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2 Abstra
t

Tradeo�s between priva
y and utilities, and priva
y preserving 
ontrol me
hanisms

in dynami
al systems and networks are studied in this dissertation. Despite se
urity

me
hanisms and data en
ryption, these systems are still vulnerable to timing anal-

ysis, wherein an eavesdropper 
an use these observations to interpret the identity of

individuals. Motivated by this vulnerability, the �rst three topi
s of this dissertation

investigates priva
y preserving me
hanisms in dynami
al systems and network. The

last 
hapter studies the e�e
t of priva
y awareness of 
onsumers on retail 
ompetition.

The �rst topi
 of this dissertation studies the tradeo� between delay and pa
ket

sour
e anonymity in a network of mixes. The a
hievable anonymity is 
hara
terized

analyti
ally for a general multipath model, and it is shown that under light tra�



onditions, there exists a unique single route strategy whi
h a
hieves the optimal

delay anonymity tradeo�. A low 
omplexity algorithm is presented that derives the

optimal routes to a
hieve a desired tradeo�. In the heavy tra�
 regime, it is shown

that optimal anonymity is a
hieved for any allo
ation of rates a
ross the di�erent

routes. Simulations on example networks are presented where it is shown that the

optimal routes derived under light tra�
 performs quite well in general tra�
 regime.

Next, an analyti
al framework is presented to integrate and 
ontrol the degree of

link padding me
hanisms in the fun
tioning of anonymous relays su
h that a desired

degree of sour
e-destination pair anonymity is a
hieved from timing analysis without

adding signi�
ant laten
y. In parti
ular, the optimal 
hoi
es of relays and the degree

of link padding are investigated to 
hara
terize the best tradeo� between anonymity

from timing analysis, as measured by Shannon entropy of sour
e destination pairs,

and the average laten
y. The optimization required for the best tradeo� is shown

to require exponential 
omplexity, and a sub optimal algorithm is presented that is

shown numeri
ally to perform 
lose to the optimal, but only requires linear 
omplexity.

In addition, an in
remental optimization is presented for a new user to be added

optimally to an existing system without altering the prevalent routing s
heme.

The third part of this dissertation studies the reward optimal de
ision making in

Markov De
ision Pro
esses (MDPs) while prote
ting against inferen
e of type of MDP.

Against an adversary attempting to 
lassify between two MDPs with identi
al state-

a
tion spa
es but di�ering reward fun
tions and transition probabilities, a joint poli
y

design is studied for the pair of MDPs that maximize a weighted sum of in�nite horizon

dis
ounted rewards. Spe
i�
ally, the adversary observes the sequen
e of states with

1



the goal of identifying whi
h of the two MDPs are in operation, while the 
ontrollers

are designed su
h that an ǫ-di�erential priva
y is guaranteed for the observed state

transitions. It is demonstrated that a unique optimal weighted dis
ounted reward

exists for a �xed priva
y parameter and the weighting fa
tor. A value iteration

method is proposed to determine the optimal reward and obtain the di�erentially

private poli
ies for the two MDPs. Convergen
e of the method is proved and the rate

of 
onvergen
e is 
hara
terized. A spe
ial appli
ation of this framework in routing

where nodes serve as states is also studied in this se
tion. Using di�erential priva
y

as a metri
 to quantify the priva
y of the intended destination in networked data


olle
tions, optimal probabilisti
 routing s
hemes are investigated under uni
ast and

multi
ast paradigms. It is shown that the optimal private uni
ast routing 
an be

implemented in de
entralized manner. Under a multi
ast paradigm, the optimal

solution when overhead is weighted equal to the intended 
ost, the optimal solution

is shown to be a variant of the Steiner tree problem. In general, it is proved that

multi
ast private routing is an np-
omplete problem. Simulations and numeri
al

results for both private uni
ast and multi
ast routing on random graphs are presented.

In the last se
tion, the problem of 
oupon targeting 
ompetition between two

retailers who sell the same produ
t in a priva
y sensitive market is 
onsidered. In

parti
ular, 
onsumers pur
hasing de
isions are in�uen
ed by produ
t pri
es as well

as prior priva
y violations by retailers. A Hoteling line model is utilized to investi-

gate the 
oupon targeting 
ompetition between the retailers. Within this framework,

priva
y sensitivity is modeled using a Markov 
hain, wherein 
onsumers swit
h ba
k

and forth probabilisti
ally between a priva
y alerted state and priva
y non-alerted

state depending on whether or not they re
eive targeted 
oupons from a retailer. The


ompetition between these two retailers at ea
h segment of Hoteling line is modeled

by a sto
hasti
 nonzero-sum game. In every segment of the Hoteling line, stationary

equilibrium strategies of retailers that provide optimal dis
ounted return over an in�-

nite horizon is derived. It is demonstrated that segments in a priva
y sensitive market

are divided to three 
ategories: 1) Segments not a�e
ted by priva
y 
onstraints. 2)

Segments fully a�e
ted by priva
y 
onstraints. 3) Segments partially a�e
ted by pri-

va
y 
onstraints. It is illustrated that in 
ontrast to a pri
e sensitive market, when

priva
y is a fa
tor, 
onsumers with weak brand loyalty 
an be driven away from the

popular retailer be
ause of a targeted 
oupon from that retailer. It is also proved

that the popular retailer will be more 
onservative distributing targeted 
oupon to


onsumers with weak preferen
e for him whilst the rival retailer will be more o�ensive

2



on these 
onsumers.
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3 Introdu
tion

Information se
urity in dynami
al systems and networks extends beyond the prote
-

tion of 
ommuni
ated data; hiding the identities of parties is equally 
riti
al. Knowl-

edge of individuals' identities in a network su
h as sour
e-destination pairs and routes

of information �ow in networks whi
h 
an be obtained fully or partially through eaves-

dropping in a network not only 
ompromises user priva
y, but also provides 
ru
ial

information for an adversary to jam a parti
ular �ow, deploy bla
k holes or laun
h

other sophisti
ated atta
ks. One of the earliest uses of su
h analysis o

urred in World

War II [1℄, when the US Army established a Tra�
 Intelligen
e group (OP-G-20) on

Corregidor island [2℄. These tra�
 analysts, mu
h before they broke the enemy 
ipher


ode, were able to use transmission timing to identify enemy 
hain of 
ommand and

to a good extent, predi
t troop movements. Sin
e the advent of the Internet, su
h

retrieval of �networking information� through tra�
 analysis, and more spe
i�
ally

transmission timing analysis, has been a 
riti
al 
on
ern in the design and analysis

of network proto
ols [3, 4℄.

In this dissertation, we investigate the prote
tion of the users' priva
y in dynami
al

systems, and networks against an adversary who fully or partially observes the state

of the system. We demonstrate that users 
an a
hieve priva
y, however, they may

re
eive lower utilities. In other words, we illustrate that priva
y is a
hieved in 
ost

of experine
ing higher laten
y, a
hieving lower data rate, or re
eiving a lower reward

in general framework. We derive the routing and 
ontrol me
hanisms for optimal

tradeo�s between priva
y measured by Shannon entropy [5℄ or di�erential priva
y

[6℄ and utilities in dynami
al systems and networks. Spe
i�
ally, we 
onsider pri-

va
y preserving methodologies for three appli
ations: 1) Pa
ket sour
e anonymity in

mix networks. 2) Sour
e-destination pair anonymity in networks 3) Markov De
ision

Pro
esses (MDPs) under di�erential priva
y 
onstraints. While priva
y preserving

me
hanisms and tradeo�s between priva
y and utilities are well-studied in the liter-

ature, other related topi
s su
h as the in�uen
e of users' priva
y awareness on other

phenomena in
luding retail 
ompetition require more attention. For example, priva
y

violations by an online so
ial media or an online retailer 
an result in users' distrust

whi
h 
an drive users away to other so
ial medias or retailers. The experiment by Tsai

[7℄ is an eviden
e that 
onsumers' priva
y awareness has in
reased and 
onsumers pre-

fer to pur
hase from online retailers who prote
t their priva
y. Motivated by priva
y

awareness of 
onsumers, in the last 
hapter of this dissertation, we study the 
oupon

4



targeting 
ompetition of retailers in a priva
y sensitive market, where 
onsumers may

get priva
y alerted and 
hange their pur
hasing brands.

The �rst and the se
ond topi
 of this dissertation study the routing and 
ontrol

me
hanisms for the optimal tradeo� between laten
y and pa
ket sour
e anonymity

or sour
e-destination pairs anonymity in networks. The methodology to hide sour
e

identities from timing analysis was �rst investigated by David Chaum [8℄. Chaum

proposed the 
on
ept of mixes whi
h are spe
ial proxy servers or routers that use

layered en
ryption, random bit padding and pa
ket shu�ing (or bat
hing) to provide

anonymity. The en
ryption and bit-padding ensure that an eavesdropper monitoring

the transmission links 
annot use the 
ontents or sizes of pa
kets to mat
hing an in-


oming pa
ket to the mix with the 
orresponding outgoing pa
ket from the mix. The

pa
ket shu�ing redu
es the 
orrelation between the timing of in
oming and outgoing

pa
kets. In pra
ti
e, a network of su
h mixes are deployed and the pa
kets from

sour
es are routed through an arbitrary sequen
e of mixes prior to arriving at the

destination. In popular anonymous systems, many of them deployed on the Internet,

however, shu�ing strategies are rarely used and the analysis of transmission times


an still reveal to an adversary the identities of 
ommuni
ating parties and paths of

data �ow. In fa
t, a 
areful read of the dis
laimers in the largest publi
ly deployed

anonymity network, Tor, reveals an open admittan
e of vulnerability to timing anal-

ysis (see [9℄). The primary reason for this vulnerability is that these systems impose

tight laten
y 
onstraints on the transmitted pa
kets to satisfy Quality of Servi
e

(QoS) requirements and 
onsequently measures to limit timing based inferen
e su
h

as mixing are not implemented under laten
y 
onstraints. In general, modi�
ations to

timing through pa
ket shu�ing and link padding in
rease the laten
y of transmitted

pa
kets, and 
onsequently, when pa
kets are subje
ted to stri
t laten
y 
onstraints,

the abilities of mixes to shu�e are restrained, thereby redu
ing the a
hievable pa
ket

sour
e anonymity or sour
e-destination pair anonymity. Fundamentally, there is a

tradeo� between the a
hievable anonymity and the allowed delay in data networks.

In re
ent years, there has been signi�
ant progress towards the design of optimal

mixing strategies and link padding me
hanisms under su
h stri
t delay 
onstraints

[10�15℄. These results primarily study the optimal design of pa
ket shu�ing and

link padding for a single node. This work expands on that investigation to study

the pa
ket sour
e and sour
e-destination optimal anonymity laten
y tradeo� a
hiev-

able in data networks with parti
ular emphasis on the optimal routing through the

network that maximizes a desired tradeo�.

5



In the �rst 
hapter, we investigate the problem of optimal routing to a
hieve

tradeo� between pa
ket sour
e anonymity and laten
y in a network of mixes. Our

approa
h relies on an information theoreti
 measure of anonymity, quanti�ed using

Shannon entropy of sour
es of pa
kets arriving at destinations as observed by an om-

nis
ient eavesdropper. While the maximum a
hievable anonymity as a fun
tion of

delay is still an open problem, we 
onsider two extreme tra�
 rate regimes where the

anonymity has been better investigated analyti
ally - heavy tra�
 regime λ → ∞

and the light tra�
 regime λ → 0 to study the properties of optimal rate allo
ation

in the multipath system. It is known that, when Shannon entropy is used to quantify

the anonymity, in the heavy tra�
 regime, the anonymity of the individual mix ap-

proa
hes the prior entropy of arrival rates as λ→∞, and in the light tra�
 regime,

the anonymity-delay tradeo� is linear and 
an be expressed using the light tra�


derivative [16℄. Using this entropy based metri
, we demonstrate: 1) In the heavy

tra�
 regime, the impa
t of rate allo
ation on the anonymity of the multipath system

is negligible, or in other words, optimal routing in the heavy tra�
 regime 
an be

designed based solely on traditional QoS 
onsiderations su
h as laten
y, throughput

and 
ongestion (whi
h expe
tedly be
ome 
riti
al in high rate regimes). 2) In the light

tra�
 regime, we investigate the anonymity and delay as fun
tions of rate allo
ation,

topology of the network, and delay 
onstraint of mixes. First, we show that to a
hieve

the optimal tradeo� between anonymity and delay, single route solutions are optimal

for ea
h sour
e. Based on this investigation, we propose a low 
omplexity algorithm

to determine the optimal route for ea
h sour
e. 3) Although the optimal rate allo
a-

tion for medium (non extreme) tra�
 rates is theoreti
ally an open problem, in our

numeri
al results, we demonstrate that the light tra�
 optimal s
heme outperforms

other heuristi
 rate allo
ation s
hemes. 4) We also apply our results to a graphi
al

model of pra
ti
al anonymous systems (based on an abstra
tion of the popular Tor

system) and demonstrate that the derived solution displays optimal s
aling behavior

as the network size in
reases.

The se
ond topi
 of this dissertation studies the optimal relay sele
tion and 
ontrol

of relay �operational modes� in an anonymous network. We 
onsider a six relay sub-

system abstra
tion based on the pra
ti
al anonymous system Tor. This abstra
tion,

although not without loss of generality, naturally follows from the present operation

of the Tor network where ea
h user 
hooses the sequen
e of three intermediate nodes

based on bandwidth availability and delay-shortest path 
onsiderations. Another rea-

son for this abstra
tion is the fa
t that not all users in an anonymous network have
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the same preferen
e on delay and anonymity. By 
onsidering a subgroup of relays

and optimizing their operation independently, that subgroup 
an 
ater to the subset

of users with similar preferen
es for the levels of anonymity and delay. Considering

six relay abstra
tion, our key 
ontributions are summarized as follows. Using Shan-

non entropy as the metri
 for anonymity from timing analysis, we 
hara
terize the

maximum possible anonymity as a fun
tion of the relay sele
tion and anonymiza-

tion parameters, and provide 
onditions on bandwidth under whi
h this anonymity

is a
hievable. When the bandwidth 
onstraints are satis�ed, the problem of optimal

relay sele
tion that maximizes a weighted 
ombination of anonymity and delay is

shown to be a 
omputationally hard problem. In other words, we show that solving

the resulting optimization problem requires exponential 
omputation time O(2N ),

where N is the number of users. We therefore propose a sub-optimal heuristi
 based

on Hill Climbing method whi
h has linear 
omplexity O(N) and demonstrate that

the a
hieved tradeo� for the proposed algorithm is 
lose to optimal. In addition to

the global optimization, we also present in
remental optimization and dis
uss a de-


entralized s
heme. We prove that in
remental s
heme always a
hieves the global

optimal when maximum anonymity is desired.

The third se
tion of this dissertation studies the design of 
ontrol poli
ies under

di�erential priva
y 
onstraints. Markov de
ision pro
esses (MDPs) are a dis
rete time

mathemati
al framework for modeling de
ision making in dynami
 systems. In a 
las-

si
al MDP, at ea
h time step, the system is in some state s, and the 
ontroller de
ides

on an a
tion a. Given the 
urrent state s, and 
ontroller's a
tion a, the 
ontroller

re
eives a reward, and the state of the system transit to the next state a

ording to

a Markovian probability P (s′|s, a), and the 
ontroller's goal is to maximize the total

(dis
ounted) reward over a �nite or in�nite horizon [17℄. MDPs are widely used in


yber physi
al systems, �nan
e, roboti
s, et
. Another important appli
ation of MDP

is in reinfor
ement learning [18℄, where an agent intera
ts with an unknown environ-

ment towards maximizing some obje
tive, and the underlying pro
ess is modeled as

an MDP. The main di�eren
e between a 
lassi
al MDP and reinfor
ement learning is

that the latter does not assume the knowledge of the mathemati
al model of the MDP.

In many appli
ations of MDPs, the sequen
e of states (or some fun
tion of the states)

are observable to eavesdroppers. For example, in a wireless network, an adversary


an a

ess length of pa
kets [19℄, timing of pa
kets transmitted [20℄, routes of pa
ket

�ow over a network [21℄ and su
hlike by eavesdropping. Using the observations, an

adversary 
an infer about the nature of the MDPs, and 
onsequently obtain sensitive
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information about the hyphenate de
ision-making. As ma
hine learning algorithms


ontinually improve the ability to identify personal preferen
es from seemingly unre-

lated data, it is 
riti
al that sto
hasti
 de
ision making pro
esses be investigated from

a priva
y perspe
tive whi
h is the fo
us of this work. Motivated by this, we inves-

tigate the mathemati
al framework of Markov De
ision Pro
esses with the obje
tive

of limiting adversarial inferen
e of a type of MDP. In parti
ular, 
onsider two MDPs

with identi
al state-a
tion spa
es but di�ering reward and transition dynami
s. For

instan
e, these 
ould represent user a
tions on a pair of websites. It is well known

that sequen
e of 
li
k times or download sizes 
an reveal whi
h websites are being

a

essed even if data transmitted is en
rypted [22℄. In this 
ontext, if the sequen
e

of a
tions or response times were so designed to maximize user experien
e, then an

eavesdropper 
an identify the website a

essed by performing a hypothesis test on

the observations. However, if the a
tions were so designed su
h that the observations

from the pair of websites had near similar dynami
s, then priva
y of a

ess 
an be

preserved. In broader terms, for a pair of MDPs, if the poli
ies were jointly designed

su
h that the observed state dynami
s for both MDPs were ǫ 
lose to ea
h other in a

likelihood sense, then any hypothesis test between the MDPs would have very limited

su

ess. It is pre
isely the joint design of the poli
ies for a pair of generi
 in�nite

horizon MDPs that we 
onsider in this work su
h that a weighted sum of rewards of

the two MDPs are maximized subje
t to an ǫ-di�erential priva
y guarantee for the

observed state dynami
s. We provide a value iteration method to re
ursively derive

the optimal rewards and the poli
ies for the two MDPs that are di�erentially private

at the desired ǫ level. The proposed method is shown to 
onverge and the 
onvergen
e

rate of this method is proved to be equal to the dis
ount fa
tor. Further, in this se
-

tion, we investigated an appli
ation of MDPs under priva
y 
onstraints in routing in

networks, where nodes 
an be 
onsidered as states of the MDP. Spe
i�
ally, the prob-

lem of destination priva
y in networked data 
olle
tion under 
onstraints on routing

overhead is studied, where, we propose an alternative approa
h wherein additional

destinations are in
luded in the path of transmission to 
reate destination priva
y for

sour
e pa
kets. In parti
ular, using di�erential priva
y to quantify the priva
y of the

intended destination, we investigate optimal probabilisti
 routing for single sour
e

destination 
ommuni
ation. We propose private routing s
hemes based on uni
ast

and multi
ast routing. We demonstrate that the optimal solution of private uni
ast

routing when overhead weighting fa
tor is one is equivalent to the solution of the trav-

eling salesman problem. However, for general overhead weighting fa
tor, the optimal
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private uni
ast routing only allo
ates positive probabilities on 2M − 2 routes, where

M is total number of destinations. Consequently, optimal routing 
an be derived by

solving the resulting linear programming. When multi
ast routing is used to provide

priva
y to a single sour
e-destination setup, we prove that the optimal solution is

an np-
omplete problem. In parti
ular, we demonstrate that the optimal solution of

multi
ast routing when overhead weighting fa
tor is one is equivalent to a Minimum

Steiner Tree (MST) and for the general 
ase, we prove that ea
h sour
e will allo
ate

positive probabilities over 2M − 2 spanning trees.

In the �nal se
tion of this dissertation, we study 
ompetitive 
oupon targeting

between a pair of retailers when pri
e and priva
y are fa
tors in the 
onsumer de
ision

making. We use the priva
y sensitivity model as proposed by Sankar et al in [23℄,

wherein 
onsumers are assumed to exist in one of two states with respe
t to a retailer

1) Non-alerted state where 
onsumers trust a retailer, and 2) Alerted state, where


onsumers are aware and wary by priva
y violations by the retailer. Consumers

swit
h between these states depending on whether they re
eive targeted 
oupons

from a retailer. Following the 
oupon targeting model in a pri
e sensitive market in

[24℄, we assume that 
onsumers are lo
ated on a Hoteling line su
h that the lo
ation

of 
onsumers on the line represents their preferen
e for the retailers. We demonstrate

that a priva
y sensitive market is divided into 12 segments. Moreover, we derive

the optimal stationary 
oupon targeting poli
ies and dis
ounted rewards for both

retailers at ea
h spe
i�
 segment of the Hoteling line. We prove that 
onsumers with

weak preferen
e for a retailer will 
hange their pur
hasing brand if they noti
e their

priva
y is violated by the retailer. We also prove that at segments whi
h adopts

mixed strategies, the popular retailer has a less defensive strategy whilst the rival

retailer has a more o�ensive targeting strategy as the dis
ount fa
tor in
reases. In

other words, as the importan
e of future pro�t gets higher, the popular retailer will

be more 
onservative about 
onsumers with weak preferen
e for him, be
ause, these


onsumers are more likely to 
hange their pur
hasing brand in the future, if they get

alerted about this retailer. On the other hand, the rival retailer will be more aggressive

to 1) get a higher share of market, 2) push the popular retailer to distribute targeted


oupons. Eventually, we demonstrate that despite the pri
e sensitive market, the

rival retailer will have a non-negative dis
ounted reward on the 
onsumers with weak

preferen
e for the other retailer.
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3.1 Related Works

Using Shannon entropy to quantify pa
ket sour
e anonymity, fundamental trade-

o�s between delay and pa
ket sour
e anonymity were 
hara
terized in [11, 16℄. The

study of sour
e anonymity in this work treats ea
h pa
ket as an independent entity,

similar to the approa
hes in [16, 25, 26℄. This applies to systems with short bursts of

transmission su
h as email, browsing, texting et
. For heavy tra�
 appli
ations su
h

as peer-to-peer �le sharing, multimedia transmission, the entire stream of pa
kets

needs to be 
onsidered together and individual pa
ket shu�ing te
hniques are no

longer su�
ient. For a deeper investigation into anonymity for long streams of pa
kets

in networks, refer to the work in [10, 27, 28℄. Optimal single path routing to provide

pa
ket sour
e anonymity has been a subje
t of analyti
al investigation in [29�31℄.

In these and other subsequent improvements, proto
ols that leverage randomness in

routing to provide anonymity at the 
ost of higher end-to-end delay were studied.

The analysis in [29�31℄, however, did not 
onsider anonymity-delay 
hara
teristi
s

of individual mixes or topologi
al in�uen
e on anonymity. Sin
e the original design

by Chaum, shu�ing strategies for mixes have been designed to optimize the tradeo�

between lo
al anonymity (se
re
y of input-output pairing at a mix) and performan
e

metri
s su
h as delay [32, 33℄, memory [34℄, throughput [35℄ et
. These shu�ing

strategies study the prote
tion of individual pa
kets as opposed to long streams.

Re
ent signal pro
essing approa
hes [36,37℄ have demonstrated fundamental tradeo�s

between delay and priva
y in timing side 
hannels as well. Prote
ting streams require

the transmission of dummy pa
kets, or in other words link padding, so as to make

the outgoing streams from a mix indistinguishable to an external eavesdropper. The

minimum rate of dummy pa
kets required and the 
orresponding padding me
hanism

have been studied under di�erent tra�
 and node parameters in [12, 35℄. Several

of these works 
onsider Poisson arrival pro
esses and derive the optimal strategies

and rates. In the se
ond se
tion of this dissertation, we apply the dependent link

padding strategies as derived in [12,35℄, and use numeri
al simulations to obtain the


orresponding dummy rates for pra
ti
al heavy tailed tra�
 pro
esses.

Theoreti
al analyses of optimal relay sele
tion and 
ontrol for anonymity are lim-

ited in the literature. In [35℄, the authors 
onsidered multi hop 
ommuni
ation in

adho
 wireless networks under the assumption that routes are �xed apriori and the

key parameters to optimize were the modes of operation. By optimizing the sele
tion

of relay nodes that add the dummy pa
kets, the authors demonstrated the tradeo�
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between the throughput and anonymity in the same system model using rate distor-

tion tradeo� in Information Theory. From a pra
ti
al standpoint, the relay sele
tion

or routing problem has been investigated to an extent in the Tor network under dif-

ferent adversarial 
onditions [38℄ and under di�erent 
riteria su
h as bandwidth 
on-

straints[39,40℄, low laten
y[40℄, and autonomous system awareness[41℄, albeit without

taking into 
onsideration timing analysis. The work on Tor systems that is 
losest to

the se
ond topi
 of this work is [42℄, where the authors introdu
ed a new Tor 
lient

named LASTor where they showed that LASTor 
an redu
e laten
y in 
omparison

with regular Tor 
lients by using an appropriate shortest path me
hanism. Although,

they investigated the delay anonymity tradeo� by doing simulations and showed the

performan
e of their proposed LASTor, they did not 
onsider operational 
ontrol of

relays to investigate the delay anonymity tradeo�.

The literature on priva
y in routing is primarily fo
used on anonymous networks

[8,43℄, where pa
ket en
ryption and s
heduling are used to provide anonymity. Prob-

abilisti
 routing has been 
onsidered from a game theoreti
 perspe
tive when an

adversary has limited knowledge but is 
apable of inter
epting routes [44℄. To our

best knowledge, there is no work in literature investigating probabilisti
 uni
ast and

multi
ast routing to a
hieve spe
i�
 degree of di�erential priva
y. Di�erential priva
y

was introdu
ed as a tool to provide priva
y in data from learners and statisti
ians [6℄

and provides a point-wise measure on users priva
y (without Bayesian assumptions).

Using di�erential priva
y as a metri
 to quantify priva
y, we propose private uni
ast

and multi
ast routing in data networks.

Algorithms for uni
ast routing for di�erent appli
ations in data networks have

been presented in the literature [45�49℄, whi
h are typi
ally variants of shortest path

algorithms with no additional 
onstraints. Adding 
onstraints su
h as delay in
reases

the 
omplexity of algorithms; for instan
e, the problem of uni
ast routing with 
ost


onstraints is an np-hard problem In [46, 47℄, authors proposed heuristi
 distributed

algorithms for uni
ast routings under 
onstraints on delay and path 
ost respe
tively.

Multi
ast routing is typi
ally implemented by sending pa
kets through a Steiner

tree whi
h spans all the destination nodes. Determining the Minimum Steiner Tree(MST)

whi
h has the minimum aggregated 
ost over all Steiner trees is known to be an np-


omplete problem [50℄. There are some near optimal s
hemes for Minimum Steiner

Tree problem whi
h are run in polynomial time [51�55℄. The problem of delay 
on-

strained multi
ast routing is well-studied in [55℄, where the authors demonstrated

that the 
orresponding problem is np-
omplete and proposed a heuristi
 algorithm
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based on the KMB algorithm.

Tradeo�s between priva
y and utility in dynami
al and 
ontrol systems are well-

studied in the literature [56�60℄. The problem of priva
y utility tradeo�s has been

explored in [57,58℄ using a notion the authors refer to as 
ompetitive priva
y. In [59℄,

the authors investigated �ltering in a dynami
al systems under di�erential priva
y


onstraints, where they derived methods developed to approximate a given �lter by a

di�erentially private version, so that the distortion 
aused by the priva
y me
hanism

is minimized. An overview of priva
y in 
ontrol and dynami
al system is presented in

[60℄, where two topi
s of appli
ations of di�erential priva
y in Kalman and general �l-

ters, and appli
ation of di�erential priva
y to distributed optimization algorithms are

studied. In [61℄, the authors proposed a priva
y me
hanisms su
h that at ea
h time,

the most a

urate approximation of the system's state whi
h preserves the priva
y is

published. In [62℄, an optimization framework is presented whi
h solves 
onstrained

multi-agent optimization problems while keeping ea
h agent's state di�erentially pri-

vate. The authors demonstrated that under mild 
onditions ea
h agent's optimization

problem 
onverges in mean-square to its unique solution while ea
h agent's state is

kept di�erentially private. MDPs under priva
y 
onstraints are also studied in the lit-

erature. In [56℄, the authors studied the tradeo� between system utility and a
hievable

priva
y in MDPs where priva
y is measured by Shannon entropy. In their approa
h,

they expressed the problem of MDP under priva
y 
onstraints as a Partially Observ-

able Markov De
ision Pro
ess (POMDP) with belief dependent rewards. In [63℄, the

authors investigated a subset of de
entralized MDPs, where the anonymity in inter-

a
tion is spe
i�ed within the joint reward and transition fun
tions. In [64℄, priva
y is

modeled by beliefs in system's state, where the authors demonstrated that for MDPs

and POMDPs, priva
y veri�
ation 
an be 
omputationally derived by solving a set

of semi-de�nite programs and sum-of-squares programs, respe
tively.

Targeted 
oupon and advertisements in pri
e sensitive market is well studied in

literature [24,65�68℄. In [65℄, targeted advertisement is studied against massive adver-

tisement and it is shown that 
ombination of massive and targeted advertisement 
an

in
reases retailers pro�t and so
ial welfare . In [66℄, the authors demonstrate that

ea
h retailer 
an in
rease its pro�t by targeting advertisement on 
onsumers with

higher preferen
e for the retailer more than shoppers who may be attra
ted to the


ompetition, or have weaker preferen
e for the retailer. The problem of 
ompetitive

one-to-one promotions is 
onsidered in [67℄, where the authors investigate the 
om-

petition of two retailers in a market where ea
h 
onsumer is individually addressable,
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and retailers know ea
h 
onsumer's taste. They demonstrated that one-to-one pro-

motion in
reases pri
e dis
rimination and de
reases the average pri
e in market, and


hanges market share between two retailers. In [68℄, the authors investigated 
oupon

targeting 
ompetition between two retailers under imperfe
t pri
e information. Re-

tailers 
an distribute either ordinary 
oupon, 
oupon advertising, or both at the same

time. They show that pri
e, promotional e�ort, and seller's pro�t is higher in the

ordinary 
oupon equilibrium, 
ompared to 
oupon advertising equilibrium.

One of the �rst works on e
onomy of priva
y was introdu
ed by Varian [69℄, where

he studied how one may de�ne property rights in private information su
h that 
on-

sumers may manage how their private information is shared with retailers. A
qusiti

[70℄ studies the evolution of the e
onomy analysis of priva
y by dis
ussing online and

o�ine identities of individuals on e
ommer
e and their priva
y 
on
erns and e
onomi


impli
ations. In [71℄, A
quisiti studies the in
entive to parti
ipate in an anonymity

system whi
h prote
ts identity and priva
y. Tsai [7℄ studied the e�e
t of online pri-

va
y information on pur
hasing behavior of 
onsumers. Spe
i�
ally, they design an

experiment in whi
h priva
y poli
y information was 
learly shown before the online

pur
hase and observed that 
onsumers tend to pur
hase from online retailers who

better prote
t their priva
y. In [72℄, the authors investigated the ex
hange between

two prin
ipals who sequentially make 
ontra
t with an agent, and they prove that

based on some 
onditions, it is optimal if an upstream prin
iple o�ers the agent full

priva
y. If any of these 
onditions is violated, then, dis
losure of information may

o

ur. In [73℄, the authors proved that it is pro�table for retailers to o�er di�erent

pri
es to 
onsumers based on their pur
hasing history. Spe
i�
ally, they 
onsidered a

problem with a single pro�t maximizing retailer, and a rational 
onsumer with a set of

preferen
es on the pri
es o�ered for the good, as well as on the amount of private in-

formation provided. For example, a 
onsumer 
ould stop sharing private information

using a number of alternatives in
luding deleting the web browser 
ookie, 
hanging

the payment information (e.g., 
redit 
ard), or using anonymous paying.
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4 Pa
ket Sour
e Anonymity and Delay Tradeo� in Mix

Networks: Optimal Routing

In this se
tion, we investigate the prote
tion the sour
e identities of pa
kets that

�ow through a network towards their intended destination, or in other words, enable

anonymous 
ommuni
ation over data networks.

