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Abstract 

Amorphous oxide semiconductors are a new class of materials with electrical and 

optical characteristics uniquely suited to large area flexible electronics. In particular, 

amorphous indium-gallium-zinc oxide (a-IGZO) thin films have garnered considerable 

interest due to room temperature processing, large area uniformity and visible 

transparency. These are ideal traits for using them as active layers in thin film transistors 

(TFTs) which form the backbone of active matrix display and other large area electronic 

applications; however, for these devices to be commercially viable, an in-depth analysis 

of device operation and reliability is warranted.  

In this dissertation we present fabrication and characterization of RF sputtered     

a-IGZO TFTs on flexible metal foils. Dimensionally stable flexible steel foils allows 

greater freedom to integrate small feature TFTs for high performance analog and digital 

circuitry and active matrix based display system. Compared to a-Si:H TFTs, a-IGZO 

TFTs have a much higher field-effect mobility (µFE=7~15 cm2/Vs), a low threshold 

voltage (VT~0V) exhibiting enhancement mode operation, excellent switching properties 

(subthreshold swing ~370mV/dec), low Off-current level (around 10 pA) and a small 

parasitic series resistance employing Mo as source/drain electrode without the need of 

additional contact doping. Nonlinearity of the TFT transfer characteristics (IDS-VGS) in a-

IGZO TFTs manifests in a gate bias (VGS) dependent field-effect mobility due to the 

finite conduction band-tail slope in a-IGZO. The field-effect mobility is weakly thermally 

activated with an activation energy around 15 meV, while the threshold voltage linearly  
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decreases with temperature with a coefficient of -17.5 mV/°C. In these TFTs, 

minimal hole accumulation occurs which bodes well for greater control of threshold 

voltage. The interface of SiO2/a-IGZO is probed with a subthreshold slope technique with 

extracted interface trap density, Dit values near the conduction band edge to be around 

5x1013     cm-2eV-1. The origin of the low frequency noise of a-IGZO TFTs with SiO2 

gate dielectric is identified as a generation-recombination (g-r) noise component at drain 

currents below 5 nA and a pure 1/f noise at higher drain currents.  

To address the reliability issues in a-IGZO TFTs, electrical instability due to DC 

bias-temperature stress is studied. A novel low temperature N2O plasma treatment is 

developed and shown to have remarkable effects in suppressing threshold voltage shift 

(ΔVT) which improves device stability. A stretched exponential model originally 

developed for a-Si:H TFTs has been successfully applied to describe the bias stress 

instability mechanisms for plasma treated a-IGZO TFTs. It is suggested that post N2O 

treatment passivates the interface states and homogenizes the poor quality a-IGZO film 

with reduced sub-gap defect density.  

The effect of mechanical strain on the performance of a-IGZO TFTs and circuits 

is systematically investigated which can provide a better understanding of IGZO TFT 

performance when flexed. A whole range of circuits and systems based on a-IGZO TFTs 

are demonstrated which validates the technological importance of this material. The 

relative high performance of the discussed circuits bodes well for on-panel monolithic 

integration of more involved circuits to drive active matrix displays or other large area 

electronic systems.  
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Chapter 1 

Amorphous Oxide Based Semiconductor 

Materials for TFTs and Large Area 

Electronic Applications  
 
 
 
 
 
1.1 Introduction 

In recent years great strides have been taken in the development of thin film 

transistors (TFTs) using nonconventional materials such as transition metal oxide 

conductors and semiconductors. These transition metal oxides are a special class of 

materials with high transparency in the visible spectrum and controllable carrier 

concentration. This is unique since transparency and conductivity are thought to be 

somewhat mutually exclusive as the high band gap (>3 eV) makes carrier doping  
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challenging. The use of these metal oxide materials has thus ushered in the era of 

“Transparent Electronics”. Two competing approaches to oxide electronics appear to be 

emerging, involving the use of either a binary metal-oxide or an amorphous oxide 

semiconductor (AOS) as the thin-film transistor (TFT) channel layer. The binary metal-

oxide path virtually always relies on the use of zinc oxide (ZnO), although other binary 

metal-oxide candidates such as tin oxide (SnO2), indium oxide (In2O3), or titanium 

dioxide (TiO2) have been employed. ZnO, in particular has been extensively studied [1.1] 

for its application as active layers in semiconductor devices. A series of advances have 

been reported for ZnO, particularly in terms of film growth technology [1.2], its 

application in devices such as LEDs [1.3,1.4] and the elucidation of its intrinsic 

properties [1.5], which led to demonstrations of mesoscopic effects in ZnO 

heterojunction systems [1.6] and proved that oxides can compete with conventional 

semiconductors. Although material simplicity is indeed a compelling benefit of this 

approach to oxide electronics, binary metal-oxides are difficult to manufacture with an 

amorphous microstructure and, concomitantly, acceptable electronic properties for 

applications in active electronic applications. Especially, the mobility in ZnO based 

devices suffers from grain boundary effects. Another serious problem of ZnO, 

particularly for use in TFTs, is their high concentration of residual free electrons due to 

native defects such as zinc interstitials and oxygen vacancies. Consequently, it has been 

difficult to control the threshold voltage and to fabricate normally-off TFTs using 

polycrystalline ZnO channels. 
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applications, such materials, namely zinc tin oxide (ZTO), zinc indium oxide (ZIO or 

IZO), and indium gallium zinc oxide (IGZO), have yielded high-performance thin-film 

transistors (TFTs) [1.8-1.12].In addition to display control elements, several other 

applications have been suggested. Depending on deposition conditions, these oxide 

semiconductors can show sensitivity to humidity or specific gases which make them 

applicable as sensors [1.14-1.17]. Additionally due to their high performance and ability 

to be built upon each other in a vertical arrangement, oxide-based TFTs are possible 

sense and control elements for high density memory applications [1.18]. Figure 1.1 gives 

the host of applications that are possible by utilizing the advantages afforded by 

amorphous oxide materials. 

   

1.2 Overview of Transparent Oxide Semiconductors (TOSs) 

TOSs are a series of metal oxides, composed of heavy metal cations (HMCs) with 

an outside shell electronic configuration of (n-1)d
10

ns
0 

(n≥4) and oxygen anions [1.7]. In 

terms of this definition, the candidates of HMCs to form TOSs can be sorted out from the 

chemical periodic table and their electronic configurations are in Table 1.1. 

TOSs (Transparent Oxide Semiconductors) have wide bandgaps in which the ns 

orbitals of the HMCs (Heavy Metal Cations) primarily constitute the bottom part of the 

conduction band and the oxygen 2p orbitals form the top of the valence band [1.7]. 

Uniquely, the spatial spreading of the outside ns orbitals with a spherical symmetry in the 
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are among the critical parameters that determine the carrier mobility of these oxide 

semiconductors. Table 1.2 lists these critical parameters of the common HMCs and TOSs, 

and their ns orbital overlap integrals [1.19].    As seen from this table, the Zn-Zn 4s and 

the In-In 5s orbitals have large overlap integrals compared with the other HMCs. As a 

result, ZnO and In
2
O

3 
should have high carrier mobility. This has already been proven by 

Hall-effect measurements: single crystalline n-type ZnO has a Hall mobility of around 

200 cm
2
/Vs, and single crystalline n-type In

2
O

3 
has a Hall mobility as high as ~ 160 

cm
2
/Vs [1.19]. Moreover, the large ns-ns orbital overlap makes the mobility less sensitive 

to any angular variation or bond stretching in the M-O-M bonds; as such, the mobility of 

TOSs is immune to the structural disorder because of such ionic bonding. Thus, 

amorphous TOSs still display considerable carrier mobility comparable to their 

crystalline counterparts. This characteristic cannot be found in other types of 

semiconductor materials. For instance, the mobility of polycrystalline silicon (covalent 

bonding) is 2~3 orders of magnitude higher than that of amorphous silicon (a-Si:H). 

Despite their large bandgaps, these oxide materials can be processed with native or 

extrinsic defects that contribute to the creation of free carriers and a positioning of the 

Fermi level near or within the conduction band. The placement of the Fermi level inside 

the conduction band might be expected to lead to optical absorption with transitions from 

the Fermi into empty conduction band states, rendering the materials opaque. Even at 

high carrier concentration, however, visible transparency is not severely limited. 
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1.2.1 Amorphous Transparent Conducting Oxides (ATCOs) 

ATCOs are composed of post-transition metal oxides exhibiting n-type carriers 

[1.20, 1.21]. Oxygen vacancies or interstitial low-valence cation (Zn+) dominate the 

carrier concentration in these ATCO films. For these ATCOs, the mobility is still close to 

that of the polycrystalline even in the amorphous material. It is very different from a-Si:H, 

which has a extremely low mobility (<1 cm2/Vs) compared to the several orders higher 

mobility in polycrystalline (30~300 cm2/Vs) or crystalline silicon (>1000 cm2/Vs). 

Although there is more than one mechanism explaining the conduction behavior for these 

ATCOs, the most widely accepted theory of carrier transport is the overlapping of s 

orbitals in these transition metal atoms [1.19-1.21]. Among various conductive oxides, 

the InZnO (IZO) system exhibits many advantages for the flexible transparent TFTs such 

as high field effect mobility, high transparency, room temperature compatible processing, 

large area deposition by sputtering, plastic substrates available, and is a cheaper process 

[1.20, 1.22-1.23]. Other conductive oxides may not fit all the requirements for the 

flexible transparent TFTs. The first requirement is that the film has to be transparent in 

the visible region, which means the bandgap has to be greater than 3 eV. CdO-PbO and 

AgSbO3 systems have a bandgap smaller than this requirement [1.24, 1.25]. The second 

requirement is the film must be amorphous and conductive as deposited in room 

temperature. CdO-CeO2 is very resistive (resistivity ~1x104 ohm-cm) [1.26] as deposited 

if no dopants are added in. In addition, Cd2+ is toxic against the environment [1.27]. 

Amorphous In2O3 looks like a good candidate, however, when the oxygen ratio increases  
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a little bit, it becomes polycrystalline [1.24]. ZnO is always polycrystalline as deposited 

[1.25]. In2O3-ZnO systems have a wide range of amorphous materials in In/Zn ratio and 

various oxygen partial pressure [1.24, 1.25].  In this material system, the carrier 

concentration can be adjusted by controlling the oxygen partial pressure or the O2/Ar 

ratio. a-IZO has high mobility (10~50 cm2/Vs) [1.23] as deposited at room temperature 

which is at least one order higher than amorphous Si. Ga2O3-ZnO (GZO) system has a 

little bit lower mobility than IZO. InGaZnO (IGZO) also has a lower mobility compared 

to IZO [1.25]. The last candidate is ITO, which is widely used for electrodes in LEDs, 

solar cells and LCDs [1.28-1.30]. Compared to ITO, IZO has a higher work function 

[1.31-1.33], higher transmittance in the infrared region [1.32], and lower In concentration 

than ITO [1.34]. 

1.2.2 TFTs with Multicomponent Oxide Layers: InZnO (IZO) 

Several researchers have explored various stoichiometries of indium zinc oxide 

(IZO) by RF sputtering for TFTs [1.34-1.38]. IZO TFTs typically exhibit high channel 

mobilities (up to 40 cm2/Vs), but suppressing carrier concentration is difficult as is the 

case in binary In2O3 and SnO2 oxides. As a result, many of the reported IZO TFTs are 

“normally on” devices (IDS > 0 at VGS = 0 V), i.e., depletion-mode devices. The initial 

report of IZO-based (Zn2In2O5) TFTs employed a staggered bottom gate structure with an 

atomic layer deposited (ALD) Al2O3-TiO2 superlattice as the gate insulator. Barquinha et 

al. and Yaglioglu et al. utilize room temperature In2O3-10 wt %ZnO as the semiconductor 

layer in staggered bottom-gate TFTs. Barquinha et al. [1.37] obtain channel mobilities 
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approaching 40 cm2/Vs while exploring the effect of semiconductor thickness (15 to 65 

nm) on device performance. Yaglioglu et al. [1.38] observed a channel mobility and VT 

of 20 cm2/Vs and -3.2 V, respectively, for their TFTs which employ thermally grown 

SiO2 as the gate gate insulator. A route towards solution deposition of IZO has been 

explored by Lee et al [1.39]. Lee et al demonstrated that IZO via inkjet printing is a 

viable option to realize the semiconductor layer for TFTs. These IZO-based TFTs exhibit 

turn-on voltages of -25 V and mobility of 7.4 cm2/Vs after processing at 600°C. 

1.2.3 TFTs with multicomponent oxide layers: InGaZnO (IGZO) 

Indium gallium zinc oxide (IGZO)-based TFTs have been fabricated by pulse 

laser deposition (PLD) and RF sputtering [1.40]. The initial IGZO-based (InGaO3(ZnO)5) 

TFTs employed single crystalline IGZO layers, with indium oxide layers alternating with 

gallium zinc oxide layer, which were obtained through the use of a high temperature 

anneal and yttria-stabilized zirconia substrates [1.40]. These TFTs employ a coplanar top-

gate structure with a 80 nm thick HfO2 gate insulator. The channel mobility, VT, and 

Ion/Ioff are 80 cm2/Vs, 3 V, and 106, respectively. Yabuta et al. explored amorphous 

IGZO-based (InGaZnO4) TFTs with a staggered top-gate structure [1.41]. RF sputtering 

is used for deposition of the semiconductor and insulator (Y2O3) layers. While no 

intentional substrate heating is used, the maximum processing temperature is 140ºC due 

to heating from the sputtering process during insulator deposition. The channel mobility, 

VT, and Ion/Ioff ratio are 12 cm2/V.s, 1 V, and 108, respectively. Park et al. have formed 

TFTs via a self-aligned process [1.41].  In this process a top gate device is realized with 
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Unlike ZnO, a-IGZO can have a uniform amorphous phase because multiple oxides 

(In2O3 & Ga2O3) are introduced to promote the glass phase formation [1.45] and the 

amorphous phase is thermally stable up to ~500°C [1.46]. Usually, amorphous 

semiconductors exhibit much deteriorated carrier transport properties than associated 

crystalline materials. This is because the chemical bonds in the covalent semiconductors 

are made of sp3 orbitals with strong spatial directivity. As illustrated in Figure 1.3, in 

anamorphous oxide semiconductors  (such as a-IGZO), electrons are conducting through 

metal ion's ns orbital. Since ns orbital is symmetrical, the conducting path and carrier 

mobility can still be preserved even in amorphous phase. To ensure a high mobility in 

amorphous phase, a sufficient ns orbital overlap between metal ions is necessary. To 

satisfy this requirement, Hosono et al. proposed a working hypothesis which predicts the 

metal ion should be heavy post transition metal cations with electronic configuration of 

(n-l)d10ns0, where n≥4 [1.7]. To have good TFT electrical properties, control of carrier 

concentration is premium and unlike in ZnO the incorporation of Ga3+ actually helps in 

suppressing the oxygen vacancies in a-IGZO thin-film since it has a stronger bonding to 

oxygen than Zn or In ions [1.46].  

 

1.4 Amorphous Oxide Based TFTs for Active Matrix Displays 

      In displays, thin film transistors (TFTs) are used as switching components in the 

active-matrix over a large area. Currently, liquid crystal displays (LCDs) mostly use 

amorphous Si as the channel layer in TFTs; however, this material offers low mobility 

(<1 cm2/Vs) and requires high process temperature (350ºC) [47], and as such a-Si:H 
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1.5 Organization of the Dissertation 

This dissertation focuses on design, fabrication and characterization of a-IGZO 

TFTs on mostly flexible thin metal substrates. A brief and succinct review of present 

status of amorphous oxide based materials is presented first. In chapter 2, the process 

tuning of RF-Sputtered a-IZO and a-IGZO thin films for TFTs and circuits is discussed 

with emphasis on device optimization. Low temperature processing of a-IGZO is 

compatible with plastic substrates but metal foils provide greater dimensional stability to 

fabricated small feature TFTs. Device (a-IGZO TFT based) fabrication and circuit 

integration on flexible metal foils is presented next with comprehensive electrical 

analyses to characterize a-IGZO TFTs on flexible substrate. Reliability of a–IGZO TFTs 

under DC electrical voltage and current bias stress at elevated temperatures are discussed 

in chapters 3 and 4. The electromechanical stability of a-IGZO TFTs on flexible metal 

foils is introduced in chapter 5. Various a-IGZO TFT based circuits are described with 

demonstration of an electrophoretic display in collaboration with the Flexible Display 

Center of Arizona State University in chapter 6. In an effort to dope ZnO with nitrogen, 

various techniques are employed and the results from TFT structures are detailed. Ab 

initio calculations based on rigid band theory confirms persistent n-type transport in these 

devices and are presented in chapter 7. Finally in the concluding chapter, a summary of 

the present work along with suggestions for future research is delineated. 
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Chapter 2 

Process Optimization Of Amorphous Oxide 

Thin Films and Electrical Characterization of 

a-IZO and a-IGZO TFTs On Metal Foils 
 
 
 
 
 
2.1 Introduction 

As we have noted in the introductory chapter, thin film transistors (TFTs) have 

significant technological importance in displays and other large-area electronic 

applications. Nevertheless, the range of applications possible from these TFTs have been 

somewhat limited by their overall poor performance on low cost substrates compared to 

conventional silicon MOSFETs. This poor performance can be characterized using 

several measures, including field-effect mobility, subthreshold slope, device hysteresis, 

and bias stress stability. More importantly, these parameters have implications towards 

the implementation of TFTs in real applications. Additionally, at a more fundamental 



23 
 

level, all of these parameters reveal important electrical characteristics of the 

semiconductor thin films, the interface between semiconductor and the dielectric layers 

and robustness of the device processing; therefore, by fabricating TFTs one provide  

useful measure of the electrical properties of new materials, which in turn can aid the 

development of real application demonstrations. Untill now, large area flexible systems 

are enabled by a-Si:H or organics which suffer from low mobilities that limit their use in 

driver electronics that require higher current drive. Amorphous oxide TFTs are an 

attractive alternative to traditional thin film silicon (Si) based devices since they offer 

several key advantages such as high mobilities, transparency in the visible spectrum and 

low processing temperature. As flexible substrate materials, metal foils like stainless steel 

and flexible plastics have been used with demonstration of high performance devices and 

systems [2.1,2.2]; however, in the case of plastic substrates shrinkage and elongation due 

to medium-to-high temperature processes as well as susceptibility to gas permeation are 

bottlenecks. Although the low process temperature of metal oxides is quite compatible 

with plastic substrates, we chose to fabricate such TFTs on thin metal foils instead, since 

they offer high mechanical strength, flexibility, light weight as well as greater 

dimensional stability which afford small geometry features of the devices and circuits. 

In this chapter we will discuss the process optimization of amorphous metal oxide 

thin films for TFT fabrication on stainless steel metal foils first. Given that the main 

focus of this study is on the optimization of oxide semiconductor for application in TFTs 

and other large area electronic circuits, electrical characterization of standalone devices 

are discussed in details in the second half of this chapter. 
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2.2 Effect of Deposition Parameters in Amorphous Oxide Thin Films 

2.2.1 Process Parameters Effect on Growth Rate of Oxide Thin Films 

In order to optimize the electrical, structural and optical properties of the oxide thin 

films by RF sputtering, we varied oxygen partial pressure and RF power density. A 

comparative study is done on a-IZO films as well to elucidate the common aspects of 

optimizing these unique thin films. The targets were commercially available 6 inch 

diameter, dense IZO ceramic target (In2O3:ZnO %weight 90:10) and IGZO target 

(In2O3:Ga2O3:ZnO 1:1:1 molar ratio).The growth rate of sputtered films is highly 

dependent not only on the material composition but also on the deposition parameters. 

Furthermore, the growth rate can affect the properties of the sputtered thin films. It is 

known that for a given material certain deposition conditions leading to too high or too 

low growth rates can negatively affect the film’s properties; under these extreme 

conditions the sputtered species can damage the growing film due to severe bombardment 

or reach the substrate without enough energy to create a compact film. Thus before going 

into electrical properties of amorphous oxide thin films, it is important to see how their 

growth rates are affected by deposition parameters and composition. The deposition of 

oxides by sputtering in a pure argon ambience (even if starting from a ceramic target) 

generally results in films with high oxygen deficiency. This is essentially related to the 

threshold energy required to sputter a particle, which is higher for a metal-oxide than that 

for a metal [2.3].  Additionally sputtered species from a target heading towards the 

substrate can be dissociated inside the plasma, increasing the chance of non-



 

st

le

th

F

 

toichiometri

ess than 10%

he stoichiom

igure 2.1 D
Pd

m

c film forma

% is usually 

metry of the g

Dependence o
deposition and 
inute) 

ation.  For th

added in the

growing film

of growth ra
PRF-Power. Fl

25 

hese reasons

e argon atmo

m. Fig 2.1 sho

ate of (a) &
low rates in

s, a small per

osphere in o

ows the effe

& (b) IZO an
n sccm (stan

rcentage of o

rder to have

ect of the inc

nd (c) & (d
ndard cubic

oxygen, typi

e better contr

creasing %O2

d) IGZO on 
c centimeter

ically 

rol of 

2 on  

 

%O2,   
rs per 



26 
 

the growth rate, for film produced from targets with different compositions (IZO %wt 

90/10 In2O3/ZnO) and IGZO (In2O3:Ga2O3:ZnO 1:1:1 molar ratio). Regardless of the 

composition, growth rate decreases as %O2 increases which can be attributed to the 

following: 

 Repsuttering of the growing film due to bombardment of highly energetic oxygen 

ions 2.[3]. This is especially relevant for depositions performed at higher %O2. 

 Change of surface conditions of the target [2.4]. For instance if a pure argon 

ambient is used, target surface will be less oxidized, favoring the sputtering of the 

cations rather than the ZnO aggregates. Additionally, the energy transfer from an 

Ar+ incident ion to the sputtered target material is greatest when the mass of the 

ejected particle is closer to that of the ion, resulting in a greater sputtering rate in 

the absence of oxygen [2.5].  

 For low %O2, the oxidation reaction takes place essentially on the substrate, 

which is reflected in a small or even negligible decrease on the growth rate when 

compared to pure argon atmosphere. However, for higher %O2, target oxidation 

starts to play an important role decreasing the growth rate. 

 

The total deposition pressure of the sputter ambient, Pdeposition, also affects the growth 

rate of the analyzed oxide thin films. In general, the growth rate decreases as the Pdeposition 

increase. This is related to the lower mean free path of sputtered species for higher 

Pdeposition due to their more intense scattering by gas atoms and molecules during their 

path from the target to the substrate. Also the sputtering power, PRF-Power, directly affects 
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the discharge voltage, and it is expected that growth rate will increase for higher PRF-Power, 

which can be verified by Fig 2.1 (b) and (d). For IGZO, sputtering with different %O2, an 

almost a linear relationship is found between growth rate and different PRF-Power. For low 

PRF-Power, the energy of the incident ions is not enough to have a large number of sputtered 

species arriving at the substrate surface. In this condition, the sputtered species are also 

prone to collisions on their path to the substrate surface leading to non-ideal film 

conditions and low PRF-Power processing condition was avoided for thin films used in TFTs.  

