
Lehigh University
Lehigh Preserve

Theses and Dissertations

2013

Integrated Learning for Goal-Driven Autonomy
ULIT JAIDEE
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
JAIDEE, ULIT, "Integrated Learning for Goal-Driven Autonomy" (2013). Theses and Dissertations. Paper 1516.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=preserve.lehigh.edu%2Fetd%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1516?utm_source=preserve.lehigh.edu%2Fetd%2F1516&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

Integrated Learning for

Goal-Driven Autonomy

by

Ulit Jaidee

A Dissertation

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Engineering

Lehigh University

January 2014

ii

© 2013 Copyright by Ulit Jaidee

All Rights Reserved

iii

 Approved and recommended for acceptance as a dissertation in partial fulfillment

 of the requirements for the degree of Doctor of Philosophy

Defense Date

 Dissertation Advisor/Committee Chair

 Héctor Muñoz-Avila

Approved Date

Committee Members:

 Richard Decker

 Jeff Heflin

 Michael Spear

iv

To my parents

 Mr. Kit Jaidee

 Mrs. Jongdee Boonyupakorn

v

ACKNOWLEDGMENTS

I wish to thank the following persons and organizations whose support helped make

this work possible:

 My advisor Professor Héctor Muñoz-Avila for his research direction and

guidance not only for academic perspective but also living philosophy.

 My frequent co-author Dr. David Aha for many valuable ideas and

comments.

 My parents Kit Jaidee and Jongdee Boonyupakorn who supported and

encouraged me.

 My best friend Jerry Makos who always lovingly stood by me in every

matter.

 My dear friend and tutor Karen Bedics for helping to improve my English

and helping to review this manuscript.

 My committee members, Professor Jeff Heflin, Professor Michael Spear, and

Professor Richard Decker for their helpful comments.

vi

 National Science Foundation for partially supporting my work through grant

NSF 1217888.

 Naval Research Laboratory for a partial grant.

 Thai Government for all the financial support and the scholarship to pursue

my PhD degree.

vii

Table of Contents

Acknowledgments v

List of Tables xii

List of Figures xiv

List of Algorithms xvii

Abstract 1

CHAPTER 1 Introduction 3

1.1 Prolog ... 3

1.2 Goal-Driven Autonomy.. 6

1.3 Research Question .. 8

1.4 Contributions .. 9

1.5 Brief Overview of the Research ... 10

CHAPTER 2 Background 16

2.1 Reinforcement learning .. 17

2.1.1 Policy .. 17

2.1.2 Q-learning ... 19

2.2 Case-Based Reasoning ... 20

viii

2.2.1 Case Similarity ... 24

CHAPTER 3 Goal-Driven Autonomy 26

CHAPTER 4 Goal-Driven Autonomy with Hierarchical-Task Network

Planning 31

4.1 Hierarchical-Task Network .. 31

4.2 Goal-Driven Autonomy with Hierarchical-Task Network Planner 32

4.3 Example in the DOM Game ... 36

CHAPTER 5 Goal-Driven Autonomy with Case-Based Reasoning 38

5.1 Case-Based Goal Driven Autonomy .. 38

CHAPTER 6 Case-Based Learning of Expectations and Goal-Formulation

Knowledge 42

6.1 Definitions .. 42

6.2 LGDA Algorithm ... 44

6.3 Implementation and Example... 45

CHAPTER 7 Integrated Learning of Goal-Driven Autonomy Elements 48

7.1 The GRL Algorithm ... 49

7.2 Example .. 53

CHAPTER 8 Goal-Driven Autonomy Coordination of Multiple Agents 56

8.1 CLASSQL: Modeling Unit Classes as Agents ... 57

ix

8.1.1 The CLASSQL Algorithm ... 57

8.1.2 Application of CLASSQL for Wargus ... 61

8.1.3 Modeling Wargus in CLASSQL .. 66

8.1.4 State Representation ... 68

8.1.5 Actions .. 70

8.1.6 Analysis of CLASSQL ... 74

8.2 GDA-C: Case-Based Goal-Driven Coordination of Multiple Learning

Agents .. 77

8.2.1 Multi-Agent Setting .. 79

8.2.2 Case Bases and Information Flow in the GDA-C Agent 80

8.2.3 The GDA-C Algorithm ... 82

CHAPTER 9 Experimental Evaluation 87

9.1 The description of problem domains used for experiments 87

9.1.1 DOM: Domination game .. 88

9.1.2 Wargus .. 89

9.2 Empirical Evaluation of GDA-HTNbots.. 91

9.3 Empirical Evaluation of CB-GDA ... 95

9.4 Empirical Evaluation of the LGDA ... 100

9.4.1 Experimental Setup... 100

x

9.4.2 Results .. 102

9.5 Empirical Evaluation of the GRL... 105

9.5.1 Scenarios ... 106

9.5.2 Protocol and Results ... 107

9.6 Empirical Evaluation of the CLASSQL .. 114

9.6.1 Experiment #1... 114

9.6.1.1 Experimental Setup ... 114

9.6.1.2 Results ... 117

9.6.2 Experiment #2... 118

9.6.2.1 Experimental Setup ... 118

9.6.2.2 Results ... 121

9.7 Empirical Evaluation of the GDA-C .. 123

9.7.1 Experimental Setup... 124

9.7.2 Results .. 129

CHAPTER 10 Related Work 131

10.1 Planning Methods and Their Disadvantages Compared to Goal-Driven

Autonomy .. 131

10.2 Integrations of Case-Based Learning and Reinforcement Learning 137

10.3 Goal-Driven Autonomy Agents and Their Integration of Learning 138

xi

10.4 Learning Agents in Real-Time Strategy Games .. 141

10.5 Goal-Driven Autonomy Agents That Can Play RTS Games 144

CHAPTER 11 Conclusions 146

11.1 Final Remarks .. 146

11.2 Future Work ... 150

Bibliography 155

Appendix A Wargus Units and Structures 166

A.1. Wargus Units .. 166

A.2. Wargus Structures .. 171

Appendix B Scoring in Wargus 177

Curriculum Vitae 179

xii

LIST OF TABLES

Table 1-1: List of AI systems and their outstanding points of difference 14

Table 4-1: Example explanations of discrepancies (with some expectations and

observations shown), and the corresponding recommended goals. 37

Table 8-1: All possible high-level actions for each Wargus class. 72

Table 8-2: Space saved by CLASSQL compared to a conventional RL agent. 77

Table 9-1: The adversaries in DOM game and their descriptions 91

Table 9-2: Average Percent Normalized Difference in Game AI System vs.

Opponent Scores (with average scores in parentheses). 94

Table 9-3: Average Percent Normalized Difference in the Game AI System vs.

Opponent Scores (with average Scores in parentheses) 97

Table 9-4: Average percent normalized difference in the game AI system vs.

opponent scores (with average scores in parentheses) with statistical

significance. ... 97

Table 9-5: Average Percent Normalized Difference for the Dynamic Game AI

Systems vs. CB-GDA Scores (with average scores in parentheses) 99

Table 9-6: Average Utility Results from Experiment 1. 103

xiii

Table 9-7: The results of using the q-table that was trained with one scenario (the

first landscape) and tested with other unseen scenarios (the second and

the third landscape) on the small, medium and large maps. 123

Table 9-8: The average time of running a game for both experiments 127

Table 10-1: Categories of works versus managerial tasks 142

Table A-1: List of Wargus Units and their properties in both Human and Orc ... 166

Table A-2: List of Wargus Structures and their properties in both Human and

Orc.. 171

Table B-1: Points earned from killing specific units or structures....................... 177

xiv

LIST OF FIGURES

Figure 1.1: No one needs to tell the boy why he should not touch a hot stove again.

(The figure is retrieved from. ... 4

Figure 1.2: A simplified flow of Goal-Driven Autonomy 7

Figure 2.1: The agent-environment interaction in reinforcement learning. 18

Figure 2.2: The Case-Based Reasoning Cycle. .. 21

Figure 2.3: Driving from Allentown to New York City. (a) Without revising,

driving from Allentown to Jersey City and then driving from Jersey

City to New York City. (b) With revising, driving from Allentown to

most of the way to Jersey City and then using bypass highway to New

York City. .. 23

Figure 2.4: Using Case-Based Reasoning to solve the problem of driving from

Allentown to New York City. .. 24

Figure 3.1: A Conceptual Model for Goal Driven Autonomy 27

Figure 3.2: Data flow of Goal Driven Autonomy .. 30

Figure 4.1: An example DOM game map with five domination locations (yellow

flags), where small retangles identify the respawning locations for the

xv

agents and the remaining two types of icons denote each player’s

agents. .. 35

Figure 8.1: Illustration how units in Wargus perform a decision making 59

Figure 8.2: The interaction between CLASSQL and its environment 62

Figure 8.3: An example of a timeline at the beginning of the Wargus game. 76

Figure 8.4: Information flow in GDA-C. ... 81

Figure 9.1: An example DOM game map with five domination locations (yellow

flags), where small rectangles identify the respawning locations for

the agents and the remaining two types of icons denote each player’s

agents. .. 93

Figure 9.2: Results from Experiment 2: Average learning curves for comparing

LGDA DOM performance vs. non-learning and ablated agents.

The trend lines were generated using a polynomial fit to the raw

curves. .. 105

Figure 9.3: The results of the Wargus experiments: GRL vs. Retaliate (a) and vs.

LGDA (b) on the medium map, and GRL vs. Retaliate (c) and vs.

LGDA (d) on the large map. The x-axis plots the number of training

episodes, while the y-axis plots the average utility (i.e., score

difference of GRL versus another agent). .. 112

Figure 9.4: Results from the DOM experiments: (a) GRL vs. Retaliate and (b)

GRL vs. LGDA. The x-axis plots the number of training episodes,

xvi

while the y-axis plots the average utility (i.e., score difference of GRL

versus another agent). .. 113

Figure 9.5: The screen capture of the small map from Wargus. 115

Figure 9.6: The results of the experiments #1 from Wargus: ClassQ-L vs. (a) Land-

Attack, (b) SR, (c) KR, (d) SC1 and (e) SC2 respectively. 116

Figure 9.7: The detailed landscape of the (a) 1
st
, (b) 2

nd
, (c) 3

rd
 large maps.

The highlighted squares are the locations of both teams. 121

Figure 9.8: The results of the experiments #2 from Wargus game: CLASSQL vs

the built-in AI on the (a) small, (b) medium and (c) large maps. 123

Figure 9.9: Landscapes and details of the small (a), medium (b), and large maps

(c) that used for the experiment #1 and #2. 126

Figure 9.10: The results of Experiment: GDA-C versus CLASSQL on the small (a),

medium (b), and large maps (c). Figures (a-2), (b-2), and (c-2) show

the results as accumulative score. .. 129

xvii

LIST OF ALGORITHMS

Algorithm 1 Q-learning: An off-policy temporal-difference control algorithm. 20

Algorithm 2 CB-GDA algorithm .. 39

Algorithm 3 LGDA algorithm .. 44

Algorithm 4 GRL algorithm ... 50

Algorithm 5 CLASSQL algorithm ... 60

Algorithm 6 CLASSQL algorithm for Wargus .. 64

Algorithm 7 GDA-C algorithm .. 83

1

ABSTRACT

Goal-Driven Autonomy (GDA) is an online planning framework that focuses on

the integration of planning, execution and goal reasoning. Given a goal, a GDA agent

generates a plan to pursue the goal. In addition, by using its expectations, the agent

reasons about what the next observed state should be when the plan’s actions are

executed. If the expectation does not match the observed state, the GDA agent is able

to suggest a new goal to be pursued.

In most GDA research, knowledge is handcrafted and later fed into the GDA agent

by humans who are experts in a particular problem domain. Therefore, in this

dissertation, we would like to investigate about how we can create GDA agents that

have abilities to acquire knowledge by themselves and reuse that knowledge. The

problem domains we focus are real-time strategy (RTS) games. We used two RTS

games called DOM game and Wargus. We used Reinforcement Learning because it is

an unsupervised learning method and we want our GDA agents to be autonomous.

Our research went through multiple steps. First, we built a GDA agent without

integration of any learning methods. Later, we incrementally integrated learning

methods to each component in the GDA architecture until we build a GDA agent that

2

could learn knowledge for all components. The experimental results show that we can

create GDA agents that have the ability to acquire GDA knowledge by themselves.

3

CHAPTER 1
INTRODUCTION

It is not the strongest of the species that survives, nor the most

intelligent, but the one most responsive to change.

― Charles Darwin

1.1 Prolog

In everyday life, living creatures face problems and try to overcome those

problems. There are several methods to solve problems. In nature, living creatures

mostly use the method called trial-and-error by repeating actions until success is

achieved, or else they stop trying (Radnitzky, et al., 1993). In addition, creatures that

can remember which experiences ensure their survival have another method to solve

problems. They have ability to learn. Learning is one of the most natural methods that

living creatures use for survival.

Research in artificial intelligence (AI) and specifically machine learning can

enable computers to solve problems by themselves. Living creatures such as humans

can learn directly from the environment around them. A little child may touch a hot

4

stove and then learn by himself without anyone telling him not to touch it again

(Figure 1.1). Reinforcement learning (RL) agents can also adapt to a new

environment. RL is a learning approach that learns how to map situations to actions,

so as to maximize a numerical reward signal (Sutton, et al., 1998). RL agents learn

naturally by interacting directly with their environment and observing the outcome.

However, RL agents need a large memory space; they need a memory the size of the

state-action space for the particular problem domain (Si, et al., 2012). In complex

environments such as a real-time battle strategy team-based game, the state-action

space is exponentially large according to the number of states and actions (Jaidee, et

al., 2013; Weber, et al., 2010). Conventional RL methods alone are not practical

enough to handle complex problems. Therefore, we need some new model of a

learning method.

Figure 1.1: No one needs to tell the boy why he should not touch a hot stove again.

(The figure is retrieved from (One Crafty Mother, 2010)).

In some situations we do not learn from experience. Actually, some things that are

dangerous, harmful, or life-threatening, we should never learn by trying and observing

5

the result by ourselves. For example, smoking a cigarette is not regarded as healthy.

We know because someone told us, or we read research connecting to the fact. We do

not need to really smoke a cigarette to know that is harmful (however, about sixty

years ago, if your great-grandparents went to see a doctor, it is possible that the doctor

may have recommended smoking more cigarettes. At that time, people did not know

the real effects of smoking.) Similarly, computer agents can smartly perform tasks by

following the rules already established by experts. However, this kind of method is

neither autonomous nor dynamic.

In autonomous learning, an agent has to act and observe directly from its

environment. If agents can share what they learn, their learning speed will increase.

For example, a delivery team needs to reschedule their work shifts. Each one in the

team who will drive on the new schedule should learn the best direction to drive from

the previous drivers on the team who previously drove the route on the same day and

time. Learning from someone who works exactly in the same position and situation

can help in saving a lot of time. This is more efficient than trying to find the best

driving direction from scratch every time the driver schedule changes.

When the environment or situation around us changes, we must adapt in what we

do in everyday life (and possibly we must learn more). Imagine a situation where a

person always takes a bus of the same line daily to go to the office. The person hears

on the morning news that there was an accident on the road used by the bus line.

Because the person is aware of the heavy traffic that may occur as a result of the

accident, he will need to plan some new ways to go to his office. How AI agents

6

would be able to do this? What will the agent do? In other words, can we build an

agent that can independently make these decisions?

It may take a while for Reinforcement Learning agents before they can adapt to

changing environments. This long adaptation period is due, in a large part, to the RL

exploration phase, in which an agent must almost blindly uses trial-and-error to test

new actions and develop a policy to maximize its expected future rewards.

1.2 Goal-Driven Autonomy

As mentioned in the previous section, when the environment or situation changes

dramatically, some type of learning agents such as reinforcement learning agents can

take a long period of time before they can learn to adapt. To overcome this issue, we

study Goal-Driven Autonomy with the integration of learning methods. Instead of

having only one plan for all kinds of situation, Goal-Driven Autonomy uses a

collection of plans to pursue different goals that are designed to handle different

situations.

Goal-Driven Autonomy is an online planning framework that focuses on the

integration of planning, execution and goal reasoning. Given a goal, a GDA agent

generates a plan (i.e., a sequences of actions) to pursue the goal. The agent also

reasons with expectations about what the state should be when the plan is executed. If

expectation doesn’t match the state, the GDA agent will suggest a new goal to be

pursued instead.

7

Figure 1.2: A simplified flow of Goal-Driven Autonomy

Figure 1.2 shows the flow of Goal-Driven Autonomy. If some unexpected

situation occurs, a discrepancy between the expected situation and actual situation will

be computed by the Discrepancy Detector. Next, an explanation is generated by the

Explanation Generator. After that, a new goal will be chosen from the Goal

Formulator. The Goal Manager will be the one that executes the new goal.

Goal
Manager

Goal
Formulator

Explanation
Generator

explanation

goal

Discrepancy
Detector

discrepancy

8

1.3 Research Question

In most GDA research, knowledge is handcrafted by human experts in a problem

domain. This knowledge is fed into the GDA agent. For example, in HTNbots a

collection of rules is given that maps for given discrepancies that may dictate what

goal should be pursued next (Munoz-Avila, et al., 2010). This knowledge may require

a team of programmers and experts working together. Hence, a lot of time and money

could be invested to handcraft such knowledge.

Unfortunately, human expertise is expensive and handcrafting such knowledge is

time consuming. Therefore, we will study the following research question in this

thesis:

Can we create GDA agents that have the ability to acquire knowledge by

themselves and reuse this knowledge?

We are interested in studying this question in the context of complex

environments. A complex environment has the following characteristics (Russell, et

al., 2003):

 Partially observable: the information that agents observes from their

environment is not complete. There is some information that is hidden.

 Stochastic: the actions that agents taken can have multiple possible

outcomes.

9

 Multiagent: there are multiple agents interacting under the environment.

1.4 Contributions

The following is a summary of the scientific contributions of this dissertation to

the state-of-the-art in integrated learning for Goal-Driven Autonomy (GDA) research:

 First integration of Case Based Reasoning (CBR) and Goal-Driven

Autonomy. CB-GDA is the first GDA system that integrates case based

reasoning. CB-GDA uses case-based planning techniques to formulate goals

by deriving inferences from the game state and the agent’s expectations.

 First GDA system to automatically learn state expectations. LGDA is a

GDA agent that automatically acquires knowledge by using a case based

learning to map (state, action) pairs to a distribution over expected states, and

(goal, discrepancy) pairs to a value distribution over discrepancy-resolution

goals. It also uses a reinforcement learning method to learn the goals’ expected

values.

 First GDA system capable of learning and reusing goal-specific policies.

Our GDA agent, named the Goal Reasoning Learner (GRL), integrates case

based learning and reinforcement learning processes to learn and reuse goal-

specific action policies, state expectations, and goal selection knowledge.

10

 First learning agent that can learn multiple real-time strategy games

managerial tasks. CLASSQL and GDA-C are the first learning agent (and first

GDA agent) that are capable of learning on 5 out of 6 managerial tasks
1
 (Table

10-1) that are needed for creating automated players of real-time strategy

games (Scott, 2002).

1.5 Brief Overview of the Research

Early in my research, we compared the performance of Goal-Driven Autonomy

alone without integrating any learning methods to hand-coded AI engines crafted by

human and a reinforcement learning agent. Without integration of any learning

methods, the four components shown in the Figure 1.2 are hand-coded by a human.

Later in my research, we incrementally integrated learning methods to each

component in the GDA flow. Ours is the first GDA agent learns the main

components.

In our studies, the first system called GDA-HTNBots (Munoz-Avila, et al.,

2010) (see Section 4.2), reasons about the events occurring in its environment,

changes its own goals in response to them, and replans to satisfy these changed goals.

To do this, GDA-HTNbots constantly monitors its environment for unexpected

changes and dynamically formulates a new goal when appropriate. GDA-HTNbots is

1
 The resource task is the only one task that our agents do not learn because we

built a simple algorithm to maintain equilibrium among resources. Thus, the agents

are not necessary to take time learn it.

11

a partial instantiation of GDA model, and present a limited empirical study of its

performance. The results support our primary claim: agent performance in a team

shooter domain with exogenous events can be improved through appropriate self-

selection of goals for some conditions (see Section 9.2).

The system that was developed after the GDA-HTNBots is called CB-

GDA (Muñoz-Avila, et al.;, 2010), the first GDA system to employ case-based

reasoning (CBR) methods (for more details, see Section 2.2). CB-GDA uses two case

bases to dynamically generate goals. The first case base relates goals with

expectations, while the latter’s cases relate mismatches with (new) goals. The

empirical study of CB-GDA on the task of winning games was defined using a

complex gaming environment called DOM which will mention more details and

descriptions in Section 9.1.1.

The study revealed that CB-GDA outperforms a rule-based variant of GDA

when executed against a variety of opponents. CB-GDA also outperforms a non-GDA

replanning agent against the most difficult of these opponents and performs similarly

against the easier ones. In direct matches, CB-GDA defeats both the rule based GDA

system and the non-GDA replanner (for more details of the results, see Section 9.3).

As for the third system, learning GDA (LGDA) was introduced (see more

details in Section 6.2). LGDA (Jaidee, et al., 2011) is a GDA algorithm that learns

two types of cases from observed discrepancy resolution episodes: (1) expectation

cases, which map state and action pairs to a distribution over expected states, and (2)

goal formulation cases, which map goal-discrepancy pairs to a distribution of expected

12

values over discrepancy resolution goals. LGDA learns these through an integration of

case-based reasoning (CBR) and reinforcement learning (RL) methods. It models goal

formulation as an RL problem in which a goal’s value is estimated based on the

expected future reward for achieving it. The claim of LGDA is that this integration can

learn to perform as well as a non-learning GDA agent that employs expert knowledge,

and can outperform GDA agents that use only CBR or RL. We report LGDA’s

comparative evaluation on a task involving the control of a team in a domination video

game (DOM). The results show that LGDA outperforms most built-in hand-coded

opponents (i.e., adversaries) and significantly outperforms its ablated versions.

Finally, LGDA learns to perform almost as well as a non-learning GDA variant,

whose case knowledge was hand-crafted by a domain expert such that it also

significantly outperforms these adversaries (see Section 0).

Next, we introduce GRL (Goal Reasoning Learner) (Jaidee, et al., 2012), a case-

based GDA agent (see more details in Section 7.1). Unlike previous work integrating

RL and CBR and work on GDA, GRL embeds GDA in an RL cycle by learning and

reusing the three kinds of cases mentioned above. GRL is the first GDA agent capable

of learning and reusing goal-specific policies. Our hypothesis is that, as a result of this

capability, GRL can fine-tune strategies by exploiting the episodic knowledge

captured in its cases. We report performance gains versus a state-of-the-art GDA agent

and an RL agent for challenging tasks in two real-time gaming domains (see Section

9.5).

13

A well-known limitation of RL is that given the large size of the action and state

space, it is very difficult to use RL algorithms to control the full scope of real-time

strategy games (Jaidee, et al., 2013; Weber, et al., 2010). The state contain a lot of data

about the number of resources, detail information about each units of each classes of

each teams, information about the map, etc. In the same way, the action-space of RTS

game is also very huge. The set of all possible action is composed of building various

structures, upgrading structures, upgrading abilities of each classes, training units,

attack some unit, harvest resources, etc. In RL, its space is not just state-space or

action-space, but state-action-space. Therefore, without some add-on technique,

reinforcement learning method alone is not practical for any experiments on real-time

strategy games. Therefore, before I built a GDA integrated with learning, I thought it

was a better idea to investigate a method to handle the mentioned problems first.

CLASSQL (Jaidee, et al., 2013) is a multi-agent model for playing real-time

strategy games (see Section 8.1). It was introduced to reduce the problem of space in

RL for real-time strategy games. Each agent models only part of the state and is

responsible for a subset of the actions; thereby significantly reducing the memory

requirement for learning. CLASSQL’s agents learn and act while performing the tasks

performed by the managers discussed before. However, CLASSQL’s doesn’t

implement these managers. Instead, each agent is responsible for learning and

controlling one class of units (e.g., all footmen) or one class of buildings (e.g.,

barracks). There is no coordinator agent; coordination between these agents occurs as

14

a result of a common reward function shared by all agents and synergistic relations in

a carefully crafted state and action model for each class.

The last system that will be discuss in this thesis is GDA-C (Jaidee, et al., 2013), a

partial GDA that divides the state and action space among multiple reinforcement

learning (RL) agents, each of which acts and learns in the environment. Each RL agent

performs decision making for all the units with a common set of actions. We will

discuss more details about GDA-C in Section 8.2.

All the systems that are mentioned previously are listed in Table 1-1 to show their

capability and differences from other systems.

Table 1-1: List of AI systems and their outstanding points of difference

Systems Description Points of difference

GDA-

HTNbots

(Munoz-

Avila, et al.,

2010)

 First system on a simple
implementation of GDA (with an

HTN planner and using SHOP for

interpretation) and its demonstration

on the simple DOM game

environment.

 Assume a lot of domain knowledge
to be given by the user in the form of

HTN syntax.