The theme of our work 
an be understood by the routing problem in a simple

network shown in Figure 1 where two sour
es S1, S2 transmit pa
kets to the 
ommon

destination D1 through a network of three mixes M1,M2,M3. The mixes have delay


onstraints d1, d2, d3 respe
tively; in other words, mix Mi 
an delay a pa
ket for no

greater than di se
onds. Without loss of generality, we assume d2 > d1. Larger

the delay 
onstraint, higher the un
ertainty 
reated by the shu�ing strategy of an

individual mix. Sour
es have �xed arrival rates, λ1, λ2 respe
tively, and 
hoose to

route a fra
tion of their pa
kets through mix M1 and the remainder through mix M2.

If both sour
es transmitted their entire tra�
 through M1 their strategy would be

delay optimal, but the anonymity a
hieved would be low sin
e M1 has limited delay

to shu�e pa
kets. If, instead they transmitted their pa
kets all through M2, the

anonymity a
hieved would be higher but it would in
ur higher delay. Consequently,

the right balan
e between anonymity and delay would depend on the proportions

of ea
h sour
e's tra�
 transmitted through the two routes, and the strategies and

delays of the individual mixes. The following questions that naturally arise in this

setup form the basis of this work. 1)Given the topology and delay 
onstraints, does

multipath routing in
rease the anonymity? 2) If it in
reases anonymity, then, what

is the optimal allo
ation of transmission rates on the di�erent routes for ea
h sour
e

destination pair that a
hieves a desired tradeo�? 3) How does this optimal tradeo�

vary with the topology, tra�
 
hara
teristi
s and delay parameters of the system?

Through this se
tion, we study multipath routing to a
hieve optimal tradeo�

between pa
ket sour
e anonymity and average laten
y in data networks. In se
tion

4.1, we present the system model. In se
tion 4.2, we investigate the problem of

tradeo� in light tra�
. Moreover, we propose a low 
omplexity algorithm to determine

optimal single path route four ea
h user to a
hieve a 
ertain degree of tradeo�. The

routing problem in high tra�
 regime is studied in se
tion 4.4. Finally, we present

our simulation results for optimal pa
ket sour
e anonymity and laten
y tradeo� in

se
tion 4.5.
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4.1 System Model

A mix network is denoted by a 3-tuple N = (G,D,Λ), where G = (V, E) is a dire
ted

network graph, V is the set of verti
es representing network nodes and E is the set

of edges denoting dire
ted 
ommuni
ation links. The set of nodes V is divided into

three mutually ex
lusive sets: a. S: set of sour
es. b. M: set of mixes. 
. D:

set of destinations. D is the set of delay 
onstraints for the elements of set M and

Λ = {Λij , 1 ≤ i ≤ |S|, 1 ≤ j ≤ |D|} is the set of arrival rates for the sour
e-destination

pairs. Ea
h element Λij denotes the total rate from the sour
e Si to the destination

Dj . In order to study the system under high and low limiting tra�
 
onditions, we

parametrize the set Λ by a s
alar λ, su
h that ea
h Λij = λRij , and Rij is kept


onstant as λ → 0 or λ → ∞. We des
ribe the parti
ipants of the system in more

detail below.

Sour
e: Ea
h sour
e Si transmits pa
kets to ea
h destination Dj a

ording to an

independent Poisson pro
ess of rate Λij . Given the topology of the network, ea
h

sour
e has a �xed and known set of routes to ea
h destination through the mixes

and our primary goal is to allo
ate the transmission rates a
ross these routes to

maximize anonymity. The set P(Si,Dj) is the set of all the routes from sour
e

Si to the destination Dj su
h that P
(i,j)
k ∈ P(Si,Dj) is a dire
ted walk on the

graph G denoting the kth route between sour
e Si and destination Dj . Spe
i�
ally,

we denote P
(i,j)
k = (Si,MP

(i,j)
k

,Dj), where MP
(i,j)
k

is the sequen
e of mixes on this

route. We assume that there are no 
y
les in any route. For example in Figure 1,

P
(1,1)
1 = (S1,MP

(1,1)
1

, R1) ∈ P(1, 1), where MP
(1,1)
1

= (M1,M5,M13,M18). For every

sour
e-destination pair (Si,Dj), we assume ea
h pa
ket is independently randomly


hosen to be transmitted through a spe
i�
 route in P(Si,Dj). Consequently, the

resulting set of point pro
esses from sour
e Si to destination Dj will be independent

stationary Poisson pro
esses with rates {λ
P

(i,j)
k

} respe
tively.We parametrize ea
h

λ
P

(i,j)
k

by s
alar λ su
h that λ
P

(i,j)
k

= λr
P

(i,j)
k

, and r
P

(i,j)
k

is 
onstant as λ → 0 or

λ→∞. For the pair (Si,Dj),
∑

P
(i,j)
k

∈P(i,j)
λ
P

(i,j)
k

= Λij

We note that the Poisson assumption of arrivals is a limiting one and has been used

here due to its analyti
al tra
tability. Typi
al Internet tra�
 is better modeled using

Markov modulated Poisson or Heavy tail distributions. We do expe
t, albeit without

a formal proof, that the broad inferen
es from this work su
h as the optimality of

single path routing in light tra�
 and the QoS preferential routing in heavy tra�


would hold under other distributions as well.
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Figure 1: Example Network: S1, S2 are sour
es, M1,M2,M3 are mixes, D1 is the

destination. The rate of pa
ket arrivals allo
ated on a path Si,Mk,M3,D1 is denoted

as λ
(i,1)
k

Mix: Ea
h mixMi observes point pro
esses on ea
h of its in
oming links, ea
h pro
ess


orresponds to the sequen
e of pa
kets transmitted by the node originating the link.

The sour
es, prior to transmitting pa
kets to the mixes, employ layered en
ryption,

whi
h is des
ribed below:

Let a sour
e S transmit a message denoted by X to destination R through

a sequen
e of mixes M1, · · · ,Mk. There exists a publi
 private key pair for

every mix and the �nal destination. Let AN denote the address of node N ,

and let EN (X) denote the 
iphertext obtained by en
rypting message X with

the publi
 key of node N . When sour
e S wishes to transmit a message X to

destination R through a sequen
e of mixes M1, · · · ,Mk, it performs multiple

layered en
ryption and generates the 
iphertext:

EM1(AM2 , EM2(AM3 , EM3(· · ·EMk
(AR, ER(X)))) · · · ))

whi
h is transmitted to M1. M1 upon re
eiving uses its private key to de
rypt

the outermost message and determines the address of the subsequent node AM2

and a 
iphertext en
rypted with the publi
 key EM2 whi
h is then transmitted

to M2. M2 subsequently de
rypts the re
eived message, obtains the address

AM3 of the su

eeding node M3 and transmits the EM3 en
rypted 
iphertext

to it. This repeated de
ryption and transmission 
ontinues in sequen
e until

the R-en
rypted message ER(X) rea
hes the destination node. When su
h a

layered en
ryption s
heme is utilized, ea
h mix is only aware of the immediate

pre
eding and su

eeding node in the path of a pa
ket.

Consequent to the layered en
ryption, the pa
kets that depart from the mix are,

from the perspe
tive of an eavesdropper, 
ontent-wise not identi�able to a parti
ular
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Figure 2: Example of System Model

in
oming stream. Further, the layered en
ryption also ensures that the mix is unaware

of the path of ea
h arriving pa
ket ex
ept for the immediate pre
eding and su

eeding

nodes. To prevent inferen
e through transmission timing, every arriving pa
ket 
an be

delayed using a randomized strategy subje
t to the mix's maximum delay 
onstraint

di and transmitted on one of the outgoing streams of the mix based on the route

whi
h the pa
ket belongs to. The mix 
an also transmit multiple pa
kets in a bat
h

where the order of pa
kets in this bat
h is uniformly random. Let the set of all

possible mixing strategies for the network of mixes N be denoted by Ψ(N ). In

this work, we do not 
onsider the spe
i�
 design of mixing strategies to maximize

anonymity. For a delay 
onstrained mix, refer to [74℄ for the design of optimal mixing

strategies. The fo
us of this work is on optimal routing and rate allo
ation by sour
es

to maximize anonymity. For this purpose we 
onsider spe
i�
 mixing strategies that

exhibit optimality properties under light tra�
 and heavy tra�
 
onditions.

Eavesdropper: We 
onsider an omnis
ient eavesdropper (Eve) who observes ea
h

individual point pro
ess in the network. Eve knows the topology of the network,

the set of routes available to ea
h sour
e, the rate allo
ation a
ross these routes

and the strategy of ea
h mix. Spe
i�
ally, the reordering and bat
hing strategy of

every mix is known to Eve, ex
ept for the a
tual realization of the randomness used

by the mixes, whi
h is responsible for the un
ertainty in her inferen
e. Given the

observations, Eve's goal is to determine the sour
e of ea
h pa
ket arriving at the

destination using her 
omplete knowledge. Su
h an omnis
ient model is used to

guarantee the provable degree of anonymity; in pra
ti
e eavesdroppers, unless they
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own all network resour
es, will have a

ess to lesser information and the results in

this work are provably guaranteed to be a
hievable in that s
enario.

Anonymity De�nition

Ea
h route P
(i,j)
k ∈ P(i, j)(whi
h is the kth route between sour
e Si and desti-

nation Dj) 
ontains an ordered sequen
e of mixes M
P

(i,j)
k

. We de�ne d
P

(i,j)
k

=
∑

Ml∈M
P
(i,j)
k

dMl
whi
h denotes the maximum possible end to end delay experien
ed

by a pa
ket traversing this route. Let

dmax = sup
i,j,k

d
P

(i,j)
k

Any pa
ket 
an experien
e a delay of at most dmax se
onds in the mix network.

Based on this fa
t, we divide the time horizon into non overlapping cycles. Ea
h


y
le begins with a pa
ket arriving after an idle period of at least dmax se
onds and

ends when there has been no departure for at least dmax se
onds. From the de�nition

of dmax, all pa
kets that arrive in a 
y
le will ne
essarily arrive at the destination

before the 
y
le ends. This division of time into 
y
les is an analyti
al 
onstru
t used

to study the pro
ess in stationarity. Due to the stri
t delay 
onstraints, the arrivals

and departures in ea
h 
y
le are independent a
ross 
y
les. Furthermore, sin
e the

in
oming pro
esses are memoryless, we 
an study the expe
ted anonymity a
hieved

in a 
y
le instead of the entire time horizon of observation.

The 
omplete observation and knowledge of Eve is denoted by Θ. Let N(Θ)

denote the total number of pa
kets in the 
y
le. We de�ne the random variables

X1,X2, · · · ,XN(Θ) su
h that Xk ∈ {1, 2, · · · , N} denotes the sour
e of the kth pa
ket

whi
h departs the mix network in that 
y
le. Conditioned on Θ, the knowledge of the

mixing strategy results in a posterior joint distribution of X1,X2, · · · ,XN(Θ) from

the Eve's perspe
tive, over the originating sour
es of departing pa
kets in the 
y
le.

Let Γψ(Θ) denote the Shannon entropy of this joint posterior distribution of

(X1,X2, · · · , XN(Θ)) when ψ is the set of mixing strategies used by mixes, then

we de�ne the anonymity as follows:

De�nition 4.1 The anonymity a
hieved by a mixing strategy ψ ∈ Ψ(N ) is de�ned

as:

AψN (λ) =
E(Γψ(Θ))

E(N(Θ))
(1)
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The anonymity of the network, as expe
ted, is a fun
tion of the mixing strategies, the

sour
e arrival rates, mix delay 
onstraints and the rates allo
ated to multiple paths by

the sour
es. We use Shannon entropy as our anonymity metri
 whi
h has been used in

many previous literature as it is tra
table and has 
losed form solutions. The entropy

measured has a physi
al 
onnotation from the perspe
tive of Eve: when the measure

takes its minimum value (zero), Eve 
an perfe
tly determine the sour
es of pa
kets

at a destination. When the measure takes the maximum value (logarithm of number

of sour
es), ea
h pa
ket is equally likely to belong to any one of the di�erent sour
es,

whi
h is equivalent to having no information. In general, a key result in information

theory, Fano's Inequality [5℄, proves that an observer's probability of error in de
oding

the sour
es of pa
kets is lower bounded by the entropy of posterior random variables.

We do note that entropy based measures have a weakness wherein they require a

Bayesian framework and measure the sto
hasti
 average a
ross the observations. As

a result they are better used for a priori design of proto
ols.

In this work, we study anonymity in two tra�
 regimes, named light tra�
 and

heavy tra�
. In light tra�
 regime, we use light tra�
 derivative to investigate the

optimal routing parameters for two reasons: the 
losed form 
hara
terization of the

derivative whi
h makes it amenable to optimization, and the fa
t that the light tra�


derivative represents the sharpest gain in anonymity per unit tra�
 and 
onsequently,

the solution performs well at medium tra�
 rates as well. The light tra�
 derivative

is de�ned as follows:

∆0(M) ≥ lim
λ→0

d

dλ
AψN (λ)

In heavy tra�
 regime, using anonymity de�nition in equation (1), we derive

the anonymity a
hieved in a network of mixes as a linear fun
tion of anonymities of

individual mixes.

For a single mix, the following result whi
h was proved in Theorem 4 of [11℄

Chara
terizes the anonymity in the two extreme rate regime.

Theorem 4.1 For a single mix (M1) with delay 
onstraint d, serving two unequal

rate sour
es, and a single destination, the light tra�
 derivative and the anonymity

in high tra�
 are as follows:

lim
λ→0

d

dλ
AψM1

(λ) =
2r1r2
r1 + r2

d (2)

lim
λ→∞

AψM1
(λ) = h(

r1
r1 + r2

), (3)
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where h(p) is entropy of a Bernoulli random variable with parameter p and λ1 =

r1λ and λ2 = r2λ are rates of sour
es S1 and S2, respe
tively. As 
an be seen from

the theorem, the optimal anonymity in
reases linearly with delay under light tra�
,

and approa
hes the maximum possible (prior entropy) in high tra�
 
onditions. In

this work we apply this single mix result in a network and derive the optimal routing

parameters that maximize a weighted sum of network anonymity and average delay,

whi
h is des
ribed more formally below.

Delay: In our model, the average delay of network N as a linear fun
tion of routing

parameters and ea
h mix delay 
onstraints is de�ned as follows:

D =
1

λT

∑

u,v

∑

P
(u,v)
i ∈P(u,v)

λ
P

(u,v)
i

d
P

(u,v)
i

, (4)

where λT =
∑

i,j Λij .

Delay Anonymity Tradeo�: The primary 
hallenge of this work is investigating

the tradeo� between anonymity and delay. We model the preferen
e of the network

on delay and anonymity by the parameter 0 ≤ α ≤ 1 su
h that the obje
tive is to

maximize the weighted sum of delay and anonymity αA − (1 − α)D. As dis
ussed

in the example in Se
tion 4.1, a longer path is likely to in
rease anonymity at higher

delay whereas a shorter path 
an limit the delay with lower a
hieved anonymity. In

the forth
oming se
tions, we study the optimal routing parameters that maximize

this obje
tive under the two extreme tra�
 
onditions des
ribed earlier.

Using this model, in the subsequent se
tion we will study the optimal multipath

routing problem for two extreme tra�
 regimes. We demonstrate that in the light

tra�
 regime, as λ → 0, the maximization requires every sour
e to transmit solely

on a single path to ea
h destination and we, 
onsequently, provide a low 
omplexity

algorithm to determine the optimal path. We also prove that under heavy tra�



onditions, where λ→∞, that maximum possible anonymity is a
hievable regardless

of the routing parameters whi
h means the network may 
hoose the routing strategy

based on minimizing delay alone. The analysis of ea
h of these tra�
 regimes requires

a 
orresponding 
hara
terization of anonymity in the network as a fun
tion of the

topology, routing parameters and the mix delays, whi
h forms the analyti
al basis for

the optimization.
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4.2 Optimal Routing in Light Tra�


In this se
tion we 
onsider the general network with N sour
es and M destinations

su
h that the arrival rates for all sour
e destination pairs are equal. The equality

assumption is used merely to ease presentation. The results are imminently extend-

able to unequal rate models. More importantly, the key inferen
es derived 
ontinue

to hold for the general model. Our approa
h is based on a spe
i�
 mixing strategy

proposed in [16,75℄. The strategy was shown to be optimal in the light tra�
 regimes

for individual mixes and linear 
as
ade networks. A

ording to this strategy (ψl),

ea
h mix Mi waits for an arrival after an idle period of at least dmax se
onds. All

the pa
kets whi
h arrive in di se
onds following this arrival will be transmitted in

a single bat
h at the end of di se
onds. During the (li − di) se
onds following this

bat
h transmission (li is the supremum of the sum of the delays in the route whi
h

in
lude mix Mi and start from this mix), all the pa
kets arrived to this mix will be

transmitted without any delay. Upon 
ompletion of the li se
onds, the mix resets and

wait for a new arrival to restart this pro
ess.

This strategy, as shown in [16℄, obtains the optimal light tra�
 derivative in (2)

for a single mix and linear 
as
ade mix networks. In the following we study the

derivative a
hieved by the strategy in a mix network as a fun
tion of the topology

and multipath routing parameters.

4.2.1 Anonymity of a Mix Network in Light Tra�


In this se
tion, we will see that the anonymity is a non
onvex fun
tion of the multi-

path routing parameters λ
P

(i,j)
k

. The non 
onvexity of the anonymity fun
tion would

typi
ally imply that we might need to apply approximation methods to e�
iently


ompute the optimal parameters. However, as will be seen in the proof of Theorem

4.4, the quadrati
 form we derive for the optimal anonymity results in a unique opti-

mal path for ea
h sour
e destination pair.

Prior to going through the anonymity of a general network, we present a simple

example to develop the idea of anonymity in light tra�
. Consider a network with

two sour
es, two destinations and a single intermediate mix M1. We assume a 
y
le

with only two pa
kets, wherein the �rst pa
ket belongs to the route P
(1,1)
1 and the

se
ond one belongs to the route P
(2,2)
1 . If these two pa
kets depart from mix M1 in

a bat
h, then Eve will be 
onfused between two pair of routes: 1) P
(1,1)
1 and P

(2,2)
1
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Figure 3: Mix Network in Lemma 4.2

2) P
(1,2)
1 and P

(2,1)
1 . Thus, the anonymity a
hieved in this two pa
ket 
y
le will be

equal to:

Γ = h(

λ
P
(1,1)
1∑

k,j λPk(1,j)

λ
P
(2,2)
1∑

k,j λPk(2,j)

λ
P
(1,1)
1∑

k,j λPk(1,j)

λ
P
(2,2)
1∑

k,j λPk(2,j)
+

λ
P
(1,2)
1∑

k,j λPk(1,j)

λ
P
(2,1)
1∑

k,j λPk(2,j)

), (5)

where h(p) is the Shannon entropy of Bernoulli random variable with parameter p.

If the destinations of these two pa
kets are identi
al, then the a
hievable entropy will

be h(0.5) = 1. If the pa
kets do not leave in a bat
h, then Eve 
an perfe
tly identify

the sour
e-destination pairs, thus a
hieving zero un
ertainty.

Let's 
onsider the following events in a general network de�ned with respe
t to

the 
y
le initiated by a pa
ket arriving at time 0 after a duration with no arrivals of

length at least dmax se
onds:

E2 : There are exa
tly two pa
kets in the 
y
le.

Ea
P

(i,j)
k

,P
(u,v)
l

: There are two pa
kets in the 
y
le one from route P
(i,j)
k ∈ P(i, j)

and the other from P
(u,v)
l ∈ P(u, v)and the �rst pa
ket initiates the 
y
le.

Eψl

i : is an indi
ator random variable de�ned for the spe
i�
 two-pa
ket 
y
le as:

Eψl

i =







1 if the two pa
kets depart the ith mix 
ommon

to both routers in a bat
h when the mixes

use strategy ψl
0 otherwise

Now, we de�ne the variable Υ(i, j, k, u, v, l) = E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2} whi
h is Eve's

expe
ted un
ertainty in the 
ase where there are two pa
kets in the 
y
le; one pa
ket

on route P
(i,j)
k and the other on route P

(v,l)
u , and the pa
ket on route P

(i,j)
k initiates

the 
y
le.

When both pa
kets in a two pa
ket 
y
le arrive from the same sour
e, the 
y
le

has zero entropy, sin
e the sour
e of ea
h pa
ket is perfe
tly identi�able while the
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ase where these two pa
kets belongs to two di�erent sour
es the a
hievable entropy

should be 
al
ulated based on the posterior probabilities as follows:

A two pa
ket 
y
le de�ned by an event Ea
P

(i,j)
k

,P
(u,v)
l


orresponds to a sub-network

as shown in Figure 3 where there are two sour
es and two destinations and a set of

intermediate mixes. We use M ′ = (M ′
1, M

′
2, . . . , M

′
α) to denote the ordered sequen
e

of mixes where the two paths interse
t. The walks Y1, · · · , Yα+1 and Z1, · · · , Zα+1

are ea
h mutually ex
lusive sequen
es of mixes. There are therefore 2α−1
possible

routes from sour
e Si to destination Dj through the mixes ((Y1 or Z1), M
′
1, (Y2 or

Z2), ..., M
′
α, (Yα+1 or Zα+1)). The following Lemma 
omputes the average un
er-

tainty a
hieved in su
h two pa
ket 
y
les.

Lemma 4.2 For a �xed routing parameters, the Eve's expe
ted un
ertainty in the

network in Figure 3, where there are two pa
kets in the 
y
le one from sour
e Si

to destination Dj through the route P
(i,j)
k and the se
ond pa
ket from sour
e Su to

destination Dv through the route P
(u,v)
l respe
tively is given by:

Υ(i, j, k, u, v, l) = E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2} =






∑

(b1,··· ,bα)6=(0,··· ,0) h(0.5)P{E
ψl

1 = b1

, · · · , Eψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} if j = v

∑

(b1,··· ,bα)6=(0,··· ,0) h(
cuvij

cuvij +cujiv
)P{Eψl

1 = b1

, · · · , Eψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} if j 6= v

,

where cuvij is the posterior probability that the pa
kets from sour
es Si and Su arrive at

destinations Dj and Dv respe
tively from Eve point of view given all the observations

and knowledge of Eve.

Proof: Refer to [76℄ �.

Lemma 4.2 
omputes the a
hieved un
ertainty for spe
i�
 two pa
ket 
y
les in

the sub-network of Figure 3 as a fun
tion of routing parameters and the routes of the

two pa
kets. The expression in the lemma, although 
ompli
ated, 
an be explained

using a simple idea. If the two pa
kets in a 
y
le leave any mix in a bat
h, then

non-zero entropy is generated; this non-zero entropy is given by the h(·) term. This

entropy term depends on the posterior probability of a given realization of the sour
e

destination pairing (Si,Dj), (Su,Dv) given that the two pa
kets departed in a bat
h

from a parti
ular mix. The a
tual 
omputation of this probability depends on the

exa
t realization of the routing parameters (a generalization of the expression in (5)
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). However, as will be seen in the forth
oming analysis, this 
omputation will be

unne
essary sin
e the optimal rate allo
ation results in single paths for the sour
e

destination pairs in whi
h 
ase, the posterior probability of a parti
ular pairing is

1
2 .

In a general network, by identifying the set of mixes where pa
kets are bat
hed

and the 
orresponding probabilities, the overall anonymity 
an be 
hara
terized, as

in the following Theorem.

Theorem 4.3 The light tra�
 derivative of Anonymity of a general mix network

N = (G,D,Λ) is lower bounded by:

∆0(N ) ≥ sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
Υ(i, j, k, u, v, l), (6)

where λT =
∑

i,j Λij = Nλ, s = λT
λ = |S| = N , and Υ(i, j, k, u, v, l) is Eve's expe
ted

un
ertainty in the event where there are two pa
kets in the 
y
le; one pa
ket on route

P
(i,j)
k and the other on route P

(v,l)
u .

Proof: For any strategy ψ, the anonymity is de�ned as follows:

AψM(λ) =
E(Γψl(Θ)

E(N(Θ))
=

∑∞
n=2 E(Γ

ψl |N = n)P(N = n)

E(N(Θ))
, (7)

where Θ is the total available information for Eve in the 
y
le begins from t = 0.

For the light tra�
 derivative, it is easily seen that the 
y
les where N > 2 do not


ontribute to the light tra�
 derivative (as λ → 0), only linear terms will have non

zero 
ontributions, and 
y
les with N > 2 ne
essarily 
ontain O(λ2) fa
tors by virtue

of the Poisson pro
ess. Therefore, ∆0(M) 
an be written as:

∆0 ≥ lim
λ→0

d

dλ

E{Γψl |N(Θ) = 2}P{N(Θ) = 2}

E{N(Θ)}

In order to �nd E{Γψl |N(Θ) = 2}, we need to average Eve's un
ertainty on all the

possible pairs of routes P
(i,j)
k and P

(u,v)
l . We 
an express E

0{Γψl |E2} as follows:

Γ = E{Γψl |E2} =
∑

i,j,k,u 6=i,v,l

P{Ea
P

(i,j)
k

,P
(u,v)
l

|E2}

E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2}

E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2} is 
omputed in Lemma 4.2, and

P{Ea
P

(i,j)
k

,P
(u,v)
l

|E2} =
λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
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Using the properties of Poisson pro
esses, we 
an write

P{E2} = (1− e−sdmax)e−sdmax

E{N(Θ)} = esdmax


onsequently,

∆0(M) ≥ lim
λ→0

d

dλ

Γ(1− e−sdmax)e−sdmax

esdmax
= sdmaxΓ (8)

�.

Theorem 3.2 provides the 
omplete analyti
al 
hara
terization of the a
hievable

light tra�
 anonymity as a fun
tion of the topology, routing parameters and the

individual delay 
onstraints of the mixes in the network. This anonymity is 
omputed

assuming that every mix uses the light tra�
 optimal strategy proposed in [16℄, and

Eve is aware of the topology and the strategy of the mixes.

In the following Theorem, we show that the optimal routing parameters that

maximizes the anonymity in Theorem 4.3 
orrespond to single path optimal solutions.

Theorem 4.4 The solutions λ∗
P

(i,j)
k

whi
h maximizes the total light tra�
 anonymity

of any mix network that uses strategy ψl must ne
essarily be of the form:

∀i, j∃kij s.t. λ
∗

P
(i,j)
kij

6= 0, λ∗
P

(i,j)
l

= 0, l 6= kij (9)

Proof: There are three basi
 steps to proving the result of the theorem whi
h are

des
ribed as follows:

1. We 
ompute an upper bound on the light tra�
 derivative using standard

bounds on the binary entropy fun
tion. Lemma 4.5 demonstrates a property

of the quadrati
 light tra�
 derivative form that enables the derivation of the

upperbound and the resulting optimization.

2. We prove that the rate allo
ation parameters that optimize the upper bound

have the single-path form stated in (9). This is shown in Lemma 4.6.

3. We then show that the optimal value for the upperbound is indeed an a
hievable

light tra�
 derivative, thus proving the result of the Theorem.
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1. Upper bound on light tra�
 derivative Note that the form of the light

tra�
 derivative expression involves a quadrati
 fun
tional of the routing parameters

s
aled by the probability of a parti
ular event (that the two pa
kets in the 
y
le depart

in a bat
h at least on
e) in the 
orresponding two pa
ket 
y
le. Before expressing

the optimization problem and its solution, it is important to prove that for ea
h

pair of routes the event probability P{Eψl

1 = b1, · · · , E
ψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} is

independent of rate allo
ation parameters λ
P

(i.j)
k

s in light tra�
. This is shown in the

following lemma.

Lemma 4.5 For any pair of routes P
(i,j)
k ∈ P(i, j) and P

(u,v)
l ∈ P(u, v), P{Eψl

1 =

b1, · · · , E
ψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} is independent of rate allo
ation λ
P

(i,j)
k

s and is only

a fun
tion of the topology G and the delay 
onstraints D, as λ→ 0.

Proof: Refer to [76℄. �.

It is evident from Theorem 4.3 that the anonymity is a non
onvex fun
tion of

allo
ated rates. The general optimization problem we wish to study 
an be stated as

follows.

Φ : max
{λ

P
(i,j)
k

}
A =

sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
Υ(i, j, k, u, v, l)

subje
t to : ∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} :
∑

k

λ
P

(i,j)
k

=
λ

M
,λ

P
(i,j)
k

≥ 0 (10)

Let qijk,uvl denote the probability that the two pa
kets in the 
y
le depart in a bat
h

from at least one 
ommon mix in the pair of routes P
(i,j)
k and P

(u,v)
l :

qijk,uvl ,
∑

(b1,··· ,bα)6=(0,··· ,0)

P{Eψl

1 = b1, · · · , E
ψl
α = bα|

Ea
P

(i,j)
k

,P
(u,v)
l

, E2} (11)

In order to solve this problem, we �rst 
ompute an upper bound on A, whi
h uses

the fa
t that the entropy terms 0 ≤ h(
cuvij

cuvij +cujiv
) ≤ 1 and h(0.5) = 1, and the fa
t that

the probability qijk,uvl is bounded as

0 ≤ qijk,uvl ≤ 1,
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Consequently,

A = sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
Υ(i, j, k, u, v, l)

≤ sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
qijk,uvl , Q (12)

2. Optimizing the Upper bound

Lemma 4.6 The solutions λ∗
P

(i,j)
k

to the optimization problem

Ψ : max
{λ

P
(i,j)
k

}
Q = sdmax

∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
qijk,uvl

subje
t to : ∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} :
∑

k

λ
P

(i,j)
k

=
λ

M
,λ

P
(i,j)
k

≥ 0

must ne
essarily be of the form:

∀i, j∃kij s.t. λ
∗

P
(i,j)
kij

=
λ

M
,λ∗

P
(i,j)
l

= 0, l 6= kij

Proof: Due to Lemma 4.5, we know that qijk,uvl is independent of λP (i,j)
k

. In the

Hessian matrix of the fun
tion Q, we 
an see that all the elements on the diagonal of

the Hessian matrix are zero as ∀i, jandk ∂2A
∂λ2

P
(i,j)
k

= 0. This fa
t shows that the sum

of the eigenvalues of this matrix should be zero. Consequently, all of them 
annot

be either positive or negative and this shows that the subspa
e where the gradient is

zero, we will just have saddle points whi
h 
annot be the optimal solution and the

maximum should exist in the boundary of the domain of rate allo
ation parameters.

If, for any i, j, we 
hoose set the λ
P

(i,j)
k

s to be binary (de�ning a boundary), our

resulting domain would 
orrespond to a subspa
e of fun
tions whi
h 
an be viewed

as a boundary for the fun
tion Q. With ea
h subspa
e, if we set ea
h λ
P

(i,j)
k

equal

to zero individually again all the elements on the diagonal of the new Hessian matrix

will be zero whi
h shows that all the eigenvalues of the new Hessian matrix 
annot

have the same sign and the subspa
e where the gradient of new fun
tions are zero


annot be optimal as it a
ts as a saddle point. We therefore ought to 
onsider the new

fun
tion's boundaries. Due to the quadrati
 nature of the anonymity fun
tion, this

pro
edure when repeated is going to yield an identi
al 
on
lusion and 
onsequently,

the only possible optimum points are the true verti
es of the rate spa
e where for ea
h
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i ∈ {S1, S2, ..., SN} and ea
h j ∈ {D1,D2, ...,DN } only one the λP (i,j)
k

s is nonzero and

equal to

λ
M . �

3. Equality of the optimal solution for the light tra�
 derivative and the

upper bound Without loss of generality, for ea
h sour
e-destination pair (Si,Dj),

let the kijth route, denoted by P
(i,j)
kij

, be the optimal route. Let the ve
tor λopt =

(λ∗
P

(1,1)
k11

, ...λ∗
P

(1,M)
k1M

, λ∗
P

(2,1)
k21

, ...λ∗
P

(2,M)
k2M

, · · · , λ∗
P

(N,1)
kN1

, ... λ∗
P

(N,M)
kNM

) be the optimal solution of

problem Ψ and Q∗
be this optimal value. We know that

max
λ
P
(i,j)
k

s
A ≤ max

λ
P
(i,j)
k

s
Q = Q∗

(13)

As the optimal solution of Ψ yields single routes for a pair of pa
kets one belonging

to sour
e destination pair (Si,Dj) and the other belonging to (Su,Dv) h(
cuvij

cuvij +cujiv
) =

h(0.5) = 1 as long as the two pa
kets depart in a bat
h from at least one of the 
ommon

mixes. Consequently, using Lemma 4.2 and Theorem 4.3, A(λopt) =
∑

i,j,u 6=i,v

λ∗
P
(i,j)
kij

λT
λ∗
P
(u,v)
kuv

λT
qijk,uvl whi
h is equal to Q∗

. Therefore, λopt is also the optimal solution of Φ

and A∗ = Q∗
, whi
h 
ompletes the proof of the theorem. �.

