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2 Abstract

Tradeoffs between privacy and utilities, and privacy preserving control mechanisms
in dynamical systems and networks are studied in this dissertation. Despite security
mechanisms and data encryption, these systems are still vulnerable to timing anal-
ysis, wherein an eavesdropper can use these observations to interpret the identity of
individuals. Motivated by this vulnerability, the first three topics of this dissertation
investigates privacy preserving mechanisms in dynamical systems and network. The
last chapter studies the effect of privacy awareness of consumers on retail competition.

The first topic of this dissertation studies the tradeoff between delay and packet
source anonymity in a network of mixes. The achievable anonymity is characterized
analytically for a general multipath model, and it is shown that under light traffic
conditions, there exists a unique single route strategy which achieves the optimal
delay anonymity tradeoff. A low complexity algorithm is presented that derives the
optimal routes to achieve a desired tradeoff. In the heavy traffic regime, it is shown
that optimal anonymity is achieved for any allocation of rates across the different
routes. Simulations on example networks are presented where it is shown that the
optimal routes derived under light traffic performs quite well in general traffic regime.

Next, an analytical framework is presented to integrate and control the degree of
link padding mechanisms in the functioning of anonymous relays such that a desired
degree of source-destination pair anonymity is achieved from timing analysis without
adding significant latency. In particular, the optimal choices of relays and the degree
of link padding are investigated to characterize the best tradeoff between anonymity
from timing analysis, as measured by Shannon entropy of source destination pairs,
and the average latency. The optimization required for the best tradeoff is shown
to require exponential complexity, and a sub optimal algorithm is presented that is
shown numerically to perform close to the optimal, but only requires linear complexity.
In addition, an incremental optimization is presented for a new user to be added
optimally to an existing system without altering the prevalent routing scheme.

The third part of this dissertation studies the reward optimal decision making in
Markov Decision Processes (MDPs) while protecting against inference of type of MDP.
Against an adversary attempting to classify between two MDPs with identical state-
action spaces but differing reward functions and transition probabilities, a joint policy
design is studied for the pair of MDPs that maximize a weighted sum of infinite horizon

discounted rewards. Specifically, the adversary observes the sequence of states with



the goal of identifying which of the two MDPs are in operation, while the controllers
are designed such that an e-differential privacy is guaranteed for the observed state
transitions. It is demonstrated that a unique optimal weighted discounted reward
exists for a fixed privacy parameter and the weighting factor. A value iteration
method is proposed to determine the optimal reward and obtain the differentially
private policies for the two MDPs. Convergence of the method is proved and the rate
of convergence is characterized. A special application of this framework in routing
where nodes serve as states is also studied in this section. Using differential privacy
as a metric to quantify the privacy of the intended destination in networked data
collections, optimal probabilistic routing schemes are investigated under unicast and
multicast paradigms. It is shown that the optimal private unicast routing can be
implemented in decentralized manner. Under a multicast paradigm, the optimal
solution when overhead is weighted equal to the intended cost, the optimal solution
is shown to be a variant of the Steiner tree problem. In general, it is proved that
multicast private routing is an np-complete problem. Simulations and numerical
results for both private unicast and multicast routing on random graphs are presented.

In the last section, the problem of coupon targeting competition between two
retailers who sell the same product in a privacy sensitive market is considered. In
particular, consumers purchasing decisions are influenced by product prices as well
as prior privacy violations by retailers. A Hoteling line model is utilized to investi-
gate the coupon targeting competition between the retailers. Within this framework,
privacy sensitivity is modeled using a Markov chain, wherein consumers switch back
and forth probabilistically between a privacy alerted state and privacy non-alerted
state depending on whether or not they receive targeted coupons from a retailer. The
competition between these two retailers at each segment of Hoteling line is modeled
by a stochastic nonzero-sum game. In every segment of the Hoteling line, stationary
equilibrium strategies of retailers that provide optimal discounted return over an infi-
nite horizon is derived. It is demonstrated that segments in a privacy sensitive market
are divided to three categories: 1) Segments not affected by privacy constraints. 2)
Segments fully affected by privacy constraints. 3) Segments partially affected by pri-
vacy constraints. It is illustrated that in contrast to a price sensitive market, when
privacy is a factor, consumers with weak brand loyalty can be driven away from the
popular retailer because of a targeted coupon from that retailer. It is also proved
that the popular retailer will be more conservative distributing targeted coupon to

consumers with weak preference for him whilst the rival retailer will be more offensive
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on these consumers.



3 Introduction

Information security in dynamical systems and networks extends beyond the protec-
tion of communicated data; hiding the identities of parties is equally critical. Knowl-
edge of individuals’ identities in a network such as source-destination pairs and routes
of information flow in networks which can be obtained fully or partially through eaves-
dropping in a network not only compromises user privacy, but also provides crucial
information for an adversary to jam a particular flow, deploy black holes or launch
other sophisticated attacks. One of the earliest uses of such analysis occurred in World
War II [1], when the US Army established a Traffic Intelligence group (OP-G-20) on
Corregidor island |2]. These traffic analysts, much before they broke the enemy cipher
code, were able to use transmission timing to identify enemy chain of command and
to a good extent, predict troop movements. Since the advent of the Internet, such
retrieval of “networking information” through traffic analysis, and more specifically
transmission timing analysis, has been a critical concern in the design and analysis
of network protocols [3,4].

In this dissertation, we investigate the protection of the users’ privacy in dynamical
systems, and networks against an adversary who fully or partially observes the state
of the system. We demonstrate that users can achieve privacy, however, they may
receive lower utilities. In other words, we illustrate that privacy is achieved in cost
of experinecing higher latency, achieving lower data rate, or receiving a lower reward
in general framework. We derive the routing and control mechanisms for optimal
tradeoffs between privacy measured by Shannon entropy [5] or differential privacy
[6] and utilities in dynamical systems and networks. Specifically, we consider pri-
vacy preserving methodologies for three applications: 1) Packet source anonymity in
mix networks. 2) Source-destination pair anonymity in networks 3) Markov Decision
Processes (MDPs) under differential privacy constraints. While privacy preserving
mechanisms and tradeoffs between privacy and utilities are well-studied in the liter-
ature, other related topics such as the influence of users’ privacy awareness on other
phenomena including retail competition require more attention. For example, privacy
violations by an online social media or an online retailer can result in users’ distrust
which can drive users away to other social medias or retailers. The experiment by Tsai
[7] is an evidence that consumers’ privacy awareness has increased and consumers pre-
fer to purchase from online retailers who protect their privacy. Motivated by privacy

awareness of consumers, in the last chapter of this dissertation, we study the coupon
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targeting competition of retailers in a privacy sensitive market, where consumers may
get privacy alerted and change their purchasing brands.

The first and the second topic of this dissertation study the routing and control
mechanisms for the optimal tradeoff between latency and packet source anonymity
or source-destination pairs anonymity in networks. The methodology to hide source
identities from timing analysis was first investigated by David Chaum [8]. Chaum
proposed the concept of mixes which are special proxy servers or routers that use
layered encryption, random bit padding and packet shuffling (or batching) to provide
anonymity. The encryption and bit-padding ensure that an eavesdropper monitoring
the transmission links cannot use the contents or sizes of packets to matching an in-
coming packet to the mix with the corresponding outgoing packet from the mix. The
packet shuffling reduces the correlation between the timing of incoming and outgoing
packets. In practice, a network of such mixes are deployed and the packets from
sources are routed through an arbitrary sequence of mixes prior to arriving at the
destination. In popular anonymous systems, many of them deployed on the Internet,
however, shuffling strategies are rarely used and the analysis of transmission times
can still reveal to an adversary the identities of communicating parties and paths of
data flow. In fact, a careful read of the disclaimers in the largest publicly deployed
anonymity network, Tor, reveals an open admittance of vulnerability to timing anal-
ysis (see [9]). The primary reason for this vulnerability is that these systems impose
tight latency constraints on the transmitted packets to satisfy Quality of Service
(QoS) requirements and consequently measures to limit timing based inference such
as mixing are not implemented under latency constraints. In general, modifications to
timing through packet shuffling and link padding increase the latency of transmitted
packets, and consequently, when packets are subjected to strict latency constraints,
the abilities of mixes to shuffle are restrained, thereby reducing the achievable packet
source anonymity or source-destination pair anonymity. Fundamentally, there is a
tradeoff between the achievable anonymity and the allowed delay in data networks.
In recent years, there has been significant progress towards the design of optimal
mixing strategies and link padding mechanisms under such strict delay constraints
[10-15]. These results primarily study the optimal design of packet shuffling and
link padding for a single node. This work expands on that investigation to study
the packet source and source-destination optimal anonymity latency tradeoff achiev-
able in data networks with particular emphasis on the optimal routing through the

network that maximizes a desired tradeoff.
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In the first chapter, we investigate the problem of optimal routing to achieve
tradeoff between packet source anonymity and latency in a network of mixes. Our
approach relies on an information theoretic measure of anonymity, quantified using
Shannon entropy of sources of packets arriving at destinations as observed by an om-
niscient eavesdropper. While the maximum achievable anonymity as a function of
delay is still an open problem, we consider two extreme traffic rate regimes where the
anonymity has been better investigated analytically - heavy traffic regime A\ — oo
and the light traffic regime A — 0 to study the properties of optimal rate allocation
in the multipath system. It is known that, when Shannon entropy is used to quantify
the anonymity, in the heavy traffic regime, the anonymity of the individual mix ap-
proaches the prior entropy of arrival rates as A — oo, and in the light traffic regime,
the anonymity-delay tradeoff is linear and can be expressed using the light traffic
derivative [16]. Using this entropy based metric, we demonstrate: 1) In the heavy
traffic regime, the impact of rate allocation on the anonymity of the multipath system
is negligible, or in other words, optimal routing in the heavy traffic regime can be
designed based solely on traditional QoS considerations such as latency, throughput
and congestion (which expectedly become critical in high rate regimes). 2) In the light
traffic regime, we investigate the anonymity and delay as functions of rate allocation,
topology of the network, and delay constraint of mixes. First, we show that to achieve
the optimal tradeoff between anonymity and delay, single route solutions are optimal
for each source. Based on this investigation, we propose a low complexity algorithm
to determine the optimal route for each source. 3) Although the optimal rate alloca-
tion for medium (non extreme) traffic rates is theoretically an open problem, in our
numerical results, we demonstrate that the light traffic optimal scheme outperforms
other heuristic rate allocation schemes. 4) We also apply our results to a graphical
model of practical anonymous systems (based on an abstraction of the popular Tor
system) and demonstrate that the derived solution displays optimal scaling behavior
as the network size increases.

The second topic of this dissertation studies the optimal relay selection and control
of relay “operational modes” in an anonymous network. We counsider a six relay sub-
system abstraction based on the practical anonymous system Tor. This abstraction,
although not without loss of generality, naturally follows from the present operation
of the Tor network where each user chooses the sequence of three intermediate nodes
based on bandwidth availability and delay-shortest path considerations. Another rea-

son for this abstraction is the fact that not all users in an anonymous network have
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the same preference on delay and anonymity. By considering a subgroup of relays
and optimizing their operation independently, that subgroup can cater to the subset
of users with similar preferences for the levels of anonymity and delay. Considering
six relay abstraction, our key contributions are summarized as follows. Using Shan-
non entropy as the metric for anonymity from timing analysis, we characterize the
maximum possible anonymity as a function of the relay selection and anonymiza-
tion parameters, and provide conditions on bandwidth under which this anonymity
is achievable. When the bandwidth constraints are satisfied, the problem of optimal
relay selection that maximizes a weighted combination of anonymity and delay is
shown to be a computationally hard problem. In other words, we show that solving
the resulting optimization problem requires exponential computation time O(2V),
where N is the number of users. We therefore propose a sub-optimal heuristic based
on Hill Climbing method which has linear complexity O(/N) and demonstrate that
the achieved tradeoff for the proposed algorithm is close to optimal. In addition to
the global optimization, we also present incremental optimization and discuss a de-
centralized scheme. We prove that incremental scheme always achieves the global
optimal when maximum anonymity is desired.

The third section of this dissertation studies the design of control policies under
differential privacy constraints. Markov decision processes (MDPs) are a discrete time
mathematical framework for modeling decision making in dynamic systems. In a clas-
sical MDP, at each time step, the system is in some state s, and the controller decides
on an action a. Given the current state s, and controller’s action a, the controller
receives a reward, and the state of the system transit to the next state according to
a Markovian probability P(s'|s,a), and the controller’s goal is to maximize the total
(discounted) reward over a finite or infinite horizon [17]. MDPs are widely used in
cyber physical systems, finance, robotics, etc. Another important application of MDP
is in reinforcement learning [18|, where an agent interacts with an unknown environ-
ment towards maximizing some objective, and the underlying process is modeled as
an MDP. The main difference between a classical MDP and reinforcement learning is
that the latter does not assume the knowledge of the mathematical model of the MDP.
In many applications of MDPs, the sequence of states (or some function of the states)
are observable to eavesdroppers. For example, in a wireless network, an adversary
can access length of packets [19], timing of packets transmitted [20], routes of packet
flow over a network [21] and suchlike by eavesdropping. Using the observations, an

adversary can infer about the nature of the MDPs, and consequently obtain sensitive

7



information about the hyphenate decision-making. As machine learning algorithms
continually improve the ability to identify personal preferences from seemingly unre-
lated data, it is critical that stochastic decision making processes be investigated from
a privacy perspective which is the focus of this work. Motivated by this, we inves-
tigate the mathematical framework of Markov Decision Processes with the objective
of limiting adversarial inference of a type of MDP. In particular, consider two MDPs
with identical state-action spaces but differing reward and transition dynamics. For
instance, these could represent user actions on a pair of websites. It is well known
that sequence of click times or download sizes can reveal which websites are being
accessed even if data transmitted is encrypted [22|. In this context, if the sequence
of actions or response times were so designed to maximize user experience, then an
eavesdropper can identify the website accessed by performing a hypothesis test on
the observations. However, if the actions were so designed such that the observations
from the pair of websites had near similar dynamics, then privacy of access can be
preserved. In broader terms, for a pair of MDPs, if the policies were jointly designed
such that the observed state dynamics for both MDPs were € close to each other in a
likelihood sense, then any hypothesis test between the MDPs would have very limited
success. It is precisely the joint design of the policies for a pair of generic infinite
horizon MDPs that we consider in this work such that a weighted sum of rewards of
the two MDPs are maximized subject to an e-differential privacy guarantee for the
observed state dynamics. We provide a value iteration method to recursively derive
the optimal rewards and the policies for the two MDPs that are differentially private
at the desired € level. The proposed method is shown to converge and the convergence
rate of this method is proved to be equal to the discount factor. Further, in this sec-
tion, we investigated an application of MDPs under privacy constraints in routing in
networks, where nodes can be considered as states of the MDP. Specifically, the prob-
lem of destination privacy in networked data collection under constraints on routing
overhead is studied, where, we propose an alternative approach wherein additional
destinations are included in the path of transmission to create destination privacy for
source packets. In particular, using differential privacy to quantify the privacy of the
intended destination, we investigate optimal probabilistic routing for single source
destination communication. We propose private routing schemes based on unicast
and multicast routing. We demonstrate that the optimal solution of private unicast
routing when overhead weighting factor is one is equivalent to the solution of the trav-

eling salesman problem. However, for general overhead weighting factor, the optimal
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private unicast routing only allocates positive probabilities on 2 — 2 routes, where
M is total number of destinations. Consequently, optimal routing can be derived by
solving the resulting linear programming. When multicast routing is used to provide
privacy to a single source-destination setup, we prove that the optimal solution is
an np-complete problem. In particular, we demonstrate that the optimal solution of
multicast routing when overhead weighting factor is one is equivalent to a Minimum
Steiner Tree (MST) and for the general case, we prove that each source will allocate
positive probabilities over 2 — 2 spanning trees.

In the final section of this dissertation, we study competitive coupon targeting
between a pair of retailers when price and privacy are factors in the consumer decision
making. We use the privacy sensitivity model as proposed by Sankar et al in [23],
wherein consumers are assumed to exist in one of two states with respect to a retailer
1) Non-alerted state where consumers trust a retailer, and 2) Alerted state, where
consumers are aware and wary by privacy violations by the retailer. Consumers
switch between these states depending on whether they receive targeted coupons
from a retailer. Following the coupon targeting model in a price sensitive market in
[24], we assume that consumers are located on a Hoteling line such that the location
of consumers on the line represents their preference for the retailers. We demonstrate
that a privacy sensitive market is divided into 12 segments. Moreover, we derive
the optimal stationary coupon targeting policies and discounted rewards for both
retailers at each specific segment of the Hoteling line. We prove that consumers with
weak preference for a retailer will change their purchasing brand if they notice their
privacy is violated by the retailer. We also prove that at segments which adopts
mixed strategies, the popular retailer has a less defensive strategy whilst the rival
retailer has a more offensive targeting strategy as the discount factor increases. In
other words, as the importance of future profit gets higher, the popular retailer will
be more conservative about consumers with weak preference for him, because, these
consumers are more likely to change their purchasing brand in the future, if they get
alerted about this retailer. On the other hand, the rival retailer will be more aggressive
to 1) get a higher share of market, 2) push the popular retailer to distribute targeted
coupons. Eventually, we demonstrate that despite the price sensitive market, the
rival retailer will have a non-negative discounted reward on the consumers with weak

preference for the other retailer.



3.1 Related Works

Using Shannon entropy to quantify packet source anonymity, fundamental trade-
offs between delay and packet source anonymity were characterized in [11,16]. The
study of source anonymity in this work treats each packet as an independent entity,
similar to the approaches in [16,25,26]. This applies to systems with short bursts of
transmission such as email, browsing, texting etc. For heavy traffic applications such
as peer-to-peer file sharing, multimedia transmission, the entire stream of packets
needs to be considered together and individual packet shuffling techniques are no
longer sufficient. For a deeper investigation into anonymity for long streams of packets
in networks, refer to the work in [10,27,28]. Optimal single path routing to provide
packet source anonymity has been a subject of analytical investigation in [29-31].
In these and other subsequent improvements, protocols that leverage randomness in
routing to provide anonymity at the cost of higher end-to-end delay were studied.
The analysis in [29-31], however, did not consider anonymity-delay characteristics
of individual mixes or topological influence on anonymity. Since the original design
by Chaum, shuffling strategies for mixes have been designed to optimize the tradeoff
between local anonymity (secrecy of input-output pairing at a mix) and performance
metrics such as delay [32, 33|, memory [34], throughput [35] etc. These shuffling
strategies study the protection of individual packets as opposed to long streams.
Recent signal processing approaches [36,37] have demonstrated fundamental tradeoffs
between delay and privacy in timing side channels as well. Protecting streams require
the transmission of dummy packets, or in other words link padding, so as to make
the outgoing streams from a mix indistinguishable to an external eavesdropper. The
minimum rate of dummy packets required and the corresponding padding mechanism
have been studied under different traffic and node parameters in [12,35]. Several
of these works consider Poisson arrival processes and derive the optimal strategies
and rates. In the second section of this dissertation, we apply the dependent link
padding strategies as derived in [12,35], and use numerical simulations to obtain the
corresponding dummy rates for practical heavy tailed traffic processes.

Theoretical analyses of optimal relay selection and control for anonymity are lim-
ited in the literature. In [35], the authors considered multi hop communication in
adhoc wireless networks under the assumption that routes are fixed apriori and the
key parameters to optimize were the modes of operation. By optimizing the selection

of relay nodes that add the dummy packets, the authors demonstrated the tradeoff
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between the throughput and anonymity in the same system model using rate distor-
tion tradeoff in Information Theory. From a practical standpoint, the relay selection
or routing problem has been investigated to an extent in the Tor network under dif-
ferent adversarial conditions |38] and under different criteria such as bandwidth con-
straints|39,40], low latency|40], and autonomous system awareness|41|, albeit without
taking into consideration timing analysis. The work on Tor systems that is closest to
the second topic of this work is [42], where the authors introduced a new Tor client
named LASTor where they showed that LASTor can reduce latency in comparison
with regular Tor clients by using an appropriate shortest path mechanism. Although,
they investigated the delay anonymity tradeoff by doing simulations and showed the
performance of their proposed LASTor, they did not consider operational control of
relays to investigate the delay anonymity tradeoff.

The literature on privacy in routing is primarily focused on anonymous networks
[8,43], where packet encryption and scheduling are used to provide anonymity. Prob-
abilistic routing has been considered from a game theoretic perspective when an
adversary has limited knowledge but is capable of intercepting routes [44]. To our
best knowledge, there is no work in literature investigating probabilistic unicast and
multicast routing to achieve specific degree of differential privacy. Differential privacy
was introduced as a tool to provide privacy in data from learners and statisticians [6]
and provides a point-wise measure on users privacy (without Bayesian assumptions).
Using differential privacy as a metric to quantify privacy, we propose private unicast
and multicast routing in data networks.

Algorithms for unicast routing for different applications in data networks have
been presented in the literature [45-49|, which are typically variants of shortest path
algorithms with no additional constraints. Adding constraints such as delay increases
the complexity of algorithms; for instance, the problem of unicast routing with cost
constraints is an np-hard problem In [46,47|, authors proposed heuristic distributed
algorithms for unicast routings under constraints on delay and path cost respectively.

Multicast routing is typically implemented by sending packets through a Steiner
tree which spans all the destination nodes. Determining the Minimum Steiner Tree(MST)
which has the minimum aggregated cost over all Steiner trees is known to be an np-
complete problem [50]. There are some near optimal schemes for Minimum Steiner
Tree problem which are run in polynomial time [51-55|. The problem of delay con-
strained multicast routing is well-studied in [55], where the authors demonstrated

that the corresponding problem is np-complete and proposed a heuristic algorithm
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based on the KMB algorithm.

Tradeoffs between privacy and utility in dynamical and control systems are well-
studied in the literature [56—60]. The problem of privacy utility tradeoffs has been
explored in [57,58| using a notion the authors refer to as competitive privacy. In [59],
the authors investigated filtering in a dynamical systems under differential privacy
constraints, where they derived methods developed to approximate a given filter by a
differentially private version, so that the distortion caused by the privacy mechanism
is minimized. An overview of privacy in control and dynamical system is presented in
[60], where two topics of applications of differential privacy in Kalman and general fil-
ters, and application of differential privacy to distributed optimization algorithms are
studied. In [61], the authors proposed a privacy mechanisms such that at each time,
the most accurate approximation of the system’s state which preserves the privacy is
published. In [62], an optimization framework is presented which solves constrained
multi-agent optimization problems while keeping each agent’s state differentially pri-
vate. The authors demonstrated that under mild conditions each agent’s optimization
problem converges in mean-square to its unique solution while each agent’s state is
kept differentially private. MDPs under privacy constraints are also studied in the lit-
erature. In [56], the authors studied the tradeoff between system utility and achievable
privacy in MDPs where privacy is measured by Shannon entropy. In their approach,
they expressed the problem of MDP under privacy constraints as a Partially Observ-
able Markov Decision Process (POMDP) with belief dependent rewards. In [63], the
authors investigated a subset of decentralized MDPs, where the anonymity in inter-
action is specified within the joint reward and transition functions. In [64], privacy is
modeled by beliefs in system’s state, where the authors demonstrated that for MDPs
and POMDPs, privacy verification can be computationally derived by solving a set
of semi-definite programs and sum-of-squares programs, respectively.

Targeted coupon and advertisements in price sensitive market is well studied in
literature [24,65-68|. In [65], targeted advertisement is studied against massive adver-
tisement and it is shown that combination of massive and targeted advertisement can
increases retailers profit and social welfare . In [66], the authors demonstrate that
each retailer can increase its profit by targeting advertisement on consumers with
higher preference for the retailer more than shoppers who may be attracted to the
competition, or have weaker preference for the retailer. The problem of competitive
one-to-one promotions is considered in 67|, where the authors investigate the com-

petition of two retailers in a market where each consumer is individually addressable,
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and retailers know each consumer’s taste. They demonstrated that one-to-one pro-
motion increases price discrimination and decreases the average price in market, and
changes market share between two retailers. In [68], the authors investigated coupon
targeting competition between two retailers under imperfect price information. Re-
tailers can distribute either ordinary coupon, coupon advertising, or both at the same
time. They show that price, promotional effort, and seller’s profit is higher in the
ordinary coupon equilibrium, compared to coupon advertising equilibrium.

One of the first works on economy of privacy was introduced by Varian [69], where
he studied how one may define property rights in private information such that con-
sumers may manage how their private information is shared with retailers. Acqusiti
[70] studies the evolution of the economy analysis of privacy by discussing online and
offline identities of individuals on ecommerce and their privacy concerns and economic
implications. In [71], Acquisiti studies the incentive to participate in an anonymity
system which protects identity and privacy. Tsai |7] studied the effect of online pri-
vacy information on purchasing behavior of consumers. Specifically, they design an
experiment in which privacy policy information was clearly shown before the online
purchase and observed that consumers tend to purchase from online retailers who
better protect their privacy. In [72], the authors investigated the exchange between
two principals who sequentially make contract with an agent, and they prove that
based on some conditions, it is optimal if an upstream principle offers the agent full
privacy. If any of these conditions is violated, then, disclosure of information may
occur. In |73], the authors proved that it is profitable for retailers to offer different
prices to consumers based on their purchasing history. Specifically, they considered a
problem with a single profit maximizing retailer, and a rational consumer with a set of
preferences on the prices offered for the good, as well as on the amount of private in-
formation provided. For example, a consumer could stop sharing private information
using a number of alternatives including deleting the web browser cookie, changing

the payment information (e.g., credit card), or using anonymous paying.
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4 Packet Source Anonymity and Delay Tradeoff in Mix
Networks: Optimal Routing

In this section, we investigate the protection the source identities of packets that
flow through a network towards their intended destination, or in other words, enable
anonymous communication over data networks.

