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Abstract

In this thesis, we investigate the curvature of interior paths as a component of com-

plexity bounds for interior-point methods (IPMs) in Linear Optimization (LO). LO is

an optimization paradigm, where both the objective and the constraints of the model

are represented by linear relationships of the decision variables. Among the class of

algorithms for LO, our focus is on IPMs which have been an extremely active research

area in the last three decades. IPMs in optimization are unique in the sense that they

enjoy the best iteration-complexity bounds which are polynomial in the size of the LO

problem. The main objects of our interest in this thesis are two distinct curvature

measures in the literature, the geometric and the Sonnevend curvature of the central

path. The central path is a fundamental tool for the design and the study of IPMs and

we will see both that the geometric and Sonnevend’s curvature of the central path are

proven to be useful in approaching the iteration-complexity questions in IPMs. While

the Sonnevend curvature of the central path has been rigorously shown to determine the

iteration-complexity of certain IPMs, the role of the geometric curvature in the literature

to explain the iteration-complexity is still not well-understood. The novel approach in

this thesis is to explore whether or not there is a relationship between these two curva-

ture concepts aiming to bring the geometric curvature into the picture. The structure

of the thesis is as follows. In the first three chapters, we present the basic knowledge of

path-following IPMs algorithms and review the literature on Sonnevend’s curvature and

1



the geometric curvature of the central path. In Chapter 4, we analyze a certain class of

LO problems and show that the geometric and Sonnevend’s curvature for these problems

display analogous behavior. In particular, the main result of this chapter states that in

order to establish an upper bound for the total Sonnevend curvature of the central path,

it is su�cient to consider only the case when the number of inequalities is twice as big

as the dimension. In Chapter 5, we study the redundant Klee-Minty (KM) construction

and prove that the classical polynomial upper bound for IPMs is essentially tight for

the Mizuno-Todd-Ye predictor-corrector algorithm. This chapter also provides a nega-

tive answer to an open problem about the Sonnevend curvature posed by Stoer et al.

in 1993. Chapter 6 investigates a condition number relevant to the Sonnevend curva-

ture and yields a strongly polynomial bound for that curvature in some special cases.

Chapter 7 deals with another self-concordant barrier function, the volumetric barrier,

and the volumetric path. That chapter investigates some of the basic properties of the

volumetric path and shows that certain fundamental properties of the central path fail

to hold for the volumetric path. Chapter 8 concludes the thesis by providing some final

remarks and pointing out future research directions.

2



Chapter 1

Introduction

1.1 Linear Optimization

A linear optimization problem can be expressed as follows: Let n > m and A be an

m⇥ n matrix of full rank. For c 2 Rn and b 2 Rm, we consider the primal and dual

linear optimization problems,

(Primal)

min c
T
x

s.t. Ax = b

x � 0,

(Dual)

max b
T
y

s.t. A
T
y + s = c

s � 0,

(1.1)

where x, s 2 Rn, y 2 Rm are vectors of variables. We call the data (A, b, c) an LO

problem instance.

In 1947, Dantzig developed the first e�cient algorithm, the simplex method, to solve

LO problems Dantzig (1965). The simplex method is still a widely used algorithm to

solve LO problems. Although the simplex method is e�cient in practice, it does not

have the theoretical e�ciency in the sense of polynomial iteration-complexity. In fact,

3



CHAPTER 1. INTRODUCTION

a problem, referred to as (KM) designed by Klee and Minty (1972) showed that the

simplex method with Dantzig’s rule requires a number of arithmetical operations which

grows exponentially with the number of variables of the problem.

The first polynomial algorithm for LO problems was developed by Khachiyan (1979,

1980). He applied the ellipsoidal method of Shor (1972), and Nemirovski and Yudin

(1976) to LO problems expressed in integer data; and obtained a polynomial upper

bound for the number of arithmetical operations to find an optimal solution Bland et al.

(1981). This bound is O(n4
L), which depends on the problem dimension n and a number

L, the length of the input, i.e., the total number of bits needed to describe the problem

data. However Khachiyan’s ellipsoid method was not practical for implementations.

In 1984, Karmarkar (1984) developed an algorithm, a so-called interior-point method,

which had polynomial iteration-complexity bound of O(nL), with a total complexity of

O(n3.5
L) arithmetic operations, a factor of

p
n lower than Khachian’s ellipsoid method.

He also claimed that this algorithm was e�cient in practice.

Soon after Karmarkar’s work, Sonnevend (1985) introduced the concept of the “central

path” and “central path-following” methods. In 1988, Renegar (1988) and Roos and Vial

(1988), derived the first central path-following algorithm with an arithmetic operations

complexity O(n3
L), which gave another

p
n improvement over the Karmarkar’s method.

This complexity bound is still the best one as of today. The question whether there exists

a strongly polynomial algorithm to solve LO problems (depending only the dimension

of the problem) is still open.

A unifying theme in this thesis is the curvature of interior paths as a complexity bound in

IPMs. The curvature of the central path will be our main focus for this purpose. As we

will see later, curvature is a good measure of the number of iterations of path-following

algorithms. This approach is multifaceted. By studying the curvature as a complexity

4



CHAPTER 1. INTRODUCTION

bound, one might construct concrete examples of LO problems which give the worst case

lower bound for the number of iterations in IPMs similar to what Klee and Minty have

proved for the simplex method. On the other hand, the curvature of the central path

is a more informative complexity measure than the classical bounds, and studying it

more closely might help to understand why IPMs often perform much better than their

worst case bound. Moreover, investigating the curvature might enable one to modify

and improve existing algorithms possibly under special assumptions. In the rest of this

introduction, we give the necessary background for IPMs and the central path.

1.2 IPMs and the central path

We refer to the feasible set P = {x : Ax = b, x � 0} of system (1.1) as the primal space

and the set D = {(y, s) : AT
y + s = c, s � 0} as the dual space. We define the interior

of P and D by P
+ = {x > 0 : x 2 P} and D

+ = {(y, s) 2 D : s > 0}, respectively. For

any µ > 0, consider the pair of problems

min {c
T
x+ µF (x) : Ax = b, x > 0} and min {�b

T
y + µF (s) : A

T
y + s = c, s > 0},

(1.2)

where F (·) is a self-dual strictly convex barrier function meaning that F (u) ! 1 as

u ! 0 for u 2 Rn. Unless otherwise stated the barrier function will be the logarithmic

barrier function F (u) = �

nX

i=1

log(ui). In Chapter 7, we will consider a di↵erent barrier

called the volumetric barrier function.

For any µ > 0, the following nonlinear problems, (see e.g. Roos et al. (2006)) with the

primal and dual logarithmic barrier functions,

5



CHAPTER 1. INTRODUCTION

min c
T
x� µ

nX

i=1

log xi

s.t. Ax = b

(1.3)

and

min �b
T
y � µ

nX

i=1

log si

s.t. A
T
y + s = c

(1.4)

have the optimality conditions:

Ax = b, x � 0

A
T
y + s = c, s � 0

xs = µe,

(1.5)

where uv denotes the Hadamard product [u1v1, . . . , unvn]T for u, v 2 Rn and e =

[1, . . . , 1]T is the all-one vector.

Notation: For a vector u 2 Rn, U := diag(u) will be the diagonal matrix whose entries

consist of those of u.

Theorem 1.2.1. Roos et al. (2006) Suppose P and D satisfy the interior-point condition,

i.e., there exist x, s > 0 satisfying (1.1). Then, for any µ > 0, the system (1.5) has a

unique solution (x(µ), y(µ), s(µ)), where x(µ) > 0 and s(µ) > 0.

Definition 1.2.2. The projections {x(µ) : µ > 0} ⇢ P and {(y(µ), s(µ)) : µ > 0} ⇢ D

are called primal and dual central paths, respectively. We also denote the primal-dual

central path by (x(µ), y(µ), s(µ)) for µ > 0.

6



CHAPTER 1. INTRODUCTION

The relevance of (1.3) and (1.4) to solve (1.1) comes from the following fact:

Theorem 1.2.3. Roos et al. (2006) Suppose that (1.1) satisfy the interior-point condi-

tion. Then,

1. (x(µ), y(µ), s(µ)) is a smooth analytic curve.

2. The duality gap on the central path is c
T
x(µ)� b

T
y(µ) = x(µ)T s(µ) = nµ.

3. As µ ! 0, the central path (x(µ), y(µ), s(µ)) converges to an optimal solution

(x⇤, y⇤, s⇤) of (1.1). The duality gap is zero at optimality of (1.1), and the limit

point is a strictly complementary optimal solution, i.e., x⇤s⇤ = 0 and x
⇤ + s

⇤
> 0.

The main idea of path-following algorithms is the following. Since as µ ! 0 the optimal

solutions of (1.3) and (1.4) lead to an optimal solution for (1.1), we can compute strictly

feasible solutions close to x(µ), (s(µ), or both), and then reduce the barrier parameter

µ, and repeat the procedure until µ is small enough. Computing approximate solutions

for (1.3) and (1.4) is done by Newton’s method. Such algorithms are called IPMs.

Figure 1.1: The points x1, . . . , xk, . . . follow the central path and converge to an optimal solution.

7



CHAPTER 1. INTRODUCTION

In the next chapter, we review some properties of the central path and IPMs more closely.

8



Chapter 2

Path-following algorithms

Our goal in this chapter is to review in more detail the properties of primal-dual IPMs.

We present two path-following algorithms for LO problems and review their basic prop-

erties. The first algorithm in Section 2.1 is a short-step primal-dual path-following al-

gorithm Roos et al. (2006). The second algorithm in Section 2.2 is a predictor-corrector

type primal-dual algorithm Mizuno et al. (1993). Both algorithms achieve the best

iteration-complexity upper bound for IPMs as of today.

2.1 Short-step IPMs

We first review certain properties of a short-step primal-dual method. Given (x, s) 2

P
+
⇥ D

+ and µ > 0, we have the proximity measure �(x, s, µ) :=
���xs

µ
� e

���
2
measuring

how close (x, s) is to the central path point (x(µ), y(µ), s(µ)) that satisfies (1.5). Define

the neighborhood N (�, µ) = {(x, s) 2 P
+
⇥ D

+ : �(x, s, µ)  �}. We define the �-

neighborhood of the central path as N (�) :=
[

µ>0

N (�, µ). The following algorithm can

be found in Roos et al. (2006).

9



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

A short-step path-following primal-dual algorithm:

Input:

An accuracy parameter ✏ > 0;

a proximity parameter �, 0  � < 1;

a barrier update parameter ✓, 0 < ✓ < 1;

an approximate solution (x0, s0) 2 P
+
⇥D

+ of (1.5) for some initial µ0 such that

�(x0, s0, µ0)  � and (x0)T s0 = nµ0;

begin x := x
0; s := s

0; µ := µ
0; while nµ � ✏ do

begin

x := x+�x;

s := s+�s;

µ := (1� ✓)µ;

end

end

For completeness, we include the linear system to solve in order to get the search direc-

tions (�x,�s):

S�x+X�s = µe� xs

A�x = 0

A
T�y +�s = 0

(2.1)

Next we define the input length L for an LO problem.

Definition 2.1.1. Let the data A, b, c be integral. The input length L is defined as

10



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

L =
mX

i=1

(1+ dlog2(1+ |bj |)e)+
nX

j=1

(1+ dlog2(1+ |cj |)e)+
m,nX

i=1
j=1

(1+ dlog2(1+ |aij |)e) (2.2)

The complexity result for the short-step path-following algorithm is as follows:

Lemma 2.1.2. Roos et al. (2006)

1. If � 
1p
2
and ✓ = 1p

2n
, the short-step path-following primal-dual algorithm requires

at most d
p
2n log nµ

0

✏
e iterations. The output is a primal dual pair (x, s) such that

x
T
s  ✏.

2. The accuracy ✏ needed to identify an exact optimal solution of the problems in (1.1)

is ✏ = O(2�2L), where L is the input length of the problem.

2.2 Mizuno-Todd-Ye predictor-corrector algorithms

In this section, we review the properties of the Mizuno-Todd-Ye predictor-corrector

(MTY predictor-corrector) algorithmMizuno et al. (1993). Each iteration of the predictor-

corrector algorithm consists of two steps, a predictor step and a corrector (or centrality)

step. The search direction used by both steps at a given point in u = (x, y, s) 2 P
+
⇥D

+

is the unique solution of the following linear system of equations:

S�x+X�s = �µe� xs

A�x = 0

A
T�y +�s = 0.

(2.3)

When � = 0, the predictor search direction leads to the point for which the duality gap

is zero. Hence if that point is feasible, it is optimal. However in general to maintain

11



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

feasibility, a line search is performed. Another reason preventing a full Newton step is

that the new point could be away from the central path with respect to a proximity

measure. If (x, s) is on the central path, then the predictor search direction coincides

with the tangent to the central path at that point. Hence intuitively if the curvature of

the central path at that point is small, it should be possible to take a large step yielding

a large reduction in the duality gap.

An iteration of the MTY predictor-corrector algorithm is as follows. Suppose that a

constant � = 1
4 is given. Given a point u = (x, y, s) with normalized duality gap

µ = x
T
s

n
, suppose �(x, s, µ)  �. The algorithm generates

u
+ = (x+, y+, s+) = (x, y, s) + ✓(�x,�y,�s)

as follows. It first moves along the direction for which � = 0, until it hits the boundary

of the enlarged neighborhood �(x+, s+, µ+)  2�. In other words, compute the largest ✓

so that �(x+, s+, µ+
g )  2� where the new duality gap µ

+
g = x

+T
s
+

n
. Next, starting from

the new point u+, a new search direction with � = 1 is computed. This search direction

coincides with the search direction (2.1) corresponding to the point (x+, y+, s+). The

MTY predictor-corrector algorithm Mizuno et al. (1993) requires one corrector step with

✓ = 1 to go back to the neighborhood where �(x, s, µ)  �.

Remark 2.2.1. If the point (x, s) is on the central path with xs = µe, then the predictor

step search direction ( for � = 0) (�x,�y,�s) in (2.3) are exactly the tangent directions

(�x,�s) = (�ẋ,�ṡ). If xs = w for w 6= e, then the search directions in (2.3) are the

tangent directions for the equation system

12



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

Figure 2.1: Illustration of a predictor-corrector algorithm.