The proof of the theorem exposes an interesting artifa
t of the system: it does not

matter how many mixes end up bat
hing the pa
kets in a 
y
le; as long as the pa
kets

are bat
hed at least on
e, then maximum un
ertainty 
an be a
hieved in light tra�



y
les. Consequently, the single path solution is su�
ient to maximize the overall

anonymity. In the following se
tion, we prove that the single path optimality extends

to maximizing the weighted sum of delay and anonymity as well, and subsequently

propose an algorithm to determine the optimal routes that a
hieve a desired tradeo�

between anonymity and delay.

4.2.2 Delay Anonymity Tradeo� in Light Tra�


As mentioned in Se
tion 4.1, the average end to end delay of network is a linear

fun
tion of routing parameters λ
P

(u,v)
i

expressed as follows:

D =
1

λT

∑

u,v

∑

P
(u,v)
i ∈P(u,v)

λ
P

(u,v)
i

d
P

(u,v)
i

,

We model the network preferen
e on anonymity and delay by the parameter 0 ≤ α ≤

1. To express the delay anonymity tradeo�, we present the following optimization
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problem for a �xed α:

Ω : max
{λ

P
(i,j)
k

}
αA− (1− α)D

subje
t to : ∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} :
∑

k

λ
P

(i,j)
k

=
λ

M
,λ

P
(i,j)
k

≥ 0 (14)

Corollary 4.6.1 The optimal solution for problem Ω must ne
essarily be of the form:

∀i, j∃kαij s.t. λ
∗

P
(i,j)

kα
ij

6= 0, λ∗
P

(i,j)
l

= 0, l 6= kαij (15)

Proof:: As the average delay fun
tion is a linear fun
tion of rate allo
ation parame-

ters, the above 
orollary naturally follows from the result of Theorem 4.4. �.

The above 
orollary extends the optimality of single path routing solutions to

maximizing the weighted sum of anonymity and delay as well. We do note that this

is a 
onsequen
e of average delay being a linear fun
tional of the parameters. It is


on
eivable that should another QoS 
riterion su
h as 
ongestion be 
onsidered whi
h

is better in�uen
ed by multipath routing, then this optimality may not extend to those

problems. In su
h s
enarios, the result of Theorem 3.2 should be used in 
onjun
tion

with the 
orresponding QoS metri
 to determine the optimal routing parameters.

Following Corollary 4.6.1, we propose a low 
omplexity algorithm to determine

the 
omplete delay-anonymity tradeo� for any network of mixes.We know that for

any weighting fa
tor 0 ≤ α ≤ 1, the optimal routing yields single path route for

ea
h sour
e destination pair. Let's 
onsider the set of all su
h single path routing

strategies Q = {(A1,D1), · · · , (A|Q|,D|Q|)}. |Q| is the total number of su
h strategies.

Ea
h pair (Au,Du) 
orresponds to a single path routing strategy, where for ea
h

i ∈ {1, 2, ..., N} and j ∈ {1, 2, · · · ,M}, just one of the λkP (i,j) is nonzero. Without

loss of generality we assume that these pairs are ordered su
h that their delays are

in
reasing, so D1 is the minimum a
hievable end-to-end delay.

First, any pair (Ai,Di) su
h that ∃u < i : Ai < Au is removed from the set Q,as

αAi − (1 − α)Di < αAu − (1 − α)Du for any weighting fa
tor 0 ≤ α ≤ 1. Ea
h

remaining pair (Ai,Di) 
orresponds to a line segment (Ai +Di)α−Di as a fun
tion

of α. Starting from α0 = 0, the pure delay optimal solution 
orresponds to the pair

(A1,D1) represents the optimal routing. This pair is re
orded as (A0−opt,D0−opt).

Then, algorithm �nds the pair whi
h interse
t this line for smaller α 
ompared to the

other pairs and re
ords this α as α1, and this pair as (A1−opt,D1−opt). Then, at ea
h

step, algorithm 
ontinues to �nd the next line segment whi
h interse
ts the 
urrent
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Algorithm 1 Algorithm to �nd the optimal routing for ea
h α
1: u← 1
2: while u < |Q|
3: p = argmin{j > u : Aj > Au}
4: Q = Q/{Au+1, · · · , Aj−1}
5: u← p
6: i← 0
7: u← 1
8: (Aopt−i,Dopt−i)← (A1,D1)
9: while u < |Q|

10: p = argminj>u{
1

1+
Aj−Au

Dj−Du

}

11: αi+1 =
1

1+
Ap−Au
Dp−Du

12: i← i+ 1
13: (Aopt−i,Dopt−i)← (Ap,Dp)
14: u← p

optimal segment for smaller α till it rea
hes α ≥ 1. At any step of algorithm, the

pair (Ai−opt,Di−opt) is re
orded to be the optimal pair for the interval [αi, αi+1]. The

following theorem demonstrates the optimality of Algorithm 1.

Theorem 4.7 Algorithm 1 derives the optimal routing for any weighting fa
tor α.

Proof:: Let's assume for a weighting fa
tor αi ≤ α ≤ αi+1, there is a pair (At,Dt)

su
h that αAt − (1 − α)Dt > αAopt−i − (1 − α)Dopt−i, then (At,Dt) should satisfy

the following inequalities:

1

1 +
Aopt−(i+1)−Aopt−i

Dopt−(i+1)−Dopt−i

≥ α ≥

1

1 +
At−Aopt−i

Dt−Dopt−i

≥
1

1 +
Aopt−i−Aopt−(i−1)

Dopt−i−Dopt−(i−1)

(16)

whi
h 
ontradi
ts with the de�nition of (Aopt−(i+1),Dopt−(i+1)) �.

It is noted that the optimal routing were derived assuming a spe
i�
 mixing strat-

egy des
ribed in [16℄; the light tra�
 derivative for the strategy is known to be optimal

for individual mixes and for a 
lass of mix networks, referred to as mix 
as
ades [16℄.

We therefore 
onsider a general 
lass of networks that are modeled after pra
ti
al

anonymous systems, and demonstrate that this lower bound has optimal s
aling be-

havior with the size of the network. In pra
ti
al anonymous systems, su
h as Tor [9℄

the network of intermediate nodes are divided into two groups, entry (or exit) nodes

and transit nodes; ea
h sour
e (or destination) 
ommuni
ates with a single entry (or
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Figure 4: Complete graph mix network. The blue lines shows the worst 
onne
tivity

between sour
es and mixes and destinations and mixes whi
h a
hieves the lower-

bound. The bla
k lines shows one of the best possible 
onne
tivity whi
h a
hieves

the upperbound

exit) node, and the transit nodes typi
ally form a 
omplete graph. In the following,

we use the previous results to derive the optimal s
aling behavior of the light tra�


anonymity for su
h networks.

4.3 S
aling Behavior of Complete Graphs

In this se
tion, we 
onsider a network modeled by a 
omplete graph with K mix

nodes, N sour
e nodes, and T destination nodes. The set of mixes 
ontain N entry

mix nodes and T exit mix nodes su
h that all sour
es transmit only to entry nodes

and destinations are dire
tly a

essible only from exit nodes. The K mixes nodes,

however, form a 
omplete graph. Ea
h mix has an identi
al delay 
onstraint d.

In the following theorem, we apply the results of the previous se
tion to prove

that the optimal anonymity for su
h 
omplete mix networks s
ale as O(NK). We

show that for both upper bound and lower bound the mix network, the light tra�


anonymity s
ales identi
ally to a single mix with a delay 
onstraint dmax, whi
h 
an

simulate any strategy of the original mix network.

Theorem 4.8 The optimal light tra�
 derivative of anonymity of the 
omplete mix

network with N sour
es and T destinations in the light tra�
 regime is bounded from

above and below as follows:

d(N − 1)(K −N − T ) ≤ AMc ≤ d(N − 1)K (17)

Proof: We do not 
onsider any spe
i�
 set of routes between sour
es and destinations

in the mix network. In order to provide a lower bound, we 
onsider a s
enario where
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ea
h sour
e and ea
h destination has just one 
onne
tion to separate entry and exit

mixes respe
tively (Figure 4). Based on Theorem 4.4, for ea
h sour
e destination pair,

it is su�
ient to 
hoose exa
tly one route to transmit pa
kets. In order to maximize

the light tra�
 derivative under this assumption, we let ea
h sour
e transmits its

pa
kets through the longest possible route. For example, sour
e S1 transmits the

pa
kets to destination D1 through the route (M1,MN+1, · · · ,MK−T ,MK−T+1). This


as
ade assumption would then imply that the sequen
e (MN+1, · · · ,MK−T ) =MLow


an be viewed as a single mix with the delay 
onstraint equal to sum of all the mixes in

it whi
h is equal to (K−T −N)d. Using Theorem 4.3 for this system, the anonymity

in light tra�
 
an be proven to be lower bounded as

A ≥ NKdNT 2(N − 1)
λ
T

Nλ

λ
T

Nλ

(K + 2−N − T )d

Kd
=

d(N − 1)(K −N − T ) (18)

The upper bound is obtained by repla
ing the network of mixes with a single mix

having delay 
onstraint dmax = Kd su
h that all sour
es transmit to the mix and

all destinations re
eive pa
kets from the mix (Figure 4 ). That the anonymity of

this system is an upper bound to the network of mixes 
omes from the fa
t that any

strategy used by the network of mixes 
an be simulated by the enhan
ed single mix,

and sin
e Eve observing only one �super� mix has fewer observations, the anonymity

a
hieved by the super mix is higher than that by the network of mixes. For su
h a

system, the light tra�
 anonymity 
an easily be shown to be d(N − 1)K. �.

4.4 Optimal Routing in Heavy Tra�


In this se
tion, we will demonstrate that in the heavy tra�
 regime, as λ → ∞,

maximum anonymity is a
hievable regardless of the 
hoi
e of routing parameters.

Consequently, the derived rate allo
ation from the light tra�
 analysis would be

suitable under heavy tra�
 
onditions as well. An important step in the heavy

tra�
 analysis required expressing the a
hievable anonymity of a general multiple-

destination network as a linear 
ombination of smaller sub-networks involving single

mixes. This result, whi
h is proven in Lemma 4.10, requires the de�nition of the

intermediate anonymity a
hieved by an individual mix in the network.

Spe
i�
ally, for a single mix Mi in the network N , we de�ne AjMi
to be the

intermediate anonymity of pa
kets on the jth outgoing edge of mix Mi as follows:

AjMi
(λ) = lim

λ→∞

H(Xij)

N ij
, (19)
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where Xij = (Xij
1 , · · · ,X

ij
N ij ) and Xij

k is the sour
e of the kth pa
ket from Eve's

perspe
tive on the jth outgoing edge and N ij
is number of pa
kets on the jth outgoing

edge.

In [75℄, we demonstrated that in the heavy tra�
 regime for a single destination

network, the a
hieved anonymity is independent of the rate allo
ation thus allowing

sour
es to optimize their multipath route sele
tion based on other desired QoS met-

ri
s. In the following Theorem, we show the same fa
t holds for multiple destination

networks as well. An important step in proving this result is the expression of the

anonymity of the mix network as a linear fun
tional of the intermediate anonymities

given by (19).

Theorem 4.9 If ea
h mix utilizes an asymptoti
ally optimal mixing strategy, then

the maximum anonymity in a multiple destination mix network is a
hieved for

any set of allo
ated rates as long as ea
h destination node re
eives pa
kets from a

single mix.

Proof: In order to prove this theorem, we �rst need to �nd the exa
t expression of

high tra�
 anonymity in terms of the rate allo
ation parameters whi
h is given by

following lemma:

Lemma 4.10 Anonymity of any arbitrary network in the high tra�
 rate regime is

lower bounded by:

AM(λ) ≥

|M|
∑

i=1

ξi∑

j=1

wjMi

w
(AjMi

−

|S|
∑

k=1

∑ζi
u=1w

jk
Miu

wjMi

H(
wjkMi1

∑ζi
u=1w

jk
Miu

, · · · ,
wjkMiζi

∑ζi
u=1 w

jk
Miu

)), (20)

where w is the total rate of sour
es and wjkMiu
is rate of pa
kets from sour
e Sk arriving

on the uth in
oming edge to mix Mi and leaving mix Mi from the jth outgoing edge.

wjMi
is the rate of pa
kets on the jth outgoing edge of mix Mi. ζi is number of

in
oming edges of mix Mi and ξi is the number of outgoing edges of mix Mi.

Proof: Refer to [76℄. �.

Lemma 4.10 expresses the anonymity a
hieved by the network of mixes as a

weighted sum of the anonymity of ea
h individual mix and the multipath rate al-

lo
ation parameters. To prove the result of this theorem, we require that ea
h mix

a
hieves the maximum possible anonymity asymptoti
ally. In other words, we must
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prove the existen
e of a mixing strategy ψ for any mix Mi in the system, su
h that

if wjkMix
are the set of arrival rates to the mix, then the a
hieved anonymity is the

optimal anonymity whi
h is given by following equation.

lim
λ→∞

AψM (λ) =
∑

Mi∈F

∑

j∈Fi

wjMi

w
h(
w1
Mij

wjMi

, · · · ,
wNMij

wjMi

), (21)

where F is the set of mixes whi
h has at least one edge 
onne
ted dire
tly to one of

the destinations and Fi is the set of outgoing edges of mix Mi whi
h are 
onne
ted

to destinations. wkMij
is the rate of pa
kets of sour
e Sk on the jth outgoing link of

mix Mi. w
j
Mi

is the total rate of pa
kets on jth outgoing edge of mix Mi.

Existen
e of su
h a strategy has been shown in [16℄ and is a subje
t of a deeper

investigation in [74℄, where the strategy with the best asymptoti
 
onvergen
e rate is

presented. In so far as the dis
ussion in this paper is 
on
erned, 
onsider the simple

bat
hing strategy of a mixMi, wherein the mix bat
hes all pa
kets that arrive within

periodi
 time intervals of di se
onds. As λ → ∞, the number of pa
kets that arrive

within any time period, say NT would also in
rease towards in�nity. A

ording to

the law of large numbers, the proportion of pa
kets arriving on ea
h link in this bat
h

of pa
kets would 
onverge to the proportion of arrival rates from those respe
tive

links. By reordering the pa
kets su
h that every possible ordering within a bat
h is

uniformly random, the anonymity a
hieved will 
onverge to the prior entropy given in

inequality (20) as λ→∞. Given that ea
h mix a
hieves the prior entropy as λ→∞

regardless of the nature of arrival pro
esses, it remains to be seen that the anonymity

of the network 
onverges to the maximum possible regardless of the rate allo
ation;

this 
an be shown by substituting the right-hand-side in (20) ba
k into Lemma 4.10,

so we get the optimal anonymity whi
h is given in (21). �.

As the optimal anonymity is a
hieved for any rate allo
ation in high tra�
 regime,

the optimal delay anonymity region has one optimal point whi
h is the delay optimal

point. In a broader sense, the optimal routing problem 
an be designed based on

other QoS 
riteria su
h as laten
y, throughput and 
ongestion.

4.5 Simulations and Numeri
al Results

In this se
tion, we present our simulation results on two example mix networks shown

in Figures 1 and 5. We 
ompare the anonymity optimal rate allo
ation to the other

intuitive s
hemes. We see that the optimal routing derived in the light tra�
 regime

also performs better when 
ompared to other s
hemes in the regions where the traf-

�
 is neither heavy nor light. Finally, we present simulation results of the delay
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Figure 5: Mix network 
onsidered for the delay anonymity trade-o� simulation
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Figure 6: Comparing performan
e of optimal strategy in light tra�
 
ase to the other

rate allo
ations

anonymity tradeo� for the mix network in Figure 5. In Figure 6, the anonymity

a
hieved by the optimal light tra�
 based rate allo
ation for the 2 sour
e network

in Figure 1 is plotted as a fun
tion of general arrival rate λ, and the performan
e is


ompared to two intuitive rate allo
ation s
hemes, namely equal allo
ation and delay

optimal allo
ation. In equal allo
ation, ea
h sour
e transmits half the tra�
 through

mix M1, and the other half through mix M2, while in delay optimal allo
ation, ea
h

sour
e transmits its tra�
 through the shortest path. In the simulation, the rate of

S2 was assumed to be twi
e that of S1. For general tra�
 the optimal anonymity

delay relationship is as yet an open problem, and any su
h optimization of rate al-

lo
ation parameters would have to be performed using sub optimal strategies and

analyti
ally intra
table expressions. An example strategy that is optimal under light

tra�
 
onditions and heavy tra�
 
onditions but sub optimal for the general tra�
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would be that of a strategy that simply pools pa
kets that arrives within the delay


onstraint and transmits a uniform random shu�e of a bat
h. Under our framework

the anonymity 
an be 
omputed as

A =
∑

i

∑

j

Pr{i pa
kets from S1 and j pa
kets from S2}

Pr{leaving in a bat
h} log2

(
i+ j
i

)

(22)

This strategy is used to 
hara
terize the anonymity for ea
h set of routing parameters.

From Theorem 4.9, we know that all of these allo
ations will a
hieve the maximum

anonymity h(13)as λ→∞. However, for the region where the tra�
 is neither heavy

nor light, the optimal allo
ation we found using the light tra�
 derivative performs

better than the intuitive s
hemes. This is not surprising, as the linear portion in the

light tra�
 region provides the maximum gain per unit of rate in
rease. Consequently,

the rise of the anonymity 
urve is best for the light tra�
 based optimal allo
ation.

Sin
e all allo
ations eventually 
onverge to the maximum possible anonymity, the

performan
e is expe
ted to be better for a wide range of rates.

In Figure 7, we 
ompared the a
hievable anonymity of delay optimal, anonymity

optimal strategy, and equal rate allo
ation strategy for the network in Figure 1.

Figure 8 plots the anonymity-delay tradeo� for the network shown in Figure 5.

There are four optimal strategy points here that ea
h of them is optimal strategy for

di�erent ranges of α. Note that these points 
an be easily derived by the algorithm
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Figure 8: Delay Anonymity Trade-o� in Mix Networks

presented in se
tion 4.2.2. This tradeo� is 
ompared to an intuitive linear allo
ation

strategy wherein, for α = 0, we use the optimal delay strategy and for α = 1, we use

the anonymity optimal strategy. As we in
rease α, we de
rease the rate allo
ated to

the delay optimal strategy and add it to anonymity optimal strategy until α = 1 and

at this point all the rate is allo
ated to the anonymity optimal strategy.
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5 Relay Sele
tion and Operation Control for Optimal De-

lay and Sour
e-Destination Anonymity Tradeo� in Anony-

mous Networks

In this se
tion, we provide an analyti
al framework to address sour
e-destination pair

anonymity and propose relay sele
tion and operation methodologies that are resistant

to timing analysis while satisfying low laten
y requirements.

In parti
ular, we investigate the optimal relay sele
tion and 
ontrol of relay �opera-

tional modes� in an anonymous network. To understand �operational mode�, 
onsider

the s
enario depi
ted in Figure 10, where there are sour
es S1 and S2 transmitting

to the destinations D1 and D2, respe
tively. In Figure 10a, the intermediate node

follows the rule of First Come First Serve (FCFS) in whi
h 
ase an eavesdropper

who observes the tra�
 in this network 
an identify the destination 
orresponding

to ea
h sour
e. If, however, the intermediate node 
an delay the pa
kets for upto d

se
onds, where d is greater than the interpa
ket timing on the high rate stream, then

the relay 
an add dummy transmissions su
h that the output streams are indistin-

guishable to any eavesdropper (see Figure 10b). The optimal rate and me
hanism to

insert dummy pa
kets to maintain this indistinguishability have been well studied in

[12�15, 35℄. Indeed it has been shown that if the in
oming rates of the sour
es are

made equal then the overhead dummy rate de
reases inverse quadrati
ally with the

in
oming tra�
 rate thus making it an e�e
tive me
hanism for high rate tra�
 with

limited bandwidth infringement. This te
hnique however results in a linear s
aling of

dummy rate with the number of users a

essing a relay and, when 
ombined with the

fa
t that it results in added delay, it has been largely ignored in pra
ti
al anonymous

systems.

In this se
tion, we propose to alleviate these 
on
erns by in
luding two impor-

tant 
hoi
es in the implementation of su
h dependent link padding. First, we expand

the ability of an intermediate relay to sele
tively introdu
e dummy transmissions

to make a fra
tion of streams indistinguishable as opposed to introdu
ing dummy

transmissions on all outgoing streams. Se
ond, in a virtual 
ir
uit, we enable the

route sele
tion me
hanism for ea
h sour
e to determine if a parti
ular relay should

be adding dummy transmissions on its stream at all. Naturally, these 
hoi
es are

required to be made with the net goal of a
hieving the best possible anonymity whilst

not introdu
ing substantial laten
y. That is the primary theme of this se
tion whi
h

is an investigation of the optimal relay sele
tion and 
ontrol for a sub-network ab-

38



Figure 9: Six Relay System Abstra
tion.

stra
tion as shown in Figure 9 whi
h optimally trades o� delay for anonymity. Using

the developed methodology, proto
ol designers 
an 
hoose a desirable operating point

on this tradeo� 
urve.

Rest of this se
tion is presented as follows: In se
tion 5.1, we present the system

model for anonymous system to provide sour
e-destination anonymity. In se
tion

5.2, we derive anonymity as fun
tion of rely sele
tion and 
ontrol me
hanism pa-

rameters. Moreover, we provide su�
ient 
onditions on this parameter su
h that

optimal anonymity is provided. The problem of sour
e-destination anonymity and

delay tradeo� is investigated in se
tion 5.3. Finally, we present the simulation results

in se
tion 5.4.
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(a) Anonymous relay node in First

Come First Serve (FCFS) mode (no

anonymity)

(b) Anonymous relay node in

Anonymizing mode (maximum

anonymity)

Figure 10: Standard and Anonymous Relays

5.1 System Model

The anonymous network abstra
tion 
ontains six relay nodes whi
h in
ludes two

entry guards, two intermediate relay nodes, and two exit guards. To emphasize that

ea
h of these six relay nodes are 
apable of adding dummy transmissions to boost

anonymity, we shall often refer to them as anonymous relays. We assume that the

users 
orresponding to ea
h su
h group of six relays to have identi
al preferen
es for

anonymity and delay. A large network 
an be viewed as 
ontaining hundreds of these

groups of six. We fo
us our investigation on the anonymity in a single group. An

example network with six relay nodes wherein ea
h sour
e 
hooses a sequen
e of three

anonymous relay nodes (one ea
h from the two entry guards, two intermediate relays

and two exit guards) and is shown in Figure 11a. Our abstra
tion is de�ned formally

as a 3-tuple (G,∆,B), where G = (V, E) is a dire
ted graph with the set of nodes

denoted by V and E the set of dire
ted edges. V = S
⋃
M
⋃
D, where S is the set of

sour
e nodes, D the set of destination nodes, andM the set of six anonymous relays.

We further re�neM =ME
⋃
MM

⋃
MQ, whereME is the set of entry guard nodes,

MM is the set of intermediate relays, and MQ is the set of exit guard nodes. The

3-tuple 
ontains a set B of bandwidth 
onstraints for ea
h anonymous relay and a set

∆ of delays asso
iated with ea
h edge.

Sour
e: Ea
h sour
e Si ∈ S transmits pa
kets a

ording to a sto
hasti
 pro
ess

to a destination through a sequen
e of three anonymous relays- an entry guard from

ME , an intermediate relay from MM and an exit guard from MQ. Let ri denote

the pa
ket arrival rate on the pa
ket stream from sour
e Si. Ea
h sour
e has two key

de
isions to make. First, the sour
e 
hooses the sequen
e of three anonymous relays;

this 
hoi
e is represented by the relay sele
tion parameter Ri = (X1i,X2i,X3i), where
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(a) Dotted links represent the unpadded links.

(b) Unpadded outgoing links 
an be perfe
tly mat
hed to their 
orresponding in-


oming link.

Figure 11: Link Padding.

X1i ∈ ME ,X2i ∈ MM , and X3i ∈ MQ. Se
ond, the sour
e 
hooses if it wishes its

stream to be padded with dummy transmissions by ea
h anonymous relay in e�e
t


ontrolling the operated mode of the relay partially. We denote this 
ontrol a
tion

using the anonymization parameter Ai = (ISi,X1i , ISi,X2i , ISi,X3i), where ISi,Xji
= 1

indi
ates that anonymous relay Xji should add dummy transmissions to the stream

from sour
e Si, and ISi,Xji
= 0 indi
ates that the relay Xji would transmit pa
kets

from Si on a FCFS basis without any link padding thus allowing an eavesdropper

to mat
h the outgoing stream with its 
orresponding in
oming stream. Note that

although the intended data rate for sour
e Si is ri, the 
hoi
e of anonymization

parameter 
ould result in an overhead dummy rate whi
h we denote by rSi

Du.

Anonymous relay: Ea
h anonymous relay will be denoted by M i
j , where j =

1, 2, 3 denotes respe
tively the entry guard, intermediate relay, and exit guard. Ea
h
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anonymous relay M i
j has a delay 
onstraint dM i

j
, and bandwidth BM i

j
. The aggregate

in
oming pa
ket rate to the anonymous relay nodeM i
j 
annot ex
eed BM i

j
. If there are

totally n in
oming streams to the anonymous relay M i
j , where k in
oming streams

have requested their streams not to be padded by that relay and n − k in
oming

streams have requested to be anonymized through padding by setting ISu,M i
j
= 1,

then the anonymous relay will transmit the pa
kets of the k in
oming streams on

FCFS basis without any delay or padding. Pa
kets from the remaining n−k in
oming

streams 
an be delayed by the anonymous relay node for a maximum of dM i
j
se
onds.

So that outgoing stream of those n − k sour
es are indistinguishable. This waiting

period allows the anonymous relay to a

umulate pa
kets from the n − k streams,

su
h that one pa
ket from ea
h of these streams 
an be transmitted at the same time

in a bat
h on their 
orresponding outgoing edge. Note that if there is no pa
ket from

some of these streams in this period the relay will transmit a dummy pa
ket on the


orresponding outgoing edges so that all n−k outgoing streams have identi
al timing.

This is the essen
e of dependent link padding whi
h is known to be optimal under

delay 
onstraints. This ensures that from Eve's perspe
tive, the outgoing streams

(that have been padded) 
annot be uniquely asso
iated to the 
orre
t in
oming stream

from the timing. Dependent link padding, while not in use in real systems due to


on
erns about bandwidth 
onsumption, is essential to thwart timing analysis. In

this work, by imposing tight laten
y 
onstraints and 
ontrolling the number of stream

padded at ea
h relay, we alleviate these 
on
erns.

Eavesdropper: For purposes of this work, we 
onsider an omnis
ient eavesdrop-

per (Eve) who observes the transmission timing on every 
ommuni
ation link in the

network. Eve knows the topology of the network and the link padding strategy of

the anonymous relays. Eve's goal is to use this timing information to determine a
-


urately the pairs of sour
e-destination (Si,Dj) who are 
ommuni
ating. We note

that Eve is a spe
i�
 type of adversary� a passive one� and is not the only type

of adversary in an anonymous system. That being said, the obje
tive of this paper

is to understand the optimal tradeo� between anonymity and delay under a timing

analysis atta
k, and other me
hanisms to thwart a
tive adversaries 
an be built in


onjun
tion with the framework delineated here.

Quantifying Anonymity from Timing: We use Shannon 
onditional entropy

to quantify anonymity from timing analysis� in parti
ular to measure the un
ertainty

in the sour
e-destination pairing from the perspe
tive of Eve. We de�ne random

variables X1,X2, · · · , XN where random variable Xi denotes the destination node for
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pa
kets from sour
e Si. We denote the 
omplete observation and knowledge of the

Eve by Θ. Conditioned on Θ, (X1,X2, · · · ,XN ) follows a posterior joint distribution

indu
ed by the 
hoi
es of relay sele
tion and anonymization parameters. Let Ψ(M)

denote the set of all possible relay sele
tion and anonymization strategies.

De�nition 5.1 The anonymity a
hieved by a spe
i�
 strategy ψ ∈ Ψ(M) is de�ned

as:

Aψ =
H(X1, · · · ,XN |Θ)

logN !
, (23)

where for any pair of random ve
tors X,Y, H(X|Y) is the 
onditional entropy.

Shannon 
onditional entropy was proposed as a measure of anonymity in [77℄.

Sin
e then, it has been used to design optimal mixing strategies [78�80℄ and 
hara
-

terize fundamental relationships between anonymity and network resour
es [35,81,82℄.

In an N−sour
e, N−destination system, the total number of permutations of sour
e-

destination pairings possible is N !, and for any strategy ψ, the un
ertainty H(X1, · · · ,

XN |Θ) ≤ logN ! [83℄. This maximum is a
hieved, if from Eve's perspe
tive, ev-

ery sour
e is equally likely to be 
ommuni
ating with ea
h destination. Likewise, an

un
ertainty H(X1, · · · , XN |Θ) = 0 indi
ates that Eve 
an perfe
tly identify the desti-

nation 
orresponding to ea
h sour
e. As per equation (23), the normalized anonymity

is bounded as 0 ≤ A ≤ 1. In general, Eve's probability of error in identifying sour
e

destination pairs in
reases with A (see Fano's inequality, [83℄) whi
h provides the

tangible 
onne
tion between the metri
 and the �a
tion� of the adversary.

Delay: In our model, there are two sour
es of laten
y:

1) Transmission delay that o

urs on ea
h link represented by dX,Y where (X,Y ) ∈ E

whi
h is the delay in
urred by ea
h pa
ket on its transmission from node X to node

Y .

2) Delay in
urred by pa
kets at an anonymous relay M i
j , denoted by dM i

j
, should the

sour
e of the pa
kets 
hoose to have its stream padded by relay M i
j . The average

delay for the network abstra
tion 
an be expressed as linear fun
tion of the relay

sele
tion and anonymization parameters:

D̄ =
1

rtot

∑

Si∈S

ri(dSi,Ri(1)
+ ISi,Ri(1)

dRi(1)
+ dRi(1),Ri(2)

+

ISi,Ri(2)
dRi(2)

+ dRi(2),Ri(3)
+ ISi,Ri(3)

dRi(3)
+ dRi(3),Di

), (24)

where rtot =
∑

i ri.
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Delay Anonymity Tradeo�: The primary 
hallenge we investigate in this work

is the tradeo� between anonymity and laten
y. That su
h a tradeo� exists is amply

evident from the the single anonymous relay system dis
ussed in the introdu
tion (see

Figure 1). In the six relay abstra
tion we 
onsider, this tradeo� is a fun
tion of the


hoi
es made by the sour
es. Although ea
h sour
e is liable to have an individual

preferen
e for the degree to whi
h performan
e 
an be traded for anonymity, in our

work, we assume all the users in a single abstra
tion have similar preferen
es for the

operating point on the tradeo� 
urve. We model this preferen
e using a weighting

parameter 0 ≤ α ≤ 1, where the sour
es desire to maximize the weighted sum αA−

(1 − α)D̄. An α 
lose to zero would indi
ate that the sour
es desire less laten
y,

whereas an α 
lose to 1 would indi
ate that they desire high anonymity. Our goal

is to study the joint optimization of the relay sele
tion parameters {Ri} and the

anonymization parameters {Ai} su
h that this weighted sum is maximized for any


hosen α.

A summary of notations in this paper is presented in Table1.

