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Abstract

Given a set of locations (i.e. bridges, bays, docks, etc.) that must be inspected and a set of

waypoints, we design and implement a model to route a fleet of unmanned surface vehicles via

a set of waypoints that allow the aforementioned locations to be surveilled. Furthermore, the

velocity at which the vehicles traverse each part of the route is dependent upon the level of

surveillance required for each site. More specifically, the model constructs the optimal set of

routes for at most K unmanned surface vehicles that minimizes the fleet’s total distance, subject

to distance, battery life, and site number constraints, while ensuring that a set of sites are covered

during the tours. In addition, the model also determines the velocity of each vehicle along each

arc of the tour, where the velocity is dependent upon the importance of the sites that are covered

along that arc. Lastly, we modify, design, and implement heuristics to construct feasible solutions.
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Chapter 1

Introduction

The cost of transportation is a major strategic driver throughout the supply chain. This category

of expenditures encompasses the price of fuel, the fixed cost for deploying a vehicle, and the cost

of labor. In particular, suppliers want to curtail the total shipment cost without diminishing

revenue. One prudent method is to optimize the routes for the fleet of vehicles tasked with

delivering the products, such that the collective distance traveled, and thus the transportation

cost, is minimized. Though there may be restrictions placed upon the vehicles regarding route

length or capacity, this overall concept is classified as a vehicle routing problem.

1.1 The Vehicle Routing Problem

Routing problems can be modeled as a network, where the nodes represent the locations of both

producers and consumers, while the edges represent the possible transportation roads. Thus, the

vehicle routing problem (VRP) is an integer programming problem that seeks to find the optimal

set of routes for a set of vehicles to deliver services to a set of customers; each route must begin

and end at a given node, called the depot [26].

In general, there are two classes of vehicle routing problems. Node routing problems, such

as package delivery, bus routing, and utility and service maintenance, involve routing vehicles to

either deliver or pick up goods/services from distinct locations. Arc routing problems, like snow

removal, postal delivery and waste collection, on the other hand, involve routing vehicles to serve

or cover links in a network or streets in a city. The former category is concerned with the nodes
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of the network, while the latter deals with the edges of the graph [7].

Node routing problems can be comprised of an array of characteristics. In [26], the authors

outline a few variations:

• Time windows during which each vehicle must visit a specific node or arrive back at the

depot (utility/service maintenance) .

• Backhauls, where vehicles deliver products to some customers and pick up product from

others.

• Pickups and deliveries, in which certain customers require both pickups and deliveries (pub-

lic transportation).

• Periodic models in which customers are visited a fixed number of times per interval.

Moreover, arc routing problems involve traversing along an edge of the network; the number of

traversals, though, is dependent upon the application. For example, snow removal vehicles might

want to clear specific roads multiple times per day [21], but sanitation vehicles need only travel

a street once a week. If each arc must be traversed only once, it is called a Chinese Postman

Problem [7].

Furthermore, the direction of travel may be important. The postal service oftentimes traverses

a single road twice per day, once in either direction, in order to deliver mail to both sides of the

street without disrupting traffic. Likewise, snow removal vehicles will traverse major roadways

multiple times, whereas local roads are subject to only a single pass in a single direction [7].

Both of these examples introduce limitations on the routes by adding the direction of travel as a

constraint. In general, there are three subcategories for arc routing problems: a directed network

is when the direction a link must be traversed is constrained; an undirected network is when the

direction is not mandated; and a mixed network is a combination of the previous two. As it turns

out, the latter is the more difficult to solve [7].

The VRP closely resembles the traveling salesman problem (TSP), since both are combinatorial

optimization problems with similar objectives and problem structures; however, the TSP focuses

on routing an individual entity, whereas the VRP pertains to multiple vehicles. Furthermore, the
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VRP not only decides the optimal customer order along the route, but it must also determine

which customers are assigned to specific tours; hence, it is difficult to solve to optimality. As a

result, it is a more challenging optimization problem than the TSP [26].

The vehicle routing problem was first introduced by Danztig and Ramser [6], and aimed to

determine the optimal routes for a fleet of gasoline delivery trucks tasked with transporting fuel

between a central depot and multiple service stations. Labelled as the Truck Dispatching Problem,

the “best solution” was obtained by utilizing methods of linear programming after relaxing the

integrality constraints [6]. Since then, multiple other algorithms have been designed to solve the

VRP.

1.2 Heuristics

In fact, there are a plethora of heuristics that have been designed for specific variants of the VRP,

whereas some are more general. Laporte [20] provides an overview of both exact and approximate

algorithms. In this section, we focus on the generic algorithms. According to [26], the Clark-

-Wright savings heuristic [2] is not only one such algorithm, it is one of the best. It begins

by placing each node on its own route and then merges routes in a systematic way. That is,

the alteration is made if and only if combining two routes reduces the total cost and maintains

feasibility. The concept of feasibility, moreover, involves ensuring that any distance, customer,

capacity or fuel limitation is not violated.

Another heuristic, known as the sweep heuristic [14, 27, 28], generates groups of nodes by

rotating a half-line extending from the depot in a clockwise or counterclockwise motion. When

the ray intersects a node, it is added to the current route unless doing so creates an infeasibility.

In that regard, the current route is terminated by connecting the tour back to the depot and

beginning a new route. Once the nodes are distributed into clusters, routes can be improved by

solving the TSP on each subset; hence, it is an example of a two-phase method [26].

Both the savings algorithm and sweep algorithm are deterministic in that repeating either

algorithm will produce the same result. Furthermore, neither algorithm possesses the capability

to look a few steps ahead; as a result, each may produce an optimality gap [7]. Randomizing these

heuristics can produce improved solutions, though doing so will also increase the total run-time
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[7]. Moreover, these heuristics can be adapted to find feasible solutions for a multitude of VRP

variations.

1.3 The Covering Tour Problem

One such extension of the VRP is the covering tour problem (CTP). The CTP aims to construct

the minimum length tour for a fleet of vehicles, where V is the set of vertices that can be visited,

T ⊆ V is the set of vertices that must be visited, and W is the set of vertices that must be covered,

i.e., every vertex of W must lie within a distance r from a vertex on the tour [13]. According to

Gendreau et al. [13], the CTP was first introduced by Current [3] and was formulated in Current

and Schilling [4]. Current and Schilling [5] model an extension of the CTP as a bicriterion

optimization problem called the maximal covering tour problem (MCTP). The objective is to

maximize the total demand covered along a given route. Another application of the CTP involves

locating a set of post boxes to not only minimize the cost of the corresponding routes, but also

to ensure that they are easily accessible for every customer [19]. Another application is to study

how to locate medical facilities in such a way that they are easily accessible by patients and

that supplies can be easily delivered [8, 17, 23]. Revelle and Laporte [24] label the CTP as

the Traveling Circus Problem, where they sought to route a traveling circus through a set of

potential locations such that the stops were a reasonable distance for patrons in the surrounding

areas. Gendreau et al. [13] formulate the CTP as a linear, integer programming problem and

devise an exact branch and cut algorithm to solve it. Jozefowiez et al. [18] generalize the CTP by

reformulating it as a bi-objective problem; they replace the covering constraints with an additional

objective. Moreover, Sahraeian and Ebrahimi [25] examine the allocated maximal backup covering

tour problem (AMBCTP), which is a variation of the standard CTP with the added objective of

maximizing the number of sites that are covered more than once.

