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Abstract

The presented research investigates selected topics concerning resilience of critical

energy infrastructures against certain types of operational disturbances and/or failures

whether natural or man-made. A system is made resilient through deployment of physical

devices enabling real-time monitoring, strong feedback control system, advanced system

security and protection strategies or through prompt and accurate man-made actions or

both. Our work seeks to develop well-planned strategies that act as a foundation for such

resiliency enabling techniques.

First (chapter 1), we study the security aspect of cyber-physical systems which inte-

grate physical system dynamics with digital cyberinfrastructure. Smart electricity grid is

a common example of this system type. In this work, an abstract theoretical framework

is proposed to study data injection/modification attacks on Markov modeled dynamical

systems from the perspective of an adversary. The adversary is capable of modifying a

temporal sequence of data and the physical controller is equipped with prior statistical

knowledge about the data arrival process to detect the presence of an adversary. The goal

of the adversary is to modify the arrivals to minimize a utility function of the controller

while minimizing the detectability of his presence as measured by the K-L divergence

between the prior and posterior distribution of the arriving data. The trade-off between

these two metrics controller utility and the detectability cost is studied analytically for

different underlying dynamics.

Our second study (chapter 2) reviews the state of the art ocean wave generation tech-

nologies along with system level modeling while providing an initial study of the impacts of

integration on a typical electrical grid network as compared to the closest related technol-
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ogy, wind energy extraction. In particular, wave power is computed from high resolution

measured raw wave data to evaluate the effects of integrating wave generation into a small

power network model. The system with no renewable energy sources and the system with

comparable wind generation have been used as a reference for evaluation. Simulations

show that wave power integration has good prospects in reducing the requirements of

capacity and ramp reserves, thus bringing the overall cost of generation down.

Our third study(chapter 3) addresses robustness of resilient ocean wave generation

systems. As an early-stage but rapidly developing technology, wave power extraction

systems must have strong resilience requirements in harsh, corrosive ocean environments

while enabling economic operation throughput their lifetime. Such systems are comprised

of Wave Energy Converters (WECs) that are deployed offshore and that derive power

from rolling ocean waves. The Levelized Cost of Electricity (LCOE) for WECs is high

and one important way to reduce this cost is to employ strategies that minimize the cost

of maintenance of WECs in a wave farm. In this work, an optimal maintenance strategy

is proposed for a group of WECs, resulting in an adaptive scheduling of the time of

repair, based on the state of the entire farm. The state-based maintenance strategy seeks

to find an optimal trade-off between the moderate revenue generated from a farm with

some devices being in a deteriorated or failed state, and the high repair cost that typifies

ocean wave farm maintenance practices. The formulation uses a Markov Decision Process

(MDP) approach to devise an optimal policy which is based on the count of WECs in

different operational states.

Our fourth study (chapter 4) focuses on enabling resilient electricity grids with Grid

Scale Storage (GSS). GSS offers resilient operations to power grids where the generation,

transmission, distribution and consumption of electricity has traditionally been “just in

time”. GSS offers the ability to buffer generated energy and dispatch it for consumption

later, e.g., during generation outage and shortages. Our research addresses how to operate

GSS to generate revenue efficiency in frequency regulation markets. Operation of GSS in

frequency regulation markets is desirable due to its fast response capabilities and the

corresponding revenues. However, GSS health is strongly dependent on its operation

2



and understanding the trade-offs between revenues and degradation factors is essential.

This study answers whether or not operating GSS at high efficiency regularly reduces its

long-term performance (and thereby its offered resilience to the power grid).

Our fifth study (chapter 5) focuses on the resilience of Wide Area Measurement Sys-

tems (WAMS) which is an integral part of modern electrical grid infrastructure. The

problem of global positioning system (GPS) spoofing attacks on smart grid endowed with

phasor measurement units (PMUs) is addressed, taking into account the dynamical be-

havior of the states of the system. It is shown how GPS spoofing introduces a timing

synchronization error in the phasor readings recorded by the PMU and alters the mea-

surement matrix of the dynamical model. A generalized likelihood ratio-based hypotheses

testing procedure is devised to detect changes in the measurement matrix when the system

is subjected to a spoofing attack. Monte Carlo simulations are performed on the 9-bus, 3-

machine test grid to demonstrate the implication of the spoofing attack on dynamic state

estimation and to analyze the performance of the proposed hypotheses test. Asymptotic

performance analysis of the proposed test, which can be used for large-scale smart grid

networks, is also presented.
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Chapter 1

Stealthy Attacks in Dynamical

Systems: Tradeoffs between

Utility and Detectability with

Application in Anonymous

Systems

1.1 Introduction

Cyber-physical systems such as the smart grid, structural health monitoring, and ad-

vanced transportation systems which merge traditional physical control systems with cy-

ber communication networks are vulnerable to adversarial intrusion that aim to cripple

the functioning of these systems. In particular, the integration of the cyber information

layer exposes the physical system functioning to cyber security vulnerabilities which could

result in tangible economic losses and physical damages to our basic infrastructural sys-

tems. Real-world incidents and scientific studies have already demonstrated the inability

of the power grid to ensure a reliable service in the presence of cyber attacks [2–4]. For

instance, consider the Stuxnet worm, which first came to light in 2010, and was designed

4



to target supervisory control and data acquisition (SCADA) systems that are configured

to control and monitor specific industrial processes [5]. By injecting false data into the

programmable logic controllers (PLC) in the SCADA systems, the worm caused critical

malfunctioning of a nuclear power plant. The false injection mechanism stayed undetected

for several months whilst jeopardizing a large scale energy operation. This is an example

of disruption of internal physical systems through compromised external communication

links. When our infrastructural systems are vulnerable to mere communication failures,

an attack such as Stuxnet demonstrates the potential for large scale disruption at seem-

ingly very little cost to an adversary. The lack of strong cyber-physical security is a severe

impediment to the success of future engineering systems that integrate cyber and physical

components and are envisioned to transform our critical infrastructures.

Mathematically, cyber physical systems merge the continuous time physical system dy-

namics with the predominantly discrete time data processing methodologies, which gives

rise to modeling challenges [6] and the development of a standardized framework of anal-

ysis. Consequently, the study of cyber physical security has focused on specific systems,

most notably the smart electricity grid and transportation systems, and the analysis of at-

tacks and countermeasures within the milieu of those specific systems. These studies have

typically focused on one-shot attacks where an adversary aims to alter system functioning

instantaneously by injecting false data [2, 3, 7–9] while maintaining undetectability under

a static model of the system. In this work, our goal is to study an application independent

stochastic system framework, and investigate a dynamic data modification attack, which

we refer to as under-the-radar attack. The key intuition behind the study of this class of

attacks is the following. In a dynamic framework, every action of the adversary causes

an instantaneous loss in utility and simultaneously results in an altering of the system

dynamics as perceived by the physical system controller. Consequently, if the controller

has prior knowledge of the typical system dynamics, the change in posterior distribution

of incoming data can be used effectively to detect the presence of the adversary. From the

adversary’s perspective, there are two factors to balance, the tangible reward due to loss in

system utility and detectability factor which we measure using a distance metric between

5



the prior and posterior dynamics. Note that the problem as studied here is one of privacy

as desired by the adversary while still compromising the operation of the system. Specifi-

cally, we present a framework to characterize the tradeoff between the utility loss and the

Kullback-Liebler distance between the prior and posterior probability distributions of the

captured stream. The K-L distance (or information divergence) is an accepted measure

of detectability in hypothesis testing problems [10], and in this work, the detection of the

presence or absence of the adversary can be viewed as a hypothesis testing problem as

conducted by the control system under attack.

In this work, Markovian dynamics are used to model the prior distribution of the dis-

crete time stochastic process representing the incoming data. In recent years Markov mod-

els and in particular discrete time Markov decision processes have been used to model CPSs

such as autonomous driving [11] and water monitoring systems [12]. Classical Markov

modeled systems such as Linear Quadratic Gaussian control systems (which have broad

applicability to CPS), when discretized would also fit the work in this paper. Within the

framework of MDPs, part of the data is vulnerable to be modified by the adversary who is

aware of the prior dynamics and the detectability threshold of the controller. Under this

model, the contributions of the paper are as follows. When the adversary has complete

control of the incoming data, or if the state evolution is independent of input, the problem

is reduced to a linearly solvable control problem as studied in [13] which provides an exact

characterization of the adversary’s optimal strategy and the optimal tradeoff between de-

tectability and utility loss. For a general Markovian model, the optimal solution requires

the solution of a continuous action Markov Decision Process (MDP) which become com-

putationally impractical as the time horizon increases. For the general case, an achievable

tradeoff between detectability and tangible rewards is presented using a greedy heuristic

which can be characterized analytically. The proposed model is applied to a networking

problem of practical interest, wherein an adversary modifies the timing of an incoming

packet stream to a router so as to determine the flow of packets downstream from the

router. This problem is studied from the adversary perspective wherein the goal is to

balance two costs– the adversary’s privacy cost measured by the K-L divergence and the

6



network privacy cost measured by the maximum length of the packet stream whose paths

can be hidden by a memory limited router. In this example, it is shown that the general

formulation is solvable and yields the optimal adversary strategy.

The rest of the paper is organized as follows. The system model is described in Section

1.2. When the inputs follow an i.i.d arrival distribution, the optimal tradeoffs between

utility and K-L divergence, and the optimal adversary policies are derived in Section 1.3.

When the inputs follow Markovian dynamics, or an internal controller state is included

in the formulation, the tradeoffs and policies are presented in Section 1.4. The network

anonymity application is described and solved in detail in Section 1.5, followed by con-

cluding remarks in Section 1.6.

1.1.1 Related Work

The study of false data injection in cyber physical systems has focused on specific

applications, most notably, power systems or the smart grid. Attacks on power system

state estimation, such as compromising phasor measurement unit (PMU) data streams,

has drawn a lot of recent attention due to its potential impact to cripple a national in-

frastructure. A good majority of the studies have considered “one-shot” attacks [2, 3],

wherein an adversary identifies the minimum number of data sources to compromise such

that the system moves to an alternate state than the actual one, whilst maintaining per-

fect complete undetectability of his presence. The undetectability results typically rely on

the internal security and stability assessment utilizing static estimation techniques. Intro-

ducing dynamics into the security measures can significantly improve the detectability of

one-shot attacks. For instance, [14–16] consider continuous-time power system models and

apply dynamic techniques to detect malicious data injection. In [15], an accurate power

network descriptor model is used and necessary and sufficient conditions for identifiability

of attacks based on the network topology are derived, and in [7] dynamic detection and

identification procedures based on tools from geometric control theory are proposed to de-

tect power network component failure due to false data injection. Dynamic data injection

attacks were also studied in the context of linear quadratic Gaussian (LQG) systems [8,9],

7



wherein the authors study estimation and control when some of the sensors or actuators

are corrupted by an attacker with an application in power networks. Specifically, they

are concerned with the number of attacks or errors that can be detected and corrected

within a specified time as a function of the parameters of system dynamics. They char-

acterize fundamental limits on undetectability of attacks and also provide a secure local

control loop design that can make the system more resilient to these attacks. Note that

the work in [7–9, 17, 18] also study the problem of false data injection in dynamical sys-

tems (LQG controllers and Kalman filter based estimation systems) which is thematically

similar to our work. Part of the focus there is on understanding system properties that

enable detection of the best adversary over a period of time. A key difference between our

model and the work in these references is the MDP model is an open-loop model based on

finite state probabilistic automatons whereas LQG and Kalman filter based systems are

feedback controllers working with real valued parameters.

Yet another specific application where false data injection has been studied theoreti-

cally is the introduction of Byzantine data in Bayesian distributed detection [19, 20]. In

Bayesian distributed detection, a group of sensors transmit observations to a fusion center

which uses the received data to perform a hypothesis testing problem on the underlying

source of observations. In the Byzantine version of the problem explored in [19, 20], the

authors included an adversary who compromised a fraction of sensors and determined the

most effective attacking strategy of the Byzantine nodes that limits the hypothesis testing

performance. Their approach was based on Kullback-Leibler divergence (KLD) as a prob-

abilistic distance between the legitimate and Byzantine data, and aims to maximize the

performance of Bayesian detection under a limited Byzantine attack assuming the attack

is undetectable and the data are independent across time. While our proposed approach

is also based on using an informational distance measure to quantify the deviation of

data from the legitimate statistical prior, it is used to study the tension from the adver-

sary perspective between preserving his detectability and ability to reduce system utility.

The critical challenge in our work is the dynamic nature of the system and the acausal

relationship between the key variables in the system.
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Figure 1.1: System Model

The problem as we explore in this article is similar to a class of cyberattacks referred to

by the mnemonic “Frog-Boiling” [21,22], wherein typical intrusion and anomaly detectors

of network traffic are fooled by modifying the data streams gradually so that detectors

that can maintain limited history of data fail to detect the anomalies built up over several

time steps. The work we present here is a theoretical foundational approach operating on

the same principle.

1.2 Mathematical Model

Data Arrival Inputs arrive to the controller according to a discrete time stochastic

process with wide sense stationary Markovian dynamics. We specifically divide the input

into two separate streams X = X1, X2, · · · and Y = Y1, Y2, · · · wherein the pair (xn, yn) ∈

X×Y denotes the input data at time step n. X,Y represent the legitimate inputs, wherein

the initial pair x0, y0 is fixed and the inputs at subsequent time points are distributed

according to the stationary transition probability matrix Pst = {pij|kli, k ∈ X , j, l ∈ Y}

and Pr{Xn+1 = k, Yn+1 = l|Xn = i, Yn = j} = pij|kl for all n. We represent the inputs by

a pair of streams X,Y to separate the stream X which can be modified by the adversary

from the stream Y which is not accessible to him. In practice, the stream Y could denote

information flowing through protected data links, or internal system information that is

unavailable to the adversary.

Controller Reward The underlying physical system receives the inputs and performs

actions that result in a utility value, denoted by a function u : X × Y → R+. In prac-
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tice, the underlying system has an internal state and, depending on the history, current

inputs and state, the controller takes an appropriate action that maximizes the net util-

ity achieved. In this work, our goal is to study the adversarial perspective, and for this

purpose the internal actions and internal state of the controller are abstracted into the in-

stantaneous utility function u(·, ·). In section 1.4 we will include an explicit internal state

variable in the model and derive the corresponding solutions. The controller is equipped

with an intrusion detection mechanism whose goal is to identify the presence or absence

of adversarial modification using prior knowledge of the legitimate input dynamics.

Adversary The adversary is assumed to have complete access to the data stream X,

wherein the data can be modified without restriction prior to being received by the con-

troller. For most of our subsequent results we shall assume that the adversary can observe

the stream Y but not modify the data on it. We denote the modified input stream by

X̂ = X̂1, X̂2, · · · ; the adversary’s goal is to generate the modified stream X̂ such that the

net utility of the controller is minimized whilst remaining stealthy of the intrusion detec-

tion mechanism described thenceforth. We assume, for the most part, that the adversary

is privy to the internal state process of the controller 1.

Intrusion Detection The controller is equipped with an intrusion detection mechanism

which is modeled as a hypothesis testing between the presence and absence of the ad-

versary. Specifically, the mechanism uses the observed inputs X̂,Y for the statistical

inference. In this work we do not explicitly model the hypothesis testing, but instead use

the Kullback-Liebler divergence between the posterior distribution of (X̂,Y) generated by

the adversary and the prior distribution P as a measure of detectability of the adversary’s

presence. It is well known that under constraints on the false alarm probability, the K-L

distance thus computed bounds the probability of missed-detection which the adversary

aims to maximize.

Adversary Policy and Net Reward Under this system model, the action of the ad-

1When the state transitions are deterministic functions of the inputs, state and action, the adversary
can infer the states even if he cannot ”observe” them
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versary is modeled by the causal conditional distribution:

P̂(X̂1, X̂2, · · · |X1, Y1, X2, Y2, · · · ) =

Pr{X̂1|X1, Y1}Pr{X̂2|X̂1, X2, Y2, X1, Y1} · · ·

which we denote using the policy notation µ. For an n step process, the adversary’s goal is

to design a policy that maximizes the net reward measured by a weighted sum of the utility

of the controller and the K-L divergence between the posterior and prior distributions,

given by

R(µ) =

n∑
i=1

λ
[
E(u(X̂i, Yi))

]
+ (1− λ)D(P̂||P)

where D(P̂||P) =

∑
(x,y)∈Xn×Yn

Pr{X̂ = x,Y = y} log

[
Pr{X̂ = x,Y = y}
Pr{X = x,Y = y}

]

is the K-L divergence between the posterior and prior distributions of the observed inputs.

The goal of the adversary is to design the policy µ∗ that maximizes the above reward.

Inherent in the above discussion is the fact that it is in the adversary’s best interests to

chose the optimal policy µ∗ despite knowing that the controller is aware of the optimal

policy µ∗ and can design a detector that uses the observed inputs to identify whether the

inputs were generated using the prior distribution or the posterior distribution (that is an

outcome of the known optimal policy µ∗).

In practice, the optimal distribution qn is used to randomly generate a specific action

(choice of input X̂n) which results in a specific utility and K-L cost achieved by the

adversary, which when averaged over the ensemble provides the derived optimal reward.

The controller, knowing that the adversary– if he exists– is likely to use the optimal

strategy, would perform the hypothesis testing accordingly and flag an alert if the detection

metric exceeds a certain threshold. The controller’s hypothesis testing is not explicitly

considered in this work, but instead abstracted using the K-L distance.

We note that K-L distance requires that the posterior distribution is absolutely con-
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tinuous with respect to the prior, which in essence limits the adversarial strategies. If the

absolute continuity condition were violated, or in other words, the adversary transmitted

an input that were not in the prior support, then the presence of the adversary would be

revealed instantly, and consequently such scenarios are not considered in this work.

Based on the described model, in the next section, we characterize explicitly the opti-

mal policy of the adversary when the incoming process is i.i.d, and subsequently extend

the results for the general Markovian model and when an internal state process is included

in Section 1.4. The optimal solution to the general process is expressed as a solution to a

continuous state-action Markov Decision Process.

1.3 Optimal Tradeoff and Adversary Policy for i.i.d Input

Streams

We first consider a simple system where the inputs to the controller is temporally an

i.i.d. process. Mathematically, Pr(Xn, Yn | Xn−1, Yn−1, · · ·) = Pr(Xn, Yn). As mentioned

in the mathematical model, the instantaneous cost incurred by the adversary in the process

is composed of the utility cost and the detectability cost. While the utility cost is a function

of instantaneous inputs, u(Xn, yn)(adversary absent) or u(X̂n, yn)(adversary present), the

penalty due to the data modification is measured by the K-L divergence. When the input

sequence is i.i.d, the K-L divergence between the distributions P and P̂ can be split as:

D(P̂||P) =

n∑
i=1

∑
(x,y)∈X×Y

Pr{X̂i = x, Yi = y}×

log

[
Pr{X̂i = x, Yi = y}
Pr{Xi = x, Yi = y}

]

which is a sum of causal independent terms across time steps. Inherent in the above ex-

pansion is the fact that the adversary also chooses a policy independent across time steps.

Without proof, we state that this is optimal since the adversary has nothing to gain from

a utility perspective using the memory of past actions and the K-L divergence between the

distribution of an i.i.d sequence and that of a sequence with memory is higher than that
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between two i.i.d sequences generated using the marginal distributions. As the compro-

mised input at any given time X̂n has dependency only with the inaccessible input Yn, the

action to change the probability distribution of X̂n is a conditional probability Pr{X̂n|yn}.

The unchanged joint probability Pr{Xn, Yn} and changed probability Pr{X̂n|yn} in the

analysis below are denoted as p(X,Y ) and q(X̂) respectively. In the following, the optimal

adversary behavior is analyzed depending on whether the adversary can observe the data

arriving from input stream Y or not.

1.3.1 Scenario I: Analysis with Perfect Side Information

Theorem 3.1 Let V ∗n denote the optimal weighted cost as a function of the inputs

xn, yn realized from the random input variables Xn, Yn at time n. Then

V ∗n = −(1− λ) log(Ep(x̂|yn)

[
exp(

−λ
1− λ

u(x̂, yn))

]
), x̂ ∈ X (1.1)

where the optimal action of the adversary is given by

q∗(x̂) =
p(x̂ | yn) exp(

−λ
1− λ

u(x̂, yn))

Γiid1

, x̂ ∈ X (1.2)

where Γiid1 is the normalization constant.

Proof: Since the inputs are i.i.d and there is no memory utilized in the system dynamics,

the optimal cost V ∗n at time n as a function of the inputs is given by solving the the greedy

optimality equation from the expected cost-to-go function:

V ∗n = min
q(x̂)

[
λ
∑
x̂

q(x̂)u(x̂, yn)+

(1− λ)
∑
x̂

q(x̂) log

(
q(x̂)

p(x̂ | yn)

)]
, x̂ ∈ X

The minimization uses the idea of K-L minimization similar to linearly solvable control

in [13] to derive the optimal policy and cost. The proof details are provided in the appendix

as a corollary to the proof of Theorem 4.1 2.
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1.3.2 Scenario II:Analysis with Unobservable Side Information

When the side information is observable to the adversary, the achieved utility when

the adversary throws away the legitimate input and generates an input with identical

distribution to the prior would be perfectly undetectable (and no utility change either)

which is a consequence of the use of expected rewards as a metric. For there to be a

difference between two sources of input using identical distributions, one legitimate and

the other illegal, there ought to be side information related to the actual input which can

be used to measure the deviation. The unmodified input stream Y can be viewed as this

side information which the controller can use to track the possibly modified input stream

X. In particular, when the side information (or state) is not observable to the adversary,

his ability to maintain his “stealthiness” is likely to reduce further. In the scenario where

the adversary is not able to eavesdrop on input stream Y, only prior knowledge of the

probability distribution of Yn can be used to derive the optimal policy and cost. Since

the prior distribution of Yn is a fixed i.i.d distribution dependent on the observed input

Xn, the optimal action at time n is also dependent on the observed input Xn at time n.

In the expression below, q(X̂) refers to Pr(X̂|Xn) and x̂ ∈ X . Since the adversary cannot

observe Yn, at best he can compute the marginal distribution of X̂n from the controller’s

perspective using his belief about Yn given the observed Xn. In other words, if

π(x̂) = Ep(Y |xn)p(x̂ | Y )

then the K-L divergence between posterior and prior as computed by the adversary is

given by

D(P̂‖P) = D(q(x̂)‖π(x̂))

The cost minimization function can be written as

min
q(x̂)

[
λEq(x̂)Ep(Y |xn)u(x̂, Y ) + (1− λ)D(q(x̂)‖π(x̂)))

]

14



Theorem 3.2 When the adversary cannot observe the input sequence Y, the optimal

cost

V̄ ∗n = −(1− λ) log

(
Eπ(x̂)

[
exp(

−λ
1− λ

∑
Y

p(Y | xn)u(x̂, Y ))

])
(1.3)

and the optimal action to obtain above cost is given by

q∗(x̂) =
π(x̂) exp(

−λ
1− λ

∑
Y p(Y | Xn)u(x̂, Y ))

Γiid2
(1.4)

where Γiid2 is the normalization constant.

