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“We are like dwarfs on the shoulders of giants, so that we can see more than they,

and things at a greater distance, not by virtue of any sharpness of sight on our part,

or any physical distinction, but because we are carried high and raised up by their giant

size.”

- Bernard De Chartres
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Abstract

Department of Industrial and Systems Engineering

Master of Science, Industrial and Systems Enginnering

by Chaitanya Gudapati

Duality played, and continues to play a crucial role in the advancement of solving Linear

Optimization (LO) problems. In this thesis, we first review the history of LO and various

software to solve LO problems. In the next chapter, we discuss Pivot Algorithms, basis

tableaus, primal and dual Simplex methods and their computational implementation.

Then we discuss Interior Point Methods (IPM) and the numerical linear algebra involved

in their implementation. The next chapter discusses duality in significant detail, and

the role of duality in LO software design. We also describe the dualizing scheme used

to dualize the NETLIB test problems. We then discuss the computational results on

specially constructed problems and the primal and dual NETLIB set using some of the

leading LO software packages including CPLEX, GuRoBi and MOSEK.

In this thesis, the first chapter deals with the history of LO and LO software packages.

The second chapter talks about basis tableau, pivot algorithms — primal and dual Sim-

plex methods and some computational methodology. Chapter 3 discuses about Interior

Point Methods and the numerical linear algebra involved. In Chapter 4, we explore

duality, the role of duality LO software development, and the techniques used to dualize

the standard LO optimization problems in the NETLIB set. In Chapter 5, we present

the computational experiments on specially constructed problems. We also present the

experiments on primal and dual NETLIB set. We finally present our conclusions in

Chapter 6.
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Chapter 1

Introduction

1.1 A Brief History of Linear Optimization

and its Algorithms

The first Linear Optimization (LO) problem was documented by A. N. Tolstoi [25] in

the 1930 article, Methods of finding the minimal total kilometrage in cargo-transportation

planning in space published by the Commissariat of Transportation of the Soviet Union.

In this paper he studied transportation problems and suggested a few approaches to

solve the problems, and made quite a few remarks on the optimality of the solution.

Another Russian mathematician, Leonid Kantorovich [14] in the later years of 1930s

and early 1940s worked on LO. In recognition of his pioneering work, he was awarded

the Nobel Prize in Economics along with Koopmans in 1975.

Tolstoi’s and Kantorovich’s work primarily focused on the Economic theory, and the

mathematical and algorithmic foundations of linear programming were developed by

George B. Dantzig. Dantzig [7] was also solving the analogous resource allocation prob-

lems but his approach was more robust and could be applied to solve various real world

problems which was in stark contrast to the economists’ work. Dantzig has invented the

simplex method to solve LO problems and to this date, simplex method remains one of

the most efficient ways to solve LO and Mixed Integer LO (MILO) problems.

The theory of duality was developed by von Neumann [8] after meeting Dantzig. The

dual simplex method was first proposed by Lemke [18] but it was not actually used to

solve optimization problems like the primal simplex method was used. It was initially

used in MILO, and it was used a general purpose solver first in the early 1990s when

Forrest and Goldfarb [10] refined their steepest edge pricing method.

1
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The question of whether an LO problem can be solved in polynomial time was answered

by Leonid Khachiyan [16] in 1979. The Ellipsoid method uses shrinking ellipsoids around

the optimal set (if it is non-empty). The Ellipsoid method is a significant milestone in

the theory of LO as it gave the first polynomial upper bound on the number of arithmetic

operations that is needed to solve LO problem with rational data.

Kachiyan’s work suffered from severe drawbacks when implemented to solve practical

problems. In computational practice, the simplex method was still much faster than the

Ellipsoid method. In 1984, Narendra Karamakar [15] came up with an algorithm, which

not only had improved the polynomial-time bound, but it was much more suitable for

implementing in computational practice. Karamrkar’s work ignited renewed interest in

LO. Thousands of papers on algorithmic variants and extensions were published in the

following decades.

1.2 History of Linear Optimization Software

LO algorithms, namely simplex methods were first computationally implemented at the

National Bureau of Standards on their Standard Eastern Automatic Computer which

could solve small instances of LO problems with 10 constraints and 20 variables [22].

This computer was built using vacuum tubes and solid-state diode logic. Dantzig left the

U.S. Air-Force in 1952 and started work at the RAND Corporation to research on LO.

At RAND, he met Orchard-Hays and together they have come up with the fundamentals

and foundations of the computational methodology of the simplex method.

Bixby [5] detailed the problems Dantzig and Orchard-Hayes faced when implementing

the simplex method at RAND. The initial implementation used to calculate the basis

inverse at every iteration which is a very expensive computational operation. The next

software versions had the product form of the inverse, which enabled larger problems to

be solved in reasonable amount of time. The implementations of various simplex methods

kept getting better and better. The implementations could handle 512 constraints when

run on IBM 700 series computers and by the late 1950s, LO software was commercialized

and the oil and gas industry became major users of the software. The LP/90 software

by Orchard-Hayes was of important significance because of the efficient implementation

of Dantzig’s revised simplex method and it could solve much larger problems having

1024 constraints [22].

The late 1960s and early 1970s were important not only for the computational methods

of LO but also to the whole computational world. The IBM 360 mainframe computer

with memory from 8 to 128 KB went on to become one of the most successful computers
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in the history. For LO scientists, this computer meant two things — bigger problems

can be solved faster and some algorithmic aspects, which could not be implemented

on the previous machines due to memory limitations, could be implemented now. The

70s also meant that there were further developments for the simplex method. Some

changes to bounds treatment like generalized upper bounded techniques, pre-processing,

sparse matrix technology, better LU-factorization and pricing strategies lead to more

stable and faster solution times. This was also during this time when dual simplex

was first implemented in commercial LO software but it was used only in branch and

bound methods of MILO. All these algorithms were written in machine code for specific

platforms. APEX, FMPS, LPS and MPS are such software. These software have been

further updated in the following years.

The late 70s also saw the optimization software written in portable programming lan-

guages. MINOS, which is a non-linear optimization software also had a primal simplex

method and XMP which had a good implementation of simplex method were written

in FORTRAN. The early 80s had another computer revolution when IBM has intro-

duced the personal computer (PC). These platforms can be used to generate and solve

large optimization problems. LINDO, XpressMP and CPLEX were released during this

time. This was also the time when simplex method has reached its maturity and the

interior-point revolution has started.

Khachiyan’s ellipsoid method of 1979 was never popular for solving large scale linear op-

timization problems and then in 1984, came Karmakar’s interior point methods (IPMs).

As a first such action, surprising many academics, AT&T patented the algorithm and de-

cided to sell the KORBX system which was based on the Karmakar’s Algorithm. Lustig,

Marsten, and Shanno [19] implemented a primal-dual log barrier interior point method

in OB1 which trounced KORBX. During this time, IBM updated their optimization code

and released OSL. In the early 1990s CPLEX also introduced a barrier solver in their

optimization package. During this time, the improvements included the implementation

of dual simplex method as a general purpose solver, Cholesky Factorization for IPMs,

improved sparse linear algebra.

Because of their parallel nature in the core of the linear algebra part, barrier methods can

be heavily parallelized and hence with more availability of processors, barrier methods

have become faster especially for very large, very sparse problems. The barrier method

converges to an exact optimal solution. However, in case of degeneracy, it does not give

an optimal basis solution. So all the IPM implementations also have primal and dual

simplex methods for the identification of the optimal basis.

Unlike IPMs, the simplex method can not be parallelized. Even though there is con-

tinuous improvement of software and every increasing processing power, there has not
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been any revolutionary change in the LO algorithms since mid 2000s. Various new soft-

ware companies have come up with software which contain efficient implementation of

simplex and IPMs. MOSEK which was first introduced in 1999 and GuRoBi which was

introduced in 2009. MOSEK’s primary focus was on IPMs but they also include very

efficient implementations of simplex methods. GuRoBi started with pivot algorithms

but quickly included the IPMs into their software suite.



