
Lehigh University
Lehigh Preserve

Theses and Dissertations

8-1-2018

Privacy in Dynamical Systems and Networks:
Anonymous Routing and Retail Competition
Omid Javidbakht
Lehigh University, omid.javidbakht@gmail.com

Follow this and additional works at: https://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Javidbakht, Omid, "Privacy in Dynamical Systems and Networks: Anonymous Routing and Retail Competition" (2018). Theses and
Dissertations. 4290.
https://preserve.lehigh.edu/etd/4290

https://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F4290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F4290&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F4290&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/4290?utm_source=preserve.lehigh.edu%2Fetd%2F4290&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu


Privay in Dynamial Systems and

Networks: Anonymous Routing and

Retail Competition

By

Omid Javidbakht

A dissertation

Presented to the Graduate and Researh Committee

of Lehigh University

in Candiday for the Degree of

Dotor of Philosophy

in

Eletrial Engineering

August, 2018



©Copyright by Omid Javidbakht, 2018

ii



Approved and reommended for aeptane as a dissertation in partial ful�llment

of the requirements for the degree of Dotor of Philosophy.

Date

Advisor

Aepted Date

Committee Members:

Prof. Parv Venkitasubramaniam

(Committee Chair)

Prof. Rik S. Blum

Prof. Daniel Conus

Prof. Alberto J. Lamadrid

Prof. Nader Motee

iii



To my parents,

Akram and Reza

To my brother,

Farid

To my niee,

Hila

iv



1 Aknowledgments

I have had the privilege of having many amazing people in my life that I believe

without them, it would be impossible for me to be in the plae I am today.

First and foremost, I would like to thank my PhD advisor professor Parv Venki-

tasubramaniam. I annot explain it in words how great working with Parv was. He

is an outstanding sholar who provides a great environment, and full support for his

students to �ourish. He has always been the greatest inspiration in my life. Without

any doubts, he was the best supervisor, teaher, and mentor for me.

I would also like to thank my PhD ommittee members. I thank professor Rik S.

Blum for teahing me the ourse Signal Detetion and Estimation, and always being

available to disuss about di�erent topis inluding my researh. He has a great

personality and has always been an inspiration for me.

I thank professor Daniel Conus for teahing me ourses Advane Probability, and

Finanial Calulus. He was one of the best teahers I have ever had and I truly enjoyed

all his lass sessions. I would like to emphasize here that the knowledge and passion, I

earned at his lasses were extremely helpful for me to understand Probability Theory

and Stohasti Proesses deeply.

I thank professor Alberto J. Lamadrid for ollaborating with me in one of the

most important works in my PhD titled �retail ompetition in privay sensitive mar-

kets�. He helped me to get a better understanding of Game Theory and through our

ollaboration, he was extremely helpful, patient, and always available to disuss the

details.

I would like to thank professor Nader Motee for teahing me the ourse Convex

Optimization. The knowledge I earned at his lass was so helpful for me to investigate

the tradeo�s between privay and utilities in dynamial systems.

My sinere gratitude goes to National Siene Foundation (NSF). My PhD re-

searh was generously supported by NSF under Grant CNS-1117701 and Grant CCF-

1149495.

v



I would like to thank all the previous and urrent members of our researh group

and my labmates, Dr. Abhishek Mishra, Dr. Jiyun Yao, Dr. Anand Srinivas Gu-

ruswamy, Dr. Parth Pradhan, Dr. Basel Alnajjab, and Ruohi Zhang, for disussions

on various researh topis and presenting interesting papers that motivated me to

look further into that diretion.

I annot express how luky I am to have many great friends who were always

there for me during happiness and di�ulties. I would like to thank all my beloved

friends speially Kia Khezeli, Kasra Ghaemi, Emre Akoz, Onur Babat, Patriia Cas-

tro de Aguiar, Reza Takapoui, Hossein Karkeh Abadi, Ali Makhdoumi, and Mehdi

Yazdanpanah.

Last, but not least, I would like to thank my parents and my brother. I would

have never been where I am today without their endless love and support whih is

why I dediated this dissertation to them.

vi



Contents

1 Aknowledgments v

2 Abstrat 1

3 Introdution 4

3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Paket Soure Anonymity and Delay Tradeo� in Mix Networks: Op-

timal Routing 14

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Optimal Routing in Light Tra� . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Anonymity of a Mix Network in Light Tra� . . . . . . . . . . 21

4.2.2 Delay Anonymity Tradeo� in Light Tra� . . . . . . . . . . . . 28

4.3 Saling Behavior of Complete Graphs . . . . . . . . . . . . . . . . . . . 31

4.4 Optimal Routing in Heavy Tra� . . . . . . . . . . . . . . . . . . . . . 32

4.5 Simulations and Numerial Results . . . . . . . . . . . . . . . . . . . . 34

5 Relay Seletion and Operation Control for Optimal Delay and Soure-

Destination Anonymity Tradeo� in Anonymous Networks 38

5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Anonymity Optimal Relay Seletion . . . . . . . . . . . . . . . . . . . 44

5.3 Delay Anonymity Trade-o� . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1 Suboptimal Delay Anonymity Region . . . . . . . . . . . . . . 51

5.3.2 Inremental Optimization . . . . . . . . . . . . . . . . . . . . . 54

5.4 Numerial Results and Simulations . . . . . . . . . . . . . . . . . . . . 56

6 Di�erential Privay in Dynamial Systems and Networks 60

6.1 Inferene Resistant Poliy Design for Markov Deision Proesses . . . 60

6.1.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.2 MDPs under ǫ-Di�erential Privay . . . . . . . . . . . . . . . . 65

6.2 Di�erential Privay in Networked Data Colletion . . . . . . . . . . . . 68

6.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Private Uniast Routing . . . . . . . . . . . . . . . . . . . . . . 73

6.2.3 Private Multiast Routing . . . . . . . . . . . . . . . . . . . . . 75

6.2.4 Simulations and Numerial Results . . . . . . . . . . . . . . . . 78

7 Coupon Targeting Competition in a Privay Sensitive Market 80

7.1 Overview of Coupon Targeting Problem in a Prie Sensitive Market . . 82

7.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.3 Retailers Competition at eah Segment . . . . . . . . . . . . . . . . . . 90

7.3.1 Segments not A�eted by Privay Constraints . . . . . . . . . . 90

vii



7.3.2 Segments Fully A�eted by Privay Constraints . . . . . . . . . 93

7.3.3 Segments Partially A�eted by Privay Constraints . . . . . . . 99

7.4 Numerial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5.1 Proof of Lemma 7.2 . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5.2 Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . 107

7.5.3 Proof of Theorem 7.5 . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5.4 Optimal Poliies of Firm B in Segment S4 . . . . . . . . . . . . 111

7.5.5 Optimal Poliies of Retailers in Segment S6 . . . . . . . . . . . 111

7.5.6 Linear Approximation of Poliies in S6 . . . . . . . . . . . . . . 112

7.5.7 Proof of Theorem 7.6 . . . . . . . . . . . . . . . . . . . . . . . . 112

7.5.8 Proof of Theorem 7.7 . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conlusion and Future Works 116

Referenes 118

Biography 126

Curriulum Vitae 127

viii



List of Tables

1 Table of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2 Bimatrix Game in Segment S2 . . . . . . . . . . . . . . . . . . . . . . . 85

3 Table of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Bimatrix Game of Segment S5 . . . . . . . . . . . . . . . . . . . . . . . 93

5 Bimatrix Game of Segment S4 in Group S. . . . . . . . . . . . . . . . 96

6 Bimatrix Game of Segment S4 in Group SB . . . . . . . . . . . . . . . . 96

7 Bimatrix Game of Segment S4 in Group SA. . . . . . . . . . . . . . . . 96

8 Bimatrix Game of Segment S4 in Group SAB . . . . . . . . . . . . . . . 96

9 Bimatrix Game of Segment S6 in Group S . . . . . . . . . . . . . . . . 98

10 Bimatrix Game of Segment S6 in Group SB . . . . . . . . . . . . . . . 98

11 Bimatrix Game of Segment S6 in Group SA. . . . . . . . . . . . . . . . 98

12 Bimatrix Game of Segment S6 in Group SAB . . . . . . . . . . . . . . . 99

13 Bimatrix Game of Segment S3 . . . . . . . . . . . . . . . . . . . . . . . 101

14 Reward of Segment S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

15 Bimatrix Game of Segment S4 in Groups S, SA, and SAB . (Finite

Horizon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

16 Bimatrix Game of Segment S4 in Group SB . (Finite Horizon) . . . . . 109

ix



List of Figures

1 Mix Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Simple Mix Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Mix Network in Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Complete Graph Mix Network . . . . . . . . . . . . . . . . . . . . . . . 31

5 Mix Network Considered in Simulations . . . . . . . . . . . . . . . . . 35

6 Performane of Light Tra� Optimal Routing . . . . . . . . . . . . . . 35

7 Anonymity versus

λ1
λ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8 Delay Anonymity Trade-o� in Mix Networks . . . . . . . . . . . . . . . 37

9 Six Relay System Abstration. . . . . . . . . . . . . . . . . . . . . . . 39

10 Standard and Anonymous Relays . . . . . . . . . . . . . . . . . . . . . 40

11 Link Padding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12 Unpadded Links Removal . . . . . . . . . . . . . . . . . . . . . . . . . 46

13 Dummy Rate for a Single Anonymous Relay . . . . . . . . . . . . . . . 47

14 Anonymity vs Lateny, and Dummy Rate . . . . . . . . . . . . . . . . 57

15 Delay Anonymity Tradeo� . . . . . . . . . . . . . . . . . . . . . . . . . 59

16 Performane of Inremental Solution . . . . . . . . . . . . . . . . . . . 59

17 Markov Deision Proesses under Di�erential Privay Constraints . . . 62

18 Private Routes in Networked Data Colletion. . . . . . . . . . . . . . . 68

19 Private Spanning Trees. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

20 Private Uniast and Multiast Routing . . . . . . . . . . . . . . . . . . 71

21 Cost vs Overhead Parameter . . . . . . . . . . . . . . . . . . . . . . . 78

22 Cost vs Network Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

23 Market Segmentation in a Prie Sensitive Market. . . . . . . . . . . . . 84

24 Market Segmentation in a Privay Sensitive Market . . . . . . . . . . . 87

25 Optimal Poliies in Segment S4 . . . . . . . . . . . . . . . . . . . . . . 95

26 Optimal Rewards Segment S4 . . . . . . . . . . . . . . . . . . . . . . . 97

27 Stationary Distribution vs Privay Parameters . . . . . . . . . . . . . . 100

28 Suboptimal Poliies in Segment S6 . . . . . . . . . . . . . . . . . . . . 102

29 Suboptimal Rewards in Segment S6 . . . . . . . . . . . . . . . . . . . . 103

30 Optimal Poliies vs Privay Parameter λA in Segment S6 . . . . . . . 104

31 Optimal Rewards vs Privay Parameter λA in Segment S6 . . . . . . . 105

32 Optimal Poliies vs Privay Parameter λN in Segment S6 . . . . . . . 106

33 Optimal Rewards vs Privay Parameter λN in Segment S6 . . . . . . . 107

x



2 Abstrat

Tradeo�s between privay and utilities, and privay preserving ontrol mehanisms

in dynamial systems and networks are studied in this dissertation. Despite seurity

mehanisms and data enryption, these systems are still vulnerable to timing anal-

ysis, wherein an eavesdropper an use these observations to interpret the identity of

individuals. Motivated by this vulnerability, the �rst three topis of this dissertation

investigates privay preserving mehanisms in dynamial systems and network. The

last hapter studies the e�et of privay awareness of onsumers on retail ompetition.

The �rst topi of this dissertation studies the tradeo� between delay and paket

soure anonymity in a network of mixes. The ahievable anonymity is haraterized

analytially for a general multipath model, and it is shown that under light tra�

onditions, there exists a unique single route strategy whih ahieves the optimal

delay anonymity tradeo�. A low omplexity algorithm is presented that derives the

optimal routes to ahieve a desired tradeo�. In the heavy tra� regime, it is shown

that optimal anonymity is ahieved for any alloation of rates aross the di�erent

routes. Simulations on example networks are presented where it is shown that the

optimal routes derived under light tra� performs quite well in general tra� regime.

Next, an analytial framework is presented to integrate and ontrol the degree of

link padding mehanisms in the funtioning of anonymous relays suh that a desired

degree of soure-destination pair anonymity is ahieved from timing analysis without

adding signi�ant lateny. In partiular, the optimal hoies of relays and the degree

of link padding are investigated to haraterize the best tradeo� between anonymity

from timing analysis, as measured by Shannon entropy of soure destination pairs,

and the average lateny. The optimization required for the best tradeo� is shown

to require exponential omplexity, and a sub optimal algorithm is presented that is

shown numerially to perform lose to the optimal, but only requires linear omplexity.

In addition, an inremental optimization is presented for a new user to be added

optimally to an existing system without altering the prevalent routing sheme.

The third part of this dissertation studies the reward optimal deision making in

Markov Deision Proesses (MDPs) while proteting against inferene of type of MDP.

Against an adversary attempting to lassify between two MDPs with idential state-

ation spaes but di�ering reward funtions and transition probabilities, a joint poliy

design is studied for the pair of MDPs that maximize a weighted sum of in�nite horizon

disounted rewards. Spei�ally, the adversary observes the sequene of states with

1



the goal of identifying whih of the two MDPs are in operation, while the ontrollers

are designed suh that an ǫ-di�erential privay is guaranteed for the observed state

transitions. It is demonstrated that a unique optimal weighted disounted reward

exists for a �xed privay parameter and the weighting fator. A value iteration

method is proposed to determine the optimal reward and obtain the di�erentially

private poliies for the two MDPs. Convergene of the method is proved and the rate

of onvergene is haraterized. A speial appliation of this framework in routing

where nodes serve as states is also studied in this setion. Using di�erential privay

as a metri to quantify the privay of the intended destination in networked data

olletions, optimal probabilisti routing shemes are investigated under uniast and

multiast paradigms. It is shown that the optimal private uniast routing an be

implemented in deentralized manner. Under a multiast paradigm, the optimal

solution when overhead is weighted equal to the intended ost, the optimal solution

is shown to be a variant of the Steiner tree problem. In general, it is proved that

multiast private routing is an np-omplete problem. Simulations and numerial

results for both private uniast and multiast routing on random graphs are presented.

In the last setion, the problem of oupon targeting ompetition between two

retailers who sell the same produt in a privay sensitive market is onsidered. In

partiular, onsumers purhasing deisions are in�uened by produt pries as well

as prior privay violations by retailers. A Hoteling line model is utilized to investi-

gate the oupon targeting ompetition between the retailers. Within this framework,

privay sensitivity is modeled using a Markov hain, wherein onsumers swith bak

and forth probabilistially between a privay alerted state and privay non-alerted

state depending on whether or not they reeive targeted oupons from a retailer. The

ompetition between these two retailers at eah segment of Hoteling line is modeled

by a stohasti nonzero-sum game. In every segment of the Hoteling line, stationary

equilibrium strategies of retailers that provide optimal disounted return over an in�-

nite horizon is derived. It is demonstrated that segments in a privay sensitive market

are divided to three ategories: 1) Segments not a�eted by privay onstraints. 2)

Segments fully a�eted by privay onstraints. 3) Segments partially a�eted by pri-

vay onstraints. It is illustrated that in ontrast to a prie sensitive market, when

privay is a fator, onsumers with weak brand loyalty an be driven away from the

popular retailer beause of a targeted oupon from that retailer. It is also proved

that the popular retailer will be more onservative distributing targeted oupon to

onsumers with weak preferene for him whilst the rival retailer will be more o�ensive

2



on these onsumers.
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3 Introdution

Information seurity in dynamial systems and networks extends beyond the prote-

tion of ommuniated data; hiding the identities of parties is equally ritial. Knowl-

edge of individuals' identities in a network suh as soure-destination pairs and routes

of information �ow in networks whih an be obtained fully or partially through eaves-

dropping in a network not only ompromises user privay, but also provides ruial

information for an adversary to jam a partiular �ow, deploy blak holes or launh

other sophistiated attaks. One of the earliest uses of suh analysis ourred in World

War II [1℄, when the US Army established a Tra� Intelligene group (OP-G-20) on

Corregidor island [2℄. These tra� analysts, muh before they broke the enemy ipher

ode, were able to use transmission timing to identify enemy hain of ommand and

to a good extent, predit troop movements. Sine the advent of the Internet, suh

retrieval of �networking information� through tra� analysis, and more spei�ally

transmission timing analysis, has been a ritial onern in the design and analysis

of network protools [3, 4℄.

In this dissertation, we investigate the protetion of the users' privay in dynamial

systems, and networks against an adversary who fully or partially observes the state

of the system. We demonstrate that users an ahieve privay, however, they may

reeive lower utilities. In other words, we illustrate that privay is ahieved in ost

of experineing higher lateny, ahieving lower data rate, or reeiving a lower reward

in general framework. We derive the routing and ontrol mehanisms for optimal

tradeo�s between privay measured by Shannon entropy [5℄ or di�erential privay

[6℄ and utilities in dynamial systems and networks. Spei�ally, we onsider pri-

vay preserving methodologies for three appliations: 1) Paket soure anonymity in

mix networks. 2) Soure-destination pair anonymity in networks 3) Markov Deision

Proesses (MDPs) under di�erential privay onstraints. While privay preserving

mehanisms and tradeo�s between privay and utilities are well-studied in the liter-

ature, other related topis suh as the in�uene of users' privay awareness on other

phenomena inluding retail ompetition require more attention. For example, privay

violations by an online soial media or an online retailer an result in users' distrust

whih an drive users away to other soial medias or retailers. The experiment by Tsai

[7℄ is an evidene that onsumers' privay awareness has inreased and onsumers pre-

fer to purhase from online retailers who protet their privay. Motivated by privay

awareness of onsumers, in the last hapter of this dissertation, we study the oupon

4



targeting ompetition of retailers in a privay sensitive market, where onsumers may

get privay alerted and hange their purhasing brands.

The �rst and the seond topi of this dissertation study the routing and ontrol

mehanisms for the optimal tradeo� between lateny and paket soure anonymity

or soure-destination pairs anonymity in networks. The methodology to hide soure

identities from timing analysis was �rst investigated by David Chaum [8℄. Chaum

proposed the onept of mixes whih are speial proxy servers or routers that use

layered enryption, random bit padding and paket shu�ing (or bathing) to provide

anonymity. The enryption and bit-padding ensure that an eavesdropper monitoring

the transmission links annot use the ontents or sizes of pakets to mathing an in-

oming paket to the mix with the orresponding outgoing paket from the mix. The

paket shu�ing redues the orrelation between the timing of inoming and outgoing

pakets. In pratie, a network of suh mixes are deployed and the pakets from

soures are routed through an arbitrary sequene of mixes prior to arriving at the

destination. In popular anonymous systems, many of them deployed on the Internet,

however, shu�ing strategies are rarely used and the analysis of transmission times

an still reveal to an adversary the identities of ommuniating parties and paths of

data �ow. In fat, a areful read of the dislaimers in the largest publily deployed

anonymity network, Tor, reveals an open admittane of vulnerability to timing anal-

ysis (see [9℄). The primary reason for this vulnerability is that these systems impose

tight lateny onstraints on the transmitted pakets to satisfy Quality of Servie

(QoS) requirements and onsequently measures to limit timing based inferene suh

as mixing are not implemented under lateny onstraints. In general, modi�ations to

timing through paket shu�ing and link padding inrease the lateny of transmitted

pakets, and onsequently, when pakets are subjeted to strit lateny onstraints,

the abilities of mixes to shu�e are restrained, thereby reduing the ahievable paket

soure anonymity or soure-destination pair anonymity. Fundamentally, there is a

tradeo� between the ahievable anonymity and the allowed delay in data networks.

In reent years, there has been signi�ant progress towards the design of optimal

mixing strategies and link padding mehanisms under suh strit delay onstraints

[10�15℄. These results primarily study the optimal design of paket shu�ing and

link padding for a single node. This work expands on that investigation to study

the paket soure and soure-destination optimal anonymity lateny tradeo� ahiev-

able in data networks with partiular emphasis on the optimal routing through the

network that maximizes a desired tradeo�.

5



In the �rst hapter, we investigate the problem of optimal routing to ahieve

tradeo� between paket soure anonymity and lateny in a network of mixes. Our

approah relies on an information theoreti measure of anonymity, quanti�ed using

Shannon entropy of soures of pakets arriving at destinations as observed by an om-

nisient eavesdropper. While the maximum ahievable anonymity as a funtion of

delay is still an open problem, we onsider two extreme tra� rate regimes where the

anonymity has been better investigated analytially - heavy tra� regime λ → ∞

and the light tra� regime λ → 0 to study the properties of optimal rate alloation

in the multipath system. It is known that, when Shannon entropy is used to quantify

the anonymity, in the heavy tra� regime, the anonymity of the individual mix ap-

proahes the prior entropy of arrival rates as λ→∞, and in the light tra� regime,

the anonymity-delay tradeo� is linear and an be expressed using the light tra�

derivative [16℄. Using this entropy based metri, we demonstrate: 1) In the heavy

tra� regime, the impat of rate alloation on the anonymity of the multipath system

is negligible, or in other words, optimal routing in the heavy tra� regime an be

designed based solely on traditional QoS onsiderations suh as lateny, throughput

and ongestion (whih expetedly beome ritial in high rate regimes). 2) In the light

tra� regime, we investigate the anonymity and delay as funtions of rate alloation,

topology of the network, and delay onstraint of mixes. First, we show that to ahieve

the optimal tradeo� between anonymity and delay, single route solutions are optimal

for eah soure. Based on this investigation, we propose a low omplexity algorithm

to determine the optimal route for eah soure. 3) Although the optimal rate alloa-

tion for medium (non extreme) tra� rates is theoretially an open problem, in our

numerial results, we demonstrate that the light tra� optimal sheme outperforms

other heuristi rate alloation shemes. 4) We also apply our results to a graphial

model of pratial anonymous systems (based on an abstration of the popular Tor

system) and demonstrate that the derived solution displays optimal saling behavior

as the network size inreases.

The seond topi of this dissertation studies the optimal relay seletion and ontrol

of relay �operational modes� in an anonymous network. We onsider a six relay sub-

system abstration based on the pratial anonymous system Tor. This abstration,

although not without loss of generality, naturally follows from the present operation

of the Tor network where eah user hooses the sequene of three intermediate nodes

based on bandwidth availability and delay-shortest path onsiderations. Another rea-

son for this abstration is the fat that not all users in an anonymous network have
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the same preferene on delay and anonymity. By onsidering a subgroup of relays

and optimizing their operation independently, that subgroup an ater to the subset

of users with similar preferenes for the levels of anonymity and delay. Considering

six relay abstration, our key ontributions are summarized as follows. Using Shan-

non entropy as the metri for anonymity from timing analysis, we haraterize the

maximum possible anonymity as a funtion of the relay seletion and anonymiza-

tion parameters, and provide onditions on bandwidth under whih this anonymity

is ahievable. When the bandwidth onstraints are satis�ed, the problem of optimal

relay seletion that maximizes a weighted ombination of anonymity and delay is

shown to be a omputationally hard problem. In other words, we show that solving

the resulting optimization problem requires exponential omputation time O(2N ),

where N is the number of users. We therefore propose a sub-optimal heuristi based

on Hill Climbing method whih has linear omplexity O(N) and demonstrate that

the ahieved tradeo� for the proposed algorithm is lose to optimal. In addition to

the global optimization, we also present inremental optimization and disuss a de-

entralized sheme. We prove that inremental sheme always ahieves the global

optimal when maximum anonymity is desired.

The third setion of this dissertation studies the design of ontrol poliies under

di�erential privay onstraints. Markov deision proesses (MDPs) are a disrete time

mathematial framework for modeling deision making in dynami systems. In a las-

sial MDP, at eah time step, the system is in some state s, and the ontroller deides

on an ation a. Given the urrent state s, and ontroller's ation a, the ontroller

reeives a reward, and the state of the system transit to the next state aording to

a Markovian probability P (s′|s, a), and the ontroller's goal is to maximize the total

(disounted) reward over a �nite or in�nite horizon [17℄. MDPs are widely used in

yber physial systems, �nane, robotis, et. Another important appliation of MDP

is in reinforement learning [18℄, where an agent interats with an unknown environ-

ment towards maximizing some objetive, and the underlying proess is modeled as

an MDP. The main di�erene between a lassial MDP and reinforement learning is

that the latter does not assume the knowledge of the mathematial model of the MDP.

In many appliations of MDPs, the sequene of states (or some funtion of the states)

are observable to eavesdroppers. For example, in a wireless network, an adversary

an aess length of pakets [19℄, timing of pakets transmitted [20℄, routes of paket

�ow over a network [21℄ and suhlike by eavesdropping. Using the observations, an

adversary an infer about the nature of the MDPs, and onsequently obtain sensitive
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information about the hyphenate deision-making. As mahine learning algorithms

ontinually improve the ability to identify personal preferenes from seemingly unre-

lated data, it is ritial that stohasti deision making proesses be investigated from

a privay perspetive whih is the fous of this work. Motivated by this, we inves-

tigate the mathematial framework of Markov Deision Proesses with the objetive

of limiting adversarial inferene of a type of MDP. In partiular, onsider two MDPs

with idential state-ation spaes but di�ering reward and transition dynamis. For

instane, these ould represent user ations on a pair of websites. It is well known

that sequene of lik times or download sizes an reveal whih websites are being

aessed even if data transmitted is enrypted [22℄. In this ontext, if the sequene

of ations or response times were so designed to maximize user experiene, then an

eavesdropper an identify the website aessed by performing a hypothesis test on

the observations. However, if the ations were so designed suh that the observations

from the pair of websites had near similar dynamis, then privay of aess an be

preserved. In broader terms, for a pair of MDPs, if the poliies were jointly designed

suh that the observed state dynamis for both MDPs were ǫ lose to eah other in a

likelihood sense, then any hypothesis test between the MDPs would have very limited

suess. It is preisely the joint design of the poliies for a pair of generi in�nite

horizon MDPs that we onsider in this work suh that a weighted sum of rewards of

the two MDPs are maximized subjet to an ǫ-di�erential privay guarantee for the

observed state dynamis. We provide a value iteration method to reursively derive

the optimal rewards and the poliies for the two MDPs that are di�erentially private

at the desired ǫ level. The proposed method is shown to onverge and the onvergene

rate of this method is proved to be equal to the disount fator. Further, in this se-

tion, we investigated an appliation of MDPs under privay onstraints in routing in

networks, where nodes an be onsidered as states of the MDP. Spei�ally, the prob-

lem of destination privay in networked data olletion under onstraints on routing

overhead is studied, where, we propose an alternative approah wherein additional

destinations are inluded in the path of transmission to reate destination privay for

soure pakets. In partiular, using di�erential privay to quantify the privay of the

intended destination, we investigate optimal probabilisti routing for single soure

destination ommuniation. We propose private routing shemes based on uniast

and multiast routing. We demonstrate that the optimal solution of private uniast

routing when overhead weighting fator is one is equivalent to the solution of the trav-

eling salesman problem. However, for general overhead weighting fator, the optimal
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private uniast routing only alloates positive probabilities on 2M − 2 routes, where

M is total number of destinations. Consequently, optimal routing an be derived by

solving the resulting linear programming. When multiast routing is used to provide

privay to a single soure-destination setup, we prove that the optimal solution is

an np-omplete problem. In partiular, we demonstrate that the optimal solution of

multiast routing when overhead weighting fator is one is equivalent to a Minimum

Steiner Tree (MST) and for the general ase, we prove that eah soure will alloate

positive probabilities over 2M − 2 spanning trees.

In the �nal setion of this dissertation, we study ompetitive oupon targeting

between a pair of retailers when prie and privay are fators in the onsumer deision

making. We use the privay sensitivity model as proposed by Sankar et al in [23℄,

wherein onsumers are assumed to exist in one of two states with respet to a retailer

1) Non-alerted state where onsumers trust a retailer, and 2) Alerted state, where

onsumers are aware and wary by privay violations by the retailer. Consumers

swith between these states depending on whether they reeive targeted oupons

from a retailer. Following the oupon targeting model in a prie sensitive market in

[24℄, we assume that onsumers are loated on a Hoteling line suh that the loation

of onsumers on the line represents their preferene for the retailers. We demonstrate

that a privay sensitive market is divided into 12 segments. Moreover, we derive

the optimal stationary oupon targeting poliies and disounted rewards for both

retailers at eah spei� segment of the Hoteling line. We prove that onsumers with

weak preferene for a retailer will hange their purhasing brand if they notie their

privay is violated by the retailer. We also prove that at segments whih adopts

mixed strategies, the popular retailer has a less defensive strategy whilst the rival

retailer has a more o�ensive targeting strategy as the disount fator inreases. In

other words, as the importane of future pro�t gets higher, the popular retailer will

be more onservative about onsumers with weak preferene for him, beause, these

onsumers are more likely to hange their purhasing brand in the future, if they get

alerted about this retailer. On the other hand, the rival retailer will be more aggressive

to 1) get a higher share of market, 2) push the popular retailer to distribute targeted

oupons. Eventually, we demonstrate that despite the prie sensitive market, the

rival retailer will have a non-negative disounted reward on the onsumers with weak

preferene for the other retailer.
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3.1 Related Works

Using Shannon entropy to quantify paket soure anonymity, fundamental trade-

o�s between delay and paket soure anonymity were haraterized in [11, 16℄. The

study of soure anonymity in this work treats eah paket as an independent entity,

similar to the approahes in [16, 25, 26℄. This applies to systems with short bursts of

transmission suh as email, browsing, texting et. For heavy tra� appliations suh

as peer-to-peer �le sharing, multimedia transmission, the entire stream of pakets

needs to be onsidered together and individual paket shu�ing tehniques are no

longer su�ient. For a deeper investigation into anonymity for long streams of pakets

in networks, refer to the work in [10, 27, 28℄. Optimal single path routing to provide

paket soure anonymity has been a subjet of analytial investigation in [29�31℄.

In these and other subsequent improvements, protools that leverage randomness in

routing to provide anonymity at the ost of higher end-to-end delay were studied.

The analysis in [29�31℄, however, did not onsider anonymity-delay harateristis

of individual mixes or topologial in�uene on anonymity. Sine the original design

by Chaum, shu�ing strategies for mixes have been designed to optimize the tradeo�

between loal anonymity (serey of input-output pairing at a mix) and performane

metris suh as delay [32, 33℄, memory [34℄, throughput [35℄ et. These shu�ing

strategies study the protetion of individual pakets as opposed to long streams.

