
Lehigh University
Lehigh Preserve

Theses and Dissertations

2019

Optimization Algorithms for Machine Learning
Problems
Hiva Ghanbari
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd
Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Ghanbari, Hiva, "Optimization Algorithms for Machine Learning Problems" (2019). Theses and Dissertations. 5560.
https://preserve.lehigh.edu/etd/5560

https://preserve.lehigh.edu/?utm_source=preserve.lehigh.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=preserve.lehigh.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5560?utm_source=preserve.lehigh.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Optimization Algorithms for Machine Learning
Problems

by

Hiva Ghanbari

A Dissertation
Presented to the Graduate Committee

of Lehigh University
in Candidacy for the Degree of

Doctor of Philosophy
in

Industrial and Systems Engineering

Lehigh University
May 2019

Copyright
Hiva Ghanbari 2018

ii

Approved and recommended for acceptance as a dissertation in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy.

Hiva Ghanbari
Optimization Algorithms for Machine Learning Problems

Date

Dr. Katya Scheinberg, Dissertation Director, Chair
(Must Sign with Blue Ink)

Accepted Date
Committee Members

Dr. Katya Scheinberg, Committee chair

Dr. Frank E. Curtis

Dr. Coralia Cartis

Dr. Martin Takáč

iii

Acknowledgment

Firstly, I would like to express my sincere gratitude to my advisor Prof. Katya
Scheinberg who patiently guided me through my Ph.D. studies. Besides my advisor,
I would like to thank the rest of my dissertation committee: Prof. Frank E. Curtis,
Prof. Coralia Cartis, and Prof. Martin Takáč for all of their kind supports and
insightful suggestions to improve the quality of my dissertation.

There is another side of my life with much more depth that made the academic
side of life possible. The main roles are being played by my family and friends.
Expressing my gratitude of being fortunate to have this family goes beyond the
strength of words. My husband, Mohammad, my best friend, who made me stronger,
every single step, with his pure endless support. Every moment in my life has been
made better because you are in the world. Thank you Mohammad! My parents,
Mohammad-Mahdi and Fahimeh, have been supporting me throughout all of these
years and they have lived my life for me. They have gone through all the moments
I passed. Thank you mom and dad! My older brother, dear lifetime friend, Alireza,
and my younger brother, Mohammadreza, I can’t imagine the world without you.
I want to thank my dear friends Khatereh, Roshanak, and Zahra. I always feel
fortunate that we all shared the most part of our long studying journey together.
Furthermore, I would like to thank Ms. Rita Frey, the former graduate coordinator
in the ISE department and the first person I met in the department. I still remember
the sound of her beautiful voice that made an incredible impact of my first day at
Lehigh with her warm and thoughtful words.

I lived and studied in Bethlehem for 5 years. I love Bethlehem and its natural
beauty, however, this feeling is rooted from the depth of beauty of my friends and our

iv

relationships. I would like to thank my dear friends who made my life at Bethlehem
unforgettably beautiful in my memories: Suresh Bolusani, Pelin Cay, Sertalp Cay,
Choat Inthawongse, Majid Jahani, Xi He, Yuhai Hu, Xiaolong Kuang, Chenxin Ma,
Mohsen Moarefdoost, Matt Menickelly, Ali Mohammad-Nezhad, Golnaz Shahidi,
Shu Tu, Martin Takáč, Maria Takáčová, Martin (II) Takáč, Sahar Tahernezhad,
Wei Xia, Alireza Yektamaram, Fatma and Metin Yerlikaya-Özkurt.

Last, but not least, I would like to thank Lehigh staff from different departments,
who made my Ph.D. life much easier with their help and supports, Ms. Alicia
Herzog, Ms. Olga Scarpero and Ms. Brie Lisk.

v

Contents

List of Tables viii

List of Figures x

Abstract 1

1 Introduction 3

2 Proximal Quasi-Newton Methods for Regularized Convex Opti-
mization 5
2.1 Introduction . 5
2.2 Notation and Preliminaries . 9
2.3 Proximal Quasi-Newton Algorithm under

Strong Convexity . 15
2.3.1 Convergence Analysis . 15

2.3.1.1 Exact Case (First Approach) 15
2.3.1.2 Inexact Case (First Approach) 21
2.3.1.3 Inexact Case (Second Approach) 27

2.3.2 Solving Subproblems via Randomized Coordinate Descent . . 31
2.4 Accelerated Proximal Quasi-Newton

Algorithm . 35
2.4.1 Algorithm Description . 35
2.4.2 Convergence Analysis . 38

2.5 Numerical Experiments . 47

vi

2.6 Conclusion . 57

3 Black-Box Optimization in Machine Learning 58
3.1 Introduction . 58
3.2 Algorithmic Framework of DFO-TR 60
3.3 Bayesian Optimization versus DFO-TR 62
3.4 Numerical Experiments . 64

3.4.1 Optimizing Smooth, NonConvex Benchmark Functions 64
3.4.2 Optimizing the AUC Function 66

3.4.2.1 Stochastic versus Deterministic DFO-TR 71
3.4.3 Hyperparameter Tuning of Cost-Sensitive RBF-Kernel SVM . 72
3.4.4 Hyperparameter Tuning of Cost-Sensitive Logistic Regression 74

3.5 Conclusion . 80

4 Directly Optimizing Prediction Error and AUC 81
4.1 Introduction . 81
4.2 Preliminaries and Problem Description 84
4.3 Prediction Error and AUC as Smooth Functions 87
4.4 Prediction Error as Smooth Function in the Case of Data Sets with

any Arbitrary Distribution . 95
4.4.1 Directly Optimizing Expected Error for Data with Not Iden-

tically Distributed Independent Features 95
4.4.2 Directly Optimizing Expected Error for Data with Not Iden-

tically Distributed Dependent Features 99
4.5 Online AUC Optimization . 103

4.5.1 Online Binary Classification Framework 103
4.5.2 Online AUC Optimization . 106
4.5.3 Directly Optimizing AUC in Online Setting 107

4.5.3.1 Analyzing the Performance of Directly Optimizing
AUC in Online Setting 110

4.6 Numerical Experiments . 112

vii

4.7 Conclusion . 122

A Numerical Comparison vs. LDA 123

B Illustration of the Linear Transformation of an Arbitrary Random
Variable 125

Biography 135

viii

List of Tables

2.1 Data information, dimension (d) and number of data points (N). . . . 49
2.2 APQNA-FH vs. APGA in terms of function value (Fval), number of

iterations (iter) and total solution time (time) in seconds. 50
2.3 APQNA-FH vs. APQNA-LBFGS in terms of function value (Fval),

number of iterations (iter) and total solution time (time) in seconds. . 54

3.1 DFO-TR vs. BO on Branin function in terms of ∆fopt, over number
of function evaluations. Branin is a two dimensional function with
fopt = 0.397887. 65

3.2 DFO-TR vs. BO on Camelback function in terms of ∆fopt, over num-
ber of function evaluations. Camelback is a two dimensional function
with fopt = −1.031628. 65

3.3 DFO-TR vs. BO on Hartmann function in terms of ∆fopt, over num-
ber of function evaluations. Hartmann is a six dimensional function
with fopt = −3.322368. 66

3.4 Comparing DFO-TR vs. BO algorithms in terms of solution time. . . 67
3.5 Comparing DFO-TR vs. random search algorithm. 68
3.6 Comparing CSLR-OR-WSP vs. CSLR-CDR. in terms of the averaged

AUC value. 80

4.1 Artificial data sets statistics. d : number of features, n : number of
data points, P+,P− : prior probabilities, out : percentage of outlier
data points. 114

ix

4.2 Ferror(w) vs. Flog(w) minimization via Algorithm 12 on artificial data
sets. 114

4.3 Real data sets statistics. d : number of features, n : number of data
points, P+,P− : prior probabilities, AC : attribute characteristics. . . 115

4.4 Ferror(w) vs. Flog(w) minimization via Algorithm 12 on real data sets. 116
4.5 FAUC(w) vs. Fhinge(w) minimization via Algorithm 12 on artificial

data sets. 119
4.6 FAUC(w) vs. Fhinge(w) minimization via Algorithm 12 on real data

sets. 120

A.1 Ferror(w) and Flog(w) minimization via Algorithm 12 vs. LDA on
artificial data sets. 123

A.2 Ferror(w) and Flog(w) minimization via Algorithm 12 vs. LDA on real
data sets. 124

x

List of Figures

2.1 APQNA-FH vs. PQNA-FH in terms of number of iterations. 52
2.2 APQNA-FH vs. PQNA-FH in terms of number of function evaluations. 53
2.3 APQNA-LBFGS vs. PQNA-LBFGS in terms of number of iterations. 55
2.4 APQNA-LBFGS vs. PQNA-LBFGS in terms of number of function

evaluations. 56

3.1 DFO-TR vs. BO algorithms. 69
3.2 DFO-TR vs. BO algorithms. 70
3.3 Comparison of stochastic DFO-TR and deterministic one in optimiz-

ing AUC function. 73
3.4 Comparison of DFO-TR, random search, and BO algorithms on tun-

ing cost-sensitive RBF-kernel SVM hyperparameters. 74

4.1 Performance of minimizing Ferror(w) vs. Flog(w) via Algorithm 12. . . 118
4.2 Performance of minimizing FAUC(w) vs. Fhinge(w) via Algorithm 12. . 121

B.1 Illustration of linear transformation of positive and negative variables. 126
B.2 Illustration of linear transformation of positive and negative variables. 127

xi

Abstract

In the first chapter of this thesis, we analyze the global convergence rate of a prox-
imal quasi-Newton algorithm for solving composite optimization problems, in both
exact and inexact settings, in the case when the objective function is strongly con-
vex. We also investigate a practical variant of this method by establishing a simple
stopping criterion for the subproblem optimization. Furthermore, we consider an ac-
celerated variant, based on FISTA of Beck and Teboulle [SIAM J. Optim., 2 (2009),
pp. 183-202], of the proximal quasi-Newton algorithm. Jiang, Sun, and Toh [SIAM
J. Optim., 22 (2012), pp. 1042-1064] considered a similar accelerated method, where
the convergence rate analysis relies on very strong impractical assumptions on the
Hessian estimates. We present a modified analysis while relaxing these assumptions
and perform a numerical comparison of the accelerated proximal quasi-Newton al-
gorithm and the regular one. Our analysis and computational results show that
acceleration may not bring any benefit in the quasi-Newton setting.

In the second chapter, we utilize a Trust Region based Derivative Free Optimiza-
tion (DFO-TR) method to directly maximize the Area Under Receiver Operating
Characteristic Curve (AUC), which is a nonsmooth, noisy function. The practical
performance of this algorithm is compared to three prominent Bayesian optimization
methods and random search. The presented numerical results show that DFO-TR
surpasses Bayesian optimization and random search on various black-box optimiza-
tion problems, such as maximizing AUC and hyperparameter tuning in cost-sensitive
SVM.

In the third chapter, we are interested in the predictive quality of machine learn-
ing models which is typically measured in terms of their (approximate) expected

1

prediction error or the so-called AUC for a particular data distribution. However,
when the models are constructed by means of empirical risk minimization, surrogate
functions such as the logistic loss are optimized instead. This is done because the
empirical approximations of the expected error and AUC functions are nonconvex
and nonsmooth, and more importantly have zero derivative almost everywhere. In
this work, we show that in the case of linear predictors, and under the assumption
that the data is normally distributed, the expected error and the expected AUC are
not only smooth, but have closed form expressions, which depend on the first and
second moments of the normal distribution. However, by using some variants of the
central limit theorem, we showed that under some conditions, the expected error is
a smooth function in the limit. This result, similarly, can be extended to the case of
the AUC function. Hence, we derive derivatives of these two functions and use these
derivatives in an optimization algorithm to directly optimize the expected error and
the AUC. In the case of real data sets, the derivatives can be approximated using
empirical moments. We show that even when data is not normally distributed, com-
puted derivatives are sufficiently useful to render an efficient optimization method
and high quality solutions. Thus, we propose a gradient-based optimization method
for direct optimization of the prediction error and AUC. Moreover, the per-iteration
complexity of the proposed algorithm has no dependence on the size of the data set,
unlike those for optimizing logistic regression and all other well known empirical
risk minimization problems.

2

Chapter 1

Introduction

This thesis starts by analyzing theoretical and practical properties of some variants
of proximal quasi-Newton algorithms for nonsmooth convex problems. Due to the
structure of many machine learning problems such as sparse logistic regression,
sparse inverse covariance selection, and unconstrained Lasso, nonsmooth convex
problems arise in various applications. These problems, in these applications, are
indeed unconstrained, containing a large number of convex loss functions and a
possibly nonsmooth regularization part. The loss functions, however, can be strongly
convex, which is the case in most of the machine learning applications.

In the first part of this thesis, we introduced an unprecedented property of a
class of proximal quasi-Newton algorithms by proving linear convergence rate for the
algorithm when applied to strongly convex loss functions. In our work, furthermore,
we designed an accelerated variant of the proximal quasi-Newton algorithm with a
guaranteed global convergence rate. This is the first concrete convergence result of
combining the use of second-order information and Nesterov’s accelerated scheme.

In the second part of this thesis, we addressed the challenges of learning from
imbalanced data sets. Many real-world machine learning problems deal with im-
balanced data sets containing rare positive data points as the minority class, but
numerous negative ones as the majority class, or vice versa. Standard machine
learning tools such as support vector machines and logistic regression, which aim to
find a classifier optimizing accuracy, fail in such problems.

3

Recently, in the data mining community, instead of accuracy, another perfor-
mance measure for classifiers has been getting popular, especially when dealing
with imbalanced data sets: the Area Under receiver operating characteristic Curve
(AUC). However, since AUC is highly nondifferentiable, gradient-based optimization
methods cannot be applied directly. We prove that, despite the nondifferentiability
of AUC, its expectation, which is indeed the quantity that should be optimized in
the learning process, is a smooth function under some practical conditions. This
novel result allows any gradient-based optimization algorithm to be applied in the
training process to maximize the expectation of AUC. The resulting classifier would
then have theoretical guarantees to classify data points correctly with a high prob-
ability.

Moreover, we discovered that the same approach can be applied to directly min-
imize the expected zero-one loss function, the corner-stone of statistical machine
learning, through any smooth optimization algorithm. This method, unlike many
other learning approaches such as minimizing logistic loss and pair-wise hinge loss–
as approximates of zero-one loss and AUC functions, respectively–is independent of
the size of the training data set, so it would be extremely fast, especially when we
have an enormous training set.

Furthermore, one may use the smoothness of AUC in expectation as the the-
oretical base to apply Derivative-Free Optimization (DFO), as we utilized a trust
region based DFO method to directly optimize AUC function. We also investigated
the performance of a trust region based DFO method versus Bayesian Optimization
for hyperparameter tuning in machine learning problems.

4

Chapter 2

Proximal Quasi-Newton Methods
for Regularized Convex
Optimization

2.1 Introduction

In this chapter, we address the convex optimization problem of the form

min
x
{F (x) := f(x) + g(x), x ∈ Rn}, (2.1)

where g : Rn → R is a continuous convex function which is possibly nonsmooth
and f : Rn → R is a convex continuously differentiable function with Lipschitz
continuous gradient, i.e.,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for every x, y ∈ Rn,

where L is the global Lipschitz constant of the gradient ∇f . This class of problems,
when g(x) = λ‖x‖1, contains some of the most common machine learning models
such as sparse logistic regression [54, 63], sparse inverse covariance selection [23, 42,
47], and unconstrained Lasso [58].

5

The Proximal Gradient Algorithm (PGA) is a variant of the proximal meth-
ods and is a well-known first-order method for solving optimization problem (2.1).
Although classical subgradient methods can be applied to problem (2.1) when g is
nonsmooth, they can only achieve the rate of convergence of O(1/

√
k) [38], while

PGA converges at a rate of O(1/k) in both smooth and nonsmooth cases [2, 40].
In order to improve the global sublinear rate of convergence of PGA further, the
Accelerated Proximal Gradient Algorithm (APGA) has been originally proposed by
Nesterov in [37], and refined by Beck and Teboulle in [2]. It has been shown that
the APGA provides a significant improvement compared to PGA, both theoretically,
with a rate of convergence of O(1/k2), and practically [2]. This rate of convergence
is known to be the best that can be obtained using only first-order information
[36, 38, 50], causing APGA to be known as an optimal first-order method. The class
of accelerated methods contains many variants that share the same convergence
rates and use only first-order information [38, 39, 60]. The main known drawback
of most of the variants of APGA is that the sequence of the step-size {µk} has to be
nonincreasing. This theoretical restriction sometimes has a big impact on the per-
formance of this algorithm in practice. In [50], in order to overcome this difficulty, a
new version of APGA has been proposed. This variant of APGA allows to increase
step-sizes from one iteration to the next, but maintain the same rate of convergence
of O(1/k2). In particular, the authors have shown that a full backtracking strategy
can be applied in APGA and that the resulting complexity of the algorithm de-
pends on the average value of step-size parameters, which is closely related to local
Lipschitz constants, rather than the global one.

To make PGA and APGA practical, for some complicated instances of (2.1), one
needs to allow for inexact computations in the algorithmic steps. In [52], inexact
variants of PGA and APGA have been analyzed with two possible sources of error:
one in the calculation of the gradient of the smooth term and the other in the
proximal operator with respect to the nonsmooth part. The convergence rates are
preserved if the sequence of errors converges to zero sufficiently fast. Moreover, it has
been shown that both of these algorithms obtain a linear rate of convergence, when

6

the smooth term f is strongly convex1. Recently, in [17], the linear convergence of
PGA has been shown under the quadratic growth condition, which is weaker than
a strong convexity assumption. In particular, their analysis relies on the fact that
PGA linearly bounds the distance to the solution set by the step lengths. This
property, called an error bound condition, has been proved to be equivalent to the
standard quadratic growth condition. More precisely, a strong convexity assumption
is a sufficient, but not a necessary condition for this error bound property.

While PGA and APGA can be efficient in solving (2.1), it has been observed
that using (partial) second-order information often significantly improves the per-
formance of the algorithms. Hence, Newton type proximal algorithms, also known
as the proximal Newton methods, have become popular [7, 30, 42, 48, 56] and are
often the methods of choice. When accurate (or nearly accurate) second-order in-
formation is used, the method no longer falls in the first-order category and faster
convergence rates are expected, at least locally. Indeed, the global convergence and
the local superlinear rate of convergence of the Proximal Quasi-Newton Algorithm
(PQNA) are presented in [30] and [7], respectively for the both exact and inexact
settings. However, in the case of limited memory BFGS method [8, 41], the method
is still essentially a first-order method. While practical performance may be by far
superior, the rates of convergence are at best the same as those of the pure first-
order counterparts. In [48], an inexact PQNA with global sublinear rate of O(1/k)
is proposed. While the algorithm can use any positive definite Hessian estimates,
as long as their eigenvalues are uniformly bounded above and away from zero, the
practical implementation proposed in [48] used a limited memory BFGS Hessian
approximation. The inexact setting of the algorithm allows for a relaxed sufficient
decrease condition as well as an inexact subproblem optimization, for example via
coordinate descent.

In this work, we show that PQNA, as proposed in [48], using general Hessian
estimates Hk, has the linear convergence rate in the case of strongly convex smooth
term f . Moreover, we consider an inexact variant, similar to the ones in [7, 48],

1For APGA a different variant is analyzed in the case of strong convexity.

7

allowing inexact subproblem solutions as well as a relaxed sufficient decrease con-
dition. In order to control the errors in the inexact subproblem optimization, we
establish a simple stopping criterion for the subproblem solver, based on the iter-
ation count, which guarantees that the inner subproblem is solved to the required
accuracy. In contrast, in related works [26, 61], it is assumed that an approximate
subproblem solver yields an approximate subdifferential, which is a strong assump-
tion on the subproblem solver which also does not clearly result in a simple stopping
criterion.

Next, we apply Nesterov’s acceleration scheme to PQNA as proposed in [48],
with a view of developing a version of this algorithm with a faster convergence rate
in the general convex case. In [26], the authors have introduced the Accelerated
Proximal Quasi-Newton Algorithm (APQNA) with rate of convergence of O(1/k2).
However, this rate of convergence is achieved under condition 0 ≺ Hk � Hk−1, on
the Hessian estimate Hk, at each iteration k. At the same time, this sequence of
matrices has to be chosen so that Hk is sufficiently positive definite to provide an
overapproximation of f . Hence, these two conditions may contradict with each other
unless the sequence of {Hk} consists of unnecessarily large matrices. Moreover, in a
particular case, when Hk is set to be a scalar multiple of the identity, i.e., Hk = 1

µk
I,

then assumption 0 ≺ Hk � Hk−1 enforces µk ≥ µk−1, implying nondecreasing
step-size parameters, which contradicts the standard condition of APGA, which is
µk ≤ µk−1.

In this work, we introduce a new variant of APQNA, where we relax the re-
strictive assumptions imposed in [26]. We use the scheme, originally introduced
in [50], which allows for the increasing and decreasing step-size parameters. We
show that our version of APQNA achieves the convergence rate of O(1/k2) under
some assumptions on the Hessian estimates. While we show that this assumption is
rather strong and may not be satisfied by general matrices, it is not contradictory.
Firstly, our result applies under the same restrictive condition from [26]. We also
show that our condition on the matrices holds in the case when the approximate
Hessian at each iteration is a scaled version of the same “fixed” matrix H, which is a

8

generalization of APGA. We investigate the performance of this algorithm in prac-
tice, and discover that this restricted version of a proximal quasi-Newton method
is quite effective in practice. We also demonstrate that the general L-BFGS based
PQNA does not benefit from the acceleration, which supports our analysis of the
theoretical limitations.

This chapter is organized as follows. In the next section, we describe the basic
definitions and existing algorithms, PGA, APGA and PQNA, that we refer to later
in this chapter. In Section 2.3, we analyze PQNA in the strongly convex case. In
Section 2.4, we propose, state and analyze a general APQNA and its simplified
version. We present computational results in Section 2.5. Finally, we state our
conclusions in Section 2.6.

2.2 Notation and Preliminaries

In this work, the Euclidean norm ‖a‖2 := aTa, and the inner product 〈a, b〉 := aT b,
are also defined in the scaled setting such that, ‖a‖2

H := aTHa, and 〈a, b〉H := aTHb.
We denote the identity matrix by I ∈ Rn×n. The vector ej stands for a unit vector
along the j-th coordinate. We use xk to denote the approximate minimizer (the
iterate), computed at iteration k of an appropriate algorithm, and x∗ to denote an
exact minimizer of F . Finally, (∂F (x))min denotes the minimum norm subgradient
of function F at point x.

The proximal mapping of a convex function g at a given point v, with parameter
µ is defined as

proxµg (v) := arg min
u∈Rn
{g(u) + 1

2µ‖u− v‖
2}, where µ > 0. (2.2)

The proximal mapping is the base operation of the proximal methods. In order
to solve the composite problem (2.1), each iteration of PGA computes the proximal

9

mapping of the function g at point xk − µk∇f(xk) as follows:

pµk
(xk) := proxµk

g (xk − µk∇f(xk))

:= arg min
u∈Rn
{g(u) + f(xk) + 〈∇f(xk),u− xk〉+ 1

2µk
‖u− xk‖2}.

(2.3)

We will call the objective function, that is minimized in (2.3), a composite quadratic
approximation of the convex function F (x) := f(x) + g(x). This approximation at
a given point v, for a given µ is defined as

Qµ(u, v) := f(v) +∇f(v)T (u− v) + 1
2µ‖u− v‖

2 + g(u). (2.4)

Then, the proximal operator can be written as

pµ(v) := arg min
u∈Rn

Qµ(u, v).

Using this notation we first present the basic PGA framework with backtracking
over µ in Algorithm 1. The simple backtracking scheme enforces that the sufficient
decrease condition

F (xk+1) ≤ Qµk
(xk+1,xk) ≤ Qµk

(xk,xk) = F (xk) (2.5)

holds. This condition is essential in the convergence rate analysis of PGA and is
easily satisfied when µ ≤ 1/L. The backtracking is used for two reasons–because
the constant L may not be known and because µ ≤ 1/L may be too pessimistic,
i.e., condition (2.5) may be satisfied for much larger values of µ allowing for larger
steps.

We now present the accelerated variant of PGA stated as APGA, where at each
iteration k, instead of constructing Qµk

at the current minimizer xk, it is constructed
at a different point yk, which is chosen as a specific linear combination of the latest
two or more minimizers, e.g.,

yk+1 = xk + αk(xk − xk−1),

10

Algorithm 1 Proximal Gradient Algorithm
1: Initialize x0 ∈ Rn, and choose β ∈ (0, 1).
2: for k = 1, 2, · · · do
3: Choose µ0

k and define µk := µ0
k.

4: Compute pµk
(xk) := arg minu∈Rn Qµk

(u,xk).
5: while F (pµk

(xk)) > Qµk
(pµk

(xk),xk) do
6: Set µk ← βµk.
7: Compute pµk

(xk) := arg minu∈Rn Qµk
(u,xk).

8: Set xk+1 ← pµk
(xk).

where the sequence {αk} is chosen in such a way to guarantee an accelerated con-
vergence rate as compared to the original PGA. Algorithm 2 is a variant of APGA
framework, often referred to as FISTA, presented in [2], where αk = (tk − 1)/(tk+1).
In this work, we choose to focus on FISTA algorithm specifically. The choice of the
accelerated parameter tk+1 in (2.6a) is dictated by the analysis of the complexity of
FISTA [2] and the condition µk+1 ≤ µk that is imposed by the initialization of the
backtracking procedure with µ0

k+1 := µk. In [50], the definition of tk+1 was general-
ized to allow µ0

k+1 > µk, while retaining the convergence rate. We will use a similar
technique in our proposed APQNA.

Algorithm 2 Accelerated Proximal Gradient Algorithm
1: Initialize t1 = 1, µ0

1 > 0, and y1 = x0 ∈ Rn, and choose β ∈ (0, 1).
2: for k = 1, 2, · · · do
3: Define µk := µ0

k.
4: Compute pµk

(yk) := arg minu∈Rn Qµk
(u, yk).

5: while F (pµk
(yk)) > Qµk

(pµk
(yk), yk) do

6: Set µk ← βµk.
7: Compute pµk

(yk) := arg minu∈Rn Qµk
(u, yk).

8: Set xk ← pµk
(yk).

