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Abstract

This work focuses on developing algorithms and methodologies to solve problems

dealing with uncertainty in portfolio optimization and industrial gas networks.

First, we study the Mean-SemiVariance Project (MSVP) portfolio selection prob-

lem, where the objective is to obtain the optimal risk-reward portfolio of non-divisible

projects when the risk is measured by the semivariance of the portfolio’s Net-Present

Value (NPV) and the reward is measured by the portfolio’s expected NPV. Similar to

the well-known Mean-Variance portfolio selection problem, when integer variables are

present (e.g., due to transaction costs, cardinality constraints, or asset illiquidity), the

MSVP problem can be solved using Mixed-Integer Quadratic Programming (MIQP)

techniques. However, conventional MIQP solvers may be unable to solve large-scale

MSVP problem instances in a reasonable amount of time. In this paper, we propose

two linear solution schemes to solve the MSVP problem; that is, the proposed schemes

avoid the use of MIQP solvers and only require the use of Mixed-Integer Linear Pro-

gramming (MILP) techniques. In particular, we show that the solution of a class of

real-world MSVP problems, in which project returns are positively correlated, can be

accurately approximated by solving a single MILP problem. In general, we show that

the MSVP problem can be effectively solved by a sequence of MILP problems, which

allow us to solve large-scale MSVP problem instances faster than using MIQP solvers.

We illustrate our solution schemes by solving a real MSVP problem arising in a Latin

American oil and gas company. Also, we solve instances of the MSVP problem that

1



are constructed using data from the PSPLIB library of project scheduling problems.

Both approaches are empirically shown to be effective and outperforming the default

benchmark MIQP solver to find near-optimal solutions for the selected instances of

the MSVP problem (Sefair et al. 2017).

Second, we present an algorithm to compute near-optimal Value-at-Risk (VaR)

portfolios. It is known to be difficult to compute optimal VaR portfolios; that is, an

optimal risk-reward portfolio allocation using VaR as the risk measure. This is due

to VaR being non-convex and of combinatorial nature. In particular, it is well-known

that the VaR portfolio problem can be formulated as a mixed-integer linear program

(MILP) that is difficult to solve with current MILP solvers for medium to large-scale

instances of the problem. The proposed algorithm addresses the shortcomings of

the MILP formulation in terms of solution time. To illustrate the efficiency of the

presented algorithm, numerical results are presented using historical asset returns

from the US financial market. Empirical results suggest that the developed algorithm

obtaining a lower bound for VaR outperforms the recently proposed algorithms from

the literature. Additionally, we also show that the developed algorithms are able to

obtain and guarantee near-optimal solutions for large scale instances of VaR portfolio

optimization problem more efficiently than the off the shelf commercial solvers within

1% accuracy (Babat et al. 2017b).

Third, we analyze the impact of the sensor reading errors on parameters that affect

the production costs of a leading US industrial gas supply company. For this purpose,

a systematic methodology is applied first to determine the relationship between the

system output and input parameters, and second to identify the assigned input sensors

whose readings need to be improved in a prioritized manner based on the strength

of those input-output relationships. The two main criteria used to prioritize these

sensors are the decrease in production costs and the decrease in production costs

volatility obtained when the selected sensors precision is improved. To illustrate the

2



effectiveness of the proposed approach, we first apply it to a simplified version of

the real supply network model where the results can be readily validated with the

simulated data. Then, we apply and test the proposed approach in the real supply

network model with historical data. The experiments suggest that we are able to

obtain a significant decrease in production costs and in production costs volatility by

prioritizing the sensors’ maintenance subject to a limited budget (Babat et al. 2017a).

Finally, we analyze the performance of portfolio allocation strategies using cluster-

ing techniques based on financial asset’s correlation matrices. The Markowitz’s mean-

variance framework uses first and second order sample moment estimators which are

highly subject to estimation errors. The estimation error on the moments could be

very significant and it may offset the benefits obtained from the diversification of the

portfolio. There are a number of methodologies proposed in the literature to reduce

the effect of the estimation error on the moment estimators. A group of these are

based on the clustering approaches using sample correlation coefficients as the sim-

ilarity measure. The idea is to obtain a hierarchical structure between the financial

assets and then to use this information to filter the underlying true representative

economic information between the assets and to reflect it in a modified correlation

matrix. The objective of this study is to replicate and verify some of the published

work comparing different allocation strategies and also incorporating recently pub-

lished hierarchical clustering based portfolio selection strategies into out of sample

performance evaluation across different datasets. Initial findings suggest that the dif-

ference between the performance of the classical strategies and the recently developed

clustering based methodologies are not statistically significant from each other when

only positive weights are allowed in the portfolios.

3



Chapter 1

Introduction

Uncertainty is a situation that implies the imperfect knowledge and information. On

the other hand, risk is a state of uncertainty where some possible outcomes have an

undesired effect or loss. All real world projects involve both uncertainty and risk, and

uncertainty and risk involve both threat and opportunity. The recognition of them

could yield a more desirable and appropriate level of benefit in return for the resource

commitment. However, uncertainty quantification could also be very challenging to

address in both computational and real world applications.

Uncertainty arises in different ways in almost any field, including insurance, statis-

tics, economics, finance, engineering, and information science (cf. (Cairns 2000, Shackle

1955, Li 2004, Kline 1985)). Making decisions under uncertainty carries an intrinsic

risk. Modeling and controling risk and uncertainty is a very challenging problem.

This is even more challenging when combinatorial constraints are present (e.g., lot

sizing constraints, binary decisions, etc.). The first two chapters in this study specifi-

cally focus on obtaining effective solution schemes based on Integer Programing (IP)

techniques to solve portfolio optimization problems under stochastic and integer con-

straints.

The selection of the best investment projects within a set of alternatives is crucial

4



to any firm facing competition. Moreover, the ability to build portfolios that efficiently

allocate scarce resources contributes to the achievement of corporate goals in the long

run. Typically, a portfolio’s expected profit is considered the single most important

corporate goal to be maximized; however, it is not the only one: the fitness of a

firm’s portfolio should also involve a measure of the portfolio’s volatility or risk. For

instance, a portfolio with very attractive expected profits might expose the company

to a large loss with high probability, whereas a low-risk portfolio might secure the

company lower but more certain profits. For these reasons, the problem of selecting

assets to create an optimal risk-reward portfolio has been actively considered in the

literature. (cf. (Markowitz 1952, Rockafellar and Uryasev 2000, Konno and Yamazaki

1991, Wang and Hwang 2007)).

In his seminal work, (Markowitz 1952), proposed a risk-reward framework a single

period model of investment; since then variance has been widely accepted as a risk

measure, except that it is questionable to use variance as a measure of risk. Although,

for both theoretical and computational reasons, variance has been extensively used

in the literature and in practice, academics and practitioners have developed down-

side risk measures such as semivariance, Value-at-Risk (VaR), Conditional-Value-at-

Risk (CVaR) that penalize extreme losses. These measures of risk take into account

the skewness of real asset returns, and in some cases (like CVaR) have key theoretical

properties.

Consider n risky assets. Let ξ = (ξ1, . . . , ξn)T ∈ IRn denote the uncertain returns

of the n risky assets from the current time t = 0 to a fixed future time t = 1. Let

x = (x1, . . . , xn)T denote a portfolio on these assets.

A (single-period) risk-reward problem aims at finding the portfolio x to be con-

structed at t = 0, in order to minimize the the risk of the portfolio’s return, subject to

the portfolio having a given minimum expected return µo. Formally, the risk-reward

problem can be written as the following optimization problem:

5



min R(xTξ)

s.t. E(xTξ) ≥ µ0

x ∈ X

(1.1)

where E(·) denotes expectation, X is the set of constraints for the assets in portfolio

construction, for example: X = {
∑n

i=1 xi = 1, x ≥ 0} and R is some measure of risk

like variance, semivariance, VaR or CVaR.

Model (1.1) is a generalization of Markowitz’ classical concept of mean-variance

optimization for the case of an arbitrary risk measure R.

The problem’s (1.1) computational complexity highly depends on the selected risk

measure, the liquidity of the assets, and the constraints on the assets.

In particular, the problems in portfolio optimization are integer programs in the

following cases,

1. Liquidity of the assets : The assets may be real world projects, which are non-

divisible assets. You either choose to invest to the project or leave it. Thus, the

decision to invest or not in these projects can be modeled with binary variables,

which makes problem (1.1) to be an integer problem. Portfolio optimization

with non-divisible assets are studied in in Chapter 2.

2. Risk Measures : Modeling risk-reward portfolio optimization problem with some

particular risk measures may bring the integrality to the problem. For instance,

if VaR is chosen as the risk measure, then one can rely on order estimators to

formulate the problem as an Integer Program (IP). The VaR portfolio optimiza-

tion problem is studied in Chapter 3.

3. Trading Constraints : These requirements come from real-world trading prac-

tice. Risk-reward portfolio optimization models typically results portfolios with

6



a large number of assets having small holdings. This is not very desirable be-

cause of the transaction costs of the assets, minimum lot sizes, management

complexity and policies of the companies. To avoid these undesired portfolios,

one can limit the number of assets in the portfolio by using cardinality con-

straints, and/or threshold constraints can be used prescribe lower and upper

bounds on the fraction of capital invested in each asset and so on. Although

trading constraints are not considered directly in this study, they can be adapted

to the problems studied in Chapters 2 & 3 and some of the techniques developed

in this chapters can be used to solve these modified problems.

In Chapter 4, we study a frequently encountered risk management problem in

industrial gas networks. In this problem, the uncertainty in flow sensor measurements

propagates and results as the uncertainty in system’s output. System output is often

associated with system’s total cost, and the uncertainty in the cost is not plausible

and associated with risk from the system manager’s perspective. To detect, identify,

and determine the sensor faults, we develop a systematic approach based on outlier

detection, bias detection and noise dressing. The proposed methodology is applied

to a simplified gas network model, where the corresponding results can be readily

validated. Later, we apply the methodology to a real industrial gas network in the

US. The analysis and results have shown us that prioritizing the sensor improvements

can help practitioners to identify the key sensors subject to a budget to decrease the

total system cost and it’s variability throughout the time.

Finally, we investigate the out of sample performance of the application of hierar-

chical clustering algorithms in portfolio allocation strategies. The modern portfolio

theory relies on estimation of expected returns and risks, but even small errors on

these estimations can result in large deviations from optimal allocations. Thus, the

predicted and realized risk returns often times deviate significantly from each other,

which is not to the benefit of a risk-averse investor. Recent studies by Tola et al.
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(2008), Pantaleo et al. (2011) and López de Prado (2016) have shown the benefits

of incorporating clustering approach into portfolio allocation strategies. However,

to the best of our knowledge there is no empirical study comparing some of these

methodologies with each other. In his famous study, (DeMiguel et al. 2009) evaluates

the out-of-sample performance of the sample-based mean-variance model, and its ex-

tensions designed to reduce estimation error, relative to the naive 1/N portfolio. By

using the experimental design and some of the comparison measures from this study,

we replicate some of those experiments to evaluate the out of sample performances

of different clustering based portfolio allocation strategies and compare their perfor-

mance with the classical portfolio selections strategies performance across different

datasets. The preliminary results indicate that the integration of clustering to mean-

variance models and its’ extensions do not affect the out-of-sample performance of

these models significantly when they are short-sales constrained. Similarly, the other

clustering based portfolio allocation rules investigated in this study do not outperform

the classical approaches consistently.
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Chapter 2

Linear solution schemes for

mean-semivariance project

portfolio selection problems: An

application in the oil and gas

industry

2.1 Project Portfolio Selection in Oil and Gas In-

dustry

A keystone economic sector where the problem of selecting an appropriate portfolio

of project investments arises is the upstream oil and gas industry. In this sector,

the project investment’s returns are subject to high uncertainty, mainly driven by

factors like geology, equipment costs, oil selling price, well production levels, and oil

quality, among others. In a typical project, the profit’s probability distribution is
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usually asymmetrical (skewed), exhibiting a high probability of low profits and a low

probability of high profits (Walls 2004). Moreover, given the significant amount of

investment required to carry out a project, managers and investors in this industry

have a strong bias against underperforming portfolios (Merritt et al. 2000, Quintino

et al. 2013, Suslick and Schiozer 2004, Tyler et al. 2001), leaning towards downside-

risk measures to quantify the risk of investment (Sira 2006).

Although different downside-risk measures are available in the literature (cf., Boas-

son et al. 2011, Jarrow and Zhao 2006, Markowitz et al. 1993, Rockafellar and Uryasev

2000), in this paper we focus on the semivariance risk measure. Through this measure,

projects with a high probability of having returns lower than a critical value (e.g.,

the expected value or any other value specified by the decision maker) are considered

risky. In other words, the semivariance does not consider values beyond the critical

value (i.e., gains) as risk; thus, it is a more appropriate measure when investors are

worried about portfolio underperformance (Markowitz et al. 1993).

The semivariance is a widely used measure of risk in the oil and gas industry. For

example, Orman et al. (1999) propose an optimization routine in which the portfolio’s

semistandard deviation (square root of the semivariance) is minimized, subject to

budget constraints and a target value for the expected Net Present Value (NPV). By

varying this target, the authors construct an efficient frontier. Then, they find the

optimal investment selection for each project based on a predetermined set of projects.

In a more recent work, Sira (2006) uses scatter search to heuristically approximate

an efficient portfolio frontier in the petroleum industry. This approach is used to

determine how much investment must be allocated in a fixed set of projects. After

comparing portfolios that minimize both variance and semivariance of the project

portfolio’s return, the author argues that the latter is preferable as a measure of risk

in petroleum projects. Similar to Sira (2006), we consider the problem of finding a

portfolio of projects; that is, non-divisible assets with minimum semivariance, but
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where the projects to be included in the portfolio, rather than fixed, can be selected

from a set of available investment projects.

To address this problem we first consider the more common portfolio allocation

problem where the portfolio assets are divisible. In his seminal work on risk-reward

portfolio selection, Markowitz (1952) proposed the use of the portfolio returns’ vari-

ance as a measure of risk, and developed an optimization problem, together with

a solution method, to obtain the portfolio selection that has minimum risk among

those with a required expected return. This problem is now commonly referred as

the Mean-Variance (MV) portfolio selection problem. Similar to the classical MV

problem, Markowitz et al. (1993) proposed a quadratic programming formulation for

the Mean-SemiVariance (MSV) portfolio selection problem, which is obtained using a

sampling approach to estimate the problem parameters; that is, an estimation of the

asset return distributions is obtained from a finite number of samples. These samples

are typically obtained from historical data, simulations, or a combination of both.

Thus, these portfolio selection problems have the characteristic that no specific dis-

tributional assumption about the asset return distributions is required to formulate

or solve the corresponding selection problem.

The Mean-SemiVariance Project (MSVP) portfolio selection problem, a MSV

problem with non-divisible assets, can be formulated as a Mixed-Integer Quadratic

Programming (MIQP) problem for which specialized MIQP solvers can be used. How-

ever, unlike the MV problem formulation whose size only depends on the number of

assets, the size of the MSVP problem formulation grows with both the number of

non-divisible assets, and the number of samples used to estimate the problem’s pa-

rameters, thus leaving open some concerns regarding scalability and solvability of the

MSVP problem via MIQP solvers. Although existing solution methods for Quadratic

Programming (QP) are quite competitive, the introduction of integer variables sig-

nificantly increases the complexity of solving a MIQP problem and limits the size of
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the problems that can be solved (Mansini et al. 2013). Similar challenges have been

addressed for MV problems with integer variables (due to, e.g., transaction costs,

cardinality constraints, lot size) by proposing solution approaches that avoid using

MIQP solvers (cf., Lejeune 2013, Bertsimas and Shioda 2009).

To tackle the inherent difficulty in solving the MSVP problem, we propose two

linear solution schemes that avoid the use of QP methods and only require the use

of Mixed-Integer Linear Programmming (MILP) techniques. These approaches are

useful alternatives to the MIQP when either because of problem size, solution time

requirements, software requirements, or expertise, it is not suitable to directly use

a MIQP solver. The first scheme is obtained from a natural approximation of the

portfolio’s semivariance that can be reformulated as a MILP problem. This MILP

approximation is (formally) shown to work as an accurate proxy of the MSVP problem

when the projects’ NPVs are positively correlated, which is the case in our oil and

gas industry problem. Furthermore, we develop a second linear solution scheme that

requires the solution of a series of MILP problems for general instances of the MSVP

problem. This scheme works even in the case of NPVs having arbitrary correlations

(i.e., not all are positively correlated).

The proposed schemes have both practical and computational advantages com-

pared to MIQP formulation. They might be more suitable for practitioners that are

well acquainted with MILP techniques (Bixby 2002), but not with more advanced

MIQP techniques. Also, the software required to solve the corresponding MIQP may

require an additional investment over regular software required to solve MILP prob-

lems. More importantly, both solution schemes have the ability to solve instances

of the MSVP problem that might not be possible to solve efficiently using MIQP

solvers. Our linear solution schemes also contribute to the rich literature on using

linear methods for portfolio allocation problems (see Mansini et al. 2013, for a recent

review).
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The remainder of the article is organized as follows. In Section 2.2, we formally

introduce the MSVP problem. In Section 2.3.1, we present a linear approximation of

the MSVP problem that requires the solution of a single MILP problem. Also, we

quantitatively characterize the MILP approximation’s effectiveness. In Section 2.3.2,

we present a linear solution scheme capable of solving general MSVP instances by

iteratively solving a series of MILP problems. Our computational results are presented

in Section 2.4, where we illustrate the effectiveness of the linear solution schemes

by solving a MSVP problem arising in a Latin American oil and gas company. In

Section 2.5 we solve general instances of the MSVP problem that are constructed

using data from the PSPLIB library of project scheduling problems (Kolisch and

Sprecher 1997). In Section 2.6, we conclude the chapter with some final remarks.

2.2 Mean-semivariance project portfolio selection

problem

In this section we formally introduce the MSVP problem. Consider n risky non-

divisble investment projects. Let r = (r1, . . . , rn)T ∈ IRn denote the uncertain NPVs

of the n risky projects, which are calculated over a time horizon of T periods. Let

x = (x1, . . . , xn)T ∈ {0, 1}n denote a portfolio on these projects; that is, the binary

variables xi take the value of 1 if the company invest in project i and 0 otherwise, for

i = 1, . . . , n. Thus, the portfolio’s NPV is given by

rTx = xTr =
n∑
i=1

xiri.

A (single-period) MSVP problem aims at finding the portfolio of projects x ∈

{0, 1}n at time t = 0 that minimizes the semivariance of the project portfolio’s NPV,

subject to a given minimum expected NPV. Formally, the MSVP problem can be
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written as the following optimization problem:

min E(min{0, xTr − E(xTr)}2)

s.t. E(xTr) ≥ µ0

x ∈ X ∩ {0, 1}n,

(2.1)

where E(·) denotes expectation; µ0 ∈ IR is the given minimum expected portfolio

NPV; and X ⊆ IRn is a given set defined by linear constraints, which might be

used to enforce some relevant business conditions such as a budget constraint (i.e.,∑n
i=1 cixi ≤ B, where ci is the investment required for i-th project and B is the total

available budget). For the MSVP problem in the oil and gas industry considered here,

a detailed description of the set X is provided in Section 2.4. Here, we choose 0 as

the critical value (e.g., Markowitz et al. 1993) to define the downside semivariance.

However, our results extend in straightforward fashion for other choices of the critical

value, such as a market benchmark (cf., Markowitz et al. 1993).

It is clear from (2.1) that the MSVP problem is analogous to a classical risk-reward

portfolio allocation problem with illiquid assets in which the risk is measured by the

portfolio returns’ semivariance, and the reward is the expected portfolio’s return.

In order to solve (2.1), we use a sampling approach (cf., Birge and Louveaux 2011,

Konno and Yamazaki 1991, Lejeune 2013, Markowitz et al. 1993, Rockafellar and

Uryasev 2000), in which an estimation of the distribution of the random variables of

interest is obtained from a finite number of samples r1, . . . , rm ∈ IRn. These samples

are typically obtained from historical data, simulations, or a combination of both.

Using this sampling approach, the MSVP problem in (2.1) can be written as:
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min
1

m

m∑
j=1

min{0, xTrj − xTµ}2

s.t. xTµ ≥ µ0

x ∈ X ∩ {0, 1}n,

(2.2)

where the vector µ = (µ1, . . . , µn)T ∈ IRn of mean project return estimates is obtained

by letting

µi =
1

m

m∑
j=1

rji , (2.3)

for i = 1, . . . , n.

For ease of exposition, we will use (2.3) to obtain µ ∈ IRn in our numerical ex-

periments; however, our results are independent of this choice, and a variety of other

estimation methods can be used. Also, note that to obtain an asymptotically unbi-

ased and strongly consistent estimator of the semivariance, we should use the factor

m
(m−1)2 instead of 1

m
in the objective function of (2.2) (Josephy and Aczel 1993). How-

ever, for the sake of clarity, we will use the latter, as changing this factor does not

affect the composition of the optimal project selection.

After introducing the auxiliary variable yj, which captures the value min{0, xTrj−

xTµ} for each j = 1, . . . ,m, the MSVP problem in (2.2) can be written as an opti-

mization problem with a convex quadratic objective, linear constraints, and binary

variables. This result is formalized in Proposition 1.

Proposition 1 (Markowitz et al. (1993)) The mean-semivariance project port-
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folio selection problem (2.2) is equivalent to:

min
1

m

m∑
j=1

y2j

s.t. yj ≤ xT(rj − µ) j = 1, . . . ,m

yj ≤ 0 j = 1, . . . ,m

xTµ ≥ µ0

x ∈ X ∩ {0, 1}n.

(2.4)

Furthermore, the objective function in (2.4) is convex.

Proposition 1 shows that the MSVP problem is a MIQP problem, that is, an

optimization problem with a convex quadratic objective and linear constraints, with

the additional constraint of some of its variables being integer (more specifically,

in (2.4) variables are required to be binary). Thus, the MSVP formulation in (2.4) can

be solved using branch-and-bound (cf., Borchers and Mitchell 1994, Nemhauser and

Wolsey 1988) in conjunction with QP techniques (cf., Bienstock 1996). In particular,

CPLEX, Gurobi, and Xpress-MP are among the commercial optimization solvers that

offer special solution algorithms for MIQP problems based on such techniques.

2.3 Linear solution schemes

In this section we show that the MSVP problem in (2.4) can be efficiently solved with-

out using QP solvers; that is, it can be solved using branch-and-bound in conjunction

with linear programming techniques. We refer to these solution methodologies as

linear solution schemes. Besides substantially enlarging the number of optimization

solvers that can be used to solve the MSVP problem, these linear solution schemes

allow us to solve large-scale instances of the MSVP problem much faster than with a

MIQP approach.
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Note that the MIQP problem in (2.4) can easily become a large-scale problem

when either the number of projects, n, or the number of samples used to estimate the

distribution of the projects’ NPVs, m, is large. Clearly, this behavior results from n

and m being the dimension of the x- and y-variables in (2.4), respectively. In this

regard, we emphasize the difference in the project portfolio selection problem when

the variance is used as a measure of risk. As opposed to semivariance, using the

variance implies the solution of a single MIQP problem whose size depends on the

number of candidate projects, but not on the number of samples used to estimate

the mean and the variance-covariance matrix of project’s NPVs. Further, in order

to solve a single MIQP problem, it is necessary (loosely speaking) to solve a large

number of (potentially large) QP problems (relaxed MIQP problems), obtained by

branching on the corresponding binary variables.

For the reasons discussed above, in Section 2.3.1 we first introduce a MILP for-

mulation that accurately approximates the solution of the MSVP problem when the

projects’ NPVs are positively correlated and the total number of projects is moder-

ate. Next, in Section 2.3.2 we show that a general class of the MSVP problem, and

in particular instances of the problem with a large number of projects and samples,

can be solved efficiently by solving a sequence of MILP problems using a Benders de-

composition approach in which the Benders cuts (cf. Nemhauser and Wolsey (1988,

Sections II.3.7 and II.5.4), and Freund (2004)) are computed in closed-form.

2.3.1 MILP approximation for MSVP portfolio selection prob-

lem

In this section we present an approximation for the MSVP problem in (2.4), which

is obtained by solving a single MILP problem with as many binary variables as the

corresponding MIQP. We begin by stating the following optimization problem related

17



to (2.2):

min
1

m

n∑
i=1

n∑
k=1

σ̃ikxixk

s.t. xTµ ≥ µ0

x ∈ X ∩ {0, 1}n,

(2.5)

where

σ̃ik =
m∑
j=1

min{0, rji − µi}min{0, rjk − µk}. (2.6)

for i = 1, . . . , n, k = 1, . . . , n. First, we will show that (2.5) is a pessimistic approxi-

mation to (2.2); that is, (2.5) overestimates the semivariance of the project’s portfolio

in (2.2), making (2.5) potentially more suitable for risk-averse investors. Then, we

will show that the more positively correlated the projects in the portfolio are, the

better (2.5) works as an approximation to (2.2). Even though this condition seems

overly restrictive, there is strong evidence that positive correlations are ubiquitous in

the oil and gas industry, in part, because most projects are influenced by the same

economic and market conditions (e.g. interest rates, oil prices, and gas prices). Fur-

ther evidence of this will be given in Section 2.4. Finally, we will show that (2.5)

can be rewritten as a MILP problem by introducing appropriate extra continuous

variables.

