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Abstract

To address major challenges to conventional electric grids (e.g., generation diversification and

optimal deployment of expensive assets), full visibility and pervasive control over utilities’

assets and services are being realized through the integration of energy, information, and com-

munication infrastructure that forms the smart grid. As an indispensable component of the

smart grid infrastructure, Supervisory Control and Data Acquisition (SCADA) system inter-

connects fields devices and computer servers within a power substation and allows operators

to remotely control these devices and equipment from the control center. In recent years,

switched Ethernet gains growing popularity in power substations and an increasing number

of control tasks are now carried out by SCADA hosts exchanging data and commands over

Ethernet. This paradigm (i.e., network-based distributed control, interconnectivity between

SCADA hosts and among different SCADA sites) has caused concerns over power system

reliability and cyber-security: Network-induced delays experienced by SCADA network pac-

kets must be kept below task-specific upper bounds to ensure reliable system operation. In

addition, SCADA hosts (e.g., protective relays, human-machine interface, and engineering

workstations) must be protected from miscellaneous cyber attacks. To address these concerns,

techniques for delay performance analysis as well as solutions against cyber attacks on SCADA

systems are designed and developed in this dissertation.

Specifically, this dissertation investigates the following research problems: (i) Worst-case

delay performance analysis for networked cyber-physical systems (CPSs): We first study the

worst-case delay performance of Ethernet-based substation communication networks (SCNs)

through the combination of measurements and network-calculus-based modeling, which ena-

bles SCN architects to estimate the delay performance of an SCN design under different

1



operational scenarios. The outcome of research task is a delay performance modeling and

analysis framework helping SCN architects to verify whether stringent delay performance re-

quirements of critical control operations (e.g., tripping a circuit breaker to isolate fault) are

satisfied. Furthermore, we also analyze wireless Parallel Redundancy Protocol (PRP) in-

frastructure recently proposed for industrial control systems (ICSs) and obtain closed-form

expressions for the network-induced worst-case delays under general, non-feedforward traf-

fic patterns. (ii) Intrusion and botnet detection for SCADA networks: To protect SCADA

systems from cyber attacks, we design network-based intrusion and botnet detection algo-

rithms for SCADA systems. To detect SCADA hosts infected by peer-to-peer (P2P) botnets,

we analyze traffic patterns and characteristics of different SCADA hosts and identify those

performing command and control (C&C) communication with other bots or the bot master.

Besides botnets, cyber attacks targeting SCADA network protocols (e.g., DNP3) are one of

the primary ways for attackers to disrupt system operation and cause physical damages. A

deep-learning-based algorithm is devised to detect these attacks by analyzing application-layer

information of network packets. (iii): Payload attack detection for programmable logic con-

trollers (PLCs): Widely used in SCADA systems, PLCs are susceptible to a special class of

attacks (known as PLC payload attacks) where an attacker with PLC programming privilege

injects malicious control logic into the PLC control program. To detect such attacks, we

model the runtime behaviors of legitimate PLC control program and detect malicious control

programs with abnormal runtime behaviors at PLC firmware. Evaluation results obtained in

controlled lab environment and from hardware-in-the-loop cybersecurity test bed show that

our approach effectively identifies modification attacks on PLC control logic with acceptably

low runtime overheads, making it a viable firmware enhancement scheme for existing and

future ICS field devices.

2



Chapter 1

Introduction

Supporting a broad spectrum of tasks (e.g., system control and protection, process visua-

lization at human-machine interface), Supervisory Control and Data Acquisition (SCADA)

system [6] is a critical component of networked cyber-physical systems (NCPSs) such as the

smart grid. As conventional power grids evolve into smart grids, switched Ethernet becomes

one of the most popular communication technologies for power substation automation [30,68].

To provide full visibility and pervasive control over utilities’ assets and services, SCADA hosts,

ranging from protective relays to engineering workstations, are now accessible from the control

center. The increased interconnectivity between SCADA hosts and among SCADA sites, as

well as the use of Ethernet for substation automation, have brought forth concerns over relia-

ble control, operation, as well as cybersecurity. This chapter gives an overview of the research

problems in delay performance analysis and cybersecurity of smart grid infrastructure that

are addressed by this dissertation and provides necessary technical background to facilitate an

in-depth understanding of the research challenges and contributions detailed in later chapters.

1.1 Motivation

In the past decade, switched Ethernet gradually gathered momentum in substation automation

due to its continuous improvements on bandwidth and noise immunity [118]. Based on Et-

hernet, the IEC 61850 standard promotes interoperability between field devices from different

manufacturers, reduces cabling costs and complexity, and enables new services and capabi-
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lities that are not possible with most legacy protocols [83]. While enabling an ever-growing

number of new services and applications, the use of Ethernet and the increased interconnecti-

vity between hosts in a substation arouse concerns over real-time control of critical system

processes. In the IEC 61850 standard, worst-case delay performance requirements for different

types of tasks and services are specified, which must be stringently enforced when designing

Ethernet-based substation communication networks (SCNs). For safety-critical tasks, an SCN

design must provision deterministic (i.e., worst-case) rather than stochastic delay performance

guarantees to ensure reliable dissemination of crucial information under any circumstances.

Therefore, it is of vital importance to devise an approach to analyzing and evaluating worst-

case delay performance of smart grid network infrastructure.

In fact, many existing industrial control systems (ICSs) have started to embrace the networ-

ked cyber-physical system paradigm [138, 139]: Computer networks (e.g., switched Ethernet,

Wi-Fi network) are deployed to enable data exchange among controllers, sensors, and actu-

ators distributed across the system. Some of these ICSs require both ease/flexibility of field

device deployment and timely transmission of critical process data and commands. To leverage

the flexibility offered by wireless networking technologies while ensuring reliable transmission

of data over communication channels that may occasionally become unstable, a redundancy

mechanism based the Parallel Redundancy Protocol (PRP) has been proposed. Traffic pat-

terns on such wireless networks are inevitably non-feedforward, rendering existing analytical

approaches targeting tandem or feedforward networks inapplicable. To facilitate the design

of wireless PRP infrastructure with deterministic delay performance guarantees, an analytical

method that properly handles the intricacies introduced by non-feedforward traffic patterns is

indispensable.

Another major concern aroused by the increasing interconnectivity among ICS field devices

such as SCADA hosts in a power substation is cybersecurity. As SCADA network hosts

exhibit traffic characteristics that are significantly different from those in IT networks (e.g., a

corporate network or a campus network), existing network intrusion detection systems (NIDS)

developed for IT networks may not work well in SCADA environments. Among recently

emerged cyber threats, peer-to-peer (P2P) botnets can become a serious threat to SCADA
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systems. Botnet malware can be slipped into SCADA systems using an approach that is similar

to the Stuxnet [71] attack or by a malicious insider. The malware can replicate itself onto

other hosts, and compromised SCADA hosts can launched coordinated attacks that can easily

disrupt system operation and/or induce severe physical damages. Therefore, it is necessary

to design a network intrusion detection solution against P2P botnets in SCADA systems.

Once a SCADA device is compromised, an attacker may exploit vulnerabilities of SCADA

network protocols and launch attacks purposely crafted for SCADA systems. Such specialized

attacks must be detected by NIDS for SCADA systems in order to protect critical system

processes from physical damages and operation disruptions. Therefore, a network intrusion

detection system must be able to detect emerging cyber attacks such as P2P botnets as well

as specialized attacks on SCADA network protocols.

In addition to network attacks on SCADA systems, modification attacks on control pro-

grams of field devices (also known as payload attacks) are also a major cybersecurity threat

to industrial control systems such as the smart grid. Such attacks can easily be launched

either by a malicious insider with device programming privilege or by an external attacker

who successfully compromised an engineering workstation. Detecting payload attacks by ma-

nually reviewing control program source code can be a tedious task, and a malicious insider

may still find ways to plant control logic bombs (e.g., right after a round of code review is

completed). Existing methods introducing additional apparatus (e.g., a runtime behavior mo-

nitor) into an ICS indeed automate the attack detection process, but it has been shown that

attacks on real-time performance requirements (e.g., a control action must be taken within 10

ms after the moment certain faults are observed) cannot be properly detected. To enhance the

resilience of ICS field devices against payload attacks, it is important to design an automated

detection method that does not require the installation of additional devices (which may be-

come a new target for cyber attacks) and can properly detect attacks on real-time performance

requirements of control programs.
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1.2 Research Problems and Challenges

1.2.1 Delay Performance Analysis of Substation Communication Networks

As an example instance of networked cyber-physical systems (NCPSs), substation automation

system (SAS) leverages its network infrastructure (e.g., a switched Ethernet) to realize various

tasks with different criticality levels. Figure 1.1 compares substation communication networks

based on hardwired connections and switched Ethernet. In the substation communication

network (SCN) shown by Figure 1.1a, voltage and current sensors as well as actuators are

hardwired to a protective relay. If the physical process is located far away from the cabinet

housing the protective relay, a large number of long metal wires must be employed. The

SCN design in Figure 1.1b eliminates part of the hardwire connections. However, connecti-

ons between actuators (i.e., the circuit breaker) and the protective relay are still hardwired.

Figure 1.1c presents an SCN design where sensor readings and control commands are trans-

mitted between process field and the control room using Ethernet. In addition to reducing

cabling cost and complexity, the use of Ethernet also makes it easier to add/remove new devi-

ces [30,68]. As new standards such as IEC 61850 recommend Ethernet for organizing SCADA

hosts in a substation, Ethernet continues to gain momentum in substation automation, pro-

tection, and control. In fact, applying Ethernet in wide-area measurement systems (WAMS)

and inter-substation communication networks has also obtained attention from different re-

search groups [81, 119]. Therefore, switched Ethernet will become a major communication

technology not only for SCADA systems within substations but also for systems consisting

multiple SCADA sites (e.g., a control center and multiple substations it monitors).

As more and more new services and applications are realized on SCNs based on IEC

61850, the communication patterns on an SCN continues to evolve. In [72], message sizes and

requirements on network-induced delays of assorted power system applications are surveyed. It

is shown in [57] that a maximum of 22 merging units can be supported by Ethernet switches

with 100 Mbps bandwidth. However, it is hard to answer the following questions merely

through measurements:

1. Given the expected traffic patterns for an SCN design, how can we verify whether the
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Figure 1.1: Substation communication networks using different communication media.

delay performance of an SCN design will satisfy the real-time requirements of the control,

protection, and automation tasks?

2. As new services continue to be integrated into the SCADA system, is there a tool that

will allow us to verify the delay performance of the SCADA network under new traffic

patterns without interrupting system operation?

3. The network traffic patterns imposed by SCN applications and tasks are generally non-

feedforward, whereas existing analytical methods are designed for tandem or feedforward

networks. Can we leveraging existing methods to model and analyze non-feedforward

networks?

To answer these questions merely through measurements, new measurements must be taken

whenever the SCN design or the expected traffic patterns change. After a substation is put

into service, it is sometimes hard to take measurements without affecting the operation of the

substation (e.g., we may need to install network taps into the SCADA network for measurement

purpose, which will inevitably disconnect certain devices from the network temporarily).

To address these challenges, it is of vital necessity to devise an analytical framework that

can derive worst-case delay performance bounds for Ethernet-based substation communica-

tion networks. Characteristics of traffic sources and networking devices of SCNs that can be

observed from measurement should be incorporated into the analytical framework to obtain

application-specific, tight delay bounds. Designing such a framework and incorporating it into
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the different phases of an SCN’s life cycle (e.g., initial design, deployment, maintenance, and

renovation) will not only facilitate the rapid verification of deterministic delay performance

of various SCN designs but also provide guidance on how existing SCNs can be renovated to

achieve better delay performance.

1.2.2 Delay Performance Analysis of Wireless Network Infrastructure for

Cyber-Physical Systems

As many industrial control systems (ICSs) start to embrace the paradigm of networked cyber-

physical systems (NCPSs), various wireless networking technologies have become increasingly

popular primarily because of their flexibility (e.g., deploying new devices no longer requires

reorganizing existing cabling). However, performance of many wireless communication techno-

logies deteriorates under noisy environments. To take advantage of existing wireless commu-

nication technologies while realizing reliable and timely information dissemination, various

wireless networking schemes leveraging the redundancy principle introduced by the Parallel

Redundancy Protocol (PRP) have been proposed.

To verify whether hard-real-time performance requirements are satisfied by a certain wi-

reless PRP network, application-specific evaluations (e.g., discrete-event simulation or field

experiments) have been conducted. However, new experiments have to be carried out when

the same networking scheme is applied to a new site (or the same site with a different set of

services and tasks). Furthermore, the traffic patterns on a wireless PRP infrastructure are

non-feedforward by nature, and a proper analytical method analyzing the delay performance

of such networks is yet to be established. To facilitate the adoption of wireless PRP network

infrastructure by industrial applications with hard-real-time performance requirements, the

following research challenges must be properly addressed:

1. Given an NCPS design based on wireless PRP, can we devise a method to analyze the

worst-case delay performance over its non-feedforward traffic patterns so that whether

the design satisfies all the hard-real-time delay performance requirements can be verified?

2. In addition to simply accepting or rejecting an NCPS design based on our analytical re-

sults, can we further provide guidance on how an existing design can be enhanced (e.g., to
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accommodate new services or improve the delay performance for existing applications)?

A possible response to these identified research challenges is to derive the closed-form ex-

pressions of the worst-case delay bounds for time-critical network traffic flows. So far, little

has been done to find such expressions and discuss possible performance enhancements for

non-feedforward networks.

1.2.3 Intrusion and Botnet Detection for SCADA Networks

As the interconnectivity between SCADA hosts and among SCADA sites continues to improve,

an increasing number of cyber attacks targeting SCADA systems are launched through SCADA

networks. Figure 1.2 shows a SCADA system for a substation consisting of four protective

relays, a remote terminal unit (RTU), an engineering workstation, and a human-machine

interface (HMI). An Ethernet switch interconnects the field devices and computer servers

and carries SCADA network packets exchanges between them. In addition, operator in the

control center can access the SCADA hosts within the substation via the router. Over the

past few decades, instances of different cyber attacks have been reported [90, 141]. Some

of these attacks are launched by external attackers. For instance, the 2016 attacks on the

Ukrainian power grid [75, 76] are launched by external attackers who first gain access to

SCADA hosts of a transmission-level substation and then executed breaker ”trip” commands

to cause power outage. Although such attacks employ multiple components, the last step of

these attacks is to issue SCADA commands and cause the system to malfunction/fail. To

prevent SCADA systems from physical damages caused by cyber attacks, it is important to

design intrusion detection algorithm that identifies abnormal network activities (e.g., operators

should be alerted if control commands that are not supposed to be executed by protective relays

are observed on the SCADA network).

Among recently emerged cyber attacks, peer-to-peer P2P botnet is a potential threat to

SCADA systems. When SCADA hosts are infected by peer-to-peer botnets, they first enter

command and control phase to collect commands issued by the bot master. The command and

control (C&C) traffic between P2P bots bears resemblance to the decentralized communication

patterns of regular SCADA networks. After the C&C phase, each bot-infected SCADA host
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Figure 1.2: A small SCADA system with field devices and computer servers.

obtains an up-to-date copy of commands that can cause severe damages to SCADA devices

and the physical process. To prevent P2P bots from causing any damages, it is important to

identify bot-infected SCADA hosts during their C&C phase.

In addition to newly emerged threats such as P2P botnets, specialized attacks on SCADA

network protocols also need to be taken into account by intrusion detection systems (IDS) for

SCADA networks. In contrast to network attacks observed in IT networks, these specialized

attacks typically aim to interrupt field device operation, hoax actuators into taking incorrect

control actions, masking malicious activities or faults with falsified process data, and ultimately

induce severe physical damages. Existing intrusion detection solutions for IT networks cannot

be directly adopted to detect such attacks because (i) the vulnerabilities exploited by attackers

are specific to SCADA network protocols or well-known control mechanisms and (ii) some of

the message types are leveraged both by normal system operations and specialized attacks.

To detect such attacks, application-layer information of SCADA network packets needs to be

properly extracted and analyzed by intrusion detection systems.

1.2.4 Detecting Payload Attacks on Programmable Logic Controllers (PLCs)

Programmable logic controllers (PLCs) are special-purpose computers that runs control pro-

gram written by control system engineers on PLC firmware. The control program is also
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known as the payload to the PLC’s firmware. An insider (e.g., a disgruntled employee) can

easily modify the control program source code and download a malicious copy to the PLC.

Since the attackers usually have knowledge of the inner-workings of the SCADA system (e.g.,

which set of control signals can cause severe damage, how long an HMI will poll for updated

process data), modification attacks on PLC control program (also known as PLC payload

attacks) are easy to implement but hard to detect. In addition, such attacks may not generate

any network packets, so a network-based intrusion detection system (IDS) cannot capture such

attacks effectively.

Take the SCADA system depicted in Figure 1.2 as an example. An insider with PLC

programming privilege can easily modify the control program and inject malicious control

logic from the engineering workstation. To cause severe damage and escape the notice of

other control system engineers, the attacker can set the malicious actions to be triggered by

certain system events (e.g., blocking circuit breaker trip signals when short-circuit faults are

observed). To protect SCADA systems from PLC payload attacks, it is of critical importance

to devise a mechanism that detect payload attacks and prevents malicious control actions from

being executed.

1.3 Dissertation Statement and Contributions

As discussed in Sections 1.1 and 1.2, reliable control and operation of modern networked cyber-

physical systems demand that control applications, especially those with real-time performance

requirements, should be able to carry out all their tasks correctly and timely under any

circumstances. To help realize this goal, this dissertation examines the research problems of

the worst-case delay performance analysis and evaluation and cybersecurity in the context

of the smart grid, which has been regarded as a representative example of networked cyber-

physical systems. Contributions made in this dissertations to each of the research problems

and challenges identified in Section 1.2 can be summarized as follows:

� In order to help architects of substation communication networks (SCNs) verify worst-

case delay performance of their network designs at different stages of an SCN’s life cycle,

we devise an analytical framework combining delay measurements with deterministic
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network calculus to derive worst-case delay bounds for time-critical traffic flows. Our

analytical framework is well-suited for the delay performance analysis of Ethernet-based

SCNs for the following reasons:

. By properly modeling Ethernet switches and taking end-to-end delay measure-

ments, our framework transforms non-feedforward traffic patterns imposed by SCN

applications into feedforward ones, making it possible to apply state-of-the-art

network-calculus-based analytical methods and obtain accurate bounds on network-

induced delays.

. Through the combination of measurements and network-calculus-based modeling,

we proposed approach refine analytical models utilized by state-of-the-art theore-

tical analyses with measurement-based observations, further tightening the delay

bounds without increasing the time complexity of existing techniques.

. We compare measurement results obtained from an emulated SCN test with ana-

lytical bounds and show that delay bounds given by our framework are sufficiently

tight for SCNs with representative traffic patterns and workloads.

. We also extend the application of our framework to other networked cyber-physical

systems (NCPSs) and demonstrate that our approach is also able to give tight

bounds for these Ethernet-based NCPS applications.

� To derive worst-case bounds on delays induced by wireless PRP network infrastructure

of NCPSs, we apply network calculus with stopped sequences to model and analyze non-

feedforward traffic patterns imposed by industrial control applications. Our approach

finds the closed-form expressions of the delay bounds for time-critical flows, which can

be applied to NCPSs with wireless PRP infrastructure in two different ways:

. Given an existing NCPS network design and the expected traffic pattern, our ap-

proach can be applied to derive analytical delay bounds to help NCPS architect

quickly verify whether the current design satisfies the hard-real-time performance

requirements of industrial applications.
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. During different phases of an NCPS’s life cycle, closed-formed expressions derived

by our framework (which can also be further refined with measurement data) can

help NCPS architects identify potential delay performance bottlenecks, providing

guidance on the design and renovation of wireless PRP infrastructure of NCPSs.

Our approach facilitates worst-case delay performance analysis using back-of-the-envelope

calculations, making it a valuable tool that can be repeatedly applied during the NCPS

design process.

� To address concerns on cybersecurity of SCADA systems with ever-increasing intercon-

nectivity, we design machine-learning-based intrusion detection algorithms for SCADA

networks. Our proposed solutions are well-suited for SCADA systems for the following

reasons:

. By modeling flow-based and connectivity-based characteristics of SCADA netowrk

hosts, we devise an unsupervised learning algorithm to detect peer-to-peer (P2P)

botnets during their peer discovery phase in SCADA environments. Our approach

is capable of identifying previously unseen bots and achieve high detection accu-

racy with few false positives, which meets the requirements for intrusion detection

systems for SCADA networks.

. In addition to detecting P2P botnets, we also design deep-learning-based algorithm

that inspects application-layer information of SCADA network packets and identi-

fies both conventional and specialized attacks on SCADA networks. Our approach

can identify attacks that leverage the same packet formats as normal control appli-

cations and generate only a few false positives.

. Our proposed algorithms leverage traffic monitoring capabilities of existing SCADA

networking devices and do not interrupt SCADA system operation. Our experiences

with different SCADA cybersecurity test beds show that the overheads introduced

by traffic monitoring are sufficiently low, keeping the intrusiveness of our methods

to the minimum.

� To enhance the resilience of ICS field devices under payload attacks, we design a firmware-
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level detection mechanism against malicious modifications to control logic of program-

mable logic controllers (PLCs). In addition to complementing existing approach that

introduces at least one additional code analyzer, our approach can further enhance PLC

resilience for the following reasons:

. Our approach models the runtime behaviors of legitimate control programs and

compares the behaviors of the currently active control program against the model.

In contrast to existing methods based on linear temporal logic, our approach is able

to detect attacks on real-time performance requirements of control programs. This

capability is extremely important in industrial control systems because failures to

execute real-time tasks typically cause severe physical damages.

. Our approach introduces firmware enhancements with acceptably low runtime and

memory overheads. The proposed enhancements can be implemented in many

existing PLCs on the market, making it possible to enhance the resilience of existing

ICSs through firmware upgrades.

Our detection mechanism servers as the last line of defense against PLC payload attacks,

both complementing existing methods based on automated code review and formal logic

without introducing extra apparatus that may become the target of new attacks.

By developing analytical methods for deterministic delay performance analysis and enhancing

the cybersecurity of cyber-physical systems, this dissertation aims to help address concerns

over the emerging networked cyber-physical system paradigm in various industrial application

domain such as the smart grid.

1.4 Dissertation Organization

Focusing on delay performance analysis and cybersecurity of smart grid infrastructure, this

dissertation is structured as follows.

In Chapter 2, we study the delay performance of Ethernet-based substation communication

networks (SCNs). Observing the fact that traffic patterns imposed by practical automation

and protection applications are generally non-feedforward, we propose an approach combining
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network delay measurements and deterministic network calculus to the analysis and evalua-

tion of worst-case delay performance of SCNs. We introduce a measurement-based method of

extracting service characteristics of Ethernet switches and empirically show that the switch

models constructed from measurements can be leveraged to transform non-feedforward traffic

patterns into feedforward ones. Moreover, we also leverage measurement data to refine in-

termediate arrival curves (IACs) and show that such refinements can significantly tighten the

delay bounds. In addition to studying Ethernet-based SCNs, we also discuss the application

of our approach to other cyber-physical system applications.

Chapter 3 examines wireless PRP network infrastructure that are well-suited for industrial

control systems requiring both deterministic delay performance guarantees and link redun-

dancy. Instead of applying the approach developed in Chapter 2, we propose the introduction

of stopped sequences, which enables us to directly derive closed-form expressions of worst-case

bounds on network-induced delays. Our results show that the proposed method can be le-

veraged by NCPS architects in both network design and performance evaluation, making it a

valuable tool for delay-sensitive and/or time-critical NCPS design.

In Chapter 4, we design machine learning algorithms to protect SCADA networks from

various cyber threats such as P2P botnets and specialized attacks on SCADA network proto-

cols. Our proposed methods leverage the traffic monitoring capability of existing networking

devices in SCADA systems and will not interrupt normal system operation. By analyzing

connectivity-based and flow-based traffic characteristics, we are able to detect various P2P

botnets with high accuracy. In addition, a deep-learning-based algorithm is devised to detect

conventional and specialized network attacks with high accuracy and very few false positives.

Features of our solution makes it well-suited for intrusion detection in SCADA environments.

Chapter 5 proposes a firmware-level detection mechanism against modification attacks on

PLC control programs. By modeling the runtime behaviors of legitimate control programs

and collecting runtime data in the PLC firmware, our approach can identify modified control

programs with runtime behaviors deviating from the established models. Our experiments

show that the execution time and memory overheads of our proposed approach are sufficiently

low for mainstream PLCs on the market, making it possible to enhance the resilience of existing
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industrial control systems via firmware upgrades. Furthermore, our approach is capable of

detecting attacks on real-time performance requirements for control programs, which cannot

be detected by existing approaches based on linear temporal logic.

Finally, Chapter 6 concludes this dissertation and discusses possible future directions.
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Chapter 2

Delay Performance Analysis of

Substation Communication

Networks (SCNs) Based on IEC

61850

2.1 Introduction

To take advantage of modern technologies, such as switched Ethernet, power substation au-

tomation systems (SASs) across the globe are being modernized by adopting international

standard IEC 61850 [31]. To ensure system reliability and responsiveness, critical information

carried by a substation communication network (SCN) has to be delivered within hard time

constraints. In IEC 61850-5 [62], maximum transmission times for different class of messages

are explicitly specified. For instance, in a substation requiring performance classes P2 and P3,

the maximum transmission time for Type 4 sampled values must not exceed 3 milliseconds [58].

The worst-case delay performance of a particular SCN is quantified by the set of worst-case

network-induced delays experienced by all its traffic flows. Evidently, for networked systems

controlling critical infrastructure such as the power grid, it is the worst-case rather than the

average delay performance that is of practical interest to SAS designers and architects. Be-
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Figure 2.1: Transmission time and its components defined in IEC 61850-5.

fore an SAS project is commissioned, it is therefore of vital importance to ensure that all the

worst-case delay performance requirements are satisfied.

