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Abstract

As the technologies scaling down, more transistors can be fabricated into the same

area, which enables the integration of many components into the same substrate,

referred to as system-on-chip (SoC). The components on SoC are connected by on-

chip global interconnects. It has been shown in the recent International Technology

Roadmap of Semiconductors (ITRS) that when scaling down, gate delay decreases,

but global interconnect delay increases due to crosstalk. The interconnect delay

has become a bottleneck of the overall system performance. Many techniques have

been proposed to address crosstalk, such as shielding, buffer insertion, and crosstalk

avoidance codes (CACs). The CAC is a promising technique due to its good crosstalk

reduction, less power consumption and lower area. In this dissertation, I will present

analytical delay models for on-chip interconnects with improved accuracy. This

enables us to have a more accurate control of delays for transition patterns and lead

to a more efficient CAC, whose worst-case delay is 30-40% smaller than the best

of previously proposed CACs. As the clock frequency approaches multi-gigahertz,

the parasitic inductance of on-chip interconnects has become significant and its

detrimental effects, including increased delay, voltage overshoots and undershoots,

and increased crosstalk noise, cannot be ignored. We introduce new CACs to address

1



both capacitive and inductive couplings simultaneously.

Quantum computers are more powerful in solving some NP problems than the

classical computers. However, quantum computers suffer greatly from unwanted in-

teractions with environment. Quantum error correction codes (QECCs) are needed

to protect quantum information against noise and decoherence. Given their good

error-correcting performance, it is desirable to adapt existing iterative decoding al-

gorithms of LDPC codes to obtain LDPC-based QECCs. Several QECCs based

on nonbinary LDPC codes have been proposed with a much better error-correcting

performance than existing quantum codes over a qubit channel. In this disserta-

tion, I will present stabilizer codes based on nonbinary QC-LDPC codes for qubit

channels. The results will confirm the observation that QECCs based on nonbinary

LDPC codes appear to achieve better performance than QECCs based on binary

LDPC codes.

As the technologies scaling down further to nanoscale, CMOS devices suffer

greatly from the quantum mechanical effects. Some emerging nano devices, such

as resonant tunneling diodes (RTDs), quantum cellular automata (QCA), and sin-

gle electron transistors (SETs), have no such issues and are promising candidates

to replace the traditional CMOS devices. Threshold gate, which can implement

complex Boolean functions within a single gate, can be easily realized with these

devices. Several applications dealing with real-valued signals have already been re-

alized using nanotechnology based threshold gates. Unfortunately, the applications

using finite fields, such as error correcting coding and cryptography, have not been

realized using nanotechnology. The main obstacle is that they require a great num-

ber of exclusive-ORs (XORs), which cannot be realized in a single threshold gate.

2



Besides, the fan-in of a threshold gate in RTD nanotechnology needs to be bounded

for both reliability and performance purpose. In this dissertation, I will present a

majority-class threshold architecture of XORs with bounded fan-in, and compare it

with a Boolean-class architecture. I will show an application of the proposed XORs

for the finite field multiplications. The analysis results will show that the majority

class outperforms the Boolean class architectures in terms of hardware complexity

and latency. I will also introduce a sort-and-search algorithm, which can be used

for implementations of any symmetric functions. Since XOR is a special symmet-

ric function, it can be implemented via the sort-and-search algorithm. To leverage

the power of multi-input threshold functions, I generalize the previously proposed

sort-and-search algorithm from a fan-in of two to arbitrary fan-ins, and propose an

architecture of multi-input XORs with bounded fan-ins.

3



Chapter 1

Introduction

In many communication systems, such as on-chip interconnects and quantum sys-

tems, interferences from the system and environment often aggravate the perfor-

mance and lead to functional issues. Techniques, such as crosstalk avoidance coding

and error correction coding, have been proposed to address these issues. In nan-

otechnologies, conventional implementations of Boolean operations are quite differ-

ent from CMOS technology and new techniques are needed for efficient implementa-

tions. In this proposal, we investigate and propose such signal processing techniques

to address issues in these systems.

In the following, we first give a brief introduction and show the motivations of

our work. Then, we present the main results of our work.
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1.1 Motivations

1.1.1 Delay modeling for On-Chip Interconnects

With the process technologies scaling down into deep submicrometer, coupling

capacitance between adjacent wires becomes more significant and increases the

crosstalk delays greatly. Recent International Technology Roadmap of Semicon-

ductors (ITRS) [1] shows that gate delay decreases with scaling while global wire

delay increases. The crosstalk delay becomes a major part of the total delay, and

greatly affects the overall system performance.

To evaluate and alleviate crosstalk delays, various delay models of interconnects

have been proposed recently (see, for example, [2–7]), most of which are based

on numerical approaches and offer little insight (see, e.g., [2–5]). Although these

numerical models can have high accuracy, they have several drawbacks, such as bulky

lookup tables, dependence on technology, poor portability, and high complexity.

In contrast, analytical delay models (see, e.g., [6, 7]) depend on few technology

parameters and have very low computational complexities. The model in [6] has

much higher accuracy. However, it is not conductive to alleviate the crosstalk.

One widely used analytical delay model, proposed by Sotiriadis et al. [7], illustrates

the connection between delays of coupled interconnects and transition patterns and

appears to be the most comparable previous delay model. However, the model in [7]

has limited accuracy. To improve accuracy, we focus on closed-form expressions of

the signals on the bus based on a distributed RC model, and approximate the wire

delays by evaluating these closed-form expressions.

5
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1.1.2 Crosstalk Avoidance Codes

The analytical model proposed by Sotiriadis et al. [7], a widely used delay model,

gives upper bounds on the delay of all wires on a bus. In this model, the delay of

the k-th wire depends on the transition patterns of at most three wires, k − 1, k,

and k + 1 only. From [7], the delay of the k-th wire (k ∈ {1, 2, · · · , m}) of an m-bit

bus is given by

Tk =























τ0[(1 + λ)∆2
1 − λ∆1∆2], k = 1

τ0[(1 + 2λ)∆2
k − λ∆k(∆k−1 +∆k+1)], k 6= 1, m

τ0[(1 + λ)∆2
m − λ∆m∆m−1], k = m,

(1.1)

According to this model, there are five classes of transition patterns, denoted by iC

for i = 0, 1, 2, 3, 4, each of which has a delay (1 + iλ)τ0. This classification enables

one to limit the worst-case delay over a bus by restricting the patterns transmitted

on the bus. That is, by avoiding all transition patterns in iC for i > i0, one can

achieve a worst-case delay of (1+ i0λ)τ0 over the bus. Based on this basic principle,

crosstalk avoidance codes (CACs) of different worst-case delays have been proposed

recently (see, for example, [8–10]). For example, forbidden overlap codes (FOCs),

forbidden transition codes (FTCs), forbidden pattern codes (FPCs), and one lambda

codes (OLCs) achieve a worst-case delay of (1 + 3λ)τ0, (1 + 2λ)τ0, (1 + 2λ)τ0, and

(1 + λ)τ0, respectively. In theory, a worst-case delay of τ0 can be achieved by

assigning two protection wires to each data wire [9].

The classification of transition patterns based on the model in [7] has two draw-

backs. First, the model in [7] has limited accuracy because of its dependence on

only three wires. That is, the model overestimates the delays of patterns in 1C

6
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through 4C, while it underestimates the delays of patterns in 0C. For this reason,

the scheme with a worst-case delay of τ0 is invalid since its actual delay is much

greater. Second, the actual delay ranges in some classes overlap with others in their

adjacent classes.

This, plus the overestimation of delays for 1C through 4C, implies that the

delays of existing CACs are not tightly controlled. These drawbacks motivate us to

include more wires and to classify the transition patterns without overlapping delay

ranges.

1.1.3 Quantum Error Correction

Quantum computers are more efficient than classical computers for some computa-

tional problems, such as factoring a large number and searching an unknown space

for an element satisfying a known property [11]. However, quantum information,

represented by quantum bits or qubits, suffers greatly from unwanted interactions

with the outside world. Thus, quantum error correction codes (QECCs) are needed

to protect quantum information against noise and decoherence [11].

Many QECCs have been proposed in the literature by importing classical er-

ror correction codes, such as low-density parity-check (LDPC) codes, convolutional

codes, Turbo codes, and polar codes (see, for example, [12–21]). Among them,

QECCs based on LDPC codes (see, for example, [12,13,16,17]) are important, since

they can be decoded by adapting existing iterative decoding algorithms. As classical

LDPC codes have asymptotically good performance for a wide class of noisy chan-

nels when decoded by the belief propagation algorithm [22], well-designed quantum

LDPC codes also show good performance [16, 17, 23]. While most quantum LDPC

7
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codes are based on binary LDPC codes, recently several QECCs based on nonbi-

nary LDPC codes have been proposed in [23] with a much better error-correcting

performance than existing quantum codes over a qubit channel.

Since stabilizer codes based on nonbinary LDPC codes have not been studied,

motivated by the success of adopting nonbinary QC-LDPC codes in CSS codes

in [23], we investigate stabilizer codes based on nonbinary QC-LDPC codes for

qubit channels.

1.1.4 Efficient Threshold Architecture

According to the International Technology Roadmap of Semiconductors (ITRS) [1],

the conventional CMOS technology has great challenge in further scaling. Although

new materials and device structures can keep the CMOS scaling for the next sev-

eral years, the CMOS scaling would reach the fundamental limits eventually. Some

emerging nanotechnology, such as resonant tunneling diodes (RTDs), quantum cellu-

lar automata (QCA), and single electron transistors (SETs), have nanoscale struc-

ture and are promising candidates to replace the CMOS technology [24]. These

new nanotechnology devices promise to have smaller feature size, higher speed and

lower power consumption. Even at system level design they present two advan-

tages. Firstly they easily realize threshold gates (see Fig. 7.11). Threshold gates

are often more powerful than Boolean gates, and can implement complex Boolean

functions with a single gate [25]. Thus the hardware complexity of larger systems

implemented using nanotechnology tends to be a lot smaller. Secondly, the outputs

of the threshold gates built with nanotechnology are self-latched. This provides a

natural way of pipelining these systems in most signal processing applications.

8
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Several applications dealing with real-valued signals have already been realized

using nanotechnology based threshold gates [26–29]. However, there is an equally

important class of signal processing applications using finite fields, such as error

correcting coding and cryptography [30]. Unfortunately, the applications using finite

fields have not been realized using nanotechnology.

The main obstacle for the nanotechnology based implementations of applica-

tions of finite fields of characteristic two, denoted as GF(2m), is that they require

exclusive-ORs (XORs) to realize all arithmetic operations over GF(2m). Unlike most

conventional Boolean gates such as AND, OR, NOT, NAND, and NOR, XOR cannot

be realized as a single threshold gate. Thus the translation of a finite field architec-

ture to nanotechnology merely by replacing a conventional gate with an appropriate

combination of threshold gates becomes overly complex. Efficient implementations

based on threshold logic are desired.

1.1.5 Multiway Sorting

Merging-based sorting networks are an important family of sorting networks. One

popular 2-way merging algorithm called odd-even merging [31] merges two sorted

lists (odd and even lists) into one sorted list. Most merge sorting networks are based

on 2-way or multi-way merging algorithms using 2-sorters as basic building blocks.

An alternative is to use n-sorters, instead of 2-sorters, as the basic building blocks

so as to greatly reduce the number of sorters as well as the latency. This is also

motivated by efficient threshold implementations of n-sorters due to the powerful

computing capability of threshold logic.

9
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1.2 Main results

Motivated by the above ideas, we have proposed several techniques and methods to

address these issues. The main results are given by

1. Delay modeling: In chapter 2, we propose analytical delay models for cou-

pled interconnects with improved accuracy. Based on a distributed RC model,

we first derive closed-form expressions of the signals on the bus. Then we

approximate the wire delays by evaluating these closed-form expressions. Our

delay models differ from the model in [7] in two aspects. First, we use direct

evaluations other than the Elmore delay in the model in [7] to approximate

the delays. Second, we consider either three wires or five wires in our delay

models for improved accuracy. Thus, our models achieves improved accuracy

than the model in [7]. Since our delay models use the same classification as the

model in [7], they also maintain the simplicity of the model in [7]. Hence, it

is easy and conducive to use our delay models for the CAC designs. Also, our

five-wire model can be applied to buses of any number of wires. Our extensive

simulation results show that our delay models have improved accuracy than

the model in [7].

2. Crosstalk avoidance codes: In chapter 3, we propose new CACs for RC-

coupled on-chip interconnects. First, we partition all transition patterns with

respect to the delays on the middle wire of a 5-wire bus. By grouping these

patterns according to their evaluated delays, we have a finer classification of

patterns without overlapping delays between adjacent classes. This enables us

to have a more accurate control of delays for transition patterns, and CACs

10
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designed based on our classification will be more effective. Then, we provide a

method to design CACs with our classification. To illustrate this method, we

present a new CAC based on our classification, which achieves a worst-case

delay that is 30%–40% smaller than that of OLCs.

In chapter 4, we propose novel CACs accounting for both the capacitive and

inductive couplings. The capacitive crosstalk is reduced by restricting oppo-

site transitions in adjacent wires. Since the inductive coupling is a long-range

effect, more neighboring wires are considered for inductive crosstalk. The re-

duction of inductive coupling is achieved by restricting same transitions in

neighboring wires. We also propose CODEC design for our codes based on bi-

nary mixed-radix numeral systems. The complexity and delay of our CODECs

are quadratically increasing with the size of the bus.

3. Quantum error correction: In chapter 5, we propose quasi-cyclic (QC)

LDPC stabilizer codes over a qubit depolarizing channel. The construction of

our QC-LDPC stabilizer codes is reduced to the construction of nonbinary QC-

LDPC codes over GF(2m) satisfying the zero SIP condition, and the decoding

of our QC-LDPC stabilizer codes is based on that of the nonbinary QC-LDPC

codes. First, we derive conditions for nonbinary QC-LDPC codes over GF(2m)

in order to satisfy the zero SIP condition and to eliminate the cycles of girth

four, which usually lead to poor decoding performance by iterative decoding

algorithms for LDPC codes. We have constructed two QC-LDPC stabilizer

codes, and simulation results show that they outperform their counterparts

in [16, 17]. This seems to confirm the observation [23] that QECCs based on

nonbinary LDPC codes appear to achieve better performance than QECCs
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based on binary LDPC codes.

4. Threshold architecture: In chapter 6, we propose efficient threshold ar-

chitectures for exclusive-ORs with bounded fan-in. The main results are two

classes of threshold architectures with bounded fan-ins of an n-input XOR.

The first, called the Boolean class, expresses the XOR in a two-stage NAND

circuit implemented through threshold gates. The second, referred to as the

majority class, also has a two-level implementation and uses only generalized

majority gates in the first level. Since one can implement an n-input XOR

as a tree of two-input XORs, each of which can be expressed based on other

Boolean gates and implemented by their threshold gates, we refer to this ap-

proach as direct conversion and use it as a basis for comparison. It turns out

the architectures obtained by direct conversion are the same as Boolean class

architectures with B = 3. Hence, our Boolean class architectures provide a

variety of tradeoffs between hardware and time complexities beyond the direct

conversion architectures. Our analysis results also show that the majority class

performs better than the Boolean class as well as the architectures by direct

conversion in both the hardware and time complexity, because the majority

class takes better advantage of the more powerful nature of threshold gates.

5. Multiway Sorting Network: In chapter 7, we propose a new multiway

merging algorithm with n-sorters as basic blocks. This merging algorithm

merges n sorted lists of m values each in 1 + ⌈m/2⌉ steps, where n ≤ m. A

sorting algorithm based on the proposed merging algorithm is also introduced.

Our sorting networks of N inputs have an order O(N log2N) of basic sorters,
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which is asymptotically the same with previously proposed multiway sorting

algorithms. In the wide range of N , our algorithm performs better than other

sorting algorithms. For N ≤ 1.46 × 104, our algorithm has up to 46% fewer

sorters. For a more accurate comparison, we show a binary sorting network in

threshold logic, where the basic sorter size scales linearly with the number of

inputs, and compare the number of gates for sortingN inputs. ForN ≤ 2×104,

there are up to 39% fewer gates for a binary sorting network in threshold logic.
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Chapter 2

Delay Models for On-Chip

Interconnects

2.1 Introduction

As the process technologies scale into deep submicron region, crosstalk delay is be-

coming increasingly severe, especially for global on-chip buses. To cope with this

problem, accurate delay models of coupled interconnects are needed. In particular,

delay models based on analytical approaches are desirable, because they not only

are largely transparent to technology, but also explicitly establish the connections

between delays of coupled interconnects and transition patterns, thereby enabling

crosstalk alleviating techniques such as crosstalk avoidance codes (CACs). Unfor-

tunately, existing analytical delay models, such as the widely cited model [7], have

limited accuracy and do not account for possibly asynchronous switching instants

of wires.
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The delay of the k-th wire (k ∈ {1, 2, · · · , m}) of an m-bit bus is rewritten in

the following [7], ,

Tk =























τ0[(1 + λ)∆2
1 − λ∆1∆2], k = 1

τ0[(1 + 2λ)∆2
k − λ∆k(∆k−1 +∆k+1)], k 6= 1, m

τ0[(1 + λ)∆2
m − λ∆m∆m−1], k = m,

(2.1)

where λ is the ratio of the coupling capacitance between adjacent wires and the

loading capacitance, τ0 is the intrinsic delay of a transition on a single wire, and

∆k is 1 for 0 → 1 transition, -1 for 1 → 0 transition, or 0 for no transition on the

k-th wire. We observe that in this model, the delay of the k-th wire depends on

the transition patterns of wires k − 1, k, and k + 1 only. As shown in Eq. (3.1),

all possible values of Tk are given by (1 + iλ)τ0 for i ∈ {0, 1, 2, 3, 4}. Thus, all

transition patterns on wires k − 1, k, and k + 1 can be divided into five classes iC

for i ∈ {0, 1, 2, 3, 4} according to their corresponding i (this classification was also

used in [8]). By limiting transition patterns over the bus, the worst delay can be

reduced. Various crosstalk avoidance codes (CACs) (see, for example, [8,10,32,33])

have been proposed based on this model.

Unfortunately, the model in [7] has limited accuracy for the following reasons.

To achieve simplicity, only three wires are considered in the derivation of the model.

In a bus with more than three wires, the simulated wire delay for 0C transition

patterns is much larger than τ0, the delay of 0C given by (3.1). For example, the

scheme to achieve a delay of τ0 in [9] would be ineffective. Furthermore, the Elmore

delay, which tends to overestimate the delay [34], is used in the derivation. This is

also verified by our simulation results.
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In the following, we propose analytical delay models for coupled interconnects

with improved accuracy. Based on a distributed RC model, we first derive closed-

form expressions of the signals on the bus. Then we approximate the wire delays by

evaluating these closed-form expressions. Our delay models differ from the model

in [7] in two aspects. First, we use direct evaluations other than the Elmore delay

in the model in [7] to approximate the delays. Second, we consider either three

wires or five wires in our delay models for improved accuracy. Thus, our models

achieves improved accuracy than the model in [7]. Since our delay models use the

same classification as the model in [7], they also maintain the simplicity of the model

in [7]. Hence, it is easy and conducive to use our delay models for the CAC designs.

Also, our five-wire model can be applied to buses of any number of wires. Our

extensive simulation results show that our delay models have improved accuracy

than the model in [7].

2.2 DELAY MODEL

2.2.1 System model

The on-chip buses are often approximated by the distributed RC model [35]. Our

delay models do not consider the effects of inductance for two reasons. First, it is

difficult to derive a closed-form expression of the signals on the bus based on the

RLC model. More importantly, according to the criteria in [36], the inductance

effects are negligible for buses with length in some range. This conclusion was also

confirmed by other works: the 16b, 32Gb/s, 5mm-long bus and 8b, 16Gb/s, 10mm-

long bus in [37] show that the distributed RC model is still accurate to characterize
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these high-speed long interconnects from 5mm to 10mm. So we use distributed RC

model in our derivation for delay models.

In the following, our models do not account for the source resistance and load

capacitance. However, they can be readily modified to account for both using the

techniques in [38]. In general, source resistance and load capacitance tend to increase

the delay. Since the crosstalk delay on the bus is the major part of the whole delay,

the delays introduced by other parts are ignored. For this reason, no buffer is used.

We assume that ideal step signals are applied on the bus directly.

According to [5], the closed-form expressions of the signals on the bus via a

distributed RC model are sums of infinite terms. It was shown in [38] that sums of

the two most significant terms provide a very close approximation of signals on the

bus. This technique is crucial for the evaluation of the closed-form expressions.

The distributed RC model of an m-wire bus is shown in Fig. 2.1, where Vi(x, t)

denotes the transient signal at a position x along wire i for i ∈ {1, 2, · · · , m}, r and c

denote the resistance and capacitance per unit length, respectively. Also, λc denotes

the coupling capacitance per unit length between two adjacent wires. In this work,

we focus on a uniformly distributed bus and hence assume the parameters r, c, and

λ are the same for all wires.

Our models are based on the 50% delay, which is defined as the time difference

between the respective instants when the input signal and corresponding output

signal cross 50% of the supply voltage Vdd. In the following, we focus on worst-case

patterns leading to the largest 50% delay of the middle wire(s). For some transition

patterns, the delay of the middle wire(s) is the greatest among all wires. For other

transition patterns, other wires may have a greater delay, but the worst delays of
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Figure 2.1: A distributed RC model of an m-wire bus.

all wires within the same class are close. Hence, our model can also be applied to

other wires so as to approximate their delays with high accuracy. For simplicity, we

assume m is odd, and hence wire m+1
2

is the middle wire. We use T iC
m to denote the

worst delay of the middle wire (wire m+1
2

) of an m-wire bus for all iC patterns.

We first investigate the casem = 3 and then extend our results to the casem = 5.

There are two reasons for studying the three-wire model. First and foremost, the

three-wire model is the foundation of the derivation of our five-wire model. Second,

our three-wire model shows higher accuracy than our five-wire model for buses with

only three wires, which are used in partial coding schemes (see, e.g., [8, 10, 32]).

2.2.2 Three-wire model

Based on the same technique in [38], the differential equations characterizing a

three-wire bus with length L are given by:

∂2

∂x2
V (x, t) = RC

∂

∂t
V (x, t), (2.2)
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where V (x, t) = [V1(x, t) V2(x, t) V3(x, t)]
T and Vi(x, t) denotes the voltage of wire

i at distance x (0 ≤ x ≤ L) at time t for i = 1, 2, 3, R =
[

r 0 0
0 r 0
0 0 r

]

, and C =
[

c+λc −λc 0
−λc c+2λc −λc
0 −λc c+λc

]

.

The three eigenvalues of C are given by p1 = c, p2 = (1+λ)c, and p3 = (1+3λ)c,

and their respective eigenvectors ei’s are [1 1 1]T , [1 0 −1]T , and [−1 2 −1]T . Hence,

Eq. (3.2) is transformed to

∂2

∂x2
Ui(x, t) = rpi

∂

∂t
Ui(x, t) for i = 1, 2, 3, (2.3)

where Ui(x, t) = V T (x, t)ei for i = 1, 2, 3. So U1(x, t) = V1(x, t) + V2(x, t) + V3(x, t),

U2(x, t) = V1(x, t)− V3(x, t), and U3(x, t) = 2V2(x, t)− V1(x, t)− V3(x, t).

Applying Laplace transform on Eq. (2.3), we have

∂2

∂x2
Ui(x, s) = rpi[sUi(x, s)− Ui(x, 0)] for i = 1, 2, 3. (2.4)

Using appropriate initial conditions, we solve Eq. (2.4) for Ui(x, t) and obtain

V2(L, t) =
1
3
[U1(L, t) + U3(L, t)]. By solving V2(L, t) = 0.5Vdd, we can approximate

the 50% delay of a three-wire bus for different transition patterns.

The expressions of wire 2 are given by V2(L, t)
.
= 1−a1e

− t
τ −a2e

− t
(1+3λ)τ , where ai,

i = 1, 2 are constant coefficients, and τ = 8
π2 τ0. We use “↑” to denote a transition

from 0 to the supply voltage Vdd (normalized to 1), “-” no transition, and “↓” a

transition from Vdd to 0. We first identify the worst-case patterns in all classes

through simulations, which are shown in Tab. 2.1. The expressions of wire 2 and

the approximate delays of all classes are also shown in Tab. 2.1, respectively.
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iC
Worst-case V2(L, t) Delay
patterns a1 a2

0C ↑↑↑ 4
π 0

(

ln 8
π

)

τ

1C -↑↑ 8
3π

4
3π

(

ln 16
π

)

τ

2C -↑- 4
3π

8
3π

(

ln 16
3π

)

(1 + 3λ)τ

3C -↑ ↓ 0 4
π

(

ln 8
π

)

(1 + 3λ)τ

4C ↓↑↓ − 4
3π

16
3π

(

ln 32
3π

)

(1 + 3λ)τ

Table 2.1: Analytical three-wire model (V2(L, t)
.
= 1−a1e

− t
τ −a2e

− t
(1+3λ)τ , τ0 =

rcL2

2
,

and τ = 8
π2 τ0).

iC Worst-case Decomposition
patterns

0C ↓↑↑↑↓ (↓-↑-↓)+(-↑- - -)+( - - -↑-)
1C ↓-↑↑↓ (↓-↑-↓)+(- - -↑-)
2C ↓-↑-↓ (↓-↑-↓)
3C ↑-↑↓↑ (↑↑↑↑↑)+ 2(- - -↓-) + (-↓- - -)
4C ↑↓↑↓↑ (↑↑↑↑↑)+ 2(-↓- - -)+ 2(- - -↓-)

Table 2.2: Decomposition of worst-case patterns in the five-wire model.
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2.2.3 Five-wire model

To further improve the accuracy of delay, we include two extra adjacent wires and

consider the influences of all five wires to approximate the delays. There are three

kinds of transition: ↑, -, and ↓ for each wire. Thus, for such a five-wire bus, there are

35 transition patterns. To maintain the simplicity of our models, we still categorize

them into five classes (iC, i ∈ {0, 1, 2, 3, 4}) based on the transition patterns of

middle three wires (wires 2, 3, and 4). Hence, there are nine different transition

patterns for each pattern of the same class.

Since the bus is a linear system, any pattern could be decomposed into a com-

bination of patterns with single transition. Then the expression of the middle wire

equals the sums of expressions of all individual wires on the middle wire. However,

this would lead to complicated expressions, which are not easy to solve. We propose

to group these individual wires to form some special patterns, reducible transition

patterns (RTPs) and single transition patterns (STPs), which are easy to analyze.

An RTP is defined as a transition pattern in the five-wire model which can

be reduced to a transition pattern in the three-wire model. {↑↑↑↑↑, ↓↓↓↓↓, ↓-↑-

↓, ↑-↓-↑} is the set of RTPs for the five-wire model. For the transition ↑↑↑↑↑

(similarly for ↓↓↓↓↓), the expression of wire 3 is approximated by V3(L, t)
.
= 1− 4

π
e−

t
τ .

For the transition ↓-↑-↓ (similarly for ↑-↓-↑), it can be converted into a three-wire

pattern ↓↑↓, where the coupling capacitor between wire 1 (or 5) and wire 3 is λ
2
per

unit length. The expression of wire 3 is approximated by V3(L, t)
.
= 1 + 4

3π
e−

t
τ −

16
3π
e
− t

(1+ 3
2λ)τ , and the delay is approximated by ln( 16

3π
)(1 + 3

2
λ)τ .

An STP is defined to be a transition pattern with transitions on only one wire

in the five-wire model. For our five-wire model, we focus on the set of STPs with
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iC
Worst-case V3(L, t) Delay
patterns a1 a2 a3

0C ↓↑↑↑↓ 0 16
3π

− 8
3π

0.165(1 + 3λ)τ
1C ↓-↑↑↓ 0 16

3π
− 4

3π
0.310(1 + 3λ)τ

2C ↓-↑-↓ − 4
3π

16
3π

0
(

ln 32
3π

)

(1 + 3
2
λ)τ

3C ↑-↑↓↑ 0 0 4
π

(

ln 8
π

)

(1 + 3λ)τ
4C ↑↓↑↓↑ − 4

3π
0 16

3π

(

ln 32
3π

)

(1 + 3λ)τ

Table 2.3: Analytical five-wire model (V3(L, t)
.
= 1−a1e

− t
τ −a2e

− t

(1+ 3
2λ)τ −a3e

− t
(1+3λ)τ ,

τ0 =
rcL2

2
, and τ = 8

π2 τ0).

iC
Worst-case Sim. Our three-wire model [7]

patterns Td (ps) T iC
3 (ps)

|T iC
3 −Td|
Td

T2 in (3.1) (ps) |T2−Td|
Td

0C ↑↑↑ 2.87
(

ln 8
π

)

τ 2.84 1.05% τ0 3.75 30.66%
1C ↑↑- 4.99

(

ln 16
π

)

τ 4.94 1.00% (1 + λ)τ0 41.25 726.65%
2C -↑- 49.70

(

ln 16
3π

)

(1 + 3λ)τ 49.87 0.34% (1 + 2λ)τ0 78.75 58.45%
3C ↓↑- 88.61

(

ln 8
π

)

(1 + 3λ)τ 88.08 0.60% (1 + 3λ)τ0 116.25 31.19%
4C ↓↑↓ 115.89

(

ln 32
3π

)

(1 + 3λ)τ 115.18 0.61% (1 + 4λ)τ0 153.75 32.67%

Table 2.4: Comparison of simulated delays, our three-wire model, and the model
in [7] (τ0 = 3.75ps, τ = 8

π2 τ0, and λ = 10)

transitions on wire 2 or 4, {-↑- - -, -↓- - -, - - -↑-, - - -↓-}.

The expressions of wire 3 can be approximated by our three-wire model. Let

V i
j (x, t) denote the signal on wire j due to coupling from wire i. For example, by

ignoring coupling from wires 4 and 5 in -↑- - -, the output of wire 3 is approximated

by V 2
3 (L, t)

.
= − 4

3π
e−

t
τ + 4

3π
e−

t
(1+3λ)τ , which is obtained by our three-wire model.

We propose the following approaches to derive the delay of the five-wire bus.

(1) We first decompose the worst-case pattern in each class into a combination

of an RTP and STP(s).

(2) Then we combine the expressions of the RTP and STP(s) for the middle wire

based on our three-wire model.
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iC
Worst-case Sim. Our five-wire model [7]

patterns Td (ps) T iC
5 (ps)

|T iC
5 −Td|
Td

T3 in (3.1) (ps) |T3−Td|
Td

0C ↓↑↑↑↓ 23.30 0.165(1 + 3λ)τ 19.18 17.68% τ0 3.75 83.91%
1C ↓-↑↑↓ 37.42 0.310(1 + 3λ)τ 34.99 6.49% (1 + λ)τ0 41.25 10.24%
2C ↓-↑-↓ 56.58

(

ln 32
3π

) (

1 + 3
2
λ
)

τ 59.46 5.09% (1 + 2λ)τ0 78.75 39.18%
3C ↑-↑↓↑ 88.55

(

ln 8
π

)

(1 + 3λ)τ 88.08 0.53% (1 + 3λ)τ0 116.25 31.28%
4C ↑↓↑↓↑ 127.29

(

ln 32
3π

)

(1 + 3λ)τ 115.18 9.51% (1 + 4λ)τ0 153.75 20.79%

Table 2.5: Comparison of simulated delays, our five-wire model, and the model in [7]
(τ0 = 3.75ps, τ = 8

π2 τ0, and λ = 10).

(3) Finally, we evaluate the expression of the middle wire to approximate its

delay.

Since the performance is limited by the worst delay in each class, we only need to

approximate the delays of the worst-case patterns in all classes. For classes 0C-4C,

we use simulations to identify the worst-case patterns, which are given by ↓↑↑↑↓, ↓-

↑↑↓, ↓-↑-↓, ↑-↑↓↑, and ↑↓↑↓↑, respectively (assuming the middle wire has an upward

transition). With RTPs and STPs, we decompose the worst-case pattern in each

class as shown in Tab. 2.2.

The expressions of wire 3 are given by V3(L, t)
.
= 1 − a1e

− t
τ − a2e

− t

(1+ 3
2λ)τ −

a3e
− t

(1+3λ)τ , where ai, i = 1, 2, 3 are constant coefficients. For all worst-case patterns

in a five-wire bus, the expressions of wire 3 and the approximate delays are shown

in Tab. 2.3, respectively.

2.3 PERFORMANCE EVALUATION

To evaluate the performance of our models and compare them with the model in [7],

we consider following three scenarios. First, we focus on three-wire and five-wire

buses, where our models are originally derived. This scenario can also be applied
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to partial coding schemes (see, e.g., [8, 10, 32]), where a wide bus is divided into

sub-buses with a few wires. Then we consider buses with more than five wires and

run extensive simulations with an odd number of wires (up to 33 wires). For brevity,

only simulation results for a 17-wire bus are presented. In the first two scenarios,

we only focus on the worst delays of middle wires. In the third scenario, we assume

the transition patterns are limited to three families of CACs and consider the worst

delays for all wires of a 17-wire bus.

The simulation results are obtained by HSPICE. The coupling factor λ depends

on the layer for routing the interconnect, the layer for the ground, the width for each

wire, and the space between adjacent wires. We adopt a 0.1µm process and route

the global interconnects in the top metal layer. The bulk capacitance is considered

from top metal layer to the substrate, with λ = 10. For the 0.1µm process, the

parasitic parameters are given by [39], and the parameter τ0 =
rcL2

2
for a 5mm long

bus is approximately 3.75ps. Though this process is somewhat outdated, we have

also tried other process technologies with different values for λ and τ0 such as 45nm

technology [40]. For all process technologies, our delay models can be easily adapted

and show better accuracy than the model in [7].

2.3.1 Three-wire and five-wire buses

For a three-wire bus, we compare the simulated delays with the delays given by

our model and the model in [7] for all classes in Tab. 3.2, where Td denotes the

simulated worst delay of wire 2, T iC
3 the approximate delay for iC pattern by our

three-wire model, and T2 by the model in [7]. The error percentages of our model

and the model in [7] for each class are also included in Tab. 3.2. For all five classes
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iC
Worst-case patterns Sim. Our model [7]

with respect to our assumptions Td T iC
5

|T iC
5 −Td|
Td

T9
|T9−Td|

Td

0C ↑↑↑↑↓↓↓ (↑↑↑) ↓↓↓↑↑↑↑ 25.07 19.18 23.49% 3.75 85.04%

1C ↑↑↑↑↑↓↓ (↑↑ -) ↓↓↑↑↑↑↑ 39.13 34.99 10.58% 41.25 5.42%

2C ↓↓↑↑↑↑↓ (- ↑ -) ↓↑↑↑↑↓↓ 65.93 59.46 9.81% 78.75 19.44%

3C ↓↓↓↑↑↑↑ (↓↑ -) ↑↑↑↑↓↓↓ 95.39 88.08 7.66% 116.25 21.87%

4C ↑↓↓↓↑↑↑ (↓↑↓) ↑↑↑↓↓↓↑ 130.43 115.18 11.69% 153.75 17.88%

Table 2.6: Comparison of simulated delays and delays given by our five-wire model
and the model in [7] for wire 9 in a 17-wire bus (τ0 = 3.75ps, τ = 8

π2 τ0, and λ = 10).
All delays are in ps.

of transition patterns in a three-wire bus, the maximum and minimum errors by

our model are 1.05% and 0.34%, respectively, as opposed to 726.65% and 30.66% by

the model in [7], respectively. As shown in Tab. 3.2, our three-wire model is much

more accurate than the model in [7] for all patterns in a three-wire bus. We remark

that the delay of a 1C pattern by our model,
(

ln 16
π

)

τ , does not depend on λ.

For a five-wire bus, we compare the simulated delays with the delays given by

our five-wire model and the model in [7] for all classes in Tab. 3.6, where Td denotes

the simulated worst delay of wire 3 for all iC patterns, T iC
5 the approximate delay

for iC pattern by our five-wire model, and T3 by the model in [7]. For a five-wire

bus, the maximum and minimum errors by our model are 17.68% and 0.53%,

respectively, in comparison to 83.91% and 10.24% by the model in [7], respectively.

As shown in Tab. 3.6, our five-wire model is more accurate than the model in [7]

for all patterns in a five-wire bus. Particularly, we observe that the worst delay for

the 0C patterns are much larger than that given by the model in [7]. In [9], the

author proposed a scheme to achieve a delay of τ0 by surrounding each data wire

with two identical wires. According to our model, this scheme is ineffective, because

the worst delay could be as large as 0.165(1 + 3λ)τ0.
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2.3.2 17-wire bus

We next compare our five-wire model with the model in [7] for a 17-wire bus. We

still focus on the middle wire (wire 9) in the 17-wire bus and identify the worst-case

patterns in all classes through simulations. The transition patterns are categorized

by the transitions of the middle three wires (wires 8, 9, and 10). Since there are 314

transition patterns in each class, it is infeasible to search all transitions to identify

the pattern with the longest delay. For any two wires symmetric to wire 9 (wire

i and wire 18-i, i ∈ {1, 2, · · · , 8}), there are nine possible patterns, ↑↑, ↓↓, - -, ↑-,

-↑, ↓-, -↓, ↑↓, and ↓↑. If the transitions on the two symmetric wires are in opposite

direction, we assume the influences of the two transitions will cancel out as a result

of symmetry. For other patterns, we assume ↑↑ has greater influence than ↑- or -↑.

Similarly, ↓↓ has greater influence than ↓- or -↓. Based on the discussion above, we

assume the longest delay happens when two symmetric wires have either ↑↑ or ↓↓

transitions. So there are only 27 = 128 patterns left to check in each class.