Furthermore, the CTP can be expanded to account for a fleet of vehicles, as in police patrol

or coastal surveillance. This extension is called the multi-vehicle covering tour problem (m-CTP),

where at most m vehicles are used. Surveillance vehicles, like police patrol vehicles, must depart

and return to a depot, while traversing roads to visit high risk locales and have lower risk locations

within view. That is, police must visit those areas that pose a greater security risk, but also want
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to surveil areas that may not require as thorough an inspection. The police department thus must

route a fleet of vehicles for this purpose with the objective of minimizing the total distance in

such a way that there is a level of uniformity to each route.

Hachicha et al. [16] formulate the m-CTP as an integer programming problem and develop

a modified sweep heuristic, modified savings heuristic, and a modified route-first, cluster-second

heuristic. Furthermore, Oliveira et al. [22] modify the aforementioned model and heuristics to

construct routes for urban patrolling; they fix the number of routes in order to ensure that every

vehicle is used.

We utilize these papers to formulate a variant of the m-CTP. That is, we modify the model

proposed in [16] to deal with unmanned surface vehicles (USVs). These vehicles can be operated

remotely or are run autonomously. As such, they are battery powered and have a limited energy

supply.

1.4 Velocity Routing

With respect to patrol routing, it is important to not only thoroughly surveil the designated areas,

but to also return to the depot before depleting the battery. Certainly some targets require a

more rigorous inspection, while others only need a passing glance. Though the speed at which

these vehicles pass locales is an important decision, it is limited by the turning angles along the

route; the greater the turn, the more energy is needed and the lower the attainable speed becomes.

Note that routing with an energy budget and routing to minimize the total time/maximize the

total speed are not the same thing, though they can be related. In [12], the authors consider how

fast a vehicle can travel through a turn by studying the fastest path for a nonholonomic agent (a

vehicle whose state is dependent upon the path taken to achieve it) given a minimal turn radius.

In [11], the authors expand upon the Dubins car problem by introducing direction dependent

speeds. Furthermore, [9] seeks to find the quickest path in a direction dependent medium, such

as water, by analyzing the fastest-path finding problem, by utilizing the maximum speed a vessel

can travel while turning with respect to its current heading, from [10].
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With developing technologies, though, the use of unmanned or remote control vehicles for both

coastal and midland surveillance is now a possibility. In particular, coastal surveillance is a means

for patrolling the coastline to detect, deter, and respond to a range of threats; it can serve a range

of objectives. Whether it be bomb detection, crime prevention, locating enemy combatants, or

emergency response, coastal surveillance is a practical and beneficial system. Specifically, using

a fleet of USVs, we are tasked with constructing efficient routes to surveil specified locations.

Each USV, though, operates on battery power, and thus must return to the central depot prior

to draining its energy reserves.

We modify the multi-vehicle covering tour problem outlined in [16] to formulate an integer

programming model to route a fleet of unmanned surface vehicles tasked with coastal surveillance.

In addition to limiting the route length, number of sites per tour, and the total number of routes,

the vehicles have a finite supply of battery life. Furthermore, we seek to determine the speed

a vehicle traverses every arc based upon the level of security required for the sites they cover.

Unlike [16] and [22] where populations or locales are only covered if a route makes a stop within

a predetermined distance, we expand the definition of covering to allow for populations or locales

to be within a specific distance of any point of the route. That is, we apply the definition of

covering to the arcs of the route, not just the nodes.

The remainder of this thesis is organized as follows. In Chapter 2 we discuss the two variations

of the model. The heuristics are presented in Chapter 3. Chapter 4 we describe velocity routing for

a known tour and extend the models from Chapter 2 to include velocity as a decision variable. We

present the computational results and overall summary in Chapter 5 and Chapter 6, respectively.
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Chapter 2

The Multi-Vehicle Covering Tour

Problem

In this chapter we introduce a multi-vehicle covering tour model. Specifically, the model constructs

the optimal routes for a fleet of unmanned surface vehicles that minimizes the fleet’s total distance

traveled, while ensuring that a set of sites are covered during the tours. The individual vehicle

routes, moreover, are subject to both limitations based upon the physical capabilities of the

vehicles and limitations designed to homogenize the individual routes. In particular, each vehicle’s

route is constrained by a maximal route length, finite battery life, and maximal number of stops.

2.1 Notation

Let K = {1, . . . , k} be the set vehicles and V = {i | i ∈ [0, . . . , N ]} the set of potential locations

at which vehicles may stop. Furthermore, let W represent the set of sites that must be covered.

All vehicles are identical, and should they be routed, must depart from and return to the depot,

denoted as 0; we do not require every vehicle to be utilized. For notational purposes, we define

V ∗ = V \{0}. Moreover, let p be the maximum number of sites each vehicle is permitted to visit

(excluding the depot), q the maximum distance a vehicle can travel, r the coverage radius, and

E the maximum energy available for each vehicle. Table 2.1 summarizes the notation.

Given {a, b} ∈ V ∪W , we define ca,b as the distance between site a and site b. Moreover, we

8



Sets Description

0 the depot

V set of locations at which vehicles may stop

W set of locations that must be covered

T
set of locations at which vehicles must stop

where T ⊆ V
V ∗ V \{0}
T ∗ T\{0}
K set of m USVs

Parameters

p
maximum number of sites that can each USV

can visit (excluding the depot)

q maximum distance a USV can travel

r coverage radius

ci,j distance between point i and point j

hi,j,w
= 1 if w in W is within a distance r

from the arc (i, j); 0 otherwise

ei,j,m
energy required to go from point i to point j

if point m is the subsequent stop (where j 6= v0)

E maximum energy available for each USV

Decision Variables ({i, j,m} ∈ V )

xi,j,k = 1 if vehicle k uses arc i→ j; 0 otherwise

yi,k = 1 if vehicle k stops at site i; 0 otherwise

zi,j,m,k = 1 if vehicle k uses the route i→ j → m; 0 otherwise

Table 2.1: Notation

9



need to account for the fact that a site w ∈W can be covered by vehicle k during its route. That

is, if w is within a distance r to any point of the route, then it is covered by our definition. Hence,

given {i, j} ∈ V and w ∈W , we define

hi,j,w =


1, if w ∈W is within a distance r from the arc (i, j)

0, otherwise.

