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Abstract

This dissertation focuses on reliable and efficient signal transmission strategies in

classical two-point and also multi-point communication systems. Although the digital

signal processing and communication technologies have been developed very success-

fully nowadays, the optimal non-digitized communication schemes has always been an

attracting and open issue for the past decades. At the same time, enormous amount of

communication networks have emerged in a wide range of fields. Its wide applications

have also arisen numerous signal transmission design problems to satisfy different re-

quirement and constraints for various system. This dissertation is devoted to some facets

of these problems. Specifically, the contribution of this dissertation is as follows.

The first contribution is that the linear analog coding schemes’ performance limit and

optimal codes have been obtained. Under the general model of additive white Gaussian

noise(AWGN) channel and mean square error(MSE) performance metric, the optimal

linear analog codes under maximum likelihood(ML) and linear minimum mean square

error(LMMSE) criteria are studied. The performance limits using these two decoding

schemes have been obtained and they lead to identical optimal linear analog codes—

unitary codes.

The second contribution is that we propose a novel nonlinear analog coding schemes

based on chaotic dynamic systems—baker’s dynamic system. Under the general AWGN

channel model, various decoding algorithms have been researched, including the min-

imum mean square error(MMSE) decoding algorithm, maximum likelihood(ML) de-

coding algorithm and ML-LMMSE algorithms. MMSE algorithm provides optimal de-

coding performance in MSE, but it also requires prior knowledge and highly nonlin-

ear computation operations. ML and ML-MMSE algorithms are sub-optimal decoding

1



schemes, which do not require knowledge of source’s distribution and only involve lin-

ear computation. Based on the careful examination of the baker’s dynamic system’s

performance limit, two improving schemes, mirrored baker’s dynamic systems and one

input baker’s system, are proposed. The improvement schemes effectively depress the

threshold effect of the original system and outperform the other existing chaotic analog

codes systems in literature.

A third contribution is that we consider the precoding design for single sensor with

single antenna by exploiting signal space diversity. By analyzing pairwise error prob-

ability, we discuss precoder design criterion. Besides, suboptimal decoding algorithms

with low complexity are researched. A kind of partially nulling and canceling(PNC)

algorithm is proposed. Extensive numerical results show the proposed PNC algorithm

can achieve better bit error rate(BER) performance with even lower computation com-

plexity.

Last but not least, the final contribution is the research on joint transceiver design

in centralized wireless sensor networks. A wide range of commonly used performance

measures, including MSE, mutual information(MI) and signal to noise ratio(SNR), have

been taken into consideration. Under the setup of complex wireless sensor networks in-

volving numerous variables and constraints, the joint transceiver design problems gen-

erally have highly non-convex optimization objective and extremely hard. Instead of

solving these hard problems in one shot, we adopt the methodology of block coordinate

descent(BCD) methods, to solve these problems in an iterative manner.By possibility

necessary equivalent transformation of the original problems, we partition the whole

variable space into multiple groups and each time the objective is optimized with re-

spect to only one group of variables with the others being fixed. For the MSE, MI and

2



SNR optimization problems, we decompose each them into multiple convex subprob-

lems and by analyzing the optimality conditions, most of these subproblems’ closed

form solutions are obtained, which significantly decrease the complexity of proposed

algorithms. Besides that, convergence characteristics are also of great concerns and

carefully examined. Numerical results fully verify our proposed algorithms.

3



Chapter 1

Introduction

1.1 Background and Motivation

Nowadays we are living in a digital communication technology era. After half cen-

tury’s rapid evolution, the digital communication technologies, including the digital er-

ror correction code(DECC) technologies, have been developed so successfully that their

application have reached almost every facet of our modern life. The Shannon’s funda-

mental source-channel separation theorem tells us that we can transmit signals without

losing optimality by separately source-coding and channel-coding the transmitted sig-

nal. This has also cornerstoned the typical transmitter structure in the modern digital

communication system—the signals are quantized, compressed, coded(perhaps modu-

lated) and then transmitted. The digital channel coding technology has been extensively

researched during the last two decades and some extremely powerful Shannon limit ap-

proaching codes, like Turbo code and low-density parity-check(LDPC) code have been

4



found and utilized in practice, which significantly improves the reliability of communi-

cation system.

Although the digital communication and error correction code technologies have

achieved great success, like very coin having two faces, they have intrinsic drawbacks.

First, many source signals in real world are born analog, like sound, light, pressure,

temperature and so on. To suit these analog signals to digital communication systems,

quantization must be performed. This will inevitably introduce permanent information

loss. Although utilizing sufficient number of digits to represent a real valued signal can

suppress the quantization noise, it extensively extends the system bandwidth, let alone

the further bandwidth extension required by the subsequent channel encoding. Second,

although the powerful digital error correction codes can approach Shannon’s limit, they

exhibit a kind of threshold effect. In fact all the digital error correction codes are signal-

to-noise-ratio(SNR) orientated. This means that when the SNR at the receiver is lower

then some threshold, the performance is usually very poor. However, once the SNR is

above the threshold, the performance improves drastically within a narrow SNR range

and will hardly meliorate for additional transmission power. This is non-energy-efficient

and the system performance does not degrade gracefully.

Compared to the fully developed digital communication schemes, we are interested

in its counterpart—analog coding and communication system. Analog coded system

transmits continuous signals, which has no quantization noise and performance degrades

gracefully. Actually efficient analog transmission scheme has always been an open and

active issue. Marshall and Wolf propose the term analog codes in their paper [1, 2] to

protect signals in real or complex domains. The work [15] shows that for bandwidth

non-expansion communication, linear analog communication scheme is optimal. The

5



recent advance in analog communication systems can be found in the reference [19, 20,

22, 25, 26, 76].

For the study of analog coding system, many kinds of coding schemes exist. Gen-

erally speaking, these schemes can be divided into two kinds—linear and non-linear

schemes. From engineering perspective, linear systems are always preferred due to

their easiness in analysis and implementation. So part of this dissertation is devoted to

the performance limit of linear analog codes and their optimal coding schemes.

For the nonlinear analog coding schemes, the optimal encoding method is still un-

known. Some specially structured encoding schemes are proposed and analyzed in

[21, 22, 25, 76]. One interesting potential scheme is to construct analog codes through

chaotic dynamic systems. Chaotic dynamic system is a special kind of dynamic system

whose state transfer is governed by functions with fast divergence feature. In a short

word, for chaotic dynamic systems, any tiny perturbation of the input will result in sig-

nificantly different output in a short time. This characteristic is also popularly known as

the famous butterful effect. The seminal paper [28] first notice chaotic dynamic systems’

interesting feature and applied it to constructing analog codes. In this dissertation, a new

kind of nonlinear analog code based on chaotic dynamic system has been proposed and

analyzed, including its performance limit, optimal and suboptimal decoding schemes,

which outperforms the performance of the original chaotic analog code in [28].

Besides the pursuit of the fundamental problem of optimal analog coding scheme in

point-to-point communication system, this dissertation also dedicates some parts to dif-

ferent kinds of optimal analog coding schemes in multi-point communication network.

In recent years, due to explosive demands of information sharing, wireless communica-

tion is required in more and more scenarios where multiple points participate in signal

6



transmission simultaneously and cooperatively. Thus communication networks emerge

almost everywhere. To name a few, cloud computing, cloud storage and internet of

things have already changed our life in many ways. Among them, wireless sensor net-

work(WSN) is a typical and attracting example. Wireless sensor networks have found

their applications in a extremely wide ranges including environment monitoring, battle

field surveillance, manufacture control and so on [48, 49, 51].

Wireless sensor network is comprised of multiple spatially distributed sensors. Each

sensor harvests information from its neighborhood environment and wirelessly com-

municates with other peers. Wireless sensor network has extremely high flexibility to

accommodate to different tasks, including its network organization strategy, communi-

cation protocol, routing strategy and signal processing algorithm. On the other side, this

also raises great challenges the to network design. Above all, the communication relia-

bility and efficiency in wireless sensor network is in the first place. One standard method

is the transceiver(also known as beamformer or precoder) technology, which evoked

great attention and extensive research during the past decade. Essentially, the transceiver

design problem is linear analog coding problem. Applying transceivers in wireless net-

works and taking into account their characteristics like cooperation, low latency and

limit size(or number of antenna), various meaningful and interesting transceiver design

problems arise. This dissertation considers several facets of the transceiver design in

wireless sensor network.

In many applications, due to the low cost or small size requirement, it is impossible

to equip sensors with multi-antennas. Although error correction codes, like turbo or

LDPC codes, can improve performance, its high latency makes it inhibitable applied

to centralized wireless network. What is more, in the network with numerous sensors,
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bandwidth is crucially concerned. Thus an non-bandwidth-extension precoding scheme

for signal antenna sensor is desirable. Inspired by the signal space diversity proposed

in [45], we devote one chapter to discuss its precoding design criterion and efficient

decoding methods in practice.

Besides the single sensor precoding scheme mentioned above, we also focus on

joint transceiver design in centralized wireless sensor network. In a centralized wireless

sensor network, there exist nodes called fusion centers(FC), which collect data from

its neighboring sensors and perform further processing and fusion. We need to focus

on various performance measures due to the different natures of tasks. Standard per-

formance metrics include mean square error(MSE), mutual information(MI), signal-to-

noise ratio(SNR), which describe the effectiveness of the communication from different

perspectives. The joint transceiver design problems towards different criteria, are usu-

ally very difficult problems due to its large number of variables and constraints and

efficient solutions are highly desirable. Several chapters of this dissertation will focus

on these topics.

1.2 Outline of the Dissertation

This dissertation is organized as follows:

Chapter 2 focuses on optimal linear analog coding schemes. Under the model of

additive white Gaussian noise(AWGN) channel and the performance metric of mean

square error(MSE), two optimal decoding schemes have been considered—maximum

likelihood(ML) and linear minimum mean square error(LMMSE) methods. The perfor-
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mance limits under these two criteria have been established and the optimal encoding

schemes which can achieve these performance bounds have been identified. It is proved

in this chapter that under ML and LMMSE criteria, their separate optimal MSE bounds

can be simultaneously achieved by linear analog codes having (parts of) unitary encod-

ing matrices—which we named as unitary codes. Extensive numerical results verify

what we have found.

Chapter 3 concentrates on the problem of constructing nonlinear analog coding

schemes based on chaotic dynamic systems. A novel nonlinear analog encoding scheme,

baker’s dynamic system is proposed, which is constructed from the baker’s map, a two-

dimension chaotic function. Under the general AWGN channel model, various decoding

algorithms are throughly studied. The minimum mean square error(MMSE) decoding

algorithm has been derived, which provides optimal performance by means of MSE.

Noting that MMSE decoding algorithm requires prior knowledge of probability density

function(pdf) of the source signal and involves highly nonlinear computations which

are quite computation demanding, we proceed to develop two suboptimal algorithms—

maximum likelihood(ML) decoding algorithm and ML-LMMSE algorithms. These two

algorithms do not need prior knowledge of the source signal and only need linear op-

erations during the whole decoding procedure. Numerical results suggest that baker’s

dynamic system has unsatisfying performance. Carefully examining the baker’s dy-

namic system’s performance limit via Cramer-Rao bound(CRB) reveals that bottleneck

of performance lies in the unbalanced protection from its two branches. Bases on this

insight, two improving schemes are proposed—mirrored baker’s dynamic systems and

one input baker’s system. These two improvements effectively depress the threshold

effect of the original system and significantly outperform the prototype chaotic analog

encoding system proposed in [28].
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The remaining chapters 4-7 of this dissertation are dedicated to problems related

to wireless sensor networks. In chapter 4, we consider the precoding design for single

sensor with single antenna by exploiting signal space diversity. By analyzing pairwise

error probability(PEP), we discuss precoder design criteria. Additionally, taking into

consideration the low latency requirement for the fusion center in the wireless sensor

networks, suboptimal decoding algorithm with low complexity is considered. A kind of

partially nulling and canceling(PNC) algorithm is proposed. Extensive numerical results

show that the proposed algorithm presents a good compromise between the decoding

complexity and bit error rate(BER) performance.