Proof: The proof follows a similar optimization technique as in Theorem 4.1 2.

Note that when side information is available, the optimal adversary strategy does not

depend on the original data Xn. This is a virtue of the i.i.d assumption wherein if the

adversary were to choose a policy dependent on the original data X, through a conditional

distribution Pr{X̂n|Xn, Yn}, since the controller does not have access to the original data,

the cost function would only be expressed as an expectation over the original data in

which case, an equal cost can be obtained using the marginal policy Pr{X̂n|Yn}. However,

when side information is unavailable, the optimal action and tradeoff is dependent on the

observed input Xn since the observed input provides information about the unobservable

input which in turn influences the expected costs at that time step.

A simple example to illustrate the trade off between the utility cost and detectabil-

ity cost performed on a binary input model in Figure 1.2. The input tuple (Xi, Yi) ∈

({0, 0}, {0, 1}, {1, 0}, {1, 1}) is generated randomly from an arbitrary joint probability dis-

tribution Pr(x = 0, y = 0) = 0.1546, Pr(x = 0, y = 1) = 0.1546, Pr(x = 1, y = 0) =

0.2989 and Pr(x = 1, y = 1) = 0.2856. The Utility function of the input tuple (Xi, Yi) is

defined as

u(Xi, Yi) =



−1, if Xi = 0, Yi = 0

−0.75, if Xi = 1, Yi = 1

−0.50, if Xi = 1, Yi = 0

−0.25, if Xi = 0, Yi = 1

By spanning the optimization across different values of λ, a tradeoff between the utility

and detectability can be obtained, which is illustrated in Figure 1.2.
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Figure 1.2: Trade Off Between Utility and Detectability in scenario 1 and 2(i.i.d input
process)

As observed when adversary chooses to remain completely private (K-L cost is 0), the

achieved utility does not depend on whether the adversary can observe the input Y or

not. Since maximum stealth (minimum detectability) implies that the adversary retains

the prior distribution of inputs, this observation follows. As expected, the tradeoff for

the perfect side information is an inner bound on the tradeoff when side information is

not observable. This is true mathematically; when optimizing the policy with perfect

side information, the adversary can choose to ignore the available information to derive a

sub-optimal policy. We shall use this argument to derive an inner bound for the general

Markovian framework.

1.4 Adversary Policy and Cost under general Markovian

Framework

1.4.1 Continuous State-Action general MDP Formulation for Markov

Inputs and Utility independent of Controller’s State

In the general Markovian framework, the adversary can arguably use the complete

history (until time n− 1) of the original and modified data sequence when designing the

policy for state at time period n. However, we will present an argument that the ad-
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versary’s state can be effectively captured using four variables namely X̂n−1, Yn−1, Xn, Yn.

First, for any adversary policy that utilizes data variables for any time steps prior to n−1,

the total accrued utility reward can be equivalently obtained using the marginal distri-

bution conditioned only on the present variables. Second, due to the Markovian nature

of the incoming data, the difference in K-L rewards between the original policy and the

marginalized policy is always positive (since mutual information is always greater than

zero). Consequently it is sufficient for the adversary to design a Markov policy based on

one step memory alone.

For such a Markovian policy, the K-L cost can be split into a sum of causal rewards

as D(P̂||P) =

n∑
i=1

∑
(x,x′,y,y′)∈X 2×Y2

Pr{X̂i = x, Yi = y|X̂i−1 = x′, Yi−1 = y′}

× log

[
Pr{X̂i = x, Yi = y|X̂i−1 = x′, Yi−1 = y′}
Pr{Xi = x, Yi = y|Xi−1 = x′, Yi−1 = y′}

]

The reader must note that the inputs at time n , Xn and Yn are only a part of the

information to define the state of the adversary process. The state of the adversary will

consist of the current value of input Yn and Xn(original), input X̂n−1(changed) and Yn−1

in the previous time step. Note that in the i.i.d case, the original data Xn was not included

in the decision making due to the nature of the K-L cost which results in an expectation

over the original data and is thus not necessary. However, under Markovian dynamics, the

present value of Xn is required for the adversary to estimate the expected future rewards

which are a function of Xn+1, Yn+1 which in turn depend on the current Xn through the

Markov transition probability matrix.

Optimal Tradeoff and Adversary Policy with perfect side information

The formulation of a finite horizon general MDP with continuous-state action will

require following definitions:

• Decision Epoch: N = {1, 2, . . . , n, . . . , L}, L <∞
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• Adversary State: Zn ∈ Z = {S2×T 2} such that Zn = (Xn, Yn, X̂n−1, Yn−1). The

outcomes of the random state observed at any particular time step n, i.e. zn =

(xn, yn, x̂n−1, yn−1) is sufficient information available to the adversary.

• Action: Continuous action space qn ∈ [0, 1] such that qn : Z→ Pr(X̂n ∈ X : X̂n =

xn). is the probability mass function for the changed input X̂n that depends on the

current process state Zn.

• Transition Probability Function: F(z′n+1 | zn, qn) = ˜P× qn is the controlled

transition of current state Zn = (Xn, Yn, X̂n−1, Yn−1) to next state Zn+1 =

(Xn+1, Yn+1, X̂n, Yn) on applying an action qn, where the tilde denotes that a matrix

operation is done to exchange the 2nd element in the vector resulting from P×qn with

the last one. Recollect that P is the stationary transition probability of uncontrolled

markov chain describing the arrival of inputs from streams X and Y.

• Instantaneous Cost Function: Cqnn is the weighted sum of the utility cost and

the detectability cost for the adversary given by

Cqnn = λEqn(x̂)u(x̂, yn) + (1− λ)×D(qn(x̂)‖pX(x̂))

where

pX(x̂) = Pr{Xn = x̂|Yn = yn, Xn−1 = x̂n−1, Yn−1 = yn−1}

is the conditional probability based on the prior distribution. While the state is

known to the adversary, the utility cost is an expectation over the action qn in

the problem formulation. The adversary uses the optimal probability distribution,

qn(X̂n) and randomly picks a value of X̂n = xn at each time step which achieves the

derived reward in an expected sense.

Having defined the problem at every time step, we can make a finite horizon stochastic

planning of the best possible actions or a policy µ = {q0, q1, · · · qn, · · · , qL} for L time

epochs to minimize the total expected cost.

Theorem 4.1 When the input sequence Y is perfectly observable to the adversary, let

18



V ∗n denote the optimal cost-to-go at time step n. Then the optimal cost for the weighted

optimization at time step n is given by

Vn
∗(zn) =− (1− λ)log

(
EpX(x̂)

[
exp(

−λ
1− λ

u(x̂, yn))×

exp

(
−EP[Vn+1

∗(Zn+1)]

1− λ

)])

and the optimal action is given by

qn
∗(x̂n) =

pX(x̂)exp

(
−1

1− λ
(λu(x̂, yn) + EP[Vn+1

∗(Zn+1)])

)
Γm1

where Γm1 is the normalization constant.

Proof: The recursive Bellman equation for finite horizon case is given by

V ∗n (zn) = minqn{Cqnn + EqnEPV
∗
n+1(Zn+1)}

The reduction of the above equation to the form in the theorem is provided in the

appendix. 2.

Optimal Tradeoff and Adversary Policy with unobservable side information

When the realizations of input sequence Y are unobservable to the adversary, the

state, as defined in the general MDP problem is not completely observable and therefore,

the process is similar to a partially observable Markov Decision Process. Accordingly, the

adversary maintains a belief vector over Y using the data sequence from input stream X.

If the prior belief (prior to observing Xn) and posterior belief (after observing Xn) of Yn

at any time step n are given by πn(yn) and πn,po(yn) respectively, the belief updates in
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step n are as follows:

πn(yn)

=
∑
y

πn−1(y) Pr{Yn = yn|Xn−1 = xn−1, Yn−1 = y}

πn,po(yn)

=

∑
y πn−1(y) Pr{Xn = xn, Yn = yn|Xn−1 = xn−1, Yn−1 = y}∑
y,y′ πn−1(y) Pr{Xn = xn, Yn = y′|Xn−1 = xn−1, Yn−1 = y}

In place of the variables Yn, Yn−1 which are unavailable, the sufficient state for the adver-

sary is constituted by the pair of beliefs πn−1,po, πn,po along with the observed variables

Xn, Xn−1X̂n−1. Conditioned on this new state, which we denote by the random variable

ζn (realization ϑn), the adversary modifies the probability distribution function of X̂n,

which we denote by qn(x̂). As with the i.i.d model when the side information was unavail-

able to the adversary, the best he can do is to compute the K-L divergence between the

modified and unmodified marginal distributions. In effect, the single step K-L cost for the

adversary can be written as D(qn(x̂) | pn(x̂)) where

pn(x̂) =∑
y,y′

πn−1,po(y
′)πn,po(y) Pr{Xn = x̂|Yn = y′, Xn−1 =

x̂n−1, Yn−1 = y}

Employing this cost into the backward induction mechanism, we get the following theorem

for the optimal cost-to-go function.

Theorem 4.2: The optimal weighted reward at time step n for the general Markovian

input system when side information is unobservable is given by

Vn
∗(ϑn) =− (1− λ)log(Epn(x̂)[exp(

−λ
1− λ

Eπn,po(Yn)

[u(x̂, Yn)])× exp(
−Eπn,po [EP[Vn+1

∗(ζn+1)]

1− λ
)])
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by taking optimal action qn
∗(x̂) =

pn(x̂)[U(λ, x̂)exp(
−Eπn,po [EP[Vn+1

∗(ζn+1)]

1− λ
)]

Γm2

where Γm2 is the normalization constant

and,

U(λ, x̂) = exp(
−λ

1− λ
Eπn,po(Yn)[u(x̂, Yn)])

Proof: The optimal cost for the weighted optimization when side information is unavail-

able to the adversary is given by the solution to the recursive Bellman equation for the

finite horizon case

Vn(ζn) = minqn{Cqnn + Eπn,poEqnEPVn+1(ζn+1)}

where

Cqnn = λEqnEπpo(Yn)[u(x̂, Yn)] + (1− λ)D(qn(x̂) | pn(x̂)).

The rest of the proof relies on the reduction used in the proof of Theorem 4.1 2

Although backward induction can be used to solve for the optimal policy and actions

as a function of the belief and state, this process is computationally impractical for more

than a few time steps due to uncountable belief space (simplex over Y). In the subsequent

section, we therefore briefly discuss methodologies to compute bounds on the optimal

tradeoff that are computationally feasible.

Outer bound on the optimal tradeoff

Any sub optimal policy for the adversary would result in an outer bound on the

tradeoff between utility and detectability costs. We propose the computation of an outer

bound using a greedy heuristic wherein the adversary chooses an action distribution qn
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that optimizes the instantaneous rewards and ignores the rewards in future time steps.

When side information is unobservable, the one-step greedy policy when applied yields

the optimal cost as

Vn
∗(ϑn)

= −(1− λ) log

(
Epn(x̂)

[
exp

(
−λ

1− λ
Eπn,po(Yn)[u(x̂, Yn)]

)])

which depends on the belief over Yn. The action probability to achieve the optimal greedy

cost turns out to be

q∗n(x̂) =

pn(x̂)

[
exp

(
−λ

1− λ
Eπn,po(Yn)[u(x̂, Yn)]

)]
Epn(x̂)

[
exp

(
−λ

1− λ
Eπpo(Yn)[u(x̂, Yn)]

)]

Since the greedy policy only maximizes instantaneous rewards, it can be causally

computed (no backward induction) at every time step and is easy to implement.

Inner bound on the optimal tradeoff

Note that when the side information is observable, a sub optimal adversary can choose

to ignore the available information, and any policy thus derived will obtain a tradeoff worse

than the optimal adversary who uses the available side information. Stated differently,

the optimal tradeoff derived for the adversary with perfect side information will serve as

an inner bound to evaluate any policy derived for the adversary without side information,

for instance, the greedy policy described above.

We illustrate these ideas for the general MDP framework by taking an example of

binary model. The input space and utility functions are defined exactly as in the i.i.d

binary input model. The 4× 4 stationary transition probability matrix P for the input is

chosen to have a form



α β γ δ

α γ β δ

β α δ γ

β α γ δ


.
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Figure 1.3: Trade Off Between Utility and Detectability for markov input process after
greedy policy under scenario I when there is perfect side information(input Y known)
and scenario II when there is no side information(input Y not known) and after upper
bound under scenario I

For simulation, the value of α, β, γ, δ are arbitrarily assigned as 0.1,0.2,0.3,0.4 respec-

tively. The tradeoff for the greedy policy when side information is unavailable is compared

with the optimal tradeoff when side information is available. The results are plotted in

Figure 1.3.

1.4.2 Continuous State-Action general MDP Formulation for I.I.D in-

puts with Controller’s Internal State Evolution Observable

There has been no notion of Controller’s State in the theoretical analysis so far. We

have only considered a stylized model of the controlled dynamical system in which the

incoming data to the controller directly results in its utility. In typical cyber physical

systems, controllers have internal state processes which evolve as functions of the inputs

and controller actions. In this section, we expand our analysis by modeling the inter-

nal state process of the controller using Markovian dynamics. Specifically, the physical

system has an instantaneous internal state St at time instant t, where St ∈ S is a dis-

crete random variable. The system receives the inputs and performs actions that result

in an internal state transition, which is denoted by the stationary transition probability

wx,y(s
′, s) = Pr(Sn+1 = s′ | Sn = s,Xn = x, Yn = y). As mentioned in Section 1.2, the op-
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timal controller policy (actions) are assumed to be solved for (and history independent 2),

and consequently the transition probability can be denoted using an action independent

distribution wx,y(s
′, s). Likewise, the utility is also dependent on the controller’s state Sn

along with the inputs at time step n and is denoted as u(Sn, Xn, Yn). Note that when the

internal state process is part of the system dynamics, there is a Markovian evolution even

with i.i.d inputs. In the following analysis, we shall consider the two input sequences to

be i.i.d in nature and have a joint distribution p(X,Y ). The adversary also has complete

information about the input sequences and the internal state sequence.

We note that the term state used in the paper denotes the state of the adversary’s

optimization. We shall continue to use it thus and apply the terminology “internal state”

to denote the internal state of the controller. The state of the adversary in this model at

time n is (Sn, Yn) due to the i.i.d assumption. The value of original input variable Xn is

irrelevant for the identical reason as stated in the beginning of Section III. In the following

we derive the optimal policy and action for the internal state based model.

Theorem 4.3: When the internal state is observable to adversary, the optimal cost for the

weighted optimization is given by

Vn
∗(sn, yn)

=− (1− λ) log

(
EpX(x̂)

[
exp

(
−λ

1− λ
u(sn, x̂, yn)

)
×

exp

(−Ewx̂,ynEP)[V
∗
n+1(Sn+1, Yn+1)]

1− λ

)])

and the optimal action

qn
∗(x̂) =

p(x̂) exp

(
−λ

1− λ
u(sn, x̂, yn)

)
exp

(
−H

1− λ

)
EpX(x̂)

[
exp

(
−λ

1− λ
u(sn, x̂, yn)

)
exp

(
−H

1− λ

)]

where H = Ewxn,ynEP[Vn+1
∗(Yn+1, Sn+1)]

2For finite horizon systems with bounded rewards, the conditions for history independence can be found
in [23]
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Proof: The recursive Bellman’s equation for finite horizon case is given by

Vn(sn, yn) = min
qn
{λEqn(X̂)[u(sn, x̂, yn)] + (1− λ)×

D(qn(x̂) ||pX(x̂))+
∑
sn+1

∑
x̂

∑
yn+1

[wxn,yn(sn+1, sn)qn(x̂)

pY (yn+1)Vn+1(sn+1, yn+1)]}

and the rest of the proof is a straightforward extension of Theorem 4.1. 2

Note that although the inputs are i.i.d, the optimal solution requires a backward

induction as stated in the theorem. This is, as mentioned earlier, an outcome of the state

introducing temporal dependency across the adversarial actions. That being said, the

availability of the state information results in a straightforward optimization of the action

and the cost-to-go function in the Bellman equation.

1.4.3 Continuous State-Action general MDP Formulation for I.I.D. in-

puts with Controller’s Internal State Evolution Unobservable

When the controller’s internal state is unobservable to adversary, the overall adversary

state is (πn(Sn), Yn)) that includes the adversary’s belief πn(Sn) = Pr{Sn|Y n
1 , X̂

n
1 } over

the controller’s state Sn. Based on this prior belief and the input Yn observed, the ad-

versary modifies the input to X̂ using a probability distribution conditioned on the state

(πn(Sn), yn)), which we denote by qn(x̂). Due to the adversarial data modification, the in-

stantaneous utility cost as measurable by the adversary is given by EπnEqn [u(Sn, X̂n, yn)].

Since there is no feedback from the state evolution to the input process, the adversary,

unlike in the situation with unobservable side information, is not required to maintain a

prior and posterior belief. The present input yn, modified input x̂n and the belief over

present state πn can be used to obtain the belief of the state in the subsequent step as:

πn+1(sn+1) =
∑
s

πn(s)wx̂n,yn(sn+1, s)
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The optimal adversary cost from the weighted optimization is given by the solution to the

recursive Bellman equation for finite horizon case of non-observable controller’s state and

i.i.d input process

Vn(πn, yn)=min
qn
{λEπnEqn(X̂)[u(Sn, X̂, yn)]+

(1− λ)D(qn(x̂) |p(x)) + EπnEqnEPV
∗
n+1(πn+1, Yn+1)}

When the state is unobservable to the adversary, the problem of reducing the Bell-

man equation beyond its stated form above is as yet intractable. The primary difference

between unobservable state and unobservable side information (under Markovian dynam-

ics) is the fact that unlike the side information which evolves as an uncontrolled Markov

chain with fixed transition probability, the state evolution depends on the adversary ac-

tion through the modified input process X̂. Consequently the minimization in the Bellman

equation is complicated by the non-standard dependence between the action and subse-

quent belief. We can however derive inner and outer bounds on the optimal tradeoff as was

done in Section 1.4.1. An outer bound can be obtained using the greedy heuristic, wherein

the action is applied to maximize the expected instantaneous reward. The optimal value

function obtained on applying greedy policy is

Vn
∗ = −(1− λ) log

(
EpX(X̂)

[
exp

(
−λ

1− λ
Eπpr(S)u(S, X̂, yn)

)])

which is obtained by applying an optimal action probability

q(x̂) = pX(x̂)

exp

(
−λ

1− λ
Eπn(Sn)u(Sn, x̂, yn)

)
EpX(X̂)

[
exp

(
−λ

1− λ
Eπn(S)u(S, X̂, yn)

)] .

While the greedy policy provides an outer bound, the optimal tradeoff between utility and

detectability cost for the adversary who can perfectly observe the state would serve as an

inner bound to the tradeoff when the state is not observable.
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Thus far in the preceding discussion we have considered the optimal action and the

detectability-utility cost tradeoff for the adversary under different scenarios. In the most

general model, wherein the inputs are Markovian and the internal state and side infor-

mation are not observable to the adversary, the resulting optimization would combine the

POMDP framework as described in Section 4 with the state evolution factor described

above; since further simplification of the Bellman equation is intractable as yet, this has

been omitted here for ease of presentation. In the rest of this work, we present in detail, a

practical example of an internal state based system which can be solved analytically using

recursive optimization.

We consider the binary example in Section III and introduce an internal state whose

transitions occur with arriving inputs. Let the controller exist in two states, denoted by

S1 and S2. The state transition occurs as follows.

If X = Y ,

p 1− p

q 1− q

 And, if X 6= Y

1− p p

1− q q

 where p=0.2 and q=0.3.

Adversary cost is defined as

C=



−0.9, if Sn = S1andXn = Yn

−0.1, if Sn = S1andXn 6= Yn

−0.6, if Sn = S2andXn = Yn

−0.4, if Sn = S2andXn 6= Yn

where Xn and Yn are the inputs arrived at controller

at time n.

Figure 1.4 plots the optimal tradeoff between utility and detectability for the adversary

who can observe the internal state process and the sub optimal tradeoff derived from the

greedy heuristic when the adversary cannot observe the internal state process.

1.5 Application in the study of admissible length in Anony-

mous Communication

In any datagram network, timing analysis can be used to trace flows of packets and

thus can compromise users’ anonymity [24, 25]. Specifically, the correlation between in-
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Figure 1.4: Comparison between the optimal tradeoff for an i.i.d input process when
internal state of the controller is observable, and the greedy policy tradeoff when internal
state is not observable

coming and outgoing streams at shared routers induced by the router scheduling policy

can be used to track flows from sources to corresponding destinations. On the Internet,

senders’ anonymity is achieved using networks of Chaum mixes [26]. Chaum mixes are

relay nodes or proxy servers that use a combination of encryption, packet padding and

random reordering to obfuscate the source destination information of a packet. Specifi-

cally, every user transmits packets to the desired destination through a sequence of mix

nodes. Each packet is encrypted in layers using public key encryption such that, every

mix on the path decrypts a layer of encryption, determines the identity of the subsequent

mix on the path, and transmits the packet to that mix, which in turn removes the next

layer of encryption and so on. The anonymous system Tor [27] is a popular mix network

used by more than half a million users.

Encryption and packet padding, however, serve only to limit information retrieval from

the contents of packets. To limit the information retrieval through timing analysis, mixes

typically wait until they receive packets from multiple users, randomly reorder the collected

packets and transmit them in batches, thus reducing the correlation between the timing on

incoming and outgoing flows. As expected, the anonymity achievable from timing analysis

severely deteriorates in the presence of resource constraints on the mix such as limited

memory and bandwidth. Consider a router in a data network serving packet streams from

28



Figure 1.5: Mix receives packets from two users, encrypts and randomly reorders them,
and transmits them in their corresponding outgoing link. Eve observes the arrival and
departure processes.

two users with equal arrival rates as shown in Figure 1.5. If an eavesdropper does not

observe any arrival or departure process, and has no prior knowledge about the sources of

outgoing links, the probability of associating an outgoing link with any particular source

would be the prior probability (in this case 1
2 for each user). A mixing strategy provides

perfect anonymity, if it ensures that the probability of Eve predicting the outgoing

links of users correctly remains 1
2 , independent of the number of packets observed. No

mixing strategy can, however, provide perfect anonymity using a limited buffer capacity;

this can be ascertained from the fact that for a random arrival model, the probability that

the sequence of arrivals contains a preponderance of packets from a single source exceeds

the finite buffer size is non zero. A formal proof of this statement can be found in [28].