Two major interfaces defined by IEC 61850 are the IEC 61850-9-2 [61] interface (i.e.,

process bus) and IEC 61850-8-1 [60] interface (i.e., station bus). Network architecture of SASs

based on IEC 61850 has been presented in several research projects, such as [31], [78] and [137]:

An IEC 61850-9-2 process bus carries sampled values (SVs) from synchronized merging units

(MUs), which monitor a section of a power system through multiple current and voltage

sensors, to various protective relays. In addition, an IEC 61850-8-1 station bus transmits

generic object-oriented substation event (GOOSE) messages, greatly reducing the need for

inter-equipment hardwired signals. As IEC 61850 gains momentum in the energy sector, its

application has been expanded to inter-substation communication [59], as well as information

exchange between substations and control centers [65]. Network engineering guidelines as

well as time constraints for these emerging application scenarios are also defined [63, 64]. As

illustrated in Fig. 2.1, network transmission time (i.e., network-induced delay) is one of the

major components of the transmission time defined in IEC 61850-5 [62]. In essence, protective

relays (also known as intelligent electronic devices) rely on sampled values delivered by the

process bus to infer system status and collaboratively perform assorted control/protection

tasks. Hence, it is necessary to analyze the worst-case (i.e., maximum) network-induced delays

experienced by sampled value messages (SVMs), which is dependent on various factors such

as network topology and traffic characteristics.

At the bare minimum, an IEC 61850-9-2 process bus network organizes multiple merging
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units and transmits their sampled value messages to one or multiple protective relays. Syn-

chronization among merging units can be achieved via hardwired signals or via precision time

protocol (PTP) messages [56]. Similarly, inter-equipment signals among protective relays may

be transmitted via hardwired signals, a separate station bus network, or over the same network

implementing the process bus [51]. In this work, we focus on finding the worst-case network-

induced delays for sampled value messages on a process bus network where synchronization

and inter-equipment GOOSE signals are transmitted out-of-band [58]. Even under such set-

tings, the traffic pattern of a process bus network is generally non-feedforward because SVMs

from synchronized merging units are typically broadcast or multicast to their subscribers (e.g.,

protective relays) via a process bus consisting multiple Ethernet switches. As state-of-the-art

worst-case delay analyses target feedforward networks (e.g., [19,114]), it is infeasible to directly

adopt these techniques to analyze IEC 61850-9-2 process bus networks.

In this chapter, we propose an approach to deriving the accurate upper bounds on the

worst-case delays for IEC 61850-9-2 process bus networks with arbitrary (i.e., either feedfor-

ward or non-feedforward) traffic patterns. In essence, our proposed approach is a combination

of measurements and network calculus: Non-queuing delays introduced by Ethernet switches

are modeled through measurements, whereas network calculus is applied to find worst-case

delay bounds on network-induced delays consisting of both queuing and non-queuing delay

components. The contributions of our work are as follows:

1. To obtain realistic delay bounds that are sufficiently tight using network calculus, we

establish service models of Ethernet switches by taking proper measurements and ex-

ploiting the fact that Ethernet switches have sufficient capacity to support multiple

simultaneous interconnections. In addition, we construct accurate traffic models for

merging units, leveraging both their synchronized operations and the serialization effect

of Ethernet switches.

2. Instead of leveraging conventional techniques in network calculus to deal with non-

feedforward networks, we show that a non-feedforward traffic pattern on switched Et-

hernet can be converted into feedforward ones, facilitating the applications of existing

analytical techniques targeting feedforward networks.
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3. To make it less laborious to evaluate SCN design alternatives, we propose a hybrid

approach that takes measurements only during switch modeling and relies on the theory

of network calculus to analytically evaluate different SCN designs.

4. Our case studies of both feedforward and non-feedforward process bus networks show

that the proposed combination of measurement and network calculus produces accurate

delay bounds that can be validated against measurements.

We envision that our proposed approach can be utilized by SAS architects as a tool for

evaluating worst-case delay performance at various stages of system design.

2.2 Related Work and Background

2.2.1 Evaluations and Analyses of Delay Performance of SCNs Based on

IEC 61850

The importance of ensuring delay performance conformance of SCNs based on IEC 61850 has

motivated investigations exploiting a variety of methods. In [116], discrete-event simulation

is conducted to verify the delay performance of SCNs. To facilitate the study of SCNs with

different traffic patterns and/or network topology, simulation models of merging units and

protective relays are proposed and constructed. In [58], measurements are taken from merging

units in a real transmission substation. Delay performance of a process bus network with a

feedforward traffic pattern is then investigated in controlled lab environment. Both discrete-

event simulation and measurement-based experiment allow us to study the delay performance

of a particular SCN. However, it is hard to generalize the knowledge gained from such case-

specific evaluations: When changes need to be made to a particular SCN, new experiment has

SW1

MU1

...

MU6

SW2 SW3 SW4 SW5

PR1

Figure 2.2: Feedforward process bus network with six merging units (MUs), one protective
relay (PR), and five Ethernet switches (SW).
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Figure 2.3: A three-switch non-feedforward process bus network.

to be set up to re-evaluate the worst-case delay performance because network-induced delays

is usually dependent on network topology and device configurations (e.g., data rates). Furt-

hermore, results obtained from these methods are sometimes not conclusive since boundary

or extreme scenarios may still be overlooked even after extensive experiments/simulation.

To find out the upper bounds on worst-case delays, network calculus is applied in [42]. The

derived delay bounds are then validated against simulation results, showing the feasibility of

employing network-calculus-based analysis in SAS design. However, the SCNs analyzed in [42]

consist of a single Ethernet switch, whereas the actual design of an SCN (e.g., the number

of switches to use and the topology of the network) depends on various physical constraints

(e.g., the locations and number of current and voltage sensors [137]). The traffic patterns on

SCNs can be complex and non-feedforward, whereas the toolbox [15] used in [42] is designed

for feedforward networks. An approach to analyzing the worst-case delay performance of

non-feedforward traffic patterns on SCNs is yet to be devised.

2.2.2 Feedforward vs. Non-Feedforward Networks

Given a network with multiple traffic processing nodes, we can assign unique integers as node

identifiers. We say that a network has a feedforward traffic pattern if the paths traveled

by all its traffic flows can be represented by a set of monotonically increasing sequences of

node identifiers [19]. Take the multiple-switch process bus network depicted in Fig. 2.2 as an

example. If we model each switch as a network node and assign integer identifiers as shown in

Fig. 2.2, the traffic pattern is feedforward because traffic flows from all merging units traveled

through the same path, which can be represented by the sequence (SW1, SW2, SW3, SW4,

SW5).

On the other hand, we note that SCNs designed in existing SAS projects (e.g., [137]) ge-
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nerally carry non-feedforward traffic patterns. For instance, the process bus network depicted

in Fig. 2.3 collects sampled values from two groups of merging units separate from each other

and far away from the control room, where protective relays are deployed. Suppose that both

protective relays subscribe to the sampled values published by all the merging units and that

SVMs are broadcast over the process bus, the traffic pattern is non-feedforward because there

is always at least a path that has to be represented by a non-increasing sequence. It should

be noted that, for the network in Fig. 2.3, we can interchange the identifiers for SW2 and

SW3 so that the flows from MUs 4∼6 to PR1 can be represented by an increasing sequence.

However, the sequence representing the path for the flows from MUs 4∼6 to MUs 1∼3 is

still not monotonically increasing. Such a non-feedforward traffic pattern is tricky to analyze

in that a proper starting point for deduction cannot be found: If we want to find the delay

induced by SW1 for SVMs sent by MUs 1 ∼ 3, we need to assess the “interference” of the

SVMs arriving at SW1 from MUs 4∼ 6. This in turn requires us to analyze the SVM flows

from MUs 4∼ 6 starting from SW3, which leads us back to MUs 1∼ 3 because their passage

through SW3 introduces similar interference.

We note that non-feedforward traffic patterns are the most general ones that can be found

on switched Ethernet: The path of any traffic flow should not form a cycle since it makes no

sense for a device to transmit its own messages back to itself. Once a message is received by

a certain sink node, it may be replayed back to the original source, but this scenario can be

modeled by two flows with the same (or similar) traffic profile passing through the same set

of nodes in forward and inverse orders. Although non-feedforward scenarios can be studied

via simulation or measurements, an analytical approach suitable for IEC 61850-9-2 process

bus network can significantly reduce the effort on measurements/simulation and is yet to be

developed.

2.2.3 Worst-Case Delay Analysis Using Network Calculus

Based on min-plus algebra, network calculus [16,26] provides a set of models and theorems on

the worst-case delay and backlog performance of communication networks. For feedforward

networks with multiple nodes and flows, the problem of tightening the delay bounds derived
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Figure 2.4: A group of n merging units monitoring a section of a power system process.

using network calculus is of practical interest for researchers of real-time networked systems.

Two categories of analytical methods, namely compositional methods and optimization-based

methods, have been proposed [12]. A compositional method is essentially a set of rules for

applying various network calculus theorems along the path traveled by a particular traffic flow

(also termed as the flow of interest). Several well-known compositional methods are proposed

and discussed in [112, 114]. An optimization-based method finds the worst-case delay by sol-

ving multiple optimization problems with constraints derived from network-calculus theorems

and definitions. Several optimization-based methods targeting network nodes with different

service disciplines, such as arbitrary multiplexing [18, 112], first-come first-served [19], and

fixed priority [21], have been proposed. Optimization-based approach achieves tighter bounds

by exhaustively searching for the maximum possible delays within constrained trajectory spa-

ces. Our analysis in this work falls into the category of compositional methods, which typically

have low computational complexity. We show that delay bounds can be tightened through

taking proper measurements for process bus networks and exploiting the traffic characteristics

of merging units.

The fact that it is hard to find a starting point for deduction on a non-feedforward network

has been observed in classic network-calculus work, such as [26], which also demonstrates that

simple non-feedforward networks can be analyzed by introducing stopped sequences. This

technique is applied in [8] to analyze software-defined networks where the traffic patterns

are also non-feedforward. However, applying this approach to non-feedforward networks with

broadcast/multicast sources can be intricate because the number of stopped sequences to

be introduced grows rapidly with the number of nodes and sources. To address this issue,
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this work takes a measurement-based approach that properly models Ethernet switches and

converts a non-feedforward network into feedforward ones.

2.3 Modeling Traffic Flows from Merging Units

In an IEC 61850-9-2 process bus network, merging units are synchronized to ensure that they

are able to carry out sampling operations simultaneously and generate a “snapshot” of the

power system. For a power system operating at 60 Hz, the length of its system cycle is simply

1
60 seconds. During each system cycle, a merging unit perform sampling operations at its

configured sampling rate (e.g., 80 samples per cycle). The flow of sampled value messages ge-

nerated by a particular merging unit i can thus be represented by a real-valued, non-negative,

non-decreasing function Fi(t), which is the cumulative traffic volume observed from the Et-

hernet output interface of i up to time instant t. Fi(t) is called the arrival process of the flow

generated by i. Without loss of generality, we define any arrival process F (t) in this work for

t≥0 and assume that F (0)=0. In network calculus [16, 26], a bounding traffic model known

as arrival curve, is defined to characterize arrival process:

Definition 2.3.1. Given an arrival process F (t), a real-valued, non-negative, non-decreasing

function α(t) defined for t≥0 is an arrival curve of F (t) if and only if

∀t≥s≥0: F (t)− F (s) ≤ α(t− s).

If α(t) is an arrival curve of F (t), we write F (t)∼α(t). A commonly used form of arrival

curve is the leaky-bucket arrival curve [26, 112] α(t) = σ+ρ · t, where ρ is the average rate

component and σ the burstiness component. If an arrival process F (t) has an arrival curve

α(t)=σ+ρ·t, we write α(t)∼(σ, ρ).

2.3.1 Simultaneous Arrival and Traffic Aggregation

Although arrival curves of traffic flows generated by individual sources are typically constructed

separately, we propose to construct arrival curves for different groups of merging units in IEC

61850-9-2 process bus network to exploit its following characteristics:
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1. Merging units are synchronized and generate sampled values simultaneously.

2. A group of merging units are typically deployed to collectively monitor a section of a

power system process.

3. At each section of the system process, data from the merging units can be collected by

an Ethernet switch provided that it has an adequate number of network interfaces.

4. Merging units of the same group are configured to work at the same sampling rate and

generate sampled value messages of the same size.

Let us consider the process section depicted in Fig. 2.4. Since the n merging units are syn-

chronized, they generate sampled value messages nearly simultaneously at the beginning of

each sampling cycle. By connecting them to an Ethernet switch, their sampled value messages

are put onto the process bus network for transmission. Suppose that the size of sampled value

messages is L and that the length of the sampling cycles is T . For any individual sampled

value message flow Fi(t) generated by merging unit i (1≤ i≤n), we have Fi(t)∼(L, LT ), which

is depicted in Fig. 2.5a. To find the arrival curve of the aggregate output from the n merging

units in Fig. 2.4, the multiplexing/aggregation theorem [26] can be leveraged:

Theorem 2.3.2. Given a set of n arrival processes F1(t), F2(t), . . . , Fn(t) and their respective

arrival curves α1(t), α2(t), . . . , αn(t), we always have

Σn
i=1Fi(t)∼Σn

i=1αi(t).

Thus, the arrival curve for the aggregate output of n merging units is simply Σn
i=1Fi(t)∼

(n·L, n·LT ). We note that for synchronized merging units generating sampled values simultane-

ously, the arrival curve of their aggregate output given by Theorem 2.3.2 is tight. We term this

phenomenon as simultaneous arrival, which is illustrated in Fig. 2.5b. Since transmission time

for all sampled values must not exceed 3 ms [58], it is unnecessary to distinguish individual

traffic flows generated by MUs of the same group: The worst-case delay experienced by the

aggregate flow upper bounds that of any individual flows. In other words, simultaneous arrival

facilitates worst-case delay analysis with aggregate flows.
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2.3.2 Arrival Curve of Serialized Switch Output

After n simultaneously generated sampled value messages pass through switch SW1 in Fig. 2.4,

they will be serialized and put onto the output interface connecting to another switch or a

locally deployed protective relay. The inter-frame gap specified by the Ethernet specification

is 12 bytes, which is much smaller than the size of a sampled value message (e.g., 126 bytes

according to [58]). For 100 Mbps (Fast) Ethernet, this inter-frame gap translates into a

12×8 bits
100 Mbps =0.96 µs time interval. Hence, the arrival curve α(t) = n·L+n·L

T ·t is not strictly tight

(in other words, slightly loose) for the output of SW1, but it is still a good approximation to

its tight arrival curve.

In our proposed approach, we always group together merging units connected to the same

switch to exploit simultaneous arrival. This is because synchronized merging units monitoring

the same power system section typically use the same sampling rate. For the corresponding

switch output, we still use the arrival curve of the aggregate input as an approximation. As

we will see in Sec. 2.5.1, accurate arrival curves can help us tighten the delay bounds.
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Figure 2.5: Arrival processes and arrival curves of an individual merging unit (MU1) as well
as a group of n merging units.
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2.4 Modeling Ethernet Switches

In network calculus, traffic processing capability of a networking device is modeled by another

bounding model, which is known as service curve [16,26]:

Definition 2.4.1. Given a traffic processing network node with input arrival process F in(t)

and output arrival process F out(t), a real-valued, non-negative, non-decreasing function β(t)

is the service curve of the node if and only if

∀t≥0 : F out(t) ≥ inf
0≤s≤t

{F in(t)+β(t− s)} ≡ (F in ? β)(t),

where [·]+ denotes the operation max{·, 0}.

The ? operator is used to denote the min-plus convolution operation. A commonly-used

type of service curve is the rate-latency service curve β(t) = R · [t−T ]+, where R is the

processing capacity and T models constant non-queuing delay. For a rate-latency service

curve β(t)=R·[t−T ]+, we introduce the shorthand β(t)↔(R, T ).

Sampled values may need to pass through a series of Ethernet switches to reach a subscri-

ber. Take the process bus network depicted in Fig. 2.2 as an example. The sampled values

travel through five switches in tandem in order to reach the protective relay. The concatenation

theorem [26] is well-suited to model such a tandem of switches:

Theorem 2.4.2. Suppose that a flow F (t) passes through m network nodes in tandem and that

the service curves offered by these nodes are β1(t), β2(t), . . . , βm(t), respectively. The service

curve β(t) offered by the tandem of these m nodes to F (t) is

β(t)=(β1?β2?. . .?βm)(t)≡Πm
j=1βj(t).

To apply this theorem to a process bus network, we need to first find out the rate-latency

service curves offered by individual Ethernet switches.
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Figure 2.6: A group of n merging units connecting to Ethernet switch SW1.

2.4.1 Identifying Rate Component for the Service Curve of Process Bus

Ethernet Switch

For an Ethernet switch, we use the rate component of its service curve to capture its traffic

processing capacity. Let us consider the single-switch scenario in Fig. 2.4, which is re-drawn

in Fig. 2.6. For sampled value messages from merging unit i, the entry point into switch SW1

is the input interface connecting i. We assume that the data rate of the output interface of i

matches that of the input interface of SW1, which is typically the case. The switching fabric

provides dedicated interconnections between input and output interfaces of SW1, allowing

different pairs of input/output interfaces to communicate simultaneously. However, as shown

in Fig. 2.6, the traffic pattern of a process bus network inevitably creates a bottleneck at the

output interface: Suppose that the switching fabric offers sufficient capacity. As the number

of merging unit increases, the output interface connecting to another switch or a protective

relay will eventually overflow.

Suppose that the input queue, switching fabric, and output queue, are modeled by three

work-conserving links [26] with rate-latency service curves βin(t)↔(Rin, Tin), βsw(t)↔(Rsw, Tsw),

and βout(t)↔(Rout, Tout), respectively. Theorem 2.4.2 suggests that the service curve β(t) of-

fered by the tandem of these three work-conserving links is

β(t) =(βin?βsw?βout)(t)

=min{Rin, Rsw, Rout}·[t−(Tin+Tsw+Tout)]
+. (2.1)

According to the specifications of Ethernet switches on the market, their switching fabrics

are capable of supporting all interfaces to communicate at wire rate in full-duplex mode (in
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Figure 2.7: Experiment settings to extract latency component of the service curve of the switch
under test.

other words, perfect parallelism is offered by the switching fabric and it will not become a

bottleneck). Therefore, we have min{Rin, Rsw, Rout}=Rout. In process bus networks, the rate

component of the service curve offered by an Ethernet switch to a merging unit can thus be the

wire rate of the output interface traveled by its sampled values. For a multicast or broadcast

flow, an Ethernet switch replicates the flow in its switching fabric, so multiple service curves

are offered by the switch, corresponding to all the directions it travels (i.e., for all the output

interfaces that process the broadcast/multicast flow).

2.4.2 Extracting Latency Component for Service Curve from Measure-

ments

From Eq. 2.1, we also find that the latency component of the service curve offered by a switch

is simply the non-queuing latencies induced by its internal components. Note that delays

introduced by other necessary physical components, such as Ethernet cables, should also be

included in practice. In our approach, we rely on network calculus to find the worst-case

delays caused by queuing. However, we still need to factor in non-queuing delay components,

which are hard to determine merely based on technical specifications of switches. The latency

component models several categories of non-queuing delays, including propagation delay on

Ethernet cables, serialization delay at input/output interfaces, as well as processing delays

(e.g., checksum verification) caused by various internal components of an Ethernet switch.

In our approach, we propose to capture non-queuing delays by taking measurements: By

injecting sampled value messages at low rates and measuring the delays they experience, we use

the maximum delay observed as a good approximation to the latency component because few

messages are enqueued under light workloads and they are dequeued rapidly. Note that such
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Figure 2.8: Components and organization of our test bed.

a measurement-based approach essentially relies on the assumption that additional delays

observed during instantaneous traffic burstiness (e.g., simultaneous arrivals of SVMs) are

caused by queuing. If this assumption holds for Ethernet switches (at least under normal

workloads observed on process bus networks [58]), measuring non-queuing delays intrinsic to

the switches will enable us to find an appropriate latency component for their service curves.

To verify the validity of this assumption, we conduct experiments on four Ethernet switches

of the same model. All the switches come with eight full-duplex 100 Mbps interfaces and one

full-duplex 1 Gbps interface. For all the experiments conducted in this work, we only utilize

the 100 Mbps interfaces.

Test Bed Settings

The components and organization of our test bed is shown in Fig. 2.8. We install a PTP-

enabled network interface card [123] on a computer server and connect it to a PTP master

clock. Two four-port network interface cards (NICs) are installed on the server to inject and

receive timestamped packets. To improve system throughput, we write our packet sender and

receiver programs using the netmap fast packet I/O framework [107]. To measure the delay

experienced by a packet, timestamps are generated when the packet is sent and received. The

difference between the two timestamps is used to represent the delay induced by the network.
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Table 2.1: Delay measurements from one of the switches under test (SUT) serving MU1 or
MU2 in microseconds.

SVMs per
second

MU1 MU2

min. avg. max. min. avg. max.

1 15.2 16.3 17.2 15.3 16.1 17.1
10 15.1 15.9 16.7 14.6 16.0 17.3
100 16.0 16.6 16.9 15.5 16.1 17.4
1000 15.7 16.2 17.0 14.9 15.8 16.9
2000 15.4 16.3 17.1 15.4 16.6 17.6
3000 15.2 16.3 17.5 15.8 16.2 17.0
4000 14.9 16.1 17.4 15.3 15.9 17.4
4800 15.6 16.5 17.6 15.1 16.4 16.8

Measurement Procedures

We inject sampled value messages into the input interface of an Ethernet switch to impose the

traffic pattern shown in Fig. 2.7. The length of the sampled value messages is 126 bytes, and

the message layout is detailed in [58]. To emulate broadcast traffic pattern on process bus, we

set to destination MAC address of all injected messages to FF :FF :FF :FF :FF :FF . For

each switch under test (SUT), we take the following measurements step by step:

1. Choose the SVM flow generated by merging unit i as our flow of interest, where i ∈

{1, 2, . . . , 6}. Inject SVMs at an initial rate, which should be low enough. All the other

MUs are not activated (i.e., they do not generate SVMs and simultaneous arrival at the

SUT is avoided). In our experiment, we start with one SVM per second. This step is

run for five minutes and the delays experienced by all the injected SVMs are recorded.

2. Increase the data rate of the selected MU and then repeat Step (1). We increase the

data rate up until 60×80 = 4800 SVMs per second, which is the data rate used by the

MUs in the process bus networks studied in our case studies.

3. Choose another flow of interest and repeat Steps (1) and (2) until interfaces utilized by

all the MUs are tested.

The measurement results for one of the SUTs, with MU1 or MU2 activated separately,

are summarized in Table 2.1. We observe that the variances of the delays introduced by the
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SUT at different data rates are small. At each rate, the majority of the measured values

are close to the mean. The results observed on interfaces utilized by the other MUs are

identical to those of MU1 and MU2. Similarly, if we change the interfaces utilized by MUs and

relays (e.g., interchanging the interfaces for MU1 and PR1) while maintaining the same traffic

pattern between sources (i.e., MUs) and sinks (i.e., relays), the distributions of the delays

observed have similar characteristics. In addition, if an extra MU is activated to emulate

simultaneous arrival, the worst-case delays increase significantly (see Sec. 2.5). Furthermore,

this observation is consistent across all four SUTs. The fact that the maximum delays do not

increase significantly at different data rates suggests that the SUTs offer sufficient processing

capacity under the imposed workloads. The maximum latencies observed for all four SUTs

are about the same, so we use the maximum value from Table 2.1, i.e., 17.6 µs, as the latency

component for the service curves of all the SUTs. We choose the maximum value here because

Theorem 2.5.1 requires that the service curve lower bounds the processing capacity of a switch.

Choosing an aggressively small latency component may lead to underestimating the delay

bounds.

It should be noted, however, different values may be chosen for individual switches if

there are significant differences among the maximum latencies observed (e.g., the Ethernet

switches employed by an SCN come from different manufacturers or have different switching

fabric implementations). Moreover, we do not consider the scenarios where MUs inject SVMs

at wire rate because some of the SVMs are discarded by the output interfaces of switches

due to buffer overflow. The dropped SVMs effectively experience infinite network-induced

delays. In a process bus network, we pay special attention not to cause SVM drops because

successful delivery of SVMs is of critical importance to the implementation of protection and

control tasks. Additionally, we note that Theorem 2.5.1 is not applicable under such scenarios

because the assumption of infinite buffer size is violated (see Sec. 2.5.1).
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2.5 Evaluation on A Feedforward Single-Switch Process Bus

2.5.1 Worst-Case Delay Analysis of Feedforward Process Bus Networks

Once arrival curve of aggregate input to an Ethernet switch and its service curve are con-

structed, the classic result from network calculus gives the upper bound on the worst-case

delay incurred by the switch [16,26]:

Theorem 2.5.1. Suppose that a traffic flow F in(t) ∼ α(t) passes through a network node

with service curve β(t) and an infinite-size buffer and that the corresponding output flow is

represented by F out(t). The delay experienced by the data bit entering the node at time t is

denoted by d(t)=inf{u≥0 : F in(t)≤F out(t+u)} and we have

d(t) ≤ inf{u≥0 : α(s)≤β(s+u), 0≤s≤ t}≡h(α(t), β(t)).

According to this theorem, the delay bound is simply the maximum horizontal distance

between the arrival curve and the service curve, i.e., h(α(t), β(t)). Note that this theorem is

only applicable if the buffer of the node can accommodate all the incoming data at all times.

To ensure that such an assumption of infinite buffer size holds in practice, we check the input

and output traces in our experiments to ensure that no SVMs are dropped. We observe that

our switches occasionally discard SVMs when the data rate at its output interface is close to

wire rate. Such scenarios are avoided in our experiments since a process bus network design

leading to SVM loss should be further refined before commissioning.

Theorem 2.5.1 also explains why we want to obtain tight arrival curves (see Sec. 2.3)

and service curves (see Sec. 2.4). A loose arrival curve results in overestimating the worst-

case delays and so does an overly tight service curve (e.g., naively assuming that the latency

component is zero). By constructing realistic arrival and service curves, existing methods for

output interface 
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...

