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Abstract 

A mortgage model consists of three basic parts:  the amortization model which 

examines the mortgage cash flows, the interest rate model which affects the mortgage 

price, and the prepayment model which measures the rates of mortgage termination when 

a property is sold, refinanced or foreclosed.    A technique known as eigenfunction 

expansion has proven to be useful in pricing continuous-time mortgages.  

 The first part of this dissertation involves generalizing the existing mortgage 

model by analyzing the Cox-Ingersoll-Ross interest-rate model and including as an 

alternative the simpler Vasicek model and then comparing the results obtained by these 

methods.  We also refine the relationship between interest rates and prepayments to 

reflect empirical data more accurately, particularly in low-interest rate scenarios by 

expanding the existing single-threshold prepayment model to include a secondary 

prepayment threshold.   

The second problem expands the existing continuous prepayment model to 

include mortgage defaults.   We use the default model to examine the price sensitivity of 

mortgages to loss severity and foreclosure rates.  We also examine two practical 

applications of this model:  accounting for wider spreads between mortgage yields and 

treasury yields during periods of economic stress, and estimating the value of the 

mortgage guarantee that government agencies such as Ginnie Mae provide to investors of 

mortgage-backed securities.    
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Chapter 1.  Introduction  

In a recent paper (Kolbe and Zagst 2009) modeled prices of Ginnie Mae mortgage 

securities by modifying the prepayment model in two ways:    Their endogenous 

prepayment model is a piecewise linear approximation to the S-curve relationship to 

interest rates, and their exogenous (baseline) prepayment model is a complex stochastic 

two-factor model; the first factor is a random noise component and the second factor is 

based on the GDP growth rate. 

While exogenous prepayment rates are in reality stochastic, we believe the 

deterministic industry-standard models (PSA and CPR) are adequate to describe the 

exogenous prepayment rate.   Furthermore these industry-standard models are simpler.    

(Gorovoy and Linetsky 2007) use these standard models in both discrete and continuous 

forms in their eigenfunction expansion model; however, Kolbe and Zagst were unable to 

compare their model to that of Gorovoy and Linetsky due to numerical problems.    We 

were able to overcome these numerical problems and will demonstrate that applying an 

approach similar to that of Gorovoy and Linetsky actually produces superior results to 

Kolbe and Zagst over the period 1996-2006 without the additional complexity.  

Furthermore, we will show that the eigenfunction expansion approach is superior even if 

we select a different interest rate model.   We will also add our own endogenous 

piecewise linear prepayment model to further improve the results.    Finally, we will 

introduce a default model to see how various default assumptions could affect prices of 

mortgage-backed securities.   We will then demonstrate two applications of the default 
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model – one application is an alternative pricing model during economic crisis periods; 

the second application is to determine the value of loan guarantees. 

Home ownership is synonymous with the American dream.   Some of the most 

basic questions one asks when buying a house are:  “How much house can I afford?”, and 

“What is my monthly payment?”   After one buys a house, a frequent question is:  “What 

is the balance of my mortgage?” and “What is my house worth?”   The answer to most of 

these questions requires that one knows what interest rate one is paying on the mortgage. 

But how is that interest rate determined?  Calculating the interest rate for a 

mortgage is more complex than for other fixed-income investments because the borrower 

not only pays down the balance over time, but he or she has the option to prepay the 

mortgage at any time.  Furthermore the borrower also has the option to surrender the 

property to the bank or lender and walk away owing nothing.   The lender usually absorbs 

a loss in this case, because the value of the underlying collateral minus foreclosure costs 

is usually less than the balance of the mortgage.  (If this were not true, the borrower 

would simply sell the house at a profit rather than walk away and get nothing.)     

     Prepayments can occur for various reasons.  There are three types of 

prepayments, exogenous prepayments, endogenous prepayments, and curtailments.  

Exogenous prepayments occur due to the sale of the house.  Endogenous prepayments 

occur when the owner refinances to get a lower mortgage rate.  Curtailments result when 

the borrower pays a little bit extra each month over and above the required mortgage 

payment.  Prepayments can have a dramatic effect on the price of a mortgage because 

they affect the timing of the cash flows. 
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Another type of prepayment is a mortgage default.  This occurs when the 

homeowner stops paying on the mortgage; the property goes into foreclosure until the 

bank can sell it, usually at a loss.  In the past, defaults were ignored when mortgage were 

issued by quasi-government agencies such as Fannie Mae and Freddie Mac, because 

these agencies absorbed the losses and did not directly pass them on to investors.  

However, in 2008, Fannie Mae and Freddie Mac suffered huge losses due the mortgage 

crisis and required a large infusion of government cash.  Thus modeling mortgage 

defaults has been shown to be extremely important for obtaining the fair mortgage rate.  

Recent research has applied continuous-time models to mortgage valuation.  

There are three areas where these models are limited.  First, they assume a particular 

interest rate model; second, the theoretical relationships between prepayments and 

current interest rates do not always agree with empirical data, and third, many models do 

not include defaults.  

In this dissertation the eigenfunction expansion mortgage valuation model will be 

generalized to accept a different interest rate models such as Vasicek.  This in turn will 

show what effects the choice of interest rate model has on predicted mortgage rates.  The 

current model will also be improved by relating interest rates to prepayments to better 

reflect empirical data.  This should permit us to model the effects of the very low interest 

rates that we are currently experiencing.  Finally, the industry-standard default models 

will be embedded in the eigenfunction expansion model.  This will help to model the 

recent effects of sub-prime mortgages and the recent drop in home prices by 

incorporating potential losses into price and yield calculations. 
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Chapter 2.  Background and Motivation 

The conventional 30-year mortgage with a 20% down payment became popular 

after the creation of the Federal Housing Administration by FDR in 1934.   The Federal 

National Mortgage Association (FNMA or Fannie Mae) was established in 1938 to 

provide government guarantees to lenders thus opening home ownership to the middle 

class.    Prior to that, most mortgages required a 50% down payment.    

After World War II, American Soldiers returning from the War obtained VA 

loans through the GI Bill of Rights which allowed them to purchase homes with little or 

no down payment.   This gave leverage to middle-class Americans and allowed them to 

partake in the American Dream.  Ginnie Mae (GNMA) was established in 1968 to handle 

government-backed mortgages (VA and FHA).    Fannie Mae (FNMA) and Freddie Mac 

(FHLMC) were created by the government, but were privately held.   

In 1977, Lewis S. Ranieri created securities from a pool of mortgages.  These 

securities freed up a bank’s capital thus permitting the bank to issue new mortgages.  The 

securities could then be traded on Wall Street. [Business Week, July 7, 2008]    

2.1 Agency Mortgage Backed Securities 

Mortgages which are guaranteed by Freddie Mac, Fannie Mae and Ginnie Mae 

are called Agency Mortgages.   The agencies issue mortgage-backed securities (MBS) to 

investors; these securities are protected against default risk.  In spite of this protection, 

MBS present two other types of risks—prepayment risk and interest rate risk.    

Prepayments occur unexpectedly resulting in cash flows coming in sooner than expected.   
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If a certain prepayment rate is anticipated and does not materialize, extension risk occurs 

when payments come in later than expected.   When interest rates go up, the present value 

of a mortgage-backed security goes down; on the other hand when interest rates drop, 

there is no upside to the lender because many borrowers will refinance.   

Huge losses at Fannie Mae and Freddie Mac leading up to 2008 resulted in a 

federal takeover of these institutions.  This may have been due to the unintended 

consequences of the Community Reinvestment Act of 1977 encouraging banks to lend to 

low-income people according to the Wall Street Journal Editorial “Not Everyone Should 

Own a Home” (Oct 6, 2008).   Many of these loans required no down payment or no 

income verification from the borrowers.  When the housing bubble burst, these sub-prime 

borrowers simply walked away from the property leaving the banks holding the bag.     

2.2 Collateral  

The collateral consists of commercial and residential properties, but other assets 

such as vehicles may also be included.  The two major types of loans are fixed-rate and 

adjustable rate mortgages (ARM’s).    In addition, there are also interest-only mortgages, 

graduated payment (GPM) mortgages which have increasing payments but a constant 

interest rate, growing equity mortgages (GEM’s) which are similar to GPM’s but do not 

negatively amortize, and hybrid mortgages which combine several of these types of 

mortgages into one package.  (Fabozzi and Ramsey, Mortgages and Overview of 

Mortgage-Backed Securities 1997) describe these types of mortgages in detail.   

The current sub-prime mortgage crisis illustrates the problem with borrowers 

defaulting on their mortgages.   Low or no down-payment mortgages are risky 
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investments because the property value can drop below the mortgage balance.   This 

gives the borrower the option of walking away from the property and letting the bank 

assume possession.  The bank takes a loss, but the borrower only loses the small down 

payment (if any) and the (typically small) amount of principal paid in thus far.   This is 

equivalent to a put option on the property since its value can’t drop below a certain level.   

The problem results because the price of the mortgage does not include this embedded 

put option which is based on the recent volatility in home prices.           

2.3 Structuring 

Originally banks held mortgages until they were paid off, collecting the payments 

every month.   To free up capital to allow banks to issue new mortgages, they began 

selling mortgages to investors through mortgage companies.   The individual mortgages 

were then pooled and the resulting cash flows were packaged into securities.   These are 

called pass-through securities (whole-loan).    The cash flows can also be carved up into 

more complex securities (derivatives) known as Collateralized Mortgage Obligations 

(CMO’s) which have varying risks and maturities.   These can be sold to investors who 

would not otherwise be attracted to mortgage investments.   The process of carving up the 

cash flows into separate bond classes is known as structuring.   (Hayre, Mohebbi and 

Zimmerman 1997)  describe these various structures in detail.   The danger here was that 

the original issuers of the loans no longer had to worry about default; they simply pushed 

the risk onto the investors. 

The basic type of structuring is Sequential Pay where the cash flows are divided 

up among several bond classes (Ames 1997).  For example, the Class A bond’s principal 
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is paid down completely, while the remaining bond classes collect interest only.  When 

the bond A class is retired, the B class receives the entire principal payments until it is 

retired.    This process continues until the last bond class is retired.   An accrual bond 

(Class Z) receives no interest until all other bonds are retired; it negatively amortizes until 

it is ready to receive cash flows.   Mortgages which tend to be long-term investments can 

now be divided up into investments with shorter maturities and thus attract investors with 

differing investment horizons.   

Optimal structuring was first proposed by (Zenios 1993) using a sequential pay 

structure with an accrual bond using a mixed-integer program with thousands of decision 

variables and constraints; the problem was not practical to solve for this reason.   

(Medina, Riano and Villarreal 2007) use a dynamic programming approach to create an 

optimal sequential pay structure using data from Colombia’s Fannie Mae counterpart.   

     Treasury securities are often split into principal-only and interest-only strips.  

In a similar way, mortgage-backed securities may also be split into these classes known 

as PO’s and IO’s.   PO’s are immune from prepayment risk, but suffer from extension 

risk, while IO’s are immune from extension risk, but are subject to prepayment risk. (Y. 

Goncharov 2006)  shows how PO and IO strips can be priced by substituting the 

principal- only or interest only cash-flows into his pricing formula instead of the total 

cash flow.  He also shows how this could be applied to sequential-pay CMO’s. 

Issuers often create a structure consisting of a protected investment-grade bond 

class along with a companion bond which absorbs the shock of the risk (e.g. interest rate, 

prepayment or default risk).  The companion bond is usually held by the issuer; however, 

it may be sold as a junk bond with a suitably high interest rate.  
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Floaters protect against interest rate risk with a floating rate; and their companion 

classes are known as inverse floaters.  Planned Amortization Classes (PACs) protect the 

bondholder from both prepayment risk and extension risk.   (Huang, et al. 2007) propose 

an optimal CMO design for this type of structure.  Targeted Amortization Classes (TACs) 

provide protection against either prepayment risk or extension risk but not both.  

Finally, a senior/subordinated structure may be created to protect against default 

risk.  The senior bonds will collect all available principal until they are retired, while the 

subordinated classes absorb all principal losses.   This type of structure only applies to 

Non-Agency MBS (Lundy and Higgins 1977). As a rule this only applies to jumbo (non-

conforming) and commercial mortgages.  The rating agencies often gave favorable 

ratings to the senior bonds even though the underlying collateral was sub-prime.   When 

the mortgage meltdown occurred, many investors were upset because they had assumed 

they were better protected from losses.   

The behavior of the underlying collateral influences how the various bond 

structures behave.    In reality many deals combine sequential pay with other types of 

structures creating exceedingly complex instruments.   Understanding how prepayments 

and defaults affect the underlying collateral and the resulting bond structures is critical to 

managing these investments.   We will use prepayments and defaults to understand the 

whole loan CMO’s.   This will leave open a huge area of future research to look at how 

various structures react to this type of activity. 
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2.4 Recent Mortgage Models          

Since mortgages have a prepayment option, most models in the past have used 

Monte Carlo simulation to price the mortgage (Bhattercharjee and Hayre 2006).  Recent 

research has shown that interest–rate option theory can be used to evaluate mortgages. 

Mortgage rates are based on an underlying index, such as 10-year treasury rates or the 

LIBOR, a spread, plus adjustments including those related to the property type, loan-to-

value, and the credit score of the borrower.   

2.4.1   Discrete Models 

Recent research involves the calculation of mortgage rates from current short 

rates, given the borrowers’ tendencies to refinance.  (Pliska 2004) uses a simple discrete 

model which combines dynamic programming with game theory where the borrower’s 

decision strategy is either to refinance or continue, and the lender’s strategy is to choose 

the optimal mortgage rate.  The goal is to find the equilibrium point where neither 

borrower nor lender would change his strategy.  Unfortunately, the discrete approach 

suffers from the “curse of dimensionality” because the number of paths becomes 

exceedingly large in any realistic scenario.  Pliska’s example uses only 5 periods and four 

distinct interest rates; this illustrates the point but it is not realistic. (Kariya, Pliska and 

Ushiyama 2002) incorporate housing prices into the prepayment model, assuming that 

rising housing prices contribute to either sale of the property, or refinancing, to unlock 

additional equity. 
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2.4.2 Continuous Models 

(Y. Goncharov 2006) proposed the first continuous-time approach using option-

based models.  The traditional option-based model described in the literature is optimal in 

the sense that the borrower is presumed to have enough financial sophistication to 

compare the expected present value of refinancing to the remaining balance of the current 

loan.  The MRB (mortgage-rate based) model is sub-optimal in that the refinancing 

incentive is based only upon a crude comparison between the current mortgage rate and 

the contracted rate.  Goncharov also demonstrates that calculating the refinancing 

incentive using the traditional option-based and MRB approaches can lead to 

contradictory results.  While the existence and uniqueness of a fixed-point iterative 

solution to the endogenous mortgage rate can be proven using the traditional option-

based approach; the same cannot be said for the MRB approach, as this remains an open 

problem.  

(Goncharov, Okten and Shah 2007) use Randomized Quasi-Monte Carlo 

simulations to compute the endogenous mortgage rate.  The equation to solve for the 

endogenous mortgage rate involves the balance of the mortgage as well as the 

prepayment rate, both of which are functions of the mortgage rate.  Thus the equation 

must be solved iteratively.  Using the lowest interest rate possible, one can assume no 

prepayments due to refinancing, so only the mortgage balance involves the mortgage rate.  

This can be solved iteratively.  Higher mortgage rates are functions of all the lower rates, 

so it must be solved iteratively and convergence is assured by the fixed-point theorem. 

Endogenous mortgage rates assume that all prepayments are due to interest rate 

fluctuations.  In reality, prepayments occur for a variety of reasons other than refinancing 
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to obtain a lower interest rate.  The sale of a house due to a job, divorce, marriage, or 

simply the decision to “trade up” or move into a smaller house after the children are 

grown  (to prevent them from moving back in) also results in a prepayment and is 

independent of interest rates.  (Gorovoy and Linetsky 2007) build upon Goncharov’s 

model using an eigenfunction expansion approach and a prepayment rate that is a sum of 

stochastic and deterministic terms.  

2.4.3 Other Models  

Where the exogenous prepayment rate is deterministic in (Gorovoy and Linetsky 

2007), (Kolbe and Zagst 2009) present a stochastic “baseline” prepayment rate which 

follows a two-factor Vasicek model.   The first factor is to introduce uncertainty into the 

general turnover of real estate, while the second factor allows one to observe the 

influence of the GDP growth rate on home sales.   When prepayment rates are plotted 

against the spread between the current mortgage rate and the contracted rate, (Kolbe and 

Zagst 2009) approximate an “S” curve with a constant rate of zero when the spread is 

negative, linearly increasing to a certain threshold when the spread is positive, and 

becoming again constant when the spread is large.  The strength of this model is that the 

baseline (exogenous) prepayment in Kolbe-Zagst is stochastic; this can dependent on 

external factors such as the house price or GDP.  However, this adds complexity to the 

model and makes it more difficult to do sensitivity analysis.  Another weakness of this 

model is that when it reaches its maximum value for low interest rates it remains 

constant.  Observed data show that while prepayments tend to level off somewhat when 

rates drop significantly, they still tend to increase albeit at a smaller rate. 
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Gorovoy and Linetsky’s model also increases linearly when the spread becomes 

positive, but it does not become constant for large spreads.  Empirical data from Freddie 

Mac between 1994 and 2003 clearly fit the “S” curve relationship better than the 

Gorovoy-Linetsky ramp; however, the data exhibit a slight upward trend rather than a 

constant when the spread is large. (See Figure 1.) This suggests enhancing the Gorovoy-

Linetsky model to include a piecewise linear ramp with multiple breakpoints.  

The Capponi heterogeneity model states that the prepayment rate depends upon 

the age of the loan as well as observable and hidden factors that vary from borrower to 

borrower.  The hidden factors are each assumed to follow a probability distribution; these 

include the refinancing cost threshold and awareness of interest rates on the part of the 

borrower.  The observable factors may include LTV (loan to value ratio) of property, or 

the borrower’s credit score.  Calibrating prepayments using this model involves taking 

derivatives of the Kullback-Leibler distance between the observed and theoretical 

prepayment probability distributions with respect to each of the parameters.  The solution 

involves solving an unconstrained non-linear optimization problem.  The problems with 

this model involve its complexity and the difficulty of obtaining and dealing with 

individual loan data, but the prepayment projections can be very accurate even with poor 

parameter estimates. 

Two additional factors in Capponi’s model are burnout and the media effect.  

Burnout is a decrease in the prepayment rate when most financially sophisticated 

borrowers who could have refinanced have already done so.  The remainder of the pool 

refinances at a slower rate.    When interest rates are very low, publicity about low rates, 
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as well as friends and neighbors refinancing tends to influence more people to refinance.  

The media effect thus increases the endogenous prepayment rate. 

Capponi includes both the burnout and the media effects in his prepayment 

model.  In his burnout model, he divides the pool into fast refinancers and slow 

refinancers.  As the fast refinancers leave the pool, the prepayment rate tends toward that 

of the slow refinancers.  In his media effect model, the prepayment rate is a function of a 

weighted average of past mortgage rates to the current rate.  To incorporate these two 

effects into the prepayment rate Capponi generates an S-curve  

 ( )
( )( )

2

1

0                      

B x d
A e x d

S x

x d

− − − ≥
= 
 <  

 

where d is the prepayment threshold and A and B are influenced by the burnout and 

media effects. 

       The strength of Capponi’s S-Curve is that it accounts for the burnout and 

media effects.  Its weakness is that it is not piecewise linear.   This would make it 

difficult to incorporate into the eigenfunction expansion model because the change of 

variable depends upon making the coefficient of the first-order term in the Sturm-

Liouville equation a constant.  That is impossible unless the prepayment function is 

piecewise linear.    

        The Citigroup Paper “Anatomy of a Prepayment” discusses the lock-in effect 

which is the disincentive to move because of increased interest rates.  This means giving 

up a lower interest rate and taking on a higher one because of a move.   This effect tends 

to lower exogenous prepayment rates.  Certain VA and FHA loans are assumable which 

means that the new owner can assume the mortgage of the borrower, so this effect is 
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mitigated in these cases.    Other effects include seasoning and housing inflation.    

During the “bubble”, there were many cash-out refinancings and actual sales as 

homeowners could sell their existing properties at a significant profit and use the 

proceeds to trade up.  Yet the bubble was influenced to a certain degree by interest rates.   

This shows there is some overlap between endogenous and exogenous prepayment rates.     

Since interest rates affect many other economic factors, such as GDP or housing prices, it 

is best to reduce the number of variables in order to avoid collinearity in estimating 

parameters.   This thesis takes the position that interest rates alone are the best way to 

predict prepayment rates.    Instead of trying to model the burnout/media effects 

specifically, we can simply construct a piecewise linear prepayment model from the 

actual prepayment and interest rate data and use the multiple threshold model to show the 

burnout effect indirectly. 
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Chapter 3.  The Continuous-Time Mortgage Model 

Mortgages involve complex mathematical calculations.   We often use 

continuous-time models to approximate the mortgage cash flows.   This simplifies the 

calculations to a certain degree, but we need to avoid loss of accuracy.  Many continuous 

calculations can be very accurate; in fact we will show how the continuous amortization 

function is an extension of discrete amortization used in the industry in much the same 

way that the Gamma function is a continuous analogue of the factorial.    In this section 

we will review the mathematical background of continuous-time mortgages which will 

provide us with a framework upon which to build our new model.     

Pricing of mortgages depends upon three things:   the amortization schedule 

which is usually deterministic, the prepayments which are partly deterministic and partly 

stochastic, and the instantaneous risk-free rates which are stochastic.   Mortgages are debt 

obligations which combine principal and interest payments into a cash flow stream.  The 

debt is extinguished gradually over time unlike bonds which pay only interest until 

maturity.   Since the payments are made at regular intervals, a discrete model is the most 

accurate, but since payments occur frequently over a long time horizon, a continuous 

approximation can also be useful. 

The present value of a series of cash flows is defined as the discounted sum of 

each of the cash flows.  This is the price that one would pay to receive those cash flows.  

From the discrete model for the present value of an annuity 

 
( )1 1

N
i

i
i

CF
PV

r=

=
+

∑  (3.1) 
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we generate the continuous model: 

 
0

T
rt

PV ce dt
−= ∫  (3.2) 

If we are dealing with a pool of mortgages with identical characteristics, i.e. their 

rates and terms are the same, the pool will amortize like a single mortgage before 

prepayments are introduced.     Thus we can use (3.2) to represent a pool of mortgages as 

well.    We next assume that homeowners prepay mortgages.     The previously constant 

payment stream is now a function of time.   The prepayments increase the amount of cash 

being returned, but this is offset by the reduced size of the pool which affects the 

scheduled principal and interest payments.    Furthermore, since interest rates are 

constantly changing, we discount the cash flows by integrating the short rate over time.       

Letting both the continuous cash flow c and the short rate r be time-dependent, we arrive 

at:  

 0

0

s

u
T r du

s
PV c e ds

−∫= ∫  (3.3) 

3.1 Amortization Models 

Amortization schedules can range from a standard 30-year or shorter term fixed-

rate mortgage, to an ARM, (Adjustable-rate Mortgage), IO (Interest Only), GEM 

(Growing Equity Mortgage), GPM (Graduated Payment Mortgage) or Balloon Mortgage.   

Of these only the ARM is not deterministic. 

The simplest mortgage is the fixed-rate amortization model.  The borrower is 

contracted to pay off the balance of the loan at a specific rate for a specific term.  At the 

end of the term, the balance is zero.  Let 0B  be the original balance of the loan and 
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0TB =  is the value at maturity.  The monthly payment consists of interest plus principal.    

We can express this by the following differential equation: 

 
dB

c mB
dt

= −  (3.4) 

where B is the balance of the mortgage, m is the contracted interest rate and c is the 

payment.  The interest equals the rate times the balance, while the principal paid is the 

change in the balance.  Since balance always declines, this change is negative, so we 

subtract it to get a “positive” amount. 

Thus using the boundary conditions, the amount borrowed, ( ) 00B B=  

respectively, we arrive at:  

 ( ) ( )0 1mt mtc
B t B e e

m
= − − , (3.5) 

that is the balance at time t, B(t) is equal to the future value of the original balance, minus 

the future value of all payments made to date.  Using the boundary condition ( ) 0B T =  

we get  

 ( )00 1mT mTc
B e e

m
= − −

.
 (3.6) 

Solving for the coupon rate gives: 

 0

1 mT

B m
c

e
−

=
−

 (3.7) 

We can substitute (3.7) into (3.5) and get the following expression for the 

continuous-time balance:  

 ( )
( )

0

1

1

m T t

mT

e
B t B

e

− −

−

 −
=   − 

 (3.8)  
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Some may question the accuracy of continuous-time models such as (3.7) and 

(3.8) when in fact mortgage payments are made in discrete increments.  However, by 

adjusting the mortgage rate from monthly compounding to continuous compounding, we 

can account for the difference.  Thus letting 
dm  be the nominal mortgage rate, we can 

convert it to the continuous mortgage rate m : 

 12 ln 1
12

dm
m

 
= + 

 
. (3.9) 

Consider a numerical example of a loan with initial amount $100,000, at 6% 

interest, and 30-year term.  The balance after n months in the discrete model is 

determined by the following formula (Hayre, Mohebbi and Zimmerman 1997): 

 0

1 1
12 12

1 1
12

N n

d d

N

d

m m

B B
m

   
+ − +   

   =
 

+ − 
 

 (3.10) 

Substituting B0 = 100,000, .06dm = , T = 30, and t = 10 we obtain         

 
360 120

360

1.005 1.005
100000  $83,685.73

1.005 1
B

−
= × =

−
 (3.11) 

Now from (3.9) let ( )12ln 1.05 0.0598505m = =  which is close to the nominal 

rate of 6%.  Substituting this value into (3.8) gives an identical result to that in(3.11):  

 ( )
.0598505 20

.0598505 30

1
100000 $83,685.73

1

e
B t

e

− ×

− ×

 −
= = 

− 
 (3.12) 

The discrete monthly payment is calculated from the formula  
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( )( )

( )

360

0 360

1
.005 1.00512 12

100000 $599.55
1.005 1

1 1
12

N

d d

d N

d

m m

c B
m

  
+  

  = = × =
− 

+ − 
 

 (3.13) 

In the continuous model, we have a cash flow rather than a discrete payment.   

The cash flow can be calculated from  (3.7) using the continuous mortgage rate from 

(3.9) 

 
.05898505 30

100000 .05898505
$7176.68

1
c

e
− ×

×
= =

−
 (3.14) 

This is an “annualized” rate which we can convert to monthly by integrating its 

continuous future value over the next month: 

 ( )
1 12

12

0
1ms m

d

c
c ce ds e

m
= = −∫  (3.15) 

Substituting into (3.15) we obtain an identical result to (3.13). 

 ( ).058598505 12$7176.68
1 $599.55

.05898505
dc e= − =  (3.16) 

The example above illustrates that the continuous amortization function is not an 

approximation, but rather an extension of the time domain of the amortization function 

from the positive integers to the positive real line.  

3.2  Interest Rate Models 

There are a variety of interest-rate models based on the short rate 
tr .   These short-

rate models can be used to generate the yield curve.  Let , 0tW t ≥  be a Brownian 

motion and let ,  and κ θ σ  be positive constants.   Two particular short-rate models of 

interest which have mean-reverting characteristics are the Vasicek model (linear model): 
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 ( )t t t
dr r dt dWκ θ σ= − +  (3.17) 

and the Cox-Ingersoll-Ross model (non-linear model): 

 ( )t t t tdr r dt r dWκ θ σ= − +  (3.18) 

Both models behave well most of the time, but the Vasicek model may become 

negative when the interest rate approaches zero.  That is because the solution is a normal 

random variable.  The solution of the CIR model is a positive random variable.  

(Gorovoi and Linetsky 2004) address the Vasicek model problem when 

discussing very low Japanese Interest rates where they allow Vasicek to go negative (the 

shadow rate), but they create an “option” which prevents the interest rate from becoming 

negative.  The strike price of the option is zero and the price of the option itself is added 

to the price of the bond.  

The (Cox, Ingersoll and Ross 1985) Model (CIR) appears to be the most popular 

in mortgage finance literature.  Both (Y. Goncharov 2006) and (Gorovoy and Linetsky 

2007) use this particular model.   (Kolbe and Zagst 2009) also use a one-factor CIR as the 

short-rate model.   

The price of a zero coupon bond at time t with maturity T can be calculated using 

the affine model.   See (Shreve 2004) pp. 272-274.  

 ( ) ( ) ( )1 2; , exp , ,
t t

B r t T C t T r C t T= −    (3.19) 

where C₁ and C₂ are deterministic functions.  

Solving for the Vasicek model, we obtain:  

 ( ) ( )
2

1
, 1

T t
C t T e

κ

κ
− − = −   (3.20) 
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 ( ) ( ) ( )
( )

2

2

1 2

,
, ,

4

C t T
C t T T t C t T

σ
θ θ

κ

  = − − +  (3.21) 

For the Cox-Ingersoll-Ross model, define ( ) ( )( )1 2TD T eρρ κ ρ= + − +  where

2 22ρ κ σ= + .  Then substitute the following into(3.19):  

 ( )
( )( )

( )
( )

( )( )
( )

2

1 22

2 12 2
 , ln ,

T t
T t ee

C t T C t T
D T t D T t

ρ
κ ρκθ ρ

σ

−
+ − − 

= =  − − 
 (3.22) 

To price a mortgage with no prepayments, we simply integrate the cash flows 

over time: 

 ( ) ( )0
0

;0, ;0,
T

s
A r T c B r s ds= ∫  (3.23) 

For a fixed-rate mortgage, the cash flows are constant; thus we can treat it as a 

continuous annuity: 

 ( ) ( )0 0
0

;0, ;0,
T

A r T c B r s ds= ∫  (3.24) 

While there is a closed form for ( );0,B r T  (3.24) cannot be solved analytically; 

however, using a method known as eigenfunction expansion as an alternative to numeric 

integration, it can be shown that the bond price can be expressed as an infinite sum: 

 ( ) ( )
0

;0, nT

n n

n

B r T c e r
λ ϕ

∞
−

=

=∑  (3.25) 

for suitable coefficients
nc , eigenvalues 

nλ  and eigenfunctions ( )n
xϕ .  This will 

give the same result as (3.19); however, it can be easily integrated term by term: 

 ( ) ( )
0

1
;0,

nT

n n

n n

e
A r T c c r

λ

ϕ
λ

−∞

=

−
= ∑  (3.26) 
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The formulas for the eigenvalues, eigenfunctions and coefficients for Vasicek and 

CIR are known and easily calculated when no prepayments are involved.  See (Gorovoi 

and Linetsky 2004)  and Appendix C of  (Gorovoy and Linetsky 2007),  

3.3  Prepayment Models 

Borrowers have the right to pay off their mortgages early.  Thus while the total 

principal cash flow is certain, the timing of those cash flows is not.  Also, interest rates 

tend to fluctuate, so a mortgage, along with most other bonds, suffers from interest rate 

risk.  Most mortgages have embedded American call options which permit the borrower 

to pay the mortgage off early.   It is this prepayment characteristic along with the gradual 

return of principal which differentiates mortgages from other fixed-income investments. 

3.3.1  Exogenous Model 

The mortgage industry uses two deterministic prepayment models, CPR (Constant 

Prepayment Rate) and PSA (Public Securities Administration).   For simplicity we will 

start with the CPR model.  When prepayments are involved, there are three cash flows:  

Scheduled Principal, Interest and Prepayments.  The balance decreases each month by the 

scheduled principal plus interest.  Taking the example in the previous section, let’s see 

what happens if 8% of mortgages prepay each year.  We convert CPR to single monthly 

mortality SMM which is: 

 ( )
1 12

1 1SMM CPR= − −  (3.27) 

Thus for 8% CPR the single month mortality is:  

 ( )
1 12

1 1 .08 .00692438− − =  (3.28) 
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The discrete remaining balance can be described as:  

 ( )1
ˆ ˆ ˆ 1

n

n n n n n
B B P PR B SMM−= − − = −  (3.29) 

Thus the balance including prepayments in the discrete case is: 

 ( )
120

$83, 685.73 1 .006924 $36,352.11− =  (3.30) 

The following chart shows all the conversions that are necessary in converting 

from the discrete to the continuous model: 
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 
= + 

 

= + = +

= − −

×    
= = × × +   

−    

=

=

=

= onthly Payment

Cash FlowYield or MortgageYield(%)

Bond Equivalent Yield(%)

CFY

BEY







 =


=

 (3.31) 

The continuous prepayment rate can be described as a hazard rate.  To convert 

from the discrete rate to the hazard rate we use the following transformation: 

 ( )ln 1 CPRγ = − −  (3.32) 

For CPR = 8%, the hazard rate is: 

 ( )ln 1 .08 0.08338160894γ = − − =  (3.33) 

The balance with prepayments after t = 10 years (120 months) is: 
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 ( ) ( ) 0.08338160894 10ˆ $83,685.73 $36,352.11t
B t B t e e

γ− − ×= = =  (3.34) 

With a no-prepayment fixed-rate mortgage the monthly cash flows are constant.  

However, with prepayments, the monthly cash flows change over time.  There are three 

sets of cash flows:  scheduled principal, interest and prepayments.  Each of these has a 

discrete and continuous model.  The discrete formulas are from (Hayre, Mohebbi and 

Zimmerman 1997). The nominal interest rate is expressed as percentage so it must be 

divided by 100; to convert it to a monthly effective rate; we further divide it by 12.   

The scheduled principal for the next period (month 121) is: 

 
1 240

ˆ
36352.11 0.0051200ˆ $78.68

1.005
1 1

1200

n

n N n

G
B

P
G

+ −

 
  × = = =

 
+ − 

 

 (3.35) 

The interest for the next period is: 

 
1

ˆ ˆ 36352.724 0.005 $181.76
1200

n n

G
I B+

 
= = × = 

 
 (3.36) 

The expected prepayment for the next period is: 

 ( ) ( )1 1
ˆ ˆ 0.006924 36352.11 78.12 $251.16

n n n
PR SMM B P SMM+ += − = × − =  (3.37) 

The scheduled payment is the sum of scheduled principal plus interest. 

The scheduled payment for the next period is: 

 1 1 1
ˆ ˆ ˆ 78.68 181.76 $260.44n n nM P I+ + += + = + =  (3.38) 

An alternative calculation is: 

 ( ) ( )
120

1 1 $599.55 1 .006924 $260.43
n

n
M M SMM+ = − = − =  (3.39) 

The difference between (3.38) and (3.39) is due to round off error.  



26 

 

Now let’s look at the continuous equivalents.  The continuous prepayment cash 

flow is:   

 ( ) ( )
1 12t

s

t
PR t B s e ds

γγ
+

−= ∫  (3.40) 

After performing the integration we obtain 

 ( ) ( )
( ) ( )( )12

120
1

1
1

mT m t m

t

mT

e eB
PR t e e

e m

γ γ

γ γ
γ

γ

− + − −

−

−

 −
 = − +
 − −
 

 (3.41) 

Applying this model to our data yields: 

( ) ( )
( )1.7955 2.353 0.08338 12

0.8338 0.08338 12

1.7955

0.05985 0.08338 0.2353

0.05985 30 1.7955

1100,000
10 1 $251.44

1 0.2353

mT

e e
PR e e

e

µ γ

γ − − −

−

−

− = − = −

= × =

 −
 = − − =

−   

(3.42) 

Notice that (3.42) is very close to(3.37). 

Now let’s look at the continuous scheduled payment stream.  We integrate the 

continuous scheduled payment stream model for one month from t to t + 1/12:  

 ( ) ( )

( )( )12

1 12 1
mt

t m s ts

t

ce e
M t ce e ds

m

γγ

γ

γ

−−
+ −−

−
= =

−∫  (3.43) 
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1

$7176.68 1
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0.2353

mt
ce e

M t
m

e e

γγ

γ

−−

− × −

−
=

−

× −
= =

−

 (3.44) 

Compare (3.44) to(3.39).   

Prepayments can occur for one of three reasons:  sale of the property, refinancing 

and curtailments (excess payments).  The prepayment model for pricing a single 
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mortgage uses the stopping-time τ  which is a random variable indicating the time of 

prepayment, and the algebra tσ − G , which contains all the information available to the 

investor at time t.  The price of a mortgage 
tM  is the conditional expectation of the 

present value of the coupon payments up to τ  plus the present value of the balance of the 

mortgage at that time.  

Throughout this dissertation we will make use of the Iverson bracket notation, 

named for Kenneth E. Iverson, the Harvard mathematician who invented the computer 

language APL.  Let P be any proposition.  The expression [P]=1 if P is true and [P]=0 if 

P is false.  Thus [t≤T] is equivalent to { }t T≤
1 . Note that there is no ambiguity with other 

traditional uses of square brackets. 

 In continuous time the price can be expressed as: 

 [ ]
s

u u
t t

T r du r du

t s t
t

M E c e ds t T Z e

τ
τ

ττ
∧ − − ∫ ∫= + < ≤ 

 
∫ G  (3.45) 

where Zτ  is the value of a defaultable claim at the stopping time τ (Y. Goncharov 2006) . 

3.3.2  Endogenous Model 

We can restate (3.45) using the intensity process 
th  and the reduced σ-algebra  

  

tF  which represents all the information available to the investor prior to time t.  See (Y. 

Goncharov 2006) and (Bielecki and Rutkowski 2002). 