5.2 Anonymity Optimal Relay Sele
tion

For �xed relay sele
tion parameters {Ri} and anonymization parameters {Ai}, the

network may be represented as shown in Figure 11a, where dotted edges represent

links whi
h are not padded with dummy transmissions and solid edges represent

padded links. If an in
oming tra�
 stream is not padded, Eve 
an identify the 
or-

responding outgoing edge using timing analysis. In 
ontrast, if at least two in
oming

links are padded, then the 
orresponding outgoing edges will have identi
al timing pat-

terns and are thus indisinguishable to Eve. Ea
h of these padded outgoing links will

have an identi
al pa
ket rate equal to the maximum in
oming rate amongst the 
orre-

sponding in
oming links; whereas the rate of unpadded links will remain un
hanged.

Sin
e an unpadded outgoing link 
an be mat
hed to an in
oming link perfe
tly and

in
urs no overhead, removing the dotted links and 
onne
ting them to the subsequent

anonymous relay on their path will not 
hange the analysis of anonymity and dummy

rate in the network (See Figure 11b). Therefore, it is su�
ient to merely 
onsider the

anonymized links in the network's graph (See Figure 12).

For a given 
hoi
e of relay sele
tion and anonymization parameters, we de�ne

three sets of 
ounting variables. l
M

i1
j ,M

i2
j

denotes the number of padded links from

the anonymous relay M i1
j to the anonymous relay M i2

j , ls,M i
j
denote the number of

sour
es requesting the anonymous relay M i
j to be the �rst anonymous relay on its

44



route whi
h anonymize their streams by padding, and the variable lM i
j ,d

denotes the

number of padded links from the anonymous relay M i
j to the destinations whi
h are

not padded any further downstream. These parameters are de�ned mathemati
ally

as follows:

ls,d =
∑

u

1(Au = (0, 0, 0))

lsM i
j
=

∑

u:Ru(j)=M i
j

1(Au(j) = 1, k < j : Au(k) = 0)

lM i
j ,d

=
∑

u:Ru(j)=M i
j

1(Au(j) = 1, k > j : Au(k) = 0)

lM i
j ,M

l
v
=

∑

u:Ru(j)=M i
j ,Ru(v)=M l

v

1(Au(j) = Au(v) = 1,

j < k < v : Au(k) = 0)

where 1 is the indi
ator fun
tion (1(σ) = 1 if σ is TRUE and 0 otherwise). Sin
e

padding a set of in
oming streams results in the 
orresponding outgoing streams to

have identi
al timing patterns, the anonymity a
hieved by a parti
ular 
hoi
e of relay

sele
tion and anonymization parameters 
an be expressed as a fun
tion of the 
ounting

variables de�ned above.

We note that, only a subset of possible 
hoi
es of relay sele
tion and anonymiza-

tion parameters are feasible, owing to the bandwidth 
onstraints at the anonymous

relays. Prior to 
hara
terizing the a
hieved anonymity, we shall derive the ne
essary


onditions for the relay sele
tion and anonymization parameters to satisfy ea
h anony-

mous relay's bandwidth 
onstraint and subsequently 
hara
terize the anonymity for

feasible parameters. We de�ne the variables rM i
j
to be the rate of pa
kets on ea
h of

the links padded by the anonymous relay M i
j derived as follows:

rM i
j
= max{ max

l=1,2,k<j
{rM l

k
1(lM l

k
,Mu

j
6= 0)},

max
Si:k<j:Ai(k)=0,Ri(j)=Mu

j

{ri}}

The above rate is 
hara
terized assuming that the transmission of dummy pa
kets

is merely due to the in
oming rates of pa
ket streams being di�erent. In general

there is an additional overhead that is inverse quadrati
ally related to the maximum

in
oming rate whi
h is not expli
itly 
onsidered for the mathemati
al portions, but

is used in the numeri
al se
tions. This di�eren
e is shown in Figure 13, where we


onsidered a single anonymous relay and four pa
ket streams whi
h have heavy tail
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Figure 12: The networks graph after removing the unpadded outgoing links. (The

dashed lines represents the variables de�ned in Lemma 5.1)

tra�
 distribution. The rate of dummy transmission required for the streams are

shown as fun
tion of the anonymous relay's allowable delay. As is observable, as long

as the allowed delay at the relay ex
eeds a 
ertain threshold this additional overhead

is negligible. Assuming the allowable delay is in the negligible overhead region, we


an express the rate of dummy transmissions padded for ea
h sour
e as:

rSi

Du = max
j
{rRi(j)1(Ai(j) 6= 0)} − ri (25)

The bandwidth 
onstraint of ea
h anonymous relay Mu
j ∈ M will restri
t the relay

sele
tion and anonymization parameters:

∑

Si:Ri(j)=Mu
j

1(k < j : Ai(k) = 0)ri +
∑

l,k<j

r
Ml

k
l
Ml

k,M
u
j
≤ BMu

j

In the rest of this paper, we denote the relay sele
tion parameters {Ri} and anonymiza-

tion parameter{Ai} feasible if they satisfy the bandwidth 
onstraints.

Assuming the relay sele
tion and anonymization parameters satisfy the bandwidth


onstraints, 
omputation of the a
hieved anonymity requires a 
ounting of all possible

sour
e destination pairings that 
ould result in the observed set of pa
ket streams from

Eve's perspe
tive. Considering the network shown in Figure 12 where all the links are

padded, we are interested to �nd the destinations Djs that a spe
i�
 sour
e Si may
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.


ommuni
ate with. Let's 
onsider three di�erent 
ases for sour
e Si: 1) If sour
e Si

enters the network using the anonymous relay M1
3 , then it is surely 
ommuni
ating

with one of the destinations 
onne
ted to M1
3 . 2) If sour
e Si enters the network

using the anonymous relay M1
2 , then it is surely 
ommuni
ating with one of the

destinations 
onne
ted to M1
2 or M1

3 or M2
3 . 3) If sour
e Si enters the network

using the anonymous relay M1
1 , then it 
annot 
ommuni
ate with the destinations


onne
ted to the anonymous relay M2
1 .

Thus, we 
onsider six sets of sour
es: ls,M1
1
, ls,M2

1
, · · · , ls,M2

3
, where all the sour
e

belonging to any of these sets 
an 
ommuni
ate with the same set of destinations

dis
ussed above. In order to 
ount all the possible 
ommuni
ating sour
e- destination

pairs, we need to exhaustively delineate the viable 
ases by every sour
e. Considering

ls,M1
1
sour
es 
onne
ted to the anonymous relayM1

1 , we have lM1
1 ,d

out of ls,M1
1
sour
es

whi
h 
ommuni
ate with the destinations dire
tly 
onne
ted to M1
1 , we may have i1

sour
es whi
h 
ommuni
ate with the destinations dire
tly 
onne
ted toM1
2 , i2 sour
es


ommuni
ate with the destinations dire
tly 
onne
ted toM2
2 , i31+i32+lM1

1 ,M
1
3
sour
es

whi
h 
ommuni
ate with the destinations 
onne
ted to M1
3 (i31 sour
es through the

path (M1
1 ,M

1
2 ,M

1
3 ), i32 sour
es through the path (M1

1 ,M
2
2 ,M

1
3 ), and lM1

1 ,M
1
3
through

47



the path (M1
1 ,M

1
3 )), and the rest of sour
es will 
ommuni
ate with the destinations


onne
ted to M2
3 . We also de�ne the variables j1, j2, j31, j32 for the sour
es belong

to ls,M2
1
in the same way. On
e these variables are �xed, the number of sour
es

from the other four sets 
ommuni
ating with ea
h set of destinations is known. For

example, number of sour
es from the set ls,M1
2

ommuni
ating with the destinations


onne
ted to M1
2 will be lM1

2 ,d
− i1− i2. We note that the quantities i1, i2, · · · will be

restri
ted by some of the graphs stru
ture parameters. For instan
e i1 
an not ex
eed

min{lM1
1 ,M

1
2
, lM1

2 ,d
}. Through an exhaustive 
ounting of all s
enarios and 
onsidering

the 
onstraints on the variables i1, i2, · · · , the a
hieved anonymity as a fun
tion of

variables lX,Y is expressed in the following lemma:

Lemma 5.1 For a �xed feasible set of route sele
tion parameters {Ri} and anonymiza-

tion parameters {Ai}, the a
hieved anonymity 
an be expressed as follows:

A =
log(C

∏2
i=1

∏3
j=1 lMj

i ,d
!)

log(N !)
, where

C =
∑

ζi1≤i1≤ǫi1 ,

ζi2≤i2≤ǫi2

∑

ζi31≤i31≤ǫi31 ,

ζi32≤i32≤ǫi32

∑

ζj1≤j1≤ǫj1 ,

ζj2≤j2≤ǫj2

∑

ζj31≤j31≤ǫj31 ,

ζj32≤j32≤ǫj32

1

Norm(i31, i32)

(

lS,M1
1

lM1
1 ,D

, i1, i2, i31 + i32 + lM1
1 ,M

1
3

)

1

Norm(j31, j32)

(

lS,M2
1

lM2
1 ,D

, j1, j2, j31 + j32 + lM2
1 ,M

1
3

)

(

lS,M1
2

lM1
2 ,D
− i1 − j1, lM1

2 ,M
1
3
− i31 − j31

)

(

lS,M2
2

lM2
2 ,D
− i2 − j2, lM2

2 ,M
1
3
− i32 − j32

)

, (26)

where ǫi1 , ζi1 denotes the maximum and minimum number of sour
es 
onne
ted di-

re
tly to M1
1 (lS,M1

M
) whi
h 
an 
ommuni
ate with the destinations 
onne
ted to M1

2

(lM1
2 ,D

), and so on (the boundaries and 
onstant are spe
i�ed in the appendix) and

Norm() is a normalization 
onstant.

Proof: In order to �nd the anonymity we need to 
ount all the possible pairs of

sour
e-destination whi
h may 
ommuni
ate. For this purpose, we will 
ount all the


ases whi
h may o

ur to ea
h group of l
s,Mj

i
. We divide the sour
e of group lM1

1
to

5 groups:1) lM1
1 ,d


ommuni
ating with the destinations lM1
1 ,d

. 2) i1 
ommuni
ating

with the destinations lM1
2 ,d
. 3) i2 
ommuni
ating with the destinations lM2

2 ,d
. 4)
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i31 + i32 + lM1
1 ,M

1
3

ommuni
ating with the destinations lM1

3 ,d
. 5) The rest of sour
es

ls,M1
1
− lM1

1 ,d
− i1 − i2 − i31 − i32 − lM1

1 ,M
1
3
are 
ommuni
ating with lM2

3 ,d
.

j1, j2, j13, andj23 are also de�ned in the same manner. On
e all of these quantities

are �xed. The number of sour
es whi
h may 
ommuni
ate from ls,M1
2
or ls,M2

2
to

the other sets of destinations are identi�ed. For example number of sour
es from

ls,M1
2
to lM1

2 ,d
will be equal to lM1

2 ,d
− i1 − j1. Considering the 
onstraint on ea
h of

the quantities i1, i2, i31, i32 and j1, j2, j31 + j32, we 
an 
ount all the possible pair of

sour
e-destination whi
h may 
ommuni
ate. However, we should noti
e that there

are 
ases where i31+ i32+ lM1
1 ,M

1
3
and j31+ j32+ lM2

1 ,M
1
3
are �xed and 
ounted several

times in our summation. Thus, by de�ning the Norm fun
tion whi
h 
ounts this

redundan
y for the �xed i31 + i32 + lM1
1 ,M

1
3
and j31 + j32 + lM2

1 ,M
1
3
, we eliminate the

redundant 
ases. �.

The anonymity 
hara
terized in Lemma 5.1 is at most equal to 1 whi
h o

urs

when given an observation of the timing pro
esses on all the links, every sour
e desti-

nation pairing is equally likely. We �nd 
onditions on the 
hoi
es of parameters {Ri}

and {Ai} su
h that this maximum anonymity is a
hieved. Note that it is not su�
ient

merely for all relays to pad all outgoing streams to a
hieve maximum anonymity. For

instan
e, if half the sour
es 
hoose a parti
ular sequen
e of relays, and the remaining


hoose a mutually ex
lusive sequen
e, then the a
hieved anonymity would be at most

1
2 .

Theorem 5.2 The feasible relay sele
tion parameters {Ri} and anonymization pa-

rameters {Ai} yields in optimal anonymity if they satisfy the following 
onditions:

C1 : ∀X ∈ ME,∀Y ∈ MQ : lX,d = ls,Y = lX,Y = ls,d = 0

C2 : ∀Z,Z
′ ∈ MM : 1(ls,Z 6= 0, lZ′,d 6= 0) = 0

C3 : ∀Z ∈ MM : lZ,M1
3
, lZ,d ≤

lM1
1,Z

+ lM2
1,Z
, lM1

1,Z
+ ls,Z, lM2

1,Z
+ ls,Z (27)

Proof: We need to �nd su�
ient 
onditions su
h that all N ! possible 
ommuni
at-

ing pairs of sour
e-destination {(Si,Dj)} are possible in Eve's perspe
tive whi
h are

derived as:

-Condition C1: It is straightforward that ls,d should be zero, otherwise Eve 
an as-


ertain the destination of these sour
es perfe
tly and the maximum number of pos-

sible 
ommuni
ating pairs will be less than (N − ls,d)! whi
h does not yield optimal

anonymity. If lM1
1 ,d
6= 0, Eve 
an as
ertain that the sour
es whi
h use M2

1 as their
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entry guard and request it to anonymize their stream will not 
ommuni
ate with the

destinations dire
tly 
onne
ted to M1
1 (in the graph shown in Figure 12). If ls,M i

3
6= 0,

Eve 
an as
ertain that these sour
es will 
ommuni
ate with destinations 
onne
ted

to M i
3. If lM i

1,M
j
3
6= 0, then, Eve 
an infer that there are l

M i
1,M

j
3
of sour
es whi
h use

M i
1 as entry guard that will 
ommuni
ate with the destinations 
onne
ted to M j

3 .

-Condition C2: If ls,M1
2
6= 0, lM2

2 ,d
6= 0, then Eve as
ertains that that the sour
e belongs

to ls,M1
2
will not 
ommuni
ate with the destinations 
onne
ted dire
tly to M2

2 (lM2
2 ,d

).

-Condition C3 is obtained by applying the Chu-Vandermonde identity assuming 
on-

ditions C1, and C2 hold. �.

Theorem 1 gives su�
ient 
onditions to a
hieve maximum anonymity. As 
an

be observed from the 
onditions, in order to a
hieve maximum anonymity, it is not

ne
essary for all sour
es to request all the three anonymous relays in its route sequen
e

to pad their streams. Nevertheless, the anonymity is a
hieved at the 
ost of additional

delay. Any 
hoi
e of parameters that satisfy these 
onditions would maximize the

weighted reward αA− (1− α)D̄ merely for α = 1.

5.3 Delay Anonymity Trade-o�

That a tradeo� exists between the a
hieved anonymity and the delay 
aused by

intermediate nodes padding the streams is easy to understand. Although, it may

not seem straightforward, there is also a tradeo� between the a
hieved anonymity

and the laten
y 
aused by the transmission delay between the nodes. For exam-

ple, 
onsider a network with four sour
es where ea
h sour
e 
hooses its relay se-

le
tion parameters based on the minimum laten
y 
aused by the delay between

the nodes and all anonymization parameters are set (1, 1, 1). Assume that due to

bandwidth 
onstraints, ea
h anonymous relay 
an serve no more than two streams.

Then, without loss of generality,we may assume R1 = R2 = (M1
1 ,M

1
2 , M

1
3 ) and

R3 = R4 = (M2
1 ,M

2
2 ,M

2
3 ). Su
h 
hoi
e of relay sele
tion and anonymization parame-

ters yields minimum laten
y 
aused by the delays between the nodes, and anonymity

equal to

log(2!∗2!)
log(4!) whi
h is far less than the optimal anonymity. If the network is

willing to in
rease the laten
y by 
hanging the parameters of sour
es S2 and S3 to

R2 = (M1
1 ,M

2
2 ,M

1
3 ), and R3 = (M2

1 ,M
1
2 ,M

1
3 ), respe
tively, whi
h yields in higher

laten
y, the optimal anonymity will be a
hieved.

In the six relay abstra
tion, the average delay of the network was de�ned in

equation (24) as a linear fun
tion of relay sele
tion and anonymization parameters.

As mentioned in Se
tion 5.1, we model the preferen
e of all the sour
es on the delay
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anonymity tradeo� 
urve by the weighting parameter 0 ≤ α ≤ 1. In order to �nd the

optimal trade o� between anonymity and the average delay we need to �nd the relay

node sele
tion and 
ontrol whi
h maximizes the weighted sum of anonymity and delay

whi
h is αA− (1−α)D̄. This 
an be expressed as the following integer programming

problem:

Φ : max
(R1,··· ,RN ,A1,··· ,AN )

αA− (1− α)D̄, (28)

where {Ai} and {Ri} are feasible solutions. Note that the integer programming

problem as stated above with a non-
onvex metri
 is np−hard and in order to �nd

the optimal anonymity delay tradeo� region, a 
omputational solver needs to sear
h

among all feasible parameters whi
h yields in O(2N ) sear
h points. This is impra
ti
al

parti
ularly if the algorithm would have to be implemented in real time. We therefore

present a suboptimal heuristi
 whi
h requires only O(N) sear
h points to 
hara
terize

the delay anonymity tradeo� region (whi
h sweeps a
ross the domain of α from 0 to

1).

5.3.1 Suboptimal Delay Anonymity Region

The main idea behind the suboptimal algorithm to 
ompute the delay-anonymity

tradeo� is as follows. Assume all the anonymization parameters are zero, i.e. ∀Si ∈ S :

Ai = (0, 0, 0). For ea
h sour
e Si, we have the sequen
e (d
1
i , R

1
i ), (d

2
i , R

2
i ), · · · , (d

8
i , R

8
i )

whi
h are the sorted delays of ea
h routes for the sour
e Si su
h that d1i is the least

delay for sour
e Si and R
1
i is the relay sele
tion parameter for sour
e Si whi
h has the

delay d1i (We note that dji is the laten
y 
aused by the transmission time between nodes

and does not in
lude the delay by the intermediate nodes). The route sele
tion Ri =

R1
i and anonymization parameter Ai = (0, 0, 0) yields in the delay optimal point A∗

0 =

0, D̄∗
0 . The algorithm works by in
rementally altering the relay sele
tion parameters

from this minimum delay setup until the maximum possible anonymity is a
hieved.

Spe
i�
ally, at ea
h iteration, the algorithm sear
hes for a 
hange in either an element

of a sour
e anonymization parameter or 
hanging the route of one of the sour
es whi
h

yields in the least in
rease in delay. If this least in
rease is a

omplished through a


hange in an anonymization parameter, then the resulting in
reased anonymity and

delay are re
orded, and the algorithm moves to the subsequent iteration. If instead,

the least delay in
rease is an out
ome of a route 
hange, the algorithm veri�es if indeed

the anonymity has in
reased. If so, then the values and parameters are re
orded. If

not, then this sele
tion is dis
arded and the algorithm moves on to the 
hoi
e that
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results in the next lowest delay in
rease to repeat this pro
ess. Thus the algorithm, at

every su

essful iteration re
ords a 
hoi
e of parameters R1, · · · , RN , and A1, · · · , AN ,

and the 
orresponding anonymity and average delay A(R1, · · · , RN , A1, · · · , AN ), and

D̄(R1, · · · , RN , A1, · · · , AN ), respe
tively. The set of these re
orded pairs delineates

the 
omplete tradeo� (suboptimal). At every iteration, sin
e only one parameter is


hanged, the 
omplexity is linear in the number of nodes (O(N) per point on the

tradeo�. In the following we provide a bound on the di�eren
e between the optimal

and suboptimal tradeo�s and in Se
tion 5.4 we demonstrate numeri
ally that the

performan
e of this algorithm is 
lose to that of the exponential 
omplexity optimal

sear
h.

Algorithm 2 Suboptimal Algorithm for delay anonymity region

1: For i=1:N

2: Ri ← R1
i , Ai = (0, 0, 0)

3: Endfor

4: Z ′ = sort(r1, r2, · · · , rN ), Z = [Z ′ Z ′ Z ′], U = 0, q = 1
5: F = {R1

1, · · · , R
8
1, · · · , R

1
N , · · · , R

8
N}

6: AU ← A(R1, · · · , RN , A), D̄
U ← D̄(R1, · · · , RN , A)

7: j, o = argminRk
i ∈F
{ri(d(R

k
i )− d(Ri))}

8: If dMZ(q) < rj(d(R
o
j )− d(Rj)) and q ≤ 3N

9: Ai(⌈
q
N ⌉) = 1,

10: AU ← A(R1, · · · , RN , A), D̄
U ← D̄(R1, · · · , RN , A)

11: U=U+1, q=q+1, go to 6.

12: Elseif A(R1, · · ·R
o
j , · · · , RN , A) > A(R1, · · · , RN , A)

13: F = F/Roj , Rj ← Roj
14: AU ← A(R1, · · · , RN , A), D̄

U ← D̄(R1, · · · , RN , A)
15: U=U+1, go to 6

16: Elseif F 6= ∅
17: F = F/Rj , go to 6
18: Endif

Let the delay 
onstraint of ea
h anonymous relay be d, and B be the maximum

number of streams that 
an be served by a single relay. Then, the following theorem

provides an upper bound on the performan
e loss due to suboptimality. Note that

these assumptions are for the sake of presentation simpli
ity and the bound 
an be

easily derived for the general 
ase.

Theorem 5.3 If A∗(α) and D̄∗(α) are the optimal anonymity and average delay for

weighting fa
tor α, then, suboptimal algorithm (Asub(α), D̄sub(α)) ensures the perfor-
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man
e bounded as follows:

[αA∗(α)− (1− α)D̄∗(α)] − [αAsub(α)−

(1− α)D̄sub(α)] ≤
log(N)

log(N !)
+

δ
d

1 + 1
3(1−B/N)d

, (29)

where δ = max
1≤k≤N,1≤j≤7

{dj+1
k − djk}.

Proof: Let's de�ne a(i) = log(i!)
log(N !) . The following lemma presents the minimum

number of padded links required to a
hieve anonymity a(i).

Lemma 5.4 The minimum number of padded links required in order to a
hieve

anonymity a(i) is

m(i) =

{
i if i ≤ B
i+ 3(i −B) if i > B

Proof: If i ≤ B, one anonymous relay 
an perform link padding for all i sour
es.

When i > B, if the network served only i sour
e-destination pairs, then the 
onditions

in Theorem 1 for maximum anonymity redu
e to the expression in the Lemma. When

the number of sour
e-destination pairs is in
reased to N, this expression would serve

as a lower bound on the number of padded links. �.

For a �xed α, there exists i su
h that a(i) ≤ A∗(α) ≤ a(i+1). By using the result of

Lemma 2, it is straightforward to 
he
k that:

D̄∗(α) ≥
m(i)d

N
+ D̄∗

0 , D̄(i) (30)

where D∗
0 is the delay of the shortest path in the algorithm. 1)If i ≤ B, then,

suboptimal algorithm 
hanges at most B−N/2 routes and pads m(i) links to a
hieve

Asub(α) = a(i) and

D̄sub(α) ≤ D̄(i) +
(B − N

2 )δ

N
(31)

Using inequalities (30) and (31),

α[A∗(α) −Asub(α)] ≤ α[
log((i+ 1)!)

log(N !)
−

log(i!)

log(N !)
] ≤

log(N)

log(N !)
, D̄∗(α)− D̄sub(α) ≥

(B − N
2 )δ

N
(32)

2)If i > B, suboptimal algorithm 
hanges at most 3(i − B) routes and pads exa
tly

m(i) links to a
hieve Asub(α) = a(i) and

D̄sub(α) ≤ D̄(i) +
3(i−B)δ

N
(33)
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Using inequalities (30) and (33),

α[A∗(α)−Asub(α)] ≤
log(N)

log(N !)

D̄∗(α) − D̄sub(α) ≥
3(i −B)δ

N
(34)

Moreover, using the fa
t that αA∗(α)− (1− α)D̄∗(α) > −(1− α)D̄∗
0 and A∗ ≤ 1, we


an upper bound 1− α as:

1− α ≤
1

1 + (D̄∗ − D̄∗
0)
≤

1

1 + m(i)d
N

(35)

Combining (32), (34), and(35) provides the bound. �.

The performan
e of suboptimal algorithm improves as B in
reases whi
h is intu-

itive as for larger B, number of 
hanges in routes de
reases. For example, if B = N ,

suboptimal algorithm just needs to 
hange at most N/2 routes su
h that all N sour
es

are using at least one 
ommon anonymous relay and this relay is the only relay per-

forms link padding.

5.3.2 In
remental Optimization

The algorithms des
ribed thus far are joint optimization s
hemes where relay sele
tion

and 
ontrol parameters are 
hosen for all sour
es together. In pra
ti
e, users arbi-

trarily join the system, and 
onsequently, we propose an in
remental me
hanism that

merely requires ea
h arriving sour
e to obtain numeri
al information from routers

to 
ompute the optimal route and anonymization parameters. We will show that if

an existing system is anonymity optimal then a new arriving user 
an maintain that

optimality. We assume the new user wants to join the system, has the equal (or

agreeably 
lose to) preferen
e parameter α to its own. To minimize the bandwidth

draw of dependent link padding, it is bene�
ial if users in this network have data

rates that are 
lose to ea
h other, thus limiting network 
ongestion. For a new user

who wishes to join the network, the following in
remental optimization needs to be

solved to �nd his optimal parameters assuming the 
hoi
es for the existing nodes are

undisturbed.

Assume we have the system with N users and for a spe
i�
 0 ≤ α ≤ 1, the

value of the optimal in
remental optimization are AincN and D̄incN and the solution is

denoted by RNinci . When the new user is added, we want to maximize the value of
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αAincN+1−(1−α)D̄
inc
N+1. We therefore express the new optimization problem as follows:

Γ : max
RN+1

αAincN+1 − (1− α)D̄incN+1

Subje
t to: ∀1 ≤ i ≤ N : Ri = RNinci , Ai = ANinci

This is a simple integer programming problem due to the division of the whole systems

into sub-systems and the sear
h is over 16 possible solutions and identifying the 
hoi
e

that maximizes αAincN+1 − (1 − α)D̄incN+1. Thus, whenever a new user wants to enter

the network AincN+1 − (1 − α)D̄incN+1 is 
omputed for ea
h of the possible routes and

anonymization parameter, and then the route 
orresponding to the maximum value

is sele
ted. Although an in
remental optimization to add a user to an optimal system

need not be a jointly optimal solution for all users, in the following Lemma, we show

that in the maximum anonymity s
enario, where α = 1, in
remental optimization will

always yield in the jointly optimal solution.

Lemma 5.5 If α = 1, and the existing route sele
tion for the existing users is

anonymity optimal, then the in
remental optimization will also yield in an anonymity

optimal solution for all N + 1 users.

Proof: As α = 1 and delay is not the preferen
e, we assume all the 
urrent sour
es

and the new sour
e has anonymization parameter equal to (1, 1, 1). If AincN = 1 holds,

based on Theorem 1, we have lM1
1 ,M

1
2
(N), lM2

1 ,M
1
2
(N) ≥ lM1

2 ,M
1
3
(N), and lM1

1 ,M
2
2
(N),

lM2
1 ,M

2
2
(N) ≥ lM2

2 ,M
1
3
(N). If these inequalities are stri
t, then adding the new route to

any eight 
andidates yields in optimal anonymity, as all the {lX,Y (N+1)} will satisfy

the 
onditions of Theorem 1. If at least one of these inequalities holds with equality,

then adding the new user to the route for whi
h equality holds again satis�es the

new inequalities of Theorem 5.2, while also satisfying the bandwidth 
onstraint as it

is added to the route whi
h has lighter tra�
. Let's assume both of them hold with

equality, ie lM1
1 ,M

1
2
(N) = lM2

1 ,M
1
2
(N) = lM1

2 ,M
1
3
(N) = x, then the new route 
an be

added to the route M1
1 ,M

1
2 ,M

2
3 or M2

1 ,M
1
2 ,M

2
3 , then the new parameters will again

satisfy the 
ondition of Theorem 1, and it will also satis�es the bandwidth 
onstraint

as it is added to the route whi
h have lighter tra�
. The same s
enario 
an be applied

for the 
ase where all the four inequalities hold with equality. Consequently, we 
an

always add the new users route in a way that ensures AincN+1 = 1 �.
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5.4 Numeri
al Results and Simulations

In our simulations, using the model proposed in [84℄, we simulated users' streams by

heavy tailed distributed tra�
. Even though the analyti
al results thus far assume

that the delay 
onstraint does not 
ause overhead, in our numeri
al simulations we


ompute the true rate of dummy transmissions required for heavy tailed distributed

tra�
.

Spe
i�
ally, using the heavy tail tra�
 model, we simulated the network 
onsisting

six anonymous relays, six sour
es with average rate of 10 pa
kets/se
ond for all the

feasible sets of anonymization and relay sele
tion parameters in time period of [0, 100]

se
onds. We assumed ea
h anonymous relay has delay 
onstraint equal to 0.3 se
onds

(to be in quadrati
 region) and bandwidth 
onstraint equal to 36 pa
kets/se
onds.

The dummy rate, average pa
ket delay(
aused by anonymous relays), and anonymity

is plotted for all the feasible solutions in Figure 14. The simulation starts with zero

anonymization parameters whi
h yields in zero anonymity, dummy rate, and average

delay. Ea
h jump in the plot shows a 
hange in anonymization parameters, and the

swings in ea
h of these regions are 
aused by 
hanging the relay sele
tion parameters.

While theorem 5.3 ensures that the performan
e of suboptimal algorithm in the

six relay abstra
tion model is bounded by (29), in Figure 15, we simulated our sub-

optimal algorithm on a more general network whi
h 
onsists eight anonymous relays

and six pairs of sour
e-destination. Ea
h sour
e may 
hoose any multihop path to


ommuni
ate its desired destination and it will de
ide whether any of the anonymous

relays on this path will perform link padding or not. We note that the 
omplexity

of optimal delay anonymity tradeo� in su
h a network is O((|M|!)N2N |M|). Unlike

the six relay abstra
tion, for general networks, a "
losed form" expression for the

anonymity is not likely to exist. The a
hieved anonymity 
an, however, be derived

using re
ursion from N pairs of sour
e-destination to N − 1 pairs. As it is evident in

Figure 15, the delay gap between the optimal solution and suboptimal solution for a

�xed anonymity value is negligible.

Next, we 
ompared the performan
e of suboptimal solution of problem Φ with

the solution of the in
remental optimization problem while number of sour
es are

in
reased from 10 to 19. For the in
remental solution, we start with the suboptimal

solution for 10 sour
es, then, any new sour
es will 
hoose it's relay sele
tion and

anonymization parameters to solve the optimization problem Γ. As it is shown in

Figure 16, the gap between the 
urves de
reases as α in
reases and for α = 1, both
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Figure 14: Anonymity, average delay, and average dummy of six relay network for

di�erent relay sele
tion and anonimization parameters 
onsidering heavy tail tra�


for users.

the 
urves a
hieves the optimal anonymity.
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N # sour
e-

destination

pairs

BM i
j
bandwidth


onstraint

of M i
j

ri arrival

rate of Si

D̄ average

delay of

network

V set of

nodes

Ri relay sele
-

tion param-

eter of Si

rtot
∑N

i=1 ri lX,Y # of

padded

links from

X to Y

E set of

edges

Ai anonymization

parameter

of Si

dM i
j

delay 
on-

straint of

M i
j

dji transmission

delay of

Rji
S set of

sour
es

Xi r.v denotes

destination

of Si

M set of

anony-

mous

relays

D set of des-

tinations

Θ 
omplete

observa-

tion and

knowl-

edge of

Eve

Xij jth anony-

mous relay

on Si's
route

SiDu overhead

dummy

rate of Si

rM i
j
pa
ket

rate on

padded

links of

M i
j

ME,

MM ,

MQ

set of

entry

guards,

inter-

mediate

nodes,

and exit

guards

ISi,

Xij

anonymization

parameter


orrespond-

ing to jth

anonymous

relay on

Si's route

dX,Y transmission

delay

from X to

Y

Rji relay se-

le
tion

parame-

ter of Si
yields jth

shortest

path

Table 1: Notation table
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6 Di�erential Priva
y in Dynami
al Systems and Net-

works

In this 
hapter, we study the design of 
ontrol poli
ies under di�erential priva
y 
on-

straints. Di�erential priva
y was introdu
ed as a tool to provide priva
y in data from

learners and statisti
ians [85℄ provides a point-wise measure on users priva
y (without

Bayesian assumptions). In parti
ular to providing point-wise priva
y, di�erential pri-

va
y is also immune against any side information that an adversary may have. Using

the notation of di�erential priva
y, and for a �x priva
y parameter, we aim to design

optimal 
ontrol poli
ies whi
h a
hieves the weighted sum of maximum rewards. In

the �rst se
tion of this 
hapter, we study di�erential priva
y preserving poli
ies for

Markov De
ision Pro
esses. In the se
ond se
tion, we 
onsider an appli
ation of this

framework in routing, where nodes serve as states of the dynami
al system.

