2tN

≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 + η2tN.

The last inequality follows since 0 < ηt ≤ 1
2L . Therefore,

E[‖wt+1 − w∗‖2|Ft] ≤ ‖wt − w∗‖2 − µηt‖wt − w∗‖2 + η2tN. (3.14)

Since
∑∞

t=0 η
2
tN <∞, we could apply Lemma 3.2.2. Then, we have w.p.1,

‖wt − w∗‖2 →W ≥ 0,

and
∞∑
t=0

µηt‖wt − w∗‖2 <∞.

We want to show that ‖wt−w∗‖2 → 0, w.p.1. Proving by contradiction, we assume that

there exist ε > 0 and t0, s.t. ‖wt − w∗‖2 ≥ ε for ∀t ≥ t0. Hence,

∞∑
t=0

µηt‖wt − w∗‖2 ≥ µε
∞∑
t=0

ηt =∞.

This is a contradiction. Therefore, ‖wt − w∗‖2 → 0 w.p.1.
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Note that the classical SGD proposed in [66] has learning rate satisfying conditions

∞∑
t=0

ηt =∞ and
∞∑
t=0

η2t <∞

However, the original analysis is performed under the bounded gradient assumption, as in

(3.5). In Theorem 3.2.1, on the other hand, we do not use this assumption, but instead

assume Lipschitz smoothness and convexity of the function realizations, which does not

contradict the strong convexity of F (w).

Theorem 3.2.2. Let Assumptions 3.1.1, 3.2.1 and 3.2.2 hold. Let E = 2αL
µ with α = 2.

Consider Algorithm 2 with a stepsize sequence such that ηt = α
µ(t+E) ≤ η0 = 1

2L . The

expectation E[‖wt − w∗‖2] is at most

4α2N

µ2
1

(t− T + E)

for

t ≥ T =
4L

µ
max{Lµ

N
‖w0 − w∗‖2, 1} −

4L

µ
.

Proof. Using the beginning of the proof of Theorem 3.2.1, taking the expectation to (3.14),

with 0 < ηt ≤ 1
2L , we have

E[‖wt+1 − w∗‖2] ≤ (1− µηt)E[‖wt − w∗‖2] + η2tN.

We first show that

E[‖wt − w∗‖2] ≤
N

µ2
G

1

(t+ E)
, (3.15)

where G = max{I, J}, and

I =
Eµ2

N
E[‖w0 − w∗‖2] > 0,

J =
α2

α− 1
> 0.

We use mathematical induction to prove (3.15) (this trick is based on the idea from [13]).
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Let t = 0, we have

E[‖w0 − w∗‖2] ≤
NG

µ2E
,

which is obviously true since G ≥ Eµ2

N ‖w0 − w∗‖2.

Suppose it is true for t, we need to show that it is also true for t+ 1. We have

E[‖wt+1 − w∗‖2] ≤
(

1− α

t+ E

)
NG

µ2(t+ E)
+

α2N

µ2(t+ E)2

=

(
t+ E − α
µ2(t+ E)2

)
NG+

α2N

µ2(t+ E)2

=

(
t+ E − 1

µ2(t+ E)2

)
NG−

(
α− 1

µ2(t+ E)2

)
NG+

α2N

µ2(t+ E)2
.

Since G ≥ α2

α−1 ,

−
(

α− 1

µ2(t+ E)2

)
NG+

α2N

µ2(t+ E)2
≤ 0.

This implies

E[‖wt+1 − w∗‖2] ≤
(
t+ E − 1

µ2(t+ E)2

)
NG

=

(
(t+ E)2 − 1

(t+ E)2

)
NG

µ2(t+ E + 1)

≤ NG

µ2(t+ E + 1)
.

This proves (3.15) by induction in t.

Notice that the induction proof of (3.15) holds more generally for E ≥ 2αL
µ with α > 1

(this is sufficient for showing ηt ≤ 1
2L . In this more general interpretation we can see that

the convergence rate is minimized for I minimal, i.e., E = 2αL
µ and for this reason we have

fixed E as such in the theorem statement.

Notice that

G = max{I, J} = max{2αLµ

N
E[‖w0 − w∗‖2],

α2

α− 1
}.

We choose α = 2 such that ηt only depends on known parameters µ and L. For this α we
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obtain

G = 4 max{Lµ
N

E[‖w0 − w∗‖2], 1}.

For T = 4L
µ max{LµN E[‖w0 − w∗‖2], 1} − 4L

µ , we have that according to (3.15)

Lµ

N
E[‖wT − w∗‖2] ≤

Lµ

N

N

µ2
G

(T + E)

=
L

µ

4 max{LµN E[‖w0 − w∗‖2], 1}
4L
µ max{LµN E[‖w0 − w∗‖2], 1}

= 1. (3.16)

Applying (3.15)with wT as starting point rather than w0 gives, for t ≥ max{T, 0},

E[‖wt − w∗‖2] ≤
N

µ2
G

1

(t− T + E)
,

where G is now equal to

4 max{Lµ
N

E[‖wT − w∗‖2], 1},

which equals 4, see (3.16). For any given w0, we prove the theorem.

3.2.2 Convergence Analysis without Convexity

In this section, we provide the analysis of Algorithm 2 without using Assumption 3.2.2, that

is, f(w; ξ) is not necessarily convex. We still do not need to impose the bounded stochastic

gradient assumption, since we can derive an analogue of Lemma 3.2.3, albeit with worse

constant in the bound.

Lemma 3.2.4. Let Assumptions 3.1.1 and 3.2.1 hold. Then, for ∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4Lκ[F (w)− F (w∗)] +N, (3.17)

where κ = L
µ and N = 2E[‖∇f(w∗; ξ)‖2]; ξ is a random variable, and w∗ = arg minw F (w).

Proof. Analogous to the proof of Lemma 3.2.3, we have

Hence,

1

2
E[‖∇f(w; ξ)‖2]− E[‖∇f(w∗; ξ)‖2] = E

[
1

2
‖∇f(w; ξ)‖2 − ‖∇f(w∗; ξ)‖2

]
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(3.11)

≤ E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2]
(5.5)

≤ L2‖w − w∗‖2

(3.3)

≤ 2L2

µ
[F (w)− F (w∗)] = 2Lκ[F (w)− F (w∗)].

(3.18)

Therefore,

E[‖∇f(w; ξ)‖2]
(3.10)(3.18)

≤ 4Lκ[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2].

Based on the proofs of Theorems 3.2.1 and 3.2.2, we can easily have the following two

results (Theorems 3.2.3 and 3.2.4).

Theorem 3.2.3 (Sufficient conditions for almost sure convergence). Let Assumptions 3.1.1

and 3.2.1 hold. Then, we can conclude the statement of Theorem 3.2.1 with the definition

of the step size replaced by 0 < ηt ≤ 1
2Lκ with κ = L

µ .

Theorem 3.2.4. Let Assumptions 3.1.1 and 3.2.1 hold. Then, we can conclude the state-

ment of Theorem 3.2.2 with the definition of the step size replaced by ηt = α
µ(t+E) ≤ η0 = 1

2Lκ

with κ = L
µ and α = 2, and all other occurrences of L in E and T replaced by Lκ.

We compare our result in Theorem 3.2.4 with that in [13] in the following remark.

Remark 3.2.1. By strong convexity of F , Lemma 3.2.4 implies E[‖∇f(w; ξ)‖2] ≤

2κ2‖∇F (w)‖2 + N , for ∀w ∈ Rd, where κ = L
µ and N = 2E[‖∇f(w∗; ξ)‖2]. We can now

substitute the value M = 2κ2 into Theorem 4.7 in [13]. We observe that the resulting initial

learning rate in [13] has to satisfy η0 ≤ 1
2Lκ2

while our results allows η0 = 1
2Lκ . We are

able to achieve this improvement by introducing Assumption 3.2.1, which holds for many

ML problems.

Recall that under Assumption 3.2.2, our initial learning rate is η0 = 1
2L (in Theorem

3.2.2). Thus Assumption 3.2.2 provides further improvement of the conditions on the learn-

ing rate.
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3.3 Asynchronous Stochastic Optimization aka Hogwild!

Hogwild! [64] is an asynchronous stochastic optimization method where writes to and

reads from vector positions in shared memory can be inconsistent (this corresponds to

(3.22) as we shall see). However, as mentioned in [44], for the purpose of analysis the

method in [64] performs single vector entry updates that are randomly selected from the

non-zero entries of the computed gradient as in (3.21) (explained later) and requires the

assumption of consistent vector reads together with the bounded gradient assumption to

prove convergence. Both [44] and [15] prove the same result for fixed step size based on the

assumption of bounded stochastic gradients in the strongly convex case but now without

assuming consistent vector reads and writes. In these works the fixed step size η must

depend on σ from the bounded gradient assumption, however, one does not usually know

σ and thus, we cannot compute a suitable η a-priori.

As claimed by the authors in [44], they can eliminate the bounded gradient assumption

in their analysis of Hogwild!, which however was only mentioned as a remark without proof.

On the other hand, the authors of recent unpublished work [35] formulate and prove, without

the bounded gradient assumption, a precise theorem about the convergence rate of Hogwild!

of the form

E[‖wt − w∗‖2] ≤ (1− ρ)t(2‖w0 − w∗‖2) + b,

where ρ is a function of several parameters but independent of the fixed chosen step size η

and where b is a function of several parameters and has a linear dependency with respect

to the fixed step size, i.e., b = O(η).

In this section, we discuss the convergence of Hogwild! with diminishing stepsize where

writes to and reads from vector positions in shared memory can be inconsistent. This is

a slight modification of the original Hogwild! where the stepsize is fixed. In our analysis

we also do not use the bounded gradient assumption as in [35]. Moreover, (a) we

focus on solving the more general problem in (3.1), while [35] considers the specific case

of the “finite-sum” problem in (3.2), and (b) we show that our analysis generalizes to the

non-convex case, i.e., we do not need to assume functions f(w; ξ) are convex (we only

require F (w) = E[f(w; ξ)] to be strongly convex) as opposed to the assumption in [35].
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3.3.1 Recursion

We first formulate a general recursion for wt to which our analysis applies, next we will

explain how the different variables in the recursion interact and describe two special cases,

and finally we present pseudo code of the algorithm using the recursion.

The recursion explains which positions in wt should be updated in order to compute wt+1.

Since wt is stored in shared memory and is being updated in a possibly non-consistent way

by multiple cores who each perform recursions, the shared memory will contain a vector w

whose entries represent a mix of updates. That is, before performing the computation of

a recursion, a core will first read w from shared memory, however, while reading w from

shared memory, the entries in w are being updated out of order. The final vector ŵt read

by the core represents an aggregate of a mix of updates in previous iterations.

The general recursion is defined as follows: For t ≥ 0,

wt+1 = wt − ηtdξtSξtut∇f(ŵt; ξt), (3.19)

where

• ŵt represents the vector used in computing the gradient ∇f(ŵt; ξt) and whose entries

have been read (one by one) from an aggregate of a mix of previous updates that led

to wj , j ≤ t, and

• the Sξtut are diagonal 0/1-matrices with the property that there exist real numbers dξ

satisfying

dξE[Sξu|ξ] = Dξ, (3.20)

where the expectation is taken over u and Dξ is the diagonal 0/1 matrix whose 1-

entries correspond to the non-zero positions in ∇f(w; ξ), i.e., the i-th entry of Dξ’s

diagonal is equal to 1 if and only if there exists a w such that the i-th position of

∇f(w; ξ) is non-zero.

The role of matrix Sξtut is that it filters which positions of gradient ∇f(ŵt; ξt) play a role

in (3.19) and need to be computed. Notice that Dξ represents the support of ∇f(w; ξ); by
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|Dξ| we denote the number of 1s in Dξ, i.e., |Dξ| equals the size of the support of ∇f(w; ξ).

We will restrict ourselves to choosing (i.e., fixing a-priori) non-empty matrices Sξu that

“partition” Dξ in D approximately “equally sized” Sξu:

∑
u

Sξu = Dξ,

where each matrix Sξu has either b|Dξ|/Dc or d|Dξ|/De ones on its diagonal. We uniformly

choose one of the matrices Sξtut in (3.19), hence, dξ equals the number of matrices Sξu, see

(3.20).

In other to explain recursion (3.19) we first consider two special cases. For D = ∆̄, where

∆̄ = max
ξ
{|Dξ|}

represents the maximum number of non-zero positions in any gradient computation f(w; ξ),

we have that for all ξ, there are exactly |Dξ| diagonal matrices Sξu with a single 1 representing

each of the elements in Dξ. Since pξ(u) = 1/|Dξ| is the uniform distribution, we have

E[Sξu|ξ] = Dξ/|Dξ|, hence, dξ = |Dξ|. This gives the recursion

wt+1 = wt − ηt|Dξ|[∇f(ŵt; ξt)]ut , (3.21)

where [∇f(ŵt; ξt)]ut denotes the ut-th position of ∇f(ŵt; ξt) and where ut is a uniformly

selected position that corresponds to a non-zero entry in ∇f(ŵt; ξt).

At the other extreme, for D = 1, we have exactly one matrix Sξ1 = Dξ for each ξ, and

we have dξ = 1. This gives the recursion

wt+1 = wt − ηt∇f(ŵt; ξt). (3.22)

Recursion (3.22) represents Hogwild!. In a single-core setting where updates are done in a

consistent way and ŵt = wt yields SGD.

Algorithm 3 gives the pseudo code corresponding to recursion (3.19) with our choice of

sets Sξu (for parameter D).
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Algorithm 3 Hogwild! general recursion

1: Input: w0 ∈ Rd
2: for t = 0, 1, 2, . . . in parallel do
3: read each position of shared memory w denoted by ŵt (each position read is

atomic)

4: draw a random sample ξt and a random “filter” Sξtut
5: for positions h where Sξtut has a 1 on its diagonal do
6: compute gh as the gradient ∇f(ŵt; ξt) at position h
7: add ηtdξtgh to the entry at position h of w in shared memory (each position

update is atomic)
8: end for
9: end for

3.3.2 Analysis

Besides Assumptions 3.1.1, 3.2.1, and for now 3.2.2, we assume the following assumption re-

garding a parameter τ , called the delay, which indicates which updates in previous iterations

have certainly made their way into shared memory w.

Assumption 3.3.1 (Consistent with delay τ). We say that shared memory is consistent

with delay τ with respect to recursion (3.19) if, for all t, vector ŵt includes the aggregate

of the updates up to and including those made during the (t− τ)-th iteration (where (3.19)

defines the (t+ 1)-st iteration). Each position read from shared memory is atomic and each

position update to shared memory is atomic (in that these cannot be interrupted by another

update to the same position).

In other words in the (t + 1)-th iteration, ŵt equals wt−τ plus some subset of position

updates made during iterations t − τ, t − τ + 1, . . . , t − 1. We assume that there exists a

constant delay τ satisfying Assumption 3.3.1.

Section 3.4 proves the following theorem where

∆̄D
def
= D · E[d|Dξ|/De].

Theorem 3.3.1. Suppose Assumptions 3.1.1, 3.2.1, 3.2.2 and 3.3.1 and consider Algo-

rithm 3 for sets Sξu with parameter D. Let ηt = αt
µ(t+E) with 4 ≤ αt ≤ α and E =

max{2τ, 4LαDµ }. Then, the expected number of single vector entry updates after t iterations
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is equal to

t′ = t∆̄D/D

and expectations E[‖ŵt − w∗‖2] and E[‖wt − w∗‖2] are at most

4α2DN

µ2
t

(t+ E − 1)2
+O

(
ln t

(t+ E − 1)2

)
.

In terms of t′, the expected number single vector entry updates after t iterations, E[‖ŵt−

w∗‖2] and E[‖wt − w∗‖2] are at most

4α2∆̄DN

µ2
1

t′
+O

(
ln t′

t′2

)
.

Remark 3.3.1. In (3.21) D = ∆̄, hence, d|Dξ|/De = 1 and ∆̄D = ∆̄ = maxξ{|Dξ|}. In

(3.22) D = 1, hence, ∆̄D = E[|Dξ|]. This shows that the upper bound in Theorem 3.3.1 is

better for (3.22) with D = 1. If we assume no delay, i.e. τ = 0, in addition to D = 1, then

we obtain SGD. Theorem 3.2.2 shows that, measured in t′, we obtain the upper bound

4α2
SGD∆̄DN

µ2
1

t′

with αSGD = 2 as opposed to α ≥ 4.

With respect to parallelism, SGD assumes a single core, while (3.22) and (3.21) allow

multiple cores. Notice that recursion (3.21) allows us to partition the position of the shared

memory among the different processor cores in such a way that each partition can only

be updated by its assigned core and where partitions can be read by all cores. This allows

optimal resource sharing and could make up for the difference between ∆̄D for (3.21) and

(3.22). We hypothesize that, for a parallel implementation, D equal to a fraction of ∆̄ will

lead to best performance.

Remark 3.3.2. Surprisingly, the leading term of the upper bound on the convergence rate

is independent of delay τ . On one hand, one would expect that a more recent read which

contains more of the updates done during the last τ iterations will lead to better convergence.

When inspecting the second order term in the proof in Section 3.4, we do see that a smaller
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τ (and/or smaller sparsity) makes the convergence rate smaller. That is, asymptotically t

should be large enough as a function of τ (and other parameters) in order for the leading

term to dominate.

Nevertheless, in asymptotic terms (for larger t) the dependence on τ is not noticeable.

In fact, Section 3.4 shows that we may allow τ to be a monotonic increasing function of t

with

2LαD

µ
≤ τ(t) ≤

√
t · L(t),

where L(t) = 1
ln t −

1
(ln t)2

(this will make E = max{2τ(t), 4LαDµ } also a function of t). The

leading term of the convergence rate does not change while the second order terms increase

to O( 1
t ln t). We show that, for

t ≥ T0 = exp[2
√

∆(1 +
(L+ µ)α

µ
)],

where ∆ = maxi P (i ∈ Dξ) measures sparsity, the higher order terms that contain τ(t) (as

defined above) are at most the leading term.

Our intuition behind this phenomenon is that for large τ , all the last τ iterations before

the t-th iteration use vectors ŵj with entries that are dominated by the aggregate of updates

that happened till iteration t − τ . Since the average sum of the updates during the last τ

iterations is equal to

− 1

τ

t−1∑
j=t−τ

ηjdξjS
ξj
uj∇f(ŵj ; ξt) (3.23)

and all ŵj look alike in that they mainly represent learned information before the (t− τ)-th

iteration, (3.23) becomes an estimate of the expectation of (3.23), i.e.,

t−1∑
j=t−τ

−ηj
τ

E[dξjS
ξj
uj∇f(ŵj ; ξt)] =

t−1∑
j=t−τ

−ηj
τ
∇F (ŵj). (3.24)

This looks like GD which in the strong convex case has convergence rate ≤ c−t for some

constant c > 1. This already shows that larger τ could help convergence as well. However,

estimate (3.23) has estimation noise with respect to (3.24) which explains why in this thought

experiment we cannot attain c−t but can only reach a much smaller convergence rate of e.g.
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O(1/t) as in Theorem 3.3.1.

Experiments in Section 3.5 confirm our analysis.

Remark 3.3.3. The higher order terms in the proof in Section 3.4 show that, as in Theorem

3.2.2, the expected convergence rate in Theorem 3.3.1 depends on ‖w0 − w∗‖2. The proof

shows that, for

t ≥ T1 =
µ2

α2ND
‖w0 − w∗‖2,

the higher order term that contains ‖w0−w∗‖2 is at most the leading term. This is compa-

rable to T in Theorem 3.2.2 for SGD.

Remark 3.3.4. Step size ηt = αt
µ(t+E) with 4 ≤ αt ≤ α can be chosen to be fixed during

periods whose ranges exponentially increase. For t+ E ∈ [2h, 2h+1) we define αt = 4(t+E)
2h

.

Notice that 4 ≤ αt < 8 which satisfies the conditions of Theorem 3.3.1 for α = 8. This

means that we can choose

ηt =
αt

µ(t+ E)
=

4

µ2h

as step size for t + E ∈ [2h, 2h+1). This choice for ηt allows changes in ηt to be easily

synchronized between cores since these changes only happen when t + E = 2h for some

integer h. That is, if each core is processing iterations at the same speed, then each core on

its own may reliably assume that after having processed (2h−E)/P iterations the aggregate

of all P cores has approximately processed 2h−E iterations. So, after (2h−E)/P iterations

a core will increment its version of h to h+1. This will introduce some noise as the different

cores will not increment their h versions at exactly the same time, but this only happens

during a small interval around every t+ E = 2h. This will occur rarely for larger h.

3.3.3 Convergence Analysis without Convexity

In Section 3.4, we also show that the proof of Theorem 3.3.1 can easily be modified such

that Theorem 3.3.1 with E ≥ 4LκαD
µ also holds in the non-convex case of the component

functions, i.e., we do not need Assumption 3.2.2. Note that this case is not analyzed in [35].

Theorem 3.3.2. Let Assumptions 3.1.1 and 3.2.1 hold. Then, we can conclude the state-

ment of Theorem 3.3.1 with E ≥ 4LκαD
µ for κ = L

µ .
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We then provide the analysis for Algorithm 3 in detail in the following section.

3.4 Analysis for Algorithm 3

3.4.1 Recurrence and Notation

We introduce the following notation: For each ξ, we define Dξ ⊆ {1, . . . , d} as the set of

possible non-zero positions in a vector of the form ∇f(w; ξ) for some w. We consider a

fixed mapping from u ∈ U to subsets Sξu ⊆ Dξ for each possible ξ. In our notation we also

let Dξ represent the diagonal d× d matrix with ones exactly at the positions corresponding

to Dξ and with zeroes elsewhere. Similarly, Sξu also denotes a diagonal matrix with ones at

the positions corresponding to Dξ.

We will use a probability distribution pξ(u) to indicate how to randomly select a matrix

Sξu. We choose the matrices Sξu and distribution pξ(u) so that there exist dξ such that

dξE[Sξu|ξ] = Dξ, (3.25)

where the expectation is over pξ(u).