 [ ] ( )
s

u u
t

T r h du

t s s s t
t

M t E c Z e dsτ γ
− + ∫= > + 

 
∫ F  (3.46) 
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The price of a mortgage in (3.46) can now be expressed as the conditional 

expectation of the scheduled payments plus prepayments.  Note that the value of the 

mortgage is zero after the stopping time.  This model can also be applied to a pool of 

identical mortgages if we remove the bracketed expression[ ]tτ >  from(3.46).  In the case 

of a mortgage pool, the coupon payments will decay at the prepayment rate as a 

proportion of mortgages are paid off each period.  The total balance of the remaining 

mortgages will also decay at this rate.  This results in the discounting of cash flows by 

both interest and prepayment rates. 

Through integration by parts and some algebraic manipulation (see Appendix C 

or (Y. Goncharov 2006)) we can rewrite (3.46) as the sum of the mortgage balance plus 

the value of an interest-rate swap noting that the defaultable claim is the value of the 

mortgage at the time of prepayment. 

 ( ) ( ) ( )
s

u u
t

T h r du

t s t
t

M B t E m r B s e ds
− + ∫= + − 

 
∫ F  (3.47) 

At time zero, the value of the mortgage should be exactly the same as the original 

balance to prevent arbitrage.  Thus, the swap should be initially valued at zero: 

 ( ) ( ) 0

0
0

0

s

u u
T h r du

sE m r B s e dsr x
− + ∫− = = 

 
∫  (3.48) 

We can solve (3.48) for the mortgage rate: 

 

( )

( )

0

0

0
0

0
0

s

u u

s
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T h r du

s

T h r du

E r B s e ds r x

m

E B s e ds r x

− +

− +

 ∫ = 
 =
 ∫ = 
 

∫

∫

 (3.49) 
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Unfortunately, the mortgage rate is embedded in B(t) as defined in(3.8). It can 

also be embedded in the prepayment rate
th .  Goncharov uses an iterative approach in his 

earlier paper (Y. Goncharov 2006), starting with an initial guess for 0m and iterating until 

the sequence converges.  The problem is that this only works when the prepayment rate is 

independent of the mortgage rate which only exists for the lowest possible value for the 

interest rate. In this case there would be no reason to refinance. 

(Goncharov 2009) finds a non-iterative approach.  Instead of finding the mortgage 

rate for a given interest rate, he fixes a mortgage rate value and tries to find the interest 

rate to which it corresponds. 

(Goncharov 2009) makes the assumption that prepayments due to sale of property 

is constant and that the difference between the current and contract rates influences the 

refinancing rate.  However, this model can be solved in a reasonable amount of time only 

when the prepayment rate is constant whenever the refinancing incentive is above a 

certain threshold.  Goncharov uses a very simple prepayment of the form: 

 ( ) ( )0 1 0

t

t
h m h h h m m δ = + − > +   (3.50) 

where 0 1 and h h  are constants, m is the mortgage rate and δ represents the transaction 

costs.  The difficulty with the Goncharov model is that tm , the fixed mortgage rate for a 

loan originated at time t, has to be calculated iteratively.  Also, the prepayment rate in 

this model does not vary with the magnitude of the difference between the current and 

contracted mortgages rates, it is only one of two specific values, h₀ or h₁ depending upon 

whether the new mortgage rate is above or below the refinancing threshold. 
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3.3.3 Combining Exogenous and Endogenous Prepayment Models 

Gorovoy and Linetsky start with equation (3.49) and turn it inside out by moving the 

conditional expectation inside the integral and pulling out everything deterministic. 

Substitute B (t) and then use the properties of conditional expectation to arrive at: 

 

( )( )

( )( )

0

0

0
0

0
0

1

1

s

u u

s

u u

T h r dum T s

s

T h r dum T s

e E r e r x ds

m

e E e r x ds

− +− −

− +− −

 ∫− = 
 =
 ∫− = 
 

∫

∫

 (3.51) 

(Gorovoy and Linetsky 2007) simplify Goncharov’s model by using the fact that 

the short rate moves up and down with the mortgage rate, so they incorporate the short 

rate into the prepayment model instead of the mortgage rate.    This eliminates calculating 

the mortgage rate iteratively, simplifying the model at a cost of slight inaccuracy.  The 

Gororoy-Linetsky prepayment model has a deterministic part and a stochastic part: 

 ( ) ( ) ( )0,
t t t

h h t r h t k rγ
+

= = + − . (3.52) 

The parameter γ  in (3.52) represents the sensitivity of the model to the spread, 

which was not present in the Goncharov model.  The deterministic component ( )0h t  in 

(3.52) represents the exogenous prepayment rate which can be either CPR (constant 

prepayment rate) or the industry standard PSA (Public Securities Administration Model ) 

(The Bond Market Association 1999) which increases linearly with time up to 2-1/2 

years, becoming constant thereafter. 

Gorovoy and Linetsky define the following functions: 

 ( )
( ) ( ) ( )0

,

u u u

s s s s
t t t

h r ds h s ds r k r ds

t tQ t u E e r x e E e r x
γ

+
− + − − + −   ∫ ∫ ∫= = = =   

   
 (3.53) 
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 ( )
( ) ( )0

,

u u u

s s s s
t t t

h r ds h s ds r k r ds

u t u tR t u E r e r x e E r e r x
γ

+
− + − − + −   ∫ ∫ ∫= = = =   

   
 (3.54) 

This allows us to rewrite (3.51) as  

 

( )( ) ( )
( )( ) ( )

0

0

1 0,

1 0,

T m T u

T m T u

e R u du
m

e Q u du

− −

− −

−
=

−

∫

∫
 (3.55) 

reducing the problem to calculating  (3.53) and(3.54) and solving for m implicitly. 

3.3.4 Curtailments and Defaults  

Curtailments are merely prepayments that occur before the mortgage is paid off 

completely. They fall under the category of endogenous prepayments since they do not 

involve the sale of the property.   This means curtailments are sensitive to interest rate 

fluctuations.   A borrower may opt to make an extra payment each month to pay off the 

mortgage faster.  Curtailments represent a small portion of the total prepayments.  

According to Citigroup, they typically are less than 0.5% CPR which is about the same as 

the default rate.  They tend to increase for loans with a small balances and remaining 

terms.  Refinancings tend to decrease for mature loans because the closing costs would 

exceed the aggregate savings in interest payments.   For example, no one would refinance 

a mortgage with less than a year to go because the closing costs would be higher than the 

savings in interest payments.  Goncharov’s model, using the refinancing incentive, would 

show that prepayments would drop off as the mortgage approaches maturity for this 

reason.  But the Gorovoy-Linetsky model depends only upon the short rate, not on the 

maturity.  A borrower might make extra payments each month to retire the mortgage 

earlier, particularly if interest rates have dropped.  The increase in curtailments should 
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offset the decrease in refinancing.  Borrowers can avoid closing costs by simply making 

extra payments each month.  Curtailments are included in the calculation of the 

prepayment rate, so they are automatically included in the valuation of the mortgage. 

Curtailments are partial prepayments and consequently do not result in 

termination of the mortgage. (Lin and Yang 2005) observe that while curtailments 

represent a small part of the prepayment rate particularly in the West, it is approximately 

equal to the default rate.  (Lin, et al. 2005) examine the relationship between mortgage 

curtailment and default.   Their research shows that cumulative curtailments are the most 

significant factor in predicting defaults in Asian countries. 

Defaults can be considered prepayments which pay off a proportion of the 

remaining balance of the loan.  When a mortgage defaults, the borrower stops paying and 

the property goes into foreclosure.  After remaining in foreclosure for a period (usually 

less than a year), the property is sold, often at a loss.  (Dunsky and Ho 2007) look at 

defaults in a discrete setting. (Kelly 2009) examines the effect of zero down payments on 

the default rate.  

(Deng, Quigley and Order, Mortgage Terminations, Heterogeneity and the 

Exercise of Mortgage Options 2000) made some of the first attempts to study defaults 

and prepayments together with their correlation, using a competing-risks model.  More 

recently, (Clapp, Deng and An 2006)  look at an alternative approach to estimating the 

competing-risks model.  The model in (Gorovoy and Linetsky 2007) looks only at 

prepayments, but it is easily adaptable to include defaults as we will demonstrate later.  

Our model includes the loss premium based on the loss severity applied to the 

default rate.  During the housing bubble, the loss severity would have been lower because 
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as housing prices increased, a foreclosed home would have brought a higher price when it 

was sold.  The recent decline in housing prices increases the loss severity.  Adding the 

loss premium to the mortgage rate would decrease the amount of money that could be 

lent to potential borrowers, forcing them to forego the “McMansions” and purchase more 

modestly priced homes or wait several years to save up for the down payment.  By 

incorporating sensitivity analysis, our model allows one to observe how robust mortgage 

rates are to changes in loss severity.  

Before 2008, the risk of default was smaller because housing prices increased 

rapidly according to the Case-Schiller Index.  Agency Mortgages such as those issued by 

Fannie Mae and Freddie Mac are backed up by these quasi-government agencies--in the 

event of default, the loss is taken by Fannie Mae or Freddie Mac who pay the balance to 

the bondholders.  Thus the investors in Agency Mortgage-Backed securities were 

previously concerned only with prepayment and interest rate risk, but did not worry about 

default risk.  The solvency of Fannie and Freddie were not of concern because of their 

perceived government backing.  As we know these agencies were not solvent; but the 

government did eventually bail them out by providing cash, thus sparing the bondholders. 

The Community Reinvestment Act of 1977 while well-intentioned had the unintended 

consequence of encouraging banks to issue sub-prime loans to poor and low-income 

people.  When home prices dropped, many of these loans went into foreclosure. 

Another problem is that lenders do not hold mortgages until maturity; rather they 

sell them to agencies such as Fannie and Freddie who package them into Mortgage-

Backed Securities (MBS) and sell them to investors.  Banks want to issue loans to make 

money; their only incentive not to do so is the fear of losing the principal.  But since this 
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loss is absorbed by Fannie and Freddie (or the bond holders for non-Agency mortgages) 

the banks have no incentive not to lend.  According to (Wallison 2011) in a Wall Street 

Journal editorial:  “…thanks to rules adopted in 1995 under the Community 

Reinvestment Act, regulated banks as well as savings and loan associations had to make a 

certain number of loans to borrowers who were at or below 80% of the median income in 

the areas they served.”  In addition to the rate charged for a mortgage, the eligibility 

requirements need to be examined.  Minimum down payments should be required so that 

borrowers have a stake.  (Sowell 2009) states that creative financing gimmicks, such as 

no down payment, ARMS, or interest-only loans contributed to problems in the housing 

market.  Borrowers suffer only a bad credit rating if they make no down payment.  A 

higher interest rate would reduce the amount one can borrow, which may compel a 

borrower to come up with a down payment for a particular house; requiring a down 

payment would provide a cushion to the lender and thus reduce the severity rate.  Thus, 

the probability of higher severity rates would be much lower in the sensitivity analysis of 

mortgages that had 20% down payments.  (Kelly 2009) addresses this problem. 

In manufacturing, quality engineers use control charts to determine whether to 

tinker with a process.  This is discouraged unless the process falls outside pre-determined 

control limits because a change in the process may only be due to sampling error.  In a 

similar fashion, the Federal Reserve observes economic data and sets overnight rates 

which indirectly influence mortgage rates.  The Fed Funds rate dropped from over 5% in 

August 2007 down to 2% in August 2008 right before the economic meltdown.  Should 

rates have been left alone? 
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According to (Wessel 2010) in the Wall Street Journal, Ben Bernanke claimed 

recently that the Fed’s monetary policy of keeping interest rates low during the early part 

of the decade didn’t have a significant effect on the housing bubble that followed based 

on the equations he used.    But the article claims that the equations failed to predict the 

bubble.   Keeping rates low forced investors to seek higher yields and MBS backed by 

subprime loans satisfied much of the demand.     While the model presented here does not 

predict housing bubbles, its use of sensitivity analysis can show how robust mortgage 

rates are to differing economic conditions.  
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Chapter 4.  Solutions to the Model 

The uncertainty inherent in mortgage finance is primarily due to interest rate 

fluctuations.  These affect both the discounting and the prepayment rates.  In this section 

we will start with an arbitrary interest rate model and apply the eigenfunction expansion 

approach (Gorovoy and Linetsky 2007) to produce a general model.  Next we will show 

how this model can be reduced to Cox Ingersoll Ross, and then use it to generate the 

Vasicek model.  We also show another way to calculate the normalization constant using 

an integral rather than the differential approach used by Gorovoy and Linetsky. 

4.1 The Basic Model 

Option pricing theory states that the price of a payoff at some time t in the future 

which is contingent on the state of a process at time t can be seen as a risk-neutral 

expectation of a discounted payoff.  Let us define the operator 

 ( ) ( )
( )

( )0

0

t

ur X du

t tf x E e f r X x
− ∫= = 

 
P  (4.1) 

 

where 
tX  represents a Markov process and ( )t

f X  is the value of the payoff at time t.  

Equation (4.1) is a general form for calculating (3.53) and (3.54) which we will need to 

solve(3.55).  Since uncertainty is present in the interest rate as well as in the payoff, 

simulating  with a finite number of sample paths is the traditional method of 

calculating the price.  As an alternative, (Linetsky 2004) uses the infinitesimal generator 

of the pricing semigroup.  The definition is: 

tX
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 ( )( ) ( )( ){ } ( ) 0
0

exp
t

t s s tf x E r k r ds f r r xγ
+ 

= − + − =  ∫P  (4.2) 

 We can show that  { }| 0
t

t ≥P  is a semigroup according to the definition set forth in 

(Rudin 1973).  The infinitesimal generator of a Markov process 
tX  is defined as  

 ( )( )
( ) ( )0

0
lim

t

t

E f X X x f x
f x

t→

 = − =G  (4.3) 

4.1.1 The Infinitesimal Generator 

The Spectral Theorem for Self-Adjoint Compact Operators, Theorem 1.10.2  p. 

190  (Debnath and Mukusinski 1999) proves there exists an orthonormal basis of a 

Hilbert space H  consisting of the eigenvectors such that for any f ∈H  

 ( ) ( ) ( )
1

,n n n

n

f x f xλ ϕ ϕ
∞

=

= −∑G . (4.4) 

where 
nλ are eigenvalues and 

nϕ are eigenvectors. 

Using the eigenvalues and eigenfunctions from the infinitesimal generator we can 

write: 

 ( )( ) ( )
1

nt f

t n n

n

f x e c x
λ ϕ

∞
−

=

=∑P  (4.5) 

where ,f

n n
c f ϕ= .  We now have a method to discount a claim f(x) with respect to a 

stochastic short rate using an infinite sum.   

We will start with a general Markov model for the interest rate: 

 ( ) ( ), ,
t t t t

dr r t dt r t dWµ σ= +  (4.6) 
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From the Discounted Feynman-Kac Theorem (Theorem 6.4.3 p. 269-270 in 

(Shreve 2004), we can show that the price of a claim ( ),f t x  satisfies the following 

partial differential equation: 

 ( ) ( ) ( ) ( ) ( )21
2

, , , , ,
t x xx

f t x t x f t x t x f rf t xµ σ+ + =  (4.7) 

This can be decomposed into its time (t) and space (x) components; we can 

capture the space component (interest rate) using the infinitesimal generator.  Appendix 

A shows how to derive the infinitesimal generator from the definition in (Rudin 1973).   

 ( ) ( ) ( ) ( ) ( ) ( )f x f x f x x k xγ
+ = − + −

 
G D  (4.8) 

Since 
tr  is stochastic, we must use Ito calculus to expand the first term of (4.8) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
21

2
f x x f x x f x f x x k xσ µ γ

+ ′′ ′= + − + −
 

G  (4.9) 

In the eigenfunction expansion method we need to find all f’s   and λ ’s which 

satisfy the following equation:  

 ( )( ) ( )f x f xλ= −G  (4.10) 

 (Gorovoy and Linetsky 2007) show that if the eigenvalues of G are 
nλ−  then the 

eigenfunctions are the same and the corresponding eigenvalues of 
tP  are nt

e
λ− .  Thus 

solving for the eigenfunctions and eigenvalues of the infinitesimal generator will also 

find them for the semigroup operators.  Rewriting (4.10) as a Sturm-Liouville differential 

equation yields 

 
( )

( )
( )

( )( ) ( )
1

0
f x

x k x f x
x x

γ λ
+

′ ′
− + − − =  

 m s

 (4.11) 
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where the scale s(x) and speed m(x)
 
densities are defined as follows:  

 ( ) ( )
( )
( )

( )
( ) ( )2 2

2 2
exp

x y
x x dy x

y x x

µ

σ σ

 
= − = 

 
∫m s m

s

 (4.12) 

Since the coefficient of ( )f x in (4.11) is piecewise linear, we can rewrite it in the 

following form:  

 
( )

( )
( )

( )( ) ( ) [ ]
1

1 0;
k k k

f x
x k f x x k

x x
γ γ λ γ γ

′ ′
− − + − = = <  

 m s

 (4.13) 

Thus when x k≥  (4.13) simplifies to  

 
( )

( )
( )

( ) ( )
1

0
f x

x f x
x x

λ
′ ′
− − =  

 m s

 (4.14) 

It is known through Sturm-Liouville theory that the values of λ  in (4.13) are 

positive and real and that the eigenfunctions are orthogonal. See (Al-Gwaiz 2008) .   Two 

vectors are orthogonal when their inner product is zero; the inner product of two 

functions f and g in a Hilbert space H is defined as:  

 ( ) ( ) ( ),
r

l
f g f x g x x dx= ∫ m  (4.15) 

where ( )xm  is the speed density defined in(4.12).  We will let { }
1i i

ϕ
∞

=
 denote a set 

of orthonormal eigenfunctions in H.  The domain of the Sturm-Liouville operator  G  is  

( )( ) ( ){ }loc 1 2 1 2: , , , ,  ,  f f f AC e e f I e e′∈ ∈ ∈ =H G H  where ( )locAC I  is the space of 

functions absolutely continuous over compact subintervals of I.  The boundary conditions 

at 1 2 and e e  are:  
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( )
( )

( )
( )1 2

lim 0, lim 0
x e x e

f x f x

x x→ →

′ ′
= =

s s

 (4.16) 

See (Gorovoi and Linetsky 2004) p. 55 and (Gorovoy and Linetsky 2007) p. 553.  

Equation (4.10) shows G is a non-positive operator in H and furthermore G is self-adjoint.  

Its spectral representation is of interest because of its relation to the semigroup operators.  

4.1.2 Change of Variable 

To calculate the eigenfunctions of G we need to solve(4.13).    Depending on the 

interest rate model, we can perform a change of variable on both x and ( )f x  to get (4.13) 

into the form of a second-order differential equation with known solutions.   The 

independent variable x usually undergoes a linear transformation   0 1z xβ β= +  for some 

constants
iβ ; we change the dependent variable f(x) with an exponential multiplier as 

follows: 

 ( ) ( ) ( )g z
f x e u z=  (4.17)  

Table 1 on page 41 summarizes finding the solution to(4.13).  The Vasicek 

infintesimal generator transforms to the stationary Schrodinger equation whose solutions 

are the Parabolic Cylinder Functions while the CIR infinitesimal generator transforms to 

the Confluent Hypergeometric equation whose solutions are the Confluent 

Hypergeometric Functions.  See Appendix B.  
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Model  Vasicek Cox-Ingersoll-Ross 

Equation ( )t t t
dr dW r dtσ κ θ= + −  ( )t t t tdr r dW r dtσ κ θ= + −  

( )xµ  ( )xκ θ −  ( )xκ θ −  

( )xσ  σ  xσ  

( )xm  
( )

2

2
exp

xκ θ

σ

 −
 
  

 
1

2 2

2 2
exp

x
x

β κ

σ σ
−  

− 
 

 

( )xs  
( )

2

2 2

2
exp

xκ θ

σ σ

 −
− 
  

 
2

2
exp

x
x

β κ

σ
−  

 
 

 

Independent 
Variable ( )

2
z x

κ
θ

σ
= −  iz xα=  

Dependent 
Variable 

( ) ( )
2 4zf x e u z=  ( )

( )
( )2

exp i

i

z
f x u z

a

κ ρ

σ

− 
=  

 
 

Differential 
Equation 

( )( )
( )

( )
2

2
1 1
2 4

3

1
4

0

1 2

1

u z u

k

k k

γ γ

γ

γ γ

µ α

α σ γ

µ α γ θ γ λ

′′ + + − − =

= −

= − − + −  

 

( )

( )
2

0

2
i

i

zu b z u au

k k
a a b

λ γ θ

ρ σ

′′ ′− − − =

−
= − =  

  
 

Solutions Parabolic Cylinder Confluent Hypergeometric 

u₁(z) 

( ) ( )

( )

( )

( )

21 1
2 4

21 1
2 4

21 1 1
2 2 2

1

23 1
2 2

;

2
, ,

1

2

2 1
, ,

2 2

x

x

D z a D x

e
M x

xe
M x

µ µ

µ

µ

π
µ

µ

π µ

µ

−

+ −

− =

− −
− 

Γ  
 

− 
 

Γ −  

 

See (Abramowitz and Stegun 1972) 
 19.3.1 p. 687 and 19.12.3 p. 691 

( )
( )
( )0

, ,
!

n

n

n n

a z
M a b z

b n

∞

=

=∑  

See (Abramowitz and Stegun 
1972) 13.1.2 p. 504 

u₂(z) 

( )
( ){

( ) ( ) }1
2

sin

D z a

D a z

µ

µ

µ

π

π µ

Γ −
− −

 − + 

 

 
See (Abramowitz and Stegun 1972)  
19.3.8 p. 687 

( )
( )

( )
( )

( )
( )

( )1

1
, , , ,

1

1
1 , 2 ,b

b
U a b z M a b z

a b

b
z M a b b z

a

−

Γ −
=

Γ + −

Γ −
+ + − −

Γ

See (Slater 1960) p. 5 

Table 1 – Eigenfunctions for Vasicek and Cox-Ingersoll Ross Interest Rate Models 
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4.1.3 Continuity and Differentiability 

In our model we have a breakpoint k above which there are no endogenous 

prepayments.  We have to ensure that the eigenfunctions are both continuous and 

differentiable across the breakpoint.  Thus if ( )xλψ  is a solution to (4.14) and ( )xλφ  is a 

solution to (4.13) for the eigenvalue λ  then we must have ( ) ( ) 0A k B kλ λ λ λψ φ− = and

( ) ( ) 0A k B kλ λψ φ′ ′− = .  We can write this in matrix form:   

 
( ) ( )
( ) ( )
k k A

k k B

λ λ λ

λ λ λ

ψ φ

ψ φ

−   
=   ′ ′−   

0  (4.18) 

 If   and A Bλ λ  are both zero, all ( ) 0
n

x A Bλ λ λ λϕ ψ φ= + = , thus 

( ) ( )
2

1

2

, 0
e

e
x x dxϕ ϕ ϕ ϕ= = =∫ m  which cannot be true because the norm must be 1.  

Therefore the determinant of the matrix   in (4.18) is zero. Using row operations, we have 

the matrix’s echelon form:  

 
( ) ( )

( ) ( ) ( ) ( )
1

0
0

k k

k k k k

λ λ

λ λ λ λ

φ ψ

ψ φ φ ψ

−
=

′ ′−
 (4.19) 

That is 

 ( ) ( ) ( ) ( ) 0k k k kλ λ λ λψ φ φ ψ′ ′− =  (4.20) 

Finding the zeroes of (4.20)  will determine the eigenvalues.  The equation has 

countably many 'snλ . We now have all we need to calculate the solutions  and 

 for each
nλ .

 
 

( )xλψ

( )xλφ
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In order for the continuity factor to hold, we must have
( )
( )

n

n n

n

k
A B

k

φ

ψ
= .    

Rewriting  and n nA B  in terms of a third parameter
n∆  yields: 

 
( )

( )
( )
( )

 and n n

n n

n n n n

k k
A B

k k

φ ψ

ψ φ
= =

∆ ∆
 (4.21) 

Now in order to normalize the eigenfunctions
2

, 1
n n n

ϕ ϕ ϕ= = : 

( )
( )

( ) ( )
( )
( )

( ) ( )2 2

0
1 ,

k
n n

n n n n
k

n n n n

k k
x x dx x x dx

k k

φ ψ
ϕ ϕ ψ φ

ψ φ

∞

= = +
∆ ∆∫ ∫m m  

Solving for
n∆ , we obtain the following formula for the normalization constant:  

 
( )
( )

( ) ( )
( )
( )

( ) ( )2 2

0

k
n n

n n n
k

n n

k k
x x dx x x dx

k k

φ ψ
ψ φ

ψ φ

∞

∆ = +∫ ∫m m  (4.22) 

Now we can defined the normalized eigenfunctions as: 

 ( )

( )
( )

( ) ( ]
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( )
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n
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k

λ

λ

λ

λ

λ

λ

φ
ψ

ψ
ϕ

ψ
φ

φ


 ∈

∆
= 


∈
∆

 (4.23) 

where  
n∆  is defined in(4.22).   Another solution for 

n∆  is  (Stackgold 1998) p. 441)  

 
( ) ( ) ( ) ( )

( )
n

n

k k k kd

d k

λ λ λ λ

λ λ

ψ φ φ ψ

λ
=

 ′ ′−
∆ =  

 s

 (4.24) 

Either (4.22) or (4.24) may be used to calculate
n∆ .  Integrals may be easier to 

calculate numerically than derivatives; however, Mathematica gives the same results for 

both formulas. 



44 

 

Finally, we need to calculate the expansion coefficients on the interval [ ]1 2,e e  

 ( ) ( ) ( )
2

1

,
e

f

n n
e

c f f x x x dxϕ ϕ= = ∫ m  (4.25) 

where f(x) is the payoff function.    

 ( ) ( )( ) ( )0

0 0
0

0, exp

s

u u
sh r du

t QQ s E e r x h u du f x
− + ∫= = = − 

 
∫ P  (4.26) 

 ( ) ( )( ) ( )0

0 0
0

0, exp

s

u u
sh r du

s t RR s E r e r x h u du f x
− + ∫= = = − 

 
∫ P  (4.27) 

In equation (4.26) the payoff function ( ) 1
Q

f x = ; in (4.27) , the payoff function

( )R
f x x= .   

If ( )
n

kλψ  and ( )
n

kλφ have opposite signs, the function ( )n
xϕ will not be 

continuous at k.  We can compensate for this by changing the sign of either function.    

This may result in changing the sign of the normalized eigenfunction.   Observe the 

following:  

 , , f

n n n
f f cϕ ϕ− = − = −  (4.28) 

Thus it doesn’t matter whether we change the sign of the eigenfunctions because 

this causes a corresponding change in the expansion coefficients.  Since each term in 

(4.5)involves the product of these two factors, the effect is cancelled.  

Now to calculate the expansion coefficients for Q (t,u) we can break (4.25) into 

two pieces on either side of the threshold k: 

 
( )

( )
( ) ( )

( )
( )

( ) ( )
2

1

n n

n n

n n

k e
Q

n
e k

n n

k k
c x x dx x x dx

k k

λ λ

λ λ

λ λ

φ ψ
ψ φ

ψ φ
= +

∆ ∆∫ ∫m m  (4.29) 
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 and similarly for R(t,u):  

 
( )

( )
( ) ( )

( )
( )

( ) ( )
2

1

n n

n n

n n

k e
R

n
e k

n n

k k
c x x x dx x x x dx

k k

λ λ

λ λ

λ λ

φ ψ
ψ φ

ψ φ
= +

∆ ∆∫ ∫m m  (4.30) 

Thus using Gorovoy and Linetsky’s eigenvalue expansion technique we calculate 

four sets of values for each eigenvalue problem determined by f:   the eigenvalues 

themselves, the corresponding normalized eigenfunctions 
nϕ evaluated at 0r , the 

expansion coefficients Q

n
c  and the expansion coefficients R

n
c .  Although there are an 

infinite number of eigenvalues, the terms nt
e

λ−  approach zero rapidly as the eigenvalues 

increase.  The finite sum in (4.5) is a good approximation.   

4.1.4 Time Integrals 

(Gorovoy and Linetsky 2007) make use of time integrals to solve for the 

mortgage rate (see Sections 5.2 and 5.3). 

Substituting (4.26) and (4.27) into (3.55) and using (4.5) gives:  

 

( )( ) ( )
( )

( )( ) ( )
( )

0

0

0
1

0
1

1 e

1 e

u

n

u

n

T h s dsm T u u R

n n

n

T h s dsm T u u Q

n n

n

e e c x du

m

e e c x du

λ

λ

ϕ

ϕ

∞
−− − −

=

∞
−− − −

=

 ∫−  
 =
 ∫−  
 

∑∫

∑∫
 (4.31) 

Define the following time integral: 

 ( ) ( )( ) ( )( ), ; , 1 exp
T u

m T u

t t
L t T m e h s ds u duλ λ− −

= − − −∫ ∫  (4.32) 

For a constant (exogenous) prepayment rate h, this can be written as:  

 ( )
( )( )( ) ( ) ( )( )

( )( )

1 1
, ; ,

h T t m T t
m e h e

L t T m
h m h

λ λ
λ

λ λ

− + − − −
− − + −

=
+ − −

 (4.33) 
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A closed-form time integral is also available for a piecewise-linear exogenous 

prepayment rate.  Using (4.32) and interchanging the infinite sums with the integrals we 

can reformulate (4.31) as:   

 
( ) ( )

( ) ( )
1

1

0, ; ,

0, ; ,

R

n n nn

Q

n n nn

L T m c x
m

L T m c x

λ ϕ

λ ϕ

∞

=
∞

=

=
∑
∑

. (4.34) 

Rearranging terms gives us a non-linear homogeneous equation:  

 ( ) ( ) ( )0

1

0, ; , 0Q R

n n n n

n

r mc c L T mϕ λ
∞

=

 − = ∑ . (4.35) 

To obtain the mortgage rate, solve equation (4.35)  iteratively by Newton’s 

method using the closed-form solution for the time integral in (4.33). 

Seasoned mortgages and pools can be priced by solving the following equation by 

(Gorovoy and Linetsky 2007):  

 

( ) ( ) ( )

( )

0

1

, ; ,

1
1

Q R

n n n n

n
t t m T t

r mc c L t T m

M P
e

ϕ λ
∞

=

− −

  −   
= + 

− 
  

∑
 (4.36) 

The eigenvalues, eigenfunctions and expansion coefficients are available from the 

solution to the differential equation and the initial short rate r₀ and (T-t) is equivalent to 

the WAM (Weighted Average Maturity).  The net coupon will be assigned to the 

mortgage rate m, and
tP , the balance on the mortgage pool at time t will be given the par 

value of $100 as this is how mortgage pools are priced in the industry. 

4.1.5 Eigenfunction Expansion Procedure  

The entire procedure can be summarized as follows: 
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1. Calibrate the interest rate parameters from 3-month Treasury data and find 

the prepayment parameters using least squares including the breakpoint k.  (This 

is discussed further in Chapter 5).  

2. Obtain the scale and speed densities from Table 1 

3. Find the general solutions to the differential equation.  These solutions are 

listed in Table 1 as 2 1 and u uλ λφ ψ= = . 

4. Create the Wronskian from the general solutions and solve iteratively to 

obtain eigenvalues using boundary conditions.   

5. Calculate the functions ( ) ( ) ( ) ( ), , , x x k kλ λ λ λψ φ ψ φ for each eigenvalue 

6. Evaluate the derivative of the Wronskian with respect to λ  for each 

eigenvalue or calculate the norms of the eigenfunctions using my integral method.  

7. Normalize the eigenfunctions by using the results of steps 5 and 6. 

8. Integrate the results of 7 with the speed density in step 2 to get the 

coefficients Q

n
c  

9. Integrate the results of 7 with the product of the rate and speed density  to 

get the coefficients R

n
c  

10. Calculate the time integral ( )0, ; ,L t mλ  for each eigenvalue.   

11. Using eigenvalues, eigenfunctions, expansion coefficients and time 

integrals, solve iteratively for the mortgage rate.    

( ) ( ) ( )0
1

, 0Q R

n n n n

n

r mc c L mϕ λ
∞

=

 − = ∑  or using m as the Coupon rate and setting P 
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= 100, calculate the price from the following equation:

( ) ( ) ( )

( )

0

1

, ; ,

1
1

Q R

n n n n

n
t t m T t

r mc c L t T m

M P
e

ϕ λ
∞

=

− −

  −   
= + 

− 
  

∑
. 

4.1.6 Mortgage Rate Example 

Let us assume a Cox-Ingersoll-Ross interest rate model with

0.06, 0.25, 0.1θ κ σ= = = , an exogenous prepayment rate  

0 0 00.045, 5, 0.09,   and 30h r k r Tγ= = = = =  

Table 2 shows the first 18 eigenvalues, the associated normalized eigenfunctions, 

expansion coefficients and time integrals for the above. 

n 
nλ  ( )n kϕ  Q

n
c  R

n
c  ( ),nL mλ  

1 0.20734 22.74321 0.054053 0.0038034 3.550047 

2 0.47884 -7.81166 0.015381 -0.0009233 1.754071 

3 0.74412 -15.69468 0.006317 0.0001217 1.171104 

4 1.02106 -0.60631 0.001288 -0.0001377 0.869177 

5 1.29713 12.54510 -0.000110 -0.0000781 0.691413 

6 1.57718 12.25948 -0.000264 -0.0000349 0.572592 

7 1.85936 2.56640 -0.000096 -0.0000037 0.488071 

8 2.14140 -7.74337 0.000046 0.0000093 0.425315 

9 2.42418 -12.25758 0.000093 0.0000103 0.376745 

10 2.70820 -9.76229 0.000072 0.0000059 0.337979 

11 2.99272 -2.71330 0.000028 0.0000010 0.306395 

12 3.27722 4.98740 -0.000011 -0.0000024 0.280211 

13 3.56187 9.98431 -0.000031 -0.0000036 0.258139 

14 3.84697 10.90601 -0.000034 -0.0000032 0.239263 

15 4.13246 7.82409 -0.000024 -0.0000018 0.222938 

16 4.41810 2.33608 -0.000010 -0.0000004 0.208692 

17 4.70737 -3.37958 -0.000222 -0.0000199 0.196007 

18 4.98941 -8.09785 0.000121 0.0000014 0.185041 

Table 2  Eigenvalues, Evaluated Eigenfunctions, Expansion Coefficients and Time Integrals 
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We use the secant method to obtain an iterative solution.  Convergence is fairly 

quick; in this example it only takes 7 iterations to be accurate within 10 decimal places:  

The results are as follows:  

Iteration   Mortgage Rate 
---------   -------------- 
      0     0.09             Initial Guess r(0) 
      1     0.1  
      2     0.07910587538 
      3     0.07856263478 
      4     0.07852811805 
      5     0.07852804112 
      6     0.07852804111 
      7     0.07852804111    Solution m = 7.8528% 

Table 3:  Convergence of Mortgage Rate using Secant Method    
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4.2 The Piecewise-Linear Prepayment Model 

Prepayment models usually exhibit two types of behavior; one type when interest 

rates are above a certain threshold and another type when they are below.  The change of 

variables in both the Cox-Ingersoll-Ross and Vasicek models work best when 

prepayment rates are linear.  However, when rates are below the refinancing threshold, 

the prepayment behavior in reality is not exactly linear as the data below show; the 

behavior changes when rates drop significantly.  We propose a new piecewise linear 

model to account for this change in behavior. 

An empirical view of prepayment data from 1995 to 2005 versus short term 

treasury rates is shown in Figure 1.  

 

Figure 1 - Relationship between Mortgage Rates and Prepayment Rates 
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The model clearly indicates that prepayment rates increase significantly when the 

treasury rate drops below 5.25%.  However, unlike (Gorovoy and Linetsky 2007), the 

slope of the prepayment function (the spread sensitivity) decreases significantly when the 

mortgage rate goes below 4.75%.  In (Kolbe and Zagst 2009), the spread sensitivity drops 

to zero indicating a constant prepayment rate.  The data in Figure 1 above suggest a 

piecewise linear model with two (or more) breakpoints instead of one.   