Chapter 5 focuses on transceiver design problem minimizing MSE in a central-

ized wireless sensor network. Based on the fact that the original problem is highly

non-convex and difficult, we adopt the methodology of block coordinate descent(BCD)

method, whose main philosophy is to partition the whole variable space into multiple

groups and each time the objective is optimized with respect to only one group of vari-

ables with the others being fixed. Thus the original difficult problem can be addressed by

iteratively solving a sequence of easy subproblems. In this chapter we first propose a 2-

BCD method. We show that one subproblem is a minimum mean square error(MMSE)

problem with a closed form solution given by Wiener filter. The other subproblem

is proved to be convex with respective to all sensor beamformers jointly and can be

reformulated as a second order cone programming(SOCP) problem, which can be ef-

ficiently solved by standard convex solver. Based on that, we further decompose the

second subproblem into multiple atom problems with each atom problem dealing with

the transmitter of only one individual sensor, whose closed form solution is obtained

and consequently the complexity is decreased. The convergence of these BCD based al-

gorithms are carefully examined and extensive numerical results are provided to verify
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their performance.

In chapter 6, we consider the problem of maximizing mutual information in the

centralized wireless sensor network discussed in chapter 5 under Gaussian signaling as-

sumption. The objective is still highly non-convex. To solve this problem, the BCD

methodology is hard to directly apply to. Inspired by the seminal idea of weighted min-

imum mean square error (WMMSE) method in [60,73], we introduce two complicating

intermediate variables—weight matrix and a virtual FC receiver as intermediate vari-

ables to make the problem more friendly to BCD algorithm. Based on that, we first de-

compose the MI problem into three subproblems—one subproblem to update the virtual

FC receiver, one subproblem to update the weight matrix and the third subproblem to

jointly optimize the entire beamformers of all sensors. The Karush-Kuhn-Tucker(KKT)

conditions have been examined and we manage to prove that the solutions of this 3-BCD

algorithm are KKT points. Based on that, by noticing that the third subproblem is ac-

tually similar to the one appeared in chapter 6 for MSE optimizing problem, we further

decompose this subproblem into multiple smaller problems and closed form solution to

each of them is available.

In chapter 7 we consider the problem of maximizing signal to noise ratio(SNR) in the

same wireless sensor network model established in chapter 5 and 6. This problem has a

quadratic fractional objective function and thus difficult. Still utilizing the block coordi-

nate descent method, we decompose the original problem into subproblems optimizing

individual transmitter or FC receiver alone. For the receiver optimization, the subprob-

lem can be easily solved by generalized eigenvalue decomposition. For the transmitter

optimization subproblem, we further transform the quadratic fractional problem into a

sequence of quadratic problems which are still nonconvex. By use of S-lemma [68]
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and recent results in rank-one matrix decomposition [86], each transformed nonconvex

quadratic problem can be addressed by solving a semidefinite programming(SDP) prob-

lem followed by rank-one decomposition. Numerical results are provided to verify our

proposed algorithms.

Chapter 8 concludes this dissertation.
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Chapter 2

Point-to-Point Linear Analog Signal

Transmission

2.1 Introduction

Linear digital error correction coding technology has been developed so successfully

that its application has entered almost every corner of today’s communication, com-

puting and storage systems. This chapter studies its analog counterpart: linear analog

codes, or, transformation through analog matrices. Incepted independently by Marshall

and Wolf in the eighties, analog codes are also termed real number codes [1] [2], as the

support domain of these codes are the real or the complex fields, rather than the discrete

finite fields as in the case of digital codes. An (N,K) linear analog is defined by its

generator matrix GK×N ∈ R
K×N , and encodes a length-K real or complex vector to a

length-N real or complex vector via matrix multiplication.
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One major motivation for considering coding in the analog domain stems from the

fact that many real-world signals are by nature analog. Examples include sound, color,

and various geo-, bio-, and medical-signals captured by the sensing systems.

The renowned sampling theory states that it is possible to turn a signal that is contin-

uous in time to one that is discrete in time (i.e. Nyquist sampling) without any informa-

tion loss. In comparison, quantization, an essential process in analog-to-digital (A/D)

conversion which makes a signal that is continuous in amplitude to one that is discrete

in amplitude, inevitably introduce permanent information loss due to rounding. If inad-

equate levels (bins) are used in quantization, the system performance will be dominantly

deteriorated by this granularity noise, even through subsequent digital signal processing

and digital coding are performed perfectly.

On the other hand, to suppress quantization noise would in general require an in-

crease of the quantization level, which in turn results in a significant increase in data

volume.

When a real value is quantized and represented as a string of binary bits, the most

significant bit and the least significant bit certainly carries very different levels of im-

portance (consider a bank account whose actual balance of $100,001 is mistaken to

$100,000 versus to $000,001!). Since random attenuation and noise corruption usually

occur equal-probably to every transmitted bit in a practical communication channel, so-

phisticated design issues arise as how to evaluate the importance of each bit and how to

balance the protection on the most/more and least/less important bits. Clearly, transmit-

ting analog signals directly in their real-valued form provides a solution that naturally

eliminates all of the above problems – provided that the analog signals can be conveyed

with sufficient accuracy.
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A second motivation for studying linear transform with analog matrices comes from

its close relation to several of the modern-day wireless technologies. For example, dis-

crete Fourier transform (DFT) matrices, an important class of analog matrices, have

found intriguing use in space-time coding and modulation diversity (e.g. [5, 6]). A sub-

set of DFT matrices also constitute the analog version of BCH codes and Reed-Solomon

(RS) codes, and the later achieves the same singleton bound performance as their cel-

ebrated digital counterpart [3] [4] [7]. In particular, it has been shown that analog RS

codes can be exploited to effectively combat the peak-to-average-power ratio (PAPR)

issue in orthogonal frequency division multiplexing (OFDM) systems [8] [9].

The focus of this chapter is to analyze analog codes, establish their performance lim-

its, and identify best practices. Existing research on analog codes has primarily focused

on special classes of analog matrices (such as discrete cosine/sine transform (DST/DST)

matrices, and discrete Fourier transform matrices), and on special decoding/detection al-

gorithms (such as the Berlekamp-Massy algorithm and the Forney algorithm). Further,

almost all the performance evaluation is on a special type of communication channel

known as the pulse channel. A pulse channel is the analog counterpart of an erasure

channel, namely, an arbitrary transmitted (analog) signal will either encounter an addi-

tive pulse noise (of arbitrary amplitude) or gets across the channel perfectly intact.

Since pulse channels are not a common channel model, this chapter considers the

more realistic model of additive white Gaussian noise (AWGN). We study general ana-

log matrices/codes, and general decoding methods. Hamming errors, which denote the

number of elements that differ, is typically used to evaluate the performance of a digi-

tal system. When signals take continuous real values, two vectors may differ in every

element, but differ very minorly, or, they may differ only in one element, but the differ-
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ence is huge. Hence, instead of Hamming errors, we follow the convention and use the

mean square error (MSE) as the distortion metric. We evaluate two classes of optimal

detectors, the maximum-likelihood (ML) detector and the linear minimum mean square

error (LMMSE) detector, and establishes the respective performance lower bound. For

the same code, we show that LMMSE detector performs better than ML detector, but

the gain is most noticeable at low to medium signal-to-noise ratio (SNR). We further

characterize the optimal codes that achieve the best performance under each detector,

and show that the codes designed for LMMSE detector also achieves optimality when

ML detector is used, but the inverse is not true. Finally, we identify the unitary codes,

a special class of analog codes which subsume DCT/DST and DFT codes as their in-

stances, as the best analog codes that simultaneously achieve both lower bounds with

equality. The analytical results are verified by extensive simulations.

2.2 Signal and System Model

This section discusses the signal model and encoding procedure of linear analog

coding system, on which the following sections are based. We use bold fonts to denote

vectors and matrices, and use regular fonts to denote scalars. Vectors are by default

column vectors. The superscript T denotes the normal vector/matrix transpose, and the

superscript H denotes Hermitian transpose.

The original information sequence entering the analog system is assumed to be dis-

crete in time and continuous in value. Let u = (u1, u2, ..., uK)
T ∈ CK×1 denote the

information sequence. To make the problem clear and easy to analyze, the input signal

u is assumed to satisfy the following conditions
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A1) Each coordinate ui of the input sequence u follows an i.i.d. distribution with

probability density function p(u).

A2) Any coordinate ui of the original signal sequence u has zero expectation, i.e.

E[ui] =

∫
uip(ui)dui = 0 (2.1)

Let D(ui) = E[u2
i ] − E2[ui] = Du − 0 = Du be the average energy of each

coordinate of u.

The first condition states that the input is drawn from an i.i.d. random process, and the

second states that the signal space is centered around the origin for the sake of energy

efficiency.

These two conditions are not special constraints, but are commonplace in communi-

cation systems.

The linear analog codes perform a linear mapping to the input sequence u. Follow-

ing the convention from digital error correction code, let G = {gji} ∈ CK×N be the

generator matrix, where K ≤ N . The codeword, v ∈ CN×1, is computed through the

following linear encoding procedure:

v = GHu (2.2)

For the code to be meaningful, G must have K mutually independent rows (full rank).

When the codeword passes through an AWGN channel, the received signal r becomes:

r = v + n = GHu+ n, (2.3)
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where the noise vector n ∈ C
N×1 follows an i.i.d. complex Gaussian distribution,

whose covariance Rn is a diagonal matrix (I denotes an identity matrix):

Rn = σ2IN×N . (2.4)

From conditions A1) and A2), we get

E[vHv] = E[uHGGHu]

= E

[
N∑

i=1

( K∑

j=1

g∗jiuj

)( K∑

j=1

gjiu
∗
j

)]

= E

[
N∑

i=1

( K∑

j=1

|gji|2|uj|2 +
K∑

j 6=k

g∗jigkiuju
∗
k

)]

=

N∑

i=1

(
K∑

j=1

|gji|2E[|uj|2]
)

+ 0

=
N∑

i=1

K∑

j=1

|gji|2Du = ‖G‖2Du, (2.5)

where the ‖ · ‖ denotes the Frobenius norm (2-norm) of a matrix or vector.

We consider general codes, where the choice of the generator matrix G can be ar-

bitrary, except for a power constraint. Let Eb be the power per signal coordinate. The

total transmitted energy for the codeword v satisfies:

E[vHv] = ‖G‖2Du = KEb
∆
= C. (2.6)

The above computation can be summarized by the following system conditions:

A3) The average transmission energy of a codeword v is a constant C, as stated in
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(2.6).

A4) The noise coordinates ni follow i.i.d. circularly symmetric complex Gaussian

distribution, ni ∼ CN(0, σ2), where σ2/2 = σ2
x = σ2

y .

Before proceeding to the discussion of the general detection/decoding technique, we

first establish the mean square error as the distortion metric. Let û denote the estimate

of the original signal vector u, the MSE distortion ∆ is defined as

∆
∆
=

E [ ‖u− û‖2]
K

, u ∈ C
K×1 (2.7)

Two classes of optimal detectors are considered: maximum likelihood and minimum

mean square error. In the context of coding, an optimal decoder usually refers to one that

performs the ML detection (i.e. most probable). However, since our signals are real-

valued, and since MSE serves as the figure of merit, LMMSE becomes highly relevant.