In effect, the objective of a memory limited mix is to maintain perfect anonymity

for as long as possible, whereas the objective of the adversary is to detect the source

of outgoing packets as quickly as possible. In [28], the maximum average length of the

packet stream– referred to as admissible length– for which the mix can maintain perfect

anonymity was evaluated for a variety of scenarios. In each of the scenarios, the mix’s

goal is to use a scheduling policy so that the admissible length is maximized, whereas

the adversary’s goal is to match the outgoing links with the respective sources as quickly

as possible, or in other words, reduce the admissible length. Note that the admissible

length is directly related to the duration of time before which the adversary can perfectly

match the incoming and outgoing streams. In this work, we study the admissible length

when the adversary can control the incoming timing in one of the processes3. In [31],

3This can be accomplished in a variety of ways including compromising access points, filling queues
with spurious packets, jamming acknowledgments and suchlike [29,30]
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this problem was studied when the adversary had limited ability to modify the timing

(by capturing a finite number of packets). Here we make no limiting assumptions on the

adversary ability, but instead study the problem wherein the adversary aims to optimize

the tradeoff between the admissible length and the detectability of his presence which fits

into the main theoretical model described in this work.

1.5.1 System Model

We characterize the system model under following headings:

• Arrival Process Arrival process is a discrete-time system which is independent for

both the users. For ease of understanding we refer to packets from the two users

and red and blue packets respectively. Packets arrive at each time step according

to Bernoulli process with associated probability of arrival defined below for 2 users

system.

Pr : pr = probability that a red packet arrives

1− pr = probability that a red packet does not arrive

Similarly,

Pb : pb = probability that a blue packet arrives

1− pb = probability that a blue packet does not arrive

• Chaum Mix The mix receives packets from both the users and transmits a pair

of packets, one from each user, every time the buffer contains at least one packet

from each user. The maximum number of packets that can be stored in the buffer

is m. However, when the buffer is full of packets from only one user, the mix is

forced to transmit on only one stream (and not a pair) thus revealing the source

of the outgoing stream to the adversary. The total number of slots until this event

occurs is defined as the admissible length of the system. In [28], transmitting packets
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from each user when the buffer has packets from all the users has been proved to be

optimal strategy for maximizing admissible length.

Optimal Mixing Strategy Note that the adversary determines the source of an

outgoing stream by analyzing the correlations between the timing on incoming and

outgoing streams. Consequently, as long as each outgoing stream is equally corre-

lated to all incoming streams, the system will remain in perfect anonymity (each

stream equally likely to belong to each source). More specifically, if the mix ensures

that at all times the number of departed packets on any outgoing link is less than the

minimum number of arrivals across all incoming links, then it is possible to design a

scheduling policy for all outgoing streams to have identical timing, thus maintaining

perfect anonymity. This idea was used in [28] to prove that the optimal strategy

for the mix is to transmit one packet of each user if and only if at least one packet

from each user is present in the buffer and the buffer is not full. If the buffer is full

and only packets from one user are present, then the mix is forced to transmit a

single packet, at which point any adversary can identify the source of that outgoing

stream. The expected number of slots required to reach this condition is defined as

the admissible length of the system.

• Adversary: The adversary is allowed to alter the dynamics of the red packet arrival

process. In effect the arrival probability of a red packet can be altered in every slot.

In practice this can be accomplished by capturing packets or regenerating old packets

by modifying acknowledgments. The objective of the adversary is to shorten the time

in which the buffer is filled with packets from one user only. The adversary can only

modify the red packet stream but can observe the packets on the blue packet stream.

Adversary MDP Model: By virtue of the Bernoulli arrival model and the mixing

strategy, the buffer can only contain packets from one user. Since the mixing strategy is

deterministic, the adversary can perfectly determine the number of packets present in the

mix’s buffer at every time slot. This scenario therefore falls under the observable internal

state-input adversary model described in Section 4.3. Following are the specifics of the

model as it pertains to this problem.
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Time Horizon: The time horizon is infinite but the process has a stopping condition

(when the buffer is full and a new packet arrives from the same source as that of the

packets in the buffer).

Inputs: The two input processes {Xn} and {Yn} are i.i.d Bernoulli processes with

probabilities pr and pb respectively.

Internal State: The internal state at time n is defined as the number of red packets in

the buffer or the negative of the number of blue packets in the buffer. The state transition

is deterministic given the inputs.

p(s′|s, x, y) =



1 s′ = s+ 1, s < M, x = 1, y = 0

s′ = s− 1, s > −M,x = 0, y = 1

s′ = s, x = y

s = M + 1 or s = −M − 1

Utility Cost: The utility cost measures the admissible length which is incremented by

1 at every step until the state reaches one of the boundaries M + 1 or −M − 1. In other

words

u(s, x, y) =

 1 |s| < M + 1

0 o.w.

At any state s, let ϕ(s) denote the utility cost-to-go in the absence of any adversarial

modification. Then, ϕ(s) can be solved using the following recursion:

ϕ(s) =prpbϕ(s)+(1− pr)(1− pb)ϕ(s)+pr(1− pb)ϕ(s+ 1)

+ (1− pr)pbϕ(s− 1) + 1

The proof of the above equation is available in [28] and is a special case of the Bellman

equation derived in Section 4 where the adversary has no actions and λ = 0. The solution

to the above recursion using boundary conditions,ϕ(m+ 1) = ϕ(−m− 1) = 0 is found to

be

ϕ(s) = 4
[
(m+ 1)2 − s2

]
(1.5)
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Now, consider a situation where adversary is allowed to change the dynamics of the

red packet stream and eavesdrops to know the arrival information of blue(B) packets at

each time step. Following the model is Section 4, the adversary’s state at time n is given

by the pair (Sn, Yn).When the current state is (s,B = 0), let the probability of a red

packet arrival (as altered by the adversary) be denoted by qr(y,B = 0) and the action

probability function Qr = [qr (1− qr)]. Similarly, when the process state is (s,B = 1), the

probability mass function is denoted as Q̄r = [q̄r (1− q̄r)]. The problem is formulated as

infinite horizon total cost MDP in which the action is continuous. Let the value function

at state (s,B) be denoted by ϑ(s,B).

The boundary conditions are then modified accordingly as ϑ(m, 0) = 0, ϑ(m+ 1, 1) = 0

ϑ(−m− 1, 0) = 0, ϑ(−m, 1) = 0

The Bellman equation to minimize the weighted cost for the adversary, following the result

in Section 4, is given by

ϑ(s, 0) = min
0≤qr≤1

[λ1{s 6= (m+1)

−(m+1)
} + (1− λ)D(Qr‖Pr)

+ qrpbϑ(s+ 1, 1) + qr(1− pb)ϑ(s+ 1, 0)+

(1− qr)pbϑ(s, 1) + (1− qr)(1− pb)ϑ(s, 0)]

ϑ(s, 1) = min
0≤q̄r≤1

[λ1{s 6= (m+1)

−(m+1)
} + (1− λ)D(Q̄r‖Pr)

+ q̄rpbϑ(s, 1) + q̄r(1− pb)ϑ(s, 0)+

(1− q̄r)pbϑ(s− 1, 1) + (1− q̄r)(1− pb)ϑ(s− 1, 0)]

where, 1{A} is the indicator function identifying even A.

Theorem 5.1 In a system of two users which generate packets with equal probability

and a chaum mix with buffer capacity m, when the adversary can control the probability

of arrival of one input stream while eavesdropping the arrival of packets from other stream,
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the admissible length is given by

ϑ(s, 0) = −2(1− λ) log
(k1

(m+1)(k2
2(m+1) − 1)

k2
2(m+1) − k1

2(m+1)
k1
s

+
k2

(m+1)(1− k1
2(m+1))

k2
2(m+1) − k1

2(m+1)
k2
s
)

ϑ(s, 1) = −2(1− λ) log
(k1

(m+1)(k2
2(m+1) − 1)

k2
2(m+1) − k1

2(m+1)
k1
s−1

+
k2

(m+1)(1− k1
2(m+1))

k2
2(m+1) − k1

2(m+1)
k2
s−1
)

where,

k1 =

1 +

√
1− exp

(
−λ

1− λ

)2

exp

(
−λ

1− λ

) , k2 =

1−

√
1− exp

(
−λ

1− λ

)2

exp

(
−λ

1− λ

)
Proof: Using the technique similar to the theory developed in sec III and IV implemented

for the infinite horizon average reward MDP, the average cost to fill the mix’s buffer

starting from any buffer state is found out. Details are available in the appendix. 2

The admissible length is plotted against the detectability (K-L cost) in Figure 1.6. These

tradeoffs are plotted for different initial state of the mix’s buffer. For a system that

initializes with an empty buffer the outer curve represents the adversarial detectability-

utility tradeoff. When maximum stealth (zero detectability) of the adversary is imposed

(no detectability), the admissible length expectedly converges to the result in [28] given

by 4[(m + 1)2 − s2]. Figure 1.7 plots the admissible length as a function of the initial

buffer state; interestingly although the mix can only alter the red packet dynamics, the

admissible length-to-go as a function of the internal buffer state is symmetric– identical

stopping time regardless of whether the buffer contains blue or red packets.

A Note on Countermeasures

The natural counterpart to the adversary perspective discussed thus far in this paper is

that of the intrusion detection mechanism as implemented within the control system. To
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Figure 1.6: Utility Vs Detectability trade-off in a mix of buffer capacity m=8

Figure 1.7: Admissible length Vs buffer state y in a mix of buffer capacity m=8

35



that end, Figures 1.8(a) and 1.8(b) plot the empirical K-L divergence between the observed

data pattern and the prior (or expected) data pattern. The empirical K-L divergence can

be computed using the empirical probability distribution of the state transitions on the

pair of inputs, as when compared to the underlying prior probability distribution. From

the figure one can discern that as the adversary reduces the weight on the detectability, the

detection statistics increase and consequently his actions are more detectable. As noted

in the figures, the performance by an adversary with knowledge of side information is

apparently more detectable than one without side information. The primary reason for

this is that as optimized, the utility function when side information is unavailable is taken

as expectation over all possible side information Y which limits the ability of the adversary

to increase his utility beyond a certain degree. In effect although the detectability of such

an adversary is apparently lower for the same weight, the resulting utility for the adversary

is also proportionately lower. In effect the availability of side information to the adversary

emboldens him to cause additional damage to the system albeit at the cost of higher

detectability.

Any detection mechanism that uses such an empirical statistic would likely apply a

threshold depending on its tolerance for false alarm and requirement on detection rate.

Depending on the chosen threshold, were the adversary to operate under the threshold

his actions may fall into the ”missed detection” category and he would thus remain unde-

tected, and were he to operate above the threshold his actions would be detected whilst

causing higher damage to system operation. We do note that this is a specific example

of detection statistics that can feed countermeasures but are not necessarily optimal. We

do note that when the controller is aware of the attacker’s policy, then the KL divergence

as derived by the attacker would be a tight bound assuming the controller utilizes an

optimal detection mechanism. Were the attacker to use an alternate policy (which would

have higher KL divergence than µ∗), the higher KL would result in easier detectability by

the controller.
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(a) Detection Statistics across the λ spec-
trum

(b) Detection Statistics for λ < 0.5

Figure 1.8: Empirical Kullback-Leibler Divergence as a function of weighting factor for
optimal adversarial strategies with and without side information

1.6 Concluding Remarks

In this work, we presented a model to study dynamic under-the-radar attacks by an

adversary on a dynamical system. Here, the adversary is trying to impact a system with-

out revealing his presence. Using a weighted reward that included the utility cost and the

K-L divergence, we characterized analytically, under different conditions on the underlying

system dynamics, the tradeoff between the tangible impact to the system and the adver-

sary’s “stealthiness”. For the Markovian model, we note that the independence over time

for the attacker’s policy is a mathematical consequence of the positivity of KL divergence

and the fact that the randomness in one state transition is independent of the previous.

Intuitively, were the adversary to use a strategy that wasnt memoryless, then the depen-

dency across time would serve as additional information revealing his presence. A natural

way forward beyond intrusion detection would be the design of countermeasures that alter

the controller strategy having detected the adversary presence to obtain a desired perfor-

mance whilst showing resistance to intrusion. We believe that a stochastic/multistage

game formulation that includes detection and mitigation as controller actions would serve

as a likely framework for the course of such an investigation.
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1.7 Appendices

1.7.1 Proof of theorem 3.1,4.1

It is well known that the K-L divergence between two probability distributions D(q(x) |

p(x)) ≥ 0 with equality if and only if q(x) = p(x)∀x. This follows from the fact that for

any function g : X 7→ R+,

q(x) =
g(x)∑
x g(x)

minimizes the divergence expansion:
∑

x q(x) log q(x)
g(x) The reductions in the different proofs

in this work shall use the above as a fact. For a Markovian input stream with observable

side information:

Vn
∗ = minqn{

∑
x̂

qn(x̂)[λu(x̂, yn) + (1− λ)×

log(
qn(x̂)

pn(x̂)
) + Epn+1(Xn+1,Yn+1)[Vn+1

∗]]}

= minqn{(1− λ)
∑
x̂

qn(x̂)[log(qn(x̂)÷

(exp(
−λ

1− λ
u(x̂, yn))× pn(x̂)×

exp(
−Epn+1(Xn+1,Yn+1)[Vn+1

∗]

1− λ
)))]}

= minqn{(1− λ)D(qn(x̂)‖F (x̂))}−

(1− λ)log(Epn(x̂)[exp(
−λ

1− λ
u(x̂, yn))×

exp(
−Epn+1(Xn+1,Yn+1)[Vn+1

∗]

1− λ
)])

Using the optimal divergence expansion stated at the beginning of the proof, the Optimal

cost function,

Vn
∗(zn) =− (1− λ)log

(
EpX(x̂)

[
exp(

−λ
1− λ

u(x̂, yn))×

exp

(
−EP[Vn+1

∗(Zn+1)]

1− λ

)])

38



and the optimal action is given by

qn
∗(x̂n)

=

pX(x̂)exp

(
−1

1− λ
(λu(x̂, yn) + EP[Vn+1

∗(Zn+1)])

)
∑

x̂ pX(x̂)exp

(
−1

1− λ
(λu(x̂, yn) + EP[Vn+1

∗(Zn+1)])

)

where Γm1 is the normalization constant.

Corollary We follow from the the above solution for optimal action probability when

the input stream is I.I.D in nature. In that case, the expected future reward need not be

considered to take a decision at the present state. The optimal decision for a given state

will be independent of time n. In this scenario, the formulated problem for the markov

case will be reduced to

V ∗ =minq{
∑
x̂

q(x̂)[λu(x̂, yn) + (1− λ) log(
q(x̂)

p(x̂)
)

1.7.2 Proof of theorem 5.1

We minimize

ϑ(s, 0) = min
Qr

[λ+ (1− λ)[qr[log(
qr
pr

) +
pb

(1− λ)
ϑ(s+ 1, 1)

+
(1− pb)
(1− λ)

ϑ(s+ 1, 0)] + (1− qr)[log(
1− qr
1− pr

)+

pb
(1− λ)

ϑ(s, 1) +
(1− pb)
1− λ

ϑ(s, 0)]]]

= λ+ (1− λ) min
Qr

[qr log(
qr
prµ1

) + (1− qr) log(
1− qr

(1− pq)µ2
)]]

= λ+ (1− λ) min
Qr

[

2∑
i=1

Qr(i) log

 Qr(i)

R(i)

R(1) +R(2)

]]

− (1− λ) log(R(1) +R(2))

where µ1 = exp(
−λ

1− λ
[pbϑ(s+ 1, 1) + (1− pb)ϑ(s+ 1, 0)]),µ2 = exp(

−λ
1− λ

[pbϑ(s, 1) + (1−

pb)ϑ(s, 0)]), R(1) = prµ1, R(2) = (1− pr)µ2.
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The optimal value function is ϑ(s, 0) = λ − (1 − λ) log(R(1) + R(2)). when an optimal

action Qr(i) =
R(i)∑2
j=1R(j)

, i ∈ {1, 2} is applied. We can also rewrite the value function as

exp

(
−ϑ∗(s, 0)

(1− λ)

)
= exp(

−λ
1− λ

)[prµ1 + (1− pr)µ2] (1.6)

Similarly,

ϑ(s, 1) = min
q̄r

[λ1{s 6=(m+1),−(m+1)} + (1− λ)D(Q̄r | Pr)

+ q̄rpbϑ(s, 1) + q̄r(1− pb)ϑ(s, 0)+

(1− q̄r)pbϑ(s− 1, 1) + (1− q̄r)(1− pb)ϑ(s− 1, 0)]

gives exp

(
−ϑ∗(s, 1)

(1− λ)

)
= exp(

−λ
1− λ

)[prµ̄1 + (1 − pr)µ̄2] by taking optimal action Q̄(i) =

Pr(i)µ̄i
Pr(1)µ̄1 + Pr(2)µ̄2

, i ∈ {1, 2}

where Q̄(1) = qr, Q̄(2) = 1 − qr = q̄r, µ̄1 = exp[
−1

1− λ
(pbϑ

∗(s, 1) + (1 − pb)ϑ∗(s, 0))] and

µ̄2 = exp[
−1

1− λ
(pbϑ

∗(s− 1, 0) + (1− pb)ϑ∗(s− 1, 1))]

We are now left to solve the homogeneous non-linear recurrence equation (6) and (7).

Substituting,

αs = exp(
−ϑ(s, 0)

2(1− λ)
), βs = exp(

−ϑ(s, 1)

2(1− λ)
), ρ = exp(

−λ
1− λ

)

for better readability and assuming pr = pb =
1

2
for the ease of solving the equations

by making them linear, we can write αs
2 =

ρ

2
(βs+1αs+1 + βs, αs) and βs

2 =
ρ

2
(βsαs +

βs−1, αs−1). However, αs
2 = βs+1

2. Since, both αs and βs are defined as positive variables,

αs = βs+1. Replacing the βs+1 with αs and βs with αs−1 in equation 5 gives

αs =
ρ

2
(αs+1 + αs−1)
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The general solution of the above linear homogeneous recurrence equation is

αs = B1k1
s +B2k2

s

where k1 =
1 +

√
1− ρ2

ρ
, k2 =

1−
√

1− ρ2

ρ
. Using the boundary conditions, we deter-

mine unknown coefficients to beB1 =
k1

(m+1)(k2
2(m+1) − 1)

k2
2(m+1) − k1

2(m+1)
, B2 =

k2
(m+1)(1− k1

2(m+1))

k2
2(m+1) − k1

2(m+1)
.

This gives the values of ϑ(s, 0) and ϑ(s, 1).
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Chapter 2

Prospects of Wave Power Grid

Integration

2.1 Introduction

The abundance of ocean wave energy resources and their free availability have long

brought interest into exploring new ways to harness their energy efficiently and profitably.

The development of wave energy production towards its commercialization, however, is

still in its infancy. In the seventies, key theoretical studies on wave power extraction

were conducted and efforts were initiated to design and improve wave energy converter

devices. Development suffered a deceleration after a few years when other means of energy

became more lucrative for investment. Wind and solar technologies had a significant lead

from the beginning over ocean wave energy technologies and their market grew over the

years. Their levelized capital cost also dropped because of improvement in conversion

efficiency. In recent years, wave energy converters (WECs), although still lagging far

behind solar and wind in the scale of power production, are gaining attention and renewed

confidence globally on their role to meet ever increasing demands while also complying to

stringent environmental norms. Wave power extraction, now a third generation renewable,

is rapidly maturing to compete with some of the costly energy alternatives like diesel

while establishing itself as a valuable member of many renewable portfolios. It also fits
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the distributed generation model which stresses local consumption of electricity whereby

reducing some of the inefficiencies of the T&D system. Several utility scale WEC projects

are at various stages of development in the U.S., Coastal Europe and Australia.

The objective of this paper is to propose a methodology to study wave power extraction

and analyze its potential for integration into electricity markets. A major drawback of

integrating renewable resources into the grid lies in their inherent variability. Current

literature on wave energy is unclear on what is the inherent variability of wave power and

what this variability means to integrating WECs and arrays of WECs to the grid. In this

work, we develop a preliminary model and results to close this knowledge gap. Specifically,

we demonstrate that wave power integration may in fact be economically promising based

on certain performance criteria. This article is organized as follows. Section 2.2 reviews

the state of the art of wave energy converters and some of the underlying principles of

wave power extraction. In section 2.3, we explain the calibration and data processing

for the model. Section 2.4 describes the electrical bus network system employed for the

integration study, and analyzes the system level impacts for wave power penetration close

to 10%. A comparison to a similar deployment with wind power is also provided. Section

2.5 concludes the paper.

2.2 Background

2.2.1 Current status of wave power generation technologies

There are different techniques proposed for on-shore, near-shore and off-shore wave

energy extraction. The process of energy generation goes through a series of steps which

includes absorption of energy from ocean waves by different types of energy capture mech-

anisms, transmission of mechanical power to the electrical generator by power take off

mechanisms, and control of the output power with suitable power electronics [32]. The

conditioning of power to make it appropriate for an electrical grid using battery storage

has also been proposed, along with systems employing arrays of WECs.

A closer look at the recent developments of wave energy technologies gives a very
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promising picture. The leading energy capture designs, based on their operating principles,

are broadly classified into Oscillating water column (OWC) type, Oscillating body and

Overtopping device. Although OWC technology was initially developed to work onshore,

the feasibility of offshore deployment is also being explored. The changing ocean water

level inside a chamber causes the trapped air above it to contract or expand thus driving

the turbine. LIMPET, with a total installed capacity of 500kW was one of the first

successful projects built on OWC technology at the Scottish Island of Islay, UK [33]. The

OCEANLINX project is another effort with a cluster of offshore OWCs operated as a

single unit by the Australian Renewable Energy Agency (ARENA) and is expected to

generate 91,000 terawatt-hours of electricity annually [34]. Oscillating Body, as the name

suggests, makes use of translational and/or rotational motion of a shaft as the first step

of the wave energy conversion process. The PowerBuoy by Ocean Power Technologies

(OPT), and Pelamis, by Pelamis Wave Power, are two projects based on the principle of

the oscillating body technique which have shown good prospects to move from lab scale

devices to utility scale plants. Six commercial wave farm projects of Pelamis P2 devices

are at various stages of development in Europe with installed capacities ranging from 10

to 50 MW [35]. The PowerBuoy has already been tested in Scotland, Spain and Hawaii,

and future large-scale projects are underway for Portland (Australia), Cornwall (UK),

and Coos Bay (Oregon, US) [36]. Overtopping devices are a third type of energy capture

mechanism which harness energy from the incoming waves by capturing them in a central

reservoir and releasing them back to the sea through a number of hydroelectric turbines.