9: Define µ0
k+1 := µk and compute tk+1 and yk+1, so that

tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
(2.6a)

and yk+1 = xk + tk − 1
tk+1

(xk − xk−1) . (2.6b)

11

In this work, we are interested in the extensions of the above proximal methods,
which utilize an approximation function Qµ, using partial second-order information
about f . These quasi-Newton type proximal algorithms use a generalized form of
the proximal operator (2.2), known as the scaled proximal mapping of g, which are
defined for a given point v as

proxHg (v) := arg min
u∈Rn
{g(u) + 1

2‖u− v‖
2
H},

where matrix H is a positive definite matrix. In particular, the following operator

pHk
(xk) := proxHk

g

(
xk −H−1

k ∇f(xk)
)

(2.7)

computes the minimizer, over u, of the following composite quadratic approximation
of function F

QH(u, v) := f(v) + 〈∇f(v),u− v〉+ 1
2‖u− v‖

2
H + g(u), (2.8)

when v = xk. Matrix H is the approximate Hessian of f and its choice plays the
key role in the quality of this approximation. Clearly, when H = 1

µ
I, approximation

(2.8) converts to (2.4), which is used throughout PGA. If we set H = ∇2f(v), then
(2.8) is the second-order Taylor approximation of F . At each iteration of PQNA
the following optimization problem needs to be solved

pH(v) := arg min
u∈Rn

QH(u, v), (2.9)

which we assume to be computationally inexpensive relative to solving (2.1) for
any v ∈ Rn and some chosen class of positive definite approximate Hessian H.
Our assumption is motivated by [48], where it is shown that for L-BFGS Hessian
approximation, problem (2.9) can be solved efficiently and inexactly via coordinate
descent method. Specifically, the proximal operator (2.7) does not have closed form
solution for most types of Hessian estimates Hk and most nonsmooth terms g, such
as g = λ‖x‖1, when (2.7) is a convex quadratic optimization problem. Hence, it may

12

be too expensive to seek the exact solution of subproblem (2.7) in every iteration.
In [48], an efficient version of PQNA is proposed which constructs Hessian estimates
based on the L-BFGS updates, resulting in Hk matrices that are sum of a diagonal
and a low rank matrix. The resulting subproblem, structured as (2.7), is then
solved up to some expected accuracy via randomized coordinate descent, which
effectively exploits the special structure of Hk. The analysis in [48] shows that
the resulting inexact PQNA converges sublinearly if the Hessian estimates remain
positive definite and bounded, without assuming any other structure. In this work,
all the theory is derived for arbitrary positive definite Hessian estimates, without
any assumption on their structure, or how closely they are representing the true
Hessian. In our implementation, however, we will construct the Hessian estimates
via L-BFGS as it is done in [48]. The framework of the inexact variant of PQNA for
general approximate Hessian is stated in Algorithm 3. In this algorithm, the inexact
solution of (2.9) is denoted by pH,ε(v), as an ε−minimizer of the subproblem that
satisfies

g(pH,ε(v)) + 1
2‖pH,ε(v)− z‖2

H ≤ min
u∈Rn
{g(u) + 1

2‖u− z‖
2
H}+ ε, (2.10)

where z := v −H−1∇f(v). Obtaining such an inexact solution can be achieved by
applying any linearly convergent algorithm, as will be discussing in detail at the end
of this section.

In addition, for a given η ∈ (0, 1], the typical condition (2.5), used in [2] and
[51], is relaxed by using a trust region like sufficient decrease condition

(F (pH,ε(v))− F (v)) ≤ η (QH (pH,ε(v), v)− F (v)) . (2.11)

This relaxed condition was proposed and tested in [48] for PQNA and was shown to
lead to superior numerical performance, saving multiple backtracking steps during
the earlier iterations of the algorithm. Note that, one can obtain the exact version
of Algorithm 3 by replacing pHk,εk with pHk

, and setting η = 1.

13

Algorithm 3 Inexact Proximal Quasi-Newton Algorithm
1: Initialize x0 ∈ Rn, and choose β ∈ (0, 1) and η ∈ (0, 1].
2: for k = 1, 2, · · · do
3: Choose µk > 0 and bounded Gk � 0.
4: Define Hk := Gk + 1

2µk
I.

5: Compute pHk,εk(xk) such that (2.10) is satisfied.
6: while (F (pHk,εk(xk))− F (xk)) > η (QHk

(pHk,εk(xk),xk)− F (xk)) do
7: Set µk ← βµk.
8: Update Hk via Hk := Gk + 1

2µk
I.

9: Compute pHk,εk(xk) such that (2.10) is satisfied.
10: Set xk+1 ← pHk,εk(xk).

Throughout our analysis, we make the following assumptions.

Assumption 1.

• f is convex with Lipschitz continuous gradient with constant L.

• g is a lower semi-continuous proper convex function.

• There exists an x∗ ∈ Rn, which is a minimizer of F .

• There exist positive constants m and M such that, for all k > 0,

mI � Hk �MI. (2.12)

Remark 1. In Algorithm 3, as long as the sequence of positive definite matrices Gk

has uniformly bounded eigenvalues, condition (2.12) is satisfied. In fact, since the
sufficient decrease condition in Step 3 is satisfied for Hk � LI, then it is satisfied
when µk ≤ 1/L. Hence, at each iteration we have a finite and bounded number of
backtracking steps and the resulting Hk has bounded eigenvalues. The lower bound
on the eigenvalues of Hk is simply imposed either by choosing a positive definite Gk

or bounding µ0
k from above.

In the next section, we analyze the convergence properties of PQNA when f in
(2.1) is strongly convex.

14

2.3 Proximal Quasi-Newton Algorithm under
Strong Convexity

In this section, we analyze the convergence properties of PQNA to solve problem
(2.1), in the case when the smooth function f is γ−strongly convex. In particular,
the following assumption is made throughout this section.

Assumption 2. For all x and y in Rn, and any t ∈ [0, 1], the following two equiv-
alent conditions hold.

γ‖x− y‖2 ≤ 〈∇f(x)−∇f(y),x− y〉 (2.13a)

and f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1
2γt(1− t)‖x− y‖

2. (2.13b)

To establish a linear convergence rate of PQNA, we consider extending two
different approaches used to show a similar result for PGA. The first approach we
consider is based on the proof techniques used in [17] for PGA. The reason we chose
the approach in [17] is due to the fact that the linear rate of convergence is shown
under the quadratic growth condition, which is a relaxation of the strong convexity.
Hence, extending this analysis to PQNA, as a subject of a future work, may allow us
to relax the strong convexity assumption for this algorithm as well. However, there
appears to be some limitations in the extension of this analysis, in particular in the
inexact case. This observation motivates us to present the approach used in [40]
to analyze convergence properties of inexact PQNA. As we see below, this analysis
readily extends to our case and allows us to establish simple rules for subproblem
solver termination to achieve the desired subproblem accuracy.

2.3.1 Convergence Analysis

2.3.1.1 Exact Case (First Approach)

Here, we present the first approach establishing the linear convergence rate of PQNA.
First, we state a simple result based on the optimality of pH .

15

Lemma 1. For any v ∈ Rn, there exists a subgradient of function g where νg(pH(v)) ∈
∂g(pH(v)) such that

∇f(v) +H(pH(v)− v) + νg(pH(v)) = 0. (2.14)

Proof. The proof is followed immediatly from the optimality condition of convex
optimization problem (2.9).

We also need the following property of subgradients of a convex function.

Lemma 2. Subgradients of a convex function g are monotone operators such that

(νg(x)− νg(y))T (x− y) ≥ 0, ∀x, y ∈ dom g,

where νg ∈ ∂g.

Proof. The proof is implied by the definition of subgradients.

Now, we can show the following lemma, which bounds the change in the objective
function F and is a simple extension of a similar theorem in [2].

Lemma 3. Let v ∈ Rn and H � 0 be such

F (pH(v)) ≤ QH(pH(v), v), (2.15)

holds for a given v, then for any x ∈ Rn

F (x)− F (pH(v)) ≥ 1
2‖pH(v)− v‖2

H + 〈v − x, pH(v)− v〉H . (2.16)

Proof. From (2.57) we have

F (x)− F (pH(v)) ≥ F (x)−QH(pH(v), v). (2.17)

16

Now, based on the convexity of functions f and g, we have

f(x) ≥ f(v) + 〈∇f(v),x− v〉 and

g(x) ≥ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉,

where νg(pH(v)) is defined in Lemma 5. Summing the above inequalities yields

F (x) ≥ f(v) + 〈∇f(v),x− v〉+ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉. (2.18)

Using (2.8) and (2.59) in (2.58) yields

F (x)− F (pH(v)) ≥ f(v) + 〈∇f(v),x− v〉+ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉

− f(v)− 〈∇f(v), pH(v)− v〉 − 1
2‖pH(v)− v‖2

H − g(pH(v))

=− 1
2‖pH(v)− v‖2

H + 〈x− pH(v),∇f(v) + νg(pH(v))〉

=− 1
2‖pH(v)− v‖2

H + 〈x− pH(v),H(v − pH(v))〉

=− 1
2‖pH(v)− v‖2

H + 〈x− pH(v),H(v − pH(v))〉

+ 〈v − pH(v), v − pH(v)〉H − 〈v − pH(v), v − pH(v)〉H

= 1
2‖pH(v)− v‖2

H + 〈v − x, pH(v)− v〉H .

By using Lemma 6, we can conclude the following results.

Corollary 1. By setting x = x∗, v = xk, pH(xk) = xk+1, and H = Hk in the result
of Lemma 6, we have

F (xk+1)− F (x∗) ≤ −
1
2‖xk − xk+1‖2

Hk
+ 〈xk − xk+1,xk − x∗〉Hk

. (2.19)

With x = v = xk, pH(xk) = xk+1, and H = Hk we have

F (xk)− F (xk+1) ≥ 1
2‖xk+1 − xk‖2

Hk
. (2.20)

17

Now, under Assumptions 1 and 2, the following theorem shows geometric de-
crease in function values.

Theorem 1. At each step of the PQNA the following improvement in the objective
function value is guaranteed

F (xk+1)− F (x∗) ≤ (1− m

2Mγk
)(F (xk)− F (x∗)), (2.21)

where γk = ‖xk − x∗‖/‖xk − xk+1‖.

Proof. By using inequality (2.19), we have

F (xk+1)− F (x∗) ≤M‖xk − xk+1‖‖xk − x∗‖ −
m

2 ‖xk − xk+1‖2

= ‖xk − xk+1‖2(M ‖xk − x∗‖
‖xk − xk+1‖

− m

2)

= ‖xk − xk+1‖2(Mγk −
m

2),

where γk = ‖xk − x∗‖/‖xk − xk+1‖. Now, by using inequality (2.20), we will have

F (xk+1)− F (x∗) ≤ (F (xk)− F (xk+1))(2M
m

γk − 1)

≤ ((F (xk)− F (x∗))− (F (xk+1)− F (x∗))) (2M
m

γk − 1),

which implies

F (xk+1)− F (x∗) ≤ (1− m

2Mγk
)(F (xk)− F (x∗)). (2.22)

Based on Theorem 2.48, if the quantities γk are bounded for all large k, the
Q-linear convergence in the function values follows automatically, which motivates
the following theorem.

Theorem 2. Let Assumptions 1 and 2 hold, then during the application of PQNA,

18

for all k we have

γk ≤
M(L+m)

µm
and (2.23a)

γk ≥
m2

M(L+m) , (2.23b)

where γk = ‖xk − x∗‖/‖xk − xk+1‖.

Proof. In (2.2), by defining function h(u) := g(u) + 1
2‖u − v‖

2
H , the proxHg (v) will

be the minimizer of function h, which implies that for any x ∈ Rn, there exists a
νh(proxHg (v)) ∈ ∂h(proxHg (v)) such that

νh(proxHg (v))T (x− proxHg (v)) = 0. (2.24)

Using νh(proxHg (v)) = νg(proxHg (v)) + H(proxHg (v) − v), where νg(proxHg (v)) ∈
∂g(proxHg (v)) in the above inequality, implies

(νg(proxHg (v)) +H(proxHg (v)− v))T (x− proxHg (v)) = 0,

which states the following inequality by substituting x = x∗, such that

νg(proxHg (v))T (x∗ − proxHg (v)) + (proxHg (v)− v)TH(x∗ − proxHg (v)) = 0. (2.25)

By introducing τ := H(x−proxHg (x−H−1∇f(x))), we have proxHg (x−H−1∇f(x)) =
x−H−1τ , and consequently, by setting v = x−H−1∇f(x) in (2.25), we will have

νg(x−H−1τ)T (x∗−x+H−1τ)+(H−1∇f(x)−H−1τ)TH(x∗−x+H−1τ) = 0. (2.26)

Now, since x∗ is the minimum of the composite function F , we have

(x−H−1τ − x∗)T (∇f(x∗) + νg(x∗)) = 0. (2.27)

19

Summing up two inequalities (2.26) and (2.27) implies,

−[(νg(x−H−1τ)−νg(x∗))T ((x−H−1τ)−x∗)]+(x−H−1τ−x∗)T (∇f(x∗)−(∇f(x)−τ)) = 0.

Now, by using the monotonicity of the subgradient, as described in Lemma 2, in
above equality, we will have

(x−H−1τ − x∗)T (∇f(x∗)− (∇f(x)− τ)) ≥ 0,

or equivalently,

(x−x∗)T (∇f(x)−∇f(x∗)) ≤ τT (H−1(∇f(x)−∇f(x∗))+x−x∗)−τTH−1τ . (2.28)

By using (2.13a) and (2.12), we have

µ‖x− x∗‖2 ≤ ‖τ‖(1
m
‖∇f(x)−∇f(x∗)‖+ ‖x− x∗‖).

By using the Lipschitz continuity of the gradient ∇f , we will have

µ‖x− x∗‖2 ≤ ‖τ‖(L
m

+ 1)‖x− x∗‖.

Finally, by substituting the definition of τ and defining x = xk, we obtain (2.23a)

‖xk − x∗‖
‖xk − xk+1‖

≤ M(L+m)
µm

.

On the other hand, since function f is a convex function, we have (x−x∗)T (∇f(x)−
∇f(x∗)) ≥ 0, and consequently, we can rewrite equality (2.28) as

τT (H−1(∇f(x)−∇f(x∗)) + x− x∗)− τTH−1τ ≥ 0

‖τ‖(1
m
‖∇f(x)−∇f(x∗)‖+ ‖x− x∗‖) ≥

1
M
‖τ‖2

‖τ‖(L
m

+ 1)‖x− x∗‖ ≥
1
M
‖τ‖2,

20

which implies (2.23b) by substituting the definition of τ and setting x = xk.

Finally, we can establish the linear convergence of PQNA.

Corollary 2. By using bound (2.23a) in the result of Theorem 2.48, we obtain the
following final global linear rate of convergence for PQNA such that

F (xk+1)− F (x∗) ≤
(

1− µm2

2M2(L+M)

)
(F (xk)− F (x∗)). (2.29)

In the following, we analyze the convergence result of an inexact variant of
PQNA.

2.3.1.2 Inexact Case (First Approach)

First, in terms of inexact subproblem solvers, stated in (2.10), since point pH,ε is
an ε−minmizer of the convex function g(u) + 1

2‖u− z‖
2
H , there exists vector ζ with

small norm ‖ζ‖, so that

H(z − pH,ε(v))− ζ ∈ ∂g(pH,ε(v)), (2.30)

where z := v −H−1∇f(v).
Equivalently we have

∇f(v) + νg(pH,ε(v)) +H(pH,ε(v)− v) = ζ,

where νg(pH,ε(v)) ∈ ∂g(pH,ε(v)).

Lemma 4. Let v ∈ Rn and H � 0 be such that

F (pH,ε(v)) ≤ QH(pH,ε(v), v) + ξ, (2.31)

then, for any x ∈ Rn we have

F (x)− F (pH,ε(v)) ≥ 1
2‖pH,ε(v)− v‖2

H + 〈v − x, pH,ε(v)− v〉H + 〈x− pH,ε(v), ζ〉 − ξ.
(2.32)

21

Proof. From (2.31) we have

F (x)− F (pH,ε(v)) ≥ F (x)−QH(pH,ε(v), v)− ξ. (2.33)

Now, based on the convexity of function f and g we have

f(x) ≥ f(v) + 〈∇f(v),x− v〉 and

g(x) ≥ g(pH,ε(v)) + 〈νg(pH,ε(v)),x− pH,ε(v)〉,

where νg(pH,ε(v)) ∈ ∂g(pH,ε(v)). Summing the above inequalities yields

F (x) ≥ f(v) + 〈∇f(v),x− v〉+ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉. (2.34)

Using (2.8) and (2.34) in (2.33) yields

F (x)− F (pH,ε(v))

≥ f(v) + 〈∇f(v),x− v〉+ g(pH,ε(v)) + 〈νg(pH,ε(v)),x− pH,ε(v)〉

− f(v)− 〈∇f(v), pH,ε(v)− v〉 − 1
2‖pH,ε(v)− v‖2

H − g(pH,ε(v))− ξ

= −1
2‖pH,ε(v)− v‖2

H + 〈x− pH,ε(v),∇f(v) + νg(pH,ε(v))〉 − ξ

= −1
2‖pH,ε(v)− v‖2

H + 〈x− pH,ε(v),H(v − pH,ε(v)) + ζ〉 − ξ

= −1
2‖pH,ε(v)− v‖2

H + 〈x− pH,ε(v),H(v − pH,ε(v))〉

+ 〈v − pH,ε(v), v − pH,ε(v)〉H − 〈v − pH,ε(v), v − pH,ε(v)〉H + 〈x− pH,ε(v), ζ〉 − ξ

= 1
2‖pH,ε(v)− v‖2

H + 〈v − x, pH,ε(v)− v〉H + 〈x− pH,ε(v), ζ〉 − ξ

Corollary 3. By setting x = x∗, v = xk, pH,ε(xk) = xk+1, H = Hk, ξ = ξk, and
ζ = ζk in the result of Lemma 4, we have

F (xk+1)−F (x∗) ≤ −
1
2‖xk− xk+1‖2

Hk
+ 〈xk− xk+1,xk− x∗〉Hk

+ 〈x∗− xk+1, ζk〉− ξk.
(2.35)

22

With x = v = xk, pH,ε(xk) = xk+1, and H = Hk, we have

F (xk)− F (xk+1) ≥ 1
2‖xk+1 − xk‖2

Hk
+ 〈xk − xk+1, ζk〉 − ξk. (2.36)

Now, under Assumptions 1 and 2, the following theorem shows geometric de-
crease in function values.

Theorem 3. At each step of PQNA, the following improvement in the objective
function value is guaranteed

F (xk+1)− F (x∗) ≤ (1− 1
2Mγk

)(F (xk)− F (x∗))

+ 1
γk

(
ξk
M

+
(
‖xk − xk+1‖

M
+ mD∗

2M

)
‖ζk‖

)
,

(2.37)

where γk = ‖xk − x∗‖/‖xk − xk+1‖ and ‖xk − x∗‖ ≤ D∗.

Proof. Using inequality (2.35) we have

F (xk+1)− F (x∗) ≤M‖xk − xk+1‖‖xk − x∗‖ −
m

2 ‖xk − xk+1‖2 +D∗‖ζk‖

= ‖xk − xk+1‖2(M ‖xk − x∗‖
‖xk − xk+1‖

− m

2) +D∗‖ζk‖

= ‖xk − xk+1‖2(Mγk −
m

2) +D∗‖ζk‖,

where γk = ‖xk − x∗‖/‖xk − xk+1‖. Using inequality (2.36)

F (xk+1)− F (x∗) ≤ (F (xk)− F (xk+1))(2M
m
γk − 1) + 2

m
‖xk − xk+1‖‖ζk‖

+ 2
m
ξk +D∗‖ζk‖

≤ [(F (xk)− F (x∗))− (F (xk+1)− F (x∗))](2
M

m
γk − 1)

+ 2
m
‖xk − xk+1‖‖ζk‖+ 2

m
ξk +D∗‖ζk‖,

23

which implies

F (xk+1)− F (x∗) ≤ (1− m

2Mγk
)(F (xk)− F (x∗))

+ 1
Mγk

‖xk − xk+1‖‖ζk‖+ ξk
Mγk

+ mD∗
2M

‖ζk‖
γk

= (1− 1
2Mγk

)(F (xk)− F (x∗))

+ 1
γk

(
ξk
M

+
(
‖xk − xk+1‖

M
+ mD∗

2M

)
‖ζk‖

)
.

(2.38)

Based on Theorem 3, if the quantities γk is bounded for all large k, asymptotic
Q-linear convergence in function values will be assured, this fact motivates the
following theorem.

Theorem 4. Let Assumptions 1 and 2 hold, then during the application of PQNA,
for all k, we have

γk ≤
M(L+m)

µm
+ M

m

‖ζk‖
‖xk − xk+1‖

+ M

m

‖ζk‖
‖xk − x∗‖

and (2.39a)

γk ≥
(
M(L+m)

m2 + M

m2
‖ζk‖

‖xk − xk+1‖
+ M

m2
‖ζk‖

‖xk − x∗‖

)−1

, (2.39b)

where γk = ‖xk − x∗‖/‖xk − xk+1‖.

Proof. Define proxHg (v) to be the ε−minimizer of function h(u) := g(u)+ 1
2‖u−v‖

2
H ,

which implies that for any x ∈ Rn, there exists a νh(proxHg (v)) ∈ ∂h(proxHg (v)), such
that

νh(proxHg (v))T (x− proxHg (v)) = ζT (x− proxHg (v)). (2.40)

Using νh(proxHg (v)) = νg(proxHg (v)) + H(proxHg (v) − v) where νg(proxHg (v)) ∈
∂g(proxHg (v)) in the above inequality implies

(νg(proxHg (v)) +H(proxHg (v)− v))T (x− proxHg (v)) = ζT (x− proxHg (v)),

24

which implies the following inequality by substituting x = x∗, such that

νg(proxHg (v))T (x∗ − proxHg (v)) + (proxHg (v)− v)TH(x∗ − proxHg (v))

= ζT (x∗ − proxHg (v)).
(2.41)

By introducing τ = H(x−proxHg (x−H−1∇f(x))), we have proxHg (x−H−1∇f(x)) =
x−H−1τ , and consequently, be setting v = x−H−1∇f(x) in (2.41), we will have

νg(x−H−1τ)T (x∗ − x+H−1τ) + (H−1∇f(x)−H−1τ)TH(x∗ − x+H−1τ)

= ζT (x∗ − x+H−1τ).
(2.42)

Now, since x∗ is the minimizer of the composite function F , we have

(x−H−1τ − x∗)T (∇f(x∗) + νg(x∗)) = 0. (2.43)

Summing up two inequalities (2.42) and (2.43) implies

− [(νg(x−H−1τ)− νg(x∗))T ((x−H−1τ)− x∗)]

+ (x−H−1τ − x∗)T (∇f(x∗)− (∇f(x)− τ))

= ζT (x∗ − x+H−1τ).

Now, by using the monotonicity of the subgradient as described in Lemma 2, in the
above equality, we will have

(x−H−1τ − x∗)T (∇f(x∗)− (∇f(x)− τ)) ≥ ζT (x∗ − x+H−1τ),

or equivalently

(x− x∗)T (∇f(x)−∇f(x∗))

≤ τT (H−1(∇f(x)−∇f(x∗)) + x− x∗)− τTH−1τ + ζT (x− x∗)− ζTH−1τ .
(2.44)

25

By using (2.13a) and (2.12), we have

µ‖x− x∗‖2 ≤ ‖τ‖(1
m
‖∇f(x)−∇f(x∗)‖+ ‖x− x∗‖) + ‖ζ‖‖x− x∗‖+ 1

m
‖ζ‖‖τ‖.

By using Lipschitz continuity of gradient ∇f , we will have

µ‖x− x∗‖2 ≤ ‖τ‖(L
m

+ 1)‖x− x∗‖+ ‖ζ‖‖x− x∗‖+ 1
m
‖ζ‖‖τ‖.

Finally, by substituting the definition of τ and defining x = xk and ζ = ζk, we
obtain (2.39a)

γk ≤
M(L+m)

µm
+ M

m

‖ζk‖
‖xk − xk+1‖

+ M

m

‖ζk‖
‖xk − x∗‖

.

On the other hand, since function f is a convex function, we have (x−x∗)T (∇f(x)−
∇f(x∗)) ≥ 0, and consequently, we can rewrite inequality (2.44) as

τT (H−1(∇f(x)−∇f(x∗)) + x− x∗)− τTH−1τ + ζT (x− x∗)− ζTH−1τ ≥ 0

τT (H−1(∇f(x)−∇f(x∗)) + x− x∗) + ‖ζ‖‖x− x∗‖+ 1
m
‖ζ‖‖τ‖ ≥ τTH−1τ

‖τ‖(1
m
‖∇f(x)−∇f(x∗)‖+ ‖x− x∗‖) + ‖ζ‖‖x− x∗‖+ 1

m
‖ζ‖‖τ‖ ≥ 1

M
‖τ‖2

‖τ‖(L
m

+ 1)‖x− x∗‖+ ‖ζ‖‖x− x∗‖+ 1
m
‖ζ‖‖τ‖ ≥ 1

M
‖τ‖2,

which implies (2.39b) by substituting the definition of τ , and setting x = xk and
ζ = ζk

γk ≥
(
M(L+m)

m2 + M

m2
‖ζk‖

‖xk − xk+1‖
+ M

m2
‖ζk‖

‖xk − x∗‖

)−1

.

Based on the result of Theorem 4, we can bound γk, if we guarantee that ‖ζk‖
converges to zero faster than the step length ‖xk − xk+1‖ as well as distance to
optimality ‖xk − x∗‖. In this case, by using Theorem 3, one can prove the desired
linear convergence rate of inexact PQNA. However, the rigorous analysis of this

26

inexact setting is a subject of a future work.
In what follows, we present our second approach to present the linear convergence

rates for both exact and inexact variants of PQNA.

2.3.1.3 Inexact Case (Second Approach)

Let us consider Algorithm 3 for which (2.10) holds for some sequence of errors εk ≥ 0.
The relaxed sufficient decrease condition

F (xk+1)− F (xk) ≤ η(QHk
(xk+1,xk)− F (xk)),

for a given η ∈ (0, 1], can be written as

F (xk+1) ≤ QHk
(xk+1,xk)− (1− η) (QHk

(xk+1,xk)− F (xk))

≤ QHk
(xk+1,xk)−

1− η
η

(F (xk+1)− F (xk)) .

Thus, at each iteration we have

F (xk+1) ≤ QHk
(xk+1,xk) + ξk, (2.45)

where the sequence of the errors ξk is defined as

ξk ≤ (1− 1
η

) (F (xk+1)− F (xk)) . (2.46)

In particular, setting η = 1 results in ξk = 0, for all k and enforces the algorithm
to accept only those steps that achieve full (predicted) reduction. However, using
η < 1 allows the algorithm to take steps satisfying only a fraction of the predicted
reduction, which may lead to larger steps and faster progress.

Under the above inexact condition, we can show the following result.

Theorem 5. Suppose that Assumptions 1 and 2 hold. At each iteration of the

27

inexact PQNA, stated in Algorithm 3, we have

F (xk)− F (x∗) ≤ ρk (F (x0)− F (x∗) + Ak) , (2.47)

when ρ = 1− (ηγ)/(γ +M), and

Ak := η
k∑
i=1

(
εi/ρ

i
)

.

Proof. Applying (2.45), with v = xk and consequently pHk,εk(xk) = xk+1, we have

F (xk+1) ≤ QHk
(xk+1,xk) + ξk

= f(xk) + 〈∇f(xk),xk+1 − xk〉+ 1
2‖xk+1 − xk‖2

Hk
+ g(xk+1) + ξk

= min
u∈Rn

f(xk) + 〈∇f(xk),u− xk〉+ 1
2‖u− xk‖

2
Hk

+ g(u) + εk + ξk

≤ min
u∈Rn

f(u) + 1
2‖u− xk‖

2
Hk

+ g(u) + (εk + ξk) (convexity of f)

= min
u∈Rn

F (u) + 1
2‖xk − u‖

2
Hk

+ (εk + ξk)

≤ min
t∈[0,1]

F (tx∗ + (1− t)xk) + 1
2‖xk − tx∗ − (1− t)xk‖2

Hk

+ (εk + ξk)

≤ min
t∈[0,1]

tF (x∗) + (1− t)F (xk)−
1
2γt(1− t)‖x∗ − xk‖

2

+ 1
2t

2‖x∗ − xk‖2
Hk

+ (εk + ξk) (using (2.13b))

≤ min
t∈[0,1]

tF (x∗) + (1− t)F (xk)−
1
2γt(1− t)‖x∗ − xk‖

2

+ 1
2Mt2‖x∗ − xk‖2 + (εk + ξk)

≤ t′F (x∗) + (1− t′)F (xk) + (εk + ξk).
(

where t′ = γ

γ +M

)

Therefore, we have

F (xk+1) ≤ t′F (x∗) + (1− t′)F (xk) + (εk + ξk),

28

which implies

F (xk+1)− F (x∗) ≤ (1− t′)(F (xk)− F (x∗)) + (εk + ξk).