 No learning

 Using HTN &
SHOP

 Lot of handcrafted
domain: HTNs and

GDA elements

CB-GDA

(Munoz-

Avila, et al.,

2010)

 The first investigation on case-based
planning and GDA.

 Calculate expectation dynamically
depending on action.

 The (pending) goals that used by
Goal Manager and Goal Formulator

is well planned by user.

 Using CBR, but no
learning.

 Cases are given as
input.

15

Systems Description Points of difference

LGDA

(Jaidee, et

al., 2011)

 An extension of CB-GDA that

focuses on automated case

acquisition.

 Learning two types of cases:
expectation cases and goal

formulation cases.

 Experimented on two domains:
DOM and Wargus.

 Using RL & CBR
to learn

expectations & goal

formulation cases.

 Goals and policies
are given as input

GRL

(Jaidee, et

al., 2012)

 An extension of LGDA that can learn
all case bases: (Policy Case Base,

Expectation Case Base, Goal

Formulation Case Base).

 All case bases can be empty at the
first run.

 GRL is the first
system that can

learn all case bases.

(ICCBR 2012)

CLASSQL
(Jaidee, et

al., 2013)

 New RL algorithm for multiple
agents.

 Dividing the state and action space
among cooperating learning agents

 Each agent has its own q-table

 Each agent’s unit has its own
previous state, previous action, and

previous reward for updating the q-

table of its class

 CLASSQL is an RL

that can play

complete Wargus

game

GDA-C

(Jaidee, et

al., 2013)

 A case-based goal reasoning
algorithm built on top of CLASSQL.

 Two interacting threads: CLASSQL
and GDA.

 GDA-C is the first

case-based goal

reasoning system

that can play

complete Wargus

games.

16

CHAPTER 2
BACKGROUND

“The best thing for being sad,” replied Merlin, beginning to puff and

blow, "is to learn something. That's the only thing that never fails. You

may grow old and trembling in your anatomies, you may lie awake at

night listening to the disorder of your veins, you may miss your only

love, and you may see the world about you devastated by evil lunatics,

or know your honor trampled in the sewers of baser minds. There is

only one thing for it then — to learn. Learn why the world wags and

what wags it. That is the only thing which the mind can never exhaust,

never alienate, never be tortured by, never fear or distrust, and never

dream of regretting. Learning is the only thing for you. Look what a lot

of things there are to learn.”

― T.H. White, the Once and Future King

17

2.1 Reinforcement learning

Reinforcement Learning (RL) is a learning system which can learn to map

situations to actions in order to maximize a numerical reward (Sutton, et al., 1998). In

most forms of machine learning, statistical pattern recognition and artificial neural

networks are form of supervised learning where learning agents are told which actions

they should undertake for each situation using examples provided by a knowledgeable

external supervisor. This is an important kind of learning, but alone it is not adequate

for learning from interaction. We are human and, since birth, we learn by interacting

with our environment. Many things that we learn we do not have a teacher to tell us

what to do, but constantly we interact directly with our environment.

Likewise, Reinforcement Learning agents learn to select rational actions by trial-

and-error to find out which actions feedback the most reward in the long run.

Therefore, RL is a powerful learning model to help deal with interactive problems.

Anyhow, an RL agent must be able to receive a state signal and a numerical reward

signal from the environment in some form of representation and then respond with

some actions that affect the state back to the environment (Sutton, et al., 1998).

2.1.1 Policy

In Reinforcement Learning Cycle, learning of a RL agent comes from interaction

between taking actions selected from current situation to the environment and

observing the outcome which respond back in form of signals of new situations and

18

numerical values called rewards. In general, one of the main objectives of the agent is

to try to maximize the rewards in the fullness of time.

Figure 2.1 show how an agent and its environment interact to each other. At a time

step , where , the agent chooses an action from actions available in

state . One time step () later the agent observes the environment’s state

and a numerical reward, .

Figure 2.1: The agent-environment interaction in reinforcement learning.

(Sutton, et al., 1998)

At each time step, the agent uses the numerical reward that is just observed to

update the probabilities of selecting action from state and uses the state to

select the next action . In some RL method, state is also taken into account

for updating the probabilities of selecting action from state . Roughly speaking, a

policy, denoted , is a mapping from states to actions. In addition, a policy is a

mapping from states to probabilities of selecting each possible action. A policy

 is the probability that if . The goal of the agent is to search for

a best mapping for its policy to maximize the total amount of reward in the long run.

(Sutton, et al., 1998).

Agent

Environment

rewardstate action
st rt at

rt+1

st+1

19

2.1.2 Q-learning

Q-learning is a reinforcement learning methods that is designed to learn action-

value function. The action-value function for policy of taking action in state ,

denoted , as the expected return starting from , taking the action , and

thereafter following policy (Watkins, 1989):

The estimated value of action-value function of taking action in state at the

time th is denoted as . The simplest form of Q-learning, one-step Q-

learning, is defined by:

 [max]

Where is the reward observed from , the learning rate is such that

 , The discount factor is such that . The learning rate, denoted as

, determines to what extent the newly acquired information will override the old

information. A factor of 0 will make the agent not learn anything, while a factor of 1

would make the agent consider only the most recent information. The discount factor,

denoted as , determines the importance of future rewards. A factor of 0 will make the

agent "opportunistic" by only considering current rewards, while a factor approaching

1 will make it strive for a long-term high reward. The Q-Learning algorithm is shown

in pseudo code below (Sutton, et al., 1998).

20

Algorithm 1 Q-learning: An off-policy temporal-difference
2
 control algorithm

(Sutton, et al., 1998).

Initialize arbitrarity

Repeat (for each episode):

 Initialize

 Repeat (for each step of episode):

 Choose from using policy derived from (e.g., -greedy)

 Take action , observe ,

 [max]

 until is terminal

2.2 Case-Based Reasoning

Case-Based Reasoning (CBR) is a branch of artificial intelligence, based on

human problem solving, in which new problems are solved by recalling and adapting

the solutions of similar past problems that are experiences stored in human memory.

Roughly defined, Case-Based Reasoning is the process of solving new problems based

on the solutions of similar past problems. A doctor who treats cancer patients by

recalling other cases of patients who have similar symptoms is using Case-Based

Reasoning. A jazz musician, who has to improvise a solo in a song that he has never

played before, can do it by using his past experience and adapting it to the new song,

is also using Case Based Reasoning. Not only is Case Based Reasoning a powerful

method for computer reasoning, but also a dominant behavior in everyday human

2
 Temporal-difference (TD) methods can learn directly from raw experience

without a model of the environment’s dynamics and without waiting for a final

outcome.

21

problem solving. Even more, some believe all reasoning is based on past cases that

are personally experienced.

Figure 2.2: The Case-Based Reasoning Cycle (Aamodt, et al., 1994).

At the highest level of generality, a Case-Based Reasoning cycle may be described

by the following four processes (Lenz, et al., 1998):

1) RETRIEVE - the most similar case or cases.

Given a target problem, retrieves from memory any cases relevant to

solving it. A case consists of a problem, its solution, and in general,

annotations about how the solution was derived. For example, consider an

New
CasePrevious

Cases

General
Knowledge

New
Case

Retrieved
Case

Solved
Case

Tested/
Repaired

Case

Learned
Case

RETRIEVE

REUSE

REVISE

RETAIN

Suggested
Solution

Confirmed
Solution

Problem

22

analogous situation; suppose Jerry who lives in Allentown wants to go to

New York City by driving his own car, but he has never traveled there

before. The most relevant experience he can recall is one in which he used

to drive to Jersey City. The directions he follows for driving to Jersey

City, together with justifications for decisions made along the way,

constitutes Jerry's retrieved case.

2) REUSE - the information and knowledge of the retrieved case to solve the

problem.

Map the solution from the previous case to the target problem. This may

involve adapting the solution as needed to fit the new situation. In the

“driving to New York City” example, Jerry must adapt his retrieved

solution to include the addition of driving from Jersey City to New York

City.

3) REVISE - the proposed solution.

Having mapped the previous solution to the target situation, test the new

solution in the real world (or a simulation thereof) and, if necessary, revise

it. Suppose Jerry, who drove his car from Allentown to Jersey City and

from Jersey City to New York City, found that there will be an unnecessary

delay caused if he drives through Jersey City (Figure 2.3-a). If he drove

most of the way to Jersey City and then used a bypass highway (in this

case, Pulaski Skyway) to avoid the traffic in Jersey City, he will get to New

23

York City faster. This suggests the following revision: do not take the exit

to Jersey City but continue on the highway (Figure 2.3-b).

(a)

(b)

Figure 2.3: Driving from Allentown to New York City.

(a) Without revising, driving from Allentown to Jersey City

 and then driving from Jersey City to New York City.

(b) With revising, driving from Allentown to most of the way to

 Jersey City and then using bypass highway to New York City.

4) RETAIN - the parts of this experience likely to be useful for future problem

solving.

After the solution has been successfully adapted to the target problem, the

agent stores the resulting experience as a new case in its memory. Jerry

24

records his new-found direction for driving to New York City, thereby

increasing his set of stored experiences and better preparing him for the

future.

Figure 2.4: Using Case-Based Reasoning to solve the problem of driving from

Allentown to New York City.

2.2.1 Case Similarity

To compare one case with other cases in case base, it is not proper way to match

them using only just exact matching. Indeed, it is almost a bad idea when we think

about various kinds of data in cases such as real numbers, strings or complex

Driving
Cases

Jerry’s
Knowledge

(Allentown, NYC)

Allentown to NYC?

(Allentown,
NYC)

(Allentown,
Jersey City)

RETRIEVE

(Allentown,
Jersey City,

NYC)

REUSE

Suggested
Solution

REVISE

Confirmed
Solution

(Allentown, most of the
way to Jersey City,

using bypass highway,
NYC)

RETAIN

(Allentown, most of the
way to Jersey City,

using bypass highway,
NYC)

25

structures. Case similarity is a method which can return a value of similarity between

a case in a problem and cases in a case base. The value 1 is to highest similarity, while

the value 0 is to lower one. There are numerous methods to calculate similarity and for

the one we use in the paper is weighted hamming distance with parameter. Let

 and are two cases that we want to calculate

similarity. First, the simple matching coefficient is the weighted simple matching

coefficient that introduces a weight for each attribute such that

 . The weight allows expressing the importance of the attribute for the

similarity (Richter, 2007).

 ∑

Second, the simple matching coefficient results from weighting the number of

equal attribute values different than the number of unequal attribute values. This

results in a non-linear strictly monotonic increasing function of the number of equal

attributes. A parameter determines the concrete shape of this function

(Richter, 2007).

() ()

26

CHAPTER 3
GOAL-DRIVEN AUTONOMY

We learn from failure, not from success!

― Bram Stoker

The conception of Goal-driven autonomy (GDA) is inspired by Cox’s work (Cox,

2007). The first GDA systems were reported in (Munoz-Avila, et al., 2010;

Molineaux, et al., 2010). GDA is a process that integrates planning, execution, and

goal reasoning for online planning in autonomous agents (Klenk, et al., 2010). Figure

3.1 illustrates how GDA extends Nau’s model of online planning (Nau, 2007). The

GDA model primarily expands and details the scope of the Controller, which interacts

with a Planner and a State Transition System Σ (an execution environment). System

is a tuple with a set of states , a set of actions , a set of exogenous events

 , and state transition function , which describes how the

execution of an action or the occurrence of an event transforms the environment from

one state to another. For example, given an action in state , returns the updated

state .

27

The Planner receives as input a planning problem , where is a

model of (the environment), is the current state, and is a goal that can

be satisfied by some set of states . The Planner outputs a plan ,

which is a sequence of actions [] paired with a sequence of

expectations []. Each is a set of state constraints

corresponding to the sequence of states [] expected to occur when

executing in using .

Figure 3.1: A Conceptual Model for Goal Driven Autonomy

(Munoz-Avila, et al., 2010; Molineaux, et al., 2010)

State Transition System S
(Execution Environment)

Controller

Goal
Manager

Goal
Formulator

Explanation
Generator

Planner

MS

(Pending)
Goals

e

g

Discrepancy
Detector

d

Current
State

Action a Observations s

Plan p = {A, X} MS , sc , gc

Initial
Goal g0

Initial
State s0

28

The Controller sends the plan’s actions to and processes the resulting

observations. The GDA model takes as input initial state , initial goal , and

 , and sends them to the Planner to generate a plan consisting of action sequence

 and expectations . When executing , the Controller performs the following

four knowledge intensive tasks, which distinguish the GDA model:

1. Discrepancy detection: This compares the observations obtained from

executing action in state with the expectation (i.e., it tests

whether any constraints are violated, corresponding to unexpected

observations). If one or more discrepancies are found, then they are

given to the following function.

2. Explanation generation: Given a state and a set of discrepancies ,

this hypothesizes one or more explanations of ’s cause(s), where

is a belief about (possibly unknown) aspects of or .

3. Goal formulation: This creates a goal in response to a set of

discrepancies , given their explanation and the current state .

4. Goal management: Given a set of existing/pending goals (one of

which may be the focus of the current plan execution) and a new goal ,

this may update to create (e.g., by adding and/or

deleting/modifying other pending goals) and will select the next goal to

be given to the Planner. (It is possible that .)

29

GDA makes no commitments to specific types of algorithms for the highlighted

tasks, and treats the Planner as a black box. This description of GDA’s conceptual

model is necessarily incomplete due to space constraints. For example, it does not

describe the reasoning models used by Tasks 1-4 (each of which may perform

substantial inference) nor how they are obtained, it assumes multiple plans are not

simultaneously executed, and it does not address goal management issues such as goal

prioritization or goal transformation (Cox, et al., 1998).

Figure 3.2 illustrates the data flow of Goal Driven Autonomy. The GDA agent

interacts to the environment by giving an action at time to the environment and

then receiving a reward and state at the next discrete time back from the

environment.

Inside the GDA agent, assume at the time , the agent receives a pair of a state

and a reward from the environment. The discrepancy detection detects a

discrepancy between the state and the expectation which was predicted in the

previous discrete time by the expectation formulator. It then sends the detected

discrepancy to the goal formulator. The goal formulator is an independent module

in the GDA agent to learn how to pick the next goal from the goal base. It needs

the reward from the environment, the discrepancy from discrepancy detection and

the current goal as its inputs to decide the next goal . After that, the goal

manager will take an action to the environment base on the state and the next

goal received. However, right before the agent will send the action , the

30

expectation formulator will learn and predict the next expectation by using the

information from the state and the action .

Figure 3.2: Data flow of Goal Driven Autonomy

Discrepancy
Detection

Goal
Formulator

Goal
Manager

Expectation
Formulator

st

rt

xt+1

at

d

gt+1

gt

xt

st

at

Environment

rt+1

st+1

GDA Agent

st

31

CHAPTER 4
GOAL-DRIVEN AUTONOMY WITH
HIERARCHICAL-TASK NETWORK

PLANNING

4.1 Hierarchical-Task Network

The hierarchical task network (HTN) is one of many methodologies used in

automated planning. The idea behind HTN is that, in the real world, many tasks can

be given in the form of networks for example mathematical problems, military

missions, going somewhere by using only public transportations. There are distinctive

benefits of using HTN such as preventing exponential explosion during plan

generation
3
 and faster speed of computation comparing to other planning methods.

Planning problems are identified in the hierarchical task network by providing a

set of tasks, which can be (Erol, et al., 1994):

1. primitive tasks (actions that can be executed)

2. compound tasks (sequences of actions)

3
 Plan generation is the problem of generating a sequence of actions that transform

an initial state into some desired state (Ghallab, M.; Nau, D.S.; Traverso, P., 2004).

http://en.wikipedia.org/wiki/Automated_planning

32

3. goal tasks (tasks of satisfying a condition)

The difference between primitive tasks and the others is that the primitive tasks

can be executed directly. Compound and goal tasks both require a sequence of

primitive tasks to be performed. However, goal tasks are specified in terms of

conditions that have to be made true, while compound tasks can only be defined in

terms of other tasks via the task network.

A task network is a set of tasks and constraints among them. And, it is possible

that a task network can be used as the precondition for another compound or goal task.

This way, one can express that a given task is possible only if a set of other actions are

done in such a way that the constraints among them are satisfied. In addition, a task

network can determine that a condition is necessary for a primitive action to be

executed. When this network is used as the precondition for a compound or goal task,

the compound or goal task requires the primitive action to be executed and that the

condition must be true for its execution to successfully achieve the compound or goal

task (Erol, et al., 1994).

4.2 Goal-Driven Autonomy with Hierarchical-Task

Network Planner

GDA-HTNbots is an extension of HTNbots in which the controller performs the

four tasks of the GDA model. HTNbots uses SHOP to generate game-playing

33

strategies for DOM based on an external hierarchical task network (HTN). These

strategies are designed to control a majority of the domination locations in the game

world. Whenever the situation changes (i.e., when the owner of a domination location

changes), HTNbots generates a new plan. Therefore, HTNbots is a dynamic

replanning system. It calls SHOP to find the first method that is applicable to a given

task, and uses it to generate subtasks that are recursively decomposed by other

methods into a sequence of actions to be executed in the environment.

Unlike HTNbots, GDA-HTNbots reasons about its goals, and can dynamically

formulate which goal it should plan to satisfy. It controls plan generation in two ways:

first, it determines when the planner must start working on a new goal. Second, it

determines what goal the planner should attempt to satisfy. GDA-HTNbots extends

HTNbots to instantiate the GDA conceptual model as follows:

 State Transition System () (task environment): We apply GDA-HTNbots

to the task of controlling an agent playing DOM. We described this task

and game environment in the preceding section, and describe an example

of this application in the next section.

 Model of the State Transition System (): We describe the state

transition function for DOM using SHOP axioms and operators.

Exogenous events are not directly modeled in SHOP. HTNbots play DOM

by monitoring the game state and replan as needed.

34

 Planner: GDA-HTNbots uses SHOP, although other planners can be used.

Given the current state (initially), current goal (initially), and

 , it will generate an HTN plan designed to achieve when

executed in starting in . This plan includes the sequence of

expectations determined by the HTN’s methods that are anticipated

from its execution.

 Discrepancy Detector: This continuously monitors ’s execution in

such that, at any time , it compares the observations of state provided

by with the expected state . If it detects any discrepancy (i.e., a

mismatch) between them, then outputs to the Explanation Generator.

 Explanation Generator: Given a discrepancy for state , this generates

an explanation of . GDA-HTNbots tracks the history of the game by

counting the number of times agents from the opposing team have visited

each location. Using this information and the discrepancy , GDA-

HTNbots identifies an explanation , which is the strategy that the

opponent is pursuing.

 Goal Formulator: Given an explanation representing the opponent’s

current GDA-HTNbots formulates a goal using a set of rules of the

form:

if then

35

The new goal directs GDA-HTNbots to counter the opponent’s

strategy.

 Goal Manager: GDA-HTNbots employs a trivial goal management

strategy. Given a new goal , it immediately selects this as the current

goal, which the Controller submits to the Planner for plan generation.

Figure 4.1: An example DOM game map with five domination locations (yellow

flags), where small retangles identify the respawning locations for the agents and the

remaining two types of icons denote each player’s agents.

36

4.3 Example in the DOM Game

We report on a case study in which the system’s task is to control a team of agents

in DOM. Figure 4.1 shows an example of a map in a domination game with five

locations. Our scenario began with the following initial state and goal:

Initial State (): This includes the locations of all the agents in the game and

which team (if any) controls each domination location.

Initial Goal (): The initial goal is to win the game (i.e., be the first to cumulate

20,000 points). GDA-HTNbots sends to SHOP, which generates a plan to

dispatch GDA-HTNbots’ agents to each domination location and control them. Given

the uncertainties about the opponent’s actions and the stochastic outcome of

engagements, this plan may not yield the expected results. For example, Table 4-1

presents some sample explanations for the DOM game (we do not display the full state

due to space constraints). The first row highlights a situation where the bot3 agent was

expected to be at location 2, but this did not happen. By examining the history of

enemy agents at that location, GDA-HTNbots assumes the opponent is executing a

strategy to heavily defend location 2. Using the explanation goal rule set, GDA-

HTNbots counters this strategy by setting a goal to have bot3 at an alternative

location, namely location 1.

37

Table 4-1: Example explanations of discrepancies (with some expectations

and observations shown), and the corresponding recommended goals.

Discrepancy Explanation Next Goal

 : Loc(bot3, loc2)

 : Loc(bot3, loc2)
Defended(loc2) Loc(bot3, loc1)

 : OwnPts() > EnemyPts()

 : OwnPts() > EnemyPts()

EnemyCtrl(loc1)

EnemyCtrl(loc2)
OwnCtrl(loc2)

The second row shows a discrepancy where GDA-HTNbots expected to, over the

last time period , earn more points than the enemy. However, this did not happen

because the enemy controlled two of three (total) locations. The rule set determines

that the next goal should be to control one of the locations controlled by the opponent

(e.g., loc2). Given this, our system generates a plan to send two agents to location 2.

This example illustrates how GDA-HTNbots explains discrepancies by reasoning

about the opponent’s strategies. This enables GDA-HTNbots to formulate goals that

counter the opponent’s actions.

38

CHAPTER 5
GOAL-DRIVEN AUTONOMY

WITH CASE-BASED REASONING

Experience is what you get when you didn't get what you wanted. And

experience is often the most valuable thing you have to offer.

― Randy Pausch, The Last Lecture

In this chapter, we focus on CB-GDA, the first GDA system to employ Case-

Based Reasoning (CBR) methods (Lopez de Mántaras, et al., 2005). CB-GDA uses

two case bases to dynamically generate goals. The first case base relates goals with

expectations, while the latter’s cases relate mismatches with (new) goals.

5.1 Case-Based Goal Driven Autonomy

Our algorithm for case-based GDA uses two case-bases as inputs: the planning

case base and the mismatch-goal case base. The planning case base (PCB) is a

collection of triples of the form (, , ,), where is the observed state of the

world (formally, this is defined as a list of atoms that are true in the state), is the

goal being pursued (formally, a goal is a predicate with a task name and a list of

39

arguments), is the state that the agent expects to reach after accomplishing

starting from state , and is a plan that achieves . The mismatch-goal case

base (MCB) is a collection of pairs of the form (,), where is the mismatch

(the difference between the expected state and the actual state) and is the

goal to try to accomplish next. In our current implementation both PCB and MCB are

Algorithm 2 CB-GDA algorithm

CB-GDA (, , , , , , , , , ,)

// Inputs:

// : Domain simulator

// : The CBR intelligent agent

// : Initial goal

// : Planning case base

// : Mismatch-goal case base

// : return true iff goals are similar

// : return true iff states are similar

// : return true iff mismatches are similar

// : the threshold value used by the function.

// : the threshold value used by function.

// : the threshold value used by function.

// Output: the final score of simulation

1: run(, ,)

2: while status() = running do

3: currentState()

4: currentGoal(,)

5: while (currentTask(),) do

6: wait()

7: retrieve(, , , ,)

8: currentState()

9: If then

10: retrieve(, , mismatch(,), ,)

11: run(, ,)

12: return game-score()

40

defined manually. In Section 5.2, we will discuss some approaches we are considering

to learn both automatically.

The algorithm above displays our CBR algorithm for GDA, called CB-GDA. It

runs the game for the GDA-controlled agent A, which is ordered to pursue a goal

 . Our current implementation of A is a case-based planner that searches in the

case base PCB for a plan that achieves . The call to run (, ,) represents

running this plan in the game (Line 1). While the game is running (Line 2), the

following steps are performed. Variables are initialized with the current game state

(Line 3). And then, variables is setup for agent’s goal (Line 4). The inner loop

continues running while is attempting to achieve (Line 5). The algorithm waits a

time to let the actions be executed (Line 6). Given the current goal and the

current state , agent searches for a case (, ,) in PCB such that the binary

relations (,) and (,) hold and returns the expected state (Line 7).

 is currently an equivalence relation which is a Boolean relation that holds

true whenever the parameters a and b are similar to one another according to a

similarity metric and a threshold (i.e.,). Since the

similarity function is an equivalence relation, the threshold is 1. The current state

in is then observed (Line 8). If the expectation and do not match (Line 9),

then a case (,) in MCB is retrieved such that mismatch and mismatch(,

), are similar according to ; this returns a new goal (Line 10). Finally,

41

is run for agent with this new goal (Line 11). The game score is returned as a

result (Line 12).

From a complexity standpoint, each iteration of the inner loop is dominated by the

steps for retrieving a case from (Line 7) and from MCB (Line 10). Retrieving a

case from is of the order of , assuming that computing and

 are constant. Retrieving a case from is of the order of ,

assuming that computing is constant. The number of iterations of the outer

loop is , assuming a game length of time . Thus, the complexity of the

algorithm is .