We will restrict ourselves to choosing non-empty sets Sξu that partition Dξ in D approx-

imately equally sized sets together with uniform distributions pξ(u) for some fixed D. So,

if D ≤ |Dξ|, then sets have sizes b|Dξ|/Dc and d|Dξ|/De. For the special case D > |Dξ| we

have exactly |Dξ| singleton sets of size 1 (in our definition we only use non-empty sets).

For example, for D = ∆̄, where

∆̄ = max
ξ
{|Dξ|}

represents the maximum number of non-zero positions in any gradient computation f(w; ξ),

we have that for all ξ, there are exactly |Dξ| singleton sets Sξu representing each of the

elements in Dξ. Since pξ(u) = 1/|Dξ| is the uniform distribution, we have E[Sξu|ξ] =

Dξ/|Dξ|, hence, dξ = |Dξ|. As another example at the other extreme, for D = 1, we have

exactly one set Sξ1 = Dξ for each ξ. Now pξ(1) = 1 and we have dξ = 1.
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We define the parameter

∆̄D
def
= D · E[d|Dξ|/De],

where the expectation is over ξ. We use ∆̄D in the leading asymptotic term for the conver-

gence rate in our main theorem. We observe that

∆̄D ≤ E[|Dξ|] +D − 1

and ∆̄D ≤ ∆̄ with equality for D = ∆̄.

For completeness we define

∆
def
= max

i
P (i ∈ Dξ) .

Let us remark, that ∆ ∈ (0, 1] measures the probability of collision. Small ∆ means that

there is a small chance that the support of two random realizations of ∇f(w; ξ) will have

an intersection. On the other hand, ∆ = 1 means that almost surely, the support of two

stochastic gradients will have non-empty intersection.

With this definition of ∆ it is an easy exercise to show that for iid ξ1 and ξ2 in a finite-sum

setting (i.e., ξi and ξ2 can only take on a finite set of possible values) we have

E[|〈∇f(w1; ξ1),∇f(w2; ξ2)〉|]

≤
√

∆

2

(
E[‖∇f(w1; ξ1)‖2] + E[‖∇f(w2; ξ2)‖2]

)
(3.26)

(see Proposition 10 in [35]). We notice that in the non-finite sum setting we can use the

property that for any two vectors a and b, 〈a, b〉 ≤ (‖a‖2 + ‖b‖2)/2 and this proves (3.26)

with ∆ set to ∆ = 1. In our asymptotic analysis of the convergence rate, we will show

how ∆ plays a role in non-leading terms – this, with respect to the leading term, it will

not matter whether we use ∆ = 1 or ∆ equal the probability of collision (in the finite sum

case).

We have

wt+1 = wt − ηtdξtSξtut∇f(ŵt; ξt), (3.27)

where ŵt represents the vector used in computing the gradient ∇f(ŵt; ξt) and whose entries
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have been read (one by one) from an aggregate of a mix of previous updates that led to wj ,

j ≤ t. Here, we assume that

• updating/writing to vector positions is atomic, reading vector positions is atomic, and

• there exists a “delay” τ such that, for all t, vector ŵt includes all the updates up to

and including those made during the (t − τ)-th iteration (where (3.27) defines the

(t+ 1)-st iteration).

Notice that we do not assume consistent reads and writes of vector positions. We

only assume that up to a “delay” τ all writes/updates are included in the values of positions

that are being read.

According to our definition of τ , in (3.27) vector ŵt represents an inconsistent read

with entries that contain all of the updates made during the 1st to (t − τ)-th iteration.

Furthermore each entry in ŵt includes some of the updates made during the (t− τ + 1)-th

iteration up to t-th iteration. Each entry includes its own subset of updates because writes

are inconsistent. We model this by “masks” Σt,j for t − τ ≤ j ≤ t − 1. A mask Σt,j is a

diagonal 0/1-matrix with the 1s expressing which of the entry updates made in the (j+1)-th

iteration are included in ŵt. That is,

ŵt = wt−τ −
t−1∑
j=t−τ

ηjdξjΣt,jS
ξj
uj∇f(ŵj ; ξj). (3.28)

Notice that the recursion (3.27) implies

wt = wt−τ −
t−1∑
j=t−τ

ηjdξjS
ξj
uj∇f(ŵj ; ξj). (3.29)

By combining (3.29) and (3.28) we obtain

wt − ŵt = −
t−1∑
j=t−τ

ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj), (3.30)

where I represents the identity matrix.
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3.4.2 Main Analysis

We first derive a couple lemmas which will help us deriving our main bounds. In what

follows let Assumptions 3.1.1, 3.2.1, 3.2.2 and 3.3.1 hold for all lemmas. We define

Ft = σ(w0, ξ1, u1, σ1, . . . , ξt−1, ut−1, σt−1),

where

σt−1 = (Σt,t−τ , . . . ,Σt,t−1).

When we subtract τ from, for example, t and write t−τ , we will actually mean max{t−τ, 0}.

Lemma 3.4.1. We have

E[‖dξtSξtut∇f(ŵt; ξt)‖2|Ft, ξt] ≤ D‖∇f(ŵt; ξt)‖2

and

E[dξtS
ξt
ut∇f(ŵt; ξt)|Ft] = ∇F (ŵt).

Proof. For the first bound, if we take the expectation of ‖dξtS
ξt
ut∇f(ŵt; ξt)‖2 with respect

to ut, then we have (for vectors x we denote the value if its i-th position by [x]i)

E[‖dξtSξtut∇f(ŵt; ξt)‖2|Ft, ξt] = d2ξt

∑
u

pξt(u)‖Sξtu ∇f(ŵt; ξt)‖2

= d2ξt

∑
u

pξt(u)
∑
i∈Sξtu

[∇f(ŵt; ξt)]
2
i

= dξt
∑
i∈Dξt

[∇f(ŵt; ξt)]
2
i = dξt‖f(ŵt; ξt)‖2 ≤ D‖∇f(ŵt; ξt)‖2,

where the transition to the second line follows from (3.25).

For the second bound, if we take the expectation of dξtS
ξt
ut∇f(ŵt; ξt) wrt ut, then we

have:

E[dξtS
ξt
ut∇f(ŵt; ξt)|Ft, ξt] = dξt

∑
u

pξt(u)Sξtu ∇f(ŵt; ξt) = Dξt∇f(ŵt; ξt) = ∇f(ŵt; ξt),
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and this can be used to derive

E[dξtS
ξt
utf(ŵt; ξt)|Ft] = E[E[dξtS

ξt
utf(ŵt; ξt)|Ft, ξt]|Ft] = ∇F (ŵt).

As a consequence of this lemma we derive a bound on the expectation of ‖wt − ŵt‖2.

Lemma 3.4.2. The expectation of ‖wt − ŵt‖2 is at most

E[‖wt − ŵt‖2] ≤ (1 +
√

∆τ)D
t−1∑
j=t−τ

η2j (2L
2E[‖ŵj − w∗‖2] +N).

Proof. As shown in (3.30),

wt − ŵt = −
t−1∑
j=t−τ

ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj).

This can be used to derive an expression for the square of its norm:

‖wt − ŵt‖2 = ‖
t−1∑
j=t−τ

ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

=

t−1∑
j=t−τ

‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

+
∑

i 6=j∈{t−τ,...,t−1}

〈ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj), ηidξi(I − Σt,j)S

ξi
ui∇f(ŵi; ξi)〉.

Applying (3.26) to the inner products implies

‖wt − ŵt‖2 ≤
t−1∑
j=t−τ

‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

+
∑

i 6=j∈{t−τ,...,t−1}

[‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2

+‖ηidξi(I − Σt,j)S
ξi
ui∇f(ŵi; ξi)‖2]

√
∆/2

= (1 +
√

∆τ)
t−1∑
j=t−τ

‖ηjdξj (I − Σt,j)S
ξj
uj∇f(ŵj ; ξj)‖2
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≤ (1 +
√

∆τ)

t−1∑
j=t−τ

η2j ‖dξjS
ξj
uj∇f(ŵj ; ξj)‖2.

Taking expectations shows

E[‖wt − ŵt‖2] ≤ (1 +
√

∆τ)
t−1∑
j=t−τ

η2jE[‖dξjS
ξj
uj∇f(ŵj ; ξj)‖2].

Now, we can apply Lemma 3.4.1: We first take the expectation over uj and this shows

E[‖wt − ŵt‖2] ≤ (1 +
√

∆τ)
t−1∑
j=t−τ

η2jDE[‖∇f(ŵj ; ξj)‖2].

From Lemma 3.2.3 we infer

E[‖∇f(ŵj ; ξj)‖2] ≤ 4LE[F (ŵj)− F (w∗)] +N (3.31)

and by L-smoothness, see Equation 5.6 with ∇F (w∗) = 0,

F (ŵj)− F (w∗) ≤
L

2
‖ŵj − w∗‖2.

Combining the above inequalities proves the lemma.

Together with the next lemma we will be able to start deriving a recursive inequality

from which we will be able to derive a bound on the convergence rate.

Lemma 3.4.3. Let 0 < ηt ≤ 1
4LD for all t ≥ 0. Then,

E[‖wt+1 − w∗‖2|Ft] ≤
(

1− µηt
2

)
‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2tD]‖ŵt − wt‖2 + 2η2tDN.

Proof. Since wt+1 = wt − ηtdξtS
ξt
ut∇f(ŵt; ξt), we have

‖wt+1 − w∗‖2 = ‖wt − w∗‖2 − 2ηt〈dξtSξtut∇f(ŵt; ξt), (wt − w∗)〉+ η2t ‖dξtSξtut∇f(ŵt; ξt)‖2.
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We now take expectations over ut and ξt and use Lemma 3.4.1:

E[‖wt+1 − w∗‖2|Ft]

≤ ‖wt − w∗‖2 − 2ηt〈∇F (ŵt), (wt − w∗)〉+ η2tDE[‖∇f(ŵt; ξt)‖2|Ft]

= ‖wt − w∗‖2 − 2ηt〈∇F (ŵt), (wt − ŵt)〉 − 2ηt〈∇F (ŵt), (ŵt − w∗)〉

+η2tDE[‖∇f(ŵt; ξt)‖2|Ft].

By (3.3) and (5.6), we have

−〈∇F (ŵt), (ŵt − w∗)〉 ≤ −[F (ŵt)− F (w∗)]−
µ

2
‖ŵt − w∗‖2, and (3.32)

−〈∇F (ŵt), (wt − ŵt)〉 ≤ F (ŵt)− F (wt) +
L

2
‖ŵt − wt‖2 (3.33)

Thus, E[‖wt+1 − w∗‖2|Ft] is at most

(3.32)(3.33)

≤ ‖wt − w∗‖2 + 2ηt[F (ŵt)− F (wt)] + Lηt‖ŵt − wt‖2 − 2ηt[F (ŵt)− F (w∗)]

− µηt‖ŵt − w∗‖2 + η2tDE[‖∇f(ŵt; ξt)‖2|Ft]

= ‖wt − w∗‖2 − 2ηt[F (wt)− F (w∗)] + Lηt‖ŵt − wt‖2 − µηt‖ŵt − w∗‖2

+ η2tDE[‖∇f(ŵt; ξt)‖2|Ft].

Since

−‖ŵt − w∗‖2 = −‖(wt − w∗)− (wt − ŵt)‖2
(3.11)

≤ −1

2
‖wt − w∗‖2 + ‖wt − ŵt‖2,

E[‖wt+1 − w∗‖2|Ft, σt] is at most

(1− µηt
2

)‖wt−w∗‖2− 2ηt[F (wt)−F (w∗)] + (L+µ)ηt‖ŵt−wt‖2 + η2tDE[‖∇f(ŵt; ξt)‖2|Ft].

We now use ‖a‖2 = ‖a− b+ b‖2 ≤ 2‖a− b‖2 + 2‖b‖2 for E[‖∇f(ŵt; ξt)‖2|Ft] to obtain

E[‖∇f(ŵt; ξt)‖2|Ft] ≤ 2E[‖∇f(ŵt; ξt)−∇f(wt; ξt)‖2|Ft] + 2E[‖∇f(wt; ξt)‖2|Ft]. (3.34)
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By Lemma 3.2.3, we have

E[‖∇f(wt; ξt)‖2|Ft] ≤ 4L[F (wt)− F (w∗)] +N. (3.35)

Applying (5.5) twice gives

E[‖∇f(ŵt; ξt)−∇f(wt; ξt)‖2|Ft, σt] ≤ L2‖ŵt − wt‖2

and together with (3.34) and (3.35) we obtain

E[‖∇f(ŵt; ξt)‖2|Ft] ≤ 2L2‖ŵt − wt‖2 + 4L[F (wt)− F (w∗)] +N.

Plugging this into the previous derivation yields

E[‖wt+1 − w∗‖2|Ft] ≤ (1− µηt
2

)‖wt − w∗‖2 − 2ηt[F (wt)− F (w∗)] + (L+ µ)ηt‖ŵt − wt‖2

+ 2L2η2tD‖ŵt − wt‖2 + 8Lη2tD[F (wt)− F (w∗)] + 2η2tDN

= (1− µηt
2

)‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2tD]‖ŵt − wt‖2

− 2ηt(1− 4LηtD)[F (wt)− F (w∗)] + 2η2tDN.

Since ηt ≤ 1
4LD , −2ηt(1− 4LηtD)[F (wt)− F (w∗)] ≤ 0 (we can get a negative upper bound

by applying strong convexity but this will not improve the asymptotic behavior of the

convergence rate in our main result although it would improve the constant of the leading

term making the final bound applied to SGD closer to the bound of Theorem 3.2.2 for

SGD),

E[‖wt+1 − w∗‖2|Ft] ≤
(

1− µηt
2

)
‖wt − w∗‖2 + [(L+ µ)ηt + 2L2η2tD]‖ŵt − wt‖2 + 2η2tDN

and this concludes the proof.

Assume 0 < ηt ≤ 1
4LD for all t ≥ 0. Then, after taking the full expectation of the
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inequality in Lemma 3.4.3, we can plug Lemma 3.4.2 into it which yields the recurrence

E[‖wt+1 − w∗‖2] ≤
(

1− µηt
2

)
E[‖wt − w∗‖2]

+[(L+ µ)ηt + 2L2η2tD](1 +
√

∆τ)D

t−1∑
j=t−τ

η2j (2L
2E[‖ŵj − w∗‖2] +N)

+2η2tDN. (3.36)

This can be solved by using the next lemma. For completeness, we follow the convention

that an empty product is equal to 1 and an empty sum is equal to 0, i.e.,

k∏
i=h

gi = 1 and

k∑
i=h

gi = 0 if k < h. (3.37)

Lemma 3.4.4. Let Yt, βt and γt be sequences such that Yt+1 ≤ βtYt + γt, for all t ≥ 0.

Then,

Yt+1 ≤ (
t∑
i=0

[
t∏

j=i+1

βj ]γi) + (
t∏

j=0

βj)Y0. (3.38)

Proof. We prove the lemma by using induction. It is obvious that (3.38) is true for t = 0

because Y1 ≤ β1Y0 + γ1. Assume as induction hypothesis that (3.38) is true for t− 1. Since

Yt+1 ≤ βtYt + γt,

Yt+1 ≤ βtYt + γt

≤ βt[(
t−1∑
i=0

[
t−1∏
j=i+1

βj ]γi) + (
t−1∏
j=0

βj)Y0] + γt

(3.37)
= (

t−1∑
i=0

βt[

t−1∏
j=i+1

βj ]γi) + βt(

t−1∏
j=0

βj)Y0 + (

t∏
j=t+1

βj)γt

= [(
t−1∑
i=0

[

t∏
j=i+1

βj ]γi) + (
t∏

j=t+1

βj)γt] + (
t∏

j=0

βj)Y0

= (

t∑
i=0

[

t∏
j=i+1

βj ]γi) + (

t∏
j=0

βj)Y0.

Applying the above lemma to (3.36) will yield the following bound.
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Lemma 3.4.5. Let ηt = αt
µ(t+E) with 4 ≤ αt ≤ α and E = max{2τ, 4LαDµ }. Then, expecta-

tion E[‖wt+1 − w∗‖2] is at most

α2D

µ2
1

(t+ E − 1)2

 t∑
i=1

4ai(1 +
√

∆τ)[Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2] + 2N


+

(E + 1)2

(t+ E − 1)2
E[‖w0 − w∗‖2],

where ai = (L+ µ)ηi + 2L2η2iD.

Proof. Notice that we may use (3.36) because ηt ≤ 1
4LD follows from ηt = αt

µ(t+E) ≤
α

µ(t+E)

combined with E ≥ 4LαD
µ . From (3.36) with at = (L+µ)ηt+2L2η2tD and ηt being decreasing

in t we infer

E[‖wt+1 − w∗‖2]

≤
(

1− µηt
2

)
E[‖wt − w∗‖2] + at(1 +

√
∆τ)Dη2t−τ

t−1∑
j=t−τ

(2L2E[‖ŵj − w∗‖2] +N)

+2η2tDN

=
(

1− µηt
2

)
E[‖wt − w∗‖2] + at(1 +

√
∆τ)Dη2t−τ [Nτ + 2L2

t−1∑
j=t−τ

E[‖ŵj − w∗‖2]

+2η2tDN.

Since E ≥ 2τ , 1
t−τ+E ≤

2
t+E . Hence, together with ηt−τ = αt−τ

µ(t−τ+E) ≤
α

µ(t−τ+E) we have

η2t−τ ≤
4α2

µ2
1

(t+ E)2
. (3.39)

This translates the above bound into

E[‖wt+1 − w∗‖2] ≤ βtE[‖wt − w∗‖2] + γt,

for

βt = 1− µηt
2
,
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γt = 4at(1 +
√

∆τ)D
α2

µ2
1

(t+ E)2
[Nτ + 2L2

t−1∑
j=t−τ

E[‖ŵj − w∗‖2] + 2η2tDN,where

at = (L+ µ)ηt + 2L2η2tD.

Application of Lemma 3.4.4 for Yt+1 = E[‖wt+1 − w∗‖2] and Yt = E[‖wt − w∗‖2] gives

E[‖wt+1 − w∗‖2] ≤

 t∑
i=0

 t∏
j=i+1

(
1− µηj

2

) γi
+

 t∏
j=0

(
1− µηj

2

)E[‖w0 − w∗‖2].

In order to analyze this formula, since ηj =
αj

µ(j+E) with αj ≥ 4, we have

1− µηj
2

= 1− αj
2(j + E)

≤ 1− 2

j + E
,

Hence (we can also use 1− x ≤ e−x which leads to similar results and can be used to show

that our choice for ηt leads to the tightest convergence rates in our framework),

t∏
j=i

(
1− µηj

2

)
≤

t∏
j=i

(
1− 2

j + E

)
=

t∏
j=i

j + E − 2

j + E

=
i+ E − 2

i+ E

i+ E − 1

i+ E + 1

i+ E

i+ E + 2

i+ E + 1

i+ E + 3
. . .

t+ E − 3

t+ E − 1

t+ E − 2

t+ E

=
(i+ E − 2)(i+ E − 1)

(t+ E − 1)(t+ E)
≤ (i+ E − 1)2

(t+ E − 1)(t+ E)
≤ (i+ E)2

(t+ E − 1)2
.

From this calculation we infer that

E[‖wt+1 − w∗‖2] ≤

(
t∑
i=0

[
(i+ E)2

(t+ E − 1)2

]
γi

)
+

(E + 1)2

(t+ E − 1)2
E[‖w0 − w∗‖2]. (3.40)

Now, we substitute ηi ≤ α
µ(i+E) in γi and compute

(i+ E)2

(t+ E − 1)2
γi

=
(i+ E)2

(t+ E − 1)2
4ai(1 +

√
∆τ)D

α2

µ2
1

(i+ E)2
[Nτ + 2L2

i−1∑
j=i−τ

E[‖ŵj − w∗‖2]

+
(i+ E)2

(t+ E − 1)2
2ND

α2

µ2(i+ E)2
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=
α2D

µ2
1

(t+ E − 1)2

4ai(1 +
√

∆τ)[Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2] + 2N

 .
Substituting this in (3.40) proves the lemma.

As an immediate corollary we can apply the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 to

E[‖ŵt+1 − w∗‖2] to obtain

E[‖ŵt+1 − w∗‖2] ≤ 2E[‖ŵt+1 − wt+1‖2] + 2E[‖wt+1 − w∗‖2], (3.41)

which in turn can be bounded by the previous lemma together with Lemma 3.4.2:

E[‖ŵt+1 − w∗‖2]

≤ 2(1 +
√

∆τ)D
t∑

j=t+1−τ
η2j (2L

2E[‖ŵj − w∗‖2] +N)

+ 2
α2D

µ2
1

(t+ E − 1)2

 t∑
i=1

4ai(1 +
√

∆τ)[Nτ + 2L2
i−1∑
j=i−τ

E[‖ŵj − w∗‖2] + 2N


+

(E + 1)2

(t+ E − 1)2
E[‖w0 − w∗‖2].