Also noticeable from the graphs are the effects of target composition on the 

growth rate. With the same deposition conditions, IZO has a larger growth rate than that 

of IGZO. This can be related to the different mass (atomic number) and binding energy of 

the elements composing the ceramic targets [2.6]. The thin film growth rate decreases 

when compared to binary oxides like In2O3 and is typical of multicomponent oxides with 

higher concentrations of zinc and gallium [2.7]. Surface imaging with AFM reveal that 

the as-deposited IZO and IGZO films possess very smooth surface with minimal 

roughness (less than 5 nm). Even after annealing at 300ºC the films remain amorphous 

which is consistent with what is reported in other studies [2.6-2.8]. It has been shown that 

multicomponent oxides with higher number of elements (IGZO for example) are harder 

to crystallize, due to increased disorder in the structure. IZO has been known to 

crystallize at much higher temperatures (>500º C) and for higher In content in the films. 

The higher temperatures are irrelevant to this particular study since the goal was to 

investigate low-temperature oxide based electronics. The fact that these oxides present an 

amorphous structure which is stable for a broad range of compositions and anneal 
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temperatures is of major importance to the application of these films in TFT devices. The 

amorphous films present a smoother interface and can be deposited with better uniformity 

and reproducibility than their crystalline thin film counterparts.  

 

2.2.2 Process Parameters Effects on Electrical Properties of IZO and IGZO Films 

Apart from impurity doping, oxygen vacancies derived from stoichiometry 

deviations in the deposited films are the main contributors for electrical conduction in 

amorphous metal oxides. The conduction band in oxides is mainly made up of the 

unoccupied orbitals of the metal cation; therefore, the energy levels of oxygen vacancies 

(Vo), that is the non-bonding state of the metal cation, is formed in or near the conduction 

band minimum allowing the vacancies to act as a shallow donor but not as an effective 

electron trap. These oxygen vacancies are readily ionized near room temperature, with 

each doubly charged oxygen vacancy contributing two free electrons, preserving charge 

neutrality [2.9]. The variation of %O2 during sputtering is therefore one of the most 

effective ways to control the electrical properties of oxide semiconductors. Fig 2.2 and 

Fig 2.3 show the dependence of resistivity on PO2 and %O2 for a-IZO and a-IGZO films. 

The main trend is for resistivity, ρ (Ω-cm) to increase with PO2 (%O2). This is consistent 

with the idea of reduction of oxygen vacancies; the additional oxygen atoms supplied 

using a higher %O2 can be incorporated in the film, filling the high number of oxygen 

vacancies that are created when sputtered in a pure argon ambient. This is clearly visible 

for IZO films in Fig 2.2, where ρ variation is more than 6 orders of magnitude for %O2 

variation from pure argon to 12.5%. The highest ρ variation occurs for %O2 varied 
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deposited films, including structural defects on its growing surface, raising the film ρ. As 

we have noticed in the previous sub-section, since the growth rate decreases substantially 

for %O2 > 10%, what is suspected is that the compactness of the film is also affected 

which might account for the increased ρ. For IGZO films, a lower RF power leads to a 

more resistive film. This can be tentatively attributed to less sputtering induced damage 

on IGZO films. The higher energy of the sputtered species arriving at the substrate 

surface allows them to increase the mobility of other particles present on the substrate by 

momentum transfer; this allows them to reach equilibrium sites within the film structure, 

forming a denser and defect free film with low ρ. In IGZO films, it is expected that the 

higher RF power leads to films with increased indium content, which may also contribute 

to a reduced ρ. An additional mechanism can be also at play here. With higher RF power, 

as more species are sputtered from the target and move in the plasma subjected to less 

scattering, more oxygen is needed to oxidize them when reaching the substrate and also 

to reoxidize the target surface, which easily gets reduced during the sputtering process. 

Chaing et al [2.10] reported higher carrier concentration for IGZO films deposited with 

higher RF power. Even though higher RF power generally leads to a highly conducting 

films, very high ρ can still be achieved under these conditions by using a high %O2. For 

the a-IGZO films deposited at a moderate 100 W of RF power, it is seen the ρ doesn’t 

vary much for %O2 ~5% or less. This could be due to the fact that a better equilibrium 

between oxygen concentration in the film and the atmosphere exists from room 

temperature and higher and the film should also be structurally more stable [2.11]. 

Regarding the effect of annealing temperature on the ρ of the a-IGZO films, it is expected 
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trend in crystalline IGZO films [2.13]. This trend is opposite to those of simple 

crystalline semiconductors because µe of crystalline semiconductors usually decrease 

with increasing Ne due to enhanced impurity scattering effects. 

For a-IGZO films annealed at 300ºC, a continuous increase of µe is verified with 

increasing Ne from Ne ~1016 cm-3 onwards which means that most of the defects affecting 

the films with low Ne are eliminated. At Ne >1018 cm-3, carrier mobility sharply increases 

with Ne, which is consistent with the existence of potential barriers associated with the 

random distribution of gallium and zinc atoms [2.13]. These barriers should have a 

relatively small height, as the conduction is essentially dominated by the large indium 5s 

spherical orbitals, which easily overlap even in a disordered structure, while the zinc and 

gallium cations assure that this structure does not crystallize and prevent excessive free 

carrier generation [2.13]. Although not shown here, at Ne >1020 cm-3, ionized impurity 

scattering dominates charge transport, which gives rise to lower mobility. The optimum 

condition for IGZO deposition is at PRF-Power of 100 W, with 2-10% O2 at a total chamber 

pressure of around 5mTorr. 

 

2.3 Process Flow of Amorphous Oxide TFT Fabrication 

The flexible metal foil substrates used in this research were stainless steel type 

304 having a diameter of 150 mm and were 100-µm thick. The surface roughness of the 

stainless steel foil substrates has been a major issue for the fabrication of 

microelectronics. We have demonstrated that a surface roughness of 1 nm is achievable 

(Fig. 2.5). This can be achieved by sequentially polishing the foils with mechanical  



 

   

m

re

al

co

th

sh

d

ou

p

d

la

el

fi

               

means follow

equirement f

llows standa

oated on top

hickness of 

horts throug

etrimentally

ur case, the 

lasma-enhan

eposited in 

ayer was 1µ

liminate pin

ilm was dep

Figure 2.5

wed by chem

for an additi

ard RCA and

p to electric

this insulati

gh pinholes

y affects circ

metal foils w

nced chemic

multiple ste

µm thick and

nholes that co

posited on b

5 AFM imag

mical-mechan

ional planari

d Piranha ba

cally isolate 

ion is critica

s/particles to

cuit performa

were coated 

cal vapor d

eps with a c

d this appro

ould compro

both sides o

33 

ge of polishe
 
 

nical polishin

ization layer

ased CMOS 

the substrat

al not only 

o the cond

ance through

with a 3 µm

deposition (P

leaning step

oach was fo

omise the in

of the metal 

ed stainless s

ng. With tha

r. Chemical 

cleaning be

tes from act

from the vi

ductive subs

h parasitic c

m thick silic

PECVD) at 

p used after 

ollowed in o

ntegrity of th

foil substra

 

steel substrat

at smooth su

resistance o

efore the insu

tive device c

iewpoint of 

strate), but 

capacitive co

on dioxide f

300°C; the

each depos

order to redu

he insulating

ate for stres

te 

urface, there 

of steel subst

ulating layer

components

f yield (i.e. a

also becau

oupling [2.14

film deposite

e SiO2 film

ition cycle. 

uce particles

g layer. The 

ss balance w

is no 

trates 

rs are 

. The 

avoid 

use it 

4]. In 

ed by 

m was 

Each 

s and 

SiO2 

which 



34 
 

inevitably minimizes the warping of the metal foil caused by the thermal mismatch 

between the substrate and the insulator. 

An important difference for many TFTs, including amorphous silicon and a-IGZO, 

compared to conventional silicon MOSFETS, is that a staggered structure is typically 

used. In staggered structures, the contacts are not on the same plane as the accumulation 

channel, but rather, on the opposite interface of the active layer. This is very different 

than conventional coplanar MOSFETs where buried wells form the contacts directly in 

contact with the inversion channel. The staggered structure has the potential for 

significant contact effects (since the current must travel through the entire active layer to 

reach the metallic contacts), particularly as a function of the active layer thickness. 

Typical structures designed for this dissertation is the bottom-gate inverted staggered 

structure TFT architecture (shown in Fig 2.6) with either exposed back channel or with a 

passivated back channel. Compared to widely used TFT technologies such as polysilicon 

and amorphous silicon, the main difference in the amorphous oxide TFTs is the lack of a 

heavily doped region between the contacts and the active layer. This heavily doped 

region is the most common way to form ohmic contacts to semiconductors by sufficiently 

thinning the contact barrier so that carriers can freely tunnel. In amorphous oxide TFTs, 

metal contacts rather than doped contacts are commonly used primarily due to process 

simplification. Most importantly, metals such as Mo and Al form relatively good contacts 

as deposited with a relatively low specific contact resistivity. This can be further reduced 

by using plasma treatments before contact metallization to create a high carrier 
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etching of the oxide layer. Mo source and drain metallization is done by RF sputtering 

and subsequent lift-off.  An N2O plasma treatment is done on the back channel post 

fabrication in a PECVD chamber at room temperature. 

For the back channel passivated structure, a blanket 50 nm of IGZO was 

deposited followed by a 50 nm of low temperature SiO2 film (mesa oxide) by RF 

sputtering right after the dielectric layer deposition. The optimized IGZO/SiO2 stack was 

patterned by combination of dry (CF4) and wet etching (dilute HCl). A thicker (70 nm) 

sputter deposited passivation oxide capped off the patterned layers to protect the active 

channel region. Contact openings to access the pads were accomplished by lithography 

and selective etching of the oxide layer. Subsequently, opening of source/drain electrodes 

were done by dry etch. In order to reduce etch damage and improve contact resistance, 

the patterned S/D areas were treated in Ar plasma. Finally, Mo source and drain 

metallization was done by RF sputtering and subsequent lift-off. Completed devices 

underwent 1 hr anneal at 300°C in N2 ambient before testing could proceed. 

 

2.3.1 Low Temperature N2O Plasma Passivation Scheme: Clues from a-IZO TFT 

The low temperature N2O plasma treatment to improve a-IGZO TFT 

characteristics and device stability (discussed in chapter 3 and 4) originated from our 

earlier work on a-IZO TFTs [2.52]. The a-IZO TFTs had bottom gate staggered structure 

with the back channel non-passivated. The active layer (40 nm of a-IZO) and source 

drain layers (150 nm IZO) were sputter deposited at RF power densities  of 1 and 2 

W/cm2 and with relative Ar/O2 flow ratios of 10 and 50 respectively. ITO gate was also 
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density of surface states at the semiconductor-insulator interface after the N2O plasma 

passivation. The beneficial effects of N2O plasma passivation become evident when a-

IZO TFTs are bias stressed to assess stability of the devices. In Fig 2.8, the transfer 

characteristics of a-IZO TFTs (W=64µm, L=16 µm) are shown before and after a 

constant current stress of 15µA for 600s. The gate voltage during the constant current 

stress period was held at VGS=10V. The shift in threshold voltage, ΔVT is small (less than 

1 V).  For all the a-IGZO TFT device fabrication discussed in greater detail throughout 

this chapter and in the subsequent chapters, this post deposition N2O treatment was 

adopted and shown to have significant effects in terms of device operation and reliability. 

 

2.4 Electrical Characterization of a-IGZO TFTs on Steel Foil 

Electrical characterization of n-channel a-IGZO TFTs on flexible substrates can 

help us understand the device performance and can provide valuable information to 

improve the device fabrication process. In this section we present the electrical 

characterization of a-IGZO TFT on steel foil fabricated from optimized thin films. The 

TFTs had the staggered bottom gate architecture as in Fig 2.6 with back channel 

passivation unless otherwise stated.  

2.4.1 Basic I-V Characteristics of a-IGZO TFTs On Steel Foil  

a-IGZO transfer (IDS-VGS) and output (IDS-VDS) characteristics were measured in 

ambient conditions in a light tight probe station. The electrical properties were measured  
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by a HP4145 parameter analyzer automated by LabView software. The transfer 

characteristics of a-IGZO TFT extracted at VDS=0.1V is shown in Fig 2.9. We extracted 

the threshold voltage (VT) and field effect mobility (µFE) based on the standard MOSFET 

equation in the linear region (with VDS « VGS-VT,): 

            ≅           (2-1)  

where Cox is the gate insulator capacitance per unit area (F/cm2), µFE is the field effect 

mobility (cm2/V.s), W and L are TFT channel width and length, respectively. The 

extraction method of VT and µFE will be discussed in the subsequent sections in details. 

From linear extrapolation method used, VT is 1.25V and µFE  derived 

from the maximum transconductance /  is 14.22cm2/V.s. Compared to 

a-Si:H TFTs, the µFE is an order of magnitude higher and is consistent with  the unique 

metal ion's ns orbital conduction in a-IGZO. The subthreshold slope is given by: 

               (2-2) 

The calculated subthreshold slope is 390 mV/decade and is comparable to the state of the 

art a-Si:H TFTs. This ensures a fast TT response and also reduces voltage of the gate 

driving signal. The TFT off-state current (IOFF) is seen to be in the 10-10 A range and does 

not increase with increasing negative gate voltage.  

The output characteristics of the a-IGZO TFT under various gate to source 

voltages (VGS) ranging from 4-20V are shown in Figure 2.10(a). During each 

measurement, the drain to source voltage (VDS) was varied from 0-20V. A very clear 

distinction between linear and saturation region is obtained. This suggests that less than 
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Figure 2.8(b) shows the output characteristics near the origin (VD ~0V) and there is no 

current crowding observed in the fabricated a-IGZO TFTs. The absence of current 

crowding can be better appreciated by plotting the derivative of the output curves 

(δIDS/δVDS) which is also shown in Figure 2.10(b). These properties are highly desirable 

for a-IGZO TFT to be used in active-matrix arrays.  

 

2.4.2 Threshold Voltage Extraction 

2.4.2.1 Linear Extrapolation Method 

 In this method VT is determined by extrapolating a line tangential to the IDS-VGS 

characteristics of n-channel a-IGZO TFTs at the point of maximum transconductance. 

The intercept of this line with the VGS axis yields VT. This method is commonly used for 

bulk Si and SOI based MOSFETs because of its simplicity. An example of applying this 

method to determine VT is shown in Fig 2.11. The VT extracted is 1.8V. 

2.4.2.2 Transconductance Change Method 

 For device modeling and simulation, it is essential to know the band-bending 

(surface potential) of at least one gate bias from which the band-bending at all gate biases 

can be calculated. In this method, the gate voltage at which the derivative of the low drain 

voltage transconductance (δIDS/δVGS) is a maximum, relates to the threshold band-

bending. The extrapolated VT using this method is relatively insensitive to series 

resistance and their interface trap density near the band edge [2.17]. Fig 2.12 shows 
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implementation of this method to determine VT. The extracted VT is 0V. Clearly the 

linear extrapolation method overestimates VT. In the linear method the µFE is assumed to 

be constant whereas in actual a-IGZO TFTs µFE has VGS dependence which is discussed 

later. For this study, the transconductance change method was used prevalently to 

determine VT. 

2.4.2.3 Turn On Voltage 

For devices deviating from the ideal square law model [2.18], some researchers 

have proposed using an analogous figure-of-merit, denoted the turn-on voltage, Von. The 

gate voltage at the onset of conduction (distinguished by a sharp increase from a 

threshold current level) establishes Von [2.18]. Von is attractive for several reasons: 

ambiguous model fitting (i.e. extrapolation) is not required, Von identifies the lower range 

of device operation, and as shown in Fig. 2.13, Von is independent of drain voltage (as 

long as VDS > a few kT/q). In practice, anomalous subthreshold current characteristics, 

possibly due to a displacement or gate leakage current, are sometimes seen for low VDS; 

therefore VDS > 5 V is typically used when determining Von. The disadvantage of this 

method is that changes in subthreshold slope directly interact with this voltage. 

Particularly for device where non-ideal humps in the drain current and large subthreshold 

swing are observed, Von varies by a lot. 
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extract the channel mobility, all resulting in slightly different values. Additionally, the 

gate leakage current is typically not accounted for, and can affect the extracted values. 

 

2.4.3.1 Mobility Extraction: μeff , μFE, and μsat 

The effective mobility, μeff , and the field-effect mobility, μFE, are both determined 

from classic MOSFET based drain current expressions with assessment of the linear 

regime of operation (the so-called below pinch-off region); while the saturation mobility, 

μsat, is established from the saturation region (above pinch-off). The below pinch-off 

drain current relationship can be described and approximated as, [2.19] 

                                          I μ Q V μW                                     (2-4)  

         I μ Q V           (2-5) 

where Qn is the mobile channel charge density, W is the gate width, and L is the gate 

length of the TFT and the direction x is into the cahnnel. To directly determine Qn, a 

measurement of the gate-to-channel capacitance as a function of gate voltage is required. 

Alternatively, it is often useful to obtain a first order approximation of Qn from 

electrostatics, 

       Qn = Cox(VGS −VT ).                (2-6) 

 
The approximation shown in (2-6) is obtained by assuming a uniform channel charge 

density. When biasing at low VDS (~50-100 mV), this assumption is reasonable and allows 

the second term of (2-4), which is related to carrier diffusion, to be neglected; however, 

neglecting this diffusion-related term does introduce some error in mobility determination. 
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For a MOSFET operating in the subthreshold regime (VGS <VT ) and near the threshold 

voltage, a significant diffusion current flows and the approximation in (2-5) deteriorates. 

Thus, mobility assessment in these regions results in significant error; however, at gate 

voltages appreciably larger than VT this error is minimized [2.19]. Differentiating (2-5) 

with respect to VDS or VGS determines the channel conductance (gd), or transconductance, 

(gm), respectively. The channel conductance and transconductance are related as follows, 

                   (2-7) 

                                                             (2-8) 

The effective mobility or field-effect mobility is then determined by 

                                                          (2-9) 

              (2-10) 

It is worth noting that determination of μeff  requires a value for VT, in contrast to μFE, 

which is not explicitly dependent on VT. The channel mobility is sometimes estimated 

from the above pinch-off drain current; mobility estimates from this region of device 

operation are denoted as, μsat . One method of extracting μSAT is to have the TFT biased in 

a diode connected fashion where the drain is tied to the gate and measure IDSAT . This 

biasing configuration is only applicable if the device under test is an enhancement-mode 

(VT > 0). Square law theory asserts that the above pinch-off drain current is given by, 

            (2-11) 
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 is extracted using 

                                                      (2-12) 

The above methodology alleviates the need to evaluate VT and reveals that μsat is 

determined from the slope of the √IDSAT vs. VGS characteristic. ΜSAT is an inaccurate 

assessment of the “channel” mobility, as it is an average of the mobility in the channel 

and the mobility in the pinched-off region of the channel. It becomes useful to determine 

μsat when the gate leakage current significantly affects the below pinch-off current 

characteristics. The μeff , μFE, can be thought of as average and incremental mobility 

values. A non-linear IDS-VGS typical of TFTs translates to VGS dependent apparent 

mobility values. Throughout this work, μFE is used since there is less ambiguity in its 

determination due to the fact that a value of VT is not required. Figure 2.14 shows 

exemplary μ−VGS characteristics of a-IGZO TFTs for the three mobility estimation 

techniques (μeff , μFE, and μSAT ) discussed in this section. μeff and  μFE is determined using 

VDS = 100 mV. μSAT is calculated using (2-12) with VDS >VGS-VT. It should be noted that 

the μeff characteristic shows an anomalously large value near VT, which is due to the 

singularity present in (2-9) when VGS =VT . Considering the μFE characteristic in Fig. 2.14, 

the mobility initially increases with increasing gate voltage, peaks at a certain VGS and 

then decreases. The initial increase may be due to an increasing ratio of free to trapped 

charge with increasing gate voltage. At lower gate voltages, the mobility is possibly trap-

limited. [2.19]. The decrease at higher VGS may be caused by several effects. At higher 

VGS, carriers are drawn closer to the oxide-semiconductor interface and the mobility  
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are trapped in band tail states (or deep states) and cannot contribute to the IDS. To explain 

μFE(VGS)  in disordered material devices like a-Si:H TFTs, Shur et al. [2.21] showed that 

μFE  the can be expressed as the free carrier mobility, µn scaled by the ratio of the free 

charge density to the induced carrier density: 

                                  μ V μ  μ           (2-14) 

where  μ  is the electron band mobility. In MOSFETs, QFree~QInduced. However, in    

typical a-Si:H and disordered materials like a-IGZO, μFE is expected to be much lower 

than μ  due to the high density of traps. Since charge components QTrapped represent the 

charge over the thickness, μFE is representative of the modulation of device conductance 

including the geometry, the semiconductor and the dielectric layers and the channel 

charge profile. Shur et al also show a power law dependence of μFE on VGS: 

                                    μ V μ             (2-15) 

where VAA is a material dependent parameter and α is the power coefficient which 

describes the dependence of μ V  on effective gate voltage (VGS-VT). For the ease of 

parameter extraction,  (2-15) is further simplified as: 

                                     μ V K V V α          (2-16) 

where K becomes a material dependent parameter. It should be noticed that the K has the 

unit of cm2/Vα+1.s. The IDS by accounting for μ V  can be written as: 

                                     I ≅ KC V V γV          (2-17) 

Where γ=α+1. Using this approach, VT and K values can be obtained (Fig 2.15 (a) 

and(b)). A similar method has also been used to extract the threshold voltage of a-Si:H        
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                                    log μ log Kγ γ 1 log	 V V        (2-18) 

The extracted γ = α+1 for our RF sputter a-IGZO TFT is similar to values reported for 

RF-puttered IGZO TFTs [2.23]. Kishida et al. [2.24] showed that the movement of TFT 

surface band bending with gate voltage changes when the electrons are trapped in the 

band-tail states and the γ can be expressed as [24]: 

                                                         γ 2 1                            (2-19) 

where T is the measurement temperature and TG is the characteristic temperature of the 

amorphous semiconductor density-of-states (DOS) distribution around the position of the 

Fermi level. The equation is valid for T < TG. For a-Si:H, TG commonly represents the 

characteristic temperature of the conduction-band-tail-states and a high density of such 

states causes the non-ideal condition of γ >1. If we assume that the same idea holds true 

for a-IGZO TFTs, we can extract the TG for our a-IGZO TFT to be around 343ºK (or kTG 

~29 meV). One possible origin of the conduction-band-tail-state in a-IGZO is the 

variation of In-O-metal bond angles [2.25]. 

 

2.5 Interface Trap Characterization of  a-IGZO TFTs  

The subthreshold slope technique was first proposed by R.J. Van Overstraeten 

[2.26] to determine the interface trap density of MOS devices. This method is readily 

applicable to long channel devices and at low drain bias. The current in the subthreshold 

region can be written as 

        1 1       (2-20) 
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current corresponding to VDS=200mV for each applied gate bias. The slope of this curve 

yields the ratio m/n: 

                         2.3
	

        (2-23) 

The parameter ‘n’ can be obtained from the measured IDS-VGS curve at VDS=200mV. The 

slopes of the curves vary with VGS and the corresponding values of ‘n’ can be obtained 

by  

                         
.

	
          (2-24) 

The n value is related to the experimentally determined subthreshold values as: 

                              
	

2.3          (2-25) 

Combining (2-24) and (2-25) we can determine the parameter ‘m’ by: 

                         2.3
	

       (2-26) 

With values of ‘m’ and ‘n’ know, the interface trap density, Dit is given by 

                                  (2-27)     

The extracted Dit as a function of VGS is shown in Fig 2.18. It can be shown that Dit  

follows an exponential band-tail distribution by correlating VGS to different trap energies. 
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2.6.1 Contact Resistance Estimation from TFT Structures  

There are many experimental techniques for determining contact resistance. 