ML criterion : argmax
û

P (r|û), (2.8)

MMSE criterion : argmax
û

E[ ‖û− u‖2]. (2.9)

Lemma 2.2.1. The LMMSE detector of a linear analog code outputs the follow vector:

ûLMMSE = (GGH +
σ2

Du
I)−1G, (2.10)

and the resultant MSE distortion per signal coordinate is

∆LMMSE =
Du

K
tr(I +

Du

σ2
GGH)−1. (2.11)
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Proof. The LMMSE detector performs a linear operation to accomplish the decoding

task by minimizing the MSE criterion in (2.9). Let A be the MMSE linear decoder,

which leads to the estimate û = Ar. Substituting (2.3), (2.4) and the condition A2) into

(2.7), the MSE distortion per signal coordinate can be calculated as:

∆ =
1

K
E[(û− u)H(û− u)], (2.12)

=
1

K
tr
(
E[(û− u)(û− u)H ]

)
,

=
1

K
tr
(
E[
(
A(GHu+ n)− u

)(
A(GHu+ n)− u

)H
]
)
,

=
Du

K

(
tr
(
(AGH−I)(GAH−I)

)
+

σ2

Du

tr(AAH)
)
. (2.13)

For any given generator matrix G, the optimal LMMSE receiver AMMSE can be deter-

mined by taking the derivative in (2.13) with respect to A∗ and reducing ∂MSE
∂A∗ = 0,

where A∗ denotes the conjugate of matrix A. We get:

ALMMSE = (GGH +
σ2

Du
I)−1G, (2.14)

and, hence, the LMMSE optimal estimate becomes

ûLMMSE = ALMMSEr = (GGH +
σ2

Du

I)−1Gr. (2.15)

Substituting (2.14) in (2.12) leads to the following mean square error per signal coordi-

nate:

∆LMMSE =
Du

K
tr(I +

Du

σ2
GGH)−1.
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Theorem 2.2.1. Consider LMMSE detector for an arbitrary (N,K) linear analog code.

(i) The resultant MSE (per signal coordinate) is lower bounded by:

∆LMMSE ≥ ∆∗
LMMSE =

Du

1 + Eb

σ2

. (2.16)

(ii) The lower bound is achieved by such linear analog codes whose generator matrix

GK×N consists of K orthogonal vectors, each having the same Frobenius norm.

Proof. From the analysis in the previous section, we know that G should satisfy (2.6).

At the same time, we notice the fact that

‖G‖2 = tr(GHG) = tr(GGH). (2.17)

Thus the constraint in (2.6) can be equivalently expressed as:

tr(GGH) =
KEb

Du

. (2.18)

We now look for the best generator matrix GK×N that will minimize the MSE distortion

(per signal coordinate) under the LMMSE detector. This problem of code design can be

formulated as the following optimization problem:

argmin
G

: ∆LMMSE =
Du

K
(I +

Du

σ2
GGH)−1 (2.19)

s.t. tr(GGH) =
KEb

Du

(2.20)

According to the Hadamard’s inequality, for any N ×N positive semidefinite matrix B,

we have
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tr(B−1) ≥
N∑

i=1

1

Bii
(2.21)

where Bii is the i-th diagonal element of matrix B. The above inequality (2.21) achieves

equality if and only if B is diagonal. Notice that GGH is positive semidefinite. We have

Du

K
tr(I +

Du

σ2
GGH)−1 ≥ Du

K

K∑

i=1

1

1 + Du

σ2 [GGH ]ii
(2.22)

Equation (2.22) holds if and only if (I+Du

σ2 GGH) is a diagonal matrix, or, equivalently,

GGH is diagonal. We denote the diagonal matrix Q = GGH = diag{q1, q2, · · · , qK}.

The problem in (2.19) converts to:

argmin
{qi}

: ∆MMSE =

K∑

i=1

Du

1 + Du

σ2 qi
(2.23)

s.t. tr(GGH) =
K∑

i=1

qi =
KEb

Du

(2.24)

qi > 0, ∀i ∈ {1, 2, · · · , K} (2.25)

It is now easy to see that the optimality (minimum) is achieved when

q1 = q2 = · · · = qK =
KEb

KDu

=
Eb

Du

. (2.26)

This suggests that the best G is one whose rows are mutually orthogonal (such that GGH

becomes diagonal) and each row has the same energy (norm). With such an optimal G,

the objective ∆LMMSE achieves the following lower bound with equality:

∆LMMSE ≥ ∆∗
LMMSE =

K∑

i=1

Du

K(1 + Du

σ2 qi)
=

Du

1 + Eb

σ2

.
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Definition 2.2.1. An (N,K) unitary codes is a linear (analog) code whose generator

matrix GK×N is obtained by deleting (N−K) rows of an N ×N square unitary matrix.

The (N−K) deleted rows can be assembled to form the parity check matrix this unitary

code.

Corollary 2.2.1. Unitary codes are the best linear analog code under LMMSE decoder

(with respect to MSE distortion).

Proof. Since the generator matrix G of an unitary code consists of orthonormal rows,

from Theorem 2, unitary codes are optimal codes under LMMSE decoder.

Lemma 2.2.2. The ML detector of a linear analog code outputs the follow vector:

ûML = (GGH)−1Gr, (2.27)

and the resultant MSE distortion per signal coordinate is given by

∆ML =
σ2

K
tr
(
(GGH)−1

)
(per coordinate). (2.28)

Proof. Following the i.i.d. complex Gaussian distribution mentioned in condition A4),

the ML criterion in (2.8), which is to maximize a multivariate Gaussian distribution, can

be reduced to minimizing the squared Euclidean distance (he exponential part of the

Gaussian distribution becomes the cost function):

argmin
û

J(û)
∆
= ‖r −GHû‖2, (2.29)

= (r −GHû)H(r −GHû),

= ûHGGHû− rHGHû− ûHGr + rHr.
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Taking the derivative, and reducing
∂J(û)
∂û∗ = 0, we obtain (∗ denotes the complex conju-

gate):

GGHû−Gr = 0, (2.30)

which leads to the ML estimate in (2.27). The second order derivative is verified to

be < 0, so the result is indeed a maximum (rather than a minimum). The MSE per

information signal coordinate can be computed as

∆ML =
1

K
E[(û− u)H(û− u)],

=
1

K
tr
(
E
[
(û− u)(û− u)H

])
,

=
1

K
tr
(
E
[
((GGH)−1Gr − u)((GGH)−1Gr − u)H

])
,

=
σ2

K
tr
(
(GGH)−1

)
.

Theorem 2.2.2. Consider ML detector for an arbitrary (N,K) linear analog code.

(i) The MSE distortion (per signal coordinate) is lower bounded by

∆ML ≥ ∆∗
ML =

Duσ
2

Eb

, (2.31)

(ii) The optimal generator matrix that achieves this lower bound has orthogonal rows,

and each row has the same norm (energy).

Proof. The proof here follows much the same line of proof as in Theorem 3. To min-

imize the MSE per signal coordinate under ML detection, we have the following code

24



design problem:

argmin
G

: MSEML =
σ2

K
tr
(
(GGH)−1

)
(2.32)

s.t. tr(GGH) =
KEb

Du
(2.33)

Utilizing the equality in (2.21), we get

σ2

K
tr
(
(GGH)−1

)
≥ σ2

K∑

i=1

1

[GGH ]ii
≥ Duσ

2

Eb
, (2.34)

where the first equality is achieved if and only if GGH is diagonal, and the second

equality is achieved when the rows of G also has the same norm.

Corollary 2.2.2. For the same linear analog code over AWGN channels, the LMMSE

detector always outperforms the ML detector with respect to the MSE distortion, but the

gain diminishes as SNR increases.

Proof. Corollary 6 follows directly from the fact that

∆∗
LMMSE =

Du

1 + Eb

σ2

≤ Du

Eb

σ2

= ∆∗
ML. ✷

Corollary 2.2.3. Unitary codes are optimal under ML detection (as well as LMMSE

detection) w.r.t. MSE distortion.

Comment: From the previous discussion, we also see a coincidence of the optimal

linear codes under LMMSE detection and ML detection. (i) Although LMMSE detec-
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tor always yields a better MSE performance than the ML detector, the optimal codes to

both detectors are same one, namely, the generator matrices whose rows are orthonor-

mal and have the same energy (norm). Notable examples of optimal codes are unitary

codes, which subsume discrete cosine/sine transform codes and discrete Fourier trans-

form codes as subclasses. (ii) If a generator matrix G is optimal, then its scaled version

(i.e. aG is also optimal). The effective MSE distortion accounts for the scaling factor

(i.e. the energy induced by the generator matrix).

2.3 Numerical Results

This section provides extensive simulations to verify and support the afore-analysis.

For comparison purpose, all the linear analog codes we use here are (60, 30) codes.

The input signal source is i.i.d. complex Gaussian variables following CN(0, 2) (unit

variance for each dimension), thus we can readily calculate Du = 2. Noise in channel

are also circular symmetric complex Gaussian variables, whose variance is determined

by specific SNR. The performance is measured by MSE per signal coordinate, presented

in a log-scale log2(∆). We evaluate three different code group, each consisting of five

codes (generator matrices G) satisfying specific properties.

1) Group I: 3 randomly-generated unitary codes (G has orthonormal rows), 1 DFT

code, and 1 DCT code.

2) Group II: 5 randomly-generated G, each having mutually orthogonal rows, but

the rows do not have the same norm.

3) Group III: 5 randomly-generated G, each having linearly independent but non-
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orthogonal rows. (Note row-independence is required in order for the code to be mean-

ingful.)

After each code is generated, a proper scaling factor is applied to ensure the average

transmission energy per (information) signal coordinate is Eb = 4.

The performances of each group, decoded by both the ML detector and the LMMSE

detector, are demonstrated in Figures 2.1 2.2, 2.3, respectively, and compared to the

respective lower bounds. Our simulations confirm the analytical results that (i) the

LMMSE lower bound is lower than the ML lower bound, and the two tend to con-

verge at high SNRs; and (ii) unitary codes (Group I) are optimal and simultaneously

achieve ML and LMMSE lower bounds. From Figure 2.3, we also see that (iii) an ar-

bitrary, randomly-generated code tends to yield the same “average” performance that

is somewhat far from the lower bounds. Further, it is also interesting to see that (iv)

codes in Group II (Figure 2.2), whose rows are independent and orthogonal, but not

having the same energy, exhibit drastically different MSE distortion with ML detection;

whereas the difference becomes much less noticeable with LMMSE detection; and the

gap to the theoretical bound is also smaller with LMMSE than with ML detection. This

suggests that code design is more of an issue to ML detection than to MMSE detection.

In general, LMMSE detection is recommended, if the noise variance is known.

2.4 Conclusion

We have analyzed the performance of linear analog codes. MSE performances lower

bounds are established for ML and LMMSE detection, respectively, and unitary codes
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Figure 2.1: Group I: Random and structured unitary codes (with orthonormal rows in

G).

are identified as the optimal code that achieve both bounds. We conclude this section by

emphasizing that analog codes posses unique advantages in transmitting analog signals.

Further, several useful analog matrices, such as DFT matrices and DCT/DST matrices,

are being actively exploited in the construction of space time codes and modulation

diversity. Note that exiting systems tend to use ML detection. This study points out a

possibility to reformulate the problem to one that minimizes MSE, and to use LMMSE

decoder to achieve additional gains.

28



0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

6

8

10

SNR Eb/No(dB)

lo
g2

(M
S

E
) 

pe
r 

in
fo

rm
at

io
n 

bi
t

Analog Linear Code with Random Orthogonal & Unequal−Energy Generator Matrix

 

 
Code1−ML
Code2−ML
Code3−ML
Code4−ML
Code5−ML
Code1−LMMSE
Code2−LMMSE
Code3−LMMSE
Code4−LMMSE
Code5−LMMSE
ML−bound
LMMSE−bound

Figure 2.2: Group II: random codes with orthogonal but non-equal-energy rows in G

.

0 1 2 3 4 5 6 7 8 9 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

SNR Eb/No(dB)

lo
g2

(M
S

E
) 

pe
r 

in
fo

rm
at

io
n 

bi
t

Analog Linear Code with Random Independent Generator Matrix

 

 
Code1−ML
Code2−ML
Code3−ML
Code4−ML
Code5−ML
Code1−LMMSE
Code2−LMMSE
Code3−LMMSE
Code4−LMMSE
Code5−LMMSE
ML−bound
LMMSE−bound
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Chapter 3

Nonlinear Analog Point-to-Point

Transmission—A Family of Chaotic

Pure Analog Coding Schemes Based on

Baker’s Map Function

3.1 Introduction

Currently pervasive communication systems in practice are almost digital-based.

Shannon’s source-channel separation theorem has long convinced people that informa-

tion can be transmitted without loss of optimality by a two-step procedure: compres-

sion and encoding. This fundamental result has laid the foundation for typical structure

of modern digital communication system—the tandem structure of source coding fol-
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lowed by the channel coding. Although digital communication systems have been well

developed over the last decades, it has inherent drawbacks. First, to transmit continuous-

alphabet sources, signals are quantized, which introduces permanent loss in information.

