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ABSTRACT 

Goal-Driven Autonomy (GDA) is an online planning framework that focuses on 

the integration of planning, execution and goal reasoning. Given a goal, a GDA agent 

generates a plan to pursue the goal.  In addition, by using its expectations, the agent 

reasons about what the next observed state should be when the plan’s actions are 

executed.  If the expectation does not match the observed state, the GDA agent is able 

to suggest a new goal to be pursued. 

In most GDA research, knowledge is handcrafted and later fed into the GDA agent 

by humans who are experts in a particular problem domain.  Therefore, in this 

dissertation, we would like to investigate about how we can create GDA agents that 

have abilities to acquire knowledge by themselves and reuse that knowledge.  The 

problem domains we focus are real-time strategy (RTS) games.  We used two RTS 

games called DOM game and Wargus. We used Reinforcement Learning because it is 

an unsupervised learning method and we want our GDA agents to be autonomous.   

Our research went through multiple steps. First, we built a GDA agent without 

integration of any learning methods.  Later, we incrementally integrated learning 

methods to each component in the GDA architecture until we build a GDA agent that 
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could learn knowledge for all components. The experimental results show that we can 

create GDA agents that have the ability to acquire GDA knowledge by themselves. 
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CHAPTER 1  
INTRODUCTION 

It is not the strongest of the species that survives, nor the most 

intelligent, but the one most responsive to change. 

― Charles Darwin 

1.1 Prolog 

In everyday life, living creatures face problems and try to overcome those 

problems.  There are several methods to solve problems.  In nature, living creatures 

mostly use the method called trial-and-error by repeating actions until success is 

achieved, or else they stop trying (Radnitzky, et al., 1993).  In addition, creatures that 

can remember which experiences ensure their survival have another method to solve 

problems.  They have ability to learn. Learning is one of the most natural methods that 

living creatures use for survival. 

Research in artificial intelligence (AI) and specifically machine learning can 

enable computers to solve problems by themselves.  Living creatures such as humans 

can learn directly from the environment around them.  A little child may touch a hot 
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stove and then learn by himself without anyone telling him not to touch it again 

(Figure 1.1).  Reinforcement learning (RL) agents can also adapt to a new 

environment. RL is a learning approach that learns how to map situations to actions, 

so as to maximize a numerical reward signal (Sutton, et al., 1998).  RL agents learn 

naturally by interacting directly with their environment and observing the outcome.  

However, RL agents need a large memory space; they need a memory the size of the 

state-action space for the particular problem domain (Si, et al., 2012).  In complex 

environments such as a real-time battle strategy team-based game, the state-action 

space is exponentially large according to the number of states and actions (Jaidee, et 

al., 2013; Weber, et al., 2010). Conventional RL methods alone are not practical 

enough to handle complex problems.  Therefore, we need some new model of a 

learning method. 

 

Figure 1.1: No one needs to tell the boy why he should not touch a hot stove again. 

(The figure is retrieved from (One Crafty Mother, 2010)). 

In some situations we do not learn from experience.  Actually, some things that are 

dangerous, harmful, or life-threatening, we should never learn by trying and observing 
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the result by ourselves.  For example, smoking a cigarette is not regarded as healthy.  

We know because someone told us, or we read research connecting to the fact.  We do 

not need to really smoke a cigarette to know that is harmful (however, about sixty 

years ago, if your great-grandparents went to see a doctor, it is possible that the doctor 

may have recommended smoking more cigarettes.  At that time, people did not know 

the real effects of smoking.)  Similarly, computer agents can smartly perform tasks by 

following the rules already established by experts.  However, this kind of method is 

neither autonomous nor dynamic. 

In autonomous learning, an agent has to act and observe directly from its 

environment.  If agents can share what they learn, their learning speed will increase. 

For example, a delivery team needs to reschedule their work shifts.  Each one in the 

team who will drive on the new schedule should learn the best direction to drive from 

the previous drivers on the team who previously drove the route on the same day and 

time.  Learning from someone who works exactly in the same position and situation 

can help in saving a lot of time.  This is more efficient than trying to find the best 

driving direction from scratch every time the driver schedule changes. 

When the environment or situation around us changes, we must adapt in what we 

do in everyday life (and possibly we must learn more).  Imagine a situation where a 

person always takes a bus of the same line daily to go to the office.  The person hears 

on the morning news that there was an accident on the road used by the bus line.  

Because the person is aware of the heavy traffic that may occur as a result of the 

accident, he will need to plan some new ways to go to his office.  How AI agents 
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would be able to do this?  What will the agent do?  In other words, can we build an 

agent that can independently make these decisions? 

It may take a while for Reinforcement Learning agents before they can adapt to 

changing environments.  This long adaptation period is due, in a large part, to the RL 

exploration phase, in which an agent must almost blindly uses trial-and-error to test 

new actions and develop a policy to maximize its expected future rewards. 

1.2 Goal-Driven Autonomy 

As mentioned in the previous section, when the environment or situation changes 

dramatically, some type of learning agents such as reinforcement learning agents can 

take a long period of time before they can learn to adapt.  To overcome this issue, we 

study Goal-Driven Autonomy with the integration of learning methods.  Instead of 

having only one plan for all kinds of situation, Goal-Driven Autonomy uses a 

collection of plans to pursue different goals that are designed to handle different 

situations. 

Goal-Driven Autonomy is an online planning framework that focuses on the 

integration of planning, execution and goal reasoning.  Given a goal, a GDA agent 

generates a plan (i.e., a sequences of actions) to pursue the goal.  The agent also 

reasons with expectations about what the state should be when the plan is executed.  If 

expectation doesn’t match the state, the GDA agent will suggest a new goal to be 

pursued instead.   
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Figure 1.2: A simplified flow of Goal-Driven Autonomy 

Figure 1.2 shows the flow of Goal-Driven Autonomy. If some unexpected 

situation occurs, a discrepancy between the expected situation and actual situation will 

be computed by the Discrepancy Detector.  Next, an explanation is generated by the 

Explanation Generator.  After that, a new goal will be chosen from the Goal 

Formulator. The Goal Manager will be the one that executes the new goal. 

  

Goal
Manager

Goal
Formulator

Explanation 
Generator

explanation

goal

Discrepancy
Detector

discrepancy
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1.3 Research Question 

In most GDA research, knowledge is handcrafted by human experts in a problem 

domain. This knowledge is fed into the GDA agent.  For example, in HTNbots a 

collection of rules is given that maps for given discrepancies that may dictate what 

goal should be pursued next (Munoz-Avila, et al., 2010).  This knowledge may require 

a team of programmers and experts working together.  Hence, a lot of time and money 

could be invested to handcraft such knowledge. 

Unfortunately, human expertise is expensive and handcrafting such knowledge is 

time consuming. Therefore, we will study the following research question in this 

thesis: 

Can we create GDA agents that have the ability to acquire knowledge by 

themselves and reuse this knowledge? 

We are interested in studying this question in the context of complex 

environments. A complex environment has the following characteristics (Russell, et 

al., 2003): 

 Partially observable:  the information that agents observes from their 

environment is not complete.  There is some information that is hidden. 

 Stochastic:  the actions that agents taken can have multiple possible 

outcomes.  
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 Multiagent:  there are multiple agents interacting under the environment. 

1.4 Contributions 

The following is a summary of the scientific contributions of this dissertation to 

the state-of-the-art in integrated learning for Goal-Driven Autonomy (GDA) research: 

 First integration of Case Based Reasoning (CBR) and Goal-Driven 

Autonomy.  CB-GDA is the first GDA system that integrates case based 

reasoning. CB-GDA uses case-based planning techniques to formulate goals 

by deriving inferences from the game state and the agent’s expectations. 

 First GDA system to automatically learn state expectations.  LGDA is a 

GDA agent that automatically acquires knowledge by using a case based 

learning to map (state, action) pairs to a distribution over expected states, and 

(goal, discrepancy) pairs to a  value  distribution over discrepancy-resolution 

goals. It also uses a reinforcement learning method to learn the goals’ expected 

values. 

 First GDA system capable of learning and reusing goal-specific policies. 

Our GDA agent, named the Goal Reasoning Learner (GRL), integrates case 

based learning and reinforcement learning processes to learn and reuse goal-

specific action policies, state expectations, and goal selection knowledge.  
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 First learning agent that can learn multiple real-time strategy games 

managerial tasks.  CLASSQL and GDA-C are the first learning agent (and first 

GDA agent) that are capable of learning on 5 out of 6 managerial tasks
1
 (Table 

10-1) that are needed for creating automated players of real-time strategy 

games (Scott, 2002). 

1.5 Brief Overview of the Research 

Early in my research, we compared the performance of Goal-Driven Autonomy 

alone without integrating any learning methods to hand-coded AI engines crafted by 

human and a reinforcement learning agent.  Without integration of any learning 

methods, the four components shown in the Figure 1.2 are hand-coded by a human.  

Later in my research, we incrementally integrated learning methods to each 

component in the GDA flow.  Ours is the first GDA agent learns the main 

components. 

In our studies, the first system called GDA-HTNBots (Munoz-Avila, et al., 

2010) (see Section 4.2), reasons about the events occurring in its environment, 

changes its own goals in response to them, and replans to satisfy these changed goals. 

To do this, GDA-HTNbots constantly monitors its environment for unexpected 

changes and dynamically formulates a new goal when appropriate.  GDA-HTNbots is 

                                                           

 
1
 The resource task is the only one task that our agents do not learn because we 

built a simple algorithm to maintain equilibrium among resources.  Thus, the agents 

are not necessary to take time learn it. 
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a partial instantiation of GDA model, and present a limited empirical study of its 

performance. The results support our primary claim: agent performance in a team 

shooter domain with exogenous events can be improved through appropriate self-

selection of goals for some conditions (see Section 9.2). 

The system that was developed after the GDA-HTNBots is called CB-

GDA (Muñoz-Avila, et al.;, 2010), the first GDA system to employ case-based 

reasoning (CBR) methods (for more details, see Section 2.2).  CB-GDA uses two case 

bases to dynamically generate goals. The first case base relates goals with 

expectations, while the latter’s cases relate mismatches with (new) goals.   The 

empirical study of CB-GDA on the task of winning games was defined using a 

complex gaming environment called DOM which will mention more details and 

descriptions in Section 9.1.1. 

The study revealed that CB-GDA outperforms a rule-based variant of GDA 

when executed against a variety of opponents.  CB-GDA also outperforms a non-GDA 

replanning agent against the most difficult of these opponents and performs similarly 

against the easier ones. In direct matches, CB-GDA defeats both the rule based GDA 

system and the non-GDA replanner (for more details of the results, see Section 9.3). 

As for the third system, learning GDA (LGDA) was introduced (see more 

details in Section 6.2).  LGDA (Jaidee, et al., 2011) is a GDA algorithm that learns 

two types of cases from observed discrepancy resolution episodes: (1) expectation 

cases, which map state and action pairs to a distribution over expected states, and (2) 

goal formulation cases, which map goal-discrepancy pairs to a distribution of expected 
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values over discrepancy resolution goals. LGDA learns these through an integration of 

case-based reasoning (CBR) and reinforcement learning (RL) methods. It models goal 

formulation as an RL problem in which a goal’s value is estimated based on the 

expected future reward for achieving it. The claim of LGDA is that this integration can 

learn to perform as well as a non-learning GDA agent that employs expert knowledge, 

and can outperform GDA agents that use only CBR or RL. We report LGDA’s 

comparative evaluation on a task involving the control of a team in a domination video 

game (DOM).  The results show that LGDA outperforms most built-in hand-coded 

opponents (i.e., adversaries) and significantly outperforms its ablated versions.  

Finally, LGDA learns to perform almost as well as a non-learning GDA variant, 

whose case knowledge was hand-crafted by a domain expert such that it also 

significantly outperforms these adversaries (see Section 0). 

Next, we introduce GRL (Goal Reasoning Learner) (Jaidee, et al., 2012), a case-

based GDA agent (see more details in Section 7.1).  Unlike previous work integrating 

RL and CBR and work on GDA, GRL embeds GDA in an RL cycle by learning and 

reusing the three kinds of cases mentioned above. GRL is the first GDA agent capable 

of learning and reusing goal-specific policies. Our hypothesis is that, as a result of this 

capability, GRL can fine-tune strategies by exploiting the episodic knowledge 

captured in its cases. We report performance gains versus a state-of-the-art GDA agent 

and an RL agent for challenging tasks in two real-time gaming domains (see Section 

9.5). 
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A well-known limitation of RL is that given the large size of the action and state 

space, it is very difficult to use RL algorithms to control the full scope of real-time 

strategy games (Jaidee, et al., 2013; Weber, et al., 2010). The state contain a lot of data 

about the number of resources, detail information about each units of each classes of 

each teams, information about the map, etc. In the same way, the action-space of RTS 

game is also very huge.  The set of all possible action is composed of building various 

structures, upgrading structures, upgrading abilities of each classes, training units, 

attack some unit, harvest resources, etc.  In RL, its space is not just state-space or 

action-space, but state-action-space.  Therefore, without some add-on technique, 

reinforcement learning method alone is not practical for any experiments on real-time 

strategy games.  Therefore, before I built a GDA integrated with learning, I thought it 

was a better idea to investigate a method to handle the mentioned problems first. 

CLASSQL (Jaidee, et al., 2013) is a multi-agent model for playing real-time 

strategy games (see Section 8.1).  It was introduced to reduce the problem of space in 

RL for real-time strategy games.  Each agent models only part of the state and is 

responsible for a subset of the actions; thereby significantly reducing the memory 

requirement for learning. CLASSQL’s agents learn and act while performing the tasks 

performed by the managers discussed before. However, CLASSQL’s doesn’t 

implement these managers. Instead, each agent is responsible for learning and 

controlling one class of units (e.g., all footmen) or one class of buildings (e.g., 

barracks). There is no coordinator agent; coordination between these agents occurs as 
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a result of a common reward function shared by all agents and synergistic relations in 

a carefully crafted state and action model for each class.  

The last system that will be discuss in this thesis is GDA-C (Jaidee, et al., 2013), a 

partial GDA that divides the state and action space among multiple reinforcement 

learning (RL) agents, each of which acts and learns in the environment. Each RL agent 

performs decision making for all the units with a common set of actions. We will 

discuss more details about GDA-C in Section 8.2. 

All the systems that are mentioned previously are listed in Table 1-1 to show their 

capability and differences from other systems. 

Table 1-1: List of AI systems and their outstanding points of difference 

Systems Description Points of difference 

GDA-

HTNbots 

(Munoz-

Avila, et al., 

2010) 

  First system on a simple 
implementation of GDA (with an 

HTN planner and using SHOP for 

interpretation) and its demonstration 

on the simple DOM game 

environment.  

  Assume a lot of domain knowledge 
to be given by the user in the form of 

HTN syntax. 

 No learning 

 Using HTN & 
SHOP 

 Lot of handcrafted 
domain: HTNs and 

GDA elements 

CB-GDA 

(Munoz-

Avila, et al., 

2010) 

  The first investigation on case-based 
planning and GDA. 

 Calculate expectation dynamically 
depending on action. 

  The (pending) goals that used by 
Goal Manager and Goal Formulator 

is well planned by user. 

 Using CBR, but no 
learning. 

 Cases are given as 
input. 
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Systems Description Points of difference 

LGDA 

(Jaidee, et 

al., 2011) 

  An extension of CB-GDA that 

focuses on automated case 

acquisition.  

  Learning two types of cases: 
expectation cases and goal  

formulation  cases.   

  Experimented on two domains: 
DOM and Wargus. 

 Using RL & CBR 
to learn 

expectations & goal 

formulation cases. 

 Goals and policies 
are given as input 

GRL 

(Jaidee, et 

al., 2012) 

 An extension of LGDA that can learn 
all case bases: (Policy Case Base, 

Expectation Case Base, Goal 

Formulation Case Base).  

 All case bases can be empty at the 
first run. 

 GRL is the first 
system that can 

learn all case bases. 

(ICCBR 2012) 

CLASSQL 
(Jaidee, et 

al., 2013) 

 New RL algorithm for multiple 
agents.  

 Dividing the state and action space 
among cooperating learning agents 

 Each agent has its own q-table 

 Each agent’s unit has its own 
previous state, previous action, and 

previous reward for updating the q-

table of its class 

 CLASSQL is an RL 

that can play 

complete Wargus 

game 

GDA-C 

(Jaidee, et 

al., 2013) 

 A case-based goal reasoning 
algorithm built on top of CLASSQL. 

 Two interacting threads: CLASSQL 
and GDA. 

 GDA-C is the first 

case-based goal 

reasoning system 

that can play 

complete Wargus 

games. 
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CHAPTER 2  
BACKGROUND 

“The best thing for being sad,” replied Merlin, beginning to puff and 

blow, "is to learn something. That's the only thing that never fails. You 

may grow old and trembling in your anatomies, you may lie awake at 

night listening to the disorder of your veins, you may miss your only 

love, and you may see the world about you devastated by evil lunatics, 

or know your honor trampled in the sewers of baser minds. There is 

only one thing for it then — to learn. Learn why the world wags and 

what wags it. That is the only thing which the mind can never exhaust, 

never alienate, never be tortured by, never fear or distrust, and never 

dream of regretting. Learning is the only thing for you. Look what a lot 

of things there are to learn.” 

― T.H. White, the Once and Future King 
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2.1 Reinforcement learning 

Reinforcement Learning (RL) is a learning system which can learn to map 

situations to actions in order to maximize a numerical reward (Sutton, et al., 1998).  In 

most forms of machine learning, statistical pattern recognition and artificial neural 

networks are form of supervised learning where learning agents are told which actions 

they should undertake for each situation using examples provided by a knowledgeable 

external supervisor.  This is an important kind of learning, but alone it is not adequate 

for learning from interaction.  We are human and, since birth, we learn by interacting 

with our environment.  Many things that we learn we do not have a teacher to tell us 

what to do, but constantly we interact directly with our environment. 

Likewise, Reinforcement Learning agents learn to select rational actions by trial-

and-error to find out which actions feedback the most reward in the long run.  

Therefore, RL is a powerful learning model to help deal with interactive problems.  

Anyhow, an RL agent must be able to receive a state signal and a numerical reward 

signal from the environment in some form of representation and then respond with 

some actions that affect the state back to the environment (Sutton, et al., 1998). 

2.1.1 Policy 

In Reinforcement Learning Cycle, learning of a RL agent comes from interaction 

between taking actions selected from current situation to the environment and 

observing the outcome which respond back in form of signals of new situations and 
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numerical values called rewards.  In general, one of the main objectives of the agent is 

to try to maximize the rewards in the fullness of time. 

Figure 2.1 show how an agent and its environment interact to each other. At a time 

step  , where            , the agent chooses an action     from actions available in 

state   .  One time step (   ) later the agent observes the environment’s state      

and a numerical reward,     . 

 

Figure 2.1: The agent-environment interaction in reinforcement learning. 

(Sutton, et al., 1998) 

At each time step, the agent uses the numerical reward      that is just observed to 

update the probabilities of selecting action    from state    and uses the state      to 

select the next action     .  In some RL method, state      is also taken into account 

for updating the probabilities of selecting action    from state   .  Roughly speaking, a 

policy, denoted  , is a mapping from states to actions.  In addition, a policy is a 

mapping from states to probabilities of selecting each possible action. A policy 

        is the probability that      if     .  The goal of the agent is to search for 

a best mapping for its policy to maximize the total amount of reward in the long run. 

(Sutton, et al., 1998). 

Agent

Environment

rewardstate action
st rt at

rt+1

st+1
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2.1.2 Q-learning 

Q-learning is a reinforcement learning methods that is designed to learn action-

value function.  The action-value function for policy  of taking action   in state  , 

denoted        , as the expected return starting from  , taking the action  , and 

thereafter following policy  (Watkins, 1989): 

                         

The estimated value of action-value function of taking action   in state   at the 

time  th is denoted as         .  The simplest form of Q-learning, one-step Q-

learning, is defined by: 

                    [      max                   ] 

Where      is the reward observed from   , the learning rate   is such that 

     , The discount factor   is such that      . The learning rate, denoted as 

, determines to what extent the newly acquired information will override the old 

information. A factor of 0 will make the agent not learn anything, while a factor of 1 

would make the agent consider only the most recent information. The discount factor, 

denoted as , determines the importance of future rewards. A factor of 0 will make the 

agent "opportunistic" by only considering current rewards, while a factor approaching 

1 will make it strive for a long-term high reward. The Q-Learning algorithm is shown 

in pseudo code below (Sutton, et al., 1998). 
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Algorithm 1 Q-learning: An off-policy temporal-difference
2
 control algorithm 

(Sutton, et al., 1998). 

Initialize        arbitrarity 

Repeat (for each episode): 

 Initialize   

 Repeat (for each step of episode): 

  Choose   from   using policy derived from   (e.g.,  -greedy) 

  Take action  , observe  ,    

                  [   max                 ]  
        

 until   is terminal 

2.2 Case-Based Reasoning 

Case-Based Reasoning (CBR) is a branch of artificial intelligence, based on 

human problem solving, in which new problems are solved by recalling and adapting 

the solutions of similar past problems that are experiences stored in human memory.  

Roughly defined, Case-Based Reasoning is the process of solving new problems based 

on the solutions of similar past problems.  A doctor who treats cancer patients by 

recalling other cases of patients who have similar symptoms is using Case-Based 

Reasoning.  A jazz musician, who has to improvise a solo in a song that he has never 

played before, can do it by using his past experience and adapting it to the new song, 

is also using Case Based Reasoning.  Not only is Case Based Reasoning a powerful 

method for computer reasoning, but also a dominant behavior in everyday human 

                                                           

 
2
 Temporal-difference (TD) methods can learn directly from raw experience 

without a model of the environment’s dynamics and without waiting for a final 

outcome. 
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problem solving.  Even more, some believe all reasoning is based on past cases that 

are personally experienced. 

 

Figure 2.2: The Case-Based Reasoning Cycle (Aamodt, et al., 1994). 

At the highest level of generality, a Case-Based Reasoning cycle may be described 

by the following four processes (Lenz, et al., 1998): 

1) RETRIEVE - the most similar case or cases. 