The theme of our work can be understood by the routing problem in a simple
network shown in Figure 1 where two sources S1, .S transmit packets to the common
destination D; through a network of three mixes My, Ma, M3. The mixes have delay
constraints di, do, ds respectively; in other words, mix M; can delay a packet for no
greater than d; seconds. Without loss of generality, we assume dy > d;. Larger
the delay constraint, higher the uncertainty created by the shuffling strategy of an
individual mix. Sources have fixed arrival rates, A1, Ay respectively, and choose to
route a fraction of their packets through mix M; and the remainder through mix Ms.
If both sources transmitted their entire traffic through M; their strategy would be
delay optimal, but the anonymity achieved would be low since M7 has limited delay
to shuffie packets. If, instead they transmitted their packets all through My, the
anonymity achieved would be higher but it would incur higher delay. Consequently,
the right balance between anonymity and delay would depend on the proportions
of each source’s traffic transmitted through the two routes, and the strategies and
delays of the individual mixes. The following questions that naturally arise in this
setup form the basis of this work. 1)Given the topology and delay constraints, does
multipath routing increase the anonymity? 2) If it increases anonymity, then, what
is the optimal allocation of transmission rates on the different routes for each source
destination pair that achieves a desired tradeoff? 3) How does this optimal tradeoff
vary with the topology, traffic characteristics and delay parameters of the system?

Through this section, we study multipath routing to achieve optimal tradeoff
between packet source anonymity and average latency in data networks. In section
4.1, we present the system model. In section 4.2, we investigate the problem of
tradeoff in light traffic. Moreover, we propose a low complexity algorithm to determine
optimal single path route four each user to achieve a certain degree of tradeoff. The
routing problem in high traffic regime is studied in section 4.4. Finally, we present
our simulation results for optimal packet source anonymity and latency tradeoff in

section 4.5.
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4.1 System Model

A mix network is denoted by a 3-tuple N' = (G, D, A), where G = (V, ) is a directed
network graph, V is the set of vertices representing network nodes and & is the set
of edges denoting directed communication links. The set of nodes V is divided into
three mutually exclusive sets: a. S: set of sources. b. M: set of mixes. c¢. D:
set of destinations. D is the set of delay constraints for the elements of set M and
A={A;;,1 <i<|S],1 <j<|D|} is the set of arrival rates for the source-destination
pairs. Each element A;; denotes the total rate from the source S; to the destination
Dj. In order to study the system under high and low limiting traffic conditions, we
parametrize the set A by a scalar A, such that each A;; = AR;;, and R;; is kept
constant as A — 0 or A — co. We describe the participants of the system in more
detail below.

Source: Each source S; transmits packets to each destination D; according to an
independent Poisson process of rate A;;. Given the topology of the network, each
source has a fixed and known set of routes to each destination through the mixes
and our primary goal is to allocate the transmission rates across these routes to
maximize anonymity. The set P(S;, D;) is the set of all the routes from source
S; to the destination D; such that P,gi’j) € P(Si,Dj) is a directed walk on the
graph G denoting the k' route between source S; and destination D;. Specifically,
we denote P,gi’j) = (Si,MP]gi,j),Dj), where MPIEM-) is the sequence of mixes on this
route. We assume that there are no cycles in any route. For example in Figure 1,
pitY = (1. My, R1) € P(1,1), where Mpa. = (My, Ms, Myz, Mis). For every
source-destination pair (S;, D;), we assume each packet is independently randomly
chosen to be transmitted through a specific route in P(S;, D;). Consequently, the
resulting set of point processes from source .S; to destination D; will be independent
stationary Poisson processes with rates {)\Plgi,]’)} respectively. We parametrize each
)\P]gi,j) by scalar A such that )\P]gi,j) = )\rplgi,j), and TPIEi,]') is constant as A — 0 or
A — oo. For the pair (S;, D;), Zpéi,j)ep(m)

We note that the Poisson assumption of arrivals is a limiting one and has been used

Apéi,j) = Ayj

here due to its analytical tractability. Typical Internet traffic is better modeled using
Markov modulated Poisson or Heavy tail distributions. We do expect, albeit without
a formal proof, that the broad inferences from this work such as the optimality of
single path routing in light traffic and the QoS preferential routing in heavy traffic

would hold under other distributions as well.
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A M4 1M
My/dy Ms/d; Dy

M,/d,

Figure 1: Example Network: 57,59 are sources, My, My, M3 are mixes, D; is the
destination. The rate of packet arrivals allocated on a path S;, My, M3, Dy is denoted
(3,1)
as A
k

Mix: Each mix M; observes point processes on each of its incoming links, each process
corresponds to the sequence of packets transmitted by the node originating the link.
The sources, prior to transmitting packets to the mixes, employ layered encryption,

which is described below:

Let a source S transmit a message denoted by X to destination R through
a sequence of mixes My, -+, M. There exists a public private key pair for
every mix and the final destination. Let Ay denote the address of node N,
and let En(X) denote the ciphertext obtained by encrypting message X with
the public key of node N. When source S wishes to transmit a message X to
destination R through a sequence of mixes My, --- , My, it performs multiple

layered encryption and generates the ciphertext:

B, (Amy, Enty (Any, Eaty (- Enty (Ag, Er(X)))) -+ +))

which is transmitted to M;. M; upon receiving uses its private key to decrypt
the outermost message and determines the address of the subsequent node Ay,
and a ciphertext encrypted with the public key Ejs, which is then transmitted
to My. My subsequently decrypts the received message, obtains the address
Apy, of the succeeding node M3 and transmits the Ejz, encrypted ciphertext
to it. This repeated decryption and transmission continues in sequence until
the R-encrypted message Fr(X) reaches the destination node. When such a
layered encryption scheme is utilized, each mix is only aware of the immediate

preceding and succeeding node in the path of a packet.

Consequent to the layered encryption, the packets that depart from the mix are,
from the perspective of an eavesdropper, content-wise not identifiable to a particular
16



Figure 2: Example of System Model

incoming stream. Further, the layered encryption also ensures that the mix is unaware
of the path of each arriving packet except for the immediate preceding and succeeding
nodes. To prevent inference through transmission timing, every arriving packet can be
delayed using a randomized strategy subject to the mix’s maximum delay constraint
d; and transmitted on one of the outgoing streams of the mix based on the route
which the packet belongs to. The mix can also transmit multiple packets in a batch
where the order of packets in this batch is uniformly random. Let the set of all
possible mixing strategies for the network of mixes N be denoted by ¥(N). In
this work, we do not consider the specific design of mixing strategies to maximize
anonymity. For a delay constrained mix, refer to [74] for the design of optimal mixing
strategies. The focus of this work is on optimal routing and rate allocation by sources
to maximize anonymity. For this purpose we consider specific mixing strategies that
exhibit optimality properties under light traffic and heavy traffic conditions.

Eavesdropper: We consider an omniscient eavesdropper (Eve) who observes each
individual point process in the network. Eve knows the topology of the network,
the set of routes available to each source, the rate allocation across these routes
and the strategy of each mix. Specifically, the reordering and batching strategy of
every mix is known to Eve, ezcept for the actual realization of the randomness used
by the mixes, which is responsible for the uncertainty in her inference. Given the
observations, Eve’s goal is to determine the source of each packet arriving at the
destination using her complete knowledge. Such an omniscient model is used to

guarantee the provable degree of anonymity; in practice eavesdroppers, unless they
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own all network resources, will have access to lesser information and the results in

this work are provably guaranteed to be achievable in that scenario.

Anonymity Definition

Each route P,gi’j) € P(i,j)(which is the k™ route between source S; and desti-
nation D;) contains an ordered sequence of mixes M plisd)- We define dP(i,j)
k k

> MEM ) dpr, which denotes the maximum possible end to end delay experienced
P

by a pacllzet traversing this route. Let
dmaz = f%) dpiod)

Any packet can experience a delay of at most dp,q. seconds in the mix network.
Based on this fact, we divide the time horizon into non overlapping cycles. FEach
cycle begins with a packet arriving after an idle period of at least dq, seconds and
ends when there has been no departure for at least d,,q, seconds. From the definition
of dimaz, all packets that arrive in a cycle will necessarily arrive at the destination
before the cycle ends. This division of time into cycles is an analytical construct used
to study the process in stationarity. Due to the strict delay constraints, the arrivals
and departures in each cycle are independent across cycles. Furthermore, since the
incoming processes are memoryless, we can study the expected anonymity achieved
in a cycle instead of the entire time horizon of observation.

The complete observation and knowledge of Eve is denoted by ©. Let N(O)
denote the total number of packets in the cycle. We define the random variables
X1, X9, -+, Xn(o) such that Xy € {1,2,--- , N} denotes the source of the k;, packet
which departs the mix network in that cycle. Conditioned on O, the knowledge of the
mixing strategy results in a posterior joint distribution of X7, Xo,---, Xy (e) from
the Eve’s perspective, over the originating sources of departing packets in the cycle.

Let T%(©) denote the Shannon entropy of this joint posterior distribution of
(X1, Xa,-++, Xn(e)) when 9 is the set of mixing strategies used by mixes, then

we define the anonymity as follows:

Definition 4.1 The anonymity achieved by a mizing strategy v € W(N) is defined

as:

AN = (1)



The anonymity of the network, as expected, is a function of the mixing strategies, the
source arrival rates, mix delay constraints and the rates allocated to multiple paths by
the sources. We use Shannon entropy as our anonymity metric which has been used in
many previous literature as it is tractable and has closed form solutions. The entropy
measured has a physical connotation from the perspective of Eve: when the measure
takes its minimum value (zero), Eve can perfectly determine the sources of packets
at a destination. When the measure takes the maximum value (logarithm of number
of sources), each packet is equally likely to belong to any one of the different sources,
which is equivalent to having no information. In general, a key result in information
theory, Fano’s Inequality [5], proves that an observer’s probability of error in decoding
the sources of packets is lower bounded by the entropy of posterior random variables.
We do note that entropy based measures have a weakness wherein they require a
Bayesian framework and measure the stochastic average across the observations. As
a result they are better used for a priori design of protocols.

In this work, we study anonymity in two traffic regimes, named light traffic and
heavy traffic. In light traffic regime, we use light traffic derivative to investigate the
optimal routing parameters for two reasons: the closed form characterization of the
derivative which makes it amenable to optimization, and the fact that the light traffic
derivative represents the sharpest gain in anonymity per unit traffic and consequently,
the solution performs well at medium traffic rates as well. The light traffic derivative
is defined as follows:

d oy
Ao(M) > lim aAN()\)

In heavy traffic regime, using anonymity definition in equation (1), we derive
the anonymity achieved in a network of mixes as a linear function of anonymities of
individual mixes.

For a single mix, the following result which was proved in Theorem 4 of [11]

Characterizes the anonymity in the two extreme rate regime.

Theorem 4.1 For a single miz (M) with delay constraint d, serving two unequal
rate sources, and a single destination, the light traffic derivative and the anonymity

i high traffic are as follows:

. d 27“1’1"2

lim —AY (\) = d 2
A0 dAAMl( ) r1+ 7o @)
lim AV, (\) = h(—2L 3
A A ) =R ¥
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where h(p) is entropy of a Bernoulli random variable with parameter p and A\ =
riA and Ao = ro\ are rates of sources S1 and Sy, respectively. As can be seen from
the theorem, the optimal anonymity increases linearly with delay under light traffic,
and approaches the mazimum possible (prior entropy) in high traffic conditions. In
this work we apply this single miz result in a network and derive the optimal routing
parameters that mazimize a weighted sum of network anonymity and average delay,

which 1s described more formally below.

Delay: In our model, the average delay of network N as a linear function of routing

parameters and each mix delay constraints is defined as follows:

D= % > Apen dpun (4)
WY pl?) ep(u,0)
where \p = Z” Ayj.

Delay Anonymity Tradeoff: The primary challenge of this work is investigating
the tradeoff between anonymity and delay. We model the preference of the network
on delay and anonymity by the parameter 0 < a < 1 such that the objective is to
maximize the weighted sum of delay and anonymity aA — (1 — a)D. As discussed
in the example in Section 4.1, a longer path is likely to increase anonymity at higher
delay whereas a shorter path can limit the delay with lower achieved anonymity. In
the forthcoming sections, we study the optimal routing parameters that maximize
this objective under the two extreme traffic conditions described earlier.

Using this model, in the subsequent section we will study the optimal multipath
routing problem for two extreme traffic regimes. We demonstrate that in the light
traffic regime, as A\ — 0, the maximization requires every source to transmit solely
on a single path to each destination and we, consequently, provide a low complexity
algorithm to determine the optimal path. We also prove that under heavy traffic
conditions, where A\ — 0o, that maximum possible anonymity is achievable regardless
of the routing parameters which means the network may choose the routing strategy
based on minimizing delay alone. The analysis of each of these traffic regimes requires
a corresponding characterization of anonymity in the network as a function of the
topology, routing parameters and the mix delays, which forms the analytical basis for

the optimization.
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4.2 Optimal Routing in Light Traffic

In this section we consider the general network with N sources and M destinations
such that the arrival rates for all source destination pairs are equal. The equality
assumption is used merely to ease presentation. The results are imminently extend-
able to unequal rate models. More importantly, the key inferences derived continue
to hold for the general model. Our approach is based on a specific mixing strategy
proposed in [16,75]. The strategy was shown to be optimal in the light traffic regimes
for individual mixes and linear cascade networks. According to this strategy (v),
each mix M; waits for an arrival after an idle period of at least d,,q; seconds. All
the packets which arrive in d; seconds following this arrival will be transmitted in
a single batch at the end of d; seconds. During the (I; — d;) seconds following this
batch transmission (I; is the supremum of the sum of the delays in the route which
include mix M; and start from this mix), all the packets arrived to this mix will be
transmitted without any delay. Upon completion of the [; seconds, the mix resets and
wait for a new arrival to restart this process.

This strategy, as shown in [16], obtains the optimal light traffic derivative in (2)
for a single mix and linear cascade mix networks. In the following we study the
derivative achieved by the strategy in a mix network as a function of the topology

and multipath routing parameters.

4.2.1 Anonymity of a Mix Network in Light Traffic

In this section, we will see that the anonymity is a nonconvex function of the multi-

path routing parameters A The non convexity of the anonymity function would

typically imply that we might need to apply approximation methods to efficiently
compute the optimal parameters. However, as will be seen in the proof of Theorem

4.4, the quadratic form we derive for the optimal anonymity results in a unique opti-

mal path for each source destination pair.

Prior to going through the anonymity of a general network, we present a simple
example to develop the idea of anonymity in light traffic. Consider a network with

two sources, two destinations and a single intermediate mix M;. We assume a cycle

with only two packets, wherein the first packet belongs to the route Pl(l’l) and the

)

second one belongs to the route P1(2’2 . If these two packets depart from mix M; in

P(272)

a batch, then Eve will be confused between two pair of routes: 1) Pl(l’l) and P
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Figure 3: Mix Network in Lemma 4.2

2) P1(1’2) and P1(2’1). Thus, the anonymity achieved in this two packet cycle will be

equal to:
>\P1(1,1) >\P1(2,2)
T = b 2k, APL (L) 2k ,j APy (2,9) ) (5)
- AL AL(2:2) AL,2) Aen
P P P P

) IWPVATIED FWPYNEETSLED SNPRNTITS DINPP VoEw
where h(p) is the Shannon entropy of Bernoulli random variable with parameter p.
If the destinations of these two packets are identical, then the achievable entropy will
be h(0.5) = 1. If the packets do not leave in a batch, then Eve can perfectly identify
the source-destination pairs, thus achieving zero uncertainty.

Let’s consider the following events in a general network defined with respect to
the cycle initiated by a packet arriving at time 0 after a duration with no arrivals of
length at least dp,q, seconds:

E? : There are exactly two packets in the cycle.

o

A

and the other from Pl(u’v) € P(u,v)and the first packet initiates the cycle.

i) plue) : There are two packets in the cycle one from route P,gi’j) € P(i,j)

EZ/’ :is an indicator random variable defined for the specific two-packet cycle as:

1 if the two packets depart the ¥ mix common
to both routers in a batch when the mixes
use strategy i
0 otherwise

Now, we define the variable Y (i, 7, k, u,v,1) = E{le|E;£i,j),Pl(u,v)aE2} which is Eve’s
expected uncertainty in the case where there are two packets in the cycle; one packet

on route P,E,i’j ) and the other on route Pu(v’l), and the packet on route P,E,i’j )

B =

initiates
the cycle.
When both packets in a two packet cycle arrive from the same source, the cycle
has zero entropy, since the source of each packet is perfectly identifiable while the
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case where these two packets belongs to two different sources the achievable entropy
should be calculated based on the posterior probabilities as follows:
A two packet cycle defined by an event E“ , ., corresponds to a sub-network
P P
as shown in Figure 3 where there are two sources and two destinations and a set of
intermediate mixes. We use M' = (M7, M}, ..., M) to denote the ordered sequence
of mixes where the two paths intersect. The walks Y7, -+, Yo41 and Z1, -, Zot1

201 possible

are each mutually exclusive sequences of mixes. There are therefore
routes from source S; to destination D; through the mixes ((Y; or Zy), My, (Y2 or
Z3)y ey ML (Yos1 or Zay1)). The following Lemma computes the average uncer-

tainty achieved in such two packet cycles.

Lemma 4.2 For a fized routing parameters, the Eve’s expected uncertainty in the
network in Figure 3, where there are two packets in the cycle one from source S;
to destination D; through the route Péi’j) and the second packet from source S, to

destination D, through the route Pl(u’v) respectively is given by:

Y (i, j, kyu, v, 1) = E{I"ME;IEM)’PZ(UN),E2} =
Z(b1,~~~,ba);&1£0,~~,0) h(0.5)P{E}" = b
o By = ba\E;SJ)’PL(M),E2} if j=v
Z(bl,---,ba);é(o,...,O) h(cl_i;i%)P{Eim =b 7
| st ,E}xm = ba|EaPIEi,j)’Pl(u,v)7E2} if J#v

where ¢y is the posterior probability that the packets from sources S; and S, arrive at
destinations D; and D, respectively from Eve point of view given all the observations

and knowledge of Eve.

Proof: Refer to |76] 0.

Lemma 4.2 computes the achieved uncertainty for specific two packet cycles in
the sub-network of Figure 3 as a function of routing parameters and the routes of the
two packets. The expression in the lemma, although complicated, can be explained
using a simple idea. If the two packets in a cycle leave any mix in a batch, then
non-zero entropy is generated; this non-zero entropy is given by the h(-) term. This
entropy term depends on the posterior probability of a given realization of the source
destination pairing (S;, D;), (Su, D,) given that the two packets departed in a batch
from a particular mix. The actual computation of this probability depends on the
exact realization of the routing parameters (a generalization of the expression in (5)
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). However, as will be seen in the forthcoming analysis, this computation will be
unnecessary since the optimal rate allocation results in single paths for the source
destination pairs in which case, the posterior probability of a particular pairing is %

In a general network, by identifying the set of mixes where packets are batched
and the corresponding probabilities, the overall anonymity can be characterized, as

in the following Theorem.

Theorem 4.3 The light traffic derivative of Anonymity of a general miz network
N = (G, D, ) is lower bounded by:
)\P]gi,j) )\Pl(u,v)

A0(-/\/') 2 Sdmax
7:7j7k7u7é7:71)7l

Y (i, 5,k u,v,l), 6
T (i kv, ) ()
where A\p = Z” Aij =N\, s= )‘TT = |S| = N, and Y(i, 7, k,u,v,l) is Eve’s expected
uncertainty in the event where there are two packets in the cycle; one packet on route
P,E,i’j) and the other on route quv’l).

Proof: For any strategy w, the anonymity is defined as follows:

_E(TU(O) _ S BN = PN =)
A= E(xey ~ T mve) | o

where © is the total available information for Eve in the cycle begins from ¢t = 0.
For the light traffic derivative, it is easily seen that the cycles where N > 2 do not
contribute to the light traffic derivative (as A\ — 0), only linear terms will have non
zero contributions, and cycles with N > 2 necessarily contain O(\?) factors by virtue
of the Poisson process. Therefore, Ag(M) can be written as:

d E{T¥'|N(©) = 2}P{N(©) = 2}
A0 dA E{N(©)}

In order to find E{T%|N(©) = 2}, we need to average Eve’s uncertainty on all the
possible pairs of routes P,gi’j ) and Pl(u’v). We can express E?{T'Y!|E?} as follows:

P=E{I[E*} = Y P{Elu unlE)
i,k utivl o

Y| pa 2

E{T |Epéi,j)7pl(u,v>aE }

E{T¥: |E;(iyj) P(u,v)’EQ} is computed in Lemma 4.2, and
k L
A (i) A p (o)
P, »J P\
]P Ea %,7 u,v E2 = —— L
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Using the properties of Poisson processes, we can write

]P){E2} — (1 o e_Sdmaz)e_Sdmaz
B(N(0)) = o*ine

consequently,

= sdyaxl (8)

0.

Theorem 3.2 provides the complete analytical characterization of the achievable

light traffic anonymity as a function of the topology, routing parameters and the

individual delay constraints of the mixes in the network. This anonymity is computed

assuming that every mix uses the light traffic optimal strategy proposed in [16], and
Eve is aware of the topology and the strategy of the mixes.

In the following Theorem, we show that the optimal routing parameters that

maximizes the anonymity in Theorem 4.3 correspond to single path optimal solutions.

Theorem 4.4 The solutions A;(i*j) which maximizes the total light traffic anonymaty

k
of any mix network that uses strateqy 1; must necessarily be of the form:
Ky 1
Proof: There are three basic steps to proving the result of the theorem which are

described as follows:

1. We compute an upper bound on the light traffic derivative using standard
bounds on the binary entropy function. Lemma 4.5 demonstrates a property
of the quadratic light traffic derivative form that enables the derivation of the

upperbound and the resulting optimization.

2. We prove that the rate allocation parameters that optimize the upper bound

have the single-path form stated in (9). This is shown in Lemma 4.6.

3. We then show that the optimal value for the upperbound is indeed an achievable

light traffic derivative, thus proving the result of the Theorem.
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1. Upper bound on light traffic derivative Note that the form of the light
traffic derivative expression involves a quadratic functional of the routing parameters
scaled by the probability of a particular event (that the two packets in the cycle depart
in a batch at least once) in the corresponding two packet cycle. Before expressing
the optimization problem and its solution, it is important to prove that for each
pair of routes the event probability P{Ef” = by, EY = ba‘E;;Ei’j)7Pz(u’v)’E2} is
independent of rate allocation parameters A P]Ei.j)s in light traffic. This is shown in the

following lemma.

Lemma 4.5 For any pair of routes P,gi’j) € P(i,j) and Pl(u’v) € P(u,v), P{E;ﬁl =
blv o )Eéé/}l = ba|E?D(

k
a function of the topology G and the delay constraints D, as A — 0.

i) P(u’v),EQ} 1s independent of rate allocation Aplgi,]-)s and is only
4

Proof: Refer to |76]. 0.
It is evident from Theorem 4.3 that the anonymity is a nonconvex function of
allocated rates. The general optimization problem we wish to study can be stated as

follows.

®: max A=
{)‘Plgi,j)}
ALGid) A puw)
Sdmar % 1}\ T(i’jakauav’l)
ighkutiol T T

subject to:Vie {1,--- ,N},je{1,--- ,M}:

A
ZAPIEM) = M’)\P,Ei’j) >0 (10)
k

Let gijk,uv denote the probability that the two packets in the cycle depart in a batch

from at least one common mix in the pair of routes P]f’j ) and Pl(u’v):

Gijhuot 2 > P{E{"=bi, - EY =0,
(blv"' 7b0t)7é(07 70)

E E*} (11)

a ..
P]gl,])7pl(u,v))
In order to solve this problem, we first compute an upper bound on A, which uses

the fact that the entropy terms 0 < h(i) <1 and h(0.5) = 1, and the fact that

uv uj
Cij TCiy

the probability ¢;;r uw is bounded as

0< ijk uvl < ]-7
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Consequently,

A LG A puw)
Pk ! Pl
At A7

A = sdpmax
Z"j7k7u¢i7v7l

Y (3,7, k,u,v,l)

A L(id) A plu)
Pk ! Pl
At AT

< sdmax
i7j7k7u7£7:7v7l

Qijk,uvl = Q (12)

2. Optimizing the Upper bound

Lemma 4.6 The solutions X];(i,j) to the optimization problem
k

Apisd) Ap(uv)
— Yijk,uvl
A A 17k, uv

U: max Q = sdymaz Z

{’\plgivj) } i,k ui, v,
subject to:Vie {1,--- ,N},je{l,--- ,M}:

A
zk:)\Péi,ﬁ = M,Aplgi,j) >0

must necessarily be of the form:

A

Vi,jak‘ij s.t. )\*PIEZ;]) = M, ;L(i’j) = O,Z ?é k‘ij

Proof: Due to Lemma 4.5, we know that g;;x w1 is independent of )\P(m). In the
k
Hessian matrix of the function Q, we can see that all the elements on the diagonal of

the Hessian matrix are zero as Vi, jandk af% = (. This fact shows that the sum
p(0:9)
k
of the eigenvalues of this matrix should be zero. Consequently, all of them cannot
be either positive or negative and this shows that the subspace where the gradient is
zero, we will just have saddle points which cannot be the optimal solution and the
maximum should exist in the boundary of the domain of rate allocation parameters.

If, for any 4,7, we choose set the A ;s to be binary (defining a boundary), our

(4,5
resulting domain would correspond tif a subspace of functions which can be viewed
as a boundary for the function Q. With each subspace, if we set each )\P]gi,j) equal
to zero individually again all the elements on the diagonal of the new Hessian matrix
will be zero which shows that all the eigenvalues of the new Hessian matrix cannot
have the same sign and the subspace where the gradient of new functions are zero
cannot be optimal as it acts as a saddle point. We therefore ought to consider the new
function’s boundaries. Due to the quadratic nature of the anonymity function, this
procedure when repeated is going to yield an identical conclusion and consequently,
the only possible optimum points are the true vertices of the rate space where for each
27



s is nonzero and

i €{51,95,....,S5v} and each j € {D1, Do, ..., Dy} only one the Ap i)
k

equal to % U

3. Equality of the optimal solution for the light traffic derivative and the
upper bound Without loss of generality, for each source-destination pair (S;, Dj),
let the k;;th route, denoted by P,SJJ ), be the optimal route. Let the vector A\, =
(\* o P X Myt ’)\*P(N’l)’ )‘*P(N,M)) be the optimal solution of

(
Pri 1M B by

1 2M 1 kN M
problem ¥ and Q* be this optimal value. We know that

1,1) A* (1,M) s A* (2,1) A

max A< max Q=Q" (13)

A (i S A (i8S
P}gw) p]gm)

As the optimal solution of ¥ yields single routes for a pair of packets one belonging

to source destination pair (S;, D;) and the other belonging to (S, D) h(c o) =

h(0.5) = 1 as long as the two packets depart in a batch from at least one of the common

S
P9
mixes. Consequently, using Lemma 4.2 and Theorem 4.3, A(Aopt) = 22, ;120 ;—Z

N T
A (uw)

’/{;’J Gijk,uvt Which is equal to Q*. Therefore, A,y is also the optimal solution of ®

and A* = Q*, which completes the proof of the theorem. .