6.1 Inferen
e Resistant Poli
y Design for Markov De
ision Pro-


esses

Markov de
ision pro
esses (MDPs) are a dis
rete time mathemati
al framework for

modeling de
ision making in dynami
 systems. In a 
lassi
al MDP, at ea
h time step,

the system is in some state s, and the 
ontroller de
ides on an a
tion a. Given the


urrent state s, and 
ontroller's a
tion a, the 
ontroller re
eives a reward, and the

state of the system transit to the next state a

ording to a Markovian probability

P (s′|s, a), and the 
ontroller's goal is to maximize the total (dis
ounted) reward over

a �nite or in�nite horizon [17℄. MDPs are widely used in 
yber physi
al systems,

�nan
e, roboti
s, et
. Another important appli
ation of MDP is in reinfor
ement

learning [18℄, where an agent intera
ts with an unknown environment towards maxi-

mizing some obje
tive, and the underlying pro
ess is modeled as an MDP. The main

di�eren
e between a 
lassi
al MDP and reinfor
ement learning is that the latter does

not assume the knowledge of the mathemati
al model of the MDP. In many appli
a-

tions of MDPs, the sequen
e of states (or some fun
tion of the states) are observable

to eavesdroppers. For example, in a wireless network, an adversary 
an a

ess length

of pa
kets [19℄, timing of pa
kets transmitted [20℄, routes of pa
ket �ow over a network

[21℄ and su
hlike by eavesdropping. Using the observations, an adversary 
an infer

about the nature of the MDPs, and 
onsequently obtain sensitive information about

the de
ision making entity. As ma
hine learning algorithms 
ontinually improve the

ability to identify personal preferen
es from seemingly unrelated data, it is 
riti
al
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that sto
hasti
 de
ision making pro
esses be investigated from a priva
y perspe
tive

whi
h is the fo
us of this work.

In this work, we investigate the mathemati
al framework of Markov De
ision Pro-


esses with the obje
tive of limiting adversarial inferen
e of a type of MDP. In par-

ti
ular, as shown in Figure 17, 
onsider two MDPs with identi
al state-a
tion spa
es

but di�ering reward and transition dynami
s. For instan
e, these 
ould represent

user a
tions on a pair of websites. It is well known that sequen
e of 
li
k times or

download sizes 
an reveal whi
h websites are being a

essed even if data transmitted

is en
rypted [22℄. In this 
ontext, if the sequen
e of a
tions or response times were so

designed to maximize user experien
e, then an eavesdropper 
an identify the website

a

essed by performing a hypothesis test on the observations. However, if the a
tions

were so designed su
h that the observations from the pair of websites had near similar

dynami
s, then priva
y of a

ess 
an be preserved. In broader terms, for a pair of

MDPs, if the poli
ies were jointly designed su
h that the observed state dynami
s for

both MDPs were ǫ 
lose to ea
h other in a likelihood sense, then any hypothesis test

between the MDPs would have very limited su

ess. It is pre
isely the joint design of

the poli
ies for a pair of generi
 in�nite horizon MDPs that we 
onsider in this work

su
h that a weighted sum of rewards of the two MDPs are maximized subje
t to an

ǫ-di�erential priva
y guarantee for the observed state dynami
s.

Further, we provide a value iteration method to re
ursively derive the optimal

rewards and the poli
ies for the two MDPs that are di�erentially private at the desired

ǫ level. The proposed method is shown to 
onverge and the 
onvergen
e rate of this

method is proved to be equal to the dis
ount fa
tor.

6.1.1 System Model

In this work, we 
onsider the inferen
e resistant 
ontrol of two Markov De
ision Pro-


esses,M1 andM2. Ea
h MDPMi is represented by a 5-tupleMi = (S,A, ri, Pi, β),

where S = {1, 2, · · · , n} is the set of states and A is the set of a
tions, and 0 ≤ β < 1

is the dis
ount fa
tor, all identi
al for both MDPs. Ea
h ri : S × A → R denotes

the reward fun
tion wherein ri(s, a) is the immediate reward re
eived when the 
on-

troller for MDP Mi 
hooses a
tion a in state s. Pi represents the set of transition

probabilities for MDP Mi su
h that Pi(s
′|s, a) is the probability that the state of

MDP Mi transit to state s′, given the 
urrent state is s, and the 
ontroller i takes

a
tion a. Let's denote the spa
e of all poli
ies for MDP Mi by Πi, su
h that for a

poli
y πi = {π
0
i , π

1
i , · · · } ∈ Πi, π

t
i(a|s) represents the probability of taking a
tion a by
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Figure 17: In our system model, there are two MDPs with the same state and a
tion

spa
es and di�erent transition probabilities and rewards. There is an adversary who

observes a sequen
e of states from one of the MDPs and aims to identify whi
h MDP

the sequen
e belongs to.


ontroller i at time t, given the 
urrent state is s. We also denote the spa
e of joint

poli
ies of MDPsM1 andM2, by Π, where Π = Π1 ×Π2.

In a sto
hasti
 
ontrol problem, in general, poli
ies may be dependent on all the

history of previous states, and a
tions. However, in MDPs, be
ause of their Markovian

property, it is shown that the optimal poli
ies are just dependent on the 
urrent state.

For MDP Mi, if 
ontroller i has the poli
y πi, given the initial state is s, the

dis
ounted reward will be as follows:

V πi
i (s) =

∞∑

t=0

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s}, (36)

In a 
lassi
al MDP, a 
ontroller by 
hoosing a poli
y makes a sequen
e of de
isions

to maximize his dis
ounted reward expressed in equation (36). For ea
h standalone

MDP, it is known that optimal poli
y is stationary and deterministi
, in other words,

the optimal poli
y is a sequen
e of identi
al deterministi
 mapping from state to a
tion

spa
e. If priva
y was not a 
on
ern, then, ea
h MDP 
ould be solved independently

and the optimal stationary poli
y and dis
ounted reward for ea
h standalone MDP 
an
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be derived by methods su
h as value iteration, poli
y iteration, or linear programming

[17℄. However, in the presen
e of an adversary who is trying to identify the MDP,

two 
ontrollers 
ooperate to hide their identity to the adversary while maximizing a

weighted sum of their dis
ounted rewards.

Before, we move forward with the rest of our system model and the te
hni
al

results, we need to de�ne the adversary, and his knowledge.

• Adversary: We 
onsider a passive adversary who is aware of the state spa
e,

a
tion spa
e, transition probabilities and rewards of both MDPs. At any given

time, the adversary observes a sequen
e of states for one of the MDPs and his

goal is to identify whi
h MDP it belongs to. In fa
t, the adversary maps the

sequen
e of states to one of two hypotheses:

H1 : The observed state sequen
e belongs toM1

H2 : The observed state sequen
e belongs toM2

This is a 
lassi
al hypothesis testing problem, where it is known that the optimal

strategy for adversary is to implement a likelihood ratio dete
tor [86℄. For

example, if the adversary observes a sequen
e of states s0, s1, · · · , sT , then, he


omputes the following log-likelihood ratio and de
ides on ea
h hypothesis based

on the log-likelihood ratio:

1

T
l(s0, s1, · · · , sT ) =

1

T
log

Pr(s0, s1, · · · , sT |M1)

Pr(s0, s1, · · · , sT |M2)
=

1

T
log

µπ11,0(s0)
∏T−1
t=0 p

π1
1,t(st+1|st)

µπ22,0(s0)
∏T−1
t=0 p

π2
2,t(st+1|st)

1

T
[log

µπ11,0(s0)

µπ22,0(s0)
+
T−1∑

t=0

log
pπ11,t(st+1|st)

pπ22,t(st+1|st)
]
H1

≥
H2
< 0, (37)

where µπii,t(s) is the stationary distribution of state s, and pπii,t(s
′|s) is the prob-

ability of transiting from state s to state s′ at time t, given the poli
y πi is

applied by the ith 
ontroller. pπii,t(s
′|s) and µπii (s) 
an be derived as follows:

∀s, s′ ∈ S, i = 1, 2 : pπii,t(s
′|s) =

∑

a

πti(a|s)Pi(s
′|s, a)

∀s′ ∈ S, i = 1, 2 : µπii,t(s
′) =

∑

s

µπii,t(s)p
πi
i,t(s

′|s) (38)

If l(.) ≥ 0, then, the optimal dete
tor a

epts H1, else it a

epts H2. By taking
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the limit on equation (37), when T →∞, we have:

lim
T→∞

1

T
l(s0, s1, · · · , sT ) =

∑

(s,s′)

µ(s) log
pπ11 (s′|s)

pπ22 (s′|s)
, (39)

where µ(s) represents the stationary distribution of state s under the true

hypothesis. Note that µ(s) is fun
tion of π1 or π2, depending on the true

hypothesis. The above equation implies that limT→∞
1
T l(s0, s1, · · · , sT ) is a


onvex 
ombination of the terms log
p
π1
1 (s′|s)

p
π2
2 (s′|s)

. Therefore, if for ea
h pair of

(s, s′) and ǫ ≥ 0, we guarantee −ǫ ≤ log
p
π1
1 (s′|s)

p
π2
2 (s′|s)

≤ ǫ, it is assured that

−ǫ ≤ limT→∞
1
T l(s0, s1, · · · , sT ) ≤ ǫ whi
h implies the notion of ǫ-di�erential

priva
y for the normalized log likelihood between pair of MDPs. In e�e
t, by


hoosing an appropriate ǫ, the optimal adversarial inferen
e 
an be made as


hallenging as desired. In other words, if the ǫ-di�erential priva
y is guaranteed

for all transition probabilities (pπ11 (s′|s), pπ22 (s′|s)), then, ǫ-di�erential priva
y is

guaranteed against the adversary who uses the optimum likelihood ratio dete
-

tor.

• ǫ-Di�erential Private Poli
ies: The stru
ture of adversary whi
h was ex-

plained in the previous se
tion motivates us to use di�erential priva
y to guar-

antee that two MDPs will not be dete
table to the adversary. Thus, in order to

guarantee the priva
y, we need to assure that at anytime the transition prob-

abilities between states for both MDPs are ǫ-di�erentially private. We note

that transition probabilities are su�
ient statisti
s for the adversarial dete
tion

problem. Parti
ularly, perturbation bounds in [87℄ 
an be used to guarantee dif-

ferential priva
y on stationary distribution, given that transition probabilities

are di�erentially private.

The following de�nes what makes a pair of poli
ies for the two MDPs ǫ-di�erential

private.

De�nition 6.1 For a �xed ǫ ≥ 0, and transition probabilities P1 and P2, we


all the set Πǫ,P1,P2 ⊂ Π, the set of all ǫ-di�erential private poli
ies, if for all

pairs of poli
ies (π1, π2) ∈ Πǫ,P1,P2, the following 
onditions hold:

∀s, s′ ∈ S and t = 0, 1, · · · : e−ǫ ≤
pπ11,t(s

′|s)

pπ22,t(s
′|s)
≤ eǫ

Moreover, we 
all any pair of poli
ies (π1, π2), pair of ǫ-di�erential private poli-


ies if (π1, π2) ∈ Πǫ,P1,P2.
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Similar to a 
lassi
al MDP, the dis
ounted reward of MDPMi for a �xed poli
y πi,

given the initial state is s is denoted by V πi
i (s), and 
an be derived by equation (36).

Through this paper, we may also 
onsider the ve
tor of dis
ounted rewards as V
πi
i =

(V πi
i (1), · · · , V πi

i (n))T . In a di�erentially private setting, the 
ontrollers 
ooperate to

maximize a weighted sum of their dis
ounted rewards while preserving the di�erential

priva
y 
onstraints. In other words, we aim to derive pair of ǫ-di�erential priva
y

(π1, π2) whi
h maximizes the following dis
ounted reward:

Q(s) = λV π1
1 (s) + (1− λ)V π2

2 (s), (40)

where 0 ≤ λ ≤ 1 is the weighting fa
tor and (π1, π2) ∈ Πǫ,P1,P2 . In other words, the

optimal weighted dis
ounted reward denoted by Q∗
ǫ,λ satis�es the following:

∀s ∈ S : Q∗
ǫ,λ(s) = λV ∗

1,ǫ,λ(s) + (1− λ)V ∗
2,ǫ,λ(s) =

max
(π1,π2)∈(Π×Π)ǫ,P1,P2

λV π1
1 (s) + (1− λ)V π2

2 (s) (41)

6.1.2 MDPs under ǫ-Di�erential Priva
y

In this se
tion, we propose an iterative method to derive the optimal weighted sum of

dis
ounted rewards and optimal ǫ-di�erentially private poli
ies. First, we introdu
e

the mapping Tǫ,λ : R2n → R
2n
, and prove that by applying mapping Tǫ,λ su

essively

on any arbitrary ve
tor in the spa
e of R
2n
, the optimal dis
ounted rewards 
an be

derived.

Let's 
onsider two arbitrary ve
tors V1 = (V1(1), · · · , V1(n))
T
and V2 = (V2(1),

· · · , V2(n))
T
. We de�ne the mapping Tǫ,λ su
h that for (Vnew

1 ,Vnew
2 ) = Tǫ,λ (V1,

V2), we have:

V new
i (s) =

∑

a

q∗i (a|s)[ri(s, a) + β
∑

s′

Pi(s
′|s, a)Vi(s

′)]

where (q∗1 , q
∗
2) is the maximizer of the following linear programming:

Ψ : max
q1,q2

λ
∑

a

q1(a|s)[r1(s, a) + β
∑

s′

P1(s
′|s, a)V1(s

′)]

+(1− λ)
∑

a

q2(a|s)[r2(s, a) + β
∑

s′

P2(s
′|s, a)V2(s

′)]

subje
t to:

∀s, s′ ∈ S : e−ǫ ≤

∑

a q1(a|s)P1(s
′|s, a)

∑

a q2(a|s)P2(s′|s, a)
≤ eǫ

∀s ∈ S :
∑

a

q1(a|s) =
∑

a

q2(a|s) = 1, (42)
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We also de�ne the weighted addition operator Aλ : R2n → R
n
su
h that for Q =

(Q(1), · · · , Q(n))T = Aλ(V1,V2), we have: ∀s ∈ S : Q(s) = λV1(s) + (1− λ)V2(s).

In the following theorem, we prove that for any arbitrary ve
tors V1 and V2,

the sequen
e QK = Aλ(T
K
ǫ,λ(V1,V2)) 
onverges to the optimal weighted sum of

dis
ounted rewards. Moreover, pair of optimal dis
ounted rewards (V∗
1,ǫ,λ,V

∗
2,ǫ,λ)

satis�es a �xed point equation whi
h is similar to Bellman equation.

Theorem 6.1 The following statements hold:

1. ∃V∗
1,ǫ,λ,V

∗
2,ǫ,λ ∈ R

n
su
h that Q∗

ǫ,λ = Aλ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ) = AλTǫ,λ(V

∗
1,ǫ,λ,V

∗
2,ǫ,λ).

2. ∀V1,V2 ∈ R
n : Q∗

ǫ,λ = limK→∞Aλ(T
K
ǫ,λ(V1,V2))

3. Q∗
ǫ,λ is unique.

Proof: Before proving the theorem, in the following lemma, we demonstrate that

mapping Tǫ,λ is monotone. This result while being straightforward, is very 
riti
al for

understanding the �xed point equations and proof of Theorem 6.1.

Lemma 6.2 Consider two ve
tors V = (V1,V2) and V′ = (V′
1,V

′
2) su
h that

Aλ(V1,V2) ≤ Aλ(V
′
1,V

′
2). In other words, for ea
h s ∈ S, we have λV1(s) + (1 −

λ)V2(s) ≤ λV ′
1(s) + (1 − λ)V ′

2(s). Then, for any K > 0, we have AλT
K
ǫ,λ(V1,V2) ≤

AλT
K
ǫ,λ(V

′
1,V

′
2).

Proof: AλT
K
ǫ,λ(V1,V2) derives the optimal weighted sum of dis
ounted rewards of K

�nite horizon problem with terminating rewards λV1(s)+ (1−λ)V2(s). It is straight-

forward that as terminating rewards in
reases in all states, the dis
ounted reward of

K �nite horizon problem in
reases as well. �.

We start by proving the se
ond argument. First, we prove that the sequen
e QK

de�ned by QK = Aλ(T
K
ǫ,λ(V1,V2)) is a Cau
hy sequen
e. In other words, we need to

demonstrate that for ea
h µ > 0 there exists a positive integer Kµ su
h that for ea
h

k1, k2 ≥ Kµ, we have ||Qk1 −Qk2 ||∞ ≤ µ, where ||Qk1 −Qk2 ||∞ = maxs |Qk1(s) −

Qk2(s)|. For a given pair of ǫ-di�erential private poli
ies π1 = {π01 , π
1
1, · · · }, and

π2 = {π
0
2 , π

1
2 , · · · }, and �xed K, we 
an split the rewards of ith MDP to two parts as

follows:

V πi
i (s) =

K−1∑

t=0

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s}+

∞∑

t=K

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s} (43)
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Considering that rewards are bounded, i.e. maxi,s,a |ri(s, a)| ≤ R, we have:

|
∞∑

t=K

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s}| ≤

βKR

1− β
(44)

By 
ombining equation (43) and inequality (44), we 
an derive the following:

λV π1
1 (s) + (1− λ)V π2

2 (s)−
βKR

1− β
≤

λ
K−1∑

t=0

βtEπ1{r1(S
1
t , A

1
t )|S

1
0 = s}+

(1− λ)
K∑

t=0

βtEπ2{r2(S
2
t , A

2
t )|S

2
0 = s}

≤ λV π1
1 (s) + (1− λ)V π2

2 (s) +
βKR

1− β

By taking maximum over all ǫ-di�erential private poli
ies on all sides of above in-

equality, we have:

λV∗
1,ǫ,λ + (1− λ)V∗

2,ǫ,λ − β
KL ≤ AλT

K
ǫ,λ(V1,V2)

≤ λV∗
1,ǫ,λ + (1− λ)V∗

2,ǫ,λ + βKL, (45)

where L = (||Q0||∞ + R
1−β ) and ||Q0||∞ = maxs{λV1(s) + (1 − λ)V2(s)}. In other

words, we have ||AλT
K
ǫ,λ(V1,V2)−Q

∗
λ,ǫ||∞ ≤ β

KL. Using triangle inequality, we have:

||AλT
k1
ǫ,λ(V1,V2) − AλT

k2
ǫ,λ(V1,V2)||∞ ≤ 2βmin(k1,k2)L. Therefore, for any k1, k2 ≥

Nµ = ⌈logβ
µ
2L⌉, we have ||Qk1 −Qk2 ||∞ ≤ µ whi
h proves that the sequen
e Qk is a

Cau
hy sequen
e.

Now, we 
an take limit on all sides of equation (45), when K →∞. Consequently,

we have limK→∞ AλT
K
ǫ,λ (V1, V2) = Q∗

. Moreover, it is evident from equation (45)

that the 
onvergen
e rate of QK is equal to the dis
ount fa
tor β.

Now, we 
an apply mapping Tǫ,λ on all sides of equation (45) and using the

monotoni
ity of Tǫ,λ we have:

AλTǫ,λ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ)− β

K+1L ≤ AλT
K+1
ǫ,λ (V1,V2)

≤ AλTǫ,λ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ) + βK+1L, (46)

Now, by taking the limit whenK →∞, 
ombined with the fa
t that limK→∞ AλT
K+1
ǫ,λ

(V1, V2) = Q∗
ǫ,λ, we 
on
lude that Q∗

ǫ,λ = Aλ(V
∗
1,ǫ,λ, V

∗
2,ǫ,λ) = AλTǫ,λ (V∗

1,ǫ,λ,

V∗
2,ǫ,λ). �.

As a result of Theorem 6.1, we 
an derive the optimal stationary poli
ies whi
h is

presented in the following lemma.
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(a) A graph with 3 sour
e nodes and

2 destination nodes.

(b) Two private routes are shown by

bla
k and blue arrows.

Figure 18: Private Routes in Networked Data Colle
tion.

Corollary 6.2.1 The pair of stationary ǫ-di�erential poli
ies (π∗1, π
∗
2), where π

∗
1 =

{q∗1 , q
∗
1, · · · }, and π

∗
2 = {q∗2, q

∗
2 , · · · } is optimal if (q∗1, q

∗
2) are the poli
ies whi
h solves

the following:

Aλ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ) = AλTǫ,λ(V

∗
1,ǫ,λ,V

∗
2,ǫ,λ) (47)

Using the results of theorem 6.1 and Corollary 6.2.1, we 
an solve for the optimal

ǫ-di�erential private poli
ies for any pair of �nite state MDPs, for any weighted re-

wards. In parti
ular, by starting from an arbitrary ve
tors (V1,V2), and su

essively

applying the mapping Tǫ,λ, the optimal dis
ounted rewards, and subsequently, the

optimal stationary ǫ-di�erential private poli
ies 
an be derived.

6.2 Di�erential Priva
y in Networked Data Colle
tion

In this se
tion, we study the problem of uni
ast and multi
ast routing in networks

under di�erential priva
y 
onstraints. We explain our approa
h using a 
ouple of

examples. Consider the graph shown in �gure 18a. There are some routes from the

sour
e node S1 to the destination node D2 in
luding the shortest path between these

two nodes whi
h travels through S3. If S1 transmits pa
kets through any of these

routes to D2, an eavesdropper observing this route 
an identify the destination of

ea
h pa
ket departing sour
e node S1. If there is overhead routing, priva
y may be

a
hieved, albeit it results in higher 
ost. For example, if the intended destination is

D2, the pa
ket may 
ontinue traveling to D1 as well. In this 
ase, the eavesdropper

will be un
ertain about the intended destination. In �gure 18b, two su
h routes are

shown. The 
ost of the route till the pa
ket arrives it's intended destination may

have higher priority to the 
ost of the rest of route. For example, if the 
ost is

68



representing laten
y, the sour
e will desire less laten
y to it's intended destination

than the other one. Consequently, we assume the 
ost of a route is simply sum of

the 
osts asso
iated with ea
h edge till the pa
ket arrives it's intended destination,

added with sum of the weighted 
osts asso
iated with the other edges on the route.

This weighting fa
tor is denoted by 0 ≤ β ≤ 1. For example the route shown by

bla
k edges will have 
ost 3 + 2β if the intended destination is D2, and 
ost 5 for the


ase that the intended destination is D1. Note that the route represented by bla
k

edges has the minimum 
ost over all su
h routes if the intended destination is D2.

Similarly, the route represented by blue edges has the minimum 
ost over all su
h

routes if the intended destination is D1. If sour
e node S1 always 
hooses the bla
k

route if D2 is intended and blue route if D1 is intended, no priva
y will be provided,

as an eavesdropper 
an identify the intended destination, based on her knowledge

and observation. Consequently, in order to a
hieve some degree of priva
y, the sour
e

should 
hoose a probability distribution over all su
h routes whi
h travels through all

destination nodes. As multi
ast routing is a s
heme to transmit overhead to other

destinations as well, it 
an also be used to provide priva
y for the single intended

destination 
ase. For example, in �gure 19a, a graph with two sour
e nodes and two

destination nodes are represented and two private spanning tree are shown by blue

and bla
k arrows. The tree represented by bla
k arrows minimizes the total 
ost

for the 
ase when D1 is the intended destination and the route represented by blue

arrows minimizes the 
ost for the 
ase when D2 is the intended destination. Similar

to private uni
ast routing, for the sake of priva
y, sour
e S1 
an 
hoose a probability

distribution over all su
h spanning trees su
h that the weighted 
ost is minimized

subje
t to the priva
y requirements..

6.2.1 System Model

We model the network by a graph G = (V,E), where V = S
⋃
D is the set of verti
es,

and E is the set of dire
ted edges. The set V is union of two sets: S = {S1, · · · , SN}

whi
h is set of sour
e nodes, and D = {D1, · · · ,DM} whi
h is set of destination nodes.

We assume that the set D is given; in a broader 
ontext, the sour
e needs to de
ide

the grouping of destinations that would balan
e the overhead 
osts with the desire for

priva
y. Ea
h edge (i, j) ∈ E of the network 
orresponds to a 
ost ci,j . If priva
y was

not a 
onsideration, ea
h sour
e would �nd the shortest path (minimum total 
ost

of edges) to ea
h destination and transmit pa
kets through the respe
tive paths. To

provide priva
y, we propose that a pa
ket whi
h departs sour
e Si to any destination

69



(a) A graph with 2 sour
e nodes and

2 destination nodes.

(b) Two private spanning tree are

shown by bla
k and blue arrows.

Figure 19: Private Spanning Trees.

Dj ∈ D will ne
essarily travel through all other destinations in D as well. Intuitively,

as the number of spanned destinations in
reases eavesdropper's un
ertainty about the

intended destination will in
rease, albeit in 
ost of higher average 
ost.

• Uni
ast Private Routing: Let's denote the set of private routes for a sour
e

Si ∈ S by RSi
whi
h is the set of all the routes in the graph that start at node

Si and 
ontains all nodes in D. A private route r ∈ RSi

an be expressed as a

sequen
e of nodes r = (Si,M
r
Si,Djr

1

,Djr1
,M r

Djr
1
,Djr

2

,Djr2
, · · ·Djr

M
), whereM r

X,Y is

the sequen
e of sour
e nodes between node X and node Y in route r. For exam-

ple, in Figure 20 where there are two destinations D1 and D2, a route r ∈ RS1

is shown by a red 
urve whi
h 
an be written as r = (S1, S4,D2, S2, S4, S7,D1).

Note that in this 
ase M r
S1,D2

= (S4), M
r
D2,D1

= (S2, S4, S7), Djr1
= D2, and

Djr2
= D1. The 
orresponding 
ost of private route r if the intended destination

is Dj is equal to:

∀r ∈ Ri,∀Dj ∈ D : C(r,Dj , β) =

k:r(k+1)=Dj∑

n=1

cr(n),r(n+1) + β

l(r)−1
∑

n=k+1

cr(n),r(n+1), (48)

where l(r) is the length of route r, r(n) is the nth node in route r, and 0 ≤ β ≤ 1

is the weighting fa
tor. Equation (48) has two parts: the �rst sum re�e
ts the


ost till the pa
ket arrives to it's intended destination and the se
ond sum
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Figure 20: A private route r ∈ RS1 is shown by the red 
urve and a private spanning

tree t ∈ TS1 is shown by the green 
urve.

re�e
ts the weighted 
ost for the rest of the route. The β fa
tor quanti�es the

degree of importan
e a

orded to the overhead beyond a
hieving the intended

target.

We assume ea
h sour
e Si ∈ S 
ommuni
ates with all nodes Dj ∈ D. To

e�e
tively balan
e priva
y with total 
ost, node Si 
hooses a probability distri-

bution P
Dj

Si
= {P

Dj

Si
(r)|

∑

r∈RSi
P
Dj

Si
(r) = 1} on the set of private routes RSi

to


ommuni
ate with node Dj . If the sour
e 
hooses probability distribution P
Dj

Si
,

then, the expe
ted 
ost will be as follows:

C(Si,Dj , β) =
∑

r∈RSi

P
Dj

Si
(r)C(r,Dj , β) (49)

The goal of uni
ast private routing s
heme is minimizing

∑

Dj
C(Si,Dj , β) while

satisfying ǫ−di�erential priva
y 
onditions, whi
h will be explained in de�nition

6.2.

• Multi
ast Private Routing: Multi
ast routing is primary used to transmit a

pa
ket to a group of destinations. In the 
ontext of this paper, multi
ast routing

by virtue of the multitude of destinations 
an be used to provide destination

priva
y, ie we use multi
ast to privatize uni
ast routing. For sour
e Si to multi-


ast to all nodes in D, the pa
kets would be transmitted on a tree whi
h spans

D
⋃
{Si}, in other words, the Steiner Tree. The Minimum Steiner Tree (MST)

is de�ned as the Steiner Tree whi
h has the minimum total 
ost.

For a sour
e Si, we de�ne TSi
as the set of all the trees in the graph G whi
h

span all the elements of {Si}
⋃
D (We will 
all these trees as private spanning
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trees). The overhead weighted 
ost of a private spanning tree will be di�erent

for the di�erent intended destination. For a private spanning tree t ∈ TSi
, in

order to de�ne the 
ost W (t,Dj , β) whi
h is the 
ost of private tree t when

the node Dj is the intended destination for this pa
ket, we need to identify

the unique path t(Si,Dj) in tree t whi
h travels from node Si to node Dj .

For example, in Figure 20, a private spanning tree t for sour
e S1 is shown

by the green 
urve. In this 
ase, t = {(S1, S4), (S4,D2), (S4, S7), (S7,D1)},

t(S1,D1) = {(S1, S4), (S4, S7), (S7,D1)}, and t(S1,D2) = {(S1, S4), (S4,D2)}.

Considering a tree t ∈ TSi
, the 
ost l(t,Dj) will be de�ned as follows:

∀t ∈ TSi
,∀Dj ∈ D : W (t,Dj, β) =

∑

(u,v)∈t(Si ,Dj)

cu,v + β
∑

(u,v)∈T/t(Si ,Dj)

cu,v, (50)

where 0 ≤ β ≤ 1. Note that equation (50) has two parts: the �rst sum whi
h

has weighting fa
tor one is the path that pa
ket will travel to it's intended

destination, and the se
ond sum whi
h has weighting fa
tor β for the edges not

in
luded on this path.

In order to e�e
tively balan
e priva
y with 
osts, we add randomness in the


hoi
e of private spanning trees. Sour
e Si 
hooses a probability distribution

P
Dj

TSi
= {P

Dj

TSi
(t)|
∑

t∈TSi
P
Dj

TSi
= 1} over the set of private spanning trees. For a

spe
i�
 probability distribution P
Dj

TSi
, the expe
ted 
ost will be as follows:

W(Si,Dj , β) =
∑

t∈TSi

P
Dj

TSi
W (t,Dj , β) (51)

The main goal of private multi
ast routing is minimizing

∑

Dj
W(Si,Dj , β)

while providing ǫ− di�erential priva
y whi
h we de�ne in the following.