We claim that, given sufficient cases in and , CB-GDA will

successfully guide agent in accomplishing its objective while playing the DOM

game. To assess this, we will use two other systems for benchmarking purposes. The

first is HTNbots, which we discussed in Section 4.1. As explained before, it uses

Hierarchical Task Network (HTN) planning techniques to rapidly generate a plan,

which is executed until the game conditions change, at which point HTNbots is called

again to generate a new plan. This permits HTNbots to react to changing conditions

within the game. Hence, it is a good benchmark for CB-GDA. The second

benchmarking system is GDA-HTNbots, which implements a GDA variant of

HTNbots using a rule-based approach (i.e., rules are used for goal generation), in

contrast to the CBR approach we propose in this paper.

42

CHAPTER 6
CASE-BASED LEARNING OF

EXPECTATIONS AND
GOAL-FORMULATION KNOWLEDGE

In this chapter, we introduce learning GDA (LGDA), a GDA algorithm that learns

two types of cases from observed discrepancy resolution episodes: (1) expectation

cases and (2) goal formulation cases. LGDA learns these through an integration of

Case-Based Reasoning (CBR) and reinforcement learning (RL) methods.

6.1 Definitions

Let be the set of states that an agent can visit, the goals that an agent can

pursue, and the actions that can be executed. We define an expectation case base

(ECB) as a mapping [] from the current state and selected action to a

probability distribution over expected next states (i.e., actions can be non-

deterministic). LGDA clusters ECB cases that involve the same action and have

similar states, and learns a state probability distribution for each cluster.

43

In LGDA (detailed in Section 6.2), GET(ECB, ,) returns, as the expected state,

the one with maximal probability among the ECB cluster whose state is most

similar to and has the same action . If no such cluster exists, then UPDATE(ECB, ,

 ,) will create one. Otherwise, it will update the probability distribution for .

A goal formulation case base (GFCB) instead maps the current goal and

discrepancy into a distribution over the expected values, [], for

formulated goals. That is, multiple goals may be formulated to resolve when

pursuing . Cases with the same goal and similar discrepancies are clustered together

in GFCB. LGDA uses Q-learning to track the expected value for each . In LGDA,

GET(GFCB, , ,) returns the expected value from cluster when is

formulated. If no such cluster exists, it returns 0 and initializes . Function call

UPDATE(GFCB, , , ,) updates the value of for in .

LGDA receives as input the policies that are implemented by hard-coded

adversaries. The call returns the policy for , while returns the action that

is pursued in state (if multiple such actions exist, one is randomly selected). These

input policies are static, not learned. LGDA instead learns the case bases (1) ECB and

(2) GFCB. This learned knowledge is dynamic; their application varies based on the

environment’s state in which the actions are executed.

44

6.2 LGDA Algorithm

Expectations can be learned by recording the occurrence frequency of

triples. The interpretation of the most frequent triple among those in () in

the ECB is that, when is the current state, it is most likely that will be the next

state when is executed. We use for the previous, current, and expected

states, respectively

Let , , and be the previous, current, and next goals, respectively. LGDA

uses Q-learning to learn the values of goals in each GFCB cluster. The following

pseudo code provides details and is documented below.

Algorithm 3 LGDA algorithm

LGDA(, , , , ECB, GFCB, , , , ,)

1: ; ; ; ; ;

2: while the game-playing episode continues

3: wait(); GETSTATE()

4: ECB UPDATE(ECB, , ,)
5: CALCULATEDISCREPANCY(,)

6: GET(GFCB, , ,)
7:

8: ((GET GFCB))

9: GFCB UPDATE(GFCB, , , ,)
10: if

11: if RANDOM(1)

12: (GET GFCB)

13: else RANDOM(| |)

14: ;
15: ;

16: GET(ECB, ,)
17: EXECUTEACTION()
18: ;
19: return ECB, GFCB

45

LGDA initializes previous state to the initial state , action to the null action,

previous goal and current goal to the dummy goal , and discrepancy to

dummy value (Line 1). Entries with these dummy values are not added to the case

base, and will be assigned to non-dummy values after the algorithm’s first iteration.

During a game-playing episode (Line 2), LGDA periodically waits and observes the

current state (Line 3), which it uses to update the distribution of expected states

when taking action in (Line 4). It then calculates the discrepancy between the

current and expected states (Line 5) and uses it to retrieve GFCB’s estimated value

for formulating (Line 6). It then computes the reward (Line 7), updates the value

using the Q-learning formula (Line 8), and records it in the GFCB (Line 9). If the

agent is performing poorly (Line 10), LGDA retrieves a new goal from GFCB

using -greedy exploration (Lines 11-13), and updates its previous and current goal

(Line 14). LGDA then retrieves the next action using policy , where is the policy

in for goal g′. (Line 15), retrieves an expected state from the ECB (Line 16),

executes (Line 17), and updates previous state and action (Line 18). Finally,

when the game-playing episode ends, it returns the revised case bases.

6.3 Implementation and Example

An LGDA agent must determine how to cluster cases using a similarity metric and

re-cluster when necessary. Our implementation was inspired by the design of

Retaliate (Smith, et al., 2007), an RL agent that we will use for benchmarking. For

46

LGDA, we ensure that the states and actions represented in ECB and GFCB, as

well as the state utility , are the same as those in Retaliate. Theoretically, this

permits a fair comparison between LGDA and Retaliate.

Retaliate was applied to control one team’s actions in a domination game called

DOM (see Section 0). Retaliate selects the actions for the friendly team’s bots. Its

state representation includes only information on domination location ownership. The

state is a vector , where is the number of domination locations and

indicates the team which owns location . For a 2-team game and bots per team,

this reduces the number of states to and the space of actions to . The utility

of state is defined by the function – , where is the friendly

team’s score and is the enemy’s score. The discrepancy between states and

is a -dimensional vector , where is true if and have the same

value in coordinate and false otherwise.

Given this representation, LGDA’s cases implement a simple similarity metric:

two states are deemed similar if they have the same feature values for domination

location ownership. Analogously, two discrepancies are similar if they mismatch on

the same features. Thus, after a case is assigned to a cluster, it will never be

reassigned.

Example: Suppose the domination locations in the current game are and

 and there are three bots per team . Each location can be in one of the

three states: un-owned (), owned by the friendly team (), or owned by the enemy

47

(). Therefore, state denotes that the first domination location is owned by

the enemy and the others are owned by the friendly team. Suppose the previous state

 is , the current state is , the expected state is , and the

friendly team’s previous actions were . After updating the

relevant ECB distribution (Line 4), LGDA will calculate the discrepancy between

the current and expected states (Line 5). Here, is (true, false, true), where true

means they match. After calculating the value and updating the (Lines 6-9), suppose

the reward is negative, and that LGDA will retrieve/formulate a new goal. Suppose the

current goal is to control the first half plus one of the domination locations, and the

next goal that was retrieved from the GFCB is to control all domination locations.

Then the action that will be retrieved from policy will be

 . The expectation that it retrieves from GFCB for executing action is

(Line 16). LGDA will then execute and record the new values for the previous state

 and action (Line 18).

48

CHAPTER 7
INTEGRATED LEARNING OF

GOAL-DRIVEN AUTONOMY ELEMENTS

In certain adversarial environments, reinforcement learning (RL) techniques

require a prohibitively large number of episodes to learn a high-performing strategy

for action selection. For example, Q-learning is particularly slow to learn a policy to

win complex strategy games. We propose GRL, the first GDA system capable of

learning and reusing goal-specific policies. GRL is a case-based goal-driven autonomy

(GDA) agent embedded in the RL cycle. GRL acquires and reuses cases that capture

episodic knowledge about an agent’s (1) expectations, (2) goals to pursue when these

expectations are not met, and (3) actions for achieving these goals in given states. Our

hypothesis is that, unlike RL, GRL can rapidly fine-tune strategies by exploiting the

episodic knowledge captured in its cases. We report performance gains versus a state-

of-the-art GDA agent and an RL agent for challenging tasks in two real-time video

game domains.

49

7.1 The GRL Algorithm

We now present GRL, which incrementally learns expectations, goal formulation

knowledge, and goal-specific policies. GRL uses Q-learning as its RL algorithm. Q-

learning is frequently used as the prototypical RL algorithm due to its bootstrapping

capabilities, which enables it to estimate state-action values based on other state-action

values estimates. As a result, it tends to converge to optimal policies faster than other

RL methods (Sutton, et al., 1998).

GRL receives as input the start state , a waiting time , the Policy Case Base ,

the Expectation Case Base (ECB), the Goal Formulation Case Base (GFCB), the

actions , and some parameters. The parameters and are the step-size and

discount-rate parameters for Q-learning. Parameters and are for the -greedy

selection of action and goals, respectively. Parameters and are used to learn new

goals as will be explained later, and t is a threshold used to determine when two goals

are similar to one another. GRL runs one episode of a game and returns updated

values for , ECB, and GFCB.

GRL executes an iterative decision making cycle with the following steps: (1)

identify discrepancies when they arise, (2) decide which goals to achieve to resolve

any such discrepancies, and (3) perform actions to accomplish these goals.

Simultaneously, GRL learns knowledge about state expectations, discrepancies, goals

to achieve, and the actions to achieve these goals (e.g., goal-specific policies).

50

GRL has three phases: In Phase 1, which occurs during an episode, GRL uses and

updates ECB and GFCB. Phases 2 and 3 occur immediately after an episode ends. In

Phase 2 new goals are identified and in Phase 3 goal-specific policies are updated.

Algorithm 4 GRL algorithm

GRL ECB GFCB

// Phase 1: Online execution and updating

1: ;

 ;

 ;

 ;
 GETGOALS

2: while episode continues

3: WAIT()

4: GETSTATE() // Periodically observe the state

5: // Compute the reward

6: CONCAT ;

 CONCAT

7: ECB UPDATE ECB // Update ECB’s distribution

8: RANDOM // Random current action

9: if

10: GET GFCB // Fetch/update Q value

11: (ARGMA (GET GFCB))

12: GFCB UPDATE GFCB

13: if // Performing poorly?

14: CALCULATEDISCREPANCY(,)

15: if RANDOM // Formulate next goal

16: ARG A (GET GFCB)

17: else RANDOM

18: ;
19: // Retrieve a new policy

20: if RANDOM

21: ARGMA GET

22: ARGMA GET ECB

23: EXECUTE() // Execute current action

24: ;

// Phase 2: Goal extraction

25: TOPFREQUENC

26: for-each // Iterate over the most frequent goals

51

27:

28: for-each // Attempt to group g' with an existing goal

29: if SIMILARIT then
30: if then // g is a new goal

31:

// Phase 3: Policies revision

32: for-each

33: if then else nil

34: if nil then NEW ;
35: for-each

36: GET

37: (ARGMA (GET))

38: UPDATE

39: UPDATE

 return , ECB, GFCB

In Phase 1 (Lines 1-24), GRL applies and updates ECB and GFCB. It first

initializes and to the initial state , action to the null action, lists and to

empty, and current goal to the dummy goal , discrepancy to dummy value

 , and to the set of goals that can be accomplished by (Line 1) (i.e., policies are

annotated with the goals they accomplish). During an episode (Lines 2-24), GRL

periodically waits (Line 3) and then observes the current state (Line 4), calculates

the reward (line 5), and concatenates 〈 〉 to and 〈 〉 to (Line 6) for use

after the game episodes concludes. It then updates the distribution of expected states

when taking action in (Line 7) and generates the current action randomly (Line

8). This guarantees that, if is empty, then GRL still has an action to perform.

Otherwise (Line 9), it retrieves GFCB’s estimated value for formulating goal

given (Line 10), updates the new value using Q-learning (Line 11), and

records it in the GFCB (Line 12). If the agent is performing poorly (Line 13), it then

52

calculates the discrepancy between the current and expected states (Line 14) and

retrieves a new goal from GFCB using -greedy exploration (Lines 15-17), and

updates its previous and current goal (Line 18). GRL then retrieves a new policy from

 using goal as the index (Lines 19-21). It retrieves from the ECB the expected

state from executing , executes , and updates the previous action , current

action , and previous state (Lines 22-24).

After an episode completes, GRL’s Phase 2 extracts a set of goals to update their

policies. It first identifies the set of most frequent states that appear in the most

recent of visited states, where the frequency of these states must be at least a

threshold value . For example, assume that

 , , , and . Then the most recent 50% of

la is , and state is the most frequent state among these (with

frequency 3). The threshold value equals 1.75 (i.e., 0.5×0.25×10), which means GRL

will also include state in because its frequency is 2. However, if , then

 (Line 25). GRL then adds new goals from that are at least as similar to

goals in as the threshold (Line 29). Similarity between goals is computed using a

linear combination of local similarity metrics, one for each of the state’s features

(Lopez de Mántaras, et al., 2005). More precisely, we assume cases to be vectors of

 -dimensional features . For computing similarity, we define a

collection of local similarity metrics , one per feature , and a collection of

weights , which sum to . The aggregated similarity metric is defined as:

53

 ∑

GRL groups goals by similarity to reduce the size of the Policies Case Base .

However, if no similar goals exist, then GRL will interpret as a new goal (line 30).

In Phase 3, GRL refines or adds new policies. For each goal in (Line 32), if

is not empty, then GRL will retrieve policy for this goal (Line 33). If either is

empty or the policy associated with is nil, a new policy for is created and is

added to (Line 34). It will then apply Q-learning to update using the recent state

transitions and rewards (Line 35-38) and update the (goal, revised policy) in (Line

39). Finally, GRL returns all the revised case bases (Line 40).

7.2 Example

Suppose in the real-time strategy (RTS) game Wargus a GRL-controlled agent is

competing against one opponent (Wargus2012). Wargus is a combat game where each

player controls a variety of units. In our experiments each player controlled mages,

archers, knights, ballistae, and footmen. The objective of this game is to be the first to

reach a predefined number of points, which are earned by killing the opponent’s units.

Some units award more points than others (e.g., killing a knight earns more points than

a footman).

54

Assume each team begins with two footmen and two archers, and that the agent

has already played many games. Thus, the case bases , ECB, and GFCB have

recorded some results. For the Wargus state representation we use

 , where denotes the number of remaining units of type th
 on our

team and denotes the same of type th
 for the opponent. Usually, and are

equal (e.g., if the current state equals , then our team has footmen and one

archer remaining while the opponent has only two archers). Actions in Wargus,

denoted as , where each is a unit type of the opponent such as

{R archers, F footmen}, means that units of type th
 on GRL’s team attacks

opponent units of type
th

. For example, the action means that a unit with

ID attacks an opponent archer, units with ID and attack opponent footmen, and

units with ID do nothing.

Suppose the current state is (i.e., GRL’s team has only one

footman left and the opponent has only one archer) and (Lines 4-5). In Phase

1, GRL adds to and to (Line 6). After updating the

appropriate ECB distribution (Line 7), GRL will generate the random action and

then calculate and update the value of GFCB (Lines 10-12). Because the reward is

negative, GRL will change to a new goal (Line 13). After finding the discrepancy

 between current state and expectation , it will

choose a new goal in an -greedy fashion (Lines 14-18). Using this new goal to

retrieve a policy , suppose it retrieves (by chance) greedy action

 (i.e., send the remaining footman to attack an enemy archer) from policy

55

 (Lines 19-21). GRL then updates the previous state and action, computes

expectation , and executes action (Lines 22-24). Suppose that this action

eliminates the opponent’s units, which ends the game.

Phases 2-3 update . First, GRL uses TopFrequency to compute a set of new goals

 , and then searches for goals from that are similar to any members in to create

a set (Lines 25-31). Suppose (e.g., we have 100 footmen and

150 archers while the enemy has 0 footmen and 0 archers), meaning that GRL won the

episode because it destroyed all enemy units. Assume

 . Then assuming

there are no (sufficiently) similar cases in . Lines 39-48 will learn a policy , and

 will be added to . On the other hand, if

and assuming it would be (above-threshold) similar to the first and fourth goals in ,

then and Lines 39-48 will update the policies

and .

56

CHAPTER 8
GOAL-DRIVEN AUTONOMY

COORDINATION OF MULTIPLE AGENTS

We, humans, can share knowledge that we have learned. Salespersons at

the end of the week can have a meeting to share their selling experience, the problems

that they had with their customers and other issues. By doing this, it helps those

salespersons in the group to indirectly learn more and be ready for similar situations

that might happen in the future. We already knew from Section 2.1 that a

reinforcement learning (RL) agent learns directly by interacting with its environment

without any supervisor. However, can reinforcement learning agent indirectly learn

from other agents? Another issue, a well-known limitation of RL is that the space of

possibilities is too large. This can be exemplified in many complex problems. For

example, the state-space of a real-time combat strategy game called Wargus is very

large. The state contains a lot of data about the number of resources, detailed

information about each unit of each class of each team, information about the map,

etc. In the same way, the action-space of Wargus is also very huge. The set of all

possible action is composed of building various structures, upgrading structures,

upgrading abilities of each class, training units, attacking some unit, harvesting

resources, etc. In RL, its space is not just state-space or action-space, but state-action-

57

space. Therefore, without some add-on technique, reinforcement learning method

alone is not practical for any experiments on real-time strategy games.

8.1 CLASSQL: Modeling Unit Classes as Agents

We would like to introduce CLASSQL, an application of the RL algorithm that

learns directly and indirectly from the environment and reduces the problem of space

that occurs in RL for real-time strategy games. In this dissertation, we show that we

can reduce the size of the state-action space by having an individual Q-table of each

class and filtering useful information that is customized for each class instead of using

the observed state directly.

8.1.1 The CLASSQL Algorithm

The multi-agent CLASSQL manages a collection of learning agents, one for every

class of unit/buildings. Each CLASSQL’s agent performs a feedback loop with the

environment, which is typical of reinforcement learning agents (Figure 8.2). In each

iteration, the agents extract information from the state and using the reward signal

from the environment, determine the actions that units under their control need to

achieve. These actions are high-level and translated into multiple problem domain

actions.

58

CLASSQL uses the following conventions:

 The set of classes is the set of classes , where each is

the th
 class of units in the problem domain. For example, as for Wargus

game, we assign a class to control all footmen, another class to

control all knights, and another class to control all peasants.

 The set of class-actions is the set of , where is the set

of high-level actions that the units in the th
 class can perform.

 The set of class-states ⋃ where each is the set of states that

the units in the th
 class can be at.

 The set of learning-matrixes is the set of { }, where is

the learning-matrix of the th
 class. Learning-matrix is a data structure that

is used to store data by a selected learning method. For example, as in our

implementation of CLASSQL, if Q-learning is used as the learning method,

then each is a Q-table indicating the estimated value of action-

value function of taking action in state . Our implementation uses the

standard Q-learning update.

Q-learning update. The estimated value of action-value function of taking action

 in state at the time th
 is denoted as . Q-learning is defined by:

 [

]

59

Where is the reward observed, the parameter controls the learning rate (

), and is a factor discounting the rewards obtained so far ().

Each class controls all units of the same type. Each individual unit maintains the

(state, action) pair of the state it last visited and the action it last performed. However,

a unit is not able to make a decision on itself. The class’s learning matrix (i.e., a Q-

table) for the class acts like a “brain” of each unit of class . Figure 8.1 illustrates

this idea.

Figure 8.1: Illustration how units in Wargus perform a decision making

What should I do?
1) attack the enemy’s peons
2) attack the enemy’s great halls
3) attack the enemy’s grunts

⁞ ⁞ ⁞ ⁞
Let’s ask the footmen’s brain

What should I do?
1) repair the damage buildings
2) harvest more gold
3) chop more wood

⁞ ⁞ ⁞ ⁞
Let’s ask the peasants' brain

Oh!
There’re a lot of enemy’s units
nearby. Some are weak and some
are strong.

Oh!
There’re a lot of damaged
buildings.
Our gold and wood are low.

Attack the grunts

Repair the buildings

state

state sfootman14

footman14

peasant8

state speasant8

set of action A

set of action A

Learning Matrix M

(of the footman agent)

Learning Matrix M

(of the peasant agent)

The suggestion action a

from M

The suggestion action a

from M

𝕤

60

Algorithm 5 CLASSQL algorithm

CLASSQL(, ,)

1: while episode continues

2: parallel for each class

3: 𝕤 OBSERVESTATE()

4: r OBSERVEREWARD()

5: GETSTATEFORCLASS(𝕤)

6: A GETACTIONSFORCLASS(,)

7: GETLEARNINGMATRIXFORCLASS(, C)

8: {}

9: for each unit u C

10: if is a new unit then

11: ; idle-action

12: if unit u is idle or finished its action then

13: UPDATE(, , , ,)

14: a GETACTION(,)

15: Append(,)
16: ;

17: EXECUTEACTION()

 return

CLASSQL receives as inputs: a set of classes , a set of class-actions , and a set

of Q-tables . During an episode (Line 1), for each class working in parallel (Line

2) will execute Lines 3 to 17; so Lines 3 to 17 are executed independently for each

agent of class . Our implementation runs one thread for each CLASSQL agent.

Loop of each CLASSQL agent. The state and reward are observed directly from the

environment (Line 3-4). Then, the observed state is filtered specifically for class

(Line 5). The reason why we have to do this is because different classes need different

kinds of information. Moreover, the benefit of doing this is to help reducing the size

of the observed state (we analyze the size reduction in the next section). Next, the set

of actions of class is retrieved from the set (Line 6). Afterwards, the Q-table

61

of class is retrieved (Line 7). The set of units’ action L is initialized as an empty list

(Line 8). For each unit of class (Line 9), if the unit is just created, then its

previous state is initialized to the current state and its previous action is

initialized to the idle-action (Lines 10-11). If the unit u is idle or finished its action

(Line 12), the Q-table is updated using the Q-learning update (Line 13). Then, an

action is chosen from the set (Line 14). A pair of unit and its action is appended

to the list (Line 15). Afterward, the previous state and previous action of unit

 are saved for the future use (Line 16). In the last step we execute the actions from

the list (Line 17). After the episode is over, the set of Q-tables is returned (Line

18).

8.1.2 Application of CLASSQL for Wargus

The CLASSQL algorithm that we describe in the previous section is applicable in

any problem domain. However, if we would like to use the CLASSQL algorithm for

some particular problem domain, we might need to adapt the CLASSQL algorithm

according to the characteristics of the target problem domain we want to use. In this

section, we will show how to apply CLASSQL algorithm to Wargus.

As for Wargus, at the beginning of the game, units on the team take a lot of

strategic actions, such as building structures, harvesting resources, and training units

to prepare for battle. However, the scores of the game for all teams are still zero. This

is because scores in Wargus will be increasing only from attacking the enemy team’s

62

units (See Appendix B, for more detail about points gained from killing specific units).

Without an immediate reward after taking an action, we cannot use any online

reinforcement learning. This is why we have to save the list of state-action pairs to do

an off-line update after the game ends (and we know that is the final score). The Q-

learning update formula that is mentioned previously need four parameters

 for updating the q-values. The reward’s value is a function of

the final score as we will explain later.

Figure 8.2: The interaction between CLASSQL and its environment

Agentn

(ballistas)

Environment

Agent2

(knights)

Agent1

(peasants)

:
:

(State S, Reward R)

{(unit3, harvest gold),

(unit15, built a farm), ...}

Agent3

(barracks)

{number of gold,
number of wood,

number of food,...}

{number of knights, number of
ballistas, number of archers,...}

{number of enemy workers,
number of enemy knights,
number of our knights,...}

{(unit11, attack enemy’s townhalls),

(unit18, attack enemy’s knights),…}

{(unit6, train a new archer)}

{(unit4, attack enemy's’ peasants),

(unit7, attack enemy's’ farms),…}

{number of gold, number of wood,
number of food, number of workers,
number of enemy workers, number of
knights, number of enemy knights,...}

State S =

Reward R = 147

{number of enemy workers,
number of enemy footman,

number of enemy ballistas,...}

High-level Action to
Problem Domain Actions

Converters (HapDac)

State S

State S1 =

State S2 =

State S3 =

State Sn =

63

Another reason why we do not store rewards at each time in the tracking list is

because of the cooperation among different agents. The CLASSQL agents cooperate

because they all share the same reward.

Reward function. We decided to use reward +1, if the CLASSQL agent’s score is

greater than the opponent’s score; 1, if the CLASSQL agent’s score is smaller than the

opponent’s score, and 0, otherwise. We do not use the difference in score as the

reward because, in Wargus, the score comes from killing enemy’ units; therefore, a

stronger team which can win and finish the game very fast can earn less score than the

score of a weaker team who can win but take a longer time.

Using offline update has another benefit; because we are recording the list of

(state, action) pairs, we can go back to early decisions in the game and assign the final

reward.

CLASSQL works in two phases. In the first phase, we use the Q-values learned in

previous episodes to control the AI while playing the game. In the second phase, we

update the Q-values from the sequence of triples that occurred in the episode

that just completed.

CLASSQL initializes s to the initial state (Line 1). During an episode (Line 2),

CLASSQL periodically waits (Line 3) and then observes the current state 𝕤 (Line 4).

Each class C in the set of classes (Line 5), creates the current state for the class C

by customizing the observed state 𝕤 (Line 6). The reason why we have to do this is

64

that different classes need different kinds of information. The size of the observed

state 𝕤 is quite expansive and contains various kinds of information. Each class

requires some of the information uniquely.

