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Abstract

Optimization problems with numerical noise arise from the growing use of computer

simulation of complex systems. This thesis concerns the development, analysis and

applications of randomized derivative-free optimization (DFO) algorithms for noisy

functions. The first contribution is the introduction of DFO-VASP, an algorithm for

solving the problem of finding the optimal volumetric alignment of protein struc-

tures. Our method compensates for noisy, variable-time volume evaluations and

warm-starts the search for globally optimal superposition. These techniques en-

able DFO-VASP to generate practical and accurate superpositions in a timely man-

ner. The second algorithm, STARS, is aimed at solving general noisy optimization

problems and employs a random search framework while dynamically adjusting the

smoothing step-size using noise information. rate analysis of this algorithm is pro-

vided in both additive and multiplicative noise settings. STARS outperforms ran-

domized zero-order methods in both additive and multiplicative settings and has

an advantage of being insensitive to the level noise in terms of number of function

evaluations and final objective value. The third contribution is a trust-region model-

based algorithm STORM, that relies on constructing random models and estimates

that are sufficiently accurate with high probability. This algorithm is shown to con-

verge with probability one. Numerical experiments show that STORM outperforms

other stochastic DFO methods in solving noisy functions.

1



Chapter 1

Introduction

Derivative-free optimization (DFO) is a field of nonlinear optimization that studies

with methods that do not require explicit computations of the derivative information.

Formally, we consider the unconstrained optimization problem

min
x∈Rn

f(x) (1.1)

where the first (and second, in some cases) derivatives of the objective function f(x)

are assumed to exist and be Lipschitz continuous. However, explicit evaluation of

these derivatives is assumed to be impossible. The particular focus of this thesis

is the case when they are unavailable due to the noise in the objective function

evaluations. This means the algorithm only has access to noise-corrupted values

f̃(x) = f(x) + ε(x),

where ε represents the noise. Hence, the goal is to minimize the true underlying

function f using only its noisy version f̃ .

2



1.1 Problems with Numerical Noise

Problems with numerical noise form the key domain of Derivative-free Optimization

(DFO) algorithms and response surface methodology [32,34,36,37,51]. The presence

of random noise in the objective function, in various practical applications, is often

a result of simulating large complex systems. Such computer simulations produce

underlying function values, but often do not provide derivatives of these outputs

with respect to the decision variables of interest. It is typical for these problems to

be intrinsically nonlinear, costly to evaluate and not sufficiently explicitly defined to

provide reliable derivatives. This means that approximating the derivatives of such

functions by traditional finite-differencing techniques or Automatic Differentiation

(AD) [12] becomes prohibitive or problematic. Though it is often, but not always,

theoretically possible in these cases to extract derivative information efficiently using

AD, the associated implementation procedures are typically non-trivial and time-

consuming.

Designing practically efficient and theoretically tractable algorithms for solving

noisy optimization problems is essential for increasing solution accuracy in many

fields of science and engineering, such as biology, medicine, computer science and

industrial design, to name a few. One such example that arises from the area of

structural biology is the problem of finding the optimal volumetric alignment of

protein structures, where the noise emerges when the overlapping volume is being

approximated [22]. Other ways that the noise enters the objective function can be

seen in an expensive simulation of a vehicle model as a part of a larger effort to

improve fuel economy of the next generation of vehicles in the automotive design

industry [84], or in the automatic tuning of algorithmic hyper-parameters where

randomness comes from the stochastic nature of both the training algorithm and

3



sample set [88].

There are two types of noise that need to be addressed. The first type is de-

terministic noise, which often results from a discretization procedure or the finite

tolerances on termination criteria in a simulator. The other type of noise is called

stochastic noise, which may arise if there are random fluctuations or measurement

errors within the simulator, for example, Monte-Carlo simulation. Figure 1.1 helps

visualize the noisy function we are interested in optimizing. It is a plot of the objec-

tive of the protein alignment problem, which will be described in detail in Chapter

2. The goal is to find superpositions of protein-ligand binding cavities that maximize

their overlapping volume. This problem can be restated as an optimization problem

where the variable x is a vector of rotation and translation parameters of one (or

more) cavities with respect to another. The objective function f(x) is the negative of

the overlapping volume of two or more protein structures and its evaluations are done

by VASP [20] given their relative positions. Figure 1.1 shows the surface of the noisy

function computed by VASP, with respect to two of the parameters, with the others

fixed. It can be observed that the objective function is highly noisy, non-smooth and

nonlinear. The noise can be deterministic due to the discretization precision in the

protein volume approximation, or stochastic as a result of the varying random seeds

within the simulator.

1.2 Derivative-free Optimization Methodologies

Motivated by applications like these, researchers in the field of derivative-free op-

timization have invested substantial efforts in proposing new algorithms to better

optimize problems with random noise. A fairly straightforward technique to deal

with the noise is a Monte Carlo procedure that relies on repeated random sampling

4
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Figure 1.1: Noisy objective function.

to reduce the variance of the noise. However, one can rarely afford to do this when

function evaluations are computationally costly. Some recent works have addressed

the issue of noise in DFO framework, for instance, [14] proposes the use of weighted

regression in a trust-region framework, [52] discusses termination criteria in the noisy

environment. But there has been little theoretically sound and systematic study of

approaches to noisy problems in DFO, and those that exist usually assume stochas-

tic noise setting. For example, in [30] least square regression models for random

i.i.d. noise were proposed, but no other models were analyzed or experiments were

performed.

The main contribution of this thesis is the development and analysis of random-

ized algorithms for stochastic optimization. Algorithmically, our methods employ a

rigid mechanism of choosing a search direction and a step size. While this may be

sufficiently effective to produce a function decrease in the deterministic setting, it

is much less likely to perform equally well in the stochastic setting. On the other

hand, randomizing the traditional algorithms without substantially changing their

main features, such as line search procedures and/or computation of candidate trial

points, may produce robust methods when noise is present. Nevertheless, random-

izing tradition algorithms while still maintaining their convergence properties is an

5



open question. This is precisely the topic of our work.

1.2.1 Direct Search and Random Search Methods

Randomized stochastic methods are popular alternatives to deterministic methods

for simulation-based black-box problems, besides deterministic DFO algorithms such

as direct search methods or model-based trust-region methods. The randomized

schemes share a simple basic framework, allow fast initialization, and are good for

large scale problems. Furthermore, there is a renewed interest in this topic in the

recent literature, primarily because of their provable convergence rate. Complexity

results for solving both convex and nonsmooth nonconvex functions are readily avail-

able for randomized algorithms [38,63,79]. However the practical usefulness of these

methods are not as promising, with the fixed step sizes determined by the complexity

analysis. Nonetheless, their work greatly inspired our own efforts in Chapter 3.

We now review the framework of randomized direction method and some re-

cently developed algorithms of this type. Some of them are used for comparison

with our proposed algorithm in Chapter 3. As introduced in [55], Random optimiza-

tion approach applies to the problem min
x∈Rn

f(x), where f is a differentiable function.

At every iteration k, a point xk+1 is randomly sampled with Gaussian distribution

around the current point xk. If f(xk+1) < f(xk), the current iterate is updated to

xk+1. Polyak [65] improved this scheme by describing step size rules

xk+1 = xk − hk
f(xk + µku)− f(xk)

µk
u,

where convergence is proved for µk → 0 but no convergence rates are established nor

specific rules given for choosing the parameters that are involved.

6



In [63], Nesterov recently presented four derivative-free random search schemes

and obtained the theoretical bounds for their performances. In particular, the ran-

dom gradient method (RG) for smooth optimization is a random version of the stan-

dard primal gradient method, while its accelerated version FG is a random variant

of the fast gradient method. It was shown that the iteration complexity of FG for

finding a solution x∗ such that f(x∗) − f ∗ ≤ ε can be bounded by O(n2/ε2). Fur-

thermore, the author extended the work by proposing random search for non-smooth

and stochastic optimization, and random search for non-convex optimization.

Different improvements of these random search ideas emerge in the latest liter-

ature. For instance, incorporating the Gaussian smoothing technique [63], Ghadimi

and Lan [38] presented a randomized stochastic gradient free (RSGF) method. It was

shown that its iteration complexity for finding the ε-solution, i.e., a point x̄ such that

E[‖∇f(x̄)‖] ≤ ε, can be bounded by O(n/ε2), and this rate, in the smooth convex

cases, improves Nesterov’s result in [63] by a factor of O(n).

Stich et al. [79] presented Random Pursuit algorithm (RP), which relaxes the

requirement in [63] of approximating directional derivatives via a suitable oracle.

Instead, after choosing direction uniformly at random from the hypersphere, the

step sizes are determined by a line search procedure. In their implementation, the

built-in MATLAB routine fminunc.m is used as the approximate line search oracle. It

was shown that RP meets the convergence rates of the standard gradient method up

to a factor of O(n). Furthermore, inspired by Nesterov’s FG scheme, an accelerated

Random Pursuit algorithm (ARP) was presented.

Another randomized method introduced in [74] is called Adaptive Step Size Ran-

dom Search Method ((1+1)-Evolution Strategy (ES)). Instead of using pre-calculated

step sizes or line search oracles, the adaptive step size random search method dy-

7



namically controls the step size as to approximately guarantee a certain probability

of finding an improving iterate.

Encouraged by the success of random search methods, we propose a new algo-

rithm for unconstrained derivative-free noisy optimization, Our algorithm, named

STARS (STep-size Approximation in Randomized Search) relies on a near-optimal

forward difference approximation of the directional derivative of a noisy function to

determine the smoothing step size. The main idea is that with appropriately chosen

adaptive step sizes, the randomized scheme can be utilized to reduce the effects of the

noise in the objective function evaluations. We provide convergence rate analysis of

our method in both additive and multiplicative settings. Computational experiments

show positive results supporting this idea.

1.2.2 Trust-region Methods

All derivative-free methods rely on sampling the objective function at one or more

points at each iteration. Starting from the early 90s a variety of direct search methods

have been developed [1, 2, 6, 53, 82, 83] accompanied by convergence theory. These

methods are inherently slow for problems of more than a few variables, because

they are not able to use gradient or curvature information and they rarely reuse the

sample points. New efficient model-based trust-region methods were developed in

the second half of the 90’s, by Powell (e.g. [66–68,70,71]).

With her colleagues, Scheinberg ( [25], [26]) developed convergent model-based

trust-region methods and a software package called “DFO”, based on those methods

in [29]. This package has being widely used for over a decade. The computational

study of More and Wild [57] has shown that model based DFO methods are typi-

cally significantly superior in practical performance to the other existing approaches.

8



Most of the existing model-based DFO methods use polynomial interpolation mod-

els in place of the true objective function. The polynomial models are meant to

approximate smooth functions, however, the function values produced by simulation

packages are rarely smooth. As mentioned, there is often stochastic or deterministic

noise added to an underlying (possibly) smooth true objective function.

While practical approaches for noisy derivative free problems have been studied

extensively (e.g., see [4, 5]) most of the methods rely on a direct search framework.

There has been relatively little theoretical development in the methods targeting

noise in model-based derivative free optimization. Deng and Ferris [36, 37] have

developed a method based on a method by Powell, which uses quadratic interpolation

models. They use an average of multiple volume evaluations for each setting of the

parameters to reduce the level of noise, which they assume to have the i.i.d. property.

By reducing the noise to the desired level they can apply the convergence results

developed for quadratic interpolation models in [26] and [31].

One of the limitations of their method is that it cannot be applied to the case

of deterministic noise. Furthermore, in such a case interpolation models may not

be the best choice for the approximation. One may prefer least square regression

models, for instance. As the number of sample points increases, the least-squares

regression solution to the noisy problem converges (in some senses and under rea-

sonable assumptions) to the least-squares regression of the underlying true function.

In [14], it has been shown that using least square regression models indeed can result

in superior performance for noisy problems. Fortunately, useful model properties

needed for the convergence theory in [31] can be extended to other classes of models,

including the least squares regression models. Some of that theory has been further

extended in [14].

9



In this thesis we address the above limitations. In Chapter 2, we integrate the de-

terministic noise level estimations into the trust-region algorithmic framework. Noise

reduction strategies, such as reducing noise level and modifying the stopping criteria,

are employed. In Chapter 4, we propose the use of probabilistic models and estimates

in a trust-region for optimization of stochastic function. These random models and

estimates are sufficiently accurate with sufficiently high probability. We prove that

the trust region radii go to zero and the algorithm converges with probability one.

We also discuss how to construct such models and estimates, as well as empirical

performance of proposed algorithm.

1.2.3 Noise Reduction Techniques

Various ways of accounting for noise while optimizing have been explored in the

literature, especially for optimization without derivatives. Some reduce noise to

obtain more accurate function evaluations, for instance, by using different types of

averaging techniques. Some others in fact do not directly reduce the noise at each

point evaluated but instead use the noise information to adjust the algorithm for

better solutions.

For functions with stochastic noise, computing replications of function evaluations

is a simple way to modify existing algorithms. One can sample multiple replications

per point and compute the average. There exist various methods for determining

the number of replications and many of them reply on using probabilistic character-

ization of the variability. For instance, Deng and Ferris [36] modifies DIRECT [46].

Bayesian tools are used to analytically quantify the distributions of the functional

output at each point. Acquired Bayesian sample information are used to determine

appropriate numbers of replications. This sampling scheme may generate different
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numbers of samples for different points. Deng and Ferris [34, 37] modifies Powells

UOBYQA [69], which uses quadratic interpolation models. To reduce the variance

of the quadratic model, they generate multiple function values for each point and

use the averaged function values for interpolation. Bayesian posterior distributions

of the model parameters are analytically quantified to help determine the appropri-

ate number of evaluations. The noise is assumed to have the i.i.d. property. By

reducing noise to the desired level they can apply the convergence results developed

for quadratic interpolation models in [26] and [31]. Similar to these is [81] which

modifies Nelder-Mead [62].

Other practical approaches for noisy derivative free problems without explicitly

reducing the noise have been studied extensively. Most of the methods rely on a

direct search framework. The implicit filtering algorithm described in [39] builds

upon coordinate search and then constructs interpolation model to obtain an ap-

proximation of the gradient. It assumes that the noise goes to zero as x tends to

the optimal points to obtain superlinear convergence in the terminal phase of the

iteration. Many global optimization approaches for nonsmooth optimization are also

shown to be effective in solving noisy problems. These algorithms are designed to

avoid getting trapped in a local minima. [5] is hybrid algorithm for nonsmooth con-

strained optimization. It retains the convergence properties of Mesh Adaptive Direct

Search (MADS), and allows the far reaching exploration features of Variable Neigh-

borhood Search (VNS) to move away from local solutions. Another variation of the

direct search algorithm [4] is proved to converge when the noise approaches zero

faster than the step size.

One of the limitations of their method is that it cannot be applied to the case of

deterministic noise. Kelley [47] considers a high-frequency low-amplitude perturba-

tion of a smooth function and proposes a technique to detect and restart Nelder-Mead
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methods, reinitializing the simplex to a smaller one with orthogonal edges which con-

tains an approximate steepest descent step from the current best point. Neumaiers

SNOBFIT [42] algorithm accounts for noise by combing a global search that proceeds

by partitioning the search region into boxes, with a local search that fits a linear least

squares model. Moreover, the computational results of these methods are not quite

promising. Except [4], the other methods are not well-known and frequently used

for efficiently solving noisy functions.

In model-based derivative free optimization, there has been relatively little the-

oretical development in the methods targeting noise. In such a case interpolation

models may not be the best choice for the approximation. One may prefer least

square regression models, for instance. As the number of sample points increases,

the least-squares regression solution to the noisy problem converges (in some senses

and under reasonable assumptions) to the least-squares regression of the underlying

true function. In [14], it has been shown that using least square regression models

indeed can result in superior performance for noisy problems. Fortunately, useful

model properties needed for the convergence theory in [31] can be extended to other

classes of models, including the least squares regression models. Some of that the-

ory has been further extended in [14], where weighted regression models in a classic

trust-region framework are tested out for optimization of functions with both stochas-

tic and deterministic noise.The geometry of sample sets for least squares regression

models for handling noise was discusses in [30].

Our noise reduction strategies in Chapter 3 [22] are a combination of these in-

teresting ideas. They are effectively designed to tackle controllable, stochastic and

biased noise associated with the VASP volume computation. We consider averag-

ing over resolutions to introduce more randomness than regular averaging, so the

noise gets smoothed out better. It is also considered to directly reduce the noise in
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the exchange for reduced runtime. Least-squares regression is utilized in the classic

trust-region framework. Moreover, as the noise is controllable unlike many other

noise settings that have been studied, a dynamic accuracy increment technique is

used to achieve better solutions. From a theoretical point of view, we prove the

first-order convergence in Chapter 4, with probability one, of a simple trust-region

method with random models for optimizing stochastic functions. Regarding to the

proposed randomized search algorithm in Chapter 3, it is a modification of a stan-

dard random search method, where the variance of the noise is utilized to obtain

optimal smoothing step size that best approximates the directional derivative at

each iteration.

1.3 A Brief Outline of the Thesis

The remainder of this thesis is organized as follows.

In Chapter 2 (accepted in [22]; joint work with Dr. Brian Chen and Dr. Katya

Scheinberg), we propose DFO-VASP as a specialized solver for the optimization of

the protein alignment problem. First we review the background and how the ob-

jective function is a result of a complex noisy simulation. Then, we present a new

DFO method that integrates the deterministic noise level estimations into the trust-

region algorithmic framework. A noise-reduction strategy is employed to handle the

presence of deterministic noise. Experiments on biological instances are presented to

illustrate the accuracy and practical efficiency of our method.

In Chapter 3 (joint work with Dr. Stefan Wild), we introduce the STARS algo-

rithm for optimizing general noisy functions with additive or multiplicative noise.

STARS uses dynamic noise-adjusted smoothing step sizes and thus is specialized

13



for noisy functions. We start with a review of the random search methods and

terminologies. Then, the STARS is described. The convergence rate analysis for

both additive and multiplicative noise case is provided. Lastly, numerical studies re-

veal that STARS exhibits noise-invariant behavior with respect to different levels of

stochastic noise and STARS outperforms selected randomized zero-order approaches

on functions with additive and multiplicative noise.

In Chapter 4 (joint work with Dr. Katya Scheinberg and Matt Menickelly), en-

couraged by the success of the model-based method in Chapter 2, we propose an

extension of this class of methods by incorporating probabilistic models. We first

review trust-region methods and polynomial models. Then, we describe the STORM

algorithm and give formal definitions of the probabilistic models and estimates. We

provide convergence results and methods to construct probabilistic models via the

use of error bounds from the literature on learning theory. Some preliminary com-

putational results are presented.

Lastly Chapter 5 contains concluding remarks and directions for future research.
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Chapter 2

Aligning Protein Cavities by

Optimizing Superposed Volume 1

In this chapter, an improved DFO algorithm, DFO-VASP, is proposed for solving the

problem of finding optimal superposition in protein structure comparison. Algorith-

mically, this method takes care of both the stochastic noise and the controllable de-

terministic noise in the objective function evaluations. It incorporates noise-handling

strategies that utilize the noise level estimations in the trust-region framework, and

multi-start strategies to explore a globally optimal solution. Biologically, experi-

mental results verify that the superpositions we discover are logical alignments of

ligand binding sites, then we demonstrate that DFO-VASP generally discovers cavity

superpositions with similar or occasionally larger overlapping volume than that of

superpositions generated with existing means. Finally, we demonstrate on a large

scale that similarities and variations discovered from DFO-VASP superpositions cor-

respond to similarities and differences in ligand binding specificity.

1THIS CHAPTER IS AN EXPANDED VERSION OF A PAPER OF THE SAME TITLE [22]
COAUTHORED BY KATYA SCHEINBERG AND BRIAN Y. CHEN.
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2.1 Volumetric Alignment of Protein Binding Cav-

ities

Many fields of molecular biology study the interaction of proteins with small molecules

(ligands). The main focus is on determining how proteins function in a larger bio-

logical system. Proteins that perform the same function often further specialize by

preferring to bind with certain molecules. This is called the property of preferen-

tial binding specificity. Understanding why proteins prefer to bind certain molecular

partners and not others is the subject of tremendous scrutiny in many fields of bi-

ology and medicine. Preferential binding, or specificity, shapes the organization of

molecular interactions in biological systems. Cavity regions that have similar shape

may be essential for accommodating the same molecular fragment, while regions that

do not may cause differences in binding specificity [16,17,20].
Specificity)is)preferen.al)binding)

Specificity)is)an)aspect)of)func.on)Figure 2.1: Protein-ligand binding.

To understand how specificity is achieved, structural biologists examine the molec-
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Proteins)with)the)same)func1on)can)have)
different)specificity)

(a) This protein structure does not bind with the third ligand.

Proteins)with)the)same)func1on)can)have)
different)specificity)

(b) A similar protein structure does not bind with the first ligand instead.

Figure 2.2: An illustration that shows that proteins with the same function can have
different specificities.

ular shape, charge, and other biophysical properties of proteins to identify which

parts of the protein influence specificity, and how they do so.

One way to examine these properties is to visualize three dimensional superposi-

tions of two or more proteins. These superpositions can illustrate where the proteins

are similar, and where they are different. At binding sites, where proteins interact

with other molecules, similarities might assist in stabilizing similar molecules. Dif-

ferences in shape or charge at other parts of a binding site can accommodate binding

partners of one protein that cannot be accommodated by the other. One example

of such a difference between two binding cavities could be a cleft in one cavity that

creates more free space than in another, permitting differently shaped molecules to

bind. Figure 2.2 illustrates such an example. Two proteins with the same function,
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one colored in green and one colored in red, prefer to bind with different ligands due

to subtle differences in cavities.

(a) The backbone - tertiary structures. (b) Backbone alignments find similarity
among this family of proteins.

(c) Other methods aligns motifs around active site. Similar functional
sites imply similar function.

Figure 2.3: Atom-based alignment methods.

Making observations like these depends on accurate superpositions of protein

structures. An accurate superposition should align similar elements of shape or

charge as much as possible, to avoid mischaracterizing them as differences that ac-

commodate different binding partners. An ideal superposition should also accen-
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tuate actual structural and electrostatic differences and not let them be obscured

by incidental similarities. Current techniques for generating superpositions are not

equipped to detect all such similarities and differences, creating shortcomings in the

design of structural alignment algorithms.

Existing protein structure comparison algorithms almost universally rely on ge-

ometric alignments of atomic coordinates, that is superposing corresponding atoms

in two or more protein structures [15, 19, 41, 75, 85–87]. This kind of superposition

ensures that many atoms overlap, enabling similar proteins to be well aligned. One

class of such methods [64,75,86], as seen in Figure 2.3(a) and 2.3(b), examines protein

evolution by generating and comparing alignments of whole protein structures based

on their corresponding backbone atoms. These algorithms can find relationship in the

continuous space of protein folds. Similar to these methods are algorithms [18, 19],

illustrated in Figure 2.3(c), that find similar functional sites by using motifs to repre-

sent a known functional site and searching a target structure for a set of amino acids

in the same configuration as the motif. If such amino acids are found, it suggests

that the target has the same functional site as the motif.

However, these methods have two major shortcomings. First of all, the required

correspondences between atoms cannot be fully constructed between sidechain atoms,

because sidechains have different lengths. Two proteins might have different number

of atoms, so it’s impossible find a one-to-one comparison between atoms, i.e., an

atomic alignment. This underlying variability forces atom-based superpositions to

simplify amino acid geometry into backbone-only [19, 41, 75, 86, 87], surrendering

detail. Second limitation shown in Figure 2.4 is that these methods align protein

structures by the position of the atoms. They do not align protein cavities based

on the open space inside the cavity. However, this open space is where the partner

molecule binds and thus the similarity in that region is crucial. Moreover, while
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Figure 2.4: An illustration that shows the limitations of atom-based approaches.
The position of atoms are not equivalent to the shape of the cavities.

electrostatic potentials can be represented at the molecular surface [49] or labeled

on specific atoms, the electrostatic field is not represented at longer ranges that are

remote from the protein. Superpositions are thus unable to incorporate the general

shape of the electrostatic field into the alignment. The work described below explores

an alternative approach to comparative superposition that mitigates these issues.

Our goal is to find superpositions of protein-ligand binding cavities that maxi-

mize their overlapping volume. And this problem can be restated as an optimization

problem where the variable x is a vector of rotation and translation parameters of

one (or more) cavities with respect to another. The number of parameters for opti-

mization can range from seven (three specifying the rotation axis, one specifying the

rotation angle, and three specifying the translation) to multiples of seven, depend-

ing on the number of structures we choose to align. The objective function f(x) is

the negative of the overlapping volume and its evaluations are done by VASP [20].