• Di�erential Private Routing:

Eavesdropper (Eve): We 
onsider an omnis
ient eavesdropper (Eve) who

observes the tra�
 in the network. Eve knows all the information of the network

in
luding identity of nodes, 
osts of ea
h edge, set of private routes, and set

private spanning trees. In parti
ular, Eve knows the probability distribution

that ea
h sour
e 
hooses on it's private routes, ie Eve knows all {P
Dj

Si
} and

{P
Dj

TSi
}. Eve's goal is identifying the destination node for a spe
i�
 pa
ket

whi
h departs sour
e Si. By observing the route a pa
ket travels, Eve de
ides
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on the destination of this pa
ket. In this work, we use the di�erential priva
y

to quantify the destination priva
y. Based on the de�nition of di�erential,


onditioned on the fa
t that Eve observes the private route r or private spanning

tree t, the ǫ−di�erential private routing for uni
ast and multi
ast routing s
heme

will be de�ned as follows:

De�nition 6.2 (ǫ−Di�erential Uni
ast Private Routing) We say that a

route probability distribution {P
Dj

Si
} for the 3−tuple (G,S,D) is ǫ−di�erential

private if:

∀Si ∈ S,∀r ∈ RSi
,∀Dk,Dj ∈ D :

P
Dj

Si
(r)

PDk

Si
(r)
≤ eǫ (52)

De�nition 6.3 (ǫ−Di�erential Multi
ast Private Routing) We say that

a spanning tree probability distribution {P
Dj

TSi
} for the 3−tuple (G,S,D) is ǫ−

di�erential private if:

∀Si ∈ S,∀t ∈ TSi
,∀Dk,Dj ∈ D :

P
Dj

TSi
(t)

PDk

TSi
(t)
≤ eǫ (53)

We note that the above follows the standard de�nition of di�erential priva
y (as

applied in the 
ontext of a dataset). In the broader 
ontext of the problem, how-

ever, the 
hoi
e and size of the set D brings an added dimension to the priva
y

notion in routing. In the rest of this arti
le, we investigate the optimal routing

whi
h minimizes the aggregated uni
ast 
ost (

∑

Dj∈D
C(Si,Dj , β)) for a spe
i�


sour
e Si and minimizing the aggregated multi
ast 
ost (

∑

Dj∈D
W(Si,Dj , β))

while satisfying the 
onditions de�ned in de�nitions 6.2, and 6.3, respe
tively.

6.2.2 Private Uni
ast Routing

In this se
tion, our goal is to optimize the probability distributions {P
Dj

Si
} su
h that

the total average 
ost is minimized while satisfying di�erential priva
y 
onditions. In

other words, for ea
h sour
e node Si our obje
tive is to solve the following optimization
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problem:

Φ : min
P

D1
Si

,··· ,P
DM
Si

∑

Dj∈D

∑

r∈RSi

P
Dj

Si
(r)C(r,Dj , β)

Subje
t to :∀Dj ∈ D :
∑

r∈RSi

PD1
Si

(r) = 1

∀r ∈ RSi
,∀Dk,Dj ∈ D :

P
Dj

Si
(r)

PDk

Si
(r)
≤ eǫ (54)

First, we 
onsider solving this problem for the equal weighting parameter 
ase where

β = 1. In the following theorem, we prove that the optimal solution of problem Φ

where β = 1, is identi
al to the optimal solution of traveling sales man problem.

Theorem 6.3 Optimal uni
ast private routing for the 
ase of equal weighting param-

eter (β = 1) yields

∀Dj ∈ D : P
Dj

Si
(r∗TSM ) = 1,

where r∗TSM ∈ RSi
is the optimal route for traveling sales man problem where the

starting node is Si and the sales man should visit all the nodes in D.

Proof: r∗TSM satis�es the following inequality:

∀Dj ∈ D,∀r ∈ RSi
: C(r∗TSM ,Dj , 1) ≤ C(r,Dj , 1)

The immediate 
onsequen
e of above inequality is that for a spe
i�
 destination node

Dj , C(r∗TSM ,Dj , 1) will be smaller than any 
onvex 
ombination of C(r,Dj , 1). Thus,

MC(r∗TSM ,Dj , 1) ≤

min
P

D1
Si

,··· ,P
DM
Si

∑

Dj∈D

∑

r∈RSi

P
Dj

Si
(r)C(r,Dj , β) (55)

and the 
ondition of theorem presents a feasible solution whi
h a
hieves this lower-

bound and this 
ompletes the proof. �.

We note that the optimal uni
ast routing in the 
ase of β = 1 yields the highest

degree of priva
y whi
h is 0−di�erential priva
y. While the optimal uni
ast private

routing for β = 1 yields a single route, the following theorem proves that the optimal

uni
ast private routing for the 
ase 0 ≤ β < 1 allo
ates nonzero probabilities on

2M − 2 di�erent routes. Let's de�ne the set of private route RSH to be the set of

all the private routes whi
h in
ludes the shortest path from the sour
e node Si to
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a destination node Dj and then the shortest path from the destination node Dj to

the destination node Du, and so on su
h that all the destination nodes are in
luded

on the route. There are M ! su
h routes and the following theorem proves that there

are only 2M − 2 private routes between the elements of RSH whi
h have nonzero

probability for the optimal un
iast routing. Before going through the theorem, we

introdu
e ve
tor C̄(r, β) su
h that the mth element of this ve
tor is C(r,Dm, β).

Theorem 6.4 Optimal uni
ast private routing for the 
ase of 0 ≤ β < 1 yields

nonzero probability allo
ation only over all the routes r∗ ∈ R∗ ⊂ RSH . Moreover ea
h

r∗ ∈ R∗
is the unique solution of following optimization problem

min
t∈RSi

ET C̄(t, β), (56)

where E1×|D| is a ve
tor su
h that ea
h elements of it is either 1 or eǫ ex
luding two


ases of 1̄1×|D| and e1̄1×|D|, where 1̄1×|D| is the ve
tor with all elements equal to one.

Proof: Considering the dual optimization problem of Φ and Complementary

Sla
kness, we will prove this theorem. For a spe
i�
 private route r, we haveM×(M−

1) inequality 
onstraints whi
h indi
ate priva
y 
onstraints. For ea
h route r, we may

have two s
enarios: 1)∀Dj ∈ D, we have P
Dj

Si
(r) = 0. 2)∀Dj ∈ D, we have P

Dj

TSi
(r) 6= 0

and they satisfy priva
y inequality 
onstraints. Moreover, Complementary Sla
kness

for
es P
Dj

TSi
(r) to satisfy the following 
onditions:

∃Dj,Dk ∈ D : P
Dj

Si
(r) = eǫPDk

Si
(r)

∀Du 6= Dk,Dj : P
Du

Si
(r) = P

Dj

Si
(r) or PDu

Si
(r) = PDk

Si
(r) (57)

Considering the 
onditions expressed in (57), we 
an set the routes whi
h have nonzero

probabilities to 2M−2 groups and it is straightforward to 
he
k for ea
h of these groups

just one of them whi
h is the solution of optimization problem expressed in (56) will

have nonzero probability. It is also straightforward to 
he
k that for ea
h ve
tor E

the solution of (56) is an element of RSH . Consequently, R∗ ⊂ RSH �.

By the result of theorem 6.4, ea
h node will use Dijkstra's algorithm to �nd the

elements of the set RSH and then by performing a simple sear
h, one 
an �nd the

elements of the set R∗
and subsequently solve the 
orresponding linear programming

problem.

6.2.3 Private Multi
ast Routing

In this se
tion, we 
onsider the problem of multi
ast routing for priva
y in graph G.

As we dis
ussed in se
tion 6.2.1, multi
ast routing 
an be used to provide destination
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priva
y. However, the overhead weighted 
ost for di�erent intended destination will

be di�erent and ea
h sour
e will 
hoose a probability distribution over all it's private

spanning trees. The optimal multi
ast routing s
heme 
an be found by solving the

following optimization problem:

Ψ : min
P

D1
TSi

,··· ,P
DM
TSi

∑

Dj∈D

∑

t∈TSi

P
Dj

TSi
(t)L(t,Dj , β)

Subje
t to:∀Dj ∈ D :
∑

t∈TSi

P
Dj

TSi
(t) = 1

∀t ∈ TSi
,∀Dj ,Dk ∈ D :

P
Dj

TSi
(t)

PDk

TSi
(t)
≤ eǫ (58)

Similar to uni
ast private routing, we �rst 
onsider the 
ase of equal weighting fa
tor

(β = 1). In the following theorem, we prove that the optimal multi
ast routing for

priva
y when β = 1 is identi
al to the solution of the Minimum Steiner Tree (MST)

problem:

Theorem 6.5 Optimal multi
ast private routing for the 
ase of equal weighting (β =

1) yields

∀Dj ∈ D : P
Dj

TSi
(t∗MST ) = 1, (59)

where t∗MST is the Minimum Steiner Tree whi
h spans all the elements of {Si}
⋃
D.

Proof: by the de�nition of MST, we know that ∀Dj ∈ D and ∀t ∈ TSi
, we have

W (t∗MST ,Dj , 1) ≤W (t,Dj , 1). Consequently, W (t∗MST ,Dj , 1) is less than any 
onvex


ombination of W (t,Dj , 1) and we have

MW (t∗MST ,Dj , 1) ≤

min
P

D1
TSi

,··· ,P
DM
TSi

∑

Dj∈D

∑

t∈TSi

P
Dj

TSi
W (t,Dj , 1) (60)

and the 
onditions in the theorem presents a feasible solution whi
h a
hieves this

lowerbound. �.

Note that the solution of theorem 6.5 yields the highest degree of priva
y whi
h

is 0−di�erential priva
y. Prior to investigating the solution when 0 < β < 1, let's


onsider the optimal multi
ast routing when β = 0. It is straightforward to prove that

the optimal multi
ast routing with ǫ−di�erential priva
y when β = 0, is a
hieved by

always transmitting through a tree whi
h has it's root at Si and there is an individual
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route from Si to ea
h destination Dj whi
h is the shortest path from the node Si to

the node Dj .

For notation 
onvenien
e, we de�ne the ve
tor W̄ (t, β) su
h that the mth element

of this ve
tor isW (t,Dm, β). The following theorem proves that the optimal multi
ast

routing for priva
y in graph G = (V,E) when 0 < β < 1, allo
ates nonzero probability

P
Dj

TSi
(t) only over 2M − 2 trees, where M is the number of destination nodes.

Theorem 6.6 The optimal Solution of Ψ yields on allo
ation of nonzero P
Dj

TSi
(t) over

the set T ∗
su
h that |T ∗| = 2M − 2 and elements of this set are the solution of the

following problem:

min
t∈TSi

ET W̄ (t, β), (61)

where E1×|D| is a ve
tor su
h that ea
h elements of it are either 1 or eǫ ex
luding two


ases of 1̄1×|D| and e1̄1×|D|.

Proof: Similar to proof of Theorem 6.4 . �.

Note that there is no polynomial time solution to �nd the elements of T ∗
, be
ause

the problem is np-
omplete. In our simulation, we �nd the suboptimal solution of

this problem using KMB algorithms. We 
onstru
t the KMB 
omplete graph over the

nodes {Si}
⋃
D su
h that the edge between ea
h pair of nodes in the new 
omplete

graph is the shortest path between those node in the original graph and then, we look

for the solutions of (61) between the spanning trees of this new subgraph. In the next

step, we solve the 
orresponding linear programming over these spanning trees.

The following theorem proves that �nding the optimal private multi
ast routing

for the 
ase of 0 < β ≤ 1 is NP-Complete.

Theorem 6.7 Given a graph G = (V,E), the problem of private multi
ast routing

from a sour
e node Si ∈ V whi
h spans all the elements of D ⊂ V and minimizes the


ost de�ned in equation (50) is an NP-Complete problem.

Proof: we will prove that the solution of optimization problem expressed in (61)

is NP-Complete whi
h will be su�
ient for the whole problem. The problem is NP, as

a non-deterministi
 guess 
an list a set of edges and in polynomial time, it is possible

to 
he
k:1)These edges form a tree.2)The tree spans all the elements of {Si}
⋃
D.

The problem is NP-hard as the solution of optimization problem expressed in (61)

for the 
ase of β = 1 yields Minimum Steiner Tree. Consequently, the problem is

NP-Complete. �.
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Figure 21: Cost of optimal uni
ast and suboptimal multi
ast routing as a fun
tion of

β for di�erent amount of ǫ in a 
omplete random graph.

6.2.4 Simulations and Numeri
al Results

In our �rst simulation, we 
onsidered a network modeled by a 
omplete random graph

whi
h 
onsists of 12 sour
e nodes and 3 destination nodes. The 
ost of ea
h edge is a

uniform random variable U [0, 1] and total 
ost 
urves are derived for di�erent ǫs for

optimal private uni
ast and suboptimal multi
ast routing. It is seen that the total


ost in
reases as ǫ de
reases for both s
hemes whi
h is intuitive as higher ǫ yields lower

degree of priva
y, 
onsequently, sour
es are allowed to allo
ate higher probabilities

on the paths (or spanning trees) with lower 
ost. Another interesting fa
t is that all

the usni
ast routing 
urves merge ea
h other for higher βs, whi
h is also intuitive as

it was seen for β = 1, optimal routing was independent of ǫ. Multi
ast routing 
ost

merges for both β = 0 and β = 1 as we proved that for these 
ases optimal routing

is independent of ǫ. In the se
ond simulation, we plotted the average 
ost for spe
i�


amount of ǫ, and β as a fun
tion of number of sour
e nodes in the graph while there

are three destination nodes. For ea
h n, the simulation was run over 1000 random

graph of size n + 3, and the average is plotted. It is known that the average 
ost of

the shortest path, and the minimum steiner tree 
onverge asymptoti
ally as the size

of the 
omplete graph grows. The �gure demonstrates the 
onvergen
e of optimal

di�erntially private paths and trees as well.
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Figure 22: The average total 
ost for di�erent amount of ǫ, and β as a fun
tion of

network size.
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7 Coupon Targeting Competition in a Priva
y Sensitive

Market

In the era of massive data 
olle
tion, retailers 
olle
t and utilize private information

about 
onsumers by analyzing their pur
hasing history, trading private data, tra
king

Cookies, and similar strategies. Using this data, retailers 
an predi
t 
onsumers taste,

preferen
e and the amount of money they are willing to spend on any given produ
t

[88℄. Consequently, a retailer may o�er lower pri
es to pri
e sensitive 
onsumers

whilst 
onsumers with less pri
e sensitivity who are loyal to the retailer will be o�ered

higher pri
es. O�ering di�erent pri
es to 
onsumers based on their loyalty and pri
e

sensitivity in
reases retailers pro�ts and results in pri
e dis
rimination [89�91℄.

Retailers may prefer to 
ompete for pri
e sensitive 
onsumers by o�ering targeted


oupons instead of lowering their pri
es, as 
oupon targeting engenders market seg-

mentation, whereas de
reasing pri
es does not [24℄. It is also well understood that

targeted 
oupons and other innovative 
oupon strategies in
rease the revenue of re-

tailers [92,93℄, and results in pri
e dis
rimination [73,94,95℄. Coupons are, of 
ourse,

ultimately bene�
ial to the 
onsumers owing to pri
e redu
tion and minimizing the

need to "shop around" for mer
handise.

Coupons targeted at spe
i�
 
ustom areas based on their preferen
es, however,

engender a fundamental violation of individual priva
y. Preferen
e for a parti
ular

produ
t, or a 
lass of produ
ts, 
an often lead to sensitive information revealed to

retailers. A noteworthy example is when the father of a teen inadvertently dis
overed

his daughter's pregnan
y due to a targeted 
oupon from Target [96℄. Knowledge

of priva
y violations 
an make 
onsumers stop pur
hasing from spe
i�
 retailers,

or at the very least, de
rease the 
onsumer loyalty towards the retailer [23℄. It is

also shown in [7℄ that 
onsumers are more willing to pur
hase from online retailers

who prote
t their priva
y. In e�e
t, pri
e sensitivity and brand loyalty alone do not

di
tate 
onsumer pur
hasing de
isions, and impa
t of priva
y violation ought to be


onsidered in retailer de
isions to send targeted 
oupons. It is this priva
y aware

de
ision pro
ess that this arti
le aims to shed light upon. More spe
i�
ally, we study


ompetitive 
oupon targeting between a pair of retailers when pri
e and priva
y are

expli
itly 
onsidered as fa
tors in the 
onsumer de
ision making.

In this se
tion, we use the priva
y sensitivity model as proposed by Sankar et al

in [23℄, wherein 
onsumers are assumed to exist in one of two states with respe
t to

a retailer 1) Non-alerted state where 
onsumers trust a retailer, and 2) Alerted state,
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where 
onsumers are aware and wary of priva
y violations by the retailer. Consumers

swit
h between these states depending on whether they re
eive targeted 
oupons

from a retailer. The swit
hing is modeled probabilisti
ally using Markov 
hains; a


onsumer in a non-alerted state swit
hes to an alerted state with a �xed probability

if s/he re
eives a targeted 
oupon, and a 
onsumer in an alerted state swit
hes ba
k

with some �xed probability if s/he does not re
eive a targeted 
oupon.

Following the 
oupon targeting model in a pri
e sensitive market in [24℄, we assume

that 
onsumers are lo
ated on a Hotelling line su
h that the lo
ation of 
onsumers on

the line represents their preferen
e for the retailers. It is known that the Hotelling line

in a pri
e sensitive market is divided into four segments whi
h are shown in Figure

23. The 
ompetition between retailers in a pri
e sensitivity market at ea
h segment

is modeled by a stati
 bimatrix game. However, in a priva
y sensitive market, stati


games 
annot 
apture the pro�t of retailers, as they need to 
onsider both immediate

reward and the impa
t of their a
tion on futures rewards. For example, a retailer may

re
eive some pro�t by sending a targeted 
oupon to a 
onsumer, but as a 
onsequen
e

of sending the targeted 
oupon, the 
onsumer may get priva
y alerted about the

retailer and stop pur
hasing from this retailer in the future. Thus, we model the


ompetition of retailers in a priva
y sensitive market using nonzero-sum sto
hasti


games. Note that in [23℄ the intera
tion between a single retailer and a single 
onsumer

using Markov De
ision Pro
esses with a similar setting is investigated.

In this work, we demonstrate that a priva
y sensitive market is divided into 12

segments. Moreover, we derive the optimal stationary 
oupon targeting poli
ies and

dis
ounted rewards for both retailers at ea
h spe
i�
 segment of the Hotelling line. We

prove that 
onsumers with weak preferen
e for a retailer will 
hange their pur
hasing

brand if they noti
e their priva
y is violated by the retailer. We also prove that

at segments whi
h adopts mixed strategies, the popular retailer has a less defensive

strategy whilst the rival retailer has a more o�ensive targeting strategy as the dis
ount

fa
tor in
reases. In other words, as the importan
e of future pro�t gets higher, the

popular retailer will be more 
onservative about 
onsumers with weak preferen
e for

it, be
ause, these 
onsumers are more likely to 
hange their pur
hasing brand in the

future, if they get alerted about this retailer. On the other hand, the rival retailer will

be more aggressive to 1) get a higher share of market, 2) push the popular retailer

to distribute targeted 
oupons. Eventually, we demonstrate that despite the pri
e

sensitive market, the rival retailer will have a non-negative dis
ounted reward on the


onsumers with weak preferen
e for the in
umbent retailer.
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In order to model a priva
y sensitive market, we need to adopt a measure for

priva
y in our model. There are several popular approa
hes to quantify priva
y in lit-

erature. Information theoreti
 metri
s su
h as Shannon entropy [97℄, or min-entropy

[98℄ whi
h are based on Bayesian assumptions about prior probabilities. Although

information theoreti
 measures are tra
table and 
on
ave, they measure average pri-

va
y. Statisti
ians use di�erential priva
y as a tool to measure point-wise priva
y (no

Bayesian assumption) in data 
olle
tion [85℄. While quantitative measures of priva
y

allows one to in
lude priva
y as a tangible 
ommodity, in the 
ontext of 
onsumer

markets, we need a me
hanism to study user behavior in response to priva
y viola-

tions. The approa
h proposed in [23℄ provides this me
hanism, and we adopt it in the


ontext of market 
ompetition. In this approa
h, instead of measuring priva
y, we are

looking at priva
y violation as an a
tion-rea
tion phenomenon, and using probabilis-

ti
 models for that investigation. Su
h phenomenon is modeled by a Markov Chain

(MC) with two states of priva
y (alerted and non-alerted) for a spe
i�
 
onsumer,

representing the status of the 
onsumer about a spe
i�
 retailer.

The primary goal of this se
tion is to investigate market behavior when 
on-

sumers' pur
hasing de
isions are impa
ted by pri
e di�eren
es and priva
y violations.

Through this investigation, several questions arise: (1) What is the market segmenta-

tion in a priva
y sensitive market? (2) How does the priva
y-sensitivity a�e
t retailers'

pro�t? (3) What are the optimal targeted 
oupon strategy of retailers in ea
h segment

of a Hotelling line? (4) How does the dis
ounting fa
tor for future pro�ts in�uen
e

retailer de
ision making? (5) What are the long term 
onsumer pur
hasing patterns

and optimal strategies for 
onsumers in a priva
y sensitive market?

7.1 Overview of Coupon Targeting Problem in a Pri
e Sensitive

Market

In this se
tion, we survey the model and main results in 
lassi
al 
oupon targeting


ompetition between two retailers in a pri
e sensitive market. In the 
oupon target-

ing 
ompetition problem studied in [24℄, there are two retailers A, and B selling a


ommodity produ
t, with di�erent brands asso
iated to ea
h retailer, a �xed pri
e

P , and a marginal 
ost c. Retailers may distribute targeted 
oupons to spe
i�
 
on-

sumers with dis
ount value d and the marginal 
ost of distributing a 
oupon for ea
h

retailer, denoted by z > 0. Consumers are distributed uniformly on the line segment

[0, 1] while ea
h retailer is lo
ated at one edge of this line, i.e., retailer A is lo
ated

on x = 0 and retailer B is lo
ated at x = 1. The lo
ation of 
onsumers re�e
ts their
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loyalty to ea
h brand and a�e
t their pur
hasing de
ision. For example, 
onsumers

who are lo
ated 
loser to retailer A are more willing to buy this produ
t from retailer

A. However, if they get a targeted 
oupon from retailer B, they may pur
hase from

retailer B. In [24℄, the in�uen
e of loyalty on pur
hasing de
isions is modeled using a

transportation 
ost t. If V is the 
ommon reservation pri
e for ea
h 
onsumer, then,

a 
onsumer lo
ated at x = X is willing to pay V − tX for brand A and V − t(1−X)

for brand B. It is assumed that V is large enough su
h that ea
h 
onsumer will

pur
hase this produ
t. Under this model, the market was shown to be divided into

four segments de�ned as follows: (See Figure 23)

• Consumers loyal to retailer A: these 
onsumers would pur
hase from retailer A

regardless of whether they re
eive 
oupons from either retailer. Consequently

the lo
ation of su
h a 
onsumer satis�es: P + tX ≤ P − d+ t(1−X), in other

word, these 
onsumers are lo
ated in the interval [0,XA] where:

XA =
−d+ t

2t
(62)

• Consumers with weak preferen
e for retailer A: Consider a marginal 
onsumer

lo
ated at x = X̂ who is indi�erent if s/he does not have targeted 
oupon from

both retailer or s/he has targeted 
oupon from both retailers. Su
h a 
onsumer

is lo
ated at X̂ = 1
2 . The 
onsumers in the interval [XA, X̂ ] are 
alled 
onsumers

with weak preferen
e for retailer A. These 
onsumers pur
hase from retailer B

if they have a targeted 
oupon from B and they do not have a targeted 
oupon

from retailer A. Otherwise, they will pur
hase from retailer A.

• Similarly, 
onsumers loyal to retailer B are lo
ated in the interval [XB , 1] and


onsumers with weak preferen
e for retailer B are lo
ated in the interval [X̂,XB ],

where XB = d+t
2t .

These segments are shown in Figure 23 for symmetri
 
ost parameters for both retail-

ers. We note that the lo
ation of a 
onsumer indi
ates her/his loyalty and preferen
e

for retailers, and parameter t > 0 represents pri
e sensitivity of the market. For ex-

ample, if t→ 0, then, the market will be divided into two segments, ea
h representing


onsumers with weak preferen
e for one of the retailers. Su
h a market represents the

highest pri
e sensitivity degree, as all the 
onsumers 
hange their pur
hasing brand

if they are o�ered a targeted 
oupon from the rival retailer. On the other hand, if

t→∞, the market is divided into two segments su
h that 
onsumers at ea
h segment
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Figure 23: Market Segmentation in a Pri
e Sensitive Market.

have strong preferen
e for one of the retailers, representing a market with no pri
e

sensitivity, i.e., all 
onsumers will pur
hase from their favorite retailer.

The equilibrium and optimal strategy of retailers at ea
h segments is derived in

[24℄ and we review these results in the following theorem.

Theorem 7.1 Denote by pi the probability asso
iated to retailer A sending targeted


oupons to 
onsumers in ith segment, and denote by qi the probability asso
iated to

retailer B sending targeted 
oupons to 
onsumers in the ith segment. A

ording to

[24℄, the optimal strategies for an one-step game between retailer A and B in ea
h

segments are as follows:

p = [p1, p2, p3, p4] = [0,
P − c− d− z

P − c− d
,
d+ z

P − c
, 0]

q = [q1, q2, q3, q4] = [0,
d+ z

P − c
,
P − c− d− z

P − c− d
, 0]

And the reward of ea
h retailer at the equilibrium are as follows:

VA = [P − c, P − c− d− z, 0, 0]

VB = [0, 0, P − c− d− z, P − c]

The results in Theorem 7.1 are intuitive, as in segment 1, none of the retailers are

willing to distribute targeted 
oupon between the 
onsumers, as they 
annot in
rease

their reward by doing so. However, the bimatrix game in segment 2 whi
h is shown

in table 2 adopts a mixed strategy at the equilibrium point. In this segment, if both

retailers do not distribute targeted 
oupons, retailer A re
eives the maximum possible

reward, P − c and retailer B re
eives 0 reward. However, retailer B 
an improve their

reward by distributing a targeted 
oupon. In this 
ase retailer B re
eives P −c−d−z

and retailer A re
eives zero. On the other hand, retailer A 
an again in
rease their

reward by distributing a targeted 
oupon. Consequently, the bimatrix game in this

segment is similar to prisoner's dilemma. In this segment, retailer A has a defensive

strategy and tries to en
ourage the 
onsumers with weak preferen
e towards retailer
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VA, VB Targeting Not Targeting

Targeting P − c− d− z,−z P − c− d− z, 0

Not Target-

ing

0, P − c− d− z P − c, 0

Table 2: Bimatrix Game in Segment S2

A to maintain their loyalty, whereas retailer B has an o�ensive strategy and tries to

in
rease its market share by o�ering them targeted 
oupons.

Subsequently, we adapt this Hotelling line model to study 
oupon targeting when


onsumers in
lude priva
y violations as a fa
tor in their de
ision making whi
h we

model as an in
rease in transportation 
osts under an alerted state.

7.2 System Model

In the basi
 Hotelling line model [24℄ des
ribed previously, the bimatrix games were

stati
 and resulted in simple mixed strategy equilibria. In a priva
y sensitive market,

however, the 
ompetition is played out over the entire time horizon, sin
e retailers

sending 
oupons not only need to worry about immediate pro�ts but also priva
y

related 
onsequen
es in subsequent time steps as well. Priva
y sensitivity, as men-

tioned earlier, is modeled as in [23℄, wherein 
onsumers exist in one of two states with

respe
t to ea
h retailer: alerted or non-alerted. Consequently, 
onsumers exist in one

of four possible groups {S, SB , SA, SAB}explained in the following paragraph. We

model the impa
t of priva
y using a di�erential in the transportation 
osts. In parti
-

ular, a 
onsumer alerted about retailer A would in
ur a higher transportation 
ost tA

from that retailer as opposed to a transportation 
ost tNA < tA were s/he is not alert

about that retailer. (Note that the subs
ripts "A", and "NA" stand for "Alerted",

and "Non-Alerted", respe
tively.) When applying this notion to the Hotelling line

model, four di�erent Hotelling lines arise, one for ea
h group.

• S: Consumers in this group are in non-alerted state about both retailers. Con-

sequently, the transportation 
ost for both retailers will be tNA. Assuming

symmetri
 
onditions, the marginal 
onsumers for this group are lo
ated at

X1
A =

−d+ tNA
2tNA

, X̂1 =
1

2
, X1

B =
d+ tNA
2tNA

, (63)

We assume all the 
onsumers start in this group at the beginning of the game.
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• SB : Consumers in this group are in the non-alerted state about retailer A and

in the alerted state about retailer B. Consequently, the transportation 
ost for

retailer A and B will be tNA, and tA, respe
tively. The marginal 
onsumers in

this group are lo
ated at:

X2
A =

−d+ tA
tNA + tA

, X̂2 =
tA

tNA + tA
, X2

B =
d+ tA
tNA + tA

, (64)

• SA: Consumers in this group are in the alerted state about retailer A and in

the non-alerted state about retailer B. Consequently, the transportation 
ost

for retailer A and B will be tA, and tNA, respe
tively. The marginal 
onsumers

in this group are lo
ated at

X3
A =

−d+ tNA
tNA + tA

, X̂3 =
tNA

tNA + tA
, X3

B =
d+ tNA
tNA + tA

, (65)

• SAB : Consumers in this group are in alerted state about both retailers. Con-

sequently, the transportation 
ost for both retailer will be tA. The marginal


onsumers in this group are lo
ated at

X4
A =

−d+ tA
2tA

, X̂4 =
1

2
, X4

B =
d+ tA
2tA

, (66)

The two dimensional nature of the priva
y sensitive market results in a market seg-

mentation with 12 segments as shown in Figure 24. Due to identi
al marginal 
osts,

these are 
omposed of two symmetri
 groups of 6 segments ea
h. Note that for any

i, the segment S ′i is symmetri
 with respe
t to the segment Si and therefore it is

su�
ient to investigate the segments Si for all i.

Consumers in a spe
i�
 segment may move from one group to the other group

within the same segment. However, they will not move from one segment to another.

Consequently, the sto
hasti
 game at ea
h segment is independent of other segments.

Ea
h retailer aims to maximize its dis
ounted reward over an in�nite horizon at ea
h

segment. As dis
ussed before, ea
h retailer may get a higher immediate reward by

distributing a targeted 
oupon at a spe
i�
 group of a segment. However, 
onsumers

may get alerted about this retailer and swit
h to the other retailer. Consequently,

retailers' a
tions at the 
urrent time will in�uen
e both their immediate reward and

future reward. This intera
tion between retailers and 
onsumers in a spe
i�
 segment

of the Hotelling line is modeled by a nonzero sto
hasti
 game.

We model the sto
hasti
 game at segment Si as a tuple (S,AA,AB , P, rA, rB , β),

where S is the set of states su
h that α = [αS , αSB , αSA , αSAB ] ∈ S represents the
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(a) If 
onsumers get alerted about a retailer, then there will be a higher transporta-

tion 
ost for that retailer.

(b) Market segmentation of a priva
y-sensitive market. Note that the segment S ′
i

is symmetri
 to Si

Figure 24: Market Segmentation in a Priva
y Sensitive Market

distribution of 
onsumers at segment Si over the four groups identi�ed above. AA

and AB are the set of a
tions for retailers A, and B, respe
tively. Ea
h player may

either send a targeted 
oupon to 
onsumers in ea
h group of the segment or not.

Consequently, AA = AB = {T,UT}, where T denotes sending a targeted 
oupon and

UT represents not sending a targeted 
oupon. At time t, if the 
urrent state is αt, and

player A, and B 
hoose the a
tions aA, and aB , respe
tively, player A and B will re
eive

a 
orresponding immediate reward of rA(αt, aA, aB) and rB(αt, aA, aB). Following

this, the state of the game will transient to αt+1 with probability P (αt+1|αt, aA, aB).

The dis
ount fa
tor of the sto
hasti
 game is 0 ≤ β < 1.

Following the model in [23℄, we assume that a single 
onsumer 
an be in a state

s ∈ {A,NA} about retailer X. If retailer X takes the a
tion aX , then the next state

will be s′ with probability Pax(s
′|s). The matrix Pax for ea
h a
tion ax ∈ {T,UT} is

de�ned as follows:
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PT =

(
λN 1− λN
0 1

)

, PUT =

(
1 0

1− λA λA

)

, (67)

where the �rst row and 
olumn 
orrespond to the non-alerted state, and the se
ond

row and 
olumn 
orrespond to the alerted state. Here, 1 − λN represents the prob-

ability that a non-alerted 
onsumer gets alerted if s/he re
eives a targeted 
oupon,

and 1−λA represents the probability that an alerted 
onsumer transients to the non-

alerted state if s/he does not re
eive a targeted 
oupon. Note that if a 
onsumer is

alerted and s/he re
eives a targeted 
oupon, s/he will remain in the alerted state.