Chapter 2

Pivot Algorithms

Pivot algorithms encompass many variants of the simplex method and the criss-cross

algorithm which was independently developed by Chang [6], Terlaky [23] and Wang

[26]. Most of the well known pivot algorithms, as documented by Terlaky and Zhang

[24] are variants of the simplex method and they ensure that the feasibility of the basis

is preserved. Unlike simplex method variants, the criss-cross method can start with any

basic solution and there is no guarantee that the basis will be feasible till optimality,

or the infeasibility is detected. Computationally, the simplex method is much more

efficient than the criss-cross method. In this chapter we will look at variants of the

simplex method — both the primal and dual simplex method, and we will demonstrate

that the dual simplex method is exactly the same as the primal simplex method applied

to the dual problem.

Dantzig [7] discovered the simplex method in 1947 while working at the United States

Air Force. Within short time the simplex method was realized to be a powerful algorithm

which can solve a lot of real-life LO problems. Klee & Minty [17] proved that in the worst

case scenario, the simplex method is exponential. However, for average case practical

problems, simplex method is highly efficient in computational practice.

2.1 Terminology

Any optimization problem, through algebraic transformations, can be converted to the

following standard form (2.1), which we will call the primal form. The goal of the LO

optimization problem is to find the minimum of a linear function of n variables subject

to m linear constraints, while all the linear variables are non-negative.

5
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minimize cTx

subject to Ax = b,

x ≥ 0,

(2.1)

where A ∈ Rm×n, c, x ∈ Rn and b ∈ Rm. Throughout this thesis, it is assumed that

the rows of A are linearly independent, i.e. , rank(A) = m. The dual of this problem is

given as

maximize bT y

subject to AT y ≤ c,

y ≥ 0,

(2.2)

where y ∈ Rm. By introducing slack variables, the dual problem can be equivalently

written as,

maximize bT y

subject to AT y + s = c,

s ≥ 0,

(2.3)

where s ∈ Rn.

There are other forms like the symmetric standard form, which is given as:

(Primal) min cTx

Ax ≥ b,

x ≥ 0,

(Dual) max bT y

AT y ≤ c,

y ≥ 0.

By introducing slack variables to both the primal and dual problems, they can be trans-

formed as

min cTx

Ax− z = b,

x, z ≥ 0,

max bT y

AT y − s = c,

y, s ≥ 0.
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2.1.1 Feasible, Basic and Optimal Solutions

Any x which satisfies the equality constraints, Ax = b and the non-negativity constraint,

x ≥ 0 is called a feasible solution. Hence, the feasible solution set can be written

mathematically as,

F = {x : Ax = b, x ≥ 0}.

If F is empty, then we have an infeasible problem. It should also be noted that whenever

we have a non-empty F , then it is a convex set.

It is easy to observe that each column in the matrix A corresponds to a variable x. If

we take m linearly independent columns of A, then the resulting m×m matrix forms a

basis, and the variables which are associated with these m selected columns are called

basic variables.

Let us divide the set of all variables I, into basic and non-basic variables. Let the basic

index set be represented by IB and non-basic index set be represented by IN . Using

the same logic, we can rearrange and partition the matrix A , into two parts — AB

contains the columns appearing in the index set B. Similarly, AN contains the columns

appearing in the index set IN , i.e.

A = [AB|AN ].

We can also partition the variables into xB and xN using the same logic.

The constraint equation set can be presented as,

ABxB +ANxN = b.

The basis matrix AB is non-singular, so we can multiply both sides of the above equation

by A−1B and after some rearrangement, we get

xB = A−1B (b−ANxN ).

If all the non-basic variables are set to 0, then we have

xB = A−1B b.
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The above solution with xN = 0, is called a basic solution, if additionally xB ≥ 0

holds, then it is called basic feasible solution (BFS).

We say that a given BFS xB is an optimal solution, when the value of cTBxB is the lowest

for all x ∈ F . It is known that if an optimal solution exists, then an optimal basic

feasible solution exists too ??.

2.1.2 Pivoting

Pivoting is the fundamental transformation in all simplex methods. A linear transfor-

mation is called pivot when one variable leaves the basis and another variable enters the

basis. The following text expands on the idea of pivoting on the element in the kth row

and `th column in the basis tableau.

Let IB be the index set of the basic variables before pivoting and I
′
B be the new index

set of basic variables after a pivot. A pivot where k leaves and variable ` enters the

basis. The changes in the basis and the basis tableau are as follows

I
′
B = IB ∪ {`} \ {k},

τ
′
ij = τij −

τi`τkj
τk`

, ∀i ∈ I ′
B \ {`}; j ∈ I

′
N \ {k},

τ
′
ik = − τi`

τk`
, ∀i ∈ I ′

B \ {`},

τ
′
`j =

τkj
τk`

, ∀j ∈ IN \ {`},

τ
′
`k =

1

τk`
.
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Table 2.1: Pivot operations and changes to the basis tableau.

j l

i τij τil pivot

⇒

k τkj τkl (k, l)

j k

i τ ′ij τ ′ik

l τ ′`j τ ′lk

The following tables shows us when one can do primal pivots.

Table 2.2: Primal feasible tableau, primal pivot.

+

⊕
⊕
⊕

+

2.2 Primal Simplex Method

The idea of the simplex method builds on the fact that if there exists an optimal solution,

then there exists an optimal basic feasible solution too. So if we find the best basic

feasible solution (BFS), we get an optimal solution. The primal simplex method will

move from one BFS to the next adjacent BFS until it reaches an optimal solution, while

the objective function value monotonically decreases or remains the same in case of

degenerate problems.

We have the value of xB = A−1B (b − ANxN ). Now the objective function can be split

into cTBxB + cTNxN and substituting the value of xB = A−1B b into the objective function

and rearranging the items gives us

cTx = cTBA
−1
B b+ (cTN − cTBB−1AN )xN .

This brings us to a new concept of reduced cost of the non-basic variables, which is given

by

sj = cj − cTBA−1B aj ∀ j ∈ IN , (2.4)
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where aj corresponds to the column of jth non-basic variable in A. It can be clearly

seen by simple substitution that the reduced cost of the basic variables is 0.

A sufficient condition of optimality of primal basic feasible solutions is given by

sj ≥ 0 ∀ j ∈ IN . (2.5)

The simplex method tries to find a BFS which satisfies (2.5) and thus delivering an

optimal solution.

If a given feasible basis fails to satisfy condition (2.5), then there is a basis which can

be found with a better objective value. The algorithm moves from basis to basis while

maintaining the feasibility of all the basic variables and improve the objective function

value, or at least not make it worse.

To ensure that feasibility of the basis, the so called ratio test is applied in selecting the

pivot element. We do not spend lot of time on the theoretical details of the dual simplex

method and the ratio test as it can be found in many books,see Bertsimas [3]

The pseudo-code described in Algorithm 1, which can be found in most of the textbooks,

details the mechanism of the primal simplex method.

Algorithm 1 Primal Simplex Method

1: Initialization:
2: Let AB be a primal feasible basis, i.e. xB ≥ 0;
3: IB resp. IN is the index set of the basis and non-basis variables;
4: while true do
5: if sN ≥ 0 then
6: stop: the current solution solves the LO problem
7: else
8: let q ∈ IN be an index with sq < 0;
9: if the q-column of the tableau is non-positive then

10: stop: (LO) is inconsistent;
11: else
12: let ϑ := min{ xiτiq : i ∈ IB and τiq > 0};
13: let p ∈ IB be such that

xp
τpq

= ϑ; (ratio test)
14: end if
15: end if
16: perform a pivot: IB := IB ∪ q \ p;
17: end while

The simplex tableau for the primal problem is given as follows
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0 −sTN

xB I A−1B AN

2.3 Dual Simplex Method

If we have a primal problem as given in the form (2.1), the dual problem can be written

as follows:

maximize bT y

subject to AT y ≤ c,
(2.6)

which is equivalent to

maximize bT y

subject to AT y + s = c,

s ≥ 0.