To find the worst-case patterns, we search all possible symmetric transition pat-

terns in each class. The worst-case patterns are listed in the second column of

Tab. 2.6, where the pattern on wires 8, 9, and 10 is shown in the parenthesis. We

compare the simulated worst delays with the delays given by our five-wire model

and the model in [7] for all classes in Tab. 2.6, where Td denotes the simulated worst

delay of wire 9 for all iC patterns, T iC
5 the approximate delay for iC pattern by our

five-wire model, and T9 by the model in [7]. For all five classes, the maximum and

minimum errors by our model are 23.49% and 7.66%, respectively, as opposed to

85.04% and 5.42% by the model in [7], respectively. For all classes except 1C, our

five-wire model outperforms the model in [7]. the model in [7] also shows a large
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error percentage for 0C. We have also tried other buses with odd number of wires

up to 33. Based on the simulation results, we conjecture that our five-wire model

would be more accurate than the model in [7] for buses with any number of wires.

Delays
OLC FPC FOC

[7] 41.25 78.75 116.25

T iC
5 34.99 59.46 88.08

wire i

1 33.96 64.31 63.00

2 21.59 62.52 95.06

3 32.37 63.73 94.90

4 32.40 62.14 96.56

5 32.16 63.40 94.30

6 32.49 64.63 96.99

7 32.55 65.00 93.69

8 32.50 62.26 93.31

9 33.18 60.74 94.93

10 33.27 62.21 95.94

11 31.92 61.10 94.74

12 32.07 61.55 94.33

13 32.02 63.31 96.56

14 32.97 60.22 97.24

15 32.83 64.70 92.01

16 21.29 63.25 95.29

17 33.61 63.52 63.83

Table 2.7: Comparison of simulated delays and delays given by our five-wire model
and [7] for all wire in a 17-wire bus (τ0 = 3.75ps, τ = 8

π2 τ0, and λ = 10). All delays
are in ps.

2.3.3 Performance of CACs

In the simulation results above, we only focus on the middle wire of a 17-wire

bus. Now we evaluate the delays on all wires of a 17-wire bus for three families of

CACs [8, 10, 32]: one Lambda codes (OLCs), forbidden pattern codes (FPCs), and
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forbidden overlap codes (FOCs). Based on our five-wire model, the worst delays of

aforementioned CACs are given by 0.310(1+3λ)τ ,
(

ln 32
3π

) (

1 + 3
2
λ
)

τ , and
(

ln 8
π

)

(1+

3λ)τ , respectively. Based on the model in [7], the worst delays of aforementioned

CACs are given by (1+λ)τ0, (1+2λ)τ0, and (1+3λ)τ0, respectively. For each CAC,

1000 codewords from the code book are randomly chosen and transmitted over a

17-wire bus consecutively, thus forming 999 transitions. We compare the simulated

worst delays of each wire and the delays given by our five-wire mode and the model

in [7], respectively, in Tab. 2.7. For the OLC, the FPC, and the FOC in a 17-wire

bus, the largest delays are emphasized in boldface. As shown in Tab. 2.7, our five-

wire model is more accurate than the model in [7] for all three families of CACs.

Also, in [41], a new CAC with a smaller worst delay than an OLC has been proposed

based on our five-wire model and a new classification of transition patterns. It shows

that our five-wire model enables the design of more effective CACs.

2.4 Summary

In this chapter, we propose improved analytical delay models for coupled intercon-

nects, based on the distributed RC model. First the closed-form expressions of the

signals on three-wire and five-wire buses are derived, which are also motivated by

partial coding schemes. Then delays corresponding to different patterns are approx-

imated by evaluating the closed-form expressions. The simulation results show that

our models have better accuracy than that in [7]. Although our models are based

on three-wire and five-wire buses, they can also be employed for a bus with more

than five wires. Our simulation results also show that our five-wire model could still

approximate delays better than the model in [7] for a general bus.
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Chapter 3

Improved Crosstalk Avoidance

Codes Based On A Novel Pattern

Classification

3.1 Introduction

Recent International Technology Roadmap of Semiconductors (ITRS) [1] has shown

a troubling trend: while gate delay decreases with scaling, global wire delay in-

creases. This is because with the process technologies scaling down into deep sub-

micrometer (DSM), the crosstalk delay becomes dominant in global wire delay due

to the increasing coupling capacitance between adjacent wires. Hence, the crosstalk

delay has become a serious bottleneck of the overall system performance.

The analytical model proposed by Sotiriadis et al. [7, 42], a widely used delay

model, gives upper bounds on the delay of all wires on a bus. According to [7, 42],
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the delay of the k-th wire (k ∈ {1, 2, · · · , m}) of an m-bit bus is given by

Tk =























τ0[(1 + λ)∆2
1 − λ∆1∆2], k = 1

τ0[(1 + 2λ)∆2
k − λ∆k(∆k−1 +∆k+1)], k 6= 1, m

τ0[(1 + λ)∆2
m − λ∆m∆m−1], k = m,

(3.1)

where λ is the ratio of the coupling capacitance between adjacent wires and the

ground capacitance, τ0 is the propagation delay of a wire free of crosstalk, and ∆k

is 1 for 0 → 1 transition, -1 for 1 → 0 transition, or 0 for no transition on the k-th

wire. In this model, the delay of the k-th wire depends on the transition patterns

of at most three wires, k − 1, k, and k + 1 only. The transition patterns over

these three wires can be classified based on Eq. (3.1) into five classes, denoted by

Di for i = 0, 1, 2, 3, 4, and the patterns in Di have a worst-case delay (1 + iλ)τ0.

This classification enables one to limit the worst-case delay over a bus by restricting

the patterns transmitted on the bus. That is, by avoiding all transition patterns

in Di for i > i0, one can achieve a worst-case delay of (1 + i0λ)τ0 over the bus.

Based on this principle, crosstalk avoidance codes (CACs) of different worst-case

delays have been proposed (see, for example, [8–10]). For example, forbidden overlap

codes (FOCs), forbidden transition codes (FTCs), forbidden pattern codes (FPCs),

and one lambda codes (OLCs) achieve a worst-case delay of (1 + 3λ)τ0, (1 + 2λ)τ0,

(1+2λ)τ0, and (1+λ)τ0, respectively. Based on Eq. (3.1), a worst-case delay of τ0 can

be achieved by assigning two protection wires to each data wire [9]. Other types of

CACs, such as those with equalization [43] or two-dimensional CACs [44], have been

proposed in the literature. For CACs, since the area and power consumption of their

encoder/decoder (CODECs) are all overheads, the complexities of the CODECs are
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important to the effectiveness of CACs. Thus, efficient CODECs have been proposed

for CACs [45–47].

The classification of transition patterns based on the model in [7, 42] has two

drawbacks. First, the model in [7,42] has limited accuracy because of its dependence

on only three wires: the model overestimates the delays of patterns in D1 through

D4, while it underestimates the delays of patterns in D0. For this reason, the

scheme with a worst-case delay of τ0 in [9] is invalid since its actual delay is much

greater. Second, the actual delay ranges in some classes overlap with others. This,

plus the overestimation of delays for D1 through D4, implies that the delays of

existing CACs are not tightly controlled. These drawbacks motivate us to include

more wires and to classify the transition patterns without overlapping delay ranges.

In [48], we have proposed a new analytical five-wire delay model. Two extra

neighboring wires are included in the delay model [48], and the delay of the middle

wire of five neighboring wires is determined by the transition patterns on all five

wires. This five-wire model has better accuracy than the model in [7,42] for Di for

i = 0, 1, 2, 3, 4 [48]. This work confirms that using more wires leads to improved

accuracy.

There are two main contributions in this chapter:

• First, we approximate the crosstalk delay in a five-wire model and propose a

new classification of transition patterns.

• Second, we propose a family of CACs based on our classification.

The work in this chapter is different from previous works, including our previous

works, in several aspects:
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• First, although the delay approximation in this chapter is also based on a

five-wire model, it is different from that in our previous work [48]. The delay

approximation in this chapter is carried out by extending the approach in [38]

from a three-wire model to a five-wire one.

• Second, our classification of transition patters is different from that in [7, 42]

(based on Eq. (3.1)), in two aspects. First, our classification has seven classes

as opposed to five based on Eq. (3.1). Second, while the delays of some classes

overlap for the classification based on Eq. (3.1), all classes in our classification

have non-overlapping delays. These two key differences allow us to have a

more accurate control of delays for transition patterns.

• Our new family of CACs is also different from previously proposed CACs, all

of which are based on the classification in [7, 42] (based on Eq. (3.1)). While

some codes in this new family are shown to be the same as existing CACs,

OLCs, FPCs, and FOCs, this family also includes new codes that achieve

smaller worst-case delays and improved throughputs than OLCs, which have

the smallest worst-case delays among all existing CACs.

The rest of the chapter is organized as follows. In Section 3.2, we first propose

our classification and compare it with that in [7, 42]. We then present our new

family of CACs in Section 3.3 and compare their performance with existing CACs

in Section 4.5. Some concluding remarks are provided in Section 7.6.
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3.2 INTERCONNECT DELAYS AND CLASSI-

FICATION

3.2.1 Interconnect Modeling

Since the functionality and performance in DSM technology are greatly affected

by the parasitics, distributed RC models are widely employed to analyze on-chip

interconnects. In this chapter, we consider the distributed RC model of five wires

shown in Fig. 4.1, where Vi(x, t) denotes the transient signal at time t and position

x (0 ≤ x ≤ L) over wire i for i ∈ {1, 2, 3, 4, 5}, r and c denote the resistance and

ground capacitance per unit length, respectively. Also, λc denotes the coupling

capacitance per unit length between two adjacent wires. The value of λ depends on

many factors, such as the metal layer in which we route the bus, the wire width, the

spacing between adjacent wires, and the distance to the ground layer. We consider

a uniformly distributed bus with the same parameters r, c, and λ for all the wires.

Wire 1

Wire 2

Wire 3

Wire 5

x

r   x
c   x

c   x

V1(0,t)

V2(0,t)

V3(0,t)

V5(0,t)
V5(L,t)

V3(L,t)

V2(L,t)

V1(L,t)

L

Wire 4

V4(0,t)
V4(L,t)

6

6
6

6

λ

Figure 3.1: A distributed RC model for five wires.
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3.2.2 Derivation of Closed-form Expressions

When determining the delay of a wire, the model in [7,42] considers only the effects

of either one or two neighboring wires (cf. Eq. (3.1)). To address the drawbacks

of the model in [7, 42] described above, additional neighboring wires need to be

accounted for. In our delay derivation below, whenever possible we consider four

neighboring wires of a wire, two neighboring wires on each side, to determine its

delay. To approximate the delay of a side wire (wires 1, 2, n− 1 or n) of an n-wire

bus, three neighboring wires are considered. This is because the side wires are

affected by fewer neighboring wires. This scheme is similar to the model in [7, 42]

and appears to work well. We focus on the 50% delay, which is defined as the time

required for the unit step response to reach 50% of its final value.

In [38], the crosstalk of two coupled lines was described by partial differential

equations (PDEs), and a technique for decoupling these highly coupled PDEs was

introduced by using eigenvalues and corresponding eigenvectors. In our work, we

extend this approach from a three-wire model to a five-wire one. Specifically, we

first use the technique in [38] to decouple the PDEs that describe the crosstalk of

four coupled wires, then solve these independent PDEs for closed-form expressions,

and finally approximate the delays of each wire.

The PDEs characterizing five wires with length L are given by:

∂2

∂x2
V(x, t) = RC

∂

∂t
V(x, t), (3.2)

where R = diag{r r r r r}, V(x, t) = [V1(x, t) V2(x, t) V3(x, t) V4(x, t) V5(x, t)]
T ,
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and

C = c

[ 1+λ −λ 0 0 0
−λ 1+2λ −λ 0 0
0 −λ 1+2λ −λ 0
0 0 −λ 1+2λ −λ
0 0 0 −λ 1+λ

]

.

The eigenvalues of C/c are given by p1 = 1, p2 = 1 + 5+
√
5

2
λ, p3 = 1 + 5−

√
5

2
λ,

p4 = 1+ 3+
√
5

2
λ, and p5 = 1+ 3−

√
5

2
λ. Their corresponding eigenvectors ei’s are given

by e1 = [1 1 1 1 1]T , e2 = [
√
5−1
4

− 1+
√
5

4
1 − 1+

√
5

4

√
5−1
4

]T , e3 = [−
√
5+1
4

√
5−1
4

1
√
5−1
4

−
√
5+1
4

]T , e4 = [−1
√
5+1
2

0 −
√
5+1
2

1]T , and e5 = [−1 −
√
5−1
2

0
√
5−1
2

1]T , respectively.

With a technique for decoupling partial differential equations similar to [38],

Eq. (3.2) is transformed into

∂2

∂x2
Ui(x, t) = rcpi

∂

∂t
Ui(x, t), for i = 1, 2, 3, 4, 5,

where Ui(x, t) = VT (x, t)ei denotes the transformed signals. This decoupled PDEs

are independent of each other. Each Ui(x, t) describes a single wire with a modified

capacitance cpi. The solution to Ui(L, t) is given by a series of the form Ui(L, t) =

Vdd +
∑∞

k=0 rke
− t

skτ . As shown in [38], a single-exponent approximation Vdd(1 +

r0e
− t

s0τ ) is enough for t/τ > 0.1, where r0 and s0 are the coefficients of the most

significant term.

For different transitions, we solve Eq. (3.2.2) for Ui(x, t) and obtain V3(L, t) =

1
5
[U1(L, t) + 2U2(L, t) + 2U3(L, t)], which is given by a sum of a constant and three

exponent terms, Vdd(1 − c0e
− t

a0τ − c1e
− t

a1τ − c2e
− t

a2τ ). Then the 50% delay of wire

3 can be evaluated by solving V3(L, t) = 0.5Vdd.

For side wires, PDEs characterizing four wires with length L are given by:

∂2

∂x2
V(x, t) = RC

∂

∂t
V(x, t),
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Table 3.1: Subclassification of patterns by signal expressions on wire 3 in a five-wire
bus.

Subclass k Patterns Subclass k Patterns

1 ↑↑↑↑↑
13

- -↑- -, ↑-↑-↓, ↓-↑-↑
2 -↑↑↑↑, ↑↑↑↑- -↑↑↓-, ↑↑↑↓↓, ↓↑↑↓↑
3 ↑-↑↑↑, ↑↑↑-↑ -↓↑↑-, ↑↓↑↑↓, ↓↓↑↑↑
4

-↑↑↑-, ↓↑↑↑↑,
14

- -↑-↓, ↓-↑- -, -↑↑↓↓,
↑↑↑↑↓ ↓↑↑↓-, -↓↑↑↓, ↓↓↑↑-

5
- -↑↑↑, ↑↑↑- -, 15 ↓-↑-↓, ↓↑↑↓↓, ↓↓↑↑↓
-↑↑-↑, ↑-↑↑- 16 ↓↓↑-↓, ↓-↑↓↓

6
↑-↑-↑, ↑↑↑↓↑,

17
- -↑↓↓, ↓↓↑- -,

↑↓↑↑↑ -↓↑-↓, ↓-↑↓-
7 -↑↑↑↓, ↓↑↑↑-

18
- -↑↓-, -↓↑- -, ↑-↑↓↓,

8
- -↑↑-, -↑↑- -, ↑↓↑-↓, ↓-↑↓↑, ↓↓↑-↑
↓-↑↑↑, ↓↑↑-↑,

19
- -↑↓↑, ↑↓↑- -,

↑-↑↑↓, ↑↑↑-↓ -↓↑-↑, ↑-↑↓-
9 ↓↑↑↑↓ 20 ↑-↑↓↑, ↑↓↑-↑
10

- -↑↑↓, ↓↑↑- -, 21 ↓↓↑↓↓
-↑↑-↓, ↓-↑↑- 22 ↓↓↑↓-, -↓↑↓↓

11 ↓-↑↑↓, ↓↑↑-↓ 23 -↓↑↓-, ↑↓↑↓↓, ↓↓↑↓↑

12
- -↑-↑, ↑-↑- -, 24 ↑↓↑↓-, -↓↑↓↑
-↑↑↓↑, ↑↑↑↓-,

25 ↑↓↑↓↑
-↓↑↑↑, ↑↓↑↑-

where R = diag{r r r r}, V(x, t) = [V1(x, t) V2(x, t) V3(x, t) V4(x, t)]
T , and C =

c

[

1+λ −λ 0 0
−λ 1+2λ −λ 0
0 −λ 1+2λ −λ
0 0 −λ 1+λ

]

.

The eigenvalues of C/c are given by p1 = 1, p2 = 1 + (2 −
√
2)λ, p3 = 1 + 2λ,

and p4 = 1 + (2 +
√
2)λ. Their corresponding eigenvectors ei’s are given by e1 =

[1 1 1 1]T , e2 = [−1 (1 −
√
2) − (1 −

√
2) 1]T , e3 = [1 − 1 − 1 1]T , and

e4 = [−1 (1 +
√
2) − (1 +

√
2) 1]T , respectively.

By decoupling the PDEs for side wires, we have

∂2

∂x2
Ui(x, t) = rcpi

∂

∂t
Ui(x, t), for i = 1, 2, 3, 4,
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3.2. INTERCONNECT DELAYS AND CLASSIFICATION

Table 3.2: Closed-form expressions for the output signals on wire 3 (V3(L, t) =

Vdd(1− c0e
− t

a0τ − c1e
− t

a1τ − c2e
− t

a2τ ) in a five-wire bus with evaluated and simulated

50% delays (τ0 = 1.42 ps, τ = 8
π2 τ0, λ = 12.24, a0 = 1, a1 = 1 + 5−

√
5

2
λ, and

a2 = 1 + 5+
√
5

2
λ for all classes).

Ci Subclass k
Coeffs. of V3(L, t) Eva. Sim.

c0 c1 c2 (ps) (ps)

0
1 4

π
0 0 1.08 1.18

2 16
5π

2(1+
√
5)

5π
2(1−

√
5)

5π
1.41 1.50

3 16
5π

2(1−
√
5)

5π
2(1+

√
5)

5π
1.41 1.50

1
4 12

5π
4(1+

√
5)

5π
4(1−

√
5)

5π
2.35 2.40

5 12
5π

4
5π

4
5π

2.35 2.40

6 12
5π

4(1−
√
5)

5π
4(1+

√
5)

5π
2.35 2.45

2
7 8

5π
6(1+

√
5)

5π
6(1−

√
5)

5π
6.17 6.84

8 8
5π

2(3+
√
5)

5π
2(3−

√
5)

5π
9.62 9.21

9 4
5π

8(1+
√
5)

5π
8(1−

√
5)

5π
9.90 10.70

3

10 4
5π

4(2+
√
5)

5π
4(2−

√
5)

5π
14.07 14.22

11 0 2(5+3
√
5)

5π
2(5−3

√
5)

5π
16.91 17.18

12 8
5π

2(3−
√
5)

5π
2(3+

√
5)

5π
19.24 18.47

4

13 4
5π

8
5π

8
5π

22.67 22.60

14 0 2(5+
√
5)

5π
2(5−

√
5)

5π
24.58 24.68

15 − 4
5π

4(3+
√
5)

5π
4(3−

√
5)

5π
25.84 26.03

5

16 − 8
5π

2(7+
√
5)

5π
2(7−

√
5)

5π
36.63 36.91

17 − 4
5π

12
5π

12
5π

37.24 37.52

18 0 2(5−
√
5)

5π
2(5+

√
5)

5π
38.07 38.35

19 4
5π

4(2−
√
5)

5π
4(2+

√
5)

5π
39.22 39.47

20 8
5π

6(1−
√
5)

5π
6(1+

√
5)

5π
40.87 41.11

6

21 − 12
5π

16
5π

16
5π

48.43 48.85

22 − 8
5π

2(7−
√
5)

5π
2(7+

√
5)

5π
50.43 50.86

23 − 4
5π

4(3−
√
5)

5π
4(3+

√
5)

5π
52.78 53.25

24 0 4(5−3
√
5)

5π
4(5+3

√
5)

5π
55.48 55.97

25 4
5π

8(1−
√
5)

5π
8(1+

√
5)

5π
58.52 59.04

The expressions of wires 1 and 2 are given by V1(L, t) =
1
4
U1(L, t)− 2+

√
2

8
U2(L, t)+

1
4
U3(L, t)−2−

√
2

8
U4(L, t) and V2(L, t) =

1
4
U1(L, t)−

√
2
8
U2(L, t)−1

4
U3(L, t)+

√
2
8
U4(L, t),

respectively. Then the 50% delays of wires 1 and 2 can be evaluated by solving

Vi(L, t) = 0.5Vdd for i = 1, 2.
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3.2. INTERCONNECT DELAYS AND CLASSIFICATION

3.2.3 Pattern Classification

First, we consider the classification of transition patterns over five wires with respect

to the delay of the middle wire (wire 3). In this chapter, we use “↑” to denote a

transition from 0 to the supply voltage Vdd (normalized to 1), “-” no transition, and

“↓” a transition from Vdd to 0. We first focus on patterns with a ↑ transition on wire

3 in a five-wire bus and derive V3(L, t) for each pattern as described in Sec. 3.2.2.

There are 34 = 81 different transition patterns, which can be partitioned into 25

subclasses as shown in Tab. 3.1 according to the expressions of the output signals on

wire 3: All transition patterns in each subclass have the same expression V3(L, t).

The coefficients for all 25 subclasses are shown in columns 3-5 of Tab. 3.2. Then

the expressions V3(L, t) of all patterns in the 25 subclasses are evaluated for their

50% delays. By grouping subclasses with close delays into one class, we can divide

the 81 transition patterns into seven classes Ci for i = 0, 1, · · · , 6 shown in Tab. 3.2.

For all 25 subclasses, evaluated and simulated delays are provided in columns 6 and

7 of Tab. 3.2, respectively. For all seven classes, the difference between evaluated

delay and simulated delay in Tab. 3.2 is small.

All evaluations and simulations are based on a freePDK 45nm CMOS technology

with 10 metal layers [49]. We assume that the top two metal layers, layers 9 and

10, are used for routing global interconnects, and that metal layer 8 is used as the

ground layer. An interconnect model in [50] is used for parasitic extraction. For a

5mm bus in the top metal layer, the key parasitics, resistance, ground capacitance,

and coupling capacitance, are given by R = 68.75Ω, Cgnd = 41.32fF , and Ccouple =

505.68fF , respectively. The bus is modeled by a distributed RC model as shown

in Fig. 4.1 with 100 segments. The two important parameters used in our delay
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3.2. INTERCONNECT DELAYS AND CLASSIFICATION

approximation are τ0 = 0.5RCgnd = 1.42ps and λ = Ccouple/Cgnd = 12.24. Since the

crosstalk delay on the bus constitutes a major part of the whole delay, the delays

introduced by buffers are ignored. We assume that ideal step signals are applied

on the bus directly. The closed-form expressions are evaluated for 50% delays via

MATLAB and the simulation is done by HSPICE.

From Tab. 3.2, it can be easily verified that C5 and C6 are the same as D3 and

D4 in [7,42], respectively. That is, the middle three wires of the transition patterns

in C5 (C6, respectively) constitute D3 (D4, respectively). The transition patterns

in D0, D1, and D2 are divided into five classes C0—C4 in our classification with

following relations, C4 ⊂ D2, C3 ⊂ D1∪D2, C2 ⊂ D0∪D1, C1 ⊂ D0∪D1∪D2,

and C0 ⊂ D0 ∪D1.

Note that the coefficients ci for i = 0, 1, 2 of the expression of wire 3 are indepen-

dent of technology and determined by different patterns. For a given pattern, the

coefficients ci are fixed and the delay is a function of τ0 and λ. Since the ratio t/τ0

appears in the exponent term, varying τ0 would scale delays in all classes. Thus,

the classification does not depend on τ0. The coupling factor λ could affect the

delay differently. In the following, we verify our classification for technology with

different coupling factor, λ = 1, 2, · · · , 13, and show the results in Fig. 3.2. Different

classes are denoted by different line styles. Each class contains multiple lines, which

represents a subclass. Patterns in each subclass have the same delay. For λ ≥ 3,

the ranges of delays in all classes do not overlap. Also, the delay in each subclass

increases linearly with λ. This implies that our classification is valid provided that

the coupling factor λ is at least 3.

Then, we consider the classification of transition patterns over four wires with
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3.2. INTERCONNECT DELAYS AND CLASSIFICATION
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Figure 3.2: Delays of the middle wire for all patterns with respect to λ in a five-wire
bus (τ0 = 1.42ps).
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Figure 3.3: Delays of side wires for all patterns with respect to λ in a four-wire bus
(τ0 = 1.42ps).

respect to the delays of the side wires. We classify patterns by considering the worst-

case delays of wires 1 and 2, respectively. Note that the classification with respect
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3.2. INTERCONNECT DELAYS AND CLASSIFICATION

to the delays of wires 4 and 5 would be the same by symmetry. We first focus on

patterns with a ↑ transition on wire 2 in a four-wire bus. There are 33 = 27 different

transition patterns. As described in Sec. 3.2.2, we first derive the expressions V2(L, t)

of these 27 patterns shown in Tab. 3.3. By evaluating these patterns for their 50%

delays, we group patterns with close delays into one class, and form five classes

jC for j = 0, 1, 2, 3, 4 as shown in Tab. 3.3. Then, we focus on patterns with a ↑

transition on wire 1. There are 33 = 27 different transition patterns. As described

in Sec. 3.2.2, we first derive the expressions V1(L, t) of these 27 patterns shown in

Tab. 3.4. By evaluating these patterns for their 50% delays, we group patterns with

close delays into one class, and form three classes jC for j = 0, 1, 2 as shown in

Tab. 3.4. When both wires 1 and 2 have transitions, the delay on wire 2 is larger

than that of wire 1, which can be verified from Tabs. 3.3 and 3.4. In this case, we

focus on the delay of wire 2. When only wire 1 has transition, we focus on the delay

of wire 1. The difference between evaluated delay and simulated delay is small as

shown in Tabs. 3.3 and 3.4 with one exception (the pattern ↑↑↓↑ in 1C in Tab. 3.3),

which doesn’t change our classification.

From Tabs. 3.3 and 3.4, the classes 3C and 4C of our classification are exactly the

same as D3 and D4 in [7,42], respectively. The class 1C and 2C of our classification

are subsets of D1 and D2 in [7,42], respectively. The class 0C is a subset of D0∪D1

in [7, 42].

Similar to the classification of middle wires, we conclude that the classification

on side wires does not depend on τ0. To verify our classification for technology with

different coupling effects, we consider coupling factor λ = 1, 2, · · · , 13, and show the

results in Fig. 3.3. Each class contains multiple lines, each of which represents a
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3.2. INTERCONNECT DELAYS AND CLASSIFICATION

Table 3.3: Closed-form expressions for the output signals on wire 2 (V2(L, t) =

Vdd(1−c0e
− t

a0τ −c1e
− t

a1τ −c2e
− t

a2τ −c3e
− t

a3τ )) in a four-wire bus with evaluated and
simulated 50% delays (τ0 = 1.42 ps, τ = 8

π2 τ0, λ = 12.24, a0 = 1, a1 = 1+(2−
√
2)λ,

a2 = 1 + 2λ, and a3 = 1 + (2 +
√
2)λ for all classes).

jC Pattern
Coeffs of V2(L, t) Eva. Sim.

c0 c1 c2 c3 (ps) (ps)

0

↑↑↑↑ 4
π

0 0 0 1.08 1.18

↑↑↑- 3
π

√
2

2π
1
π

−
√
2

2π
1.55 1.61

↑↑-↑ 3
π

2−
√
2

2π
− 1

π
−2+

√
2

2π
1.55 1.62

-↑↑↑ 3
π

−
√
2

2π
1
π

√
2

2π
1.55 1.64

1

↑↑↑↓ 2
π

√
2
π

2
π

−
√
2

π
3.33 3.22

↑↑- - 2
π

1
π

0 1
π

4.54 3.48
-↑↑- 2

π
0 2

π
0 7.21 5.15

↑↑-↓ 1
π

2+
√
2

2π
1
π

2−
√
2

2π
9.70 9.38

↑↑↓↑ 2
π

0 2−
√
2

2π
− 2

π
9.98 3.92

-↑↑↓ 1
π

√
2

2π
3
π

−
√
2

2π
12.89 13.03

2

↑↑↓- 1
π

4−
√
2

2π
− 1

π
4+

√
2

2π
17.02 16.05

-↑-↑ 2
π

1−
√
2

π
0 1+

√
2

π
19.67 18.79

↑↑↓↓ 0 2
π

0 2
π

20.05 19.85

-↑- - 1
π

2−
√
2

2π
1
π

2+
√
2

2π
22.59 22.48

-↑-↓ 0 1
π

2
π

1
π

24.12 24.22

↓↑↑↑ 2
π

−
√
2

π
2
π

√
2
π

26.02 26.06

↓↑↑- 1
π

−
√
2

2π
3
π

√
2

2π
26.89 27.06

↓↑↑↓ 0 0 4
π

0 27.45 27.68

3

-↑↓↓ − 1
π

4−
√
2

2π
1
π

4+
√
2

2π
37.44 37.74

-↑↓- 0 2−
√
2

π
0 2+

√
2

π
38.61 38.89

↓↑-↓ − 1
π

2−
√
2

2π
3
π

2+
√
2

2π
39.06 39.40

-↑↓↑ 1
π

4−
√
2

2π
− 1

π
4+

√
2

2π
40.12 40.39

↓↑- - 0 1−
√
2

π
2
π

1+
√
2

π
40.21 40.55

↓↑-↑ 1
π

2−3
√
2

2π
1
π

2+3
√
2

2π
41.63 41.98

4
↓↑↓↓ − 2

π
2−

√
2

π
2
π

2+
√
2

π
50.92 51.36

↓↑↓- − 1
π

4−3
√
2

2π
1
π

4+3
√
2

2π
52.99 53.44

↓↑↓↑ 0 2−2
√
2

π
0 2+2

√
2

π
55.28 55.79

pattern in Tabs. 3.3 and 3.4. For λ ≥ 1, the ranges of delays in all classes do not

overlap. Also, the delay in each subclass increases linearly with λ. This implies that

our classification on side wires is valid provided that the coupling factor λ is at least

1.
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Table 3.4: Closed-form expressions for the output signals on wire 1 (V1(L, t) =

Vdd(1−c0e
− t

a0τ −c1e
− t

a1τ −c2e
− t

a2τ −c3e
− t

a3τ )) in a four-wire bus with evaluated and
simulated 50% delays (τ0 = 1.42 ps, τ = 8

π2 τ0, λ = 12.24, a0 = 1, a1 = 1+(2−
√
2)λ,

a2 = 1 + 2λ, and a3 = 1 + (2 +
√
2)λ for all classes).

jC Pattern
Coeffs of V1(L, t) Eva. Sim.

c0 c1 c2 c3 (ps) (ps)

0

↑↑↑↑ 4
π

0 0 0 1.08 1.18

↑↑↑- 3
π

−2+
√
2

2π
− 1

π
2−

√
2

2π
1.55 1.59

↑↑-↑ 3
π

√
2

2π
1
π

−
√
2

2π
1.55 1.61

↑-↑↑ 3
π

−
√
2

2π
1
π

√
2

2π
1.55 1.64

1

↑↑↑↓ 2
π

2+
√
2

π
− 2

π
2−

√
2

π
2.50 2.70

↑↑- - 2
π

1+
√
2

π
0 1−

√
2

π
2.83 2.90

↑↑↓↑ 2
π

√
2
π

2
π

−
√
2
π

3.33 3.20

↑↑-↓ 1
π

4+3
√
2

2π
− 1

π
4−3

√
2

2π
4.65 4.99

↑-↑- 2
π

1
2π

0 1
2π

4.54 3.49

↑↑↓- 1
π

2+3
√
2

2π
1
π

2−3
√
2

2π
5.53 5.88

↑↑↓↓ 0 2+2
√
2

π
0 2−2

√
2

π
7.03 7.39

↑- -↑ 2
π

0 2
π

0 7.21 5.15

↑-↑↓ 1
π

4+
√
2

2π
− 1

π
4−

√
2

2π
7.41 6.89

↑- - - 1
π

2+
√
2

2π
1
π

2−
√
2

2π
9.70 9.35

↑- -↓ 0 2+
√
2

π
0 2−

√
2

π
10.68 10.54

↑-↓↑ 1
π

√
2

2π
3
π

−
√
2

2π
12.89 13.03

↑-↓- 0 2+2
√
2

2π
2
π

2−2
√
2

2π
13.03 13.14

↑-↓↓ − 1
π

4+3
√
2

2π
1
π

4−3
√
2

2π
13.11 13.21

2

↑↓↑↓ 0 2
π

0 2
π

20.05 19.85

↑↓-↓ − 1
π

4+
√
2

2π
1
π

4−
√
2

2π
21.86 21.91

↑↓↑- 1
π

2−
√
2

2π
1
π

2+
√
2

2π
22.59 22.48

↑↓↓↓ − 2
π

2+
√
2

π
2
π

2−
√
2

π
23.10 23.23

↑↓- - 0 1
π

2
π

1
π

24.12 24.22

↑↓↓- − 1
π

2+
√
2

2π
3
π

2−
√
2

2π
25.10 25.30

↑↓↑↑ 2
π

−
√
2

π
2
π

√
2
π

26.02 26.06

↑↓-↑ 1
π

−
√
2

2π
3
π

√
2

2π
26.89 27.06

↑↓↓↑ 0 0 4
π

0 27.45 27.68

In addition to being a finer classification, the new classification has no over-

lapping delays among different classes. Fig. 3.4 compares the simulated delays of

different classes based on the classification in [7, 42] and our new classification. In

Fig. 3.4, the grey bars identify the minimum and maximum simulated delays in

every class. Note that only two extremes are important, and not all delay values in
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3.3. NEW MEMORYLESS CROSSTALK AVOIDANCE CODES

the grey bars are achievable by some transition patterns. In Fig. 3.4(a), the thick

line segments denote the upper bounds for delay of each class based on Eq. (3.1).

The upper bounds by the model in [7, 42] overestimate the delays of D1 through

D4 and underestimate the delay of D0. As shown in Fig. 3.4(a), the actual delays

in D0, D1, and D2 overlap with each other. Some patterns with smaller delays

have potential to transmit information at a higher speed, but are categorized into a

class with a larger delay bound. Thus, the classification by the model in [7,42] does

not result in effective crosstalk avoidance codes. In contrast, the delays of different

classes in our new classification do not overlap as shown in Fig. 3.4(b), 4(c), and

4(d). By classifying patterns this way, we have a more accurate control of delays for

transition patterns.

3.3 NEWMEMORYLESS CROSSTALKAVOID-

ANCE CODES

3.3.1 Previous CAC Design

CACs reduce the crosstalk delay for on-chip global interconnects by encoding a k-

bit data word (x1x2 · · ·xk) into an n-bit (n > k) codeword (c1c2 · · · cn). Two kinds

of CACs, CACs with memory and memoryless CACs, have been investigated in

the literature [51]. CACs with memory need to store all codebooks corresponding

to different codewords (c1c2 · · · cn), since the encoding depends on the data word

(x1x2 · · ·xk) as well as the preceding codeword. In contrast, memoryless CACs

44



3.3. NEW MEMORYLESS CROSSTALK AVOIDANCE CODES

D0

D1

D2

D3

D4

100

Classification Based on (1)

C2

C3

C4

C5

C6

C0

C1

Delay  

New Classification for Wire 3

(a)

(b)

(c)

New Classification for Wire 1

20 30 40 50 60 70
Delay  (ps)

100 20 30 40 50 60 70
(ps)

0C

1C

2C

3C

4C

100 20 30 40 50 60 70
Delay  (ps)

New Classification for Wire 2

(d)

0C

1C

2C

100 20 30 40 50 60 70
Delay  (ps)

Figure 3.4: Simulated delays of different classes of transition patterns using (a)
Classification based on (3.1); (b) Classification with respect to the delay of the
middle wire in a five-wire bus; (c) Classification with respect to the delay of wire 2
in a four-wire bus; (d) Classification with respect to the delay of wire 1 in a four-wire
bus (λ = 12.24 and τ0 = 1.42ps).

require a single codebook to generate codewords for transmission, because the en-

coding depends on the data word only. Hence, memoryless CACs are simpler to

implement than CACs with memory. We focus on memoryless CACs in this chap-

ter.

The codebook of a memoryless CAC satisfies the property that each codeword
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must be able to transition to every other codeword in the codebook with a delay less

than the requirement. Most memoryless CACs in the literature are based on the

model in [7,42]. The key idea is to eliminate undesirable patterns for transmission.

Existing memoryless CACs include OLCs, FPCs, FTCs, and FOCs [8–10,32], which

achieve a worst-case delay of (1 + λ)τ0, (1 + 2λ)τ0, (1 + 2λ)τ0, and (1 + 3λ)τ0,

respectively. As mentioned above, the scheme that was proposed to achieve a worst-

case delay of τ0 is invalid since the model in [7,42] underestimates the delays for 0C.

Thus, OLCs achieve the smallest worst-case delay (1 + λ)τ0 among existing CACs.

There exist several methods to obtain a memoryless codebook based on pattern

pruning, transition pruning, or recursive construction. The pattern pruning tech-

nique is quite straightforward, and gives a codebook with a smaller worst-case delay

by eliminating some patterns. For example, FOCs cannot have both 010 and 101

patterns around any bit position, and FPCs are free of 010 and 101 patterns [32].