Given a target problem, retrieves from memory any cases relevant to 

solving it. A case consists of a problem, its solution, and in general, 

annotations about how the solution was derived.  For example, consider an 
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analogous situation; suppose Jerry who lives in Allentown wants to go to 

New York City by driving his own car, but he has never traveled there 

before.  The most relevant experience he can recall is one in which he used 

to drive to Jersey City.  The directions he follows for driving to Jersey 

City, together with justifications for decisions made along the way, 

constitutes Jerry's retrieved case. 

2) REUSE - the information and knowledge of the retrieved case to solve the 

problem. 

Map the solution from the previous case to the target problem. This may 

involve adapting the solution as needed to fit the new situation. In the 

“driving to New York City” example, Jerry must adapt his retrieved 

solution to include the addition of driving from Jersey City to New York 

City. 

3) REVISE - the proposed solution. 

Having mapped the previous solution to the target situation, test the new 

solution in the real world (or a simulation thereof) and, if necessary, revise 

it.  Suppose Jerry, who drove his car from Allentown to Jersey City and 

from Jersey City to New York City, found that there will be an unnecessary 

delay caused if he drives through Jersey City (Figure 2.3-a).  If he drove 

most of the way to Jersey City and then used a bypass highway (in this 

case, Pulaski Skyway) to avoid the traffic in Jersey City, he will get to New 
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York City faster.  This suggests the following revision: do not take the exit 

to Jersey City but continue on the highway (Figure 2.3-b). 

 

(a) 

 

(b) 

Figure 2.3: Driving from Allentown to New York City. 

(a) Without revising, driving from Allentown to Jersey City 

 and then driving from Jersey City to New York City. 

(b) With revising, driving from Allentown to most of the way to 

 Jersey City and then using bypass highway to New York City. 

 

4) RETAIN - the parts of this experience likely to be useful for future problem 

solving. 

After the solution has been successfully adapted to the target problem, the 

agent stores the resulting experience as a new case in its memory. Jerry 
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records his new-found direction for driving to New York City, thereby 

increasing his set of stored experiences and better preparing him for the 

future. 

 

Figure 2.4: Using Case-Based Reasoning to solve the problem of driving from 

Allentown to New York City. 

2.2.1 Case Similarity 

To compare one case with other cases in case base, it is not proper way to match 

them using only just exact matching. Indeed, it is almost a bad idea when we think 

about various kinds of data in cases such as real numbers, strings or complex 

Driving
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structures.  Case similarity is a method which can return a value of similarity between 

a case in a problem and cases in a case base. The value 1 is to highest similarity, while 

the value 0 is to lower one. There are numerous methods to calculate similarity and for 

the one we use in the paper is weighted hamming distance with  parameter. Let 

              and               are two cases that we want to calculate 

similarity. First, the simple matching coefficient is the weighted simple matching 

coefficient that introduces a weight       for each attribute such that      

    . The weight allows expressing the importance of the attribute for the 

similarity (Richter, 2007). 

            ∑   
            

 

Second, the simple matching coefficient results from weighting the number of 

equal attribute values different than the number of unequal attribute values. This 

results in a non-linear strictly monotonic increasing function of the number of equal 

attributes. A parameter           determines the concrete shape of this function 

(Richter, 2007). 

              
             

(             )  (                     )
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CHAPTER 3  
GOAL-DRIVEN AUTONOMY 

We learn from failure, not from success! 

― Bram Stoker 

The conception of Goal-driven autonomy (GDA) is inspired by Cox’s work (Cox, 

2007).  The first GDA systems were reported in (Munoz-Avila, et al., 2010; 

Molineaux, et al., 2010).  GDA is a process that integrates planning, execution, and 

goal reasoning for online planning in autonomous agents (Klenk, et al., 2010).  Figure 

3.1 illustrates how GDA extends Nau’s model of online planning (Nau, 2007).  The 

GDA model primarily expands and details the scope of the Controller, which interacts 

with a Planner and a State Transition System Σ (an execution environment).  System   

is a tuple           with a set of states  , a set of actions  , a set of exogenous events 

 , and state transition function              , which describes how the 

execution of an action or the occurrence of an event transforms the environment from 

one state to another. For example, given an action   in state   ,   returns the updated 

state     . 
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The Planner receives as input a planning problem           , where      is a 

model of     (the environment),     is the current state, and        is a goal that can 

be satisfied by some set of states      . The Planner outputs a plan           , 

which is a sequence of actions     [         ] paired with a  sequence of 

expectations     [         ]. Each       is a set of state constraints 

corresponding to the sequence of states [         ] expected to occur when 

executing    in    using   . 

 

Figure 3.1: A Conceptual Model for Goal Driven Autonomy  

(Munoz-Avila, et al., 2010; Molineaux, et al., 2010) 
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The Controller sends the plan’s actions to     and processes the resulting 

observations. The GDA model takes as input initial state    ,  initial  goal    ,  and  

  , and sends them to the Planner to generate a plan     consisting of action sequence 

   and expectations   . When executing   , the Controller performs the following 

four knowledge intensive tasks, which distinguish the GDA model: 

1. Discrepancy detection:  This compares the observations    obtained from 

executing action      in state      with the expectation        (i.e., it tests 

whether any constraints are violated, corresponding to unexpected 

observations). If one or more discrepancies        are found, then they are 

given to the following function.  

2. Explanation generation: Given a state     and a set of discrepancies     ,  

this hypothesizes one or more explanations        of    ’s  cause(s),  where     

is a belief about (possibly unknown) aspects of    or   . 

3. Goal formulation: This creates a goal        in response to a set of 

discrepancies   , given their explanation       and the current state     .  

4. Goal management: Given a set of existing/pending goals        (one of 

which may be the focus of the current plan execution) and a new goal      , 

this may update     to  create       (e.g.,  by adding     and/or 

deleting/modifying other pending goals) and will select the next goal        to 

be given to the Planner. (It is possible that     .) 
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GDA makes no commitments to specific types of algorithms for the highlighted 

tasks, and treats the Planner as a black box. This description of GDA’s conceptual 

model is necessarily incomplete due to space constraints. For example, it does not 

describe the reasoning models used by Tasks 1-4 (each of which may perform 

substantial inference) nor how they are obtained, it assumes multiple plans are not 

simultaneously executed, and it does not address goal management issues such as goal 

prioritization or goal transformation (Cox, et al., 1998). 

Figure 3.2 illustrates the data flow of Goal Driven Autonomy.  The GDA agent 

interacts to the environment by giving an action    at time   to the environment and 

then receiving a reward   and state      at the next discrete time     back from the 

environment.  

Inside the GDA agent, assume at the time  , the agent receives a pair of a state    

and a reward    from the environment.  The discrepancy detection detects a 

discrepancy   between the state    and the expectation    which was predicted in the 

previous discrete time     by the expectation formulator. It then sends the detected 

discrepancy   to the goal formulator.  The goal formulator is an independent module 

in the GDA agent to learn how to pick the next goal      from the goal base.  It needs 

the reward    from the environment, the discrepancy   from discrepancy detection and 

the current goal    as its inputs to decide the next goal     .  After that, the goal 

manager will take an action    to the environment base on the state    and the next 

goal      received.  However, right before the agent will send the action   , the 
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expectation formulator will learn and predict the next expectation      by using the 

information from the state    and the action   . 

 

 

Figure 3.2: Data flow of Goal Driven Autonomy 
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CHAPTER 4  
GOAL-DRIVEN AUTONOMY WITH 
HIERARCHICAL-TASK NETWORK 

PLANNING 

4.1 Hierarchical-Task Network 

The hierarchical task network (HTN) is one of many methodologies used in 

automated planning.  The idea behind HTN is that, in the real world, many tasks can 

be given in the form of networks for example mathematical problems, military 

missions, going somewhere by using only public transportations.  There are distinctive 

benefits of using HTN such as preventing exponential explosion during plan 

generation
3
 and faster speed of computation comparing to other planning methods. 

Planning problems are identified in the hierarchical task network by providing a 

set of tasks, which can be (Erol, et al., 1994):  

1. primitive tasks (actions that can be executed) 

2. compound tasks (sequences of actions) 

                                                           

 
3
 Plan generation is the problem of generating a sequence of actions that transform 

an initial state into some desired state (Ghallab, M.; Nau, D.S.; Traverso, P., 2004). 

http://en.wikipedia.org/wiki/Automated_planning
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3. goal tasks (tasks of satisfying a condition) 

The difference between primitive tasks and the others is that the primitive tasks 

can be executed directly. Compound and goal tasks both require a sequence of 

primitive tasks to be performed.  However, goal tasks are specified in terms of 

conditions that have to be made true, while compound tasks can only be defined in 

terms of other tasks via the task network. 

A task network is a set of tasks and constraints among them. And, it is possible 

that a task network can be used as the precondition for another compound or goal task. 

This way, one can express that a given task is possible only if a set of other actions are 

done in such a way that the constraints among them are satisfied. In addition, a task 

network can determine that a condition is necessary for a primitive action to be 

executed. When this network is used as the precondition for a compound or goal task, 

the compound or goal task requires the primitive action to be executed and that the 

condition must be true for its execution to successfully achieve the compound or goal 

task (Erol, et al., 1994). 

4.2 Goal-Driven Autonomy with Hierarchical-Task 

Network Planner 

GDA-HTNbots is an extension of HTNbots in which the controller performs the 

four tasks of the GDA model. HTNbots uses SHOP to generate game-playing 
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strategies for DOM based on an external hierarchical task network (HTN). These 

strategies are designed to control a majority of the domination locations in the game 

world. Whenever the situation changes (i.e., when the owner of a domination location 

changes), HTNbots generates a new plan. Therefore, HTNbots is a dynamic 

replanning system.  It calls SHOP to find the first method that is applicable to a given 

task, and uses it to generate subtasks that are recursively decomposed by other 

methods into a sequence of actions to be executed in the environment. 

Unlike HTNbots, GDA-HTNbots reasons about its goals, and can dynamically 

formulate which goal it should plan to satisfy.  It controls plan generation in two ways: 

first, it determines when the planner must start working on a new goal. Second, it 

determines what goal the planner should attempt to satisfy.  GDA-HTNbots extends 

HTNbots to instantiate the GDA conceptual model as follows: 

 State Transition System ( ) (task environment): We apply GDA-HTNbots 

to the task of controlling an agent playing DOM. We described this task 

and game environment in the preceding section, and describe an example 

of this application in the next section. 

 Model of the State Transition System (  ):  We describe the state 

transition function for DOM using SHOP axioms and operators. 

Exogenous events are not directly modeled in SHOP. HTNbots play DOM 

by monitoring the game state and replan as needed.  
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 Planner: GDA-HTNbots uses SHOP, although other planners can be used. 

Given the current state     (initially   ), current goal    (initially   ), and 

  , it will  generate an HTN  plan     designed to  achieve     when 

executed in    starting in    . This plan includes the sequence of 

expectations    determined by the HTN’s methods that are anticipated 

from its execution.  

 Discrepancy Detector: This continuously monitors   ’s execution in     

such that, at any time   , it compares the  observations  of state     provided 

by     with the expected state    .  If it detects any discrepancy    (i.e., a  

mismatch) between them, then  outputs     to the Explanation Generator. 

 Explanation Generator: Given a discrepancy    for state   , this generates 

an explanation    of   . GDA-HTNbots tracks the history of the game by 

counting the number of times agents from the opposing team have visited 

each location. Using this information and the discrepancy   , GDA-

HTNbots identifies an explanation   , which is the strategy that the 

opponent is pursuing. 

 Goal  Formulator: Given an explanation     representing the opponent’s 

current GDA-HTNbots formulates a goal    using a set of rules of the 

form: 

if   then   
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The new goal     directs GDA-HTNbots to counter the opponent’s 

strategy. 

 Goal Manager: GDA-HTNbots employs a trivial goal management 

strategy. Given a new goal   , it immediately selects this as the current 

goal, which the Controller submits to the Planner for plan generation. 

 

Figure 4.1: An example DOM game map with five domination locations (yellow 

flags), where small retangles identify the respawning locations for the agents and the 

remaining two types of icons denote each player’s agents. 
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4.3 Example in the DOM Game 

We report on a case study in which the system’s task is to control a team of agents 

in DOM. Figure 4.1 shows an example of a map in a domination game with five 

locations. Our scenario began with the following initial state and goal:  

Initial State (  ):  This includes the locations of all the agents in the game and 

which team (if any) controls each domination location. 

Initial Goal (  ): The initial goal is to win the game (i.e., be the first to cumulate 

20,000 points). GDA-HTNbots sends      to SHOP, which generates a plan to 

dispatch GDA-HTNbots’ agents to each domination location and control them. Given 

the uncertainties about the opponent’s actions and the stochastic outcome of 

engagements, this plan may not yield the expected results. For example, Table 4-1 

presents some sample explanations for the DOM game (we do not display the full state 

due to space constraints). The first row highlights a situation where the bot3 agent was 

expected to be at location 2, but this did not happen. By examining the history of 

enemy agents at that location, GDA-HTNbots assumes the opponent is executing a 

strategy to heavily defend location 2. Using the explanation goal rule set, GDA-

HTNbots counters this strategy by setting a goal to have bot3 at an alternative 

location, namely location 1. 
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Table 4-1: Example explanations of discrepancies (with some expectations 

and observations shown), and the corresponding recommended goals. 

Discrepancy Explanation Next Goal 

  : Loc(bot3, loc2) 

  : Loc(bot3, loc2) 
Defended(loc2) Loc(bot3, loc1) 

  : OwnPts( ) > EnemyPts( ) 

  : OwnPts( ) > EnemyPts( ) 

EnemyCtrl(loc1) 

EnemyCtrl(loc2) 
OwnCtrl(loc2) 

The second row shows a discrepancy where GDA-HTNbots expected to, over the 

last time period  , earn more points than the enemy. However, this did not happen 

because the enemy controlled two of three (total) locations. The rule set determines 

that the next goal should be to control one of the locations controlled by the opponent 

(e.g., loc2). Given this, our system generates a plan to send two agents to location 2. 

This example illustrates how GDA-HTNbots explains discrepancies by reasoning 

about the opponent’s strategies. This enables GDA-HTNbots to formulate goals that 

counter the opponent’s actions. 
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CHAPTER 5  
GOAL-DRIVEN AUTONOMY 

WITH CASE-BASED REASONING 

Experience is what you get when you didn't get what you wanted. And 

experience is often the most valuable thing you have to offer. 

― Randy Pausch, The Last Lecture 

In this chapter, we focus on CB-GDA, the first GDA system to employ Case-

Based Reasoning (CBR) methods (Lopez de Mántaras, et al., 2005). CB-GDA uses 

two case bases to dynamically generate goals. The first case base relates goals with 

expectations, while the latter’s cases relate mismatches with (new) goals. 

5.1 Case-Based Goal Driven Autonomy 

Our algorithm for case-based GDA uses two case-bases as inputs: the planning 

case base and the mismatch-goal case base. The planning case base (PCB)  is a  

collection of  triples of the form  (  ,   ,   ,   ), where     is the  observed  state of the 

world (formally,  this is defined as a list of atoms that are true in the state),     is the  

goal being pursued  (formally,  a  goal  is a predicate with  a  task name and a list of 
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arguments),     is the state that the agent expects to reach after accomplishing     

starting from state   ,  and      is a plan  that achieves    .  The mismatch-goal case 

base (MCB) is a collection of pairs of the form (  ,   ), where     is the mismatch 

(the difference between the expected state    and the actual state    ) and     is the 

goal to try to accomplish next. In our current implementation both PCB and MCB are 

Algorithm 2 CB-GDA algorithm 

CB-GDA ( ,  ,      ,    ,       ,    ,    ,       ,    ,       ,    )  

// Inputs: 

//  : Domain simulator 

//  : The CBR intelligent agent 

//      : Initial goal 

//    : Planning case base 

//    : Mismatch-goal case base 

//       : return true iff goals are similar 

//       : return true iff states are similar 

//       : return true iff mismatches are similar 

//    : the threshold value used by the        function. 

//    : the threshold value used by       function. 

//    : the threshold value used by       function. 

// Output: the final score of simulation   

 

1: run( ,  ,      ) 

2: while status( ) = running do 

3:       currentState( ) 

4:       currentGoal( ,  )   

5:  while     (currentTask( ),   ) do 

6:    wait( ) 

7:        retrieve(   ,   ,   ,       ,    ) 

8:       currentState( ) 

9:   If       then 

10:          retrieve(   ,   , mismatch(  ,   ),       ,    ) 

11:     run( ,  ,    ) 

12: return game-score( ) 
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defined manually. In Section 5.2, we will discuss some approaches we are considering 

to learn both automatically. 

The algorithm above displays our CBR algorithm for GDA, called CB-GDA. It 

runs the game   for the GDA-controlled agent A, which is ordered to pursue a goal 

     .  Our current implementation of A is a case-based planner that searches in the 

case base PCB for a plan that achieves     .  The call to run ( ,  ,      ) represents 

running this plan in the game (Line 1). While the game   is running (Line 2), the 

following steps are performed.  Variables    are initialized with the current game state 

(Line 3). And then, variables    is setup for agent’s goal (Line 4). The inner loop 

continues running while   is attempting to achieve    (Line 5).  The algorithm waits a 

time   to let the actions be executed (Line 6).  Given the current goal    and the 

current state   , agent   searches for a case (  ,   ,   ) in PCB such that the binary 

relations     (  ,   ) and     (  ,   ) hold and returns the expected state    (Line 7). 

         is currently an equivalence relation which is a Boolean relation that holds 

true whenever the parameters  a  and  b  are similar to one another according to a 

similarity metric        and a threshold     (i.e.,            ).  Since the 

similarity function is an equivalence relation, the threshold is 1.  The current state    

in   is then observed (Line 8). If the expectation     and     do not match (Line 9), 

then a case (  ,   ) in MCB is retrieved such that mismatch    and mismatch(  , 

  ), are similar according to        ; this returns a new goal     (Line 10). Finally,   



41 

is run for agent    with this new goal     (Line 11).  The game score is returned as a 

result (Line 12). 

From a complexity standpoint, each iteration of the inner loop is dominated by the 

steps for retrieving a case from     (Line 7) and from MCB (Line 10).  Retrieving a 

case from     is of the order of         , assuming that computing          and 

         are constant.  Retrieving a case from     is of the order of         , 

assuming that computing         is constant. The number of iterations of the outer 

loop is       , assuming a game length of time  . Thus, the complexity of the 

algorithm is                          .  

We claim that, given sufficient cases in     and    , CB-GDA will  

successfully guide agent   in accomplishing its objective while playing the DOM 

game.  To assess this, we will use two other systems for benchmarking purposes.  The 

first is HTNbots, which we discussed in Section 4.1. As explained before, it uses 

Hierarchical Task Network (HTN) planning techniques to rapidly generate a plan, 

which is executed until the game conditions change, at which point HTNbots is called 

again to generate a new plan. This permits HTNbots to react to changing conditions 

within the game.  Hence, it is a good benchmark for CB-GDA. The second 

benchmarking system is GDA-HTNbots, which implements a GDA variant of 

HTNbots using a rule-based approach (i.e., rules  are used for goal generation), in 

contrast to the CBR approach we propose in this paper. 
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CHAPTER 6  
CASE-BASED LEARNING OF 

EXPECTATIONS AND 
GOAL-FORMULATION KNOWLEDGE 

In this chapter, we introduce learning GDA (LGDA), a GDA algorithm that learns 

two types of cases from observed discrepancy resolution episodes: (1) expectation 

cases and (2) goal formulation cases.  LGDA learns these through an integration of 

Case-Based Reasoning (CBR) and reinforcement learning (RL) methods. 

6.1 Definitions 

Let   be the set of states that an agent can visit,   the goals that an agent can 

pursue, and   the actions that can be executed. We define an expectation case base 

(ECB) as a mapping        [   ] from the current state and selected action to a 

probability distribution over expected next states (i.e., actions can be non-

deterministic). LGDA clusters ECB cases that involve the same action and have 

similar states, and learns a state probability distribution for each cluster. 



43 

In LGDA (detailed in Section 6.2), GET(ECB,  ,  ) returns, as the expected state, 

the one with maximal probability among the ECB cluster      whose state is most 

similar to   and has the same action  . If no such cluster exists, then UPDATE(ECB,  , 

 ,   ) will create one. Otherwise, it will update the probability distribution for     . 

A goal formulation case base (GFCB) instead maps the current goal    and 

discrepancy    into a distribution over the expected values,       [   ], for 

formulated goals. That is, multiple goals    may be formulated to resolve   when 

pursuing  . Cases with the same goal and similar discrepancies are clustered together 

in GFCB. LGDA uses Q-learning to track the expected value for each   . In LGDA, 

GET(GFCB,  ,  ,   ) returns the expected value   from cluster      when    is 

formulated. If no such cluster exists, it returns 0 and initializes     . Function call 

UPDATE(GFCB,  ,  ,   ,   ) updates the value of   for    in     . 

LGDA receives as input the policies            that are implemented by hard-coded 

adversaries. The call      returns the policy   for  , while      returns the action that 

is pursued in state   (if multiple such actions exist, one is randomly selected). These 

input policies are static, not learned. LGDA instead learns the case bases (1) ECB and 

(2) GFCB. This learned knowledge is dynamic; their application varies based on the 

environment’s state in which the actions are executed. 
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6.2 LGDA Algorithm 

Expectations can be learned by recording the occurrence frequency of         

triples. The interpretation of the most frequent triple         among those in (   ) in 

the ECB is that, when   is the current state, it is most likely that   will be the next 

state when   is executed. We use             for the previous, current, and expected 

states, respectively 

Let  ,   , and     be the previous, current, and next goals, respectively. LGDA 

uses Q-learning to learn the values of goals in each GFCB cluster. The following 

pseudo code provides details and is documented below. 