Now, by substituting the expression for ξk, as stated in (2.46), we will have

F (xk+1)− F (x∗) ≤ ρ(F (xk)− F (x∗)) + ηεk,

where ρ = 1− ηt′. Now, we can conclude the final result as

F (xk)− F (x∗) ≤ ρk(F (x0)− F (x∗)) +
k∑
i=1

ηρk−iεi

= ρk
(
F (x0)− F (x∗) + η

k∑
i=1

(
εi/ρ

i
))

,

where ρ = 1− (ηγ)/(γ +M).

Remark 2. In Theorem 5, by setting εk = 0 and η = 1, which implies ξk = 0, we
achieve the linear convergence rate of the exact variant of PQNA.

Remark 3. We have shown that in the linear convergence rate of PQNA, the con-
stant is ρ = 1 − (ηγ)/(γ +M). As argued in Remark 1, M is of the same order
as L in the worst case, hence in that case the linear rate of PQNA is the same as
that of the simple PGA. However, it is easy to see that in the proof of Theorem 5,
the linear rate is derived using the upper bound on ‖x∗ − xk‖2

Hk
, where Hk is the

approximate Hessian on step k. Clearly, the idea of using the partial second-order
information is to reduce the worst case bound of Hk in general and consequently on
‖x∗− xk‖2

Hk
. In particular, obtaining a smaller bound Mk on each iteration yields a

larger convergence coefficient ρk = 1− (ηγ)/(γ +Mk). While for general Hk, we do
not expect to improve upon the regular PGA in theory, this remark serves to explain
the better performance of PQNA in practice.

Based on the result of Theorem 5, it follows that the boundedness of the sequence
{Ak} is a sufficient condition to achieve the linear convergence rate. Hence, the

29

required condition on the sequence of errors is ∑k
i=1 (εi/ρi) < ∞. For all i ≤

k, suppose that εi ≤ Cρi·δ, for some δ > 1 and some C > 0. Then, we have∑k
i=1 (εi/ρi) ≤ C

∑k
i=1 ρ

i(δ−1), which is uniformly bounded for all k. Recall that the
k-th subproblem Q∗k := minu∈Rn QHk

(u,xk) is a strongly convex function with strong
convexity parameter at least m–the lower bound on the eigenvalues of Hk. Now,
suppose each subproblem is solved via an algorithm with a linear convergence rate
for strongly convex problems. In particular, if the subproblem solver is applied for
r(k) iterations to the k-th subproblem, we have

(
QHk

(ur(k),xk)−Q∗k
)
≤ α

(
QHk

(ur(k)−1,xk)−Q∗k
)

, (2.48)

where α ∈ (0, 1). Our goal is to ensure that εk ≤ Cρk·δ, which can be achieved
by applying sufficient number of iterations of the subproblem algorithm. To be
specific, the following theorem characterizes this required bound on the number of
inner iterations.

Theorem 6. Suppose that at the k-th iteration of Algorithm 3, after applying the
subproblem solver satisfying (2.48) for r(k) iterations, starting with u0 = xk, we
obtain solution xk+1 = ur(k).

Let r(k) satisfy
r(k) ≥ k log1/α(1/ρδ), (2.49)

for some δ > 1, and ρ defined in Theorem 5. Then

QHk
(xk+1,xk)−Q∗k ≤ Cρk·δ

holds for all k ≥ 1, with C being the uniform bound on QHk
(xk,xk) − Q∗k, and the

linear convergence of Algorithm 3 is achieved.

Proof. First, assume that at the k−th iteration we have applied the subproblem
solver for r(k) iterations to minimize strongly convex function QHk

. Now, by com-
bining QHk

(u0,u0)−Q∗k ≤ C and (2.48), we can conclude the following upper bound,

30

so that
QHk

(ur(k),u0)−Q∗k ≤ αr(k)C.

Now, if αr(k)C ≤ εk, we can guarantee that ur(k) is an εk-solution of the k-th
subproblem, so that QHk

(ur(k),u0) ≤ Q∗k + εk. Now, assuming that ρ is known, we
can set the error rate of the k-th iteration as εk ≤ Cρk·δ, for a fixed δ > 1. In this
case, the number of inner iterations which guarantees the εk-minimizer will be

r(k) ≥ k log1/α(1/ρδ).

Remark 4. Since subproblems are strongly convex, the required linear convergence
rate for the subproblem solver, stated in (2.48), can be guaranteed via some ba-
sic first-order algorithms or their accelerated variants. However, one difficulty in
obtaining lower bound (2.49) is that it depends on the prior knowledge of ρ and
α. Consider the following simple modification of Theorem 6; instead of condition
(2.49), consider r(k) satisfying

r(k) ≥ k log1/α′(k/`), (2.50)

for any given ` > 0 and α′ ∈ (0, 1). Then εk ≤ C (`/k)k implies εk ≤ Cρk·δ, for
sufficiently large k.

In the next subsection, we extend our analysis to the case of solving subproblems
via the randomized coordinate descent, where at each iteration the desired error
bound related to εk is only satisfied in expectation.

2.3.2 Solving Subproblems via Randomized Coordinate De-
scent

As we mentioned before, in order to achieve linear convergence rate of the inexact
PQNA, any simple first-order method (such as PGA) can be applied. However, as

31

discussed in [48], in the case when g(x) = λ‖x‖1 and Hk is sum of a diagonal and a
low rank matrix, as in the case of L-BFGS approximations, the coordinate descent
method is the most efficient approach to solve the strongly convex quadratic sub-
problems. In this case, each iteration of coordinate descent has complexity of O(m),
where m is the memory size of L-BFGS, which is usually chosen to be less than 20,
while each iteration of a proximal gradient method has complexity of O(nm) and
each iteration of a Newton type proximal method has complexity of O(nm2). While
more iterations of coordinate descent may be required to achieve the same accuracy,
it tends to be the most efficient approach. To extend our theory of the previous sec-
tion and to establish the bound on the number of coordinate descent steps needed to
solve each subproblem, we utilize convergence results for the randomized coordinate
descent [45], as is done in [48].

Algorithm 4 shows the framework of the randomized coordinate descent method,
which can be used as a subproblem solver of Algorithm 3 and is identical to the
method used in [48]. In Algorithm 4, function QH is iteratively minimized over a
randomly chosen coordinate, while the other coordinates remain fixed.

Algorithm 4 Randomized Coordinate Descent Algorithm
1: Initialize point v ∈ Rn and required number of iterations r > 0.
2: Set u0 ← v.
3: for l = 1, 2, · · · , r − 1 do
4: Choose j uniformly from {1, 2, · · · ,n}.
5: Compute z∗ := arg minz∈Rn QH(ul + zej , v).
6: Set ul+1 ← ul + z∗ej .
7: Return ur.

In what follows, we restate Theorem 6 in [45], which establishes linear conver-
gence rate of the randomized coordinate descent algorithm, in expectation, to solve
strongly convex problems.

Theorem 7. Suppose we apply randomized coordinate descent for r iterations, to
minimize the m-strongly convex function Q with M-Lipschitz gradient, to obtain the
random point ur.

32

When u0 is the initial point and Q∗ := minu∈Rn QH(u,u0), for any r, we have

E (QH(ur,u0)−Q∗) ≤
(

1− 1− φm,M

n

)r
(QH(u0,u0)−Q∗) , (2.51)

where φm is defined as

φm,M =

1−m/4M if m ≤ 2M ,

M/m otherwise.
(2.52)

Proof. The proof can be found in [45].

Now, we want to analyze how we can utilize the result of Theorem 7 to achieve
the linear convergence rate of inexact PQNA, in expectation. Toward this end, first
we need the following theorem as the probabilistic extension of Theorem 5.

Theorem 8. Suppose that Assumptions 1 and 2 hold. At each iteration k of the
inexact PQNA, stated in Algorithm 3, assume that the error εk is a nonnegaitve
random variable defined on some probability space with an arbitrary distribution.
Then, we have

E (F (xk)− F (x∗)) ≤ ρk (F (x0)− F (x∗) +Bk) , (2.53)

when ρ = 1− (ηγ)/(γ +M), and

Bk := η
k∑
i=1

(
E(εi)/ρi

)
.

Proof. The proof is a trivial modification of that of Theorem 5.

In what follows, we describe how the randomized coordinate descent method
ensures the required accuracy of subproblems and consequently guarantees linear
convergence of the inexact PQNA.

Theorem 9. Suppose that at the k-th iteration of Algorithm 3, after applying Algo-
rithm 4 for r(k) iterations, starting with u0 = xk, we obtain solution xk+1 = ur(k).

33

If
r(k) ≥ k log1/αn

(k/`),

where ` is any positive constant, αn =
(
1− 1−φm,M

n

)
with φm,M defined in (2.52), and

C is the uniform bound on QHk
(xk,xk) − Q∗k, then Algorithm 3, converges linearly

with constant ρ = 1− (ηγ)/(γ +M), in expectation.

Proof. Suppose that at the k-th iteration of Algorithm 3, we apply r(k) steps of
Algorithm 4 to minimize the strongly convex function QHk

. If ur(k) denotes the
resulting random point, when u0 is the initial point and Q∗k := minu∈Rn QHk

(u,u0),
then based on Theorem 7 we have

E
(
QHk

(ur(k),u0)−Q∗k
)
≤ αr(k)

n C, (2.54)

where αn =
(
1− 1−φm,M

n

)
, with φm,M defined in (2.52), QHk

(u0,u0)−Q∗k is bounded
from above by C. Now, based on the result of Theorem 8, if E(εk) ≤ C(`/k)k for
some given positive constant `, then for sufficiently large k, we can guarantee that
Bk is uniformly bounded for all k, and consequently the linear convergence rate of
Algorithm 3, in expectation is established. Now, by using (2.54), E(εk) ≤ C(`/k)k

simply follows from
r(k) ≥ k log1/αn

(k/`).

Remark 5. The bound on the number of steps r(k) ≥ k log1/αn
(k/`) for randomized

coordinate descent differs from the bound r(k) ≥ k log1/α(k/`) on the number of
steps of a deterministic linear convergence method, such as PGA by the difference
in constants α and αn. It can be easily shown that in the worst case αn ≈ α/n, and
hence, the number of coordinate descent steps is around n times larger than that of
a proximal gradient method. On the other hand, each coordinate descent step is n
times less expensive and in many practical cases a modest number of iterations of
randomized coordinate descent is sufficient. Discussions on this can be found in [45]
and [48] as well as in Section 2.5.

34

2.4 Accelerated Proximal Quasi-Newton
Algorithm

We now turn to an accelerated variant of PQNA. As we described in the introduction
section, the algorithm proposed in [26] is a proximal quasi-Newton variant of FISTA,
described in Algorithm 2. In [26], the convergence rate of O(1/k2) is shown under
the condition that the Hessian estimates satisfy 0 ≺ Hk � Hk−1, at each iteration.
On the other hand, the sequence {Hk} is chosen so that the quadratic approximation
of f is an over approximation. This leads to an unrealistic setting where two possible
contradictory conditions need to be satisfied and as mentioned earlier, this condition
contradicts the assumptions of the original APGA, stated in Algorithm 2. We
propose a more general version, henceforth referred to as APQNA, which allows a
more general sequence of Hk and is based on the relaxed version of FISTA, proposed
in [50], which does not impose monotonicity of the step-size parameters. Moreover,
our algorithm allows more general Hessian estimates as we explain below.

2.4.1 Algorithm Description

The main framework of APQNA as stated in Algorithm 5 is similar to that of Algo-
rithm 2, where the simple composite quadratic approximation Qµ was replaced by
the scaled version QH , as is done in Algorithm 3, using (partial) Hessian informa-
tion. As in the case of Algorithm 3, we assume that the approximate Hessian Hk is
a positive definite matrix such that mI � Hk �MI, for some positive constants m
and M . As discussed in Remark 1, it is simple to show that this condition can be
satisfied for any positive m and for any large enough M . Here, however, we will need
additional much stronger assumptions on the sequence {Hk}. The algorithm, thus,
has some additional steps compared to Algorithm 2 and the standard FISTA type
proximal quasi-Newton algorithm proposed in [26]. Below, we present Algorithm 5
and discuss the steps of each iteration in detail.

The key requirement imposed by Algorithm 5 on the sequence {Hk} is that
σk+1Hk+1 � σkHk, while θk := σk/σk+1 is used to evaluate the accelerated parameter

35

Algorithm 5 Accelerated Proximal Quasi-Newton Algorithm
1: Initialize t1 = 1, θ0 = 1,σ0

1 > 0, y1 = x−1 = x0 ∈ Rn, and positive definite matrix
H0 ∈ Rn×n, and choose β ∈ (0, 1).

2: for k = 1, 2, · · · do
3: Define σk := σ0

k.
4: Compute pHk

(yk) := arg minu∈Rn QHk
(u, yk).

5: while F (pHk
(yk)) > QHk

(pHk
(yk), yk) do

6: Set Hk ← 1
βHk.

7: Modify σk so that σkHk � σk−1Hk−1.
8: Update θk−1 = σk−1/σk and recompute tk and yk using (2.55a)-(2.55b).
9: Compute pHk

(yk) := arg minu∈Rn QHk
(u, yk).

10: Set xk ← pHk
(yk).

11: Choose σ0
k+1 > 0 and Hk+1 so that σ0

k+1Hk+1 � σkHk.
12: Define θk := σk/σ

0
k+1 and compute tk+1 and yk+1, so that

tk+1 = 1
2

(
1 +

√
1 + 4θkt2k

)
(2.55a)

and yk+1 = xk + tk − 1
tk+1

(xk − xk−1) . (2.55b)

tk+1 through (2.55a). During Steps 4 and 5 of iteration k, initial guesses for σ0
k+1 and

Hk+1 are computed and used to define θk, which is then used to compute tk+1 and
yk+1. Since the approximate Hessian Hk+1 may change during Step 2 of iteration
k + 1, σk+1 may need to change as well in order to satisfy condition σk+1Hk+1 �
σkHk. In particular, we may shrink the value of σk+1 and consequently will need
to recompute θk and, thus, tk+1 and yk+1. Therefore, the backtracking process in
Step 2 of Algorithm 5 involves a loop which may require repeated computations of
yk and hence ∇f(yk).

Remark 6. We do not specify how to compute Hk in Algorithm 5, as long as it
satisfies (2.12) and condition σk+1Hk+1 � σkHk. Note that Algorithm 5 does not
allow the use of exact Hessian information at yk+1, i.e., Hk+1 = ∇2f(yk+1), because
it is assumed that Hk+1 is computed before yk+1 (since yk+1 uses the value of σk+1,
whose value may have to be dependent on Hk+1). However, it is possible to use
Hk+1 = ∇2f(xk) in Algorithm 5. To use Hk+1 = ∇2f(yk+1), one would need to be

36

able to compute σk+1 before Hk+1 and somehow ensure that condition σk+1Hk+1 �
σkHk is satisfied. This condition can eventually be satisfied by applying similar
technique to Step 2, but in that case Hk+1 will not be equal to the Hessian, but to
some multiple of the Hessian, i.e., 1

βi∇2f(yk+1), for some i.

In our numerical results, we construct Hk via L-BFGS and ignore condition
σk+1Hk+1 � σkHk, since enforcing it in this case causes a very rapid decrease in σ.
It is unclear, however, if a practical version of Algorithm 5, based on L-BFGS Hessian
approximation can be derived, which may explain why the accelerated version of our
algorithm does not represent any significant advantage.

One trivial choice of the matrix sequence is Hk = 1
µk
I. In this case, the sequence

of scalars σk = µk, satisfies σk+1Hk+1 � σkHk, for all k. This choice of Hessian
reduces Algorithm 5 to the version of APGA with full backtracking of the step-
size parameters, proposed in [50], hence Algorithm 5 is the generalization of that
algorithm. Another choice for the matrix sequence is Hk = 1

σk
H, where the matrix

H is any fixed positive definite matrix. This setting of Hk automatically satisfies
condition σk+1Hk+1 � σkHk, and Algorithm 5 reduces to the simplified version
stated below in Algorithm 6.

Note that, by the same logic that was used in Remark 1, the number of back-
tracking steps at each iteration of Algorithm 6 is uniformly bounded. Thus, as
long as the fixed approximate Hessian H is positive definite, a Hessian estimate
Hk = 1

σk
H has positive eigenvalues bounded from above and below. In our imple-

mentation, we compute a fixed matrix H by applying L-BFGS for a fixed number
of iterations and then apply Algorithm 6.

In the next section, we analyze the convergence properties of Algorithm 5, where
the approximate Hessian Hk is produced by some generic unspecified scheme. The
motivation is to be able to apply the analysis to popular and efficient Hessian ap-
proximation methods, such as L-BFGS. However, in the worst case for general Hk,
a positive lower bound for {σk} can not be guaranteed for such a generic scheme.
This observation motivates the analysis of Algorithm 6, as a simplified version of
Algorithm 5. It remains to be seen if some bound on {σk} may be derived for

37

Algorithm 6 Accelerated Proximal Quasi-Newton Algorithm with
Fixed Hessian
1: Initialize t1 = 1, θ0 = 1,σ0

1 > 0, and y1 = x−1 = x0 ∈ Rn, and choose positive definite
matrix H ∈ Rn×n, and β ∈ (0, 1).

2: for k = 1, 2, · · · do
3: Define σk := σ0

k.
4: Compute Hk = (1/σk)H and pHk

(yk) := arg minu∈Rn QHk
(u, yk).

5: while F (pHk
(yk)) > QHk

(pHk
(yk), yk) do

6: Set σk ← βσk.
7: Update θk−1 and recompute tk and yk using (2.56a)-(2.56b).
8: Update Hk = (1/σk)H.
9: Compute pHk

(yk) := arg minu∈Rn QHk
(u, yk).

10: Set xk ← pHk
(yk).

11: Choose σ0
k+1 > 0, define θk := σk/σ

0
k+1, and compute tk+1 and yk+1, so that

tk+1 = 1
2

(
1 +

√
1 + 4θkt2k

)
(2.56a)

and yk+1 = xk + tk − 1
tk+1

(xk − xk−1) . (2.56b)

matrices arising specifically via L-BFGS updates.

2.4.2 Convergence Analysis

In this section, we prove that if the sequence {σk} is bounded away from zero,
Algorithm 5 achieves the same rate of convergence as APGA, i.e., O(1/k2). First,
we state a simple result based on the optimality of pH .

Lemma 5. For any v ∈ Rn, there exists a subgradient of function g where νg(pH(v)) ∈
∂g(pH(v)), such that

∇f(v) +H(pH(v)− v) + νg(pH(v)) = 0.

Proof. The proof is followed immediately from the optimality condition of the convex
optimization problem (2.9).

Now, we can show the following lemma, which bounds the change in the objective

38

function F and is a simple extension of Lemma 2.3 in [2].

Lemma 6. Suppose that for given v ∈ Rn and H � 0, the following condition

F (pH(v)) ≤ QH (pH(v), v) (2.57)

holds. Then for any x ∈ Rn

F (x)− F (pH(v)) ≥ 1
2‖pH(v)− v‖2

H + 〈v − x, pH(v)− v〉H .

Proof. From (2.57), we have

F (x)− F (pH(v)) ≥ F (x)−QH(pH(v), v). (2.58)

Now, based on the convexity of functions f and g, we have

f(x) ≥ f(v) + 〈∇f(v),x− v〉

and g(x) ≥ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉,

where νg(pH(v)) is defined in Lemma 5. Summing the above inequalities yields

F (x) ≥ f(v) + 〈∇f(v),x− v〉+ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉. (2.59)

39

Using (2.8) and (2.59) in (2.58) yields

F (x)− F (pH(v)) ≥ f(v) + 〈∇f(v),x− v〉+ g(pH(v)) + 〈νg(pH(v)),x− pH(v)〉

− f(v)− 〈∇f(v), pH(v)− v〉 − 1
2‖pH(v)− v‖2

H − g(pH(v))

=− 1
2‖pH(v)− v‖2

H + 〈x− pH(v),∇f(v) + νg(pH(v))〉

=− 1
2‖pH(v)− v‖2

H + 〈x− pH(v),H(v − pH(v))〉

=− 1
2‖pH(v)− v‖2

H + 〈x− pH(v),H(v − pH(v))〉

+ 〈v − pH(v), v − pH(v)〉H − 〈v − pH(v), v − pH(v)〉H

= 1
2‖pH(v)− v‖2

H + 〈v − x, pH(v)− v〉H .

The following result is a simple corollary of Lemma 6.

Corollary 4. Let v ∈ Rn and H � 0 be such that

F (pH(v)) ≤ QH(pH(v), v),

then for any x ∈ Rn

2(F (x)− F (pH(v))) ≥ ‖pH(v)− v‖2
H + 2〈pH(v)− v, v − x〉H ,

= ‖pH(v)− x‖2
H − ‖v − x‖2

H .
(2.60)

Proof. The result immediately follows by applying the following equality

‖b− a‖2 + 2(b− a)T (a− c) = ‖b− c‖2 − ‖a− c‖2 (2.61)

to Lemma 6 with

a := H
1
2v, b := H

1
2pH(v), c := H

1
2x.

40

The next lemma states the key properties which are used in the convergence
analysis.

Lemma 7. At each iteration of Algorithm 5, the following relations hold

σkHk � σk+1Hk+1 (2.62a)

and σkt
2
k ≥ σk+1tk+1(tk+1 − 1). (2.62b)

Proof. The proof follows trivially from the conditions in Algorithm 5 and the fact
that θk ≤ σk/σk+1.

Now, using this lemma and previous results we derive the key property of the
iterations of APQNA.

Lemma 8. In Algorithm 5, for all k ≥ 1, we have

2σkt2kvk + σku
T
kHkuk ≥ 2σk+1t

2
k+1vk+1 + σk+1u

T
k+1Hk+1uk+1,

where vk = F (xk)− F (x∗) and uk = tkxk − (tk − 1)xk−1 − x∗.

Proof. In (2.60), by setting v = yk+1, pH(v) = xk+1, H = Hk+1, and x = xk and
then by multiplying the resulting inequality by σk+1(tk+1 − 1), we will have

2σk+1(tk+1 − 1)(vk − vk+1)

≥ (tk+1 − 1)(xk+1 − yk+1)Tσk+1Hk+1(xk+1 − yk+1)

+ 2(tk+1 − 1)(xk+1 − yk+1)Tσk+1Hk+1(yk+1 − xk).

On the other hand, in (2.60), by setting x = x∗ and multiplying it by σk+1, we have

−2σk+1vk+1 ≥ (xk+1 − yk+1)Tσk+1Hk+1(xk+1 − yk+1)

+ 2(xk+1 − yk+1)Tσk+1Hk+1(yk+1 − x∗).

41

By adding these two inequalities, we have

2σk+1((tk+1 − 1)vk − tk+1vk+1)

≥ tk+1(xk+1 − yk+1)Tσk+1Hk+1(xk+1 − yk+1)

+ 2(xk+1 − yk+1)Tσk+1Hk+1(tk+1yk+1 − (tk+1 − 1)xk − x∗).

Multiplying the last inequality by tk+1 and applying inequality (2.62b) give

2(σkt2kvk − σk+1t
2
k+1vk+1)

≥ t2k+1(xk+1 − yk+1)Tσk+1Hk+1(xk+1 − yk+1)

+ 2tk+1(xk+1 − yk+1)Tσk+1Hk+1(tk+1yk+1 − (tk+1 − 1)xk − x∗).

By utilizing (2.61) with

a := √σk+1H
1
2
k+1tk+1yk+1, b := √σk+1H

1
2
k+1tk+1xk+1,

c := √σk+1H
1
2
k+1((tk+1 − 1)xk + x∗),

the last inequality can be written as

2(σkt2kvk − σk+1t
2
k+1vk+1)

≥ ‖√σk+1H
1
2
k+1tk+1xk+1 −

√
σk+1H

1
2
k+1((tk+1 − 1)xk + x∗)‖2

− ‖√σk+1H
1
2
k+1tk+1yk+1 −

√
σk+1H

1
2
k+1((tk+1 − 1)xk + x∗)‖2.

Hence, by using the definition of yk+1 and uk, we have

2(σkt2kvk − σk+1t
2
k+1vk+1) ≥ uTk+1σk+1Hk+1uk+1 − uTk σk+1Hk+1uk.

Now, based on (2.62a), we have

uTk σkHkuk ≥ uTk σk+1Hk+1uk,

42

which implies

2(σkt2kvk − σk+1t
2
k+1vk+1) ≥ uTk+1σk+1Hk+1uk+1 − uTk σkHkuk.

Now, we are ready to state and prove the convergence rate result.

Theorem 10. The sequence of iterates xk, generated by Algorithm 5, satisfies

F (xk)− F (x∗) ≤
‖x0 − x∗‖2

2σkt2k
.

Proof. By setting t1 = 1, using the definition of uk at k = 1, which is u1 = x1 − x∗,
and also considering the positive definiteness of Hk for all k ≥ 1, it follows from
Lemma 8 that

2σkt2kvk ≤ 2σkt2kvk + σku
T
kHkuk ≤ 2σ1t

2
1v1 + (x1 − x∗)Tσ1H1(x1 − x∗). (2.63)

Setting x = x∗, v = y1 = x0, pH(v) = x1, t1 = 1, and H = H1 in (2.60) implies

−2v1 ≥ (x1 − x∗)TH1(x1 − x∗)− (x0 − x∗)TH1(x0 − x∗).

Multiplying the above inequality by σ1 gives

2σ1v1 + (x1 − x∗)Tσ1H1(x1 − x∗) ≤ (x0 − x∗)Tσ1H1(x0 − x∗).

By using inequality (2.63), we have

2σkt2kvk ≤ (x0 − x∗)Tσ1H1(x0 − x∗).

Finally, by setting σ1 = 1 and H1 = I, we obtain

vk ≤
‖x0 − x∗‖2

2σkt2k
,

43

which completes the proof.

Now, based on the result of Theorem 10, in order to obtain the rate of conver-
gence of O(1/k2) for Algorithm 5, it is sufficient to show that

σkt
2
k ≥ ψk2,

for some constant ψ > 0. The next result is a simple consequence of the relation
(2.62b), or equivalently (2.55a).

Lemma 9. The sequence {σk} generated by Algorithm 5 satisfies

σkt
2
k ≥

(∑k
i=1
√
σi

2

)2

.

Proof. We can prove this lemma by using induction. Trivially, for k = 1, since
t1 = 1, the inequality holds. As the induction assumption, assume that for k > 1,

we have σkt2k ≥
(∑k

i=1
√
σi

2

)2
. Since (2.55a) holds for all k, it follows that

tk+1 = 1
2 +

√
1
4 + (σk

σk+1
)t2k ≥

1
2 +

√
σk
σk+1

tk.

Multiplying by √σk+1 implies

√
σk+1tk+1 ≥

√
σk+1

2 +√σktk.

Finally, by using induction assumption, we will have

√
σk+1tk+1 ≥

√
σk+1

2 +
∑k
i=1
√
σi

2 =
∑k+1
i=1
√
σi

2 .

Hence, if we assume that the sequence {σk} is bounded below by a positive
constant σ, i.e., σk ≥ σ, we can establish the desired bound on σkt

2
k, as stated in

the following theorem.