Similarly, if a 
onsumer in the non-alerted does not re
eive targeted 
oupon from the

retailer, s/he will remain in the non-alerted state. λN and λA represents the priva
y

sensitivity of the market. For example, a market with no priva
y 
on
ern 
an be

modeled by λN = 1 and λA = 0, and a full priva
y sensitive market 
an be modeled

by λN = 0 and λA = 1. Note that tNA

tA
represents the e�e
t of getting priva
y alerted

on pur
hasing de
ision of 
onsumers.

The matrix de�ned by P = PaA⊗PaB , where ⊗ represents the Krone
ker produ
t,


aptures the 4 × 4 transition matrix of our game. If the 
urrent state of the game

is αt and player A and B take a
tions aA and aB , respe
tively, the next state of the

game will be αt+1 whi
h is derived as follows:

αt+1 = αt(PaA ⊗ PaB ), (68)

The set of stationary poli
ies of player X is denoted by ΠX su
h that a poli
y

πX ∈ ΠX identi�es a probability distribution on the a
tion set of the player at a

spe
i�
 state. For example, πX(α) = [πSX(α), π
SB

X (α), πS
A

X (α), πS
AB

X (α)] denotes the

poli
y of retailerX, and πsX(α) represent the probability that retailer X will distribute

a targeted 
oupon to the 
onsumer in group s when the 
urrent state of the game is

α. Note that throughout this work, we use πsX(α, T ) and π
s
X(α) inter
hangeably and

we use πsX(α,UT ) and 1−πsX (α) inter
hangeably. If player A and B �x their poli
ies

πA and πB, respe
tively, the total reward of ea
h of the players is as follows:

V πA,πB
A =

∞∑

t=0

βtEπA,πB(rA(St, AA,t, AB,t))

V πA,πB
B =

∞∑

t=0

βtEπA,πB(rB(St, AA,t, AB,t))
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De�nition 7.1 The poli
ies π∗A and π∗B results in an equilibrium if and only if the

following holds:

∀πA ∈ ΠA : V
π∗

A,π
∗

B

A ≥ V
πA,π

∗

B

A

∀πB ∈ ΠB : V
π∗

A,π
∗

B

B ≥ V
π∗

A,πB
B (69)

So far, we have assumed that the state spa
e of our non-zero sum sto
hasti
 game

is 
ontinuous and represents the distribution of 
onsumers over the identi�ed four

groups. However, in the following lemma, we prove that the optimal poli
y of ea
h

retailer in both �nite and in�nite horizon games is independent of the 
onsumers'

distributions. In other word, it is su�
ient to restri
t the state spa
e of the game to

four states, su
h that ea
h group denotes a state of our non-zero sum game.

Lemma 7.2 The optimal poli
y of retailers in the non-zero sum sto
hasti
 game at

ea
h segment is independent of the 
onsumers' distribution over four groups and it is

su�
ient to 
onsider S = {S, SB , SA, SAB} as the state spa
e .

Proof: First, we prove the lemma by indu
tion for the �nite horizon 
ase. Spe
i�
ally,

we prove that if Lemma holds for the 
ase where N horizons left, it will also hold for

N +1 horizon. The results hold for all Ns in
luding N →∞. For proof's detail, refer

to se
tion 7.5.1. �.

Lemma 7.2 implies that 
onsumers move between the four groups and not as

fra
tions in groups. Moreover, it is su�
ient to 
onsider a state spa
e in
luding just

these four groups, i.e. S = {S, SB , SA, SAB}. In the rest of this paper, we maintain

the same notation introdu
ed so far. However, instead of αt, we use the notation st ∈

{S, SB , SA, SAB} whi
h represents the state. For example, V πA,πB
A,N (SAB) represents

the total dis
ounted reward of retailer A, when N periods are left, retailer A, and B

have poli
ies πA and πB , respe
tively, and the initial state of the game is SAB. Refer

to table 3 for a 
omplete explanation of the notation.

While the equilibrium of a �nite-horizon non-zero sum sto
hasti
 game has non-

stationary poli
ies, the in�nite horizon 
ompetition has an equilibrium in stationary

poli
ies spa
e [99, 100℄. If player A and B �x stationary poli
ies πA and πB, respe
-

tively, the in�nite horizon reward of ea
h player is as follows:
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V πA,πB
A =

∞∑

t=0

βt
∑

a1∈{T,NT}

∑

a2∈{T,NT}

diag(πA(a1), πB(a2))(Pa1 ⊗ Pa2)rA(a1, a2)

V πA,πB
B =

∞∑

t=0

βt
∑

a1∈{T,NT}

∑

a2∈{T,NT}

diag(πA(a1), πB(a2))(Pa1 ⊗ Pa2)rB(a1, a2),

where diag(x, y) is an n×n diagonal matrix su
h that the element on (i, i) is the

produ
t of the ith element of ve
tor x and the ith element of ve
tor y and the rest

of the elements of this matrix will be zero and V πA,πB
X = [V πA,πB

X (S), V πA,πB
X (SB),

V πA,πB
X (SA), V πA,πB

X (SAB)]T . On the other hand, we 
an also rewrite the dis
ounted

reward using Bellman Equations:

∀s ∈ S : V πA,πB
A (s) = rA(s, πA, πB)

︸ ︷︷ ︸

immediate reward

+β
∑

s′∈S

P (s′|s, πA, πB)r(s
′, πA, πB)

︸ ︷︷ ︸

reward to go

The above equation implies that the total dis
ounted reward of ea
h �rm 
ontains

two parts: 1) Immediate reward 2) Reward to go, where both parts depend on the


urrent state and both retailers' poli
ies.

7.3 Retailers Competition at ea
h Segment

In this se
tion, we study the equilibrium of 
ompetition at ea
h segment of the

Hotelling line and dis
uss how priva
y 
onstraints e�e
ts the poli
y and dis
ounted re-

ward of ea
h retailer at ea
h segment. Segments on Hotelling line of a priva
y sensitive

market 
an be 
ategorized to three: 1) Segments not a�e
ted by priva
y 
onstraints.

2) Segments fully a�e
ted by priva
y 
onstraints. 3) Segments partially a�e
ted by

priva
y 
onstraints. In following se
tions, we study ea
h of these 
ategories:

7.3.1 Segments not A�e
ted by Priva
y Constraints

In this se
tion, we study the 
oupon targeting 
ompetition at segments S1 and S5,

where the 
ompetition is not a�e
ted by the priva
y sensitivity of the market. The

primary reason that these segments are not a�e
ted by priva
y sensitivity of the mar-

ket is that in these segments, 
onsumers at all four groups have the same preferen
e

on retailers.

1. Coupon Targeting Competition in Segment S1: In segment S1, at all four

groups, 
onsumers have strong preferen
e on retailer A and they will pur
hase
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Symbol Meaning Symbol Meaning

Xi
A, X̂

i,Xi
B marginal 
onsumers at

group i

⊗ krone
ker produ
t

Si segment i [T ]i,j element on ith row and

jth 
olumn of matrix T

S state spa
e P transition matrix

AX a
tion spa
e for player

X
rX(s, aA, aB) immediate reward of

player X if the 
urrent

state is s and player A,

and B take a
tions aA
and aB , respe
tively

ΠX set of stationary poli
ies

of player X

β dis
ount fa
tor

αj proportion of 
onsumers

at group j

πX(s) probability that re-

tailer X sends targeted


oupon to 
onsumers at

group s

λN probability that a

non-alerted 
onsumer

remains non-alerted if

s/he re
eives a targeted


oupon

πX(s,A) probability of retailer X

taking a
tion A to 
on-

sumers at group s

λA probability that an

alerted 
onsumer stays

alerted if s/he does

not re
eive a targeted


oupon

V πA,πB
X (s) reward of retailer X if

retailer A and B have

poli
ies πA, πB , respe
-
tively and the 
urrent

state is s.

V ∗
X(s) optimal reward of re-

tailer X if the initial

state of game is s

V ∗
X ve
tor of optimal reward

of retailer X in in�nite

non-zero sum game

Table 3: Table of Notations
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from retailer A in all 
ir
umstan
es. The 
onsumers in segment S1 have priva
y

independent strong preferen
e for retailer A and even if they noti
e priva
y

violation by retailer A (or retailer B), they will still pur
hase from A. It is

straightforward to 
he
k that in all four groups of segment S1, none of the

retailers is willing to distribute targeted 
oupon, as, by doing so, they 
annot

they 
annot in
rease their rewards, i.e., π∗A = [0, 0, 0, 0] and π∗B = [0, 0, 0, 0].

Consequently, the optimal dis
ounted reward of retailer A and B in the in�nite

horizon non-zero sum sto
hasti
 game of segment S1 will be as follows:

V ∗
A = [

(P − c)

1− β
,
(P − c)

1− β
,
(P − c)

1− β
,
(P − c)

1− β
] (70)

V ∗
B = [0, 0, 0, 0] (71)

2. Coupon Targeting Competition in Segment S5: Similar to segment S1,


onsumers at all four groups of segment S5 have similar preferen
e for retailer B.

In other words, 
onsumers at this segment have priva
y independent weak

preferen
e for retailer A, meaning even if they get priva
y alerted about retailer

A (or retailer B), they pur
hase from B if they only have targeted 
oupon from

retailer B. The following theorem derives the optimal poli
ies and dis
ounted

rewards of retailers at segment S5.

Theorem 7.3 The optimal dis
ounted reward of retailer A and B in the in�nite

horizon non-zero sum sto
hasti
 game of segment S5 will be as follows:

V ∗
A = [

(P − c− d− z)

1− β
,
(P − c− d− z)

1− β
,
(P − c− d− z)

1− β
,

(P − c− d− z)

1− β
], V ∗

B = [0, 0, 0, 0] (72)

Moreover, the optimal poli
ies of retailer A and B will be π∗A = [P−c−d−z
P−c−d , P−c−d−z

P−c−d ,

P−c−d−z
P−c−d , P−c−d−z

P−c−d ] and π∗B = [ d+zP−c ,
d+z
P−c ,

d+z
P−c ,

d+z
P−c ]

Proof: Refer to se
tion 7.5.2. �.

The result of Theorem 7.3 are intuitive as 
onsumers' pur
hasing behavior will

be the same in all states. In other words, in this segment whether 
onsumers

are priva
y alerted or non-alerted about either of the retailers, they will have

a weak preferen
e for retailer A. That being said priva
y violation by retailers

will not e�e
t 
onsumers' pur
hasing de
ision in segment S5.
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VA(S), VB(S) Targeting Not Targeting

Targeting P − c− d− z+βVA(S),−z P − c− d− z + βVA(S), 0

Not Target-

ing

βVA(S), P − c− d− z P − c+ βVA(S), 0

Table 4: Bimatrix game for in�nite horizon game in segment S5 at state S. Note that
the bimatrix game at states SB, SA, and SAB will be 
ompletely similar.

7.3.2 Segments Fully A�e
ted by Priva
y Constraints

In this se
tion, we study the equilibrium of nonzero-sum sto
hasti
 games at segments

S2,S4, and S6, where both optimal poli
ies and dis
ounted rewards of retailers are

a�e
ted by priva
y parameters. It is shown that in segments S2, and S4, retailer

B re
eives zero dis
ounted reward, however, in segment S6, retailer B has nonzero

reward. In other words, in a priva
y sensitive market, 
onsumers who initially had

a weak preferen
e on the popular (here retailer A) will be driven away to the rival

retailer (here retailer B), if they noti
e that their priva
y is violated by the popular

retailer.

1. Coupon Targeting Competition in Segment S2: Segment S2 is the �rst

segment, where priva
y awareness e�e
ts popular retailer's pro�t. In this seg-

ment, if 
onsumers are priva
y alerted just about retailer A, i.e. if they are at

group SA, they have weak preferen
e on retailer A. Otherwise, they have strong

preferen
e about retailer A. It is straightforward to 
he
k that both retailers

are not willing to distribute targeted 
oupon at groups S, SB , SAB . However,

in group SA, both retailers have mixed strategy. The following presents the

optimal poli
ies and dis
ounted rewards at this segment.

Theorem 7.4 The optimal poli
ies of retailer A, and B in segment S2 are as

follows:

π∗A = [0, 0,
P − c− d− z

P − c− d
, 0]

π∗B = [0, 0,
(d+ Z) + β(1− λA)∆

(P − c) + β(1− λA)(1− λN )
1−βλA
1−βλ2

A

∆
, 0] (73)

Moreover, the dis
ounted rewards of retailer A, and retailer B are as follows:

V ∗
A(S) = V ∗

A(S
B) =

P − c

1− β
(74)

V ∗
A(S

A) =
P − c

1− β
−∆, V ∗

A(S
AB) =

P − c

1− β
− βλA(1− λA)∆

V ∗
B(S) = 0, V ∗

B(S
B) = 0, V ∗

B(S
A) = 0, V ∗

B(S
AB) = 0, (75)
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where ∆ = (d+z)

(1−β)+β
(1−λN )λA(1−βλA)

1−βλ2
A

.

Proof: proof of this theorem is similar to the proof of Theorem 7.5. �.

If λA 6= 1, it is straightforward to 
he
k that the stationary distribution at this

segment is unique and all the 
onsumers will eventually be in group S. This is

intuitive as in group S, none of the retailers is distributing targeted 
oupons.

Thus, 
onsumers in this group remain in this group. For λA 6= 1, there is

a nonzero probability of transiting from other groups to group S. Therefore,

group S is the only terminating state in the Markov Chain (MC), while there is

nonzero probabilities of transiting from other groups to group S whi
h proves

the 
laim. The interesting result of this 
laim is that for the 
ase β → 1,

where the dis
ounted rewards 
onverges to the average reward, the dis
ounted

reward of retailer A at all group 
onverges to

P−c
1−β . Consequently, for the 
ase,

where β → 1, the priva
y sensitivity of the market does not in�uen
e any of the

retailers.

2. Coupon Targeting Competition in Segment S4: In segment S4, at groups

S, SA, and SAB, retailer B has an o�ensive strategies and tries to persuade the


onsumers with a weak preferen
e for retailer A to pur
hase from him. However,

retailer B will not distribute a targeted 
oupon to 
onsumers in group SB , where


onsumers are alerted about this retailer. This is intuitive as 
onsumers in group

SB will pur
hase from retailer A in all 
ir
umstan
es. Thus, retailer B tries to

gain ba
k the trust of 
onsumers in this group by not distributing a targeted


oupon to them.

In order to derive the optimal dis
ounted rewards and stationary poli
ies in this

segment, we solve the �xed point equations. Note that the �xed point equations

are derived by �nding the unique stationary poli
ies whi
h solves the bimatrix

games shown in tables 5, 6, 7 ,8.

In the following theorem, we prove that reward of retailer B in in�nite horizon

game at all states will be zero. Moreover, retailer A will have an optimal poli
y

of independent of dis
ount fa
tor β.

Theorem 7.5 The optimal poli
y of retailer A in segment S4 is independent of

the dis
ount fa
tor β and is as follows:

π∗A = [
P − c− d− z

P − c− d
, 0,

P − c− d− z

P − c− d
,
P − c− d− z

P − c− d
] (76)
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Figure 25: Optimal poli
ies of retailer A and retailer B in segment S4

Moreover, the dis
ounted rewards of retailer A, and retailer B are given by:

V ∗
A(S) =

β(1 − λN )

(1− β)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)[(1 − βλA)(1 − βλN )− β2(1− λN )2]
(P − c− d− z) (77)

V ∗
A(S

B) =
[(1− βλA)(1− βλN ) + β2(1− λN )(λN − λA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

β(1 − λA)(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c− d− z) (78)

V ∗
A(S

A) =
P − c− d− z

1− β
(79)

V ∗
A(S

AB) =
P − c− d− z

1− β

V ∗
B(S) = 0, V ∗

B(S
B) = 0, V ∗

B(S
A) = 0, V ∗

B(S
AB) = 0 (80)

Proof: In order to derive the optimal poli
y of retailer A, and the dis
ounted

reward of B, we use ba
kward indu
tion. Next, we derive the optimal dis
ounted

reward of retailer A in two steps: First, we prove that the optimal dis
ounted

reward at group SA, and SAB are independent of λA and λN , and we derive

these dis
ounted rewards. Then, we will derive the optimal dis
ounted reward

of retailer A by solving the �xed point equations at group S, and SB . For

proof's detail refer to se
tion 7.5.3. �.

As a dire
t result of Theorem 7.5, the optimal poli
y of �rm B in segment S4


an be derived, whi
h is presented in se
tion 7.5.4.

3. Coupon Targeting Competition in segment S6: Despite the �rst �ve
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V ∗
A(S), V

∗
B(S) Targeting Not Targeting

Targeting P − c − d − z +
β(λ2NV

∗
A(S) + λN (1 −

λN )(V
∗
A(S

B) + V ∗
A(S

A)) +
(1− λN )

2V ∗
A(S

AB)),−z

P−c−d−z+β(λNV
∗
A(S)+

(1− λN )V ∗
A(S

A)), 0

Not Targeting β(λNV
∗
A(S) + (1 −

λN )V
∗
A(S

B)), P − c− d− z
P − c+ βV ∗

A(S), 0

Table 5: Bimatrix Game of Segment S4 in Group S.

V ∗
A(S

B), V ∗
B(S

B) Targeting Not Targeting

Targeting P − c − d − z +
β(λNV

∗
A(S

B) + (1 −
λN )V

∗
A(S

AB)),−z

P − c − d − z +
β(λN (1 − λA)V

∗
A(S) +

λAλNV
∗
A(S

B) + (1 −
λA)(1 − λN )V

∗
A(S

A) +
λA(1− λN )V

∗
A(S

AB)), 0

Not Targeting P − c+ βV ∗
A(S

B),−z P − c+β(λAV
∗
A(S

B)+(1−
λA)V

∗
A(S)), 0

Table 6: Bimatrix Game of Segment S4 in Group SB .

V ∗
A(S

A), V ∗
B(S

A) Targeting Not Targeting

Targeting P − c − d − z +
β(λNV

∗
A(S

A) + (1 −
λN )V

∗
A(S

AB)),−z

P − c− d− z+ βV ∗
A(S

A), 0

Not Targeting β((1− λA)λNV
∗
A(S) + (1−

λA)(1 − λN )V
∗
A(S

B) +
λAλNV

∗
A(S

A) + λA(1 −
λN )V

∗
A(S

AB)), P −c−d−z

P − c+β(λAV
∗
A(S

A)+(1−
λA)V

∗
A(S)), 0

Table 7: Bimatrix Game of Segment S4 in Group SA.

V ∗
A(S

AB), V ∗
B(S

AB)Targeting Not Targeting

Targeting P−c−d−z+βV ∗
A(S

AB),−z P − c − d − z +
β((1 − λA)V

∗
A(S

A) +
λAV

∗
A(S

AB)), 0

Not Targeting β((1 − λA)V
∗
A(S

B) +
λAV

∗
A(S

AB)), P − c− d− z
P −c+β((1−λA)

2V ∗
A(S)+

λA(1 − λA)(V
∗
A(S

B) +
V ∗
A(S

A)) + λ2AV
∗
A(S

AB)), 0

Table 8: Bimatrix Game of Segment S4 in Group SAB.

segments, segment S6 is the only segment in whi
h retailer B has a nonzero

reward at the equilibrium. The primary reason for this is that if 
onsumers in

this segment get alerted just about �rm A (Group SA), then they will have a

weak preferen
e for �rm B. In other words, 
onsumers in Group SA will pur
hase

from �rm A only if they have a targeted 
oupon from �rm A and they do not
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Figure 26: Optimal normalized dis
ounted rewards of retailer A and retailer B in

segment S4

have a targeted 
oupon from �rm B. Consequently, in this segment, retailer

A has less defensive strategy and is less likely to distribute a targeted 
oupon

whilst retailer B is more o�ensive to get a higher share of the market as well as

pushing retailer A to distribute targeted 
oupon.

In order to �nd the equilibrium of the sto
hasti
 game in this segment, we need

to solve the �xed point games represented in tables 9, 10, 11, and 12. In the

equilibrium point of the game, ea
h retailer is indi�erent between sending or

not sending a targeted 
oupon at ea
h state (or group). For example in state S,

retailer A is indi�erent between sending or not sending a targeted 
oupon, i.e.,

its reward when it sends a targeted 
oupon to 
onsumers in this group should

be equal to to his reward if it does not send a targeted 
oupon to 
onsumers in

this group. Consequently,

π∗B(S)(P − c− d− z + β(λ2NV
∗
A(S) + λN (1− λN )(V

∗
A(S

B) + V ∗
A(S

A)) +

(1− λN )
2V ∗

A(S
AB))) + (1− π∗B(S))(P − c− d− z + β(λNV

∗
A(S) +

(1− λN )V
∗
A(S

A))) = π∗B(S)(β(λNV
∗
A(S) + (1− λN )V

∗
A(S

B)))

+(1− π∗B(S))(P − c+ βV ∗
A(S)) (81)

whi
h results in the following:

π∗B(S) =
d+ z + β(1− λN )(V

∗
A(S)− V

∗
A(S

A))

P − c+ β(1− λN )2(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))
(82)

Similarly, we 
an �nd the optimal poli
ies of retailers A and B, whi
h are pre-

sented in se
tion 7.5.5.
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V ∗
A(S), V

∗
B(S) Targeting Not Targeting

Targeting P − c − d − z +
β(λ2NV

∗
A(S) + λN (1 −

λN )(V
∗
A(S

B) + V ∗
A(S

A)) +
(1 − λN )

2V ∗
A(S

AB)),−z +
β(λ2NV

∗
B(S) + λN (1 −

λN )(V
∗
B(S

B) + V ∗
B(S

A)) +
(1− λN )

2V ∗
B(S

AB))

P − c − d − z +
β(λNV

∗
A(S) + (1 −

λN )V
∗
A(S

A)), β(λNV
∗
B(S)+

(1− λN )V
∗
B(S

A))

Not Targeting β(λNV
∗
A(S) + (1 −

λN )V
∗
A(S

B)), P − c −
d − z + β(λNV

∗
B(S) + (1 −

λN )V
∗
B(S

B))

P − c+ βV ∗
A(S), βV

∗
B(S)

Table 9: Bimatrix Game of Segment S6 in Group S

V ∗
A(S

B), V ∗
B(S

B) Targeting Not Targeting

Targeting P − c − d − z +
β(λNV

∗
A(S

B) + (1 −
λN )V

∗
A(S

AB)),−z +
β(λNV

∗
B(S

B) + (1 −
λN )V

∗
B(S

AB))

P − c − d − z +
β(λN (1 − λA)V

∗
A(S) +

λAλNV
∗
A(S

B)+(1−λA)(1−
λN )V

∗
A(S

A) + λA(1 −
λN )V

∗
A(S

AB)), β(λN (1 −
λA)V

∗
B(S) +

λAλNV
∗
B(S

B) + (1 −
λA)(1 − λN )V

∗
B(S

A) +
λA(1− λN )V

∗
B(S

AB))

Not Targeting βV ∗
A(S

B), P − c − d − z +
βV ∗

B(S
B)

P − c+β(λAV
∗
A(S

B)+(1−
λA)V

∗
A(S)),+β(λAV

∗
B(S

B)+
(1− λA)V

∗
B(S))

Table 10: Bimatrix Game of Segment S6 in Group SB

V ∗
A(S

A), V ∗
B(S

A) Targeting Not Targeting

Targeting −z + β(λNV
∗
A(S

A) + (1 −
λN )V

∗
A(S

AB)), P − c− d −
z + β(λNV

∗
B(S

A) + (1 −
λN )V

∗
B(S

AB))

P − c − d − z +
βV ∗

A(S
A), βV ∗

B(S
A)

Not Targeting β((1− λA)λNV
∗
A(S) + (1−

λA)(1 − λN )V
∗
A(S

B) +
λAλNV

∗
A(S

A) + λA(1 −
λN )V

∗
A(S

AB)), P − c− d −
z + β((1 − λA)λNV

∗
B(S) +

(1− λA)(1− λN )V
∗
B(S

B) +
λAλNV

∗
B(S

A) + λA(1 −
λN )V

∗
B(S

AB)

β(λAV
∗
A(S

A) + (1 −
λA)V

∗
A(S)), P − c +

β(λAV
∗
B(S

A) + (1 −
λA)V

∗
B(S))

Table 11: Bimatrix Game of Segment S6 in Group SA.
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V ∗
A(S

AB), V ∗
B(S

AB)Targeting Not Targeting

Targeting P − c − d − z +
βV ∗

A(S
AB),−z+βV ∗

B(S
AB)

P − c − d − z +
β((1 − λA)V

∗
A(S

A) +
λAV

∗
A(S

AB)), β((1 −
λA)V

∗
B(S

A) + λAV
∗
B(S

AB))

Not Targeting β((1 − λA)V
∗
A(S

B) +
λAV

∗
A(S

AB)), P − c − d −
z + β((1 − λA)V

∗
B(S

B) +
λAV

∗
B(S

AB))

P − c + β((1 −
λA)

2V ∗
A(S) + λA(1 −

λA)(V
∗
A(S

B) + V ∗
A(S

A)) +
λ2AV

∗
A(S

AB)), β((1 −
λA)

2V ∗
B(S) + λA(1 −

λA)(V
∗
B(S

B) + V ∗
B(S

A)) +
λ2AV

∗
B(S

AB))

Table 12: Bimatrix Game of Segment S6 in Group SAB .

One may solve for optimal dis
ounted reward and optimal poli
ies by substi-

tuting equations (82)-(98) in the bimatrix game at ea
h state and solve the

resulting system of degree 2 polynomial equations using Puiseux series or the

Grobner basis methods [101℄. The alternative 
hoi
e is using nonlinear pro-

gramming to solve for the equilibrium of the sto
hasti
 game in this segment

[99℄.

In the following Theorem, we prove that the linear approximations of stationary

poli
ies in the form of π∗A(i) ≈ f i0 + βf i1 presented in Appendix 7.5.6) a
hieves

an ǫ-equilibrium for the non-zero sum sto
hasti
 game in segment S6.

Theorem 7.6 The linear approximation of optimal stationary poli
ies of the

retailers forms an ǫ-equilibrium for the non-zero sum sto
hasti
 game in segment

S6, where ǫ ≤

4β2(P−c−d−z)max{2λN (1−λN )3,(1−λN )3(1−λA+λN ),λ2
A
(1−λA),2λA(1−λA)3}

1−β

Proof: Refer to se
tion 7.5.7. �.

7.3.3 Segments Partially A�e
ted by Priva
y Constraints

In this se
tion, we study the equilibrium of the 
ompetition in segment S3. In this

segment, the optimal poli
ies of both retailers are independent of the dis
ount fa
tor β,

and the priva
y sensitivity parameters λA and λN . However, the dis
ounted rewards

of retailer A are a�e
ted by these parameters.

1. Coupon Targeting Competition in Segment S3: In segment S3, if 
on-

sumers are in the non-alerted state about retailer B, they have weak preferen
e
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Figure 27: Stationary distribution of sto
hasti
 game at S4 for di�erent λA. Note that
as λA in
reases whi
h means alerted 
onsumers are less likely to transit to non-alerted

state, all 
onsumers end up being at group SAB.

for retailer A. Otherwise, they have strong preferen
e for retailer A. In other

words, in this segment, if 
onsumers get alerted about retailer B, they will

pur
hase from retailer A in all 
ir
umstan
es.

Following the result of theorem 7.1, it is known that in a one-step game (one pe-

riod), retailer B has a reward equal to zero at all the states (groups). Moreover,

at the (Nash) equilibrium of a one-step game, none of the retailers are willing to

distribute a targeted 
oupon in states SB , and SAB . However, retailer A, and B

distribute targeted 
oupons over the 
onsumers at states S, and SA with prob-

ability

P−c−d−z
P−c−d , and

d+z
P−c , respe
tively. In the following theorem, we prove that

the above results hold for the in�nite horizon sto
hasti
 game at segment S3.

We note that the in�nite horizon sto
hasti
 game 
an be solved by �nding the

equilibrium of four bimatrix game for ea
h state. The bimatrix game for state

S is represented in table 13 and 14. In these tables, ea
h element in
ludes two

parts: 1) instantaneous reward and 2) dis
ounted reward to go. For example, if

both retailers distribute targeted 
oupon over 
onsumers in group S. Retailer

A re
eives an instantaneous reward P − c− d− z and dis
ounted reward to go

β
∑

s∈S P (s|S, T, T )VA(s).
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VA(S) Targeting Not Targeting

Targeting (P − c − d − z) +
β
∑

s∈S P (s|S, T, T )VA(s)
(P − c − d − z) +
β
∑

s∈S P (s|S, T, UT )VA(s)

Not Target-

ing

β
∑

s∈S P (s|S,UT, T )VA(s) (P − c) +
β
∑

s∈S P (s|S,UT,UT )VA(s)

Table 13: Reward of retailer A in the bimatrix game of segment S3 in state S (group

S). The reward in
ludes two parts: 1)an instantaneous reward 2) a reward to go. For

example, if both retailers distribute a targeted 
oupon over 
onsumers in group 1.

Retailer A re
eives an instantaneous reward P − c− d− z and a dis
ounted reward to

go β
∑

s∈S P (s|S, T, T )VA(s). Rows, and 
olumns 
orresponds to a
tions of retailer

A, and retailer B, respe
tively.

VB(S) Targeting Not Targeting

Targeting −z +
β
∑

s∈S P (s|S, T, T )VB(s)
β
∑

s∈S P (s|S, T, UT )VB(s)

Not Target-

ing

(P − c − d − z) +
β
∑

s∈S P (s|S,UT, T )VB(s)
β
∑

s∈S P (s|S,UT,UT )VB(s)

Table 14: Reward of retailer B in the bimatrix game of segment S3 in state S (group

S).

Theorem 7.7 The optimal poli
y of ea
h retailer in the in�nite horizon game

in segment S3 will be as follows:

π∗A = [
P − c− d− z

P − c− d
, 0,

P − c− d− z

P − c− d
, 0]

π∗B = [
d+ z

P − c
, 0,

d+ z

P − c
, 0] (83)

Moreover, the dis
ounted reward of retailer B, in this 
ase will be zero, ie for

i = 1, · · · , 4 : V ∗
B(i) = 0

Proof: We prove this theorem by indu
tion, i.e., we prove that if the results

hold for the 
ase of a �nite horizon with N horizons left, it will also hold for the


ase where N + 1 horizons are left. For details of proof refer to se
tion 7.5.8�.

7.4 Numeri
al Results

In this se
tion, we present our numeri
al result for segments S4 and S6. In our numer-

i
al results, we derived optimal poli
ies and dis
ounted rewards by value evaluation

and poli
y iteration method. All the numeri
al results are derived with parameters:

P = 1, c = 0, d = 0.2, z = 0.1, λN = 1/3, and λA = 2/3. In Figure 25, we present the

optimal poli
ies of ea
h retailer in segment S4 as a fun
tion of β. Figure 25 shows
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Figure 28: Optimal poli
ies of retailer A and retailer B in segment S6 are shown by

solid lines while the linear approximations are shown by dotted lines.

that the optimal poli
y of retailer A is independent of β. The optimal dis
ounted

rewards of retailer A and retailer B in segment S4 are shown in �gure 26, where it

shows that retailer B has reward equal to zero for all values of β. Moreover, we show

that V ∗
A(S

B) ≥ V ∗
A(S) ≥ V ∗

A(S
A) = V ∗

A(S
AB) holds for all the values of β. In �gure

27, we present the stationary distribution of 
onsumers on four groups of segment S4

as a fun
tion of λA. As λA → 1, all 
onsumers go to group SAB . The reason for this

is that as λA in
reases, priva
y alerted 
onsumers are less likely to transit to a non-

alerted state. Therefore, in the Markov Chain of this game at the equilibrium, state

SAB is the terminating state, whereas there is a nonzero probability to transit from

other groups to SAB . Consequently, at the stationary distribution, all 
onsumers will

be at SAB, in other words, SAB is an absorbing state.

In �gure 28, we present the optimal poli
ies for both retailers, shown as solid lines.

This is derived by poli
y iteration. The dotted lines represents the linear approxima-

tion of poli
ies derived by Taylor expansion around β = 0. In �gure 29, we 
ompare

the performan
e of optimal and suboptimal poli
ies in terms of the dis
ounted rewards

of retailers.