To see that (2.5) provides a pessimistic approximation to (2.2), let u ∈ IRn be

given, and define I− = {i : ui < 0, i = 1, . . . , n}, and I+ = {i : ui ≥ 0, i = 1, . . . , n}.

Clearly,

0 ≥ min

{
0,

n∑
i=1

ui

}
=


∑
i∈I−

ui +
∑
i∈I+

ui, if

∣∣∣∣∣∑
i∈I−

ui

∣∣∣∣∣ ≥
∣∣∣∣∣∑
i∈I+

ui

∣∣∣∣∣ ;
0, otherwise.

(2.7)
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Also
n∑
i=1

min{0, ui} = 0 +
∑
i∈I−

ui. (2.8)

Using (2.7) and (2.8) in the two cases
∣∣∑

i∈I− ui
∣∣ ≥ ∣∣∑

i∈I+ ui
∣∣ and

∣∣∑
i∈I− ui

∣∣ ≤∣∣∑
i∈I+ ui

∣∣, it follows that

0 ≥ min

{
0,

n∑
i=1

ui

}
, and min

{
0,

n∑
i=1

ui

}
≥

n∑
i=1

min{0, ui}, (2.9)

and therefore: (
min

{
0,

n∑
i=1

ui

})2

≤

(
n∑
i=1

min{0, ui}

)2

. (2.10)

With (2.10), and letting r̃j := rj−µ, j = 1, . . . ,m, we have that the objective function

of (2.2) can be bounded from above as follows:

1

m

m∑
j=1

min

{
0,

n∑
i=1

xir̃
j
i

}2

≤ 1

m

m∑
j=1

(
n∑
i=1

min{0, xir̃ji }

)2

=

1

m

m∑
j=1

n∑
i=1

n∑
k=1

min{0, xir̃ji }min{0, xkr̃jk}) =

1

m

n∑
i=1

n∑
k=1

xixk

(
m∑
j=1

min{0, r̃ji }min{0, r̃jk}

)
=

1

m

n∑
i=1

n∑
k=1

σ̃ikxixk.

(2.11)

The first inequality follows from (2.10), and the second to last equality follows from

xi ≥ 0, i = 1, . . . , n. Hence, (2.5) is a pessimistic approximation to (2.2) because

its objective overestimates the expected squared downside deviations; that is, the

semivariance.

Notice that (2.5) will be equivalent to (2.2) whenever the second inequality in (2.9)

holds with equality when replacing u = xTr̃j, for all j = 1, . . . ,m. The second

inequality in (2.9) holds with equality when I− = {1, . . . , n} or I+ = {1, . . . , n}. That

is, problems (2.5) and (2.2) will be equivalent if Ij
+

:= {i ∈ {1, . . . , n} : xir̃
j
i ≥ 0, } =
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{1, . . . , n} or Ij
−

:= {i ∈ {1, . . . , n} : xir̃
j
i < 0} = {1, . . . , n}, for all j = 1, . . . , ,m.

Clearly, for all the samples to satisfy that the deviations in a sample be either all

above the mean or all below the mean, the NPVs of each project must be highly

correlated. As discussed in Section 2.4, for MSVP problems arising in the oil and

gas industry, it is reasonable to expect (real-world) scenarios with high correlations

where this approximation works remarkably well.

The objective function of (2.5) can be linearized by introducing appropriate extra

continuous variables. Let I+σ := {(i, k) : σ̃ik > 0, i = 1, . . . , n, k = 1, . . . , n}, and

I−σ := {(i, k) : σ̃ik ≤ 0, i = 1, . . . , n, k = 1, . . . , n}. Then problem (2.5) is equivalent

to the following MILP problem:

min
1

m

∑
(i,k)∈I+σ

σ̃ikyik

s.t. xTµ ≥ µ0

yik ≥ xi + xk − 1 for all (i, k) ∈ I+σ

yik ≥ 0 for all (i, k) ∈ I+σ

x ∈ X ∩ {0, 1}n.

(2.12)

The equivalence between (2.5) and (2.12) follows from the next observations. First,

from (2.6) it follows that I−σ = {(i, k) : σ̃ik = 0, i = 1, . . . , n, k = 1, . . . , n}. Second, if

(i, k) ∈ I+σ , then yik ≥ xi+xk−1 and yik ≥ 0 imply that yik ≥ xixk, but since σ̃ik > 0,

then at any optimal solution of (2.12), yik would be at its lower bound yik = xixk.

2.3.2 Benders-based linear solution scheme for MSVP port-

folio selection problems

In this section, we present a linear solution scheme for the MSVP problem that

is based on a suitable use of the Benders decomposition technique (cf. Nemhauser

and Wolsey (1988, Sections II.3.7 and II.5.4), and Freund (2004)). To make the
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presentation more succinct, we re-state (2.4) as follows:

min
1

m
yT(I)y

s.t. y ≤ R̃x

y ≤ 0

x ∈ X ′ ∩ {0, 1}n,

(S)

where y := [yj]j=1,...,m, I is the m×m identity matrix, R̃ is a m×n matrix, whose

row j is given by [R̃]j := (rj−µ)T, j = 1, . . . ,m, and X ′ := X ∪{x ∈ IRn : xTµ ≥ µ0}.

The idea of a Benders decomposition approach is to divide the problem variables

into two groups: the complicating and the non-complicating variables. One begins by

fixing the complicating variables in the original problem to a particular value. The

resulting problem –so-called Benders subproblem– should be solvable to optimality,

and in particular, the dual (see, e.g. Fang and Puthenpura (1993, Chapter 9.1.2))

of the Benders subproblem should be solvable to optimality. The dual solution of

the Benders subproblem is then used to construct a Benders master problem on the

complicating variables of the original problem. Solving iteratively both the Benders

subproblem and master problem leads to a solution of the original problem that

might be obtained faster than by solving the (full) original problem. For the MSVP

problem, next we show that with an appropriate choice of the complicating variables,

the Benders subproblem can be solved in closed-form.

To address problem (S) via a Benders decomposition approach, we choose the x

variables as the complicating variables in (S). After fixing the x variables to a value

x̂ ∈ X ′ ∩ {0, 1}, and (for convenience) making the change of variable y → −y, we
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obtain the problem:

min
1

m
yT(I)y

s.t. y ≥ −R̃x̂ (u)

y ≥ 0 (u0),

(2.13)

where u ∈ IRm are the dual variables associated to the return constraints and u0 ∈ IRm

are the dual variables associated to the non-negativity constraints in (2.13). The

(convex) quadratic program in (2.13) corresponds to the Benders subproblem, whose

Wolfe dual is given by (see, e.g., Nocedal and Wright (2006, Chapter 12)):

max −uTR̃x̂− 1

m
yT(I)y

s.t. − 2

m
y + u+ u0 = 0

u, u0 ≥ 0,

(2.14)

Problem (2.14) is equivalent to:

max −uTR̃x̂− m

4
(u+ u0)

T(u+ u0)

s.t. u, u0 ≥ 0.

(2.15)

In any optimal solution of (2.15) we have u0 = ~0, so (2.15) is equivalent to:

max
m∑
j=1

(
−(x̂Tr̃j)uj −

m

4
u2j

)
s.t. uj ≥ 0, j = 1, . . . ,m.

(2.16)

Notice that problem (2.16) decomposes into m independent problems:

max −(x̂Tr̃j)uj −
m

4
u2j

s.t. uj ≥ 0,

(2.17)
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for j = 1, . . . ,m; which can be solved by inspection: If (x̂Tr̃j) ≥ 0, then the optimal

solution of (2.17) is u∗j = 0. If (x̂Tr̃j) < 0, then we get a concave quadratic objective

in (2.17):

|(x̂Tr̃j)|uj −
m

4
u2j

that has a maximum at u∗j = 2
m
|(x̂Tr̃j)|. So the optimal solution u∗(x̂) ∈ IRm of the

Benders dual subproblem (2.14) can be obtained in closed-form as follows:

u∗j(x̂) =

 0 if (x̂Tr̃j) ≥ 0,

2
m
|(x̂Tr̃j)| if (x̂Tr̃j) < 0,

(2.18)

for j = 1, . . . ,m. With the Benders dual subproblem solution, the Benders master

problem is constructed as follows. Given a finite index set K, and a set of feasible

portfolios X̂ ′K = {x̂k ∈ X ′ ∩ {0, 1}n : k ∈ K}, consider the Benders master problem

min q

s.t. q ≥
m∑
j=1

−(xTr̃j)u∗j(x̂k)−
m

4
u∗j(x̂k)

2; ∀x̂k ∈ X̂ ′K

x ∈ X ′ ∩ {0, 1}n.

(M(X̂ ′K))

Note that the right-hand side of the first set of constraints in (M(X̂ ′K)) is closely

related to the objective function of the Benders dual subproblem (2.15).

With a closed-form expression for the solution of the Benders dual subproblem,

and with the construction of the Benders master subproblem given in (M(X̂ ′K)), we

can now state in Algorithm 1, a Benders-based solution algorithm for the MSVP

problem.

After execution, Algorithm 1 returns an ε-optimal portfolio solution x∗ε . That is,
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Algorithm 1 Benders linear solution scheme for the MSVP problem

1: procedure MSVP Benders(ε > 0)
2: K ← ∅, k = 1, Gap=∞
3: while Gap> ε do
4: compute x̂k, zk, the optimal solution and objective of (M(X̂ ′K))
5: compute u∗(x̂k) using (2.18)
6: K ← K ∪ k, k ←= k + 1
7: UppBound ←

∑m
j=1−(x̂T

k r̃
j)u∗j(x̂k)− m

4
u∗j(x̂k)

2, LowBoundk ← zk
8: Gap← |UppBound− LowBoundk|/|LowBoundk|
9: end while

10: return x∗ε = x̂k
11: end procedure

if we let x∗ := argminx{S} be the optimal mean-semivariance project portfolio, then

SV(x∗ε)− SV(x∗)

SV(x∗)
< ε, (2.19)

where SV represents semivariance of any portfolio of projects x ∈ {0, 1}n, given by

SV(x) :=
1

m

m∑
j=1

min{0, xTrj − xTµ}2.

The proof of convergence for Algorithm 1 follows from (Flippo and Rinnooy-Kan

1993).

Note that the Benders-based linear solution scheme for the MSVP problem out-

lined in this section requires, at its core, the iterative solution of MILPs in Step 4 of

the algorithm. This is because the non-linearity of the original problem’s objective

is handled in closed-form in Step 5 of the algorithm. It is worth to mention that a

regularized version (cf., Ruszczyński 1997) of the Benders-based algorithm outlined

here for the MSVP problem can be implemented without changing the complexity of

the Master problem in (M(X̂ ′K)). Namely, following Ruszczyński (1997), the objec-

tive function in (M(X̂ ′K)) can be changed to c(q, x) := q + 1
σ
‖x − x̂k‖2 with σ > 0.

Moreover, taking advantage of the fact that both x, x̂k ∈ {0, 1}n it follows that c(q, x)
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is equivalent to the following linear function c(q, x) = q + 1
σ
(x − 2xx̂k + x̂k). This

means that the MSPV problem can be solved via a Benders decomposition approach

where the regularized Benders Master problem remains a MILP and the Benders cuts

are found in closed-form. Although experiments were carried out with this regular-

ized version of the Benders algorithm, the performance difference with the classical

Benders Algorithm 1 are not significant, and in Section 2.5, we report results using

the non-regularized Benders Algorithm.

2.4 Case study: project selection in an upstream

oil and gas company

In this section we consider an instance of the MSVP problem arising in the oil and

gas industry. After giving a detailed description of the problem in Section 2.4.1,

in Section 2.4.2 we report the computational results of the linear solution scheme

presented in Section 2.3.1.

2.4.1 Data and detailed model

The case study is based on our experience with an upstream oil and gas company

operating in Latin America, which is one of the top 40 largest companies in the

world. We consider a division of the company with 27 non-divisible candidate projects

for investment along a 30-year planning horizon with an available budget of US$

100 million per year and expected production for the first year of at least 40,000

barrels. Besides the known capital investment requirements and the production and

operational costs, the projects are subject to precedence relations. For example, the

execution of some projects require the execution of other complementary projects.

The NPV calculation for each project involves deterministic elements like the capi-
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tal investment requirements and the production and operational costs. It also involves

more volatile and stochastic components, like the project’s production level modeled

by triangular distributions for pessimistic, moderate, and optimistic scenarios and the

international trade petroleum price (WTI), forecasted by a mean-reversion model (cf.,

Dixit and Pindyck 1994). It should be emphasized that, according to Sira (2006), the

uncertain production levels and the oil prices account for 80% of the NPV’s volatil-

ity in a typical petroleum project (for literature on forecasting petroleum prices, see

Al-Harthy (2007)). We use Monte Carlo simulation to model the uncertainties, con-

sidering a variance reduction technique known as common random numbers (cf., Law

and Kelton 2000) to ensure that the same realizations for the key underlying ran-

dom variable, namely the WTI price, were used to calculate the NPV for all projects.

These values are used to construct the vector µ used in the expected return constraint

in (2.2); that is, µi corresponds to the average NPV of project i, for i = 1, . . . , n where

n = 27. In A.2, Table A.1 displays the average NPV of the projects when estimated

with different sample sizes. In addition, Figure 2.1 shows the skewed nature of the

NPV for a typical oil and gas project (i.e., low profits are more likely to occur than

high profits). In this case, 1,000 NPV realizations are produced using Monte Carlo

simulation. Due to confidentiality agreements, the average NPV for each project has

been modified by adding a constant. However, although this shift affects the prob-

ability of loss and the mean return of the projects, it does not affect the deviations

from the mean used to measure the risk of the project’s portfolio.

The NPVs of the considered oil and gas projects are highly correlated, given that

they belong to the same industry and are affected by the same market conditions.

Figure 2.2 shows a histogram of the upper triangular portion of the correlation matrix

(excluding the diagonal) where it is worth noting that more than 75% of the pairwise

correlations are higher than 0.80, all correlations are positive, and only 8% of the

correlations are less than 0.1. Although the calculated correlations appear to be
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Figure 2.1: Histogram of 1,000 random realizations of the NPV (in US millions) of a
typical oil and gas project obtained using Monte Carlo simulation.

overly high, evidence of positive and strong correlation between the projects in the

same industry is ubiquitous in the literature. For instance, in Bodie et al. (2005), it

is stated that correlations between security returns in the same industry tend to be

positive because they are influenced by the same economic and market conditions.

Thus, changes in economic factors such as interest rates, labor, and raw material cost

affect simultaneously the performance of all companies and their projects in the same

sector.

The linear constraints defining the set X in (2.1) for the oil and gas MSVP portfolio

selection problem include a required minimum production level per period of the

planning horizon; limiting budget constraints per time period; limits on the total

production and operational cost per time period; and precedence relations between
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Figure 2.2: Histogram of the 27 project NPV correlations (excluding the diagonal)
used in Table 2.1.

projects. Specifically, in this case we have

X =


x ∈ {0, 1}n :

n∑
i=1

qitxi ≥ wt, t ∈ T ;

n∑
i=1

kitxi ≤ bt, t ∈ T ;

n∑
i=1

citxi ≤ ht, t ∈ T ;

xi ≤ xj, (i, j) ∈ A


. (2.20)

In 2.20, set T represents the time periods within the planning horizon. Parameters qit,

cit, and kit are the expected barrel production, the production and operational costs,

and the capital investment requirements of project i in time period t, respectively.

Parameters wt, ht, and bt are the minimum production level, the maximum allowable

production and operational costs, and the available budget for investment in period t,

respectively. Note that, although variable xi is not indexed in t, the time is implicitly
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considered in the expected barrel production, the production and operational costs,

and the capital investment requirements for each project per period of the planning

horizon (i.e., parameters qit, cit, and kit, respectively). That is, if project i is selected

(i.e., variable xi equals 1), its expected oil production and costs are accounted in the

left-hand side of the constraints, in order to satisfy the minimum production level

and the costs limits for each period of the planning horizon. Further, set A defines

the precedence relations between projects; that is, if selecting project i implies the

selection of project j, then (i, j) ∈ A. The complete list of precedence relations

between the projects used in the case study is given in Eq. (A.1) in A.2.

Our algorithms are implemented in MATLAB and executed on a 64-bit worksta-

tion with AMD Opteron 2.0 GHz CPU and 32 GB of RAM. We use CPLEX 12.5 to

solve both the MILP approximation and the MIQP formulation to optimality.

2.4.2 Numerical results

In this section, computational experiments are conducted to show the accuracy and

efficiency of the MILP approximation proposed in Section 2.3.1 to solve the oil and

gas industry MSVP problem. Figure 2.3 displays the semivariance efficient frontier

(i.e., plots the optimal project portfolio’s semivariance for different values of µ0)

obtained after solving the MILP problem defined in (2.12) and the MIQP formulation

in (2.4) with the side constraints X defined in (2.20). The number of projects and

number of samples in the problems solved are n = 27 and m = 1000, respectively.

Results in Figure 2.3 show that, thanks to the strong positive correlations of the

projects in this case study, the MILP approximation effectively finds the set of non-

dominated portfolios in the frontier. For practical purposes, this result implies that

the MILP approximation in (2.12) can help decision makers to create a semivariance

efficient frontier showing the tradeoff between risk and profitability, without the use of

nonlinear programming techniques. The total time required to compute the efficient
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frontier in Figure 2.3 using the MIQP approach is 84.04 s, whereas the total time

required to compute it using the MILP approach is 20.79 s.
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Figure 2.3: Semivariance efficient frontier of MSVP portfolios for fifty (50) different
benchmark NPV return values, computed using the (exact) MIQP formulation (2.4)

and the MILP approximation (2.12)

To further illustrate the performance of the MILP in (2.12) when the NVPs are

highly correlated, we generate additional instances of the MSVP problem based on

the original oil and gas data. Namely, we generate instances of n = 27 projects with

sample sizes m = 100, 500, 1000, 3000, 5000, 7000, 9000, and 10000. To reach the

desired value of m, additional samples are randomly drawn from the original data.

Regardless of the sample size, we use µ0 = 698, as in the original oil and gas case

study. We compare the proposed MILP approximation with the default CPLEX 12.5

MIQP solver.

Table 2.1 shows the results obtained by the MILP and the MIQP models. The

first column shows the sample size used to estimate the projects’ NPVs return dis-

tributions. The resulting portfolio’s semivariance (i.e., objective function values) are

shown in the second and third columns, whereas the execution times are reported in
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the fourth and fifth columns. The last column shows the computation time speedup,

which is calculated as the ratio between the MIQP to the MILP execution times.

The last row reports the geometric mean of the speedups for all the instances. In this

case, we use the geometric mean because it avoids being overly optimistic with good

ratios obtained on few instances (Lozano and Medaglia 2013).

The results summarized in Table 2.1 show that the MILP approximation finds the

optimal portfolio’s semivariance (i.e., the MIQP solution). As before, good accuracy

performance of the MILP approximation is due to the positive correlated nature of

the project’s NPVs. Although the MIQP approach does slightly better than MILP

approach in the instance with the smallest number of samples; overall, the geometric

mean shows that the MILP approach is roughly eight times faster than the MIQP

approach. This result is expected, given that the size of the MILP does not increase

as the number of samples grows.

No. Portfolio’s Semivariance Time (s)

Samples MIQP MILP Apx. MIQP MILP Apx. Speedup

100 14887 14887 0.47 0.75 0.62
500 15746 15746 1.21 0.48 2.54

1000 14769 14769 3.44 0.58 5.93
3000 14767 14767 4.79 0.60 7.94
5000 14768 14768 8.91 0.52 17.09
7000 14764 14764 15.23 0.55 27.48
9000 14769 14769 21.50 0.59 36.21

10000 14769 14769 34.66 1.53 22.66

Geo. Mean 8.55

Table 2.1: Computational results for instances of the MSVP problem based on the
oil and gas case study with 27 projects, a minimum NPV benchmark return of 698,

and number of samples ranging from 100 to 10000.

We further explore the quality of the MILP approximation scheme in (2.12) for the

case when there are negative correlations present between the projects’ NPVs. To do

so, we use the same instance of Figure 2.3 and multiply the sample NPVs of thirteen
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(13) projects (randomly selected) by −1. The results are shown in Figure 2.4, in which

the quality of the MILP approximation decreases compared to the MIQP. However,

even in this case the MILP approximation scheme provides a fair approximation of

the MSVP efficient frontier. Note that due to this change on the instance data, the

maximum expected NPV that can be obtained from the projects is now lower than

in the original instance shown in Figure 2.3. In this case, the total time required

to compute the efficient frontier in Figure 2.4 using the MIQP approach is 69.22 s,

whereas the total time required to compute it using the MILP approach is 4.49 s.

Although it provides an accurate approximation to the semivariance when NPVs

are positively correlated, the MILP scheme in (2.12) is limited by the fact that the

number of continuous variables grows quadratically with the number of projects in

the problem (i.e., as n2).

Figure 2.4: Semivariance efficient frontier of MSVP portfolios computed using the
(exact) MIQP formulation and the MILP approximation (2.12) in when there are

negative correlations present between the projects’ NPVs.
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2.5 General MSVP instances

In this section we study the accuracy and efficiency of the Benders-based solution

approach proposed in Section 2.3.2 to solve general instances of the MSVP problem.

. We test the limits of our approaches by considering instances with a large number

of projects (n) and samples (m), and with multiple correlation levels among projects’

NPVs. This analysis is motivated by the fact that some oil and gas companies may

have a large number of candidate projects.

To see this, note that the case study considered in Section 4 arises from a project

selection problem in one of the six divisions of an oil and gas company operating

in Latin America. For the particular year of this analysis, the division’s exploration

budget was around US$100!M, which was 20% of the company’s total exploration

budget. To put the project selection problem of this division in context, in 2014 the

top-ranked capital expenditures in exploration of some larger oil and gas companies

ranged between US$1400 M and US$2500 M (EY 2015). Thus, from a budget per-

spective and considering the worldwide scale of operations of larger companies, MSVP

problem instances with possibly hundreds of candidate projects may arise in practice.

Additionally, the number of drilling permits approved by environmental authorities

could be an estimate of the number of candidate projects in a company’s portfolio.

In 2014, the Oil and Gas Conservation Commission of the state of Wyoming alone

approved 3786 different drilling permits, with some companies requesting permits for

the exploration of more than 300 and up to 923 different wells (Oil and Commission

2015).

Also, the consideration of different correlation profiles among NPVs is motivated

by the fact that current petroleum prices may encourage oil and gas companies to

bring new types of projects into their portfolios (e.g., enhanced oil recovery, alter-

native refining processes, biofuels), which can be less (or even negatively) correlated
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with the traditional exploration and production projects. Additionally, the datasets

used in this section include realistic features arising in the oil and gas industry such

as resource and precedence constraints, as well as skewed NPV’s distributions. Sec-

tion 2.5.1 describes the dataset generation procedure used to test our algorithms

and Section 2.5.2 presents the computational results of the Benders-based solution

approach described in Section 2.3.2.

2.5.1 Data

Given the absence of datasets for the MSVP problem in the literature, we generate

our test instances based on the well known PSPLIB library (Kolisch and Sprecher

1997, url: http://www.om-db.wi.tum.de/psplib/library.html). The PSPLIB li-

brary contains problem sets for single- and multi-mode resource-constrained project

scheduling problems. In particular, we use the PSPLIB single-mode datasets listed

in Table 2.2.

No. Projects Filename Location: www.wiwi.tu-clausthal.de/fileadmin/...

100 psp1.sh ...Produktion/Benchmark/RCPSP/testset_ubo100.zip

200 psp1.sh ...Produktion/Benchmark/RCPSP/testset_ubo200.zip

500 PSP1.sh ...Produktion/Benchmark/RCPSP/testset_ubo500.zip

1000 PSP1.sh ...Produktion/Benchmark/RCPSP/testset_ubo1000.zip

Table 2.2: PSPLIB instances used to construct different instances of the MSVP
problem.

Although PSPLIB does not contain instances for the MSVP problem, we use both

the precedence and resource constraints provided in its instances. To construct an

instance for the MSVP problem, we split the set of projects in a PSPLIB instance

into 10 subsets. These subsets represent the time periods in which a project demand

resources in the MSVP problem formulation (cf., (2.20)). For example, if a project

belongs to the second subset, then this project demands resources in the second time
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period in the MSVP problem. This procedure defines the left-hand side coefficients

of the resource constraints in (2.20). To vary the complexity of the MSVP instance,

we set the right-hand side of the resource constraints to be equal to a fraction of the

sum of the left-hand side coefficients. This fraction ranges from the smallest value

that results on a feasible instance of the problem to 1.00 (i.e., the resource constraint

is redundant).