The multi MW Wave Dragon projects is an example of this type developed in Denmark

and Portugal [37].

The power take off (PTO) unit is an internal system connecting the energy capture

device to the electrical generator. Based on the medium of energy transfer, it can be

broadly classified as having OWC PTO, Hydraulic PTO, or direct drive PTO mechanisms.

The air turbine in OWC operates as its PTO system while employing an active control

strategy to match the turbine speed with the air velocities driving it. The hydraulic PTO

makes use of a combination of two accumulators and a piston with check valves which
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functions as a half-wave rectifier allowing the oil to only flow in one direction, either

to the motor or turbine. It is a complicated system with many moving parts that can

cause regular wear-and-tear and oil leakage. Pelamis devices employ this kind of PTO

inside each one of the segments in their long structure. Direct drive PTOs, as the name

suggests, have a single shaft or a shaft coupled with rotating gears to generate electrical

energy through its movement in between two permanent magnets. Most of the point-

absorber-based WECs including Power Buoys and AWS, have adopted direct drive PTO

mechanisms [32]. These are active and passive control mechanisms proposed for both the

hydraulic type and direct drive PTOs.

The development of efficient power conditioning makes use of most of available tech-

nologies. Optimizing the output power from a number of wave energy converters under

a stochastic ocean environment before injecting it to the grid, generally involves more

challenging issues.

2.2.2 Variability Studies of wave

Significant wave height and average wave period contribute to wave power variability

[32]. [38] argues that there is seasonal variability of wave power and that the capacity

value of wind and wave power is comparable. On the other hand, the variability of

the wave power was compared to wind power in [39] and it was shown that there is a

significant difference in the variability of wind and wave power outputs based on the wave

data collected from different locations around the globe. The capacity value for wind

power is also reported to be lower than that for wave power in that paper. It seems

that the studies so far have conflicting rather than concrete findings regarding the relative

variability of wave and wind. [40] demonstrates that a judicious mix of different renewable

power resources (which includes wind, solar, and wave) instead of a single dominant power

source can lower the reserve requirements on the transmission network. In this kind of set-

up, net generation becomes more stable because the various variabilities tend to average

out as these variabilities are unrelated.
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2.2.3 Need for short term variability assessment

While hourly wind and wave data can effectively assess annual power production and

help one decide on site selection for wind and wave farm installation, it may prove insuffi-

cient for intra-hour operation and planning such as frequency regulation, power dispatch

scheduling, providing price signals to generator owners for bidding, and making short-

term prediction of power outputs necessary for electricity markets. These opportunities

may receive serious consideration once this renewable power is viewed as a dispatchable

generation. Active studies are being carried out to understand the effect of increased

penetration of these renewable resources in European Electricity market on a short-term,

medium-term, and long-term scales [41].

2.3 Methodology

2.3.1 Data Description, Wave Data

This study focuses on quantifying the short-term variability of wave power by using

high resolution measured data of ocean waves. The wave data is obtained from Belmullet

Berth B (Lat 54.23, Long -10.14), a high wave energy potential region in the northwest

coast of Ireland. The energy density in this area is estimated to be around 76kW [42].

The two months of sampled raw wave data include significant wave height and average

period reported three times every ten minutes. We pre-processed this data to eliminate

missing values and irregularities, and obtain data for every ten-minute interval compatible

with available wind data. The reason for choosing ten minutes as data resolution is

explained later.

Instead of solving for the potential wave analytically, we obtain wave power outputs

using the Pelamis P2 device with rated capacity of 750kW power matrix of the wave

energy converter [43]. The power matrix provides the average power with significant wave

height and wave period as inputs. The power matrix was originally designed to estimate

the change in power production corresponding to changes larger than 0.5 meters and 0.5

seconds in significant wave height and wave period, respectively. As this study aims to
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Figure 2.1: Interpolated power matrix

Figure 2.2: Time series of wind power (top) and wave power (bottom)

capture smaller variability of wave power, a bilinear interpolation method is employed to

extend the power matrix to such cases. Figure 2.1 shows the interpolated power matrix.

2.3.2 Data Description, Wind Data

The wind speed is obtained from the NREL-EWITS data set [44] of wind speed re-

ported in ten minute intervals. The wind data is coherent with the wave data in terms

of number of samples and time during which it is collected. The wind speeds are then

applied to power curve of a commercial wind turbine [45].

Figure 2.2 shows the output power obtained from wind and wave.

Figure 2.3 shows an example time series plot of wave height and wave power. The

wave power depends on both the mean wave height and the average wave period, with

wave height dominating the relation over time. This observation allows us to simplify the

state transitions over time, assuming that the wave period plays no role in the wave power

variability. Thus, potential wave power is approximated using only the information on
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Figure 2.3: Wave height and wave power comparison

wave height, and state transition probability matrices are calculated using this parameter

for the clustering. In future work we will use both wave height and wave frequency to

determine the clustering for the determination of the transition probability matrices.

Wind power, on the other hand, depends only on the wind speed.

2.3.3 Time Transitions of simulation inputs

The wave height and wind speed of the renewable resources are modeled using Markov

chains for the quantification of short-term variability. To characterize the variability of

wind speed and wave height, the wind speed and the wave height are partitioned into four

groups using a k-means clustering methodology [46]. The number of clusters, correspond-

ing to a number of expected states of the system, is chosen to be four for simplification of

the stochastic optimization problem discussed in Section 2.4. For the transition probabil-

ity matrix, the entire data is divided into blocks of 24 hours and each day is divided into

144 time horizons (24 hours × 6 10-minute intervals). This kind of multi-period approach

helps to capture the similarity in the nature of variability at a particular time period

every day [47]. Therefore, 144 transition probability matrices are required for every the

transitions which are then used for scheduling day-ahead power dispatch and provision

of ancillary services. The values of the available power for 10-minute intervals belong

to one of these states, namely high power availability, low power availability, and two
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intermediate scenarios.

The 144 standardized vectors of maximum power availability in each state are also

created for each one of the 10-minutes intervals in a day. Thus, two sets of the above two

inputs are created, one each for the wind and wave. This kind of model allows tractability

of the problem.

We assume nameplate capacity levels of 100 MW for both wave and wind power.

This penetration level, slightly over 10%, provides observable effects. We simulated single

wave and wind generators, as opposed to farms of devices. There is little to no study on

the variability of the power from several wave devices. Therefore, the maximum power

availability from wave generators is linearly scaled. Although there are methodologies

to estimate wind farm output from a single representative time series of wind power, we

scaled linearly the power availabilities for wind, to ensure a level playing field.

Two standard load profiles are used, one for the summer and one for the winter, to

study the effect of renewable power in the electrical grid in two different seasons. The

summer load profile has a prominent peak at the middle of the day whereas in the winter

profile, there are two peaks one occurring during the late morning hours and second one

is a large peak occurring during late evening hours There is no uncertainty in the load

profile considered in the simulation. The variability comes from the wave and wind inputs

only.

2.4 Simulation and Analysis

The results in this section assume that the market is deregulated. Figure 2.4 shows

the power network used, a highly stylized version of the PJM system, with 5-buses used

to assess the planning and operation of the electrical system under market conditions [48].

We used MATPOWER 4.1 [49] as the software tool for the simulation. The simulation

compares the difference in the response of the system when each of the two renewable re-

sources are available as part of the total generation portfolio, using a Security Constrained,

Optimal Power Flow with Endogenous Reserves [50]. Three cases are formulated as fol-

lows:
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Figure 2.4: One-line diagram of 5-Bus test network

1. Case I: Only conventional generators, base case

2. Case II: Case I + 100 MW of wave energy added at bus 4

3. Case III: Case I + 100 MW of wind energy added at bus 4

The system evaluation is made using four metrics: 1) total power generated by re-

newable resource compared to maximum capacity; 2) reserve and ramping requirements

in the day-ahead market; 3) total cost of serving the system; and 4) Load Not Served

(LNS). The base case is designed with conventional generators whose capacity sum up to

945MW. The load is 900MW in the system, all of which is dispatchable.

The Multi-period SuperOPF framework [47] is used to optimize the allocation of resources.

The results are obtained by optimizing over 144 dispatching schedules with four possible

renewable resource availability states and one contingency assumed. Following is the anal-

ysis of the simulation results:

Power generated by wind and wave

We calculate the percentage of nominal maximum power and effective power dis-

patched. The % of nominal power (Table ??, e[% W a]) refers to the percentage of actual

power dispatched to its rated capacity. This provides a rough measure of the capacity

factor of these devices. The rated capacity of both the wind and the wave farm is set

to 100MW. It is observed that both wave and wind resources deliver power for more

than 60% on average over the entire optimization horizon (1 day). Also, the availability

of wave power is somewhat lower than wind power. It is reasonable to conjecture that
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Criteria for
evaluation

Case I Case II Case
III

Summer Load Profile

1. e[% W a], e[%
W e]

N/A 64.64,
75.51

77.41,
77.78

2a. ±Av[Cp.
Res.] (MW/d)

0.45,
0.180

58.28,
1.07

87.03,
0.5951

2b. ±Av[Rp
Res.] (MW/d)

2.67,
2.55

59.28,
58.78

88.05,
87.27

3(a). E[Cost]($) 9,853 9,291 9,832

(% dev. w.r.t.
Case I)

- (5.70) (0.21)

3(b). MaxGen-
Cap (MW)

735 636 635

Winter Load Profile

1. e[% W a], e[%
W e]

N/A 64.77,
76.2

77.43,
77.71

2a. ±Av[Cap.
Res.] (MW/d)

1.24,
0.49

58.63,
0.79

87.44,
0.76

2b. ±Av[Rp
Res.] (MW/d)

2.53,
1.98

58.63,
57.88

88.54,
87.52

3(a). E[Cost]($) 10,530 9,897 10,469

(% dev. w.r.t.
Case I)

- (6.01) (00.57)

3(b). MaxGen-
Cap (MW)

780 679 680

Table 2.1: Analysis of electrical System under high penetration of renewables under
three criteria for evaluation
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the differences in average power dispatched between wind and wave generators is driven

by the power curve and power matrix used respectively to determine output power. In

both cases we use a generic power curve and power matrix. Figure 2.2 shows that the

low cut-off value of wind turbine makes it deliver power close to its rated capacity more

often. The device configuration favors wind by reducing some of its variability and al-

lowing it to operate as a bimodal resource, either at the maximum rated capacity or at

zero power. The wave energy converter, on the other hand, operates below its operating

limits most of the time translating most of the variability of the wave height into wave

power. Belmullet Berth B, where the wave data is collected, has no full scale wave energy

converters installed. Therefore, the power matrix selected in this study is not optimized

for that specific location. The expected value of effective power (Table ??, [% W e]) is

calculated to take into account the variable expected availability over the optimization

horizon. Effective power is the percentage of actual power dispatched compared to the

expected value of the maximum power available. We observe that the expected wind dis-

patches are higher than the wave dispatches. In this case, the power curve which points

to the same reason explained above. The good availability of renewable power throughout

the day clearly imply that the electricity prices at peak loads are likely to go down with

higher penetrations of Renewable Energy Sources (RES) to the grid.

Capacity and Ramp Reserves

Reserve capacity is the additional amount of power made available online by the gen-

erator units for system balance and to cover unforeseen outages (contingencies). If a

generator can adequately supply the demand promised with lesser usage of reserve ca-

pacity, the overall system cost will be less. Figure 2.5 shows that the system with wind

requires considerably more reserve capacity than the system with wave during a summer

day owing to the wind’s high short-term variability. Table ?? shows that wave power

outperforms wind in terms of the positive and negative reserve capacity, requiring almost

33 percent less positive capacity reserve than does the corresponding system with wind.

The negative capacity reserve requirements are almost negligible. The ramp reserves are
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Figure 2.5: Capacity reserves in a typical summer day

Figure 2.6: Ramp reserves in a typical summer day

necessary to allow load following in the system and cover the electricity demanded. The

system operator determines ramp reserves based on the expected load following needs

using day-ahead forecasts of generation and load. Figure 2.6 shows that Case II has com-

paratively lesser requirements for both up and down ramping than Case III. This would

also make wave power more favorable in deregulated markets as the cost of ramping has

a considerable share in the total cost of generation. The positive ramp reserve is used to

cover cases in which the power from the RES becomes unavailable. Due to the bimodal

behavior of the wind resource, the requirements are biased towards upwards reserves.

Expected generation Cost

Row 3(a) in Table ?? shows the expected cost of generation in all the three cases

under the two load types. Case I with no renewables has the highest expected cost of
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generation due to exclusive use of conventional generators. Case II has lower cost of

generation possibly due to lesser usage of reserves amongst all possible cases (including

Case III). Row 3(b) in Table ?? shows the the peak conventional generation capacity.

The two renewable cases (Cases II and III) have significant lower capacity, displaced by

either wave or wind. This simulations then support some capacity value provided by both

resources in short time scales.

Value of LNS

All system demand is modeled as dispatchable load, with the value of lost load set

to $10,000/MWh [51]. Because the system trades off the cost of providing energy and

ramping the generators to follow the load, with the penalty for load not served, the

optimization allows shedding loads in cases with low probability of occurrence, therefore

minimizing expected system cost. From the simulation, we observe that there is not much

load shedding in any of the three cases, i.e., LNS is almost always close to zero.

2.5 Conclusion

Wave energy is an abundant resource along the coastlines of the US, Europe and

Australia. The efficiency of wave energy converters is improving and their low cost of

production has scope for increased participations in the generation fleets. In this simu-

lation study, wave power integration looks economically promising with the proposed set

of evaluation criteria. Our results show that the effects of short term variability of wave

is less pronounced compared to wind which makes wave energy a promising choice for

grid operation. From the operational point of view, the variability of power from WEC is

lower, lowering the requirement for ancillary services to compensate their variability. The

expected operation costs including the procurement of ancillary services (ramp reserves)

are therefore lower, and the impact on capacity requirements for reliability purposes is

similar to those of a wind turbine. Our future work includes analysis of WEC’s arrays

compared to wind farms.
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Chapter 3

Optimal Predictive Maintenance

Policy for an Ocean Wave Farm

3.1 Introduction

Providing clean electricity from wave is a renewable energy option expected to grow and

develop in the years ahead and become a key aspect of energy portfolio. In U.S, Australia

and several western European countries, the commercialization of these technologies is

being encouraged through large scale funding programs and tax credits [52] [53] [54]. The

deployment of commercial-scale wave energy converters like “Azura”, in Kaneohe Bay, on

the islands of Oahu, Hawaii [55] and APB powerbuoy off the coast of Atlantic City, New

Jersey [36] are some examples of projects carried out in the U.S. The credit of world’s

first grid-connected wave power goes to Carnegie Wave Energy in Western Australia [56].

Offshore wind generation systems have preceded wave generation systems. While several

wind farms with capacity in the order of hundreds of MWs already operating in Europe

[57], U.S. witnessed its first offshore wind farm generating electricity commercially at

Rhode Island in the end of 2016 [58].

Compared to conventional generation and onshore renewable generation, the Levelized

Cost of Electricity (LCOE) of offshore renewable power generation systems is still high [59]-

[62]. This is in part because the technology is earlier in its development cycle than onshore
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wind or solar generation but also because these energy converters are installed offshore and

operate in harsh in-ocean conditions. For wave power to become an economically viable

second generation renewable technology, the cost components of its LCOE need to be

lowered. In this paper, we focus on strategies that minimize the maintenance costs of WEC

installations. Maintenance cost has been noted as a major share of the LCOE of offshore

renewable energy conversion and has not yet been optimally evaluated. We find that the

Operation and Maintenance (O&M) costs of the wave energy generation system differ from

conventional generation system. Unlike conventional generators which are typically large

stand-alone systems capable of generating substantial amounts of power with high degree

of certainty, Wave Energy Converters (WECs) are smaller and deliver small to moderate

amounts of power subject to some uncertainty. For this reason, a number of WECs are

often co-deployed within the same geographic region to exploit economies of scale and

to increase both the amount and reliability of power production. The maintenance and

replacement of any one WEC is expensive since it requires dispatching a maintenance

vessel as well as specialized equipment and manpower. Savings are possible by scheduling

joint maintenance operations for several WECs. The question then is when to schedule

joint maintenance across a farm of WECs. The intuitive answer is when the cost of

maintenance of failed or failing WECs is justifiable in relation to the status quo, i.e., the

revenue generated from producing power from functional WECs. The focus of this paper

is to quantify this intuition.

This paper is specifically concerned with the determination and analysis of an optimal

maintenance policy for wave farms. Such a policy will lower the LCOE of these farms by

minimizing the expected maintenance costs over the life of the wave farm. The formulation

studied here is a stochastic control problem where the decision is whether and when

maintenance work should be performed. It features specific modeling and optimization

challenges: 1) the modeling of correlations between random deterioration processes of

individual WECs subject to a common harsh environment; 2) the modeling of weather

which affects the deployment of maintenance ships; and 3) the curse of dimensionality

that describes the state of the wave farm as the number of WECs grows.
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We note that the structural aspects of the problem are also present in offshore wind

farm maintenance problems. Therefore, we believe our work could be adapted to offshore

wind farm maintenance. We discuss related work in offshore wind farm maintenance along

with WEC maintenance in our literature review below.

3.1.1 Contributions and Related Work

Maintenance is a key part of the asset management activities of electric utilities and

power producers. According to the survey in [63], maintenance approaches of electric

utility companies can be categorized as either (a) scheduled maintenance, where times

between maintenance operations are fixed in advance; (b) predictive maintenance, based

on monitoring the state of the equipment; and (c) emergency maintenance, when some

equipment has failed. The survey in [64] examines maintenance of offshore wind farms

with a focus on the logistics involved; each of the three maintenance approaches is well

represented. A comprehensive review of condition-based maintenance methodologies cur-

rently employed in marine renewable energy systems is provided by [65]. It states that

implementing predictive maintenance increases availability and reduces maintenance costs,

thereby improving the competitiveness of wave farms.

Several utilities have implemented Reliability-Centered Maintenance (RCM) programs,

where the performance of several maintenance strategies are monitored and the best one

is adopted over time based on historical performance [63] [66]. For example, in [66], an

Artificial Neural Network (ANN) model utilizes system health monitoring measurements to

predict the remaining useful life of each wind turbine in the onshore wind farm. This helps

to decide which turbines and exactly which components should be maintained. However,

when historical data is scarce, which is the case with offshore WECs, it makes sense for a

utility to optimize maintenance policies based on a probabilistic model, such as the model

proposed in this paper, and study the sensitivity of the policies to parameters that remain

uncertain due to the lack of experience.

In probabilistic models, the evolution of the state of a piece of equipment is represented

through a Markov or semi-Markov chain model, where transitions happen randomly to-
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wards states of higher deterioration, until repair or replacement is made. The structure of

the optimal policy for single equipment replacement problems is well known in the Markov

Decision Process (MDP) literature, and described for instance in [67], §8-2.

Transition probabilities can be estimated from historical time series relative to identical

pieces of equipment. In [68], Bayesian estimation methods are proposed and evaluated on

a steam turbine crack propagation data set. Alternatively, in [69], maximum-likelihood

methods are proposed to reverse-engineer the transition probabilities by finding those most

consistent with a maintenance policy assumed to be optimal. The approach is evaluated

on a bus engine fleet maintenance problem.

Maintenance activities for offshore wind and wave farms are similar in various ways.

In both cases, the costs of arranging maintenance crews, repair tools and transportation

to offshore locations are high. In both cases, O&M activities are influenced by weather.

Finally, in both cases, the installations will be unmanned except during maintenance [70].

Scheduled maintenance of wave energy converters are discussed in [71] and categorized

as on-site service and mid-life refit. In the former case, routine farm visits are envisioned

to occur at a chosen frequency to permit regular servicing and repair onsite. The mid-life

refit involves towing WEC units for onshore maintenance and therefore involves major

component replacement or repair. [71] estimates maintenance schedules assuming random

breakdown events with failure rates given a Failure Modes and Effects Analysis (FMEA)

table. In such cases, given the nature of failure and availability of repair equipment and

team, the type of operation and recovery time is also adjusted. [72] [73] describe how

maintenance activities can be affected by weather and other environmental factors.

Offshore wind farm maintenance models have been explored in recent literature. In

[74], an opportunistic model is proposed that exploits low wind power production and

unexpected failures to perform preventive maintenance tasks at lower costs. In [75], a

method for assessing the reliability of potential wind farm site is presented in which wind-

speed dependent failure rates are considered. This approach takes into account the impact

of seasonable changes on wind turbine operation. In [76], the predictive maintenance of

wind turbines subject to stochastic weather events is considered. The main difference
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between this work and ours is that [76] studies the maintenance of a single wind turbine,

whereas the present paper considers the problem of maintaining the entire wave farm

based on the state of each WEC. In [77] [78] [79], optimization models for selection and/or

scheduling of maintenance activities for an offshore wind farm are presented. For example,

[77] considers decisions regarding the location of maintenance accommodation, number of

technicians, choice of transfer vessels, and use of helicopter. However, our work seems to

be the first to examine the design of optimal maintenance policy for the offshore renewable

farm as a stochastic system that is grid-connected, participates in the electricity market

and takes into account the weather conditions before taking maintenance decisions. Our

goal is to provide a maintenance strategy under these assumptions. As such our model and

results are expected to be broadly applicable. Comparisons with existing approaches are

subject to the caveat that different objective functions are being optimized. For example,

many earlier studies for renewable farms address maintenance of individual devices or

certain aspects of maintenance activities such as fleet size or scheduling, for instance [76]

[77] [80]. Other existing studies employ a data driven solution, leveraging the existence of

historical data, whereas ours is a model-based approach.

The approach proposed in this paper relies on a reduction of the state space where we

count the number of WECs in each given state. This is a technique employed for instance

in routing problems for operating a large fleet of vehicles [81]. The approach relies on the

assumption that WECs in the same state are exchangeable. This assumption is natural

if the WECs are identical, located in the same geographical area, and thereby subject to

the same sources of stress; it could be relaxed by augmenting the number of WEC states

that are distinguished and counted. The state space reduction that ensues is sometimes

referred to as “state space collapse”. The effectiveness of the approach is demonstrated

on a wave farm model made of N = 30 WECs. Originally the problem has 3N states, but

in the reduced state space the number of distinct states is O(N2). This makes it possible

to solve dynamic programs exactly and to perform sensitivity studies reliably.

In the wave farm maintenance problem, weather events affect the deterioration pro-

cesses as well as the ability of the maintenance vessels to be dispatched. Data driven
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models for marine weather are able to capture seasonal variabilities by utilizing the con-

cept of weather windows [61] [72]. In the literature, weather window analysis gives the

percentage of time in a year that a device can be accessed. For ease of presentation and

analysis, our work considers a system model in which the evolution of wave farm state as

well as exogenous variables such as weather are independent. The extension to a model

featuring seasonality, lending itself to weather window analysis, is possible however, for

instance using the device of p-periodic Markov Decision Processes [82].