In Figure 30, we present the poli
ies of retailers in segment S6 as fun
tion of λA.

In group S, retailer A be
omes more 
onservative as λA in
reases whi
h is intuitive as

it knows that if 
onsumers get alerted about it, retailer A is less likely gain ba
k their

trust. In group SA, as λA in
reases, retailer A's probability of sending a targeted


oupon in
reases. The primary reason for this phenomenon is that retailer B is
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Figure 29: Optimal normalized dis
ounted rewards of retailer A and retailer B in

segment S6 (solid lines) and the suboptimal rewards by linear approximations (dotted
lines). As it is seen the di�eren
e is negligible.

�pushing" retailer A to send a targeted 
oupon by being more o�ensive.

In Figure 33, the dis
ounted reward of retailers are plotted as a fun
tion of λN .

As λN in
reases, i.e., the degree of priva
y sensitivity of the market de
reases, the

reward of �rm B de
reases whi
h proves the fa
t that priva
y sensitivity of the market

is in favor of the rival retailer.

7.5 Proofs

Through proofs of some of the theorems in this se
tion, we 
an solve the 
ompetition

for the �nite horizon 
ase and then, using these results, we prove the desired results for

the in�nite 
ase. In this appendix, V ∗
X,N (s) denotes the optimal dis
ounted reward

of player X where N periods are left. πX,N denotes the poli
y of player X where

N periods are left (Note that this poli
y is a fun
tion of N and is not ne
essarily

stationary). V πA,πB
X,N (s) denotes the dis
ounted reward of player X, when the 
urrent

state of the game is s, N periods are left, and player A and B have poli
ies πA and

πB, respe
tively.

7.5.1 Proof of Lemma 7.2

We prove this fa
t by indu
tion. Let's �rst 
onsider the �nite horizon problem. Let's


onsider two states α = [αS , αSB , αSA , αSAB ] and α′ = [α′
S , α

′
SB , α

′
SA , α

′
SAB ]. We will

prove that optimal a
tion probabilities for the retailers in state α are indeed optimal

in state α′
as well. Let's assume that (π∗A(α), π

∗
B(α)), and (π∗A(α

′), π∗B(α
′)) are the

103



0 0.2 0.4 0.6 0.8 1

λ
A

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
r 

of
 T

ar
ge

tin
g 

of
 R

et
ai

le
r 

A

Group S

Group SB

Group SA

Group SAB

0 0.2 0.4 0.6 0.8 1

λ
A

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
r 

of
 T

ar
ge

tin
g 

of
 R

et
ai

le
r 

B

Group S

Group SB

Group SA

Group SAB

Figure 30: Poli
y of retailers as a fun
tion of λA ins segment S6. Note that β = 0.9.

optimal pair of a
tion probabilities for α and α′
, respe
tively. The terminating reward

of ea
h of the players at group j will be as follows:

V ∗
A,0(α) =

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA,0(α, a1)π
∗i
B,0(α, a2)rA(i, a1, a2)

V ∗
B,0(α) =

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA,0(α, a1)π
∗i
B,0(α, a2)rB(i, a1, a2)

Let's assume player A 
hanges his a
tion probabilities in group S to π∗SA (α′). As

(π∗A(α), π
∗
B(α)) is the optimal a
tion probabilities for state α, the following holds:

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

αiπ
∗i
A0(α, a1)π

∗i
B0(α, a2)rA(i, a1, a2) ≥

α1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA0(α
′, a1)π

∗s
B0(α, a2)rA(1, a1, a2) +

∑

i∈S−{S}

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA0(α, a1)π
∗i
B0(α, a2)rA(i, a1, a2)

Consequently, we have

α1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α, a1)π
∗S
B0(α, a2)rA(1, a1, a2) ≥

α1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α
′, a1)π

∗S
B0(α, a2)rA(1, a1, a2)
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Figure 31: Dis
ounted rewards of retailers as a fun
tion of λA ins segment S6. Note
that β = 0.9.

whi
h results in:

α′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α, a1)π
∗S
B0(α, a2)rA(1, a1, a2) ≥

α′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α
′, a1)π

∗S
B0(α, a2)rA(1, a1, a2) (84)

By applying the same pro
edures for other groups and player 2, it is straightforward

to show that the following holds:

V
(π∗

A(α),π∗

B(α))
A,0 (α′) ≥ V

(π∗

A(α′),π∗

B(α))
A,0 (α′)

V
(π∗

A
(α),π∗

B
(α))

B,0 (α′) ≥ V
(π∗

A
(α),π∗

B
(α′))

B,0 (α′)

The immediate result of above equations is that (π∗A(α), π
∗
B(α)) derives equilibrium

for the state α′
. Now, let's 
onsider that for N − 1, the optimal a
tion probabilities

of retailers are independent of α and have the following stru
tures:

V ∗
A,N−1(α) = [αS , αSB , αSA , αSAB ]T







f1(π
∗
A(α), π

∗
B(α))

f2(π
∗
A(α), π

∗
B(α))

f3(π
∗
A(α), π

∗
B(α))

f4(π
∗
A(α), π

∗
B(α))







V ∗
B,N−1(α) = [αS , αSB , αSA , αSAB ]T







g1(π
∗
A(α), π

∗
B(α))

g2(π
∗
A(α), π

∗
B(α))

g3(π
∗
A(α), π

∗
B(α))

g4(π
∗
A(α), π

∗
B(α))







(85)
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Figure 32: Poli
y of retailers as a fun
tion of λN ins segment S6. Note that β = 0.9.

Then, by indu
tion, we will prove the same properties holds for the N period problem.

The optimal reward of retailer A if N time steps are remaining will be as follows:

V ∗
A,N (α) =

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA0(α, a1)π
∗i
B0(α, a2)(rA(i, a1, a2) +

4∑

k=1

[Pa1 ⊗ Pa2 ]i,kfi(π
∗
A(α), π

∗
B(α))),

where [T ]j,k is the element on the jth row and kth 
olumn of matrix T.

Let's assume that player A 
hanges his a
tion probabilities in group one to π∗1A,N(α
′)

and then, the following will be derived:

α′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA,N−1(α, a1)π
∗S
B,N−1(α, a2)(rA(i, a1, a2) +

4∑

k=1

[Pa1 ⊗ Pa2 ]i,kfi(π
∗
A(α), π

∗
B(α))) ≥ α

′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA,N−1(α
′, a1)

π∗SB,N−1(α, a2)(rA(i, a1, a2) +
4∑

k=1

[Pa1 ⊗ Pa2 ]i,kfi(π
∗
A(α), π

∗
B(α))),

By applying the same pro
edure for ea
h group and player B, It is straightforward to


he
k that (π∗A,N (α), π
∗
B,N (α)) is an equilibrium for state α′

. �.
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Figure 33: Dis
ounted rewards of retailers as a fun
tion of λN ins segment S6. Note
that β = 0.9.

7.5.2 Proof of Theorem 7.3

Let's start with the �nite horizon 
ase. We 
laim that for N−period �nite horizon

game, the reward and poli
ies of retailer A, and B will be as follows:

V ∗
A,N = [(P − c− d− z)

1− βN+1

1− β
), · · · , (P − c− d− z)

1− βN+1

1− β
)]

V ∗
B,N = [0, · · · , 0]

π∗A,N = [
P − c− d− z

P − c− d
, · · · ,

P − c− d− z

P − c− d
]

π∗B,N = [
d+ z

P − c− d− z
, · · · ,

d+ z

P − c− d− z
] (86)

It is straightforward to 
he
k that above 
ondition holds for the terminating state,

where N = 0. We will prove that if the above poli
ies are optimal for the 
ase where

N−1 periods are left, it will also be optimal for N−period horizon 
ase. The bimatrix

game when N periods are left is the same in all four groups and is shown in table

4. In the equilibrium point, the optimal poli
y of retailer A is a
hieved when it is

indi�erent between sending and not sending a targeted 
oupon. Consequently,

π∗B,N (i)(P − c− d− z + β(P − c− d− z)
1− βN

1− β
) + (1− π∗B,N (i))(P − c− d− z

+β(P − c− d− z)
1 − βN

1− β
) = π∗B,N (i)(β(P − c− d− z)

1− βN

1− β
) +

(1− π∗B,N (i))(P − c+ β(P − c− d− z)
1− βN

1− β
) (87)
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VB(S) Targeting Not Targeting

Targeting −z + β × 0 0 + β × 0

Not Target-

ing

P − c− d− z + β × 0 0 + β × 0

Table 15: Bimatrix Game of Segment S4 in Groups S, S
A
, and SAB. (Finite Horizon)

whi
h results in π∗B,N = d+z
P−c−d−z . Similarly, at the equilibrium point retailer B is

indi�erent between sending and not sending targeted 
oupon results in the following

equilibrium 
ondition:

π∗A,N (i)(−z) + (1− π∗A,N(i))(P − c− d− z) = 0 (88)

Thus, the optimal poli
y of retailer B is π∗A,N (i) =
P−c−d−z
P−c−d . By substituting π∗A,N (i)

and π∗B,N (i) in the bimatrix game rewards, the desired result for dis
ounted rewards

V ∗
A,N and V ∗

B,N is derived. �.

7.5.3 Proof of Theorem 7.5

First, let's derive the optimal poli
y of retailer A, and optimal dis
ounted reward

of retailer B using ba
kward indu
tion. Considering the �nite horizon game, at the

terminating step, it is straightforward to 
he
k that retailer B has zero reward in

all states. Moreover, at the terminating step, retailer A does not distribute targeted


oupons in state SB and distributes targeted 
oupons in the other states with proba-

bility

P−c−d−z
P−c−d . Now, if we assume that these 
onditions hold for the game when N−1

horizons are left, we just need to prove the same 
onditions hold for the 
ase where N

horizons are left. The rewards of retailer B in group S, SA, and SAB is shown in table

15. Solving the bimatrix game for N horizon problem results in mix poli
y of retailer

A equal to

P−c−d−z
P−c−d for states {S, SA, SAB} whi
h is derived by neutrality of retailer

B on sending or not sending targeted 
oupon. The reward of retailer B in group SB is

represented in table 16. In this group, both the retailers are not willing to distribute

targeted 
oupon as they 
annot improve their reward by 
hanging their strategies.

Thus, in group SB of segment S4, none of the retailers distributes targeted 
oupons.

By substituting the derived poli
ies of retailers and the fa
t that at equilibrium of

this game player B will be in di�erent of sending or not sending targeted 
oupon, we

derive that retailer B has zero reward for N horizon sto
hasti
 game. As the results

holds for all N, it also holds for in�nite 
ase, where N →∞.

Now, let's prove the rest of theorem in two steps:
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V 2
B(S

B) Targeting Not Targeting

Targeting −z + β × 0 0 + β × 0

Not Target-

ing

−z + β × 0 0 + β × 0

Table 16: Bimatrix Game of Segment S4 in Group SB. (Finite Horizon)

1. Optimal dis
ounted reward at group SA and SAB Let's assume that

V ∗
A(S

A) and V ∗
A(S

AB) are independent of λA and λN . Let's 
onsider the �xed point

equation for group SAB when λN = λA = 1. As in the equilibrium point, the reward

of retailer A at �rst row and se
ond row of bimatrix game represented in table 8 are

equivalent, the following holds:

V ∗
A(S

AB) = π∗B(S
AB)(P − c− d− z + βV ∗

A(S
AB)) +

(1− π∗B(S
AB))(P − c− d− z + βV ∗

A(S
AB)) (89)

whi
h results in V ∗
A(S

AB) = P−c−d−z
1−β . Similarly, we 
an write the �xed point equation

for group SA, and 
onsidering the fa
t that at equilibrium point reward of �rst row

and se
ond row of bimatrix game represented at table 7, the following holds:

V ∗
A(S

A) = π∗B(S
A)(P − c− d− z + βV ∗

A(S
A)) +

(1− π∗B(S
A))(P − c− d− z + βV ∗

A(S
A)) (90)

whi
h results in V ∗
A(S

A) = P−c−d−z
1−β . Now, we prove our primary assumption that

V ∗
A(S

A) and V ∗
A(S

AB) are independent of λA and λN holds and the derived dis
ounted

reward for group SA and SAB satisfy �xed point equation of both groups for any λA

and λN . The following are �xed point equations for group SA and SAB .

V ∗
A(S

A) = π∗B(S
A)(P − c− d− z + β(λNV

∗
A(S

A) + (1− λN )V
∗
A(S

AB))) +

(1− π∗B(S
A))(P − c− d− z + βV ∗

A(S
A)) (91)

V ∗
A(S

AB) = π∗B(S
AB)(P − c− d− z + βV ∗

A(S
AB)) +

(1− π∗B(S
AB))(P − c− d− z + β(λAV

∗
A(S

AB) + (1− λA)V
∗
A(S

A))) (92)

It is straightforward to 
he
k that the above equations hold if V ∗
A(S

A) = V ∗
A(S

AB) =

P−c−d−z
1−β . Thus, our assumption is veri�ed.

2. Optimal dis
ounted reward at group S and SB Now, let's 
onsider the

�xed point equation at group SB, where both retailers have pure stationary poli
ies
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π∗A(S
B) = π∗B(S

B) = 0. Fixed point equation of group SB result in following:

V ∗
A(S

B) = P − c+ β(λAV
∗
A(S

B) + (1− λA)V
∗
A(S)) (93)

Consequently,

V ∗
A(S

B) =
P − c

1− βλA
+
β(1 − λA)

1− βλA
V ∗
A(S) (94)

The �xed point equation of group S is as follows:

V ∗
A(S) = π∗B(S)(β(λNV

∗
A(S) + (1− λN )V

∗
A(S

B))) + (1− π∗B(S))(P − c+ βV ∗
A(S))(95)

By rearranging equation (95) and using equation (94), we will have the following

equation:

π∗B(S) =
(d+ z) + [−β(d+z)(1−λN )−(P−c−d−z)(1−βλA)

β−βλN−1+βλA
+ (1−β)(1−βλA)

β−βλN−1+βλA
V ∗
A(S)]

(P − c) + (1− βλA)
λN (1−β)+β(1−λA)
β(1−λN )−(1−βλA)V

∗
A(S)

(96)

Combining equations (96),(?? ) and V ∗
A(S

A) = V ∗
A(S

AB) = P−c−d−z
1−β , we have the

following:

V ∗
A(S) =

β(1− β)(1 − λN )

(1− β)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)[(1 − βλA)(1 − βλN )− β2(1− λN )2]
(P − c− d− z)

And substituting the above in (94), we have

V ∗
A(S

B) =
(1− β)[(1 − βλA)(1− βλN ) + β2(1− λN )(λN − λA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

β(1 − λA)(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c− d− z) (97)

�.
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7.5.4 Optimal Poli
ies of Firm B in Segment S4

Corollary 7.7.1 The optimal poli
y of retailer B in segment S4 will be as follows:

π∗B(S) =
(d+ z) + β2 (1−λN )2

[(1−βλA)(1−βλN )−β2(1−λN )2]
(d+ z)

(P − c) + β (1−λN )2(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

π∗B(S
B) = 0

π∗B(S
A) =

(d+ z) + β2 (1−λA)(1−λN )
[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

(P − c) + β (1−λA)(1−λN )(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

π∗B(S
AB) =

(d+ z) + [β2 (1−λA)2(1−λN )
[(1−βλA)(1−βλN )−β2(1−λN )2]

(P − c) + β (1−λA)2(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)
+

β
(1−λA)λ2

A
(1−βλN ))

[(1−βλA)(1−βλN )−β2(1−λN )2] ](d+ z)

(P − c) + β (1−λA)2(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

Proof: The results of 
orollary are dire
t results of Theorem 7.5. �.

7.5.5 Optimal Poli
ies of Retailers in Segment S6

π∗A(S) =
P − c− d− z + β(1− λN )(V

∗
B(S

B)− V ∗
B(S))

P − c− d+ β(1− λN )2(V ∗
B(S

B)− V ∗
B(S) + V ∗3

B − V
∗
B(S

AB))

π∗B(S
B) =

d+ z + β(1− λN )(1 − λA)(V
∗
A(S)− V

∗
A(S

A))

P − c+ β(1− λN )(1− λA)(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

+
β(1− λN )λA(V

∗
A(S

B)− V ∗
A(S

AB))

P − c+ β(1− λN )(1− λA)(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

π∗A(S
B) =

P − c− d− z + β(1− λA)(V
∗
B(S)− V

∗
B(S

B))

P − c− d+ β(1 − λN )(1− λA)(V ∗
B(S

B)− V ∗
B(S) + V ∗

B(S
A)− V ∗

B(S
AB))

π∗B(S
A) =

P − c− d− z + β(1 − λA)(V
∗
A(S

A)− V ∗
A(S))

P − c− d+ β(1 − λN )(1− λA)(V ∗
A(S

A)− V ∗
A(S) + V ∗

A(S
B)− V ∗

A(S
AB))

π∗A(S
A) =

d+ z + β(1− λN )(1− λA)(V
∗
B(S)− V

∗
B(S

B))

P − c+ β(1 − λN )(1− λA)(V ∗
B(S)− V

∗
B(S

B) + V ∗
B(S

AB)− V ∗
A(S

A))

+
β(1− λN )λA(V

∗
B(S

A)− V ∗
B(S

AB))

P − c+ β(1− λN )(1− λA)(V ∗
B(S)− V

∗
B(S

B) + V ∗
B(S

AB)− V ∗
A(S

A))

π∗B(S
AB) =

d+ z + β(1− λA)
2(V ∗

A(S)− V
∗
A(S

A))

P − c+ β(1 − λA)2(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

+
β(1− λA)λA(V

∗
A(S

B)− V ∗
A(S

AB))

P − c+ β(1− λA)2(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

π∗A(S
AB) =

P − c− d− z + β(1− λA)
2(V ∗

B(S
B)− V ∗

B(S))

P − c− d+ β(1− λA)2(V ∗
B(S

B)− V ∗
B(S) + V ∗

B(S
A)− V ∗

B(S
AB))

+
βλA(1− λA)(V

∗
B(S

AB)− V ∗
B(S

A))

P − c− d+ β(1− λA)2(V ∗
B(S

B)− V ∗
B(S) + V ∗

B(S
A)− V ∗

B(S
AB))
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7.5.6 Linear Approximation of Poli
ies in S6

fS = fS0 + βfS0 =
P − c− d− z

P − c− d
− β

(P − c− d− z)2(1− λN )
2

(P − c− d)2

gS = gS0 + βgS1 =
d+ z

P − c
+ β

(P − c− d− z)(1 − λN )(P − c− d− z + λN (d+ z))

(P − c)2

fS
B

= fS
B

0 + βfS
B

1 =
P − c− d− z

P − c− d
− β

(P − c− d− z)2(1− λN )(1 − λA)

(P − c− d)2

gS
B

= gS
B

0 + βgS
B

1 =
d+ z

P − c
+ β

(P − c− d− z)2(1− λN )(1 − λA)

(P − c)2

fS
A

= fS
A

0 + βfS
A

1 =
d+ z

P − c
+

β
(P − c− d− z)(1− λN )(λA(P − c− d− z) + (d+ z))

(P − c)2

gS
A

= gS
A

0 + βgS
A

1 =
P − c− d− z

P − c− d
−

β
(P − c− d− z)(1− λA)(z + λN (P − c− d− z))

(P − c− d)2

fS
AB

= fS
AB

0 + βfS
AB

1 =
P − c− d− z

P − c− d
−

β
(P − c− d− z)(1− λA)(P − c− d− z + zλA)

(P − c− d)2

gS
AB

= gS
AB

0 + βgS
AB

1 =
d+ z

P − c
+ β

(P − c− d− z)2(1− λA)
2

(P − c)2
(98)

7.5.7 Proof of Theorem 7.6

Consider the 16-dimensional ve
tor de�ned as follows:

z = (VA, VB , πA, πB), (99)

where VA = (VA(S), · · · , VA(S
AB)), VB = (VB(S), · · · , VB(S

AB)), πA = (πA(S),

· · · , πA(S
AB)), πB = (πB(S), · · · , πB(S

AB)). Then, the equilibrium of non-zero

sum sto
hasti
 game at segment S6 
an be found by solving the following nonlinear

programming:

Ψ : min f(z) =
∑

X∈{A,B}

1T (VX − rX(πA, πB)− βP (πA, πB)VX)

subje
t to:

∀s ∈ S : RA(s)

(
πB(s)

1− πB(s)

)

+ βT (s, VA)

(
πB(s)

1− πB(s)

)

≤ V s
A12

∀s ∈ S :
(
πA(s) 1− πA(s)

)
RB(s) + β

(
πA(s) 1− πA(s)

)
T (s, VB) ≤ V

s
B1

T

2
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where ∀X ∈ {A,B} : RX(s) = [rX(s, a
A, aB)]aA ,aB and T (s, VX)s are 2× 2 matri
es

su
h that the elements of ea
h matrix is the same as reward to go of bimatrix games

of tables 9 10 11 12. For example, T (S, VA) will be as follows:

T (S, VA) =
(

(λ2

N
VA(S) + λN (1 − λN )(VA(SB) + VA(SA)) + (1 − λN )2VA(SAB)) (λNVA(S) + (1 − λN )VA(SA))

(λNVA(S) + (1 − λN )VA(SB)) VA(S)

)

The solution of nonlinear optimization problem Ψ is the equilibrium of the non-zero

sum sto
hasti
 game of segment S6 [99℄. Moreover, at the optimum solution z∗,

f(z∗) = 0 and all the inequalities in nonlinear optimization problem Ψ hold with

equality.

In order to prove this theorem, we �rst refer to the follwoing result from [99℄.

Corollary 7.7.2 Let ẑ be a feasible solution for problem Ψ, then, the (π̂A, π̂B) of ẑ

forms an ǫ-equilibrium with ǫ ≤ f(ẑ)
1−β

By �xing the poli
ies by the linear approximations given in equations (98), the

nonlinear optimization problem Ψ will be transformed to the following linear pro-

gramming:

Φ : min
VA,VB

κ(z) =
∑

X∈{A,B}

1T (VX − rX(f, g)− βP (f, g)VX )

subje
t to:

∀s ∈ S : RA(s)

(
gs

1− gs

)

+ βT (s, VA)

(
gs

1− gs

)

≤ V s
A12 (100)

∀s ∈ S :
(
f s) 1− f s

)
RB(s) + β

(
f s 1− f s

)
T (s, VB) ≤ V

s
B1

T

2
, (101)

where f = (fS, · · · , fS
AB

) and g = (gS , · · · , gS
AB

)T . This optimization problem

has 16 linear 
onstraints su
h that ea
h pair involves one 
olumn or one row of bi-

matrix game at ea
h state. For example 
onstraint RA(S)

(
gS

1− gS

)

+βT (S, VA)
(

gS

1− gS

)

≤ VA(S)12 in
ludes two 
onstraints 
orresponding the rows of bimatrix

game at state 1. By substituting RA(S) and T (S, VA), inequalities simplify to the

followings:

FS1 (VA, VB , f, g) = (P − c− d− z) + VA(S)(βλ
2
Ng

1 + βλN (1− g
S)− 1)

+VA(S
B)(βλN (1− λN )g

1) +

VA(S
A)(βλN (1− λN )g

S + β(1− λN (1− g
S))) + VA(S

AB)β(1 − λN )
2 ≤ 0

FS2 (VA, VB , f, g) = (1− gS)(P − c) + VA(S)(βλNg
1 + β(1 − gS)− 1) +

VA(S
B)(β(1 − λN )g

S) ≤ 0
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We not that the obje
tive fun
tion of Φ 
an be written in terms of F ji as follows:

κ(z) = −
∑

i∈S

(f iF i1 + (1− f i)F i2)−
∑

i∈S

(giGi1 + (1− gi)Gi2) (102)

By deriving the dual of linear programming Φ, and 
onsidering 
omplementary sla
k-

ness, one 
an 
he
k that one of the pairs of inequalities F i1 or F i2 should hold with

equality while the other one will be hold with stri
t inequality. It 
an be shown

that there exists a threshold β10 su
h that for β < β10, the �rst inequality of state

1 holds with equality and the se
ond one holds with stri
t inequality, i.e, FS1 = 0

and FS2 < 0. By multiplying FS1 with λN and subtra
ting FS1 ∗ λN from FS2 (note

that FS1 ∗ λN = 0 ), and using the fa
t that VA(S), · · · , VA(S
AB) < P−c−d−z

1−β , we 
an

bound FS2 × (1− fS) as follows:

−FS2 × (1− fS) < 2β2λN (1− λN )
3(P − c− d− z) (103)

By performing the same pro
edure for other states and retailer B, and for di�erent

amount of β (note that for β ≥ β10, the se
ond inequality will hold with equality and

�rst one with stri
t inequality), one 
an verify that:

κ(z) <
4β2(P − c− d− z)

1− β

max{2λN (1− λN )
3, (1− λN )

3(1− λA + λN ), λ
2
A(1− λA), 2λA(1− λA)

3}

�.

7.5.8 Proof of Theorem 7.7

We prove this theorem by indu
tion on remaining time steps. The solution to the

game played in the �nal period should be identi
al to the one step des
ribed in Se
tion

7.1, expressed as follows:

π∗A,0 = [
P − c− d− z

P − c− d
, 0,

P − c− d− z

P − c− d
, 0]

π∗B,0 = [
d+ z

P − c
, 0,

d+ z

P − c
, 0] (104)

Moreover, the dis
ounted reward of retailer B is zero in the �nal period. Now, we

prove that if the 
onditions of the theorem hold for N-1 steps remaining, it should hold

of N steps remain as well. At the equilibrium of the game, retailer A will be indi�erent

between sending or not sending targeted 
oupon, i.e. the rewards for sending and not
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sending targeted 
oupon should be equal. Consequently,

π∗B,N (S, T )[(P − c− d− z) + β
∑

s∈S

P (s|S, T, T )V ∗
A,N−1(s)] + (1−

π∗B,N−1(S, T )[(P − c− d− z) + β
∑

s∈S

P (s|S, T, UT )V ∗
A,N−1(s)] = π∗B,N (S, T )[

β
∑

s∈S

P (s|S,UT, T )V ∗
A,N−1(s)](1 − π

∗
B,N−1(S, T )[(P − c) + β

∑

s∈S

P (s|S,UT,UT )V ∗
A,N−1(s)]

We note that V ∗
A,N−1(S) = V ∗

A,N−1(S
A) and V ∗

A,N−1(S
B) = V ∗

A,N−1(S
AB). Similarly,

retailer B will be indi�erent between sending and not sending targeted 
oupon whi
h

results in the following

π∗A,N (S, T )(−z) + (1− π∗A,N (S, T ))[(P − c− d− z)] =

π∗A,N (S, T )(0) + (1− π∗A,N(S, T )(0)

Solving equations in (105) and (105) derives the optimal poli
ies of both retailers:

π∗B,N (S, T ) =
d+ z

P − c
, and, π∗A,N (S, T ) =

P − c− d− z

P − c− d
(105)

It is straightforward to 
he
k that the same poli
ies holds at state SA, in the equi-

librium point. However, in SB and SAB, the equilibrium results in pure strategy of

not distributing 
oupons. The proof i s 
ompleted by verifying that VB,N (s) = 0 by

substituting π∗A,N and π∗B,N in the 
orresponding bimatrix game. �.
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8 Con
lusion and Future Works

In this dissertation, we investigated priva
y preserving me
hanisms and tradeo�s

between priva
y and utilities in dynami
al systems and networks. We studied three

topi
s of pa
ket sour
e anonymity in mix networks, sour
e-destination anonymity in

Tor like networks, and di�erential priva
y in sto
hasti
 
ontrol and routing.

In the �rst topi
, we 
onsidered the problem of optimal routing in mix network.

Our approa
h used extreme tra�
 
onditions to derive key inferen
es about routing

to maximize the delay anonymity tradeo�. Delay is a spe
i�
 utility 
riterion that is

impa
ted by mixing strategies for anonymity. One of the main reasons for using delay

as a utility 
riterion is that, in 
ommer
ial anonymous systems, strategies su
h as

mixing are not 
onsidered primarily due to in
reased delay. The analysis presented in

this dissertation is a �rst step to alleviating that 
on
ern and providing a me
hanism

to in
lude shu�ing and bat
hing strategies whilst maintaining laten
y 
onstraints.

Other utilities su
h as Memory utilization, fairness, 
ongestion are also impa
ted to

a 
ertain extent, and we believe that the formal approa
h we presented here 
an be

expanded to study those relationships as well.

In the se
ond topi
, we presented a relay sele
tion and 
ontrol framework to thwart

an omnis
ient eavesdropper who uses timing analysis to reveal the sour
e-destination

pairs 
ommuni
ating in an anonymous network. The omnis
ient eavesdropper as

modeled in this work is admittedly a 
onservative assumption and would likely apply

to powerful organizations su
h as nation states. Pra
ti
al eavesdroppers would likely

monitor a fra
tion of the links. The performan
e of our algorithms are guaranteed

against su
h an eavesdropper as well but may not be optimal. While the work pro-

posed here fo
uses on a spe
i�
 topologi
al stru
ture, our analyti
al approa
h 
an be

extended to other topologies as well albeit with higher 
omputational 
omplexity. For

instan
e, in a network with |ME | entry guards, |MM | intermediate nodes, and |MQ|

exit guards, the anonymity 
al
ulation will require |ME |(|MM |+|MM |×(|MQ|−1))

variables and summations.

In the third topi
 of this dissertation, we studied the problem of 
ontrol poli
y

design for Markov De
ision Pro
esses (MDPs) under di�erential priva
y 
onstraints.

The key takeaway from the work is the proposed value iteration methodology that

derived optimal inferen
e resistant poli
ies for a pair of MDPs. Our approa
h is easily

extended to more than two hypotheses. The 
hoi
e of ǫ is a key design aspe
t whi
h

should depend on the per
eived length of time the system is likely to be monitored
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by the adversary. Setting epsilon to zero would guarantee perfe
t priva
y in that the

observed state dynami
s would be identi
al for both MDPs, albeit at a signi�
ant 
ost

in total rewards obtained. We also studied an appli
ation of the proposed framework

in routing problems in data 
olle
tion networks. The key assumption in the problem

of routing under di�erential 
onstraints was knowledge of the set D whi
h is the set

of destinations 
hosen to provide priva
y. In a broader 
ontext, the 
hoi
e of the set

alongside the optimization in this work would provide a 
omprehensive solution to

private routing. An interesting dire
tion moving forward would be to apply this idea

in the 
ontext of reinfor
ement learning wherein the agent has to explore and exploit

to maximize his reward with the added 
aveat that an adversary is unable to identify

the type of MDP.

In the last topi
 of this dissertation, we studied the e�e
t of 
onsumers' priva
y

awareness in retail 
ompetition. Spe
i�
ally, we studied the 
ompetition between two

retailers who sell the same produ
t with the same pri
e and marginal 
ost in a priva
y

sensitive market. We modeled a priva
y sensitive market by a Hoteling line where


onsumers swit
h between alerted and non-alerted states about ea
h retailer. We

derived optimal poli
ies of ea
h retailer at ea
h segment of Hoteling line by solving

the �xed point equations of non-zero sum sto
hasti
 games at ea
h segment. We

demonstrated that despite pri
e sensitive market, in a priva
y sensitive market, the

popular retailer will be more 
onservative sending targeted 
oupons to 
onsumers

with weak preferen
e for him, as they may noti
e priva
y violations by this retailer

and stop pur
hasing from him. We proved that priva
y sensitivity of the market is

in the favor of rival retailer, in other words, as the popular retailer is less defensive,

the rival retailer 
an in
rease his pro�t by being more o�ensive.

We propose investigating targeting 
oupon for asymmetri
 pri
es and 
oupon val-

ues for ea
h retailer. Moreover, one may 
onsider a two steps 
ompetition where in

the �rst step of the game, ea
h retailer sets his pri
e an 
oupon value and in the se
-

ond step of the game, there is an in�nite horizon 
ompetition between the retailers.

Another interesting work will be the one where ea
h retailer 
an 
hange their pri
es

and 
oupon value. However, su
h a 
ompetition will be more 
ompli
ated as it will


onstantly 
hange the market segmentation.
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