
Lehigh University
Lehigh Preserve

Theses and Dissertations

2019

Neural Network Methods for Nonparametric
Probabilistic Forecasting
Konstantinos Miltiadis Hatalis
Lehigh University

Follow this and additional works at: https://preserve.lehigh.edu/etd
Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Hatalis, Konstantinos Miltiadis, "Neural Network Methods for Nonparametric Probabilistic Forecasting" (2019). Theses and
Dissertations. 5563.
https://preserve.lehigh.edu/etd/5563

https://preserve.lehigh.edu/?utm_source=preserve.lehigh.edu%2Fetd%2F5563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F5563&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F5563&utm_medium=PDF&utm_campaign=PDFCoverPages
https://preserve.lehigh.edu/etd/5563?utm_source=preserve.lehigh.edu%2Fetd%2F5563&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

NEURAL NETWORK METHODS FOR

NONPARAMETRIC PROBABILISTIC

FORECASTING

by

KONSTANTINOS MILTIADIS HATALIS

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Lehigh University

May, 2019

c©Copyright by Konstantinos Miltiadis Hatalis 2019

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfill-

ment of the requirements for the degree of Doctor of Philosophy.

Date

Accepted Date

Dissertation Advisor

Committee Members:

Prof. Shalinee Kishore

(Committee Chair)

Prof. Parv Venkitasubramaniam

Prof. Wenxin Liu

Prof. Alberto J. Lamadrid

iii

Acknowledgments

The completion of this Ph.D. is the culmination of immense hard work. Not only

from myself, but also from everyone around me in my life in pushing and inspiring

me to complete it. Although I just mention a few individuals here, I am deeply

appreciative of everyone who has helped me along the way.

Firstly, I would like to express my enormous gratitude to my advisor Prof. Sha-

linee Kishore for the continuous support of my Ph.D. research, for her patience,

motivation, and immense knowledge. I am grateful to her for giving me the chance

to join her lab group and for allowing me to pursue my research passion in machine

learning. I could not have imagined having a better advisor and mentor for my Ph.D.

study. Along with my advisor, I would like to thank the rest of my dissertation com-

mittee: Prof. Parv Venkitasubramaniam, Prof. Wenxin Liu, and Prof. Alberto J.

Lamadrid, for their insightful comments, reviews of my papers, and remarks. Most

importantly they all pushed me with hard questions which motivated me to widen

my research from various perspectives. I also want to give special thanks to all the

anonymous reviewers, editors, and publishers of all my papers.

My sincere gratitude also goes to Prof. Rick S. Blum, Prof. Larry Snyder, Prof.

Arindam Banerjee, and Prof. Katya Scheinberg, who at different times of my Ph.D.

provided me with valuable feedback on my research. Thanks also go to the staff

of Lehigh: Ruby Scott, Diane Hubinsky, Brie Lisk, and David Morrisette. I thank

my fellow labmates, in Prof. Kishore’s group, Dr. Parth Pradhan and Dr. Kwami

Senam Sedzro. In all the years we spent together, in our shared office space in PA

401, I very much enjoyed our stimulating discussions and all the fun we had together.

Kwami, your life stories continue to inspire me, and Parth your comradeship working

iv

together side by side was remarkable. I want to give big thanks to my fellow doctoral

student, and one of my closest friends, Dr. Dustin Dannenhauer. I’ll never forget

our amazing discussions and ideas on AI, our epic Go and Starcraft game nights,

and all the veggie burgers we ate together.

I give the biggest thanks to my family who all have given me unconditional

support. To my sisters Maria and Amalia, they have been my life long friends. To

my mother, whom I am so gracious for everything you have done for me. And to

my fiancée, future wife, best friend, and soulmate Radhika. Your understanding,

encouragement, and love have kept me going through all the late nights and long

hours. Finally, I would like to dedicate this dissertation to my father, Prof. Miltiadis

Hatalis. My father is the sole inspiration to go into graduate school and pursue a

Ph.D. in engineering. His guidance throughout high school, college, and graduate

school have elevated me to success.

v

Contents

Acknowledgments iv

List of Tables ix

List of Figures x

Abstract 1

1 Introduction 5

Neural Networks . 6

Probabilistic Forecasting . 6

1.0.1 Quantile Regression . 8

1.0.2 Evaluation Metrics . 10

Outline of the Dissertation . 13

2 Time Delayed Recurrent Neural Network for Multi-Step Predic-

tion 15

Introduction . 15

Background . 17

Neural Network Model . 18

Particle Swarm Optimization . 21

2.0.1 Adaptive PSO . 24

PSO for Training of Neural Networks . 25

Experimental Setup . 30

vi

2.0.2 Data Source . 30

2.0.3 Error Measurements . 32

Results . 33

Conclusion . 35

3 Detection of Cyber-DSM Attacks using Forecasting and Supervised

Learning 37

Introduction . 37

Background . 41

3.0.1 Demand Side Management . 41

3.0.2 Load Forecasting . 42

3.0.3 Real Time Pricing . 45

3.0.4 Models for Pricing Simulation 45

Microgrid Simulation . 47

3.0.5 Data Source . 47

3.0.6 Block Bootstrap Simulation 48

Dependency Model . 49

3.0.7 Modeling Elastic Demand . 49

3.0.8 Modeling Consumer DSM . 50

3.0.9 Modeling DSM Goals . 53

3.0.10 Simulation Parameters and Assumptions 56

DSM Attack Models . 58

Attack Detection . 62

3.0.11 Sequential Detection Methods 64

3.0.12 Supervised Learning Methods 66

3.0.13 Performance Analysis . 67

Detection Experiments . 68

Conclusion . 71

4 Constrained Support Vector Quantile Regression 74

Introduction . 74

vii

Support Vector Quantile Regression . 76

4.0.1 Nonlinear Quantile Regression 77

4.0.2 SVQR Dual Formulation . 77

4.0.3 Non-crossing Quantile Constraints 79

Application To The GEFCom2014 Dataset 82

4.0.4 Results . 84

Conclusion . 85

5 Smooth Pinball based Composite Quantile Neural Network 88

Introduction . 88

Related Work . 90

Smooth Pinball Network Model . 91

5.0.1 Smooth Quantile Regression 92

5.0.2 Smooth Pinball Neural Network 93

5.0.3 Noncrossing Quantiles . 97

Results and Discussions . 98

5.0.4 Benchmark Methods . 98

5.0.5 Case Study Descriptions . 99

5.0.6 Case Study 1 . 100

5.0.7 Case Study 2 . 102

Conclusion . 106

6 Multiple Quantile Fourier Neural Network 113

Introduction . 113

Proposed Methodology . 116

6.0.1 Fourier Neural Networks . 117

6.0.2 Quantile Fourier Neural Networks 118

6.0.3 Monotone Constraints . 120

6.0.4 Implementation Details . 121

Validation . 122

6.0.5 Case Studies . 123

viii

6.0.6 Benchmark Methods . 124

6.0.7 Results and Discussion . 126

Conclusion . 130

7 Conclusion 142

Future Work . 145

7.0.1 Stepwise Quantile Networks for Non-crossing Constraints . . . 145

7.0.2 Quantile Autoregressive Network for Detection 146

7.0.3 Convolutional and Recurrent Quantile Networks 148

Bibliography 150

Vita 171

ix

List of Tables

2.1 Table of error statistics with minor noisy data. 34

2.2 Table of error statistics with higher noisy data. 35

3.1 Simulation parameters used in case studies. 56

3.2 Evaluation metrics for attack detection. 71

4.1 Results of prediction interval reliability in different months. 86

4.2 Summary of the mean Q-score across all quantiles for a given method

and month and their standard deviation. 87

6.1 Datasets used in the experiments. 131

6.2 Hyperparameters estimated by grid search for ARIMA and SARIMA

for each case study. The seasonal term S is estimated using the ACF

plot. 132

6.3 Quantiles scores from QFNN and benchmark methods. 132

6.4 Interval scores from QFNN and benchmark methods. 134

x

List of Figures

1.1 Reading order of the dissertation. 14

2.1 Example of a NARX network. 19

2.2 NAR network series mode. 22

2.3 NAX network parallel mode. 22

2.4 The scheme for value of the inertia weight w. 24

2.5 PSONAR learning algorithm. 27

2.6 3D plot of spatial distribution of simulated ocean waves. 28

2.7 Training data window sample of 30 seconds. 28

2.8 10 second lookahead (20 steps) PSONAR prediction example. 29

2.9 10 second lookahead (20 steps) NARNET prediction example. 31

2.10 Convergence plot of PSONAR in Fig. 2.8. 33

3.1 Feedback effect between price and DSM demand. As prices go up,

demand decreases. But if prices are hijacked and false prices are fed

to DSM systems then a false low price increases demand, and a false

high price can decrease demand. The same is true if demand was

altered by an attack. If load usage is increased by an attacker then

prices would increase and vice versa. 40

3.2 Various demand side management goals. 43

3.3 Process of block bootstrap simulation of a new home power usage

(bottom) from a template home (top). Example simulation samples

are taken from four days from the template series with replacement. . 49

xi

3.4 Load as a function of price with arbitrary price range $1-100, α =

10, 000, and εd = -0.1,-0.2,-0.4,-0.6,-1, -2. 51

3.5 Block diagram highlighting the feedback between the utility and grid. 55

3.6 Simulation of price-load interaction with Goal 1 with DSM when

κi = 0,∀i (a), κi = 0.5,∀i (b), and κi = 0.99, ∀i in (c). 56

3.7 Simulation of price-load interaction with Goal 2 with DSM when

κi = 0,∀i (a), κi = 0.5,∀i (b), and κi = 0.99,∀i in (c). 57

3.8 Examples of different type of DSM attacks: (a) ramp attack, (b)

sudden attack, and (c) point attack. 59

3.9 Confusion matrix imposed on a time axis of attack predictions vs true

observations. 60

3.10 ACF and PACF fplots of the residual series between the SARIMA fit

tp training data. From the plots we observe that the residuals are

stationary. 62

3.11 Q-Q plot of the residual series between the SARIMA fit tp train-

ing data. From the plot we observe that for extreme quantiles the

distribution is not Gaussian. 63

4.1 (a) Example plot of numerical wind predictions at 10m and 100m

for U and V directions used as inputs to forecast wind power. (b)

Observed wind power corresponding to the same time stamps. 83

4.2 Example plot of estimated 80%, 60%, 40%, and 20% prediction in-

tervals along with observed wind power in red for the month of July

2013. 84

5.1 Schematic diagram of the smooth pinball neural network. 93

5.2 Pinball ball function versus the smooth pinball neural network with

smoothing parameter α = 0.2. 94

5.3 Flowchart of the steps taken when conducting a probabilistic forecast

with SPNN. 96

xii

5.4 Reliability of prediction intervals from Zone 1 measured by the fre-

quency of observation falling with each interval. 102

5.5 Sharpness of prediction intervals for Zone 1 measured by the interval

mean size. 103

5.6 QVSS measured relative performance of SPNN2, SPNN1, and SVQR

to QR on Zone 1 dataset. 104

5.7 Reliability of prediction intervals from Zone 2 measured by the fre-

quency of observation falling with each interval. 105

5.8 Sharpness of prediction intervals for Zone 2 measured by the interval

mean size. 106

5.9 QVSS measured relative performance of SPNN2, SPNN1, and SVQR

to QR on Zone 1 dataset. 107

5.10 Box plot of quantile score evaluation across all datasets. 108

5.11 Box plot of average coverage error evaluation across all datasets. . . . 109

5.12 Box plot of interval score evaluation across all datasets. 110

5.13 Box plot of sharpness evaluation across all datasets. 111

5.14 Bar plot of SPNN2 and SPNN1 mean quantile score across all wind

data compared to the performance of the top teams in GEFCom2014

Wind Track. 112

6.1 Pinball ball function versus the smooth pinball neural network with

smoothing parameter α = 0.2. 131

6.2 Architecture of the quantile Fourier neural network. 132

6.3 Flowchart of proposed methodology using QFNN. 133

xiii

6.4 Forecast comparison of the median quantile for the Sunspots time

series (red dots) by QFNN (shown in black), SVQR (shown in blue),

SARIMA (shown in green), and ETS (shown in purple). SVQR fails

to capture any meaningful pattern in its prediction. SRIMA captures

a seasonal pattern that is out of phase with the sunspot test series,

and ETS shots off in the test set with a positive trend. QFNN cap-

tured a seasonal pattern that is a bit more in phase with the number

of sunspots over the years and is also able to learn multiple seasons

of sunspots thus providing the most accurate quantile forecast of all

the methods. 134

6.5 Forecast comparison of the median quantile for the Apple Closing

Stock Price time series (red dots) by QFNN (shown in black), SVQR

(shown in blue), SARIMA (shown in green), and ETS (shown in pur-

ple). SVQR can learn the linear trend of the stock series but nothing

else. ETS learns a non-existing seasonal pattern, and SARIMA does

not seem to capture any meaningful pattern. While QFNN does not

have the highest accuracy regarding the QS and IS metrics we can

see in the plot that it learns a cyclic trend of the stock price which

follows the test set better than any other method. 135

6.6 Forecast comparison of the median quantile for the Load Demand

time series (red dots) by QFNN (shown in black), SVQR (shown

in blue), SARIMA (shown in green), and ETS (shown in purple).

SVQR captures a poor and small seasonal pattern. SRIMA captures

the seasonality but fails to capture any cycles in the test set, and ETS

shots off in the test set with a positive trend. QFNN learns both the

seasonal and cyclical pattern of the load demand. 136

xiv

6.7 Forecast comparison of the median quantile for the Solar Power time

series (red dots) by QFNN (shown in black), SVQR (shown in blue),

SARIMA (shown in green), and ETS (shown in purple). SVQR is

barely able to estimate the seasonality. SRIMA has a seasonal pat-

tern reducing overtime in the test set, and while ETS captures the

seasonality we see a negative trend. QFNN learns a constant seasonal

quantile pattern that can be attributed to sunny days. 136

6.8 Forecast comparison of the median quantile for the Air Passengers

time series (red dots) by QFNN (shown in black), SVQR (shown

in blue), SARIMA (shown in green), and ETS (shown in purple).

SVQR estimates the trend but not the seasonality so well. ETS and

SARIMA estimate both trend and seasonality well, but the median

forecasts fall below and above the test data. QFNN learns the shape

of the data better and appropriately captures the median. 137

6.9 Probabilistic forecasting of 50 prediction intervals for the Air Passen-

gers series. 137

6.10 Probabilistic forecasting of 50 prediction intervals for the Internet

Traffic series. 138

6.11 Probabilistic forecasting of 50 prediction intervals for the Load De-

mand series. 138

6.12 Probabilistic forecasting of 50 prediction intervals for the Solar Power

series. 139

6.13 Probabilistic forecasting of 50 prediction intervals for the Apple Clos-

ing Stock Prices time series. 139

6.14 Probabilistic forecasting of 50 prediction intervals for the Sunspots

time series. 140

6.15 Probabilistic forecasting of 50 prediction intervals for the simulated

Ocean Wave Elevation time series. 140

6.16 Probabilistic forecasting of 50 prediction intervals for the wind power

time series. 141

xv

7.1 Example multi-step forecast from proposed QARNET model for load

demand. Anomalous data is flagged when above or below the predic-

tion intervals with a certain nominal coverage rate. 147

7.2 Example architecture of a convolutional neural network for regression. 148

xvi

Abstract

The presented research investigates the use of neural networks for probabilistic fore-

casting in selected application areas. The topic of neural networks, also known as

deep learning, has exploded as a research field, showing incredible results in image

analysis and classification. But the application of neural networks to time series or

regression-based forecasting is lesser known. Forecasting is the backbone of many

industries and academic research areas. From predicting weather patterns to the

stock market, to healthcare and energy, forecasting is vital to many operations of

todays modern society. In the of evolution of the study of forecasting, the field of

probabilistic forecasting has recently emerged. Unlike a deterministic forecast which

only provides a single expected value, a probabilistic forecast provides information

on the uncertainty of a prediction. We investigate how neural networks, which can

automatically extract features via hidden layers, can be used to generate reliable

and sharp probabilistic forecasts in the form of quantiles, prediction intervals, and

full predictive densities. More specifically, we look at nonparametric probabilistic

forecasting where we do not assume the underlying distribution of the forecasts. Our

work seeks to evaluate these new methods in the application domains of renewable

energies. In chapter 1 we provide a brief overview of probabilistic forecasting theory.

In our first study (chapter 2) of this thesis, we overview the basic theory of how

neural networks can be used for deterministic forecasting. This presents as a foun-

dation for our later work for probabilistic prediction. In this study, we propose the

development of an adaptive particle swarm optimization (APSO) learning algorithm

to train a non-linear autoregressive (NAR) neural network, which we call PSONAR,

for short term time series prediction of ocean wave elevations. We also introduce

1

a new stochastic inertial weight to the APSO learning algorithm. Our work is mo-

tivated by the expected need for such predictions by wave energy farms. As such,

we simulated noisy ocean wave heights for training and testing. We utilized our

PSONAR to get results for 5, 10, 30, and 60-second multi-step predictions. Results

show APSO can outperform backpropagation in training a NAR neural network.

In our second study (chapter 3) we study cyber-enabled demand-side manage-

ment systems. DSM is a vital tool that can be used to ensure power system reliability

and stability. In future smart grids, certain portions of a customers load usage could

be under automatic control with a cyber-enabled DSM program which selectively

schedules loads as a function of electricity prices to improve power balance and grid

stability. In such a future, security of DSM cyberinfrastructure will be critical as

advanced metering infrastructure, and communication systems are susceptible to

hacking, cyber attacks. Such attacks, in the form of data injection, can manipulate

customer load profiles and cause metering chaos and energy losses in the grid. These

attacks are also exacerbated by the feedback mechanism between load management

on the consumer side and dynamic price schemes by independent system operators.

This work provides a novel methodology for modeling and simulating the nonlinear

relationship between load management and real-time pricing. We then investigate

the behavior of such a feedback loop under intentional cyber attacks using our feed-

back model. We simulate and examine load-price data under different levels of DSM

participation with three types of additive attacks: ramp, sudden, and point attacks.

We applied change point and supervised learning methods for the detection of DSM

attacks.

Results conclude that higher amounts of DSM participation can exacerbate at-

tacks but also lead to better detection of such attacks, point attacks are the hardest

to detect, and supervised learning methods produce results on par or better than

sequential detectors. This chapter serves as an example of how linear methods can

often yield better results then nonlinear such as neural networks. The need for deep

learning or advanced probabilistic forecasting is not warranted in this DSM domain

when generation is constant. However, we hypothesize that when renewable energy

generation is introduced into this problem, the detection of attacks can become much

2

more difficult. Due to the chaotic nature of renewable energies, there is a need to

quantify the uncertainty in forecasting their power generation. As motivation and

a prerequisite for future work to study DSM systems under renewable generation,

in the next chapters we propose several new and advanced forecasting methods.

In our third study (chapter 4), we propose our first method to produce full pre-

dictive densities by examining how support vector machines (SVMs) can be used

for quantile estimation. SVMs are one of the most efficient machine learning al-

gorithms, which is mostly used for pattern recognition since its introduction in

the 1990s. Uncertainty analysis in the form of probabilistic forecasting can pro-

vide significant improvements in decision-making processes in the smart power grid

for better integrating renewable energies, particularly wind. This chapter analyzes

the effectiveness of an approach for nonparametric probabilistic forecasting of wind

power that combines support vector machines and nonlinear quantile regression

with non-crossing constraints. A numerical case study is conducted using publicly

available wind data from the Global Energy Forecasting Competition 2014. Mul-

tiple quantiles are estimated to form 20%, 40%, 60% and 80% prediction intervals

which are evaluated using the pinball loss function and reliability measures. Three

benchmark models are used for comparison where results demonstrate the proposed

approach leads to significantly better performance while preventing the problem of

overlapping quantile estimates.

In our fourth study (chapter 5) we analyze the effectiveness of a novel approach

for nonparametric probabilistic forecasting of wind power that combines a smooth

approximation of a pinball loss function with a deep neural network architecture

and a smooth penalty scheme to prevent the quantile crossover problem. We call

our model the smooth pinball neural network (SPNN). A numerical case study is

conducted using publicly available wind data from the Global Energy Forecasting

Competition 2014. Multiple quantiles are estimated to form 10%, to 90% predic-

tion intervals which are evaluated using a quantile score and reliability measures.

Benchmark models such as the persistence and climatology distributions, multiple

quantile regression, and support vector quantile regression are used for comparison

where results demonstrate the proposed approach leads to improved performance

3

while preventing the problem of overlapping quantile estimates.

In our fifth study (chapter 6) we radically extend SPNN to forecast time se-

ries. Point forecasting of univariate time series is a challenging problem with exten-

sive work having been conducted. However, nonparametric probabilistic forecasting

of time series, such as in the form of quantiles or prediction intervals is an even

more challenging problem. To expand the possible forecasting paradigms we devise

and explore an extrapolation-based approach that has not been applied before for

probabilistic forecasting. We present a novel quantile Fourier neural network is for

nonparametric probabilistic forecasting of univariate time series. Multi-step predic-

tions are provided in the form of composite quantiles using time as the only input

to the model. This effectively is a form of extrapolation based nonlinear quantile

regression applied for forecasting. Experiments are conducted on eight real-world

datasets that demonstrate a variety of periodic and aperiodic patterns. Nine simple

and advanced methods are used as benchmarks including quantile regression neural

network, support vector quantile regression, SARIMA, and exponential smoothing.

The obtained empirical results validate the effectiveness of the proposed method

of providing high quality and accurate probabilistic predictions. We then provide

conclusions in our final chapter (chapter 7) as well as specific direction for future

work.

4

Chapter 1

Introduction

In the last decade there have been two rising fields that have shown a lot of promise,

unique results, and immense academic and industry attention. These are deep

learning [1] and probabilistic forecasting [2]. Part of the success of deep learning,

also known as the study of neural networks, is due to its ability to conduct automatic

feature extraction at different levels of abstraction. Such feature extraction promotes

by passes the need to provide manual feature engineering that is common among

machine learning pipelines. Moreover, neural networks allow the representation of

the nonlinearities in data, often associated with complex and real-world problems.

Deep learning models have been used to achieve state-of-the art results in the field

of computer vision [3] and have also been applied to the problem of forecasting [4].

However, the study of neural networks, and related methods, is limited when it

comes to probabilistic forecasting. Thus, motivation for the presented research is

to explore how neural networks could contribute to providing better probabilistic

forecasts. Further motivation is provided by the new class of big data in regression

and time series, which are vital in areas such as in the smart grid and renewable

energy which are both used as application domains for our proposed forecasting

frameworks.

5

Neural Networks

The study of neural networks has grown tremendously in the past decade. Neural

networks are a set of algorithms, modeled very loosely after the human brain, that

are designed to recognize patterns. They take in input data, which may come in

different forms such as text, images, or time series, and they output either a class

label for classification or a numeric value for regression. The layers of a network

are made of computational nodes, again loosely modeled on a neuron in the human

brain. These nodes take in data and perform some computation utilizing coefficients

or weights which assign significance to inputs with regard to the task the algorithm

is trying to learn. The weights can increase or decrease the significance of each data

point. The input-weight products are fed into the node’s activation function, usually

some nonlinear function, which then determines to what extent that signal should

progress further through the network. Through utilizing a finite amount of nodes a

neural network can approximate any continuous function, this is also known as the

universal approximation theorem.

There are many types of neural networks including feedfward networks, recurrent

networks, convolutional networks, deep belief networks and autoencoders. Due to

the popularity of neural networks in both academic research and industrial applica-

tion, there is already a large body of work reviewing the algorithms, mathematics,

methods, approaches and issues. We therefore refer to the following references on

the background of deep learning [1,5–7], and in the next section we review in depth

the field of probabilistic forecasting which has less literature.

Probabilistic Forecasting

Over the last several years there has been a large body of work conducted in

nonparametric probabilistic forecasting. Recently the Global Energy Forecasting

Competition in 2014 [8] and in 2017 [9] are further proof of the rising interest

in probabilistic forecasting. Probabilistic forecasting is especially of large interest

6

to applications in renewable power such as wind. As such, the domain of wind

forecasting is also part of the main focus of this dissertation. Wind forecasting

models are either meteorological ensembles that are obtained by a weather model [10]

or are statistical methods [11]. Under the statistical approach, we can estimate full

predictive distributions in the form of quantiles or prediction intervals (PIs).

Some recent forecasting methods include extreme learning machines [13] where a

direct quantile regression approach was presented to efficiently generate nonparamet-

ric probabilistic forecasting of wind power generation combining extreme learning

machine and quantile regression. Hybrid intelligent methods have also been ex-

plored in [14] by feeding deterministic wind power forecasts made by a combination

of wavelet transform and fuzzy ARTMAP network, optimized by using firefly opti-

mization algorithm, in quantile regression. A PI estimation scheme is shown in [12]

which uses a radial basis function neural network.Another approach to forecast the

density of wind power is to take an ensemble of point forecasts and calculate the

mean and variance of the combined forecasts. This has been studied in [15] where a

wavelet transform and a convolutional neural network are used for ensemble point

forecasting. Another ensemble approach can be seen in [16] where time series mod-

els such as ARMA and GARCH are combined to form density forecasts. One of

the most prevalent approaches to probabilistic forecasting of wind power is to ap-

ply quantile regression (QR) which can be used to estimate different wind power

quantiles [17].

Another alternative to nonparametric probabilistic wind forecasting is the ap-

plication of the Lower Upper Bound Estimation (LUBE) method [18]. The LUBE

method constructs a neural network with two outputs for estimating the prediction

interval bounds. The coverage width-based criterion is used as the loss function for

estimating PIs, and simulated annealing or particle swarm optimization [19] can be

used to minimize that loss function. A complete review on probabilistic forecast-

ing of wind power can be found in [17]. Other reviews on probabilistic forecasting

methods can be found in [20] for solar power, [8] for load forecasting, and [21] for

electricity price forecasting.

Next we highlight the underlying mathematics in nonparametric probabilistic

7

forecasting, overview linear quantile regression, and summarize the main evaluation

metrics for density forecasts. Given a random variable Yt such as wind power at time

t, its probability density function is defined as ft and its the cumulative distribution

function as Ft. If Ft is strictly increasing, the quantile q
(τ)
t of the random variable Yt

with nominal proportion τ is uniquely defined on the value x such that P (Yt < x) =

τ . It can also be defined as the inverse of the distribution function q
(τ)
t = F−1t (τ).

A quantile forecast q̂
(τ)
t+z is an estimate of the true quantile q

(τ)
t+z for the lead time

t+ z, given a predictor values (such as numerical wind speed forecasts). Prediction

intervals are another type of probabilistic forecast and give a range of possible values

within which an observed value is expected to lie with a certain probability β ∈ [0, 1].

A prediction interval Î
(β)
t+z is defined by its lower and upper bounds, which are the

quantile forecasts Î
(β)
t+z =

[
q̂
(τl)
t+z, q̂

(τu)
t+z

]
=
[
l
(β)
t , u

(β)
t

]
whose nominal proportions τl and

τu are such that τu − τl = 1− β.

In probabilistic forecasting, we are trying to predict one of two classes of density

functions, either parametric or nonparametric. When the future density function

is assumed to take a certain distribution, such as the Normal distribution, then

this is called parametric probabilistic forecasting. For a nonlinear and bounded

process such as wind generation, probability distributions of future wind power, for

instance, may be skewed and heavy-tailed distributed [22]. Else if no assumption

is made about the shape of the distribution, a nonparametric probabilistic forecast

f̂t+z [23] can be made of the density function by gathering a set of M quantiles

forecasts such that f̂t+z =
{
q̂
(τm)
t+z ,m = 1, ...,M |0 ≤ τ1 < ... < τM ≤ 1

}
with chosen

nominal proportions spread on the unit interval. As mentioned before, renewable

power forecasting can be quite stochastic, thus making nonparametric forecasting

more ideal then fitting a parametric density [17].

1.0.1 Quantile Regression

Quantile regression is a popular approach for nonparametric probabilistic forecast-

ing. Koenker and Bassett [24] introduce it for estimating conditional quantiles and

is closely related to models for the conditional median [25]. Minimizing the mean

8

absolute function leads to an estimate of the conditional median of a prediction.

By applying asymmetric weights to errors through a tilted transformation of the

absolute value function, we can compute the conditional quantiles of a predictive

distribution. The selected transformation function is the pinball loss function as

defined by

ρτ (u) =

{
τu if u ≥ 0

(τ − 1)u if u < 0
, (1.1)

where 0 < τ < 1 is the tilting parameter. To better understand the pinball loss,

we look at an example for estimating a single quantile. If an estimate falls above

a reported quantile, such as the 0.05-quantile, the loss is its distance from the

estimate multiplied by its probability of 0.05. Otherwise, the loss is its distance

from the realization multiplied by one minus its probability (0.95 in the case of the

0.05-quantile). The pinball loss function penalizes low-probability quantiles more

for overestimation than for underestimation and vice versa in the case of high-

probability quantiles. Given a vector of predictors Xt where t = 1, ..., N , a vector of

weights W and intercept b coefficient in a linear regression fashion, the conditional

τ quantile q̂τ is given by q̂
(τ)
t = W>Xt + b. To determine estimates for the weights

and intercept we solve the following minimization problem

min
W,b

1

N

N∑
t=1

ρτ (yt − q̂(τ)t), (1.2)

where yt is the observed value of the predictand. The formulation above in Eq. (1.2)

can be minimized by a linear program.

There are many variations of QR which are traditionally solved using linear pro-

gramming algorithms. In [26] local QR is applied to estimate different quantiles,

while in [27] a spline-based QR is used to estimate quantiles of wind power. In [28]

quantile loss gradient boosted machines are used to estimate many quantiles and

in [29] multiple quantile regression is used to predict a full distribution with opti-

mization achieved by using the alternating direction method of multipliers. Quantile

regression forests [30] are another approach in forecasting which are an extension of

regression forests based on classification and regression trees.

9

Due to their flexibility in modeling elaborate nonlinear data sets, artificial neural

networks are another dominant class of machine learning algorithms that can be used

to enhance QR. Taylor [31] is the first to propose a quantile regression neural network

(QRNN) method, combining the advantages of both QR and a neural network. This

method can reveal the conditional distribution of the response variable and can also

model the nonlinearity of different systems. The author applies this method to

estimate the conditional distribution of multi-period returns in financial systems,

which avoids the need to specify the explanatory variables explicitly. However, the

paper does not address how the network was optimized. The same QRNN was later

used by [32] for credit portfolio data analysis where results showed that QRNN is

more robust in fitting outliers compared to both local linear regression and spline

regression. In [33] an autoregressive version of QRNN is used for applications to

evaluating value at risk, and [34] implements the QRNN model in R as a statistical

package.

1.0.2 Evaluation Metrics

In probabilistic forecasting it is essential to evaluate the quantile estimates and if

desired also evaluate derived predictive intervals. Therefore, we reviews several im-

portant evaluation metrics here. To evaluate quantile estimates, one can use the

pinball function directly as an assessment called the quantile score (QS). We choose

QS as our main evaluation measure for most of our studies for the following reasons.

When averaged across many quantiles it can evaluate full predictive densities; it is

found to be a proper scoring rule [35]; it is related to the continuous rank probability

score; and it is also the main evaluation criteria in the 2014 Global Energy Forecast-

ing Competition (GEFCOM 2014), the source of our testing data. QS calculated

overall N test observations and M quantiles is defined as

QS =
N∑
t=1

M∑
m=1

ρτm(yt − q̂(τm)
t)

where yt is an observation used to forecast evaluation such future wind power ob-

servations. To evaluate full predictive densities, QS is averaged across all target

10

quantiles for all look ahead time steps using equal weights. A lower QS indicates a

better forecast.

With the QS calculated we can then also see what the relative performance of a

proposed method is with respect to some benchmark method. We can assess relative

performance between methods using the quantile verification skill score (QVSS) [36]

QV SS = 1− QSfor

QSref

where QSfor is QS for the forecast method of interest, and QSref is the QS value

for the reference forecast of a benchmark method, which we will assume to be linear

quantile regression. If QVSS is positive then forecast of interest performs better

than the reference forecast, and a QVSS = 1 means a perfect forecast. Negative

QVSS values indicate that forecast of interest performs worse than the reference

forecast.