Second, to precisely represent real-valued signals via digits, the bandwidth is usually ex-

panded. Moreover the subsequent channel coding procedure makes transmission further

bandwidth-demanding. Third, the digital error correction codes are highly signal-to-

noise-ratio(SNR) dependent. Take turbo and low-density parity-check(LDPC) codes as

examples. When the receiving SNR is under some threshold value, the decoding perfor-

mance is usually very poor. On the contrary, once SNR exceeds this threshold, their bit

error ratio(BER) falls down drastically in a narrow SNR range(waterfall region). This

ungraceful degradation in performance can cause problems in applications. An typical

scenario is the broadcasting system, where the SNR for different receivers can vary over

a large range. At the same time the digital error correction codes are not energy effi-

cient since more transmission power increases performance little as long as the receiving

SNR is modestly above the threshold. Last but not least, digital error correction codes

with satisfying performance usually require a long block-length, which introduces high

latency for decoding and processing at the receiver.

In addition to the classical source-channel separate digital system, analog transmis-

sion system can serve as an alternative solution to data transmission. Analog system

has advantages over its pure digital peers—it does not introduce the granularity noise

and its performance evolves gracefully with SNR. Most of the analog transmission sys-

tems ever presented in literature are joint source channel coding(JSCC) systems, where

compression and encoding are performed in one step and signals are in pure analog or

hybrid-digital-analog(HDA) form. The study of analog communication can date back to

the papers [12–15]. Reference [15] shows that direct transmission of Gaussian source
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over additive white Gaussian noisy(AWGN) channel with no bandthwidth expansion

or compression is optimal. For bandwidth expansion case, [16] obtains the result that

the fastest decay speed of mean square error(MSE) cannot be better than square in-

verse of SNR. Although until now, no practical schemes have been found to achieve

this decaying speed. In [17, 18], the optimal linear analog codes are treated. Design

of practical nonlinear analog coding schemes has always been an open issue. Some

interesting paradigms have been found. [19] and [20] discuss numerical-based analog

signal encoding schemes. [21] proposes a class of analog dynamic systems constructed

by first order derivative equations, which generate algebraic analog codes on torus or

sphere. [22], [25] and [26] study the design of Shannon-Kotel’nikov curve. The mini-

mum mean square error decoding schemes for Shannon-Kotel’nikov analog codqes and

its modified version combined with hybrid digital signals are discussed in [76] and [24].

Among the family of analog coding schemes, one special class is constructed through

chaotic dynamic systems. In dynamic systems, the signal sequence is generated by itera-

tively invoking some predefined mapping function. To be specific, the next signal(state)

is obtained by performing a mapping to the current signal(state) and the whole sig-

nal(state) sequence is initialized by the input signal. For a chaotic dynamic system, the

function governing the signal generation(state transition) is chosen as chaotic functions.

Chaotic functions are characterized by their fast divergence, which is more well known

as the remarkable butterfly effect. This property means that even a very tiny difference

in initial inputs will soon result in significantly different signal sequences. From the sig-

nal space expansion viewpoint, this indicates that a pair of points in source space with

small distance will have a large distance in the code space. So chaotic dynamic systems

can potentially entitle signals with error resistance. The seminal work [27] proposes an

analog system based on tent map dynamic system and its performance is extensively
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discussed in [28]. As the analysis performed in [29, 30], the drawback of tent map code

is that its performance convergence Cramer-Rao lower bound(CRLB) requires very high

SNR. [31] proposes an improvement scheme by protecting the itinerary of the tent map

codes with digital error correction codes. However this hybrid-digital-analog scheme

still suffers from the drawbacks rooted in digital error correction codes.

In this chapter we focus on a new pure analog chaotic dynamic encoding scheme,

which is constructed via a two-dimensional chaotic function—baker’s map. This struc-

ture is closely related to and more complicated than the one reported in [27]. The spe-

cific contributions of this chapter include: we develop various decoding methods for

the baker’s coding system and analyze its MSE performance. Based on that, we pro-

ceed to propose two improved coding structures and extend various decoding methods

to these new structures. These proposed improvements effectively balance the protec-

tion for all source signals and has more satisfying MSE performance compared to the

tent map code. We also compare our proposed analog coding scheme with the classical

source-channel separate digital coding scheme, where turbo code is applied. By using

equal power and bandwidth, our proposed coding scheme outperforms the digital turbo

scheme over a wide SNR range.

This chapter is organized as follows: in section.3.2, the original baker’s dynamic

system is discussed, including its encoding structure, decoding methods and its perfor-

mance analysis. Two modified chaotic systems based on baker’s system are discussed

in section 3.3 and 3.4, including its encoding and decoding schemes. In section 3.5

numerical results and discussions are presented and performance are discussed. Section

3.6 concluded the chapter.

In this chapter, we assume that the source signals are mutually independent and
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uniformly distributed on the interval [−1, 1], which is also adopted in previous works

[27] and [28]. By this assumption the MMSE decoding method has closed form solution

and we can compare performance with previous works. However it should be pointed

out that ML decoding method does not require this condition and is applicable to signal

with arbitrary distribution. We assume that the transmission channel is AWGN and the

decoding methods obtained can be easily extended to block fading channel.

3.2 The Baker’s Map Analog Coding Scheme

In this section, we introduce the analog encoding scheme based on baker’s map

function. The baker’s map function, F : [0, 1]2 7→ [0, 1]2, is a piecewise-linear chaotic

function given as follows:




x

y


 = F (u, v) =




1− 2sign(u)u

1
2
sign(u)(1− v)


 , −1 ≤ u, v ≤ 1. (3.1)

The above baker’s map has an close connection with the symmetric tent map function

discussed in [27] and [28], which is defined as

G(x) = 1− 2|x|, −1 ≤ x ≤ 1. (3.2)

Although the symmetric tent map in (3.2) is non-invertible, once the sign(x) is given,

its value can be determined. The “inverse” symmetric tent map function with the sign

s of x given is G−1
s (y) = s1−y

2
. Comparing the baker’s map and the symmetric tent
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map functions, the baker’s map can be alternatively defined via the symmetric tent map

function as follows




x

y


 = F (u, v) =




G(u)

G−1
sign(u)(v)


 , −1 ≤ u, v ≤ 1. (3.3)

Based on the baker’s map function above, a dynamic analog encoding scheme can

be performed. For a pair of independent source (x0, y0) ∈ [−1, 1]2, a chaotic signal

sequence is generated by repeatedly invoking baker’s mapping, i.e.




xn+1

yn+1


 = F (xn, yn), n = 0, 1, · · · , N − 2, (3.4)

where N is the bandwidth expansion. This sequence can be viewed as a rate-1/N analog

code with x0 and y0 as continuous information “bits”. In the following, we use x =

[x0, x1, · · · , xN−1]
T and y = [y0, y1, · · · , yN−1]

T to denote the codewords of two input

signals respectively.

An important concept about the baker’s dynamic encoding system is the itinerary,

which is defined as s = [s0, s1, · · · , sN−2] , [sign(x0), sign(x1), · · · , sign(xN−2)]. In

fact if the itinerary of the code sequence is given, xk’s and yk’s can all be expressed as

affine functions of x0 and y0. Specifically, xk and yk can be represented via (x0, y0) in

the following form





xk,s(x0, y0) = ak,sx0 + bk,s,

yk,s(x0, y0) = ck,sy0 + dk,s.
k = 0, 1, · · · , N − 1. (3.5)
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The affine parameters in (3.5) are functions of itinerary s. For a specific s they can be

obtained in the following recursive way





ak+1,s = −2skak,s,

bk+1,s = 1− 2skbk,s,

ck+1,s = −1
2
skck,s,

dk+1,s = 1
2
sk(1− dk,s),

k = 0, · · · , N − 2, (3.6)

with the starting point





a0,s = 1,

b0,s = 0,

c0,s = 1,

d0,s = 0.

(3.7)

In fact the collection of 2N−1 itineraries one-to-one maps onto a partition1 of the

feasible space of x0, i.e. the segment [−1,+1]. The itinerary s is a function of input

x0. For any specific itinerary s, the admissible values of x0 fall in a segment of length

1/2N−2, which is called a cell and denoted as Cs , [el,s, eu,s]. The two endpoints el,s

and eu,s of the cell associated with s are determined as





el,s = min{−bN−1,s+1

aN−1,s
,
−bN−1,s−1

aN−1,s
},

eu,s = max{−bN−1,s+1

aN−1,s
,
−bN−1,s−1

aN−1,s
}.

(3.8)

This concept is illustrated in Fig.3.1. In the left part of Fig.1-(a), when N = 2, itinerary

has one bit, i.e. s ∈ {+1,−1}. The two corresponding cells are respectively the left and

1Here we ambiguously use the terminology partition, since every two adjacent cells overlap with their

common endpoints. But this does not harm decoding procedure.
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right half of the segment [−1,+1]. This concept is extended to length of N = n + 1 in

the right of Fig.1-(a), where G(n)(x) denotes n-fold composition of G(·). In fact, once

the itinerary sj is given, the endpoints el,sj and eu,sj of the cell and the affine parameters

{ak,sj , bk,sj , ck,sj , dk,sj}’s can all be determined as functions of sj , as shown in Fig.1-(b).

Next we discuss decoding schemes for the above baker’s dynamic encoding system.

3.2.1 Maximum Likelihood(ML) Decoding

Under the AWGN channel assumption, the received signal can be represented as





rx,n = xn + nx,n,

ry,n = yn + ny,n,
n = 0, 1, · · · , N − 1, (3.9)

where nx,n, ny,n
i.i.d.∼ N(0, σ2), n = 0, 1, · · · , N−1. We denote rx = [rx,1, rx,2, · · · , rx,N−1]

T

and ry = [ry,1, ry,2, · · · , ry,N−1]
T . The likelihood function of the observation sequences

rx, ry with given source (x0, y0) is

p(rx, ry|x0, y0) = (2πσ2)−N exp

{
− ‖rx − x‖2 + ‖ry − y‖2

2σ2

}
. (3.10)

The maximum likelihood estimate of source pair x̂ML
0 , ŷML

0 is

{x̂ML
0 , ŷML

0 } = argmax
−1≤x0,y0≤1

p(rx, ry|x0, y0)

= argmin
−1≤x0,y0≤1

N−1∑

k=0

[(
rx,k − xk(x0, y0)

)2
+
(
ry,k − yk(x0, y0)

)2]
. (3.11)

The last equality emphasizes the fact that all xk, yk are all functions of x0 and y0.
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Figure 3.1: Partition and Itinerary— Left of (a): When N = 1, itinerary s has just one

bit, +1 or −1; Right of (a): For general N = n+1, itinerary s has 2n patterns. Each

specific pattern sj corresponds to one segment (cell) Csj of the feasible region; (b): The

feasible region [−1,+1]2 is partitioned into 2N−1 cells, with each cell Csj corresponding

to one specific itinerary pattern sj . The parameters in the affine representation of the

codewords and the endpoints of the cell can be determined once the itinerary sj is given.
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Based on connections between itineraries and cells discussed in (3.5)-(3.8), the orig-

inal ML estimation problem in (3.11) can be further transformed into

(
x̂ML
0 , ŷML

0

)
= argmin

s,x0∈Cs

N−1∑

k=0

{[
rx,k − (ak,sx0 + bk,s)

]2
+
[
ry,k − (ck,sy0 + dk,s)

]2}

= argmin
s

{
min

e1,s≤x0≤e2,s
−1≤y0≤1

N−1∑

k=0

{[
rx,k−(ak,sx0+bk,s)

]2
+
[
ry,k−(ck,sy0+dk,s)

]2}
}
. (3.12)

For any given itinerary s, the inner-minimization problem in equation (3.12) is con-

vex and quadratic. Without considering the constraints, its optimal solution (x∗
0,s, y

∗
0,s)

is given in a closed form





x∗
0,s = aT

s (rx−bs)
aT
s as

,

y∗0,s = cTs (ry−ds)
cTs cs

,
(3.13)

where, as =
[
a0,s, · · · , aN−1,s

]T
, bs =

[
b0,s, · · · , bN−1,s

]T
, cs =

[
c0,s, · · · , cN−1,s

]T

and ds =
[
d0,s, · · · , dN−1,s

]T
. Taking into account that the feasible (x0, y0) associated

with s should lie within admissible range, a limiting procedure must be performed to

obtain solution to the inner minimization with specific s, i.e.

xinner
0,s =





el,s, if x∗
0,s < el,s

eu,s, if x∗
0,s > eu,s

x∗
0,s otherwise.