The transition pruning technique [10] is based on graph theory. This method first

builds a transition graph with all possible codewords as nodes and all valid transi-

tions as edges, and then finds a maximum clique. A clique is defined as a subgraph

where every pair of nodes are connected with an edge. A maximum clique is defined

as a clique of the largest possible size in a given graph. Since every pair of nodes is

connected, a maximum clique in this graph constitutes a memoryless codebook with

the largest size. The codebook generation method is based on exhaustive search.

Although it is easy to get a maximum clique from a transition graph with a small

n, the complexity increases rapidly with n. This is because the number of edges in

an n-bit transition graph is upper bounded by 2n−1(2n − 1), which increases expo-

nentially with n. In fact, it is an NP problem to find a maximum clique for given
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constraints [52]. The recursive technique constructs an (n+1)-bit codebook from an

n-bit codebook [8,9]. Since for a small n, a largest codebook can be obtained easily

via the second method, a codebook for an n-wire bus can be constructed recursively.

3.3.2 CAC Design with New Classification

Since our classification of patterns is different from that in [7,42], the CAC designs

should be reconsidered with our new classification. In the following, we first intro-

duce a recursive method for codebook construction under different constraints, and

then derive the size of codebooks.

In our work, we use the recursive method to obtain a memoryless codebook

for the following two reasons. First, it is complex to apply the pattern pruning

technique, since our new classification is based on transitions over five wires, and

it is not clear which patterns have larger worst-case delays and should be removed.

Second, it is hard to find a maximum clique for a transition graph with a large n. In

our method, we first start with a 5-bit codebook, obtained by searching for maximum

cliques in a five-wire bus, and then build an (n + 1)-bit codebook by appending ’0’

and ’1’ to codewords of an n-bit codebook while satisfying delay constraints.

Our new classifications partition patterns over five adjacent wires into seven

classes, C0 to C6, and patterns over four adjacent wires into five classes, 0C to 4C.

Similar to the CAC design based on the model in [7,42], the new classifications are

conducive to the design of CACs by eliminating undesirable transition patterns with

large worst-case delays.

To get valid 5-bit codebooks, we first assume the allowed patterns are from C0

to Ci for i = 0, 1, · · · , 6 in our classification for middle wires. Then, for the side
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wires, we assume patterns are from 0C to jC based on the classification for side

wires. Under these two assumptions, there are many configurations of constraints,

which are referred as (Ci, jC), where i ∈ {0, 1, · · · , 6} and j ∈ {0, 1, · · · , 4}.

Since the worst-case delay of a bus is determined by the largest delays among

all wires, for an n-bit (n ≥ 5) bus under (Ci, jC) we require that the worst-case

delays on middle wires and side wires are close enough. By our classifications, we

find 0C is close to C0, 1C close to C2 and C3, 2C close to C4, 3C close to C5, and

4C close to C6. Hence, among all configurations of constraints (Ci, jC), we only

focus on (C0, 0C), (C2, 1C), (C3, 1C), (C4, 2C), (C5, 3C), and (C6, 4C). When

n ≤ 4, the constraint Ci cannot be enforced. Hence, the constraint (Ci, jC) reduces

to jC. The constraint (C0, 0C) appears to be too restrictive, and hence we do not

investigate it in this chapter. The last configuration (C6, 4C) is trivial, since it

allows arbitrary transitions.

Algorithm 1 Codebook design under (Ci, jC)

Input: C0
5 , C

1
5 , n;

Initialize: k = 5, C5 = C0
5 , s = 1;

while k ≤ n− 1 do
for ∀ck = (c1c2 · · · ck) ∈ C(k) do
if (ck−3ck−2ck−1ck0) ∈ Cs

5 then
append 0 to ck and add the new codeword to C(k + 1);

else if (ck−3ck−2ck−1ck1) ∈ Cs
5 then

append 1 to ck and add the new codeword to C(k + 1);
end if

end for
s = 1− s;
k = k + 1;

end while
Output: C(n).

In the following, we propose a scheme for finding an n-bit codebook C(Ci,jC)(n).
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For simplicity, we denote C(Ci,jC)(n) as C(n) when there is no ambiguity about the

constraint. First, for a five-wire bus under constraint (Ci, jC), a pattern transition

graph is obtained. We search the graph for the largest 5-bit codebooks. One or two

5-bit codebooks of maximum sizes exist for each constraint in Tab. 3.5, where we

denote an n-bit binary codeword (c1c2 · · · cn) as a decimal number
∑n

i=1 ci2
n−i for

simplicity. In [10], a bit boundary in a set of codewords is said to be 01-type if only

codewords with 00, 01, and 11 are allowed across that boundary, and a bit boundary

is said to be 10-type when only codewords with 00, 10, and 11 are allowed across that

boundary. It is shown that the largest clique for a given constraint has alternating

boundary types. Thus, there are two largest cliques. Similarly, from Tab. 3.5,

we conjecture that the largest codebooks have alternating constraints, C0
5 and C1

5 ,

for every five consecutive wires. For constraint (C4, 2C), only one maximum 5-bit

codebook exists. We assume C1
5 is the same as C0

5 for constraint (C4, 2C). Since

we have two types of constraints, two largest codebooks for each constraint can

be obtained, except for (C4, 2C), where the two codebooks are the same. Then we

apply Alg. 1 to obtain C(n). In the initialization, we pick a 5-bit codebook C5 = C0
5 .

Then, the algorithm recursively appends one bit to the codewords in the codebook

in each iteration. For ck = (c1c2 · · · ck), the appended bit x needs to satisfy that

the last five bits (ck−3ck−2ck−1ckx) form a codeword in Cs
5 , which alternates between

C0
5 and C1

5 . If we pick the other 5-bit codebook C5 = C1
5 , we would obtain another

codebook.

The recursive construction allows us to derive the size of the codebooks. Let

V(Ci,jC) be an all-onem-dimensional row vector (m = |C0
5 |) under constraint (Ci, jC).

Let csk be a k-bit codeword with last five consecutive bits (ck−4ck−3ck−2ck−1ck) ∈ Cs
5
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Table 3.5: Largest 5-bit codebook(s) under constraint (Ci, jC).

Constraint C0
5 C1

5

(C5, 3C)

{0, 1, 2, 3, 6, 7, 8, 9, {0, 1, 3, 4, 5, 6, 7, 12,
10, 11, 12, 14, 15, 16, 13, 14, 15, 16, 17, 19,
17, 18, 19, 24, 25, 20, 21, 22, 23, 24,
26, 27, 28, 30, 31} 25, 28, 29, 30, 31}

(C4, 2C)
{0, 1, 3, 6, 7, 12, 14, 15, 16,
17, 19, 24, 25, 28, 30, 31}

(C3, 1C) {0, 3, 14, 15, 24, 30, 31} {0, 1, 7, 16, 17, 28, 31}
(C2, 1C) {0, 3, 15, 24, 30, 31} {0, 1, 7, 16, 28, 31}

for s = 0 or 1. If a 0 or 1 can be appended to csk to form a (k + 1)-bit codeword

whose last five bits (ck−3ck−2ck−1ckck+1) ∈ C1−s
5 , such an expansion is called a valid

expansion. Otherwise, it is called an invalid expansion. An expansion matrix is

denoted as a m×m matrix Ds
(Ci,jC), where Ds

(Ci,jC)(i, j) = 0 denotes an invalid ex-

pansion and Ds
(Ci,jC)(i, j) = 1 a valid expansion from the i-th codeword in Cs

5 to the

j-th codeword in C1−s
5 under constraint (Ci, jC). Each row of Ds

(Ci,jC) has at most

two ones, since each k-bit codeword can be appended to form at most two (k + 1)-

bit codewords whose last five bits satisfy the appropriate constraints. Let Y be an

m×m anti-diagonal matrix with all ones. Due to symmetry between C0
5 and C1

5 , D
0

and D1 satisfy D1
(Ci,jC) = YD0

(Ci,jC)Y. Define D(Ci,jC) = D0
(Ci,jC)Y = YD1

(Ci,jC).

We denote V(Ci,jC) and D(Ci,jC) as V and D, respectively, when there is no ambi-

guity about the constraint. For example, the expansion matrices corresponding to
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constraints (C3, 1C), (C4, 2C), and (C5, 3C) are given by

D(C3,1C) =





0 0 0 0 0 1 1

0 0 0 0 1 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0



 ,D(C4,2C) =





















0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0





















,

D(C5,3C) =





































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





































.

Then, for n ≥ 5, the number of codewords in an n-bit bus is equal to counting the

valid transitions and is given by

|C(n)| = VD0D1 · · ·VT

=











V(D0YYD1)
n−5
2 VT if n is odd;

V(D0YYD1)
n−6
2 D0YYVT if n is even;

= VDn−5YVT .

(3.3)

In the following, we first focus on constraints (C3, 1C), (C4, 2C), and (C5, 3C).

The codes based on these constraints are shown to have the same codebooks as

OLCs, FPCs, and FOCs, respectively. Then, we consider constraint (C2, 1C), which
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would lead to codes with a smaller delay at the expense of a lower code rate. Several

lemmas and theorems about the aforementioned codebooks and their sizes have

been established below. All the proofs are straightforward, and hence omitted for

conciseness. See the extended manuscript [53] of this work for more details.

3.3.3 Codes Under (C3, 1C)

The one Lambda codes have a worst-case delay (1 + λ)τ . According to [32], the

worst-case delay (1+λ)τ can only be achieved if and only if the transitions ↑↓ ×,

-↑-, and ↑-↑ plus their symmetric and complement versions (e.g. ↑↓ × and × ↓↑

are symmetric, and -↓- is the complement of -↑-) are avoided, where ↑, ↓, ×, and -

denote 0→1, 1→0, don’t care, and no transition, respectively. The first constraint of

avoiding ↑↓ × ensures that a transition between any two codewords does not cause

opposite transition on any wire. This condition is referred as a forbidden-transition

(FT) condition. The second constraint of avoiding -↑- ensures that 2C patterns are

removed. This constraint ensures two adjacent bit boundaries cannot both be 01-

type or 10-type, and is referred as a forbidden adjacent boundary pattern (FABP)

condition [32]. The last two forbidden patterns give the constraint that no patterns

010 and 101 appear in the codeword, which is referred as a forbidden-pattern (FP)

condition [32]. Codes satisfying these necessary and sufficient conditions are

called one Lambda codes (OLCs). We denote the largest OLC codebook size for an

n-bit bus as Gn, and Gn is given by

Gn = Gn−1 +Gn−5 (3.4)
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with initial conditions G1 = 2, G2 = 3, G3 = 4, G4 = 5, and G5 = 7 [54].

With our classification, we explore codes under constraint (C3, 1C). From

Tab. 3.5, the two largest 5-bit codebooks are given by C0
5={0, 3, 14, 15, 24, 30,

31} and C1
5={0, 1, 7, 16, 17, 28, 31}. An n-bit codebook C(n) can be obtained via

Alg. 1. The number of codewords is given by

|C(n)| = VDn−5
(C3,1C)V

T for n ≥ 5, (3.5)

where V is a seven-dimensional all one vector and D(C3,1C) is a 7× 7 expansion ma-

trix. We further establish that the largest codebook sizes under constraint (C3, 1C)

satisfy the recursion:

Lemma 3.3.1. For n ≥ 8, |C(C3,1C)(n)| is given by a recursion |C(C3,1C)(n)| =

|C(C3,1C)(n − 2)| + |C(C3,1C)(n − 3)|, with initial conditions |C(C3,1C)(n)| =7, 9, 12,

for n =5, 6, 7, respectively.

In fact, we can further relate these codes with OLCs by the following:

Theorem 3.3.1. The codes under (C3, 1C) have the same codebooks as OLCs.

Hence, Gn = |C(C3,1C)(n)|.

Theorem 3.3.1 implies that the codes under constraint (C3, 1C) are equivalent

to the class of OLC codes.

3.3.4 Codes Under (C4, 2C)

The (1+2λ) codes have a worst-case delay of (1+2λ)τ . No necessary and sufficient

condition is known for a code to be a (1 + 2λ) code. Two sufficient conditions FT
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and FP are found, which lead to two families of (1 + 2λ) codes, FTC and FPC,

respectively. The size of an FTC codebook for an n-wire bus is given by Fn+2,

where Fn is the Fibonacci sequence that satisfies Fn+2 = Fn+1 + Fn and has initial

conditions F1 = F2 = 1 [10]. The FPCs for an n-wire bus have a larger codebook

size 2Fn+1 [8].

With our classification, we explore codes under constraint (C4, 2C). From

Tab. 3.5, only one largest 5-bit codebook is found C0
5={0, 1, 3, 6, 7, 12, 14, 15,

16, 17, 19, 24, 25, 28, 30, 31}. An n-bit codebook C(n) can be obtained via Alg. 1

by setting C1
5 = C0

5 . The number of codewords is given by

|C(n)| = VDn−5
(C4,2C)V

T for n ≥ 5 (3.6)

where V is a 16-dimensional all one vector and D(C4,2C) is a 16× 16 expansion ma-

trix. We further establish that the largest codebook sizes under constraint (C4, 2C)

satisfy the recursion:

Lemma 3.3.2. For n ≥ 9, |C(C4,2C)(n)| can be simplified as recursion |C(C4,2C)(n)| =

2|C(C4,2C)(n − 1)| − |C(C4,2C)(n − 2)| + |C(C4,2C)(n − 4)|, with boundary conditions

|C(C4,2C)(n)| =16, 26, 42, 68, for n =5, 6, 7, 8, respectively.

Again, we can relate these codes to existing CACs by the following:

Theorem 3.3.2. The codes under (C4, 2C) have the same codebooks as FPCs.

Hence, 2Fn+1 = |C(C4,2C)(n)|.

Since FPCs and our codes under (C4, 2C) can be obtained by excluding D3 plus

D4 patterns and C5 plus C6 patterns, respectively, Theorem 3.3.2 is not surprising
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given that C5 and C6 are the same as D3 and D4, respectively. Theorem 3.3.2

implies that results in the literature regarding FPCs are also applicable to codes

under constraint (C4, 2C).

3.3.5 Codes Under (C5, 3C)

The (1+3λ) codes have a worst-case delay of (1+3λ)τ , which can be achieved if and

only if ↓↑↓ and ↑↓↑ are avoided. So the necessary and sufficient condition for the

(1+3λ) codes is that the codebook cannot have both 010 and 101 appearing centered

around any bit position, which is referred as a forbidden-overlap (FO) condition.

Codes satisfying the FO condition are called FOCs. It is shown that the largest

FOC codebook for an n-bit bus is given by Tn+2, where Tn = Tn−1 + Tn−2 + Tn−3

is the tribonacci number sequence with initial conditions T1 = 1, T2 = 1, and

T3 = 2 [32].

With our classification, we explore codes under constraint (C5, 3C). Two largest

5-bit codebooks C0
5={0, 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 24, 25,

26, 27, 28, 30, 31} and C1
5={0, 1, 3, 4, 5, 6, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22,

23, 24, 25, 28, 29, 30, 31} are found. Via Alg. 1, an n-bit codebook C(n) can be

obtained. The number of codewords is given by

|C(n)| = VDn−5
(C5,3C)V

T for n ≥ 5, (3.7)

where V is a 24-dimensional all one vector and D(C5,3C) is a 24 × 24 expansion

matrix.

We further establish that the largest codebook sizes under constraint (C5, 3C)
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satisfy the recursion:

Lemma 3.3.3. For n ≥ 8, |C(C5,3C)(n)| can be simplified as recursion |C(C5,3C)(n)| =

|C(C5,3C)(n − 1)| − |C(C5,3C)(n − 2)| + |C(C5,3C)(n − 3)|, with boundary conditions

|C(C5,3C)(n)| =24,44,81, for n =5, 6, 7, respectively.

Again we can relate these codes to existing CACs by the following:

Theorem 3.3.3. The codes under (C5, 3C) have the same codebooks as FOCs.

Hence, Tn+2 = |C(C5,3C)(n)|.

Theorem 3.3.3 is not surprising, since FOCs and our codes under (C5, 3C) can

be obtained by excluding D4 and C6 patterns, respectively, and D4 and C6 have

been shown to be the same. Theorem 3.3.3 implies that results in the literature

regarding FOCs are also applicable to codes under constraint (C5, 3C).

3.3.6 Codes Under (C2, 1C)

With our classification, we explore codes under constraint (C2, 1C). From Tab. 3.5,

the two largest 5-bit codebooks are given by C0
5={00000, 00011, 01111, 11000, 11110,

11111} and C1
5={00000, 00001, 00111, 10000, 11100, 11111}. An n-bit codebook

C(n) can be obtained via Alg. 1. The number of codewords is given by

|C(n)| = VDn−5VT for n ≥ 5, (3.8)

where V is a six-dimensional all one vector and D =

[ 0 0 0 0 1 1
0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

]

.

We further establish that the largest codebook sizes under constraint (C2, 1C)

satisfy the recursion:
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Lemma 3.3.4. For n ≥ 10, |C(C3,1C)(n)| can be simplified as recursion |C(C2,1C)(n)| =

|C(C2,1C)(n−2)|+ |C(C2,1C)(n−5)|, with initial conditions |C(C2,1C)(n)| =6, 7, 9, 11,

14, for n =5, 6, 7, 8, 9, respectively.

Lemma 3.3.5. The codebook under (C2, 1C) is a subset of OLC.

3.3.7 Pruned Codes Under (C2, 1C)

For (C2, 1C), the restriction on the side wires is more relaxed than that on the

middle wires, which results in larger worst-case delays for the side wires. Hence,

we prune the CACs under constraint (C2, 1C) by removing codewords with larger

delays on the side wires in order to achieve a smaller worst-case delay. Since the

pruned codes have a smaller delay than OLCs, we call these pruned CACs improved

one Lambda codes (IOLCs). We obtain IOLCs by first finding an n-bit codebook

via Alg. 1 as in Sec. 3.3.6, and then pruning the codebook with Alg. 2. To prune

the codebook C(n), we search for maximum subsets of C i
5 (i = 0, 1) with smaller

delays on the side wires. For C0
5 , two maximum subsets C0,0

5 ={0, 3, 15, 30, 31}

and C0,1
5 ={0, 15, 24, 30, 31} are found with smaller worst-case delays on wires 1

and 2 and wires 4 and 5, respectively. For C1
5 , a maximum subset C1,1

5 ={0, 1, 7,

16, 31} is found with smaller worst-case delays on wires 4 and 5. Finally, a valid

n-bit codebook is obtained with the leftmost five bits belonging to C0,0
5 , and the

rightmost five bits belonging to C0,1
5 or C1,1

5 depending on whether n is odd or even.

The pruning algorithm for CACs under (C2, 1C) on an n-bit bus is shown in

Alg. 2. By pruning all codewords cn in C(n), the algorithm removes codewords

with larger delay on side wires. With Alg. 2, we get an n-bit IOLC under constraint
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Algorithm 2 Pruning CACs under (C2, 1C)

Input: C0,0
5 , C0,1

5 , C1,1
5 , C(n);

if n is odd then
i = 1;

else
i = 0;

end if
for ∀cn = (c1c2 · · · cn) ∈ C(n) do
if (c1c2c3c4c5) 6∈ C0,0

5 or (cn−4cn−3cn−2cn−1cn) 6∈ C1−i,1
5 then

eliminate cn from C(n);
end if

end for
Output: C(n).

(C2, 1C), and its size is given by

|CIOLC(n)| = W1D
n−5YWT

2 for n ≥ 5, (3.9)

where W1 = [1 1 1 0 1 1], W2 = [1 0 1 1 1 1], and D is the same as that in

Eq. (3.8). Note that W1 and W2 are used instead of V, because of the pruning of

valid patterns on side wires.

We further establish that the largest codebook sizes of IOLCs satisfy the recur-

sion:

Lemma 3.3.6. For n ≥ 10, |CIOLC(n)| can be simplified as recursion |CIOLC(n)| =

|CIOLC(n− 2)|+ |CIOLC(n− 5)|, with initial conditions |CIOLC(n)| =4, 5, 7, 8, 11,

for n =5, 6, 7, 8, 9, respectively.

Lemma 3.3.7. The IOLC codebook is a subset of OLC.
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3.4 Performance Evaluation

In this section, we evaluate the performance of CACs based on our classification

with extensive simulations, and compare them with existing CACs. Each CAC has

two key performance metrics: delay and rate. The delay of a CAC is the worst-case

delay when the codewords from the CAC are transmitted over the bus. Codebook

size and code rate are often used to measure the overhead of CACs. The codebook

size of a CAC is simply the number of codewords. Suppose a CAC of size M is

transmitted over an n-bit bus, then its rate is defined as ⌊log2 M⌋
n

. A CAC of rate

k/n implies that n−k extra wires are used in addition to k data wires so as to reduce

the crosstalk delay. Hence, the code rate measures the area and power overhead of

CACs: the higher the rate, the smaller the overhead. Obviously, there is a tradeoff

between the code rate and delay of a CAC: typically a lower rate code is needed

to achieve a smaller delay. To measure the overall effects of both rate and delay,

we also define the throughput of a CAC as the ratio of code rate and delay. The

assumptions for this definition are: (1) the clock rate of the bus is determined by the

inverse of the worst-case delay; (2) the throughput of the bus is linearly proportional

to k, the number of data wires.

Since codes under (C3, 1C), (C4, 2C), and (C5, 3C) have exactly the same code-

books as OLCs, FPCs, and FOCs, their delay, rate, and throughput are also the

same. Under constraint (C2, 1C), we propose two kinds of codes, unpruned codes

and pruned codes (IOLCs). In the following, we compare their performance with

OLCs in [9] with extensive simulations.

To compare the worst-case delay of our IOLCs, unpruned (C2, 1C) codes, and

OLCs, we simulate two buses, a 10-bit bus and a 16-bit bus, with all transitions
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between any two codewords in their codebooks and obtain the worst-case delays of

each wire. The simulation environment has been explained in Sec. 3.2.3. Both buses

have a length of 5mm, and τ0 = 1.42ps and λ = 12.24. For a 10-bit bus, the worst-

case delays of our IOLC, unpruned (C2, 1C) code, and an OLC are given by 10.14ps,

13.50ps, and 14.84ps, respectively. The worst-case delay of our IOLC and unpruned

(C2, 1C) code are 31.67% and 9.03% smaller than that of the OLC, respectively.

For a 16-bit bus, the worst-case delays of our IOLC, unpruned (C2, 1C) code, and

an OLC are given by 10.40ps, 13.92ps, and 16.11ps, respectively. The worst-case

delay of our IOLC and unpruned (C2, 1C) code are 35.44% and 13.59% smaller than

that of the OLC, respectively. See the extended manuscript [53] of this work for

additional information.

For all simulations, our IOLCs have better delay performance than OLCs. Al-

though both IOLCs and unpruned (C2, 1C) codes have almost the same code rate

and better delay performance than OLCs, the delay performance of IOLCs is much

better than the unpruned (C2, 1C) codes. With a more advanced technology where

the coupling effect is significant, the improvement of our IOLCs is bigger.

The comparisons of the codebook size between our IOLCs, unpruned (C2, 1C)

codes, and OLCs [9] and the throughput gain with respect to OLCs are shown

in Tab. 3.6. The throughput gain of our CACs with respect to OLCs is given

by the ratio between the throughput of our CACs and the throughput of OLCs.

The codebook sizes of the three codes are close. In all cases, the difference of the

number of bits between our IOLCs and unpruned (C2, 1C) codes is within 1 bit. The

difference of the number of bits between our IOLCs and OLCs [9] is within 2 bits

for n ≤ 16. In respect to throughput, our IOLCs always have a greater throughput
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than OLCs, and their throughput gain ranges from 1.02 to 1.55 for an n-wire bus

(5 ≤ n ≤ 16). The unpruned (C2, 1C) codes have better throughput in some cases

than OLCs, and the throughput gain ranges from 0.78 to 1.10 for an n-wire bus

(5 ≤ n ≤ 16). When unpruned (C2, 1C) codes have a lower throughput than OLCs,

IOLCs can be used.

Our IOLCs and unpruned (C2, 1C) codes provide additional options for the

tradeoff between code rate and code delay. In addition to achieving higher through-

puts, the new CACs are also appropriate for interconnects where the delay is of top

priority.

Table 3.6: Comparison of codebook size and throughput of IOLC, unpruned
(C2, 1C) code (UC), and OLC [9] (λ = 12.24 and τ0 = 1.42ps).

# of # of words # of bits Throughput Gain
wires IOLC UC [9] IOLC UC [9] IOLC UC
5 4 6 7 2 2 2 1.55 1.10
6 5 7 9 2 2 3 1.07 0.78
7 7 9 12 2 3 3 1.02 1.14
8 8 11 16 3 3 4 1.12 0.84
9 11 14 21 3 3 4 1.10 0.84
10 12 17 28 3 4 4 1.10 1.10
11 16 21 37 4 4 5 1.18 0.88
12 18 26 49 4 4 5 1.19 0.89
13 23 32 65 4 5 6 1.03 0.96
14 27 40 86 4 5 6 1.02 0.95
15 34 49 114 5 5 6 1.27 0.95
16 41 61 151 5 5 7 1.11 0.83

It has been shown that the encoding and decoding of OLCs, FPCs, and FOCs

have quadratic complexity based on numeral systems [47]. Since codes under (C3, 1C),

(C4, 2C), and (C5, 3C) have exactly the same codebooks as OLCs, FPCs, and FOCs,
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their CODECs also have quadratic complexity. Also, it is expected that the encod-

ing and decoding of our IOLCs and unpruned (C2, 1C) codes have a quadratic

complexity, since the codebooks of our IOLCs and unpruned (C2, 1C) codes are

proper subsets of OLCs.

We remark that the simulation results in Sections 3.2.3 and 4.5 are all based

on a 45nm CMOS technology. We have also run the same set of simulations based

on a 0.1-µm technology (omitted for brevity). Between the two sets of simulation

results, the main conclusions of the manuscript and the key features of our proposed

classification and CACs remain the same. For instance, the delays of the patterns

in different classes do not overlap, regardless of the technology. Also, the proposed

CACs based on the new classification are also the same. This actually demonstrates

that our approach to delay classification and CACs is applicable to a wide variety of

technology. This is because in our approach, the dependency of the crosstalk delay

on the technology is represented by the two parameters, the propagation delay τ0 of

a wire free of crosstalk and the coupling factor λ. Since our analytical approach to

the classification and CACs treats these two parameters as variables, our approach

can be easily adapted to a wide variety of technology.

3.5 SUMMARY

In this chapter, we propose a new classification of transition patterns. The new

classification has finer classes and the delays do not overlap among different classes.

Hence the new classification is conducive to the design of CACs. To illustrate this,

we design a family of CACs with different constraints. Some codes of the family
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are the same as existing codes, OLCs, FPCs, and FOCs. We also propose two new

CACs with a smaller worst-case delay and better throughput than OLCs. Since our

analytical approach to the classification and CACs treats the technology-dependent

parameters as variables, our approach can be easily adapted to a wide variety of

technology.
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Chapter 4

Crosstalk avoidance codes for

RLC On-Chip Interconnects

4.1 INTRODUCTION

Recent International Technology Roadmap of Semiconductors (ITRS) [1] has shown

a troubling trend: while gate delay decreases with scaling, global wire delay in-

creases. This is because with the process technologies scaling down, the crosstalk

delay becomes more prominent due to the increasing capacitive and inductive cou-

plings among all wires. At low clock frequency, the inductive coupling can be ig-

nored and only the capacitive coupling determines the propagation delays. Many

approaches (see, e.g. [8,10,32,33,44,55–57]) have been proposed to alleviate the ca-

pacitive coupling. As the clock frequency approaches multi-gigahertz, the parasitic

inductance of on-chip interconnects has become significant and its detrimental ef-

fects, including increased delay, voltage overshoots and undershoots, and increased
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crosstalk noise [58–60], cannot be ignored. Hence, when the process technologies

scaling down into deep submicrometer (DSM) and the clock frequency approaching

multi-gigahertz range, the crosstalk delay and noise due to the capacitive and induc-

tive coupling become the performance bottleneck in many high-performance VLSI

designs, especially for global on-chip buses. It is imperative for designers to devise

new techniques to address both capacitive and inductive couplings simultaneously.

Many approaches have been proposed to reduce the crosstalk delays due to the

capacitive coupling, such as shielding, repeater insertion, and bus encoding [8, 10,

32,33,44,55–57]. Among these approaches, the shielding scheme is the simplest one,

but it requires a large area overhead. The repeater insertion scheme prevents simul-

taneously opposite switching between adjacent wires by introducing intentional time

skewing. But it is hungry for power consumption. The bus encoding scheme, referred

to as crosstalk avoidance coding (CAC) [8,10,32,33,44,56,57], is a promising tech-

nique for its effective delay reductions and low power consumptions compared with

other techniques. Hence, in this work, we focus on this coding scheme for crosstalk

reduction. However, the previously proposed CACs are based on distributed RC

model and only consider neighboring two wires for crosstalk. When the inductance

effect is significant, more neighboring wires should be considered for crosstalk due

to the long-range effect of inductive coupling. It has been shown that the worst

case switching pattern with the largest delay for the RLC-coupled interconnects is

quite different from the RC-coupled interconnects [59, 60]. The growing inductive

coupling renders the previously proposed approaches inefficient in delay reduction.

In addition, signal noise like overshoots and undershoots are not accounted for by

these previously proposed techniques. Hence, it is necessary to develop other coding
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schemes to reduce the crosstalk delay and noise due to both capacitive and inductive

couplings.

The inductive coupling is greatly dependent on the switching patterns on on-chip

interconnects. It is important to find the patterns incurring larger delays and noises.

In this chapter, we use “↑” to denote a transition from 0 to the supply voltage Vdd

(normalized to 1), “-” no transition, and “↓” a transition from Vdd to 0. In [59], a

worst case pattern considering capacitive and inductive coupling is given by ↑↓↑↓↑

(↑ and ↓ denote up and down transitions, respectively), where immediate neighbors

switch oppositely and higher order neighbors switch in the same direction. In [60],

the authors show that the worst case switching pattern would change from ↑↓↑↓↑ to

↑↑↑↑↑ when inductance coupling dominates. A bus invert scheme is also proposed

to reduce the inductance effects by inverting the input data when the number of

wires switching in the same direction is more than half of the number of wires [60].

Hence, patterns with more than half of wires switching in the same direction are

eliminated.

The bus inver scheme in [60] is the first coding scheme in the literature to address

the on-chip inductive coupling. However, there are two disadvantages of this scheme.

First, the capacitive coupling is ignored for the crosstalk delay. The worst case

pattern is only based on the largest inductive coupling, which increases linearly

with length. However, the capacitive coupling is a quadratic function of length and

cannot be ignored for long wires of global on-chip buses. Second, the classification

of patterns for RLC modeled bus is too simple, since only one worst case pattern

is considered for inductive coupling reduction. Other patterns with slightly less

inductive coupling would compromise the coding scheme. For instance, for a 5-bit
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pattern ↑↑↑↑- (- denotes no transition), the inductive coupling is also large for the

middle wire and this pattern should also be avoided for better inductive coupling

reduction.

Addressing these disadvantages for the scheme in [59,60], in this work we propose

a new coding scheme. There are two main contributions in this chapter:

• First, we define a parameter to quantify the significance of inductive effects and

propose a new classification of patterns based on a combined of two constraints

for capacitive and inductive couplings, respectively.

• Second, we proposed new CACs based on our classification and design ar-

chitectures of encoders and decoders (CODECs) based on a revised numeral

system.

Our approach allows us to fine tune the patterns for different combination of

capacitive and inductive couplings. Note that there are two extreme scenarios. If

capacitive coupling dominates, our classification would reduce to the classification

for RC-coupled interconnects [56]. If inductive coupling dominates, our classification

would only consider inductance effects.

The rest of the chapter is organized as follows. In Section II, we first present

adverse inductance effects and then define a parameter to quantify the significance

of inductance effects. We then propose new CACs for RLC-coupled interconnects

based on our classification of patterns in Section III and their CODEC designs based

on a revised binary mixed-radix numeral system in Section IV. In Section 4.5, we

compare their performance in terms of worst case delays and peak noises. Some

concluding remarks are provided in Section 7.6.
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4.2 CAPACITANCE AND INDUCTANCE EF-

FECTS

4.2.1 Interconnect Model

With the scaling of technologies and the clock frequency approaching multi-gigahertz,

the inductance is becoming significant and impacts the signals on the bus greatly. In-

ductive coupling can cause adverse effects, such as crosstalk delay, signal overshoots

and undershoots, and switching noise, which can lead to serious signal integrity

issues [60]. In addition, the worst-case patterns due to the inductive coupling are

quite different from those due to capacitive coupling [60], making previously pro-

posed coding schemes ineffective. Hence, in today’s high performance circuit design,

the inductance effects cannot be neglected. A transition from an RC interconnect

model to an RLC model is necessary.

A distributed RLC model of a five-wire bus is shown in Fig. 4.1, where Vi(x, t)

denotes the transient signal at time t and position x (0 ≤ x ≤ L) over wire i for

i ∈ {1, 2, 3, 4, 5}, r, l, and c denote the resistance, inductance, and capacitance

per unit length, respectively. λ is the ratio of the coupling capacitance between

two adjacent wires over the wire capacitance. li,j denotes the coupling inductance

per unit length between wires i and j. The values of λ and li,j depend on many

factors, such as the metal layer in which we route the bus, the wire width, the

spacing between adjacent wires, and the distance to the ground layer. We consider

a uniformly distributed bus with the same parameters r, l, c, and λ for all the wires.
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Figure 4.1: A distributed RLC model for five wires.

4.2.2 Crosstalk Delay

For a single line, many approaches have been proposed to analyze and characterize

the delay and noise [38,61]. For a single distributed RC line, a closed-form expression

of time delay is derived in [38] and given by τ = 0.693RtrcL + 0.377rcL2, where

Rdrv is the driver resistance and L is the interconnect length. In [61], inductance

is included to derive time delay of a single line in the following two scenarios:

• If (R/Z0) ≤ ln[4Z0/(Rtr+Z0)] AND Rtr < 3Z0, the delay is τ == tf = L
√
lc,

where Z0 =
√

l/c is the lossless characteristic impedance, R = rL is the

resistance of each wire, and tf = L
√
lc is the time of flight of the signals

across the whole interconnects;

• If (R/Z0) ≥ 2 ln[4Z0/(Rtr + Z0)] OR Rtr > 3Z0, the time delay is τ =

0.693RtrcL+ 0.377rcL2, the same as that of a distributed RC line.

The first case occurs when the inductance becomes significant, since the two in-

equalities can be easily satisfied for large Z0. In this case, the 50% time delay is

approximated as the time flight tf = L
√
lc. The second case is for small inductance

effects and the delay is the same as that of an RC-modeled bus.
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For a multi-wire bus, the on-chip RLC interconnects are characterized by teleg-

rapher’s equations given by [5]











∂
∂x
V(x, t) = −L ∂

∂t
I(x, t)−RI(x, t),

∂
∂x
I(x, t) = −C ∂

∂t
V(x, t),

(4.1)

where V(x, t) and I(x, t) denote the voltage and current vectors of the interconnects,

respectively, and R = [ri,j], L = [li,j], and C = [ci,j] are the resistance, inductance,

and capacitance matrices, respectively. R = RI is a diagonal matrix. Since only

wire capacitance ci,i and coupling capacitance between adjacent wires ci,i+1 are con-

sidered, we have ci,j = 0 for i 6= i − 1, i, i + 1. Hence, C = [ci,j] is a tri-diagonal

matrix. L is a dense matrix, since inductance effect is long-rang effect. Eq. (4.1)

can be simplified as

∂2

∂x2
V(x, t) = LC

∂2

∂t2
V(x, t) +RC

∂

∂t
V(x, t). (4.2)

It is known that the PDEs for a distributed RC interconnect can be decoupled to

isolated equations by diagonalizing the coupling matrix C [5,38]. It has been shown

that capacitance and inductance matrices of a bus with ideal return path satisfy [5]

LC =
1

ν2
[I],

where ν is the speed of an electromagnetic wave in a given dielectric material and

[I] is the identify matrix. Hence, Eq.(4.1) is simplified as

∂2

∂x2
V(x, t) =

1

ν2

∂2

∂t2
V(x, t) +RC

∂

∂t
V(x, t). (4.3)
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Figure 4.2: Ringing on wire 3 of a five-wire bus for ↑↑↑↑↑ and ↓↑↑↑↓.

Then, Eq. (4.3) can be decoupled using the same technique in [5, 38] for a dis-

tributed RC interconnect. The conclusion for single wire can be used for estimating

the 50% delays and noises of all wires in a multi-wire bus. Since the product of

LC = 1
ν2
[I] is a constant matrix, patterns with larger capacitive couplings have

smaller inductive couplings, and vice versa. This has been verified in [60] by finding

the best and worst case patterns considering inductive couplings. The worst pattern

with the largest ring has all wires switching simultaneously in the same direction,

and the worst pattern with the largest delay has immediate neighbors switching

oppositely [60].

4.2.3 Interconnect Ring

Another adverse inductance effect is severe ringing of on-chip interconnect with

growing inductance. The ringing is more severe for patterns with many wires switch-

ing in the same direction due to larger inductive couplings. The time delay has been

approximated as the time of flight when inductance is significant [61]. However,

this is only true when overshoots or undershoots are not crossing 50% Vdd multi-

ple times. When the inductance is significant, the ring decays slowly and multiple

undershoots (overshoots) may go below (above) 50% Vdd for a rising (falling) step
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signal. Glitches would appear at the receiver end. A larger delay is required to get

a stable result. In this case, the 50% delay is obtained based on the last crossing of

50% Vdd.