In some applications, it may be needed to have wind forecasts in the form of pre-

diction intervals (PIs) and as such, we look at two secondary evaluation measures:

reliability and sharpness. Reliability is a measure which states that over an evalua-

tion set the observed and nominal probabilities should be as close as possible, and

the empirical coverage should ideally equal the preassigned probability. Sharpness

is a measure of the width of prediction intervals, defined as the difference between

the upper uβit and lower lβit interval values. For interval reliability we use the average

coverage error (ACE) metric [17] and for measuring interval sharpness we use the

interval score (IS) which can also be used to evaluate the overall skill of PIs [37]. For

measuring reliability, PIs show where future wind power observations are expected

to lie, with an assigned probability termed as the PI nominal confidence (PINC)

100(1 − βi)%. Here i = 1...M/2 indicates a specific coverage level. The coverage

probability of estimated PIs is expected to eventually reach a nominal level of con-

fidence over the test data. A measure of reliability which shows target coverage of

the PIs is the PI coverage probability (PICP), which is defined by

PICPi =
1

N

N∑
t=1

1{yt ∈ Iβit (xt)}.

11

For reliable PIs, the examined PICP should be close to its corresponding PINC.

A related and easier to visualize assessment index is the average coverage error

(ACE), which is defined by

ACE =

M/2∑
i=1

|PICPi − 100(1− βi)|.

This assumes calculation across all test data and coverage levels. To ensure PIs have

high reliability, the ACE should be as close to zero as possible. A high reliability

can be easily achieved by increasing or decreasing the distance between lower and

upper interval bounds. Thus, the width of a PI can also influence its quality. For

measuring the effective width of PIs we use the sharpness score proposed by [23]

which measures how wide PIs are by focusing on the mean size of the intervals only.

We define q̂ut − q̂lt as the size of the central interval forecast with nominal coverage

rate (1 − β). For lead times t = 1...Ntest, a measure of sharpness for PIs is then

given by the mean size of the intervals

Sharpness =
1

Ntest

Ntest∑
t=1

(q̂ut − q̂lt).

A lower sharpness score is considered more ideal, but too small and the PIs would

not cover enough of the observed data. Thus sharpness is typically a measure to

be considered along with reliability and a skill score. QS is a score that measures

the skill of individual quantiles; to measure the skill of individual PIs we apply the

interval score (IS) [37]. The IS - when evaluated with all test data and coverage

levels - is defined by

IS =
2

NM

N∑
t=1

M/2∑
i=1

(uβit − l
βi
t)+

2

βi
(lβit − yt)1{yt < lβit }+

2

βi
(yt − uβit)1{yt > uβit }

.

The prediction model is rewarded for narrow PIs and is penalized if the observation

misses the interval. The size of the penalty depends on βi. Including all aspects

of PI evaluation, the IS can be used to compare the overall skill and sharpness of

12

interval forecasts. However, IS cannot identify the contributions of reliability and

sharpness to the overall skill. Thus, ACE and sharpness are both used for evaluation

of PIs along with QS for evaluation of quantile estimation.

Outline of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 showcases our

work in a recurrent neural network trained by particle swarm optimization for multi-

step deterministic forecasting. This work highlights the background theory of deep

networks for prediction and provides a base for building probabilistic forecasting

neural networks in later chapters. In chapter 3 we present our work on modeling and

detecting cyber demand side management attacks. This problem domain shows how

nonlinear methods are not always better than linear ones. However, we propose that

the incorporation of renewable generation such as wind, solar, and wave energy can

complicate the attack problem. Thus, we are motivated to provide solutions that can

forecast renewables and other nonstationary time series. In chapter 4 we propose a

shallow neural network called constrained support vector quantile regression method

for providing probabilistic forecasts of wind power. Next, in chapter 5, we expand to

deeper neural networks trained by stochastic gradient descent and introduce a novel

loss function and architecture for composite quantile estimation. In chapter 6, we

extend our neural network models from ideas in signal processing and propose a novel

multiple quantile Fourier neural network that applies to probabilistic forecasting

of nonstationary univariate time series data. We evaluate this model on multiple

domains. Finally, Chapter 8 concludes the dissertation, and we provide a number of

extensions for future work in quantile neural networks. Fig. 1.1 outlines the reading

order for this dissertation. Chapter 3 in detecting cyber-DSM attacks, deterministic

forecasting methods are used. As such, chapters 1 and 2 should be read first.

Chapters 4 to 7 describe neural network methods for probabilistic forecasting which

should be read in that order. But before reading these chapters, chapters 1 and 2

should be read first which lay the foundations for neural network based prediction.

13

Figure 1.1: Reading order of the dissertation.

14

Chapter 2

Time Delayed Recurrent Neural

Network for Multi-Step Prediction

Introduction

Time-series prediction is an active area of research and an important practical

problem in a variety of disciplines such as in energy forecasting, economics, finance,

signal processing, and many other fields [38]. In the last two decades, artificial

neural networks (ANNs) have been extensively applied for complex time series pro-

cessing tasks [39]. This is due to their strength in handling nonlinear functional

dependencies between past time series values and the estimate of the value to be

forecasted.

Our main motivating factor in developing an accurate non-linear time series

prediction method is for use in short term forecasting of renewable energy sources

(RES). Such predictions are vital for integrating RES into existing power grids.

Because of the variability in the generation of power from renewables gaps are left in

the supply which must be filled by dispatchable resources and this is where prediction

plays a key role. This is especially true in the new and active research area of

controlling ocean wave farms and individual wave energy converters (WECs). In a

wave farm sensors are located near WECs to measure ocean waveforms and relay

15

the information to the WECs, resulting in enhanced control and better interactions

with the grid and markets.

In this work, we focus on using an ANN for the prediction of future wave el-

evations at the measurement location. While waves are considered to be more

predictable than other renewable energy sources such as wind or solar, the inter-

mittency of wave energy is a big challenge in employing this resource as a reliable

source of electric power in a generation portfolio. A demanding problem is the pre-

diction of future levels of wave heights for operational scheduling and control in wave

energy farms. The presented work is motivated by the fact that these predictions

could allow new control methods to increase the efficiency of wave energy converter

devices [40–42].

We have previously studied the use of a non-linear autoregressive (NAR) neural

network trained using backpropagation which we called NARNET [43], to conduct

multistep forecasts of wave power directly from observed wave heights. Long term

predictions were made for several look ahead hours such as 3h, 6h, 12h, and 24h.

The data used was significant wave height (SWH) which is the mean wave height

of the highest third of the observed waves. This presents a challenge in testing

accuracy of very short term predictions on the order of seconds. So in our current

study we focus on shorter range forecasts which are obtained from simulated ocean

wave height data rather than observed SWH data.

In this study we develop, test, and discuss a new method for nonlinear time series

prediction. In enhancing the accuracy of our previous NARNET model while also

using less memory in the training period, we used particle swarm optimization (PSO)

for learning. We call this new model of using PSO to train a NAR neural network

PSONAR. Since it is parametric it has all the advantages concerning estimation and

testing connected with similar parametric methods. In addition, our neural network

fulfills the requirements for the universal approximation theorem of neural networks

[44] so it should be able to approximate any unknown nonlinear process. Further

contribution comes in the form of our new stochastic inertia weight, a parameter used

in our PSO learning algorithm, that emphasizes exploration more than exploitation

in the search space.

16

Background

A variety of different prediction approaches have been applied to forecast signals

vital to reliably integrating RES into the power grid. Such diverse domains include

weather, wave characteristics, wind speed, and electric load. Looking specifically

at ocean waves, it has been traditional to apply physical models to predict wave

heights [45] but there is a recent effort to utilize machine learning algorithms to

train on past time series data to predict future forms. Various learning methods

being tested range from regression to neural network models. Prediction of wave

elevation levels has been done before for real time control of wave energy converters

where the wave elevation is treated as a univariate time series and it is predicted

only on the basis of its past history [46].

Predictive time series models like the auto-regressive (AR), auto-regressive mov-

ing average (ARMA), and auto-regressive integrated moving average (ARIMA) have

been found suitable for forecasting in a number of different domains. AR and ARMA

models specifically are appropriate for stationary time series, while ARIMA and

other models such as Kalman filters are aimed at non-stationary data and long-term

series. These models therefore have also found widespread use in the simulation and

estimation of the wave characteristics based on historical data [39]. Alternatively,

artificial neural networks (ANN) have been found equally useful and even shown

to outperform ARMA models [47]. Due to their high performance, we chose ANNs

for prediction. In an ANN, forecasting is done by feeding a sequence of previous

observations to the model as input so that it can recognize hidden patterns in the

series and consequently estimate future values. Neural networks have been applied

to study aspects of waves such as predicting the height of a wave at the time of its

breaking and the depth of water at which it breaks [48].

An ANN can be trained by any number of learning algorithms, the most well

known one being gradient descent backpropagation. Another lesser known alterna-

tive is particle swarm optimization (PSO). In 1995, Dr. Eberhart and Dr. Kennedy

17

developed PSO which is a population based stochastic optimization strategy, in-

spired by the social behavior of a flock of birds [49]. PSO is similar to Genetic

Algorithms (GA) in terms of population initialization with random solutions and

searching for global optima in successive generations [50]. But unlike GA, PSO does

not undergo crossover and mutation, instead the particles move through the problem

space following the current optimum particles. When using PSO, a possible solution

to an underlying numeric optimization problem is represented by the position of a

particle in the search space. PSO is suggested to be a powerful training algorithm

for ANNs [51–54].

PSO is a powerful global optimization algorithm which has been successfully

hybridized with genetic algorithms [55], fuzzy logic [56], and support vector machines

[57] for application in various domains. In related work, using PSO to train ANNs for

prediction has also been used in the past such as [58–62]. However, most of these

cases only looked at single time step prediction and did not consider predicting

hundreds of future data points instantaneously. Some of these papers also did not

consider the effect of training using an adaptive inertial weight in the PSO algorithm

which could dynamically change the velocity of a particle. Our contributions look

at these factors.

Neural Network Model

In predicting a time series which exhibits volatile behavior, a number of different

ANNs have been found particularly useful [63]. A popular ANN model for time

series prediction is the Nonlinear Auto Regressive model with eXogenous inputs

(NARX) neural network [64]. This is a network with tapped time delay inputs

and has recurrent dynamic feedback connections enclosing the layers. The output

of the network is fed back into the input of the model. It is a combination of a

multilayered perceptron, a simple recurrent network, a time delayed network, and

a feedfoward backpropagation network. Fig. 2.1 shows a NARX network with the

feedback element and one hidden layer. Below we first describe the structure of the

18

Figure 2.1: Example of a NARX network.

NARX model

y (n) =

f (x (n− 1) , x (n− 2) , . . . , x (n−mx) , . . . , x̂(n− 1) ,

x̂ (n− 2) , . . . x̂(n−mx̂))

where x(n) and x̂(n) symbolize, respectively, the input and output functions of

the neural network at time n, while mx and mx̂ represent the input and output

memory order, and f is a nonlinear function. The function f is approximated by

a multilayered perceptron. The output at time-step n is dependent on its past

mx̂ values and the past mx input values. The network uses a time-delayed (TDL)

architecture with a feedback connection from the output layer to the input layer of

the network. States in the NARX network are updated as

19

xi (n+ 1)

=

u(n) i = mx

y(n) i = mx +my

xi+1(n) 1 ≤ i < mx OR mx < i < mx +my

so that at time n the tap delays correspond to the values

x (n) =

{u (n−mx) , . . . , u (n− 1) , y (n−my) , . . . , y(n− 1)}

The MLP approximation of the function f consists of a set of nodes organized into

two layers. There are i = 1...N inputs and h = 1...q nodes in the hidden layer. Each

hidden node performs the following function

zh (n) = σ

(
N∑
i=1

wihxi (n) + bh

)
,

where σ is the nonlinear transfer function

σ =
1

1 + e−x

and wih ∈ WH are the weights between the input and output layer and bh ∈ BH are

the weights of the bias term in the network, given by

WH =

wH1,1 · · · wH1,i
...

. . .
...

wHq,1 · · · wHq,i

 , BH

bH1
...

bHq

 .
The output layer consists of a single linear node

y (n) =

q∑
h=1

whzh (n) + θo,

where θo is the bias term at the output node and wh ∈ WO real valued weights,

given by

20

WO =

wO1
...

wOq

 .
An advantage of the NARX architecture is that it can converge faster and gen-

eralize better than other networks [63]. In our experiments we specifically use a

derivative of the NARX network known as the non-linear autoregressive (NAR)

neural network where we do not have exogenous inputs. During testing, predicted

values at each time step are the only inputs fed to the network. Diving deeper

into the training and testing of our network, we differentiate between two modes of

operation similarly based on the NARX network modes of operation from [65].

We call the first one series mode, shown in Fig. 2.2; this is used during training.

Here the network has a purely feedforward architecture and a learning algorithm

such as backpropagation can be used for training. The second one is called parallel

mode in which the output is fed back to the input of the feedforward neural network

as part of the standard NARX architecture, as shown in Fig. 2.3, with the DELAY

being the tapped delay line. The series mode NAR network is converted to the

parallel mode to perform the prediction during testing. Our NAR network has

an input layer of neurons, an output layer, and one hidden layer. We previously

used the Lavenberg-Marquardt backpropagation algorithm as a training function

to update the weight and bias values of the NAR model [43], we call this neural

network NARNET.

Particle Swarm Optimization

PSO is a stochastic global optimization algorithm which is based on the sim-

ulation of the social behavior of a swarm. It exploits a population of candidate

solutions in a search space. The particles in the swarm are initialized with a pop-

ulation of random solutions which will move through the N -dimensional problem

space to search for new potential solutions. A fitness, f, is then calculated as a

21

Figure 2.2: NAR network series mode.

Figure 2.3: NAX network parallel mode.

certain measure of quality in reaching a target value. Each particle i is associated

with two vectors, the velocity vector Vi = [v1i , v
2
i , ..., x

N
i] and the position vector

Xi = [x1i , x
2
i , ..., x

N
i] and are updated as follows

−→v i(t+ 1) =

−→v i(t) + c1φ1(
−→p i(t)−−→x i(t)) + c2φ2(

−→p g(t)−−→x i(t))

−→x i(t+ 1) = −→x i(t) + ∆t−→v i(t+ 1).

22

The first equation updates a particle’s velocity which is a vector value with multiple

components. The term −→v i(t+ 1) is the new velocity at time t+ 1. The new velocity

depends on three terms. The first term is −→v i(t), the current velocity at time t. The

second part is c1φ1(
−→p i(t) − −→x i(t)). The c1 term is a positive constant called the

coefficient of the self-recognition component. The φ1 and φ2 factors are uniformly

distributed random numbers in [0,1]. The −→p i(t) vector value is the particle’s best

position found so far. The −→x i(t) vector value is the particle’s current position. The

third term in the velocity update equation is c2φ2(
−→p g(t)−−→x i(t)). The c2 factor is

a constant called the coefficient of the social component. The −→p g(t) vector value is

the best known position found by any particle in the swarm so far. Once the new

velocity, −→v i(t + 1), has been determined, it is used to compute the new particle

position −→x i(t + 1). The term −→v i is limited to the range ±−→v max. ∆t is a time

delay in updating a particles position, which is usually set to 1. The personal best

position of a particle is calculated as:

−→p i(t+ 1) =

{ −→p i(t) if f(−→x i(t+ 1)) ≥ f(−→p i(t))
−→x i(t+ 1) if f(−→x i(t+ 1)) < f(−→p i(t)),

where f is the fitness function. PSO does not require a large number of parameters

to be initialized. But the choice of PSO parameters can have a large impact on

optimization performance and has been the subject of much research [66]. For most

practical applications, a typical choice of the number of particles is in the range from

10 to 40. Usually, 20 particles is sufficient to get good results. In the case of more

difficult problems, the choice can be increased to 100 - 200 particles. Parameters c1

and c2, (the coefficients of self-recognition and social components respectively) are

not critical for the convergence of the PSO algorithm, but fine-tuning these learning

vectors aids in faster convergence and alleviation of local minima. It is suggested to

set these parameters to c1 = c2 = 2 [49]. An alternative could be to choose a larger

self-recognition component, c1, than the social component, c2, such that it satisfies

conditions such as c1 + c2 = 4 [67].

The particle dimension and range is determined based on the problem to be

optimized. Various ranges can be chosen for different dimension of particles. Usually

23

Figure 2.4: The scheme for value of the inertia weight w.

the range of particles is set as the maximum velocity. For instance, if a particle

belongs to the numeric range -5 to 5, then the maximum velocity is 10. The stopping

criteria may be any one of the following: the process can be terminated after a

fixed number of training epochs or iterations such as 1000, or the process may be

terminated when the error between the obtained objective function value and the

best fitness value is less than a specified threshold.

2.0.1 Adaptive PSO

The adaptive particle swarm optimization (APSO) algorithm is based on the original

PSO algorithm and is described below:

−→v i(t+ 1) =

ω−→v i(t) + c1φ1(
−→p i(t)−−→x i(t)) + c2φ2(

−→p g(t)−−→x i(t)).

24

The ω factor is called the inertia weight. The inertia weight plays an important role

in the convergence behavior of the PSO algorithm. The inertia weight is employed

to control the impact of the previous history of velocities on the current one. Ac-

cordingly, the parameter ω regulates the trade-off between the global exploration

and local exploitation abilities of the swarm. A large inertia weight aids in global

exploration (searching wide ranging areas), while a small inertia weight aids in local

exploitation (searching within the nearby areas). To obtain a balance between the

global and local searches the number of iterations required to locate the optimum

solution are reduced. The inertia weight is usually set as a constant initially and in

order to promote global exploration of the search space, the parameter is gradually

decreased to get more optimal solutions.

There are several variants of using an inertia weight. The inertia weight proposed

by Shi and Eberhart [68] decreases with iterative generations as:

ω = ωmax − (ωmax − ωmin)
g

G

where g is the current iteration index, G is the predefined maximum number of

training epochs, and ωmax and ωmin are the maximal and minimal weights. From

empirical experimentation we have devised a slight variation of the inertia weight

which we call a stochastic initial weight:

ω = ωmin + φ(ωmax − ωmin)
g

G

where φ is a normally distributed random number at each iteration. Our measure is

contradictory to the idea of having the inertia weight decrease over time. However,

we believe the increased exploration allows the particles to search more broadly over

time for new solutions in order to minimize the fitness function. Fig. 2.4 shows the

change in ω over iteration where it increases stochastically over time.

PSO for Training of Neural Networks

In the case of training a neural network through PSO, a particle’s position repre-

sents the values for the network’s weights and biases. The goal is to find a position

25

so that the network generates computed outputs that match the outputs of the

training data. PSO is initialized with a group of random particles. In one epoch or

iteration, each particle is updated by following two best values. The first one is the

best weight solution achieved so far by each individual particle’s best position. An-

other best value tracked by the particle swarm optimizer, are the global best weight

values, obtained by any particle in the population; so, the velocity and position of

the obtained optimum solution is updated during an iterative process. The stop

criteria are reaching the maximum iteration number or satisfaction of the minimum

error condition.

Fig. 2.5 illustrates the flowchart of training a NAR neural network with PSO

which we call our PSONAR network. The first step is initialization. The network

is first constructed by choosing the number of input, hidden, and output node

parameters. Then all the PSO variables such as c1, c2, dt, Vmax, etc, and termination

conditions are chosen. These parameters have a very important effect to promote the

networks efficiency. The position vectors Xt and velocity vectors Vt are initialized

randomly between 0 and 1. Here the training data can also be preprocessed.

In the training algorithm, the search space is N-dimensional where N is set by

the total number of weights and biases in the network between the input and hidden

layer, and the hidden and output layer. The position coordinates of each particle

xi(t) in the search space is then the following weights:

xi(t) =

{
w1
ih, w2

ih, ..., wnih,

w1
ho, w2

ho, ..., wmho

}
,

where wIHn represents all the weights between the input and hidden nodes and

wHOm represents all the weights between the hidden layered nodes and output node.

During training, weights and biases of the NAR network are set to the calculated

positions of the given particle. Then all training data is fed into the network for

a given particle’s weights to get the network’s outputs. We then use the mean

squared error (MSE) as our fitness function. If the MSE is below a threshold then

training ends. If not then the pBest score of the given particle’s best position pi(t)

is compared to the MSE. If it is greater then the pBest score for the given particle

26

Figure 2.5: PSONAR learning algorithm.

27

Figure 2.6: 3D plot of spatial distribution of simulated ocean waves.

Figure 2.7: Training data window sample of 30 seconds.

28

Figure 2.8: 10 second lookahead (20 steps) PSONAR prediction example.

is set to the MSE and pi(t) is set to the current position xi(t). The global best of all

the particles is compared to the fitness MSE. If it is greater, then the gBest score is

set to the MSE and Pg(t) is set to the current position xi(t). Next the position and

velocity vectors of the current particle are updated. If at this point the maximum

number of epochs has been reached then training stops. Otherwise the next particle

in the swarm is evaluated in the network. While we use one hidden layer in our

PSONAR, the training algorithm can easily be scaled to include multiple hidden

layers.

29

Experimental Setup

2.0.2 Data Source

For our analysis, we use the well accepted standard wave equation model from [69]

where we assume the ocean is an ideal incompressible fluid with no loss of mechanical

energy. We also adopt the common assumptions that the fluid motion is irrotational

and that the wave amplitudes are small enough so that linear theory is applicable.

Moreover, the deployment area in the ocean is assumed to be of sufficient depth such

that finite depth effects, other than dispersion, are small. Finally, we assume that

the waves were created by forcing functions, distant storms for example, that were

applied at sufficient distances away resulting in the observation of fully developed

ocean waves. Under the assumptions just described, the solutions for the simplified

differential wave equation are plane waves consisting of a sum of sinusoids with

different amplitudes, frequencies, directions, and phases. Therefore, we assume that

wave elevations under a local wave field are described by plane waves having, in

total, M directions and frequencies. Then, for all two dimensional sensor locations

(x, y)T on the surface, all times t of interest, the exact phase-resolved (wave-by-

wave) wave elevation η(x, y, t) which would be observed at a particular location in

the deployment area is described by

η(x, y, t) =

M∑
i=1

Ai cos

(
(
w2
i

g
)(x cos(βi) + y sin(βi))− twi+φi

)
,

where Ai is the amplitude in meters, ωi is the frequency in radians per second, βi is

the angular direction in radians measured relative to the x-axis, φi is the phase in

radians, and g is the acceleration due to gravity in m
s2

.

Using the just described model for the wave elevation, we assumed a local wave

field that is described by five component plane waves, each having its own amplitude,

frequency, direction, and phase. The sets used to describe the wave field were A =

{2, 2, 1, 1, 1.5}, w = 2π{0.2, 0.25, 0.3, 0.22, 0.15}, β(degrees) = {50, 40, 25, 50, 0},

30

Figure 2.9: 10 second lookahead (20 steps) NARNET prediction example.

φ = {2, 1, 3, 0.3, 0} where Ai, wi, βi, φi are the amplitude, frequency, direction, and

phase of the ith component wave, where i = 1, 2, . . . , 5. These values are chosen

based on typical values reported in experiments and observations found in [69–71].

A snapshot of the assumed wave field is given in Fig. 2.6.

The training data is then taken to be the wave elevation measurements taken at

the origin for 250 seconds, starting at time equal to zero, sampled at 2 Hz or one

sample every half a second observed under independent additive white Gaussian

noise with zero mean and 0.01 variance (minor noise) and second set with zero

mean and 0.25 variance (some noise). A sample window of 30s of data with noise is

shown in Fig. 2.7.

31

2.0.3 Error Measurements

Error measurement statistics play a critical role in analyzing forecast accuracy, ob-

serving exceptions, and benchmarking methods. In our results we use five error

statistics, so that we can prove a broad comparison metrics for future studies, and

we provide confidence intervals for predicted values. We first use the mean absolute

percentage error (MAPE) which measures the size of the error in percentage terms

and is a common estimate of error in forecasting problems. MAPE is defined as

MAPE =
1

N

N∑
i=1

∣∣∣∣xi − yixi

∣∣∣∣,
where N, is the total number of predicted values, xi is the actual observed value,

and yi is the forecasted value by the neural network. We also calculate the mean

square error (MSE) and root mean squared error (RMSE) to evaluate accuracy

MSE =
1

N

N∑
i=1

(xi − yi)2, RMSE =
√
MSE.

We then use the mean absolute deviation (MAD) which measures the size of the

error in units. MAD takes the absolute value of forecast errors and averages them

over the entirety of the forecast time periods. It is calculated as the mean of the

unsigned errors

MAD =
1

N

N∑
i=1

|xi − yi|.

Lastly we use the Pearson’s correlation coefficient (CC) which is a measure of the

linear dependency between two variables, in our case the observed and forecasted

values, and is calculated as

CC =

∑N
i=1 (xi − x)(yi − y)√∑N

i=1 (xi − x)2
∑N

i=1 (yi − y)2
.

A confidence bound for a model or variable is an interval of values within which we

expect the true value of the population parameter to be contained. For calculating

32

Figure 2.10: Convergence plot of PSONAR in Fig. 2.8.

bounds for our model we use the bootstrapping method [72] which resamples resid-

uals for estimating the variance of forecasted values at each time step. The upper

and lower endpoints are specified as

Y ± z σ√
n
,

with Y representing the sample mean (center of the confidence interval), σ/
√
n being

the standard deviation of the sampling distribution, and z is a constant multiplier

set at 1.96 for a 95% confidence interval.

Results

The PSONAR neural network is used to predict results of up to 5, 10, 30,

and 60 second forecasts where each forecast is composed of 10, 20, 60, and 120

prediction steps. The max number of training epochs was set to 1000. The NAR

33

network for both PSONAR and NARNET has 1 hidden layer and empirically we

chose them to have 10 input nodes and 14 hidden node each. For the PSONAR

network we chose the coefficient of self-recognition to have a weight of 2.5 and the

social component to have a weight of 1.5. For the stochastic inertial weight we

set ωmax = 0.9 and ωmin = 0.4. Fig. 2.10 shows an MSE convergence plot for an

example prediction using PSONAR whose results are showcased in Fig. 2.8. Fig.

2.9 shows the same sample experiment run with the NARNET. Error statistics of

the plots are summarized in Table II.

Table 2.1: Table of error statistics with minor noisy data.

PSONAR 5s 10s 30s 60s
MSE 0.1626 0.7284 6.3961 9.8831

RMSE 0.4033 0.8535 2.5290 3.1437
MAPE 0.3428 0.4302 1.5131 4.5228

MAD 0.3437 0.7399 2.0099 2.5102
CC 0.9972 0.9643 0.4944 0.0103

NARNET 5s 10s 30s 60s
MSE 0.1531 1.3392 7.2867 11.4703

RMSE 0.3912 1.1572 2.6993 3.3867
MAPE 0.2033 0.7033 1.3948 3.4318

MAD 0.3161 0.8971 2.0568 2.6227
CC 0.9971 0.9332 0.4980 0.2076

Table I shows the error statistics for multistep prediction on data with minor

additive white Gaussian noise. Table II shows the error statistics for data with more

noise. As seen in the two tables, for 5s lookahead prediction the NARNET using

gradient descent backpropagation for learning performed better. Looking further

into the future PSONAR outperformed the NARNET network to a small extent.

34

Table 2.2: Table of error statistics with higher noisy data.

PSONAR 5s 10s 30s 60s
MSE 0.2097 0.9153 8.9066 13.4073

RMSE 0.4579 0.9567 2.9843 3.6615
MAPE 0.1734 0.2964 2.0758 3.2429

MAD 0.3470 0.6783 2.4161 2.8644
CC 0.9974 0.9693 0.3743 0.0902

NARNET 5s 10s 30s 60s
MSE 0.1603 1.4119 10.8491 14.0818

RMSE 0.4003 1.1882 3.2937 3.7525
MAPE 0.2531 0.7421 1.3229 4.7647

MAD 0.3698 0.8938 2.0769 3.0842
CC 0.9971 0.9165 0.31433 0.12301

Conclusion

This work proposed a method for using particle swarm optimization to train a

non-linear autoregressive neural network. The accuracy of our proposed PSONAR

is tested using ocean wave heights for the purpose of aiding the integration of wave

energy into the power grid. As such, we believe our scheme will be helpful in multi-

step prediction as needed in integrating other stochastic renewable resources, such as

wind or solar. Moreover, compared to existing methodologies, the PSONAR can be

applied to other applications where predictions are needed for multiple time steps.

Our method of using a stochastic inertial weight in the PSO learning algorithm

to train our NAR neural network with simulated data showed successful results

in predicting short term ocean wave levels. Results show PSO can outperform

backpropagation.

In this study we ran experiments on one test set and used only a single set of

parameters for initializing the neural networks and the PSO learning algorithm.

Further work is planned to compare results of the stochastic inertia weight with a

decreasing inertia weight, expand the number of testing sets, test the effect of varying

the number of neural nodes and hidden layers, and provide a deeper computational

35

analysis such as usage of memory and error analysis. We plan to also test a number of

PSO variants such as Clan PSO [58, 73], Trelea PSO [74], hybrid backpropagation

PSO [51], and other swarm methods such as ant colony optimization [75]. We

would then evaluate their effectiveness as training algorithms for training a NAR

network for time series prediction by running a Monte Carlo method to obtain a

distribution of multiple runs with each comparative method. In these studies we

plan to incorporate both simulated data and actual data from buoy sensors for wave

height elevations for studies in wave energy farm and wind speeds for studies in

wind energy farms.

36

Chapter 3

Detection of Cyber-DSM Attacks

using Forecasting and Supervised

Learning

Introduction

In this chapter we examine a new domain of cyber enabled demand side manage-

ment (DSM). We study this domain in depth, provide a mathematical framework

for it, and showcase it’s vulnerabilities to attacks with the main goal to detect such

attacks. We introduce this problem to determine if its structure requires the need of

deep learning and forecasting. A number of statistical and machine learning meth-

ods are used for the detection of attacks and we provide an analysis if linear or

nonlinear methods in this case warrant better or worse results.

DSM is an essential component in smart grids for planning, monitoring, and

modification of consumer loads levels. Furthermore, future cyber-enabled DSM will

allow smart grids even higher levels of automated decision-making capabilities to

selectively schedule loads on local grids to improve power balance and grid stability.

Such a cyber approach relies heavily on real-time, two-way communication capabili-

ties between a central controller and various adaptable loads. Research into security

37

and reliability of the cyberinfrastructure that enables DSM is therefore vital. The

main concerns in ensuring DSM security and safety lay in the feedback mechanism

of real-time electricity pricing and distributed DSM controllable loads. Particularly

in residential grids, each load contributes only a small amount of power and its

compromising might not cause a noticeable impact on the power grid. However, a

carefully planned or even chaotic cyber attack might impact other loads not under

attack or not under DSM control by taking advantage of the feedback mechanism

of load management.

Two-way communication capabilities of advanced metering infrastructure (AMI)

enables a utility or independent system operator (ISO), in the retail power markets,

to collect high-resolution energy usage from consumers and enable dynamic pric-

ing to adapt to consumer demand. Thus, AMIs provide an efficient way for ISOs

to schedule prices and to then communicate those prices to consumers for auto-

matic DSM control of certain portions of a load. AMIs can also provide practical

ways for ISOs to set DSM goals such reducing peak or decreasing aggregate load

levels through price influences. However, there are several vulnerabilities in AMIs

that present noteworthy security issues since they are directly accessible by users.

Additionally, due to the large scale deployments of AMIs, ISOs encourage the uti-

lization of marginally cheaper hardware which results in constrained computational

resources to allow for robust security capacities, for example, intrusion monitoring.

DSM programs utilize demand response, which is a specific tariff or program to

motivate customers to respond to changes in price or availability of electricity over

time by altering their regular electricity use habits. We take this a step further and

envision that cyber-enabled DSM programs will be able to autonomously control

household loads such as water heaters and HVAC units based on RTP. As part

of the reliable implementation of this future cyber-DSM, it is crucial to be able

to understand the dependency between dynamic pricing and automatic demand

response as well as the risks. Cyber-DSM programs can be particularly vulnerable

to cyber attacks such as false pricing information or direct load manipulation.