44

Theorem 11. If for all iterations of Algorithm 5 we have σk ≥ σ, then for all
k ≥ 1,

F (xk)− F (x∗) ≤
2‖x0 − x∗‖2

σk2 . (2.64)

Proof. Under the assumption σk ≥ σ, we will have

(∑k
i=1
√
σi

2

)2

≥ k2σ

4

and consequently, by using Lemma 9, we obtain

σkt
2
k ≥

k2σ

4 .

Then, by using Theorem 10, we have the desired rate of convergence of O(1/k2) as
stated in (2.64).

The assumption of the existence of a bounded sequence {σk} such that σk ≥ σ

and (2.62b) holds may not be satisfied when we use a general approximate Hessian.
To illustrate this, consider the following simple sequence of matrices:

H2k =
 10 0

0 1

 and H2k+1 =
 1 0

0 10

 .

Clearly, σ2k+1 ≤ σ2k/10 and σ2k ≤ σ2k−1/10, and hence σk ≤ 10−k. In this case,
based on the result of Theorem 10, we cannot guarantee any convergence result.
Some convergence result can still be attained, when σk → 0, for example, if σk ≥
σ/k, as we show in the following relaxed version of Theorem 11.

Theorem 12. If for all iterations of Algorithm 5 we have σk ≥ σ/k, then for all
k ≥ 1,

F (xk)− F (x∗) ≤
2‖x0 − x∗‖2

σk
. (2.65)

Proof. From σk ≥ σ/k, we will have

(∑k
i=1
√
σi

2

)2

≥ kσ

4

45

and consequently, by using Lemma 9, we obtain

σkt
2
k ≥

kσ

4 .

Then, by using Theorem 10, we have (2.65).

The above theorem shows that if σk converges to zero, but not faster than 1/k,
then our APQNA method may loose its accelerated rate of convergence, but still
converges at least at the same rate as PQNA. Establishing lower bounds of σk for
different choices of Hessian estimates is a nontrivial task and is a path for the future
research. As we will demonstrate in our computational section, APQNA with L-
BFGS Hessian approximation does not seem to have any practical advantage over
its nonaccelerated counterpart, however it is clearly convergent.

We can establish the accelerated rate of Algorithm 6, since in this case we can
guarantee a lower bound on σk, due to the restricted nature of Hk matrices.

Lemma 10. In Algorithm 6, let mI � H, then σk ≥ βm/L and hence the conver-
gence rate of O(1/k2) is achieved.

Proof. In Algorithm 6, we define Hk = 1
σk
H. The sufficient decrease condition

F (pHk
(yk)) ≤ QHk

(pHk
(yk), yk), is satisfied for any Hk � LI, hence it is satisfied for

any Hk = 1
σk
H with σk ≤ m/L. By the mechanism of Step 3 in Algorithm 6, we

observe that for all k, we have σk ≥ βm/L. Let us note now that Algorithm 6 is a
special case of Algorithm 5, hence all the above results, in particular Theorem 10
and Lemma 9 hold. Consequently, based on Theorem 11, the desired convergence
rate of O(1/k2) for Algorithm 6 is obtained.

Remark 7. We have studied only the exact variant of APQNA in this section.
Incorporating inexact subproblem solutions, as was done for APQNA in the previ-
ous section, is relatively straightforward following the techniques for inexact APGA,
[52]. It is easy to show that if the exact algorithm has the accelerated convergence
rate, then the inexact counterpart, with subproblems solved by a linearly convergent

46

method, such as randomized coordinate descent, inherits this convergence rate. How-
ever, using the relaxed sufficient decrease condition does not apply here as it does
not preserve the accelerated convergence rate.

In the next section, we present the numerical results comparing the performance
of Algorithm 5 and Algorithm 6 to their nonaccelerated counterparts, to see how
much practical acceleration is achieved.

2.5 Numerical Experiments

In this section, we investigate the practical performance of several algorithms dis-
cussed in this work, applied to the sparse logistic regression problem

min
w
{F (w) := 1

N

N∑
i=1

log(1 + exp(−yi · wTxi)) + λ‖w‖1, w ∈ Rn},

where f(w) = 1
N

∑N
i=1 log(1 + exp(−yi · wTxi)) is the average logistic loss function

and g(w) = λ‖w‖1, with λ > 0, is the `1-regularization function. The input data for
this problem is a set of m training data points, xi ∈ Rn, and corresponding labels
yi ∈ {−1, +1}, for i = 1, 2, . . . ,N .

The algorithms that we compare here are as follows:

• Accelerated Proximal Gradient Algorithm (APGA), proposed in [2], (also
known as FISTA),

• Proximal Quasi-Newton Algorithm with Fixed Hessian approximation
(PQNA-FH),

• Accelerated Proximal Quasi-Newton Algorithm with Fixed Hessian approxi-
mation (APQNA-FH),

• Proximal Quasi-Newton Algorithm with L-BFGS Hessian approximation
(PQNA-LBFGS), proposed in [48], and

47

• Accelerated Proximal Quasi-Newton Algorithm with L-BFGS Hessian approx-
imation (APQNA-LBFGS).

In PQNA-FH and APQNA-FH, we set Hk = 1
σk
H, where H is a positive defi-

nite matrix computed via applying L-BFGS updates over the first few iterations of
the algorithm which then is fixed for all remaining iterations. On the other hand,
PQNA-LBFGS and APQNA-LBFGS employ the L-BFGS updates to compute Hes-
sian estimates throughout the algorithm. In all of the above algorithms, we use the
coordinate descent scheme, as described in [48], to solve the subproblems inexactly.
According to the theory in [48], PQNA-FH and PQNA-LBFGS converge at the rate
of O(1/k). If f is strongly convex (which depends on the problem data), then ac-
cording to Theorem 5, PQNA-FH and PQNA-LBFGS converge at a linear rate. By
Lemma 10, in APQNA-FH, condition σkHk � σk−1Hk−1 holds automatically and
the algorithm converges at the rate of O(1/k2). On the other hand, for APQNA-
LBFGS, condition σkHk � σk−1Hk−1 has to be enforced. We have tested various
implementations that ensure this condition and none have produced a practical ap-
proach. We then chose to set θk = 1 and relax the condition σkHk � σk−1Hk−1.
The resulting algorithm is practical and is empirically convergent but, as we will
see, does not provide an improvement over PQNA-LBFGS.

Throughout all of our experiments, we initialize the algorithms with w0 = 0
and we set the regularization parameter λ = 10−3. Each algorithm terminates
whenever ‖(∂F (xk))min‖∞ ≤ 10−5‖ (∂F (x0))min ‖∞. In terms of the stopping criteria
of subproblems solver at i-th iteration, we performed the coordinate descent method
for r(i) steps, so that r(i) > min(103, i/3), as long as the generated step is longer
than 10−16. In APQNA-FH and PQNA-FH, in order to construct the fixed matrix
H, we apply the L-BFGS scheme by using the information from the first k̄ (with
k̄ chosen between 1 and 10) iterations and then use that fixed matrix through the
rest of the algorithm. Finally, to construct the sequence {σk}, we set σ0 = 1 and
σ0
k+1 = 1.015σk. The information on the data sets used in our tests is summarized

in Table 2.1. These data sets are available through UCI machine learning repository

48

2.

Table 2.1: Data information, dimension (d) and number of data points (N).

Instance d N Description
a9a 123 32561 census income dataset

mnist 782 100000 handwritten digit recognition
connect-4 126 10000 win versus loss recognition

HAPT 561 7767 human activities and postural transitions recognition

The algorithms are implemented in MATLAB R2014b and computations were
performed on the COR@L computational cluster of the ISE department at Lehigh
University, consisting of 16-cores AMD Operation, 2.0 GHz nodes with 32 Gb of
memory.

First, in order to demonstrate the effect of using even limited Hessian information
within an accelerated method, we compared the performance of APQNA-FH and
APGA, both in terms of the number of iterations and the total solution time, see
the results in Table 2.2.

2http://archive.ics.uci.edu/ml/

49

http://archive.ics.uci.edu/ml/

Table 2.2: APQNA-FH vs. APGA in terms of function value (Fval), number of
iterations (iter) and total solution time (time) in seconds.

a9a
Algorithm iter Fval iter Fval iter Fval time

APGA 40 3.4891e-01 80 3.4730e-01 862 3.4703e-01 1.95e+01
APQNA-FH 40 3.4706e-01 80 3.4703e-01 121 3.4703e-01 5.52e+00

mnist
Algorithm iter Fval iter Fval iter Fval time

APGA 48 9.1506e-02 96 9.0206e-02 1202 8.9695e-02 5.13e+02
APQNA-FH 48 8.9754e-02 96 8.9699e-02 144 8.9695e-02 9.91e+01

connect-4
Algorithm iter Fval iter Fval iter Fval time

APGA 92 3.8284e-01 184 3.7777e-01 3045 3.7682e-01 4.65e+01
APQNA-FH 92 3.7701e-01 184 3.7683e-01 278 3.7682e-01 2.05e+01

HAPT
Algorithm iter Fval iter Fval iter Fval time

APGA 222 8.5415e-02 444 7.7179e-02 13293 7.1511e-02 1.38e+03
APQNA-FH 222 7.2208e-02 444 7.1524e-02 677 7.1511e-02 1.53e+02

Based on the results shown in Table 2.2, we conclude that APQNA-FH consis-
tently dominates the APGA, both in terms of the number of function evaluations
and also in terms of the total solution time.

It is worth mentioning that although in terms of computational effort, each
iteration of APGA is cheaper than each iteration of APQNA-FH, the total solution
time of APQNA-FH is significantly less than APGA, due to the smaller number of
iterations of APQNA-FH compared to APGA.

The next experiment is to compare the performance of APQNA-FH and PQNA-
FH to observe the effect of acceleration in the fixed matrix setting. This comparison
is done in terms of the number of iterations and the number of function evaluations,

50

and is shown in Figure 2.1 and Figure 2.2, respectively. The subproblem solution
time is the same for both algorithms. As we can see in Figure 2.1, in terms of
the number of iterations, APQNA-FH dominates PQNA-FH, for a range of mem-
ory sizes of L-BFGS which have been used to compute matrix H. Moreover, as is
seen in Figure 2.2, APQNA-FH dominates PQNA-FH, in terms of the number of
function evaluations, even though each iteration of APQNA-FH requires two func-
tion evaluations, because of the nature of the accelerated scheme. This shows that
APQNA-FH achieves practical acceleration compared to PQNA-FH, as supported
by the theory in the previous section.

51

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(a) a9a (d=123, m=32561)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(b) mnist (d=782, m=100000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(c) connect-4 (d=126, m=10000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(d) HAPT (d=561, m=7767)

Figure 2.1: APQNA-FH vs. PQNA-FH in terms of number of iterations.

52

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

100

200

300

400

500

600

700

800

900

1000

1100

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(a) a9a (d=123, m=32561)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(b) mnist (d=782, m=100000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(c) connect-4 (d=126, m=10000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(d) HAPT (d=561, m=7767)

Figure 2.2: APQNA-FH vs. PQNA-FH in terms of number of function evaluations.

Next, we compare the performance of APQNA-FH versus APQNA-LBFGS to
compare the effect of using the fixed approximate Hessian Hk = 1

σk
H, which satisfies

condition σkHk � σk−1Hk−1 versus using variable Hessian estimates computed via L-
BFGS method at each iteration, while relaxing condition σkHk � σk−1Hk−1. Table
2.3 shows the results of this comparison, obtained based on the best choices of
memory size for L-BFGS, in particular k̄ = 8 and k̄ = 9, respectively. As we can see,
these two algorithms are competitive both in terms of the number of iterations and

53

also the total solution time. Since APQNA-FH does not use the local information of
function f to approximate Hk, it often takes more iterations than APQNA-LBFGS,
which constantly updates Hk matrices. On the other hand, since APQNA-FH does
not require additional computational effort to evaluate Hk, hence one iteration of
this algorithm is cheaper than one iteration of APQNA-LBFGS, which causes the
competitive total solution time.

Table 2.3: APQNA-FH vs. APQNA-LBFGS in terms of function value (Fval), number
of iterations (iter) and total solution time (time) in seconds.

a9a
Algorithm iter Fval iter Fval iter Fval time

APQNA-LBFGS 20 3.4760e-01 40 3.4703e-01 64 3.4703e-01 2.83e+00
APQNA-FH 20 3.4763e-01 40 3.4704e-01 99 3.4703e-01 4.33e+00

mnist
Algorithm iter Fval iter Fval iter Fval time

APQNA-LBFGS 50 8.9713e-02 100 8.9695e-02 148 8.9695e-02 1.04e+02
APQNA-FH 50 8.9797e-02 100 8.9698e-02 160 8.9695e-02 1.15e+02

connect-4
Algorithm iter Fval iter Fval iter Fval time

APQNA-LBFGS 30 3.7769e-01 60 3.7688e-01 144 3.7682e-01 8.35e+00
APQNA-FH 30 3.7689e-01 60 3.7682e-01 93 3.7682e-01 3.95e+00

HAPT
Algorithm iter Fval iter Fval iter Fval time

APQNA-LBFGS 120 7.1860e-02 240 7.1519e-02 356 7.1511e-02 1.04e+02
APQNA-FH 120 7.2134e-02 240 7.1523e-02 376 7.1511e-02 6.89e+01

Finally, we compare APQNA-LBFGS and PQNA-LBFGS, to demonstrate the
effect of using an accelerated scheme in the quasi-Newton type proximal algorithms.
The results of this comparison are shown in Figure 2.3 and Figure 2.4 in terms of
the number of iterations and the number of function evaluations, respectively, for
different memory sizes of L-BFGS Hessian approximation.

54

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

20

40

60

80

100

120

140

160

180

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(a) a9a (d=123, m=32561)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(b) mnist (d=782, m=100000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

100

200

300

400

500

600

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(c) connect-4 (d=126, m=10000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

200

400

600

800

1000

1200

1400

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

(d) HAPT (d=561, m=7767)

Figure 2.3: APQNA-LBFGS vs. PQNA-LBFGS in terms of number of iterations.

55

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(a) a9a (d=123, m=32561)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

100

200

300

400

500

600

700

800

900

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(b) mnist (d=782, m=100000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

200

400

600

800

1000

1200

1400

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(c) connect-4 (d=126, m=10000)

1 2 3 4 5 6 7 8 9 10

L-BFGS Memory

0

500

1000

1500

2000

2500

3000

N
u

m
b

e
r

o
f

F
u

n
c
ti
o

n
 E

v
a

lu
a

ti
o

n
s

(d) HAPT (d=561, m=7767)

Figure 2.4: APQNA-LBFGS vs. PQNA-LBFGS in terms of number of function
evaluations.

Clearly, as we can see in Figure 2.3 and 2.4, not only the accelerated scheme
does not achieve practical acceleration compared to PQNA-LBFGS in terms of the
number of iterations, but it is also inferior in terms of the number of function
evaluations, since every iteration requires two function evaluations. Thus, we believe
that the practical experiments support our theoretical analysis in that applying
acceleration scheme in the case of variable Hessian estimates may not result in a
faster algorithm.

56

2.6 Conclusion

In this work, we established a linear convergence rate of PQNA proposed in [48] un-
der the strong convexity assumption. To our knowledge, this is the first such result,
for proximal quasi-Newton type methods, which have lately been popular in the
literature. We also show that this convergence rate is preserved when subproblems
are solved inexactly. We provide a simple and practical rule for the number of inner
iterations which guarantees sufficient accuracy of subproblem solutions. Moreover,
we allow a relaxed sufficient decrease condition during backtracking, which preserves
the convergence rate, while it is known to improve the practical performance of the
algorithm.

Furthermore, we presented a variant of APQNA as an extension of PQNA. We
have shown that this algorithm has the convergence rate of O(1/k2) under a strong
condition on the Hessian estimates, which can not always be guaranteed in practice.
We have shown that this condition holds when Hessian estimates are a multiple
of a fixed matrix, which is computationally less expensive than the more common
methods, such as L-BFGS scheme. Although, this proposed algorithm has the same
rate of convergence as the classic APGA, it is significantly faster in terms of the
final number of iterations and also the total solution time. Based on the theory, us-
ing L-BFGS Hessian approximation, may result in worse convergence rate, however,
our computational results show that the practical performance is about the same as
that while the fixed matrix. On the other hand, although in these two algorithms,
we are applying the accelerated scheme, their practical performances are inferior to
that of PQNA-LBFGS, which does not use any accelerated scheme and potentially
has a slower sublinear rate of convergence in the absence of strong convexity. We
conclude that using variable Hessian estimates is the most efficient approach which
will result in the linear convergence rate in the presence of strong convexity, how-
ever, a standard accelerated scheme is not useful in this setting. Exploring other
possibly more effective accelerated schemes for the proximal quasi-Newton methods
is a subject of the future research.

57

Chapter 3

Black-Box Optimization in
Machine Learning

3.1 Introduction

Many machine learning (ML) models rely on optimization tools to perform training.
Typically these models are formed so that at least stochastic estimates of the gra-
dient can be computed; for example, when optimizing least squares or logistic loss
of a neural network on a given data set. Lately, however, with the increasing need
to tune hyperparameters of ML models, black-box optimization methods have been
given significant consideration. These methods do not rely on any explicit gradient
computation, but assume that only function values can be computed, usually with
noise.

There are two, relatively independent, directions of research for black-box op-
timization, Bayesian Optimization (BO) [6, 34], predominantly popular in the ML
community, and derivative free optimization (DFO) [13], popular in the optimiza-
tion community. There are other classes of methods for black-box optimization
developed in the fields of simulation optimization and engineering [1, 21, 28], but
they are more specialized and we will not focus on them here.

Both BO and DFO methods are usually applied to functions that are not known

58

to be convex. The key difference between the BO and DFO methods, is that BO
methods always contain a component that aims at the exploration of the space, hence
seeking a global solution, while DFO methods are content with a local optimum.
However, it has been shown in DFO literature [35] that DFO methods tend to escape
local minima and are quite well suited for problems with a few well defined local
basins (and possibly many small local basins that appear due to noise).

BO, until recently, has been established as the method of choice for hyperpa-
rameter optimization (HPO). While BO methods have been shown to be effective
at finding good solutions (not always globally optimal, as that can only be achieved
in the limit), their efficiency slows down significantly as the number of iterations
grows. Overall, the methods are quite computationally costly and scale poorly
with the number of hyperparameters. Recently, BO efficiency has been called into
question in comparison with a simple random search [31], whose iterations require
nothing but function evaluations. Moreover, some improvements on random search
have been proposed to incorporate cheaper function evaluations and further increase
its efficiency for HPO.

In this chapter, we will explore properties of an efficient class of DFO methods–
model-based trust region methods–in application to problems in ML. We will show
that these methods can be more efficient than BO and random search, especially for
problems of dimensions higher than two or three. In the specific case of HPO, hy-
perparameters can be continuous, discrete or categorical. While some DFO methods
have been developed for the case of optimization over categorical or binary variables,
these methods essentially rely on local search heuristics and we do not consider them
here. Our goal is to examine, in detail, the behavior of various black-box methods
in a purely continuous setting. We also aim to explore practical scalability of the
methods with respect to the dimension of the search space and nonlinearity of the
function. While we will list some experiments on HPO problems, these problems
are limited to three continuous hyperparameters. Hence, to perform our comparison
on problems of larger dimension, we mainly focus on a different problem–optimizing
Area Under Receiver Operating Characteristic (ROC) Curve (AUC) [22], over a set
of linear classifiers.

59

This chapter is organized as follows. In the next section, we describe the frame-
work of Trust Region Based Derivative Free Optimization (DFO-TR). In Section 3.3,
we compare DFO-TR versus BO. We present numerical results in Section 3.4. Fi-
nally, we state the conclusions in Section 3.5.

3.2 Algorithmic Framework of DFO-TR

Model-based trust region DFO methods [11, 44] have been proposed for a class of
optimization problems of the form

min
w∈Rd

f(w),

when computing the gradient and the Hessian of f(w) is not possible, either because
it is unknown or because the computable gradient is too noisy to be of use. It is,
however, assumed that some local first-order or even second-order information of the
objective function is possible to construct to an accuracy sufficient for optimization.
If the function is smooth, then such information is usually constructed by building
an interpolation or regression model of f(w) using a set of points for which function
value is, approximately, known [13]. By using quadratic models, these methods are
capable of approximating the second-order information efficiently to speed up con-
vergence and to guarantee convergence to local minima, rather than simply local
stationary points. They have been shown to be the most practical black-box opti-
mization methods in deterministic settings [35]. Extensive convergence analysis of
these methods over smooth deterministic functions have been summarized in [13].

Recently, several variants of trust region methods have been proposed to solve
stochastic optimization problem

min
w∈Rd

Eξ [f(w, ξ)] ,

where f(w, ξ) is a stochastic function of a deterministic vector w ∈ Rd and a random
variable ξ [4, 10, 55]. In particular, in [10], a trust region based stochastic method,

60

referred to STORM (STochastic Optimization with Random Models), is introduced
and shown to converge, almost surely, to a stationary point of Eξ[f(w, ξ)], under the
assumption that Eξ[f(w, ξ)] is smooth. Moreover, in recent work [5], a convergence
rate of this method has been analyzed.

This class of stochastic methods utilizes samples of f(w, ξ) to construct models
that approximate Eξ[f(w, ξ)], sufficiently accurately, with high enough probability.

In Algorithm 7, we present the specific practical implementation of a deter-
ministic algorithm, which can work with finite training sets rather than infinite
distributions, but shares many properties with STORM and produces very good
results in practice. The key difference between STORM and DFO-TR is that the
former requires resampling f(w, ξ) for various w’s, at each iteration, since f(w, ξ) is
a random value for any fixed w, while DFO-TR computes only one value of deter-
ministic f(w) per iteration. When applied to deterministic smooth functions, this
algorithm converges to a local solution [13], but here we apply it to a nonsmooth
function which can be viewed as a noisy version of a smooth function (as argued in
the next section). While there are no convergence results for DFO-TR or STORM
for deterministic, nonsmooth, noisy functions, the existing results indicate that the
DFO-TR method will converge to a neighborhood of the solution before the noise in
the function estimates prevents further progress. Our computational results confirm
this.

We note a few key properties on the algorithm. At each iteration, a quadratic
model, not necessarily convex, is constructed using previously evaluated points that
are sufficiently close to the current iterate. Then, this model is optimized inside the
trust region B(wk, ∆k) := {w : ‖w − wk‖ ≤ ∆k}. The global solution for the trust
region subproblem is well known and can be obtained efficiently in O(n3) operations
[12], which is not expensive, since in our setting d is small. The number of points
that are used to construct the model is at most 1

2(n + 1)(n + 2), but good models
that exploit some second-order information can be constructed with O(n) points.
Each iteration requires only one new evaluation of the function and the new function
value either provides an improvement over the best observed value or can be used
to improve the local model [49]. Thus, the method utilizes function evaluations very

61

efficiently.

Algorithm 7 Trust Region based Derivative-Free Optimization (DFO-TR)
1: Initializations:
2: Initialize w0, ∆0 > 0, and choose 0 < η0 < η1 < 1, θ > 1, and 0 < γ1 < 1 < γ2.
3: Define an interpolation set W ∈ B(w0, ∆0).
4: Compute f(w) for all w ∈ W, let m = |W|.
5: Let w0 := w̄0 = arg minw∈W f(w).
6: for k = 1, 2, · · · do
7: Build the model:
8: Discard all w ∈ W such that ‖w − wk‖ ≥ θ∆k.
9: Using W construct an interpolation model:

Qk(w) = fk + gTk (w − wk) + 1
2(w − wk)THk(w − wk).

10: Minimize the model within the trust region:
11: Compute ŵk = arg minw∈B(wk,∆k)Qk(w), and consequently f(ŵk) and

ρk := f(wk)− f(ŵk)
Qk(wk)−Qk(ŵk)

.

12: Update the interpolation set:
13: if m < 1

2(d+ 1)(d+ 2) then
Add new point ŵk to the interpolation set W, and m := m+ 1.

14: else
15: if ρk ≥ η0 then replace arg maxw∈W ‖w − wk‖ with ŵk.
16: else
17: if ‖w − wk‖ < maxw∈W ‖w − wk‖ then do the same.
18: Update the trust region radius:
19: if ρk ≥ η1 then wk+1 ← ŵk and ∆k+1 ← γ2∆k.
20: if ρk < η0 then wk+1 ← wk
21: if m > d+ 1 then update ∆k+1 ← γ1∆k

22: else ∆k+1 ← ∆k.

3.3 Bayesian Optimization versus DFO-TR

Bayesian optimization is known in the ML community as a powerful tool for opti-
mizing nonconvex objective functions, which are expensive to evaluate, and whose

62

derivatives are not accessible. In terms of the required number of objective function
evaluations, Bayesian optimization methods are considered to be some of the most
efficient techniques [6, 29, 34] for black-box problems of low effective dimensional-
ity. A Bayesian optimization framework, as outlined in Algorithm 8, like DFO-TR
framework operates by constructing a (probabilistic) model M(w) of the true func-
tion f(w) by using function values computed thus far by the algorithm. The next
iterate wk is computed by optimizing an acquisition function aM , which presents a
trade-off between minimizing and improving the model. In theory, Bayesian opti-
mization methods seek globally optimal solutions, due to their sampling schemes,
which trade-off between exploitation and exploration [6, 18] by exploring areas where
f(w) has not been sampled. Specifically, Bayesian optimization methods construct
a probabilistic model by using point evaluations of the true function. Then, by
using this model, the subsequent configurations of the parameters will be selected
[6] by optimizing an acquisition function derived from the model. The model is
built based on all past evaluation points in an attempt to approximate the true
function globally. As a result, the acquisition function is often not trivial to main-
tain and optimize and per iteration complexity of BO methods increases. On the
other hand, DFO-TR and other model-based DFO methods content themselves with
building a local model of the true function, hence maintenance of such models re-
mains moderate and optimization step on each iteration is cheap. Different Bayesian
optimization algorithms use different models and different acquisition functions, for
instance, expected improvement [32] over the best observed function values is a
popular acquisition function in the literature.

The key drawback and difficulty of BO methods is that the acquisition function
may have a complex structure, and needs to be optimized globally on each iteration.
For example, the algorithm in [6] uses deterministic derivative free optimizer DI-
RECT [28] to maximize the acquisition function. When evaluation of f(w) is very
expensive, the expense of optimizing the acquisition function may be small in com-
parison. However, in many cases, as we will see in our computational experiments,
this expense can be dominant.

In contrast, the DFO-TR method, as described in Algorithm 7, maintains a

63

quadratic model by using only the points in the neighborhood of the current iterate
and global optimization of this model subject to the trust region constraint can be
done efficiently, as was explained in the previous section. While Q(w) is a local
model, it can capture nonconvexity of the true function f(w) and hence allows the
algorithm to follow negative curvature directions. As we will see in §3.4, for the same
amount number of function evaluations, DFO-TR achieved better or comparable
function values, while requiring significantly less computational time than Bayesian
optimization algorithms (TPE, SMAC, and SPEARMINT).

Algorithm 8 Bayesian Optimization (BO)
1: Choose the probabilistic model M of the true function f(w).
2: Initialize set D0 containing sample pairs of (w, f(w)).
3: for k = 1, 2, · · · do
4: Find wk by optimizing the acquisition function over model M :

wk ← arg min
w
aM (w | Dk−1)

5: Sample the objective function: vk := f(wk).
6: Augment the data Dk = {Dk−1, (wk, vk)} and update the model M .

3.4 Numerical Experiments

3.4.1 Optimizing Smooth, NonConvex Benchmark Functions

In this section, we compare the performance of DFO-TR and Bayesian optimiza-
tion algorithms on optimizing three nonconvex smooth benchmark functions. We
compare the precision ∆fopt with the global optimal value, which is known, and is
computed after a given number of function evaluations.