Ax = b, x � 0

A
T
y + s = c, s � 0

xs = µw,

(2.4)

which are the optimality conditions of the problems

min c
T
x� µ

P
n

i=1wi log xi

s.t Ax = b

(2.5)

and

min �b
T
y � µ

P
n

i=1wi log si

s.t A
T
y + s = c.

(2.6)

For any w > 0, w 2 Rn, the path defined in (2.4) also converges to an optimal solution

of (1.1).

The following theorem presents the most important properties of the MTY predictor-

corrector algorithm Mizuno et al. (1993); Monteiro and Tsuchiya (2005):

Theorem 2.2.2. (Predictor step)

13



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

Suppose that (x, y, s) 2 N (�) for some 0 < � 
1
4 with x

T
s

n
= µ. For � = 0, let the

search directions be (�x,�y,�s). Let ✓ be the step length so that u+ = (x+, y+, s+) =

(x, y, s) + ✓(�x,�y,�s) 2 N (2�). Then,

1. µ
+ = (1� ✓)µ, where µ

+ =
x
+
s
+

n
.

2. ✓
x
+
s
+

µ+
� e

◆
=

✓
xs

µ
� e

◆
+

✓
2

(1� ✓)

�x�s

µ
(2.7)

3. The step length ✓ satisfies ✓ � max

⇢r
�

n
, 1�

�(µ)

�

�
, where �(µ) :=

k�x�sk2

µ
.

Further, we have

✓ �
2

1 +

s

1 +
4�(µ)

�

. (2.8)

Theorem 2.2.3. (Corrector step)

Suppose that (x, y, s) 2 N (2�). For � = 0, let the search directions be (�x,�y,�s).

Then u
+ = (x+, y+, s+) = (x, y, s) + (�x,�y,�s) 2 N (�). Moreover, the duality gap

for u
+ is the same as u.

The following theorem gives the complexity upper bound for the MTY predictor-corrector

algorithm.

Theorem 2.2.4. Let � = 1
4 and (x0, y0, s0) 2 N (�) be given such that (x0)T s0 = nµ0

for some µ0. Then the MTY predictor-corrector algorithm will terminate in at most

O(
p
n log nµ0

✏
) iterations with duality gap x

T
s = c

T
x� b

T
y  ✏.

Observe that if the error term � in Theorem 2.2.2 is small, then we can choose a larger

step length ✓, hence get a larger reduction in the duality gap.

14



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

In the rest of this section, we present a variant of the MTY predictor-corrector algorithm

developed by Stoer and Zhao (1993). Generally, both the algorithm of Stoer and Zhao

(1993) and the MTY predictor-corrector algorithm use two nested neighborhoods N (�0)

and N (�1) for 0 < �0 < �1 < 1. The MTY predictor-corrector algorithm and the

algorithm in Stoer and Zhao (1993) di↵er in the way the value of ✓ is determined. In

the MTY predictor-corrector algorithm, we have �1 = 2�0 and ✓ is determined as being

the largest number for which (x+, s+) stays within the enlarged neighborhood N (�1).

In the algorithm of Stoer and Zhao (1993), the value of ✓ is determined as the largest

number for which

����
x
+
s
+

µ+
� w

����
2

 �1, where w =
xs

µ
. Then a constant number of pure

centering steps are taken which will take the iterate back to the smaller neighborhood

N (�0) in such a way that the duality gap does not change. Both algorithms accelerate

as they get close to optimality. For the MTY predictor-corrector algorithm, it is proved,

see e.g. Potra (1994) that, µ+ goes quadratically to zero. On the other hand, it is known

that as k ! 1, ✓k ! 1 Stoer and Zhao (1993).

For the rest of the thesis, we will refer to the both algorithms as MTY predictor-corrector

algorithm.

2.3 Polynomial iteration-complexity and local metric

In this section we highlight the role of the local norms in IPMs. In fact, it is possible to

say that the polynomial iteration-complexity bound to solve LO problems is due to fact

that Newton’s method behaves nicely under the local Hessian norm. Our presentation

here mostly follows that of Renegar (1987).

Consider the primal log-barrier problem in the form

15



CHAPTER 2. PATH-FOLLOWING ALGORITHMS

min 1
µ
c
T
x�

P
n

i=1 log xi

s.t Ax = b.

(2.9)

Clearly the optimal solutions of (1.3) and (2.9) are the same. The reason for this rescal-

ing is to make the Hessians free of the barrier parameter. First let’s review Newton’s

method’s quadratic convergence result for any general norm (see Renegar (1987) p:20).

Theorem 2.3.1. Let x(µ) be the optimal solution of (2.9) and �x be the Newton step

to solve (2.9) so that x+ = x+�x. Then

kx
+
� x(µ)k2  kx� x(µ)k2kH(x)�1

k2

Z 1

0
kH(x+ t(x(µ)� x))�H(x)k2dt, (2.10)

where H(x) is the Hessian of the barrier function in (2.9).

Notice that if the norm used in (2.10) is Euclidean, then kH(x)�1
k2 = kxk

2
1 and the

convergence neighborhood parameter � will be a↵ected by kxk1. Under the local Hessian

norm, Theorem 2.3.1 becomes the following.

Theorem 2.3.2. Under the assumptions of Theorem 2.3.1, suppose that

kx� x(µ)kH(x) < 1. Then

kx
+
� x(µ)kH(x) 

kx� x(µ)k2
H(x)

1� kx� x(µ)kH(x)
. (2.11)

Similarly we have the following:

Theorem 2.3.3. If k�xkH(x) 
1
4 , then

kx
+
� x(µ)kH(x) 

3k�xk
2
H(x)

(1� k�xkH(x))3
. (2.12)

16
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Notice the simplicity of the bound in Theorem 2.3.3 compared to the generic bound

(2.10). Now we are ready to introduce self-concordant barrier functions Nesterov and

Nemirovskii (1994):

Definition 2.3.4. (Renegar (1987), p:23) Let f : Rn
! R be a C

2 function with positive

definite Hessian. Then f is said to be (strongly nondegenerate) self-concordant if

• {z 2 Rn : kz � xkH(x)  1} ⇢ Rn
++, where Rn

++ is the positive orthant.

• For all x 2 Rn, whenever kz � xkH(x)  1, one has

1� kz � xkH(x) 
kvkH(z)

kvkH(x)


1

1� kz � xkH(x)
. (2.13)

Note that logarithmic barrier function is self-concordant.

The following result is fundamental for showing the polynomial iteration-complexity of

IPMs for LO problems. Suppose we have the system:

min 1
µ
c
T
x+ f(x)

s.t. Ax = b.

(2.14)

where f(x) is a (strongly nondegenerate) self-concordant function. Suppose vf :=

supx>0 krfkH(x) is finite, where rf is the gradient with respect to the Hessian induced

norm. Then,

Theorem 2.3.5. The short-step IPMs algorithm (described as in Renegar (1987), p:45)

has iteration-complexity

O(
p
vf log(vfµ0/✏)),

where µ0 is the initial barrier parameter and ✏ is the desired accuracy for the duality gap.

17
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The algorithm of Renegar (1987), p:45 (see also Nesterov and Nemirovskii (1994)) is a

primal short-step IPM for a general self-concordant function f with the corresponding

vf . It is well-known for example that vf for the logarithmic barrier function is n, Nes-

terov and Nemirovskii (1994). Notice that for the logarithmic barrier function (1.3), the

iteration-complexity upper bound in Theorem 2.3.5 matches the bound O(
p
n log nµ0

✏
)

in Lemma 2.1.2 and Theorem 2.2.4.
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Chapter 3

Curvature and IPMs

In Chapter 2, we indicated that IPMs follow the central path with Newton steps. Intu-

itively, this suggests that the sequence of points generated by the algorithm are somehow

along the linear approximations of the central path and a central path with small cur-

vature is easier to approximate with line segments yielding a lower number of Newton

steps. Hence, if we can give an upper bound on the total curvature of the central path

corresponding to an LO problem, this could also be used to bound the number of Newton

iterations in IPMs. In addition, if we construct LO problems with large total curvature,

such constructions would serve as examples of LO problems requiring a large number of

iterations. In other words, it may be expected that

# of iterations of Newton steps = ⇥(the curvature of the central path).

In the following sections, we review several results that explore these ideas.
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CHAPTER 3. CURVATURE AND IPMS

3.1 Geometric curvature of the central path

First we define the geometric curvature of a path (see Dedieu et al. (2005)). Intuitively,

the curvature of a curve at a point is a measure of how far o↵ it is from being a straight

line around a neighborhood of that point. Let h : [↵,�] ! Rn be a C
2 map with non-zero

derivative for any t 2 (↵,�). Denote the arc length by `, where `(t) =
R
t

↵
kḣ(⌧)k2d⌧ . The

map ` establishes a one-to-one correspondence between the intervals [↵,�] and [`(↵), `(�)]

and provides an arc length parametrization h(·). To h(·), there is an associated curve,

called the Gauss curve, of unit length:

For any t 7! `, let �(t) =
ḣ(t)

kḣ(t)k2
=

d

d`
(h(`)).

The curvature at a point h(`) is the second derivative with respect to the arc length

parametrization, i.e.,

 (l) =
d

d`
(ḣ(`)). (3.1)

In terms of the original parameter t, it is written as

 (t) =
d

dt

 
ḣ(t)

kḣ(t)k2

!
1

kḣ(t)k2
.

The total curvature K is the integral of the norm of the curvature vector, i.e.,

K =

Z
`(�)

0
k (`)k2d` =

Z
�

↵

����
d

dt

✓
ḣ(t)

kḣ(t)k

◆����
2

dt. (3.2)

The total curvature is independent of the initial parametrization t.
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CHAPTER 3. CURVATURE AND IPMS

3.1.1 Upper bounds

Consider the dual problem and its feasible set,

max b
T
y

s.t. A
T
y + s = c

s � 0.

(3.3)

If we ignore the non negativity conditions si � 0 for each i = 1, . . . , n, and allow either

si � 0 or si  0, we get 2n possible polyhedra in the dual space corresponding to the sign

configurations of si, i = 1, . . . , n. Among such polyhedra, we consider only those that

are bounded, i.e., only the polytopes. Given the matrix A and c, let P (A, c) be the set

of nonempty polytopes obtained this way. It is possible to show that the number of such

polytopes is bounded above by

✓
n� 1

m

◆
. This bound is achieved if the hyperplanes are

in “generic” position: A hyperplane arrangement is called simple if any m hyperplanes

intersect at a unique distinct point Deza and Xie (2007). If the hyperplane arrangement

is simple, then |P (A, c)| =

✓
n� 1

m

◆
.

Now fix an objective function b
T
y and for each bounded cell in the arrangement consider

the central path corresponding to that bounded cell. For each bounded cell let K(A, c; b)

denote the total curvature of the corresponding central path. Using algebraic and integral

geometry tools, Dedieu et al. Dedieu et al. (2005) proved that

X

P⇢P (A,c)

K(A, c; b)  2⇡(m� 1)

✓
n� 1

m

◆
. (3.4)

Hence if the hyperplane arrangement is simple so that |P (A, c)| =

✓
n� 1

m

◆
, we get an

upper bound for the average total curvature as

P
P⇢P (A,c)K(A, c; b)

|P (A, c)|
 2⇡(m� 1) = O(m). (3.5)
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Figure 3.1: A simple arrangement of 5 hyperplanes in dimension 2.

The authors also conjectured that the worst case total curvature of a central path is

O(m). The claim has been disproved by Deza et al. (2006).

In a recent paper De Loera et al. (2012), the authors consider the equation system

Ax = b,

A
T
y + s = c,

xs = µe

(3.6)

without the nonnegativity conditions on x and s. Using algebraic geometry techniques,

they prove a similar bound on the primal central path curve x(µ), which is the union of

primal central paths resulting from system (3.6) (see Proposition 17 and Theorem 18 in

De Loera et al. (2012)):
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Theorem 3.1.1. The total curvature K of the primal central path is bounded by

K  2⇡(n�m� 1)

✓
n� 1

m� 1

◆
. (3.7)

3.1.2 Lower bounds

Another approach to the curvature of the central path is to use it to construct worst

case examples of LO problems.

Klee-Minty constructions:

• In Deza et al. (2006), the authors consider the following Klee-Minty cube variant

where the m dimensional unit cube [0, 1]m is tilted by a factor ⇢. Following the

dual problem formulation in (1.1), we have

max �ym

s.t 0  y1  1

⇢yk  yk  1� ⇢yk�1 for k = 2 . . .m.

(3.8)

Figure 3.2: The central path in the non-redundant KM cube for m = 2.
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Certain variants of the simplex method take 2m � 1 pivots to solve this problem.

The simplex path for these variants starts from (0, ..., 0, 1)T , it visits all the vertices

ordered by the decreasing value of the last coordinate ym until reaching the optimal

point, which is the origin.

By adding redundant constraints at the same distance d parallel to the faces of the

KM cube that includes the origin, they perturb the central path so that starting

from the analytic center of the KM polytope towards the optimal point, it visits a

small neighborhood of all the vertices of the cube.

max �ym

s.t 0  y1  1

⇢yk  yk  1� ⇢yk�1 for k = 2 . . .m.

0  d+ y1 repeated h1 times

⇢y1  d+ y2 repeated h2 times
...

⇢ym�1  d+ ym repeated hm times.

(3.9)

Figure 3.3: The central path after adding the redundant constraints to the KM cube for m = 2.
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Figure 3.4: The central path after adding the redundant constraints to the KM cube for m = 3.

The number of redundant constraints needed to add in the construction is expo-

nential in m, i.e., h1 + . . .+ hm = O(26mm
2) with an input length L = O(26mm

3).

The distance of the redundant constraints to the KM hyperplanes is d � m2m+1.

Since the central path visits all the vertices, there must be 2m � 2 sharp turns,

and a path-following IPMs needs at least ⌦(2m) number of iterations. In terms

of the number of inequalities n, this gives a lower bound iteration-complexity of

⌦(( n

log2 n
)1/6).