Our work is thus motivated to study this vulnerability in DSM. In the absence

of appropriate simulation methodologies, we provide a mathematical formulation of

38

the feedback between utilities and DSM systems, and then simulate, analyze, and

test different detection methods for attacks on such feedback. This relationship

between load and price is shown visually in Fig. 3.1. As prices go up, demand

naturally responds by decreasing. However, if AMIs are hijacked, and false lower

prices are reported to DSM systems, then there will be an inappropriate increase in

demand. A similar effect happens if an attacker directly controls user loads. Then a

higher load usage by the attacker may inadvertently lead to higher prices for the rest

of the grid. We present how attackers can exploit such a dependency. We propose

a mathematical framework of the feedback between price setting and DSM systems

to study how attacks take place and how to detect them. The main contributions

of our approach can be summarized as follows.

First, we show the simple application of block bootstrap to simulate load data for

analyzing the relationship between load and price instead of relying on cumbersome

grid system simulations. We formalizing the price to load relationship using an

elastic demand model to achieve DSM goals. We combine the first two points to

generate load and pricing data in a DSM system; in particular under a strategic

conservation scheme as an example of a DSM goal. We propose two modes of attacks

on DSM systems: false pricing data injection and direct load manipulation. We

prove their equivalence and highlight three types of attacks that could be undertaken

by each mode. We empirically show how a high use of DSM can exacerbate attacks.

We simulate these attacks and review sequential change-point and machine learning

methods for detecting DSM attacks. We show that despite the complexity of the

domain, linear detection methods yield better results then nonlinear.

In section 3 we provide a literature review on DSM, and important DSM strate-

gies real-time pricing and load forecasting. In section 3.0.4 we apply the block

bootstrap technique for simulating the non-DSM load distribution of a micro-grid

of N homes from template residential load time series. Dependency models for the

feedback nature of load and prices are proposed in section 3.0.6 where we showcase

simulations of residential load and electricity prices when an automatic DSM pro-

gram controls certain portions of consumer demand as a function of price. In section

3.0.10 we present two modes of cyber attacks, direct load manipulation attacks and

39

D
em

an
d

Time

P
ri

ce

Time

1 2 3

Price Hijacking

Price Alters

Demand

Figure 3.1: Feedback effect between price and DSM demand. As prices go up, demand
decreases. But if prices are hijacked and false prices are fed to DSM systems
then a false low price increases demand, and a false high price can decrease
demand. The same is true if demand was altered by an attack. If load usage
is increased by an attacker then prices would increase and vice versa.

price data injection attacks that can have a significant influence on the feedback of

load and price. We prove these two attacks are equivalent. We conclude in section

3.0.13 with possible directions of future work.

40

Background

There are multiple strategies to accomplish DSM like load forecasting and real-

time pricing which are used for load management on in-home energy management

systems. So before introducing our models on the relationship between price setting

and demand response by cyber DSM systems, it is crucial to review foundational

material on DSM. In this section, we provide a brief overview of DSM goals and

approaches, real-time pricing, and load forecasting. We also review different pricing

simulation schemes which will play a role in modeling RTP.

3.0.1 Demand Side Management

DSM is an active and voluntary approach for reducing electricity use through ac-

tivities or programs that promote electric energy efficiency, conservation, or more

efficient management of electric energy loads [76]. Very often financial incentives

and educational programs are used to modify consumer demand. More specifically,

the main goals of DSM are peak clipping, valley filling, load shifting, strategic load

growth, flexible load shaping, and strategic conservation. These goals are summa-

rized in Fig. 3.2. In these goals, consumers are encouraged to use less energy during

peak hours, or to move the time of energy use to off-peak times such as nighttime, or

reduce overall consumption. Other applications for DSM is to aid grid operators in

balancing intermittent generation from wind and solar farms due to their volatility

nature which may not coincide with energy demand at different times of the day.

In our study, we focus on modeling and simulating the DSM goal of strategic

conservation, due to its simplicity and essential use in the smart grid. This goal

also makes it easier to study attacks on DSM by modeling strategic conservation

as a general reduction in load. Attacks then could stand out more versus goals like

flexible load shaping. More specifically, this DSM goal aims at reducing aggregate

load demand through directed reduction of electricity consumption. The successful

implementation of strategic conservation programs usually requires some combina-

tion of financial incentives to customers, the promotion of energy-efficient building

41

standards, and appliance efficiency improvement. Strategic conservation also re-

quires a more excellent knowledge on the part of the utility concerning customer

behavior. We envision in the future that AMI and smart appliances in residential

DSM programs will automatically control specific portions of consumer load as a

function of real-time electricity prices to achieve the goal of strategic conservation.

Most DSM programs are formulated as an optimization problem as follows

min
Pt

T∑
t=1

(Lt − L′t)2,

where Pt is RTP at time t, Lt is actual load, and L′t is the target load level the

ISO is interested in achieving via DSM. The aim is to choose a price Pt for each

time step such that the actual load would reach as close as possible to the target

level. In [77], a DSM strategy was proposed based on heuristic optimization to shape

the load curve close to the desired shape. A heuristic-based evolutionary algorithm

was used to solve the above minimization problem. A multi-agent game theoretical

DSM approach is proposed in [78]. The authors use game theory and formulate

an energy consumption scheduling game, where the players are the users, and their

strategies are the daily schedules of their household appliances and loads. In [79],

the minimization problem is solved by utilizing a feedforward neural network to map

the nonlinear relationship between price and load. Recently, the DSM problem is

addressed in [80] as a multi-objective optimization problem that also seeks to balance

other merit functions such as energy production cost, costumers preferences, and

other constraints. Unlike these approaches, we propose a non-optimization based

solution utilizing the formulation of the price elasticity of demand. Our approach

is thus simpler, tractable, and more interpretable. Our solution also provides a

framework to simulate and study the effects of DSM attacks easily.

3.0.2 Load Forecasting

Load forecasting (LF) techniques are an essential component for RTP and other

ISO operations by predicting future energy requirements of a system from previous

data and weather conditions. It is recognized as the initial building block of utility

42

D
em

an
d

Flexible Load Shape

Time

Strategic Load Growth

D
em

an
d

Time

Time

Strategic Conservation

D
em

an
d

Time

Peak Load Reduction

D
em

an
d

Time

Valley Filling

D
em

an
d

Time

Load Shifting

D
em

an
d

Demand Side
Management

Figure 3.2: Various demand side management goals.

planning efforts and ensures the balance between supply and demand of energy.

For a given system and requirements, LF provides predictions for specific periods.

These periods are divided into short, medium, and long term forecasts. Short term

LF is used to predict load on an hourly basis up to 1 week for daily operations and

cost minimization. Medium-term LF typically predicts load on weekly, monthly, or

yearly basis for efficient operational preparations. Long term LF is used to predict

load up decades ahead to facilitate grid and generation expansion planning. In this

work, we look at short term LF on the resolution of one hour up to a week.

LF models can be divided into two approaches [81], the first being statistical

based modeling and the second being machine learning. The statistical approach

43

can be further broken down into regression and time series models. Multiple lin-

ear regression can be used with the weighted least squares estimation technique to

form a relationship between different independent covariates that load depends on

such as weather conditions. Regression models have been applied in LF in differ-

ent works such as in [82]. Time series models are also prevalent to apply to LF.

The most common model is the autoregressive moving average (ARMA) model and

its variants that include components such as integration (I), fractional integration

(FI), multivariate series (V), seasonality (S), exogenous (X) data, conditional het-

eroskedasticity (CH), and nonlinearity (N).

Hyperparameters of ARMA models can be solved using Box-Jenkins decompo-

sition or grid search with an Akaike information criterion. Various studies have

looked at all the different ARMA models for LF [83]. Other time series methods

for LF include simple exponential smoothing [84] and the Holt-Winters seasonal

method [85]. Time series analysis and regression analysis share many models and

ideas, but they are theoretically different. Time series analysis first deals with time

indexed stationary data and account for the autocorrelation between time events.

In regression we assume there is no autocorrelation, and that all observations are

independent and identically distributed. Furthermore, we also assume in regression

the data is homeostatic and does not exhibit multicollinearity.

Most recently, machine learning methods have seen a huge spike in LF research.

Machine learning models are data-driven, typically providing a nonlinear fit to in-

put covariate data to predict load. Advantages of this approach include not needing

preconditions for data such as stationarity (a requirement for most time series meth-

ods), excels at modeling nonlinear dependences, and can fit large data sets. Dis-

advantages for most machine learning models are that most hyperparameters are

continuous (difficult to tune), they require extensive feature engineer, and may get

stuck in local minimums. Models for LF include support vector machines [86], feed-

forward neural networks [87], recurrent neural networks [88], random forests [89],

and ensemble learning [90].

In all the various LF approaches, benchmarks are required to compare the pre-

diction performance of our models. The most common benchmarks are the naive

44

persistence and seasonal methods. In the naive persistence method a prediction of

the load for time t is equal to the value from the previous time step t − 1 and in

the seasonal persistence method a prediction of the load for time t is equal the same

hourly value from the previous day t− 24.

3.0.3 Real Time Pricing

Every consumer of electricity is charged with a certain amount per kilowatt hour

(kWh) of energy. Such a charge is done to cover the costs associated with the

generation, transmission, and distribution of electricity. The two main types of

costs are operational and fixed costs. During the 20th century, tariffs have been

used to recover costs. Lately, clever pricing schemes have been developed to meet

the requirements of modern power systems [91], such as, real-time pricing (RTP)

where consumers are charged with a price nearest to the real price of generation at

a specific interval in time. RTP plays an integral part in time-based DSM programs

that makes consumers choose the time of consumption of power as a response to

prices [92]. Cyber-enabled DSM programs are an automated form of time-based

DSM programs.

There are two types of RTP schemes, hourly pricing and day ahead pricing. In

the first type, the price of electricity is released on an hourly basis for the next

hour. In day ahead pricing, prices are announced for the next 24 hours based on

predicting the load demand and the cost of generation. RTP signals combined

with DSM automation at the consumer level provides benefits to both consumers

and utility. A properly designed RTP scheme increases the reliability of the grid,

reduces associated costs with generation, and lowers electricity bills of consumers.

Further review of RTP and other dynamic pricing schemes can be found in [81].

3.0.4 Models for Pricing Simulation

Most work that model and simulate the relationship between load demand to elec-

tricity prices are those that study how to price financial derivatives in electricity

45

markets. Most models for a spot market employ one or two factors: one factor cap-

turing the short-term hourly price dynamics characterized by mean reversion and

very high volatility, and another factor representing seasonal price behavior. The

work in [93] provides a good overview of stochastic electricity pricing models which

we outline below.

In the last few years there has been a rapid increase in literature on stochastic

models for prices of electricity and other commodities. The simplest model for

spot prices takes into account mean-reverting behavior and is given by an Ornstein-

Uhlenbeck process, where spot prices St at time t follow a diffusion process satisfying

the stochastic differential equation

dSt = −λ(St − α)dt+ σdWt

where Wt is a standard Brownian motion, σ is the volatility of the process, and λ is

the velocity with which the process reverts to its long term mean α. In electricity

markets, prices show strongly mean reverting behavior so estimates for λ are set

quite high. Alternatively, a two factor model can be used of the form

dSt = −λ(St − Yt)dt+ σdWt

where Yt is a Brownian motion. Several other approaches describe prices in the form

St = f(t) +Xt or St = exp(f(t) +Xt) or St = exp(Yt +Xt)

where Xt is an Ornstein-Uhlenbeck process responsible for the short-term variation,

Yt is a Brownian motion describing the long-term dynamics, and f(t) is an arbitrary

deterministic function to model seasonality based on time or a load forecast. These

approaches are able to realistically simulate electricity prices to help price derivative

contracts such as options and futures but they do not help describe the nonlinear

feedback relationship between load and price, nor do they incorporate elements to

model DSM in this feedback relationship. Therefore, we provide in this work a

feedback framework between load and price that includes DSM dynamics.

46

Microgrid Simulation

Before modeling the load-price dependency of a DSM system, we need first to

obtain some ground truth data of what load data from a residential micro-grid looks

like without the presence of DSM, where we assume the elasticity of demand to price

is very low. To do this, we use the power time series from several homes as templates

for our grid and then generate artificial N household datasets. There are alternative

ways to generate artificially residential load data, such as by using power grid simu-

lators such as MATPOWER [94] or GridLAB-D [95]. Such software is cumbersome

and time-consuming in the simulation. Our object is to create unlimited but plau-

sible univariate load data to serve as the base demand for sample households before

the application of a DSM system. Thus, time series processes are more suitable for

such a task.

3.0.5 Data Source

We use the UMass Smart* [96] dataset, 2017 release, for the simulation of micro-

grid load time series. The Smart* project built a data collection infrastructure that

records data from a variety of sensors deployed in real homes. Their infrastructure

supports both pulling data by querying individual sensors and pushing data from

sensors to a gateway server, which ran on their software tools. The 2017 Home

dataset release is comprised of electrical power readings from seven homes from

2014 to 2016 at a minute resolution. It includes readings from individual appliance

sensors as well as total power usage of each home. We chose to use these seven

datasets as template homes in simulating the power usage of a micro-grid due to

the breadth of the data collected. For DSM attack research, these datasets can help

model an attacker compromising individual appliances. For each home the power

consumption is given in kW for every minute. We convert this time series to kWh

with a resolution of one hour which is common for smart meter readings and real

time price modeling [81]. We do this by obtaining the average power consumption

47

within an hour and multiplying it by the time period as such

E(kWh) = t(hr) ×
1

60

60∑
i=1

P i
(kW) (3.1)

3.0.6 Block Bootstrap Simulation

In the generation of new time series from sample data, several approaches can be

applied depending on the statistical properties of the series. Data that is stationary

can be modeled and generated using an ARMA process [97]. An ARMA model is

fitted to the data, and then future data is sampled from the ARMA distribution.

If there is no serial correlation, then the distribution of some sample data can be

modeled using Markov Chain Monte Carlo [98], and new data can be sampled from

this estimated distribution. However, in the case that data exhibited autocorrelation

and non-stationarity in the presence of a periodic seasonal pattern, then a natural

choice is to use the block bootstrap method [99].

Bootstrap is used in simulation statistics for estimating the distribution of a

statistic such as mean or variance. This is particularly useful when there is no

analytical form to estimate the density of our underlying statistics. A bootstrap

analysis is conducted by using the Monte Carlo algorithms with replacement. Data

is sampled with replacement until a new set is formed and then statistics are cal-

culated from that new set. The process can be repeated to get a more precise

estimate of the Bootstrap distribution and to form confidence intervals for those

statistics. The block bootstrap is used when the data, or the errors in a model,

are correlated. The block bootstrap attempts to replicate the serial correlation by

resampling blocks of data instead of individual observations. This is why the block

bootstrap is used primarily with correlated time series. In block bootstrap, blocks

sampled can overlap or be non-overlapping. For load time series simulation we use

block bootstrap with non-overlapping blocks to preserve the daily seasonal pattern

of power consumption. The process of block bootstrap simulation of a new home

power usage from a template home is shown in Fig. 3.3.

48

Figure 3.3: Process of block bootstrap simulation of a new home power usage (bottom)
from a template home (top). Example simulation samples are taken from
four days from the template series with replacement.

Dependency Model

3.0.7 Modeling Elastic Demand

For analyzing the feedback dependency between load and price in a DSM setting

it is first required to define a supply and demand relationship of electricity. To do

so we utilize the well known measure in economics, the Price Elasticity of Demand

(PED) [100] which can be given by

εd =
dL

dP
· P
L
. (3.2)

PED shows the responsiveness of the Load (L) demanded of electricity to a change in

its Price (P). An absolute value of PED = 1 shows unitary elasticity. For instance,

when εd = −1 then a 1% change in the price will have a 1% change in the load

demanded. As prices increase, load will decrease. When absolute PED falls between

0 and 1, this signifies that the demand for load is inelastic, while a value greater

then 1 says that the demand is elastic. When |εd| = 0 the demand is perfectly

inelastic. A change in price has no affect on the load. While εd = ∞ represents

49

perfect elasticity. If εd is constant the whole demand curve then,

1

L
dL = εd

1

P
dP∫

1

L
dL = εd

∫
1

P
dP

ln(L) = εd ln(P) + c

eln(L) = eεd ln(P)+c

L = eεd ln(P) · ec

L =
(
eln(P)

)εd · ec
L = P εd · ec

substitute a = ec

⇒ L = a · P εd

(3.3)

where a is a scaling constant. An example demand curve estimated from Eq. 3.3 can

be seen in Fig. 3.4. The figure also showcases the nonlinear relationship between

load and price where as the price, the independent variable, increases the load

demanded, the dependent variable, decreases.

3.0.8 Modeling Consumer DSM

In modeling the relationship between load and price under a DSM program, it is

important to define the individual loads of each customer in determining aggregate

load. For a customer who does not participate in a DSM program their load is

determined by the stochastic demand process of users actions such as watching tv,

using the AC, etc. Demand is impacted by multiple factors such as user preferences,

weather, and time of day. In this process, electricity prices have a small influence

on demand - individual customer demand is fairly inelastic to price. Following the

derivation in Eq. 3.3 we define the load usage of an individual customer i for time

t as

φt,i = θt,i(Pt + Pc)
εdt,i ,

where Pt is the RTP for time t, Pc is constant of the retailer’s market costs which

does not vary with RTP, θt,i ≥ 0 is a scaling factor representing the stochastic

50

0 10 20 30 40 50 60 70 80 90 100

Price (USD/MWh)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Lo

ad
 D

em
an

d
(M

W
h)

d = -2

d = -1
d = -0.6

d = -0.4

d = -0.2

d = -0.1

Figure 3.4: Load as a function of price with arbitrary price range $1-100, α = 10, 000,
and εd = -0.1,-0.2,-0.4,-0.6,-1, -2.

process that determines the user load, and εdt,i is the elasticity coefficient for the

individual customers sensitivity to price changes. It can vary over time but without

DSM incentives most users have a fairly inelastic PED. For experimental purposes,

in modeling individual user loads we set φt,i equal to simulated bootstrapped user

load profiles defined in Section 3.0.6. We assume that prices, user preferences θt,i,

and εdt,i have been absorbed in the calculation of the simulated load series. Thus we

use φt,i as a reference point to how much electricity a user wants to consume without

the influence of a DSM program. We model the task of the ISO as modifying φt,i to

some desired load levels.

The goal of DSM is to motivate the consumer to use less energy typically during

peak hours. A DSM program could have a number of goals all aimed at reducing load

51

usage. These may be peak clipping where peak load is reduced, load shifting where

times of higher load are reduced and times of low load are increased, and many more

strategies. There are multiple ways a DSM program can achieve these goals such

as financial incentives, education, and regulation. In this work we look at the near

term future where in a home with a smart meter and smart appliances, users can

participate in a DSM program that automatically adjusts the load of interconnected

appliances (such as the water heater) as a function of price and a DSM elasticity

term that determines how fast or slow a users load under DSM control.

Realistically, only a certain portion κt,i ∈ [0, 1) of customer i’s power usage will

be under control of a cyber DSM program. There will always be some stochastic

component of power usage such as using a microwave oven or electric hairdryer. An

ISO can signal a users DSM program by setting prices where smart appliances adopt

to price changes with certain elasticity. We do no model direct load control. If prices

are set too high it will signal the DSM component of a users demand to start using

less load. If prices are set low then it signals the DSM program to increase load

usage. We model this DSM component as such

lt,i = (κt,iφt,i)P
εdsmt,i
t + (1− κt,i)φt,i, (3.4)

where the first part (κt,iφt,i)P
εdsmt,i
t is the load level customer i allows the DSM pro-

gram to determine as a function of price Pt and the DSM’s elasticity to price εdsmt,i .

Price elasticity of DSM εdsmt,i may very over time and customer and affects how much

power usage should be affected by price. The second portion (1− κt,i)φt,i of a cus-

tomers load is the stochastic component. The DSM portion parameter κt,i is defined

as a function of time where users can add or remove house loads under DSM control

over time. The term κt,i can be modeled as a random variable (e.g. Uniform or

Gaussian) or as a fixed constant for users. Once each individual customers load has

been determined then total load (modified by a cyber-DSM program) for time t for

N customers is calculated by

Lt =
N∑
i=1

lt,i. (3.5)

52

We also define the aggregate base load as

Φt =
N∑
i=1

φt,i, (3.6)

which represents the total demand had there not been a DSM program for a time

period t (ie κt,i = 0,∀i).

3.0.9 Modeling DSM Goals

The ISO has different DSM goals for reducing a customers load profile as mentioned

before these goals can be to reduce peak load or increase load in periods of low

demand. Two ways for a DSM program to control load are to make it a function

of electricity prices or for an ISO to directly control a homes energy usage by pro-

gramming its smart appliance. Given the privacy issues of having an ISO directly

control a homes energy usage, we model the indirect approach of achieving DSM

goals through setting electricity prices.

We introduce an approach how an ISO can set RTP, on an hourly basis, as a

function of aggregate load to achieve a desired load level L′t. The approach takes as

input a forecast Φ̂t of the base aggregate load to calculate price Pt. This prediction

can be defined as

Φ̂t = fpred (Φt−k:t−1, Pt−k:t−1, X) , (3.7)

where inputs to the prediction model are past base load Φ and price P values from

time t−k to t−1, and other predictor variables X such as time-of-day and weather

information. Various types of prediction models can be used for fpred such as neural

networks as reviewed in section 3.0.2. We now define RTP based on the formulation

in Eq. 3.3 as such

Pt =

(
L∗

Φ̂t

)1/ε̂dsm

. (3.8)

Where,

Goal 1: L∗ = L′t

Goal 2: L∗ = L′t + (L′t−1 − Lt−1)
. (3.9)

53

The component L∗ adjusts the RTP based on two goals the ISO may have. The first

goal is to adjust the price to push power usage directly to the target level L′t with

the assumption that there is near 100% DSM participation by all customers. The

expectation is that if demand for time t is Φ̂t, then a price point is set to push load

usage to L′t. Of course,if participation is less then 100%, which is more likely, then

the target level L′t will not be reached by Pt. So, to push the aggregate load, from

all users, as close as possible to the target load level, with an unknown amount of

participation, then a penalty would need to be added to Pt. We model this as Goal

2 where the idea is to affect the power usage of those under cyber-DSM control even

more than goal 1 to compensate for users who are not participating in DSM.

Some users will not be participating, or only have a small portion of their power

usage under control by the cyber-DSM program. We model their remaining power

usage as inelastic to RTP. Thus, to push aggregate load to a target level, taking into

account some load usage is inelastic, we need to push RTP much higher or lower to

have a bigger effect in pushing DSM controlled load closer to the target load. This

is what Goal 2 attempts to do, with the component L∗ = L′t + (L′t−1 −Lt−1) taking

the target load level for time t and adding the difference from the previous target

load L′t−1 and realized load Lt−1 as a penalty to adjust RTP to compensate for the

difference. If L∗ < 0 then we set L∗ = 10 or to some arbitrary small target value.

By subtracting the difference between the previous load and target level, we make

up for users not participating in DSM by forcing DSM users a higher price to push

their load even lower.

The term ε̂dsm in Eq. 3.8 is an estimate of the price elasticity of DSM of the whole

grid; if individual user coefficients εdsmt,i are unknown then ε̂dsm can be estimated

from observing past values of price and load under different levels of DSM control.

Alternatively, the ISO can define εdsm for all household cyber DSM programs. The

formulation in Eq. 3.8 sets prices by comparing the adjusted target load for time t

to the forecasted base demand Φ̂t for the same time. This demand Φ̂t would be the

level if no load was under DSM influence, thus to influence and alter it, Φt needs to

be estimated as accurate as possible.

In our approach, if the aggregate load is above the target load, RTP is set higher

54

X
𝜖𝑑𝑠𝑚
𝑃𝑡

𝐿𝑡
𝜑𝑡

DSM System

X
𝐿𝑡
𝜑𝑡

𝐿𝑡
′

Controller

𝜖𝑑𝑠𝑚
𝑃𝑡

External
Factors

𝐿𝑡
′ 𝑃𝑡

Generation

Utility Smart Grid

Figure 3.5: Block diagram highlighting the feedback between the utility and grid.

to decrease demand. If the aggregate load is lower than the target load, then the

price is decreased to increase demand. Thus, as also can be observed, in Eq. 3.8,

there is direct feedback between price and load Eq. 3.4. The block diagram in Fig.

3.5 also outlines this feedback that showcases the relationship between the utility

and grid. Generation sets the target load based, on the price and supply of power,

and the controller sets the price signal and the elasticity of demand coefficient for

DSM systems. The price is then fed into the grid into DSM systems which adjust

load usage appropriately. The bold red lines in Fig. 3.5 highlight the feedback

relationship between price and demand. The scope of work is in the mathematical

modeling of the controller and DSM system relationship. With such a model we

present in the next section how attackers can exploit it.

55

Simulation Parameters
N 200 homes
εdsm -1
Ltarget 200 kWh

Table 3.1: Simulation parameters used in case studies.

0 10 20 30 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ice

 (U
SD

/k
W

h)

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Observed Load
Base Load

Target Load
Mean Load

(a)

0 10 20 30 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ice

 (U
SD

/k
W

h)

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Observed Load
Base Load

Target Load
Mean Load

(b)

0 10 20 30 40
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ice

 (U
SD

/k
W

h)

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Observed Load
Base Load

Target Load
Mean Load

(c)

Figure 3.6: Simulation of price-load interaction with Goal 1 with DSM when κi = 0, ∀i
(a), κi = 0.5,∀i (b), and κi = 0.99,∀i in (c).

3.0.10 Simulation Parameters and Assumptions

For experimental purposes, in modeling individual user loads we set φt,i equal to

simulated bootstrapped user load profiles defined in Section 3.0.6. We assume that

prices, user preferences θt,i, and εdt,i have been absorbed in the calculation of the

simulated load series. Thus we use φt,i as a reference point to how much electricity

a user wants to consume without the influence of a DSM program. We model the

task of the ISO as modifying φt,i to some desired load levels. Furthermore, we include

the following assumptions in our modeling and simulation. We assume the ISO can

define εdsm for each household and we set it as a constant for all customers and time.

56

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ice

 (U
SD

/k
W

h)

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Observed Load
Base Load

Target Load
Mean Load

(a)

0 10 20 30 40
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ice

 (U
SD

/k
W

h)

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Observed Load
Base Load

Target Load
Mean Load

(b)

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ice

 (U
SD

/k
W

h)

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Observed Load
Base Load

Target Load
Mean Load

(c)

Figure 3.7: Simulation of price-load interaction with Goal 2 with DSM when κi = 0, ∀i
(a), κi = 0.5,∀i (b), and κi = 0.99,∀i in (c).

For additional simplicity, we model κi also invariant in time, but it may vary per

customer. Lastly, through AMI, we assume ISO the can obtain an estimated reading

of Φt−1 but not of individual user φt−1,i to preserve privacy. This way the ISO has a

time series of estimated non-DSM load demand in order to provide predictions Φ̂t.

For all case studies in the rest of our paper, we use the UMass Smart* dataset

(2017 release) to bootstrap simulate residential load as described in Section 3.0.4.

We simulate a micro-grid of N = 200 residential homes for a time period of T to

obtain a phi distribution that defines a base load profile for each home i at each

time t. We set the DSM demand elasticity for each user to εdsm = −1,∀i to allow

the DSM component of customer load to be sensitive enough to price changes. For

all case studies we set a simple flat target load of Ltarget = 200 kWh. We note,

however, that with our pricing formulation in Eq. 3.8 we can model any DSM goal

from peak load reduction to flexible load shaping. These simulation parameters are

summarized in Table 3.1. For forecasting Φ̂t we use the naive persistence prediction

method.

57

In Figures 3.6 and 3.7 we demonstrate a price-load feedback simulation for a

period of T = 48 hrs under Goals 1 and 2 with parameters defined in Table 3.1.

Under the Goal 1 scenario when κi = 0,∀i, shown in Fig. 3.6(a), we see that prices

range from $0.01 to $0.03 per kWh. As expected with no DSM program to influence

demand, the observed load is equal to the base load. The same is observed in Fig.

3.7(a) when the simulation is run with the Goal 2 RTP model. The only difference

under this scenario is the price range which is exceptionally high ranging from $0.01

to $0.6 per kWh. This is expected in this scenario since the ISO is attempting to

set prices to maximize the effect on DSM customers, which there are none, but this

is unknown to the utility. With no DSM the mean observed load is 332 kWh.

Next, we rerun the simulation setting κi = 0.5,∀i. In the Goal 1 scenario in

Fig. 3.6(b) we see that the base load was reduced with a mean observed load of

269 kWh. In Fig. 3.7(b) the same simulation is run with Goal 2. Here the mean

observed load was further reduced to 246 kWh, but large price spikes occur at peak

load times. Finally, we run simulations for κi = 0.99,∀i to study the effects of high

penetration of DSM. In simulating both goals, shown in Figures 3.6(c) and 3.7(c),

the mean observed load is reduced to 208 kWh, which is very close to the target

load. However, in Goal 2 we see great resonating feedback affect occur when prices

spike very high. RTP increases as a response to large values in observed load. Then

when load decreases to low levels prices decrease cause load to spike more during

the next time step. While under Goal 1 this is not observed. The higher prices set

in Goal 2 would see a large cost to DSM participating customers.

DSM Attack Models

An attacker can exploit the feedback between the customer and utility in de-

termining RTP and load usage by cyber DSM programs by injecting false price or

corrupted load data into the feedback loop. The attack exploitations we study here

are different from the false data injection attacks studied in other smart grid pa-

pers. Most false data injection attack works [101] study the compromise in energy

58

0 10 20 30 40
0

50

100

150

200

250

At
ta

ck
 L

ev
el

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Attacked Load Nominal Load

(a)

0 10 20 30 40
0

25

50

75

100

125

150

175

200

At
ta

ck
 L

ev
el

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Attacked Load Nominal Load

(b)

0 10 20 30 40
0

50

100

150

200

250

300

At
ta

ck
 L

ev
el

0 10 20 30 40
Time (hr)

0

200

400

600

800

1000

To
ta

l L
oa

d
(k

W
h)

Attacked Load Nominal Load

(c)

Figure 3.8: Examples of different type of DSM attacks: (a) ramp attack, (b) sudden
attack, and (c) point attack.

management systems to alter power state estimates by the utility operator. In our

case, we study attacks that aim to alter a users load profile by exploiting cyber DSM

vulnerabilities.

For modeling attacks on a cyber DSM managed micro-grid we assume that the

attacker compromises a subset of all the N customers, we denote this subset as

A, for an attack period t ∈ Ta. We study two modes of attacks: false pricing

data injection attacks in which a compromised user receives manipulated pricing

information, and a direct load manipulation attack in which the appliances of the

compromised customer are under the control of the attacker. When communication

encryption is broken with an AMI, then a pricing data injection attack can occur. By

hacking into a cyber DSM load controller, or directly hacking into smart appliances,

then a direct load manipulation can occur by altering a users load profile. The two

modes of attacks are outlined below.

59

time axis

time axisprediction past data

past data

nominal attack

attacknominal nominal

TN FN TP FP

true

detection window

Figure 3.9: Confusion matrix imposed on a time axis of attack predictions vs true ob-
servations.

• False Pricing Data Injection: The attacker can manipulate prices Pt re-

ceived by each compromised costumer i ∈ A, and the received price P i
t can be

different for various customers in order to achieve the attacker’s desired effect:

P a
t,i = Pt,i + aPt,i,∀i ∈ A, t ∈ Ta

This has the affect of compromising the demand response of a customer in the

following way:

la
P

t,i = (κiφt,i)(a
P
t,i)

εdsm + (1− κi)φt,i

• Direct Load Manipulation: The attacker can manipulate the load of each

compromised customer lt,i, i ∈ D directly:

la
L

t,i = lt,i + aLt,i,∀i ∈ A, t ∈ Ta

Under both attack modes, we would get a compromised aggregate load which

may include one or both attacks occurring simultaneously

Lat =
N∑
i=1

la
P

t,i + la
L

t,i .

60

These two modes of attack are equivalent as they both affect a customers load

response as long a part of the load is under cyber DSM control that is sensitive to

price changes.

Theorem 1. Given a set of customers A compromised by the attacker, there always

exist a direct load manipulation attack such that all customers behave the same as

a pricing data injection attack and vice versa for κi > 0,∀i, t ∈ Ta.