MU n
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β1(t) (R1,T1)

Figure 2.9: Simplified network diagram of the single-switch process bus network in Fig. 2.6.
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worst-case delay analysis, such as those reviewed in Sec. 2.2.3, can be applied to feedforward

SCNs and generate accurate delay bounds.

2.5.2 Worst-Case Delay of a Single-Switch Process Bus Network

To validate the quality of the delay bounds generated by our proposed combination of net-

work calculus and measurements, we first study the simple single-switch process bus network

depicted in Fig. 2.4 and Fig. 2.6 with up to seven merging units. Note that the traffic pattern

on such a process bus is always feedforward because there is only one possible path with a

single node.

Network-Calculus-Based Analysis

As proposed in Sec. 2.3.1, we construct the arrival curve for the aggregate input to SW1. We

use our test bed to emulate n merging units monitoring a 60-Hz power system at 80 samples

per cycle, for 1≤n≤7. The traffic pattern of this process bus can be simplified into the network

diagram shown in Fig. 2.9. The length of the SVMs we use is 126 bytes. To use our traffic

model, we take the 8-byte preamble and 4-byte CRC trailer required by Ethernet frames into

account. The effective message size is hence L= (8+126+4)×8 = 1104 bits, and the length

of the sampling cycle is T = 1
60×80 ≈ 208.33µs. Therefore, the burstiness component of the

aggregate input is σ= n×1104 bits, and the average rate is ρ= n×1104
208.33 Mbps. According to

our discussion in Sec. 2.4.1 and Sec. 2.4.2, we take R1 =100 Mbps and T1 =17.6 µs for SW1.

From Theorem 2.5.1, we find that the worst-case delay experienced by SVMs sent by any of

the n MUs is given by

dmax=T1+
n·L
R1

. (2.2)

Measurement-Based Evaluation

In our evaluation, we start with n = 1. After injecting emulated SVMs and recording the

delays for 10 minutes, we increase n by 1 and repeat the experiment until n= 7. Fig. 2.10

compares the measured delay values against the analytically derived bounds given by Eq. 2.2.

Our results show that the delay bounds derived using our proposed combination of network
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Figure 2.10: Analytically derived delay bounds and measurement results for the single-switch
process bus network in Fig. 2.6 with different numbers of merging units activated.

calculus and measurements are sufficiently tight: For all tested values of n, the analytical

bounds are at most 3.5% larger than the maximum delays we observe. We note that the

traffic pattern carried by this process bus is rather simple, and the rest of this chapter will

focus on non-feedforward traffic patterns.

2.6 Converting A Non-Feedforward Network into Feedforward

Ones

As sampled value messages from multiple merging units converge toward Ethernet switch

output interfaces connecting protective relays or other switches, we can model an individual

Ethernet switch by m work-conserving links, each of which corresponds to one of its utilized

output interfaces. Take the process bus illustrated in Fig. 2.3 as an example. We re-draw

this network into the simplified network diagram in Fig. 2.11 using the modeling technique

in Sec. 2.4.1. Note that most of the paths among merging units are omitted. Only the path

from MUs 4∼6 to MU1 is shown for the purpose of discussion. By introducing multiple work-

conserving links, the SVM flows within the switching fabric of each switch are completely

decoupled because the bottlenecks are the output interfaces. If we assign unique integer

identifiers to the work-conserving links, it is now possible to find an assignment scheme such

that all the paths can be represented by monotonically increasing sequences. For instance,
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Figure 2.11: Network diagram of the process bus in Fig. 2.3, simplified for worst-case delay
analysis.

suppose that we use the assignment scheme shown in Fig. 2.11. The path (SW3, SW2, SW1)

in Fig. 2.3 can now be represented by the increasing sequence (2, 5, 6), and it is evident that

the non-feedforward traffic pattern is converted into a feedforward one.

In switch Ethernet, each switch interface is utilized by a particular device (e.g., merging

units, protective relays, and another switch). Therefore, the following theorem can be proved

for switched Ethernet:

Theorem 2.6.1. By introducing work-conserving links for individual switch output interfaces,

any non-feedforward traffic pattern on a switched Ethernet can be converted into a feedforward

one.

Proof. To prove that the network is feedforward after introducing work-conserving links, all we

need to show is that there exists an integer identifier assignment scheme such that all paths

of the originally non-feedforward network can be represented by monotonically increasing

sequences of identifiers. Let us represent Ethernet switches by virtual network nodes with an

infinite number of embedded work-conserving links (i.e., output interfaces). For a network

with m switch and n sinks, without loss of generality, suppose that each sink has only one

input interface. Similarly, each pairwise physical connections between two switches uses up

an output interface of the upstream switch. Any particular path connecting k (1 ≤ k ≤m)

nodes consists of k pairwise physical connections among the nodes (i.e., k−1 connecting the

switches and the last one connecting a switch to a sink). For any non-feedforward network

that has paths that cannot be represented by increasing node (i.e., switch) identifiers, we

can find an integer identifier assignment scheme for the work-conserving links that makes the

network feedforward as follows. First, we choose an arbitrary path p and assign integers such
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that its representation is an increasing sequence. Then, we select a new path p′. We say that

a pair of paths are in conflict if all possible assignment schemes enabling one of them to be

represented by an increasing sequence make the representation of the other not monotonically

increasing. If p′ is not in conflict with p, we extend the assignment scheme used for p such

that p′ is also represented by an increasing sequence. In this case, p′ may or may not introduce

new work-conserving links. If p′ is in conflict with p, then it cannot be implemented using

only the physical pairwise connections of p. This can be shown by contradiction: If p′ can

also be implemented by a subset of the work-conserving links utilized by p, its representation

must be a certain subsequence of the representation of p, which contradicts the definition of a

conflicting path. In this case, p′ introduces certain new physical pairwise connections between

the nodes by occupying work-conserving links that have not been utilized. Evidently, these

new connections are introduced by the part of p′ that cannot be represented by subsequence

of the representation of p. We can then walk along p′ and assign new integers to the newly

utilized work-conserving links, by prepending, inserting, and/or appending new integers, and

then adjust the scheme such that both p and p′ are represented by increasing sequences. By

repeating this procedure, we can eventually represent all paths by increasing sequences.

Note that if the number of output interfaces of a switch is finite, only the number of possible

paths that need to pass through this procedure is constrained. To sum up, for a process bus

based on switched Ethernet with a non-feedforward traffic pattern, we can always convert

it into a feedforward network by introducing one work-conserving link per utilized switched

output interface: For any particular flow of interest, we start introducing work-conserving

links from the last node on its path and walk backward. At each node, if the output interface

utilized by the flow of interest also serves other flow(s), we also need to trace backward along

the paths of these “interfering” flows and introduce work-conserving links accordingly. Since a

non-feedforward traffic pattern does not have any cycle and Theorem 2.6.1 shows that such a

network of work-conserving links is feedforward, we are able to reach the source nodes of these

paths eventually. At this point, we obtain a network diagram allowing us to analyze the worst-

case delay experienced by the flow of interest. Note that this technique has been extensively

used in prior work on feedforward networks [18, 19, 21], and our proposed combination of
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network calculus and measurements extends its application to non-feedforward patterns on

switched Ethernet. It should also be noted that the feedforward traffic pattern created by

introducing work-conserving links at switch output interfaces can be used to created multiple

network diagrams for different flows of interest, with work-conserving links as network nodes.

2.7 Evaluation on Non-Feedforward Process Bus Networks

To evaluate the delay bounds derived by our approach for non-feedforward process bus net-

works, we study two multiple-switch examples. Note that the switches used in our experiments

are the ones tested in Sec. 2.4.2.

2.7.1 Case Study I – A Three-Switch Process Bus

In this experiment, we analyze the network-induced delays for the network shown in Fig. 2.3.

As discussed in Sec. 2.6, the originally non-feedforward traffic pattern is first converted to a

feedforward one. The flows of our interest and notations for arrival/service curves are explicitly

shown in Fig. 2.11. All six merging units are activated, and we have α1(t)∼ (3 ·L, 3·LT ) and

α2(t)∼ (3·L, 3·LT ). As for service curves, we have βi(t)↔ (R1, T1), where R1 = 100 Mbps and

T1=17.6 µs, for 1≤ i≤6.

Network-Calculus-Based Analysis

The worst-case delay bounds for the SVM flows from MUs 1∼3 to PR1 and PR2 as well as from

MUs 4∼6 to PR1 and PR2 are the same due to symmetry. Note that an implicit assumption

that enables us to exploit such symmetry is that the switching fabrics have sufficient capacity

to replicate SVM messages for broadcasting/multicasting, which is verified in Sec. 2.4.2. Let

us analyze the path from MUs 1∼3 to PR1. At node 1, Theorem 2.5.1 suggest that the worst-

case delay it introduces is d1 = T1+ 3·L
R1

. At node 3, we use α1(t) and α2(t) to approximate

the arrival curves of the output of node 1 and node 2, respectively (see Sec. ??). By applying

Theorems 2.3.2 and 2.5.1, the worst-case delay introduced by node 3 is d3 = T1+ 6·L
R1

. The

worst-case delay bound for this flow is thus dmax=d1+d3.
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Figure 2.12: Analytically derived delay bounds and measurement results for SVM flows bet-
ween merging units (MU) and protective relays (PR) on the process bus network in Fig. 2.3.

For the flow from MUs 4∼6 to MU1, note that nodes 2, 5, and 6 serve only this particular

flow. Therefore, we can first apply Theorem 2.4.2 to find the concatenated service curve

offered by the tandem of the three nodes. Then, we apply Theorem 2.5.1 and find that the

delay bound for this flow is d′max = 3·T1+ 3·L
R1

. Note that this delay bound is not of practical

interest in SASs, and we derive this bound simply for the purpose of evaluation.

Measurement-Based Evaluation

We set up the network in Fig. 2.3 and let it execute for 10 minutes. For the flows between

merging units and protective relays, the measured delays and the derived bounds are shown

on Fig. 2.12. We observe that all measured delays are upper bounded by the analytically

derived bounds, which are at most 6.4% greater than the maximum observed values. The

maximum delay we observe for the flow from MUs 4∼6 to MU1 is 83.2 µs, whereas its derived

delay bound is 85.92 µs. The results of this experiment show that network calculus provides

accurate delay bounds for non-feedforward IEC 61850-9-2 process bus network once we convert

it into a feedforward one.
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Figure 2.13: Network diagram of the four-switch process bus studied in Sec. 2.7.2.
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Figure 2.14: Analytical bounds and measurement results for SVM flows received by protective
relays in the four-switch process bus network shown in Fig. 2.13.

2.7.2 Case Study II – A Four-Switch Process Bus

To further validate our proposed approach, we construct another process bus network consis-

ting of four Ethernet switches. In contrast to the three-switch network studied in the previous

case study, the SVM flow from MUs 1∼3 to PR2 travels through three work-conserving links

(which is also the case for the flow from MUs 4 ∼ 6 to PR1). In [58], it is shown through

measurements that inserting an additional Ethernet switch into the feedforward path trave-

led by SVMs introduces an extra 15-µs latency (using switch of a particular model, which is

not reported). This is because SVMs simultaneously arriving at the first switch (i.e., SW1

in Fig. 2.2) are serialized and do not experience queuing delays at succeeding switches (i.e.,

SW2∼5). This case study shows that the same observation also applies to non-feedforward

traffic patterns. The network diagram of this process bus is shown in Fig. 2.13. In this experi-

ment, we focus on worst-case delays experienced by SVMs traveling toward protective relays,

and paths between merging units are all omitted. The configuration of the MUs remains

unchanged. By introducing work-conserving links at the output interfaces along our flows of

interest, the network in Fig. 2.13 is transformed into a feedforward one. Using the models

discussed in previous sections, we have α1(t) = α2(t) ∼ (3 ·L, 3·LT ) and βi(t) ↔ (R1, T1) for

1≤ i≤4.

Network-Calculus-Based Analysis

Exploiting symmetry, we derive the delay bounds for the SVM flows from MUs 1∼3 to PR1 and

PR2. First, let us analyze the flow from MUs 1∼3 to PR1. At node 1, Theorem 2.5.1 suggests
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that the worst-case delay it induces is d1 = T1 + 3·L
R1

. At node 6, we use the arrival curves

α1(t) and α2(t) to approximate the serialized output from node 1 and node 5, respectively.

By applying Theorem 2.3.2 and then Theorem 2.5.1, we have d6=T1+ 6·L
R1

.

For the flow from MUs 1∼3 to PR2, we note that it solely enjoys the service curves of

nodes 1 and 3. Therefore, Theorem 2.4.2 can be applied to obtain their concatenated service

curve. Then, Theorem 2.5.1 gives the worst-case delay incurred by these two nodes, which

is d1,3 = 2 ·T1+ 3·L
R1

. At node 4, we again use α1(t) and α2(t) to approximate the serialized

output from node 1 and node 2. By applying Theorem 2.3.2 and then Theorem 2.5.1, we have

d4=T1+ 6·L
R1

.

Measurement-Based Evaluation

We set up the four-switch process bus using our test bed and let it execute for 10 minutes.

The measured delays and the analytical bounds for the SVM flows received by the protective

relays are shown in Fig. 2.14. All the measured delays are upper bounded by the corresponding

analytical bounds. In fact, the delay bounds are at most 6.3% greater than the observed

maximum delays. These analytical and measurement results suggest that the worst-case delay

experienced by SVMs increases by about 17.6 µs if an additional switch is inserted, which is

consistent with the observation for feedforward SCNs in [58]. Both case studies in this section

show that our proposed combination of network-calculus-based worst-case delay analysis and

measurement-based switch modeling produces realistic delay bounds that are close to measured

values.

2.8 Discussion

2.8.1 Incorporating Network-Calculus-Based Analysis into SAS Project

The proposed approach complements existing SAS design tools and significantly reduces the

efforts required to find out accurate worst-case delay bounds. Network-calculus-based analysis

can be applied throughout multiple phases of an SAS project. At early stages of an SAS design

when measurements are not available (e.g., models of Ethernet switches are not finalized
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or plans for equipment procurement are pending review), arrival and service curves can be

constructed from system specifications. As discussed in Sec. 2.3.1, arrival curve for the SVM

flow generated by a particular merging unit can be derived based on its designed sampling

rate, operating frequency of the power system, as well as the size of its SVMs. Based on

site-specific constraints, such as the locations of primary power system equipment, it is also

possible to determine how MUs should be grouped together. Arrival curves for aggregate

SVM flows can then be found. Similarly, service curve can be roughly established by setting

the latency component to 0 (i.e., temporarily using an overly tight, rate-based service curve).

The analytical procedures demonstrated in Sec. 2.7 can then be applied to obtain estimated

delay bounds. Although these analytical results provide insights into the worst-case delay

performance of candidate design alternatives, it should be noted that the impacts of non-

queuing delays are not factored in and underestimation will probably occur.

At later stages (e.g., when Ethernet switches are procured), more realistic service curves can

be established by taking measurements following the steps outline in Sec. 2.4.2. In addition,

arrival curves may also need to be updated to reflect system changes made after the last

time network-calculus-based analysis is conducted. Using newly updated arrival and service

curves, accurate delay bounds can be derived and whether the deterministic delay performance

requirements specified in IEC 61850-5 [62] are satisfied can be verified analytically. For legacy

SASs to be renovated with IEC 61850, service and arrival curves established in previous

projects using similar devices and configuration may be exploited to analytically assess the

worst-case delay performance of process bus networks to be deployed.

2.8.2 Applicability of the Proposed Approach

In our experiments, the maximum rate at which SVMs are injected into a particular input

interface of an Ethernet switch is limited to about 5.3 Mbps. Although our evaluation shows

that the analytical bounds are sufficiently tight at this rate, this does not suggest that our ap-

proach is always applicable. In theoretical treatments of network calculus [16,26], it is usually

assumed that network nodes have infinitely sized buffers. Under such an assumption, worst-

case backlog bounds can be derived for individual nodes using network calculus, addressing
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the problem of buffer dimensioning. In our proposed approach, Theorem 2.5.1 applies as long

as the assumption of infinite buffer size holds. Suppose that the aggregate input to a network

node with a service curve β(t) ↔ (R, T ) has an arrival curve α(t) ∼ (σ, ρ). In general, the

theoretical stability condition ρ≤R suffices to guarantee that there exists some constant C

that upper bounds the maximum backlog sizes of all nodes [16,19].

However, what we observe on our switches is that certain frames will be discarded when

the data rate at an output interface approaches its wire rate. To ensure that a particular SCN

design does not violate the infinite buffer size assumption, simply checking the theoretical

stability condition is insufficient. Measurements must be taken to establish the “safe operating

regions” for different switch models in terms of maximum data rates and frame sizes at output

interfaces: Using a particular frame size, we increase the data rate of a certain output interface,

which can easily be achieved by utilizing multiple input interfaces. The data rate at which

packet loss is first observed may be used to establish the boundary of the operating region,

which can then be used in future SAS design to assess whether certain output interfaces are

heavily loaded or not.

2.8.3 Application to Networked Cyber-Physical Systems

As digital computing and communication technologies become increasingly integrated into

physical systems, it is of urgent necessity to design network infrastructure supporting reliable,

low-latency communication among sensors and actuators distributed in physical environment.

Recently, switched Ethernet has become increasingly popular in networked cyber-physical

systems (NCPS) such as power substation automation systems [29] and avionic systems [39,

120]. In an Ethernet-based NCPS, network-connected devices realize a wide range of tasks by

exchanging miscellaneous and sometimes mixed-criticality information (e.g., sensor readings,

control commands, and synchronization messages) with each other. To ensure reliable control

and operation, network-induced delays for time-critical and/or delay-sensitive applications of

an Ethernet-based NCPS must be carefully examined.

In many Ethernet-based NCPSs, publisher-subscriber messaging model is adopted to ena-

ble flexible, real-time communication among sensors, actuators, and controllers. NCPS ap-

43



Ethernet 
Switch

Sensor

Sensor

Sensor

Actuator

Actuator

NCPS under TestMeasurement-Based Modeling
(Arrival Curves)

Measurement-Based Modeling
(Service Curves)

Sensor
t

Pkt n Pkt 1Pkt 2…...

t

Cumulative Traffic 
Volume

t

α(t)

Pkt 1 Pkt 1
Pkt 2

Pkt n...

... Burstiness

Average
Rate

Emulated
NCPS 
flows

• Output interface data rate R
• Packet scheduling policy (e.g., FIFO)
• Latency component T (without queueing 

delays)

Network-Calculus-Based Worst-Case Delay Analyses
• Optimization-Based Algorithms (e.g., [5])
• Compositional Algorithms (e.g., [6], [7])

Measurement-Based 
Arrival Curves

Measurement-Based 
Service Curves

Figure 2.15: Overview of the extended framework.

plications employing the publisher-subscriber model includes power substation automation

system based on IEC 61850 [29], Avionics Full-Duplex Switched (AFDX) Ethernet [39, 120],

and automotive networks [70]. In a practical Ethernet-based NCPS, one or more communica-

tion protocols/standards may be implemented for different applications. When network-based

applications are implemented, network traffic pattern on an NCPS (i.e., how each device is

connected to other devices, flows generated by each device, and traffic profile of each flow)

can also be determined (e.g., based on application and device specifications). To ensure that

real-time performance of various time-critical applications are met, it is of vital importance

to find the worst-case delay bounds on network-induced delays experienced by their network

traffic flows. However, existing worst-case delay analysis algorithms (e.g., [13, 22]) are evalu-

ated using specification-based models, and little has been done to facilitate the evaluation of

existing and emerging methods in realistic NCPS settings.

To facilitate worst-case delay analysis of Ethernet-based NCPSs, we improve and extend

the framework described in earlier sections. In contrast to tightening delay bounds through

designing sophisticated delay bounding algorithms, our framework finds tighter bounds on

network-induced delays through the use of realistic, measurement-based models. Therefore,

both existing and emerging network-calculus-based delay bounding algorithms can be integra-

ted into our framework to derive delay bounds for real-world NCPSs, enabling NCPS architects

to choose proper method(s) to balance between tightness of bounds and computational com-

plexity.

Given the traffic pattern of an Ethernet-based NCPS, our proposed framework (see Fi-
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gure 2.15) first extracts traffic characteristics of network-connected devices and establishes

arrival curve models. Then, emulated traffic flows are injected into networking devices of the

NCPS (e.g., Ethernet switches) and network-calculus-based device models (i.e., service cur-

ves) are constructed. Finally, network-calculus-based analytical method(s) will be chosen and

measurement-based models will be integrated to find worst-case delay bounds.

Measurement-Based Modeling

To perform network-calculus-based analysis, arrival curves of network-connected devices and

service curves of networking devices need to be established. To establish the arrival curve of a

device (e.g., a leaky-bucket curve α(t)=σ+ρ ·t, where σ is the burstiness component and ρ is

the average rate), two different ways of taking measurements are supported by our framework:

1. Direct Measurements. Using Ethernet taps or taking measurements from test equip-

ment with the same configuration as the device of interest, we obtain network packets

generated by the device and timestamps at the traffic capture device. By applying the

definition of arrival curve, burstiness and average rate components can be straightfor-

wardly derived (see Figure 2.15).

2. Specification-Based Emulation. When actual measurements cannot be easily taken (e.g.,

in early stage of NCPS design where devices and equipment have not been procured, or

a physical device is in operation and cannot be interrupted), we can emulate the device

based on its control system specifications (e.g., sampling rates of sensors and communi-

cation protocol utilized). Then, direct measurements are taken from the emulated device

and arrival curve model is established.

To obtain service curve of a networking device (e.g., a rate-latency curve β(t)=max{0, R(t−

T )}, where R is the rate component and T is the latency component), rate component can

be determined from device specifications. However, the latency component must be measured

by injecting packets at low rates such that queueing does not occur in the device. This

is because T models non-queueing delays incurred by the device. Packet sizes of different

traffic sources can be taken into account if differences in packet sizes are significant (e.g., an
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NCPS simultaneously transmitting packets as short as 64 bytes and as long as 1500 bytes).

This can be done by incorporating a packetizataion term in the service curve model, e.g.,

β(t)=max{0, R(t−T )−lmax}, where lmax is the maximum packet size of the flow of interest.

Network-Calculus-Based Analysis

In practical NCPS design, real-time requirements for all the time-critical tasks need to be

verified. Once a specific network-calculus-based delay analysis algorithm (e.g., [13, 22, 135])

is chosen, delay bounds are computed for traffic flows associated with all the time-critical

applications. If delay bound for a particular flow exceeds its required worst-case delay, the

NCPS design should be further refined. It should be noted that early work on network-calculus-

based analysis finds that certain algorithms can generate formally provable bounds that are

overly pessimistic. Therefore, extra network measurements based on application-specific traffic

pattern can be taken (e.g., at Ethernet switch output interfaces [135]) and models refined with

measurements can be adopted to replace intermediate network-calculus models and produce

realistic worst-case delay bounds.

Evaluation

We emulate an NCPS with a publisher-subscriber traffic pattern shown in Figure 2.16, which

has been seen in various application domains (e.g., [29, 39, 70]). Both Ethernet switches are

equipped with 100-Mbps interfaces. Three publishers (i.e., Pub. 1, Pub. 2, and Pub. 3)

generate time-critical traffic flows and two subscribers consume the data (e.g., the subscriber

on the left subscribes to flows from Pub.1 1 and Pub. 2). We use netFPGA NICs to perform

traffic capture and packet time-stamping. Network-calculus-based analytical method used in

Sub. 
(1,2)

Sub. 
(1,3) Ethernet 

Switch

Pub. 1 Pub. 2 Pub. 3

Figure 2.16: Network topology and traffic pattern of the NCPS in our experiments.
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Figure 2.17: Evaluation results obtained from emulated NCPS depicted in Fig. 2.16.

our experiments is the same as [135].

Currently, two experiments are conducted to evaluate the quality of delay bounds obtained

by our framework. In Experiment I (see Figure 2.17a, all network-connected devices generate

packets with the same size (192 bytes). Our results show that the proposed approach can

generate sufficiently tight bounds, which is only slightly greater than the worst-case delays

observed. In Experiment II (see Figure 2.17b), packet size for each network-connected devices

is variable (between 64 and 1500 bytes) and packetization effect is taken into account. Alt-

hough the derived bounds are acceptably tight, it is evident that these bounds deteriorate due

to intrinsic pessimism that comes with the packetized models.

2.8.4 Application to Avionics Full-Duplex Switched (AFDX) Ethernet

As the de-facto standard for the transmission of network traffic flows of critical avionics ap-

plications, Avionics Full-Duplex Switched (AFDX) Ethernet interconnects end systems (e.g.,

sensor and actuator nodes) with Ethernet switch(es) based on First-in First-out (FIFO) sche-

duling [121]. For such a networked cyber-physical system (NCPS), it is of vital importance to

guarantee that stringent real-time requirements of critical avionics applications are met. The-

refore, an analytical tool facilitating the evaluation of worst-case delay performance (i.e., the

worst-case end-to-end communication delays experienced by all time-critical flows) of practical

AFDX networks is urgently needed.

As a theoretical tool for worst-case delay analysis, network calculus has been applied to
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FIFO networks to derive formally provable delay bounds [23]. However, specification-based

network-calculus models (e.g., constructed based on sampling rates and data formats of source

end systems) are typically adopted during analysis, and little has been done to validate ex-

isting analytical methods in real-world AFDX networks. In fact, it is shown in [135] that

delay bounds obtained from network-calculus-based analysis can be further tightened through

taking network measurements. To evaluate whether network-calculus-based analysis can pro-

vide accurate delay bounds for practical AFDX networks, we combine network measurements

with network-calculus-based analysis in this section and examine the quality of delay bounds

obtained under application-specific traffic patterns of AFDX systems. By modeling traffic

sources and networking devices (e.g., Ethernet switches) through measurements, we establish

accurate, realistic traffic and device models for network-calculus-based analysis. Using our ap-

proach, different network-calculus-based analytical methods can be leveraged, allowing AFDX

architects to construct a proper delay analysis framework to suit application-specific needs

(e.g., balancing between computational complexity and tightness of bounds).