• Note that in the above KM cube construction, if the central path is bent with

a smaller number of redundant constraints, it will give a smaller n and hence

will yield a relatively higher lower bound worst case iteration-complexity. In

Deza et al. (2008a), the authors reduce the number of redundant constraints

by allowing the distances d to vary. By placing the constraints at the distances

d = (m2m+4
,m2m+3

, . . . ,m25), they reduce the number of redundant constraints

to h1 + . . .+ hm = O(22mm
3). This leads to the lower bound ⌦(( n

log3 n
)1/2) in the

number iterations. By computing the iteration-complexity upper bound for this
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construction as O(
p
n log n), the gap between upper and lower bound for complex-

ities is reduced to a factor of (log n)5/2.

• Note that in the two previous KM constructions, the redundant constraints are

placed parallel to the KM hyperplanes. It turns out Nematollahi and Terlaky

(2008b) that placing the redundant constraints parallel to the coordinate axes is

more e�cient in the sense that less redundancy is required to bend the central path

with 2m � 2 sharp turns. The distances of the constraints are still allowed to vary.

More precisely, this formulation is

max �ym

s.t 0  y1  1

⇢yk  yk  1� ⇢yk�1 for k = 2 . . .m.

0  d1 + y1 repeated h1 times

0  d2 + y2 repeated h2 times
...

0  dm + ym repeated hm times .

(3.10)

Here d ⇠= (2m�1
, 2m�2

, . . . , 2, 0). The number of added constraints is h1+. . .+hm =

O(m22m). This construction gives ⌦(
p
np

logn
) while the iteration-complexity upper

bound is O(
p
n log n), and this last construction, to date, yields the smallest gap

between the upper and lower bound complexities..

• Note that in all these KM constructions, highly redundant constraints are used. A

natural question to ask is how curly the central path could be, if only those con-

straints are used which touch the feasible set. In Nematollahi and Terlaky (2008a)

using a related KM construction, it has been shown that the same number 2m � 2
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of sharp turns are obtained by making the distances set to zero. In other words,

all of the redundant constraints touch the feasible region. For this construction,

the number of constraints h1 + . . . + hm = O(2m
2
) which is exponentially higher

than that of the previous KM example.

Remark 3.1.2. From a practical point of view, it could be argued that many

optimization solvers have pre-processing ability which would eliminate redundant

constraints. However, this KM construction shows that in LO problems with less

redundancy, the iteration-complexity could still be high.

An example of a central path with curvature ⌦(n):

Another concrete case of an LO problem with a central path having a large curvature is

developed in Deza et al. (2008b). Consider a polytope P in R2 defined by n inequalities

as follows:

y2  1, y1 
y2
10 +

1
2 , �y1 

y2
3 + 1

3 and (�1)iy1 
10i�2

y2
11 + 5

11 �
10�4

n

i

n
, i = 4, . . . , n.

Figure 3.5: The polytope and its central path, picture by Deza et al. 2008.

The total curvature of the central path is asymptotically ⌦(n). More precisely,
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Figure 3.6: The central path with y2 on logarithmic scale, picture by, Deza et al. 2008.

Theorem 3.1.3. Deza et al. (2008b) The total curvature Kn of the central path of

min{y2 : (y1, y2) 2 P} satisfies

lim inf
n!1

Kn

n
� ⇡. (3.11)

From Theorem 3.1.3, we see that the smallest possible upper bound for the curvature of

the central path could be O(n). This is conjectured in Deza et al. (2008b). Recently,

the conjecture has been disproved by Allamigeon et al. (2014). In fact, they showed that

there exist LO problem instances (A, b, c) with total curvature K = ⌦(2n).

3.2 The Sonnevend curvature of the central path

Sonnevend’s curvature is closely related to the iteration-complexity of the variant of

MTY predictor-corrector algorithm which was introduced in Sonnevend et al. (1991).

Let (µ) = kµẋṡk
1/2
2 . Stoer and Zhao (1993) proved that their algorithm has a iteration-

complexity bound, which can be expressed in terms of (µ).
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Theorem 3.2.1. Let ⌫ > 0 be a constant with (µ) � ⌫ on [µ1, µ1] and N be the number

of iterations of Algorithm 2.1 Stoer and Zhao (1993) to reduce the barrier parameter from

µ1 to µ0. Then

C3

Z
µ1

µ0

(µ)

µ
dµ� 1  N  C1

Z
µ1

µ0

(µ)

µ
dµ+ C2 log

✓
µ1

µ0

◆
+ 2 (3.12)

for some “universal” constants C1 and C2 that depend only on the neighborhood of the

central path. Moreover the constant C3 depends on ⌫ as well as the neighborhood of the

central path.

The following proposition states the basic properties of Sonnevend’s curvature.

Proposition 3.2.2. Sonnevend et al. (1991); Zhao (2010) The following holds for the

central path.

1. We have (µ) =

�����
µṡ(µ)

s(µ)
�

✓
µṡ(µ)

s(µ)

◆2
�����

1
2

2

.

2. We have
µṡ(µ)

s(µ)
= Me, where M(µ) = S

�1
A

T (AS�2
A

T )�1
AS

�1 is the projection

matrix. For a bounded dual feasible set, we have
µṡ(µ)

s(µ)
! 0 as µ ! 1.

3. We have

����
µṡ(µ)

s(µ)

����
2


p
n and (µ) 

p
n implying that

Z
µ1

µ0

(µ)

µ
dµ = O

✓
p
n log

✓
µ1

µ0

◆◆
.

Next we show that the term (µ)
µ

can be expressed as a local curvature in a specific sense.

Recall that given the Euclidean inner product h·i, any positive definite matrix H 2 Rn⇥n

induces a new inner product h·iH as follows.

hu, viH = hu,Hvi = u
T
Hv for u, v 2 Rn
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Let the Hessian of the primal and dual logarithmic barrier functions �
P

n

i=1 log(xi) and

�
P

n

i=1 log(si) be H(x) and H(s), respectively.

Theorem 3.2.3. Ohara and Tsuchiya (2007) We have

✓
(µ)

µ

◆2

=
1

2

q
kẍk2

H(x) + ks̈k2
H(s) (3.13)

so that

Z
µ1

µ0

(µ)

µ
dµ =

1
p
2

Z
µ1

µ0

(kẍk2
H(x) + ks̈k

2
H(s))

1/4
dµ (3.14)

Theorem 3.2.3 shows that the iteration-complexity of the MTY predictor-corrector algo-

rithm can indeed be interpreted as a curvature with respect to the Hessian norm induced

by the logarithmic barrier function.

Monteiro and Tsuchiya (2008) proved that, as µ0 ! 0 and µ1 ! 1,

Z
µ1

µ0

(µ)

µ
dµ

admits an upper bound expression which involves a condition number depending only

on A. This condition number is defined as

�A := sup
D

{kA
T (ADA

T )�1
ADk2}, (3.15)

where D ranges over the set of positive diagonal matrices. It is known that (Vavasis and

Ye (1996), Lemma 24), log(�̄A) = O(LA), where LA is the input bit length of A when

the matrix has all integer entries. Then we have the following bound for Sonnevend’s

curvature.

Theorem 3.2.4. Monteiro and Tsuchiya (2008) We have

Z 1

0

(µ)

µ
dµ = O(n3.5 log(n+ �A)).
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Note that if we rescale our primal and dual LO problems with a positive diagonal matrix

as

min Dc
T
x

s.t. ADx = b

x � 0,

(3.16)

max b
T
y

s.t. DA
T
y + s = Dc

s � 0,

(3.17)

then the rescaled central path becomes x(µ), y(µ), s(µ) = (D�1
x(µ), y(µ), Ds(µ)). It is

easy to see that (µ) is scaling independent, while �A is not. This gives a possibility of

reducing the bound O(n3.5 log(n + �A). Let �
⇤
A
:= inf{�AD)} where D ranges over all

positive diagonal matrices. Then the bound in Theorem 3.2.4 becomes

Z 1

0

(µ)

µ
dµ = O(n3.5 log(n+ �

⇤
A)). (3.18)

In Monteiro and Tsuchiya (2005), the authors also show that �
⇤
A

and �A may have

arbitrarily di↵erent orders of magnitude.
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Chapter 4

A Klee-Walkup type result for

Sonnevend’s curvature

4.1 Overview

In this chapter, we prove that in order to establish a polynomial upper bound for the

total Sonnevend curvature of the central path, it is su�cient to consider the case when

n = 2m. This also implies that analyzing the worst-case behavior for any size of LO

problem can be done simply by considering the case of n = 2m. As a by-product,

our construction yields an asymptotically ⌦(n) worst-case lower bound for Sonnevend’s

curvature. Our research is motivated by the work of Deza et al.(2008) for the geometric

curvature of the central path, which is analogous to the Klee-Walkup result for the

diameter of a polytope.

The idea of using a sequence of polytopes whose size and dimension increase by one

was first used by Klee and Walkup (1967) in the context of the diameter of a polytope.

The diameter of a polytope is the maximum of the shortest edge path’s over all pairs

of vertices. A lower bound in the worst-case for the diameter of a polytope implies
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the same lower bound for the iteration-complexity of any simplex type algorithm. In

Klee and Walkup (1967), it is shown that proving an upper bound for the diameter

of a polytope for general (m,n) reduces to the case of (m, 2m). From an optimization

perspective, it is interesting to note the analogies between the diameter of a polytope, the

geometric, and the Sonnevend curvature of the central path. Moreover, this similarity

suggests that the most “di�cult” LO problems also occur when n = 2m.

The main result we obtain in this chapter for the Sonnevend curvature

Z
µ1

µ0

(µ)

µ
dµ can

be described as follows. Starting with an LO problem of size (m,n) with a bounded dual

feasible set, we give a new LO problem whose size is (m + 1, n + 1). The Sonnevend

curvature for the latter is greater than that of the former by a constant independent of

the problem data. Starting with a LO problem of size (m,n), and by continuing this

process, we get an LO problem with size (m, 2m) whose curvature is greater than that

of the original problem. This implies that in order to prove an upper bound for the

Sonnevend curvature of the central path, it is su�cient to consider only the case when

n = 2m.

Our work is motivated by the paper of Deza et al. (2009). In that paper, the authors

construct a sequence of polytopes whose central path approximates that of the previous

one. Furthermore, it is shown that total geometric curvature of the central path increases

by a constant. In this thesis, we use the very same construction for the case of n >

2m. Hence, for the aforementioned construction, it can be concluded that Sonnevend’s

curvature and the geometric curvature of the central path have similar behavior. In

Sonnevend et al. (1991), the authors use a di↵erent construction, which gives rise to the

lower bound of ⌦(n) for Sonnevend’s curvature asymptotically. Our main result implies

a bound which also achieves this worst-case lower bound.

Theorem 3.2.4 shows that the Sonnevend curvature admits an upper bound independent
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of both b 2 Rm and c 2 Rn. In light of this fact, we make the following definition.

Definition 4.1.1. Given A 2 Rm⇥n, define

⇤(m,n,A) = sup

⇢Z 1

0

(µ)

µ
dµ : b 2 Rm

, c 2 Rn

�
.

4.2 Main construction

4.2.1 Embedding the central path

In this section, we introduce the construction used in Deza et al. (2009). First assume

that n > 2m. We will later reduce the case m < n < 2m to this case. Consider the LO

problem

max{bT y : y 2 P}, where P = {y 2 Rm : AT
y  c} is a polytope. (4.1)

Without loss of generality, we may assume that:

(A1) The analytic center y⇤ of P is the origin, and

(A2) c = e where e is the all-one vector.

First, we can always shift a general polytope P so that assumption (A1) is satisfied.

Since (µ) only depends on µ and the derivatives ẋ and ṡ, this transformation would not

change the Sonnevend curvature. Note that y⇤ = 0 being an interior point in P implies

that c > 0. Second, if we rescale our LO problem with a positive diagonal matrix as

given in (3.16) and (3.17), then the rescaled central path becomes (x(µ), y(µ), s(µ)) =
�
D

�1
x(µ), y(µ), Ds(µ)

�
implying that (µ) does not change. Since c > 0 by assumption,

by choosing D with De = c
�1, we can make c = e.
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Figure 4.1: The dotted path CP is the central path of the original polytope P . The figure shows

how the central path CP is changing with ✓. A smaller ✓1 leads to the path C1
P
, while C2

P
results from

✓2 >> ✓1.

We now associate problem (4.1) with a sequence of LO problems parameterized by ✓ > 0

as follows:

max b
T
y + ✓z

2

64
A

T
�en⇥1

01⇥m 1

3

75

2

64
y

z

3

75+

2

64
s

sn+1

3

75 =

2

64
0n⇥1

1

3

75

s, sn+1 � 0.

(4.2)

The feasible set for the problem (4.2) can be written as P = {A
T
y  ze, z  1}.

Let A =

2

64
A 0m⇥1

�e1⇥n 1

3

75. The associated central path equations for (4.2) are

A
T
y(µ)

z(µ)
+

s(µ)

z(µ)
= e, As(µ)�1 =

b

µ
, (4.3)
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1

sn+1(µ)
=

1

1� z(µ)
=

nX

i=1

1

si(µ)
+

✓

µ
. (4.4)

Note that y, s and z in (4.3) and (4.4) are functions of both µ and ✓. We will sometimes

drop ✓ or µ, when no confusion arises. We denote the central path of P and P by CP

and C
P
, respectively.

Intuitively a large ✓ should force z ⇠= 1 in such a way that, the central path C
P

first

follows an almost straight line from the analytic center to the face P ⇥ {1} and then

stays close to the central path CP . The following proposition, first proved in Deza et al.

(2009), shows that this is indeed the case.

Proposition 4.2.1. Let [µ0, µ1] be a fixed interval. Then, as ✓ ! 1, on [µ0, µ1] we

have,

1. z(µ) ! 1 and y(µ) ! y(µ) uniformly;

2. sn+1(µ) ! 0 and s(µ) ! s(µ) uniformly.

Proof. Claim 1. is the same as Proposition 2.1 in Deza et al. (2009) (see also the

remark following it). Claim 2. follows from the first part since sn+1(µ) = 1 � z(µ) and

s(µ) = z(µ)�A
T
y(µ).