Now assume a decreasing sequence Zt for which we want to prove that E[‖ŵt−w∗‖2] ≤ Zt

by induction in t. Then, the above bound can be used together with the property that Zt

and ηt are decreasing in t to show

t∑
j=t+1−τ

η2j (2L
2E[‖ŵj − w∗‖2] +N) ≤ τη2t−τ (2L2Zt+1−τ +N)

≤ 4τ
α2

µ2
1

(t+ E − 1)2
(2L2Zt+1−τ +N),

where the last inequality follows from (3.39), and

i−1∑
j=i−τ

E[‖ŵj − w∗‖2] ≤ τZi−τ .
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From these inequalities we infer

E[‖ŵt+1 − w∗‖2] ≤ 8(1 +
√

∆τ)τD
α2

µ2
1

(t+ E − 1)2
(2L2Zt+1−τ +N) +

2
α2D

µ2
1

(t+ E − 1)2

(
t∑
i=1

[
4ai(1 +

√
∆τ)[Nτ + 2L2τZi−τ ] + 2N

])
+

(E + 1)2

(t+ E − 1)2
E[‖w0 − w∗‖2]. (3.42)

Even if we assume a constant Z ≥ Z0 ≥ Z1 ≥ Z2 ≥ . . ., we can get a first bound on the

convergence rate of vectors ŵt: Substituting Z gives

E[‖ŵt+1 − w∗‖2] ≤ 8(1 +
√

∆τ)τD
α2

µ2
1

(t+ E − 1)2
(2L2Z +N) +

2
α2D

µ2
1

(t+ E − 1)2

(
t∑
i=1

[
4ai(1 +

√
∆τ)[Nτ + 2L2τZ] + 2N

])
+

(E + 1)2

(t+ E − 1)2
E[‖w0 − w∗‖2]. (3.43)

Since ai = (L+ µ)ηi + 2L2η2iD and ηi ≤ α
µ(i+E) , we have

t∑
i=1

ai = (L+ µ)

t∑
i=1

ηi + 2L2D

t∑
i=1

η2i

≤ (L+ µ)
t∑
i=1

α

µ(i+ E)
+ 2L2D

t∑
i=1

α2

µ2(i+ E)2

≤ (L+ µ)α

µ

t∑
i=1

1

i
+

2L2α2D

µ2

t∑
i=1

1

i2

≤ (L+ µ)α

µ
(1 + ln t) +

L2α2Dπ2

3µ2
, (3.44)

where the last inequality is a property of the harmonic sequence
∑t

i=1
1
i ≤ 1 + ln t and∑t

i=1
1
i2
≤
∑∞

i=1
1
i2

= π2

6 .

Substituting (3.44) in (3.43) and collecting terms yields

E[‖ŵt+1 − w∗‖2]

≤ 2α2D

µ2(t+ E − 1)2

(
2Nt+ 4(1 +

√
∆τ)τ [N + 2L2Z]

{
(L+ µ)α

µ
(1 + ln t) +

L2α2Dπ2

3µ2 + 1

})
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+
(E + 1)2

(t+ E − 1)2
E[‖w0 − w∗‖2]. (3.45)

Notice that the asymptotic behavior in t is dominated by the term

4α2DN

µ2
t

(t+ E − 1)2
.

If we define Zt+1 to be the right hand side of (3.45) and observe that this Zt+1 is decreasing

and a constant Z exists (since the terms with Z decrease much faster in t compared to

the dominating term), then this Zt+1 satisfies the derivations done above and a proof by

induction can be completed.

Our derivations prove our main result: The expected convergence rate of read vectors is

E[‖ŵt+1 − w∗‖2] ≤
4α2DN

µ2
t

(t+ E − 1)2
+O

(
ln t

(t+ E − 1)2

)
.

We can use this result in Lemma 3.4.5 in order to show that the expected convergence rate

E[‖wt+1 − w∗‖2] satisfies the same bound.

We remind the reader, that in the (t + 1)-th iteration at most ≤ d|Dξt |/De vector

positions are updated. Therefore the expected number of single vector entry updates is at

most ∆̄D/D.

Theorem 3.3.1. Suppose Assumptions 3.1.1, 3.2.1, 3.2.2 and 3.3.1 and consider Algo-

rithm 3. Let ηt = αt
µ(t+E) with 4 ≤ αt ≤ α and E = max{2τ, 4LαDµ }. Then, t′ = t∆̄D/D

is the expected number of single vector entry updates after t iterations and expectations

E[‖ŵt − w∗‖2] and E[‖wt − w∗‖2] are at most

4α2DN

µ2
t

(t+ E − 1)2
+O

(
ln t

(t+ E − 1)2

)
.

3.4.3 Convergence without Convexity of Component Functions

For the non-convex case, L in (3.31) must be replaced by Lκ and as a result L2 in Lemma

3.4.2 must be replaced by L2κ. Also L in (3.35) must be replaced by Lκ. We now require
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that ηt ≤ 1
4LκD so that −2ηt(1− 4LκηtD)[F (wt)− F (w∗)] ≤ 0. This leads to Lemma 3.4.3

where no changes are needed except requiring ηt ≤ 1
4LκD . The changes in Lemmas 3.4.2

and 3.4.3 lead to a Lemma 3.4.5 where we require E ≥ 4LκαD
µ and where in the bound of

the expectation L2 must be replaced by L2κ. This perculates through to inequality (3.45)

with a similar change finally leading to Theorem 3.3.2, i.e., Theorem 3.3.1 where we only

need to strengthen the condition on E to E ≥ 4LκαD
µ in order to remove Assumption 3.2.2.

3.4.4 Sensitivity to τ

What about the upper bound’s sensitivity with respect to τ? Suppose τ is not a constant

but an increasing function of t, which also makes E a function of t:

2LαD

µ
≤ τ(t) ≤ t and E(t) = 2τ(t).

In order to obtain a similar theorem we increase the lower bound on αt to

12 ≤ αt ≤ α.

This allows us to modify the proof of Lemma 3.4.5 where we analyse the product

t∏
j=i

(
1− µηj

2

)
.

Since αj ≥ 12 and E(j) = 2τ(j) ≤ 2j,

1− µηj
2

= 1− αj
2(j + E(j))

≤ 1− 12

2(j + 2j)
= 1− 2

j
≤ 1− 2

j + 1
.

The remaining part of the proof of Lemma 3.4.5 continues as before where constant E in

the proof is replaced by 1. This yields instead of (3.40)

E[‖wt+1 − w∗‖2] ≤

(
t∑
i=1

[
(i+ 1)2

t2

]
γi

)
+

4

t2
E[‖w0 − w∗‖2].
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We again substitute ηi ≤ α
µ(i+E(i)) in γi, realize that (i+1)

(i+E(i)) ≤ 1, and compute

(i+ 1)2

t2
γi =

(i+ 1)2

t2
4ai(1 +

√
∆τ(i))D

α2

µ2
1

(i+ E(i))2
[Nτ(i) + 2L2

i−1∑
j=i−τ(i)

E[‖ŵj − w∗‖2]

+
(i+ 1)2

t2
2ND

α2

µ2(i+ E(i))2

≤ α2D

µ2
1

t2

4ai(1 +
√

∆τ(i))[Nτ(i) + 2L2
i−1∑

j=i−τ(i)

E[‖ŵj − w∗‖2] + 2N

 .
This gives a new Lemma 3.4.5:

Lemma 3.4.6. Assume 2LαD
µ ≤ τ(t) ≤ t with τ(t) monotonic increasing. Let ηt = αt

µ(t+E(t))

with 12 ≤ αt ≤ α and E(t) = 2τ(t). Then, expectation E[‖wt+1 − w∗‖2] is at most

α2D

µ2
1

t2

 t∑
i=1

4ai(1 +
√

∆τ(i))[Nτ(i) + 2L2
i−1∑

j=i−τ(i)

E[‖ŵj − w∗‖2] + 2N


+

4

t2
E[‖w0 − w∗‖2],

where ai = (L+ µ)ηi + 2L2η2iD.

Now we can continue the same analysis that led to Theorem 3.3.1 and conclude that

there exists a constant Z such that, see (3.43),

E[‖ŵt+1 − w∗‖2] ≤ 8(1 +
√

∆τ(t))τ(t)D
α2

µ2
1

t2
(2L2Z +N) +

2
α2D

µ2
1

t2

(
t∑
i=1

[
4ai(1 +

√
∆τ(i))[Nτ(i) + 2L2τ(i)Z] + 2N

])
+

4

t2
E[‖w0 − w∗‖2]. (3.46)

Let us assume

τ(t) ≤
√
t · L(t), (3.47)

where

L(t) =
1

ln t
− 1

(ln t)2
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which has the property that the derivative of t/(ln t) is equal to L(t). Now we observe

t∑
i=1

aiτ(i)2 =
t∑
i=1

[(L+ µ)ηi + 2L2η2iD]τ(i)2 ≤
t∑
i=1

[(L+ µ)
α

µi
+ 2L2 α2

µ2i2
D] · iL(i)

=
(L+ µ)α

µ

t∑
i=1

L(i) +O(ln t) =
(L+ µ)α

µ

t

ln t
+O(ln t)

and

t∑
i=1

aiτ(i) =
t∑
i=1

[(L+ µ)ηi + 2L2η2iD]τ(i) ≤
t∑
i=1

[(L+ µ)
α

µi
+ 2L2 α2

µ2i2
D] ·
√
i)

= O(
t∑
i=1

1√
i
) = O(

√
t).

Substituting both inequalities in (3.46) gives

E[‖ŵt+1 − w∗‖2]

≤ 8(1 +
√

∆τ(t))τ(t)D
α2

µ2
1

t2
(2L2Z +N) +

2
α2D

µ2
1

t2

(
2Nt+ 4

√
∆[

(L+ µ)α

µ

t

ln t
+O(ln t)][N + 2L2Z] +O(

√
t)

)
+

4

t2
E[‖w0 − w∗‖2]

≤ 2
α2D

µ2
1

t2

(
2Nt+ 4

√
∆[(1 +

(L+ µ)α

µ
)
t

ln t
+O(ln t)][N + 2L2Z] +O(

√
t)

)
+

4

t2
E[‖w0 − w∗‖2] (3.48)

Again we define Zt+1 as the right hand side of this inequality. Notice that Zt = O(1/t),

since the above derivation proves

E[‖ŵt+1 − w∗‖2] ≤
4α2DN

µ2
1

t
+O(

1

t ln t
).

Summarizing we have the following main lemma:

Lemma 3.4.7. Let Assumptions 3.1.1, 3.2.1, 3.2.2 and 3.3.1 hold and consider Algo-

rithm 3. Assume 2LαD
µ ≤ τ(t) ≤

√
t · L(t) with τ(t) monotonic increasing. Let ηt =
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αt
µ(t+2τ(t)) with 12 ≤ αt ≤ α. Then, the expected convergence rate of read vectors is

E[‖ŵt+1 − w∗‖2] ≤
4α2DN

µ2
1

t
+O(

1

t ln t
),

where L(t) = 1
ln t −

1
(ln t)2

. The expected convergence rate E[‖wt+1−w∗‖2] satisfies the same

bound.

Notice that we can plug Zt = O(1/t) back into an equivalent of (3.42) where we may

bound Zi−τ(i) = O(1/(i − τ(i)) which replaces Z in the second line of (3.43). On careful

examination this leads to a new upper bound (3.48) where the 2L2Z terms gets absorped

in a higher order term. This can be used to show that, for

t ≥ T0 = exp[2
√

∆(1 +
(L+ µ)α

µ
)],

the higher order terms that contain τ(t) (as defined above) are at most the leading term as

given in Lemma 3.4.7.

Upper bound (3.48) also shows that, for

t ≥ T1 =
µ2

α2ND
‖w0 − w∗‖2,

the higher order term that contains ‖w0 − w∗‖2 is at most the leading term.

3.5 Numerical Experiments

For our numerical experiments, we consider the finite sum minimization problem in (3.2).

We consider `2-regularized logistic regression problems with

fi(w) = log(1 + exp(−yi〈xi, w〉)) +
λ

2
‖w‖2,

where the penalty parameter λ is set to 1/n, a widely-used value in literature [34].

We conducted experiments on a single core for Algorithm 3 on two popular datasets

ijcnn1 (n = 91, 701 training data) and covtype (n = 406, 709 training data) from the
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Figure 3.1: ijcnn1 for different fraction of non-zero set

Figure 3.2: ijcnn1 for different τ with the whole non-zero set

LIBSVM2 website. Since we are interested in the expected convergence rate with respect to

the number of iterations, respectively number of single position vector updates, we do not

need a parallelized multi-core simulation to confirm our analysis. The impact of efficient

resource scheduling over multiple cores leads to a performance improvement complemen-

tary to our analysis of (3.19) (which, as discussed, lends itself for an efficient parallelized

implementation). We experimented with 10 runs and reported the average results. We

choose the step size based on Theorem 3.3.1, i.e, ηt = 4
µ(t+E) and E = max{2τ, 16LDµ }.

For each fraction v ∈ {1, 3/4, 2/3, 1/2, 1/3, 1/4} we performed the following experiment: In

Algorithm 3 we choose each “filter” matrix Sξtut to correspond with a random subset of size

v|Dξt | of the non-zero positions of Dξt (i.e., the support of the gradient corresponding to

ξt). In addition we use τ = 10. For the two datasets, Figures 3.1 and 3.3 plot the training

loss for each fraction with τ = 10. The top plots have t′, the number of coordinate updates,

for the horizontal axis. The bottom plots have the number of epochs, each epoch counting

n iterations, for the horizontal axis. The results show that each fraction shows a sublinear

expected convergence rate of O(1/t′); the smaller fractions exhibit larger deviations but do

seem to converge faster to the minimum solution.

In Figures 3.2 and 3.4, we show experiments with different values of τ ∈ {1, 10, 100}
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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where we use the whole non-zero set of gradient positions (i.e., v = 1) for the update.

Our analysis states that, for t = 50 epochs times n iterations per epoch, τ can be as large

as
√
t · L(t) = 524 for ijcnn1 and 1058 for covtype. The experiments indeed show that

τ ≤ 100 has little effect on the expected convergence rate.

Figure 3.3: covtype for different fraction of non-zero set

Figure 3.4: covtype for different τ with the whole non-zero set

3.6 Conclusion

We have provided the analysis of stochastic gradient algorithms with a diminishing step

size in the strongly convex case under the condition of Lipschitz continuity of the individ-

ual function realizations, but without requiring any bounds on the stochastic gradients.

We showed almost sure convergence of SGD and provided sublinear upper bounds for the

expected convergence rate of a general recursion which includes Hogwild! for inconsistent

reads and writes as a special case. We also provided new intuition which will help under-

standing convergence as observed in practice.

102



Part III

SARAH Algorithm
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Chapter 4

SARAH for Convex Optimization

In this chapter, we propose the SARAH algorithm, as well as its practical variant SARAH+,

as a novel approach to the finite-sum minimization problems. Different from the vanilla

SGD 1 and other modern stochastic methods such as SVRG, S2GD, SAG and SAGA,

SARAH admits a simple recursive framework for updating stochastic gradient estimates;

when comparing to SAG/SAGA, SARAH does not require a storage of past gradients. The

linear convergence rate of SARAH is proven under a strong convexity assumption. We also

prove a linear convergence rate (in the strongly convex case) for an inner loop of SARAH,

a property that SVRG does not possess. Numerical experiments demonstrate the efficiency

of our algorithm.

4.1 Introduction

We are interested in solving a problem of the form

min
w∈Rd

 F (w)
def
=

1

n

∑
i∈[n]

fi(w)

 , (4.1)

where each fi, i ∈ [n]
def
= {1, . . . , n} is a convex function with a Lipschitz continuous gradient.

Throughout the chapter, we assume that there exists an optimal solution w∗ of (5.1).

1We mark here that even though stochastic gradient is referred to as SG in literature, the term stochastic
gradient descent (SGD) has been widely used in many important works of large-scale learning, including
SAG/SAGA, SDCA, SVRG and MISO.
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Problems of this type arise frequently in supervised learning applications [25]. Given

a training set {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R, the least squares regression model, for

example, is written as (5.1) with fi(w)
def
= (xTi w− yi)2 + λ

2‖w‖
2, where ‖ · ‖ denotes the `2-

norm. The `2-regularized logistic regression for binary classification is written with fi(w)
def
=

log(1 + exp(−yixTi w)) + λ
2‖w‖

2 (yi ∈ {−1, 1}).

In recent years, many advanced optimization methods have been developed for problem

(5.1). While the objective function is smooth and convex, the traditional optimization

methods, such as gradient descent (GD) or Newton method are often impractical for this

problem, when n – the number of training samples and hence the number of fi’s – is very

large. In particular, GD updates iterates as follows

wt+1 = wt − ηt∇F (wt), t = 0, 1, 2, . . . .

Under strong convexity assumption on F and with appropriate choice of ηt, GD converges

at a linear rate in terms of objective function values F (wt). However, when n is large,

computing ∇F (wt) at each iteration can be prohibitive.

As an alternative, stochastic gradient descent (SGD), originating from the seminal work

of Robbins and Monro in 1951 [66], has become the method of choice for solving (5.1). At

each step, SGD picks an index i ∈ [n] uniformly at random, and updates the iterate as

wt+1 = wt − ηt∇fi(wt), which is up-to n times cheaper than an iteration of a full gradient

method. The convergence rate of SGD is slower than that of GD, in particular, it is sublinear

in the strongly convex case. The tradeoff, however, is advantageous due to the tremendous

per-iteration savings and the fact that low accuracy solutions are sufficient. This trade-off

has been thoroughly analyzed in [11]. Unfortunately, in practice SGD method is often too

slow and its performance is too sensitive to the variance in the sample gradients ∇fi(wt).

Use of mini-batches (averaging multiple sample gradients ∇fi(wt)) was used in [70, 14, 77]

to reduce the variance and improve convergence rate by constant factors. Using diminishing

sequence {ηt} is used to control the variance [71, 13], but the practical convergence of SGD

is known to be very sensitive to the choice of this sequence, which needs to be hand-picked.

Recently, a class of more sophisticated algorithms have emerged, which use the specific
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Table 4.1: Comparisons between different algorithms for strongly convex functions. κ = L/µ is the
condition number.

Method Complexity
Fixed

Learning
Rate

Low
Storage

Cost

GD O (nκ log (1/ε)) " "

SGD O (1/ε) % "

SVRG O ((n+ κ) log (1/ε)) " "

SAG/SAGA O ((n+ κ) log (1/ε)) " %

SARAH O ((n+ κ) log (1/ε)) " "

Table 4.2: Comparisons between different algorithms for convex functions.

Method Complexity
GD O (n/ε)
SGD O

(
1/ε2

)
SVRG O (n+ (

√
n/ε))

SAGA O (n+ (n/ε))
SARAH O ((n+ (1/ε)) log(1/ε))

SARAH (one outer loop) O
(
n+ (1/ε2)

)
finite-sum form of (5.1) and combine some deterministic and stochastic aspects to reduce

variance of the steps. The examples of these methods are SAG/SAGA [34, 16], SDCA [72],

SVRG [28, 79], DIAG [46], MISO [42] and S2GD [32], all of which enjoy faster convergence

rate than that of SGD and use a fixed learning rate parameter η. In this chapter we

introduce a new method in this category, SARAH, which further improves several aspects

of the existing methods. In Table 5.1 we summarize complexity and some other properties of

the existing methods and SARAH when applied to strongly convex problems. Even though

SVRG seems competitive as SARAH, SARAH does have a practical variant introduced in

Section 4.4.

In addition, theoretical results for complexity of the methods or their variants when

applied to general convex functions have been derived [68, 16, 65, 6, 3]. In Table 4.2 we

summarize the key complexity results, noting that convergence rate is now sublinear.

Our Contributions. In this chapter, we propose a novel algorithm which combines some

of the good properties of existing algorithms, such as SAGA and SVRG, while aiming

to improve on both of these methods. In particular, our algorithm does not take steps

along a stochastic gradient direction, but rather along an accumulated direction using past

stochastic gradient information (as in SAGA) and occasional exact gradient information (as
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in SVRG). We summarize the key properties of the proposed algorithm below.

• Similarly to SVRG, SARAH’s iterations are divided into the outer loop where a full

gradient is computed and the inner loop where only stochastic gradient is computed.

Unlike the case of SVRG, the steps of the inner loop of SARAH are based on accu-

mulated stochastic information.

• Like SAG/SAGA and SVRG, SARAH has a sublinear rate of convergence for general

convex functions, and a linear rate of convergence for strongly convex functions.

• SARAH uses a constant learning rate, whose size is larger than that of SVRG. How-

ever, unlike SAG/SAGA but similar to SVRG, SARAH does not require a storage of

n past stochastic gradients.

• We also prove a linear convergence rate (in the strongly convex case) for the inner loop

of SARAH, the property that SVRG does not possess. We show that the variance of

the steps inside the inner loop goes to zero, thus SARAH is theoretically more stable

and reliable than SVRG.

• We provide a practical variant of SARAH based on the convergence properties of the

inner loop, where the simple stable stopping criterion for the inner loop is used (see

Section 4.4 for more details). This variant shows how SARAH can be made more

stable than SVRG in practice.

4.2 SARAH Algorithm

Now we are ready to present our SARAH algorithm (Algorithm 4).

The key step of the algorithm is a recursive update of the stochastic gradient estimate

(SARAH update)

vt = ∇fit(wt)−∇fit(wt−1) + vt−1, (4.2)

followed by the iterate update:

wt+1 = wt − ηvt. (4.3)
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Algorithm 4 SARAH

Parameters: the learning rate η > 0 and the inner loop size m.
Initialize: w̃0

Iterate:
for s = 1, 2, . . . do
w0 = w̃s−1
v0 = 1

n

∑n
i=1∇fi(w0)

w1 = w0 − ηv0
Iterate:
for t = 1, . . . ,m− 1 do

Sample it uniformly at random from [n]
vt = ∇fit(wt)−∇fit(wt−1) + vt−1
wt+1 = wt − ηvt

end for
Set w̃s = wt with t chosen uniformly at random from {0, 1, . . . ,m}

end for

For comparison, SVRG update can be written in a similar way as

vt = ∇fit(wt)−∇fit(w0) + v0. (4.4)

Observe that in SVRG, vt is an unbiased estimator of the gradient, while it is not true

for SARAH. Specifically, 2

E[vt|Ft] = ∇F (wt)−∇F (wt−1) + vt−1 6= ∇F (wt), (4.5)

where 3 Ft = σ(w0, i1, i2, . . . , it−1) is the σ-algebra generated by w0, i1, i2, . . . , it−1; F0 =

F1 = σ(w0). Hence, SARAH is different from SGD and SVRG type of methods, however,

the following total expectation holds,

E[vt] = E[∇F (wt)],

differentiating SARAH from SAG/SAGA.