Following nomenclature in IEEE standard [83], a simple weather model with the fol-

lowing states is adopted: Normal weather (ξN ), Adverse weather (ξA), and Major storm

disaster (ξM ). The Markov chain modeling the weather environment is assumed to be

time-homogeneous. This assumption could be relaxed by computing a time-dependent

maintenance policy over a finite horizon, or a periodic policy over an infinite horizon

using the algorithmic approach of [82]. The device of a periodic policy can be used for

instance to model a winter season during which vessels cannot be dispatched.

Finally, our work contributes to visual analytics by proposing a graphical represen-

tation of the high-dimensional state of the offshore renewable farm, that can be used

by operators to visualize probabilistic predictions and to analyze the sensitivity of the

maintenance policy to important inputs of the problem.

3.1.2 Organization

The remainder of the paper is organized as follows. The main notation used in this

paper is summarized in Section 3.2. The offshore renewable farm maintenance problem is

formulated in Section 3.3. Section 3.4 presents numerical results and our analysis. Finally,

Section 5.5 concludes the paper.

3.2 Nomenclature

N = number of WECs in the wave farm.

i or j = index for the state of a single WEC, in {1,2,3} where 1, 2 and 3 denote healthy

state, unhealthy state and faulty state, respectively.
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t = time period index.

Ni,t = number of WECs in state i at time t.

pij = one-step marginal transition probability from state i to j for a WEC.

Wij,t+1 = number of WECs in state j at time t + 1 that originated from state i, if the

random transitions are independent, identically distributed (i.i.d.)

pc = probability of common cause.

ρij = correlation coefficient between transitions from i to j for pairs of WECs.

ω1, ω2 = coefficients based on weather severity that change failure probabilities of healthy

and unhealthy WECs, respectively.

W c
ij,t+1 = number of WECs in state j at time t + 1 that originated from state i, if the

random transitions are correlated.

St = information state at time t.

At = decision at time t which is based on St.

Rt = expected reward (negative cost) of being in state St and selecting decision At.

Crep = expected cost of maintenance, including fixed and variable costs.

cf =fixed cost of maintenance.

c2 = unit cost per WEC of repairing N2,t WECs.

c3 = unit cost per WEC of repairing N3,t WECs.

Rgen = expected profit of operating N1,t +N2,t WECs.

1 + η = interaction coefficient among WECs influencing mean power from the wave farm.

1 + θ = interaction coefficient among WECs influencing variance of the power from the

wave farm.

σ = variance of power from a single WEC.

P1 = power from a single WEC.

πf = forward hourly price of power.

πs = random penalty hourly price of a shortfall in committed production.

φ = probability density function (pdf) of the standard Gaussian distribution.

Φ = cumulative density function (cdf) of the standard Gaussian distribution.

Bern(p) = Bernoulli distribution with parameter p.
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Figure 3.1: Ocean wave farm consisting of energy converters in 3 possible states:
(1) Healthy, (2) Unhealthy, (3) Faulty.

Bin(n, p) = binomial distribution with parameters n and p.

CB(n, p, ρ) = correlated binomial distribution with parameters n, p, ρ.

Beta(α, β) = Beta distribution with α, β as shape parameters.

γ = discount factor in (0, 1).

3.3 Mathematical Model

The ocean wave farm consists of N WECs (Figure 3.1), each of them being in one of

the following states:

• 1 : Healthy, delivers power as expected;

• 2 : Unhealthy, experiencing deteriorations;

• 3 : Faulty, severe deteriorations, no power output.

3.3.1 Wave Farm States and State Space Collapse

The number of converters in states 1,2,3 at time t are denoted N1,t, N2,t, N3,t. The

counts satisfy the relation

N1,t +N2,t +N3,t = N. (3.1)
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The state of the wave farm is described by

Nt = (N1,t, N2,t, N3,t). (3.2)

Due to (3.1) two variables suffice to determine the third one, so N2,t can be omitted in

(3.2). It can be checked that

• An integral Nt is a feasible farm state iff

0 ≤ N3,t ≤ N −N1,t ≤ N. (3.3)

• The total number of wave farm states Nt is

(N + 1)(N + 2)/2 = O(N2).

• To a wave farm state Nt corresponds a number of WEC configurations equal to

(
N

N1,t, N2,t, N3,t

)
=

N !

N1,t!N2,t!N3,t!
.

3.3.2 Weather States

The weather is modeled as a Markov chain, following standard practice in reliability

evaluation [84]. The weather state is denoted ξt. As in [83], three types of weather states

are distinguished:

• Normal weather (ξN ),

• Adverse weather (ξA),

• Major storm weather (ξM ).

Adverse weather is viewed as an alert state, potentially evolving to the major storm

types. The transition probabilities can be chosen to approximate the storm interarrival

time distribution and the weather alert system characteristics. The occurrence of severe
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cyclonic storms is often well explained by a Poisson process [85–87]. The Bernoulli process,

which is a discrete-time process with geometric interarrival times and state-independent

transition probabilities, can be used as a device to approximate the Poisson process,

which is a continuous-time process with exponential interarrival times and constant hazard

rate. Historical data are sometimes available to estimate the proportion of storms and

depressions which actually evolved into a cyclonic stage [88].

3.3.3 Decisions

Regardless of whether the repair activities are carried out onshore or offshore, dispatch-

ing a vessel is costly but a crucial step in the maintenance process. The model assumes

that if a repair vessel is dispatched, all necessary repairs will be performed on unhealthy

and faulty WECs to bring them back to the healthy state. Therefore, the decision at

time t reduces to whether or not the vessel is dispatched. It also assumes that the vessel

to carry out offshore maintenance activities is available immediately after the decision to

repair is taken. This is a reasonable assumption when the discrete time periods have a

sufficiently long duration. By the same rationale the model assumes that completing the

repair activities takes a single time step. The decision at time t is denoted At with values

• 0: Do not dispatch the vessel or do not repair,

• 1: Dispatch the vessel and repair.

The decision At depends on the wave farm state Nt and the weather state ξt. The

maintenance policy π describes the action to take for each state. If the policy is stationary,

this can be written as

At = Aπ(St) (3.4)

where St = (Nt, ξt) is the information state and Aπ is the mapping from states to decisions.
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3.3.4 State Transitions

The wave farm state transition probabilities are computed from the WEC state tran-

sition probabilities. When the decision is to repair (At = 1), the next state is defined

as

N1,t+1 = N, N2,t+1 = 0, N3,t+1 = 0. (3.5)

The remainder of this section describes the evolution of the wave farm state without

intervention (At = 0).

The transition probabilities from state i to j for any particular WEC are described by

p12 > 0 and p23 > 0; the other probabilities pij for i 6= j are set to 0. This describes a

gradual deterioration process with state 3 as an absorbing state.

Let Wij,t+1 be the number of WECs that enter state j at time t+1 while being in state

i at time t. Since only p11, p12, p22, p23, p33 are nonzero, the wave farm state transition

under At = 0 can be described by

N1,t+1 = N1,t −W12,t+1,

N2,t+1 = N2,t +W12,t+1 −W23,t+1, (3.6)

N3,t+1 = N3,t +W23,t+1.

Models for the joint distribution of the nonnegative random vector (W12,t+1,W23,t+1) are

given in Appendix 3.6.1.

The evolution of the expectation of the wave farm state Nt under the “do not repair”

action, and normal weather throughout, is presented for a particular numerical example

in Figure 3.2. The probabilities p12 and p23 used in the simulation are 0.04 and 0.1 respec-

tively, with the WEC transitions assumed to be mutually independent (zero probability

of common cause, see Appendix 3.6.1). It can be observed that the WECs in healthy

state gradually decrease in number over time and WECs in faulty state increase in number

over time. As the number of WECs in unhealthy state changes depending on the sign of
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Figure 3.2: Expectation of ocean wave farm’s state (excluding weather state) as a
function of time under “Do not repair” action

(W12,t+1 −W23,t+1), on average, it increases initially and then steadily decreases.

Weather-Dependent Failure Probabilities: When a WEC is subjected to bad weather

conditions, its likelihood of failure may increase. Wear and tear is one cause of failure,

but other causes such as slamming [89] may be specific to extreme sea weather, leading to

our assumption of increased overall failure rate in these conditions.

This phenomenon is included in the model by making failure probabilities a function

of weather severity. As the weather deteriorates, the failure probabilities can be modified

as follows:

Pr{W12,t+1} = Pr{W12,t+1}+ ω1(1− Pr{W12,t+1})

Pr{W23,t+1} = Pr{W23,t+1}+ ω2(1− Pr{W23,t+1}) (3.7)

where ω1 and ω2 can be tuned depending on the weather condition (adverse weather or

major storm). If the weather is normal, ω1 and ω2 are zero.

Survival strategies of WECs have not been perfected yet. As suggested in [?] [?],

research on designing WEC devices that can survive extreme conditions and on the ef-

fectiveness of current life-extending controls to reduce system loading during bad weather

conditions needs to be further carried out.
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3.3.5 Rewards

The model assumes that a reward Rt = R(St, At) is obtained at each period. A reward

function R of the following form is adopted:

R(St, At) = (1−At) ·Rgen(N −N3,t)−At · Crep(Nt), (3.8)

Crep(Nt) = cf + c2N2,t + c3N3,t

= cf + c2(N −N1,t) + (c3 − c2)N3,t. (3.9)

Here Rgen is the expected profit of operating Nop
t := N1,t + N2,t = N − N3,t non-faulty

converters, and Crep is the expected cost of repairing the N2,t unhealthy and N3,t faulty

converters. Healthy converters continue to operate at the time of maintenance. The

methodology to derive the overall expected profit Rgen is explained in Appendix 3.6.2.

The Crep function has a fixed cost component cf for sending the vessel, and a variable

cost component where c2 ≤ c3 are the expected cost of repair per converter in unhealthy

and faulty states, respectively. Note that the repair cost coefficients c2,c3 are costs per

single WEC being repaired.

Weather-Dependent Reward Function

In the weather-dependent model, the reward function is also a function of the weather

state. Specifically, both the revenue component and maintenance cost component of the

reward function are different under different weather conditions. The cost of maintenance

increases with deterioration in weather conditions as

Crep(Nt, ξ
N ) < Crep(Nt, ξ

A) < Crep(Nt, ξ
M ). (3.10)

With the worsening of weather conditions, the height of the ocean waves increases to

dangerous levels more frequently. It is expected that the WEC production efficiency

reduces due to protection systems that operate more frequently during adverse ξA and
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major adverse ξM weather. This leads to lower expected revenues from generation. Thus,

Rgen(N −N3,t, ξ
N ) > Rgen(N −N3,t, ξ

A) >

Rgen(N −N3,t, ξ
M ). (3.11)

Remark 1: Given St = (Nt, ξt), let Z(St) be the set of states Z = (Y, ξt) such that the

wave farm state Y = (Y1, Y2, Y3) is reachable from Nt under the “passive” policy At′ = 0

for all t′ = t, t+ 1, . . . . Then it holds that

R(Z, 0) ≤ R(St, 0) for all Z ∈ Z(St),

R(Z, 1) ≤ R(St, 1) for all Z ∈ Z(St).

To see this, note that when the system evolves without repair, it evolves towards states

where, relative to the current state, the repair costs can never decrease and the generating

instantaneous reward can never increase.

Remark 2: Along state trajectories generated with At′ = 0 for t′ ≤ t− 1, it holds that

for both actions a ∈ {0, 1},

R(St+1, a) ≤ R(St, a). (3.12)

To see this, note that the set of feasible wave farm states can be described as

{(N −N1, N3) : N1 ≥ 0, N3 ≥ 0, N1 +N3 ≤ N}.

Regardless of weather, the set of feasible next states while being in state (N1, N3) and

choosing action At = 0 can be described by

S′(N −N1, N3) =

{(N −N ′1, N ′3) : 0 ≤ N ′1 ≤ N1, N3 ≤ N ′3 ≤ N −N1}.
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In the case At = 0,

R(St+1, 0) = Rgen(N −N ′3) ≤ Rgen(N −N3) = R(St, 0),

using Rgen nondecreasing and N ′3 ≥ N3.

In the case At = 1,

R(St+1, 1) = −Crep(Nt+1)

= −(cf + c2(N −N ′1) + (c3 − c2)N ′3)

≤ −(cf + c2(N −N1) + (c3 − c2)N3)

= −Crep(Nt) = R(St, 1),

using N ′1 ≤ N1, N ′3 ≥ N3, and 0 ≤ c2 ≤ c3.

Remark 3: Along state trajectories generated with At′ = 0 for t′ ≤ t− 1, it holds that

the function ∆R(St) := R(St, 1)−R(St, 0) satisfies

∆R(St+1) ≥ ∆R(St). (3.13)

To see this, note that we have

∆R(St) = −Crep(Nt)−Rgen(N −N3,t).

Along transitions with At = 0, it holds that Rgen(N − N3,t) = R(St, 0) is nonincreasing,

and −Crep(Nt) = R(St, 1) is nondecreasing.

3.3.6 Objective Function

Using the states, decisions, transition and reward function described above, the prob-

lem is formulated as the search for a policy that maximizes the expected discounted
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cumulated reward over an infinite horizon:

V (S0) = max
π∈Π

Eπ
[ ∞∑
t=0

R(St, A
π(St))

∣∣∣ S0

]
, (3.14)

where γ ∈ (0, 1) is the discount factor and Π denotes the space of stationary Markov

decision policies. The optimal value function V ∗ satisfies

V ∗(S) = max
A∈{0,1}

[
R(S,A) + γ

∑
S′

Pr(S′|S,A)V ∗(S′)

]
. (3.15)

The optimal policy π∗ can be computed using standard dynamic programming algorithms

such as value iteration or policy iteration [90].

3.4 Results and Analysis

In this section, we present the solution of the infinite horizon problem defined in

(3.14). At first, we define the baseline case and then consider different cases to compare

and contrast the optimal policies. First, the results on the structure of the optimal policy

under different cases are discussed. Then, other results of the optimization problem that

include the steady-state transition probabilities and trajectory of the wave farm states

under optimal policy are presented. In our simulation, we have defined the parameters for

a typical ocean wave farm to generate the results. The numerical values of the parameters

used are based on communication from wave farm energy industry experts and believed

to be practically possible. We make the numerical analysis of the following cases.

Baseline: The number of wave energy converters in the wave farm is taken as N = 30.

The probability pc that explains the dependencies among random transitions of the wave

farm states is set to zero. η is set to zero which means that no interaction among WECs

is assumed. Refer to Appendix 3.6.2 for the detailed description of pc and η. The fixed

cost of dispatching maintenance vessel and crew cf is set to 500. The weather is assumed

to remain in normal state throughout. The parameters used to define the reward function

in the system model are defined in Table 3.1. The parameters for the sensitivity analysis
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c2 10 P1 0.4

c3 15 V1 0.04

πf 30 η −0.3

πs 100 θ −0.5

Table 3.1: Parameters in Reward Function

p12 p23 pc cf η

Baseline 0.01 0.3 0 500 0

Case I.A 0.001 0.3 0 500 0

Case I.B 0.01 0.01 0 500 0

Case II.A 0.01 0.3 0.5 500 0

Case II.B 0.01 0.3 0.9 500 0

Case III.A 0.01 0.3 0 70 0

Case III.B 0.01 0.3 0 4000 0

Case IV.A 0.01 0.3 0 500 0.2

Case IV.B 0.01 0.3 0 500 −0.8

Case V 0.01 0.3 0 500 0

Table 3.2: Parameters for Sensitivity Analysis of Optimal Policy Under Baseline and
Five Cases.

of the optimal policy under baseline and five cases described next are tabulated in Table

3.2.

Cases:

I. Sensitivity of the optimal policy to failure probabilities

II. Sensitivity of the optimal policy to common cause indicator pc

III. Sensitivity of the optimal policy to fixed cost of maintenance cf

IV. Sensitivity of the optimal policy to interaction coefficient η

V. Effect of different weather conditions: The state transitions of the Markovian weather

are shown on Table 3.3. The cost of repair of each WEC in adverse and major storm

weather is set as c2,ξA = 5c2, c3,ξA = 10c2 and c2,ξM = 10c2, c3,ξM = 30c3, respec-

tively with c2, c3 as in Table 3.1.

We solve (3.14) using the linear programming approach to dynamic programming.

While any linear optimization or conic optimization solver can be used for this purpose,
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ξNt+1 ξAt+1 ξMt+1

ξNt 0.995 0.0049 0.0001

ξAt 0.5 0.0001 0.4999

ξMt 0.5 0.5 0

Table 3.3: Transition Probabilities of a 3-state Markov Model of Weather [1]

(a) Baseline (b) Case I.A (c) Case I.B

(d) Case II.A (e) Case II.B (f) Case III.A

(g) Case III.B (h) Case IV.A (i) Case IV.B

(j) Case V. in Normal weather (k) Case V. in Adverse weather (l) Case V. in Major storm
weather

Figure 3.3: Optimal Policy for the studied cases(Filled circle: Repair. White circle: Do
not repair)
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(a) Baseline with starting state for the policy
simulation is {N1 = 30, N2 = 0, N3 = 0}

(b) Baseline with starting state for the pol-
icy simulation is {N1 = 5, N2 = 8, N3 = 17}

(c) Case with p12 = 0.3 and starting state
{N1 = 30, N2 = 0, N3 = 0} for which “do
not repair” at any state is the optimal policy

Figure 3.4: Steady-state probabilities in greyscale (darker means higher probability
value). The trajectory of expected wave farm state under optimal policy is indicated by
a continuous curve that starts from an initial state marked with the asterisk (*).

V ∗(Adaptive) J∗(Scheduled) T ∗s
a

Baseline 208060 77922 14

Case I.A 228840 77922 14

Case I.B 221110 188220 41

Case II.A 182450 −1573 50

Case II.B 166130 −8636 50

Case III.A 227410 114040 10

Case III.B 142490 −31324 50

Case IV.A 373640 148620 10

Case IV.B 82019 27640 23

aFor each value of J∗, T ∗s is the corresponding optimal
inter-maintenance time

Table 3.4: Comparison of Objective Values under Different Maintenance Strategies
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we use the solver Sedumi [91], called from Matlab. The optimal policies for the above

cases are illustrated in Figure 3.3. In these plots, the X-axis represents the number of

WECs that are not in healthy state (N − N1 = N2 + N3) and the Y-axis represents the

number of WECs that are in faulty state (N3) in the wave farm. All the possible states of

the wave farm are represented as small circles. The state on the origin is the wave farm

state with all healthy WECs (N −N1 = 0, N3 = 0).

In all the plots of optimal policy, one can identify a curve that separates the decision

region “Do not repair” (represented with white circles) and the decision region “Repair”

(represented with filled circles). In the sequel, this curve is being referred to as the

threshold line.

Case I: In Figure 3.3(b), the shifting of threshold line in the optimal policy depends

on the change of the probability of a WEC transitioning from healthy to unhealthy state

and from unhealthy to faulty state. When the failure probability p12 is increased, the

threshold shifts upwards compared to the baseline threshold line, indicating it is better

to wait until a larger number of WECs turn faulty. This would avoid frequent repairs

which are expensive. On the other hand, when p12 is decreased, the threshold line shifts

downwards. This indicates that the incentive to do frequent repair is higher as the WECs

can be expected to stay in healthy state for longer durations of time. A similar behavior

is observed regarding the shifting of the threshold line by varying failure probability p23

as shown in Figure 3.3(c). The decrease of p23 leads to WECs staying in unhealthy state

for longer durations of time to generate power. Therefore, it is economical to wait for

more WECs to turn faulty before selecting the repair action. Figure 3.3(c) reflects this

phenomenon.

Case II: In Figure 3.3(d) and 3.3(e), the effect of having a common cause influencing

failure probabilities of a WEC on the threshold line is presented. We employ joint failure

model 2 given by (3.20) and (3.21) in Appendix 3.6.1 to illustrate this. Upon increasing

the value of pc, it can be observed that the threshold line shifts to the right indicating

that a common cause might cause the WECs to turn faulty faster. This is because q12,1

and q23,1 are respectively higher than q12,0 and q23,0. Therefore, the failure correlation
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coefficient should also be assessed to determine the best maintenance strategy.

Case III: In Figure 3.3(f) and 3.3(g), we study how the fixed maintenance cost cf

impacts the optimal policy. Decreasing or increasing cf leads to an optimal policy whose

threshold line shifts to the left or right compared to the baseline threshold line, respectively.

For example, the overall maintenance cost owing to high fixed maintenance cost at a wave

farm state lying on the baseline threshold line would be higher than the accumulated

revenue of generating power from operating WECs under no repair.

Case IV: In Figure 3.3(h) and 3.3(i), the sensitivity of the optimal policy to the inter-

action coefficient of a WEC is illustrated. As the interaction coefficient directly influences

the revenue from each WEC, the threshold line also shifts with the interaction coefficient.

When the interaction coefficient is greater than one, there is constructive interference of

the waves created by the WECs resulting in higher expected reward. This provides the

incentive to go for maintenance more often as the revenue from power generation is ex-

pected to be high. When the interaction coefficient is less than one, there is destructive

interference of the waves resulting in lower expected reward. As a result, the threshold

line moves upwards, meaning that the repair of the wave farm when a greater number of

WECs are in the deteriorated state is more economical.

Case V: To study the impact of weather on the wave farm maintenance strategy, the

weather state is introduced as an exogenous variable in the overall system state. The

wave farm state transition function and reward function are defined under three different

types of weather state. The solution of the dynamic program gives an optimal policy

corresponding to each weather type as illustrated in Figure 3.3(j), 3.3(k) and 3.3(l). We

can observe that during major storm (ξM ) conditions, one cannot repair. This is consistent

with the typical perception and industry practice. It is best to carry out repair action in

normal weather as the cost of dispatching maintenance vessel as well as failure probabilities

are small. In adverse weather condition, the repair is to be done only if many WECs have

fallen into faulty state as the cost of maintenance is higher than under normal weather

condition.
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3.4.1 Steady-state probabilities and Policy Simulation

The steady-state probabilities are defined by q∞ = q∞Qπ where Qπ is the transition

probability matrix under policy π and q∞ satisfies
∑

j q∞,j = 1. Under the optimal policy

π∗, the elements Qπ∗ik are given by Pr(St = k|St−1 = i, Aπ
∗
t−1(i)). The policy simulation

is executed by picking an initial probability q0 concentrated on the starting state and

calculating the trajectory of next states using state probabilities qt = q0(Qπ)t until the

end of truncated time horizon. The values of q∞ for each state and the expected state

evolution under the optimal policy π∗ are illustrated in Figure 3.4. The steady-state

probability is represented in levels of gray varying from black at the highest probability

to white at the lowest probability. From the figure, one can get information on the

most likely wave farm states in steady-state under the optimal maintenance policy. In

the baseline case, it can be observed that the wave farm is likely to have predominantly

healthy WECs. In Figure 3.4(c), an extreme case is considered in which the probabilities

of failure, p12 = 0.9 and p23 = 0.9, are reasonably high. In such cases, it is economical

not to perform repair as healthy WECs quickly turn into unhealthy and eventually faulty

states. The non-zero steady-state probabilities of the wave farm are concentrated on the

vertex (N1 = 0, N2 = 0, N3 = 30) where the system state consists of faulty WECs only.