Contact resistance can be determined by using a variety of structures such as a two-

terminal structure, a multiple-terminal structure including the transfer line method (TLM) 

test structure, Kelvin test structures, pn-junctions, Schottky barrier diodes, solar cells, 

bipolar junction transistors, and MOSFETs [2.27]. For a MOSFET test structure, physical 

device parameters such as channel width, channel length, and source/gate and drain/gate 

overlap distance can be varied to observe how these parameters affect contact resistance. 

Various analytical techniques have been proposed for extracting contact resistance from a 

MOSFET test structure. At low drain bias, the drain current of semi-insulating MOSFET 

can be written as [2.19]: 

           
/

.
    (2-28) 

For the inverted staggered a-IGZO TFT geometry, (2-28) reduces to  

 

                                
/

.
       (2-29) 

 
where we can define 
 

                                
∆

         (2-30) 

 
here,  is the intrinsic electron mobility, LM is the drawn mask channel length, ∆  is the 

reduced mask length due to processing,  is the surface roughness parameter and  is 



59 
 

the combined series resistance of source and drain terminals. By arranging the drain 

current expression we get: 

 

                          
.

∆
                    (2-31) 

 

We can plot RM vs. LM/W (shown in Fig 2.18) based on the transfer characteristics of 

TFTs with different LM. The slope of curve gives 

 

                           
.

         (2-32) 

 

From Fig 2.20, the crossing point of different VGS curves gives the value of ∆ =0.17µm 

and RSD=1.62kΩ. The relatively low RSD value indicates that Mo can form good ohmic 

contact to a-IGZO. In a-Si:H TFTs, for example can be as high as 106 Ω [2.28]. If we plot 

the slopes from Fig 2.20, denoted “ ” vs. 1/ , we can extract  and . 

The extracted values are 0.019V-1 (  is quite low for the mobility degradation) and 9.14 

cm2/V.s (with RSD=1.62k Ω it is around 5.13 cm2/V.s for this set of measurements) 

respectively (shown in Fig 2.21). 
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increasing VGS. The total TFT on-resistance (RT) should be re-written as the sum of R
SD

 

and rch with length L (≠ ∆ ; is drawn mask length): 

                                    	 2        (2-33) 

where can be expressed as simply as . Figure 2.22(b) shows the 

distributed circuit model used to derive the mathematical formula for analysis. This 

methodology was developed by Kanicki et al [2.28] for a-Si:H TFTs. The change of the 

horizontal channel current (Ich) at position x under source electrode can be expressed as  

                                                      (2-34) 

with                                                (2-35) 

and                                                (2-36) 

 

In the above equations, W is the channel width; JCh(x) is the vertical current density at 

position x; VCh(x) is the voltage in the channel at position x; rceff is the effective contact 

resistance and rB and rC are the vertical bulk and contact resistivity respectively. From the 

mathematical formulations of the above equations Kanicki et al showed that  can 

be expressed as: 

                                                (2-37) 

                                                (2-38) 
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2.7.1 Layout Dependent C-V Characteristic of  a-IGZO TFTs  

Layout dependent C-V analysis was done following a methodology described in 

[2.29].The different parameters are defined as follows: the overlap width of the region 

between gate and a-IGZO active layer (WIGZO), the length of the region between S/D and 

a-IGZO active layer (LIGZO), and the length of overlap region between gate and S/D (LOV). 

WIGZO =6 μm, LIGZO =12 μm, and LOV =6 μm in the devices that are measured. The width 

of the TFT, W (W= 240, 160, 80 and 40 μm, for L = 20 μm) and length of the TFT L (L= 

20,10,8 and 5 μm, for W = 240 μm) dependence of the C-V characteristic of a-IGZO TFT 

is shown in Fig 2.25 measured at a frequency of 1MHz. It is obvious that CMAX is 

dependent both on W and L while CMIN is dependent on the width W. Based on 

experimental C-V results, Lee et al. specifies layout dependent C-V model in the 

following manner: 

                      ; 			 ; 		        (2-39) 

                      ;		                    (2-40) 

                      2 ;		 2     (2-41) 

                      2 ;        (2-42) 

                     2 ;		        (2-43) 

 

Where  and are the effective channel width and length while  

and  are defined as the effective overlap width; and are characteristics width 

and length related the fringing capacitances between gate and active channel, and  
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2.8 Dual Gate Characteristic of  a-IGZO TFTs  

It is well known that a-Si:H TFT performance is strongly affected by the charge 

density at the interface between the a-Si:H and passivation layers (mostly SiNx) [2.32]. 

As such, measuring the characteristics of TFTs with a dual-gate configuration is of 

considerable interest because the top gate on the back side of the semiconductor layer 

introduces another parameter that is equivalent to the charge density at the interface 

[2.33]. The interaction between the top- and bottom-gate electric fields, and in turn, the 

charge coupling shows appreciable variation from material to material. Thus, the use of a 

dual-gate structure is convenient for addressing issues of materials and correlating them 

with device performance. In order to utilize a-IGZO, which is a new material, in 

commercial applications, it is important to understand the main a-IGZO TFT features that 

are different from those of conventional Si:H TFTs [2.34]. 

One of the main features that distinguishes a-IGZO from a-Si:H is the difficulty 

of obtaining p-channel TFTs with oxide based materials. This difficulty is thought to 

originate from the intrinsic nature of the energy band structure in oxide semiconductors 

[2.35]. A conventional silicon-on-insulator (SOI) can be used to analyze the interface in 

terms of hole accumulation at the top interface of a-IGZO TFTs. Fig. 2-27(a) and (b) 

show IDS-VGB(VGB is bottom gate bias) and gm/ VGB characteristics at various VGT (VGT 

is top gate bias) values, ranging from −20V to 20 V, for a-IGZO TFTs (W=240 µm, 

L=20µm) having a 70-nm a-IGZO layer; the thicknesses of the bottom and top SiO2 were 

100 nm.  However, the top SiO2 is deposited by RF sputtering as opposed to PECVD for  
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where CIGZO is the a-IGZO depletion capacitance, CGT is the top SiO2 capacitance, and 

CGB is the bottom SiO2 capacitance. This equation can be derived from the relationships 

that describe the charge coupling between the bottom and top gates in a fully depleted 

SOI operation. We have made the same assumptions as those commonly used in a 

classical SOI theory with details described in [2.36]. One should note that the differential 

in (2-46) represents the ratio of two capacitances. One is the CGB value that denotes the 

bottom-gate insulator capacitance, and the other is the [(CIGZOCGT )/(CIGZO + CGT) ] value 

that denotes the capacitance given by the series association of CIGZO and CGT in a fully 

depleted operation. Thus, this expression is valid only when the a-IGZO layer is fully 

depleted. In other words, this expression can only be applied to the situation in which 

VGT is negative. By replacing the capacitance values in (2-46) with the thicknesses of the 

layers, we obtain 

                                                                          (2-47) 

where tGB is the bottom SiO2 thickness, tIGZO is the a-IGZO thickness, tGT is the top SiO2 

thickness, εGB is the bottom SiO2 dielectric constant, and εIGZO is the a-IGZO dielectric 

constant (with  εIGZO =11 [2.37] and εGB = 4). It can be seen from (2-47) that dVT/dVGT 

should decrease with increasing tIGZO. This is the trend we observe as well (not shown 

here). 

The experimental results agree well with the SOI model. In n-channel SOI 

devices, the threshold voltage levels off once holes accumulate at the top interface as a 

result of negative gate bias. This is due to hole accumulation at the top surface that 

suppresses the penetration of top gate electric field into the active layer. However, as can 
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gap of a-IGZO [2.38]. Kimura et al. [2.38] have numerically estimated the density of 

localized states in a-IGZO on the basis of C–V measurements on a-IGZO TFTs and have 

shown that a-IGZO does not have the Gaussian-type state distribution commonly 

observed in a-Si:H and that it has a lower density of localized tail states than a-Si:H. 

A comparison of experimentally derived dual-gate characteristics with SOI-

model-based results gives considerable insight into the role of the top interface in 

electronic devices incorporating a-IGZO TFTs. In an active matrix LCD (Liquid Crystal 

Display) display, the performance may be adversely affected due to ions that are induced 

in the LC layer. The generation of ions can be attributed to the degradation of the LC 

(Liquid Crystal) layer after long-term LCD operations. The results of such generation are 

equivalent to what would occur if positive or negative VGT values were applied to the top 

gate. For an LCD display driven by a-IGZO backplane array such estimation would be 

particularly important to an attempt to achieve stable LCD operations. a-IGZO TFTs 

could also be applied to other electronic devices, including inverter and logic circuits 

based on NMOS a-IGZO TFT arrays. In such devices, an appropriate control of charge 

density at the top interface, that is, a proper VT control would be essential for achieving 

stable circuit operations.  

 

2.9 Low Frequency Noise Characteristics of  a-IGZO TFTs  

Low frequency noise is an important figure of merit in device analysis. It 

represents not only the smallest signal the device is capable of handling, but it is also a 

powerful technique for defect characterization and investigation of hot carrier phenomena 
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in TFTs. Although there have been a number of reports on the electrical characterization 

of a-IGZO TFTs, very little is known about their low-frequency noise (LFN) properties. 

In recent reports, in the high drain current range, the results reveal  noise (flicker noise) 

as the dominant LFN (Low Frequency Noise) source attributed to the mobility fluctuation 

mechanism [2.39-2.42]. In this work, we collaborated with Dr. C.A. Dimitriadis’s group 

at Aristotle University of Thessaloniki, Greece to examine the noise properties of bottom-

gate a-IGZO TFTs in the low drain current range, where the effect of the series resistance 

is negligible. The transfer characteristics of the devices were measured using a computer-

controlled system including a Keithley 6514 electrometer and two Keithley 230 voltage 

sources. Noise measurements were performed at room temperature using a SR760 fast 

Fourier transform spectrum analyzer preceded by a SR570 low-noise current preamplifier. 

The gate and drain biases were supplied by CdNi batteries to reduce any external low-

frequency noise. Fig. 2.29(a) shows typical plots of power spectral density SI versus 

frequency f, measured at different drain currents with VDS =Vd = 0.1 V. At very low drain 

currents, the spectra show a generation-recombination (g-r) type noise with a plateau at 

very low frequencies followed by a  decrease, related to trapping and detrapping 

processes of carriers at discrete traps with a dominant time constant . The g-r noise is 

described by the relation Sgr = Sgr(0)/ [1+(f/fc)
2], where Sgr(0)=SI(0) is the plateau of the 

g-r noise spectrum and fc is the corner frequency directly related to the trap time constant 

( =1/(2fc). Fig. 2.29(b) presents the extracted parameters of Sgr(0) and fc at drain 

currents Id = 0.3 and 2 nA.  
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The dependences of the g-r noise parameters SI(0) and  on the drain current are 

presented in Fig. 2.30, where a maximum is observed in both curves. It is seen that the 

maximum value of Sg-r(0) is at a higher value of Id than the maximum value of  and the 

increase of  with increasing Id is non-linear.  The non-linear dependence of  on Id 

suggests that the discrete trap centers responsible for the g-r noise are located in the 

IGZO material at some distance from the gate oxide/semiconductor interface, i.e. these 

are bulk traps and not interface states for which  has been shown to be linearly 

dependent on Id [2.43]. The finding that  is not constant but has a non-linear dependence 

on Id indicates that the g-r bulk trap centers are not homogeneously distributed over the 

thickness of the depletion region, but they are located in a thin layer of the depletion 

region which influences the nearby carriers in the conducting channel [2.43]. For 

complete characterization of the g-r trapping parameters, noise measurements as a 

function of temperature are required, which was not pursued in this particular study 

[2.44].  

For drain currents Id  5 nA, the g-r noise is overshadowed by a higher 1/f noise 

component as shown in Fig. 2.29(a). The deviation from the g-r noise is related to the 

emerging influence of oxide traps located close to the IGZO/SiO2 interface. Fig. 2.31 

shows the variation of the normalized drain current spectral density 2/I dS I  with the drain 

current and the corresponding transconductance-to-drain current ratio squared (gm/Id)
2, 

measured at frequency f = 2 Hz. It is clearly seen that 2/I dS I  varies as (gm/Id)
2 in the drain 

current region above 1 nA. This finding indicates that the 1/f noise originates from carrier 
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higher drain currents. The g-r parameters indicate that the g-r noise originates from bulk 

traps located in a thin layer of the depletion region. The drain current dependence of the 

normalized power spectral density 2/I dS I  shows that the 1/f noise is due to the carrier 

number fluctuations mechanism. As a result of the pure 1/f noise, the gate oxide traps 

have a uniform spatial distribution. 

 

2.10 Temperature Dependent Analysis of  a-IGZO TFTs  

Temperature dependent field effect measurements can provide valuable 

information of device function.  For example, at temperatures below room temperature, 

the dominant mechanism for carrier transport in a-Si:H is ascribed to variable-range 

hopping, while band conduction occurs easily in a-IGZO [2.47]. At higher temperatures, 

free carriers in a-Si:H are thermally activated, and thus, band transport, which is 

sporadically interrupted by trapping at the localized tail states below the conduction band 

mobility edge Ec, contributes to the conductivity. On the other hand, free carriers in a-

IGZO mainly originate from point defects in the system.  

2.10.1 Meyer-Neldel (MN) Conduction in a-IGZO TFTs 

Transfer characteristics and representative field effect parameters of a-IGZO 

TFTs (W=240µm, L =20 µm) at different temperatures ranging from 20°C to 80°C, is 

shown in Fig. 2.32. From the figure, we observe that µFE is weakly thermally activated, 

with very low activation energy (Eaµ) 15meV, VT decreases with a temperature 

coefficient of 17.5mV/°C and the subthreshold slope (SS) slightly increases from 0.5 to 
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much higher than the energy at room temperature (0.026 eV), then the second term on the 

left-hand side can be neglected. Taking the logarithm of both sides we obtain 

                                  ln ∆ 	 	            (2-52) 

W and C1 can be derived from the slope and intercept of the straight line shown in Fig 

2.35. We obtain a W of 0.62 eV and a C1 of 1.00915 cm-3. Using these values, the defect 

density is estimated to be 7.9x1015 cm-3 at room temperature. This estimated defect 

formation energy is of the same order as those for typical oxide semiconductor crystals 

ranging from approximately 0.5 to 2.0 eV [2.51]. 
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Chapter 3 

Suppression of Voltage Bias Temperature 

Stress Induced Instability (NBTI/PBTI) in 

N2O Treated Amorphous IGZO Thin Film 

Transistors on Flexible Metal Substrates  
 

 

3.1 Introduction 

In flat panel displays of today, active matrix thin-film transistors (TFTs) form the 

backbone of the switching elements in the pixel design and are integral part of the gate 

driving circuitry. Although amorphous silicon (a-Si:H) has been the mainstay in display 

devices to date, there is immense interest these days to engineer new approaches to 

integrated electronics that utilize non-Si based materials deposited at low temperatures on 

cheap and flexible substrates. Amorphous oxide semiconductors as mentioned before are 

a class of materials with unique electronic, structural and transport properties that allow 

such integration [3.1]. They have gained considerable attention and have been used as 
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active channel layer of thin film transistors (TFTs) that find broad range of applications 

in active-matrix electronic papers[3.2], organic light-emitting diode (OLED) devices[3.3] 

and high resolution liquid-crystal displays (LCD)[3.4]. In particular, amorphous indium 

gallium zinc oxide (a-IGZO) TFTs are attractive alternative to traditional silicon (Si) 

based devices since they offer several key advantages such as high mobilities 

(>10cm2/V.s), an amorphous crystal structure which, due to a lack of grain boundaries, 

can aid in achieving good uniformity and ease of manufacturing, transparency in the 

visible spectrum and very low processing temperature [3.5]. 

Replacing a-Si:H in the mature AMLCD industry will be difficult but a-IGZO can 

enable future TFT backplanes for higher-performance AMLCDs, 3-D displays, active 

matrix organic light-emitting diode (AMOLED) displays, large area flexible electronics, 

and transparent electronics [3.6-3.9]. Ultrahigh-resolution displays of tomorrow with 

faster frame rates will require TFTs that are not currently possible with a-Si:H technology. 

Also in such an emissive display, the demand for TFT stability is paramount since any 

shift in threshold voltage, ΔVT, would cause pixel-to-pixel nonuniformity [3.10]. 

Although it is possible to use a-Si:H for this application, its inherent instabilities must be 

compensated with additional TFTs, which require additional area and complicated circuit 

designs. To ensure reliable pixel switching and circuit operation based on a-IGZO TFTs, 

it is imperative to evaluate their electrical stability. It becomes even more critical in the 

case of current driven OLED displays because it can lead to variations in the respective 

pixel brightness [3.11]. There is a plethora of studies that report on gate bias induced 

instability of various multi-component oxide based TFTs [3.12-3.18]. To summarize, 
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electrons trapping at the gate dielectric/channel interface without the creation of new 

defect states or gate-field induced oxygen adsorption were mainly attributed for ΔVT 

under prolonged positive gate bias stressing conditions. These assignments of the charge 

trapping, injection, or channel defect creation models as the origin of the ΔVT instability 

can be understood in the framework of a-Si:H TFTs. The long term stability and 

reliability is therefore absolutely critical for a-IGZO based technology to gain foothold 

over their a-Si:H based counterparts and for mass production. Bias temperature stress 

induced ΔVT in these devices needs to be minimized for this purpose. This stringent 

requirement also applies to the switching transistors for other active matrix electronics, 

including display modes such as e-paper and LCDs, which is helpful to achieve a low 

power consumption and simple circuit design. For this reason, the device instability of 

oxide TFTs has been mainly examined under positive gate bias. In active matrix display 

devices however, the switching TFT undergoes continuous negative pulsed gate bias 

stress and in fact, duration of the negative bias is larger than that of positive bias [3.19]. 

Thus device degradation by NBTI (Negative Bias Temperature Stress Instability) is a 

critical issue that needs to be addressed in greater detail. 

In this chapter we discuss suppression of bias temperature stress related instability 

in a-IGZO by post-fabrication N2O treated plasma passivation. As mentioned before, 

since the ΔVT instability can be understood within the framework of a-Si:H TFTs, a 

succinct review of instability in a-Si:H TFT is provided first, followed by stability 

concerns in metal oxide TFTs. Evolution of threshold voltage shift with time and 

temperature dependent bias stress measurements are done to elucidate the effects of N2O 
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Si:Nx:H) as the insulator biased with a positive voltage. The gate/nitride/channel trilayer 

in TFTs is essentially an MIS capacitor. Once the electron accumulation channel forms 

near the a-SiNx:H interface, several electron injection and trapping mechanisms may 

occur. A simplified view of the different mechanisms is depicted in Fig 3.3 and are 

numbered, they are direct tunneling from valence band, Fowler-Nordheim injection, trap-

assisted injection, constant-energy tunneling from silicon conduction band, tunneling 

from conduction band into traps close to EF , and hopping at the Fermi level, respectively 

[3.25]. Determining which one is dominant is not easy and, in general, they are dependent 

on the nitride trap density and the applied electric field. Mechanisms 1-3 are believed to 

occur at relatively large electric fields, while others may happen even at low fields [3.25]. 

In contrast to the defect state creation which is irreversible and stable at room 

temperature, charge trapping is reversible even at room temperature [3.26], and initial 

drain current can be recovered [3.27]. Indeed, charge release (detrapping) from the nitride 

dielectric, back into the TFT channel layer, is energetically favorable when the gate bias 

is removed. In Fig. 3.3, assume that we apply a gate bias to the TFT or MIS structure and, 

thus, some amount of charge is trapped in the nitride dielectric. The trapped charges 

occupy energy levels close to the nitride Fermi level which is below the Fermi level of 

channel layer. Once the gate bias is removed, the energy of trapped charges lies above the 

Fermi level in the channel layer. This energy difference favors detrapping and back-

tunneling of charges into the channel layer. 

Building on results showing charge injection to be the primarily responsible 

mechanism for ΔVT, Libsch and Kanicki [3.26] found they could adequately model all 
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such as charge trapping and, possibly, defect formation in the a-IGZO layer, in the gate 

dielectric, or at the a-IGZO/dielectric interface. It might also be expected that an 

increased temperature or a simultaneous exposure of a device to both bias stress and 

illumination could lead to enhanced or additional instabilities. In most of the reported     

a-IGZO TFTs, the back surface is exposed to atmosphere. Metal oxides are well known 

as gas sensors [3.28], and thus, one might also expect instabilities due to back 

surface/ambient interaction. 

While not an issue for our back channel passivated a-IGZO devices, the 

interaction with ambient molecules on the back surface could lead to “back-channel” 

surface conduction in the bottom gate devices. The encapsulation or passivation or 

surface treatment of the back surface, so as to reduce or eliminate the interaction with the 

ambient, would be expected to have an impact on the operation and stability of bottom 

gate devices. Finally, the generation and recovery of all of these instabilities over time 

may lead to a time-dependent operation. The stability concerns are shown in Fig. 3.4. 

Although the ΔVT in a-IGZO TFTs can be understood within the a-Si:H TFT instability 

mechanisms, the fundamental material difference between a-Si:H and a-IGZO-based 

oxide semiconductors should be considered carefully. The relative low sensitivity of the 

electron mobility of these oxide semiconductors to their corresponding crystal structure 

was explained by Nomura et al. [3.30]. In typical covalently bonded materials such as Si, 

carrier transport is primarily through the directional sp3 orbitals and is affected by 

structural randomness that greatly reduces bond overlap and carrier mobility. In metal 

oxides, nondirectional ns orbitals make up the conduction band attributed to the higher 
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RF sputtering. The IGZO sputtering was from a 6-inch diameter commercially available 

target (1:1:1 molar ratio of In2O3:Ga2O3:ZnO). The optimized IGZO/SiO2 stack was 

patterned by combination of dry (CF4) and wet etching (dilute HCl~40:1 in DI water). A 

thicker (70 nm) sputter deposited passivation oxide capped off the patterned layers to 

protect the active channel region. Contact openings to access the pads were accomplished 

by lithography and selective etching of the oxide layer. Subsequently, opening of 

source/drain electrodes were done by dry etch. In order to reduce etch damage and 

improve contact resistance, the patterned S/D areas were treated in Ar plasma. Finally, 

Mo source and drain metallization was done by RF sputtering and subsequent lift-off. 

Completed devices underwent 1 hr anneal at 300°C in N2 ambient before testing could 

proceed. 

 

3.4.2 N2O Treated a-IGZO TFT Electrical Measurements Under Bias Stress 

The transfer characteristics of the devices were measured with Lab-View 

interface-controlled semiconductor parameter analyzer (HP4145B) and in a probe station 

with the devices mounted on an automated heating chuck. A series of NBTS (Negative 

Bias Temperature Stress) and PBTS (Positive Bias Temperature Stress) measurements 

were conducted (at temperatures between 20°C-80°C) for the steady-state conditions at 

predetermined stress voltage (VGS_STRESS = ± 20V) applied to the gate electrode with the 

drain terminal shorted to the source terminal (VDS=0 V) to maintain a uniform electrical 

field distribution along a-IGZO/SiO2 interface. Each series of BTS experiments was done 
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on the same TFT and to ensure consistent initial TFT properties, the thermal annealing at 

100°C was carried out for 10 min in N2 ambient to revert to pristine device operation. 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 IDS-VGS characteristics of a fabricated a-IGZO TFT, W=160μm, L=20μm 

measured at VDS = 20 V. 