Reent signal proessing approahes [36,37℄ have demonstrated fundamental tradeo�s

between delay and privay in timing side hannels as well. Proteting streams require

the transmission of dummy pakets, or in other words link padding, so as to make

the outgoing streams from a mix indistinguishable to an external eavesdropper. The

minimum rate of dummy pakets required and the orresponding padding mehanism

have been studied under di�erent tra� and node parameters in [12, 35℄. Several

of these works onsider Poisson arrival proesses and derive the optimal strategies

and rates. In the seond setion of this dissertation, we apply the dependent link

padding strategies as derived in [12,35℄, and use numerial simulations to obtain the

orresponding dummy rates for pratial heavy tailed tra� proesses.

Theoretial analyses of optimal relay seletion and ontrol for anonymity are lim-

ited in the literature. In [35℄, the authors onsidered multi hop ommuniation in

adho wireless networks under the assumption that routes are �xed apriori and the

key parameters to optimize were the modes of operation. By optimizing the seletion

of relay nodes that add the dummy pakets, the authors demonstrated the tradeo�
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between the throughput and anonymity in the same system model using rate distor-

tion tradeo� in Information Theory. From a pratial standpoint, the relay seletion

or routing problem has been investigated to an extent in the Tor network under dif-

ferent adversarial onditions [38℄ and under di�erent riteria suh as bandwidth on-

straints[39,40℄, low lateny[40℄, and autonomous system awareness[41℄, albeit without

taking into onsideration timing analysis. The work on Tor systems that is losest to

the seond topi of this work is [42℄, where the authors introdued a new Tor lient

named LASTor where they showed that LASTor an redue lateny in omparison

with regular Tor lients by using an appropriate shortest path mehanism. Although,

they investigated the delay anonymity tradeo� by doing simulations and showed the

performane of their proposed LASTor, they did not onsider operational ontrol of

relays to investigate the delay anonymity tradeo�.

The literature on privay in routing is primarily foused on anonymous networks

[8,43℄, where paket enryption and sheduling are used to provide anonymity. Prob-

abilisti routing has been onsidered from a game theoreti perspetive when an

adversary has limited knowledge but is apable of interepting routes [44℄. To our

best knowledge, there is no work in literature investigating probabilisti uniast and

multiast routing to ahieve spei� degree of di�erential privay. Di�erential privay

was introdued as a tool to provide privay in data from learners and statistiians [6℄

and provides a point-wise measure on users privay (without Bayesian assumptions).

Using di�erential privay as a metri to quantify privay, we propose private uniast

and multiast routing in data networks.

Algorithms for uniast routing for di�erent appliations in data networks have

been presented in the literature [45�49℄, whih are typially variants of shortest path

algorithms with no additional onstraints. Adding onstraints suh as delay inreases

the omplexity of algorithms; for instane, the problem of uniast routing with ost

onstraints is an np-hard problem In [46, 47℄, authors proposed heuristi distributed

algorithms for uniast routings under onstraints on delay and path ost respetively.

Multiast routing is typially implemented by sending pakets through a Steiner

tree whih spans all the destination nodes. Determining the Minimum Steiner Tree(MST)

whih has the minimum aggregated ost over all Steiner trees is known to be an np-

omplete problem [50℄. There are some near optimal shemes for Minimum Steiner

Tree problem whih are run in polynomial time [51�55℄. The problem of delay on-

strained multiast routing is well-studied in [55℄, where the authors demonstrated

that the orresponding problem is np-omplete and proposed a heuristi algorithm
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based on the KMB algorithm.

Tradeo�s between privay and utility in dynamial and ontrol systems are well-

studied in the literature [56�60℄. The problem of privay utility tradeo�s has been

explored in [57,58℄ using a notion the authors refer to as ompetitive privay. In [59℄,

the authors investigated �ltering in a dynamial systems under di�erential privay

onstraints, where they derived methods developed to approximate a given �lter by a

di�erentially private version, so that the distortion aused by the privay mehanism

is minimized. An overview of privay in ontrol and dynamial system is presented in

[60℄, where two topis of appliations of di�erential privay in Kalman and general �l-

ters, and appliation of di�erential privay to distributed optimization algorithms are

studied. In [61℄, the authors proposed a privay mehanisms suh that at eah time,

the most aurate approximation of the system's state whih preserves the privay is

published. In [62℄, an optimization framework is presented whih solves onstrained

multi-agent optimization problems while keeping eah agent's state di�erentially pri-

vate. The authors demonstrated that under mild onditions eah agent's optimization

problem onverges in mean-square to its unique solution while eah agent's state is

kept di�erentially private. MDPs under privay onstraints are also studied in the lit-

erature. In [56℄, the authors studied the tradeo� between system utility and ahievable

privay in MDPs where privay is measured by Shannon entropy. In their approah,

they expressed the problem of MDP under privay onstraints as a Partially Observ-

able Markov Deision Proess (POMDP) with belief dependent rewards. In [63℄, the

authors investigated a subset of deentralized MDPs, where the anonymity in inter-

ation is spei�ed within the joint reward and transition funtions. In [64℄, privay is

modeled by beliefs in system's state, where the authors demonstrated that for MDPs

and POMDPs, privay veri�ation an be omputationally derived by solving a set

of semi-de�nite programs and sum-of-squares programs, respetively.

Targeted oupon and advertisements in prie sensitive market is well studied in

literature [24,65�68℄. In [65℄, targeted advertisement is studied against massive adver-

tisement and it is shown that ombination of massive and targeted advertisement an

inreases retailers pro�t and soial welfare . In [66℄, the authors demonstrate that

eah retailer an inrease its pro�t by targeting advertisement on onsumers with

higher preferene for the retailer more than shoppers who may be attrated to the

ompetition, or have weaker preferene for the retailer. The problem of ompetitive

one-to-one promotions is onsidered in [67℄, where the authors investigate the om-

petition of two retailers in a market where eah onsumer is individually addressable,
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and retailers know eah onsumer's taste. They demonstrated that one-to-one pro-

motion inreases prie disrimination and dereases the average prie in market, and

hanges market share between two retailers. In [68℄, the authors investigated oupon

targeting ompetition between two retailers under imperfet prie information. Re-

tailers an distribute either ordinary oupon, oupon advertising, or both at the same

time. They show that prie, promotional e�ort, and seller's pro�t is higher in the

ordinary oupon equilibrium, ompared to oupon advertising equilibrium.

One of the �rst works on eonomy of privay was introdued by Varian [69℄, where

he studied how one may de�ne property rights in private information suh that on-

sumers may manage how their private information is shared with retailers. Aqusiti

[70℄ studies the evolution of the eonomy analysis of privay by disussing online and

o�ine identities of individuals on eommere and their privay onerns and eonomi

impliations. In [71℄, Aquisiti studies the inentive to partiipate in an anonymity

system whih protets identity and privay. Tsai [7℄ studied the e�et of online pri-

vay information on purhasing behavior of onsumers. Spei�ally, they design an

experiment in whih privay poliy information was learly shown before the online

purhase and observed that onsumers tend to purhase from online retailers who

better protet their privay. In [72℄, the authors investigated the exhange between

two prinipals who sequentially make ontrat with an agent, and they prove that

based on some onditions, it is optimal if an upstream priniple o�ers the agent full

privay. If any of these onditions is violated, then, dislosure of information may

our. In [73℄, the authors proved that it is pro�table for retailers to o�er di�erent

pries to onsumers based on their purhasing history. Spei�ally, they onsidered a

problem with a single pro�t maximizing retailer, and a rational onsumer with a set of

preferenes on the pries o�ered for the good, as well as on the amount of private in-

formation provided. For example, a onsumer ould stop sharing private information

using a number of alternatives inluding deleting the web browser ookie, hanging

the payment information (e.g., redit ard), or using anonymous paying.
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4 Paket Soure Anonymity and Delay Tradeo� in Mix

Networks: Optimal Routing

In this setion, we investigate the protetion the soure identities of pakets that

�ow through a network towards their intended destination, or in other words, enable

anonymous ommuniation over data networks.

The theme of our work an be understood by the routing problem in a simple

network shown in Figure 1 where two soures S1, S2 transmit pakets to the ommon

destination D1 through a network of three mixes M1,M2,M3. The mixes have delay

onstraints d1, d2, d3 respetively; in other words, mix Mi an delay a paket for no

greater than di seonds. Without loss of generality, we assume d2 > d1. Larger

the delay onstraint, higher the unertainty reated by the shu�ing strategy of an

individual mix. Soures have �xed arrival rates, λ1, λ2 respetively, and hoose to

route a fration of their pakets through mix M1 and the remainder through mix M2.

If both soures transmitted their entire tra� through M1 their strategy would be

delay optimal, but the anonymity ahieved would be low sine M1 has limited delay

to shu�e pakets. If, instead they transmitted their pakets all through M2, the

anonymity ahieved would be higher but it would inur higher delay. Consequently,

the right balane between anonymity and delay would depend on the proportions

of eah soure's tra� transmitted through the two routes, and the strategies and

delays of the individual mixes. The following questions that naturally arise in this

setup form the basis of this work. 1)Given the topology and delay onstraints, does

multipath routing inrease the anonymity? 2) If it inreases anonymity, then, what

is the optimal alloation of transmission rates on the di�erent routes for eah soure

destination pair that ahieves a desired tradeo�? 3) How does this optimal tradeo�

vary with the topology, tra� harateristis and delay parameters of the system?

Through this setion, we study multipath routing to ahieve optimal tradeo�

between paket soure anonymity and average lateny in data networks. In setion

4.1, we present the system model. In setion 4.2, we investigate the problem of

tradeo� in light tra�. Moreover, we propose a low omplexity algorithm to determine

optimal single path route four eah user to ahieve a ertain degree of tradeo�. The

routing problem in high tra� regime is studied in setion 4.4. Finally, we present

our simulation results for optimal paket soure anonymity and lateny tradeo� in

setion 4.5.
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4.1 System Model

A mix network is denoted by a 3-tuple N = (G,D,Λ), where G = (V, E) is a direted

network graph, V is the set of verties representing network nodes and E is the set

of edges denoting direted ommuniation links. The set of nodes V is divided into

three mutually exlusive sets: a. S: set of soures. b. M: set of mixes. . D:

set of destinations. D is the set of delay onstraints for the elements of set M and

Λ = {Λij , 1 ≤ i ≤ |S|, 1 ≤ j ≤ |D|} is the set of arrival rates for the soure-destination

pairs. Eah element Λij denotes the total rate from the soure Si to the destination

Dj . In order to study the system under high and low limiting tra� onditions, we

parametrize the set Λ by a salar λ, suh that eah Λij = λRij , and Rij is kept

onstant as λ → 0 or λ → ∞. We desribe the partiipants of the system in more

detail below.

Soure: Eah soure Si transmits pakets to eah destination Dj aording to an

independent Poisson proess of rate Λij . Given the topology of the network, eah

soure has a �xed and known set of routes to eah destination through the mixes

and our primary goal is to alloate the transmission rates aross these routes to

maximize anonymity. The set P(Si,Dj) is the set of all the routes from soure

Si to the destination Dj suh that P
(i,j)
k ∈ P(Si,Dj) is a direted walk on the

graph G denoting the kth route between soure Si and destination Dj . Spei�ally,

we denote P
(i,j)
k = (Si,MP

(i,j)
k

,Dj), where MP
(i,j)
k

is the sequene of mixes on this

route. We assume that there are no yles in any route. For example in Figure 1,

P
(1,1)
1 = (S1,MP

(1,1)
1

, R1) ∈ P(1, 1), where MP
(1,1)
1

= (M1,M5,M13,M18). For every

soure-destination pair (Si,Dj), we assume eah paket is independently randomly

hosen to be transmitted through a spei� route in P(Si,Dj). Consequently, the

resulting set of point proesses from soure Si to destination Dj will be independent

stationary Poisson proesses with rates {λ
P

(i,j)
k

} respetively.We parametrize eah

λ
P

(i,j)
k

by salar λ suh that λ
P

(i,j)
k

= λr
P

(i,j)
k

, and r
P

(i,j)
k

is onstant as λ → 0 or

λ→∞. For the pair (Si,Dj),
∑

P
(i,j)
k

∈P(i,j)
λ
P

(i,j)
k

= Λij

We note that the Poisson assumption of arrivals is a limiting one and has been used

here due to its analytial tratability. Typial Internet tra� is better modeled using

Markov modulated Poisson or Heavy tail distributions. We do expet, albeit without

a formal proof, that the broad inferenes from this work suh as the optimality of

single path routing in light tra� and the QoS preferential routing in heavy tra�

would hold under other distributions as well.
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Figure 1: Example Network: S1, S2 are soures, M1,M2,M3 are mixes, D1 is the

destination. The rate of paket arrivals alloated on a path Si,Mk,M3,D1 is denoted

as λ
(i,1)
k

Mix: Eah mixMi observes point proesses on eah of its inoming links, eah proess

orresponds to the sequene of pakets transmitted by the node originating the link.

The soures, prior to transmitting pakets to the mixes, employ layered enryption,

whih is desribed below:

Let a soure S transmit a message denoted by X to destination R through

a sequene of mixes M1, · · · ,Mk. There exists a publi private key pair for

every mix and the �nal destination. Let AN denote the address of node N ,

and let EN (X) denote the iphertext obtained by enrypting message X with

the publi key of node N . When soure S wishes to transmit a message X to

destination R through a sequene of mixes M1, · · · ,Mk, it performs multiple

layered enryption and generates the iphertext:

EM1(AM2 , EM2(AM3 , EM3(· · ·EMk
(AR, ER(X)))) · · · ))

whih is transmitted to M1. M1 upon reeiving uses its private key to derypt

the outermost message and determines the address of the subsequent node AM2

and a iphertext enrypted with the publi key EM2 whih is then transmitted

to M2. M2 subsequently derypts the reeived message, obtains the address

AM3 of the sueeding node M3 and transmits the EM3 enrypted iphertext

to it. This repeated deryption and transmission ontinues in sequene until

the R-enrypted message ER(X) reahes the destination node. When suh a

layered enryption sheme is utilized, eah mix is only aware of the immediate

preeding and sueeding node in the path of a paket.

Consequent to the layered enryption, the pakets that depart from the mix are,

from the perspetive of an eavesdropper, ontent-wise not identi�able to a partiular

16



Figure 2: Example of System Model

inoming stream. Further, the layered enryption also ensures that the mix is unaware

of the path of eah arriving paket exept for the immediate preeding and sueeding

nodes. To prevent inferene through transmission timing, every arriving paket an be

delayed using a randomized strategy subjet to the mix's maximum delay onstraint

di and transmitted on one of the outgoing streams of the mix based on the route

whih the paket belongs to. The mix an also transmit multiple pakets in a bath

where the order of pakets in this bath is uniformly random. Let the set of all

possible mixing strategies for the network of mixes N be denoted by Ψ(N ). In

this work, we do not onsider the spei� design of mixing strategies to maximize

anonymity. For a delay onstrained mix, refer to [74℄ for the design of optimal mixing

strategies. The fous of this work is on optimal routing and rate alloation by soures

to maximize anonymity. For this purpose we onsider spei� mixing strategies that

exhibit optimality properties under light tra� and heavy tra� onditions.

Eavesdropper: We onsider an omnisient eavesdropper (Eve) who observes eah

individual point proess in the network. Eve knows the topology of the network,

the set of routes available to eah soure, the rate alloation aross these routes

and the strategy of eah mix. Spei�ally, the reordering and bathing strategy of

every mix is known to Eve, exept for the atual realization of the randomness used

by the mixes, whih is responsible for the unertainty in her inferene. Given the

observations, Eve's goal is to determine the soure of eah paket arriving at the

destination using her omplete knowledge. Suh an omnisient model is used to

guarantee the provable degree of anonymity; in pratie eavesdroppers, unless they
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own all network resoures, will have aess to lesser information and the results in

this work are provably guaranteed to be ahievable in that senario.

Anonymity De�nition

Eah route P
(i,j)
k ∈ P(i, j)(whih is the kth route between soure Si and desti-

nation Dj) ontains an ordered sequene of mixes M
P

(i,j)
k

. We de�ne d
P

(i,j)
k

=
∑

Ml∈M
P
(i,j)
k

dMl
whih denotes the maximum possible end to end delay experiened

by a paket traversing this route. Let

dmax = sup
i,j,k

d
P

(i,j)
k

Any paket an experiene a delay of at most dmax seonds in the mix network.

Based on this fat, we divide the time horizon into non overlapping cycles. Eah

yle begins with a paket arriving after an idle period of at least dmax seonds and

ends when there has been no departure for at least dmax seonds. From the de�nition

of dmax, all pakets that arrive in a yle will neessarily arrive at the destination

before the yle ends. This division of time into yles is an analytial onstrut used

to study the proess in stationarity. Due to the strit delay onstraints, the arrivals

and departures in eah yle are independent aross yles. Furthermore, sine the

inoming proesses are memoryless, we an study the expeted anonymity ahieved

in a yle instead of the entire time horizon of observation.

The omplete observation and knowledge of Eve is denoted by Θ. Let N(Θ)

denote the total number of pakets in the yle. We de�ne the random variables

X1,X2, · · · ,XN(Θ) suh that Xk ∈ {1, 2, · · · , N} denotes the soure of the kth paket

whih departs the mix network in that yle. Conditioned on Θ, the knowledge of the

mixing strategy results in a posterior joint distribution of X1,X2, · · · ,XN(Θ) from

the Eve's perspetive, over the originating soures of departing pakets in the yle.

Let Γψ(Θ) denote the Shannon entropy of this joint posterior distribution of

(X1,X2, · · · , XN(Θ)) when ψ is the set of mixing strategies used by mixes, then

we de�ne the anonymity as follows:

De�nition 4.1 The anonymity ahieved by a mixing strategy ψ ∈ Ψ(N ) is de�ned

as:

AψN (λ) =
E(Γψ(Θ))

E(N(Θ))
(1)
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The anonymity of the network, as expeted, is a funtion of the mixing strategies, the

soure arrival rates, mix delay onstraints and the rates alloated to multiple paths by

the soures. We use Shannon entropy as our anonymity metri whih has been used in

many previous literature as it is tratable and has losed form solutions. The entropy

measured has a physial onnotation from the perspetive of Eve: when the measure

takes its minimum value (zero), Eve an perfetly determine the soures of pakets

at a destination. When the measure takes the maximum value (logarithm of number

of soures), eah paket is equally likely to belong to any one of the di�erent soures,

whih is equivalent to having no information. In general, a key result in information

theory, Fano's Inequality [5℄, proves that an observer's probability of error in deoding

the soures of pakets is lower bounded by the entropy of posterior random variables.

We do note that entropy based measures have a weakness wherein they require a

Bayesian framework and measure the stohasti average aross the observations. As

a result they are better used for a priori design of protools.

In this work, we study anonymity in two tra� regimes, named light tra� and

heavy tra�. In light tra� regime, we use light tra� derivative to investigate the

optimal routing parameters for two reasons: the losed form haraterization of the

derivative whih makes it amenable to optimization, and the fat that the light tra�

derivative represents the sharpest gain in anonymity per unit tra� and onsequently,

the solution performs well at medium tra� rates as well. The light tra� derivative

is de�ned as follows:

∆0(M) ≥ lim
λ→0

d

dλ
AψN (λ)

In heavy tra� regime, using anonymity de�nition in equation (1), we derive

the anonymity ahieved in a network of mixes as a linear funtion of anonymities of

individual mixes.

For a single mix, the following result whih was proved in Theorem 4 of [11℄

Charaterizes the anonymity in the two extreme rate regime.

Theorem 4.1 For a single mix (M1) with delay onstraint d, serving two unequal

rate soures, and a single destination, the light tra� derivative and the anonymity

in high tra� are as follows:

lim
λ→0

d

dλ
AψM1

(λ) =
2r1r2
r1 + r2

d (2)

lim
λ→∞

AψM1
(λ) = h(

r1
r1 + r2

), (3)
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where h(p) is entropy of a Bernoulli random variable with parameter p and λ1 =

r1λ and λ2 = r2λ are rates of soures S1 and S2, respetively. As an be seen from

the theorem, the optimal anonymity inreases linearly with delay under light tra�,

and approahes the maximum possible (prior entropy) in high tra� onditions. In

this work we apply this single mix result in a network and derive the optimal routing

parameters that maximize a weighted sum of network anonymity and average delay,

whih is desribed more formally below.

Delay: In our model, the average delay of network N as a linear funtion of routing

parameters and eah mix delay onstraints is de�ned as follows:

D =
1

λT

∑

u,v

∑

P
(u,v)
i ∈P(u,v)

λ
P

(u,v)
i

d
P

(u,v)
i

, (4)

where λT =
∑

i,j Λij .

Delay Anonymity Tradeo�: The primary hallenge of this work is investigating

the tradeo� between anonymity and delay. We model the preferene of the network

on delay and anonymity by the parameter 0 ≤ α ≤ 1 suh that the objetive is to

maximize the weighted sum of delay and anonymity αA − (1 − α)D. As disussed

in the example in Setion 4.1, a longer path is likely to inrease anonymity at higher

delay whereas a shorter path an limit the delay with lower ahieved anonymity. In

the forthoming setions, we study the optimal routing parameters that maximize

this objetive under the two extreme tra� onditions desribed earlier.

Using this model, in the subsequent setion we will study the optimal multipath

routing problem for two extreme tra� regimes. We demonstrate that in the light

tra� regime, as λ → 0, the maximization requires every soure to transmit solely

on a single path to eah destination and we, onsequently, provide a low omplexity

algorithm to determine the optimal path. We also prove that under heavy tra�

onditions, where λ→∞, that maximum possible anonymity is ahievable regardless

of the routing parameters whih means the network may hoose the routing strategy

based on minimizing delay alone. The analysis of eah of these tra� regimes requires

a orresponding haraterization of anonymity in the network as a funtion of the

topology, routing parameters and the mix delays, whih forms the analytial basis for

the optimization.
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4.2 Optimal Routing in Light Tra�

In this setion we onsider the general network with N soures and M destinations

suh that the arrival rates for all soure destination pairs are equal. The equality

assumption is used merely to ease presentation. The results are imminently extend-

able to unequal rate models. More importantly, the key inferenes derived ontinue

to hold for the general model. Our approah is based on a spei� mixing strategy

proposed in [16,75℄. The strategy was shown to be optimal in the light tra� regimes

for individual mixes and linear asade networks. Aording to this strategy (ψl),

eah mix Mi waits for an arrival after an idle period of at least dmax seonds. All

the pakets whih arrive in di seonds following this arrival will be transmitted in

a single bath at the end of di seonds. During the (li − di) seonds following this

bath transmission (li is the supremum of the sum of the delays in the route whih

inlude mix Mi and start from this mix), all the pakets arrived to this mix will be

transmitted without any delay. Upon ompletion of the li seonds, the mix resets and

wait for a new arrival to restart this proess.

This strategy, as shown in [16℄, obtains the optimal light tra� derivative in (2)

for a single mix and linear asade mix networks. In the following we study the

derivative ahieved by the strategy in a mix network as a funtion of the topology

and multipath routing parameters.

4.2.1 Anonymity of a Mix Network in Light Tra�

In this setion, we will see that the anonymity is a nononvex funtion of the multi-

path routing parameters λ
P

(i,j)
k

. The non onvexity of the anonymity funtion would

typially imply that we might need to apply approximation methods to e�iently

ompute the optimal parameters. However, as will be seen in the proof of Theorem

4.4, the quadrati form we derive for the optimal anonymity results in a unique opti-

mal path for eah soure destination pair.

Prior to going through the anonymity of a general network, we present a simple

example to develop the idea of anonymity in light tra�. Consider a network with

two soures, two destinations and a single intermediate mix M1. We assume a yle

with only two pakets, wherein the �rst paket belongs to the route P
(1,1)
1 and the

seond one belongs to the route P
(2,2)
1 . If these two pakets depart from mix M1 in

a bath, then Eve will be onfused between two pair of routes: 1) P
(1,1)
1 and P

(2,2)
1
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Figure 3: Mix Network in Lemma 4.2

2) P
(1,2)
1 and P

(2,1)
1 . Thus, the anonymity ahieved in this two paket yle will be

equal to:

Γ = h(

λ
P
(1,1)
1∑

k,j λPk(1,j)

λ
P
(2,2)
1∑

k,j λPk(2,j)

λ
P
(1,1)
1∑

k,j λPk(1,j)

λ
P
(2,2)
1∑

k,j λPk(2,j)
+

λ
P
(1,2)
1∑

k,j λPk(1,j)

λ
P
(2,1)
1∑

k,j λPk(2,j)

), (5)

where h(p) is the Shannon entropy of Bernoulli random variable with parameter p.

If the destinations of these two pakets are idential, then the ahievable entropy will

be h(0.5) = 1. If the pakets do not leave in a bath, then Eve an perfetly identify

the soure-destination pairs, thus ahieving zero unertainty.

Let's onsider the following events in a general network de�ned with respet to

the yle initiated by a paket arriving at time 0 after a duration with no arrivals of

length at least dmax seonds:

E2 : There are exatly two pakets in the yle.

Ea
P

(i,j)
k

,P
(u,v)
l

: There are two pakets in the yle one from route P
(i,j)
k ∈ P(i, j)

and the other from P
(u,v)
l ∈ P(u, v)and the �rst paket initiates the yle.

Eψl

i : is an indiator random variable de�ned for the spei� two-paket yle as:

Eψl

i =







1 if the two pakets depart the ith mix ommon

to both routers in a bath when the mixes

use strategy ψl
0 otherwise

Now, we de�ne the variable Υ(i, j, k, u, v, l) = E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2} whih is Eve's

expeted unertainty in the ase where there are two pakets in the yle; one paket

on route P
(i,j)
k and the other on route P

(v,l)
u , and the paket on route P

(i,j)
k initiates

the yle.

When both pakets in a two paket yle arrive from the same soure, the yle

has zero entropy, sine the soure of eah paket is perfetly identi�able while the
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ase where these two pakets belongs to two di�erent soures the ahievable entropy

should be alulated based on the posterior probabilities as follows:

A two paket yle de�ned by an event Ea
P

(i,j)
k

,P
(u,v)
l

orresponds to a sub-network

as shown in Figure 3 where there are two soures and two destinations and a set of

intermediate mixes. We use M ′ = (M ′
1, M

′
2, . . . , M

′
α) to denote the ordered sequene

of mixes where the two paths interset. The walks Y1, · · · , Yα+1 and Z1, · · · , Zα+1

are eah mutually exlusive sequenes of mixes. There are therefore 2α−1
possible

routes from soure Si to destination Dj through the mixes ((Y1 or Z1), M
′
1, (Y2 or

Z2), ..., M
′
α, (Yα+1 or Zα+1)). The following Lemma omputes the average uner-

tainty ahieved in suh two paket yles.

Lemma 4.2 For a �xed routing parameters, the Eve's expeted unertainty in the

network in Figure 3, where there are two pakets in the yle one from soure Si

to destination Dj through the route P
(i,j)
k and the seond paket from soure Su to

destination Dv through the route P
(u,v)
l respetively is given by:

Υ(i, j, k, u, v, l) = E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2} =






∑

(b1,··· ,bα)6=(0,··· ,0) h(0.5)P{E
ψl

1 = b1

, · · · , Eψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} if j = v

∑

(b1,··· ,bα)6=(0,··· ,0) h(
cuvij

cuvij +cujiv
)P{Eψl

1 = b1

, · · · , Eψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} if j 6= v

,

where cuvij is the posterior probability that the pakets from soures Si and Su arrive at

destinations Dj and Dv respetively from Eve point of view given all the observations

and knowledge of Eve.

Proof: Refer to [76℄ �.

Lemma 4.2 omputes the ahieved unertainty for spei� two paket yles in

the sub-network of Figure 3 as a funtion of routing parameters and the routes of the

two pakets. The expression in the lemma, although ompliated, an be explained

using a simple idea. If the two pakets in a yle leave any mix in a bath, then

non-zero entropy is generated; this non-zero entropy is given by the h(·) term. This

entropy term depends on the posterior probability of a given realization of the soure

destination pairing (Si,Dj), (Su,Dv) given that the two pakets departed in a bath

from a partiular mix. The atual omputation of this probability depends on the

exat realization of the routing parameters (a generalization of the expression in (5)
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). However, as will be seen in the forthoming analysis, this omputation will be

unneessary sine the optimal rate alloation results in single paths for the soure

destination pairs in whih ase, the posterior probability of a partiular pairing is

1
2 .

In a general network, by identifying the set of mixes where pakets are bathed

and the orresponding probabilities, the overall anonymity an be haraterized, as

in the following Theorem.

Theorem 4.3 The light tra� derivative of Anonymity of a general mix network

N = (G,D,Λ) is lower bounded by:

∆0(N ) ≥ sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
Υ(i, j, k, u, v, l), (6)

where λT =
∑

i,j Λij = Nλ, s = λT
λ = |S| = N , and Υ(i, j, k, u, v, l) is Eve's expeted

unertainty in the event where there are two pakets in the yle; one paket on route

P
(i,j)
k and the other on route P

(v,l)
u .

Proof: For any strategy ψ, the anonymity is de�ned as follows:

AψM(λ) =
E(Γψl(Θ)

E(N(Θ))
=

∑∞
n=2 E(Γ

ψl |N = n)P(N = n)

E(N(Θ))
, (7)

where Θ is the total available information for Eve in the yle begins from t = 0.

For the light tra� derivative, it is easily seen that the yles where N > 2 do not

ontribute to the light tra� derivative (as λ → 0), only linear terms will have non

zero ontributions, and yles with N > 2 neessarily ontain O(λ2) fators by virtue

of the Poisson proess. Therefore, ∆0(M) an be written as:

∆0 ≥ lim
λ→0

d

dλ

E{Γψl |N(Θ) = 2}P{N(Θ) = 2}

E{N(Θ)}

In order to �nd E{Γψl |N(Θ) = 2}, we need to average Eve's unertainty on all the

possible pairs of routes P
(i,j)
k and P

(u,v)
l . We an express E

0{Γψl |E2} as follows:

Γ = E{Γψl |E2} =
∑

i,j,k,u 6=i,v,l

P{Ea
P

(i,j)
k

,P
(u,v)
l

|E2}

E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2}

E{Γψl |Ea
P

(i,j)
k

,P
(u,v)
l

, E2} is omputed in Lemma 4.2, and

P{Ea
P

(i,j)
k

,P
(u,v)
l

|E2} =
λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
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Using the properties of Poisson proesses, we an write

P{E2} = (1− e−sdmax)e−sdmax

E{N(Θ)} = esdmax

onsequently,

∆0(M) ≥ lim
λ→0

d

dλ

Γ(1− e−sdmax)e−sdmax

esdmax
= sdmaxΓ (8)

�.