In Figure 3.4, policy simulation results are illustrated as the continuous line trajectory

with starting state marked by asterisk (∗). Figure 3.4(a) shows that when the starting

state is at the origin (all the WECs are in healthy state), after several time steps, the

wave farm state settles around a medium-size region where the steady-state probabilities

of the wave farm states are high. In Figure 3.4(b), the starting wave farm state is taken

as {N1 = 5, N2 = 8, N3 = 13}. The immediate optimal action at that particular state

is to “repair”. As a result, the wave farm is renewed to all healthy WECs and then the

state evolves as in the previous case. The optimal policy is simulated for extreme case in

Figure 3.4(c) with starting state {N1 = 30, N2 = 0, N3 = 0}. We can observe that after a

few time steps, the system deteriorates to the state with all faulty WECs.
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3.4.2 Comparison with Scheduled Maintenance Policy

Scheduled maintenance is also a commonly suggested strategy for ocean wave farm.

Scheduled maintenance is carried out by dispatching a maintenance vessel at fixed time

intervals to repair or replace the WECs that are not operating well. In the proposed

system model, we refer to those WECs as unhealthy and faulty WECs. Let Ts be the time

interval between two consecutive maintenance activities.

We make a comparison between the expected cumulative discounted reward from the

scheduled maintenance policy that employs the best possible inter-maintenance parameter

Ts, and the optimal adaptive policy π∗ studied in this paper. We consider the case where

the weather remains in normal state throughout. Under “do not repair” action, the wave

farm state evolves according to the failure probabilities of individual WECs until Ts − 1

time steps. The “repair” action at time step Ts restores the wave farm to a state with all

healthy WECs. Let the transition matrix under no repair be denoted by Q. The elements

of Q are determined by (3.21) in Appendix 3.6.1. The probability of being in each state

at time t is described as the row vector pt = p0Q
t where p0 is the row vector of initial

probabilities. Assuming that p0 = [1 0 . . . 0] to start from full healthy state, the expected

discounted return during the first Ts periods is

J1(Ts) =

Ts−2∑
t=0

γt[
∑
S

[pt(S)R(S,A = 0)]]

+γTs−1[
∑
S

[pTs−1(S)R(S,A = 1)]]

Thus, the total expected return and corresponding best time interval for scheduled main-

tenance is given by

J∗ = max
Ts∈{2,...,Tf}

J1(Ts)/(1− γTs)

and T ∗s = argmax
Ts

J1(Ts)/(1− γTs), respectively. Tf is the maximum time interval being

considered for the scheduled maintenance. The value of Tf can be set to be much higher

than the average time it takes for the probability that all the WECs in faulty state to be

close to 1. In our simulations, Tf is set to 50. Table 3.4 reports the values of J∗ for the
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baseline case and cases I-IV. The table also reports the corresponding optimal value of Ts.

The values of J∗ are compared to the values V ∗ obtained with the optimal state-based

maintenance policy. We can clearly see that the proposed maintenance policy outperforms

the scheduled maintenance policy in all four cases. We can also notice that in a few cases,

carrying out scheduled maintenance may even result in negative expected return. In such

situation, no value of Ts less than Tf can be selected before all the WECs in the wave

farm turn into faulty states.

3.5 Conclusion

In this work, we propose an adaptive maintenance strategy for a group of WECs.

Today’s WECs are characterized by low output power and high failure probability which

are incorporated in the system model of the wave farm to be maintained. The optimal

policies under different system parameters are analyzed. Results from solving maintenance

optimization problem for wave farms may help farm owners to schedule maintenance

activities efficiently for different farm sizes. Instead of going for arbitrary maintenance of

individual devices, repairing a group of devices all at once can substantially lower the cost

of dispatching maintenance vessel fleets.

Although the numerical studies have been carried out with N = 30 WECs, the pro-

posed approach could accommodate much larger fleets, since the number of states in our

formulation only grows quadratically with N rather than exponentially. The proposed

maintenance strategy is also general enough to be applicable not just to the maintenance

of wave farms but also to offshore wind farms and other arrays of devices that are expensive

to reach, such as offshore weather monitoring sensors. This can be done by appropriately

defining the reward and transition probabilities of the deterioration states in those systems.

In future work, one could consider the case where the wave farm state is only partially

observable and an inspection is required from time to time to know the exact number of

WECs in different states. There have been several studies on maintenance decision under

uncertainty. However, a maintenance and inspection strategy for a group of devices in

the context of wave energy production has not been explored yet. Future work would also
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investigate the structure of the optimal policy under partial observability.

3.6 Appendices

3.6.1 Joint Failure Models

If the random transitions at the level of each WEC are statistically independent,

W12,t+1 and W23,t+1 are easily found to follow binomial distributions:

W12,t+1 ∼ Bin(N1,t, p12),

W23,t+1 ∼ Bin(N2,t, p23).

It is more realistic to assume, however, that the random transitions are not independent,

for instance to model deteriorations due to common causes. There are several ways to

achieve this:

1. WEC deteriorations are assumed to be pairwise correlated. Wij,t+1 given Ni,t is

decomposed as a sum of dependent Bernoulli random variables,

Wij,t+1 =

Ni,t∑
k=1

W k
ij,t+1, (3.16)

where E[W k
ij,t+1] = pij , var[W k

ij,t+1] = pij(1 − pij), and covar[W k
ij,t+1,W

`
ij,t+1] =

ρijpij(1− pij). Here ρij is the correlation coefficient, assumed to be nonnegative. In

this case, Wij,t+1 given Ni,t follows a correlated binomial distribution [92]:

Wij,t+1 ∼ CB(Ni,t, pij , ρij), (3.17)
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which is statistically equivalent to

W ′ij,t+1 = (1− Z)W1 + Z(Ni,tW2),

Z ∼ Bern(ρij),

W1 ∼ Bin(Ni,t, pij),

W2 ∼ Bern(pij), (3.18)

that is, a mixture distribution between a binomial and a rescaled Bernoulli with

values in {0, Ni,t}. The probability mass function (pmf) of Wij,t+1 is

P[Wij,t+1 = w] = (1− ρij)
(
Ni,t

w

)
pwij(1− pij)Ni,t−w

+


ρij(1− pij) if w = 0,

0 if w = 1, . . . , Ni,t − 1,

ρijpij if w = Ni,t.

(3.19)

Thus, higher values of ρij lead to greater probabilities of the extreme outcomes w = 0

and w = Ni,t.

2. Let Z0,t+1 ∼ Bern(pc) be a common cause indicator, and let Wij,t+1 be i.i.d. condi-

tionally to Z0,t+1, with Wij,t+1|(Z0,t+1 = 0) ∼ Bern(qij,0) and Wij,t+1|(Z0,t+1 = 1) ∼

Bern(qij,1). By marginalizing out Z0,t+1, Wij,t+1 becomes a mixture of binomials:

P[Wij,t+1 = w] = pc

(
Ni,t

w

)
qwij,1(1− qij,1)Ni,t−w

+ (1− pc)
(
Ni,t

w

)
qwij,0(1− qij,0)Ni,t−w. (3.20)

The common cause indicator can be shared among W12,t+1 and W23,t+1, leading to
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a joint distribution

P[W12,t+1 = w12,W23,t+1 = w23]

= pc[

(
N1,t

w12

)
qw12

12,1(1− q12,1)N1,t−w12 ]

· [
(
N2,t

w23

)
qw23

23,1(1− q23,1)N2,t−w23 ]

+ (1− pc)[
(
N1,t

w12

)
qw12

12,0(1− q12,0)N1,t−w12 ]

· [
(
N2,t

w23

)
qw23

23,0(1− q23,0)N2,t−w23 ]. (3.21)

3. The probability pij is assumed to be drawn from a Beta distribution at each tran-

sition: pij,t ∼ Beta(αij , βij). Then Wij,t|pij,t ∼ Bin(Ni,t, pij,t). That is to say, Wij,t

follows a Beta-binomial distribution, the pmf of which is given by

P[Wij,t+1 = w] =

(
Ni,t

w

)
B(w + αij , Ni,t − k + βij)

B(αij , βij)
,

where B(α, β) is the beta function.

Methods to estimate αij , βij from data are described in [93], since the Beta-binomial

is a particular case of the Dirichlet-multinomial distribution.

3.6.2 Derivation of Expected Profit

The Rgen function can be estimated by fitting a power output model to data from lab

or at-sea experiments on arrays of converters, and taking into account dispatchability and

electricity market considerations, as we now describe.

For instance, suppose that from reported lab experiments, the average output of a

single WEC is P1, and the average output of an array of N converters is

PN := (1 + η)NP1,

where (1+η) is an interaction coefficient. If the interactions are positive (η > 0), the output

is superlinear in N , as documented in [94]. If the interactions are negative (−1 < η < 0),
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the output is sublinear in N , as documented in [95]. Given the points (0, 0), (1, P1),

(N,PN ), a quadratic power output model can be fitted to estimate the average power

output P as a function of x = Nop
t :

P (x) = P1(1− η
N−1)x+ P1

η
N−1x

2.

In our system model, Nop
t = N1,t +N2,t. The output model could of course be refined by

conducting lab experiments with different array sizes.

Suppose it is optimal for the wave farm to bid a certain quantile of its predicted power

distribution, in order to maximize its expected profit, as described for instance in [96] and

also justified below. As documented in [97], arrays of converters decrease the standard

deviation of the aggregated power. Therefore, an increase in x = Nop
t should also help to

increase the optimal offer and expected profit.

For instance, suppose the variance of the power output of a single WEC is σ2
1, and the

variance of the power output from the array is

σ2
N = (1 + θ)Nσ2

1,

where θ < 0 as documented in [97]. Given the points (0, 0), (1, σ2
1), (N, σ2

N ), a quadratic

model can be fitted to estimate the variance V as a function of x = Nop
t :

V (x) = σ2
1(1− θ

N−1)x+ σ2
1

θ
N−1x

2.

In the absence of other information on the distribution of the power output, we adopt

the maximum entropy distribution for a nonnegative random variable with given mean

P (x) and variance V (x). This is known to correspond to a truncated Gaussian distribution

on R+. The mean and standard deviation (µx, σx) of the Gaussian to be truncated can
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be obtained by solving numerically for (µ, σ) the nonlinear system of equations

µ+ σ φ(µ/σ)
Φ(µ/σ) = P (x)

σ2

[
1− (µ/σ) φ(µ/σ)

Φ(µ/σ) −
(
φ(µ/σ)
Φ(µ/σ)

)2
]

= V (x)

 (3.22)

which expresses the mean and variance of a truncated Gaussian supported on [0,+∞) (see

e.g. [98]). The quantile function (inverse cdf) at level p of the truncated Gaussian is then

given by

F−1
µx,σ2

x
(p) = µx − σxΦ−1((1− p)Φ(µx/σx)).

For the type of two-stage settlement markets studied in [96], the expected hourly profit

is then obtained as the optimal value to a newsvendor-type problem (see e.g. [96]),

Rgen(x) = max
q≥0
{πfq − Ep|x[πs(q − p)+]},

where πf is a known forward hourly price of power, πs is the random penalty hourly price

of a shortfall in committed production, π̄s = E[πs], and power spillage has been assumed

to have no penalty. It is optimal to offer a newsvendor-type quantity

Cx = F−1
µx,σ2

x
(πf/π̄s),

to get (see e.g. [96])

Rgen(x) = πfCx − π̄s
∫ Cx

0
(Cx − p)fµx,σ2

x
(p)dp.

Lengthy but straightforward calculations lead to the following particular result for the

truncated Gaussian density fµx,σ2
x
:

Rgen(x) = πfµx + π̄sσx
φ(µx/σx)− φ(Cx−µxσx

)

Φ(µx/σx)
, (3.23)

where (µx, σx) solves (3.22).
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Chapter 4

Optimal Control Strategy of

Battery participating in Frequency

Regulation Market

4.1 Introduction

In this work, we devise control strategies for GSS systems participating in wholesale FR

markets. In particular, control rules are devised by inspecting optimal control solutions

that trade off battery health factors such as energy throughput vs. market factors such

as the performance score and revenues.

The AGC signals are generated on short time scales (seconds) which implies that

accurately following it would lead to high energy exchange rate for the GSS. Such operation

clearly affects battery life. Thus, the questions this work answers are twofold. First, what

is the trade-off between battery degradation factors and market participation and can it

result in improved revenue over the battery life? If so, what control strategy or rules

would enable these benefits?

In papers [99] [100] [101], the issues of degradation of batteries participating in FR

have been discussed. Papers [99] and [100] focus on evaluating battery degradation and

do not provide practical control strategies for market participation. These articles provide
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good depth on the battery health aspects but make several assumptions such as a zero-

mean AGC signal (which may not always be the case). In addition, they do not analyze

the tradeoffs between degradation and market revenues making it challenging to devise

control strategies with a desired tradeoff. In [101], authors propose a control strategy

of intentionally deviating from the regulation signal to achieve higher long term profits

though they do not guarantee any performance through optimization. Moreover, the

proposed strategy does not account for daily differences in AGC signal and the multitude

of battery degradation factors.

The main contribution of our work is to evaluate the optimal trade-off between the

GSS performance and degradation factors and devise control rules based on this evaluation.

Several control strategies are compared based on the weights assigned to the performance

and degradation factors. Co-optimizing revenue and degradation brings more control over

GSS degradation factors. We show that the market price as an input and past perfor-

mance as a feedback to the GSS controller provides control over revenues and guarantees

an improved performance. Simple rules for the response signal are devised from the re-

sults of the optimization problem and their impact in terms of revenue performance and

degradation factors is shown to be better than existing strategies.

The remainder of this chapter is organized as follows. Section II details the problem

formulation that includes a brief overview of a typical GSS performance evaluation process,

types of degradation models and the optimal control formulations. Section III presents

the results obtained and discusses their impact.

4.2 Optimal Battery Control Strategy acknowledging Con-

tinuous Degradation

4.2.1 Performance Factor

PJM interconnection evaluates the performance of a resource in FR markets by com-

puting an hourly performance factor pfh which is defined as weighted sum of following

three scores. [102].

85



Figure 4.1: GSS in electricity network

• Correlation score = max(δ=0 to 5Min) σSignal,Response(δ, δ + 5Min) calculated every

10s. Here σ is correlation function and δ is shifted time steps.

• Delay score =
δ − 5Min

5Min
calculated every 10s

• Precision score = 1-Abs

[∑
Abs(Pt)−

∑
Abs(AGCt)∑

Abs(AGCt)

]
where AGCt and Pt are AGC

and response signal respectively.

4.2.2 Revenue

Resources once qualified to participate in the PJM FR market submit bids for power

quantity and price (both capacity and mileage). The day-ahead market is cleared for every

hour and hourly market prices αh are set. In real-time, each market cleared resource is

paid an amount adjusted by a performance factor evaluated by SO. Roughly, the hourly

payment to a resource i can be described as

ri,h = αh × pf i,h (4.1)

Market regulations has set minimum acceptable performance score below which the par-

ticipating resource shall be disqualified. The past hourly performance values also impact

its future bid selection process. In this regard, SO uses the past performance scores and
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computes their average in a rolling horizon fashion. This moving average is termed as

historical performance score (pfhsh )

4.2.3 Dynamic Programming (DP) Framework

Under the assumption that daily AGC signal, AGCt, is known in advance, a GSS

operator with battery capacity C maximizes total reward over the time horizon T , i.e.

max
Pt

T∑
t

R(Pt, St) (4.2)

where St is the system state and Pt is the action or response signal. The GSS reward

function, Rt at each time step t is a weighted sum of instantaneous revenue (rt) and

degradation factor (dt) written as

R = λrt + (1− λ)dt, λ ∈ (0, 1) (4.3)

The state of charge SoCt constrained between 0 to 1 defines the physical dynamics of the

GSS. Using the above market mechanisms and making following assumptions, we define

baseline model(Type 0) and three proposed revenue models(Type I,II,III) to be used in

the DP formulation.

• The time horizon, T is chosen as 24 hours.

• A unified time step t for all system variables are chosen as 10s. AGC signal is

interpolated accordingly.

• The hourly performance score pfh is simplified as only the precision score obtained

every 10s defined as

pf t = 1−Abs[AGCt − Pt], t ∈ (10, 20, . . . , T = 86400) (4.4)

where AGCt is interpolated to time step t. Note that the area under the response

signal in 10s is energy in/out of GSS (otherwise defined as instantaneous energy-
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throughput, CtPt ) The correlation and delay scores are removed to maintain causal-

ity of revenue variables (from GSS perspective, calculating correlation involves the

prediction of its own action to decide current action). In addition, calculating corre-

lation of two signals is computationally expensive and does not provide new insights

in market participation.

• Similar to pfhsh defined by PJM as an average of past 100 steps pfh, our historical

performance definition pfhst is a moving-average of fewer past pf t.

• The dynamic market prices are uniform (same) within an hour.

Degradation Factors

Two types of instantaneous degradation factors (or degradation functions), dt similar

to [103] are defined below:

• Instantaneous normalized energy throughput: |E|2t

• Instantaneous SoC deviation level: |
SoCt − SoCref
SoCmax − SoCref

|

Like performance factor, the value of a degradation factor is normalized from 0 to 1. The

instantaneous degradation cost is defined as kdt where k is a constant that denotes the

cost of replacement, maintenance etc incurred due to degradation scaled down to dollar

per 10s. The accumulated degradation cost over battery life time signifies lost revenue

due to low operating life.

System Models

To incorporate different market elements such as pf t, αh, pfhst , four types of system

models are defined. For each type of revenue models, the system state St and objective

Rt are defined as follows.

• Type 0: St = (SoCt, AGCt), Rt = pf t

• Type I: St = (SoCt, AGCt), Rt = λpf t + (1− λ)dt
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• Type II: St = (SoCt, AGCt, αh), Rt = λCαhpf t + (1− λ)kdt

• Type III: St = (SoCt, AGCt, αh, pf
hs
t ), Rt = λ(Cαhpf t + f(pfhst , αh)) + (1− λ)kdt

Type 0 is the baseline revenue model in which high performance score can be ensured

just by following the AGC signal without violating SoC constraint at all time instant. In

type I formulation, only the performance factor pf t is sought to be maximized and the

reward function trades off pf t vs. the degradation factor dt. In type II formulation, price

is added as a state variable and is considered in the reward function and the revenues are

traded off against dt. In type III, historical performance factor pfhst is incorporated in the

reward function and f(.) denotes a penalty function for low pfhst . In all the above cases

dt is based only on the energy throughput unless SoC based degradation is specifically

specified.

In the optimal problem formulation, SoC is discretized into 1000 values, response

signal into 22 values and historical performance factor into 50 values. The DP problem

formulation is based on the Bellman equation and is solved backward in time for different

values of λ to obtain the optimal states and actions.

4.3 Results and Analysis

Results from solving optimization of finite horizon net reward(eq. 4.2) under different

problem formulations are presented. In particular, the revenue-degradation trade-off is

analyzed using optimal performance factor pf∗t and optimal degradation factor d∗t and

subjective assessment of the optimal action signal, P ∗t (or response) is discussed. A hy-

pothesis of control rules based on Type I problem result is described and tested using a

simulation case study. Type I problem is discussed in detail because its results can be

compared to current industry practices(similar to Type 0).

Type II and III problem results and the subsequent control strategies are extensions

of the Type I results. They substantiate our argument that there are key market factors’

information can help optimize net revenue for the GSS. Finally, results on trade-off and

corresponding response signal are obtained using degradation as a function instantaneous
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(a) Type I: instantaneous performance-
degradation factor (energy throughput) trade-off

(b) Response signal for 3 hours from type I prob-
lem formulation

SoC level as types I-III focus only on energy throughput based degradation.

Type I Problem: In Figure 4.2(a), we observe that the trade-off is more pronounced

in region II compared to region I suggesting reduction of average degradation(dav =∑T
t=0 d

∗
t /T ) by lowering average performance factor(pfav =

∑T
t=0 pf

∗
t /T ) can be eco-

nomically beneficial in long run. However, this trade-off is not as attractive if the current

average performance factor is already quite high (region I).

This characteristic of the trade-off is attributed to the fact that the instantaneous

energy in and out decreases with more weight,λ, on the degradation compared to revenues.

Therefore, the response corresponding to increasing weights on degradation give increasing

value of total energy throughput for the same AGC signal in a day. More importantly,

the optimal response signal exhibits a cut-off value beyond which AGC signal need not

be followed as shown in Figure 4.2(b). Based on these observations, we conjecture that

the cut-off value or threshold of the response signal is a function of average instantaneous

degradation and devise the following control rules

1. To reduce the value of average degradation factor to ”x∈ [0, 1]”, the response signal

should follow AGC signal till

|AGCt| ≤
k1 −

√
k2 − k3x

2(k4 − k1 +
√
k2 − k3x)

(4.5)

where k1, k2, k3 and k4 are constants obtained from curve fitting the degradation
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factor as a function of the relative weight. The degradation depends on the AGC

signal on that particular day. Therefore, we can expect similar values of constants

under similar AGCs obtained on different days.

2. This rule should be followed as long as the performance factor is high enough to not

run the risk of facing disqualification in the market which is discussed in Type III

later.

Type II Problem: The trade-off curve shown in Figure 4.2 is obtained using a

periodic bi-level(High-Low) hourly market price structure. As the revenue is a function of

market price along with performance score, the trade-off curve is influenced by it. When

the market prices are low, the optimal solution aggressively reduces instantaneous cost of

degradation dav. Another observation is that the optimal response signal has a cut-off

Figure 4.2: Trade-off plot obtained from type II problem formulation

limit which varies linearly in this problem set-up(not shown due to space limitation) with

market price and desired hourly cost of degradation. It is understood that when the hourly

market price is high, the AGC signal should be followed as closely as possible and when

market price is low, the threshold is lower. This threshold can be determined through

a similar curve fitting exercise as the one in the discussion of the type I problem above.