 

3.5 BTS induced ΔVT instability in N2O Treated a-IGZO TFTs 

3.5.1 Electrical Properties of a-IGZO TFT without stress  

Typical TFT parameters are extracted from transfer (IDS-VGS) and output (IDS-

VDS) curves. Transfer characteristics of plasma treated and as-deposited a-IGZO TFTs 

with channel length of 20μm and channel width of 160μm measured at VDS =20V is 

shown in Fig 3.6. The IGZO TFTs operate in n-type enhancement mode and exhibit hard 

saturation. The PECVD SiO2 dielectric (Breakdown voltage > 8MV/cm) is effective in 

suppressing gate-leakage current below 10 pA which results in high ION/IOFF ratio.  Field 

effect mobility of 13.5cm
2
/V.s and 15.07cm

2
/V.s is calculated using standard MOSFET  
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Fig.3.7 (a) ΔVT, (b) μFE, (c) SS of NBT and PBT stressed N2O treated a-IGZO TFTs    

(W=160μm, L=20 μm) as a function of stress time (tSTRESS). 
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3.5.2 Electrical Properties of a-IGZO TFT with BTS  

The time evolution of device degradation was monitored by interrupting the BTS 

at fixed time periods. The duration of the total bias stressing was 2000 s for this particular 

study.  Fig. 3.7(a)-(c) show the key TFT parameters, ΔVT, μFE, SS observed as a function 

of stress time (tSTRESS) during the NBTS and PBTS experiments at 80°C with the gate 

bias VGS=-20V/20V for N2O plasma treated case. We held VDS=20V to precisely probe 

the subthreshold properties of the a-IGZO TFTs. The ΔVT is calculated as the difference 

between threshold voltages at each stressing time step and the initial values of the same 

before each BTS experiment (VT_initial).  The results indicate that during circuit operation 

involving a-IGZO TFTs, both positive and negative clock cycles can cause change in 

electrical properties of the TFTs and warrant careful circuit design paradigm to account 

for these shifts. When compared to as-deposited devices, the degradation due to NBTI 

was worse than that compared to PBTI. Severe ΔVT has been reported for a-IGZO TFTs 

under NBTS both in ambient light and UV illumination conditions and the degradation 

mechanisms have been attributed to subgap density of state generation and subsequent 

field-assisted trapping in as deposited and unannealed TFTs [3.34].  As such we decided 

to further investigate the ΔVT with time and temperature under NBTI. 

 
3.5.3 Suppression of NBTI of N2O Treated a-IGZO TFT  

Fig. 3.8(a)-(b) shows the typical results observed during the NBTS experiments at 80°C 

with VGS=-20V for both as deposited and N2O plasma treated case. TFTs which were not 

subjected to post- processing N2O plasma treatment exhibited uniform negative ΔVT shift 

for both ON and subthreshold regions in a-IGZO TFTs. For the N2O treated devices, the  
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In a-Si:H TFT, deep-gap states originate from rather weak Si-dangling bonds. The 

subthreshold swing in such devices can be associated with the density of deep bulk sates 

(NBS) and interface states (NSS) density at the semiconductor/channel region by the 

following equation [3.35]: 

              







 SSBSsemi

ins

ins qNN
qd

eq

kT
SS 


1

)log(
            (3-2) 

where k (Boltzman constant), T (temperature), and q (electric charge) are the usual 

physical parameters; εins and εsemi are permittivity in the insulator and semiconductor, 

respectively; dins is the effective thickness of the insulator. If this conjecture holds true for 

a-IGZO TFT, the bulk states of the a-IGZO active layer can be estimated by considering 

a sole contribution from bulk states in (3-2) (by setting NSS=0). Biasing the TFT can 

cause the amorphous Si network to be unstable and the network can rearrange to break 

the Si-Si bonds [3.23]. However, in a-IGZO, instead of the hybridized sp3 orbitals, 

carriers are conducting through metal cation’s ns-orbitals with large inter M-O (metal-

oxide) overlap [3.30]. Such mechanism presumably allows a-IGZO to have a high 

immunity to dangling bond creation and maintain a low density of deep-gap states. Fig. 

3.9 (a) illustrates the time evolution of bulk state density and characteristic temperature of 

the conduction-band-tail-states (TG). A high TG in a-Si:H network commonly correlates 

to a high density of band-tail states and non-ideal film quality [3.35].   

As shown in Fig 4.9 (a) and (b), both the bulk-state and interface trap state density 

are higher in the as- deposited a-IGZO films whereas they are substantially reduced for 

the N2O plasma treated case.  The variation of kTG is very small and is fairly close to 25 

meV in the latter case. This indicates that once the a-IGZO TFTs are subjected to the 
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N2O plasma treatment, the conduction band-tail remains largely unaffected even with 

longer bias stressing.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3.9. (a) Density of bulk-states (NBS) and characteristic temperature (kTG) of 

conduction-band-tail states and (b) interface density (NSS) states in as-
deposited and N2O plasma treated a-IGZO TFTs.  
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3.6 Stretch-Exponential Model for N2O treated a-IGZO TFT  

To better understand the physics of NBTS induced degradation in a-IGZO TFT, 

we performed a numerical analysis based on the stretched-exponential model commonly 

used for a-Si:H TFTs. The model, which was originally developed for a-Si:H TFTs based 

on charge injection/ trapping concept [28], is expressed by the following equation:  

                                    



































stress

OT

t
VV exp1                                (3-3) 

 

where,                 initialTSTRESSGO VVV __             (3-4) 

 

and         









STRESS
o kT

E exp                   (3-5) 

 

In the above equations, ΔVo is the effective voltage drop across the gate insulator, 

ΔVT_initial is the initial threshold voltage; α is the fitting parameter for ΔVo dependence 

and β is the stretched exponential factor. The τ represents the characteristics trapping 

time and Eτ in (3-3) is the average effective energy barrier that carriers in conducting 

channel needs to overcome before they can enter the insulator or near interface region, 

with τo being the thermal pre-factor for emission over barrier. For a very short stress time   

(tSTRESS << τ),  (3-3) can be further shortened as - 
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This is a straightforward power law dependence of β of tSTRESS and has been applied to 

model BTS data [17-18]. On the other hand, for infinite stress time, (3-3) will give a 

saturated behavior with ΔVT →(ΔVo)
α. Both logarithmic and stretched-exponential time 

dependence models were derived to qualitatively describe ΔVT in a-Si:H TFTs based on 

the charge trapping mechanisms. However, the logarithmic time dependence  assumed no 

further redistribution of the charges trapped at the interface deeper into the the bulk-

dielectric, whereas the stretched-exponential time dependence hypothesized the emission 

of trapped charges toward deep states in the bulk dielelectric [3.26]. It is also plausible 

that the amorphous structure of the gate dielectric will lend itself to an appreciable 

number of band-tail states which can act as transport states for the emitted lower energy 

trapped state charge [3.26]. The extent this can happen depends on the type of dielectric 

and active layer used and also on deposition and processing conditions. 

Fig 3.10 (a) and (b) show the time dependence of ΔVT with different temperature 

ranges (40°C-80°C) to demonstrate the applicability of stretched-exponential model for 

describing N2O treated a-IGZO TFTs. For even lower temperatures, the ΔVT is too small 

(few mV) to make reliable analysis within the BTS time range (2000s) chosen in this 

study.  The model fits well with the experimental data (dashed lines are numerical fits to 

model) with α and β determined to be 0.99 and 0.56 respectively. The α is determined 

from the log(|ΔVT|) vs log(|ΔVo|) . For comparison purposes we also repeated the BTS 

values from PBTS measurements with positive VGS_STRESS =20V and obtained α and β 

values of 1.02 and 0.71 respectively. The extracted α for PBTS (1.02) is larger than the 

one extracted for NBTS (0.99) which is indicative of a-IGZO TFT’s sensitivity to the  
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polarity of bias stress. The characteristic trapping time, τ, is treated as fitting parameter 

and plotted as a function of 1/kTSTRESS in Fig. 3.11. for both PBTS and NBTS on N2O 

treated a-IGZO TFTs. Table 4.2 summarizes all the parameters used in the stretched-   

 

 

 

 

 

 

 

 

 

 
 
Figure 3.11. Characteristic trapping time, τ, for both NBTS and PBTS plotted against    

1/TSTRESS (from 20ºC-80 ºC). 
 

exponential model. The extracted EA=Eτ for positive bias temperature stress, BTS (0.275 

eV) is smaller than the value of negative BTS (0.623 eV). This suggests that the electrons 

experience a lower energy barrier than holes do during the charge injection process near 

the a-IGZO/SiO2 interface. Electron injection is very efficient and can quickly fill out the 

available states which in-turn increases the chance for re-emitting these filled states 

[3.36]. As a result, the characteristic trapping time for positive BTS to reach the 

saturation point is lower than that of negative BTS. Although the fitting is prone to errors 
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due to short stress times and small ΔVT variation in N2O plasma treated a-IGZO devices, 

the stretched-exponential model is able to give us a trend seen from the experimental data. 

The model seems to work even with different magnitude of the stress voltage, BTS 

polarity and varied stress temperatures. This implies that the carrier injection from 

conducting channel and the subsequent charge trapping plays an important role in the a-

IGZO TFT BTS instability.  

 

 

 

 

 

 

  

 

 

 

Figure 3.12. Simulated ΔVT vs. tSTRESS for NBTS (-20 V, 80ºC) of N2O treated a-IGZO 
TFT; refer to Table 3.2 for the simulation parameters. 
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Chapter 4 

Threshold Voltage Stability of N2O Treated 

Amorphous IGZO Thin Film Transistors on 

Flexible Metal Substrates Under Constant 

Current Temperature Stress 

 
 

4.1 Introduction 

From a reliability standpoint, a critical issue for future large area active matrix 

organic light emitting diode (AMOLED) display applications is the threshold voltage 

stability in thin film transistors (TFTs) under constant current stress operating conditions 

because of the current driven nature of the OLED devices [4.1-4.3]. The driving scheme 

in a typical AMOLED device comprising of two TFTs (namely the switching TFT, i.e. 

Sw-TFT, and the driving TFT, i.e. Dr-TFT), one storage capacitor (Cst) and an OLED is 

depicted in Fig. 4.1. The switching TFT (Sw-TFT) needs to adequately charge the storage 

capacitor to a desired voltage level during a short scanning time (Tscan); therefore, the 

gate voltage (VGS) has to be held at a relatively high voltage but the drain voltage (VDS) 
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but non-uniformity of other electrical characteristics due to presence of grain boundaries 

is an outstanding issue [4.6]. On the other hand, a-Si:H TFTs show highly uniform 

electrical properties over large area but suffers from inherent meta-stable effects due to 

the long range disorder in the a-Si:H matrix[4.7]. Based on the understanding that has 

been developed for a-Si:H/Si3N4 TFTs [4.8-4.10], bias stressing may lead to instabilities 

such as charge trapping and possibly defect formation in the semiconductor channel, in 

the gate dielectric, or at the dielectric/semiconductor interface. Also an increased 

temperature and stringent stressing environment could lead to enhanced or additional 

instabilities. In the inverted-staggered bottom gate a-IGZO devices under investigation, 

the back-channel surface conduction can be an additional pathway to degradation due to 

interaction with the ambient.  The encapsulation or passivation of the a-IGZO surface to 

reduce the interaction with the ambient would be expected to have an impact on the 

operation and stability of the bottom gate devices. All these instability mechanisms over a 

period of time are bound to manifest themselves in a time-dependent operation. Studies 

investigating the electrical stability of a-IGZO TFTs have been reported [4.11-4.16], and 

a parallel shift in TFT transfer characteristics when subject to either constant bias or 

current stress is commonly observed, and several possible degradation mechanisms have 

been put forth. Nomura et al. [4.16] suggested that shallow traps are the origin of 

subthreshold slope deterioration and ΔVT in unannealed and non passivated a-IGZO 

TFTs devices, while deep charged traps which cannot be removed by annealing are 

responsible for small ΔVT [16]. On the other hand, Lee et al. [4.11] and Suresh et al. 

[4.12] attributed the instability to charge trapping in the channel/dielectric interface or in 



121 
 

the bulk dielectric layer. This chapter addresses experimental results of the stability of 

N2O treated a-IGZO TFTs that are electrically stressed with different constant currents in 

a wide temperature range. The goal is to investigate factors affecting the degradation 

including stress time, stress current, stress temperature, and TFT biasing conditions. 

 

4.2 Experiments for Current Temperature Stress Study 

Constant current temperature stress (CCTS) measurements were performed on 

N2O treated a-IGZO TFTs. The a-IGZO TFT device has a staggered, bottom-gate 

architecture with the back channel passivation. The TFTs are fabricated by first 

depositing 150 nm of Mo by RF sputtering onto SiO2 passivated 6 inch steel wafers and 

lithographically patterning and wet etching to form the gate layer. A 100 nm thick SiO2 is 

then deposited by PECVD at 300°C. This is the maximum process temperature in the 

entire fabrication sequence. Then a 70 nm of a-IGZO thin film is deposited by RF 

sputtering from a 6-inch diameter commercially available IGZO target (1:1:1 molar ratio 

In2O3:Ga2O3:ZnO). The optimized a-IGZO active layer is patterned by wet etching in 

dilute HCl. After patterning, the IGZO active area is subject to N2O plasma treatment in 

PECVD chamber at 100 W for 5 minutes. Contact openings to the gate pads are 

accomplished by lithography and selective etching of the oxide layer. Finally, Mo source 

and drain metallization is done by RF sputtering and subsequent lift-off.  

For the devices undergoing CCTS studies, the measurements were done in the lab 

ambient and in light-tight conditions using a Hewlett-Packard 4145B semiconductor 

parameter analyzer with probes for low-noise, high-current sensitivity measurements. 
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 still in the diode connected mode (VGS = VDS) so as to mimic the driving scheme in a 

typical AMOLED application. The measurement sequence described above was repeated 

for several levels of stress current (ISTRESS) and stress temperature (TSTRESS) for both 

CCTS setups. Table 4.1 summarizes the CCTS conditions used. For both CCTS setups, 

after the 2000s CCTS stressing, the TFT was subjected to N2 furnace anneal at 100°C for 

10 minutes to almost recover to virgin state (unstressed), as shown in Fig. 4.3. 

 

4.3 Electrical Properties of N2O Treated a-IGZO TFTs after CCTS 

Electrically stressing the a-IGZO TFTs at elevated temperatures and different 

stress current levels and evaluating the behavior of the ΔVT should provide significant 

insight into the instability mechanisms of these devices. In this section, we will discuss 

the time evolution of ΔVT of our N2O treated a-IGZO TFTs with varying temperature and 

stress current levels. Fig. 4.4(a) and (b) show the transfer characteristics of N2O treated a-

IGZO TFTs in linear and saturation current stress modes respectively. A rigid positive 

ΔVT is evident in both stress modes. The CCTS linear was performed at TSTRESS = 60°C 

with VGS held at 20V, at a stress current level of ISTRESS = 20μA. At this specific level of 

stress current, VDS was measured to be around 0.7V, which corresponds to the linear 

regime of TFT operation. The CCTS saturation was performed at TSTRESS = 80°C with the 

gate and drain tied together, and at a stress current level of ISTRESS = 100 μA, which sets 

VGS = VDS to be 9.6V. The threshold voltage (VT), field effect mobility (μFE) and the 

subthreshold slope (SS) of the unstressed N2O treated a-IGZO TFTs are 1.52 V, 15.41 

cm2/V.s and 400 mV/dec respectively; after 2000s of CCTS, these values are 3.14 V, 15  
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cm2/V.s and 460 mV/dec in the linear mode and 2.1 V, 15.25 cm2/V.s and 432 mV/dec in 

the saturation mode respectively. As we can see from Fig. 4.4, even after suffering these 

strict CCTS conditions, the TFT off-current remained almost the same while there was 

only a slight degradation in subthreshold slopes and negligible decrease in the field effect 

mobility slightly (1-2%). The ΔVT is < 2V (~0.5 V in saturation mode) which is 

remarkable when compared to a-Si:H TFTs subject of similar stress conditions (for 

example, is ΔVT > 5V for 15µA of constant current stress at 75°C) [4.18]. 

 

4.4 Effect of Stress Temperature on ΔVT of N2O Treated a-IGZO TFTs 

To understand the origin of instability in a-IGZO TFTs under constant current 

stress, it is imperative to investigate the temperature dependence of ΔVT since some of 

the degradation mechanisms may be temperature mediated. In order to ascertain the exact 

kinetics of instability, we performed measurements for both CCTS setups at stress 

temperatures (TSTRESS) ranging from 40°C to 80°C in 20°C steps. The time duration for 

stress is defined as tSTRESS. The stress currents are 20μA and 100μA for linear and 

saturation mode of stressing respectively. A stress current level of 20μA is deemed 

adequate since it is comparable to the maximum drive current of a 15" XGA full color 

AMOLED display [4.19]. As is evident from Fig 4.4, a much higher current stress level is 

required to have measurable ΔVT in the saturation (diode connected) mode  since we 

observed that the TFTs are electrically more stable when stressed under CCTS saturation 

mode as opposed to CCTS linear mode  for the same ISTRESS level.  
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Fig. 4.6(a) and Fig. 4.6(b) show typical temperature dependences of the a-IGZO TFT 

ΔVT as a function of stress time for various TSTRESS under CCTS linear and saturation  

mode. There is a very small but discernible temperature dependence of ΔVT for both 

CCTS setups, with a stronger dependence in the linear mode of stress. The ΔVT increased 

by raising the stress temperature. Slight degradation of subthreshold slope is noticeable at 

larger temperature stress possibly attributed to secondary instability such as field induced 

interface state creation.  

 

4.4.1 Thermalization Energy Concept of ΔVT: Absence of Defect State 

Creation in N2O Treated a-IGZO TFT  

A common practice to compare the stability of different TFTs has been to evaluate their 

ΔVT over time at varying temperature range to mimic more stringent bias stress 

conditions. A model that correlates the effect of stress temperature and stress time is 

based on thermalization energy developed for a-Si:H TFTs by Deane et al. [4.20].  They 

combined time and temperature variables with a new parameter, thermalization energy as 

defined as  STRESSSTRESSBth tTkE .ln..   which signifies that after a time of tSTRESS at a 

stress temperature of TSTRESS, all defect creation sites with energy less that Eth would 

have converted to defects [20]. It has been shown that ΔVT plotted as a function of Eth for 

different temperatures overlay perfectly with a single fitting parameter, the attempt-to-

escape frequency,  . In a-Si:H TFTs,   has been shown to be 1010 Hz as reported by 

several research groups [4.21].  It seems that   is unique to defect state creation, and it  
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has been attributed to the probability of an electron attempting to break weak Si-Si bonds 

[4.22]. If   is smaller it means that electrons attempt to break weak Si-Si bonds less  

frequently and thus the rate of defect creation and ΔVT are smaller. Therefore, the 

parameter v was considered as a figure of merit for device stability. 

Using the kinetics of defect creation, it was shown that ΔVT and Eth have the 

following relationship [4.20] with the parameters defined in reference 20: 

 





















1

0 ])/)[(exp1(

1
1

TkEE

CV

BAth

T       (4-3) 

 

By fitting the experimental data of ΔVT to (4-3), one can extract various parameters, 

including EA, the energy barrier for defect state creation. By fitting the experimentally 

determined ΔVT to (4-3) with fitting parameters kBT0 = 0.0309 eV and ε = 11.5, 

(experimentally determined from accumulation and depletion capacitance of high 

frequency IZO/IGZO/SiNx/MoW structures) [4.23] along with the parameter C set at 

(VGS-VT) in the linear mode and 2/3(VGS−VT) in the saturation mode, the energy barrier 

for defect state creation EA can be extracted and has been found to be 0.6485 eV. The 

value of attempt-to-escape velocity, υ to ensure best overlap of ΔVT-Eth was determined 

to be 1 MHz (106 Hz) which is the same as used in a previous study [4.24]. The resulting 

ΔVT curve according to (4-3) and our experimentally determined curve is depicted in Fig. 

4.7. Our measurement data shown in Fig. 4.7 for both linear stress mode and saturation 

stress mode, the measured ΔVT is smaller than that predicted by (4-3). The above analysis  
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Figure 4.7 ΔVT of N2O treated a-IGZO TFTs (W=160μm, L=20μm) at different 

temperatures as a function of the thermalization energy. (a) linear stress mode and 
(b) saturation stress mode.  Hollow symbols are experimental data filled ones 
simulation. 
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argues that there is only weak evidence of defect state creation and although ΔVT shows 

relative temperature dependence. In nc-Si:H TFTs, such absence of defect state creation 

in the constant current stress mode has been reported [4.18] although it has been 

suggested that defect creation is possible at a higher value of EA. These observations 

imply that defect state activation in our devices in the constant current stressing can only 

take place at much higher thermalization energies such as at higher temperatures and/or 

higher stress times.   

In general, it is difficult to envisage a single degradation mechanism that explains 

the variation of both subthreshold slope degradation (SS) and ΔVT since one or several 

mechanisms can be at play concurrently, depending on the material characteristics, 

quality of semiconductor-dialectic interface and bias stressing conditions. In our case, 

CCTS does not deteriorate the important TFT performance parameters such as field effect 

mobility and SS, but causes only the parallel shift of the transfer characteristics. These 

results suggest that extra defect states that affect the SS value are not generated in the 

N2O treated a-IGZO TFTs by constant current stress. The SS value is very sensitive to 

subgap trap states around the Fermi level of a semiconductor channel and deteriorates by 

increase in the subgap trap density [4.25]. This cannot be explained only by the effect of   

temperature alone,  rather increases of trap states by the heating must be considered. This 

suggests that the degradation process in the untreated a-IGZO TFTs is controlled by 

thermally activated mechanism. In the N20 treated a-IGZO TFTs we argue that these 

subgap states are drastically reduced. In RF sputtered a-IGZO TFTs, it has been 

suggested that if acceptor like deep trap states are added as interface traps below the 
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Fermi level, these states are charged negative at VGS above the turn-on voltage and can 

explain the positive ΔVT [4.26]. A similar model is employed for a-Si:H TFTs with 

concurrent degradation of a SS value  [4.27]. If the charged states are far deeper than EF, 

the SS value should not be affected much by the increase in the trap density. In our study 

of our N2O treated a-IGZO TFTs such deep state creation is retarded as N2O treatment 

homogenizes the IGZO films.   