SARAH is similar to SVRG [28] since they both contain outer loops which require one

full gradient evaluation per outer iteration followed by one full gradient descent step with

2 E[·|Ft] = Eit [·], which is expectation with respect to the random choice of index it (conditioned on
w0, i1, i2, . . . , it−1).

3Ft also contains all the information of w0, . . . , wt as well as v0, . . . , vt−1.
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a given learning rate. The difference lies in the inner loop, where SARAH updates the

stochastic step direction vt recursively by adding and subtracting component gradients to

and from the previous vt−1 (t ≥ 1) in (6.4). Each inner iteration evaluates 2 stochastic

gradients and hence the total work per outer iteration is O(n+m) in terms of the number

of gradient evaluations. Note that due to its nature, without running the inner loop, i.e.,

m = 1, SARAH reduces to the GD algorithm.

4.3 Theoretical Analysis

To proceed with the analysis of the proposed algorithm, we will make the following common

assumptions.

Assumption 4.3.1 (L-smooth). Each fi : Rd → R, i ∈ [n], is L-smooth, i.e., there exists

a constant L > 0 such that

‖∇fi(w)−∇fi(w′)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ Rd.

Note that this assumption implies that F (w) = 1
n

∑n
i=1 fi(w) is also L-smooth. The

following strong convexity assumption will be made for the appropriate parts of the analysis,

otherwise, it would be dropped.

Assumption 4.3.2a (µ-strongly convex). The function P : Rd → R, is µ-strongly convex,

i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w) ≥ F (w′) +∇F (w′)T (w − w′) +
µ

2
‖w − w′‖2.

Another, stronger, assumption of µ-strong convexity for (5.1) will also be imposed when

required in our analysis. Note that Assumption 4.3.2b implies Assumption 4.3.2a but not

vice versa.

Assumption 4.3.2b. Each function fi : Rd → R, i ∈ [n], is strongly convex with µ > 0.

Under Assumption 4.3.2a, let us define the (unique) optimal solution of (5.1) as w∗,
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Then strong convexity of F implies that

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2, ∀w ∈ Rd. (4.6)

We note here, for future use, that for strongly convex functions of the form (5.1), arising in

machine learning applications, the condition number is defined as κ
def
= L/µ. Furthermore,

we should also notice that Assumption 4.3.2a or 4.3.2b covers a wide range of problems,

e.g. l2-regularized empirical risk minimization problems with convex losses.

Finally, as a special case of the strong convexity of all fi’s with µ = 0, we state the

general convexity assumption, which we will use for convergence analysis.

Assumption 4.3.3. Each function fi : Rd → R, i ∈ [n], is convex, i.e.,

fi(w) ≥ fi(w′) +∇fi(w′)T (w − w′), ∀i ∈ [n].

Again, we note that Assumption 4.3.2b implies Assumption 4.3.3, but Assumption 4.3.2a

does not. Hence in our analysis, depending on the result we aim at, we will require Assump-

tion 4.3.3 to hold by itself, or Assumption 4.3.2a and Assumption 4.3.3 to hold together, or

Assumption 4.3.2b to hold by itself. We will always use Assumption 4.3.1.

Our iteration complexity analysis aims to bound the number of outer iterations T

(or total number of stochastic gradient evaluations) which is needed to guarantee that

‖∇F (wT )‖2 ≤ ε. In this case we will say that wT is an ε-accurate solution. However, as

is common practice for stochastic gradient algorithms, we aim to obtain the bound on the

number of iterations, which is required to guarantee the bound on the expected squared

norm of a gradient, i.e.,

E[‖∇F (wT )‖2] ≤ ε. (4.7)

We recall some useful existing results that are using in the proofs of this chaper.

Lemma 4.3.1 (Theorem 2.1.5 in [49]). Suppose that f is convex and L-smooth. Then, for

any w, w′ ∈ Rd,

f(w) ≤ f(w′) +∇f(w′)T (w − w′) +
L

2
‖w − w′‖2, (4.8)
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f(w) ≥ f(w′) +∇f(w′)T (w − w′) +
1

2L
‖∇f(w)−∇f(w′)‖2, (4.9)

(∇f(w)−∇f(w′))T (w − w′) ≥ 1

L
‖∇f(w)−∇f(w′)‖2. (4.10)

Note that (4.8) does not require the convexity of f .

Lemma 4.3.2 (Theorem 2.1.11 in [49]). Suppose that f is µ-strongly convex and L-smooth.

Then, for any w, w′ ∈ Rd,

(∇f(w)−∇f(w′))T (w − w′) ≥ µL

µ+ L
‖w − w′‖2 +

1

µ+ L
‖∇f(w)−∇f(w′)‖2. (4.11)

4.3.1 Linearly Diminishing Step-Size in a Single Inner Loop

The most important property of the SVRG algorithm is the variance reduction of the steps.

This property holds as the number of outer iteration grows, but it does not hold, if only

the number of inner iterations increases. In other words, if we simply run the inner loop for

many iterations (without executing additional outer loops), the variance of the steps does

not reduce in the case of SVRG, while it goes to zero in the case of SARAH. To illustrate

this effect, let us take a look at Figures 4.1 and 4.2.

In Figure 4.1, we applied one outer loop of SVRG and SARAH to a sum of 5 quadratic

functions in a two-dimensional space, where the optimal solution is at the origin, the black

lines and black dots indicate the trajectory of each algorithm and the red point indicates

the final iterate. Initially, both SVRG and SARAH take steps along stochastic gradient di-

rections towards the optimal solution. However, later iterations of SVRG wander randomly

around the origin with large deviation from it, while SARAH follows a much more stable

convergent trajectory, with a final iterate falling in a small neighborhood of the optimal

solution.

In Figure 4.2, the x-axis denotes the number of effective passes which is equivalent to the

number of passes through all of the data in the dataset, the cost of each pass being equal

to the cost of one full gradient evaluation; and y-axis represents ‖vt‖2. Figure 4.2 shows

the evolution of ‖vt‖2 for SARAH, SVRG, SGD+ (SGD with decreasing learning rate) and

FISTA (an accelerated version of GD [8]) with m = 4n, where the left plot shows the trend
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A Simple Example with SVRG
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A Simple Example with SARAH

x
1

-600 -400 -200 0 200 400 600

x
2

-600

-400

-200

0

200

400

600

Figure 4.1: A two-dimensional example of minw F (w) with n = 5 for SVRG (left) and SARAH
(right).
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Figure 4.2: An example of `2-regularized logistic regression on rcv1 training dataset for SARAH,
SVRG, SGD+ and FISTA with multiple outer iterations (left) and a single outer iteration (right).
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over multiple outer iterations and the right plot shows a single outer iteration4. We can see

that for SVRG, ‖vt‖2 decreases over the outer iterations, while it has an increasing trend

or oscillating trend for each inner loop. In contrast, SARAH enjoys decreasing trends both

in the outer and the inner loop iterations.

We will now show that the stochastic steps computed by SARAH converge linearly

in the inner loop. We present two linear convergence results based on our two different

assumptions of µ-strong convexity. These results substantiate our conclusion that SARAH

uses more stable stochastic gradient estimates than SVRG. The following theorem is our

first result to demonstrate the linear convergence of our stochastic recursive step vt.

Theorem 4.3.1a. Suppose that Assumptions 4.3.1, 4.3.2a and 4.3.3 hold. Consider vt

defined by (6.4) in SARAH (Algorithm 4) with η < 2/L. Then, for any t ≥ 1,

E[‖vt‖2] ≤
[
1−

(
2

ηL
− 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2

ηL
− 1

)
µ2η2

]t
E[‖∇F (w0)‖2].

Proof. For t ≥ 1, we have

‖∇F (wt)−∇F (wt−1)‖2 =
∥∥∥ 1

n

n∑
i=1

[∇fi(wt)−∇fi(wt−1)]
∥∥∥2

≤ 1

n

n∑
i=1

‖∇fi(wt)−∇fi(wt−1)‖2

= E[‖∇fit(wt)−∇fit(wt−1)‖2|Ft]. (4.12)

Using the proof of Lemma 4.3.5, for t ≥ 1, we have

E[‖vt‖2|Ft] ≤ ‖vt−1‖2 +

(
1− 2

ηL

)
E[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]

(6.19)

≤ ‖vt−1‖2 +

(
1− 2

ηL

)
‖∇F (wt)−∇F (wt−1)‖2

≤ ‖vt−1‖2 +

(
1− 2

ηL

)
µ2η2‖vt−1‖2.

4In the plots of Figure 4.2, since the data for SVRG is noisy, we smooth it by using moving average filters
with spans 100 for the left plot and 10 for the right one.
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Note that 1− 2
ηL < 0 since η < 2/L. The last inequality follows by the strong convexity

of F , that is, µ‖wt −wt−1‖ ≤ ‖∇F (wt)−∇F (wt−1)‖ and the fact that wt = wt−1 − ηvt−1.

By taking the expectation and applying recursively, we have

E[‖vt‖2] ≤
[
1−

(
2

ηL
− 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2

ηL
− 1

)
µ2η2

]t
E[‖v0‖2]

=

[
1−

(
2

ηL
− 1

)
µ2η2

]t
E[‖∇F (w0)‖2].

This result implies that by choosing η = O(1/L), we obtain the linear convergence of

‖vt‖2 in expectation with the rate (1 − 1/κ2). Below we show that a better convergence

rate can be obtained under a stronger convexity assumption.

Theorem 4.3.1b. Suppose that Assumptions 4.3.1 and 4.3.2b hold. Consider vt defined

by (6.4) in SARAH (Algorithm 4) with η ≤ 2/(µ+ L). Then the following bound holds,

E[‖vt‖2] ≤
(

1− 2µLη

µ+ L

)
E[‖vt−1‖2], ∀ t ≥ 1,

and hence,

E[‖vt‖2] ≤
(

1− 2µLη

µ+ L

)t
E[‖∇F (w0)‖2], ∀ t ≥ 1.

Proof. We obviously have E[‖v0‖2|F0] = ‖∇F (w0)‖2. For t ≥ 1, we have

E[‖vt‖2|Ft]
(6.4)
= E[‖vt−1 − (∇fit(wt−1)−∇fit(wt))‖2|Ft]

(6.5)
= ‖vt−1‖2 + E[‖∇fit(wt−1)−∇fit(wt)‖2

− 2

η
(∇fit(wt−1)−∇fit(wt))T (wt−1 − wt)|Ft]

(6.12)

≤ ‖vt−1‖2 −
2µLη

µ+ L
‖vt−1‖2 + E[‖∇fit(wt−1)

−∇fit(wt)‖2|Ft]−
2

η
· 1

µ+ L
E[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]
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= (1− 2µLη

µ+ L
)‖vt−1‖2 + (1− 2

η
· 1

µ+ L
)E[‖∇fit(wt−1)−∇fit(wt)‖2|Ft]

≤
(

1− 2µLη

µ+ L

)
‖vt−1‖2, (4.13)

where in last inequality we have used that η ≤ 2/(µ + L). By taking the expectation and

applying recursively, the desired result is achieved.

Again, by setting η = O(1/L), we derive the linear convergence with the rate of (1−1/κ),

which is a significant improvement over the result of Theorem 4.3.1a, when the problem is

severely ill-conditioned.

4.3.2 Convergence Analysis

In this section, we derive the general convergence rate results for Algorithm 4. First, we

present two important Lemmas as the foundation of our theory. Then, we proceed to provide

the sublinear convergence in a single outer iteration for the general convex functions. In the

end, we show a competitive linear convergence for the strongly convex case with multiple

outer iterations.

We begin with proving two useful lemmas that do not require any convexity assumption.

The first Lemma 4.3.3 bounds the sum of expected values of ‖∇F (wt)‖2. The second,

Lemma 4.3.4, bounds E[‖∇F (wt)− vt‖2].

Lemma 4.3.3. Suppose that Assumption 4.3.1 holds. Consider SARAH (Algorithm 4).

Then, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2].

(4.14)

Proof. By Assumption 4.3.1 and wt+1 = wt − ηvt, we have

E[F (wt+1)]
(4.8)

≤ E[F (wt)]− ηE[∇F (wt)
T vt] +

Lη2

2
E[‖vt‖2]

= E[F (wt)]−
η

2
E[‖∇F (wt)‖2] +

η

2
E[‖∇F (wt)− vt‖2]−

(
η

2
− Lη2

2

)
E[‖vt‖2],
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where the last equality follows from the fact aT b = 1
2

[
‖a‖2 + ‖b‖2 − ‖a− b‖2

]
.

By summing over t = 0, . . . ,m, we have

E[F (wm+1)] ≤ E[F (w0)]−
η

2

m∑
t=0

E[‖∇F (wt)‖2] +
η

2

m∑
t=0

E[‖∇F (wt)− vt‖2]

−
(
η

2
− Lη2

2

) m∑
t=0

E[‖vt‖2],

which is equivalent to (η > 0):

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (wm+1)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]

− (1− Lη)
m∑
t=0

E[‖vt‖2]

≤ 2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2],

where the last inequality follows since w∗ is a global minimizer of F .

Lemma 4.3.4. Suppose that Assumption 4.3.1 holds. Consider vt defined by (6.4) in

SARAH (Algorithm 4). Then for any t ≥ 1,

E[‖∇F (wt)− vt‖2] =

t∑
j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

Proof. Note that Fj contains all the information of w0, . . . , wj as well as v0, . . . , vj−1. For

j ≥ 1, we have

E[‖∇F (wj)− vj‖2|Fj ]

= E[‖[∇F (wj−1)− vj−1] + [∇F (wj)−∇F (wj−1)]− [vj − vj−1]‖2|Fj ]

= ‖∇F (wj−1)− vj−1‖2 + ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ]

+ 2(∇F (wj−1)− vj−1)T (∇F (wj)−∇F (wj−1))

− 2(∇F (wj−1)− vj−1)TE[vj − vj−1|Fj ]

− 2(∇F (wj)−∇F (wj−1))
TE[vj − vj−1|Fj ]

116



= ‖∇F (wj−1)− vj−1‖2 − ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ],

where the last equality follows from

E[vj − vj−1|Fj ]
(6.4)
= E[∇fij (wj)−∇fij (wj−1)|Fj ] = ∇F (wj)−∇F (wj−1).

By taking expectation for the above equation, we have

E[‖∇F (wj)− vj‖2]

= E[‖∇F (wj−1)− vj−1‖2]− E[‖∇F (wj)−∇F (wj−1)‖2] + E[‖vj − vj−1‖2].

Note that ‖∇F (w0)− v0‖2 = 0. By summing over j = 1, . . . , t (t ≥ 1), we have

E[‖∇F (wt)− vt‖2] =

t∑
j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

Now we are ready to provide the main theoretical results for SARAH.

General Convex Case

Following from Lemma 4.3.4, we can obtain the following upper bound for E[‖∇F (wt)−vt‖2]

for convex functions fi, i ∈ [n].

Lemma 4.3.5. Suppose that Assumptions 4.3.1 and 4.3.3 hold. Consider vt defined as

(6.4) in SARAH (Algorithm 4) with η < 2/L. Then we have that for any t ≥ 1,

E[‖∇F (wt)− vt‖2] ≤
ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
≤ ηL

2− ηL
E[‖v0‖2]. (4.15)

Proof. For j ≥ 1, we have

E[‖vj‖2|Fj ]
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= E[‖vj−1 − (∇fij (wj−1)−∇fij (wj))‖2|Fj ]

= ‖vj−1‖2 + E
[
‖∇fij (wj−1)−∇fij (wj)‖2 −

2

η
(∇fij (wj−1)−∇fij (wj))T (wj−1 − wj)|Fj

]
(4.10)

≤ ‖vj−1‖2 + E
[
‖∇fij (wj−1)−∇fij (wj)‖2 −

2

Lη
‖∇fij (wj−1)−∇fij (wj)‖2|Fj

]
= ‖vj−1‖2 +

(
1− 2

ηL

)
E[‖∇fij (wj−1)−∇fij (wj)‖2|Fj ]

(6.4)
= ‖vj−1‖2 +

(
1− 2

ηL

)
E[‖vj − vj−1‖2|Fj ],

which, if we take expectation, implies that

E[‖vj − vj−1‖2] ≤
ηL

2− ηL

[
E[‖vj−1‖2]− E[‖vj‖2]

]
,

when η < 2/L.

By summing the above inequality over j = 1, . . . , t (t ≥ 1), we have

t∑
j=1

E[‖vj − vj−1‖2] ≤
ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
. (4.16)

By Lemma 4.3.4, we have

E[‖∇F (wt)− vt‖2] ≤
t∑

j=1

E[‖vj − vj−1‖2]
(6.23)

≤ ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
.

Using the above lemmas, we can state and prove one of our core theorems as follows.

Theorem 4.3.2. Suppose that Assumptions 4.3.1 and 4.3.3 hold. Consider SARAH (Al-

gorithm 4) with η ≤ 1/L. Then for any s ≥ 1, we have

E[‖∇F (w̃s)‖2] ≤
2

η(m+ 1)
E[P (w̃s−1)− F (w∗)] +

ηL

2− ηL
E[‖∇P (w̃s−1)‖2]. (4.17)

Proof. Since v0 = ∇F (w0) implies ‖∇F (w0)− v0‖2 = 0 then by Lemma 4.3.5, we can write

m∑
t=0

E[‖∇F (wt)− vt‖2] ≤
mηL

2− ηL
E[‖v0‖2]. (4.18)
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Hence, by Lemma 4.3.3 with η ≤ 1/L, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]

(6.26)

≤ 2

η
E[F (w0)− F (w∗)] +

mηL

2− ηL
E[‖v0‖2]. (4.19)

Since we are considering one outer iteration, with s ≥ 1, then we have v0 = ∇F (w0) =

∇P (w̃s−1) (since w0 = w̃s−1), and w̃s = wt, where t is picked uniformly at random from

{0, 1, . . . ,m}. Therefore, the following holds,

E[‖∇F (w̃s)‖2] =
1

m+ 1

m∑
t=0

E[‖∇F (wt)‖2]

(6.27)

≤ 2

η(m+ 1)
E[P (w̃s−1)− F (w∗)] +

ηL

2− ηL
E[‖∇P (w̃s−1)‖2].

Theorem 4.3.2, in the case when η ≤ 1/L implies that

E[‖∇F (w̃s)‖2] ≤
2

η(m+ 1)
E[P (w̃s−1)− F (w∗)] + ηLE[‖∇P (w̃s−1)‖2].

By choosing the learning rate η =
√

2
L(m+1) (with m such that

√
2

L(m+1) ≤ 1/L) we can

derive the following convergence result,

E[‖∇F (w̃s)‖2] ≤
√

2L

m+ 1
E[P (w̃s−1)− F (w∗) + ‖∇P (w̃s−1)‖2].

Clearly, this result shows a sublinear convergence rate for SARAH under general convexity

assumption within a single inner loop, with increasing m, and consequently, we have the

following result for complexity bound.

Corollary 4.3.1. Suppose that Assumptions 4.3.1 and 4.3.3 hold. Consider SARAH (Algo-

rithm 4) within a single outer iteration with the learning rate η =
√

2
L(m+1) where m ≥ 2L−1

is the total number of iterations, then ‖∇F (wt)‖2 converges sublinearly in expectation with a

rate of
√

2L
m+1 , and therefore, the total complexity to achieve an ε-accurate solution defined
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Figure 4.3: Theoretical comparisons of learning rates (left) and convergence rates (middle and right)
with n = 1, 000, 000 for SVRG and SARAH in one inner loop.

in (6.6) is O(n+ 1/ε2).

We now turn to estimating convergence of SARAH with multiple outer steps. Simply

using Theorem 4.3.2 for each of the outer steps we have the following lemma.

Theorem 4.3.3. Suppose that Assumptions 4.3.1 and 4.3.3 hold. Consider SARAH (Al-

gorithm 4) and define

δk =
2

η(m+ 1)
E[F (w̃k)− F (w∗)], k = 0, 1, . . . , s− 1,

and δ = max0≤k≤s−1 δk. Then we have

E[‖∇F (w̃s)‖2]−∆ ≤ αs(‖∇F (w̃0)‖2 −∆), (4.20)

where ∆ = δ
(

1 + ηL
2(1−ηL)

)
, and α = ηL

2−ηL .

Proof. By Theorem 4.3.2, we have

E[‖∇F (w̃s)‖2] ≤
2

η(m+ 1)
E[F (w̃s−1)− F (w∗)] +

ηL

2− ηL
E[‖∇F (w̃s−1)‖2]

= δs−1 + αE[‖∇F (w̃s−1)‖2]

≤ δs−1 + αδs−2 + · · ·+ αs−1δ0 + αs‖∇F (w̃0)‖2

≤ δ + αδ + · · ·+ αs−1δ + αs‖∇F (w̃0)‖2

≤ δ1− αs

1− α
+ αs‖∇F (w̃0)‖2

= ∆(1− αs) + αs‖∇F (w̃0)‖2

= ∆ + αs(‖∇F (w̃0)‖2 −∆),
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where the second last equality follows since

δ

1− α
= δ

(
2− ηL
2− 2ηL

)
= δ

(
1 +

ηL

2(1− ηL)

)
= ∆.

Hence, the desired result is achieved.

Based on Theorem 4.3.3, we have the following total complexity for SARAH in the

general convex case.

Corollary 4.3.2. Let us choose ∆ = ε/4, α = 1/2 (with η = 2/(3L)), and m = O(1/ε)

in Theorem 4.3.3. Then, the total complexity to achieve an ε-accuracy solution defined in

(6.6) is O((n+ (1/ε)) log(1/ε)).

Proof. Based on Theorem 4.3.3, if we would aim for an ε-accuracy solution, we can choose

∆ = ε/4 and α = 1/2 (with η = 2/(3L)). To obtain the convergence to an ε-accuracy

solution, we need to have δ = O(ε), or equivalently, m = O(1/ε). Then we have

E[‖∇F (w̃s)‖2]
(4.20)

≤ ∆

2
+

1

2
E[‖∇F (w̃s−1)‖2]

≤ ∆

2
+

∆

22
+

1

22
E[‖∇F (w̃s−2)‖2]

≤ ∆

(
1

2
+

1

22
+ · · ·+ 1

2s

)
+

1

2s
‖∇F (w̃0)‖2

≤ ∆ +
1

2s
‖∇F (w̃0)‖2.