Algorithm 3 LGDA algorithm 

LGDA(  ,   ,   ,  , ECB, GFCB, , , ,  ,  ) 

1:     ;     ;    ;     ;      ;      

2: while the game-playing episode continues 

3:  wait();     GETSTATE() 

4:  ECB  UPDATE(ECB,  ,  ,   ) 
5:     CALCULATEDISCREPANCY(  ,  ) 

6:     GET(GFCB,  ,  ,   ) 
7:                

8:         (             (GET GFCB        )   ) 

9:  GFCB  UPDATE(GFCB,  ,  ,   ,   ) 
10:  if     

11:   if RANDOM(1)   

12:                   (GET GFCB        ) 

13:   else      RANDOM(| |) 

14:       ;        
15:         ;          

16:     GET(ECB,   ,   ) 
17:  EXECUTEACTION(  ) 
18:      ;      
19: return ECB, GFCB 
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LGDA initializes previous state   to the initial state   , action   to the null action, 

previous goal   and current goal    to the dummy goal   , and discrepancy   to 

dummy value    (Line 1). Entries with these dummy values are not added to the case 

base, and will be assigned to non-dummy values after the algorithm’s first iteration. 

During a game-playing episode (Line 2), LGDA periodically waits and observes the 

current state    (Line 3), which it uses to update the distribution of expected states 

when taking action   in   (Line 4). It then calculates the discrepancy   between the 

current and expected states (Line 5) and uses it to retrieve GFCB’s estimated   value 

for formulating    (Line 6). It then computes the reward (Line 7), updates the   value 

using the Q-learning formula (Line 8), and records it in the GFCB (Line 9). If the 

agent is performing poorly (Line 10), LGDA retrieves a new goal     from GFCB 

using -greedy exploration (Lines 11-13), and updates its previous and current goal 

(Line 14). LGDA then retrieves the next action    using policy , where  is the policy 

in  for goal g′. (Line 15), retrieves an expected state   from the ECB (Line 16), 

executes    (Line 17), and updates previous state   and action   (Line 18).  Finally, 

when the game-playing episode ends, it returns the revised case bases. 

6.3 Implementation and Example 

An LGDA agent must determine how to cluster cases using a similarity metric and 

re-cluster when necessary.  Our implementation was inspired by the design of 

Retaliate (Smith, et al., 2007), an RL agent that we will use for benchmarking.  For 
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LGDA, we ensure that the states    and actions   represented in ECB and GFCB, as 

well as the state utility  , are the same as  those in Retaliate.  Theoretically, this 

permits a fair comparison between LGDA and Retaliate. 

Retaliate was applied to control one team’s actions in a domination game called 

DOM (see Section 0).  Retaliate selects the actions for the friendly team’s bots.  Its 

state representation includes only information on domination location ownership.  The 

state is a vector             , where     is the number of domination locations and     

indicates the team  which  owns  location  .  For a 2-team game and   bots per team, 

this reduces the number of states to    and the space of actions to      . The utility   

of state    is defined by the function          –    , where      is the friendly 

team’s score and      is the enemy’s score.  The discrepancy between states   and    

is a  -dimensional vector             , where     is true if   and    have the same 

value in coordinate   and false otherwise. 

Given this representation, LGDA’s cases implement a simple similarity metric: 

two states are deemed similar if they have the same feature values for domination 

location ownership. Analogously, two discrepancies are similar if they mismatch on 

the same features.  Thus, after a case is assigned to a cluster, it will never be 

reassigned.  

Example: Suppose the domination locations in the current game are          and 

    and there are three bots per team           .  Each location    can be in one of the 

three states: un-owned ( ), owned by the friendly team ( ), or owned by the enemy 
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( ). Therefore, state         denotes that the first domination location is owned by 

the enemy and the others are owned by the friendly team.  Suppose the previous state 

  is        , the current state    is        , the expected state   is        , and the  

friendly team’s previous actions were                    . After updating the 

relevant ECB distribution (Line 4), LGDA will calculate the discrepancy   between 

the current and expected states (Line 5).  Here,   is (true, false, true), where true 

means they match. After calculating the value and updating the (Lines 6-9), suppose 

the reward is negative, and that LGDA will retrieve/formulate a new goal. Suppose the 

current goal    is to control the first half plus one of the domination locations, and the 

next goal     that was retrieved from the GFCB is to control all domination locations. 

Then the action    that will be retrieved from policy   will be                 

   .  The expectation   that it retrieves from GFCB for executing action   is         

(Line 16). LGDA will then execute    and record the new values for the previous state 

  and action   (Line 18). 
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CHAPTER 7  
INTEGRATED LEARNING OF 

GOAL-DRIVEN AUTONOMY ELEMENTS 

In certain adversarial environments, reinforcement learning (RL) techniques 

require a prohibitively large number of episodes to learn a high-performing strategy 

for action selection. For example, Q-learning is particularly slow to learn a policy to 

win complex strategy games. We propose GRL, the first GDA system capable of 

learning and reusing goal-specific policies. GRL is a case-based goal-driven autonomy 

(GDA) agent embedded in the RL cycle. GRL acquires and reuses cases that capture 

episodic knowledge about an agent’s (1) expectations, (2) goals to pursue when these 

expectations are not met, and (3) actions for achieving these goals in given states. Our 

hypothesis is that, unlike RL, GRL can rapidly fine-tune strategies by exploiting the 

episodic knowledge captured in its cases. We report performance gains versus a state-

of-the-art GDA agent and an RL agent for challenging tasks in two real-time video 

game domains. 
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7.1 The GRL Algorithm 

We now present GRL, which incrementally learns expectations, goal formulation 

knowledge, and goal-specific policies. GRL uses Q-learning as its RL algorithm. Q-

learning is frequently used as the prototypical RL algorithm due to its bootstrapping 

capabilities, which enables it to estimate state-action values based on other state-action 

values estimates. As a result, it tends to converge to optimal policies faster than other 

RL methods (Sutton, et al., 1998).  

GRL receives as input the start state   , a waiting time  , the Policy Case Base  , 

the Expectation Case Base (ECB), the Goal Formulation Case Base (GFCB), the 

actions  , and some parameters. The parameters   and   are the step-size and 

discount-rate parameters for Q-learning. Parameters    and    are for the  -greedy 

selection of action and goals, respectively. Parameters    and    are used to learn new 

goals as will be explained later, and t is a threshold used to determine when two goals 

are similar to one another.  GRL runs one episode of a game and returns updated 

values for  , ECB, and GFCB.  

GRL executes an iterative decision making cycle with the following steps: (1) 

identify discrepancies when they arise, (2) decide which goals to achieve to resolve 

any such discrepancies, and (3) perform actions to accomplish these goals. 

Simultaneously, GRL learns knowledge about state expectations, discrepancies, goals 

to achieve, and the actions to achieve these goals (e.g., goal-specific policies).  
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GRL has three phases: In Phase 1, which occurs during an episode, GRL uses and 

updates ECB and GFCB. Phases 2 and 3 occur immediately after an episode ends. In 

Phase 2 new goals are identified and in Phase 3 goal-specific policies are updated. 

Algorithm 4 GRL algorithm 

GRL        ECB GFCB                       

// Phase 1: Online execution and updating 

1:       ; 

           ; 

         ; 

      ; 
    GETGOALS    

2: while episode continues  

3:   WAIT() 

4:       GETSTATE()  // Periodically observe the state 

5:                // Compute the reward 

6:      CONCAT         ; 

     CONCAT                

7:  ECB  UPDATE ECB         // Update ECB’s distribution 

8:      RANDOM       // Random current action 

9:   if    

10:      GET GFCB         // Fetch/update Q value 

11:          (   ARGMA     (GET GFCB        )   ) 

12:    GFCB   UPDATE GFCB            

13:    if          // Performing poorly? 

14:         CALCULATEDISCREPANCY(  ,  ) 

15:     if RANDOM       // Formulate next goal 

16:          ARG A     (GET GFCB        ) 

17:     else     RANDOM      

18:         ;        
19:               // Retrieve a new policy 

20:    if RANDOM        

21:         ARGMA      GET             

22:     ARGMA      GET ECB            

23:   EXECUTE(  )    // Execute current action  

24:       ;      

// Phase 2: Goal extraction 

25:    TOPFREQUENC             
     

26: for-each        // Iterate over the most frequent goals 
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27:      

28:   for-each         // Attempt to group g' with an existing goal 

29:   if SIMILARIT          then         
30:   if     then        // g  is a new goal  

31:         

// Phase 3: Policies revision 

32: for-each     

33:   if     then        else   nil 

34:   if   nil then   NEW   ;             
35:   for-each               

36:       GET          

37:          (   ARGMA     (GET           )   ) 

38:      UPDATE           

39:      UPDATE        

 return , ECB, GFCB 

In Phase 1 (Lines 1-24), GRL applies and updates ECB and GFCB. It first 

initializes   and   to the initial state   , action   to the null action, lists    and    to 

empty,   and current goal    to the dummy goal   , discrepancy   to dummy value 

  , and   to the set of goals that can be accomplished by  (Line 1) (i.e., policies are 

annotated with the goals they accomplish). During an episode (Lines 2-24), GRL 

periodically waits (Line 3) and then observes the current state    (Line 4), calculates 

the reward   (line 5), and concatenates 〈  〉 to    and 〈        〉 to    (Line 6) for use 

after the game episodes concludes. It then updates the distribution of expected states 

when taking action   in   (Line 7) and generates the current action    randomly (Line 

8). This guarantees that, if  is empty, then GRL still has an action to perform. 

Otherwise (Line 9), it retrieves GFCB’s estimated   value for formulating goal    

given       (Line 10), updates the new    value using Q-learning (Line 11), and 

records it in the GFCB (Line 12). If the agent is performing poorly (Line 13), it then 
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calculates the discrepancy between the current and expected states (Line 14) and 

retrieves a new goal     from GFCB using  -greedy exploration (Lines 15-17), and 

updates its previous and current goal (Line 18). GRL then retrieves a new policy from 

 using goal    as the index (Lines 19-21).  It retrieves from the ECB the expected 

state   from executing   , executes   , and updates the previous action  , current 

action   , and previous state   (Lines 22-24). 

After an episode completes, GRL’s Phase 2 extracts a set of goals to update their 

policies. It first identifies the set    of most frequent states that appear in the most 

recent     of visited states, where the frequency of these states must be at least a 

threshold value             . For example, assume that                     

               ,        ,       , and        .  Then the most recent 50% of 

la is                 , and state    is the most frequent state among these (with 

frequency 3). The threshold value equals 1.75 (i.e., 0.5×0.25×10), which means GRL 

will also include state    in    because its frequency is 2. However, if       , then 

        (Line 25).  GRL then adds new goals from  that are at least as similar to 

goals in    as the threshold   (Line 29). Similarity between goals is computed using a 

linear combination of local similarity metrics, one for each of the state’s features 

(Lopez de Mántaras, et al., 2005).  More precisely, we assume cases to be vectors of 

 -dimensional features            . For computing similarity, we define a 

collection of local similarity metrics       , one per feature  , and a collection of 

weights   , which sum to  . The aggregated similarity metric        is defined as: 
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            ∑              

 

   

 

 

GRL groups goals by similarity to reduce the size of the Policies Case Base . 

However, if no similar goals exist, then GRL will interpret    as a new goal (line 30). 

In Phase 3, GRL refines or adds new policies. For each goal   in   (Line 32), if  

is not empty, then GRL will retrieve policy     for this goal (Line 33). If either  is 

empty or the policy associated with   is nil, a new policy   for   is created and   is 

added to  (Line 34). It will then apply Q-learning to update   using the recent state 

transitions and rewards (Line 35-38) and update the (goal, revised policy) in  (Line 

39). Finally, GRL returns all the revised case bases (Line 40). 

7.2 Example 

Suppose in the real-time strategy (RTS) game Wargus a GRL-controlled agent is 

competing against one opponent (Wargus2012). Wargus is a combat game where each 

player controls a variety of units. In our experiments each player controlled mages, 

archers, knights, ballistae, and footmen. The objective of this game is to be the first to 

reach a predefined number of points, which are earned by killing the opponent’s units. 

Some units award more points than others (e.g., killing a knight earns more points than 

a footman). 
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Assume each team begins with two footmen and two archers, and that the agent 

has already played many games. Thus, the case bases , ECB, and GFCB have 

recorded some results. For the Wargus state representation we use                

         , where      denotes the number of remaining units of type  th
 on our 

team and      denotes the same of type  th
 for the opponent. Usually,   and   are 

equal (e.g., if the current state equals          , then our team has   footmen and one 

archer remaining while the opponent has only two archers). Actions in Wargus, 

denoted as                , where each    is a unit type of the opponent such as 

{R  archers, F  footmen}, means that units of type  th
 on GRL’s team attacks 

opponent units of type   
th

. For example, the action           means that a unit with 

ID   attacks an opponent archer, units with ID   and   attack opponent footmen, and 

units with ID   do nothing. 

Suppose the current state    is               (i.e., GRL’s team has only one 

footman left and the opponent has only one archer) and      (Lines 4-5). In Phase 

1, GRL adds       to    and                    to    (Line 6). After updating the 

appropriate ECB distribution (Line 7), GRL will generate the random action    and 

then calculate and update the   value of GFCB (Lines 10-12). Because the reward is 

negative, GRL will change to a new goal (Line 13). After finding the discrepancy 

              between current state     and expectation              , it will 

choose a new goal     in an  -greedy fashion (Lines 14-18). Using this new goal to 

retrieve a policy    , suppose it retrieves (by chance) greedy action    
  

           (i.e., send the remaining footman to attack an enemy archer) from policy 
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  (Lines 19-21).  GRL then updates the previous state and action, computes 

expectation  , and executes action    (Lines 22-24). Suppose that this action 

eliminates the opponent’s units, which ends the game.   

Phases 2-3 update . First, GRL uses TopFrequency to compute a set of new goals 

  , and then searches for goals from  that are similar to any members in    to create 

a set   (Lines 25-31). Suppose                    (e.g., we have 100 footmen and 

150 archers while the enemy has 0 footmen and 0 archers), meaning that GRL won the 

episode because it destroyed all enemy units. Assume                      

                                                       . Then      assuming 

there are no (sufficiently) similar cases in . Lines 39-48 will learn a policy   , and 

                     will be added to . On the other hand, if                    

and assuming it would be (above-threshold) similar to the first and fourth goals in , 

then                               and Lines 39-48 will update the policies    

and   . 
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CHAPTER 8  
GOAL-DRIVEN AUTONOMY 

COORDINATION OF MULTIPLE AGENTS 

We, humans, can share knowledge that we have learned. Salespersons at 

the end of the week can have a meeting to share their selling experience, the problems 

that they had with their customers and other issues.  By doing this, it helps those 

salespersons in the group to indirectly learn more and be ready for similar situations 

that might happen in the future. We already knew from Section 2.1 that a 

reinforcement learning (RL) agent learns directly by interacting with its environment 

without any supervisor.  However, can reinforcement learning agent indirectly learn 

from other agents?  Another issue, a well-known limitation of RL is that the space of 

possibilities is too large. This can be exemplified in many complex problems.  For 

example, the state-space of a real-time combat strategy game called Wargus is very 

large. The state contains a lot of data about the number of resources, detailed 

information about each unit of each class of each team, information about the map, 

etc. In the same way, the action-space of Wargus is also very huge.  The set of all 

possible action is composed of building various structures, upgrading structures, 

upgrading abilities of each class, training units, attacking some unit, harvesting 

resources, etc.  In RL, its space is not just state-space or action-space, but state-action-
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space.  Therefore, without some add-on technique, reinforcement learning method 

alone is not practical for any experiments on real-time strategy games. 

8.1 CLASSQL: Modeling Unit Classes as Agents 

We would like to introduce CLASSQL, an application of the RL algorithm that 

learns directly and indirectly from the environment and reduces the problem of space 

that occurs in RL for real-time strategy games.  In this dissertation, we show that we 

can reduce the size of the state-action space by having an individual Q-table of each 

class and filtering useful information that is customized for each class instead of using 

the observed state directly. 

8.1.1 The CLASSQL Algorithm 

The multi-agent CLASSQL manages a collection of learning agents, one for every 

class of unit/buildings. Each CLASSQL’s agent performs a feedback loop with the 

environment, which is typical of reinforcement learning agents (Figure 8.2).  In each 

iteration, the agents extract information from the state and using the reward signal 

from the environment, determine the actions that units under their control need to 

achieve. These actions are high-level and translated into multiple problem domain 

actions. 
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CLASSQL uses the following conventions: 

 The set of classes   is the set of   classes             , where each    is 

the  th
 class of units in the problem domain.  For example, as for Wargus 

game, we assign a class    to control all footmen, another class    to 

control all knights, and another class    to control all peasants. 

 The set of class-actions   is the set of             , where    is the set 

of high-level actions that the units in the  th
 class can perform. 

 The set of class-states   ⋃         where each    is the set of states that 

the units in the  th
 class can be at. 

 The set of learning-matrixes   is the set of {          }, where    is 

the learning-matrix of the  th
 class.  Learning-matrix is a data structure that 

is used to store data by a selected learning method.  For example, as in our 

implementation of CLASSQL, if Q-learning is used as the learning method, 

then each    is a Q-table         indicating the estimated value of action-

value function of taking action   in state  . Our implementation uses the 

standard Q-learning update. 

Q-learning update. The estimated value of action-value function of taking action 

  in state   at the time  th
 is denoted as         .  Q-learning is defined by: 

                    [         
 

                   ] 
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Where      is the reward observed, the parameter   controls the learning rate ( 

     ),  and   is a factor discounting the rewards obtained so far (     ). 

Each class   controls all units of the same type.  Each individual unit maintains the 

(state, action) pair of the state it last visited and the action it last performed.  However, 

a unit is not able to make a decision on itself.  The class’s learning matrix (i.e., a Q-

table) for the   class acts like a “brain” of each unit of class  .  Figure 8.1 illustrates 

this idea. 

 

Figure 8.1: Illustration how units in Wargus perform a decision making 

  

What should I do?
1) attack the enemy’s peons
2) attack the enemy’s great halls
3) attack the enemy’s grunts

⁞      ⁞      ⁞      ⁞ 
Let’s ask the footmen’s brain

What should I do?
1) repair the damage buildings
2) harvest more gold
3) chop more wood

⁞      ⁞      ⁞      ⁞ 
Let’s ask the peasants' brain

Oh!
There’re a lot of enemy’s units 
nearby.  Some are weak and some 
are strong.

Oh!
There’re a lot of damaged 
buildings.
Our gold and wood are low.

Attack the grunts

Repair the buildings

state

state sfootman14

footman14

peasant8

state speasant8

set of action A

set of action A

Learning Matrix M

(of the footman agent)

Learning Matrix M

(of the peasant agent)

The suggestion action a

from M

The suggestion action a 

from M

𝕤 
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Algorithm 5 CLASSQL algorithm 

CLASSQL( ,  ,  )  

1: while episode continues  

2:  parallel for each class     

3:   𝕤  OBSERVESTATE() 

4:   r  OBSERVEREWARD() 

5:       GETSTATEFORCLASS(𝕤  ) 

6:   A  GETACTIONSFORCLASS( ,  ) 

7:       GETLEARNINGMATRIXFORCLASS( , C) 

8:      {} 

9:    for each unit u  C 

10:    if   is a new unit then 

11:          ;      idle-action  

12:     if unit u is idle or finished its action then 

13:         UPDATE( ,   ,   ,  ,  ) 

14:      a  GETACTION( ,  ) 

15:         Append( ,      ) 
16:         ;      

17:    EXECUTEACTION( ) 

   return   

CLASSQL receives as inputs: a set of classes  , a set of class-actions  , and a set 

of Q-tables  .  During an episode (Line 1), for each class   working in parallel (Line 

2) will execute Lines 3 to 17; so Lines 3 to 17 are executed independently for each 

agent of class  . Our implementation runs one thread for each CLASSQL agent. 

Loop of each CLASSQL agent. The state and reward are observed directly from the 

environment (Line 3-4).  Then, the observed state   is filtered specifically for class   

(Line 5).  The reason why we have to do this is because different classes need different 

kinds of information.  Moreover, the benefit of doing this is to help reducing the size 

of the observed state (we analyze the size reduction in the next section).  Next, the set 

of actions   of class   is retrieved from the set   (Line 6).  Afterwards, the Q-table   
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of class   is retrieved (Line 7).  The set of units’ action L is initialized as an empty list 

(Line 8). For each unit   of class   (Line 9), if the unit   is just created, then its 

previous state    is initialized to the current state   and its previous action    is 

initialized to the idle-action (Lines 10-11).  If the unit u is idle or finished its action 

(Line 12), the Q-table is updated using the Q-learning update (Line 13).  Then, an 

action   is chosen from the set   (Line 14).  A pair of unit and its action is appended 

to the list   (Line 15).  Afterward, the previous state    and previous action    of unit 

  are saved for the future use (Line 16).  In the last step we execute the actions from 

the list   (Line 17).  After the episode is over, the set of Q-tables   is returned (Line 

18). 

8.1.2 Application of CLASSQL for Wargus 

The CLASSQL algorithm that we describe in the previous section is applicable in 

any problem domain.  However, if we would like to use the CLASSQL algorithm for 

some particular problem domain, we might need to adapt the CLASSQL algorithm 

according to the characteristics of the target problem domain we want to use.  In this 

section, we will show how to apply CLASSQL algorithm to Wargus. 

As for Wargus, at the beginning of the game, units on the team take a lot of 

strategic actions, such as building structures, harvesting resources, and training units 

to prepare for battle.  However, the scores of the game for all teams are still zero.  This 

is because scores in Wargus will be increasing only from attacking the enemy team’s 
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units (See Appendix B, for more detail about points gained from killing specific units).  

Without an immediate reward after taking an action, we cannot use any online 

reinforcement learning.  This is why we have to save the list of state-action pairs to do 

an off-line update after the game ends (and we know that is the final score).  The Q-

learning update formula that is mentioned previously need four parameters 

                  for updating the q-values.  The reward’s value      is a function of 

the final score as we will explain later. 

 

Figure 8.2: The interaction between CLASSQL and its environment 
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Another reason why we do not store rewards at each time in the tracking list is 

because of the cooperation among different agents.  The CLASSQL agents cooperate 

because they all share the same reward. 

Reward function. We decided to use reward +1, if the CLASSQL agent’s score is 

greater than the opponent’s score; 1, if the CLASSQL agent’s score is smaller than the 

opponent’s score, and 0, otherwise. We do not use the difference in score as the 

reward because, in Wargus, the score comes from killing enemy’ units; therefore, a 

stronger team which can win and finish the game very fast can earn less score than the 

score of a weaker team who can win but take a longer time.   