 

4.5 Effect of Stress Current on ΔVT of N2O Treated a-IGZO TFTs 

Increased current stress levels are also expected to manifest in larger ΔVT  of       a-IGZO 

TFTs; therefore we performed CCTS measurements at various ISTRESS levels. In the linear 

mode, ISTRESS levels of 20μA, 50 μA, and 100μA and in the saturation mode 50μA and 

100μA were applied. The stress temperature (TSTRESS) was fixed at 60°C. Current stress 

levels lower than 50 μA had a negligible shift in ΔVT and as such we did not explore 

lower ISTRESS values in the saturation mode. Fig. 4.8 shows the time evolution of ΔVT 

with a different stress current level in the linear and saturation modes. We can see that 

ΔVT with time, becomes less dependent on stress current level when ISTRESS > 20 μA in 

the linear mode. This is not surprising since the VGS was fixed at 20V for all levels of 

ISTRESS in the linear mode, therefore ideally the channel induced charge will remain 

almost the same as long as the TFT operates in the linear regime. On the other hand, in 

the saturation mode, ΔVT-tSTRESS increases with ISTRESS levels and becomes independent 

of ISTRESS once normalized to the injected charge Qinj ( = ISTRESS x tSTRESS), as shown in 

Fig. 4.9. Qinj is a commonly used parameter to evaluate the ΔVT caused by trapped charge 
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subsequent redistribution of trap states in the bulk of silicon nitride (a-SiNx) dielectric, 

and was to be a temperature independent process. Libsch and Kanicki [4.27] also argued 

that trapped carriers first thermalize in a broad distribution of band tail states at their 

channel/a-SiNx interface and then move to deeper energy levels inside the a-SiNx at 

longer stress times, higher temperatures and larger electric fields.  In the latter case, the 

measured ΔVT was highly temperature dependent. Based on our experimental data, we 

interpret our threshold voltage shift to be the result of charge injection from the a-IGZO 

channel into traps located at the a-IGZO/a-SiO2 interface and in the gate insulator near 

the interface. The stretched exponential model based on charge injection/trapping was 

developed for a-Si:H TFTs [4.27]. The stretched exponential time dependence is 

generally used to explain the relaxation phenomena in disordered systems [4.30], but its 

origin in many materials is still under debate. In recent years, the stretched exponential 

model has been demonstrated to be applicable to metal oxides [4.31] and organic 

semiconductors [4.32] to give a phenomenological description of the stress behavior, 

irrespective of the underlying trapping mechanisms. The stretched exponential equation 

during the stress and recovery phases is defined as 

 



































STRESS

OT

t
VV exp1           (4-4) 

 

where, ΔVo = [VT (t = ∞) − VT (t = 0)] is the maximum threshold variation; β (0 < β ≤ 1) 

is the dispersion parameter reflecting the width of the involved trap distribution. In other 
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words, β represents the distribution of time constants that characterize the trapping 

process. The value of β closer to 1 depicts a narrow distribution, whereas β < 1 indicates 

a broader distribution of time constants. In terms of ΔVT response, β = 1 depicts an 

exponential function, whereas β < 1 leads to a response slower than the exponential 

function (or becomes stretched) for times beyond the characteristic trapping time (τ ) of 

carriers. The characteristics trapping time, τ in (4-4) is thermally activated and is given by 

 

)/(exp TkE Bo            (4-5) 

 

where, Eτ is the average effective energy barrier that the carriers in a-IGZO need to 

traverse before they can enter the insulator and τo is the thermal prefactor for emission 

over the barrier. In order to gain quantitative insight into device degradation, we consider 

the well-accepted stretched exponential model for explaining the instability mechanism 

developed originally for amorphous silicon TFTs. This model has been used successfully 

used by different groups to explain the time dependence of ΔVT for a-IGZO TFTs [4.33-

4.34].  For our a-IGZO devices, the time evolution of ΔVT for all stress times fitted well 

to the stretched exponential model which is used to describe both defect creation and 

interface charge-trapping mechanisms. The fitting parameters τ and β at different 

temperatures during both setup of constant current stress at various temperatures are 

listed in Table 4.2. From Table 4.2, the value of τ varies between 8.2x105 s to 4.3x108 s in 

the linear stress mode for temperatures ranging from 40°C-80°C whereas it is between 

2.7x108 s to 1.6x107 s for the same temperature range in the saturation mode. The 
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increase in β value with increasing temperature indicating that trap distribution becomes 

more uniform and the response is less stretched (a larger fraction of states in the insulator 

near the interface will become filled, giving rise to an increasing probability of emission 

from these states). The temperature dependence of β is also suggestive of multiple 

trapping mechanisms.  From Fig 4.12, one may also find that the parameter β is fairly 

temperature independent for the saturation stress mode (carriers hop or inject directly into 

lower energy states located at the a-IGZO/SiO2 interface and in the SiO2 transitional layer 

close to the interface). Temperature dependence of τ provide the average effective barrier 

height for electron transport (Eτ) which are obtained to be 0.56 eV for the case of 

saturation mode and 1.7 eV for linear mode of stress. The fitting parameter τ as a 

function of 1/kBTSTRESS is plotted in Fig 4.11 and τo is extracted to be 9.1x10-2 s for the 

saturation mode and 2.6x10-25 s for the linear stressing mode. 

According to the Si-Si weak bond breaking model proposed by Jackson, Marshall, 

and Moyer [4.35], the hypothesis to explain the TFT bias instability is that hydrogen 

diffusion causes the stretched-exponential behavior of ΔVT with stress time. Deep state 

creation in a-IGZO/SiO2 would require atomic migration (most likely involving cations). 

Atomic migration involving atoms such as Zn, Ga, or In usually require rather large 

migration energies (~3-4 eV) [4.36] and in that context seems incompatible with a-IGZO/ 

SiO2 TFT instabilities. A more likely scenario is local atomic rearrangement, such as 

bond length or bond angle distortion and is thought to be thermodynamically and 

kinetically possible; however, local atomic rearrangement is expected to simply modify 
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the band tail state distribution, which would not lead to new state creation. As noted 

earlier, a-IGZO material systems are thermodynamically more stable material in which 

the band tail and deep state density is determined by processing details and particularly 

by the post-deposition processes. The band tail and deep state density in a-IGZO has been 

reported to be orders of magnitude smaller than that of a-Si:H [4.37]. All IGZO 

constituents are atoms much larger, less mobile and thus less reconfigurable than 

Hydrogen.  

 

4.7 Conclusion: 

Constant current temperature stress (CCTS) studies were performed on N2O 

treated a-IGZO TFTs in linear mode where VGS was held constant during the stress period 

and in saturation mode where the TFT was diode-connected to maintain a constant IDS. In 

both modes of stressing, ΔVT-tSTRESS shift with temperature and stress current was 

observed.  In general, maintaining a lower temperature and smaller VGS is beneficial to a-

IGZO TFTs electrical stability. For the same level of IDS, the TFTs are more stable when 

operating in the saturation regime than in the linear regime. From the observed behavior 

of ΔVT- tSTRESS, we can conclude that there is only weak evidence of defect state creation 

in a-IGZO TFTs under constant current stress; the TFTs exhibit a  ΔVT of around 1 V 

under 2000 s stress with ISTRESS=100 μA at TSTRESS=60ºC. The substhreshold slope, off-

current and field effect mobility remain unaffected in this stressing mode. The kinetics of 

ΔVT- tSTRESS follow the stretched-exponential dependence predicted for charge trapping 
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in the interface/dielectric.  In contrast to a-Si:H TFTs where ΔVT does not saturate over 

time, that of a-IGZO TFTs saturates under constant current stress.  
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Chapter 5 

Electromechanical Stability of Amorphous 

IGZO Based TFTs and Circuits on 

Conformable and Thin Flexible Metal Foils 
 
 
 
 
5. 1 Introduction 

Mechanically flexible electronics have gained a lot of attention as novel 

applications like electronic books, roll-up displays and mobile communications gadgets 

which catch the fancy of consumers. Inexpensive and light-weight flexible electronics 

would be more rugged and portable than the more conventional rigid substrate-based 

electronics. Novel large area electronics, such as electronic paper, sensor skin, and 

electrotextiles, require building electron devices on flexible and deformable substrates 

[5.1-5.4]. Substrates such as organic polymers and stainless steel foils can be deformed 

into arbitrary shapes, but inorganic semiconductor device materials, such as amorphous 

silicon (a-Si:H) and silicon nitride (Si3N4), are brittle and crack easily when substrates are 
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deformed; therefore, it is desirable to reduce the strain in device structures on deformable 

substrates. A better understanding of the relationship between the electrical performance 

of the devices and the applied mechanical strain is also important. Although low 

temperature process ability of IGZO TFTs is compatible with plastic substrates, a greater 

dimensional stability (reduced shrinkage or elongation of the substrate during TFT 

fabrication) of thin metal foils allows implementation of circuit designs with smaller 

feature sizes. As these devices and circuits find increasing applications on flexible 

substrates, they will be subject to repeated flexing or bending; therefore, understanding 

the electrical performance of IGZO TFTs under mechanical strain becomes essential. 

There have been a number of studies on electro-mechanical characteristics of a-Si:H 

TFTs but no systematic investigation of IGZO TFTs on metal foils are reported. This 

study systematically investigates the influence of both tensile and compressive strain on 

IGZO TFTs. Correlation of electrical performance and mechanical strain will allow 

greater freedom when designing circuits based on IGZO TFTs. 

 

5. 2 Manifestation of Strain on TFT based backplanes 

  TFTs on flexible substrates could be deformed due to internal forces that are at 

play during the fabrication process. This can happen due to built in stress in the films, a 

differential thermal expansion mismatch between films and substrates or even by 

interaction with the ambient conditions like uptake/release of humidity. A TFT backplane 

can also be deformed by an application of external forces that bends it, shapes it 

conformally or elastically stretches it.  Fig 5.1 illustrates the active electronics fabricated  
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where Y is the elastic modulus. σ and Y have units of pressure (GPa). Strain, ε, is 

dimensionless and is frequently stated in percent. The behavior of the film-on-substrate 

structure under stress depends strongly on the elastic moduli and thicknesses of the 

substrate Y
s
, d

s 
and the film Y

f 
, d

f
.. When Y

f 
· d

f 
<< Y

s 
· d

s
, the substrate dominates and the 

film complies with it. This is the case for TFTs on steel or metal foils. The film/substrate 

stack curves only slightly and the stress in the substrate is small even if the built in stress 

in the film is large. When Y
f 

· d
f 

>> Y
s 

· d
s
, the film dominates, a scenario rarely 

encountered in TFT based backplanes but may arise in electronic textiles or skins. When 

Y
f 
· d

f 
≈ Y

s 
· d

s
, as may be the case in TFTs (i.e. a-Si:H on polyimide substrate) on very 

compliant substrates like plastic, it gives rise to complicated mechanical situations. For a 

quantitative understanding of the mechanics of TFT film stack on a flexible substrate, a 

brief and succinct description of strain induced by fabrication or by external bending 

forces is summarized. 

 

5.2.1 Built in Strain in a TFT films/Flexible Substrate Stack  

Built in stress originates in films that are grown out of equilibrium atoms seeking 

to move to low-energy, equilibrium positions. During the deposition process, stress is 

induced due to surface stress effects, crystallite coalescence, grain growth, vacancy 

annihilation, effect of impurities and phase transformations. After the film is grown, 

temperature of the films-substrate system may change to a different level and the 

mismatch strain will be induced due to the difference of thermal expansion coefficient 

between film and substrate. It can be described by [5.6] 
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                                                     Tsf   0
                                          (5-3) 

where f  and s are the thermal expansion coefficients of the film and the substrate and  

T  is the temperature difference. Consequently, the mismatch strain, in (5-3) needs to be 

accommodated by elastic and inelastic deformation in the film. If the film remains elastic 

within the temperature change, this mismatch strain induces a biaxial stress in the plane 

of the film, T , given by [5.7] 

f

Tf

T

Y








1

                                                 (5-4) 

where, fY is Young’s modulus and f  is Poisson’s ratio of the film (ν ≈ −ΔL┴/ΔL║; 

where, ΔL║ is the variation in change of length in the parallel direction of applied strain 

and ΔL┴ is the variation length in the longitudinal direction).  

 

5.2.2 Bending Strain in a TFT films/Flexible Substrate Stack 

The flexible film/substrate system could be subjected to additional stresses by 

externally applying bending moment. Any such bending or stretching induces strain in 

the thin films as well as the substrate. Fig 5.3 illustrates a TFT/substrate bent to a cylinder 

of radius R. The film and the substrate have thicknesses d
f 
and d

s 
and Young’s moduli Y

f 

and Y
s
. When bent, the top surface is in tension and the bottom surface is in compression. 

One surface sandwiched between this stack, known as the neutral surface, has no strain. 

If the film and the substrate have different elastic moduli (Y
f 
> Y

s
), so that the neutral 
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onset strain of PECVD SiO2 with different thicknesses. A rougher and thicker substrate 

has a lower crack onset strain and this agrees well with prediction from fracture 

mechanics [5.13] which states that strain to failure of brittle layers scales inversely with 

the thickness. For a-IGZO TFT fabrication, SUS304 substrates with surface finish of 

lessthan 2 nm were used to increase the crack onset strain in the SiO2 films. A 2μm 

coating was deemed suitable for both resistance against cracks as well as reducing shorts 

between the conductive substrate and the active TFT components on SiO2 layer. Crack 

onset strain for metal interconnects on SUS304 with 2μm SiO2 on both sides was shown 

to have even higher strain resistance (>3.5%) [5.10]. As we noted earlier, the steel 

substrate is plastically deformed after the bending test. When compared to the failure 

strain of SiO2, metal lines and the active TFT a-IGZO layers, the critical strain of steel is 

substantially lower (0.13%). For steel foil substrates (100μm thick) which are used in this 

study, the minimum elastic bending radius was calculated to be 38.5 mm. It is worth 

noting the flexibility of the a-IGZO TFT stack on substrate can be efficiently improved 

by decreasing the thickness of the steel substrates.  

 

5.4 Characterization of a-IGZO TFT and Circuits Under Strain  

Inverted staggered IGZO TFTs and circuits on 100μm thick, type SUS304, 

stainless steel substrates were fabricated for this study. The steel wafers had surface 

roughness (Ra) of around 2 nm and was coated with 2 μm thick PECVD SiO2 layer on 

both sides to electrically isolate the substrate as well as to prevent thermal expansion 

mismatch. The IGZO TFTs were strained by bending dies with dimensions of 20 mm by 



 

3

co

co

b

F

st

h

th

ap

F
 

fo

ch

m

el

0 mm to fi

onform to 

orresponding

ending radiu

or our samp

teel foil subs

igher than it

he source-dr

pplied strain

Figure 5.5 St

Trans

or standalon

haracteristic

mobility and 

lectrical stra

it cylinders 

the curvat

g strain, ε, w

us and z is th

ple, the neutr

strate and sin

ts thickness,

rain current

n.  

teel foils die

fer characte

ne IGZO T

s we extract

threshold vo

ain during m

of different

ture of the

was then calc

he distance fr

ral plane is 

nce the lengt

 applied stra

t path and 

s with a-IGZ

ristics were 

TFTs at ea

ted the off-c

oltage of the 

measurement

157 

t radii. The 

e cylinder 

culated from

from the neu

located appr

th and width

ain is uniaxi

the bending

ZO TFT und

measured a

ach bending

current, on-c

TFTs under

t did not ma

die was w

for accurat

m the relation

utral plane to

roximately i

h of the steel

al. The bend

g radius de

der (a) Tensi

at drain to s

g radius. F

current, gate

r tensile stra

ask the mech

well constrai

te strain c

nship ε =z /R

o the active la

in the middl

l foil are ord

ding directio

etermined th

le and (b) co

source voltag

From each 

e leakage cu

ain. To ensur

hanical strai

ined (Fig 5.

calculations. 

R, where R i

ayer of the T

le of the stai

ders of magn

on was paral

he correspon

ompressive s

ge of VDS=0

set of tra

urrent, field e

re that the ap

in measurem

5) to 

The 

is the 

TFTs. 

inless 

nitude 

llel to 

nding 

 

strain  

0.1 V 

ansfer 

effect 

pplied 

ments, 



158 
 

we waited for 5 min after measuring the characteristics before changing the radius and 

remeasuring the TFT characteristics. In a similar fashion, 7-stage IGZO ring oscillator 

circuits were also investigated with the applied tensile strain parallel to the oscillator’s 

TFT channel direction. A Tektronix P6243 1GHz active probe with < 1pF input 

capacitance was used to monitor the oscillation frequency. Only tensile strain was applied 

since compressive strain did not substantially affect the a-IGZO TFT mobility and On 

current values. Oscillation frequency of the ring oscillator was measured at different 

supply voltages of 6, 18, 22 and 26 V. Propagation delay was then calculated by dividing 

the oscillation period with the number of stages at each supply voltage level and bending 

radius. 

 

5.4.1 Electrical Properties of Discrete IGZO TFTs Under Strain 

Non-flexed TFTs for this particular study exhibited linear field effect mobility of 

11.2 cm2/V.s, threshold voltage around 2.5 V and sub-threshold swing of 0.5 V/decade 

and On/Off current ratio exceeding 107. The uniaxial tensile/compressive strain applied 

with different bending radius varied from 0.1-1% and 0.1-0.5% respectively. The figure 

of merit when measuring TFTs under mechanical deformation is critical (failure) strain 

level which corresponds to the onset of physical damage in most brittle layers of the 

device. In a-Si:H TFTs for example, the failure strains are in the range of 0.3%-0.5% 

[5.14]. In Fig 5.6, representative transfer characteristics of stand-alone IGZO TFTs with 

dimensions of W/L=240μm/10μm in the virgin state (no strain applied) and at various 

tensile/compressive strains are shown. All measurements are taken in dark to decouple  
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effects of illumination during bending. It is obvious, from Fig 5.6 that the transfer 

characteristic moves in opposite directions for tensile and compressive strain. It is worth 

mentioning that since the measurement of the characteristics under compressive strain 

follows a tensile bending, the observed shift caused by compressive strain is smaller than 

the shift that would’ve been observed if the tensile strain hadn’t been applied. The 

threshold voltage shift, ΔVT  is around 1V for 0.8% tensile strain whereas this shift is less 

than 200 mV for 0.52% compressive strain. In a-Si:H TFTs, a similar trend was observed 

[5.14] with no effect on electrical properties resulting  from a compressive strain 

substantially less than 1.8%. This study was limited by lack of additional cylindrical 

geometry to apply a greater compressive strain. The subthreshold swing degrades with 

increasing tensile strain and remained virtually unchanged for compressive strain. 

Because the elastic deformation of the steel substrate has a small and reversible effect on 

the electrical properties of a-IGZO TFTs, the critical strain level where the TFT fracture 

occurs may be all the information that is needed from a practical point of view. In Fig 5.7, 

we see that the TFTs remained functional up to a maximum tensile εcritical of 0.8%. This is 

slightly higher than that reported for a-Si:H TFT on metal foils. An increase in Ioff (off 

current) and gate leakage current, IL is observed for applied tensile strain levels larger 

than 0.8%, followed by device failure at εcritical. Optical microscope inspection reveals 

that cracks localized near Mo patterns appear and develop preferentially at the edge of the 

source/drain layers at this tensile strain level. 
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Fig 5.7 Evolution of On-current, Off-current and Gate-leakage current of a-IGZO TFT 
(W/L=240μm/10μm) with tensile and compressive strain. 

 
 

The typical drain current (IDS) versus drain voltage (VDS) characteristics of the same TFT 

with (at 0.6% of tensile strain) and without uniaxial mechanical strain at VGS-VT = 1, 3 

and 5V is depicted in Fig 5.8. There is drain current enhancement for different VGS-VT 

(20%, 17% and 11% respectively) with increasing tensile strain up to 0.6%.  
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Fig 5.8 Output characteristics of a-IGZO TFT (W/L=240μm/10μm) with different gate-
overdrive voltages for 0.6% tensile strain applied.  

 

The increase in on-current correlates well with the higher field effect mobility observed 

with increasing tensile strain. For tensile strains larger than 0.8%, the mobility starts to 

decrease. This result is consistent with the behavior of a-Si:H TFTs under tensile strain 

[5.14]. In Fig 5.9(a), we see that the relative change of mobility with tensile strain scales 

with TFT channel length. The changing rate of mobility is dependent on channel length 

for devices with the same width. A strong dependence of mobility on TFT channel length 

is indicative of the presence of parasitic series resistance [15], whereas no dependence on 

width is observed. The parasitic series resistance in the source and drain regions of a TFT 

can be described by  

 TGSoxP

i

VVC
L

W
R 









11

0

        (6-8) 
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where 0 is the low field mobility, i  is the intrinsic mobility without the effect of 

parasitic source/drain resistance and Rp is the parasitic series resistance. Fig 5.9 (b) shows 

the normalized carrier mobility i / 0i as a function of tensile strain for a-IGZO TFTs. 

The i was extracted to be 11.45cm2/V.s for the non-strained case. A linear fit gives the 

following relation between the i  and the applied tensile strain: i = (0.108ε +1.005) 0i . 

 

Fig 5.9 (a) Normalized linear field effect mobility voltage (μ/μO) of IGZO TFT with 
various dimensions with tensile strain. (b) Normalized intrinsic mobility,        
( i / 0i ) (W/L=240μm/10μm) with strain.  

 

The threshold voltage, VT, decreases with increasing tensile strain (Fig 5.10(a)) which is  

quite contrary to that observed in a-Si:H TFTs. This decrease of VT can be verified from 

capacitance-voltage (C-V) measurements of MIS (Metal/SiO2/IGZO) structures under 

tensile strain (Fig 5.10(b)). 
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Fig 5.10 (a) Normalized threshold voltage (VT/VTO) of IGZO TFT with dimensions of 
W/L =240μm/10μm) with tensile strain. (d)The shift in threshold voltage is 
verified by capacitance voltage measurements of MIS structures with increasing 
strain.  

 

5.4.2 Electrical Properties of IGZO TFT Based Circuits Under Tensile Strain 

Flexible circuits based on IGZO TFTs will be subjected to global strain due to 

either bending of the substrates or by package strain. In any case, it is imperative to know 

the circuit performance with various levels of strain in order to have greater design 

freedom. The effect of tensile strain on dynamic characteristics of the IGZO TFTs are 

evaluated from 7 stage ring oscillator circuits (Lload=Ldrive=16 μm, Wload=64 μm, 

Wdrive=256 μm), exhibiting oscillation frequency of 85.7 KHz when non-flexed at a 

supply voltage of 15 V. Increasing longitudinal tensile strain reduces (Fig 5.11(a)) the 

propagation delay per stage (oscillation at 88.6 KHz at 15 V and tensile strain level of 

0.4%) which can be directly correlated to relative mobility increase with applied strain. 

The relative change of propagation delay with strain is reduced as the power supply 
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Figure 5.11  Characteristics of 7 stage IGZO ring oscillator (Lload=Ldrive=16 μm, Wload=64 
μm, Wdrive=256 μm) under tensile strain: (a) Single stage propagation delay 
decrease with supply voltage (oscillator output for VDD =15 V shown as 
inset) and applied strain, (b) Measured speed enhancement of the same ring 
oscillator from 6V-26V of supply voltage under various strain levels.  

 

voltage increases. This may be due to the drain bias dependence [5.16] of piezo-resistive 

coefficient in the a-IGZO channel. The speed enhancement of IGZO TFT based ring 

oscillator circuit (Fig 6.11(b) is also supply voltage dependent and due to  a large current 

enhancement under uniaxial tensile strain. 

 

5.4.3 Physical mechanisms of strain effects on a-IGZO TFT with strain 

The effect of mechanical strain for devices on flexible substrate has been explored 

for a-Si:H TFTs [14,15] and organic TFTs [5.17]. For a-Si:H TFTs, the failure strain is 

from 0.5~1.0% in tension and 1.0~2.0% in compression; the mobility was reported to 

scale linearly with applied strain. These mobility changes under strain is correlated with a 

broadening or steepening of the conduction band tail in a-Si:H. The mobility of a-Si:H is 
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dominated by frequent trapping in the conduction band tail states. Compared to a-Si:H 

TFT the failure strain of organic pentacene TFT is much higher due to the excellent 

plasticity of organic material. Because the carrier transport mechanism for pentacene is 

hopping and the strain changes the spacing between pentacene molecules, the mobility of 

pentacene TFT decreases under compressive strain and increases under tensile strain 

[5.17]. 