VASP approximately computes the volume of the intersection of two or more protein

structures given their relative positions. Hence the task we face here is: given two

or more protein structures find optimal superposition - the values of rotation and

20



translation parameters for each of them to maximize the volume of the intersection.

2.1.1 VASP Software

VASP [16,17,20] evaluates overlapping volume using marching cubes [54], a technique

for generating a polyhedral surface for a closed three dimensional volume. In the

abstract, this process identifies the overlapping region of two areas A and B by first

decomposing space into a fine cubic lattice. A cubic lattice can be described as a

series of cubes, segments of cubes, or a series of points that form the corners of

cubes. Marching cubes operates by identifying the corner points that are inside

both A and B. We refer to these as interior points. The cube segment between any

interior point and a non-interior point must exit the overlapping region. For all

such cube segments, marching cubes identifies the intersection points between the

cube segment and the boundary of the intersecting region. Finally, the set of all

intersection points are combined to create a polyhedral mesh that approximates the

intersecting region. The volume of the intersecting region can be calculated using

the Surveyor’s Formula [72].

The nature of this approximation affects the accuracy of DFO-VASP: Intersec-

Figure 2.5: Marching cube method: how the protein volume is approximated.
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Figure 2.6: VASP isolates differences in cavity shapes.

tions computed on lattices with finely sized cubes are more precise approximations

of the surface, while lattices with coarser cubes have greater, though bounded, in-

accuracies. As one surface is rotated and translated in the search for increasingly

greater overlapping volumes, the surface intersects the lattice, which remains axis

aligned, in different ways, generating noise in the approximation. This noise can be

substantial because of the complex shape of molecular surfaces and cavities based

on the molecular surface. To capture the complexity of the molecular surface with

higher accuracy requires higher resolution of the lattice used in DFO-VASP. Higher

resolutions are essential when smaller cavities are aligned, but they also result in a

larger computational burden, as we will illustrate bellow.

VASP presents us with an ideal testing environment for developing various ro-

bust DFO methods for noisy problems: this noise in VASP can be deterministic

or stochastic (depending on the algorithmic setting) and it is significant enough to

cause standard DFO implementations to fail to converge to the proximity of a local

minimizer. On the other hand, since the noise comes from a 3D approximation of

the volume, the deterministic noise component can be controlled to a certain degree

at an additional computational cost spent on increasing the accuracy of the volume

approximation. Furthermore, the number of parameters for optimization can range

(starting from seven) depending on the number of structures we choose to align. This
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allows us to perform quick testing of many ideas on small scale noisy problems and

then expand the testing to similar problems of larger scale.

2.1.2 Alignments of Electrostatic Data

In addition to molecular shape, other electric fields also influence function. To con-

sider this second range of data, DFO-VASP can also be used to superpose electrostatic

isopotentials. Electrostatic isopotentials represent a spatial region where positive

electrostatic potentials are greater than a given threshold, or negative electrostatic

potentials are smaller than a given threshold. Because electrostatic isopotentials are

necessarily closed regions, the superposition of two isopotentials can be achieved by

the same general approach as the superposition of ligand binding cavities. Elec-

trostatic potentials used here represent entire proteins rather than regional binding

sites, and electrostatic potentials can be generated at different thresholds for different

comparison purposes.

Electrostatic isopotentials, especially of whole proteins, can be dramatically larger

than ligand binding cavities. Differences in size requires different resolution thresh-

olds to be considered, to maintain efficiency. While coarser resolutions exhibit greater

absolute inaccuracy, relative to isopotential volume, inaccuracy from noisy compar-

ison is no larger than for ligand binding cavities. For this reason it is essential for

DFO-VASP to adjust the range of resolutions considered in the superposition prob-

lem when considering isopotentials. In Section 2.3.2 we will illustrate the range of

resolutions that we found efficient for aligning isopotentials. Considering the super-

position of electrostatic isopotentials enables us to critically examine how DFO can

be used to generate efficient superpositions, in spite of noise and very diverse data.
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2.2 Description of the Basic DFO Method

2.2.1 Objective

We consider the problem of maximizing the overlapping volume in the protein align-

ment as an unconstrained minimization problem

min
x∈Rn

f(x). (2.1)

VASP software approximately computes the volume of intersection of two or

more protein structures (or their parts) given their relative positions, i.e., rotation

and translation. Hence, in this case x defines the relative position and the number

of parameters for optimization can range from seven (three specifying the rotation

axis, one specifying the rotation angle, and three specifying the translation vector)

to multiples of seven, depending on the number of structures one chooses to align.

Figure 2.7 shows the meaning of the seven variables when aligning two protein struc-

tures. tx, ty, tz denote the translation parameters in the 3D space. ax, ay, az define

a rotation vector around which a rotation indicated by the variable angle will be

performed. These seven variables uniquely defines a relative superposition from the

initial position.

In order to normalize the rotation axis, we need to add an equality constraint,

which in the case of two protein alignment can be expressed as ‖xa‖ = 1 where

xa ∈ R3 is a vector with the entries being the first three entries of x ∈ R7. However, to

avoid solving problems with nonlinear constraints, we simply move the constraint into

penalty function, λ(‖xa‖−1)2. Since this constraint only serves to eliminate multiple

and badly scaled solutions, it does not have to hold exactly. By choosing a small
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tx

ty

tz [ax,ay,az]'

angle

tx

ty

tz [ax,ay,az]'

angle

Figure 2.7: An illustration that shows the meaning of variables in the protein align-
ment problem.

and constant value for the penalty parameter λ we produce a stable unconstrained

formulation for our problem.

2.2.2 Algorithmic Framework

Trust-region algorithms are iterative algorithms for solving (2.1). In each iteration of

these algorithms, given current point xk, one constructs a model mk(xk + s) for the

objective function that sufficiently approximates the objective for all perturbations

s belonging to the “trust region” B(xk,∆k), where ∆k is known as the radius of the

trust region. The model function mk(xk + s) is then minimized (possibly approxi-

mately) in B(xk,∆k) to define a trial step x+k , and a trial function value f(x+k ). If

the change in the function value f(xk) − f(x+k ) is bigger than a certain fraction of

the change mk(xk) −mk(x
+
k ) anticipated on the basis of the model, the iteration is

deemed “successful”, and the trial point is accepted as the new iterate, the model

is updated and the trust-region radius is possibly increased. If, on the contrary, the

reduction in the objective function is too small compared to that predicted by the
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model, the iteration is deemed “unsuccessful”, the trial point is rejected and the

trust-region radius is decreased.

Eventually, the algorithm stops its execution when the step size parameter is be-

low a given threshold. See [28] for a detailed description of trust-region algorithms.

Thus, the trust region algorithmic framework can be roughly described as follows.

The model-based DFO algorithm that we use is based on a trust-region framework

described in [32]. This framework relies of constructing, so-called, fully-linear inter-

polation models of the objective function. The definition and details on fully-linear

models can be found in [32]. This trust region algorithmic framework can be roughly

described in Algorithm 1.

This algorithmic framework has been shown to converge to a local optimal so-

lution in the absence of noise. The numerical implementation of this algorithm

terminates its execution when the step size parameter falls below a given threshold.

For the purposes of theoretical guarantees a different, more computationally costly

stopping criterion needs to be employed, but in practice a simple threshold strategy

is used [32]. See [28] for a detailed description of trust-region algorithms.

2.2.3 Polynomial Models

In model-based DFO, the function f is (locally) approximated using a class of models.

For these models to be useful they need to be sufficiently accurate, i.e. they provide

a Taylor series like approximation. In [30, 32] general concepts of fully-linear and

fully-quadratic models were introduced. Loosely speaking, a model m(x) is said to

be a fully-linear model of f(x) in B(x; ∆) = {y : ‖x−y‖ ≤ ∆}, if for all y ∈ B(x; ∆),

the error between the gradient and the value of the model and the gradient and the
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Algorithm 1 DFO:Basic Trust Region Algorithm

1: (Initialization) Choose an initial point x0, trust region radius ∆0, and an initial
interpolation set Y0 ⊂ B(x0,∆0), which in turn defines as interpolation model
m0 around x0. Choose η > 0 and γ > 1, 1 > θ > 0.

2: (Criticality Step) If ‖∇mk(xk)‖ < θ∆k, reduce ∆k and recompute a fully-linear
model in B(xk,∆k). Repeat until, ‖∇mk(xk)‖ ≥ θ∆k.

3: (Compute a trial point) Let mk(x) be the model build around an iterate xk that is
assumed to represent this function sufficiently well in a “trust region” B(xk,∆k).
Compute x+k such that

mk(x
+
k ) = min

x∈Bk
mk(x),

and mk(x
+
k ) is “sufficiently small compared to mk(xk)”.

4: (Evaluate the objective function at the trial point) Compute f(x+k ) and

ρk =
f(xk)− f(x+k )

mk(xk)−mk(x
+
k )
.

5: (Define the next iteration)

4a: Successful iteration. If ρk ≥ η, define xk+1 = x+k and choose ∆k+1 ≥ ∆k.
Obtain Yk+1 by including {x+k } and dropping one of the existing interpola-
tion points if necessary.

4b: Unsuccessful iteration. If ρk < η, then define xk+1 = xk and set ∆k+1 =
γ−1∆k if mk(x) is fully-linear. Update Yk+1 to include xk+1.

6: (Update the model) If the model mk is not fully-linear, then improve Yk to get
Yk+1. Update k ← k + 1.
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value, respectively, of the function satisfies

‖∇f(y)−∇m(y)‖ ≤ κeg ∆, |f(y)−m(y)| ≤ κef ∆2,

with κef and κeg are independent of x and ∆.

Polynomials form a particular, useful model class. Let Pdn denote the set of

polynomials of degree ≤ d in Rn and let q1 = q + 1 denote the dimension of this

space. It is clear that the dimension of P1
n is q1 = n + 1 and the dimension of P2

n is

q1 =
1

2
(n+ 1)(n+ 2). Let Φ̄ be the natural basis for P2

n. That is,

Φ̄ = {1, x1, x2, . . . , xn, x21/2, x1x2, . . . , xn−1xnx2n/2}.

Any polynomial m(x) ∈ Pdn can be written as

m(x) =

q∑
j=0

αjΦ̄j(x),

where the αj’s are real coefficients. We say that the polynomial m(x) interpolates

the function f(x) at a given point y if m(y) = f(y).

Given a set of p1 = p+ 1 points Y = {y0, y1, . . . , yp} ⊂ Rn, m(x) is said to be the

interpolation polynomial of f(x) on Y if its coefficients vector α satisfies

M(Φ̄, Y )α = f(Y ),
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where

M(Φ̄, Y ) =



Φ̄0(y
0) Φ̄1(y

0) · · · Φ̄q(y
0)

Φ̄0(y
1) Φ̄1(y

1) · · · Φ̄q(y
1)

...
...

...
...

Φ̄0(y
p) Φ̄1(y

p) · · · Φ̄q(y
p)


(2.2)

and f(Y ) is the p1 dimensional vector whose entries are f(yi) for i = 0, . . . , p.

It has been shown in [27, 32] that if for all Y ⊂ B(0; 1) such that the condition

number of M(Φ̄, Y ) is uniformly bounded and p ≥ n then the interpolation models

based on Y are fully linear (belong to a particular fully linear class).

Currently the best performing interpolation models used in DFO are underdeter-

mined quadratic interpolation models with the smallest `2 norm or `1 norm of the

vector of the model coefficients (Hessian of the quadratic, in particular).

Specifically, let us split the natural basis Φ̄ into linear and quadratic parts: Φ̄L =

{1, x1, . . . , xn}, and Φ̄Q = {1

2
x21, x1x2, . . . ,

1

2
x2n}. The interpolation model can thus

be written as where αL and αQ are the appropriate parts of the coefficient vector α.

The minimum Frobenius norm model are built based on the solution to the following

optimization problem in αL and αQ:

min
1

2
‖αQ‖2

s.t. M(Φ̄L, Y )αL +M(Φ̄Q, Y )αQ = f(Y ).

(2.3)

because, minimizing the norm of αQ is equivalent to minimizing the Frobenius norm

of the Hessian of m(x).

Other alternative models will be further discussed in Chapter 4.
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2.3 Noise Handling Strategies for VASP

As one can observe, the essential mechanism of the above algorithm lies in checking

the function reduction in Step 5 by examining the ratio

ρk =
f(xk)− f(x+k )

mk(xk)−mk(x
+
k )
.

However, when the underlying function f is computed with noise, the ratio becomes

ρ′k =
f(xk) + εk − f(x+k )− ε+k

mk(xk)−mk(x
+
k )

,

where εk and ε+k are unknown noise components. It is easy to see that if the noise

level is comparable to mk(xk) − mk(x
+
k ), then the information about the achieved

reduction in f provided by the noisy estimate ρ′k is possibly corrupted. Hence false

steps can be taken by the algorithm; for example, a trial point x+ may get accepted

as the new iterate, while f(x+k ) > f(xk) or, alternatively, the trust region radius may

get reduced and the step may get rejected, while f(x+k ) < f(xk).

Experiments also show that, running the Algorithm 1 for noisy optimization

purposes frequently leads to unsatisfactory early termination. Due to the rapid

reduction in trust region radius and dominating number of unsuccessful steps, the

algorithm stops far away from the optimum most of the time. Therefore a special

modification of this algorithm is necessary for the noisy VASP evaluations. In order

to resolve this problem, our new DFO algorithm incorporates various trust-region

maintenance strategies and noise reduction strategies that utilize the estimates of

existing noise to produce sufficient successful reduction steps.
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2.3.1 Noisy Analysis and Reduction

The presence of relative noise in the function values introduces a great deal of dif-

ficulty in optimization [58]. Fortunately, in the case of VASP volume evaluations,

the level of noise can be reduced by two strategies, i.e. by averaging and direct

noise level reduction. Both of these approaches control the noise level by utilizing

“resolution”, an input parameter for VASP. The ”resolution” represents the lattice

cube size which VASP uses to discretize the shapes of protein structures. Smaller

resolution means a finer lattice is used to approximate the shapes, which in turn

means high accuracy of the estimates, but also larger number of corner points that

need to be examined and larger computation time. There is thus a trade-off between

noise level and computational cost. We seek to exploit this tradeoff to reduce the

overall computational effort.

The first approach to reducing the noise is by simple averaging. We can consider

the standard Monte-Carlo simulation approach, used by Ferris and Deng [36,37], for

instance. In this case by computing multiple function values and averaging them we

can reduce the noise level. Since the noise is not random, we introduce a random-

ization component. We call our approach averaging over resolution.

We take advantage of the fact that the larger grid sizes (i.e., resolution) cor-

respond to fast volume computations and that the noise produced by VASP using

slightly different grid sizes is nearly random. The latter fact implies that a small

change in the grid size results in a random change in the noise component, but the

accuracy of the computation is roughly the same. Hence, by computing multiple

function values with different resolutions and averaging these values, we can reduce

the noise level and get better average estimate than each individual estimate. Figure

2.8 illustrates how the averaged function surfaces get smoother by averaging surfaces.
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Figure 2.8: Averaging: MC simulation. (a) Resolution .5, time: 710 seconds. (b)
Resolution .5, .53, .57, .6, Time: 1510 seconds. (c) Resolution .5, .51, .52, ... .6,
Time: 3250 seconds.

We plot the objective function by varying two variables tx and ty while fixing the

remaining five variables as constants. (a)-(c) are computed with 1, 4 and 11 distinct

“resolution” values. The corresponding runtimes are recorded.

It turns out that while averaging reduces the noise level, it does not make this

level arbitrarily small. Noise only vanishes when the volume of intersection can

be computed exactly, that is when the grid step size used in the discretization is

zero. However, the averaging over resolution approach is always an underestimate

of the true volume. Moreover, the additional computational cost is substantial in

the sequential environment. We now describe the second approach, direct noise level

reduction, which simply changes “resolution” to achieve certain level of accuracy.

Figure 2.9 presents the resulting smoother function surfaces by reducing “resolution”
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Figure 2.9: Direct noise level reduction. (a) Resolution: .5, time: 710 sec. (b)
Resolution .45, time: 850 sec. (c) Resolution .35, time: 1510 sec. (d) Resolution .3,
time: 2300 sec

from 0.5, 0.45, 0.35, to 0.3, and the corresponding runtimes.

By comparing Figure 2.9 and Figure 2.8, one can observe that the trade-off in

precision and computational cost in direct noise level reduction appears to be better

than that of averaging. It can be observed from Figure 2.8 c) with Figure 2.9 d),

there is clearly a lift of the surface in the later figure. It can be observed that,

in Figure 2.9 d) where the volume is computed with 0.3 resolution , the volume is

392 at the point [tx, ty] = [−0.1, 0.1], whereas the overlapping volume is only 385

at the same point when using an average of 11 distinct resolutions. Increasing the

number of copies can indeed further smooth out the surface in 2.8 c), however, this

difference in volume cannot be eliminated. Moreover, the increase in runtime is
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substantial. While averaging takes 3250 seconds, direct noise level reduction only

uses 2300 seconds. This result provides a justification for using direct noise level

reduction as our major smoothing strategy.

2.3.2 Dynamic Adjustment of Accuracy

Since the estimates of the level of the noise can be computed, a dynamic strategy of

adjusting the resolution parameter can be used. While the fast, low-accuracy function

evaluations may be sufficient at the early stages of the algorithm, eventually the trust

region radius (and hence the step size) becomes small, and so does the predicted

reduction achieved by a trial step. Once the value of this reduction is comparable

to the noise level, this step acceptance criterion is no longer reliable. In that case,

noise level reduction becomes imperative to ensure progress. As higher accuracy

evaluations take more time, we try to resort to them only when necessary. Hence, it

is advantageous to increase the accuracy dynamically as the algorithm progresses.

Here we make use of the specific mechanism of our DFO algorithm. Because

in our application we need to compute maximum volume alignment of many pairs

or proteins, for all of whom the accuracy/time trade-offs are nearly the same, we

precompute several estimates of the level of noise for different resolution values and

apply them in the dynamic strategy of adjusting the resolution parameter. As the

trust region radius (and hence the step size) gets smaller, so is the predicted reduction

achieved by a trial step. Once the value of this reduction is comparable to the

noise level, this step is no longer reliable. Only then, noise level reduction becomes

imperative. Hence, we develop a dynamic accuracy increment strategy: at iteration

k, given current relative noise level δl and a constant θ > 1; if mk(xk) −mk(x
+
k ) <

θf(xk) · δl, we reduce the noise to the next level δl+1, and compute a new model in
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Figure 2.10: Trade-off between the relative noise and runtime in computing the
volumes of ligand binding cavities and electrostatic fields.

B(xk,∆k). The algorithm can be formally described as in Algorithm 2.

To obtain the noise level estimates we assume that for a fixed resolution value,

the noise level does not depend on the value of x (which is not true in the case of

VASP, strictly speaking, but appears to produce reasonable results, since the level

of noise is more affected by the resolution value more than by the change in rotation

and translation). Given resolution (i.e, lattice cube size) rv, for any x, the relative

noise, is defined as

δrv =
f ∗(x)− frv(x)

f ∗(x)
,

where f ∗(x) represents the noise-free true function value and frv(x) is the computed

function value by VASP with rv as the resolution value. Letting r∗v be the smallest

resolution that is practically computable, the noise level can then be estimated as

δ̄rv =
fr∗v(x)− frv(x)

fr∗v(x)
.

Figure 2.10 shows the relative noise estimation and related computational bur-
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Algorithm 2 DFO-VASP: DFO algorithm for protein alignment problem

1: (Initialization) The noise levels {δl}0≤l≤lmax. An initial trust-region radius ∆0 ∈
(0,∆max], ∆max > 0. An initial poised interpolation set Y0 of 2n + 1 points
is constructed, that contains the starting point x0. Y0 defines an initial model
m0 (with gradient and possibly the Hessian at s = 0 given by gicbk+1 and H icb

k+1

respectively). The parameters η0, η1, γ1, γ2, θ, and gradient tolerance εc are given
and satisfy the conditions 0 ≤ η0 < η1 < 1, 0 < γ1 < 1 < γ2, 0 < θ < 1, εc > 0.
Set k = 0 and l = 0.

2: (Step calculation) Compute a trial point x+k = xk + sk by solving

min
sk

mk(xk + sk) s.t. xk + sk ∈ B(xk; ∆k).

3: (Noise estimation) If the current deterministic noise level is comparable to the
predicted reduction achieved by a trial step, i.e.

mk(xk)−mk(x
+
k ) < θf(xk) · δl,

reduce the relative noise level and increment l and k by one.
Resample Yk+1 and go to Step 2.

4: (Acceptance of the trial point) Compute the ratio

ρk =
f(xk)− f(x+k )

mk(xk)−mk(x
+
k )
.

Update the current iterate

xk+1 =

{
x+k if ρk ≥ η0,

xk otherwise.

5: (Interpolation set update)

Yk+1 =


Yk ∪ {x+k } \ {yr} if ρk ≥ η0,

Yk ∪ {x+k } \ {yr} if ρk < η0, but x+k improves model,

Yk otherwise,

where yr = arg max
yj∈Yk
‖yj − xk‖2.

6: (Trust region update) Set trust region radius

∆k+1 =


min{γ2∆k,∆max} if ρk ≥ η1

γ1∆k if ρk < η0 (and mk is fully linear on Bk)

∆k otherwise.

Increment k by 1 and go to Step 2.
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den with respect to rv. We observed that as rv decreases (approaching 0.08), the

runtime increases superlinearly. This is natural, as the number of corner points that

VASP needs to examine grows superlinearly as rv decreases. We also note that the

reduction in noise level decreases superlinearly to zero, while the noise level itself

does not decrease to zero. Nevertheless, in our experiments, the smaller noise levels

were sufficient to achieve solutions of acceptable accuracy. Lower values of rv result

in very costly function evaluations, but these levels were not necessary to obtain

practical solutions for examining protein binding specificity. Similar trade-offs were

observed between ligand binding cavities and whole-protein electrostatic isopoten-

tials, demonstrating that the dynamic adjustment of accuracy is effective at absolute

sizes and resolution levels.

Based on these observations, we select several noise levels based on the exchange

between relative noise and runtime. We were able to choose resolution values that

give a sufficient improvement in computation accuracy but avoid unnecessary calcu-

lations.

Noisy functions ofter lead to more “unsuccessful” steps and thus more trust region

shrinkages than expansions. So it is necessary to reduce trust region at a much slower

rate than that is usual for classical trust region settings. However, slow shrinking of

the trust region may lead to slow progress towards satisfying the stopping criteria.

Hence, we enforce another termination rule. That is, the smallest chosen noise level

has to be reached to guarantee the solution quality. After this check, two criterions

work together to stop the algorithm: either when the trust region size is smaller

than a threshold value, or when the noise level is forced to be reduced again, the

algorithm stops its execution. This stopping strategy worked reasonably well in our

experiments, however a more aggressive strategy will be explored in future work to

improve efficiency. This completes our description of Algorithm 2.
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2.3.3 Warm-start v.s. Random-start

The DFO framework in [32] converges to a local stationary point. In practice this

method tends to find ”good” local optimal solutions, however, no guarantee of global

solution can be provided. Hence different starting points may produce different final

results if the optimization problem has multiple optima. Since the atomic and the

maximum volume superpositions may be closely related, it is natural to use the

atomic superposition as initial point for the optimization. We refer to results of this

setting as the warm-started alignments. However, as discussed earlier, superstitions

of corresponding atoms do not necessarily yield maximal overlapping volume between

ligand binding cavities, and the lack of similarities in backbone structure may also

make the atomic superposition a biased starting point. Therefore, as an alternative,

we start our algorithm using randomly-generated alignments and investigate if we

achieve further improvement.

In random-started tests the starting points are chosen by using Latin Hypercube

Sampling (LHS) techniques [56], which has been successfully used in global derivative

free optimization. It is a statistical method for generating a distribution of starting

values of parameters from a multidimensional distribution. It selects m different

values from each of n variables X1, · · · , Xk in such a way that each sample is the

only one in each axis-aligned hyperplane containing it. This LHS scheme ensures

that the ensemble of random numbers is a reasonably good representative of the

real variability, whereas the traditional random sampling (i.e. brute force) is just an

ensemble of random numbers without any guarantees.

In our experiments, we start with 10 starting points (for the problem with seven

variables). The range of each variable is divided into 10 equally probable intervals. In

MATLAB, X = lhsdesign(10, 7) generates a latin hypercube sample X containing 10
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Figure 2.11: Latin Hypercube Sampling.

values of each of 7 variables. For each column, the 10 values are randomly distributed

with one from each interval (0, 1/10), (1/10, 2/10), ..., (1 − 1/10, 1), and they are

randomly permuted. These intervals are shifted by 0.5 toward the negative axis,

thus, resulting in ten sample points with each of the seven variables ranging from

−0.5 to 0.5. After independently initiating DFO from these ten starting points, the

solution with the largest intersection is returned.