The proof of the theorem exposes an interesting artifact of the system: it does not
matter how many mixes end up batching the packets in a cycle; as long as the packets
are batched at least once, then maximum uncertainty can be achieved in light traffic
cycles. Consequently, the single path solution is sufficient to maximize the overall
anonymity. In the following section, we prove that the single path optimality extends
to maximizing the weighted sum of delay and anonymity as well, and subsequently
propose an algorithm to determine the optimal routes that achieve a desired tradeoff

between anonymity and delay.

4.2.2 Delay Anonymity Tradeoff in Light Traffic

As mentioned in Section 4.1, the average end to end delay of network is a linear

function of routing parameters A plav) expressed as follows:
D= Ao
T\ Z Z plo@plov)
u,v Pi(u,'u)e,P(uJ))

We model the network preference on anonymity and delay by the parameter 0 < o <

1. To express the delay anonymity tradeoff, we present the following optimization
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problem for a fixed «:

Q: max aAd—-(1—-a)D

At
k
subject to:Vie {1,--- ,N},je{1,--- ,M}:
A
ZAP,EM) = _’)\P]gi’j) >0 (14)
k

Corollary 4.6.1 The optimal solution for problem £ must necessarily be of the form:

(g
Pl”

Vi, j3k;; s.t. )\’]‘Dégj) #0,X 0 = 0,1 # ki (15)
ij
Proof:: As the average delay function is a linear function of rate allocation parame-
ters, the above corollary naturally follows from the result of Theorem 4.4. L.

The above corollary extends the optimality of single path routing solutions to
maximizing the weighted sum of anonymity and delay as well. We do note that this
is a consequence of average delay being a linear functional of the parameters. It is
conceivable that should another QoS criterion such as congestion be considered which
is better influenced by multipath routing, then this optimality may not extend to those
problems. In such scenarios, the result of Theorem 3.2 should be used in conjunction
with the corresponding QoS metric to determine the optimal routing parameters.

Following Corollary 4.6.1, we propose a low complexity algorithm to determine
the complete delay-anonymity tradeoff for any network of mixes.We know that for
any weighting factor 0 < o < 1, the optimal routing yields single path route for
each source destination pair. Let’s consider the set of all such single path routing
strategies Q = {(A1,D1), -+, (Ajgs Djg|)}- |Q| is the total number of such strategies.
Each pair (A, D,) corresponds to a single path routing strategy, where for each
i€41,2,...N} and j € {1,2,--- , M}, just one of the )\’I“D(i,j) is nonzero. Without
loss of generality we assume that these pairs are ordered such that their delays are
increasing, so D; is the minimum achievable end-to-end delay.

First, any pair (A;, D;) such that Ju < i : A; < A, is removed from the set Q,as
aA; — (1 — a)D; < aA, — (1 — a)D, for any weighting factor 0 < o < 1. Each
remaining pair (A;, D;) corresponds to a line segment (A; + D;)a — D; as a function
of a. Starting from ag = 0, the pure delay optimal solution corresponds to the pair
(A1, D1) represents the optimal routing. This pair is recorded as (AO—opt,EO—opt)-
Then, algorithm finds the pair which intersect this line for smaller a compared to the
other pairs and records this « as «aq, and this pair as (Al_opt,ﬁl_opt). Then, at each
step, algorithm continues to find the next line segment which intersects the current
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Algorithm 1 Algorithm to find the optimal routing for each «
Lu<+1

2: while u < |Q|
33 p=argmin{j >u:A; > A}
4 Q=Q/NAut, - Aj1}
5: U< p
6: 1< 0
7w+ 1
8: (-Aopt—ia Dopt—i) <~ (-’417 Dl)
9: while u < |Q)|
10: p= argminj>u{ﬁ}
1+ Dj—Du
. R S
11: Qi1 n gi:gz

12: 14— 1+ 1
130 (Aopt—is Dopt—i) < (Ap, Dp)
14: U<—p

optimal segment for smaller « till it reaches @ > 1. At any step of algorithm, the

pair (A;_opt, Di—opt) is recorded to be the optimal pair for the interval o, a;+1]. The

following theorem demonstrates the optimality of Algorithm 1.
Theorem 4.7 Algorithm 1 derives the optimal routing for any weighting factor o.

Proof:: Let’s assume for a weighting factor a; < o < 41, there is a pair (.At,ﬁt)
such that ad; — (1 — a)Dy > aAopr—i — (1 — a)ﬁopt_i, then (A, Dy) should satisfy
the following inequalities:

1

1 Aoptf('H»l)_Aoptfi
Dopt—(i+1)_Dopt—i

> a >

1 1 16
1 + At_Aoptfi - 1 + Aoptfi_Aoptf(ifl) ( )
Dt_Doptfi Dopt—i_Dopt—(i—l)
which contradicts with the definition of (Aopt_(iﬂ),ﬁopt_(i“)) 0.

It is noted that the optimal routing were derived assuming a specific mixing strat-
egy described in [16]; the light traffic derivative for the strategy is known to be optimal
for individual mixes and for a class of mix networks, referred to as mix cascades [16].
We therefore consider a general class of networks that are modeled after practical
anonymous systems, and demonstrate that this lower bound has optimal scaling be-
havior with the size of the network. In practical anonymous systems, such as Tor [9]
the network of intermediate nodes are divided into two groups, entry (or exit) nodes
and transit nodes; each source (or destination) communicates with a single entry (or
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Figure 4: Complete graph mix network. The blue lines shows the worst connectivity
between sources and mixes and destinations and mixes which achieves the lower-
bound. The black lines shows one of the best possible connectivity which achieves
the upperbound

exit) node, and the transit nodes typically form a complete graph. In the following,
we use the previous results to derive the optimal scaling behavior of the light traffic

anonymity for such networks.

4.3 Scaling Behavior of Complete Graphs

In this section, we consider a network modeled by a complete graph with K mix
nodes, N source nodes, and T destination nodes. The set of mixes contain N entry
mix nodes and T exit mix nodes such that all sources transmit only to entry nodes
and destinations are directly accessible only from exit nodes. The K mixes nodes,
however, form a complete graph. Each mix has an identical delay constraint d.

In the following theorem, we apply the results of the previous section to prove
that the optimal anonymity for such complete mix networks scale as O(NK). We
show that for both upper bound and lower bound the mix network, the light traffic
anonymity scales identically to a single mix with a delay constraint d,q;, which can

simulate any strategy of the original mix network.

Theorem 4.8 The optimal light traffic derivative of anonymity of the complete mix
network with N sources and T’ destinations in the light traffic regime s bounded from

above and below as follows:
dN-1)(K—-N-T)<Apm, <d(N-1)K (17)

Proof: We do not consider any specific set of routes between sources and destinations
in the mix network. In order to provide a lower bound, we consider a scenario where
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each source and each destination has just one connection to separate entry and exit
mixes respectively (Figure 4). Based on Theorem 4.4, for each source destination pair,
it is sufficient to choose exactly one route to transmit packets. In order to maximize
the light traffic derivative under this assumption, we let each source transmits its
packets through the longest possible route. For example, source S transmits the
packets to destination D; through the route (M1, Myy1,--+ , Mg—7, Mg_741). This
cascade assumption would then imply that the sequence (Myy1,--+ , Mg—7) = MLow
can be viewed as a single mix with the delay constraint equal to sum of all the mixes in
it which is equal to (K —7T — N)d. Using Theorem 4.3 for this system, the anonymity

in light traffic can be proven to be lower bounded as

A A
7 7 (K+2-N-T)d
Aszmﬂw>Uﬁi%('% y Jd _

d(N —1)(K — N - T) (18)

The upper bound is obtained by replacing the network of mixes with a single mix
having delay constraint d,,., = Kd such that all sources transmit to the mix and
all destinations receive packets from the mix (Figure 4 ). That the anonymity of
this system is an upper bound to the network of mixes comes from the fact that any
strategy used by the network of mixes can be simulated by the enhanced single mix,
and since Eve observing only one “super” mix has fewer observations, the anonymity
achieved by the super mix is higher than that by the network of mixes. For such a

system, the light traffic anonymity can easily be shown to be d(N — 1)K. 0.

4.4 Optimal Routing in Heavy Traffic

In this section, we will demonstrate that in the heavy traffic regime, as A — oo,
maximum anonymity is achievable regardless of the choice of routing parameters.
Consequently, the derived rate allocation from the light traffic analysis would be
suitable under heavy traffic conditions as well. An important step in the heavy
traffic analysis required expressing the achievable anonymity of a general multiple-
destination network as a linear combination of smaller sub-networks involving single
mixes. This result, which is proven in Lemma 4.10, requires the definition of the
intermediate anonymity achieved by an individual mix in the network.

Specifically, for a single mix M; in the network A, we define Ag\/[i to be the

intermediate anonymity of packets on the j* outgoing edge of mix M; as follows:

Ahm:hmH“m (19)

Aooo N
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o (xU ... U
where X% = (X7, , Xy

perspective on the j outgoing edge and N is number of packets on the jth outgoing

) and X,ij is the source of the k™ packet from Eve’s

edge.

In [75], we demonstrated that in the heavy traffic regime for a single destination
network, the achieved anonymity is independent of the rate allocation thus allowing
sources to optimize their multipath route selection based on other desired QoS met-
rics. In the following Theorem, we show the same fact holds for multiple destination
networks as well. An important step in proving this result is the expression of the
anonymity of the mix network as a linear functional of the intermediate anonymities

given by (19).

Theorem 4.9 If each mix utilizes an asymptotically optimal mixing strateqy, then
the mazimum anonymity in a multiple destination mix network s achieved for
any set of allocated rates as long as each destination node receives packets from a

single miz.

Proof: In order to prove this theorem, we first need to find the exact expression of
high traffic anonymity in terms of the rate allocation parameters which is given by

following lemma:

Lemma 4.10 Anonymity of any arbitrary network in the high traffic rate regime is

lower bounded by:

M| &
wMZ
A (A) = Z Z (Adr, —

i=1 j=1

IS| ¢ gk gk ik
_1 Wy W, Wir ~

L I L R (20)
k=1 wMZ- Zu 1 wM u ZU 1 wM u

where w is the total rate of sources and wg\zu is rate of packets from source S}, arriving
on the u'" incoming edge to mix M; and leaving mix M; from the j** outgoing edge.
w{wi is the rate of packets on the jth outgoing edge of mix M;. (; is number of
incoming edges of mix M; and &; is the number of outgoing edges of mix M;.
Proof: Refer to |76]. 0.
Lemma 4.10 expresses the anonymity achieved by the network of mixes as a
weighted sum of the anonymity of each individual mix and the multipath rate al-
location parameters. To prove the result of this theorem, we require that each mix

achieves the maximum possible anonymity asymptotically. In other words, we must
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prove the existence of a mixing strategy v for any mix M; in the system, such that
if wg\z_x are the set of arrival rates to the mix, then the achieved anonymity is the

optimal anonymity which is given by following equation.

wh,  wl wh
)\1520"4111\}4()‘) = Z Z flh( ji])"' ) ji])’ (21)
M;eF jeF; W, W

where F is the set of mixes which has at least one edge connected directly to one of
the destinations and JF; is the set of outgoing edges of mix M; which are connected
to destinations. wﬁﬁj is the rate of packets of source Sy, on the j* outgoing link of
mix M;. fwgwi is the total rate of packets on j** outgoing edge of mix M;.

Existence of such a strategy has been shown in [16] and is a subject of a deeper
investigation in [74], where the strategy with the best asymptotic convergence rate is
presented. In so far as the discussion in this paper is concerned, consider the simple
batching strategy of a mix M;, wherein the mix batches all packets that arrive within
periodic time intervals of d; seconds. As A — oo, the number of packets that arrive
within any time period, say N7 would also increase towards infinity. According to
the law of large numbers, the proportion of packets arriving on each link in this batch
of packets would converge to the proportion of arrival rates from those respective
links. By reordering the packets such that every possible ordering within a batch is
uniformly random, the anonymity achieved will converge to the prior entropy given in
inequality (20) as A — oo. Given that each mix achieves the prior entropy as A — oo
regardless of the nature of arrival processes, it remains to be seen that the anonymity
of the network converges to the maximum possible regardless of the rate allocation;
this can be shown by substituting the right-hand-side in (20) back into Lemma 4.10,
so we get the optimal anonymity which is given in (21). .

As the optimal anonymity is achieved for any rate allocation in high traffic regime,
the optimal delay anonymity region has one optimal point which is the delay optimal
point. In a broader sense, the optimal routing problem can be designed based on

other QoS criteria such as latency, throughput and congestion.

4.5 Simulations and Numerical Results

In this section, we present our simulation results on two example mix networks shown

in Figures 1 and 5. We compare the anonymity optimal rate allocation to the other

intuitive schemes. We see that the optimal routing derived in the light traffic regime

also performs better when compared to other schemes in the regions where the traf-

fic is neither heavy nor light. Finally, we present simulation results of the delay
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Figure 6: Comparing performance of optimal strategy in light traffic case to the other
rate allocations

anonymity tradeoff for the mix network in Figure 5. In Figure 6, the anonymity
achieved by the optimal light traffic based rate allocation for the 2 source network
in Figure 1 is plotted as a function of general arrival rate A, and the performance is
compared to two intuitive rate allocation schemes, namely equal allocation and delay
optimal allocation. In equal allocation, each source transmits half the traffic through
mix My, and the other half through mix Ms, while in delay optimal allocation, each
source transmits its traffic through the shortest path. In the simulation, the rate of
So was assumed to be twice that of Sy. For general traffic the optimal anonymity
delay relationship is as yet an open problem, and any such optimization of rate al-
location parameters would have to be performed using sub optimal strategies and
analytically intractable expressions. An example strategy that is optimal under light

traffic conditions and heavy traffic conditions but sub optimal for the general traffic
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Figure 7: Anonymity versus %

would be that of a strategy that simply pools packets that arrives within the delay
constraint and transmits a uniform random shuffle of a batch. Under our framework

the anonymity can be computed as

A= Z Z Pr{i packets from S; and j packets from Ss}
i

Pr{leaving in a batch} log, < ! 42,—] > (22)

This strategy is used to characterize the anonymity for each set of routing parameters.
From Theorem 4.9, we know that all of these allocations will achieve the maximum
anonymity h( %)as A — oo. However, for the region where the traffic is neither heavy
nor light, the optimal allocation we found using the light traffic derivative performs
better than the intuitive schemes. This is not surprising, as the linear portion in the
light traffic region provides the maximum gain per unit of rate increase. Consequently,
the rise of the anonymity curve is best for the light traffic based optimal allocation.
Since all allocations eventually converge to the maximum possible anonymity, the
performance is expected to be better for a wide range of rates.

In Figure 7, we compared the achievable anonymity of delay optimal, anonymity
optimal strategy, and equal rate allocation strategy for the network in Figure 1.

Figure 8 plots the anonymity-delay tradeoff for the network shown in Figure 5.
There are four optimal strategy points here that each of them is optimal strategy for
different ranges of a. Note that these points can be easily derived by the algorithm
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Figure 8: Delay Anonymity Trade-off in Mix Networks

presented in section 4.2.2. This tradeoff is compared to an intuitive linear allocation
strategy wherein, for & = 0, we use the optimal delay strategy and for a = 1, we use
the anonymity optimal strategy. As we increase a, we decrease the rate allocated to
the delay optimal strategy and add it to anonymity optimal strategy until « = 1 and

at this point all the rate is allocated to the anonymity optimal strategy.
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5 Relay Selection and Operation Control for Optimal De-
lay and Source-Destination Anonymity Tradeoff in Anony-
mous Networks

In this section, we provide an analytical framework to address source-destination pair
anonymity and propose relay selection and operation methodologies that are resistant
to timing analysis while satisfying low latency requirements.

In particular, we investigate the optimal relay selection and control of relay “opera-
tional modes” in an anonymous network. To understand “operational mode”, consider
the scenario depicted in Figure 10, where there are sources S7 and Sy transmitting
to the destinations D; and D2, respectively. In Figure 10a, the intermediate node
follows the rule of First Come First Serve (FCFS) in which case an eavesdropper
who observes the traffic in this network can identify the destination corresponding
to each source. If, however, the intermediate node can delay the packets for upto d
seconds, where d is greater than the interpacket timing on the high rate stream, then
the relay can add dummy transmissions such that the output streams are indistin-
guishable to any eavesdropper (see Figure 10b). The optimal rate and mechanism to
insert dummy packets to maintain this indistinguishability have been well studied in
[12-15,35]. Indeed it has been shown that if the incoming rates of the sources are
made equal then the overhead dummy rate decreases inverse quadratically with the
incoming traffic rate thus making it an effective mechanism for high rate traffic with
limited bandwidth infringement. This technique however results in a linear scaling of
dummy rate with the number of users accessing a relay and, when combined with the
fact that it results in added delay, it has been largely ignored in practical anonymous
systems.

In this section, we propose to alleviate these concerns by including two impor-
tant choices in the implementation of such dependent link padding. First, we expand
the ability of an intermediate relay to selectively introduce dummy transmissions
to make a fraction of streams indistinguishable as opposed to introducing dummy
transmissions on all outgoing streams. Second, in a virtual circuit, we enable the
route selection mechanism for each source to determine if a particular relay should
be adding dummy transmissions on its stream at all. Naturally, these choices are
required to be made with the net goal of achieving the best possible anonymity whilst
not introducing substantial latency. That is the primary theme of this section which

is an investigation of the optimal relay selection and control for a sub-network ab-
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Figure 9: Six Relay System Abstraction.

straction as shown in Figure 9 which optimally trades off delay for anonymity. Using
the developed methodology, protocol designers can choose a desirable operating point
on this tradeoff curve.

Rest of this section is presented as follows: In section 5.1, we present the system
model for anonymous system to provide source-destination anonymity. In section
5.2, we derive anonymity as function of rely selection and control mechanism pa-
rameters. Moreover, we provide sufficient conditions on this parameter such that
optimal anonymity is provided. The problem of source-destination anonymity and
delay tradeoff is investigated in section 5.3. Finally, we present the simulation results

in section 5.4.
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Figure 10: Standard and Anonymous Relays

5.1 System Model

The anonymous network abstraction contains six relay nodes which includes two
entry guards, two intermediate relay nodes, and two exit guards. To emphasize that
each of these six relay nodes are capable of adding dummy transmissions to boost
anonymity, we shall often refer to them as anonymous relays. We assume that the
users corresponding to each such group of six relays to have identical preferences for
anonymity and delay. A large network can be viewed as containing hundreds of these
groups of six. We focus our investigation on the anonymity in a single group. An
example network with six relay nodes wherein each source chooses a sequence of three
anonymous relay nodes (one each from the two entry guards, two intermediate relays
and two exit guards) and is shown in Figure 11a. Our abstraction is defined formally
as a 3-tuple (G,A,B), where G = (V,€&) is a directed graph with the set of nodes
denoted by V and & the set of directed edges. V = S|JM|JD, where S is the set of
source nodes, D the set of destination nodes, and M the set of six anonymous relays.
We further refine M = Mg |J My U Mg, where Mg is the set of entry guard nodes,
My is the set of intermediate relays, and Mg is the set of exit guard nodes. The
3-tuple contains a set I of bandwidth constraints for each anonymous relay and a set
A of delays associated with each edge.

Source: Each source S; € S transmits packets according to a stochastic process
to a destination through a sequence of three anonymous relays- an entry guard from
Mg, an intermediate relay from My, and an exit guard from Mg. Let r; denote
the packet arrival rate on the packet stream from source S;. Each source has two key
decisions to make. First, the source chooses the sequence of three anonymous relays;

this choice is represented by the relay selection parameter R; = (X1;, Xo;, X3;), where
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(b) Unpadded outgoing links can be perfectly matched to their corresponding in-
coming link.

Figure 11: Link Padding.

X1 € Mg, X9 € My, and X3; € Mg. Second, the source chooses if it wishes its
stream to be padded with dummy transmissions by each anonymous relay in effect
controlling the operated mode of the relay partially. We denote this control action
using the anonymization parameter A; = (Is; xy;, Is; x»:> Is; x5;), where Is, x,, = 1
indicates that anonymous relay Xj; should add dummy transmissions to the stream
from source S;, and Ig, x;, = 0 indicates that the relay Xj;; would transmit packets
from S; on a FCFS basis without any link padding thus allowing an eavesdropper
to match the outgoing stream with its corresponding incoming stream. Note that
although the intended data rate for source S; is 7;, the choice of anonymization
parameter could result in an overhead dummy rate which we denote by r%u.
Anonymous relay: Each anonymous relay will be denoted by M ;, where 7 =

1,2, 3 denotes respectively the entry guard, intermediate relay, and exit guard. Each
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anonymous relay M ]Z has a delay constraint d Mi> and bandwidth B M The aggregate
incoming packet rate to the anonymous relay node M} cannot exceed B Mi- If there are
totally n incoming streams to the anonymous relay M}, where k incoming streams
have requested their streams not to be padded by that relay and n — k incoming
streams have requested to be anonymized through padding by setting Ig Mi = 1,
then the anonymous relay will transmit the packets of the k incoming streams on
FCFS basis without any delay or padding. Packets from the remaining n— k& incoming
streams can be delayed by the anonymous relay node for a maximum of d M seconds.
So that outgoing stream of those n — k sources are indistinguishable. This waiting
period allows the anonymous relay to accumulate packets from the n — k streams,
such that one packet from each of these streams can be transmitted at the same time
in a batch on their corresponding outgoing edge. Note that if there is no packet from
some of these streams in this period the relay will transmit a dummy packet on the
corresponding outgoing edges so that all n—k outgoing streams have identical timing.
This is the essence of dependent link padding which is known to be optimal under
delay constraints. This ensures that from Eve’s perspective, the outgoing streams
(that have been padded) cannot be uniquely associated to the correct incoming stream
from the timing. Dependent link padding, while not in use in real systems due to
concerns about bandwidth consumption, is essential to thwart timing analysis. In
this work, by imposing tight latency constraints and controlling the number of stream
padded at each relay, we alleviate these concerns.

Eavesdropper: For purposes of this work, we consider an omniscient eavesdrop-
per (Eve) who observes the transmission timing on every communication link in the
network. Eve knows the topology of the network and the link padding strategy of
the anonymous relays. Eve’s goal is to use this timing information to determine ac-
curately the pairs of source-destination (S;, D;) who are communicating. We note
that Eve is a specific type of adversary— a passive one— and is not the only type
of adversary in an anonymous system. That being said, the objective of this paper
is to understand the optimal tradeoff between anonymity and delay under a timing
analysis attack, and other mechanisms to thwart active adversaries can be built in
conjunction with the framework delineated here.

Quantifying Anonymity from Timing: We use Shannon conditional entropy
to quantify anonymity from timing analysis— in particular to measure the uncertainty
in the source-destination pairing from the perspective of Eve. We define random

variables X1, X, -+, Xy where random variable X; denotes the destination node for
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packets from source S;. We denote the complete observation and knowledge of the
Eve by ©. Conditioned on O, (X1, Xy, , Xx) follows a posterior joint distribution
induced by the choices of relay selection and anonymization parameters. Let ¥(M)

denote the set of all possible relay selection and anonymization strategies.

Definition 5.1 The anonymity achieved by a specific strategy v € V(M) is defined

as:

H(Xy, -+ ,XnN|©O)

Ay = log N! ’

(23)

where for any pair of random vectors X,Y, H(X]|Y) is the conditional entropy.

Shannon conditional entropy was proposed as a measure of anonymity in [77].
Since then, it has been used to design optimal mixing strategies [78-80] and charac-
terize fundamental relationships between anonymity and network resources [35,81,82].
In an N —source, N —destination system, the total number of permutations of source-
destination pairings possible is N!, and for any strategy v, the uncertainty H (X1, -,
Xn|©) < log N! [83]. This maximum is achieved, if from Eve’s perspective, ev-
ery source is equally likely to be communicating with each destination. Likewise, an
uncertainty H (X1, -+, Xn|©) = 0 indicates that Eve can perfectly identify the desti-
nation corresponding to each source. As per equation (23), the normalized anonymity
is bounded as 0 < A < 1. In general, Eve’s probability of error in identifying source
destination pairs increases with A (see Fano’s inequality, [83]) which provides the
tangible connection between the metric and the “action” of the adversary.

Delay: In our model, there are two sources of latency:
1) Transmission delay that occurs on each link represented by dxy where (X,Y) € £
which is the delay incurred by each packet on its transmission from node X to node
Y.
2) Delay incurred by packets at an anonymous relay M. ]’-', denoted by d M) should the
source of the packets choose to have its stream padded by relay M. The average
delay for the network abstraction can be expressed as linear function of the relay

selection and anonymization parameters:

_ 1
D= D rilds m) + Tsom o r ) + deyome +
Ttot 3
€S
Is, ri 2 dr; ) + Ay 8 T Lsgmy9)dry o) + dryes),n;),s (24)

where 1o = >, 75
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Delay Anonymity Tradeoff: The primary challenge we investigate in this work
is the tradeoff between anonymity and latency. That such a tradeoff exists is amply
evident from the the single anonymous relay system discussed in the introduction (see
Figure 1). In the six relay abstraction we consider, this tradeoff is a function of the
choices made by the sources. Although each source is liable to have an individual
preference for the degree to which performance can be traded for anonymity, in our
work, we assume all the users in a single abstraction have similar preferences for the
operating point on the tradeoff curve. We model this preference using a weighting
parameter 0 < o < 1, where the sources desire to maximize the weighted sum A —
(1 —a)D. An « close to zero would indicate that the sources desire less latency,
whereas an « close to 1 would indicate that they desire high anonymity. Our goal
is to study the joint optimization of the relay selection parameters {R;} and the
anonymization parameters {A;} such that this weighted sum is maximized for any
chosen a.