Proof. Setting both attacks to have the same load, then the attack load is set as

follows

aLt,i = (κiφt,i)(a
P
t,i)

εdsm + (1− κi)φt,i,

and the equivalent attacked price is

aPt,i =

(
aLt,i − (1− κi)φt,i

κiφt,i

)1/εdsm

If κi = 0 then the two attack modes are not equivalent since a price attack will have

no affect on customer load.

Since false pricing data injection and direct load manipulation attacks are equivalent,

we focus only on direct load manipulation attack analysis.

There are different goals an attacker can have to harm the power grid or exploit

it. For example, an attacker can cause chaotic metering by messing the metering

data transmission, efficiency loss of the energy provided by causing greater load

volatility, or the energy system failure by overloading the power lines or devices.

The focus of this work is efficiency loss by increasing user loads through direct load

manipulation. In this scenario, we introduce three possible types of load attacks. A

ramp attack, sudden attack, and point attack. These type of attacks are shown in

Fig. 3.8 wherein plot (a) an attacker gradually increases a users load over time. In

plot (b) an attacker suddenly ramps up the power usage to a specified level, and in

plot (c) we demonstrate a point attack where the attacker increases loads only for

specific hours.

61

0 10 20 30 40 50
0.25

0.00

0.25

0.50

0.75

1.00
Autocorrelation

0 10 20 30 40 50

0.0

0.5

1.0
Partial Autocorrelation

Figure 3.10: ACF and PACF fplots of the residual series between the SARIMA fit tp
training data. From the plots we observe that the residuals are stationary.

Attack Detection

Here we outline sequential and supervised learning-based methods for attack

detection. The sequential detections methods are the one-sided cumulative sum

(CUSUM) test [102] and windowed generalized likelihood ratio test (GLRT) [103].

Both these methods take as an input a residual time series that is the output of

applying a SARIMA filter to load observations. If enough past observations of load

data that is labeled as nominal or under attack are collected, then detection of

attacks can be made by training supervised learning classifiers. Supervised learning

62

80 60 40 20 0 20 40 60 80
Theoretical quantiles

100

50

0

50

100

150

Or
de

re
d

Va
lu

es

Q-Q Plot of Training Residuals

Figure 3.11: Q-Q plot of the residual series between the SARIMA fit tp training data.
From the plot we observe that for extreme quantiles the distribution is not
Gaussian.

algorithms have been broadly adopted to the smart grid literature for monitoring

and detecting cyber attacks on power systems [104–106]. Here we employ several

supervised learning methods for detecting attacks on cyber-DSM systems. It is

unlikely that an ISO can collect high-quality attack data due to the lack of such

attacks occurring. However, such data can be simulated. Using past load data we

simulate direct load manipulation attacks by creating different types of attacks as

shown in Fig. 3.8.

63

3.0.11 Sequential Detection Methods

In sequential change point detection, a series does not have a fixed length. Instead,

observations are received and processed sequentially over time. When an observation

has been received, a decision is made about whether a change has occurred in the

state based only on the observations which have been received so far or within

a fixed past window size. If no change is detected, then the next observation in

the sequence is processed. The sequential formulation allows sequences containing

multiple change points to be easily handled. Sequential change point detection can

be applied in the case of attack detection to identify if a load time series has been

compromised. If an attack is flagged, then an ISO can take appropriate actions to

prevent further damage to the grid.

Under the Sequential Detection paradigm we collect observations an apply a

whitening filter to produce a residual series with the assumption that it is white

Gaussian noise. If an additive attack At > 0 is present for observation t, this will

cause a definite shift in the mean of the residual series. This detection problem

can thus be stated as deciding if a null hypothesis H0 is true, where the residual

series has zero mean and known variance (invariant in time and estimated from a

sample population), or if the alternative hypothesis H1 is true which states that the

examined series has some mean not equal to zero thus being under attack. This

can be modeled as a hypothesis test, and for the GLRT and CUSUM detectors this

translates to

H0 : xt
iid∼ N (0, σ2), t = 1, ..., N

H1 : xt
iid∼ N (At, σ

2), At > 0, t = 1, ..., N

For the GLRT detector, to simplify implementation, we model the attack as if it

were constant A > 0 but unknown. To produce a residual series a SARIMA multi-

step forecast for t = 1, ..., N is made before the detection period. This forecast is

conducted using a past window of training data that was not under attack. The

forecast is made for time t to t+ k. These predictions are then subtracted from the

incoming observations to produce a residual time series which is then fed as input

into the GLRT and CUSUM detectors.

64

The generalized likelihood ratio with a threshold to decide H1 is defined as

p(x;A,H1)

p(x;H0)
=

1√
2πσ2

exp−
1

2σ2

∑N
t=1(xt−A)2

1√
2πσ2

exp−
1

2σ2

∑N
t=1 x

2
t

H1

≷
H0

γ

Taking the log of both sides simplifies the results to

T (x) =
1

N

N∑
t=1

xt
H1

≷
H0

σ2

NA
ln γ +

A

2
= γ′

The threshold is then found by

PFA = P (T (x) > γ′;H0) = Q

(
γ′√
σ2/N

)

⇒ γ′ =

√
σ2

N
Q−1(PFA)

where N is the size of our window and σ is estimated from past training data used

to produce the SARIMA forecasts.

A CUSUM test is a control chart, that is used to monitor the mean of a process

based on samples taken from past data at specific time intervals. It is a class

of non-linear stopping rules for structural changes. Given information of current

and previous samples, a CUSUM test relies on the specification of a target value

h and a known or reliable estimate of the standard deviation σ the process. The

CUSUM test typically signals an out of control or anomalous process by an upward

or downward drift of the cumulative sum until it crosses the target threshold. For

attack detection, if the mean of the load series shifts above the target threshold, we

then assume the grid is under attack.

We define the CUSUM detector as follows. Taking the residual series xt =

yt − Et−1[yt], again defined by a SARIMA forecast Et−1[yt], we define a one-sided

CUSUM detector as

gt = max(0, gt−1 + xt − k)

where k is called the reference value (sometimes also called drift) set priori to values

such as 0, 0.5, or A/2 if the size of A is known in advance. When gt = 0 then we

65

define the change time as tc = t, and when gt > h > 0 we reset gt = 0 and flag an

alarm at time ta = T . The alarm threshold is also set priori to some value based

on the sample population standard deviation such as h = 2σ where σ is estimated

from past training data used to produce the SARIMA forecasts.

3.0.12 Supervised Learning Methods

Changepoint detection could alternatively be treated as a supervised learning binary

classification problem. Under this scheme, all of the change point sequences, or in

our case attacks, represent one class, and all of the nominal sequences represents

a second class. Supervised learning methods are machine learning algorithms that

learn a mapping from input data to a target class label. Given a set of samples

X = {xi}Ni=1 and a set of labels Y = {yi}Ni=1, then the supervised learning detection

problem is defined as a hypothesis function that captures the relationship between

samples and labels f : X −→ Y . A sliding window moves through the data, consid-

ering each difference between two data points as a possible change point.

An advantage of treating attack detection as a supervised learning approach is a

more straightforward training phase. However, a sufficient amount and diversity of

training data need to be provided to represent all of the classes. To ensure enough

training data, and to prevent class label imbalance, we simulate all attack data

to train our algorithms. Machine learning methods have successfully been applied

several times in data injection attacks in power systems [105, 106], so we analyze

here their ability in detecting data attacks on cyber DSM systems. The binary

classification problem for attack detection can be defined as

yi =

 1, if Ai > 0

0, if Ai = 0

where yi = 1 if the i-th observation is under attack, and yi = 0 if there is no at-

tack. A variety of classifiers can be used for this learning problem. For detection of

DSM attacks, we examine logistic regression (LR), random forests (RF), Gaussian

Naive Bayes (GNB), gradient boosting classifier (GBC), and artificial neural net-

work (ANN). We chose these classifiers because they are all very powerful and have

66

widespread use in both industry and academia; model descriptions of these methods

can be found in [107,108].

3.0.13 Performance Analysis

For the security of cyber DSM systems, the major concern is not just the detection

of attacks, but also the detection of nominal data with high reliability. That is,

we want a detection system that can predict not only with high accuracy but also

with high precision and recall to avoid false alarms. Therefore, we measure the

true positives (TP), the true negatives (TN), the false positives (FP), and the false

negatives (FN). Definitions of these measures are visually shown in Fig. 3.9. We

use these measures to calculate several main performance indicators of accuracy,

precision, and recall.

We calculate accuracy as the ratio of correctly classified data points to total data

points

Accuracy =
TP + TN

TP + TN + FP + FN

This measure provides the total classification success of the models. But alone,

accuracy is not enough to get a full picture of performance. Precision is calculated

as the ratio of true positive data points (attacks) to total points classified as attacks

Precision =
TP

TP + FP

On the other hand, recall, also known as the true positive rate (TPR), refers to the

portion of attacks that were recognized correctly

Recall =
TP

TP + FN

Precision values give information about the prediction performance of the algo-

rithms, whereas recall values measure the degree of attack retrieval. For instance,

a recall value equal to 1 signifies that none of the attacked measurements were

misclassified as nominal.

We use one more final measure of total performance of our detectors, the receiver

operating characteristics (ROC) curve. The ROC curve is an assessment that enables

67

visual analysis of the trade-off between TPR and false positive rate (FPR). This can

also be seen as the trade-off between the probability of detection and the probability

of false alarm. FPR is defined as follows

FPR =
FP

FP + TN
.

The ROC curve is constructed by plotting a two-dimensional graph with FPR on

the x-axis and TPR on the y-axis at various threshold settings. A detection algo-

rithm produces a (TPR, FPR) pair that corresponds to a single point in the ROC

space. The best possible detection method would produce a point in the upper left

corner, coordinate (0,1) of the ROC space. A random prediction would give a point

along a diagonal line from (0,0) to (1,1). Points above this line are considered to

have performance, while points below are considered with performance worse than

guessing.

Detection Experiments

For attack simulation and detection experiments we use all the same parameters

from Table 3.1 but we varied the levels of κ and attacks at. We simulate each of

the three types of attacks as visualized in Fig. 3.8, each in the form of direct load

manipulation attack, under DSM participation levels κ = 0.1 and 0.9. This creates a

total of six experiment scenarios. For each scenario, we simulate 28 days of training

data (672 observations) and 2 proceeding days of test data (48 observations), both

at a resolution of 1 hr. All training data is created nominally with no attacks. In

the test data sets, the first 24 hrs of the test data are not under attack. The last 24

hours of the test data we add one of the three type of attacks. For ramp attacks,

for each time step we add an attack at = at−1 + 5 where the first 24 hours of the

test set at=0...23 = 0. The sudden attacks are similar except the attack is an additive

constant at = 150. The last type of attack, point attacks, are at=24 = 250, at=29 =

200, at=34 = 300, at=37 = 100, at=46 = 150, and at = 0 everywhere else.

For the sequential detectors, we use multi-step SARIMA forecasts to predict the

68

next 48 hrs, and then use those forecasts to filter incoming test data for detection.

Training was conducted on the training time series of 28 days of nominal data.

SARIMA hyperparameters were chosen by examining lag one differenced autocor-

relation function (ACF) and partial autocorrelation function (PACF) plots of the

training data. These forecasts where then subtracted from the incoming test data

to obtain a residual series that is input to the sequential detectors. The assumption

for both detectors is that the residual series is Gaussian white noise, where the series

has zero mean, and each observation is independent identically distributed from a

Gaussian distribution.

To ensure the residuals are white noise we apply the augmented Dickey-Fuller

(ADF) test to check for stationarity, we examine the ACF/PACF plots to check for

independence and run a Jarque-Bera test, and we examine a Q-Q plot to check if

the residual series has a Gaussian probability distribution. We conduct these checks

on all scenario training datasets, where we first train a SARIMA fit on them and

then subtract that fit to produce the residual series. In all the training data sets,

the residuals were proven to be stationary from the ADF test and independent from

ACF/PACF plots. However, the Jarque-Bera test and Q-Q plots showed that the

observations did not come from a Gaussian distribution. Example, ACF/PACF and

Q-Q plots for κ = 0.1 are shown in Fig. 3.10 and Fig. 3.11. Despite the residuals not

being Gaussian, we still run the sequential detectors and examine their performance.

For training the supervised learning methods, for each of the six scenarios, we

simulate more data to ensure proper class learning. We keep the test sets the same,

but we extend each training set doubling its size. We keep the original training set,

labeling it as nominal, and then make a copy of it. In the copy, we split it into three

parts, each part we add one of the types of attacks at random levels. We label each

observation of this set as under attack. We add the nominal and attacked training

sets together to form a new training set with a total of 1,344 observations. With

our training and test time series, we then create a set X features and Y labels that

could be fed into the supervised learning classifiers. Each training sample xi ∈ X is

composed of 24 hours of lagged data, each hour is one feature, and each label yi ∈ Y
corresponds to a class 0 (not under attack) and class 1 (under attack). Together we

69

get N = 1, 298 pairs of (xi, yi) training samples.

We run our experiments on a computer with an Intel i7 6700 2.6 GHz, and

16 GB of RAM. Implementation of the simulations, experiments, and sequential

detectors were done in Python 3.6. Implementation for SARIMA forecasts was

done using the Python package Statsmodels [109], the supervised learning methods

and confusion evaluation metrics were implemented using the Scikit-Learn Python

package [110], and ROC curves were created using the Matplotlib Python package

[111]. All classifiers used default hyperparameters from Scikit-Learn. We compiled

all code and data used in our work, into a Python package titled LehighDSM which

is publicly available on GitHub [112].

Experimental results from the six scenarios are reported in Table 3.2, in the

form of accuracy, recall, and precision metrics, and Fig. ?? which showcases six

ROC curves, one for each scenario. All performance measures in Table 3.2, were

calculated using the best thresholds found in the ROC curves by searching for the

shortest distance from each curve to the corner (0,1). As seen in Fig. ??(c,f) type 3

attacks, under any DSM level, had the lowest detection rates across thresholds with

ANN being the worst performer. In Fig. ??(a,d) LR yielded the best performance

with GNB, and again ANN being the worst. Type 2 attacks in Fig. ??(b,e) resulted

in the best detection with CUSUM, LR, GNB and GBC having perfect performance.

With the results from Table 3.2, we have the following conclusions; demonstrated

findings imply that detection of attacks has a higher accuracy with higher levels of

DSM participation. This occurs since higher DSM penetration results in more aggre-

gated attacks. However, we note that an attacker, if having perfect knowledge of the

grid could decrease their intensity and make detection more difficult. Furthermore,

supervised learning classifiers performance on average was on par or better than se-

quential detection methods. LR detector had the highest accuracy for a lower level

of DSM usage, while ANNs performed the worst in all scenarios. This highlights

the power of linear detection methods over nonlinear. Point attacks resulted in the

poorest detection with the CUSUM detector having the best performance. Type 2

attacks had higher recall and precision across all detectors for both levels of DSM.

This is because a sudden attack shifts the mean of the data as a constant over time,

70

Table 3.2: Evaluation metrics for attack detection.

κ 0.1 0.9

Attack Type 1 2 3 1 2 3

A
cc

u
ra

cy

LR 89.6 100.0 87.5 87.5 100.0 75.0
RF 77.1 97.9 64.6 77.1 93.8 60.4

GNB 70.8 77.1 75.0 79.2 100.0 72.9
GBC 85.4 97.9 66.7 85.4 100.0 64.6
ANN 56.3 95.8 20.8 75.0 79.2 14.6

GLRT 79.2 95.8 58.3 91.7 97.9 58.3
CUSUM 83.3 95.8 95.8 87.5 100.0 100.0

R
ec

al
l

LR 92.0 100.0 80.0 89.0 100.0 80.0
RF 56.0 96.0 80.0 56.0 88.0 80.0

GNB 88.0 56.0 80.0 60.0 100.0 80.0
GBC 76.0 96.0 100.0 88.0 100.0 80.0
ANN 68.0 92.0 60.0 76.0 68.0 80.0

GLRT 76.0 92.0 80.0 84.0 96.0 80.0
CUSUM 80.0 96.0 100.0 84.0 100.0 100.0

P
re

ci
si

on

LR 88.5 100.0 44.4 88.0 100.0 26.7
RF 100.0 100.0 20.0 100.0 100.0 18.2

GNB 66.7 100.0 26.7 100.0 100.0 25.0
GBC 95.0 100.0 23.8 84.0 100.0 20.0
ANN 56.7 100.0 7.7 76.0 89.5 9.1

GLRT 82.6 100.0 17.4 100.0 100.0 17.4
CUSUM 87.0 96.0 71.4 91.3 100.0 100.0

which is more identifiable, yielding fewer false positives and more true positives.

Conclusion

In this work, we study the exploitation of the hypothetical premise of the feed-

back between future cyber-enabled DSM programs, on the consumer side, and dy-

namic RTP on the utility side. An attacker with exploitive economic or nefarious

71

intentions, such as causing efficiency loss of energy provision, can take advantage of

the dependency between dynamic pricing and DSM load control. The utility mod-

ifies prices in response to forecasted demand in order to push realized load up or

down. This is done to achieve some target load level with the goal to reduce peak

load or achieve some other DSM objective. On the user side, cyber DSM programs

then autonomously respond to prices to adjust certain portions of a users load up

or down with some given elasticity.

We propose two modes of attacks, false price data injections, and direct load

manipulation. Under a false price data injection, an attacker modifies the RTP that

users receive to alter their demand. Through a direct load manipulation attack, an

attacker hacks and alters a users load profile directly. In both these attacks, aggre-

gate load from the grid is modified which then can alter future prices or demand.

We showcase how these two modes of attacks are equivalent and introduce three

ways an attack can occur. The first type is a ramp attack, the second is a sudden

attack, and the third is a point attack. We simulate these type of attacks and review

several methods to detect them.

We simulate and examine load-price data under different levels of DSM partic-

ipation with three types of additive attacks: ramp, sudden, and point attacks. We

applied sequential change point and supervised learning methods for detection of

DSM attacks. Results conclude that higher amounts of DSM participation can ex-

acerbate attacks but also lead to better detection of such attacks, point attacks are

the hardest to detect, and supervised learning methods produce results on par or

better than sequential detectors. Examining these detection methods, we conclude

that linear methods such as logistic regression resulted in better detection of at-

tacks then nonlinear methods such as deep learning. Additionally, linear SARIMA

forecasts as part of the change point detectors also yielded acceptable results.

This cyber-enabled DSM domain is an excellent example of a problem where

linear methods are better than nonlinear ones thus the need for deep learning or

advanced probabilistic forecasting is not warranted. However, we hypothesize that

when renewable energy generation is introduced into this problem, the detection of

attacks can become much more difficult. Renewable generation can bring a lot of

72

uncertainty, and an attacker can exploit this uncertainty and amplify in the DSM

problem.

The following chapters thus examine various new probabilistic forecasting meth-

ods hybridized with deep learning to predict highly chaotic and nonstationary re-

newables such as wind energy. We propose several novel architectures including

support vector machines and neural networks for the forecasting problem. In fu-

ture work, we plan to expand the DSM problem to include renewables and utilize

probabilistic forecasting methods for the detection of attacks.

73

Chapter 4

Constrained Support Vector

Quantile Regression

Introduction

Predicting and managing uncertainty in the production of wind power is one of

the biggest challenges facing its integration into the smart grid. Forecasting un-

certainty in wind is needed for many operational applications in a wind farm from

turbine and storage control to bidding and trading in energy markets. Forecasting

horizons can be categorized into three main time scales: short-term looking out

several hours or days, long-term looking out to weeks or a month, and seasonal.

Traditionally wind power prediction is based on deterministic point forecasts where

they provide an expected output for a given look-ahead time. These forecasts how-

ever lack uncertainty information. As such a large research effort has been taken

recently by the renewables forecasting community [8] to produce full probabilistic

predictions which derive quantitative information on the associated uncertainty of

power output. Although various methods have been proposed, it is still a chal-

lenge to make accurate and robust probabilistic predictions for highly nonlinear and

complex data, such as wind.

Probabilistic wind models are based on either meteorological ensembles that are

74

obtained by a weather model [10] or on statistical learning methods [11]. Focus-

ing on statistical learning, these methods can be applied to forecast full predictive

distributions in the form of quantiles or prediction intervals. For instance, in [113]

prediction intervals are estimated by adaptive re-sampling which is a common prob-

abilistic forecasting strategy. Quantile regression (QR) is another very popular

approach. In [26] local QR is applied to estimate different quantiles while In [27]

spline based QR is used to estimate quantiles of wind power. In [28] quantile loss

gradient boosted machines are used to estimate 99 quantiles and in [29] multiple

quantile regression is used to predict a full distribution with optimization done us-

ing the alternating direction method of multipliers. Quantile regression forests [30]

have also been applied in forecasting which are an extension of regression forests

based on classification and regression trees. A thorough overview of probabilistic

wind power forecasting is provided in [17].

In most of these approaches, estimation of each quantile is conducted indepen-

dently. This could lead to the quantile cross over problem where a lower quantile

overlaps a higher one. This is undesirable as it violates the principle of distribution

functions where their associated inverse functions should be monotone increasing.

A way to prevent this issue is to utilize a simple heuristic of reordering estimated

quantiles, however this does not have much theoretical basis and may lead to inap-

propriate quantiles.

The solution then is to optimize quantiles together with non-crossing constraints.

In [114] a constrained support vector quantile regression (CSVQR) method was de-

veloped with non-crossing constraints where it was used to fit quantiles on static

data. This formulation is re-purposed here for probabilistic forecasting. Other

machine learning frameworks have been used before for uncertainty prediction of re-

newables such as nearest neighbors [115], neural networks [12], and extreme learning

machines [116] but support vector machines (SVMs) have yet to be examined for

wind uncertainty forecasting. We propose that SVMs are not only effective in long

term prediction due to their ability to handle nonlinear data via kernels but can

be easily extended with constraints to ensure non-overlapping quantile estimates.

Our study is the first to showcase the use of CSVQR with a sliding window of

75

training data as well as showcase the effectiveness of constraints to ensure mono-

tonically increasing quantiles for probabilistic prediction. We provide the derivation

of CSVQR and analysis of experimental results on publicly available wind data.

Several common benchmark methods are used for comparison.

Support Vector Quantile Regression

The proposed approach of support vector quantile regression for nonparamet-

ric probabilistic forecasting is directly related to the derivation of support vector

regression (SVR). The goal with SVR is to find

f(xi) = w · xi + b (4.1)

that has at most ε deviation from the target yi for all training data. To do this and

ensure w is small the Euclidean norm is minimized

min
w

1

2
‖w‖2 (4.2)

subject to

yi − f(xi) ≤ ε

f(xi)− yi ≤ ε

The assumption in (4.2) is that such a function f actually exists and can approximate

all pairs (xi, yi) with ε precision, or in other words that the convex optimization

problem is feasible. Sometimes this may not be the case or one may also want to

allow for some errors. In that instance slack variables ξ−i and ξ+i can be introduced

to deal with infeasible constraints of the optimization problem

min
w,b

1

2
‖w‖2 + C

N∑
i=1

(ξ−i + ξ+i) (4.3)

subject to

yi − f(xi) ≤ ε+ ξ−i ∀i

f(xi)− yi ≤ ε+ ξ+i ∀i

ξ−i , ξ
+
i ≥ 0 ∀i

76

The constant C > 0 determines the trade off between the flatness of f and the

amount up to which deviations larger than ε are tolerated.

4.0.1 Nonlinear Quantile Regression

To fit the nonlinearity of wind data, nonlinear quantile regression (NQR) can be

utilized. NQR is implemented by projecting an input vector x into a potentially

higher dimensional feature space F using a nonlinear mapping function φ(·) implic-

itly defined by a kernel K. This gives the functional form of

fτ (x) = w>τ φ(x)

where fτ is the τ -th quantile of the distribution of y conditional on the values of

x, wτ is a vector of parameters. The NQR simplifies into linear quantile regression

if φ(x) = x. To solve the NQR problem it can be expressed by the following

formulation with added L2 penalty to prevent overfitting

min
wτ

1

2
‖wτ‖2 + C

N∑
i=1

ρτ (yi − fτ (xi))

By introducing slack variables ξ−i and ξ+i the problem can be re-written as a support

vector quantile regression problem

min
w,b,ξ−,ξ+

1

2
‖wτ‖2 + C

N∑
i=1

(τξ+i + (1− τ)ξ−i) (4.4)

s.t.

yi − w>τ φ(xi)− ξ+i ≤ 0

−yi + w>τ φ(xi)− ξ−i ≤ 0

ξ−i , ξ
+
i ≥ 0

This form is the support vector quantile regression primal.

4.0.2 SVQR Dual Formulation

The optimization problem in (4.4) can be solved more easily in its dual form. The

dual also provides the key for extending support vector machines to nonlinear func-

tions, and is done by using the standard dualization method utilizing Lagrange

77

multipliers. The main idea is to construct a Lagrange function from both the pri-

mal formulation and the corresponding constraints by introducing a dual set of

variables. The Lagrangian is then defined as

L =
1

2
‖w‖2 + C

N∑
i=1

(τξ+i + (1− τ)ξ−i)

+
N∑
i=1

α+
i (ui − ξ+i) +

N∑
i=1

α−i (−ui − ξ−i)

−
N∑
i=1

(η+i ξ
+
i + η−i ξ

−
i)

(4.5)

where α+
i , α

−
i , η

+
i , and η1i , ∀i are the Lagrange multipliers (dual variables) having

positivity constraint α+
i , α

−
i , η

+
i , η

1
i ≥ 0. It follows from the saddle point condition

that the partial derivatives of L with respect to the primal variables (w, b, ξ+i , ξ
−
i)

have to be zero for optimality

∂L

∂w
= w −

N∑
i=1

(α+
i − α−i)φ(xi) = 0 (4.6)

∂L

∂b
=

N∑
i=1

(α+
i − α−i) = 0 (4.7)

∂L

∂ξ+i
= τC − α+

i − η+i = 0 (4.8)

∂L

∂ξ−i
= (1− τ)C − α−i − η−i = 0 (4.9)

Substituting Eq. (4.6) to Eq. (4.9) into Eq. (4.5) yields the dual minimization

78

optimization problem

min
α+
i ,α

−
i

1

2

N∑
i=1

N∑
j=1

(α+
i − α−i)(α+

j − α−j)K(xi, xj)−

N∑
i=1

(α+
i − α−i)yi

subject to

∑N

i=1(α
+
i − α−i) = 0

α+
i ∈ [0, τC],∀i

α−i ∈ [0, (1− τ)C],∀i

(4.10)

where K(xi, xj) is a kernel function in the input space and equal to the inner product

of vector xi and xj in the feature space, i.e. K(xi, xj) = φ(xi)
>φ(xj). Eq. (??) can

then be rewritten as

f(x) =
N∑
i=1

(α+
i − α−i)K(x, xi) (4.11)

4.0.3 Non-crossing Quantile Constraints

In Eq. (4.4) a single quantile is estimated. To estimate multiple quantiles this

formulation could be run to solve for different τ ’s independently. However in doing

so quantiles may cross each other which is not desirable since it violates the principle

of monotone increasing inverse density functions. To prevent this, constraints need

to be introduced [114]. 0 < τ1 < ... < τM are defined as the orders of M conditional

quantiles to be estimated. To ensure these quantiles do not cross each other the

following constraint is needed f1(xi) ≤ ... ≤ fM(xi),∀i. With this constraint the

primal problem of the non-crossing conditional quantile estimator is given by

min
w,ξ−,ξ+

M∑
m=1

(
1

2
‖wm‖2 + C

N∑
i=1

(τmξ
+
mi + (1− τm)ξ−mi)

)
(4.12)

79

s.t.

yi − w>mφ(xi)− ξ+mi ≤ 0, ∀m,∀i

−yi + w>mφ(xi)− ξ−mi ≤ 0, ∀m,∀i

ξ−mi, ξ
+
mi ≥ 0, ∀m,∀i

w>mφ(xi)− w>m+1φ(xi) ≤ 0, ∀m,∀i

The Lagrangian for the problem is then defined by

L =
M∑
m=1

(
1

2
‖wm‖2 + C

N∑
i=1

(τmξ
+
mi + (1− τm)ξ−mi)

+

N∑
i=1

α+
mi(yi − w

>
mφ(xi)− ξ+mi)

+
N∑
i=1

α−i (−yi + w>mφ(xi)− ξ−mi)

−
N∑
i=1

(η+miξ
+
mi + η−miξ

−
mi)

)

+

M∑
m=1

N∑
i=1

λmi

(
w>mφ(xi)− w>m+1φ(xi)

)

(4.13)

where a Lagrange multiplier λmi ≥ 0 is introduced for m = 1, ...,M − 1, ∀i, and

λ0i = λMi = 0. By letting the partial derivatives of L with respect to wm be zero,

the following is obtained

∂L

∂wm
= wm −

N∑
i=1

(α+
mi − α−mi)φ(xi)

+
N∑
i=1

(λmi − λm−1i)φ(xi) = 0

(4.14)

Partial derivatives of the other primal variables ξ+mi and ξ−mi are

∂L

∂ξ+mi
= τmC − α+

mi − η+mi = 0 (4.15)

∂L

∂ξ−mi
= (1− τm)C − α−mi − η−mi = 0 (4.16)

80

Plugging these equalities back into Eq. (4.13) the following dual minimization prob-

lem can be obtained

min
α+,α−,λ

M∑
m=1

−1

2

N∑
i=1

N∑
j=1

(α+
mi − α

−
mi)(α

+
mj − α

−
mj)...

K(xi, xj) +
N∑
i=1

(α+
mi − α

−
mi)yi

− 1

2

N∑
i=1

N∑
i=j

(λmi − λm−1i)(λmj − λm−1j)K(xi, xj)

+

N∑
i=1

N∑
i=j

(α+
mi − α

−
mi)(λmj − λm−1j)K(xi, xj)

(4.17)

subject to

λmi ≥ 0, ∀m∀i

α+
mi ∈ [0, τmC], ∀m∀i

α−mi ∈ [0, (1− τm)C],∀m∀i

From this dual formulation the conditional quantile τm can then be given by

fτm(x) =
N∑
i=1

(α+
mi − α−mi)K(x, xi)

−
N∑
i=1

(λmi − λm−1i)K(x, xi)

(4.18)

Since the dual form is a Quadratic Programming (QP) problem it can be solved by

a number of QP methods. For testing the Constrained SVQR (CSVQR) method

the Radial Basis Function (RBF) kernel is utilized as it is a popular kernel function

choice for support vector machines. Other kernels were tested on the case data sets

described in the next section but resulted in poor results. The RBF kernel, given

two samples x and x′ which are represented as feature vectors, is calculated as

K(x,x′) = φ(x)>φ(x′) = exp

(
−||x− x′||2

2σ2

)
An advantage of a RBF kernel is that it can project vectors into an infinite dimen-

sional feature space. In order to quickly solve for conditional quantile estimates

sequential minimization optimization [117] is applied to Eq. (4.17).

81

Application To The GEFCom2014 Dataset

Data for this case study comes from the publicly available Global Energy Fore-

casting Competition 2014 [8]. The goal of the competition was to design parametric

or nonparametric forecasting methods that would allow conditional predictive densi-

ties of the wind power generation to be described as a function of input data which

were future weather forecasts and/or past wind power. Data is provided for the

years of 2012 and 2013 from 10 wind farms titled Zone 1 to Zone 10. The predictors

are numerical weather predictions (NWPs) in the form of wind speeds at an hourly

resolution at two heights, 10m and 100m above ground level. These forecasts are

for the zonal and meridional wind components (denoted U and V). It was up to

users to deduce exact wind speed, direction, and other wind features if necessary.

These NWPs were provided for the exact locations of the wind farms. Additionally,

power measurements at the various wind farms, with an hourly resolution, are also

provided. All power measurements are normalized by the nominal capacity of their

wind farm. The goal in forecasting was to learn to associate the provided NWPs

(or derived features) with wind power. Then NWPs are provided for the forecasting

horizon of one month and it is up to a learning model to use those NWPs as input

to a learning model to predict quantiles at each future time step. Fig. 4.1 showcases

an example month worth of data where Fig. 4.1.a shows the four NWP given and

Fig. 4.1.b shows their corresponding normalized wind power output.