Combined, these approaches enable us to detect cavity superpositions with a

large overlapping volume without depending on atomic alignments. We refer to

the combined approach as DFO-VASP. We demonstrate its capabilities below with

applications to biological instances.
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2.4 Computational Experiments

2.4.1 Data Set Construction

Protein Families

The serine protease and enolase superfamilies were selected for testing effectiveness of

DFO-VASP in detecting binding preferences of proteins. Each superfamily contained

at three subfamilies with distinct binding preferences that are achieved by well-

known differences in binding site shape. Our experiments perform comparisons of

the S1 subsites in serine proteasem which prefers to bind aromatic amino acids in

chymotrypsins [61], basic amino acids in trypsins [40], and small hydrophobics in

elastases [10]. Enolase superfamily binding sites differ because the enolase subfamily

catalyzes the dehydration of 2-phospho-D-glycerate to phosphoenolpyruvate, [50],

the mandelate racemase subfamily catalyzes the conversion of (R)-mandelate to and

from (S)-mandelate [73], and muconate-lactonizing enzymes facilitate the reciprocal

cycloisomerization of cis,cis-muconate and muconolactone [8].

Selection

This data set was also selected because each subfamily exhibits at least two sequen-

tially non-redundant representatives. See Figure 2.12 for the number of individual

structures, non-mutants and non-redundant representatives in each subfamily. This

requirement ensures that the similarities discovered occur between nonidentical pro-

teins and that differences discovered are observed in multiple examples. The protein

structures used can be found in the protein data bank (PDB) [11], and are listed by

the PDB code (Table 2.1). From each superfamily, we removed mutants, partially
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Figure 2.12: Protein data bank.

disordered structures, and structures in “closed” or otherwise inactive conformations.

Structures with greater than 90% sequence identity were removed, with preference

for those associated with publications, resulting in 14 serine protease and 10 eno-

lase structures. Within these structures, ions, waters, and other non-protein atoms

were removed. Since hydrogens were unavailable in all structures, all hydrogens were

removed for uniformity. Atypical amino acids (e.g. selenomethionines) were not re-

moved. Solid geometric representations of binding cavities were generated with a

method described earlier [17]. These data formed the ligand binding sites compared

in our study.

Electrostatic Isopotentials

We also compared electrostatic isopotentials from structures in the serine proteases.

Beginning with the deprotonated structures described above, hydrogens were remod-
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Table 2.1: PDB codes of structures used.

Superfamily Subfamily PDB Codes

Serine Trypsins 2f91, 1fn8, 2eek, 1h4w, 1bzx,
Protease 1aq7, 1ane, 1aks, 1trn, 1a0j

Chymotrypsins 1eq9, 8gch
Elastases 1elt, 1b0e

Enolase Enolases 1e9i, 1iyx, 1pdy,
2pa6, 3otr, 1te6

Mandelate Racemase 1mdr, 2ox4
Muconate Lactonizing Enzyme 2pgw, 2zad

eled using reduce, from the MolProbity package [24]. The electrostatic potential field

was computed using Delphi [76]. From the electrostatic potential field, isopotentials

were generated at -10 kT/e. This threshold was selected because it is known that

trypsins use a strong negative electrostatic field to select basic amino acids for bind-

ing. The negative threshold should therefore be an adequate test for evaluating

if superpositions of trypsins and non-trypsins correctly exhibit these electrostatic

differences.

Backbone Superposition

To compare DFO-VASP to an existing atom-based superposition method, we used

Ska [86], an algorithm for whole-protein structure alignment. We superposed all

pairs of serine protease structures and all pairs of enolase structures, generating an

alternative superposition of all cavities. Superpositions were also generated with

Dali [41] and CE [75], but since proteins in these datasets have identical folds, there

were few differences.
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2.4.2 Experimental Results

Validating DFO-VASP Superpositions.

DFO-VASP seeks to determine the superposition of two cavities that maximizes their

overlapping volume, but this strategy does not inherently guarantee that superposing

cavities from similar proteins will result in a biochemically relevant superposition.

To test this hypothesis, we generated superpositions of all pairs of serine protease

and all pairs of enolase cavities. Visually examining all 91 pairs of superposed serine

protease cavities, we observed that all 91 cases, superposed cavities were logically

oriented: Entrances to each cavity were oriented in exactly the same direction, and

conserved cavity shapes were strongly superposed. An example of a superposition

like this is Figure 2.13b. 33 of the 45 pairs of superposed enolase cavities were also

superposed in logical orientations, with cavity entrances oriented in nearly identical

directions, (e.g. Figure 2.13a). From the remaining 12, six pairs of enolase cavities

were superposed with entrances at an angle of approximately 45 degrees, at an angle

where ligand access to both cavities would have been difficult, and six more cavities

were superposed at an angle of approximately 90 degrees, where ligand access to

a) b) c)

Figure 2.13: Three superpositions by DFO-VASP. (a) Cavities from 1e9i (teal) and
1te6 (yellow, transparent). (b) Cavities from 1ane (teal) and 1a0j (yellow, trans-
parent). (c) Cavities from 1e9i (teal) and 2pa6 (yellow, transparent). Black arrows
indicate the entrance and direction of the cavity.
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both cavities is impossible. Figure 2.13c is an example of this kind of erroneous su-

perposition. In total, 124 out of the 136 superpositions produced cavities superposed

in biochemically consistent orientations.

All superpositions observed here, however, differed in some respects from back-

bone superpositions. S1 cavities in serine proteases have different lengths, causing

DFO-VASP to “center” smaller cavities along longer cavities. The entrance to these

cavities is defined in part by backbone shape, and as a result, backbone superposi-

tions generally superposed the cavity entrances more closely than the whole volume.

Enolase cavities generally had similar depth, and the same effect did not occur.

Comparison to Backbone Superpositions.

To further evaluate DFO-VASP, we computed superpositions of each pair of cavities

in both data sets. Optimal superpositions were computed using random starting

positions, as described in Section 2.3.3, and also using warm-starting with backbone

superposition. The volumes of intersection generated by these two methods were

compared to the volume generated by backbone superposition.

Random-started superpositions and warm-started superpositions both exhibited

greater volumes of superposition than backbone superpositions. This is apparent in

Figure 2.14, which indicates that volumes of intersection for DFO-based superposi-

tions is greater than backbone superpositions of the same pairs of cavities, because

the differences are always greater than zero. Warm-started superpositions performed

more dependably than random-started superpositions: The smallest difference be-

tween warm-started superpositions and backbone superpositions is higher than the

smallest difference between random-started superpositions and backbone superpo-

sitions. However, the largest intersection volume differences between warm-started
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Figure 2.14: Comparison of Alignments.

superpositions and backbone superpositions were smaller or similar to the largest in-

tersection volume differences between random-started and backbone superpositions.

These suggest that random-starting may occasionally begin with unusual starting

orientations that lead to a wider range of final intersection volumes.

Large-Scale Validation.

For any pair of aligned cavities, several regions inevitably exist where one cavity does

not overlap the other. These regions, which we call fragments, are individual differ-

ences between two cavities. Cavities that are very similar exhibit small fragments,

whereas cavities with large differences exhibit large fragments. Among binding cavi-

ties with similar binding preferences, we expect fragments to be very small, whereas

large fragments might be expected between cavities with different binding prefer-
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ences, because larger fragments could help accommodate different ligands.

To verify the predictive accuracy of our method, we constructed statistical mod-

els of fragment volumes between trypsin and enolase cavities [16]. These models

estimate the probability of observing a fragment with a given volume, under the

assumption that the two cavities that generated the fragment have the same binding

preferences as trypsins or enolases. Using DFO-VASP, we computed all against all su-

perpositions of serine protease cavities and enolase cavities with the latin hypercube

starting strategy, and computed fragment volume for all superpositions. We used the

statistical models, trained separately for trypsins and for enolases, to estimate the

probability of observing all fragments. These test were performed with leave-one-out

validation to avoid circular training.

Among superpositions of enolase cavities, 3236 out of the 3567 fragments gener-

ated between enolase cavities were statistically insignificant. Among the 210 super-

positions of an enolase and a non-enolase cavity, 100% of the largest fragments were

statistically significant. Enolase cavities superposed by DFO-VASP was volumetri-

cally similar enough to be observed by random chance, while volumetric similarity

between an enolase and a non-enolase cavity was unusual (p-value ≤ 0.05) in 210

out of 210 cases. Among superpositions of serine protease cavities, 97%, or 20424

out of the 20919 fragments generated between trypsin cavities were statistically in-

significant. Among the 462 superpositions of a trypsin and a non-trypsin cavity,

the largest fragment was statistically significant in 405 superpositions. Therefore,

trypsin cavities superposed by DFO-VASP were volumetrically similar enough to be

observed by random chance, while volumetric similarity between trypsin and non-

trypsin cavities was unusual (p-value≤ 0.05) in 452 out of 462 superpositions. These

results demonstrate that superpositions of ligand binding cavities with DFO-VASP

can correctly identify cavities with different binding preferences.
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2.5 Conclusions and Future Work

We have presented DFO-VASP for generating superpositions of ligand binding cavities

by maximizing overlapping volume. It has been demonstrated [22] that a different

representation of molecular shape, based on solid representations rather than atoms,

can be used for generating meaningful superpositions of small molecule (ligand) bind-

ing cavities. This was achieved by optimizing the overlapping volume of two cavities,

using Derivative Free Optimization (DFO) model-based method and the so-called,

Volumetric Analysis of Surface Properties (VASP) software [20]. VASP is used as

the black-box function, and it evaluates the volume of overlap between two cavities,

based on an input superposition. Used together, DFO-VASP examine hundreds of

possible superpositions in a systematic way in the search for an individual superpo-

sition with greatest overlapping volume.

Algorithmically, our method includes techniques that compensate for noisy, variable-

time volume evaluations and methods for warm-starting the search for the optimum

superposition. These techniques enable DFO-VASP to generate practical and accu-

rate superpositions in a timely manner. Using VASP as a black-box function, with

variable resolution, achieves tradeoffs in runtime, precision, and noise that yield

unique optimization challenges. An analysis of noise in this calculation reveals that

a dynamic approach to setting the resolution parameter points to reasonable trade-

offs between runtime and relative noise that are applicable for both binding cavities

and electrostatic isopotentials. When comparing random-started and warm-started

superpositions, we observed that final intersection volumes from random-started su-

perpositions were more randomly distributed than warm-started superpositions, but

both approaches to superposition yielded greater superposition volumes than back-

bone superposition. These results demonstrate that DFO-VASP is capable of gener-
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ating superpositions independent of other protein structure data, creating a unique

approach with significant potential applications in protein structure alignment.

From a biological point of view, we observed that derivative free optimization of

the intersection volume of superposed binding cavities can be used to achieve bio-

logically meaningful superpositions of ligand binding cavities. Visual examinations

on two well-studied families of proteins (serine proteases and enolase superfamily)

revealed that superposed cavities were almost always aligned in biologically relevant

orientations: cavity entryways, for example, generally overlapped. We also compared

the overlapping volume of cavities aligned by DFO-VASP and existing algorithms. In

all cases, cavities aligned by DFO-VASP had similar or greater volumes of superposi-

tion. This result demonstrates that DFO-VASP can be a viable approach for binding

site superposition, and that it exhibits novel capabilities. Finally, we assessed, at a

large scale, the potential of DFO-VASP for generating superpositions of binding cav-

ities that can be used to detect influences on binding specificity. On both data-sets,

volumetric similarity were almost always unusual (p-value ≤ 0.05) between cavities

with different binding preferences, and almost can always be observed by random

chance between cavities with similar binding preferences.

Finally, we extended our experiments to electrostatic data where aligning the

placements of charges between proteins might improve biological significance of our

solutions. A second possibility with regard to electrostatic data is the simultaneous

superposition of positive and negative isopotentials. Applying the same rotation and

translation to both positive and negative isopotentials, it is possible that maximizing

the superposition of the positive isopotential of protein A and the positive isopoten-

tial of protein B may not be as efficient as evaluating the total overlap of both the

positive and negative isopotentials of protein A and protein B together. This ap-

proach has enhanced computational costs, but may also lead to superpositions with
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fewer function evaluations.

Together, these results demonstrate that it is possible to align and compare ligand

binding cavities when atomic similarities do not exist. More importantly, if we

assume that DFO-VASP reliably identifies the optimal superposition, then a lack of

cavity similarity in the optimal superposition indicates an unavoidable difference in

ligand binding. This indication is a new capability unique to DFO-VASP that points

to applications in protein engineering in discovering influences on ligand binding

specificity.

In the future, we hope to continue utilizing VASP as a testing problem for

derivative-free algorithms due to its controllable noise component. One possible

future research that on can do is to further validate the usefulness of DFO-VASP by

considering a new category of protein cavities that cannot be aligned with other test

proteins by the backbone structure because of their fundamentally different struc-

tures. If we can find the right alignment that backbone alignments cannot find, the

advantage of our method for obtaining alignment will be clearly showed.
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Chapter 3

Randomized Search1

We propose STARS, a randomized derivative-free algorithm for unconstrained opti-

mization when the function evaluations are contaminated with random noise. STARS

takes dynamic, noise-adjusted smoothing stepsizes that minimize the least-squares

error between the true directional derivative of a noisy function and its finite differ-

ence approximation. We provide a convergence rate analysis of STARS for solving

convex problems with additive or multiplicative noise. Experimental results show

that (1) STARS exhibits noise-invariant behavior with respect to different levels of

stochastic noise; (2) the practical performance of STARS in terms of solution accuracy

and convergence rate is significantly better than that indicated by the theoretical re-

sult; and (3) STARS outperforms a selection of randomized zero-order methods on

both additive- and multiplicative-noisy functions.

1THIS CHAPTER IS BASED ON THE PAPER IN PROGRESS [23] COAUTHORED BY
STEFAN M. WILD. WE ARE GRATEFUL TO KATYA SCHEINBERG FOR VALUABLE DIS-
CUSSIONS.
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3.1 Introduction

We propose STARS, a randomized derivative-free algorithm for unconstrained opti-

mization when the function evaluations are contaminated with random noise. For-

mally, we address the stochastic optimization problem

min
x∈Rn

f(x) = Eξ
[
f̃(x; ξ)

]
, (3.1)

where the objective f(x) is assumed to be differentiable but is available only through

noisy realizations f̃(x; ξ). In particular, although our analysis will at times assume

that the gradient of the objective function f(x) exist and be Lipschitz continuous, we

assume that direct evaluation of these derivatives is impossible. Of special interest

to this work are situations when derivatives are unavailable or unreliable because of

stochastic noise in the objective function evaluations. This type of noise introduces

the dependence on the random variable ξ in (3.1) and may arise if random fluctuations

or measurement errors occur in a simulation producing the objective f . In addition

to stochastic and Monte Carlo simulations, this stochastic noise can also be used

to model the variations in iterative or adaptive simulations resulting from finite-

precision calculations and specification of internal tolerances [60].

Various methods have been designed for optimizing problems with noisy func-

tion evaluations. One such class of methods, dating back half a century, are ran-

domized search methods [55]. Unlike classical, deterministic direct search meth-

ods [1, 2, 6, 53, 82, 83], randomized search methods attempt to accelerate the opti-

mization by using random vectors as search directions. These randomized schemes

share a simple basic framework, allow fast initialization, and have shown promise for

solving large-scale derivative-free problems [38, 79]. Furthermore, optimization folk-

lore and intuition suggest that these randomized steps should make the methods less
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sensitive to modeling errors and “noise” in the general sense; we will systematically

revisit such intuition in our computational experiments.

Recent works have addressed the special cases of zero-order minimization of con-

vex functions with additive noise. For instance, Agarwahl et al. [3] utilize a bandit

feedback model, but the regret bound depends on a term of order n16. Recht et

al. [44] consider a coordinate descent approach combined with an approximate line

search that is robust to noise, but only theoretical bounds are provided. Moreover,

the situation where the noise is nonstationary (for example, varying relative to the

objective function) remains largely unstudied.

Our approach is inspired by the recent work of Nesterov [63], which established

complexity bounds for convergence of random derivative-free methods for convex and

nonconvex functions. Such methods work by iteratively moving along directions sam-

pled from a normal distribution surrounding the current position. The conclusions

are true for both the smooth and nonsmooth Lipschitz-continuous cases. Differ-

ent improvements of these random search ideas appear in the latest literature. For

instance, Stich et al. [79] give convergence rates for an algorithm where the search di-

rections are uniformly distributed random vectors in a hypersphere and the stepsizes

are determined by a line-search procedure. Incorporating the Gaussian smoothing

technique of Nesterov [63], Ghadimi and Lan [38] present a randomized derivative-

free method for stochastic optimization and show that the iteration complexity of

their algorithm improves Nesterov’s result by a factor of order n in the smooth,

convex case. Although complexity bounds are readily available for these random-

ized algorithms, the practical usefulness of these algorithms and their potential for

dealing with noisy functions have been relatively unexplored.

In this chapter, we address ways in which a randomized method can benefit from
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careful choices of noise-adjusted smoothing stepsizes. We propose a new algorithm,

STARS, short for STepsize Approximation in Random Search. The choice of stepsize

work is greatly motivated by Moré and Wild’s recent work on estimating computa-

tional noise [58] and derivatives of noisy simulations [59]. STARS takes dynamically

changing smoothing stepsizes that minimize the least-squares error between the true

directional derivative of a noisy function and its finite-difference approximation. We

provide a convergence rate analysis of STARS for solving convex problems with both

additive and multiplicative stochastic noise. With nonrestrictive assumptions about

the noise, STARS enjoys a convergence rate for noisy convex functions identical to

that of Nesterov’s random search method for smooth convex functions.

The second contribution of our work is a numerical study of STARS. Our experi-

mental results illustrate that (1) the performance of STARS exhibits little variability

with respect to different levels of stochastic noise; (2) the practical performance

of STARS in terms of solution accuracy and convergence rate is often significantly

better than that indicated by the worst-case, theoretical bounds; and (3) STARS

outperforms a selection of randomized zero-order methods on both additive- and

multiplicative-noise problems.

The remainder of this chapter is organized as follows. In Section 3.2 we review

basic assumptions about the noisy function setting and results on Gaussian smooth-

ing. Section 3.3 presents the new STARS algorithm. In Sections 3.4 and 3.5, a

convergence rate analysis is provided for solving convex problems with additive noise

and multiplicative noise, respectively. Section 3.6 presents an empirical study of

STARS on popular test problems by examining the performance relative to both the

theoretical bounds and other randomized derivative-free solvers.
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3.2 Randomized Optimization Preliminaries

One of the earliest randomized algorithms for the nonlinear, deterministic optimiza-

tion problem

min
x∈Rn

f(x), (3.2)

where the objective function f is assumed to be differentiable but evaluations of the

gradient ∇f are not employed by the algorithm, is attributed to Matyas [55]. Matyas

introduced the random optimization approach that, at every iteration k, randomly

samples a point x+ from a Gaussian distribution centered on the current point xk.

The function is evaluated at x+ = xk + uk, and the iterate is updated depending on

whether decrease has been seen:

xk+1 =


x+ if f(x+) < f(xk)

xk otherwise.

Polyak [65] improved this scheme by describing stepsize rules for iterates of the

form

xk+1 = xk − hk
f(xk + µkuk)− f(xk)

µk
uk, (3.3)

where hk > 0 is the stepsize, µk > 0 is called the smoothing stepsize, and uk ∈ Rn is

a random direction.

Recently, Nesterov [63] has revived interest in Poljak-like schemes by showing

that Gaussian directions u ∈ Rn allow one to benefit from properties of a Gaussian-

smoothed version of the function f ,

fµ(x) = Eu[f(x+ µu)], (3.4)
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where µ > 0 is again the smoothing stepsize and where we have made explicit that

the expectation is being taken with respect to the random vector u.

Before proceeding, we review additional notation and results concerning Gaussian

smoothing.

3.2.1 Notation

We say that a function f ∈ C0,0(Rn) if f : Rn 7→ R is continuous and there exists a

constant L0 such that

|f(x)− f(y)| ≤ L0‖x− y‖, ∀x, y ∈ Rn,

where ‖ · ‖ denotes the Euclidean norm. We say that f ∈ C1,1(Rn) if f : Rn 7→ R is

continuously differentiable and there exists a constant L1 such that

‖∇f(x)−∇f(y)‖ ≤ L1‖x− y‖ ∀x, y ∈ Rn. (3.5)

Equation (3.5) is equivalent to

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L1

2
‖x− y‖2 ∀x, y ∈ Rn, (3.6)

where 〈·, ·〉 denotes the Euclidean inner product.

Similarly, if x∗ is a global minimizer of f ∈ C1,1(Rn), then (3.6) implies that

‖∇f(x)‖2 ≤ 2L1(f(x)− f(x∗)) ∀x ∈ Rn. (3.7)
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We recall that a differentiable function f is convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉 ∀x, y ∈ Rn. (3.8)

3.2.2 Gaussian Smoothing

We now examine properties of the Gaussian approximation of f in (3.4). For µ 6= 0,

we let gµ(x) be the first-order-difference approximation of the derivative of f(x) in

the direction u ∈ Rn,

gµ(x) =
f(x+ µu)− f(x)

µ
u,

where the nontrivial direction u is implicitly assumed. By ∇fµ(x) we denote the

gradient (with respect to x) of the Gaussian approximation in (3.4). For standard

(mean zero, covariance In) Gaussian random vectors u and a scalar p ≥ 0, we define

Mp ≡ Eu[‖u‖p] =
1

(2π)
n
2

∫
Rn
‖u‖pe−

1
2
‖u‖2du. (3.9)

We summarize the relationships for Gaussian smoothing from [63] upon which

we will rely in the following lemma.

Lemma 3.2.1. Let u ∈ Rn be a normally distributed Gaussian vector. Then, the

following are true.

(a) For Mp defined in (3.9), we have

Mp ≤ np/2, for p ∈ [0, 2], and (3.10)

Mp ≤ (n+ p)p/2, for p > 2. (3.11)
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(b) If f is convex, then

fµ(x) ≥ f(x) ∀x ∈ Rn. (3.12)

(c) If f is convex and f ∈ C1,1(Rn), then

|fµ(x)− f(x)| ≤ µ2

2
L1n ∀x ∈ Rn. (3.13)

(d) If f is differentiable at x, then

Eu[gµ(x)] = ∇fµ(x) ∀x ∈ Rn. (3.14)

(e) If f is differentiable at x and f ∈ C1,1(Rn), then

Eu[‖gµ(x)‖2] ≤ 2(n+ 4)‖∇f(x)‖2 +
µ2

2
L2
1(n+ 6)3 ∀x ∈ Rn. (3.15)

3.3 The STARS Algorithm

The STARS algorithm for solving (3.1) while having access to the objective f only

through its noisy version f̃ is summarized in Algorithm 3.

In general, the Gaussian directions used by Algorithm 3 can come from gen-

eral Gaussian directions (e.g., with the covariance informed by knowledge about the

scaling or curvature of f). For simplicity of exposition, however, we focus on stan-

dard Gaussian directions as formalized in Assumption 3.3.1. The general case can

be recovered by a change of variables with an appropriate scaling of the Lipschitz

constant(s).
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Algorithm 3 (STARS: STep-size Approximation in Randomized Search)

1: Choose initial point x1, iteration limit N , stepsizes {hk}k≥1. Evaluate the func-
tion at the initial point to obtain f̃(x1; ξ0). Set k ← 1.

2: Generate a random Gaussian vector uk, and compute the smoothing parameter
µk.

3: Evaluate the function value f̃(xk + µkuk; ξk).
4: Call the stochastic gradient-free oracle

sµk(xk;uk, ξk, ξk−1) =
f̃(xk + µkuk; ξk)− f̃(xk; ξk−1)

µk
uk. (3.16)

5: Set xk+1 = xk − hksµk(xk;uk, ξk, ξk−1).
6: Evaluate f̃(xk+1; ξk), update k ← k + 1, and return to Step 2.

Assumption 3.3.1 (Assumption about direction u). In each iteration k of Algo-

rithm 3, uk is a vector drawn from a multivariate normal distribution with mean

0 and covariance matrix In; equivalently, each element of u is independently and

identically distributed (i.i.d.) from a standard normal distribution, N (0, 1).

What remains to be specified is the smoothing stepsize µk. It is computed by

incorporating the noise information so that the approximation of the directional

derivative has minimum error. We address two types of noise: additive noise (Sec-

tion 3.4) and multiplicative noise (Section 3.5). These two forms of how f̃ depends

on the random variable ξ correspond to two ways that noise often enters a system.