, yinner0,s =





−1, if y∗0,s < −1

+1, if x∗
0,s > +1

y∗0,s, otherwise.

. (3.14)

Since there are totally finite number of possible itinerary patterns, by enumerating all

possible itineraries and selecting the {xinner
0,s , yinner0,s } which minimizes the outer mini-
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mization, the ML estimation of (x0, y0) is obtained as

(
x̂ML
0 , ŷML

0

)
=argmin

s

{
N−1∑

k=0

{[
rx,k−(ak,sxinner

0,s +bk,s)
]2
+
[
ry,k−(ck,syinner0,s +dk,s)

]2}
}

The ML decoding scheme does not require a priori knowledge of the source’s dis-

tribution. So it is applicable regardless of the probability distribution of the source.

3.2.2 Minimum Mean Square Error(MMSE) Decoding

The ML decoding method is not optimal in the sense of mean square error per-

formance. In this subsection we focus on the MMSE solution to the baker’s dynamic

system. The MMSE estimator is given in a general form as [33]

X̂MMSE(y) = E{X|y} =

∫
xf(x|y)dx, (3.15)

where X is random parameter to be determined and y is a specific realization of the

noisy observation Y . It is worth noting that the above general solution usually cannot

result in a closed form solution for concrete problems. Fortunately, under the uniform

distribution assumption of the source signal, closed form MMSE estimator for baker’s

map can be obtained.

To provide the result of MMSE decoder, here we introduce the following notations

A1 = ‖as‖2; B1 = aT
s (bs − rx); C1 = ‖bs − rx‖2;

A2 = ‖cs‖2; B2 = cTs (ds − ry); C2 = ‖ds − ry‖2; (3.16)
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and

E1 = exp

{
B2

1 − A1C1

2σ2A1

}
; D1 = Q

(√
A1

σ
el,s +

B1

σ
√
A1

)
−Q

(√
A1

σ
eu,s +

B1

σ
√
A1

)
;

E2 = exp

{
B2

2 − A2C2

2σ2A2

}
; D2 = Q

(
−

√
A2

σ
+

B2

σ
√
A2

)
−Q

(√
A2

σ
+

B2

σ
√
A2

)
;

J1 = exp

{
− 1

2σ2
A1

(
el,s +

B1

A1

)2}
− exp

{
− 1

2σ2
A1

(
eu,s +

B1

A1

)2}
;

J2 = exp

{
− 1

2σ2
A2

(
1 +

B2

A2

)2}
− exp

{
− 1

2σ2
A2

(
− 1 +

B2

A2

)2}
, (3.17)

where the function Q(·) is the well known Gaussian-Q function which is defined as

Q(x) ,

∫ ∞

x

1√
2πσ

e−
t2

2 dt. (3.18)

The MMSE estimator of x0 and y0 are given in a closed form as follows:

x̂MMSE
0 =

∑
s

√
2π
A2
E1E2D2

(
σ
A1
J1 −

√
2πB1

A
3/2
1

D1

)

∑
s

2π√
A1A2

E1E2D1D2

, (3.19)

ŷMMSE
0 =

∑
s

√
2π
A1
E1E2D1

(
σ
A2
J2 −

√
2πB2

A
3/2
2

D2

)

∑
s

2π√
A1A2

E1E2D1D2

. (3.20)

The detailed proof of the above result is rather involved and relegated to the appendix.

3.2.3 Mixed ML-MMSE Decoding Scheme

The MMSE estimator involves highly nonlinear numerical evaluations, like the Q-

function, which are computation demanding and costly for implementation. In the next,
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we introduce some kind of mixed ML and MMSE estimator for baker’s analog code.

As previously discussed, once the itinerary is given, the analog codewords can be

written as an affine function in (x0, y0). For specific itinerary s, by packing the code-

words x and y into one vector v and using (3.5), we can rewrite the baker’s dynamic

system as follows:

v =




x

y


 =




as 0

0 cs




︸ ︷︷ ︸
GT

s




x0

y0




︸ ︷︷ ︸
u

+




bs

ds




︸ ︷︷ ︸
ts

= GT
su+ ts, (3.21)

where parameters as, bs, cs and ds are defined in (3.6). Recall that in ML decoding

a detection of the itinerary s can be obtained. By substituting s in (3.21) with the ML

detection ŝML and packing the received signals rx and ry into one vector r = [rT
x , r

T
y ]

T ,

(3.9) can be expressed in a compact form

r′
ŝML = r − tŝML = GT

ŝMLu. (3.22)

Thus the baker’s map code is equivalent to a (2N, 2) linear analog code with encoder

Gs.

Now the problem to determine the source signal u in the above equation becomes the

standard minimum MSE receiving problem, whose solution is the well known Wiener

filter and given as [34]

ûMMSE(ŝ
ML) = (GŝMLGT

ŝML + 3σ2I)−1GŝMLr′
ŝML . (3.23)

A slicing operation then follows the above Wiener filtering to ensure the final estimate
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x̂ML−MMSE
0 and ŷML−MMSE

0 lie in [el,ŝML , eu,ŝML] and [−1,+1] respectively.

For the mixed ML-MMSE method, ML decoding is performed to obtain ŝML. Then

Wiener filtering and limiting procedure follows. The mixed ML-MMSE decoding method

requires a priori knowledge of source and involves only linear computation operations.

3.2.4 Performance Analysis

In Fig.3.2 the different decoding algorithms’ performance for the baker’s analog

codes with different length are plotted. Eu means the average power for each source

signal and N0 denotes the unilateral power spectral density, i.e. N0 = 2σ2. The ML,

MMSE and ML-MMSE decoding algorithms have identical MSE performance for high

SNR. In low SNR range, MMSE decoding method has best performance.

In the following, we analyze the MSE performance of the baker’s dynamic coding

system by considering the Cramer-Rao lower bound. CRLB is a lower bound for unbi-

ased estimator [32]. It should be pointed out that, the ML decoding methods discussed

above are biased estimator due to the slicing operations. However when SNR is large,

the decoding error is sufficiently small such that the slicing rarely impact the decoding

result. So CRLB can precisely predict the decoding error when SNR is modestly large

and is useful a tool to understand the system’s performance. This will also be verified

by the following numerical results.
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Figure 3.2: MSE performance of different decoding algorithms for baker’s dynamic

system

The Cramer-Rao lower bound for x0 is given as [32]

CRLBbaker
x0

= −E−1
x0

{
∂2

∂x2
0

log p(rx, ry|x0, y0)

}
(3.24)

= −E−1
x0

{
∂2

∂x2
0

(−1

2σ2

N−1∑

k=0

(
(rx,k−ak,sx0−bk,s)2+(ry,k−ck,sy0−dk,s)2

))}
(3.25)

=
σ2

∑N−1
k=0 a2k,s

=
3σ2

4N − 1
. (3.26)

where p(rx, ry|x0, y0) is defined in (3.10), and Ex0(·) denotes the expectation with re-

spect to x0. The recursive relations in (3.6) and the fact s2k = 1 are used to obtain (3.26).

Similarly the CRLB for y0 obtained as

CRLBbaker
y0

=−E−1
y0

{(
∂

∂y0
log p(rx, ry|x0, y0)

)2
}
=

σ2

∑N−1
k=0 c2k

=
3σ2

4(1− (1/4)N)
. (3.27)
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When N is modestly large, CRLBx0 ≈ 3σ2/4N . Each increment in N can decrease

the decoding distortion of x0 by 3/4. Comparatively, increment in N improves little

in y0 determination, which is nearly a constant as 3σ2/4. The CRLB’s reveals that

the two sources are under unequal protection and there is insufficient coding gain on

y0. Recall that the x-sequence in codewords is obtained by continuously stretching and

shifting the signal. Intuitively the signal is locally magnified. In comparison the y-

sequence is obtained by compressing the signal. That’s why the terms of 2N and 2−N

appear in the denominator of CRLB for x0 and y0 respectively. This insight is verified

by Fig.3.3, where separate MSE decoding performance of x0 and y0 are plotted with

their CRLB’s illustrated as benchmarks. Although x0 has an obvious coding gain, y0 is

poorly protected and its distortion dominates the overall decoding performance.

From the CRLB analysis, we realize that the bottleneck of the baker’s analog code

lies in the weak protection to y0. Thus to improve the baker’s map code, effective

protection should also be performed to y0.

3.3 Improvement I—Mirrored Baker’s Analog Code

As analyzed in the last section, the unsatisfying performance of the original baker’s

map lies in the poor protection of y0. To enhance the protection of y0, a natural idea

is to perform a second original baker’s map encoding by switching the roles of x0 and

y0. Thus both x0 and y0 obtain balanced and effective protection. This idea leads to

the improvement scheme to be discussed in this section—the mirrored baker’s dynamic

coding system. The mirrored baker’s structure comprises two branches, with its first

branch being the original baker’s encoder and the second branch exchanging the roles
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Figure 3.3: MSE performance for x0 and y0 of baker’s system

of x0 and y0 to perform the original baker’s encoding for a second time. For a given N ,

the mirrored baker’s system forms a (4N, 2) analog code.

Here we adjust our notations for the new system to make our following discussions

clear. The two codewords associated with two branches are labeled with subscript 1

and 2 respectively. In the 1-st branch x0 is tent map encoded and so does y0 in the 2-

nd branch. The codewords associated with x0 and y0 of the two branches are denoted

as {x1,y1} and {x2,y2} respectively with their corresponding noisy observations as

{r1,x, r1,y} and {r2,x, r2,y} respectively. The encoding procedure is expressed as




x1,n+1

y1,n+1


 = F (x1,n, y1,n),




y2,n+1

x2,n+1


 = F (y2,n, x2,n), n = 0, · · · , N − 2; (3.28)
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with x1,0 = x2,0 = x0 and y1,0 = y2,0 = y0. The observations are represented as:





rj,x,n = xj,n + nj,x,n,

rj,y,n = yj,n + nj,y,n,
, j = 1, 2; n = 0, 1, · · · , N − 1. (3.29)

The mirrored baker’s dynamic system has two itineraries s1 and s2 from the 1-st and

2-nd branch respectively, the two of which compose the entire itinerary for the mirrored

baker’s system. As previously discussed, s1 indicates a partition of the feasible domain

of x0. So does s2 to y0. The entire feasible domain for the source pair (x0, y0), which

is a 2 × 2 square centered at the origin on the plane, is uniformly divided into 2(2N−2)

cells, with each cell being a tiny square having edge of length 2−(N−2). Assuming that

the source (x0, y0) is known to live in some specific cell, the itineraries s1 and s2 can be

determined and the codewords can be expressed as affine functions:





x1,k,s1(x0, y0)= a1,k,s1x0+b1,k,s1,

y1,k,s1(x0, y0) = c1,k,s1y0+d1,k,s1,





x2,k,s2(x0, y0)= a2,k,s2x0+b2,k,s2,

y2,k,s2(x0, y0) = c2,k,s2y0+d2,k,s2,
(3.30)

with k = 0, 1, · · · , N − 2. The parameters {a1,k,s1, b1,k,s1 , c1,k,s1, d1,k,s1} and

{a2,k,s2, b2,k,s2, c2,k,s2, d2,k,s2} are for the 1-st and the 2-nd branch respectively and can

be determined recursively for k = 0, · · · , N − 2 as follows





a1,k+1,s1 = −2s1,ka1,k,s1,

b1,k+1,s1 = 1− 2s1,kb1,k,s1 ,

c1,k+1,s1 = −1
2
s1,kc1,k,s1,

d1,k+1,s1 =
1
2
s1,k(1− d1,k,s1),





c2,k+1,s2 = −2s2,kc2,k,s2,

d2,k+1,s2 = 1− 2s2,kd2,k,s2,

a2,k+1,s2 = −1
2
s2,ka2,k,s2,

b2,k+1,s2 =
1
2
s2,k(1− b2,k,s2),

(3.31)
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with the starting point





a1,0,s1 = a2,0,s2 = 1,

b1,0,s1 = b2,0,s2 = 0,

c1,0,s1 = c2,0,s2 = 1,

d1,0,s1 = d2,0,s2 = 0.