(2.7)

After rearranging the equality constraint in (2.3) and partitioning it, we get

sTB = cTB − yTAB, (2.8)

sTN = cTN − yTAN . (2.9)

To make sB = 0 i.e. to construct a complementary primal-dual solution, we need to

choose yT = cTBA
−1
B , which further gives.

sTN = cTN − cTBA−1B AN . (2.10)

It can be observed that sN in (2.10) is the same as the s in (2.4).

The idea of the dual simplex method is that if the current basis is dual feasible , the

analogous to the primal simplex method, we would like to preserve the dual feasibility.

If we have AB as dual feasible and not primal feasible, then we do not have optimality.
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Now, there exists a neighboring dual feasible basis with better (or same) objective value.

There are lot of rules which can be used to shift from one dual BFS to an adjacent dual

BFS and one of them is described in Algorithm 2 2, which can also be found in most

text books.

Algorithm 2 Dual simplex method

1: Initialization:
2: let AB be a primal feasible basis, i.e. sN ≥ 0;
3: IB resp. IN is the index set of the basis and non-basis variables;
4: while true do
5: if xB ≥ 0 then
6: stop: the current solution solves the LO problem
7: else
8: let p ∈ IB be an index with xp < 0;
9: if the p-row of the tableau is non-negative then

10: stop: (LO) is inconsistent;
11: else
12: let ϑ := min{ sj

−τpj : i ∈ IN and τpj < 0};
13: let q ∈ IN be such that

sq
−τpq = ϑ; (ratio test)

14: end if
15: end if
16: perform a pivot: IB := IB ∪ q \ p;
17: end while
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The acceptable dual simplex pivots are given below:

Table 2.3: Dual feasible tableau, dual pivot.

	 	 	

⊕
–
⊕

–

The simplex tableau for the dual problem is given as follows:

0 . . . 0 −xTB 0 . . . 0

y I A−TB 0

z 0 −ATNA
−T
B I

2.4 Primal and Dual Simplex Equivalence

It can be seen from the simplex tableau for the primal problem and simplex

tableau for the dual problem that the dual simplex method is just the primal simplex

method applied on the dual problem. So in theory, we can see that primal simplex and

dual simplex methods are exactly the same. However, in the subsequent chapters, we

can see that computational practice does not fully match the theory.

In the next chapter, we discuss the theory and computational aspects of IPMs.





Chapter 3

Interior Point Methods

Till the discovery of polynomial time Interior Point Methods (IPMs) by N. Karmakar

[15], simplex method was considered to be the most suitable method to solve large scale

LO problems. Karmakar’s method proved that large scale LO problems can be solved in

polynomial time. Soon after Karmakar made his discovery, it was shown by Gill, Murray,

Tomlin and Wright [12] that his interior point algorithm was very similar to the log-

barrier method which was explained by Fiacco and McCormick [9]. In the decades after

Karmakar’s seminal paper lot of research was done to explore the commonality of linear

and non-linear interior point methods.

Efficient implementation of IPMs involves using a stable and robust linear algebra sys-

tem. In this chapter, we discuss the theory behind IPMs and the most important linear

algebra factors that substantially affect a software’s performance.

3.1 A Brief Overview of IPMs

Though polynomial IPMs were discovered by Karamakar in 1984, none of the modern

software implement his algorithm. AT&T’s KORBX was probably the only commercial

software system which implemented Karmakar’s algorithm and it was immediately su-

perseded by Lustig, Marsten and Shanno’s OB1 package. Most of the current software

implementations use both infeasible primal-dual interior point algorithm (for brevity we

will call this infeasible primal-dual algorithm) and feasible primal-dual interior point

algorithm.

The Infeasible primal-dual algorithms can be used to solve large-scale LO problems

efficiently. Though they are very attractive theoretically and computationally, they have

15
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some shortcomings [2], like choosing a good starting point and infeasibility detection.

To overcome these shortcomings, a homogeneous self-dual model was proposed [27].

Let us consider the LO problem and its dual in the standard form at discussed at (2.1)

minimize cTx

subject to Ax = b,

x ≥ 0,

maximize bT y

subject to AT y + s = c,

s ≥ 0,

The homogeneous self dual model given at 3.1 was first studied by Goldman and Tucker

[13].

Ax− bκ = 0

−AT y + cκ ≥ 0

bT y−cTx ≥ 0,

(3.1)

where y is free, x ≥ 0, κ ≥ 0.

Let s, a vector and ρ a scalar denote the slacks for the second and third inequality

constraints of (3.1). Goldman and Tucker have proved that the homogeneous model in

(3.1) always has a non-trivial so-called strictly complementary solution (x∗, y∗, κ∗) such

that

x∗s∗ = 0, x∗j + s∗j > 0 ∀ j, (3.2)

ρ∗κ∗ = 0, ρ∗ + κ∗ > 0, (3.3)

where x∗s∗ denotes the component wise product of the vectors x∗ and s∗.

Goldman and Tucker further showed that only one of the following can occur:

• κ > 0 if and only if (2.1) has an optimal solution,

• ρ > 0 if and only if (2.1) is primal or dual infeasible.

The homogeneous self-dual method provides all the necessary information to get an

optimal solution or a certificate of infeasibility. Instead of solving (2.1), we aim to solve

(3.1).

While (2.1) is self-dual, it can not satisfy the interior point condition. One can easily

see that if x and y are primal feasible, and κ ≥ 0, then due to weak duality property,

the third inequality is always satisfied as equality.
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We can modify (3.1) such that, while ensuring that the self dual property is preserved,

we will have an interior point solution.

The following homogeneous self-dual model can be obtained from (3.1):

min βθ

s.t Ax − bκ + b̄θ = 0,

−AT y + cκ − c̄θ − s = 0,

bT y − cTx − αθ − ρ = 0,

− b̄T y + c̄Tx − ακ − ν = −β,

y is free, x ≥ 0, s ≥ 0, ρ ≥ 0, θ ≥ 0, ν ≥ 0, κ ≥ 0,

(3.4)

where

b̄ = b+ e−Ae,

c̄ = c− e−AT e,

α = 1 + cT e− bT e,

β = m+ n+ 2.

We can see that y0 = e, x0 = s0 = e, θ0 = ρ0 = κ0 = ν0 = 1 is an interior feasible

solution. Hence we can say that the interior point condition holds. It is also easy to

see that the embedding model is self dual. If an interior point exists for an LO problem,

then the central path exists. For the above model, the central path is given by the set

of solutions the equation system

Ax − bκ + b̄θ = 0,

−AT y + cκ − c̄θ − s = 0,

bT y − cTx − αθ − ρ = 0,

− b̄T y + c̄Tx− ακ − ν = −β,

(3.5)

xs = µe,

κρ = µe,

θν = µe,

y is free, x ≥ 0, s ≥ 0, ρ ≥ 0, θ ≥ 0, ν ≥ 0, κ ≥ 0.
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This system, for all µ > 0 has a unique solution, x(µ), y(µ), s(µ), κ(µ), ρ(µ), θ(µ), ν(µ).

It should be noted that xs represents the coordinate wise product of the vectors x and

s.

The solution for the above system is usually difficult to calculate exactly. So, instead of

solving the above central path system exactly, we use the Newton’s method to solve it

and get an approximate solution.

3.2 Newton System

The Newton direction is determined by the following system:

A∆x − b∆κ + b̄∆θ = 0,

−AT∆y + c∆κ − c̄∆θ −∆s = 0,

bT∆y − cT∆x − α∆θ −∆ρ = 0,

− b̄T∆y + c̄T∆x− α∆κ −∆ν = 0,

s∆x + x∆s = µe− xs,

ρ∆κ + κ∆ρ = µe− κρ,

ν∆θ + θ∆ν = µe− θν.