To guarantee that E[‖∇F (w̃s)‖2] ≤ ε, it is sufficient to make 1
2s ‖∇F (w̃0)‖2 ≤ 3

4ε, or

s = O(log(1/ε)). This implies the total complexity to achieve an ε-accuracy solution is

(n+ 2m)s = O((n+ (1/ε)) log(1/ε)).

Strongly Convex Case

We now turn to the discussion of the linear convergence rate of SARAH under the strong

convexity assumption on F . From Theorem 4.3.2, for any s ≥ 1, using property (6.8) of the

µ-strongly convex F , we have

E[‖∇F (w̃s)‖2] ≤
2

η(m+ 1)
E[P (w̃s−1)− F (w∗)] +

ηL

2− ηL
E[‖∇P (w̃s−1)‖2]

121



(6.8)

≤
(

1

µη(m+ 1)
+

ηL

2− ηL

)
E[‖∇P (w̃s−1)‖2],

and equivalently,

E[‖∇F (w̃s)‖2] ≤ σm E[‖∇P (w̃s−1)‖2]. (4.21)

If we define

σm
def
=

1

µη(m+ 1)
+

ηL

2− ηL
. (4.22)

Then by choosing η and m such that σm < 1, and applying (4.21) recursively, we are able

to reach the following convergence result.

Theorem 4.3.4. Suppose that Assumptions 4.3.1, 4.3.2a and 4.3.3 hold. Consider SARAH

(Algorithm 4) with the choice of η and m such that

σm
def
=

1

µη(m+ 1)
+

ηL

2− ηL
< 1. (4.23)

Then, we have

E[‖∇F (w̃s)‖2] ≤ (σm)s‖∇F (w̃0)‖2.

Remark 4.3.1. Theorem 4.3.4 implies that any η < 1/L will work for SARAH. Let us

compare our convergence rate to that of SVRG. The linear rate of SVRG, as presented in

[28], is given by

αm =
1

µη(1− 2Lη)m
+

2ηL

1− 2ηL
< 1.

We observe that it implies that the learning rate has to satisfy η < 1/(4L), which is a tighter

restriction than η < 1/L required by SARAH. In addition, with the same values of m and

η, the rate or convergence of (the outer iterations) of SARAH is always smaller than that

of SVRG.

σm =
1

µη(m+ 1)
+

ηL

2− ηL
=

1

µη(m+ 1)
+

1

2/(ηL)− 1
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<
1

µη(1− 2Lη)m
+

1

0.5/(ηL)− 1
= αm.

Remark 4.3.2. To further demonstrate the better convergence properties of SARAH, let

us consider following optimization problem

min
0<η<1/L

σm, min
0<η<1/4L

αm,

which can be interpreted as the best convergence rates for different values of m, for both

SARAH and SVRG. After simple calculations, we plot both learning rates and the corre-

sponding theoretical rates of convergence, as shown in Figure 4.3, where the right plot is a

zoom-in on a part of the middle plot. The left plot shows that the optimal learning rate for

SARAH is significantly larger than that of SVRG, while the other two plots show significant

improvement upon outer iteration convergence rates for SARAH over SVRG.

Based on Theorem 4.3.4, we are able to derive the following total complexity for SARAH

in the strongly convex case.

Corollary 4.3.3. Fix ε ∈ (0, 1), and let us run SARAH with η = 1/(2L) and m = 4.5κ for

T iterations where T = dlog(‖∇F (w̃0)‖2/ε)/ log(9/7)e, then we can derive an ε-accuracy

solution defined in (6.6). Furthermore, we can obtain the total complexity of SARAH, to

achieve the ε-accuracy solution, as O ((n+ κ) log(1/ε)) .

Proof. Based on Theorem 4.3.4, let us run SARAH with η = 1/(2L) and m = 4.5κ, then

we can calculate σm in (4.23) as

σm =
1

µη(m+ 1)
+

ηL

2− ηL
=

1

[µ/(2L)](4.5κ+ 1)
+

1/2

2− 1/2
<

4

9
+

1

3
=

7

9
.

According to Theorem 4.3.4, if we run SARAH for T iterations where

T = dlog(‖∇F (w̃0)‖2/ε)/ log(9/7)e = dlog7/9(ε/‖∇F (w̃0)‖2)e ≥ log7/9(ε/‖∇F (w̃0)‖2),
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then we have

E[‖∇F (w̃T )‖2] ≤ (σm)T ‖∇F (w̃0)‖2 < (7/9)T ‖∇F (w̃0)‖2

≤ (7/9)log7/9(ε/‖∇F (w̃0)‖2)‖∇F (w̃0)‖2 = ε,

thus we can derive (6.6). If we consider the number of gradient evaluations as the main

computational complexity, then the total complexity can be obtained as

(n+ 2m)T = O ((n+ κ) log(1/ε)) .

4.4 A Practical Variant

While SVRG is an efficient variance-reducing stochastic gradient method, one of its main

drawbacks is the sensitivity of the practical performance with respect to the choice of m.

It is know that m should be around O(κ),5 while it still remains unknown that what the

exact best choice is. In this section, we propose a practical variant of SARAH as SARAH+

(Algorithm 5), which provides an automatic and adaptive choice of the inner loop size m.

Guided by the linear convergence of the steps in the inner loop, demonstrated in Figure 4.2,

we introduce a stopping criterion based on the values of ‖vt‖2 while upper-bounding the

total number of steps by a large enough m for robustness. The other modification compared

to Algorithm 4 is the more practical choice w̃s = wt, where t is the last index of the particular

inner loop, instead of randomly selected intermediate index.

Different from SARAH, SARAH+ provides a possibility of earlier termination and un-

necessary careful choices of m, and it also covers the classical gradient descent when we

set γ = 1 (since the while loop does not proceed). In Figure 4.4 we present the numerical

performance of SARAH+ with different γs on rcv1 and news20 datasets. The size of the

inner loop provides a trade-off between the fast sub-linear convergence in the inner loop

5 In practice, when n is large, F (w) is often considered as a regularized Empirical Loss Minimization
problem with regularization parameter µ = 1

n
, then κ ∼ O(n).
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Algorithm 5 SARAH+

Parameters: the learning rate η > 0, 0 < γ ≤ 1 and the maximum inner loop size m.
Initialize: w̃0

Iterate:
for s = 1, 2, . . . do
w0 = w̃s−1
v0 = 1

n

∑n
i=1∇fi(w0)

w1 = w0 − ηv0
t = 1
while ‖vt−1‖2 > γ‖v0‖2 and t < m do

Sample it uniformly at random from [n]
vt = ∇fit(wt)−∇fit(wt−1) + vt−1
wt+1 = wt − ηvt
t = t+ 1

end while
Set w̃s = wt

end for

and linear convergence in the outer loop. From the results, it appears that γ = 1/8 is the

optimal choice. With a larger γ, i.e. γ > 1/8, the iterates in the inner loop do not pro-

vide sufficient reduction, before another full gradient computation is required, while with

γ < 1/8 an unnecessary number of inner steps is performed without gaining substantial

progress. Clearly γ is another parameter that requires tuning, however, in our experiments,

the performance of SARAH+ has been very robust with respect to the choices of γ and did

not vary much from one data set to another.

Similar to SVRG, SARAH+ has ‖vt‖2 decreasing in outer iterations. However, SARAH+

also inherits from SARAH the consistent decreasing of ‖vt‖2 in expectation in inner loops.

It is rather impossible to apply the similar trick to SVRG, as ‖vt‖2 of SVRG is increasing

in each inner loop and the trend is irregular with high fluctuations in later iterations as

shown in Figure 4.2.

4.5 Numerical Experiments

To support the theoretical analyses and insights, we present our empirical experiments,

comparing SARAH and SARAH+ with the state-of-the-art first-order methods for `2-
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Figure 4.4: An example of `2-regularized logistic regression on rcv1 (left) and news20 (right) training
datasets for SARAH+ with different γs on loss residuals F (w)− F (w∗).

Table 4.3: Summary of datasets used for experiments.

Dataset d n (train) Sparsity n (test) L

covtype 54 406,709 22.12% 174,303 1.90396
ijcnn1 22 91, 701 59.09% 49, 990 1.77662
news20 1,355,191 13, 997 0.03375% 5, 999 0.2500
rcv1 47,236 677,399 0.1549% 20,242 0.2500

regularized logistic regression problems with

fi(w) = log(1 + exp(−yixTi w)) +
λ

2
‖w‖2,

on datasets covtype, ijcnn1, news20 and rcv1 6. For ijcnn1 and rcv1 we use the predefined

testing and training sets, while covtype and news20 do not have test data, hence we ran-

domly split the datasets with 70% for training and 30% for testing. Some statistics of the

datasets are summarized in Table 4.3.

The penalty parameter λ is set to 1/n as is common practice [34]. Note that like

SVRG/S2GD and SAG/SAGA, SARAH also allows an efficient sparse implementation

named “lazy updates” [31]. We conduct and compare numerical results of SARAH with

SVRG, SAG, SGD+ and FISTA. SVRG [28] and SAG [34] are classic modern stochastic

methods. SGD+ is SGD with decreasing learning rate η = η0/(k + 1) where k is the num-

ber of effective passes and η0 is some initial constant learning rate. FISTA [8] is the Fast

Iterative Shrinkage-Thresholding Algorithm, well-known as an efficient accelerated version

of the gradient descent. Even though for each method, there is a theoretical safe learning

rate, we compare the results for the best learning rates in hindsight.

6All datasets are available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Figure 4.5: Comparisons of loss residuals F (w)−F (w∗) (top) and test errors (bottom) from different
modern stochastic methods on covtype, ijcnn1, news20 and rcv1.
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Table 4.4: Summary of best parameters for all the algorithms on different datasets.

Dataset
SARAH
(m∗, η∗)

SVRG
(m∗, η∗)

SAG (η∗)
SGD+
(η∗)

FISTA
(η∗)

covtype
(2n,

0.9/L)
(n,

0.8/L)
0.3/L 0.06/L 50/L

ijcnn1
(0.5n,
0.8/L)

(n,
0.5/L)

0.7/L 0.1/L 90/L

news20
(0.5n,
0.9/L)

(n,
0.5/L)

0.1/L 0.2/L 30/L

rcv1
(0.7n,
0.7/L)

(0.5n,
0.9/L)

0.1/L 0.1/L 120/L

Figure 4.5 shows numerical results in terms of loss residuals (top) and test errors (bot-

tom) on the four datasets, SARAH is sometimes comparable or a little worse than other

methods at the beginning. However, it quickly catches up to or surpasses all other methods,

demonstrating a faster rate of decrease across all experiments. We observe that on covtype

and rcv1, SARAH, SVRG and SAG are comparable with some advantage of SARAH on

covtype. On ijcnn1 and news20, SARAH and SVRG consistently surpass the other methods.

In particular, to validate the efficiency of our practical variant SARAH+, we provide an

insight into how important the choices of m and η are for SVRG and SARAH in Table 5.2

and Figure 4.6. Table 5.2 presents the optimal choices of m and η for each of the algorithm,

while Figure 4.6 shows the behaviors of SVRG and SARAH with different choices of m for

covtype and ijcnn1, where m∗s denote the best choices. In Table 5.2, the optimal learning

rates of SARAH vary less among different datasets compared to all the other methods and

they fall within the learning rate limit of SARAH (1/L); on the contrary, other methods

can vary beyond the limits (SVRG with 1/(4L), SAG with 1/(16L), FISTA with 1/L) for

different datasets ; the empirical studies suggest that it is much easier to tune and find the

ideal learning rate for SARAH. As observed in Figure 4.6, the behaviors of both SARAH

and SVRG are quite sensitive to the choices of m. With improper choices of m, the loss

residuals can be increased considerably from 10−15 to 10−3 on both covtype in 40 effective

passes and ijcnn1 in 17 effective passes for SARAH/SVRG.

4.6 Conclusion

We propose a new variance reducing stochastic recursive gradient algorithm SARAH, which

combines some of the properties of well known existing algorithms, such as SAGA and
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Figure 4.6: Comparisons of loss residuals F (w) − F (w∗) for different inner loop sizes with SVRG
(top) and SARAH (bottom) on covtype and ijcnn1.

SVRG. For smooth convex functions, we show a sublinear convergence rate, while for

strongly convex cases, we prove the linear convergence rate and the computational complex-

ity as those of SVRG and SAG. However, compared to SVRG, SARAH’s convergence rate

constant is smaller and the algorithms is more stable both theoretically and numerically.

Additionally, we prove the linear convergence for inner loops of SARAH which support the

claim of stability. Based on this convergence we derive a practical version of SARAH, with

a simple stopping criterion for the inner loops.
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Chapter 5

SARAH for Nonconvex

Optimization

In this chapter, we study and analyze a mini-batch version of the SARAH algorithm, a

method employing stochastic recursive gradients, for solving empirical loss minimization

for the case of nonconvex losses. We provide a sublinear convergence rate (to stationary

points) for general nonconvex functions and a linear convergence rate for gradient domi-

nated functions, both of which have some advantages compared to other modern stochastic

gradient algorithms for nonconvex losses.

5.1 Introduction

We are interested in the following finite-sum minimization problem

min
w∈Rd

F (w)
def
=

1

n

∑
i∈[n]

fi(w)

 , (5.1)

where each fi, i ∈ [n]
def
= {1, . . . , n}, is smooth but can be nonconvex, and F is also not

necessarily convex. Throughout the chapter, we assume that there exists a global optimal

solution w∗ of (5.1); in other words, there exists a lower bound F (w∗) of (5.1), however

we do not assume the knowledge of this bound and we do not seek convergence to w∗, in

general.
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Problems of form (5.1) cover a wide range of convex and nonconvex problems including

but not limited to logistic regression, multi-kernel learning, conditional random fields, neural

networks, etc. In many of these applications, the number n of individual components is very

large, which makes the exact computation of F (w) and its derivatives and thus the use of

gradient descent (GD) [57] to solve (5.1) expensive.

A traditional approach is to employ stochastic gradient descent (SGD) [66, 71]. Re-

cently, a large number of improved variants of stochastic gradient algorithms have emerged,

including SAG/SAGA [68, 16], MISO/FINITO [43, 17], SDCA [72], SVRG/S2GD [28, 31],

SARAH [51] 1. While, nonconvex problems of the form (5.1) are now widely used due

to the recent interest in deep neural networks, the majority of methods are designed and

analyzed for the convex/strongly convex cases. Limited results have been developed for

the nonconvex problems [65, 5, 4], in particular, [65, 5] introduce nonconvex SVRG, and

Natasha [4] is a new algorithm but a variant of SVRG for nonconvex optimization.

In this chapter we develop convergence rate analysis of a mini-batch variant SARAH

for nonconvex problems of the form (5.1). SARAH has been introduced in [51] and shown

to have a sublinear rate of convergence for general convex functions, and a linear rate of

convergence for strongly convex functions. As the SVRG method, SARAH has an inner

and an outer loop. It has been shown in [51] that, unlike the inner loop of SVRG, the inner

loop of SARAH converges. Here we explore the properties of the inner loop of SARAH

for general nonconvex functions and show that it converges at the same rate as SGD, but

under weaker assumptions and with better constants in the convergence rate. We then

analyze the full SARAH algorithm in the case of gradient dominated functions as a special

class of nonconvex functions [60, 50, 65] for which we show linear convergence to a global

minimum. We will provide the definition of a gradient dominated function in Section 5.3.

We also note that this type of function includes the case where the objective function F is

strongly convex, but the component functions fi, i ∈ [n], are not necessarily convex.

We now summarize the complexity results of SARAH and other existing methods for

nonconvex functions in Table 5.1. All complexity estimates are in terms of the number of

1Note that numerous modifications of stochastic gradient algorithms have been proposed, including non-
uniform sampling, acceleration, repeated scheme and asynchronous parallelization. In this chapter, we refrain
from checking and analyzing those variants, and compare only the primary methods.
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calls to the incremental first order oracle (IFO) defined in [1], in other words computations

of (fi(w),∇fi(w)) for some i ∈ [n]. The iteration complexity analysis aims to bound the

number of iterations T , which is needed to guarantee that ‖∇F (wT )‖2 ≤ ε. In this case we

will say that wT is an ε-accurate solution. However, it is common practice for stochastic

gradient algorithms to obtain the bound on the number of IFOs after which the algorithm

can be terminated with the guaranteed the bound on the expectation, as follows,

E[‖∇F (wT )‖2] ≤ ε. (5.2)

It is important to note that for the stochastic algorithms discussed here, the output wT is

not the last iterate computed by the algorithm, but a randomly selected iterate from the

computed sequence.

Let us discuss the results in Table 5.1. The analysis of SGD in [22] in performed under

the assumption that ‖∇fi(·)‖ ≤ σ, for all i ∈ [n], for some fixed constant σ. This limits

the applicability of the convergence results for SGD and adds dependence on σ which can

be large. In contrast, convergence rate of SVRG only requires L-Lipschitz continuity of

the gradient as does the analysis of SARAH. Convergence of SVRG for general nonconvex

functions is better than that of the inner loop of SARAH in terms of its dependence on ε,

but it is worse in term of its dependence on n. In addition the bound for SVRG includes

an unknown universal constant ν, whose magnitude is not clear and can be quite small.

Convergence rate of the full SARAH algorithm for general nonconvex functions remains an

open question. In the case of τ -gradient dominated functions, full SARAH convergence rate

dominates that of the other algorithms.

Table 5.1: Comparisons between different algorithms for nonconvex functions.

Method GD ([49, 65]) SGD ([22, 65]) SVRG ([65]) SARAH
Noncon-

vex
O
(
nL
ε

)
O
(
Lσ2

ε2

)
O
(
n+ n2/3L

νε

)
O
(
n+ L2

ε2

)
τ -

Gradient
Domi-
nated

O
(
nLτ log( 1

ε
)
)

O
(
Lτσ2

ε2

)
O
(
(n+ n2/3Lτ

ν
) log( 1

ε
)
)

O
(
(n+ L2τ2) log( 1

ε
)
)

Our contributions. In summary, in this chapter we analyze SARAH with mini-

batches for nonconvex optimization. SARAH originates from the idea of momentum SGD,
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SAG/SAGA, SVRG and L-BFGS and is initially proposed for convex optimization, and is

now proven to be effective for minimizing finite-sum problems of general nonconvex func-

tions. We summarize the key contributions of the chapter as follows.

• We study and extend SARAH framework [51] with mini-batches to solving nonconvex

loss functions, which cover the popular deep neural network problems. We are able to

provide a sublinear convergence rate of the inner loop of SARAH for general nonconvex

functions, under milder assumptions than that of SGD.

• Like SVRG [65], SARAH algorithm is shown to enjoy linear convergence rate for τ -

gradient dominated functions–a special class of possibly nonconvex functions [60, 50].

• Similarly to SVRG, SARAH maintains a constant learning rate for nonconvex opti-

mization, and a larger mini-batch size allows the use of a more aggressive learning

rate and a smaller inner loop size.

• Finally, we present numerical results, where a practical version of SARAH, introduced

in [51] is shown to be competitive on standard neural network training tasks.

5.2 SARAH Algorithm

The pivotal idea of SARAH, like many existing algorithms, such as SAG, SAGA and

BFGS [57], is to utilize past stochastic gradient estimates to improve convergence. In

contrast with SAG, SAGA and BFGS [57], SARAH does not store past information thus

significantly reducing storage cost. We present SARAH as a two-loop algorithm in Fig-

ure 5.1, with SARAH-IN in Figure 5.2 describing the inner loop.

Input: w̃0, the learning rate η > 0, the batch size b and the inner loop

size m.

Iterate:

for s = 1, 2, . . . do

w̃s = SARAH-IN(w̃s−1, η, b,m)

end for

Output: w̃s

Figure 5.1: Algorithm SARAH
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Input: w0(= w̃s−1), the learning rate η > 0, the batch size b and the inner loop

size m.

Evaluate the full gradient: v0 = 1
n

∑n
i=1∇fi(w0)

Take a gradient descent step: w1 = w0 − ηv0

Iterate:

for t = 1, . . . ,m− 1 do

Choose a mini-batch It ⊆ [n] of size b uniformly at random (without replace-

ment)

Update the stochastic recursive gradient:

vt =
1

b

∑
i∈It

[∇fi(wt)−∇fi(wt−1)] + vt−1 (5.3)

Update the iterate: wt+1 = wt − ηvt

end for

w̃ = wt with t chosen uniformly randomly from {0, 1, . . . ,m}

Output: w̃

Figure 5.2: Algorithm SARAH within a single outer loop: SARAH-IN(w0, η, b,m)

Similarly to SVRG, in each outer iteration, SARAH proceeds with the evaluation of a full

gradient followed by an inner loop of m stochastic steps. SARAH requires one computation

of the full gradient at the start of its inner loop and then proceeds by updating this gradient

information using stochastic gradient estimates over m inner steps. Hence, each outer

iteration corresponds to a cost of O(n+bm) component gradient evaluations (or IFOs). For

simplicity let us consider the inner loop update for b = 1, as presented in [51]:

vt = ∇fit(wt)−∇fit(wt−1) + vt−1, (5.4)

Note that unlike SVRG, which uses the gradient updates vt = ∇fit(wt) − ∇fit(w0) + v0,

SARAH’s gradient estimate vt iteratively includes all past stochastic gradients, however,

SARAH consumes a memory of O(d) instead of O(nd) in the cases of SAG/SAGA and
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BFGS, because this past information is simply averaged, instead of being stored.

With either m = 1 or s = 1 and b = n, the algorithm SARAH recovers gradient descent

(GD). We remark here that we also recover the convergence rate theoretically for GD with

s = 1 and b = n In the following section, we analyze theoretical convergence properties of

SARAH when applied to nonconvex functions.