(2.1)

Specifically, Eq. (2.1) is set to 1 if the projection of w onto the line segment with endpoints i and

j is within a distance r. Figure 2.1 provides a visual representation of this definition.

Figure 2.1: Schematic of Eq. (2.1)

Note that these values are precomputed. Lastly, we express the energy required to travel from

site i to site j, given that site m is the subsequent stop, as ei,j,m.

The distance between and two nodes is assumed to be known. Further, we assume there is

negligible wave activity on the water’s surface and that the energy used for a given sequence of

stops is determined by the distance traveled and the angles of the turns along the route. That is,

ei,j,m = l1(ci,j + cj,m) + l2(π − θ), (2.2)

where

θ =
si,j · sj.m
ci,j · cj,m

, (2.3)

{l1, l2} ∈ R, and si,j is the vector from node i to node j. Figure 2.2 illustrates this definition.

10



Figure 2.2: Schematic of Eq. (2.2)

There are three sets of decision variables:

yi,k =


1, if vehicle k stops at site i

0, otherwise,

(2.4)

xi,j,k =


1, if vehicle k travels from site i to site j

0, otherwise,

(2.5)

zi,j,m,k =


1, if vehicle k travels from site i to site j and then to site m

0, otherwise.

(2.6)

2.2 Formulation I

Consider the requirement that a set of sites must be visited. That is, we must optimally route a

set of k vehicles to cover all sites w ∈ W wherein the vehicles must visit specific pre-determined

sites and have the potential to visit remaining sites as needed. Specifically, let T be the set of

sites the fleet of vehicles must collectively visit, where T ⊆ V and {0} ∈ T . Furthermore, we

denote T ∗ = T\{0}. In summary, we must route the set of vehicles such that every site t ∈ T ∗

is visited exactly once and every site v ∈ V \T is visited no more than once, such that every site

w ∈W is covered.
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Hence, the formulation is:

minimize
∑
k∈K

∑
i∈V

∑
j∈V

ci,jxi,j,k (2.7)

∑
k∈K

∑
i∈V

∑
j∈V \{i}

hi,j,w xi,j,k ≥ 1 ∀ w ∈W (2.8)

∑
k∈K

yi,k ≤ 1 ∀ i ∈ V \T (2.9)

∑
i∈V

∑
j∈V \{i}

ci,jxi,j,k ≤ q ∀ k ∈ K (2.10)

∑
i∈V ∗

yi,k ≤ p ∀ k ∈ K (2.11)

∑
k∈K

yi,k = 1 ∀ i ∈ T ∗ (2.12)

y0,k ≤ 1 ∀ k ∈ K (2.13)∑
j∈V \{i}

xi,j,k = yi,k ∀ i ∈ V, k ∈ K (2.14)

∑
j∈V \{i}

xj,i,k = yi,k ∀ i ∈ V, k ∈ K (2.15)

∑
i∈V

∑
j∈V ∗\{i}

∑
m∈V \{j}

ei,j,mzi,j,m,k ≤ E ∀ k ∈ K (2.16)

zi,j,m,k ≤ xi,j,k ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (2.17)

zi,j,m,k ≤ xj,m,k ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (2.18)

zi,j,m,k ≥ xi,j,k + xj,m,k − 1 ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (2.19)∑
i∈S

∑
j∈V \S

xi,j,k +
∑
i∈S

∑
j∈V \S

xj,i,k ≥ 2yh,k ∀ k ∈ K,S ⊆ V ∗, h ∈ S (2.20)

xi,j,k ∈ {0, 1} ∀ i ∈ V, j ∈ V, k ∈ K (2.21)

yi,k ∈ {0, 1} ∀ i ∈ V, k ∈ K (2.22)

zi,j,m,k ∈ {0, 1} ∀ i ∈ V, j ∈ V,m ∈ V, k ∈ K (2.23)

(2.24)

The objective (2.7) is to minimize the total distance traveled for the entire fleet. Constraints
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(2.8) ensure that each site in W is covered at least once. Constraints (2.9) dictate that each site

in V \T is visited at most once. Constraints (2.10) limit the length of each route. Constraints

(2.11) specify that each vehicle can visit at most p sites (excluding the base). Constraints (2.12)

ensure that each site that must be visited is only visited by one vehicle. Constraints (2.30) make

sure that each vehicle goes to the base if it is deployed. Constraints (2.14) ensure that there is

only one route leaving i for vehicle k if vehicle k visits point i. Constraints (2.15) ensure that

there is only one route entering i for vehicle k if vehicle k visits point i. Constraints (2.16) are

the energy constraints, making sure that vehicle k’s route does not exceed the battery capacity.

Constraints (2.17)-(2.19) ensure that zi,j,m,k = 1 if and only if vehicle k goes from i→ j and then

j → m. Constraints (2.20) are the subtour elimination constraints. The remaining constraints

correspond to the standard integrality conditions for the decision variables.

2.3 Formulation II

Instead of requiring a set of sites to be visited, we instead allow the model to route the vehicles

to any of the potential locations in order to ensure that every site w ∈W is covered. That is, we

set T = ∅ and continue to require that each vehicle both leaves from and returns to the depot.

As a result, we have the following model.

minimize
∑
k∈K

∑
i∈V

∑
j∈V

ci,jxi,j,k (2.25)

∑
k∈K

∑
i∈V

∑
j∈V \{i}

hi,j,w xi,j,k ≥ 1 ∀ w ∈W (2.26)

∑
k∈K

yi,k ≤ 1 ∀ i ∈ V ∗ (2.27)

∑
i∈V

∑
j∈V \{i}

ci,jxi,j,k ≤ q ∀ k ∈ K (2.28)

∑
i∈V ∗

yi,k ≤ p ∀ k ∈ K (2.29)

y0,k ≤ 1 ∀ k ∈ K (2.30)∑
j∈V \{i}

xi,j,k = yi,k ∀ i ∈ V, k ∈ K (2.31)
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∑
j∈V \{i}

xj,i,k = yi,k ∀ i ∈ V, k ∈ K (2.32)

∑
i∈V

∑
j∈V ∗\{i}

∑
m∈V \{j}

ei,j,mzi,j,m,k ≤ E ∀ k ∈ K (2.33)

zi,j,m,k ≤ xi,j,k ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (2.34)

zi,j,m,k ≤ xj,m,k ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (2.35)

zi,j,m,k ≥ xi,j,k + xj,m,k − 1 ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (2.36)∑
i∈S

∑
j∈V \S

xi,j,k +
∑
i∈S

∑
j∈V \S

xj,i,k ≥ 2yh,k ∀ k ∈ K,h ∈ S, S ⊆ V ∗ (2.37)

xi,j,k ∈ {0, 1} ∀ i ∈ V, j ∈ V, k ∈ K (2.38)

yi,k ∈ {0, 1} ∀ i ∈ V, k ∈ K (2.39)

zi,j,m,k ∈ {0, 1} ∀ i ∈ V, j ∈ V,m ∈ V, k ∈ K (2.40)

(2.41)

The formulation is nearly identical, except for two changes. We have eliminated constraints

(2.12) from the formulation in Sec. 2.2 since we no longer require particular sites to be visited.