(3.32)

We denote aj,sj = [aj,0,sj , aj,1,sj , · · · , aj,N−1,sj ]
T , j = 1, 2 and define bj,sj , cj,sj and

dj,sj in the same way for j = 1, 2.

For a specific itinerary {s1, s2}, we denote its indicated admissible cell has projec-

tion Cs1 onto x0 feasible domain and projection Cs2 onto y0 feasible domain, i.e.

x0 ∈ Cs1 = [e1,l,s1, e1,u,s1 ], y0 ∈ Cs2 = [e2,l,s2 , e2,u,s2],with (3.33)



e1,l,s1=min{−b1,N−1,s1

+1

a1,N−1,s1
,
−b1,N−1,s1

−1
aN−1,s1

},

e1,u,s1=max{−b1,N−1,s1
+1

a1,N−1,s1
,
−b1,N−1,s1

−1
aN−1,s1

},




e2,l,s2=min{−d2,N−1,s2

+1

c2,N−1,s2
,
−d2,N−1,s2

−1
c2,N−1,s2

},

e2,u,s2=max{−d2,N−1,s2
+1

c2,N−1,s2
,
−d2,N−1,s2

−1
c2,N−1,s2

},

Next we discuss decoding methods for the mirrored baker’s dynamic system. These

decoding methods are obtained by straightforwardly extending the results for the origi-

nal baker’s system. In the following main results are provided with details omitted.
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3.3.1 ML Decoding

In this subsection, the ML decoding of the mirrored baker’s map code is presented.

The estimate x̂ML
0 , ŷML

0 maximizing the likelihood function is equivalently given as

(
x̂ML
0 , ŷML

0

)
=argmin

s1,s2

{
min

e1,l,s1
≤x0≤e1,u,s1

e2,l,s2≤y0≤e2,u,s2

2∑

j=1

N−1∑

k=0

{[
rj,x,k−(aj,k,sjx0+bj,k,sj)

]2

+
[
rj,y,k−(cj,k,sjy0+dj,k,sj)

]2}
}
. (3.34)

For a given pair of sequences {s1, s2}, the optimal solution of the inner minimization

of the above equation is given as





x∗
0,s1,s2

=
aT
s1

(r1,x−bs1)+aT
s2

(r2,x−bs2)

aT
s1

as1+aT
s2

as2
,

y∗0,s1,s2 =
cT
s1

(r1,y−ds1)+cT
s2

(r2,y−ds2)

cT
s1

cs1+cT
s2

cs2
,

(3.35)

followed by the hard limiter:

xinner
0,s1,s2=





e1,l,s1, if x∗
0,s1,s2

<e1,l,s1

e1,u,s1, if x∗
0,s1,s2 >e1,u,s1

x∗
0,s1,s2 , otherwise.

yinner0,s1,s2=





e2,l,s2 , if y∗0,s1,s2 <e2,l,s2

e2,u,s2 , if y∗0,s1,s2 >e2,u,s2

y∗0,s, otherwise.

. (3.36)

The ML estimation is given by selecting the (xinner
0,s1,s2 , y

inner
0,s1,s2) among different itineraries

{s1, s2} which minimizes the outer minimization in (3.34).
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3.3.2 MMSE Decoding

To introduce the MMSE decoding results for mirrored baker’s system, we adopt the

following notations:





Ā1=‖as1‖2+‖as2‖2;

B̄1=aT
s1
(bs1−r1,x)+a

T
s2
(bs2−r2,x);

C̄1=‖bs1−r1,x‖2+‖bs2−r2,x‖2;





Ā2=‖cs1‖2+‖cs2‖2;

B̄2=cTs1(ds1−r1,y)+c
T
s2
(ds2−r2,y);

C̄2=‖ds1−r1,y‖2+‖ds2−r2,y‖2;

(3.37)

Ēj=exp

{
B̄2

j −ĀjC̄j

2σ2Āj

}
; D̄j=Q

(√
Āj

σ
ej,l,sj+

B̄j

σ
√

Āj

)
−Q

(√
Āj

σ
ej,u,sj+

B̄j

σ
√

Āj

)
;

J̄j=exp

{
− 1

2σ2
Āj

(
ej,l,sj+

B̄j

Āj

)2}
−exp

{
− 1

2σ2
Āj

(
ej,u,sj+

B̄j

Āj

)2}
, j = 1, 2.

The calculation of the MMSE estimation still follows similar lines as discussed for

single baker system. The major difference is that since the sign sequence of y0 con-

tributes to the itinerary, the integration of y0 should be decomposed into parts over dif-

ferent Cs2’s. The MMSE estimation of x0 can be given as:

x̂MMSE
0 = E{x0|r1,x, r1,y, r2,x, r2,y} =

∫ +1

−1

x0f(x0|r1,x, r1,y, r2,x, r2,y)dx0

=
∑

s1}

∫

Cs1

x0
f(r1,x, r1,y, r2,x, r2,y|x0)f(x0)

f(r1,x, r1,y, r2,x, r2,y)
dx0 (3.38)

=
1

4f(r1,x, r1,y, r2,x, r2,y)

∑

{s1}

∫

Cs1

x0

∑

{s2}

∫

Cs2

f(r1,x, r1,y, r2,x, r2,y|x0, y0)dy0dx0

=

∑
{s1,s2}

√
2π
Ā2
Ē1Ē2D̄2

(
σ
Ā1
J̄1 −

√
2πB̄1

Ā
3/2
1

D̄1

)

∑
{s1,s2}

2π√
Ā1Ā2

Ē1Ē2D̄1D̄2

. (3.39)

Similarly, the MMSE estimation of y0 for the mirrored baker’s map code is given as
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follows

ŷMMSE
0 =

∑
{s1,s2}

√
2π
Ā1
Ē1Ē2D̄1

(
σ
Ā2
J̄2 −

√
2πB̄2

Ā
3/2
2

D̄2

)

∑
{s1,s2}

2π√
Ā1Ā2

Ē1Ē2D̄1D̄2

. (3.40)

3.3.3 ML-MMSE Decoding

If the itinerary {s1, s2} is given, the codewords of the mirrored baker’s map sys-

tem can be represented as an affine function of the original source (x0, y0). The the

corresponding coefficients can be determined recursively by using equations (3.31) and

(3.32). Thus the mirrored baker’s dynamic system can be rewritten as the following:

v =




x1

y1

x2

y2




=




as1 0

0 cs1

as2 0

0 cs2







x0

y0


+




bs1

ds1

bs2

ds2




= GT
s1,s2

u+ ts1,s2 (3.41)

We can first perform the ML estimation discussed in previous subsection 3.3.1 and

thus obtain the ML detection of the itinerary {ŝML
1 , ŝML

2 }. By taking the ML detection

of the itinerary as true value, the linear MMSE estimator is invoked to estimate original

value of {x0, y0} as the follows:

ûMMSE(ŝ
ML
1 , ŝML

2 )=

(
GŝML

1 ,ŝML
2

GT
ŝML
1 ,ŝML

2
+3σ2I

)−1

GŝML

(
r−tŝML

1 ,ŝML
2

)
. (3.42)

Then a limiting procedure is performed to obtain admissible decoding results.
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3.4 Improvement II—Single-Input(1-D) Baker’s Analog

Code

Inspired by the performance analysis in section 3.2.4, to enhance the original baker’s

map performance, effective protection must be performed equally to all sources. Besides

the mirrored structure proposed in last section, here we propose an alternative improving

strategy is to feed the y-sequence with input x0, which actually forms a single-input(1-

D) baker’s analog code. By feeding the two inputs of original baker’s map with one

source x0, the problem of poor protection of y0 vanishes and protection of x0 is en-

hanced. In other words, the protection to all sources are equal and strengthened. Fur-

thermore, another unconspicuous yet profound aspect of motivation of this 1-D scheme

is that it performs a hidden repetition code of the itinerary, which is explained in full

details as follows.

As pointed out in the papers [30] and [29], reliably determining the itinerary is a key

factor impacting decoding performance. In the original baker’s analog coding system,

the y-sequence does not help to protect the itinerary since each of its signal is uncorre-

lated with x0. Recall that the codeword of y-sequence of the baker’s system is generated

by inverse tent map function using sign sequence from the x-sequence. By feeding the

y-sequence with x0, we have y1 = G−1
sign(x0)

(
x0

)
. Equivalently x0 = G

(
y1
)
. So actually

y1 can be regarded as the state immediately before x0 in the tent dynamic system, which

we denote as x−1. Following this manner, we can regard yi as the immediate previous

state of yi−1 in a tent map dynamic sequence for i = 2, · · · , N − 1. Thus by rewrit-

ing the y-sequence signal as {yN−1, yN−2, · · · , y0} , {x−(N−1), x−(N−2), · · · , x0} and

concatenating it with the x-sequence signals, we actually obtain a long tent map analog
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Figure 3.4: 1-D baker’s dynamic encoding system

code (except that there are two copies of x0 here). Moreover this obtained equivalent

tent map sequence has its special pattern: the first half itinerary is reversely identical

with the second half itinerary. In other words the 1-D baker’s analog code actually con-

structs a hidden repetition code for the itinerary sequence. Both the x- and y- sequences

now become analog “parity bits” of the itinerary. This interesting alternative view of the

1-D baker dynamic system is illustrated in Fig.3.4.

Next, sticking to the notations introduced above for the baker’s system, we give out

the decoding results for this one dimensional baker analog code.

3.4.1 ML Decoding Scheme

Similar to previous discussion, for each given itinerary s, the optimal solution to

inner minimization x∗
0,s is obtained by

xinner
0,s =





el,s, if x∗
0,s<el,s,

eu,s, if x∗
0,s>eu,s,

x∗
0,s1,s2

otherwise,

with x∗
0,s =

aT
s (rx−bs)+cTs (ry−ds)

aT
sas+cTs cs

. (3.43)
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The ML estimate is obtained by going over all possible itineraries and selecting the

xinner
0,s which minimizes the likelihood function.

3.4.2 MMSE Decoding Scheme

Defining the following parameters

A = ‖as‖2 + ‖cs‖2; B = aT
s (bs − rx) + cTs (ds − ry); C = ‖bs − rx‖2 + ‖ds − ry‖2;

E = exp

{
B2 −AC

2σ2A

}
; D = Q

(√
A

σ
el,s +

B

σ
√
A

)
−Q

(√
A

σ
eu,s +

B

σ
√
A

)
;

J = exp

{
− 1

2σ2
A

(
el,s +

B

A

)2}
− exp

{
− 1

2σ2
A

(
eu,s +

B

A

)2}
, (3.44)

The MMSE estimate if given as:

x̂MMSE
0 =

∑
s

√
2π
A2
E

(
σ
A
J −

√
2πB

A3/2 D

)

∑
s

√
2π
A
ED

. (3.45)

3.4.3 ML-MMSE Decoding Scheme

Assume that the ML detection of the itinerary is ŝML, then the received signal can

be written in an affine form of x0 as




rx

ry


 =




aŝML

cŝML


 x0 +




bŝML

dŝML


 . (3.46)

54



The linear MMSE estimate is obtained by performing limiting procedure to the follow-

ing value

x̂MMSE
0 (ŝML) =

aT
ŝML(rx − bŝML) + cT

ŝML(ry − dŝML)

‖aŝML‖2 + ‖cŝML‖2 + 3σ2
. (3.47)

3.5 Simulation Results and Discussions

In this section numerical results and discussions are presented. The MSE perfor-

mance of ML, MMSE and ML-MMSE decoding algorithms for mirrored baker’s and

single-input baker’s system are presented in Fig.3.5 and Fig.3.6 respectively, where Eu

represents the average power for each source signal and N0 denotes the unilateral power

spectral density. In our experiment the source signals are independent and uniformly

distributed over [−1,+1]. For each coding system, codes with N = 3 and N = 5 are

tested. The associated CRLB’s(determined explicitly in equation (3.48)) and uncoded

performance are plotted to serve as benchmarks. Numerical results verify the validity of

the decoding algorithms developed in previous sections and show that both of the mir-

rored and single-input structure have improved MSE performance of the original baker’s

coding system.