5.3 Convergence Analysis

First, we will introduce the sublinear convergence of SARAH-IN for general nonconvex

functions. Then we present the linear convergence of SARAH over a special class of gradient

dominated functions [60, 50, 65]. Before proceeding to the analysis, let us start by stating

some assumptions.

Assumption 5.3.1 (L-smooth). Each fi : Rd → R, i ∈ [n], is L-smooth, i.e., there exists

a constant L > 0 such that

‖∇fi(w)−∇fi(w′)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ Rd. (5.5)

Assumption 5.3.1 implies that F is also L-smooth. Then, by the property of L-smooth

function (in [49]), we have

F (w) ≤ F (w′) +∇F (w′)T (w − w′) +
L

2
‖w − w′‖2, ∀w,w′ ∈ Rd. (5.6)

The following assumption will be made only when appropriate, otherwise, it will be

dropped.

Assumption 5.3.2 (τ -gradient dominated). F is τ -gradient dominated, i.e., there exists

a constant τ > 0 such that ∀w ∈ Rd,

F (w)− F (w∗) ≤ τ‖∇F (w)‖2, (5.7)

where w∗ is a global minimizer of F .
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We can observe that every stationary point of the τ -gradient dominated function F is

a global minimizer. However, such a function F needs not necessarily be convex. If F is

µ-strongly convex (but each fi, i ∈ [n], is possibly nonconvex), then 2µ[F (w) − F (w∗)] ≤

‖∇F (w)‖2, ∀w ∈ Rd. Thus, a µ-strongly convex function is also 1/(2µ)-gradient dominated.

Lemma 5.3.1. Suppose that Assumption 5.3.1 holds. Consider SARAH-IN (SARAH

within a single outer loop in Figure 5.2), then we have

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2],

(5.8)

where w∗ is a global minimizer of F .

Proof. By Assumption 5.3.1 and wt+1 = wt − ηvt, we have

E[F (wt+1)]
(5.6)

≤ E[F (wt)]− ηE[∇F (wt)
T vt] +

Lη2

2
E[‖vt‖2]

= E[F (wt)]−
η

2
E[‖∇F (wt)‖2] +

η

2
E[‖∇F (wt)− vt‖2]−

(
η

2
− Lη2

2

)
E[‖vt‖2],

where the last equality follows from the fact rT q = 1
2

[
‖r‖2 + ‖q‖2 − ‖r − q‖2

]
, for any

r, q ∈ Rd.

By summing over t = 0, . . . ,m, we have

E[F (wm+1)] ≤ E[F (w0)]−
η

2

m∑
t=0

E[‖∇F (wt)‖2] +
η

2

m∑
t=0

E[‖∇F (wt)− vt‖2]

−
(
η

2
− Lη2

2

) m∑
t=0

E[‖vt‖2],

which is equivalent to (η > 0):

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (wm+1)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]

− (1− Lη)

m∑
t=0

E[‖vt‖2]

≤ 2

η
[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2],
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where the last inequality follows since w∗ is a global minimizer of F . (Note that w0 is

given.)

Lemma 5.3.2. Suppose that Assumption 5.3.1 holds. Consider vt defined by (5.3) in

SARAH-IN, then for any t ≥ 1,

E[‖∇F (wt)− vt‖2] =
t∑

j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

Proof. Let Fj = σ(w0, i1, i2, . . . , ij−1) be the σ-algebra generated by w0, i1, i2, . . . , ij−1;

F0 = F1 = σ(w0). Note that Fj also contains all the information of w0, . . . , wj as well as

v0, . . . , vj−1. For j ≥ 1, we have

E[‖∇F (wj)− vj‖2|Fj ]

= E[‖[∇F (wj−1)− vj−1] + [∇F (wj)−∇F (wj−1)]− [vj − vj−1]‖2|Fj ]

= ‖∇F (wj−1)− vj−1‖2 + ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ]

+ 2(∇F (wj−1)− vj−1)T (∇F (wj)−∇F (wj−1))

− 2(∇F (wj−1)− vj−1)TE[vj − vj−1|Fj ]

− 2(∇F (wj)−∇F (wj−1))
TE[vj − vj−1|Fj ]

= ‖∇F (wj−1)− vj−1‖2 − ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ],

where the last equality follows from

E[vj − vj−1|Fj ]
(5.3)
= E

[1

b

∑
i∈Ij

[∇fi(wj)−∇fi(wj−1)]
∣∣∣Fj]

=
1

b
· b
n

n∑
i=1

[∇fi(wj)−∇fi(wj−1)] = ∇F (wj)−∇F (wj−1).

By taking expectation for the above equation, we have

E[‖∇F (wj)− vj‖2]

= E[‖∇F (wj−1)− vj−1‖2]− E[‖∇F (wj)−∇F (wj−1)‖2] + E[‖vj − vj−1‖2].
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Note that ‖∇F (w0)− v0‖2 = 0. By summing over j = 1, . . . , t (t ≥ 1), we have

E[‖∇F (wt)− vt‖2] =
t∑

j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

With the above Lemmas, we can derive the following upper bound for E[‖∇F (wt)−vt‖2].

Lemma 5.3.3. Suppose that Assumption 5.3.1 holds. Consider vt defined by (5.3) in

SARAH-IN. Then for any t ≥ 1,

E[‖∇F (wt)− vt‖2] ≤
1

b

(
n− b
n− 1

)
L2η2

t∑
j=1

E[‖vj−1‖2].

Proof. Let

ξt = ∇ft(wj)−∇ft(wj−1). (5.9)

We have

E[‖vj − vj−1‖2|Fj ]− ‖∇F (wj)−∇F (wj−1)‖2

(5.3)
= E

[∥∥∥1

b

∑
i∈Ij

[∇fi(wj)−∇fi(wj−1)]
∥∥∥2∣∣∣Fj]− ∥∥∥ 1

n

n∑
i=1

[∇fi(wj)−∇fi(wj−1)]
∥∥∥2

(5.9)
= E

[∥∥∥1

b

∑
i∈Ij

ξi

∥∥∥2∣∣∣Fj]− ∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥2
=

1

b2
E
[∑
i∈Ij

∑
k∈Ij

ξTi ξk

∣∣∣Fj]− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

b2
E
[ ∑
i 6=k∈Ij

ξTi ξk +
∑
i∈Ij

ξTi ξi

∣∣∣Fj]− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

b2

[ b
n

(b− 1)

(n− 1)

∑
i 6=k

ξTi ξk +
b

n

n∑
i=1

ξTi ξi

]
− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

b2

[ b
n

(b− 1)

(n− 1)

n∑
i=1

n∑
k=1

ξTi ξk +

(
b

n
− b

n

(b− 1)

(n− 1)

) n∑
i=1

ξTi ξi

]
− 1

n2

n∑
i=1

n∑
k=1

ξTi ξk

=
1

bn

[( (b− 1)

(n− 1)
− b

n

) n∑
i=1

n∑
k=1

ξTi ξk +
(n− b)
(n− 1)

n∑
i=1

ξTi ξi

]
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=
1

bn

(
n− b
n− 1

)[
− 1

n

n∑
i=1

n∑
k=1

ξTi ξk +

n∑
i=1

ξTi ξi

]
=

1

bn

(
n− b
n− 1

)[
− n

∥∥∥ 1

n

n∑
i=1

ξi

∥∥∥2 +

n∑
i=1

‖ξi‖2
]

≤ 1

b

(
n− b
n− 1

)
1

n

n∑
i=1

‖ξi‖2

(5.9)
=

1

b

(
n− b
n− 1

)
1

n

n∑
i=1

‖∇fi(wj)−∇fi(wj−1)‖2

(5.5)

≤ 1

b

(
n− b
n− 1

)
L2η2

1

n

n∑
i=1

‖vj−1‖2

=
1

b

(
n− b
n− 1

)
L2η2‖vj−1‖2.

Hence, by taking expectation, we have

E[‖vj − vj−1‖2]− E[‖∇F (wj)−∇F (wj−1)‖2] ≤
1

b

(
n− b
n− 1

)
L2η2E[‖vj−1‖2].

By Lemma 5.3.2, for t ≥ 1,

E[‖∇F (wt)− vt‖2] =
t∑

j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2]

≤ 1

b

(
n− b
n− 1

)
L2η2

t∑
j=1

E[‖vj−1‖2].

This completes the proof.

However, the result simply follows for the case when b = 1 by the alternative proof. We

have

‖vt − vt−1‖2
(6.4)
= ‖∇fit(wt)−∇fit(wt−1)‖2

(5.5)

≤ L2‖wt − wt−1‖2 = L2η2‖vt−1‖2, t ≥ 1.

(5.10)

Hence, by Lemma 5.3.2, we have

E[‖∇F (wt)− vt‖2] ≤
t∑

j=1

E[‖vj − vj−1‖2]
(6.30)

≤ L2η2
t∑

j=1

E[‖vj−1‖2].
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Using the above lemmas, we are now able to obtain the following convergence rate result

for SARAH-IN.

Theorem 5.3.1. Suppose that Assumption 5.3.1 holds. Consider SARAH-IN (SARAH

within a single outer loop in Figure 5.2) with

η ≤ 2

L

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

) . (5.11)

Then we have

E[‖∇F (w̃)‖2] ≤ 2

η(m+ 1)
[F (w0)− F (w∗)],

where w∗ is a global minimizer of F , and w̃ = wt, where t is chosen uniformly at random

from {0, 1, . . . ,m}.

Proof. By Lemma 6.3.11, we have

E[‖∇F (wt)− vt‖2] ≤
1

b

(
n− b
n− 1

)
L2η2

t∑
j=1

E[‖vj−1‖2].

Note that ‖∇F (w0)− v0‖2 = 0. Hence, by summing over t = 0, . . . ,m (m ≥ 1), we have

m∑
t=0

E‖vt −∇F (wt)‖2 ≤
1

b

(
n− b
n− 1

)
L2η2

[
mE‖v0‖2 + (m− 1)E‖v1‖2 + · · ·+ E‖vm−1‖2

]
.

We have

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]

≤ 1

b

(
n− b
n− 1

)
L2η2

[
mE‖v0‖2 + (m− 1)E‖v1‖2 + · · ·+ E‖vm−1‖2

]
− (1− Lη)

[
E‖v0‖2 + E‖v1‖2 + · · ·+ E‖vm‖2

]
≤
[1

b

(
n− b
n− 1

)
L2η2m− (1− Lη)

] m∑
t=1

E[‖vt−1‖2]
(5.11)

≤ 0, (5.12)
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since

η =
2

L

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

)

is a root of equation

1

b

(
n− b
n− 1

)
L2η2m− (1− Lη) = 0.

Therefore, by Lemma 5.3.1, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2]

(5.12)

≤ 2

η
[F (w0)− F (w∗)].

If w̃ = wt, where t is chosen uniformly at random from {0, 1, . . . ,m}, then

E[‖∇F (w̃)‖2] =
1

m+ 1

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η(m+ 1)
[F (w0)− F (w∗)].

This result shows a sublinear convergence rate for SARAH-IN with increasing m. Con-

sequently, with b = 1 and η = 2
L(
√
1+4m+1)

, to obtain

E[‖∇F (w̃)‖2] ≤ L(
√

1 + 4m+ 1)

(m+ 1)
[F (w0)− F (w∗)] ≤ ε,

it is sufficient to make m = O(L2/ε2). Hence, the total complexity to achieve an ε-accurate

solution is (n + 2m) = O(n + L2/ε2). Therefore, we have the following conclusion for

complexity bound.

Corollary 5.3.1. Suppose that Assumption 5.3.1 holds. Consider SARAH within a single

outer iteration with batch size b = 1 and the learning rate η = O(1/(L
√
m)) where m is the

total number of iterations, then ‖∇F (wt)‖2 converges sublinearly in expectation with a rate

of O(L/
√
m), and therefore, the total complexity to achieve an ε-accurate solution defined
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in (6.6) is O(n+ L2/ε2).

Finally, we present the result for SARAH with multiple outer iterations in application

to the class of gradient dominated functions defined in (5.7).

Theorem 5.3.2. Suppose that Assumptions 5.3.1 and 5.3.2 hold. Consider SARAH (in

Figure 5.1) with η and m such that

η ≤ 2

L

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

) and
η(m+ 1)

2
> τ.

Then we have

E[‖∇F (w̃s)‖2] ≤ (γ̄m)s‖∇F (w̃0)‖2,

where

γ̄m =
2τ

η(m+ 1)
< 1.

Proof. Note that w̃s = w̃ and w0 = w̃s−1, s ≥ 1. By Theorem 5.3.1, we have

E[‖∇F (w̃s)‖2|w̃s−1] = E[‖∇F (w̃)‖2|w0] ≤
2

η(m+ 1)
[F (w0)− F (w∗)]

(5.7)

≤ 2τ

η(m+ 1)
‖∇F (w0)‖2

=
2τ

η(m+ 1)
‖∇F (w̃s−1)‖2.

Hence, taking expectation to have

E[‖∇F (w̃s)‖2] ≤
2τ

η(m+ 1)
E[‖∇F (w̃s−1)‖2] ≤

[
2τ

η(m+ 1)

]s
‖∇F (w̃0)‖2.

Consider the case when b = 1 and η = 2
L(
√
1+4m+1)

. We need m = O
(
L2τ2

)
to satisfy
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η(m+1)
2 = m+1

L
√
1+4m+1

> τ . To obtain

E[‖∇F (w̃s)‖2] ≤ (γ̄m)s‖∇F (w̃0)‖2 ≤ ε,

it is sufficient to have s = O (log(1/ε)). This implies the total complexity to achieve an

ε-accurate solution is (n + 2m)s = O
(
(n+ L2τ2) log(1/ε)

)
and we can summarize the

conclution as follows.

Corollary 5.3.2. Suppose that Assumptions 5.3.1 and 5.3.2 hold. Consider SARAH

with parameters from Theorem 5.3.2 with batch size b = 1 and the learning rate η =

O (1/(L
√
m)), then the total complexity to achieve an ε-accurate solution defined in (6.6)

is O
(
(n+ L2τ2) log(1/ε)

)
.

5.4 Discussions on the Mini-batches Sizes

Let us discuss two simple corollaries of Theorem 5.3.1.

The first corollary is obtained trivially by substituting the learning rate into the com-

plexity bound in Theorem 5.3.1.

Corollary 5.4.1. Suppose that Assumption 5.3.1 holds. Consider SARAH-IN (SARAH

within a single outer loop in Figure 5.2) with

η =
2

L

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

) . (5.13)

Then we have

E[‖∇F (w̃)‖2] ≤
L

(√
1 + 4m

b

(
n−b
n−1

)
+ 1

)
(m+ 1)

[F (w0)− F (w∗)],

where w∗ is a global minimizer of F , and w̃ = wt, where t is chosen uniformly at random

from {0, 1, . . . ,m}.

Remark 5.4.1. We can clearly observe that the rate of convergence for SARAH-IN depends

on the size of b. For a larger value of b, we can use a more aggressive learning rate and it
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requires the smaller number of iterations to achieve an ε-accurate solution. In particular,

when b = n, SARAH-IN reduces to the GD method and its convergence rate becomes that

of gradient descent,

E[‖∇F (w̃)‖2] ≤ 2L

(m+ 1)
[F (w0)− F (w∗)],

and the total complexity to achieve an ε-accurate solution is n ·m = O
(
nL
ε

)
. However,

the total work in terms of IFOs increases with b. When b 6= n, the total complexity to

achieve an ε-accurate solution is (n+ 2bm) = O
(
n+ L2

ε2

(
n−b
n−1

))
.

Let us set m = n− 1 in Corollary 5.4.1, we can achieve the following result.

Corollary 5.4.2. Suppose that Assumption 5.3.1 holds. Consider SARAH-IN with m =

n− 1, and

η =
2

L
(√

4(n/b)− 3 + 1
) .

Then we have

E[‖∇F (w̃)‖2] ≤
L
(√

4(n/b)− 3 + 1
)

n
[F (w0)− F (w∗)],

where w∗ is a global minimizer of F , and w̃ = wt, where t is chosen uniformly at random

from {0, 1, . . . , n− 1}.

Remark 5.4.2. For SARAH-IN with the number of iterations m = n− 1 and the learning

rate η = O
(

1/(L
√

(n/b))
)

, we could achieve a convergence rate of O(L/
√
bn). We can

observe that the value of b significantly affects the rate. For example, when b = n/β, β > 1

and b = nα, α < 1, the convergence rates become O(L
√
β/n) and O(L/

√
nα+1), respectively.

5.5 Numerical Experiments

We now turn to the numerical study and conduct experiments on the multiclass classifica-

tion problem with neural networks, which is the typical challegeing nonconvex problem in

machine learning.
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SARAH+ as a Practical Variant [51] proposes SARAH+ as a practical variant of

SARAH. Now we propose SARAH+ for the nonconvex optimization by running Algorithm

SARAH (Figure 5.1) with the following SARAH-IN algorithm (Figure 5.3). Notice that

SARAH+ is different from SARAH in that the inner loop is terminated adaptively instead

of using a fixed choice of the inner loop size m. This is idea is based on the fact that the

norm ‖vt‖ converges to zero expectation, which has been both proven theoretically and

verified numerically for convex optimization in [51]. Under the assumption that similar

behavior happens in the nonconvex case, instead of tuning the inner loop size for SARAH,

we believe that a proper choice of the ratio γ below, the automatic loop termination can

give superior or competitive performances.

Input: w0(= w̃s−1), the learning rate η > 0, the batch size b, and the

maximum inner loop size m.

Evaluate the full gradient: v0 = 1
n

∑n
i=1∇fi(w0)

Take a gradient descent step: w1 = w0 − ηv0

Iterate:

while ‖vt−1‖2 > γ‖v0‖2 and t < m do

Choose a mini-batch It ⊆ [n] of size b uniformly at random

Update the stochastic recursive gradient:

vt =
1

b

∑
i∈It

[∇fi(wt)−∇fi(wt−1)] + vt−1

Update the iterate and index: wt+1 = wt − ηvt; t = t+ 1

end while

w̃ = wt with t chosen uniformly randomly from {0, 1, . . . ,m}

Output: w̃

Figure 5.3: Algorithm SARAH within a single outer loop: SARAH-IN(w0, η, b,m)

Networks and Datasets We perform numerical experiments with neural nets with

one fully connected hidden layer of nh nodes, followed by a fully connected output layer
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which feeds into the softmax regression and cross entropy objective, with the weight decay

regularizer (`2-regularizer) with parameter λ. We test the performance on the datasets

MNIST [36] 2 and CIFAR10 [33] 3 with nh = 300, λ =1e-04 and nh = 100, λ =1e-03, re-

spectively. Both datasets have 10 classes, i.e. 10 softmax output nodes in the network, and

are normalized to interval [0, 1] as a simple data pre-processing. This network of MNIST

achieves the best performance for neural nets with a single hidden layer. Information on

both datasets is also available in Table 5.2.

Optimization Details We compare the efficiency of SARAH, SARAH+ [51], SVRG [65],

AdaGrad [18] and SGD-M (momentum SGD [61, 76]) 4 numerically in terms of number of

effective data passes, where the last two algorithms are efficient SGD variants available

in the Google open-source library Tensorflow 5. As the choice of initialization for the

weight parameters is very important, we apply a widely used mechanism called normalized

initialization [23] where the weight parameters between layers j and j + 1 are sampled

uniformly from
[
−
√

6/(nj + nj+1),
√

6/(nj + nj+1)
]
. In addition, we use mini-batch size

b = 10 in all the algorithms.

Table 5.2: Summary of statistics and best parameters of all the algorithms for the two datasets.

Dataset

Number of

Samples

(ntrain, ntest)

Dimen-

sions

(d)

SARAH

(m∗, η∗)
SARAH+

(η∗)

SVRG

(m∗, η∗)

Ada-

Grad

(δ∗, η∗)

SGD-M

(γ∗, η∗)

MNIST
(60,000,

10,000)
784

(0.1n,

0.08)
0.2

(0.4n,

0.08)

(0.01,

0.1)

(0.7,

0.01)

CIFAR10
(50,000,

10,000)
3072

(0.4n,

0.03)
0.02

(0.8n,

0.02)

(0.05,

1.0)

(0.7,

0.001)

Performance and Comparison We present the optimal choices of optimization param-

eters for the mentioned algorithms in Table 5.2, as well as their performance in Figure 5.4.

As for the optimization parameters we consistently use the ratio 0.7 in SARAH+, while for

all the others, we need to tune two parameters, including η∗ for optimal learning rates, m∗

2Available at http://yann.lecun.com/exdb/mnist/.
3Available at https://www.cs.toronto.edu/~kriz/cifar.html.
4While SARAH, SVRG, SGD have been proven effective for nonconvex optimization, as far as we know,

the SGD variants AdaGrad and SGD-M do not have theoretical convergence for nonconvex optimization.
5See https://www.tensorflow.org.
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Figure 5.4: An example of `2-regularized neural nets on MNIST and CIFAR10 training/testing
datasets for SARAH, SARAH+, SVRG, AdaGrad and SGD-M.

for optimal inner loop size, δ∗ for the optimal initial accumulator and γ∗ for the optimal

momentum. For the tuning of the parameters, reasonable ranges for the parameters have

been scanned and we selected the best parameters in terms ofthe training error reduction.

Figure 5.4 compares the training losses (top) and the test errors (bottom), obtained

by the tested algorithms on MNIST and CIFAR10, in terms of the number of effective

passes through the data. On the MNIST dataset, which is deemed to be easier for traning,

all the methods achieve similar performance in the end; however, SARAH(+) and SVRG

stabilize faster than AdaGrad and SGD-M - the two of the most popular SGD variants;

meanwhile, SARAH+ has shown superior performance in minimizing the training loss.