In our analysis of CSVQR we used the summer months of June 2013 to August

2013 and fall months of September 2013 to November 2013 for testing from Zone

1. Training was done using a sliding window of three previous months to forecast

the fourth month. For instance to predict June training was done on observed data

from March to May, then to predict July training was done from April to June,

etc. Thirteen features were derived from the raw data for training the CSVQR

model. Features used are derived wind speeds at 10m and 100m, wind direction at

10m and 100m, wind energy at 10m and 100m, wind shear, wind energy difference

82

Figure 4.1: (a) Example plot of numerical wind predictions at 10m and 100m for U and
V directions used as inputs to forecast wind power. (b) Observed wind power
corresponding to the same time stamps.

(between 10m and 100m), wind direction difference (between 10m and 100m), and

included in training are also the four raw wind speeds at 10m and 100m for U and

V directions. All features were normalized between 0 and 1. Denoting u and v as

the wind components and d as the energy density (we used d = 1), the equations

used to compute wind speed (ws), wind direction (wd), wind energy (we), and wind

shear (wsh) are

ws =
√
u2 + v2

wd =
180

π
× arctan(u, v)

we =
1

2
× d× ws3

wsh =
√

ws102 + ws1002

To empirically analyze the CSVQR model as an appropriate method for wind

forecasting it is compared with two industry models and a naive model that are

used for benchmarking in probabilistic wind forecasting applications [12, 23, 118].

The first is called the persistence method which is the most common benchmark

and is considered difficult to outperform for short-term forecasting. This method

83

Figure 4.2: Example plot of estimated 80%, 60%, 40%, and 20% prediction intervals
along with observed wind power in red for the month of July 2013.

corresponds to the persistence distribution and is formed by the most recent obser-

vations. For this case study, the past 12 hours of wind power observations were used

to form the persistence distribution. Second method is the climatology approach

where its predictive distribution is unconditional and based on all available past

wind power observations. It is considered harder to beat in long-term forecasting.

Lastly, the uniform distribution is used for a naive benchmark method where it

assumes all wind power values at each time step occur with equal probability.

4.0.4 Results

To visualize a probabilistic forecast Fig. 4.2 shows an example prediction for 80%,

60% 40%, and 20% prediction intervals for the month of July 2013. Observed wind

power is shown in red. From such probabilistic forecasts it is then possible to derive

full predictive density functions following that the estimated conditional quantiles

are nondecreasing [119]. Evaluation results for reliability of probabilistic forecasts

in the form of prediction intervals of wind power over the months of June 2013 to

November 2013 is shown in Table 1. Results are shown for the CSVQR method

and for the climatology, persistence, and uniform benchmark methods. Evaluation

metrics for the PINC are the PICP and ACE.

For the month of June and October, the climatology method was slightly better

but this was due to the fact that this model can yield wide intervals to cover more

84

data. However in all other months CSVQR outperformed all three benchmarks by

several magnitudes. To further fully evaluate the forecasts it is also important to

look at the quantile score to measure the coverage of the estimated quantiles. Table

2 shows the summary of Q-scores averaged across all quantiles from all lookahead

periods for every forecast month. Their standard deviation is also provided to

quantify the amount of variation among the quantiles. The Q-scores of the proposed

approach was very low and gave excellent probabilistic forecasts across all different

months.

Conclusion

Wind power forecasting is crucial for many decision making problems in power

systems operations, and is a vital component in integrating more wind into the

power grid. Due to the chaotic nature of the wind it is often difficult to forecast.

Uncertainty analysis in the form of probabilistic wind prediction can provide a bet-

ter picture of future wind coverage. This work studies a framework for probabilistic

forecasting using support vector quantile regression with non-crossing constraints

to ensure multiple quantiles can be predicted without overlapping each other. Ef-

fectiveness of the CSVQR approach is validated with the real world dataset of the

Global Energy Forecasting Competition 2014. Forecasts are compared to common

benchmarks and are evaluated using the quantile score and reliability metrics. Re-

sults show adequate reliability and low quantile scores across the prediction horizon,

which verify effectiveness of the model for forecasting while preventing estimated

quantiles from overlapping. Furthermore, this approach has the potential to be ap-

plied across a variety of domains. Future work will look into applying CSVQR to

forecast electricity pricing and load demand for smart grid applications.

85

Month PINC
CSVQR Climatology Persistence Uniform

PICP ACE PICP ACE PICP ACE PICP ACE

June 13
80% 85.00 5.00 95.28 15.28 46.11 33.89 60.97 19.03
60% 66.25 6.25 62.50 2.50 37.64 22.36 40.97 19.03
40% 45.56 5.56 42.92 2.92 30.56 9.44 23.47 16.53
20% 25.42 5.42 22.64 2.64 26.30 6.31 10.69 9.31

July 13
80% 78.49 1.50 76.08 3.92 12.77 67.23 59.27 20.73
60% 56.04 3.95 55.38 4.62 6.72 53.28 36.96 23.04
40% 38.70 1.29 35.08 4.92 5.24 34.76 21.91 18.09
20% 20.96 0.96 16.80 3.20 2.55 17.45 10.08 9.92

August 13
80% 78.36 1.64 65.73 14.27 22.04 57.96 61.83 18.17
60% 59.27 0.73 42.61 17.39 13.44 46.56 44.49 15.51
40% 40.46 0.46 25.94 14.06 7.80 32.20 30.11 9.89
20% 19.89 0.11 9.95 10.05 4.57 15.43 15.05 4.95

September 13
80% 79.03 0.97 81.81 1.81 31.53 48.47 60.69 19.31
60% 60.69 0.69 59.30 0.70 23.75 36.25 35.56 24.44
40% 42.92 2.92 34.31 5.69 14.86 25.14 20.97 19.03
20% 22.36 2.36 15.83 4.17 5.97 14.03 9.31 10.69

October 13
80% 83.20 3.20 81.85 1.85 52.82 27.18 62.77 17.23
60% 68.15 8.15 62.77 2.77 23.92 36.08 45.70 14.30
40% 52.55 12.55 46.24 6.24 6.85 33.15 28.76 11.24
20% 24.36 4.36 25.27 5.27 1.88 18.12 16.67 3.33

November 13
80% 80.42 0.42 90.14 10.14 25.83 54.17 72.36 7.64
60% 59.31 0.69 75.00 15.00 15.14 44.86 48.75 11.25
40% 36.11 3.89 55.69 15.69 11.94 28.06 29.17 10.83
20% 16.53 3.47 29.03 9.03 10.42 9.58 13.19 6.81

Table 4.1: Results of prediction interval reliability in different months.

86

Month Method Q-Score SD

June 13
CSVQR 0.0404 0.0119

Climatology 0.0628 0.0230
Persistence 0.0880 0.0406

Uniform 0.1105 0.0434

July 13
CSVQR 0.0546 0.0169

Climatology 0.1038 0.0401
Persistence 0.1799 0.0681

Uniform 0.1112 0.0428

August 13
CSVQR 0.0677 0.0199

Climatology 0.1374 0.0555
Persistence 0.1734 0.0738

Uniform 0.1033 0.0380

September 13
CSVQR 0.0590 0.0172

Climatology 0.0992 0.0401
Persistence 0.1659 0.0582

Uniform 0.1107 0.0429

October 13
CSVQR 0.0561 0.0159

Climatology 0.0971 0.0366
Persistence 0.1807 0.0977

Uniform 0.1033 0.0382

November 13
CSVQR 0.0557 0.0186

Climatology 0.0844 0.0396
Persistence 0.1089 0.0533

Uniform 0.0978 0.0406

All
CSVQR 0.0556 0.0167

Climatology 0.0974 0.0391
Persistence 0.1494 0.1261

Uniform 0.1061 0.0409

Table 4.2: Summary of the mean Q-score across all quantiles for a given method and
month and their standard deviation.

87

Chapter 5

Smooth Pinball based Composite

Quantile Neural Network

Introduction

In the last thirty years wind power has experienced rapid global growth, and in

some countries, it is the most used form of renewable energy. However, due to the

chaotic nature of the weather, variable and uncertain wind power production poses

planning and operational challenges unseen in conventional generation. From the

grid operator’s perspective, uncertainty in wind production could cause inefficiencies

in the power flow, operating reserve requirements, stochastic unit commitment, and

electricity market settlements [120–122]. From the wind generator’s perspective,

reliable wind forecasts are needed for several operations at a wind farm, ranging

from energy storage control to bidding and trading in energy markets. Thus, to

ensure both stable grid operations and continued growth and increased penetration

of wind power, highly reliable forecasting of wind power production is needed.

Traditionally wind power prediction has focused on developing point forecasts

which provide a single expected output for a given look-ahead time. Point forecast-

ing horizons fall into several scales: very short-term (seconds or minutes ahead),

88

short-term (hours to days ahead), long-term (weeks or months ahead), and sea-

sonal. A thorough review in wind forecasting can be found in [123]. However, point

forecasting can result in certain errors which can be significant and they also lack in-

formation on uncertainty. Therefore, a significant research effort has begun recently

by the renewables forecasting community [8] to produce fully probabilistic predic-

tions which derive quantitative information on the associated uncertainty of power

output. For example, to capture the uncertainty of wind power, forecasting errors

can be statistically analyzed and modeled by the Beta distribution. However, such

assumption may not be applicable for short-term forecasting, and thus researchers

are looking at different approaches for probabilistic wind power forecasts by quan-

tifying prediction uncertainty. Although there are various methods proposed, it is

still a challenge to make accurate and reliable probabilistic predictions for volatile

renewables, such as wind.

Probabilistic forecast can play a key role in integrating and managing wind

farms. For instance, in [124] the optimal level of generation reserves is estimated

using the uncertainty of wind power predictions, and in [125, 126] the optimization

of wind energy production is investigated taking into account the forecasts of a

probabilistic prediction method. Additionally, increased revenues can be obtained

using bidding strategies built on predictive densities, as shown in [127, 128]. Wind

power density forecasting can be used for analysis of probabilistic load flow, as in

[129]. Machine learning frameworks such as nearest neighbors [115], neural networks

[12], and extreme learning machines [116] are also noted approaches for uncertainty

prediction.

Our work is motivated by exploring a direct and nonparametric probabilistic

forecasting approach for wind power. To address the problem of dealing with non-

linearity in wind data [130], we propose a novel neural network model which we

call the smooth pinball neural network (SPNN). This network is able to provide

probabilistic forecasts in the form of multiple monotonically increasing quantiles

estimated simultaneously.

The main contributions of our approach can be summarized as follows. First, we

propose and investigate a new objective function which is a logistic based smooth

89

approximation of the pinball loss function for multiple quantile regression. We

introduce a smooth penalty scheme to prevent the quantile crossover problem. We

showcase how a multiple quantile based neural network can be used for probabilistic

forecasting of wind. We design experiments to validate our model using publicly

available data from 10 wind farms from the Global Energy Forecasting Competition

2014 and benchmark performance with common and advanced methods. And finally,

we show our method improves the skill, reliability, and sharpness of forecasts over

various benchmarks.

Related Work

With QR being a comprehensive strategy for providing the conditional distribu-

tion of a response y given x, we highlight several of its variants. In a generalization of

QR [131,132] introduces the censored QR model, which consistently estimates con-

ditional quantiles when observations on the dependent variable are censored. Yu and

Jones [133] propose a nonparametric version of QR estimation by using a kernel-

weighted local linear fitting. Chen et al. [134] propose a copula-based nonlinear

quantile autoregression, addressing the possibility of deriving nonlinear parametric

models for different conditional quantile functions. QR can also be hybridized with

machine learning methods to form powerful nonlinear models. For instance, support

vector regression is introduced for QR in [135], yielding support vector quantile re-

gression (SVQR). SVQR extends the QR model to non-linear and high dimensional

spaces, but it requires solving a quadratic programming problem.

Due to their flexibility in modeling elaborate nonlinear data sets, artificial neural

networks are another dominant class of machine learning algorithms that can be used

to enhance QR. Taylor [31] is the first to propose a quantile regression neural network

(QRNN) method, combining the advantages of both QR and a neural network. This

method can reveal the conditional distribution of the response variable and can also

model the nonlinearity of different systems. The author applies this method to

estimate the conditional distribution of multi-period returns in financial systems,

90

which avoids the need to specify the explanatory variables explicitly. However, the

work does not address how the network was optimized. The same QRNN was later

used by [32] for credit portfolio data analysis where results showed that QRNN is

more robust in fitting outliers compared to both local linear regression and spline

regression. In [33] an autoregressive version of QRNN is used for applications to

evaluating value at risk, and [34] implements the QRNN model in R as a statistical

package.

In all the QR approaches mentioned, only a single quantile is estimated at a

time. In the case of estimating multiple quantiles, this could lead to what is known

as the quantile crossover problem, where a lower quantile overlaps a higher quantile.

Equivalently, a prediction interval for a lower probability (e.g., range in which 10%

of future values are predicted to lie) exceeds that of a higher probability (e.g., the

range in which 20% of the future values are predicted to lie). Crossing quantiles are

undesirable as it violates the principle of cumulative distribution functions where

their associated inverse functions should be monotonically increasing. A possible

way to prevent this issue is to utilize simple heuristics of reordering estimated quan-

tiles. However, this approach does not have a strong theoretical foundation and may

lead to inappropriate quantiles. The solution then is to optimize quantiles together

with non-crossing constraints. In [114, 136] a constrained support vector quantile

regression (CSVQR) method is developed with non-crossing constraints where it

was used to fit quantiles on static data. However, CSVQR is computationally very

expensive and slow to train. In Section 5 we review approaches for preventing the

quantile crossover problem in neural networks and we also propose a novel way to

prevent this problem using a smooth penalty function.

Smooth Pinball Network Model

We propose to use a feedforward neural networks for probabilistic forecasting

due to their flexibility and strength in dealing with nonlinear and nonstationary

data. We can use the pinball loss in the objective function of such a neural network

91

to estimate conditional quantiles. However, the pinball function ρ employed by the

original linear quantile regression model in Eq. (1.1) is not differentiable at the ori-

gin, x = 0. The non-differentiability of ρ makes it difficult to apply gradient-based

optimization methods in fitting the quantile regression model. Gradient-based meth-

ods are preferable for training neural networks since they are time efficient, easy to

implement and yield a local optimum. Therefore, we need a smooth approxima-

tion of the pinball function that allows for the direct application of gradient-based

optimization. We call our new model the smooth pinball neural network (SPNN).

We are not the first to apply a smooth approximation to the pinball function for

a quantile regression based neural network. [34] used the Huber norm to construct

smooth approximations of the pinball loss function, following the work in [137], to

form a QRNN. Using the same Huber norm approximation, a composite QRNN is

proposed in [138] to estimate multiple quantiles. The Huber norm requires multiple

optimization runs with a fixed schedule of a decreasing smoothing constant to from

the final weights and biases. Chen et al. [139] introduced another class of smooth

functions for nonlinear optimization problems and applied this idea to support vector

machines [140]. Emulating the work of Chen, a study by Zheng [141] presents

an approximation to the pinball loss function by a smooth logistic function; this

then allows the application of gradient descent for optimization. Zheng called the

resulting algorithm the gradient descent smooth quantile regression model. We

extend that model here for the case of a neural network. Based on our knowledge,

we are the first to investigate the usage of a smooth logistic loss function to estimate

multiple quantile using a neural network.

5.0.1 Smooth Quantile Regression

The smooth approximation [141] of the pinball function in Eq. (1.1) is given by

Sτ,α(u) = τu+ α log
(

1 + exp
(
−u
α

))
, (5.1)

where α > 0 is a smoothing parameter and τ ∈ [0, 1] is the quantile level we are

trying to estimate. In Fig. 6.1 we see the pinball function with τ = 0.5 as the

92

Figure 5.1: Schematic diagram of the smooth pinball neural network.

red line and the a smooth approximation as the blue line with α = 0.2. Zheng

proves [141] that in the limit as α → 0+ that Sτ,α(u) = ρτ (u). He also derives

and discusses several other properties of the smooth pinball function. The smooth

quantile regression optimization problem then becomes

min
W,b

1

N

N∑
t=1

Sτ,α(yt − q̂(τ)t), (5.2)

where N is the number of training examples and q̂
(τ)
t = WXt + b where W, b are the

model parameters and Xt is a vector of features at time t. This form conveniently

allows gradient based algorithms to be used for optimization.

5.0.2 Smooth Pinball Neural Network

For simplicity we describe here the construction of a single hidden layered SPNN for

nonlinear multiple quantile regression, but SPNN can easily be extended to multiple

hidden layers. In a single hidden layered SPNN the input layer consists of nx number

of input nodes and takes vector Xt of input features at time t. The hidden layer

consists of nh number of hidden neurons and the output layer consists of M number

93

Figure 5.2: Pinball ball function versus the smooth pinball neural network with smooth-
ing parameter α = 0.2.

of output nodes corresponding to the estimated quantiles Q̂t = [q̂
(τ1)
t , ..., q̂

(τM)
t]>

where q̂
(τm)
t is the τm quantile level we want to estimate at time t. Every element

in the first layer is connected to hidden neurons with the weight matrix W [1] of size

(nx×nh) and bias vector b[1]of size (nh×1). A similar connection structure is present

in the second layer in the network between the hidden and output layers with W [2]

the output weight matrix of size (nh ×M) and bias vector b[2] of size (M × 1).

The input to hidden neurons is calculated, in vectorization notation, by Z
[1]
t =

W [1]Xt+b
[1], the output of the hidden layer then uses the logistic activation function

Ht = tanh
(
Z

[1]
t

)
. The input to output neurons is then calculated by Z

[2]
t = W [2]Ht+

b[2], and the output layer uses the identity activation function Q̂t = Z
[2]
t .

94

The objective function for our SPNN model is then the smooth pinball approxi-

mation summed over M number of τ ’s we are trying to estimate in the output layer.

We also use L2 regularization on the network weights in the objective function to

prevent over-fitting during training. The objective function for SPNN is then given

by

E =
λ1

2NM
‖W [1]‖2F +

λ2
2NM

‖W [2]‖2F +
1

NM

N∑
t=1

M∑
m=1

...[
τm(yt − q̂(τm)

t) + α log

(
1 + exp

(
−yt − q̂

(τm)
t

α

))]
.

(5.3)

where ‖.‖F is the Frobenius norm. Fig. 6.2 shows a schematic diagram of our SPNN

model with nx number of input features and M number of quantile outputs.

Standard gradient descent with backpropagation can be used to train SPNN.

Through this process we compute the gradient of the objective function Et at each

data point at time t with respect to W [1], b[1],W [2] and b[2]. We start with the

gradient with respect to the hidden-to-output weights W [2]. In order to compute

the gradient at time t, we apply the chain rule in vector notation as follows

∂Et
∂W [2]

=
λ2
M
W [2] +

∂Et

∂Q̂t

· ∂Q̂t

∂Z
[2]
t

· ∂Z
[2]
t

∂W [2]

=
λ2
M
W [2] +

1

M

 1

1 + exp
(
yt−Q̂t
α

) − T
Ht,

where T = [τ1, ..., τm]> is a vector of all our τ ’s. The gradient of b[2] can be calculated

similarly. Next we calculate the gradient of the objective function with respect to

the weights of the first layer W[1] as follows

∂Et
∂W[1]

=

λ1
M
W [1] +

(
∂Et

∂Q̂t

· ∂Q̂t

∂Z
[2]
t

· ∂Z
[2]
t

∂Ht

)
· ∂Ht

∂Z
[1]
t

· ∂Z
[1]
t

∂W [1]

=
λ1
M
W [1] +

1

M

 1

1 + exp
(
yt−Q̂t
α

) − T
W [2]

(
1−H2

t

)
Xt

.

95

Figure 5.3: Flowchart of the steps taken when conducting a probabilistic forecast with
SPNN.

The gradient of b[1] can be calculated similarly. These gradients can then be directly

used in many other gradient descent based optimization schemes. As such, we apply

the Adam optimizer [142], an algorithm for first-order gradient-based optimization,

to learn the parameters of SPNN. Adam has been shown [142] to yield superior

results compared to other gradient-based optimizers.

96

5.0.3 Noncrossing Quantiles

In quantile regression normally a single quantile is estimated. To estimate multiple

quantiles, one could be run QR to solve for different τ ’s independently. However,

in doing so, quantiles may cross each other which is not desirable since it violates

the principle of monotonically increasing inverse density functions. To prevent this,

we need to introduce constraints as per [114]. The condition 0 < τ1 < ... < τM are

defined as the orders of M conditional quantiles to be estimated. To ensure these

quantiles do not cross each other the following constraint is needed q
(τ1)
t ≤ ... ≤

q
(τM)
t ,∀t.

However, it is not easy to solve the neural network optimization problem with

such constraints using gradient descent methods. One possible solution is proposed

in [143] where a monotonic composite QRNN is presented that applies partial mono-

tonicity constraints to the weights of the network and uses a stacked input matrix

of covariates of size N ×M with an added covariate τm. This can add additional

complexity to the network, by adding more parameters, so we propose a simpler al-

ternative of applying a penalty term [144] directly into the cost function. We define

the non-crossing quantile penalty term p as follows

p = c
N∑
t=1

M∑
m=1

[
max

(
0, ε−

(
q̂
(τm−1)
t − q̂(τm)

t

))]2
(5.4)

where q̂
(τ0)
t = 0, ε is the least amount that the two quantile should differ by, and

c is the penalty parameter with a high value. This penalty p is added to the cost

function in Eq. 6.4. If the constraints are not violated no penalty is added to the

cost function. If a lower quantile exceeds the value of a higher one, the squared

difference of these two quantiles is added to the cost function as a penalty. A full

model implementation flowchart is shown in Fig. 6.3. First the data is preprocessed

which includes deriving different input features, feature standardization, and parti-

tioning the data into training and testing sets. Training of the model is conducted

using gradient descent optimization method. After the max number of training

epochs is reached the model is ready to be used on testing data for multiple quantile

estimation.

97

Results and Discussions

To validate our model for probabilistic forecasting of wind power we utilize wind

data from the publicly available Global Energy Forecasting Competition 2014 (GEF-

Com2014) [8]. The goal of the wind component of GEFCom2014 was to design

parametric or nonparametric forecasting methods that would allow conditional pre-

dictive densities of the wind power generation to be a function of input data which

are numerical weather predictions (NWPs). Evaluation of predicted densities was

done using the quantile score. Data is from the years of 2012 and 2013 from 10

wind farms titled Zone 1 to Zone 10. The predictors are NWPs in the form of wind

speeds at an hourly resolution at two heights, 10m and 100m above ground level.

These forecasts are for the zonal and meridional wind components (denoted U and

V). It was up to the contestants to deduce exact wind speed, direction, and other

wind features if necessary. These NWPs are from the exact locations of the wind

farms. Additionally, power measurements at the various wind farms, with an hourly

resolution, are also provided. All power measurements are normalized by the nom-

inal capacity of their wind farm. The goal in forecasting is to learn to associate the

provided NWPs (or derived features) with wind power. NWPs are provided for the

forecasting horizon of one month, and it is up to a forecasting model to use those

NWPs as input to predict quantiles at each future time step.

5.0.4 Benchmark Methods

We use three standard [12] and two advanced benchmark methods for density fore-

casting of wind power. The standard methods are the persistence model that corre-

sponds to the normal distribution and is formed by the last 24 hours of observations,

the climatology model that is based on all past wind power, and the uniform distri-

bution that assumes all observations occur with equal probability. For our advanced

benchmarks, we use a linear and nonlinear version of QR. The linear version is multi-

ple quantile regression (QR) with L2 regularization, and nonlinear version is support

98

vector quantile regression (SVQR) [135] with a radial basis function kernel.

5.0.5 Case Study Descriptions

In the analysis of SPNN for forecasting wind power quantiles, we conduct studies

with SPNN having one and two hidden layers denoted as SPNN1 and SPNN2.

We study if the addition of a second hidden layer improves performance. Our

SPNN model is a fully connected feedforward neural network, with rectified linear

units for hidden activation functions, and it uses Adam for weight optimization

[142]. Default Adam parameters follow those provided in the original paper. The

quality of the quantile estimates is sensitive to the hyperparameters of the network.

SPNN has several hyperparameters that need to be chosen before training. Through

empirical testing on training data, we found the following values as adequate for our

model hyperparameters: 2000 training iterations, 200 batch size, 40 hidden nodes

for SPNN1, 20 and 40 hidden nodes for SPNN2, 0.01 for the smoothing rate, 0.01

for each of the weight regularization terms, 1000 for the cross-over penalty term,

and 0 for the cross-over margin.

For testing we conduct two case studies using the GEFCom2014 wind datasets.

To ensure that our study is unbiased, we use for assessment the whole year of 2013.

This dataset gives a total of 365×24 = 8760 test samples for wind power forecasting

per wind farm. The first case study uses wind data from Zone 1 and 2. We estimate

quantile to produce prediction intervals with nominal coverage from 10% to 90% in

increments of 10%. The goal of this study is to evaluate the quantile and prediction

interval estimates from SPNN in detail for reliability and sharpness. We also look

at QVSS to see improvements between SPNN1 and SPNN2 use QR as the reference

model. We also compare results to SVQR as it is the only other nonlinear quantile

regression benchmark model.

In the second case study, we estimate 99 quantiles on par with GEFCom2014.

Results are derived for all ten wind farms in total, where we have 87,600 total test

observations. For each test month, we are estimating 99 quantiles for 720 look ahead

hours across ten farms. Results are derived across all Zones for QS, IS, ACE, and

99

Sharpness. Given so much data we need a way to summarize results. Thus for every

farm, we take the mean of all the evaluation scores across all Zones/months. In both

case studies training is done using a sliding window of the previous twelve months

to forecast the whole next month. Data from 2013 are used for hold out test sets.

For instance, we start with predicting January 2013 using the past 12 months of

2012. After a month is predicted, the training window moves to incorporate new

data and the prediction model is retrained to get a new prediction.

We run our case study on a computer with an Intel i7 6700 2.6 GHz, and 16

GB of RAM. For both studies, we use as input features the raw wind speed data at

10m and 100m for U and V directions. The only engineered features are four time

features based on the hour of the day and day of the year

cos(2π
hour

24
), sin(2π

hour

24
), cos(2π

day

365
), sin(2π

day

365
).

This is contrast with the winning teams from GEFCom2014 who each used

dozens of engineered features including lagged data, data from neighboring wind

farms, and more complex features such as derived wind speeds, wind direction,

wind energy, wind shear, direction differences between 10m and 100m, etc. Most

of the winning teams in GEFCom2014 conducted heavy manual feature engineering

to reduce the quantile score throughout the competition. The goal of our study is

not custom feature engineering, which might result in better scores, but to highlight

the effectiveness of SPNN in creating its own latent features via its hidden layers,

and to showcase the feasibility of our method as a robust probabilistic forecasting

model.

5.0.6 Case Study 1

For this first case study, quantiles are computed to form predictive intervals. Each

prediction interval is estimated to have a future observation of wind power within

a lower and upper bound for a given probability or nominal coverage rate. As

previously mentioned, we estimate quantile to produce prediction intervals with

nominal coverage from 10% to 90% in increments of 10%. We estimate intervals

100

for SPNN1, SPNN2, QR, and SVQR. The difference between the nominal coverage

rates and the observations for Zone 1 are shown in Fig. 5.4. This reliability diagram

showcases results similar to the ACE score. It can be see that SPNN2 has the lowest

deviation from the nominal coverage with SPNN1 and QR coming second and third

with result magnitudes ranging from -3% to -0.3%. SVQR has a very poor coverage

with deviations as high as -40%. This can be attributed to having too tight intervals

and over-fitting. In Fig. 5.7 we showcase reliability results from Zone 2. Similarly to

Zone 1, SPNN2 yields intervals with a deviation close to 0, while SVQR continued

to have a poor coverage.

Sharpness is the other important statistic that we look at for individual pre-

dictive intervals which is calculated independent of observations. Measured as the

mean interval size as described in Eq. 1.0.2, it demonstrates the usefulness of pre-

dictions. Ideally, we would like to have intervals as small as possible but too small

and observations may fall outside the intervals. Thus, too wide and too narrow

intervals providing poor forecasts. Sharpness needs to be analyzed together with

reliability to ensure robust predictions. In Fig. 5.5, we see the mean interval sizes

for each coverage level for Zone 1. QR resulted in having the widest intervals and

SVQR having the narrowest intervals. With such narrow intervals SVQR was not

able to capture the observations which indicated in its reliability diagram. In Fig.

5.8 we see similar results for Zone 2. Our proposed method, SPNN1 and SPNN2,

were able to estimate effective sized intervals that resulted in high reliability with

good sharpness.

As a last evaluation, we look at the performance of the individual quantiles

that formed the prediction intervals of this case study. We do this using QVSS to

analyze relative performance gain relative to a reference benchmark model. Here we

use quantile regression for the reference model and we study if the nonlinear quantile

regression models, SPNN and SVQR provide any improvements over QR. In Fig.

5.6, we report the QVSS across the 18 quantiles for the three nonlinear methods.

SPNN1 and SPNN2 provide a clear performance increase with respect to QR. For

quantiles with a nominal probability less then 0.7, we see SPNN1 having a small

lead over SPNN2. While SPNN2 shows a small lead for quantiles with τ > 0.7. Not

101

Figure 5.4: Reliability of prediction intervals from Zone 1 measured by the frequency of
observation falling with each interval.

surprisingly, SVQR shows a decreased negative performance over QR, indicating its

inability to extract meaningful features from the raw data for Zones 1 and 2. In

Fig. 5.9, we see similar QVSS results for Zone 2, but with SPNN2 showing a small

lead over SPNN1 for quantiles with τ < 0.7.

5.0.7 Case Study 2

In our second case study we analyze a higher number of estimated quantile (99)

across all wind farms for all 12 test months to ensure an unbiased assessment of

SPNN relative to the benchmark models. Due to the large number of quantiles and

wind farms, instead of forming reliability or sharpness diagrams for individual PIs

102

Figure 5.5: Sharpness of prediction intervals for Zone 1 measured by the interval mean
size.

and QVSS diagrams for individual quantiles, we instead look at box plots and report

the distribution of evaluation results including QS, IS, ACE, and Sharpness.

In Fig. 5.10 we report the QS metric for SPNN and the five benchmark methods.

We see that SPNN2 had the lowest QS range from 0.036 to 0.047 with SPNN1 being

a close second. The other benchmarks had a QS in the range of 0.075 to 0.011.

Inspecting the coverage analysis of our prediction intervals with the ACE score in

Fig. 5.11, we see that SPNN overall has the lowest ACE with SPNN2 having a

median value lower then SPNN1. The uniform benchmark produced a wide range

for the ACE score due to having fixed size intervals across all zones and months,

while SPNN2 had the narrowest range of ACE scores. Looking at the sharpness of

103

Figure 5.6: QVSS measured relative performance of SPNN2, SPNN1, and SVQR to QR
on Zone 1 dataset.

PIs with the interval score in Fig. 5.12 and general sharpness score in Fig. 5.13,

we see that SPNN has the sharpest intervals across all farms. The persistence and

climatology methods yielded a wide distribution for the interval score but narrow

one for sharpness. SVQR in contrast to the first case study did not calculate narrow

intervals when estimating 99 quantiles.

Since both QS and IS also measure skill, we can say that SPNN was able to

produce the highest quality estimates from all methods. An interesting observation

is the SPNN is designed to produce optimal quantile estimates and that indirectly it

also produces adequate interval forecasts. If the primary goal is to reduce ACE and

IS as best as possible, alternative loss functions that incorporate prediction interval

104

Figure 5.7: Reliability of prediction intervals from Zone 2 measured by the frequency of
observation falling with each interval.

coverage and width functions can be used. However, while not directly optimizing

for coverage or sharpness, SPNN does produce superior results from the advanced

benchmarks multiple quantile regression and support vector quantile regression.

Lastly, we compare the mean QS of our proposed method to the final quantile

scores for the top teams in the GEFCom2014 as originally reported in [8]. We note

again that the top teams used a wide range of engineered features while we used

raw wind speed data along with time as input to our model. The winning team in

GEFCom2014 was kPower with a mean QS of 0.038. Our method SPNN2 has a

close mean QS of 0.042 which would qualify SPNN to be in the top winning teams.