Algorithm 7 is implemented in Python 2.7.11 1 . We start from a zero vector
as the initial point. In addition, the trust region radius is initialized as ∆0 = 1
and the initial interpolation set has d + 1 random members. The parameters are
chosen as η0 = 0.001, η1 = 0.75, θ = 10, γ1 = 0.98, and γ2 = 1.5. We have used

1https://github.com/TheClimateCorporation/dfo-algorithm

64

https://github.com/TheClimateCorporation/dfo-algorithm

the hyperparameter optimization library, HPOlib 2, to perform the experiments on
TPE, SMAC, and SPEARMINT algorithms, implemented in Python, Java 3, and
MATLAB, respectively. Each benchmark function is evaluated on its known search
space, as is defined in the default setting of the HPOlib (note that DFO-TR does
not require nor utilizes a restricted search space).

We can see that on all three problems, DFO-TR reaches the global value ac-
curately and quickly, outperforming BO methods. This is because DFO-TR uti-
lizes second-order information effectively, which helps following negative curvature
and significantly improving convergence in the absence of noise. Among the three
Bayesian optimization algorithms SPEARMINT performs better while the perfor-
mance of TPE and SMAC is comparable to each other, but inferior to those of
SPEARMINT and DFO-TR.

Table 3.1: DFO-TR vs. BO on Branin function in terms of ∆fopt, over number of
function evaluations. Branin is a two dimensional function with

fopt = 0.397887.

Algorithm 1 5 11 100
DFO-TR 15.7057 0.1787 0 0

TPE 30.0880 4.8059 3.4743 0.0180
SMAC 23.7320 10.3842 6.7017 0.0208

SPEARMINT 34.3388 17.1104 1.1615 3.88e-08

Table 3.2: DFO-TR vs. BO on Camelback function in terms of ∆fopt, over number of
function evaluations. Camelback is a two dimensional function with

fopt = −1.031628.

Algorithm 1 10 21 100
DFO-TR 2.3631 0.1515 0 0

TPE 3.3045 0.5226 0.3226 0.0431
SMAC 1.0316 0.0179 0.0179 0.0036

SPEARMINT 2.3868 1.6356 0.1776 2.29e-05

2www.automl.org/hpolib

65

www.automl.org/hpolib

Table 3.3: DFO-TR vs. BO on Hartmann function in terms of ∆fopt, over number of
function evaluations. Hartmann is a six dimensional function with

fopt = −3.322368.

Algorithm 1 25 64 250
DFO-TR 3.1175 0.4581 0 0

TPE 3.1862 2.5544 1.4078 0.4656
SMAC 2.8170 1.5311 0.6150 0.2357

SPEARMINT 2.6832 2.6671 2.5177 9.79e-05

3.4.2 Optimizing the AUC Function

In this section, we compare the performance of DFO-TR and the three Bayesian
optimization algorithms, TPE, SMAC, and SPEARMINT, on the task of optimizing
AUC function. While we will show that AUC is a smooth function, in practice we
have a finite data set, hence we compute the noisy nonsmooth estimate of AUC.
This essentially means that we can only expect to optimize the objective up to some
accuracy, after which the noise will prevent further progress.

We have used 12 low dimensional data sets of Table 4.3. The average value of
AUC and its standard deviation, using five-fold cross-validation, is reported as the
performance measure. Table 3.4 summarizes the results. The initial vector w0 for
DFO-TR is set to zero and the search space of Bayesian optimization algorithms
is set to the interval [−1, 1]. For each data set, a fixed total budget of number of
function evaluations is given to each algorithm and the final AUC computed on the
test set is compared.

66

Table 3.4: Comparing DFO-TR vs. BO algorithms in terms of solution time.

Data
num. DFO-TR TPE SMAC SPEARMINT

fevals AUC ± std time AUC ± std time AUC ± std time AUC ± std time

fourclass 100 0.835±0.019 0.31 0.839±0.021 12 0.839±0.021 77 0.838±0.020 5229
svmguide1 100 0.988±0.004 0.71 0.984±0.009 13 0.986±0.006 72 0.987±0.006 6435

diabetes 100 0.829±0.041 0.58 0.824±0.044 15 0.825±0.045 75 0.829±0.060 8142
shuttle 100 0.990±0.001 43.4 0.990±0.001 17 0.989±0.001 76 0.990±0.001 13654
vowel 100 0.975±0.027 0.68 0.965±0.029 16 0.965±0.038 77 0.968±0.025 9101

magic04 100 0.842±0.006 10.9 0.824±0.009 16 0.821±0.012 76 0.839±0.006 7947
letter 200 0.987±0.003 10.2 0.959±0.008 49 0.953±0.022 166 0.985±0.004 21413

segment 300 0.992±0.007 9.1 0.962±0.021 99 0.997±0.004 263 0.976±0.021 216217
ijcnn1 300 0.913±0.005 57.3 0.677±0.015 109 0.805±0.031 268 0.922±0.004 259213

svmguide3 300 0.776±0.046 13.5 0.747±0.026 114 0.798±0.035 307 0.7440±0.072 185337
german 300 0.795±0.024 9.9 0.771±0.022 120 0.778±0.025 310 0.805±0.020 242921

satimage 300 0.757±0.013 14.2 0.756±0.020 164 0.750±0.011 341 0.761±0.028 345398

For each data set, the bold number indicates the best average AUC value found
by a Bayesian optimization algorithm. We can see that DFO-TR attains comparable
or better AUC value to the best one of BO, in almost all cases. Since for each
data set, all algorithms are performed for the same budget of number of function
evaluations, we do not include the time spent on function evaluations in the reported
time. Thus, the time reported in Table 3.4 is only the optimizer time. As we can
see, DFO-TR is significantly faster than Bayesian optimization algorithms, while it
performs competitively in terms of the average value of AUC. Note that the problems
are listed in the order of increasing dimension d. Even thought the MATLAB
implantation of SPEARMINT probably puts it at a certain disadvantage in terms
of computational time comparisons, we observe that it is clearly a slow method,
whose complexity grows significantly as d increases.

67

Table 3.5: Comparing DFO-TR vs. random search algorithm.

Data
DFO-TR Random Search Random Search

AUC ± std fevals AUC ± std fevals AUC ± std fevals
fourclass 0.835±0.019 100 0.836±0.017 100 0.839±0.021 200

svmguide1 0.988±0.004 100 0.965±0.024 100 0.977±0.009 200
diabetes 0.829±0.041 100 0.783±0.038 100 0.801±0.045 200
shuttle 0.990±0.001 100 0.982±0.006 100 0.988±0.001 200
vowel 0.975±0.027 100 0.944±0.040 100 0.961±0.031 200

magic04 0.842±0.006 100 0.815±0.009 100 0.817±0.011 200
letter 0.987±0.003 200 0.920±0.026 200 0.925±0.018 400

segment 0.992±0.007 300 0.903±0.041 300 0.908±0.036 600
ijcnn1 0.913±0.005 300 0.618±0.010 300 0.629±0.013 600

svmguide3 0.776±0.046 300 0.690±0.038 300 0.693±0.039 600
german 0.795±0.024 300 0.726±0.028 300 0.739±0.021 600

satimage 0.757±0.013 300 0.743±0.029 300 0.750±0.020 600

Next, we compare the performance of DFO-TR versus the random search algo-
rithm (implemented in Python 2.7.11) on maximizing AUC. Table 3.5 summarizes
the results, in a similar manner to Table 3.4. Moreover, in Table 3.5, we also allow
random search to use twice of the budget of the function evaluations, as is done in
[25] when comparing random search to BO. The random search algorithm is compet-
itive with DFO-TR on a few problems, when using twice the budget, however, it can
be seen that as the problem dimension grows, the efficiency of the random search
goes down substantially. Overall, DFO-TR consistently surpasses random search
when function evaluation budgets are equal, while not requiring very significant
overhead, as the BO methods.

Finally, figures 3.1 and 3.2 illustrate the per iteration behavior of DFO method
versus the Bayesian optimization algorithms for optimizing AUC function. We can
see that DFO method improves the objective values faster than the Bayesian opti-
mization algorithms.

68

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

C
 v

a
lu

e

fourclass (d=2, N=862)

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

C
 v

a
lu

e

diabetes (d=8, N=768)

DFO

SMAC

SPEARMINT

TPE

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

C
 v

a
lu

e

magic04 (d=10, N=19020)

0 50 100 150 200 250 300

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

C
 v

a
lu

e

svmguide3 (d=22, N=1243)

0 50 100 150 200 250 300

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

C
 v

a
lu

e

german (d=24, N=1000)

0 50 100 150 200 250 300

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

C
 v

a
lu

e

satimage (d=36, N=4435)

Figure 3.1: DFO-TR vs. BO algorithms.

69

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

svmguide1 (d=4, N=3089)

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

shuttle (d=9, N=4350)

DFO

SMAC

SPEARMINT

TPE

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

vowel (d=10, N=528)

0 20 40 60 80 100 120 140 160 180 200

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

letter (d=16, N=20000)

0 50 100 150 200 250 300

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

segment (d=19, N=2310)

0 10 20 30 40 50 60 70 80 90 100

Number of function evaluations

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

ijcnn1 (d=22, N=35000)

Figure 3.2: DFO-TR vs. BO algorithms.

70

3.4.2.1 Stochastic versus Deterministic DFO-TR

In order to further improve efficiency of DFO-TR, we observe that STORM frame-
work and theory [10] suggests that noisy function evaluations do not need to be
accurate far away from the optimal solution. In our context, this means that AUC
can be evaluated on small subsets of the training set, which gradually increase as
the algorithm progresses. In particular, at each iteration, we compute AUC on a
subset of data, which is sampled from positive and negative sets, with size n+ and
n−, uniformly at random, at the rate of

min{n, max{k × b50× (n/(n+ + n−))c+ b1000× (n/(n+ + n−))c, b0.1× nc}},

where n = n+ when we sample from the positive class and n = n− when we sample
from the negative one. For each class, at least 10 percent of the whole training data
is used.

We include an additional modification–after each unsuccessful step with ρk < η0,
we compute fnew(wk) by resampling over data points. Then, we update f(wk) such
that f(wk) = (f(wk) + fnew(wk)) /2. This is done, so that accidental incorrectly
high AUC values are not preventing the algorithm from making progress. This
results in a less expensive (in terms of function evaluation cost) algorithm, while,
as we see in Figure 3.3, the convergence to the optimal solution is comparable.

We chose two data sets shuttle and letter to compare the performance of the
stochastic variant of the DFO-TR with the deterministic one. These sets were chosen
because they contain a relatively large number of data points and hence the effect of
subsampling can be observed. We repeated each experiment four times using five-
fold cross-validation (due to the random nature of the stochastic sampling). Hence,
for each problem, the algorithms have been applied 20 times in total and the average
AUC values are reported in Figure 3.3. At each round, all parameters of DFO-TR
and S-DFO-TR are set as described in §3.4.1, except w0 which is a random vector
evenly distributed over [−1, 1].

As we see in Figure 3.3, the growth rate of AUC over iterations in S-DFO-TR

71

is as competitive as that of DFO-TR. However, by reducing the size of the data
sets, the iterations of S-DFO-TR are significantly cheaper than that of DFO-TR,
especially at the beginning. S-DFO-TR is comparable with DFO-TR in terms of
the progress in the AUC value while having access to less number of data points.

This indicates that the methods can handle large data sets.
We finally note that we chose to optimize AUC over linear classifiers for simplic-

ity only. Any other classifier parametrized by w can be trained using a black-box
optimizer in a similar way. However, the current DFO-TR method has some diffi-
culties in convergence when dimension of w is very large.

3.4.3 Hyperparameter Tuning of Cost-Sensitive RBF-Kernel
SVM

Finally, we turn to hyperparamater tuning to show that DFO-TR can also outper-
form state-of-the-art methods on this problem. We consider tuning parameters of the
cost-sensitive RBF-kernel SVM with `2 regularization parameter λ, kernel width γ,
and positive class cost C+. In this setting, we compare the performance of DFO-TR,
random search, and Bayesian optimization algorithms in tuning a three-dimensional
hyperparameter w = (λ, γ,C+), in order to achieve a high test accuracy.

For the random search algorithm, as well as the Bayesian optimization algo-
rithms, the search space is chosen as λ ∈ [10−6, 100], γ ∈ [100, 103], as is done in
[25], and C+ ∈ [10−2, 102]. The setting of Algorithm 7 is as described in §3.4.1,
while w0 = (λ0, γ0,C+

0) is a three-dimensional vector randomly drawn from the
search space defined above.

We have used the five-fold cross-validation with the train-validate-test framework
as follows: we used two folds as the training set for the SVM model, other two folds
as the validation set to compute and maximize the validation accuracy, and the
remaining one as the test set to report the test accuracy.

Figure 3.4 illustrates the performance of DFO-TR versus random search and
Bayesian optimization algorithms, in terms of the average test accuracy over the

72

10 20 30 40 50 60 70 80 90 100 110

Number of accessed data points (scale 1e+4)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

DFO-TR, letter (d=16, N=20000)

0 50 100 150 200 250

Number of accessed data points (scale 1e+4)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
U

C
 v

a
lu

e

DFO-TR, shuttle (d=9, N=43500)

0 5 10 15 20 25

Number of accessed data points (scale 1e+4)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C
 v

a
lu

e

S-DFO-TR, letter (d=16, N=20000)

0 5 10 15 20 25 30 35 40

Number of accessed data points (scale 1e+4)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

A
U

C
 v

a
lu

e

S-DFO-TR, shuttle (d=9, N=43500)

Figure 3.3: Comparison of stochastic DFO-TR and deterministic one in optimizing
AUC function.

number of function evaluations. As we can see, DFO-TR constantly surpasses ran-
dom search and Bayesian optimization algorithms. It is worth mentioning that ran-
dom search is competitive with BO methods and in contrast to §3.4.1 and §3.4.2,
SMAC performs the best among the Bayesian optimization algorithms.

73

0 5 10 15 20 25 30 35 40 45 50

Number of function evaluations

0.55

0.6

0.65

0.7

0.75

0.8

0.85

T
e

s
t

a
c
c
u

ra
c
y

diabetes (d=8, N=768)

0 5 10 15 20 25 30 35 40 45 50

Number of function evaluations

0.7

0.75

0.8

0.85

0.9

0.95

1

T
e

s
t

a
c
c
u

ra
c
y

fourclass (d=2, N=862)

DFO

RandomSearch

SMAC

SPEARMINT

TPE

0 5 10 15 20 25 30 35 40 45 50

Number of function evaluations

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
e

s
t

a
c
c
u

ra
c
y

magic04 (d=10, N=19020)

0 5 10 15 20 25 30 35 40 45 50

Number of function evaluations

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0.965

0.97

0.975

T
e

s
t

a
c
c
u

ra
c
y

satimage (d=36, N=4435)

Figure 3.4: Comparison of DFO-TR, random search, and BO algorithms on tuning
cost-sensitive RBF-kernel SVM hyperparameters.

3.4.4 Hyperparameter Tuning of Cost-Sensitive Logistic Re-
gression

In this section, we describe how one can maximize AUC as a function of the costs and
the regularization parameter of the cost-sensitive logistic regression. First, consider
an imbalance data set S = S+ ∪ S− which contains |S+| = n+ positive examples as
the minority class and |S−| = n− negative examples as the majority class, such that
|S| = n = n+ + n−. Assume that all data points in the set S are in d−dimensional

74

space, so that xi ∈ Rd with corresponding labels yi ∈ {−1, +1}. The cost-sensitive
logistic regression is defined as the following

f(w) = 1
n

n∑
i=1

C(yi) log(1 + exp(−yi · wTxi)) + λ

2‖w‖2, (3.1)

where w ∈ Rd+1 contains the intercept of the classifier and

C(yi) =

C+ if yi > 0,

C− otherwise.

The composite function f(w) contains ∑n
i=1 log(1 + exp(−yi ·wTxi)), as the average

logistic loss, and 1
2λ‖w‖2, as the `2−regularization term. The cost function C(yi)

has been defined in order to bias the classifier wTx toward the rare positive class.
However, evaluating the value of the unknown positive and negative costs {C+,C−}
is the key challenge.

In this section, in order to ensure that Algorithm 7 performs well in optimizing
the parameters of the problem (3.1), in terms of the ranking quality of the resulting
classifier, we need to show that the expected value of AUC is a smooth function
of the parameters {C+,C−,λ}. To this end, since in the following chapter we will
show that under some assumptions AUC is a smooth function of the vector w, one
needs to prove that w also is a smooth function of the parameters {C+,C−,λ}. In
what follows, we prove this smoothness under some practical conditions.

Theorem 13. In (3.1), the vector w is a smooth function of the non-zero parameters
C+ ,C−, and λ if the matrix M and the added matrix M |v have the same rank (one
special case which satisfies this condition is when the matrix M is a full rank matrix)

M =
n+∑
i=1

exp(yi · wTxi)
(1 + exp(yi · wTxi))2 (xixTi)

and v = 1
C+

n+∑
i=1

yixi
1 + exp(yi · wTxi)

.
(3.2)

75

Similar condition is required when M and v are constructed based on the negative
class.

Proof. Consider the cost-sensitive logistic regression function as the following

f(w) = 1
n

 n+∑
i=1

C+ log(1 + exp(−yi · wTxi)) +
n−∑
i=1

C− log(1 + exp(−yi · wTxi))

+ λ

2‖w‖
2
2.

The first derivative of the above function with respect to w will be as the following

∂wf(w) = 1
n

C+
n+∑
i=1

−yixi
1 + exp(yi · wTxi)

+ C−
n−∑
i=1

−yixi
1 + exp(yi · wTxi)

+ λw.

Based on the optimality condition, we have ∂wf(w) = 0. On the other hand,
if we define w as a function of the three parameters C+, C−, and λ, so that w =
q(λ,C+,C−), we will have

Q(λ,C+,C−) = 1
n

[C+
n+∑
i=1

−yixi
1 + exp(yi · qT (λ,C+,C−)xi)

+ C−
n−∑
i=1

−yixi
1 + exp(yi · qT (λ,C+,C−)xi)

] + λq(λ,C+,C−) = 0.

Now, all the partial derivatives of function Q(λ,C+,C−) are equal to zero vector as
the following

0 = ∂λQ(λ,C+,C−) = q(λ,C+,C−) + λ∂λq(λ,C+,C−) (3.3)

76

and

0 = ∂C+Q(λ,C+,C−)

= 1
n

[
n+∑
i=1

−yixi
1 + exp(yi · qT (λ,C+,C−)xi)

+ C+
n+∑
i=1

(yixi) exp(yi · qT (λ,C+,C−)xi)(yixTi ∂C+q(λ,C+,C−))
(1 + exp(yi · qT (λ,C+,C−)xi))2]

= 1
n

[
n+∑
i=1

−yixi
1 + exp(yi · qT (λ,C+,C−)xi)

+ C+
n+∑
i=1

exp(yi · qT (λ,C+,C−)xi)y2
i (xixTi)

(1 + exp(yi · qT (λ,C+,C−)xi))2 ∂C+q(λ,C+,C−)].

Therefore,
M∂C+q(λ,C+,C−) = b, (3.4)

where

M =
n+∑
i=1

exp(yi · qT (λ,C+,C−)xi)
(1 + exp(yi · qT (λ,C+,C−)xi))2 (xixTi) and

v = 1
C+

n+∑
i=1

yixi
1 + exp(yi · qT (λ,C+,C−)xi)

.
(3.5)

Based on (3.3), the partial derivative ∂λq(λ,C+,C−) is defined for nonzero
value of λ. On the other hand, based on (3.4) and (3.5), the partial deriva-
tives ∂C+q(λ,C+,C−) and similarly ∂C−q(λ,C+,C−) can be defined respectively
for nonzero values of C+ and C− if the matrix M and the added matrix M |v have
the same rank (one special case which satisfies this condition is when matrix M is
a full rank matrix).

Now, we can guarantee that AUC is a smooth function of the class weights
{C+,C−} as well as the regularization term λ.

Here, the input of Algorithm 7 is a three dimensional point {C+,C−,λ}. In fact,
we use the value of these parameters in problem (3.1), and we minimize f(w) via
proximal quasi-Newton algorithm, as presented in [48]. Then, we use the resulting
optimized vector w to compute the corresponding AUC value using the finite sets

77

S+ and S−. Thus, AUC function has the role of the black-box function, which can
be obtained via Algorithm 9, efficiently.

Algorithm 9 Computing AUC Value via Sorting Scheme
1: Initialize sum = 0 and sumpartial = 0.
2: Using quick sort scheme, sort the rank of all positive and negative points in descending

order and store them in set Lrank.
3: Define set Llabel which keeps the label of the corresponding points in the set Lrank.
4: while k ≤ n do
5: if xi ∈ Llabel is positive then sum← sum+ sumpartial.
6: else sumpartial ← sumpartial + 1.
7: k ← k + 1.
8: Compute the final value of AUC function as FAUC := sum/n+n−.

In this section, we compare the following algorithms:

• Cost-Sensitive Logistic Regression based on the Class Distribution Ratio
(CSLR-CDR),

• Cost-Sensitive Logistic Regression based on the Optimized Ratio which is ob-
tained through AUC maximization via DFO-TR with Warm Starting Point
(CSLR-OR-WSP).

In terms of choosing the algorithm parameters, in CSLR-CDR, we use the class
distribution ratio to set the cost values such that C+ = n−/n+ and C− = 1. We
also set the regularization parameter to λ = 1/n, which is a common choice in the
literature. In CSLR-OR-WSP, for each run, the initial cost values (C+

0 ,C−0) have
been set to the class distribution ratio, such that (n−/n+, 1) and λ0 = 1/n. The
trust region radius has been initialized as ∆0 = 5. The initial interpolation set has
the minimum required members, which is m = 10. The parameters of evaluating
the success of each trust region step have been set to η0 = 0.001 and η1 = 0.75.
Finally, in terms of updating the trust region radius, the parameters have been set
to γ1 = 0.98 and γ2 = 1.5. Table 3.6 shows the average value of AUC for these
experiments. In our experiments, we use 20 binary class data sets, which can be

78

downloaded from LIBSVM website 3 and UCI machine learning repository 4. Table
4.3, in the next chapter, shows the information of all of these data sets.

In CSLR-OR-WSP, in order to use each data set, we randomly divide it into
five different folds. We use three folds as the training set of the inner “Logistic
Regression Optimization”, done via proximal quasi-Newton algorithm, one fold as
the training set of “AUC Optimization” through DFO-TR, and finally one fold as
the test set. In CSLR-CDR, we use four of those folds as the training set and one
of them as the test set. We did such an experiment four times, so in total we did
20 experiments for each data set. The results of the performance of the CSLR-OR-
WSP are obtained after 50 iterations. The stopping criterion for the inner logistic
regression optimization is the maximum number of iterations, which has been set to
100. In order to have a fair comparison, the running time of CSLR-CDR has been
restricted to the running time of CSLR-OR-WSP, so both of these algorithms are
running for the same amount of time.

3https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
4http://archive.ics.uci.edu/ml/

79

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://archive.ics.uci.edu/ml/

Table 3.6: Comparing CSLR-OR-WSP vs. CSLR-CDR.
in terms of the averaged AUC value.

Algorithm sonar fourclass svmguide1 magic04
CSLR-CDR 0.837656 0.835398 0.9819 0.8415

CSLR-OR-WSP 0.84183 0.835387 0.988035 0.843396
Algorithm diabetes german a9a svmguide3
CSLR-CDR 0.827639 0.78878 0.902774 0.774338

CSLR-OR-WSP 0.82269 0.784636 0.902868 0.797397
Algorithm connect-4 shuttle HAPT segment
CSLR-CDR 0.899115 0.988924 0.999992 0.999791

CSLR-OR-WSP 0.898861 0.991161 0.999994 0.999841
Algorithm mnist ijcnn1 satimage vowel
CSLR-CDR 0.994864 0.934975 0.761618 0.978475

CSLR-OR-WSP 0.995341 0.934986 0.760733 0.975405
Algorithm poker letter w1a w8a
CSLR-CDR 0.502508 0.987558 0.960954 0.960331

CSLR-OR-WSP 0.52133 0.988293 0.962368 0.961645

As we can see in Table 3.6, optimizing the parameters of the cost-sensitive logistic
regression improved the ranking performance of the final classifier, only in two data
sets “svmguide3” and “poker”.

3.5 Conclusion

In this chapter, we demonstrated that the model-based derivative free optimization
is a better alternative to Bayesian optimization for some black-box optimization
tasks arising in machine learning. We relied on an existing convergent stochastic
trust region framework to provide theoretical foundation for the chosen algorithm,
and we demonstrated the efficiency of a practical implementation of DFO-TR for
optimizing AUC function over the set of linear classifiers, hyperparameter tuning,
and on other benchmark problems.

80

Chapter 4

Directly Optimizing Prediction
Error and AUC

4.1 Introduction

In this chapter, we consider classical binary linear classification problems in su-
pervised Machine Learning (ML). In other words, given a finite set labeled data
(labeled to form a positive and a negative class), the aim is to obtain a linear clas-
sifier that predicts the positive/negative labels of unseen data points as accurately
as possible. To measure the accuracy of a classifier, the expected prediction error,
which measures the percentage of mislabeled data points, also known as the zero-
one loss function, is often used. However, since the empirical approximation of the
prediction error is a nonsmooth nonconvex function, whose gradient is either zero
or not defined, other surrogate loss functions are typically used to determine the
linear classifier. For example, standard ML tools, such as support vector machines
[14, 43, 53] and logistic regression [16], aim to optimize empirical prediction error,
while using hinge loss and logistic loss, respectively, as surrogate functions of the
zero-one loss function.

Many real world ML problems deal with imbalanced data sets, which contain
rare positive data points, as the minority class, but numerous negative ones, as the

81

majority class. When these two data classes are highly imbalanced, the prediction
error function is not a useful prediction measure. For example, if the data set
contains only 0.01% of the positive examples, then a predictor that simply classifies
every data point as negative has 99.99% accuracy, while obviously failing to achieve
any meaningful prediction. The prediction measure is often modified to incorporate
class importance weights, in which case it can be used for imbalanced data sets. All
results of this work easily extend to such modification. However, a more established
and robust measure of prediction accuracy which is used in practice is Area Under
Receiver Operating Characteristic (ROC) Curve (AUC) [22]. AUC is a reciprocal of
the ranking loss, which is similar to the zero-one loss, in the sense that it measures
the percentage of pairs of data samples, one from the negative class and one from
the positive class, such that the classifier assigns a larger label to the negative
sample than to the positive one. In other words, 1−AUC counts the percentage of
incorrectly “ranked” pairs [33]. The empirical approximation of AUC, just as that of
zero-one loss, is a discontinuous, nonsmooth function, whose gradient is either zero
or undefined. This difficulty motivates various techniques for optimizing continuous
approximations of AUC. For example, the ranking loss can be replaced by convex
loss functions such as pairwise logistic loss or hinge loss [27, 46, 57, 65], which results
in continuous convex optimization problem. A drawback of such approach, aside
from the fact that a different objective is optimized, is that such loss has to be
computed for each pair of data points, which significantly increases the complexity
of the underlying optimization algorithm.