4.2.1 Multiple Threshold Model 

We propose a multiple threshold model.  Let  1 2 0nk k k> > > >�  and let 
iγ  be 

the change in intensity at  ik where for all n,
1

0
n

ii
γ

=
≥∑ .  We define the prepayment 

intensity as 

 ( ) ( ) ( )0
1

,
n

i i

i

h r t h t k rγ
+

=

= + −∑ . (4.37) 

The infinitesimal generator for Cox-Ingersoll-Ross is: 

 ( )( ) ( ) ( ) ( ) ( ) ( )2

1

1

2

n

i i

i

f x xf x x f x r k x f xσ κ θ γ
+

=

 
′′ ′= + − − + − 

 
∑G  (4.38) 

 Set ( )( ) ( )f x f xλ= −G  and perform the change of variable as in Appendix 

A of (Gorovoy and Linetsky 2007).  When 1x k≥ , the problem is identical to that in 

Appendix A above where 1k k= , and for reasons that will become apparent later, we will 

set: 
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σ ρ σ

=

=

> > > > = ∞ = >

Γ = = Γ =

Θ = =

= + − Γ = − =

∑

∑

�

 (4.39) 

See Appendix B for the change of variable procedure.  It can be shown that the 

differential equation with multiple breakpoints is:  

 
2

2
0n

n

n

zu z u a u
λκθ

σ ρ

 Θ − ′′ ′+ − − + =  
   

 (4.40) 

The proof follows: 

For any [ ]1,n n
x k k+∈  the infinitesimal generator eigenvalue problem is: 

 ( ) ( ) ( ) ( ) ( ) ( )2

1

1

2

n

i i

i

xf x x f x x k x f x f xσ κ θ γ λ
=

 
′′ ′+ − − + − = − 

 
∑  (4.41) 

This can be rewritten as:  

 ( ) ( ) ( ) ( )( ) ( )21
1 0

2
n nxf x x f x x f xσ κ θ λ′′ ′+ − − − Γ + Θ − =  (4.42) 

Performing the change of variable for Cox-Ingersoll-Ross using the substitutions 

for the dependent and independent variables from Table 1 on page 41, we gather the 

coefficients of ,u u and u′ ′′ separately.   The coefficient of u is:   

 ( ) ( )
2

2

2 2

1
1

2
n n

n nx x x
κ ρ κ ρ

σ κ θ λ
σ σ

− −   
+ − − − Γ + Θ −      

   
 (4.43) 

Collecting terms involving the independent variable yields: 

 
( )

( )
2 2 2

2 2 2 2
1

2

n n n
n nx

κ ρ ρ κ κ ρ κθκ θ
λ

σ σ σ σ

 −  −
+ − − Γ + − − Θ +   

    
 (4.44) 
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The coefficient of x in (4.44) can be rearranged as follows:  

 
( )2 2 2

2

2 1

2

n nρ κ σ

σ

− − − Γ
 (4.45) 

But ( )2 22 1
n n

ρ κ σ= + − Γ  as defined in (4.39) above, reducing the expression 

in (4.45) to zero.  Thus (4.44) can be simplified using the definition of na  in(4.39). 

 n n na ρ λ− − Θ +  (4.46) 

The coefficient of the first derivative u′  is: 

 
2

2

1
2

2
n

n n

n n

z zκ ρ
σ α κ θ α

α σ α

    −  
+ −     

     
 (4.47) 

This can be simplified to  

 
2

2
n z

κθ
ρ

σ

 
− 

 
 (4.48) 

And finally, the coefficient of the second derivative u′′  is: 

 
2 2 2 2

2

21 1 1

2 2 2
n

n n n

n

z
z z z

ρ
σ α σ α σ ρ

α σ

   
= = =   

  
 (4.49) 

Putting together(4.46), (4.48) and (4.49) produces the differential equation:  

 ( )2

2
0n n n n nzu z u a u

κθ
ρ ρ ρ λ

σ

 
′′ ′+ − − + Θ − = 

 
 (4.50) 

which after dividing by nρ  gives equation(4.40) and therefore completing the proof. Any 

solution to (4.40) is a linear combination of the confluent hypergeometric functions.  See 

(Abramowitz and Stegun 1972) and (Gorovoy and Linetsky 2007) Appendix B.  
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4.2.2 Example using Two Breakpoints with Cox-Ingersoll-Ross 

 

Figure 2 - Continuity and Differentiability Across Two Breakpoints 

Although our model allows for any number of breakpoints, we will examine the 

case where there are exactly two breakpoints k₁ and k₂.  Let 2N = .  Equation (4.40) 
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2
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k
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zu z u a u x k

γ γ λκθ

σ ρ

γ λκθ

σ ρ

κθ λ

σ ρ

 + − 
′′ ′+ − − + = ∈  

   

 − 
′′ ′+ − − + = ∈  

   

  
′′ ′+ − − − = ∈ ∞  

   

 (4.51) 
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The solutions to (4.51) where we used (4.16) boundary conditions on [k₁,∞) and 

[0,k₂] are as follows:  

( )
( )

( ) [ )

( )
( )

( )( ) [ ]

( )
( )

( )( ) [ ]

( )
( )

( )( ) [ ]

0

1 0 0 0 12

1

1 1 1 1 1 1 2 12

1

2 1 1 1 1 1 2 12

2

2 2 1 1 2 2 2 2 22

; exp , , ,

; exp , , ,

; exp , , ,

; exp , , 0,

x
x U a x x k

x
x M a k x x k k

x
x U a k x x k k

x
x M a k k x x k

κ ρ
φ λ λ ρ β α

σ

κ ρ
ψ λ λ γ ρ β α

σ

κ ρ
φ λ λ γ ρ β α

σ

κ ρ
ψ λ λ γ γ ρ β α

σ

− 
= − ∈ ∞ 

 

− 
= − − ∈ 

 

− 
= − − ∈ 

 

− 
= − − − ∈ 

 

(4.52) 

4.2.3 Finding the Coefficients  

In order to solve for λ , we must assume that the solutions are continuous and 

differentiable across the breakpoints 1 2 and k k . Figure 2 shows the breakpoints where 

continuity and differentiability must be preserved for the eigenfunctions which are linear 

combinations of Ψ₁ and Ф₂ between the breakpoints and a multiple of Ф₁ above k₂ and a 

multiple of Ψ₂ below k₂.  In order to accomplish this, we set up the following 

homogeneous equations: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 1 1 2 2 1

1 1 1 1 1 1 2 2 1

2 2 2 1 1 2 2 2 2

2 2 2 1 1 2 2 2 2

0

0

0

0

A k B k A k

A k B k A k

A k B k B k

A k B k B k

φ ψ φ

φ ψ φ

φ ψ ψ

φ ψ ψ

− − =

′ ′ ′− − =

+ − =

′ ′ ′+ − =

 

We use the following shorthand notation: ( ) ( );
i j i j

k kφ φ λ=  and ( ) ( );
i j i j

k kψ ψ λ= .  

Define the matrix  
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 ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

1 1 2 1 1 1

2 2 1 2 2 2

1 1 2 1 1 1

2 2 1 2 2 2

0

0

0

0

k k k

k k k

k k k

k k k

φ φ ψ

φ ψ ψ
λ

φ φ ψ

φ ψ ψ

− − 
 

− =
 ′ ′ ′− −
 

′ ′ ′−  

W  (4.53) 

and let the vector [ ]1 2 1 2A A B B=
λ

c  

Since ≠
λ

c 0  and =T

λ
Wc 0 it follows that ( ) 0λ =W .  For the sake of 

simplification set:  

 
( ) ( ) ( ) ( ) ( ) { }

( ) ( ) ( ) ( ) ( )1 2 2 1

, , 1,2ij n i n j n j n i n

n n n n n

W k k k k k i j n

W k k k k kφ

ψ φ φ ψ

φ φ φ φ

′ ′= − ∈

′ ′= −
 (4.54) 

Converting (4.53) to the algebraically equivalent echelon matrix using elementary 

operations yields: 

 

( )
( )
( )

12 1

11 1

1

1 0 0

0 1 0

0 0 1

0 0 0 0

W k Y

W k Y

W k Yφ

 − 
 

− ≅
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=  

W

W

 (4.55) 

where  
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( ) ( ) ( ) ( )
2 2

1 2 1 2 2 11 1

k
Y

k W k k W kφ

ψ

ψ φ
=

+
 (4.56) 

and 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 1 1 2 2 1 1 2 1 1 2 2 2

1 1 2 1 2 2 1 2 1 1 2 2 2 2 1 1

1 1 2 1 1 2 2 2 1 1 2 1 2 2 1 2

1 1 2 2 1 2 2 2 1 1 2 2 1 1 2 2

k k k k k k k k

k k k k k k k k

k k k k k k k k

k k k k k k k k

φ φ ψ ψ φ φ ψ ψ

φ φ ψ ψ φ φ ψ ψ

φ φ ψ ψ φ φ ψ ψ

φ φ ψ ψ φ φ ψ ψ

′ ′ ′ ′= −

′ ′ ′ ′+ −

′ ′ ′ ′+ −

′ ′ ′ ′+ −

W

 (4.57) 
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Thus the zeroes of (4.57) (with respect to λ ) determine the eigenvalues.  The 

coefficients can be expressed as follows: 

 

( )

( )

( )

1 12 1 2

2 11 1 2

1 1 2

A W k YB

A W k YB

B W k YBφ

=

=

=

 (4.58) 

Set 2YB∆ = .   We can rewrite all coefficients in terms of the normalization 

constant ∆ . 

 

( )

( )

( )

( )
( ) ( ) ( ) ( )

1 12 1

2 11 1

1 1

2 1 2 1 2 2 11 1

2 2

A W k

A W k

B W k

B Y k W k k W k
k

φ

φψ φ
ψ

= ∆

= ∆

= ∆

∆
 = ∆ = + 

 (4.59) 

To normalize the eigenfunctions, we must have , 1ϕ ϕ = .  Rewriting the norm as 

a piecewise integral: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 1

2

1

2
2

2 2 1 1 2 2
0

2

1 1

k k

k

k

B x x dx B x A x x

A x x dx

ψ ψ φ

φ
∞

+ +      

+   

∫ ∫

∫

m m

m

 (4.60) 

and substituting (4.59) into (4.60) produces: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 1

2

1

2 2
2 2

2 1 1 11 1 22 0

2 2 2

12 1 1 1,

k k

k

k

x x dx W k x W k x x dx
Y

W k x x dx

φψ ψ φ

φ
∞

∆
 + ∆ + 

+∆ =

∫ ∫

∫

m m

m

 (4.61) 

which gives: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 1

2

1

22

2 1 1 11 1 22 0

1 2
2 2

12 1 1

1 k k

k

k

x x dx W k x W k x x dx
Y

W k x x dx

φψ ψ φ

φ
−

∞

  ∆ = + + 

+


∫ ∫

∫

m m

m

 (4.62) 

This can be expanded to  

 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2

1 1

2 2

1

2 1

2

1 2 1 2 2 11 1 2

2
0

2 2

2 2

1 1 1 11 1 1 2

1 2
2 2 2 2

11 1 2 12 1 1

2

k

k k

k k

k

k k

k W k k W k
x x dx

k

W k x x dx W k W k x x x dx

W k x x dx W k x x dx

φ

φ φ

ψ φ
ψ

ψ

ψ ψ φ

φ φ
−∞

 +
∆ = + 
 

+

+ +


∫

∫ ∫

∫ ∫

m

m m

m m

 (4.63) 

The normalization constant can be solved by numerical integration.  Putting everything 

together gives us the following set of orthonormal eigenfunctions: 

 ( )

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

1 2 1 2 2 11 1 2

2 2

1 1 2 11 1 2 1

12 1 1 1

;
; ; ; ; 0

;

; ; ; ;

; ;

n n

n n n n

n

n n n n n n

n n n

x
k W k k W k x k

k

x x W k x W k k x k

W k x k x

φ

φ

ψ λ
ψ λ λ φ λ λ

ψ λ

ϕ ψ λ λ φ λ λ

λ φ λ

∆
 + ≤ ≤  




 = ∆ + ≤ ≤  


∆ ≤ < ∞



(4.64) 

We have illustrated how to find the nλ and the ( )n
xϕ .  To calculate the expansion 

coefficients, we use the following piecewise integrals:  

 

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 1

2 2

1

1 2 1 2 2 11 1

2
0

2 2

1 1 11 1 2

12 1 1

; ; ; ;
1, ;

;

; ; ; ;

; ;

k
n n n nQ

n n n n

n

k k

n n n n
k k

n n
k

k W k k W k
c x x dx

k

W k x x dx W k x x dx

W k x x dx

φ

φ

ψ λ λ φ λ λ
ϕ ψ λ

ψ λ

λ ψ λ λ φ λ

λ φ λ
∞

 +
= = ∆ 



+ +

+


∫

∫ ∫

∫

m

m m

m

 (4.65) 

and 
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( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 1

2 2

1

1 2 1 2 2 11 1

2
0

2 2

1 1 11 1 2

12 1 1

; ; ; ;
, ;

;

; ; ; ;

; ;

k
n n n nR

n n n n

n

k k

n n n n
k k

n n
k

k W k k W k
c x x x x dx

k

W k x x x dx W k x x x dx

W k x x x dx

φ

φ

ψ λ λ φ λ λ
ϕ ψ λ

ψ λ

λ ψ λ λ φ λ

λ φ λ
∞

 +
= = ∆ 



+ +

+


∫

∫ ∫

∫

m

m m

m

(4.66)  

To obtain the price and yield, it remains to complete the steps in Section 4.1.5. 

4.2.4 Continuity and Differentiability of Eigenfunctions  

The formulas for eigenfunctions differ on either side of each interest-rate 

threshold.  At the threshold itself, the two formulas should not only produce the same 

value, their derivatives should also be equivalent.   Thus we need to show:  

 ( ) ( ) ( ) ( )lim lim  and lim limn n n n
x k x k x k x k

x x x xϕ ϕ ϕ ϕ
− + − +→ → → →

′ ′= =  (4.67) 

For the single threshold model, it is fairly obvious that this is true because from 

(4.23) we arrive at: 

 ( )
( ) ( )n n

n

n

k k
k

φ ψ
ϕ =

∆
 (4.68) 

For the double threshold model, we can derive the following eigenfunctions 

from(4.64). 

 ( ) ( ) ( ) ( ) ( )2 1 2 1 2 2 11 1; ; ; ;
n n n n n

k k W k k W kφϕ ψ λ λ φ λ λ = ∆ +   (4.69) 

For the threshold at k₁ we must show that  

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 1 11 1 12 1 1 1k W k k W k W k kφψ φ φ+ =  (4.70) 

This can be done by substituting (4.54) into (4.70) and the equality follows.  We 

then can show that  
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 ( ) ( ) ( )1 12 1 1 1; ;
n n n

k W k kϕ λ φ λ= ∆  (4.71) 

Continuity and differentiability follows from the theory of hypergeometric 

functions which states that Hypergeometric functions of the form ₁F₁(a,b;x) converge 

absolutely for all x.  See (Andrews, Askey and Ranjan 1999)  Theorem 2.1.1.  Since the 

eigenfunctions are linear combinations of the Kummer and Triconmi confluent 

hypergeometric functions, it suffices to show that these functions and their derivatives 

converge at all meaningful points.  For the Cox-Ingersoll-Ross model, the transformation 

for the change of variable is simply a constant, so we only need to show that convergence 

holds on the positive real line.  

The Kummer confluent hypergeometric function is in the form  ₁F₁(a,b;x) which 

is known to converge whenever  b −∉� : 

 ( )
( )
( )0

, ,
!

n

n

n n

a z
M a b z

b n

∞

=

=∑  (4.72) 

The Tricomi confluent hypergeometric function, which is derived from the Kummer 

function, converges everywhere except at z = 0 when b > 1 which is required by the  

constraint   2kθ > σ²: 

 ( )
( )

( )
( )

( )
( )

( )11 1
, , , , 1 , 2 ,

1

b
b b

U a b z M a b z z M a b b z
a b a

−Γ − Γ −
= + + − −

Γ + − Γ
 (4.73) 

The derivative of the Kummer function must also converge since it is simply a constant 

multiple of the shifted Kummer function: 

 ( ) ( ), , 1, 1,
d a

M a b z M a b z
dz b

= + +  (4.74) 
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The derivative of the Tricomi function also converges when z > 0 since it is likewise a 

multiple of the shifted Tricomi function: 

 ( ) ( ), , 1, 1,
d

U a b z aU a b z
dz

= − + +  (4.75) 

  Table 4 shows the values of the eigenfunctions and their derivatives at each of 

the breakpoints for each of the first ten eigenvalues for both the single- and double-

threshold Cox-Ingersoll-Ross models. 

 

Single Threshold Model 

n λ φφφφ(k) φ’φ’φ’φ’(k) 

1 0.1451 36.0216 212.53 

2 0.4978 10.5354 -970.09 

3 0.8225 -15.9138 -979.66 

4 1.1496 -22.4293 78.35 

5 1.4814 -11.8313 1128.88 

6 1.8128 4.1439 1462.07 

7 2.144 15.8601 957.32 

8 2.4765 18.869 -37.6 

9 2.8101 13.9053 -1027.3 

Double Threshold Model 

n λ φφφφ(k₁) φφφφ(k₂) φ’φ’φ’φ’(k₁) ����’’’’(k₂) 
1 0.1601 33.8005 31.0856 355.795 386.75 

2 0.5115 -17.7396 -23.0689 809.601 703.46 

3 0.8233 -8.8276 0.1608 -1172.93 -1343.77 

4 1.1474 21.6821 17.2892 356.855 871.16 

5 1.4822 -17.9826 -21.2886 750.207 162.793 

6 1.8139 5.3977 15.0088 -1474.62 -1179.05 

7 2.1426 8.2843 -3.1843 1451.31 1710.51 

8 2.4736 -16.6969 -8.2962 -755.271 -1562.92 

9 2.8079 -17.9395 -15.6316 233.407 -888.589 

10 3.1433 13.3155 17.8357 -1147.97 -50.5179 

Table 4:   Eigenvalues, Evaluated Eigenfunctions and Derivatives of Eigenfunctions for Single and 

Double Threshold Models 
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4.2.5  Discounted Claims 

Table 5 shows the first ten eigenvalues, evaluated eigenfunctions at the 

breakpoint(s) and expansion coefficients for the single and double threshold CIR models.  

Since the pricing model is expressed in terms of the time t values of European style 

contingent claims maturing at time u with payoffs ( ) ( )1 and 
Q u R u u

f r f r r= = , we also 

show the convergence of the maturity 0 and maturity 1 values of these claims at time 0.  

See (Gorovoy and Linetsky 2007) p. 552.  The maturity-0 values should converge to 1 

and r₀ respectively, while the maturity-1 values should be at a slight discount to 1 and the 

uncertain value r₁ respectively.  Thus we can approximate the maturity-0 values by 

choosing a cutoff point, say N=10:   

 ( ) ( ) ( ) ( )0 0 0

1 1

0, 0 1 and 0,0  
N N

Q R

n n n n

n n

Q c r R c r rϕ ϕ
= =

= ≈ = ≈∑ ∑  (4.76) 

We can also approximate the maturity-1 values: 

( ) ( ) ( ) ( )0 0

0 0 1

1 1

0,1 1 and 0,1n n

N N
h hQ R

n n n n

n n

Q e e c r Q e e c r r
λ λϕ ϕ− − − −

= =

= < = <∑ ∑  (4.77) 

For comparison, we have listed these Q(0,1) and R(0,1) which show the values 

discounted for one year.  These values are more deeply discounted for the double 

threshold model than for the single threshold model. 
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April 2005 GNMA 8’s – Single Threshold CIR 

n λ    φφφφ(x)(x)(x)(x)    cQ cR Q(0,0) R(0,0) Q(0,1) R(0,1) 

1 0.14512 27.0473 0.02890 0.00200 0.7817 0.05401 0.59804 0.04132 

2 0.49780 33.5865 0.00389 -0.00076 0.9124 0.02856 0.66829 0.02764 

3 0.82251 25.6948 0.00286 0.00010 0.9859 0.03124 0.69687 0.02868 

4 1.14962 9.1200 0.00113 -0.00002 0.9963 0.03105 0.69977 0.02862 

5 1.48138 -6.7726 0.00035 -0.00001 0.9939 0.03115 0.69930 0.02864 

6 1.81280 -17.9582 0.00000 -0.00002 0.9938 0.03142 0.69929 0.02868 

7 2.14401 -22.8867 -0.00010 -0.00001 0.9961 0.03167 0.69953 0.02871 

8 2.47647 -21.9088 -0.00010 -0.00001 0.9983 0.03180 0.69969 0.02872 

9 2.81010 -16.6552 -0.00006 0.00000 0.9992 0.03184 0.69974 0.02872 

10 3.14406 -8.9543 -0.00002 0.00000 0.9994 0.03183 0.69974 0.02872 

April 2005 GNMA 8’s – Double Threshold CIR 

n λ    φφφφ(x)(x)(x)(x)    cQ cR Q(0,0) R(0,0) Q(0,1) R(0,1) 

1 0.16006 25.1738 0.0287 0.00202 0.7224 0.05097 0.54612 0.03853 

2 0.51150 -33.7959 -0.00503 0.00068 0.8924 0.02807 0.63655 0.02635 

3 0.82330 25.9557 0.00318 0.00011 0.9751 0.03091 0.66874 0.02746 

4 1.14737 -7.99391 -0.00093 0.00003 0.9825 0.03070 0.67083 0.02740 

5 1.48219 -7.91104 0.00003 -0.00002 0.9823 0.03088 0.67079 0.02744 

6 1.81388 18.9625 0.00028 0.00002 0.9876 0.03132 0.67155 0.02750 

7 2.14261 -23.549 -0.00029 -0.00002 0.9944 0.03170 0.67226 0.02754 

8 2.47359 21.8266 0.00018 0.00001 0.9984 0.03187 0.67257 0.02755 

9 2.80792 15.9947 0.00007 0.00000 0.9995 0.03189 0.67262 0.02755 

10 3.14325 -8.11643 0.00002 0.00000 0.9993 0.03186 0.67245 0.02753 

Table 5:  April 2005 GNMA 8% MBS showing convergence of values of 0 and 1-year maturity claims 

with payoffs ( ) ( )1 and   Q u R u uf r f r r= =     
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4.3 The Vasicek Model 

The Vasicek model is a simpler mean-reverting model than Cox-Ingersoll-Ross 

because it is linear.  The drawback is that it may occasionally become negative. For the 

Vasicek model we need to solve the following differential equation derived from the 

infinitesimal generator: 

 ( ) ( ) ( ) ( ) ( ) ( )21

2
f x x f x x k x f x f xσ κ θ γ λ

+ ′′ ′+ − − + − = −
 

 (4.78) 

This can be divided into two sections: 

 ( ) ( ) ( ) ( ) ( ) ( )21
2

1 ,f x x f x x k f x f x x kσ κ θ γ γ λ′′ ′+ − − − + = − <    (4.79) 

and 

 ( ) ( ) ( ) ( ) ( )21
2

,f x x f x xf x f x x kσ κ θ λ′′ ′+ − − = − ≥  (4.80) 

However we can simply use Equation (4.79) and set 0γ =  to obtain (4.80). 

 ( ) ( ) ( ) ( ) ( ) ( )21
1

2
f x x f x x k f x f xσ κ θ γ γ λ′′ ′+ − − − + = −    (4.81) 

We make the following substitutions:   

 ( ) ( ) ( )
2 42

 and z
z x f x e w z

κ
θ

σ
= − =  (4.82) 

From (4.82) we obtain the following derivatives: 

 ( ) ( ) ( )
2 4 2

2
ze

f x zw z w z
κ

σ
′ ′= − +    (4.83) 

 ( ) ( ) ( ) ( )
2 4 2

2

2 1

4 2

ze z
f x w z zw z w z

κ

σ

  
′′ ′′ ′= + + +  

  
 (4.84) 

Inserting (4.83) and (4.84) into (4.81) produces: 
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( ) ( ) ( ) ( ) ( )

( )
( )

2 1
2

4 2 2

1
0

z z
w z zw z w z zw z w z

x k
w z

γ γ λ

κ

  
′′ ′ ′+ + + − +     

  

− + −  − =

 (4.85) 

Collecting like terms, we simplify(4.85): 

 ( ) ( ) ( )
( )

( )
2 2 11

0
4 2 2

x kz z
w z z z w z w z

γ γ λ

κ

 − + −  ′′ ′+ − + + − − = 
 
 

 (4.86) 

  

 ( )
( )

( )
2 11

0
2 4

x kz
w z w z

γ γ λ

κ

 − + −  ′′ + − − = 
 
 

 (4.87) 

Now substitute 
2

x z
σ

θ
κ

= −  :  

 

( )
( )

( ) ( )
3

1
1 1 12

2

z k
x k k

z

σ
γ θ γ λ

γ γ λ γ θ γ λ σ γκ

κ κ κ κ

  
− − + −  − + −  − + − −    = = −

(4.88) 

Letting ( )3

2
1γα σ γ

κ
= −  we can rewrite (4.88) as: 

( )1

2

k
z

γαγ θ γ λ

κ

− + −
−  

Now complete the square:  

( ) ( )

( )
( )

2 2

2

2 2

2

1 1

4 2 4 2 4 4

11

4 4

z zk kz z

k
z

γ γ γ γ

γ

γ

α α α αγ θ γ λ γ θ γ λ

κ κ

α γ θ γ λ
α

κ

− + − − + −
+ − = − + − + =

− + −
− − +

 

Now letting 
( )

2

1

4

kγα γ θ γ λ
µ

κ

− + −
= −  and substituting into (4.87) gives: 
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( ) ( ) ( )
21 1

0
2 4

w z z w zγµ α
 

′′ + + − − = 
 

 (4.89) 

which according to (Abramowitz and Stegun 1972), page 686, has the following 

solutions:  

 

( ) ( )

( ) ( ) ( )( ) ( ) ( )

1

1
2 2

1
sin

w z D z

w z D z D z

µ γ

µ γ µ γ

α

µ π µ α α
π

= −

 = Γ − + − + − 

 (4.90) 

where ( )D xµ  is the Parabolic Cylinder function.  

Proposition 4.1 of (Gorovoi and Linetsky 2004) shows that ( ) ( )D zµ λ α −  is a 

solution to (4.89) .   Another linearly independent solution to (4.89) is ( ) ( )D zµ λ α−  

according to Chapter 19 (Parabolic Cylinder Functions) in (Abramowitz and Stegun 

1972). 

For x k≥  we can set 0γ = .  Thus ( )
2

0 3

σ λ θ
µ λ

κ κ

−
= + . 

Since the upper boundary is the same as that described in (Gorovoi and Linetsky 

2004) we can define  

 ( ) ( ) [ )
2 4

1 ; ,zx k e D z x kµφ α− = − ∈ ∞   (4.91) 

We can use the other linearly independent solution from (Abramowitz and Stegun 1972) 

(19.3.8 p. 687):  

( )
( )( )

( )( ) ( ) ( ) ( ) ( )

( ]

2 4 1
2

sin ;

,

z
x k e D z D z

x k

γ γ

γ

λ γ µ λ µ λ

µ λ
ψ π µ λ α α

π

Γ −
  − = − + − + −  

∈ −∞

 (4.92) 
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4.3.1 Eigenfunctions and Boundary Conditions 

Since the Vasicek model allows for negative interest rates, we will use Linetsky’s 

reflecting boundary for the shadow rate (Linetsky 2004).  We will divide the interest rate 

spectrum into three parts: greater than the refinancing threshold k, between 0 and the 

refinancing threshold, and the negative “shadow” rate.  This is identical to the “triple-

ramp” Cox-Ingersoll-Ross model except for two things:  the choice of eigenfunctions 

1 1 2 2, , ,φ ψ φ ψ  and the interval (l,r) which is (−∞,∞) instead of [0, ∞) . 

For Vasicek, we will use the following transformations to define the eigenfunctions based 

on the solutions in (4.90): 

( ) ( )

( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( )

2

2

2

2

4

1

4

2

4 1
1 2

4

2

;

1

01
sin 1 1

; 0

z

z

z

z

x e D z k x

x e D z

x k
x e D z D z

x e D z x

µ

µ

µ µ

λ κ

φ α

φ α γ

ψ µ π µ α γ α γ
π

ψ

= − ≤ < ∞

= − −


≤ <
 = Γ − + − − + − −  

= − ∞ < <

 

where ( ) 3

2 2
and z x

κ
θ α σ

σ κ
= − = .   

We will use the following boundary conditions: 

 
( )
( )

( )
( )

lim 0  and lim 0
x x

f x f x

x x→−∞ →∞

′ ′
= =

s s

 

For Vasicek, ( )
( ) 2

2 1

2
2

exp
zx

x e
κ θ

σ

 −
= = 

  
s .  The derivative of the Parabolic 

Cylinder function ( ) ( ) ( )1
2

z
D z D z D zν ν νν −

′ = − . Also note that ( )
2

z x
κ

σ
′ = . 
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It can be shown that  ( ) ( )
2 2

4 2lim lim 0
z z

z z
e D z e H zν ν

− −

→±∞ →±∞
= =  because the Hermite 

function is a polynomial of order ν.   The Exponential functions grow much more rapidly 

than the polynomial functions; hence the exponential function in the denominator forces 

the limit to 0.  From this we can conclude the following: 

( ) ( ) ( )

( )
( )

( ) ( )

2

2

4
1

1 4
1

2

2
lim lim 0

z

z

x z

zz
x e D z D z z

x
e D z D z

x

µ µ

µ µ

φ α α

φ κ
α µ α

σ

−

−
→∞ →−∞

′ 
′ ′ ′= − − −  

′
 = − − − = 
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 (4.93) 

To find the eigenvalues we set the following determinant to zero: 

 ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )
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2 1 2

1 2 1

2 1 2

0
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λ

φ φ ψ

φ ψ ψ

− −

−
= =

′ ′ ′− −
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W  (4.94) 
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4.3.2 Normalizing the constants 

We can use the same process to normalize the eigenfunctions for the Vasicek model as 

with the two-breakpoint CIR model.  The formula below is identical to (5.24) except for 

the limits of integration. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
02 2 2 2

2 2 2 1 1 1
0

1
k

k
x B x x dx A x B x x dx A x x dxϕ ψ φ ψ φ

∞

−∞
= + + + =∫ ∫ ∫m m m

 

This allows us to represent the coefficients in terms of the normalization constant ∆: 

( )

( )

( )

( )
( ) ( ) ( ) ( )

1 12

2 11

1

2 1 2 11

2

0 0
0

A W k

A W k

B W k

B Y W k W k

φ

φψ φ
ψ

= ∆

= ∆

= ∆

∆
 = ∆ = + 
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( )

( ) ( ) ( ) ( )
2

1 2 11

0

0 0
Y

W k W kφ

ψ

ψ φ
=

+
 and 

( ) ( ) ( ) ( ) ( ) { }

( ) ( ) ( ) ( ) ( )1 2 2 1

, 1, 2ij i j j iW k k k k k i j

W k k k k kφ

ψ φ φ ψ

φ φ φ φ

′ ′= − ∈

′ ′= −
 

This allows us to solve for ∆: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

0 22

2 1 11 22 0

1 2
2 2

12 1

1 k

k

x x dx W k x W k x x dx
Y

W k x x dx

φψ ψ φ

φ

−∞

−
∞

  ∆ = + + 

+


∫ ∫

∫

m m

m

 

The completely normalized eigenfunction for the Vasicek model can be defined as 

follows: 
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 (4.95) 

The expansion coefficients can be written by integrating over the expanded interval 

(−∞,∞) instead of the positive interval [0,∞) used by the Cox-Ingersoll-Ross model.  In 

their complete form the Vasicek coefficients are: 
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 (4.96) 

and 
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 (4.97) 

4.3.3 Applying The Vasicek Model 

 
Applying the Vasicek model to the data, we must first calibrate the interest rate 

parameters to the Vasicek model and use the single threshold prepayment parameters.  

The Vasicek parameters are κ = 0.40999, σ = 0.06062 and θ = 0.05034; the 
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prepayment parameters are the same as for the single-threshold CIR model in the 

previous section. 

April 2005 GNMA 8’s – Vasicek Model 
n λ    φφφφ(x)(x)(x)(x)    cQ cR Q(0,0) R(0,0) Q(0,1) R(0,1) 

1 0.14034 -0.08971 -10.4726 -0.63525 0.93950 0.05699 0.81649 0.04953 

2 0.51259 0.02936 -0.05996 -0.57727 0.93774 0.04004 0.81543 0.03938 

3 0.93183 0.06660 0.30990 -0.08401 0.95838 0.03444 0.82356 0.03717 

4 1.35674 -0.03635 -0.32961 -0.01237 0.97036 0.03489 0.82665 0.03729 

5 1.75768 -0.05214 -0.13477 -0.00376 0.97738 0.03509 0.82786 0.03732 

6 2.18883 0.03943 0.19559 0.00186 0.98510 0.03516 0.82872 0.03733 

7 2.59037 0.04211 0.04147 0.00214 0.98684 0.03525 0.82885 0.03734 

8 3.01704 -0.04093 -0.12963 -0.00162 0.99215 0.03532 0.82911 0.03734 

9 3.42386 -0.03455 -0.00483 -0.00143 0.99232 0.03537 0.82912 0.03734 

10 3.84423 0.04166 0.08922 0.00136 0.99603 0.03543 0.82920 0.03734 

Table 6 – Eigenvalues, evaluated eigenfunctions and expansion coefficients for the Vasicek Model 

Applying the model results in a price of $108.902, which slightly higher (21 basis 

points) than the single-threshold CIR model price of $108.6901237 in the previous 

section.  This example shows that the interest rate model (i.e. CIR or Vasicek) does not 

affect the results significantly.    We will show later that this behavior is consistent over a 

ten-year period.    

We can verify the continuity and differentiability at the breakpoints at k and 0 in a 

similar way that we did for the double threshold CIR model.  The parabolic cylinder 

function is defined in (Abramowitz and Stegun 1972) as a linear combination of the 

Kummer function which converges everywhere on the real line: 

   ( ) ( )
( )

( )

2 21 1 1 1
2 4 2 4

1

2 231 1 1 1
2 2 2 2 2

2 2 1
, , , ,

1 2 2

2

x x
e xe

D x M x M x

µ µ

µ

π π µ
µ

µ µ

− + −
− 

= − −  − Γ −   Γ  
 

 (4.98) 

Since the argument x in (4.98) appears only in the numerator or as an exponent or 

as an argument to the Kummer function, we have convergence everywhere.  Since the 
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change of variable for the Vasicek model is a linear function of x, we also have 

convergence on the real line for all possible values of the interest rate, positive and 

negative.   

The derivative of the parabolic cylinder function can be expressed as a linear 

combination of itself and a shifted function which means that the derivative converges 

everywhere along the real line: 

 ( ) ( ) ( )1
1 2

D z D z zD zν ν νν −
′ = −  (4.99) 

The eigenvalues, evaluated eigenfunctions, expansion coefficients and 

convergence of Q and R are displayed in Table 6. 

4.4 Default Models 

We propose a new continuous default model which can be solved using the 

eigenfunction expansion approach.   This model is flexible and can be adapted to a 

constant default rate (CDR) or to the time-dependent Standard Default Assumption 

(SDA) used in the industry.   

Historically, defaults have represented a much smaller proportion of mortgage 

terminations than prepayments; however, in recent years, there has been a significant 

increase in the number of defaults especially in the subprime arena. Figure 3 shows how 

foreclosure rates have rapidly increased from January 2005 until June 2010.   Although 

defaults are not exactly the same as foreclosures, since a borrower who is able to make 

payments on a house may choose not to do so if his mortgage is “under water”, they are 

quite similar.  According to (Bhattacharya, Berliner and Lieber 2006) “a default is 

defined as the event where the borrower loses title to the property.” (The Bond Market 
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Association 1999) defines foreclosure as a “legal procedure for enforcing payment of a 

debt by seizing and selling the mortgaged property”.  While (Y. Goncharov 2006),   

(Gorovoy and Linetsky 2007) and (Kolbe and Zagst 2009) present continuous 

prepayment models, none of them have considered models that include defaults.     

 

Figure 3:  Foreclosure rates from Jan 2005 - June 2010 (Source: Bloomberg) 

      (Deng, Quigley and Van Order 2000) use a competing-risks model between 

prepayments and defaults where only the event that occurs first is observed and  (Kelly 

2009) has a complex default model with a high level of complexity. However, neither  

addresses the Standard Default Assumption.     The proliferation of toxic assets in the 

mortgage industry has made defaults an essential part of the mortgage equation and has 

also shown that protecting investors from defaults tends to distort the market.  Recently, 

Congress has been discussing the dissolution of Fannie Mae and Freddie Mac.  This 

could result in an increase in private-label mortgages which are subject to default.   

Although many have shied away from defaults due to the complexity, rather than 
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ignoring the problem, we introduce a default model with constant default rates and loss 

severities which can be expanded to become time-dependent.     

(Goncharov 2009), (Gorovoy and Linetsky 2007), and (Kolbe and Zagst 2009) 

present continuous prepayment models, none of them have introduced a default model.  

(Deng, Quigley and Order, Mortgage Terminations, Heterogeneity and the Exercise of 

Mortgage Options 2000) and (Kelly 2009) have default models with a high level of 

complexity, but do not address the Standard Default Assumption.  The proliferation of 

toxic assets in the mortgage industry has made this an essential part of the mortgage 

equation. Although many have shied away from defaults due to the complexity, rather 

than ignoring the problem, we introduce a rather simple default model which can be used 

as a platform for more complex models.   

We assume a single mortgage will terminate at a stopping time Tτ ∧ where in the 

simplest case τ has an exponential distribution.   At that time either a prepayment will 

occur with probability 
h

h δ+
 or a default will occur with probability

h

δ

δ+
 .  This differs 

from the competing risks model in (Deng, Quigley and Van Order 2000) with two 

stopping times, one for prepayments and one for defaults.    We assume a homogeneous 

pool of mortgages, so that the likelihood of prepayment and default are the same across 

the pool.  By using one stopping time, we can leverage the model of (Y. Goncharov 

2006) without adding too much complexity.  (See Figure 4) The only difference between 

the prepayments and defaults in our model is that at time Tτ ∧ , for a prepayment, the 

total balance will be returned, whereas with a default, only a proportion of the balance 

will be recovered, the remainder being lost.   The time value of money lost due to the 
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delay in receiving the proceeds while the property is in foreclosure is included in this loss 

percentage.  