Using offline update has another benefit; because we are recording the list of 

(state, action) pairs, we can go back to early decisions in the game and assign the final 

reward. 

CLASSQL works in two phases. In the first phase, we use the Q-values learned in 

previous episodes to control the AI while playing the game.  In the second phase, we 

update the Q-values from the sequence of triples          that occurred in the episode 

that just completed. 

CLASSQL initializes s to the initial state    (Line 1). During an episode (Line 2), 

CLASSQL periodically waits (Line 3) and then observes the current state 𝕤  (Line 4). 

Each class C in the set of classes   (Line 5), creates the current state    for the class C 

by customizing the observed state 𝕤  (Line 6). The reason why we have to do this is 
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that different classes need different kinds of information. The size of the observed 

state 𝕤  is quite expansive and contains various kinds of information. Each class 

requires some of the information uniquely.   

Algorithm 6 CLASSQL algorithm for Wargus 

CLASSQL(  , ,  ,  ,  ,  , , )  

1:      
2: while episode continues 

3:   wait( ) 

4:   𝕤   GETSTATE() 

5:   parallel for each class C    

6:        GETABSTRACTSTATE(𝕤 , C) 

7:    A  GETVALIDACTIONS(  ,   ) 
8:    Q   (C) 

9:    for each unit c  C 

10:     if unit c is idle 

11:      if RANDOM(1)   

12:       a  ARGMA     (        ) 

13:      else 

14:       a  RANDOM(A) 

15:      EXECUTEACTION(a) 

16:          CONCAT(           
  ) 

17:            
18:           

19: end-while 

//------------ After the game is over, update the q-tables ------------ 

20: r  GETREWARD 

21: for each class C    

22:   Q   (C) 

23:   for each unit c  C 

24:    for each <s, a,   >     

25:    A  GETVALIDACTIONS(  ,   ) 
26:                    [                            ] 
27: return   

The next step is to create the set of valid actions   of class   under current 

situation (the current state   ) (Line 7).  We should not use    (the set of possible 
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actions of class  ) directly because some of the actions might not be applicable in the 

current state.  For example, peasants can build farms.  However, without enough 

resources, Wargus will ignore this command.  Therefore, Line 7 prunes invalid 

actions.  Any action randomly chosen from this set of actions is guaranteed to be a 

valid action.  Next, the Q-table of class   is retrieved from the collection of Q-tables   

(Line 8). 

For each unit c of class C, if the unit c is idle, CLASSQL retrieves an action   from 

the Q-table using -greedy exploration (Line 9-14). Notice that the algorithm chooses 

an action from the set of valid actions  , not from the set of possible actions   . 

Then, the action   is executed (Line 15). 

Because this is an offline learning method, Line 16 saves the set of    (the 

previous state   of unit  ),    (the previous action   of unit  ) and the current state    

for the Q-learning updates in the second phase. We wait until the end of the game to 

update the Q-values because we have found it experimentally to be more effective to 

use the outcome at the end of the game.  This is why we have to save the list of state-

action to perform the off-line update later. Afterward, we update the previous state    

and the previous action    (Line 17-18). 

As far as the reward is concerned, we would actually like to update the Q-table on 

the fly.  However, the test base that we experiment on has some interesting 

characteristics.  Since we use the score of the game to decide who the winner is, the 
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score for the game itself deserves to be rewarded or a part of a utility function to 

calculate the reward. 

In the second phase, after calculating the reward r (Line 20), we use one-step Q-

learning update and all the members in the list    of each individual unit   to update 

Q-values of the Q-table of each class   (Line 21-26). Finally, the set of Q-values is 

returned (Line 27). 

8.1.3 Modeling Wargus in CLASSQL 

People with different profession have different roles and duties.  For 

example, a president, a merchant, a scientist and a preacher, they have different duty 

in society.  Thus, when they look into the world around them, they observe the world 

in different perspective.  People are trend to carefully focus on the details of 

information that they need for their working and living.  In addition, agents in CLASSQL 

also behave the same way.  When different agents observe information from their 

environment, they filter only some information that is important for their jobs.  

Peasants are just civilian.  And, their jobs are about farming, harvesting resources, 

building and repairing structures.  Thus, when they observe a state from environment, 

the information that they need are number of gold, wood and food that their team 

have, and number of barracks that are already built, etc.  In the other hand, knights are 

warrior.  Their duties are attack and defense enemies.  So, the information that they 

need to focus on are the number of enemy workers, the number of enemy knights, and 

the number of knights in their team, etc. 
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We categorized units of a team into different class base on their duties. As 

for Wargus, we modeled units into 12 classes as list below: 

1. Town Hall / Keep / Castle 

2. Black Smith 

3. Lumber Mill 

4. Church 

5. Barrack 

6. Knight / Paladin 

7. Footman 

8. Elven Archer/ Elven Ranger 

9. Ballista 

10. Gryphon Rider 

11. Gryphon Aviary 

12. Peasant-Builder 

 

Because the behaviors of peasants when they act as builders or harvesters are so 

different, we separate them in two different subsets.  Harvesters can become builders 

to build some buildings/structures until the work is done.  Then, they will return to 

working as harvesters again.  There are two main kinds of resources to harvest: gold 

and wood.  To harvest gold, peasants must find a path to a gold mine.  To harvest 

wood, peasants must find a path to a forest.  All resources which are already 

harvested, peasants will carry back with them to their nearest town-hall or great-hall 
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depending on their races.  In some situations, the peasants also can act as repairers 

when a building is attacked. 

There is no stable class in the list above because stable has no action, so the Q-

table is not needed by the stable class. The peasant-harvester class also does not have 

its own Q-table. We create simple algorithms for the harvesters’ job assignments to 

maintain the ratio of gold to wood at about 2:1. There are a few other missing classes 

such as Mages because usually they don’t seem to work well when controlled using 

Wargus commands. 

In Wargus, the sets of actions of each class are exclusive. So, we can make the 

state space of Q-table smaller by having individual Q-table of each class of unit. All q-

values in each Q-table are zero initialized.  However, each unit has its own previous 

state, previous action, and reward.  Because each unit creates and finishes its action in 

a different game cycle, in each game cycle the previous state of each unit is different.  

 

8.1.4 State Representation 

Each unit type has different state representation. To reduce the number of states, 

we generalize levels for features that have too many values. For example, the amount 

of gold can be any value greater than zero. In our representation we have 18 levels for 

gold. Level 1 means 0 gold whereas level 18 means more than 4000 gold.  We used 

the term “level number” for such generalizations. Here are the features of the state 

representations for each class: 
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 Peasant-Builder:  (level of number of gold, level of number of wood, level of 

number of food, number of barracks, having lumber mill?, having blacksmith?, 

having church?, having Gryphon aviary?,  having a path to a gold mine?, 

having a town hall?) 

 Footman, knight, paladin, archer, ballista and Gryphon rider: (level of number 

of our footmen, level of number of enemy footmen, number of enemy town 

hall, level of number of enemy peasant, level of number of enemy attackable 

units that are stronger than our footmen, level of number of enemy attackable 

units that are weaker than our footmen) 

 Town hall: (level of number of food, level of number of peasants) 

 Barrack: (level of number of gold, level of number of food, level of number of 

footman, level of number of footmen, level of number of archers, level of 

number of ballista, level of number of knights/paladins) 

 Gryphon Aviary: (level of number of gold, level of number of food, level of 

number of Gryphon Rider) 

 Black Smith, Lumber Mill and Church: (level of number of gold, level of 

number of wood) 

For peasants who are harvesters, we do not use any kinds of learning methodology 

to choose actions to take.  We use some simple algorithms to balance between the 

amount of gold and the amount of wood about two units of gold per one unit of wood.  

Another work of harvesters is to repair damage structures if there are some that need 

to be repaired. 
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8.1.5 Actions 

These are examples of actions that agents use to communicate with Wargus. 

 Build(unit8, location(25,46), FARM) 

 Attack(unit2,unit5) 

 Attack(unit4, location(122, 59)) 

 Wait(unit11) 

 Harvest(unit7, location(91,83)) 

The actions above are needed to specify a unit’s ID or a point of location on the 

map.  Thus, the size of the action space for these actions varies by the number of units 

and size of maps.  However, this issue is not bad enough.  For any kind of learning 

agent, agent who learns these actions may be not able to use its learned actions to 

other maps that have different landscapes.  To understand this phenomenon, consider 

an analogous situation; a snowboarder learns how to snowboard very well at a 

mountain ski resort.  When he goes snowboarding in other ski resort, he cannot apply 

what he already learned from his first mountain to any new mountain.  He has to start 

learning all over again.  When you finished reading this scenario above, you know this 

is unlikely to happen in real life.  This is because, if you have the skill to snowboard, 

no matter which ski resort you go to, you are still able to snowboard. 



71 

In addition, we should not learn how to act based on the actions that are specified 

for a particular map.  What we should do is learn how to act from a set of actions that 

are independent from any maps. 

Our model abstracts actions from units so that they are at a higher level than the 

actual actions the units can take. The actual actions of units include moving to some 

location, attacking another unit or building, patrolling between two locations, and 

standing ground in one location. We call these actions problem-domain actions 

because are actions that are given by the problem domain and can be directly executed 

in the domain. However, using the problem-domain actions would lead to an 

explosion in the size of the Q-tables.  High-level actions are actions that are 

conceptual actions and group problem-domain actions.  High-level actions can be 

independent from any particular map and may be effective to reuse in other maps.  

However, Wargus cannot execute high-level actions.  Therefore there is a module 

called High-level Action to Problem Domain Actions Converters (HapDAC) to convert 

high-level actions into problem domain actions that Wargus can understand (se Figure 

8.2,).  Table 8-1 shows all possible high-level actions for each class.  To convert from 

a high-level action to problem-domain actions, HAPDAC might need more 

information from the environment.  Therefore, in Figure 8.2, HAPDAC also receives 

the current state   that is observed from the environment as its input.  Table 8-1 shows 

all possible high-actions for each class. 
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The following are the principles that HAPDAC uses for mapping high-level 

actions into problem-domain actions. Let    denotes the set of actor units and    

denotes the set of recipient units or target locations. 

(a) Using one-to-one mapping: for every recipient unit of    we assign at most 

one actor unit of   , if          . 

(b) Using onto mapping: for every recipient unit of    we assign at least one 

actor unit of   , if          . 

(c) Using bijective mapping (one-to-one and onto): for every recipient unit of 

   we assign one actor unit of   , if          . 

In our current work, HAPDAC uses a simple modulo function from    to     without 

considering any other factors such as distance between an actor unit and a recipient 

unit.  

Table 8-1: All possible high-level actions for each Wargus class. 

Class Actions 

Peasant-Builder 

 build a farm 

 build a barrack 

 build a town hall 

 build a lumber mill 

 build a black smith 

 build a stable 

 build a church 

 build a Gryphon aviary 

Town-Hall 

Keep 

Castle 

 train a peasant 

 Upgrade to keep (when it is a town-hall.) 
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Class Actions 

 Upgrade to castle (when it is a keep.) 

Black Smith 

 upgrade sword level 1 

 upgrade sword level 2 

 upgrade human shield level 1 

 upgrade human shield level 2 

 upgrade ballista level 1 

 upgrade ballista level 2 

Lumber Mill 

 upgrade arrow level 1 

 upgrade arrow level 2 

 Elven ranger training 

 ranger scouting 

 research longbow 

 ranger marksmanship 

Church 

 upgrades knights to paladins 

 research healing 

 research exorcism 

Barrack 

 train a footman 

 train an Elven archer/ranger 

 train a knight/paladin 

 train a ballista 

Footman 

Archer 

Ranger 

Knight 

Paladin 

Ballista 

Gryphon Rider 

 wait for attack 

 attack the enemy’s town hall/great hall 

 attack all enemy’s peasants 

 attack all enemy’s units that are near to our camp 

 attack all enemy’s units that have their range of 

attacking equal to one 

 and attack all enemy’s units that have their range of 

attacking more than one 

 attack all enemy’s land units 

 attack all enemy’s air units 

 attack all enemy’s units that are weaker (the enemy’s 

units that have HP less than those of us) 

 attack all enemy’s units (no matter what kind) 

 Break walls to make path to enemy 
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The list of all possible actions for each class mentioned previously is not the list 

that CLASSQL will choose from. It is true that the AI agent can order a peasant to 

build a farm anytime.  However, without enough resources or under some conditions, 

after the agent ordered a peasant to build a farm, the Wargus game denial or ignore the 

command and this makes the agent lose it turn for nothing.  Therefore, in each point of 

time, the agent will filter all possible actions to a new set of valid actions that are 

available for the current state to make sure no matter what an action that the agent 

picked, that action is always valid. 

8.1.6 Analysis of CLASSQL  

As explained before each CLASSQL agent   maintains its own Q-table    for all 

units of class   . Where          [   ]. Agent   controls all units of class   . 

Assume a greedy policy    extracted from each    and for each        

            
 

               

That is       picks the action   that has the maximum value         (   is often 

referred to as the greedy policy).  In Line 14, each agent will typically pick the same 

action as the greedy policy most of the time (i.e., with some high probability 1 - , 

where  is probability of random action in -greedy policy).  However, to guarantee 

that optimal policies are learned, it will from sometimes pick a random action (with a 

probability ). Assume that each agent   has learned an optimal policy   . That is, 
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when following the policy   , it maximizes the expected return for agent  , where the 

return is a function of the rewards obtained. For example, the return can be defined as 

the summation of the future rewards until the episode ends.  It is easy to prove that, 

given a collection of n independent policies 1,…,n where each k maximizes the 

returns for class k, then  = (1,…,n) is an optimal policy in   (          ) 

(where   ⋃         as defined in the previous section). This means that agents will 

coordinate despite the fact that each agent learning independently. Admittedly, this 

assumption is not valid in many situations in RTS games since, for example, the agent 

barracks might produce an archer thereby consuming the resources needed for the 

peasant-builder to build a lumber mill. Nevertheless this represents an ideal condition 

that guarantees coordination.  

For non-ideal (and usual) conditions, we observe coordination between agents.  

Figure 8.3 shows a typical timeline at the beginning of the game after CLASSQL has 

learned for several iterations.  Games begin with a town hall and a peasant. The 

peasant agent orders the peasant to build a farm. The town hall agent orders the town 

hall to produce a second peasant. The peasant agent orders the second peasant to build 

a barracks and then orders the first peasant to mine gold (after it has finished the 

farm). Coordination emerges between the agents; the decision by the town hall agent 

to create the second peasant enables the peasant agent to order this peasant to produce 

the barracks. 
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Figure 8.3: An example of a timeline at the beginning of the Wargus game. 

The CLASSQL agents require                   space (i.e., adding the 

memory requirements of each individual agent k). In contrast, an agent reasoning 

with the combined states and actions would require |S    | space. Under the 

assumption that       [                     ] hold, then the following 

inequality holds: 

                       , 

For n  2, the expression on the right is substantially lower than the expression on 

the left. The action disjunction assumption is common in RTS games because the 

actions that a unit of a certain type can take are typically disjoint from the actions of 

units of a different type. The following table summarizes some of the savings for these 

assumptions: 
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Table 8-2: Space saved by CLASSQL compared to a conventional RL agent. 

n % of saved space 

1 0 

2 50 

4 75 

5 80 

10 90 

20 95 

8.2 GDA-C: Case-Based Goal-Driven Coordination of 

Multiple Learning Agents 

GDA agents have not been designed to learn and act with large state and action 

spaces. This can be a problem when applying them to real-time strategy (RTS) games, 

which are characterized by large state and action spaces. In these games, agents 

control multiple kinds of units and structures, each with the ability to perform certain 

actions in certain states, while competing versus an opponent who is controlling his 

own units and structures. To date, GDA agents that learn to play RTS games can be 

applied to only limited scenarios or control only a small set of decision-making tasks 

within a larger hard-coded system that plays the full game.  

To address this limitation, GDA-C was introduced.  GDA-C is a partial GDA 

agent (i.e., it implements only two of GDA’s four steps) that divides the state and 

action space among multiple reinforcement learning (RL) agents, each of which acts 

and learns in the environment. Each RL agent performs decision making for all the 

units with a common set of actions. For example, in an RTS game, it will assign one 
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RL agent to control all footmen, who is a melee combat unit, and another RL agent to 

control the barracks, which is a building that produces units (e.g., footmen).  

That is, each RL agent   is responsible for learning and reasoning on a space of 

size          , where    is agent  ’s set of states and    is its set of actions. 

Thus, GDA-C’s overall memory requirement, assuming n RL agents, is           

           .  This is a substantial reduction in memory requirements compared to a 

system that must reason with a space of size |S|| |, where   ⋃         and   

⋃         (i.e., all combinations of states and actions). 

Cooperation among GDA-C’s agents emerges as a result of combining two factors: 

(1) all its agents share a common reward function and (2) it uses Case-Based 

Reasoning (CBR) techniques to acquire/retain and reuse/apply its goal formulation 

knowledge.  

The claim is that agents which share the same reward function, augmented with 

coordination provided by GDA-C, outperform agents that coordinate by sharing only 

the reward function. To test this claim an empirical evaluation using the Wargus RTS 

environment was conducted to compare the performance of GDA-C versus CLASSQL, 

an ablation of GDA-C where the RL agents coordinate by sharing only the same 

reward function. First, GDA-C and CLASSQL were compared indirectly by testing 

both against the built-in AI in Wargus, a proficient AI that comes with the game and is 

designed to be competitive versus a mid-range player. Their performances were 

compared in direct competitions. The main findings are: 
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 Versus the Wargus built-in AI, GDA-C outperformed CLASSQL  

 GDA-C also outperformed CLASSQL in most direct comparisons 

8.2.1 Multi-Agent Setting 

The task focusing on is to control a set   of agents        , where each belongs 

to one class    in                . Each class    has its own set of class-specific 

states   . The collection of all states is denoted by   (i.e.,   ⋃        ). Each agent 

  can execute actions in    for every class specific state.  

A stochastic policy is a mapping                     [   ] . That is, for 

every state     ,       defines a distribution                    , where    is an 

action in    and    is the expected return from taking action     in state s and 

following policy    thereafter. The return is a function of the rewards obtained. For 

example, the return can be defined as the summation of the future rewards. Our goal is 

to find an optimal policy   
                   [   ]  such that   

  maximizes 

the expected return.  

It is easy to prove that, given a collection of   independent policies         

where each   maximizes the returns for class  , then               is an optimal 

policy. As in the next section, GDA-C uses this fact by running   RL agents, one for 

each class   . If each converges to an optimal policy, their  -tuple policies will be an 

optimal policy for the overall problem. This results in a substantial reduction of the 

memory requirement compared to a conventional RL agent that is attempting to learn 
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a combined optimal policy              where each    must reason on all states 

and actions. 

Q-learning was used to control each of the   agents. Thus, our baseline system 

consists of    -learning agents that are guaranteed, after a number of iterations, to 

converge to an optimal policy.  This baseline system as CLASSQL was referred to 

because each Q-learning (QL) agent controls a class of units in Wargus. 

8.2.2 Case Bases and Information Flow in the GDA-C Agent 

It is now the time to discuss how Case-Based Reasoning techniques are used in 

GDA-C to manage goals on top of CLASSQL.  Figure 8.4 depicts a high-level view of 

the information flow in GDA-C, which embeds the standard RL model (Sutton and 

Barto, 1998). GDA-C has two threads that execute in parallel. First, the GDA thread 

selects a goal, which in turn determines the policy that each RL agent will use and 

refine. Second, the CLASSQL thread performs Q-learning to control each of the k 

agents. 

The two case bases, Policies and GFCB, are learned from previous instances (e.g., 

previously played Wargus games). Given a policy  , a trajectory is a sequence of 

states           visited when following   from the starting state   . Any such 

state in this trajectory is a goal that can be achieved by executing  . The policy is 

assigned the last state in a trajectory as its goal. The case base Policies is a collection 
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of pairs       , where    is a policy that should be used when pursuing goal  . GDA-

C stores such pairs as it encounters them. 

 

 

Figure 8.4: Information flow in GDA-C. 

The other case base assists with goal formulation. When a discrepancy d occurs 

between the expected state X and the actual state observed by the Discrepancy 

Detector, this discrepancy is passed to the Goal Formulator, which uses GFCB to 

formulate a new goal. GFCB maintains, for each (current) goal discrepancy pair, 

     , a collection                     , where    is a goal to pursue next and vi is 

the expected return of pursuing it. It outputs the next goal g to achieve. 

The Goal-Specific Policy Selector selects a policy  based on the current goal g. 

The Class-Specific Policy Learner learns policies for new goals and refines the 

policies of existing goals. It uses Q-learning to update the Q-table entry       , given 

current state   and action taken  , as well as next state    and next reward   (Sutton & 

Barto, 1998). 
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In many environments, there is no optimal policy for all situations. For example, in 

an adversarial game, a policy might be effective against one opponent’s strategy but 

not versus others. By changing the goal when the system is underperforming, GDA-C 

changes the policy that is being executed, thereby making it more likely to adjust to 

different strategies. 

Now, let us talk about the formal definitions for the GDA process. Assuming a 

state is represented as a vector             of numeric features, where    is a value 

of a feature   . Borrowing ideas from Weber et al. (2012), the agent uses optimistic 

expectations. An expectation is optimistic iff       , where expectation   

   
      

   and previous state            . An optimistic expectation implicitly 

was used in our algorithm. That is, if the previous state is             and, after 

executing an action, a current state       
      

   is reached such that, for some  ,  

  
     holds, then a discrepancy occurs. A discrepancy is represented as a vector of 

Boolean values              , where    is true iff   
     holds. Basically, the 

agent expects that actions will not decrease the features’ values.  In later section, the 

state model consists of numeric features (e.g., the numbers of our own units) whose 

values the agent expects will remain the same or increase, but not decrease. 

8.2.3 The GDA-C Algorithm 

GDA-C coordinates the execution of a set of RL agents and how they learn. GDA-

C uses an online learning process to update the Policies and GFCB case bases. Each 
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GDA-C agent has its own individual Q-table. All  -values in Q-tables are initialized to 

zero. In each iteration of the algorithm, only some units (i.e., class instances such as 

peasants and archers) will be ready to execute a new action because others may be 

busy.  