In this work, we propose a novel method of directly optimizing the expected
prediction error and the expected AUC value of a linear classifier in the case of
binary classification problems. First, we use the probabilistic interpretation of the
expected prediction error and we show that if the distribution of the positive and
negative classes obey normal distributions, then the expected prediction error of a
linear classifier is a smooth function with a closed-form expression. Thus, its gradient
can be computed and a gradient-based optimization algorithm can be used. The
closed form of the function depends on the first and second moments of the related
normal distributions, hence these moments are needed to compute the function value

82

as well as the gradient.
Similarly, under the assumption that the class of the positive and negative data

sets jointly obey a normal distribution, we show that the corresponding expected
AUC value of a linear classifier is a smooth function with closed form expression,
which depends on the first and second moments of the distribution. Similarly to
optimizing the prediction error, this novel result allows any gradient-based opti-
mization algorithm to be applied to optimize the AUC value of a linear classifier.

Through empirical experiments we show that even when the data sets do not
obey normal distribution, optimizing the derived functional forms of prediction error
and AUC, using empirical approximate moments, often produces better predictors
than those obtained by optimizing surrogate approximations, such as logistic and
hinge losses. This behavior is in contrast with, for example, Linear Discriminant
Analysis (LDA) [24], which is the method to compute linear classifiers under the
Gaussian assumption. Unlike LDA, our method in fact relies on the linear functions
of the data, but not the data itself, to obey Gaussian distribution. In §4.4, we
provide theoretical justification, for our empirical observations based on the law of
large numbers for dependent variables.

Another key advantage of the proposed method over the classical empirical risk
minimization is that the training data is only used once at the beginning of the
algorithm to compute the approximate moments. After that each iteration of an
optimization algorithm only depends on the dimension of the classifier, while opti-
mizing logistic loss or pairwise hinge loss using gradient-based method depends on
the data size at each iteration.

This chapter is organized as follows. In the next section we state preliminaries
and the problem description. In Section 4.3 we show that the prediction error and
AUC are smooth functions if the data obey normal distribution. In Section 4.4 we
state the conditions under which we can extend our results to data sets with any
arbitrary distribution. We present computational results in Section 4.6, and finally,
we state our conclusions in Section 4.7.

83

4.2 Preliminaries and Problem Description

We consider the classical setting of supervised machine learning, where we are given
a finite training set S of n pairs,

S := {(xi, yi) : i = 1, · · · ,n},

where xi ∈ Rd are the input vectors of features and yi ∈ {+1,−1} are the binary
output labels. It is assumed that each pair (xi, yi) is an i.i.d. sample of the random
variable (X,Y) with some unknown joint probability distribution PX,Y (x, y) over
the input space X and output space Y .

The set S is known as a training set. The goal is to compute a linear classifier
function f : X → Y , so that given a random input variable X, f can accurately
predict the corresponding label Y .

As discussed in §4.1, there are two different performance measures to evaluate
the quality of f : the prediction error, which approximates the expected risk, and
the AUC. Expected risk of a linear classifier f(x;w) = wTx for 0-1 loss function is
defined as

Ferror (w) = EX ,Y [`01 (f(X;w),Y)]

=
∫
X

∫
Y
PX,Y (x, y)`01 (f(x;w), y) dydx,

(4.1)

where

`01 (f(x;w), y) =

+1 if y · f(x;w) < 0,

0 if y · f(x;w) ≥ 0.

A finite sample approximation of (4.1), given a training set S, is the following
empirical risk

F̂error (w;S) = 1
n

n∑
i=1

`01 (f(xi;w), yi) . (4.2)

The difficulty of optimizing (4.2), even approximately, arises from the fact that its
gradient is either not defined or is equal to zero. Thus, gradient-based optimization
methods cannot be applied. The most common alternative is to utilize the logistic
regression loss function, as an approximation of the prediction error and solve the

84

following unconstrained convex optimization problem

min
w∈Rd

F̂log(w) = 1
n

n∑
i=1

log (1 + exp(−yi · f(xi;w))) + λr(w), (4.3)

where λr(w) is the regularization term, with r(·) = ‖ · ‖1 or r(·) = ‖ · ‖2 as possible
examples.

We now discuss the AUC function as the quality measure of a classifier, which
is often the industry standard. For that let us define

S+ := {x : (x, y) ∈ S, y = +1} := {x+
i : i = 1, · · · ,n+}, where x+

i ∈ Rd and

S− := {x : (x, y) ∈ S, y = −1} := {x−j : j = 1, · · · ,n−}, where x−j ∈ Rd.

Hence S+ and S− are the sets of all positive and negative samples in S, respectively,
and they contain only inputs x, instead of pairs (x, y). Let |S+| = n+ and |S−| = n−.
The AUC value of a classifier f(x;w), given the positive set S+ and the negative
set S− can be obtained via Wilcoxon-Mann-Whitney (WMW) statistic result [33],
e.g.,

F̂AUC
(
w;S+,S−

)
=
∑n+

i=1
∑n−

j=1 1
[
f(x+

i ;w) > f(x−j ;w)
]

n+ · n−
, (4.4)

where

1
[
f(x+

i ;w) > f(x−j ;w)
]

=

+1 if f(x+

i ;w) > f(x−j ;w),

0 otherwise.

Now, let X+ and X− denote the space of the positive and negative input vectors,
respectively, so that x+

i is an i.i.d. observation of the random variable X+ from X+

and x−j is an i.i.d. observation of the random variable X− from X−. Then, given
the joint probability distribution PX+,X− (x+,x−), the expected AUC function of a
classifier f(x;w) is defined as

F̄AUC(w) = EX+,X−
[
1
[
f
(
X+;w

)
> f

(
X−;w

)]]
=

∫
X+

∫
X−

PX+,X−
(
x+,x−

)
· 1
[
f
(
x+;w

)
> f

(
x−;w

)]
dx−dx+.

(4.5)

85

The F̂AUC (w;S+,S−) computed by (4.4) is an unbiased estimator of FAUC(w).
Similarly to the empirical risk minimization, the problem of optimizing AUC value
of a predictor is not straightforward since the gradient of this function is either zero
or not defined. Thus, gradient-based optimization methods cannot be applied.

As in the case of prediction error, various techniques have been proposed to ap-
proximate the AUC with a surrogate function. In [62], the indicator function 1[·] in
(4.4) is substituted with a sigmoid surrogate function, e.g., 1/(1 + e−β(f(x+;w)−f(x−;w)))
and a gradient descent algorithm is applied to this smooth approximation. The
choice of the parameter β in the sigmoid function definition significantly affects the
output of this approach; although a large value of β renders a closer approximation
of the step function, it also results in large oscillations of the gradients, which in
turn can cause numerical issues in the gradient descent algorithm. Similarly, as is
discussed in [46], pairwise exponential loss and pairwise logistic loss can be utilized
as convex smooth surrogate functions of the indicator function 1[·]. In these set-
tings, any gradient-based optimization method can be used to optimize the resulting
approximate AUC value. However, due to the required pairwise comparison of the
value of f(·;w), for each positive and negative pair, the complexity of computing
function value as well as the gradient will be of order of O (n+n−), which can be
very expensive. In [57], pairwise hinge loss has been used as a surrogate function,
resulting the following approximate AUC value

Fhinge (w) =
∑n+

i=1
∑n−

j=1 max
{

0, 1−
(
f(x−j ;w)− f(x+

i ;w)
)}

n+ · n−
. (4.6)

The advantage of pairwise hinge loss over other alternative approximations lies in
the fact that the function values as well as the gradients of pairwise hinge loss can
be computed in roughly O (n log(n)) time, where n = n+ + n−, by first sorting all
values f(x−j ;w) and f(x+

i ;w). One can utilize numerous stochastic gradient schemes
to reduce the per-iteration complexity of optimizing surrogate AUC objectives, how-
ever, the approach we propose here achieves the same or better result with a simpler
method.

86

In this work, we propose to optimize alternative smooth approximations of ex-
pected risk and expected AUC, which display good accuracy and also have low
computational cost. Towards that end, in the next section, we show that, if the
data distribution is normal, then the expected risk and expected AUC of a linear
classifier are both smooth functions with closed form expressions.

4.3 Prediction Error and AUC as Smooth Func-
tions

In this section, first we show that the expected risk is a smooth function if the data
points obey a normal distribution. To this end, we need to consider the probabilistic
interpretation of the prediction error, e.g.,

Ferror(w) = EX ,Y [`01 (f(X;w),Y)]

= P (Y · wTX < 0).
(4.7)

Assuming that the true values of the prior probabilities P (Y = +1) and P (Y =
−1) are known or obtainable from a trivial calculation, then we can conclude the
following result.

Lemma 11. Given the prior probabilities P (Y = +1) and P (Y = −1) we can write

Ferror(w) = P (Y · wTX < 0)

= P
(
wTX+ ≤ 0

)
P (Y = +1) +

(
1− P

(
wTX− ≤ 0

))
P (Y = −1) ,

where X+ and X− are random variables from positive and negative classes, respec-
tively.

Proof. Note that we can split the whole set
{

(X,Y) : Y · wTX < 0
}
⊂ X ×Y into

two disjoint sets as the following:

{
(X,Y) : Y · wTX < 0

}
=
{

(X+, +1) : wTX+ < 0
}
∪
{

(X−,−1) : wTX− ≥ 0
}

.

87

Now, by using the preceding definition in (4.7) we will have:

Ferror(w) = P
(
Y · wTX < 0

)
= P

(
Y · wTX < 0 ∩ Y = +1

)
+ P

(
Y · wTX < 0 ∩ Y = −1

)
= P

(
Y · wTX < 0 | Y = +1

)
P (Y = +1)

+ P
(
Y · wTX < 0 | Y = −1

)
P (Y = −1)

= P
(
wTX+ < 0

)
P (Y = +1) + P

(
wTX− > 0

)
P (Y = −1)

= P
(
wTX+ ≤ 0

)
P (Y = +1) +

(
1− P

(
wTX− ≤ 0

))
P (Y = −1) .

Based on the result of Lemma 11, in order to obtain the properties of the function
Ferror(w), we are interested in the properties of the new random variable wTX

which is a linear transformation of the original multivariate random variable X =
(X1, · · · ,Xn). In particular, the smoothness of the expected risk can be guaranteed
if the CDF (cumulative distribution function) of the new random variable wTX be
a smooth function.

In general, if (X1, · · · ,Xn) is a multivariate random variable with any arbitrary
continuous distribution fX1,··· ,Xn(x1, · · · ,xn), then any mapping Z = g (X1, · · · ,Xn)
is also a random variable with a probabilistic behavior in terms of that of (X1, · · · ,Xn).
In particular, the distribution of Z depends on the functions fX1,··· ,Xn and g.

Formally, if we write z = g(x1, · · · ,xn), the function g(x1, · · · ,xn) defines a
mapping from the original sample space of (X1, · · · ,Xn), call it {X1× · · · ×Xn}, to
a new sample space Z, the sample space of the random variable Z. That is,

g(x1, · · · ,xn) : {X1 × · · · × Xn} → Z.

The following describes a technique for finding the distribution of a transforma-
tion of a multivariate random variable, [9].

Definition 1. If we define a region in space {X1×· · ·×Xn} such that g(x1, · · · ,xn) ≤
z, then we can compute the probability that g(x1, · · · ,xn) ≤ z, i.e., P (g(x1, · · · ,xn) ≤ z)

88

by integrating the density function fX1,··· ,Xn(x1, · · · ,xn)dx1dx2 · · · dxn over this re-
gion, i.e.,

FZ(z) = P (Z ≤ z)

= P (g(X) ≤ z)

= P ({x1 ∈ X1, · · · ,xn ∈ Xn : g(x1, · · · ,xn) ≤ z})

=
∫ ∫

{x1∈X1,··· ,xn∈Xn : g(x1,··· ,xn)≤z}
· · ·

∫
fX1,··· ,Xn(x1, · · · ,xn)dx1dx2 · · · dxn,

[9].

Based on the above definition, depending on the choice of g, it is sometimes
possible to obtain a tractable expression of the distribution of the new random
variable Z. However, in the case of normal distribution there are some appealing
properties which can be applied in our analysis.

The family of “multivariate” normal distributions is closed under linear trans-
formations and linear combinations of random variables. In what follows we state
Theorem 3.3.3 from [59], which shows the closure property of the multivariate nor-
mal distribution under linear transformation.

Theorem 14. If X ∼ N (µ, Σ) and Z = CX + b, where C is any given m× n real
matrix and b is any m× 1 real vector, then Z ∼ N

(
Cµ+ b,CΣCT

)
.

Proof. The proof can be found in [59].

Corollary 5. Considering Lemma 11 and Theorem 14, we can conclude that the
expected risk is a smooth function, if the data points obey a normal distribution.

In the following theorem we derive the closed form expression for the expected
risk under the Gaussian assumption.

Theorem 15. Suppose that the random variables from both positive and negative
classes are obeying normal distributions, so that

X+ ∼ N
(
µ+, Σ+

)
and X− ∼ N

(
µ−, Σ−

)
. (4.8)

89

Then, we have

Ferror(w) = P (Y = +1) (1− φ (µZ+/σZ+)) + P (Y = −1)φ (µZ−/σZ−) , (4.9)

where µZ+ = wTµ+, σZ+ =
√
wTΣ+w, µZ− = wTµ−, and σZ− =

√
wTΣ−w, and φ is

the CDF of the standard normal distribution, so that φ(x) =
∫ x
−∞

1√
2π exp(−1

2t
2)dt,

for ∀x ∈ R.

Proof. Let us define the new random variables Z+ and Z− as the following

Z+ = wTX+ and Z− = wTX−.

If X+ and X− are defined as (4.8), then by using Theorem 14 we have

Z+ ∼ N
(
wTµ+,wTΣ+w

)
and

Z− ∼ N
(
wTµ−,wTΣ−w

)
.

Then, by using Lemma 11 we conclude the following

Ferror(w) = P
(
Y · wTX < 0

)
= (1− φ (µZ+/σZ+))P (Y = +1) + φ (µZ−/σZ−)P (Y = −1) .

where µZ+ = wTµ+, σZ+ =
√
wTΣ+w, µZ− = wTµ−, and σZ− =

√
wTΣ−w.

In what follows we aim to obtain the explicit derivative of Ferror(w) over w. To
this end, first let us state the first derivative of the cumulative function φ (f(w)),
where f(w) = wT µ̂/

√
wT Σ̂w.

Lemma 12. The first derivative of the cumulative function

φ (f(w)) =
∫ f(w)

−∞

1√
2π

exp
(
−1

2t
2
)
dt, with f(w) = wT µ̂√

wT Σ̂w

90

is

∇wφ(f(w)) = 1√
2π

exp

−1
2

 wT µ̂√
wT Σ̂w

2

√
wT Σ̂w · µ̂− wT µ̂√

wT Σ̂w
· Σ̂w

wT Σ̂w

 .

Proof. Note that based on the chain rule we have

d

dw
φ (f(w)) = φ′(f(w))f ′(w). (4.10)

By substituting

φ′(x) = d

dx

∫ x

−∞

1√
2π

exp
(
−1

2t
2
)
dt = 1√

2π
exp

(
−1

2x
2
)

and

f ′(w) =

√
wT Σ̂w · µ̂− wT µ̂√

wT Σ̂w
· Σ̂w

wT Σ̂w
in (4.10) we conclude the result.

Theorem 16. Using the result of Lemma 12, the derivative of the smooth function
Ferror(w) is defined as

∇wFerror(w) = P (Y = −1) 1√
2π

exp
−1

2

(
wTµ−√
wTΣ−w

)2

·

√wTΣ−w · µ− − wTµ−√
wT Σ−w

· Σ−w
wTΣ−w

− P (Y = +1) 1√

2π
exp

−1
2

(
wTµ+
√
wTΣ+w

)2

·

√wTΣ+w · µ+ − wTµ+
√
wT Σ+w

· Σ+w

wTΣ+w

 .

For the rest of this section, we show that FAUC(w) is a smooth function and
derive its closed form expression under the Gaussian assumption. First, let us

91

restate (4.21) using probabilistic interpretation, e.g.,

FAUC(w) = 1− F̄AUC(w)

= 1− EX+,X−
[
1
[
f
(
X+;w

)
> f

(
X−;w

)]]
= 1− P

(
wTX+ > wTX−

)
= 1− P

(
wT

(
X− −X+

)
< 0

)
.

(4.11)

As in the case of Ferror(w), the smoothness of FAUC(w) follows from the smooth-
ness of the CDF of wT (X− −X+). We will also use Corollary 3.3.1 from [59],
stated as what follows.

Theorem 17. If two d−dimensional random vectors X+ and X− have a joint mul-
tivariate normal distribution, such that

X+

X−

 ∼ N (µ, Σ) , (4.12)

where µ =
µ+

µ−

 and Σ =
Σ++ Σ+−

Σ−+ Σ−−

 .

Then, the marginal distributions of X+ and X− are normal distributions with the
following properties

X+ ∼ N
(
µ+, Σ++

)
and X− ∼ N

(
µ−, Σ−−

)
.

Proof. The proof can be found in [59].

Further, we need to use Corollary 3.3.3 in [59], as is stated in the following.

Theorem 18. Consider two random vectors X+ and X−, as is defined in (4.12),
then for any vector w ∈ Rd, we have

Z = wT
(
X− −X+

)
∼ N (µZ ,σZ) , (4.13)

92

where
µZ = wT

(
µ− − µ+

)
and

σZ =
√
wT (Σ−− + Σ++ − Σ−+ − Σ+−)w.

(4.14)

Proof. The proof can be found in [59].

Now, in what follows, we derive the formula for FAUC(w) under the Gaussian
assumption.

Theorem 19. If two random vectors X+ and X−, have a joint normal distribution
as is defined in Theorem 17, then we have

FAUC(w) = 1− φ
(
µZ
σZ

)
, (4.15)

where φ is the CDF of the standard normal distribution, so that
φ(x) =

∫ x
−∞

1√
2π exp(−1

2t
2)dt, for ∀x ∈ R and µZ and σZ are defined in (4.14).

Proof. By using (4.11) and Theorem 18 we have

FAUC(w) = 1− P (wT
(
X− −X+) < 0

)
= 1− P (Z ≤ 0)

= 1− P
(
Z − µZ
σZ

≤ −µZ
σZ

)
= 1− φ

(
µZ
σZ

)
,

where the random variable Z is defined in (4.13), with the stated mean and
standard deviation in (4.14).

In Theorem 19, since the CDF of the standard normal distribution φ(·) is
a smooth function, we can conclude that for linear classifiers, the corresponding
FAUC(w) is a smooth function of w. Moreover, it is possible to compute the deriva-
tive of this function, if the first and second moments of the normal distribution are
known, as is stated in the following theorem.

93

Theorem 20. Using the result of Lemma 12, and the symmetric property of φ(·),
the derivative of the smooth function FAUC(w) is defined as

∇wFAUC(w) = − 1√
2π

exp

−1
2

 wT µ̂√
wT Σ̂w

2
 ·

√
wT Σ̂w · µ̂− wT µ̂√

wT Σ̂w
· Σ̂w

wT Σ̂w

 .

where µ̂ = µ− − µ+ and Σ̂ = Σ−− + Σ++ − Σ−+ − Σ+−.

In the next section, we will apply the classical gradient descent with backtracking
line search to optimize the expected risk and the expected AUC directly and compare
the results of this optimization to optimizing Flog(w) and Fhinge(w), respectively. We
apply our method to standard data sets for which Gaussian assumption may not
hold. It is important to note that our proposed method relies on the assumption
that wTX and wT (X− −X+) are Gaussian random variables with moments that
are derived from the moments of the original distribution of X. In [19], it is shown
that the distribution of the sums of partially dependent random variables approach
normal distribution under some conditions of the dependency. Based on these results
we believe that while the data itself may not be Gaussian, the random variables
wTX and wT (X− −X+) may have a nearly normal distribution whose CDF is well
approximated by the CDF in Theorems 15 and 18, respectively. To support our
observation further, we compared the linear classifiers obtained by our proposed
methods to those obtained by LDA which is a well-known method to produce linear
classifiers under the Gaussian assumption (see Appendix A). We observed that the
accuracy obtained by the LDA classifiers is significantly worse than that of obtained
by either our approach or by optimizing surrogate loss function.

94

4.4 Prediction Error as Smooth Function in the
Case of Data Sets with any Arbitrary Distri-
bution

In this section, we address this question that under which conditions one can directly
optimize the expected error for data sets with any arbitrary distribution. First, we
need to restate the classical Central Limit Theorem (CLT) ([3, Theorem 27.1]).

Theorem 21 (classical CLT). Consider a sequence of independent and identically
distributed (i.i.d) random variables X1, · · · ,Xn drawn from distributions with ex-
pected values µ and finite variance σ2, i.e.,

E[Xi] = µ and V ar[Xi] = σ2 <∞.

If Sn = ∑n
i=1Xi, then

lim
n→∞

(
Sn − nµ
σ
√
n

)
→ N (0, 1).

Proof. The proof can be found in [3].

The conventional CLT stated in the preceding theorem has three restrictions:
the random variables should be independent, with identical distribution and finite
variance.

4.4.1 Directly Optimizing Expected Error for Data with
Not Identically Distributed Independent Features

Consider the following theorem ([3, Theorem 27.3]), which weakens the requirement
of identical distribution while strengthening the requirement of the finite variance.

Theorem 22 (Lyapunov CLT). Suppose that the sequence X1, · · · ,Xn is indepen-
dent with

E[Xi] = 0 and E[X2
i] = σ2

i <∞.

95

Defining the variable Sn = ∑n
i=1Xi and its variance s2

n = ∑n
i=1 σ

2
i , if for some

positive constant δ, the following holds

lim
n→∞

n∑
i=1

1
s2+δ
n

E
[
|Xi|2+δ

]
= 0, (4.16)

then as n→∞ the distribution of Sn/sn converges to the standard normal distribu-
tion.

Proof. The proof can be found in [3].

A practical example ([3, Example 27.4]), which satisfies condition (4.16) and con-
sequently Theorem 22 can be applied on, is an independent and uniformly bounded
sequence X1,X2, · · · which has mean 0. If K bounds Xi, for i = 1, · · · ,n, and
variance sn goes to ∞ when n→∞, then

lim
n→∞

n∑
i=1

1
s3
n

E
[
|Xi|3

]
≤ lim

n→∞

n∑
i=1

KE [X2
i]

s3
n

= lim
n→∞

K

sn
→ 0,

which is condition (4.16) for δ = 1. Thus, using Theorem 22, we conclude that the
distribution of Sn/sn converges to the standard normal distribution when n→∞.

First, let us assume that the features (Xi for i = 1, · · · , d) in the input vector
X = (X1,X2, · · · ,Xd) are independent from each other. On the other hand, since
each feature has been extracted from a different property of our samples, they are
obeying not identically distributions. We assume that these are distributions with
finite second moments. As is mentioned in ([3, Page 359]), without loss of generality,
we can assume that all features are centered at 0, thus have finite values as variance,
i.e.,

E[Xi] = 0 and E[X2
i] = σ2

i <∞.

If we define the weight vector w = (w1, · · · ,wd), then after multiplying each
component Xi with wi we will have

E[wiXi] = 0 and E[w2
iX

2
i] = w2

i σ
2
i <∞.

96

Let us define S̄d = ∑d
i=1wiXi and s̄2

d = V ar(S̄d) = ∑d
i=1w

2
i σ

2
i . Now if K =

max{|wiXi|}i=1,··· ,d, and limd→∞ s̄d →∞, then we have

lim
d→∞

d∑
i=1

1
s̄3
d

E
[
|wiXi|3

]
≤ lim

d→∞

d∑
i=1

KE [w2
iX

2
i]

s̄3
d

= lim
d→∞

K

s̄d
→ 0,

which means, for δ = 1, the “Lyapunov condition” stated in (4.16) is satisfied. It
means, in this setting, the distribution of the random variable S̄d/s̄d converges to the
standard normal distribution. Based on the preceding discussion, we can conclude
our main result as what follows.

Theorem 23. Consider two random vectors X+ = (X+
1 , · · · ,X+

d) and X− =
(X−1 , · · · ,X−d) individually have independent components (positive/negative class
has independent features) and

E[X+
i] = µ+

i , V ar[X+
i] = σ+

i
2
<∞, ∀i = 1, · · · , d, and

E[X−i] = µ−i , V ar[X−i] = σ−i
2
<∞, ∀i = 1, · · · , d.

In other words, X+ and X− have means µ+ = [µ+
1 , · · · ,µ+

d] and µ− = [µ−1 , · · · ,µ−d]
and covariances Σ+ and Σ−, which are respectively diagonal matrices of vectors
[σ+

1
2, · · · ,σ+

d
2] and [σ−1

2, · · · ,σ−d
2].

If K+ and K− bound (X+
i −µ+

i) and (X−i −µ−i), respectively for all i = 1, · · · , d,
and ∑d

i=1w
2
i σ

+
i

2 and ∑d
i=1w

2
i σ
−
i

2 go to ∞ when d→∞, then for a bounded weight
vector w, i.e., W = max{|wi|}i=1,··· ,d, we have

lim
d→∞

Ferror(w) = P (Y = +1) (1− φ (µZ+/σZ+)) + P (Y = −1)φ (µZ−/σZ−) , (4.17)

where µZ+ = wTµ+, σZ+ =
√
wTΣ+w, µZ− = wTµ−, and σZ− =

√
wTΣ−w, and φ is

the CDF of the standard normal distribution, so that φ(x) =
∫ x
−∞

1√
2π exp(−1

2t
2)dt,

for ∀x ∈ R.

Proof. We restrict our analysis to positive class, and any result can be extended to
negative class as well. Defining Ẑ+ = wTX+ − wTµ+ we have

97

E[Ẑ+
i] = 0 and E[Ẑ+2

i] = w2
i σ

+
i

2
<∞.

Using the boundedness of vectors (X+−µ+) and w, and defining V ar(Ẑ+) = (s̄+
d)2 =∑d

i=1w
2
i σ

+
i

2 = wTΣ+w we have

lim
d→∞

d∑
i=1

1
(s̄+
d)3E

[
|Ẑ+

i|3
]
≤ lim

d→∞

d∑
i=1

WK+E[Ẑ+2
i]

(s̄+
d)3 = lim

d→∞

WK+

s̄+
d

→ 0,

which means for δ = 1 the Lyapunov condition stated in (4.16) is satisfied. Thus,
the distribution of the random variable Ẑ+/s̄+

d = (wTX+ − wTµ+)/
√
wTΣ+w con-

verges to the standard normal distribution. Similarly, with the same preceding
analysis we can prove the same property for random variable Ẑ−/s̄−d = (wTX− −
wTµ−)/

√
wTΣ−w. Now, using the definition of the expected error provided in §4.3

we have

Ferror(w) = P (Y · wTX < 0)

= P
(
wTX+ ≤ 0

)
P (Y = +1) +

(
1− P

(
wTX− ≤ 0

))
P (Y = −1)

= P
(
wTX+ − wTµ+ ≤ −wTµ+

)
P (Y = +1)

+
(
1− P

(
wTX− − wTµ− ≤ −wTµ−

))
P (Y = −1)

= P

(
wTX+ − wTµ+
√
wTΣ+w

≤ − wTµ+
√
wTΣ+w

)
P (Y = +1)

+
(

1− P
(
wTX− − wTµ−√

wTΣ−w
≤ − wTµ−√

wTΣ−w

))
P (Y = −1) .

Therefor, in limit we will have

lim
n→∞

Ferror(w) = φ(−µZ+/σZ+)P (Y = +1) + (1− φ(−µZ−/σZ−))P (Y = −1)

= (1− φ(µZ+/σZ+))P (Y = +1) + φ(µZ−/σZ−)P (Y = −1) .

98

4.4.2 Directly Optimizing Expected Error for Data with
Not Identically Distributed Dependent Features

First, let us define an m−dependent sequence of random variables. This is the
case that “the random variables temporally far apart from one another are nearly
independent” [3].