Comparing the results from the four box plots, we see the robust prediction ability of

105

Figure 5.8: Sharpness of prediction intervals for Zone 2 measured by the interval mean
size.

the proposed SPNN prediction method. Additionally, for all the runs across months

and farms, the preassigned PI coverage levels are satisfied which implies that the

constructed PIs cover the target values with a high probability and with the lowest

QS and IS.

Conclusion

Wind power forecasting is crucial for many decision-making problems in power

systems operations and is a vital component in integrating more wind into the power

106

Figure 5.9: QVSS measured relative performance of SPNN2, SPNN1, and SVQR to QR
on Zone 1 dataset.

grid. Due to the chaotic nature of the wind, it is often difficult to forecast. Un-

certainty analysis in the form of probabilistic wind prediction can provide a better

picture of future wind coverage. This work proposes a novel approach we call SPNN

for probabilistic wind forecasting using a neural network with a smooth approxima-

tion to the pinball ball loss function in estimating multiple quantiles.

We also introduce non-crossing constraints in the form of a smooth penalty in

the loss function. This is done to ensure multiple quantiles can be estimated si-

multaneously without overlapping each other. We verify the effectiveness of our

SPNN model with the dataset of the Global Energy Forecasting Competition 2014.

We compare forecasts to standard and advanced benchmarks and employ standard

107

Figure 5.10: Box plot of quantile score evaluation across all datasets.

quantile score, reliability, and sharpness metrics. Our results show superior perfor-

mance across the prediction horizons, which verify the effectiveness of the model for

forecasting while preventing estimated quantiles from overlapping.

Our SPNN method has the potential to be applied to a variety of domains for

probabilistic forecasting or multiple quantile estimations. Future work will look

into applying SPNN to forecast solar and ocean wave power, to test its effectiveness

across different renewable energies, and on electricity pricing and load demand for

smart grid applications. In this study, we trained our model using NWP data.

Another problem to study is very short-term probabilistic forecasting using only

past wind power data. Future work can also then look into expanding the SPNN

model for providing full predictive densities given lagged past data of power only.

108

Figure 5.11: Box plot of average coverage error evaluation across all datasets.

109

Figure 5.12: Box plot of interval score evaluation across all datasets.

110

Figure 5.13: Box plot of sharpness evaluation across all datasets.

111

Figure 5.14: Bar plot of SPNN2 and SPNN1 mean quantile score across all wind data
compared to the performance of the top teams in GEFCom2014 Wind
Track.

112

Chapter 6

Multiple Quantile Fourier Neural

Network

Introduction

Univariate time series based deterministic or point forecasting is a well-studied

field that has numerous applications. Examples of such applications include fi-

nance [145], topic behavior [146], traffic flow, [147], and renewable power [148].

There are several approaches to forecasting with different classes of methods. Ap-

proaches include having a sliding window of past data to predict future data, recur-

rent models, and extrapolation based regression such as signal approximation [149].

In all the approaches, methods can are divided into two classes as linear or non-

linear. In the first class, methods include linear regression, autoregression (AR),

autoregressivemoving-average (ARMA) models, and exponential smoothing. The

second class of methods is nonlinear models which are predominantly machine

learning based such as support vector regression, nonlinear autoregression neural

networks, and recurrent neural networks. Deterministic forecasts which provide a

single expected output for a given look-ahead time have been successfully applied

for multiple domains such as renewable energy prediction for solar, wind, and wave

113

power. Other applications include agriculture, economics, finance, and manufactur-

ing. A thorough overview of time series and machine learning based deterministic

forecasting can be found in [4, 150].

Despite the popularity of deterministic forecasting, it does have a significant

disadvantage in that it can result in individual errors which can be significant.

Additionally, deterministic forecasting lacks information on associated uncertainty.

A solution to these problems is probabilistic forecasting (PF) where the goal is

to produce fully probabilistic predictions that derive quantitative information on

the uncertainty. A PF takes the form of a predictive probability distribution over

future time horizons and aims to maximize the sharpness of predictive densities

while subject to reliability. Sharpness refers to the concentration of the predictive

distribution and reliability refers to the accuracy of the forecasted probability in

conveying the actual probability of events.

A popular application of PF is in the fields of renewable energies and power

systems. A probabilistic forecast is vital, for different operations to renewable en-

ergy farms. This includes managing the optimal level of generation reserves [124],

optimizing production [126], and bidding strategies for electricity markets [128]. Ap-

plications to the power grid include load analysis [151], smart meters [152], schedul-

ing [153], system planning [154], unit commitment [155], and energy trading [156].

A thorough overview of probabilistic wind and solar power forecasting is provided

in [17] and [20].

There are several essential classes in the type of PF models which include if they

are parametric or nonparametric, direct or indirect, and the type of inputs they

use for prediction. In PF, we are first trying to predict one of two types of density

functions, either parametric or nonparametric. When the future density function is

assumed to take a specific distribution, such as the Normal distribution, then this is

known as parametric probabilistic forecasting. For processes where no assumption

is made about the shape of the distribution, a nonparametric probabilistic forecast

can be made. Nonparametric predictions can be made in the form of quantiles,

prediction intervals, or full density functions. For example, nonlinear and non-

stationary data, such as wind speeds or stocks, may not correspond to fixed or

114

known distributions. When in need of forecasting such data it can be more beneficial

to apply a nonparametric probabilistic forecast to estimate the distribution instead

then assume it is shaped.

The second classification of PF models is whether they are combined with point

forecasts or not. For instance in [157] a deterministic and probabilistic forecast for

wind power is combined. This approach is known as an indirect PF method. First,

a point forecast is made such as with support vector regression, and then prediction

intervals for point forecast values are obtained with a PF method such as quantile

regression. On the other hand, when a PF method estimates future quantiles or

prediction intervals without using as input point forecasts, this is known as direct

forecasting. The last distinction to be made with PF models is if past lagged data

are used as inputs to the forecast model or if future exogenous variables are used too.

For instance in renewable power PF, if numerical weather predictions (NWP) exist

for each forecasting horizon that we are interested in, then those exogenous NWPs

are used as inputs to provide a PF in that prediction horizon. When NWPs are not

given then lagged past time values of renewable power can be used for prediction.

We introduce a new approach to developing a nonparametric direct PF where

the input to the model is neither exogenous variables, such as NWPs in the case of

renewable forecasting nor past data but instead treats the series as a signal. This

approach is motivated by Fourier extrapolation which is the process by which a

Fourier transform is applied to a data set to decompose it into a sum of sinusoidal

components thus interpreting it as a signal. In time series analysis this is related

to Harmonic regression. In accounting for periodic and non-periodic aspects of a

signal such as a trend, Fourier neural networks (FNN) have been proposed. FNNs

are feedforward neural networks with sinusoidal activation functions that model the

Fourier transform. Most recently, a new FNN called neural decomposition (ND)

was proposed in [149] that can decompose a signal into a sum of its constituent

parts, model trend, and reconstruct a signal beyond the training samples. ND can

provide a prediction by having time as its only input similarly to an inverse Fourier

transform. We propose a PF model motivated by the ND model.

115

Several works have explored Fourier extrapolation based deterministic forecast-

ing with sinusoidal neural networks [149, 158, 159], but none have yet explored it

for probabilistic forecasting. We are the first to introduce an FNN for forecasting

composite quantiles that we dub the quantile Fourier neural network. Contributions

of our approach can be summarized as follows:

1. We demonstrate how this extrapolation based quantile forecasting is able to

model periodic and non-periodic components of nonstationary time series.

2. We demonstrate an initialization process that fixes parameters to none random

values and train the model with gradient descent backpropagation.

3. We design experiments to validate our approach for direct probabilistic fore-

casting and provide insight how this method can generalize modeling uncer-

tainty on real-world datasets.

The contents of the paper are: in Section 6 we review existing architectures

of FNNs, go over our model, its architecture, training, and weighting initialization

scheme. Results and discussion of validating our method are presented in Section

6.0.4. We conclude the paper and review future research directions in Section 6.0.7.

Proposed Methodology

Fourier analysis examines the approximation of functions through their decompo-

sition as a sum or product of trigonometric functions, while Fourier synthesis focuses

on the reconstruction of a signal from its decomposed oscillatory components. These

well-studied processes have a large utility in time series analysis. By decomposing

a time series into its frequencies one could then interpolate missing time values by

reconstructing the original signal. Further applications include modeling seasonal-

ity and even prediction of a time series through extrapolation of an approximated

signal. In the application of Fourier analysis for time series analysis, an important

116

method is the discrete Fourier transform (DFT), which converts a series into its fre-

quency domain representation, and the inverse discrete Fourier transform (iDFT)

which maps the frequency representation back to the time domain. The transforms

can be expressed as either a summation of complex exponentials or sines and cosines

by Eulers formula. In this section we explore existing works on Fourier networks

that directly use iDFT in their operation or mimic it, then we describe our proposed

FNN methodology for quantile forecasting.

6.0.1 Fourier Neural Networks

Neural networks with sine as an activation function are difficult to train in theory and

when initialized randomly yield poor results [160]. Thus, few works have attempted

to explore Fourier analysis with sinusoidal neural networks. We highlight most of

the works here. One of the first FNNs was introduced by Adrian Silvescu [161,162]

who developed Fourier-like neurons for learning boolean functions. The FNN model

used the units of the network to approximate a DFT in its output. Similar in spirit

to an FNN was a Fourier transform neural network introduced in [163] that uses

the Fourier transform of the data as input to an artificial neural network. FNNs

have since been used for stock prediction [164], aircraft engine fault diagnostics [165],

harmonic analysis [159], and extensions include a single input multiple outputs based

FNNs that can turn nonlinear optimization problems into linear ones [164], FNNs for

output feedback learning control schemes [166], and deep FNNs for lane departure

prediction [167].

There are two recent works that study FNNs for time series prediction that

use the Fourier transform of the data as weights. The first is an FNN presented

by Gashler and Ashmore in [168]. Their technique uses the fast Fourier transform

(FFT) to approximate the DFT and then uses the obtained values to initialize the

weights of the neural network. Their model uses a combination of sinusoid, linear,

and softplus activation units for modeling periodic and non-periodic components of

a time series. However, their trained models were slightly out of phase with their

validation data. The second study on FNNs for time series prediction is presented

117

by Godfrey and Gashler [149] who proposed a similar model to [168] called neural

decomposition (ND), except that they do not use the Fourier transform to directly

initialize any weights.

The ND model is inspired by the inverse discreet Fourier transform where given

time t as input it attempts to model the signal x(t). However, there are some

distinctions between ND and iDFT. First ND allows sinusoid frequencies to be

trained and second ND can also model non-periodic components in a signal such as

trend. With the ability to train the frequencies, ND learns the actual period of a

signal whereas iDFT assumes that the underlying function always has a period equal

to the size of the samples it represents. ND is a feedforward neural network with a

single hidden layer with N nodes and has one input and one output node. Hidden

nodes are composed of sinusoid units for capturing the periodic component in an

underlying signal and other activation functions, such as linear or sigmoid units, for

capturing the non-period component. Parameters of ND are initialized in such a

way so as to mimic the iDFT. ND is then trained with stochastic gradient descent

with backpropagation. ND was applied to time series deterministic forecasting and

showed very promising results across different data sets, often beating state-of-the-

art methods such as LSTM, SVR, and SARIMA.

6.0.2 Quantile Fourier Neural Networks

Inspired by the ND model we propose a new forecasting method which we call the

quantile Fourier neural network (QFNN). Unlike ND and other FNNs our QFNN

model is trained to extrapolate composite quantiles of an underlying time series.

The use of sinusoid activation functions allows the model to fit periodic data, and

coupled with an augmentation function QFNN is able to probabilistically forecast a

time series that is made up of non-periodic components too. The model is defined as

follows. Let each ajk represent an amplitude, each ωk represents a frequency, each

φk represents a phase shift, and b
[2]
τ and b

[1]
k represent bias terms for the quantile

signal representation. Let f(t) be an augmentation function that represents the

118

non-periodic components of the signal. QFNN then can be defined by

qτt = f(t) + b[2]τ +
N∑
k=1

(
aτ,k · cos (ωkt+ φk) + b

[1]
k

)
(6.1)

where given time t as the input, it attempts to predict the τ -level quantile. QFNN

is loosely modeling a time series as a partial Fourier cosine series

x(t) = A0 +
N∑
n=1

An cos(nω0t+ φn) (6.2)

where ω0 = 2π
T

, T is the period of the signal x(t), and A0, An, and φn are real

numbers. The main difference between Eq. 6.1 and Eq. 6.2 is that QFNN does not

fix the period of the signal to a predetermined size T , it allows for bias terms, it has

an augmentation function to represent non-periodic components of the signal, and

it learns the frequencies ωk versus keeping them at a fixed size. The bias terms in

the output layer of the network are important because it allows shifting the level of

each quantile appropriately.

The hidden layer of QFNN is composed of N units with a sinusoid activation

function and an arbitrary number of units with other activation functions to calcu-

late f(t). The output layer is composed of M number of linear units that represent

quantiles. The parameters ajk, being the weights between the hidden and output

layers allows us to model different amplitudes for composite quantiles while simul-

taneously learning the frequency and phases for all quantiles in the hidden layer.

Utilizing conventional neural network notation W [1] is a matrix of the f(t) unit

parameters and the frequency parameters in Eq. 3. The b[1] vector represents the

phases of the sinusoidal components, W [2] is a parameter matrix of the amplitudes,

and we also add additional bias terms to the output nodes for each quantile with

the b[2] vector.

To estimate quantiles we need to solve the minimization problem described in

Eq. 1.2. However, the pinball function ρ in Eq. 1.2. is not differentiable at the ori-

gin, x = 0. The non-differentiability of ρ makes it difficult to apply gradient-based

optimization methods in fitting the quantile regression model. Gradient-based meth-

ods are preferable for training neural networks since they are time efficient, easy to

119

implement and can yield a local optimum. Therefore, we need a smooth approxima-

tion of the pinball function that allows for the direct application of gradient-based

optimization. A smooth approximation of the pinball function in Eq. (1.1) can be

given by Zheng in [141] as

Sτ,α(u) = τu+ α log
(

1 + exp
(
−u
α

))
, (6.3)

where α > 0 is a smoothing parameter and τ ∈ [0, 1] is the quantile level we’re

attempting to estimate. In Fig. 6.1 we see the pinball function with τ = 0.5 as

the red line and the a smooth approximation as the blue line with α = 0.2. Zheng

proves [141] that in the limit as α → 0+ then Sτ,α(u) = ρτ (u). With this smooth

approximation we can then define the cost minimization problem for QFNN as

E =
1

NM

N∑
t=1

M∑
m=1

[
τm(yt − q̂(τm)

t) + α log

(
1 + exp

(
−yt − q̂

(τm)
t

α

))]
. (6.4)

where M number of τ ’s we are trying to estimate in the output layer. The input

to hidden neurons is calculated, in vectorization notation, by Z
[1]
t = W [1]t + b[1],

the output of the hidden layer then uses the logistic activation function Ht =

cos
(
Z

[1]
t

)
, f
(
Z

[1]
t

)
. The input to output neurons is then calculated by Z

[2]
t =

W [2]Ht + b[2], and the output layer uses the identity activation function Q̂t = Z
[2]
t

where Q̂t is a vector output of the estimated composite quantiles. An architectural

view of the QFNN is shown in Fig. 6.2.

6.0.3 Monotone Constraints

With QFNN estimating composite quantiles, this could lead to what is known as

the quantile crossover problem, where a lower quantile overlaps a higher quantile.

For instance, a quantile with τ = 0.5 could be estimated at a higher level than

a quantile with τ = 0.4. The quantile crossover problem violates the principle of

cumulative distribution functions where their associated inverse functions should

be monotonically increasing. One way to prevent this problem is to enforce non-

crossing constraints where q̂τ1t >= q̂τ2t where τ1 >= τ2. For neural networks trained

120

with gradient descent backpropagation, it is not straightforward to directly apply

inequality constraints to the cost function. The easiest is to utilize a simple heuristic

of reordering predicted quantiles which is what we apply in this work.

6.0.4 Implementation Details

The proposed QFNN model is trained using gradient descent with backpropagation.

The training process allows the model to learn better frequencies and phase shifts

so that the sinusoid units more accurately represent the seasonality of an underlying

time series. Since frequencies and phase shifts can change, the model learns a more

reliable periodicity of the underlying series rather than assuming the period is of a

predetermined size. Training also tunes the weights of the augmentation function

which estimates the non-periodic component of the time series. Additionally, the

cost function of the model uses L1 regularization on the output weights only to

promote sparsity and shrink the less essential cosine components of each quantile.

There is a considerable distinction in how QFNN is initialized compared to other

FNNs. Instead of randomly setting parameters or initializing them to mimic the

iDFT we set all bias terms to 0, the output weights W [2] which represent the ampli-

tudes are initialized near 1, and the input weights W [1] which represent the frequen-

cies are set to multiples of πk where k is a specific hidden node. The input weight

parameters of the augmentation function f(t) are initialized to 1 and its bias terms

set to 0. By configuring all the parameters in such a fixed fashion, we eliminate the

randomness associated with neural network initialization. QFNN, therefore, yields

the same results on the same set of data every time after training.

Before training starts, the input data is preprocessed in the same fashion as

in [149] to improve learning. First, the time associated with each training sample is

normalized between 0 (inclusive) and 1 (exclusive) on the time axis. By doing this

normalization testing data points will have a time value greater than or equal to 1.

With this normalization the 1/N term in the frequencies is taken into account by

transforming t into t/N. Next, if the max value in the training set is greater then

10, then the training set is scaled between 0 and 10. Both these preprocessing steps

121

expedite learning and help prevent the model from falling into local optimums.

We present the full proposed QFNN methodology architecture in Fig. 6.3. Sum-

marizing our methodology, we first partition a given time series into training and

testing sets. Preprocessing of the training set is then conducted which includes ap-

plying a logarithmic filter if multiplicative trend or seasonality is present. If the

training data has points above 10, the data is normalized between 0 and 10. Next,

the training and testing times are normalized so that training times are between 0

and 1. Parameters of the QFNN are then initialized as described in the previous

paragraphs. Training of the model is conducted using batch gradient descent. After

the max number of training epochs is reached the QFNN model is ready to be used

for testing. Forecasts can be provided for a multi-step period of indefinite time

steps. After a test set prediction is made, preprocessing steps are reversed if any

were conducted. Preprocessing steps may include scaling a time series back to its

original scale or removing the logarithmic filter from the outputs by exponentiating

the predictions.

Validation

In this section, we evaluate the effectiveness of the QFNN method for the es-

timation of quantiles and prediction intervals. We first describe the different time

series datasets we use for experiments and the different benchmark methods that

we compare QFNN to. Then we conduct an assessment of the predictive power of

QFNN based on the quantile and interval score metrics. In each of the experiments,

we use one linear activation function for the augmentation function of QFNN to

capture the trend. We found that using more than one augmentation function or

using other activation functions such as tanh, sigmoid, and rectified linear units did

not provide any significant improvements in trend estimation. An L1 regularization

term of 10 is used in all case studies except for the Air Passengers dataset where

a regularization term of 1 is used based on the QS fit of QFNN on the training

data. For all experiments, we use a maximum training iteration of 10000 for QFNN,

122

a learning rate of 0.1, and a smoothing rate of 0.05. No form of hyper-parameter

tuning was used for the max iteration, learning rate, or smoothing rate.

6.0.5 Case Studies

We carry out experiments on eight nonstationary univariate time series datasets,

seven being real-world case studies and one synthetic case. These datasets were

explicitly picked because they display a diverse set of periodic and aperiodic patterns

such as trend, additive and multiplicative seasonality, multiple seasonality, cycles,

and irregular patterns. Table 6.1 the characteristics of all the datasets. The first

case study is the classical Air Passengers time series [169] which is composed of

144 samples of the number of passengers flying each month from January 1949 to

December 1960. It has a positive linear trend and multiplicative seasonality.

The second case study is the yearly mean and monthly smoothed total sunspot

numbers from 1700 to 2017 [170]. It consists of 318 samples with a time granularity

of one year. This time series includes an unstable (non-constant) seasonal patterns

over time. Case study 3 is the load demand from ISO New England [171]. Its time

series is composed of 744 samples for January 2017. Target values represent real-

time demand in MW for wholesale market settlement from revenue quality metering.

This case study displays seasonal and cyclical patterns. Internet traffic data in bits

from a private ISP with centers in 11 European cities is used for the 4rth case

study [172], which exhibits multiple seasonality. We use the data that corresponds

to a transatlantic link and was collected from on June 18 to July 16, 2005.

The highly random movements of the stock market are almost impossible to

predict but some stocks may exhibit unseen cycles or trends over more extended

periods of time [173]. To examine such possible patterns we use the closing stock

prices of Apple Inc. over five years from 2012 to the beginning of April 2018 [174].

The next two case studies are normalized solar and wind power for September 2012

and January 2012. These two datasets come from the Global Energy Forecasting

Competition of 2014 [8]. Solar power forecasting is fairly accurate when training on

data from sunny days but is trickier when training data contains non-sunny days

123

too. Wind power, on the other hand, is highly chaotic and is very difficult to forecast

from univariate time series.

The last case study looks at ocean wave elevation, the main motivation for using

such data is the irregular sinusoidal nature of waves. Due to the difficulty of finding

high resolution deep ocean wave elevation measurements we construct a synthetic

dataset. For simulating of ocean waves we focus on vertical sensors for predicting

irregular wave formations. Under generally well accepted assumptions [175], the

wave elevation for sensor locations (x, y) on the ocean surface for all times t the

exact time waveform which would be observed at a particular point in the ocean

can be described by

H(x, y, t) =
L∑
i=1

Ai cos

(
ω2
i

g

(
x cos(βi) + y sin(βi)

)
− ωit+ φi

)
, (6.5)

which has the parameters A for the amplitude, ω for the frequency measured in

radians per second (rads/s), β for the wave angular direction in radians measured

relative to the x-axis, and φ for the phase in radians. We chose to estimate waves

at the origin with L = 2, and for each parameter we arbitrarily chose the values

A = [1, 1.5], ω = [0.5π, 0.1π], and φ = [1.2, 1.4]. To each observation we also include

additive white Gaussian noise which we assume come from the sensors.

6.0.6 Benchmark Methods

To thoroughly examine the forecasting accuracy of our QFNN method we compare

it to nine simple and state-of-the-art probabilistic forecasting methods. These in-

clude two naive approaches, the uniform and persistence methods. Three-time series

models which are the autoregressive integrated moving average model, the seasonal

autoregressive integrated moving average model, and exponential smoothing with

trend and seasonality. Lastly, we use four advanced PF methods: linear quan-

tile regression, polynomial quantile regression, composite support vector quantile

regression, and a composite quantile regression neural network.

The uniform method (UM), commonly used in wind power PF studies [12], is the

simplest of all the methods. UM assumes that any observation in the time series has

124

equal probability to occur at any time step. The support of the UM is defined by the

parameters a and b which are the minimum and maximum values of the training

set for each case study. Quantiles are then defined by F−1(τ) = (1 − τ)a + τb

for τ ∈ [0, 1]. For deterministic forecasting, the persistence forecast method is a

very popular benchmark and is known to be hard to outperform for single point

or short look-ahead forecasts. We use the persistence method (PM) [176] for PF

as a benchmark where the forecast error is assumed to be random and normally

distributed, it’s mean and variance are computed by the latest observations. For

our experiments, we use the last S observations from the training set to calculate the

moments of the PM distribution where S corresponds to the size of the seasonality

derived from the autocorrelation function (ACF). To ensure that UM and PM can

estimate appropriate multi-step forecasts we extend both of them by adding an

estimated linear trend component from the training data. We implement both UM

and PM in Matlab R2017a.

The next three benchmark methods are well established time series models. We

use the autoregressive integrated moving average (ARIMA) model, seasonal ARIMA

(SARIMA) model, and exponential smoothing with trend and seasonality (ETS)

model, also known as the Holt-Winters seasonal method. We choose ARIMA be-

cause it can eliminate non-stationarity through an initial differencing step to better

fit time series for prediction, and we select SARIMA and ETS to capture periodic

patterns better. Parameters of ARIMA and SARIMA are selected using grid search

with the Akaike information criterion and the application of the parsimony principle

to prevent over-fitting. The seasonal parameter S for SARIMA and ETS is chosen

using the ACF. Quantiles are estimated for ARIMA, SARIMA, and ETS assuming

the normality assumption [177, 178]. ARIMA and SARIMA are implemented in

Python using the sarimax function from the statsmodels package [179], and ETS is

implemented in Python from a holtwinters package [180].

Assuming a normal distribution for quantile prediction with ARIMA, SARIMA,

and ETS is a parametric PF approach and can be somewhat restrictive and may not

appropriately estimate the forecast distribution. Therefore, we use four advanced

nonparametric PF methods linear quantile regression (QR), polynomial QR (PQR),

125

composite support vector quantile regression (SVQR) [181], and a relatively new

forecasting method of composite quantile regression neural network (QRNN) [182].

All four methods have one input node for time, similar to QFNN. QR and PQR

methods are implemented in Python using the quantreg function from the statsmod-

els package [183].

We implement composite SVQR in Matlab R2017a. It is common for support

vector machines to use a Gaussian kernel function. From initial experiments, we

found that using a Gaussian kernel in SVQR produced quantile forecasts that are

flat or suddenly drop. A similar effect was reported in [149] when using support

vector regression for extrapolation based forecasting. To alleviate this problem we

propose a novel approach of combining Fourier [184] and linear kernels in an attempt

to capture periodic and aperiodic patterns when forecasting. This new kernel takes

the following form

F (x, y) =
1− q2

2(1− 2q cos(x− y) + q2)
+ xy (6.6)

where 0 < q < 1. For our SVQR benchmark we choose q = 0.5 and set the C

regularization parameter as the max value in the training set, we found that these

choices worked the best when fitting the training sets of the case studies. Our last

benchmark, QRNN, is similar in structure to our QFNN model where we use one

trend component hidden node (otherwise we found it could not predict trend), and

uses a smooth approximation of the pinball loss function. The main differences in

QRNN are that L2 regularization is used, the sigmoid tanh activation function in

the hidden nodes is applied, and all parameters are randomized during initialization.

For QRNN we use a maximum training iteration of 10000, a learning rate of 0.1,

and a smoothing rate of 0.1, and a regularization rate of 10 for all experiments.

6.0.7 Results and Discussion

For experimentation in each case study, we use 50% of the data for training and

the other 50% for testing. All models only saw observations in the training sets.

Test data were never presented to the models and were used just to calculate QS

126

and IS metrics. The use of 50% of the time series for testing was done to achieve

the goal of long-term multi-step PF. For each case study, we estimate 100 quantiles

whose nominal values are equally spaced between 0 and 1. These 100 quantiles can

be combined to form upper and lower bounds of 50 prediction intervals. We use the

QS metric to evaluate the quality of the 100 quantiles and the IS metric to evaluate

the 50 prediction intervals. In all experiments, QFNN is used for PF. Median values

with nominal level τ = 0.5 were estimated separately for visual comparison of QFNN

forecasts with those of the benchmarks.

For figures ?? to 6.8, red dots represent the underlying case study time series.

The colored curves represent median forecasts of the top four methods that were

able to capture the most information of periodic and aperiodic patterns visually.

We found that only the benchmark methods SARIMA, ETS, and SVQR for case

studies 1 to 3 and 5 to 6 in Table 6.1 were able to fit meaningful periodic patterns

and thus we only display these three benchmarks. All benchmark methods yielded

poor fits for case studies 4, 7, and 8; therefore we do not show these plots. Figures

6.9 to 6.16 showcase QFNN estimation of 50 prediction intervals across test and

training data from all 8 case studies. The red line in these figures represents the

time series observations. Evaluation metrics are reported in Tables 6.3 and 6.4.

In our first experiment, we use the air passengers dataset, where the first six years

of data (72 samples) are used for training QFNN and each benchmark method.

The next six years were used for prediction. An ACF evaluation finds that the

time series has a season of S = 12, and grid search found ARIMA(2,1,3) and

SARIMA(1,0,0)(1,0,1)[12] to be the best hyperparameters for ARIMA and SARIMA

respectively. We see in Fig. 6.8 SVQR estimates the trend but not the seasonality

very well. ETS and SARIMA estimate both trend and seasonality well, but the

median forecasts fall below and above the test data. QFNN learns the shape of the

data better and captures the median appropriately. Fig. 6.9 shows prediction in-

tervals fitting the test data well, and Tables 6.3 and 6.4 report that QFNN without

constraints yielded the best scores with QFNN coming second. For the remaining

experiments, ARIMA and SARIMA hyperparameters are displayed in Table 6.2.

127

Our second experiment demonstrates the power of QFNN in modeling non-

constant seasonal patterns. The sunspots case study is used which has seasonal

patterns of varying amplitudes. The years from 1700 to 1858 were used for training,

and the years 1859 to 2017 were used for testing. We see in Fig. 6.4 that SVQR

fails to capture any meaningful pattern in its prediction. SRIMA captures a sea-

sonal pattern that is out of phase with the sunspot test series, and ETS shots off in

the test set with a positive trend. QFNN captures a seasonal pattern that is a bit

more in phase with the number of sunspots over the years and is also able to learn

multiple patterns of the sunspot time series. Fig. 6.14 shows prediction intervals

fitting the test data surprising well, QFNN captures higher peaks around 1943 and

lower peaks around 1903. In Tables 6.3 and 6.4 we see that QFNN has the best

score.

The third experiment uses the real-time load demand case study. We use the

first 372 hours in the time series for training. In the median plot of Fig. 6.6 SVQR

is able to capture a poor and small seasonal pattern. SRIMA captures the daily

seasonality but fails to capture any cycles in the test set, and ETS shots off in the

test set with a positive trend. QFNN learns both the seasonal and cyclical pattern

of the load demand. The capture of the cyclical pattern in the load data by QFNN is

better presented in Fig. 6.11 where we see a tight fit of the daily seasonal and weekly

cyclical pattern. The only deviation being around January 21, 2017, which shows

a lower observed demand in load possibly due to a warmer weekend and less power

needed for heating. Tables 6.3 and 6.4 report that QFNN has the best scores with

QFNN second best. The fourth experiment uses the solar power case study and uses

the first 380 hours of training. The training set includes samples from both sunny

and non-sunny days where solar power is lower than average. In Fig. 6.7 SVQR

poorly estimates the daily seasonality. SRIMA has a seasonal pattern reducing over

time in the test set, and while ETS is able to capture the daily seasonality, we see a

slight negative trend. QFNN learns a constant daily quantile pattern for its median

estimate and for all its prediction intervals in Fig. 6.12. These consistent patterns

can be associated with sunny days and in Tables 6.3 and 6.4 QFNN has the top

results.

128

The fifth experiment using the closing stock prices of the Apple corporation

is considered a fascinating case study due to the highly random nature of stock

movements. For training, the first 2.5 years of closing prices are used, and testing

is composed of closing prices up until the start of April 2018. In Fig. 6.5 we see a

long-term positive trend and possibly a cycle in the stock price of Apple across the

five years. In the plot, SVQR fits the linear trend of the stock series but nothing

else. ETS learns a non-existing seasonal pattern, and SARIMA doesn’t seem to

capture any meaningful pattern. With QFNN we see that it learns the cyclic and

positive trend of the stock price which follows the test data better than any other

method. This is also demonstrated in Fig. 6.13 that up until the end of 2017 QFNN

follows the trend and cycle, but then in 2018, the price of Apple jumps higher

than the prediction. Despite the visually good fit of QFNN in the figures, the UM

outperforms all the other methods in Tables 6.3 and 6.4. This is not a surprise as

it’s prediction intervals would be centered entirely on the trend.

The remaining experiments are the internet, wind, and wave case studies. Me-

dian plots of these experiments are not shown since the benchmark methods per-

formed poorly in capturing the multiple or irregular seasonal patterns in these time

series. We present the prediction intervals by QFNN in Fig. 6.10 where the first 343

hours are used for training. We see that QFNN can learn the multiple seasonal pat-

terns of internet traffic data. The prediction intervals forecasted by QFNN for the

simulated wave elevation case study is shown in Fig. 6.15. It is not a surprise that

since ocean waves can be modeled by a sum of sinusoids that QFNN can estimate

well the amplitudes, frequencies, and phases of the irregular periodic patterns.

The last experiment conducted is on the wind power dataset. In Fig. 6.16 we

see no identifiable periodic or aperiodic patterns in the wind time series training set.