The following proposition shows that if z(µ) in (4.3) and (4.4) is known, then y(µ) is

completely determined by the central path CP .

Proposition 4.2.2. Let z(µ) satisfy the central path equations (4.3) and (4.4). Then

y(µ) = z(µ)y

✓
µ

z(µ)

◆
and s(µ) = z(µ)s

✓
µ

z(µ)

◆
.

Proof. Direct substitution into (4.3) shows that y(µ) = z(µ)y

✓
µ

z(µ)

◆
and

s(µ) = z(µ)s

✓
µ

z(µ)

◆
satisfy the equations in (4.3), which are the central path equations

for (4.1) with the choice of µ0 =
µ

z(µ)
. Since the solution is unique, the claim follows.
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Note that Proposition 4.2.1 and Proposition 4.2.2 show that for a fixed interval [µ0, µ1],

the parameter ✓ can be chosen large enough so that the central paths CP and C
P
become

close to each other on that interval. Hence, it is natural to expect that Sonnevend’s

curvature for CP and C
P

on the same interval should have similar order of magnitudes.

Proposition 4.2.3. Let (µ) correspond to the central path C
P
. Then, on the fixed

interval [µ0, µ1], we have ṡ(µ) !

2

64
ṡ(µ)

0

3

75 uniformly as ✓ ! 1. Consequently, as

✓ ! 1, (µ) ! (µ) on [µ0, µ1] uniformly as well.

Proof. It is well-known, see Roos et al. (2006) e.g., that for system (1.5), we have

ṡ =
1

µ
A

T (AS�2
A

T )�1
AS

�1
e. Now we calculate

U := A

2

64
S
�1

0

0 s
�1
n+1

3

75 =

2

64
AS

�1
0

�s
�1 (sn+1)�1

3

75 ,

which gives

UU
T =

2

64
AS

�2
A

T
�As

�1

(�As
�1)T e

T
s
�2 + 1

s
2
n+1

3

75 . (4.5)

From the formula for the inverse of a block diagonal matrix, we obtain

(UU
T )�1 =

2

64
(AS

�2
A

T )�1 + W1
r

W2
r

(W2
r
)T 1

r

3

75 , (4.6)

where r = e
T
s
�2 + 1

s
2
n+1

� (As
�1)T (AS

�2
A

T )�1
As

�1, W2 = (AS
�2

A
T )�1

As
�1, and

W1 = W2W
T

2 . Then, since s ! s as ✓ ! 1, it follows that the terms W1 and W2

converge to finite limits that are only determined by (4.1). Then, in terms of sn+1, we

get 1
r
= O(s2

n+1). Thus, we conclude that
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(UU
T )�1 =

2

64
(AS

�2
A

T )�1 +O(s2
n+1) O(s2

n+1)

O(s2
n+1) O(s2

n+1)

3

75 ,

where O(.) should be understood to apply to the entries of a matrix, vector, or to a

scalar depending on the context. Calculate

(UU
T )�1

A

2

64
s
�1

s
�1
n+1

3

75 = (UU
T )�1

2

64
As

�1

�e
T
s
�1 + s

�1
n+1

3

75

=

2

64
(AS

�2
A

T )�1
As

�1 +O(sn+1)

O(sn+1)

3

75 .

(4.7)

Finally, from (4.7), we obtain

A
T

(UU
T )�1

A

2

64
s
�1

s
�1
n+1

3

75 =

2

64
A

T (AS
�2

A
T )�1

As
�1 +O(sn+1)

O(sn+1)

3

75 .

Taking the limit in ✓, we get

ṡ(µ) =
1

µ
A

T
(UU

T )�1
A

2

64
s
�1

s
�1
n+1

3

75 !

2

64
1
µ
A

T (AS�2
A

T )�1
As

�1

0

3

75 =

2

64
ṡ

0

3

75 . (4.8)

Since from Proposition 3.2.2, all the terms in (µ) converge uniformly, we conclude that

(µ) ! (µ) uniformly on [µ0, µ1] as ✓ ! 1.

Corollary 4.2.4. On the fixed interval [µ0, µ1], consider the Sonnevend curvatureZ
µ1

µ0

(µ)

µ
dµ for the central path C

P
. Then, for any ✏ > 0, there is an LO problem of
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size (m+ 1, n+ 1) with the Sonnevend curvature

Z
µ1

µ0

(µ)

µ
dµ �

Z
µ1

µ0

(µ)

µ
dµ� ✏.

Proof. By Proposition 4.2.3, we can choose a ✓ large enough so that (µ) and (µ) is

arbitrarily close to each other on [µ0, µ1]. Hence the claim follows.

4.2.2 Constant increase of Sonnevend’s curvature

We proved that on a fixed interval [µ0, µ1], one can always make the Sonnevend curvature

of C
P

and CP arbitrarily close to each other. In the sequel, we will further show that

there exists an interval [µ1, µ2] such that while Sonnevend’s curvature of CP stays small

on [µ1, µ2], it can be made as large as a constant for C
P
on the same interval by increasing

✓. To this end, the following proposition provides important tools. First, we need some

special notation.

Notation: Let � : R2
! R be a function such that �(↵1,↵2) converges uniformly in ↵2

to 0 as ↵1 ! 1. Then we will write �(↵1,↵2) = o(1) as ↵1 ! 1, and write the bound

is uniform in ↵2.

To display the dependence on ✓, in the sequel we write the relevant quantities as functions

of both µ and ✓.

Proposition 4.2.5. As µ ! 1 one has,

1. si(µ, ✓)� z(µ, ✓) = o(1) for i = 1, . . . , n,

2. z(µ, ✓) >
1

2
, and

3.
µṡi(µ, ✓)

si(µ, ✓)
�

µż(µ, ✓)

z(µ, ✓)
= o(1) for i = 1, . . . , n.
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Moreover, in statements 1. and 3., the bound is uniform in ✓.

Proof.

1. From Proposition 4.2.2, we have s(µ, ✓) = z(µ, ✓)

✓
e�A

T
y(

µ

z(µ, ✓)
)

◆
. Since by

assumption, the analytic center of P is y⇤ = 0, we have y(µ) ! 0 as µ ! 1. This

proves the claim.

2. Since the analytic center of P is y⇤ = 0, we conclude si(µ, ✓)  n for large µ with

i = 1, . . . , n. From (4.4) and Proposition 4.2.2, we have

1

1� z(µ, ✓)
�

1

z(µ, ✓)

 
nX

i=1

1

si(
µ

z(µ,✓))

!
=

✓

µ
> 0,

which implies

z(µ, ✓) >

nX

i=1

1

si(
µ

z(µ,✓))

1 +
nX

i=1

1

si(
µ

z(µ,✓))

. (4.9)

Since for large µ, si(µ, ✓)  n, i = 1, . . . , n, the inequality (4.9) yields
nX

i=1

1

si(µ, ✓)
�

1 for large µ. Then from (4.9), and using the fact that z(µ, ✓)  1, for large µ we

obtain z(µ, ✓) >
1

2
.

3. Di↵erentiating the equation si(µ, ✓) = z(µ, ✓)si

✓
µ

z(µ, ✓)

◆
, we can derive from

Proposition 4.2.2 that,

ṡi(µ, ✓) = ż(µ, ✓)s

✓
µ

z(µ, ✓)

◆
+ z(µ, ✓)ṡi

✓
µ

z(µ, ✓)

◆✓
1

z(µ, ✓)
�

µż(µ, ✓)

z(µ, ✓)2

◆
. (4.10)
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Using (4.10), we get

µṡi(µ, ✓)

si(µ, ✓)
=

µż(µ, ✓)

z(µ, ✓)
+

µṡi

⇣
µ

z(µ,✓)

⌘

si

⇣
µ

z(µ,✓)

⌘
✓

1

z(µ, ✓)
�

µż(µ, ✓)

z(µ, ✓)2

◆
. (4.11)

Proposition 3.2.2 part 2. implies that
µṡi

⇣
µ

z(µ,✓)

⌘

si

⇣
µ

z(µ,✓)

⌘ ! 0 as µ ! 1. Further,

Proposition 3.2.2 part 3. implies that

����
µż(µ, ✓)

1� z(µ, ✓)

���� =
����
µṡn+1(µ, ✓)

sn+1(µ, ✓)

���� 
p
n,

which further implies that

����
µż(µ, ✓)

z(µ, ✓)2

���� 
p
n
(1� z(µ, ✓))

z(µ, ✓)2
.

The bound
1

2
< z(µ, ✓)  1 from part 2. implies that

����
µż(µ, ✓)

z(µ, ✓)2

���� 
p
n
(1� z(µ, ✓))

z(µ, ✓)2
 2

p
n,

which yields

����

✓
1

z(µ, ✓)
�

µż(µ, ✓)

z(µ, ✓)2

◆����  2 + 2
p
n.

Hence we conclude from (4.11) that,
µṡi(µ, ✓)

si(µ, ✓)
!

µż(µ, ✓)

z(µ, ✓)
as µ ! 1. Note also

that all the bounds come from problem (4.1), and therefore independent of ✓. This

proves that the bounds in statements 1. and 3. are uniform in ✓.

Now we are ready to present our main tool which leads to a constant increase in Sonn-

evend’s curvature of C
P
.

Lemma 4.2.6. As µ ! 1, we have
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µṡn+1(µ, ✓)

sn+1(µ, ✓)
=

✓

µ

✓

µ
+

n

z(µ, ✓)2

+ o(1).

Moreover the bound is uniform in ✓.

Proof. From (4.4), we have sn+1(µ, ✓) =
1

✓

µ
+

nX

i=1

1

si(µ, ✓)

. Then one has

log(sn+1(µ, ✓)) = � log

 
✓

µ
+

nX

i=1

1

si(µ, ✓)

!
. (4.12)

By di↵erentiating (4.12) and multiplying by µ, we get

µṡn+1(µ, ✓)

sn+1(µ, ✓)
=

✓

µ
+

nX

i=1

µṡi(µ, ✓)

si(µ, ✓)

2

✓

µ
+

nX

i=1

1

si(µ, ✓)

. (4.13)

Substituting sn+1(µ, ✓) = 1� z(µ, ✓) in (4.13) and using parts 1. and 3. of Proposition

4.2.5, as µ ! 1, we can write;

�
µż(µ, ✓)

1� z(µ, ✓)
=

✓

µ
+

nµż(µ, ✓) + o(1)

z(µ, ✓)2 + o(1)
✓

µ
+

n

z(µ, ✓)
+ o(1)

. (4.14)

Rearranging the terms in (4.14), we have

� µż(µ, ✓) =

(1� z(µ, ✓))✓

µ
+ (1� z(µ, ✓))

✓
nµż(µ, ✓) + o(1)

z(µ, ✓)2 + o(1)

◆

✓

µ
+

n

z(µ, ✓)
+ o(1)

. (4.15)
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To solve (4.15) for µż(µ, ✓) explicitly, we first get

� µż(µ, ✓)

✓
✓

µ
+

n

z(µ, ✓)
+

✓
(1� z(µ, ✓))n

z(µ, ✓)2 + o(1)

◆
+ o(1)

◆

=
(1� z(µ, ✓))✓

µ
+ (1� z(µ, ✓))o(1).

Finally we obtain,

�
µż(µ, ✓)

(1� z(µ, ✓))
=

✓

µ
+ o(1)

✓

µ
+

n

z(µ, ✓)
+

✓
(1� z(µ, ✓))n

z(µ, ✓)2 + o(1)

◆
+ o(1)

=

✓

µ
+ o(1)

✓

µ
+

n

z(µ, ✓)2
+ o(1)

=

✓

µ

✓

µ
+

n

z(µ, ✓)2

+ o(1),

which proves the claim. Moreover, since all the bounds come from Proposition 4.2.5, the

bound is uniform in ✓. This concludes the proof.

Corollary 4.2.7. There exists a ⌧ �

p
19

40
log 2 such that

Z 1

0

(µ)

µ
dµ �

Z 1

0

(µ)

µ
dµ+ ⌧.

Proof. Let ✏ > 0. Since

Z 1

0

(µ)

µ
dµ is finite by Theorem 3.2.4, one can find a µ0 and

µ1 such that

Z
µ0

0

(µ)

µ
dµ  ✏ and

Z 1

µ1

(µ)

µ
dµ  ✏. Note that from Lemma 4.2.6, we

can also choose a µ1 such that
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��������

µṡn+1(µ, ✓)

sn+1(µ, ✓)
�

✓

µ

✓

µ
+

n

z(µ, ✓)2

��������


1

30
(4.16)

for µ � µ1 and for any ✓ > 0.

Let v =

Z
µ1

µ0

(µ)

µ
dµ. Having µ1 chosen, we need to choose a ✓

0 large enough so that

both
✓
0

µ1
> n, and

Z
µ1

µ0

(µ)

µ
dµ � v � ✏ are satisfied. Note that Corollary 4.2.4 implies

that such a ✓
0 exists.

Since by Proposition 4.2.5, part 2., we have
1

2
 z(µ, ✓0)  1, it follows that n 

n

z(µ, ✓0)2
 4n for n � 2. Since by assumption

✓
0

µ1
> n, there exist µ2 > µ1 such that

✓
0

µ2
= n. Then on µ 2 [µ2, 2µ2], we have

n

2


✓
0

µ
 n and n 

n

z(µ, ✓0)2
 4n, which

together implies that

1

10


✓
0

µ

✓
0

µ
+

n

z(µ, ✓0)2


2

3
. (4.17)

Then for µ 2 [µ2, 2µ2], (4.16) and (4.17) together imply
1

20


µṡn+1(µ, ✓0)

sn+1(µ, ✓0)


7

10
. Thus

for µ 2 [µ2, 2µ2], we obtain

�����

✓
µṡn+1(µ, ✓0)

sn+1(µ, ✓0)

◆2

�

✓
µṡn+1(µ, ✓0)

sn+1(µ, ✓0)

◆�����

1
2

�

p
19

20
. (4.18)

Hence, from (4.18) and Proposition 3.2.2, part 1., we obtain
Z 2µ2

µ2

(µ)

µ
dµ �

p
19

20
log 2.