In existing analytical methods, intermediate arrival curves (IACs) for traffic flows seen at

Ethernet switches must be properly characterized through measurements (e.g., using netFPGA

and Ethernet tap). As shown in Figure 2.18, by taking into account serialization effects at any

output interface of the switch, burstiness component of the output flow can be reduced. In

addition, statistical multiplexing among source end systems may also result in reduced bursti-

ness (at the input end). Therefore, measurement-based models should be properly integrated

into existing analytical methods.
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Figure 2.19: Experiment settings and preliminary results.

In this section, we use the optimization-based analytical approach proposed in [23] and

the measurement method outlined in [135]. Our preliminary results show that analytical

bounds can be further improved for practical AFDX networks by plugging in measurement-

based models and replacing intermediate arrival curves (IACs) with those constructed from

measurements.

We emulate an AFDX network shown in Figure 2.19a. We use netFPGA NICs to perform

traffic capture and timestamp all the packets. Derived delay bounds are compared with

observed maximum delays to help assess their quality (i.e., tightness). In our experiments, all

source end systems generate packets with the same size, ranging from 64 bytes to 1500 bytes.

Interfaces of all switches operate at 100 Mbps. We choose flow f2 as our flow of interest. Note

that in practical AFDX design, worst-case end-to-end delays for all time-critical flows should

be evaluated.

As shown in Figure 2.19b, analytical bounds given by the approach in [23] with and without

intermediate arrival curves (IACs) incorporated are indeed upper bounds of the end-to-end

network-induced delays observed from measurements illustrated in box plot. Furthermore,

integrating IACs does improve the quality (i.e., tightness) of application-specific delay bounds

for AFDX systems, resulting in bounds that are only slightly greater than the worst-case delays

observed. In fact, as shown in Figure 2.19a, flow f2 travels through two switches to reach end

system e6. Intermediate arrival curves are measured before and after f2 passes through the first
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and the second switches on its path. Through using the measured arrival curve at the input

interface of an Ethernet switch, intrinsic pessimism of network-calculus traffic aggregation

(i.e., the arrival curve of a flow aggregated from multiple sub-flows is simply the sum of those

of the sub-flows) is effectively removed, and characteristics of aggregated traffic flows are

accurately taken into account. At the output end of an Ethernet switch, serialization effect

is modeled through the use of measured output arrival curve, which has a reduced burstiness

component and will thus lead to a tighter input flow (or sub-flow) model for downstream

Ethernet switch(es).

2.9 Conclusion

In this work, we show that Ethernet switches can be modeled by multiple work-conserving

links provided that they have sufficient processing capacity to support dedicated intercon-

nections for all their input/output interface pairs. To analyze a process bus network, we

propose the combination of network calculus and measurements, facilitating the construction

of realistic service curve models and producing accurate delay bounds that can be validated

against measurements. Though experiments on emulated test bed, we also show that our

proposed approach can be applied to Ethernet-based NCPSs with hard-real-time performance

requirements.
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Chapter 3

Delay Performance Analysis of

Wireless PRP Infrastructure for

Networked Cyber-Physical Systems

3.1 Background

Due to their low cost and ease of deployment as well as maintenance, wireless communica-

tion technologies, such as Wireless Local Area Networks (WLANs), have become an attractive

communication solution for industrial control systems (ICSs) [99,125]. However, many wireless

communication protocols are not initially proposed for ICSs requiring reliable and low-latency

communication. For instance, the IEEE 802.11 family of WLANs are primarily designed

to offer high throughput and continuous connectivity. Reliability and latency issues caused

by radio interference have become a major deterrent to the application of WLANs in ICSs

with latency-critical tasks [79]. To address these concerns, the Parallel Redundancy Protocol

(PRP) [53] is leveraged to construct dependable wireless network infrastructure for real-time

and safety ICS applications. As an example, parallel redundant WLANs [105, 106] are pro-

posed to compensate the effects of stochastic channel fading by parallel operation of diverse

wireless channels, resulting in a fault-tolerant wireless network infrastructure for ICSs with

latency-critical and safety applications. Fig. 3.1 presents a simplified view of a parallel re-
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Figure 3.1: A simplified view of a parallel redundant WLAN.

dundant WLAN with unidirectional network traffic from a sender to a receiver. When the

sender generates a data frame, its link redundancy entity (LRE) layer duplicates the frame

and forwards it via both WLANs A and B. At the receiver side, the LRE layer removes the

duplicate that arrives late, forwarding only a single copy to the upper layers. Using PRP as

splitter and selection combiner, parallel redundant WLANs offer an improved wireless commu-

nication infrastructure with high stochastic reliability. Although wireless PRP networks such

as parallel redundant WLANs provide a viable and reliable wireless communication solution

for networked control systems (NCSs), application-specific delay performance evaluation is

still required (e.g., [48, 93]) because different ICS tasks and applications have diverse delay

performance requirements (e.g., constraints on worst-case network-induced delays for various

power substation automation tasks are specified in [55]).

Application-specific delay performance of wireless PRP infrastructure is heretofore studied

through discrete-event simulations (e.g., [48,104]) and/or measurements (e.g., [24,93]). These

approaches enable ICS architects to evaluate the feasibility and usability of wireless PRP in-

frastructure for specific ICSs of interest during the planning phase of ICS design, but new

simulation/experiment must be conducted when important modifications to the ICS design

(e.g., changing the sampling frequencies of sensors) are introduced or the same set of equip-

ment are employed in new ICS designs. To reuse measurement and simulation results and

reduce the cost of delay performance evaluation, it is of vital importance to develop a theo-

retical framework that allows ICS architects to quickly assess whether certain latency-critical

applications can be run on wireless PRP networks.

In this chapter, we propose a network-calculus-based framework to analyze worst-case
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network-induced delays of wireless network infrastructure based on PRP, facilitating its adop-

tion in miscellaneous ICSs with diverse delay performance requirements. Contributions of this

work are as follows:

� Modeling Wireless PRP Networks with Network Calculus. Leveraging the deterministic

network calculus (DNC) theory, we model wireless PRP networks to capture the im-

pacts of various components of network-induced delays, including processing delays,

transmission delays, and queueing delays. The proposed models enable ICS archi-

tects/designers to reuse application-specific delay measurements or simulation results

and estimate worst-case delay performance of wireless PRP networks in new ICS de-

signs.

� Delay Bounding on Non-Feedforward Networks. Practical wireless PRP networks sup-

port bidirectional communication between senders and receivers (see Sec. 3.3.5), which

results in non-feedforward traffic patterns that cannot be handled by state-of-the-art

delay bounding techniques designed for feedforward traffic pattern (i.e., all traffic flows

on a network can be represented by increasing sequences after unique integer identifiers

are assigned to all network nodes [20]). In this work, we address this challenge by intro-

ducing stopped sequences into our worst-case delay analysis framework and make our

proposed approach applicable to realistic application scenarios of wireless PRP networks.

� Derivation of Closed-Form Worst-Case Delay Expressions. We demonstrate that our

proposed approach is able to derive closed-form expressions of worst-case network-

induced delays under general, non-feedforward network traffic patterns. The closed-form

expressions can be re-used in different phases of ICS design as long as the given network

traffic pattern remains the same. The proposed framework is thus a valuable tool for

ICS architects aiming to design wireless PRP network infrastructure for latency-critical

ICSs.
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3.2 Related Work

3.2.1 Wireless PRP Network Infrastructure

Proposed and evaluated in [105, 106], parallel redundant WLANs have been shown to of-

fer satisfactory reliability for real-time and safety applications in industrial control systems.

In [24,25], seamless redundancy principles of PRP are directly applied to WLAN links and ad-

ditional improvements such as duplication avoidance mechanisms are designed in the proposed

Wi-Red protocol. To ensure that communication delays induced by parallel redundant WLANs

can be tolerated by critical ICS tasks, discrete-event simulations and measurement-based expe-

riments have been conducted for various industrial control applications, such as power system

state estimation using phasor measurement data [93] and wireless networked control systems

for industrial workcell [48]. However, network-induced delays obtained through simulation

or measurement are typically not the worst-case results because the testing scenarios are

constructed based on representative communication workloads but do not exhaustively cover

boundary cases that can lead to significant increase in network-induced delays. Furthermore,

when modifications to an ICS design result in traffic pattern changes or a new ICS is to be de-

signed, previously obtained results cannot be re-used and new experiments/simulations must

be conducted. This problem can be resolved by the development of a theoretical framework

for worst-case delay analysis of wireless PRP networks, which is the major contribution of this

work.

In addition to WLANs, PRP has also been combined with other wireless communication

technologies. Leveraging 4G Long Term Evolution (LTE) cellular protocol, a wireless seam-

less redundant communication infrastructure is proposed for railway communication systems

in [7]. To facilitate flexible factory automation and control, seamless redundancy principles

of PRP are applied to IEEE 802.15.4 wireless networks in [67]. Though the combination of

wireless communication technologies and PRP leads to flexible and reliable wireless commu-

nication infrastructure for ICSs, these solutions need to be carefully evaluated for different

latency-critical tasks before adoption/deployment. The worst-case delay analysis framework

proposed in this chapter can be applied to different wireless PRP networks, ranging from wi-
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reless redundant WLANs to those based on 4G LTE or IEEE 802.15.4, reducing the cost of

delay performance evaluation for ICS design.

3.2.2 Worst-Case Delay Performance Analysis Using Network Calculus

In contrast to queueing theory, network calculus [17,27,33] studies worst-case performance of

queueing networks. To apply network-calculus theorems and derive delay bounds for networks

with different topologies, many algorithms have been proposed and implemented. In [115],

three different algorithmic approaches to applying network-calculus theorems, namely total-

flow analysis (TFA), separated-flow analysis (SFA), and pay-multiplexing-only-once (PMOO)

analysis, are developed for wireless sensor networks (WSNs). It has later been shown in [113]

that these algorithms may not always generate tight delay bounds. To derive tighter delay

bounds by combining the TFA, SFA, and PMOO approaches, a new delay bounding met-

hod [14] has been proposed. However, computational cost of this approach is prohibitively

expensive. Alternatively, the problem of worst-case delay analysis can be formulated as opti-

mization problems under network-calculus constraints [20, 113]. However, the computational

costs of the optimization-based approaches may be prohibitively high [20] if exact (i.e., tight)

delay bounds are desired.

Existing algorithms of network-calculus-based worst-case delay analysis focus on tighte-

ning the delay bounds for feedforward networks. A network is said to be feedforward if all

its traffic flows can be represented by increasing sequences after unique integer identifiers are

assigned to all the network nodes. If no feasible assignment scheme can be found (i.e., at

least one of the traffic flows cannot be represented by an increasing sequence under any as-

signment scheme), the network is regarded as non-feedforward. Traffic patterns resulted from

bidirectional communication on wireless PRP networks are non-feedforward, making existing

algorithms inapplicable. In this work, we propose to apply network calculus theorems to non-

feedforward traffic patterns, making it possible to derive delay bounds for practical wireless

PRP networks.

55



R

S1(t)
A1(t)

A2(t)

A3(t)
S2(t)

Figure 3.2: Network-calculus model of a single wireless access point on a wireless PRP network.

3.3 Modeling Wireless PRP Networks with Network Calculus

The key to applying network calculus to wireless PRP networks is to properly model all the

traffic forwarding devices (e.g., wireless access points, 4G LTE base stations, or IEEE 802.15.4

sensor nodes). Throughout the remainder of this chapter, we present our proposed framework

using wireless redundant WLANs as an example. We note that the same modeling approach

can be applied to other wireless PRP network infrastructure (see Sec. ??) as well.

A wireless access point (AP) in parallel redundant WLANs (e.g., see Fig. 3.1) can be

modeled by a constant-capacity work-conserving link with ideal routers attached to its output

end. At each wireless access point, a packet must go through certain processing tasks (e.g.,

validating its CRC bytes). If the communication channel is temporarily not available for

transmission, the packet needs to be queued. When the communication channel becomes

available, the packet is forwarded to the destination according to one of the routing table

entries. In our proposed framework, packet processing and queueing at an access point is

modeled by a work-conserving link, whereas the routing table entry designating the forwarding

of packets in a traffic flow toward a certain destination node is modeled by an ideal router.

Since a traffic flow originating from a source node may be forwarded to multiple destinations,

multiple ideal routers are attached to the work-conserving link to represent all relevant routing

table entries.

As an example, let us consider the AP model in Fig. 3.2. The work-conserving link has

capacity R and receives three individual input flows A1(t), A2(t), and A3(t). The control

functions of the two ideal routers are S1(t) and S2(t), respectively. Each control function can

be thought as a routing table entry, which specifies whether a packet can pass through the

router or not. The ensuing subsections introduce the important theorems and concepts from

network calculus that are used in our proposed analytical framework. Formal proofs of the
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theorems can be found in classic textbooks on network calculus, such as [17,27].

3.3.1 Definitions

In network calculus, arrival and departure processes (i.e., traffic flows) are modeled by non-

negative cumulative functions. A cumulative functionA(t) is a non-negative and non-decreasing

function defined for t≥0 with A(0)=0. If an arrival process is modeled by A(t), then A(t1)

represents the cumulative traffic volume seen from this process starting from t= 0 up until

t= t1.

In addition, arrival curves are used in network calculus to characterize traffic flows. For a

traffic flow modeled by cumulative function A(t), a function α(t) is the arrival curve for A(t)

if and only if

A(t)−A(s) ≤ α(t− s), for ∀t ≥ s ≥ 0.

A widely-used type of arrival curves is the leaky-bucket arrival curve, which is of the form

α(t)=ρt+σ. If a traffic flow A(t) has an arrival curve α(t)=ρt+σ, then it is said to be (σ, ρ)-upper

constrained, which is denoted by A∼(σ, ρ). Parameter ρ represents the long-term average rate

of A(t), whereas σ represents the (maximum) instantaneous burstiness of A(t).

In network calculus, networking devices such as wireless access points are modeled by

network elements offering certain service curves. Suppose that a network element has a single

arrival process A(t) and a single departure process D(t). The network element is said to offer

a service curve β(t) if and only if

D(t) ≥ inf
0≤s≤t

{A(s) + β(t− s)} = (A⊗ β)(t), for ∀t ≥ 0.

The operator ⊗ denotes the min-plus convolution operation. If a work-conserving link has

constant capacity R, then we say that its service curve is β(t)=R·t.

An input flow may be routed (i.e., demultiplexed) to multiple output paths. An ideal

router is a network element with traffic input A(t), output D(t), and control input F (t).

The input-output relationship between the input flow to an ideal router and its output flow

governed by F (t) is expressed as D(t)=F [A(t)]. Note that an input flow can pass through
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multiple ideal routers when its packets have different destinations.

3.3.2 Modeling Traffic Forwarding Devices

To facilitate back-of-the-envelop calculation, we model a wireless access point in parallel re-

dundant WLANs using a constant-capacity work-conserving link with ideal routers attached

to its output end. This subsection introduces two key operations used in the construction of

the model illustrated in Fig. 3.2 for a wireless access point.

Traffic Aggregation

Suppose that multiple input flows are fed into a single wireless access point (e.g., multiple sen-

ders running different control tasks instead of single sender shown in Fig. 3.1 can be connected

to the same wireless access point). If A1∼(σ1, ρ1) and A2∼(σ2, ρ2), then the aggregation of

A1(t) and A2(t), namely A1(t)+A2(t), is said to be (σ1+σ2, ρ1+ρ2)-upper constrained. In

general, we have the following lemma for traffic aggregation (also known as traffic flow multi-

plexing).

Lemma 3.3.1. Suppose that a network element has n input flows Ai(t), i=1, 2, . . . , n. If each

individual flow Ai is (σi, ρi)-upper constrained, then the aggregation of the n input flows is

represented by A(t)=Σn
i=1Ai(t) and is (Σn

i=1σi,Σ
n
i=1ρi)-upper constrained.

When two traffic flows merge, their data bits will be serialized according to a certain mul-

tiplexing policy. Note that this serialization effect is not modeled by Lemma 3.3.1. Combining

traffic flows sharing the same ideal router or destined for the same next-hop wireless access

point using this lemma simplifies the derivation of worst-case delay bounds for non-feedforward

networks and makes back-of-the-envelop calculation possible.

Left-Over Service Curve

The notion of left-over service curve has been extensively used in delay-bounding algorithms

for feedforward networks such as those proposed in [14,113,115]. In our analytical framework,

we also leverage the following theorem for left-over service curve.
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Theorem 3.3.2. Suppose that a work-conserving link has constant capacity R and two inputs

A1(t) and A2(t). If A1∼(σ1, ρ1), then the service curve offered by this work-conserving link to

A2(t) can be denoted by β2(t), where β2(t)=(Rt−ρ1t−σ1)+, and (·)+ is defined as max{·, 0}.

As illustrated in Fig. 3.2, packet-processing elements of a wireless access point are modeled

using a single work-conserving link with constant capacity R and infinite buffers (so that no

packets are dropped due to buffer overflow). We note that this single-link model is conservative

because parallelisms inside the wireless access point are ignored. Instead, we assume that the

wireless access point processes packets one by one when multiple packets arrive simultaneously

or when its buffer is not empty. Theorem 3.3.2 allows us to find out the service curve solely

used by an individual flow (though this flow itself may be an aggregation of multiple flows).

The service curve obtained from this theorem is known as left-over service curve [113].

3.3.3 Output Burstiness and Worst-Case Delay

Theorem 3.3.3. Suppose that a network element offers service curve β(t) for input flow A(t).

The output flow corresponding to A(t) is denoted as D(t). If A(t) has an arrival curve α(t),

then D(t) has an arrival curve α′(t), where

α′(t) = sup
t,s≥0
{α∗(t+ s)− β(s)} = (α∗ � β)(t).

Note that α∗(t) is the sub-additive closure of α(t) and the � operator denotes the deconvo-

lution operation. Definition of sub-additive closure can be found in [17,27]. For a leaky-bucket

arrival curve α(t)=ρt+σ, we have α∗(t)=α(t).

In addition, we have the following theorem for worst-case delay experienced by a single

flow passing through a networking element that offers service curve β(t).

Theorem 3.3.4. Suppose that a network element offers service curve β(t) to its input flow

A(t), which has an arrival curve α(t). Let d(t) denote that maximum delay experienced by

flow A(t) up to time t, the worst-case delay bound can be found as follows

∀t ≥ 0 : d(t) ≤ inf{t ≥ 0 : (α∗ � β)(−t) ≤ 0}.
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3.3.4 Ideal Routing

The behavior that a wireless access point routes packets from its input flow to different desti-

nations can be modeled using ideal routers. To model bidirectional communications on parallel

redundant WLANs, we need to consider multiple traffic flows passing through a wireless access

point and arriving at different destinations. As shown in Fig. 3.2, we attach two ideal routers

to the output end of the work-conserving link. Each router routes part of the flow passing

through it toward a wireless access point. The following lemma can be applied when ideal

routers are introduced.

Lemma 3.3.5. Suppose that an ideal router has a single input A(t), which is (σ, ρ)-upper

constrained. If the routing control function F (t) is (δ, γ)-upper constrained, then its output

flow D(t) is (γσ+δ, γρ)-upper constrained.

We only show the ideal routers relaying packets towards other wireless access points in

Fig. 3.2 because our flows of interest are the aggregated flows passing through two wireless

access points to travel from a sender to a receiver (see Fig. 3.1).

3.3.5 Non-Feedforward Traffic Patterns and Stopped Sequences

In practical applications of wireless PRP networks, bidirectional communications between a

sender and a receiver typically result in a non-feedforward traffic pattern. For any given

network, we can assign unique integer identifiers to all its network nodes and represent all

the traffic flows as integer sequences. If no feasible assignment scheme can be found such

that all the flows can be represented as monotonically increasing sequences, the network has

a non-feedforward traffic pattern.

Modeling a Single Wireless Path of Wireless PRP Networks

Fig. 3.3 illustrates the model for a wireless path of a parallel redundant WLAN with a non-

feedforward traffic pattern. In particular, C1(t) and D1(t) models the aggregated traffic flows

passing through individual wireless access points (APs) and getting forwarded toward destina-

tions other than the two APs connecting the sender and the receiver (e.g., the sender may send

60



data frames to APs other than the ones connecting the sender and the receiver, and so does

the receiver). On the path of A1(t), two ideal routers are inserted so that A5(t) represents ag-

gregated traffic flow consumed by the receiver connected to wireless AP2. Similarly, two ideal

routers are inserted so that B5(t) models the traffic flow consumed by the receiver connected

to the wireless AP1 (since we consider practical scenarios with bidirectional communications).

Note that the sender connected to AP1 is one of the sources contributing to the aggregated

input flow A1(t). Similarly, the sender connected to AP2 is among the sources that generate

B1(t). Evidently, the non-feedforward traffic pattern is caused by the bidirectional communi-

cations between the sender and the receiver: To determine the left-over service curve offered

by AP1 for A1, we have to determine the arrival curve for B3(t), which in turn requires the

determination of the left-over service curve offered by AP2 for B1(t). However, to determine

this left-over service curve for B1(t), we need to obtain the arrival curve of A3(t), which in

turn requires the determination of the left-over service curve offered by AP1 for A1(t). Such

intricacies will not be encountered if the traffic pattern is feedforward (i.e., all traffic flows

on the network can be represented by a set of increasing sequences by properly assigning

integer identifiers to all the networking nodes [20]), but it is necessary to derive worst-case

delay bounds on non-feedforward networks because practical parallel redundant WLANs are

generally non-feedforward.

Stopped Sequences

To analyze such a non-feedforward traffic pattern, we use the technique of introducing stopped

sequences. For a cumulative function A(t), cumulative function Aτ (t) is the stopped sequence

of A(t) at time τ≥0 and is defined as

Aτ (t) =


A(t), if t ≤ τ,

A(τ), otherwise.

The following two lemmas enable us to analyze non-feedforward traffic patterns and find

out whether worst-case end-to-end delay bounds exist.
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Figure 3.3: Modeling of a wireless path of a wireless PRP network with a non-feedforward
traffic pattern imposed by bidirectional communications between sender and receiver attached
to different wireless access points (APs).

Lemma 3.3.6. For every chosen ρ, a stopped sequence Aτ (t) is (σ(τ), ρ)-upper constrained,

where

σ(t) = sup
0≤t≤τ

sup
0≤s≤t

{A(t)−A(s)− ρ(t− s)}.

Lemma 3.3.7. If the stopped sequence Aτ (t) in Lemma 3.3.6 is also found to be (σ, ρ)-upper

constrained, then we have σ(τ)≤σ.

3.4 Worst-Case Delay Analysis for Wireless PRP Network In-

frastructure

With the concepts, theorems, and lemmas introduced in Section 3.3, we now fully parameterize

the model depicted in Fig. 3.3 and show the existence of upper bounds on the end-to-end delays

induced by this wireless path. In particular, we derive the worst-case delay experienced by

packets that are sent to the receiver connected to AP2 by the sender connected to AP1.

Leveraging symmetry of the non-feedforward traffic pattern, worst-case delays experienced by

packets sent by the sender at AP2 to the receiver at AP1 can be derived similarly. Note that

for a practical parallel redundant WLAN, two wireless paths need to be modeled and analyzed.

The parameters for the models will have different values, which can be obtained from prior

measurements or simulations.

Suppose that all input flows have leaky-bucket arrival curves. Without loss of generality,

suppose that we have A1∼(σA1, ρA1), B1∼(σB1, ρB1), C1∼(σC1, ρC1), and D1∼(σD1, ρD1)

for the input flows. We also assume that both APs have sufficient processing capacity, i.e.,

R1>ρA1+ρB1+ρC1 and R2>ρA1+ρB1+ρD1. To model bidirectional communications, the output

end of each work-conserving link is attached with two ideal routers. S11, S12, S21, and S22 are
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the control functions of the ideal routers, respectively. Suppose that we have S11∼(δ11, γ11),

S12∼(δ12, γ12), S21∼(δ21, γ21), and S22∼(δ22, γ22). We note that values of the parameters

introduced here can be obtained either from prior knowledge of traffic profiles of different ICS

applications or from measurements and simulations.

Since this traffic pattern is non-feedforward, we introduce stopped sequences for all the

traffic flows. For instance, Aτ2 and Bτ
2 are the stopped sequences for flows A2 and B2, re-

spectively. Applying Lemma 3.3.6, we can have Aτ2∼(σA2(τ), ρA1) and Bτ
2 ∼(σB2(τ), ρB1).

Applying Lemma 3.3.5 at ideal routers S11 and S22, we have Aτ3∼(γ11σA2(τ)+δ11, γ11ρA1) and

Bτ
3∼(γ22σB2(τ)+δ22, γ22ρB1). At AP1, we apply Theorem 3.3.2 and Lemma 3.3.1 to obtain

the left-over service curve for A1, which is denoted by βτA1(t) and

βτA1(t) = (R1t− (ρC1t+ σC1 + γ22σB2(τ) + δ22 + γ22ρB1t))
+.

Similarly, we also have

βτB1(t) = (R2t− (ρD1t+ σD1 + γ11σA2(τ) + δ11 + γ11ρA1t))
+.

Then, by applying Theorem 3.3.3 on A1 and βτA1(t), we have Aτ2∼(σ′A2(τ), ρA1), where

σ′A2(τ) = σA1 + ρA1 ·
σC1 + γ22σB2(τ) + δ22
R1 − ρC1 − γ22ρB1

.

Similarly, we also have Bτ
2∼(σ′B2(τ), ρB1), where

σ′B2(τ) = σB1 + ρB1 ·
σD1 + γ11σA2(τ) + δ11
R2 − ρD1 − γ11ρA1

.

Using Lemma 3.3.7, we have σA2(τ)≤σ′A2(τ) and σB2(τ)≤σ′B2(τ). Solving these two inequa-

lities, we can find that σA2(τ)≤σ′′A2, where

σ′′A2=
σA1+γA1(σC1+δ22)+γA1γ22(σB1+γB1(σD1+δ11))

1− γ11γB1γ22γA1
,

and γA1= ρA1
R1−ρC1−γ22ρB1

, γB1= ρB1
R2−ρD1−γ11ρA1

. Note that σ′′A2 is independent of τ . Similarly,
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we can derive an upper bound on σB2(τ), which is also independent of τ and can be denoted

by σ′′B2.