To generate instances of different sample size, additional samples for the NPVs are

generated by adding noise and re-sampling the oil and gas projects’ NPVs described

in Section 2.4. Following the same procedure as in Section 2.4.2, we also generate dif-

ferent correlations levels among the NPVs. These NPVs correlations range from −1 to

1 as shown in Figure 2.5. Precedence constraints are included without modifications.

Figure 2.5: Histogram of the NPV correlations (excluding the diagonal) in a general
instance of the MSVP problem.

To run our computational experiments, we use MATLAB on a 64-bit workstation

with AMD Opteron 2.0 GHz CPU and 32 GB of RAM. We use CPLEX 12.5 to solve
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both the MIQP formulation and the MILP iterations in the Benders-based algorithm.

In Algorithm (1), we use ε = 0.5%, and, for fairness of the comparison, we also set

the CPLEX relative optimality gap to stop the MIQP to ε = 0.5%. We impose a time

limit of 3600 seconds for each experiment.

2.5.2 Numerical results

In this section we compare the performance of the Benders-based solution approach

described in Section 2.3.2 with the MIQP formulation of the MSVP problem. Ta-

ble 2.3 shows the results of our experiments for different instances that are generated

using the procedure described in Section 2.5.1. In total, we generate 452 instances

that include different number of projects and samples, as reported in columns 1–2.

For each instance, we use a minimum expected portfolio NPV, µ0, within the range

shown in columns 4–5. Also, the range of the factor that modifies the right-hand-side

of the resource constraints is reported in columns 6–7.

To illustrate the variability existing in our test instances, columns 8 and 9 in

Table 2.3 summarize the minimum and maximum number of projects selected in the

optimal solution of the MSVP problem. In this case we see that variations in the

input parameters, besides project and sample size, lead to instances of the MSVP

problem with very different solutions. The computational time of the MIQP and

the Benders-based solution scheme are reported in columns 10 and 11, respectively.

All the tested instances are solved within the time limit, implying that the Benders

solution approach obtains the optimal semivariance in the MSVP problem within a

0.5% margin of error. As shown in column 10 (MIQP) and column 11 (Benders), the

average solution time of the Benders solution approach is much lower than the MIQP

approach. This difference increases as the number of samples in the problem grows.

This is not surprising, given that the size of the master problem used in the Benders

solution approach does not change with the number of samples. Instead, the number
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No. No. No. µ0 Resource Projects Time (s)

Projects Samples Instances min max min max min max MIQP Benders iter. Speedup

100 1000 32 10 500 0.64 1.00 16 82 1.32 0.15 3.34 8.07
100 5000 20 10 2000 0.70 1.00 11 74 13.08 0.16 2.00 80.07
100 10000 17 10 1500 0.70 1.00 7 79 43.35 0.27 2.00 158.80

200 1000 99 50 10000 0.27 1.00 4 135 3.15 0.13 2.00 23.97
200 5000 29 50 15000 0.70 1.00 4 200 26.42 0.29 2.00 93.32
200 10000 28 50 15000 0.70 1.00 4 200 104.75 0.47 2.00 224.56

500 1000 63 100 10000 0.04 1.00 2 475 12.46 0.93 2.75 15.24
500 5000 19 100 10000 0.70 1.00 21 364 154.31 1.04 2.00 153.73
500 10000 20 100 10000 0.70 1.00 2 457 341.50 1.63 2.32 210.25

1000 1000 86 100 15000 0.04 1.00 3 852 13.89 1.37 2.64 10.87
1000 5000 19 100 15000 0.70 1.00 22 785 263.92 3.28 2.95 87.78
1000 10000 20 100 15000 0.70 1.00 10 746 571.08 8.80 6.20 76.08

Geo. Mean 59.17

Table 2.3: Comparison between MIQP and Benders-based linear solution scheme for
general instances of the MSVP problem generated from PSPLIB instances of the
resource constrained project scheduling problems. The column Resource indicates
the range of the factor used to constraint the resources available in the instance.

The column Projects indicate the range of number of projects selected in the
optimal solution of the instances. In all instances, differences between the

semivariance values of MIQP and Benders algorithms are within a 0.5% margin of
error, and the Benders algorithm is faster than the MIQP approach.

of samples only affects the computation of the Benders cuts, which is done through

a closed-form calculation. The average number of iterations required by the Benders

solution approach and the average solution time speedup are reported in columns

12 and 13, respectively. The reported speedups show that the Benders approach is

on average 59 times faster than the MIQP, demonstrating the efficiency of using the

Benders solution approach for general large-scale instances of the MSVP problem.
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2.6 Concluding Remarks

In this chapter, we studied the MSVP problem. After presenting a convex quadratic

formulation of the problem, we proposed two alternative linear solution schemes that

effectively solve this problem. These schemes have both practical and computational

advantages over a direct MIQP approach to solve the MSVP. The first scheme is based

on a MILP approximation that overestimates the projects’ portfolio NPV semivari-

ance by solving a single MILP. Aside from providing a formal proof of this overesti-

mation, the computational tests show that the MILP approximation is very accurate

when dealing with projects with positively correlated NPVs. Moreover, for instances

of the MSVP problem with a moderate number of projects in which it is desired to

use a large number of samples to accurately estimate the projects’ portfolio NPV

semivariance, the MILP approximation solution approach is shown to consistently

outperforming the default CPLEX 12.5 MIQP solver that can be used to directly

solve the MSVP problem.

In a more general setting, we proposed a Benders-based linear solution scheme that

allows the decision maker to solve the MSVP problem for any positive or negative level

of correlation among the NPVs. This approach has proven to be effective, consistently

outperforming the default CPLEX 12.5 MIQP solver for general large-scale instances

of the MSVP problem.

The proposed methods have a very broad potential of being applied to other prob-

lems. In particular, note that some of the key characteristics of oil and gas project

selection problems such as non-divisible assets, skewed NPV distributions, resource

and precedence constraints, preference for downside-risk measures, etc., are common

to project selection problems in other industries. Also, both linear solution schemes

can be easily extended to solve MSVP problems with additional combinatorial con-

straints which provide real features on the projects
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Both linear solution schemes can be easily extended to solve MSVP problems with

additional combinatorial constraints which provide real features on the projects (cf.

transaction costs (Woodside-Oriakhi et al. 2013), transaction lots (Lejeune 2013),

cardinality constraints (Bertsimas and Shioda 2009)). Moreover, recent approaches

have focused on efficiently solving the Mean-Variance portfolio allocation problems

with integrality constraints (Bertsimas and Shioda 2009, Lejeune 2013, to name a

few). Thus, extending the Benders solution scheme to address this type of problems

will be a promising topic for future research work.
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Chapter 3

Computing near optimal

value-at-risk portfolios using

integer programming techniques

3.1 Introduction

In the context of portfolio risk and asset liability management, Value-at-Risk (VaR)

measures the exposure of a portfolio to high losses. VaR is prominent in current

regulatory frameworks for banks (see, e.g., the Basel II and Basel III Accords), as

well as for insurance companies (see, e.g., the Solvency II Directive). Thus, VaR

is an important and popular tool for risk management in the modern financial and

risk management literature (see, e.g., Jorion 2001, Wozabal 2012). Accordingly, the

development of risk management methods based on VaR has been the focus of exten-

sive research work (see, e.g., Alexander et al. 2006, Bazak and Shapiro 2001, Darbha

2001, Gaivoronski and Pflug 2004, Kaplanski and Koll 2002, El Ghaoui et al. 2003,

Glasserman et al. 2000, Wozabal et al. 2010, Benati and Rizzi 2007, Gneiting 2011).

Although VaR is widely used to measure the risk of a given portfolio of assets, it is
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not commonly used as a risk measure in the context of computing optimal VaR portfo-

lios; that is, an optimal risk-reward portfolio allocation using VaR as the risk measure.

Instead, other risk measures such as the portfolio return’s Variance (cf., Markowitz

1952), and the portfolio loss’ Conditional Value-at-Risk (CVaR) (cf., Rockafellar and

Uryasev 2000) are more commonly used. This is because, in contrast with the above

mentioned risk measures, VaR is non-convex and of combinatorial nature (cf., Gaivo-

ronski and Pflug 2004). As a result, the VaR portfolio problem is inherently difficult

to solve (see, e.g., Natarajan et al. 2009).

VaR does not (in general) satisfies the commonly accepted axioms of coherent

risk measures (cf., Artzner et al. 1999, Rockafellar et al. 2004). On the other hand,

VaR satisfies the so-called natural risk statistic axioms (Heyde et al. 2006). More

importantly, it has been recently shown in Gneiting (2011) that VaR is an elicitable

risk measure (cf., Bellini and Bignozzi 2013). Loosely speaking, elicitability is related

to how accurately a risk measure can be forecasted. More precisely, as discussed

in Bellini and Bignozzi (2013), it has been shown that while CVaR is generally con-

sidered a better risk measure from a mathematical point of view, it requires a higher

number of samples for an accurate estimation (see Dańıelsson 2011) and it is less

robust than VaR (see Cont et al. 2010).

Because of the computational difficulties of optimally solving general instances of

the VaR portfolio problem, different heuristics have been proposed in the literature.

In particular, consider the work of Gaivoronski and Pflug (2004), Larsen et al. (2002),

Verma and Coleman (2005), Cetinkaya and Thiele (2014). Also, given that the VaR

portfolio problem belongs to the general class of chance constraint optimization prob-

lems (cf., Campi and Calafiore 2005), other approximation approaches that can be

used are based on relaxations of the VaR quantile constraint for which probabilistic

guarantees can be obtained. In particular, consider the work of Campi and Calafiore

(2005), de Farias and Roy (2004), Erdogan and Iyengar (2006).
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When the standard sampling approach (cf., Rockafellar and Uryasev 2000) is used

to model the uncertain asset returns, it is well known (see, e.g., Benati and Rizzi

2007, Feng et al. 2015) that the (resulting) VaR portfolio problem can be solved to

optimality by formulating the problem as a mixed-integer linear program (MILP).

However, this formulation is difficult to solve with current MILP solvers for instances

with medium to large number of assets in the portfolio (see, e.g., Benati and Rizzi

2007). Recently, improvements in the solution of this MILP formulation have been

obtained in Feng et al. (2015), by tailoring special branch-and-cut techniques to solve

the problem, as well as improving the big-M values used on its MILP formulation. Al-

though these improvements allow for the solution of VaR portfolio problem instances

where thousands of scenarios are used to model the uncertain asset returns, the num-

ber of assets that are considered in the portfolio is of the order of 25 assets, similar

to Benati and Rizzi (2007). Moreover, their solution approach is useful only when

the common total wealth constraint is not considered (Feng et al. 2015, Sec. 5).

We present an algorithm to compute near-optimal VaR portfolios that takes ad-

vantage of the VaR portfolio problem MILP formulation and provides a guarantee

of the near-optimality of the solution. The algorithm makes a straight-forward use

of current state-of-the-art MILP solvers (e.g., CPLEX and Gurobi). Furthermore, this

algorithm can be used to obtain guaranteed near-optimal solutions for instances of

the VaR problem with up to a hundred assets and thousands of samples to model the

uncertain asset returns. In particular, this allows the use of VaR for strategic asset

allocation instead of only tactical asset allocation (e.g., by industry sectors). As a

byproduct, we obtain an algorithm to compute tight lower bounds on the VaR port-

folio problem that outperforms the algorithms for this purpose proposed by Larsen

et al. (2002). These algorithms aim at approximating the optimal solution of the VaR

portfolio problem by iteratively constructing appropriate instances of the Conditional

Value-at-Risk portfolio problem.
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The main contribution of the article in relation to the current VaR portfolio allo-

cation literature is to provide a performance-guaranteed heuristic solution approach

for the problem which can be used to address the solution of medium to large-scale

instances of the problem. The near-optimal guarantee provided by the proposed al-

gorithm is based on the relation between two alternate formulations of the portfolio

problem; that is, between minimum risk portfolios satisfying a reward benchmark

and the corresponding maximum reward portfolios satisfying a risk benchmark. It is

well-known that these alternate formulations of the portfolio problem are equivalent

for the mean-variance portfolio model of Markowitz (1952). Krokhmal et al. (2002,

Thm. 3) have shown that this equivalence holds for general convex risk measures and

concave reward functions. We also study the relationship between the alternate risk-

reward and reward-risk formulations of the portfolio problem for more general risk

measures and reward functions. Besides providing the foundation for the proposed

algorithm to find near-optimal solutions for the VaR portfolio problem, these results

extend the characterization provided by Krokhmal et al. (2002, Thm. 3), and rectify

some incorrect statements made in Lin (2009) about alternate formulations of the

VaR portfolio problem.

The rest of the article is organized as follows. In Section 3.2, the MILP formulation

of the VaR portfolio problem is presented. In Section 3.3, the relationship between

the alternate formulations of the portfolio problem is studied for general risk measures

and reward functions. These results are used in Section 3.4 to develop the proposed

algorithm to find near-optimal solutions for the VaR portfolio problem. In Section 3.5,

we illustrate the efficiency of the proposed algorithm by presenting numerical results

on instances of the VaR portfolio problem constructed using historical asset returns

from the US financial market.
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3.2 The MILP formulation of the VaR portfolio

problem

The Value-at-Risk (VaR) of a portfolio measures its exposure to high losses. Specif-

ically, for a given α ∈ (0, 1) (typically 0.01 ≤ α ≤ 0.05), the VaR of a portfolio is

defined as the 1 − α quantile of the portfolio’s losses (cf., Rockafellar and Uryasev

2000); or equivalently as the α quantile of the portfolio’s returns. Here, we follow the

latter definition (as in Gaivoronski and Pflug 2004).

We begin by formally stating the VaR portfolio (allocation) problem; which aims

at minimizing the exposure of the portfolio to high losses while maintaining a min-

imum expected level of profit. Consider n risky assets that can be chosen by an

investor in the financial market. Let ξξ = (ξξ1, . . . , ξξn)T be a random variable in IRn

representing the uncertain returns of the n risky assets from the current time t = 0

to a fixed future time t = T . Let x = (x1, . . . , xn)T ∈ IRn+ denote a portfolio on these

assets; that is, the percentage of the available funds to be allocated in each of the

n risky assets. Following Gaivoronski and Pflug (2004), given α ∈ (0, 1), the α-level

VaR of the portfolio is defined as follows:

VaRα(xTξξ) = Qα(xTξξ), (3.1)

where Qα(xTξξ) is the α quantile of the portfolio’s return distribution; that is, Qα(xTξξ) =

inf{v : Pr(xTξξ ≤ v) > α}. Also, the expected portfolio return from t = 0 to t = T is

given by E(xTξξ). Above, Pr(·) and E(·) respectively indicate probability and expec-

tation.

A (single-period) VaR portfolio problem aims at finding the portfolio x ∈ IRn+ to

be constructed at t = 0, in order to minimize the portfolio’s VaRα, subject to the

portfolio having a given minimum expected return µ0, and possibly satisfying some
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linear diversification constraints. Formally, the VaR portfolio problem is:

min −VaRα(xTξξ)

s.t. E(xTξξ) ≥ µ0

xT11 = 1

x ∈ X ⊆ IRn+,

(3.2)

where 11 ∈ IRn is the vector of all-ones, µ0 ∈ IR is the given target minimum expected

portfolio return, and X ⊆ IRn is a given set defined by linear constraints; which are

typically used to enforce certain diversification constraints on the portfolio x ∈ IRn+.

For the moment, it is assumed that no short positions are allowed in the portfolio;

which is the most common situation in practice (cf., Michaud 1998).

As discussed in Gaivoronski and Pflug (2004), there are two main approaches to

solve (3.2): the parametric approach, in which it is assumed that the asset returns

are governed by a known distribution ((see, e.g., Lobo 2000), where asset returns

are assumed to be normally distributed); and the sampling approach, which uses a

finite number of samples ξ1, . . . , ξm ∈ IRn of the asset returns (see, e.g., Gaivoronski

and Pflug 2004), that are typically obtained from historical data, simulations, or a

combination of both. The latter approach is used in the well-known Conditional

Value-at-Risk (CVaR) portfolio model (cf., Rockafellar and Uryasev 2000). Here, we

adopt the sampling approach, which following Gaivoronski and Pflug (2004, Section
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2.1) leads to the VaR portfolio problem (3.2) being written as:

zVaR := min −ν

s.t. ν = minbαmc+1{xTξ1, . . . , xTξm}

xTµ ≥ µ0

xT11 = 1

x ∈ X ⊆ IRn+, ν ∈ IR,

(3.3)

where ν represents the VaRα(xTξξ), the vector of mean return estimates is, for simplic-

ity, considered to be given by µ := (1/m)
∑m

j=1 ξ
j. However, our results are indepen-

dent of this choice, and a variety of other estimation methods can be used (see, e.g.,

Black and Litterman 2001, Meucci 2007). Also, for k ∈ {1, . . . ,m}, and uj ∈ IR, j =

1, . . . ,m, the k-th smallest element in {u1, . . . , um} is denoted by mink{u1, . . . , um}

(i.e., mink{u1, . . . , um} is the k-th order statistic u(k) in {u1, . . . , um}).

Problem (3.3) is equivalent (see, e.g., Benati and Rizzi 2007, Feng et al. 2015) to

the following mixed-integer linear program (MILP):

zVaR = max ν

s.t.
m∑
j=1

yj = bαmc

Myj ≥ ν − xTξj, j = 1, . . . ,m

xTµ ≥ µ0

xT11 = 1

x ∈ X ⊆ IRn+, ν ∈ IR

yj ∈ {0, 1}, j = 1, . . . ,m,

(3.4)

where M is a big enough constant (i.e., M > 2 max{|ξji | : i ∈ {1, . . . , n}, j ∈

{1, . . . ,m}}), and as in (3.3), ν represents the VaR of the portfolio x ∈ IRn+. The
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extra binary variable yj denotes whether ν is to the right (yj = 1) or to the left

(yj = 0) of the sample portfolio return xTξj, for j = 1, . . . ,m.

In the literature, it is common to consider two alternate formulations of the port-

folio allocation problem. That is, besides the portfolio allocation formulation in which

one seeks to obtain the minimum risk portfolio satisfying a reward benchmark (as in

Eq. (3.2) above), the alternate formulation in which one seeks to obtain the maximum

reward portfolio satisfying a risk benchmark is commonly considered. It is well-known

that these alternate formulations of the portfolio problem are equivalent for the clas-

sical mean-variance portfolio model of Markowitz (1952) (see, e.g., Krokhmal et al.

2002). Due to the non-convexity of the VaR risk measure, it is not surprising that

this equivalence does not hold in general for the VaR portfolio problem considered

here. However, the relationship between these two alternate formulations of the VaR

portfolio problem is fundamental to develop the algorithm presented here to address

the solution of this problem. Below, we formally present the alternate maximum

reward portfolio satisfying a minimum VaR risk benchmark ν̃ ∈ IR.

max E(xTξξ)

s.t. −VaRα(xTξξ) ≤ ν̃

xT11 = 1

x ∈ X ⊆ IRn+.

. (3.5)

Using the sampling approach, and similar to (3.2), problem (3.5) can be reformulated
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as the following MILP:

z∗VaR = max xTµ

s.t.
∑
j∈I

yj ≤ bαmc

Myj ≥ ν̃ − xTξj, j = 1, . . . ,m

xT11 = 1

x ∈ X ⊆ IRn+, v ∈ IR

yj ∈ {0, 1}, j = 1, . . . ,m.

(3.6)

The relationship between the two alternative formulations of the VaR portfolio

problems (3.4) and (3.6) will be analyzed in the next section. Moreover, in Section 3.4,

this relationship is exploited to obtain approximate solutions of the VaR portfolio

problem (3.4) with a near-optimality guarantee.

3.3 On alternate portfolio allocation problem for-

mulations

In portfolio allocation problems one seeks to find the portfolio with minimum risk

subject to a constraint on the minimum level of the portfolio’s reward. Alternatively,

the portfolio allocation problem is also formulated as the problem of obtaining the

portfolio with maximum reward subject to a constraint on the maximum level of the

portfolio’s risk. Similar to Krokhmal et al. (2002), these two problems can be formally

and respectively stated as follows:

β(a) = min φ(x)

s.t. R(x) ≥ a

x ∈ X ,

(3.7)
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α(b) = max R(x)

s.t. φ(x) ≤ b

x ∈ X ,

(3.8)

where x ∈ IRn represents the portfolio of assets, φ(x) : IRn → IR measures the port-

folio’s risk, R(x) : IRn → IR measures the portfolio’s reward, and X ∈ IRn represents

the set of admissible portfolios (e.g., X could contain long only positions constraints

or benchmark constraints). Also, a, b,∈ IR, respectively represent the minimum re-

quired reward, and the maximum allowed risk. Throughout, we assume that the set

X ∈ IRn is compact (any position on an asset is typically constrained to be within

certain lower and upper bounds), and use the usual convention β(a) = +∞ (resp.

α(b) = −∞) if problem (3.7) (resp. (3.8)) is infeasible.

For the classical mean-variance portfolio allocation model introduced by Markowitz

(1952), it is well known that there is a one-to-one correspondence between the optimal

portfolios obtained from these two models (i.e., (3.7) and (3.8)). In more generality,

it has been shown by Krokhmal et al. (2002, Thm. 3) that this type of one-to-one

relationship will hold in more generality whenever the risk measure φ(x) is convex

and the reward measure R(x) is concave.

Not surprisingly, when the risk measure φ(x) is defined by the portfolio’s VaR,

there is not a one-to-one correspondence between the portfolio allocation models (3.7)

and (3.8). However, as it will be illustrated therein, when using VaR as a risk measure,

relaxations of both these problems are useful in addressing the solution of (3.7). Given

this, and the fact that Lin (2009) misleadingly shows an example in which there is

equivalence between the portfolio allocation problems (3.4) and (3.6), it is worth to

study below the relationship between these two problems in a general setting when

the risk measure φ(x) is not necessarily convex and/or the measure of reward IR(x)

is not necessarily concave; extending Krokhmal et al. (2002, Thm. 3) to provide
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both sufficient and necessary conditions for both (3.7) and (3.8) to have a one-to-one

correspondence. These results are formally stated in the remainder of this section.

We define (recall that by assumption X ⊆ IRn is compact) the minimum risk and

maximum reward that any portfolio in the admissible set X ⊆ IRn can have as:

b = min φ(x)

s.t. x ∈ X
and

ā = max R(x)

s.t. x ∈ X .
(3.9)

Theorem 3.3.1 below, provides sufficient and necessary conditions for a one-to-one

correspondence between the portfolio allocation problems (3.7) and (3.8).

Theorem 3.3.1 Let I ⊆ [α(b), ā] be an interval. The relation a = α(β(a)) holds for

any a ∈ I if and only if β(a) is strictly increasing for all a ∈ I.

Proof. First notice that β(a) is non-decreasing as a function of a. Now, assume that

there exists a1 ∈ I such that a1 < α(β(a1)) =: a2. Then β(a1) ≤ β(a2) as β(·) is

non-decreasing, and β(a2) = β(α(β(a1))) ≤ β(a1) as β(α(b)) ≤ b for all b. Therefore,

β(a1) = β(a2). To prove the other direction, assume β(a) is not strictly increasing in

I. Then, there exist a1, a2 ∈ I with a1 < a2 such that β(a1) = β(a2). Then, using

that α(β(a)) ≥ a for all a, we obtain α(β(a1)) = α(β(a2)) ≥ a2 > a1. (See Figure 3.1

for an illustration of the proof.)

α(b)

b

a1 a2
a

β(a)

Figure 3.1: Illustration of Theorem 3.3.1.
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As mentioned before, it is shown in (Krokhmal et al. 2002, Thm. 3) that convexity

in the risk measure, and concavity in the reward, provides sufficient conditions for

Theorem 3.3.1 to hold. This result can be obtained as a corollary of Theorem 3.3.1.

Corollary 3.3.2 Let φ(x) : IRn → IR be convex and R(x) : IRn → IR be concave.

Assume {a ∈ [α(b), ā] : β(a) > b} is non-empty and let a = inf{a ∈ [α(b), ā] : β(a) >

b} Then a = α(β(a)) for any a ∈ [a, ā].

Proof. From Theorem 3.3.1 is enough to show that β(·) is strictly increasing on

(a, ā]. For sake of contradiction, let a < a1 < a2 ≤ ā be such that β(a1) = β(a2). Let

xi := argmin{φ(x) : R(x) ≥ ai, x ∈ X} for i = 1, 2. Thus φ(x1) = φ(x2). Let x̂ be

the optimal min-risk portfolio, i.e. φ(x̂) = b and R(x̂) = α(b). Let ε := a2−a1
2a2−a1−α(b) .

Then 0 < ε < 1. Let x′ = εx̂+ εx1 + (1− 2ε)x2. From the convexity of φ, we get that

φ(x′) = φ(εx̂+εx1+(1−2ε)x2) ≤ εφ(x̂)+εφ(x1)+(1−2ε)φ(x2) = εb+(1−ε)φ(x1) < φ(x1).

Also, by the concavity of R(x), we get that

R(x′) ≥ εR(x̂) + εR(x1) + (1− 2ε)R(x2) ≥ εα(b) + εa1 + (1− 2ε)a2 = a1.