Finally, we have
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Z 1

0

(µ)

µ
dµ �

Z 1

µ0

(µ)

µ
dµ �

Z 2µ2

µ0

(µ)

µ
dµ �

Z
µ1

µ0

(µ)

µ
dµ+

Z 2µ2

µ2

(µ)

µ
dµ

� (v � ✏) +

p
19

20
log 2

�

Z 1

µ0

(µ)

µ
dµ� 2✏+

p
19

20
log 2

�

Z 1

0

(µ)

µ
dµ� 3✏+

p
19

20
log 2.

The claim follows, since ✏ can be chosen arbitrarily small.

Finally we deal with the case when m < n < 2m. In this case let Â = [A A], b̂ = 2b,

and ĉ
T = [cT c

T ] so that n̂ = 2n > 2m. Then the central path is given as x̂(µ)T =

[x(µ)T [x(µ)T ], ŷ(µ) = y(µ) and ŝ(µ)T = [s(µ)T [s(µ)T ]. From these formulas that,

one can easily deduce that, ̂(µ) = 2
1
4(µ). Thus, since we have n̂ > 2m, our previous

results apply.

The following corollary summarizes our findings in terms of ⇤(m,n,A), see Definition

4.1.1.

Corollary 4.2.8. Let A 2 Rm⇥n. Then there exists an m, a matrix A 2 Rm⇥2m, and a

constant ⌧ independent of problem data such that,

• If n > 2m, then ⇤(m,n,A) + (n� 2m)⌧  ⇤(m, 2m,A), where m = n�m.

• If m < n < 2m, then ⇤(m,n,A)+2(n�m)⌧  2
1
4⇤(m, 2m,A), where m = 2n�m.

Hence, in either case, we conclude that there is an m < 2n such that
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⇤(m,n,A)  2
1
4⇤(m, 2m,A).

Proof. We give the proof only for the case n > 2m. The proof for the case m < n < 2m

is analogous.

Let ✏ > 0 and A 2 Rm⇥n be given. From Definition 4.1.1, one can find b 2 Rm and

c 2 Rn such that ⇤(m,n,A) 

Z 1

0

(µ)

µ
dµ + ✏. From Corollary 4.2.7, increasing the

size of the problem n � 2m times, we obtain a new problem data A 2 Rm⇥2m, b 2 Rm

and c 2 R2m such that

Z 1

0

(µ)

µ
dµ 

Z 1

0

(µ)

µ
dµ� (n� 2m)⌧,

where

Z 1

0

(µ)

µ
dµ is the Sonnevend curvature of the new central path and ⌧ is the

constant derived in the proof of Corollary 4.2.7. Using Definition 4.1.1 once again, it

follows that

⇤(m,n,A) 

Z 1

0

(µ)

µ
dµ� (n� 2m)⌧ + ✏

 ⇤(m,n,A)� (n� 2m)⌧ + ✏.

Since ✏ is arbitrarily small, the result follows.

In the end, several observations are in order. First, even though we presented construc-

tion (4.2) for n > 2m, the same construction is valid for any m and n, and the increase

in the Sonnevend curvature is still at least a constant. Second, repeating (4.2) leads to

an ⌦(n) worst-case lower bound for the Sonnevend curvature for a problem data A, b, c,

where the increase occurs for µi << µi+1. Since the constant increase occurs around a

point on the central path close to the analytic center, each µi will be large. However, in

the final LO problem, as Proposition A.3 shows, by doing the scaling b̂ :=
b

⌘
by a large

⌘, the same ⌦(n) worst-case iteration-complexity can occur on any interval [µ
0
, µ

00
].
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Chapter 5

The iteration-complexity upper

bound for IPMs is tight

It is an open question whether there is a IPM algorithm for the class of LO problems

with O(n↵ log(µ1
µ0
)) upper bound iteration-complexity for ↵ <

1
2 to reduce the barrier

parameter from µ1 to µ0. Sonnevend et al. Sonnevend et al. (1991) showed that for two

distinct special classes of LO problems, we have the upper bounds O(n
1
4 log(µ1

µ0
)) and

O(n
3
8 log(µ1

µ0
)). Another direction of research regarding the iteration-complexity of IPMs

is to construct worst-case examples. Sonnevend et al. (1991) showed that a variant of

MTY predictor-corrector algorithm requires ⌦(n
1
3 ) iterations to reduce the duality gap

by log n for certain LO problems. A similar result has been obtained by Todd (1993) for

the primal-dual a�ne scaling algorithm and has been later extended by Todd and Ye

(1996) for long step primal-dual algorithm variants; they showed that these algorithms

take ⌦(n
1
3 ) iterations to reduce the duality gap by a constant.

In this regard, a related open question raised by Stoer and Zhao (1993), was whether

there is an ↵ <
1
2 with

Z
µ1

µ0

(µ)

µ
dµ  n

↵ log

✓
µ1

µ0

◆
for all LO problems. This chapter

provides a negative answer to the latter question. In fact, we show that for any ✏ > 0,
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there is a redundant KM cube as constructed by Nematollahi and Terlaky (2008b) for

which

Z
µ1

µ0

(µ)

µ
dµ = ⌦

✓
n
( 1
2�✏) log

✓
µ1

µ0

◆◆
.

5.1 KM cube construction

First we recall the KM construction in Nematollahi and Terlaky (2008b) and review its

fundamental properties.

max �ym

s.t. 0  y1  1

⇢yk�1  yk  1� ⇢yk�1 for k = 2 . . .m.

0  d1 + y1 repeated h1 times

0  d2 + y2 repeated h2 times
...

0  dm + ym repeated hm times .

(5.1)

As in Nematollahi and Terlaky (2008b), we fix ⇢(m) = m

2(m+1) and choose

d =

 
1p
⇢m�1

,
1p
⇢m�2

, . . . ,
1
p
⇢
, 0

!
. We denote the m-dimensional KM cube by

KM(m, ⇢(m)).

Let us denote the slack variables by sk = 1� ⇢yk�1 and sk = yk � ⇢yk�1 for k = 2, . . . , n

with the convention s1 = 1 � y1 and s1 = y1. There is a one-to-one correspondence

between the vertices of KM(m, ⇢(m)) with the m-tuples v
i
2 {0, 1}m, i = 1, . . . , 2m as

follows. Each vertex of KM(m, ⇢(m)) is determined by whether exactly one of si = 0

or si = 0 for each i = 1, . . . ,m in (5.1). If si = 0, then the i-th coordinate of the

corresponding m-tuple in {0, 1}m is 0; if si = 1 it is 1. For our purpose, we describe the

relevant terms of KM(m, ⇢(m)) inductively as follows:
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First we describe the order of the vertices V(m) of KM(m, ⇢(m)) as the simplex path

visits them. In this encoding, the i-th coordinate of a point in V(m) is set to 1 when

its actual coordinate is larger than 1
2 ; and to 0, when its actual coordinate is smaller

than 1
2 . Note that V(m) is an encoding of the vertices of KM(m, ⇢(m)), they are not

the actual vertex points in Rm. For m = 2, let

V(2) = {v
1
, v

2
, v

3
, v

4
} = {(0, 1), (1, 1), (1, 0), (0, 0)}. (5.2)

Figure 5.1: V(2) = {v1, v2, v3, v4} = {(0, 1), (1, 1), (1, 0), (0, 0)} gives an encoding of the vertices in the

order they are visited by the central path.

Figure 5.1 shows the vertices of the KM(m, ⇢(m)). Then let

V(m+ 1) = {(v2
m
, 1), (v2

m�1
, 1), . . . , (v1, 1), (v1, 0), (v2, 0), . . . , (v2

m
, 0)}. (5.3)

It was shown by Nematollahi and Terlaky (2008b) that there exists a redundant KM

cube KM(m, ⇢(m)) whose central path, denoted by CP(m), visits the vertices in the

order given in the set V(m). Figures 5.2 and 5.3 show the central path for m = 2 and

m = 3.
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Figure 5.2: The central path visits the vertices V(2) = {v1, v2, v3, v4} of the KM(m, ⇢(m)) cube for

m = 2 in the given order as µ decreases.

Figure 5.3: The central path in the redundant cube KM(m, ⇢(m)) cube for m = 3.

Next we define inductively a tube along the edges of the simplex path in KM(m, ⇢(m))

as follows. Let � 
1

4(m+1) . Let T
U

�
(2) = {y : R2 : s2  �}, T L

�
(2) = {y : R2 : s2  �}

and C�(m) = {y : R2 : sm � �, sm � �} for m � 2. Note that T
U

�
(2) and T

L

�
(2) corre-

sponds to a tube for the upper and lower facets of KM(2, ⇢(2)), respectively, while C�(2)

corresponds to the central part of KM(2, ⇢(2)), see Figure 5.1. By T�(m), we denote the

union T
L

�
(m)[T

U

�
(m)[C�(m). Then for m � 2, define T U

�
(m+1) = {y : Rm+1 : sm+1 

�, (y1, . . . , ym) 2 T�(m)} and T
L

�
(m+1) = {y : Rm+1 : sm+1  �, (y1, . . . , ym) 2 T�(m)}.

Notice that T U

�
(3) is a tube that corresponds to the upper facet of KM(3, ⇢(3)) where

y3 = 1�⇢y2. Similarly T
L

�
(3) is a tube that corresponds to the lower facet of KM(3, ⇢(3))
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where y3 = ⇢y2. Also these upper and lower facets are KM(2, ⇢(3)) cubes themselves,

see Figure 5.3. Hence by identifying the first m coordinates of (y1, . . . , ym, ym+1) in-

side KM((m + 1), ⇢(m + 1)) with (y1, . . . , ym) 2 KM(m, ⇢(m + 1)), and considering

the assumption that � is decreasing in m, we can write T
U

�
(m + 1) ⇢ T�(m) and

T
L

�
(m+ 1) ⇢ T�(m), see Figure 5.4.

We also define a �-neighborhood of a vertex of KM(m, ⇢(m)) by whether exactly one of

si  � or si  � for each i = 1, . . . ,m in (5.1). Figure 5.1 displays the �-neighborhoods

of the vertices V(2) = {v
1
, v

2
, v

3
, v

4
} of the KM(m, ⇢(m)) cube for m = 2.

The following proposition is essentially Proposition 2.2 in Nematollahi and Terlaky

(2008b).

Figure 5.4: Illustration of the tube T�(m) for m = 3.

Proposition 5.1.1. In (5.1), one can choose the parameters in such a way that the

central path CP(m) in KM(m, ⇢(m)) stays inside the tube T�(m). In particular, we can

choose ⇢ = m

2(m+1) , � 
1

4(m+1) so that n = O(m22m). As µ decreases, the central path

visits the �-neighborhoods of the vertices given in the order (5.3). Moreover, the number

of inequalities n is linear in 1
�
.
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Proof. See Proposition 2.2 in Nematollahi and Terlaky (2008b).

Now for KM(m, ⇢(m)), we identify two regions R
U

�
and R

L

�
within tube T�(m) in such

a way that going from R
U

�
to R

L

�
(an vice versa) with line segments staying inside tube

T�(m) requires ⌦(2m�1) number of iterations. Let RU

�
:= {y 2 KM(m, ⇢) : s1  �, s2 

�, . . . , sm�1  �, sm  �} and R
L

�
:= {y 2 KM(m, ⇢) : s1  �, s2  �, . . . , sm�1 

�, sm  �}. We have the following.

Proposition 5.1.2. For KM(m, ⇢(m)), let yU 2 R
U

�
and y

L
2 R

L

�
. Then staying inside

the tube T�(m), one requires at least 2m�1 line segments to reach y
U from y

L and vice

versa.

Proof. With the parameters chosen as in Proposition 5.1.1, we first show T
U

�
(m) and

T
L

�
(m) do not intersect for any m. Suppose , to the contrary, that there is a y 2 T

U

�
(m)\

T
L

�
(m). From the definition of T U

�
(m) and T

L

�
(m), we have sm = 1 � ⇢ym�1 � ym  �

and sm = ym � ⇢ym�1  �. Adding these two inequalities, we get 1� 2⇢ym�1  2�. By

the choice of ⇢ and �, it is easy to see that, this will lead to the contradiction ym�1 > 1.

Hence T
U

�
(m) \ T

L

�
(m) = ;.

The rest of the proof is by induction on m. For m = 2, let y
U

2 R
U

�
and y

L
2 R

L

�

with chosen � 
1

4(m+1) . Then for y
U , we have that s1 = y1  � and s2  � implies

y2 � 1 � � � ⇢� � 1 � 2� = 5
6 . Also, for y

L we have that s1 = y1  � and s2  �

implies y2  � + ⇢y1  2� = 1
6 . Clearly staying inside the tube T�(m), it takes at least 2

iterations to reach a point with y2 
1
6 from a point with y2 �

5
6 , see Figure 5.1.

As inductive step, suppose that for any points in R
U

�
and R

L

�
belonging to the cube

KM(m � 1, ⇢(m � 1)), one requires at least 2m�2 steps to reach the point in R
L

�
from

the other point in R
U

�
with line segments staying inside T�(m � 1). Let y

U
2 R

U

�
and
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y
L
2 R

L

�
inside T�(m) ⇢ KM(m, ⇢(m)). We distinguish two points p1 and p

2 such that

p
1
2 {y 2 KM(m, ⇢(m)) : s1  �, s2  �, . . . , sm�1  �, sm  �}

and

p
2
2 {y 2 KM(m, ⇢(m)) : s1  �, s2  �, . . . , sm�1  �, sm  �}.

Note that the point p
1 belongs to the �-neighborhood of the vertex point v

2m�1
=

(0, 0, . . . , 0, 1, 1) and the point p
2 belongs to the �-neighborhood of the vertex point

v
2m�1+1 = (0, 0, . . . , 0, 1, 0). Then, using the inductive definition of T U

�
(m) and T

L

�
(m),

it is easy to see that y
U
, p

1
2 T

U

�
(m) and p

2
, y

L
2 T

L

�
(m). By inductive hypothesis,

one needs at least 2m�2 line segments to reach p
1 from y

U staying inside the tube

T
U

�
(m) ⇢ T�(m� 1). Similarly, one needs at least 2m�2 line segments to reach y

L from

p
2 staying inside the tube T

L

�
(m) ⇢ T�(m � 1). Moreover since by the first part of the

proof, we have T
U

�
(m) \ T

L

�
(m) = ;, it follows that to reach y

L from y
U , one needs to

traverse within T�(m � 1) twice, each time requiring at least 2m�2 steps. This proves

that one requires at least 2m�1 line segments to reach y
U from y

L, and the proof is

complete.