Algorithm 6 CLASSQL algorithm for Wargus

CLASSQL(, , , , , , ,)

1:
2: while episode continues

3: wait()

4: 𝕤 GETSTATE()

5: parallel for each class C

6: GETABSTRACTSTATE(𝕤 , C)

7: A GETVALIDACTIONS(,)
8: Q (C)

9: for each unit c C

10: if unit c is idle

11: if RANDOM(1)

12: a ARGMA ()

13: else

14: a RANDOM(A)

15: EXECUTEACTION(a)

16: CONCAT(
)

17:
18:

19: end-while

//------------ After the game is over, update the q-tables ------------

20: r GETREWARD

21: for each class C

22: Q (C)

23: for each unit c C

24: for each <s, a, >

25: A GETVALIDACTIONS(,)
26: []
27: return

The next step is to create the set of valid actions of class under current

situation (the current state) (Line 7). We should not use (the set of possible

65

actions of class) directly because some of the actions might not be applicable in the

current state. For example, peasants can build farms. However, without enough

resources, Wargus will ignore this command. Therefore, Line 7 prunes invalid

actions. Any action randomly chosen from this set of actions is guaranteed to be a

valid action. Next, the Q-table of class is retrieved from the collection of Q-tables

(Line 8).

For each unit c of class C, if the unit c is idle, CLASSQL retrieves an action from

the Q-table using -greedy exploration (Line 9-14). Notice that the algorithm chooses

an action from the set of valid actions , not from the set of possible actions .

Then, the action is executed (Line 15).

Because this is an offline learning method, Line 16 saves the set of (the

previous state of unit), (the previous action of unit) and the current state

for the Q-learning updates in the second phase. We wait until the end of the game to

update the Q-values because we have found it experimentally to be more effective to

use the outcome at the end of the game. This is why we have to save the list of state-

action to perform the off-line update later. Afterward, we update the previous state

and the previous action (Line 17-18).

As far as the reward is concerned, we would actually like to update the Q-table on

the fly. However, the test base that we experiment on has some interesting

characteristics. Since we use the score of the game to decide who the winner is, the

66

score for the game itself deserves to be rewarded or a part of a utility function to

calculate the reward.

In the second phase, after calculating the reward r (Line 20), we use one-step Q-

learning update and all the members in the list of each individual unit to update

Q-values of the Q-table of each class (Line 21-26). Finally, the set of Q-values is

returned (Line 27).

8.1.3 Modeling Wargus in CLASSQL

People with different profession have different roles and duties. For

example, a president, a merchant, a scientist and a preacher, they have different duty

in society. Thus, when they look into the world around them, they observe the world

in different perspective. People are trend to carefully focus on the details of

information that they need for their working and living. In addition, agents in CLASSQL

also behave the same way. When different agents observe information from their

environment, they filter only some information that is important for their jobs.

Peasants are just civilian. And, their jobs are about farming, harvesting resources,

building and repairing structures. Thus, when they observe a state from environment,

the information that they need are number of gold, wood and food that their team

have, and number of barracks that are already built, etc. In the other hand, knights are

warrior. Their duties are attack and defense enemies. So, the information that they

need to focus on are the number of enemy workers, the number of enemy knights, and

the number of knights in their team, etc.

67

We categorized units of a team into different class base on their duties. As

for Wargus, we modeled units into 12 classes as list below:

1. Town Hall / Keep / Castle

2. Black Smith

3. Lumber Mill

4. Church

5. Barrack

6. Knight / Paladin

7. Footman

8. Elven Archer/ Elven Ranger

9. Ballista

10. Gryphon Rider

11. Gryphon Aviary

12. Peasant-Builder

Because the behaviors of peasants when they act as builders or harvesters are so

different, we separate them in two different subsets. Harvesters can become builders

to build some buildings/structures until the work is done. Then, they will return to

working as harvesters again. There are two main kinds of resources to harvest: gold

and wood. To harvest gold, peasants must find a path to a gold mine. To harvest

wood, peasants must find a path to a forest. All resources which are already

harvested, peasants will carry back with them to their nearest town-hall or great-hall

68

depending on their races. In some situations, the peasants also can act as repairers

when a building is attacked.

There is no stable class in the list above because stable has no action, so the Q-

table is not needed by the stable class. The peasant-harvester class also does not have

its own Q-table. We create simple algorithms for the harvesters’ job assignments to

maintain the ratio of gold to wood at about 2:1. There are a few other missing classes

such as Mages because usually they don’t seem to work well when controlled using

Wargus commands.

In Wargus, the sets of actions of each class are exclusive. So, we can make the

state space of Q-table smaller by having individual Q-table of each class of unit. All q-

values in each Q-table are zero initialized. However, each unit has its own previous

state, previous action, and reward. Because each unit creates and finishes its action in

a different game cycle, in each game cycle the previous state of each unit is different.

8.1.4 State Representation

Each unit type has different state representation. To reduce the number of states,

we generalize levels for features that have too many values. For example, the amount

of gold can be any value greater than zero. In our representation we have 18 levels for

gold. Level 1 means 0 gold whereas level 18 means more than 4000 gold. We used

the term “level number” for such generalizations. Here are the features of the state

representations for each class:

69

 Peasant-Builder: (level of number of gold, level of number of wood, level of

number of food, number of barracks, having lumber mill?, having blacksmith?,

having church?, having Gryphon aviary?, having a path to a gold mine?,

having a town hall?)

 Footman, knight, paladin, archer, ballista and Gryphon rider: (level of number

of our footmen, level of number of enemy footmen, number of enemy town

hall, level of number of enemy peasant, level of number of enemy attackable

units that are stronger than our footmen, level of number of enemy attackable

units that are weaker than our footmen)

 Town hall: (level of number of food, level of number of peasants)

 Barrack: (level of number of gold, level of number of food, level of number of

footman, level of number of footmen, level of number of archers, level of

number of ballista, level of number of knights/paladins)

 Gryphon Aviary: (level of number of gold, level of number of food, level of

number of Gryphon Rider)

 Black Smith, Lumber Mill and Church: (level of number of gold, level of

number of wood)

For peasants who are harvesters, we do not use any kinds of learning methodology

to choose actions to take. We use some simple algorithms to balance between the

amount of gold and the amount of wood about two units of gold per one unit of wood.

Another work of harvesters is to repair damage structures if there are some that need

to be repaired.

70

8.1.5 Actions

These are examples of actions that agents use to communicate with Wargus.

 Build(unit8, location(25,46), FARM)

 Attack(unit2,unit5)

 Attack(unit4, location(122, 59))

 Wait(unit11)

 Harvest(unit7, location(91,83))

The actions above are needed to specify a unit’s ID or a point of location on the

map. Thus, the size of the action space for these actions varies by the number of units

and size of maps. However, this issue is not bad enough. For any kind of learning

agent, agent who learns these actions may be not able to use its learned actions to

other maps that have different landscapes. To understand this phenomenon, consider

an analogous situation; a snowboarder learns how to snowboard very well at a

mountain ski resort. When he goes snowboarding in other ski resort, he cannot apply

what he already learned from his first mountain to any new mountain. He has to start

learning all over again. When you finished reading this scenario above, you know this

is unlikely to happen in real life. This is because, if you have the skill to snowboard,

no matter which ski resort you go to, you are still able to snowboard.

71

In addition, we should not learn how to act based on the actions that are specified

for a particular map. What we should do is learn how to act from a set of actions that

are independent from any maps.

Our model abstracts actions from units so that they are at a higher level than the

actual actions the units can take. The actual actions of units include moving to some

location, attacking another unit or building, patrolling between two locations, and

standing ground in one location. We call these actions problem-domain actions

because are actions that are given by the problem domain and can be directly executed

in the domain. However, using the problem-domain actions would lead to an

explosion in the size of the Q-tables. High-level actions are actions that are

conceptual actions and group problem-domain actions. High-level actions can be

independent from any particular map and may be effective to reuse in other maps.

However, Wargus cannot execute high-level actions. Therefore there is a module

called High-level Action to Problem Domain Actions Converters (HapDAC) to convert

high-level actions into problem domain actions that Wargus can understand (se Figure

8.2,). Table 8-1 shows all possible high-level actions for each class. To convert from

a high-level action to problem-domain actions, HAPDAC might need more

information from the environment. Therefore, in Figure 8.2, HAPDAC also receives

the current state that is observed from the environment as its input. Table 8-1 shows

all possible high-actions for each class.

72

The following are the principles that HAPDAC uses for mapping high-level

actions into problem-domain actions. Let denotes the set of actor units and

denotes the set of recipient units or target locations.

(a) Using one-to-one mapping: for every recipient unit of we assign at most

one actor unit of , if .

(b) Using onto mapping: for every recipient unit of we assign at least one

actor unit of , if .

(c) Using bijective mapping (one-to-one and onto): for every recipient unit of

 we assign one actor unit of , if .

In our current work, HAPDAC uses a simple modulo function from to without

considering any other factors such as distance between an actor unit and a recipient

unit.

Table 8-1: All possible high-level actions for each Wargus class.

Class Actions

Peasant-Builder

 build a farm

 build a barrack

 build a town hall

 build a lumber mill

 build a black smith

 build a stable

 build a church

 build a Gryphon aviary

Town-Hall

Keep

Castle

 train a peasant

 Upgrade to keep (when it is a town-hall.)

73

Class Actions

 Upgrade to castle (when it is a keep.)

Black Smith

 upgrade sword level 1

 upgrade sword level 2

 upgrade human shield level 1

 upgrade human shield level 2

 upgrade ballista level 1

 upgrade ballista level 2

Lumber Mill

 upgrade arrow level 1

 upgrade arrow level 2

 Elven ranger training

 ranger scouting

 research longbow

 ranger marksmanship

Church

 upgrades knights to paladins

 research healing

 research exorcism

Barrack

 train a footman

 train an Elven archer/ranger

 train a knight/paladin

 train a ballista

Footman

Archer

Ranger

Knight

Paladin

Ballista

Gryphon Rider

 wait for attack

 attack the enemy’s town hall/great hall

 attack all enemy’s peasants

 attack all enemy’s units that are near to our camp

 attack all enemy’s units that have their range of

attacking equal to one

 and attack all enemy’s units that have their range of

attacking more than one

 attack all enemy’s land units

 attack all enemy’s air units

 attack all enemy’s units that are weaker (the enemy’s

units that have HP less than those of us)

 attack all enemy’s units (no matter what kind)

 Break walls to make path to enemy

74

The list of all possible actions for each class mentioned previously is not the list

that CLASSQL will choose from. It is true that the AI agent can order a peasant to

build a farm anytime. However, without enough resources or under some conditions,

after the agent ordered a peasant to build a farm, the Wargus game denial or ignore the

command and this makes the agent lose it turn for nothing. Therefore, in each point of

time, the agent will filter all possible actions to a new set of valid actions that are

available for the current state to make sure no matter what an action that the agent

picked, that action is always valid.

8.1.6 Analysis of CLASSQL

As explained before each CLASSQL agent maintains its own Q-table for all

units of class . Where []. Agent controls all units of class .

Assume a greedy policy extracted from each and for each

That is picks the action that has the maximum value (is often

referred to as the greedy policy). In Line 14, each agent will typically pick the same

action as the greedy policy most of the time (i.e., with some high probability 1 - ,

where is probability of random action in -greedy policy). However, to guarantee

that optimal policies are learned, it will from sometimes pick a random action (with a

probability). Assume that each agent has learned an optimal policy . That is,

75

when following the policy , it maximizes the expected return for agent , where the

return is a function of the rewards obtained. For example, the return can be defined as

the summation of the future rewards until the episode ends. It is easy to prove that,

given a collection of n independent policies 1,…,n where each k maximizes the

returns for class k, then = (1,…,n) is an optimal policy in ()

(where ⋃ as defined in the previous section). This means that agents will

coordinate despite the fact that each agent learning independently. Admittedly, this

assumption is not valid in many situations in RTS games since, for example, the agent

barracks might produce an archer thereby consuming the resources needed for the

peasant-builder to build a lumber mill. Nevertheless this represents an ideal condition

that guarantees coordination.

For non-ideal (and usual) conditions, we observe coordination between agents.

Figure 8.3 shows a typical timeline at the beginning of the game after CLASSQL has

learned for several iterations. Games begin with a town hall and a peasant. The

peasant agent orders the peasant to build a farm. The town hall agent orders the town

hall to produce a second peasant. The peasant agent orders the second peasant to build

a barracks and then orders the first peasant to mine gold (after it has finished the

farm). Coordination emerges between the agents; the decision by the town hall agent

to create the second peasant enables the peasant agent to order this peasant to produce

the barracks.

76

Figure 8.3: An example of a timeline at the beginning of the Wargus game.

The CLASSQL agents require space (i.e., adding the

memory requirements of each individual agent k). In contrast, an agent reasoning

with the combined states and actions would require |S | space. Under the

assumption that [] hold, then the following

inequality holds:

 ,

For n 2, the expression on the right is substantially lower than the expression on

the left. The action disjunction assumption is common in RTS games because the

actions that a unit of a certain type can take are typically disjoint from the actions of

units of a different type. The following table summarizes some of the savings for these

assumptions:

Ti
m

e
 L

in
e 50 1510 2520

build a farm mine gold

train a
peasant

do nothing
(idle action)

train a
peasant

harvest woodmine goldbuild a barrack

train a
 footman

train an
archer

attack enemy’s
peasant

attack enemy’s
knight

do nothing
(idle action)The unit is just created.

The unit is still alive.

The unit is dead/killed.

an active action.

an idle action/do nothing.

peasant 1

peasant 2

townhall 1

barrack 1

footman 1

77

Table 8-2: Space saved by CLASSQL compared to a conventional RL agent.

n % of saved space

1 0

2 50

4 75

5 80

10 90

20 95

8.2 GDA-C: Case-Based Goal-Driven Coordination of

Multiple Learning Agents

GDA agents have not been designed to learn and act with large state and action

spaces. This can be a problem when applying them to real-time strategy (RTS) games,

which are characterized by large state and action spaces. In these games, agents

control multiple kinds of units and structures, each with the ability to perform certain

actions in certain states, while competing versus an opponent who is controlling his

own units and structures. To date, GDA agents that learn to play RTS games can be

applied to only limited scenarios or control only a small set of decision-making tasks

within a larger hard-coded system that plays the full game.

To address this limitation, GDA-C was introduced. GDA-C is a partial GDA

agent (i.e., it implements only two of GDA’s four steps) that divides the state and

action space among multiple reinforcement learning (RL) agents, each of which acts

and learns in the environment. Each RL agent performs decision making for all the

units with a common set of actions. For example, in an RTS game, it will assign one

78

RL agent to control all footmen, who is a melee combat unit, and another RL agent to

control the barracks, which is a building that produces units (e.g., footmen).

That is, each RL agent is responsible for learning and reasoning on a space of

size , where is agent ’s set of states and is its set of actions.

Thus, GDA-C’s overall memory requirement, assuming n RL agents, is

 . This is a substantial reduction in memory requirements compared to a

system that must reason with a space of size |S|| |, where ⋃ and

⋃ (i.e., all combinations of states and actions).

Cooperation among GDA-C’s agents emerges as a result of combining two factors:

(1) all its agents share a common reward function and (2) it uses Case-Based

Reasoning (CBR) techniques to acquire/retain and reuse/apply its goal formulation

knowledge.

The claim is that agents which share the same reward function, augmented with

coordination provided by GDA-C, outperform agents that coordinate by sharing only

the reward function. To test this claim an empirical evaluation using the Wargus RTS

environment was conducted to compare the performance of GDA-C versus CLASSQL,

an ablation of GDA-C where the RL agents coordinate by sharing only the same

reward function. First, GDA-C and CLASSQL were compared indirectly by testing

both against the built-in AI in Wargus, a proficient AI that comes with the game and is

designed to be competitive versus a mid-range player. Their performances were

compared in direct competitions. The main findings are:

79

 Versus the Wargus built-in AI, GDA-C outperformed CLASSQL

 GDA-C also outperformed CLASSQL in most direct comparisons

8.2.1 Multi-Agent Setting

The task focusing on is to control a set of agents , where each belongs

to one class in . Each class has its own set of class-specific

states . The collection of all states is denoted by (i.e., ⋃). Each agent

 can execute actions in for every class specific state.

A stochastic policy is a mapping [] . That is, for

every state , defines a distribution , where is an

action in and is the expected return from taking action in state s and

following policy thereafter. The return is a function of the rewards obtained. For

example, the return can be defined as the summation of the future rewards. Our goal is

to find an optimal policy
 [] such that

 maximizes

the expected return.

It is easy to prove that, given a collection of independent policies

where each maximizes the returns for class , then is an optimal

policy. As in the next section, GDA-C uses this fact by running RL agents, one for

each class . If each converges to an optimal policy, their -tuple policies will be an

optimal policy for the overall problem. This results in a substantial reduction of the

memory requirement compared to a conventional RL agent that is attempting to learn

80

a combined optimal policy where each must reason on all states

and actions.

Q-learning was used to control each of the agents. Thus, our baseline system

consists of -learning agents that are guaranteed, after a number of iterations, to

converge to an optimal policy. This baseline system as CLASSQL was referred to

because each Q-learning (QL) agent controls a class of units in Wargus.

8.2.2 Case Bases and Information Flow in the GDA-C Agent

It is now the time to discuss how Case-Based Reasoning techniques are used in

GDA-C to manage goals on top of CLASSQL. Figure 8.4 depicts a high-level view of

the information flow in GDA-C, which embeds the standard RL model (Sutton and

Barto, 1998). GDA-C has two threads that execute in parallel. First, the GDA thread

selects a goal, which in turn determines the policy that each RL agent will use and

refine. Second, the CLASSQL thread performs Q-learning to control each of the k

agents.

The two case bases, Policies and GFCB, are learned from previous instances (e.g.,

previously played Wargus games). Given a policy , a trajectory is a sequence of

states visited when following from the starting state . Any such

state in this trajectory is a goal that can be achieved by executing . The policy is

assigned the last state in a trajectory as its goal. The case base Policies is a collection

81

of pairs , where is a policy that should be used when pursuing goal . GDA-

C stores such pairs as it encounters them.

Figure 8.4: Information flow in GDA-C.

The other case base assists with goal formulation. When a discrepancy d occurs

between the expected state X and the actual state observed by the Discrepancy

Detector, this discrepancy is passed to the Goal Formulator, which uses GFCB to

formulate a new goal. GFCB maintains, for each (current) goal discrepancy pair,

 , a collection , where is a goal to pursue next and vi is

the expected return of pursuing it. It outputs the next goal g to achieve.

The Goal-Specific Policy Selector selects a policy based on the current goal g.

The Class-Specific Policy Learner learns policies for new goals and refines the

policies of existing goals. It uses Q-learning to update the Q-table entry , given

current state and action taken , as well as next state and next reward (Sutton &

Barto, 1998).

Discrepancy
Detector

Goal
Formulator

Goal-Specific
Policy Selector

RL agent
policy planner

Reward
Decreases?

Controller

ClassQL ThreadGDA Thread

GFCB

Policies

Wargus Environment

a1,…,an

(one action per unit)

πgd

true

r

s

82

In many environments, there is no optimal policy for all situations. For example, in

an adversarial game, a policy might be effective against one opponent’s strategy but

not versus others. By changing the goal when the system is underperforming, GDA-C

changes the policy that is being executed, thereby making it more likely to adjust to

different strategies.

Now, let us talk about the formal definitions for the GDA process. Assuming a

state is represented as a vector of numeric features, where is a value

of a feature . Borrowing ideas from Weber et al. (2012), the agent uses optimistic

expectations. An expectation is optimistic iff , where expectation

 and previous state . An optimistic expectation implicitly

was used in our algorithm. That is, if the previous state is and, after

executing an action, a current state

 is reached such that, for some ,

 holds, then a discrepancy occurs. A discrepancy is represented as a vector of

Boolean values , where is true iff
 holds. Basically, the

agent expects that actions will not decrease the features’ values. In later section, the

state model consists of numeric features (e.g., the numbers of our own units) whose

values the agent expects will remain the same or increase, but not decrease.

8.2.3 The GDA-C Algorithm

GDA-C coordinates the execution of a set of RL agents and how they learn. GDA-

C uses an online learning process to update the Policies and GFCB case bases. Each

83

GDA-C agent has its own individual Q-table. All -values in Q-tables are initialized to

zero. In each iteration of the algorithm, only some units (i.e., class instances such as

peasants and archers) will be ready to execute a new action because others may be

busy.

Algorithm 7 GDA-C algorithm

GDA-C (, , GFCB, , , , g0)

1: GETSTATE(); CALCULATEDISCREPANCY(); g

 ;

g g

2: //-------- GDA thread --------

3: while episode continues

4: GETSTATE()

5: WAIT()

6: – // is the prior state

7: if then

8: CALCULATEDISCREPANCY(,)

9: GFCB Q-LEARNINGUPDATE(GFCB, , g, ,)

10: g GET(GFCB, d,) // -greedy selection

11: g

12:
13: //-------- CLASSQL thread --------

14: while episode continues

15: s GETSTATE()

16: parallel for each class // this loop controls agent c

17: GETCLASSSTATE(c, s)
18: GETCLASSACTIONS(,c); A GETVALIDACTIONS(,)

19: (c)

20: for each instance u c // this loop controls each unit or instance

of class c

21: if is a new instance then

22:
 ;

 do-nothing

23: if instance u finished its action then

24: U() – U(
) // U(s) is the utility of state s

25: Q-LEARNINGUPDATE(,
 ,

 , ,)

26: GETACTION(, , , A)

27: EXECUTEACTION(a)

28:
 ;

29: return , GFCB

84

Every unit records the state when it starts executing its current action. This is

necessary for updating values in Q-tables. Below we present the pseudo-code of GDA-

C, followed by its description.

GDA-C has two threads that execute in parallel and begin simultaneously when a

game episode starts. The GDA thread (lines 3-12) selects a goal, which in turn

determines the policy that each RL agent will use and refine. The

CLASSQL thread (Lines 14-28) performs Q-learning control on each of the agents.

When the GDA thread is deactivated (which is how our baseline system CLASSQL

works), the CLASSQL thread refines the same policy from the beginning of the episode

to the end. When the GDA thread is activated, the policy that CLASSQL refines is the

most recent one selected by the GDA thread.

GDA-C receives as input a constant number (a delay before selecting the next

goal), a policy case base , a goal formulation case base (GFCB), a set of classes , a

set of actions , a constant value (for –greedy selection in Q-learning, whereby the

action with the highest value is chosen with a probability 1 and a random action is

chosen with a probability), and the initial goal .

The GDA thread: The variable is initialized by observing the current state, is

initialized with a null discrepancy (e.g., CalculateDiscrepancy()), and a policy

is retrieved from for the initial goal (all in Line 1). While the episode continues

(Line 3), the current state is observed (Line 4). After waiting for time (Line 5), the

reward is obtained by comparing the utilities of current state s and previous state

85

(Line 6). Our utility function calculates, for a given state, the total “hit-points” of the

controlled team’s units and subtracts those of the opponent team. When a unit is “hit”

by other units, its hit-points will be decreased. A unit “dies” when its hit-points

decrease to zero. If the reward is negative (Line 7), a new goal (and hence a new

policy) will be selected as follows. First, the discrepancy between and is

computed (Line 8). GFCB is then updated via Q-learning, taking into account previous

discrepancy , current goal , discrepancy , and reward (Line 9). Then -greedy

selection is used to select a new goal from GFCB with discrepancy (Line 10).

Next, a new policy is retrieved from for goal (Line 11). Policy will be

updated in the CLASSQL thread. Finally, previous state and discrepancy are

updated (Line 12).

The CLASSQL thread: While the episode continues (Line 14), the current state

is updated (Line 15). For each class in the set of classes (Line 16), the class-

specific state is acquired from (Line 17). Agents from different classes have

different sets of actions that they can perform. Therefore, a set of valid actions must

be obtained for each class (Line 18). is initialized with the policy for class ,

which depends on the overall policy updated in the GDA thread (Line 19). For each

instance (or unit) of class (Line 20), if is a new instance, initialize its state and

action (Line 21-22). If finished its action then calculate the reward and update the

policy via -learning (Line 23-25). A new action is selected based on policy

using -greedy action selection (Line 26). Finally, the action is executed and the

previous state
 and previous action

 are updated (Lines 27-28).

86

When the episode ends, GDA-C will return the policy case base and the goal

formulation case base GFCB (Line 29).

Although at any point each agent is following and updating a policy , this

does not mean that all units controlled by will execute the same action. This is due

to a combination of three factors. First, even when two units and start executing

the same action at the same time, there is no guarantee that they will finish at the same

time. For example, if the action is to move u and u' to a specific location L, one of

them might be hindered (e.g., engaged in combat with an enemy unit). Hence, u and u'

might reach L at different times and therefore the subsequent actions they execute

might differ because the state may have changed between the times that they arrive at

L. Second, actions are stochastic (chosen with the -greedy method). Third, the

policies are changing over time as a result of Q-learning or even altogether as a result

of the GDA thread. Therefore, at different times, even if in the same state, units might

perform different actions.