After applying the technique of introducing stopped sequences and finding burstiness

bounds for A2(t) and B2(t) that are independent of τ , we are now able to find out the burs-

tiness bound on A4(t). The left-over service curve offered to A3 by AP2 is denoted by βA3(t)

and given by

βA3(t) = (R2t− (σD1 + ρD1t+ σB1 + ρB1t))
+.

Therefore, we have A4∼(σA4, ρA1), where

σA4 = γ11σ
′′
A2 + δ11 + γ11ρ11

σD1 + σB1

R2 − ρD1 − ρB1
.

It is trivial to find that A3(t)∼(γ11σ
′′
A2 + δ11, γ11ρA1). In fact, worst-case buffer requirement

(i.e., deterministic upper bound on backlog) at each individual AP can be found using our

proposed framework. Furthermore,our approach allows for a fine-grained understanding of

the worst-case buffer requirements for individual APs since the impacts of and interactions

between different flows (i.e., A1(t), B1(t), C1(t), and D1(t)) can now be quantitatively assessed.

Finally, the worst-case delay dA1 experienced by packets from A1 that passes through both

APs is upper bounded by the sum of the delay bounds induced by AP1 and AP2, i.e.,

dA1 = dA1left + dA1right.

At AP1, the left-over service for A1(t), which needs to be independent of τ , can now be derived.

Let us denote this left-over service curve by βA1(t). By applying Theorem 3.3.2, we obtain

βA1(t) = (R1t− (ρC1t+ σC1 + γ22σ
′′
B2 + δ22 + γ22ρB1t))

+.

Then, we can apply Theorem 3.3.4 and obtain

dA1left =
σA1 + σC1 + γ22σ

′′
B2 + δ22

R1 − ρC1 − γ22ρB1
.
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At AP2, we have already obtained the left-over service curve for A3(t) and its arrival curve.

By applying Theorem 3.3.4 again, we have

dA1right =
γ11σ

′′
A2 + δ11 + σD1 + σB1

R2 − ρD1 − ρB1
.

Note that the delay bound dA1 is independent of τ , i.e., a closed-form expression of the worst-

case delay bound for the wireless path is found. Since the closed-form expressions given by

our proposed approach can be formally proved using network calculus theorems (see Sec. 3.3),

the derived bounds are reliable as long as the assumptions of our framework are carefully met

and values for the parameters of our models are properly selected.

3.5 Numerical Evaluation

3.5.1 Experiment Settings

To demonstrate the use of our proposed framework, we consider a wireless PRP network

designed for streaming phasor measurements. In [93,102], it is reported that the size of phasor

measurement packets is 300 bytes, with one packet every 20 ms. The wireless PRP network is

depicted in Fig. 3.1 and its network calculus model is shwon Fig. 3.3. Our flow of interest is

A1(t). Suppose that flow B1(t) is also a stream of phasor measurements with the same packet

size and rate. If no other tasks generate any network traffic, i.e., A1(t), B1(t) only contain

phasor measurements and C1(t), D1(t) contain no packets, we can model this application

scenario using the following parameter values: σC1=σD1=0, ρC1=ρD1=0, γ11=γ12=γ21=γ22=1,

δ11=δ12=δ21=δ22=0, σA1=σB1=2400 bps, and ρA1=ρB1=120000 bps. We assume that IEEE

802.11b is used [93], and the raw data rates (i.e., values of R1 and R2) are 1 Mbps, 5.5 Mbps,

or 11 Mbps.

Table 3.1: Worst-Case Delay Bounds at Different Raw Data Rates.

Raw Data Rate 1 Mbps 5.5 Mbps 11 Mbps

Delay Bound (A1t) 0.9776 ms 0.1751 ms 0.0874 ms
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(a) R1=R2=1 Mbps. (b) R1=R2=11 Mbps.

Figure 3.4: Impacts of the number of phasor measurement units on worst-case network-induced
delays.

3.5.2 Worst-Case Delays at Different Raw Data Rates

Under the scenario described in Sec. 3.5.1, worst-case delay bounds at different raw data

rates are listed in Table 3.1. The delay bounds given by our proposed framework show that

the wireless PRP network in Fig. 3.1 is suitable for streaming phasor measurement data,

which typically requires worst-case end-to-end delays of 3 ms. The theoretical results agree

with measurements obtained in [93]. With delay bounds derived by our framework, ICS

architects/designers can choose proper raw data rates under various design constraints (e.g.,

end-to-end delay requirements, power consumption constraints).

3.5.3 Impacts of the Number of Phasor Measurement Units

Suppose that we want to deploy more phasor measurement units into the system and that

traffic profile of each unit remains the same. Fig. 3.4 shows the worst-case delay bounds when

the number of phasor measurement units connected to each wireless access point varies from

1 to 20. As shown in Fig. 3.4b, worst-case latency for phasor measurement packets is as low

as 0.0902 ms when each wireless access point has 20 phasor measurement units and the raw

data rate is 11 Mbps. On the other hand, Fig. 3.4a shows that the worst-case delay bound

is 1.5547 ms when the raw data rate is reduced to 1 Mbps. At this low rate, our framework

can help ICS architects find out that the number of phasor measurement units cannot exceed
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37 at each access point if the worst-case delay requirement for the phasor data streaming

application is 3 ms. When the raw data rate is low, it is therefore important to analyze worst-

case delays of wireless PRP network infrastructure for applications with stringent worst-case

delay requirements.

3.5.4 Impacts of Non-Latency-Critical Tasks

In addition to phasor data, network traffic generated by non-latency-critical tasks may also be

carried by the wireless PRP network. Suppose that phasor measurement units at each wireless

access point are occasionally reconfigured by the ICS system operators via the wireless PRP

network. This task is not latency-critical and occurs infrequently, but its bursty traffic (i.e.,

large network packets containing configuration data) can impose additional queueing delays for

phasor measurement data steams. If two operators reconfigure the phasor measurement units

at both wireless access points simultaneously, we can model the generated traffic with C1(t)

and D1(t). Since this task is infrequent, we approximate the average rates with ρC1=ρD1=

0. The burstiness components, σC1 and σD1, model the bursty network packets containing

configuration data. Suppose that size of these configuration data packets varies from 500 to

1500 bytes and that each wireless access point has only one phasor measurement unit connected

to it. Fig. 3.5 shows the worst-case delay bounds derived by our framework with raw data

rates of 1 Mbps and 11 Mbps.

At 11 Mbps, the newly introduced configuration task causes the worst-case delay bound

for the flow of interest to increase from 0.0874 ms to 0.3061 ms, which is still far below the

worst-case delay requirement of 3 ms. However, when the raw data rate is reduced to 1 Mbps,

it is shown in Fig. 3.5a that a 1500-byte bursty configuration data packet causes a significant

increase in worst-case delay for the flow of interest from 0.9776 ms to 3.4366 ms, which exceeds

the worst-case delay requirement. Therefore, traffic regulation mechanism (e.g., constraining

the maximum packet size to 1000 bytes) may need to be introduced when the wireless PRP

network carries both phasor measurement data and configuration data at raw data rates of 1

Mbps.
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(a) R1=R2=1 Mbps. (b) R1=R2=11 Mbps.

Figure 3.5: Impacts of bursty traffic from non-latency-critical tasks on worst-case network-
induced delays.

3.6 Conclusion and Future Work

In this work, we apply deterministic network calculus to model wireless PRP network in-

frastructure and show that closed-form expressions of network-induced worst-case end-to-end

delays can be found for practical scenarios with non-feedforward traffic patterns, which has

not been derived in prior research. Our current work focuses on wireless path consisting of

two APs, which are widely employed and studied in different ICS applications (e.g., [7,67,93]).

Giving closed-form expressions of delay bounds, our approach facilitates back-of-the-envelope

derivation and provides guidance on refining wireless PRP infrastructure designs.
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Chapter 4

Intrusion and Botnet Detection for

Supervisory Control and Data

Acquisition (SCADA) Networks

4.1 Detecting Peer-to-Peer (P2P) Botnets in SCADA Net-

works

4.1.1 Introduction

Supervisory Control and Data Acquisition (SCADA) systems have been deployed to moni-

tor and control electrical power grids for decades. As conventional power grids around the

globe evolve into smart grids, an increasing number of SCADA systems get connected to re-

mote SCADA systems, corporate networks, and even the Internet [133, 140]. To support the

ever-growing series of smart-grid applications, the integration of state-of-the-art information

technologies, such as cloud computing, has also been proposed [11, 111], which will introduce

more computers into SCADA systems. The increasing interconnectivity, deployment of com-

puters, and use of commercial-off-the-shelf (COTS) computing devices [98] expose SCADA

systems to a vast assortment of cyber attacks, including denial-of-service (DoS) attacks, data

interception, data alteration, and false data injection. Vulnerabilities of cyber-enabled compo-
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nents will lead to not only cyber but also disastrous physical consequences. For instance, the

Stuxnet worm infected field devices in a nuclear facility and forced centrifuge speeds outside

the normal operating range [91]. Among all the current threats to SCADA systems, botnets

are at the top of the list as it is an effective way to launch miscellaneous attacks and dissemi-

nate malicious software [117]. Peer-to-peer (P2P) botnets are an emerging threat to SCADA

systems because they are more resilient to existing takedown measures [94]. To secure the

increasingly interconnected SCADA systems with more and more cyber-enabled components,

it is important to detect P2P botnets.

Unlike early botnets relying on a centralized command and control (C&C) server, a P2P

botnet has a decentralized C&C infrastructure, allowing bots to exchange C&C messages

in a P2P manner [117]. Several notable examples of P2P botnets, such as Sality, Kelihos,

and ZeroAccess, have been alive in the wild for a long time and can be leveraged to launch

cyber attacks on SCADA systems. Recently proposed detection schemes (e.g., [96, 132]) are

typically designed and evaluated under Internet environment, but little work has been done

for P2P-botnet detection in SCADA systems. Some existing methods require the installation

of sophisticated, operating-system-specific software to monitor system calls, leading to a high

deployment barrier and/or operating costs for SCADA systems. Furthermore, SCADA traffic

has several distinct characteristics that are not present in the Internet traffic [9]. Both the

unique characteristics of SCADA traffic and the potentially devastating impacts of cyber

attacks entail the design of a P2P-botnet detection algorithm for SCADA systems.

In this section, we design a P2P-botnet detection method for SCADA systems leveraging

the traffic monitoring capabilities of the SCADA network infrastructure. Our evaluation re-

sults show that our method achieves high detection accuracy with very few false positives

under different scenarios. The contributions of this work are listed as follows:

� We study the problem of P2P botnet detection for SCADA systems, which have distinct

traffic characteristics and diverse architectures. We show that P2P bots (i.e., cyber-

enabled components infected by a certain P2P botnet) can be identified in SCADA

systems by analyzing flow statistics collected by networking devices.

� As many SCADA systems organize its sensors, actuators, and protection devices in a
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decentralized fashion, the corresponding traffic patterns bear certain resemblances to

P2P communication. To filter out non-P2P hosts and reduce the data volume for botnet

detection, we incorporate a simple feature test in the preprocessing stage of our method

to identify hosts engaging in (benign or botnet) P2P communication.

� To set apart P2P bots from benign P2P hosts, the bot identification stage of our method

jointly considers their flow-based and connectivity-based behaviors. We propose an

unsupervised approach in this stage, which not only identifies known P2P botnets but

also alerts system administrator to newly emerged ones.

� In our evaluation, we consider the scenario where some bot-infected hosts simultaneously

run P2P SCADA applications and show that our method is able to separate hosts infected

by different types of P2P botnets from those running benign P2P applications.

4.1.2 Related Work

SCADA System Architecture and Traffic Patterns

Many SCADA systems implement sensing, computation, and control tasks through a de-

centralized or distributed architecture. For example, in smart grid substations, sensors and

actuators are deployed near power system equipment (e.g., transformers and circuit breakers).

Data collected by sensors is transmitted through the SCADA network infrastructure to mul-

tiple SCADA hosts (e.g., protective relays). Deriving the states of the power system from

the data, different SCADA hosts cooperate to implement control functionality by exchanging

information with each other and sending commands to actuators. SCADA traffic patterns

bear certain resemblances to P2P communication, which is also decentralized in nature.

SCADA systems exhibit traffic characteristics that are significantly different from the Inter-

net, which may render existing detection schemes targeting Internet environment less effective.

In [9], traffic characteristics of SCADA systems in two water treatment and distribution faci-

lities are studied. Unlike Internet traffic that is strongly correlated with human activity, it is

found that SCADA traffic is not self-similar and does not present obvious diurnal or nocturnal

patterns. Instead, the studied SCADA systems are dominated by periodic traffic generated
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by sensors, resulting in a large number of flows with nearly constant throughputs. From the

perspective of network traffic monitoring and analysis, a SCADA system may generate the

following categories of traffic patterns to support its various tasks and services:

� Periodic data transmission. Sensors can be configured to transmit data to other SCADA

hosts periodically and autonomously. A sensor may support multiple sampling frequen-

cies simultaneously to facilitate tasks requiring different levels of data granularity.

� Periodic polling. A SCADA host (e.g., a protective relay) can periodically request data

from a set of sensors it specifies. A task relying on periodic polling is activated at regular

time intervals.

� Unsolicited response. In this mode, sensors can spontaneously initiate message transmis-

sion to report status change or event occurrence without receiving any polling command.

This mode is supported by DNP3.

� Event-triggered commands. Using the data collected from sensors, a SCADA host can

determine whether certain commands need to be sent. It is common to observe multiple

command sequences on a SCADA network during the execution of event-triggered tasks.

� P2P data transmission. To increase system resilience in the presence of faulty or com-

promised devices, P2P communication is also leveraged by SCADA systems. In [44], a

self-organized structured P2P overlay is deployed on top of SCADA network, taking full

advantage of path redundancy and data replication that are inherent to P2P techno-

logy. In the P2P convergecast application [43], data sources and sinks can be located on

various hierarchical levels of an interconnected SCADA system. These communicating

peers may be geographically far apart from each other.

Data Collection for Botnet Detection

The life cycle of a P2P botnet consists of multiple stages (or phases), i.e., infection stage, rally

stage, waiting stage, and execution stage [95]. One of the most essential characteristics of P2P

botnets is their C&C channel. In the rally stage, an infected bot performs peer discovery and

joins the P2P botnet. In the waiting stage, it waits for commands from the botmaster, which
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are delivered in a P2P fashion. Without relying on a centralized C&C server, P2P botnets are

found to be resilient to takedown measures targeting centralized C&C infrastructure [94,109].

Many P2P-botnet detection techniques distinguish C&C communication patterns from regular

ones over the Internet.

To identify a botnet through its C&C communication patterns, data needs to be collected

by monitoring the behaviors of individual hosts and/or network traffic flows. In MalFlow [131],

host-level data flow profiles are constructed to identify malign network domains by intercepting

network-related system calls. However, such a host-based approach monitors the behaviors of

processes running on individual hosts, which is not feasible for SCADA systems because the

incurred overhead can affect the performance of safety-critical real-time SCADA tasks.

Another approach to data collection is to capture packet traces on individual network

hosts. Packet traces are then converted into a conversation-based or flow-based data set.

A conversation is uniquely identified by a two-tuple (i.e., source and destination addresses).

Time series of packet sizes and packet inter-arrival timestamps of individual conversations

can be extracted for feature selection [95, 96]. A network flow is identified by a unique five-

tuple (i.e., source and destination IP addresses, source and destination ports, and protocol). A

recently proposed detection system [69] extracts flow-based statistical features from time series

of packet sizes and inter-arrival timestamps of packets. Collecting packet traces on individual

SCADA hosts may also introduce significant system overhead and affect the performance of

critical SCADA tasks.

A third way to collect network-level data is to leverage the traffic monitoring capabilities

built into switches and routers (e.g., NetFlow records). In addition to the five-tuple that

uniquely identifies a network flow, a flow record can include flow arrival timestamp, flow

duration, as well as summarized information such as the number of packets and the number

of bytes transmitted. Implemented in many networking devices deployed in SCADA systems,

traffic monitoring allows system operators to configure how flow records should be collected.

When a flow terminates or its pre-specified timer expires, the corresponding flow record is

exported to traffic analysis server designated by the system administrator. As collecting flow

records does not incur extra overhead on existing SCADA hosts, sensors, and actuators, a
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botnet detection method leveraging flow records has a low deployment barrier for SCADA

systems. In PeerClean [132], NetFlow records are collected at the edge routers of a campus

network and supervised multi-class SVMs are trained to label P2P bot clusters. In contrast,

our approach is unsupervised and is able to differentiate newly emerged bots provided that

they exhibit distinct flow-based and/or connectivity-based characteristics.

4.1.3 System Overview

The primary objective of this work is to design a P2P-botnet detection method that can be

easily integrated into existing and emerging SCADA systems. Figure 4.1 shows the architecture

of our proposed P2P-botnet identification system.

Data Collection and System Deployment: Network flow records are collected by net-

working devices (e.g., Ethernet switches and routers) of a SCADA system. A server is set up to

collect the flow records and execute our P2P-botnet detection algorithm. For a hierarchically

organized SCADA system, multiple detection servers can be distributedly deployed in subsys-

tems at different levels (e.g., substation automation systems and control center network). To

minimize data transmission workload between subsystems, each detection server is responsible

for identifying P2P bots within its own subsystem. A detection server can be configured to

signal the system administrator on site and/or send alarms to a remote location.

Detection Algorithm: Our two-stage detection algorithm is deployed on the detection

server. In the first stage, flow records for both non-P2P and P2P hosts are used as input.

We extract the good connection ratios of individual hosts and perform a simple feature test

to filter out non-P2P SCADA hosts. This step identifies P2P hosts on the SCADA system

and significantly reduces the data volume for the second stage. Our feature test uses good

connection ratios because SCADA hosts engaging in P2P communication generate many failed

P2P Host 

Identification

Stage 1: P2P Host Identification Stage 2: P2P Bot Identification

Network 

Flow 

Records

Feature Extraction

(Good Connection 

Ratio)

Connectivity- and 

Flow-Based

Feature Extraction

P2P Host Clustering

(Affinity 

Propagation)

Figure 4.1: System architecture overview
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connections during peer discovery. P2P hosts identified by the first stage may include those

running P2P SCADA application (i.e., benign P2P hosts), non-P2P hosts infected by P2P

botnet, and hosts running both P2P bot processes and P2P SCADA applications. In the

second stage, we use an unsupervised learning algorithm, i.e., affinity propagation clustering,

to classify benign P2P hosts and different types of known P2P bots. By jointly considering

flow-based and connectivity-based features that characterize the C&C communication patterns

of botnets, our algorithm can not only set apart known P2P bots but also detect P2P bots

of unknown types. Our detection method is executed at the end of each monitoring period

to identify P2P bots. Various lengths of monitoring period are supported provided that P2P

bots generate enough network flows for C&C communication during that period. System

operator can configure the length of detection periods so that P2P bots are identified in a

timely manner.

4.1.4 System Design

To design an effective method for P2P-botnet detection, we select features that differentiate

P2P bots from other hosts in SCADA systems. In this section, we describe our design of the

two stages of our algorithm and discuss the rationale behind their feature extraction modules.

P2P Host Identification

A SCADA system generates a huge volume of control and monitoring traffic. The majority of

these flows are associated with regular non-P2P SCADA applications. Only a few tasks requi-

ring data redundancy and resilience to sensor faults leverage P2P communication. Therefore,

we first filter out hosts running only non-P2P applications. To ensure the scalability of this

step, we design a simple feature test using the good connection ratio feature.

Good Connection Ratio: A pair of hosts share a “good” TCP connection if they

complete a three-way handshake (i.e., SYN, SYN/ACK, and then ACK). They share a “good”

UDP connection if UDP flow generated by one host is “responded” by the other. During

monitoring period Ti, the good connection ratio for a host pair is defined as the ratio of

the number of good connections to the total number of connections between them. As a
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Figure 4.2: Connectivity-based features.

SCADA host communicates with multiple other hosts, a set of pairwise good connection

ratios is associated to it. We compute the mean and standard deviation over the set of good

connection ratios of a host j and denote this feature vector as Gij . Figure 4.2a shows the

pairwise good connection ratios associated to different types of hosts in a simulated SCADA

system over 24 hours (see Section 4.1.5). Note that regular SCADA hosts only running non-

P2P applications have significantly higher good connection ratios than P2P hosts. Hosts in

SCADA systems typically assume well-defined roles in various tasks: Sensors monitor power-

system equipment and send data to hosts that require the states of these equipment. These

hosts respond to sensors to confirm data delivery, making connections from sensors good

connections. Protective relays detect power-system events and send commands to actuators

(e.g., circuit breakers), which have to respond to these commands by sending updated states of

the power-system equipment being controlled. Therefore, the majority of connections between

actuators and protective relays are also good ones. On the other hand, both P2P SCADA

applications and P2P bots need to perform peer discovery so as to join a P2P network, which

results in bad connections if some of the peers are not active or in states other than peer

Table 4.1: Connectivity-based statistical features
Feature Description

Good connection ratio
mean and standard deviation of per-host

pairwise good connection ratios

Shared neighbor ratio
mean and standard deviation of per-host

pairwise shared neighbor ratios

Number of

significant connections

number of significant connections for

each host
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discovery (e.g., the execution stage of P2P bots). We note that the good connection ratio

feature is also used in the next stage to help differentiate P2P bots from benign P2P hosts.

Both the mean and standard deviation (i.e., the Gij feature vector) are used in the second

stage.

P2P Host Identification: We observe that the hourly average good connection ratios

associated to individual hosts can be used to identify P2P hosts. We inspect the 24-hour

training data set (see Figure 4.2a) and empirically determine a threshold of 0.94. The P2P

host identification stage consists of a threshold-based feature test: If a host has an hourly

average good connection ratio over 0.94, we label it as a non-P2P SCADA host at the end of

the monitoring period. Otherwise, it is labeled as a P2P host for further processing in the next

stage. Our experiment (see Section 4.1.5) shows that all the non-P2P hosts can be filtered out

by this simple feature test, which significantly reduces the data volume for further analysis.

P2P Bot Identification

To identify hosts infected by P2P botnet, we jointly consider two sets of features to distinguish

P2P-botnet C&C traffic patterns from those generated by benign P2P hosts. The first set of

features includes connectivity-based features listed in Table 4.1. We use these feature to

capture the unique characteristics of connectivity patterns of various P2P botnets.

Good Connection Ratio: As shown in Figure 4.2a, good connection ratio can be further

exploited to differentiate P2P bots and benign P2P hosts. P2P SCADA applications are

typically used in a small set of hosts whose tasks require data redundancy and/or resilience

to interruption. After the first several rounds of peer discovery, each host will retain an up-

Table 4.2: Flow-based statistical features for P2P bot identification
Feature Description

Packet-oriented flow size
mean and standard deviation of per-host
flow sizes in number of packets

Byte-oriented flow size
mean and standard deviation of per-host
flow sizes in number of bytes

Flow inter-arrival time
mean and standard deviation of flow
inter-arrival timestamps for each host

Flow duration
mean and standard deviation of flow
durations for each host
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(c) Flow inter-arrival time feature
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Figure 4.3: Flow-based statistical features

to-date list of peers, leading to a higher good connection ratio afterwards. Using mean and

standard deviation of per-host pairwise good connection ratios, we can also set apart different

P2P bots. Although most P2P bots have good connection ratios lower than those of benign

P2P hosts, their respective C&C communication patterns lead to distinctive characteristics of

good connection ratios.

Shared Neighbor Ratio: During monitoring period Ti, we find the set of P2P hosts

host j has contacted and denote this set by nij . For any host k ∈ nij , we find the set nik.

The pairwise shared neighbor ratio of host pair {j, k} is defined as ni(j,k) =
||ni

j∩ni
k||

||ni
j∪ni

k||
. Mean

and standard deviation of the set of pairwise shared neighbor ratios of host j is used as a

feature for j. We denote this feature vector by N i
j . Figure 4.2b shows the pairwise shared

neighbor ratios of different P2P hosts over 24 hours. This feature vector can help us effectively

differentiate different types of P2P bots. In particular, Sality-infected hosts have high shared
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neighbor ratios because they share the same bootstrap list of peers. As all SCADA hosts

must remain in operation, contents of the peer lists of Sality-infected hosts gradually evolve

to become similar.

Number of Significant Connections: At the end of monitoring period Ti, we count

the number of significant connections of individual P2P hosts. For host j, this scalar feature is

denoted by Sij . Figure 4.2c shows the significant connection counts of different P2P hosts over

24 hours. We observe that ZeroAccess-infected hosts have virtually no significant connections,

which indicates that ZeroAccess is designed to evenly distribute its C&C workload. As shown

in Figure 4.2c, this feature can effectively set apart Sality bots, Storm bots, Kelihos bots, and

benign P2P hosts.

The second set of features includes flow-based statistical features listed in Table 4.2. We

use these features to characterize the traffic flows generated by P2P bots of different types.

Packet-Oriented Flow Size: At the end of monitoring period Ti, we compute the mean

and standard deviation of flow sizes in number of packets for every individual host. Note that

inbound and outbound flows are considered together. For host j, we denote its packet-oriented

flow size feature vector as P ij . Figure 4.3a shows the packet-oriented flow size statistics for

different types of P2P hosts over 24 hours. Packet-based flow sizes can be used to set apart

benign P2P SCADA hosts from bot-infected hosts. P2P SCADA applications transmit sensor

data to other hosts exploiting the inherent path redundancy of P2P technology. The number

of packets transmitted by a benign P2P host outnumbers that of a P2P bot because its P2P

connections are used to transmit multiple data packets sampled at high rates: A sensor may

need to collect as many as 256 samples per cycle (i.e., 1/60 second) and each sample has to

be sent immediately to ensure control system responsiveness. In contrast, P2P bots transmit

fewer packets over established connections. These packets contain botmaster commands that

need to be disseminated among bots. The differences in packet-oriented flow sizes among P2P

bots can be attributed to their peer discovery strategies and command sets. Bots with a richer

command set tend to have more possible states and more complicated control sequences.