A summary of notations in this paper is presented in Tablel.

5.2 Anonymity Optimal Relay Selection

For fixed relay selection parameters {R;} and anonymization parameters {A;}, the
network may be represented as shown in Figure 1la, where dotted edges represent
links which are not padded with dummy transmissions and solid edges represent
padded links. If an incoming traffic stream is not padded, Eve can identify the cor-
responding outgoing edge using timing analysis. In contrast, if at least two incoming
links are padded, then the corresponding outgoing edges will have identical timing pat-
terns and are thus indisinguishable to Eve. Each of these padded outgoing links will
have an identical packet rate equal to the maximum incoming rate amongst the corre-
sponding incoming links; whereas the rate of unpadded links will remain unchanged.
Since an unpadded outgoing link can be matched to an incoming link perfectly and
incurs no overhead, removing the dotted links and connecting them to the subsequent
anonymous relay on their path will not change the analysis of anonymity and dummy
rate in the network (See Figure 11b). Therefore, it is sufficient to merely consider the
anonymized links in the network’s graph (See Figure 12).

For a given choice of relay selection and anonymization parameters, we define

three sets of counting variables. [ denotes the number of padded links from

M2 M2
. J ’ J .
the anonymous relay M;' to the anonymous relay M:?, [, Mi denote the number of
sources requesting the anonymous relay M; to be the first anonymous relay on its
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route which anonymize their streams by padding, and the variable [, ; denotes the
J7

number of padded links from the anonymous relay M; to the destinations which are

not padded any further downstream. These parameters are defined mathematically

as follows:

URu(j):MJZ:

hpa= 2 HAwG) =1k >j: Au(k) =0)
w:Ru(j)=M;

ZM;,MIZJ = Z l(Au(]) = Au(v) =1,

where 1 is the indicator function (1(¢) = 1 if ¢ is TRUE and 0 otherwise). Since
padding a set of incoming streams results in the corresponding outgoing streams to
have identical timing patterns, the anonymity achieved by a particular choice of relay
selection and anonymization parameters can be expressed as a function of the counting
variables defined above.

We note that, only a subset of possible choices of relay selection and anonymiza-
tion parameters are feasible, owing to the bandwidth constraints at the anonymous
relays. Prior to characterizing the achieved anonymity, we shall derive the necessary
conditions for the relay selection and anonymization parameters to satisfy each anony-
mous relay’s bandwidth constraint and subsequently characterize the anonymity for
feasible parameters. We define the variables r M to be the rate of packets on each of
the links padded by the anonymous relay M; derived as follows:

Tpi = maX{l:Il?;}?q{?“M}cl(lMé,M; # 0)},

max T
Si:k<j:Ai(k):0,Ri(j):M]@{ i}

The above rate is characterized assuming that the transmission of dummy packets
is merely due to the incoming rates of packet streams being different. In general
there is an additional overhead that is inverse quadratically related to the maximum
incoming rate which is not explicitly considered for the mathematical portions, but
is used in the numerical sections. This difference is shown in Figure 13, where we
considered a single anonymous relay and four packet streams which have heavy tail

45



lsM32

Figure 12: The networks graph after removing the unpadded outgoing links. (The
dashed lines represents the variables defined in Lemma 5.1)

traffic distribution. The rate of dummy transmission required for the streams are
shown as function of the anonymous relay’s allowable delay. As is observable, as long
as the allowed delay at the relay exceeds a certain threshold this additional overhead
is negligible. Assuming the allowable delay is in the negligible overhead region, we

can express the rate of dummy transmissions padded for each source as:
B = max{rr, ) 1(Ai() # 0)} — 7, (25)

The bandwidth constraint of each anonymous relay M;" € M will restrict the relay

selection and anonymization parameters:

Y. Uk<j: AR =0+ Y rglg e < Buy
SisR; (j)=M}! Lk<j
In the rest of this paper, we denote the relay selection parameters { R; } and anonymiza-
tion parameter{A4;} feasible if they satisfy the bandwidth constraints.

Assuming the relay selection and anonymization parameters satisfy the bandwidth
constraints, computation of the achieved anonymity requires a counting of all possible
source destination pairings that could result in the observed set of packet streams from
Eve’s perspective. Considering the network shown in Figure 12 where all the links are
padded, we are interested to find the destinations Dj;s that a specific source S; may
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Dummy Rate Analysis for a Single Anonymous Relay

12 T T T T
Simulation Region
1or Rate=9.64 i
Rate=10.79

) Rate=11.42
8 8 Rate=12.34 4
j)
%
[ %]
*5
S
 [6f 1
% Analytical Region
24
>
£
£ |4t .
=1
[a]

2% |

0 | | I I I |

0 05 1 TTsS— 2 25 3 35

Delay(Seconds)

Figure 13: Dummy rate for a single anonymous relay where there are four incoming
streams modeled by heavy tail traffic.

communicate with. Let’s consider three different cases for source S;: 1) If source S;
enters the network using the anonymous relay M?}, then it is surely communicating
with one of the destinations connected to Mj. 2) If source S; enters the network
using the anonymous relay M}, then it is surely communicating with one of the
destinations connected to M3 or M4 or MZ. 3) If source S; enters the network
using the anonymous relay M;, then it cannot communicate with the destinations
connected to the anonymous relay M?.

Thus, we consider six sets of sources: [, yp1, s a2, -+ 5 I5 2, where all the source
belonging to any of these sets can communicate with the same set of destinations
discussed above. In order to count all the possible communicating source- destination
pairs, we need to exhaustively delineate the viable cases by every source. Considering
L5, a1 sources connected to the anonymous relay M, we have [ M1 ,a out of I, yyisources
which communicate with the destinations directly connected to M{, we may have iy
sources which communicate with the destinations directly connected to M3, i sources
communicate with the destinations directly connected to M22, 131 +130-+1 M} M} sources
which communicate with the destinations connected to MP} (i31 sources through the

path (M, M}, M3), iss sources through the path (M, M3, M), and Lprr ary through

47



the path (Mj, M3)), and the rest of sources will communicate with the destinations
connected to ]\432 We also define the variables ji, ja, j31, js2 for the sources belong
to I,y in the same way. Once these variables are fixed, the number of sources
from the other four sets communicating with each set of destinations is known. For
example, number of sources from the set [, ;1 communicating with the destinations
connected to M21 will be lel,d — 11 —i2. We note that the quantities i1, 12, -+ will be
restricted by some of the graphs structure parameters. For instance ¢; can not exceed
min{! M1 M217d}. Through an exhaustive counting of all scenarios and considering
the constraints on the variables iq,1s,---, the achieved anonymity as a function of

variables [xy is expressed in the following lemma:

Lemma 5.1 For a fized feasible set of route selection parameters {R;} and anonymiza-

tion parameters {A;}, the achieved anonymity can be expressed as follows:

B log(C' H?:l H?:l le,d!)
N log(N!)

= 2. > 2 2

Giy St1<€iy ,Cigy <31 <e€igq (51 SI15€515Cj5; SJ31 <€y
Ciz <ig Seiz Ci32 <igz §6i32 C]Q S]Q Sejz <j32 §j32§5j32

, where

1 Ls.ari
Norm(isi,is2) \ Ia psi1,i2, 31 + @32 + Iyt ap
— s
Norm(js1, ja2) \ Imz,p»J1, 02,731 + Js2 + lyz g

Is ar}
Ivpp = = Ju by — 131 — 31

lg ar2
( lM227D—2'2—j2,Sl7Zz2,M31 — 32 — J32 ) ' (26)
where ¢;,,(;; denotes the maximum and minimum number of sources connected di-
rectly to M (I S.M1, ) which can communicate with the destinations connected to M3
(Iar1,p), and so on (the boundaries and constant are specified in the appendix) and
Norm() is a normalization constant.

Proof: In order to find the anonymity we need to count all the possible pairs of
source-destination which may communicate. For this purpose, we will count all the
cases which may occur to each group of ls’ M- We divide the source of group [ M} to
5 groups:1) [ M},4 communicating with the destinations [ M} d- 2) i1 communicating

with the destinations lM217d. 3) i communicating with the destinations lM227d. 4)

48



i31 + 132 + [py1 a7y communicating with the destinations Iy . 5) The rest of sources
bs vt = byt g — @1 — i2 — 431 — @32 — [py1 p1 are communicating with 2 5.
71, J2,J13, andjss are also defined in the same manner. Once all of these quantities
are fixed. The number of sources which may communicate from [, pp or I 52 to
the other sets of destinations are identified. For example number of sources from
Lsarp to Dpgy g will be equal to lys1 4 — i1 — j1. Considering the constraint on each of
the quantities 71,149,131, %32 and j1,j2,j31 + j32, we can count all the possible pair of
source-destination which may communicate. However, we should notice that there
are cases where 31 + 1439 +lM11’M§ and j31 +7j32 + le,M?} are fixed and counted several
times in our summation. Thus, by defining the Norm function which counts this
redundancy for the fixed i3, + i39 + lM117M§ and j31 + 32 + lM127M§, we eliminate the
redundant cases. 0.
The anonymity characterized in Lemma 5.1 is at most equal to 1 which occurs
when given an observation of the timing processes on all the links, every source desti-
nation pairing is equally likely. We find conditions on the choices of parameters {R;}
and {4;} such that this maximum anonymity is achieved. Note that it is not sufficient
merely for all relays to pad all outgoing streams to achieve maximum anonymity. For
instance, if half the sources choose a particular sequence of relays, and the remaining

choose a mutually exclusive sequence, then the achieved anonymity would be at most
1

3

Theorem 5.2 The feasible relay selection parameters {R;} and anonymization pa-

rameters {A;} yields in optimal anonymity if they satisfy the following conditions:

Cl : VX S ME,VY S MQ . lX,d - ls,Y - lX,Y — ls,d — 0
Co V2, 2" € My i 1(loy # 0,1y 4 #0) =0
Cg : VZ € MM : lZ,M%)lZ,d S

ZM%,Z + lM%,Z? lM%,Z + ls,27 ZM%Z + ls,Z (27)

Proof: We need to find sufficient conditions such that all N! possible communicat-
ing pairs of source-destination {(S;, D;)} are possible in Eve’s perspective which are
derived as:

-Condition Cq: It is straightforward that [, 4 should be zero, otherwise Eve can as-
certain the destination of these sources perfectly and the maximum number of pos-
sible communicating pairs will be less than (N — I, 4)! which does not yield optimal
anonymity. If [ Mld # 0, Eve can ascertain that the sources which use M? as their
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entry guard and request it to anonymize their stream will not communicate with the
destinations directly connected to M7 (in the graph shown in Figure 12). If [ 5 Mi #0,
Eve can ascertain that these sources will communicate with destinations connected
to M§ It lM},Mg # 0, then, Eve can infer that there are lM},Mg of sources which use
M as entry guard that will communicate with the destinations connected to Mj.
-Condition Co: If [, yp1 # 0,152 ¢ # 0, then Eve ascertains that that the source belongs
t0 l; a3 will not communicate with the destinations connected directly to M2(1 M2,d)-
-Condition Cj is obtained by applying the Chu-Vandermonde identity assuming con-
ditions Cq, and Cs hold. .
Theorem 1 gives sufficient conditions to achieve maximum anonymity. As can
be observed from the conditions, in order to achieve maximum anonymity, it is not
necessary for all sources to request all the three anonymous relays in its route sequence
to pad their streams. Nevertheless, the anonymity is achieved at the cost of additional
delay. Any choice of parameters that satisfy these conditions would maximize the

weighted reward and — (1 — a)D merely for o = 1.

5.3 Delay Anonymity Trade-off

That a tradeoff exists between the achieved anonymity and the delay caused by
intermediate nodes padding the streams is easy to understand. Although, it may
not seem straightforward, there is also a tradeoff between the achieved anonymity
and the latency caused by the transmission delay between the nodes. For exam-
ple, consider a network with four sources where each source chooses its relay se-
lection parameters based on the minimum latency caused by the delay between
the nodes and all anonymization parameters are set (1,1,1). Assume that due to
bandwidth constraints, each anonymous relay can serve no more than two streams.
Then, without loss of generality,we may assume R; = Ry = (M}, M}, M3) and
Rs = Ry = (M}, M2, M2). Such choice of relay selection and anonymization parame-

ters yields minimum latency caused by the delays between the nodes, and anonymity

log(2!%2!)
log(4!)

willing to increase the latency by changing the parameters of sources S2 and S3 to

Ry = (M}, M3, M}), and Ry = (M2, M}, M3}), respectively, which yields in higher

latency, the optimal anonymity will be achieved.

equal to which is far less than the optimal anonymity. If the network is

In the six relay abstraction, the average delay of the network was defined in
equation (24) as a linear function of relay selection and anonymization parameters.

As mentioned in Section 5.1, we model the preference of all the sources on the delay
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anonymity tradeoff curve by the weighting parameter 0 < o < 1. In order to find the
optimal trade off between anonymity and the average delay we need to find the relay
node selection and control which maximizes the weighted sum of anonymity and delay
which is awd — (1 — a)D. This can be expressed as the following integer programming

problem:

max aA—(1—-a)D, (28)

D
(R1,,RN,A1,,AN)

where {A;} and {R;} are feasible solutions. Note that the integer programming
problem as stated above with a non-convex metric is np—hard and in order to find
the optimal anonymity delay tradeoff region, a computational solver needs to search
among all feasible parameters which yields in O(2%) search points. This is impractical
particularly if the algorithm would have to be implemented in real time. We therefore
present a suboptimal heuristic which requires only O(N) search points to characterize
the delay anonymity tradeoff region (which sweeps across the domain of « from 0 to
1).

5.3.1 Suboptimal Delay Anonymity Region

The main idea behind the suboptimal algorithm to compute the delay-anonymity
tradeoff is as follows. Assume all the anonymization parameters are zero, i.e. V.S; € S :
A; = (0,0,0). For each source S;, we have the sequence (d}, R}), (d?, R?), -+, (d$, RY)
which are the sorted delays of each routes for the source S; such that d} is the least
delay for source S; and R} is the relay selection parameter for source S; which has the
delay d! (We note that d{ is the latency caused by the transmission time between nodes
and does not include the delay by the intermediate nodes). The route selection R; =
Ri1 and anonymization parameter A; = (0,0, 0) yields in the delay optimal point Aj =
0,D§. The algorithm works by incrementally altering the relay selection parameters
from this minimum delay setup until the maximum possible anonymity is achieved.
Specifically, at each iteration, the algorithm searches for a change in either an element
of a source anonymization parameter or changing the route of one of the sources which
yields in the least increase in delay. If this least increase is accomplished through a
change in an anonymization parameter, then the resulting increased anonymity and
delay are recorded, and the algorithm moves to the subsequent iteration. If instead,
the least delay increase is an outcome of a route change, the algorithm verifies if indeed
the anonymity has increased. If so, then the values and parameters are recorded. If
not, then this selection is discarded and the algorithm moves on to the choice that
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results in the next lowest delay increase to repeat this process. Thus the algorithm, at
every successful iteration records a choice of parameters Ry, -+, Ry, and Ay, -+, Ap,
and the corresponding anonymity and average delay A(Ry,--- , Ry, A1, -, An), and
D(Ry, -+ ,Ry, A1, , Ayn), respectively. The set of these recorded pairs delineates
the complete tradeoff (suboptimal). At every iteration, since only one parameter is
changed, the complexity is linear in the number of nodes (O(N) per point on the
tradeoff. In the following we provide a bound on the difference between the optimal
and suboptimal tradeoffs and in Section 5.4 we demonstrate numerically that the

performance of this algorithm is close to that of the exponential complexity optimal

search.

Algorithm 2 Suboptimal Algorithm for delay anonymity region
1: For i=1:N
2. R;+ R} A;=(0,0,0)
3: Endfor
4: 7' = sort(ri,re, -+ ,rN), Z=2"Z'"Z',U=0,q¢=1
5: F:{R%f" 735137... aRzlvf“ 73%}
6
7
8
9

: .AU — A(Rl,"' ,RN,A), DY — @(Rl,--- ,RN,A)

: j,0 = argmingrep{ri(d(R}) — d(R:))}

: I dyr Z(q) < rj(d(R?) — d(R;)) and ¢ < 3N

: Az((%~|) =1, B _
10: .AU<—.A(R1,"' ,RN,A), ’DU<—D(R1,"' ,RN,A)
11:  U=U+1, q=q+1, go to 6.
12: Elseif A(Rl, s R?, -+, Ry, A) > .A(Rl, -+, Rpn, A)
13: = F/R;?, Rj < R
14: .AU<—.A(R1,"' ,RN,A),’DU%’D(RL--- ,RN,A)
15:  U=U+1,goto 6
16: Elseif F # ()
17 F=F/Rj, goto6
18: Endif

Let the delay constraint of each anonymous relay be d, and B be the maximum
number of streams that can be served by a single relay. Then, the following theorem
provides an upper bound on the performance loss due to suboptimality. Note that
these assumptions are for the sake of presentation simplicity and the bound can be

easily derived for the general case.

Theorem 5.3 If A*(a) and D*(a) are the optimal anonymity and average delay for

weighting factor o, then, suboptimal algorithm (A%*®(a), D" () ensures the perfor-
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mance bounded as follows:

oA () = (1= @)D*(a)] — [@A™(a) -

log(N)
= fogv)) T

Ul

(1~ a)D*"(a)] ; (29)

1
L+ sa=p5/ma

where § =  max {dJ"' —dl}.
1<E<N,1<j<7

Proof: Let’s define a(i) = li)(;;gé(;/!!))' The following lemma presents the minimum

number of padded links required to achieve anonymity a(i).

Lemma 5.4 The minimum number of padded links required in order to achieve
anonymity a(i) is
. 7 if i<B

m(z):{ i+3(i— B) i; i>B
Proof: If ¢ < B, one anonymous relay can perform link padding for all ¢ sources.
When ¢ > B, if the network served only ¢ source-destination pairs, then the conditions
in Theorem 1 for maximum anonymity reduce to the expression in the Lemma. When
the number of source-destination pairs is increased to N, this expression would serve
as a lower bound on the number of padded links. 0.
For a fixed «, there exists ¢ such that a(i) < A*(«) < a(i+1). By using the result of
Lemma 2, it is straightforward to check that:

B(a) > ™ 4 5y 2 () (30)

where Df is the delay of the shortest path in the algorithm. 1)If i < B, then,

suboptimal algorithm changes at most B — N/2 routes and pads m(i) links to achieve
A%u(a) = a(i) and

D5 (a) < D(i) + (B ;V%)‘S (31)
Using inequalities (30) and (31),
* ou log((i +1)!)  log(i!)
Oé[.A (Oé) - A b(a)] < Oé[ log(N') - log(N')] =
IOg(N) M MSsu (B B M)(S
Tog(V1)’ D*(a) — D™ (ax) > T2 (32)

2)If i > B, suboptimal algorithm changes at most 3(i — B) routes and pads exactly
m(i) links to achieve A***(a) = a(i) and

3(i — B)S

D (q) < D(i) + N

93

(33)



Using inequalities (30) and (33),
* _ gsub IOg(N)

ﬁ*(a) . zzjsub(a) > 3(Z — B)5

> 2 (34)

Moreover, using the fact that aA*(a) — (1 — a)D*(a) > —(1 — a)Df and A* < 1, we

can upper bound 1 — « as:

1 < ! < ! (35)
-« - - .

S1+(D-Dp) 14 me
Combining (32), (34), and(35) provides the bound. O.

The performance of suboptimal algorithm improves as B increases which is intu-
itive as for larger B, number of changes in routes decreases. For example, if B = N,
suboptimal algorithm just needs to change at most N/2 routes such that all N sources
are using at least one common anonymous relay and this relay is the only relay per-

forms link padding.

5.3.2 Incremental Optimization

The algorithms described thus far are joint optimization schemes where relay selection
and control parameters are chosen for all sources together. In practice, users arbi-
trarily join the system, and consequently, we propose an incremental mechanism that
merely requires each arriving source to obtain numerical information from routers
to compute the optimal route and anonymization parameters. We will show that if
an existing system is anonymity optimal then a new arriving user can maintain that
optimality. We assume the new user wants to join the system, has the equal (or
agreeably close to) preference parameter « to its own. To minimize the bandwidth
draw of dependent link padding, it is beneficial if users in this network have data
rates that are close to each other, thus limiting network congestion. For a new user
who wishes to join the network, the following incremental optimization needs to be
solved to find his optimal parameters assuming the choices for the existing nodes are
undisturbed.

Assume we have the system with N users and for a specific 0 < o < 1, the
value of the optimal incremental optimization are %“3 and 75}{?‘3 and the solution is

denoted by Rfv n¢ When the new user is added, we want to maximize the value of
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aAﬁ{}il —(1—a) _j{}il. We therefore express the new optimization problem as follows:

I': max AW, — (1 — a)DNGy
Ry

Subject to: V1 <i < N : R; = RN A; = AN

This is a simple integer programming problem due to the division of the whole systems
into sub-systems and the search is over 16 possible solutions and identifying the choice

that maximizes « AN, — (1 — a)D¥$,. Thus, whenever a new user wants to enter

the network %Lfrl —(1- a)@f\?frl is computed for each of the possible routes and
anonymization parameter, and then the route corresponding to the maximum value
is selected. Although an incremental optimization to add a user to an optimal system
need not be a jointly optimal solution for all users, in the following Lemma, we show

that in the maximum anonymity scenario, where a = 1, incremental optimization will

always yield in the jointly optimal solution.

Lemma 5.5 If o = 1, and the existing route selection for the existing users is
anonymity optimal, then the incremental optimization will also yield in an anonymity

optimal solution for all N + 1 users.

Proof: As a = 1 and delay is not the preference, we assume all the current sources
and the new source has anonymization parameter equal to (1,1,1). If A%¢ = 1 holds,
based on Theorem 1, we have lyp1 31 (N), Iy a3 (N) = Lypp a2 (N), and Ly a2 (N),
Lz aiz(N) 2 Lypz pp2 (). If these inequalities are strict, then adding the new route to
any eight candidates yields in optimal anonymity, as all the {{xy (N +1)} will satisfy
the conditions of Theorem 1. If at least one of these inequalities holds with equality,
then adding the new user to the route for which equality holds again satisfies the
new inequalities of Theorem 5.2, while also satisfying the bandwidth constraint as it
is added to the route which has lighter traffic. Let’s assume both of them hold with
equality, ie [y v (V) = Ly (N) = Uy a2 (N) = @, then the new route can be
added to the route M{, M}, M2 or M?, M3, M3, then the new parameters will again
satisfy the condition of Theorem 1, and it will also satisfies the bandwidth constraint
as it is added to the route which have lighter traffic. The same scenario can be applied
for the case where all the four inequalities hold with equality. Consequently, we can

always add the new users route in a way that ensures %lfrl = 0.
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5.4 Numerical Results and Simulations

In our simulations, using the model proposed in [84], we simulated users’ streams by
heavy tailed distributed traffic. Even though the analytical results thus far assume
that the delay constraint does not cause overhead, in our numerical simulations we
compute the true rate of dummy transmissions required for heavy tailed distributed
traffic.

Specifically, using the heavy tail traffic model, we simulated the network consisting
six anonymous relays, six sources with average rate of 10 packets/second for all the
feasible sets of anonymization and relay selection parameters in time period of [0, 100]
seconds. We assumed each anonymous relay has delay constraint equal to 0.3 seconds
(to be in quadratic region) and bandwidth constraint equal to 36 packets/seconds.
The dummy rate, average packet delay(caused by anonymous relays), and anonymity
is plotted for all the feasible solutions in Figure 14. The simulation starts with zero
anonymization parameters which yields in zero anonymity, dummy rate, and average
delay. Each jump in the plot shows a change in anonymization parameters, and the
swings in each of these regions are caused by changing the relay selection parameters.

While theorem 5.3 ensures that the performance of suboptimal algorithm in the
six relay abstraction model is bounded by (29), in Figure 15, we simulated our sub-
optimal algorithm on a more general network which consists eight anonymous relays
and six pairs of source-destination. Each source may choose any multihop path to
communicate its desired destination and it will decide whether any of the anonymous
relays on this path will perform link padding or not. We note that the complexity
of optimal delay anonymity tradeoff in such a network is O((|M|!)N2NMI) " Unlike
the six relay abstraction, for general networks, a "closed form" expression for the
anonymity is not likely to exist. The achieved anonymity can, however, be derived
using recursion from N pairs of source-destination to N — 1 pairs. As it is evident in
Figure 15, the delay gap between the optimal solution and suboptimal solution for a
fixed anonymity value is negligible.

Next, we compared the performance of suboptimal solution of problem ® with
the solution of the incremental optimization problem while number of sources are
increased from 10 to 19. For the incremental solution, we start with the suboptimal
solution for 10 sources, then, any new sources will choose it’s relay selection and
anonymization parameters to solve the optimization problem I'. As it is shown in

Figure 16, the gap between the curves decreases as « increases and for @ = 1, both
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Figure 14: Anonymity, average delay, and average dummy of six relay network for
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for users.
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S set of | X; | r.v denotes | M | set of | D | set of des-
sources destination anony- tinations

of S; mous
relays

© | complete | X;;| jth anony- Sfju overhead | 7,/ packet
observa- mous relay dummy | rate on
tion and on S;’s rate of S; padded
knowl- route links of
edge of MJ’

Eve

Mgl set of | Ig, | anonymizationdxy| transmissioan relay  se-

M, entry X;; | parameter delay lection

M| guards, correspond- from X to parame-
inter- ing to jth Y ter of S;
mediate anonymous yields jth
nodes, relay on shortest
and exit S;’s route path
guards

Table 1: Notation table
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6 Differential Privacy in Dynamical Systems and Net-
works

In this chapter, we study the design of control policies under differential privacy con-
straints. Differential privacy was introduced as a tool to provide privacy in data from
learners and statisticians [85] provides a point-wise measure on users privacy (without
Bayesian assumptions). In particular to providing point-wise privacy, differential pri-
vacy is also immune against any side information that an adversary may have. Using
the notation of differential privacy, and for a fix privacy parameter, we aim to design
optimal control policies which achieves the weighted sum of maximum rewards. In
the first section of this chapter, we study differential privacy preserving policies for
Markov Decision Processes. In the second section, we consider an application of this

framework in routing, where nodes serve as states of the dynamical system.