The following sections provide near-optimal expressions for µk and a convergence

rate analysis for both cases.

Importantly, we note Algorithm 3 allows the random variables ξk and ξk−1 used

in (3.16) to be different from one another. This generalization is in contrast to the

stochastic optimization methods examined in [63], where it is assumed the same

random variables are used in the smoothing calculation. This generalization does

not affect the additive noise case, but will complicate the multiplicative noise case.
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3.4 Additive Noise

We first consider an additive noise model for the stochastic objective function f̃ :

f̃(x; ξ) = f(x) + ν(x; ξ), (3.17)

where f : Rn 7→ R is a smooth, deterministic function, ξ ∈ Ξ is a random vector

with probability distribution P (ξ), and ν(x; ξ) is the stochastic noise component.

We make the following assumptions about f and ν.

Assumption 3.4.1 (Assumption about f). f ∈ C1,1(Rn) and f is convex.

Assumption 3.4.2 (Assumption about additive ν).

1. For all x ∈ Rn, ν is i.i.d. with bounded variance σ2
a = Var(ν(x; ξ)) > 0.

2. For all x ∈ Rn, the noise is unbiased; that is, Eξ[ν(x; ξ)] = 0.

We note that σ2
a is independent of x since ν(x; ξ) is identically distributed for all

x. The second assumption is nonrestrictive, since if Eξ[ν(x; ξ)] 6= 0, we could just

redefine f(x) to be f(x)− Eξ[ν(x; ξ)].

3.4.1 Noise and Finite Differences

Moré and Wild [59] introduce a way of computing the smoothing stepsize µ that

mitigates the effects of the noise in f̃ when estimating a first-order directional di-

rective. The method involves analyzing the expectation of the least-squared error

between the forward-difference approximation,
f̃(x+ µu; ξ1)− f̃(x; ξ2)

µ
, and the di-

rectional derivative of the smooth function, 〈∇f(x), u〉. The authors show that a
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near-optimal µ can be computed in such a way that the expected error has the tight-

est upper bound among all such values µ. Inspired by their approach, we consider

the least-square error between
f̃(x+ µu; ξ1)− f̃(x; ξ2)

µ
u and 〈∇f(x), u〉u. That is,

our goal is to find µ∗ that minimizes an upper bound on E[E(µ)], where

E(µ) ≡ E(µ;x, u, ξ1, ξ2) =

∥∥∥∥∥ f̃(x+ µu; ξ1)− f̃(x; ξ2)

µ
u− 〈∇f(x), u〉u

∥∥∥∥∥
2

.

We recall that u, ξ1, and ξ2 are independent random variables.

Theorem 3.4.3. Let Assumptions 3.3.1, 3.4.1, and 3.4.2 hold. If a smoothing step-

size is chosen as

µ∗ =

[
8σ2

an

L2
1(n+ 6)3

] 1
4

, (3.18)

then for any x ∈ Rn, we have

Eu,ξ1,ξ2 [E(µ∗)] ≤
√

2L1σa
√
n(n+ 6)3. (3.19)

Proof. Using (3.17) and (3.6), we derive

E(µ) ≤
∥∥∥∥ν(x+ µu; ξ1)− ν(x; ξ2)

µ
u+

µL1

2
‖u‖2u

∥∥∥∥2
≤

(
ν(x+ µu; ξ1)− ν(x; ξ2)

µ
+
µL1

2
‖u‖2

)2

‖u‖2.

Let X =
ν(x+ µu; ξ1)− ν(x; ξ2)

µ
+
µL1

2
‖u‖2. By Assumption 3.4.2, the expectation

of X with respect to ξ1 and ξ2 is Eξ1,ξ2 [X] =
µL1

2
‖u‖2, and the corresponding variance

is Var(X) =
2σ2

a

µ2
. It then follows that

Eξ1,ξ2 [X2] = (Eξ1,ξ2 [X])2 + Var(X) =
µ2L2

1

4
‖u‖4 +

2σ2
a

µ2
.
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Hence, taking the expectation of E(µ) with respect to u, ξ1, and ξ2 yields

Eu,ξ1,ξ2 [E(µ)] ≤ Eu
[
Eξ1,ξ2 [X2‖u‖2]

]
= Eu

[
µ2L2

1

4
‖u‖6 +

2σ2
a

µ2
‖u‖2

]
.

Using (3.10) and (3.11), we can further derive

Eu,ξ1,ξ2 [E(µ)] ≤ µ2L2
1

4
(n+ 6)3 +

2σ2
a

µ2
n. (3.20)

The right-hand side of (3.20) is uniformly convex in µ and has a global minimizer

of

µ∗ =

[
8σ2

an

L2
1(n+ 6)3

] 1
4

,

with the corresponding minimum value yielding (3.19).

Remarks:

• A key observation is that for a function f̃(x; ξ) with additive noise, as long as

the noise has a constant variance σa > 0, the optimal choice of the stepsize µ∗

is independent of x.

• Since the proof of Theorem 3.4.3 does not rely on the convexity assumption

about f , the error bound (3.19) for the finite-difference approximation also

holds for the nonconvex case. The convergence rate analysis for STARS pre-

sented in the next section, however, will assume convexity of f ; the nonconvex

case is out of the scope of this chapter but is of interest for future research.

61



3.4.2 Convergence Rate Analysis

We now examine the convergence rate of Algorithm 3 applied to the additive noise

case of (3.17) and with µk = µ∗ for all k. One of the main ideas behind this conver-

gence proof relies on the fact that we can derive the improvement in f achieved by

each step in terms of the change in x. Since the distance between the starting point

and the optimal solution, denoted by R = ‖x0 − x∗‖, is finite, one can derive an

upper bound for the “accumulative improvement in f ,”
1

N + 1

N∑
k=0

(E[f(xk)] − f ∗).

Hence, we can show that increasing the number of iterations, N , of Algorithm 3

yields higher accuracy in the solution.

For simplicity, we denote by E[·] the expectation over all random variables (i.e.,

E[·] = Euk,...,u1,ξk,...,ξ0 [·]), unless otherwise specified. Similarly, we denote sµk(xk;uk, ξk, ξk−1)

in (3.16) by sµk . The following lemma directly follows from Theorem 3.4.3.

Lemma 3.4.4. Let Assumptions 3.3.1, 3.4.1, and 3.4.2 hold. If the smoothing step-

size µk is set to the constant µ∗ from (3.18), then Algorithm 3 generates steps satis-

fying

E[‖sµk‖2] ≤ 2(n+ 4)‖∇f(xk)‖2 + C2,

where C2 = 2
√

2L1σa
√
n(n+ 6)3.

Proof. Let g0(xk) = 〈∇f(xk), uk〉uk. Then (3.19) implies that

E[‖sµk‖2 − 2〈sµk , g0(xk)〉+ ‖g0(xk)‖2] ≤ C1, (3.21)

where C1 =
√

2L1σa
√
n(n+ 6)3.

The stochastic gradient-free oracle sµk in (3.16) is a random approximation of the
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gradient ∇f(xk). Furthermore, the expectation of sµk with respect to ξk and ξk−1

yields the forward-difference approximation of the derivative of f in the direction uk

at xk:

Eξk,ξk−1
[sµk ] =

f(xk + µkuk)− f(xk)

µk
uk = gµ(xk). (3.22)

Combining (3.21) and (3.22) yields

E
[
‖sµk‖2

]
≤ E[2〈sµk , g0(xk)〉 − ‖g0(xk)‖2] + C1

(3.22)
= Euk [2〈gµ(xk), g0(xk)〉 − ‖g0(xk)‖2] + C1

= Euk [−‖g0(xk)− gµ(xk)‖2 + ‖gµ(xk)‖2] + C1

≤ Euk [‖gµ(xk)‖2] + C1

(3.15)

≤ 2(n+ 4)‖∇f(xk)‖+ C2,

where C2 = C1 +
µ2
k

2
L2
1(n+ 6)3 = 2

√
2L1σa

√
n(n+ 6)3.

We are now ready to show convergence of the algorithm. Denote x∗ ∈ Rn a

minimizer associated with f ∗ = f(x∗). Denote by Uk = {u1, · · · , uk} the set of i.i.d.

random variable realizations attached to each iteration of Algorithm 1. Similarly, let

Pk = {ξ0, · · · , ξk}. Define φ0 = f(x0) and φk = EUk−1,Pk−1
[f(xk)] for k ≥ 1.

Theorem 3.4.5. Let Assumptions 3.3.1, 3.4.1, and 3.4.2 hold. Let the sequence

{xk}k≥0 be generated by Algorithm 1 with the smoothing stepsize µk set as µ∗ in

(3.18). If the fixed step length is hk = h =
1

4L1(n+ 4)
for all k, then for any N ≥ 0,

we have

1

N + 1

N∑
k=0

(φk − f ∗) ≤
4L1(n+ 4)

N + 1
‖x0 − x∗‖2 +

3
√

2

5
σa(n+ 4).
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Proof. We start with deriving the expectation of the change in x of each step, that

is, E[r2k+1]− r2k, where rk = ‖xk − x∗‖. First,

r2k+1 = ‖xk − hksµk − x∗‖2

= r2k − 2hk〈sµk , xk − x∗〉+ h2k‖sµk‖2.

E[sµk ] can be derived by using (3.14) and (3.22). E[‖sµk‖2] is derived in Lemma

3.4.4. Hence,

E
[
r2k+1

]
≤ r2k − 2hk〈∇fµ(xk), xk − x∗〉+ h2k[2(n+ 4)‖∇f(xk)‖2 + C2].

By using (3.8), (3.12), and (3.7), we derive

E
[
r2k+1

]
≤ r2k − 2hk(f(xk)− fµ(x∗)) + 4h2kL1(n+ 4)(f(xk)− f(x∗)) + h2kC2.

Combining this expression with (3.13), which bounds the error between fµ(x) and

f(x), we obtain

E
[
r2k+1

]
≤ r2k − 2hk(1− 2hkL1(n+ 4))(f(xk)− f ∗) + C3,

where C3 = h2kC2 + 2hk
µ2
k

2
L1n = h2kC2 + 2

√
2hkσa

√
n3

(n+ 63)
.

Let hk = h =
1

4L1(n+ 4)
. Then,

E
[
r2k+1

]
≤ r2k −

f(xk)− f ∗

4L1(n+ 4)
+ C3, (3.23)

where C3 =

√
2σa

2L1

g1(n) and g1(n) =

√
n(n+ 6)3

4(n+ 4)2
+

1

n+ 4

√
n3

(n+ 6)3
. By showing

that g′1(n) < 0 for all n ≥ 10 and g′1(n) > 0 for all n ≤ 9, we can prove that
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g1(n) ≤ max{g(9), g(10)} = max{0.2936, 0.2934} ≤ 0.3. Hence, C3 ≤
3
√

2σa
20L1

.

Taking the expectation in Uk and Pk, we have

EUk,Pk [r
2
k+1] ≤ EUk−1,Pk−1

[r2k]−
φk − f ∗

4L1(n+ 4)
+

3
√

2σa
20L1

.

Summing these inequalities over k = 0, · · · , N and dividing by N + 1, we obtain the

desired result.

The bound in Theorem 3.4.5 is valid also for φ̂N = EUk−1,Pk−1
[f(x̂N)], where

x̂N = arg min
x
{f(x) : x ∈ {x0, · · · , xN}}. In this case,

EUk−1,Pk−1
[f(x̂N)]− f ∗ ≤ EUk−1,Pk−1

[
1

N + 1

N∑
k=0

(φk − f ∗)

]

≤ 4L1(n+ 4)

N + 1
‖x0 − x∗‖2 +

3
√

2

5
σa(n+ 4).

Hence, in order to achieve a final accuracy of ε for φ̂N (that is, φ̂N − f ∗ ≤ ε), the

allowable absolute noise in the objective function has to satisfy σa ≤
5ε

6
√

2(n+ 4)
.

Furthermore, under this bound on the allowable noise, this ε accuracy can be ensured

by STARS in

N =
8(n+ 4)L1R

2

ε
− 1 ∼ O

(n
ε
L1R

2
)

(3.24)

iterations, where R2 is an upper bound on the squared Euclidean distance between

the starting point and the optimal solution: ‖x0 − x∗‖2 ≤ R2. In other words, given

an optimization problem that has bounded absolute noise of variance σ2
a, the best
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accuracy that can be ensured by STARS is

εpred ≥
6
√

2σa(n+ 4)

5
, (3.25)

and we can solve this noisy problem in O

(
n

εpred
L1R

2

)
iterations. Unsurprisingly,

a price must be paid for having access only to noisy realizations, and this price is

that arbitrary accuracy cannot be reached in the noisy setting.

3.5 Multiplicative Noise

A multiplicative noise model is described by

f̃(x; ξ) = f(x)[1 + ν(x; ξ)] = f(x) + f(x)ν(x; ξ). (3.26)

In practice, |ν| is bounded by something smaller (often much smaller) than 1. A

canonical example is when f corresponds to a Monte Carlo integration, with the a

stopping criterion based on the value f(x). Similarly, if f is simple and computed in

double precision, the relative errors are roughly 10−16; in single precision, the errors

are roughly 10−8 and in half precision we get errors of roughly 10−4.

Formally, we make the following assumptions in our analysis of STARS for the

problem (3.1) with multiplicative noise.

Assumption 3.5.1 (Assumption about f). f is continuously differentiable and con-

vex and has Lipschitz constant L0. ∇f has Lipschitz constant L1.

Assumption 3.5.2 (Assumption about multiplicative ν).

1. ν is i.i.d., with zero mean and bounded variance; that is, E[ν] = 0, σ2
r = Var(ν) > 0.
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2. The expectation of the signal-to-noise ratio is bounded; that is, E[
1

1 + ν
] ≤ b.

3. The support of ν (i.e., the range of values that ν can take with positive probability)

is bounded by ±a, where a < 1.

The first part of Assumption 3.5.2 is analogous to that in Assumption 3.4.2 and

guarantees that the distribution of ν is independent of x. Although not specifying a

distributional form for ν (with respect to ξ), the final two parts of Assumption 3.5.2

are made to simplify the presentation and rule out cases where the noise completely

corrupts the function.

3.5.1 Noise and Finite Differences

Analogous to Theorem 3.4.3, Theorem 3.5.3 shows how to compute the near-optimal

stepsizes in the multiplicative noise setting.

Theorem 3.5.3. Let Assumptions 3.5.1 and 3.5.2 hold. If a forward-difference

parameter is chosen as

µ∗ = C4

√
|f(x)|, where C4 =

[
16σ2

rn

L2
1(1 + 3σ2

r)(n+ 6)3

] 1
4

,

then for any x ∈ Rn we have

Eu,ξ1,ξ2 [E(µ∗)] ≤ 2L1σr
√

(1 + 3σ2
r)n(n+ 6)3|f(x)|+ 3L2

0σ
2
r(n+ 4)2. (3.27)
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Proof. By using (3.26) and (3.6), we derive

E(µ) ≤
∥∥∥∥f(x+ µu)ν(x+ µu; ξ1)− f(x)ν(x; ξ2)

µ
u+

µL1

2
‖u‖2u

∥∥∥∥2
≤

(
f(x+ µu)ν(x+ µu; ξ1)− f(x)ν(x; ξ2)

µ
+
µL1

2
‖u‖2

)2

‖u‖2.

Again applying (3.6), we get E(µ) ≤ X2‖u‖2, where

X =
f(x+ µu)ν(x+ µu; ξ1)− f(x)ν(x; ξ2)

µ
+
µL1

2
‖u‖2

≤
(
f(x)

µ
+∇f(x)Tu+

µL1

2
‖u‖2

)
ν(x+ µu; ξ1)−

f(x)

µ
ν(x; ξ2) +

µL1

2
‖u‖2.

The expectation of X with respect to ξ1 and ξ2 is

Eξ1,ξ2 [X] =
µL1

2
‖u‖2

and the corresponding variance is

Var(X) =

(
f(x)

µ
+∇f(x)Tu+

µL1

2
‖u‖2

)2

σ2
r +

f 2(x)

µ2
σ2
r

≤
(

3f 2(x)

µ2
+ 3(∇f(x)Tu)2 +

3µ2L2
1

4
‖u‖4

)
σ2
r +

f 2(x)

µ2
σ2
r

=

(
4f 2(x)

µ2
+ 3(∇f(x)Tu)2 +

3µ2L2
1

4
‖u‖4

)
σ2
r ,

where the inequality holds because (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 for any a, b, c. Since

E[X2] = Var(X) + (E[X])2, we have that

Eξ1,ξ2 [X2] ≤ µ2L2
1(1 + 3σ2

r)

4
‖u‖4 +

4σ2
r

µ2
f 2(x) + 3(∇f(x)Tu)2σ2

r

≤ µ2L2
1(1 + 3σ2

r)

4
‖u‖4 +

4σ2
r

µ2
f 2(x) + 3L2

0σ
2
r‖u‖2.

68



Hence, we can derive

E[E(µ)] ≤ Eu[Eξ1,ξ2 [X2‖u‖2]]

= Eu[‖u‖2Eξ1,ξ2 [X2]]

≤ Eu
[
µ2L2

1(1 + 3σ2
r)

4
‖u‖6 +

4σ2
r

µ2
f 2(x)‖u‖2 + 3L2

0σ
2
r‖u‖4

]
.

By using (3.10), (3.11), and this last expression, we get

E[E(µ)] ≤ µ2L2
1(1 + 3σ2

r)

4
(n+ 6)3 +

4σ2
rn

µ2
f 2(x) + 3L2

0σ
2
r(n+ 4)2.

The right-hand side of this expression is uniformly convex in µ and attains its

global minimum at µ∗ = C4

√
|f(x)|; the corresponding expectation of the least-

squares error is

Eu,ξ1,ξ2 [E(µ∗)] ≤ 2L1σr
√

(1 + 3σ2
r)n(n+ 6)3|f(x)|+ 3L2

0σ
2
r(n+ 4)2.

Unlike for the absolute noise case of Section 3.4, the optimal µ value in The-

orem 3.5.3 is not independent of x. Furthermore, letting µk = µ∗ = C4

√
|f(x)|

assumes that f is known. Unfortunately, we have access to f only through f̃ . How-

ever, we can compute an estimate, µ̃, of µ∗ by substituting f with f̃ and still derive

an error bound. To simplify the derivations, we introduce another random variable,

ξ3, independent of ξ1 and ξ2, to compute µ̃ ≡ µ̃(x; ξ3). The goal is to obtain an upper
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bound on Eξ3 [Eξ1,ξ2,u[E(µ̃)]], where

E(µ̃) ≡ E(µ̃, x;u, ξ1, ξ2, ξ3) =

∥∥∥∥∥ f̃(x+ µ̃; ξ1)− f̃(x; ξ2)

µ̃
u− 〈∇f(x), u〉u

∥∥∥∥∥
2

.

This then allows us to proceed with the usual derivations while requiring only an

additional expectation over ξ3.

Lemma 3.5.4. Let Assumptions 3.5.1 and 3.5.2 hold. If a forward-difference pa-

rameter is chosen as

µ̃ = C4

√
|f̃(x; ξ3)|, where C4 =

[
16σ2

rn

L2
1(1 + 3σ2

r)(n+ 6)3

] 1
4

, (3.28)

then for any x ∈ Rn, we have

Eu,ξ1,ξ2,ξ3 [E(µ̃)] ≤ (1 + b)L1σr
√

(1 + 3σ2
r)n(n+ 6)3|f(x)|+ 3L2

0σ
2
r(n+ 4)2. (3.29)

Proof.

E[E(µ̃)] = Eξ3 [Eu,ξ1,ξ2 [E(µ̃)]]

≤ Eξ3
[
µ̃2L2

1(1 + 3σ2
r)

4
(n+ 6)3 +

4σ2
rn

µ̃2
f 2(x) + 3L2

0σ
2
r(n+ 4)2

]
= L1σr

√
(1 + 3σ2

r)n(n+ 6)3|f(x)|Eξ3
[
1 + ν(x; ξ3) +

1

1 + ν(x; ξ3)

]
+ 3L2

0σ
2
r(n+ 4)2

≤ (1 + b)L1σr
√

(1 + 3σ2
r)n(n+ 6)3|f(x)|+ 3L2

0σ
2
r(n+ 4)2,

where the last inequality holds by Assumption 3.5.2 because the expectation of the

signal-to-noise ratio is bounded by b.

Remark: Similar to the additive noise case, Theorem 3.5.3 and Theorem 3.5.4 do

not require f to be convex. Hence, (3.27) and (3.29) both hold in the nonconvex
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case. However, the following convergence rate analysis applies only to the convex

case, since Lemma 3.5.6 relies on a convexity assumption for f .

3.5.2 Convergence Rate Analysis

Let µk = µ̃ = C4

√
|f̃(xk; ξk′)| in Algorithm 3. Before showing the convergence

result, we derive E[〈sµ̃, xk−x∗〉] and E[‖sµ̃‖2], where sµ̃ denotes sµ(xk;uk, ξk, ξk−1, ξk′)

and E[·] denotes the expectation over all random variables uk, ξk, ξk−1, and ξk′(i.e.,

E[·] = Euk,ξk,ξk−1,ξk′
[·]), unless otherwise specified.

Lemma 3.5.5. Let Assumptions 3.5.1 and 3.5.2 hold. If µk = µ̃ = C4

√
|f̃(xk; ξk′)|,

then

E[‖sµ̃‖2] ≤ 2(n+ 4)‖∇f(xk)‖2 + C5|f(xk)|+ C6,

where C5 =
1

2
C2

4L
2
1(n+6)3+(1+b)L1σr

√
(1 + 3σ2

r)n(n+ 6)3 and C6 = 3L2
0σ

2
r(n+4)2.

Proof. Let g0(xk) = 〈∇f(xk), uk〉uk. The bound (3.28) in Theorem 3.5.4 implies that

E[‖sµ̃ − g0(xk)‖2] ≤ (1 + b)L1σr
√

(1 + 3σ2
r)n(n+ 6)3|f(x)|+ 3L2

0σ
2
r(n+ 4)2 ≡ `(x).

71



Hence,

E
[
‖sµ̃‖2

]
≤ Eξk′

[
Euk,ξk,ξk−1

[2〈sµ, g0(xk)〉 − ‖g0(xk)‖2]
]

+ `(x)

(3.22)
= Eξk′

[
Euk [2〈gµk(xk), g0(xk)〉 − ‖g0(xk)‖2]

]
+ `(x)

≤ Eξk′
[
Euk [‖gµk(xk)‖2]

]
+ `(x)

(3.15)

≤ 2(n+ 4)‖∇f(xk)‖2 + Eξk′
[
µ2
k

2
L2
1(n+ 63)

]
+ `(x)

= 2(n+ 4)‖∇f(xk)‖2 + C5|f(xk)|+ C6,

where the last equality holds since Eξk′ [µ
2
k] = Eξk′ [C

2
4 |f(xk)|(1+ν(xk; ξk′)] = C2

4 |f(xk)|.

Lemma 3.5.6. Let Assumptions 3.5.1 and 3.5.2 hold. If µk = µ̃ = C4

√
|f̃(xk; ξk′)|,

then

E[〈sµ̃, xk − x∗〉] ≥ f(xk)− f ∗ −
C2

4L1n

2
|f(xk)|.

Proof. First, we have

Euk,ξk,ξk−1
[sµ̃] = Euk,ξk,ξk−1

[
f̃(xk + µkuk; ξk)− f̃(xk; ξk−1)

µk
uk

]

= Euk,ξk,ξk−1

[
f(xk + µkuk)[1 + ν(xk + µkuk; ξk)]− f(xk)[1 + ν(xk; ξk−1)]

µk
uk

]
= Euk

[
f(xk + µkuk)− f(xk)

µk
uk

]
= Euk [gµk(xk)]

(3.14)
= ∇fµk(xk).
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Then, we get

Euk,ξk,ξk−1
[〈sµ̃, xk − x∗〉] = 〈∇fµk(xk), xk − x∗〉

(3.8)

≥ fµk(xk)− fµk(x∗)
(3.12)

≥ f(xk)− fµk(x∗)
(3.13)

≥ f(xk)− f ∗ −
µk
2
L1n.

Since µk = µ̃ = C4

√
|f̃(xk; ξk′)|, we have

E[〈sµ̃, xk − x∗〉] = Eξk′ [Euk,ξk,ξk−1
[〈sµ̃, xk − x∗〉]] ≥ f(xk)− f ∗ −

C2
4L1n

2
|f(xk)|.

We are now ready to show the convergence of Algorithm 3, with µk = µ̃, for the

minimization of a function (3.26) with bounded multiplicative noise.