Thus, x1 6= argmin{φ(x) : R(x) ≥ a1, x ∈ X}, a contradiction.

Krokhmal et al. (2002, Thm. 3) assume a regularity condition for each value

of the pair (a, b). In contrast, in Corollary 3.3.2, the ranges of a and b for which

the one-to-one correspondence between the alternative formulations holds is precisely

characterized.

Although sufficient, the convexity condition in Corollary 3.3.2 is not necessary to

have the one-to-one correspondence between the portfolio allocation problems (3.7)

and (3.8). To illustrate this, we consider the following simple example in which the

risk measure φ(x) is related to the well-known Huber’s function (see, e.g., Huber and
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Ronchetti 2009) that commonly appears in robust statistics.

Example 3.3.3 Let κ > 1 be given. Let the functions φ : IR→ IR and R : IR→ IR be

given by

φ(x) =

 x2 if |x| ≤ κ

x+ κ(κ− 1) if |x| ≥ κ
,

and R(x) = x. Also, let the set X = [−2κ, 2κ]. The function φ(x) is not convex, as

2φ(κ) = 2κ2 > (κ − 1)2 + κ + 1 + κ(κ − 1) = φ(k − 1) + φ(κ + 1) (see Figure 3.2

(left)). Thus the conditions of Corollary 3.3.2 are not satisfied. However, it is easy

to see that the function β(a) is strictly increasing in the domain a ≥ α(b) = 0 (see

Figure 3.2 (right)). Note that by changing the domain X = IR+ and R(x) = x2 one

has a similar example where β(a) is strictly increasing but now neither φ(x) is convex

nor R(x) is concave.

x

φ(x)

κ

0

a

β(a)

κ

α(b) = 0

Figure 3.2: Illustration of Example 3.3.3. Function φ(x) (left), and corresponding
β(a) (right).

As mentioned earlier, when the risk measure φ(x) is defined by the portfolio’s

return VaR, there is in general not a one-to-one correspondence between the portfolio

allocation problems (3.7) and (3.8). This is formally stated in the next remark, which

corrects the erroneous characterization between problems (3.7) and (3.8) given in Lin

(2009).
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Remark 3.3.4 When the risk measure φ(x) in (3.7) is defined by the portfolio’s

return Value-at-Risk (VaR) β(a) is not in general strictly increasing (in the domain

a ≥ α(b)). This is illustrated with the numerical example below.

Example 3.3.5 Consider the instance of Problem (3.7) in which x ∈ IR2 represents

the percentage of money invested in the two assets Microsoft (MSFT) and 3M (MMM).

Let X = {x ∈ IR2
+ : x1 + x2 = 1}. Also, let φ(x) and R(x) respectively be the

estimates of the portfolio’s return VaR5% and expected portfolio return based on a

sample monthly returns of (MSFT) and (MMM), from April 1986 to December 2006

(source Wharton Research Data Services (WRDS)). After computing β(a) in (3.7)

one obtains Figure 3.3.
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Figure 3.3: Instance of β(a) (cf., (3.7)) not being strictly increasing when the
portfolio’s risk measure is the VaR of the portfolio returns.

Note that the areas of Figure 3.3 in which the risk remains constant while the

expected portfolio return increases show that the VaR is not strictly increasing as a

function of the expected portfolio return.

We finish this section by showing that one can take advantage of the alternative

formulations (3.7) and (3.8) to obtain a measure of the closeness to optimality of a
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feasible solution of (3.7) when an appropriate bound on the optimal value of (3.8)

can be obtained.

Lemma 3.3.6 Let a ≤ ā. If α(b) < a, then β(a) ≥ b.

Proof. Notice that if b < b then by definition β(a) ≥ b > b. Thus we assume b ≥ b.

For the sake of contradiction assume β(a) < b. Then there exists x ∈ X such that

R(x) ≥ a and φ(x) < b. Thus x is a feasible solution for (3.8), which implies α(b) ≥ a,

a contradiction.

Proposition 2 Given a ≤ ā. Let x̃ ∈ IRn be a feasible solution of (3.7) and δ ≥ 0

be a given tolerance. If α(φ(x̃)− δ) < a. Then φ(x̃)− δ ≤ β(a) ≤ φ(x̃).

In what follows, we use Proposition 2 to provide an algorithm to address the

solution of the VaR portfolio problem. As mentioned earlier, in this case, solving the

associated minimum risk portfolio problem (3.7) or the maximum return portfolio

problem (3.8) to optimality is inherently difficult.

3.4 The algorithm

In this section, we provide an algorithm to obtain approximate solutions for the MILP

formulation of the VaR portfolio problem (3.4). First, the goal of the algorithm is to

find a near-optimal feasible solution for (3.4) (cf., Section 3.4.1). Next, the goal is to

provide a near-optimality guarantee for this feasible solution (cf., Section 3.4.2).
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3.4.1 Lower bound for optimal VaR

Let us denote [m] := {1, . . . ,m}. Now, given J ⊆ [m], let J c := [m] \ J , and consider

the following problem:

zJ := max ν

s.t.
∑
j∈J

yj = bαmc

Myj ≥ ν − xTξj, j ∈ J

0 ≥ ν − xTξj, j ∈ J c

xTµ ≥ µ0

xT11 = 1

x ∈ X ⊆ IRn+, v ∈ IR

yj ∈ {0, 1}, j ∈ J.

(3.10)

Note that (3.10) is the optimization problem obtained from (3.4) by setting yj = 0

for all j ∈ J c. Hence zJ ≤ zVaR for all J ⊆ [m]. In Algorithm A below, the

formulation (3.10), together with an appropriate update of the set J , is used iteratively

to obtain near-optimal feasible solutions to (3.4). Specifically, after setting an initial

set J = J0 ⊂ [m] problem (3.10) is solved. Let yJ ∈ {0, 1}|J | be the optimal value of

the binary variables of (3.10). These values are used to construct the linear program

below obtained by fixing the binary variables y ∈ {0, 1}m in (3.4) such that yJ = yJ ,
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and yj = 0, for all j ∈ J c.

max ν

s.t. MyJj ≥ ν − xTξj, j = 1, . . . ,m

xTµ ≥ µ0

xT11 = 1

x ∈ X ⊆ IRn+, ν ∈ IR.

(3.11)

After solving (3.11), the shadow prices associated with its big-M constraints (the

first set of constraints in (3.11)) are used to update the set J ⊆ [m]. That is, the

set J is augmented by the samples’ indices whose corresponding big-M constraints

in (3.11) have a positive shadow price. This type of update is similar to the one used

when solving MILPs using branch and price techniques (see, e.g., Mehrotra and Trick

2007). As described in Algorithm A, this procedure is applied iteratively until no

further improvement in the lower bound of (3.4) can be obtained. The VaR of the

portfolio obtained at the end of the algorithm serves as a lower bound for the optimal

VaR portfolio problem.

Algorithm A Lower bound of optimal VaR.

1: procedure Lower bound(α, µ0, J0 ⊆ [m], |J0| ≥ bαmc)
2: J ← J0
3: Jold ← [m]
4: while Jold ∩ J 6= Jold do
5: yJ ← argy(P J)
6: d← shadow prices of the big-M constraints in (3.10)
7: Jold ← J
8: J ← {i ∈ J : yJi = 1} ∪ {i ∈ J c : di > 0}
9: end while

10: return x̃← argx (3.10) . feasible portfolio for (3.4)
11: return ν̃ ← argv (3.10) . lower bound for (3.4)
12: return ỹ ← argy (3.10), I0 ← {i ∈ [m] : ỹi = 1} . to initialize Algorithm B in

Section 3.4.2
13: end procedure
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As it will be shown in Section 3.5, Algorithm A provides a tighter lower bound ν̃ =

zJ , for the VaR portfolio problem (3.4) than those obtained using the CVaR-based

algorithms proposed by Larsen et al. (2002) in a comparable running time. More

importantly, Algorithm A provides a feasible solution x̃, ν̃, for the VaR portfolio

problem (3.4) whose near-optimality can be guaranteed using Algorithm B, which is

presented in the next section.

3.4.2 Upper bound for optimal return

In this section, the aim is to obtain a measure of the closeness to optimality of the

feasible solution x̃, ṽ, for the VaR portfolio problem obtained by Algorithm A. For

this purpose, we first apply Proposition 2 to the alternative formulations of the VaR

portfolio problem (3.4) and (3.6). Specifically, let δ > 0 be a specified tolerance,

and x̃ ∈ IRn+ be a feasible portfolio for (3.4), with associated VaR ν̃; that is, ν̃ =

minbαmc+1{x̃Tξ1, . . . , x̃Tξm}. Then, from Proposition 2, it follows that if the optimal

value of (3.6) satisfies

z∗VaR < µ0 ⇒ ν̃ − δ ≤ zVaR ≤ ν̃. (3.12)

That is, the near-optimality of the feasible portfolio x̃ ∈ IRn+ to the optimal portfolio

corresponding to the VaR portfolio problem (3.4), can be measured in terms of δ ∈

IR++.

Clearly, directly solving (3.6) to check whether condition z∗VaR < µ0 in (3.12) holds

for a feasible portfolio x̃ ∈ IRn+ of (3.4) is as computationally inefficient as directly

solving (3.4). Therefore, we present an appropriate upper bound for the alternative

formulation of the VaR portfolio problem (3.6) that allows to efficiently guarantee

the near-optimality of the feasible solutions of the VaR problem obtained after using

Algorithm A. Specifically, given I ⊆ [m] with |I| ≥ bαmc and ν̃, a lower bound (3.4)
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(i.e, ν̃ ≤ zVaR), consider the problem

µI := max xTµ

s.t.
∑
j∈I

yj ≤ bαmc

Myj ≥ ν̃ − xTξj, j ∈ I

xT11 = 1

x ∈ X ⊆ IRn+,

yj ∈ {0, 1}, j ∈ I.

(3.13)

Notice that µ[m] = z∗VaR (cf., (3.6)). Next, we show that (3.13) is a relaxation of (3.6).

Proposition 3 Let I ⊆ [m] with |I| ≥ bαmc. Then problem (3.13) is a relaxation

of (3.6). That is, µI ≥ z∗VaR.

Proof. Let x ∈ IRn+, y ∈ {0, 1}m be feasible for (3.6), then we have that xT11 = 1, and

x ∈ X . Moreover, the fact that there exist y ∈ {0, 1}m such that
∑

j∈[m] yj ≤ bαmc,

and Myj ≥ ν̃ − xTξj, for all j ∈ [m], implies that ν̃ ≤ minbαmc+1{xTξj : j ∈ [m]} ≤

minbαmc+1{xTξj : j ∈ I}. Thus, yI ∈ {0, 1}|I| satisfies
∑

j∈I yj ≤ bαmc, and Myj ≥

ν̃ − xTξj, for all j ∈ I. Thus, (x, yI) is a feasible solution for (3.13) with objective

value xTµ.

Notice that from Proposition 3, it follows that

µI < µ0 ⇒ z∗VaR < µ0.

In Algorithm B below, we take advantage of this fact by iteratively using the formula-

tion (3.13), together with an appropriate update of the set I, with the aim of showing

the near-optimality of the feasible solution of the VaR portfolio problem (3.4) ob-

tained from Algorithm A. The set I is updated by heuristically adding samples from

the set [m] \ I (see, Algorithm B for details) until condition (3.12) is satisfied.
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Algorithm B Upper bound for optimal return

1: procedure Upper bound(α, β, µ0, δ, Itermax, and x̃, ν̃, I0 from Algorithm (A))
2: m′ ← b(βαm)c
3: I ← I0,
4: ν ← ν̃ + δ
5: µI ← x̃Tµ
6: while µI ≥ µ0, I ⊂ [m], and Iter ≤ Itermax do
7: µI ← objective value of (3.13) . +∞ if (3.13) is infeasible
8: x← argx (3.13) . optimal portfolio for (3.13)
9: Iold ← I

10: ν ′ ← minm
′+1{xTξj : j ∈ [m] \ I0}

11: I ← Iold ∪ {j ∈ [m] \ Iold : xTξj ≤ ν ′}
12: end while
13: if Iter < Itermax then
14: return The δ near-optimality of x̃, ν̃ is proven
15: else
16: return The δ near-optimality of x̃, ν̃ could not be verified
17: end if
18: end procedure

3.5 Numerical Results

In this section, we present numerical results to compare the performace of Algo-

rithm A against the CVaR-based algorithms proposed by Larsen et al. (2002) to

obtain lower bounds on the VaR portfolio problem (3.4). Moreover, we compare the

performance of Algorithm A and Algorithm B to obtain guaranteed near-optimal

solutions for the VaR portfolio problem (3.4), against directly solving (3.4) using

state-of-the-art mixed integer linear programming (MILP) solvers.

To carry out the experiments we use the daily returns data from Kenneth R.

French’s website http://mba.tuck.dartmouth.edu/pages/faculty/ken.french on 100

portfolios formed on size and book-to-market (10 x 10). The data can be downloaded

at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/100_Portfolios_

10x10_Daily_TXT.zip. From this data, instances of the VaR portfolio problem (3.4)

having number of assets n ∈ [30, 90], number of samples m ∈ [1000, 3500] (for every

value of n), and expected profit µ0 ∈ {µ− + i
k+1

(µ+ − µ−) : i = 1, . . . , k}, with k = 6

59

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/100_Portfolios_10x10_Daily_TXT.zip
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/100_Portfolios_10x10_Daily_TXT.zip


and µ+ (resp. µ−) is the largest (lowest) asset mean return. Similar to Benati and

Rizzi (2007), Feng et al. (2015), the parameter α ∈ (0, 1) (cf., (3.1)) is set to the

popular value used in practice of α = 0.01.

All the code necessary to create the instances of the optimization problems dis-

cussed throughout the article is implemented using Matlab 2016a and the modelling

language YALMIP, which is available at users.isy.liu.se/johanl/yalmip/. Gurobi

6.5.0 is used to obtain the solution of all the necessary linear programs and MILPs

on a Intel(R) Core (TM) i3-2310M CPU @ 2.10 GHz, 4GB RAM machine.

3.5.1 Lower bound for portfolio’s VaR

We compare the performace of Algorithm A against the CVaR-based algorithms pro-

posed by Larsen et al. (2002) to obtain lower bounds on the VaR portfolio prob-

lem (3.4).

In all instances, Algorithm A is initialized by setting J0 as the first m0 = d2αme

samples of the instance. Also, the algorithms being compared are allowed to run for

a maximum time of up 3600 seconds.

The lower bound results on the VaR portfolio problem (3.4) obtained by the

three (3) algorithms are summarized in Table 3.1, Figure 3.4, 3.5, and 3.6. In Ta-

ble 3.1, for every combination of the number of assets (n) and the number of sam-

ples (m), an average is taken over the instances with different values of µ0, between

the values µmin
0 and µmax

0 . For each algorithm, the column “gap”, indicates the relative

percentage error between the lower bound on the VaR portfolio problem (3.4) and

its optimal solution provided by solving the MILP (3.4). In the few instances when

the MILP (3.4) cannot be solved within the maximum allowed time (of 3600 s.), the

optimal solution of (3.4) is replaced by the best (higher) lower bound obtained from

the lower bound algorithms. Thus, the gap columns in Table 3.1 clearly show that

Algorithm A provides tighter lower bounds on the VaR portfolio problem (3.4), than
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the ones provided by Algorithm 1 and Algorithm 2 (cf., Larsen et al. 2002). Also,

it is clear that the percentage by which Algorithm A provides tighter bounds than

Algorithms 1 and 2 is substantial and ranges between 1%− 7% on average. A more

granular evidence of this result is shown in Figures 3.4 and 3.5. In these figures, for

each algorithm, the relative gap with respect to the optimal value of the VaR portfolio

problem (3.4) for each of the instances considered is plotted in the y-axis, while the

x-axis labels indicate the values of the number of samples (m), and expected return

(µ0) of the instance. Also, the number of assets (n) is indicated in each of the plots.

In the next section, the tightness of the bounds provided by Algorithm A will be

key to be able to guarantee the near-optimality of the solutions for the VaR portfolio

problem (3.4) provided by Algorithm A.

As shown in Table 3.1, the tighter bounds obtained by Algorithm A, in comparison

with Algorithm 1 and Algorithm 2 in Larsen et al. (2002), are obtained in compara-

ble running times. As mentioned earlier, in Table 3.1, for every combination of the

number of assets (n) and the number of samples (m), an average is taken over the

instances with different values of µ0, between the values µmin
0 and µmax

0 . For each algo-

rithm, the column “T/T ∗”, indicates the average (over instances with different values

of µo, and equal n, m) of the ratio between the time taken by each of the algorithms

and the minimum of these times on an instance with a particular µ0 ∈ [µmax
0 , µmin

0 ].

From these results it is clear that the average times of the three algorithms are mostly

comparable. In Figure 3.6, the average running time information of the algorithms is

provided. It is clear from this figure that most of the time, the average time taken by

the three algorithms is similar, and that even when there are significant differences

between the times, such differences are not of significant practical relevance, since the

times required by the algorithms are in the range of at most hundreds of seconds.
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Size µ0 Alg. A Alg. 1 Alg. 2

n m min max gap T/T ∗ gap T/T ∗ gap T/T ∗

30 1000 0.019 0.058 0.04 1.1 1.23 1.4 0.94 1.2
30 1500 0.043 0.071 0.08 1.4 1.37 1.2 1.48 1.0
30 2000 -0.018 0.056 0.29 1.1 3.02 1.1 2.32 1.0
30 2500 0.012 0.046 0.00 1.1 2.85 1.2 2.56 1.0
50 1000 0.015 0.069 0.00 1.0 2.23 1.2 1.13 1.1
50 1500 0.062 0.075 0.14 1.3 1.59 1.1 1.59 1.0
50 2000 -0.018 0.056 0.29 1.1 2.87 1.1 2.45 1.0
50 2500 0.012 0.068 0.00 1.1 3.04 1.0 3.54 1.0
50 3000 0.005 0.054 0.00 1.4 7.00 1.0 6.22 1.1
50 3500 0.012 0.058 0.00 1.1 1.14 1.0 1.14 1.0
70 1000 0.015 0.069 0.00 1.0 1.50 2.6 2.71 4.3
70 1500 0.039 0.075 0.06 1.3 0.84 1.5 1.30 1.2
70 2000 -0.017 0.061 0.00 1.2 1.96 1.9 1.80 1.8
70 2500 0.012 0.068 0.00 2.1 5.82 2.6 4.78 2.4
70 3000 0.005 0.018 0.00 6.0 4.33 9.3 2.32 1.0
70 3500 0.012 0.069 0.12 2.1 2.94 1.0 2.73 1.1
90 1000 0.007 0.048 0.00 1.1 7.55 1.1 2.37 1.1
90 1500 0.063 0.084 0.00 1.5 0.94 1.0 0.94 1.0
90 2000 0.061 0.061 0.02 1.5 1.68 1.0 0.28 1.0
90 2500 0.012 0.068 0.28 3.4 7.49 1.1 6.28 1.0
90 3000 0.005 0.068 0.00 2.9 2.38 1.5 2.09 1.0
90 3500 0.012 0.069 0.00 3.5 3.12 1.0 3.43 1.1

Table 3.1: Performance of Algorithm A vs. Algorithm 1 and Algorithm 2 in (Larsen
et al. 2002) to compute lower bounds on the VaR portfolio allocation problem (3.4).

The column gap indicates the VaR lower bound % gap to the optimal VaR. The
column T/T ∗, is the ratio between the time required to obtain the lower bound T

against the minimum time needed by the three algorithms T ∗.
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Figure 3.4: Comparison of the relative gap between the optimal value of the VaR
portfolio problem (3.4) and the lower bounds for (3.4) provided by Algorithm A,

and Algorithms 1 and 2 by Larsen et al. (2002).
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Figure 3.5: Comparison of the relative gap between the optimal value of the VaR
portfolio problem (3.4) and the lower bounds for (3.4) provided by Algorithm A,

and Algorithms 1 and 2 by Larsen et al. (2002).

3.5.2 Near-optimal VaR portfolio

In this section, we show that by using Algorithm A and Algorithm B, one can

efficiently compute guaranteed near-optimal solutions for the VaR portfolio prob-
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Figure 3.6: Comparison of the average time in seconds needed to run Algorithm A,
and Algorithm 1 and 2 in (Larsen et al. 2002) to obtain lower bounds for the VaR
portfolio problem (3.4), for instances with given n,m and different values of µ0 (cf.

Table 3.1).

lem (3.4). For that purpose, to obtain the results described below, we first run Algo-

rithm A with J0 being the first m0 = d2αme samples of the instance. The resulting

portfolio x̃ ∈ IRn+, VaR lower bound ν̃ ∈ IR, and the set I0 (cf., end of Algorithm A)

are then used to initialize Algorithm B, Also, we set β = 0.1, and δ = 0.01ν̃. That

is, we run Algorithm B seeking to provide a 1% near-optimality guarantee for the

portfolio x̃ ∈ IRn+. In Table 3.2 and Figure 3.7, the results of finding a near opti-

mal solution to the VaR portfolio problem using Algorithms A and B versus directly

solving the MILP formulation (3.4) is compared. For the purpose of brevity, of all

the instances considered, Table 3.2 shows, for a particular number of assets n and

samples m, the instances in which the MILP solver finds the optimal solution of

the VaR problem in the shortest and longest time (depending on the value of µ0).

By comparing the columns “VaR∗” and “VaR” in Table 3.2, it is clear that the lower

bound on the VaR portfolio problem (3.4) it’s equal or very close to the optimal value

of the VaR portfolio problem (3.4) (as illustrated also in Figures 3.4 and 3.5). Note
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that these lower bounds are well within the 1% desired tolerance. In Table 3.2, T ∗

is the time taken to solve the MILP formulation (3.4) of the VaR portfolio problem,

and T is the time that is taken to obtain a guaranteed near optimal solution for the

VaR portfolio problem using Algorithms A and B. Thus, it is clear from the T ∗/T

columns in Table 3.2 that the latter approach is between 1.2 to 46 times faster than

directly solving the MILP formulation. On average, the speed up provided by using

Algorithms A and B is approximately of 14 times. Given the time is takes to solve

some of the instances of the VaR portfolio, this speed up would be crucial to solve

practical instances of the VaR portfolio problem. The effect of the speed up provided

by Algorithms A and B can be seen graphically in Figure 3.7, where the time required

by Algorithms A and B, versus the time required to solve the MILP formulation of

the VaR optimization problem instances in Table 3.2, is shown in a semilogarithmic

plot.
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Figure 3.7: Comparison of the time taken by Algorithm (A) and (B) vs directly
solving the MILP formulation of the VaR portfolio problem (3.4) for instances with

different values of n, m, and µ0.
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Full MILP Alg. A & B Full MILP Alg. A & B

n m µ0 VaR∗ T∗ VaR T T∗/T n m µ0 VaR∗ T∗ VaR T T∗/T

30 1000 0.058 -2.554 2.2 -2.560 1.78 1.2 70 1500 0.075 -2.002 29.5 -2.008 2.6 11.2
30 1000 0.042 -1.982 3.4 -1.982 1.13 3.0 70 1500 0.039 -1.684 110.8 -1.684 8.8 12.6
30 1500 0.071 -1.968 4.7 -1.968 1.43 3.3 70 2000 0.061 -1.836 49.4 -1.836 23.5 2.1
30 1500 0.049 -1.702 58.4 -1.702 1.77 32.9 70 2000 -0.002 -1.703 467.6 -1.703 34.0 13.7
30 2000 0.026 -1.721 42.7 -1.727 2.7 15.8 70 2500 0.068 -2.121 196.4 -2.121 41.3 4.7
30 2000 -0.018 -1.721 115.8 -1.727 2.59 44.8 70 2500 0.034 -1.876 2860.1 -1.876 589.6 4.8
30 2500 0.057 -1.951 158.7 -1.951 10.42 15.2 70 3000 0.068 -2.024 1101.1 -2.024 74.1 14.8
30 2500 0.034 -1.951 250.6 -1.951 10.01 25.1 70 3000 0.005 *** *** -1.851 667.7 ?
50 1000 0.069 -2.449 2.8 -2.449 0.98 2.8 70 3500 0.069 -1.943 2960.4 -1.957 63.7 46.5
50 1000 0.048 -1.973 7.0 -1.973 1.54 4.5 70 3500 0.046 *** *** *** *** ***
50 1500 0.075 -2.041 10.5 -2.050 3.34 3.1 90 1000 0.076 -2.325 6.5 -2.339 2.0 3.1
50 1500 0.042 -1.699 52.0 -1.699 1.83 28.5 90 1000 0.048 -1.906 30.0 -1.906 2.3 13.0
50 2000 0.011 -1.721 113.6 -1.727 10.68 10.7 90 1500 0.084 -2.313 9.0 -2.313 1.8 4.8
50 2000 0.026 -1.721 234.5 -1.727 10.55 22.2 90 1500 0.053 -1.669 353.0 -1.669 8.0 44.0
50 2500 0.068 -2.164 91.9 -2.164 15.99 5.8 90 2000 0.061 -1.825 154.8 -1.825 27.0 5.7
50 2500 0.034 -1.920 554.3 -1.920 46.33 12.0 90 2000 0.046 -1.696 803.4 -1.696 42.1 19.1
50 3000 0.067 -2.028 531.7 -2.004 346.59 1.5 90 2500 0.068 -2.115 706.5 -2.115 63.8 11.1
50 3000 0.005 -1.887 1933.9 -1.887 49.15 39.4 90 2500 0.023 -1.826 1855.4 -1.826 1483.7 1.2
50 3500 0.069 -1.982 589.4 -1.984 25.53 23.1 90 3000 0.068 -2.024 2237.0 -2.024 101.4 22.1
50 3500 0.046 *** *** -1.849 2003.1 ? 90 3000 0.043 *** *** *** *** ***
70 1000 0.069 -2.296 4.1 -2.296 3.21 1.3 90 3500 0.069 -1.931 3479.2 -1.931 333.1 10.4
70 1000 0.048 -1.901 13.5 -1.901 2.56 5.3 90 3500 0.035 *** *** *** *** ***

Average Speed Up 14.35 Average Speed Up 13.64

Table 3.2: Comparison of VaR values and running times of full MILP
formulation (3.4) vs. Algorithms A & B, for instances of the VaR portfolio

problem (3.4) with different no. of assets (n), no. of samples (m), and expected
return µ0. The column T ∗/T shows the speed up obtained with Algorithms A & B

over solving the full MILP formulation. Instances with “***” where not solved
within the 3600s. limit time. The ”?” in column T ∗/T that ratio cannot be

computed.
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3.6 Final Remarks

Thus far, we have only considered portfolio allocation problems in which no short posi-

tions are allowed (i.e., X ⊆ IRn+ in (3.2)). In practice, none of the main characteristics

of the MILP formulation (3.4) of the VaR portfolio problem change when consid-

ering portfolios were short positions are allowed (i.e., X ⊆ IRn in (3.2)). Clearly,

only the choice of the Big-M constant M is affected by allowing short positions.