5.2 Neighborhood of the KM cube central path

In Section 5.1, we showed that with redundant constraints n = O(m22m), the central

path CP(m) stays inside a tube T�(m). Moreover, we proved that starting from a point in

R
U

�
close to the analytic center of KM(m, ⇢(m)), it will take at least 2m�1 line segments

to reach a point in R
L

�
close to the optimal solution of (5.1). However, path-following

IPMs including the MTY predictor-corrector algorithm, uses the neighborhood N (�)

as opposed to the tube neighborhood T�(m) we used in Section 5.1. In this section we

analyze the N (�) neighborhood for the KM(m, ⇢(m)), and prove that for � = ⌦( 1
m+1),

53



CHAPTER 5. THE ITERATION-COMPLEXITY UPPER BOUND FOR IPMS IS
TIGHT

we have N (�) ⇢ T�(m). In other words, with appropriately chosen neighborhood pa-

rameters of KM(m, ⇢(m)), all the iterates of the MTY predictor-corrector algorithm

stays inside tube T�(m). Hence we can draw the conclusion that for KM(m, ⇢(m)),

the MTY predictor-corrector algorithm requires at least ⌦(2m�1) iterations when the

neighborhood N (�) is used with � = ⌦( 1
m+1).

In order to find the largest � for which N (�) ⇢ T�(m), we will use the weighted paths.

The following lemma is basically Lemma 4.1 in Stoer and Zhao (1993).

Lemma 5.2.1. Fix µ and let w > 0 such that kw � ek2  ✏. Let (xw(µ), yw(µ), sw(µ))

denote w-weighted path which is the solution of (2.4). Let �si(µ) = s
w

i
(µ) � si(µ)

where si(µ) is the central path point for i = 1, . . . , n. Then we have

����
�si(µ)

si(µ)

����  2✏ for

i = 1, . . . , n.

When we apply the information in Lemma 5.2.1 toKM(m, ⇢(m)), we obtain the following

result.

Lemma 5.2.2. There exists a KM(m, ⇢(m)) with n = O(m22m) such that all the w-

weighted paths with kw � ek2  � := �

4 stays inside the tube T�(m) when � 
1

4(m+1) .

Proof. Let � 
1

4(m+1) . Then from Proposition 5.1.1, there exists KM(m, ⇢(m)) with

n = O(m22m) so that the central path stays inside the tube T �
2
(m). Choose � = �

4

for KM(m, ⇢(m)) so that kw � ek2  �. Since for all the slacks, we have si(µ)  1 or

si(µ)  1, Lemma 5.2.1 implies that s
w

i
(µ)  si(µ) +

�

2 and s
w

i
(µ)  si(µ) +

�

2 . Then

whenever si(µ) 
�

2 or si(µ) 
�

2 , we have s
w

i
(µ)  � and s

w

i
(µ)  �. Since a tube

T�(m) with a general � inside KM(m, ⇢(m)) is determined by these slacks, it follows

that all w-weighted paths stay inside the tube T�(m) with � 
1

4(m+1) . This concludes

the proof.

The following lemma proves a result analogous to Lemma 5.2.2 tailored for RU

�
and R

L

�
.
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Lemma 5.2.3. Let � 
1

4(m+1) and fix � := �

4 . Suppose that y(µ1) 2 R
U

�/2 for some µ1.

Then N (�, µ1) ⇢ R
U

�
. Similarly, if for some µ0, y(µ0) 2 R

L

�/2, then N (�, µ0) ⇢ R
L

�
.

Proof. Suppose that for some µ1, y(µ1) 2 R
U

�/2, i.e., s1(µ) 
�

2 , s2(µ) 
�

2 , . . . , sm�1(µ) 

�

2 , sm(µ)  �

2 . Let y 2 N (�, µ1). Then, for w := xs

µ1
we have kw � ek2  �. Since for all

the slacks in KM(m, ⇢(m)), we have si(µ)  1 or si(µ)  1, Lemma 5.2.1 implies that

s
w

i
(µ)  si(µ) +

�

2 and s
w

i
(µ)  si(µ) +

�

2 . Then, whenever si(µ) 
�

2 or si(µ) 
�

2 , we

have s
w

i
(µ)  � and s

w

i
(µ)  �. This proves y 2 R

U

�
, which implies N (�, µ1) ⇢ R

U

�
. The

proof of the rest of the claim can be done analogously.

In the rest of this section, we aim to find an interval [µ0, µ1] and an upper bound for

log(µ1
µ0
) such that for some � and �, the neighborhoods satisfy N (�, µ1) ⇢ R

U

�
and

N (�, µ0) ⇢ R
L

�
.

Let � 
1

4(m+1) and (y1(µ1), . . . , ym(µ1)) be a central path CP(m) point such that

s1(µ) =
�

2 , s2(µ) 
�

2 , . . . , sm(µ)  �

2 . Note that any point satisfying s1(µ) =
�

2 , s2(µ) 

�

2 , . . . , sm(µ)  �

2 is inside the �

2 -neighborhood of the vertex point (0, 0, . . . , 0, 1), hence

Proposition 5.1.1 guarantees the existence of a central path point (y1(µ1), . . . , ym(µ1)).

Then, by using Theorem 3.7 in Nematollahi and Terlaky (2008b), one can show that

µ1 
⇢
m�1

�

2 . Let us fix µ1 = ⇢
m�1

�

2 and let � := �

4 . Then Lemma 5.2.3 implies that the

neighborhood N (�, µ1) stays inside the region R
U

�
. Hence, any point inside the neigh-

borhood N (�, µ1) also stays inside the region R
U

�
.

The next step is to find a µ0 such that the neighborhood N (�, µ0)is within the region

R
L

�
. Let (y1(µ0), . . . , ym(µ0)) be the central path point such that ym = ⇢

m�1
�

2 . Note

that since the objective function in (5.1) is �ym, a central point satisfying ym = ⇢
m�1

�

2

exists and is unique. Since from (5.1), we have ⇢yi  yi+1 for i = 1, . . . , (m � 1), we

obtain y1(µ0) 
�

2 , y2(µ0) 
�

2 , . . . , ym(µ0) 
�

2 , which in turn implies that s1(µ0) 

�

2 , s2(µ0) 
�

2 , . . . , sm(µ0) 
�

2 . Then, using Lemma 5.2.3 once again, it follows for
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µ0 that the neighborhood N (�, µ0) stays inside the region R
L

�
for � = �

4 . For the

central path (1.5), the duality gap c
T
x(µ) � b

T
y(µ) = nµ. It is well-known (see e.g.,

Roos et al. (2006)) that bT y(µ) is monotonically increasing and c
T
x(µ) is monotonically

decreasing along the central path. In our case, b
T
y(µ) = �ym(µ) is increasing to 0

and c
T
x(µ) is monotonically decreasing to 0, i.e., c

T
x(µ) > 0 for all µ > 0. Then

nµ = c
T
x(µ)� b

T
y(µ) > ym(µ) implies that µ >

ym(µ)
n

for any point on the central path.

Hence for the central path point for which ym(µ) = ⇢
m�1

�

2 , it follows that µ0 >
⇢
m�1

�

2n .

Then using the fact that n = O(m22m), we have log(µ1
µ0
) = O(m). The following corollary

summarizes our findings.

Corollary 5.2.4. Let the neighborhood parameters be given as �0 < �1 = 1
16(m+1)

for the MTY predictor-corrector algorithm. Then there exists a KM(m, ⇢(m)) with

n = O(m22m) for which MTY predictor-corrector algorithm requires at least ⌦(2m�1)

predictor steps to reduce the barrier parameter from µ1 to µ0, where log(µ1
µ0
) = O(m).

Proof. Fix � := 1
4(m+1) and �1 = �

4 = 1
16(m+1) . We know from Lemma 5.2.2 that, there

exists a KM(m, ⇢(m)) with n = O(m22m) such that N (�) ⇢ T�(m). Further, Lemma

5.2.3 shows that there is an interval [µ0, µ1] such that the neighborhoods N (�, µ1) ⇢

R
U

�
and N (�, µ0) ⇢ R

L

�
. Now starting from an iterate (x1, y1, s1) and µ1 such that

(x1, y1, s1) 2 N (�, µ1) ⇢ R
U

�
, in order to reach an iterate (x0, y0, s0) and µ0 such that

(x0, y0, s0) 2 N (�, µ0) ⇢ R
L

�
; Proposition 5.1.2 and Proposition 5.2.2 imply that one

needs ⌦(2m�1) steps. Since the number of corrector steps is constant, it follows that

the number of predictor steps is ⌦(2m�1). Moreover the discussion after Lemma 5.2.3

proves that, we can choose the interval [µ0, µ1] so that log(µ1
µ0
) = O(m). This completes

the proof.
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5.3 A worst-case iteration-complexity lower bound for the

Sonnevend curvature

In Section 5.2, we established that there is an interval [µ0, µ1] such that the MTY

predictor-corrector algorithm requires ⌦(2m�1) iterations to reduce the barrier parameter

from µ1 to µ0 for the enlarged neighborhood N (�1), where �1 = ⌦(
1

m+1). In this section,

our goal is to obtain a lower bound for the Sonnevend curvature using the tools from the

previous section. To this end, we need to examine the constants in Theorem 3.2.1 more

closely.

Lemma 5.3.1. Let �1 be the enlarged neighborhood constant so that �1 
1

400
and let

N be the number of iterations of the MTY predictor-corrector algorithm to reduce the

barrier parameter from µ1 to µ0. Then

N 
4
p
2

p
�1

Z
µ1

µ0

(µ)

µ
dµ+

1

2 log(1 +
p
�1
4 )

log

✓
µ1

µ0

◆
. (5.4)

Proof. See Theorem 2.4 and its proof in Stoer and Zhao (1993).

The following theorem shows that on the interval [µ0, µ1], the total Sonnevend curvature

is in comparable order to the number of sharp turns of the central path.

Theorem 5.3.2. There is an integer m0 > 0 such that for any m � m0, there exists a

KM(m, ⇢(m)) and interval [µ0, µ1] such that the Sonnevend curvature satisfies

Z
µ1

µ0

(µ)

µ
dµ = ⌦

 ✓ p
n

p
log n

p
log(n+ 1)

�
8
p
log n+ 1

log(2)

◆
log

✓
µ1

µ0

◆!
. (5.5)

Proof. Let �1 = 1
16(m+1) and let us choose the parameters of KM(m, ⇢(m)) as ⇢ =

m

2(m+1) , and � = 1
8(m+1) so that n = O(m22m). Write n = ⌧m22m for some constant
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⌧ > 0 and we calculate log
⇣
µ1
µ0

⌘
= log n = log ⌧ + logm + 2m. This shows that for

large enough m, log
⇣
µ1
µ0

⌘
= O(m). Since we can extend the interval [µ0, µ1] so that it

still includes all the sharp turns, we will assume that log
⇣
µ1
µ0

⌘
= O(m). Then Corollary

5.2.4 applies and we have N � 2m�1. Now using the bound log(1 + !) � (log 2)! for

0  !  1, from (5.5) we get the inequality

1

2 log(1 +
p
�1
4 )


8
p
m+ 1

log 2
.

Using the fact that m  log n, a straightforward calculation shows that

Z
µ1

µ0

(µ)

µ
dµ

log
⇣
µ1
µ0

⌘ = ⌦

 p
n

p
log n

p
log(n+ 1)

�
8
p
log n+ 1

log(2)

!
. (5.6)

This completes the proof.

Corollary 5.3.3. For any ✏ > 0, there is an integer m0 > 0 such that for any m � m0,

there exists a KM(m, ⇢(m)) and interval [µ0, µ1] such thatZ
µ1

µ0

(µ)

µ
dµ � n

( 1
2�✏) log

✓
µ1

µ0

◆
, where log

⇣
µ1
µ0

⌘
= O(m).

Proof. The claim follows from Theorem 5.3.2 for su�ciently large m.

Remark 5.3.4. Corollary 5.3.3 yields a negative answer to the question raised by Stoer

and Zhao (1993), i.e., whether there exists an ↵ <
1
2 with log

⇣
µ1
µ0

⌘
= ⌦(1) such that

Z
µ1

µ0

(µ)

µ
dµ  n

↵ log

✓
µ1

µ0

◆
for the class of LO problems.
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5.4 An iteration-complexity lower bound for the MTY

predictor-corrector algorithm with constant neighbor-

hood parameter

In practice, the MTY predictor-corrector algorithm operates in a larger neighborhood

where �1 is a constant. In order to conclude an iteration-complexity lower bound for the

MTY predictor-corrector algorithm with constant neighborhood parameter �1, by using

Theorem 3.2.1 we need to show that for KM(m, ⇢(m)), there is a constant ⌫ > 0 with

(µ) � ⌫ for µ 2 [µ0, µ1]. While this appears to hold numerically, proving it is much

more di�cult. To go around this di�culty, we exploit a trick introduced by Sonnevend

et al. (1991). The idea is to use one dimensional LO problems, where it is easier to

calculate the central path and its corresponding (µ); and to use LO problems with the

scaled objectives with block diagonal constraints. For the details, we refer the reader to

Appendix Section A.

Recall that by Corollary 5.3.3, we know there exists a KM(m, ⇢(m)) and an inter-

val [µ0, µ1] such that

Z
µ1

µ0

(µ)

µ
dµ � n

( 1
2�✏) log

✓
µ1

µ0

◆
. Here n = O(m22m) and µ1

µ0
=

O(log n). Now by using Lemma A.4 and Proposition A.2, we can embed KM(m, ⇢(m))

in a block diagonal LO problem at the expense of increasing the size of the problem by

at most n := n + O(m + logm). Denote by KM(m) this hybrid construction in which

KM(m, ⇢(m)) is embedded. Since n = O(n), we have the following:

Theorem 5.4.1. For any ✏ > 0, there exists a positive integer m0 such that for any

m � m0, there exists an LO problem KM(m) and an interval [µ0, µ1] with the following

properties:

•
µ1

µ0
= O

�
m22m

�
.