 In a-IGZO TFTs, we observed an increase in linear field effect mobility with 

tensile strain (same as in a-Si:H TFTs) and a corresponding negative shit in VT (contrary 

to a-Si:H TFTs); however, the subthreshold swing worsened with increased tensile strain. 

Therefore, the correlation of reduction of Urbach energy (valence band tail slope) with 

decrease of conduction band tail states to explain the mobility increase in a-Si:H TFTs is 

not applicable to a-IGZO TFTs. Mechanical strain causes either an increase (for tensile 

strain) or a decrease (for compressive strain) of the inter-atomic distance of the 

semiconductor layers in a TFT. The direction of this change is parallel to the applied 

strain. It has been shown in the case of a-Si:H TFTs that the conductance change with 

strain is maximum when the applied strain is parallel to the current path in a TFT. In our 

case, the variation in change of length (ΔL║) is also parallel to the current path. The 

variation length in the longitudinal direction (ΔL┴) corresponding to the width and 

thickness variations of the  a-IGZO layer is induced by the Poisson effect and quantified 

by the Poisson ratio ν, where νf ≈ −ΔL┴/ΔL║. With a theoretical boundary of −1 < νf < 

0.5, this relation shows that the direction of applied strain remains dominant when it 

comes to changing the inter-atomic distances and consequently the current in a TFT.  The 
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Poisson ratio of IGZO is not known, but its closest material, ZnO, has a Poisson ratio of 

νZnO ≈ 0.35 [5.18]. With increasing tensile strain, the inter-atomic distance is increased 

which causes an effective decrease in the energy level splitting (ΔE) of the bonding and 

antibonding orbitals between the atoms in the semiconducting layer [5.19]. This changes 

the value of the Fermi function toward the conduction band edge in the case of tensile 

strain and away from it in the case of compressive strain. This conductance increase 

(additional availability of electrons for transport) results in a negative shift of VT for 

tensile strain and the increase in energy spacing leads to a positive shift VT. The mobility 

increase for tensile strain can be correlated with a decrease in the electron–lattice  

                   

Figure 5.11  SEM image of a-IGZO TFT ((L=10 μm, W=240 μm) after undergoing 0.8% 
tensile strain and 0.5% compressive strain. Crack propagate along the edge 
of gate/source-drain edge first and then there’s hint of buckling (AFM). 
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interaction due to the decreased energy spacing in the direction parallel to the current 

flow. This decreases the effective mass m* of the charge carriers (m* ~ ΔE) [5.20] and 

affects their mobility (μ ~ 1/m*). The increase in free carrier density under tensile strain 

can also explain the increase in capacitance observed in the Metal/SiO2/IGZO structures. 

Finally, SEM imaging (Fig 5.11) after both tensile strain and compressive strain reveals 

that  cracks first propagate around the edge of gate and source/drain overlap region from 

underneath SiO2 layer and a subsequent buckling (revealed by AFM) of the whole TFT 

stack. 

 

 
5.5 Conclusion  

We have applied uniaxial tensile and compressive strain ranging from 0.1% - 1% 

to amorphous IGZO TFTs and circuits fabricated on stainless steel foils by outwardly 

bending them to cylindrical surfaces with different bending radii. Tensile strain increases 

field effect mobility and reduces threshold voltage of stand alone devices. IGZO TFTs 

remained functional up to an applied strain level of 0.8% with critical strain (failure mode) 

level at 0.9%. a-IGZO TFT showed greater immunity against compressive mechanical 

bending the important TFT parameters did not change much up to 0.5% of applied strain. 

IGZO TFT based ring oscillator had lower propagation delay per stage and speed 

enhancement with applied tensile strain. In summary, this study provides us with some 

understanding of IGZO TFTs under mechanical strain and allows for predicting IGZO 

TFT based circuit performance when flexed. 
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Chapter 6 

Amorphous IGZO Based Circuits and 

Systems  on Conformable and Thin Flexible 

Metal Foils 
 

 

 

6. 1 Introduction 

Electronics on flexible substrates have attracted a great deal of attention these 

days since mechanically flexible, large area electronics can usher in the era of ubiquitous 

computing as well as enable novel applications such as roll-up displays, wearable sensors, 

imaging devices etc. Many factors contribute to the allure of flexible electronics as they 

are more rugged, lighter and portable compared to their rigid substrate based counterparts.  

Hydrogenated amorphous silicon (a-Si:H) [6.1], low-temperature polycrystalline silicon 

(LTPS) [6.2] and organic materials [6.3] have been examined as active layer materials in 

such flexible devices. As we have noted before, a-Si:H is the material that is most widely 

investigated for flexible electronics and has been demonstrated to be useful in developing 
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flexible solar cells and TFTs [6.4]; however, device performances and applications are 

limited by the properties inherent to this material. The field-effect mobilities of a-Si:H 

TFTs are only < 2cm2/V.s because the drift mobility of a-Si:H is controlled by hopping 

between localized tail states [6.5]. These values are not satisfactory for high-resolution 

carrier injection devices such as organic electroluminescence displays. We also know that 

polycrystalline Si TFTs exhibit large variations in device characteristics due to grain 

boundaries; Therefore, extra circuits have to be included to compensate for the deviations 

of the device characteristics which limit the resolution and aperture ratio of the displays. 

We have shown until now that oxide TFTs, specifically based on amorphous IGZO can 

have superior performance that significantly exceeds that of amorphous and 

nanocrystalline Si and approaches that of larger grain poly-Si without the complexities 

and uncontrolled variability of polycrystalline materials. The simplicity of processing is 

also another attractive feature when circuit integration is the topic at hand. Since 

source/drain contacts can be directly placed onto the a-IGZO channel layer, additional 

steps associated with source/drain doping (as is the case for a-Si:H and LTPS) are 

obviated. An added feature is the possibility of creating transparent electronics by 

fabricating all electrodes and channel materials with > 80% transmittance in the visible 

spectrum which would enable all transparent displays with larger aperture ratio 

eliminating the need for opaque light shields. This will afford larger real estate for pixel 

TFTs and therefore larger current drive which is due to high mobility of a-IGZO TFTs. 

Thus, AMOLED integration with transparent electronics would be compatible with a 

conventional metal cathode-on-top OLED structure [6.6].  
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The application of a-IGZO TFTs, however, is not limited to simple switching 

elements in active-matrix displays; rather, the relatively high performance allows 

integration of thin-film analog and digital circuits and possibly, microwave devices [6.7]. 

There has also been considerable interest in integrating the row and column drivers for 

AMOLED displays onto the same [6.8] backplane as the pixel switches. This requires a 

relatively high performance circuit technology. Recently, IGZO ring oscillator circuits on 

silicon substrates with 0.5 μm channel length and 0.5 μm source-gate and source-drain 

overlap were reported to operate at ~7 ns/stage with a saturated-load inverter design, and 

<1 ns/stage with a novel bootstrapped inverter design [6.9].  In addition, high temperature 

ZnO TFTs (400-600oC) deposited by pulsed laser deposition have exhibited high field-

effect mobility >100 cm2/V·s, maximum channel current density >400mA/mm and 

interesting microwave performance with fT = 2.45 MHz and fmax = 7.45 MHz on high 

resistivity Si wafers [6.7]. In most of the recent demonstrations, rigid substrates such as 

Si wafers and glass substrates with high performance lithography and small alignment 

tolerances have been used.  

The relative low process temperature fabrication of a-IGZO TFT is very suitable 

for demonstrating circuits and systems integration on pliable, conformable substrates 

such as polymeric substrates; however, as a vehicle of demonstration, metal foils offer 

great dimensional stability that allows for implementation of circuits with small feature 

sizes. Furthermore, they offer superior chemical resistance in a number of harsh 

environments and better thermal spreading behavior that plague typical plastic substrates. 

Throughout this chapter, the development of thin film a-IGZO based NMOS-only 
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architecture circuits on flexible metal foils will be described. Both static and dynamic 

(clocked circuits) that comprise the essential elements of display devices and other large 

area electronics will be demonstrated. The effects of design geometry and different 

circuit topology on the performance of circuits will be discussed. These circuit 

demonstrations served to both identify functionality for real application as well as 

confirm the lack of a large number of slow interface states in these a-IGZO devices. 

Finally, a short discussion on creating p-type TFTs with oxide materials which would 

enable fabrication of complementary CMOS circuits will be presented as a prelude to our 

efforts towards achieving such functionality in oxide semiconductors.  

 

6. 2 a-IGZO Based Circuit Integration and Design Considerations 

6.2.1 Circuit Design and Integration  

 Multiple device configuration is possible when employing IGZO TFTs for circuit 

integration and both top-gate and bottom gate configurations have been used by various 

groups [8-9]. A top gate design could potentially have the added benefit of yielding 

higher channel mobility, if the surface of the channel layer is smoother than that of a 

bottom gate dielectric. A smoother interface between the channel layer and gate insulator 

reduces interface roughness scattering, which improves the channel mobility [6.10]; 

however, high-k dielectric by either RF sputtering or by more exotic ALD techniques has 

been used in such device configurations. In our case, since we wanted to avoid the 

potentially damaging plasma bearing radicals (H2 species mostly) on top the IGZO films, 

a bottom gate design is deemed suitable. The a-IGZO TFT circuits have a staggered, 
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bottom-gate device architecture. The circuits are fabricated by first depositing 150 nm of 

Al by RF sputtering onto oxide coated stainless steel wafers and lithographically 

patterning and wet etching to form the gate layer. We have also fabricated a-IGZO TFTs 

on other flexible metal foils such as dimensionally stable Ni-Fe alloys and ultra low cost 

Al to demonstrate the transferability and repeatability of IGZO deposition processes to 

different compliant substrates. A 100 nm thick SiO2 is then deposited by PECVD at 

300 °C; then 50 nm of optimized a-IGZO thin film is deposited by RF sputtering from a 

6-inch diameter commercially available IGZO target (1:1:1 molar ratio of 

In2O3:Ga2O3:ZnO) followed by a low temperature mesa oxide as a protection layer.  The 

N2O plasma passivation treatment of the IGZO films is carried out prior to the mesa 

oxide deposition in PECVD ambience. Sputtering is carried out at a RF power density of 

1 W/cm2 at a chamber pressure of 10 mTorr (10 vol% O2 diluted with Ar). A low RF 

power density is used to mitigate potentially damaging bombardment of the growing 

films by energetic negative oxygen ions, which can cause substantial stress in the film 

[6.11].  The a-IGZO/SiO2 stack is patterned by combination of wet and dry etching in 

dilute HCl and PECVD CF4 chemistry respectively. A thicker passivation oxide (70 nm) 

is then deposited and contact openings to the gate pads are accomplished by lithography 

and selective etching of the oxide layer. Source and drain contact opening are also open 

through the mesa/passivation oxide stack. Finally, Mo source and drain metallization is 

done by RF sputtering and subsequent lift-off. The complete devices are then subjected to 

post-fabrication anneal in N2 ambience at 300 °C for 1 Hr.  
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and analog control circuits, it is crucial that scalability of device performance such as 

current drive can be controlled by design parameters. To this end, a variety of devices of 

different dimensions are incorporated in the mask set that can be used as a basis for 

system design as well as for monitoring of technology performance. Fig 6.2 demonstrates 

that a-IGZO TFTs scale well with varying dimensions and VDS biasing. It is noticeable 

that drain currents in the μA range can easily be obtained with gate voltages of only 5 V. 

IGZO TFTs also exhibit good short range uniformity in their characteristics because of 

the amorphous nature of the active material. The short range uniformity is important 

inalmost all of the circuit applications involving TFTs. For example, active-matrix 

displays require good uniformity of the backplane TFTs for smooth rendering of the  

                      

Figure 6.3   Transfer characteristics (IDS-VGS) of 5 different discrete IGZO TFTs in close 
proximity of each other with channel length of 20μm and channel width of 
240μm at VDS=1V 

 
 
displayed images. The difference in performance among the neighboring TFTs in a pixel 

circuit is a critical issue. Figure 6.3 shows transfer characteristics of 5 different TFTs 
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selected from adjacent dies superimposed onto each other to demonstrate short range 

uniformity of RF sputtered a-IGZO TFTs on 100 μm thick flexible steel foils. The 

average threshold voltages (VT) of the measured TFTs were 0.7±0.02V, average filed 

effect mobilities (μFE) were 15.01±0.2 cm2/V.s and average substhreshold slopes (SS) 

were 0.35±0.07 V/dec. 

 
6.3 a-IGZO Based Inverters 

6.3.1 CMOS Inverter vs. NMOS only Inverters 

An inverter is the essential element of digital circuit design.  A properly designed inverter 

block can be the basis of more complex and involved digital circuits. The most common 

inverter structure is the static complementary MOSFET inverter shown in Fig. 6.4. The 

CMOS inverter uses PMOS as pull-up system and NMOS as pull-down system to obtain 

inversion of the input voltage level. The voltage transfer characteristic shown below 

explains the response of an inverter output voltage (VOUT) to specific input voltages (VIN). 

The voltage transfer curve is a figure of merit for the static behavior of the inverter. VIL, 

VIH, VOL and VOH are parameters which determine the limits of inverter stability. From 

Fig 6.4(b), VIL is the smallest input voltage recognized as logic “LOW”, and VIH is the 

smallest input voltage recognized as logic “HIGH”. Noise margin is a parameter critical 

for good design of digital circuits. It determines the allowable noise voltage limit on the 

input of a gate electrode, so that the output will be unaffected. They are defined as NMH 

(VOH-VOL) and NML (VIL-VOL). 
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biased at different points and the mobility of a-IGZO TFTs have voltage dependence 

[6.12]. The effective mobility of the drive TFT is lower than the load TFT at the logic  

 

                      

 Figure 6.6.  Dynamic response of the NMOS only saturated-load inverter circuit              
(β = (WDrive/LDrive)/ (WLoad/LLoad) = (96μm/4μm)/(16μm/8μm)). 

 
 
level inversion point, reducing the difference in conductance and therefore affecting the 

effective gain.  From the discussion above we can allude to the fact that high gain 

saturated load inverters using oxide-based TFTs with VGS dependent mobility may 

represent a significant challenge especially when large dive TFTs will introduce large 

parasitic capacitances amplified by the Miller effect [6.13]. Despite the drawbacks, we 

see that inverter does exhibit requisite characteristics needed for a variety of digital 

circuits and this all-enhancement mode inverter with saturated load is used in the 

subsequent circuit designs. Finally, the dynamic response of the inverter is shown in Fig 

6.6. The rise time and fall time are measured to be 25.2μs and 12 μs respectively.  
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6.3.3 Effect of varying β and VDD on Inverter characteristics 

 The geometric sizing of the drive and load TFTs is expected to affect the output 

swing and the propagation delay of the inverter. A larger β ratio will result in greater 

pull-down strength toward the low rail voltage and as a consequence the output swing 

suffers. Fig 6.7 (a) shows the effect of β ratio on the voltage transfer characteristics of an 

all-enhancement mode TFT with saturated load. As seen in the figure, the output voltage 

can be regulated and shifted up by decreasing the β ratio. A larger β ratio results in a 

steeper voltage transfer characteristics and improved noise margins; however, it is  

 

 

Figure 6.7   Voltage transfer characteristics of all-enhancement mode inverter for (a) 
varying β ration and (b) varying the supply voltage, VDD. 

 
 

expected that a smaller β ratio will lead to greater operating frequency for a given VDD.  

Fig 6.7 (b) on the other hand depicts the effect of varying VDD for a given β ratio. The 

VOH (output high voltage) is shifted up by 7 V for a 10 V increase in VDD (33V up from 
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23V); the low output stabilizes at different voltage levels as well (4.7V for VDD =33V and 

1.7V for VDD = 23V).  The gain is expected to increase with VDD scaled up. 

 

6.3.4 a-IGZO NMOS only Inverters with different types of Loads 

As we can imagine, NMOS only inverters with a-IGZO TFTs can be implemented 

in multiple configurations depending on the type of load used. The diode-connected 

saturated load configuration is the most common one. However, as we have noted in the 

preceding section, the drawback of this structure is that the output can reach a maximum 

voltage of VDD - VT(Load) due to the VT drop across the load TFT. If we can have a control 

voltage (gate voltage of load TFT) that effectively determines the resistance of the load 

TFT as shown in Fig 6.8 (b), we can circumvent this problem. This can be achieved by 

operating the load TFT in linear regime, with at least VGLoad > VDD + VTLoad. A pure 

resistive load (Fig 6.8 (c)) will also work at the expense of higher power consumption. In 

Fig 6.9, the effect of the gate voltage of the load as a control voltage is shown. As 

expected, the output high level is pulled closer to supply rail (VDD) by a control voltage 

that is at least one VT higher than the diode-connected fashion. All the three cases 

mentioned above are examples of “Ratioed Logic”, since the output level depends on the 

ratio of the impedances (i.e. on W/L ratios) of the pull-up and the pull-down devices. 
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VDD and the output low, VOL, to approach the lower rail voltage. The output low, VOL, is 

ultimately limited by the ability of the E-mode TFT to sink the current source at a low 

VDS. There are reports of high gain oxide based E-D inverters implemented in various 

ways. Mourey et al [6.14] showed hydrogen plasma treated VT shift in ZnO TFTs to 

implement E-D inverter while others have resorted to a-IGZO channel thickness variation 

to control the VT to obtain depletion type TFT [6.15]. We have implemented E-D inverter 

by combining a-IZO as a depletion load and a-IGZO as an enhancement drive TFT. The 

VT movement with N2O treatment of a-IZO TFTs can also be used as E-D inverter. Fig 

6.10 shows the transfer characteristics of a-IZO and a-IGZO TFTs as depletion and 

enhancement mode TFTs used in our E-D inverter. As is clearly evident, there is a more 

than 5V VT separation between the two mode TFTs which is useful in proper E-D  

 

Figure 6.11  Effect of Control voltage signal on inverter voltage transfer characteristics 
  



188 
 

inverter operation. Fig 6.11 shows the voltage transfer characteristics of an                      

a-IGZO/a-IZO based Enhancement-Depletion inverter with a geometric scaling ratio of   

β = (WDrive/LDrive)/(WLoad/LLoad)= (240μm/10μm)/(80μm/10μm). The depletion mode TFT 

is always on since the gate and source are tied together and it enters saturation when the 

drain voltage exceeds the source voltage by VTD (VT of depletion mode IZO TFT). On the 

contrary, the enhancement mode TFT turns on after the gate voltage exceeds the source 

voltage by VTE (VT of enhancement mode IGZO TFT). At VDD= 20V, excellent gain of 

8.01V/V is obtained with VOH=19.5V at VIN=-20V and VOL=-6.2V (VSS=-8V) at 

VIN=10V. Compared to all-enhancement mode inverter employing saturated load, the E-

D type inverter has a larger gain and wider swing range. The noise margins are improved 

but remained asymmetric (|NMH|=14.3V and |NML|=5.9V) with the transition width 

(|VIH-VIL|=7.8V) substantially increased.  

 

6.4  a-IGZO based static Logic Circuits (NAND and NOR logic circuits) 

 Once the basic building block of inverter design is perfected, other digital logic 

circuits like pseudo NAND and NOR circuits can be easily designed and implemented. 

The NAND and NOR level circuit implementation typifies the series and parallel type of 

TFT connection needed to represent Boolean logic functions. The all-enhancement mode 

saturated load inverters discussed in the earlier sections comprise the active load element 

of these circuits. To achieve functionality in digital form, the output is required to have a 

rail-to-tail swing that represents binary logic. Due to the unavailability of p-type TFT in 

oxide based devices, this is difficult to attain. In our design, the relative sizing of the 
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individual TFTs are optimized to get close to rail-to-rail swing of 15V. In NAND 

operation, the output is “high” when either of the inputs (A or B) is “high”, or if none of 

them is “high”. The output goes to low only if both the inputs are “high”. Fig 6.12 shows 

the NAND logic circuit operation with a 15V output swing. The fidelity of the logic 

conversion is excellent with very low rise and fall times. In NOR type operation, a logic 

“high” output will result if both of the inputs are “low”. If one or both of the inputs are 

              Figure 6.12 a-IGZO based Pseudo NAND circuit and logic level conversion    

 

“high”, a low output will transpire. NOR operation is verified in circuit implemented with 

a-IGZO TFTs in Fig 6.13. For both NAND and NOR circuits, the input A is a square 

wave with 0-15V swing and 50% duty cycle and input B has a double delay of 4ms with 

the width of the square wave pulse being 2ms. VDD is 20V and the load TFT is diode 

connected as a saturated load. 
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         Figure 6.13 a-IGZO based Pseudo NOR circuit and logic level conversion    
 
 

6.5   a-IGZO based Ring Oscillators 

Ring oscillators are typically used as the voltage-controlled oscillator of most phase 

locked loops [6.16]. They are also a basic circuit to benchmark the performance of a 

technology. The oscillators are composed of odd number of inverter stages connected 

back-to-back, with the output of the last stage connected back to the input of the first one 

(Fig 6.14). When a supply voltage is applied to this type of configuration, the gates of the 

transistors in a particular stage drift towards a low or high potential. This in turn causes a 

voltage swing in the output of that particular inverter, forcing the following inverter to 

swing as well. This sequence is continued until the original stage is reached and its input 
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gate forced to the opposite state. This process repeats indefinitely, causing the circuit to 

oscillate at a characteristic free running frequency. The propagation delay of per stage is 

related to the oscillation frequency and given by: 

noscillatio
PD fN

t
.2

1
                     (6-1) 

Ring oscillator characteristics such as number of functional stages (device yield), 

oscillation frequency (device speed), and operating voltages (functionality) can help 

benchmark the technology capability. 

 

Figure 6.14  Circuit schematic and LEdit layout of a 3-stage Ring Oscillator with 8μm 
channel length and 3 additional output buffers to prevent loading. 

 

Dynamic properties of a-IGZO TFTs are as important as static properties for applications 

of TFTs to active-matrix displays. Ring oscillator circuits can also be used to estimate the 

operation frequency of circuits under the influence of parasitic capacitances and 
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resistances, but more importantly to ascertain whether TFTs can charge/discharge 

capacitive loads. We designed and fabricated various ring oscillator circuits with different 

beta ratios for dynamic characterization of these devices. Oscillation frequencies of the 

ring oscillator were measured at different supply voltages. Propagation delay was then 

calculated by dividing the oscillation period with the number of stages at each supply 

voltage level. The a-IGZO based ring oscillators were fabricated on highly flexible and 

dimensionally stable 100 μm thick Ni-Fe alloy metal foil for this study. The low and 

nominally constant coefficient of thermal expansion over a wide range of temperature 

and excellent mechanical and chemical robustness of Ni-Fe alloys affords 

implementation of circuits with smaller design features. The dynamic characteristics of 

the IGZO TFTs are evaluated from 3 stage ring oscillator circuits (Lload=Ldrive=8 μm,  

 

Figure 6.15  Characteristics of 3 stage IGZO ring oscillator on Ni-Fe foils (Lload=Ldrive=8 
μm, Wload=32 μm, Wdrive=256 μm); (a) output swing, (b) propagation delay 
with increasing supply voltage 

 

Wload=32 μm, Wdrive=256 μm), exhibiting oscillation frequency of 360 KHz when non-

flexed at a supply voltage of 15 V in Figure 6.15. At a larger supply voltage of 50 V, the 



193 
 

oscillation frequency is 1.065 MHz corresponding to single stage propagation delay of 

156 ns which is faster than reported values of RF sputtered IGZO TFT based circuits on a 

flexible platform [6.12]. Circuit operation is also confirmed with minimal change when 

devices are flexed. 