Additionally, we have changed the set notation of constraints (2.9) in Sec. 2.2 from “for all

i ∈ V \T” to “for all i ∈ V ∗,” as shown in (2.27) in the formulation shown in Sec. 2.3. This change

now states that each site can be visited at most once by the fleet; that is, it does not need to be

visited, but if it is, it can only be by one vehicle one time.
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Chapter 3

Heuristics

3.1 Modified Sweep Heuristic

In this section we discuss an extended sweep heuristic adopted from the modified sweep heuristic

in [16]. In particular, this algorithm constructs feasible solutions to the multi-vehicle covering

tour problem, dispatching at most |K| vehicles by utilizing the central concepts of the classical

sweep algorithm from [14].

3.1.1 Applying the Sweep Algorithm to Formulation I (Sec. 2.2)

The algorithm is applied to the vertices of T ∪W . Note that Step 2 and Step 3 were presented

by [16] and modified accordingly. The heuristic can be described as follows.

Step 1 : Determine the angles φi of each vertex vi ∈ (T ∪ W )\{v0} relative to the depot v0, for

−π ≤ φi ≤ π.

Step 2 : Determine the vertex v of (T ∪ W )\{v0} having the smallest angle φ and consider the

half-line having an extremity at the depot v0 and passing through v. If multiple vertices

have the same angle, select the vertex with the smallest ordinate. Relabel all vertices

vi ∈ (T ∪W )\{v0} in increasing order of their angle φi.

Step 3 : Starting with the half-line v0v, rotate a radius having a fixed point at v0 in the counter-

clockwise direction until a vertex vk ∈ (T ∪W )\{v0} is reached.
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a) If vh ∈ T , include it in the current route if this creates no infeasibility (i.e., the number

of vertices of V in the current route does not exceed p; the length of the current route,

including c0,h, does not exceed q; and the energy used, including e(h−1),h,0, does not

exceed E), and continue the sweeping process. If vh cannot feasibly be included into

the current route, complete the current route by linking its last vertex to v0, initialize

a new route starting from v0 to vh, and continue the sweeping process.

b) If vh ∈ W , determine the vertex vk ∈ {vi |ci,h ≤ r} covering the largest number of

vertices of W and include it in the current route if this is feasible.

i If there are multiple vertices with the same sized covering set, choose the vertex

vk ∈ T .

ii If there are no vertices in T that have the largest covering set, then choose vk ∈ V \T

without prejudice.

Otherwise, complete the current route by linking its last vertex to v0, initialize a

current route starting from v0 to vh, and continue the sweeping process. If there is no

vk ∈ {vi |ci,h ≤ r}, stop; there is no feasible solution.

Step 4 : If all vertices vt ∈ T\{v0} are routed and all vertices vw ∈ W are covered, stop. If the

number of routes does not exceed |K|, the algorithm has yielded a feasible solution. If the

number of routes exceeds |K|, the solution is not feasible.

The algorithm can be restarted from the vertex whose angle is the next smallest to generate

a feasible solution. Additionally, if desired, an improvement heuristic can be applied to each tour

to generate better results. Figure 3.1 provides a series of illustrations to demonstrate the sweep

heuristic.

3.1.2 Applying the Sweep Algorithm to Formulation II (Sec. 2.3)

The algorithm is applied to the vertices of W . Note that Step 2 and Step 3 were presented by

[16] and modified accordingly. The heuristic can be described as follows.

Step 1 : Determine the angles φi of each vertex vi ∈W relative to the depot v0, for −π ≤ φi ≤ π.
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(a) Example site layout with coverage radius r
shown

(b) Create line to sweep

(c) Choose direction to sweep (d) Intersect point in W

(e) Find the point in its covering set that covers the
most points

(f) Choose point in set that covers most points in
W
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(g) Add point to path (if feasible) and continue
sweeping

(h) We will intersect points that are already on the
route or covered

(i) Keep sweeping until intersect new point (j) Intersect point in T

(k) Add to route (if feasible) and continue to sweep (l) After a few more iterations...
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(m) Choose point in set that covers most points in
W

(n) Add to path (if feasible)

(o) Not feasible, so end current route and start new
one

Figure 3.1: Schematic of sweep heuristic for Formulation I
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Step 2 : Determine the vertex v of W having the smallest angle φ and consider the half-line having

an extremity at the depot v0 and passing through v. If multiple vertices have the same

angle, select the vertex with the smallest ordinate. Relabel all vertices vi ∈W in increasing

order of their angle φi.

Step 3 : Starting with the half-line v0v, rotate a radius having a fixed point at v0 in the counter-

clockwise direction until a vertex vk ∈W is reached.

a) If vh ∈ W , determine the vertex vk ∈ {vi |ci,h ≤ r} covering the largest number

of vertices of W and include it in the current route if this it creates no infeasibility

(i.e., the number of vertices of V in the current route does not exceed p; the length

of the current route, including c0,h, does not exceed q; and the energy used, including

e(h−1),h,0, does not exceed E), and continue the sweeping process. Otherwise, complete

the current route by linking its last vertex to v0, initialize a current route starting from

v0 to vk, and continue the sweeping process. If there is no vk ∈ {vi |ci,h ≤ r}, stop;

there is no feasible solution.

Step 4 : If all vertices vw ∈ W are covered, stop. If the number of routes does not exceed |K|, the

algorithm has yielded a feasible solution. If the number of routes exceeds |K|, the solution

is not feasible.

The algorithm can be restarted from the vertex whose angle is the next smallest to generate

a feasible solution. Additionally, if desired, an improvement heuristic can be applied to each tour

to generate better results.

Notice that the two versions differ in that the former (3.1.1) applies to T ∪W , while the latter

(3.1.2) applies to W .

3.2 Modified Savings Heuristic

In this section we discuss a modified savings heuristic adapted from the modified savings heuristic

designed by [16]. In particular, this algorithm constructs feasible solutions to the multi-vehicle
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covering tour problem, dispatching at most |K| vehicles by utilizing the central concepts of the

classical savings algorithm from [2].

3.2.1 Applying the Savings Algorithm to Formulation I (Sec. 2.2)

Note that Step 2 and Step 3 were presented by [16] and modified accordingly. The heuristic can

be described as follows.

Step 1 : Check to see if every vertex of W is covered by at least one vertex in V . If not, stop.

Otherwise, continue.

Step 2 : Construct a VRP solution on the graph induced by V by means of the parallel version of

the Clarke and Wright algorithm, i.e., vehicle routes are gradually augmented according to

the largest savings, while ensuring the augmentation does not create any infeasibility (i.e.,

the number of vertices of V in the current route does not exceed p; the length of the current

route, including c0,h, does not exceed q; and the energy used, including e(h−1),h,0, does not

exceed E).