87

CHAPTER 9
EXPERIMENTAL EVALUATION

Success is not determined by the outcome. The outcome is the result of

having already decided that you are successful to begin with.

― T.F. Hodge, From Within I Rise: Spiritual Triumph over Death and

Conscious Encounters with “The Divine Presence”

9.1 The description of problem domains used for

experiments

My research mainly focuses on building AI systems that have the ability to adapt

themselves to new environments by examining their own knowledge. Experiment on

complex environments such as real-time strategy games makes the research

challenging. In most RTS games, the environment is non-deterministic; that is,

actions have multiple possible outcomes. It is also very adversarial; that is, agents are

opposing other agents. Finally, movements are asynchronous; a player doesn’t wait for

other players to make their moves. I used two games DOM and Wargus as my

problem domains for the experiments.

88

9.1.1 DOM: Domination game

Domination games are played in a turn-based environment in which two teams

compete to control specific locations called domination points. Teams are composed

of bots. The player’s actions are -tuples indicating the domination

location to which each bot is assigned. A player captures a location by simply

moving a bot to it. In other words, each time a bot on team passes over a domination

point, that point will belong to . Team receives one point for every 5 seconds that it

owns a domination point. Teams compete to be the first to earn a predefined number

of points. Domination games have been used in a variety of combat games, including

first-person shooters such as Unreal Tournament and online role-playing games such

as World of Warcraft.

Domination games are popular because they reward team effort rather than

individual performance. No awards are given for killing an opponent team’s bot,

which respawns immediately in a location selected randomly from a set of map

locations, and then continues to play. Killing such bots might be beneficial in some

circumstances, such as killing a bot before he can capture a location, but the most

important factor influencing the outcome of the game is the strategy employed. An

example strategy is to control half plus one of the domination locations. A location is

captured for a team whenever a bot in that team moves on top of the location and

within the next 5 game ticks no bot from another team moves on top of that location.

Figure 9.1 displays an example DOM game map with five domination locations.

89

Bots begin the game and respawn with 10 health points. Enemy encounters

(between bots on opposing teams) are handled by a simulated combat consisting of

successive die rolls, each of which makes the bots lose some number of health points.

The die roll is modified so that the odds of reducing the opponent health points

increase with the number of friendly bots in the vicinity. Combat finishes when the

first bot health points decreases to 0 (i.e., the bot dies). Once combat is over, the death

bot is respawned from a spawn point owned by its team in the next game tick. Spawn

point ownership is directly related to domination point ownership, if a team owns a

given domination point the surrounding spawn points also belong to that team.

DOM is a good testbed for testing algorithms that integrate planning and execution

because domination actions are non-deterministic; if a bot is told to go to a domination

location the outcome is uncertain because the bot may be killed along the way.

Domination games are also adversarial; two or more teams compete to control the

domination points. Finally, domination games are imperfect information games; a

team only knows the locations of those opponent bots that are within the range of view

of one of the team’s own bots.

9.1.2 Wargus

Wargus is a modification of Warcraft2, a commercial video game originally

created by Blizzard Entertainment. It runs under the Stratagus engine, a free cross-

platform real-time strategy game engine used to build other games. The original

version of Warcraft2 was built on 1995 and required to run on DOS mode. The

90

Stratagus engine allows users to play Warcraft2 under operating systems not supported

by the original Warcraft2 engine such as Windows. In addition, it also allows users to

play over the internet.

In Wargus, the race of each character (unit) can be either humans or orcs.

Generally, ability of human units and orc units are fairly balance. Humans and orces

units are composed of three main types: land, naval and air units. There are 28 types

of units: 14 types of human units and 14 types of orc units. There is only one type of

civilian units for both races; Peasant for humans and Peon for orcs. There are three

main tasks for each civilian unit: building a new structure, repairing a damaged

structure, and harvesting resources. There are three kinds of resources in Wargus:

gold, wood, and oil. To harvest gold, a civilian must walk to a gold mine and carry

the gold back to its own camp. As per to harvest wood, a civilian walk to a tree, cut

and bring the wood back to the camp. However, harvesting oil is not a task for

civilians because they are land units and it is more complicate than harvesting wood

and gold. To harvesting oil, we have to send an oil tanker (a naval unit) to an oil rig to

pump oil and carry it back to the shipyard. If there is no oil rig, we have to build it

first by sending an oil tanker to find an oil patch and build a rig over the patch.

About structures in Wargus, there are two main kinds of structures for both races:

land-based and sea-based structures. Each structure type has its own duty. For

example, barracks product military units, aviaries create aircraft, town halls train

civilians.

91

9.2 Empirical Evaluation of GDA-HTNbots

As we mentioned in Section 4.2, to prove the claim that GDA increases system’s

performance, an experiment on DOM games was conducted by playing the GDA-

HTNbots system versus a set of opponents. The explanation of the behavior of each

adversary is shown in Table 9-1.

Table 9-1: The adversaries in DOM game and their descriptions

Adversaries Description Difficulty

Dom1 Hugger Sends all agents to domination location 0. Trivial

First Half of Dom

Locations

Sends an agent to the first half + 1

domination location. Extra agents patrol

between the 2 locations.

Easy

Second Half of Dom

Locations

Sends an agent to the second half + 1

domination locations. Extra agents patrol

between the two locations.

Easy

Each Agent to One

Dom

Each agent is assigned to a different Dom

location and remains there for the entire

game.

Medium

Smart Opportunistic

Sends agents to each Dom location the

team doesn’t own. And, if it is possible, it

will send multiple agents to each un-owned

location.

Hard

Greedy Distance

Each turn the agents are assigned to the

closest domination location they do not

own.

Hard

By comparing the performances of both GDA-HTNbots and HTNbots, HTNbots

performs well versus several hard-coded opponents. Thus, HTNbots should provide a

good baseline for the system’s evaluation. However, we expected GDA-HTNbots

92

would outperform HTNbots for opponents whose behaviors motivate the dynamic

formulation of new goals.

The performance of these systems was recorded and compared versus the same set

of hard-coded opponents. Our performance metric is the difference in the score

between the system and opponent while playing DOM, divided by the system’s score.

Both systems were run against each of the six opponents summarized in Table 9-1.

The first three were the same used to test HTNbots, which was found to perform well

on them. Hence, these are challenging DOM opponents for testing whether GDA

enhancements can improve HTNbots’ performance. The final three opponents were

created in subsequent studies of HTNbots to test reinforcement learning and case-

based reasoning algorithms. Among these, the final two opponents were found to be

particularly difficult to beat. In summary, these opponents form a challenging and

varied testbed to measure the utility of GDA-HTNbots.

The experimental setup was as follows: Both systems were tested versus each of

these opponents on the map shown in Figure 9.1. This is the same map that was used

in the previously mentioned experiments. Each game was run three times to account

for the randomness introduced by non-deterministic game behaviors.

93

Figure 9.1: An example DOM game map with five domination locations (yellow

flags), where small rectangles identify the respawning locations for the agents and the

remaining two types of icons denote each player’s agents.

The results are shown in Table 9-2, where each row displays the normalized over

three average difference in scores (computed games) versus each opponent. It also

shows the average scores for each player. The same experiment was repeated with a

second map and obtained results consistent with the ones discussed here. The limited

number of trials in this pilot study prevents us from computing statistical significance.

94

Table 9-2: Average Percent Normalized Difference in Game AI System vs.

Opponent Scores (with average scores in parentheses).

Adversaries HTNbots GDA-HTNbots

Dom1 Hugger
81.2%

(20002 vs. 3759)

80.9%

(20001 vs. 3822)

First Half of Dom

Locations

47.6%

(20001 vs. 10485)

42.0%

(20001 vs. 11605)

Second Half of Dom

Locations

58.4%

(20003 vs. 8318)

12.5%

(20001 vs. 17503)

Each Agent to One Dom
49.0%

(20001 vs. 10206)

40.6%

(20002 vs. 11882)

Smart Opportunistic
-19.4%

(16113 vs. 20001)

-4.8%

(19048 vs. 20001)

Greedy Distance
-17.0%

(16605 vs. 20001)

0.4%

(19614 vs. 19534)

The results can be summarized as follows: Against difficult opponents (the final

two opponents in Table 9-1), GDA-HTNbots outperforms HTNbots. Against easy

opponents (the first four listed in Table 9-1) HTNbots outperforms GDA-HTNbots.

Game-play records were examined to investigate why this occurred, and concluded

that the initial strategy chosen by HTNbots is frequently sufficient to win the game.

For example, the Dom1 Hugger (opponent) team sends all agents to one location. It is

easy for HTNbots to immediately generate a winning plan against this strategy and

start winning from the outset. Indeed, in situations where the goals should not be

changed, this implementation of GDA should not be used.

95

The more difficult opponents reason about the distance between the agent

locations and the domination locations as part of their strategy. These strategies are

particularly effective versus HTNbots and GDA-HTNbots, which encode their

knowledge symbolically without metric information. Indeed, the two hard opponents

soundly defeat HTNbots. The advantage of using a specialized component to reason

about goals becomes apparent in this study. By tracking which domination locations

the opponent is trying to control and which goal was used to generate the current plan,

GDA-HTNbots can react quickly to the opponent’s strategy. This allowed GDA-

HTNbots to outperform the Greedy Distance opponent (which outperformed

HTNbots) and almost perform as well as the Smart Opportunistic opponent.

9.3 Empirical Evaluation of CB-GDA

We describe an empirical study of CB-GDA on the task of winning games defined

using a complex gaming environment (DOM). Our study revealed that, for this task,

CB-GDA outperforms a rule-based variant of GDA when executed against a variety of

opponents. CB-GDA also outperforms a nonGDA replanning agent against the most

difficult of these opponents and performs similarly against the easier ones. In direct

matches, CB-GDA defeats both the rulebased GDA system and the non-GDA

replanner.

An exploratory investigation was performed to assess the performance of CB-

GDA. The claim of CB-GDA is that the case-based approach to GDA can outperform

96

the previous rule-based approach (GDA-HTNbots) and a non-GDA replanning system

(HTNbots) in playing DOM games. To assess this hypothesis a variety of fixed

strategy opponents were used as benchmarks, as shown in Table 9-1. These opponents

are displayed in order of increasing difficulty.

The performance of these systems was recorded and compared against the same

set of hard-coded opponents in games where 20,000 points are needed to win and

square maps of size 70 x 70 tiles. The opponents above were taken from course

projects and previous research using the DOM game and do not employ CBR or

learning. Opponents are named after the strategy they employ. For example, Dom 1

Hugger sends all of its teammates to the first domination point in the map. The

performance metric is defined by the difference in the score between the system and

opponent while playing DOM, divided by the system’s score. The experimental setup

tested these systems against each of these opponents on the map used in the

experiments of GDA-HTNbots. Each game was run three times to account for the

randomness introduced by non-deterministic game behaviors. Each bot follows the

same finite state machine. Thus, the difference of results is due to the strategy pursued

by each team rather than by the individual bot’s performance.

The results are shown in Table 9-3, where each row displays the normalized

average difference in scores (computed over three games) against each opponent. It

also shows the average scores for each player. The results for HTNbots and GDA-

HTNbots are the same as reported in, while the results for CB-GDA are new. The

same experiment was repeated with a second map and obtained results consistent with

97

the ones presented in Table 9-3 except for the results against Greedy, for which

inconclusive results were obtained due to some path-finding issues.

Table 9-3: Average Percent Normalized Difference in the

Game AI System vs. Opponent Scores (with average Scores in parentheses)

Opponent Team
(controls enemies)

Game AI System (controls friendly forces)

HTNbots HTNbots-GDA CB-GDA

Dom1 Hugger
81.2%

(20,002 vs. 3,759)

80.9%

(20,001 vs. 3,822)

81.0%

(20,001 vs. 3,809)

First Half Of

Dom Points

47.6%

(20,001 vs. 10,485)

42.0%

(20,001 vs. 11,605)

45.0%

(20,000 vs. 10,998)

Second Half

Of Dom

Points

58.4%

(20,003 vs. 8,318)

12.5%

(20,001 vs. 17,503)

46.3%

(20,001 vs. 10,739)

Each Agent

to One Dom

49.0%

(20,001 vs. 10,206)

40.6%

(20,002 vs. 11,882)

45.4%

(20,001 vs. 10,914)

Greedy

Distance

-17.0%

(16,605 vs. 20,001)

0.4%

(19,614 vs. 19,534)

17.57%

(20,001 vs. 16,486)

Smart

Opportunistic

-19.4%

(16,113 vs. 20,001)

-4.8%

(19,048 vs. 20,001)

12.32%

(20,000 vs. 17,537)

Table 9-4: Average percent normalized difference in the game AI system vs.

opponent scores (with average scores in parentheses) with statistical significance.

Opponent CB-GDA – Map 1 CB-GDA – Map 2

Dom 1 Hugger

80.8% (20003 vs. 3834)

81.2% (20001 vs. 3756)

80.7% (20001 vs. 3857)

81.6% (20002 vs. 3685)

81.0% (20003 vs. 3802)

78.5% (20003 vs. 4298)

78.0% (20000 vs. 4396)

77.9% (20003 vs. 4424)

77.9% (20000 vs. 4438)

78.0% (20000 vs. 4382)

Significance 3.78E-11 1.92E-11

First Half of Dom

Points

46.0% (20000 vs. 10781)

45.8% (20001 vs. 10836)

44.9% (20001 vs. 11021)

46.1% (20000 vs. 10786)

43.4% (20001 vs. 11322)

53.1% (20000 vs. 9375)

56.7% (20002 vs. 8660)

54.6% (20002 vs. 9089)

52.0% (20001 vs. 9603)

53.7% (20001 vs. 9254)

98

Opponent CB-GDA – Map 1 CB-GDA – Map 2

Significance 4.98E-08 1.38E-07

Second Half of Dom

Points

45.6% (20002 vs. 10889)

47.2% (20002 vs. 10560)

44.1% (20001 vs. 11188)

45.1% (20000 vs. 10987)

45.8% (20000 vs. 10849)

60.6% (20000 vs. 7884)

61.7% (20000 vs. 7657)

61.7% (20000 vs. 7651)

61.0% (20001 vs. 7797)

60.8% (20002 vs. 7848)

Significance 4.78E-08 7.19E-10

Each Agent to One

Dom

46.1% (20001 vs. 10788)

46.2% (20000 vs. 10762)

44.7% (20002 vs. 11064)

44.6% (20000 vs. 11077)

47.6% (20002 vs. 10481)

54.9% (20002 vs. 9019)

53.7% (20002 vs. 9252)

56.8% (20001 vs. 8642)

55.4% (20000 vs. 8910)

57.7% (20002 vs. 8469)

Significance 6.34E-08 7.08E-08

Greedy Distance

6.4% (20001 vs. 18725)

8.3% (20001 vs. 18342)

5.0% (20000 vs. 18999)

9.0% (20001 vs. 18157)

12.7% (20001 vs. 17451)

95.6% (20003 vs. 883)

92.7% (20002 vs. 1453)

64.6% (20004 vs. 7086)

94.9% (20004 vs. 1023)

98.0% (20004 vs. 404)

Significance 1.64E-03 6.80E-05

Smart Opportunistic

4.5% (20000 vs. 19102)

11.5% (20000 vs. 17693)

11.5% (20000 vs. 17693)

10.6% (20000 vs. 17878)

13.4% (20009 vs. 17333)

13.4% (20001 vs. 17318)

13.9% (20001 vs. 17220)

1.0% (20001 vs. 19799)

10.7% (20002 vs. 17858)

12.0% (20003 vs. 17594)

Significance 1.23E-03 1.28E-03

In more detail, the results of additional tests here designed to determine whether

the performance differences between CB-GDA and the opponent team strategies are

statistically significant. Table 9-4 displays the results of playing 10 games over two

99

maps (5 games per map) against the hard-coded opponents. The difference in score

between the opponents was tested using the Student’s t-test. For the significance

value p of each opponent, the constraint p < 0.05 holds. Hence, the score difference is

statistically significant.

For deeper understanding, CB-GDA was ran against the two dynamic opponents

(i.e., HTNbots and GDA-HTNbots) to compete directly using the same setup as

reported for generating Table 9-3. As shown in Table 9-5, CB-GDA easily

outperformed the other two dynamic opponents. Again, this study was repeated with a

second map and obtained results consistent with the ones presented in Table 9-5.

Table 9-5: Average Percent Normalized Difference for the Dynamic Game AI

Systems vs. CB-GDA Scores (with average scores in parentheses)

Opponent Team CB-GDA’s Performance

HTNbots 8.1% (20,000 vs. 18,379)

GDA-HTNbots 23.9% (20,000 vs. 15,215)

100

9.4 Empirical Evaluation of the LGDA

We introduced LGDA in Section 6.2. LGDA is a goal-driven autonomy agent that

automatically acquires state expectation and goal selection knowledge. In this section,

we will investigate the performance of LGDA agent versus other agent using different

methods.

9.4.1 Experimental Setup

We used the task of winning DOM games to investigate two hypotheses: (H1)

LGDA can learn to perform as well as a non-learning GDA agent that employs expert

knowledge, and (H2) LGDA can significantly outperform agents that use only RL or

only CBR, respectively.

We also used six hand-coded adversaries as baselines as described in Table 9-1

except the new adversary called Priority, which prefers to send bots to those location

with highest priority first. The domination locations owned by opponents are highest

priority, un-owned domination locations are lower priority and finally, domination

locations held by our team are lowest priority. Briefly, these adversaries pursue a

unique goal to play DOM. Their behavior is approximately modeled using a policy

 . That is, while the first three adversaries (Dom1Hugger, First Half of Dom

Locations, and Second Half of Dom Locations) are easy to defeat, the latter three

(Smart Opportunistic, Each Bot to One Dom Location, and Priority) cannot be

perfectly represented as policies based on our models for and because they reason

101

about the proximity of bots to locations. Proximal information is not represented by

any of the four agents we tested. Thus, the latter three adversaries pose difficult

challenges for the agents.

We compared LGDA versus the following agents: Retaliate, which performs Q-

learning, the ablation Random GDA (RGDA), which replaces LGDA’s -greedy goal

selection procedure with a random selection procedure, and CB-GDA, a non-learning

CBR agent whose case bases were manually crafted by a domain expert (Muñoz-

Avila, H.; Aha, D.W.; Jaidee, U.; Carter, E.;, 2010). It includes two case bases, whose

mappings are:

PCB: , and MCB:

PCB records the expected state for each (goal, state, action) tuple, and MCB

records the preferred goal to formulate for each (goal, discrepancy) pair. All agents

(CB-GDA, LGDA, Retaliate, and RGDA) use the same model for S and A. The

learning agents (the latter three) use the same utility function U. The definitions for ,

 , and are given in Section 6.3.

Games are won by the first team to reach 2000 points on Figure 9.1’s map. There

were 8 bots per team, which is typical (i.e., there are usually more team members than

domination locations). Scores were averaged over 10 games. In our first study, we

indirectly compared the agents by testing them against the six hard-coded adversaries

using a leave-one-out cross-validation (LOOCV) method: we trained each learning

agent versus five adversaries, using four repetitions per starting state, and tested it

102

against the remaining adversary. The second study addresses our hypotheses: it

directly compares LGDA versus the other agents. We trained each learning agent

versus the six adversaries. LGDA received as input the policies for the six adversaries

but not the policies for the other agents. We recorded results before and after each

training repetition of LGDA versus each of the three agents, continuing until their

relative performance stabilized. Knowledge learned during testing was flushed

between games. Our metric is state utility, as defined in Section 6.3.

9.4.2 Results

Experiment 1 (Table 9-6): CB-GDA recorded the best performance among the

agents; it outperformed all of the adversaries, although barely so versus Each Bot to

One Dom, which is the strongest of the hard-coded adversaries. This adversary

maintains at least one bot in each location. LGDA outperformed five of the opponents,

losing only to Each Bot to One Dom. In contrast, Retaliate and RGDA performed

poorly versus all three of the difficult adversaries. This provides initial evidence that

LGDA performs comparatively well compared to its ablations but it is outperformed

by CB-GDA. Our next experiment provides strong support for these observations.

Experiment 2 (Figure 9.2): LGDA is outperformed by CB-GDA. The mean of the

underlying distribution for their relative utility values after training was -14.6 2.6 at

the 95% confidence level. Thus, H1 is not supported, though LGDA’s final

103

performance is fairly close. This is not too surprising, given that CB-GDA’s case

bases were manually encoded by a domain expert.

Table 9-6: Average Utility Results from Experiment 1.

Adversary CB-

GDA

Retaliate RGDA LGDA

Dom1Hugger 77.38 74.26 71.36 61.38

First Half of Dom Points 75.47 58.88 74.23 64.91

Second Half of Dom Points 65.36 65.79 66.28 63.03

Smart Opportunistic 54.85 -10.62 -36.59 45.27

Each Bot To One Dom 0.46 -47.13 -68.48 -50.11

Priority 45.14 -6.37 -45.28 23.08

Learning methods None RL CBR CBR & RL

LGDA is initially outperformed by Retaliate because Retaliate quickly converges

to an action that on average works well versus the adversaries. In contrast, LGDA

needs to learn expectations and best goals to pursue when discrepancies occur. This

results in a slower learning process in part because the interdependency between

expectations and discrepancies. Over time we see that it pays off; LGDA eventually

outperforms Retaliate. LGDA outperforms RGDA from the outset. Versus Retaliate,

the same analysis reveals a mean of 34.3 4.1 at the 95% confidence level, and the

mean (at this level) versus RGDA was 62.6 2.4. Thus, these results strongly support

H2.

104

(a)

(b)

-80

-70

-60

-50

-40

-30

-20

-10

0

0 10 20 30 40 50 60 70

LGDA vs. CB-gda

Utility (Score Difference) Trend

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25

LGDA vs. Retaliate

Utility (Score Difference) Trend

105

(c)

Figure 9.2: Results from Experiment 2: Average learning curves

for comparing LGDA DOM performance vs. non-learning and ablated agents.

The trend lines were generated using a polynomial fit to the raw curves.

9.5 Empirical Evaluation of the GRL

We examined the task of winning two adversarial games to investigate the

following hypothesis: GRL can significantly outperform a standard RL agent that

learns only policies (i.e., Retaliate (Smith, et al., 2007), which uses Q-learning) and an

ablated GDA agent that does not learn policies (i.e., LGDA (Jaidee, U.; Munoz-Avila,

H.; Aha, D.W., 2011), which is given policies representing an opponent’s strategies

and their goals, and learns only expectations and goal formulation knowledge). In our

study, all three learning agents use the same models for states, actions, and rewards.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

LGDA vs. RGDA

Utility (Score Difference) Trend

106

9.5.1 Scenarios

The adversarial games we use are Wargus and DOM. Both are two-player real-

time video games: players make asynchronous moves. They exhibit the characteristics

that we want to explore in this paper: there doesn’t seem to be a universally good

strategy for these games. Instead, they exhibit the “rock-paper-scissors” behavior

whereby any strategy can be countered. LGDA have demonstrated good performance

in DOM and Wargus (Jaidee, et al., 2011; Jaidee, et al., 2011a) while Retaliate has

demonstrated good performance in DOM (Smith, et al., 2007), so they are good

baselines for testing GRL.

We used two maps in our Wargus experiments. The first is a medium-sized map

with 64×64 cells and 8 units per player, while the second uses the largest feasible map

(128×128 cells) and 32 units per player. We set the games’ score limits to be 200 and

1000 points, respectively. In our experiments, we used five hand-coded opponents that

order all units of the same type to attack a single type of the agent’s units. For

example, they might assign knights to attack archers. These opponents differ in their

attack order. In testing, no single opponent outperformed all the others. We used these

built-in opponents to train the three agents (i.e., Retaliate, LGDA and GRL).

The second domain is DOM game as explained in Section 9.1.1. In our

experiment, we use a map with five domination locations and eight bots per team. In

addition, we used the same six hand-coded opponents in DOM we previously used in

(Jaidee, et al., 2011), where we used a variety of fixed strategies such as the “half plus

107

one adversary”, which attempts to control a majority of locations by sending bots to

them whenever they are owned by the competing agent. Another strategy, called

“smart opportunistic”, sends a different bot to each domination location the team does

not own. Among these six adversaries, there are two that are better than all the others,

two that are middling performers, and the last two are defeated by all the others.

9.5.2 Protocol and Results

Agents played episodes, where for Wargus and and 2000 for

DOM. The difference in the number of runs between Wargus and Dom is due to the

fact that running DOM games is much quicker. During each training episode, each

agent played each of the built-in opponents once (for Wargus and for

DOM). During training, the agents GRL, LGDA and Retaliate are learning. We tested

GRL against Retaliate and LGDA after each training episode. Because both DOM and

Wargus are highly stochastic, games during testing were repeated 10 times. Any

knowledge learned during a game in the testing phase was removed after the game

ends. Thus, the only knowledge affecting the performance of the agents when

competing versus one another was learned during training and any knowledge learned

online within that particular game episode.