Theorem 3.5.7. Let Assumptions 3.5.1 and 3.5.2 hold. Let the sequence {xk}k≥0

be generated by Algorithm 3 with the smoothing parameter µk being

µk = µ̃ = C4

√
|f̃(x; ξk′)|

and the fixed step length set to hk = h =
1

4L1(n+ 4)
for all k. Let M be an upper

bound on the average of the historical absolute values of noise-free function evalua-

tions; that is,

M ≥ 1

N + 1

N∑
k=0

|φk| =
1

N + 1

(
|f(x0)|+

N∑
k=1

EUk−1,Pk−1
[|f(xk)|]

)
.
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Then, for any N ≥ 0 we have

1

N + 1

N∑
k=0

(φk − f ∗) ≤
4L1(n+ 4)

N + 1
‖x0 − x∗‖2 + 4L1(n+ 4) (C7M + C8) , (3.30)

where C7 =
C2

4n

4(n+ 4)
+

C5

16L2
1(n+ 4)2

and C8 =
C6

16L2
1(n+ 4)2

.

Proof. Let rk = ‖xk − x∗‖. First,

r2k+1 = ‖xk − hksµ̃ − x∗‖2

= r2k − 2hk〈sµ̃, xk − x∗〉+ h2k‖sµ̃‖2.

E[〈sµ̃, xk − x∗〉] and E[‖sµ̃‖2] are derived in Lemma 3.5.6 and Lemma 3.5.5, respec-

tively. Hence, incorporating (3.7), we derive

E
[
r2k+1

]
≤ r2k − 2hk(f(xk)− f ∗ −

C2
4L1n

2
|f(xk)|) + h2k[2(n+ 4)‖∇f(xk)‖2 + C5|f(xk)|+ C6]

≤ r2k − 2hk(1− 2hkL1(n+ 4))(f(xk)− f ∗) + (hkC
2
4L1n+ h2kC5)|f(xk)|+ h2kC6.

Let hk =
1

4L1(n+ 4)
. Then, taking the expectation with respect to Uk =

{u1, · · · , uk} and Pk = {ξ0, ξ′0, ξ1, ξ1′ , · · · , ξk} yields

EUk,Pk
[
r2k+1

]
≤ EUk−1,Pk−1

[
r2k
]
− φk − f ∗

4L1(n+ 4)
+ C7|φk|+ C8.

Summing these inequalities over k = 0, · · · , N and dividing by N + 1, we get

1

N + 1

N∑
k=0

(φk − f ∗) ≤
4L1(n+ 4)

N + 1
‖x0 − x∗‖2 + 4L1(n+ 4)(C7M + C8).
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The bound (3.30) is valid also for φ̂N = EUk−1,Pk−1
[f(x̂N)], where x̂N = arg min

x
{f(x) :

x ∈ {x0, · · · , xN}}. In this case,

EUk−1,Pk−1
[f(x̂N)]− f ∗ ≤ EUk−1,Pk−1

[
1

N + 1

N∑
k=0

(φk − f ∗)

]

≤ 4L1(n+ 4)

N + 1
‖x0 − x∗‖2 + 4L1(n+ 4)(C7M + C8).(3.31)

Let us collect and simplify the constants C7 and C8. First, C8 =
C6

16L2
1(n+ 4)2

=

3L2
0σ

2
r

16L2
1

. Second, since

C5 =
1

2
C2

4L
2
1(n+ 6)3 + (1 + b)L1σr

√
(1 + 3σ2

r)n(n+ 6)3

= 2L1σr

√
1

1 + 3σ2
r

√
n(n+ 6)3 + (1 + b)L1σr

√
(1 + 3σ2

r)n(n+ 6)3

≤ (b+ 3)L1σr
√

1 + 3σ2
r

√
n(n+ 6)3,

where the last inequality holds because
1

1 + 3σ2
r

≤ 1 ≤ 1 + 3σ2
r , we can derive

C7 =
C2

4n

4(n+ 4)
+

C5

16L2
1(n+ 4)2

≤ 1

L1

√
σ2
r

1 + 3σ2
r

· n

n+ 4

√
n

(n+ 6)3
+

(b+ 3)σr
√

1 + 3σ2
r

16L1

·
√
n(n+ 6)3

(n+ 4)2

≤
σr
√

1 + 3σ2
r

L1

[g2(n) + (b+ 3)g3(n)] ,

where g2(n) =
n

n+ 4

√
n

(n+ 6)3
, g3 =

√
n(n+ 6)3

16(n+ 4)2
, and the last inequality again

utilizes
1

1 + 3σ2
r

≤ 1 ≤ 1 + 3σ2
r . It can be shown that g′2(n) < 0 for all n ≥ 8 and

g′2(n) > 0 for all n ≤ 7, thus g2(n) ≤ max{g(7), g(8)} = max{0.0359, 0.0360} ≤ 3

64
.

Similarly, one can prove that g′3(12) = 0, g′3(n) < 0 for all n > 12, and g′3(n) > 0 for
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all n < 12, which indicates g3(n) ≤ g3(12) ≈ 0.0646 ≤ 3

32
. Hence,

C7 ≤
3(2b+ 7)σr

√
1 + 3σ2

r

64L1

≤
3
√

3(2b+ 7)(σ2
r + 1

6
)

64L1

,

where the last inequality holds because σr

√
1

3
+ σ2

r ≤ σ2
r +

1

6
.

With C7 and C8 simplified, (3.31) can be used to establish an accuracy ε for φ̂N ;

that is, φ̂N−f ∗ ≤ ε, can be achieved in O
(n
ε
L1R

2
)

iterations, provided the variance

of the relative noise σ2
r satisfies

4L1(n+ 4)(C7M + C8) ≤
1

2
C9(σ

2
r +

1

6
)(n+ 4) ≤ ε

2
,

where C9 =
3
√

3

8
(2b+ 7)M +

3L2
0

2L1

, that is,

σ2
r ≤

ε

C9(n+ 4)
− 1

6
. (3.32)

The bound in (3.32) may be cause for concern since the upper bound may only

be positive for larger values of ε. Rearranging the terms explicitly shows that the

additive term
1

6
is a limiting factor for the best accuracy that can be ensured by this

bound:

εpred ≥ C9(σ
2
r +

1

6
)(n+ 4). (3.33)
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3.6 Numerical Experiments

We perform three types of numerical studies. Since our convergence rate analysis

guarantees only that the means converge, we first test how much variability the per-

formance of STARS show from one run to another. Second, we study the convergence

behavior of STARS in both the absolute noise and multiplicative noise cases and ex-

amine these results relative to the bounds established in our analysis. Then, we

compare STARS with four other randomized zero-order methods to highlight what

is gained by using an adaptive smoothing stepsize.

3.6.1 Performance Variability

We first examine the variability of the performance of STARS relative to that of

Nesterov’s RG algorithm [63], which is summarized in Algorithm 4. One can observe

that RG and STARS have identical algorithmic updates except for the choice of

the smoothing stepsize µk. Whereas STARS takes into account the noise level, RG

calculates the smoothing stepsize based on the target accuracy ε in addition to the

problem dimension and Lipschitz constant,

µ =
5

3(n+ 4)

√
ε

2L1

. (3.34)

MATLAB implementations of both RG and STARS are tested on a smooth convex

function with random noise added in both additive and multiplicative forms. In our

tests, we use uniform random noise, with ν generated uniformly from the interval

[−
√

3σ,
√

3σ] by using MATLAB’s random number generator rand. This choice en-

sures that ν has zero mean and bounded variance σ2 in both the additive (σa = σ)
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Algorithm 4 (RG: Random Search for Smooth Optimization)

1: Choose initial point x0 and iteration limit N . Fix step length hk = h =
1

4(n+ 4)L1

and compute smoothing stepsize µk based on ε = 2−16. Set k ← 1.

2: Generate a random Gaussian vector uk.
3: Evaluate the function values f̃(xk; ξk) and f̃(xk + µkuk; ξk).
4: Call the random stochastic gradient-free oracle

sµ(xk;uk, ξk) =
f̃(xk + µkuk; ξk)− f̃(xk; ξk)

µk
uk.

5: Set xk+1 = xk − hksµ(xk;uk, ξk), update k ← k + 1, and return to Step 2.

and multiplicative cases (σr = σ) and that Assumptions 3.4.2 and 3.5.2 hold, pro-

vided that σ < 3−1/2.

We use Nesterov’s smooth function as introduced in [63]:

f1(x) =
1

2
(x(1))2 +

1

2

n−1∑
i=1

(x(i+1) − xi)2 +
1

2
(x(n))2 − x(1), (3.35)

where x(i) denotes the ith component of the vector x ∈ Rn. The starting point

specified for this problem is the vector of zeros, x0 = 0. The optimal solution is

x∗(i) = 1− i

n+ 1
, i = 1, · · · , n; f(x∗) = − n

2(n+ 1)
.

The analytical values for the parameters (corresponding to Lipschitz constant

for the gradient and the squared Euclidean distance between the starting point and

optimal solution) are: L1 ≤ 4 and R2 = ‖x0−x∗‖2 ≤
n+ 1

3
. Both methods were given

the same parameter value (4.0) for L1, but the smoothing stepsizes differ. Whereas

RG always uses fixed stepsizes of the form (3.34), STARS uses fixed stepsizes of the

form (3.18) in the absolute noise case and uses dynamic stepsizes calculated as (3.28)

in the multiplicative noise case. To observe convergence over many random trials, we
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(a) σa = 10−6 (b) σa = 10−3

(c) σr = 10−6 (d) σr = 10−3

Figure 3.1: Median and quartile plots of achieved accuracy with respect to 20 random
seeds when applying RG and STARS to the noisy f1 function. Figure 3.1(a) and 3.1(b)
show the additive noise case, while Figure 3.1(c) and 3.1(d) show the multiplicative
noise case.

use a small problem dimension of n = 8; however, the behavior shown in Figure 3.1

is typical of the behavior that we observed in higher dimensions (but the n = 8 case

requiring fewer function evaluations).

In Figure 3.1, we plot the accuracy achieved at each function evaluation, which

is the true function value f(xk) minus the optimal function value f(x∗). The median
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across 20 trials is plotted as a line; the shaded region denotes the best and worst trials;

and the 25% and 75% quartiles are plotted as error bars. We observe that when the

function is relatively smooth, as in Figure 3.1(a) when the additive noise is 10−6, the

methods exhibit similar performance. As the function gets more noisy, however, as

in Figure 3.1(b) when the additive noise becomes 10−3, RG shows more fluctuations

in performance resulting in large variance, whereas the performance STARS is almost

the same as in the smoother case. The same noise-invariant behavior of STARS can

be observed in the multiplicative case.

3.6.2 Convergence Behavior

We tested the convergence behavior of STARS with respect to dimension n and noise

levels on the same smooth convex function f1 with noise added in the same way as

in Section 3.6.1. The results are summarized in Figure 3.2 , where (a) and (b) are

for the additive case and (c) and (d) are for the multiplicative case. The horizontal

axis marks the problem dimension and the vertical axis shows the absolute accuracy.

Two types of absolute accuracy are plotted. First, εpred (in blue ×’s) is the best

achievable accuracy given a certain noise level, computed by using (3.25) for the

additive case and (3.32) for the multiplicative case. Second is the actual accuracy

(in red circle) achieved by STARS after N iterations where N , calculated as in (3.24),

is the number of iterations needed in theory to get εpred. Because of the stochastic

nature of STARS, we perform 15 runs (each with a different random seed) of each

test and report the averaged accuracy

ε̄actual =
1

15

15∑
i=1

εiactual =
1

15

15∑
i=1

(f(xiN)− f ∗). (3.36)
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Figure 3.2: Convergence behavior of STARS: absolute accuracy versus dimension n.
Two absolute noise levels (a) and (b), and two relative noise levels (c) and (d) are
presented.

We observe from Figure 3.2 that the solution obtained by STARS within the

iteration limit N is more accurate than that predicted by the theoretical bounds.

The difference between predicted and achieved accuracy is always over an order of

magnitude and is relatively consistent for all dimensions we examined.
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3.6.3 Illustrative Example

In this section, we provide a comparison between STARS and four other zero-order

algorithms on noisy versions of (3.35) with n = 8. The methods we study all share

a stochastic nature; that is, a random direction is generated at each iteration. Ex-

cept for RP [79], which is designed for solving smooth convex functions, the rest are

stochastic optimization algorithms. However, we still include RP in the comparison

because of its similar algorithmic framework. The algorithms and their function-

specific inputs are summarized in Table 3.1, where L̃1 and σ̃2 are, respectively, esti-

mations of L1 and σ2 given a noisy function (details on how to estimate L̃1 and σ̃2

are discussed in Appendix). We now briefly introduce each of the tested algorithms;

algorithmic and implementation details are given in the appendix of this chapter.

Table 3.1: Relevant function parameters for different methods.

Abbreviation Method Name Parameters
STARS Stepsize Approximation in Random Search L1, σ

2

SS Random Search for Stochastic Optimization [63] L0, R
2

RSGF Random Stochastic Gradient Free method [38] L̃1, σ̃
2

RP Random Pursuit [79] -
ES (1+1)-Evolution Strategy [74] -

The first zero-order method we include, named SS (Random Search for Stochastic

Optimization), is proposed in [63] for solving (3.1). It assumes that f ∈ C0,0(Rn) is

convex. The SS algorithm, summarized in Algorithm 5, shares the same algorithmic

framework as STARS except for the choice of smoothing stepsize µk and the step

length hk. It is shown that the quantities µk and hk can be chosen so that a solution

for (3.1) such that f(xN)− f ∗ ≤ ε can be ensured by SS in O(n2/ε2) iterations.

Another stochastic zero-order method that also shares an algorithmic framework
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similar to STARS is RSGF [38], which is summarized in Algorithm 6. RSGF targets

the stochastic optimization objective function in (3.1), but the authors relax the

convexity assumption and allow f to be nonconvex. However, it is assumed that

f̃(·, ξ) ∈ C1,1(Rn) almost surely, which implies that f ∈ C1,1(Rn). The authors show

that the iteration complexity for RSGF finding an ε-accurate solution, (i.e., a point

x̄ such that E[‖∇f(x̄)‖] ≤ ε) can be bounded by O(n/ε2). Since such a solution x̄

satisfies f(x̄)−f ∗ ≤ ε when f is convex, this bound improves Nesterov’s result in [63]

by a factor n for convex stochastic optimization problems.

In contrast with the presented randomized approaches that work with a Gaussian

vector u, we include an algorithm that samples from a uniform distribution on the

unit hypersphere. Summarized in Algorithm 7, RP [79] is designed for unconstrained,

smooth, convex optimization. It relaxes the requirement in [63] of approximating di-

rectional derivatives via a suitable oracle. Instead, the sampling directions are chosen

uniformly at random on the unit hypersphere, and the step lengths are determined

by a line search oracle. This randomized method also requires only zeroth-order

information about the objective function, but it does not need any function-specific

parametrization. It was shown that RP meets the convergence rates of the standard

steepest descent method up to a factor n.

Experimental studies of variants of (1+1)-Evolution Strategy (ES), first proposed

by Schumer and Steiglitz [74], have shown their effectiveness in practice and their

robustness in noisy environment. However, provable convergence rates are derived

only for the simplest forms of ES on unimodal objective functions [7, 43, 45], such

as sphere or ellipsoidal functions. The implementation we study is summarized in

Algorithm 8; however, different variants of this scheme have been studied in [13].

We observe from Figure 3.3 that STARS outperforms the other four algorithms
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Figure 3.3: Trajectory plots of five zero-order methods in the additive and multi-
plicative noise settings. The vertical axis represents the true function value f(xk),
and each line is the mean of 20 trials.
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in terms of final accuracy in the solution. In both Figures 3.3(a) and 3.3(b), ES

is the fastest algorithm among all in the beginning. However, ES stops progressing

after a few iterations, whereas STARS keeps progressing to a more accurate solution.

As the noise level increases from 10−5 to 10−1, the performance of ES gradually

worsens, similar to the other methods SS, RSGF, and RP. However, the noise-invariant

property of STARS allows it to remain robust in these noisy environments.

3.7 Appendix

In this appendix we describe the implementation details of the four zero-order meth-

ods tested in Table 3.1 and Section 3.6.3.

Random Search for Stochastic Optimization

Algorithm 5 (SS: Random Search for Stochastic Optimization)

1: Choose initial point x0 and iteration limit N . Fix step length hk = h =
R

(n+ 4)(N + 1)1/2L0

and smoothing stepsize µk = µ =
ε

2L0n1/2
. Set k ← 1.

2: Generate a random Gaussian vector uk.
3: Evaluate the function values f̃(xk; ξk) and f̃(xk + µkuk; ξk).
4: Call the random stochastic gradient-free oracle

sµ(xk;uk, ξk) =
f̃(xk + µkuk; ξk)− f̃(xk; ξk)

µk
uk.

5: Set xk+1 = xk − hksµ(xk;uk, ξk), update k ← k + 1, and return to Step 2.

Algorithm 5 provides the SS (Random Search for Stochastic Optimization) algo-

rithm from [63].
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Remark: ε is suggested to be 2−16 in the experiments in [63]. Our experiments in

Section 3.6.3, however, show that this choice of ε forces SS to take small steps and thus

SS does not converge at all in the noisy environment. Hence, we increase ε (to ε = 0.1)

to show that optimistically, SS will work if the stepsize is big enough. Although in

the additive noise case one can recover STARS by appropriately setting this ε in SS, it

is not possible in the multiplicative case because STARS takes dynamically adjusted

smoothing stepsizes in this case.

Randomized Stochastic Gradient-Free Method

Algorithm 6 (RSGF: Randomized Stochastic Gradient-Free Method)

1: Choose initial point x0 and iteration limit N . Estimate L1 and σ̃2 of the noisy
function f̃ . Fix step length as

γk = γ =
1√
n+ 4

min

{
1

4L1

√
n+ 4

,
D̃

σ̃
√
N

}
,

where D̃ = (2f(x0)/L1)
1
2 . Fix µk = µ = 0.0025. Set k ← 1.

2: Generate a Gaussian vector uk.
3: Evaluate the function values f̃(xk; ξk) and f̃(xk + µkuk; ξk).
4: Call the stochastic zero-order oracle

Gµ(xk;uk, ξk) =
f̃(xk + µkuk; ξk)− f̃(xk; ξk)

µ
uk.

5: Set xk+1 = xk − γkGµ(xk;uk, ξk), update k ← k + 1, and return to Step 2.

Algorithm 6 provides the RSGF (Randomized Stochastic Gradient-Free Method)

algorithm from [38].

Remark: Although the convergence analysis of RSGF is based on knowledge of the

constants  L1 and σ2, the discussion in [38] on how to implement RSGF does not reply

on these inputs. Because the authors solved a support vector machine problem and an
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inventory problem, both of which do not have known L1 and σ2 values, they provide

details on how to estimate these parameters given a noisy function. Hence following

[38], the parameter L1 is estimated as the l2 norm of the Hessian of the deterministic

approximation of the noisy objective functions. This estimation is achieved by using

a sample average approximation approach with 200 i.i.d. samples. Also, we compute

the stochastic gradients of the objective functions at these randomly selected points

and take the maximum variance of the stochastic gradients as an estimate of σ̃2.

Random Pursuit

Algorithm 7 (RP: Random Pursuit)

1: Choose initial point x0, iteration limit N , and line search accuracy µ = 0.0025.
Set k ← 1.

2: Choose a random Gaussian vector uk.
3: Choose xk+1 = xk +LSAPPROXµ(xk, uk) ·uk, update k ← k+ 1, and return to Step

2.

Algorithm 7 provides the RP (Random Pursuit) algorithm from [79].

Remark: We follow the authors in [79] and use the built-in MATLAB routine

fminunc.m as the approximate line search oracle.

(1 + 1)-Evolution Strategy

Algorithm 8 provides the ES ((1 + 1)-Evolution Strategy) algorithm from [74].

Remark: A problem-specific parameter required by Algorithm 8 is the initial step-

size σ0, which is given in [79] for some of our test functions. The stepsize is multiplied

by a factor cs = e1/3 > 1 when the mutant’s fitness is as good as the parent is and is
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Algorithm 8 (ES: (1 + 1)-Evolution Strategy)

1: Choose initial point x0, initial stepsize σ0, iteration limit N , and probability of

improvement p = 0.27. Set cs = e
1
3 ≈ 1.3956 and cf = cs · e

−p
1−p ≈ 0.8840. Set

k ← 1.
2: Generate a random Gaussian vector uk.
3: Evaluate the function values f̃(xk; ξk) and f̃(xk + σkuk; ξk).
4: If f̃(xk + σkuk; ξk) ≤ f̃(xk; ξk), then set xk+1 = xk + σkuk and σk+1 = csσk;

Otherwise, set xk+1 = xk and σk+1 = cfσk.
5: Update k ← k + 1 and return to Step 2.

otherwise multiplied by cs · e
−p
1−p < 1, where p is the probability of improvement set

to the value 0.27 suggested by Schumer and Steiglitz [74].

88



3.8 Conclusions and Future Work

In this chapter, we proposed a randomized derivative-free method, STARS. Using

noise-adjusted smoothing step sizes, our method is designed for solving general noisy

problems with moderate stochastic noise. We derived a convergence proof show-

ing that the convergence rate of our algorithm can achieve a theoretical bound of

the same order of the original RG algorithm, in both additive noise and multiplica-

tive noise case. Then we present numerical experiments that compare our proposed

method with selected derivative-free algorithms. The computational results concern-

ing short term behavior of the algorithms reveal that STARS clearly outperforms the

original RG algorithm when the functions are associated with stochastic randomness.

Moreover, STARS exhibits noise-invariant behavior with respect to different levels of

stochastic noise.

In the future, we hope to conduct extensive tests in an effort to better delineate

the types of functions on which we expect STARS to perform well. For larger scale

problems, whether STARS can outperform the model-based methods remains an

open question. Moreover, we intend to explore the performance of these algorithms

on nonconvex problems, since for example, Nesterov’s RS and Lan’s RSGF both have

theoretical convergence proofs on nonconvex problems, but supporting computational

experiments are quite preliminary and not sufficient.
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Chapter 4

Stochastic DFO using Probabilistic

Models

In this chapter, we propose STORM, a trust-region model-based algorithm for solving

unconstrained stochastic optimization problems. This chapter consists of three main

parts. In the first part we propose and analyze a trust region framework, which

utilizes random models of f(x) at each iteration to compute the next iterate. It

also relies on (random, noisy) estimates of the function values at the current iterate

to gauge the progress that is being made. The convergence analysis then relies on

requirements that these models and these estimates are sufficiently accurate with suf-

ficiently high probability. Beyond these conditions, no assumptions are made about

how these models and estimates are generated. In the second part of the chapter

we present some novel ideas about generating the sufficiently accurate random mod-

els by randomly sampling the objective function and constructing regression models

based on these samples. Lastly we present some computational resulting showing

the benefits of using random models and estimates, as well as the performance of

STORM applied to the protein alignment problem described in Chapter 2.
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4.1 Introduction

We aim to minimize a given function f(x), x ∈ Rn which we assume to be smooth

and bounded from below, and whose value can only be computed with some noise.

Let f̃ be the noisy computable version of f , which takes the form

f̃(x) = f(x) + ε,

where the noise ε is i.i.d with E[ε] = 0 and Var(ε) = σ2 <∞.

The overall goal is to solve

min
x

f(x) = E[f̃(x)]. (4.1)

Notations. Let ‖ · ‖ denote the Euclidean norm and B(x,∆) denote the ball of

radius ∆ around x, i.e., B(x,∆) : {y : ‖x − y‖ ≤ ∆}. For convenience, we list here

several constants that are used in the chapter to bound various quantities. These

constants are denoted by κ with subscripts indicating quantities that they are meant

to bound.

κef “error in the function value”,

κeg “error in the gradient”,

κEef “expectation of the error in the function value”,

κfcd “fraction of Cauchy decrease”,

κbhm “bound on the Hessian of the models”,

κet “error in Taylor expansion”.
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4.2 The STORM Algorithm

We consider the trust-region class of methods for minimization of stochastic func-

tions. They operate as follows: at each iteration k, given the current iterate xk and

a trust-region radius δk, build a model mk(x) which serves as an approximation of

f(x) in B(xk, δk). Then mk(x) is minimized (approximately) in B(xk, δk) to produce

a step sk and estimates of f(xk) and f(xk + sk) are obtained, denoted by f 0
k and

f sk respectively. The achieved reduction is measured by comparing f 0
k and f sk and

if reduction is deemed sufficient, then xk + sk is chosen as the next iterate xk+1.

Otherwise the iterate remains at xk. The trust-region radius δk+1 is then chosen by

updating δk according to some rules. The details of the algorithm is presented in

Algorithm 9.