For the other, more difficult, CIFAR10 dataset, SARAH(+) and SVRG improve upon the

training accuracy considerably in comparison with AdaGrad and SGD-M, and as a result,

a similar advantage can be seen in the test error reduction.
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5.6 Conclusion

In this chapter of work, we study and extend SARAH framework to nonconvex optimization,

also admitting the practical variant, SARAH+. For smooth nonconvex functions, the inner

loop of SARAH achieves the best sublinear convergence rate in the literature, while the full

variant of SARAH has the same linear convergence rate and same as SVRG, for a special

class of gradient dominated functions. In addition, we also analyze the dependence of the

convergence of SARAH on the size of the mini-batches. In the end, we validate SARAH(+)

numerically in comparison with SVRG, AdaGrad and SGD-M, with the popular nonconvex

application of neural networks.
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Chapter 6

Inexact SARAH

In this chapter, we develop and analyze an extension of the SARAH algorithm which can be

applied to stochastic optimization problems rather than finite sum problems. The original

SARAH algorithm, as well its predecessor, SVRG, cannot be applied to stochastic problems

since they require exact gradient information. The inexact version of SARAH, which we

develop here requires only stochastic gradient information computed on a mini-batch of

sufficient size. Hence the proposed combines variance reduction via sample size selection

as well as iterative stochastic gradient updates. We analyze the convergence rate of the

algorithms for strongly convex, convex, and nonconvex cases with appropriate mini-batch

size selected for each case.

6.1 Introduction

We consider the problem of stochastic optimization

min
w∈Rd

{F (w) = E[f(w; ξ)]} , (6.1)

where ξ is a random variable. One of the most popular applications of this problem is

expected risk minimization in supervised learning. In this case random variable ξ represents

a random data sample (x, y), or a set of such samples {(xi, yi)}i∈I . When can then consider

a set of realization {ξ[i]}ni=1 of ξ corresponding to a set of random samples {(xi, yi)}ni=1,
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and define fi(w) := f(w; ξ[i]). Then the sample average approximation of F (w), known as

empirical risk in supervised learning, is written as

min
w∈Rd

{
F (w) =

1

n

n∑
i=1

fi(w)

}
. (6.2)

Throughout the chapter, we assume the existence of unbiased gradient estimator, that

is E[∇f(w; ξ)] = ∇F (w) for any fixed w ∈ Rd. In addition we assume that there exists a

lower bound of function F .

In recent years, a class of variance reduction methods [34, 16, 28, 51] has been proposed

for problem (6.2) which have smaller computational complexity than both, the full gradient

descent method and the stochastic gradient method. All these methods rely on the finite

sum form of (6.2) and are, thus, not readily extendable to (6.1). In particular, SVRG [28]

and SARAH [51] are two similar methods that consist of an outer loop, which includes

one exact gradient computation at each outer iteration and an inner loop with multiple

iterative stochastic gradient updates. The only difference between SVRG and SARAH is

how the iterative updates are performed in the inner loop. The advantage of SARAH is

that the inner loop itself results in a convergent stochastic gradient algorithm. Hence, it

is possible to apply only one loop of SARAH with sufficiently large number of steps to

obtain an approximately optimal solution (in expectation). The convergence behavior of

one-loop SARAH is similar to that or the standard stochastic gradient method [51]. The

multiple-loop SARAH algorithm matches convergence rates of SVRG, however, due to its

convergent inner loop has an additional practical advantage of being able to use an adaptive

inner loop size (see [51] for details).

A version of SVRG algorithm, SCSG, which drops the exact gradient requirement and

replaces it with a mini-batch of stochastic gradients and inner loop size is generated ran-

domly from geometric distribution with a success probability based on the mini-batch size,

has been recently proposed and analyzed in [37, 38]. While this method has been developed

for (6.2) it can be directly applied to (6.1). In this chapter, we propose and analyze an

inexact version of SARAH (iSARAH) which can be applied to solve (6.1). Instead of exact

gradient computation, a sample gradient is sufficient for inexact SARAH, with appropri-

150



ately chosen sample size. We develop total sample complexity analysis for this method

under various convexity assumptions on F (w). These complexity results are summarized

in Tables 6.1-6.3 and are compared to the result for SCSG from [37, 38] when applied to

(6.1). We also list the complexity bounds for SVRG, SARAH and SCSG when applied to

finite sum problem (6.2).

All of the complexity results that we compare in Tables 6.1-6.3 are developed under

the assumption that F (w) is L-smooth. Table 6.1 shows the complexity results in the case

when F (w) is strongly convex case, with κ denoting the condition number. We observe that

iSARAH achieves the best complexity bounds among the methods applicable to stochastic

problems. The general convex case is summarized in Table 6.2. In this case, iSARAH

(multiple loop) again achieves the best convergence rate among the stochastic methods,

but under an additional (reasonable) assumption (Assumption 6.3.4). In the nonconvex

case, SCSG achieves the best convergence rate under the bounded variance assumption,

which requires that E[‖∇f(w; ξ) − ∇F (w)‖2] ≤ C, for some C > 0 and ∀w ∈ Rd. While

convergence rate of iSARAH (multiple loop) for nonconvex remains an open question, we

were able to derive a convergence rates for iSARAH (one loop) without the bounded variance

assumption. This convergence rate is naturally slower, since the one-loop iSARAH method

is not a variance reduction method.

Table 6.1: Comparison results (Strongly convex)

Method Bound Problem type

SARAH (multiple loop) [51] O
(
(n+ κ) log

(
1
ε

))
Finite-sum

SVRG [28, 65] O
(
(n+ κ) log

(
1
ε

))
Finite-sum

SCSG [37, 38] O
((
min

{
κ
ε
, n
}
+ κ
)
log
(
1
ε

))
Finite-sum

SCSG O
((
κ
ε
+ κ
)
log
(
1
ε

))
Expectation

SGD [53] O
(
1
ε

)
Expectation

iSARAH (multiple loop) O
((
max

{
1
ε
, κ
}
+ κ
)
log
(
1
ε

))
Expectation

6.1.1 Organization

The rest of the chapter is organized as follows. In Section 6.2, we describe Inexact SARAH

(iSARAH) algorithm in detail. We provide the convergence analysis of iSARAH in Section

6.3 including one-loop results in the strongly convex, convex, and nonconvex cases; and

multiple-loop results in the strongly convex and convex cases. Section 3.5 contains our
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Table 6.2: Comparison results (General convex)

Method Bound Problem type Additional assumption

SARAH (one loop) [51, 54] O
(
n+ 1

ε2

)
Finite-sum None

SARAH (multiple loop) [51] O
((
n+ 1

ε

)
log
(
1
ε

))
Finite-sum Assumptions 6.3.4

SVRG [28, 65] O
(
n+

√
n
ε

)
Finite-sum None

SCSG [37, 38] O
(
min

{
1
ε2
, n
ε

})
Finite-sum None

SCSG O
(

1
ε2

)
Expectation None

SGD O
(

1
ε2

)
Expectation Bounded variance

iSARAH (one loop) O
(

1
ε2

)
Expectation None

iSARAH (multiple loop) O
(
1
ε
log
(
1
ε

))
Expectation Assumption 6.3.4

Table 6.3: Comparison results (Nonconvex)

Method Bound Problem type Additional assumption

SARAH (one loop) [51, 54] O
(
n+ 1

ε2

)
Finite-sum None

SVRG [28, 65] O
(
n+ n2/3

ε

)
Finite-sum None

SCSG [37, 38] O
(
min

{
1

ε5/3
, n

2/3

ε

})
Finite-sum Bounded variance

SCSG O
(

1
ε5/3

)
Expectation Bounded variance

SGD O
(

1
ε2

)
Expectation Bounded variance

iSARAH (one loop) O
(

1
ε2

)
Expectation None

numerical experiments for logistic regression and neural networks. A discussion of the

results and future work is in Section 2.4.

6.1.2 Basic Notation

Symbol R denotes the set of real number. Rd denotes the d-dimensional vector space. The

standard Euclidean norm of a vector w ∈ Rd is denoted ‖w‖. We denote E[·|F ] as the

conditional expectation with condition on σ-algebra F . We denote ∇f is the gradient of

function f . Notation aT b = 〈a, b〉 denotes the dot product of two vectors a and b.

6.2 The Algorithm

In this section, we describe iSARAH algorithm (Algorithm 6). We first define the vector

v0 =
1

b

b∑
i=1

∇f(w0; ζi), (6.3)
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where {ζi}bi=1 are i.i.d.1 with E[∇f(w0; ζi)|w0] = ∇F (w0). We have E[v0|w0] =

1
b

∑b
i=1∇F (w0) = ∇F (w0).

The key step of the algorithm is a recursive update of the stochastic gradient estimate

(SARAH update)

vt = ∇f(wt; ξt)−∇f(wt−1; ξt) + vt−1, (6.4)

followed by the iterate update

wt+1 = wt − ηvt. (6.5)

Let Ft = σ(w0, w1, . . . , wt) be the σ-algebra generated by w0, w1, . . . , wt. We note that

ξt is independent of Ft. Hence, we have a biased estimator of the gradient

E[vt|Ft] = ∇F (wt)−∇F (wt−1) + vt−1.

Algorithm 6 Inexact SARAH (iSARAH)

Parameters: the learning rate η > 0 and the inner loop size m.
Initialize: w̃0

Iterate:
for s = 1, 2, . . . do
w̃s = iSARAH-IN(w̃s−1, η,m)

end for
Output: w̃s

Algorithm 7 iSARAH-IN(w0, η,m)

Input: w0(= w̃s−1) the learning rate η > 0 and the inner loop size m.
Generate random variables {ζi}bi=1 i.i.d.

Compute v0 = 1
b

∑b
i=1∇f(w0; ζi)

w1 = w0 − ηv0
Iterate:
for t = 1, . . . ,m− 1 do

Generate a random variable ξt
vt = ∇f(wt; ξt)−∇f(wt−1; ξt) + vt−1
wt+1 = wt − ηvt

end for
Set w̃ = wt with t chosen uniformly at random from {0, 1, . . . ,m}
Output: w̃

1Independent and identically distributed random variables. We note from probability theory that if
ζ1, . . . , ζb are i.i.d. random variables then g(ζ1), . . . , g(ζb) are also i.i.d. random variables if g is measurable
function.
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iSARAH’s iterations are divided into the outer loop where an inexact gradient with a

batch size b is computed and the inner loop where only stochastic gradient is computed. A

special property of iSARAH is that we could analyze the convergence results for a single

outer loop (iSARAH-IN in Algorithm 7). In the next section, we will also provide the

analysis for both iSARAH-IN (one-loop) and iSARAH (multiple-loop).

Convergence criteria. Our iteration complexity analysis aims to bound the number

of outer iterations T (or total number of stochastic gradient evaluations) which is needed to

guarantee that ‖∇F (wT )‖2 ≤ ε. In this case we will say that wT is an ε-accurate solution.

However, as is common practice for stochastic gradient algorithms, we aim to obtain the

bound on the number of iterations, which is required to guarantee the bound on the expected

squared norm of a gradient, i.e.,

E[‖∇F (wT )‖2] ≤ ε. (6.6)

6.3 Convergence Analysis of iSARAH

6.3.1 Basic Assumptions

To proceed with the analysis of the proposed algorithm, we will make the following common

assumptions.

Assumption 6.3.1 (L-smooth). f(w; ξ) is L-smooth for every realization of ξ, i.e., there

exists a constant L > 0 such that

‖∇f(w; ξ)−∇f(w′; ξ)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ Rd. (6.7)

Note that this assumption implies that F (w) = E[f(w; ξ)] is also L-smooth. The fol-

lowing strong convexity assumption will be made for the appropriate parts of the analysis,

otherwise, it would be dropped.

Assumption 6.3.2a (µ-strongly convex). The function F : Rd → R, is µ-strongly convex,
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i.e., there exists a constant µ > 0 such that ∀w,w′ ∈ Rd,

F (w) ≥ F (w′) +∇F (w′)T (w − w′) + µ
2‖w − w

′‖2.

Another, stronger, assumption of µ-strong convexity for (6.2) will also be imposed when

required in our analysis. Note that Assumption 6.3.2b implies Assumption 6.3.2a but not

vice versa.

Assumption 6.3.2b. f(w; ξ) is strongly convex with µ > 0 for every realization of ξ.

Under Assumption 6.3.2a, let us define the (unique) optimal solution of (6.2) as w∗,

Then strong convexity of F implies that

2µ[F (w)− F (w∗)] ≤ ‖∇F (w)‖2, ∀w ∈ Rd. (6.8)

We note here, for future use, that for strongly convex functions of the form (6.2), arising

in machine learning applications, the condition number is defined as κ
def
= L/µ. Further-

more, we should also notice that Assumptions 6.3.2a and 6.3.2b both cover a wide range of

problems, e.g. l2-regularized empirical risk minimization problems with convex losses.

Finally, as a special case of the strong convexity with µ = 0, we state the general

convexity assumption, which we will use for convergence analysis.

Assumption 6.3.3. f(w; ξ) is convex for every realization of ξ, i.e., ∀w,w′ ∈ Rd,

f(w; ξ) ≥ f(w′; ξ) +∇f(w′; ξ)T (w − w′).

Again, we note that Assumption 6.3.2b implies Assumption 6.3.3, but Assumption 6.3.2a

does not. Hence in our analysis, depending on the result we aim at, we will require Assump-

tion 6.3.3 to hold by itself, or Assumption 6.3.2a and Assumption 6.3.3 to hold together, or

Assumption 6.3.2b to hold by itself. We will always use Assumption 6.3.1.
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6.3.2 Existing Results

In this section, we provide some well-known results from the existing literature that support

our theoretical analyses.

Lemma 6.3.1 (Theorem 2.1.5 in [49]). Suppose that f is convex and L-smooth. Then, for

any w, w′ ∈ Rd,

f(w) ≤ f(w′) +∇f(w′)T (w − w′) +
L

2
‖w − w′‖2, (6.9)

f(w) ≥ f(w′) +∇f(w′)T (w − w′) +
1

2L
‖∇f(w)−∇f(w′)‖2, (6.10)

(∇f(w)−∇f(w′))T (w − w′) ≥ 1

L
‖∇f(w)−∇f(w′)‖2. (6.11)

Note that (6.9) does not require the convexity of f .

Lemma 6.3.2 (Theorem 2.1.11 in [49]). Suppose that f is µ-strongly convex and L-smooth.

Then, for any w, w′ ∈ Rd,

(∇f(w)−∇f(w′))T (w − w′) ≥ µL

µ+ L
‖w − w′‖2 +

1

µ+ L
‖∇f(w)−∇f(w′)‖2. (6.12)

Lemma 6.3.3 ([28]). Suppose that Assumptions 6.3.1 and 6.3.3 hold. Then, ∀w ∈ Rd,

E[‖∇f(w; ξ)−∇f(w∗; ξ)‖2] ≤ 2L[F (w)− F (w∗)], (6.13)

where w∗ is any optimal solution of F (w).

Lemma 6.3.4 (Lemma 1 in [53]). Suppose that Assumptions 6.3.1 and 6.3.3 hold. Then,

for ∀w ∈ Rd,

E[‖∇f(w; ξ)‖2] ≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2], (6.14)

where w∗ is any optimal solution of F (w).

Lemma 6.3.5 (Lemma 1 in [52]). Let ξ and {ξi}bi=1 be i.i.d. random variables with
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E[∇f(w; ξi)] = ∇F (w), i = 1, . . . , b, for all w ∈ Rd. Then,

E

∥∥∥∥∥1

b

b∑
i=1

∇f(w; ξi)−∇F (w)

∥∥∥∥∥
2
 =

E[‖∇f(w; ξ)‖2]− ‖∇F (w)‖2

b
. (6.15)

Lemmata 6.3.4 and 6.3.5 clearly imply the following result.

Corollary 6.3.1. Suppose that Assumptions 6.3.1 and 6.3.3 hold. Let {ξi}bi=1 be i.i.d.

random variables with E[∇f(w; ξi)] = ∇F (w), i = 1, . . . , b, for all w ∈ Rd. Then,

E

∥∥∥∥∥1

b

b∑
i=1

∇f(w; ξi)−∇F (w)

∥∥∥∥∥
2
 ≤ 4L[F (w)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2]− ‖∇F (w)‖2

b
,

(6.16)

where w∗ is any optimal solution of F (w).

6.3.3 Special Property of SARAH Update

The most important property of the SVRG algorithm is the variance reduction of the steps.

This property holds as the number of outer iteration grows, but it does not hold, if only

the number of inner iterations increases. In other words, if we simply run the inner loop for

many iterations (without executing additional outer loops), the variance of the steps does

not reduce in the case of SVRG, while it goes to zero in the case of SARAH with large

learning rate in the strongly convex case. We recall the SARAH update as follows.

vt = ∇f(wt; ξt)−∇f(wt−1; ξt) + vt−1, (6.17)

followed by the iterate update:

wt+1 = wt − ηvt. (6.18)

We will now show that ‖vt‖2 is going to zero in expectation in the strongly convex case.

These results substantiate our conclusion that SARAH uses more stable stochastic gradient

estimates than SVRG.

Theorem 6.3.1a. Suppose that Assumptions 6.3.1, 6.3.2a and 6.3.3 hold. Consider vt
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defined by (6.17) with η < 2/L and any given v0. Then, for any t ≥ 1,

E[‖vt‖2] ≤
[
1−

(
2
ηL − 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2
ηL − 1

)
µ2η2

]t
‖v0‖2.

Proof. For t ≥ 1, we have

‖∇F (wt)−∇F (wt−1)‖2 =
∥∥∥E[∇f(wt; ξt)−∇f(wt−1; ξt)|Ft]

∥∥∥2
≤ E[‖∇f(wt; ξt)−∇f(wt−1; ξt)‖2|Ft]. (6.19)

For t ≥ 1, we have

E[‖vt‖2|Ft]

= E[‖vt−1 − (∇f(wt−1; ξt)−∇f(wt; ξt)‖2|Ft]

= ‖vt−1‖2

+ E
[
‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2 − 2

η (∇f(wt−1; ξt)−∇f(wt; ξt))
T (wt−1 − wt)|Ft

]
(6.11)

≤ ‖vt−1‖2 + E
[
‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2 − 2

Lη‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2|Ft
]

= ‖vt−1‖2 −
(

2
ηL − 1

)
E[‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2|Ft]

(6.19)

≤ ‖vt−1‖2 −
(

2
ηL − 1

)
‖∇F (wt)−∇F (wt−1)‖2

≤ ‖vt−1‖2 −
(

2
ηL − 1

)
µ2η2‖vt−1‖2.

Note that 2
ηL − 1 > 0 since η < 2/L. The last inequality follows by the strong convexity of

F , that is, µ‖wt−wt−1‖ ≤ ‖∇F (wt)−∇F (wt−1)‖ and the fact that wt = wt−1− ηvt−1. By

taking the expectation and applying recursively, we have

E[‖vt‖2] ≤
[
1−

(
2
ηL − 1

)
µ2η2

]
E[‖vt−1‖2]

≤
[
1−

(
2
ηL − 1

)
µ2η2

]t
E[‖v0‖2].

For any given v0, we achieve the desired result.
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This result implies that by choosing η = O(1/L), we obtain the linear convergence of

‖vt‖2 in expectation with the rate (1 − 1/κ2). Below we show that a better convergence

rate can be obtained under a stronger convexity assumption.

Theorem 6.3.1b. Suppose that Assumptions 6.3.1 and 6.3.2b hold. Consider vt defined

by (6.17) with η ≤ 2/(µ+ L) and any given v0. Then the following bound holds, ∀ t ≥ 1,

E[‖vt‖2] ≤
(

1− 2µLη
µ+L

)
E[‖vt−1‖2]

≤
(

1− 2µLη
µ+L

)t
‖v0‖2.

Proof. For t ≥ 1, we have

E[‖vt‖2|Ft]

≤ ‖vt−1‖2

+ E
[
‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2 − 2

η (∇f(wt−1; ξt)−∇f(wt; ξt))
T (wt−1 − wt)|Ft

]
(6.12)

≤ ‖vt−1‖2 − 2µLη
µ+L ‖vt−1‖

2 + E[‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2|Ft]

− 2
η ·

1
µ+LE[‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2|Ft]

= (1− 2µLη
µ+L )‖vt−1‖2 + (1− 2

η ·
1

µ+L)E[‖∇f(wt−1; ξt)−∇f(wt; ξt)‖2|Ft]

≤
(

1− 2µLη
µ+L

)
‖vt−1‖2, (6.20)

where in last inequality we have used that η ≤ 2/(µ + L). By taking the expectation and

applying recursively for any given v0, the desired result is achieved.

Again, by setting η = O(1/L), we derive the linear convergence with the rate of (1−1/κ),

which is a significant improvement over the result of Theorem 6.3.1a, when the problem is

severely ill-conditioned.

We will provide our convergence analyses in detail in next sub-section. We will divide our

results into two parts, which are one-loop results corresponding to iSARAH-IN (Algorithm

7) and multiple-loop results corresponding to iSARAH (Algorithm 6).
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6.3.4 One-loop (iSARAH-IN) Results

We begin with providing two useful lemmata that do not require convexity assumption.

Lemma 6.3.6 bounds the sum of expected of ‖∇F (wt)‖2; and Lemma 6.3.7 expands the

value of E[‖∇F (wt)− vt‖2].

Lemma 6.3.6. Suppose that Assumption 6.3.1 holds. Consider iSARAH-IN (Algorithm

7). Then, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2],

(6.21)

where w∗ = arg minw F (w).

Proof. By Assumption 6.3.1 and wt+1 = wt − ηvt, we have

E[F (wt+1)]
(6.9)

≤ E[F (wt)]− ηE[∇F (wt)
T vt] +

Lη2

2
E[‖vt‖2]

= E[F (wt)]−
η

2
E[‖∇F (wt)‖2] +

η

2
E[‖∇F (wt)− vt‖2]−

(
η

2
− Lη2

2

)
E[‖vt‖2],

where the last equality follows from the fact aT b = 1
2

[
‖a‖2 + ‖b‖2 − ‖a− b‖2

]
.