Theorem 3.2 provides the omplete analytial haraterization of the ahievable

light tra� anonymity as a funtion of the topology, routing parameters and the

individual delay onstraints of the mixes in the network. This anonymity is omputed

assuming that every mix uses the light tra� optimal strategy proposed in [16℄, and

Eve is aware of the topology and the strategy of the mixes.

In the following Theorem, we show that the optimal routing parameters that

maximizes the anonymity in Theorem 4.3 orrespond to single path optimal solutions.

Theorem 4.4 The solutions λ∗
P

(i,j)
k

whih maximizes the total light tra� anonymity

of any mix network that uses strategy ψl must neessarily be of the form:

∀i, j∃kij s.t. λ
∗

P
(i,j)
kij

6= 0, λ∗
P

(i,j)
l

= 0, l 6= kij (9)

Proof: There are three basi steps to proving the result of the theorem whih are

desribed as follows:

1. We ompute an upper bound on the light tra� derivative using standard

bounds on the binary entropy funtion. Lemma 4.5 demonstrates a property

of the quadrati light tra� derivative form that enables the derivation of the

upperbound and the resulting optimization.

2. We prove that the rate alloation parameters that optimize the upper bound

have the single-path form stated in (9). This is shown in Lemma 4.6.

3. We then show that the optimal value for the upperbound is indeed an ahievable

light tra� derivative, thus proving the result of the Theorem.
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1. Upper bound on light tra� derivative Note that the form of the light

tra� derivative expression involves a quadrati funtional of the routing parameters

saled by the probability of a partiular event (that the two pakets in the yle depart

in a bath at least one) in the orresponding two paket yle. Before expressing

the optimization problem and its solution, it is important to prove that for eah

pair of routes the event probability P{Eψl

1 = b1, · · · , E
ψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} is

independent of rate alloation parameters λ
P

(i.j)
k

s in light tra�. This is shown in the

following lemma.

Lemma 4.5 For any pair of routes P
(i,j)
k ∈ P(i, j) and P

(u,v)
l ∈ P(u, v), P{Eψl

1 =

b1, · · · , E
ψl
α = bα|E

a

P
(i,j)
k

,P
(u,v)
l

, E2} is independent of rate alloation λ
P

(i,j)
k

s and is only

a funtion of the topology G and the delay onstraints D, as λ→ 0.

Proof: Refer to [76℄. �.

It is evident from Theorem 4.3 that the anonymity is a nononvex funtion of

alloated rates. The general optimization problem we wish to study an be stated as

follows.

Φ : max
{λ

P
(i,j)
k

}
A =

sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
Υ(i, j, k, u, v, l)

subjet to : ∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} :
∑

k

λ
P

(i,j)
k

=
λ

M
,λ

P
(i,j)
k

≥ 0 (10)

Let qijk,uvl denote the probability that the two pakets in the yle depart in a bath

from at least one ommon mix in the pair of routes P
(i,j)
k and P

(u,v)
l :

qijk,uvl ,
∑

(b1,··· ,bα)6=(0,··· ,0)

P{Eψl

1 = b1, · · · , E
ψl
α = bα|

Ea
P

(i,j)
k

,P
(u,v)
l

, E2} (11)

In order to solve this problem, we �rst ompute an upper bound on A, whih uses

the fat that the entropy terms 0 ≤ h(
cuvij

cuvij +cujiv
) ≤ 1 and h(0.5) = 1, and the fat that

the probability qijk,uvl is bounded as

0 ≤ qijk,uvl ≤ 1,
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Consequently,

A = sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
Υ(i, j, k, u, v, l)

≤ sdmax
∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
qijk,uvl , Q (12)

2. Optimizing the Upper bound

Lemma 4.6 The solutions λ∗
P

(i,j)
k

to the optimization problem

Ψ : max
{λ

P
(i,j)
k

}
Q = sdmax

∑

i,j,k,u 6=i,v,l

λ
P

(i,j)
k

λT

λ
P

(u,v)
l

λT
qijk,uvl

subjet to : ∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} :
∑

k

λ
P

(i,j)
k

=
λ

M
,λ

P
(i,j)
k

≥ 0

must neessarily be of the form:

∀i, j∃kij s.t. λ
∗

P
(i,j)
kij

=
λ

M
,λ∗

P
(i,j)
l

= 0, l 6= kij

Proof: Due to Lemma 4.5, we know that qijk,uvl is independent of λP (i,j)
k

. In the

Hessian matrix of the funtion Q, we an see that all the elements on the diagonal of

the Hessian matrix are zero as ∀i, jandk ∂2A
∂λ2

P
(i,j)
k

= 0. This fat shows that the sum

of the eigenvalues of this matrix should be zero. Consequently, all of them annot

be either positive or negative and this shows that the subspae where the gradient is

zero, we will just have saddle points whih annot be the optimal solution and the

maximum should exist in the boundary of the domain of rate alloation parameters.

If, for any i, j, we hoose set the λ
P

(i,j)
k

s to be binary (de�ning a boundary), our

resulting domain would orrespond to a subspae of funtions whih an be viewed

as a boundary for the funtion Q. With eah subspae, if we set eah λ
P

(i,j)
k

equal

to zero individually again all the elements on the diagonal of the new Hessian matrix

will be zero whih shows that all the eigenvalues of the new Hessian matrix annot

have the same sign and the subspae where the gradient of new funtions are zero

annot be optimal as it ats as a saddle point. We therefore ought to onsider the new

funtion's boundaries. Due to the quadrati nature of the anonymity funtion, this

proedure when repeated is going to yield an idential onlusion and onsequently,

the only possible optimum points are the true verties of the rate spae where for eah
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i ∈ {S1, S2, ..., SN} and eah j ∈ {D1,D2, ...,DN } only one the λP (i,j)
k

s is nonzero and

equal to

λ
M . �

3. Equality of the optimal solution for the light tra� derivative and the

upper bound Without loss of generality, for eah soure-destination pair (Si,Dj),

let the kijth route, denoted by P
(i,j)
kij

, be the optimal route. Let the vetor λopt =

(λ∗
P

(1,1)
k11

, ...λ∗
P

(1,M)
k1M

, λ∗
P

(2,1)
k21

, ...λ∗
P

(2,M)
k2M

, · · · , λ∗
P

(N,1)
kN1

, ... λ∗
P

(N,M)
kNM

) be the optimal solution of

problem Ψ and Q∗
be this optimal value. We know that

max
λ
P
(i,j)
k

s
A ≤ max

λ
P
(i,j)
k

s
Q = Q∗

(13)

As the optimal solution of Ψ yields single routes for a pair of pakets one belonging

to soure destination pair (Si,Dj) and the other belonging to (Su,Dv) h(
cuvij

cuvij +cujiv
) =

h(0.5) = 1 as long as the two pakets depart in a bath from at least one of the ommon

mixes. Consequently, using Lemma 4.2 and Theorem 4.3, A(λopt) =
∑

i,j,u 6=i,v

λ∗
P
(i,j)
kij

λT
λ∗
P
(u,v)
kuv

λT
qijk,uvl whih is equal to Q∗

. Therefore, λopt is also the optimal solution of Φ

and A∗ = Q∗
, whih ompletes the proof of the theorem. �.

The proof of the theorem exposes an interesting artifat of the system: it does not

matter how many mixes end up bathing the pakets in a yle; as long as the pakets

are bathed at least one, then maximum unertainty an be ahieved in light tra�

yles. Consequently, the single path solution is su�ient to maximize the overall

anonymity. In the following setion, we prove that the single path optimality extends

to maximizing the weighted sum of delay and anonymity as well, and subsequently

propose an algorithm to determine the optimal routes that ahieve a desired tradeo�

between anonymity and delay.

4.2.2 Delay Anonymity Tradeo� in Light Tra�

As mentioned in Setion 4.1, the average end to end delay of network is a linear

funtion of routing parameters λ
P

(u,v)
i

expressed as follows:

D =
1

λT

∑

u,v

∑

P
(u,v)
i ∈P(u,v)

λ
P

(u,v)
i

d
P

(u,v)
i

,

We model the network preferene on anonymity and delay by the parameter 0 ≤ α ≤

1. To express the delay anonymity tradeo�, we present the following optimization
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problem for a �xed α:

Ω : max
{λ

P
(i,j)
k

}
αA− (1− α)D

subjet to : ∀i ∈ {1, · · · , N}, j ∈ {1, · · · ,M} :
∑

k

λ
P

(i,j)
k

=
λ

M
,λ

P
(i,j)
k

≥ 0 (14)

Corollary 4.6.1 The optimal solution for problem Ω must neessarily be of the form:

∀i, j∃kαij s.t. λ
∗

P
(i,j)

kα
ij

6= 0, λ∗
P

(i,j)
l

= 0, l 6= kαij (15)

Proof:: As the average delay funtion is a linear funtion of rate alloation parame-

ters, the above orollary naturally follows from the result of Theorem 4.4. �.

The above orollary extends the optimality of single path routing solutions to

maximizing the weighted sum of anonymity and delay as well. We do note that this

is a onsequene of average delay being a linear funtional of the parameters. It is

oneivable that should another QoS riterion suh as ongestion be onsidered whih

is better in�uened by multipath routing, then this optimality may not extend to those

problems. In suh senarios, the result of Theorem 3.2 should be used in onjuntion

with the orresponding QoS metri to determine the optimal routing parameters.

Following Corollary 4.6.1, we propose a low omplexity algorithm to determine

the omplete delay-anonymity tradeo� for any network of mixes.We know that for

any weighting fator 0 ≤ α ≤ 1, the optimal routing yields single path route for

eah soure destination pair. Let's onsider the set of all suh single path routing

strategies Q = {(A1,D1), · · · , (A|Q|,D|Q|)}. |Q| is the total number of suh strategies.

Eah pair (Au,Du) orresponds to a single path routing strategy, where for eah

i ∈ {1, 2, ..., N} and j ∈ {1, 2, · · · ,M}, just one of the λkP (i,j) is nonzero. Without

loss of generality we assume that these pairs are ordered suh that their delays are

inreasing, so D1 is the minimum ahievable end-to-end delay.

First, any pair (Ai,Di) suh that ∃u < i : Ai < Au is removed from the set Q,as

αAi − (1 − α)Di < αAu − (1 − α)Du for any weighting fator 0 ≤ α ≤ 1. Eah

remaining pair (Ai,Di) orresponds to a line segment (Ai +Di)α−Di as a funtion

of α. Starting from α0 = 0, the pure delay optimal solution orresponds to the pair

(A1,D1) represents the optimal routing. This pair is reorded as (A0−opt,D0−opt).

Then, algorithm �nds the pair whih interset this line for smaller α ompared to the

other pairs and reords this α as α1, and this pair as (A1−opt,D1−opt). Then, at eah

step, algorithm ontinues to �nd the next line segment whih intersets the urrent
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Algorithm 1 Algorithm to �nd the optimal routing for eah α
1: u← 1
2: while u < |Q|
3: p = argmin{j > u : Aj > Au}
4: Q = Q/{Au+1, · · · , Aj−1}
5: u← p
6: i← 0
7: u← 1
8: (Aopt−i,Dopt−i)← (A1,D1)
9: while u < |Q|

10: p = argminj>u{
1

1+
Aj−Au

Dj−Du

}

11: αi+1 =
1

1+
Ap−Au
Dp−Du

12: i← i+ 1
13: (Aopt−i,Dopt−i)← (Ap,Dp)
14: u← p

optimal segment for smaller α till it reahes α ≥ 1. At any step of algorithm, the

pair (Ai−opt,Di−opt) is reorded to be the optimal pair for the interval [αi, αi+1]. The

following theorem demonstrates the optimality of Algorithm 1.

Theorem 4.7 Algorithm 1 derives the optimal routing for any weighting fator α.

Proof:: Let's assume for a weighting fator αi ≤ α ≤ αi+1, there is a pair (At,Dt)

suh that αAt − (1 − α)Dt > αAopt−i − (1 − α)Dopt−i, then (At,Dt) should satisfy

the following inequalities:

1

1 +
Aopt−(i+1)−Aopt−i

Dopt−(i+1)−Dopt−i

≥ α ≥

1

1 +
At−Aopt−i

Dt−Dopt−i

≥
1

1 +
Aopt−i−Aopt−(i−1)

Dopt−i−Dopt−(i−1)

(16)

whih ontradits with the de�nition of (Aopt−(i+1),Dopt−(i+1)) �.

It is noted that the optimal routing were derived assuming a spei� mixing strat-

egy desribed in [16℄; the light tra� derivative for the strategy is known to be optimal

for individual mixes and for a lass of mix networks, referred to as mix asades [16℄.

We therefore onsider a general lass of networks that are modeled after pratial

anonymous systems, and demonstrate that this lower bound has optimal saling be-

havior with the size of the network. In pratial anonymous systems, suh as Tor [9℄

the network of intermediate nodes are divided into two groups, entry (or exit) nodes

and transit nodes; eah soure (or destination) ommuniates with a single entry (or
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Figure 4: Complete graph mix network. The blue lines shows the worst onnetivity

between soures and mixes and destinations and mixes whih ahieves the lower-

bound. The blak lines shows one of the best possible onnetivity whih ahieves

the upperbound

exit) node, and the transit nodes typially form a omplete graph. In the following,

we use the previous results to derive the optimal saling behavior of the light tra�

anonymity for suh networks.

4.3 Saling Behavior of Complete Graphs

In this setion, we onsider a network modeled by a omplete graph with K mix

nodes, N soure nodes, and T destination nodes. The set of mixes ontain N entry

mix nodes and T exit mix nodes suh that all soures transmit only to entry nodes

and destinations are diretly aessible only from exit nodes. The K mixes nodes,

however, form a omplete graph. Eah mix has an idential delay onstraint d.

In the following theorem, we apply the results of the previous setion to prove

that the optimal anonymity for suh omplete mix networks sale as O(NK). We

show that for both upper bound and lower bound the mix network, the light tra�

anonymity sales identially to a single mix with a delay onstraint dmax, whih an

simulate any strategy of the original mix network.

Theorem 4.8 The optimal light tra� derivative of anonymity of the omplete mix

network with N soures and T destinations in the light tra� regime is bounded from

above and below as follows:

d(N − 1)(K −N − T ) ≤ AMc ≤ d(N − 1)K (17)

Proof: We do not onsider any spei� set of routes between soures and destinations

in the mix network. In order to provide a lower bound, we onsider a senario where
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eah soure and eah destination has just one onnetion to separate entry and exit

mixes respetively (Figure 4). Based on Theorem 4.4, for eah soure destination pair,

it is su�ient to hoose exatly one route to transmit pakets. In order to maximize

the light tra� derivative under this assumption, we let eah soure transmits its

pakets through the longest possible route. For example, soure S1 transmits the

pakets to destination D1 through the route (M1,MN+1, · · · ,MK−T ,MK−T+1). This

asade assumption would then imply that the sequene (MN+1, · · · ,MK−T ) =MLow

an be viewed as a single mix with the delay onstraint equal to sum of all the mixes in

it whih is equal to (K−T −N)d. Using Theorem 4.3 for this system, the anonymity

in light tra� an be proven to be lower bounded as

A ≥ NKdNT 2(N − 1)
λ
T

Nλ

λ
T

Nλ

(K + 2−N − T )d

Kd
=

d(N − 1)(K −N − T ) (18)

The upper bound is obtained by replaing the network of mixes with a single mix

having delay onstraint dmax = Kd suh that all soures transmit to the mix and

all destinations reeive pakets from the mix (Figure 4 ). That the anonymity of

this system is an upper bound to the network of mixes omes from the fat that any

strategy used by the network of mixes an be simulated by the enhaned single mix,

and sine Eve observing only one �super� mix has fewer observations, the anonymity

ahieved by the super mix is higher than that by the network of mixes. For suh a

system, the light tra� anonymity an easily be shown to be d(N − 1)K. �.

4.4 Optimal Routing in Heavy Tra�

In this setion, we will demonstrate that in the heavy tra� regime, as λ → ∞,

maximum anonymity is ahievable regardless of the hoie of routing parameters.

Consequently, the derived rate alloation from the light tra� analysis would be

suitable under heavy tra� onditions as well. An important step in the heavy

tra� analysis required expressing the ahievable anonymity of a general multiple-

destination network as a linear ombination of smaller sub-networks involving single

mixes. This result, whih is proven in Lemma 4.10, requires the de�nition of the

intermediate anonymity ahieved by an individual mix in the network.

Spei�ally, for a single mix Mi in the network N , we de�ne AjMi
to be the

intermediate anonymity of pakets on the jth outgoing edge of mix Mi as follows:

AjMi
(λ) = lim

λ→∞

H(Xij)

N ij
, (19)
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where Xij = (Xij
1 , · · · ,X

ij
N ij ) and Xij

k is the soure of the kth paket from Eve's

perspetive on the jth outgoing edge and N ij
is number of pakets on the jth outgoing

edge.

In [75℄, we demonstrated that in the heavy tra� regime for a single destination

network, the ahieved anonymity is independent of the rate alloation thus allowing

soures to optimize their multipath route seletion based on other desired QoS met-

ris. In the following Theorem, we show the same fat holds for multiple destination

networks as well. An important step in proving this result is the expression of the

anonymity of the mix network as a linear funtional of the intermediate anonymities

given by (19).

Theorem 4.9 If eah mix utilizes an asymptotially optimal mixing strategy, then

the maximum anonymity in a multiple destination mix network is ahieved for

any set of alloated rates as long as eah destination node reeives pakets from a

single mix.

Proof: In order to prove this theorem, we �rst need to �nd the exat expression of

high tra� anonymity in terms of the rate alloation parameters whih is given by

following lemma:

Lemma 4.10 Anonymity of any arbitrary network in the high tra� rate regime is

lower bounded by:

AM(λ) ≥

|M|
∑

i=1

ξi∑

j=1

wjMi

w
(AjMi

−

|S|
∑

k=1

∑ζi
u=1w

jk
Miu

wjMi

H(
wjkMi1

∑ζi
u=1w

jk
Miu

, · · · ,
wjkMiζi

∑ζi
u=1 w

jk
Miu

)), (20)

where w is the total rate of soures and wjkMiu
is rate of pakets from soure Sk arriving

on the uth inoming edge to mix Mi and leaving mix Mi from the jth outgoing edge.

wjMi
is the rate of pakets on the jth outgoing edge of mix Mi. ζi is number of

inoming edges of mix Mi and ξi is the number of outgoing edges of mix Mi.

Proof: Refer to [76℄. �.

Lemma 4.10 expresses the anonymity ahieved by the network of mixes as a

weighted sum of the anonymity of eah individual mix and the multipath rate al-

loation parameters. To prove the result of this theorem, we require that eah mix

ahieves the maximum possible anonymity asymptotially. In other words, we must
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prove the existene of a mixing strategy ψ for any mix Mi in the system, suh that

if wjkMix
are the set of arrival rates to the mix, then the ahieved anonymity is the

optimal anonymity whih is given by following equation.

lim
λ→∞

AψM (λ) =
∑

Mi∈F

∑

j∈Fi

wjMi

w
h(
w1
Mij

wjMi

, · · · ,
wNMij

wjMi

), (21)

where F is the set of mixes whih has at least one edge onneted diretly to one of

the destinations and Fi is the set of outgoing edges of mix Mi whih are onneted

to destinations. wkMij
is the rate of pakets of soure Sk on the jth outgoing link of

mix Mi. w
j
Mi

is the total rate of pakets on jth outgoing edge of mix Mi.

Existene of suh a strategy has been shown in [16℄ and is a subjet of a deeper

investigation in [74℄, where the strategy with the best asymptoti onvergene rate is

presented. In so far as the disussion in this paper is onerned, onsider the simple

bathing strategy of a mixMi, wherein the mix bathes all pakets that arrive within

periodi time intervals of di seonds. As λ → ∞, the number of pakets that arrive

within any time period, say NT would also inrease towards in�nity. Aording to

the law of large numbers, the proportion of pakets arriving on eah link in this bath

of pakets would onverge to the proportion of arrival rates from those respetive

links. By reordering the pakets suh that every possible ordering within a bath is

uniformly random, the anonymity ahieved will onverge to the prior entropy given in

inequality (20) as λ→∞. Given that eah mix ahieves the prior entropy as λ→∞

regardless of the nature of arrival proesses, it remains to be seen that the anonymity

of the network onverges to the maximum possible regardless of the rate alloation;

this an be shown by substituting the right-hand-side in (20) bak into Lemma 4.10,

so we get the optimal anonymity whih is given in (21). �.

As the optimal anonymity is ahieved for any rate alloation in high tra� regime,

the optimal delay anonymity region has one optimal point whih is the delay optimal

point. In a broader sense, the optimal routing problem an be designed based on

other QoS riteria suh as lateny, throughput and ongestion.

4.5 Simulations and Numerial Results

In this setion, we present our simulation results on two example mix networks shown

in Figures 1 and 5. We ompare the anonymity optimal rate alloation to the other

intuitive shemes. We see that the optimal routing derived in the light tra� regime

also performs better when ompared to other shemes in the regions where the traf-

� is neither heavy nor light. Finally, we present simulation results of the delay
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Figure 5: Mix network onsidered for the delay anonymity trade-o� simulation
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Figure 6: Comparing performane of optimal strategy in light tra� ase to the other

rate alloations

anonymity tradeo� for the mix network in Figure 5. In Figure 6, the anonymity

ahieved by the optimal light tra� based rate alloation for the 2 soure network

in Figure 1 is plotted as a funtion of general arrival rate λ, and the performane is

ompared to two intuitive rate alloation shemes, namely equal alloation and delay

optimal alloation. In equal alloation, eah soure transmits half the tra� through

mix M1, and the other half through mix M2, while in delay optimal alloation, eah

soure transmits its tra� through the shortest path. In the simulation, the rate of

S2 was assumed to be twie that of S1. For general tra� the optimal anonymity

delay relationship is as yet an open problem, and any suh optimization of rate al-

loation parameters would have to be performed using sub optimal strategies and

analytially intratable expressions. An example strategy that is optimal under light

tra� onditions and heavy tra� onditions but sub optimal for the general tra�
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λ2

would be that of a strategy that simply pools pakets that arrives within the delay

onstraint and transmits a uniform random shu�e of a bath. Under our framework

the anonymity an be omputed as

A =
∑

i

∑

j

Pr{i pakets from S1 and j pakets from S2}

Pr{leaving in a bath} log2

(
i+ j
i

)

(22)

This strategy is used to haraterize the anonymity for eah set of routing parameters.

From Theorem 4.9, we know that all of these alloations will ahieve the maximum

anonymity h(13)as λ→∞. However, for the region where the tra� is neither heavy

nor light, the optimal alloation we found using the light tra� derivative performs

better than the intuitive shemes. This is not surprising, as the linear portion in the

light tra� region provides the maximum gain per unit of rate inrease. Consequently,

the rise of the anonymity urve is best for the light tra� based optimal alloation.

Sine all alloations eventually onverge to the maximum possible anonymity, the

performane is expeted to be better for a wide range of rates.

In Figure 7, we ompared the ahievable anonymity of delay optimal, anonymity

optimal strategy, and equal rate alloation strategy for the network in Figure 1.

Figure 8 plots the anonymity-delay tradeo� for the network shown in Figure 5.

There are four optimal strategy points here that eah of them is optimal strategy for

di�erent ranges of α. Note that these points an be easily derived by the algorithm
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Figure 8: Delay Anonymity Trade-o� in Mix Networks

presented in setion 4.2.2. This tradeo� is ompared to an intuitive linear alloation

strategy wherein, for α = 0, we use the optimal delay strategy and for α = 1, we use

the anonymity optimal strategy. As we inrease α, we derease the rate alloated to

the delay optimal strategy and add it to anonymity optimal strategy until α = 1 and

at this point all the rate is alloated to the anonymity optimal strategy.
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5 Relay Seletion and Operation Control for Optimal De-

lay and Soure-Destination Anonymity Tradeo� in Anony-

mous Networks

In this setion, we provide an analytial framework to address soure-destination pair

anonymity and propose relay seletion and operation methodologies that are resistant

to timing analysis while satisfying low lateny requirements.

In partiular, we investigate the optimal relay seletion and ontrol of relay �opera-

tional modes� in an anonymous network. To understand �operational mode�, onsider

the senario depited in Figure 10, where there are soures S1 and S2 transmitting

to the destinations D1 and D2, respetively. In Figure 10a, the intermediate node

follows the rule of First Come First Serve (FCFS) in whih ase an eavesdropper

who observes the tra� in this network an identify the destination orresponding

to eah soure. If, however, the intermediate node an delay the pakets for upto d

seonds, where d is greater than the interpaket timing on the high rate stream, then

the relay an add dummy transmissions suh that the output streams are indistin-

guishable to any eavesdropper (see Figure 10b). The optimal rate and mehanism to

insert dummy pakets to maintain this indistinguishability have been well studied in

[12�15, 35℄. Indeed it has been shown that if the inoming rates of the soures are

made equal then the overhead dummy rate dereases inverse quadratially with the

inoming tra� rate thus making it an e�etive mehanism for high rate tra� with

limited bandwidth infringement. This tehnique however results in a linear saling of

dummy rate with the number of users aessing a relay and, when ombined with the

fat that it results in added delay, it has been largely ignored in pratial anonymous

systems.

In this setion, we propose to alleviate these onerns by inluding two impor-

tant hoies in the implementation of suh dependent link padding. First, we expand

the ability of an intermediate relay to seletively introdue dummy transmissions

to make a fration of streams indistinguishable as opposed to introduing dummy

transmissions on all outgoing streams. Seond, in a virtual iruit, we enable the

route seletion mehanism for eah soure to determine if a partiular relay should

be adding dummy transmissions on its stream at all. Naturally, these hoies are

required to be made with the net goal of ahieving the best possible anonymity whilst

not introduing substantial lateny. That is the primary theme of this setion whih

is an investigation of the optimal relay seletion and ontrol for a sub-network ab-

38



Figure 9: Six Relay System Abstration.

stration as shown in Figure 9 whih optimally trades o� delay for anonymity. Using

the developed methodology, protool designers an hoose a desirable operating point

on this tradeo� urve.

Rest of this setion is presented as follows: In setion 5.1, we present the system

model for anonymous system to provide soure-destination anonymity. In setion

5.2, we derive anonymity as funtion of rely seletion and ontrol mehanism pa-

rameters. Moreover, we provide su�ient onditions on this parameter suh that

optimal anonymity is provided. The problem of soure-destination anonymity and

delay tradeo� is investigated in setion 5.3. Finally, we present the simulation results

in setion 5.4.
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(a) Anonymous relay node in First

Come First Serve (FCFS) mode (no

anonymity)

(b) Anonymous relay node in

Anonymizing mode (maximum

anonymity)

Figure 10: Standard and Anonymous Relays

5.1 System Model

The anonymous network abstration ontains six relay nodes whih inludes two

entry guards, two intermediate relay nodes, and two exit guards. To emphasize that

eah of these six relay nodes are apable of adding dummy transmissions to boost

anonymity, we shall often refer to them as anonymous relays. We assume that the

users orresponding to eah suh group of six relays to have idential preferenes for

anonymity and delay. A large network an be viewed as ontaining hundreds of these

groups of six. We fous our investigation on the anonymity in a single group. An

example network with six relay nodes wherein eah soure hooses a sequene of three

anonymous relay nodes (one eah from the two entry guards, two intermediate relays

and two exit guards) and is shown in Figure 11a. Our abstration is de�ned formally

as a 3-tuple (G,∆,B), where G = (V, E) is a direted graph with the set of nodes

denoted by V and E the set of direted edges. V = S
⋃
M
⋃
D, where S is the set of

soure nodes, D the set of destination nodes, andM the set of six anonymous relays.

We further re�neM =ME
⋃
MM

⋃
MQ, whereME is the set of entry guard nodes,

MM is the set of intermediate relays, and MQ is the set of exit guard nodes. The

3-tuple ontains a set B of bandwidth onstraints for eah anonymous relay and a set

∆ of delays assoiated with eah edge.

Soure: Eah soure Si ∈ S transmits pakets aording to a stohasti proess

to a destination through a sequene of three anonymous relays- an entry guard from

ME , an intermediate relay from MM and an exit guard from MQ. Let ri denote

the paket arrival rate on the paket stream from soure Si. Eah soure has two key

deisions to make. First, the soure hooses the sequene of three anonymous relays;

this hoie is represented by the relay seletion parameter Ri = (X1i,X2i,X3i), where
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(a) Dotted links represent the unpadded links.

(b) Unpadded outgoing links an be perfetly mathed to their orresponding in-

oming link.

Figure 11: Link Padding.

X1i ∈ ME ,X2i ∈ MM , and X3i ∈ MQ. Seond, the soure hooses if it wishes its

stream to be padded with dummy transmissions by eah anonymous relay in e�et

ontrolling the operated mode of the relay partially. We denote this ontrol ation

using the anonymization parameter Ai = (ISi,X1i , ISi,X2i , ISi,X3i), where ISi,Xji
= 1

indiates that anonymous relay Xji should add dummy transmissions to the stream

from soure Si, and ISi,Xji
= 0 indiates that the relay Xji would transmit pakets

from Si on a FCFS basis without any link padding thus allowing an eavesdropper

to math the outgoing stream with its orresponding inoming stream. Note that

although the intended data rate for soure Si is ri, the hoie of anonymization

parameter ould result in an overhead dummy rate whih we denote by rSi

Du.

Anonymous relay: Eah anonymous relay will be denoted by M i
j , where j =

1, 2, 3 denotes respetively the entry guard, intermediate relay, and exit guard. Eah
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anonymous relay M i
j has a delay onstraint dM i

j
, and bandwidth BM i

j
. The aggregate

inoming paket rate to the anonymous relay nodeM i
j annot exeed BM i

j
. If there are

totally n inoming streams to the anonymous relay M i
j , where k inoming streams

have requested their streams not to be padded by that relay and n − k inoming

streams have requested to be anonymized through padding by setting ISu,M i
j
= 1,

then the anonymous relay will transmit the pakets of the k inoming streams on

FCFS basis without any delay or padding. Pakets from the remaining n−k inoming

streams an be delayed by the anonymous relay node for a maximum of dM i
j
seonds.

So that outgoing stream of those n − k soures are indistinguishable. This waiting

period allows the anonymous relay to aumulate pakets from the n − k streams,

suh that one paket from eah of these streams an be transmitted at the same time

in a bath on their orresponding outgoing edge. Note that if there is no paket from

some of these streams in this period the relay will transmit a dummy paket on the

orresponding outgoing edges so that all n−k outgoing streams have idential timing.