Figure 9.3 and Figure 9.4 summarize the average results. The -axis plots the

number of training episodes, while the -axis plots the average utility (i.e., score

difference of GRL versus another agent).

108

Experiment 1 (Wargus): In most Wargus episodes (Figure 9.3), GRL clearly

outperformed the other agents, although LGDA sometimes defeated GRL in the

medium-size map (Figure 9.3b). Nevertheless in all cases the differences are

statistically significant , as determined by a two-tailed Student’s -Test on

the utility scores of GRL versus the scores of another agent (i.e., Retaliate or LGDA).

Hence our hypothesis is supported for Wargus, and we can draw three conclusions:

1. There is either no universally good strategy for these games or none can be

found by Q-learning even after a large number of episodes.

2. GRL outperformed the Q-learning agent. This highlights the importance for

using case-based approaches to learn and reason about expectations, goal

formulation knowledge, and goal-specific policies in domains where no

universally-best strategy can be elicited by RL.

3. GRL outperformed the LGDA agent. This highlights the importance of

identifying new goals and using CBR to learn and reuse goal-specific cases.

We were surprised that GRL outperformed LGDA after only a few episodes

because GRL begins with no goals and no policies. In contrast, LGDA begins with

policies representing the built-in opponents’ strategies and goals for these policies.

Upon inspection we found that the opponents’ strategies cause their units to form

choke points while trying to reach the units they intended to attack. As a result, few

units, mostly ranged attack units, actually were effective. Without knowledge about

109

expectations and goals, LGDA rotates among the various opponents’ strategies. As

mentioned, these end up being ineffectual because it frequently results in choke points.

GRL instead initially performs random actions that, on average, cause more of their

own units to damage opponent units, which explains the relative results of the first few

episodes.

We also investigated why, despite its overall good performance, GRL will

occasionally lose games to the opponents in the medium-sized map (e.g., in round 13

versus Retaliate (Figure 9.3a) and round 20 versus LGDA (Figure 9.3b)). We found

that for this map the score limit was frequently reached even though both teams had

several units left. That is, the maximum point threshold was set too low for the number

and types of units in the scenario (i.e., killing high-value units such as knights are

worth many points, and the game ends sooner when any such unit is killed). This

caused high variation in the results because, after a while, several units from both

sides will have few health points. In this situation, after a few of these units die the

game terminates because the point limit is reached. As a result, depending on the

random factor that determines which unit attacks succeeded, units from either side die

while others remain with few health points. However, points are only awarded for

deaths, and not for low health points. This caused the variance in the results. This was

not a factor in the large map because the number of points was set sufficiently high

and, although there is fluctuation; GRL did not lose a game on average (Figure 9.3c

and Figure 9.3d).

110

Experiment 2 (DOM): Figure 9.4 summarizes the results with DOM games. In all

cases GRL clearly outperformed the other agents, although initially both Retaliate and

LGDA outperformed GRL. This is to be expected; GRL initially has no knowledge of

which goals to pursue nor how to achieve them. Nevertheless in all cases the

difference is statistically significant across the entire curves, as

determined by a two-tailed Student’s t-Test for comparing the utility scores of GRL

versus those of the other two learning agents). This also supports our hypothesis and

allows us draw the same conclusions as mentioned above for Experiment 1.

We investigated why it took so many episodes for GRL to start winning versus

Retaliate and LGDA in the DOM game compared to Wargus. This occurred because

the state model used by the agents forms a DAG for Wargus, meaning that a state is

never visited more than once. As a result, for Wargus, we define the new goal to be

the final state (whereas for DOM this is defined as the most frequently visited state).

In contrast, the same state can be visited multiple times in DOM. Thus, multiple goals

were frequently learned per DOM episode, resulting in many more goals being learned

overall. Hence, grows faster in the DOM rather than in the Wargus experiments

during the initial training episodes. This in turn increases the number of episodes

needed to learn useful goal formulation knowledge and good policies. Thus, it takes

longer for GRL to outperform the other agents in DOM scenarios.

111

(a)

(b)

(c)

-50

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GRL vs. Retaliate

Utility (Score Difference)

Trendline

-100

-50

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GRL vs. LGDA

Utility (Score Difference)

Trendline

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GRL vs. Retaliate

Utility (Score Difference)

Trendline

112

(d)

Figure 9.3: The results of the Wargus experiments: GRL vs. Retaliate (a) and vs.

LGDA (b) on the medium map, and GRL vs. Retaliate (c) and vs. LGDA (d) on the

large map. The x-axis plots the number of training episodes, while the y-axis plots the

average utility (i.e., score difference of GRL versus another agent).

(a)

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

GRL vs. LGDA

Utility (Score Difference)

Trendline

-3000

-2000

-1000

0

1000

2000

3000

4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

GRL vs. LGDA

Utility (score difference)

Trendline

113

(b)

Figure 9.4: Results from the DOM experiments: (a) GRL vs. Retaliate and (b) GRL

vs. LGDA. The x-axis plots the number of training episodes, while the y-axis plots the

average utility (i.e., score difference of GRL versus another agent).

We also investigated why it took so many more episodes for GRL to outperform

LGDA compared to Retaliate. Namely, it took around 150 episodes for Retaliate

compared to almost 300 for LGDA. This was caused by the two strong hand-coded

adversaries, which LGDA was able to leverage. This also explains why, in the first

episode, GRL loses to Retaliate by approximately 350 points whereas it loses to

LGDA by approximately 1600 points.

-800

-600

-400

-200

0

200

400

600

800

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

GRL vs. Retaliate

Utility (score difference)

Trendline

114

9.6 Empirical Evaluation of the CLASSQL

We conducted two experiments for CLASSQL: the first experiment (see Section

9.6.1) and the second experiment (see Section 9.6.2).

9.6.1 Experiment #1

The first experiment, we tested CLASSQL on a small 32 32-cell map versus five

adversaries.

9.6.1.1 Experimental Setup

At the first turn of each game, both teams start with only one peasant/peon, one

town hall/great hall, and a gold mine near them. We have five adversaries: land-attack,

SR, KR, SC1 and SC2 for training and testing our algorithm. These adversaries come

with the Warcraft distribution and have been used in machine learning experiments

before.

These adversaries can construct any type of unit unless the strategy followed

discards it (e.g., land -attack will only construct land units. So units such as Gryphons

are not built):

 Land Attack: This strategy tries to balance offensive/defensive actions with

research. It builds only land units.

 Soldier’s Rush (SR): This attempts to overwhelm the opponent with cheap

military units early in the game.

115

 Knight’s Rush (KR): This strategy attempts to quickly research advanced

technologies, and launch large attacks with the strongest units in the game

(knights for humans and ogres for orcs) as soon as they are available.

 Student Scripts (SC1 & SC2): These strategies are the top two competitors

created by students for a classroom tournament.

We trained and tested CLASSQL by using leave-one-out training as the model of

our experiment processes. We remove from the training set the adversary that we

want to compete against. For example, if we want to experiment CLASSQL versus

SC1, the set of adversaries that we use for training is {land-attack, SR, KR, SC2}.

Figure 9.5: The screen capture of the small map from Wargus.

All experiments were performed on the tile map shown in Figure 9.5.

This is considered a small map in Wargus. Each competitor starts in one side of the

116

forest that divides the map into two parts. We added this forest to give time to

opponents to build their armies. Otherwise, CLASSQL was learning a very efficient

soldier rush and defeating all opponents including SR very early in the game.

(a) (b)

(c) (d)

(e)

Figure 9.6: The results of the experiments #1 from Wargus: ClassQ-L vs.

(a) Land-Attack, (b) SR, (c) KR, (d) SC1 and (e) SC2 respectively.

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-L vs land-attack

Number of (winings - losings)

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-L vs SR

Number of (winings - losings)

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-L vs KR

number of (winings - losings)

-6

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-L vs SC1
number of (winings - losings)

-10

-8

-6

-4

-2

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ClassQ-L vs SC2

Number of (winings - losings)

117

9.6.1.2 Results

Our performance metric is: wins(CLASSQL) wins(), where wins(t) is the

number of wins for team First we match

CLASSQL against each opponent with no training (m = 0). Then we play against each

opponent after one round of training using leave-one-out training (m = 1). We repeat

this until m = 20. We repeat each match 10 times and compute the average metric. So

the total number of games played in this experiment is games.

Including training, the total number of games run in this experiment is

 games.

Our performance metric provides a better metric than the difference in Wargus

score (our score – opponent’s score) of the game because the lower score difference

can mean a better performance than a larger score difference. This is due to how the

Wargus score is computed. For example, our team can win the opponent very fast and

the score we got is just 1735 and the game is over while the opponent got the score of

235 before the game end. In this case, the average score of (our team - opponent

team) is just 1500. In another case, our team can win the opponent with the score of

3450, but the game takes very long time to run until the game is over; while the

opponent team got the score of 1250. In this case, the average score of (our team –

opponent team) is 2200, but it does not mean the performance is better. In fact, the

performance should be worse than the previous case because it takes longer time to

win.

118

Overall the performance of CLASSQL is better than that of the adversaries (see

Figure 9.6). The -axis shows the results after number of iterations training in the

leave-one-out setting. The first bar is = 0 and the last bar is = 20.

9.6.2 Experiment #2

We conducted the experiments for CLASSQL on a small, medium and large

Wargus maps whose sizes are 32 32, 64 64, and 128 128 cells, respectively with the

fog-of-war mode turned off. In each map, we have two opponent teams (human and

orc). Each starts with only one peasant/peon (i.e., a unit used to harvest resources and

construct new building), one town hall/great hall, and a nearby gold mine. Each

competitor also starts on one side of a forest that divides the map into two parts. As for

the same reason mentioned in Section 9.6.1.1, we added this forest and walls to

provide opponents with sufficient time to build their armies. Otherwise, our algorithms

will learn an efficient early attack (called a “rush” attack), which will end the game

when the opponents have produced only a few units or buildings.

9.6.2.1 Experimental Setup

We compared the performance of CLASSQL against Wargus’ built-in AI. The

built-in AI in Wargus is quite good; it provides a challenging game to an average

human player. We use five adversaries (defined in Section 9.6.1.1) to train the

algorithm and test with the Wargus’ built-in AI. The build-in AI is capable of

119

defeating average players and is a stronger player than the 5 adversaries used for

training.

The performance metric that we used for generating the results of the experiment

is wins(CLASSQL) wins(built-in).

(a)

120

(b)

121

(c)

Figure 9.7: The detailed landscape of the (a) 1
st
, (b) 2

nd
, (c) 3

rd
 large maps.

The highlighted squares are the locations of both teams.

9.6.2.2 Results

Figure 9.8 shows the results of the experiments. The -axis is the number of

training iterations and the -axis is the performance metric. In all three maps, the

build-in AI starts winning, which is not surprising since CLASSQL has no training.

After a few iterations CLASSQL begins to outperform the built-in AI and continues

outperform for the remaining iterations.

122

We also conducted experiments, where we tested the AI learned by CLASSQL on

one map after iterations and tested it against the built-in AI in other two

unseen maps without any additional training. We repeated this experiment for the AI

learned in the small, medium and large maps. Figure 9.7 shows the original large map

used for learning and the two other medium maps we used for testing. The results are

shown in Table 9-7. In the original map used for training (column labeled 1
st
 map),

CLASSQL is able to win almost all of the 10 games. The knowledge learned is

effective in the other 2 maps (columns labeled 2
nd

 map and 3
rd

 map).

(a)

(b)

-8

-6

-4

-2

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

ClassQL vs the built-in AI (small map)

Score Difference Trendline

-6

-4

-2

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

ClassQL vs the built-in AI (medium map)

Score Difference Trendline

123

(c)

Figure 9.8: The results of the experiments #2 from Wargus game:

CLASSQL vs the built-in AI on the (a) small, (b) medium and (c) large maps.

Table 9-7: The results of using the q-table that was trained with one scenario (the

first landscape) and tested with other unseen scenarios (the second and the third

landscape) on the small, medium and large maps.

scenarios

map size
1

st
 landscape 2

nd
 landscape 3

rd
 landscape

Small 8 9 10

Medium 10 10 10

Large 10 10 10

9.7 Empirical Evaluation of the GDA-C

We measured the performance of GDA-C versus its ablation CLASSQL in

experiments on small, medium, and large Wargus maps whose sizes are 32 32,

64 64, and 128 128 cells, respectively. The details and landscapes of each map are

shown in Figure 9.9. In each map, we have two opponent teams (human and orc).

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35 40 45 50

ClassQL vs the built-in AI (large map)

Score Difference Trendline

124

Each starts with only one Peasant/Peon (i.e., a unit used to harvest resources and

construct new buildings), one Town Hall/Great Hall, and a nearby gold mine. Each

competitor also starts on one side of a forest that divides the map into two parts. We

added this forest and walls to provide opponents with sufficient time to build their

armies. Otherwise, our algorithms will learn an efficient early attack (called a “rush”),

which will end the game when the opponents have produced only a few units or

buildings.

9.7.1 Experimental Setup

We conducted two experiments. In the first, we compared the performance of each

algorithm (i.e., GDA-C or CLASSQL) against Wargus’s built-in AI. The built-in AI in

Wargus is quite good; it provides a challenging game to an average human player. In

the second, we instead compared their performance in a direct competition. We use

five adversaries (Land Attack, Soldier's Rush, Knight's Rush, Student Scripts 1 and 2

as defined in Section 9.6.2.1) and the Wargus’ built-in AI to train and test each

algorithm. These adversaries can construct any type of unit unless otherwise stated.

To ensure there is no bias because of the landscape, we swapped the sides of each

team in each round. Also, to prevent race inequities, in each round each team plays

once with each race (i.e., human or orc).

125

In the experiment, we trained GDA-C and CLASSQL with all five adversaries and

then tested them in combat against each other, where the performance metric is

wins(GDA-C) – wins(CLASSQL), where wins(A) is the number of wins for team A.

In the experiment, the matches pitting GDA-C versus CLASSQL took place after

training them against each of the five adversaries for n games, where again n =

0,1,2,…,N. The total number N of games varied as indicated in the results. Table 9-8

shows the running times for the experiments.

(a)

126

(b)

(c)

Figure 9.9: Landscapes and details of the small (a), medium (b), and large maps (c)

that used for the experiment #1 and #2.

127

Table 9-8: The average time of running a game for both experiments

Map size One game Experiment 1 Experiment 2

small 31 sec 25 hours 38 hours

medium 3 min 27 sec 115 hours 172 hours

large 11 min 28 sec 191 hours 286 hours

(a-1)

(a-2)

-8

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

GDA-C vs ClassQL (small map)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

GDA-C vs ClassQL on small map (accumulative score)

128

(b-1)

(b-2)

(c-1)

-15

-10

-5

0

5

10

15

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

GDA-C vs ClassQL (medium map)

-150

-100

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

GDA-C vs ClassQL on medium map (accumulative score)

-8

-6

-4

-2

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

GDA-C vs ClassQL (large map)

129

(c-2)

Figure 9.10: The results of Experiment: GDA-C versus CLASSQL

on the small (a), medium (b), and large maps (c).

Figures (a-2), (b-2), and (c-2) show the results as accumulative score.

9.7.2 Results

Figure 9.10 display the results for the experiment. Each data point in the

experiment is the average score difference of 10 tests, and the graphs display the

results for the small, medium, and large maps. The curve is the trend line of the score

difference for each data point. The x-axis refers to the training iteration number and

the -axis is the performance metric. The result from the experiment shows that after

training for many rounds; eventually GDA-C outperforms CLASSQL in all small,

medium and large maps.

The difference between the geographies of different maps causes GDA-C agent to

learn different strategies. For example, in the small map (Figure 9.9-a) there is just a

forest that separates both teams’ basecamps. The GDA-C agent learns to attack the

enemy as quickly as possible. In this small map, it is rare that the GDA-C agent will

produce high powerful units such as gryphon riders to attack the enemy’s units.

-20

0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

GDA-C vs ClassQL on Large map (accumulative score)

130

Instead, it focuses on producing a lot of cheap level-entry military units to defeat the

opponent. As for large map (Figure 9.9-c), there are forests and walls that separates

the base camps of both teams. Also, because the paths on the map are zigzag and

winding, it is take much longer time (compared to small and medium maps) for units

to walk to the enemy’s basecamp. As a result, in the large map, agents have a long

time to produce units/structures. Therefore, GDA-C agent learns to produce very

powerful air units such as gryphon riders to attack the enemy’s base camp. As for the

medium map, its geography looks like a hybrid of the geographies of the small map

and the large map. Therefore, GDA-C agent needs more time to learn how to balance

its plans; the length of time of each episode is neither sufficiently short enough for the

plan of producing a lot of entry-level units nor long enough for the plan of producing

very powerful military units. As a result, for the medium map (Figure 9.10-b), GDA-C

agent needs more time to learn a balanced attack to outperform the opponent.

131

CHAPTER 10
RELATED WORK

“Why make mistakes, learn from someone else’s experiences”

― AJ Kumar

10.1 Planning Methods and Their Disadvantages

Compared to Goal-Driven Autonomy

One of the most frequently cited quotes from Helmuth von Moltke, one of the

greatest military strategists in history, is that “no plan survives contact with the

enemy” (Moltke, 1993). That is, even the best laid plans need to be modified when

executed because of:

(a) The non-determinism in one’s own actions (i.e., actions might not have the

intended outcome).

(b) The intrinsic characteristics of adversarial environments (i.e., the opponent

might execute unforeseen actions, or even one action among many possible

choices).

132

(c) Imperfect information about the world state (i.e., opponents might be only

partially aware of what the other side is doing).

As a result, researchers have taken interest in planning that goes beyond the classic

deliberative model. Under this classic model, the state of the world changes solely as a

result of the agent executing its plan. So in a travel domain, for example, a plan may

include an action to fill a car with enough gasoline to follow segments (A, B) and (B,

C) to drive to location C from location A. The problem is that the dynamics of the

environment might change (e.g., segment (B, C) might become unavailable due to

some road damage). Several techniques have been investigated that respond to

contingencies which may invalidate the current plan during execution.

Plan generation is the problem of generating a sequence of actions that transform

an initial state into some desired state (Ghallab, M.; Nau, D.S.; Traverso, P., 2004). A

considerable amount of research exists on relaxing the assumptions of classical

planning. For example, contingency planning permits dynamic environments

(Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; Washington, R., 2003).

Agents that use this approach create a plan that assumes the most likely results for

each action, and generate contingency plans that, with the help of monitoring, are

executed only if a plan execution failure occurs at some anticipatable point(s). In

contingency planning, the agent plans in advance for plausible contingencies. In the

travel example, the plan might include an alternative subplan should (B, C) becomes

unavailable. One such subplan might call to fill up with more gasoline at location B

and continue using the alternative, longer route (B, D), (D, C). A drawback of this

133

approach is that the number of alternative plans required might grow exponentially

with the number of contingencies that need to be considered.

Another alternative suggested is conformant planning (Goldman, et al., 1996)

instead generates plans that are guaranteed to succeed. These methods require the a

priori identification of possible contingencies. For example, the plan might fill up

with enough gasoline at B so that, even if it has to go back to B after attempting to

cover the segment (B,C) , it can continue with the alternative route (B,D), (D,C).

The drawback is that the plan might execute many unnecessary steps for contingencies

that do not occur (such as obtaining additional gasoline while initially in location B).

Plan repair methods (Fox, et al., 2006) instead adapt a plan’s remaining actions

whenever the state conditions required to execute the plan’s next action are not

satisfied. These agents cannot change their goals, while GDA agents instead

dynamically reason about which goals they should achieve.

Another assumption of classical planning concerns the set of goals that the agent is

trying to achieve. If no plan exists from the initial state that satisfies the given goals,

then classical planning fails. Partial satisfaction planning relaxes this all-or-nothing

constraint, and instead focuses on generating plans that achieve some “best” subset of

goals (i.e., the plan that gives the maximum trade-off between total achieved goal

utilities and total incurred action cost) (van den Briel, et al., 2004). While these

approaches each relax an important assumption of classical planning, neither addresses

how to respond to unexpected events that occur during execution. One straightforward

solution is incremental planning, which plans for a fixed time horizon. After plan

134

execution, these planners then generate plans for the next horizon. This process

iterates until the goal state is reached. Another approach is dynamic replanning, which

monitors the plan’s execution. If it is apparent that the plan will fail, the planner will

replan from the current state. For example, HOTRiDE (Ayan, et al., 2007) employs

this strategy for non-combatant evacuation planning. These approaches can also be

combined. For example, CPEF (Myers, 1999) incrementally generates plans to achieve

air superiority in military combat and replans when unexpected events occur during

execution (e.g., a plane is shot down).

However, these approaches do not perform goal formulation; they continue trying

to satisfy the current goal, regardless of whether their focus should dynamically shift

towards another goal (due to unexpected events).

Fortunately, some other recent research has addressed this topic. For example,

bestowed agents (Coddington, A.M.; Luck, M., 2003) with motivations, which

formulate goals in response to thresholds on specific state variables (e.g., if a rover’s

battery charge falls below 50%, then a goal of full battery charge will be formulated

(Meneguzzi, et al., 2007)). GDA can adopt an alternative rule-based approach whose

antecedents can match to complex games states.

Research on game AI takes a different approach to goal formulation in which

specific states lead directly to behaviors (i.e., sequences of actions). This approach is

implemented using behavior trees, which are prioritized topological goal structures

that have been used in HALO 2 and other high profile games (Champandard, 2007).

135

Behavior trees, which are restricted to fully observable environments, require

substantial domain engineering to anticipate all events. GDA can be applied to

partially observable environments by using explanations that provide additional

context for goal formulation.

GDA focuses on the meta-process of goal reasoning. Some goal reasoning

planners relax the requirement that the plan must achieve all of its goals. For example,

over-subscription planners attempt to satisfy only a maximal subset of the goals (van

den Briel, et al., 2004).

As previously discussed in this section, the main drawback of planning methods is

that, before plan execution, they require the a priori identification of possible

contingencies. In DOM games, a plan would need to determine which domination

points to control, which locations to send a team’s bots, and identify alternative

locations when this is not possible. An alternative to generating contingencies

beforehand is performing plan repair. In plan repair, if a mismatch occurs during

plan execution (i.e., between the conditions expected to be true to execute the next

action and the actual world state), then the system must adapt the remaining actions

to be executed in response to the changing circumstances (Fox, et al., 2006; Warfield,

et al., 2007). The difference between plan repair and GDA is that plan repair agents

retain their goals while GDA agents can reason about which goals should be satisfied.

This also differentiates GDA from replanning agents, which execute a plan until an

action becomes inapplicable. At this point, the replanning agent simply generates a

136

new plan from the current state to achieve its goals (Hoang, et al., 2005; Ayan, et al.,

2007; Myers, 1999).

There has been some research related to reasoning with goals. Classical planning

approaches attempt to achieve all assigned goals during problem solving (Ghallab, et

al., 2004). Van den Briel et al. relax this requirement so that only a maximal subset

of the goals must be satisfied (e.g., for situations where no plan exists that

satisfies all the given goals) (van den Briel, et al., 2004). Unlike GDA, this

approach does not add new goals as needed. Formulating new goals has been explored

by Coddington and Luck, and then by Meneguzzi and Luck, among others

(Coddington, et al., 2003; Meneguzzi, et al., 2007). They define motivations that track

the status of some state variables (e.g., the gasoline level in a vehicle) during

execution. If these values exceed a certain threshold (e.g., if the gasoline level falls

below 30%), then the motivations are triggered to formulate new goals (e.g., fill the

gas tank). In contrast, we investigate the first case-based approach for GDA, where

goals are formulated by deriving inferences from the game state and the agent’s

expectations using case-based planning techniques.

137

10.2 Integrations of Case-Based Learning and

Reinforcement Learning

As explained in Section 2.1, reinforcement learning (RL) is a learning system

which learns how to map situations to actions so as to maximize a numerical reward.

Also, as explained in Section 2.2, Case-Based Reasoning is the process of solving new

problems based on the solutions of similar past problems. In this section we discuss

related works to integrations of CBR and RL.

Several groups have studied integrations of CBR and RL. Bridge noted that these

typically attempt to use the advantages of one to improve the other (Bridge, 2005). For

example, RL has been used to help CBR solve problems in continuous environments

(Ram, et al., 1997; Molineaux, et al., 2010) and to improve case retrieval (Juell, et al.,

2003). Analogously, CBR has been used to speed up the RL process (Gabel, et al.,

2007; Auslander, et al., 2008; Bianchi, et al., 2009) and to reduce RL’s memory

footprint (Dilts, et al., 2010). We instead integrate them to automatically acquire and

reuse GDA knowledge.

There is substantial interest in integrating CBR and RL, as exemplified by Derek

Bridge’s ICCBR-05 invited talk on potential synergies between CBR and RL (Bridge,

2005), the SINS system that solves problems in continuous environments (Ram, et al.,

1997), and CBRetaliate, which stores and retrieves Q-tables (Auslander, et al., 2008).