Fig.3.7 compares the performance of the mirrored and single-input baker’s map and

the tent map analog codes proposed in [27,28], where coderate of 1/6 and 1/10 are con-

sidered for each coding scheme. Although tent map encoding scheme can be proved to

have a lower CRLB, its actual performance is disadvantageous to the improved baker’s

schemes over a wide SNR range.

Generally the distortion of analog transmission systems can be decomposed into two
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Figure 3.5: MSE of different decoding algorithms for mirrored baker’s analog code
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Figure 3.6: MSE performance of different decoding algorithms for single-input baker’s

analog code
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Figure 3.7: MSE performance of tent map code, mirrored baker’s map code and single-

input baker’s map code(coderate 1/10)

parts [13]: anomalous distortion and the weak distortion. Weak distortion, stemming

from the channel noise, can become very small and close to zero as long as the channel

noise is sufficiently small. As analyzed in [26], to reduce the distortion of estimation,

transmitted signal must be stretched as much as possible, which can be intuitively seen

as “amplifying” the signal. However due to transmission power constraint, transmitted

signals have to be bounded and thus the stretching cannot be arbitrarily extensive with-

out folding. This means the stretched signal will have multiple folds. The ML decoding

projects the received signal to a valid codeword with minimum Euclidean distance. Pro-

jection onto an erroneous fold results into an anomalous distortion, which introduces

a rather notable estimation error. In practical code design, the weak distortion and the

anomalous distortion are two competing aspects — lengthening the codeword curve will

relieve the weak distortion but will inevitably introduce more folds and a narrower space
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between folds, and hence a higher chance for anomalous distortion; likewise, shorten-

ing the codeword curve will reduce the chance for anomalous distortion, but increase

the weak distortion. The key is to strike a best balance between these competing factors.

Specifically the weak error can be accurately characterized by the CRLB and the

anomalous error can be roughly indicated by the BER.

The CRLB for x0 and y0 of the mirrored baker system is given in the following,

which is also CRLB of single-input baker’s code

CRLBmirror
x0

= −E−1
x0

{(
∂2

∂x2
0

log p(r1,x, r1,y, r2,x, r2,y|x0, y0)

)2
}

=
σ2

∑N−1
k=0 a21,k +

∑N−1
k=0 a22,k

=
σ2

∑N−1
k=0 22k +

∑N−1
k=0 2−2k

=
3σ2

4N − 41−N + 3
= CRLBmirror

y0 = CRLB1−d
y0 . (3.48)

For comparison, CRLB for the tent map code coderate 1/(2N) is given as

CRLBtent
x0

=
3σ2

42N − 1
. (3.49)

It is not hard to verify the fact that

CRLBtent
x0

< CRLBmirror
x0

= CRLB1−d
x0

, ∀N ∈ N
+. (3.50)

This means under equal bandwidth expansion(or coderate), tent map system will always

have a lower weak distortion.

For tent map and baker map coding systems, itinerary errors cause anomalous dis-

tortion. To compare the anomalous distortion of different analog coding systems, we
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examine the bit error rate(BER) performance of the itinerary bits for each code. We test

the tent map code, mirrored baker’s code and single-input code with N = 5, each of

which has itinerary length of 4. The BER of each itinerary bit for different systems are

illustrated in sub-figures of Fig.3.8. It should be noted that in Fig.3.8, the tent map code

has code rate of 1/5 while mirrored baker’s and single-input baker’s system has code

rate of 1/10. The BER performance for the first 4 itinerary bits of rate-1/10 tent map

system are even worse than those for the rate-1/5 tent map code.

From the figures in Fig.3.8, the mirrored baker’s map code and single-input baker’s

map code have obvious advantage in the itinerary BER performance. The mirrored

structure exhibits equal protection for different itinerary bits and the BER decay with

steeper slope than those of tent map code. Comparatively the single-input baker’s sys-

tem presents an unequal protection of different itinerary bits. The BER for itinerary bits

with smaller indices decays much faster than those with larger indices. Since errors in

itinerary bit with smaller index cause more serious distortion, the single-input baker sys-

tem performs a clever unequal protection to itinerary bits adaptive to their significance.

This also explains the single-input baker’s map code’s advantageous performance over

the mirrored baker’s map code in the medium SNR range.

From the above comparison, it can be seen that although the improved baker’s analog

codes have larger weak distortion than the tent map code, their anomalous distortion has

been effectively suppressed. The modified baker’s map codes achieve a better balance

between the protection against two kinds of distortion and consequently outperform the

tent map code in a wide SNR range.

Next we compare baker’s map code with optimum performance theoretically attain-

able(OPTA) and existing analog coding schemes in literature [25, 26, 76]. OPTA can be
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tent map
single−input baker
mirrored baker(branch−1)

Figure 3.8: BER of itinerary bits for tent map code, mirrored baker’s map code and

single-input baker’s map code(N = 5)

obtained by equating the rate distortion function with the channel capacity. From [35],

we know that the rate distortion function depends on the source distribution and usu-

ally does not have a closed-form expression. One of the few exceptions is the Gaussian

source, whose distortion function can be obtained analytically (Theorem 13.3.2 in [35]).

In the Gaussian case, OPTA can be obtained in a closed form and this is part of the rea-

sons why the existing literature tends to choose Gaussian sources as the case of study,

like [24–26, 76] do. However, Gaussian sources can not be fed directly to the family of

baker’s map encoders, whose inputs are required to be bounded ([−1,+1]). Nevertheless

to make our proposal comparable with OPTA and other previous works, we perform the

comparison in an approximated manner by using truncated Gaussian source. The source

signal is first generated from the Gaussian distribution N(m, σ2) = N(0, (1/3)2). We

then truncate it using a limiting range of 3σ = 1, such that 99.7% of the probability
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Figure 3.9: Approximated OPTA, SDR of Mirrored Baker’s Map Code and Shannon-

Kotel’nikov Spirals with Different Parameters

mass falls in the region of [−1,+1]. The signal value is set as +1 if it exceeds +1,

and −1 if it drops below −1. We performed mirrored maker’s coding on this truncated

Gaussian source, and the results are shown in Fig.3.9. It should be noted that in the

figure, the OPTA bound is calculated with the true Gaussian source (the only source

that is analytically tractable). Since the simulated coding schemes use a truncated Gaus-

sian source, we therefore see a small discrepancy, the baker’s code actually appears to

slightly outperform the OPTA at the low SNR region. At the same time, we also plot the

series of Shannon-Kotel’nikov spirals with parameters optimized for different channel

SNR(figure 9 in [25]). It should be noted that the MSE performance of mirrored baker’s

code and Shannon-Kotel’nikov spirals in Fig.3.9 are obtained by ML method, which can

be improved by MMSE method according to [76] and our previous discussion.

The advantage of the parameterized Shannon-Kotel’nikov spiral curve approach is
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that by optimizing the parameters with respect to the source distribution and the chan-

nel condition, the performance of the code can be made within some 5 dB from the

OPTA [25]. The cost, however, is that one must know the exact source distribution and

the accurate SNR information. As shown in Fig.3.9, each curve represents a Shannon-

Kotel’nikov spiral with its parameter optimized towards one specific channel SNR. Ev-

ery time the channel condition changes (i.e. a different SNR), the parameter(s) must be

adapted, or the code will suffer from a quick performance deterioration due to channel-

mismatch.

The proposed baker’s analog codes do not require the knowledge of the source dis-

tribution nor the channel SNR in order to perform encoding and ML decoding. Instead

of designing a sequence of codes, one optimized for each channel SNR in [25], in our

approach, a single code is used for a wide range of SNR range. Fig.3.9 reflects that our

proposal’s SDR(in dB) has identical slope for high channel SNR, or diversity, as those

of optimized Shannon-Kotel’nikov spirals. The improved baker’s analog codes univer-

sally outperforms the Shannon-Kotel’nikov spirals optimized for low channel SNR and

has obvious advantage in low SNR range for all Shannon-Kotel’nikov spirals. Addi-

tionally, the ML decoding algorithm of our proposed chaotic analog codes has simple

closed-form expression, which is absent for spiral codes.

Last we compare the proposed analog encoding system with the conventional digital

encoding systems for analog signals transmission. In our experiment, the source sig-

nals are uniformly distributed between the range [−1,+1]. For digital systems, uniform

quantization and turbo codes with recursive systematic convolutional code (1, 1+D+D2+D3

1+D+D3 )

are used. The BCJR(log-MAP) algorithm with 8 decoding iterations is performed for

decoding the turbo code. Uniform puncturing is utilized to appropriately adjust the
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coderate when applicable. Due to the different significance of bits obtained by quanti-

zation, equal error protection(EEP) and unequal error protection(UEP) are considered.

The details of the tested systems are given as follows:

1. Analog: (6, 2) analog code is used by utilizing the mirrored baker’s code with

N = 2 and puncturing the system signals (y0, x0) for the second branch. Assum-

ing that codewords are transmitted using in-phase and quadrature forms(which

can be regarded as ∞-QAM modulation), the system has bandwidth expansion of

3/2.

2. Digital-EEP: 8-bit quantization, (3072, 2048, 2/3) turbo code and 256-QAM are

used. System bandwidth expansion is 3/2.

3. Digital-UEP1: 8-bit quantization is performed. The four least significant bits(LSB)

are left uncoded. The four most significant bits(MSB) are encoded by (4096, 2048, 1/2)

turbo code. Both the coded and uncoded bits are 256-QAM modulated. System

bandwidth is 3/2.

4. Digital-UEP2: 8-bit quantization is performed. The two LBS are uncoded. The

six MSB are encoded by (3410, 2046, 3/5) turbo code. All bits are 256-QAM

modulated. System bandwidth is 3/2.

5. Digital-UEP3: 8-bit quantization is performed. The four LSB are uncoded. The

four MSB are encoded by (2560, 2048, 4/5) turbo code. The coded and uncoded

bits go through 64-QAM modulation. System bandwidth is 3/2.

The performance of the proposed analog and four digital systems are plotted in

Fig.3.10. The proposed analog code exhibits an obvious advantage to the digital com-

petitors over a wide range when SNR has low and medium values. The digital systems
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Figure 3.10: Analog signals transmission—analog system vs digital system

enter their waterfall region at rather high SNR and exhibits error floor, which is result of

the quantization noise. In fact, due to the bandwidth limitation, quantization noise will

always exist for the digital transmission schemes, and eventually form an error floor that

limits the overall system perform even as the SNR increases to infinity. In Fig.3.10, the

digital coding schemes outperform the analog scheme in a narrow Eu/No range, which

is due to the fact that the digital error correction codes’ performance boosts drastically in

a very narrow SNR range (the so-called water-fall region). The digital codes’ resilience

to noise, although which is powerful, is finally suppressed by the quantization noise.

Comparatively, analog coding schemes have a very graceful performance evolution and

its distortion can be made arbitrarily small if the channel is sufficiently good.
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3.6 Conclusion

This chapter introduces a family of pure analog chaotic dynamic encoding schemes

based on baker’s map function. We first discuss the coding scheme using original baker’s

map function, including its encoding and decoding schemes. Mean square error analysis

indicates that the intrinsic unbalanced protection of its input results in a unsatisfying per-

formance. Based on that two improvement encoding schemes are proposed—mirrored

baker’s and single-input baker’s system. These two schemes provide sufficient pro-

tection to all encoded analog sources. The various decoding methods for the original

baker’s coding system are extended to the modified systems. Compared to the classical

tent map analog code, the improved baker’s map encoding schemes achieve a better bal-

ance between the anomalous and weak distortion and have advantageous performance

in a wide practical SNR range. Moreover, our improved encoding schemes also exhibit

competing or even better performance than the classical analog joint source-channel

coding scheme, especially in low SNR range, while maintain much lower complexity

in decoding procedure. We also compare the analog and conventional digital systems

using turbo code to transmit analog source signals. The digital systems suffer from

the granularity noise due to quantization, large decoding latency and threshold effect.