Algorithm 7 GDA-C algorithm 

GDA-C (, , GFCB,  ,  , , g0)  

1:    GETSTATE();      CALCULATEDISCREPANCY(     );      g
 
 ;  

g  g
 
  

2: //-------- GDA thread -------- 

3:   while episode continues  

4:       GETSTATE() 

5:    WAIT() 

6:            –        //    is the prior state 

7:    if     then 

8:         CALCULATEDISCREPANCY(  ,  ) 

9:     GFCB  Q-LEARNINGUPDATE(GFCB,   , g,  ,  ) 

10:     g  GET(GFCB, d, ) // -greedy selection 

11:        g  

12:                    
13: //-------- CLASSQL thread -------- 

14:  while episode continues  

15:   s  GETSTATE() 

16:   parallel for each class     // this loop controls agent c 

17:        GETCLASSSTATE(c, s)   
18:       GETCLASSACTIONS( ,c); A GETVALIDACTIONS(  ,   )  

19:       (c) 

20:    for each instance u  c // this loop controls each unit or instance 

of class c 

21:     if   is a new instance then  

22:        
     ;   

   do-nothing 

23:     if instance u finished its action then 

24:           U(  ) – U(  
 )  // U(s) is the utility of state s 

25:         Q-LEARNINGUPDATE( ,   
 ,   

 ,   ,   )   

26:         GETACTION( , ,   , A)   

27:      EXECUTEACTION(a) 

28:        
    ;   

    

29:  return  , GFCB 
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Every unit records the state when it starts executing its current action. This is 

necessary for updating values in Q-tables. Below we present the pseudo-code of GDA-

C, followed by its description.  

GDA-C has two threads that execute in parallel and begin simultaneously when a 

game episode starts. The GDA thread (lines 3-12) selects a goal, which in turn 

determines the policy             that each RL agent will use and refine. The 

CLASSQL thread (Lines 14-28) performs Q-learning control on each of the   agents. 

When the GDA thread is deactivated (which is how our baseline system CLASSQL 

works), the CLASSQL thread refines the same policy from the beginning of the episode 

to the end. When the GDA thread is activated, the policy that CLASSQL refines is the 

most recent one selected by the GDA thread.  

GDA-C receives as input a constant number   (a delay before selecting the next 

goal), a policy case base  , a goal formulation case base (GFCB), a set of classes  , a 

set of actions  , a constant value   (for  –greedy selection in Q-learning, whereby the 

action with the highest value is chosen with a probability 1 and a random action is 

chosen with a probability ), and the initial goal   .   

The GDA thread: The variable    is initialized by observing the current state,    is 

initialized with a null discrepancy (e.g., CalculateDiscrepancy(     )), and a policy   

is retrieved from   for the initial goal    (all in Line 1). While the episode continues 

(Line 3), the current state   is observed (Line 4). After waiting for  time (Line 5), the 

reward   is obtained by comparing the utilities of current state s and previous state    
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(Line 6). Our utility function calculates, for a given state, the total “hit-points” of the 

controlled team’s units and subtracts those of the opponent team. When a unit is “hit” 

by other units, its hit-points will be decreased. A unit “dies” when its hit-points 

decrease to zero. If the reward is negative (Line 7), a new goal (and hence a new 

policy) will be selected as follows. First, the discrepancy   between    and   is 

computed (Line 8). GFCB is then updated via Q-learning, taking into account previous 

discrepancy   , current goal  , discrepancy  , and reward   (Line 9). Then -greedy 

selection is used to select a new goal   from GFCB with discrepancy   (Line 10). 

Next, a new policy   is retrieved from  for goal   (Line 11). Policy   will be 

updated in the CLASSQL thread. Finally, previous state    and discrepancy    are 

updated (Line 12). 

The CLASSQL thread: While the episode continues (Line 14), the current state   

is updated (Line 15). For each class   in the set of classes   (Line 16), the class-

specific state    is acquired from   (Line 17). Agents from different classes have 

different sets of actions that they can perform. Therefore, a set of valid actions   must 

be obtained for each class    (Line 18).     is initialized with the policy for class  , 

which depends on the overall policy   updated in the GDA thread (Line 19). For each 

instance (or unit)   of class   (Line 20), if   is a new instance, initialize its state and 

action (Line 21-22). If   finished its action then calculate the reward    and update the 

policy    via  -learning (Line 23-25). A new action is selected based on policy    

using  -greedy action selection (Line 26). Finally, the action is executed and the 

previous state   
  and previous action   

  are updated (Lines 27-28). 
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When the episode ends, GDA-C will return the policy case base  and the goal 

formulation case base GFCB (Line 29). 

Although at any point each agent   is following and updating a policy  , this 

does not mean that all units controlled by   will execute the same action. This is due 

to a combination of three factors. First, even when two units   and    start executing 

the same action at the same time, there is no guarantee that they will finish at the same 

time. For example, if the action is to move u and u' to a specific location L, one of 

them might be hindered (e.g., engaged in combat with an enemy unit). Hence, u and u' 

might reach L at different times and therefore the subsequent actions they execute 

might differ because the state may have changed between the times that they arrive at 

L. Second, actions are stochastic (chosen with the -greedy method). Third, the 

policies are changing over time as a result of Q-learning or even altogether as a result 

of the GDA thread. Therefore, at different times, even if in the same state, units might 

perform different actions. 
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CHAPTER 9  
EXPERIMENTAL EVALUATION 

Success is not determined by the outcome. The outcome is the result of 

having already decided that you are successful to begin with. 

― T.F. Hodge, From Within I Rise: Spiritual Triumph over Death and 

Conscious Encounters with “The Divine Presence” 

9.1 The description of problem domains used for 

experiments 

My research mainly focuses on building AI systems that have the ability to adapt 

themselves to new environments by examining their own knowledge.  Experiment on 

complex environments such as real-time strategy games makes the research 

challenging.   In most RTS games, the environment is non-deterministic; that is, 

actions have multiple possible outcomes.  It is also very adversarial; that is, agents are 

opposing other agents. Finally, movements are asynchronous; a player doesn’t wait for 

other players to make their moves.  I used two games DOM and Wargus as my 

problem domains for the experiments. 
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9.1.1 DOM: Domination game 

Domination games are played in a turn-based environment in which two teams 

compete to control specific locations called domination points.  Teams are composed 

of   bots. The player’s actions are  -tuples           indicating the domination 

location    to which each bot    is assigned.  A player captures a location by simply 

moving a bot to it.  In other words, each time a bot on team   passes over a domination 

point, that point will belong to  . Team   receives one point for every 5 seconds that it 

owns a domination point.  Teams compete to be the first to earn a predefined number 

of points. Domination games have been used in a variety of combat games, including 

first-person shooters such as Unreal Tournament and online role-playing games such 

as World of Warcraft. 

Domination games are popular because they reward team effort rather than 

individual performance.  No awards are given for killing an opponent team’s bot, 

which respawns immediately in a location selected randomly from a set of map 

locations, and then continues to play.  Killing such bots might be beneficial in some 

circumstances, such as killing a bot before he can capture a location, but the most 

important factor influencing the outcome of the game is the strategy employed.   An 

example strategy is to control half plus one of the domination locations.  A location is 

captured for a team whenever a bot in that team moves on top of the location and 

within the next 5 game ticks no bot from another team moves on top of that location.  

Figure 9.1 displays an example DOM game map with five domination locations. 
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Bots begin the game and respawn with 10 health points.  Enemy encounters 

(between bots on opposing teams) are handled by a simulated combat consisting of 

successive die rolls, each of which makes the bots lose some number of health points.  

The die roll is modified so that the odds of reducing the opponent health points 

increase with the number of friendly bots in the vicinity. Combat finishes when the 

first bot health points decreases to 0 (i.e., the bot dies). Once combat is over, the death 

bot is respawned from a spawn point owned by its team in the next game tick. Spawn 

point ownership is directly related to domination point ownership, if a team owns a 

given domination point the surrounding spawn points also belong to that team.  

DOM is a good testbed for testing algorithms that integrate planning and execution 

because domination actions are non-deterministic; if a bot is told to go to a domination 

location the outcome is uncertain because the bot may be killed along the way.  

Domination games are also adversarial; two or more teams compete to control the 

domination points. Finally, domination games are imperfect information games; a 

team only knows the locations of those opponent bots that are within the range of view 

of one of the team’s own bots. 

9.1.2 Wargus 

Wargus is a modification of Warcraft2, a commercial video game originally 

created by Blizzard Entertainment.  It runs under the Stratagus engine, a free cross-

platform real-time strategy game engine used to build other games. The original 

version of Warcraft2 was built on 1995 and required to run on DOS mode.  The 
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Stratagus engine allows users to play Warcraft2 under operating systems not supported 

by the original Warcraft2 engine such as Windows.  In addition, it also allows users to 

play over the internet. 

In Wargus, the race of each character (unit) can be either humans or orcs. 

Generally, ability of human units and orc units are fairly balance.  Humans and orces 

units are composed of three main types: land, naval and air units.  There are 28 types 

of units: 14 types of human units and 14 types of orc units. There is only one type of 

civilian units for both races; Peasant for humans and Peon for orcs.  There are three 

main tasks for each civilian unit: building a new structure, repairing a damaged 

structure, and harvesting resources.  There are three kinds of resources in Wargus: 

gold, wood, and oil.  To harvest gold, a civilian must walk to a gold mine and carry 

the gold back to its own camp.  As per to harvest wood, a civilian walk to a tree, cut 

and bring the wood back to the camp.  However, harvesting oil is not a task for 

civilians because they are land units and it is more complicate than harvesting wood 

and gold.  To harvesting oil, we have to send an oil tanker (a naval unit) to an oil rig to 

pump oil and carry it back to the shipyard.  If there is no oil rig, we have to build it 

first by sending an oil tanker to find an oil patch and build a rig over the patch. 

About structures in Wargus, there are two main kinds of structures for both races: 

land-based and sea-based structures. Each structure type has its own duty.  For 

example, barracks product military units, aviaries create aircraft, town halls train 

civilians. 
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9.2 Empirical Evaluation of GDA-HTNbots 

As we mentioned in Section 4.2, to prove the claim that GDA increases system’s 

performance, an experiment on DOM games was conducted by playing the GDA-

HTNbots system versus a set of opponents.  The explanation of the behavior of each 

adversary is shown in Table 9-1. 

Table 9-1: The adversaries in DOM game and their descriptions 

Adversaries Description Difficulty 

Dom1 Hugger Sends all agents to domination location 0. Trivial 

First Half of Dom 

Locations 

Sends an agent to the first half + 1 

domination location. Extra agents patrol 

between the 2 locations. 

Easy 

Second Half of Dom 

Locations 

Sends an agent to the second half + 1 

domination locations.  Extra agents patrol 

between the two locations. 

Easy 

Each Agent to One 

Dom 

Each agent is assigned to a different Dom 

location and remains there for the entire 

game. 

Medium 

Smart Opportunistic 

Sends agents to each Dom location the 

team doesn’t own.  And, if it is possible, it 

will send multiple agents to each un-owned 

location. 

Hard 

Greedy Distance 

Each turn the agents are assigned to the 

closest domination location they do not 

own. 

Hard 

By comparing the performances of both GDA-HTNbots and HTNbots, HTNbots 

performs well versus several hard-coded opponents. Thus, HTNbots should provide a 

good baseline for the system’s evaluation.  However, we expected GDA-HTNbots 
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would outperform HTNbots for opponents whose behaviors motivate the dynamic 

formulation of new goals. 

The performance of these systems was recorded and compared versus the same set 

of hard-coded opponents. Our performance metric is the difference in the score 

between the system and opponent while playing DOM, divided by the system’s score. 

Both systems were run against each of the six opponents summarized in Table 9-1.  

The first three were the same used to test HTNbots, which was found to perform well 

on them. Hence, these are challenging DOM opponents for testing whether GDA 

enhancements can improve HTNbots’ performance. The final three opponents were 

created in subsequent studies of HTNbots to test reinforcement learning and case-

based reasoning algorithms. Among these, the final two opponents were found to be 

particularly difficult to beat. In summary, these opponents form a challenging and 

varied testbed to measure the utility of GDA-HTNbots. 

The experimental setup was as follows: Both systems were tested versus each of 

these opponents on the map shown in Figure 9.1. This is the same map that was used 

in the previously mentioned experiments. Each game was run three times to account 

for the randomness introduced by non-deterministic game behaviors. 
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Figure 9.1: An example DOM game map with five domination locations (yellow 

flags), where small rectangles identify the respawning locations for the agents and the 

remaining two types of icons denote each player’s agents. 

The results are shown in Table 9-2, where each row displays the normalized over 

three average difference in scores (computed games) versus each opponent. It also 

shows the average scores for each player. The same experiment was repeated with a 

second map and obtained results consistent with the ones discussed here.  The limited 

number of trials in this pilot study prevents us from computing statistical significance. 
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Table 9-2: Average Percent Normalized Difference in Game AI System vs. 

Opponent Scores (with average scores in parentheses). 

Adversaries HTNbots GDA-HTNbots 

Dom1 Hugger 
81.2% 

(20002 vs. 3759) 

80.9% 

(20001 vs. 3822) 

First Half of Dom 

Locations 

47.6% 

(20001 vs. 10485) 

42.0% 

(20001 vs. 11605) 

Second Half of Dom 

Locations 

58.4% 

(20003 vs. 8318) 

12.5% 

(20001 vs. 17503) 

Each Agent to One Dom 
49.0% 

(20001 vs. 10206) 

40.6% 

(20002 vs. 11882) 

Smart Opportunistic 
-19.4% 

(16113 vs. 20001) 

-4.8% 

(19048 vs. 20001) 

Greedy Distance 
-17.0% 

(16605 vs. 20001) 

0.4% 

(19614 vs. 19534) 

The results can be summarized as follows: Against difficult opponents (the final 

two opponents in Table 9-1), GDA-HTNbots outperforms HTNbots. Against easy 

opponents (the first four listed in Table 9-1) HTNbots outperforms GDA-HTNbots. 

Game-play records were examined to investigate why this occurred, and concluded 

that the initial strategy chosen by HTNbots is frequently sufficient to win the game. 

For example, the Dom1 Hugger (opponent) team sends all agents to one location. It is 

easy for HTNbots to immediately generate a winning plan against this strategy and 

start winning from the outset. Indeed, in situations where the goals should not be 

changed, this implementation of GDA should not be used. 
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The more difficult opponents reason about the distance between the agent 

locations and the domination locations as part of their strategy. These strategies are 

particularly effective versus HTNbots and GDA-HTNbots, which encode their 

knowledge symbolically without metric information. Indeed, the two hard opponents 

soundly defeat HTNbots. The advantage of using a specialized component to reason 

about goals becomes apparent in this study. By tracking which domination locations 

the opponent is trying to control and which goal was used to generate the current plan, 

GDA-HTNbots can react quickly to the opponent’s strategy. This allowed GDA-

HTNbots to outperform the Greedy Distance opponent (which outperformed 

HTNbots) and almost perform as well as the Smart Opportunistic opponent. 

9.3 Empirical Evaluation of CB-GDA 

We describe an empirical study of CB-GDA on the task of winning games defined 

using a complex gaming environment (DOM).  Our study revealed that, for this task, 

CB-GDA outperforms a rule-based variant of GDA when executed against a variety of 

opponents.  CB-GDA also outperforms a nonGDA replanning agent against the most 

difficult of these opponents and performs similarly against the easier ones. In direct 

matches, CB-GDA defeats both the rulebased GDA system and the non-GDA 

replanner. 

An exploratory investigation was performed to assess the performance of CB-

GDA. The claim of CB-GDA is that the case-based approach to GDA can outperform 



96 

the previous rule-based approach (GDA-HTNbots) and a non-GDA replanning system 

(HTNbots) in playing DOM games. To assess this hypothesis a variety of fixed 

strategy opponents were used as benchmarks, as shown in Table 9-1. These opponents 

are displayed in order of increasing difficulty. 

The performance of these systems was recorded and compared against the same 

set of hard-coded opponents in games where 20,000 points are needed to win and 

square maps of size 70 x 70 tiles.  The opponents above were taken from course 

projects and previous research using the DOM game and do not employ CBR or 

learning. Opponents are named after the strategy they employ.  For example, Dom 1 

Hugger sends all of its teammates to the first domination point in the map.  The 

performance metric is defined by the difference in the score between the system and 

opponent while playing DOM, divided by the system’s score. The experimental setup 

tested these systems against each of these opponents on the map used in the 

experiments of GDA-HTNbots.  Each game was run three times to account for the 

randomness introduced by non-deterministic game behaviors.  Each bot follows the 

same finite state machine. Thus, the difference of results is due to the strategy pursued 

by each team rather than by the individual bot’s performance. 

The results are shown in Table 9-3, where each row displays the normalized 

average difference in scores (computed over three games) against each opponent.  It 

also shows the average scores for each player.  The results for HTNbots and GDA-

HTNbots are the same as reported in, while the results for CB-GDA are new.  The 

same experiment was repeated with a second map and obtained results consistent with 
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the ones presented in Table 9-3 except for the results against Greedy, for which 

inconclusive results were obtained due to some path-finding issues. 

Table 9-3: Average Percent Normalized Difference in the 

Game AI System vs. Opponent Scores (with average Scores in parentheses) 

Opponent Team 
(controls enemies) 

Game AI System (controls friendly forces) 

HTNbots HTNbots-GDA CB-GDA 

Dom1 Hugger 
81.2% 

(20,002 vs. 3,759) 

80.9% 

(20,001 vs. 3,822) 

81.0% 

(20,001 vs. 3,809) 

First Half Of 

Dom Points 

47.6% 

(20,001 vs. 10,485) 

42.0% 

(20,001 vs. 11,605) 

45.0% 

(20,000 vs. 10,998) 

Second Half 

Of Dom 

Points 

58.4% 

(20,003 vs. 8,318) 

12.5% 

(20,001 vs. 17,503) 

46.3% 

(20,001 vs. 10,739) 

Each  Agent  

to One Dom 

49.0% 

(20,001 vs. 10,206) 

40.6% 

(20,002 vs. 11,882) 

45.4% 

(20,001 vs. 10,914) 

Greedy 

Distance 

-17.0% 

(16,605 vs. 20,001) 

0.4% 

(19,614 vs. 19,534) 

17.57% 

(20,001 vs. 16,486) 

Smart 

Opportunistic 

-19.4% 

(16,113 vs. 20,001) 

-4.8% 

(19,048 vs. 20,001) 

12.32% 

(20,000 vs. 17,537) 

 

Table 9-4: Average percent normalized difference in the game AI system vs. 

opponent scores (with average scores in parentheses) with statistical significance. 

Opponent CB-GDA – Map 1 CB-GDA – Map 2 

Dom 1 Hugger   

80.8% (20003 vs. 3834)  

81.2% (20001 vs. 3756)  

80.7% (20001 vs. 3857)   

81.6% (20002 vs. 3685)  

81.0% (20003 vs. 3802) 

78.5% (20003 vs. 4298) 

78.0% (20000 vs. 4396) 

77.9% (20003 vs. 4424) 

77.9% (20000 vs. 4438) 

78.0% (20000 vs. 4382) 

Significance 3.78E-11 1.92E-11 

First Half of Dom 

Points 

 

46.0% (20000 vs. 10781)   

45.8% (20001 vs. 10836)   

44.9% (20001 vs. 11021)   

46.1% (20000 vs. 10786)   

43.4% (20001 vs. 11322) 

53.1% (20000 vs. 9375) 

56.7% (20002 vs. 8660) 

54.6% (20002 vs. 9089) 

52.0% (20001 vs. 9603) 

53.7% (20001 vs. 9254) 
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Opponent CB-GDA – Map 1 CB-GDA – Map 2 

Significance 4.98E-08   1.38E-07 

Second Half of Dom 

Points 

45.6% (20002 vs. 10889)   

47.2% (20002 vs. 10560)   

44.1% (20001 vs. 11188)   

45.1% (20000 vs. 10987)   

45.8% (20000 vs. 10849) 

60.6% (20000 vs. 7884) 

61.7% (20000 vs. 7657) 

61.7% (20000 vs. 7651) 

61.0% (20001 vs. 7797) 

60.8% (20002 vs. 7848) 

Significance 4.78E-08   7.19E-10 

Each Agent to One 

Dom 

46.1% (20001 vs. 10788)   

46.2% (20000 vs. 10762)   

44.7% (20002 vs. 11064)  

44.6% (20000 vs. 11077)   

47.6% (20002 vs. 10481) 

54.9% (20002 vs. 9019) 

53.7% (20002 vs. 9252) 

56.8% (20001 vs. 8642) 

55.4% (20000 vs. 8910) 

57.7% (20002 vs. 8469) 

Significance 6.34E-08 7.08E-08 

Greedy Distance   

6.4% (20001 vs. 18725)   

8.3% (20001 vs. 18342)   

5.0% (20000 vs. 18999)   

9.0% (20001 vs. 18157)   

12.7% (20001 vs. 17451) 

95.6% (20003 vs. 883) 

92.7% (20002 vs. 1453) 

64.6% (20004 vs. 7086) 

94.9% (20004 vs. 1023) 

98.0% (20004 vs. 404) 

Significance 1.64E-03 6.80E-05 

Smart Opportunistic 

4.5% (20000 vs. 19102)   

11.5% (20000 vs. 17693)  

11.5% (20000 vs. 17693)  

10.6% (20000 vs. 17878)   

13.4% (20009 vs. 17333) 

13.4% (20001 vs. 17318) 

13.9% (20001 vs. 17220) 

1.0% (20001 vs. 19799) 

10.7% (20002 vs. 17858) 

12.0% (20003 vs. 17594) 

Significance   1.23E-03   1.28E-03 

In more detail, the results of additional tests here designed to determine whether 

the performance differences between CB-GDA and the opponent team strategies are 

statistically significant.  Table 9-4 displays the results of playing 10 games over two 
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maps (5 games per map) against the hard-coded opponents.  The difference in score 

between the opponents was tested using the Student’s t-test.  For the significance 

value p of each opponent, the constraint p < 0.05 holds. Hence, the score difference is 

statistically significant. 