(3.6)

The Full Newton System is as follows:

A −b b̄

−AT c −c̄ I

bT -c −α -1

−b̄T c̄T α -1

S X

ρ κ

ν θ

∆y

∆x

∆κ

∆θ

∆s

∆ρ

∆ν

=

0

0

0

0

µe− xs

µ− ρκ

µ− νθ
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The matrices X and S are diagonal matrices withe the vectors x and s as the principal

diagonal, respectively

By pivoting on the last three sections, we have the extended augmented system:

A −b b̄

−AT −X−1S c −c̄

bT -c κ−1s −α

−b̄T c̄T α θ−1ν

∆y

∆x

∆κ

∆θ

=

0

µX−1 − s

µκ−1 − ρ

µθ−1 − ν

We also have the following results:

∆ν = θ−1µ− ν − θ−1ν∆θ,

∆ρ = κ−1µ− ρ− κ−1ρ∆κ,

∆s = X−1µ− s−X−1S∆x.

After pivoting on −X−1S block, the extended normal equation system is as follows:

AS−1XAT r1 r2

−rT1 κ̄ ᾱ

−rT2 -ᾱ θ̄

∆y

∆κ

∆θ

= β1

β2

β3

where,
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r1 = −b+AXS−1c,

r2 = −b̄−AXS−1c̄,

κ̄ = κ−1S − cTS−1Xc,

ᾱ = −α+ cTS−1Xc̄,

θ̄ = θ−1ν − c̄TS−1Xc,

β1 = µAS−1 −Ax,

β2 = −µcS−1e+ cx+ µκ−1 − ρ,

β3 = µc̄TS−1e− c̄Tx+ µθ−1 − ν.

As documented by Maros and Mészáros [20], the normal equation system can be solved

efficiently as it is only a system of linear equations with a symmetric positive definite

coefficient matrix which can be solved efficiently with Cholesky factorization. The large

scale problems can be solved efficiently provided that there are no dense columns in A.

But if there are dense columns in A, then the Cholesky factorization will also result in

dense factors which makes solving smaller problems difficult too.

The extended augmented system can be also be written (by using different variables to

represent the blocks) as:

AS−1XAT R

-RT Q

Block pivoting on Q, we have

AS−1XAT︸ ︷︷ ︸
Normal eqn. Matrix

+ RQ−1RT︸ ︷︷ ︸
rank 2 update

We know that ∆θ can be calculated explicitly (∵ θ = γµ =⇒ ∆θ = γ∆µ). Hence,

we only need a Rank-1 update. as explained by Anderesen et. al. [1]. The above low
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rank update can be computed efficiently by Sherman-Morrison formula. It should also

be noted that if there are any dense columns, they can be reordered to the R part and

then use the low rank update for efficient calculation

While the augmented system solves some of the problems associated with the Normal

equations, it is still imperative that an efficient Cholseky factorization, which reduces

the number of non zero elements, should be efficiently implemented in the LO software

package. Most of the commercial IPM software packages will be performing pivot steps

to identify an optimal basis in case a basis solution is preferred. This implies that a

software should have good pivot algorithms for the optimal basis identification. We can

see in the Chapter 5 how this affects the performance of the software.

The algorithmic framework is presented below. It should be noted that we are using the

Mehrotra’s Predictor-Corrector algorithm [21] in this algorithmic description

Algorithm 3 Interior Point Methods Algorithm

1: Initialization:
2: Given the homogeneous self-dual embedding model, a neighborhood N around the

central path. Chose ε > 0 for stopping criteria.
3: k = 0
4: while true do
5: Do the Cholesky factorization for xk, sk

6: Predictor (virtual) step:
7: Let τ = 0
8: Solve the system (3.4) to get ∆xp, ∆sp using the factorization in line 5.
9: Find the largest αp s.t. xk+1

p , sk=1
p ∈ N . Do not move

10: Calculate the corresponding µkp. The new τk =
(
µkp
µk

)3
µk

11: Corrector Step
12: Start from the xk, sk (in line 5).
13: Use the above τk and solve the (3.4) to get ∆xc, ∆sc
14: Find the largest αp s.t. (xk+1, sk+1) ∈ N . Move now
15: break when (xk+1)T sk+1 ≤ εµ (stopping criteria)
16: k = k + 1
17: end while





Chapter 4

Duality

Let us revisit the LO problem in standard form as given by (2.1):

minimize cTx

subject to Ax = b,

x ≥ 0.

Let us derive the dual from the primal problem. We have cTx = cTx+ 0.

We also reformulate the constraint system as Ax − b = 0. Multiplying both the L.H.S

and R.H.S with yT ,

yT
(
Ax− b

)
= 0,

which can also be written as

0 = yT
(
b−Ax

)
.

Let us use this value of 0 in the modified objective function

cTx = cTx+ yT
(
b−Ax

)
.

Rearranging the terms yields

cTx = bT y +
(
c−AT y

)T
x.

23
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The primal problem includes the constraint x ≥ 0, so if we have
(
c−AT y

)
≥ 0, then we

can get a lower bound

cTx ≥ bT y, if c−AT y ≥ 0.

In other words, the best lower bound on the primal objective gives us the dual problem.

maximize bTx

subject to AT y ≤ c.

The above approach is different from what von Neumann proposed to Dantzig [8]. As

Dantzig recalled, von Neumann was working with Morgenstern on Theory of Games and

he realized that what Dantzig’s problem was equivalent to the problem he developed for

game theory. Though von Neumann is credited for the origin of the concept of duality,

Tucker, Kuhn and Gale [11] are credited for giving the first rigorous proof. It was also

discovered later that the Farkas Lemma is equivalent to the strong duality theorem [3].

4.1 Weak and Strong Duality

The weak duality theorem states that if x is a primal feasible solution, and y is a dual

feasible solution, then

cTx ≥ bT y.

• In addition, if we have cTx = bT y, then both x and y are optimal.

• If
(
c − AT y

)T
x = 0, then considering x ≥ 0 and

(
c − AT y

)
≥ 0 we have,

(
c −

AT y
)
i
xi = 0 ∀i = 1 . . . n. Let us represent the vector

(
c−AT y

)
by the slack vector

s, then we have s ≥ 0 and sTx = 0 implies sixi = 0 ∀i = 1 . . . n. This is also

known as complementary slackness.

The Strong Duality theorem states that if the LO problem is both primal feasible and

dual feasible, then there exists x∗ which is primal feasible, y∗ which is dual feasible with

cTx∗ = bT y∗.

As mentioned before, even though dual simplex method was discovered in 1954 by Lemke

[18], the dual simplex method was primarily used in Mixed Integer Linear Optimization

(MILO) to re-optimize sub-problems in the Branch and Bound tree as detailed in [5].

The two phase simplex method was developed for the primal simplex method aims to

produce an initial BFS find BFS. The Phase I of the two phase simplex method deals

with the problem of getting a feasible basic solution. The dual simplex method was
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not implemented in most of the commercial LO software even in the late 1980s. Bixby

[4] noted that there is also another factor which made the dual simplex method very

attractive — the “steepest-edge” rule. The steepest-edge rule is a pricing rule which

determines the best variable to leave the basis at the end of a dual simplex iteration.

The steepest edge rule was extensively discussed in [10]. Bixby also claimed that dual

simplex with the“steepest-edge” pricing is more efficient than primal simplex method.

4.2 Taking the Duals of LO Problems

Most LO textbooks offer dualization schemes to get the dual form of a given problem.

We also present a dualization scheme below.

minimize cTx

Ax


≤
≥
=

 b,

x


≤
≥

free

 0,

maximize bT y

y


≤
≥

free

 0,

AT y


≤
≥
=

 b.