This is the essene of dependent link padding whih is known to be optimal under

delay onstraints. This ensures that from Eve's perspetive, the outgoing streams

(that have been padded) annot be uniquely assoiated to the orret inoming stream

from the timing. Dependent link padding, while not in use in real systems due to

onerns about bandwidth onsumption, is essential to thwart timing analysis. In

this work, by imposing tight lateny onstraints and ontrolling the number of stream

padded at eah relay, we alleviate these onerns.

Eavesdropper: For purposes of this work, we onsider an omnisient eavesdrop-

per (Eve) who observes the transmission timing on every ommuniation link in the

network. Eve knows the topology of the network and the link padding strategy of

the anonymous relays. Eve's goal is to use this timing information to determine a-

urately the pairs of soure-destination (Si,Dj) who are ommuniating. We note

that Eve is a spei� type of adversary� a passive one� and is not the only type

of adversary in an anonymous system. That being said, the objetive of this paper

is to understand the optimal tradeo� between anonymity and delay under a timing

analysis attak, and other mehanisms to thwart ative adversaries an be built in

onjuntion with the framework delineated here.

Quantifying Anonymity from Timing: We use Shannon onditional entropy

to quantify anonymity from timing analysis� in partiular to measure the unertainty

in the soure-destination pairing from the perspetive of Eve. We de�ne random

variables X1,X2, · · · , XN where random variable Xi denotes the destination node for
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pakets from soure Si. We denote the omplete observation and knowledge of the

Eve by Θ. Conditioned on Θ, (X1,X2, · · · ,XN ) follows a posterior joint distribution

indued by the hoies of relay seletion and anonymization parameters. Let Ψ(M)

denote the set of all possible relay seletion and anonymization strategies.

De�nition 5.1 The anonymity ahieved by a spei� strategy ψ ∈ Ψ(M) is de�ned

as:

Aψ =
H(X1, · · · ,XN |Θ)

logN !
, (23)

where for any pair of random vetors X,Y, H(X|Y) is the onditional entropy.

Shannon onditional entropy was proposed as a measure of anonymity in [77℄.

Sine then, it has been used to design optimal mixing strategies [78�80℄ and hara-

terize fundamental relationships between anonymity and network resoures [35,81,82℄.

In an N−soure, N−destination system, the total number of permutations of soure-

destination pairings possible is N !, and for any strategy ψ, the unertainty H(X1, · · · ,

XN |Θ) ≤ logN ! [83℄. This maximum is ahieved, if from Eve's perspetive, ev-

ery soure is equally likely to be ommuniating with eah destination. Likewise, an

unertainty H(X1, · · · , XN |Θ) = 0 indiates that Eve an perfetly identify the desti-

nation orresponding to eah soure. As per equation (23), the normalized anonymity

is bounded as 0 ≤ A ≤ 1. In general, Eve's probability of error in identifying soure

destination pairs inreases with A (see Fano's inequality, [83℄) whih provides the

tangible onnetion between the metri and the �ation� of the adversary.

Delay: In our model, there are two soures of lateny:

1) Transmission delay that ours on eah link represented by dX,Y where (X,Y ) ∈ E

whih is the delay inurred by eah paket on its transmission from node X to node

Y .

2) Delay inurred by pakets at an anonymous relay M i
j , denoted by dM i

j
, should the

soure of the pakets hoose to have its stream padded by relay M i
j . The average

delay for the network abstration an be expressed as linear funtion of the relay

seletion and anonymization parameters:

D̄ =
1

rtot

∑

Si∈S

ri(dSi,Ri(1)
+ ISi,Ri(1)

dRi(1)
+ dRi(1),Ri(2)

+

ISi,Ri(2)
dRi(2)

+ dRi(2),Ri(3)
+ ISi,Ri(3)

dRi(3)
+ dRi(3),Di

), (24)

where rtot =
∑

i ri.
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Delay Anonymity Tradeo�: The primary hallenge we investigate in this work

is the tradeo� between anonymity and lateny. That suh a tradeo� exists is amply

evident from the the single anonymous relay system disussed in the introdution (see

Figure 1). In the six relay abstration we onsider, this tradeo� is a funtion of the

hoies made by the soures. Although eah soure is liable to have an individual

preferene for the degree to whih performane an be traded for anonymity, in our

work, we assume all the users in a single abstration have similar preferenes for the

operating point on the tradeo� urve. We model this preferene using a weighting

parameter 0 ≤ α ≤ 1, where the soures desire to maximize the weighted sum αA−

(1 − α)D̄. An α lose to zero would indiate that the soures desire less lateny,

whereas an α lose to 1 would indiate that they desire high anonymity. Our goal

is to study the joint optimization of the relay seletion parameters {Ri} and the

anonymization parameters {Ai} suh that this weighted sum is maximized for any

hosen α.

A summary of notations in this paper is presented in Table1.

5.2 Anonymity Optimal Relay Seletion

For �xed relay seletion parameters {Ri} and anonymization parameters {Ai}, the

network may be represented as shown in Figure 11a, where dotted edges represent

links whih are not padded with dummy transmissions and solid edges represent

padded links. If an inoming tra� stream is not padded, Eve an identify the or-

responding outgoing edge using timing analysis. In ontrast, if at least two inoming

links are padded, then the orresponding outgoing edges will have idential timing pat-

terns and are thus indisinguishable to Eve. Eah of these padded outgoing links will

have an idential paket rate equal to the maximum inoming rate amongst the orre-

sponding inoming links; whereas the rate of unpadded links will remain unhanged.

Sine an unpadded outgoing link an be mathed to an inoming link perfetly and

inurs no overhead, removing the dotted links and onneting them to the subsequent

anonymous relay on their path will not hange the analysis of anonymity and dummy

rate in the network (See Figure 11b). Therefore, it is su�ient to merely onsider the

anonymized links in the network's graph (See Figure 12).

For a given hoie of relay seletion and anonymization parameters, we de�ne

three sets of ounting variables. l
M

i1
j ,M

i2
j

denotes the number of padded links from

the anonymous relay M i1
j to the anonymous relay M i2

j , ls,M i
j
denote the number of

soures requesting the anonymous relay M i
j to be the �rst anonymous relay on its
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route whih anonymize their streams by padding, and the variable lM i
j ,d

denotes the

number of padded links from the anonymous relay M i
j to the destinations whih are

not padded any further downstream. These parameters are de�ned mathematially

as follows:

ls,d =
∑

u

1(Au = (0, 0, 0))

lsM i
j
=

∑

u:Ru(j)=M i
j

1(Au(j) = 1, k < j : Au(k) = 0)

lM i
j ,d

=
∑

u:Ru(j)=M i
j

1(Au(j) = 1, k > j : Au(k) = 0)

lM i
j ,M

l
v
=

∑

u:Ru(j)=M i
j ,Ru(v)=M l

v

1(Au(j) = Au(v) = 1,

j < k < v : Au(k) = 0)

where 1 is the indiator funtion (1(σ) = 1 if σ is TRUE and 0 otherwise). Sine

padding a set of inoming streams results in the orresponding outgoing streams to

have idential timing patterns, the anonymity ahieved by a partiular hoie of relay

seletion and anonymization parameters an be expressed as a funtion of the ounting

variables de�ned above.

We note that, only a subset of possible hoies of relay seletion and anonymiza-

tion parameters are feasible, owing to the bandwidth onstraints at the anonymous

relays. Prior to haraterizing the ahieved anonymity, we shall derive the neessary

onditions for the relay seletion and anonymization parameters to satisfy eah anony-

mous relay's bandwidth onstraint and subsequently haraterize the anonymity for

feasible parameters. We de�ne the variables rM i
j
to be the rate of pakets on eah of

the links padded by the anonymous relay M i
j derived as follows:

rM i
j
= max{ max

l=1,2,k<j
{rM l

k
1(lM l

k
,Mu

j
6= 0)},

max
Si:k<j:Ai(k)=0,Ri(j)=Mu

j

{ri}}

The above rate is haraterized assuming that the transmission of dummy pakets

is merely due to the inoming rates of paket streams being di�erent. In general

there is an additional overhead that is inverse quadratially related to the maximum

inoming rate whih is not expliitly onsidered for the mathematial portions, but

is used in the numerial setions. This di�erene is shown in Figure 13, where we

onsidered a single anonymous relay and four paket streams whih have heavy tail
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Figure 12: The networks graph after removing the unpadded outgoing links. (The

dashed lines represents the variables de�ned in Lemma 5.1)

tra� distribution. The rate of dummy transmission required for the streams are

shown as funtion of the anonymous relay's allowable delay. As is observable, as long

as the allowed delay at the relay exeeds a ertain threshold this additional overhead

is negligible. Assuming the allowable delay is in the negligible overhead region, we

an express the rate of dummy transmissions padded for eah soure as:

rSi

Du = max
j
{rRi(j)1(Ai(j) 6= 0)} − ri (25)

The bandwidth onstraint of eah anonymous relay Mu
j ∈ M will restrit the relay

seletion and anonymization parameters:

∑

Si:Ri(j)=Mu
j

1(k < j : Ai(k) = 0)ri +
∑

l,k<j

r
Ml

k
l
Ml

k,M
u
j
≤ BMu

j

In the rest of this paper, we denote the relay seletion parameters {Ri} and anonymiza-

tion parameter{Ai} feasible if they satisfy the bandwidth onstraints.

Assuming the relay seletion and anonymization parameters satisfy the bandwidth

onstraints, omputation of the ahieved anonymity requires a ounting of all possible

soure destination pairings that ould result in the observed set of paket streams from

Eve's perspetive. Considering the network shown in Figure 12 where all the links are

padded, we are interested to �nd the destinations Djs that a spei� soure Si may
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Figure 13: Dummy rate for a single anonymous relay where there are four inoming

streams modeled by heavy tail tra�.

ommuniate with. Let's onsider three di�erent ases for soure Si: 1) If soure Si

enters the network using the anonymous relay M1
3 , then it is surely ommuniating

with one of the destinations onneted to M1
3 . 2) If soure Si enters the network

using the anonymous relay M1
2 , then it is surely ommuniating with one of the

destinations onneted to M1
2 or M1

3 or M2
3 . 3) If soure Si enters the network

using the anonymous relay M1
1 , then it annot ommuniate with the destinations

onneted to the anonymous relay M2
1 .

Thus, we onsider six sets of soures: ls,M1
1
, ls,M2

1
, · · · , ls,M2

3
, where all the soure

belonging to any of these sets an ommuniate with the same set of destinations

disussed above. In order to ount all the possible ommuniating soure- destination

pairs, we need to exhaustively delineate the viable ases by every soure. Considering

ls,M1
1
soures onneted to the anonymous relayM1

1 , we have lM1
1 ,d

out of ls,M1
1
soures

whih ommuniate with the destinations diretly onneted to M1
1 , we may have i1

soures whih ommuniate with the destinations diretly onneted toM1
2 , i2 soures

ommuniate with the destinations diretly onneted toM2
2 , i31+i32+lM1

1 ,M
1
3
soures

whih ommuniate with the destinations onneted to M1
3 (i31 soures through the

path (M1
1 ,M

1
2 ,M

1
3 ), i32 soures through the path (M1

1 ,M
2
2 ,M

1
3 ), and lM1

1 ,M
1
3
through
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the path (M1
1 ,M

1
3 )), and the rest of soures will ommuniate with the destinations

onneted to M2
3 . We also de�ne the variables j1, j2, j31, j32 for the soures belong

to ls,M2
1
in the same way. One these variables are �xed, the number of soures

from the other four sets ommuniating with eah set of destinations is known. For

example, number of soures from the set ls,M1
2
ommuniating with the destinations

onneted to M1
2 will be lM1

2 ,d
− i1− i2. We note that the quantities i1, i2, · · · will be

restrited by some of the graphs struture parameters. For instane i1 an not exeed

min{lM1
1 ,M

1
2
, lM1

2 ,d
}. Through an exhaustive ounting of all senarios and onsidering

the onstraints on the variables i1, i2, · · · , the ahieved anonymity as a funtion of

variables lX,Y is expressed in the following lemma:

Lemma 5.1 For a �xed feasible set of route seletion parameters {Ri} and anonymiza-

tion parameters {Ai}, the ahieved anonymity an be expressed as follows:

A =
log(C

∏2
i=1

∏3
j=1 lMj

i ,d
!)

log(N !)
, where

C =
∑

ζi1≤i1≤ǫi1 ,

ζi2≤i2≤ǫi2

∑

ζi31≤i31≤ǫi31 ,

ζi32≤i32≤ǫi32

∑

ζj1≤j1≤ǫj1 ,

ζj2≤j2≤ǫj2

∑

ζj31≤j31≤ǫj31 ,

ζj32≤j32≤ǫj32

1

Norm(i31, i32)

(

lS,M1
1

lM1
1 ,D

, i1, i2, i31 + i32 + lM1
1 ,M

1
3

)

1

Norm(j31, j32)

(

lS,M2
1

lM2
1 ,D

, j1, j2, j31 + j32 + lM2
1 ,M

1
3

)

(

lS,M1
2

lM1
2 ,D
− i1 − j1, lM1

2 ,M
1
3
− i31 − j31

)

(

lS,M2
2

lM2
2 ,D
− i2 − j2, lM2

2 ,M
1
3
− i32 − j32

)

, (26)

where ǫi1 , ζi1 denotes the maximum and minimum number of soures onneted di-

retly to M1
1 (lS,M1

M
) whih an ommuniate with the destinations onneted to M1

2

(lM1
2 ,D

), and so on (the boundaries and onstant are spei�ed in the appendix) and

Norm() is a normalization onstant.

Proof: In order to �nd the anonymity we need to ount all the possible pairs of

soure-destination whih may ommuniate. For this purpose, we will ount all the

ases whih may our to eah group of l
s,Mj

i
. We divide the soure of group lM1

1
to

5 groups:1) lM1
1 ,d

ommuniating with the destinations lM1
1 ,d

. 2) i1 ommuniating

with the destinations lM1
2 ,d
. 3) i2 ommuniating with the destinations lM2

2 ,d
. 4)
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i31 + i32 + lM1
1 ,M

1
3
ommuniating with the destinations lM1

3 ,d
. 5) The rest of soures

ls,M1
1
− lM1

1 ,d
− i1 − i2 − i31 − i32 − lM1

1 ,M
1
3
are ommuniating with lM2

3 ,d
.

j1, j2, j13, andj23 are also de�ned in the same manner. One all of these quantities

are �xed. The number of soures whih may ommuniate from ls,M1
2
or ls,M2

2
to

the other sets of destinations are identi�ed. For example number of soures from

ls,M1
2
to lM1

2 ,d
will be equal to lM1

2 ,d
− i1 − j1. Considering the onstraint on eah of

the quantities i1, i2, i31, i32 and j1, j2, j31 + j32, we an ount all the possible pair of

soure-destination whih may ommuniate. However, we should notie that there

are ases where i31+ i32+ lM1
1 ,M

1
3
and j31+ j32+ lM2

1 ,M
1
3
are �xed and ounted several

times in our summation. Thus, by de�ning the Norm funtion whih ounts this

redundany for the �xed i31 + i32 + lM1
1 ,M

1
3
and j31 + j32 + lM2

1 ,M
1
3
, we eliminate the

redundant ases. �.

The anonymity haraterized in Lemma 5.1 is at most equal to 1 whih ours

when given an observation of the timing proesses on all the links, every soure desti-

nation pairing is equally likely. We �nd onditions on the hoies of parameters {Ri}

and {Ai} suh that this maximum anonymity is ahieved. Note that it is not su�ient

merely for all relays to pad all outgoing streams to ahieve maximum anonymity. For

instane, if half the soures hoose a partiular sequene of relays, and the remaining

hoose a mutually exlusive sequene, then the ahieved anonymity would be at most

1
2 .

Theorem 5.2 The feasible relay seletion parameters {Ri} and anonymization pa-

rameters {Ai} yields in optimal anonymity if they satisfy the following onditions:

C1 : ∀X ∈ ME,∀Y ∈ MQ : lX,d = ls,Y = lX,Y = ls,d = 0

C2 : ∀Z,Z
′ ∈ MM : 1(ls,Z 6= 0, lZ′,d 6= 0) = 0

C3 : ∀Z ∈ MM : lZ,M1
3
, lZ,d ≤

lM1
1,Z

+ lM2
1,Z
, lM1

1,Z
+ ls,Z, lM2

1,Z
+ ls,Z (27)

Proof: We need to �nd su�ient onditions suh that all N ! possible ommuniat-

ing pairs of soure-destination {(Si,Dj)} are possible in Eve's perspetive whih are

derived as:

-Condition C1: It is straightforward that ls,d should be zero, otherwise Eve an as-

ertain the destination of these soures perfetly and the maximum number of pos-

sible ommuniating pairs will be less than (N − ls,d)! whih does not yield optimal

anonymity. If lM1
1 ,d
6= 0, Eve an asertain that the soures whih use M2

1 as their
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entry guard and request it to anonymize their stream will not ommuniate with the

destinations diretly onneted to M1
1 (in the graph shown in Figure 12). If ls,M i

3
6= 0,

Eve an asertain that these soures will ommuniate with destinations onneted

to M i
3. If lM i

1,M
j
3
6= 0, then, Eve an infer that there are l

M i
1,M

j
3
of soures whih use

M i
1 as entry guard that will ommuniate with the destinations onneted to M j

3 .

-Condition C2: If ls,M1
2
6= 0, lM2

2 ,d
6= 0, then Eve asertains that that the soure belongs

to ls,M1
2
will not ommuniate with the destinations onneted diretly to M2

2 (lM2
2 ,d

).

-Condition C3 is obtained by applying the Chu-Vandermonde identity assuming on-

ditions C1, and C2 hold. �.

Theorem 1 gives su�ient onditions to ahieve maximum anonymity. As an

be observed from the onditions, in order to ahieve maximum anonymity, it is not

neessary for all soures to request all the three anonymous relays in its route sequene

to pad their streams. Nevertheless, the anonymity is ahieved at the ost of additional

delay. Any hoie of parameters that satisfy these onditions would maximize the

weighted reward αA− (1− α)D̄ merely for α = 1.

5.3 Delay Anonymity Trade-o�

That a tradeo� exists between the ahieved anonymity and the delay aused by

intermediate nodes padding the streams is easy to understand. Although, it may

not seem straightforward, there is also a tradeo� between the ahieved anonymity

and the lateny aused by the transmission delay between the nodes. For exam-

ple, onsider a network with four soures where eah soure hooses its relay se-

letion parameters based on the minimum lateny aused by the delay between

the nodes and all anonymization parameters are set (1, 1, 1). Assume that due to

bandwidth onstraints, eah anonymous relay an serve no more than two streams.

Then, without loss of generality,we may assume R1 = R2 = (M1
1 ,M

1
2 , M

1
3 ) and

R3 = R4 = (M2
1 ,M

2
2 ,M

2
3 ). Suh hoie of relay seletion and anonymization parame-

ters yields minimum lateny aused by the delays between the nodes, and anonymity

equal to

log(2!∗2!)
log(4!) whih is far less than the optimal anonymity. If the network is

willing to inrease the lateny by hanging the parameters of soures S2 and S3 to

R2 = (M1
1 ,M

2
2 ,M

1
3 ), and R3 = (M2

1 ,M
1
2 ,M

1
3 ), respetively, whih yields in higher

lateny, the optimal anonymity will be ahieved.

In the six relay abstration, the average delay of the network was de�ned in

equation (24) as a linear funtion of relay seletion and anonymization parameters.

As mentioned in Setion 5.1, we model the preferene of all the soures on the delay
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anonymity tradeo� urve by the weighting parameter 0 ≤ α ≤ 1. In order to �nd the

optimal trade o� between anonymity and the average delay we need to �nd the relay

node seletion and ontrol whih maximizes the weighted sum of anonymity and delay

whih is αA− (1−α)D̄. This an be expressed as the following integer programming

problem:

Φ : max
(R1,··· ,RN ,A1,··· ,AN )

αA− (1− α)D̄, (28)

where {Ai} and {Ri} are feasible solutions. Note that the integer programming

problem as stated above with a non-onvex metri is np−hard and in order to �nd

the optimal anonymity delay tradeo� region, a omputational solver needs to searh

among all feasible parameters whih yields in O(2N ) searh points. This is impratial

partiularly if the algorithm would have to be implemented in real time. We therefore

present a suboptimal heuristi whih requires only O(N) searh points to haraterize

the delay anonymity tradeo� region (whih sweeps aross the domain of α from 0 to

1).

5.3.1 Suboptimal Delay Anonymity Region

The main idea behind the suboptimal algorithm to ompute the delay-anonymity

tradeo� is as follows. Assume all the anonymization parameters are zero, i.e. ∀Si ∈ S :

Ai = (0, 0, 0). For eah soure Si, we have the sequene (d
1
i , R

1
i ), (d

2
i , R

2
i ), · · · , (d

8
i , R

8
i )

whih are the sorted delays of eah routes for the soure Si suh that d1i is the least

delay for soure Si and R
1
i is the relay seletion parameter for soure Si whih has the

delay d1i (We note that dji is the lateny aused by the transmission time between nodes

and does not inlude the delay by the intermediate nodes). The route seletion Ri =

R1
i and anonymization parameter Ai = (0, 0, 0) yields in the delay optimal point A∗

0 =

0, D̄∗
0 . The algorithm works by inrementally altering the relay seletion parameters

from this minimum delay setup until the maximum possible anonymity is ahieved.

Spei�ally, at eah iteration, the algorithm searhes for a hange in either an element

of a soure anonymization parameter or hanging the route of one of the soures whih

yields in the least inrease in delay. If this least inrease is aomplished through a

hange in an anonymization parameter, then the resulting inreased anonymity and

delay are reorded, and the algorithm moves to the subsequent iteration. If instead,

the least delay inrease is an outome of a route hange, the algorithm veri�es if indeed

the anonymity has inreased. If so, then the values and parameters are reorded. If

not, then this seletion is disarded and the algorithm moves on to the hoie that
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results in the next lowest delay inrease to repeat this proess. Thus the algorithm, at

every suessful iteration reords a hoie of parameters R1, · · · , RN , and A1, · · · , AN ,

and the orresponding anonymity and average delay A(R1, · · · , RN , A1, · · · , AN ), and

D̄(R1, · · · , RN , A1, · · · , AN ), respetively. The set of these reorded pairs delineates

the omplete tradeo� (suboptimal). At every iteration, sine only one parameter is

hanged, the omplexity is linear in the number of nodes (O(N) per point on the

tradeo�. In the following we provide a bound on the di�erene between the optimal

and suboptimal tradeo�s and in Setion 5.4 we demonstrate numerially that the

performane of this algorithm is lose to that of the exponential omplexity optimal

searh.

Algorithm 2 Suboptimal Algorithm for delay anonymity region

1: For i=1:N

2: Ri ← R1
i , Ai = (0, 0, 0)

3: Endfor

4: Z ′ = sort(r1, r2, · · · , rN ), Z = [Z ′ Z ′ Z ′], U = 0, q = 1
5: F = {R1

1, · · · , R
8
1, · · · , R

1
N , · · · , R

8
N}

6: AU ← A(R1, · · · , RN , A), D̄
U ← D̄(R1, · · · , RN , A)

7: j, o = argminRk
i ∈F
{ri(d(R

k
i )− d(Ri))}

8: If dMZ(q) < rj(d(R
o
j )− d(Rj)) and q ≤ 3N

9: Ai(⌈
q
N ⌉) = 1,

10: AU ← A(R1, · · · , RN , A), D̄
U ← D̄(R1, · · · , RN , A)

11: U=U+1, q=q+1, go to 6.

12: Elseif A(R1, · · ·R
o
j , · · · , RN , A) > A(R1, · · · , RN , A)

13: F = F/Roj , Rj ← Roj
14: AU ← A(R1, · · · , RN , A), D̄

U ← D̄(R1, · · · , RN , A)
15: U=U+1, go to 6

16: Elseif F 6= ∅
17: F = F/Rj , go to 6
18: Endif

Let the delay onstraint of eah anonymous relay be d, and B be the maximum

number of streams that an be served by a single relay. Then, the following theorem

provides an upper bound on the performane loss due to suboptimality. Note that

these assumptions are for the sake of presentation simpliity and the bound an be

easily derived for the general ase.

Theorem 5.3 If A∗(α) and D̄∗(α) are the optimal anonymity and average delay for

weighting fator α, then, suboptimal algorithm (Asub(α), D̄sub(α)) ensures the perfor-
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mane bounded as follows:

[αA∗(α)− (1− α)D̄∗(α)] − [αAsub(α)−

(1− α)D̄sub(α)] ≤
log(N)

log(N !)
+

δ
d

1 + 1
3(1−B/N)d

, (29)

where δ = max
1≤k≤N,1≤j≤7

{dj+1
k − djk}.

Proof: Let's de�ne a(i) = log(i!)
log(N !) . The following lemma presents the minimum

number of padded links required to ahieve anonymity a(i).

Lemma 5.4 The minimum number of padded links required in order to ahieve

anonymity a(i) is

m(i) =

{
i if i ≤ B
i+ 3(i −B) if i > B

Proof: If i ≤ B, one anonymous relay an perform link padding for all i soures.

When i > B, if the network served only i soure-destination pairs, then the onditions

in Theorem 1 for maximum anonymity redue to the expression in the Lemma. When

the number of soure-destination pairs is inreased to N, this expression would serve

as a lower bound on the number of padded links. �.

For a �xed α, there exists i suh that a(i) ≤ A∗(α) ≤ a(i+1). By using the result of

Lemma 2, it is straightforward to hek that:

D̄∗(α) ≥
m(i)d

N
+ D̄∗

0 , D̄(i) (30)

where D∗
0 is the delay of the shortest path in the algorithm. 1)If i ≤ B, then,

suboptimal algorithm hanges at most B−N/2 routes and pads m(i) links to ahieve

Asub(α) = a(i) and

D̄sub(α) ≤ D̄(i) +
(B − N

2 )δ

N
(31)

Using inequalities (30) and (31),

α[A∗(α) −Asub(α)] ≤ α[
log((i+ 1)!)

log(N !)
−

log(i!)

log(N !)
] ≤

log(N)

log(N !)
, D̄∗(α)− D̄sub(α) ≥

(B − N
2 )δ

N
(32)

2)If i > B, suboptimal algorithm hanges at most 3(i − B) routes and pads exatly

m(i) links to ahieve Asub(α) = a(i) and

D̄sub(α) ≤ D̄(i) +
3(i−B)δ

N
(33)
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Using inequalities (30) and (33),

α[A∗(α)−Asub(α)] ≤
log(N)

log(N !)

D̄∗(α) − D̄sub(α) ≥
3(i −B)δ

N
(34)

Moreover, using the fat that αA∗(α)− (1− α)D̄∗(α) > −(1− α)D̄∗
0 and A∗ ≤ 1, we

an upper bound 1− α as:

1− α ≤
1

1 + (D̄∗ − D̄∗
0)
≤

1

1 + m(i)d
N

(35)

Combining (32), (34), and(35) provides the bound. �.

The performane of suboptimal algorithm improves as B inreases whih is intu-

itive as for larger B, number of hanges in routes dereases. For example, if B = N ,

suboptimal algorithm just needs to hange at most N/2 routes suh that all N soures

are using at least one ommon anonymous relay and this relay is the only relay per-

forms link padding.

5.3.2 Inremental Optimization

The algorithms desribed thus far are joint optimization shemes where relay seletion

and ontrol parameters are hosen for all soures together. In pratie, users arbi-

trarily join the system, and onsequently, we propose an inremental mehanism that

merely requires eah arriving soure to obtain numerial information from routers

to ompute the optimal route and anonymization parameters. We will show that if

an existing system is anonymity optimal then a new arriving user an maintain that

optimality. We assume the new user wants to join the system, has the equal (or

agreeably lose to) preferene parameter α to its own. To minimize the bandwidth

draw of dependent link padding, it is bene�ial if users in this network have data

rates that are lose to eah other, thus limiting network ongestion. For a new user

who wishes to join the network, the following inremental optimization needs to be

solved to �nd his optimal parameters assuming the hoies for the existing nodes are

undisturbed.

Assume we have the system with N users and for a spei� 0 ≤ α ≤ 1, the

value of the optimal inremental optimization are AincN and D̄incN and the solution is

denoted by RNinci . When the new user is added, we want to maximize the value of
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αAincN+1−(1−α)D̄
inc
N+1. We therefore express the new optimization problem as follows:

Γ : max
RN+1

αAincN+1 − (1− α)D̄incN+1

Subjet to: ∀1 ≤ i ≤ N : Ri = RNinci , Ai = ANinci

This is a simple integer programming problem due to the division of the whole systems

into sub-systems and the searh is over 16 possible solutions and identifying the hoie

that maximizes αAincN+1 − (1 − α)D̄incN+1. Thus, whenever a new user wants to enter

the network AincN+1 − (1 − α)D̄incN+1 is omputed for eah of the possible routes and

anonymization parameter, and then the route orresponding to the maximum value

is seleted. Although an inremental optimization to add a user to an optimal system

need not be a jointly optimal solution for all users, in the following Lemma, we show

that in the maximum anonymity senario, where α = 1, inremental optimization will

always yield in the jointly optimal solution.

Lemma 5.5 If α = 1, and the existing route seletion for the existing users is

anonymity optimal, then the inremental optimization will also yield in an anonymity

optimal solution for all N + 1 users.

Proof: As α = 1 and delay is not the preferene, we assume all the urrent soures

and the new soure has anonymization parameter equal to (1, 1, 1). If AincN = 1 holds,

based on Theorem 1, we have lM1
1 ,M

1
2
(N), lM2

1 ,M
1
2
(N) ≥ lM1

2 ,M
1
3
(N), and lM1

1 ,M
2
2
(N),

lM2
1 ,M

2
2
(N) ≥ lM2

2 ,M
1
3
(N). If these inequalities are strit, then adding the new route to

any eight andidates yields in optimal anonymity, as all the {lX,Y (N+1)} will satisfy

the onditions of Theorem 1. If at least one of these inequalities holds with equality,

then adding the new user to the route for whih equality holds again satis�es the

new inequalities of Theorem 5.2, while also satisfying the bandwidth onstraint as it

is added to the route whih has lighter tra�. Let's assume both of them hold with

equality, ie lM1
1 ,M

1
2
(N) = lM2

1 ,M
1
2
(N) = lM1

2 ,M
1
3
(N) = x, then the new route an be

added to the route M1
1 ,M

1
2 ,M

2
3 or M2

1 ,M
1
2 ,M

2
3 , then the new parameters will again

satisfy the ondition of Theorem 1, and it will also satis�es the bandwidth onstraint

as it is added to the route whih have lighter tra�. The same senario an be applied

for the ase where all the four inequalities hold with equality. Consequently, we an

always add the new users route in a way that ensures AincN+1 = 1 �.
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5.4 Numerial Results and Simulations

In our simulations, using the model proposed in [84℄, we simulated users' streams by

heavy tailed distributed tra�. Even though the analytial results thus far assume

that the delay onstraint does not ause overhead, in our numerial simulations we

ompute the true rate of dummy transmissions required for heavy tailed distributed

tra�.