Byte-Oriented Flow Size: At the end of monitoring period Ti, we compute the byte-

oriented flow size feature vector Bi
j for host j, which includes mean and standard deviation
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of inbound and outbound flow sizes in number of bytes. Figure 4.3b shows the byte-oriented

flow size statistics of different P2P hosts over 24 hours. P2P SCADA applications are used to

transmit sensor data packets which are normally in several hundred of bytes, whereas many

C&C packets are of shorter lengths. The differences in traffic volumes of flows of various

P2P bots reflect their unique characteristics of both C&C sequences and encoding schemes of

commands.

Flow Inter-Arrival Time: In addition to flow sizes, we characterize the temporal pat-

terns in which a P2P host communicates with its peers. For monitoring period Ti, we collect

and sort the inbound and outbound flow arrival timestamps of host j, which results in a time

series of flow arrival timestamps. We subtract timestamp Ti from the first element of the time

series and then generate a time series of flow inter-arrival timestamps. Mean and standard

deviation of inter-arrival timestamps are extracted as a feature vector for host j, which is

denoted as Iij . In a SCADA system, remote servers can collect data from sensors within the

system via the remote terminal unit (RTU) [43]. Although sensors may aggregate data sam-

pled at different time intervals before transmission, many safety-critical SCADA tasks require

low latency in data delivery, limiting the amount of data accumulated. This also explains

the smaller standard deviation of flow inter-arrival timestamps for benign P2P hosts in Fi-

gure 4.3c. In addition, Figure 4.3c indicates that this feature vector is not very effective in

differentiating Sality-infected bots from Kelihos-infected bots because the ranges of their flow

inter-arrival time almost completely overlap.

Flow Duration: For monitoring period Ti, we collect inbound and outbound flow dura-

tions for host j to form a time series of flow durations. Mean and standard deviation of this

time series are then computed and used as a feature vector for host j. We denote this feature

vector by Di
j . Flow durations of benign P2P hosts are relatively shorter than those of P2P

bots. This can be attributed to the fact that data packets generated by a sensor can be trans-

mitted through different P2P connections: During each cycle, a sensor collects multiple data

samples, demultiplexes them over different established connections, and then tears down the

connections. In contrast, flow durations of P2P bots are typically longer because these bots

are deliberately designed to communicate stealthily to evade the radars of existing detection
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Figure 4.4: A substation SCADA system simulated using OMNeT++

systems.

P2P Botnet Clustering. We apply feature normalization to all the elements in feature

vector xij : For feature element xij(l), we compute
xij(l)−xl,min

xl,max−xl,min
, where xl,min and xl,max are the

minimum and maximum feature element values among all hosts during period Ti, respectively.

Similarities among all the pairs of P2P hosts, which are computed based on normalized featu-

res, are used by the affinity propagation algorithm to automatically find the proper number of

clusters for a presented data set. Suppose that the normalized features for hosts j and k during

monitoring period Ti are denoted by vectors x̄ij and x̄ik, respectively. The similarity si(j, k)

between the two host is defined as the negative Euclidean distance, i.e., si(j, k) = −||x̄ij−x̄ik||2.

As our bot identification algorithm is unsupervised, we expect that it can identify both known

and unknown P2P bots.

4.1.5 Evaluation

Without loss of generality, we construct two evaluation scenarios by simulating substation

SCADA systems.

Experiment I – Detecting Unknown Bots: To demonstrate the effectiveness of our

proposed method, we first evaluate whether our system can identify known and unknown bots

in a SCADA system. The SCADA system simulated in OMNeT++ is depicted in Figure 4.4.

Current sensors (CT), voltage sensors (VT), and circuit breakers (CB) are deployed near

power-system equipment (e.g., transformers). Traffic patterns between protective relays and

sensors can be periodic data transmission, periodic polling, or unsolicited response. Traffic

patterns between protective relays and circuit breakers are periodic polling and/or event-

triggered commands. A remote control center communicates with the simulated substation
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Table 4.3: P2P Botnet Identification Performance (A-Accuracy, P-Precision, R-Recall)
Bot Type Experiment I (A/P/R) Experiment II (A/P/R)

Sality 98.6%/95.6%/91.7% 97.1%/95.6%/89.6%

Kelihos 98.1%/87.0%/97.9% 96.7%/90.0%/93.8%

ZeroAccess 99.3%/94.1%/100% 98.8%/94.1%/100%

Storm 98.3%/90.1%/93.8% 97.9%/92.2%/97.9%

via the RTU using multiple protocols including P2P convergecast [43]. System operators

can also monitor and control the substation through the human-machine interface (HMI).

There are 8 SCADA hosts generating regular non-P2P traffic. In addition, there are 10 P2P

hosts where there are 2 Sality-infected hosts, 2 Kelihos-infected hosts, 2 ZeroAccess-infected

hosts, 2 Storm-infected hosts and 2 P2P hosts generating benign P2P traffic. All the bots

generate malicious P2P traffic while simultaneously running non-P2P SCADA applications.

We generate 24-hour training data without activating the Storm bots and train the clustering

algorithm. Then, we collect testing data by running the simulation for another 24 hours and

activating the storm bots 8 hours after simulation starts. The second column in Table 4.3

summarizes the detection performance of our proposed method on the testing data set over

24 monitoring periods (i.e., length of Ti is set to 1 hour). We note that the simple feature

test employed in the first stage filters out all the 8 regular non-P2P hosts without incorrectly

including any P2P hosts. Before Storm bots are activated, 4 clusters are generated by the

clustering algorithm at the end of each monitoring period: 1 for benign P2P hosts, and 3

for the bots seen during training. After Storm bots are activated, a new cluster containing

Storm-infected hosts is generated. This indicates that our method can be used to identify

previously unseen P2P botnets and signal system administrator to take necessary measures.

We further note that our method does not classify any bot as benign P2P hosts.

Experiment II – Detecting P2P hosts infected by P2P bots: We further consider

the scenario where all the hosts run P2P SCADA applications. A SCADA system with 10

P2P SCADA hosts are simulated: There are 2 Sality-infected hosts, 2 Storm-infected hosts,

2 Kelihos-infected hosts, 2 ZeroAccess-infected hosts, and 2 benign P2P hosts communicating

with remote data collection servers. After training on a 24-hour data set, we evaluate our

method on a 24-hour testing set and summarize the detection performance in the third column
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of Table 4.3. At the end of each monitoring period, the clustering step generates 5 clusters.

Although the first stage of our algorithm does not filter out any host, the second stage is still

able to achieve high detection accuracy with very few false positives and no false negatives.

4.2 Detecting Attacks on the DNP3 Protocol

4.2.1 Introduction

Monitoring and controlling critical infrastructure of industrial control system (ICS), Supervis-

ory Control and Data Acquisition (SCADA) network interconnects field devices, engineering

workstations, human-machine interfaces (HMIs), and various servers to ensure reliable sy-

stem control and operation. As interconnectivity among SCADA hosts continues to increase,

network-based cyber attacks (i.e., cyber attacks that exploit SCADA network vulnerabilities to

realize their malignant purposes) have become one of the primary cyber threats to SCADA sys-

tems. As SCADA networks utilize both widely-used network protocols from the IT domain and

specialized SCADA network protocols, SCADA hosts can become the target of both conventio-

nal network-based attacks (e.g., a malware targeting Windows-based engineering workstations)

and specialized attacks on SCADA protocols (e.g., [40,45]). In recently reported cyber-security

incidents (e.g., [73, 77]), it is observed that network-based cyber attacks are a major compo-

nent of sophisticated, multiple-stage attacks on critical ICS infrastructure. However, intrusion

detection systems (IDSs) for IT networks cannot be directly ported into SCADA networks

because traffic characteristics of SCADA hosts are shown to be distinctly different from hosts

in corporate/campus networks [10]. To protect modern ICSs, it is therefore vital to design

SCADA network intrusion detection solution that takes into account both operation needs

and distinct traffic characteristics of SCADA systems.

Real-world attacks on SCADA systems tend to follow a step-by-step method to compro-

mise critical system devices [73,85,97], and network-based attacks may be launched at different

steps to achieve malicious goals. Take the SCADA system in Fig. 4.5 as an example. Suppose

that the ultimate goal of attackers is to induce severe damages to the physical process moni-

tored and controlled by the SCADA system. If the attackers launch the Stuxnet attack [73],
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Figure 4.5: Network-based attacks on SCADA system.

the Windows-based engineering workstation will first be compromised. This step can be ac-

complished by a malicious insider with a flash drive containing the Stuxnet malware. Then,

the attackers can download malicious or faulty control programs to field devices such as pro-

tective relays. The compromised field devices may issue malicious network commands (e.g.,

tripping circuit breakers when no faults occur) or generate falsified device status reports to

mask the execution of malicious commands. In the CrashOverride attack [2, 77], knowledge

on SCADA communication protocols is exploited, and external attackers can even directly

control system equipment without relying on the software within the engineering workstation.

As shown in [2,77,129,142], emerging cyber attacks on SCADA systems tend to be composed

of multiple “primitive” attacks, many of which are network-based attacks. For instance, traces

of both conventional attacks such as passive reconnaissance and active service/host discovery,

and specialized attacks on SCADA protocols (e.g., falsified control commands), are found in

the CrashOverride attack. Hence, network intrusion detection solution for SCADA systems

must be able to combat both conventional as well as specialized network attacks.

In this section, we propose a deep-learning-based network intrusion detection system for

SCADA networks, detecting network-based cyber attack primitives. The contributions of this

work are as follows:

� Deep-learning-based IDS for SCADA networks. Instead of relying on hand-crafted fe-

atures of individual network packets, our proposed approach employs a convolutional

neural network (CNN) to characterize salient temporal patterns of network behaviors
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of SCADA hosts. Leveraging traffic monitoring capabilities of existing SCADA networ-

king devices, our approach inspects network traffic without interrupting SCADA system

operation, which significantly lowers the barrier to deploying our solution.

� Detection of SCADA network attack primitives. Detecting both conventional network

attacks and those purposely crafted for SCADA network protocols, our proposed appro-

ach will facilitate the detection of sophisticated, real-world attacks that launch different

network attack primitives at different stages.

� Capability to adapt to different SCADA environments. Our solution provides a re-

training scheme, enabling SCADA system operators to refine our neural network models

with site-specific network attack traces and facilitating the rapid adaptation of these

models to various SCADA environments that are subjected to different cyber attacks.

� Evaluation on realistic data sets. We design and evaluate our proposed network IDS

using traffic data collected from different energy-delivery system test beds with real

field devices running DNP3 protocol. Our results show that our approach achieves high

detection accuracy with few false positives, making it well-suited for network intrusion

detection in SCADA systems.

4.2.2 Related Work

Network-Based Cyber Attacks on SCADA Systems

In recently reported cyber-security incidents [2,73,77,92], it is found that many sophisticated

cyber attacks exploit certain network attack primitives to penetrate from corporate networks

into SCADA networks, determine roles of different SCADA hosts, and cause damages to phy-

sical systems. Primitive network-based cyber attacks can be classified into two categories, i.e.,

conventional attacks exploiting vulnerabilities of IT network protocols [142] and specialized

attacks on SCADA network protocols. Taxonomies and analyses of attacks on SCADA net-

work protocols can be found in surveys on ICS security, such as [37,129]. To detect real-world

attacks, a SCADA network intrusion detection system must take into account both conven-

tional and specialized attacks. In this work, we focus on SCADA systems running DNP3
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protocol [54], which is widely adopted in SCADA systems across the world.

Intrusion Detection for SCADA Systems

SCADA hosts exhibit traffic characteristics that are significantly different from hosts in cor-

porate/campus networks [10]. Therefore, intrusion detection systems for IT networks do not

work well in SCADA network environments. Recently, a survey on intrusion detection soluti-

ons for industrial control systems is presented in [50]. It is found that many existing solutions

utilize widely-used network security mechanisms, such as white-listing, for network intrusion

detection in SCADA networks. However, such approaches are not effective for purposely craf-

ted attacks on SCADA network protocols because legitimate SCADA network packets and

attack packets can share the same application-layer header fields (e.g., [37]). To detect spe-

cialized attacks, application-layer information needs to be analyzed in detail to distinguish

malicious packets from benign ones [87]. However, a wide variety of SCADA-specific attacks

reviewed in [129,142] cannot be detected by the approach proposed in [87] because of the lack

of a mature way of modeling network behaviors of SCADA hosts. In [100], machine-learning-

based algorithms are proposed to model network behaviors of SCADA hosts. However, the

features selected in [100] cannot comprehensively model SCADA host behaviors (e.g., a ro-

bust model for temporal network behaviors is yet to be established) and thus many attacks

reported in [129] are not considered. In this work, we analyze network packets up to their

application-layer headers and comprehensively model the network behaviors of SCADA hosts

using a convolutional neural network (CNN).

4.2.3 System Design Overview

Threat Model

In our network IDS solution for SCADA systems, we assume that an attacker is capable

of compromising certain SCADA hosts or slipping in a new device to launch network-based

cyber attacks. For instance, in sophisticated cyber attacks launched by external attackers

(e.g., [73,77]), engineering workstations and field devices in SCADA systems are compromised.

In addition to passive eavesdropping, some of the compromised hosts are exploited to issue
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malicious control commands. As another example, a malicious insider may either directly

install malware on SCADA hosts [40, 134] or plant a new device [86] to launch attacks. Once

a SCADA host is compromised (or a new device is planted), it may be exploited to send

malicious attack packets with or without simultaneously generating normal/regular SCADA

network traffic. However, this host will probably not use any network protocols that have

not been previously observed on the SCADA network. Otherwise, it will easily be flagged or

blocked by existing ICS intrusion detection tools [50].

We also assume that a malicious SCADA host must generate network packets at a certain

attack stage. This is because our proposed detection algorithm identifies malicious network

activities by analyzing packets generated by all the SCADA hosts. A malicious host can, for

example, issue malicious control commands to cause system failures, mask impacts of malicious

control actions by sending manipulated device status updates, and learn about the functions

of other hosts by reading their detailed configurations [37]. However, if a cyber attack does

not generate any network packet revealing its malignant purposes (e.g., [3]), operators must

resort to other intrusion detection solutions (e.g., host-monitoring-based methods [124, 126])

to protect the SCADA system.

Finally, we assume that network packets exchanged inside a SCADA site (e.g., a power

substation) are not encrypted. This is the case because a SCADA site is typically secured

physically and legacy field devices that do not support encryption/decryption are still widely

in use.

System Design

The architecture of our proposed network intrusion detection tool is depicted in Fig. 4.6. The

input to our tool is raw SCADA network traces, i.e., network packets generated by all the

SCADA hosts. In real-world SCADA systems, these packets can be collected by leveraging

the traffic monitoring capabilities of network switches (e.g., the port mirroring feature [1] of

Cisco switches). By properly configuring networking devices to duplicate all the network traffic

to a monitoring port, our proposed approach will not interrupt normal system operation. The

duplicated traffic is forwarded to a server, where our proposed detection algorithm is deployed.
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Figure 4.6: High-level architecture of the proposed network IDS solution.

Our detection algorithm first inspects each packet up to its application-layer header and

extracts useful information for feature learning. Application-layer payload data are not analy-

zed by our algorithm, so an attack that manipulates process data will not be detected unless

the corresponding application-layer header is also modified. The preprocessing stage extracts

a 25-tuple from each packet and implements non-overlapping detection windows for the feature

learning stage. Feature vectors of all packets contained in each detection window are passed to

a convolutional neural network (CNN) for feature learning. At lower layers of the CNN stage,

local characteristics of the tuple sequence are obtained. Then, at higher layers of the CNN

stage, high-level salient patterns are extracted. The learned features are then fed to a classifi-

cation stage to generate detection outputs. We attach a fully-connected softmax output layer

to the feature-learning CNN for classification. In addition, outputs of the classification stage

are also exploited as indicator for re-training. When a newly emerged attack is encountered,

our algorithm will signal the SCADA system operator to inspect and label the corresponding

time window. When the number of new attack instances are sufficiently large, a new class is

added to the classification stage and the entire neural network is re-trained.

In essence, our detection method analyzes the temporal network behavior patterns of

SCADA hosts and identifies time windows containing abnormal patterns. At the output end,

our detection algorithm assigns a label to each detection window (e.g., “normal operation”).

By inspecting detection windows containing anomalies, SCADA system operator can easily

pinpoint the root cause and take proper measures to mitigate the attack impacts.
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Figure 4.7: High-level architecture of the proposed neural network model with convolutional
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layer.

4.2.4 Deep-Learning-Based IDS for SCADA Networks

Data Preprocessing

An operational SCADA network runs a set of network protocols for network connectivity and

SCADA system operations. The data preprocessing stage extracts information from different

types of network packets as follows:

� Layer 2 packets. For each Layer 2 packet, source and destination MAC addresses, as

well as the EtherType value, are extracted. Size of the Layer-2 payload, excluding the

4-byte checksum, is also extracted.

� Layer 3 packets. Generally, IP and ICMP packets are present on SCADA networks. In

addition to the 4 fields extracted from Layer 2, we extract source and destination IPs,

protocol type, as well as the packet length field from IP packets. If the packet is an

ICMP packet, the type and subtype fields are also obtained. If the packet is not an

ICMP packet, both fields are set to 256.

� TCP/UDP packets. In addition to the 10 fields from Layers 2 and 3, we extract source

and destination ports, TCP flags, sequence number, as well as acknowledgment number

if a TCP packet is encountered. Size of TCP packet payload, excluding the TCP header,

is also calculated and recorded. If the packet is a UDP packet, we extract source and des-

tination port numbers. Additionally, UDP payload size excluding the UDP header is also

computed. For a UDP packet, the TCP flags, sequence number, and acknowledgment

number, are all set to 0.
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� DNP3 packets. DNP3 packets can use either TCP or UDP. In addition to the 16 fields

extracted from a DNP3 packet up to its TCP/UDP layer, we extract information from

the DNP3 data-link, pseudo-transport, and application layers [54]. At the DNP3 data-

link layer, we extract DNP3 source and destination addresses, the control byte value,

as well as the length byte value. The one-byte pseudo-transport layer header is also

extracted. At the DNP3 application layer, application control byte, function code byte,

and internal indication field values are extracted.

Therefore, 24 fields are filled out for each packet at the preprocessing stage. In addition,

packet inter-arrival time, i.e., the time interval between the arrival of the current packet and

the arrival of its preceding packet is logged. For the first packet seen on the SCADA network,

its inter-arrival time is set to 0.

For each packet, the output of the preprocessing stage is a 25-tuple. To capture temporal

behavior patterns of SCADA hosts, we implement non-overlapping sliding windows on the

sequence of SCADA packets collected from the monitoring port. The size of the detection

window, in terms of the number of packets it contains, is denoted by r. These non-overlapping

detection windows partition the multivariate sequence of packet feature vectors into small

snippets. Each input instance to the feature learning and classification stages is a sequence of

r 25-tuples.

Convolutional Neural Network (CNN) for Feature Learning

Each input instance used by the CNN stage is a two-dimensional matrix. Each matrix contains

r samples, and each sample has D features. We choose r to be the average number of packets

observed within one second on a SCADA network over a long period of time (e.g., 24 hours).

In our experiments (see Sec. 4.2.5), we choose r = 30. For SCADA systems based on DNP3,

we choose D to be 25 (see Sec. 4.2.4). In the training data set, the label of each instance

(i.e., a D×r matrix) is determined by the type of network attack included in the corresponding

detection window. Instances that do not include any attack packet share the same label, i.e.,

“normal operation”. In the CNN, the ith layer’s jth feature map is also a matrix. The element

value at the rth column and the dth row is denoted by vd,rij ,∀d=1, · · ·, D. In the CNN stage,
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multiple convolutional layers and pooling layers are employed.

Convolutional Layers At each convolutional layer, the input feature maps are convolved

with several convolutional kernels, which are learned during the training process. The output

of the convolutional operators is added by a bias (also learned during training) and then passed

to the activation function to generate the feature maps for the next layer. The value vd,rij is

thus given by

vd,rij = tanh

(
bij +

∑
k

Pi−1∑
p=0

ωpijkv
d,r+p
(i−1)k

)
, (4.1)

where tanh(·) is the hyperbolic tangent function, bij is the bias for the feature map, k is the

index for the feature map from the i−1 layer, ωpijk is the value at position p of the convolutional

kernel, and Pi is the convolutional kernel length.

Pooling Layers At each pooling layer, resolution of the input is reduced by pooling feature

maps from the previous layer over their local temporal neighborhoods. A max pooling function

is given by

vd,rij = max
1≤q≤Qi

(
vd,r+q(i−1)j

)
, (4.2)

where Qi is the length of the pooling region. Pooling is essentially a down-sampling operation

that increases the invariance of features to distortions on the inputs (e.g., caused by different

TCP/UDP/DNP3 payload sizes).

Using the convolution and pooling operations defined above, we construct a CNN shown in

Fig. 4.7. We group layers of the CNN into four sections. The first and the second sections share

similar high-level architecture. First, a convolutional layer convolves the input or feature maps

from the previous layer’s output using a set of kernels, which are learned during the training

process. Then, a rectified linear unit (ReLU) layer maps the output of the previous layer

with the function relu(v) = max(v, 0). Next, a max pooling layer is deployed to pick out

the maximum feature map over its temporal neighborhood. Finally, a normalization layer is
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added to normalize the values in different feature maps from the previous layer with

vij = v(i−1)j
(
θ + α ·

∑
t∈M(j)

v2(i−1)t
)−β

, (4.3)

where α, β, θ are hyper-parameters, and M(j) is the set of feature maps used in normalization.

The third section consists of a convolutional layer, an ReLU layer, and a normalization

layer. Pooling is not needed because the temporal dimension of each feature map becomes 1.

At the fourth section, a fully-connected layer is developed to unify the feature maps from

the previous layer. Mathematically, the unification operation is defined by

vij = tanh
(
bij +

∑
k

D∑
d=1

ωdijkv
d
(i−1)k

)
. (4.4)

This unification layer is followed by an ReLU layer and a normalization layer.

Design of Classification Stage and Re-training Scheme

The classification stage leverages the features learned from the CNN stage to label input

instances. In this stage, a fully-connected output layer is attached to the CNN stage to map

learned features to output classes. Output of this stage is governed by the softmax function

vij =
exp(v(i−1)j)∑C
j=1 exp(v(i−1)j)

, (4.5)

where C is the total number of output classes. An entropy cost function is constructed using

the true labels assigned to the training instances and softmax function’s probability output.

When one or multiple previously unseen attack instances are present in a detection window,

output neurons in the classification stage will have output values that are low and possibly close

to each other. This facilitates the design of a re-training scheme that allows SCADA system

operator to refine our neural network models with site-specific network attack traces. During

the detection (i.e., testing) process, if the classification stage outputs for all the existing classes

fall below a threshold Rth (0≤Rth≤1), we log the features extracted by the CNN stage for

the corresponding detection window. Such a window will temporarily be label as “unknown”,
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indicating that it includes previously unseen network behavior patterns. When a sufficiently

large number of ”unknown” instances are collected, we perform k-means clustering based on

Euclidean distance metric to find the number of distinct clusters and request the SCADA

system operator to inspect and properly label these clusters. Labeled instances from these

clusters are then pumped into the existing training set, and the entire neural network is re-

trained with previously unseen attack classes added to the classification stage. Note that the

value of Rth needs to be empirically determined.

4.2.5 Evaluation

We evaluate our intrusion detection solution using SCADA traffic data collected from two

SCADA cyber-security test beds, both emulating realistic operational SCADA networks for

energy-delivery systems. One test bed is constructed by the National Center for Reliable

Electric Power Transmission (NCREPT) at University of Arkansas. This test bed consists

of a remote terminal unit (RTU), which controls multiple protective relays via serial con-

nections. The RTU is connected to Ethernet, coordinating an HMI’s access to the protective

relays. From the HMI, an operator can periodically poll process data from the protective relays

and/or issue control commands using DNP3. The other test bed is built by the cyber-security

lab of the Electric Power Research Institute (EPRI). This test bed organizes a few dozens

of protective relays from different vendors, RTUs, engineering workstations, and computing

servers into a SCADA network. In addition to polling and sending commands, an engineer-

ing workstation can also update the configurations of protective relays using vendor-specific

programming tools. SCADA hosts in both test beds have similar average DNP3 packet rates

(i.e., about 120 packets per minute), and we monitor network traffic on both test beds for

more than 8 hours.

Data Set Overview

After collecting realistic SCADA network traffic from different test beds, we create our data

set as follows. First, packets generated by each SCADA host are extracted. Then, we edit

the destination and source IP addresses of the packets so that SCADA hosts from different
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test bed can reside on the same local area network. Next, a set of network-based attacks

on SCADA systems are injected into the data set. We create the attack packet sequences

according to [37, 129,142]. Specifically, network packets associated with the following attacks

are created:

� ARP spoofing attacks (A1) [142]. Such attacks can be launched by a device planted by

a malicious insider or a SCADA host compromised by an external attacker. In SCADA

environments, ARP spoofing attack can be launched at the beginning of a man-in-the-

middle attack to hijack communication sessions between normal, legitimate SCADA

hosts. It can also be launched to link multiple IPs to a single SCADA host, overloading

the target host or causing its failure.

� SYN flooding attacks (A2) [142]. For legacy SCADA field devices with limited compu-

tation capacity, such attacks can devour their system resources and block other SCADA

hosts from establishing legitimate connections.

� TCP RST attacks on telnet (A3). In the collected SCADA traffic traces, we find that

protective relays from a popular vendor can be reconfigured by the engineering worksta-

tion via Telnet. A malicious SCADA host can falsify a TCP packet from the engineering

workstation with the RST flag set, effectively shutting down the reconfiguration session

between engineering workstation and protective relay.

� UDP flood attacks (A4). UDP flood attacks can also be launched to overwhelm legacy

SCADA field devices, which have limited computation resources.

� DNP3-specific attacks (A5∼A16) [37, 129]. DNP3 attacks reported in the literature

are also created and injected into the data set. These attacks can be categorized into

two types. The first type is single-packet attacks. Each type of these attacks can be

implemented by modifying a single packet in a normal DNP3 communication session.