Algorithm 9 STORM:
Stochastic Trust-region-based Optimization using Random Models

1: (Initialization) Choose an initial point x0 and an initial trust-region radius δ0 ∈
(0, δmax) with δmax > 0. Choose constants γ > 1, 0 < η1, η2 < 1; Set k ← 0.

2: (Model construction): Build a model

mk(xk + s) = fk + g>k s+ s>Hks

that approximates f(x) on B(xk, δk) with s = x− xk.
3: (Step calculation) Compute a trial step

sk = arg min
s:‖s‖≤δk

mk(s)

(approximately) so that it satisfies condition (4.2).
4: (Estimates calculation) Obtain estimates f 0

k and f sk of f(xk) and f(xk + sk),
respectively.

5: (Acceptance of the trial point): Compute

ρk =
f 0
k − f sk

mk(xk)−mk(xk + sk)
.

If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set xk+1 = xk + sk; otherwise, set xk+1 = xk.
6: (Trust-region radius update): If ρk ≥ η1 and ‖gk‖ ≥ η2δk, set δk+1 =

min{γδk, δmax}; otherwise δk+1 = γ−1δk; k ← k + 1 and go to step 2.
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The trial step computed on each iteration has to provide sufficient decrease of

the model, in other words it has to satisfy the following standard fractional Cauchy

decrease condition.

Assumption 4.2.1. For every k, the step sk is computed so that

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
(4.2)

for some constant κfcd ∈ (0, 1].

4.3 Probabilistic Models and Estimates

4.3.1 Motivation and Complications

Complication 1: False Successful Steps.

In Algorithm 9, if progress is achieved and a new iterate is accepted on the k-th

step then we call this a successful step. Otherwise, the iteration is unsuccessful (and

no step is taken). Hence a successful step occurs when ρk ≥ η1 and ‖gk‖ ≥ η2δk.

However, a successful step does not necessarily yields an actual reduction in the true

function f . This is because the values of f(x) are not accessible in our stochastic

setting and the step acceptance decision is made merely based on the estimates of

f(xk) and f(xk+sk). If the estimates, f 0
k and f sk are not accurate enough, a successful

step can result in the increase of the true function value.

Hence we consider two types of successful steps. Those where f(x) is in fact de-

creased proportionally to f 0
k−f sk as seen in Figure 4.1(a), which we call true successful

steps. All other successful steps, where the decrease of f(x) can be arbitrary small

93



x
k

x
k
+s

k

x

f(
x
) 

; 
m

(x
)

 

 

f(x)
m(x)
B(xk, δk)
model values
estimates

(a) Good model and good estimates yield true
successful steps.

x
k

x
k
+s

k

x

f(
x
) 

; 
m

(x
)

(b) Bad model and good estimates yield unsuc-
cessful steps.

x
k

x
k
+s

k

x

f(
x
) 

; 
m

(x
)

(c) Good model and bad estimates yield unsuc-
cessful steps.

x
k

x
k
+s

k

x

f(
x
) 

; 
m

(x
)

(d) Bad model and bad estimates yield false suc-
cessful steps. f can increase.

Figure 4.1: Complications of using estimates.

or even negative, which we call false successful steps. Figure 4.1 gives an illustration

of possible outcomes.

Suppose at a certain iteration, the model is fully linear. Minimizing the model

over the trust region would yield a decrease in f . Ideally, if the estimates are accurate

like in Figure 4.1(a), such a step would be correctly accepted. There are the true

successful steps. Similarly, a bad trial step obtained from a bad model can also be

correctly rejected if the estimates are accurate enough (See Figure 4.1(b)). However,

if an inaccurate estimate of f(x+k ) is obtained as shown in Figure 4.1(c), such a good
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step ensured by a fully linear model can be rejected. Similarly, we could accept bad

steps because of bad estimates, which are referred as false successful steps. Figure

4.1(d) shows that on these steps f(x) can increase, which is an outcome that does

not happen in the deterministic case. As a result, f(x) values may oscillate up and

down indefinitely, by taking true and false successful steps alternatively. Hence we

cannot state that all decrease obtained on successful steps is bounded.

Our setting and algorithmic framework does not allow us to determine which

steps are true and which ones are false, however, we will be able to show that true

steps happen sufficiently often for convergence, if the random estimates f 0
k and f sk

are sufficiently accurate.

Complication 2: : Geometry/Poisedness of A Sample Set.

Constructing models based on well-poised sample sets produces good approximations

of the objective function. Figure 4.2 [32] gives two examples where bad geometry

of the sample set results in poor models. In Figure 4.2(a), six sample points align

on a line. Thus, the resulting interpolation model (Figure 4.2(b)) only matches the

function at these selected points, but not any where else in the trust region. Similarly,

when the points are selected on a circle (Figure 4.2(c)), the resulting model also

approximates the function poorly within the trust region.

While there have been works on how to generate points with good geometry and

the poisedness of a sample set has been well-defined in the literature, random sam-

pling of points may also give well-poised sets without the cost of geometry correction.

Figure 4.3 [32] gives such an example. A good model (Figure 4.3(b)) can be obtained

from a carefully selected sample set (Figure 4.3(a)). An almost equally good model

((Figure 4.3(d))) can also be obtained a randomly generated set ((Figure 4.3(c))).
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A trust region framework based on random models was introduced and analyzed

in [9]. In that paper, the authors introduced the concept of probabilistically fully-

linear models to determine the conditions that random models should satisfy for

convergence of the algorithm to hold.

However, the randomness in the models in their setting arises from the the con-

struction process, and not from the noisy objective function. It is assumed in [9]

that the function values at the current iterate and the trial point can be computed

explicitly and hence all successful iterations are true in that case. In our case, it is

(a) Linear non-poised set. (b) Linear non-poised Model.

(c) Circle non-poised set. (d) Circle non-poised model.

Figure 4.2: Two examples of non-poised set.
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(a) Well-posed set. (b) A good model.

(c) Randomly sampled set. (d) Also a good model.

Figure 4.3: Random sampling may give well-poised sets.

necessary to define a measure for the accuracy of the estimates f 0
k and f sk (which, as

we will see, generally has to be tighter than the measure of accuracy of the model).

We will use a modified version of the probabilistic estimates introduced in [51].

4.3.2 Definitions

The models in this chapter, are functions which are constructed on each iteration,

based on some random samples of stochastic function f̃(x). Hence, the models

themselves are random and so is their behavior and influence on the iterations.
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Hence, Mk will denote a random model on the k-th iteration, while we will use the

notation mk = Mk(ωk) for its realizations, for a given sample ω ∈ Ω, where Ω denotes

the probability sample space. As a consequence of using random models, the iterates

Xk, the trust-region radius ∆k and the step Sk are also random quantities, and thus

xk = Xk(ωk), δk = ∆k(ωk), sk = Sk(ωk) will denote their respective realizations.

Similarly, let random quantities {F 0
k , F

s
k} denote the estimates of f(Xk) and f(Xk +

Sk), with their realizations denoted by f 0
k = F 0

k (ωk) and f sk = F s
k (ωk). In other words,

Algorithm 9 results in a stochastic process {Mk, Xk, Sk,∆k, F
0
k , F

s
k}. Our goal is to

show that under certain conditions on the sequences {Mk} and {F 0
k , F

s
k} the resulting

stochastic process base desirable convergence properties with probability one.

We begin by recalling a measure for the accuracy of deterministic models intro-

duced in [32] and [31] (with the exact notation introduced in [14]).

Definition 4.3.1. ∇f is Lipschitz continuous. A function mk is a κ-fully linear

model of f on B(xk, δk) if, ∃κ = (κef , κeg), s.t. ∀y ∈ B,

‖∇f(y)−∇mk(y)‖ ≤ κegδk, and (4.3)

|f(y)−mk(y)| ≤ κefδ
2
k.

In this chapter we rely on the following concept of probabilistically fully-linear

models which is proposed in [9].

Definition 4.3.2. A sequence of random models {Mk} is said to be α-probabilistically

κ-fully linear with respect to the corresponding sequence {B(Xk,∆k)} if the events

Ik = {Mk is a κ-fully linear model of f on B(Xk,∆k)} (4.4)
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satisfy the condition

P (Ik|FMk−1) ≥ α,

where FMk−1 is the σ-algebra generated by M0, · · · ,Mk−1.

This probabilistically fully-linear models have the very simple properties that they

are fully-linear (i.e., accurate enough) with sufficiently high probability, conditioned

on the past, and they can be arbitrarily inaccurate otherwise. This property is

somewhat different from the properties of models typical to stochastic optimization

(such as, for example, stochastic gradient based models), where some assumption on

the expected value and the variance of the models is imposed.

In order to evaluate whether a step is successful, we require estimates of the func-

tion values f(xk), f(xk + sk) that are sufficiently accurate. The following definitions

of accurate and probabilistically accurate estimates are a modified version of those

used in [51].

Definition 4.3.3. The estimates f 0
k and f sk are said to be εF -accurate estimates of

f(xk) and f(xk + sk), respectively, for a given δk if

|f 0
k − f(xk)| ≤ εF δ

2
k and |f sk − f(xk + sk)| ≤ εF δ

2
k. (4.5)

Now, let {F 0
k } and {F s

k} denote the sequences of estimates for {f(xk)}, {f(xk +

sk)} respectively.

Definition 4.3.4. A sequence of random estimates {F 0
k , F

s
k} is said to be β- proba-

bilistically εF -accurate with respect to the corresponding sequence {Xk,∆k, Sk} if the
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events

Jk = {F 0
k , F

s
k are εF -accurate estimates of f(xk) and f(xk+sk), respectively, for ∆k}

(4.6)

satisfy the condition

P (Jk|FM ·Fk−1 ) ≥ β,

where εF is a fixed constant and FM ·Fk−1 is the σ-algebra generated by M0, · · · ,Mk−1

and F0, · · · , Fk−1.

As can be seen from the Definitions 4.3.2 and 4.3.4 the accuracy of the models and

estimates with respect to f(x) is required to be proportionate to δ2k. However, as will

be evident from our analysis below, in the case of the fully-linear models, all that is

required in the existence of fixed constants κef and κeg such that (4.3) holds, while in

the case of εF -accurate estimates it is required that (4.5) holds for some given, small

enough, εF . The latter, by comparison, is a tighter requirement. However, we will

see that the upper bound on εF that are sufficient for convergence is reasonably large.

We will also assume, for simplicity of the analysis, that the models and the estimates

are conditionally independent from each other, given the past. This is a reasonable

assumption, which means that the estimates of the function value should not be

computer using the current model. This assumption can be relaxed, by introducing

additional constraints on dependency of models and estimates.

Procedures for obtaining probabilistically fully-linear models and probabilistically

accurate estimates are described in Sections 4.5 and 4.6.2, respectively.
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4.4 Convergence Analysis

4.4.1 Key Challenges

Typically a standard step in proving the convergence of a trust region method is

showing that the trust-region radius δk goes to zero, that is, formally,

lim
k→∞

δk = 0.

In the case where random models are used for optimizing deterministic functions, it

is not certain whether the model is accurate or not at each iteration. Thus, in [9], the

authors showed that δk is always driven to zero regardless of the realization of the

model sequence {Mk} of the algorithm, as long as the fraction of Cauchy decrease is

achieved by each iteration.

Suppose that this property can be shown in the stochastic case, where one wants

to minimize a deterministic smooth function f when having access only to noisy-

corrupted values f̃ . The convergence is then a natural extension of that in [9] using

submartingale-like properties, as long as we assume that the model sequence {Mk}

is α-probabilistically (κef , κeg) fully linear and the estimate sequence {F 0
k , F

s
k} is θ-

probabilistically εF -accurate, with α + β ≥ 3/2. The motivation is that, if ‖∇f(x)‖

does not go to zero, then on some iterations where the model is fully linear, the

model gradient would be sufficiently large relative to δk (because δk → 0). This

results in a successful step and an increase in δk. One can then show that δk has to be

oscillating above and below some positive constant b infinitely often with probability

one, contradicting the fact that δk goes to zero.

However, in order to prove δk → 0, one needs to show that, at each iteration
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where δk is increased, f is reduced by a constant. That is because, an increase in

δk only happens when a trial step is successful, i.e, ρk =
f(xk)− f(xk+1)

mk(xk)−mk(xk+1)
> η1,

and we know that the model has achieved a fraction of Cauchy decrease. Hence,

the function value decreases on all successful steps. Then, if one assumes that δk

does not converge to zero, there must infinite number of iterations on which δk is not

decreased, thus increased. However, since f is bounded from below, the number of

such iterations cannot be infinite, and hence we obtain a contradiction.

Unfortunately, it is no longer true in the stochastic case that f always decreases

on successful iterations. When the measurable function value f̃ is noisy, one can only

compute

ρ̃k =
f̃(xk)− f̃(xk+1)

mk(xk)−mk(xk+1)
.

Now a successful iteration indicates that f̃(xk) < f̃(xk+1), but the true function

reduction is unknown. In fact, f might falsely increase.

The key is to show that δk still converges to zero even though false increase in

f can happen. This is however complicated by the fact that the model and the

estimates are both be inaccurate and various random outcomes become possible, as

shown in Figure 4.1.

Our main motivation is that one should be able to upper bound the false increase

in f using function Lipschitz continuity within the trust region. Moreover, false

increase does not happen too often if our model and estimates are accurate with

sufficiently high probability. For instance, if our model is fully linear with probability

α and the estimates are accurate with probability β, the probability for the situation

in Figure 4.1(d) to happen is only (1 − α)(1 − β). Hence, one can use the true

decrease in f on true successful steps to counter-balance the false increase and use

this to show δk → 0.
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4.4.2 Convergence of Trust Region Radius

We now present convergence analysis for the general framework described in Algo-

rithm 9. For the purpose of proving first-order convergence of the algorithm, we

assume that the function f and its gradient are Lipschitz continuous in regions con-

sidered by the algorithm realizations. We follow the process in [31] to define this

region.

Assumption 4.4.1 (Assumptions on f). Let x0 and δmax be given. Assume that f

is bounded below on the level set

L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

Assume also that the function f and its gradient ∇f are Lipschitz continuous on set

Lenl(x0), where Lenl(x0) defines the region considered by the algorithm realizations

Lenl(x0) =
⋃

x∈L(x0)

B(x; δmax).

The second assumption provides a uniform upper bound on the model Hessian.

Assumption 4.4.2. There exists a positive constant κbhm such that, for every k, the

Hessian Hk of all realization mk of Mk satisfy

‖Hk‖ ≤ κbhm.

Note that since we are concerned with convergence to a first order stationary

point in this chapter, this bounds κbhm can be chosen to be any nonnegative number,
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including zero. Allowing a larger bound will give more flexibility to the algorithm and

may allow better Hessian approximations, however, as we will see in the convergence

analysis, it will add restrictions on the trust region radius and some other algorithmic

parameters.

We state the following result martingale literature [35] that will be useful later

in our analysis.

Theorem 4.4.3. Let Gk be a submartingale, i.e., a sequence of random variables

which, for every k,

E[Gk|FGk−1] ≥ Gk−1,

where FGk−1 = σ(G0, · · · , Gk−1) is the σ-algebra generated by G0, · · · , Gk−1, and

E[Gk|FGk−1] denotes the conditional expectation of Gk given the past history of events

FGk−1.

Assume further that Gk −Gk−1 ≤M <∞, for every k. Then,

P

({
lim
k→0

Gk <∞
}
∩
{

lim sup
k→0

Gk =∞
})

= 1. (4.7)

We now prove some auxiliary lemmas that provide conditions under which de-

crease of the true objective function f(x) is guaranteed. The first lemma states that

if the trust region radius is small enough relatively to the size of the model gradient

and if the model is fully linear then the step sk provides a decrease in f(x), propor-

tional to the size of the model gradient. Note that the trial step may still be rejected

if the estimates f 0
k and f sk are not accurate enough.

Lemma 4.4.4. Suppose that a model is (κef , κeg)-fully linear on B(xk, δk). If

δk ≤ min

{
1

κbhm
,
κfcd
8κef

}
‖gk‖,
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then the trial step sk leads to an improvement in f(xk + sk) such that

f(xk + sk)− f(xk) ≤ −
κfcd

4
‖gk‖δk. (4.8)

Proof. Using the Cauchy decrease condition, the upper bound on model Hessian and

the fact that ‖gk‖ ≥ κbhmδk, we have

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
=
κfcd

2
‖gk‖δk.

Since the model is κ-fully linear, one can express the improvement in f achieved

by sk as

f(xk + sk)− f(xk)

= f(xk + sk)−m(xk + sk) +m(xk + sk)−m(xk) +m(xk)− f(xk)

≤ 2κefδ
2
k −

κfcd
2
‖gk‖δk

≤ −κfcd
4
‖gk‖δk,

where the last inequality is implied by δk ≤
κfcd
8κef
‖gk‖.

The next lemma shows that for δk small enough relatively to the size of the true

gradient ∇f(xk), the guaranteed decrease in the objective function, provided by sk,

is proportional to the size of the true gradient.

Lemma 4.4.5. Under Assumptions 4.4.1 and 4.4.2, suppose that a model is (κef , κeg)-

fully linear on B(xk, δk). If

δk ≤ min

{
1

κbhm + κeg
,

1
8κef
κfcd

+ κeg

}
‖∇f(xk)‖, (4.9)
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then the trial step sk leads to an improvement in f(xk + sk) such that

f(xk + sk)− f(xk) ≤ −C1‖∇f(xk)‖δk, (4.10)

where C1 =
κfcd

4
·max

{
κbhm

κbhm + κeg
,

8κef
8κef + κfcdκeg

}
.

Proof. The definition of a κ-fully-linear model yields that

‖gk‖ ≥ ‖∇f(x)‖ − κegδk.

Since condition (4.9) implies that ‖∇f(xk)‖ ≥ max

{
κbhm + κeg,

8κef
κfcd

+ κeg

}
δk, we

have

‖gk‖ ≥ max

{
κbhm,

8κef
κfcd

}
δk.

Hence, the conditions of Lemma 4.4.4 hold and we have

f(xk + sk)− f(xk) ≤ −
κfcd

4
‖gk‖δk. (4.11)

Since ‖gk‖ ≥ ‖∇f(x)‖ − κegδk in which δk satisfies (4.9), we also have

‖gk‖ ≥ max

{
κbhm

κbhm + κeg
,

8κef
8κef + κfcdκeg

}
‖∇f(xk)‖. (4.12)

Combining (4.11) and (4.12) yields (4.10).

We now state and prove the lemma that states that, in the presence of suffi-

cient accuracy of the estimates, if the model is fully-linear, the trust-region radius

is sufficiently small relatively to the size of the model gradient, a successful step is

guaranteed.
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Lemma 4.4.6. Under Assumptions 4.4.1 and 4.4.2, suppose that mk is (κef , κeg)-

fully linear on B(xk, δk) and the estimates {f 0
k , f

s
k} are εF -accurate with εF ≤ κef .

If

δk ≤ min

{
1

κbhm
,

1

η2
,
κfcd(1− η1)

8κef

}
‖gk‖, (4.13)

then the k-th iteration is successful.

Proof. Since δk ≤
‖gk‖
κbhm

, Cauchy decrease condition and the uniform bound on Hk

immediately yield that

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
κbhm

, δk

}
=
κfcd

2
‖gk‖δk. (4.14)

The model mk being (κef , κeg)-fully linear implies that,

|f(xk)−mk(xk)| ≤ κefδ
2
k, and (4.15)

|f(xk + sk)−mk(xk + sk)| ≤ κefδ
2
k. (4.16)

Since the estimates are εF -accurate with εF ≤ κef , we obtain

|F 0
k − f(xk)| ≤ κefδ

2
k, and |F s

k − f(xk + sk)| ≤ κefδ
2
k. (4.17)

Combining (4.14)-(4.17), we have

ρk =
f 0
k − f sk

mk(xk)−mk(xk + sk)

=
f 0
k − f(xk)

mk(xk)−mk(xk + sk)
+

f(xk)−mk(xk)

mk(xk)−mk(xk + sk)
+
mk(xk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

+
mk(xk + sk)− f(xk + sk)

mk(xk)−mk(xk + sk)
+

f(xk + sk)− f sk
mk(xk)−mk(xk + sk)

,

107



which indicates that

|ρk − 1| ≤ 8κefδ
2
k

κfcd‖gk‖δk
≤ 1− η1,

where we have used the assumption δk ≤
κfcd(1− η1)

8κef
‖gk‖ to deduce the last inequal-

ity. Hence, ρk ≥ η1. Moreover, since ‖gk‖ ≥ η2δk, the k-th iteration is successful.

Finally, we state and prove the lemma which ensures conditions on a successful

step, which guarantee a decrease of the true objective function.

Lemma 4.4.7. Under Assumptions 4.4.1 and 4.4.2, suppose that the estimates

{f 0
k , f

s
k} are εF -accurate with εF <

1

4
η1η2κfcd min

{
η2
κbhm

, 1

}
. If a trial step sk is

accepted as a successful step, then the improvement in f is bounded below as follows

f(xk+1)− f(xk) ≤ −C2δ
2
k, (4.18)

where C2 =
1

2
η1η2κfcd min

{
η2
κbhm

, 1

}
− 2εF > 0.

Proof. An iteration being successful indicates that ‖gk‖ ≥ η2δk and ρ ≥ η1. Thus,

f 0
k − f sk ≥ η1(mk(xk)−mk(xk + sk))

≥ η1
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
≥ 1

2
η1η2κfcd min

{
η2
κbhm

, 1

}
δ2k.

Then, since the estimates are εF -accurate, we have that the improvement in f can

be bounded as

f(xk + sk)− f(xk) = f(xk + sk)− f sk + f sk − f 0
k + f 0

k − f(xk) ≤ −C2δ
2
k,
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where C2 =
1

2
η1η2κfcd min

{
η2
κbhm

, 1

}
− 2εF > 0.

To prove convergence of Algorithm 9 we will need to assume that models {Mk}

and estimates {F 0
k , F

s
k} are sufficiently accurate with sufficiently high probability.

Assumption 4.4.8. Given values of α, β ∈ (0, 1) and εF > 0, there exist κeg and

κef such that the the sequence of models {Mk} and estimates {F 0
k , F

s
k} generated

by Algorithm 9 are, respectively, α-probabilistically (κef , κeg)- fully-linear and β-

probabilistically εF -accurate. Moreover, events Ik and Jk are independent of each

other, conditioned on FM ·Fk−1 .

The following theorem states that the trust-region radius converges to zero with

probability 1.

Theorem 4.4.9. Let Assumptions 4.4.1 and 4.4.2 be satisfied and assume that η2 >

κbhm in Algorithm 9. Then α, β, εF can be chosen so that, if Assumption 4.4.8 holds

for these values, then the sequence of trust-region radii, {∆k}, generated by Algorithm

9 satisfies
∞∑
k=0

∆2
k <∞ (4.19)

almost surely.

Remark 4.4.10. The exact conditions on α, β and εF will be shown in Lemma

4.4.11.

Proof. We base our proof on properties of the following random function Φk =

νf(Xk) + (1 − ν)∆2
k, where ν ∈ (0, 1) is a fixed constant, which will be specified

later. A similar function is used in the analysis in [51], but analysis itself is different.

The overall goal is to show that there exists a constant σ > 0 such that for all k,

E[Φk+1 − Φk|FM ·Fk−1 ] ≤ −σ∆2
k < 0. (4.20)
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Since f is bounded from below and ∆K > 0, then Φk is bounded from below for

all k and hence if (4.20) holds on every iteration, then by summing (4.20) from 1

to ∞ and taking expectations on both sides we can conclude that (4.19) holds with

probability 1. Hence, to prove the theorem we need to show that (4.20) holds on

each iteration.

Let us pick some constant ζ which satisfies

ζ ≥ κeg + max

{
η2,

8κef
κfcd(1− η1)

}
.

We now consider two possible cases: ‖∇f(xk)‖ ≥ ζδk and ‖∇f(xk)‖ < ζδk. We will

show that (4.20) holds in both cases and hence it holds on every iteration.

As usual, let xk, δk, sk, gk and φk denote realizations of random quantities Xk,

∆k, Sk, Gk and Φk, respectively.

Let us consider some realization of Algorithm 9. Note that on all successful

iterations, xk+1 = xk + sk and δk+1 = γδk with γ > 1, hence

φk+1 − φk = ν(f(xk+1)− f(xk)) + (1− ν)(γ2 − 1)δ2k. (4.21)

On all unsuccessful iterations, xk+1 = xk and δk+1 =
1

γ
δk, i.e.