Spei�ally, using the heavy tail tra� model, we simulated the network onsisting

six anonymous relays, six soures with average rate of 10 pakets/seond for all the

feasible sets of anonymization and relay seletion parameters in time period of [0, 100]

seonds. We assumed eah anonymous relay has delay onstraint equal to 0.3 seonds

(to be in quadrati region) and bandwidth onstraint equal to 36 pakets/seonds.

The dummy rate, average paket delay(aused by anonymous relays), and anonymity

is plotted for all the feasible solutions in Figure 14. The simulation starts with zero

anonymization parameters whih yields in zero anonymity, dummy rate, and average

delay. Eah jump in the plot shows a hange in anonymization parameters, and the

swings in eah of these regions are aused by hanging the relay seletion parameters.

While theorem 5.3 ensures that the performane of suboptimal algorithm in the

six relay abstration model is bounded by (29), in Figure 15, we simulated our sub-

optimal algorithm on a more general network whih onsists eight anonymous relays

and six pairs of soure-destination. Eah soure may hoose any multihop path to

ommuniate its desired destination and it will deide whether any of the anonymous

relays on this path will perform link padding or not. We note that the omplexity

of optimal delay anonymity tradeo� in suh a network is O((|M|!)N2N |M|). Unlike

the six relay abstration, for general networks, a "losed form" expression for the

anonymity is not likely to exist. The ahieved anonymity an, however, be derived

using reursion from N pairs of soure-destination to N − 1 pairs. As it is evident in

Figure 15, the delay gap between the optimal solution and suboptimal solution for a

�xed anonymity value is negligible.

Next, we ompared the performane of suboptimal solution of problem Φ with

the solution of the inremental optimization problem while number of soures are

inreased from 10 to 19. For the inremental solution, we start with the suboptimal

solution for 10 soures, then, any new soures will hoose it's relay seletion and

anonymization parameters to solve the optimization problem Γ. As it is shown in

Figure 16, the gap between the urves dereases as α inreases and for α = 1, both
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Figure 14: Anonymity, average delay, and average dummy of six relay network for

di�erent relay seletion and anonimization parameters onsidering heavy tail tra�

for users.

the urves ahieves the optimal anonymity.
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N # soure-

destination

pairs

BM i
j
bandwidth

onstraint

of M i
j

ri arrival

rate of Si

D̄ average

delay of

network

V set of

nodes

Ri relay sele-

tion param-

eter of Si

rtot
∑N

i=1 ri lX,Y # of

padded

links from

X to Y

E set of

edges

Ai anonymization

parameter

of Si

dM i
j

delay on-

straint of

M i
j

dji transmission

delay of

Rji
S set of

soures

Xi r.v denotes

destination

of Si

M set of

anony-

mous

relays

D set of des-

tinations

Θ omplete

observa-

tion and

knowl-

edge of

Eve

Xij jth anony-

mous relay

on Si's
route

SiDu overhead

dummy

rate of Si

rM i
j
paket

rate on

padded

links of

M i
j

ME,

MM ,

MQ

set of

entry

guards,

inter-

mediate

nodes,

and exit

guards

ISi,

Xij

anonymization

parameter

orrespond-

ing to jth

anonymous

relay on

Si's route

dX,Y transmission

delay

from X to

Y

Rji relay se-

letion

parame-

ter of Si
yields jth

shortest

path

Table 1: Notation table
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6 Di�erential Privay in Dynamial Systems and Net-

works

In this hapter, we study the design of ontrol poliies under di�erential privay on-

straints. Di�erential privay was introdued as a tool to provide privay in data from

learners and statistiians [85℄ provides a point-wise measure on users privay (without

Bayesian assumptions). In partiular to providing point-wise privay, di�erential pri-

vay is also immune against any side information that an adversary may have. Using

the notation of di�erential privay, and for a �x privay parameter, we aim to design

optimal ontrol poliies whih ahieves the weighted sum of maximum rewards. In

the �rst setion of this hapter, we study di�erential privay preserving poliies for

Markov Deision Proesses. In the seond setion, we onsider an appliation of this

framework in routing, where nodes serve as states of the dynamial system.

6.1 Inferene Resistant Poliy Design for Markov Deision Pro-

esses

Markov deision proesses (MDPs) are a disrete time mathematial framework for

modeling deision making in dynami systems. In a lassial MDP, at eah time step,

the system is in some state s, and the ontroller deides on an ation a. Given the

urrent state s, and ontroller's ation a, the ontroller reeives a reward, and the

state of the system transit to the next state aording to a Markovian probability

P (s′|s, a), and the ontroller's goal is to maximize the total (disounted) reward over

a �nite or in�nite horizon [17℄. MDPs are widely used in yber physial systems,

�nane, robotis, et. Another important appliation of MDP is in reinforement

learning [18℄, where an agent interats with an unknown environment towards maxi-

mizing some objetive, and the underlying proess is modeled as an MDP. The main

di�erene between a lassial MDP and reinforement learning is that the latter does

not assume the knowledge of the mathematial model of the MDP. In many applia-

tions of MDPs, the sequene of states (or some funtion of the states) are observable

to eavesdroppers. For example, in a wireless network, an adversary an aess length

of pakets [19℄, timing of pakets transmitted [20℄, routes of paket �ow over a network

[21℄ and suhlike by eavesdropping. Using the observations, an adversary an infer

about the nature of the MDPs, and onsequently obtain sensitive information about

the deision making entity. As mahine learning algorithms ontinually improve the

ability to identify personal preferenes from seemingly unrelated data, it is ritial
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that stohasti deision making proesses be investigated from a privay perspetive

whih is the fous of this work.

In this work, we investigate the mathematial framework of Markov Deision Pro-

esses with the objetive of limiting adversarial inferene of a type of MDP. In par-

tiular, as shown in Figure 17, onsider two MDPs with idential state-ation spaes

but di�ering reward and transition dynamis. For instane, these ould represent

user ations on a pair of websites. It is well known that sequene of lik times or

download sizes an reveal whih websites are being aessed even if data transmitted

is enrypted [22℄. In this ontext, if the sequene of ations or response times were so

designed to maximize user experiene, then an eavesdropper an identify the website

aessed by performing a hypothesis test on the observations. However, if the ations

were so designed suh that the observations from the pair of websites had near similar

dynamis, then privay of aess an be preserved. In broader terms, for a pair of

MDPs, if the poliies were jointly designed suh that the observed state dynamis for

both MDPs were ǫ lose to eah other in a likelihood sense, then any hypothesis test

between the MDPs would have very limited suess. It is preisely the joint design of

the poliies for a pair of generi in�nite horizon MDPs that we onsider in this work

suh that a weighted sum of rewards of the two MDPs are maximized subjet to an

ǫ-di�erential privay guarantee for the observed state dynamis.

Further, we provide a value iteration method to reursively derive the optimal

rewards and the poliies for the two MDPs that are di�erentially private at the desired

ǫ level. The proposed method is shown to onverge and the onvergene rate of this

method is proved to be equal to the disount fator.

6.1.1 System Model

In this work, we onsider the inferene resistant ontrol of two Markov Deision Pro-

esses,M1 andM2. Eah MDPMi is represented by a 5-tupleMi = (S,A, ri, Pi, β),

where S = {1, 2, · · · , n} is the set of states and A is the set of ations, and 0 ≤ β < 1

is the disount fator, all idential for both MDPs. Eah ri : S × A → R denotes

the reward funtion wherein ri(s, a) is the immediate reward reeived when the on-

troller for MDP Mi hooses ation a in state s. Pi represents the set of transition

probabilities for MDP Mi suh that Pi(s
′|s, a) is the probability that the state of

MDP Mi transit to state s′, given the urrent state is s, and the ontroller i takes

ation a. Let's denote the spae of all poliies for MDP Mi by Πi, suh that for a

poliy πi = {π
0
i , π

1
i , · · · } ∈ Πi, π

t
i(a|s) represents the probability of taking ation a by
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Figure 17: In our system model, there are two MDPs with the same state and ation

spaes and di�erent transition probabilities and rewards. There is an adversary who

observes a sequene of states from one of the MDPs and aims to identify whih MDP

the sequene belongs to.

ontroller i at time t, given the urrent state is s. We also denote the spae of joint

poliies of MDPsM1 andM2, by Π, where Π = Π1 ×Π2.

In a stohasti ontrol problem, in general, poliies may be dependent on all the

history of previous states, and ations. However, in MDPs, beause of their Markovian

property, it is shown that the optimal poliies are just dependent on the urrent state.

For MDP Mi, if ontroller i has the poliy πi, given the initial state is s, the

disounted reward will be as follows:

V πi
i (s) =

∞∑

t=0

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s}, (36)

In a lassial MDP, a ontroller by hoosing a poliy makes a sequene of deisions

to maximize his disounted reward expressed in equation (36). For eah standalone

MDP, it is known that optimal poliy is stationary and deterministi, in other words,

the optimal poliy is a sequene of idential deterministi mapping from state to ation

spae. If privay was not a onern, then, eah MDP ould be solved independently

and the optimal stationary poliy and disounted reward for eah standalone MDP an
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be derived by methods suh as value iteration, poliy iteration, or linear programming

[17℄. However, in the presene of an adversary who is trying to identify the MDP,

two ontrollers ooperate to hide their identity to the adversary while maximizing a

weighted sum of their disounted rewards.

Before, we move forward with the rest of our system model and the tehnial

results, we need to de�ne the adversary, and his knowledge.

• Adversary: We onsider a passive adversary who is aware of the state spae,

ation spae, transition probabilities and rewards of both MDPs. At any given

time, the adversary observes a sequene of states for one of the MDPs and his

goal is to identify whih MDP it belongs to. In fat, the adversary maps the

sequene of states to one of two hypotheses:

H1 : The observed state sequene belongs toM1

H2 : The observed state sequene belongs toM2

This is a lassial hypothesis testing problem, where it is known that the optimal

strategy for adversary is to implement a likelihood ratio detetor [86℄. For

example, if the adversary observes a sequene of states s0, s1, · · · , sT , then, he

omputes the following log-likelihood ratio and deides on eah hypothesis based

on the log-likelihood ratio:

1

T
l(s0, s1, · · · , sT ) =

1

T
log

Pr(s0, s1, · · · , sT |M1)

Pr(s0, s1, · · · , sT |M2)
=

1

T
log

µπ11,0(s0)
∏T−1
t=0 p

π1
1,t(st+1|st)

µπ22,0(s0)
∏T−1
t=0 p

π2
2,t(st+1|st)

1

T
[log

µπ11,0(s0)

µπ22,0(s0)
+
T−1∑

t=0

log
pπ11,t(st+1|st)

pπ22,t(st+1|st)
]
H1

≥
H2
< 0, (37)

where µπii,t(s) is the stationary distribution of state s, and pπii,t(s
′|s) is the prob-

ability of transiting from state s to state s′ at time t, given the poliy πi is

applied by the ith ontroller. pπii,t(s
′|s) and µπii (s) an be derived as follows:

∀s, s′ ∈ S, i = 1, 2 : pπii,t(s
′|s) =

∑

a

πti(a|s)Pi(s
′|s, a)

∀s′ ∈ S, i = 1, 2 : µπii,t(s
′) =

∑

s

µπii,t(s)p
πi
i,t(s

′|s) (38)

If l(.) ≥ 0, then, the optimal detetor aepts H1, else it aepts H2. By taking
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the limit on equation (37), when T →∞, we have:

lim
T→∞

1

T
l(s0, s1, · · · , sT ) =

∑

(s,s′)

µ(s) log
pπ11 (s′|s)

pπ22 (s′|s)
, (39)

where µ(s) represents the stationary distribution of state s under the true

hypothesis. Note that µ(s) is funtion of π1 or π2, depending on the true

hypothesis. The above equation implies that limT→∞
1
T l(s0, s1, · · · , sT ) is a

onvex ombination of the terms log
p
π1
1 (s′|s)

p
π2
2 (s′|s)

. Therefore, if for eah pair of

(s, s′) and ǫ ≥ 0, we guarantee −ǫ ≤ log
p
π1
1 (s′|s)

p
π2
2 (s′|s)

≤ ǫ, it is assured that

−ǫ ≤ limT→∞
1
T l(s0, s1, · · · , sT ) ≤ ǫ whih implies the notion of ǫ-di�erential

privay for the normalized log likelihood between pair of MDPs. In e�et, by

hoosing an appropriate ǫ, the optimal adversarial inferene an be made as

hallenging as desired. In other words, if the ǫ-di�erential privay is guaranteed

for all transition probabilities (pπ11 (s′|s), pπ22 (s′|s)), then, ǫ-di�erential privay is

guaranteed against the adversary who uses the optimum likelihood ratio dete-

tor.

• ǫ-Di�erential Private Poliies: The struture of adversary whih was ex-

plained in the previous setion motivates us to use di�erential privay to guar-

antee that two MDPs will not be detetable to the adversary. Thus, in order to

guarantee the privay, we need to assure that at anytime the transition prob-

abilities between states for both MDPs are ǫ-di�erentially private. We note

that transition probabilities are su�ient statistis for the adversarial detetion

problem. Partiularly, perturbation bounds in [87℄ an be used to guarantee dif-

ferential privay on stationary distribution, given that transition probabilities

are di�erentially private.

The following de�nes what makes a pair of poliies for the two MDPs ǫ-di�erential

private.

De�nition 6.1 For a �xed ǫ ≥ 0, and transition probabilities P1 and P2, we

all the set Πǫ,P1,P2 ⊂ Π, the set of all ǫ-di�erential private poliies, if for all

pairs of poliies (π1, π2) ∈ Πǫ,P1,P2, the following onditions hold:

∀s, s′ ∈ S and t = 0, 1, · · · : e−ǫ ≤
pπ11,t(s

′|s)

pπ22,t(s
′|s)
≤ eǫ

Moreover, we all any pair of poliies (π1, π2), pair of ǫ-di�erential private poli-

ies if (π1, π2) ∈ Πǫ,P1,P2.
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Similar to a lassial MDP, the disounted reward of MDPMi for a �xed poliy πi,

given the initial state is s is denoted by V πi
i (s), and an be derived by equation (36).

Through this paper, we may also onsider the vetor of disounted rewards as V
πi
i =

(V πi
i (1), · · · , V πi

i (n))T . In a di�erentially private setting, the ontrollers ooperate to

maximize a weighted sum of their disounted rewards while preserving the di�erential

privay onstraints. In other words, we aim to derive pair of ǫ-di�erential privay

(π1, π2) whih maximizes the following disounted reward:

Q(s) = λV π1
1 (s) + (1− λ)V π2

2 (s), (40)

where 0 ≤ λ ≤ 1 is the weighting fator and (π1, π2) ∈ Πǫ,P1,P2 . In other words, the

optimal weighted disounted reward denoted by Q∗
ǫ,λ satis�es the following:

∀s ∈ S : Q∗
ǫ,λ(s) = λV ∗

1,ǫ,λ(s) + (1− λ)V ∗
2,ǫ,λ(s) =

max
(π1,π2)∈(Π×Π)ǫ,P1,P2

λV π1
1 (s) + (1− λ)V π2

2 (s) (41)

6.1.2 MDPs under ǫ-Di�erential Privay

In this setion, we propose an iterative method to derive the optimal weighted sum of

disounted rewards and optimal ǫ-di�erentially private poliies. First, we introdue

the mapping Tǫ,λ : R2n → R
2n
, and prove that by applying mapping Tǫ,λ suessively

on any arbitrary vetor in the spae of R
2n
, the optimal disounted rewards an be

derived.

Let's onsider two arbitrary vetors V1 = (V1(1), · · · , V1(n))
T
and V2 = (V2(1),

· · · , V2(n))
T
. We de�ne the mapping Tǫ,λ suh that for (Vnew

1 ,Vnew
2 ) = Tǫ,λ (V1,

V2), we have:

V new
i (s) =

∑

a

q∗i (a|s)[ri(s, a) + β
∑

s′

Pi(s
′|s, a)Vi(s

′)]

where (q∗1 , q
∗
2) is the maximizer of the following linear programming:

Ψ : max
q1,q2

λ
∑

a

q1(a|s)[r1(s, a) + β
∑

s′

P1(s
′|s, a)V1(s

′)]

+(1− λ)
∑

a

q2(a|s)[r2(s, a) + β
∑

s′

P2(s
′|s, a)V2(s

′)]

subjet to:

∀s, s′ ∈ S : e−ǫ ≤

∑

a q1(a|s)P1(s
′|s, a)

∑

a q2(a|s)P2(s′|s, a)
≤ eǫ

∀s ∈ S :
∑

a

q1(a|s) =
∑

a

q2(a|s) = 1, (42)
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We also de�ne the weighted addition operator Aλ : R2n → R
n
suh that for Q =

(Q(1), · · · , Q(n))T = Aλ(V1,V2), we have: ∀s ∈ S : Q(s) = λV1(s) + (1− λ)V2(s).

In the following theorem, we prove that for any arbitrary vetors V1 and V2,

the sequene QK = Aλ(T
K
ǫ,λ(V1,V2)) onverges to the optimal weighted sum of

disounted rewards. Moreover, pair of optimal disounted rewards (V∗
1,ǫ,λ,V

∗
2,ǫ,λ)

satis�es a �xed point equation whih is similar to Bellman equation.

Theorem 6.1 The following statements hold:

1. ∃V∗
1,ǫ,λ,V

∗
2,ǫ,λ ∈ R

n
suh that Q∗

ǫ,λ = Aλ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ) = AλTǫ,λ(V

∗
1,ǫ,λ,V

∗
2,ǫ,λ).

2. ∀V1,V2 ∈ R
n : Q∗

ǫ,λ = limK→∞Aλ(T
K
ǫ,λ(V1,V2))

3. Q∗
ǫ,λ is unique.

Proof: Before proving the theorem, in the following lemma, we demonstrate that

mapping Tǫ,λ is monotone. This result while being straightforward, is very ritial for

understanding the �xed point equations and proof of Theorem 6.1.

Lemma 6.2 Consider two vetors V = (V1,V2) and V′ = (V′
1,V

′
2) suh that

Aλ(V1,V2) ≤ Aλ(V
′
1,V

′
2). In other words, for eah s ∈ S, we have λV1(s) + (1 −

λ)V2(s) ≤ λV ′
1(s) + (1 − λ)V ′

2(s). Then, for any K > 0, we have AλT
K
ǫ,λ(V1,V2) ≤

AλT
K
ǫ,λ(V

′
1,V

′
2).

Proof: AλT
K
ǫ,λ(V1,V2) derives the optimal weighted sum of disounted rewards of K

�nite horizon problem with terminating rewards λV1(s)+ (1−λ)V2(s). It is straight-

forward that as terminating rewards inreases in all states, the disounted reward of

K �nite horizon problem inreases as well. �.

We start by proving the seond argument. First, we prove that the sequene QK

de�ned by QK = Aλ(T
K
ǫ,λ(V1,V2)) is a Cauhy sequene. In other words, we need to

demonstrate that for eah µ > 0 there exists a positive integer Kµ suh that for eah

k1, k2 ≥ Kµ, we have ||Qk1 −Qk2 ||∞ ≤ µ, where ||Qk1 −Qk2 ||∞ = maxs |Qk1(s) −

Qk2(s)|. For a given pair of ǫ-di�erential private poliies π1 = {π01 , π
1
1, · · · }, and

π2 = {π
0
2 , π

1
2 , · · · }, and �xed K, we an split the rewards of ith MDP to two parts as

follows:

V πi
i (s) =

K−1∑

t=0

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s}+

∞∑

t=K

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s} (43)
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Considering that rewards are bounded, i.e. maxi,s,a |ri(s, a)| ≤ R, we have:

|
∞∑

t=K

βtEπi{ri(S
i
t , A

i
t)|S

i
0 = s}| ≤

βKR

1− β
(44)

By ombining equation (43) and inequality (44), we an derive the following:

λV π1
1 (s) + (1− λ)V π2

2 (s)−
βKR

1− β
≤

λ
K−1∑

t=0

βtEπ1{r1(S
1
t , A

1
t )|S

1
0 = s}+

(1− λ)
K∑

t=0

βtEπ2{r2(S
2
t , A

2
t )|S

2
0 = s}

≤ λV π1
1 (s) + (1− λ)V π2

2 (s) +
βKR

1− β

By taking maximum over all ǫ-di�erential private poliies on all sides of above in-

equality, we have:

λV∗
1,ǫ,λ + (1− λ)V∗

2,ǫ,λ − β
KL ≤ AλT

K
ǫ,λ(V1,V2)

≤ λV∗
1,ǫ,λ + (1− λ)V∗

2,ǫ,λ + βKL, (45)

where L = (||Q0||∞ + R
1−β ) and ||Q0||∞ = maxs{λV1(s) + (1 − λ)V2(s)}. In other

words, we have ||AλT
K
ǫ,λ(V1,V2)−Q

∗
λ,ǫ||∞ ≤ β

KL. Using triangle inequality, we have:

||AλT
k1
ǫ,λ(V1,V2) − AλT

k2
ǫ,λ(V1,V2)||∞ ≤ 2βmin(k1,k2)L. Therefore, for any k1, k2 ≥

Nµ = ⌈logβ
µ
2L⌉, we have ||Qk1 −Qk2 ||∞ ≤ µ whih proves that the sequene Qk is a

Cauhy sequene.

Now, we an take limit on all sides of equation (45), when K →∞. Consequently,

we have limK→∞ AλT
K
ǫ,λ (V1, V2) = Q∗

. Moreover, it is evident from equation (45)

that the onvergene rate of QK is equal to the disount fator β.

Now, we an apply mapping Tǫ,λ on all sides of equation (45) and using the

monotoniity of Tǫ,λ we have:

AλTǫ,λ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ)− β

K+1L ≤ AλT
K+1
ǫ,λ (V1,V2)

≤ AλTǫ,λ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ) + βK+1L, (46)

Now, by taking the limit whenK →∞, ombined with the fat that limK→∞ AλT
K+1
ǫ,λ

(V1, V2) = Q∗
ǫ,λ, we onlude that Q∗

ǫ,λ = Aλ(V
∗
1,ǫ,λ, V

∗
2,ǫ,λ) = AλTǫ,λ (V∗

1,ǫ,λ,

V∗
2,ǫ,λ). �.

As a result of Theorem 6.1, we an derive the optimal stationary poliies whih is

presented in the following lemma.
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(a) A graph with 3 soure nodes and

2 destination nodes.

(b) Two private routes are shown by

blak and blue arrows.

Figure 18: Private Routes in Networked Data Colletion.

Corollary 6.2.1 The pair of stationary ǫ-di�erential poliies (π∗1, π
∗
2), where π

∗
1 =

{q∗1 , q
∗
1, · · · }, and π

∗
2 = {q∗2, q

∗
2 , · · · } is optimal if (q∗1, q

∗
2) are the poliies whih solves

the following:

Aλ(V
∗
1,ǫ,λ,V

∗
2,ǫ,λ) = AλTǫ,λ(V

∗
1,ǫ,λ,V

∗
2,ǫ,λ) (47)

Using the results of theorem 6.1 and Corollary 6.2.1, we an solve for the optimal

ǫ-di�erential private poliies for any pair of �nite state MDPs, for any weighted re-

wards. In partiular, by starting from an arbitrary vetors (V1,V2), and suessively

applying the mapping Tǫ,λ, the optimal disounted rewards, and subsequently, the

optimal stationary ǫ-di�erential private poliies an be derived.

6.2 Di�erential Privay in Networked Data Colletion

In this setion, we study the problem of uniast and multiast routing in networks

under di�erential privay onstraints. We explain our approah using a ouple of

examples. Consider the graph shown in �gure 18a. There are some routes from the

soure node S1 to the destination node D2 inluding the shortest path between these

two nodes whih travels through S3. If S1 transmits pakets through any of these

routes to D2, an eavesdropper observing this route an identify the destination of

eah paket departing soure node S1. If there is overhead routing, privay may be

ahieved, albeit it results in higher ost. For example, if the intended destination is

D2, the paket may ontinue traveling to D1 as well. In this ase, the eavesdropper

will be unertain about the intended destination. In �gure 18b, two suh routes are

shown. The ost of the route till the paket arrives it's intended destination may

have higher priority to the ost of the rest of route. For example, if the ost is
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representing lateny, the soure will desire less lateny to it's intended destination

than the other one. Consequently, we assume the ost of a route is simply sum of

the osts assoiated with eah edge till the paket arrives it's intended destination,

added with sum of the weighted osts assoiated with the other edges on the route.

This weighting fator is denoted by 0 ≤ β ≤ 1. For example the route shown by

blak edges will have ost 3 + 2β if the intended destination is D2, and ost 5 for the

ase that the intended destination is D1. Note that the route represented by blak

edges has the minimum ost over all suh routes if the intended destination is D2.

Similarly, the route represented by blue edges has the minimum ost over all suh

routes if the intended destination is D1. If soure node S1 always hooses the blak

route if D2 is intended and blue route if D1 is intended, no privay will be provided,

as an eavesdropper an identify the intended destination, based on her knowledge

and observation. Consequently, in order to ahieve some degree of privay, the soure

should hoose a probability distribution over all suh routes whih travels through all

destination nodes. As multiast routing is a sheme to transmit overhead to other

destinations as well, it an also be used to provide privay for the single intended

destination ase. For example, in �gure 19a, a graph with two soure nodes and two

destination nodes are represented and two private spanning tree are shown by blue

and blak arrows. The tree represented by blak arrows minimizes the total ost

for the ase when D1 is the intended destination and the route represented by blue

arrows minimizes the ost for the ase when D2 is the intended destination. Similar

to private uniast routing, for the sake of privay, soure S1 an hoose a probability

distribution over all suh spanning trees suh that the weighted ost is minimized

subjet to the privay requirements..

6.2.1 System Model

We model the network by a graph G = (V,E), where V = S
⋃
D is the set of verties,

and E is the set of direted edges. The set V is union of two sets: S = {S1, · · · , SN}

whih is set of soure nodes, and D = {D1, · · · ,DM} whih is set of destination nodes.

We assume that the set D is given; in a broader ontext, the soure needs to deide

the grouping of destinations that would balane the overhead osts with the desire for

privay. Eah edge (i, j) ∈ E of the network orresponds to a ost ci,j . If privay was

not a onsideration, eah soure would �nd the shortest path (minimum total ost

of edges) to eah destination and transmit pakets through the respetive paths. To

provide privay, we propose that a paket whih departs soure Si to any destination
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(a) A graph with 2 soure nodes and

2 destination nodes.

(b) Two private spanning tree are

shown by blak and blue arrows.

Figure 19: Private Spanning Trees.

Dj ∈ D will neessarily travel through all other destinations in D as well. Intuitively,

as the number of spanned destinations inreases eavesdropper's unertainty about the

intended destination will inrease, albeit in ost of higher average ost.

• Uniast Private Routing: Let's denote the set of private routes for a soure

Si ∈ S by RSi
whih is the set of all the routes in the graph that start at node

Si and ontains all nodes in D. A private route r ∈ RSi
an be expressed as a

sequene of nodes r = (Si,M
r
Si,Djr

1

,Djr1
,M r

Djr
1
,Djr

2

,Djr2
, · · ·Djr

M
), whereM r

X,Y is

the sequene of soure nodes between node X and node Y in route r. For exam-

ple, in Figure 20 where there are two destinations D1 and D2, a route r ∈ RS1

is shown by a red urve whih an be written as r = (S1, S4,D2, S2, S4, S7,D1).

Note that in this ase M r
S1,D2

= (S4), M
r
D2,D1

= (S2, S4, S7), Djr1
= D2, and

Djr2
= D1. The orresponding ost of private route r if the intended destination

is Dj is equal to:

∀r ∈ Ri,∀Dj ∈ D : C(r,Dj , β) =

k:r(k+1)=Dj∑

n=1

cr(n),r(n+1) + β

l(r)−1
∑

n=k+1

cr(n),r(n+1), (48)

where l(r) is the length of route r, r(n) is the nth node in route r, and 0 ≤ β ≤ 1

is the weighting fator. Equation (48) has two parts: the �rst sum re�ets the

ost till the paket arrives to it's intended destination and the seond sum
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Figure 20: A private route r ∈ RS1 is shown by the red urve and a private spanning

tree t ∈ TS1 is shown by the green urve.

re�ets the weighted ost for the rest of the route. The β fator quanti�es the

degree of importane aorded to the overhead beyond ahieving the intended

target.

We assume eah soure Si ∈ S ommuniates with all nodes Dj ∈ D. To

e�etively balane privay with total ost, node Si hooses a probability distri-

bution P
Dj

Si
= {P

Dj

Si
(r)|

∑

r∈RSi
P
Dj

Si
(r) = 1} on the set of private routes RSi

to

ommuniate with node Dj . If the soure hooses probability distribution P
Dj

Si
,

then, the expeted ost will be as follows:

C(Si,Dj , β) =
∑

r∈RSi

P
Dj

Si
(r)C(r,Dj , β) (49)

The goal of uniast private routing sheme is minimizing

∑

Dj
C(Si,Dj , β) while

satisfying ǫ−di�erential privay onditions, whih will be explained in de�nition

6.2.

• Multiast Private Routing: Multiast routing is primary used to transmit a

paket to a group of destinations. In the ontext of this paper, multiast routing

by virtue of the multitude of destinations an be used to provide destination

privay, ie we use multiast to privatize uniast routing. For soure Si to multi-

ast to all nodes in D, the pakets would be transmitted on a tree whih spans

D
⋃
{Si}, in other words, the Steiner Tree. The Minimum Steiner Tree (MST)

is de�ned as the Steiner Tree whih has the minimum total ost.

For a soure Si, we de�ne TSi
as the set of all the trees in the graph G whih

span all the elements of {Si}
⋃
D (We will all these trees as private spanning
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trees). The overhead weighted ost of a private spanning tree will be di�erent

for the di�erent intended destination. For a private spanning tree t ∈ TSi
, in

order to de�ne the ost W (t,Dj , β) whih is the ost of private tree t when

the node Dj is the intended destination for this paket, we need to identify

the unique path t(Si,Dj) in tree t whih travels from node Si to node Dj .