Definition 2 (m−dependent sequence). Consider a sequence of one-dimensional
random variables, i.e.,

X1,X2, · · · . (4.18)

If for some constant m the inequality s > r +m implies that the two sets

{X1,X2, · · · ,Xr} and {Xs,Xs+1, · · · ,Xn}

are independent, then the sequence (4.18) is said to be m−dependent [20] .

Based on the above definition, if the sequence (4.18) is 0-dependent, it is equiva-
lent to independence. In other words, 0-dependent means that any number of blocks
of successive terms of (4.18) are independent, whenever the first index of each block
is greater than the last index of the preceding block.

In the following, we are stating some results of [20] as what follows.

Lemma 13. Let (4.18) be m−dependent and E[Xi] = 0, and E[X2
i] < ∞, ∀i =

1, 2, · · · ; we define

Ai = E[X2
i+m] + 2

m∑
j=1

E[Xi+m−jXi+m], ∀i = 1, 2, · · · . (4.19)

Then for s > m

E[Xi+1 + · · ·+Xi+s]2 = E[Xi+1 + · · ·+Xi+s−1]2 + Ai+s−m, ∀i = 0, 1, · · · ,

99

so that

E[Xi+1 + · · ·+Xi+s]2 = E[Xi+1 + · · ·+Xi+m]2 +
s−m∑
h=1

Ai+h, ∀i = 0, 1, · · · ;

where s > m.

Proof. The proof can be simply justify by utilizing the definition of Ai, stated in
(4.19).

Theorem 24 (CLT for m−dependent not identically distributed random variables).
Let (4.18) be an m−dependent sequence of random variables such that
(a) E[Xi] = 0 and E[|Xi|3] ≤ γ <∞, ∀i = 1, 2, · · · .
(b) limp→∞ p

−1∑p
h=1Ai+h = A exists, uniformly for all i = 0, 1, · · · .

Then, as n → ∞ the random variable n−
1
2 (X1 + · · · + Xn) has a limiting normal

distribution with mean 0 and variance A.

Proof. The proof can be found in [20].

In this section, we aim to prove the same result as (4.17), while relaxing the
assumption of independent features as we had in §4.4.1. To this end, we use one of
the variants of CLT presented in Theorem 24 in the preceding section.

Here, we need to assume that we have a m−dependent sequence of features,
in which we have blocks of features with size m so that the components of two
consecutive blocks are independent from each other, i.e.,

X1, · · · ,Xm︸ ︷︷ ︸,Xm+1, · · · ,X2m︸ ︷︷ ︸,X2m+1, · · · ,X3m︸ ︷︷ ︸, · · · ,Xkm+1, · · · ,Xkm︸ ︷︷ ︸, · · · .

Condition (a) in Theorem 24 can be satisfied easily. In terms of condition (b),
suppose i = 0, then we need to have limp→∞ (A1 + A2 + · · ·+ Ap) /p = A, where

100

A1 = V ar(X2
m+1) + 2

Cov(Xm+1Xm) + Cov(Xm+1Xm−1) + · · ·+ Cov(Xm+1X1)︸ ︷︷ ︸
=0

 ,

A2 = V ar(X2
m+2) + 2

Cov(Xm+2Xm+1) + Cov(Xm+2Xm) + · · ·+ Cov(Xm+2X2)︸ ︷︷ ︸
=0

 ,

A3 = V ar(X2
m+3)

+ 2

Cov(Xm+3Xm+2) + · · ·+ Cov(Xm+3Xm) + · · ·+ Cov(Xm+3X3)︸ ︷︷ ︸
=0

 ,

...

Am = V ar(X2
2m) + 2

Cov(X2mX2m−1) + · · ·+ Cov(X2mXm+1) + Cov(X2mXm)︸ ︷︷ ︸
=0

 .

Based on the definition of the covariance of N number of dependent random
variables, i.e.,

V ar

(
N∑
i=1

Xi

)
=

N∑
i=1

V ar (Xi) +
∑
i 6=j

Cov (Xi,Xj) ,

we can conclude that

A1 + · · ·+ Am = V ar (Xm+1 + · · ·+X2m) .

In other words, condition (b) requires that the average of the variance of each
block, when the number of blocks (or number of features) goes to ∞, converges to
A. When condition (a) and (b) satisfy, Theorem 24 shows that the distribution of
the random variable Sn = X1 + · · · + Xn converges to a normal distribution with
mean 0 and variance nA.

Along similar discussion as §4.4.1, we can present similar representation to (4.17)
for the expected risk.

101

Theorem 25. If two random vectors X+ = (X+
1 , · · · ,X+

d) and X− = (X−1 , · · · ,X−d)
individually have independent blocks of features with size m and

E[X+
i] = µ+

i , V ar[X+
i] <∞, ∀i = 1, · · · , d, and

E[X−i] = µ−i , V ar[X−i] <∞, ∀i = 1, · · · , d.

In other words, X+ and X− have means µ+ = [µ+
1 , · · · ,µ+

d] and µ− = [µ−1 , · · · ,µ−d]
and bounded variances.

Let K+ and K− bound (X+
i −µ+

i) and (X−i −µ−i), respectively for all i = 1, · · · , d
and assume that we have a bounded weight vector w, i.e., W = max{|wi|}i=1,··· ,d.

In this setting, if limp→∞ p
−1∑p

h=1A
+
i+h = A+ and limp→∞ p

−1∑p
h=1A

−
i+h = A−,

where

A+
i = w2

i+mV ar(X+
i+m) + 2

m∑
j=1

wi+m−jwi+mCov(X+
i+m−jX

+
i+m), ∀i = 1, 2, · · · , and

A−i = w2
i+mV ar(X−i+m) + 2

m∑
j=1

wi+m−jwi+mCov(X−i+m−jX−i+m), ∀i = 1, 2, · · · ,

then

lim
n→∞

Ferror(w) = (1− φ(µZ+/σ̂Z+))P (Y = +1) + φ(µZ−/σ̂Z−)P (Y = −1) .

where µZ+ = wTµ+, σ̂Z+ =
√
nA+, µZ− = wTµ−, and σZ− =

√
nA−, and φ is

the CDF of the standard normal distribution, so that φ(x) =
∫ x
−∞

1√
2π exp(−1

2t
2)dt,

for ∀x ∈ R.

Proof. We restrict our analysis to positive class, and any result can be extended to
negative class as well. Defining Ẑ+ = wTX+−wTµ+ and using the assumption that
the components of (X+ − µ+) and w are bounded, we conclude

E[Ẑ+
i] = 0 and E[|Ẑ+

i|3] <∞.

Thus, the distribution of the random variable Ẑ+/
√
nA+ = (wTX+−wTµ+)/

√
nA+

102

converges to the standard normal distribution. Similarly, with the same preced-
ing analysis we can prove the same property for random variable Ẑ−/

√
nA− =

(wTX− − wTµ−)/
√
nA−. Now, using the definition of the expected error we will

have

Ferror(w) = P (Y · wTX < 0)

= P
(
wTX+ ≤ 0

)
P (Y = +1) +

(
1− P

(
wTX− ≤ 0

))
P (Y = −1)

= P
(
wTX+ − wTµ+ ≤ −wTµ+

)
P (Y = +1)

+
(
1− P

(
wTX− − wTµ− ≤ −wTµ−

))
P (Y = −1)

= P

(
wTX+ − wTµ+
√
nA+

≤ − w
Tµ+
√
nA+

)
P (Y = +1)

+
(

1− P
(
wTX− − wTµ−√

nA−
≤ − w

Tµ−√
nA−

))
P (Y = −1) .

Which in limit we have

lim
n→∞

Ferror(w) = φ(−µZ+/σ̂Z+)P (Y = +1) + (1− φ(−µZ−/σ̂Z−))P (Y = −1)

= (1− φ(µZ+/σ̂Z+))P (Y = +1) + φ(µZ−/σ̂Z−)P (Y = −1) .

4.5 Online AUC Optimization

4.5.1 Online Binary Classification Framework

First let us briefly introduce the concept of online learning in binary linear classifi-
cation problems. Let x ∈ Rd denotes the input vector of features which is associated
with a unique label y ∈ {+1,−1}, as the output. Online binary classification per-
forms in a sequence of rounds, in which, at each round t, the algorithm observes a
new instance xt, and predicts its label to be +1 or −1. After predicting the label

103

of the new observed point xt, at the end of each round t, the true label yt is re-
vealed. Now, by using the true label versus the predicted one, we can measure the
performance of the learning process provided by our algorithm, so far. Then, the
algorithm utilizes the new observed pair (xt, yt) to improve its prediction policy for
the upcoming rounds t+ 1, t+ 2, · · · .

Here, the main purpose of the learning process of the algorithm is to obtain
the weight vector w ∈ Rd defining the linear classifier wTx. Thus, the goal of the
algorithm is to incrementally learn the vector of weights w over the rounds (the
algorithm keeps w in its internal memory and update it from round to round). Let
wt denote the weight vector used by the algorithm on round t and yt · wTt xt denote
the margin obtained by the algorithm on round t. In this learning process, both
sign and the magnitude of the margin value matter. A positive margin value means
that the algorithm made a correct prediction in which yt = sign(yt · wTt xt). On the
other hand, the magnitude |wTt xt| provides the degree of confidence in predicting
the label of xt, in which a classifier with high level of prediction confidence is the
matter of interest.

Here, we consider hinge loss, as an instantaneous loss, which the algorithm suffers
from at the end of each round t, i.e.,

`t(wt;xt, yt) =

0, if yt · wTt xt ≥ 1,

1− yt · wTt xt, otherwise,

or equivalently
`t(wt;xt, yt) = max{0, 1− yt · wTt xt}.

The algorithms used to perform on online binary classification problems aim to
minimize the cumulative squared loss, i.e., ∑T

t=1 `
2
t over a given sequence of sample

points with length T .
Passive-Aggressive method stated in Algorithm 10, as the simplest algorithm has

104

been used in online binary classification, solves the following constrained optimiza-
tion problem to obtain the new weight vector wt+1 at the end of round t,

wt+1 ← arg min
w∈Rd

1
2‖w − wt‖

2, s.t. `t(wt;xt, yt) = 0, (4.20)

with the following closed form solution [15],

wt+1 = wt + τtytxt, where τt = `t
‖xt‖2 .

Algorithm 10 Passive-Aggressive Algorithm for Binary Classification

1: Initialize w1 ∈ Rd.
2: for t = 1, 2, · · · do
3: Receive instance xt ∈ Rd.
4: Predict ŷt = sign(wTt xt).
5: Receive correct label yt = {+1,−1}.
6: Compute instantaneous loss `t = max{0, 1− yt · wTt xt}.
7: Update wt+1 ← wt + τtytxt, where τt = `t/‖xt‖2.

In conventional online binary classification problems, the ultimate purpose of
the algorithm is to optimize the prediction error, while in the case of learning from
skewed data sets, utilizing AUC (Area Under ROC Curve) as another performance
measure is more useful. As we discussed earlier, in online binary classification al-
gorithms, the overall loss is defined as the sum of losses experienced by individual
training samples over passed rounds. However, in binary classification, in the case of
AUC optimization, the loss function is defined as the sum of the pairwise losses be-
tween two instances from different classes. Thus, optimizing AUC in online setting
turns to a challenging problem, in the sense that the algorithm needs to remember
all the received training examples from the initial round up to the current round.

In what follows, we summarize the work has been done on AUC optimization in
online setting.

105

4.5.2 Online AUC Optimization

Given a training data set S := {(xi, yi) : i = 1, · · · ,T}, we divide it into two sets:

S+ := {x : (x, y) ∈ S, y = +1} := {x+
i : i = 1, · · · ,T+}, where x+

i ∈ Rd and

S− := {x : (x, y) ∈ S, y = −1} := {x−j : j = 1, · · · ,T−}, where x−j ∈ Rd.

Hence, S+ and S− are the sets of all positive and negative samples in S–they contain
only inputs x, instead of pairs (x, y)–in which |S+| = T+ and |S−| = T−.

The AUC value of a linear classifier wTx is defined as:

FAUC
(
w;S+,S−

)
=
∑T+

i=1
∑T−

j=1 1
[
wTx+

i > wTx−j
]

T+ · T−

= 1−
∑T+

i=1
∑T−

j=1 1
[
wTx+

i ≤ wTx−j
]

T+ · T−
.

(4.21)

where 1[·] is an indicator function that takes value 1 if the argument is true and 0
otherwise. Thus, maximizing FAUC (w;S+,S−) is equivalent to minimizing

T+∑
i=1

T−∑
j=1

1
[
wTx+

i ≤ wTx−j
]

.

The indicator function 1[·] in (4.21) can be replaced with a hinge loss as a convex
surrogate loss, i.e.,

`(w;x+
i − x−j) = max{0, 1− wT (x+

i − x−j)},

and the final objective function is considered to to be:

T+∑
i=1

T−∑
j=1

`(w;x+
i − x−j),

In [64], the above formulation is rewritten into a sum of losses for individual

106

instances, so that
T∑
t=1
Lt(w),

where Lt(w) is defined as

Lt(w) = 1[yt = +1]h+
t (w) + 1[yt = −1]h−t (w),

so that
h+
t (w) =

t−1∑
t′=1

1[yt = −1]`(w;xt − x′t) and

h−t (w) =
t−1∑
t′=1

1[yt = +1]`(w;x′t − xt).

Now, if we utilize the Passive-Agressive method stated in (4.20), then the main
challenge is the need of storing all received example points so far. In [64], in order
to solve this issue, the idea of “caching a small number of positive and negative
received sample points” is presented.

Different representation of AUC function proposed in §4.3 solves the challenge
of applying online setting on AUC optimization, as discussed in the following.

4.5.3 Directly Optimizing AUC in Online Setting

As is discussed in §4.3, AUC is a smooth function of the weight vector w. Hence,
any gradient-based optimization approach can be utilized to optimize this function.
To this end, having approximate first and second moments of the distribution of
data points is required.

Practically speaking, if we are given a set of training data points S := {(xi, yi) : i =
1, · · · ,T}, where xi ∈ Rd and yi ∈ {+1,−1} are the corresponding labels, then we
just need to use these data points and compute the sample mean and covariance of
the feature vectors xi’s. Thus, no matter which kind of algorithm we are using in
our learning process, we do not need to store data points over the iterations.

In online setting, after receiving the new pair of data (xt, yt), we can update the
mean and the covariance accordingly, and update the vector w.

107

Algorithm 11 Directly Optimizing Online AUC

1: Initialize w1 ∈ Rd, x+ = 000, x− = 000, t+ = 0, and t− = 0.
2: for t = 1, 2, · · · do
3: Receive instance (xt, yt).
4: if yt = +1 then
5: x+ ← xt and t+ ← t+ + 1.
6: Update µ̂+

t , and Σ̂++
t , and Σ̂+−

t , and consequently Σ̂−+
t .

7: Set µ̂−t ← µ̂−t−1 and Σ̂−−t ← Σ̂−−t−1.
8: else
9: x− ← xt and t− ← t− + 1.

10: Update µ̂−t , and Σ̂−−t and Σ̂−+
t , and consequently Σ̂+−

t .
11: Set µ̂+

t ← µ̂+
t−1 and Σ̂++

t ← Σ̂++
t−1.

12: Update wt+1 ← arg maxw∈Rd FAUCt(w).

In Algorithm 11, FAUCt(w) denotes the AUC function obtained by using the sam-
ple mean and covariance after receiving new point xt. Sample mean and covariance
are indicated by µ̂ and Σ̂ (with different signs and indices).

Now, the question is, on round t, after obtaining new pair (xt, yt), how can
we update the sample mean and covariance (as a key procedure in Algorithm 11)
efficiently, without storing previously seen data points up to round t− 1.

First, note that considering two random variables X+ and X−, we have

µ+ = E[X+], Σ++ = Cov(X+,X+), Cov(X+,X−), and

µ− = E[X−], Σ−− = Cov(X−,X−), Cov(X−,X+) = Cov(X+,X−)T ,

where Cov(X,Y) = E
[
(X − E[X]) (Y − E[Y])T

]
.

Practically speaking, since we do not have a through knowledge about the distri-
bution of X+ and X−, we use sample mean and covariance, using the sample set S.
Generally, when we are given n number of points, the sample mean and covariance

108

are computed as what follows,

µ̂ = 1
n

n∑
i=1

xi and Σ̂ = 1
n

n∑
i=1

(xi − µ)(xi − µ)T .

In our setting, suppose we are at the end of round t−1, and we have recorded t+

and t−, as the number of positive and negative points seen so far. On round t, after
receiving new point (xt, yt), depending on the sign of yt, we need to update either
positive moments or negative ones. Suppose yt = +1 and xt = x+

t , so we need to
update µ̂+

t+ and Σ̂++
t+ as the sample mean and covariance of the positive class as well

as Σ̂+−
t as the sample covariance between positive and negative classes (Σ̂−+

t can be
updated consequently), i.e.,

µ̂+
t+ =

(t+ − 1)µ̂+
t+−1 + x+

t

t+
, Σ̂++

t+ =
(t+ − 1)Σ̂++

t+−1 + (x+
t − µ̂+

t)(x+
t − µ̂+

t)T

t+
, and

Σ̂+−
t = (t− 1)Σ̂+−

t−1 + (x+
t − µ̂+

t)(x− − µ̂−t)T
t

.
(4.22)

In Algorithm 11, one can store more than one point from each classes (as is done
in [64]) and approximate more accurate covariance matrix Σ̂+−

t between positive
and negative classes in (4.22). However, intuitively speaking, correlation between
positive and negative features is not supposed to be significant, thus, the covariance
between the positive and negative classes would not have any main effect on the
proposed method. Thus, storing more than one point from each class seems to be
a redundant effort. Along this discussion, in computational results provided in the
next section, we assumed that Σ̂+− and Σ̂−+ are zero matrices and we still obtained
a linear classifier with high AUC value via optimizing the smooth function provided
in (4.15).

109

4.5.3.1 Analyzing the Performance of Directly Optimizing AUC in On-
line Setting

As this is the case in conventional online optimization approaches, in order to mea-
sure the performance of the proposed online method in optimizing AUC, we can
compare it with the offline setting in which we have access to all data points in the
beginning of the algorithm. To this end, we define the following regret,

RT = FAUCT
(wT)− min

w∈Rd
FAUCT

(w). (4.23)

As we explained earlier, in the process of directly optimizing AUC in online
setting, after receiving a new point xt we need to update the sample mean and
covariance, as we presented in (4.22). Thus, we compute the bound on the difference
between the sample moments obtained with the access to the whole data points and
the sample moments obtained at the end of each round.

Let us just consider the positive class, any result can be similarly extended to
the negative class as well. If we have access to the whole positive data points with
size T+, then the sample mean and covariance will have the form of

µ̂+ = 1
T+

T+∑
t=1

x+
t and Σ̂++ = 1

T+

T+∑
t=1

(x+
t − µ̂+)(x+

t − µ̂+)T .

By defining the sample mean and covariance µ̂+
T+ and Σ̂++

T+ , as the ones obtained
after the last round T+, we can define the following bounds

Rmean
T+ = µ̂+ − µ̂+

T+ and Rvar
T+ = Σ̂++ − Σ̂++

T+ .

Based on the process of updating µ̂t+ at each round, we simply have Rmean
T+ = 0.

In terms of computing Rvar
T+ , first we need to consider the pattern. Let us obtain the

regret Rvar
T+ for T+ = 2 and T+ = 3.

110

For T+ = 2 we have

Σ̂++ = 1
2
(
(x+

1 − µ̂+
2)(x+

1 − µ̂+
2)T + (x+

2 − µ̂+
2)(x+

2 − µ̂+
2)T

)
and

Σ̂++
2 = 1

2
(
(x+

1 − µ̂+
1)(x+

1 − µ̂+
1)T + (x+

2 − µ̂+
2)(x+

2 − µ̂+
2)T

)
,

then
Rvar

2 = Σ̂++ − Σ̂++
2

= 1
2
(
(x+

1 − µ̂+
2)(x+

1 − µ̂+
2)T − (x+

1 − µ̂+
1)(x+

1 − µ̂+
1)T

)
.

Similarly for T+ = 3 we have

Σ̂++ = 1
3
(
(x+

1 − µ̂+
3)(x+

1 − µ̂+
3)T + (x+

2 − µ̂+
3)(x+

2 − µ̂+
3)T + (x+

3 − µ̂+
3)(x+

3 − µ̂+
3)T

)
and

Σ̂++
3 = 1

3
(
2Σ̂++

2 + (x+
3 − µ̂+

3)(x+
3 − µ̂+

3)T
)

= 1
3
(
(x+

1 − µ̂+
1)(x+

1 − µ̂+
1)T + (x+

2 − µ̂+
2)(x+

2 − µ̂+
2)T + (x+

3 − µ̂+
3)(x+

3 − µ̂+
3)T

)
,

which results

Rvar
3 = Σ̂++ − Σ̂++

3

= 1
3
(
(x+

1 − µ̂+
3)(x+

1 − µ̂+
3)T − (x+

1 − µ̂+
1)(x+

1 − µ̂+
1)T

)
+ 1

3
(
(x+

2 − µ̂+
3)(x+

2 − µ̂+
3)T − (x+

2 − µ̂+
2)(x+

2 − µ̂+
2)T

)
.

(4.24)

If for all t = t, · · · ,T+ we define αt and βt as

µ̂+
T+ = µ̂+

t + αt and xt = µ̂+
t + βt ∀t = 1, · · · ,T+,

111

then we can conclude

Rvar
T+ = 1

T+

T+∑
t=1

(x+
t − µ̂+

T+)(x+
t − µ̂+

T+)T −
T+∑
t=1

(x+
t − µ̂+

t)(x+
t − µ̂+

t)T

= 1
T+

T+∑
t=1

(x+
t − µ̂+

t − αt)(x+
t − µ̂+

t − αt)T −
T+∑
t=1

(x+
t − µ̂+

t)(x+
t − µ̂+

t)T

= 1
T+

T+∑
t=1

(
−(x+

t − µ̂+
t)αTt − αt(x+

t − µ̂+
t)T + αtα

T
t

)

= 1
T+

T+∑
t=1

(
−βtαTt − αtβTt + αtα

T
t

)
.

If we define M = max{‖αt‖, ‖βt‖}t=1,··· ,T+ , then we have ‖Rvar
T+ ‖ = 3M2.

4.6 Numerical Experiments

First we compare the performance of the linear classifiers obtained by directly op-
timizing the expected risk versus those obtained by regularized logistic regression.
We use gradient descent as is stated in Algorithm 12.

Algorithm 12 Gradient Descent with Backtracking Line Search

1: Initialize w0 ∈ Rd, and choose c ∈ (0, 1), and β ∈ (0, 1).
2: for i = 1, 2, · · · do
3: Choose α0

k and define αk := α0
k.

4: Compute the trial point

wtrialk ← wk−1 − αk∇wF (wk).

5: while F (wtrialk) > F (wk) + cαk‖∇wF (wk)‖2 do
6: Set αk ← βαk.
7: Compute wtrialk ← wk−1 − αk∇wF (wk).

8: Set wk ← wtrialk .

112

We perform Algorithm 12 to F (w) = Ferror(w) defined in (4.9), and to F (w) =
Flog(w) defined in (4.3).

Ferror(w) is a nonconvex function, thus in an attempt to avoid bad local minima
we generate a starting point as follows

w0 = w̄0

‖w̄0‖
, where w̄0 = µ+ − µ−

T
µ+

‖µ−‖2 µ
−.

We set the parameters of Algorithm 12 as c = 10−4, β = 0.5, and σ0
k = 1 and ter-

minate the algorithm when ‖∇wF (wk)‖ < 10−7‖∇wF (w0)‖ or when the maximum
number of iterations 250 is reached. For the logistic regression, the regularization
parameter in (4.3) is set as λ = 1/n, and the initial point w0 is selected randomly,
since the optimization problem is convex.

All experiments, implemented in Python 2.7.11, were performed on a computa-
tional cluster consisting of 16-cores AMD Operation, 2.0 GHz nodes with 32 Gb of
memory.

We considered artificial data sets generated from normal distribution and real
data sets. We have generated 9 different artificial Gaussian data sets of various di-
mensions using random first and second moments, summarized in Table 4.1. More-
over, we generated data sets with some percentage of outliers by swapping a specified
percentage of positive and negative examples.

The corresponding numerical results are summarized in Table 4.2, where we
used 80 percent of the data points as the training data and the rest as the test
data. The reported average accuracy is based on 20 runs for each data set. When
minimizing Ferror(w), we used the exact moments from which the data set was
generated, and also the approximate moments, empirically obtained through the
sampled data points.

We see in Table 4.2 that, as expected, minimizing Ferror(w) using the exact mo-
ments produces linear classifiers with superior performance overall, while minimiz-
ing Ferror(w) using approximate moments outperforms minimizing Flog(w). In Table
4.2, the bold numbers indicate the average testing accuracy attained by minimiz-
ing Ferror(w) using approximate moments, when this accuracy is significantly better

113

Table 4.1: Artificial data sets statistics. d : number of features, n : number of data
points,

P+,P− : prior probabilities, out : percentage of outlier data points.

Name d n P+ P− out%
data1 500 5000 0.05 0.95 0
data2 500 5000 0.35 0.65 5
data3 500 5000 0.5 0.5 10
data4 1000 5000 0.15 0.85 0
data5 1000 5000 0.4 0.6 5
data6 1000 5000 0.5 0.5 10
data7 2500 5000 0.1 0.9 0
data8 2500 5000 0.35 0.65 5
data9 2500 5000 0.5 0.5 10

than that obtained by minimizing Flog(w). Note also that minimizing Ferror(w)
requires less time than minimizing Flog(w).

Table 4.2: Ferror(w) vs. Flog(w) minimization via Algorithm 12 on artificial data sets.

Data
Ferror(w)Ferror(w)Ferror(w) Minimization Ferror(w)Ferror(w)Ferror(w) Minimization Flog(w)Flog(w)Flog(w) Minimization

Exact moments Approximate moments
Accuracy ± std Time (s) Accuracy ± std Time (s) Accuracy ± std Time (s)

data1 0.9965±0.0008 0.25 0.9907±0.0014 1.04 0.9897±0.0018 3.86
data2 0.9905±0.0023 0.26 0.9806±0.0032 0.86 0.9557±0.0049 13.72
data3 0.9884±0.0030 0.03 0.9745±0.0037 1.28 0.9537±0.0048 15.79
data4 0.9935±0.0017 0.63 0.9791±0.0034 5.51 0.9782±0.0031 10.03
data5 0.9899±0.0026 5.68 0.9716±0.0048 10.86 0.9424±0.0055 28.29
data6 0.9904±0.0017 0.83 0.9670±0.0058 5.18 0.9291±0.0076 25.47
data7 0.9945±0.0019 4.79 0.9786±0.0028 32.75 0.9697±0.0031 43.20
data8 0.9901±0.0013 9.96 0.9290±0.0045 119.64 0.9263±0.0069 104.94
data9 0.9899±0.0028 1.02 0.9249±0.0096 68.91 0.9264±0.0067 123.85

Further, we used 19 real data sets downloaded from LIBSVM website1 and UCI
machine learning repository2, summarized in Table 4.3. We have normalized the
data sets so that each dimension has mean 0 and variance 1. The data sets from UCI
machine learning repository with categorical features are transformed into grouped

1https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html
2http://archive.ics.uci.edu/ml/

114

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://archive.ics.uci.edu/ml/

binary features.