Most previous contributions focused on improving the performance of an agent by

138

exploiting synergies among CBR and RL or by enhancing the CBR process by using

RL (e.g., to improve similarity metrics). More recently, researchers have studied ways

in which CBR can improve reinforcement learning. This includes reducing the

memory requirements of RL (Dilts, et al., 2010), using cases as a heuristic to speed up

the RL process (Bianchi, et al., 2009) and using cases to approximate state value

functions in continuous spaces (Gabel, et al., 2005; Gabel, et al., 2007). Our GRL

system falls in this latter category; it uses CBR to fine-tune strategies by exploiting the

episodic knowledge captured in the cases while embedded in the RL cycle. In this

context, GRL’s novelty is that it automatically identifies goals, learns policies specific

to those goals, learn expectations about the action’s outcomes, and reasons when a

discrepancy occurs.

10.3 Goal-Driven Autonomy Agents and Their

Integration of Learning

Most research on GDA assumes that experts provide domain knowledge on what

to expect when an action is executed and which goal should be achieved next if a state

discrepancy arises. The two exceptions are work on learning goal selection

knowledge. First, Weber et al. uses CBR for this task, but doesn’t learn about

expectations (Weber, et al., 2010). Their cases map discrepancies (between the

current state and the goal the agent is trying to achieve) to new goals, which are

represented as states, and their nearest neighbor algorithm compares the current state

139

with recorded cases to perform goal selection. LGDA system (Section 6.2) instead

learns expectations, discrepancies, and goals. Furthermore, goals can be state

abstractions (e.g., win the game) and LGDA could map a discrepancy to multiple

goals. Second, Powell et al.’s active learner requires a user to indicate which goal to

achieve next when discrepancies occur. In contrast, LGDA is fully automated

(Powell, et al., 2011).

As mentioned in CHAPTER 3, GDA agents use a four-step strategy to respond

competently to unexpected situations in their environment: (1) detect any discrepancy

between the observed state and the expected state(s), (2) explain this discrepancy, (3)

formulate a goal to resolve it (if needed), and (4) manage this new goal along with its

pending goals (Molineaux, et al., 2010; Muñoz-Avila, et al., 2010). In step 3, these

agents use a variety of models to formulate new goals. For example, INTRO (Cox,

2007) uses explanation patterns represented as cause effect rules such that, if a state

is judged to be a discrepancy and it maps to the effects of a rule, then INTRO will select

the negation of that rule’s cause as its new goal. ARTUE (Molineaux, et al., 2010)

uses rule-based reasoning for goal formulation and ranking (i.e., pending goals are

maintained in a priority list). Its rules encode expert knowledge in a manner similar to

Intro’s rules, but ARTUE adds a more robust process by encoding planning

dependencies in a truth-maintenance system. EISBot (Weber, et al., 2010) instead uses

a case-based model to formulate goals, where a case is an expert-

provided sequence of states for accomplishing a task, and states are represented as a

vector of numeric values. Given current state , EISBot retrieves a most similar state

140

 in its case base along with , where is the length of its planning window. It

computes the difference and adds this to to define its new goal. In

contrast to these GDA agents, GRL learns its goal formulation knowledge.

T-ARTUE (Powell, et al., 2011) is an extension of ARTUE that interactively

learns goal formulation knowledge; it can query the user to ask for new goals or

confirm their formulation, and the user can provide feedback on these decisions. In

contrast, GRL automatically learns goal formulation knowledge and new goals.

Agents can compute state expectations using action models (i.e., their

preconditions and effects) and the current state. Bouguerra et al. use description logics

to model and infer expectations after executing a plan, which is particularly useful for

partially observable environments (Bouguerra, et al., 2008). For example, an agent

might observe John entering a vehicle at a location A and the vehicle later arriving at

location B, where its occupants departed. Given this, it could infer that John arrived at

B. GDA agents vary in how they compute expectations, including using a model of

abstract explanation patterns (Cox, 2007), or by defining discrepancy detectors to

trigger when state expectations fail (Weber, et al., 2010). Unlike these (and most

other) GDA agents, GRL learns its action models for computing state expectations.

The only related agent is LGDA (Jaidee, et al., 2011), which learns action models it

uses to compute expectations but it assumes that the policies and goals are given as

input. In contrast, GRL identifies new goals, and learns and reuses goal-specific

policies.

141

10.4 Learning Agents in Real-Time Strategy Games

There is a substantial body of work for learning in RTS games. Table 1 categorizes

research on learning systems for RTS games according to the managerial tasks.

Before we begin our description of this analysis a clarification must be made:

many of the works described are capable of playing the complete RTS games and

hence perform the tasks by the 6 managers. Our point is that learning is that in those

works limited to some of these tasks and not all of them. For example, Weber, et al.

(2012) reports on a system that plays full RTS using the managers indicating above

but only the unit and building manager is using learning. Hence, we classify it on

category B in Table 10-1. Other works in this category includes Aha, et al. (2005)

which uses case-based reasoning techniques to retrieve a plan that executes a building

order. The same is true for the work of Hsieh and Sun (2008, whose systems analyzes

game replays to determine suitable unit and building creation orders. Also included in

this category is the work by Dereszynski (2011) which learns a probabilistic model.

Category A belongs to works that perform learning in combat tasks. Included in

this category are works by Sharma et al. (2007) which combines case-based reasoning

and reinforcement learning, Wender and Watson (2012) which uses reinforcement

learning, Weber and Mateas (2009) uses data mining techniques including k-NN and

logitBoost to extract opponent models from game replays of annotated traces. Othman

et al. (2012) use evolutionary computation to control combat tactics such as indicating

which opponent’s unit to attack. It plays the AI against itself to speed-up learning.

142

Table 10-1: Categories of works versus managerial tasks (Scott, 2002)

 B
u

il
d

U
n

it

R
es

ea
r
ch

R
es

o
u

rc
e

C
o
m

b
a
t

C
iv

il
iz

a
ti

o
n

A

B

C

D

E

F

Works in category C not only use learning techniques for unit and building

creation tasks but also use learning for research tasks. Synnaeve and Bessière (2011)

model this learning problem as a Bayesian model. Ponsen et al. (2006) uses a

technique called dynamic scripting (Spronck, 2006) to control unit and building

creation and research. A script is a sequence of gaming actions specifically targeted

towards a game such as in this case Wargus. Scripts are learned by combining

reinforcement learning and evolutionary computation techniques.

Category E belongs to works that uses learning for resource gathering tasks. In this

category is work by Marthi et al. (2005), which uses concurrent ALISP in Wargus

games. The basic premise of that work is the user specifying a high-level LISP

program to accomplish Wargus tasks and reinforcement learning is used to tune the

parameters of the program.

143

Young and Hawes (2012) use evolutionary learning to manage conflicts that arise

between conflicting goals, which can be resource gathering as well as for unit and

building creation (Category D). Their focus on goal management is in line with an

increasing interest on the general topic of goal-driven autonomy as it pertains to RTS

games (Weber et al., 2012; Jaidee et al., 2011). As we discussed earlier Weber et al.

(2012) learning belongs to category B. Jaidee et al. (2011) manages goals for combat

tasks so it belongs to category A. Given the variety of tasks, we could expect goal-

driven autonomy works in the future to be capable of learning for all 6 managerial

tasks.

CLASSQL and GDA-C are this first systems that we are aware of that is capable of

learning on 5 out of 6 managerial tasks (almost Category F). It follows ideas on micro-

management in RTS games (e.g., (Scott, 2002; Rørmark, 2009; Perez, 2011; Synnaeve

& Bessière, 2011)). In micro-management the complex problem of playing an RTS

game is divided into tasks. These tasks are accomplished by specialized components

or agents. This is the principled follow by the 6 managers and similar architectures in

implementations of RTS games (Scott, 2002).

144

10.5 Goal-Driven Autonomy Agents That Can Play RTS

Games

Weber reported on EISBot (Weber, et al., 2012), a system that can play a complete

RTS game. EISBot plays complete games by using six managers (e.g., for building an

economy, combat), only one of which uses GDA (i.e., it selects which units to

produce). The GDA system GRL (Jaidee, et al., 2012) plays RTS game scenarios were

each side starts with a fixed number of units. No buildings are allowed and hence no

new units can be produced, which drastically reduces the GRL’s state and action

space. In contrast to these and other GDA systems that play RTS games (e.g., (Weber,

et al., 2010)), GDA-C controls most aspects of an RTS game by assigning units and

buildings of the same type to a specialized agent.

Many GDA systems manage expectations that are predicted outcomes from the

agent’s actions. Most work on GDA assumes deterministic expectations (i.e., the same

outcome occurs when actions are taken in the same state). These expectations are

computed in a number of ways. Cox generates instances of expectations by using a

given model of abstract explanation patterns (Cox, 2007). Molineaux et al. use

planning operators to define expectations (Molineaux, et al., 2011). Borrowing ideas

from Weber et al. (Weber, et al., 2012), GDA-C uses vectors of numerical features to

represent the states and expects that actions will increase their values (e.g., sample

features include total gold generated or number of units, both of which a player would

145

like to increase). When this does not happen (i.e., when this constraint is violated), a

discrepancy occurs.

When most GDA algorithms detect a discrepancy between an observed and an

expected state, they formulate new goals in response. Some systems use rule-based

reasoning to select a new goal (Cox, 2007), while others rank goals in a priority list

and use truth–maintenance techniques to connect discrepancies with new goals to

pursue (Molineaux, et al., 2010). Interactive techniques have also been used to elicit

new goals from a user (Powell, et al., 2011). GDA-C instead learns to rank goals by

using RL techniques based on the performance of the individual agents.

GDA-C has some characteristics in common with GRL (Jaidee, et al., 2012),

which also uses RL for goal formulation. However, GRL is a single agent system and,

unlike GDA-C, cannot scale to play complete RTS games.
4

4
 This means that the player starts with limited resources, units, and structures but

can (1) harvest additional resources, (2) build any structure, (3) train any unit, (4)

research any technology, and (5) control the units to defeat an opponent.

146

CHAPTER 11
CONCLUSIONS

11.1 Final Remarks

Our research steps were incremental. We started with a narrow research focus and

move to the more difficult issues later. In our first system, GDA-HTNbots, an

extension of HTNbots in which the controller performs the four tasks of the GDA

model. However, unlike HTNbots, GDA-HTNbots reasons about its goals, and can

dynamically formulate which goal it should plan to satisfy. It controls plan generation

in two ways: first, it determines when the planner must start working on a new goal.

Second, it determines what goal the planner should attempt to satisfy. All the

knowledge of GDA-HTNbots was given by user as its input in the form of HTN

syntax.

Our second system, CB-GDA is the first GDA system with integration of case

base reasoning. CB-GDA uses two case bases to dynamically generate goals. The first

case base relates goals with expectations, while the latter’s cases relate mismatches

with (new) goals. All CB-GDA’s knowledge was still given as its input, but the

system knew how to maintain and reuse cases in the case bases.

147

Next, we developed a system called LGDA which is the first system to

automatically learn state expectations. LGDA can learn two important components of

GDA: (1) expectations to store in its Expectation Case Base and (2) new goals to store

and reuse for its Goal Formulation Case Base. LGDA partially support our claim that

we can create GDA agents that have the ability to acquire knowledge by themselves

and reuse it. However, goals and policies are still needed to be given as the agent’s

input. So, we cannot say that LGDA agent is fully autonomous learning GDA agent.

Thereafter, we developed the system called GRL, the first GDA system capable of

learning and reusing goal-specific policies. Additionally, GRL can learn most of the

GDA’s components. It can learn a Policy Case Base, an Expectation Case Base and a

Goal Formulation Case Base. At this point, the answer of our research question is

fulfilled. Although, we can create such agent, the environment that we experimented

on was not complex enough. Therefore, we continued to investigate a scalable agent

that can handle complex environments such as full RTS games that have a lot of

factors to consider.

The state-action space of full RTS games is very large. GDA algorithms,

including GRL, have not been designed for learning and acting on large state-action

spaces. Thus, my next objective is to develop a GDA algorithm capable of learning

and acting in domains with large state-action spaces. I investigated this matter by

extracting the learning part from GDA and creating a learning agent called CLASSQL.

And, it will later be integrated back to GDA agent. CLASSQL Divide the state and

action space among cooperating learning agents. Each agent of CLASSQL is equal to a

148

RL agent. Therefore, each agent has its own q-table. Each agent’s unit has its own

record of previous state, previous action, and previous reward for updating the q-table

of its class. CLASSQL agent can play a complete RTS game and perform better than

hand-coded AI agents.

Finally, we merge both GDA and CLASSQL together to create a system call GDA-

C. GDA-C is a GDA agent that executes two threads in parallel to control several RL

agents. GDA-C agent has the ability to learn knowledge by itself in complex

environments such as a full RTS game. Moreover, CLASSQL and GDA-C are the first

learning agent and the first GDA agent that are capable of learning on 5 out of 6

managerial tasks (Table 10-1).

Our main research question in this dissertation is whether we can create GDA

agents that are able to learn knowledge by themselves and reuse it. Our later systems,

specifically GRL and GDA-C, demonstrate that we can indeed construct such agents.

Furthermore, learning in GDA-C and GRL takes place in Wargus, which is a complex

environment as per the definition in (Russell, et al., 2003). GDA-C and GRL are able

to cope with each of the characteristics of complex environments for the following

reasons:

 Partially observable and multi-agent environments: Partially

observable means some information about the environment (e.g., the

opponent team’s resources) is hidden from the GDA agent. Because there

are multiple agents, the environment might change independent of our own

149

agent’s actions (i.e., the other agents change the environment). As a result

of these characteristics of the environment, at some point the GDA agent

might encounter unexpected situations (e.g., a peasant is sent to harvest

gold but the peasant is killed near the town). Because GDA agents are able

to react when discrepancies happen, then the Goal Formulator will suggest

a new goal enabling the GDA agent to react to the unexpected situation

(e.g., military unit are sent to attack enemy units near the town).

 Stochastic environments: Stochastic means that actions taken in the

environment might have multiple outcomes (e.g., send footmen to attack

enemy units near our camp might result in two outcomes: (1) enemy units

near our camp are killed or (2) enemy units are still near camp). Our GDA

agent is able to cope with these kinds of environments because it is

learning policies (mappings from states that agent might encounter to

possible actions it can execute in such states), which learn to cope with the

multiple outcomes from past experience (e.g., send archers and footmen to

attack units near camp when outcome (2) happens).

The following is a summary of the scientific contributions of this dissertation to

the state-of-the-art in integrated learning for goal-driven autonomy research:

 First integration of Case Based Reasoning (CBR) and Goal-Driven Autonomy.

 First GDA system to automatically learn state expectations.

150

 First GDA system capable of learning and reusing goal-specific policies.

 First learning agent that can learn multiple real-time strategy games managerial

tasks.

11.2 Future Work

Our goal in this research was to investigate GDA systems that can learn

knowledge by themselves. However, there are many potential research directions.

We now discuss some of these directions.

1. Create a system that is able to autonomously learn about explanation of

failures. Even though LGDA, GRL and GDA-C can learn knowledge about

goal selection when a failure occurred, none of our systems can learn

explanations. Some of our systems know how to use predefined explanations,

but they cannot learn new ones for themselves. Our systems learn new goal

based on statistic techniques but they can’t learn new goals based on the

explanations.

2. Experiment on other problems domains. The problem domains that we used

for the experiments in the dissertation are complex real-time strategy games.

Indeed GDA-C is the first GDA system that learns many managerial tasks.

Our systems are general that could be used in any problem domain. The

simple way to describe what kind of problems that is possible to use our

151

algorithms is to understand the target problem domain and answer those two

questions about it: (1) can we give the collection of actions and states and

observe how our actions affect the environment, and (2) whether or not we can

provide a numerical signal value that can be a decent indicator to tell how good

or bad is a particular situation. If the answer to these two questions is

affirmative researchers could use our learning techniques for a GDA system

acting in this problem domain. Examples of such problem domains include

using robots for manufacturing. Another example is logistics tasks involving

the delivery of multiple products.

3. Agents may learn a set of high-level actions. High-level actions used in

CLASSQL and GDA-C algorithms are highly effective in term of space saving

and reusability of learned knowledge. However, high-level actions are

designed by an expert of the specific problem domain. Therefore, it would be

beneficial if agents can learn high-level actions themselves. Notice that the

problem domain actions that are translated from a high-level action must have

at least one factor with the same value or the same range of values. This would

include the same unit-type, attacking-range, abilities of attacking, to name just

a few. We can collect sequences of states, actions and time and later store

them in a database. This can be used later by some algorithm to find related

factors of actions from the database that are performed at approximately the

same time. Learning a set of high-level actions for each agent can be another

starting point for future research.

152

4. Agents learn how to change a new goal before a failure occurs. All of our

systems are based on the assumption that the goal should change when a

discrepancy occurs. But, changing a new goal after a failure occurs may be too

late to recover from negative consequences. The adverse score that has already

been accumulated can affect the final score at the end of the game. Goal

Driven Autonomy always waits until an undesirable situation happens and then

later tries to change it. It is more advantageous to detect failures before they

happen. We can store a sequence of states and also note any states that GDA

decided to use in changing the goal. Then, we can use this sequence to track

down some states that occur before the failures. Another possible method,

using the reward progress that we observe in the environment, if one notes that

progress is going downward for some length of time or reaches a threshold

value, GDA can suggest a new goal to pursue.

5. Developers may improve the module called High-level Action to Problem-

Domain Actions Converters (HAPDAC) in the GDA-C and CLASSQL

architectures. Currently, the method that HAPDAC uses to perform unit job

assignment is just a simple modulus assignment. The performance might

increase if we can improve an HAPDAC’s mapping method. For example,

taking the distance between an actor unit and a recipient unit (or a target

location) into account to minimize the total distance and time that the high-

level action need to be perform as multiple problem-domain actions. As per

another interesting factor that we can take it into account to develop a new

153

mapping function is using the remaining health points of actor units comparing

to those of recipient units. For example, let assume units in a set of actors and

units in a set of recipients are the same type at the same level of upgrading.

Also, assume both sets have the same number of units; let’s say 4. The list of

remain health points of the actors is (8, 20, 11, 17) and those of the recipients

is (9, 22, 14, 18). If we just map them as is, the result is (1, 2, 3, 1). In

other words, all the units in the set of actors might be dead after the actions are

performed. However, if we resort the list of recipients as (22, 18, 9, 14), the

result will be (14, 2, 2, 3). In other words, just only one unit in the set of

actors might be dead after the action is performed. Research about mapping

methods for HAPDAC would be an interesting future research topic that could

improve the performance of GDA-C and CLASSQL.

6. Research on hierarchical agents. Agents in CLASSQL or GDA-C make their

own decision of the next actions that they will execute without explicitly

coordinating with one another. There might be advantages, if we can apply a

hierarchical model organizing the CLASSQL and GDA-C agents. For example,

blacksmiths, lumber mills, and churches are agents that improve units and

structures by performing research actions. Thus, we could build an agent,

named research agent, to coordinates the research actions among these 3

agents. If the blacksmith and the lumber mills agents plan to perform research

actions that require more resources than the team can supply, the research

agent will prioritize those actions.

154

7. Research on promoting units and structures as agents. In CLASSQL and GDA-

C, agents task their units/structures with activities to perform. For this new

research, we believe it is better for units and structures to make their own

decision. For example, we could have a high-level agent named task manager

agent that manages which of the team’s tasks should be performed in the

current situation . We could borrow from the ideas of joint intention (Cohen,

P. R. & Levesque, H. J., 1991; Levesque, et al., 1990), so the units or

structures perform these tasks together as a subteam. Under this perspective, a

unit or structure is allowed to be a participant in several joint intentions.

However, in this approach, units/structures need to communicate to other

units/structures and task manager. To do this, we can borrow some ideas for

teamwork coordination as in STEAM (Tambe, 1997).

155

BIBLIOGRAPHY

Aamodt A. and Plaza E. Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches [Book Section] // AICom -

Artificial Intelligence Communications, Vol. 7: 1. - [s.l.] : IOS Press, 1994.

Aha, D. W.; Molineaux, M.; Ponsen, M.; Learning to win: Case-based plan selection

in a real-time strategy game [Conference] // Proceedings of the International

Conference on Case-based Reasoning (ICCBR). - [s.l.] : Springer, 2005.

Auslander, B.; Lee-Urban, S.; Hogg, C.; Muñoz-Avila, H. Recognizing the enemy:

Combining reinforcement learning with strategy selection using casebased

reasoning [Conference] // Proceedings of the Ninth European Conference on Case-

Based Reasoning. - Trier, Germany : Springer, 2008. - pp. 59-73.

Ayan, N.F.; Kuter, U.; Yaman, F.; Goldman, R. HOTRiDE: Hierarchical ordered

task replanning in dynamic environments [Conference] // In 3rd ICAPS Workshop

on Planning and Plan Execution for Real-World Systems. - Providence, RI : [s.n.],

2007.

Bianchi, R.; Ros, R.; Lopez de Mantaras, R. Improving reinforcement learning by

using case-based heuristics [Conference] // Proceedings of the Eighth International

Conference on CBR. - Seattle, WA : Springer, 2009. - pp. 75-89.

156

Blizzard Entertainment Warcraft II: Battle.net Edition Manual [Book]. - 1999.

Bouguerra A., Karlsson L. and Saffiotti A. Monitoring the execution of robot plans

using semantic knowledge [Article] // Robotics and Autonomous Systems,

56(11). - 2008. - pp. 942-954.

Bridge D. The virtue of reward: Performance, reinforcement and discovery in case-

based reasoning [Conference] // Proceedings of the Sixth International Conference

on Case-Based Reasoning. - Chicago, IL : Springer, 2005.

Bridge D. The virtue of reward: Performance, reinforcement and discovery in case-

based reasoning [Conference]. - Chicago, IL : Springer, 2005.

Champandard A. Behavior trees for next-gen game AI [Conference] // In

Proceedings of the Game Developers Conference. - Lyon, France : [s.n.], 2007.

Coddington, A.M.; Luck, M. Towards motivation-based plan evaluation

[Conference] // Proceedings of the Sixteenth International FLAIRS Conference. -

Miami Beach, FL : AAAI Press, 2003. - pp. 298-302.

Cohen, P. R.; Levesque, H. J.; Confirmation and joint action [Conference] // In

Proceedings of the International Joint Conferenceon Artificial Intelligence. - 1991.

Cox M.T. and Veloso M.M. Goal transformations in continuous planning

[Conference] // Proceedings of the Fall Symposium on Distributed. - Menlo Park,

CA : AAAI Press, 1998. - pp. 23-30.

Cox M.T. Perpetual self-aware cognitive agents [Article] // AI Magazine, 28(1). -

2007. - pp. 32-45.

157

Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; Washington, R.

Incremental contingency planning [Conference] // In ICAPS-03: Proceedings of

the Workshop on Planning under Uncertainty and Incomplete Information. -

Trento, Italy : [s.n.], 2003. - pp. 38-47.

Dereszynski, E.; Hostetler, J.; Fern, A.; Hoang, T. D.; Udarbe, M.; Learning

probabilistic behavior models in real-time strategy games [Conference] //

Proceedings of the conference on AI and Interactive Digital Entertainment

(AIIDE). - [s.l.] : AAAI Press, 2011.

Dilts M. and Muñoz-Avila H. Reducing the memory footprint of temporal difference

learning over finitely many states by using case-based generalization

[Conference] // Proceedings of the Eighteenth International Conference on Case-

Based Reasoning. - Alessandria, Italy : Springer, 2010. - pp. 81-95.

Erol K., Hendler J. and Nau D. S. HTN planning: Complexity and expressivity

[Conference] // National Conference on Artificial Intelligence. - 1994.

Fox, M.; Gerevini, A.; Long, D.; Serina, I. Plan stability: Replanning versus plan

repair [Conference] // Proceedings of the Sixteenth International Conference on

Automated Planning and Scheduling. - Cumbria, UK : AAAI Press, 2006. - pp.

212-221.

Gabel T. and Riedmiller M. CBR for state value function approximation in

reinforcement learning [Conference] // Proceedings of the Sixth International

Conference on Case-Based Reasoning. - Chicago, USA : Springer, 2005. - pp.

206–220.

158

Gabel, T.; Riedmiller, M. An analysis of casebased value function approximation by

approximating state transition graphs [Conference] // Proceedings of the Seventh

International Conference on Case-Based Reasoning. - Belfast, Northern Ireland :

Springer, 2007. - pp. 344-358.

Ghallab, M.; Nau, D.S.; Traverso, P. Automated planning: Theory and practice

[Book]. - San Mateo, CA : Morgan Kaufmann, 2004.

Goldman R.P. and Boddy M.S. Expressive planning and explicit knowledge

[Conference] // Proceedings of the Third International Conference on Artificial

Intelligence Planning Systems. - Edinburgh, Scotland : AAAI Press, 1996. - pp.

110-117.

Hierarchical task network [Online] // Wikipedia. - June 13, 2013. - July 10, 2013. -

http://en.wikipedia.org/wiki/Hierarchical_task_network.