 

Figure 4 - Single Stopping-Time Model 
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According to the (The Bond Market Association 1999), the recursive equation for 

the discrete performing balance is: 

 1
ˆ ˆ

i i i i iB B D PR AM−= − − −  (4.100) 

( )

1

1

1

1

1
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 
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i

SMM
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=

=

 

Substituting into (4.100) we obtain  

 ( )1

1

ˆ ˆ 1i
i i i i

i

B
B B SMM MDR

B
−

−

 
= − − 

 
. (4.101) 

Since 0 0B̂ B=  we can show that  

 ( )1 1 1 1
ˆ 1B B SMM MDR= − −  (4.102) 

and in general use recursion to show that the performing balance  

 ( )
1

ˆ 1
n

n n i ii
B B SMM MDR

=
= − −∏ . (4.103) 

In the simple case, we use constant prepayment and default rates: 

So (4.103) becomes ( )ˆ 1
n

n n
B B SMM MDR= − −  (4.104) 

Now let 12SMM h=  and 12MDR δ= and define 12t n=  : 

 ( ) ( )
12

ˆ 1
12 12

t
h

B t B t
δ 

= − − 
 

. (4.105) 
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When the number of periods becomes large then:  

 
( )lim 1

Nt

h t

N

h
e

N N

δδ − +

→∞

 
− − = 

 
 (4.106) 

Replacing (4.106) into (4.105) gives the continuous approximation for the performing 

balance: 

 ( ) ( ) ( )ˆ h t
B t B t e

δ− +
= . (4.107) 

In general, when the prepayment rates and default rates are not constant, (4.107) 

becomes:  

 ( ) ( ) ( )
0

ˆ exp
t

s s
B t B t h dsδ = − +

  ∫  (4.108) 

which is our definition for the Performing Balance. 

The Basic Default Model consists of four cash flows, Scheduled Principal, 

Interest, Prepayments, and Principal Recoveries.   

 t t t t tCF P I PR R= + + +  (4.109) 

Normally, defaults take up to a year to become liquidated.  To simplify the model, 

we will assume that defaults are liquidated immediately.  We will define the loss severity  

 1
ml

t
t

t

L e
S

B

−

= −  (4.110) 

where l is the liquidation period, tL  is the net amount received for the foreclosed 

property.  This way we include the time value of money lost in the delay between 

foreclosure and liquidation in the loss severity.    

The value of a mortgage with defaults now becomes the expected value of the 

discounted scheduled payment, prepayments and recoveries:   
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 ( )1

u

s s s
t

T r h ds

t u u u u u u t
t

M E c h B S B e du
δ

δ
− + + ∫= + + −   

 
∫ F  (4.111) 

We will make a few simplifying assumptions about equation(4.111).  Let us 

assume a fixed-rate, fixed-payment fully amortizing mortgage.  Furthermore, let us 

assume that the exogenous prepayment rate, the default rate and the loss severity are 

deterministic.  Only the short rate and endogenous prepayment rates are stochastic.   

Note:  This is a reasonable assumption if the only independent random factor in 

the model is the interest rate.  Defaults are involuntary; they may be affected by interest 

rates, but for the sake of simplicity, we will assume they are constant or deterministic; 

exogenous prepayment rates are by definition not affected by interest rates.  Endogenous 

prepayments are stochastic, but are correlated to interest rates. 

We will use the following notation.  A stochastic process is indicated by 

( ) [ ]0,t t T
X

∈
 while a deterministic function is indicated by ( )X t . 

Now we can rewrite (4.111) as follows:  

 ( ) ( ) ( ) ( ){ }
( )

1

u

s s
t

T r h s ds

t u t
t

M E c h B u S u u B u e du
δ

δ
− + +   ∫= + + −   

 
∫ F  (4.112) 

Define  

 ( ),

u

s s s
t

r h ds

tQ t u E e ds
δ− + + ∫=  

 
F  (4.113) 

 ( ) ( ),

u

s s s
t

r h ds

u u tH t u E h e ds
δ

δ
− + + ∫= + 

 
F  (4.114) 

 ( ),

u

s s s
t

r h ds

u tR t u E r e ds
δ− + + ∫=  

 
F  (4.115) 
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We can also rewrite  (4.112) as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,
T

t
t

M cQ t u B u H t u S u u B u Q t u duδ= + −  ∫ . (4.116) 

Using integration by parts, we derive (See Proof in Appendix C): 

 ( )
u u

s s s s s s
t t

T Tr h ds r h ds
u

u s s t u u
t t

dB
B h e du B r B e du

du

δ δ
δ

− + + − + + ∫ ∫+ = + −  
∫ ∫  (4.117) 

Substituting (4.117) into (4.116) produces 

( ) ( ) ( )

( ) ( ) ( ) ( ),

u

s s s
t

T r h ds

u t
t

T

t

dB
M t B t E r B u e
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∫

∫

F

 (4.118) 

Rearranging terms gives  

( ) ( ) ( )

( )
( ) ( ) ( ) ( ),

u

s s s
t

T r h ds

u t
t

T

t

M t B t E B u r e du

dB u
c S u u B u Q t u du

du

δ

δ

− + + ∫= − + 
 

 
+ − 

 

∫

∫

F

 (4.119) 

Using (4.115), recalling (3.4), and assuming a fixed-rate mortgage we can rewrite 

(4.119) using equation (3.4) as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
T T

t t
M t B t B u R t u du mB u S u u B u Q t u duδ= − + −  ∫ ∫ .(4.120) 

To prevent arbitrage, we need to price the mortgage at face value at time zero.  

Thus 0 0M B=  and  

 ( ) ( ) ( ) ( )( ) ( ) ( )
0 0

0, 0,
T T

B u R u du m S u u B u Q u duδ= −∫ ∫ . (4.121) 

Solving for the mortgage rate, gives  
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( )( ) ( ) ( ) ( ) ( )
( )( ) ( )

0

0

1 0, 0,

1 0,

T m T u

T m T u

e R u S u u Q u du
m

e Q u du

δ−

− −

− +  
=

−

∫

∫
, (4.122) 

or broken into two pieces: 

 

( )( ) ( )
( )( ) ( )

( )( ) ( ) ( ) ( )
( )( ) ( )

0 0

0 0

1 0, 1 0,

1 0, 1 0,

T Tm T u m T u

T Tm T u m T u

e R u du e S u u Q u du
m

e Q u du e Q u du

δ− − −

− − − −

− −
= +

− −

∫ ∫

∫ ∫
 (4.123) 

Thus, the mortgage rate equals the “average” short rate, the first term, plus the 

“average” loss percentage, the second term. We will refer to the second term in (4.123) as 

the loss premium. 

4.4.1 Constant Default Rate and Loss Severity. 

The simplest default model assumes a constant default rate.  Furthermore 

assuming that the liquidation proceeds are a constant proportion of the future value of the 

balance of the mortgage at the time of default, 

 ( ) ml

t
L kB t e= . (4.124) 

Substituting (4.124) into (4.110) results in a constant severity rate.  If we assume 

that the default and loss severity rates are both constant over time, (4.123) reduces to 

 

( )( ) ( )
( )( ) ( )

0

0

1 0,

1 0,

T m T u

T m T u

e R u du
m S

e Q u du
δ

−

− −

−
= +

−

∫

∫
 (4.125) 

In this case, the loss premium is simply Sδ .  Observe that if the severity rate is 

zero, the default rate is simply added to the prepayment rate.  If the default rate is zero, 

(4.125) reduces to the standard prepayment model put forth by (Gorovoy and Linetsky 



81 

 

2007).  The conditional expectation in (4.1) can be expanded to include both prepayments 

(as Gorovoy and Linetsky have done) and defaults (as proposed here): 

 ( ) ( )( ){ } ( )0 0
0

exp
u

s s uE r h s k r ds f r r rγ δ
+ 

− + + − + =  ∫  (4.126) 

Factoring out the deterministic part from (4.126), which includes the default rate, 

we obtain: 

 ( ) ( ){ } ( )( ){ } ( )0 0
0 0

exp exp
u u

s uh s s E r k r ds f r r rδ γ
+ 

− + − + − =  ∫ ∫  (4.127) 

The remaining conditional expectation is identical to that of Gorovoy and 

Linetsky; the eigenfunction expansion calculation does not need to be changed.  This 

means that we can modify the deterministic (exogenous) prepayment and default rates 

and still use the same eigenvalues, eigenfunctions and expansion coefficients.  

Furthermore, the differential equation from the infinitesimal generator remains the same 

as in (Gorovoy and Linetsky 2007) if we use the Cox-Ingersoll-Ross interest rate model: 

 ( ) ( ) ( ) ( ) ( )( ) ( )21
2

f x xf x x f x x k x f xσ κ θ γ
+

′′ ′= + − − + −G  (4.128) 

With constant default rate and loss severity, using (4.125) we can solve for the 

mortgage rate from the following formula: 

 ( ) ( ) ( )
1

0, ; , 0Q R

n n n c n

n

r m S c c L T mϕ δ λ
∞

=

 − − = ∑  (4.129) 

Using the same parameters described in (Gorovoy and Linetsky 2007) , we find 

that the eigenvalues nλ , eigenfunctions ( )n
rϕ  and expansion coefficients  and Q R

n nc c  in 

(4.129) are not affected by the default rate, loss severity or exogenous prepayment rate.   

We can reuse the relatively difficult-to-compute eigenfunction expansion values and vary 
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the exogenous parameters to obtain mortgage rates under various prepayment and default 

scenarios. 

4.4.2 Mortgage Rate Sensitivity to Defaults 

Using our model, we can observe how various default assumptions affect mortgage rates.  

The simplest model assumes a constant prepayment rate and a constant default rate over 

the life of a mortgage.   Figure 5 shows how the price varies as we adjust the default rate 

and the loss severity assuming a constant prepayment rate. Table 7 shows mortgage rates 

under varying prepayment and default assumptions.     Observe that if the CDR is 0%, the 

yield (mortgage rate) remains constant, but if the severity rate is 0%, the yield increases 

with the “default” rate because it is simply added to the prepayment rate and the 

payments are merely accelerated.    



83 

 

 

Figure 5 - How constant default parameters affect mortgage rates    
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15-Year Mortgage Rates under varying default and loss assumptions 

holding exogenous prepayment rate constant at 4.5%.  
 
  Default               Loss Severity(%)         
  Rates(%)| 0.0000  10.0000  20.0000  30.0000 
----------+---------------------------------- 
   0.0000 | 7.9450   7.9450   7.9450   7.9450 
   0.3000 | 7.9488   7.9787   8.0086   8.0384 
   0.6000 | 7.9526   8.0124   8.0721   8.1318 
   1.2000 | 7.9601   8.0796   8.1991   8.3186 
   2.4000 | 7.9750   8.2139   8.4529   8.6919 
   
 
30-Year Mortgage Rates under varying default and loss assumptions 

holding exogenous prepayment rate constant at 4.5%. 
 
  Default               Loss Severity(%)         
  Rates(%)| 0.0000  10.0000  20.0000  30.0000 
----------+---------------------------------- 
   0.0000 | 7.8528   7.8528   7.8528   7.8528 
   0.3000 | 7.8579   7.8877   7.9176   7.9475 
   0.6000 | 7.8629   7.9227   7.9824   8.0422 
   1.2000 | 7.8728   7.9923   8.1119   8.2315 
   2.4000 | 7.8921   8.1313   8.3705   8.6098 

 
15-Year Mortgage Rates under varying exogenous prepayment and 

default rates holding severity rate constant at 20% 
 
 Prepay                       Default Rates(%)         
 Rates(%) | 0.0000   0.3000   0.6000   1.2000   2.4000 
----------+------------------------------------------- 
   0.0000 | 7.8857   7.9495   8.0132   8.1408   8.3956 
   4.0000 | 7.9386   8.0022   8.0658   8.1928   8.4467 
   4.5000 | 7.9450   8.0086   8.0721   8.1991   8.4529 
   5.0000 | 7.9514   8.0149   8.0784   8.2053   8.4590 
   5.5000 | 7.9576   8.0211   8.0846   8.2115   8.4650 
   6.0000 | 7.9639   8.0273   8.0908   8.2176   8.4710 

 
30-Year Mortgage Rates under varying exogenous prepayment and 

default rates holding severity rate constant at 20% 
 
 Prepay                       Default Rates(%)         
 Rates(%) | 0.0000   0.3000   0.6000   1.2000   2.4000 
----------+------------------------------------------- 
   0.0000 | 7.7720   7.8375   7.9029   8.0335   8.2945 
   4.0000 | 7.8443   7.9092   7.9741   8.1037   8.3625 
   4.5000 | 7.8528   7.9176   7.9824   8.1119   8.3705 
   5.0000 | 7.8612   7.9260   7.9907   8.1201   8.3784 
   5.5000 | 7.8695   7.9342   7.9989   8.1281   8.3862 
   6.0000 | 7.8776   7.9423   8.0069   8.1360   8.3939 
 

Table 7- Mortgage Rates under varying default assumptions    
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4.4.3 Piecewise Linear Prepayment and Default Rates 

If we allow the default rate to be time-dependent, but allow the severity rate to be 

constant, we can rewrite the formula in (4.122)  as: 

 

( )( ) ( ) ( )( ) ( ) ( )
( )( ) ( )

0 0

0

1 0, 1 0,

1 0,

T Tm T u m T u

T m T u

e R u du S e u Q u du
m

e Q u du

δ− − −

− −

− + −
=

−

∫ ∫

∫
 (4.130) 

We need to evaluate each of the integrals in (4.130) separately.   Let us start with 

the denominator.  First, by substituting the eigenfunction expansion in (4.5) 

 ( )
( ) ( )

( )0
0

0

1

0,

u

n
h s s ds u Q

n n

n

Q u e e c r
δ λ ϕ

∞
− + −

=

∫= ∑  (4.131) 

The denominator of (4.130) becomes (4.132) after we embed (4.131) and pull out 

the summation from the integral: 

 ( ) ( )( ) ( ) ( )0
0

0
0

1

1

u

n
T h s s ds um T uQ

n n

n

c r e e du
δ λ

ϕ
∞

− + −− −

=

∫−∑ ∫  (4.132) 

Define the time integral  

 ( ) ( )( ) ( ) ( )0
0

0
, 1

u

n
T h s s ds um T u

n
L m e e du

δ λ
λ

− + −  − − ∫= −∫ , (4.133) 

which is identical to Linetsky’s definition except for the introduction of the default rate1. 

We now can write the denominator of (4.130) as  

 ( )( ) ( ) ( ) ( )0
0

1

1 0, ,
T m T u Q

n n n

n

e Q u du c r L mϕ λ
∞

− −

=

− =∑∫ . (4.134) 

In a similar fashion  

                                                 

1 Note that we use the abbreviated form  ( ),
n

L mλ  to represent  Linetsky’s time integral ( )0, ; ,
n

L T mλ

for simplification ( ) ( ), 0, ; ,
n n

L m L T mλ λ=  
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 ( )( ) ( ) ( ) ( )0
0

1

1 0, ,
T m T u R

n n n

n

e R u du c r L mϕ λ
∞

− −

=

− =∑∫  (4.135) 

Now the remaining term, whose coefficient is the severity rate S, can be rewritten 

as: 

 ( ) ( )( ) ( ) ( )
( )0

0

0
0

1

1

u

h
T h s s dsm T u u Q

n n

n

u e e e c r du
δ λδ ϕ

∞
− +− − −

=

∫− ∑∫  (4.136) 

Pulling out the summation from the integral gives  

 ( ) ( ) ( )( ) ( ) ( )0
0

0
0

1

1

u

n
T h s s dsm T u uQ

n n

n

c r u e e e du
δ λϕ δ

∞
− +− − −

=

∫−∑ ∫  (4.137) 

We define a new “default” time integral:  

 ( ) ( ) ( )( ) ( ) ( )0

0
, 1

u

n
t

T h s s ds um T t

n
D m u e e du

δ λ
λ δ

− + −  − − ∫= −∫ , (4.138) 

 so (4.137) can be written as:  

 ( ) ( )0

1

,Q

n n n

n

c r D mϕ λ
∞

=

∑ . (4.139) 

From (4.134), (4.135) and (4.139) we can rewrite equation (4.130) as  

 

( ) ( ) ( ) ( )

( ) ( )

0 0

1 1

0

1

, ,

,

R Q

n n n n n n

n n

Q

n n n

n

c r L m S c r D m

m

c r L m

ϕ λ ϕ λ

ϕ λ

∞ ∞

= =
∞

=

+

=
∑ ∑

∑
 (4.140) 

Rearranging terms of (4.140) gives:  

 ( ) ( ) ( ) ( )0

1

, , 0Q R Q

n n n n n n

n

r mc c L m Sc D mϕ λ λ
∞

=

 − − = ∑  (4.141) 
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Equation (4.141) can be solved for m using an iterative technique such as the 

Secant Method.  First, however, we must show that the quantities ( ),
n

L mλ  and

( ) ,nD mλ can be expressed in closed form. 

4.4.4 Industry Prepayment and Default Models 

The Public Securities Administration (PSA) and the Standard Default Assumption 

(SDA) models are piecewise linear deterministic prepayment and default models 

respectively, used by the (The Bond Market Association 1999) and discussed by 

(Fabozzi, Ramsey and Ramirez 1994).  The integrals in the exponents in (4.133) and 

(4.138) involve the sum of prepayment and default rates.  The sum ( ) ( )0h s sδ+ is 

piecewise linear if both ( )0h s and ( )sδ are piecewise linear. 

The standard prepayment rate using the PSA model increases linearly over the 

first 30 months to 6% and then remains constant thereafter. (Gorovoy and Linetsky 2007) 

extend this to the continuous model: 

 ( ) ( )0 1 1 1h t b at t T aT t T   = < + ≥     (4.142) 

where 1 .024 and 2.5a T= = .   The parameter b represents the prepayment speed; 

for 100% PSA, b = 1. 

The Standard Default Assumption (SDA) established by the (The Bond Market 

Association 1999) applies to 30-year fixed-rate mortgages only.   For 100% SDA the 

default rate starts at zero and rises linearly to 0.6% per annum over 30 months.  During 

the next 30 months it remains constant at 0.6%, then over the next 60 months it drops to 

.03% where it remains constant until the end.   150% SDA would simply multiply the 
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default rate by 1.5.  The default rate using the SDA model can be expressed 

mathematically as: 

( ) { ( ) ( ) }1 1 1 1 1 1 2 2 1 3 2 3 2 3t b a t t T a T t T a t T T t T a T T t Tδ        = ≤ + ≥ − − ≤ ≤ − − ≥       
 

 

1 1

1

2

1

2 1

3 2

where  the default speed; e.g. for 150% SDA, 1.5

0.0024

0.00114

2.5 years (30 months)

5 years  (   30 months)

10 (   60 months)

b b

a

a

T

T T

T T

= =

=

=

=

= +

= +

 (4.143) 

It is perhaps easier to understand the SDA model by defining it in piecewise linear 

form:  

 ( )

1 0 1

1 1 1 2

1

1 1 2 2 2 2 3

1 1 2 2 2 3 3

, 0

,

,

,

a t T t T

a T T t T
t b

a T a T a t T t T

a T a T a T T t T

δ

= ≤ ≤


< ≤
= 

+ − < ≤
 + − < ≤

 (4.144) 

  

Substituting numerical values we get the following: 

( ) 1

.0024 , 0 2.5

0.006, 2.5 5

.0117 .00114 , 5 10

.0.003, 10 30

t t

t
t b

t t

t

δ

≤ ≤
 < ≤

= 
− < ≤

 < ≤

 

 

Figure 6 shows the Constant Default Rate (CDR) versus the Standard Default 

Assumption (SDA) values in (4.143) at varying speeds as set by the Bond Market 
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Association.  Figure 7 combines the PSA prepayment model with the Standard Default 

Assumption to show the overall prepayment rate. 

 

Figure 6 - Comparison of Constant Default Rate to Standard Default Assumption 

 

Figure 7 - Combining the PSA prepayment model with the Standard Default Assumption 
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The cumulative default rate using the SDA model is:  

( )

2

2

1
0

0.0012 ; 0 2.5

0.006 0.0075 ; 2.5 5

.00057 .0117 0.02175; 5 10

0.0003 .03525; 10 29

0; 29

u

u u

u u

s ds b u u u

u u

u

δ

 ≤ ≤


− ≤ ≤


= − + − ≤ ≤
 + ≤ ≤


≥

∫  (4.145) 

The PSA rate can be expressed as: See (Gorovoy and Linetsky 2007). 

 ( )
21

12

0 20 1
1 1 12

;

;

u au u T
h s ds b

aT aT u u T

 ≤
= 

− + ≥
∫  (4.146) 

Expressed numerically,  

 ( )
2

0
0

0.012 ; 2.5

0.06 0.075; 2.5

u u u
h s ds b

u u

 ≤
= 

− ≤
∫  (4.147) 

Combining the default rate (SDA) in (4.145) and the PSA prepayment rate in 

(4.147) gives: 

( ) ( )

( )

( ) ( )

( )

2

1

1 1

20
1 1 1

1 1

0.012 0.0012 ; 0 2.5

0.06 0.006 0.075 0.0075 ; 2.5 5

.00057 .0117 0.06 0.02175 0.075 ;5 10

0.0003 0.06 .03525 0.075 ; 10 30

u

b b u u

bu b u b b u u
h s s ds

b u b b u b b u

b b u b b u

δ

 + ≤ ≤


+ − − ≤ ≤
+ =    − + + − + ≤ ≤

 + + − ≤ ≤

∫

 (4.148) 

The general form is: 

( ) ( )( ) ( ) ( )

( ) ( )

21
12

21
1 1 1 1 1 22

2 2 21 10
1 1 2 2 1 1 2 2 2 2 32 2

2 2 21
1 2 2 3 1 1 2 2 3 32

1 1 1 2 2 1

,

;

;

;

where  and 

t

Hu u T

H T H T u T u T

h s s ds
H T H T H T H T u H u T u T

HT H T T H T H T T u T u T

H ab a b H a b

δ

 ≤


− + ≤ ≤
+ = − + + + − ≤ ≤

  − + − + + − ≤ ≤    

= + =

∫

 (4.149) 
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Using (4.149), we can convert (4.133) to closed form  for the combined PSA, 

SDA model:  

 

( )
( )( )
( )( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

211
12

21
2 1 1 1 12

1

2 2 21 1
3 1 1 2 2 1 1 2 2 22 2

2

2 2 21
1 1 2 2 3 1 1 2 2 32

3

,

0

,

1

1

1

1 .

n

n

n

n

PSA SDA n

T H u um T u

T H T H T u um T u

T

T H T H T H T H T u H u um T u

T

T H T H T T H T H T T u um T u

T

L m

e e du

e e du

e e du

e e du

λ

λ

λ

λ

λ

− −− −

− −− −

+ − + + −− −

   + − − + − −− −   

=

− +

− +

− +

−

∫

∫

∫

∫

 (4.150) 

The integral in the first term in (4.150) has already been solved by (Gorovoy and 

Linetsky 2007), the only difference being the constant coefficient of 2u .   The remaining 

terms involve integrals with linear exponents of the form  

 
( )

( )0 1

0 1

1

c c u
c c u e

e du
c

− +
− +

= −∫  (4.151) 

or with quadratic exponents of the form2:  

 
( )2

0 1 2

2

0 2 1 2 1

2 2 2

4 21
exp erf

2 4 2

c c u c u c c c c u c
e du

c c c

π− + +   − +
= −        

∫  (4.152) 

where the error function is defined as:  

 ( )
2

0

2
erf

z
tz e dt

π

−= ∫ . (4.153) 

                                                 

2 Please note (4.151) and (4.152) are expressed as indefinite integrals without the constant of integration for 

clarity.  The constants will cancel out when this is part of a definite integral. 
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Thus to calculate ( ), ,
PSA SDA n

L mλ  we simply need to obtain the coefficients ic  and 

the endpoints of each time interval and calculate the integral piecewise.  Define the 

multivariate function  

 ( ) ( )2
1 0 1 2

0 1 2, ,
i

i

T c c u c u

i
T

L c c c e du
+ − + +

= ∫ . (4.154) 

Now we can define:  

 ( ) ( ) ( )
3

, 0 1 2 0 1 2

0

, , , , ,CPR MDA n i i i i i i i i

i

L m L c c c L c mT c m cλ
=

= − + −∑ . (4.155) 

From (4.149)  we can obtain the coefficients ij
c for(4.155).   They are listed in the 

matrix C below: 

 ( )

( ) ( )

1
12

21
1 1 1 12

2 21 1
1 1 2 2 1 1 2 2 22 2

2 2 21 1
1 1 2 2 3 1 1 2 2 32 2

0

0

0

n

n

n

n

H

H T H T

H T H T H T H T H

H T H T T H T H T T

λ

λ

λ

λ

 
 − + 

=  − + + + −
 
 − − − + + − 

C . (4.156) 

Observe that (4.152) involves complex numbers, since 2c  takes on negative 

values in (4.156).  However, the result is real. 

Let us rewrite (4.138) as: 

 

( ) ( )( )
( )( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

211
12

212
1 1 1 12

1

2 2 21 1
3 1 1 2 2 1 1 2 2 22 2

2

2 2 21
1 1 2 2 32

, 1 1
0

1 1 1

1 1 1 2 2 2

1 1 1 2 2 2 3

, 1

1

1

1

n

n

n

T H u um T u

PSA SDA n

T H T H T u um T u

T

T H T H T H T H T u H u um T u

T

H T H T Tm T u

D m b a u e e du

b a T e e du

b a T a T a u e e du

b a T a T a T e e

λ

λ

λ

λ
− −− −

− + −− −

+ − + + −− −

 + − −− −  

= − +

− +

+ − − +

+ − −

∫

∫

∫
( )1 1 2 2 3

3

n
T H T H T T u u

T
du

λ + − − 

∫

(4.157) 
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Each term of (4.157) can be written as a linear combination of the function 

(4.154) and (4.158) below:  

 ( ) ( )2
1 0 1 2

0 1 2, ,
i

i

T c c u c u

i
T

D c c c ue du
+ − + +

= ∫ . (4.158) 

Using the error function, we can write the integral in (4.158) as:   

 
( )

( )2
0 1 2

2
0 1 2

2

1 1
1 2

2 2

3 2

2 2

exp erf
4 2

2 4

c c u c u
c u c u c u

c c
c u c

c ce
ue du

c c

π
− + +

− + +

  
+       = − −∫  (4.159) 

Now we have  

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

, 1 1 0 0,0 0,1 0,2 0 0,0 0,1 0,2

1 1 1 1 1,0 1,1 1,2 1 1,0 1,1 1,2

1 1 1 2 2 2 2,0 2,1 2,2 2 2,0 2,1 2,2

1 2 2 2,0 2,1 2,2 2 2,0 2,1

, , , , ,

, , , ,

, , , ,

, , ,

PSA SDA n
D m b a D c c c D c mT c m c

b a T L c c c L c mT c m c

b a T a T L c c c L c mT c m c

b a D c mT c m c D c c

λ  = − + − + 

 − + − + 

 + − + − + 

+ − − ( )

( ) ( ) ( )

2,2

1 1 1 2 2 2 3 1 3,0 3,1 3,2 1 3,0 3,1 3,2

,

, , , , .

c

b a T a T a T L c c c L c mT c m c

  + 

 + − − + − 

(4.160) 

We are set to solve the non-linear equation for the mortgage rate when the 

prepayment and default rates are piecewise linear over time, namely:  

 ( ) ( ) ( ) ( )0 , ,

1

, , 0Q R Q

n n n PSA SDA n n PSA SDA n

n

r mc c L m Sc D mϕ λ λ
∞

=

 − − = ∑  (4.161) 

where eigenvalue expansion parameters are the same as before, the severity rate S is a 

constant, and ( ) ( ), ,,  and ,
PSA SDA n PSA SDA n

L m D mλ λ  are defined in (4.150) and (4.160) 

respectively.  Note that when both the default and severity rates are zero, (4.161) 

simplifies to: 
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 ( ) ( ) ( )0

1

, 0Q R

n n n c n

n

r mc c L mϕ λ
∞

=

 − = ∑ . (4.162) 

This is identical to the non-linear equation to be solved in (Gorovoy and Linetsky 2007). 

4.4.5  Comparing Discrete and Continuous Default Models 

The default model is as follows starting with(4.120): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
T T

t t
M t B t B u R t u du mB u S u u B u Q t u duδ= − + −  ∫ ∫  (4.163) 

For a fixed-rate mortgage 

 ( )
( )1

1

m T t

mT

e
B t

e

− −

−

−
=

−
 (4.164) 

Assuming a constant interest rate r 

 ( ) ( )( ),

u u

s s s s s s
t t

r h ds r h ds r h u t

t
Q t u E e e e

δ δ δ− + + − + + − + + − ∫ ∫= = = 
 

F  (4.165) 

And  

 ( ) ( )( ),

u u

s s s s s s
t t

r h ds r h ds r h u t

t
R t u E re re re

δ δ δ− + + − + + − + + − ∫ ∫= = = 
 

F  (4.166) 

Now applying (4.164) (4.165) and (4.166) to (4.163) we obtain: 

 ( )
( ) ( ) ( )( ) ( )( )1 1

1

Tm T t m T u r h u t

t

mT

e m S r e e du
M t

e

δδ− − − − − + + −

−

− + − − −
=

−

∫
 (4.167) 

Letting r r h δ= + +� , we have 

 ( )( ) ( )
( ) ( ) ( )1

1
r T t r T t m T t

T m T u r u t

t

e e e
e e du

r m r

− − − − − −
− − − − − −

− = +
−∫

� �

�

� �
 (4.168) 

Putting it all together gives the closed form solution:  
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 ( )

( ) ( )
( ) ( ) ( )1

1

1

r T t r T t m T t
m T t

mT

e e e
e m S r

r m r
M t

e

δ
− − − − − −

− −

−

 − −
− + − − + 

− =
−

� �

� �
 (4.169) 

We can rewrite this as: 

( ) ( )
( )

( ) ( ) ( )

( )

1

1
1

r T t r T t m T t

m T t

e e e
m S r

r m r
M t B t

e

δ
− − − − − −

− −

  − −
− − +  

−  = + 
− 

 
 

� �

� �
 (4.170) 

The APL Function PriceDefaults is shown below: 

    1PriceDefaults 
[0]   PriceDefaults4{ 
[1]  6Α M T h d S 
[2]  6Α m  Mortgage Rate 
[3]       6Α T  Maturity in years 
[4]       6Α h  Prepayment Rate 
[5]       6Α d  Default Rate 
[6]       6Α S  Severity Rate 
[7]       6Ω r  Yield 
[8]       6Ω t  Seasoning 
[9]       6 0.08 30 0.12 0.12 0.2 PriceDefaults .08 0 
[10]  (m T h d S)4Α 
[11]  r t4Ω 
[12]  R4r+h+d 
[13]  z4(1-*-R×T-t)÷R 
[14]  z4z+(-/*-R m×T-t)÷m-R 
[15]  z4z×m-r+S×d 
[16]  100×1+z÷1-*-m×T 
[17]  }  
    1 
 

Consider an 8% MBS with a prepayment rate of 1% CPR and 1% MDR.  The 

WAM is 30 years, loss severity is 20% and the time to liquidation after the loans stop 

paying is 12 months. 
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The cash flows calculated by the Bond Market Association produce an IRR or 

yield of 5.037%.   Now let us approximate this with a continuous model. 

Convert the mortgage rate to continuous form: 

   @4m412×A1+8÷1200 

0.07973451262  

Now annualize the prepayment and default rates: 

    @4CPR ADR41-(1-.01)*12 
0.1136151283 
 

The adjusted loss severity S* is a function of discounted recovery amount tL  and the 

current balance: 

 
( )

( )
1

* 1 1 1 1
mlml

t t mlt

t t

t t

S B eL e
S S e

B B

−−
−−

= − = − = − −  (4.171) 

Letting 0.20tS S= = , l = 1.0,  m =.0 7973 

Using the nominal rate of M = 8%, we can write  

 
( )

12

1
* 1

1
12

s
S

M

−
= −

 
+ 

 

 (4.172) 

Thus  ( ) 0.7973* 1 1 0.2 0.2613S e
−= − − =  

Or we can write:  ( ) ( )
12

* 1 1 .2 1 .08 12 0.2613S = − − + =
 

The original loss severity is S = 20%; the adjusted loss severity is S* = 26.13%.  

The yield of the continuous model is 5.0024% 

        f4{100-m 30 CPR ADR 0.2615 PriceDefaults Ω 0} 
        f SecAlg u,f¨u40.045 0.055 
0.05002415657 
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We define cumulative defaults as the total dollar amount of principal that is not 

paid due to default.  This includes any amounts that may be recovered from foreclosure.  

 ( ) ( )
( ) ( )

0

0
CumulativeDefaults

u
T h s s ds

u B u e du
δ

δ
− +  ∫= ∫  (4.173) 

In the simple case with constant prepayments and defaults we have δ(u) = δ and 

h(u) = h.  Using the standard amortization  ( ) ( )( ) ( )1 1
m T u mT

B u e e
−

= − −  , equation 

(4.173) reduces to: 

 
( ) ( )1 1

1

h T h m T

mT

mT

e e
e

e h h m

δ δδ

δ δ

− + − + −
−

−

 − −
− 

− + + − 
 (4.174) 

 Now assume 1% MDR and 1% CPR with a coupon rate of 8.0% and a 30-year 

WAM.  121 (1 .01) .113615CPR = − − =   h = −ln(1-CPR) = 0.120604        m=12 

ln(1+.08/12)=0.797345 

The default rate is the same as the prepayment rate so δ = .120604 .  Using these 

values we find  cumulative defaults to be 47.53% of the total (over the lifetime of the 

pool).  The discrete model gives 47.58%.  Of course the constant rate of 1% per month is 

fairly large. 

Now let’s try the SDA (standard default assumption) model.   

 

( )( )
( )( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( ) ( )

211
12

21
2 1 1 1 12

1

2 2 21 1
3 1 1 2 2 1 1 2 2 22 2

2

2 2 21
1 1 2 2 3 1 1 2 22

1
1

0

1 1

1 1 2 2 2

1 1 2 2 2 3

CumDefaults 1
1

1

1

1

T H um T u

mT

T H T H T um T u

T

T H T H T H T H T u H um T u

T

H T H T T H T H T Tm T u

b
a u e e du

e

a T e e du

a T a T a u e e du

a T a T a T e e

−− −

−

−− −

+ − + +− −

 + − − + −− −  

= − +
−

− +

+ − − +

+ − −

∫

∫

∫
( )3

3

T u

T
du

   
∫

 (4.175) 
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Although (4.175) is a fairly complex integral, it can be written in closed form by 

using the error function.  

The cumulative defaults for 150% PSA and 100% SDA are 2.78% for the discrete 

model.  For the continuous model it is 2.79079%.   For other combinations see Table 8 

below.  When prepayment rates and default rates are low, the values are within 1/100 of a 

percent.  For higher prepayment/default rates, the values differ at most by about 1/3 of 

one percent. 

Continuous Cumulative Defaults from Model 
 
% PSA    50   100  150   200   250   300 
----------------------------------------- 
100    1.56  3.09  4.59  6.06  7.51  8.93 
125    1.48  2.93  4.36  5.76  7.14  8.49 
150    1.41  2.79  4.15  5.49  6.80  8.09 
175    1.34  2.66  3.96  5.23  6.49  7.72 
200    1.28  2.54  3.78  5.00  6.20  7.38 
250    1.17  2.33  3.47  4.58  5.69  6.77 
300    1.08  2.14  3.19  4.22  5.24  6.24 
400    0.93  1.84  2.74  3.63  4.51  5.37 
500    0.81  1.60  2.39  3.17  3.93  4.69 
 
Discrete Cumulative Defaults  
(from Standard Formulas G Bond Market Association) 
                 % SDA 
% PSA    50   100  150   200   250   300 
----------------------------------------- 
100    1.56  3.09  4.59  6.08  7.53  8.97 
125    1.47  2.92  4.35  5.76  7.14  8.51 
150    1.40  2.78  4.13  5.47  6.79  8.08 
175    1.33  2.64  3.93  5.20  6.45  7.69 
200    1.26  2.51  3.74  4.95  6.14  7.32 
250    1.15  2.28  3.40  4.50  5.59  6.66 
300    1.05  2.08  3.10  4.11  5.10  6.08 
400    0.88  1.74  2.60  3.45  4.29  5.12 
500    0.74  1.48  2.21  2.93  3.64  4.35 

Table 8 - Cumulative Defaults 



99 

 

Chapter 5.  Calibration and Parameter Estimation  

In order to obtain parameter estimates for interest rate models, we first need to 

choose a theoretical forward rate model.    From data yields of varying maturities and we 

calculate empirical forward rates.   We then try to find the parameters of theoretical 

forward rates that most closely match the empirical forward rates using a least-squares 

approach.   In this chapter we will show some examples of calibration when the   yield 

curves exhibit typical upward-sloping behavior.  After that we will examine some of the 

problems that occur when the term structure of interest rates is flat, inverted or humped.   