Primal Problem Dual Problem

minimize maximize

Constraints Variables∑n
j=1 aijxj ≥ bi yi ≥ 0∑n
j=1 aijxj = bi yi is free∑n
j=1 aijxj ≤ bi yi ≤ 0

Variables Constraints

xj is free aTj y = cj

xj ≥ 0 aTj y ≤ cj
xj ≤ 0 aTj y ≥ cj
xj = 0 no constraint

The dualization scheme presented above can be used to dualize any given LO problem.

As you can see, the objective function coefficients become the right hand side of the dual

problem. The whole A matrix is transposed and the sign of the constraints determine
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the sign of the dual variables. Similarly the sign of the primal variables determine the

sign of the dual constraints.

4.3 More on Dualization

We have used a few more dualizing steps and created a python program called dualize.py

which dualizes

the problems in the NETLIB set. The NETLIB1 site contains a collection of LO prob-

lems , mostly real world problems which are used to test the LO software. Most of

the problems are degenerate and very sparse. The problems in the NETLIB set can be

either involve the maximization or minimization of the objective function.

It is very straightforward to dualize LO problems without bounds,

Let us consider the following optimization problem:

minimize x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + x9 + x10

subject to x1 + 2x3 + 3x4 + 2x7 + 3x8 + 9x9 ≥ 20,

2x2 + 4x6 + 3x5 + 4x9 + 9x10 ≥ 30,

3x3 + 4x6 + x9 ≥ 10,

x5 + 3x8 + 4x10 ≥ 15,

2x1 + 3x3 + x9 ≥ 5,

x1 + x6 + x9 ≤ 20,

x1 + 2x6 + 2x9 + 3x10 = 10,

x1, x2 . . . x10 ≥ 0.

(4.1)

The MPS file format is developed by IBM to represent the LO problems. the format

takes the advantage of sparsity and represents only those values which are not zero.

Using the techniques described in Section 4.2, the objective function will be on the

right hand side of the dual problem. Since all the variables are non-negative, the above

techniques dictate that all the constraints will be of the type “Less than or equal”.

The sixth constraint is of the type “less than or equal” and hence the dual variable

associated with it y6 is less than or equal to zero. Similarly, the last constraint is an

equality constraint and the dual variable associated with the constraint is free.

Thus, the dual problem is:

1http://www.netlib.org/lp/data/index.html

http://www.netlib.org/lp/data/index.html
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maximize 20y1 + 30y2 + 10y3 + 15y4 + 5x5 + 20y6 + 10y7

subject to y1 + 2y5 + y6 + y7 ≤ 1,

2y2 ≤ 1,

2y1 + 3y3 + 3y5 ≤ 3,

3y1 ≤ 1,

y4 ≤ 3,

4y2 + 4y3 + y6 + 2y7 ≤ 1,

2y1 ≤ 3,

3y1 + 3y2 + 3y4 ≤ 1,

9y1 + 4y2 + y3 + y5 + y6 + 2y7 ≤ 1,

9y2 + 4y4 + 3y7 ≤ 1,

y1, y2 . . . y5 ≥ 0,

y6 ≤ 0,

y7 free.

(4.2)

The corresponding .mps file is given in Appendix A

When bounds are involved, we need a two step process for the dualization. We need to

convert the bounds to constraints and then dualize the modified problem.

There can be 4 different cases of variable bounds:

• variables having fixing bounds

• variables only having upper bounds

• variables only having lower bounds

• variables having both upper and lower bounds

Fixing bounds: When we encounter variables having equal lower and upper bounds,

we can substitute its fix value and remove the variables from the dualization process.

Non-negative variables with upper bounds: These bounds can be transformed as

additional constraints to the original problem

Only lower bounds: These bounds are going to be transformed by the use of substi-

tution. For instance, if we have the bounds 5 ≤ x, we do the following manipulation.

5 ≤ xi =⇒ xi − 5 ≥ 0 =⇒ x̄i ≥ 0, where x̄i = xi − 5
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Now if we replace x with x̄ + 5 in the original system, we have transformed the lower

bound to zero, thus the new variable x̄i is standard non-negative in the transformed

problem.

Both upper and lower bounds: We use a combination of variable substitution and

constraint addition to change the primal problem and then dualize it. For instance,if we

have 5 ≤ xi ≤ 8.

0 ≤ xi − 5 ≤ 8− 5,

0 ≤ x̄i ≤ 3, where x̄i = xi − 5,

=⇒ x̄i ≥ 0 and x̄i ≤ 3.

Replacing x by x̄+ 5 and adding the x̄ ≤ 3 constraint for the non-negative variable x̄i.

Thus we have reformulated the problem into a problem without any bounds, which can

be dulaized as described in the Section 4.2.

Let us see a dualizing example using the above step:

minimize − x1 − 2x2 − 3x3 − x4

subject to −x1 + x2 + x3 + 10x4 ≤ 20,

x1 − 3x2 + x3 ≤ 30,

x2 − 3.5x4 = 10,

2 ≤ x4 ≤ 4,

x1, x2, x3 ≥ 0.

(4.3)

The dual problem obtained by using the dualization techniques discussed at Section 4.3

is as follows:

maximize 0y1 + 30y2 + 7y3 + 2y4 − 2

subject to −y1 + y2 ≤ −1,

y1 − 3y2 + y3 ≤ −2,

y1 + y2 ≤ −3,

3.5y3 + y4 ≤ −1.0,

y1, y2, y4 ≤ 0,

y3 is free.

(4.4)

Here y4 is the dual variable associated with the bound constraint. The MPS file can be

found in the Appendix A.
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In the next chapter, we present some numerical examples and discuss how various com-

mercial software solves them.





Chapter 5

Numerical Experiments

In this chapter, we will discuss some numerical experiments which highlight the im-

portance of duality in software implementation. We present examples where CPLEX,

GuRoBi and MOSEK have some issues. We hypothesize the cause for such issues and

report the results below

5.1 Unbalanced Problems: Large Number of Columns

The unbalanced problems have very small number of rows and significantly large number

of columns. We will see how each software deals with this kind of LO problems

Primal problem: min cTx s.t. Ax ≥ b, x ≥ 0

A6

106

x106

1

b 6

1

× ≥

We have used MATLAB to generate the prototype unbalanced problem. For the sake

of discussion, we will call the form represented above as primal and then also generate

the corresponding dual of this primal problem via MATLAB.

31
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Using the Primal Simplex and Dual Simplex Algorithms without presolve for GuRoBi,

CPLEX and MOSEK, and for both the primal and dual unbalanced problems:

Table 5.1: Unbalanced problems solved using GuRoBi.

Problem PS Time PS Iter DS Time DS Iter

Primal 2.19 16 6.46 47

Dual 8.3 49 6.22 23

Table 5.2: Unbalanced problems solved using MOSEK.

Problem PS Time PS Iter DS Time DS Iter

Primal 2.49 60 13.52 51

Dual 18.99 34 11.95 18

Table 5.3: Unbalanced problems solved using CPLEX.

Problem PS Time PS Iter DS Time DS Iter

Primal 0.91 36 No Solve No Solve

Dual No Solve No Solve 5.73 19

The tables (5.1), (5.2) and (5.3) detail the results of solving the unbalanced problem

with GuRobi, MOSEK and CPLEX, respectively. As one can see, CPLEX struggles

to solve such problems. Even when the presolve is allowed CPLEX fails to solve the

problem in a reasonable amount of time.

CPLEX, when asked to solve the unbalanced primal problem with Dual simplex, the

model tries to dualize and form the basis tableau with all the 106 columns and with

probable lack of dual sifting in CPLEX’s implementation of dual simplex, it becomes

very difficult to solve. Analogously, as duality predicts, the primal simplex of CPLEX

is struggling to solve the dual problem.

5.2 Staircase/Grow Problems

The staircase problems are a small subset of the NETLIB continuous optimization test

set namely, grow7, grow15 and grow22. The structure of the grow problems is displayed

at fig 5.1. The shaded region represents the position of non-zero entities in the constraint

matrix.
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Figure 5.1: Grow problem structure.
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Using MATLAB, we have extended the problems to include more “stairs” and created

grow problems with 36, 71, 107 and 176 blocks. The problems can be dualized using

Dualize.py python program. The growxxP problem name refers to the modified primal

problem and growxxDual referes to the Dual of this modified problem. The problem

data is presented in Table 5.4

Table 5.4: Extended Grow problems data.