6.1 Inference Resistant Policy Design for Markov Decision Pro-
cesses

Markov decision processes (MDPs) are a discrete time mathematical framework for
modeling decision making in dynamic systems. In a classical MDP, at each time step,
the system is in some state s, and the controller decides on an action a. Given the
current state s, and controller’s action a, the controller receives a reward, and the
state of the system transit to the next state according to a Markovian probability
P(s'|s,a), and the controller’s goal is to maximize the total (discounted) reward over
a finite or infinite horizon [17]. MDPs are widely used in cyber physical systems,
finance, robotics, etc. Another important application of MDP is in reinforcement
learning [18], where an agent interacts with an unknown environment towards maxi-
mizing some objective, and the underlying process is modeled as an MDP. The main
difference between a classical MDP and reinforcement learning is that the latter does
not assume the knowledge of the mathematical model of the MDP. In many applica-
tions of MDPs, the sequence of states (or some function of the states) are observable
to eavesdroppers. For example, in a wireless network, an adversary can access length
of packets [19], timing of packets transmitted |20], routes of packet flow over a network
[21] and suchlike by eavesdropping. Using the observations, an adversary can infer
about the nature of the MDPs, and consequently obtain sensitive information about
the decision making entity. As machine learning algorithms continually improve the

ability to identify personal preferences from seemingly unrelated data, it is critical
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that stochastic decision making processes be investigated from a privacy perspective
which is the focus of this work.

In this work, we investigate the mathematical framework of Markov Decision Pro-
cesses with the objective of limiting adversarial inference of a type of MDP. In par-
ticular, as shown in Figure 17, consider two MDPs with identical state-action spaces
but differing reward and transition dynamics. For instance, these could represent
user actions on a pair of websites. It is well known that sequence of click times or
download sizes can reveal which websites are being accessed even if data transmitted
is encrypted |22|. In this context, if the sequence of actions or response times were so
designed to maximize user experience, then an eavesdropper can identify the website
accessed by performing a hypothesis test on the observations. However, if the actions
were so designed such that the observations from the pair of websites had near similar
dynamics, then privacy of access can be preserved. In broader terms, for a pair of
MDPs, if the policies were jointly designed such that the observed state dynamics for
both MDPs were € close to each other in a likelihood sense, then any hypothesis test
between the MDPs would have very limited success. It is precisely the joint design of
the policies for a pair of generic infinite horizon MDPs that we consider in this work
such that a weighted sum of rewards of the two MDPs are maximized subject to an
e-differential privacy guarantee for the observed state dynamics.

Further, we provide a value iteration method to recursively derive the optimal
rewards and the policies for the two MDPs that are differentially private at the desired
€ level. The proposed method is shown to converge and the convergence rate of this

method is proved to be equal to the discount factor.

6.1.1 System Model

In this work, we consider the inference resistant control of two Markov Decision Pro-
cesses, M1 and Ms. Each MDP M, is represented by a 5-tuple M; = (S, A,r;, P;, ),
where § = {1,2,--- ,n} is the set of states and A is the set of actions, and 0 < 8 < 1
is the discount factor, all identical for both MDPs. Each r; : S x A — R denotes
the reward function wherein 7;(s,a) is the immediate reward received when the con-
troller for MDP M; chooses action a in state s. P; represents the set of transition
probabilities for MDP M, such that P;(s’|s,a) is the probability that the state of
MDP M; transit to state s’, given the current state is s, and the controller i takes
action a. Let’s denote the space of all policies for MDP M; by II;, such that for a
policy m; = {0, w}, -} € II;, w!(als) represents the probability of taking action a by
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Controller 1

Figure 17: In our system model, there are two MDPs with the same state and action
spaces and different transition probabilities and rewards. There is an adversary who
observes a sequence of states from one of the MDPs and aims to identify which MDP
the sequence belongs to.

controller i at time ¢, given the current state is s. We also denote the space of joint
policies of MDPs M and My, by II, where II = II; x Ils.

In a stochastic control problem, in general, policies may be dependent on all the
history of previous states, and actions. However, in MDPs, because of their Markovian
property, it is shown that the optimal policies are just dependent on the current state.

For MDP M;, if controller i has the policy m;, given the initial state is s, the

discounted reward will be as follows:

00
V7 (s) = ) BB {ri(S], ADIS) = s}, (36)
t=0

In a classical MDP, a controller by choosing a policy makes a sequence of decisions

to maximize his discounted reward expressed in equation (36). For each standalone
MDP, it is known that optimal policy is stationary and deterministic, in other words,
the optimal policy is a sequence of identical deterministic mapping from state to action
space. If privacy was not a concern, then, each MDP could be solved independently

and the optimal stationary policy and discounted reward for each standalone MDP can
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be derived by methods such as value iteration, policy iteration, or linear programming
[17]. However, in the presence of an adversary who is trying to identify the MDP,
two controllers cooperate to hide their identity to the adversary while maximizing a
weighted sum of their discounted rewards.

Before, we move forward with the rest of our system model and the technical

results, we need to define the adversary, and his knowledge.

e Adversary: We consider a passive adversary who is aware of the state space,
action space, transition probabilities and rewards of both MDPs. At any given
time, the adversary observes a sequence of states for one of the MDPs and his
goal is to identify which MDP it belongs to. In fact, the adversary maps the

sequence of states to one of two hypotheses:

H1 : The observed state sequence belongs to M

Ho : The observed state sequence belongs to Mo

This is a classical hypothesis testing problem, where it is known that the optimal
strategy for adversary is to implement a likelihood ratio detector [86]. For
example, if the adversary observes a sequence of states sg, s1,-- , 7, then, he
computes the following log-likelihood ratio and decides on each hypothesis based
on the log-likelihood ratio:
1 1 Pr(sg, 81, ,s7|Mj)
—1(80781,-~ ,ST) = —log Prso.s1, 57| Ma) =
1 og 11 (s0) ITi= =) |07 (st lse)
T 1370(50) Ht =0 p2 51 (st41lst)
)
)

1 50

Sir1lse). Hin
Z plt t+1/5t) S

L og 1100 2%, (57)
pao(s0) = ® P53 (seralse)

where 117} (s) is the stationary distribution of state s, and p;;(s[s) is the prob-
ability of transiting from state s to state s’ at time t, given the policy m; is

applied by the ith controller. p;;(s'[s) and ;" (s) can be derived as follows:

Vs, s’ €8, i=1,2: Pit Zﬂ' (a|s)P;(s']s, a)
Vs' €S, i=1,2:pu] ZN s)pri(s']s) (38)

If I(.) > 0, then, the optimal detector accepts H1, else it accepts Hz. By taking
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the limit on equation (37), when 7' — oo, we have:

o1 pi(s']s)
1m T (50, 51, ,5T) E ::“(3) 0g PE(s]s)’

T—00
(s,8")

(39)

where p(s) represents the stationary distribution of state s under the true
hypothesis. Note that p(s) is function of m; or me, depending on the true

hypothesis. The above equation implies that lim7p_ %l(so,sl,--- ,ST) is a
1 (s]9)

convex combination of the terms log z T TPk
2

1 (!
p}rQ(s,'S) < ¢, it is assured that
pa”(s'ls)

—€ < limp_yoo %l(so, $1, -+ ,87) < € which implies the notion of e-differential

Therefore, if for each pair of

(s,8') and € > 0, we guarantee —e < log

privacy for the normalized log likelihood between pair of MDPs. In effect, by
choosing an appropriate €, the optimal adversarial inference can be made as
challenging as desired. In other words, if the e-differential privacy is guaranteed
for all transition probabilities (p7*(s'|s), p5*(s|s)), then, e-differential privacy is
guaranteed against the adversary who uses the optimum likelihood ratio detec-

tor.

e-Differential Private Policies: The structure of adversary which was ex-
plained in the previous section motivates us to use differential privacy to guar-
antee that two MDPs will not be detectable to the adversary. Thus, in order to
guarantee the privacy, we need to assure that at anytime the transition prob-
abilities between states for both MDPs are e-differentially private. We note
that transition probabilities are sufficient statistics for the adversarial detection
problem. Particularly, perturbation bounds in [87] can be used to guarantee dif-
ferential privacy on stationary distribution, given that transition probabilities

are differentially private.

The following defines what makes a pair of policies for the two MDPs e-differential

private.

Definition 6.1 For a fizred € > 0, and transition probabilities Py and P, we
call the set 1. p, p, C II, the set of all e-differential private policies, if for all
pairs of policies (m1,m2) € Il p, p,, the following conditions hold:
1 /
pTL(s|s
Vs,s €S andt=0,1,---:e < }QL,H <ef
p2,t(5 |s)

Moreover, we call any pair of policies (71, m2), pair of e-differential private poli-

cies if (w1, m2) € e p, p,.
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Similar to a classical MDP, the discounted reward of MDP M; for a fixed policy 7,
given the initial state is s is denoted by V;"(s), and can be derived by equation (36).
Through this paper, we may also consider the vector of discounted rewards as V[ =
(V7(1),---, V7 (n))T. In a differentially private setting, the controllers cooperate to
maximize a weighted sum of their discounted rewards while preserving the differential
privacy constraints. In other words, we aim to derive pair of e-differential privacy

(m1,m2) which maximizes the following discounted reward:

Q(s) = AV (s) + (1 = A)V5™(s), (40)

where 0 < X\ <1 is the weighting factor and (71, m2) € Il p, p,. In other words, the
optimal weighted discounted reward denoted by Q7 , satisfies the following:

Vs €S8t Qfy(s) = AVi\(s) + (1= NV5 () =
max AV (s) + (1 — NV (s m
(r1,m2) (M), py py (5)+( V52 (s) (41)

6.1.2 MDPs under e-Differential Privacy

In this section, we propose an iterative method to derive the optimal weighted sum of
discounted rewards and optimal e-differentially private policies. First, we introduce
the mapping T  : R?" — R?" and prove that by applying mapping T¢ ) successively
on any arbitrary vector in the space of R?", the optimal discounted rewards can be
derived.
Let’s consider two arbitrary vectors Vi = (Vi(1),---,Vi(n))T and Vo = (Va(1),
,Va(n))T. We define the mapping 7T, such that for (V¥ View) = T, , (Vy,

V3), we have:
Ve (s) E:qZ (als)[ri(s,a) +,BZP (s|s,a)Vi(s")]
where (¢, ¢3) is the maximizer of the following linear programming:

v g}%mqu (als)[r1(s, a) +ﬂ§sjpl S|, a)Vi(s')

- A) E q2(als)[ra(s,a +ﬁ§ Py(s'|s,a)Va(s")]
a s/
subject to:

P /!
Vss €S et < Zatld9)Pi(s]s a)

=S @) B, a)
VseS: Y aqilals) =) qalals) =1, (42)
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We also define the weighted addition operator Ay : R?® — R™ such that for Q =
(Q(1),---, Q(n))T = A\(V1,V3), we have: Vs € S: Q(s) = AVi(s) + (1 — \)Va(s).
In the following theorem, we prove that for any arbitrary vectors Vi and Vo,
the sequence Qg = AA(TE{g\(Vl,Vg)) converges to the optimal weighted sum of
discounted rewards. Moreover, pair of optimal discounted rewards (V’{7E7)\,V§767>\)

satisfies a fixed point equation which is similar to Bellman equation.

Theorem 6.1 The following statements hold:
1. 3V7 V3 en € R such that Q7 = Ax(V]cx: Vaen) = AT (Viea Vi)
2. YV, Vy € R": QF )\ = limg o0 AN(TF(V1, Va))
3. Q;)\ 1S unique.

Proof: Before proving the theorem, in the following lemma, we demonstrate that
mapping 7 ) is monotone. This result while being straightforward, is very critical for

understanding the fixed point equations and proof of Theorem 6.1.

Lemma 6.2 Consider two vectors V.= (V1,Va) and V' = (V|, V%) such that
A\(V1,Vy) < A\(V1,V)). In other words, for each s € S, we have A\Vi(s) + (1 —
MVa(s) < AV/(s) + (1 — X\)V5(s). Then, for any K > 0, we have A\T! )\(Vl,Vg)
ANTE (V], VY).

Proof: A ATE’K)\(VD V) derives the optimal weighted sum of discounted rewards of K
finite horizon problem with terminating rewards AVi(s) + (1 — A)Va(s). It is straight-
forward that as terminating rewards increases in all states, the discounted reward of
K finite horizon problem increases as well. L.

We start by proving the second argument. First, we prove that the sequence Qg
defined by Qx = Ax(T f}\ (V1,V3y)) is a Cauchy sequence. In other words, we need to
demonstrate that for each p > 0 there exists a positive integer K, such that for each
Fioks > K, we have [|Qey — Qiglloe < p, where [|Qpy — Qiglloc = max, |Qp, (5) —
Qk,(s)|. For a given pair of e-differential private policies 71 = {#{,71,---}, and

Ty = {7r2,7r2, .-+ }, and fixed K, we can split the rewards of ith MDP to two parts as

follows:
K-1
V(s BB {ri( SZ,AZ)|SO =s}+
t=0
Z B'Er, {ri(St, A})|S = s} (43)
t=K
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Considering that rewards are bounded, i.e. max; s 4 |1i(s,a)| < R, we have:

0 S Kp
1Y P (i ADIS) = 5} < T (44)
t=K

By combining equation (43) and inequality (44), we can derive the following:

KR
AVEH )+ (L= V() = = <
K-1

A B'Ex {1 (S ADISG = s} +
t=0

K
(1=X) D BEry{ra(SF, A7)ISF = s}

t=0

K
<AV (s) + (1= Vi (s) + 22

1-p
By taking maximum over all e-differential private policies on all sides of above in-

equality, we have:

AVI,E,)\ + (]‘ - )‘)Vs,e,)\ - /BKL < AATEIS\(VL V2)
< AVT,Q)\ + (1 - )‘)VS,E,)\ + 6KL) (45)

where L = (||Qol|oo + %) and [|Qolloo = maxs{A\Vi(s) + (1 — X\)Va(s)}. In other
words, we have ||A>\T£(V1, V2)—Q} I < X L. Using triangle inequality, we have:
||A>\T:§\(V1,V2) - AATji(V1,V2)||oo < 2pmintkrk2) I, Therefore, for any ky, ky >
N, = [logg 37 |, we have [|Qg, — Q,|[oc < 1 which proves that the sequence Qy is a
Cauchy sequence.

Now, we can take limit on all sides of equation (45), when K — oo. Consequently,
we have limp oo AATE’K)\ (V1, Vo) = Q*. Moreover, it is evident from equation (45)
that the convergence rate of Qg is equal to the discount factor 3.

Now, we can apply mapping T¢ » on all sides of equation (45) and using the

monotonicity of T¢ y we have:

ANTA(VE 0o Vi) = BEHL < AT (VL V)
< A)\T€7)\(V>{,E,)\7V§7E,)\) + ,8K+1L, (46)

Now, by taking the limit when K — 0o, combined with the fact that lim g, AATE{()\+1
(V1, Vo) = Q! ), we conclude that Q, = AA(VT7€7)\, V;e)\) = A\T¢ ) (V’LE’)\,
\2% \)- 0.
As a result of Theorem 6.1, we can derive the optimal stationary policies which is
presented in the following lemma.
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(a) A graph with 3 source nodes and(b) Two private routes are shown by
2 destination nodes. black and blue arrows.

Figure 18: Private Routes in Networked Data Collection.

Corollary 6.2.1 The pair of stationary e-differential policies (7}, m3), where n] =
{¢7,qy,---}, and w5 = {¢5, 45, -+ } is optimal if (qi,q5) are the policies which solves

the following:
A)\( T,e,)\v V;,E,)\) = A)\TEJ\(V){,E,)\’ V;,e,)\) (47)

Using the results of theorem 6.1 and Corollary 6.2.1, we can solve for the optimal
e-differential private policies for any pair of finite state MDPs, for any weighted re-
wards. In particular, by starting from an arbitrary vectors (V1, Vy), and successively
applying the mapping T, \, the optimal discounted rewards, and subsequently, the

optimal stationary e-differential private policies can be derived.

6.2 Differential Privacy in Networked Data Collection

In this section, we study the problem of unicast and multicast routing in networks
under differential privacy constraints. We explain our approach using a couple of
examples. Consider the graph shown in figure 18a. There are some routes from the
source node 5] to the destination node Ds including the shortest path between these
two nodes which travels through Ss. If S; transmits packets through any of these
routes to Do, an eavesdropper observing this route can identify the destination of
each packet departing source node Si. If there is overhead routing, privacy may be
achieved, albeit it results in higher cost. For example, if the intended destination is
Dy, the packet may continue traveling to D; as well. In this case, the eavesdropper
will be uncertain about the intended destination. In figure 18b, two such routes are
shown. The cost of the route till the packet arrives it’s intended destination may

have higher priority to the cost of the rest of route. For example, if the cost is

68



representing latency, the source will desire less latency to it’s intended destination
than the other one. Consequently, we assume the cost of a route is simply sum of
the costs associated with each edge till the packet arrives it’s intended destination,
added with sum of the weighted costs associated with the other edges on the route.
This weighting factor is denoted by 0 < § < 1. For example the route shown by
black edges will have cost 3 + 24 if the intended destination is Do, and cost 5 for the
case that the intended destination is Dj. Note that the route represented by black
edges has the minimum cost over all such routes if the intended destination is Ds.
Similarly, the route represented by blue edges has the minimum cost over all such
routes if the intended destination is Dq. If source node S; always chooses the black
route if Do is intended and blue route if D; is intended, no privacy will be provided,
as an eavesdropper can identify the intended destination, based on her knowledge
and observation. Consequently, in order to achieve some degree of privacy, the source
should choose a probability distribution over all such routes which travels through all
destination nodes. As multicast routing is a scheme to transmit overhead to other
destinations as well, it can also be used to provide privacy for the single intended
destination case. For example, in figure 19a, a graph with two source nodes and two
destination nodes are represented and two private spanning tree are shown by blue
and black arrows. The tree represented by black arrows minimizes the total cost
for the case when D; is the intended destination and the route represented by blue
arrows minimizes the cost for the case when D is the intended destination. Similar
to private unicast routing, for the sake of privacy, source S7 can choose a probability
distribution over all such spanning trees such that the weighted cost is minimized

subject to the privacy requirements..

6.2.1 System Model

We model the network by a graph G = (V, E), where V = S| D is the set of vertices,
and F is the set of directed edges. The set V' is union of two sets: S = {S1,--- , Sy}
which is set of source nodes, and D = { D, --- , Dy} which is set of destination nodes.
We assume that the set D is given; in a broader context, the source needs to decide
the grouping of destinations that would balance the overhead costs with the desire for
privacy. Each edge (i,j) € E of the network corresponds to a cost ¢; ;. If privacy was
not a consideration, each source would find the shortest path (minimum total cost
of edges) to each destination and transmit packets through the respective paths. To

provide privacy, we propose that a packet which departs source 5; to any destination
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(a) A graph with 2 source nodes and(b) Two private spanning tree are
2 destination nodes. shown by black and blue arrows.

Figure 19: Private Spanning Trees.

D; € D will necessarily travel through all other destinations in D as well. Intuitively,
as the number of spanned destinations increases eavesdropper’s uncertainty about the

intended destination will increase, albeit in cost of higher average cost.

e Unicast Private Routing: Let’s denote the set of private routes for a source
Si € S by Rg, which is the set of all the routes in the graph that start at node
S; and contains all nodes in D. A private route r € Rg, can be expressed as a
sequence of nodes r = (.5;, Mgi,Dj{7Dj{7 MB]'{’DJQ ,Djg,--- Djr ), where My y is
the sequence of source nodes between node X and node Y in route r. For exam-
ple, in Figure 20 where there are two destinations D; and Da, a route r € Rg,
is shown by a red curve which can be written as r = (S1, S4, D2, S2, S4, S7, D1).
Note that in this case Mg, p, = (S4), Mp, p, = (S2,84,57), Djr = D3, and
Djs = D;. The corresponding cost of private route r if the intended destination

is D; is equal to:

Vr € R;,VD; € D:C(r,D;,B) =

kwr(k+1)=D; I(r)—1
Z Cr(n),r(n+1) + 0 Z Cr(n),r(n+1)> (48)
n=1 n=k+1

where [(r) is the length of route r, 7(n) is the nth node in route r, and 0 < 5§ < 1
is the weighting factor. Equation (48) has two parts: the first sum reflects the

cost till the packet arrives to it’s intended destination and the second sum
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Figure 20: A private route r € Rg, is shown by the red curve and a private spanning
tree t € Ty, is shown by the green curve.

reflects the weighted cost for the rest of the route. The g factor quantifies the
degree of importance accorded to the overhead beyond achieving the intended

target.

We assume each source S; € S communicates with all nodes D; € D. To
effectively balance privacy with total cost, node S; chooses a probability distri-
bution ng = {ngj (r)] ZreRsi Péjj (r) = 1} on the set of private routes Rg, to
communicate with node D;. If the source chooses probability distribution PDZ_j ,

then, the expected cost will be as follows:

D .
C(Si,Dj,B) = > Py’ (r)C(r,D;, ) (49)
TERSZ-
The goal of unicast private routing scheme is minimizing D, C(Si, Dj, B) while
satisfying e—differential privacy conditions, which will be explained in definition

6.2.

e Multicast Private Routing: Multicast routing is primary used to transmit a
packet to a group of destinations. In the context of this paper, multicast routing
by virtue of the multitude of destinations can be used to provide destination
privacy, ie we use multicast to privatize unicast routing. For source S; to multi-
cast to all nodes in D, the packets would be transmitted on a tree which spans
DJ{S:}, in other words, the Steiner Tree. The Minimum Steiner Tree (MST)

is defined as the Steiner Tree which has the minimum total cost.

For a source S;, we define T, as the set of all the trees in the graph G which
span all the elements of {S;}JD (We will call these trees as private spanning
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trees). The overhead weighted cost of a private spanning tree will be different
for the different intended destination. For a private spanning tree t € T, in
order to define the cost W (t, D;,3) which is the cost of private tree ¢ when
the node D; is the intended destination for this packet, we need to identify
the unique path ¢(S;, D;) in tree ¢t which travels from node S; to node D;.
For example, in Figure 20, a private spanning tree t for source S; is shown
by the green curve. In this case, t = {(S1,54), (S4, D2),(S4,57),(S7,D1)},
t(S1,D1) = {(S1,54), (S4,57), (S7,D1)}, and ¢(S1, D2) = {(S1,54), (S4, D2)}.

Considering a tree t € Ty, the cost [(t, D;) will be defined as follows:

vVt € Ts,,VD;j € D:W(t,D;, ) =

S tB D cuw (50)

(u,v)et(Si,D]-) (u,v)GT/t(Si,Dj)

where 0 < # < 1. Note that equation (50) has two parts: the first sum which
has weighting factor one is the path that packet will travel to it’s intended
destination, and the second sum which has weighting factor 8 for the edges not

included on this path.

In order to effectively balance privacy with costs, we add randomness in the
choice of private spanning trees. Source S; chooses a probability distribution
P:?Sji = {PTDSi_ ()] ZteTsi Pfsi = 1} over the set of private spanning trees. For a

specific probability distribution PDSj_ , the expected cost will be as follows:

D.
W(Si, Dj, 8) = Y Pr) W(t,Dj, ) (51)
teTs,
The main goal of private multicast routing is minimizing » D W(S;, Dj, B)

while providing e— differential privacy which we define in the following.

Differential Private Routing:

Eavesdropper (Eve): We consider an omniscient eavesdropper (Eve) who
observes the traffic in the network. Eve knows all the information of the network
including identity of nodes, costs of each edge, set of private routes, and set
private spanning trees. In particular, Eve knows the probability distribution
that each source chooses on it’s private routes, ie Eve knows all {P£ 7} and
{Pﬁs Jl }. Eve’s goal is identifying the destination node for a specific packet

which departs source S;. By observing the route a packet travels, Eve decides
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on the destination of this packet. In this work, we use the differential privacy
to quantify the destination privacy. Based on the definition of differential,
conditioned on the fact that Eve observes the private route r or private spanning
tree t, the e—differential private routing for unicast and multicast routing scheme

will be defined as follows:

Definition 6.2 (e—Differential Unicast Private Routing) We say that a
route probability distribution {PSDij} for the 3—tuple (G,S,D) is e—differential
private if:

(r) _ .

VS; € S,Vr € Rg,,VDy,D; € D: <e (52)

D
Si
Pg(r)

Definition 6.3 (e—Differential Multicast Private Routing) We say that
a spanning tree probability distribution {Pf;fz} for the 3—tuple (G,S,D) is e—
differential private if:

Py

VS; € S,Vt € TSi,VDk,Dj €eD:

We note that the above follows the standard definition of differential privacy (as
applied in the context of a dataset). In the broader context of the problem, how-
ever, the choice and size of the set D brings an added dimension to the privacy
notion in routing. In the rest of this article, we investigate the optimal routing
which minimizes the aggregated unicast cost (> p,enC (Si, Dj, B)) for a specific
source S; and minimizing the aggregated multicast cost (3. «p W(S:, Dj, B))
while satisfying the conditions defined in definitions 6.2, and 6.3, respectively.

6.2.2 Private Unicast Routing

In this section, our goal is to optimize the probability distributions {Pgi 7} such that
the total average cost is minimized while satisfying differential privacy conditions. In

other words, for each source node S; our objective is to solve the following optimization
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problem:

®: min_ Y. S P (rC(rD;,B)

Dy Dy
PSZ- L 7PS,L- D;eDreRg,

Subject to :VD; € D : Z P£1 (ry=1
TERsi

5 (7)
V?"ERSi,VDk,Dj eD: le <ef
Psi (r)

(54)

First, we consider solving this problem for the equal weighting parameter case where
5 = 1. In the following theorem, we prove that the optimal solution of problem @

where § = 1, is identical to the optimal solution of traveling sales man problem.