For example, in Figure 20, a private spanning tree t for soure S1 is shown

by the green urve. In this ase, t = {(S1, S4), (S4,D2), (S4, S7), (S7,D1)},

t(S1,D1) = {(S1, S4), (S4, S7), (S7,D1)}, and t(S1,D2) = {(S1, S4), (S4,D2)}.

Considering a tree t ∈ TSi
, the ost l(t,Dj) will be de�ned as follows:

∀t ∈ TSi
,∀Dj ∈ D : W (t,Dj, β) =

∑

(u,v)∈t(Si ,Dj)

cu,v + β
∑

(u,v)∈T/t(Si ,Dj)

cu,v, (50)

where 0 ≤ β ≤ 1. Note that equation (50) has two parts: the �rst sum whih

has weighting fator one is the path that paket will travel to it's intended

destination, and the seond sum whih has weighting fator β for the edges not

inluded on this path.

In order to e�etively balane privay with osts, we add randomness in the

hoie of private spanning trees. Soure Si hooses a probability distribution

P
Dj

TSi
= {P

Dj

TSi
(t)|
∑

t∈TSi
P
Dj

TSi
= 1} over the set of private spanning trees. For a

spei� probability distribution P
Dj

TSi
, the expeted ost will be as follows:

W(Si,Dj , β) =
∑

t∈TSi

P
Dj

TSi
W (t,Dj , β) (51)

The main goal of private multiast routing is minimizing

∑

Dj
W(Si,Dj , β)

while providing ǫ− di�erential privay whih we de�ne in the following.

• Di�erential Private Routing:

Eavesdropper (Eve): We onsider an omnisient eavesdropper (Eve) who

observes the tra� in the network. Eve knows all the information of the network

inluding identity of nodes, osts of eah edge, set of private routes, and set

private spanning trees. In partiular, Eve knows the probability distribution

that eah soure hooses on it's private routes, ie Eve knows all {P
Dj

Si
} and

{P
Dj

TSi
}. Eve's goal is identifying the destination node for a spei� paket

whih departs soure Si. By observing the route a paket travels, Eve deides
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on the destination of this paket. In this work, we use the di�erential privay

to quantify the destination privay. Based on the de�nition of di�erential,

onditioned on the fat that Eve observes the private route r or private spanning

tree t, the ǫ−di�erential private routing for uniast and multiast routing sheme

will be de�ned as follows:

De�nition 6.2 (ǫ−Di�erential Uniast Private Routing) We say that a

route probability distribution {P
Dj

Si
} for the 3−tuple (G,S,D) is ǫ−di�erential

private if:

∀Si ∈ S,∀r ∈ RSi
,∀Dk,Dj ∈ D :

P
Dj

Si
(r)

PDk

Si
(r)
≤ eǫ (52)

De�nition 6.3 (ǫ−Di�erential Multiast Private Routing) We say that

a spanning tree probability distribution {P
Dj

TSi
} for the 3−tuple (G,S,D) is ǫ−

di�erential private if:

∀Si ∈ S,∀t ∈ TSi
,∀Dk,Dj ∈ D :

P
Dj

TSi
(t)

PDk

TSi
(t)
≤ eǫ (53)

We note that the above follows the standard de�nition of di�erential privay (as

applied in the ontext of a dataset). In the broader ontext of the problem, how-

ever, the hoie and size of the set D brings an added dimension to the privay

notion in routing. In the rest of this artile, we investigate the optimal routing

whih minimizes the aggregated uniast ost (

∑

Dj∈D
C(Si,Dj , β)) for a spei�

soure Si and minimizing the aggregated multiast ost (

∑

Dj∈D
W(Si,Dj , β))

while satisfying the onditions de�ned in de�nitions 6.2, and 6.3, respetively.

6.2.2 Private Uniast Routing

In this setion, our goal is to optimize the probability distributions {P
Dj

Si
} suh that

the total average ost is minimized while satisfying di�erential privay onditions. In

other words, for eah soure node Si our objetive is to solve the following optimization
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problem:

Φ : min
P

D1
Si

,··· ,P
DM
Si

∑

Dj∈D

∑

r∈RSi

P
Dj

Si
(r)C(r,Dj , β)

Subjet to :∀Dj ∈ D :
∑

r∈RSi

PD1
Si

(r) = 1

∀r ∈ RSi
,∀Dk,Dj ∈ D :

P
Dj

Si
(r)

PDk

Si
(r)
≤ eǫ (54)

First, we onsider solving this problem for the equal weighting parameter ase where

β = 1. In the following theorem, we prove that the optimal solution of problem Φ

where β = 1, is idential to the optimal solution of traveling sales man problem.

Theorem 6.3 Optimal uniast private routing for the ase of equal weighting param-

eter (β = 1) yields

∀Dj ∈ D : P
Dj

Si
(r∗TSM ) = 1,

where r∗TSM ∈ RSi
is the optimal route for traveling sales man problem where the

starting node is Si and the sales man should visit all the nodes in D.

Proof: r∗TSM satis�es the following inequality:

∀Dj ∈ D,∀r ∈ RSi
: C(r∗TSM ,Dj , 1) ≤ C(r,Dj , 1)

The immediate onsequene of above inequality is that for a spei� destination node

Dj , C(r∗TSM ,Dj , 1) will be smaller than any onvex ombination of C(r,Dj , 1). Thus,

MC(r∗TSM ,Dj , 1) ≤

min
P

D1
Si

,··· ,P
DM
Si

∑

Dj∈D

∑

r∈RSi

P
Dj

Si
(r)C(r,Dj , β) (55)

and the ondition of theorem presents a feasible solution whih ahieves this lower-

bound and this ompletes the proof. �.

We note that the optimal uniast routing in the ase of β = 1 yields the highest

degree of privay whih is 0−di�erential privay. While the optimal uniast private

routing for β = 1 yields a single route, the following theorem proves that the optimal

uniast private routing for the ase 0 ≤ β < 1 alloates nonzero probabilities on

2M − 2 di�erent routes. Let's de�ne the set of private route RSH to be the set of

all the private routes whih inludes the shortest path from the soure node Si to
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a destination node Dj and then the shortest path from the destination node Dj to

the destination node Du, and so on suh that all the destination nodes are inluded

on the route. There are M ! suh routes and the following theorem proves that there

are only 2M − 2 private routes between the elements of RSH whih have nonzero

probability for the optimal uniast routing. Before going through the theorem, we

introdue vetor C̄(r, β) suh that the mth element of this vetor is C(r,Dm, β).

Theorem 6.4 Optimal uniast private routing for the ase of 0 ≤ β < 1 yields

nonzero probability alloation only over all the routes r∗ ∈ R∗ ⊂ RSH . Moreover eah

r∗ ∈ R∗
is the unique solution of following optimization problem

min
t∈RSi

ET C̄(t, β), (56)

where E1×|D| is a vetor suh that eah elements of it is either 1 or eǫ exluding two

ases of 1̄1×|D| and e1̄1×|D|, where 1̄1×|D| is the vetor with all elements equal to one.

Proof: Considering the dual optimization problem of Φ and Complementary

Slakness, we will prove this theorem. For a spei� private route r, we haveM×(M−

1) inequality onstraints whih indiate privay onstraints. For eah route r, we may

have two senarios: 1)∀Dj ∈ D, we have P
Dj

Si
(r) = 0. 2)∀Dj ∈ D, we have P

Dj

TSi
(r) 6= 0

and they satisfy privay inequality onstraints. Moreover, Complementary Slakness

fores P
Dj

TSi
(r) to satisfy the following onditions:

∃Dj,Dk ∈ D : P
Dj

Si
(r) = eǫPDk

Si
(r)

∀Du 6= Dk,Dj : P
Du

Si
(r) = P

Dj

Si
(r) or PDu

Si
(r) = PDk

Si
(r) (57)

Considering the onditions expressed in (57), we an set the routes whih have nonzero

probabilities to 2M−2 groups and it is straightforward to hek for eah of these groups

just one of them whih is the solution of optimization problem expressed in (56) will

have nonzero probability. It is also straightforward to hek that for eah vetor E

the solution of (56) is an element of RSH . Consequently, R∗ ⊂ RSH �.

By the result of theorem 6.4, eah node will use Dijkstra's algorithm to �nd the

elements of the set RSH and then by performing a simple searh, one an �nd the

elements of the set R∗
and subsequently solve the orresponding linear programming

problem.

6.2.3 Private Multiast Routing

In this setion, we onsider the problem of multiast routing for privay in graph G.

As we disussed in setion 6.2.1, multiast routing an be used to provide destination
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privay. However, the overhead weighted ost for di�erent intended destination will

be di�erent and eah soure will hoose a probability distribution over all it's private

spanning trees. The optimal multiast routing sheme an be found by solving the

following optimization problem:

Ψ : min
P

D1
TSi

,··· ,P
DM
TSi

∑

Dj∈D

∑

t∈TSi

P
Dj

TSi
(t)L(t,Dj , β)

Subjet to:∀Dj ∈ D :
∑

t∈TSi

P
Dj

TSi
(t) = 1

∀t ∈ TSi
,∀Dj ,Dk ∈ D :

P
Dj

TSi
(t)

PDk

TSi
(t)
≤ eǫ (58)

Similar to uniast private routing, we �rst onsider the ase of equal weighting fator

(β = 1). In the following theorem, we prove that the optimal multiast routing for

privay when β = 1 is idential to the solution of the Minimum Steiner Tree (MST)

problem:

Theorem 6.5 Optimal multiast private routing for the ase of equal weighting (β =

1) yields

∀Dj ∈ D : P
Dj

TSi
(t∗MST ) = 1, (59)

where t∗MST is the Minimum Steiner Tree whih spans all the elements of {Si}
⋃
D.

Proof: by the de�nition of MST, we know that ∀Dj ∈ D and ∀t ∈ TSi
, we have

W (t∗MST ,Dj , 1) ≤W (t,Dj , 1). Consequently, W (t∗MST ,Dj , 1) is less than any onvex

ombination of W (t,Dj , 1) and we have

MW (t∗MST ,Dj , 1) ≤

min
P

D1
TSi

,··· ,P
DM
TSi

∑

Dj∈D

∑

t∈TSi

P
Dj

TSi
W (t,Dj , 1) (60)

and the onditions in the theorem presents a feasible solution whih ahieves this

lowerbound. �.

Note that the solution of theorem 6.5 yields the highest degree of privay whih

is 0−di�erential privay. Prior to investigating the solution when 0 < β < 1, let's

onsider the optimal multiast routing when β = 0. It is straightforward to prove that

the optimal multiast routing with ǫ−di�erential privay when β = 0, is ahieved by

always transmitting through a tree whih has it's root at Si and there is an individual
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route from Si to eah destination Dj whih is the shortest path from the node Si to

the node Dj .

For notation onveniene, we de�ne the vetor W̄ (t, β) suh that the mth element

of this vetor isW (t,Dm, β). The following theorem proves that the optimal multiast

routing for privay in graph G = (V,E) when 0 < β < 1, alloates nonzero probability

P
Dj

TSi
(t) only over 2M − 2 trees, where M is the number of destination nodes.

Theorem 6.6 The optimal Solution of Ψ yields on alloation of nonzero P
Dj

TSi
(t) over

the set T ∗
suh that |T ∗| = 2M − 2 and elements of this set are the solution of the

following problem:

min
t∈TSi

ET W̄ (t, β), (61)

where E1×|D| is a vetor suh that eah elements of it are either 1 or eǫ exluding two

ases of 1̄1×|D| and e1̄1×|D|.

Proof: Similar to proof of Theorem 6.4 . �.

Note that there is no polynomial time solution to �nd the elements of T ∗
, beause

the problem is np-omplete. In our simulation, we �nd the suboptimal solution of

this problem using KMB algorithms. We onstrut the KMB omplete graph over the

nodes {Si}
⋃
D suh that the edge between eah pair of nodes in the new omplete

graph is the shortest path between those node in the original graph and then, we look

for the solutions of (61) between the spanning trees of this new subgraph. In the next

step, we solve the orresponding linear programming over these spanning trees.

The following theorem proves that �nding the optimal private multiast routing

for the ase of 0 < β ≤ 1 is NP-Complete.

Theorem 6.7 Given a graph G = (V,E), the problem of private multiast routing

from a soure node Si ∈ V whih spans all the elements of D ⊂ V and minimizes the

ost de�ned in equation (50) is an NP-Complete problem.

Proof: we will prove that the solution of optimization problem expressed in (61)

is NP-Complete whih will be su�ient for the whole problem. The problem is NP, as

a non-deterministi guess an list a set of edges and in polynomial time, it is possible

to hek:1)These edges form a tree.2)The tree spans all the elements of {Si}
⋃
D.

The problem is NP-hard as the solution of optimization problem expressed in (61)

for the ase of β = 1 yields Minimum Steiner Tree. Consequently, the problem is

NP-Complete. �.
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Figure 21: Cost of optimal uniast and suboptimal multiast routing as a funtion of

β for di�erent amount of ǫ in a omplete random graph.

6.2.4 Simulations and Numerial Results

In our �rst simulation, we onsidered a network modeled by a omplete random graph

whih onsists of 12 soure nodes and 3 destination nodes. The ost of eah edge is a

uniform random variable U [0, 1] and total ost urves are derived for di�erent ǫs for

optimal private uniast and suboptimal multiast routing. It is seen that the total

ost inreases as ǫ dereases for both shemes whih is intuitive as higher ǫ yields lower

degree of privay, onsequently, soures are allowed to alloate higher probabilities

on the paths (or spanning trees) with lower ost. Another interesting fat is that all

the usniast routing urves merge eah other for higher βs, whih is also intuitive as

it was seen for β = 1, optimal routing was independent of ǫ. Multiast routing ost

merges for both β = 0 and β = 1 as we proved that for these ases optimal routing

is independent of ǫ. In the seond simulation, we plotted the average ost for spei�

amount of ǫ, and β as a funtion of number of soure nodes in the graph while there

are three destination nodes. For eah n, the simulation was run over 1000 random

graph of size n + 3, and the average is plotted. It is known that the average ost of

the shortest path, and the minimum steiner tree onverge asymptotially as the size

of the omplete graph grows. The �gure demonstrates the onvergene of optimal

di�erntially private paths and trees as well.
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Figure 22: The average total ost for di�erent amount of ǫ, and β as a funtion of

network size.
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7 Coupon Targeting Competition in a Privay Sensitive

Market

In the era of massive data olletion, retailers ollet and utilize private information

about onsumers by analyzing their purhasing history, trading private data, traking

Cookies, and similar strategies. Using this data, retailers an predit onsumers taste,

preferene and the amount of money they are willing to spend on any given produt

[88℄. Consequently, a retailer may o�er lower pries to prie sensitive onsumers

whilst onsumers with less prie sensitivity who are loyal to the retailer will be o�ered

higher pries. O�ering di�erent pries to onsumers based on their loyalty and prie

sensitivity inreases retailers pro�ts and results in prie disrimination [89�91℄.

Retailers may prefer to ompete for prie sensitive onsumers by o�ering targeted

oupons instead of lowering their pries, as oupon targeting engenders market seg-

mentation, whereas dereasing pries does not [24℄. It is also well understood that

targeted oupons and other innovative oupon strategies inrease the revenue of re-

tailers [92,93℄, and results in prie disrimination [73,94,95℄. Coupons are, of ourse,

ultimately bene�ial to the onsumers owing to prie redution and minimizing the

need to "shop around" for merhandise.

Coupons targeted at spei� ustom areas based on their preferenes, however,

engender a fundamental violation of individual privay. Preferene for a partiular

produt, or a lass of produts, an often lead to sensitive information revealed to

retailers. A noteworthy example is when the father of a teen inadvertently disovered

his daughter's pregnany due to a targeted oupon from Target [96℄. Knowledge

of privay violations an make onsumers stop purhasing from spei� retailers,

or at the very least, derease the onsumer loyalty towards the retailer [23℄. It is

also shown in [7℄ that onsumers are more willing to purhase from online retailers

who protet their privay. In e�et, prie sensitivity and brand loyalty alone do not

ditate onsumer purhasing deisions, and impat of privay violation ought to be

onsidered in retailer deisions to send targeted oupons. It is this privay aware

deision proess that this artile aims to shed light upon. More spei�ally, we study

ompetitive oupon targeting between a pair of retailers when prie and privay are

expliitly onsidered as fators in the onsumer deision making.

In this setion, we use the privay sensitivity model as proposed by Sankar et al

in [23℄, wherein onsumers are assumed to exist in one of two states with respet to

a retailer 1) Non-alerted state where onsumers trust a retailer, and 2) Alerted state,
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where onsumers are aware and wary of privay violations by the retailer. Consumers

swith between these states depending on whether they reeive targeted oupons

from a retailer. The swithing is modeled probabilistially using Markov hains; a

onsumer in a non-alerted state swithes to an alerted state with a �xed probability

if s/he reeives a targeted oupon, and a onsumer in an alerted state swithes bak

with some �xed probability if s/he does not reeive a targeted oupon.

Following the oupon targeting model in a prie sensitive market in [24℄, we assume

that onsumers are loated on a Hotelling line suh that the loation of onsumers on

the line represents their preferene for the retailers. It is known that the Hotelling line

in a prie sensitive market is divided into four segments whih are shown in Figure

23. The ompetition between retailers in a prie sensitivity market at eah segment

is modeled by a stati bimatrix game. However, in a privay sensitive market, stati

games annot apture the pro�t of retailers, as they need to onsider both immediate

reward and the impat of their ation on futures rewards. For example, a retailer may

reeive some pro�t by sending a targeted oupon to a onsumer, but as a onsequene

of sending the targeted oupon, the onsumer may get privay alerted about the

retailer and stop purhasing from this retailer in the future. Thus, we model the

ompetition of retailers in a privay sensitive market using nonzero-sum stohasti

games. Note that in [23℄ the interation between a single retailer and a single onsumer

using Markov Deision Proesses with a similar setting is investigated.

In this work, we demonstrate that a privay sensitive market is divided into 12

segments. Moreover, we derive the optimal stationary oupon targeting poliies and

disounted rewards for both retailers at eah spei� segment of the Hotelling line. We

prove that onsumers with weak preferene for a retailer will hange their purhasing

brand if they notie their privay is violated by the retailer. We also prove that

at segments whih adopts mixed strategies, the popular retailer has a less defensive

strategy whilst the rival retailer has a more o�ensive targeting strategy as the disount

fator inreases. In other words, as the importane of future pro�t gets higher, the

popular retailer will be more onservative about onsumers with weak preferene for

it, beause, these onsumers are more likely to hange their purhasing brand in the

future, if they get alerted about this retailer. On the other hand, the rival retailer will

be more aggressive to 1) get a higher share of market, 2) push the popular retailer

to distribute targeted oupons. Eventually, we demonstrate that despite the prie

sensitive market, the rival retailer will have a non-negative disounted reward on the

onsumers with weak preferene for the inumbent retailer.
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In order to model a privay sensitive market, we need to adopt a measure for

privay in our model. There are several popular approahes to quantify privay in lit-

erature. Information theoreti metris suh as Shannon entropy [97℄, or min-entropy

[98℄ whih are based on Bayesian assumptions about prior probabilities. Although

information theoreti measures are tratable and onave, they measure average pri-

vay. Statistiians use di�erential privay as a tool to measure point-wise privay (no

Bayesian assumption) in data olletion [85℄. While quantitative measures of privay

allows one to inlude privay as a tangible ommodity, in the ontext of onsumer

markets, we need a mehanism to study user behavior in response to privay viola-

tions. The approah proposed in [23℄ provides this mehanism, and we adopt it in the

ontext of market ompetition. In this approah, instead of measuring privay, we are

looking at privay violation as an ation-reation phenomenon, and using probabilis-

ti models for that investigation. Suh phenomenon is modeled by a Markov Chain

(MC) with two states of privay (alerted and non-alerted) for a spei� onsumer,

representing the status of the onsumer about a spei� retailer.

The primary goal of this setion is to investigate market behavior when on-

sumers' purhasing deisions are impated by prie di�erenes and privay violations.

Through this investigation, several questions arise: (1) What is the market segmenta-

tion in a privay sensitive market? (2) How does the privay-sensitivity a�et retailers'

pro�t? (3) What are the optimal targeted oupon strategy of retailers in eah segment

of a Hotelling line? (4) How does the disounting fator for future pro�ts in�uene

retailer deision making? (5) What are the long term onsumer purhasing patterns

and optimal strategies for onsumers in a privay sensitive market?

7.1 Overview of Coupon Targeting Problem in a Prie Sensitive

Market

In this setion, we survey the model and main results in lassial oupon targeting

ompetition between two retailers in a prie sensitive market. In the oupon target-

ing ompetition problem studied in [24℄, there are two retailers A, and B selling a

ommodity produt, with di�erent brands assoiated to eah retailer, a �xed prie

P , and a marginal ost c. Retailers may distribute targeted oupons to spei� on-

sumers with disount value d and the marginal ost of distributing a oupon for eah

retailer, denoted by z > 0. Consumers are distributed uniformly on the line segment

[0, 1] while eah retailer is loated at one edge of this line, i.e., retailer A is loated

on x = 0 and retailer B is loated at x = 1. The loation of onsumers re�ets their
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loyalty to eah brand and a�et their purhasing deision. For example, onsumers

who are loated loser to retailer A are more willing to buy this produt from retailer

A. However, if they get a targeted oupon from retailer B, they may purhase from

retailer B. In [24℄, the in�uene of loyalty on purhasing deisions is modeled using a

transportation ost t. If V is the ommon reservation prie for eah onsumer, then,

a onsumer loated at x = X is willing to pay V − tX for brand A and V − t(1−X)

for brand B. It is assumed that V is large enough suh that eah onsumer will

purhase this produt. Under this model, the market was shown to be divided into

four segments de�ned as follows: (See Figure 23)

• Consumers loyal to retailer A: these onsumers would purhase from retailer A

regardless of whether they reeive oupons from either retailer. Consequently

the loation of suh a onsumer satis�es: P + tX ≤ P − d+ t(1−X), in other

word, these onsumers are loated in the interval [0,XA] where:

XA =
−d+ t

2t
(62)

• Consumers with weak preferene for retailer A: Consider a marginal onsumer

loated at x = X̂ who is indi�erent if s/he does not have targeted oupon from

both retailer or s/he has targeted oupon from both retailers. Suh a onsumer

is loated at X̂ = 1
2 . The onsumers in the interval [XA, X̂ ] are alled onsumers

with weak preferene for retailer A. These onsumers purhase from retailer B

if they have a targeted oupon from B and they do not have a targeted oupon

from retailer A. Otherwise, they will purhase from retailer A.

• Similarly, onsumers loyal to retailer B are loated in the interval [XB , 1] and

onsumers with weak preferene for retailer B are loated in the interval [X̂,XB ],

where XB = d+t
2t .

These segments are shown in Figure 23 for symmetri ost parameters for both retail-

ers. We note that the loation of a onsumer indiates her/his loyalty and preferene

for retailers, and parameter t > 0 represents prie sensitivity of the market. For ex-

ample, if t→ 0, then, the market will be divided into two segments, eah representing

onsumers with weak preferene for one of the retailers. Suh a market represents the

highest prie sensitivity degree, as all the onsumers hange their purhasing brand

if they are o�ered a targeted oupon from the rival retailer. On the other hand, if

t→∞, the market is divided into two segments suh that onsumers at eah segment
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Figure 23: Market Segmentation in a Prie Sensitive Market.

have strong preferene for one of the retailers, representing a market with no prie

sensitivity, i.e., all onsumers will purhase from their favorite retailer.

The equilibrium and optimal strategy of retailers at eah segments is derived in

[24℄ and we review these results in the following theorem.

Theorem 7.1 Denote by pi the probability assoiated to retailer A sending targeted

oupons to onsumers in ith segment, and denote by qi the probability assoiated to

retailer B sending targeted oupons to onsumers in the ith segment. Aording to

[24℄, the optimal strategies for an one-step game between retailer A and B in eah

segments are as follows:

p = [p1, p2, p3, p4] = [0,
P − c− d− z

P − c− d
,
d+ z

P − c
, 0]

q = [q1, q2, q3, q4] = [0,
d+ z

P − c
,
P − c− d− z

P − c− d
, 0]

And the reward of eah retailer at the equilibrium are as follows:

VA = [P − c, P − c− d− z, 0, 0]

VB = [0, 0, P − c− d− z, P − c]

The results in Theorem 7.1 are intuitive, as in segment 1, none of the retailers are

willing to distribute targeted oupon between the onsumers, as they annot inrease

their reward by doing so. However, the bimatrix game in segment 2 whih is shown

in table 2 adopts a mixed strategy at the equilibrium point. In this segment, if both

retailers do not distribute targeted oupons, retailer A reeives the maximum possible

reward, P − c and retailer B reeives 0 reward. However, retailer B an improve their

reward by distributing a targeted oupon. In this ase retailer B reeives P −c−d−z

and retailer A reeives zero. On the other hand, retailer A an again inrease their

reward by distributing a targeted oupon. Consequently, the bimatrix game in this

segment is similar to prisoner's dilemma. In this segment, retailer A has a defensive

strategy and tries to enourage the onsumers with weak preferene towards retailer
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VA, VB Targeting Not Targeting

Targeting P − c− d− z,−z P − c− d− z, 0

Not Target-

ing

0, P − c− d− z P − c, 0

Table 2: Bimatrix Game in Segment S2

A to maintain their loyalty, whereas retailer B has an o�ensive strategy and tries to

inrease its market share by o�ering them targeted oupons.

Subsequently, we adapt this Hotelling line model to study oupon targeting when

onsumers inlude privay violations as a fator in their deision making whih we

model as an inrease in transportation osts under an alerted state.

7.2 System Model

In the basi Hotelling line model [24℄ desribed previously, the bimatrix games were

stati and resulted in simple mixed strategy equilibria. In a privay sensitive market,

however, the ompetition is played out over the entire time horizon, sine retailers

sending oupons not only need to worry about immediate pro�ts but also privay

related onsequenes in subsequent time steps as well. Privay sensitivity, as men-

tioned earlier, is modeled as in [23℄, wherein onsumers exist in one of two states with

respet to eah retailer: alerted or non-alerted. Consequently, onsumers exist in one

of four possible groups {S, SB , SA, SAB}explained in the following paragraph. We

model the impat of privay using a di�erential in the transportation osts. In parti-

ular, a onsumer alerted about retailer A would inur a higher transportation ost tA

from that retailer as opposed to a transportation ost tNA < tA were s/he is not alert

about that retailer. (Note that the subsripts "A", and "NA" stand for "Alerted",

and "Non-Alerted", respetively.) When applying this notion to the Hotelling line

model, four di�erent Hotelling lines arise, one for eah group.

• S: Consumers in this group are in non-alerted state about both retailers. Con-

sequently, the transportation ost for both retailers will be tNA. Assuming

symmetri onditions, the marginal onsumers for this group are loated at

X1
A =

−d+ tNA
2tNA

, X̂1 =
1

2
, X1

B =
d+ tNA
2tNA

, (63)

We assume all the onsumers start in this group at the beginning of the game.
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• SB : Consumers in this group are in the non-alerted state about retailer A and

in the alerted state about retailer B. Consequently, the transportation ost for

retailer A and B will be tNA, and tA, respetively. The marginal onsumers in

this group are loated at:

X2
A =

−d+ tA
tNA + tA

, X̂2 =
tA

tNA + tA
, X2

B =
d+ tA
tNA + tA

, (64)

• SA: Consumers in this group are in the alerted state about retailer A and in

the non-alerted state about retailer B. Consequently, the transportation ost

for retailer A and B will be tA, and tNA, respetively. The marginal onsumers

in this group are loated at

X3
A =

−d+ tNA
tNA + tA

, X̂3 =
tNA

tNA + tA
, X3

B =
d+ tNA
tNA + tA

, (65)

• SAB : Consumers in this group are in alerted state about both retailers. Con-

sequently, the transportation ost for both retailer will be tA. The marginal

onsumers in this group are loated at

X4
A =

−d+ tA
2tA

, X̂4 =
1

2
, X4

B =
d+ tA
2tA

, (66)

The two dimensional nature of the privay sensitive market results in a market seg-

mentation with 12 segments as shown in Figure 24. Due to idential marginal osts,

these are omposed of two symmetri groups of 6 segments eah. Note that for any

i, the segment S ′i is symmetri with respet to the segment Si and therefore it is

su�ient to investigate the segments Si for all i.

Consumers in a spei� segment may move from one group to the other group

within the same segment. However, they will not move from one segment to another.

Consequently, the stohasti game at eah segment is independent of other segments.

Eah retailer aims to maximize its disounted reward over an in�nite horizon at eah

segment. As disussed before, eah retailer may get a higher immediate reward by

distributing a targeted oupon at a spei� group of a segment. However, onsumers

may get alerted about this retailer and swith to the other retailer. Consequently,

retailers' ations at the urrent time will in�uene both their immediate reward and

future reward. This interation between retailers and onsumers in a spei� segment

of the Hotelling line is modeled by a nonzero stohasti game.

We model the stohasti game at segment Si as a tuple (S,AA,AB , P, rA, rB , β),

where S is the set of states suh that α = [αS , αSB , αSA , αSAB ] ∈ S represents the
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(a) If onsumers get alerted about a retailer, then there will be a higher transporta-

tion ost for that retailer.

(b) Market segmentation of a privay-sensitive market. Note that the segment S ′
i

is symmetri to Si

Figure 24: Market Segmentation in a Privay Sensitive Market

distribution of onsumers at segment Si over the four groups identi�ed above. AA

and AB are the set of ations for retailers A, and B, respetively. Eah player may

either send a targeted oupon to onsumers in eah group of the segment or not.

Consequently, AA = AB = {T,UT}, where T denotes sending a targeted oupon and

UT represents not sending a targeted oupon. At time t, if the urrent state is αt, and

player A, and B hoose the ations aA, and aB , respetively, player A and B will reeive

a orresponding immediate reward of rA(αt, aA, aB) and rB(αt, aA, aB). Following

this, the state of the game will transient to αt+1 with probability P (αt+1|αt, aA, aB).

The disount fator of the stohasti game is 0 ≤ β < 1.

Following the model in [23℄, we assume that a single onsumer an be in a state

s ∈ {A,NA} about retailer X. If retailer X takes the ation aX , then the next state

will be s′ with probability Pax(s
′|s). The matrix Pax for eah ation ax ∈ {T,UT} is

de�ned as follows:
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PT =

(
λN 1− λN
0 1

)

, PUT =

(
1 0

1− λA λA

)

, (67)

where the �rst row and olumn orrespond to the non-alerted state, and the seond

row and olumn orrespond to the alerted state. Here, 1 − λN represents the prob-

ability that a non-alerted onsumer gets alerted if s/he reeives a targeted oupon,

and 1−λA represents the probability that an alerted onsumer transients to the non-

alerted state if s/he does not reeive a targeted oupon. Note that if a onsumer is

alerted and s/he reeives a targeted oupon, s/he will remain in the alerted state.