Step 3 : Compute for each vertex of V included in a vehicle route the savings obtained by removing

it from the solution and reconnecting its predecessor and successor by an edge on the route.

Sort these vertices in a list by decreasing order of savings. Consider each vertex vk of the

list and remove it if vk /∈ T or this does not cause a vertex of W to be uncovered.

Step 4 : Compute for each vertex of V included in a vehicle route the savings obtained by removing

it from the solution, reconnecting its predecessor and successor by an edge on the route, and

then adding the vertex to any other point in the current solution. Sort the destination for

the vertex by decreasing order of savings. Make the change that has the greatest savings as

long as this does not cause a vertex of W to be uncovered, nor create any infeasibility.

Step 5 : Repeat Step 3 for each vertex of V \V , where V is the set of all vertices displaced by Step

3. When there is no more positive savings generated by rearranging the routes, stop.

Step 6 : If the total number of routes does not exceed |K|, the algorithm has yielded a feasible

solution. Otherwise, no feasible solution can be find from this algorithm.
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3.2.2 Applying the Savings Algorithm to Formulation II (Sec. 2.3)

Note that Step 2 and Step 3 were presented by [16] and modified accordingly. The heuristic can

be described as follows.

Step 1 : Check to see if every vertex of W is covered by at least one vertex in V . If not, stop.

Otherwise, continue.

Step 2 : Construct a VRP solution on the graph induced by V by means of the parallel version of

the Clarke and Wright algorithm, i.e., vehicle routes are gradually augmented according to

the largest savings, while ensuring the augmentation does not create any infeasibility (i.e.,

the number of vertices of V in the current route does not exceed p; the length of the current

route, including c0,h does not exceed q; and the energy used, including e(h−1),h,0 does not

exceed E).

Step 3 : Compute for each vertex of V included in a vehicle route the savings obtained by removing

it from the solution and reconnecting its predecessor and successor by an edge on the route.

Sort these vertices in a list by decreasing order of savings. Consider each vertex of the list

and remove it if this does not cause a vertex of W to be uncovered.

Step 4 : Compute for each vertex of V included in a vehicle route the savings obtained by removing

it from the solution, reconnecting its predecessor and successor by an edge on the route, and

then adding the vertex to any other point in the current solution. Sort the destination for

the vertex by decreasing order of savings. Make the change that has the greatest savings as

long as this does not cause a vertex of W to be uncovered, nor create any infeasibility.

Step 5 : Repeat Step 3 for each vertex of V \V , where V is the set of all vertices displaced by Step

3. When there is no more positive savings generated by rearranging the routes, stop.

Step 6 : If the total number of routes does not exceed |K|, the algorithm has yielded a feasible

solution. Otherwise, no feasible solution can be find from this algorithm.

The difference between the two algorithms is that the latter (3.2.2) is free to remove and

reorder any site from any route it deems appropriate, while the former is forced to maintain

certain sites on the routes and is limited to what sites can be present on a given route.
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Chapter 4

Velocity Routing

In this chapter we introduce a model to determine the velocity of each vehicle between sites. The

objective of the model is to minimize a weighted sum of the completion time of the locations to

be visited.

4.1 Determining Vehicle Velocity for a Known Route

We assume that the unmanned surface vehicle (USV) has a predetermined route consisting of

locations in the set V , including the depot, {0}. Further, we assume that the USV travels at a

constant velocity along the arc between sites i and j and can instantaneously change its velocity

for the subsequent arc. The distance between and two nodes is assumed to be known and the

wave activity is assumed to be negligible.

Since we have a constant velocity, we can then express the time it takes for vehicle k to travel

between points i and j, ti,j,k, in terms of the distance between the two points, ci,j , and the velocity

of vehicle k between those points, vi,j,k. More specifically, we have

ti,j,k =
ci,j
vi,j,k

. (4.1)

Moreover, since the USV has a finite battery life, we need to ensure that it does not deplete

its entire energy reserve before it returns to the depot. The amount of energy needed to go from
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i to j is dependent upon the power used. Specifically, we have

ei,j = Pi,jti,j,k, (4.2)

where Pi,j is the power used. We assume

Pi,j = l3v
2
i,j,k. (4.3)

for l3 ∈ R. It follows from Eqs. (4.1)-(4.3) that

ei,j = Pi,jti,j,k

= l3v
2
i,j,k

ci,j
vi,j,k

= l3vi,j,kci,j . (4.4)

Note that the power used is roughly proportional to the cube of the velocity [15]. However, we

opted to model it as proportional to the square of the velocity since it makes the energy linear in

the velocity in (4.4).

Additionally, the angle of the turns made along the route affects the overall energy used, since

it affects the velocity at which the vehicle can travel when going from site i to site j if site m is

the subsequent stop. Thus, we say the energy lost by making a turn of angle θi,j,m when traveling

from i to j with m as the subsequent stop is

l4(π − θi,j,m), (4.5)

where l4 ∈ R. This is illustrated in Fig. 2.2. Thus, the total energy used when traveling from i

to j with m as the subsequent stop is

ei,j,m = l3(vi,j,kci,j + vj,m,kcj,m) + l4(π − θi,j,m). (4.6)

Since we already know the route to be taken, it is our objective to determine the velocities of

each arc while minimizing the time needed to complete the route. Additionally, each site w ∈W
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has a specific “importance weight”, and when that weight, αw, is high we want the USV to travel

more slowly. Since each arc (i, j) may cover multiple sites w, we define the importance weight for

each arc as

αi,j =

∑
w∈W αwhi,j,w∑
w∈W hi,j,w

. (4.7)

Hence, we define the set V k = {(i, j) | xi,j,k = 1} and Ṽk = {(i, j,m) | zi,j,,m,k = 1}. Using

this notation, our formulation is:

minimize
∑
k∈K

∑
(i,j)∈V k

ci,jαi,j

vi,j,k
(4.8)

∑
(i,j,m)∈Ṽk

ei,j,m ≤ E ∀ k ∈ K (4.9)

vi,j,k ≤ τ ∀ (i, j) ∈ V k, k ∈ K (4.10)

vi,j,k ≥ 0 ∀ (i, j) ∈ V k, k ∈ K (4.11)

The objective (4.8) is to minimize a weighted sum of the completion time of the locations to be

visited. Constraints (4.9) ensure that each vehicles does not deplete its energy reserves. Con-

straints (4.10) prevents each vehicles from exceeding a maximum velocity τ along any arc, and

constraints (4.11) are the standard non-negativity conditions. Note that we can rewrite Eq. (4.9)

as ∑
(i,j,m)∈Ṽk

l3(vi,j,kci,j + vj,m,kcj,m) + l4(π − θi,j,m) ≤ E ∀ k ∈ K, (4.12)

where θi,j,m is defined in Eq. (2.3).