Problem Rows Cols NZs

grow36 720 1548 13516

grow36P 2160 1548 14956

grow36Dual 1548 2160 14956

grow71 1420 3053 26667

grow71P 4260 3053 29516

grow71Dual 3053 4260 29516

grow107 2120 4558 39836

grow107P 6360 4558 44076

grow107Dual 4558 6360 44076

grow176 3520 7568 66156

grow176P 10560 7568 73196

grow176Dual 7568 10560 73196

The results have been tabulated in the Table 5.5. As one can see GuRoBi fails with the

dualized problems of the grow problem. CPLEX does not face similar issues. The main

issues could be some implementation issues with the linear algebra core of GuRoBi’s

IPM. The dual form of the problem is causing serious issues to the linear algebra core

of the IPM of GuRoBi.
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Table 5.5: Grow problems solved using IPMS of GuRoBi and CPLEX.

Problem
GuRoBi CPLEX

AA’ nz Fac. Nz Time Iter AA’ nz Fac. Nz Time Iter

grow36 7540 25290 0.06 13 7540 21861 0.11 15

grow36P 19360 61250 0.08 12 7540 21861 0.12 15

grow36D 32584 138400 0.12 17 32584 71376 0.29 17

grow71 14890 50550 0.09 16 14890 43561 0.21 20

grow71P 38230 123100 0.15 17 14890 43561 0.28 20

grow71D 64609 331400 2.65 223 64609 149012 0.48 20

grow106 22240 75720 0.14 21 22240 65310 0.33 22

grow106P 57090 184000 0.23 19 22240 65310 0.37 22

grow106D 96634 370200 8.41 401 96634 328450 2.69 28

grow176 36940 126200 0.2 21 36940 108661 0.63 25

grow176P 94820 305900 0.38 20 36940 108661 0.61 25

grow176D 160700 844800 4.81 146 160684 451502 2.05 28

It can be seen from the Table 5.5 Gurobi takes extremely large number of solutions to

find the solution. It should also be noted that for grow71D, grow106D and grow176D

(the duals of the grow problems), the barrier algorithm terminates suboptimaqlly. The

Cholesky factorization of the A matrix is also inefficient when compared to CPLEX.

In-fact the number of non zeros in the Cholesky factors are almost double the number

of non zeros of CPLEX’s factor.

5.3 L-Shaped Problems

We use the following L-shaped LO structure as a template to generate problems with

various column densities. The structure of the L-Shaped problems is given at the fig

5.2. The shaded region indicates the non zero entries in the coefficient matrix.

Figure 5.2: L-Shaped problem structure.
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These problems highlight the problems that can be caused by inefficient implementation

of linear algebra core for interior point methods.

Table 5.6: L-shaped problems solved by IPM MOSEK.

Problem Factor NZ Time Iter Basis Identification

C=5 Primal + No Dualization 1.10E+004 38.72 53 Works

C=5 Primal + Dualization 4.51E+006 39.26 17 Not Working

C=5 Dual + No Dualization 4.51E+006 38.21 17 Not Working

C=5 Dual + Dualization 1.10E+004 33.56 53 Works

C=15 Primal + No Dualization 2.11E+004 36.26 44 Works

C=15 Primal + Dualization 4.53E+006 35.22 14 Not Working

C=15 Dual + No Dualization 4.53E+006 35.59 14 Not Working

C=15 Dual + Dualization 2.11E+004 32.1 44 Works

C=25 Primal + No Dualization 3.13E+004 35.67 47 Works

C=25 Primal + Dualization 4.55E+006 28.18 12 Not Working

C=25 Dual + No Dualization 4.55E+006 28.48 12 Not Working

C=25 Dual + Dualization 3.13E+004 33.43 47 Works

C=45 Primal + No Dualization 5.20E+004 27.27 37 Works

C=45 Primal + Dualization 4.59E+006 78.34 30 Not Working

C=45 Dual + No Dualization 4.59E+006 76.4 30 Not Working

C=45 Dual + Dualization 5.20E+004 26.01 37 Works

The Table 5.6 gives us the results of solving the L-shaped problems using MOSEK. The

value of C denotes the number of dense columns. Let us consider the case when the

problem has 45 dense columns, and we force the software to take a dual and solve the

problem1, we notice a few interesting things.

• The reduction in µ is very very slow. It takes 21 iterations to get an order of

magnitude reduction in the µ value.

• The basis identification doesn’t progress when performed by dual simplex method

The slow reduction in µ can be attributed to the presence of dense columns in the dual.

This probably leads to the decrease in the quality of the search direction. The basis iden-

tification for the dual problem, which can be obtained by either solving the dual problem

1The MOSEK parameters to solve the problem can be found in the Appendix
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or dualizing the primal problem using the software, uses the dual simplex method to

identify the basis. However, as it can be observed from the MOSEK experiments on the

NETLIB set, the dual simplex method of MOSEK is not very stable compared to the

primal simplex method. It often switches to primal simplex method as it probably loses

feasibility. Because of this, the basis identification is not progressing.

5.4 Experiments with the NETLIB Test Set:

For pivot algorithms, we see in practice that when the number of columns is approx-

imately same as the number of rows, the primal simplex and dual simplex method

perform about the same.

Table 5.7: Results of solving Finnis.problems with GuRoBi, CPLEX and MOSEK.

Problem rows columns NZs
GuRoBi

PS Time PS Iter DS Time DS Iter

FINNIS 497 614 2310 0.01 595 0 467

FINNIS P 533 569 2128 0.01 645 0.01 529

FINNIS D 569 533 2128 0.01 538 0.01 572

Problem rows columns NZs
CPLEX

PS Time PS Iter DS Time DS Iter

FINNIS 497 614 2310 0.01 463 0.01 382

FINNIS P 533 569 2128 0.01 488 0.01 397

FINNIS D 569 533 2128 0.01 408 0.02 494

Problem rows columns NZs
MOSEK

PS Time PS Iter DS Time DS Iter

FINNIS 497 614 2310 0.02 603 0.01 341

FINNIS P 533 569 2128 0.02 571 0.01 349

FINNIS D 569 533 2128 0.02 507 0.02 422

However, by utilizing the structure of specific problems, some methods are very very

effective in solving those problems compared to other methods. From the NETLIB set,
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Table 5.8: Results of solving Firt2d problems with GuRoBi, CPLEX and MOSEK.

Problem rows cols NZs
GuRoBi

PS Time PS Iter DS Time DS Iter

FIT2D 25 10500 129018 0.34 27853 0.09 268

FIT2D P 10525 10500 139518 5.4 19755 3.18 9608

FIT2D D 10500 10525 139518 3.2 11605 10.18 13920

Problem rows columns NZs
CPLEX

PS Time PS Iter DS Time DS Iter

FIT2D 25 10500 129018 0.46 13938 0.28 189

FIT2D P 10525 10500 139518 13.23 18090 8.4 11432

FIT2D D 10500 10525 139518 6.74 12345 8.2 6171

Problem rows columns NZs
MOSEK

PS Time PS Iter DS Time DS Iter

FIT2D 25 10500 129018 1.88 50104 0.17 + 0.02 150+30(PS)

FIT2D P 10525 10500 139518 24.17 40260 0.96 +0.04 4810+22(PS)

FIT2D D 10500 10525 139518 7.25 5246 15.39+0.03 5738+8(PS)

Despite the structure being favorable to the dual simplex method, MOSEK’s dual sim-

plex method switches to primal simplex method to solve the problem.