In the following, we show that the significance of ringing depends on the tran-

sition activity. Since the mutual inductance decays slowly, the inductance effect

is long-range effect. All high order neighbors would contribute to the crosstalk.

For this reason, we include two more wires and focus on wire 3 of a 5-wire bus in

Fig. 4.1. The total capacitance Ct and inductance Lt of wire 3 satisfy CtLt =
1
ν2
.

For transition ↑↑↑↑↑, Ct gets its smallest value, since there is no capacitive coupling.

However, Lt gets its maximum value and the inductive coupling is significant. The

resulted ring decays slowly as shown in Fig. 4.2. Similarly, for transition ↓↑↑↑↓, Ct

increases and Lt decreases. The inductive coupling decreases and the ring decays

quickly as shown in Fig. 4.2.

The significance of ringing can also be explained by a parameter ζ introduced

in [62], where a closed-form delay model is derived for a single RLC wire as a function

of parameter ζ . The parameter ζ is given by

ζ =
Rt

2
√

Lt/Ct

· RT + CT +RTCT + 0.5√
1 + CT

,

where CT = CL

Ct
and RT = Rtr

Rt
. For a small ζ , the ringing is significant and the 50%

delay is large due to multiple crossing of 50% Vdd [62]. For a large ζ , the ringing is

weak and the 50% delay is obtained based on the first crossing of 50% Vdd. For the

two transition patterns, ↑↑↑↑↑ and ↓↑↑↑↓, the former has a smaller ζ than that of

the latter, since ↑↑↑↑↑ has larger Lt and smaller Ct. Hence, the ringing of pattern
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↑↑↑↑↑ is more significant as shown Fig. 4.2.

4.3 CAC design

4.3.1 Previous CAC Design

CACs are first proposed to reduce the crosstalk delay for on-chip global intercon-

nects. A k-bit data word (xkxk−1 · · ·x1) is encoded into an m-bit (m > k) codeword

(cmcm−1 · · · c1). Two kinds of CACs, CACs with memory and memoryless CACs,

have been investigated in the literature [51]. CACs with memory need to store all

codebooks corresponding to different codewords (cmcm−1 · · · c1), since the encoding

depends on the data word (xkxk−1 · · ·x1) as well as the preceding codeword. In

contrast, memoryless CACs require a single codebook to generate codewords for

transmission, because the encoding depends on the data word only. Hence, memo-

ryless CACs are much simpler to implement than CACs with memory. We focus on

memoryless CACs in this chapter.

There exist several methods to obtain a memoryless codebook based on pattern

pruning, transition pruning, or recursive construction. The pattern pruning tech-

nique is quite straightforward, and gives a codebook with a smaller worst-case delay

by eliminating some patterns. The transition pruning technique [10] is based on

graph theory. This method first builds a transition graph with all possible code-

words as nodes and all valid transitions as edges, and then finds a maximum clique.

A clique is defined as a subgraph where every pair of nodes are connected with an

edge. A maximum clique is defined as a clique of the largest possible size in a given

graph. Since every pair of nodes is connected, a maximum clique in this graph
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constitutes a memoryless codebook with the largest size. The codebook generation

method is based on exhaustive search. Although it is easy to get a maximum clique

from a transition graph with a small m, the complexity increases rapidly with m.

This is because the number of edges in an m-bit transition graph is upper bounded

by 2m−1(2m − 1), which increases exponentially with m. In fact, it is an NP prob-

lem to find a maximum clique for given constraints [52]. The recursive technique

constructs an (m+1)-bit codebook from an m-bit codebook [8,9]. Since for a small

m, a largest codebook can be obtained easily via the second method, a codebook

for an m-wire bus can be constructed recursively.

Previously proposed CACs (see, for example, [8, 10, 32, 33]) are not efficient if

the inductance effects are significant. Adverse inductance effects, such as volt-

age overshoots and undershoots, and switching noise, would change the worst case

switching pattern and also lead to serious signal integrity issues [60]. Hence, other

coding scheme is needed to account for these adverse effects. The key idea of previ-

ous CACs is to eliminate transition patterns incurring larger delays. To account for

inductance effects, we first find patterns with larger inductive couplings. Then, us-

ing a similar idea, we extend CACs to account for inductance effects by eliminating

those patterns with larger inductive couplings.

4.3.2 Classification

In the following, we consider the classification of transition patterns with respect to

total inductance of the middle wire (wire k). To quantify the inductive coupling,
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we introduce a parameter

Wk =

∣

∣

∣

∣

∑i=k+⌊∆/2⌋

i=k−⌊∆/2⌋
wi

∣

∣

∣

∣

for wire k, (4.4)

where ∆ is the number of neighboring wires considered for mutual inductance and

wi = −1, 0, 1 corresponds to ↓, −, and ↑ on wire i, respectively. Note that wi = 1

or −1 denotes the largest inductive coupling. Since the mutual inductance decays

slowly, more neighbors would contribute to the crosstalk. Instead of choosing two

adjacent wires for capacitive coupling, we choose two more adjacent wires (∆ = 4)

for inductive coupling. The first reason of choosing ∆ = 4 is that the classification of

transitions would be easy, since we have a reasonable number of transition patterns

to classify. For instance for ∆ = 4, there are a total of 35 = 243 transition patterns

compared with 37 = 2187 for ∆ = 6. The other reason is that our CAC design is

based on a recursive coding scheme as explained in Sec. III-C, which would help to

restrict inductive coupling on wires beyond the chosen neighboring wires.

We first focus on a five-wire bus for transition pattern classification. There are

34 = 81 different transition patterns with ↑ transition on wire 3, which can be

partitioned into 6 classes as shown in Table 4.1. For patterns with a ↓ transition on

wire 3, a similar classification can be obtained by inverting all patterns in Table 4.1.

For patterns with no transition on wire 3, a classification is shown in Table 4.2.

From Table 4.1, we note that the worst case pattern with respect to inductive

coupling is ↑↑↑↑↑, which is the best case pattern in terms of capacitive coupling. By

choosing those with |W3| ≤ kw in Tables 4.1 and 4.2 where kw = {0, · · · , 4}, we can

reduce the worst case inductive couplings. The smaller kw is, the larger reduction
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Table 4.1: Classification of patterns with respect to W3 = |
∑5

i=1wi|.

W3 Patterns with ↑ on wire 3

0
↓-↑- -, -↓↑- -, - -↑↓-, - -↑-↓, ↑-↑↓↓, ↑↓↑-↓, ↑↓↑↓-, -↑↑↓↓
↓↑↑-↓, ↓↑↑↓-, -↓↑↑↓, ↓-↑↑↓, ↓↓↑↑-, -↓↑↓↑, ↓-↑↓↑, ↓↓↑-↑

1

- -↑- -, ↑↓↑- -, ↑-↑↓-, ↑-↑-↓, ↓↑↑- -, -↑↑↓-, -↑↑-↓, ↓-↑↑-
-↓↑↑-, - -↑↑↓, ↓-↑-↑, -↓↑-↑, - -↑↓↑, ↑↑↑↓↓, ↓↓↑↑↑, ↑↓↑↑↓
↑↓↑↓↑, ↓↑↑↑↓, ↓↑↑↓↑, ↓↓↑- -, - -↑↓↓, ↓-↑-↓, ↓-↑↓-, -↓↑-↓

-↓↑↓-, ↑↓↑↓↓, ↓↑↑↓↓, ↓↓↑↑↓, ↓↓↑↓↑

2
↑-↑- -, -↑↑- -, - -↑↑-, - -↑-↑, ↑↑↑↓-, ↑↑↑-↓, ↑↓↑↑-, ↑-↑↑↓
↑↓↑-↑, ↑-↑↓↑, ↓↑↑↑-, -↑↑↑↓, ↓↑↑-↑, -↑↑↓↑, ↓-↑↑↑, -↓↑↑↑

-↓↑↓↓, ↓-↑↓↓, ↓↓↑-↓, ↓↓↑↓-
3

↑↑↑- -, - -↑↑↑, ↑-↑-↑, ↑-↑↑-, -↑↑↑-, -↑↑-↑
↓↑↑↑↑, ↑↓↑↑↑, ↑↑↑↓↑, ↑↑↑↑↓, ↓↓↑↓↓

4 ↑↑↑↑-, ↑↑↑-↑, ↑-↑↑↑, -↑↑↑↑
5 ↑↑↑↑↑

Table 4.2: Classification of patterns with respect to W3 = |∑5
i=1wi|.

W3 Patterns with - on wire 3

0
- - - - -, ↑↓- - -, ↑- -↓-, ↑- - -↓, -↑-↓-, -↑- -↓, - - -↑↓, - - -↓↑
-↓-↑-, -↓- -↑, ↓↑- - -, ↓- -↑-, ↓- - -↑, ↑↑-↓↓, ↓↓-↑↑, ↑↓-↑↓

↑↓-↓↑, ↓↑-↑↓, ↓↑-↓↑

1

↑- - - -, -↑- - -, - - -↑-, - - - -↑, ↓- - - -, -↓- - -, - - -↓-, - - - -↓
↑↑-↓-, ↑↑- -↓, ↑- -↑↓, ↑- -↓↑, ↑↓-↑-, ↑↓- -↑, -↑-↑↓, -↑-↓↑
-↓-↑↑, ↓↑-↑-, ↓↑- -↑, ↓- -↑↑, ↑- -↓↓, ↑↓- -↓, ↑↓-↓-, -↑-↓↓
-↓-↑↓, -↓-↓↑, ↓↑- -↓, ↓↑-↓-, ↓- -↑↓, ↓- -↓↑, ↓↓-↑-, ↓↓- -↑

2
↑↑- - -, - - -↑↑, ↑- -↑-, ↑- - -↑, -↑- -↑, -↑-↑-, ↓↓- - -, - - -↓↓
↓- -↓-, ↓- - -↓, -↓- -↓, -↓-↓-, ↑↑-↑↓, ↑↑-↓↑, ↑↓-↑↑, ↓↑-↑↑

↓↓-↓↑, ↓↓-↑↓, ↓↑-↓↓, ↑↓-↓↓
3 ↑↑-↑-, ↑↑- -↑, ↑- -↑↑, -↑-↑↑, ↓↓-↓-, ↓↓- -↓, ↓- -↓↓, -↓-↓↓
4 ↑↑-↑↑, ↓↓-↓↓

of inductive coupling.
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Figure 4.3: (a) Find a 5-bit (i, kw)-SOTA codebook; (b) Construct an m-bit (i, kw)-
SOTA codebook recursively.

4.3.3 New CAC Design

New CACs accounting for both capacitive and inductive couplings are desired. Op-

posite transitions on adjacent wires lead to large capacitive couplings, and same

transitions on adjacent wires lead to large inductive couplings. Hence, to reduce re-

liability issue as well as delay issue due to capacitive and inductive coupling effects,

we need to avoid those patterns with most same and opposite switchings as shown

in Tables 4.1 and 4.2. In the following, with consideration of both the capacitive

and inductive couplings, we propose a Same and Opposite Transitions Avoidance

(SOTA) coding scheme. The reduction of the capacitive coupling is achieved by

avoiding iC patterns in [42] for i = {1, 2, 3, 4}. The reduction of the inductive

coupling is achieved by eliminating patterns in Tables 4.1 and 4.2 for W3 > kw

(kw = {0, 1, 2, 3, 4}). Such codes are referred to as (i, kw)-SOTA codes.

In this chapter, we use the recursive scheme to find an (i, kw)-SOTA codebook for
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an m-bit bus. First, we focus on wire 3 in a five-bit window and find a 5-bit (i, kw)-

SOTA codebook. The procedure is illustrated in Fig. 4.3(a) with two steps. The

first step is to obtain all allowable transitions by applying the two constraints, iC

and W3 ≤ kw. This can be done by applying the two constraints sequentially. Here,

we first pick all transitions satisfying W3 ≤ kw in Tables 4.1 and 4.2, and remove

those having (i+1)C, · · · , 4C patterns. The second step is to find a maximum clique

of nodes from the list of all allowable transitions. A 5-bit (i, kw)-SOTA codebook is

given by such a maximum clique of nodes. To obtain a 6-bit (i, kw)-SOTA codebook,

we obtain a 6-bit candidate codebook by appending 0’s and 1’s to the left of all 5-bit

codewords. Then, we check if the left 5-bit pattern satisfies the two constraint and

remove those 6-bit codewords violating any of the two constraints from the 6-bit

candidate codebook. After doing all the appending and checking operations, we

obtain a 6-bit (i, kw)-SOTA codebook. Similarly, an m-bit (i, kw)-SOTA codebook

can be obtained recursively as shown in Fig. 4.3(b).

4.3.4 (2, 1)-SOTA codes

For a worst capacitive coupling 2C and a worst inductive coupling W3 ≤ 1, a list

of allowable transitions in Fig. 4.3 can be obtained by removing 3C and 4C pat-

terns in Tables 4.1 and 4.2. Using MATLAB, we find a maximum clique given by

{00011, 00110, 00111, 01100, 01110, 10001, 10011, 11000, 11001, 11100}, which is a

5-bit (2, 1)-SOTA codebook. Let C(m) be the set of m-bit (2, 1)-SOTA codewords

and c(m) = cmcm−1 · · · c1 be a codeword in C(m). An m-bit (2, 1)-SOTA code-

book can be generated recursively in the following algorithm, where · denotes the

concatenation operation.
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Algorithm 3 (2, 1)-SOTA codeword generation.

Input: C(5) = {00011, 00110, 00111, 01100, 01110, 10001, 10011, 11000, 11001,
11100}; k = 5;
while k ≤ m− 1 do
for ∀c(k) ∈ C(k) do
if ckck−1ck−2ck−3 = 0001 then
add 1 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 0011 then
add 0 · c(k) and 1 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 0110 then
add 0 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 0111 then
add 0 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 1000 then
add 1 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 1001 then
add 1 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 1100 then
add 0 · c(k) and 1 · c(k) to C(k + 1);

else if ckck−1ck−2ck−3 = 1110 then
add 0 · c(k) to C(k + 1);

end if
end for
k = k + 1;

end while
Output: C(m);
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The m-bit codebook generated by Alg. 3 is a subset of m-bit FPC codebook.

Hence, no 010 or 101 patterns are allowed in all codewords. The following lemma

shows a necessary and sufficient condition for a 5-bit codebook to be a (2, 1)-SOTA

codebook.

Lemma 4.3.1. An m-bit (m ≥ 5) codebook is a (2, 1)-SOTA codebook if and only

if all m-bit codewords avoid 010, 101, 0000, and 1111 patterns.

Proof. It is easy to see that Alg. 3 does not introduce 010, 101, 0000, and 1111

patterns. Hence, it is equivalent to prove that a 5-bit codebook is a (2, 1)-SOTA

codebook if and only if all 5-bit codewords avoid 010, 101, 0000, and 1111 patterns.

We first prove the necessity. A 5-bit (2, 1)-SOTA codebook is given by {00011,

00110, 00111, 01100, 01110, 10001, 10011, 11000, 11001, 11100}. It is observed that

no 010, 101, 0000, and 1111 patterns appear in any of these codewords.

To prove its sufficiency, we eliminate those codewords with 010, 101, 0000, and

1111 pattern from all 32 5-bit codewords. The refined codebook is given by {00011,

00110, 00111, 01100, 01110, 10001, 10011, 11000, 11001, 11100}, which is the same

as the 5-bit (2, 1)-SOTA codebook.

Let Cm be the size of codebook C(m). We further establish that the largest

(2, 1)-SOTA codebook size satisfies the recursion:

Lemma 4.3.2. For m ≥ 8, Cm is given by a recursion Cm = Cm−2 + Cm−3, with

initial conditions Cm = 10, 14, 18 for m =5, 6, 7, respectively.

Proof. ∀c(m) ∈ C(m), define Cd
m as the number of codewords satisfying cm = cm−1

and cm−1 6= cm−2. Define Ct
m and Cf

m as the numbers of codewords satisfying
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cm = cm−1 = cm−2 and cm 6= cm−1, respectively. Hence, Cm = Cd
m + Ct

m + Cf
m. For

m = 5, we have Cd
5 = 4, Ct

5 = 2, Cf
5 = 4, and C5 = 10.

For m > 5, according to Alg. 3, we have

Cd
m = Cf

m−1,

Ct
m = Cd

m−1,

Cf
m = Ct

m−1 + Cd
m−1,

Cm = Ct
m−1 + 2Cd

m−1 + Cf
m−1.

For m = 6, Cd
6 = 4, Ct

6 = 4, Cf
6 = 6, and C6 = 14. For m = 7, Cd

7 = 6, Ct
7 = 4,

Cf
7 = 8, and C7 = 18.

Since Cm = Cd
m+Ct

m+Cf
m, we also have Cm−1 = Cd

m−1+Ct
m−1+Cf

m−1 = Cd
m+Cf

m.

Hence, for m ≥ 8,

Cm = Ct
m−1 + 2Cd

m−1 + Cf
m−1

= (Cd
m−1 + Cf

m−1) + (Ct
m−1 + Cd

m−1)

= Cm−2 + (Cd
m−2 + Cf

m−2)

= Cm−2 + Cm−3.
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4.4 CODEC design

A numeral system is a mathematical notation for representing numbers of a given

set by symbols in a consistent manner [63]. A binary mixed-radix numeral system

represents a number as
∑m

i=1 = difi, where (dm, · · · , d2d1) is a binary string and

{fm, · · · , f2, f1} is a basis set of non-negative numbers. If any integer u ∈ [0,
∑m

i=1 fi]

can be represented by at least one binary string dm · · · d2d1, the numeral system is

complete. In [47], a generic CAC encoding algorithm is proposed based on a binary

mixed-radix numeral system. Since all-zero and all-one codewords are forbidden for

RLC-coupled interconnects, the representable range starting from a nonzero value

P is u ∈ [P, P +
∑m

i=1 fi]. The revised encoding algorithm is shown in Alg. 4, where

{fi}mi=1 denotes the basis set of the encoding numeral system, v (0 ≤ v ≤∑m
i=1 fi) is

data message, P is a non-zero integer, {αi}mi=1, {αi}mi=1, and Θ are some constants to

be determined for different CACs, and dmdm−1 · · · d1 is the encoded codeword. The

data message v is first added by P . The decoding is straightforward by computing
∑m

i=1 difi − P . The CODEC based on Alg. 4 is shown in Fig. 4.4. The encoder has

m − 1 same processing elements as shown in Fig. 4.4(c) and one additional adder

for input v. One of the inputs to the top processing element denotes a don’t care

and is connected to the ground. Each processing element has two inputs, dk+1 and

rk+1, and two outputs, dk and rk, and is consisted of two comparators, one adder,

one multiplexer, one AND, and one OR.
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Algorithm 4 Generic CAC encoding algorithm.

Input: code length m; data message v; non-zero integer P ;
Initialize v = v + P ;
for k = m downto 2 do
if k = m then
if v ≥ Θ then
dm = 1;

else
dm = 0;

end if
rm = v − dm · fm;

else
if rk+1 ≥ αk then
dk = 1;

else if rk+1 < βk then
dk = 0;

else
dk = dk+1;

end if
rk = rk+1 − dk · fk;

end if
end for
d1 = r2;
Output: dmdm−1 · · · d1.
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0

1

Figure 4.4: CODEC for an m-bit CAC via Alg. 4. (a) Encoder; (b) Decoder; (c)
Processing element in (a).
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4.4.1 (2, 1)-SOTA codes

Assume the basis {fi}mi=1 is positive and non decreasing. We define the min and

max codewords of (2, 1)-SOTA as

Minn =















































(00011)k, n = 5k,

(00011)k · 0, n = 5k + 1,

(00011)k · 00, n = 5k + 2,

(00011)k · 000, n = 5k + 3,

(00011)k · 0001, n = 5k + 4,

(4.5)

and

Maxn =















































(11100)k, n = 5k,

(11100)k · 1, n = 5k + 1,

(11100)k · 11, n = 5k + 2,

(11100)k · 111, n = 5k + 3,

(11100)k · 1110, n = 5k + 4,

, (4.6)

where n ≤ m and (00011)k denotes k repetition of 00011. For n = 1, 2, 3, 4, let

Minn be 0, 00, 000, 0001, respectively, and Maxn be 1, 11, 111, 1110, respectively.

Define g(cm) =
∑m

i=1 cifi as the weight function based on a basis {fi}mi=1. A

basis {fi}mi=1, f1 = 1, f2 = 1, f3 = 2, fi = g(Maxi−1) − g(Mini−2) − fi−1 + 1 for

4 ≤ i ≤ m− 1, and fm = g(Maxm−1)− g(Minm−1) + 1, defines a complete system.

With the basis set {fi}mi=1, the (2, 1)-SOTA CODEC can be designed by choosing

γk = fk,Θ = g(Minm−1) + fm,

αk = g(Maxk−1) + 1, βk = g(Mink−1) + fk.
(4.7)
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To show the correctness of the encoding algorithm in Alg. 4 for (2, 1)-SOTA

codes, we need following lemmas.

Lemma 4.4.1. fn = fn−2 + fn−3 for 6 ≤ n ≤ m− 1.

Proof. We prove this property by induction on n from 6 to m − 1. For n = 6,

f6 = g(Max5)− g(Min4)− f5 +1 = 5 = 3+ 2 = f4 + f3. Suppose for n ≤ i (i ≥ 6),

fn = fn−2 + fn−3. When n = i+1, fn = fi+1 = g(Maxi)− g(Mini−1)− fi +1. It is

equivalent to prove that

g(Maxi) + 1 = g(Mini−1) + fi + fi−1 + fi−2. (4.8)

If i = 5k+1 (k ≥ 1), Maxi = 111·(00111)k−1·001 andMini−1 = 000·(01100)k−1·

011. Then, in Eq. (4.8), LHS = fi + fi−1 + fi−2 +
∑k−1

j=1(fi−5j + fi−5j−1+ fi−5j−2) +

f1 +1. RHS = fi + fi−1 + fi−2 +
∑k−1

j=1(fi−5j+1 + fi−5j) + f2 + f1. According to our

assumption, fi−5j+1 = fi−5j−1 + fi−5j−2. Since f2 = 1, we have LHS = RHS.

If i = 5k+2 (k ≥ 1),Maxi = 111·(00111)k−1·0011 andMini−1 = 000·(01100)k−1·

0110. Then, in Eq. (4.8), LHS = fi+fi−1+fi−2+
∑k−1

j=1(fi−5j +fi−5j−1+fi−5j−2)+

f2 + f1 + 1. RHS = fi + fi−1 + fi−2 +
∑k−1

j=1(fi−5j+1 + fi−5j) + f3 + f2. Since

fi−5j+1 = fi−5j−1 + fi−5j−2 and f3 = f1 + 1 = 2, LHS = RHS.

If i = 5k + 3 (k ≥ 1), Maxi = 111 · (00111)k−1 · 00111 and Mini−1 = 000 ·

(01100)k−1·01100. Then, in Eq. (4.8), LHS = fi+fi−1+fi−2+
∑k−1

j=1(fi−5j+fi−5j−1+

fi−5j−2)+ f3+ f2+ f1+1. RHS = fi+ fi−1+ fi−2+
∑k−1

j=1(fi−5j+1+ fi−5j)+ f4+ f3.

Since fi−5j+1 = fi−5j−1 + fi−5j−2 and f4 = f2 + f1 + 1 = 3, LHS = RHS.

If i = 5k + 4 (k ≥ 1), Maxi = 111 · (00111)k−1 · 001110 and Mini−1 = 000 ·

(01100)k−1·011000. Then, in Eq. (4.8), LHS = fi+fi−1+fi−2+
∑k−1

j=1(fi−5j+fi−5j−1+
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fi−5j−2)+ f4+ f3+ f2+1. RHS = fi+ fi−1+ fi−2+
∑k−1

j=1(fi−5j+1+ fi−5j)+ f5+ f4.

Since fi−5j+1 = fi−5j−1 + fi−5j−2 and f5 = f3 + f2 + 1 = 6, LHS = RHS.

If i = 5k + 5 (k ≥ 1), Maxi = 111 · (00111)k−1 · 0011100 and Mini−1 = 000 ·

(01100)k−1 · 0110001. Then, in Eq. (4.8), LHS = fi + fi−1 + fi−2 +
∑k−1

j=1(fi−5j +

fi−5j−1 + fi−5j−2) + f5 + f4 + f3 + 1. RHS = fi + fi−1 + fi−2 +
∑k−1

j=1(fi−5j+1 +

fi−5j) + f6 + f5 + f1. Since fi−5j+1 = fi−5j−1+ fi−5j−2 and f6 + f1 = f4+ f3+1 = 6,

LHS = RHS.

Lemma 4.4.2. αn−1 = βn for 3 ≤ n ≤ m− 1.

Proof. For n = 3, α2 = g(Max1) + 1 = 2 and β3 = g(Min2) + f3 = 2. We

have α2 = β3. For n = 5k − 2 (k ≥ 1), Maxn−2 = (00111)k−1 · 001 and 1 ·

Minn−1 = (10001)k−1 ·100. LHS =
∑k−1

j=1(fn−5j+3+fn−5j+2+fn−5j+1)+f1. RHS =

∑k−1
j=1(fn−5j+5 + fn−5j+1) + f3. Since fn−5j+5 = fn−5j+3 + fn−5j+2 and f3 = f1 + 1,

LHS = RHS. For n = 5k−1, 5k, 5k+1, 5k+2 (k ≥ 1), the proof is similar to that

in the proof of Lemma 4.4.1. Hence, for 3 ≤ n ≤ m− 1, we have αn−1 = βn.

Lemma 4.4.3. g(Maxn) = g(Maxn−3) + fn + fn−1 for 4 ≤ n ≤ m− 1.

Proof. For n = 4, LHS = g(1110) = 5 and RHS = g(1) + f4 + f3 = 5. We have

LHS = RHS. For n = 5k−1 (k ≥ 1), Maxn = 11·(10011)k−1·10 and 11·Maxn−3 =

11 ·(01110)k−1 ·01. LHS = fn+fn−1+
∑k−1

j=1(fn−5j+3+fn−5j+fn−5j−1)+f2. RHS =

fn + fn−1 +
∑k−1

j=1(fn−5j+2 + fn−5j+1 + fn−5j) + f1. Since fn−5j+3 = fn−5j+1 + fn−5j ,

fn−5jfn−5j−1 = fn−5j+2, and f1 = f2, we have LHS = RHS. For n = 5k, 5k +

1, 5k + 2, 5k + 3 (k ≥ 1), the proof is similar to that in the proof of Lemma 4.4.1.

Hence, for 4 ≤ n ≤ m− 1, we have g(Maxn) = g(Maxn−3) + fn + fn−1.

Lemma 4.4.4. g(Minn) = g(Maxn−4) + 1 for 5 ≤ n ≤ m.
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Proof. For n = 5, LHS = g(00011) = 2 and RHS = g(1) + 1 = 2. We have

LHS = RHS. For n = 5k (k ≥ 1), Minn = 00 · (01100)k−1 · 011 and Maxn−4 = 00 ·

(00111)k−1 ·001. LHS =
∑k−1

j=1(fn−5j+2+fn−5j+1)+f2+f1. RHS =
∑k−1

j=1(fn−5j+1+

fn−5j + fn−5j−1) + f1 + 1. Since fn−5j+2 = fn−5j + fn−5j−1 and f2 = f1 + 1, we

have LHS = RHS. For n = 5k + 1, 5k + 2, 5k + 3, 5k + 4 (k ≥ 1), the proof

is similar to that in the proof of Lemma 4.4.1. Hence, for 5 ≤ n ≤ m, we have

g(Minn) = g(Maxn−4) + 1.

The following theorem shows the correctness of the encoding algorithm for (2, 1)-

SOTA codes.

Theorem 4.4.1. The output of encoding algorithm in Alg. 4 with constants specified

in Eq. (4.7) is a (2, 1)-SOTA codebook.

Proof. According to Lemma 4.3.1, the correctness of the encoding algorithm can be

proved by showing that 010, 101, 0000, and 1111 are forbidden patterns.

If dk = 1 and dk−1 = 0, we have rk < βk−1 = g(Mink−2) + fk−1. Hence,

rk−1 = rk < βk−1 = αk−2 (Lemma 4.4.2), implying that dk−2 = 0. Hence, 101 is

forbidden.

If dk = 0 and dk−1 = 1, we have rk ≥ αk−1 = g(Maxk−2) + 1. Hence, rk−1 =

rk − fk−1 ≥ αk − fk−1 = (g(Maxk−2 + 1)− (g(Maxk−2)− g(Mink−3)− fk−2 + 1) =

g(Mink−3) + fk−2 = βk−2, implying that dk−2 = 1. Hence, 010 is forbidden.

If dk = dk−1 = dk−2 = 0, we have rk−2 = rk−1 = rk ≥ g(Mink) = g(Maxk−4) +

1 = αk−3 (Lemma 4.4.4), implying that dk−3 = 1. Hence, 0000 pattern is forbidden.

If dk = dk−1 = dk−2 = 1, we have rk−2 ≤ g(Maxk) − fk − fk−1 − fk−2 =

g(Maxk)− fk − fk−1 − g(Maxk−3) + βk−3 − 1 = βk−3 − 1 (Lemma 4.4.3), implying
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that dk−3 = 0. Hence, 1111 pattern is forbidden.

4.5 Performance

In this section, we evaluate the performance of our new CACs for RLC-coupled

interconnects with respect to worst case delays, peak noises, and rates. The worst-

case delay of a CAC is the largest delay among all wires when the codewords from

the CAC are transmitted over the bus. The peak noise of a CAC the maximum of

overshoots and undershoots, which are normalized to supply voltage Vdd. The code

rate of a CAC over an m-bit bus is defined by ⌊log2 Cm⌋
m

, where Cm is the codebook

size. The code rate measures the redundance of a CAC. A rate k/n implies that

additional n− k bits are needed for a k-bit data to reduce the crosstalk.

The codebook size and code rate of our (2,1)-SOTA codes are summarized in

Table 4.3. For m-bit bus (5 ≤ m ≤ 32), the code rate ranges between 0.41 and

0.60. The best code rate 0.6 is achieved for m = 5. When m approaches inf, the

asymptotic code rate is given by 0.406, the same as that of OLCs [8].

All the simulation results in this chapter are obtained from HSPICE based on

a 45nm technology with 10 metal layers [49]. We focus on global buses in the top

metal layer 10 with substrate as the ground. The bus parameters are obtained by

structure 1 in [50]. All wires are uniformly distributed with a length L = 5 mm,

width w = 0.8µm, spacing s = 0.8µm, thickness t = 2µm, and height to ground

h = 9.3µm. The bus parameters, unit length resistance, inductance, capacitance and

coupling capacitance, are obtained by a 2D extraction tool, Raphael from Synopsys,

for on-chip multi-level interconnect structures. We assume RS = 50 Ω and CL = 100
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Table 4.3: Code rates of our (2,1)-SOTA codes for an m-bit bus (m = 5, · · · , 32).

m-bit # of words Rate m-bit # of words Rate

5 10 3/5 19 530 9/19
6 14 3/6 20 702 9/20
7 18 4/7 21 930 9/21
8 24 4/8 22 1232 10/22
9 32 5/9 23 1632 10/23
10 42 5/10 24 2162 11/24
11 56 5/11 25 2864 11/25
12 74 6/12 26 3794 11/26
13 98 6/13 27 5026 12/27
14 130 7/14 28 6658 12/28
15 172 7/15 29 8820 13/29
16 228 7/16 30 11684 13/30
17 302 8/17 31 15478 13/31
18 400 8/18 32 20504 14/32

fF for simulations. To show the reduction of capacitive and inductive couplings, we

also simulate interconnects without coding. For the same information bits, the

scheme without coding uses less wires than our CAC scheme. Assume the scheme

without coding uses equal width and spacing, we find the value of width and spacing

of the scheme without coding for the same area used by our CAC scheme.

The simulation results of delays and noises are shown in Tables 4.4 and 4.5,

respectively. As shown in Table 4.4, our (2,1)-SOTA codes can significantly reduce

the worst case delays except for a 3-wire bus. This is because the inductive coupling

is only from neighboring two wires for a 3-wire bus. For larger bus, the ring due

to the increasing inductive coupling would cross the threshold multiple times for

scheme without coding, leading to larger delays. For our CAC scheme, the ring is

significantly reduced and the delay is determined by capacitive coupling. For k ≥ 4,
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Table 4.4: Reduction of worst case delays via our (2,1)-SOTA coding scheme over
no coding scheme (NC).

NC Ours
Reduction

k Delay (ps) n Delay (ps)
3 80.84 5 95.90 -18.63%
4 140.30 7 105.77 24.61%
5 164.39 9 106.02 35.51%
6 164.30 12 112.37 31.61%
7 169.53 14 107.06 36.85%

Table 4.5: Reduction of worst case noise via our (2,1)-SOTA coding scheme over no
coding scheme (NC).

NC Ours
Reduction

k Noise (ps) n Noise (ps)
3 0.63 5 0.38 39.68%
4 0.64 7 0.39 39.06%
5 0.65 9 0.34 47.69%
6 0.65 12 0.41 36.92%
7 0.66 14 0.38 42.42%

the reduction of worst case delay is at least about 24% compared with the scheme

without coding. With regard to the peak nose, the reduction of our CAC scheme

is at least 37%. Hence, our proposed CAC scheme can reduce both crosstalk delay

and noise due to the capacitance and inductance effects.

4.6 CONCLUSIONS

In this chapter, we propose a new family of CACs accounting for both the capacitive

and inductive couplings. The capacitive crosstalk is reduced by restricting opposite
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transitions in adjacent wires and the inductive coupling is reduced by restricting

same transitions in neighboring wires. CODECs based on a revised binary mixed-

radix numeral system are also proposed. Simulation results show that our codes

can significantly reduce the worst case delay and peak noise simultaneously. The

complexity and delay of our CODECs are quadratically increasing with the size of

the bus.
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Chapter 5

Quasi-Cyclic Low-Density

Parity-Check Stabilizer Codes

5.1 Introduction

Quantum computers are more efficient than classical computers for some computa-

tional problems, such as factoring a large number and searching an unknown space

for an element satisfying a known property [11]. However, quantum information,

represented by quantum bits or qubits, suffers greatly from unwanted interactions

with the outside world. Thus, quantum error correction codes (QECCs) are needed

to protect quantum information against noise and decoherence [11].

Many QECCs have been proposed in the literature by importing classical er-

ror correction codes, such as low-density parity-check (LDPC) codes, convolutional

codes, Turbo codes, and polar codes (see, for example, [12–21]). Among them,

QECCs based on LDPC codes (see, for example, [12,13,16,17]) are important, since
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they can be decoded by adapting existing iterative decoding algorithms. As classical

LDPC codes have asymptotically good performance for a wide class of noisy chan-

nels when decoded by the belief propagation algorithm [22], well-designed quantum

LDPC codes also show good performance [16, 17, 23]. While most quantum LDPC

codes are based on binary LDPC codes, recently several QECCs based on nonbi-

nary LDPC codes have been proposed in [23] with a much better error-correcting

performance than existing quantum codes over a qubit channel.

Most existing QECCs belong to two related classes. In [64], Gottesman proposed

the theory of stabilizer codes, which allows us to construct QECCs based on classical

error correction codes by satisfying a zero symplectic inner product (SIP) condition

(also called the general stabilizer formalism). A subclass of stabilizer codes, known as

CSS codes [65,66], enables us to construct QECCs by using classical error correction

codes that satisfy the dual-containing condition (referred to as the CSS formalism

sometimes). Since the dual-containing condition is a special case of the zero SIP

condition, CSS codes are a subclass of stabilizer codes. Since the dual-containing

condition is much easier to satisfy than the zero SIP condition, CSS codes have

attracted a lot of attention. However, the error correction capability of CSS codes is

limited [16,17] in comparison to stabilizer codes. For example in a binary quantum

system, to correct one qubit error, a CSS code takes seven qubits to encode one

qubit, while a general stabilizer code needs only five qubits [67]. Most QECCs

mentioned above are CSS codes. Tan et al. [16, 17] proposed several systematic

constructions of binary quasi-cyclic low-density parity-check (QC-LDPC) based on

the general stabilizer formalism, and their codes are the first LDPC stabilizer codes

to the best of our knowledge.
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Stabilizer codes

QC-LDPC stabilizer codes

CSS codes

CSS QC-LDPC codes

Figure 5.1: Classification of stabilizer codes.

Since stabilizer codes based on nonbinary LDPC codes have not been studied,

motivated by the success of adopting nonbinary QC-LDPC codes in CSS codes

in [23], in this chapter we investigate stabilizer codes based on nonbinary QC-LDPC

codes, referred to as QC-LDPC stabilizer codes henceforth, for qubit channels. As

in [16,17], we consider LDPC codes with a quasi-cyclic (QC) structure, which makes

it easier to satisfy the zero SIP condition. The relationship of stabilizer codes, CSS

codes, and QC-LDPC stabilizer codes is shown in Fig. 5.1. Our QC-LDPC stabilizer

codes are a subclass of stabilizer codes, while the CSS QC-LDPC codes, including

those proposed in [23], are a special case of the QC-LDPC stabilizer codes.

Our main contributions are:

• The construction of our QC-LDPC stabilizer codes is reduced to the con-

struction of nonbinary QC-LDPC codes over GF(2m) satisfying the zero SIP

condition, and the decoding of our QC-LDPC stabilizer codes is based on

that of the nonbinary QC-LDPC codes. First, we derive conditions for nonbi-

nary QC-LDPC codes over GF(2m) in order to satisfy the zero SIP condition

and to eliminate the cycles of girth four, which usually lead to poor decoding

performance by iterative decoding algorithms for LDPC codes.
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• We have constructed two QC-LDPC stabilizer codes, and simulation results

show that they outperform their counterparts in [16,17]. This seems to confirm

the observation [23] that QECCs based on nonbinary LDPC codes appear to

achieve better performance than QECCs based on binary LDPC codes.