Note that we have a nonlinear, convex objective function and linear, convex constraint. Thus,

solving this problem will yield a globally optimal solution.

4.2 The Multi-Vehicle Covering Tour Problem with Velocities

Coastal surveillance is a means for patrolling the coastline to detect, deter, and respond to a range

of threats; it can serve a range of objectives. Whether it be bomb detection, crime prevention,

locating enemy combatants, or emergency response, coastal surveillance is a tractable and benefi-
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cial system. Using a fleet of unmanned surface vehicles (USVs), we are tasked with constructing

efficient routes to surveil specified locations. Each USV, though, operates on battery power, and

thus must return to the central depot prior to draining its energy reserves. However, some sites

are more of a security threat than others; hence, we seek to not only covers these sites but to

optimize the time spent surveilling along a given route by focusing more time on greater threats.

We maintain the same notation as in Sec. 2.3, except for a few adjustments. Let Q be the

maximum allowable total distance traveled for the fleet. Additionally, we define the energy used

when traveling from i to j, with m as the next stop, according to Eq. (4.12). Furthermore, we

define the importance weight of each arc as in Eq. (4.7). Moreover, we introduce two new decision

variables both representing velocity:

vi,j,k =


the velocity of vehicle k from site i to site j, if vehicle k travels from site i to site j

M, otherwise;

(4.13)

and,

gi,j,k =


the velocity of vehicle k from site i to site j, if vehicle k travels from site i to site j

0, otherwise.

(4.14)

Thus, the formulation is as follows:

minimize
∑
k∈K

∑
i∈V

∑
j∈V

ci,jαi,j

vi,j,k
(4.15)

∑
k∈K

∑
i∈V

∑
j∈V

ci,jxi,j,k ≤ Q (4.16)

∑
k∈K

∑
i∈V

∑
j∈V \{i}

hi,j,w xi,j,k ≥ 1 ∀ w ∈W (4.17)

∑
k∈K

yi,k ≤ 1 ∀ i ∈ V ∗ (4.18)

∑
i∈V

∑
j∈V \{i}

ci,jxi,j,k ≤ q ∀ k ∈ K (4.19)
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∑
i∈V ∗

yi,k ≤ p ∀ k ∈ K (4.20)

y0,k ≤ 1 ∀ k ∈ K (4.21)∑
j∈V \{i}

xi,j,k = yi,k ∀ i ∈ V, k ∈ K (4.22)

∑
j∈V \{i}

xj,i,k = yi,k ∀ i ∈ V, k ∈ K (4.23)

vi,j,k ≥ xi,j,k +M(1− xi,j,k) ∀ i ∈ V, j ∈ V, k ∈ K (4.24)

vi,j,k ≤ τxi,j,k +M(1− xi,j,k) ∀ i ∈ V, j ∈ V, k ∈ K (4.25)

gi,j,k ≥ xi,j,k ∀ i ∈ V, j ∈ V, k ∈ K (4.26)

gi,j,k ≤ τxi,j,k ∀ i ∈ V, j ∈ V, k ∈ K (4.27)

vi,j,k − gi,j,k ≤M(1− xi,j,k) ∀ i ∈ V, j ∈ V, k ∈ K (4.28)

vi,j,k − gi,j,k ≥ −M(1− xi,j,k) ∀ i ∈ V, j ∈ V, k ∈ K (4.29)∑
i∈V

∑
j∈V ∗\{i}

∑
m∈V \{j}

l3(gi,j,kci,j + gj,m,kcj,m)+l4(π − θi,j,m)zi,j,m,k ≤ E ∀ k ∈ K (4.30)

zi,j,m,k ≤ xi,j,k ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (4.31)

zi,j,m,k ≤ xj,m,k ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (4.32)

zi,j,m,k ≥ xi,j,k + xj,m,k − 1 ∀ i ∈ V, j ∈ V ∗\{i},m ∈ V \{j}, k ∈ K (4.33)∑
i∈S

∑
j∈V \S

xi,j,k +
∑
i∈S

∑
j∈V \S

xj,i,k ≥ 2yh,k ∀ k ∈ K,S ⊆ V ∗, h ∈ S (4.34)

xi,j,k ∈ {0, 1} ∀ i ∈ V, j ∈ V, k ∈ K (4.35)

yi,k ∈ {0, 1} ∀ i ∈ V, k ∈ K (4.36)

zi,j,m,k ∈ {0, 1} ∀ i ∈ V, j ∈ V,m ∈ V, k ∈ K (4.37)

The objective (4.15) is to minimize the total time traveling for the entire fleet while determining

the velocity for each arc based upon the arc’s importance. Constraints (4.16) limit the fleet’s total

distance to be less than Q. Constraints (4.17) ensure that each site in W is covered at least once.

Constraints (4.18) dictate that each site in V ∗ is visited at most once. Constraints (4.19) limit

the length of each route. Constraints (4.20) specify that each vehicle can visit at most p sites
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(excluding the base). Constraints (4.21) make sure that each vehicle goes to the base if it is

deployed. Constraints (4.22) ensure that there is only one route leaving i for vehicle k if vehicle

k visits point i. Constraints (4.23) ensure that there is only one route entering i for vehicle k

if vehicle k visits point i. Constraints (4.24) and (4.25) ensure that 1 ≤ vi,j,k ≤ τ ∀i ∈ V, j ∈

V, k ∈ K such that xi,j,k = 1, and vi,j,k = M otherwise. Constraints (4.26) and (4.27) ensure

that 1 ≤ gi,j,k ≤ τ ∀i ∈ V, j ∈ V, k ∈ K such that xi,j,k = 1, and gi,j,k = 0 otherwise. Constraints

(4.28) and (4.29) impose the restriction that vi,j,k and gi,j,k, the two variables representing the

velocity of vehicle k along the arc (i, j), are equal when vehicle k traverses arc (i, j). Constraints

(4.30) are the energy constraint, making sure that vehicle k’s route does not exceed the battery

capacity. If vehicle k traverses arc (i, j), then energy is used and accounted for; otherwise, it is

not. Constraints (4.31)-(4.33) ensure that zi,j,m,k = 1 if and only if vehicle k goes from i → j

and then j → m. Constraints (4.34) are the subtour elimination constraints. The remaining

constraints correspond to the standard integrality conditions for the decision variables.
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Chapter 5

Computational Results

5.1 Routing

In the section, we seek to compare the the efficiency of CPLEX and the heuristics outlined in

Chapter 3 for the multi-vehicle covering tour problem introduced in Chapter 2. We generate four

instances, with Euclidean distances, of varying sizes and parameter values, as shown in Table 5.1.

Datasets are available from the author upon request.