5.1 Short Rate Parameter Calibration  

Interest rates r generally are comprised of six components: 

 *r r IP DP MP LP OP= + + + + ±  (5.1) 

where r* is the base risk-free interest rate, IP is the Inflation Premium, DP is the Default 

premium, MP is the maturity premium, LP is the liquidity premium, and OP is the option 

premium.  The Corporate “A” benchmark incorporates the inflation premium, the default 

premiums from the “A” rating, and the maturity premium, that is incorporated in the 

forward rate.  The liquidity premium may also be included in this benchmark.  The 

Treasury Rates also include the inflation and maturity premiums, but not the liquidity 

premium since they are easily traded.  The option premium is not present in either 

benchmark, but would be accounted for in the prepayment model.  Since they are traded, 

MBS are more liquid than mortgage pools or individual mortgages. See (Kalotay, Yang 

and Fabozzi 2004). Thus, the liquidity premium would be the difference between an 

MBS and weighted average yield of the corresponding mortgage pool. 
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In the prepayment only model, the prepayment option is added to the discount rate 

which is comparable to the Corporate “A” benchmark with the same duration according 

to (Kalotay, Yang and Fabozzi 2004): 

Mortgage Rate = Corporate “A” Rate + Prepayment Option 

By including defaults, in addition to the prepayment option, we add a loss 

premium which can be calculated from the reduced cash flows.  Thus we can use the risk-

free rate with the same duration (Treasury rate) as a base; the prepayment option and the 

loss premium can be added to obtain the mortgage rate: 

Mortgage Rate = Risk-Free Rate + Prepayment Option +   Loss Premium 

Another way to achieve this is to estimate the spread between Corporate “A” rates 

and treasury rates.  We then add this general spread to the treasury rates and calibrate 

from these augmented treasury rates the mortgage rate: 

MortgageRate = Risk-Free Rate +Spread + Prepayment Option 

 Therefore, instead of calibrating the interest rate model to the Corporate A data, 

we can calibrate it directly to U.S. treasury rates.   This is a distinct advantage since 

treasury issues are seen as a purer benchmark than corporate bonds and they are also 

more extensively archived. 

5.1.1 Short Rate Models 

The simplest short-rate model that can be calibrated to market data is the Ho-Lee 

model which consists of a deterministic, time-dependent part and a stochastic part.  It is 

represented by the following stochastic differential equation: 

 t t tdr dt dWθ σ= +  (5.2) 
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where θ and σ are parameters, and tW is a Brownian motion process with respect to risk-

neutral measure.  

The first mathematical model to describe the random fluctuations of interest rates 

using mean-reversion was the one introduced by (Vasicek 1977). It is a one-factor, short-

rate model as it describes interest rate movements as being driven by only one source of 

market risk. The model can be used in the valuation of interest-rate derivatives. The main 

shortcoming of this model is that it allows the existence of negative interest rates.  One 

can write a stochastic differential equation that describes the model as: 

 ( )t t t
dr r dt dWκ θ σ= − +  (5.3) 

Under the risk-neutral measure, the parameter θ is the long-term mean interest 

rate, σ is the volatility term, and κ represents the rate of adjustment of the mean-

reversion. 

The model introduced by (Cox, Ingersoll and Ross 1985) also describes the 

evolution of interest rates. The stochastic differential equation that captures the essence 

of this model is given by: 

 ( )t t t tdr r dt r dWκ θ σ= − +  (5.4) 

The factor rt, introduced in the stochastic term, makes the model more 

complicated due to its non-linearity but also more realistic since  if 2κθ ≥ σ2, the interest 

rate cannot become negative. 

In some variants of Vasicek and CIR models θ is a deterministic, time-dependent 

function.  While this may be useful in pricing simple bonds such as treasuries, it adds too 

much complexity to the model to be useful in pricing mortgage-backed securities.  
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Mortgages, unlike treasury bonds, contain embedded options and principal cash flows, so 

we prefer to use a simpler interest-rate model with a constant θ.  

In order to find θ, κ and σ for the Cox-Ingersoll-Ross (CIR) and Vasicek 

models, we can obtain historical short rates or express the theoretical forward rates 

via the affine model for bond pricing.    We can approximate short rates by looking at 

historical three-month treasuries for example.    The problem with short rates is that 

we can only obtain them from the past.  Forward rates, on the other hand, project 

future interest rates.   Thus if we wish to predict the direction of interest rates it 

makes sense to examine forward rates.      By transforming yields into forward rates 

and then applying the least squares method, we can fit the theoretical forward rate 

to that empirical forward rate data. The procedure boils down to a non-linear, non-

convex minimization problem which can be addressed by an appropriate solver.  

5.1.2 Theoretical Forward-Rate Models  

To express the theoretical forward rate, recall that in the affine model, the bond 

price is described by 

 ( ) ( ) ( ), ,
, , tA t T C t T r

tB t T r e
−

=
.
 (5.5) 

The functions A(t,T) and C(t,T) are determined using the general affine model 

which is:  

 ( ) ( ), ,
t t t t

dr t r dt t r dWµ σ= +  (5.6) 

where ( ) ( ) ( ) ( ) ( ) ( )2,  and ,t t t tt r t r t t r t r tµ α β σ γ δ= + = + . 
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For both the Vasicek and CIR models, α(t) = −κ and β(t) = κθ.   For Vasicek 

γ(t) = 0 and δ(t) = σ²;  For CIR   γ(t) = σ² and  δ(t) = 0.   

The term structure differential equation for bonds is (See (Shreve 2004) p. 

270): 

 ( ) ( )
2

21
2 2

, ,
t t

g g g
rg t r t r

r t r
µ σ

∂ ∂ ∂
= + +

∂ ∂ ∂
 (5.7) 

Letting   

 ( ) ( ) ( ) ( ), , exp , ,
t t

g t r B t T A t T r C t T= = −    (5.8) 

 ( )
2

2

2
, , andt

g g A C g
gC t T g r gC

r t t t r

∂ ∂ ∂ ∂ ∂ 
= − = − = 

∂ ∂ ∂ ∂ ∂ 
.  

We rewrite (5.7) as 

 ( ) ( ) 21
2

A C
rg gC r g r r gC

t t
α β γ δ

∂ ∂ 
= − + + − + + 

∂ ∂  .
 (5.9) 

Eliminating g and collecting like terms gives us: 

 ( )2 21 1
2 2

1A C C C C rβ δ α γ′ ′− + = + + −  (5.10) 

Since r is stochastic, (5.10) will not hold unless the constant in front of tr  is 0.  From this 

we can derive the system of differential equations for the general affine model (Shreve 

2004)pp.272-277: 

2 21 1
2 2

1 and C C A C Cα γ β δ′ ′+ − = − = −  

5.1.3 Vasicek Model 

For the Vasicek Model the differential equations for C and A can be written as: 
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2 21
2

1
C A

C C C
t t

κ κθ σ
∂ ∂

− = − = −
∂ ∂

 

Solving the first equation and using the terminal condition C(T,T)=0 , we obtain  

 ( ) ( )( )1
, 1

T t
C t T e

κ

κ
− −

= −  (5.11) 

Now substituting this into the second equation we get  

 ( )( ) ( )( )
2 2

2
1 1

2

T t T tA
e e

t

κ κσ
θ

κ
− − − −∂

= − − −
∂

 (5.12) 

Taking the derivative of (5.11) we obtain ( )T tC
e

t

κ− −∂
= −

∂
 (5.13) 

The forward rate is defined as ( )
( )ln ,

, t

B t T C A
f t T r

T T T

∂ ∂ ∂
= − = −

∂ ∂ ∂
 (5.14) 

Substituting(5.12) and (5.13) into (5.14) we obtain (5.15) (See Baxter and Rennie p. 154). 

 ( ) ( ) ( )
2

2

0 2
0, 1 1

2

T T T
f T e r e e

κ κ κσ
θ

κ
− − −= + − − −  (5.15) 

For the Vasicek model R(0,t) and Q(0,t) can be obtained in closed form.   

Observe that  

 ( )
2

2
lim 0,

2T
f T

σ
θ

κ→∞
= −  (5.16) 

demonstrates that in order to keep the theoretical forward rate from becoming negative, 

2 22κ θ σ≥ . 

5.1.4 Cox-Ingersoll-Ross Forward Rate Model 

For the CIR model the functions A(t,T) and C(t,t) can be found in (Shreve 2004) 

on pages 275-277 and they are: 
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 ( )
( )

( ) ( )

1
2

2 1 1
2 2

2
, ln

cosh sinh

T t
k e

A t T
T t T t

κ
θ ρ

σ ρ ρ κ ρ

− 
= −  

 − + −       
 (5.17) 

and 

 ( )
( )

( ) ( )

1
2

1 1
2 2

2sinh
,

cosh sinh

T t
C t T

T t T t

ρ

ρ ρ κ ρ

−  =
− + −      

  (5.18) 

where 2 22ρ κ σ= + .  Since the forward rate is: 

 ( )
( )ln ,

,
t

B t T A C
f t T r

T T T

∂ ∂ ∂
= − = − +

∂ ∂ ∂
 (5.19) 

and we have 

 
( )

( ) ( )

1
2

1 1
2 2

2 sinh

cosh sinh

T tA

T T t T t

κθ ρ

ρ ρ κ ρ

− ∂  =
∂ − + −      

 (5.20) 

 
( ) ( )( )

2

2
1 1
2 2

cosh sinh

C

T T t T t

ρ

ρ ρ κ ρ

∂
=

∂ − + −      

 (5.21) 

it follows that we can rewrite (5.19) as: 

 
( )

( )
( ) ( )

( ) ( ) ( )

2
1
2

0

1 1
2 2

2 sinh
0,

where cosh sinh

T
f T r

G T G T

G T T T

κθ ρ ρ

ρ ρ κ ρ

 
= − +  

 

= +

 (5.22) 

We have now established theoretical forward rate models for Vasicek and Cox-

Ingersoll-Ross in (5.15) and (5.22) respectively. 

5.1.5 Empirical Forward Rates 

Although mortgages are comparable to the credit risk of Corporate A Bonds, we 

prefer to use risk-free Treasuries.  The main reason is that Corporate A interest rates for 
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various maturities are available from Bloomberg only as far back as September 2002.  

Also treasuries are the largest and most liquid bond market and are for all practical 

purposes considered “risk-free”.  (In light of S&P’s recent downgrading of U.S. Debt, 

this may be called into question.) The ready availability of the data allows us to study its 

term structure in detail.  We can easily approximate Corporate A rates by adding a spread 

to Treasury rates.  This spread can be estimated by calculating the average difference 

between Corporate A rates and Treasury Rates over a specified period.  Between 

September 2002 and October 2008, this average is 74 basis points. 

Mortgage-backed securities are coupon bonds, so we need to look at the entire 

yield curve to capture the term structure of interest rates.  The U.S. Treasury publishes 

daily yield curve rates on the web:  

http://www.treasury.gov/resource-center/data-chart-center/Pages/index.aspx 

Because the one-month and 30-year rates are not available for the entire period of 

study, we will not include them in our estimation of forward rates.  Also the one-month 

rates can be somewhat unstable.  We will use the 3-month Treasury rates as an estimate 

for the short rate r₀. 

The forward rates can be estimated from the spot rates in the following manner.  

See (Hull 2003) page 99): 

 2 2 1 1

2 1

F

R T R T
R

T T

−
=

−
 (5.23) 

where R₁ and R₂ are consecutive spot rates on the yield curve and T₁ and T₂ are their 

corresponding maturities. 

A typical upward-sloping treasury yield curve is shown in Figure 8: 
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U.S. Treasury Spot Rates Corresponding to Figure 8 

Date 1 Mo 2 Mo 6 Mo 1 year 2 year 3 year 5 year 7 year 10 yr 20 yr 

1/31/05 2.06% 2.51% 2.79% 2.96% 3.29% 3.43% 3.71% 3.92% 4.14% 4.64% 

 

To calculate the one-year forward rate, we take the one-year spot rate and look for 

the nearest longer-maturity spot rate which is the two-year rate.  We calculate the forward 

rate as follows: 

 
( ) ( )3.29 2 2.96 1

3.62
2 1

−
=

−
 (5.24) 

Since the forward rate calculation is a linear function of the spot rates, it does not 

matter when we add the Corporate A Spread.  In other words adding a spread to the spot 

rate is equivalent to adding a spread to the forward rate:    

 
( ) ( ) ( )2 2 1 1 2 2 1 1 2 1 2 2 1 1

2 1 2 1 2 1

R S T R S T R T RT S T T R T RT
S

T T T T T T

+ − + − + − −
= = +

− − −
 (5.25) 

Figure 8 shows the relationship between spot rates and forward rates when the 

yield curve is upward-sloping. 

 

5.1.6  Continuous-Time Forward Rates 

The continuous model requires us to convert annualized rates to continuously 

compounded rates. 

 ln 1
100

c

R S
r

+ 
= +  

 (5.26) 

Applying a spread of 74 basis points to the 1-year forward rate on January 2005  

obtained in (5.24), we arrive at the continuous rate:  



109 

 

 
3.62 0.74

ln 1 0.0427
100

+ 
+ =  

 (5.27) 

This continuous rate of 4.27% differs from the nominal rate of 3.62 + 0.74 = 

4.34% by 7 basis points. 

We can easily automate the calculation of a forward rate curve from a yield curve.  

Appendix D shows how to do this in both Mathematica and APL.  Figure 8 shows the 

relationship between the adjusted continuous forward and spot rates for January 2005.  

Observe the upward-sloping of both the yield curve and the forward curve.  As we will 

discover in the next section, it is fairly easy to calibrate the parameters when the forward 

rate exhibits this type of pattern. 

5.1.7 Calibration of Vasicek and CIR Parameters 

To calibrate parameters we need to take the empirical forward rates and find the 

best fit using the theoretical Vasicek and CIR Models.   This can be defined as a non-

linear, least-squares optimization problem.  We define the objective function as: 

 ( ) ( )
2

1

ˆmin , , ; , , subject to  , , 0
n

i i

i

f t T f t T θ κ σ θ κ σ
=

 − > ∑  (5.28) 

where the ( )ˆ ,
i

f t T  are the empirical forward rates (calculated using (5.23) and  the spot 

rates on the treasury web site), and the ( ), ; , ,if t T θ κ σ are the theoretical forward rates 

expressed in terms of the model parameters D, κ and σ that have to be estimated. 

Mathematica provides several optimization functions:  Minimize, 

NMinimize, FindMinimum and FindFit.  Minimize performs symbolic 

optimization, while NMinimize does nonlinear constrained global optimization,  
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FindMinimum finds local constrained or unconstrained optimization and FindFit is 

restricted to a least squares (L₂) approach.  Since there is no guarantee that the feasible 

region is convex, NMinimize appears to be the best choice. 

Before calculating the parameters, we need to determine the short rate r₀.  Our 

best estimate for this uses the 3-month Treasury rate because the one-month Treasury rate 

is not always available and is too volatile when the interest rates are very low.  For 

January 31, 2005, the 3-month Treasury rate is 2.51%.  To this we will add our spread of 

74 basis points and we will convert to the continuous rate as follows: 

 ( ) ( ) ( )0̂ ln 1 ln 1 .0251 .0074 ln 1.0325 0.031983r r s= + + = + + = =  (5.29) 

To set up the Vasicek calibration, we obtain the empirical forward rates from 

treasury rates of varying maturities from http://www.treasury.gov: 

FWD= {2.51, 3.07, 3.13, 3.62, 3.71, 4.13, 4.445, 4.65333, 5.14}; 

 
and their corresponding maturities: 

T={1/4,1/2,1,2,3,5,7,10,20}; 

 

To ensure the parameter estimates are greater than zero, we create a dummy 

constraint which is slightly larger than zero: 

 dt=1/10^6; 

  

 We must include the spread to Corporate A bonds before the calibration: 
 
 Spread=0.74; 

  

Now we set up the theoretical Vasicek forward rate equation  from  (5.15): 
  
XX := Exp[-kappa*T] 

FV[r0_]:=Drop[XX*r0+theta*(1-XX)-sigma^2/(2*kappa^2)*(1-XX)^2,-1] 

 

We define the optimization model to estimate the Vasicek parameters as total 

least squares difference between observed and theoretical forward rates:  
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PV[FWD_]:=NMinimize[{Total[(Drop[FWD,1]-FV[FWD[[1]]])^2], 

        kappa>=dt,sigma>=dt,theta>=dt},{kappa,sigma,theta}] 

 

 Now we input the observed forward rates into the model 
 
PV[Log[1+(FWD+Spread)/100]] 

 

 and obtain the following Vasicek parameter estimates: 
 

 ˆˆ ˆ0.31695 0.04332 0.06459V V Vκ σ θ= = =  (5.30) 

Substituting the values in (5.30) into the Vasicek forward rate model (5.15) we 

can obtain the one-year theoretical forward rate by setting T = 1 and using the continuous 

3-month Treasury rate plus spread: 
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0
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ˆ1ˆ ˆ0,1 1 1
ˆ2

0.04332 .27163
0.72837 0.031983 0.06459 0.27163 0.5
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× 
= × + × −  

 

=

(5.31) 

We compare this theoretical rate of 4.015% to the actual continuous one-year 

forward rate 4.26% which we obtained in(5.27). The difference is less than 25 basis 

points. 

Now let’s Calibrate the Cox-Ingersoll Ross model.  Using the same empirical 

forward rates and maturities, we generate the theoretical Cox-Ingersoll-Ross forward rate 

model from(5.22): 

 rho := Sqrt[kappa^2+2*sigma^2] 

 A := 2*kappa*theta*Sinh[0.5*rho*T]/G 

 G := rho*Cosh[0.5*rho*T]+kappa*Sinh[0.5*rho*T] 

 CC := rho/G 

 FC[r0_] := Drop[A+r0*CC^2,-1] 
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The Cox-Ingersoll-Ross parameter optimization model is also a least squares 

model and includes the constraint  22κθ σ>  to prevent interest rates from going 

negative. 

PC[FWD_]:=NMinimize[{Total[(Drop[FWD,1]-FC[FWD[[1]]])^2], 

   2*kappa*theta-sigma^2>=dt,sigma>=0},{kappa,sigma,theta}] 

 

We then apply the model to the observed forward rates 

PC[Log[1+(FWD+Spread)/100]] 

and obtain the Cox-Ingersoll-Ross forward rate parameters: 

 ˆˆ ˆ0.32638 0.17805 0.06210CIR CIR CIRκ σ θ= = =  (5.32) 

Now we can calculate the 1-year theoretical CIR forward rate from (5.29) and 

(5.32)as follows: 
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( )
( )

( ) ( )

2 2

1 1
2 2

2
1
2

0

2

ˆ ˆ2 0.41223

ˆ 1 cosh sinh 0.41223 1.0213 .32638 0.20758 0.48876

ˆˆ2 sinh
0,1

1 1

2 0.32638 0.17805 0.20758 0.41223
0.31983 0.039966

0.48876 0.48876

CIR CIR

CIR

CIR CIR

G

f r
G G

ρ κ σ

ρ ρ κ ρ

κ θ ρ ρ

= + =

= + = × + × =

 
= +  

 

× × ×  
= + × =  

(5.33) 

We compare this result of 3.9966% to the actual continuous forward rate of 

4.267% which is less than 27 basis points away.   

Table 9 and Figure 9 show how well the theoretical model fits the actual data.  

What is remarkable is how close the Vasicek and CIR models are to each other even 

though the parameters and formulas are different.  Vasicek and CIR are within 2 basis 

points of each other. 



113 

 

 

 Actual  Forward Rate Theoretical Forward Rate 

Maturity Annualized Continuous Vasicek CIR 

0 3.25 3.1983 3.1983 3.1983 

3 months 3.81 3.73921 3.4413 3.4313 

6 months 3.87 3.79699 3.6561 3.6405 

1 year 4.36 4.26763 4.0151 3.9966 

2 year 4.45 4.35383 4.5233 4.5143 

3 years 4.87 4.75513 4.8474 4.8503 

5 years 5.185 5.05505 5.2002 5.2123 

7 years 5.3933 5.25292 5.3625 5.3681 

10 years 5.88 5.71362 5.4648 5.4535 

Table 9:   Actual and Theoretical Forward Rates 

5.1.8  Problems with Calibration – Inverted/Humped Yield Curve 

When the yield curve is not in the familiar normal upward-sloping form, it may be 

difficult to calibrate the model.  The interest rate models we are using assume that the 

long-term mean is constant.  More complex models assume that the long-term mean is a 

deterministic function of time.  The simpler parameterization is necessary to allow us to 

use the eigenfunction expansion method in our pricing model.  The downside of this is 

the difficulty in handling inverted and humped yield curves.  In these cases sometimes σ 

evaluates to zero or sometimes κ becomes extremely large.  Most of the time θ is fairly 

stable, but occasionally even this parameter may become unusually large.  When this 

occurs, we need to look at an alternative method of calibration. 

The generalized p-norm measures the distance between the actual and theoretical 

forward rates: 

 ( ) ( )ˆ ˆ
p

p
i i

p
i

f f f t f t− = −∑  (5.34) 
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The standard least squares model we have been using is known as the Euclidean 

norm or L₂ norm and can be represented in (5.34) by setting p = 2.     This model is 

somewhat sensitive to outliers because these differences are squared. 

A less-sensitive distance model involves summing the absolute value of each 

difference.  This is accomplished by setting p = 1 in (5.34); in two dimensions this is 

known as the Manhattan norm or L₁ norm, because the shortest distance between any two 

points on a street grid is sum of the north-south distance and the east-west distance.   

Many cases where the yield curve does not calibrate well are in times of economic 

crises.  In these cases the spread between Corporate A Bonds and Treasuries tends to 

increase because of additional credit risk.    One example is in 2000 during the Internet 

bubble.  The spread also went up between 2005 and the financial crisis of 2008.  Since 

the Bloomberg Corporate A yields are not available before October 2005, we can 

estimate the crisis spread by looking at the period between 2005 and 2008.  (After 

October 2008, the yields are too unstable.)  Our estimate for the crisis spread is 95.4 basis 

points. 

An isolated point is a single month where we do not get good calibration results.  

In this case, we simply use the calibrated parameters from the previous month.  We use 

these parameters with the short rate and weighted average maturity for the new month in 

the price estimation. 

Sometimes a whole year goes by when we cannot get good parameter estimates.  

We will define this as a crisis period.  One example of this is the period from November 

1999 until March 2001.  This was when the internet bubble occurred.  During crisis 

periods we cannot simply take the previous month’s parameters.  There is more 
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uncertainty in the market, so we will add the crisis spread to the Treasury forward rates 

instead of the normal spread.  In addition, to avoid sensitivity to outliers we will use the 

L₁ norm as a distance measure instead of the usual L₂ (Euclidean) norm. 

Figure 10 shows Treasury Rates for the period of study 1996-2006.    The periods 

which caused the most problems in calibration are listed in Table 10.  In all of these cases 

the interest rates for varying maturities were fairly close to each other.  Another 

observation is that during two of these periods, the interest rates were on a steep 

downward trend.  In general, most of the calibration problems occur when the yield curve 

is humped or decreasing.  Since the eigenfunction expansion model requires that we use 

3-parameters for both Cox-Ingersoll-Ross and Vasicek, we cannot use a time-varying but 

deterministic tθ .  We prefer to keep the model as simple as possible, but this comes at the 

expense of a poorer fit during crisis periods. 

The yield curve for each month consists of 9 individual treasury yields of varying 

maturities.  For each monthly yield curve we define an inversion as  

 
1

0
i iT T

y y
+

− <  (5.35) 

The number of inversions is defined as: 
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We also define the maximum inversion as: 
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−  (5.37) 
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We define the functions Inversions and MaxInversion in APL and apply them to 

the yield curve for August 1998.  This results in 5 inversions and a maximum inversion 

size of 0.08:  

     Inversions4{0+.>2-/Ω} 
     MaxInversion4{K/0,2-/Ω} 
     YLDCV9808 44.96,5.03,4.95,4.91,4.85,4.91,5.03,5.05,5.45 
     Inversions YLDCV9808 
5 
     MaxInversion YLDCV9808 
0.08 

 

Using the standard L₂ calibration procedure with the normal spread of 74 basis 

points we obtain the following Cox-Ingersoll-Ross parameters: 

 κ = 0.000327134,  σ = 0.000242087, and θ = 1.77936 

All three of these values are way outside the normal range.  However, if we use L₁ 

calibration with the crisis spread of 94.5 basis points we obtain: 

κ = 0.540341, σ = 0.078189, and θ = 0.0593712 

If we constrain σ >= 0.100, the parameters are: 

κ = 0.9698, σ = 0.14214, and θ = 0.05937 

Two things are of interest here.  Due to the non-linear non-convex model, the σ 

constraint is not binding.  Also the parameter θ remains constant.  The L₁ values seem 

much more reasonable.  Now let’s plot the theoretical forward rates with the actual.  

Notice that even though the forward rate is trending upward, it decreases for awhile and 

then increases.   This produces a poor fit, but it’s the best we can do with our model.  Our 

price estimate for the GNMA 7.5% MBS for August 1998 uses the L₁ estimates with the 

σ > 0.1 constraint.  The estimates are shown in Table 10. 
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GNMA 7.5% MBS For August 1998 

Model Estimate Error (Basis Points) 

CIR1 $105.152 213.60 

CIR2 $104.860 184.40 

Kolbe-Zagst $102.700   31.60 

Bloomberg $103.016    N/A 

 

Crisis Periods between 1996 and 2006 

From To Reason 

November 1997 January 1999 Unknown 

November 1999 March 2001 Internet Bubble 

December 2002 March 2004 Extremely Low Interest Rates (affects only 
Vasicek) 

September 2005 June 2006 Immediately prior to Financial Meltdown  
of 2008 

Table 10 – Pricing during Crisis Periods 
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Figure 10 Treasury Rates from 1996-2006 
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Figure 11 - Fitting parameters during a Crisis Period 
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CIR Parameter Estimates (Oct 1996 to June 2006) 

 DATE     KAPPA     SIGMA    THETA    NORM        DATE     KAPPA     SIGMA    THETA  NORM   

 ------ --------- --------- --------- ----      ------ --------- --------- --------- ----  

 199610   0.35205   0.17850   0.08170   2       200110   0.18354   0.17668   0.08504   2   

 199611   0.27790   0.12306   0.07727   2       200111   0.35264   0.23391   0.07758   2   

 199612   0.47628   0.25968   0.08199   2       200112   0.45902   0.26465   0.07629   2   

 199701   0.50872   0.28089   0.08347   2       200201   0.52007   0.27696   0.07375   2   

 199702   0.80105   0.35791   0.07996   2       200202   0.48818   0.26690   0.07296   2   

 199703   1.99990   0.54933   0.07958   1       200203   0.81636   0.34429   0.07260   2   

 199704   1.29400   0.45649   0.08060   1       200204   0.57948   0.29052   0.07283   2   

 199705   2.32025   0.59652   0.07714   1       200205   0.49973   0.27362   0.07492   2   

 199706   0.83765   0.36393   0.07908   2       200206   0.35344   0.23645   0.07911   2   

 199707   0.44499   0.19172   0.07416   2       200207   0.15307   0.17690   0.10223   2   

 199708   0.73640   0.33887   0.07797   2       200208   0.12005   0.15938   0.10580   2   

 199709   0.91007   0.36682   0.07393   2       200209   0.12005   0.15938   0.10580   2*   

 199710   0.35670   0.14021   0.07209   2       200210   0.05266   0.13779   0.18028   2   

 199711   1.42852   0.44510   0.06936   1       200211   0.22481   0.19499   0.08456   2   

 199712   0.83757   0.26164   0.06805   1       200212   0.10286   0.15307   0.11390   2   

 199801   0.72579   0.17986   0.06516   1       200301   0.16233   0.17332   0.09252   2   

 199802   0.70719   0.22711   0.06716   1       200302   0.09415   0.14797   0.11629   2   

 199803   2.70059   0.10856   0.06433   1       200303   0.11133   0.15650   0.11000   2   

 199804   4.67419   0.19522   0.06443   1       200304   0.13776   0.16426   0.09793   2   

 199805   3.76178   0.35417   0.06368   1       200305   0.04613   0.12676   0.17417   2   

 199806   3.14423   0.10534   0.06372   1       200306   0.10806   0.15140   0.10607   2   

 199807   2.26125   0.54474   0.06562   1       200307   0.22690   0.20292   0.09074   2   

 199808   0.96980   0.14240   0.05937   1       200308   0.27955   0.21449   0.08229   2   

 199809   0.41205   0.10000   0.05544   1       200309   0.15344   0.17216   0.09659   2   

 199810   0.17353   0.10000   0.06718   1       200310   0.23901   0.20162   0.08504   2   

 199811   0.75592   0.15443   0.05742   1       200311   0.30392   0.21765   0.07799   2   

 199812   0.81388   0.11422   0.05440   1       200312   0.25670   0.20439   0.08137   2   

 199901   0.62662   0.14630   0.05487   1       200401   0.26129   0.20329   0.07909   2   

 199902   0.20936   0.08643   0.07033   2       200402   0.20793   0.18597   0.08317   2   

 199903   0.19425   0.08813   0.07296   2       200403   0.16273   0.17197   0.09086   2   

 199904   0.27952   0.13294   0.07179   2       200404   0.39010   0.24080   0.07433   2   

 199905   0.59444   0.26359   0.07258   1       200405   0.46043   0.25812   0.07237   2   

 199906   0.60182   0.29964   0.07459   2       200406   0.43432   0.24994   0.07192   2   

 199907   0.81046   0.34583   0.07379   2       200407   0.37621   0.23367   0.07264   2   

 199908   0.69891   0.32503   0.07558   2       200408   0.21868   0.18652   0.07955   2   

 199909   0.54583   0.28339   0.07690   2       200409   0.23579   0.18962   0.07628   2   

 199910   0.69854   0.32516   0.07568   2       200410   0.15792   0.16441   0.08562   2   

 199911   3.20060   0.66913   0.07058   1       200411   0.23214   0.18915   0.07708   2   

 199912   4.91396   0.68375   0.07225   1       200412   0.24524   0.18900   0.07284   2   

 200001   3.32188   0.64965   0.07608   1       200501   0.32638   0.17805   0.06210   2   

 200002   2.64768   0.62993   0.07536   1       200502   0.44531   0.23452   0.06176   2   

 200003   0.52301   0.28528   0.07775   1       200503   0.78617   0.30313   0.05844   2   

 200004   0.52301   0.28528   0.07775   1       200504   0.40032   0.21908   0.05995   2   

 200005   0.52301   0.28528   0.07775   1       200505   0.30671   0.16600   0.05783   2   

 200006   1.61949   0.47216   0.07163   1       200506   0.25625   0.11900   0.05551   2   

 200007   0.66037   0.23037   0.07086   1       200507   1.84128   0.42523   0.05317   1   

 200008   1.49859   0.45349   0.06901   1       200508   0.43578   0.17475   0.05446   1   

 200009   1.30490   0.16786   0.06542   1       200509   1.54629   0.41056   0.05451   1   

 200010   3.33093   0.10084   0.06504   1       200510   1.52256   0.41248   0.05587   1   

 200011   2.46585   0.10000   0.06197   1       200511   2.50433   0.52007   0.05447   1   

 200012   3.81172   0.22763   0.05755   1       200512   1.99727   0.46494   0.05412   1   

 200101   0.26647   0.10000   0.06632   1       200601   2.46045   0.44314   0.05434   1   

 200102   1.69415   0.26621   0.05755   1       200602   0.52739   0.16962   0.05569   1   

 200103   0.19189   0.10605   0.07112   1       200603   0.63099   0.17379   0.05915   1   

 200104   0.15996   0.13193   0.08763   2       200604   0.60260   0.16955   0.06138   1   

 200105   0.18501   0.18708   0.09459   2       200605   0.78359   0.15869   0.06008   1   

 200106   0.18501   0.18708   0.09459   2*      200606   0.78052   0.16084   0.06034   1   

 200107   0.07503   0.13819   0.12725   2       200607   1.50321   0.10238   0.05778   1   

 200108   0.11966   0.14259   0.09679   2       200608   1.97883   0.00358   0.05361   2   

 200109   0.14293   0.16902   0.09994   2       200609   1.89065   0.45236   0.05412   2   

 

 *Used calibrated parameter estimates for the previous month. 

Table 11 - CIR Calibrated Parameters 1996-2006    
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DATE     TSY3M     KAPPA     SIGMA     THETA 

------   -------   -------   -------   ------- 

200902   0.26000   0.20703   0.17083   0.07048 

200903   0.21000   0.15848   0.15195   0.07284 

200904   0.14000   0.20834   0.17504   0.07353 

200905   0.14000   0.25085   0.19110   0.07279 

200906   0.19000   0.31900   0.20583   0.06641 

200907   0.18000   0.30979   0.20345   0.06681 

200908   0.15000   0.29882   0.19822   0.06574 

200909   0.14000   0.29731   0.19531   0.06415 

200910   0.05000   0.28254   0.19613   0.06807 

200911   0.06000   0.19960   0.17381   0.07568 

200912   0.06000   0.32404   0.21499   0.07132 

201001   0.08000   0.24840   0.19170   0.07400 

201002   0.13000   0.22820   0.18680   0.07650 

201003   0.16000   0.27060   0.20050   0.07430 

201004   0.16000   0.26460   0.19510   0.07190 

201005   0.16000   0.21770   0.17650   0.07160 

201006   0.18000   0.16800   0.15750   0.07390 

201007   0.15000   0.12720   0.14800   0.08620 

201008   0.14000   0.11480   0.13400   0.07820 

201009   0.16000   0.07890   0.12790   0.10360 

201010   0.12000   0.03930   0.12260   0.19110 

201011   0.17000   0.07750   0.13510   0.11770 

201012   0.12000   0.17640   0.16820   0.08020 

201101   0.15000   0.13640   0.16200   0.09620 

201102   0.15000   0.19010   0.17390   0.07950 

201103   0.09000   0.22310   0.18280   0.07490 

201104   0.04000   0.17440   0.16870   0.08160 

201105   0.06000   0.13100   0.15290   0.08920 

201106   0.03000   0.13520   0.15760   0.09190 

201107   0.08000   0.09690   0.14450   0.10770 

Table 12 - Recent CIR Parameters 

5.1.10 Quadratic Variation 

Sometimes sigma evaluates to zero.   While this may be a decent fit to the forward 

rate, we cannot use sigma=0 in our model.   We may be able to estimate sigma by using 

quadratic variation.   Quadratic variation is defined as: 

 ( ) ( )
1

2

1

lim
i i

n

t t t

i

Q X X X
−Π

=

= −∑  (5.38) 



121 

 

The Vasicek formula is: 
 

 ( ) t
dr r dt dWκ θ σ= − +  (5.39) 

We can adapt the Vasicek formula to (5.38) by the following: 
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Thus  

 V

Q

T
σ Π=  (5.41) 

 
Taking one years’ worth of 3-month Treasuries calculated on a daily basis, we can 

calculate the quadratic variation as follows: 
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The Quadratic Variance for 3-month Treasuries in 1997 is 0.00005169.      Since  

T = 1 year,  

 0.00005169 0.0071896Vσ = =  (5.43) 

 
For Cox-Ingersoll-Ross, the Quadratic Variance  
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Thus  
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Using the 1997 data,  

 
0.00005169

0.031587
1

13.004
251

CIRσ = =

×
 (5.46) 

We can fix σ=0.031587 and determine the other two parameters.    

PC[FWD_]:=NMinimize[{PNorm[Drop[FWD,1]-

FC[FWD[[1]]]],2*kappa*theta-

sigma^2=dt,kappa>=0,theta>=0,sigma>=0.031587},{kappa,sigma,

theta}] 

 

The problem is that in Table 11 the CIR parameter σ is about ten times larger 

than in (5.46).  Experimentation has shown the CIR pricing model does not converge 

when σ < 0.05.  Thus we are better off optimizing all three parameters 

simultaneously. 

5.2 Theoretical Prepayment Rates  

To calculate prepayment parameters, we need to observe the relationship between 

interest rates and prepayment rates.  Since they are readily available, we will use treasury 

rates again. 

The simplest prepayment model is the constant prepayment rate.  In this case 

prepayments represent a constant proportion of the remaining balance.  This means 

prepayments are independent of both time and interest rates.  The second model is known 

as the PSA (Public Securities Administration) model.  This model takes the position that 

prepayments do not occur as frequently during the first 2-1/2 years of a 30-year 

mortgage; they increase linearly up to that point, then remain constant thereafter.    Both 
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the CPR and PSA models are deterministic.  We will use the empirical 3-month CPR and 

3-month PSA rates in our model. 

5.2.1 Relationship between Interest Rates and Prepayments 

To estimate the prepayment parameters, we obtain historical prepayment rates and 

the weighted average maturities for Ginnie Mae MBS from Bloomberg.  The ticker is 

GNSF.  For the 8.0% GNMA MBS, go to Bloomberg, then enter GNSF 8 N <mtge> 

CPH <GO>.  We are interested in the following columns:  Date, WAM and 3-Mo CPR.  

We will use the WAM (Weighted Average Maturity) for the maturity T, and we will 

perform a regression between the 3-month CPR and a suitable benchmark yield.  

Although the Corporate A Benchmark index more closely tracks the credit risk of 

mortgage-backed securities, we prefer to use the 3-month treasuries as a baseline interest 

rate.  The Corporate A index is only available after September 2002.  To obtain a 

sufficient history, we must resort to Treasury rates which are readily available from a 

number of sources.  We can obtain 3-month Treasury rates from the U.S. Treasury web 

site or from Bloomberg.  To obtain these in Bloomberg select C0793M <corp> HP 

<Go>.  

To account for interest rate fluctuations we introduce a stochastic component.  