For deeper understanding, CB-GDA was ran against the two dynamic opponents 

(i.e.,  HTNbots and GDA-HTNbots)  to compete directly using  the same setup as  

reported for generating Table 9-3.  As shown in Table 9-5, CB-GDA easily 

outperformed the other two dynamic opponents.  Again, this study was repeated with a 

second map and obtained results consistent with the ones presented in Table 9-5. 

Table 9-5: Average Percent Normalized Difference for the Dynamic Game AI 

Systems vs. CB-GDA Scores (with average scores in parentheses) 

Opponent Team CB-GDA’s Performance 

HTNbots 8.1% (20,000 vs. 18,379) 

GDA-HTNbots 23.9% (20,000 vs. 15,215) 
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9.4 Empirical Evaluation of the LGDA 

We introduced LGDA in Section 6.2.  LGDA is a goal-driven autonomy agent that 

automatically acquires state expectation and goal selection knowledge.  In this section, 

we will investigate the performance of LGDA agent versus other agent using different 

methods. 

9.4.1 Experimental Setup  

We used the task of winning DOM games to investigate two hypotheses: (H1) 

LGDA can learn to perform as well as a non-learning GDA agent that employs expert 

knowledge, and (H2) LGDA can significantly outperform agents that use only RL or 

only CBR, respectively. 

We also used six hand-coded adversaries as baselines as described in Table 9-1 

except the new adversary called Priority, which prefers to send bots to those location 

with highest priority first.  The domination locations owned by opponents are highest 

priority, un-owned domination locations are lower priority and finally, domination 

locations held by our team are lowest priority.  Briefly, these adversaries pursue a 

unique goal    to play DOM. Their behavior is approximately modeled using a policy 

  . That is, while the first three adversaries (Dom1Hugger, First Half of Dom 

Locations, and Second Half of Dom Locations) are easy to defeat, the latter three 

(Smart Opportunistic, Each Bot to One Dom Location, and Priority) cannot be 

perfectly represented as policies based on our models for   and   because they reason 
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about the proximity of bots to locations. Proximal information is not represented by 

any of the four agents we tested. Thus, the latter three adversaries pose difficult 

challenges for the agents. 

We compared LGDA versus the following agents: Retaliate, which performs Q-

learning, the ablation Random GDA (RGDA), which replaces LGDA’s -greedy goal 

selection procedure with a random selection procedure, and CB-GDA, a non-learning 

CBR agent whose case bases were manually crafted by a domain expert (Muñoz-

Avila, H.; Aha, D.W.; Jaidee, U.; Carter, E.;, 2010). It includes two case bases, whose 

mappings are:  

PCB:        , and MCB:       

PCB records the expected state for each (goal, state, action) tuple, and MCB 

records the preferred goal to formulate for each (goal, discrepancy) pair. All agents 

(CB-GDA, LGDA, Retaliate, and RGDA) use the same model for S and A. The 

learning agents (the latter three) use the same utility function U.  The definitions for  , 

 , and   are given in Section 6.3. 

Games are won by the first team to reach 2000 points on Figure 9.1’s map. There 

were 8 bots per team, which is typical (i.e., there are usually more team members than 

domination locations). Scores were averaged over 10 games. In our first study, we 

indirectly compared the agents by testing them against the six hard-coded adversaries 

using a leave-one-out cross-validation (LOOCV) method: we trained each learning 

agent versus five adversaries, using four repetitions per starting state, and tested it 



102 

against the remaining adversary. The second study addresses our hypotheses: it 

directly compares LGDA versus the other agents. We trained each learning agent 

versus the six adversaries. LGDA received as input the policies for the six adversaries 

but not the policies for the other agents. We recorded results before and after each 

training repetition of LGDA versus each of the three agents, continuing until their 

relative performance stabilized. Knowledge learned during testing was flushed 

between games. Our metric is state utility, as defined in Section 6.3. 

9.4.2 Results 

Experiment 1 (Table 9-6): CB-GDA recorded the best performance among the 

agents; it outperformed all of the adversaries, although barely so versus Each Bot to 

One Dom, which is the strongest of the hard-coded adversaries. This adversary 

maintains at least one bot in each location. LGDA outperformed five of the opponents, 

losing only to Each Bot to One Dom. In contrast, Retaliate and RGDA performed 

poorly versus all three of the difficult adversaries. This provides initial evidence that 

LGDA performs comparatively well compared to its ablations but it is outperformed 

by CB-GDA. Our next experiment provides strong support for these observations. 

Experiment 2 (Figure 9.2): LGDA is outperformed by CB-GDA. The mean of the 

underlying distribution for their relative utility values after training was -14.6  2.6 at 

the 95% confidence level. Thus, H1 is not supported, though LGDA’s final 
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performance is fairly close. This is not too surprising, given that CB-GDA’s case 

bases were manually encoded by a domain expert. 

Table 9-6: Average Utility Results from Experiment 1. 

Adversary CB-

GDA 

Retaliate RGDA LGDA 

Dom1Hugger 77.38 74.26 71.36 61.38 

First Half of Dom Points 75.47 58.88 74.23 64.91 

Second Half of Dom Points 65.36 65.79 66.28 63.03 

Smart Opportunistic 54.85 -10.62 -36.59 45.27 

Each Bot To One Dom 0.46 -47.13 -68.48 -50.11 

Priority 45.14 -6.37 -45.28 23.08 

Learning methods None RL CBR CBR & RL 

 

LGDA is initially outperformed by Retaliate because Retaliate quickly converges 

to an action that on average works well versus the adversaries. In contrast, LGDA 

needs to learn expectations and best goals to pursue when discrepancies occur. This 

results in a slower learning process in part because the interdependency between 

expectations and discrepancies. Over time we see that it pays off; LGDA eventually 

outperforms Retaliate. LGDA outperforms RGDA from the outset. Versus Retaliate, 

the same analysis reveals a mean of 34.3  4.1 at the 95% confidence level, and the 

mean (at this level) versus RGDA was 62.6  2.4. Thus, these results strongly support 

H2. 



104 

 

(a) 

 

(b) 

-80

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70

LGDA vs. CB-gda

Utility (Score Difference) Trend

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25

LGDA vs. Retaliate

Utility (Score Difference) Trend



105 

 

(c) 

Figure 9.2: Results from Experiment 2: Average learning curves 

for comparing LGDA DOM performance vs. non-learning and ablated agents. 

The trend lines were generated using a polynomial fit to the raw curves. 

9.5 Empirical Evaluation of the GRL 

We examined the task of winning two adversarial games to investigate the 

following hypothesis: GRL can significantly outperform a standard RL agent that 

learns only policies (i.e., Retaliate (Smith, et al., 2007), which uses Q-learning) and an 

ablated GDA agent that does not learn policies (i.e., LGDA (Jaidee, U.; Munoz-Avila, 

H.; Aha, D.W., 2011), which is given policies representing an opponent’s strategies 

and their goals, and learns only expectations and goal formulation knowledge). In our 

study, all three learning agents use the same models for states, actions, and rewards.  
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9.5.1 Scenarios 

The adversarial games we use are Wargus and DOM. Both are two-player real-

time video games: players make asynchronous moves. They exhibit the characteristics 

that we want to explore in this paper: there doesn’t seem to be a universally good 

strategy for these games. Instead, they exhibit the “rock-paper-scissors” behavior 

whereby any strategy can be countered. LGDA have demonstrated good performance 

in DOM and Wargus (Jaidee, et al., 2011; Jaidee, et al., 2011a) while Retaliate has 

demonstrated good performance in DOM (Smith, et al., 2007), so they are good 

baselines for testing GRL. 

We used two maps in our Wargus experiments. The first is a medium-sized map 

with 64×64 cells and 8 units per player, while the second uses the largest feasible map 

(128×128 cells) and 32 units per player. We set the games’ score limits to be 200 and 

1000 points, respectively. In our experiments, we used five hand-coded opponents that 

order all units of the same type to attack a single type of the agent’s units. For 

example, they might assign knights to attack archers. These opponents differ in their 

attack order. In testing, no single opponent outperformed all the others. We used these 

built-in opponents to train the three agents (i.e., Retaliate, LGDA and GRL). 

The second domain is DOM game as explained in Section 9.1.1. In our 

experiment, we use a map with five domination locations and eight bots per team.  In 

addition, we used the same six hand-coded opponents in DOM we previously used in 

(Jaidee, et al., 2011), where we used a variety of fixed strategies such as the “half plus 
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one adversary”, which attempts to control a majority of locations by sending bots to 

them whenever they are owned by the competing agent. Another strategy, called 

“smart opportunistic”, sends a different bot to each domination location the team does 

not own. Among these six adversaries, there are two that are better than all the others, 

two that are middling performers, and the last two are defeated by all the others. 

 

9.5.2 Protocol and Results 

Agents played   episodes, where      for Wargus and       and 2000 for 

DOM. The difference in the number   of runs between Wargus and Dom is due to the 

fact that running DOM games is much quicker.  During each training episode, each 

agent played each of the   built-in opponents once (    for Wargus and     for 

DOM). During training, the agents GRL, LGDA and Retaliate are learning. We tested 

GRL against Retaliate and LGDA after each training episode. Because both DOM and 

Wargus are highly stochastic, games during testing were repeated 10 times. Any 

knowledge learned during a game in the testing phase was removed after the game 

ends. Thus, the only knowledge affecting the performance of the agents when 

competing versus one another was learned during training and any knowledge learned 

online within that particular game episode. 

Figure 9.3 and Figure 9.4 summarize the average results. The  -axis plots the 

number of training episodes, while the  -axis plots the average utility (i.e., score 

difference of GRL versus another agent).  
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Experiment 1 (Wargus): In most Wargus episodes (Figure 9.3), GRL clearly 

outperformed the other agents, although LGDA sometimes defeated GRL in the 

medium-size map (Figure 9.3b). Nevertheless in all cases the differences are 

statistically significant          , as determined by a two-tailed Student’s  -Test on 

the utility scores of GRL versus the scores of another agent (i.e., Retaliate or LGDA). 

Hence our hypothesis is supported for Wargus, and we can draw three conclusions: 

 

1. There is either no universally good strategy for these games or none can be 

found by Q-learning even after a large number of episodes. 

2. GRL outperformed the Q-learning agent. This highlights the importance for 

using case-based approaches to learn and reason about expectations, goal 

formulation knowledge, and goal-specific policies in domains where no 

universally-best strategy can be elicited by RL. 

3. GRL outperformed the LGDA agent. This highlights the importance of 

identifying new goals and using CBR to learn and reuse goal-specific cases.  

 

We were surprised that GRL outperformed LGDA after only a few episodes 

because GRL begins with no goals and no policies. In contrast, LGDA begins with 

policies representing the built-in opponents’ strategies and goals for these policies. 

Upon inspection we found that the opponents’ strategies cause their units to form 

choke points while trying to reach the units they intended to attack. As a result, few 

units, mostly ranged attack units, actually were effective. Without knowledge about 
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expectations and goals, LGDA rotates among the various opponents’ strategies. As 

mentioned, these end up being ineffectual because it frequently results in choke points. 

GRL instead initially performs random actions that, on average, cause more of their 

own units to damage opponent units, which explains the relative results of the first few 

episodes. 

We also investigated why, despite its overall good performance, GRL will 

occasionally lose games to the opponents in the medium-sized map (e.g., in round 13 

versus Retaliate (Figure 9.3a) and round 20 versus LGDA (Figure 9.3b)). We found 

that for this map the score limit was frequently reached even though both teams had 

several units left. That is, the maximum point threshold was set too low for the number 

and types of units in the scenario (i.e., killing high-value units such as knights are 

worth many points, and the game ends sooner when any such unit is killed). This 

caused high variation in the results because, after a while, several units from both 

sides will have few health points. In this situation, after a few of these units die the 

game terminates because the point limit is reached. As a result, depending on the 

random factor that determines which unit attacks succeeded, units from either side die 

while others remain with few health points. However, points are only awarded for 

deaths, and not for low health points. This caused the variance in the results. This was 

not a factor in the large map because the number of points was set sufficiently high 

and, although there is fluctuation; GRL did not lose a game on average (Figure 9.3c 

and Figure 9.3d). 

 



110 

Experiment 2 (DOM):  Figure 9.4 summarizes the results with DOM games. In all 

cases GRL clearly outperformed the other agents, although initially both Retaliate and 

LGDA outperformed GRL. This is to be expected; GRL initially has no knowledge of 

which goals to pursue nor how to achieve them. Nevertheless in all cases the 

difference is statistically significant             across the entire curves, as 

determined by a two-tailed Student’s t-Test for comparing the utility scores of GRL 

versus those of the other two learning agents). This also supports our hypothesis and 

allows us draw the same conclusions as mentioned above for Experiment 1.  

We investigated why it took so many episodes for GRL to start winning versus 

Retaliate and LGDA in the DOM game compared to Wargus. This occurred because 

the state model used by the agents forms a DAG for Wargus, meaning that a state is 

never visited more than once. As a result, for Wargus, we define the new goal to be 

the final state (whereas for DOM this is defined as the most frequently visited state). 

In contrast, the same state can be visited multiple times in DOM. Thus, multiple goals 

were frequently learned per DOM episode, resulting in many more goals being learned 

overall. Hence,   grows faster in the DOM rather than in the Wargus experiments 

during the initial training episodes. This in turn increases the number of episodes 

needed to learn useful goal formulation knowledge and good policies. Thus, it takes 

longer for GRL to outperform the other agents in DOM scenarios. 
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(d) 

Figure 9.3: The results of the Wargus experiments: GRL vs. Retaliate (a) and vs. 

LGDA (b) on the medium map, and GRL vs. Retaliate (c) and vs. LGDA (d) on the 

large map. The x-axis plots the number of training episodes, while the y-axis plots the 

average utility (i.e., score difference of GRL versus another agent). 
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(b) 

Figure 9.4: Results from the DOM experiments: (a) GRL vs. Retaliate and (b) GRL 

vs. LGDA. The x-axis plots the number of training episodes, while the y-axis plots the 

average utility (i.e., score difference of GRL versus another agent). 

We also investigated why it took so many more episodes for GRL to outperform 

LGDA compared to Retaliate. Namely, it took around 150 episodes for Retaliate 

compared to almost 300 for LGDA. This was caused by the two strong hand-coded 

adversaries, which LGDA was able to leverage. This also explains why, in the first 

episode, GRL loses to Retaliate by approximately 350 points whereas it loses to 

LGDA by approximately 1600 points. 
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9.6 Empirical Evaluation of the CLASSQL 

We conducted two experiments for CLASSQL: the first experiment (see Section 

9.6.1) and the second experiment (see Section 9.6.2). 

9.6.1 Experiment #1 

The first experiment, we tested CLASSQL on a small 32 32-cell map versus five 

adversaries. 

9.6.1.1 Experimental Setup 

At the first turn of each game, both teams start with only one peasant/peon, one 

town hall/great hall, and a gold mine near them. We have five adversaries: land-attack, 

SR, KR, SC1 and SC2 for training and testing our algorithm.  These adversaries come 

with the Warcraft distribution and have been used in machine learning experiments 

before.  

These adversaries can construct any type of unit unless the strategy followed 

discards it (e.g., land -attack will only construct land units. So units such as Gryphons 

are not built): 

 Land Attack: This strategy tries to balance offensive/defensive actions with 

research. It builds only land units. 

 Soldier’s Rush (SR): This attempts to overwhelm the opponent with cheap 

military units early in the game. 
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 Knight’s Rush (KR): This strategy attempts to quickly research advanced 

technologies, and launch large attacks with the strongest units in the game 

(knights for humans and ogres for orcs) as soon as they are available. 

 Student Scripts (SC1 & SC2): These strategies are the top two competitors 

created by students for a classroom tournament. 

We trained and tested CLASSQL by using leave-one-out training as the model of 

our experiment processes.  We remove from the training set the adversary that we 

want to compete against. For example, if we want to experiment CLASSQL versus 

SC1, the set of adversaries that we use for training is {land-attack, SR, KR, SC2}. 

 

Figure 9.5: The screen capture of the small map from Wargus. 

All experiments were performed on the       tile map shown in Figure 9.5. 

This is considered a small map in Wargus.  Each competitor starts in one side of the 
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forest that divides the map into two parts. We added this forest to give time to 

opponents to build their armies. Otherwise, CLASSQL was learning a very efficient 

soldier rush and defeating all opponents including SR very early in the game. 

  
(a) (b) 

 

  
(c) (d) 

 
(e) 

Figure 9.6: The results of the experiments #1 from Wargus: ClassQ-L vs. 

(a) Land-Attack, (b) SR, (c) KR, (d) SC1 and (e) SC2 respectively. 
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9.6.1.2 Results 

Our performance metric is:  wins(CLASSQL)  wins( ), where wins(t) is the 

number of wins for team                                     First we match  

CLASSQL against each opponent with no training (m = 0). Then we play against each 

opponent after one round of training using leave-one-out training (m = 1). We repeat 

this until m = 20. We repeat each match 10 times and compute the average metric. So 

the total number of games played in this experiment is             games. 

Including training, the total number of games run in this experiment is        

     games. 

Our performance metric provides a better metric than the difference in Wargus 

score (our score – opponent’s score) of the game because the lower score difference 

can mean a better performance than a larger score difference.  This is due to how the 

Wargus score is computed. For example, our team can win the opponent very fast and 

the score we got is just 1735 and the game is over while the opponent got the score of 

235 before the game end. In this case, the average score of (our team  -  opponent 

team) is just 1500.  In another case, our team can win the opponent with the score of 

3450, but the game takes very long time to run until the game is over; while the 

opponent team got the score of 1250. In this case, the average score of (our team – 

opponent team) is 2200, but it does not mean the performance is better. In fact, the 

performance should be worse than the previous case because it takes longer time to 

win.  
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Overall the performance of CLASSQL is better than that of the adversaries (see 

Figure 9.6).  The  -axis shows the results after   number of iterations training in the 

leave-one-out setting. The first bar is   = 0 and the last bar is   = 20. 

9.6.2 Experiment #2 

We conducted the experiments for CLASSQL on a small, medium and large 

Wargus maps whose sizes are 32 32, 64 64, and 128 128 cells, respectively with the 

fog-of-war mode turned off.  In each map, we have two opponent teams (human and 

orc). Each starts with only one peasant/peon (i.e., a unit used to harvest resources and 

construct new building), one town hall/great hall, and a nearby gold mine. Each 

competitor also starts on one side of a forest that divides the map into two parts. As for 

the same reason mentioned in Section 9.6.1.1, we added this forest and walls to 

provide opponents with sufficient time to build their armies. Otherwise, our algorithms 

will learn an efficient early attack (called a “rush” attack), which will end the game 

when the opponents have produced only a few units or buildings. 

9.6.2.1 Experimental Setup 

We compared the performance of CLASSQL against Wargus’ built-in AI. The 

built-in AI in Wargus is quite good; it provides a challenging game to an average 

human player. We use five adversaries (defined in Section 9.6.1.1) to train the 

algorithm and test with the Wargus’ built-in AI.  The build-in AI is capable of 
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defeating average players and is a stronger player than the 5 adversaries used for 

training. 

The performance metric that we used for generating the results of the experiment 

is  wins(CLASSQL)  wins(built-in). 
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(c) 

Figure 9.7: The detailed landscape of the (a) 1
st
, (b) 2

nd
, (c) 3

rd
 large maps. 

The highlighted squares are the locations of both teams. 

9.6.2.2 Results 

Figure 9.8 shows the results of the experiments. The  -axis is the number   of 

training iterations and the  -axis is the performance metric. In all three maps, the 

build-in AI starts winning, which is not surprising since CLASSQL has no training. 

After a few iterations CLASSQL begins to outperform the built-in AI and continues 

outperform for the remaining iterations. 
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We also conducted experiments, where we tested the AI learned by CLASSQL on 

one map after        iterations and tested it against the built-in AI in other two 

unseen maps without any additional training. We repeated this experiment for the AI 

learned in the small, medium and large maps. Figure 9.7 shows the original large map 

used for learning and the two other medium maps we used for testing. The results are 

shown in Table 9-7. In the original map used for training (column labeled 1
st
 map), 

CLASSQL is able to win almost all of the 10 games. The knowledge learned is 

effective in the other 2 maps (columns labeled 2
nd

 map and 3
rd

 map). 
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(c) 

Figure 9.8: The results of the experiments #2 from Wargus game: 

CLASSQL vs the built-in AI on the (a) small,  (b)  medium and (c) large maps. 

Table 9-7: The results of using the q-table that was trained with one scenario (the 

first landscape) and tested with other unseen scenarios (the second and the third 

landscape) on the small, medium and large maps. 

scenarios 

map size 
1

st
 landscape 2

nd
  landscape 3

rd
 landscape 

Small 8 9 10 

Medium 10 10 10 

Large 10 10 10 

9.7 Empirical Evaluation of the GDA-C 

We measured the performance of GDA-C versus its ablation CLASSQL in 

experiments on small, medium, and large Wargus maps whose sizes are 32 32, 

64 64, and 128 128 cells, respectively.  The details and landscapes of each map are 

shown in Figure 9.9.  In each map, we have two opponent teams (human and orc). 
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Each starts with only one Peasant/Peon (i.e., a unit used to harvest resources and 

construct new buildings), one Town Hall/Great Hall, and a nearby gold mine. Each 

competitor also starts on one side of a forest that divides the map into two parts. We 

added this forest and walls to provide opponents with sufficient time to build their 

armies. Otherwise, our algorithms will learn an efficient early attack (called a “rush”), 

which will end the game when the opponents have produced only a few units or 

buildings. 

9.7.1 Experimental Setup 

We conducted two experiments. In the first, we compared the performance of each 

algorithm (i.e., GDA-C or CLASSQL) against Wargus’s built-in AI. The built-in AI in 

Wargus is quite good; it provides a challenging game to an average human player. In 

the second, we instead compared their performance in a direct competition. We use 

five adversaries (Land Attack, Soldier's Rush, Knight's Rush, Student Scripts 1 and 2 

as defined in Section 9.6.2.1) and the Wargus’ built-in AI to train and test each 

algorithm. These adversaries can construct any type of unit unless otherwise stated. 