For notational purposes, we define the optimality gap as the percentage difference between

the objective value of the optimal solution and the objective value of the solution returned by

the heuristic; that is, it is the percentage by which the heuristic’s objective value is greater than

that of the optimal solution as found by CPLEX. When comparing the solution times, moreover,

a positive percentage indicates that the heuristic was slower when compared to CPLEX, while a

4 0 8 4 4 16 6 6 12 12 14 21∣∣T ∗∣∣ 4 4 6 12∣∣V ∗\T ∗∣∣ 0 4 6 14∣∣W ∣∣ 8 16 12 21∣∣K∣∣ 2 2 3 3

p 2 4 4 4

q 5 7 30 200

r 0.5 0.5 6 40

E 25 25 1000 300

τ 10 10 10 10

Table 5.1: Description of problem instances
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Instance
Name

Solution
Method

Route
Elapsed
Time (s)

Objective
Optimality
Gap (%)

Time vs.
CPLEX (%)

4 0 8
CPLEX

1-4-3-1
1-2-5-1

0.060 9.657 0.000 0.000

Sweep
1-4-3-1
1-2-5-1

0.070 9.657 0.000 16.027

Savings
1-3-2-1
1-5-4-1

0.288 9.657 0.000 380.500

4 4 16
CPLEX

1-8-3-2-5-1
1-9-4-1

5.660 10.065 0.000 0.000

Sweep
1-4-8-3-7-1
1-2-6-5-1

0.072 10.333 2.666 -98.736

Savings
1-3-2-5-1
1-8-4-9-1

0.419 10.065 0.000 -92.602

6 6 12
CPLEX

1-7-6-1
1-5-2-3-1

1-4-1
320.930 67.537 0.000 0.000

Sweep
1-6-7-1
1-4-1

1-2-3-5-1
0.073 69.189 2.446 -99.977

Savings
1-5-2-3-1

1-4-1
1-7-6-1

0.558 67.537 0.000 -99.826

12 14 21
CPLEX Out of Memory Error

Sweep
1-12-6-9-11-1
1-10-13-4-7-1
1-2-8-3-5-1

0.086 438.999 — —

Savings
1-7-12-5-3-1
1-10-11-9-6-1
1-4-13-2-8-1

7.7446 390.069 — —

Table 5.2: Results for Formulation I

negative percentage indicates that it was faster.

All tests were run on a Linux-Debian machine with 32GB RAM and 16 AMD OpteronTM 6128

Magny-Cours 2.0 GHz processors. We used one processor and solved the model using CPLEX

12.6.1.0. The heuristics described in Chapter 3 were coded in MATLAB (R2014b (8.4.0.150421)

64-bit (glnxa64)).

5.1.1 Formulation I

We focus our computational experiments on Formulation I as outlined in Sec. 2.2 and formulate

the model as an integer program using AMPL. Table 5.2 summarizes the results.
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(a) Site layout with coverage radius (b) CPLEX solution

(c) Modified sweep solution (d) Modified savings solution

Figure 5.1: Site layout and optimal/heuristic solutions for Instance 4 0 8 for Formulation I.

As the instances grow in size, it takes longer for CPLEX to obtain an optimal solution. Notice

that in the largest dataset, CPLEX failed to obtain a feasible solution because it exceeded the

available memory. As the size of the problem increased, the time CPLEX needed to solve the

given instance also increased.

Furthermore, the sweep algorithm found a feasible solution in less time than the savings

algorithm, though the solution was typically worse. That is, though the savings algorithm took

longer to run, it attained the optimal objective value for all instances for which CPLEX did, though

their optimal solutions may differ. The site layouts for each instance and their corresponding

optimal/heuristic solutions are shown in Figs. 5.1, 5.2, 5.3, and 5.4.
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(a) Site layout with coverage radius (b) CPLEX solution

(c) Modified sweep solution (d) Modified savings solution

Figure 5.2: Site layout and optimal/heuristic solutions for Instance 4 4 16 for Formulation I.
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(a) Site layout with coverage radius (b) CPLEX solution

(c) Modified sweep solution (d) Modified savings solution

Figure 5.3: Site layout and optimal/heuristic solutions for Instance 6 6 12 for Formulation I.
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(a) Site layout

(b) Modified sweep solution (c) Modified savings solution

Figure 5.4: Site layout and optimal/heuristic solutions for Instance 12 14 21 for Formulation I.
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(a) Graph of objective function value vs. instance
size for each heuristic.

(b) Graph of elapsed time (s) vs. instance size for
each heuristic.

Figure 5.5: Comparison of CPLEX, Modified Savings, and Modified Sweep heuristics for Formulation I.

Figure 5.5 shows the objective function value and solution times for each method as the size

of the instances grow. We see that as the size of the problem increases, both heuristics obtain

a feasible solution faster than CPLEX (Fig. 5.5a). Moreover, we see that the modified sweep

heuristic obtains a feasible solution the fastest for each instance. However, the difference between

the objective function value of the modified sweep and CPLEX/modified savings increases as the

problem size increases (Fig. 5.5b).

5.1.2 Formulation II

In this section, we focus our computational experiments on Formulation II as outlined in Sec. 2.3

and formulate the model as an integer program using AMPL. Table 5.3 -summarizes the results.

We use the same instances in Table 5.1, but we set V = V ∗ ∪ T and eliminate the set T ∗.

Similar to the previous formulation, as the instances grow in size, it takes longer for CPLEX to

obtain an optimal solution. Notice that in the largest dataset, CPLEX failed to obtain a feasible

solution since it exceeded the allotted memory.

Furthermore, the sweep algorithm found a feasible solution in less time than the savings

algorithm, though the solution was typically worse. That is, though the savings algorithm took

longer to run, it attained the optimal objective value for all instances for which CPLEX did, though

their optimal solutions may differ. The site layouts for each instance and their corresponding

optimal/heuristic solutions are shown in Figs. 5.6, 5.7, 5.8, and 5.9.

Figure 5.10 shows the objective function value and solution times for each method as the size
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Instance
Name

Solution
Method

Route
Elapsed
Time (s)

Objective
Optimality
Gap (%)

Time vs.
CPLEX (%)

4 0 8
CPLEX

1-3-2-1
1-5-4-1

0.050 9.657 0.000 0.000

Sweep
1-4-3-1
1-2-5-1

0.185 9.657 0.000 270.000

Savings
1-3-2-1
1-5-4-1

0.520 9.657 0.000 940.000

4 4 16
CPLEX

1-7-3-4-1
1-2-5-9-1

4.14 10.065 0.000 0.000

Sweep
1-4-8-3-7-1
1-2-6-5-9-1

0.287 10.537 4.68 -93.068

Savings
1-3-2-5-1
1-8-4-9-1

1.076 10.065 0.000 -74.010

6 6 12
CPLEX

1-3-10-1
1-9-6-1

12896.800 40.701 0.000 0.000

Sweep
1-6-7-1
1-10-2-1

0.434 48.553 19.292 -99.997

Savings
1-3-10-1
1-9-6-1

1.305 40.701 0.000 -99.990

12 14 21
CPLEX Out of Memory Error

Sweep
1-4-7-21-23-1

1-3-1
2.278 142.4797 — —

Savings
1-21-1

1-5-22-1
12.576 214.860 — —

Table 5.3: Results for Formulation II
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(a) Sit layout with coverage radius (b) CPLEX solution

(c) Modified sweep solution (d) Modified savings solution

Figure 5.6: Site layout and optimal/heuristic solutions for Instance 4 0 8 for Formulation II.