Single-packet attacks include application termination attacks (A5), outstation DFC flag

attacks (A6), function reset attacks (A7), unavailable function attacks (A8), address

alteration attacks (A9), outstation write without reading (A10), clear object attacks

(A11), outstation data reset attacks (A12), and configuration capture attacks (A13).
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The second type is multiple-packet attacks, which can be realized by modifying multiple

packets in a normal DNP3 session. Multiple-packet attacks include data-link layer length

overflow attacks (A14), fragmented message interruption attacks (A15), and pseudo-

transport layer sequence modification attacks (A16).

In addition to the “normal operation” class (i.e., class N) and attack classes A1∼A16, we

also include two special classes (see Fig. 4.7), i.e., “dual single-packet attacks” (i.e., class

A17) and “dual multiple-packet attacks” (i.e., class A18). A detection window with the label

“A17” includes two single-packet attack instances, which can be any combination of instances

from classes A5∼A13. A window with the label “A18” includes two multiple-packet attack

instances, which can be any combination of instances from classes A14∼A16.

Experiment Settings and Evaluation Results

Throughout our experiments, we choose α=3.5×10−4, β=0.7, θ=1, Rth=0.125, and the size

of M(j) is 5. To choose the parameters in the CNN, we follow the guidelines introduced in [74]

during the training process.

Experiment I We first train our proposed algorithm using a training data set containing

attack instances from classes A1∼A9 and A14 (see Sec. 4.2.5). Table 4.4 summarizes the

detection performance results when a testing data set with attack instances from the same

classes as used in the training process is presented to our algorithm. We can observe that our

algorithm is able to accurately identify instances of all the attack classes seen in the training

process. The overall detection accuracy is 99.38%. In fact, only one detection window with

no attack instance (out of 2200 total “normal operation” windows) is incorrectly labeled as an

attack of type A3. We also observe that 7 instances (out of a total of 200 testing instances) from

classes A1 and A2 are misclassified as “normal operation”. Very few instances of classes A6∼A9

and A14 are incorrectly labeled as attacks from other classes, but they are never classified as

“normal operation”. As observed in real-world attacks (e.g., [2,142]), primitive attacks of types

A1 and/or A2 usually need to be launched multiple times, so our detection algorithm can still

help SCADA system operator detect such attacks. These results show that the number of false
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Table 4.4: Detection Performance of Experiment I.

Class N A1 A2 A3 A4 A5
Precision 99.8% 100% 100% 99% 100% 100%

Recall 99.9% 96% 97% 100% 100% 100%

Class A6 A7 A8 A9 A14
Precision 94% 94.2% 96.8% 100% 94.9%

Recall 94.9% 97% 93.9% 94% 100%

positive instances generated by our tool is extremely low and only a few attack instances from

classes A1 and A2 are misclassified as “normal operation”. Therefore, our tool is well-suited

for network intrusion detection in SCADA systems because most detection windows requiring

the attention of the operator indeed contain primitive attacks.

Experiment II Next, we add previously unseen attack instances into the testing set of

Experiment I and re-execute the detection (i.e., testing) process. When the output of the

classification stage and the threshold value Rth indicate that a detection window contains

previously unseen network behavior patterns, we temporarily label it as an “unknown” class

instance and record the features learned by the CNN stage. Once a sufficiently large number of

“unknown” class instances are collected, we perform k-means clustering to find distinct clusters

contained in the “unknown” class. Our tool then requests the SCADA system operator to

inspect instances from different clusters and provide them with proper labels. Once the number

of instances included in a cluster is sufficiently large, we pump these instances into the existing

training set, add a new attack class in the classification stage, and re-train the entire neural

network.

Table 4.5 summarizes the detection results obtained after our algorithm is re-trained to

include classes A10∼A13 and A15∼A18 in the classification stage. The overall detection accu-

racy is 99.84%, which is sufficiently high for intrusion detection in real-world SCADA systems.

Note that a sufficiently large number of instances of a newly emerged attack class must first

be collected to create a representative training set. In our experiment, we require that 100

instances for each new attack type must be labeled before being added into the existing trai-

ning set for re-training because our experience suggests that adding fewer instances into the
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existing training set will result in significant deterioration of detection accuracy (e.g., previ-

ously unseen attacks may be incorrectly labeled as instances of other classes). Misclassifying

previously unseen attacks may hinder SCADA system operator from becoming aware of newly

emerged threats quickly and mislead him/her into taking ineffective countermeasures.

As shown in Table 4.5, our algorithm still achieves high accuracy with very few false

positives once sufficient previously unseen attack instances are pumped into the training set.

Although a few instances from classes A6∼A18 are misclassified as other attack classes, they

are never classified as “normal operation”. These results suggest that our re-training scheme

facilitates rapid adaptation of our neural network models to SCADA environments that are

subjected to previously unseen primitive attacks. These properties, coupled with the fact

that our approach identifies primitive attacks without interrupting SCADA system operation,

make our approach suitable for network intrusion detection in SCADA systems.

Table 4.5: Detection Results for Testing Phase in Experiment II.

Actual Class N A1 A2 A3 A4 A5 A6
Total Instance 3550 100 100 100 100 100 100

Detected 3549 96 97 100 100 100 94
Misclassified

(Class | Count)
A3 1 N 4 N 3 A14 5

A15 1
Actual Class A7 A8 A9 A10 A11 A12

Total Instance 100 100 100 100 100 100
Detected 97 92 94 97 96 98

Misclassified
(Class | Count)

A8 3 A7 6 A6 6 A11 3 A10 1 A11 2
A13 2 A12 3

Actual Class A13 A14 A15 A16 A17 A18
Total Instance 100 100 100 100 100 100

Detected 97 93 97 94 97 98

Misclassified
(Class | Count)

A8 3 A12 3 A12 1 A12 1 A6 2 A15 1
A15 4 A14 2 A14 2 A8 1 A16 1

A15 3
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4.3 Conclusion

In this work, we first design an unsupervised algorithm for P2P botnet detection in SCADA

systems by capturing the flow-based and connectivity-based characteristics of C&C communi-

cation patterns of bots. Our method has a low deployment barrier because it leverages traffic

monitoring capabilities that have already been built into existing networking devices. High

detection accuracy is achieved in our evaluation, which indicates that the proposed approach

is well-suited for securing SCADA systems. Since our designed system generates only a few

false positives and does not interrupt normal system operation, it is well-suited for P2P botnet

detection in SCADA systems.

In addition, we also design and implement a network intrusion detection solution for

SCADA systems based on deep neural networks. CNN-based feature learning is particu-

larly useful in developing IDS solution for SCADA systems when temporal network behavior

patterns of SCADA hosts need to be reliably modeled. Achieving satisfactory detection per-

formance and permitting adaptations with network traces of previously unseen attacks, our

proposed approach is well-suited for network intrusion detection in SCADA networks where

both conventional and specialized attacks may be present.
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Chapter 5

Payload Attack Detection for

Programmable Logic Controllers

(PLCs)

5.1 Introduction

In industrial control systems (ICS), programmable logic controllers (PLC) play a critical role

in process automation. As cyber attacks targeting ICS increase in sophistication, field de-

vices, such as PLCs, are of particular concerns because they directly monitor and control

physical processes. As shown in Figure 5.1, PLCs are typically deployed close to sensors and

actuators, implementing local control actions (i.e., regulatory control). In addition of utilizing

sensor data and controlling actuators locally, PLCs transmit real-time process data to operator

workstations and execute their commands, facilitating the realization of supervisory control.

Due to the unique and vital role of PLCs in critical ICS infrastructure [5], they are one of the

major targets of cyber attacks. For example, the Stuxnet attack managed to silently sabotage

centrifuges in a uranium-enrichment plant by reading and writing code blocks on PLCs from a

compromised engineering workstation [38,71]. By modifying a PLC’s control program, severe

damages (e.g., data loss, interruption of system operation, and destruction of ICS equipment)

can be induced by attackers. In [47], it is shown that malicious code can easily be slipped
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Figure 5.1: Architecture of industrial control systems and the role of PLCs.

into PLC control programs and evade the scrutiny of relay engineers from both academia and

industry. Therefore, it is crucial to devise automated detection method against cyber attacks

launched by modified PLC’s control program.

As PLCs are special-purpose computers interfacing with various sensors/actuators and pro-

viding firmware support to run control programs (also known as “payload” programs [41,88])

that emulate the behaviors of an electric ladder diagram [5,110], attacks on PLCs can be laun-

ched by modifying or overwriting the PLC payload program. Such attacks are known as PLC

payload attacks. A PLC control program is typically written by a team of PLC engineers using

the suite of programming languages specified in IEC 61131-3 [52]. Such a control program

is regarded as the payload of a PLC’s firmware, which controls access to hardware resources

(e.g., inputs, outputs, and timers) and repeatedly loops through the payload instructions. An

attacker with PLC access (e.g., by gaining control of an engineering workstation running PLC

development and monitoring software) can download malicious payload and gain full control

over its sensors and actuators. In the Stuxnet attack, a component of Stuxnet is capable of

launching payload attacks on PLCs by first infecting an engineering workstation and then

downloading malicious code blocks [38]. Payload attacks can also be carried out by an insider

(e.g., a disgruntled employee) with the help of tools such as SABOT [88], which generates

malicious payload based on adversary-provided specifications. Since legitimate payload relies

on PLC programming instructions implemented by the firmware to carry out control and mo-

nitoring tasks, a malicious payload program can execute any combination of these instructions
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to sabotage the physical process.

In this chapter, we introduce runtime behavior monitoring into PLC firmware to detect

payload attacks and protect ICS from severe physical damages. Based on control system

specification provided by control system engineers, we establish runtime behavior profile of

normal/legitimate payload program in terms of I/O access patterns, network access patterns,

as well as payload program timing characteristics. When a newly updated payload program

is downloaded into a PLC (either by an attacker or by a trusted control system engineer),

its runtime behavior data is collected by the PLC firmware. When abnormal behaviors are

observed by the firmware, execution of the payload program is terminated so that abnormal

control signals will not be sent to actuators. The contributions of our work are as follows:

� We introduce runtime behavior monitoring into PLC firmware to enable automated

detection of PLC payload attacks. In contrast to existing detection methods based

on linear temporal logic, our proposed approach can identify attacks that violate real-

time requirements of an ICS and does not require the introduction of bump-in-the-wire

apparatus between engineering workstation and PLCs.

� We present a proof-of-concept implementation of the firmware-level payload attack de-

tection scheme on ARM® Cortex®-M4F microcontrollers. Our evaluation results show

that the proposed approach can detect a wide variety of payload attacks revealed by

prior research [47] and reported cyber-security incidents.

� Furthermore, we evaluate the overhead of implementing the proposed detection method

and find that it is feasible to incorporate our scheme on microcontrollers used by existing

PLCs to detect payload attacks.

5.2 Related Work

5.2.1 Programmable Logic Controller (PLC) and Payload Program Execu-

tion Model

A programmable logic controller (PLC) is a special-purpose computer designed to replace

relay panels and control a physical process [110]. Figure 5.2 presents the general hardware
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and software architecture of PLCs. There are several important characteristics that distin-

guish PLCs from personal computers [101]: PLCs are designed to operate in harsh industrial

environments and are programmed in relay ladder logic or other PLC programming langua-

ges [52]. In addition, a PLC executes a simple payload program in a sequential fashion. Once

deployed in an ICS, a PLC continuously collects readings from sensors connected to its inputs,

runs the PLC payload program, and generates outputs that control the physical process. As

shown in Fig. 5.1, PLC control program can be developed on engineering workstations using

programming software that supports ladder logic or other PLC programming languages and

downloaded to target PLC for execution. Operator of an ICS may monitor and control the

physical process via a human-machine interface (HMI), which communicates with PLCs to

receive real-time process data and issue control commands.

To control and monitor physical process, a PLC’s firmware implements input and output

image tables as well as a program scan cycle [101,110]. A program scan cycle consists of input

scan, program scan, output scan, and housekeeping phases, which are shown in Fig. 5.3. After

system start-up, a PLC repeatedly walks through the four phases of the program scan cycle

as follows: First, in the input scan phase, the PLC firmware samples the I/O pin values and

writes them into the input image table. Then, in the program scan phase, instructions in

the payload program are executed one by one using values stored in the input image table.

Output values are generated during this phase and written into the output image table. Next,

in the output scan phase, values in the output image table are transferred to the external

output terminals, making control actions specified in the payload program take effect. Finally,

in the housekeeping phase, internal checks on memory and system operation are performed.

Additionally, communication requests originated from other hosts (e.g., the HMI) or generated

by the payload program itself are also serviced before the next program scan cycle starts.

5.2.2 PLC Ladder Logic

Many widely-used PLC programming languages are standardized in IEC 61131-3 [52] and

ladder logic is the most commonly used one [101] since it is straightforward to control system

engineers who prefer to define control actions in terms of relay contacts and coils. Instructions
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Figure 5.2: General PLC hardware and software architecture.

specified by ladder logic have their own symbolic representation. A PLC payload program

written in ladder logic has one or more ladder-formatted schematic diagrams. Within each

diagram, ladder logic instructions are organized into rungs. Each rung may contain multiple

ladder logic instructions, which are evaluated from left to right. Instructions on the left of a

rung test input conditions or outputs generated by other rungs, and instructions on the right

generate rung outputs. Multiple input condition checks can be placed in tandem, and the

input logic evaluates to true if and only if all input conditions are true. Parallel branches can

be used on a rung to accommodate more than one input condition combinations. The rung

logic is evaluated to true as long as one of the branches forms a true logic path. When multiple

output branches are present on a rung, a true logic path controls multiple outputs.

Fig. 5.4 shows a sample subroutine of a ladder logic program consisting of three rungs.

The “XIC” instruction on the first rung examines if an input is true. If so, the instruction

evaluates to true. The “OTE” instruction energizes a specified output bit. Input condition

Program 
start-up

Input 
scan

Program 
scan

Output 
scan

House-
keeping

Figure 5.3: PLC payload program execution model.
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of the first rung first checks if input bit I:0/4 or I:0/3 is true and then checks if I:0/0 bit is

true. The output of this rung controls both output bits, i.e., O:2/1 and O:2/2. The second

rung’s input condition is always true, so the subroutine in file U:7 is executed. Note that

the subroutine is essentially another ladder logic diagram. When the subroutine returns, the

second rung completes and the third rung is evaluated, which signals the end of the payload

program. Note that hierarchical addressing is used in ladder logic program to specify the data

type, slot number, and bit position of PLC data and peripherals [101]. For example, I:0/4

is the fifth bit of binary input slot 0 (with the first bit being I:0/0). For analog I/Os, the

hierarchical address is slightly different. For example, O:2.0 is an analog output on the output

module installed on slot 2, and the output value is written to the first (zero-indexed) word of

its allocated memory.

Ladder logic provides a wide range of instructions for PLC engineers to specify control

actions. Bit instructions examine status of individual input/internal bit or control a single

output bit. Word instructions, such as mathematical operations, data transfer, and logical

operations, operate on data words or registers. Program control instructions, such as subrou-

tine invocation and return, control the execution flow of the payload program. For control

program of large and complex ICS, subroutines are frequently used to better organize the

instructions and enhancement maintainability. In addition, communication instructions allow

a PLC to communicate with other hosts via a particular ICS network protocol. From the

perspective of PLC control program development, a malicious payload is essentially a com-

bination of legitimate PLC programming instructions causing disastrous impacts on an ICS.

I:0/4

I:0/3

I:0/0 O:2/1

O:2/2

Jump To Subroutine
JSR

XIC

OTE

SBR File Number  U:7

END

Figure 5.4: A sample ladder logic program with three rungs.
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In this work, we focus on detecting payload attacks implemented via ladder logic, but the

proposed techniques are applicable to attacks written in other languages [52] as well because

different PLC programming languages can be used to implement the same control system

specifications [101].

5.2.3 Firmware vs. Payload Attacks

As revealed by Fig. 5.2, both the PLC firmware and its payload program can become the target

of cyber attacks. An attacker can reverse-engineer and modify the firmware on a PLC to launch

firmware attacks. In this case, even though a legitimate payload program is downloaded to

the PLC, its execution will still be monitored and/or intercepted by the modified firmware.

In [4], a rootkit is developed on the CODESYS PLC runtime to intercept I/O operations of

the payload program. When the payload wants to read or write a certain I/O pin, interrupt

handler installed by the attacker is called first, within which the attacker can reconfigure the

I/O pins or modify values to be read/written. In [41], a more advanced rootkit is developed

for an Allen Bradley CompactLogix PLC firmware. In addition to intercepting PLC inputs

and outputs at the firmware, it incorporates physical-process awareness and always presents

modified sensor measurements, hoaxing ICS operator in front of the HMI to think that the

system runs normally.

Firmware attacks typically requires detailed knowledge on target PLC’s hardware com-

ponents and reverse-engineering of its firmware because PLCs are closed-source embedded

devices [32]. An attacker needs to install the rootkit on PLCs either via the built-in remote

firmware update mechanism or by loading it via JTAG interface [41]. For firmware update

process protected by cryptographic means (e.g., certificate in the X.509 standard), it is hard

to install a modified version of the firmware on the PLC. Alternatively, an attacker can load

modified PLC firmware via JTAG interface. However, such an approach will require physical

access to the PLC and possibly disassembling it.

PLC payload attacks, on the other hand, are much easier to launch. An insider with proper

privileges can easily download (e.g., a disgruntled control system engineer) a malicious payload

program. As shown in Fig. 5.1, such an insider may download a malicious payload program
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via the engineering workstation to one or multiple PLCs. Integrity checks on PLC payload

program cannot effectively prevent such attackers from downloading malicious payload because

warnings on payload program changes can always be overridden once proper privileges are

acquired (e.g., a password allowing engineers to repeatedly download revised payload program

for development and debugging purposes). Alternatively, sophisticated cyber attacks, such

as Stuxnet [38, 71], may include payload attack as a component to induce physical damages

on ICS. Partial knowledge on the physical process can be sufficient to create a malicious

payload using automated tools such as SABOT [88]. In [47], a small-scale challenge shows

that malicious code snippets are likely to evade the scrutiny of code reviewers. Therefore, it

is necessary to develop automated payload attack detection mechanisms to protect physical

infrastructure from PLC payload attacks.

5.2.4 Payload Attack Detection

As payload attacks can easily be launched by insiders or from compromised engineering work-

stations, several techniques that detect payload attacks have been proposed. In [84], a bump-

in-the-wire device, called PLC guard, is introduced to intercept the communication between

an engineering workstation and a PLC, allowing engineers to review the code and compare it

against previous versions. Features of the PLC guard include various levels of graphical ab-

straction and summarization, which makes it easier to detect malicious code snippets. In [66],

an external runtime monitoring device (e.g., a computer or an Arduino microcontroller board)

sits alongside the PLC, monitors its runtime behaviors (e.g., inputs, outputs, timers, coun-

ters), and verifies them against ICS specifications converted from a trusted version of the PLC

payload program and written in interval temporal logic. It is shown that functional properties

of payload program can be verified against ICS specifications, but the types of payload attacks

that can be detected by this approach remain to be explored.

In [89, 143], a trusted safety verifier is introduced as a bump-in-the-wire device that au-

tomatically analyzes payload program to be downloaded onto a PLC and verifies whether

critical safety properties are met using linear temporal logic. However, linear temporal logic

implicitly assumes that states of the systems are observed at the end of a set of time intervals.
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In the case of PLC payload program, snapshot of system states is taken at the end of each

program scan cycle. As a result, real-time properties that does not span multiple program

scan cycles cannot be checked by the trusted safety verifier. For example, a legitimate payload

program is required to energize its output immediately when a certain input pin is energized.

An attacker can inject malicious code and prolong the program scan cycle to cause real-time

property violation while evading code analytics based on linear temporal logic. In [108], the

timer on-delay (TON) ladder logic instruction is modeled using linear temporal logic. The

TON instruction starts a timer when its input condition evaluates to true and energizes its

output (i.e., the “Done” bit) when the timer reaches the preset value. It is shown in [108] that

TON behavior can be approximated with the combination of liveness and fairness properties:

Either TON instruction is not used or TON output bit will eventually be energized. However,

linear temporal logic cannot verify whether the TON output bit is energized at the exact

program scan cycle designated by control system engineers. Therefore, such an approximation

does not capture critical real-time requirements of ICS.

In this work, we introduce runtime behavior modeling and monitoring of PLC payload in

PLC firmware. Our proposed approach complements existing detection techniques and can

detect violations of ICS real-time properties. In addition, our proposed approach does not

require the introduction of any external apparatus that may introduce new vulnerabilities

into ICS.

5.2.5 Runtime Behavior Monitoring for Anomaly Detection

The idea of detecting abnormal program behaviors by monitoring its execution at runtime

has been applied to an rich array of computer systems. Runtime behavior monitoring techni-

ques on operating systems such as Windows, Linux, and Android are reviewed in [34, 136].

However, these techniques cannot be directly applied to PLCs since PLCs are closed-source

systems [32] running specialized firmware and payload programs. System calls utilized by

existing techniques are not available in PLC systems. In [82], a runtime anomaly detector

hardware design is proposed for embedded systems, which eliminates performance overheads

incurred by software-based runtime monitoring methods. In [36], a timing-based PLC program
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anomaly detector is designed. An external data collector is deployed to collect program execu-

tion time measurements and detect unauthorized modifications to the PLC system. In [130],

runtime behaviors are monitored via dedicated hardware performance counters, which are not

widely available in microcontrollers utilized by PLCs. To detect payload attacks in existing

ICS, runtime behavior monitoring technique must utilize only the resources available on micro-

controllers used in existing PLCs and does not require external apparatus (e.g., data collector

proposed in [36]).

5.3 System Overview

5.3.1 Adversary Model

A malicious payload may be directly downloaded by an insider with PLC programming pri-

vilege. For instance, the insider can be a PLC programmer responsible for deploying tested

PLC payload program. However, he/she downloads a different payload, which may be written

anew or modified from the tested version. Since such an attacker has proper privilege to pro-

gram PLCs, integrity checks on PLC payload program can be overridden and will not prevent

malicious payload from being downloaded. For an external attacker, security flaw of other

Table 5.1: Control System Specifications and Legitimate PLC Control Logic.

Control System Specification Legitimate Control System Logic

Digital I/O pins, values &
functionality

Control logic of binary inputs and outputs

Analog I/O pins, value ran-
ges, & functionality

Sensor output and actuator input ranges, control
logic of analog I/Os

Legitimate sequences and ti-
ming relationships of I/O
operations

Control logic of I/Os, possibly controlled by coun-
ters and timers

Network data packet and ti-
ming relationships

Data from network for local control tasks or data
required by remote hosts (e.g., HMI or other net-
worked PLCs), and real-time requirements for these
network events

Network commands and ti-
ming relationships

Control tasks mandated by operator workstation
and their real-time requirements
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ICS components may be exploited to gain access to an engineering workstation, which allows

he/she to download malicious payload. For example, in the Stuxnet attack [71], many poten-

tial attack vectors, including the PLC programming environment, are exploited to eventually

compromise a PLC-connected engineering workstation.

We assume that the attacker is not capable of changing the PLC firmware, which requires

either attacking the cryptographically protected firmware image or loading modified firmware

directly via JTAG interface. Therefore, firmware-level detection mechanism proposed in this

work is not tampered by the attacker. The goal of a payload attack is not limited to blocking

legitimate outputs, causing system interruption, and destruction of system equipment. Sophi-

sticated attacks such as the PLC blaster worm [122] which replicates itself to other PLCs can

also be launched. However, such attacks download a payload program that are significantly

different from the legitimate version in terms of program size and functionality, which can

be identified by human operator monitoring the control system. In this chapter, we consider

stealthy payload attacks that are modified from legitimate payload programs. Such attacks

preserve certain legitimate payload properties (e.g., always sending sensor readings requested

by HMI) while carrying out malicious tasks.

5.3.2 PLC Program Development Process and Control System Specificati-

ons

To develop PLC payload program for an ICS, the following process is typically adopted by

PLC engineers:

1. Specification Formulation. Control tasks to be carried out by a PLC are identified

and input/output signals required by these tasks are defined. The logical sequence of

operations for the PLC are specified, e.g., in the form of sequence table, flow chart, or

relay schematic [101].

2. PLC Program Development. At this step, PLC program is developed based on the

formulated specifications. Although an engineering team usually has its own set of

guidelines and best practices on program organization and documentation, the generated

PLC payload always aims to accurately implement the specifications. At this stage, an
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attacker (e.g., a disgruntled control system engineer) may collect legitimate payload

program and modify it to generate malicious payload.

3. Testing. Before deploying the PLC program, PLC engineers need to test the program

via simulation or under some test environment. Safety properties (e.g., a circuit breaker

must trip if a fault is detected) can be provided by system operators and/or identified

during specification formulation. In addition, different combinations of input values

are fed to the PLC to ensure that correct responses are taken under different system

operation scenarios. Although the test cases may not be exhaustive (e.g., it is hard to

implement all test cases when analog inputs are used), important system properties,

such as safety and real-time requirements, should always be validated.

4. Maintenance. After an initial version of the PLC control program is deployed, the ICS

may go through hardware upgrades and design improvements. Accordingly, the speci-

fications should be updated and the PLC program should be revised. After necessary

testing, the new payload is downloaded to the PLC.

In this work, we assume that control system specifications, such as the number of I/Os,

functionality of each I/O pin, and possible ranges of I/O values, are available. Such specificati-

ons are usually provided by the control system engineering team that develops the legitimate

payload program. Table 5.1 summarizes the control system specifications required by our

detection mechanism and the corresponding legitimate control system actions. For instance,

when designing the legitimate payload, a digital output pin may be used to control a circuit

breaker to trip. The engineering team knows whether a “0” or a “1” corresponds to the “trip”

signal, so it is straightforward to generate control system specifications describing the functi-

onality of this output pin. To implement control operation sequences (e.g., tripping a circuit

breaker and then re-closing it), timers and counters are generally used. When the legitimate

payload program is created, timers and counter must be properly configured to control the

temporal behaviors of the payload program. These configurations can then be converted into

timing relationships among I/O and network events.
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5.3.3 Payload Attack Detection at PLC Firmware

Using control system specifications, runtime behavior model of legitimate PLC payload pro-

gram is established and stored in the PLC firmware. The timing relationships between inputs

and outputs, the number of network packets generated after different control actions, as well

as timing relationships between I/O and network events, are modeled. By modifying the PLC

firmware, runtime behaviors of the payload program (e.g., I/O and network access patterns)

are time-stamped and compared against the established runtime behavior model. In addition,

a backup version of the output image table is separately stored by the firmware at the be-

ginning of each program scan cycle. If a certain abnormal runtime behavior is detected, the

backup output image table is loaded to overwrite the output generated by the payload. As

a result, any output related to the detected abnormal runtime behavior will not affect the

physical system. For PLC payload sending/receiving network packets, network requests are

also blocked when a runtime behavior anomaly is detected by the firmware.