From the tables in the Appendix on solving the NETLIB test problems using simplex

algorithms, we can see similar results displayed in Table 5.7. For example, the tabu-

lated results of problems E226, ISRAEL from Table A.5 and problems SCRRS8 and

SHARE2B from Table A.6 show that both the simplex methods take roughly the same

number of iterations to solve the problems.

We can further find some more problems from the NETLIB tables in the Appendix which

give similar results to Table 5.8. For instance, the results of MODSZK1, FIT1D and

CYCLE show that dual simplex method is very effective in solving the problems for all

the three software packages. The dual simplex method of MOSEK again faces troubles

and switches to primal simplex method for the CYCLE problem.





Chapter 6

Conclusions

In Chapter 2 we demonstrated that the dual simplex method is exactly same as the

primal simplex method applied to the dual LO problem, at least in theory. However,

the same can not be said in practice. As discussed in Chapter 1, while the core of the

algorithm has not changed, there have been many modifications to the algorithm, for

instance the implementation of various pricing rules. In practice, machine accuracy and

floating point arithmetic also leads to issues while implementing LO algorithms.

One significant outcome of the computational experiments is that the commercial soft-

ware’s implementation of the primal simplex and dual simplex methods is mostly the

same. However, for some special problems, like the unbalanced problems for CPLEX, it

is highlighted that their implementations are widely different. Similarly, MOSEK’s dual

simplex implementation leaves a lot to be desired when compared to the primal simplex

implementation. The dual simplex algorithm of MOSEK seems to encounter numerical

difficulties more often than the primal simplex and uses perturbation, and frequently

switches to primal simplex method to finish solving the problem.

For IPMs, the linear algebra core is extremely important. As we can see, the Cholesky

factorization of GuRoBi when compared to CPLEX’s interior point method is less effi-

cient. This sometimes leads to less reliable search directions and sometimes sub-optimal

termination of the barrier methods.

The IPMs can not provide the optimal basis solution and whenever the basis solution is

needed, pivots are performed to identify the basis. Therefore it is necessary to have a

good implementation of the pivot algorithms too. We saw the importance of the pivot

algorithms for basis identification while solving the L-shaped problems in Chapter 5

As we can observe from the results of our experiments on the NETLIB test set, all the

three software packages can solve the problems with relative ease. Most of the times the

39
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number of primal simplex iterations and number of dual simplex iterations are roughly

the same except for a few problems where structure can be exploited much efficiently

by the dual simplex method. The NETLIB set only contains the “primal” version of

the problem. By taking the duals of these primal problems and solving them using

the software packages we can see that the various simplex methods of different software

packages perform similarly. Considering the number of iterations, the primal simplex

method on primal problems performs similarly to the dual simplex method on dual

problems. Analogously, the primal simplex method’s performance on the dual problems

is similar to the dual simplex method’s performance on the primal problems. For these

type of problems, we can see that the cost of pivoting by the primal simplex method and

dual simplex method is roughly the same and so the total time to solve the problems is

also roughly the same for either algorithm. The results also highlighted the dual simplex

implementation problems in MOSEK.

We have highlighted a few shortcomings of the implementation of various algorithms

in different LO software packages. Be it the unbalanced problems for CPLEX, or the

staircase problems for GuRoBi, or the the basis identification issues for MOSEK, it is

important to know that due to different implementations, computational practice may

differ significantly from theory.

In practice, we do not know if we are getting a primal problem or a dual problem. Any

modifications that can be done to the primal simplex method can be done to the dual

simplex method too. As we have seen there is no full symmetry between implementations

with respect to duality, in practice. The linear algebra core makes a huge difference in

the efficiency of IPMs. As we saw, Gurobi’s IPM was struggling to solve the dual form

of the grow problems. Further MOSEK constantly switches to primal simplex method

despite asking to solve the problem by dual simplex method and never the other way

around.

Overall the goal of this thesis was to highlight how duality can be exploited while

designing LO software. We have contacted the three software vendors and showed the

results to them and they were able to reproduce these issues and informed us that they

are working on resolving them.



Appendix A

A.1 Primal and Dual .mps files

The .mps file format for primal problem at (4.1) is given below:

NAME TESTPROB

ROWS

N COST

G LIM1

G LIM2

G LIM3

G LIM4

G LIM5

L LIM6

E LIM7

COLUMNS

X1 COST 1 LIM1 1

X1 LIM5 2 LIM6 1

X1 LIM7 1

X2 LIM2 2 COST 1

X3 COST 3 LIM1 2

X3 LIM3 3 LIM5 3

X4 LIM1 3 COST 1

X5 COST 3 LIM4 1

X6 LIM2 4 LIM3 4

X6 COST 1 LIM6 1

X6 LIM7 2

X7 COST 3 LIM1 2

X8 LIM1 3 LIM2 3

41
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X8 LIM4 3 COST 1

X9 LIM1 9 LIM2 4

X9 LIM3 1 LIM5 1

X9 COST 1 LIM6 1

X9 LIM7 2

X10 LIM2 9 LIM4 4

X10 COST 1 LIM7 3

RHS

RHS1 LIM1 20 LIM2 30

RHS1 LIM3 10 LIM4 15

RHS1 LIM5 5 LIM6 20

RHS1 LIM7 10

ENDATA

The .mps file format for dual problem at (4.2) is given below:

NAME TESTDUAL

OBJSENSE

MAX

ROWS

N RHS1

L X1

L X2

L X3

L X4

L X5

L X6

L X7

L X8

L X9

L X10

COLUMNS

LIM1 RHS1 20.0

LIM1 X1 1.0

LIM1 X3 2.0

LIM1 X4 3.0

LIM1 X7 2.0

LIM1 X8 3.0
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LIM1 X9 9.0

LIM2 RHS1 30.0

LIM2 X2 2.0

LIM2 X6 4.0

LIM2 X8 3.0

LIM2 X9 4.0

LIM2 X10 9.0

LIM3 RHS1 10.0

LIM3 X3 3.0

LIM3 X6 4.0

LIM3 X9 1.0

LIM4 RHS1 15.0

LIM4 X5 1.0

LIM4 X8 3.0

LIM4 X10 4.0

LIM5 RHS1 5.0

LIM5 X1 2.0

LIM5 X3 3.0

LIM5 X9 1.0

LIM6 RHS1 20.0

LIM6 X1 1.0

LIM6 X6 1.0

LIM6 X9 1.0

LIM7 RHS1 10.0

LIM7 X1 1.0

LIM7 X6 2.0

LIM7 X9 2.0

LIM7 X10 3.0

RHS

COST X1 1.0

COST X2 1.0

COST X3 3.0

COST X4 1.0

COST X5 3.0

COST X6 1.0

COST X7 3.0

COST X8 1.0

COST X9 1.0

COST X10 1.0
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BOUNDS

MI B1 LIM6

UP B1 LIM6 0

FR B1 LIM7

ENDATA

The .mps file format for the primal problem at (4.3) is given below:

NAME TESTPROB

ROWS

N obj

L c1

L c2

E c3

COLUMNS

x1 obj -1 c1 -1

x1 c2 1

x2 obj -2 c1 1

x2 c2 -3 c3 1

x3 obj -3 c1 1

x3 c2 1

x4 obj -1 c1 10

x4 c3 -3.5

RHS

RHS1 c1 20 c2 30

BOUNDS

LO BND1 x4 2

UP BND1 x4 4

ENDATA

The .mps file format for the dual problem at (4.4) is given below:

NAME TESTDUAL

OBJSENSE

MAX

ROWS
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N RHS1

L x1

L x2

L x3

L x4

COLUMNS

c1 RHS1 0.0

c1 x1 -1.0

c1 x2 1.0

c1 x3 1.0

c1 x4 10.0

c2 RHS1 30.0

c2 x1 1.0

c2 x2 -3.0

c2 x3 1.0

c3 RHS1 7.0

c3 x2 1.0

c3 x4 -3.5

x4BC RHS1 2.0

x4BC x4 1

RHS

obj x1 -1.0

obj x2 -2.0

obj x3 -3.0

obj x4 -1.0

obj RHS1 -2.0

BOUNDS

MI B1 c1

UP B1 c1 0

MI B1 c2

UP B1 c2 0

FR B1 c3

MI B1 x4BC

UP B1 x4BC 0

ENDATA
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A.2 NETLIB Experiments