To ensure there is no bias because of the landscape, we swapped the sides of each 

team in each round. Also, to prevent race inequities, in each round each team plays 

once with each race (i.e., human or orc). 
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In the experiment, we trained GDA-C and CLASSQL with all five adversaries and 

then tested them in combat against each other, where the performance metric is 

wins(GDA-C) – wins(CLASSQL), where wins(A) is the number of wins for team A.  

In the experiment, the matches pitting GDA-C versus CLASSQL took place after 

training them against each of the five adversaries for n games, where again n = 

0,1,2,…,N.  The total number N of games varied as indicated in the results. Table 9-8 

shows the running times for the experiments. 

 

 

(a) 
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(b) 

 

(c) 

Figure 9.9: Landscapes and details of the small (a), medium (b), and large maps (c) 

that used for the experiment #1 and #2. 
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Table 9-8: The average time of running a game for both experiments 

Map size One game Experiment 1 Experiment 2 

small 31 sec 25 hours 38 hours 

medium 3 min 27 sec 115 hours 172 hours 

large 11 min 28 sec 191 hours 286 hours 
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(c-2) 

Figure 9.10: The results of Experiment: GDA-C versus CLASSQL 

on the small (a), medium (b), and large maps (c). 

Figures (a-2), (b-2), and (c-2) show the results as accumulative score. 

9.7.2 Results 

Figure 9.10 display the results for the experiment. Each data point in the 

experiment is the average score difference of 10 tests, and the graphs display the 

results for the small, medium, and large maps.  The curve is the trend line of the score 

difference for each data point. The x-axis refers to the training iteration number and 

the  -axis is the performance metric. The result from the experiment shows that after 

training for many rounds; eventually GDA-C outperforms CLASSQL in all small, 

medium and large maps. 

The difference between the geographies of different maps causes GDA-C agent to 

learn different strategies.  For example, in the small map (Figure 9.9-a) there is just a 

forest that separates both teams’ basecamps.  The GDA-C agent learns to attack the 

enemy as quickly as possible.  In this small map, it is rare that the GDA-C agent will 

produce high powerful units such as gryphon riders to attack the enemy’s units. 
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Instead, it focuses on producing a lot of cheap level-entry military units to defeat the 

opponent.  As for large map (Figure 9.9-c), there are forests and walls that separates 

the base camps of both teams.  Also, because the paths on the map are zigzag and 

winding, it is take much longer time (compared to small and medium maps) for units 

to walk to the enemy’s basecamp.  As a result, in the large map, agents have a long 

time to produce units/structures.  Therefore, GDA-C agent learns to produce very 

powerful air units such as gryphon riders to attack the enemy’s base camp.  As for the 

medium map, its geography looks like a hybrid of the geographies of the small map 

and the large map.  Therefore, GDA-C agent needs more time to learn how to balance 

its plans; the length of time of each episode is neither sufficiently short enough for the 

plan of producing a lot of entry-level units nor long enough for the plan of producing 

very powerful military units. As a result, for the medium map (Figure 9.10-b), GDA-C 

agent needs more time to learn a balanced attack to outperform the opponent. 
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CHAPTER 10  
RELATED WORK 

“Why make mistakes, learn from someone else’s experiences” 

― AJ Kumar 

10.1 Planning Methods and Their Disadvantages 

Compared to Goal-Driven Autonomy 

One of the most frequently cited quotes from Helmuth von Moltke, one of the 

greatest military strategists in history, is that “no plan survives contact with the 

enemy” (Moltke, 1993).  That is, even the best laid plans need to be modified when 

executed because of: 

(a) The non-determinism in one’s own actions (i.e., actions might not have the 

intended outcome). 

(b) The intrinsic characteristics of adversarial environments (i.e., the opponent 

might execute unforeseen actions, or even one action among many possible 

choices). 



132 

(c) Imperfect information about the world state (i.e., opponents might be only 

partially aware of what the other side is doing). 

As a result, researchers have taken interest in planning that goes beyond the classic 

deliberative model. Under this classic model, the state of the world changes solely as a 

result of the agent executing its plan. So in a travel domain, for example, a plan may 

include an action to fill a car with enough gasoline to follow segments (A, B) and (B, 

C) to drive to location C from location A.  The problem is that the dynamics of the 

environment might change (e.g., segment (B, C) might become unavailable due to 

some road damage).  Several techniques have been investigated that respond to 

contingencies which may invalidate the current plan during execution.  

Plan generation is the problem of generating a sequence of actions that transform 

an initial state into some desired state (Ghallab, M.; Nau, D.S.; Traverso, P., 2004). A 

considerable amount of research exists on relaxing the assumptions of classical 

planning.  For example, contingency planning permits dynamic environments 

(Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; Washington, R., 2003). 

Agents that use this approach create a plan that assumes the most likely results for 

each action, and generate contingency plans that, with the help of monitoring, are 

executed only if a plan execution failure occurs at some anticipatable point(s).  In 

contingency planning, the agent plans in advance for plausible contingencies.  In the 

travel example, the plan might include an alternative subplan should (B, C) becomes 

unavailable.  One such subplan might call to fill up with more gasoline at location B 

and continue using the alternative, longer route (B, D), (D, C).  A drawback of this 
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approach is that the number of alternative plans required might grow exponentially 

with the number of contingencies that need to be considered.   

Another alternative suggested is conformant planning (Goldman, et al., 1996) 

instead generates plans that are guaranteed to succeed.  These methods require the a 

priori identification of possible contingencies.  For example, the plan might fill  up 

with enough  gasoline at B so that,  even if it has to go back to B after attempting to 

cover the segment (B,C) ,  it can  continue with the alternative route  (B,D), (D,C).  

The drawback is that the plan might execute many unnecessary steps for contingencies 

that do not occur (such as obtaining additional gasoline while initially in location B).  

Plan repair methods (Fox, et al., 2006) instead adapt a plan’s remaining actions 

whenever the state conditions required to execute the plan’s next action are not 

satisfied.  These agents cannot change their goals, while GDA agents instead 

dynamically reason about which goals they should achieve. 

Another assumption of classical planning concerns the set of goals that the agent is 

trying to achieve. If no plan exists from the initial state that satisfies the given goals, 

then classical planning fails.  Partial satisfaction planning relaxes this all-or-nothing 

constraint, and instead focuses on generating plans that achieve some  “best” subset of 

goals (i.e.,  the plan that gives the maximum trade-off between total achieved goal  

utilities and total incurred action cost) (van den Briel, et al., 2004).  While these 

approaches each relax an important assumption of classical planning, neither addresses 

how to respond to unexpected events that occur during execution. One straightforward 

solution is incremental planning, which plans for a fixed time horizon. After plan 
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execution, these planners then generate plans for the next horizon. This process 

iterates until the goal state is reached. Another approach is dynamic replanning, which 

monitors the plan’s execution.  If it is apparent that the plan will fail, the planner will 

replan from the current state.  For example, HOTRiDE (Ayan, et al., 2007) employs 

this strategy for non-combatant evacuation planning.  These approaches can also be 

combined. For example, CPEF (Myers, 1999) incrementally generates plans to achieve 

air superiority in military combat and replans when unexpected events occur during 

execution (e.g., a plane is shot down).  

However, these approaches do not perform goal formulation; they continue trying 

to satisfy the current goal, regardless of whether their focus should dynamically shift 

towards another goal (due to unexpected events).  

Fortunately, some other recent research has addressed this topic.  For example, 

bestowed agents (Coddington, A.M.; Luck, M., 2003) with motivations, which 

formulate  goals in response to thresholds on  specific state variables (e.g., if a rover’s 

battery charge falls below 50%, then a goal of full battery charge will be  formulated 

(Meneguzzi, et al., 2007)).  GDA can adopt an alternative rule-based approach whose 

antecedents can match to complex games states. 

Research on game AI takes a different approach to goal formulation in which 

specific states lead directly to behaviors (i.e., sequences of actions). This approach is 

implemented using behavior trees, which are prioritized topological goal structures 

that have been used in HALO 2 and other high profile games (Champandard, 2007).  
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Behavior trees, which are restricted to fully observable environments, require 

substantial domain engineering to anticipate all events. GDA can be applied to 

partially observable environments by using explanations that provide additional 

context for goal formulation. 

GDA focuses on the meta-process of goal reasoning.  Some goal reasoning 

planners relax the requirement that the plan must achieve all of its goals.  For example, 

over-subscription planners attempt to satisfy only a maximal subset of the goals (van 

den Briel, et al., 2004). 

As previously discussed in this section, the main drawback of planning methods is 

that, before plan execution, they require the a priori identification of possible 

contingencies.  In DOM games, a plan would need to determine which domination 

points to control, which locations to send a team’s bots, and identify alternative 

locations when this is not possible. An alternative to generating contingencies 

beforehand is performing plan repair.  In plan repair,  if  a mismatch occurs  during  

plan  execution  (i.e.,  between the conditions expected to be true to execute the next 

action and the actual  world  state), then  the system  must  adapt the remaining actions 

to be executed  in response  to the changing circumstances (Fox, et al., 2006; Warfield, 

et al., 2007).  The difference between plan repair and GDA is that plan repair agents 

retain their goals while GDA agents can reason about which goals should be satisfied.  

This also differentiates GDA from replanning agents, which execute a plan until an 

action becomes inapplicable. At this point, the replanning agent simply generates a 
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new plan from the current state to achieve its goals (Hoang, et al., 2005; Ayan, et al., 

2007; Myers, 1999). 

There has been some research related to reasoning with goals. Classical planning 

approaches attempt to achieve all assigned goals during problem solving (Ghallab, et 

al., 2004). Van den Briel  et al. relax this requirement  so that only a maximal  subset 

of the goals  must be satisfied  (e.g.,  for situations  where  no plan exists  that  

satisfies  all  the given  goals) (van den Briel, et al., 2004).  Unlike GDA, this 

approach does not add new goals as needed. Formulating new goals has been explored 

by Coddington and Luck, and then by Meneguzzi and Luck, among others 

(Coddington, et al., 2003; Meneguzzi, et al., 2007).  They define motivations that track 

the status of some state variables (e.g., the gasoline level in a vehicle) during 

execution.  If these values exceed a certain threshold (e.g., if the gasoline level falls 

below 30%), then the motivations are triggered to formulate   new goals (e.g., fill the 

gas tank).  In contrast, we investigate the first case-based approach for GDA, where 

goals are formulated by deriving inferences from the game state and the agent’s 

expectations using case-based planning techniques. 
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10.2 Integrations of Case-Based Learning and 

Reinforcement Learning 

As explained in Section 2.1, reinforcement learning (RL) is a learning system 

which learns how to map situations to actions so as to maximize a numerical reward.  

Also, as explained in Section 2.2, Case-Based Reasoning is the process of solving new 

problems based on the solutions of similar past problems.  In this section we discuss 

related works to integrations of CBR and RL. 

Several groups have studied integrations of CBR and RL. Bridge noted that these 

typically attempt to use the advantages of one to improve the other (Bridge, 2005). For 

example, RL has been used to help CBR solve problems in continuous environments 

(Ram, et al., 1997; Molineaux, et al., 2010) and to improve case retrieval (Juell, et al., 

2003). Analogously, CBR has been used to speed up the RL process (Gabel, et al., 

2007; Auslander, et al., 2008; Bianchi, et al., 2009) and to reduce RL’s memory 

footprint (Dilts, et al., 2010). We instead integrate them to automatically acquire and 

reuse GDA knowledge. 

There is substantial interest in integrating CBR and RL, as exemplified by Derek 

Bridge’s ICCBR-05 invited talk on potential synergies between CBR and RL (Bridge, 

2005), the SINS system that solves problems in continuous environments (Ram, et al., 

1997), and CBRetaliate, which stores and retrieves Q-tables (Auslander, et al., 2008). 

Most previous contributions focused on improving the performance of an agent by 
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exploiting synergies among CBR and RL or by enhancing the CBR process by using 

RL (e.g., to improve similarity metrics). More recently, researchers have studied ways 

in which CBR can improve reinforcement learning. This includes reducing the 

memory requirements of RL (Dilts, et al., 2010), using cases as a heuristic to speed up 

the RL process (Bianchi, et al., 2009) and using cases to approximate state value 

functions in continuous spaces (Gabel, et al., 2005; Gabel, et al., 2007). Our GRL 

system falls in this latter category; it uses CBR to fine-tune strategies by exploiting the 

episodic knowledge captured in the cases while embedded in the RL cycle. In this 

context, GRL’s novelty is that it automatically identifies goals, learns policies specific 

to those goals, learn expectations about the action’s outcomes, and reasons when a 

discrepancy occurs. 

10.3 Goal-Driven Autonomy Agents and Their 

Integration of Learning 

Most research on GDA assumes that experts provide domain knowledge on what 

to expect when an action is executed and which goal should be achieved next if a state 

discrepancy arises.  The two exceptions are work on learning goal selection 

knowledge.  First, Weber et al. uses CBR for this task, but doesn’t learn about 

expectations (Weber, et al., 2010).  Their cases map discrepancies (between the 

current state and the goal the agent is trying to achieve) to new goals, which are 

represented as states, and their nearest neighbor algorithm compares the current state 
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with recorded cases to perform goal selection.  LGDA system (Section 6.2) instead 

learns expectations, discrepancies, and goals. Furthermore, goals can be state 

abstractions (e.g., win the game) and LGDA could map a discrepancy to multiple 

goals.  Second, Powell et al.’s active learner requires a user to indicate which goal to 

achieve next when discrepancies occur.  In contrast, LGDA is fully automated 

(Powell, et al., 2011). 

As mentioned in CHAPTER 3, GDA agents use a four-step strategy to respond 

competently to unexpected situations in their environment: (1) detect any discrepancy 

between the observed state and the expected state(s), (2) explain this discrepancy, (3) 

formulate a goal to resolve it (if needed), and (4) manage this new goal along with its 

pending goals (Molineaux, et al., 2010; Muñoz-Avila, et al., 2010). In step 3, these 

agents use a variety of models to formulate new goals. For example, INTRO (Cox, 

2007) uses explanation patterns represented as cause  effect rules such that, if a state 

is judged to be a discrepancy and it maps to the effects of a rule, then INTRO will select 

the negation of that rule’s cause as its new goal. ARTUE (Molineaux, et al., 2010) 

uses rule-based reasoning for goal formulation and ranking (i.e., pending goals are 

maintained in a priority list).  Its rules encode expert knowledge in a manner similar to 

Intro’s rules, but ARTUE adds a more robust process by encoding planning 

dependencies in a truth-maintenance system. EISBot (Weber, et al., 2010) instead uses 

a case-based model to formulate goals, where a case                  is an expert-

provided sequence of states for accomplishing a task, and states are represented as a 

vector of numeric values. Given current state  , EISBot retrieves a most similar state 
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     in its case base along with       , where   is the length of its planning window. It 

computes the difference                and adds this to   to define its new goal. In 

contrast to these GDA agents, GRL learns its goal formulation knowledge. 

T-ARTUE (Powell, et al., 2011) is an extension of ARTUE that interactively 

learns goal formulation knowledge; it can query the user to ask for new goals or 

confirm their formulation, and the user can provide feedback on these decisions. In 

contrast, GRL automatically learns goal formulation knowledge and new goals. 

Agents can compute state expectations using action models (i.e., their 

preconditions and effects) and the current state. Bouguerra et al. use description logics 

to model and infer expectations after executing a plan, which is particularly useful for 

partially observable environments (Bouguerra, et al., 2008). For example, an agent 

might observe John entering a vehicle at a location A and the vehicle later arriving at 

location B, where its occupants departed. Given this, it could infer that John arrived at 

B. GDA agents vary in how they compute expectations, including using a model of 

abstract explanation patterns (Cox, 2007), or by defining discrepancy detectors to 

trigger when state expectations fail (Weber, et al., 2010). Unlike these (and most 

other) GDA agents, GRL learns its action models for computing state expectations. 

The only related agent is LGDA (Jaidee, et al., 2011), which learns action models it 

uses to compute expectations but it assumes that the policies and goals are given as 

input. In contrast, GRL identifies new goals, and learns and reuses goal-specific 

policies. 
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10.4 Learning Agents in Real-Time Strategy Games 

There is a substantial body of work for learning in RTS games. Table 1 categorizes 

research on learning systems for RTS games according to the managerial tasks. 

Before we begin our description of this analysis a clarification must be made: 

many of the works described are capable of playing the complete RTS games and 

hence perform the tasks by the 6 managers. Our point is that learning is that in those 

works limited to some of these tasks and not all of them. For example, Weber, et al. 

(2012) reports on a system that plays full RTS using the managers indicating above 

but only the unit and building manager is using learning.  Hence, we classify it on 

category B in Table 10-1. Other works in this category includes Aha, et al. (2005) 

which uses case-based reasoning techniques to retrieve a plan that executes a building 

order. The same is true for the work of Hsieh and Sun (2008, whose systems analyzes 

game replays to determine suitable unit and building creation orders. Also included in 

this category is the work by Dereszynski (2011) which learns a probabilistic model. 

Category A belongs to works that perform learning in combat tasks. Included in 

this category are works by Sharma et al. (2007) which combines case-based reasoning 

and reinforcement learning, Wender and Watson (2012) which uses reinforcement 

learning, Weber and Mateas (2009) uses data mining techniques including k-NN and 

logitBoost to extract opponent models from game replays of annotated traces. Othman 

et al. (2012) use evolutionary computation to control combat tactics such as indicating 

which opponent’s unit to attack. It plays the AI against itself to speed-up learning. 
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Table 10-1: Categories of works versus managerial tasks (Scott, 2002) 
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Works in category C not only use learning techniques for unit and building 

creation tasks but also use learning for research tasks. Synnaeve and Bessière (2011) 

model this learning problem as a Bayesian model. Ponsen et al. (2006) uses a 

technique called dynamic scripting (Spronck, 2006) to control unit and building 

creation and research. A script is a sequence of gaming actions specifically targeted 

towards a game such as in this case Wargus. Scripts are learned by combining 

reinforcement learning and evolutionary computation techniques. 

Category E belongs to works that uses learning for resource gathering tasks. In this 

category is work by Marthi et al. (2005), which uses concurrent ALISP in Wargus 

games. The basic premise of that work is the user specifying a high-level LISP 

program to accomplish Wargus tasks and reinforcement learning is used to tune the 

parameters of the program. 
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Young and Hawes (2012) use evolutionary learning to manage conflicts that arise 

between conflicting goals, which can be resource gathering as well as for unit and 

building creation (Category D). Their focus on goal management is in line with an 

increasing interest on the general topic of goal-driven autonomy as it pertains to RTS 

games (Weber et al., 2012; Jaidee et al., 2011). As we discussed earlier Weber et al. 

(2012) learning belongs to category B. Jaidee et al. (2011) manages goals for combat 

tasks so it belongs to category A. Given the variety of tasks, we could expect goal-

driven autonomy works in the future to be capable of learning for all 6 managerial 

tasks.  

CLASSQL and GDA-C are this first systems that we are aware of that is capable of 

learning on 5 out of 6 managerial tasks (almost Category F). It follows ideas on micro-

management in RTS games (e.g., (Scott, 2002; Rørmark, 2009; Perez, 2011; Synnaeve 

&  Bessière, 2011)).  In micro-management the complex problem of playing an RTS 

game is divided into tasks. These tasks are accomplished by specialized components 

or agents. This is the principled follow by the 6 managers and similar architectures in 

implementations of RTS games (Scott, 2002). 
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10.5 Goal-Driven Autonomy Agents That Can Play RTS 

Games 

Weber reported on EISBot (Weber, et al., 2012), a system that can play a complete 

RTS game.  EISBot plays complete games by using six managers (e.g., for building an 

economy, combat), only one of which uses GDA (i.e., it selects which units to 

produce). The GDA system GRL (Jaidee, et al., 2012) plays RTS game scenarios were 

each side starts with a fixed number of units.  No buildings are allowed and hence no 

new units can be produced, which drastically reduces the GRL’s state and action 

space. In contrast to these and other GDA systems that play RTS games (e.g., (Weber, 

et al., 2010)), GDA-C controls most aspects of an RTS game by assigning units and 

buildings of the same type to a specialized agent. 

Many GDA systems manage expectations that are predicted outcomes from the 

agent’s actions. Most work on GDA assumes deterministic expectations (i.e., the same 

outcome occurs when actions are taken in the same state). These expectations are 

computed in a number of ways. Cox generates instances of expectations by using a 

given model of abstract explanation patterns (Cox, 2007). Molineaux et al. use 

planning operators to define expectations (Molineaux, et al., 2011). Borrowing ideas 

from Weber et al. (Weber, et al., 2012), GDA-C uses vectors of numerical features to 

represent the states and expects that actions will increase their values (e.g., sample 

features include total gold generated or number of units, both of which a player would 
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like to increase). When this does not happen (i.e., when this constraint is violated), a 

discrepancy occurs. 

When most GDA algorithms detect a discrepancy between an observed and an 

expected state, they formulate new goals in response. Some systems use rule-based 

reasoning to select a new goal (Cox, 2007), while others rank goals in a priority list 

and use truth–maintenance techniques to connect discrepancies with new goals to 

pursue (Molineaux, et al., 2010). Interactive techniques have also been used to elicit 

new goals from a user (Powell, et al., 2011). GDA-C instead learns to rank goals by 

using RL techniques based on the performance of the individual agents. 

GDA-C has some characteristics in common with GRL (Jaidee, et al., 2012), 

which also uses RL for goal formulation. However, GRL is a single agent system and, 

unlike GDA-C, cannot scale to play complete RTS games.
4
  

  

                                                           

 
4
 This means that the player starts with limited resources, units, and structures but 

can (1) harvest additional resources, (2) build any structure, (3) train any unit, (4) 

research any technology, and (5) control the units to defeat an opponent. 



146 

 

 

CHAPTER 11  
CONCLUSIONS 

11.1 Final Remarks 

Our research steps were incremental.  We started with a narrow research focus and 

move to the more difficult issues later. In our first system, GDA-HTNbots, an 

extension of HTNbots in which the controller performs the four tasks of the GDA 

model.  However, unlike HTNbots, GDA-HTNbots reasons about its goals, and can 

dynamically formulate which goal it should plan to satisfy.  It controls plan generation 

in two ways: first, it determines when the planner must start working on a new goal. 

Second, it determines what goal the planner should attempt to satisfy. All the 

knowledge of GDA-HTNbots was given by user as its input in the form of HTN 

syntax.   