• Let �0 < �1 
1

400 be the constant neighborhood N (�) parameters. Then the MTY
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predictor-corrector algorithm on this neighborhood requires ⌦

✓
n
( 1
2�✏) log

✓
µ1

µ0

◆◆

predictor steps.

Proof. Consider the KM(m, ⇢(m)) from Corollary 5.3.3. Then by using Lemma A.4 and

Proposition A.2, we can embed KM(m, ⇢(m)) in a block diagonal LO problem with size

n := n+O(m+ logm) and m = O(m). Note that since the interval [µ0, µ1] comes from

KM(m, ⇢(m)), the first claim in the theorem follows from Corollary 5.3.3. Also since

for KM(m), its corresponding (µ) � ⌫ for some constant ⌫ > 0 for all µ 2 [µ0, µ1],

Theorem 3.2.1 implies the first claim. This completes the proof.
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Chapter 6

Condition numbers for

Sonnevend’s curvature

6.1 A strongly polynomial bound for Sonnevend’s curva-

ture

In Section 3.2, we mention that the condition numbers �⇤
A
and �A can have arbitrarily

di↵erent orders of magnitude. In this section, we will show that for m = 1 and m = n�1,

the Sonnevend curvature

Z 1

0

(µ)

µ
dµ admits a strongly polynomial upper bound. To

this end, the following lemma summarizes important properties of the condition number

�A.

Lemma 6.1.1. Monteiro and Tsuchiya (2008) Let A 2 Rm⇥n be a matrix of full rank.

Then,

1. �A = maxB kB
�1

Ak2 where B is a non-singular submatrix of A.

2. For any non-singular matrix G 2 Rm⇥m, �GA = �A.
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3. log(�A) = O(LA) where LA is the input bit length of A when the matrix has all

integer entries.

4. �A = �F for any F 2 R(n�m)⇥n such that N (A) = R(F T ).

The following proposition is one of the main results of this section.

Proposition 6.1.2. Let A 2 Rm⇥n be a matrix of full rank where either m = 1 or

m = n� 1. Then log(�⇤
A
) = O(n) which implies that

Z 1

0

(µ)

µ
dµ = O(n4.5). (6.1)

Proof. Suppose that A = [a1, a2, . . . , an] is a non-zero matrix of a single row. Let D

be a positive diagonal matrix with entries di =
1

|ai| for ai 6= 0 and di = 1 for ai = 0,

i = 1, . . . , n. Then each entry of AD is either 1, �1 or 0. Then, using the definition

�
⇤
A

:= infD{�AD} and Lemma 6.1.1 part 3., we have log(�⇤
A
)  log(�AD) = O(LAD).

Since the matrix AD has only 1, �1 or 0 entries, Definition 2.1.1 gives LAD = O(n).

The, for any b 2 Rm and c 2 Rn so that the central path (1.5) exists, and equation (3.18)

implies that the Sonnevend curvature satisfies

Z 1

0

(µ)

µ
dµ = O(n4.5). This proves the

claim for the case m = 1.

Now suppose A 2 Rm⇥n is a matrix of full rank with m = n � 1. Let F 2 R1⇥n

be any matrix such that N (A) = R(F T ). By the first part of the proof, we know

that there is a positive diagonal matrix D such that log(�FD) = O(n). Now it is

easy to verify that N (AD) = R((FD)T ). Then Lemma 6.1.1 part 4. implies that

�
⇤
A

 �AD = �FD = O(2n). This implies that log(�⇤
A
) = O(n) yielding (6.1). This

completes the proof.

Now the question arises whether the type of argument in Proposition 6.1.2, i.e., using the

condition number �⇤
A
, could be extended to the case of general (m,n) to yield a strongly
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polynomial bound for

Z 1

0

(µ)

µ
dµ. Unfortunately, the answer is negative as illustrated

by the following example. It shows that there is a 2⇥ 4 matrix A for which �
⇤
A
could be

arbitrarily large.

Example 6.1.3. Let A = [I2⇥2, U ] where U =

2

64
r r

r r + 1
r2

3

75 for r > 0. Recall that

�
⇤
A

:= inf{�AD} for D being a strictly positive diagonal matrix. Then for any ✏ > 0

given, there is a diagonal matrix D =

2

64
D1 0

0 D2

3

75, with D1, D2 being 2 ⇥ 2 diagonal

matrices such that �⇤
A
� �AD � ✏. Then by Lemma 6.1.1 part 1., �AD = �

D
�1
1 AD1

and

�AD = �
D

�1
2 U�1AD2

. Now we calculate D
�1
1 AD1 = [I2⇥2, D

�1
1 UD2] with

D
�1
1 UD2 =

2

64
d3
d1
r

d4
d1
r

d3
d2
r

d4
d2
(r + 1

r2
)

3

75 , (6.2)

and D
�1
2 U

�1
AD2 = [D�1

2 U
�1

D1, I2⇥2] with

D
�1
2 U

�1
D1 =

2

64
d1
d3
(r2 + 1

r
) d2

d3
(�r

2)

d1
d4
(�r

2) d2
d4
(r + 1

r2
)

3

75 . (6.3)

Now if d3
d1

� 1, then from (6.2), we have ||D
�1
1 UD2||2 � ||D

�1
1 UD2||max � r. On the

other hand, if d3
d1

< 1, from (6.3), we have ||D�1
2 U

�1
D1||2 � ||D

�1
2 U

�1
D1||max � (r2+ 1

r
).

Hence in either case, we have �AD � r. Since �AD  �
⇤
A
+ ✏, we conclude that �⇤

A
does

not have a strongly polynomial upper bound in general.
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Volumetric barrier and path

Following the notation of Section 1.2, let D = {y 2 Rm : AT
y  c} with A 2 Rm⇥n,

b 2 Rm and y 2 Rm. We assume that the feasible set D has a nonempty interior and

is bounded. Let F (y) = �
P

n

i=1 log(ci � a
T

i
y) be the logarithmic barrier function, and

H(y) = r
2
F (y) be the Hessian of F (y). We know F (y) is a strictly convex function, so

the Hessian H(y) is positive-definite. Define V (y) = logdet H(y). The function V (y)

is called the volumetric barrier function for y 2 P and is known to be strictly convex

as well Vaidya (1989). The volumetric barrier V (y) is another self-concordant barrier

function.

In Atkinson and Vaidya (1995) Atkinson and Vaidya introduces a cutting plane algorithm

using the volumetric barrier function. This algorithm and its iteration-complexity bound

is further improved in Anstreicher (1997, 1998). Anstreicher Anstreicher (2000) extends

the volumetric barrier approach to the semidefinite case. The volumetric barrier IPMs al-

gorithm Anstreicher (1996) has an iteration-complexity upper boundO(n1/4
m

1/2 log n/✏).

Notice that when n � m, this bound is significantly better than the classical one

O(
p
n log n/✏) for the logarithmic barrier function.
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Given the LO problem in the form with b 6= 0:

max b
T
y

s.t. A
T
y  c,

(7.1)

for µ > 0. Consider the volumetric barrier problem:

min �b
T
y + µV (y)

s.t. A
T
y < c.

(7.2)

Let Gµ(y) = �b
T
y + µV (y) and y(µ) be the (unique) optimal solution of Gµ(y). The

optimal points y(µ) parameterized by µ form an analytic curve called the volumetric

path. As µ ! 0, y(µ) converges to an optimal solution of (7.1).

Compared to the vast amount of literature on logarithmic barrier methods in LO, the

volumetric barrier function is relatively less studied possibly due to its inferior perfor-

mance in computational practice and its more involved analysis. In this section, we will

prove that certain basic properties that hold for the logarithmic barrier do not hold for

the volumetric barrier, see Mut and Terlaky (2012).

7.1 Basic Properties

In the next two propositions we prove certain fundamental properties of the volumet-

ric path. The next proposition deals with the monotonicity of the objective on the

volumetric path, see Roos et al. (2006).

Proposition 7.1.1. For µ1 < µ2, we have the following:

1. y(µ1) 6= y(µ2).

2. b
T
y(µ1) > b

T
y(µ2).
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Proof.

1. Let µ1 < µ2 and suppose, to the contrary, that y(µ1) = y(µ2) = y. The first order

optimality conditions for (7.2) give

r(�b
T
y + µ1V (y)) = 0 =) �b+ µ1rV (y) = 0

r(�b
T
y + µ1V (y)) = 0 =) �b+ µ2rV (y) = 0,

that implies

rV (y) =
1

µ1
b =

1

µ2
b,

which is a contradiction for b 6= 0.

2. Let y1 and y
2 be the optimal solutions of Gµ1 and Gµ2 , respectively. Since Gµ is

strictly convex, for µ > 0, we have

Gµ1(y
1) < Gµ1(y

2)

Gµ2(y
2) < Gµ2(y

1),

which implies

� b
T
y
1 + µ1V (y1) < �b

T
y
2 + µ1V (y2) (7.3)

� b
T
y
2 + µ2V (y2) < �b

T
y
1 + µ2V (y1). (7.4)

By multiplying the inequalities (7.3) by µ2, and (7.4) by µ1, respectively, and

adding the resulting inequalities, after cancellations one gets

�µ2b
T
y
1
� µ1b

T
y
2
< �µ2b

T
y
2
� µ1b

T
y
1
,
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which implies that bT y1 > b
T
y
2.

Next we examine the relationship between the points y(µ), µ > 0 on the volumetric path

and the so-called volumetric center of the level sets bT y = ↵.

Definition 7.1.2.

1. A level set L↵ for (7.1) is the set {y 2 Rn : bT y = ↵, A
T
y  c}

2. The volumetric center ŷ of a (bounded) level set L↵ is defined to be the (unique)

minimizer of the volumetric function V (y) over L↵.

Proposition 7.1.3. Let µ > 0 and ŷ = y(µ) be the optimal solution of (7.2) with

b
T
ŷ = ↵ for some ↵. Then ŷ is the volumetric center of L↵.

Proof. Consider the following problems:

(§) min V (y) (§§) min �
b
T
y

µ
+ V (y)

s.t b
T
y = ↵ s.t A

T
y < c.

A
T
y < c.

Let y and ŷ be the optimal solutions of (§) and (§§), respectively. The first order

optimality conditions for (§) give

rV (y) + �b = 0, b
T
y = ↵ , (7.5)

where � is the (unique) Lagrange multiplier, and for (§§) give

�
b

µ
+rV (ŷ) = 0 . (7.6)

Since by assumption b
T
ŷ = ↵, ŷ satisfies (7.5) with the choice of � = �

1
µ
. Since (§) and

(§§) have unique optimal solutions, it follows that y = ŷ. This completes the proof.
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7.2 Limit point of the volumetric path

Let y
⇤ = limµ!0 y(µ) be an optimal solution of (7.1) with the corresponding optimal

objective value ↵
⇤ = b

T
y
⇤. From Proposition 7.1.3, one sees that as ↵ decreases to ↵

⇤,

the volumetric centers of the level sets L↵⇤ converge to y
⇤. Thus a natural question arises

about whether y⇤ is the volumetric center ofthe optimal level set L↵⇤ . Observe that since

certain constraints have to be active in the optimal level set L↵⇤ , the volumetric barrier

function V (y) is not defined on L↵⇤ . Hence in order to define the volumetric center of

L↵⇤ , one needs to identify the constraints that are inactive at y
⇤, i.e. the constraints

which hold with strict inequality in the relative interior of L↵⇤ . Let I be the set of

inactive constraints of AT
y  c in the relative interior of the optimal level set L↵⇤ . Let

F (y) = �
P

i2I log(ci � a
T

i
y) and V (y) be defined accordingly. The volumetric center of

the optimal level set L↵⇤ is defined as the unique minimizer of

min V (y)

s.t b
T
y = ↵

⇤

a
T

i
y = ci, i /2 I

a
T

i
y < ci, i 2 I

(7.7)

It is known, see e.g. Roos et al. (2006) that for the logarithmic barrier function, the

central path converges to the analytic center of the optimal level set. In particular, for a

linear optimization problem in the standard form, the volumetric barrier function reduces

to the logarithmic barrier function, hence in this case the volumetric path converges to

the volumetric center of the optimal level set also. A natural question to ask is whether

this extends to the problems in the form of (7.1).

As the following example illustrates, this fact fails to hold for (7.1).

Example 6.2.1.
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Let the rows of the matrix A
T
2 R5⇥2 be given by the vectors aT1 = (�1, 0), aT2 = (0.1, 1),

a
T

3 = (1, 0), aT4 = (0.1,�1), aT5 = (0,�1) with the objective vector bT = �(0, 1) and

c
T = (0, 1, 1, 0, 0.1). The optimal objective value is ↵

⇤ = 0.1. For a polyhedral set of

the form P = {y : AT
y  c}, Vaidya (1989) showed that the Hessian H(y) = r

2
F (y)

of the logarithmic barrier function is computed as H(y) =
P

m

i=1Hi(y), where Hi(y) =

aia
T

i
/(ci � a

T

i
y)2. For our example n = 5 and

H1(y) =
1
y
2
1

2

64
1 0

0 0

3

75, H2(y) =
1

(1�0.1y1�y2)2

2

64
0.01 0.1

0.1 1

3

75, H3(y) =
1

(1�y1)2

2

64
1 0

0 0

3

75,

H4(y) =
1

(�0.1y1+y2)2

2

64
0.01 �0.1

�0.1 1

3

75, H5(y) =
1

(y2�0.1)2

2

64
0 0

0 1

3

75.

Figure 7.1: The volumetric center of the optimal level set is (0.37,0.1), while the volumetric path

converges to (0.44, 0.1).
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From Proposition (7.1.3), one can see that the volumetric path converges to

y
⇤ = lim

✏!0
y(✏),

where

y(✏) = argmin logdet H(y)

y2 = 0.1 + ✏.