37



(a) Site layout with coverage radius (b) CPLEX solution

(c) Modified sweep solution (d) Modified savings solution

Figure 5.7: Site layout and optimal/heuristic solutions for Instance 4 4 16 for Formulation II.
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(a) Site layout with coverage radius (b) CPLEX solution

(c) Modified sweep solution (d) Modified savings solution

Figure 5.8: Site layout and optimal/heuristic solutions for Instance 6 6 12 for Formulation II.
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(a) Site layout

(b) Modified sweep solution (c) Modified savings solution

Figure 5.9: Site layout and optimal/heuristic solutions for Instance 12 14 21 for Formulation II.
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(a) Graph of objective function value vs. instance
size for each heuristic.

(b) Graph of elapsed time (s) vs. instance size for
each heuristic.

Figure 5.10: Comparison of CPLEX, Modified Savings and Modified Sweep heuristics for Formulation II.

of the instances grow. We see that as the size of the problem increases, both heuristics obtain

a feasible solution faster than CPLEX (Fig. 5.10a). Moreover, we see that the modified sweep

heuristic obtains a feasible solution the fastest for each instance. However, the difference between

the objective function value of the modified sweep and CPLEX/modified savings increases as the

problem size increases (Fig. 5.10b).

Furthermore, we note that it took longer for the heuristics in Sec. 3.1.2 and 3.2.2 to attain a

solution than those in Sec. 3.1.1 and 3.2.1, though the instances were the same. We believe the

reason stems from the presence of the set T . With the former heuristics, they must cycle through

a larger set of possible solutions, whereas the latter has a more limited set due to the restriction

placed upon the vehicles.

5.2 Routing with Velocity

All tests were run on a Linux-Debian machine with 32GB RAM and 16 AMD OpteronTM 6128

Magny-Cours 2.0 GHz processors. Datasets are available from the author upon request.

We formulated the model in Sec. 4.2 for the multi-vehicle covering tour problem as a mixed

integer, nonlinear program using AMPL and solved the problem with Bonmin 1.7.4 using Cbc

2.8.8 and Ipopt 3.11.7 and used one processor. The problem instances are shown in Fig. 5.4;

they are similar to those in Fig. 5.1 with some modifications. In particular, we use the same set

notation as that of Formulation II by setting V = V ∗ ∪ T and eliminating the set T ∗.

The velocities for Instance 4 8, and the tour descriptions, are shown in Table 5.5. CPLEX
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4 8 8 16 12 12 26 21∣∣V ∗∣∣ 4 8 12 26∣∣W ∣∣ 8 16 12 21∣∣K∣∣ 2 2 3 3

p 2 4 4 4

q 5 7 30 200

r 0.5 0.5 6 40

E 50 150 1500 5000

τ 10 10.1 40.8 250

M 105 105 105 105

Table 5.4: Parameter modifications for velocity routing

Vehicle 1 Vehicle 2

Arc Velocity (m/s) Arc Velocity (m/s)

1-3 1.946 1-2 1.946

3-4 1.363 2-5 1.363

4-1 1.946 5-1 1.946

Table 5.5: Route and velocity results for Instance 4 8

obtained the optimal solution in 604.03 seconds. Note by introducing velocity as a decision

variable, the run-time increases by a factor of roughly 104.

We map the optimal routes in Fig. 5.11, where both velocity and arc importance are illus-

trated. We can see that when the arc importance is high, the vehicles travel more slowly.

We did not test the latter two instances (12 12 and 26 21) since their run times were too long.

Instance 8 16 terminated after two hours but was able to yield a feasible solution, as shown in

Table 5.6. Due to our results from Sec. 5.3 we know the routing output is optimal, but cannot

make that claim pertaining to the velocity values. Hence, we can only claim a feasible solution.

Vehicle 1 Vehicle 2

Arc Velocity (m/s) Arc Velocity (m/s)

1-6 3.907 1-8 3.907

6-5 2.074 8-3 2.074

5-4 1.641 3-2 1.641

4-1 2.555 2-1 2.555

Table 5.6: Route and velocity results for Instance 8 16

42



Figure 5.11: Map of vehicle routes for instance 4 8, where line thickness indicates arc importance and color
intensity indicates velocity (the brighter the arc, the greater the velocity). For sites w ∈ W , marker size
represents site importance.
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Chapter 6

Conclusion

In this thesis, we formulated a model to route unmanned surface vehicles with the goal of minimiz-

ing total distance, subject to side constraints. In particular, we expanded upon the multi-vehicle

covering tour problem from [16]. Specifically, we extended the definition of covering to account

for a location being within a predetermined distance of any point on the tour, not just the stops.

Furthermore, we introduced an additional constraint for the limited energy supply of the vehi-

cles. Modifying two heuristics presented in [16], we implemented the algorithms in MATLAB

and compared their efficiency to that of CPLEX, with which the integer program was solved to

optimality. In doing so, we note that the heuristics attained feasible solutions faster than CPLEX

on the larger instances; CPLEX, moreover, failed to solve some instances due to the size of the

problem. It is also important to note that the savings algorithm presented in Sec 3.2 found the

optimal solution in all instances for which CPLEX did.

We further developed our model by introducing velocity as a decision variable. Surveillance

with unmanned surface vehicles in any locale is time sensitive. It is imperative to closely examine

high valued areas, while a less thorough inspection is permitted for less vulnerable sites. As such,

these unmanned surface vehicles must travel much slower while inspecting sites with a greater

security risks. In doing so, the sensors and cameras attached to the vessels can closely examine

the site. With this in mind, we sought to not only route these vehicles via waypoints to surveil

locales, but also to determine the speed they must travel on each part of the route.

We implemented this larger model using a nonlinear optimization solver, and found that the

44



amount of time required to obtain optimality significantly increases from the pervious models. In-

troducing additional decision variables, constraints, and nonlinearity into the model, this dramatic

run-time was expected. Due to this, generating a sufficient heuristic is worth further study.

In both models, moreover, we assumed negligible wave activity. Since these unmanned surface

vehicles are deployed on the water, which has varying degrees of wave activity, introducing this

aspect to the model deserves inspection. The direction, speed, and magnitude of waves would

affect not only the velocity of the vessel, but also the energy required to traverse any part of the

water’s surface. Including velocity as a decision variable, then, would require not only under-

standing how much energy is mandated to achieve a given speed, but also how the energy usage

changes to maintain that speed on a fluctuating water surface.
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