 

6.6 Clocked a-IGZO Based Digital Circuits 

A majority of the work however, has focused on optimization of discrete devices 

as opposed to complete device integration. From the viewpoint of application of TFTs to 

realizable circuits, the dynamic characteristics of the TFTs are of paramount importance. 

In this regard, shift registers can be used as a good benchmark as they are the most 

commonly employed scanning circuits for sequential addressing of matrix based systems 

such as displays and sensors. In this section, we demonstrate a half-bit and full-bit shift 

register with maximum operating frequency of about 40 kHz from bottom gate staggered-

structure a-IGZO TFT. The present results suggest that a-IGZO TFT technology doesn’t 

suffer from slow states and has the potential to realize practical integrated circuits for 

demanding applications such as flat panel displays with operating speed much faster than 

a-Si:H TFT technology. 

 

6.6.1 Design of Half Bit Shift Register Circuit based on a-IGZO TFTs 

This half-bit shift register design employs a pseudo n-type, serial input, parallel 

output circuit which uses non-overlapping two-phase clock signals (ClkA & ClkB) for 

timing and shifting of a synchronized input (sync) signal [17]. In turn, this sync signal is 
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buffered to each addressed line controlling a display [6.6], sensor or memory array. 

Single stage schematic of the half bit shift register is depicted in Figure 6.16(a). Besides 

power supply (Vdd) and ground (Vss), there is an extra fixed supply terminal, Vc, which is 

a control voltage for all the load transistors. The control voltage makes it possible to 

adjust the effective resistance of the load transistors so that optimum performance can be 

achieved. In a more compact design it may be desirable to eliminate the control voltage 

(possibly by connecting it to the supply voltage) to reduce the number of external 

connections (i.e. for highly integrated display modules) [6.18]. In this case, great care has 

to be taken to size the load transistors. The sync signal is received from the previous 

stage (its So port) via the stage Si terminal and is outputted to the next stage (its Si port) 

via the stage So terminal. The clock terminal of every odd stage receives the ClkA as 

opposed to every even stage that receives the ClkB. 

 

Figure 6.16 (a) Schematic of a single stage, pseudo n-type half-bit shift register. LM1- M7 

=10um and WM1 =400um, WM2 =80um, WM3 =100um, WM4 =20um, WM5 =150, 
WM6 =500, WM7 =100um. (b) Optical micrograph of a-IGZO half-bit shift 
register with 10 stages. Scale shown is 200µm. 
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Each stage of the half-bit shift register consists of only seven transistors with 

constant channel length of 10µm but with different channel widths which are selected 

based on the operational use of associated TFT devices to obtain optimum performance. 

Three independent modules can be distinguished from each stage. The first module is a 

switching unit which consists of only a single transistor (M5) that transmits the sync 

signal from the previous stage to the second module of the current stage every time its 

gate terminal is selected (pulled to the high voltage) by the clock pulse. The second 

module is a latching element which effectively withholds the charge during the time that 

stage is not addressed (i.e. frame time of a display). This module consists of two 

independent inverters in a loop. The first inverter, comprising of M1 and M2 TFTs, is in 

forward direction with respect to the propagation direction of the signal in the stage as 

opposed to the second inverter (M3, M4) that is in reverse direction. Drive transistor M1 

is designed to be as large as 400µm wide to ensure sufficient driving power to charge up 

the next module. The third module is a buffer or an inverter which comprises of TFTs M6 

and M7. The transistor M6 is a relatively large TFT in order to drive the output loads. All 

the load transistors (M2, M4, and M7) are designed with a W/L ratio to achieve a 

reasonable rise time and supply voltage level (power consumption) and to permit 

sufficient output pull down at a reasonable fall time. The Aim-Spice software package is 

used to simulate the performance of a-IGZO inverters and a load over drive TFT W/L 

ratio of about 1/5 is deemed satisfactory. This ratio has been consistently employed for 

all the inverters in the design. The layout of the half bit shift register includes ten stages 
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with 125µm pitch size which occupies an effective (without pads) area of about 2.2mm2. 

The optical micrograph of the fabricated half bit shift register is shown in Figure 6.16(b). 

 

6.6.2 Performance of Half Bit Shift Register Circuit based on a-IGZO TFTs 

The output characteristics of the half bit shift register at a clock frequency of 20kHz is 

depicted in Figure 6.17. While sync signal is at Hi voltage level, the 1st stage receives the 

ClkA  pulse (PA1) which programs the stage latch. The output signal of the latch is then 

inverted and outputted by the buffer stage. The output of 1st stage (Out1) stays Hi until it 

receives the second ClkA pulse, PA2 (at this instant the sync signal is at Lo level). In the 

mean time, while the Out1 is still at Hi, the latch of 2nd stage is enabled by the ClkB pulse 

(PB1) and is   programmed by the So signal of the first stage. This sets the second stage 

output (Out2) to Hi. Thus, from rising edge of PB1 to PA2, both Out1 and Out2 are at Hi 

level. Out2 returns to Lo level as soon as the stage receives the second ClkB pulse, PB2 (at 

which instant the 1st stage has been reset). This sequence continues all the way to the last 

stage and resumes back from the 1st stage with another sync pulse. 

To complete a 12 V output swing, maximum fall and rise time of about 12µs and 9µs is 

measured respectively. This suggests that a maximum operating frequency of about 

47kHz is attainable; however, the present design and process technology gives a 

maximum operating frequency of 40kHz since optimum performance for all stages is not 

obtained at higher frequencies. The supply voltages, to obtain 12 V output swing, are 

about 12 V, -11 V, and 5 V for Vdd, Vss, and Vc respectively. This is while the clocks and 

sync signals have amplitude of about 14V and 10V respectively. We have also confirmed 
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operation of the circuit at minimum rail to rail supply voltage of 15V but it substantially 

increases the fall and rise time and limits the maximum operating frequency to only 

10kHz.The minimum transition time is obtained with a rail to rail supply voltage of 20 V. 

               

Figure 6.17 Output characteristics of nine consecutive stages of IGZO half bit shift 
register at 20kHz clocking frequency. 

 

6.6.3 Full Bit Shift Register Circuit Implementation based on a-IGZO TFTs 

In contrast with half bit shift register architecture, the full bit shift register is 

designed to scan an array of pixels in a way by which not more than a single line is 

addressed at a time. This is particularly beneficial for large size displays where sub-pixels 

are placed in a single row (not square) or for large area and low resolution sensing 

systems. As depicted in Fig. 6.18(a) the full bit shift register is constructed of five 

distinguishable modules. The second and fourth modules are latching elements that are 

formed by two inverters in a loop with one inverter in forward direction (Module 2: M1 
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& M2; Module 4: M7 & M8) and the other in reverse (Module 2: M3 & M4; Module 4: 

M9 & M10) with respect to the propagation direction of the signal in the stage. The sync  

 

       

 
Figure 6.18  (a) Circuit schematic and (b) Optical micrograph of the a-IGZO full bit shift 

register. 
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signal is imported into the stage and stored in the first latch (module 2) via Si terminal 

and transistor M5 (module 1) with its gate controlled by ClkA. The stored data of the first 

latch is introduced to the second latch (module 4) via transistor M6 (module 3) with its 

gate controlled by ClkB. The sync signal stored in second latch is then sent to the next 

stage, through So terminal, as well as the output buffer (module 5) which inverts the 

signal one last time. All the inverter structures consist of two transistors where one drives 

the output node while the other acts as a load. To ensure sufficient driving power and also 

to obtain reasonable transition speed, the channel width over length ratio (W/L) of the 

load TFTs is designed to be five times smaller than the drive TFTs. Furthermore, the gate 

terminals of the drive TFTs are independently addressed by a controlling signal (Vc) to 

obtain an optimum operating point for the circuit.  A multiple stage shift register is 

formed by placing the stages side by side and serially connecting their sync input (Si) and 

output (So) terminals. Optical micrograph of a ten stage full bit shift register is depicted in 

Fig. 6.18(b). The circuit layout with stage pitch size of 125µm and length of 2600µm 

occupies an effective area of about 3.25mm2 (excluding the pads). 

The full bit shift register output waveform for eight consecutive stages at clocking 

frequency of 10kHz is depicted in Fig. 6.19. In order to complete output swing of about 

10V (for all stages), rail to rail supply voltage of 20V (Vss = -4V and Vdd = 16V) and 

control voltage of 5V is applied. The sync and clock pulses also have a peak to peak 

voltage value of 10V (0V to 10V) and 15V (-5V to 10V) respectively. First latch of the 

1st stage is programmed with the sync signal as soon as it receives the A1 pulse. The B1 

pulse then sets the second latch of the 1st stage and pulls down its output. Output of the 1st 
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stage is set upon receiving the B2 pulse since its first latch is reset by the sync signal 

during the A2 pulse. The 2nd stage is similarly programmed by the A2 and B2 pulses and  

 

 

Figure 6.19 Output characteristics of 8 consecutive stages of IGZO full bit shift register  
 

output of the 1st stage (its second latch) as the sync. Due to double programming of the 

sync signal in each stage, output pulses of adjacent stages do not overlap and therefore 

multiple-line addressing of the system-under-scan is avoided. Relatively long layout of 

the circuit causes a latency of about 5µs which is the time that takes for the stored data in 

the first latch to reach and charge up the second latch followed by the output buffer from 

the moment that stage receives a rising edge of the ClkB pulse. Single output buffer 

architecture of the circuit do not offer fall time and rise time faster than 30µs and 10µs 

respectively. This suggests maximum operating speed of about 25 kHz. The circuit is also 

fully functional at minimum rail to rail supply voltage of about 18V.  
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6.7 Display System based on a-IGZO TFTs 

The development of a display system entails the incorporation of several 

components of different nature and function that are brought together by a controlled 

sequence of electronic signals. Material science of thin films and innovative processing 

techniques are tailored to device active components, such as transistors, with suitable 

performance levels. From the basic device structures, pixel units can then be built to 

regulate light emission. Once the active transistors have been characterized, 

implementation of the basic display elements can follow.  

 

6.7.1 a-IGZO Based Pixel Circuit for Active Matrix OLED Display 

The active pixel element can be designed using only two transistors. The first 

transistor would act as a sampling switch that can read a voltage signal from a data line 

and pass it through to the second transistor. This voltage is used to control current flow of 

the drive transistor and is stored on the pixel capacitor. In order to determine the optimal 

sizing of all these components, parameters such current drive, leakage current and 

capacitance are essential. In a VGA size display with a typical refresh rate of 60 Hz, pixel 

times as low as tens of microseconds are all that is needed in order to program the right 

light level. Furthermore, the current level which is to remain constant through the entire 

frame cycle is controlled by the parameters discussed above; this makes it crucial to have 

a good understanding of the dynamic properties of the active pixel. The circuit schematic 

of a 2TFT-1Capacitor pixel and corresponding layout of the same is shown in Fig 6.20 
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              Figure 6.20 Circuit schematic and mask layout of active matrix OLED pixel. 
 

         

                Figure 6.21 Driving of an OLED with a-IGZO based pixel circuit 
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Both the switching and drive TFTs (T1 and T2) have identical dimensions 

(W/L=80μm/10 μm). To mimic the load, a 520 kΩ resistor was used instead of the actual 

OLED device. The driving scheme of the pixel circuit was with a VSELECT (-5V, 8V, 

120Hz, 20% duty cycle) signal to selectively address the pixel and with a VDATA (0V, 5V, 

120Hz, 50% duty cycle) signal to pass on the data to be retained during the frame time. 

VOLED can be correlated to current flowing through the pixel. As we can see from Fig 

6.21, the charging of the capacitor according to VDATA coincides with the onset of 

VSELECT signal and the state is retained until the end of the scanning period. The VOLED is 

modulated at 120 Hz as expected and can be related to modulation of luminescence from 

an actual OLED device.  

 

6.7.2 a-IGZO Based Electrophoretic Display 

We partnered with the Flexible Display Center at Arizona State University to 

demonstrate an electrophoretic display with a-IGZO TFT backplane developed in our lab. 

Electronic display can be dynamically rewritable and compatible with digital components. 

Information can be stored in the external device and this obviates the need to print out 

loads of documents. Electronic paper or E-paper consumes ultra low power with high 

brightness and contrast ratio with full viewing angle. Microencapsulated electrophoretic 

The microcapsule consists of negatively charged white and positively charged black 

pigments chips suspended in a clear fluid as depicted in Fig 6.22. Application of a 

negative voltage on the top electrode will accumulate the positively charged black 

pigments near the top electrode and when viewed from the top will appear as a black 



 

  

   

   

F

               

                

igure 6.22   Cross sectio
material pio
such desirab

on of microc
oneered by E
ble attributes

204 

capsules and 
E-Ink Corpo
s. [Adapted 

voltage add
oration can e
from Ref 6.

 

 

dressing of b
enable E-pap
19]. 

black/white im
per displays

 

mage 
s with 



205 
 

 
image. The opposite phenomenon happens for the white pigments and gray scale images 

can be displayed in this manner. The inherent bistable nature of the microcapsules  

ensures that they can hold their current state without the need for any voltage application. 

This unique feature enables ultra-low power consumption and makes many applications 

such as E-paper displays feasible.  

Fig 6.22 also shows the driving scheme of the electrophoretic material with a 

single pixel circuit of an active matrix backplane. It consists of a-IGZO TFTs deposited 

and fabricated at Lehigh, a source or column line, a gate or row line and a storage 

capacitor. The top electrode of the storage capacitor is tied to the electrophoretic material. 

The gate line is enabled when the data is ready on the corresponding source line. This 

data is transferred to the storage capacitor which is used to hold the data for a row time. 

The electrophoretic material will experience a change in voltage and switch the pigments 

to black or white depending on the voltage. A VPOS on the anode (bottom electrode) will 

turn the black pigments and a VNEG will turn the white pigments toward the viewing side. 

A 0V on the storage capacitor make the electrophoretic material to hold its previous state. 

A QVGA (240x320 pixels) display was integrated at the Flexible Display Center with    

a-IGZO TFT backplane fabricated at Lehigh. The display has a 3.8" diagonal area with a 

pixel size of 240μm x 240μm. The display was driven using an AM100 Active Matrix 

EPD prototype Kit. Fig 6.23 shows a 16 level gray scale image being updated on a 

QVGA electrophoretic display on Si substrate at a frame rate of 50Hz. The average drive 

current is 65μA with the drive current map of the pixel array shown in the figure.  
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Figure 6.23: a-IGZO TFT base active matrix backplane QVGA (320 x 240 pixels) display 
image and corresponding drive current map of the array  

 

6.8 Conclusion 

In this chapter we have demonstrated a whole range of circuits on thin flexible 

metal foils using a-IGZO TFTs. The circuits can be used as building blocks for integrated 

electronics that employ a-IGZO TFT technology. The relative high performance of the 

fabricated circuits bodes well for integration of more involved circuits to drive active 

matrix displays or other large area electronic systems. NMOS only circuit configurations 

are possible with current a-IGZO TFT technology and limitation of a suitable p-type 

oxide material is a bottleneck for CMOS operation.  A complementary technology 

analogous to CMOS is highly desirable for low power conversion, low heat dissipation, 

high packing density, large output swing and better noise margin. The development of p-

type AOS (amorphous oxide semiconductor) have proven elusive so far, but we believe 
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that ongoing research and development efforts devoted to realization for a p-type oxide 

TFTs are not only timely but quite justified since the payoff is so much larger. 
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Chapter 7 

Observation of Persistent n-type behavior in 

N2 Doped RF Sputtered ZnO From TFT 

measurements: Clues From Rigorous Ab 

Initio Calculations     
 
 
 
 
 
7.1 Introduction 

Current n-channel TFT technology (like a-IGZO) is quite analogous to NMOS 

silicon based technology. The development of robust p-type oxide semiconductor for use 

as channel materials in TFTs remains a considerable challenge. While significant 

advances have been made in identifying and depositing new wide-bandgap materials for 

applications in optoelectronics, a high performance p-type TFT has remained elusive. 

The availability of p-channel and n-channel oxide based semiconductors can have huge 

technological and commercial implications since realization of CMOS-like technology 

with low power consumption, simple circuit architecture and analog and digital circuitry 
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will be possible. ZnO is intrinsically n-type semiconductor and realization of p-type ZnO 

has proven similarly challenging, albeit very desirable.  Experimental and theoretical 

quest for p-conductivity in ZnO is also motivated by the design needs for p-type ZnO-

based solid-state lighting sources in the form of LEDs and laser diodes. Among the 

concepts for engineering design of ZnO-based TFTs, LEDs and laser diodes is 

substitutional doping of oxygen or zinc in their lattice positions by elements of different 

formal charge which generate donor or acceptor centers by ‘valence induction’, e.g.  

Me3+ + Zn2+
lattice + e-   Me3+

 lattice + Zn+
donor , or   

½ N2(g) + O2-
lattice 

  N2-
 acceptor + ½ O2(g) ,  

and from nitrogen oxides:  

½ N2O(g) + ½ O2-
lattice 

  N2-
acceptor + O2(g) , or  

NO(g) + O2-
lattice 

  N2-
 acceptor + O2(g).   

Upon excitation, the donor centers pass the electron to the conduction band and the 

acceptor centers create holes by removing an electron from the valence band.  The 

conditions for successful doping for n- or p-conductivity require that energy of the donor 

centers be close to the bottom of the conduction band (BCB), and the acceptor centers be 

close to the top of the valence band (TVB), i.e. that the valence induction doping generate 

shallow donors for n-conductivity and shallow acceptors for p-conductivity.  Focusing on 

p-ZnO, extensive experimental effort has so far yielded less than convincing evidence 

that p-conductivity can be achieved by anion doping, such as by nitrogen substitution of 

the lattice oxygen of ZnO [7.1-7.10] A simple cause of the failure was found in the 
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theoretical result pioneered by Van de Valle et al. [7.1] that N- substitution of lattice 

oxygen generates deep acceptor centers, not the desired shallow acceptors.    

In this chapter, we address whether the theoretical result for nitrogen-doped ZnO 

is reproducible by performing calculations using different platforms and in addition 

examining the effects of structural distortions, spin polarization and spin-orbit coupling 

which have so far not been considered; we also show that different types of N-doping in a 

ZnO TFT circuitry results only in a decrease of the native n-conductivity of ZnO but not 

giving rise to p-conductivity, a result expected from deep acceptor centers. 

 

7.2 N-doping of ZnO  

7.2.1 N as a Substitution Dopant in ZnO 

N-doping in sputtered ZnO thin films-There has been a large amount of effort 

expended so far by various groups to realize p-type ZnO using nitrogen (N) as a possible 

shallow acceptor dopant. For substitution on the O site, N is expected to be an acceptor 

that is closest to O in terms of atomic size and electron configuration, 1s22s22p6 for the 

closed-shell O2- and positively charged N2-.  In addition, N has been conclusively shown 

to act as a shallow acceptor in another II-VI semiconductor, namely ZnSe, enabling the 

design of LEDs and lasers [7.8-7.10]. The N acceptors may also be compensated if there 

are donor centers in a greater abundance than that of the acceptors. This acceptor 

compensation can happen via the formation of defects such as O vacancies, complexes 

with Zn interstitials or N2 molecules [7.11-7.13]. The key challenge is thus to introduce 

acceptors without being overwhelmed by compensating donors. As a nitrogen source, 
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some researchers used N2O gas, which is a mild oxidizing gas stronger than O2 and 

weaker oxidant than NO2 [7.14-7.15]. The idea of using oxidizing environment may be 

traced to the desire to keep the acceptor centers in positively charged state, and when 

ionized, to prevent neutralization of electronic holes in the valence band by reducing 

agents that supply electrons for this process. A number of experimental efforts resulted in 

reports of p-type ZnO using NH3 in CVD [7.16], an atomic N source in MBE [7.17], NO 

[7.18], N2O [7.19], diallylamine [7.20] and NH3 [7.21] as N doping sources in MOCVD; 

metalorganic MBE [7.22] and plasma-assisted MBE using a NO source [7.23] or a 

mixture of N2 and O2 [7.24] have also been tried. The oxidation of sputtered Zn3N2 thin 

films was reported to yield p-type ZnO [7.25] as was N implantation of sputtered ZnO 

thin films [7.26].  Guo et al. [7.14] used N2O plasma for nitrogen doping of ZnO film by 

PLD. They found that nitrogen doping was enhanced using the active N formed by N2O 

gas flowing through an electron-cyclotron-resonance (ECR) source. 

 

7.2.2 Doping of RF Sputtered ZnO by N2, N2/O2, N2O and PECVD N2O Treatment  

We investigated N-doping of ZnO thin films deposited by RF sputtering using N2, 

N2/O2 and N2O in-situ during sputtering as well as treating the undoped films with N2O 

plasma in a PECVD chamber. Carrier conduction and transport was verified from 

current-voltage characteristics of fabricated bottom-gate staggered structure TFTs (Thin 

Film Transistors). The sputtering was carried out in a Kurt J. Lesker 4-target capable, 

cryo-pumped backed sputtering machine. The undoped ZnO thin films were sputtered 

from 99.999% purity ZnO target in an argon and oxygen (10:1) ambient onto SiO2 (2KAº) 
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coated Si wafers. The base pressure in the sputtering chamber was about 10 mTorr and 

the RF power was 400 watts. The conductivity and carrier concentration as determined 

from four-point and hall measurements for the undoped ZnO thin film was 4×10
-2

 (Ω-

cm)
-1

 and 3×10
18

 cm
-3

 respectively. In an Ar/N2/O2 (10:1:1) ambient, the conductivity and 

carrier concentration was reduced to 8×10
-4

 (Ω-cm)
-1

 and 8×10
16

 cm
-3

 respectively. In an 

N2O assisted deposition (N2O/Ar), the conductivity was further reduced to 9×10
-6

 (Ω-

cm)
-1

. One set of undoped ZnO thin films were subjected to N2O plasma treatment in a 

PECVD chamber at 500 mTorr of total chamber pressure and a N2O flow rate of 720 

sccm at different plasma power (500-800 Watts) in an effort to enhance N-doping similar 

to work of Guo et el. [7.14]. The resulting films had conductivity around 1×10
-6

 (Ω-cm)
-1

.  

In all of the above cases of N-doping, no carrier conversion was indicated from the Hall 

data. Table 7.1 provides a summary of the conductivity of the different N doped sputtered 

ZnO films with thickness of around 70 nm; the carrier concentration of the N2O treated 

samples could not be determined due to limit of the measurement apparatus.  

Table 7.1: Comparison of conductivity and carrier concentration of various            

N-doped sputtered ZnO thin film samples

 
      a

Sputtered ZnO sample in Ar/O2 ambient; 
b
Sputtered ZnO sample in Ar/O2/N2 ambient;  

 c,d
 Samples are sputtered ZnO thin films doped by plasma N2O in PECVD 
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for multicomponent amorphous IGZO, where the hall mobility decreases as the carrier 

concentration goes down.  Both are composed of post-transition metals and have possibly 

direct overlap of spatially spread ns orbitals of neighbouring metal cations. As a result, a 

highly ordered crystalline structure is not needed to achieve high mobility. The 

relationship of mobility and carrier concentration in such a case can be characterized by 

the dominance of an impurity scattering in carrier transport [7.27]. The deviation of the 

films from the degenerate conducting ZnO film may have resulted from lowering the 

Fermi level further away from the conduction band bottom associated with the decrease 

in electron carrier concentration.  In an N2/O2 environment, the ratio required to reveal 

the effect of N2 has to be adjusted so as to promote reactivity of N2 more than that of O2.  