Now, logdet H(y) is computed as

log[(60000✏4y21 � 60000✏4y1 + 30000✏4 � 64000✏3y21 + 64000✏3y1 � 32000✏3 + 600✏2y41

�1200✏2y31 + 26200✏2y21 � 25600✏2y1 + 12800✏2 + 160✏y41 � 3200✏y31 + 6080✏y21

�4480✏y1 + 1440✏+ 4y61 � 66y51 + 401y41 � 800y31 + 722y21 � 342y1 + 81)/

(✏2y21(y1 � 1)2(10✏� y1 + 1)2(10✏+ y1 � 9)2)] .

Let h(y1, ✏) = log(✏2det H(y)). Clearly for ✏ > 0 fixed, the minimizer of the function

log det H(y) is the same as the minimizer of h(y1, ✏). Note that

lim
✏!0

h(y1, ✏) = log
(4y61 � 66y51 + 401y41 � 800y31 + 722y21 � 342y1 + 81)

y
2
1(y1 � 1)4(y1 � 9)2

= log
(4y41 � 58y31 + 281y21 � 180y1 + 81)

y
2
1(y1 � 1)2(y1 � 9)2

.

Denote this limit by g(y1). We will argue that the first coordinate of the limit point of

the volumetric path y
⇤ = lim✏!0 y(✏) is the minimizer of g(y1).

First the unique minimizer of g(y1) can be computed as y
⇤ = 0.44248. Let gk(y1) =

h(y1,
1
k
). We will show that limk!1 argmin gk(y1) = y

⇤. Suppose by contradiction
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that limk!1 argmin gk(y1) = y 6= y
⇤ for some y. Choose an interval [a, b] ✓ [0, 1]

containing y
⇤ such that y /2 [a, b]. Since g(y1) has minimum at y

⇤, one can choose an

✏ with 0 < ✏ < min{g(a)�g(y⇤)
2 ,

g(b)�g(y⇤)
2 }. Since gk(y1) converges uniformly to g(y1)

on the compact interval [a, b], there exists a number N 2 N such that k � N implies

g(y)� ✏ < gk(y) < g(y) + ✏ for all y 2 [a, b]. For k � N we have,

gk(y⇤) < g(y⇤) + ✏ < g(a)� ✏ < gk(a)

gk(y⇤) < g(y⇤) + ✏ < g(b)� ✏ < gk(b).
(7.8)

Fix k � N . If gk(y1) had a minimizer y not in [a, b], then (7.8) would imply that the points

gk(a), gk(b), gk(y⇤) and gk(y) contradict the convexity property of gk(y1). This shows

that for any k � N , the unique minimizer of gk(y1) must lie in the interval [a, b]. Hence

this would be a contradiction to the assumption that limk!1 argmin gk(y1) = y /2 [a, b].

Thus we obtain limk!1 argmin gk(y1) = y
⇤ = 0.44248 as the limit point of the volumetric

path.

On the other hand, at the optimal objective value ↵
⇤ = 0.1 the constraint a5 is active,

and the volumetric center of the optimal level set defined by (7.7) is the unique solution

of

min logdet H(y)

y2 = 0.1,
(7.9)

where H(y) =
P4

i=1Hi(y). The optimal solution of (7.9) is computed as

y = (0.37087, 0.1), whose first coordinate is not equal to y
⇤. Thus this counterexample

demonstrates that the limit of the volumetric path is not necessarily the volumetric

center of the optimal level set.
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Chapter 8

Conclusions and future research

In this final chapter, we review the results of the thesis and highlight future research

problems.

Recall that the construction (4.2) in Chapter 4, (see also Figure 4.1) achieves two things:

i) The curvature of the new central path C
P

makes an extra sharp turn, and ii) each

extra sharp turn obtained increases the Sonnevend curvature by a constant amount. On

the other hand, the KM(m) construction of Chapter 5 shows that each sharp turn of

the central path in a properly chosen neighborhood of the central path generates an

extra Newton step, which in turn accounts for an increase in Sonnevend’s curvature, see

Proposition 5.1.2 and Theorem 5.3.2. These two cases suggests that there might be a

close relationship between the geometric curvature and the Sonnevend curvature of the

central path. Hence,

Problem 1:

In a general setting, investigate whether Sonnevend’s curvature and geometric cur-

vature of the central path are in similar orders of magnitude.

A positive relationship along these lines in a general setting would imply a new
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type of bound for the total geometric curvature of the central path.

The most significant result of Chapter 5 is that we rigorously show the iteration-

complexity upper bound O

⇣
p
n log

⇣
µ1

µ0

⌘⌘
for the MTY predictor-corrector al-

gorithm is essentially tight. While the MTY predictor-corrector algorithm is an

adaptive-step algorithm, it still follows the central path closely. A natural question

is to try to extend this result to long step IPMs algorithms and ask whether the

relevant iteration-complexity upper bounds for the long step variants are tight.

Problem 2:

Are the iteration-complexity upper bounds for long step IPMs algorithms tight?

Can we use or extend the construction (5.1) as a worst-case LO example for these

type of algorithms?

A useful way to view the Sonnevend curvature

Z 1

0

(µ)

µ
dµ is through Grassmann

manifold, see Theorem B.2 and Theorem B.3 in Appendix B. In light of these the-

orems, the problem of estimating the worst-case value of the Sonnevend curvature

reduces to the following problem:

max

⇢Z
t1

t0

kMe(I �M)ek1/22 dt : M
0
= h(M), M(t0) 2 G(n,m)

�
,

where h(M) = Mdiag(Me) + diag(Me)M � 2Mdiag(Me)M and µ = e�t. Note

that this problem can be cast in purely in the terms of Grassmann manifold. This

suggests that it is at least plausible to expect an upper bound for

Z 1

0

(µ)

µ
dµ inde-

pendent of a condition number �⇤
A
, possibly a strongly polynomial bound. Clearly

due to Theorem 3.2.1, a new bound for

Z 1

0

(µ)

µ
dµ would lead to important im-

plications about the iteration-complexity of IPMs algorithms. Chapter 6 gives a

strongly polynomial bound for

Z 1

0

(µ)

µ
dµ when either m = 1 or m = n� 1.
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At this point, we would like to report a surprising numerical behavior. Let A1⇥n =

[1, 1, . . . , 1, 1+
p
n] and form the matrix M1 = AT (AAT )�1A. It is possible to show

that we have kM1e(I �M1)ek
1/2
2 = ⌦(

p
n). Now for m < n, consider

max
U

�
kMe(I �M)ek1/22 : M = UT (UUT )�1U

 
,

where U is an m⇥ n matrix of full rank. Let M2 := UT (UUT )�1U be the optimal

solution of this problem. Note that rank(M1) = 1, while rank(M2) = m. Now

Theorem B.3 implies that the Sonnevend curvatures kM(t)e(I � M(t))ek1/22 for

each cases are completely determined from the initial values M1 and M2. Figure

8.1 draws both kM1(t)e(I �M1(t))ek
1/2
2 and kM2(t)e(I �M2(t))ek

1/2
2 for m = 2,

n = 4 versus the horizontal axis t.

Figure 8.1: The solid curve in the figure results from M1(t) while the curve given by downward-pointing
triangle comes from M2(t).
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As we see the two curves completely overlap. This behavior certainly requires an

explanation.

Problem 3:

1. When kMe(I�M)ek1/22 , where M = AT (AAT )�1A, is at its global maximum

for an m ⇥ n matrix of full rank, can the Sonnevend curvature kM(t)e(I �

M(t))ek1/22 be also expressed with an initial value M0 = A
T

(AA
T

)�1A for a

matrix A1⇥n?

2. Is part 1. also true for a local maximum of kMe(I �M)ek1/22 ? Or is it true

in general?

Note that whenever one can reduce the estimate of

Z
t1

t0

kMe(I � M)ek1/22 dt for

rank(M) = m to the case of rank(M) = 1, due to Proposition 6.1.2, we obtain

a strongly polynomial bound for the Sonnevend curvature

Z 1

0

(µ)

µ
dµ. This, in

turn (using Theorem 3.2.1), would allow us to categorize the number of iterations

in two parts, where the part accounted by the integral

Z 1

0

(µ)

µ
dµ has a strongly

polynomial bound. This would shed more light on the iteration-complexity of

IPMs.
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Appendix A

Additional lemmas for Chapter 4

and 5

Lemma A.1. For large enough r, there is a 1-dimensional LO problem with (r+1)

constraints and constants ⌧1, ⌧2 � 0, for which ⌧1
p
r  (µ)  ⌧2

p
r for any

µ 2


1

r�
p
r
4

, 1
r�

p
r

�
.

Proof. Consider the problem min{ y : y  1 and, y � 0 repeated r times}.

The construction is given in Sonnevend et al. (1991), p:551. Let s0(µ) = 1 �

y(µ). Then it is possible to show that (Sonnevend et al. (1991), p:551),
ṡ0(µ)

s0(µ)
is

larger than
r2

3
p
r
on the interval

"
1

r �
p
r

4

,
1

r �
p
r

#
so that

µṡ0(µ)

s0(µ)
= ⌦(

p
r) on

"
1

r �
p
r

4

,
1

r �
p
r

#
. Then from Proposition 3.2.2 part 1., we have (µ) = ⌦(

p
r)

for any µ 2

"
1

r �
p
r

4

,
1

r �
p
r

#
.

Proposition A.2. Consider the LO problems
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min (c1)Tx

s.t. A1x1 = b1

x1
� 0,

min (c2)Tx

s.t. A2x2 = b2

x2
� 0,

(A.1)

with the corresponding 1(µ) and 2(µ) on the interval [µ0, µ1].

Then for the problem

min cTx

s.t. Ax = b

x � 0,

(A.2)

with the corresponding (µ), where c = [c1, c2]T , b = [b1, b2]T and A =

2

4 A1 0

0 A2

3

5.

Then on the interval [µ0, µ1], we have (µ) � i(µ) for i = 1, 2.

Proof. Let (x1(µ), y1(µ), s1(µ)) and (x2(µ), y2(µ), s2(µ)) be the central paths in

(A.1). Then the term (µ) for the combined problem (A.2) becomes (µ) =

||[µẋ1ṡ1, µẋ2ṡ2]||
1
2 � i(µ) for i = 1, 2 on [µ0, µ1].

Proposition A.3. Let ⌘ > 0 and consider the central path (1.5) and its (µ).

Let (Â, b̂, ĉ) be another problem instance, where (Â, b̂, ĉ) = (A, b

⌘
, c) with its corre-

sponding ̂(µ). Then, we have

̂(µ) = (⌘µ), µ 2


µ0

⌘
,
µ1

⌘

�
. (A.3)

Proof. Using (1.5), it is straightforward to verify that the central path

(x̂(µ), ŷ(µ), ŝ(µ)) of the new problem satisfies x̂(µ) =
x(⌘µ)

⌘
, ŷ(µ) = y(⌘µ) and

ŝ(µ) = s(⌘µ). Using the definition of (µ), we get ̂(µ) = (⌘µ). Hence the claim

follows.
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Lemma A.4. Given an interval [µ0, µ1] and a constant ⌫ > 0, there exists an LO

problem of size n = ⇥
⇣
log(µ1

µ0
)
⌘
such that for all µ 2 [µ0, µ1], we have (µ) � ⌫.

The hidden constant in n = ⇥
⇣
log(µ1

µ0
)
⌘
depends on ⌫.

Proof. Let a constant ⌫ > 0 and an interval [µ0, µ1] be given. For the given ⌫ > 0,

by Lemma A.1, there exists an LO problem with its (µ) � ⌫ on an interval

µ 2 [↵1,↵2]. By applying Proposition A.3 for ⌘ :=
↵1

(
↵2

↵2
)iµ0

for i = 0, 1, . . . , k, we

find k � 1 scaled LO problems with their corresponding i(µ), i = 0, 1, . . . , k � 1

such that i(µ) = (⌘µ) on µ 2 [(↵2
↵1
)iµ0, (

↵2
↵1
)i+1µ0], for i = 0, 1, . . . , k � 1. Then

by using Proposition A.2, we can obtain a block diagonal LO problem with its

(µ) � i(µ) � ⌫ for i = 0, 1, . . . , k � 1 for any µ 2


µ0, (

↵2

↵1
)kµ0

�
. In order to

have (µ) � ⌫ for any µ 2 [µ0, µ1], it is then enough to have (
↵2

↵1
)kµ0 � µ1. This is

true if and only if k log(↵2
↵1
) � log(µ1

µ0
). Since the ratio ↵2

↵1
is a constant depending

only on the given ⌫, the number of blocks k needed is ⇥(log(↵2
↵1
)). Also since the

size of the LO problem with its (µ) is a constant which is determined only by ⌫,

the size of the problem n = ⇥
⇣
log(µ1

µ0
)
⌘
to achieve (µ) � ⌫ for all µ 2 [µ0, µ1].

This completes the proof.
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Sonnevend’s curvature and

Grassmann manifold

Definition B.1. The Grassmann manifold is defined as

G(n,m) := {M 2 Rn⇥n : MT = M,M2 = M, rank(M) = m}.

Theorem B.2. Sonnevend et al. (1991) Consider the central path in (1.5) and for

any µ > 0 let M = S�1AT (AS�2AT )�1AS�1
. Then

1. MT = M , M2 = M , kMk2 = 1 and rank(M) = m.

2. (µ) = kMe(I �M)ek1/22 .

3. u 2 R(AS�1
) if and only if Mu = u.

4. u 2 N(AS�1
) if and only if Mu = 0.

5. For any M 2 G(n,m), there exists a matrix A 2 Rm⇥n
of full rank, such that

M = A
T

(AA
T

)�1A.
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Theorem B.3. Sonnevend et al. (1991) Define a parametrization t on (�1,1)

such that e�t = µ. Then M(t) = S�1AT (AS�2AT )�1AS�1
satisfies

dM

dt
= h(M),

where h(M) = Mdiag(Me) + diag(Me)M � 2Mdiag(Me)M . For any given pro-

jection matrix M(t0), this di↵erential equation determines M(t) for all t.
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