Table A.1: NETLIB Linear optimization test set data

Name Rows Equlaities Inequlities Cols UP bnd LO bnd Free FX nnz

25FV47 822 516 305 1571 – 0 – 0 11127

80BAU3B 2263 0 2262 9799 2731 71 0 498 29063

ADLITTLE 57 15 41 97 0 0 0 0 465

AFIRO 28 8 19 32 0 0 0 0 88

AGG 489 36 452 163 0 0 0 0 2541

AGG2 517 60 456 302 0 0 0 0 4515

AGG3 517 60 456 302 0 0 0 0 4531

BANDM 306 305 0 472 0 0 0 0 2659

BEACONFD 174 140 33 262 0 0 0 0 3476

BLEND 75 43 31 83 0 0 0 0 521

BNL1 644 232 411 1175 0 0 0 0 6129

BNL2 2325 1327 997 3489 0 0 0 0 16124

BORE3D 234 214 19 315 11 1 0 1 1525

BRANDY 221 166 54 249 0 0 0 0 2150

CAPRI 272 142 129 353 131 0 14 16 1786

CYCLE 1904 1389 514 2857 77 0 7 0 21322

CZPROB 930 890 39 3523 0 0 0 229 14173

D2Q06C 2172 1507 664 5167 0 0 0 0 35674

D6CUBE 416 415 0 6184 0 1 0 0 43888

DEGEN2 445 221 223 534 0 0 0 0 4449

DEGEN3 1504 717 786 1818 0 0 0 0 26230

DFL001 6072 6071 0 12230 13 0 0 0 41873

E226 224 33 190 282 0 0 0 0 2767

ETAMACRO 401 272 128 688 135 45 0 82 2489

FFFFF800 525 350 174 854 0 0 0 0 6235

FINNIS 498 47 450 614 36 41 0 45 2714

FIT1D 25 1 23 1026 1026 0 0 0 14430

FIT1P 628 627 0 1677 399 0 0 0 10894

FIT2D 26 1 24 10500 0 0 0 0 138018

FIT2P 3001 0 0 13525 0 0 0 0 60784

GANGES 1310 1284 25 1681 0 7 0 0 7021

GFRD-PNC 617 548 68 1092 256 0 0 0 3467

GREENBEA 2393 2199 193 5405 290 39 0 103 31499

GREENBEB 2393 2199 193 5405 291 26 4 115 31499
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Table A.2: NETLIB Linear optimization test set data (contd.)

Name Rows Equlaities Inequlities Cols UP bnd LO bnd Free FX nnz

GROW15 301 300 0 645 600 0 0 0 5665

GROW22 441 440 0 946 880 0 0 0 8318

GROW7 141 140 0 301 280 0 0 0 2633

ISRAEL 175 0 174 142 0 0 0 0 2358

KB2 44 16 27 41 9 0 0 0 291

LOTFI 154 95 58 308 0 0 0 0 1086

MAROS 847 323 523 1443 0 6 0 35 10006

MAROS-R7 3137 3136 0 9408 0 0 0 0 151120

MODSZK1 688 687 0 1620 0 0 0 0 4158

PEROLD 626 495 130 1376 266 7 88 64 6026

PILOT 1442 233 1208 3652 1041 90 0 167 43220

PILOT.JA 941 661 279 1988 333 0 88 311 14706

PILOT.WE 723 661 279 2789 333 0 88 311 9218

PILOT4 411 287 123 1000 247 0 88 30 5145

PILOT87 2031 233 1797 4883 1400 115 0 180 73804

PILOTNOV 976 701 274 2172 340 0 0 204 13129

RECIPE 92 67 24 180 50 4 0 24 752

SC105 106 45 60 103 0 0 0 0 281

SC205 206 91 114 203 0 0 0 0 552

SC50A 51 20 30 48 0 0 0 0 131

SC50B 51 20 30 48 0 0 0 0 119

SCAGR25 472 300 171 500 0 0 0 0 2029

SCAGR7 130 84 45 140 0 0 0 0 553

SCFXM1 331 187 143 457 0 0 0 0 2612

SCFXM2 661 374 286 914 0 0 0 0 5229

SCFXM3 991 561 429 1371 0 0 0 0 7846

SCORPION 389 280 108 358 0 0 0 0 1708

SCRS8 491 384 106 1169 0 0 0 0 4029

SCSD1 78 77 0 760 0 0 0 0 3148

SCSD6 148 147 0 1350 0 0 0 0 5666

SCSD8 398 0 0 2750 0 0 0 0 11334

SCTAP1 301 120 180 480 0 0 0 0 2052

SCTAP2 1091 470 620 1880 0 0 0 0 8124

SCTAP3 1481 620 860 2480 0 0 0 0 10734

SHARE1B 118 89 28 225 0 0 0 0 1182

SHARE2B 97 13 83 79 0 0 0 0 730

SHELL 537 534 2 1775 117 9 0 250 4900

SHIP04L 403 354 48 2118 0 0 0 0 8450

SHIP04S 403 354 48 1458 0 0 0 0 5810

SHIP08L 779 698 80 4283 0 0 0 0 17085

SHIP08S 779 698 80 2387 0 0 0 0 9501

SHIP12L 1152 1045 106 5427 0 0 0 0 21597

SHIP12S 1152 1045 106 2763 0 0 0 0 10941
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Table A.3: NETLIB Linear optimization test set data (contd.)

SIERRA 1228 528 699 2036 2036 0 0 0 9252

STAIR 357 209 147 467 6 0 6 82 3857

STANDATA 360 160 199 1075 104 0 0 16 3038

STANDGUB 362 0 0 1184 0 0 0 0 3147

STANDMPS 468 268 1199 1075 104 0 0 16 3686

STOCFOR1 118 63 54 111 0 0 0 0 474

STOCFOR2 2158 1143 1014 2031 0 0 0 0 9492

STOCFOR3 16676 0 0 15695 0 0 0 0 74004

TRUSS 1001 0 0 8806 0 0 0 0 36642

TUFF 334 292 41 587 24 0 2 3 4523

VTP.BASE 199 0 0 203 0 0 0 0 914

WOOD1P 245 243 1 2594 0 0 0 0 70216

WOODW 1099 1085 13 8405 0 0 0 0 37478

A.3 NETLIB problems – No Bounds
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A.4 NETLIB problems – Bounds
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A.5 MOSEK Solve parameters

Mosek parameter to solve only using primal Simplex

BEGIN MOSEK

MSK_IPAR_PRESOLVE_USE MSK_PRESOLVE_MODE_OFF

MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_PRIMAL_SIMPLEX

MSK_IPAR_SIM_SOLVE_FORM MSK_SOLVE_PRIMAL

Mosek parameter to solve only using Dual Simplex

BEGIN MOSEK

MSK_IPAR_PRESOLVE_USE MSK_PRESOLVE_MODE_OFF

MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_DUAL_SIMPLEX

MSK_IPAR_SIM_SOLVE_FORM MSK_SOLVE_PRIMAL

Mosek parameter to solve using IPM (solve the primal form)

BEGIN MOSEK

MSK_IPAR_PRESOLVE_USE MSK_PRESOLVE_MODE_OFF

MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_INTPNT

MSK_IPAR_INTPNT_SOLVE_FORM MSK_SOLVE_PRIMAL

END MOSEK

MOSEK parameter to solve using IPM (take Dual through software)

BEGIN MOSEK

MSK_IPAR_OPTIMIZER MSK_OPTIMIZER_INTPNT

MSK_IPAR_INTPNT_SOLVE_FORM MSK_SOLVE_DUAL

END MOSEK
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