Our work is different from recent works in [16,17,23]. Our QC-LDPC stabilizer

codes are constructed through nonbinary codes and are decoded by a nonbinary sum-

product algorithm, whereas Tan et al. [16, 17] focus on QC-LDPC stabilizer codes

based on binary LDPC codes and decoded by a binary sum-product algorithm.

Our codes also outperform those in [16, 17]. As mentioned above, the QC-LDPC

codes in [23] are CSS codes, whereas our codes herein are stabilizer codes. The

two stabilizer codes constructed herein have worse performance than those in [23].

However, we emphasize that the CSS codes in [23] build on extensive research on

CSS codes and are the results of various optimizations in [23]. In contrast, our

two codes are the first QC-LDPC stabilizer codes based on nonbinary codes. As

explained above, CSS codes are a subclass of stabilizer codes, and hence stabilizer

codes promise better error performance. Hence, we plan to further improve our

QC-LDPC stabilizer codes in our future work.

5.2 Preliminary

In this section, we present basic concepts and notions of stabilizer codes. More

details on the theory of stabilizer codes can be found in [64].

Quantum noise can be modeled in several ways. Among them, the depolarizing

channel is often used to characterized a worst scenario channel, where three types
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of errors, bit flip error X , phase flip error Z, and bit-and-phase flip error Y , occur

independently and equal likely on each qubit [11]. For a depolarizing channel with

a total flip probability f on each qubit, X , Z, and Y occur with probability f/3.

Since a Y error is equivalent to the combination of an X error and a Z error, the

marginal probability of X (Z) error is given by 2f/3.

Stabilizer codes can be represented by a compact quaternary form with I,X, Y, Z

corresponding to 0, 1, ω, ω2 over GF(4), where ω is a primitive element in GF(4) [68].

It is more convenient to denote stabilizer codes by an expanded parity check matrix

over GF(2). For an [[n, k]]2 stabilizer code, the n − k stabilizer generators can be

described as the juxtaposition of a pair of (n− k)× n matrices, H = (C|D), where

each row in H corresponds to a unique stabilizer generator and each pair of columns

correspond to a qubit [16, 17]. Each “1” entry in C and D corresponds to an X

and a Z operator, respectively, and each “0” entry corresponds to an I operator.

For a qubit channel, such a matrix of size (n− k)× 2n over GF(2) defines a binary

stabilizer code. For example, H =
(

I X I X
X I I I
I Z I Z

)

can be represented by an expanded

parity check matrix H =
(

0 1 0 1
1 0 0 0
0 0 0 0

∣

∣

∣

0 0 0 0
0 0 0 0
0 1 0 1

)

.

A necessary and sufficient condition for a matrix to represent a stabilizer code

is given by

Theorem 5.2.1 (Zero symplectic inner product condition [16,17]). An (n−k)×2n

matrix H = (C|D) is a parity check matrix of a stabilizer code if and only if H

satisfies

CDT +DCT = 0, (5.1)

where T denotes the matrix transpose and 0 denotes an (n−k)×(n−k) zero matrix.
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Many existing stabilizer codes are based on the CSS formalism, which makes use

of classical dual-containing codes for the design of QECCs. Let HC and HD be two

parity check matrices corresponding to two classical code C and D, respectively.

If D⊥ ⊂ C (the dual code D⊥ of D is a subset of C), then HCH
T
D = 0, which is

referred to as the dual-containing condition. The following matrix defines a stabilizer

code [65, 66]:

H =







HC

0

∣

∣

∣

∣

∣

∣

∣

0

HD






.

If HC = HD, the dual-containing condition reduces to HCH
T
C = 0. Code C (D)

is called a weakly self-dual code. A stabilizer matrix is given by

H =







HC

0

∣

∣

∣

∣

∣

∣

∣

0

HC






.

It can be easily verified that CSS codes satisfy the zero SIP condition in Eq. (5.1).

CSS codes are a special family of stabilizer codes.

Recently, nonbinary LDPC codes have been used for the construction of bi-

nary CSS codes through a ring homomorphism [23]. A ring homomorphism, A :

GF(2m) → GF(2)m×m with its images homomorphic to GF(2m) by matrix addition

and multiplication operations, is given in [23]. Let α be a primitive element of

GF(2m). The minimal polynomial of α is π(x) =
∑m−1

i=0 πix
i + xm. Such a map-

ping is given by A(αi) := A(α)i ∈ GF(2)m×m, ∀αi ∈ GF(2m), with A(0) = 0 and
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A(α) :=

























0 0 · · · 0 π0

1 0 · · · 0 π1

0 1 · · · 0 π2

...
...

. . .
...

...

0 0 · · · 1 πm−1

























.

By the ring homomorphism, two nonbinary LDPC codes satisfying the zero SIP

condition can be mapped to a binary stabilizer code. For example, for C,D ∈

GF(2m)M×N , CA,DA ∈ GF(2)mM×mN are obtained by replacing all entries in C and

D with their images under the mapping A. If CDT +DCT = 0, then CA(DA)T +

DA(CA)T = 0. Hence, it is shown that H = (C|D) satisfying Eq. (5.1) over GF(2m)

defines a binary stabilizer code with (CA|DA).

Quantum LDPC codes can be decoded by a belief propagation decoding algo-

rithm similar to that of classical LDPC codes [12,69]. For CSS codes with a parity

check matrix H =
(

HC

0

∣

∣

0

HD

)

, X and Z errors can be corrected by decoding C and

D, respectively. For general stabilizer codes with a parity check matrix H = (C|D),

it has been shown that the decoding is equivalent to a syndrome version of sum-

product algorithm on the Tanner graph of [C,D], which is obtained by merging

corresponding checks of C and D [16, 17].

5.3 QC-LDPC Stabilizer Codes

In this section, we propose two constructions of QC-LDPC stabilizer codes for a

qubit channel. This is achieved by constructing nonbinary QC-LDPC codes over

finite fields of characteristic two satisfying Eq. (5.1). This is because the state of a
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qubit in most quantum systems is binary and nonbinary codes over GF(2m) can be

easily connected to a binary stabilizer code in a qubit channel. Also, a nonbinary

LDPC code satisfying Eq. (5.1) over GF(2m) defines a binary stabilizer code, which

can be decoded by a sum-product algorithm for nonbinary LDPC codes. The rest

of the work is to find good nonbinary QC-LDPC codes with parity check matrices

satisfying Eq. (5.1) over GF(2m).

We focus on nonbinary codes over GF(2m) with column weight two only, since

the nonbinary LDPC codes with column weight two over GF(2m) are empirically

known as the best performing codes for 2m ≥ 64 [70]. Several approaches to the

construction of QC-LDPC codes have been proposed based on finite geometry, arrays

and array dispersions, and finite fields [71–73]. The key idea is first constructing a

base matrix over some finite field satisfying a certain constraint, and then replacing

the elements in the base matrix by binary or nonbinary cyclic matrices to obtain

parity check matrices of QC-LDPC codes.

We propose the following method to obtain a nonbinary parity check matrix

over GF(2m) via a pair of base matrices over GF(2). We first construct two base

quasi-cyclic parity check matrices Cb andDb satisfying Eq. (5.1) with column weight

J = 2 and row weight L. Both matrices consist of 2× L block matrices, which are

shifted identity matrices of size P × P . Then, we use the pair of base parity check

matrices Hb = (Cb|Db) and replace each one in Cb and Db with a nonzero element

in GF(2m). By solving a set of linear equations over Z2m−1 satisfying Eq. (5.1), we

obtain two 2P ×LP nonbinary parity check matrices C and D, which form a parity

check matrix H = (C|D) over GF(2m). The code length is given by LP symbols

and the number of information symbols is approximated by LP − 2P . Hence, the
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quantum code rate is lower bounded by RQ = 1− 2/L.

5.3.1 Base parity check matrix

Our nonbinary quantum codes are obtained from their base. Hence, the performance

of the nonbinary codes is affected by the parameters of the base matrices. There

are three parameters to consider, row weight, minimum distance, and girth, when

designing such base matrices. At the error-floor region, small minimum distance

leads to poor decoding performance. If the regular (J, L) LDPC code is a CSS

code, the minimum distance is upper-bounded by the row weight L due to the

dual-containing condition and sparsity of the parity check matrix [23]. To have a

large minimum distance, the row weight of the parity check matrix should be chosen

large. At the waterfall region, the sum-product decoding performance degrades with

increasing row weight L [74]. So the row weight L should not be too large. It is

also known that cycles of girth four in the Tanner graph degrade the SP decoding

performance [23]. The cycles of girth four can be classified into two groups, critical

cycles of girth four and non-critical cycles of girth four [16]. The critical cycles

of girth four are present in both the compact quaternary form and the expanded

form and the non-critical cycles of girth four present only in the compact form.

For example, H1 =
(

I X I X
Z I I I
I X I X

)

contains a critical cycle of girth four, and H2 =
(

I X I X
Z I I I
I Z I Z

)

contains only a non-critical cycle of girth four. In our work, we consider

only the cycles of girth four in the expanded parity check matrix H = (C|D), since

our decoding scheme is based on the Tanner graph corresponding to the expanded

parity check matrix. It is desired to reduce or avoid critical cycles of girth four.

In the following, we first introduce the base matrices used in the quasi-cyclic
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structure of our proposed stabilizer codes. Then, we introduce a juxtaposition tech-

nique to construct longer codes.

Definition [Binary cyclic matrices] Let I be a P × P identity matrix. A binary

cyclic matrix I(1) ∈ {0, 1}P×P is obtained by cyclicly shifting each row of I to the

right by one position:

I(1) :=

























0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

1 0 0 · · · 0

























.

We define I(0) := I and I(i) := I(1)i, where i is the offset and 0 < i < P . We

have I(a)I(b) = I(a+ b) and IT (a) = I(−a).

To obtain longer codes with different code rate, we juxtapose shorter codes as

follows.

Definition [Juxtaposition of Matrices] For a set of matrices C1,C2, · · · ,CL and

D1,D2, · · · ,DL with the same number of rows, we juxtapose corresponding pairs

horizontally as H = (C1C2 · · ·CL|D1D2 · · ·DL).

It is shown that juxtaposition preserves the zero SIP condition in the following

lemma.

Lemma 5.3.1 ( [16, 17]). Let Hi = (Ci|Di) for 1 ≤ i ≤ L. If Hi satisfies the zero

SIP condition in Eq. (5.1), the juxtaposed matrix H = (C1C2 · · ·CL|D1D2 · · ·DL)

also satisfies the zero SIP condition.

According to Lemma 5.3.1, we first construct shorter codes with a pair of ma-

trices C and D satisfying the zero SIP condition. In the following, we propose a
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construction of binary QC stabilizer codes free of cycles of girth four.

Let H = (C|D), where C =
(

I(c1,1) I(c1,2)
I(c2,1) I(c2,2)

)

and D =
(

I(d1,1) I(d1,2)
I(d2,1) I(d2,2)

)

.

Theorem 5.3.1. A sufficient condition for a binary QC-LDPC stabilizer code with

H = (C|D) satisfying the zero SIP condition is given by























c1,1 − d1,1 = d1,2 − c1,2

c2,1 − d1,1 = d2,1 − c1,1

c2,2 − d1,2 = d2,2 − c1,2

(mod P ). (5.2)

Proof. CDT+DCT =
(

I(c1,1) I(c1,2)
I(c2,1) I(c2,2)

)(

I(−d1,1) I(−d2,1)
I(−d1,2) I(−d2,2)

)

+
(

I(d1,1) I(d1,2)
I(d2,1) I(d2,2)

)(

I(−c1,1) I(−c2,1)
I(−c1,2) I(−c2,2)

)

=
[

I(c1,1−d1,1)+I(c1,2−d1,2)+I(d1,1−c1,1)+I(d1,2−c1,2)
I(c2,1−d1,1)+I(c2,2−d1,2)+I(d2,1−c1,1)+I(d2,2−c1,2)

I(c1,1−d2,1)+I(c1,2−d2,2)+I(d1,1−c2,1)+I(d1,2−c2,2)
I(c2,1−d2,1)+I(c2,2−d2,2)+I(d2,1−c2,1)+I(d2,2−c2,2)

]

= 0. Hence, H satisfies the zero SIP condition.

Example: Given parameters J = 2, L = 2, and P = 15, a parity check matrix of

a (2,2) QC stabilizer code is given by
(

I(7) I(5)
I(5) I(7)

∣

∣

∣

I(13) I(1)
I(1) I(13)

)

.

To construct longer codes, we juxtapose additional pairs of codes satisfying the

condition in Eq. (5.1). The problem of the juxtaposition is that cycles of girth four

can be introduced, if the offset parameters are not carefully chosen. For example, for

P = 15, an expanded parity matrix of a (2, 4) code satisfying Eq. (5.2) is given by
(

I(7 ) I(5) I(8 ) I(6)
I(5 ) I(7) I(6 ) I(8)

∣

∣

∣

I(3) I(9) I(12) I(2)
I(9) I(3) I(2) I(12)

)

, where the four cyclic matrices with italic offsets

introduce cycles of girth four since 7− 5 = 8− 6 (mod 15).

Let H = (hj,l) denote a matrix containing the offset information of H = (I(hj,l)),

where 1 ≤ j ≤ J and 1 ≤ l ≤ L. The following theorem gives a necessary and

sufficient condition to avoid cycles of girth four for a QC-LDPC code withH = (hj,l).

Theorem 5.3.2 ( [75]). A QC-LDPC code with H = (hj,l) has no cycles of girth
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four if and only if hj1,l1 − hj2,l1 6= hj1,l2 − hj2,l2( mod P ) for 1 ≤ j1 < j2 ≤ J and

1 ≤ l1 < l2 ≤ L, where P is the size of cyclic matrices I(hj,l).

Example: Given parameters J = 2, L = 4, and P = 15, a parity check matrix of

a (2, 4) QC stabilizer code is given by
(

I(7) I(5) I(8) I(5)
I(5) I(7) I(5) I(8)

∣

∣

∣

I(3) I(9) I(12) I(1)
I(9) I(3) I(1) I(12)

)

, where no

cycle of girth four exists.

5.3.2 QC-LDPC stabilizer codes with no cycles of girth four

The parity check matrix of nonbinary QC-LDPC codes can be obtained from a pair

of base matrices based on single-weight shifted identity matrices. This is achieved

by replacing the ones in its binary image with nonzero elements in GF(2m) such that

the nonbinary matrix H satisfies the zero SIP condition in Eq. (5.1) and defines a

binary stabilizer code.

Let Hb = (Cb|Db) be a parity check matrix of a (2, 2) binary [[N,K]]2 code,

where Cb = (I(ci,j))2P×2P (Db = (I(di,j))2P×2P ) for i, j = 1, 2. A sufficient condition

for zero SIP is given in Eq. (5.2).

Let α be a primitive element in GF(2m). Suppose each block I(ci,j) (I(di,j), re-

spectively) ofCb (Db, respectively) is replaced withXij(ci,j) = diag(αxi,j,1 , · · · , αxi,j,P )·

I(ci,j) (Yij(di,j) = diag(αyi,j,1, · · · , αyi,j,P ) · I(di,j), respectively) for i, j = 1, 2. For

simplicity, we denote Xij(ci,j) and Yij(ci,j) as Xij and Yij, respectively, when there

is no ambiguity about the offsets ci,j and di,j. Since each component block ma-

trix Xij (Yij, respectively) has P nonzeros αxi,j,l (αyi,j,l, respectively) over GF(2m),

there are a total of 8P unknown exponents xi,j,l’s and yi,j,l’s to determine. After the

replacement, the parity check matrix is given by H = (C|D) =
(

X11 X12
X21 X22

∣

∣

Y11 Y12
Y21 Y22

)

.
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The symplectic inner product is shown in Eq. (5.3). Due to the quasi-cyclic struc-

ture, each of the four block matrices in Eq. (5.3) would introduce P linear equations

of exponents xi,j,l’s and yi,j,l’s for i, j = 1, 2 and there are a total of 4P equations.

Since the number of equations is smaller than the number of variables, we can always

find a set of solutions satisfying the zero SIP condition. By picking randomly from

the solutions, we obtain a parity check matrix H = (C|D) over GF(2m). Then, we

can use juxtaposition to obtain codes with different rates.

5.3.3 QC-LDPC stabilizer codes with rotation

In the following, we use the rotation operation similar to that in [16,17] to increase

the randomness.

Definition [General rotation operation]: A binary square matrix R is called a

general rotational matrix if RT = R−1. We only focus on sparse matrix R, since

dense matrix could increase the density of sparse parity check matrix. Permutation

matrix is a special rotational matrix and is used in our work for rotation operations.
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The general rotation operation Π on a square matrix X is given by

Π{X} = RXT ,

Πk{X} = Π{Πk−1{X}}, k = 2, 3, · · · .

Let H =
(

X11 X12
X21 X22

∣

∣

Y11 Y12
Y21 Y22

)

be a parity check matrix obtained in Sec. 5.3.2.

We apply rotation operation on H and obtain HR as follows: HR = (CR|DR) =
(

X11 (Π{X12})T
Π{XT

21} Π2{X22}

∣

∣

∣

Y11 (Π{Y12})T
Π{YT

21} Π2{Y22}

)

=
(

X11 X12R
T

RX21 RX22R
T

∣

∣

∣

Y11 Y12R
T

RY21 RY22R
T

)

. Then, the sym-

plectic inner product is shown in Eq. (5.4). When X11Y
T
11+X12Y

T
12 = 0, X11Y

T
21+

X12Y
T
22 = 0, X21Y

T
11 + X22Y

T
12 = 0, and X21Y

T
21 + X22Y

T
22 = 0, HR satisfies the

zero SIP condition. Note that Xij and Yij are single-weight cyclic matrices, each set

of the four sets of equations above would introduce P linear equations of unknown

exponents xi,j,l’s and yi,j,l’s. We obtain a total of 4P linear equations. Since each

component block matrix of CR and DR has P nonzeros, there are a total of 8P

unknown exponents xi,j,l’s and yi,j,l’s to determine. Thus, we can always find a set

of solutions satisfying the zero SIP condition. By picking randomly from the set of

solutions, we obtain a parity check matrix HR = (CR|DR) over GF(2m). A higher

rate code can be obtained by juxtaposition.

5.4 Performance Evaluation

In this section, we evaluate our QC-LDPC stabilizer codes in a qubit depolarizing

channel with a total flip probability f , where bit-flip error X , phase-flip error Z,

and bit-and-phase flip error Y occur independently with probability f/3 [11]. Our

binary QC-LDPC stabilizer codes are constructed through nonbinary QC-LDPC
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codes satisfying Eq. (5.1). The decoding is based on the nonbinary QC-LDPC codes

with an expanded parity matrix H = (C|D) over GF(2m). Hence, we use a sum-

product algorithm powered by FFT over finite field GF(2m) [76] and simulate the

frame error rate (FER) of our codes. In [21], Dutton et al. proposed quantum polar

codes with good performance for the depolarizing channel. However, at medium

length, the codes proposed by Kasai et al. in [23] outperform the quantum polar

codes [21]. Hence, we compare our code with the best CSS QC-LDPC code in [23].

We also include the best binary QC-LDPC stabilizer code in [16,17] for comparison,

since both our codes and the codes in [16, 17] are based on the general stabilizer

formalism.

Using the approach described in Sec. 5.3.2, we first construct a (2, 4) nonbinary

QC-LDPC code (referred to as code 1) over GF(28) without cycles of girth four. It

has a code rate 1/2 and length of 520 symbols, which is equivalent to 2080 qubits.

A parity check matrix of code 1 is given by

H =
(

X11(1) X12(64) X13(7) X14(58)
X21(64) X22(1) X23(58) X24(7)

∣

∣

∣

Y11(5) Y12(60) Y13(13) Y14(52)
Y21(60) Y22(5) Y23(52) Y24(13)

)

,

whereXi,j(ci,j) andYi,j(di,j) are cyclic shifted matrix over GF(28) with a size of P =

65. Based on the approach described in Sec. 5.3.3, we obtain another (2, 4) nonbinary

QC-LDPC code (referred to as code 2) over GF(28), which has the same offsets,

code rate, and length as code 1. A parity check matrix of code 2 is given by HR =
(

X11(1) X12(64)RT X13(7) X14(58)RT

RX21(64) RX22(1)RT
RX23(58) RX24(7)RT

∣

∣

∣

Y11(5)
RY21(60)

Y12(60)RT Y13(13) Y14(52)RT

RY22(5)RT
RY23(52) RY24(13)RT

)

. The

two parity check matrices of codes 1 and 2 with column weight 2, row weight 8, and

size 130× 520 are plotted in Fig. 5.2, where each dot denotes a nonzero elements.
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Figure 5.2: Parity check matrices of (a) Code 1 (b) Code 2.

We compare our codes with the KHIS (Kasai-Hagiwara-Imai-Sakaniwa) codes

proposed in [23], which are the best known CSS QC-LDPC codes. The KHIS code

for comparison has a code rate 1/2 and length of 2624 qubits. We also compare our

codes with code B in [16, 17], which has a code rate 1/2 and length of 2068 qubits.

The FER performances of our codes, code B in [16, 17], and KHIS code in [23] are

shown in Fig. 5.3. Our code 2 has better FER performance than code 1 up to 10−3. It

shows that the rotation operation can improve the FER performance by introducing

randomness, which can reduce the number of smallest cycles. Though both our codes

and code B in [16,17] are for a qubit channel, our codes outperform code B by using a

nonbinary LDPC decoding algorithm. We conclude that QC-LDPC stabilizer codes

via a nonbinary decoding algorithm have better FER performance than the binary

QC-LDPC stabilizer codes via a binary decoding algorithm. The performance of

our code 1 is not as good as the KHIS code in [23]. This is because our construction

removes only the cycles of girth four. In contrast, the method in constructing KHIS

codes ensures that cycles of girth up to 2L are eliminated, where L is the row weight.
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Figure 5.3: The block error probability of our codes, code B in [16, 17], and KHIS
code in [23].

By introducing randomness, which can reduce the number of girth six cycles, the

performance of our code 2 is better than code 1. Our codes do not perform well

as the KHIS code. We remark that this comparison is somewhat misleading and to

our disadvantage definitely, because the KHIS code in [23] is the result of significant

optimization efforts on CSS codes, whereas our code 1 is obtained without much

optimization. With more work on optimizations of our stabilizer codes, it is possible

to find better QC-LDPC stabilizer codes than the CSS QC-LDPC codes, which is

shown to be a special case of the QC-LDPC stabilizer codes.

5.5 Summary

Many quantum error correction codes in the literature are based on the CSS formal-

ism, which uses classical dual-containing codes as component codes. The drawback
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of CSS codes is the restriction on the code structure, which leads to a lower rate

code compared with non-CSS codes. In this work, we focus on the constructions of

quantum codes based on the general stabilizer formalism and propose two construc-

tions of QC-LDPC stabilizer codes decoded by a nonbinary sum-product algorithm.

Our simulation results show that our nonbinary quantum QC-LDPC codes outper-

form their binary counterparts. Though the performance of our codes are not good

as the best CSS QC-LDPC code in [23], it possibly leads to better codes than CSS

QC-LDPC codes by further reducing the number of smallest cycles. We plan to

search for better codes in our future work.
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Chapter 6

Efficient Threshold Architectures

with Bounded Fan-Ins for Finite

Field Operations

6.1 Introduction

According to the International Technology Roadmap of Semiconductors (ITRS) [1],

the conventional CMOS technology has great challenges in further scaling. Al-

though new materials and device structures can keep the CMOS scaling for the

next ten years, it would reach fundamental limits during 2020–2025 [1]. After

that, it would be difficult to operate any MOS-based transistor structure using

classical physics. With smaller feature sizes, higher speeds, and lower power con-

sumption, some emerging nanotechnology devices such as resonant tunneling diodes

(RTDs), quantum cellular automata (QCA) and single electron transistors (SETs)
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are promising candidates to replace the CMOS devices. At the system level, they

have two distinct advantages over their CMOS counterparts. Firstly they can easily

realize threshold gates (see Fig. 6.2). Since threshold gates can implement complex

Boolean functions with single gates [25], the area of larger systems implemented us-

ing nanotechnology tends to be a lot smaller. Secondly, the outputs of the threshold

gates built with nanotechnology are self-latched. This provides a natural way of

pipelining these systems in most signal processing applications.

Several applications dealing with real valued signals have already been real-

ized based on threshold gates, such as parallel adders via RTDs [27–29], compar-

ison via QCAs [77], pattern matching for nanotechnology [78], parity via neural

networks [79], multiplication via neural networks [80–82], division via neural net-

works [83]. However, an important class of signal processing applications, including

error correcting coding and cryptography which use characteristic-2 fields (denoted

by GF(2m)) [30, 84], have yet been realized using nanotechnology.

The main obstacle to the nanotechnology implementations of applications over

finite field GF(2m) is that all arithmetic operations, addition, multiplication [30] and

inversion [85–89], require exclusive-ORs (XORs). Unlike most conventional Boolean

primitives such as AND, OR, NOT, NAND and NOR, XOR is not a threshold func-

tion and cannot be realized as a single threshold gate [90]. While two-input XORs

have been the focus in CMOS technology, multi-input XORs are better suited to

finite field applications, which typically employ a large number of XOR operations.

Further, multi-input XORs allow us to better exploit the power of the threshold

gates. Previously proposed threshold logic gate (TLG) implementation of n-input

XORs have linear (O(n)) [91, 92] or sublinear (O(
√
n)) [81] number of threshold
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gates. However, these TLG implementations of multi-input XORs require threshold

gates with unbounded fan-ins. Bounded fan-in is critical to both reliability and

performance of nanotechnology architectures. The reliability of a threshold gate in

nanotechnology decreases sharply as the fan-in grows [93]. In addition, threshold

gates with a large fan-in tend to have slower switching speeds [94]. Previous theo-

retical results on XOR implementation with threshold logic ignored the practically

important fan-in bounds [91, 92], and hence they are not readily applicable when

fan-in is constrained.

One straightforward method of applying fan-in constraint to a multi-input XOR

is to decompose each threshold gate of the XOR in [81,91,92] into gates with smaller

fan-ins. Many approaches for decomposing threshold functions or symmetric func-

tions have been proposed in [95–99]. In [95], the decomposition of an arbitrary

Boolean function of n inputs considers only a fan-in of 2 and has a complexity of

O(2n/n). In [96–98], a divide and conquer algorithm for fan-in reduction was pro-

posed for a majority function of n inputs with a complexity of quasi-polynomial in

n, O(nlogn/BlogB), where B is the maximum fan-in. In [99], the proposed decom-

position of a majority function of n inputs with a fan-in B reduced the complexity

to quadratic in n, O(n2/B). For XORs with sublinear complexity in [81], O(
√
n)

threshold gates are needed. The total complexity of an XOR with a bounded fan-in

is on the order of O(n2.5) using the decomposition in [99].

Alternately one could use generic threshold synthesis approaches with arbitrary

fan-ins proposed for Fn,m (a class of functions of n inputs with m groups of ones

in their truth table) [100, 101] or symmetric Boolean functions [98], since XORs

are both a class of Fn,m functions and symmetric functions. However, we show that
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when applied to XORs, these approaches result in much higher complexities than our

approach, and hence are ineffective. For instance, the number of groups of ones in

the truth table of an n-input XOR increases exponentially and the total complexity

via the Fn,m approach with a bounded fan-in B is on the order of O(n2n/B). The

total number of gates required via the sort-and-search approach in [98] is on the order

of O(n log2 n). For all previous approaches based on decomposition and synthesis,

the complexity of n-input XORs via the sort-and-search [98] is much smaller than

other approaches. However, the sort-and-search algorithm in [98] assumed a fan-

in of two. Due to the regular structure of XORs, one could decompose a large

XOR into a tree of smaller XORs with bounded fan-ins. In our work, we present

tree implementations of XORs by using TLG implementation of multi-input XORs

in [79, 91, 92] as primitives. We treat the fan-in as a parameter for the architecture

of multi-input XORs, which satisfies the fan-in requirement by design. Regardless

of the fan-in requirement, the complexity of n-input XORs of our design is linear

with n.

In this chapter we aim to address the class of architectures over finite fields

GF(2m). In particular, we study the multiplication architectures using threshold

gates with a given fan-in bound. The work in this chapter presents two main results.

The first main result of the manuscript is TLG implementation of multi-input XORs

with bounded fan-ins. To leverage the power of multi-input threshold function, we

first generalize the sort-and-search algorithm in [98] from fan-in of two to arbitrary

fan-ins, and propose an architecture of multi-input XORs with finite fan-ins. We use

the XORs in [81,91,92] as primitives and propose two classes of tree implementations

of multi-input XORs with finite fan-ins and compare them with the XORs via the
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sort-and-search algorithm.

The other main contribution of our manuscript is multiplication over finite fields.

Using our proposed multi-input XORs, we then develop two efficient threshold ar-

chitectures for multiplication in GF(2m) with a given fan-in bound. Many other

GF(2m) architectures such as those for division and inversion are based on multipli-

cations [102]. Yet, to the best of our knowledge, this is the first work on the imple-

mentation of characteristic-2 multiplication in threshold logic. We investigate two

types of bit-parallel multiplications, the polynomial basis multiplication [103, 104]

and the Massey-Omura (MO) multiplication [105]. We propose efficient implemen-

tations of both of these using multi-input XORs and obtain analytical expressions

for the gate area and the latency of our designs. These are compared with the ar-

chitectures synthesized by approaches in [25, 106]. While the synthesis approach in

[2,Theorem 12.2.1.2] is chosen for its simplicity, the work in [106] is the first compre-

hensive synthesis methodology and provides a tool for general multilevel threshold

logic design. Our results show that our custom-designed multipliers outperform

those synthesized via generic approaches in [25, 106].

The rest of the chapter is organized as following. In Sec. 7.2, we introduce

threshold logic and show a typical threshold gate implementation using resonant

tunneling diodes (RTDs). Sec. 6.3 generalizes the sort-and-search approach to arbi-

trary fan-ins and presents a threshold architecture for multi-input XORs. Sec. 6.4

presents our tree architectures for multi-input XORs and evaluates their perfor-

mance. Sec. 6.5 provides the new efficient threshold implementations of polynomial

basis and normal basis multiplications over GF(2m). This section also evaluates the

gate area, number of interconnects and latency of these designs and compares them
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to prior work. Finally Sec. 6.6 presents the conclusions of this work.

Figure 6.1: Threshold gate realizing f(x) for n inputs, x1, x2, · · · , xn, with corre-
sponding weights w1, w2, · · · , wn and a threshold T .

6.2 Background

6.2.1 Boolean function

A Boolean function is a function with the mapping f : {0, 1}n → {0, 1}, where

n is the number of inputs. Denote the n-input Boolean function by Bn. Boolean

functions B2, such as 2-input AND, OR, and XOR, play an important role in CMOS

circuit design. For x ∈ {0, 1}, the negation of x is denoted by ¬x or x. Let x1 = x

and x0 = x. For x, y ∈ {0, 1}, the logical conjunction x∧y is 1 if and only if x = y = 1

and the logical disjunction x ∨ y is 1 if and only if x = 1 or y = 1 [107]. For x =

(x1, · · · , xn), define the minterm ma for a = (a(1), · · · , a(n)) ∈ {0, 1}n by ma(x) =

x
a(1)
1 ∧· · ·∧x

a(n)
n . Similarly, define the maxterm sa for a = (a(1), · · · , a(n)) ∈ {0, 1}n

by sa(x) = x
¬a(1)
1 ∨ · · · ∨ x

¬a(n)
n [107].

An arbitrary n-input Boolean function can be expressed by f(x) =
∨

a∈f−1(1) ma(x) =
∧

b∈f−1(0) sb(x), where the first and second representations are called disjunctive and

conjunctive normal form (DNF and CNF), respectively [107]. {∧,∨,¬} is called a

complete basis [107]. For Boolean functions, we use ·,+,̄ for ∧,∨,¬, respectively,

and omit · when there is no ambiguity.
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6.2.2 Symmetric function

A Boolean function is said to be symmetric if its output is invariant under any

permutation of its input bits. Let f be a symmetric function of n variables, we have

f(x1, x2, · · · , xn) = f(xσ(1), xσ(2), · · · , xσ(n))

for all permutations σ of {1, · · · , n}. Some Boolean functions, such as n-input

AND, OR, NAND, NOR, and XOR, are all symmetric functions. Since any Boolean

function has a disjunctive norm form, a symmetric function can be constructed in

two levels. The first level is to compute all conjunctions (products) of literals. The

second level is to compute the disjunction (sum) of all terms obtained in the first

level.

Symmetric functions can also be represented by partially defined Boolean func-

tions if the inputs are sorted first. A partially defined Boolean function has a map-

ping f : {0, 1}n → {0, 1, ?}, where “?” can be either 0 or 1. Let 〈x′
1, x

′
2, · · · , x′

n〉 be

the sorted sequence of (x1, x2, · · · , xn). fp(x
′
1, x

′
2, · · · , x′

n) denotes a partially defined

Boolean function with inputs only from n + 1 ordered binary sequences, (0 · · ·00),

(0 · · ·01), (0 · · ·11), · · · , (1 · · ·11). We refer to fp(x
′
1, x

′
2, · · · , x′

n) as a searching

function of the symmetric function f(x1, x2, · · · , xn).

The cost of a polynomial f(x1, x2, · · · , xn) =
∑m

i=1 fi(x1, x2, · · · , xn) is defined

as the sum of costs of all products fi(x1, x2, · · · , xn), of which each has a cost equal

to the number of its literals. For example, f(x1, x2, x3) = x1x2 + x1x3 + x2x3 has a

cost of six. A polynomial fmin is a minimal polynomial for f , if fmin computes f and

no other polynomial computing f has a smaller cost than fmin. An implicant of f is
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a product term fm satisfying f−1
m (1) ⊆ f−1({1, ?}) and f−1

m 6⊆ f−1(?). An implicant

fp of f is called a prime implicant if no proper sub-term of fp is an implicant of f .

According to Thm. 1.1 in [107], minimal polynomials for f consist only of prime

implicants. By computing all prime implicants of f , we can obtain the minimal

polynomial for f(x′
1, · · · , x′

n).

6.2.3 Threshold logic

A threshold function f with n inputs (n ≥ 1), x1, x2, · · · , xn, is a Boolean function

whose output is determined by [25]

f(x1, x2, · · · , xn) =











1 if
∑n

i=1wixi ≥ T

0 otherwise,
(6.1)

where wi is called the weight of xi and T the threshold. In this chapter we de-

note this threshold function as [x1, x2, · · · , xn;w1, w2, · · · , wn;T ], and for simplic-

ity sometimes denote it as f = [x;w;T ], where x = (x1, x2, · · · , xn) and w =

(w1, w2, · · · , wn).

For the Boolean functions NOT and n-input AND, OR, NAND, and NOR, each

corresponds to a single threshold function: [x;−1; 0] is the NOT gate, [x; 1, 1, · · · , 1;n]

and [x; 1, 1, · · · , 1; 1] are n-input AND and OR, respectively, [x;−1,−1, · · · ,−1; 0]

and [x;−1,−1, · · · ,−1; 1− n] equal n-input NAND and NOR, respectively. Unfor-

tunately, an XOR cannot be expressed as a single threshold function.

Certain threshold functions are of particular interest. An n-input threshold

function with unit weights and a threshold ⌊n
2
⌋ + 1 is called a majority function.

A threshold function with all unit weights but an arbitrary threshold is called a
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generalized majority function. Henceforth we denote a generalized n-input majority

gate with a threshold k by tnk .

The physical entity realizing a threshold function is called a threshold gate.

Fig. 7.11 shows a threshold gate realizing (7.5).

6.2.4 RTD Implementation of TG

RTD is a promising (see, e.g., [27]) nanotechnology to replace CMOS. Hence, in

this work we focus on RTD implementations of threshold gates. RTD is a diode

with resonant tunneling structure. It has a negative differential resistance, i.e., if

one increases voltage across it, the current through it initially increases and then

drops down to zero again after reaching a certain peak. If two RTDs are tied in

series and voltage across them is swept from low to high, then at the end, the

RTD with the higher peak current bears all the applied voltage. The peak current

depends on the area of the RTD. By replacing each of these RTDs by multiple RTDs

in parallel, and selectively adding them into the circuit with input variables, one

can change the effective area of the top and bottom RTDs. The voltage at the

junction of the two sets of RTDs is thus decided by the comparison of the two sets

of areas. This structure, in fact, implements a threshold gate. A typical threshold

gate built with RTDs is shown in Fig. 6.2, where a load RTD and a driver RTD

are needed for every output. Let a Boolean function of n variables be realized as

a network of k threshold functions fi(x) = [xi;wi;Ti] with xi = (xi
1, · · · , xi

ni
) and

wi = (wi
1, · · · , wi

ni
) for i = 1, · · · , k, where ni denotes the number of variables

involved in the i-th threshold function. The total gate area of the implementation,

composed of areas of all the RTD gates, including the load and the driver RTDs, is
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Figure 6.2: RTD implementation of a threshold gate computing f = ab+ bc+ ac =
[a, b, c; 1,−1, 1; 1]. The numerical value next to each RTD is its area.

given by A(n) = 2k +
∑k

i=1(
∑ni

j=1 |wi
j|+ |Ti|).