However, under the practical assumption that there is U ∈ IR+ (e.g., due to liquid-

ity) such that U ≥ max{i ∈ {1, . . . , n} : |xi|}, then the M in (3.4) can be set to

M > 2U max{|ξji | : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}.

With that said, in this paper, we studied the VaR portfolio selection problem,

which is of high relevance in practice, and even in theory, thanks to development of

the so-called natural risk statistic axioms (Heyde et al. 2006) and the introduction of

the concept of elicitability (cf., Bellini and Bignozzi 2013) to classify risk measures.

To address the inherently difficult task of solving the VaR portfolio problem, here we

propose a tandem of approximation algorithms to produce near-optimal solutions to

the VaR portfolio problem. This is done by first using Algorithm A to obtain a good

feasible solution for the VaR portfolio problem, and as such, provide a lower bound for

the optimal VaR associated with (3.4). This algorithm is shown to outperform recent

algorithms proposed for this purpose by (Larsen et al. 2002), based on the iterative

solution of appropriate CVaR portfolio problems. Then, in Algorithm B, one aims

to prove a %1 optimallity guarantee for the feasible solution obtained at the end of

Algorithm A. The results obtained here, show that using both Algorithm A and B

allows to more efficiently solve VaR portfolio problems with up to a hundred assets

and thousands of samples, compared to solving the VaR portfolio problem directly

with a MILP solver. This results clearly improve the recent results of (Larsen et al.

2002) on lower bounds for the VaR portfolio problem, and the recent results of (Feng
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et al. 2015, Sec. 5) on solving VaR portfolio problems for 25 assets without taking into

account the total wealth constraint. Moreover, the proposed algorithms are funded on

a study of the alternative formulations of the risk-reward portfolio allocation problem

that extends the work done in this area recently by Krokhmal et al. (2002, Thm. 3)

Finally, we believe that the proposed algorithms can be also applied to solve the

broader group of chance constrained optimization problems (cf., Sarykalin et al. 2008).
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Chapter 4

Systematic prioritization of sensor

improvements in an industrial gas

supply network

4.1 Introduction

The U.S. industrial gas companies provide indispensable products like oxygen, nitro-

gen, and hydrogen to manufacturing, health care, transportation, and other essential

industries worldwide. In a recent study by the American Chemistry Council, it was

shown that industrial gas companies produced approximately $17 billion worth of

products in 2010 and employed approximately 60,000 American workers. Further-

more, the study showed that industrial gas companies supply products to industries

in the U.S. that account for 42% of America’s Gross Domestic Product (Council

2012).

One of the key decision support techniques used by this type of companies is

the solution of industrial gas supply network optimization models (see, e.g., van den

Heever and Grossmann 2003). These models are extremely helpful to identify optimal
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operating settings, by expressing real life constraints and conditions mathematically.

Also, they are extensively used to describe and integrate all components of the indus-

trial gas supply network within a single framework. However, industrial gas supply

network optimization models are often difficult to solve due to the presence of physical

and quality constraints, which result in discontinuities and other non-convexities (cf.,

Nocedal and Wright 2006, Kuhn 2014) on the mathematical formulation of the prob-

lem (cf., van den Heever and Grossmann 2003).

There is a vast literature on industrial gas supply network optimization models.

For example, consider the work of Almansoori and Shah (2006), Fonseca et al. (2008),

Kumar et al. (2010), Ding et al. (2011), Yunqiang et al. (2011), Jiao et al. (2013).

Moreover, due to their nature, these models are subject to the presence of uncertain-

ties at various levels. Integrating these uncertainties in industrial gas supply network

models has also taken wide attention in the literature (see, e.g. van den Heever and

Grossmann 2003, Kim et al. 2008, Almansoori and Shah 2012, Jiao et al. 2012, Lou

et al. 2014). However, often times in practice, the uncertainties in the system are

disregarded because their integration into the models increases model’s complexity

which is already very difficult to solve under deterministic assumptions. Alternatively,

a common approach to avoid increasing the complexity of solving the industrial gas

supply network model is to fix the value of uncertain parameters using a point es-

timate, in order to obtain a deterministic model that approximates the uncertain

model.

While many of the uncertainties that appear in industrial gas supply network op-

timization models are due to the intrinsically random nature of the input parameters

in the network such as flow rate, temperature, and pressure levels, industrial gas

supply network optimization models are also affected by uncertainties resulting from

incorrect sensor readings in the system. Some of these sensors provide feedback sig-

nals which are crucial for the control and efficiency of the network. Thus, erroneous
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sensor readings could degrade the performance of the network significantly. Incorrect

sensor readings could be due to:

i) Outliers in sensor readings: Sometimes sensors may read a value that happens

to be outside of the normal range of operation. This could be caused by an

inherent error in the corresponding sensor or a sudden change in the supply

network conditions (e.g., a sudden pressure drop). We identify the ones caused

by inherent sensor errors, which we name as sensor outliers. Outliers are detected

by determining whether an out of range reading is due to sudden changes in the

network. This can be verified by other sensors readings (e.g., pressure sensors)

in the network. Thus, by looking at the correlation between the out of range

readings of associated sensor readings, a system change can be distinguished

from an outlier reading due to inherent sensor error in the supply network.

ii) Bias in sensor readings: If the measured signal is shifted by a constant from the

actual signal throughout the sensor reading time period, then the sensor has a

constant offset or bias. The bias could be negative or positive.

iii) Noise in sensor readings: It refers to the high-frequency error component in the

sensor measurements. This type of uncertainty is unavoidable and inherent to

every sensor, but it can be improved through maintenance or upgrade.

These incorrect sensor readings can be critical because they are used in measuring

the key input parameters of the system. In turn, the aggregate effect of inaccuracies in

the model parameters leads to inaccuracies in the optimization model’s output. This

brings a negative effect on customer satisfaction and puts an unnecessary strain in

the industrial gas supply network operation. However, these effects can be mitigated

by upgrading and maintaining sensors to improve their reading’s accuracy.

In this paper, we focus on the impact of improving sensor reading errors on the

model’s main output; namely, production costs. From now on, we will regularly
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refer to production costs as the output of the model. In particular, we use two key

performance indicators to prioritize the improvement of sensors in the network.

i) Key Performance Indicator-1 (KPI-1): It measures the average change in the

production costs’ value over a time horizon when the sensor reading accuracy is

improved. The change in the production costs’ value over the time is a result

of the presence of outliers and bias in the sensor readings, and it has a direct

financial meaning for the company because the elimination of these errors can

bring savings on the production cost value.

ii) Key Performance Indicator-2 (KPI-2): This KPI measures the change in pro-

duction costs’ volatility when the sensor reading accuracy is improved. The

volatility change in production costs’ is due to the amelioration of outliers and

random noise in sensor readings.

Production facilities prefer to have low uncertainty in their production systems.

Often times these uncertainties cause the total production cost of the system to ex-

ceed the defined companies’ limited operational budget. Moreover, planning under

uncertainty is a difficult task for the companies because plant production levels are

very sensitive to input parameters’ volatility, as any change in the inputs may cause

new production settings in these facilities. Shifting from a defined setting to another

could bring extra hidden costs and even infeasibilities in the system. For all these

reasons, while the average change in the production cost’s value (KPI-1) is crucially

important for the company’s financial benefits, the change in production costs’ vari-

ability (KPI-2) is equally crucial.

The faulty sensors affecting production cost accuracy can be addressed by up-

grades and maintenance to have more precise readings. However, this is not possible

for every single sensor in the system due to limitations on the budget allocated for

sensors’ upgrade and maintenance. Thus, the purpose of this study is detecting the
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sensors in a leading US industrial gas supply network whose inaccuracies have the

biggest impact in the supply network.

To detect, identify, and determine the sensor faults, a systematic approach is

needed. Traditionally, two ways to deal with sensor faults have been used: pre-

ventive maintenance and condition-based maintenance. Preventive maintenance is

accomplished by regular checking and calibration of sensors, while condition-based

maintenance is based on monitoring a process’s real-time condition and automatically

detecting sensor faults (Kusiak and Song 2009). Sensor fault detection and identifi-

cation methodologies have focused on the condition based maintenance aiming at the

development of automated sensor fault detection systems, which offer cost advantages

over the preventive maintenance systems.

For example consider the work of (Venkatasubramanian et al. 2003, Dunia et al.

1996, Lee et al. 2004, Mehranbod et al. 2005, Guo and Kang 2015). These methodolo-

gies construct complex predictive models to replicate actual sensors’ behavior. Such

predictive models can be constructed based on these methodologies using techniques

such as principal component analysis (PCA), neural networks, and bayesian belief

networks, among others (see, e.g., Kusiak and Song 2009). However, the resulting

models based on these methodologies make it difficult for the user to interpret the

underlying relation between the input and output elements.

Here, we follow a similar idea and develop a methodology to approximate the

relationship between outputs and inputs in the model by using appropriate sensitiv-

ity analysis tools (cf., Cacuci et al. 2005, Saltelli et al. 2008). Sensitivity analysis

methods have been frequently applied to chemical process optimization models in the

literature (cf., Saltelli et al. 2005, Seferlis and Hrymak 1996). However, to the best

of our knowledge, these techniques have not been applied in the context considered

here.

After modeling the relationship between model inputs and outputs, we design a
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heuristic approach to eliminate sensor malfunctions and approximate the true signal.

By integrating the true signal to the constructed predictive model, we calculate the

relative change in the system outputs when a sensor is improved by computing the

proposed KPIs. We will discuss the methodology in Section 4.3 and in Section 4.4.

The rest of the paper is structured as follows: In Section 4.2, we briefly describe the

industrial gas supply network and review some relevant sensitivity analysis methods.

The methodology used in this paper is described in Section 4.3. In Section 4.4,

the chosen methodology is applied to a simplified gas network model, where the

corresponding results can be readily validated. In Section 4.5, we discuss the results

obtained after applying this methodology to a real industrial gas network in the US.

We conclude the paper in Section 4.6 with some final remarks.

4.2 Industrial Gas Supply Network

The optimization model of an industrial gas supply network can be mathematically

formulated as follows (van den Heever and Grossmann 2003)

minf,p y(f)

st. Af = d,

gi(f, p) = 0, ∀i ∈ I

hj(f, p) ≤ b, ∀j ∈ J

L ≤ f ≤ U,

p− ≤ p ≤ p+,

(4.1)

where A is a matrix representing the structure of the network, f represents the

vector of flows in the network and p is the vector of pressures. The objective func-

tion minimizes the cost of gas production y as a function of the network flows f

(more precisely, flows at production facilities). The first set of constraints Af = d

74



ensures the customer demands and flow balances are satisfied. The second set of

constraint gi(f, p) = 0,∀i ∈ I represent physical constraints relating flows and pres-

sures throughout the network. The constraints hj(f, p) ≤ b,∀j ∈ J ensure that the

model solution satisfies operational quality standards. Finally, in model (4.1), both

pressures and flows should remain between allowed bounds.

Model (4.1) is a non-convex, nonlinear deterministic optimization problem, which

for real-sized networks is very difficult to solve to optimality, and typically can be

only approximately solved. Although we cannot provide here the actual customer

and pipeline layout due to confidentiality, Figure 4.1 shows a representative layout of

the industrial gas network. The network in the company involves tens of customers

and plants, which causes the pipeline flow model to be computationally expensive and

takes in the order of minutes to be approximately solved. Referring to Figure 4.1,

sensors in the network are typically located at each customer node, each plant node,

and at the intermediate nodes where the different pipeline branches intersect. Those

sensors read, among others, the gas flow, as well as pressure and CO concentration

levels. The industrial gas supply network model is set to work in real time, and it is

an important advisory tool for setting the physical plant production levels.

In order to obtain the desired analysis of sensors in the industrial gas network, the

first step is to obtain a predictive model that approximates the relationship between

the sensor readings used as inputs in model (4.1) (e.g., demands and pressures) and

the main output of model (4.1); namely, production costs.

To construct predictive models, several sensitivity analysis methods have been

proposed in the literature, which can be divided into two main groups: local sensitivity

analysis methods and global sensitivity analysis methods (cf., Borgonovo and Plischke

2015). The local methods provide a measure of the local effect on the model output

under small changes of the model inputs (cf., Howard 1988). When the relationship

between the inputs and output can be described using a simple differentiable function,
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Figure 4.1: Network of plants, pipelines and customers from van den Heever and
Grossmann (2003)

.

we can look at the partial derivative of the output function with respect to the input

parameters to find out the local impact of the parameters on the model output.

However, the industrial gas supply network model we analyze is non-convex, non-

linear, and computationally expensive to solve (e.g., van den Heever and Grossmann

2003). Nevertheless, if one had the access to the exact formulation of the optimiza-

tion model, sensitivity analysis described in Fiacco (1976) could have been applied

to the problem investigated. However, in some circumstances, the exact formulation

of the model may not be easily available to the practitioners and the system has to

be treated as a black box optimization model where the partial derivatives cannot be

directly obtained. Thus, in order to approximate the partial derivatives in a simple

and effective way, we use sample historical runs of the optimization model for different

parameter settings.

This type of approach based on historical or simulated data to gain information

about partial derivatives is typically referred as global sensitivity analysis (cf., Homma

and Saltelli 1996, Saltelli et al. 2004).
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The total cost of the industrial gas network can be defined as

y(x) = [y1(x1), y2(x2), . . . , ym(xm))] (4.2)

as the functions of uncertain inputs x = [x1, x2, . . . , xm], where xi = [xi1, x
i
2, . . . , x

i
k]

represents the values of k parameters in the system. From now on, we denote these

uncertain inputs with x. In turn, uncertainty in the x parameters results in a corre-

sponding uncertainty in the output y(x).

Different sensitivity analysis techniques will do well on different types of problems.

The important aspect here is choosing the most suitable methodology to determine

a predictive model between input parameters and output costs. For linear models,

linear relationship measures like partial correlation coefficients (PCC) (cf., Brown

and Hendrix 2005) will be adequate. For nonlinear but monotonic models, measures

based on rank transforms like partial rank regression coefficient (PRCC) (cf., Geladi

and Kowalski 1986) will perform well. For non-linear and non-monotonic models,

methods based on decomposing the variance of the output is the best choice. One of

the examples of these methods is the Sobol’s method (cf., Sobol 2001).

Here, we chose Regression Coefficients (RC) (cf., Wagner 1995) as the tool to

estimate the desired predictive model. The magnitude of the coefficients in this

predictive model will be the indicators for identifying the key input parameters in the

system. Favorable results of this least squares approach can be verified in Section 4.4.

After identifying the key parameters in the industrial gasses optimization model

using an appropriate sensitivity analysis, we need to do further analysis to measure

the impact of the errors in sensor readings. For this purpose, we develop a series of

heuristic approximation methodologies to eliminate these sensor reading errors step

by step that helps us to conduct the sensor improvement analysis in the network.
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4.3 Methodology

A simple approach to address the problem considered here is to upgrade a sensor

based on its current reading accuracy which aims to reduce only process variation.

Specifically, this approach allocates a budget so that the sensors with the highest

inaccuracies are upgraded to decrease model output’s variation. However, this would

not necessarily be the best way to eliminate errors from the system because two main

reasons. First, high input uncertainty does not always lead to high output uncertainty

(in our case the production cost). Second, this simple approach also fails to consider

the importance of the evaluation criterion KPI-1, by ignoring the complex impact of

the sensor reading errors in the total production costs.

Here we propose a methodology which is suitable to work in real time and with

scarce data, that provides an effective advisory tool to make decisions regarding the

improvement of sensors in the network within the budget limitations. The historical

data of the network in the company’s database is enormous. However, the older the

data gets, the more meaningless it becomes. Thus, the methodology has to be run

with recent data.

Here provide a brief explanation of each step of the methodology represented in

Figure 4.2.

i) The first step is to generate samples of the input parameters x = [x1, x2, . . . , xk]

using simulation or by obtaining historical data from previous runs from the

industrial gas network model. In our case study problem in Section 4.4, we

generate the samples using Monte Carlo simulation while we use historical data

from the gas supply network in the real case implementation given in Section 4.5.

After collecting the data, we run the following two steps in parallel.

ii) A predictive model is constructed to approximate the relationship between pro-

duction costs and input parameters. The least squares approach provides a good
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approximation to get the desired sensor improvement prioritization in the case

study problem. However, due to the possible multicollinearity between the in-

put parameters in the real system, we apply the ridge regression (cf., Hoerl and

Kennard 1970) to consider this factor. The ridge regression technique basically

penalizes the size of regression coefficients due to multicollinearity in the model.

iii) A heuristic methodology for sensor reading error elimination is applied. The

heuristic methodology is applied as a univariate analysis, i.e. it is applied to

a single sensor at a time. For the selected sensor reading, the heuristic starts

by looking at the outliers to eliminate. Note that outliers definitely produce

an increase in the production cost’s volatility and may cause an increase in the

production cost’s value depending on the outlier’s position, and input-output

relationship. After detecting and eliminating the outliers, we eliminate the con-

stant bias in the selected sensor reading. Constant bias in sensors can bring a

substantial amount of extra cost in the system. Since it has a financial impact

on the output, this needs to be certainly handled in the analysis. Finally, the

heuristic approach eliminates the noise in sensor reading. Every sensor noise is

assumed to follow a Gaussian distribution N (0, σ) with mean 0 and standard

deviation σ. Noise in sensors can cause extra volatility in the system outputs

(e.g. production cost, optimal production settings of the plants), and thus it

brings up some indirect financial impact to the company.

iv) After running the predictive model and the three step sensor reading error elimi-

nation heuristic to approximate the real sensor signal, we reproduce the produc-

tion costs with the improved signal.

v) In the final step of the model, we calculate two key performance measures previ-

ously defined as KPI-1 and KPI-2 that are used to support the decision-making

process. These KPIs help us to capture the marginal contribution of a single
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sensor reading error, and assign the priorities to the sensors for upgrading pur-

poses. KPIs are calculated based on the comparison of the original production

cost values and the regenerated production cost values for every improved sensor

one at a time.

To validate the methodology, we first apply it to a case study problem which

is introduced in Section 4.4. After it’s validation with the simplified network, in

Section 4.5, we show how this methodology together with some adaptations can be

applied to a real industrial gas network.

Historical or Sim-
ulation Data

Predictive model
Sensor Reading Error
Elimination Heuristic

Comparison of clean
and faulty signals

KPI-1 KPI-2

Figure 4.2: Sensor Fault Detection Process Flow Chart

4.4 Case Study Problem

In this section, we illustrate the details and the results of applying the aforemen-

tioned sensitivity methodology by implementing it to a simplified version of an in-

dustrial gas network model. This allows providing a clear description of the proposed
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methodology and validates the approach by providing the desired results regarding

the prioritization of sensor improvements in an industrial gas supply network.

4.4.1 Problem Setting

Consider a simplified version of the industrial gas network depicted in Figure 4.3,

where there are three plants (P-1, P-2, P-3) and three customers (C-1, C-2, C-3) with

the decision variables and parameters described in Tables 4.1 and 4.2 respectively.

fi Flow variables in the pipeline i = 1 . . . 7

Table 4.1: Decision Variables

Dt
j Random demand of customer j at time t j = 1 . . . 3, t = 1 . . . T

Ui Upper bound on fi i = 1 . . . 7
Li Lower bound on fi i = 1 . . . 7
βi Linear objective coefficients for each flow variable i = 1 . . . 7
αi Quadratic cost coefficients for each flow variable i = 1 . . . 7

Table 4.2: Input Parameters

In the simplified network, the customers submit their demands to the system

which are then fulfilled at the lowest possible cost while satisfying the flow balance

and flow bound constraints. The customer demands define the flow rates sent to the

customers in the system. In this case, consider the following optimization model.

min
7∑
i

αif
2
i + βifi,

st. f1 + f6 − f7 = Dt
1,

f4 + f2 + f7 − f6 − f5 = Dt
2,

f3 + f5 − f4 = Dt
3,

fi ∈ [Li, Ui], {i = 1 . . . 7}.

(4.3)
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C-2

C-3

P-1

P-2

P-3
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1
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2

Dt
3
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f3f4
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f7

Figure 4.3: Simplified industrial gas network model with three (3) plants (P-1, P-2,
P-3) and three (3) customers (C-1, C-2, C-3). Arrows indicate the directions of gas

flows.

The first three constraints in formulation (4.3) are flow balance constraints (i.e.,

Af = d formulation (4.1)). The last constraint set represents the bound constraints

on the flows. Formulation (4.3) described above is a simplified version of model (4.1)

where constraints defining physical and operational quality standards are disregarded,

and there are no pressure constraints. The sensors subject to the analysis are chosen

to be the flow rate sensors at customer nodes. Sensors measuring pressure levels at

demand nodes are used only as a system check. The objective function is assumed

to be convex and quadratic (i.e., αi ≥ 0, i = 1 . . . 7). This setting allows us to obtain

sample data for the global sensitivity analysis easily by solving the model with state

of the art optimization solvers.

4.4.2 Problem Data

After setting up the problem, we simulate the data for the input parameters of

model (4.3), which is the first step of the flow chart in Figure 4.2.
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The values of the input parameters, except for the demand parameters (cf., Sec-

tion 4.4.2), are defined as follows: α = [10, 5, 2, 0, 0, 0, 0], β = [10, 5, 2, 0, 0, 0, 0],

L = [0, 0, 0, 0, 0, 0, 0], U = [150, 70, 50, 10, 10, 10, 10] where α is the quadratic cost co-

efficient vector in $ per square unit of flow, and β is the linear cost coefficient vector

in $ per unit of flow. These values have the following characteristics that will be the

key to illustrate the effectiveness of the proposed approach.

i) The most expensive plant is plant P-1 while the cheapest one is plant P-3.

ii) Similarly, plant P-1 has the largest production capacity while plant P-3 has the

least.

iii) Note that the α and β coefficients are non-zero only for flows fi, i = 1, 2, 3

corresponding to plant productions. This means that the cost only increases

with the production levels in plants.

iv) There is a limit on the demand of customers that can be supplied from non-

adjacent plants. For instance, customer C-1 can only receive a certain amount

of gas from plant P-2 and plant P-3. The main supplier of customer C-1 is plant

P-1. This also applies to the other customer demands. In particular, flow values

fi, i = 4, 5, 6, 7 in the center pipeline are bounded above by 10 units.

Customer demand simulations

In order to simulate the customer demand, we use Auto-Regressive (AR) processes

which are commonly used to forecast demands in industrial gas networks. These

simulated demand profiles are shown in Figure 4.4. The AR(1) model specified for

customer C-1 is given by the following equation

Dt
1 = 1 + 0.99Dt−1

1 + εt1, (4.4)
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where εt1 ∼ N (0, 1), Dt
1 = 130.53, the average value of the customer C-1 demand

is given by µ1 = 138.11 and the standard deviation of the demand is provided as

σ(Dt1) = 3.360. The AR(1) model specified for customer C-2 is given by the following

equation

Dt
2 = 1 + 0.95Dt−1

2 + εt2, (4.5)

where εt2 ∼ N (0, 1), D0
2 = 60.67, the average value of the customer C-2 demand

is given by µ2 = 62.03 and the standard deviation of the demand is provided as

σ(Dt2) = 2.360. The AR(2) model specified for customer C-3 is given by the following

equation

Dt
3 = 0.7 + 0.7Dt−1

3 + 0.25Dt−2
3 + εt3, (4.6)

where εt3 ∼ N (0, 1), D0
3 = 14.29, the average value of the customer C-3 demand

is given by µ3 = 17.74 and the standard deviation of the demand is provided as

σ(Dt3) = 2.835.