Figure 12 shows the relationship between treasury rates and prepayment rates of five 

generic pools of Ginnie Mae Securities, each with a different coupon rate.  There is a 

clear relationship between interest rates and prepayment rates.  As interest rates decrease 

below a certain threshold, prepayment rates increase; however, if interest rates go above 

this threshold, they tend to remain constant.  The 7.5% AND 8.0% GNMA’s show a 



124 

 

piecewise linear relationship between interest rates and prepayments.  The 6%, 6.5% and 

7% show that the prepayment rates for 2004 and 2005 are somewhat higher than for 2001 

and 2002 for the same interest rates.  It appears that borrowers waited to refinance until 

rates were extremely low in 2003, then there was a rush to refinance when  rates started 

moving back up again.  With the 7.5% and 8.0% pools, the refinancing occurred much 

earlier, so that refinancing rates were much the same when interest rates came back up.  

With the 7.5% and 8.0% it is clear that there is a leveling off of prepayment rates after the 

initial rush to refinance, whereas with the lower coupon pools the model is more 

complex.  We can model all pools with the single threshold model; however, the 7.5% 

and 8.0% can also be modeled with the double-threshold model. 

Starting with the constant prepayment rate (CPR) model, we discuss three parameters:  

the exogenous prepayment rate h₀, the threshold k, and the slope γ.  We also introduce 

the double threshold model which has five parameters—the exogenous prepayment rate 

as before, two thresholds k₁ and k₂ and two slopes γ₁ and γ₂.  The exogenous prepayment 

rate can be either a constant or with a ramp. 
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Figure 12:  Relationships between Interest Rates and Prepayment Rates 
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5.2.2 Single-Threshold Model 

We will look at GNMA Mortgage-Backed Securities because they are backed by 

the full faith and credit of the U.S. Government unlike Fannie Mae and Freddie Mac 

which had an implicit guarantee which was exposed during the recent Mortgage crisis.  

We can obtain historical prepayment rates along with the Weighted Average Maturity for 

generic GNMA’s with various coupons:  6.0%, 6.5%, 7.0%, 7.5% and 8.0%. 

From Bloomberg, we obtain prepayment rates for Mortgage Backed Securities.   

We obtain 3-month Treasury data from Bloomberg.  In Bloomberg, enter  C0793M 

<Govt> HP to obtain historical prices and yields.  To obtain historical GNMA 

prepayment rates enter GNSF 8 N <Mtge> CPH <go>.  To obtain historical prices, 

enter GNSF 8 N <Mtge>HP<go>.  We will use the 3-Month CPR and the WAM 

(Weighted Average Maturity 

Calculating prepayment parameters is basically a linear regression problem with 

an additional twist of determining the breakpoint.  The procedure involves selecting a 

breakpoint k, then performing a simple linear regression; the intercept h₀ is the exogenous 

prepayment rate, and the slope γ is the sensitivity of the prepayment rate to a drop in 

interest rates. 

 [ ]0t t
CPR h k rγ ε

+
= + − +  (5.47) 

Observe that the prepayment rate remains constant when interest rates are above 

the threshold k.  From historical data  and t tCPR r  are known for all t.  Fixing k reduces 

(5.47) to a linear equation in the form 

 0 1t t ty xβ β ε= + +  (5.48) 
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where [ ] 0 0 1; ; ; and 
t t t t

y CPR x k r hβ β γ
+

= = − = = .  We can obtain estimates for β₀ 

and β₁ in  (5.48) using simple regression (least squares) techniques.   This means we can 

also obtain estimates for h₀ and γ in (5.47) for each k we choose.  Furthermore we can 

measure the error sum-of-squares (SSE) once we have determined the prepayment 

parameters: 

 ( ) [ ]{ }
2

0i i

i

SSE k CPR h k rγ
+

= − − −∑   (5.49) 

We choose a range of thresholds which we deem reasonable; in the worst case we 

can simply choose the range to include all values of tr .  We then choose the value of k 

which minimizes SSE(k). 

We will use ten years’ worth of monthly interest and prepayment rates for a total 

of 120 observations.  The range is from February 1996 through January 2006.  

Prepayment rates will differ for each generic GNMA pool because the coupon rates are 

different. 

The prepayment parameter estimates are shown in Table 13: 

5.2.3 Double-Threshold Model 

The double-threshold model has five parameters.  These consist of the two 

thresholds k₁ and k₂, two slopes γ₁ and γ₂ and the exogenous prepayment rate h₀.  The 

model is  

 [ ] ( )[ ]0 1 1 2 1 2t t t
CPR h k r k rγ γ γ ε

+ +
= + − + − − +  (5.50) 

Choosing values for k₁ and k₂ where k₂ < k₁ reduces equation (5.50) to a linear 

equation of the form 
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 0 1 1, 2 2,t t t t
y x xβ β β ε= + + +  (5.51) 

where [ ] [ ]1, 1 2, 2 0 0 1 1 2 2 1; ; ; ;  ; and 
t t t t t t

y CPR x k r x k r hβ β γ β γ γ
+ +

= = − = − = = = − .  To 

calibrate this model, we must choose values for k₁ and k₂, k₁ > k₂, and then perform a 

multiple regression.  We choose the values of k₁ and k₂ which minimize the error. 

 ( ) [ ] ( )[ ]{ }
2

1 2 0 1 1 2 1 2,
i i i

i

SSE k k CPR h k r k rγ γ γ
+ +

= − − − − − −∑  (5.52) 

Starting with k₂ = k₁ − 0.01 (one basis point), we perform a multiple regression 

where the first predictor variable is the same as in the single threshold model and the 

second predictor variable is the larger of 0 and the difference between k₂ and the current 

3-month Treasury rate.  We then find the y-intercept h₀ and the two slopes γ₁ and (γ₂−γ₁) 

as well as the error sum of squares (SSE).  Now holding k₁ constant, we decrease k₂ by 

one basis point and recalculate SSE.  We keep decreasing k₂ until we hit the low end of 

the range.  The k₂ which minimizes the SSE within the range is then paired with k₁.  We 

now decrease k₁ by one basis point and repeat the procedure, finding its optimal k₂.  

Eventually we have a set of pairs of (k₁,k₂) where the k₁’s span the entire range of interest.  

We now choose the pair (k₁,k₂) which minimizes(5.52).  While this is a somewhat brute 

force approach, it only takes about 96 seconds of CPU time.  The double-threshold 

parameters are also shown in Table 13. 

We choose APL to do the parameter estimation because it can be done recursively 

with arrays.  The APL expression to accomplish this is: 

Params4CPRMXX                  
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The linear least-squares function,M (domino) also does matrix inversion.  The left 

argument is a vector CPR, which represents the observed prepayment rates; the right 

argument XX is a matrix whose first column is 1’s and whose second and third columns 

are the independent variables [ ] [ ]1, 1 2, 2and
t t t t

x k r x k r
+ +

= − = − .  The result Params is 

vector of parameter estimates—the intercept h₀, followed by the slopes γ₁ and (γ₂−γ₁) 

 
Single Threshold Model Parameters 

Coupon Error h₀ γγγγ k 

6.0% 8.456 5.100% 5.647 5.44% 

6.5% 9.074 6.136% 8.966 5.15% 

7.0% 6.495 7.908% 9.265 5.38% 

7.5% 5.920 9.805% 8.620 5.76% 

8.0% 6.951 13.792% 6.962 5.95% 

Double Threshold Model Parameters 

Coupon Error h₀ γ₁γ₁γ₁γ₁ IIII₂ k₁ k₂ 

6.0% 7.912 4.802% 4.302 38.964 5.74% 1.32% 

6.5% 7.886 6.232% 6.408 46.202 5.43% 1.44% 

7.0% 5.684 8.204% 7.691 35.193 5..48% 1.44% 

7.5% 5.057 10.367% 87.447 6.457 5.12% 4.97% 

8.0% 5.801 14.319% 99.747 4.203 5.13% 4.98% 

Table 13:  Single and Double Threshold Model Parameters 

Observe that the prepayment parameters for the double threshold model low 

coupon pools (6.0%, 6.5% and 7.0%) differ from the high coupon pools (7.5% and 

8.0%).  The higher coupon pools show that the slope increases below the first threshold 

k₁, but then it levels off below the second threshold k₂.  For the lower coupon pools, the 

second threshold k₂ is much lower than the first threshold, which means that there is not 

much data below that threshold.  Furthermore, the slope increases below this threshold.  

Thus we find that the double-threshold model is not useful for these lower coupon pools 
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because we do not have enough data to show the burnout effect which shows that 

prepayments drop off when rates drop well below the refinancing threshold. 

The APL source code for the dynamic function FindPP is shown below:  

[0]   FindPP4{ 
[1]     6Α  Number of Threshold values: (1 or 2) 
[2]     6Ω  Short Rates,  Prepayment Rates(2xN Matrix) 
[3]     64  Error,h0,Gamma1,[Gamma2],k1,[k2] 
[4]     6S  7535 12.23 7.49 5.79 4 1 200209 200510 FindPP Tr CPR 
[5]     6S  5939 10.93 25.45 ¯21.13 5.26 4.49 4 2 FindPP Tr CPR 
[6]   n4VΑ                       6 Single or Double Threshold? 
[7]   d42V1XΑ,0 300000           6 Start, End Dates 
[8]   b41Y×/×DATESZ.-d           6 Date Selection 
[9]   0[b/Ω[0;]:'Error'          6 Check for zero interest rates 
[10]  FindK4{                    6 Apply one or two breakpoints 
[11]      0::1000000 0 0         6 
[12]      r c4XΩ                 6 Short Rates, Prepayment Rates 
[13]      XX41,0K-rZ.-,Α         6 Independent Variables 
[14]      p4cMXX                 6 Estimate Parameters 
[15]      ch4XX+.×p              6 Apply to model 
[16]      e4(c-ch)+.*2           6 Least Squares Error 
[17]      e,p                    6 Result is error, parameters 
[18]  } 
[19]  FindK24{j40.01×1XΙc100×Α-1 6 Find optimal k2 given k1 
[20]      ob4T(Α,¨Α-j)FindK¨dΩ   6 
[21]      i4ob[;0]Ιc/ob[;0]      6 Find optimal (minimum) value 
[22]      ob[i;],Α,Α-j[i]        6 Get parameters 
[23]  } 
[24]  k42+0.01×Ι600              6 Choose range of k values 
[25]  ob4Tn{Α=1:k FindK¨dΩ       6 If single threshold use FindK 
[26]      k FindK2¨dΩ}b/Ω        6    Else use FindK2 
[27]  i4ob[;0]Ιc/ob[;0]          6 Find optimal (minimum) value 
[28]  z4ob[i;],(1=n)/k[i]        6 Get objective, parameters 
[29]  z[m]4+\z[m42+Ιn]           6 Cumulative slopes 
[30]  z[0]4(z[0]÷¯1++/b)*÷2      6 Standard Error 
[31]  z 
[32]  } 
 

    1 199602 200601 FindPP TC0793M GNSF8CPR 
6.950662159 13.7922865 6.961978253 5.95 
    2 199602 200601 FindPP TC0793M GNSF8CPR 
5.801102925 14.31851511 99.7472181 4.202734348 5.13 4.98 
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5.2.4 PSA Model 

The PSA Model assumes that prepayments start at zero and increase linearly for 

two and a half years until they reach 6% annually.  This is known as 100% PSA.  A 

multiplier can be applied, i.e. 150% PSA reaches 9% linearly after 2.5 years.  Gorovoy 

and Linetsky assume the PSA model applies to exogenous prepayment rates, thus  

 ( ) ( )0 min , *h t ba t T=  (5.53) 

We assume that T* is fixed at 2.5 and that a=0.24 to conform to the PSA 

standard.  Thus we only need to estimate b. 

We revise our prepayment model to  

 
[ ]

( )min , *

i

i

k r
PSA b

a t T
γ

+
−

= +  (5.54) 

for the single-threshold model.  The double threshold PSA is:  

 
[ ] ( )[ ]

( )
1 1 2 1 2

min , *

i i

i

k r k r
PSA b

a t T

γ γ γ
+ +

− + − −
= +  (5.55) 

PSA values are available from Bloomberg.  The seasoning factor, t is determined 

by subtracting the weighted average Maturity (WAM) from 30 years.   Since a, t, T* and 

r are known in (5.54), we only need to choose a value for k to have a simple linear 

regression model to estimate b and γ.   For (5.55) we need to choose values for both k₁ 

and k₂ as we did in the previous section.   In this case we have a multiple regression 

model in b, γ₁ and γ₂.   

In our sample the WAM of the 7.5% and 8.0% GNMA’s never exceeds 27.5 

years, so the CPR model applies in all cases.  Since these are the only two coupon rates 
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for which the double-threshold model is meaningful, we do not need to consider the PSA 

double-threshold model. 

Taking PSA data from the 8% pools, we obtain the following results: 

Pool Start Date End Date b γγγγ kkkk    
GNMA   8.0% 3/31/1996 3/31/2006 2.8612 6.529 6.05% 

 

To convert from PSA to CPR, we observe that    h₀  ≈  abT*.   Thus:    

 0.024 2.8612 2.5 0.171672× × =  (5.56) 

Observe that the GNMA 8.0% PSA value converts to approximately 17.16% CPR 

which is a little bit higher than the 13.792% CPR estimate in Table 13  The Dyalog APL  

source code for the PSA prepayment parameter estimates is shown below: 

[0]   FindPSA4{ 
[1] 6Α  Number of Threshold values: (1 or 2) 
[2] 6Ω  Short Rates,  Prepayment Rates(2xN Matrix) 
[3] 64  Error,h0,Gamma1,[Gamma2],k1,[k2] 
[4] 6S 145.225 286.116 6.529 6.05 4 199603 200603 FindPSA T6 PSA6 C0793M 
[5]   b41Y×/×DATESZ.-Α           6 Date Selection 
[6]   (T PSA r)4Ω                6 Unpack right arg 
[7]   M40.024×2.5c30-b/T         6 PSA to CPR conversion 
[8]   D4Tr PSA 
[9]   0[b/D[0;]:'Error'          6 Check for zero interest rates 
[10]  FindK4{                    6 Apply one or two breakpoints 
[11]      0::100000000 0 0       6 Error condition 
[12]      r c4XΩ                 6 Short Rates, Prepayment Rates 
[13]      XX41,[0.5]0K(-rZ.-Α)÷M 6 Independent Variables 
[14]      p4cMXX                 6 Estimate Parameters 
[15]      ch4XX+.×p              6 Apply to model 
[16]      e4(c-ch)+.*2           6 Least Squares Error 
[17]      e,p                    6 Result is error, parameters 
[18]  } 
[19]  k40.5+0.01×Ι700            6 Choose range of k values 
[20]  ob4Tk FindK¨db/D           6 Apply regression for each k 
[21]  i4ob[;0]Ιc/ob[;0]          6 Find optimal (minimum) value 
[22]  z4ob[i;],k[i]              6 Get objective, parameters 
[23]  z[0]4(z[0]÷¯1++/b)*÷2      6 Standard Error 
[24]  z 
[25]  } 
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Chapter 6.  Pricing MBS - A Practical Guide  

Although the theory has been described in detail in the previous section, what 

matters for the practitioner is the means to price a mortgage or mortgage-backed security.  

This section describes in detail how to price a GNMA Mortgage-Backed Security using 

empirical data.   All empirical data in this example were obtained from Bloomberg.  All 

parameters are estimated from the data and then applied to theoretical formulas derived in 

the previous section.  Although eigenfunction expansion consists of an infinite number of 

spectral values, we truncate these at a point where the convergence appears to a 

reasonable number of decimal places. 

The following is general procedural approach to pricing MBS.  It applies to either 

interest rate model (CIR or Vasicek) and to either prepayment models (single or double 

threshold): 

1. Calculate forward rates from 3-month Treasury rates (Bloomberg or 

Treasury.gov) 

2. Calibrate interest rate parameters from Forward rates 

3. Estimate prepayment parameters from CPR and 3-month Treasury Rates 

(Bloomberg)  

4. Get weighted average maturity (WAM) for generic GNMA securities 

(Bloomberg)  

5. Solve differential equation to find eigenfunctions 

6. Construct Wronskian and find eigenvalue solutions 

7. Normalize the eigenfunctions obtained from step 3 
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8. Find Expansion coefficients using numerical integration 

9. Apply the Time Integral to determine the price 

10. Compare theoretical price to Bloomberg’s empirical price. 

In this section we will price a seasoned 8% GNMA mortgage-backed security on 

January 31, 2005.  The first three steps were accomplished in Chapter 5.  Historical 3-

month Treasury rates are readily available on Bloomberg.  The parameter estimates from 

the previous section are shown in Table 14. 

Interest Rate Parameter Estimates:  1/31/2005  

Model κ KKKK DDDD 
Vasicek 0.31695 0.04332 0.06459 

CIR 0.32638 0.17805 0.06210 

ro =2.51                  Normal Spread = 0.74%      Crisis Spread = 0.954% 

 

Bloomberg WAM FOR GNMA Securities 1/31/2005 
GNMA Pool 6.0% 6.5% 7.0% 7.5% 8.0% 

WAM 26.9167 24.4167 22.2500 20.4167 18.5833 

 

Prepayment Parameter Estimates 
Model Single Threshold CPR Double Threshold CPR 

Coupon ho IIII κ ho  γ₁γ₁γ₁γ₁ IIII₂ k₁ k₂ 

6.0% 5.100% 5.647 5.44% 4.802% 4.302 38.964 5.74% 1.32% 

6.5% 6.136% 8.966 5.15% 6.232% 6.408 46.202 5.43% 1.44% 

7.0% 7.908% 9.265 5.38% 8.204% 7.691 35.193 5..48% 1.44% 

7.5% 9.805% 8.620 5.76% 10.367% 87.447 6.457 5.12% 4.97% 

8.0% 13.792% 6.962 5.95% 14.319% 99.747 4.203 5.13% 4.98% 

Table 14:  Parameter Estimates for Various GNMA Securities on 1/31/2005 

Figure 13 shows the relationships between the data and the various steps in pricing 

GNMA securities.  In this section we will price five generic GNMA pools, each with a 

different coupon rate.    We will look at the standard Cox-Ingersoll Ross Model and then 

look at the double threshold model and the Vasicek Model.   
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Treasury rates from   

www.treasury.gov .  

or Bloomberg 

Prepayment  
Data  (GNSF) 
(Bloomberg) 

1.   Calculate 
Forward Rates 
(Dyalog APL or 
Mathematica) 
 

2.   Calibrate 
Interest Rate 
parameters (κ,σ,θ)  
(Mathematica – 

Nminimize) 

3.  Obtain prepayment 
parameters (regression) 
Single/Double CPR and PSA . 

(h₀, γ’s,k’s)     (Dyalog APL)  

5.  Solve Differential Equation 

Gf(x)= −λf(x) with initial 

conditions   Lim f’(x)/s(x) = 0 

6.  Construct Wronskian; 
find solutions for W(λ)=0    
Mathematica (FindRoot) 

7.  Normalize 

Eigenfunctions φ(x) 

8.  Obtain expansion 
coefficients for Q(t,T) 
and R(t,T)  
(Mathematica 
NIntegrate) 

9.  Calculate Time Integrals  (Time t value of a seasoned mortgage with 
continuous payments originated at time zero). 

4
  W

A
C

/W
A

M
  

10.  Compare resulting theoretical price to Bloomberg’s Empirical Price 

Figure 13 – General Flowchart showing procedure to price Mortgage-Backed Securities 
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After obtaining the solutions to the differential equation, we construct the 

Wronskian matrix and we find the eigenvalues, eigenfunctions and expansion 

coefficients.    In this section we go into explicit detail for each of the three models:  One-

threshold CIR, two-threshold CIR and Vasicek.     Code snippets from Mathematica can 

be cut and pasted into a Mathematica session and verified.    We take the process all the 

way to pricing the security and comparing it to the empirical price obtained from 

Bloomberg.  On the way we check intermediate values to verify continuity and 

differentiability of the solutions to the differential equation. 

6.1 Single Threshold Cox-Ingersoll-Ross Model 

The solutions to the Cox Ingersoll Ross Model are:  

( )
( )
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This rather complex-looking function can easily be expressed using the 

Mathematica3 functions Hypergeometric1F1 and HypergeometricU. 

psi[x_,lambda_]:=Exp[(kappa-rho1)*x/sigma^2]* 

   Hypergeometric1F1[a1-(lambda-gam*k)/rho1,beta,alpha1*x] 

phi[x_,lambda_]:=Exp[(kappa-rho2)*x/sigma^2]*  

            HypergeometricU[a2-lambda/rho2,beta,alpha2*x] 

 

                                                 

3All Mathematica expressions in this section are fully executable and can be cut and 
pasted directly into a Mathematica 8.0 session for verification. 
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All variables can be defined in terms of the Cox, Ingersoll Ross parameters, 

{κ,σ,θ} or the prepayment parameters: {h₀,γ,k}: 

rho1:=Sqrt[2*(1-gam)*sigma^2+kappa^2] 

rho2:=Sqrt[2*sigma^2+kappa^2] 

alpha1:=2*rho1/sigma^2 

alpha2:=2*rho2/sigma^2 

beta:=2*kappa*theta/sigma^2 

a1:=beta/2-kappa^2*theta/(sigma^2*rho1) 

a2:=beta/2-kappa^2*theta/(sigma^2*rho2) 

 
We use the D operator in Mathematica to produce derivatives: 

psid[k_,lambda_]:=D[psi[y,lambda],y]/.y->k 

phid[k_,lambda_]:=D[phi[y,lambda],y]/.y->k 

 

We next define the scale and speed densities: 

s[x_]:=x^(-beta)*Exp[2*kappa*x/sigma^2] 

m[x_]:=2/sigma^2*x^(beta-1)*Exp[-2*kappa*x/sigma^2] 

 

And now we can construct the Wronskian:  

w[lambda_]:=1/s[k]*(psi[k,lambda]*phid[k,lambda]-psid[k,lambda]  

*phi[k,lambda]) 

 

We now set the Wronskian to zero and solve for it to obtain the eigenvalues:  
 
FindLambda[e_]:=Re[x/.FindRoot[w[x],{x,e}]] 

  

We must supply a guess to the function FindLambda.  Different guesses will 

often produce different eigenvalues.    We start with zero to produce the first eigenvalue.  

Then double the eigenvalue for the second guess.  If this produces the same eigenvalue, 

then triple it.  Keep increasing the value until there are two unique eigenvalues.  Measure 

the interval between the two eigenvalues and use that as a step for the next guess.  The 

concern here is that we do not skip over any eigenvalues, particularly early on as this will 

produce an incorrect result. 

Now let us apply the model to the parameters obtained for January 31, 2005: 
 

kappa=0.32638;sigma=0.17805;theta=0.06210;gam=6.962; 
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We adjust the threshold value by adding a spread and converting to the continuous rate: 
 

Spread=0.74; k=Log[1+(5.95+Spread)/100] 

 

0.0647572 

 

Here is the first eigenvalue: 
 

Lambda1=FindLambda[0] 

 

0.195507 

 

Now  double the eigenvalue and use that for the next guess: 
 
Lambda2=FindLambda[Lambda1*2] 

 

0.584451 

 

 If the new guess had produced the same eigenvalue as before, we would triple the 

eigenvalue if necessary:  

Lambda2=FindLambda[Lambda1*3] 

 
Now estimate the step size between eigenvalues to produce the next guess and the next 

eigenvalue: 

Step = Lambda2-Lambda1 

 

0.388944  

 
Lambda3 = FindLambda[Lambda2+Step] 

 

0.962452 

 
The Mathematica script below automates the process for the first 7 eigenvalues:    

Lambda1:=FindLambda[0]; 

L2:=FindLambda[2*Lambda1]; 

Lambda2:=If[L2>Lambda1,L2,FindLambda[3*Lambda1]]; 

Lambda={Lambda1,Lambda2,0,0,0,0,0}; 

For[i=1,i<Length[Lambda]-1,i++,Lambda[[i+2]]= 

     FindLambda[2*Lambda[[i+1]]-Lambda[[i]]]]; 

 

Lambda 

 

{0.195507, 0.584451, 0.962452, 1.35902, 1.76459, 2.17169, 2.5789}  
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In the above example, we found the first 7 eigenvalues.  Since there are an infinite 

number of eigenvalues, we must choose how many eigenvalues we wish to calculate.  

This depends upon how rapidly the series converges. 

Now let’s define the eigenfunctions in Mathematica.  First we normalize them:  

delta[x_]:=D[w[lambda],lambda]/.lambda->x 

normal1[x_,lambda_]:=Sqrt[phi[k,lambda]/(delta[lambda]*psi[k,lambda])]* 

        psi[x,lambda] 

normal2[x_,lambda_]:=Sign[delta[lambda]]*Sqrt[psi[k,lambda]/ 

(delta[lambda]*phi[k,lambda])]*phi[x,lambda] 

 
 Now let’s apply the normalized eigenfunctions to the initial short rate.   Notice 

we have to adjust the short rate in the same way as the threshold value k: 

r0=Log[1+(2.51+Spread)/100]; 

 

Ph1[lambda_]:=normal1[r0,lambda] 

Ph2[lambda_]:=normal2[r0,lambda] 

Ph[lambda_]:=Re[If[r0<k,Ph1[lambda],Ph2[lambda]]] 

 

Now let’s evaluate the eigenfunction corresponding to the principal eigenvalue: 
 

Ph[Lambda1] 

 

0.808661 

 

We automate the process by using the Map operator with all of the calculated 

eigenvalues.  Note that the eigenfunction values can be either positive or negative. 

Phi=Map[Ph,Lambda] 

 

{0.808661,0.685009,0.249787,-0.144693,-0.394074,-0.518877,-0.542557}  

 

Now calculate the expansion coefficients  and Q Rc c .  This requires the use of 

numerical integration.  The expansion coefficients can also be either positive or negative. 

cq1[lambda_]:=Re[NIntegrate[normal1[x,lambda]*m[x],{x,0,k}]] 

cq2[lambda_]:=Re[NIntegrate[normal2[x,lambda]*m[x], {x,k,Infinity}]] 

cQ=Map[cq1,Lambda]+Map[cq2,Lambda] 

 

{1.06898,0.168328,0.122042,0.0437959,0.0168817,0.00419073,-0.00098589} 

 

cr1[lambda_]:=Re[NIntegrate[x*normal1[x,lambda]*m[x],{x,0,k}]] 

cr2[lambda_]:=Re[NIntegrate[x*normal2[x,lambda]*m[x], {x,k,Infinity}]] 
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cR=Map[cr1,Lambda]+Map[cr2,Lambda] 

 

{.075692,-.048357,.0094047,-.002913,-.00041064,-.00066163,-.000463} 

 

 

Now with the data we just calculated, we should like to examine and verify the 

conditional expected value of a discounted claim:   

 

 ( ) ( ) [ ]( ){ } ( )
0

exp
t

t x s s tf x E r k r ds f rγ
+ = − + −
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According to Gorovoy and Linetsky , the payoffs ( ) ( )1 and 
Q T R T T
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At maturity  (6.3) reduces to:  
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= =∑P  (6.4) 

We can approximate (6.4) by a finite sum of the first 7 normalized eigenfunctions 

weighted by their expansion coefficients:      
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Let us now discount the payoffs by one year.   Then  
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We can approximate the one-year discounted claim 
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How can the discounting for ( )Q
f x be so large?    That is because the 

“discounting” in this model involves the prepayment rate as well as the interest rate.     

How can ( )1 0 0R
f r r>P  if it is discounted for one year?   Remember we are discounting the 

expected value of the short rate one year from now which is higher due to mean 

reversion.  Thus  

 [ ] ( ) ( )1 0 0 0.031983 0.32638 .0621 .031983  0.0418126E r r rκ θ= + − = + − =  (6.11) 

Finally, we use time integrals to price the mortgage-backed security.   Here we 

use the exogenous prepayment parameter h₀  in the case of CPR or b in the case of PSA.    

For the CPR model we use the formula:    
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 (6.12) 

Since we are dealing with seasoned mortgages, we use the following formula to 

value the mortgage: 
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Before we can evaluate the time integrals, we must know the exogenous 

prepayment rate and the coupon rate: 
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h0=13.792/100;T=18.5833; M=12*Log[1+8.0/1200] 

 

0.0797345 

 
ls:=h0+Lambda 

Lc[m_]:=(m*(1-Exp[-ls*T])-ls*(1-Exp[-m*T]))/(ls*(m-ls))  

Lc[M] 
 

{2.1053,1.0307,0.68613,0.507684,0.400952,0.331064,0.281905} 

 

Price=100*(1+Total[Phi*(M*cQ-cR)*Lc[M]]/(1-Exp[-M*T])) 

 
107.628 

 
We compare the theoretical price of $107.628 (based on the first 7 eigenvalues) to 

the Bloomberg price of $108.469 for a difference of 84 basis points.  After 15 

eigenvalues the theoretical price stabilizes at $107.626. 

Now let’s carry out the eigenfunction expansion a bit further.   Figure xx shows 

the expansion up to n=20.  Notice how much closer Q(0,0) and R(0,0) get to 1 and r₀ 

respectively.   Notice also that Q(0,1) and R(0,1) converge much faster than Q(0,0) and 

R(0,0).  Since we integrate up to the WAM which in this case is over 18 years, the values 

Q(0,t) and R(0,t) for t > 1 will converge even faster.  The last column shows the 

calculated price when the first n eigenvalues are used.  After about 8 terms in the series 

the price stabilizes to within a tenth of a basis point. 
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N    Lambda       Phi        cQ        cR    Q(0,0)    R(0,0)    Price 

-- --------- --------- --------- --------- --------- --------- ------- 

 1   0.19551   0.80866   1.06898   0.07569   0.86444   0.06121 102.102 

 2   0.58445   0.68501   0.16833  -0.04836   0.97975   0.02808 107.747 

 3   0.96245   0.24979   0.12204   0.00940   1.01023   0.03043 107.754 

 4   1.35902  -0.14469   0.04380  -0.00291   1.00389   0.03086 107.693 

 5   1.76459  -0.39407   0.01688  -0.00041   0.99724   0.03102 107.657 

 6   2.17169  -0.51888   0.00419  -0.00066   0.99507   0.03136 107.635 

 7   2.57890  -0.54256  -0.00099  -0.00046   0.99560   0.03161 107.628 

 8   2.98675  -0.48979  -0.00270  -0.00033   0.99693   0.03177 107.626 

 9   3.39566  -0.38729  -0.00279  -0.00021   0.99801   0.03186 107.626 

10   3.80554  -0.25849  -0.00223  -0.00012   0.99858   0.03189 107.626 

11   4.21602  -0.12091  -0.00148  -0.00005   0.99876   0.03190 107.626 

12   4.62675   0.01316  -0.00079   0.00000   0.99875   0.03190 107.626 

13   5.03752   0.13496  -0.00023   0.00003   0.99872   0.03190 107.626 

14   5.44831   0.23831   0.00017   0.00004   0.99876   0.03191 107.626 

15   5.85914   0.31930   0.00042   0.00005   0.99889   0.03192 107.626 

16   6.27009   0.37607   0.00054   0.00005   0.99910   0.03194 107.626 

17   6.68120   0.40862   0.00056   0.00004   0.99933   0.03196 107.626 

18   7.09249   0.41832   0.00052   0.00003   0.99955   0.03197 107.626 

19   7.50393   0.40747   0.00044   0.00002   0.99973   0.03198 107.626 

20   7.91547   0.37888   0.00034   0.00002   0.99986   0.03199 107.626  

 

Table 15 Eigenfunction expansion for GNMA 8.0% on 1/31/2005 

6.2 Double-Threshold CIR Model  

There are two solutions at each threshold for the differential equation involving 

theTwo-Threshold CIR model .  Thus we have a total of four solutions.  These can be 

written in Mathematica  along with their derivatives as: 

phi1[x_,lambda_]:=Exp[(kappa-rho0)*x/sigma^2]* 

    HypergeometricU[a0-lambda/rho0,beta,alpha0*x] 

psi1[x_,lambda_]:=Exp[(kappa-rho1)*x/sigma^2]*  

    Hypergeometric1F1[a1-(lambda-gam1*k1)/rho1,beta,alpha1*x] 

phi2[x_,lambda_]:=Exp[(kappa-rho1)*x/sigma^2]* 

    HypergeometricU[a1-(lambda-gam1*k1)/rho1,beta,alpha1*x] 

psi2[x_,lambda_]:=Exp[(kappa-rho2)*x/sigma^2]* 

    Hypergeometric1F1[a2-(lambda-gam1*k1-gam2*k2)/rho2,beta,alpha2*x] 

psi1d[k_,lambda_]:=D[psi1[y,lambda],y]/.y->k 

phi1d[k_,lambda_]:=D[phi1[y,lambda],y]/.y->k 

psi2d[k_,lambda_]:=D[psi2[y,lambda],y]/.y->k 

phi2d[k_,lambda_]:=D[phi2[y,lambda],y]/.y->k 

 
All variables can be defined in terms of the CIR interest rate parameters, {κ,σ,θ} and the 

double-threshold prepayment parameters  {h₀,γ₁,γ₂,k₁,k₂}. 
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rho0:=Sqrt[2*sigma^2 + kappa^2] 

rho1:=Sqrt[2*(1-gam1)*sigma^2 + kappa^2] 

rho2:=Sqrt[2*(1-gam1-gam2)*sigma^2 + kappa^2] 

alpha0:=2*rho0/sigma^2 

alpha1:=2*rho1/sigma^2 

alpha2:=2*rho2/sigma^2 

beta:=2*kappa*theta/sigma^2 

a0:=beta/2-kappa^2*theta/(sigma^2*rho0) 

a1:=beta/2-kappa^2*theta/(sigma^2*rho1) 

a2:=beta/2-kappa^2*theta/(sigma^2*rho2) 

 

Constructing the 4 x 4 “Wronskian” matrix is a bit more complex: 

w11[k_,lam_]:=psi1[k,lam]*phi1d[k,lam]-phi1[k,lam]*psi1d[k,lam] 

w12[k_,lam_]:=psi1[k,lam]*phi2d[k,lam]-phi2[k,lam]*psi1d[k,lam] 

w22[k_,lam_]:=psi2[k,lam]*phi2d[k,lam]-phi2[k,lam]*psi2d[k,lam] 

wp[k_,lam_]:=phi1[k,lam]*phi2d[k,lam]-phi1d[k,lam]*phi2[k,lam] 

row1[k_,lam_]:={phi1[k,lam],-phi2[k,lam],-psi1[k,lam],0} 

row2[k_,lam_]:={phi1d[k,lam],-phi2d[k,lam],-psi1d[k,lam],0} 

row3[k_,lam_]:={0,phi2[k,lam],psi1[k,lam],-psi2[k,lam]} 

row4[k_,lam_]:={0,phi2d[k,lam],psi1d[k,lam],-psi2d[k,lam]} 

mat[lam_]:={row1[k1,lam],row2[k1,lam],row3[k2,lam],row4[k2,lam]} 

w[lam_]:=Det[mat[lam]] 

 
Before solving for the eigenvalues  we supply the double-threshold parameters:  
 
gam1=99.747;gam2=4.203-gam1;h0=14.319/100; 

k1=Log[1+(5.13+Spread)/100];k2=Log[1+(4.98+Spread)/100]; 

 

Lambda1=FindLambda[0] 

 

0.197216 

 

The first seven eigenvalues are:   

{0.197216, 0.575169, 0.951264, 1.3523, 1.76064, 2.16818, 2.57475} 

 

The Eigenfunctions are normalized linear combinations of the solutions of the differential 

equations: 

(**** Normalizing Coefficients ******************************) 

Y[lam_]:=psi2[k2,lam]/(psi1[k2,lam]*wp[k1,lam]+phi2[k2,lam]*w11[k1,lam]

); 

D1[lam_]:=NIntegrate[psi2[x,lam]^2*m[x],{x,0,k2}]/Y[lam]^2; 

D2[lam_]:=NIntegrate[(wp[k1,lam]*psi1[x,lam] +   

                w11[k1,lam]*phi2[x,lam])^2*m[x],{x,k2,k1}]; 

D3[lam_]:=w12[k1,lam]^2*NIntegrate[phi1[x,lam]^2*m[x],{x,k1,Infinity}]; 

DD[lam_]:=1/Sqrt[D1[lam]+D2[lam]+D3[lam]]; 

A1[lam_]:=w12[k1,lam]*DD[lam]; 

A2[lam_]:=w11[k1,lam]*DD[lam]; 

B1[lam_]:=wp[k1,lam]*DD[lam]; 
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B2[lam_]:=DD[lam]/Y[lam]; 

(************ EigenFunctions ******************) 

normal0[x_,lam_]:=A1[lam]*phi1[x,lam]; 

normal1[x_,lam_]:=A2[lam]*phi2[x,lam]+B1[lam]*psi1[x,lam]; 

normal2[x_,lam_]:=B2[lam]*psi2[x,lam]; 

Ph0[lam_]:=normal0[r0,lam]; 

Ph1[lam_]:=normal1[r0,lam]; 

Ph2[lam_]:=normal2[r0,lam]; 

Ph[lam_]:=Re[If[r0<k1,If[r0<k2,Ph2[lam],Ph1[lam]],Ph0[lam]]]; 

 
To obtain the first eigenfunction evaluated at the current short rate, we apply the defined 

function Ph to the principal eigenvalue:  

Ph[0.197216] 

-0.80907 

 