This explains why QFNN has a hard time modeling the test set. We do see a few

peaks predicted by QFNN such as on January 21 and the 27th, but overall the PF is

very poor. Results from all the benchmark methods on the wind case study are even

worse then QFNN. The wind experiment demonstrates that not all nonstationary

time series can be predicted by QFNN. Tables 6.3 and 6.4 report that QFNN has

the lowest QS and IS metrics for the internet, wind, and wave experiments.

129

Conclusion

Probabilistic predictions can provide a much better analysis of uncertainty then

point forecasting. In this paper, a novel approach for probabilistic forecasting is

presented called the quantile Fourier neural network. The proposed approach uses

a smooth approximation to the pinball ball loss function for estimating composite

quantiles. Furthermore, the proposed model provides forecasts using extrapolation

based regression instead of autoregression. Extrapolation based regression has not

been studied before for probabilistic forecasting. Empirical results on real world

univariate time series showcase that our model is able to appropriately capture

periodic and aperiodic components to provide high-quality probabilistic predictions.

Given the novelty of our approach, more research needs to be conducted to assess

its application to more domains and under different scenarios. Further studies could

also look at other cost functions such as using the interval score directly. This could

provide appropriate prediction intervals that may have even higher sharpness and

reliability. Furthermore, the influence of exogenous variables as additional inputs to

the quantile Fourier neural network could be explored.

130

Figure 6.1: Pinball ball function versus the smooth pinball neural network with smooth-
ing parameter α = 0.2.

Table 6.1: Datasets used in the experiments.

Case Study Target Samples Time Granularity Reference

1 Air Passengers 144 Month [169]
2 Sunspots 318 Year [170]
3 Real-Time Load Demand 744 Hour [171]
4 Internet Traffic Data (in bits) 686 Hour [172]
5 Apple Closing Stock Price 1581 Day [174]
6 Solar Power 760 Hour [8]
7 Wind Power 744 Hour [8]
8 Ocean Wave Elevation 400 Second (simulated)

131

Figure 6.2: Architecture of the quantile Fourier neural network.

Table 6.2: Hyperparameters estimated by grid search for ARIMA and SARIMA for each
case study. The seasonal term S is estimated using the ACF plot.

Case Study ARIMA(p,d,q) SARIMA(p,d,q)(P,D,Q) S

1 (2, 1, 3) (1, 0, 0)(1, 0, 1) 12
2 (3, 1, 2) (1, 0, 1)(0, 1, 1) 10
3 (2, 1, 3) (1, 1, 1)(1, 1, 1) 24
4 (2, 2, 2) (1, 1, 1)(1, 1, 1) 24
5 (2, 2, 2) (1, 1, 1)(0, 1, 1) 149
6 (2, 1, 2) (1, 0, 1)(1, 0, 1) 24
7 (2, 0, 1) (1, 1, 1)(0, 0, 0) 24
8 (2, 0, 2) (1, 0, 1)(0, 1, 1) 39

Table 6.3: Quantiles scores from QFNN and benchmark methods.

Series PM UM SVQR PQR QR QRNN ETS SARIMA ARIMA QFNN

Passengers 0.032 0.029 0.053 0.050 0.032 0.029 0.022 0.035 0.549 0.015
Sunspots 0.078 0.083 0.069 0.200 0.068 0.071 0.172 0.068 0.069 0.058
Load 0.037 0.034 0.035 0.265 0.034 0.054 0.154 0.055 0.042 0.028
Internet 0.093 0.084 0.088 0.210 0.079 0.071 0.121 0.513 7.481 0.055
Stock 0.041 0.031 0.048 0.348 0.047 0.052 0.047 0.103 0.206 0.063
Solar 0.083 0.118 0.078 0.077 0.078 0.076 0.102 0.045 0.082 0.030
Wind 0.095 0.092 0.093 0.545 0.099 0.280 0.293 0.192 0.137 0.089
Wave 0.100 0.149 0.145 0.217 0.159 0.207 0.223 0.187 0.138 0.056

132

Figure 6.3: Flowchart of proposed methodology using QFNN.

133

Table 6.4: Interval scores from QFNN and benchmark methods.

Series PM UM SVQR PQR QR QRNN ETS SARIMA ARIMA QFNN

Passengers -0.26 -0.23 -0.42 -0.39 -0.25 -0.23 -0.17 -0.28 -0.43 -0.12
Sunspots -0.62 -0.67 -0.55 -1.60 -0.55 -0.57 -1.37 -0.54 -0.55 -0.46
Load -0.29 -0.27 -0.28 -2.12 -0.27 -0.43 -1.23 -0.44 -0.34 -0.22
Internet -0.72 -0.67 -0.70 -1.32 -0.63 -0.57 -0.97 -9.80 -4.10 -0.44
Stock -0.33 -0.30 -0.38 -2.78 -0.38 -0.41 -0.37 -0.82 -1.65 -0.50
Solar -0.67 -0.94 -0.63 -0.62 -0.61 -0.61 -0.82 -0.36 -0.66 -0.24
Wind -0.76 -0.75 -0.77 -2.63 -0.73 -2.24 -2.35 -1.54 -1.10 -0.71
Wave -0.80 -1.19 -1.16 -1.70 -1.27 -1.66 -1.78 -1.49 -1.10 -0.45

Figure 6.4: Forecast comparison of the median quantile for the Sunspots time series
(red dots) by QFNN (shown in black), SVQR (shown in blue), SARIMA
(shown in green), and ETS (shown in purple). SVQR fails to capture any
meaningful pattern in its prediction. SRIMA captures a seasonal pattern
that is out of phase with the sunspot test series, and ETS shots off in the
test set with a positive trend. QFNN captured a seasonal pattern that is a
bit more in phase with the number of sunspots over the years and is also
able to learn multiple seasons of sunspots thus providing the most accurate
quantile forecast of all the methods.

134

Figure 6.5: Forecast comparison of the median quantile for the Apple Closing Stock Price
time series (red dots) by QFNN (shown in black), SVQR (shown in blue),
SARIMA (shown in green), and ETS (shown in purple). SVQR can learn the
linear trend of the stock series but nothing else. ETS learns a non-existing
seasonal pattern, and SARIMA does not seem to capture any meaningful
pattern. While QFNN does not have the highest accuracy regarding the QS
and IS metrics we can see in the plot that it learns a cyclic trend of the stock
price which follows the test set better than any other method.

135

Figure 6.6: Forecast comparison of the median quantile for the Load Demand time series
(red dots) by QFNN (shown in black), SVQR (shown in blue), SARIMA
(shown in green), and ETS (shown in purple). SVQR captures a poor and
small seasonal pattern. SRIMA captures the seasonality but fails to capture
any cycles in the test set, and ETS shots off in the test set with a positive
trend. QFNN learns both the seasonal and cyclical pattern of the load
demand.

Figure 6.7: Forecast comparison of the median quantile for the Solar Power time series
(red dots) by QFNN (shown in black), SVQR (shown in blue), SARIMA
(shown in green), and ETS (shown in purple). SVQR is barely able to
estimate the seasonality. SRIMA has a seasonal pattern reducing overtime in
the test set, and while ETS captures the seasonality we see a negative trend.
QFNN learns a constant seasonal quantile pattern that can be attributed to
sunny days.

136

Figure 6.8: Forecast comparison of the median quantile for the Air Passengers time series
(red dots) by QFNN (shown in black), SVQR (shown in blue), SARIMA
(shown in green), and ETS (shown in purple). SVQR estimates the trend
but not the seasonality so well. ETS and SARIMA estimate both trend and
seasonality well, but the median forecasts fall below and above the test data.
QFNN learns the shape of the data better and appropriately captures the
median.

Figure 6.9: Probabilistic forecasting of 50 prediction intervals for the Air Passengers
series.

137

Figure 6.10: Probabilistic forecasting of 50 prediction intervals for the Internet Traffic
series.

Figure 6.11: Probabilistic forecasting of 50 prediction intervals for the Load Demand
series.

138

Figure 6.12: Probabilistic forecasting of 50 prediction intervals for the Solar Power series.

Figure 6.13: Probabilistic forecasting of 50 prediction intervals for the Apple Closing
Stock Prices time series.

139

Figure 6.14: Probabilistic forecasting of 50 prediction intervals for the Sunspots time
series.

Figure 6.15: Probabilistic forecasting of 50 prediction intervals for the simulated Ocean
Wave Elevation time series.

140

Figure 6.16: Probabilistic forecasting of 50 prediction intervals for the wind power time
series.

141

Chapter 7

Conclusion

A paradigm shift is occurring in the world of prediction. Just like in the world

of artificial intelligence where a shift is being made from shallow to deep learning

methods, the world of forecasting is also changing. Where for decades the forecasting

community was concerned in estimating single-valued or deterministic forecasts, we

are now seeing a disciplinary transition to conducting full probabilistic forecasts.

Such projections allow us to quantify the uncertainty in a prediction and therefore

provide more information for optimal decision making in any field requiring forecasts.

From smart grid operations to the integration of renewable energies, probabilistic

forecasts can significantly improve knowledge of uncertainty. In this dissertation, we

set out to study the utilization of neural network architectures for nonparametric

probabilistic forecasting. Neural network methods have shown incredible results in

time series and regression problems. We study how they can be successfully applied

for obtaining probabilistic forecasts in the form of quantiles or prediction intervals.

We show the ability of neural networks to automatically learn features from raw

data and how their capabilities yield significantly higher forecasting performance.

Before proposing probabilistic forecasting methods, we highlight the use of neural

networks for deterministic forecasting in chapter 2. We showcase this chapter as a

background to the fields of both neural network theory and time series forecasting.

In chapter 2 we propose a novel method for using particle swarm optimization to

train a non-linear autoregressive neural network. The accuracy of our approach

142

is tested using ocean wave heights to aid the integration of wave energy into the

power grid. We believe our scheme improves multi-step prediction as needed in

integrating stochastic renewable resources. Compared to existing methodologies, our

method can be applied to other applications where forecasts are required for multiple

time steps. Through our use of a stochastic inertial weight, in the PSO learning

algorithm to train our NAR network, we show with simulated data successful results

in predicting short term ocean wave levels.

In chapter 3 we presented an approach for modeling and analyzing the price to

load feedback relationship in a cyber-enabled demand side management system. We

showed vulnerabilities in this feedback and how an attack can launch load or price

data attacks. We then presented change paint and supervised learning methods

and discovered how linear techniques such as logistic regression were quite useful

for attack detection. This DSM domain is a perfect example of a problem where

linear methods are better than nonlinear ones. Thus the need for deep learning or

advanced probabilistic forecasting is not warranted. However, we hypothesize that

when renewable energy generation is introduced into this problem, the detection of

attacks can become much more difficult. Renewable generation can bring a lot of

uncertainty, and an attacker can exploit this uncertainty and amplify in the DSM

problem. We are then motivated to conduct advanced probabilistic forecasting of

renewables to help with integration, smart grid operations, and detection of DSM

attacks in a stochastic environment. In the next several chapters we propose several

novel probabilistic forecasting approaches.

In chapter 4 the issues associated with the generation and evaluation of wind

power forecasts are first introduced in the form of quantiles and prediction intervals.

Due to the stochastic nature of the wind, it is often difficult to forecast. Uncertainty

analysis in the form of probabilistic wind prediction can provide a better picture

of future wind coverage. In this chapter, we propose a framework for probabilistic

forecasting using support vector quantile regression with non-crossing constraints to

ensure multiple quantiles can be predicted without overlapping each other. Support

vector machines are considered a shallow neural network. The effectiveness of our

approach is validated with the real world dataset of the Global Energy Forecasting

143

Competition 2014. The relationship between estimation and scoring of quantiles are

closely tied, and empirical results of our methods show reliability and low quantile

scores across the prediction horizon.

Utilizing the same public data set, the Global Energy Forecasting Competition

2014, in chapter 5 we create a new deep feedforward neural network which we call

SPNN. We use a novel smooth approximation to the pinball ball loss function in

estimating multiple quantiles, and also incorporate non-crossing constraints in the

form of a smooth penalty in the loss function. Such a neural network with this

loss function and penalty has not been studied before. We compare forecasts to

standard and advanced benchmarks and employ standard quantile score, reliability,

and sharpness metrics. Our results show superior performance across the prediction

horizons, which verify the effectiveness of the model for forecasting while preventing

estimated quantiles from overlapping. Our deep network can automatically learn

latent features in its hidden layers from raw data. Comparing with state-of-the-art

benchmark methods, we show that no other method can generalize on raw data

without feature engineering.

Our SPNN method has the potential to be applied to a variety of domains for

probabilistic forecasting. However, it is limited in that it has no mechanisms to

capture long term periodic patterns. Thus, in chapter 6 we radically extend SPNN

to decompose univariate time series into a cosine Fourier series. The proposed model

we dub the quantile Fourier neural network provides forecasts using extrapolation

based regression instead of autoregression. Extrapolation based regression has not

been studied before for probabilistic forecasting. We conduct empirical case studies

not only on wind but on eight real world (and public) datasets. We show that such a

Fourier decomposition of time series with our model is able to appropriately capture

periodic and aperiodic components to provide high-quality probabilistic predictions.

Given the novelty of all our approaches, more research needs to be conducted to

assess their application to more domains and under different scenarios. New studies

could also look at other cost functions such as using the interval score directly. This

could provide appropriate prediction intervals that may have even higher sharpness

and reliability. Overall, the field of probabilistic neural forecasting is young. There

144

is still a vast forest of deep learning methods that could be explored, hybridized and

evaluated for quantile and prediction interval estimation. In the next section, we

quickly introduce several possible extensions for future work.

Future Work

From our research on the application of novel neural network frameworks for

probabilistic forecasting, we plan several extensions for future work. The first of

these is a stepwise quantile network as an alternative approach for possibly more

efficiently utilized non-crossing constraints. Next, in our study of DSM attacks, we

looked at various machine learning methods for detection which resulted in high

accuracy of detection. We hypothesize this will not be the case when incorporating

stochastic renewables into the problem and therefore provided several methods in

this dissertation to accurately forecast the uncertainty of renewables. An alternative

approach to forecasting renewables to is to forecasting demand in the presence of

renewables. Solving such a problem, we propose the use of a quantile autoregres-

sive neural network to estimate multi-step-ahead prediction intervals for anomaly or

attack detection. Lastly, we propose extending our feedforward neural network ap-

proaches to study recurrent and convolutional architectures for quantile forecasting.

Both deep architectures have shown promise in time series prediction [185,186]. In

the next sections, we briefly introduce all these proposed architectures.

7.0.1 Stepwise Quantile Networks for Non-crossing Con-

straints

One of the core tenants of this dissertation is the nonlinear estimation of multi-

ple quantile regression functions. However, as we point out in early chapters, a

phenomenon of quantile crossing may occur which violates the basic principle of

distribution functions where their associated inverse functions should be monotone

increasing. We introduce in chapter 5 our SPNN model with non-crossing constraints

145

in the form of a smooth penalty function in the loss. The equivalent number of con-

straints is equal to M+1 where we have M constraints plus an additional constraint

to bound the upper or lower quantile between 0 and 1. In summary these constraints

are 0 < τ1 < τ2 < ... < τM < 1. Most of these constraints are superfluous, in that

not all quantiles will be crossing each other at all times. To improve the constrained

estimation scheme, we propose a more efficient iterative method for SPNN which is

based on stepwise quantile regression [187].

As an extension to SPNN, we propose a new method to estimate multiple quan-

tiles without crossing. This estimation scheme would be a stepwise formulation to

ensure the non-crossing of the nonlinear regression functions. The stepwise proce-

dure is relatively simple. We start with one hidden layered network, with an input

and output layer of parameters. We first train the network to estimate a single

quantile such as the median τ = 0.5. Then keeping the weights of the input layer

and the output weights for τ = 0.5 both fixed, we learn another set of output pa-

rameters to estimate the quantile τ = 0.6. If the output violates the constraint

where τ0.6 < τ0.5, we re-estimate the weights for τ = 0.6 but this time incorporating

the smooth penalty in the loss function to prevent the cross over

p = c
N∑
t=1

[
max

(
0, ε−

(
q̂
(τ0.5)
t − q̂(τ0.6)t

))]2
(7.1)

Effectively, we are only adding constraints in the estimation procedure when the

next quantile regression function does not cross the current one. This procedure

continues until SPNN outputs all desired τ levels.

7.0.2 Quantile Autoregressive Network for Detection

The detection of anomalous time series through multi-step ahead forecasts is a dif-

ficult task. In chapter 3 we have shown that linear methods could accurately detect

attacks on DSM systems by estimating daily load usage with constant power gener-

ation. However, the problem can become significantly complicated when generation

is stochastic such as by wind, wave, or solar power. In such cases, forecasting of

146

Figure 7.1: Example multi-step forecast from proposed QARNET model for load de-
mand. Anomalous data is flagged when above or below the prediction inter-
vals with a certain nominal coverage rate.

generation in relation to demand is considerably more difficult. Therefore, we pro-

pose a nonlinear quantile regression in the context of time series data and propose

a quantile autoregression neural network (QARNET) model by adding an SPNN

structure to the quantile autoregression (QAR) model. The linear QAR model with

exogenous covariates is defined as

Qyt(τ) = ατ0 +

p∑
i=1

ατi yt−i +

p∑
j=1

βjxt−j (7.2)

This model is easily extended to a neural network by using embedded nonlinear

functions. The extended QARNET model could be more flexible as it can imple-

ment a quantile autoregression for time series data for probabilistic forecasting and

estimate nonlinear relationships with lagged data or covariates.

Detection of anomalous time series through multi-step ahead forecasts is then

conducted by forecasting t+K step ahead prediction interval estimates. The exact

nominal coverage rate of such intervals could be estimated a posteriori. Tens or

hundreds of prediction intervals can be estimated during training. Then the intervals

with the highest reliability and sharpness could be taken and then estimated for the

testing data. With these intervals, if an observed future data point is above or below

147

Figure 7.2: Example architecture of a convolutional neural network for regression.

the bounds, it is flagged as anomalous. This method may be considered as a deep

nonparametric change point detector.

7.0.3 Convolutional and Recurrent Quantile Networks

Convolutional neural networks (CNN) [188] are an extension of feedforward neural

networks. Their architecture, loosely inspired by the biological visual system, pos-

sess two key properties that make them very valuable. The first is spatially shared

weights and second is spatial pooling. This kind of network automatically learns

features that are shift-invariant (stationary). The pooling layers are responsible for

reducing the sensitivity of the output to a slight input shift and distortions. Most

common CNN architectures are composed of multiple stages, as shown in Fig. 7.2.

The output of each stage is made of a set of two-dimensional arrays called feature

maps. Each feature map is the outcome of one convolutional and pooling filter

applied over the full input data set. A non-linear activation function, such as a

rectified linear unit (RELU) follows a pooling layer.

This type of neural network has been shown to be extremely efficient in many

image and computer vision applications, such as object recognition [189], segmen-

tation [190], and classification [3]. Recently there have been several advances in

CNN’s for time series forecasting. In [191] the authors propose a CNN for time

series modeling based on the wavelet transform. In [192] the authors propose to use

148

an autoregressive-type weighting system for forecasting financial time series, where

the weights are allowed to be data-dependent by learning them through a CNN.

In [15] an ensemble of CNN’s is used to generate multiple point forecasts of wind

power from which a density function could be estimated.

Despite recent works, there is still little literature on convolutional and deep

neural networks for time-series prediction, and even fewer works on their applica-

tion to probabilistic forecasting. For future work, we plan to study extensions of

SPNN into a CNN architecture and evaluate its efficacy with multivariate inputs

and outputs. We also plan similar studies of extending our SPNN and QFNN mod-

els into recurrent architectures. A recurrent neural network (RNN) is a class of

methods where connections between nodes form a directed graph along a sequence

which allows it model temporal dynamic behavior for a time series. RNNs can thus

use their internal state to process sequences of inputs and learn hidden or nonlin-

ear correlations between sequences. RNN models have shown tremendous success

for time series prediction, particularly variants that utilize long short-term memory

(LSTM) units [193]. For probabilistic forecasting, recently [194] shows how to use

ensemble RNNs to make point forecasts and then derive distributional information,

and in [195] prediction intervals are estimated using a lower upper bound estimation

method. Like CNNs, there is overall limited literature on the subject of probabilistic

forecasting and RNNs, particularly in conditional quantile estimation.

149

Bibliography

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT

press Cambridge, 2016, vol. 1.

[2] T. Gneiting and M. Katzfuss, “Probabilistic forecasting,” Annual Review of

Statistics and Its Application, vol. 1, pp. 125–151, 2014.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[4] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature

learning and deep learning for time-series modeling,” Pattern Recognition Let-

ters, vol. 42, pp. 11–24, 2014.

[5] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, p. 436, 2015.

[6] L. Deng, D. Yu et al., “Deep learning: methods and applications,” Foundations

and Trends R© in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[7] M. A. Nielsen, Neural networks and deep learning. Determination press USA,

2015, vol. 25.

[8] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman,

“Probabilistic energy forecasting: Global energy forecasting competition 2014

and beyond,” 2016.

150

[9] “Gefcom2017: Hierarchical probabilistic load forecasting,” Oct

2016. [Online]. Available: http://blog.drhongtao.com/2016/10/

gefcom2017-hierarchical-probabilistic-load-forecasting.html

[10] G. Giebel, L. Landberg, J. Badger, K. Sattler, H. Feddersen, T. S. Nielsen,

H. A. Nielsen, and H. Madsen, “Using ensemble forecasting for wind power,”

Proceedings Cd-rom. Cd 2, 2003.

[11] A. M. Foley, P. G. Leahy, A. Marvuglia, and E. J. McKeogh, “Current methods

and advances in forecasting of wind power generation,” Renewable Energy,

vol. 37, no. 1, pp. 1–8, 2012.

[12] G. Sideratos and N. D. Hatziargyriou, “Probabilistic wind power forecasting

using radial basis function neural networks,” IEEE Transactions on Power

Systems, vol. 27, no. 4, pp. 1788–1796, 2012.

[13] C. Wan, J. Lin, J. Wang, Y. Song, and Z. Y. Dong, “Direct quantile regression

for nonparametric probabilistic forecasting of wind power generation,” IEEE

Transactions on Power Systems, vol. 32, no. 4, pp. 2767–2778, 2017.

[14] A. U. Haque, M. H. Nehrir, and P. Mandal, “A hybrid intelligent model for

deterministic and quantile regression approach for probabilistic wind power

forecasting,” IEEE Transactions on Power Systems, vol. 29, no. 4, pp. 1663–

1672, 2014.

[15] H.-z. Wang, G.-q. Li, G.-b. Wang, J.-c. Peng, H. Jiang, and Y.-t. Liu, “Deep

learning based ensemble approach for probabilistic wind power forecasting,”

Applied energy, vol. 188, pp. 56–70, 2017.

[16] J. W. Taylor, P. E. McSharry, and R. Buizza, “Wind power density forecasting

using ensemble predictions and time series models,” IEEE Transactions on

Energy Conversion, vol. 24, no. 3, pp. 775–782, 2009.

151

http://blog.drhongtao.com/2016/10/gefcom2017-hierarchical-probabilistic-load-forecasting.html
http://blog.drhongtao.com/2016/10/gefcom2017-hierarchical-probabilistic-load-forecasting.html

[17] Y. Zhang, J. Wang, and X. Wang, “Review on probabilistic forecasting of

wind power generation,” Renewable and Sustainable Energy Reviews, vol. 32,

pp. 255–270, 2014.

[18] A. Khosravi, S. Nahavandi, D. Creighton, and A. F. Atiya, “Lower upper

bound estimation method for construction of neural network-based prediction

intervals,” IEEE Transactions on Neural Networks, vol. 22, no. 3, pp. 337–346,

2011.

[19] H. Quan, D. Srinivasan, and A. Khosravi, “Short-term load and wind power

forecasting using neural network-based prediction intervals,” IEEE transac-

tions on neural networks and learning systems, vol. 25, no. 2, pp. 303–315,

2014.

[20] D. van der Meer, J. Widén, and J. Munkhammar, “Review on probabilistic

forecasting of photovoltaic power production and electricity consumption,”

Renewable and Sustainable Energy Reviews, 2017.

[21] J. Nowotarski and R. Weron, “Recent advances in electricity price forecast-

ing: A review of probabilistic forecasting,” Renewable and Sustainable Energy

Reviews, 2017.

[22] A. S. Dorvlo, “Estimating wind speed distribution,” Energy Conversion and

Management, vol. 43, no. 17, pp. 2311–2318, 2002.

[23] P. Pinson, H. A. Nielsen, J. K. Møller, H. Madsen, and G. N. Kariniotakis,

“Non-parametric probabilistic forecasts of wind power: required properties

and evaluation,” Wind Energy, vol. 10, no. 6, pp. 497–516, 2007.

[24] R. Koenker and G. Bassett Jr, “Regression quantiles,” Econometrica: journal

of the Econometric Society, pp. 33–50, 1978.

[25] R. Koenker, Quantile regression. Cambridge university press, 2005, no. 38.

[26] J. B. Bremnes, “Probabilistic wind power forecasts using local quantile regres-

sion,” Wind Energy, vol. 7, no. 1, pp. 47–54, 2004.

152

[27] H. A. Nielsen, H. Madsen, and T. S. Nielsen, “Using quantile regression to

extend an existing wind power forecasting system with probabilistic forecasts,”

Wind Energy, vol. 9, no. 1-2, pp. 95–108, 2006.

[28] M. Landry, T. P. Erlinger, D. Patschke, and C. Varrichio, “Probabilistic gradi-

ent boosting machines for gefcom2014 wind forecasting,” International Jour-

nal of Forecasting, vol. 32, no. 3, pp. 1061–1066, 2016.

[29] R. Juban, H. Ohlsson, M. Maasoumy, L. Poirier, and J. Z. Kolter, “A mul-

tiple quantile regression approach to the wind, solar, and price tracks of gef-

com2014,” International Journal of Forecasting, vol. 32, no. 3, pp. 1094–1102,

2016.

[30] J. Juban, L. Fugon, and G. Kariniotakis, “Uncertainty estimation of wind

power forecasts: Comparison of probabilistic modelling approaches,” in Euro-

pean Wind Energy Conference & Exhibition EWEC 2008. EWEC, 2008, pp.

10–pages.

[31] J. W. Taylor, “A quantile regression neural network approach to estimating

the conditional density of multiperiod returns,” Journal of Forecasting, vol. 19,

no. 4, pp. 299–311, 2000.

[32] Y. Feng, R. Li, A. Sudjianto, and Y. Zhang, “Robust neural network with

applications to credit portfolio data analysis,” Statistics and its Interface,

vol. 3, no. 4, p. 437, 2010.

[33] Q. Xu, X. Liu, C. Jiang, and K. Yu, “Quantile autoregression neural network

model with applications to evaluating value at risk,” Applied Soft Computing,

vol. 49, pp. 1–12, 2016.

[34] A. J. Cannon, “Quantile regression neural networks: Implementation in r and

application to precipitation downscaling,” Computers & Geosciences, vol. 37,

no. 9, pp. 1277–1284, 2011.

153

[35] Y. Grushka-Cockayne, K. C. Lichtendahl, V. R. R. Jose, and R. L. Winkler,

“Quantile evaluation, sensitivity to bracketing, and sharing business payoffs,”

2016.

[36] P. Friederichs and A. Hense, “Statistical downscaling of extreme precipitation

events using censored quantile regression,” Monthly weather review, vol. 135,

no. 6, pp. 2365–2378, 2007.

[37] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction, and

estimation,” Journal of the American Statistical Association, vol. 102, no. 477,

pp. 359–378, 2007.

[38] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: forecasting

and control. John Wiley & Sons, 2013.

[39] J. G. De Gooijer and R. J. Hyndman, “25 years of time series forecasting,”

International journal of forecasting, vol. 22, no. 3, pp. 443–473, 2006.

[40] M. Belmont, “Increases in the average power output of wave energy converters

using quiescent period predictive control,” Renewable Energy, vol. 35, no. 12,

pp. 2812–2820, 2010.

[41] J. Hals, J. Falnes, and T. Moan, “A comparison of selected strategies for

adaptive control of wave energy converters,” Journal of Offshore Mechanics

and Arctic Engineering, vol. 133, no. 3, p. 031101, 2011.

[42] G. Li, G. Weiss, M. Mueller, S. Townley, and M. R. Belmont, “Wave energy

converter control by wave prediction and dynamic programming,” Renewable

Energy, vol. 48, pp. 392–403, 2012.

[43] K. Hatalis, P. Pradhan, S. Kishore, R. Blum, and A. Lamadrid, “Multi-step

forecasting of wave power using a nonlinear recurrent neural network,” Power

and Energy Society General Meeting, 2014 IEEE, 2014.

[44] K. Hornik, “Some new results on neural network approximation,” Neural Net-

works, vol. 6, no. 8, pp. 1069–1072, 1993.

154

[45] P. A. Janssen, “Progress in ocean wave forecasting,” Journal of Computational

Physics, vol. 227, no. 7, pp. 3572–3594, 2008.

[46] F. Fusco and J. V. Ringwood, “Short-term wave forecasting for real-time con-

trol of wave energy converters,” Sustainable Energy, IEEE Transactions on,

vol. 1, no. 2, pp. 99–106, 2010.

[47] H. B. Hwarng, “Insights into neural-network forecasting of time series corre-

sponding to arma structures,” Omega, vol. 29, no. 3, pp. 273–289, 2001.

[48] M. Deo and S. Jagdale, “Prediction of breaking waves with neural networks,”

Ocean Engineering, vol. 30, no. 9, pp. 1163–1178, 2003.

[49] J. Kennedy, R. Eberhart et al., “Particle swarm optimization,” in Proceedings

of IEEE international conference on neural networks, vol. 4, no. 2. Perth,

Australia, 1995, pp. 1942–1948.

[50] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and

particle swarm optimization,” in Evolutionary Programming VII. Springer,

1998, pp. 611–616.

[51] J.-R. Zhang, J. Zhang, T.-M. Lok, and M. R. Lyu, “A hybrid particle

swarm optimization–back-propagation algorithm for feedforward neural net-

work training,” Applied Mathematics and Computation, vol. 185, no. 2, pp.

1026–1037, 2007.

[52] R. Mendes, P. Cortez, M. Rocha, and J. Neves, “Particle swarms for feedfor-

ward neural network training,” learning, vol. 6, no. 1, 2002.

[53] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm op-

timization and backpropagation as training algorithms for neural networks,” in

Swarm Intelligence Symposium, 2003. SIS’03. Proceedings of the 2003 IEEE.

IEEE, 2003, pp. 110–117.

155

[54] M. Carvalho and T. B. Ludermir, “An analysis of pso hybrid algorithms for

feed-forward neural networks training,” in Neural Networks, 2006. SBRN’06.

Ninth Brazilian Symposium on. IEEE, 2006, pp. 6–11.

[55] F. Valdez, P. Melin, and O. Castillo, “Modular neural networks architecture

optimization with a new nature inspired method using a fuzzy combination of

particle swarm optimization and genetic algorithms,” Information Sciences,

vol. 270, pp. 143–153, 2014.

[56] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez, “Optimal

design of fuzzy classification systems using pso with dynamic parameter adap-

tation through fuzzy logic,” Expert Systems with Applications, vol. 40, no. 8,

pp. 3196–3206, 2013.

[57] Q. Shen, W.-M. Shi, W. Kong, and B.-X. Ye, “A combination of modified

particle swarm optimization algorithm and support vector machine for gene

selection and tumor classification,” Talanta, vol. 71, no. 4, pp. 1679–1683,

2007.

[58] S. M. Santos, M. J. Valença, and C. J. Bastos-Filho, “Comparing parti-

cle swarm optimization approaches for training multi-layer perceptron neu-

ral networks for forecasting,” in Intelligent Data Engineering and Automated

Learning-IDEAL 2012. Springer, 2012, pp. 344–351.

[59] G. K. Jha, P. Thulasiraman, and R. K. Thulasiram, “Pso based neural net-

work for time series forecasting,” in Neural Networks, 2009. IJCNN 2009.

International Joint Conference on. IEEE, 2009, pp. 1422–1427.