Theorem 6.3 Optimal unicast private routing for the case of equal weighting param-

eter (B =1) yields
Dj, «
VD] eD: PSZ‘J ('I"TSM) == 1,

where 1y, € R, ts the optimal route for traveling sales man problem where the

starting node is S; and the sales man should visit all the nodes in D.

Proof: 17, satisfies the following inequality:
VD; € D,Vr € Rg, : C(rpga, Dj, 1) < C(r, Dy, 1)

The immediate consequence of above inequality is that for a specific destination node

D;, C(r}gpr Dy, 1) will be smaller than any convex combination of C'(r, D;, 1). Thus,

MC(T%:SMij’l) <
. D
DlmlnDM Z Z P’ (r)C(r,Dj, B) (55)

P a ’PSZ- D;eDreRg,

S,

and the condition of theorem presents a feasible solution which achieves this lower-
bound and this completes the proof. L.

We note that the optimal unicast routing in the case of § = 1 yields the highest
degree of privacy which is 0—differential privacy. While the optimal unicast private
routing for 8 = 1 yields a single route, the following theorem proves that the optimal
unicast private routing for the case 0 < S < 1 allocates nonzero probabilities on
oM _ 9 different routes. Let’s define the set of private route RS to be the set of

all the private routes which includes the shortest path from the source node S; to
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a destination node D; and then the shortest path from the destination node D; to
the destination node D,,, and so on such that all the destination nodes are included
on the route. There are M! such routes and the following theorem proves that there
are only 2 — 2 private routes between the elements of RS which have nonzero
probability for the optimal unciast routing. Before going through the theorem, we

introduce vector C(r, 3) such that the my, element of this vector is C(r, Dy, 3).

Theorem 6.4 Optimal unicast private routing for the case of 0 < g < 1 yields
nonzero probability allocation only over all the routes r* € R* C R¥H. Moreover each

r* € R* 4s the unique solution of following optimization problem

min ETC(t, B), (56)

tERsi
where &1y |p| 15 a vector such that each elements of it is either 1 or e® excluding two

cases of ilx|D\ and eilxm‘, where ilx\D| 18 the vector with all elements equal to one.

Proof: Considering the dual optimization problem of & and Complementary
Slackness, we will prove this theorem. For a specific private route r, we have M x (M —
1) inequality constraints which indicate privacy constraints. For each route r, we may

: D, D,
have two scenarios: 1)VD; € D, we have Pg’(r) = 0. 2)VD; € D, we have PTSJl- (r)y#0
and they satisfy privacy inequality constraints. Moreover, Complementary Slackness

forces PTDS 7(r) to satisfy the following conditions:
3D;, Dy € D : P’ (r) = e“PY*(r)
VD, # Dy, D; : PY*(r) = P (r) or P2"(r) = PY*(r) (57)

Considering the conditions expressed in (57), we can set the routes which have nonzero
probabilities to 2™ —2 groups and it is straightforward to check for each of these groups
just one of them which is the solution of optimization problem expressed in (56) will
have nonzero probability. It is also straightforward to check that for each vector £
the solution of (56) is an element of R°¥. Consequently, R* ¢ R H 0.

By the result of theorem 6.4, each node will use Dijkstra’s algorithm to find the
elements of the set R9¥ and then by performing a simple search, one can find the
elements of the set R* and subsequently solve the corresponding linear programming

problem.

6.2.3 Private Multicast Routing

In this section, we consider the problem of multicast routing for privacy in graph G.
As we discussed in section 6.2.1, multicast routing can be used to provide destination
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privacy. However, the overhead weighted cost for different intended destination will
be different and each source will choose a probability distribution over all it’s private
spanning trees. The optimal multicast routing scheme can be found by solving the

following optimization problem:

. D
v omin > Pr (H)L(t, D;, )

PTS ) ’PTSZ- D;eD tETSi

Subject to:vD; € D: Y Pp(t) =1
teTs, ’
P (t)
b < e (58)
Pre(t)

vVt € Tgi,VDj,Dk eD:

Similar to unicast private routing, we first consider the case of equal weighting factor
(8 = 1). In the following theorem, we prove that the optimal multicast routing for
privacy when 8 = 1 is identical to the solution of the Minimum Steiner Tree (MST)

problem:

Theorem 6.5 Optimal multicast private routing for the case of equal weighting (B =
1) yields

¥D; € D : Pp (tiysr) = 1, (59)

(3

where t}; gy is the Minimum Steiner Tree which spans all the elements of {S;} U D.

Proof: by the definition of MST, we know that VD; € D and Vt € Tg,, we have
W (tissrs Dj, 1) < W(t,Dj,1). Consequently, W(t}, g7, Dj, 1) is less than any convex

combination of W (t, D;,1) and we have

MW (thrs7: Djp 1) <

P%mli o DJZE:D tezT;i PT[;JI_ W (t,D;,1) (60)
and the conditions in the theorem presents a feasible solution which achieves this
lowerbound. .

Note that the solution of theorem 6.5 yields the highest degree of privacy which
is O—differential privacy. Prior to investigating the solution when 0 < 8 < 1, let’s
consider the optimal multicast routing when 5 = 0. It is straightforward to prove that
the optimal multicast routing with e—differential privacy when g = 0, is achieved by

always transmitting through a tree which has it’s root at 5; and there is an individual
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route from S; to each destination D; which is the shortest path from the node \S; to
the node D;.

For notation convenience, we define the vector W (¢, 3) such that the my, element
of this vector is W (t, D,,, ). The following theorem proves that the optimal multicast
routing for privacy in graph G = (V, E) when 0 < < 1, allocates nonzero probability

le?s 7(t) only over 2M — 2 trees, where M is the number of destination nodes.

Theorem 6.6 The optimal Solution of V yields on allocation of nonzero P;;j' (t) over
the set T* such that |T*| = 2™ — 2 and elements of this set are the solution of the
following problem:

min ETW (¢, ), (61)

teTs,

where £y |p) s a vector such that each elements of it are either 1 or e excluding two

cases of ilx\D| and eilxm‘.

Proof: Similar to proof of Theorem 6.4 . 0.

Note that there is no polynomial time solution to find the elements of T, because
the problem is np-complete. In our simulation, we find the suboptimal solution of
this problem using KMB algorithms. We construct the KMB complete graph over the
nodes {S;}JD such that the edge between each pair of nodes in the new complete
graph is the shortest path between those node in the original graph and then, we look
for the solutions of (61) between the spanning trees of this new subgraph. In the next
step, we solve the corresponding linear programming over these spanning trees.

The following theorem proves that finding the optimal private multicast routing

for the case of 0 < 8 <1 is NP-Complete.

Theorem 6.7 Given a graph G = (V, E), the problem of private multicast routing
from a source node S; € V' which spans all the elements of D C V' and minimizes the

cost defined in equation (50) is an NP-Complete problem.

Proof: we will prove that the solution of optimization problem expressed in (61)
is NP-Complete which will be sufficient for the whole problem. The problem is NP, as
a non-deterministic guess can list a set of edges and in polynomial time, it is possible
to check:1)These edges form a tree.2)The tree spans all the elements of {S;}JD.
The problem is NP-hard as the solution of optimization problem expressed in (61)
for the case of § = 1 yields Minimum Steiner Tree. Consequently, the problem is
NP-Complete. .
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Cost of Optimal Unicast and Suboptimal Multicast Routing in a Random Graph
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Total Cost
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Figure 21: Cost of optimal unicast and suboptimal multicast routing as a function of
B for different amount of € in a complete random graph.

6.2.4 Simulations and Numerical Results

In our first simulation, we considered a network modeled by a complete random graph
which consists of 12 source nodes and 3 destination nodes. The cost of each edge is a
uniform random variable U0, 1] and total cost curves are derived for different es for
optimal private unicast and suboptimal multicast routing. It is seen that the total
cost increases as € decreases for both schemes which is intuitive as higher € yields lower
degree of privacy, consequently, sources are allowed to allocate higher probabilities
on the paths (or spanning trees) with lower cost. Another interesting fact is that all
the usnicast routing curves merge each other for higher 8s, which is also intuitive as
it was seen for § = 1, optimal routing was independent of e. Multicast routing cost
merges for both =0 and 8 = 1 as we proved that for these cases optimal routing
is independent of €. In the second simulation, we plotted the average cost for specific
amount of ¢, and S as a function of number of source nodes in the graph while there
are three destination nodes. For each n, the simulation was run over 1000 random
graph of size n + 3, and the average is plotted. It is known that the average cost of
the shortest path, and the minimum steiner tree converge asymptotically as the size
of the complete graph grows. The figure demonstrates the convergence of optimal

differntially private paths and trees as well.
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Figure 22: The average total cost for different amount of €, and 8 as a function of
network size.
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7 Coupon Targeting Competition in a Privacy Sensitive
Market

In the era of massive data collection, retailers collect and utilize private information
about consumers by analyzing their purchasing history, trading private data, tracking
Cookies, and similar strategies. Using this data, retailers can predict consumers taste,
preference and the amount of money they are willing to spend on any given product
[88]. Consequently, a retailer may offer lower prices to price sensitive consumers
whilst consumers with less price sensitivity who are loyal to the retailer will be offered
higher prices. Offering different prices to consumers based on their loyalty and price
sensitivity increases retailers profits and results in price discrimination [89-91].

Retailers may prefer to compete for price sensitive consumers by offering targeted
coupons instead of lowering their prices, as coupon targeting engenders market seg-
mentation, whereas decreasing prices does not [24]. It is also well understood that
targeted coupons and other innovative coupon strategies increase the revenue of re-
tailers [92,93], and results in price discrimination [73,94,95]. Coupons are, of course,
ultimately beneficial to the consumers owing to price reduction and minimizing the
need to "shop around" for merchandise.

Coupons targeted at specific custom areas based on their preferences, however,
engender a fundamental violation of individual privacy. Preference for a particular
product, or a class of products, can often lead to sensitive information revealed to
retailers. A noteworthy example is when the father of a teen inadvertently discovered
his daughter’s pregnancy due to a targeted coupon from Target [96]. Knowledge
of privacy violations can make consumers stop purchasing from specific retailers,
or at the very least, decrease the consumer loyalty towards the retailer [23]. It is
also shown in |7| that consumers are more willing to purchase from online retailers
who protect their privacy. In effect, price sensitivity and brand loyalty alone do not
dictate consumer purchasing decisions, and impact of privacy violation ought to be
considered in retailer decisions to send targeted coupons. It is this privacy aware
decision process that this article aims to shed light upon. More specifically, we study
competitive coupon targeting between a pair of retailers when price and privacy are
explicitly considered as factors in the consumer decision making.

In this section, we use the privacy sensitivity model as proposed by Sankar et al
in |23], wherein consumers are assumed to exist in one of two states with respect to

a retailer 1) Non-alerted state where consumers trust a retailer, and 2) Alerted state,
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where consumers are aware and wary of privacy violations by the retailer. Consumers
switch between these states depending on whether they receive targeted coupons
from a retailer. The switching is modeled probabilistically using Markov chains; a
consumer in a non-alerted state switches to an alerted state with a fixed probability
if s/he receives a targeted coupon, and a consumer in an alerted state switches back
with some fixed probability if s/he does not receive a targeted coupon.

Following the coupon targeting model in a price sensitive market in [24], we assume
that consumers are located on a Hotelling line such that the location of consumers on
the line represents their preference for the retailers. It is known that the Hotelling line
in a price sensitive market is divided into four segments which are shown in Figure
23. The competition between retailers in a price sensitivity market at each segment
is modeled by a static bimatrix game. However, in a privacy sensitive market, static
games cannot capture the profit of retailers, as they need to consider both immediate
reward and the impact of their action on futures rewards. For example, a retailer may
receive some profit by sending a targeted coupon to a consumer, but as a consequence
of sending the targeted coupon, the consumer may get privacy alerted about the
retailer and stop purchasing from this retailer in the future. Thus, we model the
competition of retailers in a privacy sensitive market using nonzero-sum stochastic
games. Note that in [23] the interaction between a single retailer and a single consumer
using Markov Decision Processes with a similar setting is investigated.

In this work, we demonstrate that a privacy sensitive market is divided into 12
segments. Moreover, we derive the optimal stationary coupon targeting policies and
discounted rewards for both retailers at each specific segment of the Hotelling line. We
prove that consumers with weak preference for a retailer will change their purchasing
brand if they notice their privacy is violated by the retailer. We also prove that
at segments which adopts mixed strategies, the popular retailer has a less defensive
strategy whilst the rival retailer has a more offensive targeting strategy as the discount
factor increases. In other words, as the importance of future profit gets higher, the
popular retailer will be more conservative about consumers with weak preference for
it, because, these consumers are more likely to change their purchasing brand in the
future, if they get alerted about this retailer. On the other hand, the rival retailer will
be more aggressive to 1) get a higher share of market, 2) push the popular retailer
to distribute targeted coupons. Eventually, we demonstrate that despite the price
sensitive market, the rival retailer will have a non-negative discounted reward on the

consumers with weak preference for the incumbent retailer.
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In order to model a privacy sensitive market, we need to adopt a measure for
privacy in our model. There are several popular approaches to quantify privacy in lit-
erature. Information theoretic metrics such as Shannon entropy 97|, or min-entropy
[98] which are based on Bayesian assumptions about prior probabilities. Although
information theoretic measures are tractable and concave, they measure average pri-
vacy. Statisticians use differential privacy as a tool to measure point-wise privacy (no
Bayesian assumption) in data collection [85]. While quantitative measures of privacy
allows one to include privacy as a tangible commodity, in the context of consumer
markets, we need a mechanism to study user behavior in response to privacy viola-
tions. The approach proposed in [23| provides this mechanism, and we adopt it in the
context of market competition. In this approach, instead of measuring privacy, we are
looking at privacy violation as an action-reaction phenomenon, and using probabilis-
tic models for that investigation. Such phenomenon is modeled by a Markov Chain
(MC) with two states of privacy (alerted and non-alerted) for a specific consumer,
representing the status of the consumer about a specific retailer.

The primary goal of this section is to investigate market behavior when con-
sumers’ purchasing decisions are impacted by price differences and privacy violations.
Through this investigation, several questions arise: (1) What is the market segmenta-
tion in a privacy sensitive market? (2) How does the privacy-sensitivity affect retailers’
profit? (3) What are the optimal targeted coupon strategy of retailers in each segment
of a Hotelling line? (4) How does the discounting factor for future profits influence
retailer decision making? (5) What are the long term consumer purchasing patterns

and optimal strategies for consumers in a privacy sensitive market?

7.1 Overview of Coupon Targeting Problem in a Price Sensitive
Market

In this section, we survey the model and main results in classical coupon targeting
competition between two retailers in a price sensitive market. In the coupon target-
ing competition problem studied in [24], there are two retailers A, and B selling a
commodity product, with different brands associated to each retailer, a fixed price
P, and a marginal cost c¢. Retailers may distribute targeted coupons to specific con-
sumers with discount value d and the marginal cost of distributing a coupon for each
retailer, denoted by z > 0. Consumers are distributed uniformly on the line segment
[0,1] while each retailer is located at one edge of this line, i.e., retailer A is located

on x = 0 and retailer B is located at £ = 1. The location of consumers reflects their
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loyalty to each brand and affect their purchasing decision. For example, consumers
who are located closer to retailer A are more willing to buy this product from retailer
A. However, if they get a targeted coupon from retailer B, they may purchase from
retailer B. In [24], the influence of loyalty on purchasing decisions is modeled using a
transportation cost £. If V' is the common reservation price for each consumer, then,
a consumer located at x = X is willing to pay V' —¢X for brand A and V' —¢(1 — X)
for brand B. It is assumed that V is large enough such that each consumer will
purchase this product. Under this model, the market was shown to be divided into

four segments defined as follows: (See Figure 23)

e Consumers loyal to retailer A: these consumers would purchase from retailer A
regardless of whether they receive coupons from either retailer. Consequently
the location of such a consumer satisfies: P +tX < P —d+t(1 — X), in other

word, these consumers are located in the interval [0, X 4] where:

—d+t
Xa=—5 (62)

e Consumers with weak preference for retailer A: Consider a marginal consumer
located at # = X who is indifferent if s/he does not have targeted coupon from
both retailer or s/he has targeted coupon from both retailers. Such a consumer
is located at X = % The consumers in the interval [X 4, X] are called consumers
with weak preference for retailer A. These consumers purchase from retailer B
if they have a targeted coupon from B and they do not have a targeted coupon

from retailer A. Otherwise, they will purchase from retailer A.

e Similarly, consumers loyal to retailer B are located in the interval [Xp,1] and
consumers with weak preference for retailer B are located in the interval [X, X ],
d+t

where XB = 57 -

These segments are shown in Figure 23 for symmetric cost parameters for both retail-
ers. We note that the location of a consumer indicates her/his loyalty and preference
for retailers, and parameter ¢t > 0 represents price sensitivity of the market. For ex-
ample, if ¢ — 0, then, the market will be divided into two segments, each representing
consumers with weak preference for one of the retailers. Such a market represents the
highest price sensitivity degree, as all the consumers change their purchasing brand
if they are offered a targeted coupon from the rival retailer. On the other hand, if

t — o0, the market is divided into two segments such that consumers at each segment
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Figure 23: Market Segmentation in a Price Sensitive Market.

have strong preference for one of the retailers, representing a market with no price
sensitivity, i.e., all consumers will purchase from their favorite retailer.
The equilibrium and optimal strategy of retailers at each segments is derived in

[24] and we review these results in the following theorem.

Theorem 7.1 Denote by p; the probability associated to retailer A sending targeted
coupons to consumers in ith segment, and denote by q; the probability associated to
retailer B sending targeted coupons to consumers in the ith segment. According to
[24], the optimal strategies for an one-step game between retailer A and B in each
segments are as follows:
P—c—d—2z d+=z
P—c—d ' P-c
d+z7 P—c—d—z7 0]
P—c P—c—d

p = [p1, p2, p3, pa] =10, 0]

q= a1, g2, g3, qa] = [0,
And the reward of each retailer at the equilibrium are as follows:

Vy=[P—¢, P—c—d—=z 0, 0]
Vg=10,0, P-c—d—=z, P—(

The results in Theorem 7.1 are intuitive, as in segment 1, none of the retailers are
willing to distribute targeted coupon between the consumers, as they cannot increase
their reward by doing so. However, the bimatrix game in segment 2 which is shown
in table 2 adopts a mixed strategy at the equilibrium point. In this segment, if both
retailers do not distribute targeted coupons, retailer A receives the maximum possible
reward, P — c and retailer B receives 0 reward. However, retailer B can improve their
reward by distributing a targeted coupon. In this case retailer B receives P—c—d—z
and retailer A receives zero. On the other hand, retailer A can again increase their
reward by distributing a targeted coupon. Consequently, the bimatrix game in this
segment is similar to prisoner’s dilemma. In this segment, retailer A has a defensive

strategy and tries to encourage the consumers with weak preference towards retailer
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Va, VB Targeting Not Targeting

Targeting P—c—d—2z—z P—c—d—20
Not Target- 0,P—c—d—z P—c0
ing

Table 2: Bimatrix Game in Segment So

A to maintain their loyalty, whereas retailer B has an offensive strategy and tries to
increase its market share by offering them targeted coupons.

Subsequently, we adapt this Hotelling line model to study coupon targeting when
consumers include privacy violations as a factor in their decision making which we

model as an increase in transportation costs under an alerted state.

7.2 System Model

In the basic Hotelling line model [24] described previously, the bimatrix games were
static and resulted in simple mixed strategy equilibria. In a privacy sensitive market,
however, the competition is played out over the entire time horizon, since retailers
sending coupons not only need to worry about immediate profits but also privacy
related consequences in subsequent time steps as well. Privacy sensitivity, as men-
tioned earlier, is modeled as in [23], wherein consumers exist in one of two states with
respect to each retailer: alerted or non-alerted. Consequently, consumers exist in one
of four possible groups {S,S?,S4, S4B }explained in the following paragraph. We
model the impact of privacy using a differential in the transportation costs. In partic-
ular, a consumer alerted about retailer A would incur a higher transportation cost ¢4
from that retailer as opposed to a transportation cost ty4 < t4 were s/he is not alert
about that retailer. (Note that the subscripts "A", and "NA" stand for "Alerted",
and "Non-Alerted", respectively.) When applying this notion to the Hotelling line

model, four different Hotelling lines arise, one for each group.

e S: Consumers in this group are in non-alerted state about both retailers. Con-
sequently, the transportation cost for both retailers will be ¢y 4. Assuming

symmetric conditions, the marginal consumers for this group are located at

—d+tna o 1
Xi=—"2 X'=_ X} =
A 2N A ’ 9’ B

d+tna

63
2tn A ( )

We assume all the consumers start in this group at the beginning of the game.
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e SB: Consumers in this group are in the non-alerted state about retailer A and
in the alerted state about retailer B. Consequently, the transportation cost for
retailer A and B will be ty4, and 4, respectively. The marginal consumers in
this group are located at:

X2 _d+tA X2 tA X2 d"’tA

_ , SR S =4 64
AT tvat+ta tNa+ta BT tnatta (64)

e S4: Consumers in this group are in the alerted state about retailer A and in
the non-alerted state about retailer B. Consequently, the transportation cost
for retailer A and B will be t4, and ¢4, respectively. The marginal consumers
in this group are located at

3 —d+ina 53  ina 3 d+tna

- CXB = NA X : 65
A tna+1ta Ina+1ta B iNa+ta (65)

e SAB: Consumers in this group are in alerted state about both retailers. Con-
sequently, the transportation cost for both retailer will be t4. The marginal
consumers in this group are located at

d+ta
24

—d+ta 4 1
X4= 4 xXt—-_ Xi=
A 24 9" ©B

(66)

The two dimensional nature of the privacy sensitive market results in a market seg-
mentation with 12 segments as shown in Figure 24. Due to identical marginal costs,
these are composed of two symmetric groups of 6 segments each. Note that for any
i, the segment S/ is symmetric with respect to the segment S; and therefore it is
sufficient to investigate the segments S; for all 4.

Consumers in a specific segment may move from one group to the other group
within the same segment. However, they will not move from one segment to another.
Consequently, the stochastic game at each segment is independent of other segments.
Each retailer aims to maximize its discounted reward over an infinite horizon at each
segment. As discussed before, each retailer may get a higher immediate reward by
distributing a targeted coupon at a specific group of a segment. However, consumers
may get alerted about this retailer and switch to the other retailer. Consequently,
retailers’ actions at the current time will influence both their immediate reward and
future reward. This interaction between retailers and consumers in a specific segment
of the Hotelling line is modeled by a nonzero stochastic game.

We model the stochastic game at segment S; as a tuple (S, A, Ap, P,ra,78,08),
where S is the set of states such that o = [ag, agn,aga,agan] € S represents the
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(a) If consumers get alerted about a retailer, then there will be a higher transporta-
tion cost for that retailer.

55 5
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sas d pBBIE o4 1h AR IEAS D BibIISE S,

(b) Market segmentation of a privacy-sensitive market. Note that the segment S
is symmetric to S;

Figure 24: Market Segmentation in a Privacy Sensitive Market

distribution of consumers at segment S; over the four groups identified above. A4
and Ap are the set of actions for retailers A, and B, respectively. Each player may
either send a targeted coupon to consumers in each group of the segment or not.
Consequently, A4 = Ap = {T,UT}, where T denotes sending a targeted coupon and
UT represents not sending a targeted coupon. At time t, if the current state is ay, and
player A, and B choose the actions a4, and ap, respectively, player A and B will receive
a corresponding immediate reward of r4(ay,as,ap) and rp(at,aa,ap). Following
this, the state of the game will transient to ay41 with probability P(ayy1|og, aa,ap).
The discount factor of the stochastic game is 0 < g < 1.

Following the model in [23], we assume that a single consumer can be in a state
s € {A, NA} about retailer X. If retailer X takes the action ax, then the next state
will be ¢’ with probability P,,(s'|s). The matrix P,, for each action a, € {T,UT} is

defined as follows:
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[ An 1=y B 1 0
PT_( 0 1 )’PUT_<1—)\A )\A>’ (67)

where the first row and column correspond to the non-alerted state, and the second
row and column correspond to the alerted state. Here, 1 — Ay represents the prob-
ability that a non-alerted consumer gets alerted if s/he receives a targeted coupon,
and 1 — A4 represents the probability that an alerted consumer transients to the non-
alerted state if s/he does not receive a targeted coupon. Note that if a consumer is
alerted and s/he receives a targeted coupon, s/he will remain in the alerted state.
Similarly, if a consumer in the non-alerted does not receive targeted coupon from the
retailer, s/he will remain in the non-alerted state. Ay and A4 represents the privacy
sensitivity of the market. For example, a market with no privacy concern can be
modeled by Ay =1 and A4 = 0, and a full privacy sensitive market can be modeled
by Ay =0 and Ay = 1. Note that téV—AA represents the effect of getting privacy alerted
on purchasing decision of consumers.

The matrix defined by P = P, , ® P, ;, where ® represents the Kronecker product,
captures the 4 x 4 transition matrix of our game. If the current state of the game
is ay and player A and B take actions a4 and apg, respectively, the next state of the

game will be ay11 which is derived as follows:
Ayl = at(PaA ®Pa5)7 (68)

The set of stationary policies of player X is denoted by Ilx such that a policy
wx € Ilx identifies a probability distribution on the action set of the player at a
specific state. For example, mx (o) = [W)S((OL),W_‘)S;B (a),7r§(A (a),ﬂffAB ()] denotes the
policy of retailer X, and 7% () represent the probability that retailer X will distribute
a targeted coupon to the consumer in group s when the current state of the game is
a. Note that throughout this work, we use 7% (o, T") and 7% () interchangeably and
we use 75 (a, UT) and 1 — 7% (o) interchangeably. If player A and B fix their policies

w4 and g, respectively, the total reward of each of the players is as follows:

V,Z{A’WB = Z IBtEWAﬂTB (TA(St’ AA’t’ AB’t))
t=0

VEA’WB = Z IBtEWAﬂTB (TB (St’ AA’t’ AB’t))
t=0
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Definition 7.1 The policies 7 and 7p results in an equilibrium iof and only if the

following holds:

.1/ TATE

Vrp € Mg« VAT > yams (69)

So far, we have assumed that the state space of our non-zero sum stochastic game
is continuous and represents the distribution of consumers over the identified four
groups. However, in the following lemma, we prove that the optimal policy of each
retailer in both finite and infinite horizon games is independent of the consumers’
distributions. In other word, it is sufficient to restrict the state space of the game to

four states, such that each group denotes a state of our non-zero sum game.