Hoang, H.; Lee-Urban, S.; Muñoz-Avila, H. Hierarchical plan representations for

encoding strategic game AI [Conference] // Proceedings of the First Conference on

Artificial Intelligence and Interactive Digital Entertainment. - Marina del Ray,

CA : AAAI Press, 2005. - pp. 63-68.

Hsieh, J.L.; Sun, C.T.; Building a player strategy model by analyzing replays of real-

time strategy games [Conference] // IEEE International Joint Conference on

Neural Networks. - 2008.

Jaidee, U.; Munoz-Avila, H. Modeling Unit Classes as Agents in Real-Time Strategy

Games [Conference] // Proceedings of the Ninth Annual AAAI Conference on

159

Artificial Intelligence and Interactive Digital Entertainment. - Boston, MA : [s.n.],

2013.

Jaidee, U.; Munoz-Avila, H.; Aha, D.W. Case-based goal-driven coordination of

multiple learning agents [Conference] // Proceedings of the Twenty-First

International Conference on Case-Based Reasoning. - Saratoga Springs, NY :

Springer, 2013. - (Nominee: Best Paper Award).

Jaidee, U.; Munoz-Avila, H.; Aha, D.W. Case-Based Learning in Goal-Driven

Autonomy Agents for Real-Time Strategy Combat Tasks [Conference] // In

Proceedings of the ICCBR-11 workshop on Case-Based Reasoning for Computer

Games. - Greenwich, London : [s.n.], 2011a.

Jaidee, U.; Munoz-Avila, H.; Aha, D.W. Integrated learning for goal-driven

autonomy [Conference] // In Proceedings of the Twenty-Second International

Conference on Artificial Intelligence. - Barcelona, Spain : AAAI Press, 2011.

Jaidee, U.; Muñoz-Avila, H.; Aha, D.W. Learning and reusing goal-specific policies

for goal-driven autonomy [Conference] // In Proceedings of the Twentieth

International Conference on Case-Based Reasoning. - Lyon, France : Springer,

2012. - pp. 182-195.

Juell, P.; Paulson, P. Using reinforcement learning for similarity assessment in case-

based systems [Article] // IEEE Intelligent Systems, 18(4). - 2003. - pp. 60-67.

Klenk M., Molineaux M. and Aha D.W. Planning in dynamic environments:

Extending HTNs with nonlinear continuous effects [Conference]. - Atlanta, GA :

AAAI Press, 2010.

160

Lenz, M.; Bartsch-Spörl, B.; Burkhard, H.-D.; Wess, S. Case-Based Reasoning

Technology [Book]. - Berlin : Springer, 1998.

Levesque, H. J.; Cohen, P. R.; Nunes, J.; On acting together [Conference] // In

Proceedings of the National Conferenceon Artificial Intelligence. - Menlo Park,

Calif : AAAI press, 1990.

Lopez de Mántaras, R.; McSherry, D.; Bridge, D.; Leake, D.; Smyth, B.; Craw,

S.; Faltings, B.; Maher, M. L.; Cox, M. T.; Forbus, K.; Keane, M.; Aamodt,

A.; Watson, I. Retrieval, reuse and retention in case-based reasoning [Book

Section] // Knowledge Engineering Review. - [s.l.] : Cambridge University Press,

2005. - Vol. 20(3).

Marthi, B.; Russell, S.; Latham, D.; Guestrin, C.; Concurrent hierarchical

reinforcement learning [Conference] // In Proceedings of the 20th national

conference on Artificial intelligence (AAAI-05). - [s.l.] : AAAI Press, 2005.

Meneguzzi, F.R.; Luck, M. Motivations as an abstraction of meta-level reasoning

[Conference] // Proceedings of the Fifth International Central and Eastern

European Conference on Multi-Agent Systems. - Leipzig, Germany : Springer,

2007. - pp. 204-214.

Molineaux M., Kuter U. and Klenk M. What just happened? Explaining the past in

planning and execution [Conference] // Explanation-Aware Computing: Papers

from the IJCAI Workshop. - Barcelona, Spain : [s.n.], 2011.

161

Molineaux, M.; Klenk, M.; Aha, D.W. Goal driven autonomy in a Navy strategy

simulation [Conference] // In Proceedings of the Twenty-Fourth AAAI Conference

on Artificial Intelligence. - Atlanta, GA : AAAI Press, 2010.

Moltke H.K.B.G. von. Militarische werke Moltke on the art of war: Selected

writings [Book] / ed. Hughes D.J.. - Novato, CA : Presidio Press, 1993.

Muñoz-Avila, H.; Aha, D.W.; Jaidee, U.; Carter, E.; Goal directed autonomy with

case-based reasoning [Conference] // Proceedings of the Eighteenth International

Conference on Case-Based Reasoning. - Alessandria, Italy : Springer, 2010. - pp.

228-241.

Munoz-Avila, H.; Aha, D.W.; Jaidee, U.; Klenk, M.; Molineaux, M. Applying goal

directed autonomy to a team shooter game. [Conference] // the Twenty-Third

Florida Artificial Intelligence Research Society Conference. - Daytona Beach, FL :

AAAI Press, 2010. - pp. 465-470.

Myers K.L. CPEF: A continuous planning and execution framework [Article] // AI

Magazine, 20(4). - 1999. - pp. 63-69.

Nau D.S. Current trends in automated planning [Article] // AI Magazine. - 2007. - pp.

43-58.

One Crafty Mother Praying for the Burn [Online] // One Crafty Mother. - April 5,

2010. - June 8, 2013. -

http://www.onecraftymother.com/2010_04_01_archive.html.

Othman, N.; Decraene, J.; Cai, W.; Hu, N.; Gouaillard, A.; Simulation-based

optimization of StarCraft tactical AI through evolutionary computation

162

[Conference] // Proceedings of IEEE Symposium on Computational Intelligence

and Games (CIG). - 2012.

Perez A. U. Multi-Reactive Planning for Real-Time Strategy Games [Report] : MS

Thesis / Universitat Autònoma de Barcelona. - 2011.

Ponsen, M.; Munoz-Avila, H.; Spronk, P.; Aha, D. Automatically generating game

tactics with evolutionary learning [Article] // AI Magazine. - [s.l.] : AAAI Press,

2006.

Powell J., Molineaux. M. and Aha D.W. Active and interactive discovery of goal

selection knowledge [Conference] // To appear in Proceedings of the Twenth-

Fourth Conference of the Florida AI Research Society. - West Palm Beach, FL :

AAAI Press, 2011.

Radnitzky Gerard and Bartley William Warren Evolutionary Epistemology,

Rationality, and the Sociology of Knowledge [Book]. - [s.l.] : Open Court

Publishing Company, 1993. - pp. 94-108.

Ram, A.; Santamaria, J.C. Continuous casebased reasoning [Journal] // Artificial

Intelligence, 90(1-2). - 1997. - pp. 25-77.

Richter Michael M. Similarity [Journal] // Case-Based Reasoning for Signals and

Imaging / ed. Perner Petra. - [s.l.] : Springer Verlag, 2007. - pp. 25-90.

Rørmark R. Thanatos - A learning RTS game AI [Report] : MS Thesis / University

of Oslo. - 2009.

Russell, S.; Norvig, P. Artificial Intelligence [Book]. - [s.l.] : Pearson Education, Inc.,

2003. - pp. 1-5.

163

Scoring and Ranking [Online] // battle.net. - August 7, 2013. -

http://classic.battle.net/war2/basic/score.shtml.

Scott B. Architecting an RTS AI [Book Section] // AI Game Programming Wisdom /

ed. Robin Steve. - [s.l.] : Charles River Media, 2002.

Sharma, M.; Holmes, M.; Santamaria, J.; Irani, A.; Isbell, C.; Ram, A.; Transfer

learning in real-time strategy games using hybrid CBR/RL [Conference] // In

Proceedings of the 20th international joint conference on Artifical intelligence

(IJCAI-07). - [s.l.] : Morgan Kaufmann Publishers Inc., 2007.

Si, J.; Barto, A.; Powell, W.; Wunsch, D. Reinforcement Learning in Large, High-

Dimensional State Spaces [Book Section] // Handbook of Learning and

Approximate Dynamic Programming. - [s.l.] : Wiley, 2012.

Smith M., Lee-Urban S. and Muñoz-Avila H. RETALIATE: Learning winning

policies in first-person shooter games. [Conference] // Proceedings of the

Nineteenth Innovative Applications of AI Conference. - Vancouver, British

Columbia, Canada : AAAI Press, 2007. - pp. 1801-1806.

Spronck P. Dynamic Scripting [Book Section] // AI Game Programming Wisdom 3 /

ed. Rabin Steve. - Hingham, MA. : Charles River Media, 2006.

Sutton R. and Barto S. Reinforcement Learning [Book]. - [s.l.] : MIT Press, 1998.

Synnaeve, G.; Bessière, P.; A Bayesian Model for RTS Units Control applied to

StarCraft [Conference] // IEEE Conference on Computational Intelligence and

Games. - Seoul, South Korea : [s.n.], 2011.

164

Tambe M. Towards Flexible Teamwork [Journal] // Journal of Artificial Intelligence

Research. - [s.l.] : Morgan Kaufmann, 1997. - Vol. 7. - pp. 83-124.

van den Briel, M.; Sanchez Nigenda, R.; Do, M.B.; Kambhampati, S. Effective

approaches for partial satisfaction (over-subscription) planning [Conference] //

Proceedings of the Nineteenth National Conference on Artificial Intelligence. -

San Jose, CA : AAAI Press, 2004. - pp. 562-569.

Warcraft II structures [Online] // WoWWiki. - July 23, 2013. -

http://www.wowwiki.com/Warcraft_II_structures.

Warcraft II units [Online] // WoWWiki. - July 21, 2013. -

http://www.wowwiki.com/Warcraft_II_units.

Warfield, I.; Hogg, C.; Lee-Urban, S.; Munoz-Avila, H. Adaptation of hierarchical

task network plans [Conference] // Proceedings of the Twentieth Flairs

International Conference. - Key West, FL : AAAI Press, 2007. - pp. 429-434.

Wargus [Online]. - January 2012. - http://wargus.sourceforge.net/.

Watkins C. J. C. H. Learning from Delayed Rewards [Journal] // Ph.D. thesis,

Cambridge University. - 1989.

Weber B., Mateas M. and Jhala A. Applying goaldriven autonomy to StarCraft

[Conference] // In Proceedings of the Sixth Conference on Artificial Intelligence

and Interactive Digital Entertainment. - Stanford, CA : AAAI Press, 2010.

Weber, B.; Mateas, M.; A data mining approach to strategy prediction

[Conference] // Proceedings of IEEE Symposium on Computational Intelligence

and Games (CIG). - 2009.

165

Weber, B.; Mateas, M.; Jhala, A. Learning from demonstration for goal-driven

autonomy [Conference] // In Proceedings of the Twenty-Sixth AAAI Conference

on Artificial Intelligence. - Toronto (Ontario), Canada : AAAI Press, 2012.

Weber, B.; Mateas, M.; Jhala, A. Reactive Planning Idioms for Multi-Scale Game

AI [Conference] // IEEE Conference on Computational Intelligence and Games

(CIG 2010). - 2010.

Wender, S.; Watson, I.; Applying reinforcement learning to small-scale combat in

the real-time strategy game starcraft:Broodwar [Conference] // Proceedings of

IEEE Symposium on Computational Intelligence and Games (CIG). - 2012.

Young, J.; Hawes, N.; Evolutionary learning of goal priorities in a real-time strategy

game [Conference] // Proceedings of the Conference on Artificial Intelligence and

Interactive Digital Entertainment. - Stanford, CA : AAAI Press, 2012.

166

APPENDIX A

WARGUS UNITS AND STRUCTURES

A.1. Wargus Units

Units in Wargus can be categorized into three main types: land, naval and air units.

Human and Orc units are all produced at different structures and are essentially quite

balanced in their abilities. Table A-1 below shows the properties of each unit in both

races. The table shows only units that are used in the experiments of this dissertation.

Table A-1: List of Wargus Units and their properties in both Human (left column)

and Orc (right column) (Blizzard Entertainment, 1999) (WoWWiki1)

Peasant Peon

Race Human

Type Land

Unit

Statistics

Hit Points 30

Armor 0

Speed 10

Production

Gold 400

Lumber 0

Food 1

Produced at Town

Hall

Race Orc

Type Land

Unit

Statistics

Hit Points 30

Armor 0

Speed 10

Production

Gold 400

Lumber 0

Food 1

Produced at Great

Hall

167

Peasant Peon

Build time 45

seconds

Combat

Basic Damage 2-9

Piercing Damage 2

Range 1

Upgradeability

Upgrades Into cannot be upgraded

Build time 45

seconds

Combat

Basic Damage 2-9

Piercing Damage 2

Range 1

Upgradeability

Upgrades Into cannot be upgraded

Footman Grunt

Race Human

Type Land

Unit

Statistics

Hit Points 60

Armor 2

Speed 10

Production

Gold 400

Lumber 0

Food 1

Produced at (Human)

Barracks

Build time 60

seconds

Combat

Basic Damage 6

Piercing Damage 3

Range 1

Upgradeability

Upgrades Into cannot be upgraded

Race Orc

Type Land

Unit

Statistics

Hit Points 60

Armor 2

Speed 10

Production

Gold 400

Lumber 0

Food 1

Produced at (Orc)

Barracks

Build time 60

seconds

Combat

Basic Damage 6

Piercing Damage 3

Range 1

Upgradeability

Upgrades Into cannot be upgraded

168

Elven Archer Troll Axethrower

Race Human

Type Land

Unit

Statistics

Hit Points 40

Armor 2

Speed 10

Production

Gold 500

Lumber 50

Food 1

Produced at (Human) Barracks

Build time 70

seconds

Combat

Basic Damage 3-9

Piercing Damage 6

Range 4

Upgradeability

Upgrades Into Elven Ranger

Race Orc

Type Land

Unit

Statistics

Hit Points 40

Armor 2

Speed 10

Production

Gold 500

Lumber 50

Food 1

Produced at (Orc)

Barracks

Build time 70

seconds

Combat

Basic Damage 3-9

Piercing Damage 6

Range 4

Upgradeability

Upgrades Into Elven Ranger

Knight Ogre

Race Human

Type Land

Unit

Statistics

Hit Points 90

Armor 4

Speed 13

Production

Gold 800

Lumber 100

Food 1

Race Orc

Type Land

Unit

Statistics

Hit Points 90

Armor 4

Speed 13

Production

Gold 800

Lumber 100

Food 1

169

Produced at (Human) Barracks

Build time 90

seconds

Combat

Basic Damage 2-12

Piercing Damage 4

Range 1

Upgradeability

Upgrades Into Paladin

Produced at (Orc) Barracks

Build time 90

seconds

Combat

Basic Damage 2-12

Piercing Damage 4

Range 1

Upgradeability

Upgrades Into Ogre Mage

Ballista Catapult

Race Human

Type Land

Unit

Statistics

Hit Points 110

Armor 0

Speed 5

Production

Gold 900

Lumber 300

Food 1

Produced at (Human)

Barracks

Build time 250

seconds

Combat

Basic Damage 25-80

Piercing Damage 0

Range 8

Upgradeability

Upgrades Into cannot be upgraded

Race Orc

Type Land

Unit

Statistics

Hit Points 110

Armor 0

Speed 5

Production

Gold 900

Lumber 300

Food 1

Produced at (Human)

Barracks

Build time 250

seconds

Combat

Basic Damage 25-80

Piercing Damage 0

Range 8

Upgradeability

Upgrades Into cannot be upgraded

170

Gryphon Rider Dragon

Race Human

Type Air Unit

Statistics

Hit Points 100

Armor 0

Speed 14

Production

Gold 2500

Lumber 0

Food 1

Produced at Aviary

Build time 250

seconds

Combat

Basic Damage 8-16

Piercing Damage 0

Range 4

Upgradeability

Upgrades Into cannot be upgraded

Race Orc

Type Air Unit

Statistics

Hit Points 100

Armor 0

Speed 14

Production

Gold 2500

Lumber 0

Food 1

Produced at Dragon Roost

Build time 250

seconds

Combat

Basic Damage 8-16

Piercing Damage 0

Range 4

Upgradeability

Upgrades Into cannot be upgraded

171

A.2. Wargus Structures

Wargus structures are land-based and sea-based, capable of training military units,

aircraft, and sea-faring vehicles.

All human structures can be created by a peasant while all orc structures can be

created by a peon. Table A-2 below shows the properties of each structure in both

races. The table shows only structures that are used in the experiments of this

dissertation.

Other than human and orc structures, there are some structures that are neutral.

However, gold mine is the only one neutral structure that is used in the experiments of

this dissertation.

Table A-2: List of Wargus Structures and their properties in both Human (left

column) and Orc (right column) (Blizzard Entertainment, 1999) (WoWWiki2)

Town Hall Great Hall

Hit Points 1200

Production

Gold 1200

Lumber 800

Oil 0

Upgradeability

Upgrades to Keep

Training Ability

Peasant

Hit Points 1200

Production

Gold 1200

Lumber 800

Oil 0

Upgradeability

Upgrades to Stronghold

Training Ability

Peon

172

Keep Stronghold

Hit Points 1400

Prerequisite (Human)

Barracks

Production

Gold 2000

Lumber 1000

Oil 200

Upgradeability

Upgrades to Castle

Training Ability

Peasant

Allowance

Stables, Gnomish Inventor

Hit Points 1400

Prerequisite (Orc)

Barracks

Production

Gold 2000

Lumber 1000

Oil 200

Upgradeability

Upgrades to Fortress

Training Ability

Peon

Allowance

Ogre Mound, Goblin Alchemist

Castle Fortress

Hit Points 1600

Prerequisite (Human) Barracks,

(Human) Blacksmith,

Elven Lumber Mill,

Stables

Production

Gold 2500

Lumber 1200

Oil 500

Training Ability

Hit Points 1600

Prerequisite (Orc) Barracks,

(Orc) Blacksmith,

Troll Lumber Mill,

Ogre Mound

Production

Gold 2500

Lumber 1200

Oil 500

Training Ability

173

Castle Fortress

Peasant

Allowance

Gryphon Aviary, Mage Tower, Church

Peon

Allowance

Dragon Roost, Temple of the Damned,

Altar of Storms

Chicken Farm Pig Farm

Hit Points 400

Production

Gold 500

Lumber 250

Oil 0

Ability

Feeding 4 Units

Hit Points 400

Production

Gold 500

Lumber 250

Oil 0

Ability

Feeding 4 Units

(Human) Barracks (Orc) Barracks

Hit Points 800

Production

Gold 700

Lumber 400

Oil 0

Training Ability

Footman, Elven Archer/Ranger,

Knight/Paladin, Ballista

Hit Points 800

Production

Gold 700

Lumber 400

Oil 0

Training Ability

Grunt, Troll Axethrower/Berserker,

Ogre/Ogre-Mage, Catapult

174

(Human) Blacksmith (Orc) Blacksmith

Hit Points 775

Production

Gold 800

Lumber 450

Oil 100

Research Ability

Weapons 1, Weapons 2,

Armor 1, Armor 2

Hit Points 775

Production

Gold 800

Lumber 450

Oil 100

Research Ability

Weapons 1, Weapons 2,

Armor 1, Armor 2

Elven Lumber Mill Troll Lumber Mill

Hit Points 600

Production

Gold 600

Lumber 450

Oil 0

Research Ability

Arrows 1, Arrows 2, Ranger, Ranger

Scouting, Longbow, Ranger

Masksmanship

Hit Points 600

Production

Gold 600

Lumber 450

Oil 0

Research Ability

Throwing Axes 1, Throwing Axes 2,

Troll Berserker, Berserker Scouting,

Lighter Axes, Troll Regeneration

Stables Ogre Mound

Hit Points 500

Hit Points 500

175

Stables Ogre Mound

Prerequisite Keep

Production

Gold 1000

Lumber 300

Oil 0

Allowance

Knights / Paladins

Prerequisite

 Stronghol

d

Production

Gold 1000

Lumber 300

Oil 0

Allowance

Ogres / Ogre-Mages

Gryphon Aviary Dragon Roost

Hit Points 500

Prerequisite Castle

Production

Gold 1000

Lumber 400

Oil 0

Training Ability

Gryphon Rider

Hit Points 500

Prerequisite Fortress

Production

Gold 1000

Lumber 400

Oil 0

Training Ability

Dragon

Church Altar of Storms

Hit Points 700

Prerequisite Castle

Production

Gold 900

Lumber 500

Oil 0

Hit Points 700

Prerequisite Fortress

Production

Gold 900

Lumber 500

Oil 0

176

Research Ability

Paladin, Healing, Exorcism
Research Ability

Ogre-Mage, Bloodlust, Runes

Gold Mine

Hit Points 25500

177

APPENDIX B

SCORING IN WARGUS

To earn points in Wargus, units in a team have to kill units or structures of its

enemy teams. The total point score of team is based on the numbers and types of

enemy units that team has killed. Points gained from killing specific units are

shown in Table B-1. There is one type of the score that does not show in the table.

Namely, if one team wins, the winning team will earn an additional 500 points.

Table B-1: Points earned from killing specific units or structures (Sco13).

Units / Structures Score Units / Structures Score

Tower 95 Wall 1

Critter 1 Farm 100

Peasant/Peon 30 Lumber mill 150

Flying Machine/Zeppelin 40 Runestone 150

Tanker 40 Barracks 160

Footman/Grunt 50 Oil Rig 160

Transport 50 Blacksmith 170

Archer/Axe Thrower 60 Shipyard 170

Ranger/Berserker 70 Foundry 200

Dwarves/Sappers 100 Guard Tower 200

178

Units / Structures Score Units / Structures Score

Knight/Ogre 100 Refinery 200

Ballista/Catapult 100 Town Hall 200

Mage/Death Knight 100 Stables/Ogre Mound 210

Demon 100 Inventor/Alchemist 230

Paladin/Ogre Mage 110 Church/Altar 240

Legendary Hero 120 Wizard's Tower/Temple 240

Submarine/Turtle 120 Cannon Tower 250

Destroyer 150 Aviary/Roost 280

Gryphon/Dragon 150 Keep/Stronghold 600

Battleship/Juggernaut 300 Castle/Fortress 1500

179

CURRICULUM VITAE

Ulit Jaidee was born on July 6, 1975 to Mr. Kit Jaidee and Mrs. Jongdee

Boonyupakorn in Bang Phlad, Bangkok, Thailand. In 1997, he earned a B.Sc. in

Applied Computer Science (Second Class Honors) from King Mongkut’s Institute of

Technology North Bangkok. He has worked for the Thai government as a Lecturer at

Department of Applied Computer Science and Information Technology, Faculty of

Applied Science, King Mongkut’s Institute of Technology North Bangkok

(KMUTNB), the same place where he earned his bachelor degree. In 2003, he earned

a M.Eng. in Computer Engineering (KMUTNB scholarship) from King Mongkut’s

University of Technology Thonburi. In 2008, he earned a full scholarship from

Ministry of Science and Technology to pursue his Ph.D. in Computer Engineering at

Lehigh University.

List of Publication

 Jaidee, U., Munoz-Avila, H., & Aha, D.W. (2013). Case-based goal-driven

coordination of multiple learning agents. Proceedings of the Twenty-First

International Conference on Case-Based Reasoning. Saratoga Springs, NY:

Springer.

180

 Jaidee, U., Munoz-Avila, H. (2013). Modeling Unit Classes as Agents in Real-

Time Strategy Games. Proceedings of the Ninth Annual AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment. Boston, MA.

 Jaidee, U., Munoz-Avila, H., & Aha, D.W. (2012). Learning and reusing goal-

specific policies for goal-driven autonomy. Proceedings of the Twentieth

International Conference on Case-Based Reasoning (pp. 182-195). Lyon,

France: Springer.

 Jaidee, U., Munoz-Avila, H., & Aha, D.W. (2011). Integrated learning for

goal-driven autonomy. In Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence. Barcelona, Spain.

 Jaidee, U., Munoz-Avila, H., & Aha, D.W. (2011). Case-based learning in

goal-driven agents for real-time strategy combat tasks. In M.W. Floyd & A.A.

Sánchez-Ruiz (Eds.) Case-Based Reasoning in Computer Games: Papers from

the Nineteen International Conferences on Case-Based Reasoning Workshop.

U. Greenwich: London, UK.

 Munoz-Avila, H., Jaidee, U., Aha, D.W., & Carter, E. (2010). Goal directed

autonomy with case-based reasoning. Proceedings of the Eighteenth

International Conference on Case-Based Reasoning (pp. 228-241).

Alessandria, Italy: Springer.

 Munoz-Avila, H., Aha, D.W., Jaidee, U., Klenk, M., & Molineaux, M.

(2010). Applying goal directed autonomy to a team shooter game. Proceedings

181

of the Twenty-Third Florida Artificial Intelligence Research Society

Conference (pp. 465-470). Daytona Beach, FL: AAAI Press.

 Jaidee, U., Madarasmi, S. (2004). A Coarse-and-Fine Approach to Stereo

Matching, Proceedings of the International Technical Conference on

Circuits/Systems, Computers and Communications, Sendai, Japan.