The expansion coefficients use numerical integration over three segments: 

cq2[lambda_]:=NIntegrate[normal2[x,lambda]*m[x],{x,0,k2}] 

cq1[lambda_]:=NIntegrate[normal1[x,lambda]*m[x],{x,k2,k1}] 

cq0[lambda_]:=NIntegrate[normal0[x,lambda]*m[x],{x,k1,Infinity}] 

cq[lambda_]:=cq0[lambda]+cq1[lambda]+cq2[lambda] 

cr2[lambda_]:=NIntegrate[x*normal2[x,lambda]*m[x],{x,0,k2}] 

cr1[lambda_]:=NIntegrate[x*normal1[x,lambda]*m[x],{x,k2,k1}] 

cr0[lambda_]:=NIntegrate[x*normal0[x,lambda]*m[x],{x,k1,Infinity}] 

cr[lambda_]:=cr0[lambda]+cr1[lambda]+cr2[lambda] 

cQ=Map[cq,Lambda] 

cR=Map[cr,Lambda] 

 

The Double-Threshold CIR price convergence can be seen in Table 16.  Observe 

that the double-threshold price is closer to Bloomberg than the single threshold price of 

$107.626.  
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N    Lambda       Phi        cQ        cR    Q(0,0)    R(0,0)    Price 

-- --------- --------- --------- --------- --------- --------- ------- 

 1   0.19722  -0.80907  -1.07231  -0.07527   0.86757   0.06090 102.214 

 2   0.57517   0.67071   0.16168  -0.04888   0.97601   0.02812 107.769 

 3   0.95126  -0.20458  -0.10583  -0.01000   0.99767   0.03017 107.741 

 4   1.35230  -0.17986   0.02932  -0.00308   0.99239   0.03072 107.676 

 5   1.76064   0.41536  -0.00693   0.00052   0.98951   0.03094 107.653 

 6   2.16818  -0.53169  -0.00240  -0.00075   0.99079   0.03133 107.641 

 7   2.57475   0.54719   0.00508   0.00051   0.99357   0.03161 107.639 

 8   2.98211  -0.48553  -0.00493  -0.00034   0.99596   0.03178 107.639 

 9   3.39115   0.37610   0.00369   0.00019   0.99735   0.03185 107.640 

10   3.80164  -0.24391  -0.00225  -0.00008   0.99790   0.03187 107.641 

11   4.21285   0.10584   0.00098   0.00000   0.99800   0.03187 107.641 

12   4.62414   0.02729  -0.00001   0.00004   0.99800   0.03188 107.641 

13   5.03518  -0.14774  -0.00065  -0.00007   0.99810   0.03189 107.641 

14   5.44594   0.24960   0.00103   0.00008   0.99836   0.03191 107.641 

15   5.85657  -0.32870  -0.00119  -0.00008   0.99875   0.03193 107.641 

16   6.26730   0.38299   0.00117   0.00007   0.99920   0.03196 107.641 

17   6.67827  -0.41255  -0.00104  -0.00006   0.99962   0.03199 107.641 

18   7.08957   0.41911   0.00083   0.00004   0.99997   0.03200 107.642 

19   7.50115  -0.40543  -0.00060  -0.00003   1.00022   0.03201 107.642 

20   7.91294   0.37461   0.00037   0.00001   1.00035   0.03202 107.642 

Table 16 - Eigenfunction expansion for 8.0% GNMA on 1/31/2005 for Double Threshold Model 

6.3 Vasicek Pricing Model 

 The Vasicek solutions are the Parabolic Cylinder Functions: 
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 (6.14) 

These solutions can be easily written in Mathematica script:  

Dv[a_,x_]:=ParabolicCylinderD[a,x] 

U[a_,x_]:=Dv[-a-0.5,x] 

V[a_,x_]:=1/Pi*Gamma[a + 0.5]*(Sin[Pi*a]*Dv[-a-0.5,x]+Dv[-a-0.5,-x]) 

 

The independent variable can be written as: 

z[x_]:=Sqrt[2*kappa]/sigma*(theta-x) 
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All variables can be defined in terms of the Vasicek Parameters, {κ, σ, θ} and the single-

threshold prepayment parameters  {h₀, γ, k}: 

mu[gam_,lam_]:=(sigma^2*(1-gam)^2)/(2*kappa^3)+  

                          (lam-gam*k-theta*(1-gam))/kappa 

v:=-mu[gam,lam]-.5 

alpha[gam_]:=sigma*(1-gam)*Sqrt[2/kappa^3] 

 

Although this is a single-threshold model, it is treated similar to a double threshold model 

where the lower threshold  k₂=0.    We define four solutions to the differential equation: 

phi1[x_,lam_]:=Exp[1/4*z[x]^2]*U[-mu[0,lam]-.5,alpha[0]-z[x]] 

psi1[x_,lam_]:=Exp[1/4*z[x]^2]*V[-mu[gam,lam]-.5,alpha[gam]-z[x]] 

phi2[x_,lam_]:=Exp[1/4*z[x]^2]*U[-mu[gam,lam]-.5,alpha[gam]-z[x]] 

psi2[x_,lam_]:=Exp[1/4*z[x]^2]*U[-lam/kappa-.5,z[x]] 

 

and their derivatives:  

psi1d[k_,lam_]:=D[psi1[y,lam],y]/.y->k 

phi1d[k_,lam_]:=D[phi1[y,lam],y]/.y->k 

psi2d[k_,lam_]:=D[psi2[y,lam],y]/.y->k 

phi2d[k_,lam_]:=D[phi2[y,lam],y]/.y->k 

 

and from these construct a “Wronskian” matrix:  

row1[k_,lam_]:={phi1[k,lam],-phi2[k,lam],-psi1[k,lam],0} 

row2[k_,lam_]:={phi1d[k,lam],-phi2d[k,lam],-psi1d[k,lam],0} 

row3[k_,lam_]:={0,phi2[k,lam],psi1[k,lam],-psi2[k,lam]} 

row4[k_,lam_]:={0,phi2d[k,lam],psi1d[k,lam],-psi2d[k,lam]} 

mat[lam_]:={row1[k,lam],row2[k,lam],row3[0,lam],row4[0,lam]} 

w[lam_]:=Det[mat[lam]] 

 
The Vasicek model has its own speed and scale densities: 

s[x_]:=Exp[kappa*(theta-x)^2/sigma^2] 

m[x_]:=2/sigma^2*Exp[-kappa*(theta-x)^2/sigma^2] 

 

Now let’s put in the Vasicek Interest Rate Parameters, along with the single-threshold 
prepayment parameters:   
 
kappa=0.31695; sigma=0.04332;theta=0.06459; gam=6.962; 

k=Log[1+(5.95+Spread)/100] 

 

We now can find the Eigenvalues.  The first one is: 
 
In[306]:= FindLambda[0] 

Out[306]= 0.12756 
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Here we define the normalizing coefficients as described in Section 4.2.3: 
 

 (********Normalizing Coefficients ***************) 

w11[k_,lam_]:=psi1[k,lam]*phi1d[k,lam]-phi1[k,lam]*psi1d[k,lam] 

w12[k_,lam_]:=psi1[k,lam]*phi2d[k,lam]-phi2[k,lam]*psi1d[k,lam] 

w22[k_,lam_]:=psi2[k,lam]*phi2d[k,lam]-phi2[k,lam]*psi2d[k,lam] 

wp[k_,lam_]:=phi1[k,lam]*phi2d[k,lam]-phi1d[k,lam]*phi2[k,lam] 

Y[lam_]:=psi2[0,lam]/(psi1[0,lam]*wp[k,lam]+  phi2[0,lam]*w11[k,lam]) 

D1[lam_]:=NIntegrate[psi2[x,lam]^2*m[x],{x,-Infinity,0}]/Y[lam]^2 

D2[lam_]:=NIntegrate[(wp[k,lam]*psi1[x,lam] + 

           w11[k,lam]*phi2[x,lam])^2*m[x],{x,0,k}] 

D3[lam_]:=w12[k,lam]^2*NIntegrate[phi1[x,lam]^2*m[x],{x,k,Infinity}] 

DD[lam_]:=1/Sqrt[D1[lam]+D2[lam]+D3[lam]] 

A1[lam_]:=w12[k,lam]*DD[lam] 

A2[lam_]:=w11[k,lam]*DD[lam] 

B1[lam_]:=wp[k,lam]*DD[lam] 

B2[lam_]:=DD[lam]/Y[lam] 

 

Now we can normalize the eigenfunctions.  The code is identical to the double-threshold 

CIR model except that k₂=0. 

 

(************ EigenFunctions ******************) 

normal0[x_,lam_]:=A1[lam]*phi1[x,lam] 

normal1[x_,lam_]:=A2[lam]*phi2[x,lam]+B1[lam]*psi1[x,lam] 

normal2[x_,lam_]:=B2[lam]*psi2[x,lam] 

Ph0[lam_]:=normal0[r0,lam] 

Ph1[lam_]:=normal1[r0,lam] 

Ph2[lam_]:=normal2[r0,lam] 

Ph[lam_]:=Re[If[r0<k,If[r0<0,Ph2[lam],Ph1[lam]],Ph0[lam]]] 

Phi=Map[Ph,Lambda] 

 

First we find the principal eigenvalue:  
 

Lambda1=FindLambda[0] 

 

0.127556 

 

We can check the Vasicek model for continuity at the breakpoint k: 

In[52]:= normal0[k,Lambda1] 

 

Out[52]= -0.0829837 

 

In[53]:= normal1[k,Lambda1] 

 

Out[53]= -0.0829837 

 

We can also check it for differentiability: 

In[58]:= D[normal0[x,Lambda1],x]/.{x->k} 
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Out[58]= -0.153603 

 

In[59]:= D[normal1[x,Lambda1],x]/.{x->k} 

 

Out[59]= -0.153603 

 

Although the Vasicek model is technically a one-threshold model, there is an 

implied second threshold at r=0.  This is because the Vasicek model can become 

negative.  Thus we have to integrate between plus and minus infinity.  Here we check for 

continuity and differentiability at zero: 

In[54]:= normal1[0,Lambda1] 

 

Out[54]= -0.0795716 

 

In[55]:= normal2[0,Lambda1] 

 

Out[55]= -0.0795716 

 

In[60]:= D[normal1[x,Lambda1],x]/.{x->0} 

 

Out[60]= 0.392158 

 

In[61]:= D[normal2[x,Lambda1],x]/.{x->0} 

 

Out[61]= 0.392158 

 

The Vasicek expansion coefficients can be calculated using numerical integration 

in the same way that we did for the double-threshold CIR model.  The only difference is 

the implied second threshold at r=0. 

(****** Expansion Coefficients ************************) 

cq2[lam_]:=NIntegrate[normal2[x,lam]*m[x],{x,-Infinity,0}] 

cq1[lam_]:=NIntegrate[normal1[x,lam]*m[x],{x,0,k}] 

cq0[lam_]:=NIntegrate[normal0[x,lam]*m[x],{x,k,Infinity}] 

cq[lam_]:=cq0[lam]+cq1[lam]+cq2[lam] 

cr2[lam_]:=NIntegrate[x*normal2[x,lam]*m[x],{x,-Infinity,0}] 

cr1[lam_]:=NIntegrate[x*normal1[x,lam]*m[x],{x,0,k}] 

cr0[lam_]:=NIntegrate[x*normal0[x,lam]*m[x],{x,k,Infinity}] 

cr[lam_]:=cr0[lam]+cr1[lam]+cr2[lam] 

cQ=Map[cq,Lambda] 

cR=Map[cr,Lambda] 

 

Finally, we show the price convergence using the eigenvalue expansion for the first 20 

terms in Table 17. 
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 N   Lambda       Phi        cQ        cR    Q(0,0)    R(0,0)    Price 
-- --------- --------- --------- --------- --------- --------- ------- 

 1   0.13947  -0.07579 -12.03120  -0.78442   0.91187   0.05945 104.160 

 2   0.42414   0.03540   0.02158  -0.63701   0.91264   0.03690 107.954 

 3   0.74490   0.05528   0.38886  -0.12319   0.93413   0.03009 108.886 

 4   1.08075  -0.04304  -0.50810  -0.01864   0.95600   0.03089 108.962 

 5   1.38500  -0.03922  -0.16920  -0.00613   0.96264   0.03113 108.980 

 6   1.72466   0.04560   0.29483   0.00284   0.97608   0.03126 109.030 

 7   2.03242   0.02741   0.03676   0.00294   0.97709   0.03134 109.030 

 8   2.36523  -0.04609  -0.19087  -0.00259   0.98588   0.03146 109.053 

 9   2.68025  -0.01838   0.01292  -0.00185   0.98565   0.03150 109.051 

10   3.00549   0.04556   0.12749   0.00217   0.99145   0.03160 109.063 

11   3.32654   0.01119  -0.03214   0.00114   0.99109   0.03161 109.061 

12   3.64634  -0.04448  -0.08592  -0.00179   0.99492   0.03169 109.067 

13   3.97097  -0.00529   0.03831  -0.00068   0.99471   0.03169 109.067 

14   4.28789   0.04305   0.05749   0.00147   0.99719   0.03175 109.070 

15   4.61379   0.00032  -0.03847   0.00039   0.99718   0.03175 109.070 

16   4.92990  -0.04140  -0.03758  -0.00120   0.99873   0.03180 109.071 

17   5.25543   0.00393   0.03582  -0.00020   0.99887   0.03180 109.071 

18   5.57209   0.03960   0.02347   0.00098   0.99980   0.03184 109.072 

19   5.89628  -0.00761  -0.03193   0.00008   1.00005   0.03184 109.072 

20   6.21420  -0.03770  -0.01342  -0.00081   1.00055   0.03187 109.073 

 

Table 17 - Eigenfunction Expansion for GNMA 8.0% - Vasicek Model 

6.4 Performance 

Each of the three models that we have proposed produces values that are 

reasonably close to Bloomberg Prices.  The single-threshold Cox-Ingersoll-Ross model 

performs best at 114 seconds of CPU time.  The double-threshold model takes about four 

times longer to compute mainly due to the additional complexity the second breakpoint 

resulting in solving for the determinant of a 4-by-4 matrix.  The CPU time is 498 

seconds.  Surprisingly, the Vasicek model also involves a 4-by-4 matrix, but it requires 

only 10% more CPU time that the single-threshold CIR model; the Vasicek CPU time is 

127 seconds.  This may be due to the fact that the parabolic cylinder function solutions to 

Vasicek require less time to compute than the Hyperbolic geometric solutions to the CIR 

model. 
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Chapter 7.  Comparison of Model to Empirical Data 

 In order to test the model we need to look at prices of mortgage-backed securities 

over a range of interest rates.  One reason we choose the10-year period from September 

1996 until June 2006 is because it precedes the financial crisis of 2008 by two years; 

forward rates began to deviate from their usual upward-sloping tendency possibly due to 

events leading up to the mortgage crisis.  We also use this period because we can 

compare our results to those of an existing model (Kolbe and Zagst 2009) which studied 

GNMA securities over the same period.  This appeared to be the best model currently 

available because it used a piecewise linear prepayment S-curve similar to our double-

threshold model.  Furthermore Kolbe and Zagst reported that they were unable to 

compare the accuracy of the (Gorovoy and Linetsky 2007) approach to their data due to 

numerical problems.  In this section we will do exactly that.  In addition to the Gorovoy 

and Linetsky model, we will also compare Kolbe and Zagst’s results to both the double-

threshold and Vasicek models that we proposed and developed.  We will also take a look 

at more recent data in 2010 and 2011 where parameter calibration is feasible. 

Figure 14 shows U.S. Treasury rates from 1996 to 2011 at varying maturities. 

What one notices is that interest rates are on a distinct downward trend.  The short rate 

shows much bigger fluctuations than longer term rates.  When short-term rates drop 

radically, the long-term rates (20-year) are not much affected.  In general, the CIR 

calibration works well when the yield curve is upward sloping (the typical situation).  

When the rates are close to each other, the yield curve may be flat or humped.  This 

occurred during 1998, 2000 and 2006.  When the interest rates are very low, the Vasicek 
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calibration tends to break down because the model allows for negative interest rates.  

These low interest rate periods occurred during 2002 and after 2008. 

 

Year

Month

20102008200620042002200019981996

SepSepSepSepSepSepSepSep

8

7

6

5

4

3

2

1

0

P
e

rc
e

n
t

TSY3M

TSY6M

TSY1YR

TSY2YR

TSY3YR

TSY5YR

TSY7YR

TSY10YR

TSY20YR

Variable

Treasury Rates of varying maturities  1996-2010

 

Figure 14:  Treasury Rates with varying maturities. 

7.1 Historical data 

For the historical period from 1996-2006, we calibrate the interest rate models 

each month.  Unfortunately one method of calibration does not work over the entire 

period of interest. Where possible, we will use the least squares approach proposed in 

Section 5.  This distance measure is the L₂ norm 

 ( )( )
2

2

ˆ ˆmin ; , ,
iT ii

f f f f T k σ θ− = −∑  (7.1) 
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During extended periods when this calibration method fails, there is usually some 

external event such as the dot-com bubble of 2000 or the pre-financial crisis period from 

2006-2008 which we will denote a “crisis period”.   We will use the L₁ norm and a spread 

based on the difference between single-A corporate rates and treasuries during crisis 

periods. (According to (Kalotay, Yang and Fabozzi 2004) single-A corporate rates 

approximate the credit risk of mortgages.) This “crisis” spread is approximately 20 basis 

points above the normal spread between the single-A corporate rates and treasuries.  The 

L₁ norm is defined as: 

 ( )
1

ˆ ˆmin ; , ,
iT ii

f f f f T k σ θ− = −∑  (7.2) 

The L₁ norm is less sensitive to outliers that the L₂ norm, so when we have one or 

two points which cause the yield to deviate from its typical upward shape those points 

will not be weighted as heavily. The combination of using the L₁ norm with the crisis 

spread will allow us to calibrate the parameters in most cases when the yield curve is 

humped or inverted. 

Simply using the L₁ norm without the crisis spread did not yield reasonable 

parameters in many cases.  Using the crisis spread with the L₂ norm did not solve the 

calibration problem either because adding a spread does not change the shape of the yield 

curve. 

In rare cases even the L₁ norm with a crisis spread failed to successfully calibrate.  

When this occurred for interest-rate model parameters for an isolated month or two (and 

not an extended period of time), we simply used the previous month’s calibrated 
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parameters along with the current short rate r₀ and the weighted average maturity (WAM) 

for the current month. 

The Kolbe-Zagst model performed the best using the 7.5% GNMA MBS 

compared to other coupon rates.  The performance measure we use is the average 

absolute pricing error between the model prices and empirical prices obtained from 

Bloomberg.  According to (Kolbe and Zagst 2009), the average absolute pricing error 

over this 10-year period was 116 basis points.  The individual Kolbe-Zagst price 

estimates were unavailable, but the time series plots of the price estimates were published 

in (Kolbe and Zagst 2009).  Communications with Kolbe and Zagst did not yield the 

actual data from their paper.  However, an old drafting trick with an engineer’s scale 

allows a visual price to be estimated for each month during the period 1996-2006 from 

grid lines drawn on a blown-up chart of the time series.  These estimates for the Kolbe-

Zagst model resulted in an average absolute pricing error of about 114 basis points, 

which is reasonably close to the published estimate considering the crudeness of this 

method.   

When we exclude the crisis periods, our model performs extremely well 

compared to Kolbe-Zagst.  For the 7.5% GNMA securities, we were able to calibrate the 

CIR parameters using the L₂ norm for 79 out of 117 months.  For these 79 months the 

single-threshold CIR model had an average absolute deviation was 87 basis points.  For 

the double-threshold CIR model it was only 83 basis points.  For the same 79 monthly 

periods, the Kolbe-Zagst deviation was 110 basis points. 
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Now let’s include all of the data.  The Kolbe-Zagst difference is 116 basis points 

by their own estimate.  The single-threshold CIR model for the entire period now 

averages 107 basis points.  The double-threshold model average is 102 basis points. 

For the Vasicek model, the L₂ calibrations work for most points.   For some 

isolated points, we simply use the previous month’s parameters as we did in the CIR 

model.  The main problem with the Vasicek model occurs during periods of low interest 

rates.  There were 24 monthly periods out of 117 where interest rates were too low to 

successfully calibrate the Vasicek parameters.  This includes the period from July 2002 

until March 2004.  For the remaining 93 months the average absolute difference between 

our estimates and Bloomberg’s was 109 basis points compared to the Kolbe-Zagst 

average for the same periods of 130 basis points. 

Thus we have seen that all of our models compare favorably to Kolbe-Zagst when 

applied to the 7.5% GNMA pools.   We next examine five generic GNMA pools ranging 

between 6% and 8%.  Prices of all 5 pools are plotted against the observed (Bloomberg) 

data and the Kolbe-Zagst estimates.  We shall also examine the mean absolute difference 

for each pool. 

The absolute pricing error for the single-threshold CIR model was consistently 

between 107 and 120 basis points away from Bloomberg.  We contrast this to Kolbe-

Zagst whose errors tended to increase as coupon rates decreased.  For the GNMA 6% 

pool the Kolbe-Zagst average absolute pricing error exceeded 250 basis points. 

When there was significant prepayment data for interest rates much lower than the 

coupon rate, the double-ramp CIR model performed better than the single-ramp CIR 

model.  This worked for the GNMA 7.5% and GNMA 8.0% pools.  The lower coupon 
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pools did not have enough prepayment data to show any advantage to user the double-

threshold over the single-threshold model. 

When we exclude the low interest rate periods, we can compare Vasicek to 

Kolbe-Zagst.  For comparison, we also include the CIR1 and CIR2 pricing errors when 

the low-interest rate periods are excluded.  The Vasicek model produces a significantly 

closer price estimate than Cox-Ingersoll-Ross for the GNMA 6.0%, 6.5% and 7.0% 

pools. For the 7.5% and 8.0%, there was no sign cant difference in the price estimate.  

For each of the Ginnie Mae securities, we show the Bloomberg market prices and 

Kolbe-Zagst prices followed by our model prices using the Vasicek interest-rate model, 

CIR interest-rate model with one prepayment threshold and CIR interest-rate model with 

two prepayment thresholds over the period October 1996 through June 2006.   See Figure 

15, Figure 16 and Figure 17.  Our Cox-Ingersoll-Ross and Vasicek models beat the Kolbe-

Zagst model using the mean absolute deviation measurement.   

Next we examine the residual errors.  We disregard residual patterns because 

prices are highly autocorrelated; however, we would like to see that our price estimates 

are unbiased.  We created box-plots to observe not only the size of the errors, but also 

how well they are centered about zero.  We also would like to observe the shape of the 

residuals—are they normal/symmetric or are they skewed left or right.  Figure 18 shows 

that the Vasicek model has much smaller errors for the 6.0% and 6.5% GNMA securities.  

The errors in the CIR model are slightly larger than those in the Vasicek model, but they 

are much better centered about zero, which indicates that the CIR model, while less 

accurate the Vasicek, is also less biased.  Both the CIR and Vasicek model outperform 

Kolbe-Zagst both in magnitude and estimation bias. Both Kolbe-Zagst and Vasicek based 
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models tended to overestimate the price.  The GNMA 6.5% errors appear to be more 

symmetric than the GNMA 6.0% errors. 

For the GNMA 7.0% securities, the Kolbe-Zagst errors appear to be fairly well 

centered on zero, but they are right-skewed. The CIR errors seem to be fairly well-

centered on zero and are less skewed, while the Vasicek errors are smaller and symmetric 

but are not centered on zero. 

For the higher coupons, we have both the single and double threshold CIR 

models.  In these models, Figure 18 shows the Vasicek errors are again smaller but 

slightly off-center.  Kolbe-Zagst is also off-center, but not as much as Vasicek, and both 

CIR models’ errors are fairly well-centered, and slightly smaller than Kolbe-Zagst.   All 

errors seem to be somewhat symmetric. 

To test for significance, we performed a matched sample t-test for the difference 

between the absolute errors of Kolbe-Zagst and the absolute errors of our models.  The 

differences in absolute errors appeared to follow an AR(1) time series model; the partial 

autocorrelation function showed a single spike at lag 1 for all coupon rates.     Due to the 

autocorrelation, we had to adjust the variance of the mean difference by the following 

factor:  

 
2

1

var 1 2 1
n

k

k

k
X

n n

σ
ρ

=

  
  = + −   

  
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where each kρ  is the autocorrelation at lag k.   Most of the autocorrelations completely 

decay by lag 10 so we truncated the autocorrelations and assumed a value of zero after 

the appropriate number of lags.   For the CIR models we had a fairly large sample size 
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(n=117).  For the Vasicek model we had a minimum sample size of n=84.   We obtain the 

correction factor from (7.3): 
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 
∑  (7.4) 

The standard error of the mean of correlated paired differences is calculated by 

multiplying the correction factor by the sample standard deviation divided by the square 

root of the sample size.      

 From  Table 18 our model shows a significant improvement at the 5% level over 

Kolbe-Zagst for each of the lower coupons (6.0% and 6.5%). Our model performed better 

over Kolbe-Zagst for each of the other coupons (7.0%, 7.5% and 8.0%); although all the 

individual results were not all significant, taken together they indicate a marked 

improvement over Kolbe-Zagst.   For the Vasicek model, Table 19 shows a significant 

difference for the 6.0%, 6.5% and 7.0% coupons; the higher coupons were also closer 

than Kolbe-Zagst.   

In conclusion, it appears that our model based on the eigenfunction expansion 

method proposed by Gorovoy and Linetsky is superior to Kolbe and Zagst’s more 

complex model on GNMA securities.    This appears to be true regardless of coupon rate 

and it does not depend upon the underlying interest rate model since both Vasicek and 

CIR provide more accurate results.  Moreover these two models are produces results that 

are close to each other.  The double-ramp model represents a slight improvement over the 

single-ramp model for the higher-coupon models.  The Vasicek model performs well 

during normal interest-rate periods; however, there are two concerns: (1) the model 
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performs poorly when interest rates are low, and (2) while the errors are smaller, Vasicek 

tends to overestimate the price since the residuals tend to be positive.   

 

Sample Period 
10/1996-6/2006  

Model GNMA Coupon 
6.0% 6.5% 7.0% 7.5% 8.0% 

  n=117 
(Entire Period) 

Kolbe-Zagst 265 185 139 114 122 
CIR1 119 120 111 106 109 
CIR2 119* 120* 111* 101 107 

  n = 89 
(Excluding Low 
Interest Rate 
Periods)  

Kolbe-Zagst 272 199 161 130 129 
Vasicek  91  82  84 109 120 
CIR1 120 127 116 103 103 
CIR2 120* 127* 116*  99 100 

 * CIR1 model used because second threshold not useful 

Table 18 - Absolute differences in Basis Points between Market and Model GNMA Security Prices 

 

 

GNMA Mean Standard  Correction Standard

Model Coupon Difference Deviation n Factor Error t p-value

6.0% 145.90 175.90 117 2.6614 43.2790 3.3711 0.0005

6.5% 64.57 159.20 117 2.5796 37.9671 1.7007 0.0458

7.0% 27.60 138.90 117 2.2541 28.9460 0.9535 0.1712

7.5% 8.35 122.50 117 1.3715 15.5325 0.5376 0.2959

8.0% 12.60 135.21 117 2.2248 27.8103 0.4531 0.3257

7.5% 13.42 118.00 117 1.2173 13.2793 1.0106 0.1571

8.0% 14.37 130.30 117 2.1340 25.7071 0.5590 0.2886

6.0% 180.47 184.80 89 2.0021 39.2180 4.6017 0.0000

6.5% 119.90 146.60 84 1.9375 30.9903 3.8690 0.0001

7.0% 79.10 121.60 84 1.9359 25.6845 3.0797 0.0014

7.5% 19.80 127.30 92 2.0169 26.7688 0.7397 0.2305

8.0% 14.35 126.10 90 2.5414 33.7810 0.4248 0.3359

CIR1

CIR2

Vasicek

 

Table 19 – Differences between Kolbe Zagst mean absolute error and Model mean absolute error 
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Figure 15 - Market and model prices for various GNMA passthru securities (I) 
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Figure 16 - Market and model prices for various GNMA passthru securities (II) 
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Figure 17 - Market and model prices for various GNMA passthru securities (III)  

 

Figure 18 - GNMA Passthru Model Errors 
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7.2 Recent Price Estimates 

Although the mortgage crisis of 2008 has made it difficult to calibrate interest-rate 

models during that period, recently the yield curve has started to exhibit the more typical upward-

sloping form.  Prior to January 2009, in the months leading up to the 2008 financial crisis and 

shortly thereafter, the yield curve was largely unstable and our calibration produced strange 

results, in many cases producing a volatility of zero.  Because recent short-term rates are 

extremely low, longer-term rates must necessarily be higher.  Although the low interest rates 

make it difficult to use the Vasicek model because of the possibility of negative interest rates, we 

are able to calibrate the Cox-Ingersoll-Ross parameters. 

Since interest rates are much lower in the recent period, it makes sense to will look at 

GNMA pools with lower coupon rates, i.e. 5.0% and 5.5% GNMA pools from the period of 

January 2009 until July 2011.  The results of the least squares CPR parameter estimation for the 

recent period are based on the piecewise linear relationship between prepayment rates and 

treasury rates over this recent period.  Thus we use a single set of parameters for each coupon 

rate: 

Pool h₀ γγγγ k 

GNMA 5.0% 5.92190  8.89 1.11 

GNMA 5.5% 7.01946 15.58 1.26 

 

The recent spread between 3-month Corp A and Treasuries is about 64 basis points.  

During the crisis period between October 2008 and December 2009 it was much higher.  Using 

the recent spread, we obtain the price estimates for the 5.0% and 5.5% GNMA’s.   This is because 

the pool size of the 6.0% - 8.0% GNMA’s was very small in 2009-2011 because most of those 

loans have since refinanced. 
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The Treasury yield curve for March 2010 is: 

 

3 month 6 month 1 year 2 year 3 year 5 year  7 year  10 year 20 year 

0.16 0.24 0.41 1.02 1.60 2.55 3.28 3.84 4.55 

 

Adding the 64 basis points to the treasury yields, we are able to estimate the CIR 

parameters:  κ = 0.27, σ=0.20, θ = 0.074.  The parameters for the other months are listed in Table 

20. 

Plots of the 5.0% and 5.5% GNMA prices are shown in Figure 19.   The model prices 

seem to be reasonably close to the market prices.   In fact the mean absolute difference between 

the model and Bloomberg is 141.1 basis points for GNMA 5.0% MBS and 128.5 basis points for 

GNMA 5.5% MBS.   After the third quarter 2010, the model prices appear to diverge from 

market prices.  In fact, the mean absolute difference for the 5.0% MBS is only 101.4 basis points 

before November 2010; from November 2010 until July 2011 our model under predicts market 

prices consistently by an average of 198.5 basis points.   For the 5.5% MBS, the mean absolute 

difference is 80.1 before November 2010; the model under predicts the market by 198.4 basis 

points from November 2010 until July 2011.  The model is much more accurate before November 

2010 than afterwards.  We note that the second round of Quantitative Easing known as QE2 

occurred at approximately the same time, when the Fed indicated it would purchase $600 billion 

worth of Treasury Securities.  According to (Swanson 2011) of the Federal Reserve Bank of San 

Francisco: 

The QE2 program has been controversial, with detractors conjecturing that 
the risks or costs of the policy are large while the benefits are small. For example, 
an open letter to Federal Reserve Chairman Bernanke signed by several 
prominent economists and published in full-page ads in The Wall Street Journal 

and The New York Times asserted that the purchases “risk currency debasement 
and inflation” and could “distort financial markets”. 
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The market prices after November 2010 are much higher than those predicted by 

the model, possibly due to the artificial demand created by the Federal Reserve.  This 

appears to bear out the market distortion predicted by the economists. 

DATE TSY3M WAM CIR Parameters 

5.0% 5.5%  κ KKKK DDDD 
200910 0.05 28.1667 26.6667 0.28254 0.19613 0.06807 

200911 0.06 28.1667 26.5833 0.19960 0.17381 0.07568 

200912 0.06 28.1667 26.4167 0.32404 0.21499 0.07132 

201001 0.08 28.0833 26.3333 0.24840 0.19170 0.07400 

201002 0.13 28.0833 26.2500 0.22820 0.18680 0.07650 

201003 0.16 28.0000 26.1667 0.27060 0.20050 0.07430 

201004 0.16 27.9167 26.0833 0.26460 0.19510 0.07190 

201005 0.16 27.9167 26.0000 0.21770 0.17650 0.07160 

201006 0.18 27.8333 25.9167 0.16800 0.15750 0.07390 

201007 0.15 27.7500 25.7500 0.12720 0.14800 0.08620 

201008 0.14 27.6667 25.6667 0.11480 0.13400 0.07820 

201009 0.16 27.5833 25.5833 0.07890 0.12790 0.10360 

201010 0.12 27.5000 25.5000 0.03930 0.12260 0.19110 

201011 0.17 27.4167 25.3333 0.07750 0.13510 0.11770 

201012 0.12 27.3333 25.2500 0.17640 0.16820 0.08020 

201101 0.15 27.2500 25.1667 0.13640 0.16200 0.09620 

201102 0.15 27.1667 25.0833 0.19010 0.17390 0.07950 

201103 0.09 27.0833 25.0000 0.22310 0.18280 0.07490 

201104 0.04 27.0000 24.9167 0.17440 0.16870 0.08160 

201105 0.06 26.9167 24.8333 0.13100 0.15290 0.08920 

201106 0.03 26.8333 24.7500 0.13520 0.15760 0.09190 

201107 0.08 26.7500 24.6667 0.09690 0.14450 0.10770 

Table 20: Recent CIR Parameters 
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Figure 19 - Recent MBS Prices Showing Possible Effect of Quantitative Easing in 4
th
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7.3 Applications of the Default Model 

Although agency MBS are not subject to defaults because they have corporate or 

government backing, the default model proposed in section 4.4 can be useful in several 

ways.  We examine two specific ways to study the pricing of GNMA MBS by comparing 

prices and yields of similar instruments both with and without defaults.   During periods 

of economic upheaval the spread to treasuries tends to increase for MBS; however, by 

pricing a theoretical GNMA MBS with “defaults” using the typical spread, we are able to 

approximate the same price as we did using the crisis spread.  Since agency mortgages 

are guaranteed against defaults, we can use the default model to estimate the value of this 

guarantee by comparing the yield of an MBS with no defaults with that of a theoretical 

MBS with defaults.   The difference in basis points can then be compared to the 

guarantee fee charged by Ginnie Mae, for example. 

7.3.1 Using Defaults in Lieu of a Crisis Spread 

During the 10-year period we examined between 1996 and 2006 we observed 

several periods where we introduced a “crisis spread” of 95.4 basis points.  Instead of 

using a crisis spread, we can use the normal spread of 74 basis points alongside a 

constant default rate.  Unfortunately, private mortgage companies do not release default 

data and Ginnie Mae, Fannie Mae and Freddie Mac cover defaults with guarantee fees.  

However, we can use the foreclosure rates available in Bloomberg as a proxy for default 

rates.  Bloomberg’s foreclosure rates are only available as far back as January 2005, so 

we will examine the period from September 2005 until June 2006. 
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Instead of using a crisis spread, we can use the normal spread of 74 basis points 

along with the default model.  Since we were unable to calibrate Treasury rates plus the 

normal spread during the crisis period, we will use the parameters from the calibration of 

the crisis spread of 95.4 basis points.  However, since the difference between the crisis 

spread and the normal spread is 21.4 basis points, we will adjust the long term rate 

parameter by this amount and use the adjusted parameter in our default model: 

 0.0214θ θ= −�  

We now apply the default model to GNMA 6.0%, 6.5%, 7.0%, 7.5% and 8.0% 

MBS.   Figures 22, 23 and 24 show the default model prices versus the crisis spread 

along with Bloomberg and Kolbe Zagst.  Observe that the Default Models and Crisis 

Spread Models are very close to each other over this period.  There is a small spread for 

the 8.0% GNMA’s, but both models are better than Kolbe-Zagst. 

 

Figure 20 - Default vs. Crisis Spread Model (I) 
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Figure 21 - Default vs. Crisis Spread Model (II) 

Year

Month

20062005

JunMayAprMarFebJanDecNovOctSep

105

104

103

102

101

100

99

P
ri

c
e

BLOOMBERG

CIR1

DEFAULT

KZ

Variable

GNMA 6.5% Default Model vs. Crisis Spread Model

Year

Month

20062005

JunMayAprMarFebJanDecNovOctSep

105.5

105.0

104.5

104.0

103.5

103.0

102.5

102.0

P
ri

c
e

BLOOMBERG

CIR1

DEFAULT

KZ

Variable

GNMA 7.0% Default Model vs. Crisis Spread Model



170 

 

 

 

Figure 22 - Default vs. Crisis Spread Model (III) 
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7.3.2 Determining the Value of the GNMA Guarantee Fee 

For a six-basis point guarantee fee on the balance of the securities, GNMA pays 

the issuer the lost principal and interest from defaults each month.  Although defaulting 

mortgages take up to a year to be settled through the foreclosure process, we treat a 

default as an immediate prepayment except that only a fraction of the total balance due is 

received at that time.  The proportion of the total balance due is based on three factors--

the recovery amount, the current mortgage rate and the time to foreclosure.  The recovery 

amount is the market value of the house, less foreclosure expenses incurred by the bank.  

Since many mortgages are currently underwater, this recovery amount should be 

substantially less than it was prior to 2008.  To account for the delay in receiving the 

recovery amount, we must also discount it by the mortgage rate for the period from first 

default to foreclosure. 