φk+1 − φk = (1− ν)(
1

γ2
− 1)δ2k ≡ b1 < 0. (4.22)

For each iteration and each of the two cases we consider, we will analyze the four

possible combined outcomes of the events Ik and Jk as defined in (4.4) and (4.6)

respectively.
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Before presenting the formal proof let us outline the key ideas. We will show

that, unless both the model and the estimates are bad on iteration k, we can select

ν ∈ (0, 1) sufficiently close to 1, so that the decrease in φk on a successful iteration is

greater that the decrease on an unsuccessful iteration (which is equal to b1, according

to (4.22)). When the model and the estimates are both bad, an increase in φk may

occur. This increase is bounded by O(δ2k) unless ‖∇f(xk)‖ ≥ ζδk. In this last case

the increase in φk may be proportional to ‖∇f(xk)‖δk, however, the good model and

good estimates guarantee a successful iteration, which in turns provides decrease in

φk which is proportional to ‖∇f(xk)‖δk. Hence by choosing sufficiently large values

for α and β we can ensure that in expectation φk decreases.

We now present the proof.

Case 1: ‖∇f(xk)‖ ≥ ζδk.

a. Ik and Jk are both true, i.e., both the model and the estimates are good on

iteration k. Assume

εF ≤ κef . (4.23)

From the definition of ζ, we know

‖∇f(xk)‖ ≥
(
κeg + max

{
η2,

8κef
κfcd(1− η1)

})
δk.

Then since the model mk is κ-fully linear and, from η2 > κbhm and 0 < η1 < 1,

it is easy to show that the condition (4.9) in Lemma 4.4.5 holds. Therefore,

the trial step sk leads to a decrease in f as in (4.10).
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Moreover, since

‖gk‖ ≥ ‖∇f(xk)‖ − κegδk ≥ (ζ − κeg)δk ≥ max

{
η2,

8κef
κfcd(1− η1)

}
δk

and the estimates {f 0
k , f

s
k} are εF -accurate, with εF ≤ κef , the condition (4.13)

in Lemma 4.4.6 holds. Hence, iteration k is successful, i.e. xk+1 = xk + sk and

δk+1 = γδk.

Combining (4.10) and (4.21), we get

φk+1 − φk ≤ −νC1‖∇f(xk)‖δk + (1− ν)(γ2 − 1)δ2k ≡ b2, (4.24)

with C1 defined in Lemma 4.4.5. Since ‖∇f(xk)‖ ≥ ζδk we have

b2 ≤ [−νC1ζ + (1− ν)(γ2 − 1)]δ2k < 0, (4.25)

for ν ∈ (0, 1) large enough, such that

ν

1− ν
>
γ2 − 1

ζC1

. (4.26)

b. Ik is true and Jk is false, i.e., we have a good model and bad estimates on

iteration k.

In this case, Lemma 4.4.5 still holds, that is sk yields a sufficient decrease in f ,

hence, if the iteration is successful, we obtain (4.24) and (4.25). However, the

step can be erroneously rejected, because of inaccurate probabilistic estimates,

in which case we have an unsuccessful iteration and (4.22) holds. By choosing

ν ∈ (0, 1) large enough so that

ν

1− ν
>
γ2 − 1/γ2

ζC1

, (4.27)
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we ensure that the right hand side of (4.25) is strictly smaller than the right

hand side of (4.22) and therefore, (4.22) holds whether the iteration is successful

or not.

c. Ik is false and Jk is true, i.e., we have a bad model and good estimates on

iteration k.

Assume that

εF <
1

8
η1η2κfcd. (4.28)

In this case, iteration k can be either successful or unsuccessful. In the un-

successful case (4.22) holds. When the iteration is successful, since the esti-

mates are εF -accurate and (4.28) holds then by Lemma 4.4.7 (4.18) holds with

C2 ≥
1

4
η1η2κfcd. Hence, in this case we have

φk+1 − φk ≤ [−νC2 + (1− ν)(γ2 − 1)]δ2k. (4.29)

Choosing ν ∈ (0, 1) to satisfy

ν

1− ν
≥ γ2 − 1/γ2

C2

(4.30)

we have that, as in case (b), (4.22) holds whether the iteration is successful or

not.

d. Ik and Jk are both false, i.e., both the model and the estimates are bad on

iteration k.

Inaccurate estimates can cause the algorithm to accept a bad step, which may

lead to an increase both in f and in δk. Hence in this case φk+1 − φk may be

positive. However, combining the Taylor expansion of f(xk) at xk + sk and

the Lipschitz continuity of ∇f(x) we can bound the amount of increase in f ,

113



Table 4.1: A summary of the decrease in φk in four random outcomes in Case 1.

Scenario i Probability Pi Successful or unsuccessful Di : φk+1 − φk
(a) αβ successful b2 < 0
(b) α(1− β) both possible b1 < 0
(c) (1− α)β both possible b1 < 0
(d) (1− α)(1− β) both possible b3 > 0

hence bounding φk+1−φk from above. By adjusting the probability of outcome

(d) to be sufficiently small, we can ensure that in expectation Φk is sufficiently

reduced.

In particular, from Taylor’s Theorem and Lipschitz continuity of ∇f(x) we

have, respectively,

f(xk)− f(xk + sk) ≥ ∇f(xk + sk)
T (−sk)−

1

2
L1δ

2
k, and

‖∇f(xk + sk)−∇f(xk)‖ ≤ L1sk ≤ L1δk.

From this we can derive that any increase of f(xk) is bounded by

f(xk + sk)− f(xk) ≤ C3‖∇f(xk)‖δk,

where C3 = 1 +
3L1

2ζ
. Hence, the change in function φ is bounded as follows

φk+1 − φk ≤ νC3‖∇f(xk)‖δk + (1− ν)(γ2 − 1)δ2k ≡ b3. (4.31)

Table 4.1 summarizes the analysis in Case 1 where ‖∇f(xk)‖ ≥ ζδk. It is observed

that only in scenario (a), a successful iteration is produced with probability one.

In other random outcomes, both decisions can be randomly made, but the worse

decrease in φk is upper bounded.

114



Now we are ready to take the expectation of Φk+1 − Φk for the case when

‖∇f(Xk)‖ ≥ ζ∆k. We know that case (a) occurs with probability at least αβ

(conditioned on the past) and in that case φk+1 − φk = b2 < 0 with b2 defined in

(4.24), case (d) occurs with probability at most (1−α)(1−β) and that case φk+1−φk

is bounded from above by b3 > 0, and cases (b) and (c) occur otherwise and in those

cases φk+1 − φk is bounded from above by b1 < 0, with b1 defined in (4.22). Finally

we note that b1 > b2 due to our choice of ν.

Hence, we can combine (4.22), (4.24), (4.29) and (4.31) and use B1, B2 and B3

as random counterparts of b1, b2 and b3, to obtain the following bound

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}]

≤ αβB2 + [α(1− β) + (1− α)β]B1 + (1− α)(1− β)B3

= αβ[−νC1‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k]

+[α(1− β) + (1− α)β](1− ν)(
1

γ2
− 1)∆2

k

+(1− α)(1− β)[νC3‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k].

Rearranging the terms we obtain

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}]

≤ [−νC1αβ + (1− α)(1− β)νC3]‖∇f(Xk)‖∆k

+[αβ − 1

γ2
(α(1− β) + (1− α)β) + (1− α)(1− β)](1− ν)(γ2 − 1)∆2

k

≤ [−C1αβ + (1− α)(1− β)C3]ν‖∇f(Xk)‖∆k + (1− ν)(γ2 − 1)∆2
k,

where the last inequality holds because αβ− 1

γ2
(α(1−β)+(1−α)β)+(1−α)(1−β) ≤

[α + (1− α)][(β + (1− β)] = 1.

Recall that ‖∇f(Xk)‖ ≥ ζ∆k, Hence if we choose 0 < α ≤ 1 and 0 < β ≤ 1 so
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that they satisfy

αβ

(1− α)(1− β)
≥

2(1−ν)
ν
· γ2−1

ζ
+ C3

C1

(4.32)

which implies

[C1αβ − (1− α)(1− β)C3] > 2
(1− ν)(γ2 − 1)

νζ
,

we have

E[Φk+1−Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}] ≤ −[C1αβ−(1−α)(1−β)C3]ν‖∇f(Xk)‖∆k.

(4.33)

and

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ ≥ ζ∆k}] ≤ −(1− ν)(γ2 − 1)∆2
k. (4.34)

For the purposes of this lemma and the lim inf-type convergence result, which will

follow, bound (4.34) is sufficient. We will use bound (4.33) in the proof of the lim-

type convergence result.

Case 2: Let us consider now the iterations when ‖∇f(xk)‖ < ζδk. First we

note that if ‖gk‖ < η2δk, then we have an unsuccessful step and (4.22) holds. Hence,

we now assume that ‖gk‖ ≥ η2δk and again consider four possible outcomes. We will

show that in all situations, except when both the model and the estimates are bad,

(4.22) holds. In the remaining case, because ‖∇f(xk)‖ < ζδk the increase in φk can

be bounded from above by a multiple of δ2k. Hence by selecting appropriate values

for probabilities α and β we will be able to establish the bound on expected decrease

in Φk as in Case 1.
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a. Ik and Jk are both true, i.e., both the model and the estimates are good on

iteration k.

The iteration may or may not be successful, even though Ik is true. On success-

ful iteration good model ensures reduction in f . Applying the same argument

as in the case 1(c) we establish (4.22).

b. Ik is true and Jk is false, i.e., we have a good model and bad estimates on

iteration k.

On successful iterations, (4.22) holds. On successful iterations, ‖gk‖ ≥ η2δk

and η2 ≥ κbhm imply that

mk(xk)−mk(xk + sk) ≥
κfcd

2
‖gk‖min

{
‖gk‖
‖Hk‖

, δk

}
≥ η2

κfcd
2
δ2k.

Since Ik is true, the model is κ-fully-linear, and the function decrease can be

bounded as

f(xk)− f(xk + sk)

= f(xk)−mk(xk) +mk(xk)−mk(xk + sk) +mk(xk + sk)− f(xk + xk)

≥ (η2
κfcd

2
− 2κef )δ

2
k ≥ κefδ

2
k

as long as

η2 ≥
6κef
κfcd

. (4.35)

It follows that, if k-th iterate is successful, then

φk+1 − φk ≤ [−νκef + (1− ν)(γ2 − 1)]δ2k. (4.36)
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Again choosing ν ∈ (0, 1) large enough so that

ν

1− ν
>
γ2 − 1/γ2

κef
, (4.37)

we ensure that right hand side of (4.36) is strictly smaller than that of (4.22),

hence (4.22) holds, whether the iteration is successful or not.

Remark: η2 may need to be a relatively large constant to satisfy (4.35). This

is due to the fact that the model has to be sufficiently accurate to ensure

decrease in the function, if a step is taken, since the step is accepted based on

poor estimates. Note that η2 restricts the size of ∆k, which is used both as a

bound on the step size and the control of the accuracy. In general it is possible

to have two separate quantities (related by a constant) - one to control the step

size and another to control the accuracy. Hence, it is possible to modify our

algorithm to accept steps larger than ‖gk‖/η2. This will make the algorithm

more practical, but the analysis more complex. In this chapter we choose to

stay with the simplest version, but keeping in mind that condition (4.35) is not

terminally restrictive.

c. Ik is false and Jk is true, i.e., we have a bad model and good estimates on

iteration k.

This case is analyzed identically to the case 1(c).

d. Ik and Jk are both false, i.e., both the model and the estimates are bad on

iteration k.

Here we bound the maximum possible increase in φk using the Taylor expansion

and the Lipschitz continuity of ∇f(x).

f(xk + sk)− f(xk) ≤ ‖∇f(xk)‖δk +
1

2
L1δ

2
k < C3ζδ

2
k.

118



Table 4.2: A summary of the decrease in φk in four random outcomes in Case 2.

Scenario Probability Successful or not Di : φk+1 − φk
a αβ both possible b1 < 0
b α(1− β) both possible b1 < 0
c (1− α)β both possible b1 < 0
d (1− α)(1− β) both possible b4 > 0

Hence, the change in function φ is

φk+1 − φk ≤ [νC3ζ + (1− ν)(γ2 − 1)]δ2k ≡ b4. (4.38)

Table 4.2 summarizes the four random scenarios in Case 2. We are now ready to

bound the expectation of φk+1 − φk as we did in Case 1, except that in case Case 2

we simply combine (4.38), which holds with probability at most (1− α)(1− β) and

(4.22) which holds otherwise.

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ < ζ∆k}]

≤ [αβ + α(1− β) + (1− α)β](1− ν)(
1

γ2
− 1)∆2

k

+(1− α)(1− β)[νC3ζ + (1− ν)(γ2 − 1)]∆2
k.

if we choose probabilities 0 < α ≤ 1 and 0 < β ≤ 1 so that the following holds,

1− (1− α)(1− β)(1 + γ2)

(1− α)(1− β)
≥ 2νγ2C3ζ

(1− ν)(γ2 − 1)
, (4.39)

that is,

(1− α)(1− β) ≤ γ2 − 1

γ4 − 1 + 2γ2C3ζ · ν
1−ν

, (4.40)
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then

E[Φk+1 − Φk|FM ·Fk−1 , {‖∇f(Xk)‖ < ζ∆k}] ≤ −νC3ζ∆2
k. (4.41)

In conclusion, combining (4.34) and (4.41), we have

E[Φk+1 − Φk|FM ·Fk−1 }] ≤ −min{(1− ν)(γ2 − 1), νC3ζ)∆2
k < 0,

which concludes the proof of the theorem, given that 0 < ν < 1, γ2 > 1 and C3 > 0.

To summarize the conditions on all of the constants involved in Theorem 4.4.9

to ensure that the Lemma holds, we state the following additional lemma.

Lemma 4.4.11. Let all assumptions of Theorem 4.4.9 hold. Then the statement of

the theorem holds if the parameters are chosen to satisfy the following conditions: if

the trust region acceptance parameters satisfy η1 ≥
1

2
,

η2 ≥ max

{
κbhm,

8κef
κfcd(1− η1)

}
, (4.42)

and the accuracy parameter of the estimates satisfies

εF ≤ min

{
κef ,

1

8
η1η2κfcd

}
, (4.43)

then the probability parameters of the model and estimates, α, β respectively, satisfy
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these two conditions

αβ

(1− α)(1− β)
≥

1 + 8(γ2−1)+3L1

2ζ

C1

, and (4.44)

(1− α)(1− β) ≤ γ2 − 1

γ4 − 1 + γ4 (3L1 + 2ζ) ·max
{

1
ζC1

, 1
κef
, 1
2

} , (4.45)

with C1 =
κfcd

4
·max

{
κbhm

κbhm + κeg
,

8κef
8κef + κfcdκeg

}
and ζ ≥ κeg + η2.

Proof. Consider the proof of Theorem 4.4.9. Condition (4.43) follows from conditions

(4.23) and (4.28).

Condition (4.42) implies that η2 ≥ κbhm and condition (4.35) hold, since η1 < 1.

Moreover, we now have

ζ ≥ κeg + max

{
η2,

8κef
κfcd(1− η1)

}
≥ κeg + η2. (4.46)

Under condition (4.43) we have, using η1 ≥ 1/2,

C2 =
1

2
η1η2κfcd − 2εF ≥

1

4
η1η2κfcd ≥ 2η1κef ≥ κef . (4.47)

Hence, combining conditions (4.26), (4.27), (4.30) and (4.37) with (4.46) and (4.47)

with γ > 1, we derive

ν

1− ν
> max

{
γ2 − 1

ζC1

,
γ2 − 1/γ2

ζC1

,
γ2 − 1/γ2

C2

,
γ2 − 1/γ2

κef

}
> max

{
γ2

ζC1

,
γ2

κef

}
.

Now we are ready to derive conditions on α and β which imply conditions (4.32)
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and (4.40) with C1 =
κfcd

4
· max

{
κbhm

κbhm + κeg
,

8κef
8κef + κfcdκeg

}
and C3 = 1 +

3L1

2ζ
.

Firstly, if α and β satisfy (4.44) then

αβ

(1− α)(1− β)
≥

1 + 8(γ2−1)+3L1

2ζ

C1

≥
4 · γ2−1

ζ
+ C3

C1

≥
2(1−ν)
ν
· γ2−1

ζ
+ C3

C1

,

last inequality flowing from
1− ν
ν

< 2. Hence (4.32) holds.

Condition (4.40) with C3 = 1 +
3L1

2ζ
and

ν

1− ν
> max

{
1

ζC1

,
1

κef
,
1

2

}

can be rewritten as

(1− α)(1− β) =
γ2 − 1

γ4 − 1 + 2γ4C3ζ · ν
1−ν

≤ γ2 − 1

γ4 − 1 + γ4 (3L1 + 2ζ) ·max
{

1
ζC1

, 1
κef
, 1
2

} .
Hence, we obtain (4.45).

Clearly, choosing α and β sufficiently close to 1 will satisfy this condition. Let

us examine some reasonable examples of constants and the corresponding choice of

α and β.

Remark 4.4.12. Notes that if β = 0, then ∆k → 0 for any value of α, which is the

case shown in [9].
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4.4.3 The liminf-type convergence

We are ready to prove a lim inf-type first-order convergence result, i.e., that a subse-

quence of the iterates drive the gradient of the objective function to zero. The proof

follows closely that in [9], the key difference being the assumption on the function

estimates that are needed to ensure that a good step gets accepted by Algorithm 9.

Theorem 4.4.13. Suppose that the model sequence {Mk} is α-probabilistically (κef , κeg)

fully linear and the estimate sequence {F 0
k , F

s
k} is β-probabilistically εF -accurate. Let

assumptions of Lemmas 4.4.9 and 4.4.11 hold. Then for {Xk} - the sequence of

random iterates generated by Algorithm 9, almost surely,

lim inf
k→0

‖∇f(Xk)‖ = 0.

Proof. We prove this result by contradiction conditioned on the almost sure event

∆k → 0.

Let us, hence assume that there exists ε′ such that, with positive probability, we have

‖∇f(Xk)‖ ≥ ε′, ∀k.

Let {xk} and {δk} be realizations of {Xk} and {∆k}, respectively for which

‖∇f(xk)‖ ≥ ε′, ∀k. Since lim
k→0

δk = 0, there exists k0 such that for all k ≥ k0,

δk < b := min

{
ε′

2κeg
,

ε′

2κbhm
,
κfcd(1− η1)ε′

16κef
,
ε′

2η2
,
δmax

γ

}
. (4.48)

We define a random variable Rk with realizations rk = logγ

(
δk
b

)
. Then for the
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realization {rk} of {Rk}, rk < 0 for k ≥ k0. The main idea of the proof is to show that

such realization occurs only with probability zero, hence obtaining a contradiction

with the initial assumption of ‖∇f(xk)‖ ≥ ε′ ∀k.

We first show that Rk is a submartingale. Recall the events Ik and Jk in Definition

4.3.2 and Definition 4.3.4. Consider some iterate k ≥ k0 for which Ik and Jk both

occur, which happens with probability P (Ik ∩ Jk) ≥ αβ. Since (4.48) holds we have

exactly the same situation as in Case 1(a) in the proof of Lemma 4.4.9. In other

words we can apply Lemmas 4.4.5 and 4.4.6 to conclude that the k-th iteration is

successful. hence, the trust-region radius is increased. In particular, since δk ≤
δmax

γ
,

δk+1 = γδk. Consequently, rk+1 = rk + 1.

For all other outcomes of Ik and Jk, which occur with total probability of at most

1− αβ, we have δk+1 ≥ γ−1δk. Hence

E[rk+1|FS·Tk−1] = αβ(rk + 1) + (1− αβ)(rk − 1) ≥ rk,

as long as αβ ≥ 1/2, which implies that Rk is a submartingale.

Now let us construct another submartingale Wk, on the same probability space

as Rk which will serve as a lower bound on Rk and for which

{
lim sup
k→0

Wk =∞
}

holds almost surely. Define indicator random variable 1Ik and 1Jk such that 1Ik = 1

if Ik occurs, 1Ik = 0 otherwise, and similarly, 1Jk = 1 if Jk occurs, 1Jk = 0 otherwise.

Wk =
k∑
i=0

(2 · 1Ik · 1Jk − 1),
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and Wk is a submartingale since

E[Wk|FS·Tk−1] = E[Wk−1|FS·Tk−1] + E[2 · 1Ik · 1Jk − 1|FS·Tk−1]

= Wk−1 + 2E[1Ik · 1Jk |FS·Tk−1]− 1

= Wk−1 + 2P (Ik ∩ Jk|FS·Tk−1)− 1

≥ Wk−1,

where FS·Tk−1 = σ(1S0 , · · · ,1Sk−1
) ∩ σ(1T0 , · · · ,1Tk−1

) and the last inequality holds

because αβ ≥ 1/2. SinceWk only has±1 increments, it has no finite limit. Therefore,

by Theorem 4.4.3, we have

{
lim sup
k→0

Wk =∞
}

.

By the construction of Rk and Wk, we know that rk− rk0 ≥ wk−wk0 . Therefore,

Rk has to be positive infinitely often with probability one. This implies that the

sequence of realizations rk such that rk < 0 for k ≥ k0 occurs with probability zero.

Therefore our assumption that ‖∇f(Xk)‖ ≥ ε′ hold for all k with positive probability

is false and

lim inf
k→0

‖∇f(Xk)‖ = 0

holds almost surely.

4.4.4 The lim-type convergence

In this subsection we show that lim
k→∞
‖∇f(Xk)‖ = 0 almost surely.

We now state an auxiliary Lemma, which is similar to the one in [9], but requires

a different proof because in our case the function values f(Xk) can increase with

k, while in the case considered in [9] function values could only decrease or remain
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unchanged.

Lemma 4.4.14. Let {Xk} and {∆k} be sequences of random iterates and random

trust-region radii generated by Algorithm 9. Fix ε > 0 and define the sequence {Kε}

consisting of the natural numbers k for which ‖∇f(Xk)‖ > ε (note that Kε is a

sequence of random variables). Then,

∑
k∈{Kε}

∆k < ∞

almost surely.

Proof. From Theorem 4.4.9 we know that

∑
∆2
k <∞

and hence ∆k → 0 almost surely. For each realization of Algorithm 9 and a sequence

{δk}, there exists k0 such that δk ≤ ε/ζ, ∀k ≥ k0, where ζ is defined in Theorem 4.4.9.

Let K0 be the random variable with realization k0 and let K denote the sequence of

indices k such that k ∈ Kε and k ≥ K0. Then for all k ∈ K Case 1 of Theorem 4.4.9

holds, i.e., ‖∇f(Xk)‖ ≥ ζ∆k, since ‖∇f(Xk)‖ ≥ ε for all k ∈ K. From this and from

(4.33) we have

E[Φk+1 − Φk|FM ·Fk−1 ] ≤ −[C1αβ − (1− α)(1− β)C3]νε∆k, ∀k ≥ k0.

Recall that Φk is bounded from below. Hence, summing up the above inequality

for all k ∈ K and taking the expectation, we have that

∑
k∈K

∆k < ∞
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almost surely. Since Kε ⊆ K ∩ {k ≤ K0} and K0 is finite almost surely then the

statement of the lemma holds.

We are now ready to state the lim-type result.

Theorem 4.4.15. Suppose that the model sequence {Mk} is probabilistically (κeg, κef )-

fully linear for some positive constants κeg and κef . Let {Xk} be a sequence of random

iterates generated by Algorithm 9. Then, almost surely,

lim
k→∞
‖∇f(Xk)‖ = 0.

Proof. The proof of this result, is almost identical to the proof of the same theorem

in [9] hence we will not present the proof here. The key idea of the proof is to show

that is the theorem does not hold, then with positive probability

∑
k∈{Kε}

∆k = ∞,

with Kε defined as in Lemma 4.4.14. This result is shown using Lipschitz continuity

of the gradient and does not depend on the stochastic nature of the algorithm. Since

this result contradicts Lemma 4.4.14, we can conclude that the statement of the

theorem holds.
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4.5 Constructing Probabilistic Models 1

In the previous section, we have proven the lim-type convergence of Algorithm 9 un-

der fairly typical assumptions about the objective function and Assumption 4.4.8 on

the sequence of models and estimates. The purpose of this section is to demonstrate

how this latter assumption might be satisfied. In particular, we will use results

of learning theory to obtain a provably α-probabilistically fully-linear sequence of

models, for whatever α is sufficient by the result of Theorem 4.4.11.

Essentially, we need to produce a sequence of models {Mk}, each of which satisfies

the fully linear definition in Definition 4.3.2, for the trust-region defined by the

sequence of random variables {B(Xk,∆k)} with probability at least α. Moreover,

this probability bound must hold for the k-th model Mk independently of the history

{Xi}, {∆i}, {Mi}, for i = 0, 1, . . . , k − 1.