Figure 4.3 shows the existence of threshold(that also shifts with λ) in optimal response

signal under low hourly market price.
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Figure 4.3: Optimal response signal trajectory under type II problem formulation

Type III Problem The results of type III show that control strategies can be de-

veloped specifically to prevent the performance score from dropping continuously in Type

II problem when market prices are low. The historical performance score is added to the

state information to facilitate this. The optimal results are compared against type II prob-

lem results under an hourly market price sequence {Pr} = 20, 80, 40, 60 (i.e. not Type II

bi-level prices). As illustrated in figure 4.4, the performance factor stays above 0.7 even

in the low market price hour and under reasonable weight to degradation cost in a four

hour horizon. The optimal response signal as shown in figure 4.5 tracks the AGC closer

during the low price period compared to its counterpart from type II problem solution

and achieves close to the same overall reduction in the cost of battery degradation.

Figure 4.4: Performance score in four hours corresponding to each hourly market price under
type III problem formulation

Results from these simple problem formulations show that a rule on response signal can

be developed based on the values of historical performance score, SoC and market prices.

The results from using an SoC based degradation factor in the type I problem formu-
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Figure 4.5: Optimal response signal in four hours under type III problem formulation

Figure 4.6: Trade-off plot under type I problem formulation that has SoC based degradation
factor

lation includes the trade off curve shown in figure 4.6. The SoC and response signal are

shown in figure 4.7. Trade-off curve shows that performance factor is not very sensitive to

a large range of values of weight on instant degradation cost. This is due to the fact that

the SoC transitions are not very drastic in a particular time interval so as to influence

the instantaneous energy throughput significantly. However, the SoC level is increasingly

tightened around the reference SoC level as more weight is given to instantaneous degra-

dation cost. A reference SoC of 0.5 is chosen in this problem. This hints at control rules

based on the acceptable SoC window similar to the AGC threshold discussed in the above

cases.
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Figure 4.7: SoC level and response signal trajectories obtained from type I problem formulation
that has SoC based degradation factor
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Chapter 5

GPS Timing Synchronization

Attack: Characterization and

Detection in Smart Grid Networks

5.1 Introduction

A modern wide area monitoring system supporting the future grid will include a vastly

improved information and communications functionality that allow service providers to

sense, monitor, and manage electricity flows throughout the grid [104]. While the cyber-

physical integration improves the performance and efficiency of the grid, it increases the

vulnerability of the grid to potential cyber-attacks. Security of the power grid has received

significant attention in the literature [105] - [110]. In this paper, we address the problem

of cybersecurity in smart grid networks involving PMUs taking into account the dynamical

nature of the power system.

A PMU can record synchrophasors at a high sampling rate, and the measurements

are synchronized to an absolute time reference provided by the GPS. It is possible to

deceive the GPS receiver by transmitting spurious signals resembling the normal GPS

signals, leading to timing synchronization errors and this referred to as a GPS-spoofing

attack [111]. In an electric grid with PMUs, GPS spoofing results in counterfeit time
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stamps to the true phasors and is referred to as the timing synchronization attack (TSA)

[112]. Since a TSA only alters the time stamps without inducing changes in the actual

measurements, it results in confusing the command center with erroneous system operation

status. Evaluating the threat to PMUs and the countermeasures to combat TSA is a topic

that has received considerable attention in the literature [113] - [123].

We analyze the implications of TSAs on the dynamical behavior of the power system.

The dynamical model of the power system [124] is considered, and it is assumed that

PMUs are installed on all the generator buses. We show how TSAs, characterized using

a scalar parameter, alter the phasor readings by transforming the system matrix in the

measurement equation of the model. In our analysis, the time of attack and the scalar

parameter which results in the TSA are assumed unknown. For this setup, we develop

a generalized likelihood ratio-based hypotheses testing procedure to detect changes from

the normal operating behavior when the system is subjected to a TSA. Monte Carlo

simulations using a 9-bus, 3-machine test system are performed to demonstrate (a) the

implication of a TSA on the dynamic state estimation (DSE) and (b) the performance

of the proposed test. Asymptotic performance results of the test which are applicable to

practical (large) smart grid networks are also presented. To the best of our knowledge,

this is the first time a characterization of the impact of a TSA on the dynamic behavior of

power system and its detection is reported in the literature. These studies are important

for efficient wide area monitoring and to initiate timely action in the event of a security

threat to the grid. The initial results of this work appeared in [125].

In Section 5.2, we present the dynamical model of the power system and characterize

the TSA. The hypothesis test to detect the spoofing attack is presented in Section 5.3.

Simulation results are in Section 5.4. Concluding remarks are provided in Section 5.5.

Asymptotic analysis is relegated to the appendix.
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5.2 System Model

5.2.1 Dynamic Model of the Power System

The power system comprising generators, electrical loads and the transmission network

is modeled using differential and algebraic equations. At the ith generator, the rotor angle

(δi), the rotor speed (ωi) and the internal voltage (Ei) of the synchronous generator are the

state variables of the system governed by differential equations, while the nodal voltage

magnitudes (Vi) and the phasor angles (θi) are the algebraic variables. To analyze the

system’s behavior we consider the 3rd-order differential equations, which can sufficiently

capture the dynamics of state variables [126].

We consider an n-bus, m-generator system where the state vector of the linearized

model for synchronous generator is denoted by xi = [∆δi ∆ωi ∆Ei]
′, i = 1, . . . ,m and [·]′

denotes the transpose of the vector. The state xi captures the change of the ith generator’s

variables around an operating point, which depends on the network topology, generator

parameters and the load. In the absence of a control mechanism, a perturbation caused

by a change in these components can alter the system stability. We model the evolution

of the 3m× 1 state vector xt = (x1,x2, . . . ,xi, . . . ,xm) by

xt = Axt−1 + vt, (5.1)

where A is the 3m × 3m (for the 3rd-order model) state transition matrix. The modes

given by the eigenvalues of A are assumed to be sufficiently damped for the system to

be stable. In other words, a stable open loop system is considered so a zero control

input can be employed for simplification. The entries of A are given by the following

sub-matrices each of size m × m: A11 = 0 (zero matrix), A12 = I (identity matrix),

A13 = 0, A21 = ga(δo, Eo, θo, Vo, YL), A22 = −diag(Di), A23 = gb(δo, Eo, θo, Vo, YL),

A31 = gc(δo, Eo, θo, Vo, YL), A32 = 0, A33 = gd(δo, Eo, θo, Vo, YL), where Di is the damping

of the ith generator, YL is the load admittance, and (δo, Eo, θo, Vo, YL) is the operating

point around which the system is linearized to make it viable for small signal analysis.

The functions ga(·), gb(·), gc(·) and gd(·) can be written in matrix form [127] and are
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not presented here for the sake of brevity. The 3m × 1 state transition noise vector vt is

assumed to be independently and identically distributed (iid) and Gaussian with 3m× 1

zero mean vector and 3m× 3m covariance matrix Cv,t.

The ithPMU records the voltage magnitude Vi and the phasor angles θi, while the

rotor speed ωi is typically measured using a separate sensor and is incorporated into the

measurement equation. The 3m× 1 measurement vector at time t is the deviation of the

measurements from steady state measurement values denoted by yti , [∆Vri,∆ωi,∆Vj i]

where Vri = Vi cos(θi), Vj i = Vi sin(θi) and is given by

ỹt = Sxt +wt, (5.2)

where wt is the 3m × 1 measurement noise vector assumed to be i.i.d. Gaussian with

3m× 1 zero mean vector and 3m× 3m covariance matrix Cw,t. The measurement matrix

is given by

S =


S11 0 S12

0 I 0

S21 0 S22

 , (5.3)

Here, S is 3m × 3m square block matrix of 9 entries with each entry being a matrix of

size m×m given by
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S11 = (−Yf rdiag1:m(Eoisin(δoi))

−Yf jdiag1:m(Eoicos(δoi))), (5.4)

S12 = (Yf rdiag1:m(cos(δoi))

−Yf jdiag1:m(cos(δoi))), (5.5)

S21 = (Yf rdiag1:m(Eoicos(δoi))

−Yf jdiag1:m(Eoisin(δoi))), (5.6)

S22 = (Yf rdiag1:m(sin(δoi))

+Yf jdiag1:m(cos(δoi))), (5.7)

where diag1:m(ui) denotes a square diagonal matrix of size m having ui at diagonal entry

i. Yf r and Yf j are the real and imaginary parts of (YG + YL + Ybus)
−1YG where YG and

YN are the generator and bus admittance matrices [127].

5.2.2 Characterization of TSA

In this subsection, we show how a TSA alters the measurement matrix S in (5.2).

The voltage represented in complex phasor form at generator i is given by Ṽi = Vri +

jVj i, where Vri and Vj i denote the real and imaginary components, respectively. A time

synchronization attack on a PMU at node i, denoted by the time-shift βi(tc), modifies the

instantaneous nodal voltage signal by introducing a phase change as follows:

Ṽi(t+ βi(tc)) = Vi(t+ βi(tc))×

cos [2πfc(t+ βi(tc)) + θi(t+ βi(tc))] , (5.8)

where tc denotes the time instant of the spoofing attack. Assuming normal steady

state operation before attack (SSOBA), so that the unattacked version of (5.8) is a

sinusoid (constant Vi and θi over time), the synchronization delay attack changes the

model by adding a factor 2πfcβi(tc) to the phase at time tc, where fc denotes the op-
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erating frequency of the system. The voltage phasor after a TSA can be written as

Ṽi = Vi∠(θi + 2πfcβi(tc)) = V̄ri + jV̄ji, where ∠(·) denotes the phase. We thus have

V̄ri = Vi cos(θi + 2πfcβi(tc))

= Vi cos(θi) cos(2πfcβi(tc))

−Vi sin(θi) sin(2πfcβi(tc))

=Vri cos(2πfcβi(tc))− Vj i sin(2πfcβi(tc)), (5.9)

V̄ji = Vi sin(θi + 2πfcβi(tc))

= Vi sin(θi) cos(2πfcβi(tc))

+Vi cos(θi) sin(2πfcβi(tc))

=Vji cos(2πfcβi(tc)) + Vri sin(2πfcβi(tc)), (5.10)

which can be compactly written as follows:

 V̄ri

V̄ji

=

cos(2πfcβi(tc)) − sin(2πfcβi(tc)

sin(2πfcβi(tc)) cos(2πfcβi(tc))


 Vri

Vji

. (5.11)

However, SSOBA results in

∆V̄ri
∆V̄ji

=

cos(2πfcβi(tc)) − sin(2πfcβi(tc)

sin(2πfcβi(tc)) cos(2πfcβi(tc))


∆Vri

∆Vji

 . (5.12)

Using [∆Vr ∆Vj ]
′ = [∆Vr1, . . . ,∆Vrm,∆Vj1, . . . ,∆Vjm]′

 ∆Vr

∆Vj

 =

 S11 S13

S31 S33


 ∆δ

∆E

 , (5.13)

we can write  ∆V̄r

∆V̄j

 =

 M1 −M2

M2 M1


 S11 S13

S31 S33


 ∆δ

∆E

 , (5.14)
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where M1 = diag1:m(cos(2πfcβi(tc))) and M2 = diag1:m(sin(2πfcβi(tc)). The new mea-

surement equation after a TSA is given by

yt = MSxt + vt, (5.15)

where

M =


M1 0 −M2

0 I 0

M2 0 M1

 . (5.16)

In effect, the GPS spoofing attack under SSOBA can be modeled as modification of the

observation matrix based on the attack parameters βi(tc). Using the measurements yt,

the goal of this paper is detect changes in the observation matrix due to a TSA in the

given power network.

5.3 Detection of TSA

The theory of hypothesis testing has been well developed in the statistics litera-

ture [128], while being further refined for many practical applications by the signal process-

ing community [129]. Given fully known statistical models for a set of sensor observations

under two different possible circumstances which are called hypotheses H0 and H1, the

theory will allow one to make optimum decisions on which hypothesis is true. The opti-

mality criterion is related to the probability that one makes the wrong decisions. In this

paper, the observations are made by some PMUs (augmented by some other sensors), and

H0 represents the hypothesis that the no PMU is subjected to a GPS spoofing attack,

while H1 represents the hypothesis that some PMU was subjected to an attack.

For the observation model in (5.15), let p(y|Hj), j = 0, 1, denote the probability density

function (PDF) of the observations evaluated when Hj is true. This is proportional to the

probability that the observations are in an infinitesimally small region around the actual

observations y when Hj is true. We can compute the probability that the observations y
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lie in some set by integrating the appropriate PDF (under H0 or H1) over all y in that

set. Let Pr(Hj) denote the probability of Hj being true; note that, Pr(H0) = 1−Pr(H1).

There are two types of errors the test can make, and thus two types of probabilities of

error: the probability the test picks H1 when H0 is true, or the probability the test picks

H0 when H1 is true. Let Γ be the the set of all y for which the test will decide H1. Thus

for any y /∈ Γ the test will decide for H0. The total (average) probability of error is

pe
(a)
= Pr(H0)

∫
x∈Γ

p(y|H0)dy + Pr(H1)

∫
y/∈Γ

p(y|H1)dy

= Pr(H0)

∫
y∈Γ

p(y|H0)dy

+Pr(H1)

(
1−

∫
y∈Γ

p(y|H1)dy

)
= Pr(H1) +∫

y∈Γ
(Pr(H0)p(y|H0)− Pr(H1)p(y|H1)) dy, (5.17)

where the first term in (a) is Pr(H0) times the probability the test makes an error by

deciding for H1 when H0 is true, denoted as Pr(decide H1|H0) and called the probability

of false alarm (Pf ). The second term in (a) is Pr(H1) times the probability the test

makes an error by deciding for H0 when H1 is true, denoted as Pr(decide H0|H1) =

1− Pr(decideH1|H1). Pr(decide H1|H1) is called the probability of detection (Pd).

In order to make pe as small as possible, we include y in Γ if these y make Pr(H0)p(y|H0) <

Pr(H1)p(y|H1) since including these y in Γ will make pe smaller from the last line of

(5.17). For any y such that Pr(H0)p(y|H0) > Pr(H1)p(y|H1), these y must be kept out

of Γ since they will make pe larger if they are included. Note that any y that provide

Pr(H0)p(y|H0) = Pr(H1)p(y|H1) can be either put into or left out of Γ, and they will have

no impact on pe. This optimum test is called the likelihood ratio test, which compares

the ratio of p(y|H1) to p(y|H0) to the threshold τ = Pr(H0)/Pr(H1). If Pr(H0) = Pr(H1)

then the likelihood ratio test chooses H1 if the probability that the observations are in

an infinitesimally small region around the measured value of y when H1 is true is larger

than the probability that the observations are in an infinitesimally small region around

the measured y when H0 is true. Now if we have prior knowledge that H0 or H1 are more
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likely, then this should bias our decision, which is what the likelihood ratio tells us to do

from the threshold τ = Pr(H0)/Pr(H1). In fact there is a trade off between the two types

of errors Pr(decide H1|H0) or Pr(decide H0|H1) set by the threshold. Thus if we make

τ < 0 then we can make Pr(decide H0|H1) = 0 since we always decide for H1 but we

also make Pr(decide H1|H0) = 1. If we set τ = ∞ then we never decide for H1 and so

Pr(decide H1|H0) = 0 but Pr(decide H0|H1) = 1. In general we can prove that making τ

larger always makes Pr(decide H1|H0) smaller and Pr(decide H0|H1) larger.

In our problem, p(y|H1) contains some unknown parameters (say, θ), and so we denote

this as p(y|θ,H1). In such cases, it is common to employ the generalized likelihood ratio

test (GLRT) which replaces the likelihood ratio with

max
θ
p(y|θ,H1)

p(y|H0)
. (5.18)

The interpretation is that we employ an estimate of the unknown parameter θ which

maximizes the likelihood function of the observation. If the estimate of θ is very accurate,

then the GLRT is close to the optimum test (i.e. the likelihood ratio test). In our problem,

the performance loss of GLRT compared to the likelihood ratio test is not very large and

the loss tends to decrease as we employ more high quality data.

We now present a test to detect changes in the measurement matrix in the event of a

TSA. Let us suppose that a TSA has been initiated at the time instant tc, leading to an

alteration of the measurement matrix S. We denote the resulting measurement matrix by

Sc ,MS (see (5.15)). Given the set yT , {y0, . . . ,yT−1} of measurements, the problem

is formulated as one of devising a statistical testing procedure to detect the change - owing

to an attack - in the measurement matrix as reliably as possible. More precisely, we need

to devise a test to distinguish between the following two hypotheses:


H0 : yT in (5.2),S = S0, t = 0, . . . , T − 1

H1 : yT in (5.2),S =


= S0, t = 0, . . . , tc − 1

= Sc 6= S0, t = tc, . . . , T − 1.
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The hypotheses test involves comparing a test statistic to a threshold and is of the

form Λ
[

H0]H1≷ρ where Λ is the test statistic and ρ is the test threshold. We adopt the

Neyman-Pearson criterion to set ρ for a given false alarm probability [129]. The likelihood

ratio test statistic is given by

Λ =
p(yT |yT−1;Sc)× · · · × p(ytc+1|ytc ;Sc)

p(yT |yT−1)× · · · × p(ytc+1|ytc)
. (5.19)

The conditional probability p(yt|yt−1;Sc) under hypothesisH1 is given by, for t = tc, . . . , T−

1,

p(yt|yt−1;Sc) =
exp

{
−1

2(yt − µ1t)
′Σ−1

1t (yt − µ1t)
}

(2π)K/2|Σ1t|1/2
,

where µ1t , E[yt|yt−1] = ScAS
−1
c yt−1 is the mean vector and Σ1t , Cov[yt|yt−1] =

ScAS
−1
c Cw,t−1(ScAS

−1
c )′ + ScCv,tS

′
c +Cw,t is the covariance matrix. For the likelihood

function under H0, µ1t and Σ1t will be replaced by µ0t and Σ0t, respectively, while the

matrix Sc will be replaced by S0. In our problem setup, the measurement matrix Sc after

a TSA and the time instant tc when the spoofing attack is launched on the PMUs are

unknown, and will have to be estimated; therefore, GLRT (5.18) is employed. From (5.15)

and (5.16), we see that estimating the matrix Sc is equivalent to estimating the parameter

β, which results in GPS spoofing. The GLRT statistic is given by

max
tc

max
β

[p(yT |yT−1;Sc)× · · · × p(ytc+1|ytc ;Sc)]

p(yT |yT−1)× · · · × p(ytc+1|ytc)
. (5.20)

The maximum likelihood (ML) estimates of β and tc are obtained as follows. We consider

a discrete set Tc of time instants at which TSA can be launched. For every tc ∈ Tc, the

value of β that maximizes the likelihood function [p(yT |yT−1;Sc)× · · · × p(ytc+1|ytc ;Sc)]

is the ML estimate of β, and is denoted by β̂. The value of tc that maximizes the function

maxβ [p(yT |yT−1;Sc)× · · · × p(ytc+1|ytc ;Sc)] is the ML estimate of tc and is denoted by

t̂c.
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Taking logarithms on both sides of (5.20), the test becomes

ln Λ = Λ′
[

H0]H1≷ ln ρ = ρ′, (5.21)

Λ′ =
T−1∑
t=t̂c

(yt − µ0t)
′Σ−1

0t (yt − µ0t)

−(yt − µ1t)
′Σ−1

1t (yt − µ1t), (5.22)

ρ′ =

T−1∑
t=t̂c

2ρ− ln

{
|Σ0t|
|Σ1t|

}
, (5.23)

µ0t = S0AS
−1
0 yt−1, (5.24)

µ1t = ŜcAŜ
−1
c yt−1, (5.25)

Σ0t = S0AS
−1
0 Cw,t−1

(
S0AS

−1
0

)′
+S0Cv,tS

′
0 +Cw,t, (5.26)

Σ1t = ŜcAŜ
−1
c Cw,t−1

(
ŜcAŜ

−1
c

)′
+ŜcCv,tŜ

′
c +Cw,t (5.27)

Under hypothesis H0, (yt − µ0t)
′Σ−1

0t (yt − µ0t) is central Chi squared, while (yt −

µ1t)
′Σ−1

1t (yt−µ1t) is the generalized Chi squared each with 3m degrees of freedom (d.o.f.).

For t = 0, . . . , T − 1, we thus see that the under H0, the test statistic Λ in (5.19) is

the difference between the central Chi squared and the generalized Chi squared random

variables each with 3m × (T − tc) d.o.f. whose PDF is difficult to establish in closed-

from [130]. We, therefore, resort to numerical evaluation to analyze the performance of

the test in Section 5.4.

For sake of comparison, we also present one ad hoc test that has been employed in

similar problems. This test is sometimes called the residual test. The residual is given

by rt = yt − ŷt|t−1, where ŷt|t−1 is the predicted measurement vector computed by a

Kalman filter. The residual test compares ||rt||2 to a threshold chosen to fix the false

alarm probability.
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Figure 5.1: A 3 Machine, 9 bus test system (known as P.M Anderson 9 Bus).

5.4 Simulation Results

We conduct experiments on the 9−bus 3−machine Western System Coordinating

Council (WSCC) test case with the state space model specified in [126] to demonstrate

the effect of a TSA and to verify the performance of the hypotheses test in (5.21). A

block diagram of the test bus system is shown in Fig. 5.1. A PMU is assumed to be

located at each of the generator nodes. Although TSAs can be launched on several PMUs

simultaneously, in this paper we give detailed discussion for the case of a single PMU (on

node i = 1) being compromised. The results are based on L = 5× 104 Monte Carlo (MC)

simulations. First we linearize our system model around an operating point as described

in [127]. Let S0 denote the output matrix of this linearized state space model. In the

linearized state space model, we choose the covariance matrices Cw,t (corresponding to

noise vector in input-output equation) and Cv,t (corresponding to the noise vector in state

update equation) to be σ2I with σ = 0.01. The dynamic state estimation (DSE) proce-

dure is implemented by employing the discrete-time Kalman Filter (KF) for t = 0.1 to

10s at a sampling rate of 100 samples/s.

At the time instant t = 5s, we launch a TSA by setting the attack parameter at

node 1 equal to 8.33ms and the attack parameter for all other nodes equal to 0, i.e.,

βi(tc) = b1 = 1/2fc = 8.33ms for i = 1 and βi(tc) = 0 for i 6= 1, where fc = 60Hz is

the grid frequency and βi denotes the attack parameter at the ith node which alters the
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Figure 5.2: RMSE of the rotor angle ∆δ1 when the TSA is induced at tc = 5s.
β1(tc) = b1 or b2 where b1 = 8.33ms and b2 = 0.833ms.

measurement matrix of the model. After the attack, the KF continues to update the state

estimate on receiving a new observation yt according to x̂t|t = x̂t|t−1 + Kt(yt − S0x̂t|t−1)

when the output matrix has changed from S0 to Sc = MS0, where M is given in (5.16).