The Pearson correlation coefficients of the simulated demand profiles are ρ12 =

0.278, ρ13 = 0.005 and ρ23 = 0.137.

Customer Flow Sensor Reading Simulations

To simulate the errors due to sensor readings of demand profiles, we add some simu-

lated out of range readings which are the candidates to be the outliers, constant bias

B and Gaussian noise N t
i ∼ N (0, σi) to the demand profiles. That is, we set

D̃t
i = Dt

i +Ot
i +Bi +N t

i i = 1, 2, 3, (4.7)

where D̃t
i represents the sensor readings, Ot

i is the vector of out of range readings

suspected to be outliers, N t
i ∼ N (0, σi) with σ = [0.5, 1, 1.5] are the sensor noises,
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Figure 4.4: Simulated base customer demands.

and B = {2, 4, 6} is the constant bias vector.

The resulting sensor reading data can be seen in Figure 4.5, where potential

outliers are highlighted by big markers over data points.

As it can be noticed from the parameter values in (4.7) and Figure 4.5, customer

C-3 has the greatest sensor reading errors in terms of all three different error types.

On the other hand, customer C-1 has the most accurate sensor reading among the

other customers. In these conditions, one would expect to prioritize improving the

sensor readings for customer C-3 first, then customer C-2, and finally customer C-1.

However, this would be deciding based on the input errors only. To consider the

impact of input errors on the output, we need further analysis.

Operating the system by these faulty signals observed in Figure 4.5 may cause

large deviations and higher values in the production costs. These deviations can

be inspected by comparing the plots displaying production costs produced with the

sensor reading data given in Figure 4.6a, and the production costs values produced

with the actual demand data given in Figure 4.6b. The real life optimization model
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Figure 4.5: Simulated customer demand sensor readings.

(a) with the sensor reading data (D̃). (b) with the actual demand data (D).

Figure 4.6: Cost function output through optimization model.

is computationally very expensive; for this reason, we need a simple way to determine

the affect of input errors on the production cost. As mentioned before, this is why

sensitivity analysis tools are used to construct a predictive model between model’s

inputs and outputs. We will compare our findings by controlling simulated sensor

reading errors, and show that the proposed methodology estimates the correct order

of the sensors for improvement.
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4.4.3 Predictive Model

In this section, we apply the second step of the developed methodology in Figure 4.2.

After collecting the data in (4.2) for the vector of uncertain inputs denoted by same

symbol as in (4.2), and populating the sensor readings of customer demands D̃,

we solve model (4.3) T times with uncertain input parameters D̃ to optimality with

current optimization solvers (Boyd and Vandenberghe 2004). In particular, we use the

quadprog solver in a MATLAB environment (Coleman et al. 1999). The time required

to solve model (4.3) with 3 customers and 3 flow sensors is only of about 0.01 seconds.

The resulting production costs y(D̃) are illustrated in Figure 4.6a, where we set

T = 100 as the number of observations in the data set. In the real network, this

number corresponds to the daily amount of data the company collects from the op-

timization model. We work with daily data because the system conditions can vary

considerably for longer periods. Such high variations cannot be captured in a linear

predictive model.

By using the input data created from the simulation of D̃ and the output of the

optimization model y(D̃), we get the following linear equation as our predictive model

ŷ = −67044 + 1208.6 ∗D1 + 445.65 ∗D2 + 138.10 ∗D3 (4.8)

where ŷ represents the estimated production cost values. Since the multicollinearity

is not an issue in the case study problem, ridge regression model coefficients would

be expected to be identical to linear regression model coefficients for any ridge pa-

rameters.

The residuals of the regression model also satisfy statistical independence, ho-

moscedasticity, and normality assumptions.

According to the regression equation (4.8), the relative importance of the input

customer demands are sorted from more to less important as the demand of customer
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C-1, the demand of customer C-2, and the demand of customer C-3. This is expected

because of the flow restrictions in the pipelines. Customer C-1 has to satisfy most

of its demand by using the most expensive gas which is produced in plant P-1 while

customer C-3 uses mostly the least expensive gas produced in P-3.

4.4.4 Sensor Reading Error Elimination Heuristic

After defining the predictive model, we run the heuristic approach to eliminate each

type of sensor errors step by step. As discussed before, the predictive model and the

heuristic for sensor reading error elimination are independent processes as shown in

Figure 4.2. Moreover, the heuristic approach is a univariate analysis that is applied

to each sensor individually.

Outlier Elimination

The first step of the heuristic approach for sensor reading error elimination is the

outlier elimination. The out of range readings are often observed as unusual spikes

in flow readings. As mentioned before in Section 4.1, these inaccuracies may happen

because of one of the following reasons: due to an inherent error in the sensor reading,

or due to an actual sudden change in conditions in the supply network (i.e., like sudden

pressure drops). In the first case the error can be reduced by upgrading the sensor.

In the latter case, such sudden changes in the network can be determined by other

sensors in the network. Thus, by looking at the correlation between the out of range

readings of appropriate groups of sensors, outlier readings due to reading errors can

be distinguished from out of range readings due to sudden changes in the supply

network. Here, we look at the pressure reading values given that pressure and flow

rates are highly correlated in industrial gas supply networks.

To detect the potential outliers, we use the methodology called Principal Compo-

nent Pursuit (PCP) analysis. PCP optimally decomposes a data matrix as the sum of
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a low-rank matrix and a sparse matrix. Given a data matrix H, PCP is the solution

of the convex optimization problem,

min ||Z||∗ + λ||E||1,

st. H = Z + E,

(4.9)

where ||Z||∗ is the nuclear norm; that is, the sum of the singular values of Z, and

||E||1 is equal to the sum of the absolute values of the elements of E. Under certain

conditions, and with a Lagrange multiplier λ, the optimization problem (4.9) recovers

a low-rank matrix Z corresponding to a fault-free process condition and a sparse

matrix E that has non-zero entities corresponding to sensor and process faults, which

can be considered as sensor reading abnormalities or sharp changes in the system (cf.,

Isom and LaBarre 2011). The matrix H is the selected flow sensor reading data vector

D̃ in our case. The resulting nonzero values in the E vector helps us to identify out

of range readings.

After implementing the PCP routine above, we can identify the out of range

readings in the sensor signal similar to those illustrated in Figure 4.5. After identifying

the out of range readings, we look at the correlation of these sensor readings with

pressure sensor readings associated with the same customer. If the sharp spikes in

flow sensor readings are caused by a sudden change in the network, these secondary

sensors for pressure readings will also have abnormal readings.

Let’s illustrate this process by looking at the correlation between the flow sensor

readings and the pressure readings of customer C-2. In Figure 4.7a, two different

signals for customer C-2 are shown: the sensor readings for customer C-2 demand,

and the simulated pressure sensor reading for customer C-2. Obviously, the marked

points in the flow readings are strong candidates for outliers. However, notice that in

a few of these points, the pressure level also has abnormal spikes. These spikes occur
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(a) Flow-pressure reading plot. (b) Flow-pressure scatter plot.

Figure 4.7: Simulated flow-pressure plots for customer C-2

at the exactly the same timestamps that the spikes occur in the flow readings. These

out of range readings are strong indicators of the sudden changes in the system, and

they shall not be classified as sensor reading errors.

This can be better viewed by inspecting the scatter plot between the pressure and

the gas flow in Figure 4.7b. The PCP routine identifies out of range readings in the

selected flow sensor, and marks them as square dots. Dark circle dots are marked

as normal readings for both pressure and flow sensors. We fit a least squares line

between these flow and pressure readings excluding the out of range observations.

Then, a 95% confidence interval is built around this least squares line. If the out of

range readings are beyond these confidence intervals, then they are marked as sensor

outliers, and we replace the sensor readings with the values from the low-rank matrix

Z for these corresponding points. In Figure 4.7b, the outlier points are the two square

dots at the right side of the graph. These points are identified to be sensor reading

errors, and needed to be eliminated from the sensor signal. On the other hand, if

some of these out of range readings fall between the confidence intervals provided

in Figure 4.7b, they are treated as sudden changes in the conditions of the supply

network, not as outliers. In Figure 4.7b, the out of range readings caused by system
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changes are denoted by the three square dots at the left side of the graph. Notice

that they fall between the two confidence interval lines.

The same procedure is also applied to customer C-1’s and customer C-3’s sensors,

and resulting outliers are eliminated from the sensor readings. Figure 4.8 shows the

demand profiles after elimination of the outliers caused by inherent sensor errors.

Figure 4.8: Customer demand data (without outliers).

Constant Bias Elimination

Constant bias elimination is the second step of the heuristic methodology to eliminate

the sensor reading errors. The flow readings in industrial gas networks can have a

constant bias in their measurement besides random noise and outliers. This inherent

bias is difficult to detect with data analysis because of the constant shift in the

parameters’ sensor reading data.

In practice, bias is detected by putting a different but precise sensor next to the

biased one. In this way, we can approximate the accurate reading of the precise sensor,

and detect the bias amount that the malfunctioning sensors have. For the case study

91



problem, we need to measure the bias in a similar way. Specifically, we subtract the

faulty sensor readings of the sensor from the non-erroneous sensor readings of the

precise sensor. Then, we take the average of the difference over the selected period.

B̃i = mean(D̃t
i −Dt

i)

where D̃t
i = Dt

i + N t
i + Bi after the outliers are eliminated. To do this, we simulate

the actual demand data for the new sensor, compute Dt
i + N t

i , subtract it from the

biased and noisy sensor readings D̃t
i and take the average of the values for selected

time horizon (n simulation points). The approximated bias values are the following:

B̃i = [1.98, 3.97, 5.81] under the assumption that the AR model coefficients are known

in demand models (4.4), (4.5), (4.6).

Recall from Equation (4.7) that the bias B = {2, 4, 6} was added to the demand

profiles. According to these results, the bias approximation B̃ for the three customer

flow sensors accurately predicts the actual bias values B with no more than a 3.1%

error.

Noise Filtering Approach

After eliminating the other sensor errors; that is, outliers and bias, we need to remove

the noise from sensor readings which is the third and last step in the heuristic approach

for sensor reading error elimination. To do so, we present a naive filtering algorithm

(cf., Algorithm 4) below. This filtering approach is similar to both the well-known

Savitzky-Golay and moving average filters (cf., Guiñón et al. 2007, Schafer 2011).

While the proposed filter tries to separate the sensor noise from the process noise,

which is not a simple task, it behaves conservatively by considering a portion of

the actual demand volatility as sensor noise. However, this does not degrade the

filter’s performance and approximates the true demand signal as it can be seen from
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Figures 4.9a, 4.9b, and 4.9c.

The filtering process starts by selecting the first observation as the starting ob-

servation. Then, it looks at the adjacent observation and decides whether the next

observation differs significantly from the selected point based on the variance infor-

mation of the noise. If the difference is significant, then we leave the next observation

as it is. Otherwise, we take the moving average of the observations and replace the

nominal values with the averaged values. The details of the noise filtering algorithm

are given in Algorithm 4.

Algorithm 4 Noise filtering algorithm
Input: D

1: procedure NoiseFiltering
2: size← length of D
3: Dnew(1)← D(1)
4: k ← 2
5: for j=2:size do
6: diff← |D(j)−Dnew(j − 1)|
7: if diff <= 3 ∗ sigma then
8: avg = (

∑k
1D(j − k + 1))/k

9: [Dnew(j − k + 1), . . . , Dnew(j)] = avg
10: k ← k + 1.
11: else
12: Dnew(j)← D(j)
13: k ← 2
14: end if
15: end for
16: end procedure

Output: Dnew

In Figures 4.9a, 4.9b and 4.9c, we display the simulated data for customer demands

for our problem setting before and after the noise filtering.

4.4.5 Numerical Results and Verification of the Methodology

Having the perfect knowledge of both the output of the optimization model (4.3)

and the error-free demand profiles in Figure 4.4, gives us a chance to confirm our
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(a) Demand of customer C-1 (b) Demand of customer C-2

(c) Demand of customer C-3

Figure 4.9: Noisy data and filtered data for customer demands.

methodology’s validity. We already have the original production costs values, which

we got from the optimization model by running it with faulty sensor demand readings

(D̃i). To compute the proposed KPIs, we calculate the average production costs

values, and the production costs volatility, which is the variance of the values over

the selected time horizon. After that, we select a sensor, and we use the perfect error

knowledge that we created in Section 4.4.2 to eliminate its inherent sensor errors.

While doing that, we keep the other sensors faulty to see the affect of elimination of

a single sensor reading errors on the output. Then, we integrate the correct error free

signal values for selected input parameter to the optimization model and reproduce

the production costs values. Finally, we calculate the average production costs values,
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and the production costs volatility by using the regenerated production values.

When we introduced sensor readings for customer demands (D̃i) back in Sec-

tion 4.4.2, we designed the errors to be the greatest for customer C-3, and the least

for customer C-1. Now, we are going to inspect the analysis results to see what

sensors need to be prioritized for the improvement.

Remember from Section 4.3 that we have two different KPIs. First, we check the

results for KPI-1, which is the average change in the production costs’ value over a

time horizon. Table 4.3 displays the impact of the sensor reading error elimination

on the production costs in a controlled way by using the optimization model and the

simulated error information.

Avg. Cost Avg. Avg.
Fixed Sensors Function Value Saving Improvement

All Errors Present $9.90E + 04 - -
Fix Sensor-1 error only $9.56E + 04 $3400 3.45%
Fix Sensor-2 error only $9.63E + 04 $2700 2.69%
Fix Sensor-3 error only $9.84E + 04 $600 0.58%

Table 4.3: Error elimination of sensors with perfect knowledge (KPI-1)

After that, we apply our methodology to sensor readings as a univariate analysis

to validate our methodology, and approximate the true signal of the selected input

parameter. While doing that, we keep the other sensors faulty to see the affect of

elimination of a single sensor reading errors on the output. Then, we integrate the

approximated error free signal values for the selected input parameter to the predictive

model, and reproduce the production costs values. Finally, we calculate the average

production costs values, and the production costs volatility by using the regenerated

production values.

Table 4.4 displays the impact of the sensor reading error elimination on the pro-

duction costs value (KPI-1) with the sensor error elimination methodology given in

Figure 4.2.

95



Avg. Cost Avg. Avg.
Fixed Sensors Function Value Saving Improvement

All Errors Present $9.90E + 04 - -
Fix Sensor-1 error only $9.56E + 04 $3400 3.45%
Fix Sensor-2 error only $9.60E + 04 $3000 3.07%
Fix Sensor-3 error only $9.75E + 04 $1500 1.54%

Table 4.4: Error elimination of sensors with the approximation methodology (KPI-1)

According to the comparison of results between Table 4.3 and Table 4.4, it follows

that customer C-1 has the least amount of sensor reading errors, but it has the top

priority to be fixed. This is because of two reasons: First, customer C-1 is using

the most expensive gas in the network produced due to restrictions in the pipeline.

Second, customer C-1’s average demand value is much higher than the other customer

demand profiles. These reasonings can be verified by the provided regression model’s

coefficients (4.8). The D1’s coefficient is reflecting the significance of the cost related

to customer C-1. Although the results in Table 4.4 are not numerically precise to

estimate the real changes given in Table 4.3, the difference between the numerical

results are small, and produce a priority ranking in which the sensors are ordered as

customer C-1, customer C-2 and customer C-3 in agreement with Table 4.3.

Secondly, we inspect the results for the second criteria we have: KPI-2, which

measures the change in production costs’ volatility. Table 4.5 displays the impact of

the sensor reading error elimination on the production costs volatility in a controlled

way by using the optimization model and the error information.

Cost Function’s Avg.
Fixed Sensors Variance Improvement

All Noise Present 5.52E+07 -
Fix Sensor-1 error only 5.14E+07 6.92%
Fix Sensor-2 error only 5.25E+07 5.05%
Fix Sensor-3 error only 5.42E+07 1.89%

Table 4.5: Error elimination of sensors with perfect knowledge (KPI-2)
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Table 4.6 displays the impact of the sensor reading error elimination on the pro-

duction costs volatility (KPI-2) with the sensor error elimination methodology given

in Figure 4.2.

Cost Function’s Avg.
Fixed Sensors Variance Improvement

All Noise Present 5.52E+07 -
Fix Sensor-1 error only 5.29E+07 4.26%
Fix Sensor-2 error only 5.38E+07 2.56%
Fix Sensor-3 error only 5.43E+07 1.71%

Table 4.6: Error elimination of sensors with the approximation methodology (KPI-2)

Once again, customer C-1’s sensor ranks first in the priority list for the sensor

improvement, while customer C-3’s sensor ranks last according to Table 4.5 and

Table 4.6. This is again because of the customer C-1’s and plant P-1’s influences

on the system. Similarly as for the KPI-1 results, the results in Table 4.6 are not

numerically precise to estimate the real changes given in Table 4.3. However, we

have the same priority ranking of the sensor maintenance ordered as customer C-1,

customer C-2 and customer C-3 according to the results in both tables.

According to these results for both KPIs, we clearly see that both measures are

suggesting us, in order of importance, to upgrade sensor-1 (demand of customer C-1)

first, then sensor-2 (demand of customer C-2), and then sensor-3 (demand of customer

C-3) in the industrial gas system. This is contrary to the order of the sensors’ input

error magnitudes discussed at the beginning of Section 4.3. Thus, these results show

that analyzing the effects of input errors on the output (production costs) helps us

to take better decisions. The computing time of the methodology for the case study

problem with 3 customers and 3 flow sensors takes 1.23 seconds.
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4.5 Implementation to the real pipeline system

In this section, we discuss the results obtained by applying the methodology to the

company’s real industrial gas network. The methodology we use for the real pipeline

system is slightly modified to capture the real network’s properties. First of all, we use

the weighted ridge linear regression approach to obtain the predictive model instead

of the ordinary least squares approach used in Section 4.4.3. The ridge regression

approach is chosen because it addresses multicollinearities by imposing a penalty on

the size of coefficients. Multicollinearities are possible between the input parame-

ters because of the number of sensors (over 400 sensors) in the real network. This

large number of predictors creates low ratio of number of observations to number of

variables. It is also selected to be a weighted model because based on the expert’s

experience, the most recent information of the system carries more explanation of this

very dynamic system. The industrial gas network of interest is a real time optimiza-

tion system, where the optimal plant production flows need to be updated frequently.

Thus, we desire to have a suggestion mechanism running and reporting suspicious

sensor readings on a daily basis. Thus, the predictive model and heuristic analysis

are implemented by using the last 100 data points read from the optimization model.

The predictive model is based on the weights calculated using the euclidean dis-

tance between the latest observation and the other samples in the set. The ridge

regression estimate β̂ is defined as the value of β that minimizes

min
T∑
i=1

wi(yi − xiβ)2 + λ
k∑
i=1

β2
j , (4.10)

where λ is chosen based on a 5-fold cross-validation, and the weights are computed

by the following equations;

d(xi,xT ) =
√

(xi1 − xT1 )2 + (xi2 − xT2 )2 + . . .+ (xik − xTk )2,
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where xi = {xi1, xi2, . . . , xTk }.

wt =
1

d(xi,xT )
(4.11)

wT = 1. (4.12)

That is, we assign a weight of 1 to the most recent data point and for the other

samples a weight equivalent to the inverse ratio of the Euclidean distance to the most

recent sample.

Another modification in the methodology is leaving the bias elimination as an

option to the end user. This is to avoid an extra investment cost at this stage

of the study because the bias in sensors are estimated by placing a highly precise

sensor to measure the same signal as the imprecise sensor measures. The general

implementation of the methodology is aimed to be a statistical analysis only, and

whenever the end user has the estimated bias information, there is an option in the

interface for the user to give that information as an input to the analysis.

There are a few more specific implementations designed to make the analysis

more meaningful and user-friendly. Based on the selection of the time period for the

analysis, the end user can track these daily reports before taking the final decision for

the upgrading or maintenance decision for the sensors. The interface summarizes the

daily reports for the selected time period and suggests the most important ones for a

possible upgrade or maintenance based on the analysis we describe in Section 4.5.1.

Also, highly improving the sensor precision can be very costly. Due to this fact, the

end user is also given the option to see the effects of partial improvements such as

eliminating 50%, 75%, or 100% of the sensor errors. The default value in the results

presented in this section is 75%. This is typically the fraction of the improvement

that the company considers.

In the real industrial gas network problem, the uncertain inputs are not only
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customer demands as in the case study in Section 4.4. Thus, random input variables

can have very different units. In this case, parameters’ regression coefficients can

be easily influenced by the units in which the variables are measured, for example,

gallons, pascals, bars, or grams in the real pipeline. Therefore, they do not provide a

very reliable measure of the relative importance of the input variables. So, to compare

the relative importance of the input parameters, input and output variables need to be

standardized before drawing conclusions from their predictive model coefficients (cf.,

Bring 1994).

The described methodology is implemented in MATLAB and the historical sampling

information is drawn by SQL queries from the company’s database. The results are

transferred to the company’s online environment on a daily basis.

4.5.1 Implementation Results

Next, we present some of the results obtained by applying the methodology discussed

here in the real industrial gas supply network. To protect the company’s intellectual

property, the sensor details are not provided. Due to the same reason, the input data

for the analysis is not provided, as well as the exact results of the analysis. Instead,

we provide a relative improvement on production costs and its volatility to prioritize

the sensors in the system.

The pilot implementation for the analysis is chosen to be run in the business

days (22 days) of October 2015. Customer demands are measured by flow sensors,

and Table 4.7 provides the mean value and standard deviation values of the readings

of 20 of these sensors.

Additionally, pairwise correlations between the sensors’ readings are shown by

a heatmap in Figure 4.10 where the individual values of the correlation matrix are

represented as colors. Just by considering the pairwise correlations between these

readings, the multicollinearity between the sensor readings is quite apparent.
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Sensor # Mean Standard deviation

Sensor-1 12.245 0.124
Sensor-2 19.101 6.228
Sensor-3 43.006 2.132
Sensor-4 63.736 1.489
Sensor-5 42.595 1.307
Sensor-6 100.603 0.496
Sensor-7 115.115 0.307
Sensor-8 27.214 1.536
Sensor-9 15.141 0.105
Sensor-10 6.697 0.800
Sensor-11 30.167 0.441
Sensor-12 3.040 0.281
Sensor-13 85.729 5.838
Sensor-14 101.628 4.635
Sensor-15 22.418 4.364
Sensor-16 85.477 3.144
Sensor-17 39.449 5.152
Sensor-18 63.932 1.346
Sensor-19 0.807 2.064
Sensor-20 31.591 3.714

Table 4.7: Statistical measures of the sensor readings

Figure 4.10: Pairwise correlations of the sensor readings.
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The objective of the implementation is to run the univariate analysis daily with

the updated results data coming from real-time optimization, and monitoring the

parameter rankings based on their effect on the uncertainty and the value of the cost

function. The resulting interface displays the sensor rankings in the order of positive

savings on the production cost (KPI-1), and daily sensor rankings in the order of

their sensor reading errors contribution on the objective function’s volatility (KPI-

2). While a single day analysis may not be meaningful due to the dynamic nature

of real-time optimization system, a collection of the daily analysis can have strong

suggestions to identify what sensors need to be upgraded or maintained.

Table 4.8 provides the top 5 sensors in this monthly collection, which ranked

among the top 5 sensors based on KPI-1 in any of these daily runs. We note the

number of times that any of these sensors were ranked in each of these top 5 positions.

In each of the daily runs and in the summary, we only look at the top 5 sensors because

based on our observations, most of volatility and cost improvements can be satisfied

by upgrading or maintaining the top 5 sensors according to the daily analysis results.

According to Table 4.8’s results, sensor-7 is leading the list by being ranked among

the top-5 sensors 22 times out of 22 business days. It is ranked 5 times as the first

sensor, 7 times as the 2nd sensor, and 9 times as the 3rd sensor, and only once as the

5th sensor in this set of analysis. sensor-8 also appears as one of the top sensors in

almost the two third of the analysis’ set.

Rankings in KPI-1

Parameter Names 1st 2nd 3rd 4th 5th Total

Sensor-7 5 7 9 - 1 22
Sensor-8 3 4 1 5 1 14
Sensor-3 5 1 1 - 1 8
Sensor-11 2 1 - 1 3 7
Sensor-5 - 3 - 2 1 6

Table 4.8: Rankings of top 5 sensors based on reduction in production cost value
(KPI-1)
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The ranking of sensors displayed in Table 4.8 is one way of checking the significance

of sensors in the system. We can also look at the average improvement in production

cost’s value over this month of analysis when the specified sensor is improved. These

improvement values in percentage are calculated as follows

Avg. Improvement =
(ŷ − ŷ′)/ŷ

T
∗ 100 (4.13)

where ŷ is the vector of the values of estimated objective functions before error elim-

ination in the sensor, ŷ′ is the vector for the values of estimated objective functions

after error elimination in the sensor, and T is the number of data points in a day.