                          

7.2.3 Results of TFTs from N-doped ZnO Films: 

We then fabricated bottom-gate TFTs with the various N-doped ZnO films 

described above as active channel (70 nm) with PECVD SiO2 (100 nm) as dielectric and 

Au/Ti (100nm/20nm) as source/drain contacts. TFTs showed persistent n-type current-

voltage characteristics from both undoped and N-doped ZnO TFTs (Fig. 7.2 (a)). The  

reduced  carrier concentration of N-doped ZnO films (from 1018cm-3 to 1016cm-3) results 

in enhancement mode TFTs as shown in Fig. 7.2(b). For the undoped ZnO case, the TFT 

device could be turned off only after applying a large negative bias due to large carrier 

concentration in the films. The On/Off ratio, threshold voltage and mobility in the N2 

assisted TFTs were 106, 5V and 5.6 cm2/V.s as extracted from the transfer characteristics. 
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presently 32 k-points for scf and dos calculations and 61 k-points for the band structure 

calculations.  The currently used options included: optimization of atomic positions 

within the unit cells using the PORT routine, spin polarization (SP), and spin-orbit (SO) 

coupling using the second-variational method [7.29], and the modified Becke-Johnson 

potential (mBJ) that accounts well for bandgaps in wide-gap semiconductors [7.30]. 

Calculations with inclusion of the SP and SO options  in Wien are carried out step-wise: 

First, the exchange-correlation potential is generated by  a lapw0 routine; then in the 

lapw1c routine, the SP eigenvalues and eigenvectors are generated by solving the Kohn-

Sham equations by diagonalizing the matrix of the system Hamiltonian in the basis of 

eigenvectors based on the density functionals for the spin-up and spin-down manifolds; 

this is followed by calculation of Fermi level and expansion of electronic charge densities 

in lapw2 routine; computation is done of core states and mixing of electron densities in 

the core and valence states in each scf cycle till convergence is attained.  Presently we 

used the LDA functional [7.31] to scf convergence followed by recalculation using the 

mBJ potential, again to convergence.  In both steps, SO coupling is added in the lapwso 

code which computes new eigenvalues and eigenvectors for the following steps which 

entail the generation of valence charge densities, core states, and re-entering the result 

into the next scf cycle till convergence is reached.  The Hamiltonian for the SO step has 

the form 

                      ,                                            (7-1) 









00

01

2
ˆ

2

l

dr

dV

rMc
H SO
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where  are the Pauli-spin matrices,  is the angular momentum vector, M the 

relativistically enhanced mass of electron, and V is the potential within the atomic sphere.  

Application of  couples the spin-up and spin-down eigenvectors calculated in the 

lapw1 step.  The limitations are in that the SO procedure applies only to the space inside 

atomic spheres, not the interstitial space, and that only “small” spin-orbit interactions are 

calculated.  However, none of these limitations have been encountered in the present 

study, as confirmed by comparison with SO-free calculations. 

 

7.3.2 Models for ZnO-N  

The models for the present calculations were derived from the crystal structure of wurzite 

ZnO in which the following substitutions were made:  one nitrogen atom for lattice 

oxygen in ZnO-N. The unit cells contained 32 and 128 non-equivalent atoms in ZnO, and 

the internal coordinates were fully optimized within the fixed wurtzite crystal structure 

with parameters a = b = 0.325 nm and c = 0.520 nm such that the 32-atom cell was 

bounded by a = b = 0.650 nm and c = 1.040 nm and the 128-atom cell by a = b = 1.300 

nm and c = 1.040 nm.  The reason for carrying out calculations for the 128-atom 

supercell was to examine the effects of the defect concentration; in the model with 

repeating 32-atom cells, the nearest N-N distances are 0.325 nm, still of concern with  

interactions to form non-local acceptor bands, while in the repeating 128-atom supercells, 

the defects are separated by twice as large distance of 0.650 nm where such interactions 

are expected to be smaller.  A comparison of the two calculations allows us to assess 

effects associated with changes in defect concentrations.  Figure 7.4 shows a graphic 
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Table 7.2 Effective mass of holes in the valence band of ZnO in units of mass of free 

electron  0 
 

 
 

Model 
 

 
Relative effective mass of hole 

at the point of the TVB a  
 

mh =  eff, i/ 0 
 

 
 

Direction of Ei(k) b 

 
ZnO - so 

spin-down or 
spin-up 

 
1.75, 1.83, 0.31 

 


or



 
Zn16O15N -so 

 

 
0.41, 0.35 


 

 
Zn16O15N -so 

 

 
0.90, 0.76 


 

 
 
a Hole masses in the top three bands of the valence band.  “Light holes” are highlighted.  
Effective masses in the N-doped ZnO are slightly higher than those in pure ZnO, as 
expected from the disruption of the perfect crystal symmetry by the dopants.  For the N-
doped, the corresponding Ei(k) curves are shown in the expanded insets of Figures 8.7. 
Note the anisotropy of Ei(k) curves in the and the directions.  
For pure ZnO, the values based on the same level of calculation are given but the well-
known band structure is not shown here.  The effective mass  e  of an electron at the 
bottom of the conduction band of pure ZnO was calculated at  e  = 0.24  0, in excellent 
agreement with experimental  e = 0.24 – 0.29  0. 

6.32 
b Direction indicated by the high symmetry critical points of the Brillouin zone pertinent 
to effective masses given in column 2.   
 
 
 
 

7.3.3.4 Magnetic moments 

The nitrogen dopant introduces an odd-electron configuration in the stoichiometric 

zinc oxide associated with compositions ZnxOx-1N. The ensuing magnetic moments are 

not necessarily integer multiples of the Bohr Magneton owing to the combined effects of 
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dispersion, spin polarization and spin-orbit coupling.  The results based on the present 

level of theory are summarized in Table 7.3.  The N-doped ZnO displays magnetic 

moment close to 1 Bohr Magneton. 

 

 
Table 7.3 Magnetic moments in Li- and N-doped ZnO 

 
 
 

Model 
 

 
Magnetic moment, Bohr Magnetons 

with magnetization in the <00.1> 
direction 

 
 

ZnOa 
 
0 
 

 
Zn16O15N 

 
0.99970 

 
 

Zn64O63N 
 

0.99967 
 

 
 

7.3.4 Implementations and Limitations 

Every substitutional valence-induction doping for n- or p-conductivity requires 

that the stoichiometry of the matrix be preserved.  In the case of nitrogen, substitution 

NO(g) + O(lattice) --> O2(g) + N(lattice) would satisfy such a requirement – however, the 

nature of the deep acceptors generated in this way makes the nitrogen doping unsuitable 

for p-conductivity in ZnO.   
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7.4 Conclusions 

The present investigation confirms the theoretical calculations of Van de Walle et 

al. which conclude that N-doping of ZnO generates deep acceptors and hence is not 

leading to p-conductivity.  This is consistent with our experimental result that N-doping 

will decrease the native n-conductivity of ZnO but not yield a p-conducting ZnO. The 

valence-inducing dopant N gives rise to ZnO lattice distortions which amount to a 

contraction around the N site. The structural distortions do not depend on the dopant 

concentration, within the range at. 0.8 – 3.1% in total ZnO. N anion doping generates 

deep acceptor centers, which form a broader band at higher concentrations and a sharp 

non-dispersed level at lower concentrations, both located at the nitrogen center.   
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Chapter 8 

Conclusions and Future Work 
 

 

 

8.1 Summary of Results 

The crux of the research presented here has been to explore the novel metal oxide 

based TFTs on a flexible platform. Amorphous Indium Gallium Zinc Oxide (a-IGZO) 

was chosen since among the different flavors of metal oxide thin films actively pursued 

in recent years, a-IGZO has garnered considerable interest based on device performance 

and reproducibility using commercially feasible, large area processing techniques like RF 

sputtering. Thin metal foils was the substrate of choice since it offered dimensionally 

stable flexible platform for device fabrication and allowed greater freedom to design 

small features for demonstration of high performance circuitry and eventually an active 

matrix based display system.  
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By fine tuning process parameters, mostly RF power and relative oxygen partial 

pressure, optimum a-IGZO thin films are obtained from a ceramic IGZO target 

(In2O3:Ga2O3:ZnO 1:1:1) . The resulting films presented a very smooth surface and 

amorphous structure with moderate carrier concentration in the 1017cm-3 range deemed 

quite suitable for use as active layers in TFTs. A comprehensive electrical analysis was 

performed for the inverted staggered a-IGZO TFTs. Compared to a-Si:H TFTs, a-IGZO 

TFTs have a much higher field-effect mobility (µFE=7~15 cm2/Vs), excellent switching 

properties (subthreshold swing ~370mV/dec), and a low off-current level (around 10 pA). 

The fact that tail state density is much lower than in a-IGZO than that of a-Si:H, an order 

of magnitude higher mobility is quite expected. 

Mo and Al form good ohmic contact to a-IGZO with no evidence of current 

crowding around VDS~0V. Through transmission line analysis (TLM), the source/drain 

(S/D) series resistance in a-IGZO TFT is found to be much smaller than values typical of 

a-Si:H TFTs.   Nonlinearity of the TFT transfer characteristics (IDS-VGS) in a-IGZO TFTs 

manifests in a gate bias (VGS) dependent field-effect mobility due to the finite conduction 

band-tail slope in a-IGZO. The field-effect mobility is weakly thermally activated with an 

activation energy around 15 meV, while the threshold voltage linearly decreases with 

temperature with a coefficient of -17.5 mV/°C. The current On-Off ratio and subthreshold 

slope almost remained the same within the investigated temperature range. The Meyer-

Neldel (MN) parameter was observed to be constant (14.3 meV) over a broad range of 

activation energies. 
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From dual-gate analysis, where a top gate at the back of the a-IGZO channel is 

used to examine charge coupling between the front and back interface, we showed that 

minimal hole accumulation occurs in these oxide TFTs which is in contrast with              

n-channel SOI devices. Having control over the threshold voltage has implications when 

designing circuits with NMOS only devices. The origin of the low frequency noise of a-

IGZO TFTs with SiO2 gate dielectric is investigated in the low drain current range. Two 

different sources of noise were identified: a generation-recombination (g-r) noise 

component at drain currents below 5 nA and a pure 1/f noise at higher drain currents. The 

g-r parameters indicate that the g-r noise originates from bulk traps located in a thin layer 

of the depletion region. The drain current dependence of the normalized power spectral 

density 2/I dS I  shows that the 1/f noise is due to the carrier number fluctuations 

mechanism. As a result of the pure 1/f noise, the gate oxide traps have a uniform spatial 

distribution. 

 
To address the reliability issues in a-IGZO TFTs, Electrical instability due to 

negative-bias-temperature stress (NBTI) in bottom gate staggered amorphous Indium 

Gallium Zinc Oxide (a-IGZO) thin film transistors (TFTs) on flexible steel foil was 

investigated. An N2O plasma treatment is shown to have remarkable effects in 

suppressing rigid negative threshold voltage shift (ΔVth) in transfer (ID-VGS) 

characteristics of a-IGZO TFTs due to prolonged negative bias stressing. The time 

evolutions of bulk, interface and conduction band tail states reveal that N2O treatment 

efficiently reduces them for grater bias stress stability.  The widely used stretched 

exponential model for a-Si:H TFTs has been applied to describe the bias stress instability 
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for plasma treated a-IGZO devices. It is suggested that post N2O treatment passivates the 

interface states and homogenizes the poor quality a-IGZO film to a more high quality 

film with reduced sub-gap defect density.  

Further evidence of the improved stability of a-IGZO TFTs was found from 

constant current temperature stress (CCTS) studies which are important if these devices 

are to be integrated in current driven pixel architecture applications. The stressing on N2O 

treated a-IGZO TFTs was done both in linear mode where VGS was held constant during 

the stress period and in saturation mode where the TFT was diode-connected to maintain 

a constant IDS. In both modes of stressing, ΔVT-tSTRESS shift with temperature and stress 

current was observed.  In general, maintaining a lower temperature and smaller VGS is 

beneficial to a-IGZO TFTs electrical stability. For the same level of IDS, the TFTs are 

more stable when operating in the saturation regime than in the linear regime. From the 

observed behavior of ΔVT- tSTRESS, we can conclude that there is only weak evidence of 

defect state creation in a-IGZO TFTs under constant current stress; the TFTs exhibit a  

ΔVT of around 1 V under 2000 s stress with ISTRESS=100 μA at TSTRESS=60C. The 

substhreshold slope, off-current and field effect mobility remain unaffected in this 

stressing mode. The kinetics of ΔVT- tSTRESS follow the stretched-exponential dependence 

predicted for charge trapping in the interface/dielectric.  In contrast to a-Si:H TFTs where 

ΔVT does not saturate over time, that of a-IGZO TFTs saturates under constant current 

stress.  

To address electromechanical stability, we have applied uniaxial tensile and 

compressive strain ranging from 0.1% - 1% to amorphous IGZO TFTs and circuits 
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fabricated on stainless steel foils by outwardly bending them to cylindrical surfaces with 

different bending radii. Tensile strain increases field effect mobility and reduces 

threshold voltage of standalone devices. IGZO TFTs remained functional up to an 

applied strain level of 0.8% with critical strain (failure mode) level at 0.9%. a-IGZO TFT 

showed greater immunity against compressive mechanical bending; the important TFT 

parameters did not change much up to 0.5% of applied strain. IGZO TFT based ring 

oscillator had lower propagation delay per stage and speed enhancement with applied 

tensile strain. This systematic study can provide us with better understanding of IGZO 

TFTs under mechanical strain and allows for predicting IGZO TFT based circuit 

performance when flexed. 

A whole range of circuits and systems based on a-IGZO TFT were demonstrated 

on thin flexible metal foils using a-IGZO TFTs. This validates the technological 

importance of this material system and can provide important guideline for more 

involved circuit designs. The circuits can be used as building blocks for integrated 

electronics that employ a-IGZO TFT technology. The relative high performance of the 

discussed circuits bodes well for on-panel monolithic integration of more involved 

circuits to drive active matrix displays or other large area electronic systems.  We do note 

however, the limitation of NMOS only circuit configurations possible with current a-

IGZO TFT technology.  A complementary technology analogous to CMOS is highly 

desirable for low power conversion, low heat dissipation, high packing density, large 

output swing and better noise margin. The development of p-type AOS (amorphous oxide 

semiconductor) have proven elusive so far, but we believe that ongoing research and 
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development efforts devoted to realization for a p-type oxide TFTs are not only timely 

but quite justified since the payoff is so much larger. 

 
The present investigation also confirms persistent N-type behavior in nitrogen 

doped ZnO system. N-doping of ZnO generates deep acceptors and hence is not leading 

to p-conductivity.  This is consistent with our experimental result that N-doping will 

decrease the native n-conductivity of ZnO but not yield a p-conducting ZnO. The 

valence-inducing dopant N gives rise to ZnO lattice distortions which amount to a 

contraction around the N site. The structural distortions do not depend on the dopant 

concentration, within the range at. 0.8 – 3.1% in total ZnO. N anion doping generates 

deep acceptor centers, which form a broader band at higher concentrations and a sharp 

non-dispersed level at lower concentrations, both located at the nitrogen center.   

 

 
8.2 Looking Forward 

As with any kind of research work, a large number of issues still remain 

unexplored and need future work.  Metal oxide based thin films are a new class of 

materials with unique properties but the extensive research thrust in this area has already 

borne fruit.   Due to their superior device properties and low fabrication cost comparable 

to those of their a-Si counterpart, metal oxide TFTs have the potential to be incorporated 

into commercial flat panel displays, such as AMLCD and AMOLED displays. In flexible 

AM displays, metal oxide TFTs will still be a strong competitor, due to their large-area 

scalability and low temperature capability. However, the following technical challenge 
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should be overcome in order to exploit the advantage of oxide TFTs. The low-

temperature process compatible with plastic substrates essentially involves the creation of 

a large defect density in the gate insulator, semiconductor and passivation layer. The 

large trap density resulting from the low-temperature process would negatively impact 

the stability of the devices, including their temperature, bias and light stability, as well as 

their device performance, such as their mobility and contact resistance. Therefore, 

besides searching for a killer application for flexible displays and improving the 

manufacturing techniques, a significant amount of fundamental research still remains to 

be done, which includes the exploration of novel materials with high mobility and 

stability and understanding the deterioration mechanism of oxide TFTs against electrical 

and light stress. There are currently prototype devices and active matrix displays that 

have used amorphous metal oxide as the channel layer in the TFT backplane electronics; 

transparent displays from leading companies shown below are exemplary applications. 

 
Transparent Displays: This is probably the most fascinating and immediate 

demonstration of the concept of transparent electronics. Although it sounds quite 

futuristic, there have already been demonstrations of fully transparent prototype displays 

by giants in the display industry, Samsung and LG display (Fig 8.1). 
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the region between S/D and a-IGZO active layer (LIGZO), and the length of overlap region 

between gate and S/D (LOV), it was shown from low frequency noise measurements that 

in devices with certain layout Nst decreases with decreasing channel length and increases 

with increased length. This discovery bodes well for devices with a specific architecture 

to be better candidates for sub-1 m scaling of TFTs. 
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Figure 8.5. (a) Density of gate insulator traps Nst and (b) spectral density of source-drain 
series resistance SRsd versus channel length, L of 2 different architecture (MOA and 
AOM) a-IGZO TFTs. 
 

Exploration of p-channel TFTs:  

Exploration of p-channel TFTs is highly desirable as a means of realizing a 

complementary circuit technology with oxide-based TFTs. As we noted before, having 

good p-type oxide material has so far been elusive. Potential channel materials include 
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NiO and Cu2O. Hole injection will likely pose a difficult challenge in forming these TFTs. 

One drawback is that most p-type oxides either have poor mobility or require a high 

temperature annealing treatment to achieve reasonable performance. It is expected that 

developmental efforts devoted to the realization of a p-type oxide TFT will continue 

since the implications for fully CMOS oxide electronics will be huge.  

 

Overall, there are a variety of directions this work could continue towards, 

including both fundamental and applied research. Although a-IGZO TFTs is a relatively 

new and unexplored category of thin-film devices, the potential lies in their transparency, 

uniformity, low processing temperature, and good electrical performance. As this work 

continues to grow, integration of these oxide films into different types of applications will 

be essential. For now it is reasonable to suggest that these novel metal oxide TFT based 

applications will be available in the very near future. 
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Appendices 

Appendix A:  

a-IGZO TFT Fabrication 

The flexible metal foil substrates used in this research were stainless steel type 304 

having a diameter of 150 mm and were 100-um thick. The back channel passivated 

structure is a 5-mask process quite typical of TFT fabrication employed in active matrix 

backplane fabrication. The step by step process is detailed in the following fabrication 

sequence: 

 Mask 1: Gate Deposition: Gate Mo (150nm) deposited and patterned. Mo is 

deposited by DC sputtering in a Kurt J. Lesker system. Patterning is by standard 

lithography using positive resist AZ703 and lift-off resist, LOR10B. Patterned 

steel wafers are rinsed with DI water and dried before dielectric deposition. 

 Gate Dielectric (SiO2) deposition by PECVD @ 300ºC (100nm). The process 

details (Diluted SiH4 in He/N20/ chemistry; Breakdown field~8MV/cm2) are 

elaborated in tabular format later. 

 Blanket IGZO (50-70nm) deposition with RF sputtering from a ceramic IGZO 

target (1:1:1 molar ratio of In2O3:Ga2O3:ZnO) was carried out (5-10% volume O2 

in Ar) at a RF power of 100 Watts. The ceramic target was purchased from SCM 

Inc, NY. Some IGZO thin films underwent an N2O treatment in PECVD after this. 

 Blanket Oxide (50nm) deposition with RF sputter to cover IGZO. Sputtering of 

the SiO2 was done in ambient chamber temperature at 200 W (10% O2 in Ar). 



245 
 

 Mask 2: Patterning of the IGZO/Oxide stack with dry/wet etch (AZ 2020 

Negative patterning)  (dry etch of sputter oxide in CF4 plasma in RIE ( 300W, 

Etch rate- 25nm/min) followed by dilute HCL (CMOS grade HCL with 40/1 

dilution  in DI Water) etch of IGZO; PR stripped in AZ400T Stripper) 

 Deposit thicker (100nm) passivation oxide (Sputter oxide again). 

 Mask 3: Open access to gate pads and contact holes for circuit integration. This is 

first of two contact pad openings. To have access to the gate pad, the PECVD 

oxide and the sputtered SiO2 is etched by wet etch with commercially available 

SILOX etchant. 

 Mask 4: Source and drain contact holes opening is done next. The Passivation , 

the mesa oxide are dry etched first (Dry etch  in a RIE system with CF4 gas at 

300Watts on top of IGZO). For some devices, S/D area is Ar plasma treated in 

RIE (100 W, Ar 10 sccm, 1 min) to reduce contact resistance. 

 Mask 5: S/D metallization (120 nm of Mo ) is done in DC sputtering in pure Ar . 

  Completed TFT anneal (300ºC, N2 Ambient, in tubular furnace for 1hr). 

 
1. PECVD system 

Process Gas (sccm) Power 
(W) 

Temp 
(ºC) 

Pressure 
(Torr) 

Dep rate 
(Å/Min) 

Isolation SiO2 SiH4 (480), N2O 
(720), HE (2000) 

400 300 1 190 
Passivation SiO2 

Gate SiO2 SiH4 (120), N2O 
(720), HE (2000) 

400 300 1 50 

N2O Treatment N2O(720) 100 RT 0.5 N/A 
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2. PVD system 

Process Gas (sccm) Power (W) 
Temp 
(ºC) 

Pressure 
(mTorr) 

Dep 
rate 

(Å/Min) 

Time 
(min) 

IGZO Ar/O2(8/0.8) 100 RF RT 5 50 N/A 
Mo S/D/G Ar(15) 250 DC RT 8~9 140 N/A 

 
 
 
3. Dry etching system - TECHNICS PEII-A plasma system 

Process Gas (sccm) 
Power 
(W) 

Pressure 
(Torr) 

Etch rate 
(Å/Min) 

      Sputtered SiO2 
etching 

CF4 (15), O2 
(5) 

300 0.2 80 

O2 plasma  for surface 
treatment / descum 

O2 (20) 100 0.15 N/A 

 
 
 
4. Wet chemical process 

Process Chemical Remark 

Piranha clean H2O2:H2SO4=3:1   

Oxide etch Buffer HF NH4F:HF=6:1   

Oxide etch SILOX Silox 100% E/R=10Å/sec 

RCA clean (acid) H20:H2O2:HCl=5:1:1 @70�C 

RCA clean (base) H20:H2O2:NH4OH=5:1:1 @70�C 

Mo lift off MICROCHEM EBR 

IGZO etch DI:HCl (40:1)         RT 
 
 
 
5. Furnace process 

Process 
Ambient 

gas 
Temp 
(ºC) 

Time 
(hr) 

Post 
metallization 
anneal 

N2 300 0.5~1 
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