By summing over t = 0, . . . ,m, we have

E[F (wm+1)] ≤ E[F (w0)]−
η

2

m∑
t=0

E[‖∇F (wt)‖2] +
η

2

m∑
t=0

E[‖∇F (wt)− vt‖2]

−
(
η

2
− Lη2

2

) m∑
t=0

E[‖vt‖2],

which is equivalent to (η > 0):

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (wm)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]

≤ 2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2],

where the last inequality follows since w∗ = arg minw F (w).
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Lemma 6.3.7. Suppose that Assumption 6.3.1 holds. Consider vt defined by (6.4) in

iSARAH-IN (Algorithm 7). Then for any t ≥ 1,

E[‖∇F (wt)− vt‖2]

= E[‖∇F (w0)− v0‖2] +

t∑
j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

Proof. Let Fj = σ(w0, w1, . . . , wj) be the σ-algebra generated by w0, w1, . . . , wj
2. We note

that ξj is independent of Fj . For j ≥ 1, we have

E[‖∇F (wj)− vj‖2|Fj ]

= E[‖[∇F (wj−1)− vj−1] + [∇F (wj)−∇F (wj−1)]− [vj − vj−1]‖2|Fj ]

= ‖∇F (wj−1)− vj−1‖2 + ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ]

+ 2(∇F (wj−1)− vj−1)T (∇F (wj)−∇F (wj−1))

− 2(∇F (wj−1)− vj−1)TE[vj − vj−1|Fj ]

− 2(∇F (wj)−∇F (wj−1))
TE[vj − vj−1|Fj ]

= ‖∇F (wj−1)− vj−1‖2 − ‖∇F (wj)−∇F (wj−1)‖2 + E[‖vj − vj−1‖2|Fj ],

where the last equality follows from

E[vj − vj−1|Fj ]
(6.4)
= E[∇f(wj ; ξj)−∇f(wj−1; ξj)|Fj ] = ∇F (wj)−∇F (wj−1).

By taking expectation for the above equation, we have

E[‖∇F (wj)− vj‖2]

= E[‖∇F (wj−1)− vj−1‖2]− E[‖∇F (wj)−∇F (wj−1)‖2] + E[‖vj − vj−1‖2].

By summing over j = 1, . . . , t (t ≥ 1), we have

E[‖∇F (wt)− vt‖2]

2Fj contains all the information of w0, . . . , wj as well as v0, . . . , vj−1
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= E[‖∇F (w0)− v0‖2] +

t∑
j=1

E[‖vj − vj−1‖2]−
t∑

j=1

E[‖∇F (wj)−∇F (wj−1)‖2].

General Convex Cases

In this subsection, we analyze one-loop results of Inexact SARAH (Algorithm 7) in the

general convex case. We first derive the bound for E[‖∇F (wt)− vt‖2].

Lemma 6.3.8. Suppose that Assumptions 6.3.1 and 6.3.3 hold. Consider vt defined as

(6.4) in SARAH (Algorithm 6) with η < 2/L. Then we have that for any t ≥ 1,

E[‖∇F (wt)− vt‖2] ≤
ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
+ E[‖∇F (w0)− v0‖2]. (6.22)

Proof. For j ≥ 1, we have

E[‖vj‖2|Fj ]

= E[‖vj−1 − (∇f(wj−1; ξj)−∇f(wj ; ξj)‖2|Fj ]

= ‖vj−1‖2

+ E
[
‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2 − 2

η (∇f(wj−1; ξj)−∇f(wj ; ξj))
T (wj−1 − wj)|Fj

]
(6.11)

≤ ‖vj−1‖2 + E
[
‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2 − 2

Lη‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2|Fj
]

= ‖vj−1‖2 +
(

1− 2
ηL

)
E[‖∇f(wj−1; ξj)−∇f(wj ; ξj)‖2|Fj ]

(6.4)
= ‖vj−1‖2 +

(
1− 2

ηL

)
E[‖vj − vj−1‖2|Fj ],

which, if we take expectation, implies that

E[‖vj − vj−1‖2] ≤
ηL

2− ηL

[
E[‖vj−1‖2]− E[‖vj‖2]

]
,

when η < 2/L.
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By summing the above inequality over j = 1, . . . , t (t ≥ 1), we have

t∑
j=1

E[‖vj − vj−1‖2] ≤
ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
. (6.23)

By Lemma 6.3.7, we have

E[‖∇F (wt)− vt‖2] ≤
t∑

j=1

E[‖vj − vj−1‖2] + E[‖∇F (w0)− v0‖2]

(6.23)

≤ ηL

2− ηL

[
E[‖v0‖2]− E[‖vt‖2]

]
+ E[‖∇F (w0)− v0‖2].

Lemma 6.3.9. Suppose that Assumptions 6.3.1 and 6.3.3 hold. Consider v0 defined as

(6.3) in SARAH (Algorithm 6). Then we have,

ηL

2− ηL
E[‖v0‖2] + E[‖∇F (w0)− v0‖2]

≤ 2

2− ηL

(
4LE[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− E[‖∇F (w0)‖2]

b

)

+
ηL

2− ηL
E[‖∇F (w0)‖2]. (6.24)

Proof. By Corollary 6.3.1, we have

ηL

2− ηL
E[‖v0‖2|w0]−

ηL

2− ηL
‖∇F (w0)‖2 + E[‖∇F (w0)− v0‖2|w0]

=
2

2− ηL

[
E[‖v0‖2|w0]− ‖∇F (w0)‖2

]
=

2

2− ηL

[
E[‖v0 −∇F (w0)‖2|w0

]
(6.16)

≤ 2

2− ηL

(
4L[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− ‖∇F (w0)‖2

b

)
.

Taking the expectation and adding ηL
2−ηLE[‖∇F (w0)‖2] for both sides, the desired result

is achieved.

We then derive this basic result for the convex case by using Lemmata 6.3.8 and 6.3.9.
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Lemma 6.3.10. Suppose that Assumptions 6.3.1 and 6.3.3 hold. Consider iSARAH-IN

(Algorithm 7) with η ≤ 1/L. Then, we have

E[‖∇F (w̃)‖2] ≤ 2

η(m+ 1)
E[F (w0)− F (w∗)] +

ηL

2− ηL
E[‖∇F (w0)‖2]

+
2

2− ηL

(
4LE[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− E[‖∇F (w0)‖2]

b

)
,

(6.25)

where w∗ is any optimal solution of F (w); and ξ is some random variable.

Proof. By Lemma 6.3.8, we have

m∑
t=0

E[‖∇F (wt)− vt‖2] ≤
mηL

2− ηL
E[‖v0‖2] + (m+ 1)E[‖∇F (w0)− v0‖2]. (6.26)

Hence, by Lemma 6.3.6 with η ≤ 1/L, we have

m∑
t=0

E[‖∇F (wt)‖2] ≤
2

η
E[F (w0)− F (w∗)] +

m∑
t=0

E[‖∇F (wt)− vt‖2]

(6.26)

≤ 2

η
E[F (w0)− F (w∗)] +

mηL

2− ηL
E[‖v0‖2] + (m+ 1)E[‖∇F (w0)− v0‖2].

(6.27)

Since w̃ = wt, where t is picked uniformly at random from {0, 1, . . . ,m}. The following

holds,

E[‖∇F (w̃)‖2] =
1

m+ 1

m∑
t=0

E[‖∇F (wt)‖2]

(6.27)

≤ 2

η(m+ 1)
E[F (w0)− F (w∗)] +

ηL

2− ηL
E[‖v0‖2] + E[‖∇F (w0)− v0‖2]

(6.24)

≤ 2

η(m+ 1)
E[F (w0)− F (w∗)] +

ηL

2− ηL
E[‖∇F (w0)‖2]

+
2

2− ηL

(
4LE[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− E[‖∇F (w0)‖2]

b

)
.

This expected bound for ‖∇F (w̃)‖2 will be used for deriving both one-loop and multiple-
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loop results in the convex case.

Lemma 6.3.10 can be used to get the following result for general convex.

Theorem 6.3.2. Suppose that Assumptions 6.3.1 and 6.3.3 hold. Consider iSARAH-IN

(Algorithm 7) with η = 1
L
√
m+1

≤ 1
L , b = 2

√
m+ 1 and a given w0. Then we have,

E[‖∇F (w̃)‖2] ≤ 2

η(m+ 1)
[F (w0)− F (w∗)]

+
1√
m+ 1

[
4L[F (w0)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2]

]
, (6.28)

where w∗ is any optimal solution of F (w); and ξ is some random variable.

Proof. By Lemma 6.3.10, for any given w0, we have

E[‖∇F (w̃)‖2] ≤ 2

η(m+ 1)
[F (w0)− F (w∗)] +

ηL

2− ηL
‖∇F (w0)‖2

+
2

2− ηL

(
4L[F (w0)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− ‖∇F (w0)‖2

b

)

≤ 2

η(m+ 1)
[F (w0)− F (w∗)]

+
1

2− ηL
4L√
m+ 1

[F (w0)− F (w∗)] +
2

2− ηL
E
[
‖∇f(w∗; ξ)‖2

]
√
m+ 1

≤ 2

η(m+ 1)
[F (w0)− F (w∗)]

+
1√
m+ 1

[
4L[F (w0)− F (w∗)] + 2E[‖∇f(w∗; ξ)‖2]

]
.

The last inequality follows since η ≤ 1
L , which implies 1

2−ηL ≤ 1. The second last

inequality follows since η ≤ 1
L
√
m+1

and b = 2
√
m+ 1.

Corollary 6.3.2. Suppose that Assumptions 6.3.1 and 6.3.3 hold. Consider iSARAH-

IN (Algorithm 7) with the learning rate η = O
(

1√
m+1

)
and the number of samples b =

2
√
m+ 1, where m is the total number of iterations, then ‖∇F (w̃)‖2 converges sublinearly

in expectation with a rate of O
(√

1
m+1

)
, and therefore, the total complexity to achieve an

ε-accurate solution is O(1/ε2).

Proof. It is easy to see that to achieve E[‖∇F (w̃)‖2] ≤ ε we need m = O(1/ε2) and hence

the total work is 2
√
m+ 2m = O

(
1
ε + 1

ε2

)
= O

(
1
ε2

)
.
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Nonconvex Cases

We then move to nonconvex case. We start with some lemmata for bounding E[‖∇F (wt)−

vt‖2].

Lemma 6.3.11. Suppose that Assumption 6.3.1 holds. Consider vt defined as (6.4) in

iSARAH-IN (Algorithm 7). Then for any t ≥ 1,

E[‖∇F (wt)− vt‖2] ≤ E[‖∇F (w0)− v0‖2] + L2η2
t∑

j=1

E[‖vj−1‖2]. (6.29)

Proof. We have, for t ≥ 1,

‖vt − vt−1‖2
(6.4)
= ‖∇f(wt; ξt)−∇f(wt−1; ξt)‖2

(6.7)

≤ L2‖wt − wt−1‖2 = L2η2‖vt−1‖2. (6.30)

Hence, by Lemma 6.3.7,

E[‖∇F (wt)− vt‖2] ≤ E[‖∇F (w0)− v0‖2] +

t∑
j=1

E[‖vj − vj−1‖2]

(6.30)

≤ E[‖∇F (w0)− v0‖2] + L2η2
t∑

j=1

E[‖vj−1‖2].

Lemma 6.3.12. Suppose that Assumption 6.3.1 holds. Consider vt defined as (6.4) in

iSARAH-IN (Algorithm 7) with η ≤ 2
L(
√
1+4m+1)

. Then we have

L2η2
m∑
t=0

t∑
j=1

E[‖vj−1‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2] ≤ 0. (6.31)

Proof. For η ≤ 2
L(
√
1+4m+1)

, we have

L2η2
m∑
t=0

t∑
j=1

E[‖vj−1‖2]− (1− Lη)

m∑
t=0

E[‖vt‖2]

= L2η2
[
mE‖v0‖2 + (m− 1)E‖v1‖2 + · · ·+ E‖vm−1‖2

]
− (1− Lη)

[
E‖v0‖2 + E‖v1‖2 + · · ·+ E‖vm‖2

]
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≤ [L2η2m− (1− Lη)]
m∑
t=1

E[‖vt−1‖2] ≤ 0,

since η = 2
L(
√
1+4m+1)

is a root of the equation L2η2m− (1− Lη) = 0.

With the help of the above lemmata, we are able to derive our result for nonconvex.

Theorem 6.3.3. Suppose that Assumption 6.3.1 holds. Consider iSARAH-IN (Algorithm

7) with η ≤ 2
L(
√
1+4m+1)

≤ 1
L , b =

√
m+ 1 and a given w0. Then we have,

E[‖∇F (w̃)‖2] ≤ 2

η(m+ 1)
[F (w0)− F ∗] +

1√
m+ 1

(
E[‖∇f(w0; ξ)‖2]

)
, (6.32)

where F ∗ is any lower bound of F ; and ξ is some random variable.

Proof. Let F ∗ be any lower bound of F . By Lemma 6.3.6 and since w̃ = wt, where t is

picked uniformly at random from {0, 1, . . . ,m}, we have

E[‖∇F (w̃)‖2] =
1

m+ 1

m∑
t=0

E[‖∇F (wt)‖2]

≤ 2

η(m+ 1)
E[F (w0)− F ∗] +

1

m+ 1

(
m∑
t=0

E[‖∇F (wt)− vt‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]

)
(6.29)

≤ 2

η(m+ 1)
E[F (w0)− F ∗] + E[‖∇F (w0)− v0‖2]

+
1

m+ 1

L2η2
m∑
t=0

t∑
j=1

E[‖vj−1‖2]− (1− Lη)
m∑
t=0

E[‖vt‖2]


(6.31)

≤ 2

η(m+ 1)
E[F (w0)− F ∗] + E[‖∇F (w0)− v0‖2]

(6.15)

≤ 2

η(m+ 1)
E[F (w0)− F ∗] +

1

b
E[‖∇f(w0; ξ)‖2].

For any given w0 and b =
√
m+ 1, we could achieve the desired result.

Corollary 6.3.3. Suppose that Assumption 6.3.1 holds. Consider iSARAH-IN (Algorithm

7) with the learning rate η = O
(

1√
m+1

)
and the number of samples b =

√
m+ 1, where m

is the total number of iterations, then ‖∇F (w̃)‖2 converges sublinearly in expectation with

a rate of O
(√

1
m+1

)
, and therefore, the total complexity to achieve an ε-accurate solution

is O(1/ε2).
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Proof. Same as general convex case, to achieve E[‖∇F (w̃)‖2] ≤ ε we need m = O(1/ε2) and

hence the total work is
√
m+ 2m = O

(
1
ε + 1

ε2

)
= O

(
1
ε2

)
.

6.3.5 Multiple-loop (iSARAH) Results

In this section, we analyze multiple-loop results of Inexact SARAH (Algorithm 6).

Strongly Convex Cases

Theorem 6.3.4. Suppose that Assumptions 6.3.1, 6.3.2a and 6.3.3 hold. Consider iS-

ARAH (Algorithm 6) with the choice of η, m, and b such that

α =
1

µη(m+ 1)
+

ηL

2− ηL
+

4κ− 2

b(2− ηL)
< 1.

(Note that κ = L/µ.) Then, we have

E[‖∇F (w̃s)‖2]−∆ ≤ αs(‖∇F (w̃0)‖2 −∆), (6.33)

where

∆ =
δ

1− α
and δ =

4

b(2− ηL)
E
[
‖∇f(w∗; ξ)‖2

]
.

Proof. By Lemma 6.3.10, with w̃ = w̃s and w0 = w̃s−1, we have

E[‖∇F (w̃s)‖2]

≤ 2

η(m+ 1)
E[F (w̃s−1)− F (w∗)] +

ηL

2− ηL
E[‖∇F (w̃s−1)‖2]

+
2

2− ηL

(
4LE[F (w̃s−1)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− E[‖∇F (w̃s−1)‖2]

b

)
(6.8)

≤
(

1

µη(m+ 1)
+

ηL

2− ηL
+

4κ− 2

b(2− ηL)

)
E[‖∇F (w̃s−1)‖2]

+
4

b(2− ηL)
E
[
‖∇f(w∗; ξ)‖2

]
(6.34)

= αE[‖∇F (w̃s−1)‖2] + δ

≤ αs‖∇F (w̃0)‖2 + αs−1δ + · · ·+ αδ + δ
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≤ αs‖∇F (w̃0)‖2 + δ
1− αs

1− α

= αs‖∇F (w̃0)‖2 + ∆(1− αs)

= αs(‖∇F (w̃0)‖2 −∆) + ∆.

By adding −∆ to both sides, we achieve the desired result.

Corollary 6.3.4. Let η = O
(
1
L

)
, m = O(κ), b = O

(
max

{
1
ε , κ
})

and s = O
(
log
(
1
ε

))
in

Theorem 6.3.4. Then, the total work complexity to achieve E[‖∇F (w̃s)‖2] ≤ ε is

O
((

max
{
1
ε , κ
}

+ κ
)

log
(
1
ε

))
.

Proof. For example, let η = 2
5L , m = 20κ − 1, and b = max

{
20κ− 10,

20E[‖∇f(w∗;ξ)‖2]
ε

}
.

From (6.34), we have

E[‖∇F (w̃s)‖2] ≤
(

1

8
+

1

4
+

1

8

)
E[‖∇F (w̃s−1)‖2] +

ε

8

≤ 1

2
E[‖∇F (w̃s−1)‖2] +

ε

8

≤ 1

2s
‖∇F (w̃0)‖2 +

ε

4
.

To guarantee that E[‖∇F (w̃s)‖2] ≤ ε, it is sufficient to make 1
2s ‖∇F (w̃0)‖2 = 3

4ε or equiv-

alently s = log
(
‖∇F (w̃0)‖2

3
4
ε

)
. This implies the total complexity to achieve an ε-accuracy

solution is (b+m)s = O
((

max
{
1
ε , κ
}

+ κ
)

log
(
1
ε

))
.

General Convex Cases

Assumption 6.3.4. Let w̃0,. . . ,w̃s be the (outer) iterations of Algorithm 6. We assume

that there exist M1 > 0 and N1 > 0 such that, ∀k ≥ 0,

F (w̃k)− F (w∗) ≤M1‖∇F (w̃k)‖2 +N1. (6.35)

Theorem 6.3.5. Suppose that Assumptions 6.3.1, 6.3.3, and 6.3.4 hold. Consider iSARAH

(Algorithm 6) with the choice of η, m, and b such that

αc =
2M1

η(m+ 1)
+

ηL

2− ηL
+

8LM1 − 1

b(2− ηL)
< 1.
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Then, we have

E[‖∇F (w̃s)‖2]−∆c ≤ αs(‖∇F (w̃0)‖2 −∆c), (6.36)

where

∆c =
δc

1− αc
and δc =

2N1

η(m+ 1)
+

8LN1

b(2− ηL)
+

4E
[
‖∇f(w∗; ξ)‖2

]
b(2− ηL)

.

Proof. By Lemma 6.3.10, with w̃ = w̃s and w0 = w̃s−1, we have

E[‖∇F (w̃s)‖2]

≤ 2

η(m+ 1)
E[F (w̃s−1)− F (w∗)] +

ηL

2− ηL
E[‖∇F (w̃s−1)‖2]

+
2

2− ηL

(
4LE[F (w̃s−1)− F (w∗)] + 2E

[
‖∇f(w∗; ξ)‖2

]
− E[‖∇F (w̃s−1)‖2]

b

)
(6.35)

≤
(

2M1

η(m+ 1)
+

ηL

2− ηL
+

8LM1 − 1

b(2− ηL)

)
E[‖∇F (w̃s−1)‖2]

+
2N1

η(m+ 1)
+

8LN1

b(2− ηL)
+

4E
[
‖∇f(w∗; ξ)‖2

]
b(2− ηL)

= αcE[‖∇F (w̃s−1)‖2] + δc

≤ αsc(‖∇F (w̃0)‖2 −∆c) + ∆c.

Applying the same procedure as strongly convex case above, we can achieve the following

complexity result.

Corollary 6.3.5. Let η = O
(
1
L

)
, m = O

(
1
ε

)
, b = O

(
1
ε

)
and s = O

(
log
(
1
ε

))
in Theo-

rem 6.3.5. Then, the total work complexity to achieve E[‖∇F (w̃s)‖2] ≤ ε is (b + m)s =

O
(
1
ε log

(
1
ε

))
.

We can observe that, with the help of Assumption 6.3.4, iSARAH could achieve the

best known complexity among stochastic methods (without involving of exact gradient or

accelerated trick) in the general convex case.
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Conclusion

We study a feedback-based agent invitation scheme for a model with randomly behaving

agents and possible abandonment of customers and agents. This model is motivated by

a variety of existing and emerging applications. We derived some sufficient local stability

conditions, using the machinery of switched linear systems and common quadratic Lyapunov

functions. Our simulation and numerical experiments show good overall performance of the

feedback scheme, when the local stability conditions hold. They also suggest that, for our

model, the local stability is in fact sufficient for the global stability of fluid limits.

We have demonstrated that based on the behavior of the stochastic gradient estimates

at or near the stationary points, SGD with fixed step size converges with the same rate as

full gradient descent of the variance reduction methods, until it reaches the accuracy where

the variance in the stochastic gradient estimates starts to dominate and prevents further

convergence.

We have provided the analysis of stochastic gradient algorithms with a diminishing step

size in the strongly convex case under the condition of Lipschitz continuity of the individ-

ual function realizations, but without requiring any bounds on the stochastic gradients.

We showed almost sure convergence of SGD and provided sublinear upper bounds for the

expected convergence rate of a general recursion which includes Hogwild! for inconsistent

reads and writes as a special case.

We propose the SARAH algorithm for solving finite-sum minimization problems. The

linear convergence rate of SARAH is proven under a strong convexity assumption. We also

prove a linear convergence rate in the strongly convex case for an inner loop of SARAH, a

property that SVRG does not possess. Moreover, we provide a sublinear convergence rate
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(to stationary points) for general convex and nonconvex functions. We also consider the

SARAH algorithm with inexactness. Instead of computing a full gradient at each outer

iteration, we only compute a subset of samples.
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