What is the value of the guarantee provided by Ginnie MAE?  To determine this, 

we must first determine the yield of an MBS with prepayments and zero defaults.  We 

then determine the yield of an MBS with prepayments, a specified default rate and a loss 

severity rate.  The difference between the yields determines the minimum number of 

basis points necessary for the guarantee fee to cover the losses associated with default.   

(Gorovoy and Linetsky 2007) present a theoretical example where the short rate is 

r₀ = 9.0%, θ = 0.06, σ = 0.10, κ = 0.25.  The refinancing threshold k = 0.09, and 

refinancing intensity γ = 5.0.  Using the constant prepayment and constant default model 

we assume 4.5% CPR (Constant Prepayment Rate) and 0.6% ADR (Annual Default Rate) 

respectively.  First we ignore the default rate and estimate the mortgage rate for a 30-year 

mortgage which is 7.85272%.  This is the same value obtained in (Gorovoy and Linetsky 
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2007).  Now let us apply a constant default rate (CDR)of 0.6% and loss severity of 20%.  

This results in a mortgage rate of 8.01942%.  The difference between the two rates is 

16.65 basis points.  This assumes however, that the default rate of 0.6% remains constant 

throughout the life of the pool. 

A slightly more realistic approach is to use the PSA prepayment model with the 

standard default assumption (SDA) described in Section 4.4.4 where the prepayment and 

default rates depend upon the seasoning of the pool.  For illustrative purposes, we take 

another example using CIR parameters from previously calibrated by (Gorovoy and 

Linetsky 2007):  θ =0.0702, κ=0.147, σ=0.095, r₀=0.0395, b=0.545, γ=15.5, s=0.00375.  

For a zero default rate, the interest rate is 5.61223%.  Table 21 shows what happens to the 

mortgage rate by varying the default rate as a multiple of SDA and varying the loss 

severity from 0% to 50%.  The table also shows the difference between the theoretical 

mortgage rate and the no-default benchmark in basis points.  Observe that the loss 

premium is negative for very low (1%) loss-severity rates.  This is because the yield 

curve predicts that interest rates will rise and the losses are too small to offset this 

advantage.  To eliminate this “negative” loss premium, we can compare the yields to the 

same default rate with a loss severity of 0.  These differences are also listed in Table 21.  

Here the loss premiums up to 100% SDA are small enough for the 6 basis-point 

guarantee fee to be effective.  However, in recent years, foreclosure rates and hence 

default rates have skyrocketed.  Furthermore, an increase in loss severity due to the 

bursting of the recent housing bubble shows that Ginnie Mae’s guarantee fee is 

insufficient to cover losses due to foreclosures. 
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Now let us apply this method to actual data from Ginnie Mae.  First we look at a 

6.0% GNMA sold on January 31, 2005.  The price according to Bloomberg on that date 

was 103.797tP = .  The WAM (weighted average maturity) was 26.5 years.  We use the 

calibrated CIR parameters κ = 0.32368, σ = 0.17805 and θ = 0.06210, the short rate  

2.51% and our prepayment estimates of γ = 5.647, h₀ = 0.051, and prepayment threshold 

of 5.44%.  Solving (4.170) numerically with δ=0 gives us a baseline mortgage rate of 

6.14778%.  (This is approximately the same as the effective annual rate of a nominal 

6.0% mortgage compounded monthly:  6.168%.)  Now let us use the foreclosure 

rate of 0.95% for January 2005 as a proxy for the default rate.  Since this is a 

constant rate, we use the simpler CPR model with a constant default rate.  Let us 

assume a loss severity of 20% which is typical for the industry.  Using the function 

( ) ( )* 1 1 0.2 m
S m e

−= − −  from above we find that the adjusted loss severity S* = 

0.246476.  From this we find that the mortgage rate m = 6.38851%.  The difference 

between the mortgage rate with defaults and the baseline mortgage rate is 24.07 basis 

points which is close to the loss premium  

 0.246476 0.95 0.234152Sδ = × =  (7.5) 

It is also close to the difference between the normal (74 BP) and crisis (95 BP) 

spreads we examined in the previous section. 

Although a loss severity of 20% was often assumed in the mortgage industry, in 

recent years due to the housing bubble, this amount is likely to be much higher.  The 

S&P/Case-Schiller Home Price Index, Seasonally Adjusted U.S.National Index Levels 

has declined 32.4% in the five year period ending in the first quarter 2011.  Including the 
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costs of foreclosure would increase this figure.  So it is useful to observe the sensitivity of 

MBS yields to loss severity.  Holding everything else constant, we vary the loss severity 

from 0% to 50% and observe the difference in basis points.  Table 22 shows the implied 

value of the Ginnie Mae Loan guarantee by comparing implied yields of a GNMA 6.0% 

security at the Bloomberg price of $103.797 on January 31, 2005 with various loss 

severities to the yield of a no-default GNMA 6.0% MBS and the yield of a GNMA 6.0% 

with an implied default rate of 0.95% (reflecting the foreclosure rate in January 2005) 

with no loss severity.  The latter yield basically adds the default rate to the prepayment 

rate.  Since the prepayment rate is imbedded in the MBS yield, this implied value may be 

more accurate. 

We define the loss premium as the value of the Ginnie Mae Guarantee. Observe 

that even in 2005 the loss premium exceeds the six basis points charged by Ginnie Mae.  

This indicates that the guaranty fee charged by Ginnie Mae is a good deal for most banks 

and is, in fact, subsidized. 

For a more recent case, we look at a GNMA 5.5% MBS sold on July 31st, 2010.  

The market price from Bloomberg is $108.703; assuming no defaults and solving for the 

yield, we obtain 5.59669%.  The foreclosure rate for July 2010 was extremely high at 

11.1%; however, at this rate nearly two-thirds of all mortgages will have defaulted after 

10 years.  Instead we will average the foreclosure rates over the previous four years to 

approximate the annual default rate (ADR); this results in a default rate of 6.64%.  The 

implied value of the loan guarantee at this default rate for the July 2010 MBS is also 

listed in Table 22.  We also include loss severities of 40% and 50%, since housing prices 
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fell substantially after 2008.  It is clear from this table that 6 basis points are inadequate 

to cover the losses from defaults if we assume a typical 20% loss severity. 

Fannie and Freddie MBS were obviously overpriced because investors did not 

perceive the risk involved, assuming government backing.  But maybe they were right—

after all the government did bail them out.  As we have seen, even Ginnie Mae—which 

did not have the problems of Fannie Mae and Freddie Mac—cannot be sustained by 

charging only six basis points to guarantee the payments of defaulting mortgages. 

Sensitivity of Mortgage Rates to Standard Default Assumption and Loss Severity 

% SDA 0% 1% 10% 20% 30% 40% 50% 

0% 5.61223 5.61223 5.61223 5.61223 5.61223 5.61223 5.61223 

50% 5.60988 5.61066 5.61759 5.62530 5.63300 5.64070 5.64840 

100% 5.60752 5.60906 5.62292 5.63831 5.65370 5.66908 5.68445 

200% 5.60274 5.60582 5.63348 5.66419 5.69488 5.72555 5.75620 

500% 5.58804 5.59569 5.66443 5.74067 5.81677 5.89274 5.96856 

1000% 5.56253 5.57766 5.71359 5.86412 6.01413 6.16362 6.31258 

Basis Point difference to 0% Loss Severity and 0% SDA 

% SDA 0% 1% 10% 20% 30% 40% 50% 

0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50% -0.235 -0.157 0.536 1.307 2.077 2.847 3.617 

100% -0.471 -0.317 1.069 2.608 4.147 5.685 7.222 

200% -0.949 -0.641 2.125 5.196 8.265 11.332 14.397 

500% -2.419 -1.654 5.220 12.844 20.454 28.051 35.633 

1000% -4.970 -3.457 10.136 25.189 40.190 55.139 70.035 

Basis Point difference to  0% Loss Severity with Same Default Rate 

% SDA 0% 1% 10% 20% 30% 40% 50% 

0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

50% 0.000 0.078 0.771 1.542 2.312 3.082 3.852 

100% 0.000 0.154 1.540 3.079 4.618 6.156 7.693 

200% 0.000 0.308 3.074 6.145 9.214 12.281 15.346 

500% 0.000 0.765 7.639 15.263 22.873 30.470 38.052 

1000% 0.000 1.513 15.106 30.159 45.160 60.109 75.005 

Table 21 - Effect of Defaults on Mortgage Rates (SDA Model) 
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MBS (Seasoned) 
Loss 

Severity 

CPR/CDR 

Required 

Yield(%) 

Implied Value of Loan 

Guarantee (BP) 

d=0, S= 0 S = 0 

  

0% 6.20881%  6.10  0.00 

 GNMA 6.00% 5% 6.25379% 10.60  4.50 

 Date Jan-05 10% 6.29874% 15.10  8.99 

 Price $    103.797 15% 6.34364% 19.59 13.48 

 Yield 6.14778% 20% 6.38851% 24.07 17.97 

 Default Rate 0.95% 25% 6.43333% 28.56 22.45 

 WAM (yrs) 26.5 30% 6.65686% 50.91 44.81 

  

0% 5.87759% 56.60   0.00 

 GNMA 5.50% 5% 6.20719% 89.56  32.96 

 Date Jul-10 10% 6.53472% 122.31  65.71 

 Price $    108.703 15% 6.86022% 154.86  98.26 

 Yield 5.31163% 20% 7.18370% 187.21 130.61 

 Default Rate 6.64% 25% 7.50519% 219.36 162.76 

 WAM(yrs) 27.75 30% 7.82470% 251.31 194.71 

  

40% 8.45790% 314.63 258.03 

  

50% 9.08348% 377.19 320.59 

Table 22- Sensitivity of Implied Loan Guarantee Values to Loss Severity 
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Chapter 8.  Conclusion and Future Research 

The results show that the eigenfunction expansion method not only works to 

calculate mortgage rates as presented by Gorovoy and Linetsky, but it can also be used to 

price mortgage-backed securities.  Kolbe and Zagst were unable to apply Gorovoy and 

Linetsky’s methodology to GNMA securities, claiming to have encountered numerical 

problems.  We were able to overcome this hurdle during periods when the forward rates 

were well-behaved.  During crisis periods we used a larger spread to the treasury rates 

and used the L₁ norm as a measure of distance instead of the usual Euclidean norm (L₂) 

because the former was less sensitive to outliers.  As an alternative, we applied our 

default model with a normal spread during crisis periods and received very similar 

results.  This gave us a means to circumvent the numerical problems Kolbe and Zagst 

may have encountered during calibration.  Furthermore, our model depends only upon the 

interest rate, not on external factors such as GDP. 

While the model works reasonably well, there are some things that are not 

explained by the model.  First, interest rates are not truly random because the Federal 

Reserve deliberately manipulates short-term interest rates.  Secondly, the home mortgage 

tax deduction distorts home buying and refinancing decisions.   

The continuous model offers us an opportunity to study the behavior of mortgages 

under various economic conditions.  We have shown that the eigenfunction expansion 

method is insensitive to the choice of interest rate model.    We obtained similar results 

using the Vasicek model.  Using short term U.S. Treasury yields over a set period of 
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time, we will be able to calibrate the short rate to both the Cox-Ingersoll-Ross and the 

Vasicek model parameters. 

We have also modeled the relationship between interest rates and the prepayment 

rate using two prepayment thresholds, the refinancing threshold and the low-interest rate 

threshold, to reflect empirical data more closely.  We used prepayment data from Ginnie 

Mae over the same period as the U.S. Treasury data in order to determine the thresholds 

and prepayment sensitivities.   

We presented a continuous mortgage default model with a deterministic 

piecewise- linear default rate.  This model works with the eigenfunction expansion 

approach of (Gorovoy and Linetsky 2007) and uses both the constant default rate (CDR) 

and the Standard Default Assumption (SDA) model endorsed by the Public Securities 

Administration.  Treating endogenous and exogenous prepayment rates, defaults, and 

severity rates separately allows us to generate different scenarios using the same 

eigenvalues.  This reduces the amount of computations necessary in order to observe the 

effects of differing economic conditions on a particular mortgage-backed security, and 

the reuse allows analysts to run many default scenarios to test for robustness without a lot 

of additional overhead.  The model can be used to assign a value to mortgage guarantees 

such as those provided by Ginnie Mae by finding the difference between prices and/or 

yields estimated using this model with and without losses and defaults. 

On the technical side, we have shown a simpler way to calculate the normalizing 

constant for the single and double breakpoint prepayment models using an integral 

approach rather than the differential approach of (Gorovoy and Linetsky 2007)  Using a 
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differential approach can lead to problems both computationally and conceptually; the 

integral approach is easier to grasp and is less prone to round-off error. 

The continuous model can be further expanded to include the industry measures 

of investment life of mortgage-backed securities described in (Hayre, Mohebbi and 

Zimmerman 1997).  These include weighted average life (WAL) and Macaulay duration.   

As an example, we have developed a WAL formula for a continuous mortgage-backed 

security with a constant prepayment rate which closely approximates the discrete industry 

model (See Appendix E).  The mortgage industry often prefers effective duration and 

effective convexity, both of which use the relationship between interest rates and 

prepayments that we have presented, making them more accurate measures of price 

sensitivity.  Formulating these measures for continuous models should lead to new 

insights into mortgage finance. 

Recent problems in the mortgage industry due to the housing bubble have made it 

necessary to pay more attention to the problems of default.   Government-sponsored 

entities such as Ginnie Mae can no longer ignore the risk of default without increasing 

the deficit. 
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Appendix A:   Infinitesimal Generator of the Pricing Semigroup  

To show that an operator family Q(t) defined on a Hilbert space H  forms a 

semigroup (Rudin 1973), we must show three things.  Let   f ∈H :  

( ) ( ) ( ) ( ) ( )
0

(a)   0 ; (b)   ;  and (c)  lim 0
t

Q f If Q s Q t f Q s t f Q t f f
→

= = + − =  

In our case:  ( ) ( ){ } ( )
0

exp
t s

s u u t s tQ t f E r k r du f r rγ
+ +

+

 
= − + −  ∫

 

and 

 
( )( )( ) ( ){ } ( ) 0

0
exp

t

u u tQ t f x E r k r du f r x rγ
+ 

= − + − =  ∫  

Let us check (a) – (c).   

To prove (a) is easy: 

( )( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( )

0

0 0
0

0 0

0 exp

0

u u
Q f x E r k r du f r x r

E f r x r f x If x Q I

γ
+ 

= − + − =  

 = = = = ⇒ = 

∫
 

Here is the proof for part (b): 

We apply the definition of ( ) ( )( )( )Q s Q t f x  : 

( ){ } ( ){ } ( ) 0 0
0 0

exp exp
s t

u u u u tE r k r du E r k r du f r r x rγ γ
+ +  

− + − − + − =    
∫ ∫  

 The theory of semigroups is very well established on Markov processes.  (Wong 1964) 

studied stochastic differential equations of the form 

 ( ) ( )1 2

1 2t t t tdX X dt X dWρ ρ= +   . 
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where ρ₁ and ρ₂ are polynomials.  Let ρ₁ be a linear function with a negative slope to 

account for mean-reversion and let ρ₂ be a polynomial up to degree 2.  When ρ₂ is a 

positive constant, this can be used to model the Vasicek interest-rate process.  When ρ₂ is 

a linear function with positive slope, we have a Feller square root process which is a 

feature of the Cox-Ingersoll-Ross interest-rate model.  (Wong 1964) established that both 

of these are stationary processes.  See also (Ethier and Kurtz 1986).   Now using the 

established time-homogeneity of the CIR and Vasicek models we can shift both the 

function argument and the limits of integration in Q(t):  

  ( ){ } ( ){ } ( ) 0
0

exp exp
s s t

u u u u s t s
s

E r k r du E r k r du f r r x rγ γ
++ +

+

  
− + − − + − =    
∫ ∫  

Since conditional expectation is linear we can move everything inside:  

( ){ } ( ) 0
0

exp
s t

u u s t sE E r k r ds f r r x rγ
+ +

+

  
− + − =    
∫  

And now using the tower law we have: 

( ) ( )( )( ) ( ){ } ( ) ( )( )( )0
0

exp
s t

u u s tQ s Q t f x E r k r ds f r x r Q s t f xγ
+ +

+

 
= − + − = = +  ∫  

(c) To prove ( )
0

lim 0
t

Q t f f
→

− =  we compute: 

( ){ } ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

0 0
00

2

0 0
0 00

2

0 0
0 00 0

lim exp

1
lim 1

2

1
lim lim

2

t

u u t
t

t t

u u u u t
t

t t

t t u u u u
t t

E r k r du f r f r x r

E r k r du r k r du f r f r x r

E f r f r f r r k r du r k r du x r

γ

γ γ

γ γ

+

→

+ +

→

+ +

→ →

 
− + − − =  

  
= − + − + + − − − =  

  

  
= − + + − + + − =  

  

∫

∫ ∫

∫ ∫

�
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( ) ( ) ( ) ( ) ( )( )
2

0 0

0 0 0 0
0 0

1
0

2
u u u uE f r f r f r r k r du r k r du x rγ γ

+ +  
= − + + − + + − = =  

  
∫ ∫  

To derive the infinitesimal generator of ( )( ) ,Q t   

( )( ) ( ) ( )( ) ( ){ } ( ) 0
0

exp
t

t s s tQ t f x f x E r k r ds f r r xγ
+ 

= = − + − =  ∫�P , 

we note that 

( )( ) ( )( ) ( ) ( ) ( )

( ){ } ( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )

0 0
0

2

0 0
0 0

00 0

1 1

1
exp

1 1
1

2

s s

t

s s s s

s ss s

f x Q f x x f x f x

E r k r ds f r r x f r

E r k r ds r k r ds f r r x f r

r k r dsr k r dsf r f r
E f r

ε ε

ε

ε

ε

ε

εε

ε
ε

ε
ε ε

γ
ε

γ γ
ε

γγ

ε ε

+

+ +

++

 = − = −   

  
= − + − = −    

     = − + − + + − − = −          

− + −+ −−
= −

∫

∫ ∫

∫∫

�

G P

1

0

2 !

n

n

r x
n

−

∞

=

  
     = 
      

∑

Using the following limits: 

( ) ( ) ( )
( ) ( )

( )( ) ( ) ( )

1

0

0 0

1

0

0 0

0
lim lim 0 0

0 1 for 1
lim lim

0 for 1! !

n

n

g s ds G G
G g

g s ds G G n

nn n

ε

ε ε

ε

ε ε

ε

ε ε

ε

−

→ →

−

→ →

−
′= = =

−  = = = 
>

∫

∫
 

we can remove all but the first term in the summation below: 

( )
( ) ( )

( ) ( )

1

00
0 0 0

0
2

lim
!

n

s ss s

n

r k r dsr k r ds
f r f r r k r

n

εε

ε
ε

γγ
γ

ε

−
++

∞
+

→
=

  − + −+ −      = + −     
 

∫∫
∑ . 
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( ) ( )
( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

0

0 0
0

2

22 2

2

lim

1

2

1

2

t t t t t

t t t t t

t

t t t t

f r f r
f r E r

df r f r dr f r dr

dr r dW r dt r dt

dr r dt

df r f r dr r f r dt

ε

ε ε

σ µ σ

κ θ

σ

→

 −
=  

  

′ ′′= +

= + =  

= −

′ ′′= +

D

 ( ) ( ) ( ) ( ) ( )2

0 0 0 0 0

1
And so 

2
f r f r r r f rµ σ′ ′′= +G

 

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

1

00 0
0

0
2

1

00 0

0
2

lim
!

lim
!

n

s ss s

n

n

s ss s

x x

n

f x

r k r dsr k r dsf r f r
E f r r x

n

r k r dsr k r dsf r f r
E E f r

n

f x

εε

ε
ε

ε

εε

ε
ε

ε

γγ

ε ε

γγ

ε ε

−
++

∞

→
=

−
++

∞

→
=

=

   − + − + −  −    − = 
      

   − + −+ −  −    −    
        

=

∫∫
∑

∫∫
∑

G

G D( ) ( ) ( ) ( )0 0f r f x r k xγ
+ − + −

 

 

To find ( ) ( )0f rD  we must go to the original stochastic differential equations:

( ) ( ) t
dr t dt t dWµ σ= + .  Differentiating implicitly, we must include the Ito term:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 21 1

2 2
t t

df r x f x dt x dW f x x f x dt x f x dtµ σ µ σ′ ′′ ′ ′′= + = +        

The infinitesimal generator is  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
21

2
t
f x x f x f x x f x x k xσ µ γ

+ ′′ ′= + − + −
 

G  

For the Vasicek interest rate model, the infinitesimal generator is: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )21

2
t

f x f x r f x f x x k xκ θ σ γ
+ ′ ′′= − + − + −

 
G , 

and for the Cox-Ingersoll-Ross interest rate model, the infinitesimal generator is: 

( )( ) ( ) ( ) ( ) ( ) ( )21

2
t

f x f x r xf x f x x k xκ θ σ γ
+ ′ ′′= − + − + −

 
G . 
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Appendix B:  Applying the Change of Variable to the 

Infinitesimal Generator  

 

Let us start with the infinitesimal generator.   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
21

2
f x x f x x f x x k x f xσ µ γ λ

+ ′′ ′= + − + − −
 

G  (9.1) 

and let  ( ) ( ) ( )g z
f x e u z=  and z xα β= +  

Now taking the first and second derivatives, we obtain:  

 ( ) ( ) ( )g z
f x e u g z uα′ ′ ′= +    (9.2) 

and  

 ( ) ( ) ( ) ( ) ( ){ }22 2
g z

f x e u g z u g z g z uα  ′′ ′′ ′ ′ ′ ′′= + + +
 

 (9.3) 

Substituting (9.2) and (9.3) into (9.1) yields: 

 
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

2 221
2

2

0

g z

g z g z

x e u g z u g z g z u

x e u g z u x k x e u

σ α

µ α γ λ
+

 ′′ ′ ′ ′ ′′+ + + +
 

 ′ ′+ − + − − =    

 (9.4) 

Factoring out the exponential and grouping by derivatives of u gives: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

2 2 2 21
2

22 21
2

1 0

x u x g z x u

x g z g z x g z x k u

σ α α σ αµ

σ α αµ λ γ γ

′′ ′ ′ + + + 

 ′ ′′ ′+ + + + − − =
 

 (9.5) 

CIR and Confluent Hypergeometric Equations 

In the CIR model ( ) 0x xσ σ= , ( ) ( )x xµ κ θ= −   ( )
( )

2 2

0

2
, 0 and g z

κ ρρ
α β

σ ασ

−
′= = = . 
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Substituting the above into (9.5) gives 

( ) ( )

( ) ( )( )
( )

2 21
2

2

2 2
1 0

2

x u x x u

x x
x k u

σ α κ ρ ακ θ

κ ρ κ θ κ ρ
λ γ γ

σ σ

′′ ′+ − + − +  

 − − −
+ + + − − = 

  

 (9.6) 

Set ( ) 2 22 1ρ γ σ κ= − +  and the coefficient of u in (9.6) simplifies to: 

 
2

2

2
k

ρ
γ λ

σ
− − +  (9.7) 

Notice that the variable x disappears in (9.7), making the coefficient of u a constant. 

The coefficient of u′  in (9.6) simplifies to  

 
2

2
z

κθ
ρ

σ

 
− 

 
 (9.8) 

and the coefficient of  u′′  becomes  

 zρ  (9.9) 

Putting (9.7), (9.8) and (9.9) into (9.6) and dividing by  ρ  gives : 

 
2 2

2 2
0

k
zu z u u

κθ ρ γ λ

σ σ ρ

 − 
′′ ′+ − − + =   
   

 (9.10) 

This is in the same form as the confluent hypergeometric differential equation  

 ( ) 0zu b z u au′′ ′+ − − = , (9.11) 

whose known solutions are the Kummer and Tricomi functions.  (Abramowitz and 

Stegun 1972) p. 504 Chapter 13 and (Slater 1960) p. 5). 

The Kummer function is described in (Abramowitz and Stegun 1972) as:  

 ( )
( )
( )0

, ,
!

n

n

n n

a z
M a b z

b n

∞

=

=∑  (9.12) 
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The Tricomi function is described in (Slater 1960) as: 

 ( )
( )

( )
( )

( )
( )

( )11 1
, , , , 1 , 2 ,

1

b
b b

U a b z M a b z z M a b b z
a b a

−Γ − Γ −
= + + − −

Γ + − Γ
 (9.13) 

An alternative formulation of the Tricomi function found in (Slater 1960) and 

(Abramowitz and Stegun 1972) is:  

 ( )
( )

( ) ( )
( )

( ) ( )
1, , 1 ,2 ,

, ,
sin 1 2

b
M a b z M a b b z

U a b z z
b a b b a b

π

π
−

 + − − 
= − 

Γ + − Γ Γ Γ −  
. (9.14) 

Vasicek and the Parabolic Cylinder Functions  

For the Vasicek model ( )xσ  is a constant and the parameterization of ( )xµ  is the same 

as in CIR above, 
2 2

,
κ θ κ

α β
σ σ

= − =  and ( )
2

4

z
g z = .  Substituting those expressions 

into (9.5) yields 

 

( )

( ) ( )
2

2

1 2
1 0

4 2 2

u z x u

z z
x x k u

κ
κ κ κ θ

σ

κ
κ κ θ λ γ γ

σ

 
′′ ′+ − − + 

 

  
+ − − + + − − =  

  

 (9.15) 

Now dividing (9.15) by κ and making the following substitution: 

 
2

z
x

σ
θ

κ
= −  (9.16) 

we arrive at: 

( )
2 21

1 0
4 2 2 2

z z z k
u u

θ σ λ γ
γ

κ κκ κ

   − 
′′ + + − + − − + =    

   
 (9.17) 

Note that the coefficient of u′  in (9.17) disappears.  Rearranging terms we get 
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 ( )
( )2 11

1 0
2 4 2

kz z
u u

λ γ θ γσ
γ

κκ κ

− − −  
′′ + − + − + =  

  
 (9.18) 

Completing the square in (9.18) gives 

 
( ) ( ) ( )

222

3

1 1 11
0

2 2 22

k z
u u

k

σ γ λ γ θ γ σ γ

κ κ κ

 − − − − − 
′′  + + + − + = 

   

 (9.19) 

Set 
( ) ( )

22

3

1 1

2

kσ γ λ γ θ γ
ν

κ κ

− − − −
= +  and rearrange terms to arrive at: 

 ( )
2

3

1 1 2
1 0

2 4
u z uν σ γ

κ

  
 ′′ + + − − − =     

 (9.20) 

For , 0x k γ> = .  This reduces (9.20) to  

 

2
2

2 3

1 1 1 2
0

2 2 4
u z u

k

σ
λ θ σ

κ κ

   
 ′′ + + + − − − =         

 (9.21) 

 Both (9.20) and (9.21) follow the general pattern in the differential equation  (9.22)  

known as the one-dimensional Schrodinger equation.  

 21
0

4
u v a u

 
′′ − + = 

 
 (9.22) 

The equation (9.22) has known solutions U(a,x) and V(a,x) which are the parabolic 

cylinder functions (See Chapter 19, (Abramowitz and Stegun 1972) p. 687 Equations 

19.3.7 and 19.3.8), where: 

( ) ( )

( )
( )

( )
( )

( )

1
2

2 21 1 1 1 1 1
4 2 4 4 2 4

2 23 31 1 1 1 1 1
2 4 2 2 2 4 2 23 1 1 1

4 2 4 2

,

2 2
, , , , , ,

a x a x

U x D x

e xe
U a x M a x M a x

a a

ν
ν

π π

− −

− − − − −

=

= + − +
Γ + Γ +

 (9.23) 
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( )
( )

( ) ( ) ( ){ }
1
2, sin , ,V x U x U x

ν
ν πν ν ν

π

Γ +
= + − . (9.24) 
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Appendix C:  Integration by Parts 

We want to prove that 

 ( )( ) ( ) ( )
u u

s s s s s s
t t

T Tr h ds r h ds
u

s s u
t t

dB
B u h e du B t r B u e du

du

δ δ
δ

− + + − + + ∫ ∫+ = + −  
∫ ∫  (10.1) 

Let ( ) ( ) ( ) ( )
( )

 and 

u u

s s s
t t

r ds h ds

u uf u B u e g u h d e
δ− − +∫ ∫′= = + . So  

 ( )( ) ( ) ( )
u

s s s
t

T Tr h ds

s s
t t

B u h e du f u g u du
δ

δ
− + +∫ ′+ =∫ ∫  (10.2) 

Differentiating ( )f u  and integrating ( )g u′  gives: 

 ( ) ( ) ( )
u u

s s
t t

r ds r ds

u

d dB
f u B u e e B u r

du du

− −   ∫ ∫′ = = −     
 (10.3) 

 ( ) ( )
( ) ( )

u u

s s s s
t t

h ds h ds

u u
g u h e du e

δ δ
δ

− + − +∫ ∫= + = −∫  (10.4) 

Now integration by parts yields:  

( ) ( ) ( ) ( ) ( )
( )

( )
( )

 

u u

s s s s s s
t t

r h ds r h ds

u

dB
f u g u f u g u du B u r e du B u e

du

δ δ− + + − + +  ∫ ∫′− = − −  
∫ ∫ ,(10.5) 

or 

 ( ) ( ) ( ) ( ) ( )
( )

T

s s s
t

T T r h ds

u
t t

dB
f u g u du B u r du B t B T e

du

δ− + +  ∫′ = − + −  
∫ ∫  (10.6) 

Note that ( ) 0B T = so (10.2) reduces to  

( ) ( ) ( ) ( )
T T

u
t t

dB
f u g u du B u r du B t

du

 
′ = − +  

∫ ∫  (10.7) 

Q.E.D.  
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Appendix D:  Calculating Forward Rates:   A Comparison of 

Mathematica and APL  

We can use Mathematica to calculate the forward rates by creating vectors for the 

maturities and corresponding U.S. Treasury rates: 

T={0.25,0.5,1,2,3,5,7,10,20} 
 
R={2.51,2.79,2.96,3.29,3.43,3.71,3.92,4.14,4.64} 
 
 

and coding (5.23) inside a loop: 

For[i=1,i<Length[T],i++,FWD[[i+1]]=(R[[i+1]]*T[[i+1]]-

R[[i]]*T[[i]])/(T[[i+1]]-T[[i]])]; 

 
Then we can transform the result to the continuous forward rates: 

Spread = 0.74 

100*Log[1+(FWD+Spread)/100] 

{3.1983,3.7392,3.797,4.2676,4.3538,4.7551,5.0551,5.2529} 

Although Mathematica is very efficient, sometimes the notation is rather clumsy.  It is too 

easy to get lost in the brackets and parentheses in the Mathematica loop above.   Let’s see 

how to approach the same problem in APL. 

We first create a vector of maturities expressed in years: 

T4.25 .5 1 2 3 5 7 10 20 
 

Next we create a vector of Treasury spot rates obtained from the U.S. Treasury web site 

corresponding to those maturities: 

 

R42.51 2.79 2.96 3.29 3.43 3.71 3.92 4.14 4.64 
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Now we assemble a two-row matrix from the vectors using the APL function disclose  

(T): 

TT R 
0.25 0.5  1    2    3    5    7    10    20 
2.51 2.79 2.96 3.29 3.43 3.71 3.92  4.14  4.64 
 

The APL operator scan (g) applies its left operand  × (multiplication) cumulatively 

down the columns of the matrix.  This leaves the first row as the maturities (T) and 

converts the second row to total returns--the product of the rates and maturities (T×R): 

×gTT R 

0.25   0.5   1    2     3     5     7    10   20 
0.6275 1.395 2.96 6.58 10.29 18.55 27.44 41.4 92.8 
 

Observe that we are constructing and modifying an array by applying functions to the left 

of the current expression.  The function h reverses the rows: 

h×gTT R 
0.6275 1.395 2.96 6.58 10.29 18.55 27.44 41.4 92.8 
0.25   0.5   1    2     3     5     7    10   20 
 

The pairwise reduction operator (2-/) applies its operand (-) between pairs of columns.  

This gives us the differences between returns  1 1i i i iT R T R+ +−  as well as the differences 

between maturities 1i iT T −− .  Notice that pairwise reduction reduces the number of 

columns by 1. 

 
2-/h×gTT R 
¯0.7675 ¯1.565 ¯3.62 ¯3.71 ¯8.26 ¯8.89 ¯13.96 ¯51.4 
¯0.25   ¯0.5   ¯1    ¯1    ¯2    ¯2     ¯3    ¯10 
 

And finally, the simple reduction operator (i) applied to the division (÷) lets us divide 

the first row by the second row producing the forward rates.  Notice that since both 

numerator and denominator are negative, the result is positive. 
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÷i2-/h×gTT R 
3.07 3.13 3.62 3.71 4.13 4.445 4.653 5.14 
 
We now append the current 3-month spot rate as the current forward rate. 
 

     R[0],÷i2-/h×gTT R 
2.51 3.07 3.13 3.62 3.71 4.13 4.445 4.653 5.14 
 

We can embed the entire process in a dynamic function where Α represents the left 

argument (maturity) and Ω represent the right argument (spot rates): 

      Fwd4{Ω[0],÷i2-/h×gTΑ Ω}         
                    
Compare this streamlined function to the original Mathematica loop function For which 

is reproduced below for comparison: 

For[i=1,i<Length[T],i++,FWD[[i+1]]=(R[[i+1]]*T[[i+1]]-

R[[i]]*T[[i]])/(T[[i+1]]-T[[i]])]; 

 
We can apply the dynamic function we just defined as follows: 
 
     T Fwd R                                        
2.51 3.07 3.13 3.62 3.71 4.13 4.445 4.6533 5.14 
 

The spread between Corp A and Treasuries over the period 1996 to 2006 is 74 basis 

points: 

       Spread40.74               

      We can then add the spread to the forward rate  

   Spread+T Fwd R 

3.81 3.87 4.36 4.45 4.87 5.185 5.3933 5.88 

and use the natural log   (APL symbol A)  to convert to the continuous forward rate.   

      100×A1+.01×Spread+T Fwd R 

3.1983 3.7392 3.797 4.2676 4.3538 4.7551 5.0551 5.2529 5.7136 
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Typical programmers in other languages measure productivity in thousands of lines of 

code (KLOC), whereas APL programmers measure productivity in token count.   A token 

is a name such as Fwd or a symbol such as h.  In APL the forward rate calculations 

require a token count of 16.   Excluding appending the current forward rate reduces the 

token count to 11.  The best APL programmer is the usually the one who can minimize 

the number of tokens for a given program.  
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Appendix E:  Weighted Average Life Continuous Model 

Weighted Average Life (WAL) measures the investment life of a mortgage-

backed security (MBS).  The advantage to WAL is that it is simple and can be compared 

across the industry.  The disadvantage is that it does not account for interest payments.  

The definition of WAL in the discrete model is:  

 
0

1 1 1

N N N

n n n

n n n

WAL nP P B B
= = =

= =∑ ∑ ∑  (11.1) 

where 

 

Number of periods

Principal paid in period 

Balance at beginning of period 

n

n

N

P n

B n

=

=

=

 

and in the continuous model: 

 ( ) ( ) ( ) ( )
0 0 0

0
T T T

WAL tP t dt P t dt B t dt B= =∫ ∫ ∫ . (11.2) 

Performing the change of variable we obtain the identity: 

 ( )
0

00 0 0

TT T B B

B

dB
tP t dt t dt tdB tdB

dt

 
= − = − = 

 
∫ ∫ ∫ ∫  (11.3) 

Substituting the continuous amortization formula we obtain a closed-form 

definition of WAL:  

 
( )
( )

( )

0 0

1 1

0 1 1

m T t
T T

mT mT

B t e T
WAL dt dt

B e e m

− −

− −

 −
= = = − 

− − 
∫ ∫  (11.4) 

For a 30-year mortgage at 10% with no prepayments, the WAL is approximately 

21.6 years: 

 
0.1 30

30 1
21.57

1 0.1
WAL

e
− ×

= − =
−

 (11.5) 



200 

 

Prepayments shorten the weighted average life.   We introduce the following 

notation: 

 

{ }

{ }

( ) { }

t

t
0

t

t

Prepayment Process

Cumulative Prepayment Rate

Balance at time  given 

Cash Flow at time  given 

t

t

t

s

t

t t t

ds

B e t

e c B t

γ

γ

γ

γ γ

−Γ

−Γ

=

Γ = =

=

+ =

∫  

The WAL with a constant prepayment rate is:  

 
( )

( )

( )

0 0

1 1 1

0 1 1

ht m T t hT T mT
T T

ht

mT mT

B t e e e e e
dt e dt

B e e h h m

γ− − − − − −
−

− −

   − − −
= = +   

− − −  
∫ ∫  (11.6) 

Thus ( )
0

1
lim

1 mTh

T
WAL h

e m
−→

= −
−

 which is the same as (11.4). 

Using the continuous model, we can take the derivative of (11.6) with respect to 

the prepayment rate to observe the sensitivity of the Weighted Average Life.  Given 

h=0.6; T = 30 and m = 0.1, the weighted average life is 11.60 years as opposed to 21.57 

with no prepayments.  If prepayments increase by 1%, average life decreases by 1.0254 

years: 

 
( ) ( )

( )
22

1 1 11

1

T hT mT

mT

hT e mT hT e eWAL

h e h h m

γ− − −

−

 + − − − +∂
= + 

∂ − −  
 (11.7) 

11.60; 102.54
WAL

WAL
h

∂
= = −

∂
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