Lemma 7.2 The optimal policy of retailers in the non-zero sum stochastic game at
each segment is independent of the consumers’ distribution over four groups and it is
sufficient to consider S = {S,SB, 84, S4B} as the state space .

Proof: First, we prove the lemma by induction for the finite horizon case. Specifically,
we prove that if Lemma holds for the case where N horizons left, it will also hold for
N +1 horizon. The results hold for all Ns including N — oo. For proof’s detail, refer
to section 7.5.1. 0.

Lemma 7.2 implies that consumers move between the four groups and not as
fractions in groups. Moreover, it is sufficient to consider a state space including just
these four groups, i.e. S = {S, S5, 84,8481 In the rest of this paper, we maintain
the same notation introduced so far. However, instead of oy, we use the notation s; €
{8,858, 54, S4B} which represents the state. For example, VAN (S4P) represents
the total discounted reward of retailer A, when N periods are left, retailer A, and B
have policies m4 and 7, respectively, and the initial state of the game is S4Z. Refer
to table 3 for a complete explanation of the notation.

While the equilibrium of a finite-horizon non-zero sum stochastic game has non-
stationary policies, the infinite horizon competition has an equilibrium in stationary
policies space [99,100]. If player A and B fix stationary policies m4 and 7, respec-

tively, the infinite horizon reward of each player is as follows:
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ViaTe =gty > diag(ma(ar),7p(az))(Pa, ® Pay)ralas, az)

t=0  a1€{T,NT} ag€{T,NT}

oo
VEATE ="ty > diag(ma(ar),7p(as))(Pa, ® Pay)rp(ar,az),

t=0  a1€{T,NT} axe{T,NT}
where diag(z,y) is an n x n diagonal matrix such that the element on (i,%) is the
product of the ith element of vector x and the ith element of vector y and the rest
of the elements of this matrix will be zero and Vg4™® = [Vg4T8(S), Vg 8 (SB),
VEATE(SA), VEATE (SAB) T On the other hand, we can also rewrite the discounted

reward using Bellman Equations:

Vs € S:VIA™E (s) = r(s,ma,mp) +B8 Y P(s|s,ma,7p)r(s, ma, )
—————

!
immediate reward s'€S

reward to go

The above equation implies that the total discounted reward of each firm contains
two parts: 1) Immediate reward 2) Reward to go, where both parts depend on the

current state and both retailers’ policies.

7.3 Retailers Competition at each Segment

In this section, we study the equilibrium of competition at each segment of the
Hotelling line and discuss how privacy constraints effects the policy and discounted re-
ward of each retailer at each segment. Segments on Hotelling line of a privacy sensitive
market can be categorized to three: 1) Segments not affected by privacy constraints.
2) Segments fully affected by privacy constraints. 3) Segments partially affected by

privacy constraints. In following sections, we study each of these categories:

7.3.1 Segments not Affected by Privacy Constraints

In this section, we study the coupon targeting competition at segments S; and Ss,
where the competition is not affected by the privacy sensitivity of the market. The
primary reason that these segments are not affected by privacy sensitivity of the mar-
ket is that in these segments, consumers at all four groups have the same preference

on retailers.

1. Coupon Targeting Competition in Segment S;: In segment S1, at all four

groups, consumers have strong preference on retailer A and they will purchase
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Symbol Meaning Symbol Meaning
XA,X ",X%, marginal consumers at | ® kronecker product
group 1
Si segment % (T]; element on ith row and
jth column of matrix T
S state space P transition matrix
Ax action space for player | rx(s,a,ap)| immediate reward of
X player X if the current
state is s and player A,
and B take actions ag
and ap, respectively
IIx set of stationary policies | 3 discount factor
of player X
a; proportion of consumers | wx(s) probability — that re-
at group j tailer X sends targeted
coupon to consumers at
group $
AN probability ~ that a | mx(s, A) probability of retailer X
non-alerted  consumer taking action A to con-
remains non-alerted if sumers at group s
s/he receives a targeted
coupon
A probability ~ that an | Vg4 ™5 (s) reward of retailer X if
alerted consumer stays retailer A and B have
alerted if s/he does policies w4, g, respec-
not receive a targeted tively and the current
coupon state is s.
Vi(s) optimal reward of re- | Vg vector of optimal reward

tailer X if the initial
state of game is s

of retailer X in infinite
NoN-zero sum game

Table 3: Table of Notations
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from retailer A in all circumstances. The consumers in segment S; have privacy
independent strong preference for retailer A and even if they notice privacy
violation by retailer A (or retailer B), they will still purchase from A. It is
straightforward to check that in all four groups of segment S;, none of the
retailers is willing to distribute targeted coupon, as, by doing so, they cannot
they cannot increase their rewards, i.e., 7% = [0,0,0,0] and 7} = [0,0,0,0].
Consequently, the optimal discounted reward of retailer A and B in the infinite
horizon non-zero sum stochastic game of segment &; will be as follows:

VK:[(];__;)’(T__;)’U;__;)’(f:ﬁc)] (70)
Vi =10,0,0,0] (71)

. Coupon Targeting Competition in Segment S5: Similar to segment Sy,
consumers at all four groups of segment S5 have similar preference for retailer B.
In other words, consumers at this segment have privacy independent weak
preference for retailer A, meaning even if they get privacy alerted about retailer
A (or retailer B), they purchase from B if they only have targeted coupon from
retailer B. The following theorem derives the optimal policies and discounted

rewards of retailers at segment Ss.

Theorem 7.3 The optimal discounted reward of retailer A and B in the infinite
horizon non-zero sum stochastic game of segment Ss will be as follows:
(P—c—d—z2) (P-c—d—2) (P—c—d—2)

1-p ’ 1-p ’ 1-p '

(P_lc__g_z)], Vi = 1[0,0,0,0] (72)

Vi=|

Moreover, the optimal policies of retailer A and B will be 7% = [P;:fgz, P;:fgz,

P—c—d—z P—c—d—z * __ [d+z dt+z d+z d+z
Poecd s Peeed ) ond T = [F55, B, Py Bl

Proof: Refer to section 7.5.2. O.

The result of Theorem 7.3 are intuitive as consumers’ purchasing behavior will
be the same in all states. In other words, in this segment whether consumers
are privacy alerted or non-alerted about either of the retailers, they will have
a weak preference for retailer A. That being said privacy violation by retailers

will not effect consumers’ purchasing decision in segment Ss.
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Va(S),Vp(S) Targeting Not Targeting
Targeting P—c—d—2z+pVa(S),—2 | P—c—d—z+ pVa(S),0
Not Target- | fVa(S),P —c—d—z P —c+ pV4(9),0

ing

Table 4: Bimatrix game for infinite horizon game in segment Ss at state S. Note that
the bimatrix game at states S, 54, and S4B will be completely similar.

7.3.2 Segments Fully Affected by Privacy Constraints

In this section, we study the equilibrium of nonzero-sum stochastic games at segments
Sy, 84, and Sg, where both optimal policies and discounted rewards of retailers are
affected by privacy parameters. It is shown that in segments So, and Sy, retailer
B receives zero discounted reward, however, in segment Sg, retailer B has nonzero
reward. In other words, in a privacy sensitive market, consumers who initially had
a weak preference on the popular (here retailer A) will be driven away to the rival
retailer (here retailer B), if they notice that their privacy is violated by the popular

retailer.

1. Coupon Targeting Competition in Segment Sy: Segment Ss is the first
segment, where privacy awareness effects popular retailer’s profit. In this seg-
ment, if consumers are privacy alerted just about retailer A, i.e. if they are at
group S, they have weak preference on retailer A. Otherwise, they have strong
preference about retailer A. It is straightforward to check that both retailers
are not willing to distribute targeted coupon at groups S, S?, S4B, However,
in group S4, both retailers have mixed strategy. The following presents the

optimal policies and discounted rewards at this segment.

Theorem 7.4 The optimal policies of retailer A, and B in segment Sy are as

follows:
. P—c—d—-=z
74 =10, 0, mao]
Z 1-— A
wh =0, 0, AHATIAZAIND
(P - c) + /8(1 - )‘A)(l - )\N)l—ﬁ)\iA
Moreover, the discounted rewards of retailer A, and retailer B are as follows:
. y P—c
Vi($) = Vi(s®) = T (74
P—-c P—-c
* A\ _ * oAB — _ _
VA(S?) = =3 A, VAST) =3 BAA(l = Aa)A
VE(S) =0, V5(S”) =0, VE(S?) =0, V5(5*7%) =0, (75)



. (d+2)
where & = S T A A =T -

2
1-B22

Proof: proof of this theorem is similar to the proof of Theorem 7.5. L.

If A4 # 1, it is straightforward to check that the stationary distribution at this
segment is unique and all the consumers will eventually be in group S. This is
intuitive as in group S, none of the retailers is distributing targeted coupons.
Thus, consumers in this group remain in this group. For A4 # 1, there is
a nonzero probability of transiting from other groups to group S. Therefore,
group S is the only terminating state in the Markov Chain (MC), while there is
nonzero probabilities of transiting from other groups to group S which proves
the claim. The interesting result of this claim is that for the case g — 1,
where the discounted rewards converges to the average reward, the discounted

reward of retailer A at all group converges to 113__5. Consequently, for the case,

where 8 — 1, the privacy sensitivity of the market does not influence any of the

retailers.

. Coupon Targeting Competition in Segment S;: In segment Sy, at groups
S, S4, and S4B, retailer B has an offensive strategies and tries to persuade the
consumers with a weak preference for retailer A to purchase from him. However,
retailer B will not distribute a targeted coupon to consumers in group SZ, where
consumers are alerted about this retailer. This is intuitive as consumers in group
SB will purchase from retailer A in all circumstances. Thus, retailer B tries to
gain back the trust of consumers in this group by not distributing a targeted

coupon to them.

In order to derive the optimal discounted rewards and stationary policies in this
segment, we solve the fixed point equations. Note that the fixed point equations
are derived by finding the unique stationary policies which solves the bimatrix

games shown in tables 5, 6, 7 8.

In the following theorem, we prove that reward of retailer B in infinite horizon
game at all states will be zero. Moreover, retailer A will have an optimal policy

of independent of discount factor f3.

Theorem 7.5 The optimal policy of retailer A in segment Sy is independent of
the discount factor 8 and is as follows:
N [P—c—d—z P—c—d—=z P—c—d—z]
i =
A P-c-d ' P-c-d ' P-c—d
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Figure 25: Optimal policies of retailer A and retailer B in segment Sy

Moreover, the discounted rewards of retailer A, and retailer B are given by:

o B(1—An) o) —
Va(S) = (1—B)[(1 = BAA)(1 = BAN) — B2(1 — An)?] (P=e
(1= BAN)[B(L = An) — (1 — BAA)] (P—c—d—>2) (77)

A= A0 = AA0{ = Ban) — B0 Aw)7]
craBy L =BA)(Q = BAN) + B2(1 = An)An — Aa))] o
Vi) = A= am = aanii = s —Baw) - P - L9
B A= A=)~ =By
= B)1 = B[ = BAn (= BAn) — (L — AnTA

v oAy P—c—d—=z

Vi(sh = ——5— (79)
s oABy P —c—d—=z

V5(S) =0, V5(SP) =0, V5(SH =0, V5(S*P) =0 (80)

Proof: In order to derive the optimal policy of retailer A, and the discounted
reward of B, we use backward induction. Next, we derive the optimal discounted
reward of retailer A in two steps: First, we prove that the optimal discounted
reward at group S4, and S48 are independent of A4 and Ay, and we derive
these discounted rewards. Then, we will derive the optimal discounted reward
of retailer A by solving the fixed point equations at group S, and SZ. For
proof’s detail refer to section 7.5.3. 0.

As a direct result of Theorem 7.5, the optimal policy of firm B in segment Sy

can be derived, which is presented in section 7.5.4.

3. Coupon Targeting Competition in segment Sg: Despite the first five
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Vi(5), V5(5)

Targeting

Not Targeting

Targeting

P c d z +
BOXVAS) + Al —
)\N)(VX(SB) + Vi(S4) +
(1= An)?Vi(81P)), -2

P—c—d—z+B0WVi(S)+
(1= An)Vi(51),0

Not Targeting | S(ANVI(S) + (1 — | P—c+pV;(5),0
AVEISB),P—c—d—=
Table 5: Bimatrix Game of Segment Sy in Group S.
Vi(SP), Vi (SP)| Targeting Not Targeting
Targeting P—c—d—z—l—P—c—d—Z—l—
BANVE(SE) + (1 — [ BANL — AVE(S) +
ANV (S4B)), —2 AAANV,:{(SB) + 1 -
M)A = AVA(SY) +
A1 = An)VE(817)), 0
Not Targeting | P —c+ BV;(SP), - P—c+BMaV;(SP)+(1—

A)Vi(5)),0

Table

6: Bimatrix Game of Segment

Sy in Group SB.

ACOAZICS

Targeting

Not Targeting

Targeting

P c
BANVE(SY)  +
ANVi(S4B)), =2

d

zZ +
(1

P—c—d—z+BV;(S1),0

Not Targeting

B —=A)ANVE(S) + (1 —
M) — ANVE(SE) +
MANVE(SY) + Al —
AN)VE(SAP)), P—c—d—z

P—c+BAaVi(Sh)+

Aa)Vi(5)),0

§

Table 7: Bimatrix Game of Segment S, in Group S*.

Vi(SAP), Vi (SPTargeting Not Targeting
Targeting P—c—d—z+pV;(S2B),—2 | P — ¢ — d — 2 +
B(I — AVi(SY +

AMVE(545)),0
Not Targeting | B(1 — AA)Vi(SP) + | P—c+B((1—Xa)?V}(S)+
MVI(SABN), P—c—d—=z | Aa(l — M) (Vi(SP) +
Vi(5%) + XAVi(545)).0

Table 8: Bimatrix Game of Segment Sy in Group

segments, segment Sg is the only segment in which retailer B has a nonzero
reward at the equilibrium. The primary reason for this is that if consumers in
this segment get alerted just about firm A (Group S4), then they will have a
weak preference for firm B. In other words, consumers in Group S“ will purchase

from firm A only if they have a targeted coupon from firm A and they do not
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Figure 26: Optimal normalized discounted rewards of retailer A and retailer B in
segment Sy

have a targeted coupon from firm B. Consequently, in this segment, retailer
A has less defensive strategy and is less likely to distribute a targeted coupon
whilst retailer B is more offensive to get a higher share of the market as well as

pushing retailer A to distribute targeted coupon.

In order to find the equilibrium of the stochastic game in this segment, we need
to solve the fixed point games represented in tables 9, 10, 11, and 12. In the
equilibrium point of the game, each retailer is indifferent between sending or
not sending a targeted coupon at each state (or group). For example in state S,
retailer A is indifferent between sending or not sending a targeted coupon, i.e.,
its reward when it sends a targeted coupon to consumers in this group should
be equal to to his reward if it does not send a targeted coupon to consumers in

this group. Consequently,

TE(S)(P —c—d—z+ BARVA(S) + An(1 = An)(VA(S®) + Vi(Sh) +

(1= A)PVA(SP)) + (1 = 75(S))(P — ¢ —d = 2+ BANVA(S) +

(1= ANVA(S)) = 75(S)(BANVA(S) + (1 = An)VA(SP)))

+(1 = 7R(9))(P — ¢+ BVA(S)) (81)
which results in the following:

75 (S) = d+z+ B(1 = An)(Vi(S) — Vi(SY)
BYT P — 4 B(1 = AN)2(V(S) — Vi(SA) + Vi(SAB) — Vi(SB))

Similarly, we can find the optimal policies of retailers A and B, which are pre-

(82)

sented in section 7.5.5.
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Vi(S), Vi(S) Targeting Not Targeting
Targeting P - c -d - 2z +|P — ¢ — d — z +
BAVE(S) + An(l — (ANVA() + (1 -
AN)(VE(SE) + VE(SY) + | ANVE(SY), BANVE(S)+
(1 = AN)2VA(SAP)), =2 + | (1= An)VE(S™)
BOVVES) + Anv(1 -
(

AN)(VE(SP) + Vi(S4) +
(1= Av)?VE(S1P))

Not Targeting

BANVI(S) + (1 -
AVI(SE), P — ¢ —
d— 2+ BOWVA(S) + (1 —

P —c+pBVi(S),BVE(S)

An)VE(SP))
Table 9: Bimatrix Game of Segment Sg in Group S
Vi(SP), V(SP) | Targeting Not Targeting
Targeting P - c¢c —-—d - 2z +|P — c¢c — d — z +
BOANVASE) + (1 =] BOWA = A)VA(S) +
AN)VE(SAB)), —2 + | AaANVE(SB)+(1-A4)(1—
BONVE(SE) + (1 — | AVESY + a1 —
ANV (54P)) ANVE(SAE), AN (1 —
A)VE(S) +
)\A)\NVB(SB) + (1 -
A1 — AVE(SY +
Al = An)VE(517))
Not Targeting BVI(SE), P —c—d—z+ | P—c+BAAVi(SP)+(1-
BV5(SP) A)VE(9)), +B(AaVE(SP)+
(L = Aa)V5(S))
Table 10: Bimatrix Game of Segment Sg in Group S?
Vi(S™h), V5(S1) | Targeting Not Targeting
Targeting —2+ BONVESYHY+ (1 -|P — ¢ — d — z +
ANVE(SAB)), P —c—d — | BVE(S™Y), BV5(SH)
z + BANVE(SY) + (1 —
AN)V5(54P))
Not Targeting BL=A)AINVE(S)+(1— | BOaVE(SYH + (1 —
A1 = ANVASE) + | A)VE(S), P — ¢ +
MANVE(SY) 4+ da(l — | BOAVESY + (1 —
AN)VE(SAP)), P —c—d — | Ma)VE(95))

z+ B((1 = Aa)ANVE(S) +
(1= 24) (1= AN)VE(SP) +
MANVESY) 4+ Al —
AN)VE(S4P)

Table 11: Bimatrix Game of Segment Sg in Group S*.
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Vi(SAP), Vi (SAF Targeting Not Targeting

Targeting P - ¢ ~-d - 2z +|P — ¢ —d — z +
BVE(SAP), —2+BVE(SAP) | B(1 — AVA(SH) +
AVi(84P)), (1 -
A)VE(S?) + AaV3(545))

Not Targeting | B(1 — M)Vi(SE) +| P — ¢ + B0 -
MVEI(SAB), P —c—d — | Ma)?Vi(S) + Al —
2+ B = A)VE(SP) + | A (VA(SP) + Vi(sh) +
AaV5(S45)) MV (s48)), 8((1 -
Aa)?VE(S) 4+ da(l -
2)(VE(SB) + Vi(54)) +
NiVi(54P))

Table 12: Bimatrix Game of Segment Sg in Group S4B,

One may solve for optimal discounted reward and optimal policies by substi-
tuting equations (82)-(98) in the bimatrix game at each state and solve the
resulting system of degree 2 polynomial equations using Puiseux series or the
Grobner basis methods [101]. The alternative choice is using nonlinear pro-
gramming to solve for the equilibrium of the stochastic game in this segment
[99].

In the following Theorem, we prove that the linear approximations of stationary
policies in the form of 7% (i) ~ f} + Bfi presented in Appendix 7.5.6) achieves

an e-equilibrium for the non-zero sum stochastic game in segment Sg.

Theorem 7.6 The linear approzimation of optimal stationary policies of the
retatlers forms an e-equilibrium for the non-zero sum stochastic game in segment

Sg, where € <

4B%(P—c—d—2) max{2)\N(1—)\N)3,(1—)\N)3(1—)\A+)\N),)\i(1—)\A),2)\A(l—)\A)3}
1-p

Proof: Refer to section 7.5.7. O.

7.3.3 Segments Partially Affected by Privacy Constraints

In this section, we study the equilibrium of the competition in segment S3. In this

segment, the optimal policies of both retailers are independent of the discount factor 5,

and the privacy sensitivity parameters A4 and A\ny. However, the discounted rewards

of retailer A are affected by these parameters.

1. Coupon Targeting Competition in Segment S3: In segment Ss, if con-
sumers are in the non-alerted state about retailer B, they have weak preference
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Figure 27: Stationary distribution of stochastic game at Sy for different A4. Note that
as A4 increases which means alerted consumers are less likely to transit to non-alerted
state, all consumers end up being at group S4B,

for retailer A. Otherwise, they have strong preference for retailer A. In other
words, in this segment, if consumers get alerted about retailer B, they will

purchase from retailer A in all circumstances.

Following the result of theorem 7.1, it is known that in a one-step game (one pe-
riod), retailer B has a reward equal to zero at all the states (groups). Moreover,
at the (Nash) equilibrium of a one-step game, none of the retailers are willing to
distribute a targeted coupon in states S, and S48, However, retailer A, and B
distribute targeted coupons over the consumers at states S, and S4 with prob-

ability %, and Id;:f:, respectively. In the following theorem, we prove that

the above results hold for the infinite horizon stochastic game at segment Ss.
We note that the infinite horizon stochastic game can be solved by finding the
equilibrium of four bimatrix game for each state. The bimatrix game for state
S is represented in table 13 and 14. In these tables, each element includes two
parts: 1) instantaneous reward and 2) discounted reward to go. For example, if
both retailers distribute targeted coupon over consumers in group S. Retailer

A receives an instantaneous reward P — ¢ — d — z and discounted reward to go

B ees P(s|S, T, T)Va(s).
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Va(S) Targeting Not Targeting

Targeting P —c—d -2 +| (P —c —d - z) +
/82368 P(S‘S7T7T)VA(S) /82368 P(5|S7T7 UT)VA(S)

Not Target- | 8 s P(s|S,UT, T)Va(s)| (P - c) +

ing B es P(s|S,UT, UT)Va(S)

Table 13: Reward of retailer A in the bimatrix game of segment S3 in state S (group
S). The reward includes two parts: 1)an instantaneous reward 2) a reward to go. For
example, if both retailers distribute a targeted coupon over consumers in group 1.
Retailer A receives an instantaneous reward P — ¢ —d — z and a discounted reward to
g0 B ses P(s|S,T,T)Va(s). Rows, and columns corresponds to actions of retailer
A, and retailer B, respectively.

VB(S) Targeting Not Targeting

Targeting —z + | B ses P(s|S, T, UT)Vg(s)
/8 Zses P(S|S’ T, T)VB(S)

Not Target- | (P — ¢ — d — 2) + | B> ,csP(s|S,UT,UT)Vp(9)

ing B s P(s|S,UT, T)Vp(s)

Table 14: Reward of retailer B in the bimatrix game of segment Ss in state S (group
S).

Theorem 7.7 The optimal policy of each retailer in the infinite horizon game

mn segment Sz will be as follows:

*_[P—c—d—z P—c—d—=z 0]

TP T —d 0 T P—c—d

.  d+z d+z

ﬂ-B_[P—C’ "P_¢’ 0] (83)

Moreover, the discounted reward of retailer B, in this case will be zero, ie for

i=1,--,4: V(i) =0

Proof: We prove this theorem by induction, i.e., we prove that if the results
hold for the case of a finite horizon with N horizons left, it will also hold for the

case where N + 1 horizons are left. For details of proof refer to section 7.5.801.

7.4 Numerical Results

In this section, we present our numerical result for segments Sy and Sg. In our numer-

ical results, we derived optimal policies and discounted rewards by value evaluation

and policy iteration method. All the numerical results are derived with parameters:

P=1,c=0,d=0.2,2=0.1,A\y = 1/3, and A4 = 2/3. In Figure 25, we present the

optimal policies of each retailer in segment Sy as a function of 8. Figure 25 shows
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Figure 28: Optimal policies of retailer A and retailer B in segment Sg are shown by
solid lines while the linear approximations are shown by dotted lines.

that the optimal policy of retailer A is independent of 5. The optimal discounted
rewards of retailer A and retailer B in segment Sy are shown in figure 26, where it
shows that retailer B has reward equal to zero for all values of 5. Moreover, we show
that V;(SP) > Vi(S) > Vi(S4) = V;(SAP) holds for all the values of 3. In figure
27, we present the stationary distribution of consumers on four groups of segment Sy
as a function of A4. As Aq — 1, all consumers go to group S4Z. The reason for this
is that as A4 increases, privacy alerted consumers are less likely to transit to a non-
alerted state. Therefore, in the Markov Chain of this game at the equilibrium, state
SAB is the terminating state, whereas there is a nonzero probability to transit from
other groups to SAZ. Consequently, at the stationary distribution, all consumers will
be at S4B, in other words, S4B is an absorbing state.

In figure 28, we present the optimal policies for both retailers, shown as solid lines.
This is derived by policy iteration. The dotted lines represents the linear approxima-
tion of policies derived by Taylor expansion around 5 = 0. In figure 29, we compare
the performance of optimal and suboptimal policies in terms of the discounted rewards
of retailers.

In Figure 30, we present the policies of retailers in segment Sg as function of A 4.
In group S, retailer A becomes more conservative as A4 increases which is intuitive as
it knows that if consumers get alerted about it, retailer A is less likely gain back their
trust. In group S#, as A4 increases, retailer A’s probability of sending a targeted

coupon increases. The primary reason for this phenomenon is that retailer B is
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Figure 29: Optimal normalized discounted rewards of retailer A and retailer B in
segment Sg (solid lines) and the suboptimal rewards by linear approximations (dotted
lines). As it is seen the difference is negligible.

"pushing" retailer A to send a targeted coupon by being more offensive.