The fan-in of a threshold gate in RTD nanotechnology needs to be bounded for

both reliability and performance. First, the reliability of an RTD threshold gate

decreases sharply with the fan-in due to noise, fluctuation of supply voltage, and

manufacture deviations [108]. Second, the switching speed of an RTD implementa-

tion of a threshold gate depends on the radio of load to drive peak currents [94]:

The closer the ratio is to one, the slower the RTDs switch. Since a gate with more

inputs is more likely to have a ratio closer to one than a small gate, it also suggests

that the fan-in of an RTD threshold gate be bounded. A maximum fan-in of seven

inputs was suggested in [27] for RTDs.

6.3 XOR via Sort-and-Search

In this section, we first propose a sort-and-search algorithm with n-input (n ≥

2) threshold gates for implementing any symmetric function. Then, we show an
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Figure 6.3: Computing a symmetric function via a sort-and-search algorithm [98].

implementation of XOR via the proposed algorithm.

6.3.1 Sort-and-search

Any Boolean function has a two-level implementation. The first level is to compute

all product terms and the second level to compute the disjunction of all product

terms. For symmetric functions, the evaluation is reduced to comparing the sum of

the binary input variables with some constants [98]. A sort-and-search algorithm

was proposed in [98] for realizing symmetric functions. It first sorts the inputs and

then detects the position in the sorted list switching from zero to one. This sort-

and-search algorithm contains two blocks: a sorting block and a searching block as

shown in Fig. 6.3. The searching block can be easily implemented as a tree of gates

as in [98]. The sorting networks have more complex implementation. Many efficient

sorting networks exist in the literature, such as the Batcher’s odd-even sort [31]

and the bitonic merge sort [109], which use a 2-sorter as the basic block. Binary

sorters can be easily implemented in threshold logic. In [98], a 2-by-2 comparator
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(2-sorter) was implemented by two threshold gates as shown in Fig. 7.12(a). We use

the Knuth diagram in [110] for easy representation of the sorting networks, where

switching elements are denoted by connections on a a set of wires. A symbol for a

two-sorter is shown in Fig. 7.12(b).

Figure 6.4: Sorters implemented in threshold logic (a) 2-sorter threshold implemen-
tation; (b) 2-sorter symbol.

Since XOR is a special symmetric function, it can be implemented via the sort-

and-search algorithm in [98]. For instance, a 4-input XOR is shown in Fig. 6.5(a).

The corresponding threshold logic implementation is shown in Fig. 6.5(b) with 2-

input threshold gates as the basic blocks. The weights and thresholds for all 2-

sorters are omitted for simplicity and can be obtained by reviewing Fig. 7.12. The

sorting network is simply a 4-input sorting network, where the inputs and outputs

are denoted by (x1, x2, x3, x4) and 〈x′
1, x

′
2, x

′
3, x

′
4〉, respectively. For the searching

network a truth table with sorted inputs is shown in Table 6.1, where the sorted list

x′
1, x

′
2, x

′
3, x

′
4 has only five possible cases and the output y is only true if the inputs

have an odd number of 1’s. The searching network is composed of two ANDs and

one OR as shown in Fig. 6.5(a).
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Figure 6.5: A 4-input XOR implemented via the sort-and-search algorithm in [98].

Table 6.1: Truth table for the searching network of a 4-input parity function.

x′
1 x′

2 x′
3 x′

4 y
0 0 0 0 0
0 0 0 1 1
0 0 1 1 0
0 1 1 1 1
1 1 1 1 0

Figure 6.6: Sorters implemented in threshold logic (a) n-sorter threshold implemen-
tation; (b) n-sorter symbol.
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6.3.2 Generalized sort-and-search

Any symmetric function can be realized by the sort-and-search algorithm in [98].

However, the previously proposed sort-and-search algorithm [98] is based on gates

with a fan-in of two. In this work, we generalize the sort-and-search algorithm with

fan-in of two in [98] to arbitrary fan-ins. Similar to the basic block, 2-sorter, used

in [98], we use n-sorters as the basic blocks. The TLG implementation of n-sorter

is shown in Fig. 6.6(a), where n threshold gates are required. A symbol for n-

sorter is shown in Fig. 6.6(b). As shown in Fig. 6.6(a), the number of gates of an

n-sorter scales linearly with the number of inputs n. For practical concerns, such

as reliability, some limit on the fan-in of the basic sorter is assumed. Many sorting

networks with n-sorters as building blocks have been proposed in the literature. The

multiway merge sort in [111] and the multiway bitonic sort in [109] use n-sorters

in part of the sorting network and 2-sorters required for some other parts. Sorting

networks with n-sorters (n ≥ 2) as the basic blocks were proposed in [112, 113]. It

has been shown that using larger sorters can reduce the number of gates greatly. In

this work, we generalize the sort-and-search algorithm with fan-in of two in [98] to

arbitrary fan-ins via our proposed multiway merge sort algorithm in [114].

The searching network is to implement a partially defined function with sorted

binary inputs. As explained in Sec. 6.3.1, the truth table for an n-input partially

defined function contains n+ 1 output entries corresponding to n+ 1 sorted binary

sequences. We denote the (n + 1)-entry output by vf = (vf (0), vf(1), · · · , vf(n)).

Suppose there are k groups of 1’s in vf , denoted by pairs (bj , ej) for 1 ≤ j ≤ k,

where bj and ej are the beginning and ending positions of the j-th group with

0 ≤ bj ≤ ej ≤ n and ej−1 + 1 < bj . We assume x′
0 = 0 and x′

n+1 = 1 to deal with
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groups of 1’s with boundaries on the left and right most positions of vf . We have

the following lemma.

Lemma 6.3.1. For a partially defined Boolean function fp of sorted binary inputs

(x′
1, · · · , x′

n), suppose there are k groups of 1’s in the (n+1)-entry output vf , denoted

by pairs (bj , ej) (1 ≤ j ≤ k). Then, the minimal polynomial is given by fmin =

∑k
j=1 x

′
n−ejx

′
n+1−bj

assuming x′
0 = 0 and x′

n+1 = 1.

Proof. We first prove that
∑k

j=1 x
′
n−ejx

′
n+1−bj

is a polynomial for fmin. Since mj =

x′
n−ejx

′
n+1−bj

outputs 1 for all inputs corresponding to the j-th group of 1’s, mj is an

implicant of fmin. For each group of 1’s, there is an implicant mj for fmin. Hence,

∑k
j=1mj is a polynomial of fmin.

Then we show that
∑k

j=1 x
′
n−ejx

′
n+1−bj

is the minimal polynomial of fmin. It is

equivalent to prove that all implicants are prime implicants. For bj = 1 or ej = n,

the implicant mj contains only one literal and is already a prime implicant. For

bj 6= 1 and ej 6= n, each implicant mj = x′
n−ejx

′
n+1−bj

has two proper sub-terms,

mj1 = x′
n−ej and mj2 = x′

n+1−bj
. Since m−1

j1
(1) contains all ordered sequences with

x′
n−ej

= 0, at least one input is not in f−1
min({1, ?}). Hence, m−1

j1
(1) 6⊆ f−1

min({1, ?}) for

1 ≤ j ≤ n. Similarly, m−1
j2
(1) 6⊆ f−1

min({1, ?}) for 1 ≤ j ≤ n. Thus, all implicants mj’s

are prime implicants of fmin and
∑k

j=1mj is the minimal polynomial of fmin.

According to Lemma 6.3.1, the searching network is to implement the minimal

polynomial fmin =
∑k

j=1 x
′
n−ejx

′
n+1−bj

. If the fan-in is not constrained, the searching

network is simply a two-level tree, with the first level computing all prime implicants

of fmin and the second level combining all terms as a k-input OR gate. If the fan-in is

no more than B, the searching network can be decomposed as a B-ary tree of at most
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⌈logB(2⌊n
2
⌋+ 1)⌉ levels. The following approaches are used for the decomposition.

If B is even, we apply the following approach.

1. Staring from j = k, adjacent B/2 implicants mj ’s are grouped to form a B-

input threshold gate with weight 1 for x′
n+1−bj

, -1 for x′
n−ej

, and a threshold

of 1. If less than B/2 implicants are left for small j, combine the left impli-

cants as a smaller threshold gate using the same rule for denoting weights and

threshold.

2. Since only one output from the first level is true, outputs from the first level

are combined as a B-ary tree of OR gates.

If B is odd, we apply the following approach.

1. Starting from j = k, adjacent B literals in mj ’s are grouped to form a B-input

threshold gate with alternating 1 and -1 as weights starting from the largest

literal in the group and a threshold of 1. If less than B literals are left for

small j, combine the left literals as a smaller threshold gate using the same

rule for denoting weights and threshold.

2. It can be easily shown that outputs from the first level are still an ordered

sequence. Repeat step 1) until only one gate is needed for all inputs from last

level.

The above proposed sort-and-search algorithm works for any symmetric func-

tions. Since the XOR function is symmetric, we can implement XORs via the

generalized sort-and-search algorithm. For an n-input XOR, we first sort the in-

puts x1, x2, · · · , xn and obtain x′
1 ≤ x′

2 ≤ · · · ≤ x′
n. According to Lemma 6.3.1,
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Table 6.2: A searching function y of ordered binary sequences (x′
1, x

′
2, · · · , x′

9).

x′
1 x′

2 x′
3 x′

4 x′
5 x′

6 x′
7 x′

8 x′
9 y

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1 0
0 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

Figure 6.7: A 9-input XOR implemented via the generalized sort-and-search algo-
rithm.

the searching function is y = x′
1 + x′

2x
′
3 + x′

4x
′
5 + · · · + x′

n−1x
′
n for odd n, and

y = x′
1x

′
2+x′

3x
′
4+ · · ·+x′

n−1x
′
n for even n. For a 9-input XOR, the partially defined

truth table of a searching network y with ordered binary inputs (x′
1, x

′
2, · · · , x′

9) is

shown in Table 6.2. According to Lemma 6.3.1, y = x′
1+x′

2x
′
3+x′

4x
′
5+x′

6x
′
7+x′

8x
′
9.
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The whole network for the 9-input XOR is shown in Fig. 6.7, and consists of 33

threshold gates in 6 levels. The weights and thresholds of 2-sorters and 3-sorters in

Fig. 6.7 are omitted for simplicity, and can be obtained by reviewing Fig. 6.6.

6.3.3 Analysis of gate area

In the following, we first derive the total number of gates. For n = Bp, the latency

is given by

Lsort(B
p) = p+ ⌈B

2
⌉ × p(p−1)

2
. (6.2)

The total number of gates for the sorting network is given by

Gsort(B
p) = Bp · Lsort(B

p)−G(Bp), (6.3)

where G(Bp) = (p − 1)Bp−2B2+6B−5
4

+ ((p−2)Bp−1−(p−1)Bp−2+1)(B+5)
4(B−1)

+ (p−1)(p−2)
2

Bp−1

for B 6= 2 and G(Bp) = (p2 − p + 4)2p−1 − 2 for B = 2. The total number of gates

for the searching network is given by

Gsearch(B
p) =

Bp − 1

B − 1
. (6.4)

Hence, the total number of gates for implementing n-XOR is given by

Gs&s(n) =
n− 1

B − 1
+ n · Lsort(n)−G(Bp). (6.5)

For a fixed fan-in bound B, the area of each gate is bounded by a constant. Hence,

the total gate area of an n-input XOR via the generalized sort-and-search approach
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is on the order of O(n log2 n).

6.4 Tree Implementation of XOR

In Sec. 6.3, we show that the gate area of n-input XORs based on the general-

ized sort-and-search approach is on the order of O(n log2 n). Next, we propose tree

implementations of n-input XORs with linear gate area. First, we present an im-

plementation of an n-input XOR as a tree of two-input XORs, each of which is

expressed based on other Boolean gates and implemented by their threshold gates.

We refer to this approach as direct conversion and use it as a basis for comparison.

Then, we present a traditional manner of implementing an n-input XOR, and then

propose new designs. The former, called the Boolean class, expresses the XOR in a

two-level NAND circuit implemented through threshold gates. The latter, referred

to as the majority class, has a two-level implementation and uses only generalized

majority gates in the first level. Finally, we analyze the gate area, number of inter-

connects, and latency of an n-input XOR via these approaches.

6.4.1 Direct conversion

Although an XOR cannot be expressed as a single threshold function, one can first

express an XOR based on other Boolean gates and then use their threshold logic

implementations. We refer to this approach as direct conversion.

One can implement an n-input XOR through a binary tree of two-input XORs.

A two-input XOR s = a⊕b can be expressed as s = ab̄+āb, s = ā+ b̄+ a+ b, or s =

ab̄ āb, and implemented as shown in Fig. 6.8. Among the three implementations in
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Fig. 6.8, the NAND-type implementation has the smallest gate area and is therefore

chosen in our implementation.

Figure 6.8: Threshold implementation of two-input XOR gate (a) SOP-type (b)
NOR-type and (c) NAND-type. All three use threshold gates with a fan-in of only
two.

6.4.2 XOR with a small number of inputs

We consider two classes of architectures without considering the maximum fan-in,

which is valid when the number of inputs to an XOR is sufficiently small.

Boolean-class implementations

We can use Boolean algebra to express an n-input XOR based on two levels of

NANDs. Since NANDs can be implemented as threshold gates, this provides a

two-level implementation, called the Boolean-class implementation.

Let s denote the XOR of x1 x2, . . ., xn. One can express s in a sum-of-product

(SOP) form. The NAND implementation of such a form is obtained by using a

NAND to combine the literals (a literal is a variable or its inverse) in each product
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term and combining the outputs of these NANDs with another NAND. For example,

a three-input XOR s = a⊕ b⊕ c can be expressed as s = abc abc abc abc.

Note that there are 2n−1 product terms in the SOP expression of an n-input

XOR. Since the last threshold gate has inputs from each of these terms, this imple-

mentation is possible only when the maximum fan-in B satisfies B ≥ 2n−1.

Majority-class implementations

A two-level implementation of n-input XORs is proposed in [91] as shown in Fig. 6.9.

All the gates in the first level are generalized majority gates with thresholds from

1 to n. A single gate is in the second level with alternating weights 1 and -1 cor-

responding to odd and even gates, respectively, in the first level. The gate in the

second level combines the outputs from the first level, and compare with a thresh-

old of 1 to compute the n-input XOR. All the threshold gates have the same fan-in

n. Thus this two-level implementation in [91] is useful only when B ≥ n. An-

other two-level implementation of n-input XORs is proposed in [92] as shown in

Fig. 6.10. For an n-input XOR s = x1 ⊕ x2 ⊕ · · · ⊕ xn, let the generalized ma-

jority functions tni ’s with even threshold i’s be the intermediate variables. Then,

s = [x1, x2, · · · , xn, t
n
2 , t

n
4 , · · · , tn2⌊n

2
⌋; 1, 1, · · · , 1,−2,−2, · · · , −2; 1], which can be im-

plemented in two levels. The first level is to compute how many pairs of ones there

are in the inputs. The second level subtracts all pairs of ones from n. The result

is either one (odd number of ones) or zero (even number of ones). The threshold

gate of the second level has the maximum fan-in amongst all the gates and it equals

⌊3n/2⌋. Thus this two-level implementation in [92] is useful only when B ≥ ⌊3n/2⌋.

The above two two-level implementations require linear number of gates. In [81],
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the number of gates for an n-input XOR is reduced to 2
√
n +O(1) in a three-level

implementation. There are ⌊√n⌋ gates in the first level, 2l (2l ≤ ⌈n/⌊√n⌋⌉) gates

in the second level, and 1 gate in the third level, where l is an integer. The threshold

gates of the second level has the maximum fan-in amongst all the gates and it equals

n+ 2l. Thus the three-level implementation in [81] is useful only when B ≥ n+ 2l.

Figure 6.9: Threshold gate implementation of s = x1 ⊕ x2 · · · ⊕ xn via [91].

Figure 6.10: Threshold gate implementation of s = x1 ⊕ x2 · · · ⊕ xn via [92].
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6.4.3 XOR with a large number of inputs

When the number of inputs for an XOR exceeds the maximum fan-in, the implemen-

tations in Sec. 6.4.2 cannot be used directly. Instead, an n-input XOR is realized

using a tree of B′-input XOR gates as shown in Fig. 6.11. For given B and n, the

height of the tree l is minimized while satisfying n ≤ B′l, and B′ is maximized such

that no gate in the tree exceeds the maximum fan-in B.

If the Boolean-class implementation is used for the B′-input XORs, then from

the results in Sec. 6.4.2, B ≥ 2B
′−1, which gives B′ = 1 + ⌊log2B⌋.

Alternatively, we can use the threshold gate implementations of XORs via [81,

91, 92] as basic B′-input XORs. For [91], B = B′. For [92], B ≥ ⌊3B′/2⌋, which

gives B′ = ⌊(2B + 1)/3⌋. For [81], B ≥ B′ + 2l, where 2l ≤ ⌈B′/⌊
√
B′⌋⌉. In

Table 6.3, we show the gate area (G), number of interconnects (I), and latency (L)

of XORs via [81,91,92] for fan-ins B = 3, 4, 5, 6, 7. For the same B in Table 6.3, the

XOR via [92] has the smallest gate area, number of interconnects, and latency. In

the following, we refer to XORs via [92] as majority-class XORs and use them as

primitives for our tree implementation.

6.4.4 Complexity of multi-input XOR

We now investigate the gate area, number of interconnects, and latency of various

designs presented in Secs. 6.4.2 and 6.4.3. We treat the gate area, number of in-

terconnects, and latency of an XOR as a function of two parameters: the number

of inputs n and the fan-in bound B. When the fan-in bound is not violated, the

XOR is simply implemented in a two-level structure. When the fan-in bound is

violated, the XOR is decomposed into a tree of smaller XORs such that all smaller
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Table 6.3: Comparison of XORs via [81, 91, 92] for fan-ins B = 3, 4, 5, 6, 7.

B B′ Impl. G I L

3
3 Muroga [91] 27 12 2
2 Minnick [92] 13 5 2
2 Siu [81] 29 12 3

4
4 Muroga [91] 41 20 2
3 Minnick [92] 15 7 2
2 Siu [81] 29 12 3

5
5 Muroga [91] 58 30 2
3 Minnick [92] 15 7 2
3 Siu [81] 44 20 3

6
6 Muroga [91] 78 42 2
4 Minnick [92] 29 14 2
4 Siu [81] 48 24 3

7
7 Muroga [91] 101 56 2
5 Minnick [92] 32 17 2
5 Siu [81] 94 44 3

Figure 6.11: n-input XOR realized as a tree with a height of l using B′-input XORs
as basic units, where s = x1 ⊕ x2 ⊕ · · · ⊕ xn for n = B′l.

XORs can be implemented without violating the fan-in bound. For mathematical

convenience, assume that n = B′l for some l, where B′ is dependent on the fan-in
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bound B. That is, the tree is complete with height l = logB′ n. Thus the implemen-

tation involves NB = (B′l − 1)/(B′ − 1) B′-input XORs. For a tree of k threshold

gates, the total gate area is simply the sum of all smaller XORs, which is given by

AXOR(n,B) = 2k+
∑k

i=1(
∑ni

j=1 |wi
j|+ |Ti|). The number of interconnects is given by

IXOR(n,B) =
∑k

i=1 ni. The latency LXOR(n,B) of the XOR is given by identifying

the critical path from the inputs to the output.

For Boolean-class implementations, the gate area, number of interconnects, and

latency are given by

ABC
XOR(n,B) =











3(n+ 2)2n−2 + 1, n ≤ B′

(n−1)(3(⌊log2 B⌋+3)2⌊log2 B⌋−1+1)
⌊log2 B⌋ , n > B′

IBC
XOR(n,B) =











(n+ 1)2n−1, n ≤ B′

(n−1)((⌊log2 B⌋+2)2⌊log2 B⌋)
⌊log2 B⌋ , n > B′

LBC
XOR(n,B) =











2, n ≤ B′

2⌈log⌊1+log2 B⌋ n⌉, n > B′

respectively, where B′ = 1+⌊log2B⌋, which determines the fan-in violation condition

for the Boolean-class implementation.

For majority-class implementations, the gate area, number of interconnects, and

latency are given by

AMC
XOR(n,B) =











⌊n/2⌋⌊(3n + 10)/2⌋+ n + 3, n ≤ B′

(n−1)(⌊B
3
⌋2+⌊ 2B+16

3
⌋⌊B

3
⌋+⌊ 2B+10

3
⌋)

⌊ 2B−2
3

⌋ , n > B′

135



6.4. TREE IMPLEMENTATION OF XOR

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

n

G
at
e
ar
ea

(i
n
R
T
D
s)

 

 

Boolean, B=4,5,6,7

Boolean, B=3
Majority, B=3

Majority, B=6

Majority, B=4,5

Majority, B=7

Figure 6.12: Gate area of n-input XOR using threshold gate with fan-in bound B.

IMC
XOR(n,B) =











(n+ 1)⌊n/2⌋+ n, n ≤ B′

(n−1)(⌊ 2B+4
3

⌋⌊B
3
⌋+⌊ 2B+1

3
⌋)

⌊ 2B−2
3

⌋ , n > B′

LMC
XOR(n,B) =











2, n ≤ B′

2⌈log⌊(2B+1)/3⌋ n⌉, n > B′

respectively, where B′ = ⌊(2B+1)/3⌋, which determines the fan-in violation condi-

tion for the majority-class implementation.

The gate area, number of interconnects, and latency of the three classes of XORs

are compared in Figs. 6.12, 6.13, and 6.14, respectively, for B = 3, 4, · · · , 7. Though

the closed-form expressions of the gate area, number of gates, and latency for tree

implementations are derived for complete tree with n = B′l, we assume the expres-

sions are valid for all n. According to [115], the operand size n is as large as 521.

Hence, all the curves in Figs. 6.12, 6.13, and 6.14 are depicted for n up to 600. In

Figs. 6.12, 6.13, and 6.14, all the legends correspond to the discrete values n = B′l
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Figure 6.13: Number of interconnects of n-input XOR using threshold gate with
fan-in bound B.
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Figure 6.14: Latency of n-input XOR using threshold gate with fan-in bound B.

for l = 1, 2, · · · . For n 6= B′l, a multi-input XOR is realized as a partial tree of

B′-input XORs. Assume the gate area and number of interconnects of the partial

tree of B′-input XORs increases linearly with n. All the curves corresponding to

the gate area and number of interconnects are straight lines. In contrast, the curves
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corresponding to the latency are step functions, which is due to the ceiling function.

All three classes of XORs have linear complexity. The direct conversion has the same

gate area, number of interconnects, and latency as the Boolean class with B = 3,

which implies that the Boolean class includes the direct conversion as a special case

and hence provides more tradeoffs between the gate area, number of interconnects,

and latency. From Fig. 6.12, both the Boolean-class and majority-class XORs have

the same gate area when B = 3, the majority-class XOR is more area efficient than

the Boolean-class XOR when B = 4, 5, 6, 7. From Fig. 6.13, the number of inter-

connects of the majority-class XOR is smaller than that of the Boolean-class XOR

for any B. For example, when B = 7, the gate area and number of interconnects of

Boolean-class XOR are about twice of those of majority-class XOR with the same

number of inputs. For any given B, the latency of the majority-class XOR is smaller

than that of the Boolean-class XOR.

It is observed that the optimum fan-in with respect to the gate area is B = 3 for

Boolean-class, and B = 4, 5 for majority-class XORs. For a large maximum fan-in

B, the overall gate area and number of interconnects are not the smallest, though

the tree is composed of fewer gates, each of which is more powerful dealing with

multiple inputs. It implies the majority-class implementation of a multi-input XOR

is more efficient in terms of gate area and number of interconnects when B = 4, 5,

even if a greater fan-in is available. The optimum fan-in can also be explained

through the expressions of AXOR(n,B). For an n-input XOR implemented as a tree,

there is a tradeoff between the number of B′-input XORs, NB, and the gate area

of each XOR. A small B leads to a smaller B′-input XOR but a larger NB. There

exists an optimum value B for a fixed n such that the overall gate area is minimized.
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When the cost is the main concern, we search all B’s for the minimum gate area

of ABC
XOR(n,B) and AMC

XOR(n,B). The following lemma gives the optimal fan-ins for

Boolean-class and majority-class XORs implemented as a tree.

Lemma 6.4.1. For a given n (n ≥ 3), among all values of B such that B ≤ 2n−1

and B ≤ ⌊3n
2
⌋ for Boolean class and majority class, respectively, B = 3 and B=4 (or

5) minimize the gate area of the Boolean-class and majority-class implementations

of an n-input XOR, respectively.

Proof. For the Boolean-class implementation, the total gate area of an n-input XOR

with the maximum fan-in B is given by ABC
XOR(n,B) = (n − 1) · [3(⌊log2B⌋ +

3)2⌊log2 B⌋−1 + 1] / ⌊log2B⌋. For a given n (n ≥ 3), ABC
XOR(n,B) is a piece-wire

function of B. For all B ≤ 2n−1, ABC
XOR(n,B) is minimized when B = 3.

Similarly, for the majority-class implementation of an n-input XOR, the gate

area is given by AMC
XOR(n,B) = (n−1) · (⌊B

3
⌋2+ ⌊2B+16

3
⌋⌊B

3
⌋+ ⌊2B+10

3
⌋) / ⌊2B−2

3
⌋. By

scanning B ≤ ⌊3n
2
⌋, AMC

XOR(n,B) is minimized when B=4 (or 5).

6.5 Multiplication over GF(2m): Threshold Imple-

mentation

In CMOS technology, many characteristic-2 field multiplication structures have been

proposed using different basis representations of field elements in the literature.

Most of them are based on the polynomial basis and normal basis [104]. In the

following, we propose threshold architectures of polynomial basis and normal basis

multiplications over GF(2m) using multi-input XORs. Our implementation is based
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on the RTD technology, which needs a four-phase clocking scheme. Hence, buffers

are inserted to the circuit wherever needed. In our implementation, each output is

synthesized as an independent network of threshold gates. No sharing of gates with

other outputs is considered. We analyze the gate area, number of interconnects, and

latency of our implementations.

6.5.1 Polynomial basis multiplication over GF(2m)

Polynomial basis is widely used for representing finite field elements. There are

two classes of implementations: bit-serial and bit-parallel [103]. The former can be

modified to obtain a systolic structure, which has a highly regular structure and less

interconnect complexity. However, the structure is not suitable for implementation

in the new nanotechnology due to the complex clocking scheme. In contrast, the bit-

parallel multiplication can be constructed in a cascaded network, which is suitable

for the new nanotechnology.

Let an irreducible polynomial P (x) = p0 + p1x + · · · + pm−1x
m−1 + xm be the

generator polynomial of the field GF(2m). Let A(x) and B(x) be two field elements

in GF(2m) and C(x) be their product modulo P (x). Then,

C(x) = A(x)B(x) mod P (x)

= (A(x)b0 mod P (x)) + (A(x)xb1 mod P (x))

+ · · ·+ (A(x)xm−1bm−1 mod P (x))

(6.6)

Representing C(x) and B(x) as vectors, the multiplication can be rewritten in matrix
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form as C = ZB



















c0

c1
...

cm−1



















=



















z0,0 z0,1 · · · z0,m−1

z1,0 z1,1 · · · z1,m−1

...
...

. . .
...

zm−1,0 zm−1,1 · · · zm−1,m−1





































b0

b1
...

bm−1



















, (6.7)

where Z is called a product matrix. The i-th column of Z is obtained by A(x)xi mod

P (x).

The matrix-vector multiplication in (6.7) requires m2 two-input AND gates and

m m-input XOR gates. The complexity of computing Z depends on the selected

generator polynomial P (x). The choice of the generator polynomials may reduce

the arithmetic complexity over GF(2m). Trinomials, pentanomials, equally-spaced

polynomials (ESPs), and all-one polynomials (AOPs) are usually considered for

selecting generator polynomials [104]. It has been shown that roughly one half of

characteristic-2 fields GF(2m) for 2 ≤ m ≤ 1000 has a trinomial generator [103].

For fields without trinomial generator, a prime pentanomial exists with very high

probability [103].

6.5.2 Implementation of polynomial basis multiplication us-

ing multi-input XORs

Based on polynomial basis, an m-bit multiplication C(x) = A(x)B(x) ( mod P (x))

over GF(2m) is implemented as C = ZB, where C = (c0, c1, · · · , cm−1)
T and B =

(b0, b1, · · · , bm−1)
T . It needs two steps: product matrix Z computation and vector

141



6.5. MULTIPLICATION OVER GF(2M): THRESHOLD IMPLEMENTATION

multiplication. For a generator polynomial P (x) = xm + x+ 1, the product matrix

Z is given by

Z =







a0 am−1 am−2 ··· a2 a1
a1 a0+am−1 am−1+am−2 ··· a3+a2 a2+a1
a2 a1 a0+am−1 ··· a4+a3 a3+a2
...

...
...

...
...

...
am−1 am−2 am−3 ··· a1 a0+am−1






,

where column i is given by the coefficients of A(x)xi mod P (x) for i = 0, 1, · · · , m−1.

Hence, row 0 of Z is given by (a0, am−1, am−2, · · · , a1) and row i for i = 1, 2, · · · , m−1

given by (ai, ai−1, · · · , a1, a0 + am−1, am−1 + am−2, · · · , ai+1 + ai), where all indices

are modulo m. An m-bit polynomial basis multiplication contains m independent

blocks in parallel, each of which computes ci for i = 0, 1, · · · , m− 1 simultaneously.

The multiplication structure for computing C(x) = A(x)B(x) mod P (x) is shown

in Fig. 6.15(a), where the block ui for computing ci is shown in Fig. 6.15(b). The

generation of row i of Z, given by A(x)xi mod P (x), is shown in Fig. 6.15(c) and

requires m − i (i = 1, · · · , m − 1) two-input XORs. Each block ui requires m

two-input ANDs, m − i two-input XORs, and one m-input XOR. Hence, the total

numbers of two-input ANDs, two-input XORs, and m-input XORs for an m-bit

multiplication are given by m2, m(m−1)
2

, and m, respectively.

6.5.3 Normal basis multiplication over GF(2m)

Similar to the implementations of polynomial basis multiplications, there are two

classes of implementations of normal basis multiplications: the bit-serial and the

bit-parallel [103]. The latter can be easily obtained by putting multiple identical

blocks in parallel, each of which is the same as that in the former, with cyclic shifted

versions of inputs. Bit-parallel implementations achieve much higher throughput at
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Figure 6.15: Implementation of polynomial basis multiplication (a) Structure for
PB multiplication C(x) = A(x)B(x) mod P (x); (b) Block ui for computing ci; (c)
Generation of row i of Z.

the expense of larger gate area.

Some characteristic-2 field operations in normal basis can be implemented ef-

ficiently. For instance, the squaring of an element in GF(2m) is simply given by

a cyclic shift. With this property, multiplications in normal basis can be imple-

mented via an algorithm given by Massey and Omura in [105]. The implemented

multiplications are referred to as Massey-Omura (MO) multiplications.

Suppose β ∈ GF(2m) so that {β, β2, · · · , β2m−1} forms a normal basis of GF(2m).
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Let A′ = a′0β + a′1β
2 + · · · a′m−1β

2m−1
be any element in GF(2m). Denote the vec-

tor form of A′ by A′ = (a′0, a
′
1, · · · , a′m−1)

T . Then, A′2 is a right cyclic shift of

A′, (a′m−1, a
′
0, · · · , a′m−2)

T . Let B′ be any element in GF(2m) with vector form

B′ = (b′0, b
′
1, · · · , b′m−1)

T , and C ′ = A′B′ with vector form C′ = (c′0, c
′
1, · · · , c′m−1)

T

the product with respect to the same normal basis. Then, the last coefficient c′m−1 is

some function y of coefficients of A′ and B′, c′m−1 = y(A′,B′). The i-th coefficient of

C ′ is given by c′i = y(A′(m−1−i),B′(m−1−i)), whereA′(j) = (a′m−j , a
′
m−j+1, · · · , a′m−1, a

′
0,

a′1, · · · , a′m−j−1)
T denotes the j-fold right cyclic shift of A′. The y function is imple-

mented in the matrix form, y(A′,B′) = A′THB′, where H = [hij ]m×m is a binary

matrix.

For an irreducible polynomial P (x) = 1+x+x2+x3+x4, let β be one of its roots.

The set {1, β, β2, β3} forms a polynomial basis of GF(24). It can be shown that the

set {β, β2, β4, β8} is linearly independent and forms a normal basis of GF(24). The

two bases are related in the following form:



















1

β

β2

β3



















=



















1 1 1 1

1 0 0 0

0 1 0 0

0 0 0 1





































β

β2

β4

β8



















. (6.8)

Then C ′ = A′B′ =
∑3

i=0

∑3
j=0 a

′
ib

′
jβ

2i+2j . Let β2i+2j =
∑3

l=0 λl(i, j)β
2l, where

λl(i, j) denotes the coefficient of β2l corresponding to the normal basis representation

of β2i+2j . Then, we have c′l =
∑3

i=0

∑3
j=0 λl(i, j) a′ib

′
j . Hence, c3 = y(A′,B′) =

A′THB′ = ( a′0 a′1 a′2 a′3 )

(

0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0

)

( b′0
b′1
b′2
b′3

)

= a′0b
′
1+a′0b

′
2+a′1b

′
0+a′1b

′
3+a′2b

′
0+a′2b

′
2+a′3b

′
1.
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Assume H contains Nm 1’s and hikjk = 1 for k = 1, 2, · · · , Nm. The y func-

tion implements additions of Nm terms,
∑Nm

k=1 a
′
ik
b′jk over GF(2). Each block y

requires Nm two-input ANDs and one Nm-input XOR. For an m-bit bit-parallel

multiplication, there are m identical blocks of y in parallel, and the total numbers

of two-input ANDs and Nm-input XORs are given by mNm and m, respectively.

If the sharing of the same terms a′ib
′
j among different blocks is allowed, the total

number of two-input ANDs is at most m2, since there are at most m2 different terms

a′ib
′
j for 0 ≤ i, j ≤ m − 1. The gate area is determined by block y, which depends

on the choice of normal basis. It has been shown [116] that Nm ≥ 2m − 1, and a

normal basis that achieves the equality is said to be optimal. About 23% of the

fields GF(2m) for 2 ≤ m ≤ 1200 have an optimal normal basis [116]. In the above

example, Nm = 2×4−1 = 7, which means that {β, β2, β4, β8} is an optimal normal

basis.

6.5.4 Implementation of normal basis multiplication using

multi-input XORs

The normal basis multiplication algorithm is first given by Massey and Omura in

[105]. An m-bit MO multiplication contains m blocks in parallel, each of which

implements a function y with cyclic shifted versions of inputs. The m-bit MO

multiplication C ′ = A′B′ over GF(2m) computes all c′i for i = 0, 1, · · · , m − 1

simultaneously. The computation of each c′i = y(A′,B′) needs Nm two-input ANDs

and one Nm-input XOR. The multiplication structure for computing C′ is shown in

Fig. 6.16(a). Each block y is implemented as shown in Fig. 6.16(b).

For simplicity, we focus on characteristic-2 fields with an optimal normal basis.
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Hence, the number of 1’s in H is given by Nm = 2m − 1. If the same term a′ib
′
j

among different blocks is shared, large gate area is needed for routing the global

interconnects. Thus, we assume that no term a′ib
′
j is shared among different blocks.

Each block needs (2m−1) two-input ANDs and one (2m−1)-input XOR. The total

numbers of two-input ANDs and (2m− 1)-input XORs for an m-bit multiplication

are given by m(2m− 1) and m, respectively.

Figure 6.16: Implementation of normal basis multiplication (a) Structure of MO
multiplication; (b) Block y for computing c′.

6.5.5 Complexity of multiplication implementations in nan-

otechnology technology

Since majority-class XOR has smaller gate area complexity than Boolean-class XOR,

we use majority-class XORs for implementations of multipliers. The two-input AND

can be realized as a single threshold gate with a threshold function given by f2AND =
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AMC
PB,Mul(m,B) = m2A2AND + m(m−1)

2
AMC

XOR(2, B) +mAMC
XOR(m,B)

=

{

m⌊m
2
⌋⌊3m+10

2
⌋+ 13.5m2 − 3.5m, m ≤ B′

⌊B
3
⌋2+⌊ 2B+16

3
⌋·⌊B

3
⌋+⌊ 2B+10

3
⌋

⌊ 2B−2
3

⌋ (m2 −m) + 12.5m2 − 6.5m, m > B′

(6.9)

IMC
PB,Mul(m,B) = m2I2AND + m(m−1)

2
IMC
XOR(2, B) +mIMC

XOR(m,B)

=

{

(m2 +m)⌊m
2
⌋ + 5.5m2 − 2.5m, m ≤ B′

⌊ 2B+4
3

⌋⌊B
3
⌋+⌊ 2B+1

3
⌋

⌊ 2B−2
3

⌋ (m2 −m) + 4.5m2 − 2.5m, m > B′

(6.10)
LMC
PB,Mul(m,B) = L2AND + LMC

XOR(2, B) + LMC
XOR(m,B)

=

{

5, m ≤ B′

3 + 2⌈log⌊ 2B+1
3

⌋ m⌉, m > B′
(6.11)

[x1, x2; 1, 1; 2]. Denote the gate area, number of interconnects, and latency of a two-

input AND by A2AND, I2AND, and L2AND, respectively. Then A2AND = 6, I2AND = 2,

and L2AND = 1.

Denote the gate area, number of interconnects, and latency of anm-bit majority-

class polynomial basis multiplication by AMC
PB,Mul(m,B), IMC

PB,Mul(m,B), and LMC
PB,Mul

(m,B), respectively, where PB denotes polynomial basis. According to Sec. 6.4.4,

the gate area, number of interconnects, and latency of an m-input majority-class

polynomial basis multiplication are given in Eqs. (6.9)-(6.11), where B′ = ⌊(2B +

1)/3⌋ determines the fan-in violation condition.