Our second system, CB-GDA is the first GDA system with integration of case 

base reasoning.  CB-GDA uses two case bases to dynamically generate goals. The first 

case base relates goals with expectations, while the latter’s cases relate mismatches 

with (new) goals.  All CB-GDA’s knowledge was still given as its input, but the 

system knew how to maintain and reuse cases in the case bases. 
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Next, we developed a system called LGDA which is the first system to 

automatically learn state expectations.  LGDA can learn two important components of 

GDA: (1) expectations to store in its Expectation Case Base and (2) new goals to store 

and reuse for its Goal Formulation Case Base.  LGDA partially support our claim that 

we can create GDA agents that have the ability to acquire knowledge by themselves 

and reuse it.  However, goals and policies are still needed to be given as the agent’s 

input.  So, we cannot say that LGDA agent is fully autonomous learning GDA agent. 

Thereafter, we developed the system called GRL, the first GDA system capable of 

learning and reusing goal-specific policies.  Additionally, GRL can learn most of the 

GDA’s components.  It can learn a Policy Case Base, an Expectation Case Base and a 

Goal Formulation Case Base.  At this point, the answer of our research question is 

fulfilled. Although, we can create such agent, the environment that we experimented 

on was not complex enough.  Therefore, we continued to investigate a scalable agent 

that can handle complex environments such as full RTS games that have a lot of 

factors to consider. 

The state-action space of full RTS games is very large.  GDA algorithms, 

including GRL, have not been designed for learning and acting on large state-action 

spaces.  Thus, my next objective is to develop a GDA algorithm capable of learning 

and acting in domains with large state-action spaces.  I investigated this matter by 

extracting the learning part from GDA and creating a learning agent called CLASSQL.  

And, it will later be integrated back to GDA agent.  CLASSQL Divide the state and 

action space among cooperating learning agents.  Each agent of CLASSQL is equal to a 
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RL agent.  Therefore, each agent has its own q-table.  Each agent’s unit has its own 

record of previous state, previous action, and previous reward for updating the q-table 

of its class.  CLASSQL agent can play a complete RTS game and perform better than 

hand-coded AI agents. 

Finally, we merge both GDA and CLASSQL together to create a system call GDA-

C.  GDA-C is a GDA agent that executes two threads in parallel to control several RL 

agents.  GDA-C agent has the ability to learn knowledge by itself in complex 

environments such as a full RTS game.  Moreover, CLASSQL and GDA-C are the first 

learning agent and the first GDA agent that are capable of learning on 5 out of 6 

managerial tasks (Table 10-1). 

Our main research question in this dissertation is whether we can create GDA 

agents that are able to learn knowledge by themselves and reuse it. Our later systems, 

specifically GRL and GDA-C, demonstrate that we can indeed construct such agents. 

Furthermore, learning in GDA-C and GRL takes place in Wargus, which is a complex 

environment as per the definition in (Russell, et al., 2003). GDA-C and GRL are able 

to cope with each of the characteristics of complex environments for the following 

reasons: 

 Partially observable and multi-agent environments:  Partially 

observable means some information about the environment (e.g., the 

opponent team’s resources) is hidden from the GDA agent. Because there 

are multiple agents, the environment might change independent of our own 
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agent’s actions (i.e., the other agents change the environment). As a result 

of these characteristics of the environment, at some point the GDA agent 

might encounter unexpected situations (e.g., a peasant is sent to harvest 

gold but the peasant is killed near the town). Because GDA agents are able 

to react when discrepancies happen, then the Goal Formulator will suggest 

a new goal enabling the GDA agent to react to the unexpected situation 

(e.g., military unit are sent to attack enemy units near the town). 

 Stochastic environments:  Stochastic means that actions taken in the 

environment might have multiple outcomes (e.g., send footmen to attack 

enemy units near our camp might result in two outcomes: (1) enemy units 

near our camp are killed or (2) enemy units are still near camp). Our GDA 

agent is able to cope with these kinds of environments because it is 

learning policies (mappings from states that agent might encounter to 

possible actions it can execute in such states), which learn to cope with the 

multiple outcomes from past experience (e.g., send archers and footmen to 

attack units near camp when outcome (2) happens).  

The following is a summary of the scientific contributions of this dissertation to 

the state-of-the-art in integrated learning for goal-driven autonomy research: 

 First integration of Case Based Reasoning (CBR) and Goal-Driven Autonomy.   

 First GDA system to automatically learn state expectations.   
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 First GDA system capable of learning and reusing goal-specific policies.  

 First learning agent that can learn multiple real-time strategy games managerial 

tasks. 

11.2 Future Work 

Our goal in this research was to investigate GDA systems that can learn 

knowledge by themselves.  However, there are many potential research directions.  

We now discuss some of these directions. 

1. Create a system that is able to autonomously learn about explanation of 

failures.  Even though LGDA, GRL and GDA-C can learn knowledge about 

goal selection when a failure occurred, none of our systems can learn 

explanations.  Some of our systems know how to use predefined explanations, 

but they cannot learn new ones for themselves.  Our systems learn new goal 

based on statistic techniques but they can’t learn new goals based on the 

explanations. 

2. Experiment on other problems domains.  The problem domains that we used 

for the experiments in the dissertation are complex real-time strategy games. 

Indeed GDA-C is the first GDA system that learns many managerial tasks.  

Our systems are general that could be used in any problem domain.  The 

simple way to describe what kind of problems that is possible to use our 
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algorithms is to understand the target problem domain and answer those two 

questions about it: (1) can we give the collection of actions and states and 

observe how our actions affect the environment, and (2) whether or not we can 

provide a numerical signal value that can be a decent indicator to tell how good 

or bad is a particular situation. If the answer to these two questions is 

affirmative researchers could use our learning techniques for a GDA system 

acting in this problem domain.  Examples of such problem domains include 

using robots for manufacturing. Another example is logistics tasks involving 

the delivery of multiple products. 

3. Agents may learn a set of high-level actions.  High-level actions used in 

CLASSQL and GDA-C algorithms are highly effective in term of space saving 

and reusability of learned knowledge.  However, high-level actions are 

designed by an expert of the specific problem domain.  Therefore, it would be 

beneficial if agents can learn high-level actions themselves.  Notice that the 

problem domain actions that are translated from a high-level action must have 

at least one factor with the same value or the same range of values.  This would 

include the same unit-type, attacking-range, abilities of attacking, to name just 

a few.  We can collect sequences of states, actions and time and later store 

them in a database. This can be used later by some algorithm to find related 

factors of actions from the database that are performed at approximately the 

same time.  Learning a set of high-level actions for each agent can be another 

starting point for future research. 
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4. Agents learn how to change a new goal before a failure occurs. All of our 

systems are based on the assumption that the goal should change when a 

discrepancy occurs. But, changing a new goal after a failure occurs may be too 

late to recover from negative consequences.  The adverse score that has already 

been accumulated can affect the final score at the end of the game.  Goal 

Driven Autonomy always waits until an undesirable situation happens and then 

later tries to change it.  It is more advantageous to detect failures before they 

happen.  We can store a sequence of states and also note any states that GDA 

decided to use in changing the goal. Then, we can use this sequence to track 

down some states that occur before the failures.  Another possible method, 

using the reward progress that we observe in the environment, if one notes that 

progress is going downward for some length of time or reaches a threshold 

value, GDA can suggest a new goal to pursue. 

5. Developers may improve the module called High-level Action to Problem-

Domain Actions Converters (HAPDAC) in the GDA-C and CLASSQL 

architectures.  Currently, the method that HAPDAC uses to perform unit job 

assignment is just a simple modulus assignment.  The performance might 

increase if we can improve an HAPDAC’s mapping method. For example, 

taking the distance between an actor unit and a recipient unit (or a target 

location) into account to minimize the total distance and time that the high-

level action need to be perform as multiple problem-domain actions.  As per 

another interesting factor that we can take it into account to develop a new 
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mapping function is using the remaining health points of actor units comparing 

to those of recipient units.  For example, let assume units in a set of actors and 

units in a set of recipients are the same type at the same level of upgrading.  

Also, assume both sets have the same number of units; let’s say 4.  The list of 

remain health points of the actors is (8, 20, 11, 17) and those of the recipients 

is (9, 22, 14, 18).  If we just map them as is, the result is (1, 2, 3, 1).  In 

other words, all the units in the set of actors might be dead after the actions are 

performed.  However, if we resort the list of recipients as (22, 18, 9, 14), the 

result will be (14, 2, 2, 3).  In other words, just only one unit in the set of 

actors might be dead after the action is performed.  Research about mapping 

methods for HAPDAC would be an interesting future research topic that could 

improve the performance of GDA-C and CLASSQL. 

6. Research on hierarchical agents.  Agents in CLASSQL or GDA-C make their 

own decision of the next actions that they will execute without explicitly 

coordinating with one another.  There might be advantages, if we can apply a 

hierarchical model organizing the CLASSQL and GDA-C agents.  For example, 

blacksmiths, lumber mills, and churches are agents that improve units and 

structures by performing research actions.  Thus, we could build an agent, 

named research agent, to coordinates the research actions among these 3 

agents.  If the blacksmith and the lumber mills agents plan to perform research 

actions that require more resources than the team can supply, the research 

agent will prioritize those actions. 
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7. Research on promoting units and structures as agents.  In CLASSQL and GDA-

C, agents task their units/structures with activities to perform.  For this new 

research, we believe it is better for units and structures to make their own 

decision.  For example, we could have a high-level agent named task manager 

agent that manages which of the team’s tasks    should be performed in the 

current situation  .  We could borrow from the ideas of joint intention (Cohen, 

P. R. & Levesque, H. J., 1991; Levesque, et al., 1990), so the units or 

structures perform these tasks together as a subteam.  Under this perspective, a 

unit or structure is allowed to be a participant in several joint intentions.  

However, in this approach, units/structures need to communicate to other 

units/structures and task manager.  To do this, we can borrow some ideas for 

teamwork coordination as in STEAM (Tambe, 1997). 
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APPENDIX A  

WARGUS UNITS AND STRUCTURES 

A.1.  Wargus Units 

Units in Wargus can be categorized into three main types: land, naval and air units. 

Human and Orc units are all produced at different structures and are essentially quite 

balanced in their abilities.  Table A-1 below shows the properties of each unit in both 

races.  The table shows only units that are used in the experiments of this dissertation. 

Table A-1: List of Wargus Units and their properties in both Human (left column) 

and Orc (right column) (Blizzard Entertainment, 1999) (WoWWiki1) 

Peasant Peon 

 

   
Race Human 

Type Land 

Unit 

Statistics 

Hit Points 30 

Armor 0 

Speed 10 

Production 

Gold 400 

Lumber 0 

Food 1 

Produced at Town 

Hall 

 

   
Race Orc 

Type Land 

Unit 

Statistics 

Hit Points 30 

Armor 0 

Speed 10 

Production 

Gold 400 

Lumber 0 

Food 1 

Produced at Great 

Hall 
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Peasant Peon 

Build time 45 

seconds 

Combat 

Basic Damage 2-9 

Piercing Damage 2 

Range 1 

Upgradeability 

Upgrades Into cannot be upgraded 

Build time 45 

seconds 

Combat 

Basic Damage 2-9 

Piercing Damage 2 

Range 1 

Upgradeability 

Upgrades Into cannot be upgraded 

  

Footman Grunt 

 

   
Race Human 

Type Land 

Unit 

Statistics 

Hit Points 60 

Armor 2 

Speed 10 

Production 

Gold 400 

Lumber 0 

Food 1 

Produced at (Human) 

Barracks 

Build time 60 

seconds 

Combat 

Basic Damage 6 

Piercing Damage 3 

Range 1 

Upgradeability 

Upgrades Into cannot be upgraded 

 

   
Race Orc 

Type Land 

Unit 

Statistics 

Hit Points 60 

Armor 2 

Speed 10 

Production 

Gold 400 

Lumber 0 

Food 1 

Produced at (Orc) 

Barracks 

Build time 60 

seconds 

Combat 

Basic Damage 6 

Piercing Damage 3 

Range 1 

Upgradeability 

Upgrades Into cannot be upgraded 
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Elven Archer Troll Axethrower 

 

   
Race Human 

Type Land 

Unit 

Statistics 

Hit Points 40 

Armor 2 

Speed 10 

Production 

Gold 500 

Lumber 50 

Food 1 

Produced at (Human) Barracks 

Build time 70 

seconds 

Combat 

Basic Damage 3-9 

Piercing Damage 6 

 

Range 4 

Upgradeability 

Upgrades Into Elven Ranger 

 

   
Race Orc 

Type Land 

Unit 

Statistics 

Hit Points 40 

Armor 2 

Speed 10 

Production 

Gold 500 

Lumber 50 

Food 1 

Produced at (Orc) 

Barracks 

Build time 70 

seconds 

Combat 

Basic Damage 3-9 

Piercing Damage 6 

Range 4 

Upgradeability 

Upgrades Into Elven Ranger 

  

Knight Ogre 

 

   
Race Human 

Type Land 

Unit 

Statistics 

Hit Points 90 

Armor 4 

Speed 13 

Production 

Gold 800 

Lumber 100 

Food 1 

 

   
Race Orc 

Type Land 

Unit 

Statistics 

Hit Points 90 

Armor 4 

Speed 13 

Production 

Gold 800 

Lumber 100 

Food 1 
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Produced at (Human) Barracks 

Build time 90 

seconds 

Combat 

Basic Damage 2-12 

Piercing Damage 4 

Range 1 

Upgradeability 

Upgrades Into Paladin 

Produced at (Orc) Barracks 

Build time 90 

seconds 

Combat 

Basic Damage 2-12 

Piercing Damage 4 

Range 1 

Upgradeability 

Upgrades Into Ogre Mage 

  

Ballista Catapult 

 

 
Race Human 

Type Land 

Unit 

Statistics 

Hit Points 110 

Armor 0 

Speed 5 

Production 

Gold 900 

Lumber 300 

Food 1 

Produced at (Human) 

Barracks 

Build time 250 

seconds 

Combat 

Basic Damage 25-80 

Piercing Damage 0 

Range 8 

Upgradeability 

Upgrades Into cannot be upgraded 

 

 
Race Orc 

Type Land 

Unit 

Statistics 

Hit Points 110 

Armor 0 

Speed 5 

Production 

Gold 900 

Lumber 300 

Food 1 

Produced at (Human) 

Barracks 

Build time 250 

seconds 

Combat 

Basic Damage 25-80 

Piercing Damage 0 

Range 8 

Upgradeability 

Upgrades Into cannot be upgraded 
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Gryphon Rider Dragon 

 

 

 
Race Human 

Type Air Unit 

Statistics 

Hit Points 100 

Armor 0 

Speed 14 

Production 

Gold 2500 

Lumber 0 

Food 1 

Produced at Aviary 

Build time 250 

seconds 

Combat 

Basic Damage 8-16 

Piercing Damage 0 

Range 4 

Upgradeability 

Upgrades Into cannot be upgraded 

 

 

 
Race Orc 

Type Air Unit 

Statistics 

Hit Points 100 

Armor 0 

Speed 14 

Production 

Gold 2500 

Lumber 0 

Food 1 

Produced at Dragon Roost 

Build time 250 

seconds 

Combat 

Basic Damage 8-16 

Piercing Damage 0 

Range 4 

Upgradeability 

Upgrades Into cannot be upgraded 
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A.2. Wargus Structures 

Wargus structures are land-based and sea-based, capable of training military units, 

aircraft, and sea-faring vehicles. 

All human structures can be created by a peasant while all orc structures can be 

created by a peon.  Table A-2 below shows the properties of each structure in both 

races.  The table shows only structures that are used in the experiments of this 

dissertation. 

Other than human and orc structures, there are some structures that are neutral.  

However, gold mine is the only one neutral structure that is used in the experiments of 

this dissertation. 

Table A-2: List of Wargus Structures and their properties in both Human (left 

column) and Orc (right column) (Blizzard Entertainment, 1999) (WoWWiki2) 

Town Hall Great Hall 

 

 
Hit Points 1200 

Production 

Gold 1200 

Lumber 800 

Oil 0 

Upgradeability 

Upgrades to Keep 

Training Ability 

Peasant 

 

 
Hit Points 1200 

Production 

Gold 1200 

Lumber 800 

Oil 0 

Upgradeability 

Upgrades to Stronghold 

Training Ability 

Peon 
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Keep Stronghold 

 

 
Hit Points 1400 

Prerequisite (Human) 

Barracks 

Production 

Gold 2000 

Lumber 1000 

Oil 200 

Upgradeability 

Upgrades to Castle 

Training Ability 

Peasant 

Allowance 

Stables, Gnomish Inventor 

 

 
Hit Points 1400 

Prerequisite (Orc) 

Barracks 

Production 

Gold 2000 

Lumber 1000 

Oil 200 

Upgradeability 

Upgrades to Fortress 

Training Ability 

Peon 

Allowance 

Ogre Mound, Goblin Alchemist 

  

Castle Fortress 

 

 
Hit Points 1600 

Prerequisite (Human) Barracks, 

(Human) Blacksmith, 

Elven Lumber Mill, 

Stables 

Production 

Gold 2500 

Lumber 1200 

Oil 500 

Training Ability 

 

 
Hit Points 1600 

Prerequisite (Orc) Barracks, 

(Orc) Blacksmith, 

Troll Lumber Mill, 

Ogre Mound 

Production 

Gold 2500 

Lumber 1200 

Oil 500 

Training Ability 
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Castle Fortress 

Peasant 

Allowance 

Gryphon Aviary, Mage Tower, Church 

Peon 

Allowance 

Dragon Roost, Temple of the Damned, 

Altar of Storms 

  

Chicken Farm Pig Farm 

 

 
Hit Points 400 

Production 

Gold 500 

Lumber 250 

Oil 0 

Ability 

Feeding 4 Units 

 

 
Hit Points 400 

Production 

Gold 500 

Lumber 250 

Oil 0 

Ability 

Feeding 4 Units 

  

(Human) Barracks (Orc) Barracks 

 

 
Hit Points 800 

Production 

Gold 700 

Lumber 400 

Oil 0 

Training Ability 

Footman, Elven Archer/Ranger, 

Knight/Paladin, Ballista 

 

 
Hit Points 800 

Production 

Gold 700 

Lumber 400 

Oil 0 

Training Ability 

Grunt, Troll Axethrower/Berserker, 

Ogre/Ogre-Mage, Catapult 
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(Human) Blacksmith (Orc) Blacksmith 

 

 
Hit Points 775 

Production 

Gold 800 

Lumber 450 

Oil 100 

Research Ability 

Weapons 1, Weapons 2, 

Armor 1, Armor 2 

 

 
Hit Points 775 

Production 

Gold 800 

Lumber 450 

Oil 100 

Research Ability 

Weapons 1, Weapons 2, 

Armor 1, Armor 2 

  

Elven Lumber Mill Troll Lumber Mill 

 

 
Hit Points 600 

Production 

Gold 600 

Lumber 450 

Oil 0 

Research Ability 

Arrows 1, Arrows 2, Ranger, Ranger 

Scouting, Longbow, Ranger 

Masksmanship 

 

 
Hit Points 600 

Production 

Gold 600 

Lumber 450 

Oil 0 

Research Ability 

Throwing Axes 1, Throwing Axes 2, 

Troll Berserker, Berserker Scouting, 

Lighter Axes, Troll Regeneration 

  

Stables Ogre Mound 

 

 
Hit Points 500 

 

 
Hit Points 500 
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Stables Ogre Mound 

Prerequisite Keep 

Production 

Gold 1000 

Lumber 300 

Oil 0 

Allowance 

Knights / Paladins 

Prerequisite

 Stronghol

d 

Production 

Gold 1000 

Lumber 300 

Oil 0 

Allowance 

Ogres / Ogre-Mages 

  

Gryphon Aviary Dragon Roost 

 

 
Hit Points 500 

Prerequisite Castle 

Production 

Gold 1000 

Lumber 400 

Oil 0 

Training Ability 

Gryphon Rider 

 

 
Hit Points 500 

Prerequisite Fortress 

Production 

Gold 1000 

Lumber 400 

Oil 0 

Training Ability 

Dragon 

  

Church Altar of Storms 

 

 
Hit Points 700 

Prerequisite Castle 

Production 

Gold 900 

Lumber 500 

Oil 0 

 

 
Hit Points 700 

Prerequisite Fortress 

Production 

Gold 900 

Lumber 500 

Oil 0 
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Research Ability 

Paladin, Healing, Exorcism 
Research Ability 

Ogre-Mage, Bloodlust, Runes 

 

Gold Mine 

 

 
Hit Points 25500 
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APPENDIX B  

SCORING IN WARGUS 

To earn points in Wargus, units in a team have to kill units or structures of its 

enemy teams.  The total point score of team   is based on the numbers and types of 

enemy units that team   has killed.  Points gained from killing specific units are 

shown in Table B-1.  There is one type of the score that does not show in the table.  

Namely, if one team wins, the winning team will earn an additional 500 points. 

Table B-1: Points earned from killing specific units or structures (Sco13). 

Units / Structures Score Units / Structures Score 

Tower 95 Wall 1 

Critter 1 Farm 100 

Peasant/Peon 30 Lumber mill 150 

Flying Machine/Zeppelin 40 Runestone 150 

Tanker 40 Barracks 160 

Footman/Grunt 50 Oil Rig 160 

Transport 50 Blacksmith 170 

Archer/Axe Thrower 60 Shipyard 170 

Ranger/Berserker 70 Foundry 200 

Dwarves/Sappers 100 Guard Tower 200 
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Units / Structures Score Units / Structures Score 

Knight/Ogre 100 Refinery 200 

Ballista/Catapult 100 Town Hall 200 

Mage/Death Knight 100 Stables/Ogre Mound 210 

Demon 100 Inventor/Alchemist 230 

Paladin/Ogre Mage 110 Church/Altar 240 

Legendary Hero 120 Wizard's Tower/Temple 240 

Submarine/Turtle 120 Cannon Tower 250 

Destroyer 150 Aviary/Roost 280 

Gryphon/Dragon 150 Keep/Stronghold 600 

Battleship/Juggernaut 300 Castle/Fortress 1500 
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