Similarly, if a onsumer in the non-alerted does not reeive targeted oupon from the

retailer, s/he will remain in the non-alerted state. λN and λA represents the privay

sensitivity of the market. For example, a market with no privay onern an be

modeled by λN = 1 and λA = 0, and a full privay sensitive market an be modeled

by λN = 0 and λA = 1. Note that tNA

tA
represents the e�et of getting privay alerted

on purhasing deision of onsumers.

The matrix de�ned by P = PaA⊗PaB , where ⊗ represents the Kroneker produt,

aptures the 4 × 4 transition matrix of our game. If the urrent state of the game

is αt and player A and B take ations aA and aB , respetively, the next state of the

game will be αt+1 whih is derived as follows:

αt+1 = αt(PaA ⊗ PaB ), (68)

The set of stationary poliies of player X is denoted by ΠX suh that a poliy

πX ∈ ΠX identi�es a probability distribution on the ation set of the player at a

spei� state. For example, πX(α) = [πSX(α), π
SB

X (α), πS
A

X (α), πS
AB

X (α)] denotes the

poliy of retailerX, and πsX(α) represent the probability that retailer X will distribute

a targeted oupon to the onsumer in group s when the urrent state of the game is

α. Note that throughout this work, we use πsX(α, T ) and π
s
X(α) interhangeably and

we use πsX(α,UT ) and 1−πsX (α) interhangeably. If player A and B �x their poliies

πA and πB, respetively, the total reward of eah of the players is as follows:

V πA,πB
A =

∞∑

t=0

βtEπA,πB(rA(St, AA,t, AB,t))

V πA,πB
B =

∞∑

t=0

βtEπA,πB(rB(St, AA,t, AB,t))
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De�nition 7.1 The poliies π∗A and π∗B results in an equilibrium if and only if the

following holds:

∀πA ∈ ΠA : V
π∗

A,π
∗

B

A ≥ V
πA,π

∗

B

A

∀πB ∈ ΠB : V
π∗

A,π
∗

B

B ≥ V
π∗

A,πB
B (69)

So far, we have assumed that the state spae of our non-zero sum stohasti game

is ontinuous and represents the distribution of onsumers over the identi�ed four

groups. However, in the following lemma, we prove that the optimal poliy of eah

retailer in both �nite and in�nite horizon games is independent of the onsumers'

distributions. In other word, it is su�ient to restrit the state spae of the game to

four states, suh that eah group denotes a state of our non-zero sum game.

Lemma 7.2 The optimal poliy of retailers in the non-zero sum stohasti game at

eah segment is independent of the onsumers' distribution over four groups and it is

su�ient to onsider S = {S, SB , SA, SAB} as the state spae .

Proof: First, we prove the lemma by indution for the �nite horizon ase. Spei�ally,

we prove that if Lemma holds for the ase where N horizons left, it will also hold for

N +1 horizon. The results hold for all Ns inluding N →∞. For proof's detail, refer

to setion 7.5.1. �.

Lemma 7.2 implies that onsumers move between the four groups and not as

frations in groups. Moreover, it is su�ient to onsider a state spae inluding just

these four groups, i.e. S = {S, SB , SA, SAB}. In the rest of this paper, we maintain

the same notation introdued so far. However, instead of αt, we use the notation st ∈

{S, SB , SA, SAB} whih represents the state. For example, V πA,πB
A,N (SAB) represents

the total disounted reward of retailer A, when N periods are left, retailer A, and B

have poliies πA and πB , respetively, and the initial state of the game is SAB. Refer

to table 3 for a omplete explanation of the notation.

While the equilibrium of a �nite-horizon non-zero sum stohasti game has non-

stationary poliies, the in�nite horizon ompetition has an equilibrium in stationary

poliies spae [99, 100℄. If player A and B �x stationary poliies πA and πB, respe-

tively, the in�nite horizon reward of eah player is as follows:
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V πA,πB
A =

∞∑

t=0

βt
∑

a1∈{T,NT}

∑

a2∈{T,NT}

diag(πA(a1), πB(a2))(Pa1 ⊗ Pa2)rA(a1, a2)

V πA,πB
B =

∞∑

t=0

βt
∑

a1∈{T,NT}

∑

a2∈{T,NT}

diag(πA(a1), πB(a2))(Pa1 ⊗ Pa2)rB(a1, a2),

where diag(x, y) is an n×n diagonal matrix suh that the element on (i, i) is the

produt of the ith element of vetor x and the ith element of vetor y and the rest

of the elements of this matrix will be zero and V πA,πB
X = [V πA,πB

X (S), V πA,πB
X (SB),

V πA,πB
X (SA), V πA,πB

X (SAB)]T . On the other hand, we an also rewrite the disounted

reward using Bellman Equations:

∀s ∈ S : V πA,πB
A (s) = rA(s, πA, πB)

︸ ︷︷ ︸

immediate reward

+β
∑

s′∈S

P (s′|s, πA, πB)r(s
′, πA, πB)

︸ ︷︷ ︸

reward to go

The above equation implies that the total disounted reward of eah �rm ontains

two parts: 1) Immediate reward 2) Reward to go, where both parts depend on the

urrent state and both retailers' poliies.

7.3 Retailers Competition at eah Segment

In this setion, we study the equilibrium of ompetition at eah segment of the

Hotelling line and disuss how privay onstraints e�ets the poliy and disounted re-

ward of eah retailer at eah segment. Segments on Hotelling line of a privay sensitive

market an be ategorized to three: 1) Segments not a�eted by privay onstraints.

2) Segments fully a�eted by privay onstraints. 3) Segments partially a�eted by

privay onstraints. In following setions, we study eah of these ategories:

7.3.1 Segments not A�eted by Privay Constraints

In this setion, we study the oupon targeting ompetition at segments S1 and S5,

where the ompetition is not a�eted by the privay sensitivity of the market. The

primary reason that these segments are not a�eted by privay sensitivity of the mar-

ket is that in these segments, onsumers at all four groups have the same preferene

on retailers.

1. Coupon Targeting Competition in Segment S1: In segment S1, at all four

groups, onsumers have strong preferene on retailer A and they will purhase
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Symbol Meaning Symbol Meaning

Xi
A, X̂

i,Xi
B marginal onsumers at

group i

⊗ kroneker produt

Si segment i [T ]i,j element on ith row and

jth olumn of matrix T

S state spae P transition matrix

AX ation spae for player

X
rX(s, aA, aB) immediate reward of

player X if the urrent

state is s and player A,

and B take ations aA
and aB , respetively

ΠX set of stationary poliies

of player X

β disount fator

αj proportion of onsumers

at group j

πX(s) probability that re-

tailer X sends targeted

oupon to onsumers at

group s

λN probability that a

non-alerted onsumer

remains non-alerted if

s/he reeives a targeted

oupon

πX(s,A) probability of retailer X

taking ation A to on-

sumers at group s

λA probability that an

alerted onsumer stays

alerted if s/he does

not reeive a targeted

oupon

V πA,πB
X (s) reward of retailer X if

retailer A and B have

poliies πA, πB , respe-
tively and the urrent

state is s.

V ∗
X(s) optimal reward of re-

tailer X if the initial

state of game is s

V ∗
X vetor of optimal reward

of retailer X in in�nite

non-zero sum game

Table 3: Table of Notations
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from retailer A in all irumstanes. The onsumers in segment S1 have privay

independent strong preferene for retailer A and even if they notie privay

violation by retailer A (or retailer B), they will still purhase from A. It is

straightforward to hek that in all four groups of segment S1, none of the

retailers is willing to distribute targeted oupon, as, by doing so, they annot

they annot inrease their rewards, i.e., π∗A = [0, 0, 0, 0] and π∗B = [0, 0, 0, 0].

Consequently, the optimal disounted reward of retailer A and B in the in�nite

horizon non-zero sum stohasti game of segment S1 will be as follows:

V ∗
A = [

(P − c)

1− β
,
(P − c)

1− β
,
(P − c)

1− β
,
(P − c)

1− β
] (70)

V ∗
B = [0, 0, 0, 0] (71)

2. Coupon Targeting Competition in Segment S5: Similar to segment S1,

onsumers at all four groups of segment S5 have similar preferene for retailer B.

In other words, onsumers at this segment have privay independent weak

preferene for retailer A, meaning even if they get privay alerted about retailer

A (or retailer B), they purhase from B if they only have targeted oupon from

retailer B. The following theorem derives the optimal poliies and disounted

rewards of retailers at segment S5.

Theorem 7.3 The optimal disounted reward of retailer A and B in the in�nite

horizon non-zero sum stohasti game of segment S5 will be as follows:

V ∗
A = [

(P − c− d− z)

1− β
,
(P − c− d− z)

1− β
,
(P − c− d− z)

1− β
,

(P − c− d− z)

1− β
], V ∗

B = [0, 0, 0, 0] (72)

Moreover, the optimal poliies of retailer A and B will be π∗A = [P−c−d−z
P−c−d , P−c−d−z

P−c−d ,

P−c−d−z
P−c−d , P−c−d−z

P−c−d ] and π∗B = [ d+zP−c ,
d+z
P−c ,

d+z
P−c ,

d+z
P−c ]

Proof: Refer to setion 7.5.2. �.

The result of Theorem 7.3 are intuitive as onsumers' purhasing behavior will

be the same in all states. In other words, in this segment whether onsumers

are privay alerted or non-alerted about either of the retailers, they will have

a weak preferene for retailer A. That being said privay violation by retailers

will not e�et onsumers' purhasing deision in segment S5.
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VA(S), VB(S) Targeting Not Targeting

Targeting P − c− d− z+βVA(S),−z P − c− d− z + βVA(S), 0

Not Target-

ing

βVA(S), P − c− d− z P − c+ βVA(S), 0

Table 4: Bimatrix game for in�nite horizon game in segment S5 at state S. Note that
the bimatrix game at states SB, SA, and SAB will be ompletely similar.

7.3.2 Segments Fully A�eted by Privay Constraints

In this setion, we study the equilibrium of nonzero-sum stohasti games at segments

S2,S4, and S6, where both optimal poliies and disounted rewards of retailers are

a�eted by privay parameters. It is shown that in segments S2, and S4, retailer

B reeives zero disounted reward, however, in segment S6, retailer B has nonzero

reward. In other words, in a privay sensitive market, onsumers who initially had

a weak preferene on the popular (here retailer A) will be driven away to the rival

retailer (here retailer B), if they notie that their privay is violated by the popular

retailer.

1. Coupon Targeting Competition in Segment S2: Segment S2 is the �rst

segment, where privay awareness e�ets popular retailer's pro�t. In this seg-

ment, if onsumers are privay alerted just about retailer A, i.e. if they are at

group SA, they have weak preferene on retailer A. Otherwise, they have strong

preferene about retailer A. It is straightforward to hek that both retailers

are not willing to distribute targeted oupon at groups S, SB , SAB . However,

in group SA, both retailers have mixed strategy. The following presents the

optimal poliies and disounted rewards at this segment.

Theorem 7.4 The optimal poliies of retailer A, and B in segment S2 are as

follows:

π∗A = [0, 0,
P − c− d− z

P − c− d
, 0]

π∗B = [0, 0,
(d+ Z) + β(1− λA)∆

(P − c) + β(1− λA)(1− λN )
1−βλA
1−βλ2

A

∆
, 0] (73)

Moreover, the disounted rewards of retailer A, and retailer B are as follows:

V ∗
A(S) = V ∗

A(S
B) =

P − c

1− β
(74)

V ∗
A(S

A) =
P − c

1− β
−∆, V ∗

A(S
AB) =

P − c

1− β
− βλA(1− λA)∆

V ∗
B(S) = 0, V ∗

B(S
B) = 0, V ∗

B(S
A) = 0, V ∗

B(S
AB) = 0, (75)
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where ∆ = (d+z)

(1−β)+β
(1−λN )λA(1−βλA)

1−βλ2
A

.

Proof: proof of this theorem is similar to the proof of Theorem 7.5. �.

If λA 6= 1, it is straightforward to hek that the stationary distribution at this

segment is unique and all the onsumers will eventually be in group S. This is

intuitive as in group S, none of the retailers is distributing targeted oupons.

Thus, onsumers in this group remain in this group. For λA 6= 1, there is

a nonzero probability of transiting from other groups to group S. Therefore,

group S is the only terminating state in the Markov Chain (MC), while there is

nonzero probabilities of transiting from other groups to group S whih proves

the laim. The interesting result of this laim is that for the ase β → 1,

where the disounted rewards onverges to the average reward, the disounted

reward of retailer A at all group onverges to

P−c
1−β . Consequently, for the ase,

where β → 1, the privay sensitivity of the market does not in�uene any of the

retailers.

2. Coupon Targeting Competition in Segment S4: In segment S4, at groups

S, SA, and SAB, retailer B has an o�ensive strategies and tries to persuade the

onsumers with a weak preferene for retailer A to purhase from him. However,

retailer B will not distribute a targeted oupon to onsumers in group SB , where

onsumers are alerted about this retailer. This is intuitive as onsumers in group

SB will purhase from retailer A in all irumstanes. Thus, retailer B tries to

gain bak the trust of onsumers in this group by not distributing a targeted

oupon to them.

In order to derive the optimal disounted rewards and stationary poliies in this

segment, we solve the �xed point equations. Note that the �xed point equations

are derived by �nding the unique stationary poliies whih solves the bimatrix

games shown in tables 5, 6, 7 ,8.

In the following theorem, we prove that reward of retailer B in in�nite horizon

game at all states will be zero. Moreover, retailer A will have an optimal poliy

of independent of disount fator β.

Theorem 7.5 The optimal poliy of retailer A in segment S4 is independent of

the disount fator β and is as follows:

π∗A = [
P − c− d− z

P − c− d
, 0,

P − c− d− z

P − c− d
,
P − c− d− z

P − c− d
] (76)
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Figure 25: Optimal poliies of retailer A and retailer B in segment S4

Moreover, the disounted rewards of retailer A, and retailer B are given by:

V ∗
A(S) =

β(1 − λN )

(1− β)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)[(1 − βλA)(1 − βλN )− β2(1− λN )2]
(P − c− d− z) (77)

V ∗
A(S

B) =
[(1− βλA)(1− βλN ) + β2(1− λN )(λN − λA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

β(1 − λA)(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c− d− z) (78)

V ∗
A(S

A) =
P − c− d− z

1− β
(79)

V ∗
A(S

AB) =
P − c− d− z

1− β

V ∗
B(S) = 0, V ∗

B(S
B) = 0, V ∗

B(S
A) = 0, V ∗

B(S
AB) = 0 (80)

Proof: In order to derive the optimal poliy of retailer A, and the disounted

reward of B, we use bakward indution. Next, we derive the optimal disounted

reward of retailer A in two steps: First, we prove that the optimal disounted

reward at group SA, and SAB are independent of λA and λN , and we derive

these disounted rewards. Then, we will derive the optimal disounted reward

of retailer A by solving the �xed point equations at group S, and SB . For

proof's detail refer to setion 7.5.3. �.

As a diret result of Theorem 7.5, the optimal poliy of �rm B in segment S4

an be derived, whih is presented in setion 7.5.4.

3. Coupon Targeting Competition in segment S6: Despite the �rst �ve
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V ∗
A(S), V

∗
B(S) Targeting Not Targeting

Targeting P − c − d − z +
β(λ2NV

∗
A(S) + λN (1 −

λN )(V
∗
A(S

B) + V ∗
A(S

A)) +
(1− λN )

2V ∗
A(S

AB)),−z

P−c−d−z+β(λNV
∗
A(S)+

(1− λN )V ∗
A(S

A)), 0

Not Targeting β(λNV
∗
A(S) + (1 −

λN )V
∗
A(S

B)), P − c− d− z
P − c+ βV ∗

A(S), 0

Table 5: Bimatrix Game of Segment S4 in Group S.

V ∗
A(S

B), V ∗
B(S

B) Targeting Not Targeting

Targeting P − c − d − z +
β(λNV

∗
A(S

B) + (1 −
λN )V

∗
A(S

AB)),−z

P − c − d − z +
β(λN (1 − λA)V

∗
A(S) +

λAλNV
∗
A(S

B) + (1 −
λA)(1 − λN )V

∗
A(S

A) +
λA(1− λN )V

∗
A(S

AB)), 0

Not Targeting P − c+ βV ∗
A(S

B),−z P − c+β(λAV
∗
A(S

B)+(1−
λA)V

∗
A(S)), 0

Table 6: Bimatrix Game of Segment S4 in Group SB .

V ∗
A(S

A), V ∗
B(S

A) Targeting Not Targeting

Targeting P − c − d − z +
β(λNV

∗
A(S

A) + (1 −
λN )V

∗
A(S

AB)),−z

P − c− d− z+ βV ∗
A(S

A), 0

Not Targeting β((1− λA)λNV
∗
A(S) + (1−

λA)(1 − λN )V
∗
A(S

B) +
λAλNV

∗
A(S

A) + λA(1 −
λN )V

∗
A(S

AB)), P −c−d−z

P − c+β(λAV
∗
A(S

A)+(1−
λA)V

∗
A(S)), 0

Table 7: Bimatrix Game of Segment S4 in Group SA.

V ∗
A(S

AB), V ∗
B(S

AB)Targeting Not Targeting

Targeting P−c−d−z+βV ∗
A(S

AB),−z P − c − d − z +
β((1 − λA)V

∗
A(S

A) +
λAV

∗
A(S

AB)), 0

Not Targeting β((1 − λA)V
∗
A(S

B) +
λAV

∗
A(S

AB)), P − c− d− z
P −c+β((1−λA)

2V ∗
A(S)+

λA(1 − λA)(V
∗
A(S

B) +
V ∗
A(S

A)) + λ2AV
∗
A(S

AB)), 0

Table 8: Bimatrix Game of Segment S4 in Group SAB.

segments, segment S6 is the only segment in whih retailer B has a nonzero

reward at the equilibrium. The primary reason for this is that if onsumers in

this segment get alerted just about �rm A (Group SA), then they will have a

weak preferene for �rm B. In other words, onsumers in Group SA will purhase

from �rm A only if they have a targeted oupon from �rm A and they do not
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Figure 26: Optimal normalized disounted rewards of retailer A and retailer B in

segment S4

have a targeted oupon from �rm B. Consequently, in this segment, retailer

A has less defensive strategy and is less likely to distribute a targeted oupon

whilst retailer B is more o�ensive to get a higher share of the market as well as

pushing retailer A to distribute targeted oupon.

In order to �nd the equilibrium of the stohasti game in this segment, we need

to solve the �xed point games represented in tables 9, 10, 11, and 12. In the

equilibrium point of the game, eah retailer is indi�erent between sending or

not sending a targeted oupon at eah state (or group). For example in state S,

retailer A is indi�erent between sending or not sending a targeted oupon, i.e.,

its reward when it sends a targeted oupon to onsumers in this group should

be equal to to his reward if it does not send a targeted oupon to onsumers in

this group. Consequently,

π∗B(S)(P − c− d− z + β(λ2NV
∗
A(S) + λN (1− λN )(V

∗
A(S

B) + V ∗
A(S

A)) +

(1− λN )
2V ∗

A(S
AB))) + (1− π∗B(S))(P − c− d− z + β(λNV

∗
A(S) +

(1− λN )V
∗
A(S

A))) = π∗B(S)(β(λNV
∗
A(S) + (1− λN )V

∗
A(S

B)))

+(1− π∗B(S))(P − c+ βV ∗
A(S)) (81)

whih results in the following:

π∗B(S) =
d+ z + β(1− λN )(V

∗
A(S)− V

∗
A(S

A))

P − c+ β(1− λN )2(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))
(82)

Similarly, we an �nd the optimal poliies of retailers A and B, whih are pre-

sented in setion 7.5.5.
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V ∗
A(S), V

∗
B(S) Targeting Not Targeting

Targeting P − c − d − z +
β(λ2NV

∗
A(S) + λN (1 −

λN )(V
∗
A(S

B) + V ∗
A(S

A)) +
(1 − λN )

2V ∗
A(S

AB)),−z +
β(λ2NV

∗
B(S) + λN (1 −

λN )(V
∗
B(S

B) + V ∗
B(S

A)) +
(1− λN )

2V ∗
B(S

AB))

P − c − d − z +
β(λNV

∗
A(S) + (1 −

λN )V
∗
A(S

A)), β(λNV
∗
B(S)+

(1− λN )V
∗
B(S

A))

Not Targeting β(λNV
∗
A(S) + (1 −

λN )V
∗
A(S

B)), P − c −
d − z + β(λNV

∗
B(S) + (1 −

λN )V
∗
B(S

B))

P − c+ βV ∗
A(S), βV

∗
B(S)

Table 9: Bimatrix Game of Segment S6 in Group S

V ∗
A(S

B), V ∗
B(S

B) Targeting Not Targeting

Targeting P − c − d − z +
β(λNV

∗
A(S

B) + (1 −
λN )V

∗
A(S

AB)),−z +
β(λNV

∗
B(S

B) + (1 −
λN )V

∗
B(S

AB))

P − c − d − z +
β(λN (1 − λA)V

∗
A(S) +

λAλNV
∗
A(S

B)+(1−λA)(1−
λN )V

∗
A(S

A) + λA(1 −
λN )V

∗
A(S

AB)), β(λN (1 −
λA)V

∗
B(S) +

λAλNV
∗
B(S

B) + (1 −
λA)(1 − λN )V

∗
B(S

A) +
λA(1− λN )V

∗
B(S

AB))

Not Targeting βV ∗
A(S

B), P − c − d − z +
βV ∗

B(S
B)

P − c+β(λAV
∗
A(S

B)+(1−
λA)V

∗
A(S)),+β(λAV

∗
B(S

B)+
(1− λA)V

∗
B(S))

Table 10: Bimatrix Game of Segment S6 in Group SB

V ∗
A(S

A), V ∗
B(S

A) Targeting Not Targeting

Targeting −z + β(λNV
∗
A(S

A) + (1 −
λN )V

∗
A(S

AB)), P − c− d −
z + β(λNV

∗
B(S

A) + (1 −
λN )V

∗
B(S

AB))

P − c − d − z +
βV ∗

A(S
A), βV ∗

B(S
A)

Not Targeting β((1− λA)λNV
∗
A(S) + (1−

λA)(1 − λN )V
∗
A(S

B) +
λAλNV

∗
A(S

A) + λA(1 −
λN )V

∗
A(S

AB)), P − c− d −
z + β((1 − λA)λNV

∗
B(S) +

(1− λA)(1− λN )V
∗
B(S

B) +
λAλNV

∗
B(S

A) + λA(1 −
λN )V

∗
B(S

AB)

β(λAV
∗
A(S

A) + (1 −
λA)V

∗
A(S)), P − c +

β(λAV
∗
B(S

A) + (1 −
λA)V

∗
B(S))

Table 11: Bimatrix Game of Segment S6 in Group SA.
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V ∗
A(S

AB), V ∗
B(S

AB)Targeting Not Targeting

Targeting P − c − d − z +
βV ∗

A(S
AB),−z+βV ∗

B(S
AB)

P − c − d − z +
β((1 − λA)V

∗
A(S

A) +
λAV

∗
A(S

AB)), β((1 −
λA)V

∗
B(S

A) + λAV
∗
B(S

AB))

Not Targeting β((1 − λA)V
∗
A(S

B) +
λAV

∗
A(S

AB)), P − c − d −
z + β((1 − λA)V

∗
B(S

B) +
λAV

∗
B(S

AB))

P − c + β((1 −
λA)

2V ∗
A(S) + λA(1 −

λA)(V
∗
A(S

B) + V ∗
A(S

A)) +
λ2AV

∗
A(S

AB)), β((1 −
λA)

2V ∗
B(S) + λA(1 −

λA)(V
∗
B(S

B) + V ∗
B(S

A)) +
λ2AV

∗
B(S

AB))

Table 12: Bimatrix Game of Segment S6 in Group SAB .

One may solve for optimal disounted reward and optimal poliies by substi-

tuting equations (82)-(98) in the bimatrix game at eah state and solve the

resulting system of degree 2 polynomial equations using Puiseux series or the

Grobner basis methods [101℄. The alternative hoie is using nonlinear pro-

gramming to solve for the equilibrium of the stohasti game in this segment

[99℄.

In the following Theorem, we prove that the linear approximations of stationary

poliies in the form of π∗A(i) ≈ f i0 + βf i1 presented in Appendix 7.5.6) ahieves

an ǫ-equilibrium for the non-zero sum stohasti game in segment S6.

Theorem 7.6 The linear approximation of optimal stationary poliies of the

retailers forms an ǫ-equilibrium for the non-zero sum stohasti game in segment

S6, where ǫ ≤

4β2(P−c−d−z)max{2λN (1−λN )3,(1−λN )3(1−λA+λN ),λ2
A
(1−λA),2λA(1−λA)3}

1−β

Proof: Refer to setion 7.5.7. �.

7.3.3 Segments Partially A�eted by Privay Constraints

In this setion, we study the equilibrium of the ompetition in segment S3. In this

segment, the optimal poliies of both retailers are independent of the disount fator β,

and the privay sensitivity parameters λA and λN . However, the disounted rewards

of retailer A are a�eted by these parameters.

1. Coupon Targeting Competition in Segment S3: In segment S3, if on-

sumers are in the non-alerted state about retailer B, they have weak preferene
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Figure 27: Stationary distribution of stohasti game at S4 for di�erent λA. Note that
as λA inreases whih means alerted onsumers are less likely to transit to non-alerted

state, all onsumers end up being at group SAB.

for retailer A. Otherwise, they have strong preferene for retailer A. In other

words, in this segment, if onsumers get alerted about retailer B, they will

purhase from retailer A in all irumstanes.

Following the result of theorem 7.1, it is known that in a one-step game (one pe-

riod), retailer B has a reward equal to zero at all the states (groups). Moreover,

at the (Nash) equilibrium of a one-step game, none of the retailers are willing to

distribute a targeted oupon in states SB , and SAB . However, retailer A, and B

distribute targeted oupons over the onsumers at states S, and SA with prob-

ability

P−c−d−z
P−c−d , and

d+z
P−c , respetively. In the following theorem, we prove that

the above results hold for the in�nite horizon stohasti game at segment S3.

We note that the in�nite horizon stohasti game an be solved by �nding the

equilibrium of four bimatrix game for eah state. The bimatrix game for state

S is represented in table 13 and 14. In these tables, eah element inludes two

parts: 1) instantaneous reward and 2) disounted reward to go. For example, if

both retailers distribute targeted oupon over onsumers in group S. Retailer

A reeives an instantaneous reward P − c− d− z and disounted reward to go

β
∑

s∈S P (s|S, T, T )VA(s).
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VA(S) Targeting Not Targeting

Targeting (P − c − d − z) +
β
∑

s∈S P (s|S, T, T )VA(s)
(P − c − d − z) +
β
∑

s∈S P (s|S, T, UT )VA(s)

Not Target-

ing

β
∑

s∈S P (s|S,UT, T )VA(s) (P − c) +
β
∑

s∈S P (s|S,UT,UT )VA(s)

Table 13: Reward of retailer A in the bimatrix game of segment S3 in state S (group

S). The reward inludes two parts: 1)an instantaneous reward 2) a reward to go. For

example, if both retailers distribute a targeted oupon over onsumers in group 1.

Retailer A reeives an instantaneous reward P − c− d− z and a disounted reward to

go β
∑

s∈S P (s|S, T, T )VA(s). Rows, and olumns orresponds to ations of retailer

A, and retailer B, respetively.

VB(S) Targeting Not Targeting

Targeting −z +
β
∑

s∈S P (s|S, T, T )VB(s)
β
∑

s∈S P (s|S, T, UT )VB(s)

Not Target-

ing

(P − c − d − z) +
β
∑

s∈S P (s|S,UT, T )VB(s)
β
∑

s∈S P (s|S,UT,UT )VB(s)

Table 14: Reward of retailer B in the bimatrix game of segment S3 in state S (group

S).

Theorem 7.7 The optimal poliy of eah retailer in the in�nite horizon game

in segment S3 will be as follows:

π∗A = [
P − c− d− z

P − c− d
, 0,

P − c− d− z

P − c− d
, 0]

π∗B = [
d+ z

P − c
, 0,

d+ z

P − c
, 0] (83)

Moreover, the disounted reward of retailer B, in this ase will be zero, ie for

i = 1, · · · , 4 : V ∗
B(i) = 0

Proof: We prove this theorem by indution, i.e., we prove that if the results

hold for the ase of a �nite horizon with N horizons left, it will also hold for the

ase where N + 1 horizons are left. For details of proof refer to setion 7.5.8�.

7.4 Numerial Results

In this setion, we present our numerial result for segments S4 and S6. In our numer-

ial results, we derived optimal poliies and disounted rewards by value evaluation

and poliy iteration method. All the numerial results are derived with parameters:

P = 1, c = 0, d = 0.2, z = 0.1, λN = 1/3, and λA = 2/3. In Figure 25, we present the

optimal poliies of eah retailer in segment S4 as a funtion of β. Figure 25 shows
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Figure 28: Optimal poliies of retailer A and retailer B in segment S6 are shown by

solid lines while the linear approximations are shown by dotted lines.

that the optimal poliy of retailer A is independent of β. The optimal disounted

rewards of retailer A and retailer B in segment S4 are shown in �gure 26, where it

shows that retailer B has reward equal to zero for all values of β. Moreover, we show

that V ∗
A(S

B) ≥ V ∗
A(S) ≥ V ∗

A(S
A) = V ∗

A(S
AB) holds for all the values of β. In �gure

27, we present the stationary distribution of onsumers on four groups of segment S4

as a funtion of λA. As λA → 1, all onsumers go to group SAB . The reason for this

is that as λA inreases, privay alerted onsumers are less likely to transit to a non-

alerted state. Therefore, in the Markov Chain of this game at the equilibrium, state

SAB is the terminating state, whereas there is a nonzero probability to transit from

other groups to SAB . Consequently, at the stationary distribution, all onsumers will

be at SAB, in other words, SAB is an absorbing state.

In �gure 28, we present the optimal poliies for both retailers, shown as solid lines.

This is derived by poliy iteration. The dotted lines represents the linear approxima-

tion of poliies derived by Taylor expansion around β = 0. In �gure 29, we ompare

the performane of optimal and suboptimal poliies in terms of the disounted rewards

of retailers.