[60] Z. Bashir and M. El-Hawary, “Applying wavelets to short-term load forecast-

ing using pso-based neural networks,” Power Systems, IEEE Transactions on,

vol. 24, no. 1, pp. 20–27, 2009.

[61] L. Zhao and Y. Yang, “Pso-based single multiplicative neuron model for time

series prediction,” Expert Systems with Applications, vol. 36, no. 2, pp. 2805–

2812, 2009.

156

[62] P. S. de M Neto, G. G. Petry, R. Aranildo, and T. A. Ferreira, “Combining

artificial neural network and particle swarm system for time series forecasting,”

in Neural Networks, 2009. IJCNN 2009. International Joint Conference on.

IEEE, 2009, pp. 2230–2237.

[63] R. J. Duro and J. S. Reyes, “Discrete-time backpropagation for training synap-

tic delay-based artificial neural networks,” Neural Networks, IEEE Transac-

tions on, vol. 10, no. 4, pp. 779–789, 1999.

[64] H. T. Siegelmann, B. G. Horne, and C. L. Giles, “Computational capabilities

of recurrent narx neural networks,” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions on, vol. 27, no. 2, pp. 208–215, 1997.

[65] H. Xie, H. Tang, and Y.-H. Liao, “Time series prediction based on narx neural

networks: An advanced approach,” in Machine Learning and Cybernetics,

2009 International Conference on, vol. 3. IEEE, 2009, pp. 1275–1279.

[66] A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, “Enhancing the parti-

cle swarm optimizer via proper parameters selection,” in Electrical and Com-

puter Engineering, 2002. IEEE CCECE 2002. Canadian Conference on, vol. 2.

IEEE, 2002, pp. 792–797.

[67] S. Sumathi and S. Paneerselvam, Computational intelligence paradigms: the-

ory & applications using MATLAB. CRC Press, 2010.

[68] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Evolution-

ary Computation Proceedings, 1998. IEEE World Congress on Computational

Intelligence., The 1998 IEEE International Conference on. IEEE, 1998, pp.

69–73.

[69] J. Falnes, Ocean waves and oscillating systems. Cambridge University Press,

2004.

[70] Y. Goda, Random seas and design of maritime structures, 2010.

157

[71] D. Hasselmann, M. Dunckel, and J. Ewing, “Directional wave spectra observed

during jonswap 1973,” Journal of physical oceanography, vol. 10, no. 8, pp.

1264–1280, 1980.

[72] R. Tibshirani, “A comparison of some error estimates for neural network mod-

els,” Neural Computation, vol. 8, no. 1, pp. 152–163, 1996.

[73] C. J. Bastos-Filho, D. F. Carvalho, E. M. Figueiredo, and P. B. de Miranda,

“Dynamic clan particle swarm optimization,” in Intelligent Systems Design

and Applications, 2009. ISDA’09. Ninth International Conference on. IEEE,

2009, pp. 249–254.

[74] I. C. Trelea, “The particle swarm optimization algorithm: convergence analysis

and parameter selection,” Information processing letters, vol. 85, no. 6, pp.

317–325, 2003.

[75] K. Socha and C. Blum, “An ant colony optimization algorithm for continuous

optimization: application to feed-forward neural network training,” Neural

Computing and Applications, vol. 16, no. 3, pp. 235–247, 2007.

[76] P. Palensky and D. Dietrich, “Demand side management: Demand response,

intelligent energy systems, and smart loads,” IEEE transactions on industrial

informatics, vol. 7, no. 3, pp. 381–388, 2011.

[77] T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand side management

in smart grid using heuristic optimization,” IEEE transactions on smart grid,

vol. 3, no. 3, pp. 1244–1252, 2012.

[78] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-

Garcia, “Autonomous demand-side management based on game-theoretic en-

ergy consumption scheduling for the future smart grid,” IEEE transactions

on Smart Grid, vol. 1, no. 3, pp. 320–331, 2010.

158

[79] L. Gelazanskas and K. A. Gamage, “Demand side management in smart grid:

A review and proposals for future direction,” Sustainable Cities and Society,

vol. 11, pp. 22–30, 2014.

[80] A. C. Batista and L. S. Batista, “Demand side management using a multi-

criteria -constraint based exact approach,” Expert Systems with Applications,

vol. 99, pp. 180–192, 2018.

[81] A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan, “Load

forecasting, dynamic pricing and dsm in smart grid: A review,” Renewable

and Sustainable Energy Reviews, vol. 54, pp. 1311–1322, 2016.

[82] G. Dudek, “Pattern-based local linear regression models for short-term load

forecasting,” Electric Power Systems Research, vol. 130, pp. 139–147, 2016.

[83] S. S. Pappas, L. Ekonomou, P. Karampelas, D. Karamousantas, S. Katsikas,

G. Chatzarakis, and P. Skafidas, “Electricity demand load forecasting of the

hellenic power system using an arma model,” Electric Power Systems Re-

search, vol. 80, no. 3, pp. 256–264, 2010.

[84] W. Christiaanse, “Short-term load forecasting using general exponential

smoothing,” IEEE Transactions on Power Apparatus and Systems, no. 2, pp.

900–911, 1971.

[85] J. W. Taylor, “Triple seasonal methods for short-term electricity demand fore-

casting,” European Journal of Operational Research, vol. 204, no. 1, pp. 139–

152, 2010.

[86] A. Kavousi-Fard, H. Samet, and F. Marzbani, “A new hybrid modified firefly

algorithm and support vector regression model for accurate short term load

forecasting,” Expert systems with applications, vol. 41, no. 13, pp. 6047–6056,

2014.

159

[87] A. Baliyan, K. Gaurav, and S. K. Mishra, “A review of short term load fore-

casting using artificial neural network models,” Procedia Computer Science,

vol. 48, pp. 121–125, 2015.

[88] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term

residential load forecasting based on lstm recurrent neural network,” IEEE

Transactions on Smart Grid, 2017.

[89] G. Dudek, “Short-term load forecasting using random forests,” in Intelligent

Systems’ 2014. Springer, 2015, pp. 821–828.

[90] S. Li, L. Goel, and P. Wang, “An ensemble approach for short-term load

forecasting by extreme learning machine,” Applied Energy, vol. 170, pp. 22–

29, 2016.

[91] S. Chakraborty, T. Ito, and T. Senjyu, “Smart pricing scheme: A multi-layered

scoring rule application,” Expert Systems with Applications, vol. 41, no. 8, pp.

3726–3735, 2014.

[92] N. Nazar, M. Abdullah, M. Hassan, and F. Hussin, “Time-based electricity

pricing for demand response implementation in monopolized electricity mar-

ket,” in Research and Development (SCOReD), 2012 IEEE Student Confer-

ence on. IEEE, 2012, pp. 178–181.

[93] M. Burger, B. Klar, A. Miller, and G. Schindlmayr, “A spot market model for

pricing derivatives in electricity markets,” Quantitative finance, vol. 4, no. 1,

pp. 109–122, 2004.

[94] R. D. Zimmerman, C. E. Murillo-Sánchez, and D. Gan, “Matpower: A mat-

lab power system simulation package,” Manual, Power Systems Engineering

Research Center, Ithaca NY, vol. 1, 1997.

[95] D. P. Chassin, K. Schneider, and C. Gerkensmeyer, “Gridlab-d: An open-

source power systems modeling and simulation environment,” in Transmission

160

and distribution conference and exposition, 2008. t&d. IEEE/PES. IEEE,

2008, pp. 1–5.

[96] S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht,

“Smart*: An open data set and tools for enabling research in sustainable

homes,” SustKDD, August, vol. 111, no. 112, p. 108, 2012.

[97] P. J. Brockwell, R. A. Davis, and M. V. Calder, Introduction to time series

and forecasting. Springer, 2002, vol. 2.

[98] D. Gamerman and H. F. Lopes, Markov chain Monte Carlo: stochastic simu-

lation for Bayesian inference. Chapman and Hall/CRC, 2006.

[99] D. N. Politis and H. White, “Automatic block-length selection for the depen-

dent bootstrap,” Econometric Reviews, vol. 23, no. 1, pp. 53–70, 2004.

[100] P. R. Thimmapuram, J. Kim, A. Botterud, and Y. Nam, “Modeling and simu-

lation of price elasticity of demand using an agent-based model,” in Innovative

Smart Grid Technologies (ISGT), 2010. IEEE, 2010, pp. 1–8.

[101] G. Liang, J. Zhao, F. Luo, S. R. Weller, and Z. Y. Dong, “A review of false

data injection attacks against modern power systems,” IEEE Transactions on

Smart Grid, vol. 8, no. 4, pp. 1630–1638, 2017.

[102] A. Tartakovsky, I. Nikiforov, and M. Basseville, Sequential analysis: Hypoth-

esis testing and changepoint detection. Chapman and Hall/CRC, 2014.

[103] S. Key, “Fundamentals of statistical signal processing, volume ii: Detection

theory,” 1993.

[104] R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and

S. Pan, “Machine learning for power system disturbance and cyber-attack dis-

crimination,” in 2014 7th International symposium on resilient control systems

(ISRCS), 2014, pp. 1–8.

161

[105] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Machine

learning methods for attack detection in the smart grid,” IEEE transactions

on neural networks and learning systems, vol. 27, no. 8, pp. 1773–1786, 2016.

[106] M. Esmalifalak, L. Liu, N. Nguyen, R. Zheng, and Z. Han, “Detecting stealthy

false data injection using machine learning in smart grid,” IEEE Systems

Journal, vol. 11, no. 3, pp. 1644–1652, 2017.

[107] C. Bishop, “Pattern recognition and machine learning,” Pattern Recognition

and Machine Learning, 2006.

[108] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statis-

tical learning. Springer, 2013, vol. 112.

[109] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical mod-

eling with python,” in Proceedings of the 9th Python in Science Conference,

vol. 57. SciPy society Austin, 2010, p. 61.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Ma-

chine learning in python,” Journal of machine learning research, vol. 12, no.

Oct, pp. 2825–2830, 2011.

[111] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in science

& engineering, vol. 9, no. 3, pp. 90–95, 2007.

[112] K. Hatalis, “Lehighdsm python package,” https://github.com/, 2019.

[113] P. Pinson and G. Kariniotakis, “On-line assessment of prediction risk for wind

power production forecasts,” Wind Energy, vol. 7, no. 2, pp. 119–132, 2004.

[114] I. Takeuchi, Q. V. Le, T. D. Sears, and A. J. Smola, “Nonparametric quantile

estimation,” Journal of Machine Learning Research, vol. 7, no. Jul, pp. 1231–

1264, 2006.

162

https://github.com/

[115] E. Mangalova and O. Shesterneva, “K-nearest neighbors for gefcom2014 prob-

abilistic wind power forecasting,” International Journal of Forecasting, vol. 32,

no. 3, pp. 1067–1073, 2016.

[116] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, “Probabilistic forecast-

ing of wind power generation using extreme learning machine,” IEEE Trans-

actions on Power Systems, vol. 29, no. 3, pp. 1033–1044, 2014.

[117] J. Platt et al., “Sequential minimal optimization: A fast algorithm for training

support vector machines,” 1998.

[118] P. Pinson and G. Kariniotakis, “Conditional prediction intervals of wind power

generation,” IEEE Transactions on Power Systems, vol. 25, no. 4, pp. 1845–

1856, 2010.

[119] J. Quinonero-Candela, C. E. Rasmussen, F. Sinz, O. Bousquet, and

B. Schölkopf, “Evaluating predictive uncertainty challenge,” pp. 1–27, 2006.

[120] Y. V. Makarov, C. Loutan, J. Ma, and P. De Mello, “Operational impacts of

wind generation on california power systems,” IEEE Transactions on Power

Systems, vol. 24, no. 2, pp. 1039–1050, 2009.

[121] W. A. Bukhsh, C. Zhang, and P. Pinson, “An integrated multiperiod opf

model with demand response and renewable generation uncertainty,” IEEE

Transactions on Smart Grid, vol. 7, no. 3, pp. 1495–1503, 2016.

[122] A. Botterud, Z. Zhou, J. Wang, R. J. Bessa, H. Keko, J. Sumaili, and V. Mi-

randa, “Wind power trading under uncertainty in lmp markets,” IEEE Trans-

actions on power systems, vol. 27, no. 2, pp. 894–903, 2012.

[123] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, G. Conzelmann

et al., “Wind power forecasting: state-of-the-art 2009.” Argonne National

Laboratory (ANL), Tech. Rep., 2009.

163

[124] R. Doherty and M. O’Malley, “A new approach to quantify reserve demand

in systems with significant installed wind capacity,” IEEE Transactions on

Power Systems, vol. 20, no. 2, pp. 587–595, 2005.

[125] J. Usaola, O. Ravelo, G. González, F. Soto, M. C. Dávila, and B. Dı́az-Guerra,

“Benefits for wind energy in electricity markets from using short term wind

power prediction tools; a simulation study,” Wind Engineering, vol. 28, no. 1,

pp. 119–127, 2004.

[126] E. D. Castronuovo and J. P. Lopes, “On the optimization of the daily operation

of a wind-hydro power plant,” IEEE Transactions on Power Systems, vol. 19,

no. 3, pp. 1599–1606, 2004.

[127] G. N. Bathurst, J. Weatherill, and G. Strbac, “Trading wind generation in

short term energy markets,” IEEE Transactions on Power Systems, vol. 17,

no. 3, pp. 782–789, 2002.

[128] P. Pinson, C. Chevallier, and G. N. Kariniotakis, “Trading wind generation

from short-term probabilistic forecasts of wind power,” IEEE Transactions on

Power Systems, vol. 22, no. 3, pp. 1148–1156, 2007.

[129] T. Karakatsanis and N. Hatziargyriou, “Probabilistic constrained load flow

based on sensitivity analysis,” IEEE Transactions on Power Systems, vol. 9,

no. 4, pp. 1853–1860, 1994.

[130] M. Lange, “On the uncertainty of wind power predictionsanalysis of the fore-

cast accuracy and statistical distribution of errors,” Journal of Solar Energy

Engineering, vol. 127, no. 2, pp. 177–184, 2005.

[131] J. L. Powell, “Least absolute deviations estimation for the censored regression

model,” Journal of Econometrics, vol. 25, no. 3, pp. 303–325, 1984.

[132] ——, “Censored regression quantiles,” Journal of econometrics, vol. 32, no. 1,

pp. 143–155, 1986.

164

[133] K. Yu and M. Jones, “Local linear quantile regression,” Journal of the Amer-

ican statistical Association, vol. 93, no. 441, pp. 228–237, 1998.

[134] X. Chen, R. Koenker, and Z. Xiao, “Copula-based nonlinear quantile autore-

gression,” The Econometrics Journal, vol. 12, no. s1, pp. S50–S67, 2009.

[135] C. Hwang and J. Shim, “A simple quantile regression via support vector ma-

chine,” Advances in natural computation, pp. 418–418, 2005.

[136] I. Takeuchi and T. Furuhashi, “Non-crossing quantile regressions by svm,” in

Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Confer-

ence on, vol. 1. IEEE, 2004, pp. 401–406.

[137] C. Chen, “A finite smoothing algorithm for quantile regression,” Journal of

Computational and Graphical Statistics, vol. 16, no. 1, pp. 136–164, 2007.

[138] Q. Xu, K. Deng, C. Jiang, F. Sun, and X. Huang, “Composite quantile re-

gression neural network with applications,” Expert Systems with Applications,

vol. 76, pp. 129–139, 2017.

[139] C. Chen and O. L. Mangasarian, “A class of smoothing functions for nonlin-

ear and mixed complementarity problems,” Computational Optimization and

applications, vol. 5, no. 2, pp. 97–138, 1996.

[140] Y.-J. Lee and O. L. Mangasarian, “Ssvm: A smooth support vector machine

for classification,” Computational optimization and Applications, vol. 20, no. 1,

pp. 5–22, 2001.

[141] S. Zheng, “Gradient descent algorithms for quantile regression with smooth

approximation,” International Journal of Machine Learning and Cybernetics,

vol. 2, no. 3, p. 191, 2011.

[142] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv preprint arXiv:1412.6980, 2014.

165

[143] A. J. Cannon, “Non-crossing nonlinear regression quantiles by monotone com-

posite quantile regression neural network, with application to rainfall ex-

tremes,” 2017.

[144] R. M. Freund, “Penalty and barrier methods for constrained optimization,”

2004.

[145] J. Xue, S. Zhou, Q. Liu, X. Liu, and J. Yin, “Financial time series prediction

using 2, 1rf-elm,” Neurocomputing, 2017.

[146] Y. Hu, C. Hu, S. Fu, P. Shi, and B. Ning, “Predicting the popularity of viral

topics based on time series forecasting,” Neurocomputing, vol. 210, pp. 55–65,

2016.

[147] T. Zhou, G. Han, X. Xu, Z. Lin, C. Han, Y. Huang, and J. Qin, “δ-agree

adaboost stacked autoencoder for short-term traffic flow forecasting,” Neuro-

computing, vol. 247, pp. 31–38, 2017.

[148] J. Yan, K. Li, E. Bai, Z. Yang, and A. Foley, “Time series wind power fore-

casting based on variant gaussian process and tlbo,” Neurocomputing, vol. 189,

pp. 135–144, 2016.

[149] L. B. Godfrey and M. S. Gashler, “Neural decomposition of time-series data

for effective generalization,” arXiv preprint arXiv:1705.09137, 2017.

[150] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series

analysis: forecasting and control. John Wiley & Sons, 2015.

[151] Y. Yang, S. Li, W. Li, and M. Qu, “Power load probability density forecasting

using gaussian process quantile regression,” Applied Energy, 2017.

[152] S. B. Taieb, R. Huser, R. J. Hyndman, and M. G. Genton, “Forecasting uncer-

tainty in electricity smart meter data by boosting additive quantile regression,”

IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2448–2455, 2016.

166

[153] W. Su, J. Wang, and J. Roh, “Stochastic energy scheduling in microgrids with

intermittent renewable energy resources,” IEEE Transactions on Smart Grid,

vol. 5, no. 4, pp. 1876–1883, 2014.

[154] T. Hong, J. Wilson, and J. Xie, “Long term probabilistic load forecasting and

normalization with hourly information,” IEEE Transactions on Smart Grid,

vol. 5, no. 1, pp. 456–462, 2014.

[155] A. Botterud, Z. Zhou, J. Wang, J. Sumaili, H. Keko, J. Mendes, R. J. Bessa,

and V. Miranda, “Demand dispatch and probabilistic wind power forecasting

in unit commitment and economic dispatch: A case study of illinois,” IEEE

Transactions on Sustainable Energy, vol. 4, no. 1, pp. 250–261, 2013.

[156] J. R. Andrade, J. Filipe, M. Reis, and R. J. Bessa, “Probabilistic price fore-

casting for day-ahead and intraday markets: Beyond the statistical model,”

Sustainability, vol. 9, no. 11, p. 1990, 2017.

[157] C.-M. Huang, Y.-C. Huang, K.-Y. Huang, S.-J. Chen, and S.-P. Yang, “Deter-

ministic and probabilistic wind power forecasting using a hybrid method,” in

Industrial Technology (ICIT), 2017 IEEE International Conference on. IEEE,

2017, pp. 400–405.

[158] M. S. Gashler and S. C. Ashmore, “Modeling time series data with deep fourier

neural networks,” Neurocomputing, vol. 188, pp. 3–11, 2016.

[159] K. E. Germec, “Fourier neural networks for real-time harmonic analysis,” in

Signal Processing and Communications Applications Conference, 2009. SIU

2009. IEEE 17th. IEEE, 2009, pp. 333–336.

[160] G. Parascandolo, H. Huttunen, and T. Virtanen, “Taming the waves: sine as

activation function in deep neural networks,” 2016.

[161] A. Silvescu, “A new kind of neural networks,” 1997.

[162] ——, “Fourier neural networks,” in Neural Networks, 1999. IJCNN’99. Inter-

national Joint Conference on, vol. 1. IEEE, 1999, pp. 488–491.

167

[163] K.-i. Minami, H. Nakajima, and T. Toyoshima, “Real-time discrimination of

ventricular tachyarrhythmia with fourier-transform neural network,” IEEE

transactions on Biomedical Engineering, vol. 46, no. 2, pp. 179–185, 1999.

[164] L. Mingo, L. Aslanyan, J. Castellanos, M. Diaz, and V. Riazanov, “Fourier

neural networks: An approach with sinusoidal activation functions,” 2004.

[165] H. Tan, “Fourier neural networks and generalized single hidden layer networks

in aircraft engine fault diagnostics,” Journal of engineering for gas turbines

and power, vol. 128, no. 4, pp. 773–782, 2006.

[166] W. Zuo, Y. Zhu, and L. Cai, “Fourier-neural-network-based learning control

for a class of nonlinear systems with flexible components,” IEEE transactions

on neural networks, vol. 20, no. 1, pp. 139–151, 2009.

[167] D. Tan, W. Chen, and H. Wang, “On the use of monte-carlo simulation

and deep fourier neural network in lane departure warning,” IEEE Intelli-

gent Transportation Systems Magazine, vol. 9, no. 4, pp. 76–90, 2017.

[168] M. S. Gashler and S. C. Ashmore, “Training deep fourier neural networks to

fit time-series data,” in International Conference on Intelligent Computing.

Springer, 2014, pp. 48–55.

[169] Box and Jenkins, “International airline passengers: monthly totals in

thousands. jan 49 to dec 60,” Time Series Data Library, 1976, (Date last

accessed 5-April-2018). [Online]. Available: http://datamarket.com/data/

list/?q=provider:tsdl

[170] S. W. D. Center, “Sunspot data from the world data center silso, royal

observatory of belgium, brussels,” International Sunspot Number Monthly

Bulletin and online catalogue, 1770-2017, (Date last accessed 5-April-2018).

[Online]. Available: http://www.sidc.be/silso/datafiles

168

http://datamarket.com/data/list/?q=provider:tsdl
http://datamarket.com/data/list/?q=provider:tsdl
http://www.sidc.be/silso/datafiles

[171] “Iso ne ca, rt demand, from 1-jan-2017 to 1-feb-2017,” ISO New England

Public, 2017, (Date last accessed 5-April-2018). [Online]. Available: https://

www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/zone-info

[172] “Internet traffic data (in bits) from a private isp with centres in 11

european cities. from 18-june-2005 to 16-july-2005,” Time Series Data

Library, 2012, (Date last accessed 5-April-2018). [Online]. Available:

https://datamarket.com/data/list/?q=provider:tsdl

[173] E. F. Fama and K. R. French, “Business cycles and the behavior of metals

prices,” The Journal of Finance, vol. 43, no. 5, pp. 1075–1093, 1988.

[174] “Apple inc. (aapl) closing stock price. from 3-january-2012 to 13-april-2018,”

Yahoo Finance, 2018, (Date last accessed 13-April-2018). [Online]. Available:

https://finance.yahoo.com/quote/AAPL?p=AAPL

[175] J. Falnes, Ocean waves and oscillating systems: linear interactions including

wave-energy extraction. Cambridge university press, 2002.

[176] C. Wan, Z. Xu, P. Pinson, Z. Y. Dong, and K. P. Wong, “Optimal prediction

intervals of wind power generation,” IEEE Transactions on Power Systems,

vol. 29, no. 3, pp. 1166–1174, 2014.

[177] “Generating quantile forecasts in r,” https://robjhyndman.com/hyndsight/

quantile-forecasts-in-r/, accessed: 20-April-2018.

[178] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, “A state space

framework for automatic forecasting using exponential smoothing methods,”

International Journal of forecasting, vol. 18, no. 3, pp. 439–454, 2002.

[179] “Seasonal autoregressive integrated moving average with exogenous regressors

model in python,” http://www.statsmodels.org/dev/generated/statsmodels.

tsa.statespace.sarimax.SARIMAX.html, accessed: 20-April-2018.

[180] “Python implementation of holt-winters seasonal methods,” https://gist.

github.com/andrequeiroz/5888967, accessed: 20-April-2018.

169

https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/zone-info
https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/zone-info
https://datamarket.com/data/list/?q=provider:tsdl
https://finance.yahoo.com/quote/AAPL?p=AAPL
https://robjhyndman.com/hyndsight/quantile-forecasts-in-r/
https://robjhyndman.com/hyndsight/quantile-forecasts-in-r/
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
http://www.statsmodels.org/dev/generated/statsmodels.tsa.statespace.sarimax.SARIMAX.html
https://gist.github.com/andrequeiroz/5888967
https://gist.github.com/andrequeiroz/5888967

[181] K. Hatalis, S. Kishore, K. Scheinberg, and A. Lamadrid, “An empirical anal-

ysis of constrained support vector quantile regression for nonparametric prob-

abilistic forecasting of wind power,” arXiv preprint arXiv:1803.10888, 2018.

[182] K. Hatalis, A. J. Lamadrid, K. Scheinberg, and S. Kishore, “Smooth pinball

neural network for probabilistic forecasting of wind power,” arXiv preprint

arXiv:1710.01720, 2017.

[183] “Quantile regression in python,” http://www.statsmodels.org, accessed: 20-

April-2018.

[184] V. Vapnik, The nature of statistical learning theory. Springer science &

business media, 2013.

[185] X. Qiu, L. Zhang, Y. Ren, P. N. Suganthan, and G. Amaratunga, “Ensemble

deep learning for regression and time series forecasting,” in Computational

Intelligence in Ensemble Learning (CIEL), 2014 IEEE Symposium on. IEEE,

2014, pp. 1–6.

[186] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent neural

networks for multivariate time series with missing values,” Scientific reports,

vol. 8, no. 1, p. 6085, 2018.

[187] Y. Liu and Y. Wu, “Stepwise multiple quantile regression estimation using

non-crossing constraints,” Statistics and its Interface, vol. 2, no. 3, pp. 299–

310, 2009.

[188] Y. LeCun et al., “Generalization and network design strategies,” Connection-

ism in perspective, pp. 143–155, 1989.

[189] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for

real-time object recognition,” in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on. IEEE, 2015, pp. 922–928.

170

http://www.statsmodels.org

[190] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks

for biomedical image segmentation,” in International Conference on Medical

image computing and computer-assisted intervention. Springer, 2015, pp.

234–241.

[191] R. Mittelman, “Time-series modeling with undecimated fully convolutional

neural networks,” arXiv preprint arXiv:1508.00317, 2015.

[192] M. Bińkowski, G. Marti, and P. Donnat, “Autoregressive convolutional neu-

ral networks for asynchronous time series,” arXiv preprint arXiv:1703.04122,

2017.

[193] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying lstm to time series pre-

dictable through time-window approaches,” in Neural Nets WIRN Vietri-01.

Springer, 2002, pp. 193–200.

[194] L. Cheng, H. Zang, T. Ding, R. Sun, M. Wang, Z. Wei, and G. Sun, “En-

semble recurrent neural network based probabilistic wind speed forecasting

approach,” Energies, vol. 11, no. 8, p. 1958, 2018.

[195] Z. Shi, H. Liang, and V. Dinavahi, “Direct interval forecast of uncertain wind

power based on recurrent neural networks,” IEEE Transactions on Sustainable

Energy, vol. 9, no. 3, pp. 1177–1187, 2018.

171

Vita

Personal Profile

Konstantinos Hatalis is an Electrical Engineering Ph.D. major at Lehigh Uni-

versity where his research focus is in converging deep learning, time series analysis,

statistical signal processing, and evolutionary optimization methods for nonpara-

metric probabilistic forecasting and pattern recognition. From Lehigh he also holds

a MSc degree in computer science, with a thesis published analyzing neural net-

works for semantic interference. He is experienced in data science and is an ardent

advocate of artificial intelligence technologies.

Education

2013-2018 Ph.D. in Electrical Engineering - Lehigh University

Advisor - Prof. Shalinee Kishore

Awards - P.C. Rossin Doctoral Fellow, Packard Fellowship

2012-2013 M.Sc. in Computer Science - Lehigh University

Advisor - Prof. Hector Munoz-Avila

Awards - Sherman Fairchild Fellowship

2011-2012 B.Sc. in Computer Science and Business - Lehigh University

Advisor - Prof. Sharon Kalafut

172

https://www1.lehigh.edu/
https://www1.lehigh.edu/
https://www1.lehigh.edu/

2007-2011 B.Sc. in Computer Engineering - Lehigh University

Advisor - Prof. Ed Kay

Professional Experience

Sep 2013 - May 2019 Integrated Networks for Electricity Research Cluster

Research Assistant

Sep 2013 - May 2019 Power from Ocean, Rivers, and Tides (PORT) Lab

Research Assistant

May 2012 - Aug 2013 Intelligent Decision Systems and Technologies Lab

Research Assistant

Publications

Journal Publications

1. K. Hatalis, P. Venkitasubramaniam, and K. Shalinee, “Modeling and Detec-

tion of Future Cyber-Enabled DSM Data Attacks using Supervised Learning”,

In Preparation.

2. K. Hatalis and K. Shalinee, “A Composite Quantile Fourier Neural Network

for Multi-Horizon Probabilistic Forecasting”, Neurocomputing, In-Submission.

3. K. Hatalis, A.J. Lamadrid, K. Scheinberg, and K. Shalinee, “Multi Quan-

tile Estimation based Neural Network for Probabilistic Forecasting of Wind

173

https://www1.lehigh.edu/
http://www.lehigh.edu/~ingrid/
http://www.lehigh.edu/portlab/
http://www.cse.lehigh.edu/InSyTe/index.html

Power”, Transactions on Transactions on Neural Networks and Learning Sys-

tems, In-Submission.

Conference & Poster Publications

1. C. Zhao, Y. Zhuo, K. Hatalis, P. Venkitasubramaniam, L. Snyder, R. Blum,

“Misuse of Demand Side Management”, Secure Evolvable Energy Delivery Sys-

tems Industry Meeting, 2018.

2. K. Hatalis, K. Shalinee, K. Scheinberg, and A.J. Lamadrid, “An Empirical

Analysis of Constrained Support Vector Quantile Regression for Nonparamet-

ric Probabilistic Forecasting of Wind Power”, Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

3. P. Pradhan, K. Hatalis, and K. Shalinee, “Protecting Power System Opera-

tions Against Cyber Attacks in the Presence of Renewables”, Secure Evolvable

Energy Delivery Systems Industry Meeting, 2016.

4. K. Hatalis, B. Alnajjab, K. Shalinee, R. Blum, and A.J. Lamadrid, “Particle

swarm based model exploitation for parameter estimation of wave realiza-

tions”, IEEE Symposium Series on Computational Intelligence (SSCI), 2016.

5. K. Hatalis and K. Shalinee, “On Enabling Autonomous Operation and Con-

trol of Ocean Wave Energy Farms”, Proceedings of the 3rd Marine Energy

Technology Symposium, 2015.

6. K. Hatalis, and R. Chandramouli, “Simulations on the Effect of External Se-

mantic Interference in Lexical Retrieval and Priming in Memory”, Neuro-

science, 2015.

7. K. Hatalis, B. Alnajjab, K. Shalinee, and R. Blum, “Swarm Based Parameter

Estimation of Wave Characteristics for Control in Ocean Energy Farms”, IEEE

PES General Conference & Exposition, 2015.

174

8. K. Hatalis and K. Shalinee, “A Multi-Agent System Architecture for Oper-

ational Autonomy in Ocean Wave Energy Farms”, Proceedings of the 28th

International Flairs Conference (FLAIRS-28), 2015.

9. K. Hatalis, B. Alnajjab, K. Shalinee, and A.J. Lamadrid, “Adaptive particle

swarm optimization learning in a time delayed recurrent neural network for

multi-step prediction”, IEEE Symposium on Foundations of Computational

Intelligence (FOCI), 2014.

10. K. Hatalis, P. Pradhan, K. Shalinee, R. Blum, and A.J. Lamadrid, “Multi-step

forecasting of wave power using a nonlinear recurrent neural network”, IEEE

PES General Conference & Exposition, 2014.

11. P. Pradhan, K. Hatalis, K. Shalinee, R. Blum, and A.J. Lamadrid, “Prospects

of wave power grid integration”, IEEE PES General Conference & Exposition,

2014.

12. P.G. OSéaghdha, D. Packer, A.K. Frazer, K. Preusse, K. Hatalis, H. Munoz-

Avila, A. Hupbach, “Does mere co-activation drive semantic interference”,

54th annual meeting of the Psychonomic Society, Toronto, Ontario, Canada,

2013.

175