Table 4.3: Real data sets statistics. d : number of features, n : number of data points,
P+,P− : prior probabilities, AC : attribute characteristics.

Name AC d n P+ P−

fourclass [−1, 1], real 2 862 0.35 0.65
svmguide1 [−1, 1], real 4 3089 0.35 0.65
diabetes [−1, 1], real 8 768 0.35 0.65
shuttle [−1, 1], real 9 43500 0.22 0.78
vowel [−6, 6], int 10 528 0.09 0.91

magic04 [−1, 1], real 10 19020 0.35 0.65
poker [1, 13], int 11 25010 0.02 0.98
letter [0, 15], int 16 20000 0.04 0.96

segment [−1, 1], real 19 210 0.14 0.86
svmguide3 [−1, 1], real 22 1243 0.23 0.77

ijcnn1 [−1, 1], real 22 35000 0.1 0.9
german [−1, 1], real 24 1000 0.3 0.7

landsat satellite [27, 157], int 36 4435 0.09 0.91
sonar [−1, 1], real 60 208 0.5 0.5
a9a binary 123 32561 0.24 0.76
w8a binary 300 49749 0.02 0.98

mnist [0, 1], real 782 100000 0.1 0.9
colon-cancer [−1, 1], real 2000 62 0.35 0.65

gisette [−1, 1], real 5000 6000 0.49 0.51

Table 4.4 summarizes the performance comparison between the linear classifiers
obtained by minimizing Ferror(w) versus Flog(w). We used five-fold cross-validation
and repeated each experiment four times, and the average test accuracy over the 20
runs are reported for each problem.

115

Table 4.4: Ferror(w) vs. Flog(w) minimization via Algorithm 12 on real data sets.

Data
Ferror(w)Ferror(w)Ferror(w) Minimization Flog(w)Flog(w)Flog(w) Minimization
Accuracy ± std Time (s) Accuracy ± std Time (s)

fourclass 0.8782±0.0162 0.02 0.8800±0.0147 0.12
svmguide1 0.9735±0.0047 0.42 0.9506±0.0070 0.28
diabetes 0.8832±0.0186 1.04 0.8839±0.0193 0.13
shuttle 0.8920±0.0015 0.01 0.9301±0.0019 4.05
vowel 0.9809±0.0112 0.91 0.9826±0.0088 0.11

magic04 0.8867±0.0044 0.66 0.8925±0.0041 1.75
poker 0.9897±0.0008 0.17 0.9897±0.0008 10.96
letter 0.9816±0.0015 0.01 0.9894±0.0009 4.51

segment 0.9316±0.0212 0.17 0.9915±0.0101 0.36
svmguide3 0.9118±0.0136 0.39 0.8951±0.0102 0.17

ijcnn1 0.9512±0.0011 0.01 0.9518±0.0011 4.90
german 0.8780±0.0125 1.09 0.8826±0.0159 0.62

landsat satellite 0.9532±0.0032 0.01 0.9501±0.0049 3.30
sonar 0.8926±0.0292 0.49 0.8774±0.0380 0.92
a9a 0.9193±0.0021 0.98 0.9233±0.0020 11.45
w8a 0.9851±0.0005 0.36 0.9876±0.004 24.16

mnist 0.9909±0.0004 3.79 0.9938±0.0004 136.83
colon-cancer 0.9364±0.0394 15.92 0.8646±0.0555 1.20

gisette 0.9782±0.0025 310.72 0.9706±0.0036 136.71

As we can see in Table 4.4, the linear classifier obtained by minimizing Ferror(w)
has comparable test accuracy to the one obtained from minimizing Flog(w) in 13
cases out of 19. In four cases minimizing Ferror(w) surpasses minimizing Flog(w)
in terms of the average test accuracy, while performs worse in the case of the two
remaining data sets. Finally, we note that the solution time of optimizing Ferror(w)
is significantly less than that of optimizing Flog(w) when d is smaller than n.

116

Figure 4.1 illustrates the progress of the linear classifiers obtained through these
two different approaches in terms of the average test accuracy over iterations. In
Figure 4.1 we selected the data sets in which minimizing Ferror(w) has a better
performance in terms of the final test accuracy compared to minimizing Flog(w) or
vice versa. We note that in two cases where optimizing Ferror(w) performs worse
than minimizing Flog(w), the algorithm achieved its best Ferror(w) value during the
first few iterations and then stalled. This may be due to the inaccurate gradient or
simply a local minimum. Further, an illustration of the distribution of wTX+ and
wTX− for a randomly chosen weight vector w can be found in Appendix B.

117

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

Minimizing F
log

Minimizing F
error

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

Figure 4.1: Performance of minimizing Ferror(w) vs. Flog(w) via Algorithm 12.
118

We now turn to comparing the performance of linear classifiers obtained by
optimizing the AUC function, e.g., F (w) = FAUC(w) defined in (4.15) and its ap-
proximation via pairwise hinge loss, e.g., F (w) = Fhinge(w) as is defined in (4.6).
The setting of the parameters and the type of the artificial and real data sets are
the same as in Tables 4.1 and 4.3.

The results for artificial data sets are summarized in Table 4.5 as the same
manner of Table 4.2, except that we report the AUC value as the performance
measure of the resulting classifiers. As we can see in Table 4.5, in the process of
minimizing FAUC(w), the only advantage of using the exact moments rather than the
approximate moments is in terms of the solution time, since both approaches result
in comparable average AUC values. On the other hand, the performance of the
linear classifier obtained through minimizing FAUC(w) using approximate moments
surpasses that of the classifier obtained via minimizing Fhinge(w), both in terms of
the average AUC value as well as the required solution time.

Table 4.5: FAUC(w) vs. Fhinge(w) minimization via Algorithm 12 on artificial data sets.

Data
FAUC(w)FAUC(w)FAUC(w) Minimization FAUC(w)FAUC(w)FAUC(w) Minimization Fhinge(w)Fhinge(w)Fhinge(w) Minimization

Exact moments Approximate moments
AUC ± std Time (s) AUC ± std Time (s) AUC ± std Time (s)

data1 0.9972±0.0014 0.01 0.9941±0.0027 0.23 0.9790±0.0089 5.39
data2 0.9963±0.0016 0.01 0.9956±0.0018 0.22 0.9634±0.0056 159.23
data3 0.9965±0.0015 0.01 0.9959±0.0018 0.24 0.9766±0.0041 317.44
data4 0.9957±0.0018 0.02 0.9933±0.0022 0.83 0.9782±0.0054 23.36
data5 0.9962±0.0011 0.02 0.9951±0.0013 0.80 0.9589±0.0068 110.26
data6 0.9962±0.0013 0.02 0.9949±0.0015 0.82 0.9470±0.0086 275.06
data7 0.9965±0.0021 0.08 0.9874±0.0034 4.61 0.9587±0.0092 28.31
data8 0.9966±0.0008 0.07 0.9929±0.0017 4.54 0.9514±0.0051 104.16
data9 0.9962±0.0014 0.08 0.9932±0.0020 4.54 0.9463±0.0085 157.62

Table 4.6 summarizes the results on real data sets, in a manner similar to Table
4.4, while, again using AUC of the resulting classifier as the performance measure.
As we can see in Table 4.6, the average AUC values of the linear classifiers obtained

119

through minimizing FAUC(w) and Fhinge(w) are comparable in 14 cases out of 19,
in four cases minimizing FAUC(w) performs better than minimizing Fhinge(w) in
terms of the average test AUC, while their performance is worse in the remaining
two cases, where the algorithm stalled after a few iterations of optimizing FAUC(w)
as is shown in Figure 4.2. In terms of solution time, minimizing FAUC(w) signifi-
cantly outperforms minimizing Fhinge(w), due to the high per-iteration complexity
dependence on n of Fhinge(w) minimization.

Table 4.6: FAUC(w) vs. Fhinge(w) minimization via Algorithm 12 on real data sets.

Data FAUC(w)FAUC(w)FAUC(w) Minimization Fhinge(w)Fhinge(w)Fhinge(w) Minimization
AUC ± std Time (s) AUC ± std Time (s)

fourclass 0.8362±0.0312 0.01 0.8362±0.0311 6.81
svmguide1 0.9717±0.0065 0.06 0.9863±0.0037 35.09
diabetes 0.8311±0.0311 0.03 0.8308±0.0327 12.48
shuttle 0.9872±0.0013 0.11 0.9861±0.0017 2907.84
vowel 0.9585±0.0333 0.12 0.9765±0.0208 2.64

magic04 0.8382±0.0071 0.11 0.8419±0.0071 1391.29
poker 0.5054±0.0224 0.11 0.5069±0.0223 1104.56
letter 0.9830±0.0029 0.12 0.9883±0.0023 121.49

segment 0.9948±0.0035 0.21 0.9992±0.0012 4.23
svmguide3 0.8013±0.0420 0.34 0.7877±0.0432 23.89

ijcnn1 0.9269±0.0036 0.08 0.9287±0.0037 2675.67
german 0.7938±0.0292 0.14 0.7919±0.0294 32.63

landsat satellite 0.7587±0.0160 0.43 0.7458±0.0159 193.46
sonar 0.8214±0.0729 0.88 0.8456±0.0567 2.15
a9a 0.9004±0.0039 0.92 0.9027±0.0037 15667.87
w8a 0.9636±0.0055 0.54 0.9643±0.0057 5353.23

mnist 0.9943±0.0009 0.64 0.9933±0.0009 28410.2393
colon-cancer 0.8942±0.1242 2.50 0.8796±0.1055 0.05

gisette 0.9957±0.0015 31.32 0.9858±0.0029 3280.38

120

0 50 100 150 200 250

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250

0.6

0.65

0.7

0.75

0.8

Minimizing F
hinge

Minimizing F
AUC

0 50 100 150 200 250

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4.2: Performance of minimizing FAUC(w) vs. Fhinge(w) via Algorithm 12.
121

4.7 Conclusion

In this work, we showed that under the Gaussian assumption, the expected predic-
tion error and AUC of linear predictors in binary classification are smooth functions
whose derivatives can be computed using the first and second moments of the re-
lated normal distribution. We then show that empirical moments of real data sets
(not necessarily Gaussian) can be utilized to obtain approximate derivatives. This
implies that gradient-based optimization approach can be used to optimize the pre-
diction error and AUC function. In this work, for simplicity, we used gradient
descent with backtracking line search and we demonstrated the efficiency of directly
optimizing prediction error and AUC function compared to their approximations–
logistic regression and pairwise hinge loss, respectively. The main advantage of these
approaches is that the proposed objective functions and their derivatives are inde-
pendent of the size of the data sets. Clearly more efficient second-order methods
can also be utilized for optimizing these functions, which is a subject for the future
research.

122

Appendix A

Numerical Comparison vs. LDA

In the following we provide the numerical results comparing minimizing Ferror(w)
and Flog(w) versus LDA, while using the artificial data sets as well as real data sets.

Table A.1: Ferror(w) and Flog(w) minimization via Algorithm 12 vs. LDA on artificial
data sets.

Data
Ferror(w)Ferror(w)Ferror(w) Minim. Ferror(w)Ferror(w)Ferror(w) Minim. Flog(w)Flog(w)Flog(w) Minim. LDA
Exact moments Approximate moments
Accuracy ± std Accuracy ± std Accuracy ± std Accuracy ± std

data1 0.9965±0.0008 0.9907±0.0014 0.9897±0.0018 0.9851±0.0035
data2 0.9905±0.0023 0.9806±0.0032 0.9557±0.0049 0.9670±0.0057
data3 0.9884±0.0030 0.9745±0.0037 0.9537±0.0048 0.9630±0.0081
data4 0.9935±0.0017 0.9791±0.0034 0.9782±0.0031 0.9672±0.0049
data5 0.9899±0.0026 0.9716±0.0048 0.9424±0.0055 0.9455±0.0074
data6 0.9904±0.0017 0.9670±0.0058 0.9291±0.0076 0.9417±0.0085
data7 0.9945±0.0019 0.9786±0.0028 0.9697±0.0031 0.9086±0.0137
data8 0.9901±0.0013 0.9290±0.0045 0.9263±0.0069 0.8526±0.0182
data9 0.9899±0.0028 0.9249±0.0096 0.9264±0.0067 0.8371±0.0149

123

Table A.2: Ferror(w) and Flog(w) minimization via Algorithm 12 vs. LDA on real data
sets.

Data
Ferror(w)Ferror(w)Ferror(w) Minimization Flog(w)Flog(w)Flog(w) Minimization LDA

Accuracy ± std Accuracy ± std Accuracy ± std
fourclass 0.8782±0.0162 0.8800±0.0147 0.7572±0.0314

svmguide1 0.9735±0.0047 0.9506±0.0070 0.8972±0.0159
diabetes 0.8832±0.0186 0.8839±0.0193 0.7703±0.0366
shuttle 0.8920±0.0015 0.9301±0.0019 0.9109±0.0027
vowel 0.9809±0.0112 0.9826±0.0088 0.9600±0.0224

magic04 0.8867±0.0044 0.8925±0.0041 0.7841±0.0093
poker 0.9897±0.0008 0.9897±0.0008 0.9795±0.0017
letter 0.9816±0.0015 0.9894±0.0009 0.9711±0.0029

segment 0.9316±0.0212 0.9915±0.0101 0.9617±0.0331
svmguide3 0.9118±0.0136 0.8951±0.0102 0.8238±0.0259

ijcnn1 0.9512±0.0011 0.9518±0.0011 0.9081±0.0029
german 0.8780±0.0125 0.8826±0.0159 0.7675±0.0275

landsat satellite 0.9532±0.0032 0.9501±0.0049 0.9061±0.0065
sonar 0.8926±0.0292 0.8774±0.0380 0.7622±0.0499
a9a 0.9193±0.0021 0.9233±0.0020 0.8452±0.0038
w8a 0.9851±0.0005 0.9876±0.004 0.9839±0.0012

mnist 0.9909±0.0004 0.9938±0.0004 0.9778±0.0013
colon cancer 0.9364±0.0394 0.8646±0.0555 0.8875±0.0985

gisette 0.9782±0.0025 0.9706±0.0036 0.5875±0.0207

124

Appendix B

Illustration of the Linear
Transformation of an Arbitrary
Random Variable

Figures B.1 and B.2 show the performance of directly optimizing expected error
versus logistic regression, and the distribution of wTX+ and wTX− for a randomly
chosen weight vector w.

125

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

Minimizing F
log

Minimizing F
error

-40 -20 0 20 40

0

2

4

6

8

10

12

14

-51 -33 -15 3 21 39

0

2

4

6

8

10

-0.4 -0.2 0 0.2 0.4

0

200

400

600

800

1000

1200

-0.3 -0.2 -0.1 0 0.1 0.2

0

500

1000

1500

2000

2500

3000

Figure B.1: Illustration of linear transformation of positive and negative variables.
126

0 50 100 150 200 250

0.8

0.85

0.9

0.95

0 50 100 150 200 250

0.7

0.75

0.8

0.85

0.9

0.95

1

-4 -2 0 2 4 6

0

50

100

150

200

250

300

-4 -2 0 2 4 6

0

100

200

300

400

500

200 250 300 350 400

0

20

40

60

0 100 200 300 400 500 600

0

50

100

150

Figure B.2: Illustration of linear transformation of positive and negative variables.

127

Bibliography

[1] A. A. Cassioli and F. Schoen. Global optimization of expensive black-box
problems with a known lower bound. Journal of Global Optimization, 57:177–
190, 2013.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM, 2:183–202, 2009.

[3] P. Billingsley. Probability and Measure. A Wiley-Interscience Publication, 1995.

[4] S. C. Billups and J. Larson. Stochastic derivative-free optimization using a
trust region framework. J. Computational Optimization and Apps, 64(2):619–
645, 2016.

[5] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence
rate analysis of a stochastic trust region method for nonconvex optimization.
https: // arxiv. org/ pdf/ 1609. 07428 , 2016.

[6] E. Brochu, V.M. Cora, and N. de Freitas. A tutorial on Bayesian optimiza-
tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. eprint arXiv:1012.2599, arXiv.org, 2010.

[7] R. Byrd, J. Nocedal, and F. Oztoprak. An inexact successive quadratic approx-
imation method for convex `1-regularized optimization. Mathematical Program-
ming, 157:375–396, 2016.

128

https://arxiv.org/pdf/1609.07428

[8] R. H Byrd, J. Nocedal, and R. B Schnabel. Representations of quasi Newton
matrices and their use in limited memory methods. Mathematical Programming,
63:129–156, 1994.

[9] G. Casella and R.L. Berger. Statistical Inference. Pacific Grove, CA: Duxbury,
2, 2002.

[10] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using
a trust-region method and random models. Mathematical Programming, 169:
447–287, 2018.

[11] A. R. Conn, K. Scheinberg, and Ph. L. Toint. Recent progress in unconstrained
nonlinear optimization without derivatives. Mathematical Programming, 79:
397–414, 1997.

[12] A. R. Conn, N. I. M. Gould, and P. T. Toint. Trust Region Methods. MPS/SIAM
Series on Optimization. SIAM, Philadelphia, 2000.

[13] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction To Derivative-Free
Optimization. Society for Industrial and Applied Mathematics. Philadelphia,
2009.

[14] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:
273–297, 1995.

[15] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7:551–
585, 2006.

[16] S. Lemeshow D. W. Hosmer. Applied Logistic Regression. 2nd edition, 2000.

[17] D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear
convergence of proximal methods. To appear in Math. Oper. Res., 2017.

[18] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. H. Hoos,
and K. L. Brown. Towards an empirical foundation for assessing bayesian

129

optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization
in Theory and Practice, 2013.

[19] N. I. Fisher and P. K. Sen. The central limit theorem for dependent random
variables. in The Collected Works of Wassily Hoeffding, New York:Springer-
Verlag, pages 205–213, 1994.

[20] N. I. Fisher and P. K. Sen. The central limit theorem for dependent random
variables. in The Collected Works of Wassily Hoeffding, New York:Springer-
Verlag, pages 205–213, 1994.

[21] H. M. Gutmann. A radial basis function method for global optimization. Jour-
nal of Global Optimization, 19:201–227, 2001.

[22] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 1982.

[23] C. J. Hsieh, M. Sustik, I. Dhilon, and P. Ravikumar. Sparse inverse covariance
matrix estimation using quadratic approximation. NIPS, pages 2330–2338,
2011.

[24] A. J. Izenman. Modern Multivariate Statistical Techniques. Springer Texts in
Statistics, 2013.

[25] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification
and hyperparameter optimization. https: // arxiv. org/ pdf/ 1502. 07943 ,
2015.

[26] K. Jiang, D. Sun, and K. Toh. An inexact accelerated proximal gradient method
for large scale linearly constrained convex SDP. SIAM, 22:1042–1064, 2012.

[27] T. Joachims. Training linear SVMs in linear time. In ACM SIGKDD, pages
217–226, 2006.

130

https://arxiv.org/pdf/1502.07943

[28] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization
without the lipschitz constant. J. Optimization Theory and Apps, 79:157–181,
1993.

[29] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of
expensive black-box functions. J. Global Optimization, 13:455–492, 1998.

[30] J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for
convex optimization for minimizing composite functions. SIAM J. Optim., 24:
1420–1443, 2014.

[31] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization.
https: // arxiv. org/ abs/ 1603. 06560 , 2016.

[32] W. J. Welch M. Schonlau and D. R. Jones. Global versus local search in
constrained optimization of computer models. In New Developments and Ap-
plications in Experimental Design, 34:11–25, 1998.

[33] H. B. Mann and D. R. Whitney. On a test whether one of two random variables
is stochastically larger than the other. Ann. Math. Statist, 18:50–60, 1947.

[34] J. Mockus. Application of bayesian approach to numerical methods of global
and stochastic optimization. J. Global Optimization, 4:347–365, 1994.

[35] J. J. More and S. M. Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM J. Optim, 20:172–191, 2009.

[36] A. Nemirovski and D. Yudin. Informational complexity and efficient methods
for solution of convex extremal problems. J. Wiley and Sons, New York, 1983.

[37] Y. E. Nesterov. A method for solving the convex programming problem with
convergence rate O(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

[38] Y. E. Nesterov. Introductory Lectures on Convex Programming: A Basic
Course. Springer, 2004.

131

https://arxiv.org/abs/1603.06560

[39] Y. E. Nesterov. Smooth minimization for non-smooth functions. Mathematical
Programming, 103:127–152, 2005.

[40] Y. E. Nesterov. Gradient methods for minimizing composite objective function.
Mathematical Programming, 140:125–161, 2013.

[41] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Oper-
ations Research. Springer, New York, NY, USA, 2nd edition, 2006.

[42] P. A. Olsen, F. Oztoprak, J. Nocedal, and S. J. Rennie. Newton-like methods
for sparse inverse covariance estimation. NIPS, pages 764–772, 2012.

[43] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an
application to face detection. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 130–136, 1997.

[44] M. J. D. Powell. Least Frobenius norm updating of quadratic models that sat-
isfy interpolation conditions. Mathematical Programming, 100:183–215, 2004.

[45] P. Richtarik and M. Takac. Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function. Mathematical
Programming, 144:1–38, 2014.

[46] C. Rudin and R. E. Schapire. Margin-based ranking and an equivalence between
adaboost and rankboost. Journal of Machine Learning Research, 10:2193–2232,
2009.

[47] K. Scheinberg and I. Rish. A greedy coordinate ascent method for sparse inverse
covariance selection problem. SINCO, Technical Report, 2009.

[48] K. Scheinberg and X. Tang. Practical inexact proximal quasi-Newton method
with global complexity analysis. Mathematical Programming, 160:495–529,
2016.

132

[49] K. Scheinberg and Ph. L. Toint. Self-correcting geometry in model-based algo-
rithms for derivative-free unconstrained optimization. SIAM J. Optim, 20(6):
3512–3532, 2010.

[50] K. Scheinberg, D. Goldfarb, and X. Bai. Fast first-order methods for composite
convex optimization with backtracking. Foundation of Mathematics, 14:389–
417, 2014.

[51] M. Schmidt, N. L. Roux, and F. Bach. Supplementary material for the paper
convergence rates of inexact proximal-gradient methods for convex optimiza-
tion. NIPS, 2011.

[52] M. Schmidt, N. L. Roux, and F. Bach. Convergence rate of inexact proximal-
gradient method for convex optimization. NIPS, pages 1458–1466, 2011.

[53] B. Scholkopf, A. Smola, K. R. Muller, C. J. C. Burges, and V. Vapnik. Support
vector methods in learning and feature extraction. In Ninth Australian Congress
on Neural Networks, 1998.

[54] S. Shalev-Shwartz and A. Tewari. Stochastic methods for `1−regularized loss
minimization. ICML, pages 929–936, 2009.

[55] S. Shashaani, F. S. Hashemi, and R. Pasupathy. ASTRO-DF: A class of
adaptive sampling trust-region algorithms for derivative-free simulation opti-
mization. https: // arxiv. org/ pdf/ 1610. 06506 , 2015.

[56] S. Sra, S. Nowozin, and S.J. Wright. Optimization for Machine Learning. Mit
Pr, 2011.

[57] H. Steck. Hinge rank loss and the area under the ROC curve. In ECML,
Lecture Notes in Computer Science, pages 347–358, 2007.

[58] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, Methodological, 58:267–288, 1996.

133

https://arxiv.org/pdf/1610.06506

[59] Y.L. Tong. The multivariate normal distribution. Springer Series in Statistics,
1990.

[60] P. Tseng. On accelerated proximal gradient methods for convex-concave opti-
mization. Technical Report, 2008.

[61] S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact forward-
backward algorithms. SIAM, 23:1607–1633, 2011.

[62] L. Yan, R. Dodier, M.C. Mozer, and R. Wolniewicz. Optimizing classifier per-
formance via approximation to the wilcoxon-mann-witney statistic. Proceedings
of the Twentieth Intl. Conf. on Machine Learning, AAAI Press, Menlo Park,
CA, pages 848–855, 2003.

[63] G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of
optimization methods and software for large-scale `1-regularized linear classifi-
cation. JMLR, 11:3183–3234, 2010.

[64] P. Zhao, S. Hoi, R. Jin, and T. Yang. Online auc maximization. In Proc. of
the 28th Int. Conf. on Machine Learning (ICML). Omnipress, pages 233–240,
2011.

[65] P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang. Online AUC maximization. In
Proceedings of the 28th ICML, Bellevue, WA, USA, 2011.

134

Biography

Hiva Ghanbari, Ph.D., joined the Department of Industrial & Systems Engineering
at Lehigh University in 2013. She received her Bachelors and Masters degrees in
Industrial Engineering from Sharif University of Technology, Tehran, Iran in 2012.
Her research focuses on different aspects of optimization algorithms designed for
machine learning problems.

Education

• Lehigh University, Ph.D., Bethlehem, PA, USA, 2013–2019.

• Sharif University of Technology, M.Sc., Tehran, Iran, 2010–2012.

• Sharif University of Technology, B.Sc., Tehran, Iran, 2006–2010.

Honors and Awards

• Van Hoesen Family Best Publication Award, Lehigh University, 2018.

• Ph.D. Student of the Year, Lehigh University, 2015.

• INFORMS Magna Cum Laude award for Lehigh University INFORMS Stu-
dent Chapter, 2015.

• Rossin Doctoral Fellowship, Lehigh University, 2015–2018.

• Dean’s Doctoral Student Assistantship, Lehigh University, 2013.

135

• Exceptionally Talented Student, awarded direct entrance to graduate studies
with full scholarship by Dean of Sharif University of Technology, 2010.

• Ranked in the top 1% of the National University Entrance Examination of
Mathematics Major, awarded full scholarship by Dean of Sharif University of
Technology, 2006.

136

	Lehigh University
	Lehigh Preserve
	2019

	Optimization Algorithms for Machine Learning Problems
	Hiva Ghanbari
	Recommended Citation

	List of Tables
	List of Figures
	Abstract
	Introduction
	Proximal Quasi-Newton Methods for Regularized Convex Optimization
	Introduction
	Notation and Preliminaries
	Proximal Quasi-Newton Algorithm under Strong Convexity
	Convergence Analysis
	Exact Case (First Approach)
	Inexact Case (First Approach)
	Inexact Case (Second Approach)

	Solving Subproblems via Randomized Coordinate Descent

	Accelerated Proximal Quasi-Newton Algorithm
	Algorithm Description
	Convergence Analysis

	Numerical Experiments
	Conclusion

	Black-Box Optimization in Machine Learning
	Introduction
	Algorithmic Framework of DFO-TR
	Bayesian Optimization versus DFO-TR
	Numerical Experiments
	Optimizing Smooth, NonConvex Benchmark Functions
	Optimizing the AUC Function
	Stochastic versus Deterministic DFO-TR

	Hyperparameter Tuning of Cost-Sensitive RBF-Kernel SVM
	Hyperparameter Tuning of Cost-Sensitive Logistic Regression

	Conclusion

	Directly Optimizing Prediction Error and AUC
	Introduction
	Preliminaries and Problem Description
	Prediction Error and AUC as Smooth Functions
	Prediction Error as Smooth Function in the Case of Data Sets with any Arbitrary Distribution
	Directly Optimizing Expected Error for Data with Not Identically Distributed Independent Features
	Directly Optimizing Expected Error for Data with Not Identically Distributed Dependent Features

	Online AUC Optimization
	Online Binary Classification Framework
	Online AUC Optimization
	Directly Optimizing AUC in Online Setting
	Analyzing the Performance of Directly Optimizing AUC in Online Setting

	Numerical Experiments
	Conclusion

	Numerical Comparison vs. LDA
	Illustration of the Linear Transformation of an Arbitrary Random Variable
	Biography