“Avg. Improvement” gives us the relative difference before and after the error elimi-

nation. Positive values for “Avg. Improvement” imply positive savings based on the

univariate analysis for the selected sensor.

Avg. Improvement
Parameter Names in KPI-1

Sensor-7 1.415%
Sensor-8 0.266%
Sensor-3 0.095%
Sensor-5 0.065%
Sensor-11 0.040%

Table 4.9: Ranking of sensors based on average production savings (KPI-1)

The five highest priority sensors based on “Avg. Improvement” values in de-

scending order are listed in Table 4.9. Table 4.9 suggests us that we would reduce the

daily production costs by around 1.4% in average if we go ahead and fix the errors

of sensor-7. sensor-7 is known as the flow sensor of an important customer in the

system, and the sensor reading errors affect the production cost significantly. The

daily average improvement is based on a month of analysis and it is an important

number when it is translated to real money. For this reason, KPI-1 is definitely an

important indicator that upper management would certainly consider.
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The numbers in Table 4.9 are not additive, in other words, one cannot guarantee

the amount of improvement would be equal to the summation of percentage values

if multiple sensors are decided to be upgraded. This is due to the univariate nature

of the analysis, i.e. we approximate the true signal for only one selected sensor at a

time while keeping the other sensor reading errors present in the system.

Also, although the rankings and/or identities of the sensors in Table 4.8 and

Table 4.9 are almost identical to each other in this analysis, they do not necessarily

have to match with each other as they rank the sensors based on different evaluations

for the same key performance index. However, the similarity between the order of the

sensors in Table 4.8 and Table 4.9 is a strong indicator to consider prioritizing the

suggested sensors for the maintenance based on the selected KPI. This also applies

to the results going to be presented in Table 4.10 and Table 4.11 based on KPI-2.

As we discussed in Section 4.1, it is also important to consider KPI-2 as a decision

criterion while selecting the sensors for maintenance. Table 4.10 provides a summary

of the analysis realized in October 2015 for the key performance indicator KPI-2.

Specifically, it provides the number of times that a sensor is ranked among the top

5 sensors in terms of KPI-2 in any of these daily runs. Similar to the results of the

KPI-1 analysis, sensor-7 was ranked as the first sensor for a possible precision upgrade

in 12 out of 22 business days. On the other hand, it was ranked 5 times as the second

sensor and 4 times as the third sensor to be improved in this monthly analysis.

Rankings in KPI-2

Parameter Names 1st 2nd 3rd 4th 5th Total

Sensor-7 12 5 4 - - 21
Sensor-3 5 4 3 2 2 16
Sensor-6 1 2 3 3 2 11
Sensor-11 - 5 1 1 1 8
Sensor-9 1 5 - 1 1 8

Table 4.10: Rankings of top 5 sensors based on volatility reduction in production
costs (KPI-2).
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Similar to Table 4.8, one can look at the average improvement in production cost’s

volatility over the selected time period when the specified sensor is improved. These

improvement values in percentage are calculated as follows

Improvement =
Var(ŷ)− Var(ŷ′)

Var(ŷ)
∗ 100 (4.14)

where Var(ŷ) is the variance of computed objective function values before upgrading

the sensor, and Var(ŷ′) is the variance of estimated objective function values after

upgrading the sensor. “Improvement” gives us the relative difference before and after

the operation. Positive values for “Improvement” imply reduction in the objective

function’s volatility.

The top five sensors based on the average volatility reduction in the case of their

maintenance are listed in Table 4.11. According to these results, volatility in pro-

duction costs reduces around 2.9% in daily average when sensor-7’s reading errors

are tackled. Although the relationship is not obvious, due to the implied costs and

inconveniences of having uncertainties in the problem, the reduction in production

cost’s volatility could result in great savings in the production cost’s value. Similar to

the results displayed in Table 4.9, the given percentage improvement for the sensors

in Table 4.11 are not additive.

Avg. Improvement
Parameter Names in KPI-2

Sensor-7 2.910%
Sensor-3 1.922%
Sensor-6 0.765%
Sensor-8 0.399%
Sensor-11 0.341%

Table 4.11: Ranking of sensors based on average volatility reduction (KPI-2)

After reviewing the results of the analysis, the end user can decide what time

period he or she is concerned with and what criteria are important for the company
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for the sensor improvements. In this pilot analysis summary conducted with Octo-

ber 2015’s optimization model’s historical data, sensor-7’s reading errors significantly

dominate the system in comparison with the other sensors in the system according

to both of these KPI’s and their ranking and/or average improvement criteria.

Finally, since the methodology is designed as a heuristic approach, it is crucial

to report the computational run times of the methodology for different number of

sensors. The methodology is run 10 times for the instances with different number

of sensors. Table 4.12 presents the average run time and the standard deviation of

the time needed to run these experiments. Although the time required to solve an

instance typically increases with the number of sensors, this solution time depends on

the number of outliers, making experiments with lower number of sensors take longer

in average. For example, this is the case for the cases with 350 and 400 sensors. In

general, computation times are small and in the range of 10 seconds.

Number of sensors Average run time (sec.) Standard deviation of run times (sec.)

400 9.111 6.639
350 12.620 13.991
300 7.735 5.699
250 3.776 0.858
200 3.532 3.985
150 2.377 1.124
100 2.622 1.418

Table 4.12: Summary of 10 computational run times of heuristic approach for
different number of sensors

On the other hand, the propietary optimization of the real system is inflexible

and cannot be run for different network sizes. This is due to the nature of the model

which is highly complex and nonadjustable. We refer the reader to van den Heever

and Grossmann (2003) for some recorded times of a similar optimization model on

networks of different sizes.
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4.6 Conclusion

In this paper, we presented a practical sensor fault identification and improvement

methodology for an industrial gas supply network based on sensitivity and data anal-

ysis. We constructed predictive models based on global sensitivity analysis tools

and then used some data analysis techniques to approach sensor’s error-free signals.

Then, we analyzed the benefits of having an error free signal for each specified sensor.

To validate the methodology, we presented the application of the methodology in a

simple case study problem. Then, with a few modifications, we extended the same

methodology to the real industrial gas network system. The verified approximation

gives us the necessary tools to reduce the measurement inefficiencies in the network.

The results of the analysis are currently being used in decision-making processes to

detect which sensors are providing suspect readings in a given period of time. Based

on the application of the analysis, sensor repairs are going to be selected and realized

based on the cost savings and/or the reduction of the volatility of the production cost

for the company.
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Chapter 5

Clustering in Portfolio

Optimization

In early 2000’s, it was shown that the classical mean variance (MV) portfolio allo-

cation model and some of it’s extensions, designed to reduce the estimation error,

were not able to outperform the naive equally weighted portfolio allocation strat-

egy. Since then, there are new allocation strategies and filtering techniques that have

been proposed based on hierarchical clustering to obtain better performing portfolios

when tested with out of sample data. The integration of the hierarchical clustering

approach to the portfolio allocation decisions has been shown to be effective under

appropriate circumstances in the relevant literature. In this study, we compare these

relatively recent portfolio allocation techniques with other well known asset allocation

techniques in a single, and widely accepted experimental design setting. While our

results confirm some of the conclusions already drawn in the literature, they contra-

dict with some relevant ones, which leads to new insights regarding the performance

of these different portfolio allocation strategies.
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5.1 Introduction

The portfolio optimization is one of the most studied topics in quantitative finance (see,

e.g. Elton et al. 2009). The widely used sample-based mean-variance framework of

Markowitz (Markowitz 1952) uses the first and second moment estimates of financial

asset returns, to construct mean-variance efficient portfolio. Although the mean-

variance model is highly regarded for its theoretical & practical properties, it is

known to be highly sensitive to estimation errors (see, e.g. DeMiguel and Nogales

2009, Michaud 1989, Chopra et al. 2011).

In the literature, a considerable effort has been invested to reduce the estimation

error of the sample moments which highly affect the out of sample performance of

mean-variance portfolios. Among these methods are the well known bayesian ap-

proach (see, e.g. Bawa et al. 1979), shrinkage estimators (see, e.g. Jobson et al. 1979),

robust portfolio allocation rules (see, e.g. Goldfarb and Iyengar 2003), methods that

focus on reducing the error in estimating the covariance matrix (see, e.g. Ledoit and

Wolf 2004, Conlon et al. 2007, Pantaleo et al. 2011) and portfolio rules that impose

shortselling constraints (see, e.g. Jagannathan and Ma 2003). In a comprehensive

study, DeMiguel and Nogales (2009) compared the out of sample performance of a

number of these methodologies with the naive equally weighted portfolio diversifica-

tion rule, which allocates a 1
N

weight to each of the N assets in the portfolio. Here,

the equally weighted allocation rule is chosen as the benchmark strategy because it

does not involve any estimation error and it is simple to use for an investor. In their

work, DeMiguel and Nogales (2009) show that out of the models evaluated, none

performs consistently better than the equally weighted portfolio policy in terms of 3

performance measures: Sharpe ratio, certainty-equivalent return and turnover.

While a wide range of models were compared to the equally weighted allocation

policy in DeMiguel and Nogales (2009)’s work, recent ideas to reduce the error in
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estimating the covariance matrix were not investigated. One of these methods uses

hierarchical clustering to filter the covariance matrix and improve the out of sample

performance of mean variance portfolios. Moreover, there are new methodologies in

the literature that use clustering as a subroutine to obtain novel portfolio allocation

strategies (see, e.g. López de Prado 2016, Raffinot 2016). Our objective in this study is

to test recent hierarchical clustering based portfolio allocation strategies in the widely

regarded experimental design proposed in DeMiguel and Nogales (2009)’s study, and

compare the out of sample performances of these strategies with the naive equally

weighted strategy and sample based mean variance strategies and its extensions.

Clustering financial time series and the study of correlation networks first appears

in the seminal work of Mantegna (1999). Clusters are obtained based on correlation

coefficients between the financial assets and they provide a unique indexed hierar-

chy between the assets. This unique hierarchy can be represented by a minimum

spanning tree which also corresponds to the dendrogram obtained using the Single

Linkage Hierarchical Clustering Algorithm (Gower and Ross 1969). The resulting

cluster information is used to apply either as a filtering procedure for the covariance

matrix (Tumminello et al. 2010) or they help practitioners to develop financial appli-

cations such as portfolio allocation strategies (López de Prado 2016, Raffinot 2016)

and financial policy makings (Harmon et al. 2010).

The use of a filtered correlation matrix in the mean-variance portfolio selection

framework has been considered by Pantaleo et al. (2011) and Tola et al. (2008). Their

main conclusion is that the use of filtered covariance matrices based on clustering are

particularly useful in mean-variance portfolio optimization with short sales. When

short sales are not allowed, the filtering procedures, including clustering based filter-

ing, are unable to outperform the sample-based mean-variance model. Similar results

also apply to the tests with the sample-based minimum variance model with short sale

constraints. However, we have not encountered any study in the literature comparing
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the out of sample performance of the clustering based filtering approaches with the

naive equally weighted portfolio allocation strategy.

In another study, López de Prado (2016) uses clusters to reorganize the covariance

matrix and applies a portfolio allocation strategy called “Hierarchical Risk Parity”.

Here, the objective is to use hierarchical clustering to identify the hierarchical struc-

ture between the financial assets. Then the covariance matrix based on the cluster in-

formation and inverse-variance allocation strategy to determine the weights (López de

Prado 2016). His preliminary results on the simulated dataset are promising. How-

ever, to the best of our knowledge, there is no comprehensive empirical investigation

comparing this recent methodology to the classical portfolio allocation strategies.

Here we investigate the out of sample performance of clustering based filtering

methodologies and the “Hierarchical Risk Parity” methodology, and compare them

with the performance of the traditional risk allocation strategies such as the sample-

based mean-variance model with short sale constrains, the sample-based minimum-

variance model with short sale constraints, the equally-weighted portfolio allocation

method, and the traditional risk parity method.

In our empirical study, we do not investigate the unconstrained models for sample-

based mean-variance and sample-based minimum-variance strategies because it is

already known that different filtering procedures of covariance matrix, including hi-

erarchical clustering, yield significantly improved out-of-sample risk and Sharpe ratio

results than the unconstrained models (see, e.g. Jagannathan and Ma 2003, DeMiguel

and Nogales 2009, Pantaleo et al. 2011, Tola et al. 2008). According to Jagannathan

and Ma (2003) imposing short sale constraints on the sample-based models improves

the performance in the same way that shrinking the expected return towards the av-

erage does. Similarly, imposing a shortsale constraint on the sample-based minimum-

variance model is equivalent to shrinking elements of covariance matrix. Although,

it is already shown in Pantaleo et al. (2011) that imposing a short sale constraint
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on the sample based mean-variance model and its extensions produce a competitive

out-of-sample risk performance compared to using hierarchical clustering to filter the

covariance matrix in the mean-variance model and its extensions, the out-of-sample

Sharpe ratio performance of the models incorporating short sale constraints with clus-

tering based filtering were not investigated. In this work, we address this with an

empirical investigation.

Our results confirm many of the conclusions drawn in the literature. First, we

replicated and verified some of the results reported in DeMiguel and Nogales (2009)’s

work. In particular, for the Kenneth French’s ten industry portfolios and the US eq-

uity market portfolio dataset (French 2017), our experimental setting returned almost

exactly the same values reported in DeMiguel and Nogales (2009) for three allocation

methods; namely, mean variance model with shortsale constraints, minimum-variance

model with shortsale constraints and the equally-weighted portfolio. Second, we show

that the hierarchical clustering based filtering methods to reduce the estimation er-

ror in the covariance matrix do not improve the out of sample risk or Sharpe ratio

of mean-variance models with shortsale constraints. Third, López de Prado (2016)

reported favorable results for the Hierarchical Risk Parity method compared to the

minimum-variance model with shortsale constraints and the traditional risk parity

model. Although this recent method results in highly diversified portfolios, it does

not consistently outperform the traditional portfolio allocation strategies and it’s

performance is particularly comparable to the traditional risk parity method.

The chapter is organized as follows. In Section 5.2, we briefly describe the portfolio

allocation methodologies investigated in this study. In Section 5.3, we present the

datasets and the experimental design to compare different portfolios. We provide the

numerical results in Section 5.4. Finally, Section 5.5 concludes the chapter.
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5.2 Description of the Portfolio-Allocation Models

Considered

In this section, we will briefly describe the methodologies considered here. We inves-

tigate the out of sample performances of Equally Weighted allocation (EW), sample-

based Mean-Variance allocation with short sales constraints (MV-c), Mean-Variance

allocation with short sales constraints and with cluster-based filtering (MV-SLCA-

c), sample-based Minimum-Variance allocation with short sales (Min-c), Minimum-

Variance allocation with short sales and with cluster based filtering (Min-SLCA-

c), Traditional Risk Parity Allocation exemplified by the Inverse-Variance Portfolio

(IVP) as it is described in López de Prado (2016), the recently proposed Hierarchical

Risk Parity (HRP) method by López de Prado (2016), and Mean-Variance alloca-

tion models with short sales and benchmark return constraints (MV-c-RetHRP) and

it’s clustering based filtering version (MV-c-SLCA-RetHRP), where the benchmark

return is obtained by the sample average return of HRP portfolio allocation.

5.2.1 Equally-Weighted Allocation

The equally-weighted allocation strategy is to hold a portfolio where each of the N

assets has a weight of 1
N

. This strategy does not involve any parameter estimation

or optimization, so it is estimation error free. This strategy is chosen as the bench-

mark strategy to compare the out-of-sample Sharpe ratios and turnover values of the

strategies investigated.

5.2.2 Mean-Variance Portfolio Optimization

Given N risky assets, the mean variance portfolio is the solution to the optimization

problem
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min wTΣ̂w − 1
γ
wTµ̂

s.t. wTe = 1

w ≥ 0

,

(5.1)

where w ∈ RN+ is the vector of portfolio weights, wTµ̂ is the sample mean of the

portfolio returns, and wTΣ̂w is the sample variance of the portfolio returns, with Σ̂

denoting the sample covariance matrix of the asset returns. The constraint wTe = 1,

where e ∈ RN is the vector of all ones, ensures that the portfolio weights sum to one,

and the constraint w ≥ 0 ensures that there is no short-selling.

For different values of the risk aversion parameter γ, mean-variance portfolios on

the efficient frontier are obtained. In our experimental design, γ is set to 1 following

DeMiguel and Nogales (2009). The MV-c and MV-SLCA-c methods are based on the

model described above. MV-c uses the sample covariance matrix Σ̂ for the covariance

matrix estimate. MV-SLCA-c replaces the sample covariance matrix Σ̂ in Model (5.1)

with the filtered covariance matrix Σ̂SLCA obtained using hierarchical clustering in

the model. The procedure to obtain Σ̂SLCA is discussed in Section 5.2.4.

5.2.3 Minimum-Variance Portfolio Optimization

The minimum-variance portfolio is the mean-variance portfolio corresponding to the

highest risk aversion parameter (γ = 0). Thus, it can be computed by solving the

following optimization problem:

min wTΣ̂w

wTe = 1

w ≥ 0

(5.2)
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Notice that the estimation errors of the expected asset returns does not affect the

minimum variance portfolio, since the expected asset returns are not involved in the

model.

Min-c and Min-SLCA-c methods are based on the model described above. Min-c

uses the sample covariance matrix Σ̂ as the covariance matrix estimate. Min-SLCA-c

replaces the sample covariance matrix Σ̂ in Model (5.2) with the filtered covariance

matrix Σ̂SLCA obtained using hierarchical clustering.

5.2.4 Hierarchical Clustering Based Filtering

Hierarchical clustering methods are clustering procedures in which elements are it-

eratively merged together in clusters of increasing size according to their degree of

similarity. In his seminal paper, Mantegna (1999) investigates the correlation coef-

ficient matrix to detect the hierarchical structure present in a portfolio of N assets

traded in a financial market. We describe his methodology next.

Given N financial assets and historical returns of the financial assets, one can

calculate the correlation coefficients ρi,j between the assets i and j as a similarity

measure between pairs of assets i, j for all i, j = 1, . . . , n. At the beginning of the

clustering procedure, each asset defines its own cluster. Then, at any iteration, the

two clusters with the largest correlation are merged together in a single cluster and

the cluster set is updated. At the second and further iterations different similarities

between clusters can be defined, each one characterizing a specific hierarchical clus-

tering procedure. The number of total clustering iterations is N−1. The hierarchical

clustering procedure considered in this study is called Single Linkage Clustering Al-

gorithm (SLCA). In fact the SLCA uses the maximal correlation coefficient between

distinct groups of elements as the similarity measure between clusters. If a new clus-

ter q is formed from clusters h and k, then the similarity between cluster q and any
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other cluster j is given by

ρqj = max{ρhj, ρkj}

indicating that the similarity between any element of cluster q and any element

of cluster j is the similarity between the two most similar entities in clusters q and j.

While The SLCA algorithm leads to a single cluster eventually, it determines a

minimal spanning tree connecting the n stocks of the portfolio with n−1 links (Gower

and Ross 1969). This tree is a dendrogram where each node αk is associated with

the distance ραk (similarity measure) between the two clusters of elements merging

together in the node αk. The dendrogram stores the key information of this procedure,

such as how the clusters are historically formed and the similarity distance between

each other.

One can construct a filtered correlation matrix CSLCA from the resulting den-

drogram from the SLCA algorithm. CSLCA has n − 1 distinct correlation coefficient

values instead of n(n − 1)/2 distinct elements characterizing the sample covariance

matrix, and it is shown that CSLCA is an ultrametric correlation matrix which is

always positive definite if all the elements of the matrix are positive (Tumminello

et al. 2010, Marti et al. 2017). This condition is required to efficiently solve Prob-

lems (5.1) or (5.2). Once CSLCA is constructed, the covariance matrix estimate ΣSLCA

can be obtained by multiplying the entries of CSLCA by the assets’ sample standard

deviations (Pantaleo et al. 2011).

5.2.5 Hierarchical Risk Parity

More recently, López de Prado (2016) introduced a new portfolio allocation method-

ology called Hierarchical Risk Parity (HRP). This strategy is based on the cluster

information resulting from the single linkage hierarchical clustering algorithm and

the inverse-variance allocation of the weights. López de Prado (2016) points out that
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correlation matrices lack the notion of hierarchy and make no difference between as-

sets, which allows weights to vary freely in unintended ways. However, in reality not

every financial asset is actually a substitute of each other. While some of them are

closer substitutes of one another, some other assets are complimentary to one another.

In the first part of the HRP methodology, the single linkage hierarchical clustering

based on the sample correlation matrices is used to find the dendrogram representing

the hierarchical structure as it is described in Section 5.2.4. Once the clusters have

been determined, the capital should be efficiently allocated both within and across

groups. For that purpose, López de Prado (2016) reorganizes the rows and columns

of the covariance matrix based on the cluster information, so that the largest values

lie along the diagonal. This quasi-diagonalization of the covariance matrix provides a

useful property: similar investments are placed together, and dissimilar investments

are placed far apart. Finally, the weights are assigned to the assets by the inverse-

variance allocation technique which is optimal for a diagonal covariance matrix.

5.2.6 Traditional Risk Parity

Traditional risk parity allocation is represented by the inverse variance portfolio al-

location (IVP) where the allocated weights are given by,

wi =
1/σ2

i∑N
i=1 1/σ2

i

, i = 1, . . . , n

The rationale behind the inverse variance allocation technique is to assign large

weights to low volatile stocks.
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5.2.7 Mean-Variance Portfolio Optimization with a bench-

mark return constraint

Mean-variance models can be formulated in multiple ways (Braga 2016). We provided

the one with the risk aversion parameter in Model (5.1). To test whether mean-

variance formulation could return the lower risk while achieving the same portfolio

return achieved by HRP strategy, we reformulate the Model (5.1) with a benchmark

return constraint and we define the benchmark return value as the HRP portfolio

return given by the following equation

µ(HRP) = wT

(HRP)µ

where wHRP are the weights obtained by HRP allocation and µ is the sample average

of the asset returns. The mean-variance model with the benchmark return constraint

then can be formulated by following Model (5.3)

min wTΣ̂w

s.t. wTµ = µ(HRP)

wTe = 1

w ≥ 0

,

(5.3)

5.3 Experimental Setting

5.3.1 Description of Empirical Datasets

10+1 Industry Portfolios

TheN = 10+1 Industry portfolios dataset from Ken French’s financial database (French

2017) is one of the datasets that DeMiguel and Nogales (2009) used in their exper-
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iments. This dataset is chosen to replicate some of the results that provided in his

study. The dataset consists of monthly excess returns of 10 industry portfolios in the

United States. The 10 industries considered are Consumer-Discretionary, Consumer-

Staples, Manufacturing, Energy, High- Tech, Telecommunication, Wholesale and Re-

tail, Health, Utilities, and Others. The monthly returns range from July 1963 to

November 2004. The dataset is augmented by adding as an asset the excess return

on the US equity market portfolio (MKT).

30 Industry Portfolios

The dataset consists of monthly excess returns on 30 industry portfolios in the United

States. The monthly returns range from July 1963 to February 2017 and were ob-

tained from Ken French’s financial database (French 2017).

SPI sectors

The “SPI sectors” dataset consists of daily returns on 10 value weighted industry

portfolios formed by using the Global Industry Classiffication (GICS) developed by

Standard & Poor’s. The 10 industries considered are Energy, Material, Industri-

als, Consumer-Discretionary, Consumer-Staples, Healthcare, Financials, Information-

Technology, Telecommunications, and Utilities. The data span from January 1995 to

August 2016. This dataset is obtained from Thomas Raffinot (Raffinot 2016).

Dow Jones Industrial Average

The dataset consists of daily excess returns on 28 Dow Jones industrial average index

companies in the United States (the stocks in Dow Jones 30 except for Visa and

Goldman Sachs stocks). The daily returns range from January 1996 to August 2016

and this dataset is created from the dataset constructed by Thomas Raffinot for

S&P-500 daily returns (Raffinot 2016).
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5.3.2 Comparison Measures

Following DeMiguel et al. (2009), the methodologies are tested on the given datasets

based on a rolling-window approach. Given a T -month or T -day long dataset of

returns, an estimation length M is chosen. To test the sensitivity of the input pa-

rameters, different estimation lengths are considered. For the datasets involving daily

returns, specifically, the values M = [66, 130, 260, 520] days are used. For the datasets

involving monthly returns, we tried M = [30, 60, 120] months. The portfolios are re-

balanced every R periods. The common practice in the industry is rebalancing the

portfolio every month. Thus, we use R = 1 month for the datasets involving monthly

returns, and R = 22 days for the datasets involving daily returns. In each rebalancing

period t, starting from t = M+1, parameters for the particular strategy are estimated

using the M time units preceding t. The weights are calculated by the chosen strategy

and used to compute the return in the next period t+R. This process is continued by

adding the R returns from the next period in the dataset and dropping the earliest R

returns, until the end of the dataset. The outcome of this rolling-window approach

is a vector of T−M
R

monthly out of sample returns generated by each of the portfolio

methods described in Section 5.2 for each of the datasets described in Section 5.3.1.