Denote the gate area, number of interconnects, and latency of anm-bit majority-

class normal basis multiplication by AMC
NB,Mul(m,B), IMC

NB,Mul(m,B), and LMC
NB,Mul(m,B),

respectively, where NB denotes normal basis. According to Sec. 6.4.4, the gate area,

number of interconnects, and latency of an m-input majority-class polynomial basis

multiplication are given in Eqs. (6.12)-(6.14), where B′ = ⌊(2B + 1)/3⌋ determines

the fan-in violation condition.
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AMC
NB,Mul(m,B) = m(2m− 1)A2AND +mAMC

XOR(2m− 1, B)

=











3m3 + 14m2 − 7m, m ≤ (B′ + 1)/2
⌊B

3
⌋2+⌊ 2B+16

3
⌋·⌊B

3
⌋+⌊ 2B+10

3
⌋

⌊ 2B−2
3

⌋ (2m2 − 2m)

+12m2 − 6m, m > (B′ + 1)/2
(6.12)

IMC
NB,Mul(m,B) = m(2m− 1)I2AND +mIMC

XOR(2m− 1, B)

=

{

2m3 + 4m2 − 3m, m ≤ (B′ + 1)/2
⌊ 2B+4

3
⌋⌊B

3
⌋+⌊ 2B+1

3
⌋

⌊ 2B−2
3

⌋ (2m2 − 2m) + 4m2 − 2m, m > (B′ + 1)/2

(6.13)
LMC
NB,Mul(m,B) = L2AND + LMC

XOR(2m− 1, B)

=

{

3, m ≤ (B′ + 1)/2
1 + 2⌈log⌊ 2B+1

3
⌋(2m− 1)⌉, m > (B′ + 1)/2

(6.14)
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Figure 6.17: Gate area for polynomial basis and normal basis multiplications over
GF(2m).

The gate area, number of interconnects, and latency of both PB and NB imple-

mentations are illustrated for comparison with respect to different maximum fan-in

B, respectively, in Figs. 6.17, 6.18, and 6.19. Though the closed-form expressions

in Eqs. (6.9)-(6.14) are derived for some discrete values m = B′l for l = 1, 2, · · · ,
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Figure 6.18: Number of interconnects for polynomial basis and normal basis multi-
plications over GF(2m).
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Figure 6.19: Latency for polynomial basis and normal basis multiplications over
GF(2m).

we assume the expressions are valid for all m with B ≤ ⌊3m
2
⌋ or B ≤ 3m − 2. In

Figs. 6.17, 6.18, and 6.19, all the legends correspond to the discrete values m = B′l
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for l = 1, 2, · · · . For m 6= B′l, a multi-input XOR used in various implementa-

tions is realized as a partial tree of B′-input XORs. Assume the gate area and

number of interconnects of the partial tree of B′-input XORs increase linearly with

m. Since the gate area and number of interconnects of various implementations are

dominated by the multi-input XORs, all the curves corresponding to the hardware

complexity are smooth. In contrast, the curves corresponding to the latency are

step functions, since the latency is a ceiling function of m. Both polynomial basis

and normal basis implementations require multi-input XORs. Though polynomial

basis implementation needs additional (m2 −m)/2 two-input XORs for computing

Z, it has smaller complexity than the normal basis implementation. This is because

the gate area and number of interconnects are dominated by the multi-input XORs,

and polynomial basis implementation requires m m-input XORs, compared with m

(2m−1)-input XORs. This is observed in Figs. 6.17 and 6.18, where the complexity

of normal basis implementation is about 1.4 times of that of polynomial basis im-

plementation. From Figs. 6.17 and 6.18, the gate area and number of interconnects

with respect to B = 4, 5 are the smallest for both polynomial basis and normal basis

implementations, since the complexities of both implementations are dominated by

multi-input XORs, which has the smallest complexities when B = 4, 5 for majority

class, as explained in Sec. 6.4.4. From Fig. 6.19, the polynomial basis multiplication

has a smaller latency than the normal basis multiplication for the same B.

Though the proposed implementations have similar structures to the bit-parallel

multiplications in CMOS technology [103], there are two main differences. First,

unlike CMOS technology, where a gate with n > 2 inputs will be implemented as a

tree of two-input gates for smaller area [103], our implementation uses majority-class
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Table 6.4: Comparison of our complexities of polynomial basis multipliers over
GF(2m) with those of [25] and [106] with or without preprocessing. NP denotes
no preprocessing, and B and A denote preprocessing by running script.Boolean and
script.algebraic, respectively.

m Impl. G B A I L

3

[106], NP 524 104 628 275 5
[106], B 256 628 884 266 10
[106], A 242 324 566 183 9

[25] 515 128 643 263 4
Ours 138 116 254 83 5

4

[106], NP 4900 1676 5066 1915 6
[106], B 739 2704 3443 1015 16
[106], A 714 1004 1718 549 11

[25] 1916 784 2700 1036 5
Ours 286 264 550 176 7

5

[106], NP 17240 8732 25972 9715 7
[106], B 1688 2944 4632 1458 12
[106], A 1618 2928 4546 1380 11

[25] 7329 3688 11017 4093 6
Ours 485 388 873 282 7

6

[106], NP 82199 15084 97283 38926 7
[106], B 3132 7320 10452 3153 15
[106], A 3340 7968 11308 3321 16

[25] 28794 15720 44514 16314 7
Ours 669 560 1229 401 7

multi-input XORs, which significantly reduce the gate area, number of interconnects,

and latency. Second, the operation of RTD nanotechnology needs a four-phase

clocking scheme. The output is self-latched and the operation is suited for pipelining

by constructing a cascaded network of threshold gates.

151



6.5. MULTIPLICATION OVER GF(2M): THRESHOLD IMPLEMENTATION

Table 6.5: Comparison of our complexities of normal basis multipliers over GF(2m)
with those of [25] and [106] with or without preprocessing. NP denotes no pre-
processing, and B and A denote preprocessing by running script.Boolean and
script.algebraic, respectively.

m Impl. G B A I L

3

[106], NP 735 68 803 273 5
[106], B 385 1128 1513 464 13
[106], A 330 372 702 232 8

[25] 831 264 1095 435 6
Ours 213 84 297 102 5

4

[106], NP 4223 2464 6687 2428 6
[106], B 1395 9816 11211 3099 27
[106], A 1250 1804 3054 960 10

[25] 3892 1824 5716 2148 8
Ours 348 176 524 184 5

5

[106], NP 20975 9856 30831 11440 7
[106], B 3960 8152 12112 3816 12
[106], A 3540 6992 10532 3154 13

[25] 18425 9880 28305 10405 10
Ours 570 240 810 290 5

6

[106], NP 101117 14192 115309 46721 7
[106], B 9155 22040 31195 9466 15
[106], A 8105 19228 27333 7993 17

[25] 86766 48624 135390 49398 12
Ours 912 432 1344 468 7

6.5.6 Comparison with existing approaches

We focus on m-bit polynomial basis and normal basis multiplications and com-

pare the gate area, number of interconnects, and latency of our implementations

with those obtained via generic synthesis approaches in [25, 106]. The implemen-

tations in [106] are obtained with and without running preprocessing. Two pre-

processed Boolean networks are obtained by running two scripts, script.Boolean
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and script.algebraic, respectively. The fan-in B = 5 is chosen for our implementa-

tion, since the gate area of our implementation is minimized. For implementations

in [106], we assume the fan-in B = 5. For implementations in [25], the fan-in B = 3

is chosen by necessity, since only symmetric three-input majority gates are used. For

m = 3, 4, 5, 6, the complexities of our proposed multipliers and those synthesized

via the approaches in [25,106] are shown in Tables 6.4 and 6.5 for polynomial basis

and normal basis multiplications, respectively, where the gate area G, buffer area B,

total gate area A, number of interconnects I, and latency L are shown in columns

3 through 7, respectively. Buffers are listed separately in Tables 6.4 and 6.5. Each

buffer consumes four RTDs and one interconnect. The total gate area is the sum

of gate area and buffer area. Due to efficient implementation of multi-input XORs,

our implementation requires smaller area than those in [25, 106], as well as fewer

interconnects. For a 6-bit multiplier, the total gate area and number of intercon-

nects of our implementations are about one order of magnitude smaller than the

best results given in [25, 106]. For a larger multiplier, the complexity saving would

be even greater. The advantage of our implementation becomes more significant as

m grows. According to the application of elliptical curve in cryptography, m can be

as as large as 512 [115]. For m = 512, our custom-designed implementation requires

much smaller area than others. For normal basis multiplier, the latency of ours is

always better than the that in [25]. For polynomial basis multiplier, the latency of

ours is slightly greater than the that in [25] for m = 3, 4, 5. However, the latency

of ours increases logarithmically with m as shown in Eq. 6.11, compared with that

in [25], which increases linearly with m. Hence, for a large multiplier, the latency of

ours is much smaller than that in [25]. For both polynomial basis and normal basis
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multiplications, the implementations without preprocessing in [106] have roughly

the same latency as ours, but require much larger gate area. The implementations

with preprocessing in [106] have larger latency than ours, as well as larger gate area.

Our analysis results show that our implementations of multipliers performs better

than existing approaches in [25,106] in terms of overall area complexity and latency.

6.6 Conclusion

This chapter has provided the designs of multipliers over GF(2m) using threshold

gates with bounded fan-in that are suitable for nanotechnology implementation.

Fan-in of nanotechnology gates influences their reliability and speed. Thus our de-

signs allow the trade-off between complexity, reliability and speed. A comparison of

our implementations of various multiplication architectures shows that they use less

gate area and fewer interconnects than those obtained by the approaches available

in the literature [25, 106].

Since most designs of GF(2n) architectures use a large number of XOR gates,

we have first focused on efficient designs of multi-input XORs using threshold gates.

We have shown that the implementations based on generalized majority gates have

smaller area and latency as compared with those that use Boolean algebra ap-

proaches. Other architectures over GF(2m) will also benefit from use of multi-input

XORs developed here.
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Chapter 7

An Enhanced Multiway Sorting

Network Based on n-Sorters

7.1 Introduction

Sorting is one important operation in data processing, and hence its efficiency greatly

affects the overall performance of a wide variety of applications [31, 110]. Sorting

networks can achieve high throughput rates by performing operations simultane-

ously. These parallel sorting networks have attracted attention of researchers due

to increasing hardware speed and decreasing hardware cost. One of the most pop-

ular sorting algorithm is called merge-sort algorithm, which performs the sorting in

two steps [31]. First, it divides the input list (a sequence of values) into multiple

sublists (a smaller sequence of values) and sorts each sublist simultaneously. Then,

the sorted sublists are merged as a single sorted list. The sorting process of sublists

can then be decomposed recursively into the sorting and merging of even smaller
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sublists, which are then merged as a single sorted list. Hence, the merging operation

is the key procedure for the decomposition-based sorting approach. One popular

2-way merging algorithm called odd-even merging [31] merges two sorted lists (odd

and even lists) into one sorted list. In [117], a modulo merge sorting was introduced

as a generalization of the odd-even merge by dividing the two sorted input lists into

multiple sublists with a modulo not limited to 2. Another popular 2-way merging

algorithm is bitonic merging algorithm [109]. Two sorted lists are first arranged as

a bitonic list, which is then converted to obtain a sorted list. These 2-way merg-

ing algorithms employ 2-way merge procedure recursively and have a capability of

sorting N values in O(log2N) stages [31]. In [118], a sorting network, named AKS

sorting network, with O(logN) stages was proposed. However, there is a very large

constant in the depth expression, which makes it impractical. Recently, a modular

design of high-throughput low-latency sorting units are proposed in [119]. However,

the basic building block in these 2-way merging algorithm is a 2-sorter, which is

simply a 2× 2 switching element or comparator as shown in Fig. 7.1(a).

Instead of using 2-sorters, n-sorters can be used as basic building blocks. This

was first proposed as a generalization of the Batcher’s odd-even merging algo-

rithm [111]. It was also motivated by the use of n-sorters, which sort n (n ≥ 2)

values in unit time [112, 120]. Since large sorters are used as basic building blocks,

the number of sorters as well as the latency is expected to be reduced greatly. An

n-way merging algorithm was first proposed by Lee and Batcher [111], where n is

not restricted to 2. A version of the bitonic n-way merging algorithm was proposed

by Nakatani et al. [121,122]. However, the combining operation in the n-way merg-

ing algorithms still use 2-sorters as basic building blocks. Leighton proposed an
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algorithm for sorting r lists of c values each, represented as an r × c matrix [123].

This algorithm is a generalization of the odd-even merge-sort and named column-

sort, since it merges all sorted columns to obtain a single sorted list in row order.

In the original columnsort, no specific operation was provided for sorting columns

and no recursive construction of sorting network was provided. In [112], a mod-

ified columnsort algorithm was proposed with sorting networks constructed from

n-sorters (n ≥ 2) [124]. However, a 2-way merge is still used for the merging pro-

cess. In [113], an n-way merging algorithm, named SS-Mk, based on the modified

columnsort was proposed with n-sorters as basic building blocks, where n is prime.

For n sorted lists of m values each, the idea is to sort the m× n values first in each

row and then in slope lines with decreasing slope rates. An improved version of the

SS-Mk merge sort, called ISS-Mk, was provided in [125], where n can be any integer.

We compare our sorting scheme with the SS-Mk but not the ISS-Mk, because for our

interested ranges of N , the ISS-Mk requires larger latency due to a large constant.

In this chapter, we propose an n-way merging algorithm, which generalizes the

odd-even merge by using n-sorters as basic building blocks, where n (≥ 2) is prime.

Based on this merging algorithm, we also propose a sorting algorithm. For N = np

input values, p + ⌈n/2⌉ × p(p−1)
2

stages are needed. The complexity of the sorting

network is evaluated by the total number of n-sorters. The closed-form expression

for the number of sorters is also derived.

Instead of 2-sorters, n-sorters (n > 2) are used as basic blocks in this chapter.

This is because larger sorters have some efficient implementation. For example, for

binary sorting in threshold logic, the area of an n-sorter scales linearly with the

number of inputs n, while the latency stays as a constant. Hence, a smaller number
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of sorters and latency of the whole sorting network can be achieved. However,

we cannot use arbitrary large sorters as basic blocks, since larger sorters are more

complex and difficult to be implemented. Hence, the benefit of using a larger block

diminishes with increasing n. We assume that the size of basic sorter n ≤ 20 and

10 when evaluating the number of sorters and latency. Our algorithm works for any

upper bound on n, and one can plug any upper bound on n into our algorithm.

Asymptotically, the number of sorters required by our sorting algorithm is on the

same order of O(N log2N) as the SS-Mk [113] for sorting N inputs. Our sorting

algorithm requires fewer sorters than the SS-Mk in [113] in wide ranges of N . For

instance, for n ≤ 20, when N ≤ 1.46× 104, our algorithm requires up to 46% fewer

sorters than the SS-Mk. When 1.46× 104 < N ≤ 1.3× 105, our algorithm has fewer

sorters for some segments of N ’s. When N > 1.3 × 105, our algorithm needs more

sorters.

The work in this chapter is different from previous works [111, 113, 125] in the

following aspects:

• While the multiway merge [111] uses 2-sorters in the combining network, our

proposed n-way merging algorithm uses n-sorters as basic building blocks. By

using larger sorters (n > 2), the number of sorters as well as the latency would

be reduced greatly.

• The merge-based sorting algorithms in [113, 125] are based on the modified

columnsort [124], which merges sorted columns as a single sorted list in row

order. Our n-way merge sorting algorithm is a direct generalization of the

multiway merge sorting in [111].
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• We analyze the performance of our approach by deriving the closed-form ex-

pressions of the latency and the number of sorters. We also derive the closed-

form expression of the number of sorters for the SS-Mk [113], since it was not

provided in [113]. Then we present extensive comparisons between the latency

and the number of sorters required by our approach and the SS-Mk [113].

• Finally, we show an implementation of a binary sorting network in threshold

logic. With an implementation of a large sorter in threshold logic, we compare

the performance of sorting networks in terms of the number of gates.

The rest of the chapter is organized as following. In Sec. 7.2, we briefly review

the background of sorting networks. In Sec. 7.3, we propose a multiway merging

algorithm with n-sorters as basic blocks. In Sec. 7.4, we introduce a multiway sorting

algorithm based on the proposed merging algorithm, and show extensive results for

the comparison of our sorting algorithm and previous works. In Sec. 7.5, we focus

on a binary sorting network, where basic sorters are implemented by threshold logic

and have complexity linear with the input size, and measure the complexity in terms

of number of gates. Finally Sec. 7.6 presents the conclusion of this chapter.

7.2 Background

A sorting network is a feedforward network, which gives a sorted list for unsorted

inputs. It is composed of two items: switching elements (or comparators)

and wires. The depth of a comparator is defined to be the longest length from

the inputs of the sorting network to that comparator’s outputs. The latency of

the sorting network is the maximum depth of all comparators. The network is
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Figure 7.1: (a) 2-sorter (y1 ≤ y2); (b) n-sorter (y1 ≤ y2 ≤ · · · ≤ yn).

oblivious in the sense that the time and location of input and output are fixed

ahead of time and not dependent on the values [31]. We use the Knuth diagram

in [110] for easy representation of the sorting networks, where switching elements

are denoted by connections on a a set of wires. The inputs enter at one side and

sorted values are output at the other side, and what remains is how to arrange

the switching elements. The sorting network is measured in two aspects, latency

(number of stages) and complexity (number of sorters). The basic building block

used by the odd-even merge [31] is a 2-by-2 comparator (compare-exchange element).

It receives two inputs and outputs the minimum and maximum in an ordered way.

The symbol for a 2-sorter is shown in Fig. 7.1(a), where xi and yi for i = 1, 2 are

input and output, respectively. Similarly, an n-sorter is a device sorting n values

in unit time. The symbol for an n-sorter is shown in Fig. 7.1(b), where xi and

yi for i = 1, 2, · · · , n are input and output, respectively, and the output satisfies

y1 ≤ y2 ≤ · · · ≤ yn. In this chapter, we denote the sorted values y1 ≤ y2 ≤ · · · ≤ yn

by 〈y1, y2, · · · , yn〉 and use n-sorters as basic blocks for sorting.

Merging-based sorting networks are an important family of sorting networks,

where the merging operation is the key. There are two classes of merging algorithms,

the odd-even merging [31] and the bitonic merging [109]. The former is an efficient
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Figure 7.2: The odd-even merge of two sorted lists of 4 values each using 2-sorters.

sorting technique based on the divide-and-conquer approach, which decomposes the

inputs into two sublists (odd and even), sorts each sublist, and then merges two

sorted lists into one. Further decomposition and merging operations are applied on

the sublists. An example of odd-even merging network using 2-sorters is shown in

Fig. 7.2, where two sorted lists, 〈x(0)
1,1, · · · , x

(0)
1,4〉 and 〈x(0)

2,1, · · · , x
(0)
2,4〉, are merged as a

single list 〈x(2)
1,1, · · · , x

(2)
1,4, x

(2)
2,1, · · · , x

(2)
2,4〉 in two stages.

Instead of merging two lists, multiple sorted lists can be merged as a single sorted

list simultaneously. An n-way merger (n ≥ 2) of size m is a network merging n

sorted lists of size m (m values) each into a single sorted list in multiple stages. This

was first proposed as a generalization of the Batcher’s odd-even merging algorithm.

It is also motivated by the use of n-sorters, which sort n (n ≥ 2) values in unit time

[112,120]. Since large sorters are used as basic building blocks, the number of sorters

as well as the latency is expected to be reduced greatly. Many multiway merging

algorithms exist in the literature [111–113, 121–127]. The algorithms in [126, 127]

implement multiway merge using 2-sorters. In [111], a generalization of Batcher’s
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Figure 7.3: Iterative construction rule for the n-way merger [111].

odd-even is introduced as shown in Fig. 7.3, where an n-way merger of n lists of

size ud is decomposed into d n-way mergers of n sublists of size u plus a combining

network. Each of the small n-way mergers is further decomposed similarly. However,

the combining network in the merging network in Fig. 7.3 still uses 2-sorters as

basic blocks. In [123], Leighton proposed a columnsort algorithm, which showed

how to sort an m × n matrix denoting the n sorted lists of m values each. A

modification of Leighton’s columnsort algorithm was given in [112]. In [113, 125],

merging networks with n-sorters as basic blocks are introduced based on the modified

Leighton’s columnsort algorithm.

In this chapter, we focus on multiway merge sort with binary values as inputs.

Our merge sort also works for arbitrary values, which is justified by the following

theorem.

Theorem 7.2.1 (Zero-one principle [31]). If a network with n input lines sorts all
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2n lists of 0s and 1s into nondecreasing order, it will sort any arbitrary list of n

values into nondecreasing order.

7.3 Multiway Merging

In the following, we propose an n-way merging algorithm with n-sorters as basic

building blocks as shown in Alg. 5. We consider a sorting network, where all iter-

ations of Alg. 5 are simultaneously instantiated (loop unrolling). We refer to the

instantiation of iteration i of Alg. 5 as stage i of the sorting network. The sorters

in the last for loop in Alg. 5 consist of the last stage. Let the n sorted input lists be

〈x(0)
j,1 , x

(0)
j,2 , · · ·x

(0)
j,m〉 for j = 1, · · · , n. Denote the values of j-th list after stage k by

(x
(k)
j,1 , x

(k)
j,2 , · · · , x

(k)
j,m). After T = 1 + ⌈m

2
⌉ stages, all input lists are sorted as a single

list, 〈x(T )
1,1 , x

(T )
1,2 , · · · , x

(T )
1,m〉, 〈x

(T )
2,1 , x

(T )
2,2 , · · · , x

(T )
2,m〉, · · · , 〈x

(T )
n,1 , x

(T )
n,2 , · · · , x

(T )
n,m〉.

For convenience of describing and proving our algorithm, we introduce some

notations and definitions. Denote the number of zeros in the j-th list after stage i

as r
(i)
j , where i = 1, 2, · · · , ⌈m

2
⌉+ 1 and j = 1, · · · , n. A sorter is called a k-spaced

sorter if its adjacent inputs span k other wires and each connection of the same

sorter comes from different lists of m wires, where 0 ≤ k ≤ m − 1. For simplicity,

we arrange the sorters in the order of their first connections in each stage. Denote

{1, 2, · · · , m} as Zm. Two k-spaced sorters are said to be adjacent if they connect

adjacent two wires, x
(i)
j,k and x

(i)
j,k+1, respectively, for some j ∈ Zm and k ∈ Zm−1.

Then, our n-way merging Alg. 5 can be intuitively understood as flooding lists with

zeros in descending order. The correctness of Alg. 5 can be shown by first proving

the following lemmas. See the appendix for the proofs of the following lemmas and
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Algorithm 5 Algorithm for n-way merging network.

Input: n sorted lists 〈x(0)
j,1 , x

(0)
j,2 , · · ·x

(0)
j,m〉 for j = 1, · · · , n;

i = 1;
while i ≤ ⌈m

2
⌉ do

for j = 1 to n− 1 do
Apply (m− i)-spaced sorters between lists j and j + 1;

end for
Merge all (m− i)-spaced sorters;

Update n sorted lists 〈x(i)
j,1, x

(i)
j,2, · · ·x

(i)
j,m〉 for j = 1, · · · , n;

i = i+ 1;
end while
for j = 1 to n− 1 do
Apply (m− 1)-sorters on m− 1 adjacent lines with first half, x

(i−1)
j,m−k, from list

j and second half, x
(i−1)
j+1,k, from list j + 1, where k = 1, · · · , m−1

2
;

end for
Output: Sorted lists.

Figure 7.4: The network for n sorted lists of m wires.

theorems.

Lemma 7.3.1. Apply (m−1)-spaced sorters to n lists ofm values, 〈xj,1, xj,2, · · · , xj,m〉,
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Figure 7.5: Adjacent two sorters S1 and S2 in each stage of Alg. 5 can be classified
into four four cases. (a) Case I (∆ = v−w

b−a
); (b) Case II (∆ = v−1

b−a+1
); (c) Case III

(∆ = m−w+1
b−a+1

); (d) Case IV (∆ = m
b−a+2

).

for j = 1, · · · , n. The outputs of each list are still sorted, 〈x′
j,1, x

′
j,2, · · · , x′

j,m〉, for

j = 1, 2, · · · , n.

For n sorted lists of m values, there are m (m− 1)-spaced sorters as illustrated

in Fig. 7.4(a). The proof of the lemma can be reduced to showing that any two

wires s, s+ l ∈ Zm of each list connected by the s- and (s+ l)-th sorters are sorted.

The simplified network is shown in Fig. 7.4(b). Without lose of generality, we can

choose l = 1.

Lemma 7.3.2. In each stage of Alg. 5, there are at most four cases of adjacent two

sorters as shown in Fig. 7.5. If m is prime, case IV is impossible.

We first show that the first connections of adjacent two sorters, S1 and S2,

belong to either the same list or adjacent two lists. The same relation is true for

the last connections of S1 and S2. This gives us a total of four cases as shown in
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Fig. 7.5, where b ≥ a + 1 for Fig. 7.5(a)-(c), and b ≥ a for Fig. 7.5(d) such that S1

and S2 have a size of at least two.

The following theorem proves the correctness of Alg. 5.

Theorem 7.3.1. For a prime m in Alg. 5, all lists are self-sorted after every stage.

In particular, all lists are sorted after the final stage.

The theorem can be proved by induction on i.

In Alg. 5, the latency increases linearly with ⌈m
2
⌉. When m is large, the latency

is also very large. By further decomposing m into a product of small factors, we can

reduce the latency significantly. In the following, we propose Alg. 6 for merging n

lists of m values, where m = np−1 for p ≥ 2. When m is not a power of n, we can use

a larger network of m′ = np′ > m inputs. For any q in stage i (2 ≤ i ≤ p−1), denote

the number of zeros in each new formed list after stage i as r
(i)
j,q, where j = 1, · · · , ni.

Assume two dummy lists with r
(i)
0,q = n and r

(i)

ni+1,q
= 0 are appended to the two ends

of ni lists. The correctness of Alg. 6 can be shown by first proving the following

lemma.

Lemma 7.3.3. In Alg. 6, the new lists in stage i with respect to q are self-sorted.

The numbers of zeros of all new lists after stage i are non-increasing,

r
(i)
j,q ≥ r

(i)
j+1,q for j = 1, · · · , ni − 1,

where i = 2, · · · , p − 1 and q = 1, · · · , np−1−i. Furthermore, there are at most n

consecutive lists that have between 1 and n− 1 zeros,

r(i)s,q = n > r
(i)
s+1,q ≥ · · · ≥ r

(i)
s+l,q > 0 = r

(i)
s+l+1,q for l ≤ n,
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Algorithm 6 Algorithm for combining n lists of m = np−1 values.

Input: n sorted lists 〈x(0)
j,1 , x

(0)
j,2 , · · ·x

(0)
j,m〉 for j = 1, · · · , n and m = np−1;

i = 1;
for q = 1 to np−2 do
Apply Alg. 5 on 〈x(0)

j,q , x
(0)

j,np−2+q, x
(0)

j,2np−2+q, · · · , x
(0)

j,(n−1)np−2+q〉
for j = 1, · · · , n and obtain a single sorted list
〈x(1)

1,q , x
(1)
1,np−2+q, · · ·x

(1)
1,(n−1)np−2+q, x

(1)
2,q, x

(1)
2,np−2+q, · · · , x

(1)
2,(n−1)np−2+q, · · · , x

(1)
n,q,

x
(1)

n,np−2+q, · · · , x
(1)

n,(n−1)np−2+q〉;
end for
for i = 2 to p− 1 do
for q = 1 to np−1−i do
Group n adjacent values of 〈x(i−1)

j,q , x
(i−1)

j,np−i−1+q, x
(i−1)

j,2np−i−1+q, · · ·x
(i−1)

j,(n−1)np−i−1+q〉
for j = 1, · · · , n and denote the new lists as
〈x(i−1)

j,q , x
(i−1)

j,np−i−1+q
, · · ·x(i−1)

j,(n−1)np−i−1+q
〉 for j = 1, · · · , ni;

for k = 2 to ⌈n
2
⌉ do

Apply (n− k)-spaced sorters between lists j and j + 1;
end for
Apply (n− 1)-sorters between lists j and j + 1 for j = 1, · · · , ni − 1;

Obtain a single sorted list 〈x(i)
1,q, x

(i)

1,np−i−1+q, · · · , x
(i)

1,(n−1)np−i−1+q, x
(i)
2,q,

x
(i)

2,np−i−1+q, · · · , x
(i)

2,(n−1)np−i−1+q, · · · , x
(i)

ni,q, x
(i)

ni,np−i−1+q, · · · , x
(i)

ni,(n−1)np−i−1+q〉;
end for

end for
Output: Sorted list.
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Figure 7.6: A 3-way merging network of N = 3×7 inputs implemented via 7 stages.

where s ≥ 0 and s+ l ≤ ni.

See Sec. A.4 for the proof.

The following theorem proves the correctness of Alg. 6.

Theorem 7.3.2. Alg. 6 combines n sorted lists of m = np−1 values as a single

sorted list.

In Alg. 6, the latency is reduced to 1 + (p− 1)⌈n
2
⌉ for n sorted lists of m = np−1

values.

In the following, we show two examples for comparison of the two algorithms.

First, a 3-way merging network of N = 3× 7 inputs via Alg. 5 is shown in Fig. 7.6.

Then, a 3-way merging network of N = 3× 9 inputs via Alg. 6 is shown in Fig. 7.7.

Though there are more inputs in Fig. 7.7 than that in Fig. 7.6, the latency of Alg. 6

is smaller due to recursive decomposition. The numbers of sorters in Figs. 7.6 and

7.7 are given by 40 and 41, respectively. For six more inputs, it requires only one

more sorter in Fig. 7.7. Hence, Alg. 6 can be more efficient than Alg. 5 for a large

m.

168



7.3. MULTIWAY MERGING

Figure 7.7: A 3-way merging network of N = 3×9 inputs implemented via 5 stages.

Figure 7.8: A 3-way sorting network of N = 33 inputs implemented via 9 stages.
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7.4 Multiway Sorting

In this section, we first focus on how to construct sorting networks with n-sorters

using the multiway merging algorithm in Sec. 7.3. Then, we analyze the latency and

the number of sorters of the proposed sorting networks by deriving the closed-form

expressions. We compare them with previously proposed SS-Mk in [113] but not

the ISS-Mk [125], because for our interested ranges of N , the ISS-Mk requires larger

latency due to a large constant.

7.4.1 Multiway sorting algorithm

Based on the multiway merging algorithm in Sec. 7.3, we proposed a parallel sorting

algorithm using a divide-and-conquer method. The idea is to first decompose large

list of inputs into smaller sublists, then sort each sublist, and finally merge them

into one sorted list. The sorting of each sublist is done by further decomposition.

For instance, for N = np inputs, we first divide the np inputs into n lists of np−1

values. Then we sort each of these n lists and combine them with Alg. 6. The

sorting operation of each of the n lists is done by dividing the np−1 inputs into n

smaller lists of np−2 values. We repeat the above operations until that each of n

smaller lists contains only n values, which can be sorted by a single n-sorter. The

detailed procedures are shown in Alg. 7.

For example, a 3-way sorting network of N = 33 inputs is shown in Fig. 7.8. The

first stage contains 9 3-sorters. The second stage contains 3 three-way mergers with

a depth of 3. The last stage contains a three-way merger with a depth of 5. The

total depth is given by 9.
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Algorithm 7 Algorithm for sorting N = np values.

Input: N = np values, x
(0)
1 , x

(0)
2 , · · · , x(0)

np ;

Partition the N = np values as np−1 lists of n values each, (x
(0)
j,1 , x

(0)
j,2 , · · · , x

(0)
j,n) for

j = 1, · · · , np−1;
Apply one n-sorter on each of np−1 lists and obtain 〈x(1)

j,1 , x
(1)
j,2 , · · · , x

(1)
j,n〉 for j =

1, · · · , np−1;
for i = 2 to p do
for j = 1 to np−i do
Apply Alg. 5 on 〈x(i−1)

(j−1)n+k,1, x
(i−1)
(j−1)n+k,2, · · · , x

(i−1)

(j−1)n+k,ni−1〉 for k = 1, · · · , n,
and obtain a single sorted list 〈x(i)

j,1, x
(i)
j,2, · · ·x

(i)

j,ni〉;
end for

end for
Output: Sorted list.

7.4.2 Latency analysis

First, we focus on the latency for sorting N values. The latency is defined as the

number of basic sorters in the longest paths from the inputs to the sorted output.

In Alg. 7, there are p iterations. In iteration i, there are ni merging networks, each

of which is to merge n sorted lists of np−i values. For iteration i, the latency is given

by Lour(n, n
i−1) = 1+(i−1)⌈n

2
⌉. For a sorting network of N = np values via Alg. 7,

by summing up the latencies of all levels, we obtain the total latency

Lour(n
p) =

∑p
i=1 Lour(n, n

i−1)

= p+ ⌈n
2
⌉ × p(p−1)

2
.

(7.1)

The closed-form expression of latency for the SS-Mk given in [113] is

LSS−Mk(n
p) = 1 + (p− 1)n +

(p− 1)(p− 2)

2
⌈log2 n⌉. (7.2)

We compare our latency for sorting N = np values with that for the SS-Mk
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in [113]. From Eqs. (7.1) and (7.2), for N = np inputs, p should be as small

as possible to obtain small latencies. In Table 7.1, we compare the latencies of

Eqs. (7.1) and (7.2) for small p (p = 2, 3, 4). It is easily seen that our implementation

has a smaller latency than the SS-Mk in [113] for a prime greater than 3. It is also

observed that Lour(2
p) = LSS−Mk(2

p) = p(p + 1)/2 for n = 2, which is the same as

the odd-even merge sort in [31].

Table 7.1: Comparison of latencies of sorting networks of N = np inputs via the
SS-Mk in [113] and our implementation.

p = 2 p = 3 p = 4
[113] 1 + n 1 + 2n+ ⌈log2 n⌉ 1 + 3n+ 3⌈log2 n⌉
Ours 2 + ⌈n

2
⌉ 3 + 3⌈n

2
⌉ 4 + 6⌈n

2
⌉

7.4.3 Analysis of the number of sorters

In the following, we compare the number of sorters of our algorithms with the SS-Mk

in [113]. Since the distribution of sorters for an arbitrary sorting network ofN inputs

is not known, we assume that any m-sorter (m < n) has the same delay and area as

the basic n-sorter and count the number of sorters. We first derive the closed-form

expression of the number of sorters for sorting N values via our Alg. 7. Since the

expression of the number of sorters for the SS-Mk was not provided in [113], we also

derive the corresponding closed-form expression and compare it with our algorithm.

The whole sorting network is constructed recursively by merging small sorted lists

into a larger sorted list. We first derive the number of sorters of a merging network
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of n lists of np−i values, which is given by

Sour(n, n
p−i) = (p− i) ·M∗

np−i +
np−i − 1

n− 1
· C∗

n + np−i,

where M∗
np−i =

(

1 + ⌈n/2⌉(⌈n/2⌉−1)
2

)

np−i and C∗
n = (⌈n/2⌉ − 1)n− 3⌈n/2⌉(⌈n/2⌉−1)

2
− 1.

By summing up the numbers of sorters of all mergers in all stages, we obtain the

total number of sorters, which is given by

Tour(n
p) =

∑p−1
i=1 n

i−1 · Sour(n, n
p−i) + np−1

= p(p−1)
2

·M∗
np−1 +

[

(p−1)np−1

n−1
− np−1−1

(n−1)2

]

·C∗
n + pnp−1,

(7.3)

As N → ∞, Tour(n
p) is on the order of O(A1

N logN(logN−logn)
(log n)2/n

+ A2
N(logN−logn)

logn
+

A3
N logN
n logn

). Similarly for the SS-Mk in [113], the number of sorters of the merging

network of n lists of np−i values each is given by

SSS−Mk(n, n
p−i) = M †

np−i +K†
n,np−i + C†

n,

where

M †
np−i =

((n + 1− ⌈n/2⌉)(n− ⌈n/2⌉)
2

+
(⌈n/2⌉+ 1)(⌈n/2⌉ − 2)

2
+ 2
)

np−i,

K†
n,np−i = ⌈log2 np−1−i⌉np−i + (n− 3)2⌈log2 n

p−1−i⌉+1,
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and

C†
n = (⌈n/2⌉−2)n−3(⌈n/2 + 1⌉)(⌈n/2⌉ − 2)

2
− (n+ 1− ⌈n/2⌉)(n− ⌈n/2⌉)

2
−(n−3).

The total number of sorters of the sorting network via the SS-Mk in [113] is given

by

TSS−Mk(n
p) =

∑p−1
i=1 n

i−1 · SSS−Mk(n, n
p−i) + np−1

= (p− 1) ·M †
np−1 +

np−1−1
n−1

· C†
n + np−1

+np−1
∑p−2

i=1 ⌈i log2 n⌉

+
∑p−1

i=1 n
i−1(n− 3)2⌈(p−1−i) log2 n⌉+1,

(7.4)

As N → ∞, TSS−Mk(n
p) is on the order of O(B1

N(logN−logn)
(logn)/n

+B2
N logN(logN−logn)

n logn
+

B3
N(logN−logn)

n logn
+B4

N
n
).