The performance of the filtering algorithm is assessed by plotting the root mean squared

error (RMSE) of the estimated state variable as a function of time. The RMSE for the

rotor angle ∆δi at time t is given by

RMSE∆δi,t =

√√√√ 1

L

L∑
`=1

(
∆̂δ

`

i,t −∆δ`i,t

)2
, (5.28)

where ∆̂δ
`

i,t and ∆δ`i,t denote the estimate and the true value, respectively, of the rotor

angle at time t in the `th MC simulation. The RMSE for the internal voltage ∆Ei of the

ith generator is defined analogously. In Fig 2, we plot the RMSE of the rotor angle of

the synchronous generator at node 1 as a function of time for normal operating conditions

and when a TSA is launched on the bus system. It can be seen that, due to TSA at

t = 5s there is a sudden increase in the RMSE; such a drastic performance change is not

observed under normal operating conditions. A similar behavior is observed in the plot

of the RMSE of the internal voltage of the generator at node 1 as shown in Fig 3. Such
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Figure 5.3: RMSE of the internal voltage ∆E1 of the generator 1 when the TSA is
induced at tc = 5s. β1(tc) : b1 = 8.33ms or b2 = 0.833ms.

Figure 5.4: The ROCs of the proposed test compared to that of LRT for different values
of the attack parameter.

drastic degradation in the performance is hazardous, since erroneous state estimates can

result in wrong control signals issued by the command center. When β1(tC) = b1 the

change in performance is easily recognizable. However, when the magnitude of the TSA

is small, say β1(tc) = b2 = 0.1b1, the change is not recognizable as shown in Fig. 5.2 and

Fig. 5.3. Our proposed hypotheses test can efficiently detect whether the system is under

attack even for small magnitudes of TSA.
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To analyze the performance of the proposed detection scheme, we plot the receiver

operating characteristics (ROC) of the test in (5.21) which is the most well accepted

measure [129]. For the false alarm probability Pf ∈ (0, 1], the detection probability Pd is

computed using L Monte Carlo instantiations. The ROCs are plotted for different attack

parameters: β1(tc) = b3 = 0.133ms, β1(tc) = b4 = 0.186ms, β1(tc) = b5 = 0.239ms, and

β1(tc) = b6 = 0.292ms. As shown in Fig. 5.4 the detection performance improves with

increased magnitudes of the attack parameter. In the literature, it is discussed that attack

parameters smaller than 0.013ms are insignificant since they do not affect normal system

operations. Thus, TSAs caused by β1(tc) < 0.013ms need not be detected. We also

compare the ROC of the proposed test with the clairvoyant likelihood ratio test (LRT), in

which β1(tc) is assumed to be known and gives an upper bound on the performance of the

proposed test. As shown in Fig. 5.4, the performance of the proposed test is comparable

to that of LRT.

In the next experiment, we show the effect of window size (i.e. the time span over

which the system is observed) on the performance of the test. Increased window size

provides more data samples, which enables a better characterization of the TSA and also

reduces the effect of noise. However, it also increases the delay in making the decision,

since the hypotheses test can be performed only after collecting all the samples in the

specified timeframe. In Fig. 5.5, we plot of ROCs of the proposed test and that of LRT

for different window sizes. It can be seen that for 60 samples, the performance of the

test is quite reasonable even for a small value for β. This result is important from the

standpoint of practical implementation, since the test can provides a reasonably good

performance even with a smaller number of samples and for short time windows. For

the attack parameter of 0.278ms, the results in Fig. 5.5 indicate significant improvement

in performance for increasing time windows, suggesting a tradeoff between the desired

performance and tolerable delay.

Next, we demonstrate the performance degradation of the test when the time of attack

tc is unknown. The ROCs of the proposed test and LRT are obtained for β = 0.236ms and

window sizes 100 and 200. As shown in Fig. 5.6, the performance of the test expectedly
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Figure 5.5: The ROCs of the proposed test and that of LRT for different window sizes:
N1 = 100, N2 = 80, N3 = 60, N4 = 40.

degrades when tc is unknown (hence, estimated). The degradation in performance is

mainly due to the error incurred in estimating tc. However, the performance degradation

is negligible for larger window sizes.

We also compare the performance of the proposed test with the standard residual test,

which is an ad-hoc test that has been frequently employed in the power systems literature.

For a given false alarm rate, the probability of detection can be easily computed using

known procedures. We plot the ratio of detection probabilities of the residual test and

the proposed test for different sample sizes. As shown in Fig. 5.7, the proposed test

consistently outperforms the residual test for small magnitudes of the TSA. This shows

considerable improvement in performance of detection of the TSA using the proposed test

over an ad-hoc test.

5.5 Concluding remarks

A natural extension of this work is to analyze the performance of our test when multiple

PMUs are attacked leading to a larger separation between the two distributions p(y|H0)

and p(y|H1). This suggests an improved performance of the proposed test when more

than one PMU in the network is subject to a TSA. Simulation results confirmed that
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Figure 5.6: The ROCs of the proposed test for unknown time of attack. The ROC of the
clairvoyant LRT is also plotted.

Figure 5.7: The ratio of Probability of detection obtained from residual test and GLRT
test versus number of observations used in the tests

111



when multiple PMUs in the grid were attacked, the ROC of proposed test was more

favorable than the ROC when a single PMU was subject to a TSA. In the interest of

space, we do not include those results in this paper. We have reported the results of our

proposed test for a small bus system (see Fig. 5.1) as an aid to present the main part of the

paper clearly. However, the number of nodes in a wide-area smart grid network is quiet

large, and with the initiative of power utilities to populate the grid with a greater number

of PMUs, it is important to extend the analysis of this work to large scale networks. From

an engineering viewpoint, the characterization of the performance of the test for a very

large number m of buses demands attention. In the appendix, we derive the asymptotic

(large m) expressions for the threshold and probability of detection Pd which can be used

to analyze the performance of the test in these practical (large) scenarios.

For real world power networks spread over a wide geographical area, i.e., when the

number of buses in the grid is very large (m → ∞), we can efficiently approximate the

test statistic to derive its asymptotic PDF under both hypotheses H0 and H1. Using these

asymptotic PDFs, computable expressions for the test threshold ρ′ and the probability

of detection Pd are derived. These expressions are not applicable to the WSCC test case

(since m is very small) considered in this paper. Note that, the test statistic is the same

as given in (5.21).

.0.1 Asymptotic (m→∞) PDF of the test statistic under H0

We denote z0t,H0 = (yt−µ0t)
′Σ−1

0t (yt−µ0t) and z1t,H0 = (yt−µ̂1t)
′Σ−1

1t (yt−µ̂1t) when

yt is sampled from the distribution corresponding to the null hypothesis H0. It is seen that

(yt − µ0t) is Gaussian distributed with the 3m× 1 mean vector γ0t,H0 = EH0 [yt − µ0t] =

S0AS
−1
0 yt−1 − S0AS

−1
0 yt−1 = 0 and the 3m × 3m positive definite covariance matrix

Ω0t,H0 = EH0 [(yt − µ0t)(yt − µ0t)
′]. Further, (yt − µ̂1t) is Gaussian distributed with the

3m×1 mean vector γ1t,H0 = EH0 [yt − µ̂1t] = S0AS
−1
0 yt−1−ŜcAŜ−1

c yt−1 and the 3m×3m

positive definite covariance matrix Ω1t,H0 = EH0 [(yt − µ̂1t − γ1t,H0)(yt − µ̂1t − γ1t,H0)′].

Thus, both z0t,H0 and z1t,H0 follow the generalized Chi square distribution [131]. It

has been shown that the generalized Chi square distribution can be approximated as

112



the noncentral Chi square distribution χ2
3m(λ) with 3m degrees of freedom (d.o.f.) and

noncentrality parameter λ [132]. In our problem setup, z0t,H0 ∼ χ2
3m(λ0t,H0) with λ0t,H0 =

1
2γ
′
0t,H0

Σ−1
0t γ0t,H0 = 0, and z1t|H0 ∼ χ2

3m(λ1t,H0) with λ1t,H0 = 1
2γ
′
1t,H0

Σ−1
1t γ1t,H0 . Under

hypothesis H0, the test statistic Λ is, therefore, the difference between a central Chi square

RV with 3m(T − t̂c) d.o.f. and a noncentral Chi square RV with 3m(T − t̂c) d.o.f. and

noncentrality parameter
∑T−1

t=t̂c
λ1t,H0 . Since the distribution of the difference between a

central Chi square RV and a noncentral Chi square RV is very difficult to characterize and

does not permit a closed-form expression [130, Chapter 4A], we resort to approximation.

The analysis is especially applicable for wide-area smart grid networks, i.e., for large m

the following approximations hold:

T−1∑
t=t̂c

z0t,H0 ∼ χ2
3m(T−t̂c) ≈ N

(
3m(T − t̂c), 6m(T − t̂c)

)
,

(.29)

T−1∑
t=t̂c

z1t,H0 ∼ χ2
3m(T−t̂c)

T−1∑
t=t̂c

λ1t,H0

 , (.30)

which can be approximated as follows:

T−1∑
t=t̂c

z1t,H0 ≈ ϕ0B0, where B0 ∼ χ2
ν0
, (.31)

ϕ0 ,
3m(T − t̂c) + 2

(∑T−1
t=t̂c

λ1t,H0

)
3m(T − t̂c) +

(∑T−1
t=t̂c

λ1t,H0

) , (.32)

ν0 ,

[
3m(T − t̂c) +

(∑T−1
t=t̂c

λ1t,H0

)]2

3m(T − t̂c) + 2
(∑T−1

t=t̂c
λ1t,H0

) , (.33)

T−1∑
t=t̂c

z1t,H0∼Γ
(ν0

2
, 2ϕ0

)
≈ N (ν0ϕ0, 2ν0ϕ

2
0), (.34)

where Γ
(
ν0
2 , 2ϕ0

)
denotes the Gamma distribution with parameters ν0

2 and 2ϕ0. Therefore,

113



we have

Λ|H0 ∼ N (µΛ|H0
, σ2

Λ|H0
− 2κH0), (.35)

where

µΛ|H0
= 3m(T − t̂c)− ν0ϕ0, (.36)

σ2
Λ|H0

= 6m(T − t̂c) + 2ν0ϕ
2
0, (.37)

κH0 = cov

T−1∑
t=t̂c

z0t,H0 ,
T−1∑
t=t̂c

z1t,H0

 . (.38)

The covariance κH0 under hypothesis H0 is computed as follows: we first generate L

samples from two normal distributions N
(
3m(T − t̂c), 6m(T − t̂c)

)
and N (ν0ϕ0, 2ν0ϕ

2
0),

where ϕ0 and ν0 are given by (.32) and (.33), respectively. The covariance κH0 is given by

κH0 =
1

L− 1

L∑
`=1

[
z`H0
− 3m(T − t̂c)

] [
x`H0
− ν0ϕ0

]
, (.39)

where, z`H0
denotes the realization of the RV

∑T−1
t=t̂c

zt,H0 at the `th instantiation; similarly

for x`H0
. We let Λstd|H0 =

Λ|H0−µΛ|H0√
σ2

Λ|H0
−2κH0

∼ N (0, 1). For a fixed false alarm rate Pf = α,

according to the Neyman-Pearson criterion [129],

∫ ∞
ρ′

p(Λstd|H0)dy = Q

 ρ′ − µΛ|H0√
σ2

Λ|H0
− 2κH0

 = α

⇒ ρ′ =
√
σ2

Λ|H0
− 2κH0Q

−1(α) + µΛ|H0
, (.40)

where Q(·) denotes the Q−function [129]. The covariance κH0 can be calculated using

computer simulations.

.0.2 Asymptotic (m→∞) PDF of the test statistic under H1

We denote z0t,H1 = (yt−µ0t)
′Σ−1

0t (yt−µ0t) and z1t,H1 = (yt−µ̂1t)
′Σ−1

1t (yt−µ̂1t) when

yt is sampled from the distribution corresponding to the hypothesis H1. For t = t̂c, . . . , T−

114



1, we see that (yt − µ0t) is Gaussian distributed with the 3m × 1 mean vector γ0t,H1 =

ŜcAŜ
−1
c yt−1−S0AS

−1
0 yt−1 and the 3m×3m positive definite covariance matrix Ω0t,H1 =

EH1 [(yt − µ0t − γ0t,H1)(yt − µ0t − γ0t,H1)′]. Similarly, (yt − µ̂1t) is Gaussian distributed

with the 3m × 1 mean vector γ1t,H1 = EH1 [yt − µ̂1t] = ŜcAŜ
−1
c yt−1 − ŜcAŜ−1

c yt−1 = 0

and the 3m× 3m positive definite covariance matrix Ω1t,H1 = EH1 [(yt − µ̂1t)(yt − µ̂1t)
′].

Thus, for t = t̂c, . . . , T − 1, z0t,H1 ∼ χ2
3m(λ0t,H1) with λ0t,H1 = 1

2γ
′
0t,H1

Σ−1
0t γ0t,H1 ,

and z1t,H1 ∼ χ2
3m(λ1t,H1) distributed with λ1t,H1 = 1

2γ
′
1t,H1

Σ−1
1t γ1t,H1 = 0. Therefore,

under H1, Λ is the difference between a noncentral Chi square RV with 3m(T − t̂c) d.o.f.

and noncentrality parameter
∑T−1

t=t̂c
λ0t,H1 and a central Chi square RV with 3m(T − t̂c)

d.o.f. whose distributions are difficult to characterize and does not permit closed-form

expressions [130, Chapter 4A]. For large m, we use the following approximations:

T−1∑
t=t̂c

z1t,H1∼χ2
3m(T−t̂c) ≈ N

(
3m(T − t̂c), 6m(T − t̂c)

)
(.41)

T−1∑
t=t̂c

z0t,H1∼χ2
3m(T−t̂c)

T−1∑
t=t̂c

λ0t,H1

 , (.42)

which can be approximated as follows:

T−1∑
t=t̂c

z0t,H1 ≈ ϕ1B1, where B1 ∼ χ2
ν1
, (.43)

ϕ1 ,
3m(T − t̂c) + 2

(∑T−1
t=t̂c

λ0t,H1

)
3m(T − t̂c) +

(∑T−1
t=t̂c

λ0t,H1

) , (.44)

ν1 ,

[
3m(T − t̂c) +

(∑T−1
t=t̂c

λ0t,H1

)]2

3m(T − t̂c) + 2
(∑T−1

t=t̂c
λ0t,H1

) , (.45)

T−1∑
t=t̂c

z0t,H1∼Γ
(ν1

2
, 2ϕ1

)
≈ N (ν1ϕ1, 2ν1ϕ

2
1), (.46)

where Γ
(
ν1
2 , 2ϕ1

)
is the Gamma distribution with parameters ν1

2 and 2ϕ1. We thus have

Λ|H1 ∼ N
(
µΛ|H1

, σ2
Λ|H1

− 2κH1

)
, (.47)
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where

µΛ|H1
= ν1ϕ1 − 3m(T − t̂c), (.48)

σ2
Λ|H1

= 2ν1ϕ
2
1 + 6m(T − t̂c), (.49)

κH1 = cov

T−1∑
t=t̂c

z0t,H1 ,
T−1∑
t=t̂c

z1t,H1

 . (.50)

The covariance κH1 is computed in a manner similar to κH0 . We let Λstd|H1 =
Λ|H1−µΛ|H1√
σ2

Λ|H1
−2κH1

∼

N (0, 1). Pd is given by

Pd =

∫ ∞
ρ′

p(Λstd|H1)dy = Q

 ρ′ − µΛ|H1√
σ2

Λ|H1
− 2κH1


= Q


√
σ2

Λ|H0
− 2κH0Q

−1(α) + µΛ|H0
− µΛ|H1√

σ2
Λ|H1

− 2κH1

 . (.51)
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[24] A. Back, U. Möller, and A. Stiglic, “Traffic analysis attacks and trade-offs in

anonymity providing systems,” in Information Hiding. Springer, 2001, pp. 245–257.

119



[25] T. He and L. Tong, “Detection of information flows,” Information Theory, IEEE

Transactions on, vol. 54, no. 11, pp. 4925–4945, 2008.

[26] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital

pseudonyms,” Communications of the ACM, vol. 24, no. 2, pp. 84–90, 1981.

[27] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion

router,” DTIC Document, Tech. Rep., 2004, http://www.torproject.org.

[28] A. Mishra and P. Venkitasubramaniam, “Admissible length study in anonymous

networking: A detection theoretic perspective,” Selected Areas in Communications,

IEEE Journal on, vol. 31, no. 9, pp. 1957–1969, 2013.

[29] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking attack on low-

latency anonymous communication systems,” in Security and Privacy, 2007. SP’07.

IEEE Symposium on. IEEE, 2007, pp. 116–130.

[30] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to a flood: Active

attacks on several mix types,” in Information Hiding. Springer, 2003, pp. 36–52.

[31] A. Mishra and P. Venkitasubramaniam, “Anonymity of a buffer constrained chaum

mix: Optimal strategy and asymptotics,” in Information Theory Proceedings (ISIT),

2013 IEEE International Symposium on. IEEE, 2013, pp. 71–75.

[32] J. Cruz, Ocean Wave Energy: Current Status and Future Prespectives, 1st ed.

Springer Publishing Company, Incorporated, 2010.

[33] C. B. Boake, T. J. T. Whittaker, M. Folley, and H. Ellen, “Overview and initial

operational experience of the limpet wave energy plant.”

[34] S. Adee. (2009, Oct) This renewable energy source is swell. [Online]. Available:

spectrum.ieee.org/energy/renewables/this-renewable-energy-source-is-swell

[35] [Online]. Available: http://www.pelamiswave.com/pelamis-technology

120



[36] (2015) Ocean power technologies successfully deploys apb350 powerbuoy off the

coast of atlantic city, new jersey. [Online]. Available: http://globenewswire.com/

news-release/2015/09/08/766562/10148445/

[37] S. Parmeggiani, J. F. Chozas, A. Pecher, E. Friis-Madsen, H. Sørensen, and J. P.

Kofoed, “Performance assessment of the wave dragon wave energy converter based

on the equimar methodology,” in 9th European Wave and Tidal Energy Conference

(EWTEC), vol. 9, 2011.

[38] D. Kavanagh, A. Keane, and D. Flynn, “Capacity value of wave power,” IEEE

Transactions on Power Systems, vol. 28, no. 1, pp. 412–420, Feb 2013.

[39] T. Denniss, “Comparing the variability of wind speed and wave height data,” En-

ergetech Australia, 2005.

[40] D. A. Halamay, T. K. A. Brekken, A. Simmons, and S. McArthur, “Reserve re-

quirement impacts of large-scale integration of wind, solar, and ocean wave power

generation,” in IEEE PES General Meeting, July 2010, pp. 1–7.

[41] [Online]. Available: https://www.gov.uk/government/uploads/system/uploads/

attachmentdata/file/48128/2167-uk-renewable-energy-roadmap.pdf

[42] [Online]. Available: http://www.seai.ie/Publications/Renewables-Publications-/

Ocean/Tidal-Current-Energy-Resources-in-Ireland-Report.pdf

[43] L. Rusu and C. G. Soares, “Wave energy assessments in the azores

islands,” Renewable Energy, vol. 45, pp. 183 – 196, 2012. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0960148112001668

[44] D. Corbus, J. King, T. Mousseau, R. Zavadil, B. Heath, L. Hecker, J. Lawhorn,

D. Osborn, J. Smit, R. Hunt et al., “Eastern wind integration and transmission

study,” NREL (http://www. nrel. gov/docs/fy09osti/46505. pd f), CP-550-46505,

vol. 13, pp. 1–8, 2010.

121



[45] P. Norgaard and H. Holttinen, “A multi-turbine power curve approach,” in Nordic

wind power conference, vol. 1, 2004, pp. 1–2.

[46] G. Gan, C. Ma, and J. Wu, Data clustering: theory, algorithms, and applications.

Siam, 2007, vol. 20.

[47] A. J. Lamadrid, S. Maneevitjit, T. D. Mount, C. E. Murillo-Sanchez, R. J. Thomas,

and R. D. Zimmerman, “A ”superopf” framework,” Tech. Rep., 12/2008 2008.

[48] R. Bo and F. Li, “Comparison of lmp simulation using two dcopf algorithms and

the acopf algorithm,” in Electric Utility Deregulation and Restructuring and Power

Technologies, 2008. DRPT 2008. Third International Conference on. IEEE, 2008,

pp. 30–35.

[49] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-

state operations, planning, and analysis tools for power systems research and edu-

cation,” IEEE Transactions on power systems, vol. 26, no. 1, pp. 12–19, 2011.

[50] A. J. Lamadrid, T. Mount, R. Zimmerman, C. E. Murillo-Sanchez, and L. Anderson,

“Alternate mechanisms for integrating renewable sources of energy into electricity

markets,” in Power and Energy Society General Meeting, 2012 IEEE. IEEE, 2012,

pp. 1–8.

[51] L. Lawton, M. Sullivan, K. Van Liere, A. Katz, and J. Eto, “A framework and

review of customer outage costs: Integration and analysis of electric utility outage

cost surveys,” Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley,

CA (US), Tech. Rep., 2003.

[52] P. Pradhan, K. Hatalis, S. Kishore, R. Blum, and A. Lamadrid, “Prospects of wave

power grid integration,” in PES General Meeting — Conference Exposition, 2014

IEEE, July 2014, pp. 1–5.

[53] (2015). [Online]. Available: http://energy.gov/savings/

renewable-electricity-production-tax-credit-ptc

122



[54] (2016). [Online]. Available: https://www.theguardian.com/environment/2016/jul/

27/european-offshore-wind-investment-hits-14bn-in-2016

[55] (2015) Innovative wave power device starts producing clean

power in hawaii. [Online]. Available: http://energy.gov/eere/articles/

innovative-wave-power-device-starts-producing-clean-power-hawaii

[56] (2015) World?s first grid-connected wave power station switched

on in australia. [Online]. Available: http://www.sciencenewspost.com/

worlds-first-grid-connected-wave-power-station-switched-on-in-australia/

[57] “The european offshore wind industry,” 2017. [Online]. Avail-

able: https://windeurope.org/wp-content/uploads/files/about-wind/statistics/

WindEurope-Annual-Offshore-Statistics-2016.pdf

[58] (2016, Dec.) America’s first offshore wind farm powers up. [Online]. Available:

http://dwwind.com/press/americas-first-offshore-wind-farm-powers/

[59] S. Astariz, A. Vazquez, and G. Iglesias, “Evaluation and comparison of the levelized

cost of tidal, wave, and offshore wind energy,” Journal of Renewable and Sustainable

Energy, vol. 7, no. 5, p. 053112, 2015.

[60] G. Buigues, I. Zamora, A. Mazon, V. Valverde, and F. Pérez, “Sea energy conversion:
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