Given the time series of monthly out-of-sample returns generated by each strategy

in each dataset, several comparison criteria are computed:

Risk

Out-of-sample risk of strategy k is estimated by the sample variance of the out-

of-sample excess monthly returns σ̂k. To test whether the out of sample risk of two

strategies are statistically distinguishable, we also compute the p-value by conducting

an F-test for the null hypothesis that normally distributed iid samples from two

populations have the same variance.
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Sharpe ratio

Out-of-sample Sharpe ratio of strategy k, defined as the sample mean of out-of-

sample excess returns (over the risk-free asset), µ̂k , divided by their sample standard

deviation, σ̂k. To test whether the Sharpe ratios of two strategies are statistically

distinguishable, we also compute the p-value of the difference, using the approach

introduced by (Jobson and Korkie 1981) and referenced in (DeMiguel et al. 2009).

Specifically, given two portfolios i and j, with µ̂i, µ̂j, σ̂i, σ̂j, σ̂i,j as their estimated

means, variances, and covariances over a sample of size T−M
R

, the test of the hypothesis

H0 : µ̂i
σ̂i
− µ̂j

σ̂j
= 0 is obtained via the test statistic

ẑJK :
µ̂i ∗ σ̂j − µ̂j ∗ σ̂i√

ν̂
,

where

ν̂ :
1

(T −M)/R

(
2σ̂2

i σ̂
2
j − 2σ̂iσ̂jσ̂i,j + 0.5µ̂2

i σ̂
2
j + 0.5µ̂2

j σ̂
2
i −

µ̂iµ̂j
σ̂iσ̂j

σ̂2
i,j

)
.

Turnover

To get a sense of the amount of trading required to implement for each portfolio strat-

egy a third performance metric computed is the portfolio turnover for each period,

defined as

TOkt =
N∑
j=1

(|ŵk,j,t+R − ŵk,j,t+ |)

where ŵk,j,t+ is the portfolio weight before rebalancing at t+R which is different than

the values ŵk,j,t or ŵk,j,t+R due to changes in asset prices between t and t+R.

After finding the vector of turnover values for each strategy and for each rebalanc-

ing period, we compute the sample mean and the sample standard deviation of the

vector of turnover values. The average of this vector of values can be interpreted as
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the average percentage of wealth traded each period. To test whether the average per-

centage of wealth traded each period of two strategies are statistically distinguishable,

we compute the p-value of the difference by applying a two-sample t-test.

5.4 Numerical Results

In this section, we present results obtained by the portfolio allocation strategies de-

scribed in Section 5.2 for the datasets described in Section 5.3.1. For each strategy,

we compute the realized out-of-sample risk, the Sharpe ratio and the turnover.

5.4.1 Risk

Portfolio riskiness is one of the comparison measures that we are interested in. The

risk is calculated by the variance of the out-of-sample returns. We analyze the results

based on the time unit of the returns in the datasets.

Figure 5.1 and Figure 5.2 show the realized risk for the portfolio strategies as a

function of training periods for the datasets involving monthly returns and for the

datasets involving daily returns respectively. We observe that for all the datasets, the

mean-variance models result in comparably greater risk with both sample covariance

matrices (MV-c) and filtered covariance matrices (MV-SLCA-c). On the other hand,

all the other strategy’s risk values are comparably closer to each other. Overall, Min-c,

Min-c-SLCA, MV-c-RetHRP and MV-c-SLCA-RetHRP are the strategies returning

the lowest risk values.

Moreover, using filtered covariance matrices instead of sample covariance matrix

estimates in mean-variance (MV-c), minimum-variance (Min-c) and mean-variance

with benchmark constrained models (MV-c-RetHRP) do not improve the portfolio

risk significantly. This is a consequence of using short sale constraints in the models as

it is previously stated in Section 5.1. On the other hand, in general, HRP portfolios’
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risk is almost equivalent to IVP portfolios’ risk and it can be concluded that the

HRP portfolios are certainly not the best performing portfolios in terms of the out of

sample risk for the investigated datesets and the portfolio allocation strategies.

To measure the statistical significance of the portfolios risk performances, we select

the minimum variance strategy (Min-c) as the benchmark strategy since it is one of the

strategies that yields the lowest out-of-sample risk compared to the other strategies in

the experiments as it can be verified in Figures 5.1 and 5.2 . The numerical results and

p-values, which are provided in Table 5.1 and Table 5.2 for all the investigated datasets

and for the selected training periods, verify the conclusions reached from Figure 5.1

and Figure 5.2. MV-c and MV-c-SLCA portfolios have significantly greater risk than

Min-c portfolios for all the datasets. EW, HRP and IVP strategies also perform

significantly worse than the Min-c portfolio allocation strategy in general. For these

three strategies, the difference between their portfolios’ risk and the Min-c portfolio

risk are quite significant for the dataset “30 Industry Portfolios” while it is the least

significant for the dataset “SPI Sectors”. Moreover, we find out that the portfolio

risks for MV-SLCA-c, MV-c-RetHRP and MV-c-SLCA-RetHRP strategies do not

differ significantly from the Min-c portfolio risk.

Finally, using HRP allocation’s expected portfolio return as a benchmark parame-

ter in benchmark-return-constrained mean-variance models (MV-c-RetHRP and MV-

c-SLCA-RetHRP) generally yields better out-of-sample risk values compared to the

mean-variance models using risk aversion parameter γ = 1 (MV-c and MV-c-SLCA).

This is due to restricting the portfolio’s expected return to a fix value reduces the

effect of the estimation errors on the expected asset returns.

5.4.2 Sharpe ratios

The out-of-sample Sharpe ratio is another metric that we consider when comparing

different portfolio allocation strategies. The Sharpe ratio is the risk adjusted returns
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Figure 5.1: The realized risk for the portfolio strategies as a function of training
periods for the datasets involving monthly returns of Industry

Portfolios (N = 10 + 1) and Industry Portfolios (N = 30)

Figure 5.2: The realized risk for the portfolio strategies as a function of training
periods for the datasets involving daily returns of SPI Sectors (N = 10) and Dow

Jones stocks (N = 28)
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Industry Portfolios, N = 10 + 1 Industry Portfolios, N = 30

M = 60 M = 120 M = 60 M = 120

Strategies Risk p Risk p Risk p Risk p

MV-c 0.0038 0.00 0.0040 0.00 0.0063 0.00 0.0068 0.00
MV-c-SLCA 0.0038 0.00 0.0042 0.00 0.0064 0.00 0.0071 0.00
Min-c(*) 0.0014 * 0.0014 * 0.0013 * 0.0013 *
Min-c-SLCA 0.0014 0.44 0.0014 0.40 0.0013 0.38 0.0013 0.48
MV-c-RetHRP 0.0015 0.33 0.0014 0.47 0.0014 0.25 0.0013 0.47
MV-c-SLCA-RetHRP 0.0014 0.42 0.0014 0.47 0.0013 0.41 0.0013 0.46
EW 0.0019 0.00 0.0019 0.00 0.0023 0.00 0.0023 0.00
HRP 0.0016 0.08 0.0017 0.03 0.0018 0.00 0.0018 0.00
IVP 0.0017 0.02 0.0017 0.02 0.0019 0.00 0.0020 0.00

Table 5.1: For the datasets involving monthly returns of “Industry
Portfolios (N = 10 + 1)” and “Industry Portfolios (N = 30)”, this table reports the
out-of-sample risk for the portfolio allocation strategies described in Section 5.2 for
two different training periods (M = 60 and M = 120). The column “p” shows the
p-value of the ratio of each strategy’s portfolio risk to Min-c benchmark’s portfolio

risk as it is described in Section 5.3.2.

SPI Sectors, N = 10 Dow Jones, N = 28

M = 130 M = 520 M = 130 M = 520

Strategies Risk p Risk p Risk p Risk p

MV-c 0.0035 0.00 0.0038 0.00 0.0084 0.00 0.0100 0.00
MV-c-SLCA 0.0035 0.00 0.0039 0.00 0.0085 0.00 0.0101 0.00
Min-c(*) 0.0011 * 0.0013 * 0.0015 * 0.0015 *
Min-c-SLCA 0.0011 0.46 0.0013 0.45 0.0015 0.44 0.0015 0.46
MV-c-RetHRP 0.0012 0.18 0.0014 0.25 0.0015 0.47 0.0015 0.47
MV-c-SLCA-RetHRP 0.0012 0.17 0.0014 0.28 0.0015 0.43 0.0016 0.41
EW 0.0020 0.00 0.0020 0.00 0.0024 0.00 0.0026 0.00
HRP 0.0015 0.01 0.0016 0.05 0.0019 0.07 0.0020 0.03
IVP 0.0015 0.00 0.0017 0.02 0.0019 0.04 0.0020 0.02

Table 5.2: For the datasets involving daily returns of SPI Sectors (N = 10) and
Dow Jones stocks (N = 28), this table reports the out-of-sample risk for the

portfolio allocation strategies described in Section 5.2 for two different training
periods (M = 130, M = 520). The column “p” shows the p-value of the ratio of

each strategy’s portfolio risk to Min-c benchmark’s portfolio risk as it is described in
Section 5.3.2.
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of the portfolios and is the key criterion to compare the portfolio allocation strate-

gies’ out of sample performances with the naive equally-weighted (EW) strategy in

DeMiguel and Nogales (2009)’s study.

Figure 5.3 and Figure 5.4 display the out of sample Sharpe ratios of the investi-

gated strategies as a function of the training time. Contrary to the risk performance

metric comparison in Section 5.4.1, there is no clear winner or clear loser strategy

here. The ranking of the portfolio allocation strategies based on their Sharpe ratios

differ for different datasets and different training periods. For instance, for the dataset

“N = 10+ 1 industry portfolios”, the best performing strategy changes with different

training periods. Overall, HRP and MV-c-SLCA-RetHRP can be thought as the best

performing strategies although for the 7 of the 9 strategies, Sharpe ratios are quite

close to each other when training period is 120 months. On the other hand, Min-c,

Min-c-SLCA, MV-c-RetHRP and MV-c-SLCA-RetHRP are the top performers for the

“Industry 30 portfolios” dataset. For the “SPISectors” dataset, MV-c-RetHRP and

MV-c-RetHRP-SLCA are the best performing strategies for larger training periods

while all the strategies but MV-c and MV-c-SLCA, are quite close to each other for

shorter training periods. For three out of four datasets used, MV-c and MV-c-SLCA

are clearly the worst performing strategies.

However, for the “Dow Jones” dataset, where the idiosynratic volatility are ex-

pected to be higher for individual assets compared to the other investigated datasets,

MV-c and MV-c-SLCA are returning Sharpe ratios as high as the other strategies

and it is the top performing portfolio for M = 520 training days although it is not

significantly different than EW as we later see from Table 5.4.

Given there is no clear winner among the portfolio strategies in terms of out-of-

sample Sharpe ratios and following DeMiguel and Nogales (2009)’s study, we take

equally weighted (EW) allocation strategy as our benchmark model when we calcu-

late the p-values for the statistical significance of the difference of the Sharpe ratios
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obtained by the other strategies. The Sharpe ratios and p values are reported in Ta-

ble 5.3 and Table 5.4 for training periods M = 60 and M = 120 for monthly returns

and M = 130 and M = 520 for daily returns.

For the datasets involving monthly asset returns, the results are shown in Ta-

ble 5.3. The dataset “Industry Portfolios, N = 10 + 1” is one of the datasets that

DeMiguel and Nogales (2009) used to compare portfolio allocations’ strategies. In

Table 5.3, we replicate his experiments and our findings for the Sharpe ratio and

p-values match with the results they reported in their study.

For the monthly returns dataset, the EW portfolios consistently do better than

MV-c and MV-c-SLCA portfolios for both training periods. The difference is also

statistically significant between both of these strategies and the EW strategy only

when the training period is chosen as M = 120 for both datasets. The rest of the

strategies, other than the strategies MV-c and MV-c-SLCA, return higher Sharpe

ratios than the EW strategy for “30 Industry Portfolios” dataset. All these strategies

are performing statistically better than the EW strategy when the training period

is 60 months (p-values are less than 0.05). When the training period is 120, the

differences between the strategies HRP, IVP and MV-c-RetHRP’s Sharpe ratio and

the EW’s sharpe ratio are statistically significant. Also, for the same training period

the EW’s Sharpe ratio and the Sharpe ratios of the strategies Min-c, Min-c-SLCA

and MV-c-SLCA-RetHRP are considerably different (the p values are 0.06, 0.07 and

0.06 respectively).

For the datasets involving daily asset returns, the results are given in Table 5.4.

For the daily returns, the difference between EW’s and the other strategies’ Sharpe

ratios are not dramatically significant. For the “SPI sectors” dataset, MV-c and

MV-c-SLCA significantly underperforms comparing to the other strategies when the

training period is 130 days. When the training period is 520 days, MV-c-RetHRP

and MV-c-SLCA-RetHRP methods are seen to be the highest performing among
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the others and they are considerably better than selected benchmark EW. For the

“Dow Jones” dataset, EW strategy is among the top performers, however it does not

significantly outperform the other strategies. Interestingly, mean-variance models

MV-c and MV-c-SLCA return comparably high Sharpe ratios, especially when the

training period M is 520 days. However, the difference is not statistically significant

at the conventional levels, such as p = 0.01 or p = 0.05, returning p = 0.08.

In general, our findings resulting from the Sharpe ratio comparison align with the

findings from Section 5.4.1 where we compare out-of-sample risk values. For all the

datasets except for the dataset “Dow Jones”, MV-c and MV-c-SLCA models yield

lower Sharpe ratios. That is the effect of estimation error is so large that it erodes

completely the gains from optimal diversification. Also similar to the comparison

between the out-of-sample risk, we do not observe any significant improvement of

using filtered covariance matrices in the optimization models such as mean-variance,

minimum-variance or mean-variance with a benchmark return constraint. Similarly,

the most recent portfolio allocation strategy HRP’s performance is very comparable

to traditional IVP’s performance, and it does not consistently outperform the other

allocation strategies, including EW.

On the other hand, the rest of the strategies are generally comparable to each

other. Although for some of the selected datasets and some certain training peri-

ods, the selected benchmark EW significantly underperforms compared to some of

the other portfolio allocation strategies, this behavior is not consistent, and there

is no single allocation strategy consistently outperforming all the other allocation

strategies.

Finally, using HRP allocation’s portfolio return as a benchmark parameter in

benchmark constrained mean-variance models (MV-c-RetHRP and MV-c-SLCA-RetHRP

yield better Sharpe ratios as it yields better out of sample risk compared to the mean

variance models using risk aversion parameter γ = 1 (MV-c and MV-c-SLCA).
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Figure 5.3: The out-of-sample Sharpe ratios for the portfolio strategies as a function
of training periods for the datasets involving monthly returns of Industry Portfolios

(N = 10 + 1) and Industry Portfolios (N = 30)

Figure 5.4: The out of sample Sharpe ratios for the portfolio strategies as a function
of training periods for the datasets involving daily returns of SPI Sectors (N = 10)

and Dow Jones stocks (N = 28)
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Industry Portfolios, N = 10 + 1 Industry Portfolios, N = 30

M = 60 M = 120 M = 60 M = 120

Strategies Sharpe p Sharpe p Sharpe p Sharpe p

MV-c 0.0914 0.24 0.0636 0.02 0.1655 0.15 0.1462 0.01
MV-c-SLCA 0.0950 0.28 0.0571 0.02 0.1680 0.17 0.1477 0.02
Min-c 0.1264 0.33 0.1457 0.39 0.2504 0.03 0.2678 0.06
Min-c-SLCA 0.1219 0.41 0.1485 0.37 0.2554 0.04 0.2720 0.07
MV-c-RetHRP 0.1231 0.36 0.1473 0.35 0.2510 0.02 0.2712 0.04
MV-c-SLCA-RetHRP 0.1273 0.30 0.1427 0.42 0.2603 0.02 0.2709 0.06
EW(*) 0.1151 * 0.1369 * 0.2023 * 0.2239 *
HRP 0.1339 0.01 0.1436 0.20 0.2297 0.00 0.2503 0.00
IVP 0.1237 0.04 0.1453 0.05 0.2223 0.00 0.2398 0.00

Table 5.3: For the datasets involving monthly returns of “Industry
Portfolios (N = 10 + 1)” and “Industry Portfolios (N = 30)”, this table reports the

out-of-sample Sharpe ratios for the portfolio allocation strategies described in
Section 5.2. The column “p” shows the p-value of the difference between the Sharpe
ratio of each strategy’s from that of the EW benchmark, which is computed using

the Jobson and Korkie (1981) described in Section 5.3.2.

SPI Sectors, N = 10 Dow Jones, N = 28

M = 130 M = 520 M = 130 M = 520

Strategies Sharpe p Sharpe p Sharpe p Sharpe p

MV-c 0.0682 0.04 0.1054 0.28 0.2108 0.48 0.2763 0.08
MV-c-SLCA 0.0671 0.04 0.1048 0.28 0.2077 0.47 0.2758 0.08
Min-c 0.1621 0.48 0.1476 0.39 0.1836 0.21 0.1595 0.26
Min-c-SLCA 0.1683 0.43 0.1474 0.40 0.1719 0.16 0.1487 0.20
MV-c-RetHRP 0.1520 0.41 0.1916 0.06 0.1948 0.31 0.1713 0.34
MV-c-SLCA-RetHRP 0.1470 0.36 0.1949 0.05 0.1905 0.29 0.1580 0.25
EW(*) 0.1600 * 0.1361 * 0.2134 * 0.1852 *
HRP 0.1548 0.36 0.1452 0.25 0.2184 0.37 0.1841 0.47
IVP 0.1697 0.16 0.1453 0.18 0.2139 0.48 0.1802 0.33

Table 5.4: For the datasets involving daily returns of “SPI Sectors” (N = 10) and
“Dow Jones stocks” (N = 28), this table reports the out-of-sample Sharpe ratios for
the portfolio allocation strategies described in Section 5.2. The column “p” shows

the p-value of the difference between the Sharpe ratio of each strategy’s from that of
the EW benchmark, which is computed using the Jobson and Korkie (1981)

described in Section 5.3.2.
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5.4.3 Turnover

Turnover values can be used as a proxy estimate to the transaction costs that occur

due to rebalancing of the portfolios. The higher the turnover, the more the transaction

costs an investor has to pay.

Figure 5.5 and Figure 5.6 display average turnover rates of the investigated strate-

gies as a function of the training period. For both type of datasets, the datasets

involving monthly return and the datasets involving the daily return, the turnover

rates decrease as the training period increases for all the strategies but for the EW

strategy. This can be interpreted as a sign of an increase in portfolio stability with

the time. The EW strategy’s turnover rate is not affected by the increase in training

periods as it does not estimate any parameter to find the portfolio weights. The high-

est turnover rates belong to MV-c and MV-c-SLCA models while the lowest turnover

rates are observed for the EW and IVP strategies. The IVP strategy returns the

lowest turnover rate as the training period increases. Table 5.5 and Table 5.6 report

some of the selected training periods for the datasets. All of the p-values of the dif-

ference between the average turnover values of each strategy’s from that of the EW

benchmark show that the differences between the turnover rates are significant.

5.5 Conclusion

In this chapter, we compared the performance of 9 models for the portfolio alloca-

tion, including the models with the filtered covariance matrices using hierarchical

clustering and HRP portfolio allocation strategy. The comparison is conducted by

using four different datasets in a widely accepted experimental design setting. We

show that using filtered covariance matrix in short sale constrained models does not

create a significant performance change in the models. Our second finding is the

recently developed portfolio allocation strategy “HRP” performs very closely to the
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Figure 5.5: The average turnover rates for the portfolio strategies as a function of
training periods for the datasets involving monthly returns of Industry Portfolios

(N = 10 + 1) and Industry Portfolios (N = 30)

Industry Portfolios, N = 10 + 1 Industry Portfolios, N = 30

M = 60 M = 120 M = 60 M = 120

Strategies Turnover p Turnover p Turnover p Turnover p

MV-c 0.2447 0.00 0.1713 0.00 0.3288 0.00 0.1991 0.00
MV-c-SLCA 0.2331 0.00 0.1769 0.00 0.3286 0.00 0.2060 0.00
Min-c 0.0925 0.00 0.0473 0.00 0.1212 0.00 0.0630 0.00
Min-c-SLCA 0.0798 0.00 0.0409 0.00 0.1014 0.00 0.0478 0.00
MV-c-RetHRP 0.1753 0.00 0.1261 0.00 0.1921 0.00 0.1113 0.00
MV-c-SLCA-RetHRP 0.1908 0.00 0.1379 0.00 0.1989 0.00 0.1164 0.00
EW 0.0214 * 0.0221 * 0.0284 * 0.0288 *
HRP 0.1172 0.00 0.0680 0.00 0.1211 0.00 0.0833 0.00
IVP 0.0176 0.00 0.0089 0.00 0.0205 0.00 0.0096 0.00

Table 5.5: For the datasets involving monthly returns of “Industry
Portfolios (N = 10 + 1)” and “Industry Portfolios (N = 30)”, this table reports the
average turnover rates for the portfolio allocation strategies described in Section 5.2.

The column “p” shows the p-value of the difference between the average turnover
values of each strategy’s from that of the EW benchmark, which is computed using

the t-tests.
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Figure 5.6: The average turnover rates for the portfolio strategies as a function of
training periods for the datasets involving daily returns of SPI Sectors (N = 10) and

Dow Jones stocks (N = 28)

SPI Sectors, N = 10 Dow Jones, N = 28

M = 130 M = 520 M = 130 M = 520

Strategies Turnover p Turnover p Turnover p Turnover p

MV-c 0.9518 0.00 0.5550 0.00 0.9576 0.00 0.3680 0.00
MV-c-SLCA 0.9610 0.00 0.5614 0.00 0.9686 0.00 0.3628 0.00
Min-c 0.2172 0.00 0.0702 0.00 0.3748 0.00 0.1156 0.00
Min-c-SLCA 0.2148 0.00 0.0682 0.00 0.3537 0.00 0.1058 0.00
MV-c-RetHRP 0.4025 0.00 0.2456 0.00 0.4465 0.00 0.1895 0.00
MV-c-SLCA-RetHRP 0.4739 0.00 0.2915 0.00 0.4738 0.00 0.2165 0.00
EW 0.0261 * 0.0261 * 0.0472 * 0.0478 *
HRP 0.2231 0.00 0.1062 0.00 0.2103 0.00 0.1459 0.00
IVP 0.0600 0.00 0.0194 0.00 0.0847 0.00 0.0263 0.00

Table 5.6: For the datasets involving daily returns of “SPI Sectors (N = 10)” and
“Dow Jones stocks (N = 28)”, this table reports the average turnover rates for the
portfolio allocation strategies described in Section 5.2. The column “p” shows the

p-value of the difference between the average turnover values of each strategy’s from
that of the EW benchmark, which is computed using the t-tests.
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traditional risk parity allocation strategy, and it does not consistently outperform

the classical strategies such as the equally-weighted approach, mean-variance mod-

els and minimum-variance models. Also, we verified the general poor out-of-sample

performance of the mean-variance models, which are in general the worst performers

because of the estimation errors. In summary, there is no single model that consis-

tently delivers an out-of-sample risk or a Sharpe ratio or a turnover rate consistently

outperforming the other strategies. The performance of the methods are generally

affected by the training period of the models, the frequency of the returns and the

constraints in the models. The estimation error free equally-weighted approach is

still an attractive choice for investors with its low turnover rate and competitive

out-of-sample performance.
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Appendix A

Extra set of constraints and tables

for Chapter 2

A.1 Precedence constraints for the oil and gas case

study

Precedence Relations =



x ∈ {0, 1}n :

x5 ≤ x25;

x8 ≤ x24;

x5 ≤ x24;

x8 ≤ x21;

x4 ≤ x20;

x2 ≤ x19;

x2 ≤ x17;

x1 ≤ x16;



(A.1)

A.2 The precedence relations and average net-present

values (NPV) of the projects
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Projects Avg. NPV

m = 1000 m = 500 m = 100

1 305.897 300.329 293.160
2 460.993 454.685 446.099
3 0.107 0.103 0.098
4 67.265 65.698 64.094
5 97.901 95.899 93.731
6 0.036 0.034 0.028
7 125.989 123.594 120.963
8 106.834 104.655 102.824
9 6.128 5.979 5.766
10 8.877 8.708 8.156
11 30.411 29.568 28.955
12 159.684 156.401 153.327
13 6.681 6.562 6.471
14 0.057 0.049 0.040
15 101.636 100.084 98.133
16 37.272 36.460 35.702
17 33.162 32.495 31.192
18 18.138 17.841 17.388
19 66.076 64.928 63.245
20 10.962 10.734 10.428
21 19.332 18.883 18.413
22 17.926 17.435 16.924
23 18.780 18.284 17.795
24 20.957 20.491 19.857
25 330.199 330.508 314.499
26 1.693 1.662 1.628
27 5.574 5.551 5.258

Table A.1: Average project NPV for different sample sizes
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