In Figure 30, we present the poliies of retailers in segment S6 as funtion of λA.

In group S, retailer A beomes more onservative as λA inreases whih is intuitive as

it knows that if onsumers get alerted about it, retailer A is less likely gain bak their

trust. In group SA, as λA inreases, retailer A's probability of sending a targeted

oupon inreases. The primary reason for this phenomenon is that retailer B is
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Figure 29: Optimal normalized disounted rewards of retailer A and retailer B in

segment S6 (solid lines) and the suboptimal rewards by linear approximations (dotted
lines). As it is seen the di�erene is negligible.

�pushing" retailer A to send a targeted oupon by being more o�ensive.

In Figure 33, the disounted reward of retailers are plotted as a funtion of λN .

As λN inreases, i.e., the degree of privay sensitivity of the market dereases, the

reward of �rm B dereases whih proves the fat that privay sensitivity of the market

is in favor of the rival retailer.

7.5 Proofs

Through proofs of some of the theorems in this setion, we an solve the ompetition

for the �nite horizon ase and then, using these results, we prove the desired results for

the in�nite ase. In this appendix, V ∗
X,N (s) denotes the optimal disounted reward

of player X where N periods are left. πX,N denotes the poliy of player X where

N periods are left (Note that this poliy is a funtion of N and is not neessarily

stationary). V πA,πB
X,N (s) denotes the disounted reward of player X, when the urrent

state of the game is s, N periods are left, and player A and B have poliies πA and

πB, respetively.

7.5.1 Proof of Lemma 7.2

We prove this fat by indution. Let's �rst onsider the �nite horizon problem. Let's

onsider two states α = [αS , αSB , αSA , αSAB ] and α′ = [α′
S , α

′
SB , α

′
SA , α

′
SAB ]. We will

prove that optimal ation probabilities for the retailers in state α are indeed optimal

in state α′
as well. Let's assume that (π∗A(α), π

∗
B(α)), and (π∗A(α

′), π∗B(α
′)) are the
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Figure 30: Poliy of retailers as a funtion of λA ins segment S6. Note that β = 0.9.

optimal pair of ation probabilities for α and α′
, respetively. The terminating reward

of eah of the players at group j will be as follows:

V ∗
A,0(α) =

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA,0(α, a1)π
∗i
B,0(α, a2)rA(i, a1, a2)

V ∗
B,0(α) =

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA,0(α, a1)π
∗i
B,0(α, a2)rB(i, a1, a2)

Let's assume player A hanges his ation probabilities in group S to π∗SA (α′). As

(π∗A(α), π
∗
B(α)) is the optimal ation probabilities for state α, the following holds:

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

αiπ
∗i
A0(α, a1)π

∗i
B0(α, a2)rA(i, a1, a2) ≥

α1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA0(α
′, a1)π

∗s
B0(α, a2)rA(1, a1, a2) +

∑

i∈S−{S}

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA0(α, a1)π
∗i
B0(α, a2)rA(i, a1, a2)

Consequently, we have

α1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α, a1)π
∗S
B0(α, a2)rA(1, a1, a2) ≥

α1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α
′, a1)π

∗S
B0(α, a2)rA(1, a1, a2)
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Figure 31: Disounted rewards of retailers as a funtion of λA ins segment S6. Note
that β = 0.9.

whih results in:

α′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α, a1)π
∗S
B0(α, a2)rA(1, a1, a2) ≥

α′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA0(α
′, a1)π

∗S
B0(α, a2)rA(1, a1, a2) (84)

By applying the same proedures for other groups and player 2, it is straightforward

to show that the following holds:

V
(π∗

A(α),π∗

B(α))
A,0 (α′) ≥ V

(π∗

A(α′),π∗

B(α))
A,0 (α′)

V
(π∗

A
(α),π∗

B
(α))

B,0 (α′) ≥ V
(π∗

A
(α),π∗

B
(α′))

B,0 (α′)

The immediate result of above equations is that (π∗A(α), π
∗
B(α)) derives equilibrium

for the state α′
. Now, let's onsider that for N − 1, the optimal ation probabilities

of retailers are independent of α and have the following strutures:

V ∗
A,N−1(α) = [αS , αSB , αSA , αSAB ]T







f1(π
∗
A(α), π

∗
B(α))

f2(π
∗
A(α), π

∗
B(α))

f3(π
∗
A(α), π

∗
B(α))

f4(π
∗
A(α), π

∗
B(α))







V ∗
B,N−1(α) = [αS , αSB , αSA , αSAB ]T







g1(π
∗
A(α), π

∗
B(α))

g2(π
∗
A(α), π

∗
B(α))

g3(π
∗
A(α), π

∗
B(α))

g4(π
∗
A(α), π

∗
B(α))







(85)
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Figure 32: Poliy of retailers as a funtion of λN ins segment S6. Note that β = 0.9.

Then, by indution, we will prove the same properties holds for the N period problem.

The optimal reward of retailer A if N time steps are remaining will be as follows:

V ∗
A,N (α) =

∑

i∈S

αi
∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗iA0(α, a1)π
∗i
B0(α, a2)(rA(i, a1, a2) +

4∑

k=1

[Pa1 ⊗ Pa2 ]i,kfi(π
∗
A(α), π

∗
B(α))),

where [T ]j,k is the element on the jth row and kth olumn of matrix T.

Let's assume that player A hanges his ation probabilities in group one to π∗1A,N(α
′)

and then, the following will be derived:

α′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA,N−1(α, a1)π
∗S
B,N−1(α, a2)(rA(i, a1, a2) +

4∑

k=1

[Pa1 ⊗ Pa2 ]i,kfi(π
∗
A(α), π

∗
B(α))) ≥ α

′
1

∑

a1∈{T,NT}

∑

a2∈{T,NT}

π∗SA,N−1(α
′, a1)

π∗SB,N−1(α, a2)(rA(i, a1, a2) +
4∑

k=1

[Pa1 ⊗ Pa2 ]i,kfi(π
∗
A(α), π

∗
B(α))),

By applying the same proedure for eah group and player B, It is straightforward to

hek that (π∗A,N (α), π
∗
B,N (α)) is an equilibrium for state α′

. �.
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Figure 33: Disounted rewards of retailers as a funtion of λN ins segment S6. Note
that β = 0.9.

7.5.2 Proof of Theorem 7.3

Let's start with the �nite horizon ase. We laim that for N−period �nite horizon

game, the reward and poliies of retailer A, and B will be as follows:

V ∗
A,N = [(P − c− d− z)

1− βN+1

1− β
), · · · , (P − c− d− z)

1− βN+1

1− β
)]

V ∗
B,N = [0, · · · , 0]

π∗A,N = [
P − c− d− z

P − c− d
, · · · ,

P − c− d− z

P − c− d
]

π∗B,N = [
d+ z

P − c− d− z
, · · · ,

d+ z

P − c− d− z
] (86)

It is straightforward to hek that above ondition holds for the terminating state,

where N = 0. We will prove that if the above poliies are optimal for the ase where

N−1 periods are left, it will also be optimal for N−period horizon ase. The bimatrix

game when N periods are left is the same in all four groups and is shown in table

4. In the equilibrium point, the optimal poliy of retailer A is ahieved when it is

indi�erent between sending and not sending a targeted oupon. Consequently,

π∗B,N (i)(P − c− d− z + β(P − c− d− z)
1− βN

1− β
) + (1− π∗B,N (i))(P − c− d− z

+β(P − c− d− z)
1 − βN

1− β
) = π∗B,N (i)(β(P − c− d− z)

1− βN

1− β
) +

(1− π∗B,N (i))(P − c+ β(P − c− d− z)
1− βN

1− β
) (87)
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VB(S) Targeting Not Targeting

Targeting −z + β × 0 0 + β × 0

Not Target-

ing

P − c− d− z + β × 0 0 + β × 0

Table 15: Bimatrix Game of Segment S4 in Groups S, S
A
, and SAB. (Finite Horizon)

whih results in π∗B,N = d+z
P−c−d−z . Similarly, at the equilibrium point retailer B is

indi�erent between sending and not sending targeted oupon results in the following

equilibrium ondition:

π∗A,N (i)(−z) + (1− π∗A,N(i))(P − c− d− z) = 0 (88)

Thus, the optimal poliy of retailer B is π∗A,N (i) =
P−c−d−z
P−c−d . By substituting π∗A,N (i)

and π∗B,N (i) in the bimatrix game rewards, the desired result for disounted rewards

V ∗
A,N and V ∗

B,N is derived. �.

7.5.3 Proof of Theorem 7.5

First, let's derive the optimal poliy of retailer A, and optimal disounted reward

of retailer B using bakward indution. Considering the �nite horizon game, at the

terminating step, it is straightforward to hek that retailer B has zero reward in

all states. Moreover, at the terminating step, retailer A does not distribute targeted

oupons in state SB and distributes targeted oupons in the other states with proba-

bility

P−c−d−z
P−c−d . Now, if we assume that these onditions hold for the game when N−1

horizons are left, we just need to prove the same onditions hold for the ase where N

horizons are left. The rewards of retailer B in group S, SA, and SAB is shown in table

15. Solving the bimatrix game for N horizon problem results in mix poliy of retailer

A equal to

P−c−d−z
P−c−d for states {S, SA, SAB} whih is derived by neutrality of retailer

B on sending or not sending targeted oupon. The reward of retailer B in group SB is

represented in table 16. In this group, both the retailers are not willing to distribute

targeted oupon as they annot improve their reward by hanging their strategies.

Thus, in group SB of segment S4, none of the retailers distributes targeted oupons.

By substituting the derived poliies of retailers and the fat that at equilibrium of

this game player B will be in di�erent of sending or not sending targeted oupon, we

derive that retailer B has zero reward for N horizon stohasti game. As the results

holds for all N, it also holds for in�nite ase, where N →∞.

Now, let's prove the rest of theorem in two steps:
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V 2
B(S

B) Targeting Not Targeting

Targeting −z + β × 0 0 + β × 0

Not Target-

ing

−z + β × 0 0 + β × 0

Table 16: Bimatrix Game of Segment S4 in Group SB. (Finite Horizon)

1. Optimal disounted reward at group SA and SAB Let's assume that

V ∗
A(S

A) and V ∗
A(S

AB) are independent of λA and λN . Let's onsider the �xed point

equation for group SAB when λN = λA = 1. As in the equilibrium point, the reward

of retailer A at �rst row and seond row of bimatrix game represented in table 8 are

equivalent, the following holds:

V ∗
A(S

AB) = π∗B(S
AB)(P − c− d− z + βV ∗

A(S
AB)) +

(1− π∗B(S
AB))(P − c− d− z + βV ∗

A(S
AB)) (89)

whih results in V ∗
A(S

AB) = P−c−d−z
1−β . Similarly, we an write the �xed point equation

for group SA, and onsidering the fat that at equilibrium point reward of �rst row

and seond row of bimatrix game represented at table 7, the following holds:

V ∗
A(S

A) = π∗B(S
A)(P − c− d− z + βV ∗

A(S
A)) +

(1− π∗B(S
A))(P − c− d− z + βV ∗

A(S
A)) (90)

whih results in V ∗
A(S

A) = P−c−d−z
1−β . Now, we prove our primary assumption that

V ∗
A(S

A) and V ∗
A(S

AB) are independent of λA and λN holds and the derived disounted

reward for group SA and SAB satisfy �xed point equation of both groups for any λA

and λN . The following are �xed point equations for group SA and SAB .

V ∗
A(S

A) = π∗B(S
A)(P − c− d− z + β(λNV

∗
A(S

A) + (1− λN )V
∗
A(S

AB))) +

(1− π∗B(S
A))(P − c− d− z + βV ∗

A(S
A)) (91)

V ∗
A(S

AB) = π∗B(S
AB)(P − c− d− z + βV ∗

A(S
AB)) +

(1− π∗B(S
AB))(P − c− d− z + β(λAV

∗
A(S

AB) + (1− λA)V
∗
A(S

A))) (92)

It is straightforward to hek that the above equations hold if V ∗
A(S

A) = V ∗
A(S

AB) =

P−c−d−z
1−β . Thus, our assumption is veri�ed.

2. Optimal disounted reward at group S and SB Now, let's onsider the

�xed point equation at group SB, where both retailers have pure stationary poliies
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π∗A(S
B) = π∗B(S

B) = 0. Fixed point equation of group SB result in following:

V ∗
A(S

B) = P − c+ β(λAV
∗
A(S

B) + (1− λA)V
∗
A(S)) (93)

Consequently,

V ∗
A(S

B) =
P − c

1− βλA
+
β(1 − λA)

1− βλA
V ∗
A(S) (94)

The �xed point equation of group S is as follows:

V ∗
A(S) = π∗B(S)(β(λNV

∗
A(S) + (1− λN )V

∗
A(S

B))) + (1− π∗B(S))(P − c+ βV ∗
A(S))(95)

By rearranging equation (95) and using equation (94), we will have the following

equation:

π∗B(S) =
(d+ z) + [−β(d+z)(1−λN )−(P−c−d−z)(1−βλA)

β−βλN−1+βλA
+ (1−β)(1−βλA)

β−βλN−1+βλA
V ∗
A(S)]

(P − c) + (1− βλA)
λN (1−β)+β(1−λA)
β(1−λN )−(1−βλA)V

∗
A(S)

(96)

Combining equations (96),(?? ) and V ∗
A(S

A) = V ∗
A(S

AB) = P−c−d−z
1−β , we have the

following:

V ∗
A(S) =

β(1− β)(1 − λN )

(1− β)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)[(1 − βλA)(1 − βλN )− β2(1− λN )2]
(P − c− d− z)

And substituting the above in (94), we have

V ∗
A(S

B) =
(1− β)[(1 − βλA)(1− βλN ) + β2(1− λN )(λN − λA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c)−

β(1 − λA)(1− βλN )[β(1 − λN )− (1− βλA)]

(1− β)(1 − βλA)[(1 − βλA)(1− βλN )− β2(1− λN )2]
(P − c− d− z) (97)

�.
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7.5.4 Optimal Poliies of Firm B in Segment S4

Corollary 7.7.1 The optimal poliy of retailer B in segment S4 will be as follows:

π∗B(S) =
(d+ z) + β2 (1−λN )2

[(1−βλA)(1−βλN )−β2(1−λN )2]
(d+ z)

(P − c) + β (1−λN )2(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

π∗B(S
B) = 0

π∗B(S
A) =

(d+ z) + β2 (1−λA)(1−λN )
[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

(P − c) + β (1−λA)(1−λN )(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

π∗B(S
AB) =

(d+ z) + [β2 (1−λA)2(1−λN )
[(1−βλA)(1−βλN )−β2(1−λN )2]

(P − c) + β (1−λA)2(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)
+

β
(1−λA)λ2

A
(1−βλN ))

[(1−βλA)(1−βλN )−β2(1−λN )2] ](d+ z)

(P − c) + β (1−λA)2(1−βλN )[β(1−λN )−(1−βλA)]
(1−βλA)[(1−βλA)(1−βλN )−β2(1−λN )2]

(d+ z)

Proof: The results of orollary are diret results of Theorem 7.5. �.

7.5.5 Optimal Poliies of Retailers in Segment S6

π∗A(S) =
P − c− d− z + β(1− λN )(V

∗
B(S

B)− V ∗
B(S))

P − c− d+ β(1− λN )2(V ∗
B(S

B)− V ∗
B(S) + V ∗3

B − V
∗
B(S

AB))

π∗B(S
B) =

d+ z + β(1− λN )(1 − λA)(V
∗
A(S)− V

∗
A(S

A))

P − c+ β(1− λN )(1− λA)(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

+
β(1− λN )λA(V

∗
A(S

B)− V ∗
A(S

AB))

P − c+ β(1− λN )(1− λA)(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

π∗A(S
B) =

P − c− d− z + β(1− λA)(V
∗
B(S)− V

∗
B(S

B))

P − c− d+ β(1 − λN )(1− λA)(V ∗
B(S

B)− V ∗
B(S) + V ∗

B(S
A)− V ∗

B(S
AB))

π∗B(S
A) =

P − c− d− z + β(1 − λA)(V
∗
A(S

A)− V ∗
A(S))

P − c− d+ β(1 − λN )(1− λA)(V ∗
A(S

A)− V ∗
A(S) + V ∗

A(S
B)− V ∗

A(S
AB))

π∗A(S
A) =

d+ z + β(1− λN )(1− λA)(V
∗
B(S)− V

∗
B(S

B))

P − c+ β(1 − λN )(1− λA)(V ∗
B(S)− V

∗
B(S

B) + V ∗
B(S

AB)− V ∗
A(S

A))

+
β(1− λN )λA(V

∗
B(S

A)− V ∗
B(S

AB))

P − c+ β(1− λN )(1− λA)(V ∗
B(S)− V

∗
B(S

B) + V ∗
B(S

AB)− V ∗
A(S

A))

π∗B(S
AB) =

d+ z + β(1− λA)
2(V ∗

A(S)− V
∗
A(S

A))

P − c+ β(1 − λA)2(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

+
β(1− λA)λA(V

∗
A(S

B)− V ∗
A(S

AB))

P − c+ β(1− λA)2(V ∗
A(S)− V

∗
A(S

A) + V ∗
A(S

AB)− V ∗
A(S

B))

π∗A(S
AB) =

P − c− d− z + β(1− λA)
2(V ∗

B(S
B)− V ∗

B(S))

P − c− d+ β(1− λA)2(V ∗
B(S

B)− V ∗
B(S) + V ∗

B(S
A)− V ∗

B(S
AB))

+
βλA(1− λA)(V

∗
B(S

AB)− V ∗
B(S

A))

P − c− d+ β(1− λA)2(V ∗
B(S

B)− V ∗
B(S) + V ∗

B(S
A)− V ∗

B(S
AB))
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7.5.6 Linear Approximation of Poliies in S6

fS = fS0 + βfS0 =
P − c− d− z

P − c− d
− β

(P − c− d− z)2(1− λN )
2

(P − c− d)2

gS = gS0 + βgS1 =
d+ z

P − c
+ β

(P − c− d− z)(1 − λN )(P − c− d− z + λN (d+ z))

(P − c)2

fS
B

= fS
B

0 + βfS
B

1 =
P − c− d− z

P − c− d
− β

(P − c− d− z)2(1− λN )(1 − λA)

(P − c− d)2

gS
B

= gS
B

0 + βgS
B

1 =
d+ z

P − c
+ β

(P − c− d− z)2(1− λN )(1 − λA)

(P − c)2

fS
A

= fS
A

0 + βfS
A

1 =
d+ z

P − c
+

β
(P − c− d− z)(1− λN )(λA(P − c− d− z) + (d+ z))

(P − c)2

gS
A

= gS
A

0 + βgS
A

1 =
P − c− d− z

P − c− d
−

β
(P − c− d− z)(1− λA)(z + λN (P − c− d− z))

(P − c− d)2

fS
AB

= fS
AB

0 + βfS
AB

1 =
P − c− d− z

P − c− d
−

β
(P − c− d− z)(1− λA)(P − c− d− z + zλA)

(P − c− d)2

gS
AB

= gS
AB

0 + βgS
AB

1 =
d+ z

P − c
+ β

(P − c− d− z)2(1− λA)
2

(P − c)2
(98)

7.5.7 Proof of Theorem 7.6

Consider the 16-dimensional vetor de�ned as follows:

z = (VA, VB , πA, πB), (99)

where VA = (VA(S), · · · , VA(S
AB)), VB = (VB(S), · · · , VB(S

AB)), πA = (πA(S),

· · · , πA(S
AB)), πB = (πB(S), · · · , πB(S

AB)). Then, the equilibrium of non-zero

sum stohasti game at segment S6 an be found by solving the following nonlinear

programming:

Ψ : min f(z) =
∑

X∈{A,B}

1T (VX − rX(πA, πB)− βP (πA, πB)VX)

subjet to:

∀s ∈ S : RA(s)

(
πB(s)

1− πB(s)

)

+ βT (s, VA)

(
πB(s)

1− πB(s)

)

≤ V s
A12

∀s ∈ S :
(
πA(s) 1− πA(s)

)
RB(s) + β

(
πA(s) 1− πA(s)

)
T (s, VB) ≤ V

s
B1

T

2
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where ∀X ∈ {A,B} : RX(s) = [rX(s, a
A, aB)]aA ,aB and T (s, VX)s are 2× 2 matries

suh that the elements of eah matrix is the same as reward to go of bimatrix games

of tables 9 10 11 12. For example, T (S, VA) will be as follows:

T (S, VA) =
(

(λ2

N
VA(S) + λN (1 − λN )(VA(SB) + VA(SA)) + (1 − λN )2VA(SAB)) (λNVA(S) + (1 − λN )VA(SA))

(λNVA(S) + (1 − λN )VA(SB)) VA(S)

)

The solution of nonlinear optimization problem Ψ is the equilibrium of the non-zero

sum stohasti game of segment S6 [99℄. Moreover, at the optimum solution z∗,

f(z∗) = 0 and all the inequalities in nonlinear optimization problem Ψ hold with

equality.

In order to prove this theorem, we �rst refer to the follwoing result from [99℄.

Corollary 7.7.2 Let ẑ be a feasible solution for problem Ψ, then, the (π̂A, π̂B) of ẑ

forms an ǫ-equilibrium with ǫ ≤ f(ẑ)
1−β

By �xing the poliies by the linear approximations given in equations (98), the

nonlinear optimization problem Ψ will be transformed to the following linear pro-

gramming:

Φ : min
VA,VB

κ(z) =
∑

X∈{A,B}

1T (VX − rX(f, g)− βP (f, g)VX )

subjet to:

∀s ∈ S : RA(s)

(
gs

1− gs

)

+ βT (s, VA)

(
gs

1− gs

)

≤ V s
A12 (100)

∀s ∈ S :
(
f s) 1− f s

)
RB(s) + β

(
f s 1− f s

)
T (s, VB) ≤ V

s
B1

T

2
, (101)

where f = (fS, · · · , fS
AB

) and g = (gS , · · · , gS
AB

)T . This optimization problem

has 16 linear onstraints suh that eah pair involves one olumn or one row of bi-

matrix game at eah state. For example onstraint RA(S)

(
gS

1− gS

)

+βT (S, VA)
(

gS

1− gS

)

≤ VA(S)12 inludes two onstraints orresponding the rows of bimatrix

game at state 1. By substituting RA(S) and T (S, VA), inequalities simplify to the

followings:

FS1 (VA, VB , f, g) = (P − c− d− z) + VA(S)(βλ
2
Ng

1 + βλN (1− g
S)− 1)

+VA(S
B)(βλN (1− λN )g

1) +

VA(S
A)(βλN (1− λN )g

S + β(1− λN (1− g
S))) + VA(S

AB)β(1 − λN )
2 ≤ 0

FS2 (VA, VB , f, g) = (1− gS)(P − c) + VA(S)(βλNg
1 + β(1 − gS)− 1) +

VA(S
B)(β(1 − λN )g

S) ≤ 0
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We not that the objetive funtion of Φ an be written in terms of F ji as follows:

κ(z) = −
∑

i∈S

(f iF i1 + (1− f i)F i2)−
∑

i∈S

(giGi1 + (1− gi)Gi2) (102)

By deriving the dual of linear programming Φ, and onsidering omplementary slak-

ness, one an hek that one of the pairs of inequalities F i1 or F i2 should hold with

equality while the other one will be hold with strit inequality. It an be shown

that there exists a threshold β10 suh that for β < β10, the �rst inequality of state

1 holds with equality and the seond one holds with strit inequality, i.e, FS1 = 0

and FS2 < 0. By multiplying FS1 with λN and subtrating FS1 ∗ λN from FS2 (note

that FS1 ∗ λN = 0 ), and using the fat that VA(S), · · · , VA(S
AB) < P−c−d−z

1−β , we an

bound FS2 × (1− fS) as follows:

−FS2 × (1− fS) < 2β2λN (1− λN )
3(P − c− d− z) (103)

By performing the same proedure for other states and retailer B, and for di�erent

amount of β (note that for β ≥ β10, the seond inequality will hold with equality and

�rst one with strit inequality), one an verify that:

κ(z) <
4β2(P − c− d− z)

1− β

max{2λN (1− λN )
3, (1− λN )

3(1− λA + λN ), λ
2
A(1− λA), 2λA(1− λA)

3}

�.

7.5.8 Proof of Theorem 7.7

We prove this theorem by indution on remaining time steps. The solution to the

game played in the �nal period should be idential to the one step desribed in Setion

7.1, expressed as follows:

π∗A,0 = [
P − c− d− z

P − c− d
, 0,

P − c− d− z

P − c− d
, 0]

π∗B,0 = [
d+ z

P − c
, 0,

d+ z

P − c
, 0] (104)

Moreover, the disounted reward of retailer B is zero in the �nal period. Now, we

prove that if the onditions of the theorem hold for N-1 steps remaining, it should hold

of N steps remain as well. At the equilibrium of the game, retailer A will be indi�erent

between sending or not sending targeted oupon, i.e. the rewards for sending and not
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sending targeted oupon should be equal. Consequently,

π∗B,N (S, T )[(P − c− d− z) + β
∑

s∈S

P (s|S, T, T )V ∗
A,N−1(s)] + (1−

π∗B,N−1(S, T )[(P − c− d− z) + β
∑

s∈S

P (s|S, T, UT )V ∗
A,N−1(s)] = π∗B,N (S, T )[

β
∑

s∈S

P (s|S,UT, T )V ∗
A,N−1(s)](1 − π

∗
B,N−1(S, T )[(P − c) + β

∑

s∈S

P (s|S,UT,UT )V ∗
A,N−1(s)]

We note that V ∗
A,N−1(S) = V ∗

A,N−1(S
A) and V ∗

A,N−1(S
B) = V ∗

A,N−1(S
AB). Similarly,

retailer B will be indi�erent between sending and not sending targeted oupon whih

results in the following

π∗A,N (S, T )(−z) + (1− π∗A,N (S, T ))[(P − c− d− z)] =

π∗A,N (S, T )(0) + (1− π∗A,N(S, T )(0)

Solving equations in (105) and (105) derives the optimal poliies of both retailers:

π∗B,N (S, T ) =
d+ z

P − c
, and, π∗A,N (S, T ) =

P − c− d− z

P − c− d
(105)

It is straightforward to hek that the same poliies holds at state SA, in the equi-

librium point. However, in SB and SAB, the equilibrium results in pure strategy of

not distributing oupons. The proof i s ompleted by verifying that VB,N (s) = 0 by

substituting π∗A,N and π∗B,N in the orresponding bimatrix game. �.

115



8 Conlusion and Future Works

In this dissertation, we investigated privay preserving mehanisms and tradeo�s

between privay and utilities in dynamial systems and networks. We studied three

topis of paket soure anonymity in mix networks, soure-destination anonymity in

Tor like networks, and di�erential privay in stohasti ontrol and routing.

In the �rst topi, we onsidered the problem of optimal routing in mix network.

Our approah used extreme tra� onditions to derive key inferenes about routing

to maximize the delay anonymity tradeo�. Delay is a spei� utility riterion that is

impated by mixing strategies for anonymity. One of the main reasons for using delay

as a utility riterion is that, in ommerial anonymous systems, strategies suh as

mixing are not onsidered primarily due to inreased delay. The analysis presented in

this dissertation is a �rst step to alleviating that onern and providing a mehanism

to inlude shu�ing and bathing strategies whilst maintaining lateny onstraints.

Other utilities suh as Memory utilization, fairness, ongestion are also impated to

a ertain extent, and we believe that the formal approah we presented here an be

expanded to study those relationships as well.

In the seond topi, we presented a relay seletion and ontrol framework to thwart

an omnisient eavesdropper who uses timing analysis to reveal the soure-destination

pairs ommuniating in an anonymous network. The omnisient eavesdropper as

modeled in this work is admittedly a onservative assumption and would likely apply

to powerful organizations suh as nation states. Pratial eavesdroppers would likely

monitor a fration of the links. The performane of our algorithms are guaranteed

against suh an eavesdropper as well but may not be optimal. While the work pro-

posed here fouses on a spei� topologial struture, our analytial approah an be

extended to other topologies as well albeit with higher omputational omplexity. For

instane, in a network with |ME | entry guards, |MM | intermediate nodes, and |MQ|

exit guards, the anonymity alulation will require |ME |(|MM |+|MM |×(|MQ|−1))

variables and summations.

In the third topi of this dissertation, we studied the problem of ontrol poliy

design for Markov Deision Proesses (MDPs) under di�erential privay onstraints.

The key takeaway from the work is the proposed value iteration methodology that

derived optimal inferene resistant poliies for a pair of MDPs. Our approah is easily

extended to more than two hypotheses. The hoie of ǫ is a key design aspet whih

should depend on the pereived length of time the system is likely to be monitored
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by the adversary. Setting epsilon to zero would guarantee perfet privay in that the

observed state dynamis would be idential for both MDPs, albeit at a signi�ant ost

in total rewards obtained. We also studied an appliation of the proposed framework

in routing problems in data olletion networks. The key assumption in the problem

of routing under di�erential onstraints was knowledge of the set D whih is the set

of destinations hosen to provide privay. In a broader ontext, the hoie of the set

alongside the optimization in this work would provide a omprehensive solution to

private routing. An interesting diretion moving forward would be to apply this idea

in the ontext of reinforement learning wherein the agent has to explore and exploit

to maximize his reward with the added aveat that an adversary is unable to identify

the type of MDP.

In the last topi of this dissertation, we studied the e�et of onsumers' privay

awareness in retail ompetition. Spei�ally, we studied the ompetition between two

retailers who sell the same produt with the same prie and marginal ost in a privay

sensitive market. We modeled a privay sensitive market by a Hoteling line where

onsumers swith between alerted and non-alerted states about eah retailer. We

derived optimal poliies of eah retailer at eah segment of Hoteling line by solving

the �xed point equations of non-zero sum stohasti games at eah segment. We

demonstrated that despite prie sensitive market, in a privay sensitive market, the

popular retailer will be more onservative sending targeted oupons to onsumers

with weak preferene for him, as they may notie privay violations by this retailer

and stop purhasing from him. We proved that privay sensitivity of the market is

in the favor of rival retailer, in other words, as the popular retailer is less defensive,

the rival retailer an inrease his pro�t by being more o�ensive.

We propose investigating targeting oupon for asymmetri pries and oupon val-

ues for eah retailer. Moreover, one may onsider a two steps ompetition where in

the �rst step of the game, eah retailer sets his prie an oupon value and in the se-

ond step of the game, there is an in�nite horizon ompetition between the retailers.

Another interesting work will be the one where eah retailer an hange their pries

and oupon value. However, suh a ompetition will be more ompliated as it will

onstantly hange the market segmentation.
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