In Figure 33, the discounted reward of retailers are plotted as a function of Ay.
As Ay increases, i.e., the degree of privacy sensitivity of the market decreases, the
reward of firm B decreases which proves the fact that privacy sensitivity of the market

is in favor of the rival retailer.

7.5 Proofs

Through proofs of some of the theorems in this section, we can solve the competition
for the finite horizon case and then, using these results, we prove the desired results for
the infinite case. In this appendix, V¥ y(s) denotes the optimal discounted reward
of player X where N periods are left. mx n denotes the policy of player X where
N periods are left (Note that this policy is a function of N and is not necessarily

VN7 (s) denotes the discounted reward of player X, when the current

stationary).
state of the game is s, N periods are left, and player A and B have policies m4 and

mpg, respectively.

7.5.1 Proof of Lemma 7.2

We prove this fact by induction. Let’s first consider the finite horizon problem. Let’s
consider two states a = [ag, agn, aga, agas] and o/ = [y, Ay, Alga, Algap]. We will
prove that optimal action probabilities for the retailers in state a are indeed optimal

in state o as well. Let’s assume that (7% (), 75 (), and (7% (a/), 75(c/)) are the
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Figure 30: Policy of retailers as a function of A4 ins segment Sg. Note that 5 = 0.9.

optimal pair of action probabilities for « and o/, respectively. The terminating reward

of each of the players at group j will be as follows:

Viel@)=) ai Y >

ol an)mH o(a, as)ra(i, ar, az)

€S al E{T,NT} aQE{T,NT}
VE,O(O‘) = Zai Z E 77.21,0(05’al)ﬂ-g,O(a’QQ)rB(i’al’QQ)
€S a1€{T,NT} ane{T,NT}

Let’s assume player A changes his action probabilities in group S to 711’25 (o). As

(% (a), 75 () is the optimal action probabilities for state c, the following holds:

IILTEDSENDY

aiWXo(a,al)W*Bio(aaaz)TA(iaal,@) >

€S a &{T,NT} aze{T,NT}
a1 Z Z WXO(OL/,(11)71'*380(04,(12)7"14(1,(11,&2) +

a1€{T,NT} ap€{T,NT}

IS

i€S—{S} @ €{T\NT}axe{T,NT}

mho(a, a1) g (o, az)r a iy a1, az)

Consequently, we have

2.2

a1 €{T,NT} aoe{T,NT}

IR

a1€{T,NT} aoe{T,NT}

a o (a, an)m o (e, a2)ra(l, a1, a2) >

al (e, a1) T (c, az)ra(l, ar, az)
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Figure 31: Discounted rewards of retailers as a function of A4 ins segment Sg. Note
that 8 =0.9.

which results in:

Yy S (e (e az)ra(l, a, ) >
a1 E{T,NT} aoc{T,NT'}
0/1 Z Z szl%(a/’al)W*B%(aaaQ)rA(laal7a2) (84)

a1€{T,NT} aoe{T,NT}

By applying the same procedures for other groups and player 2, it is straightforward
to show that the following holds:

YA (1) 5 A THE) ()

A0 A0
Vgg,(a)mg () (o) > Vgg,(a)mg (o)) (@)

The immediate result of above equations is that (7% (), 7} () derives equilibrium
for the state o/. Now, let’s consider that for N — 1, the optimal action probabilities

of retailers are independent of o and have the following structures:

S
K
S

3
o
E
o

Vin-1(a) = [as, ags, aga, aSAB]T

Q

E
% 3% o * g%

B K K s K s K
N N N N N N N
Q

S
e R N TN N N
N E
N N e N e N N
S
N E
N N e N N N N
N N N N S N N N

S
S
E
S

V§7N_1(a) = [ag,aSB,aSA,aSAB]T (85)

3
Q
Q

E

3
h N S N

Q

E
e

Q
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Figure 32: Policy of retailers as a function of Ay ins segment Sg. Note that § = 0.9.

Then, by induction, we will prove the same properties holds for the N period problem.

The optimal reward of retailer A if N time steps are remaining will be as follows:

Vin@ =Y a; Y > whila,a)mig(a,a2)(ralisan,a2) +

€S a1 E{T,NT} aQE{T,NT}

4
D [Py ® Poylig filwi(a), (),
k=1

where [T); 1, is the element on the jth row and kth column of matrix T.
Let’s assume that player A changes his action probabilities in group one to 712“417 y(@)

and then, the following will be derived:

4

o Y > winoalesa) T (e a2)(rali;an,a) + )
a1 €{T,NT} axe{T,NT} k=1

[Pay ® PayJinfi(mi(@), 7)) > of ) > winoale)a)

a1 €{T,NT} aoe{T,NT}

4
Tin-1(,a2)(ra(isar, az2) + ) [Pay @ Paglinfi(mh(a), 7 (),
k=1

By applying the same procedure for each group and player B, It is straightforward to

check that (77 y(a), 75 y(@)) is an equilibrium for state . 0.
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Figure 33: Discounted rewards of retailers as a function of Ay ins segment Sg. Note
that 8 =0.9.

7.5.2 Proof of Theorem 7.3
Let’s start with the finite horizon case. We claim that for N—period finite horizon
game, the reward and policies of retailer A, and B will be as follows:

1— ,BN_H

1-p

1— ,BN_H

Vin=I[P-c—d-2) 5
VE,N:[O"" 70]

N P—c—d—=z P—c—d—=z
Nl T P

. d+z d+z
WB’N:[P—c—d—z"“’P—c—d—z]

),---,(P—c—d—z) )]

(86)

It is straightforward to check that above condition holds for the terminating state,
where N = 0. We will prove that if the above policies are optimal for the case where
N —1 periods are left, it will also be optimal for N —period horizon case. The bimatrix
game when N periods are left is the same in all four groups and is shown in table
4. In the equilibrium point, the optimal policy of retailer A is achieved when it is

indifferent between sending and not sending a targeted coupon. Consequently,

_ AN
7T*B7N(z')(P—c—d—z+,3(P—c—d—z)11_ﬁﬁ)+(1—7T*B7N(z'))(P—c—d—z
_ BN _ AN
48P — e = d = )T = mp (AP - e d =)L) +
1-p~

(I =7pNE)(P—c+B(P—c—d—2) ) (87)

1-p
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VB(S) Targeting Not Targeting
Targeting —z+8x0 0+/5x0

Not Target- | P—c—d—2z+4+ %0 0+5x0
ing

Table 15: Bimatrix Game of Segment Sy in Groups S, S4, and S4B, (Finite Horizon)
which results in 7T*B7 N = %. Similarly, at the equilibrium point retailer B is
indifferent between sending and not sending targeted coupon results in the following

equilibrium condition:

man(D)(=2) + (1 —my (@) (P —c—d—2)=0 (88)

Thus, the optimal policy of retailer B is 7 (i) = ngi;f;z. By substituting 77 (i)

and 7} n(¢) in the bimatrix game rewards, the desired result for discounted rewards

V;;N and V&N is derived. .

7.5.3 Proof of Theorem 7.5

First, let’s derive the optimal policy of retailer A, and optimal discounted reward
of retailer B using backward induction. Considering the finite horizon game, at the
terminating step, it is straightforward to check that retailer B has zero reward in
all states. Moreover, at the terminating step, retailer A does not distribute targeted
coupons in state S? and distributes targeted coupons in the other states with proba-
bility %. Now, if we assume that these conditions hold for the game when N —1
horizons are left, we just need to prove the same conditions hold for the case where N
horizons are left. The rewards of retailer B in group S, S4, and S4B is shown in table
15. Solving the bimatrix game for N horizon problem results in mix policy of retailer
A equal to % for states {S,S4, S4B} which is derived by neutrality of retailer
B on sending or not sending targeted coupon. The reward of retailer B in group S® is
represented in table 16. In this group, both the retailers are not willing to distribute
targeted coupon as they cannot improve their reward by changing their strategies.
Thus, in group S of segment Sy, none of the retailers distributes targeted coupons.
By substituting the derived policies of retailers and the fact that at equilibrium of
this game player B will be in different of sending or not sending targeted coupon, we
derive that retailer B has zero reward for N horizon stochastic game. As the results
holds for all N, it also holds for infinite case, where N — oo.

Now, let’s prove the rest of theorem in two steps:
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VZ(SP) Targeting Not Targeting
Targeting —z+8x0 0+/5x0

Not Target- | —z+ 5 x 0 0+/5x0

ing

Table 16: Bimatrix Game of Segment Sy in Group SZ. (Finite Horizon)

1. Optimal discounted reward at group S“ and S“4Z Let’s assume that
Vi (S4) and V;(SAP) are independent of A4 and Ay. Let’s consider the fixed point

SAB

equation for group when Ay = Ag = 1. As in the equilibrium point, the reward

of retailer A at first row and second row of bimatrix game represented in table 8 are

equivalent, the following holds:

Vi(SABY = 75(SAPY(P — ¢ —d — 2 + BVE(SAP)) +
(1= 7R(SAP)(P —c—d — z + BV;(S*P)) (89)

which results in V3 (S AB) = P_ff_g_z. Similarly, we can write the fixed point equation
for group S4, and considering the fact that at equilibrium point reward of first row

and second row of bimatrix game represented at table 7, the following holds:

Vi(Sh) = (S (P —c—d— 2+ BVi(S?) +
(1=75(SN)(P —c—d—z+BVi(Sh) (90)
which results in V;(S4) = P‘ff_g_z. Now, we prove our primary assumption that

Vi (S4) and V(SAP) are independent of A4 and Ay holds and the derived discounted

reward for group S* and S4B satisfy fixed point equation of both groups for any A4

and A\y. The following are fixed point equations for group S and S4B,
Vi($h) = mp(SN(P — c—d — 2+ BOWVI(SY) + (1= Aw)VA(S47)) +
(1 =75(SN)(P—c—d —Z+ﬁVA(SA)) (91)

Vi(SAP) = n5(SABY(P — ¢ —d — 2 + BV (S4P)) +
(1 —7R(SAE)(P —c—d— 2+ BAAVE(S?P) + (1 — Aa)Vi(S™)) (92)

It is straightforward to check that the above equations hold if V;(S4) = V;(SAP) =

P_ff_g_z. Thus, our assumption is verified.

2. Optimal discounted reward at group S and S” Now, let’s consider the

fixed point equation at group SP, where both retailers have pure stationary policies
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75 (SP) = m5(88) = 0. Fixed point equation of group S® result in following;
VA(SP) = P —c+ BAAVA(ST) + (1 = Aa)Vi(9)) (93)

Consequently,

*xaBY __ P—c /8(1_>\A) *
Vi(S®) = {5 + T Vi(S) (94

The fixed point equation of group S is as follows:

Vi(S) = m5(S)(BANVA(S) + (1 = AN)VA(SP))) + (1 = 75(9)) (P — ¢ + BVA(S)) (95)

By rearranging equation (95) and using equation (94), we will have the following

equation:
B(d+2)(1-An)—(P—c—d—2)(1—BAa) |, (1-B)(1—BAa) 14
75(S) = (d+2) +] B—fw—T+80a 5w 1rpaa VAS)] (96)

AN (1=B8)+B(1-A *
(P =)+ (1 - pAa) G2y s)

Combining equations (96),(?? ) and V}(S4) = Vi (S48) = P_f__g_z, we have the

following:

-4 —An)

(1=B)[(1 = BAa)(1 = BAN) — B2(1 = An)?]
(1= BAN)[B(1 = An) = (1 = BA4)] (P—c—d—2)
(1=B)[(1 = BAa)(1 = BAN) — B2(1 = An)?]

And substituting the above in (94), we have

cgiy — (L= B[ = BA)(L = BAN) + (L= An) O = Al
Vi) = T B i i = =) - Pa ] &9
B~ A)(1— BAN)IB(1 — Aw) — (1 — BA)]

(1=8)1 = BAN[A = BAL)(A = BAN) — B2(1 = An)?]

Vai(s) =

(P —¢) -

(P—c—d—2) (97)

0.

110



7.5.4 Optimal Policies of Firm B in Segment S,

Corollary 7.7.1 The optimal policy of retailer B in segment Sq will be as follows:

1-An)2
@)+ B rman e (d 2)

TB\W) = {a A 2(1— B2 [B1—n)—(1—Bra)]
(P —o)+ By = ﬁA]X (T=B5a) (1= Bam) = (T (4 + 2)

5(8P) =0

1-24)(1—=X
(d+2) + B e At o @+ 2)

(P =)+ B St o (4 +2)
(545 = (d+2) + 18 g s P ] N
(P~ ) + B AN ATy (4 2)
Bt e + 2)
(P~ o) + B A A e (4 2)

Proof: The results of corollary are direct results of Theorem 7.5. .

mp(54) =

7.5.5 Optimal Policies of Retailers in Segment Sg
4 P —c—d+B(1—Ay)*(V5(SP) = VE(S) + VE® = VE(S4P))
d+ 2+ B(1—Av)(1 = M) (VA(S) - VA(S™H)

"B(50) = B BRI = A= V(5] — Vi(5T) T VA(S™) —Vi(SP)
. 81— Aw)Aa(VE(SP) - Vi(SB))

P et B0 ) (L= A (Vi(5) — Vi(5H) + V3 (57%) ~Vi(SP))

*(SB)_ P—c—d _Z+/B(1 )\A)( (S) VB(SB))
AT P e d+ B =)L = M) (VE(SB) — VA(S) + Vi(54) — V(SAB))
e P —c—d—z+ Bl — A)(Vi(S4) - Vi(S)

B = e T B =)A= AV — V3 (8) + V3 (55) — V(575))
a5 A 2+ 81— )L = A)(V(S) = Vis(5P))

AT = P B a0 A (V58] — V5(SB) 1 V5(SAB) V(5D
. 81— Aw)Aa(VE(S4) - Via(5°8))

P ot B0 =) (= A)(V3(5) — VA(SP) + V3(57P) —Vi(5™))

d+z+ B(1—Aa)2(Vi(S) — Vi(S4))
P —c+B(1=Aa)*(Vi(S) = Vi(S4) + Vi(S4P) = Vi(SP))
B = A)Aa(VE(SP) — Vi(S4P))
P —c+ B(1—Xa)2(Vi(S) — Vi(SA) 4+ Vi(S4B) — Vi(SB))
P—c—d—2z+B(1—Xa)2(VE(SP) = VE(9))
P —c—d+ (1 - ) (VE(SB) = VE(S) + VE(S4) — VE(S48))
N BAA(L = Aa) (VEE(S4P) — Vi(S7))
P—c—d+B(1—Aa)2(VE(SB) — VA(S) + Vi (S4A) — V5(SAB))
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TH(S1P) =

+

mA(S8) =




7.5.6 Linear Approximation of Policies in Sg

S .5 s P—-c—d—=z (P—c—d—2)%(1—-\n)?
= BB =gt ot

d P—c—d—2)1-An)(P—c—d— An(d
93=g§+ﬁgf=PtZ+ﬂ( ‘ o) ](V])g(_c)zc P Aldr )
$B 5B 8 P—c—d—=z (P—c—d—2)%(1 - An)(1—Xa)
=5 +B8 = P_c_d -p (P—c—ap
B B B d P—c—d—2)>21-=Ay)(1-X
9% =495 + Byl ZPJ:ZJrﬁ( - (2£C)2 W= Aa)
A A A
ﬁ(P—c—d—z)(l—)\N)()\A(P—c—d—z)+(d+z))

(P—cp

A A A4 P—-c—d-
o =l e = T

(P—c—d—2)1—=Xa)(z+AN(P—c—d—2z))

B

(P —c—d)?
SAB_ SAB SAB_P—C—d—Z_
o= +B8A = T pP_c_d
ﬂ(P—c—d—z)(l—)\A)(P—c—d—z—l—z)\,q)
(P—c—d)?
SAB _ gAB gaB _ d+2z (P—c—d—z)z(l—)\A)2
g =90 + 91 _P—C—’_B (P—C)2 (98)
7.5.7 Proof of Theorem 7.6
Consider the 16-dimensional vector defined as follows:
Z = (VAvayﬂ-Ayﬂ-B)y (99)

where Vo = (Va(S),-+,Va(847)), Vg = (VB(S), --- , Va(SP)), ma = (ma(S),
-, mA(SAB)), mp = (7B(9), ---, m(S4P)). Then, the equilibrium of non-zero
sum stochastic game at segment Sg can be found by solving the following nonlinear

programming:

U :min f(z) = Z 17(Vx — rx(ma,m5) — BP(ma,7B)Vx)

Xe{A,B}
subject to:
Vs €S Ra(s) ( ) ffr(;zs) > BT (s, V) < 1 iBﬂ(gis) > < Vily

Vs e S: ( wa(s) 1—ma(s) )RB(S) —I-ﬂ( ma(s) 1—ma(s) )T(SaVB) < Vélg
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where VX € {4, B} : Rx(s) = [rx(s,a,a®)],4 .z and T(s, Vx)s are 2 x 2 matrices
such that the elements of each matrix is the same as reward to go of bimatrix games

of tables 9 10 11 12. For example, T'(S, V4) will be as follows:

T(S,Va) =

AZVa(S) + AN = AN)(VA(SE) + Va(S™) + (1 = An)2VA(SAE))  (ANVa(S) + (1 — AN)IVA(S™)
ANVA(S) + (1 = AN)Va(SB)) Va(S)

The solution of nonlinear optimization problem W is the equilibrium of the non-zero
sum stochastic game of segment Sg [99]. Moreover, at the optimum solution z*,
f(z*) = 0 and all the inequalities in nonlinear optimization problem W hold with
equality.

In order to prove this theorem, we first refer to the follwoing result from [99].

Corollary 7.7.2 Let % be a feasible solution for problem W, then, the (74, 7B) of Z

forms an e-equilibrium with € < {(ng

By fixing the policies by the linear approximations given in equations (98), the

nonlinear optimization problem W will be transformed to the following linear pro-

gramming:
P : mi = r - -
Jnin K(2) > 15(Vx —rx(f,9) — BP(f,9)Vx)
Xe{A,B}
subject to:

S S

Vs €S : Ru(s) < . fgs > + BT(s,Va) ( 1{98 > <Vil, (100)
VseS:( f) 1—f*)Ru(s)+B( f* 1—f*)T(s,Vp) < V41T, (101)
where f = (f°,--- ,fSAB) and g = (¢%,--- ,gSAB)T. This optimization problem
has 16 linear constraints such that each pair involves one column or one row of bi-

gS
~ g8 > +BT(S,Va)

matrix game at each state. For example constraint R4(S) ( 1

( 1 gSgS > < Va(S5)12 includes two constraints corresponding the rows of bimatrix
game at state 1. By substituting R4(S) and T'(S,Vy), inequalities simplify to the
followings:
FY(Va, Vi, f.9) = (P — ¢ —d— 2) + Va(S)(BAXg" + BAn(1 - ¢°) — 1)
+Va(SP)(BAN (L = An)g) +
Va(SH(BAN (L = An)g” + B(1 = An(1 = ¢%))) + Va($47)B(1 = An)* <0
F3(Va, Vi, f.9) = (1= ¢%)(P = ¢) + Va(S)(BAng' + (1 = ¢°) = 1) +

Va(S?)(B(1 - An)g®) <0
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We not that the objective function of ® can be written in terms of FZ] as follows:

w(z) = = S O(F + (1= [)E) = Y (4Gl + (1 - )Gh) (102)
€S €S

By deriving the dual of linear programming ®, and considering complementary slack-
ness, one can check that one of the pairs of inequalities F¥ or Fi should hold with
equality while the other one will be hold with strict inequality. It can be shown
that there exists a threshold (51¢ such that for g < B9, the first inequality of state
1 holds with equality and the second one holds with strict inequality, i.e, Fls =0
and Fy < 0. By multiplying F¥ with Ay and subtracting F{¥ * Ay from Fj (note
that I * Ay = 0 ), and using the fact that Va(S),--- ,Va(S4P) < P_ff_g_z, we can
bound F§ x (1 — f%) as follows:

—FP x (1= %) <262Av1 = AN (P —c—d—2) (103)

By performing the same procedure for other states and retailer B, and for different
amount of 3 (note that for 8 > B9, the second inequality will hold with equality and

first one with strict inequality), one can verify that:

k(z) < 4p*(P 1—_c;d—z)

max{2Ax (1 — An)%, (1 = An)2(1 = A4+ An), M4 (1 — Aa),224(1 — Aa)?}

7.5.8 Proof of Theorem 7.7

We prove this theorem by induction on remaining time steps. The solution to the
game played in the final period should be identical to the one step described in Section

7.1, expressed as follows:

P—c—d—=z P—c—d—=z

* — O

a0 = | P—-c—d ' 57 P-c—d’ ]

. d+z d+z

TBo = [P—C’ P _ ¢ 0] (104)

Moreover, the discounted reward of retailer B is zero in the final period. Now, we
prove that if the conditions of the theorem hold for N-1 steps remaining, it should hold
of N steps remain as well. At the equilibrium of the game, retailer A will be indifferent

between sending or not sending targeted coupon, i.e. the rewards for sending and not
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sending targeted coupon should be equal. Consequently,

TN (S T(P—c—d—z2)+8Y Ps|S,T,T)Vin_1(s)] + (1 -

seES
TN (S TP —c—d—2)+ ) P(s[S,T,UT)Vi y_1(s)] = 755 (S, T)]
seS
B P(s|S,UT, T)Vi n_1(s)|(1 = 75 1 (S, T)[(P =) +
seS
Z P(s|S,UT, UT)Vx n_1(5)]
seES

We note that Vi y_1(S) = Vi y_1(S4) and Vi y_1(S?) = Vi y_,(S4F). Similarly,
retailer B will be indifferent between sending and not sending targeted coupon which

results in the following

TaN(ST)(=2) + (1 =y y(S, TP —c—d—2)] =
man (S, T)(0) + (1 =) §(S,T)(0)

Solving equations in (105) and (105) derives the optimal policies of both retailers:

d+z N P—c—d—=z
o wdmanST)=—F—7

NS T) = (105)

It is straightforward to check that the same policies holds at state S, in the equi-
librium point. However, in S® and S4Z, the equilibrium results in pure strategy of
not distributing coupons. The proof i s completed by verifying that Vg n(s) = 0 by

substituting 7% » and 7 5 in the corresponding bimatrix game. 0.
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8 Conclusion and Future Works

In this dissertation, we investigated privacy preserving mechanisms and tradeoffs
between privacy and utilities in dynamical systems and networks. We studied three
topics of packet source anonymity in mix networks, source-destination anonymity in
Tor like networks, and differential privacy in stochastic control and routing.

In the first topic, we considered the problem of optimal routing in mix network.
Our approach used extreme traffic conditions to derive key inferences about routing
to maximize the delay anonymity tradeoff. Delay is a specific utility criterion that is
impacted by mixing strategies for anonymity. One of the main reasons for using delay
as a utility criterion is that, in commercial anonymous systems, strategies such as
mixing are not considered primarily due to increased delay. The analysis presented in
this dissertation is a first step to alleviating that concern and providing a mechanism
to include shuffling and batching strategies whilst maintaining latency constraints.
Other utilities such as Memory utilization, fairness, congestion are also impacted to
a certain extent, and we believe that the formal approach we presented here can be
expanded to study those relationships as well.

In the second topic, we presented a relay selection and control framework to thwart
an omniscient eavesdropper who uses timing analysis to reveal the source-destination
pairs communicating in an anonymous network. The omniscient eavesdropper as
modeled in this work is admittedly a conservative assumption and would likely apply
to powerful organizations such as nation states. Practical eavesdroppers would likely
monitor a fraction of the links. The performance of our algorithms are guaranteed
against such an eavesdropper as well but may not be optimal. While the work pro-
posed here focuses on a specific topological structure, our analytical approach can be
extended to other topologies as well albeit with higher computational complexity. For
instance, in a network with |Mg| entry guards, |M /| intermediate nodes, and |Mg|
exit guards, the anonymity calculation will require |[Mg|(|Mar|+[Mar| x (|[Mg|—1))
variables and summations.

In the third topic of this dissertation, we studied the problem of control policy
design for Markov Decision Processes (MDPs) under differential privacy constraints.
The key takeaway from the work is the proposed value iteration methodology that
derived optimal inference resistant policies for a pair of MDPs. Our approach is easily
extended to more than two hypotheses. The choice of € is a key design aspect which

should depend on the perceived length of time the system is likely to be monitored
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by the adversary. Setting epsilon to zero would guarantee perfect privacy in that the
observed state dynamics would be identical for both MDPs, albeit at a significant cost
in total rewards obtained. We also studied an application of the proposed framework
in routing problems in data collection networks. The key assumption in the problem
of routing under differential constraints was knowledge of the set D which is the set
of destinations chosen to provide privacy. In a broader context, the choice of the set
alongside the optimization in this work would provide a comprehensive solution to
private routing. An interesting direction moving forward would be to apply this idea
in the context of reinforcement learning wherein the agent has to explore and exploit
to maximize his reward with the added caveat that an adversary is unable to identify
the type of MDP.

In the last topic of this dissertation, we studied the effect of consumers’ privacy
awareness in retail competition. Specifically, we studied the competition between two
retailers who sell the same product with the same price and marginal cost in a privacy
sensitive market. We modeled a privacy sensitive market by a Hoteling line where
consumers switch between alerted and non-alerted states about each retailer. We
derived optimal policies of each retailer at each segment of Hoteling line by solving
the fixed point equations of non-zero sum stochastic games at each segment. We
demonstrated that despite price sensitive market, in a privacy sensitive market, the
popular retailer will be more conservative sending targeted coupons to consumers
with weak preference for him, as they may notice privacy violations by this retailer
and stop purchasing from him. We proved that privacy sensitivity of the market is
in the favor of rival retailer, in other words, as the popular retailer is less defensive,
the rival retailer can increase his profit by being more offensive.

We propose investigating targeting coupon for asymmetric prices and coupon val-
ues for each retailer. Moreover, one may consider a two steps competition where in
the first step of the game, each retailer sets his price an coupon value and in the sec-
ond step of the game, there is an infinite horizon competition between the retailers.
Another interesting work will be the one where each retailer can change their prices
and coupon value. However, such a competition will be more complicated as it will

constantly change the market segmentation.
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