According to the big-O expressions of Tour(n
p) and TSS−Mk(n

p), when n is

bounded, the asymptotic bounds on the number of sorters required by both our

Alg. 7 and the SS-Mk in [113] are given by O(N log2N), which is also the asymp-

totical bound for the odd-even and bitonic sorting algorithms [31, 109]. When N

is fixed and n increases, the first term of the big-O expressions of Tour(n
p) and

TSS−Mk(n
p) decreases first, then increases, and decreases to zero when n → N .

While other terms decrease monotonically with n. Hence, if n is not constrained,

the minimum value of Tour(n
p) and TSS−Mk(n

p) is one when n = N , meaning a

single N -sorter is used.
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7.4.4 Comparison of the number of sorters

According to the analysis of both our Alg. 7 and the SS-Mk in [113], the number

of sorters for sorting N = np inputs can be reduced by using a larger basic sorter.

However, a very large basic sorter is not feasible due to some practical concerns, such

as fan-in and cost. In this chapter, we assume that the basic sorter size is limited.

For a given N , we take the total number of sorters in Eqs. (7.3) and (7.4) as a

function of p with n = N1/p ≤ nb, where nb is the upper bound of the basic sorter

size. When N is not a power of a prime, we append redundant inputs of 0’s and get a

larger N ′ such that N ′ is a power of a prime. Hence, we have n′ = N ′1/p = ⌈⌈N1/p⌉⌉,

where ⌈⌈x⌉⌉ denotes the smallest prime larger than or equal to x. There exists an

optimal p such that the total number of sorters is the minimum. We search for

the optimal p’s for our Alg. 7 and the SS-Mk [113] using MATLAB. By plugging

the optimal p’s into Eqs. (7.3) and (7.4), we obtain the total number of sorters for

sorting networks of N inputs.

We compare the number of sorters for sorting networks via the Batcher’s odd-

even algorithm [31], our Alg. 7, and the SS-Mk [113] for wide ranges of N . The

results are show in Fig. 7.9. The numbers of sorters are illustrated by staircase

curves, because we use a larger sorting network for N not being a power of prime.

From Fig. 7.9, the Batcher’s odd-even algorithm using 2-sorters always requires more

sorters than both our Alg. 7 and the SS-Mk in [113]. For both our Alg. 7 and the

SS-Mk [113], the number of sorters is smaller for a larger nb, meaning that using

larger basic sorters reduces the number of sorters. For the comparison of the number

of sorters required by our Alg. 7 and the SS-Mk [113], there are three scenarios with

respect to three ranges of N . We first focus on nb = 10. For N ≤ 6.25 × 102, our
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Alg. 7 has fewer or the same number of sorters than the SS-Mk as shown in Fig. 7.9.

For some segments in 6.25 × 102 < N ≤ 3.13 × 103, our Alg. 7 has fewer sorters

than the SS-Mk. For N > 3.13 × 103, the SS-Mk in [113] needs fewer sorters. For

nb = 20, we have similar results. For N ≤ 1.46 × 104, our Alg. 7 has fewer or the

same number of sorters than the SS-Mk as shown in Fig. 7.9. For some segments

in 1.46 × 104 < N < 1.3 × 105, our Alg. 7 has fewer sorters than the SS-Mk. For

N > 1.3× 105, the SS-Mk in [113] needs fewer sorters.

Similarly, we compare the latency of the Batcher’s odd-even algorithm, our

Alg. 7, and the SS-Mk in [113]. The latencies are obtained by plugging the corre-

sponding optimal p’s into Eqs. (7.1) and (7.2) and shown in Fig. 7.10 forN ≤ 2×104.

From Fig. 7.10, the Batcher’s odd-even algorithm using 2-sorters has the largest la-

tency. For both our Alg. 7 and the SS-Mk [113], the latency can be reduced by

having a larger nb. The latency of our Alg. 7 is not greater than the SS-Mk for

N ≤ 2×104 for both nb = 10 and nb = 20 as shown in Fig. 7.10. This is because our

Alg. 7 tends to use large sorters, leading to less stages of sorters. We note that the

latency goes up and down for some N in Fig. 7.10. This is because of the switching

from a smaller basic sorter to a larger one to reduce the number of sorters.

To some researchers’ interest, we also compare the number of sorters for N being

a power of two. The results are shown in Table 7.2, where columns two and three

show the numbers of sorters for the SS-Mk and our Alg. 7, respectively, and column

five shows the reduction by our Alg. 7 compared with the SS-Mk [113]. For our

Alg. 7, there are up to 46% fewer sorters than the SS-Mk in [113] for N = 2i, for

i = 4, 5, · · · , 16. It is also observed that a greater reduction is obtained for small

p, meaning our approach is more efficient for networks with larger sorters as basic
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Figure 7.9: Comparison of the number of sorters (n ≤ 10 and n ≤ 20) for sorting N
inputs via the SS-Mk in [113] and our Alg. 7.
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Table 7.2: Comparison of the number of sorters for sorting N = 2k inputs (1 ≤ k ≤
16) with n ≤ 20 via the SS-Mk in [113] and our Alg. 7.

N SS-Mk Ours Rd. (%)
2 1 1 0.0
4 5 5 0.0
8 11 11 0.0
16 38 30 21.05
32 95 65 31.58
64 347 207 40.35
128 566 326 42.40
256 1250 690 44.80
512 3952 3500 11.44
1024 8287 6378 23.04
2048 15595 12039 22.80
4096 44652 33891 24.10
8192 143762 136574 5.00
16384 179631 183143 -1.96
32768 1176250 1134692 3.53
65536 1176250 1134692 3.53

7.5 Application in Threshold Logic

In Sec. 7.4.4, we assume all basic sorters in the sorting network are the same and

measure the complexity by the number of sorters, since the distribution of sorters is

unknown. This would overestimate the total complexity. In this section, we focus

on the threshold logic and measure the complexity by the number of threshold gates.

In the following, we first briefly introduce the threshold logic, which is very powerful

for computing complex functions, such as parity function, addition, multiplication,

and sorting, with significantly reduced number of gates. Then, we present an im-

plementation of a large sorter in threshold logic. Last, we compare the complexity
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of sorting networks in terms of the number of gates. This is a very narrow applica-

tion in the sense that sorters are implemented by threshold logic and the inputs are

binary values.

7.5.1 Threshold logic

A threshold function [25] f with n inputs (n ≥ 1), x1, x2, · · · , xn, is a Boolean

function whose output is determined by

f(x1, x2, · · · , xn) =











1 if
∑n

i=1wixi ≥ T

0 otherwise,
(7.5)

where wi is called the weight of xi and T the threshold. In this chapter we de-

note this threshold function as [x1, x2, · · · , xn;w1, w2, · · · , wn;T ], and for simplic-

ity sometimes denote it as f = [x;w;T ], where x = (x1, x2, · · · , xn) and w =

(w1, w2, · · · , wn). The physical entity realizing a threshold function is called a

threshold gate, which can be realized with CMOS or nano technology. Fig. 7.11

shows the symbol of a threshold gate realizing (7.5).

Figure 7.11: Threshold gate realizing f(x) for n inputs, x1, x2, · · · , xn, with corre-
sponding weights ω1, ω2, · · · , ωn and a threshold T .
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7.5.2 n-sorter

Binary sorters can be easily implemented in threshold logic. In [98], a 2-by-2 com-

parator (2-sorter) was implemented by two threshold gates as shown in Fig. 7.12(a).

Similarly, we introduce a threshold logic implementation of an n-sorter as shown

in Fig. 7.12(b), where n threshold gates are required. As shown in Fig. 7.12, the

number of gates of an n-sorter scales linearly with the number of inputs n. Hence,

large sorters are preferred to be used as basic blocks. However, larger sorters are

more complex and expensive to be implemented. For practical concerns, such as

fan-in and cost, some limit on the size of basic sorters is assumed.

Figure 7.12: Sorters implemented in threshold logic (a) 2-sorter; (b) n-sorter.

7.5.3 Analysis of number of gates

In the following, we assume all gates are the same and derive the total number of

gates. The sorting network of N inputs is composed of multiple stages, of which each

partially sorts N values. Not all values in each stage participate the comparison-

and-switch operation. A simple way to count the gates is to insert buffer gates in

each stage to store values without involving any sorting operation. Buffer insertion
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is also needed for implementation of threshold logic in some nanotechnology, where

synchronization is required for correction operation. Hence, each stage contains N

gates and the total number of gates is obtained by multiplying N to the latency.

Note that N does not have to be a power of n. Hence, the total number of gates of

our Alg. 7 and the SS-Mk [113] are simply given by

Qour(N) = N · Lour(N), (7.6)

and

QSS−Mk(N) = N · LSS−Mk(N). (7.7)

If n is bounded, the total numbers of gates in Eqs. (7.6) and (7.7) have an order

of O(N log2N), which is the same as the order for the numbers of sorters via our

Alg. 7 and the SS-Mk in [113] in Sec. 7.4.3.

To derive the accurate number of gates, we first derive the number of buffers

added for Eqs. (7.6) and (7.7). WhenN is a power of prime, the number of buffers for

sorting N = np values via our Alg. 7 and the SS-Mk [113] can be easily obtained due

to a regular structure. For our Alg. 7, the number of buffers is given by Gour(N) =

(p−1)np−2 n2+6n−5
4

+ ((p−2)np−1−(p−1)np−2+1)(n+5)
4(n−1)

+ (p−1)(p−2)
2

np−1 for n 6= 2 and G(np) =

(p2 − p + 4)2p−1 − 2 for n = 2. Similarly, we derive the number of buffers for the

SS-Mk in [113], which is given by GSS−Mk(N) = 2
∑p

i=2(2
⌈(i−2) log2 n⌉+1 − 1)np−i +

(np−1−1)(n2−5)
2(n−1)

+ (p−1)(n−1)2np−1

4
for n 6= 2 and G(np) = (p2 − p+ 4)2p−1 − 2 for n = 2.

By subtracting the number of buffers from Eqs. (7.6) and (7.7), we obtain the total
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numbers of gates for our algorithm and the SS-Mk as shown in the following,

Rour(n
p) = np · Lour(n

p)−Gour(n
p), (7.8)

and

RSS−Mk(n
p) = np · LSS−Mk(n

p)−GSS−Mk(n
p). (7.9)

Though it would overestimate the total number of gates by adding buffers. However,

the asymptotic gate counts are not affected, since both Gour(n
p) and GSS−Mk(n

p)

have the same order of O(N log2 N).

7.5.4 Comparison of the number of gates

In the following, we first compare the number of gates with consideration of buffers.

Using the same idea as in Sec. 7.4.3, we search for the optimal p’s of Eqs. (7.6) and

(7.7) using MATLAB. For n ≤ 10 and n ≤ 20, the numbers of gates of the SS-Mk

and our two implementations are illustrated in Fig. 7.13. We also plot the odd-even

sorting for comparison. The curves in Fig. 7.13 are segmented linear lines. This can

be explained by Eqs. (7.6) and (7.7), which are functions of N and latency. From

Fig. 7.13, the Batcher’s odd-even algorithm using 2-sorters has more gates than both

our algorithm and the SS-Mk in [113]. For both our Alg. 7 and the SS-Mk [113], the

number of gates is smaller with a larger nb, meaning that using larger basic sorters

reduces the number of gates. For the comparison of the number of gates required

by our Alg. 7 and the SS-Mk [113], there are also three scenarios with respect to

three ranges of N . We first focus on nb = 10. For N ≤ 1.68 × 104, our Alg. 7

has fewer or the same number of gates than the SS-Mk as shown in Fig. 7.13. For
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1.68×104 < N ≤ 1.17×105, our Alg. 7 has the same number of gates as the SS-Mk.

For N > 1.17 × 105, the SS-Mk in [113] needs fewer gates. For nb = 20, we have

similar results. For N ≤ 3.71 × 105, our Alg. 7 has fewer or the same number of

gates than the SS-Mk. For some segments in 3.71 × 105 < N ≤ 2.47 × 106, our

Alg. 7 has fewer gates than the SS-Mk. For N > 2.47 × 106, the SS-Mk in [113]

needs fewer gates.

Similarly, we compare the latency of our sorting algorithm with the SS-Mk

in [113]. The latencies are obtained by plugging the corresponding optimal p’s

into Eqs. (7.6) and (7.7) and shown in Fig. 7.14 for N ≤ 2 × 104. Note that the

minimization of the number of gates is essentially to minimize the latency, since

each N is fixed in Eqs. (7.6) and (7.7). Fig. 7.14 also shows the minimal latencies

of the Batcher’s odd-even algorithm. All the latencies are illustrated by staircase

curves. From Fig. 7.13, the Batcher’s odd-even algorithm using 2-sorters has the

largest latency. For both our Alg. 7 and the SS-Mk [113], the latency can be reduced

by having a larger nb. The latency of our Alg. 7 is not greater than the SS-Mk for

N ≤ 2 × 104 for both nb = 10 and nb = 20 as shown in Fig. 7.14. This is because

our Alg. 7 tends to use large basic sorters, leading to less stages.

We also compare the number of gates with buffers for N being a power of two.

The numbers of gates are minimized by varying p according to Eqs. (7.6) and (7.7)

for our algorithm and the SS-Mk [113]. Note the optimal p’s are different from those

in Sec. 7.4.4. The results are shown in Table 7.3, where columns two to four show

the numbers of gates for the SS-Mk, our Alg. 7, and the reduction of our Alg. 7,

respectively, with n ≤ 20, and columns five to seven show those with n ≤ 10. For

n ≤ 10 and n ≤ 20, there are up to 25% and 39% fewer gates, respectively, than
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Figure 7.13: Comparison of the number of gates (n ≤ 10 and n ≤ 20) for sorting N
inputs via the SS-Mk in [113] and our Alg. 7.
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Figure 7.14: Comparison of the latency (n ≤ 10 and n ≤ 20) for sorting N inputs
via the SS-Mk in [113] and our Alg. 7.

the SS-Mk in [113] for N = 2i with i = 1, 5, · · · , 16. It is observed that fewer and

the same number of gates are needed for n ≤ 20 than for n ≤ 10 for all N = 2i with

i = 1, 2, · · · , 16. The reduction percentage of n ≤ 20 is also greater than or equal

to that of n ≤ 10 for all N = 2i with i = 1, 2, · · · , 16 but N = 16. This means our
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7.5. APPLICATION IN THRESHOLD LOGIC

Table 7.3: Comparison of the number of gates with buffers for sorting N = 2k inputs
(1 ≤ k ≤ 16) with n ≤ 20 via the SS-Mk in [113] and our Alg. 7.

N
n ≤ 20 n ≤ 10

SS-Mk Ours
Rd.

SS-Mk Ours
Rd.

(%) (%)
2 1 1 0.00 1 1 0.00
22 4 4 0.00 4 4 0.00
23 8 8 0.00 32 32 0.00
24 16 16 0.00 96 80 16.67
25 256 192 25.00 256 192 25.00
26 768 512 33.33 896 768 14.29
27 1792 1152 35.71 2304 1920 16.67
28 4608 2816 38.89 4608 3840 16.67
29 12800 11264 12.00 12800 11264 12.00
210 27648 21504 22.22 31744 28672 9.68
211 63488 49152 22.58 63488 57344 9.68
212 163840 122880 25.00 192512 184320 4.26
213 376832 327680 13.04 385024 368640 4.26
214 770048 737280 4.26 770048 737280 4.26
215 2162688 1900544 12.12 2162688 2162688 0.00
216 4325376 3801088 12.12 4325376 4325376 0.00

sorting network takes better advantage of larger basic sorters.

For N being a power of prime, we compare the number of gates without buffers

according to Eqs. (7.8) and (7.9). For N ≤ 3 × 104, we search for the same N ’s

for our Alg. 7 and the SS-Mk with the minimum number of gates. The results are

shown in Tables 7.4 and 7.5 for n ≤ 10 and n ≤ 20, respectively, where columns

three and four show the numbers of gates for the SS-Mk and our Alg. 7, and column

five shows the reduction of our Alg. 7. For all N ’s except for N = 75, our Alg. 7 has

no more gates than the SS-Mk in [113]. There are up to 13% and 23% fewer gates

than the SS-Mk in [113] for n ≤ 10 and n ≤ 20, respectively. This means our sorting
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network takes better advantage of larger basic sorters. We also remark that using a

larger sorter size n may reduce the number of gates for sorting N = np inputs. For

all common N ’s for n ≤ 10 in Table 7.4 and n ≤ 20 in Table 7.5, the same number

of gates is needed, since the same sorter size n is used. For all remaining N ’s except

for N = 39 in Table 7.4, there is a corresponding larger N ’s in Table 7.5 with fewer

gates. For N = 39 = 19683 in Table 7.4 and N = 134 = 28561 in Table 7.5, the

latter has about 1% more gates than the former, but accounts for 45% more inputs.

7.6 Conclusion

In this chapter, we proposed a new merging algorithm based on n-sorters for parallel

sorting networks, where n is prime. Based on the n-way merging, we also proposed

a merge sorting algorithm. Our sorting algorithm is a direct generalization of odd-

even merge sort with n-sorters as basic blocks. By using larger sorters (2 ≤ n ≤ 20),

the number of sorters as well as the latency is reduced greatly. In comparison with

other multiway sorting networks in [113], our implementation has a smaller latency

and fewer sorters for wide ranges of N ≤ 1.46× 104. We also showed an application

of sorting networks implemented by linearly scaling sorters in threshold logic and

have a similar conclusion that the number of gates can be greatly reduced by using

larger sorters.
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Table 7.4: Comparison of the number of gates without buffers for sorting N = np

inputs for n ≤ 10 via the SS-Mk in [113] and our Alg. 7.

N np n ≤ 10
SS-Mk Ours Rd. (%)

2 2 2 2 0.00
3 3 3 3 0.00
5 5 5 5 0.00
7 7 7 7 0.00
9 32 29 29 0.00
25 52 118 110 6.78
27 33 197 188 4.57
49 72 305 269 11.80
81 34 1067 998 6.47
125 53 1450 1315 9.31
128 27 2942 2942 0.00
343 73 5072 4728 6.78
625 54 13489 12140 10.00
729 36 22801 20411 10.48
1024 210 48126 48126 0.00
2401 74 63354 62254 1.74
3125 55 108175 97265 10.09
4096 212 278526 278526 0.00
6561 38 377375 330236 12.49
8192 213 655358 655358 0.00
16807 75 688713 704693 -2.32
19683 39 1443791 1259711 12.75
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Table 7.5: Comparison of the number of gates without buffers for sorting N = np

inputs for n ≤ 20 via the SS-Mk in [113] and our Alg. 7.

N np n ≤ 20
SS-Mk Ours Rd. (%)

2 2 2 2 0.00
3 3 3 3 0.00
5 5 5 5 0.00
7 7 7 7 0.00
11 11 11 11 0.00
13 13 13 13 0.00
17 17 17 17 0.00
19 19 19 19 0.00
25 52 118 110 6.78
27 33 197 188 4.57
49 72 305 269 11.80
121 112 1117 917 17.91
125 53 1450 1315 9.31
169 132 1814 1454 19.85
289 172 3970 3074 22.57
361 192 5501 4205 23.56
625 54 13489 12140 10.00
729 36 22801 20411 10.48
1331 113 29107 26668 8.38
2197 133 54703 50763 7.20
2401 74 63354 62254 1.74
3125 55 108175 97265 10.09
4913 173 156812 143443 8.53
6859 193 239590 221052 7.74
14641 114 564513 562214 0.41
16807 75 688713 704693 -2.32
28561 134 1230724 1271788 -3.34
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Chapter 8

Conclusion and Future Work

As the technologies scaling down, many issues arise and need to be accounted for,

such as delay issue in on-chip interconnect, noise and decoherence in quantum com-

putation, and quantum effects with nano technologies. To address these issues,

efficient signal processing techniques or new design approaches are imperative. In

this dissertation, we propose several efficient processing techniques and approaches

in the following area: delay modeling, crosstalk avoidance coding, quantum error

correction, and threshold logic design.

The delay issue in on-chip interconnect is motivated by the fact that gate delay

decreases with scaling, but global interconnect delay increases due to crosstalk. We

proposed analytical delay models for on-chip interconnects with improved accuracy,

leading to a new CAC with worst-case delay 30-40% smaller than the best known

in the literature.

Quantum error correction codes (QECCs) are needed to protect quantum infor-

mation against noise and decoherence. Given the good error-correcting performance
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and existing iterative decoding algorithms of classic LDPCs, it is desirable to obtain

LDPC-based QECCs. Several QECCs based on nonbinary LDPC codes have been

proposed with a much better error-correcting performance than existing quantum

codes over a qubit channel. We proposed stabilizer codes based on the nonbinary

QC-LDPC codes for qubit channels. Results show that QECCs based on the non-

binary LDPC codes achieve better performance than that based on binary LDPC

codes.

Finally, threshold logic designs in nano technologies are investigated. Nano de-

vices, such as resonant tunneling diodes (RTDs), quantum cellular automata (QCA),

and single electron transistors (SETs), are fit for the threshold logic, which is dif-

ferent from the widely used Boolean logic in CMOS technology. Boolean gates,

such as AND, OR, NOT, NAND, NOR, and XOR, are used there as basic building

blocks. Besides, the fan-in of a threshold gate in RTD nanotechnology needs to be

bounded for both reliability and performance purposes. We first focus on the imple-

mentations of symmetric functions in threshold logic, as AND, OR, NAND, NOR,

and XOR are all special cases of symmetric functions. Furthermore, any Boolean

function can be treated as a symmetric function by replicating its inputs. We pro-

pose an improved sort-and-search algorithm to implement any symmetric function

in threshold logic. Both sorting and searching networks in our proposed algorithm

use multi-input threshold gates. Since XOR cannot be realized in a single threshold

gate, we also proposed a majority-class threshold tree architecture for XORs with

bounded fan-in, and compare it with a Boolean-class architecture and the sort-and-

search approach therein. Analytical results show that the majority class outperforms

other architectures in terms of both hardware complexity and latency.
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For the future work, following directions can be investigated:

• As the clock frequency approaches multi-gigahertz, the parasitic inductance

of on-chip interconnects has become significant and its detrimental effects,

including increased delay, voltage overshoots and undershoots, and increased

crosstalk noise [58–60], cannot be ignored. Hence, with the process technolo-

gies scaling down into deep submicrometer (DSM) and the clock frequency

approaching multi-gigahertz range, the crosstalk delay and noise due to the

capacitive and inductive coupling become the performance bottleneck in many

high-performance VLSI designs, especially for global on-chip buses. It is im-

perative for designers to devise new techniques to address both capacitive and

inductive couplings simultaneously.

• The proposed QECCs in this dissertation have a column weight of two. Quasi-

cyclic QECCs with column weights more than two provide more powerful error

correction capability and are worth to be investigated.

• It has been shown that some complex Boolean functions can be realized with

a single threshold gate. However, efficient identification of the threshold func-

tion for a given problem is not fully investigated. The identification by re-

formulating existing Boolean expressions for a given problem is worth to be

investigated.

• In this dissertation, we show how to construct multi-input XORs using our

proposed sort-and-search algorithm and use them as building blocks for finite

field multiplications. However, some arithmetic operations might be decom-

posed into small blocks, which can be implemented by symmetric functions
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more efficiently. Since our proposed sort-and-search algorithm is applicable

for any symmetric Boolean function, such decomposition using blocks based

on our sort-and-search algorithm is worth to be investigated.
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Appendix A

Proofs for Sorting Algorithms

A.1 Proof of Lemma 6.3.1

Proof. The proof of the lemma can be reduced to showing that for l > 0 any two

wires s, s + l ∈ Zm of each list are sorted as shown in Fig. 7.4(b). We prove the

lemma by contradiction. The inputs satisfy xj,s ≤ xj,s+l for j ∈ Zn and s, s+ l ∈ Zm.

Suppose there exist k ∈ Zn and s, s+ l ∈ Zm such that x′
k,s > x′

k,s+l. Since the sorter

for xk,s k ∈ Zm acts as a permutation of the index k, we denote such permutation

of the sorter connecting wire s as f : {1, · · · , n} → {1, · · · , n}. Because f is

bijection, an inverse f−1 exists. Then we have xf−1(t),s+l ≥a xf−1(t),s = x′
t,s ≥ x′

k,s >

x′
k,s+l for k ≤ t ≤ n, where the “≥a” is because the inputs are sorted and the

“=” is due to the permutation. There are n − k + 1 inputs of xf−1(t),s+l satisfying

xf−1(t),s+l > x′
k,s+l. However, at most n − k outputs satisfy x′

t,s+l > x′
k,s+l for

t ∈ {k+1, k+2, · · · , n}, resulting in a contradiction. Hence, all lists are self sorted

after applying n-sorters.
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A.2. PROOF OF LEMMA 6.3.2

A.2 Proof of Lemma 6.3.2

Proof. First, we show that the first connections of adjacent two sorters belong to

either the same list or adjacent two lists. Let (j, t1) and (j + l, t2) be the first

connections of adjacent two sorters S1 and S2, respectively, where (j, t) denotes

wire t in list j. If l > 1, the connection of S1 in list j + l − 1 should be wire m;

otherwise, S2 would have a valid connection in list j + l. For lists j to j + l − 2,

only wires m in each list are connected by S1, since wire m can be connected to

the preceding list only by a (m − 1)-spaced sorter. Hence, S1 is the last (m − 1)-

spaced sorter in stage 1 and S2 does not exist. Similarly, we can show that the

last connections of adjacent two sorters S1 and S2 belong to either the same list or

adjacent two lists. This gives us a total of four cases as shown in Fig. 7.5, where

b ≥ a + 1 for Fig. 7.5(a)-(c), and b ≥ a for Fig. 7.5(d) such that S1 and S2 have a

size of at least two.

If m is prime, no adjacent two sorters belong to case IV, which is equivalent to

showing that m is a composite number if case IV in Fig. 7.5 exists. Assume two

adjacent sorters S1 and S2 belong to case IV. Let the first connection of S1 be

(j,m) and the last connection of S2 be (j+p, 1). The last connection of S1 satisfies

(k + 1)p ≡ 0 mod m. We have m | (k + 1)p. Since case IV is not possible in

the first stage, we have p < m. Since two adjacent sorters connect two adjacent

wires in at least one list, we have p > 1. If k = 0, S1 would connect the last and

first wires of adjacent lists, respectively, in which case S2 does not exist. We have

1 < k + 1 < m. So m should have a proper factor dividing k + 1 or p. Hence, m is

a composite number.
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A.3 Proof of Theorem 6.3.1

Proof. The theorem can be proved by induction on i. In stage 1, m-sorters are

applied on corresponding wires of allm lists. According to Lemma 7.3.1, the outputs

of each list are sorted. Assume any two adjacent wires s and s+1 in list j are sorted

after stage i − 1, x
(i−1)
j,s ≤ x

(i−1)
j,s+1 for 1 ≤ j ≤ n and 1 ≤ s ≤ m − 1. We will show

that x
(i)
j,s ≤ x

(i)
j,s+1 for 1 ≤ j ≤ n and 1 ≤ s ≤ m− 1.

According to Lemma 7.3.2, for a prime m, there are three cases of two adjacent

sorters S1 and S2 as shown in Fig. 7.5(a)-(c).

1. For case I, let y
(i−1)
j,1 and y

(i−1)
j,2 be the two adjacent wires in list j connected by

adjacent two sorters in stage i − 1 for a ≤ j ≤ b. According to Lemma 7.3.1

(n = 2), the outputs of each list are sorted.

2. For case II, there is an additional single wire y
(i−1)
b+1 connected by S2. If y

(i−1)
b+1,1 =

1, we have y
(i)
b+1,1 = 1. The last connection of S2 can be removed without

changing the order of others in S2. S1 and the revised S2 reduce to case I

and the outputs are sorted according to Lemma 7.3.1. If y
(i−1)
b+1,1 = 0, we have

y
(i−1)
b,1 = 0. This is because they are connected by the same sorter in stage i−1.

Then, we have y
(i)
a,1 = y

(i)
a,2 = 0, which are sorted outputs in list a. Remove

y
(i−1)
b+1,1, y

(i−1)
b,1 , y

(i)
a,1, and y

(i)
a,2, the remaining of S1 and S2 reduce to a smaller

configuration of case II. With recursively applying the above approach, S1

and S2 either reduce to a smaller case I or a single wire, both of which gives

sorted outputs.

3. For case III, there is an additional single wire y
(i−1)
a−1,m connected by the first

sorter. Similarly, the two sorters can be reduced to either a case I or a smaller
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configuration of case III and the outputs of two adjacent wires in each list are

sorted.

Assume all lists are self-sorted after stage i − 1, we have x
(i−1)
j,1 ≤ · · · ≤ x

(i−1)
j,m for

1 ≤ j ≤ n. For stage 1 ≤ i ≤ ⌈m
2
⌉, all wires in lists j = 2, · · · , n−1 have connections

with some sorters. We have x
(i)
j,k ≤ x

(i)
j,k for j = 2, · · · , n− 1 and k = 1, · · · , m − 1.

Hence, lists j = 2, · · · , n− 1 are self-sorted after stage i. For list 1, x
(i−1)
1,i−1 ≤ x

(i−1)
2,1

and x
(i−1)
1,i−1 ≤ x

(i−1)
1,i , we have x

(i)
1,i−1 ≤ x

(i)
1,i. We have 〈x(i)

1,1, x
(i)
1,2, · · · , x

(i)
1,i−1〉, since list

1 is self-sorted after stage i− 1 and x
(i−1)
1,k = x

(i)
1,k for k = 1, · · · , i− 1. We also have

x
(i)
1,i, x

(i)
1,i+1, · · · , x

(i)
1,m〉. Hence, list 1 is self-sorted after stage i, x

(i)
1,1, x

(i)
1,i+1, · · · , x

(i)
1,m〉.

Due to symmetry, list n is also self-sorted after stage i, x
(i)
m,1, x

(i)
m,i+1, · · · , x

(i)
n,m〉.

To prove that the outputs of n sorted lists 〈x(⌈m
2
⌉)

j,1 , · · · , x(⌈m
2
⌉)

j,m 〉 for j = 1, · · · , n

after stage ⌈m
2
⌉ are combined as a single sorted list in stage ⌈m

2
+ 1⌉, we need to

show that x
(⌈m

2
⌉+1)

j,m+1
2

≤ x
(⌈m

2
⌉+1)

j,m+1
2

+1
for j = 1, · · · , n− 1 and x

(⌈m
2
⌉+1)

j,m+1
2

−1
≤ x

(⌈m
2
⌉+1)

j,m+1
2

for j =

2, · · · , n. Since x
(⌈m

2
⌉)

j,m+1
2

≤ x
(⌈m

2
⌉)

j,m+1
2

+1
and x

(⌈m
2
⌉)

j,m+1
2

≤ x
(⌈m

2
⌉)

j+1,1 , we have x
(⌈m

2
⌉+1)

j,m+1
2

≤ x
(⌈m

2
⌉+1)

j,m+1
2

+1

for j = 1, · · · , n− 1. Similarly, we have x
(⌈m

2
⌉+1)

j,m+1
2

−1
≤ x

(⌈m
2
⌉+1)

j,m+1
2

for j = 2, · · · , n

A.4 Proof of Lemma 6.3.3

Proof. In stage i − 1, there are ni−1 sorted lists of n values with respect to each

q (q = 1, · · · , np−i). Since the outputs of each merging network are sorted after

stage i − 1, we can replace each merging network by an ni-sorter. According to

Lemma 7.3.1, the outputs of each new formed list after stage i are sorted, x
(i)
j,q ≤

x
(i)

j,np−i−1+q ≤ x
(i)

j,(n−1)np−i−1+q for j = 1, · · · , ni. Since the corresponding wires in the

new lists are connected by the same ni-sorter in stage i − 1, we have x
(i)
j,q ≤ x

(i)
j+1,q
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for j = 1, · · · , ni − 1. Hence, r
(i)
j,q ≥ r

(i)
j+1,q for j = 1, · · · , ni − 1.

For r
(i)
s,q = n > r

(i)
s+1,q ≥ · · · ≥ r

(i)
s+l,q > 0 = r

(i)
s+l+1,q for l ≤ n, it is equivalent

to prove that x
(i)
j+n,q = 1 if x

(i)

j,(n−1)np−i−1+q = 1 for j ∈ {1, · · · , ni − n}. For any q ∈

{1, · · · , np−1−i} in stage i, there are ni lists of n values. Suppose x
(i)

j,(n−1)np−i−1+q
= 0

for j ≤ s and x
(i)

s+1,(n−1)np−i−1+q
= 1. If t (t ≤ s) zeros of x

(i)

j,(n−1)np−i−1+q
are from

the same list of the original n sorted lists, there are at most t+ 1 zeros of x
(i)
j,q from

that same list. Since x
(i)

j,(n−1)np−i−1+q = 0 for j ≤ s are from at most n original lists,

there are at most s+ n zeros in x
(i)
j,q, implying that x

(i)
s+n,q = 1. Hence, x

(i)
j+n,q = 1 if

x
(i)

j,(n−1)np−i−1+q
= 1 for j ∈ {1, · · · , ni − n}.

A.5 Proof of Theorem 6.3.2

Proof. In stage 1, all outputs with respect to the operation of the same Alg. 5

are sorted. For any q ∈ {1, · · · , np−1−i} in stage i, according to Lemma 7.3.3, at

most n consecutive lists are not full of zeros. All preceding lists are all-zero lists

and all following lists are all-one lists. Hence, the combining network in stage i

is to sort n lists of n values, which is reduced to Alg. 5. In stage p − 1, we have

q = 1 and the single sorted list, 〈x(i)
1,q, x

(i)

1,np−i−1+q, · · · , x
(i)

1,(n−1)np−i−1+q, x
(i)
2,q, x

(i)

2,np−i−1+q,

· · · , x(i)

2,(n−1)np−i−1+q, · · · , x
(i)

ni,q, x
(i)

ni,np−i−1+q, · · · , x
(i)

ni,(n−1)np−i−1+q〉, contains np values,

implying all inputs are sorted as a single list.

214



Vita

Feng Shi received his B.E. and M.E. degrees from electrical engineering and mi-

croelectronics institute of Tsinghua University, Beijing, China in 2006 and 2009,

respectively. He is currently pursuing the Ph.D degree in electrical and computer

engineering at Lehigh University, Bethlehem, Pennsylvania.

His research interest lies in delay modeling and crosstalk avoidance coding for

current CMOS technologies, and threshold architectures for finite field operations

in nanotechnology.

215


	Lehigh University
	Lehigh Preserve
	2015

	SIGNAL PROCESSING TECHNIQUES AND APPLICATIONS
	Feng Shi
	Recommended Citation


	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Motivations
	Delay modeling for On-Chip Interconnects
	Crosstalk Avoidance Codes
	Quantum Error Correction
	Efficient Threshold Architecture
	Multiway Sorting

	Main results

	Delay Models for On-Chip Interconnects
	Introduction
	DELAY MODEL
	System model
	Three-wire model
	Five-wire model

	PERFORMANCE EVALUATION
	Three-wire and five-wire buses
	17-wire bus
	Performance of CACs

	Summary

	Improved CACs Based On A New Classification
	Introduction
	INTERCONNECT DELAYS AND CLASSIFICATION
	Interconnect Modeling
	Derivation of Closed-form Expressions
	Pattern Classification

	NEW MEMORYLESS CROSSTALK AVOIDANCE CODES
	Previous CAC Design
	CAC Design with New Classification
	Codes Under (C3,1C)
	Codes Under (C4,2C)
	Codes Under (C5,3C)
	Codes Under (C2,1C)
	Pruned Codes Under (C2,1C)

	Performance Evaluation
	SUMMARY

	Crosstalk avoidance codes for RLC On-Chip Interconnects
	INTRODUCTION
	CAPACITANCE AND INDUCTANCE EFFECTS
	Interconnect Model
	Crosstalk Delay
	Interconnect Ring

	CAC design
	Previous CAC Design
	Classification
	New CAC Design
	(2,1)-SOTA codes

	CODEC design
	(2,1)-SOTA codes

	Performance
	CONCLUSIONS

	Quasi-Cyclic Low-Density Parity-Check Stabilizer Codes
	Introduction
	Preliminary
	QC-LDPC Stabilizer Codes
	Base parity check matrix
	QC-LDPC stabilizer codes with no cycles of girth four
	QC-LDPC stabilizer codes with rotation

	Performance Evaluation
	Summary

	Efficient Threshold Architectures for Finite Field Operations
	Introduction
	Background
	Boolean function
	Symmetric function
	Threshold logic
	RTD Implementation of TG

	XOR via Sort-and-Search
	Sort-and-search
	Generalized sort-and-search
	Analysis of gate area

	Tree Implementation of XOR
	Direct conversion
	XOR with a small number of inputs
	XOR with a large number of inputs
	Complexity of multi-input XOR

	Multiplication over GF(2m): Threshold Implementation
	Polynomial basis multiplication over GF(2m)
	Implementation of PB multiplication using multi-input XORs
	Normal basis multiplication over GF(2m)
	Implementation of NB multiplication using multi-input XORs
	Complexity of threshold implementations of multiplication
	Comparison with existing approaches

	Conclusion

	An Enhanced Multiway Sorting Network Based on n-Sorters
	Introduction
	Background
	Multiway Merging
	Multiway Sorting
	Multiway sorting algorithm
	Latency analysis
	Analysis of the number of sorters
	Comparison of the number of sorters

	Application in Threshold Logic
	Threshold logic
	n-sorter
	Analysis of number of gates
	Comparison of the number of gates

	Conclusion

	Conclusion and Future Work
	Bibliography
	Appendix
	Proof of Lemma 6.3.1
	Proof of Lemma 6.3.2
	Proof of Theorem 6.3.1
	Proof of Lemma 6.3.3
	Proof of Theorem 6.3.2

	Vita