5.4 System Design

5.4.1 PLC Payload Runtime Behavior Model

Given the control system specifications, it is possible to create a runtime behavior model for

legitimate PLC payload. Suppose that we need to create control system specifications for the

PLC shown in Fig. 5.5. In this figure, sample specifications for I/O terminals and the network

port is provided. We note that timing relationships are not shown in Fig. 5.5. The information

categorized in Table 5.1 allows us to create the runtime behavior model as follows: First, the

number of (analog and digital) I/Os and their feasible values are determined. For instance,

for digital input I:0/0 in Fig. 5.5, its legitimate values are “1” and “0”. For analog input I:1.0

(note that the notation for analog I/Os is different from that for digital I/Os as mentioned

in Sec. 5.2.2), the legitimate value ranges are 0∼3V and 12∼15V. In the PLC firmware, such

information can be stored as a table (see Fig. 5.6 for an example), with each row storing the

legitimate values/ranges of a particular pin. We call this table the I/O event table.

Next, the number of network packets received or sent by the legitimate payload are ex-
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Figure 5.5: PLC wiring diagram with sample control system specifications for I/O and network
events.

tracted from the specifications. Since PLC payload program is designed to control physical

process, network packets are typically associated to specific I/O conditions. For instance, when

an alarm signal is energized to sound a horn, the same alarm signal is usually transmitted via

a network packet to the HMI at the same time. When a process data request from the HMI is

received, the PLC generates process data response(s) to transmit the requested data. In the

PLC firmware, network event information can be stored as a table with two rows (see Fig. 5.6

for an example). The first row lists the numbers of network packets that can be received, and

the second row lists those that can be sent. We call this table the network event table. Using

the I/O and network event tables, we are able to model the legitimate runtime behaviors of

I/Os and network port(s) at any particular time instant.

Then, timing relationships between inputs, outputs, and network accesses are established.

To store these relationships, a sparse matrix is created in the PLC firmware (see Fig. 5.6 for

an example). We call this sparse matrix the timing behavior matrix. Both the rows and the

columns of the matrix are indexed by legitimate I/O and network operations. For instance, the

I:0/0:1 event in the matrix in Fig. 5.6 represents the I/O event where digital input pin I:0/0
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is set to HIGH. Each column of the matrix represent a particular payload program action,

whereas the rows with non-zero values represent its preconditions. For instance, the matrix

in Fig. 5.6 indicates that there are four preconditions under which a network packet will be

generated and sent by a legitimate PLC payload. Note that the non-zero value in the matrix

represent the maximum time (in microseconds) within which a column event will occur.

Once all information provided in the control system specifications is converted into a

runtime behavior model, three tables are stored into the PLC firmware (i.e., the I/O event

table, the network event table, and the timing behavior matrix). These tables will only be

updated if changes to the control system specifications are made (e.g., additions of new sen-

sors/actuators). When a PLC payload is downloaded to a PLC, the PLC firmware assumes

that its runtime behaviors match the ones specified in the supplied control system specifi-

cations. Any deviation from the encoded runtime behavior model will be regarded as an

anomaly.

5.4.2 Payload Attack Detection at PLC Firmware

Our detection scheme introduces runtime behavior monitoring into the PLC firmware and

compares the runtime behaviors of the currently deployed payload against the runtime behavior

model established from control system specifications. To implement the proposed detection

scheme, the following modifications to the PLC firmware are incorporated:

Logging Access to Input and Output Images

As introduced in Sec. 5.2.1, input image is updated before each run of the payload program,

and output image is updated after each run. In existing PLC firmware, I/O reads move

values from the input/output image to a designated memory location. When an output pin is

written, value stored in a memory location is moved to the output image table. To receive/send

a packet, receive/transmit queue is either explicitly (via ladder logic instruction) or implicitly

(at the end of the housekeeping phase) queried. To monitor the I/O and network access

patterns, we modify the implementation of PLC firmware to log the system time-stamp of

these operations. This can be achieved by setting up the memory protection unit (MPU)
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Figure 5.6: A sample runtime behavior model established based on control system specificati-
ons in Fig.5.5, consisting of two tables and a sparse matrix.

to enter interrupt when the user program accesses the input/output images or the network

queues. In existing PLC firmware, a separate system timer is typically supported. This timer

provides the time-stamps for the I/O and network events to be monitored. If I/O images are

accessed, the interrupt handler decodes the I/O pin address and log the time-stamp of the

operation. Suppose that the same input pin is accessed multiple times during a single program

scan cycle, only the time-stamp of the first read operation is logged. For an output pin, both

the first read and the last write operations are time-stamped. For access to network queues,

the number of packets received/sent is logged and time-stamped. Time-stamps of I/O and

network operations are stored in a separate table (known as the runtime time-stamp table)

in the PLC firmware. Each entry of the table corresponds to a particular I/O event (e.g., a

legitimate I/O value is observed) or network event (e.g., a legitimate number of packets are

sent).

In our current implementation, the maximum number of time-stamps logged by the run-

time time-stamp table is 10 for each I/O event. If more than 10 time-stamps are collected,

newly generated time-stamps will be discarded. We log the time-stamp for the first I/O read

operation and last output operation within each program scan cycle because control system

specifications typically use the observation of an I/O value on the physical process as precon-
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dition. Take the output pin O:2/8 in Fig. 5.5 as an example. Even if the payload program

operates on O:2/8 multiple times during a program scan cycle, it is the last value written

into the output image that will actually take effect. For each legitimate network event, our

current implementation logs a maximum of 20 time-stamps. Newly collected time-stamps will

be discarded if there are already 20 time-stamps pending in the table.

Validating Runtime Behaviors

When time-stamping I/O and network events, any event that is not included in the I/O and

network event tables is regarded as an abnormal runtime event. In addition, a separate sparse

matrix (known as the runtime sparse matrix ) is created and maintained in the PLC firmware

to keep track of the timing relationships at runtime. The sparse matrix is also updated in

the MPU interrupt handler. Runtime behaviors specified in the timing behavior matrix are

validated in the output scan phase before the values in the output image are transferred

to external output terminals. If any of the preconditions specified by the runtime behavior

model are met, the timing relationships are checked. If an event occurs but none of its

preconditions are active, a runtime behavior anomaly is detected. Take the timing behavior

matrix in Fig. 5.6 as an example. Suppose that during a program scan cycle, we observe two

occurrences of the event “Send:1”. For the first time-stamp of “Send:1”, we check the all the

time-stamps for its preconditions. If any of the timing relationships is met, the corresponding

entry in the runtime sparse matrix is cleared. In the runtime time-stamp table, the oldest

time-stamp for the corresponding precondition event is removed. If a violation of the timing

relationship is detected, a runtime behavior anomaly is found and the execution of the payload

program should be terminated. Then, for the second time-stamp of “Send:1”, previously

cleared precondition fields are set if the corresponding entries in runtime time-stamp table

have pending time-stamps. The timing relationships for “Send:1” are then validated again.

Backing Up the Output Image

At the beginning of each program scan cycle (i.e., in the input scan phase), a backup version of

the output image table is separately stored by the PLC firmware. Values in this backup image
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are simply the output of the preceding program scan cycle. If runtime behavior anomaly

is detected at the current program scan cycle, the backup image is used to overwrite the

output image generated by the payload program. In this way, output values corresponding to

illegitimate payload program behaviors are blocked.

Canceling Network Send/Receive Requests

There are two scenarios where network send/receive requests generated by ladder logic in-

structions are processed: Network send/receive requests generated by a payload program are

always processed in the housekeeping phase. To block these packets, we modify the firmware

so that all pending network requests are cleared in the output scan phase if runtime behavior

anomaly is detected. Alternatively, a subset of network-related ladder logic instructions can

request the PLC firmware to service pending network tasks immediately. To prevent such

network access, the implementation of MPU interrupt handler is further modified to check the

preconditions of requested network operations. Suppose that a network-related ladder logic

instruction is executed, after the network requests are generated (e.g., four packets will be

retrieved from the receive queue), the firmware first enters the MPU interrupt handler and

checks the preconditions of the requested network event. If any of the preconditions is met yet

the corresponding timing relationship is violated, the network requests will not be executed

because a runtime behavior anomaly is detected.
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Figure 5.7: Maximum memory utilization of unmodified and modified PLC firmware running
PLC payload programs with different numbers of utilized analog outputs.
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Figure 5.8: Maximum execution time of PLC programs with different numbers of utilized
analog outputs.

It should be noted that our proposed detection scheme can easily be customized to notify

ICS operators of the detection of PLC payload attacks. Suppose an on-site operator is to be

notified, an extra output pin can be energized to set up an alarm during the output scan phase

when runtime behaviors are examined. It is also possible to send out an alarm message to a

remote HMI during this phase after the runtime behavior validation is done.

5.5 Evaluation

We implement the proposed payload attack detection method on Texas Instruments TM4C12x

ARM® Cortex®-M4F core-based microcontrollers. Payload attacks are written in ladder lo-

gic, which are converted into machine code and loaded onto the PLC prototype. Hardware

resources of the chosen microcontroller series are the currently active equivalents to the mi-

crocontrollers used by existing PLCs [41]. Memory protection unit (MPU) and system timer

are available to implement our proposed detection scheme. Runtime behavior data collected

by the PLC firmware is read from an Universal Asynchronous Receiver/Transmitter (UART)

module connected to a PC. We first evaluate the overhead of implementing the proposed

detection mechanism and then its detection performance.
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5.5.1 Memory Overhead

Memory overhead of implementing the proposed detection method comes from both the firm-

ware and payload levels. In the PLC firmware, runtime behavior model converted from control

system specifications needs to be stored. Extra tables and sparse matrix are required to time-

stamp and keep track of the runtime behaviors of the currently deployed payload. The sizes

of these matrices and tables will grow as the number of I/O and network events specified in

the control system specifications grows. In addition, interrupt handler for the MPU as well

as initialization code for the system timer and MPU need to be added to the PLC firmware.

In our prototype, these firmware modifications translate to about 200 lines of assembly code

(compared to the unmodified PLC firmware with about 6000 lines of assembly code).

To evaluate whether the memory overhead of our proposed detection mechanism is accep-

table, we create payload programs utilizing different numbers of I/Os and generating different

numbers of network packets. Note that each of these payload programs generates two types

of network events (i.e., sending two packets or receiving one packet within each program scan

cycle) and utilizes 16 digital I/Os. The number of analog outputs utilized by these payload

programs varies from 0 to 16. Each analog output has two legitimate value ranges. The timing

relationships in the control system specifications all describe preconditions for analog outputs.

These payload programs are then loaded onto our PLC prototype twice: First, unmodified

PLC firmware is used to execute the payload programs and the maximum sizes of the PLC

firmware in the RAM are logged. Then, PLC firmware with our payload detection mechanism

is used and the maximum firmware sizes are also recorded. Fig. 5.7 shows the memory over-

head of implementing our PLC payload attack detection method in our PLC prototype. For

a PLC system with 16 analog outputs, the memory overhead (compared to unmodified PLC

firmware) is about 1 kB, which translates to a 3% increase in memory size. This memory

overhead is acceptable for existing PLC systems on the market, which typically have more

than 32 kB of memory [101].
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Figure 5.9: Sample power substation protection system implemented by multiple PLCs.

5.5.2 Execution Time Overhead

PLC payload program needs to satisfy execution time requirements in order to control physical

process correctly. If a program scan cycle takes too long to complete, the PLC will not be

able to track the changes of the physical process and generate control outputs timely. Since

our payload detection mechanism incorporates runtime behavior monitoring and validations

Table 5.2: Attack Instances Implemented on PLC Prototype

Attack Instance Group Description

Illegitimate analog in-
puts (Group 1, 5 in-
stances)

Scaling factors of analog input modules are modified by
attacker to generate out-of-range input values.

Illegitimate network
events (Group 2, 5
instances)

When trip coils are energized, the attack payload
sends process data to multiple pre-specified destinati-
ons. When process data request is received, a packet
containing intentionally modified process data is sent.

Illegitimate I/O event
timing (Group 3, 5 in-
stances)

Trip coils are not energized within 1000 µs when a
voltage/current fault is detected.

Illegitimate network
event timing (Group 4,
5 instances)

Packet containing up-to-date process data is not sent
within 500 µs after process data request is received.
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in the PLC firmware, it is necessary the ensure that execution time of the program scan cycle

does not significantly increase.

To evaluate the execution time overhead of the proposed detection mechanism, we measure

the execution time of the payload program instances created in Sec. 5.5.1. Each payload

program are executed for 1,000 program scan cycles on both unmodified and modified PLC

firmware. Note that we added six extra assembly instructions in the PLC firmware to set up

an extra output pin of the prototype PLC: At the beginning of each program scan cycle, this

pin is set to HIGH. At the end of each program scan cycle, this pin is set to LOW. Fig. 5.8

shows the maximum execution time of the payload program instances. The average increase

in maximum execution time is about 65 µs, which is far above the typical execution time of

PLC payload programs (e.g., 1∼10 ms [101]).

5.5.3 Detection Performance

To evaluate the detection performance of our proposed method, our PLC prototype emulates

PLC A shown in Fig. 5.9. To implement the protection tasks assumed by PLC A, four analog

inputs and two digital outputs are utilized. Our control system specifications require that

both circuit breakers are tripped within 1000 µs once a voltage/current fault is detected on

either side of the transformer. In addition, when process data request (sent by a PC emulating

an HMI) is received, a packet containing up-to-date current and voltage readings must be sent

within 500 µs. We create 20 different payload attack instances, which can be categorized into

the four groups and are described in Table 5.2. Each payload attack instance is executed for

10 times (each run consisting of 1,000 program scan cycles). Table 5.3 shows the detection

results when running the payload attacks on modified PLC firmware. 19 out of the 20 payload

attack instances can always be detected during our evaluation, which shows that our proposed

detection mechanism can help prevent PLC payload attacks without introducing external

apparatus.

One of the attack instances (Group 2, Instance 2) cannot always be detected. This attack

instance either generates illegitimate outputs or transmits modified process data as network

packets. When it sends network packets, it simply modifies the process data values stored in
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Table 5.3: Attack Instances and Detection Results

Group/ID 1 2 3 4 5 6 7 8 9 10

1/1 X X X X X X X X X X

1/2 X X X X X X X X X X

1/3 X X X X X X X X X X

1/4 X X X X X X X X X X

1/5 X X X X X X X X X X

2/1 X X X X X X X X X X

2/2 X X × × X X × X × X

2/3 X X X X X X X X X X

2/4 X X X X X X X X X X

2/5 X X X X X X X X X X

3/1 X X X X X X X X X X

3/2 X X X X X X X X X X

3/3 X X X X X X X X X X

3/4 X X X X X X X X X X

3/5 X X X X X X X X X X

4/1 X X X X X X X X X X

4/2 X X X X X X X X X X

4/3 X X X X X X X X X X

4/4 X X X X X X X X X X

4/5 X X X X X X X X X X

memory before they are encapsulated. The preconditions of this network events are still met

and the timing relationships are not violated. Although this attack instance can sometimes

evade our detection, it can be easily identified by existing detection methods against false data

injection attacks [35].

5.6 Conclusion

In this chapter, we propose the detection of PLC payload attacks via runtime behavior mo-

nitoring in PLC firmware. Through modeling and monitoring the runtime behaviors, our

proposed firmware enhancements can detect abnormal runtime behaviors of malicious pay-

load. Using our proof-of-concept PLC prototype, we show that the proposed approach can

identify a wide variety of PLC payload attacks revealed by prior research. In addition, our

evaluations show that the execution time and memory overhead of the proposed detection
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mechanism are acceptable for existing PLC firmware. Our proposed approach complements

existing bump-in-the-wire solutions in that it can detect payload attacks that violate real-time

requirements of ICS operations.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this dissertation, we study two important aspects of smart grid infrastructure, i.e., worst-

case delay performance and cybersecurity, and extend the application of some of our results

to networked cyber-physical systems. In power substation automation systems (SASs) based

on IEC 61850, conventional hardwired process connections are being replaced by switched

Ethernet. To ensure system reliability and responsiveness, transmission of critical information

required by protection and control tasks must satisfy hard delay constraints at all times. The-

refore, delay performance conformance should be taken into consideration during the design

phase of an SAS project. In addition, Ethernet-based network infrastructure is becoming in-

creasingly popular in many industrial control systems. Deterministic delay performance must

also be analyzed for these systems, which typically have non-feedforward traffic patterns and

applications with different criticality levels.

Recently, wireless communication technologies, such as Wireless Local Area Networks

(WLANs), have gained increasing popularity in industrial control systems (ICSs) due to their

low cost and ease of deployment, but communication delays associated with these techno-

logies make it unsuitable for critical real-time and safety applications. To address concerns

on network-induced delays of wireless communication technologies and bring their advantages

into modern ICSs, wireless network infrastructure based on the Parallel Redundancy Proto-
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col (PRP) has been proposed. Although application-specific simulations and measurements

have been conducted to show that wireless network infrastructure based on PRP can be a

viable solution for critical applications with stringent delay performance constraints, little has

been done to devise an analytical framework facilitating the adoption of wireless PRP infra-

structure in miscellaneous ICSs. In addition, traffic patterns on wireless PRP network are

non-feedforward, making existing analytical approaches based on network calculus inapplica-

ble. To facilitate design and optimization of wireless PRP infrastructure with time-critical

services, it is of vital necessity to devise an analytical method to find flow-specific worse-case

network-induced delays.

Supervisory Control and Data Acquisition (SCADA) systems monitor and control critical

infrastructure such as the smart grid. As SCADA systems become increasingly interconnected

and adopt more and more cyber-enabled components, the risks of cyber attacks become a ma-

jor concern. Due to their decentralized organization, peer-to-peer (P2P) botnets are resilient

to many existing takedown measures and can be exploited as an effective way to launch cyber

attacks on SCADA systems. However, little work has been done to detect P2P botnets in

SCADA systems, which carry traffic flows with characteristics significantly different from the

Internet. In addition, network-based cyber attacks on field devices are also one of the major

cyber threats to ICS network infrastructure. Field devices and computing nodes in ICSs are

subjected to both conventional network attacks and specialized attacks purposely crafted for

SCADA network protocols. Proper methods and algorithms are needed to protect SCADA

networks from emerging threats such as P2P botnets as well as attacks on SCADA protocols.

Besides network attacks, attacks on programmable logic controller (PLC), which is a critical

component of industrial control system (ICS), also need to be properly addressed. Providing

hardware peripherals and firmware support for control program (i.e., a PLC’s “payload”) writ-

ten in languages such as ladder logic, PLCs directly receive sensor readings and control ICS

physical process. An attacker with access to PLC development software (e.g., by compromi-

sing an engineering workstation) can modify the payload program and cause severe physical

damages to the ICS. The ultimate purpose of many reported cyber attacks on SCADA systems

is to gain access to PLCs and induce physical damages to the system process. Therefore, it is
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of critical importance to protect field devices such as PLCs from payload attacks.

Addressing concerns on worst-case delay performance and cybersecurity of smart grid

infrastructure, the contributions of this dissertation can be summarized as follows:

� A worst-case delay performance framework for Ethernet-based network infrastructure

with non-feedforward traffic patterns. In Chapter 2, we study the worst-case delay per-

formance of IEC 61850-9-2 process bus networks, which generally carry non-feedforward

traffic patterns, through the combination of measurements and network-calculus-based

analysis. Further refining our approach designed for Ethernet-based network infrastruc-

ture, we also apply it to other networked cyber-physical systems (NCPSs) and show that

our method is able to derive useful bounds for NCPS applications with hard-real-time

requirements.

� A method of deriving closed-form expressions of worst-case delays for wireless PRP net-

works. Leveraging the deterministic network calculus (DNC) theory, we propose in

Chapter 3 to analytically derive worst-case bounds on network-induced delays for cri-

tical ICS applications. We show that the problem of worst-case delay bounding for a

wireless PRP network can be solved by performing network-calculus-based analysis on

its non-feedforward traffic pattern. Closed-form expressions of worst-case delays are

derived, which has not been found previously and allows ICS architects/designers to

compute worst-case delay bounds for ICS tasks in their respective application domains

of interest. Our analytical results not only provide insights into the impacts of network-

induced delays on latency-critical tasks but also allow ICS architects/operators to assess

whether proper wireless RPR network infrastructure can be adopted into their systems.

� Intrusion and botnet detection for SCADA networks. In Chapter 4, we design a P2P-

botnet detection method for SCADA systems, leveraging built-in traffic monitoring ca-

pabilities of SCADA networking devices. We propose to use unsupervised learning for

P2P-botnet identification, which not only identifies known P2P botnets but also cap-

tures newly emerged ones. In addition, we propose a deep-learning-based network in-

trusion detection system for SCADA networks to protect ICSs from both conventional
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and SCADA specific network-based attacks. Instead of relying on hand-crafted features

for individual network packets or flows, our proposed approach employs a convolutional

neural network (CNN) to characterize salient temporal patterns of SCADA traffic and

identify time windows where network attacks are present. We incorporate a re-training

scheme to handle previously unseen network attack instances, enabling SCADA system

operators to extend our neural network models with site-specific network attack traces.

Our results using realistic SCADA traffic data sets collected from energy-delivery sy-

stem test beds show that the proposed deep-learning-based approach is well-suited for

network intrusion detection in SCADA systems, achieving high detection accuracy and

providing the capability to handle newly emerged threats.

� Detecting payload attacks on PLC control programs. To protect critical ICS infrastruc-

ture, we propose to model runtime behaviors of legitimate PLC payload program and use

runtime behavior monitoring in PLC firmware to detect payload attacks in Chapter 5.

By monitoring the I/O access patterns, network access patterns, as well as payload pro-

gram timing characteristics, our proposed firmware-level detection mechanism can detect

abnormal runtime behaviors of malicious PLC payload. Using our proof-of-concept im-

plementation, we evaluate the memory and execution time overhead of implementing

our proposed method and find that it is feasible to incorporate our method into existing

PLC firmware. In addition, our evaluation results show that a wide variety of payload

attacks can be effectively detected by our proposed approach. The proposed firmware-

level payload attack detection scheme complements existing bump-in-the-wire solutions

(e.g., external temporal-logic-based model checker) in that it can detect payload attacks

that violate real-time requirements of ICS operations and does not require any additional

apparatus.

6.2 Future Work

Built upon this dissertation, multiple research problems can be future explored. This section

summarizes a few research directions that can be pursued in the future.
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6.2.1 Time-varying deterministic network calculus (DNC) for delay perfor-

mance analysis

So far, two major limitations of state-of-the-art methods of applying deterministic network

calculus have been observed. On the one hand, existing methods are designed for tandem

or feedforward networks, whereas practical applications may impose non-feedforward traffic

patterns. This limitation is addressed by Chapters 2 and 3. On the other hand, the envelope

(or bounding) models introduced by existing approaches are time-invariant. Although the

functional forms of these models can be flexibly chosen (e.g., piecewise linear arrival and

service curves become popular in recently proposed approaches such as [13, 120]). As time-

invariant models have limited representative power, network flows with fast-changing traffic

profiles cannot be properly modeled. In addition, networking nodes in wireless networks often

offer time-varying service curves, which cannot be accurately modeled by the state-of-the-art

piecewise-linear rate-latency service curve models. To address this limitation, we expect to

introduce time-variant models (e.g., [28]) into our analytical framework, both enhancing the

expressiveness of the models and facilitating further utilization of information included in

measurements.

6.2.2 Extending existing time-invariant network calculus for other cyber-

physical systems (CPSs)

Network-calculus-base delay performance analysis has been applied to many CPS applications.

As one of our future directions, we would like to explore the application of network-calculus-

based analysis to problems in systems other than the smart grid. For instance, as safety-critical

applications start to leverage intra-vehicular networks [127], worst-case delay performance of

such networks needs to be rigorously analyzed. Existing methods (e.g., [103]) only provide case-

specific analyses, whereas algorithms giving sufficiently tight bounds under non-feedforward

traffic patterns are yet to be validated. As another example, resource contention among mul-

tiple tasks served by a system-on-chip (SoC) or network-on-chip (NoC) system can also be

modeled by network calculus [49]. Existing work (e.g., [46, 128]) introduces network-calculus

models to analyze different resource contention scenarios, but a general framework that can
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be incorporated into the design toolchain of NoC/SoC design has not been established. By

introducing proper extensions and adaptations, we expect to devise a principled approach

to analyzing miscellaneous systems, including intra-vehicular networks [103], SoC/NoC sy-

stems [46], as well as quality-of-service provisioning and load balancing in software-defined

networks (SDNs).

6.2.3 Network Traffic Analytics for Industrial Control Systems (ICSs)

To further enhance cybersecurity of SCADA systems, algorithms detecting attacks on SCADA

protocols such as IEC 61850, Inter-Control Center Communication Protocol (ICCP), and Mod-

bus protocol, still need to be developed. In addition to intrusion detection, the data collection

method proposed in Chapter 4 can be exploited to develop other applications to enhance the

efficiency, robustness, and resilience of industrial control systems. For instance, automated

fault diagnosis [80] has been realized in zero-energy buildings using sensor readings and actu-

ator status data. However, it remains to be examined whether fault/anomaly detection can

be realized in critical industrial applications with data from a partial set of sensors and actu-

ators (because there may be ICS filed devices that are not connected to network). We expect

to further study network traffic generated by various applications and design data analysis

system that can be incorporated into ICS network infrastructure.
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