Let us drop iteration subscripts for clarity of presentation and consider for some

realization a fixed point x0 and a trust region radius δ. Consider sampling points

from B(x0, δ) according to some distribution D and assume that D is continuous

uniform on B(x0, δ). Denote a single point being drawn from this distribution with

the notation x ∼ D.

Let us consider a class of models M intended to approximate the stochastic

objective f̃(x) on B(x0, δ). Denote the distribution of the noise ε from the definition

f̃(x) = f(x) + ε by E . An intuitive way to choose a “best” approximating model

from M is to consider the model m∗ ∈M defined as

1THIS IS SUMMARIZED VERSION OF A SECTION IN THE TECHNICAL REPORT [21]
COAUTHORED BY PROF. KATYA SCHEINBERG AND MATT MENICKELLY.
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m∗ := arg min
m∈M

L̃(m), (4.49)

where

L̃(m) := E(x,f̃(x))∼D×E

[
(m(x)− f̃(x))2

]
.

L̃ decomposes into the sum of an expectation related to the deterministic f(x) and

the variance of the noise:

L̃(m) = E(x,f̃(x))∼D×E
[
(m(x)− f(x)− ε)2

]
= E(x,f̃(x))∼D×E

[
(m(x)− f(x))2 − 2ε(m(x)− f(x)) + ε2

]
= Ex∼D

[
(m(x)− f(x))2

]
+ σ2 := L(m) + σ2.

In the most general cases where we assume that noise is uncontrollable, i.e. σ2 is a

constant. Thus, minimizing L̃(m) is equivalent to minimizing L(m).

Generally, there is no tractable way to compute the solution to the optimization

problem in (4.49), given the presence of the expectation operator and the unknown

distribution E . For this reason, we turn to results of learning theory [78] and consider

a more tractable model mp(x), referred as the empirical risk minimizing model,

defined as

mp := arg min
m∈M

1

p

p∑
i=1

(m(yi)− f̃(yi))2, (4.50)

where y1, . . . , yp are points sampled from B(x0, δ) according to the distribution D.

Suppose M contains the first-order Taylor model m̂(x) = f(x0)+∇f(x0)(x−x0).

Then, for that m̂(x), there exists some constant κ so that |m̂(x) − f(x)| ≤ κδ2 for

all x ∈ B(x0, δ). Thus,

L̃(m̂) = L(m̂) + σ2 = Ex∼D
[
(m̂(x)− f(x))2

]
+ σ2 ≤ κ2δ4 + σ2 (4.51)
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Since m̂ ∈ M , the optimal m∗ must also satisfy the bound L̃(m∗) ≤ κ2δ4 + σ2. By

Jensen’s inequality, (4.49) and (4.51) imply

E(x,f̃(x))∼D×E

[
|m∗(x)− f̃(x)|

]
≤ κδ2 + σ2 (4.52)

So, if the noise satisfy σ2 ∈ O(δ4), then m∗(x) is fully linear in expectation, that is:

Ex∼D [|m∗(x)− f(x)|] ∈ O(δ2) (4.53)

We are now able to show Theorem 4.5.1, proved in [21].

Theorem 4.5.1. Assume that an estimate f 0 of f(x0) is available and |f 0−f(x0)| ≤

D′δ for some positive constant D′ (independent of x0 and δ) with probability 1− γ′.

If σ2 ∈ O(δ2) and the number of points randomly sampled from B(x0, δ) satisfies

p ∈ O(1/δ2), then there exists a positive constant κEef such that, with probability

1− γ − γ′,

E[(mp(x)− f(x))2] ≤ κEefδ
4. (4.54)

The main message is that, if the noise can be controlled so that σ2 ∈ O(δ2), we

can construct a model mp that (4.54) by ensuring p ∈ O(1/δ2).

Obtaining Fully-linear Models

Now we use a Markov inequality argument to show that a model mp that satisfies

the sufficient condition of Theorem 4.5.1 also satisfies the definition of a fully-linear

model in Definition 4.3.2.

Lemma 4.5.2. 2 Consider a random model m(x). If there exists a positive constant

2This lemma is proven by me, originally in the appendix. Though it is not the main contribution
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κEef such that for all x ∈ B(x0, δ),

E[m(x)− f(x)] ≤ κEefδ
2, (4.55)

with probability 1 − λ, then m(x) is κ-fully linear with probability α, where α and

κ = {κef , κeg} are given by

α = (1− λ)
n∏
i=0

(
1− κEef

κefi

)
,

κef =
n∑
i=1

αi(κefi + κeti) + (n+ 1)κef0 + κet,

κeg = L1 + 2κef + κetb.

Proof. Part I: We first show that there exist κef such that

P0 = P [|f(x)−m(x)| ≤ κefδ
2, ∀x ∈ B(0, δ)] ≥ αef .

Consider the first-order Taylor model mt(x) = ∇f(x0)>x + f(x0) of f(x) on

B(x0, δ). For an arbitrary point x ∈ B(x0, δ), we can express

|m(x)− f(x)| ≤ |m(x)−mt(x)|+ |mt(x)− f(x)|

= |m(x)−mt(x)|+ κetδ
2 (4.56)

for some fixed constant κet independent of δ.

Now let us bound |m(x)−mt(x)|. Consider the n points on the surface of B(x0, δ)

defined by δei for i ∈ 1 . . . n, where ei is the ith elementary vector of Rn. From a

of Matt’s model constructing section, it seems appropriate to put this here. I will delete this footnote
after your review.
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simple application of Markov’s Inequality to (4.55) on the ith point, we get that,

P (|m(δei)− f(δei)| < κefiδ
2) > 1− κEef

κefi
,

for a constant κefi that can be made arbitrarily large and is independent of δ. Like-

wise, at the center of the ball B(x0, δ), we can guarantee,

P (|m(x0)− f(x0)| < κef0δ
2) > 1− κEef

κef0
.

For each of the surface points δei, we have, also with probability at least 1− κEef
κefi

,

|m(δei)−mt(δei)| ≤ |m(δei)− f(δei)|+ |f(δei)−mt(δei)| < (κefi + κeti)δ
2,

where the error term κeti is independent of δ. Note that, via the reverse triangle

equality and using the expanded notation of mt(x) and m(x), we get

|(w −∇f(x0))>δei| < (κefi + κeti)δ
2 + |β − f(x0)|.

Any arbitrary point x ∈ B(x0, δ) is uniquely expressible as
n∑
i=1

αiδei for some set

of αi. Using this linear combination, we can derive

|m(x)−mt(x)| ≤

∣∣∣∣∣
n∑
i=1

αi(w −∇f(x0))>δei

∣∣∣∣∣+ |β − f(x0)|

≤
n∑
i=1

αi|(w −∇f(x0))>δei|+ |β − f(x0)|

<
n∑
i=1

αi(κefi + κeti)δ
2 + (n+ 1)|β − f(x0)|

<
n∑
i=1

αi(κefi + κeti)δ
2 + (n+ 1)κef0δ

2.
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Since each of the bounds in the last inequality holds with a respective and inde-

pendent probability, we get that this bound on |m(x)−mt(x)| holds with probability
n∏
i=0

(
1− κEef

κefi

)
, provided that E[|m(x)− f(x)|] ≤ κEefδ

2 happens with probability

1− λ.

Hence, by Bayes’ formula, we have

P0 = P (|f(x)−m(x)| ≤ κefδ
2, ∀x ∈ B(x0, δ)) ≥ αef , (4.57)

where κef =
n∑
i=1

αi(κefi +κeti)+(n+1)κef0 +κet, and αef = (1−λ)
n∏
i=0

(
1− κEef

κefi

)
.

Part II: We next show that there exists κeg such that

P1 = P (‖∇f(x)−∇m(x)‖ ≤ κegδ, ∀x ∈ B(x0, δ)) ≥ αeg.

Using triangle inequality, we can obtain that, ∀x ∈ B(x0, B),

‖∇f(x)−∇m(x)‖ ≤ ‖∇f(x)−∇f(x0)‖+ ‖∇f(x0)−∇m(x0)‖+ ‖∇m(x0)−∇m(x)‖.

With a linear model m(x), the last term vanishes. The first term can be bounded

using the gradient Lipschitz continuity assumption, i.e., ‖∇f(x)−∇f(x0)‖ ≤ L1(x−

x0) ≤ L1δ. Thus, what remains to bound is ‖∇f(x0)−∇m(x0)‖.

Pick another surface point xb so that xb − x0 = δ. The Taylor expansions of the

true function f and our model m of xb at x0 can be written as

f(xb) = f(x0) +∇f(x0)>(xb − x0) +O(δ2), and

m(xb) = m(x0) +∇m(x0)>(xb − x0). (4.58)
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Then, subtracting one from the other gives

f(xb)−m(xb) = f(x0)−m(x0) + (∇f(x0)−∇m(x0))
>(xb − x0) + κetbδ

2

= f(x0)−m(x0) + (∇f(x0)−∇m(x0))
>+. κetbδ

2,

where κetb is some positive constant representing the error from Taylor expansion of

xb at x0. According to (4.57), we know that as long as the error in function value is

bounded, the following naturally happen

|f(xb)−m(xb)| ≤ κefδ
2, and |f(x0)−m(x0)| ≤ κefδ

2. (4.59)

Combining (4.58) and (4.59), we get ‖∇f(x0) − ∇m(x0)‖ ≤ (2κef + κetb)δ.Hence,

conditioned on |f(x)−m(x)| ≤ κefδ
2, ∀x ∈ B(x0, δ)

P1 = P [‖∇f(x)−∇m(x)‖ ≤ κegδ, ∀x ∈ B(x0, δ)] = 1,

where κeg = L1 + 2κef + κetb.

Since these two events (model error and gradient error) are dependent, we can

derive

P (m(x) is a κ fully linear model of f on B(x0, δ)) ≥ α,

where α = αef = (1−λ)
n∏
i=0

(
1− κEef

κefi

)
, κef =

n∑
i=1

αi(κefi +κeti) + (n+ 1)κef0 +κet

and κeg = L1 + 2κef + κetb.

This probabilistic bound has no dependence on the past history of Algorithm 9,

and thus gives us exactly the α-probabilistically fully linear sequence {mk} that we

need.
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4.6 Computational Experiments

4.6.1 Results on Protein Alignment Problem

We test the performance of STORM on the protein alignment problem. An im-

plementation of STORM, referred as DFO-random is compared with DFO-poised, a

deterministic version of DFO used in [22, 36], where 2n + 1 poised sample points to

build quadratic models and compute the value at every point by averaging O(1/δ4k)

noisy values. The purpose of this comparison is to show the benefits of using a set

of O(1/δ2k) many random points.

As different resolution values consumes different amount of runtime, this makes

it different to make a fair comparison. This experiment considers a fixed resolution

value, i.e., 0.5. To compare the relative performance of different versions of DFO, it

might be hard to judge from the accuracy of the solution, as the function is noisy

and the exact volume of intersection is unknown, expensive to evaluate in protein

alignment. However, we can compare the runtime each algorithm takes to reach the

state where the model reduction is too small comparing to the noise. As in general

the accuracy is increased whenever this happens. If the runtime spent in each stage

of increment is reduced, the overall runtime is thus improved.

Figure 4.4 is a preliminary test comparing DFO-poised and DFO-random, where

DFO-random is merely a slightly randomized version of DFO-poised, executed in a

sequential environment where parallelization is not permitted. The key difference

between these two algorithms is that DFO-random uses least squares regression mod-

els and an initial random sample set, however, no estimates are computed, nor excess

random points to evaluate at each iteration. Due to the randomness in the sample

set and the noise, the algorithm is tested multiple times and the average performance
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Figure 4.4: Results on protein alignment problem. A plot showing the benefit of
using a least squares regression model and an initial random sample set. Averaged
over 10 trials. No parallel computation is needed.

is presented. It is demonstrated that using regression models yields more accurate

solutions and faster convergence comparing to using interpolation models, on both

pairs of protein alignments.

To specify a more detailed implementation of Algorithm 9, we need to define how

the model function mk and estimates f 0
k and f sk are constructed, also how the trust

region subproblem is solved to compute a trial step sk. The following strategies are

used.

• At iteration k, the model mk is constructed using least squares regression on a

random sample set of pk points, where pk is defined by

pk = min{pmax,min{2n+ 1,

⌊
1

δ2k

⌋
}},

and pmax is the maximum number of points allowed while building a model.

These points are uniformly distributed over the interior of an n-dimensional

hypersphere of radius δk with center at xk.
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• As the models are quadratic m(x) = c+ g>x+
1

2
x>Hx, we solve the empirical

minimizing problem

min
c,g,H

pk∑
i=1

(c+ g>xi +
1

2
x>i Hxi − f̃(xi))

2,

Then, the model is minimized within the trust region to obtain sk.

• The estimates f 0
k , f sk for f(xk), f(xk + sk) respectively, are computed by re-

peatedly sampling f̃ at each point 10 times independently and computing the

average.

• Lastly, the parameter values used are: pmax = 100,maxY = 100; δ0 = 1, η1 =

0.75, η2 = 0.5, γ1 = 1.5, γ2 = 0.8, εδ = 10−3.

While DFO-poised generates one point per iteration in a sequential way, DFO-

random uses random points that are generated independently from each other. Thus

it allows the use of parallel computation to evaluate multiple function values at once.

Moreover, as the construction of probabilistic estimates is achieved by averaging, this

step can also be performed in a similar way with parallel machines.

Figure 4.5 compares the relative performance of DFO-poised and DFO-random in

a parallel environment. Although the prototype implementation above is inefficient

in the sense that it does not reuse previous evaluated points and builds every model

with an entirely new set of points, the runtime does not in fact increase dramatically

thanks to the parallelization. For both algorithms, the runtime in each iteration is

equivalent to that of one function evaluation. It can be observed in Figure 4.5 that

DFO-random finds a solution with a 10−3 error within around 50 iterations on both

biological instances, while DFO-poised proceeds in a much slower pace, producing

solutions with higher errors (10−1 ∼ 1) after 300 iterations. Hence, the flexibility of
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Figure 4.5: A plot showing the additional benefits of using more accurate estimates
at xk, xk + sk and using a set of O(1/δ2k) many random points at each iteration
to construct a regression model. Averaged over 10 trials. Multiple VASP function
values computed at the same time in parallel.

using parallelization gives DFO-random the advantage to yield accurate solutions in

a timely manner in the presence of noise.

4.6.2 Performance Profiles

Algorithms. We compare two implementations of STORM (DFO-random and DFO-

control) with DFO-poised and two stochastic approximation (SA) methods:

• DFO-random: built least-squares regression models usingO(1/δ2k) random points.;

• DFO-control: control noise so that σ ∈ O(δ2k) and built LS models usingO(1/δ2k)

random points;

• DFO-poised: use 2n + 1 poised sample points to build quadratic models and

compute the value at every point by averaging O(1/δ4k) noisy values (this av-

eraging approach is also used in [36]);
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• KW [48]: Finite Differences Stochastic Approximation (FDSA);

• SPSA [77]: Simultaneous Perturbation Stochastic Approximation.

Two SA algorithms follow the same updating strategy at each iteration,

xk+1 = xk + αkĝk(xk),

where αk denotes the step length while the gradient approximation ĝk(xk) is calcu-

lated differently:

KW : (ĝk(xk))i =
f̃(xk + ckei)− f̃(xk − ckei)

2ck
,

SPSA : (ĝk(xk))i =
f̃(xk + ck∆k)− f̃(xk − ck∆k)

2ck(∆k)i
.

Notice that KW perturbs only one direction at a time and requires 2n evaluations

of f̃ for each ĝk. Clearly, when n is large, this estimator loses efficiency. SPSA

estimator, on the other hand, disturbs all directions at the same time, thus only 2

evaluations of f̃ for each ĝk is needed, regardless of the dimension of the optimization

problem. Since the numerator is identical in all n components, SPSA is n times fewer

function evaluations than KW, which makes it a lot more efficient. Moreover, SPSA

is a descent method capable of finding global minima.

Benchmarking Suit. The test set consists of 53 stochastic problems from [57].

The noise is additive and it follows a normal distribution with zero mean and 0.01

variance (σ = 0.1). The dimension of the problems ranges from 2 to 12. Each method

was given at most 1500 function evaluations to solve each problem. Since problems

are stochastic in nature, each method was given 10 attempts to solve each of the 53

problems, and the function values are averaged across these 10 runs.
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Figure 4.6: Preliminary Results on 53 Noisy Problems with σ = 0.1; performance
profile threshold is τ = 10−1.

Results. Figure 4.6 shows that our prototypes of STORM all outperforms KW and

SPSA. While DFO-poised is the fastest on almost 42% of the problems, it solving the

least number of problems (only 60%) among other STORM variations. This is due to

the presence of noise - although the set is poised, the model becomes poor when the

noise gets relatively significant comparing to δk. DFO-control verifies our theory that

if the noise can be controlled so that σ ∈ O(1/δ2), probabilistically accurate models

can be built with only O(1/δ2) points. The problems that DFO random does not

solve and DFO-control does are the problems where noise becomes an issue. One

key observation is that DFO-random also solves more problems (70%) than DFO-

poised. It shows that in practice, O(1/δ2) many points might suffice without the

control of noise.
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4.7 Conclusions and Future Work

In this chapter we have proposed a stochastic DFO algorithm, STORM, for solving

noisy unconstrained black-box optimization problems. This algorithm following a

traditional trust region framework while contributing two new features. First, we

consider probabilistic models that are constructed based on random sample points.

Second, at each iteration, we use two random estimates of the true function values

at the current point and a trial point. Theoretically, we prove that, if the model

sequence is probabilistically fully-linear and the estimate sequence is probabilistically

accurate, a lim inf-type and a lim-type convergence result can be shown. We also

provide analysis on the number of random points that are needed to construct these

probabilistic models. The theory indicates that, if the noise can be controlled so

that σ2 ∈ O(δ2), then we only need p ∈ O(1/δ2) many random points to construct

probabilistically fully-linear models. However, our experiments suggest that O(1/δ2)

many points might suffice without the control of noise. This is true in an experiment

on the protein alignment problem and a benchmarking test.

In the future, we hope to conduct more numerical experiments on the performance

of STORM when solving noisy functions. An interesting question would be whether

what types of noise or what levels of noise can be handled by STORM. Quantifying

these factors will allow us to determine how useful the proposed algorithm is for

solving real-world noisy problems. Another possible research direction one could

take is to extend our results to the construction probabilistically quadratic models.

How they would work in practice remains an open question of our study.
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Chapter 5

Conclusions and Future Work

In this thesis, we have addressed general simulation-based optimization problems

when the objective function is computed with noise. We have discussed and analyzed

new noise-adapted algorithms from both randomized approaches and trust-region

model-based approaches. Our algorithms make use of the noise estimates throughout

the course of optimization in order to obtain better approximate solutions for the

noisy functions than existing methods. Algorithmic advancements for derivative-

free optimization can enhance the ability of DFO methods to handle general noisy

problems.

In Chapter 2, we presented a review of existing derivative-free optimization meth-

ods of different types, particularly, randomized approaches and trust-region model-

based approaches. It reveals the potential of improving both schemes to optimize

noisy functions and this motivates our work in the following chapters. We also

introduced the protein structure comparison problem as an ideal test function for

developing robust DFO optimization methods for noisy problems, because the ob-

jective function of finding the maximal overlapping volume of proteins is computed
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with stochastic noise and controllable deterministic noise.

In order to solve the proposed biological application problem, in Chapter 3 we in-

troduced an adaptation of DFO and VASP (the black-box volume estimator), DFO-

VASP, that is able to generate practical and accurate protein superpositions in a

timely manner. DFO-VASP is designed to handle the presence of controllable de-

terministic noise. It employs several new algorithmic ideas, for instance, utilizing

the noise estimates in the trust-region framework, dynamically adjusting the func-

tion accuracy and warm-starting the search for a more global optimizer. Numerical

experiments were presented to illustrate the accuracy and computational efficiency

of our method comparing to the original scheme. In this chapter, we are especially

interested in evaluating how biologically meaningful our solutions are. Hence, a large

scale validation was performed and it indicates the capability of DFO-VASP for find-

ing superposition of binding cavities that can be used to detect influences on binding

specificity.

In Chapter 3, we turned our attention to assess the potential of applying random-

ized derivative-free methods to noisy problems. The proposed new algorithm, STARS,

demonstrates that careful choices of noise-adjusted smoothing step sizes can improve

the practical competency of randomized methods when the objective function has

stochastic noise. This theoretically-verified algorithm is a variant of Nesterov’s ran-

domized approach in [63] and is greatly motivated by More and Wild’s recent work

on estimating computational noise [58] and on estimating the derivatives of noisy

simulations [59]. We provided convergence rate analysis of STARS in both addi-

tive and multiplicative noise settings. Our experiments show that STARS exhibits

noise-invariant behavior with respect to different levels of stochastic noise and the

empirical performance of STARS is superior than that indicated by our theoretical

bounds and also comparing to several other randomized zero-order approaches.
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Encouraged by the results in Chapter 2, we introduced a stochastic DFO algo-

rithm, STORM, for solving noisy functions in Chapter 4. In order to deal with the

randomness in the objective funtion evaluation, we employed random models and

estimates that are sufficiently accurate with high probability. We proved lim inf-

type and lim-type convergence results for our algorithm and provide analysis on how

many random pointed are needed to construct these probabilistic models with suf-

ficiently high probability. From an experimental point of view, preliminary results

demonstrate the benefits of our proposed algorithm in solving noisy functions over

previous versions of DFO methods, on both the protein alignment problem and a

benchmarking suit.

There remain many open avenues for future work and we briefly mention some

areas of particular interest to us. First, we hope to explore other models. The use

of 2-norms in both terms of the objective function is natural as it leads to an opti-

mization problem with a closed form solution. However, other regularized regression

models, such as Lasso [80], or SVM regression [33], may have certain advantages

depending on the properties of the noise. For instance the SVM regression models,

which utilize hinge loss term

p∑
i=0

max{|M(Φ̄, yi)α− f̃(yi)|, ε}, for a given ε, instead of

the quadratic loss ‖M(Φ̄, Y )α− f̃(Y )‖2, can be particularly advantageous in the case

where the noise level is usually deterministic and can be estimated and controlled. In

this case an additional computation burden introduced by solving the SVM regres-

sion problems has to be handled efficiently. Also, in this thesis we mostly considered

serial optimization environment, except briefly in Section 4.6. However, distributed

computing is increasingly prevalent and there remains a demand of developing more

customized parallel variants of DFO methods.
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[43] J. Jägersküpper. How the (1+ 1) ES using isotropic mutations minimizes posi-

tive definite quadratic forms. Theoretical Computer Science, 361(1):38–56, 2006.

[44] K. G. Jamieson, R. D. Nowak, and B. Recht. Query complexity of derivative-free

optimization. In P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and

150



K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

2, pages 2681–2689, 2012.

[45] M. Jebalia, A. Auger, and N. Hansen. Log-linear convergence and divergence of

the scale-invariant (1+1)-ES in noisy environments. Algorithmica, pages 1–36,

2010.

[46] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization

without the lipschitz constant. Journal of Optimization Theory and Applica-

tions, 79(1):157–181, Oct. 1993.

[47] C. T. Kelley. Detection and remediation of stagnation in the nelder-mead al-

gorithm using a sufficient decrease condition. SIAM Journal on Optimization,

10:43–55, 1997.

[48] J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression

function. The Annals of Mathematical Statistics, 23(3):462–466, 09 1952.

[49] K. Kinoshita and H. Nakamura. Identification of the ligand binding sites on the

molecular surface of proteins. Protein Science, 14:711–718, 2005.

[50] K. Kühnel and B. F. Luisi. Crystal structure of the Escherichia coli RNA

degradosome component enolase. Journal of Molecular Biology, 313(3):583–92,

Oct. 2001.

[51] J. Larson and S. C. Billups. Stochastic derivative-free optimization using a trust

region framework. Submitted, 2013.

[52] J. Larson and S. M. Wild. Non-intrusive termination of noisy optimization.

Optimization Methods and Software, 28(5):993–1011, 2013.

[53] R. M. Lewis, V. Torczon, and M. Trosset. Direct search methods: Then and

now. Journal of Computational and Applied Mathematics, 124:191–207, 2000.

151



[54] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. In Proceedings of the 14th annual conference on

Computer Graphics and Interactive Techniques (SIGGRAPH ’87), volume 21,

pages 163–170, 1987.

[55] J. Matyas. Random optimization. Automation and Remote Control, 26(2):246–

253, 1965.

[56] M. Mckay, W. Conover, and R. Beckman. A comparison of three methods for

selecting values of input variables in the analysis of output from a computer

code. Technometrics, 21:239–245, 1979.
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