Comparatively, the analog coding scheme has a graceful performance degradation and

outperforms over a wide SNR region.
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3.7 Appendix

In this appendix, we provide detailed proof of the closed form solution of MMSE

decoder for the original baker’s map code in (3.19).

Following notations in the section 3.2, we start from equation (3.15), the MMSE

estimate of x0 can be given as

x̂MMSE
0 = E{x0|rx, ry} =

∫ +1

−1

x0f(x0|rx, ry)dx0 (3.51)

=
∑

s

∫

Cs

x0f(x0|rx, ry)dx0 (3.52)

=
∑

s

∫

Cs

x0
f(rx, ry|x0)f(x0)

f(rx, ry)
dx0 (3.53)

=
1

2f(rx, ry)

∑

s

∫

Cs

x0

∫ +1

−1

f(rx, ry|x0, y0)f(y0|x0)dy0dx0 (3.54)

=
1

4f(rx, ry)

∑

s

∫

Cs

x0

∫ +1

−1

f(rx, ry|x0, y0)dy0dx0 (3.55)

=
1

4f(rx, ry)

∑

s

∫

Cs

x0

∫ +1

−1

[ 1√
2πσ

]2N
exp

{
− 1

2σ2

N−1∑

k=0

{[
rx,k

−(ak,snx0+bk,sn)
]2
+
[
ry,k−(ck,sny0+dk,sn)

]2}
}
dy0dx0. (3.56)

In the above equations, we utilize the fact that x0 and y0 are independently uniformly

distributed over the range [−1,+1]. To proceed with the above derivation, we introduce

some intermediate parameters as follows:

A1 = ‖as‖2; B1 = aT
s (bs − rx); C1 = ‖bs − rx‖2;

A2 = ‖cs‖2; B2 = cTs (ds − ry); C2 = ‖ds − ry‖2; (3.57)
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Thus the calculation in (3.51) can be further written as

x̂MMSE
0 =

(
2πσ2

)−N

4f(rx, ry)

∑

s

{∫

Csn

x0 exp
{
− 1

2σ2

[
A1x

2
0 + 2B1x0 + C1

]}
dx0

︸ ︷︷ ︸
I1(s)

·
∫ +1

−1

exp
{
− 1

2σ2

[
A2y

2
0 + 2B2y0 + C2

]}
dy0

︸ ︷︷ ︸
I2(s)

}
. (3.58)

Similarly, the MMSE estimator of ŷMMSE
0 can be also obtained starting from (3.15)

and is determined as

ŷMMSE
0 = E{y0|rx, ry} =

∫ +1

−1

y0f(y0|rx, ry)dy0 (3.59)

=

∫ +1

−1

y0

∫ +1

−1

f(rx, ry|x0, y0)f(y0)f(x0|y0)
f(rx, ry)

dx0dy0 (3.60)

=
1

4f(rx, ry)

∫ +1

−1

y0

2N−1−1∑

n=0

∫

Csn

f(rx, ry|x0, y0)dx0dy0 (3.61)

=

(
2πσ2

)−N

4f(rx, ry)

∑

s

{∫ +1

−1

y0 exp
{
− 1

2σ2

[
A2y

2
0 + 2B2y0 + C2

]}
dy0

︸ ︷︷ ︸
I3(s)

·
∫

Csn

exp
{
− 1

2σ2

[
A1x

2
0 + 2B1x0 + C1

]}
dx0

︸ ︷︷ ︸
I4(s)

}
. (3.62)

Observing equations (3.58) and (3.62), the term f(rx, ry) still needs to be deter-
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mined, which can be calculated as

f(rx, ry) =

∫ +1

−1

∫ +1

−1

f(rx, ry|x0, y0)f(x0)f(y0)dx0dy0 (3.63)

=

(
2πσ2

)−N

4

∑

s

(
I2(s)I4(s)

)
(3.64)

where I2(s) and I4(s) are defined in (3.58) and (3.62) respectively. Here we further

introduce the following notations:

E1 = exp

{
B2

1 − A1C1

2σ2A1

}
; D1 = Q

(√
A1

σ
el,s +

B1

σ
√
A1

)
−Q

(√
A1

σ
eu,s +

B1

σ
√
A1

)
;

E2 = exp

{
B2

2 − A2C2

2σ2A2

}
; D2 = Q

(
−

√
A2

σ
+

B2

σ
√
A2

)
−Q

(√
A2

σ
+

B2

σ
√
A2

)
;

J1 = exp

{
− 1

2σ2
A1

(
el,s +

B1

A1

)2}
− exp

{
− 1

2σ2
A1

(
eu,s +

B1

A1

)2}
;

J2 = exp

{
− 1

2σ2
A2

(
1 +

B2

A2

)2}
− exp

{
− 1

2σ2
A2

(
− 1 +

B2

A2

)2}
, (3.65)

where the function Q(·) is the well known Gaussian-Q function which is defined as

Q(x) ,

∫ ∞

x

1√
2πσ

e−
t2

2 dt. (3.66)

After some manipulations, the integrals I1(s), I2(s), I3(s) and I4(s) defined previously

can be given by use of the notations in (3.17) as

I1(s) = E1

(
σ2

A1
J1 −

√
2πB1σ

A
3/2
1

D1

)
; I2(s) =

√
2π

A2
σE2D2;

I3(s) = E2

(
σ2

A2
J2 −

√
2πB2σ

A
3/2
2

D2

)
; I4(s) =

√
2π

A1
σE1D1; (3.67)

Thus by substituting the equations (3.57), (3.65) and (3.67) into (3.58) and (3.62), we
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can finally obtain the MMSE estimator of x0 and y0 as the following

x̂MMSE
0 =

∑
s

√
2π
A2
E1E2D2

(
σ
A1
J1 −

√
2πB1

A
3/2
1

D1

)

∑
s

2π√
A1A2

E1E2D1D2

, (3.68)

ŷMMSE
0 =

∑
s

√
2π
A1
E1E2D1

(
σ
A2
J2 −

√
2πB2

A
3/2
2

D2

)

∑
s

2π√
A1A2

E1E2D1D2

. (3.69)

The proof has been completed.
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Chapter 4

Nonbandwidth-Expansion Precoding

for Sensor Wireless Network

Transformation

4.1 Introduction

Along with the advancement of the microelectromechanical systems(MEMS) and

wireless communication techniques, the wireless sensor network(WSN) has become a

attracting technology for its wide spectrum of application [80]. In the past few years,

considerable interest has been cast onto wireless sensor networks and great results have

been obtained in both theory and practical implementations.

In spite of its promising applications, wireless sensor network confronts multiple

challenges at the same time. A wireless sensor network is typically composed by large
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number of geographically distributed and wireless connected sensor nodes. Each sensor

node is usually battery-bearing, irretrievable and low-price unit, which is equipped with

sensing device to harvest information from the environment, capability-limited proces-

sor to partially process the incoming raw signals and transceiver to transmit data or

get controlled message to/from the fusion center or neighbors. The prevailing wireless

sensor networks have two typical structures: ad hoc network and networks with fusion

centers. For the former structure the self-organized routing protocol becomes a prob-

lem, and for the latter one, low-latency processing algorithms should are required since

the latency at the fusion center will be specially concerned. Besides what is mentioned

above, bandwidth is also an important considering in many practical scenarios, such as

the emerging wireless multimedia sensor networks(WMSN) [36].

Though the design of wireless sensor network involves multi-discipline viewpoints,

this chapter focuses on the wireless communication facet of the problem. For sensor

network communication, the degradation in performance mainly comes from fading. So

fading-resistant techniques should be employed to improve communication reliability.

However due to the concern of cost reduction or limit of size, usually it is impractical

to equip the sensor with multiple antennas. Thus it is impossible to utilize the abundant

well designed techniques exploiting space diversity, such as space time code(STC) in

[46]. Channel error correction code may be a possible way to improve performance.

However well-performed codes, like turbo and low-density-priority-code(LDPC) that

achieve Shannon’s limit, have long latency and thus become impractical for the networks

with fusion centers. Moreover, channel coding inevitably expands bandwidth so it is

not applicable for the high rate sensor networks like the wireless multimedia sensor

networks. Thus a suitable transmission scheme tailored for the practical wireless sensor

network deserves discussion. Reference [45] proposed a scheme named signal space
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diversity(SSD) to utilize diversity without requiring multiple antennas nor introducing

bandwidth expansion. Inspired by that, we propose a communication scheme which

utilize unitary precoding before transmission. We will discuss its performance, design

criterion and detection methods in the following.

This chapter will be organized as the following. Section 4.2 will talk the system

model of the precoded sensor transmission system. Section 4.3 will analyze the sys-

tem’s error probability performance with reasonable approximation and consequently

obtain conclusions on the precoder design criteria. Section 4.4 will discuss the detect-

ing algorithm and extensive simulation results will be given in Section 4.5.

Notation: Bold lower(upper) case letters denote column vectors(matrices); (·)H de-

notes conjugate transpose. ‖·‖ denotes the Frobenius norm; ‖b‖A denotes the
√
bHAb,

where b ∈ CK×1 and A ∈ CK×K is positive semi-definite; Re(·) denotes the real part

of a complex number; IK denotes identity matrix of K dimension.

4.2 System Model

s

1n

Sensor
Fading

Channel Å

2n

Å Center
rx

H

Hx1s n+

Figure 4.1: The Sensor-Center Wireless Communication System

We focus on the wireless transmission from a sensor node to another sensor/fusion

center, as illustrated in Fig.1. Here it is assumed that the sensed signal from the source

is binary signal, i.e. ui ∈ {±
√
Es}, which can serve as the indication of occurrence of
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some specific events being monitored. By packing every pair of sensed data {u2i−1, u2i}

into one complex number, we express incoming data as si. Due to the thermal noise

of devices or interference from the background environment, the incoming signal may

often be contaminated in practice. Thus it is reasonable to model this disturbance at

input as an circular symmetric Gaussian noise n1i ∼ CN(0, σ2
1). The obtained data

is then transmitted to the destination node through a wireless communication channel

and is attenuated by an fading factor hi. Here we assume that the channel is frequency

nonselective and fast fading channel. A typical and easy model of such channel can be

i.i.d. Rayleigh fading and thus hi ∼ CN(0, 1). At the destination, the transmitted signal

from sensor is, again, corrupted by circular symmetric Gaussian noise n2 ∼ CN(0, σ2
2).

By packing every consecutive K pairs of incoming data into a complex vector, the

system model stated in the last subsection can be compactly expressed as the following:

r = HGH(s+ n1) + n2 (4.1)

= HGHs+ (HGHn1 + n2) (4.2)

= HGHs+ n, (4.3)

where s,n1 and n2 ∈ CK×1 are the original sensed signal, noise at the sensor and

noise at the destination respectively. H ∈ C
K×K is the diagonal channel matrix, with

its diagonal elements hi being channel fading coefficients for different time instances.

G ∈ CK×K is the precoder to be designed.

Here to make the following discussion easy and clear, some assumptions are adopted:

A1) For simplicity it is assumed that −
√
Es and +

√
Es are equally probable.1 The

1Actually this may not be true in practice, but still we can adjust positive and negative amplitudes to
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signals corresponding to different time instances are independent. This can be

compactly expressed as E[s] = 0 and E[sHs] = EsIN .

A2) G is invertible, so that the transmitted signal s can perfectly recovered when the

noise is absent.

A3) The average transmission power is constant, that is

E{‖GHs‖2} = Estr
(
GHG

)
= Estr

(
GGH

)
= P. (4.4)

A4) It is assumed that the channel status information at the receiver(CSIR), i.e. H is

available at the center.

4.3 Precoder Design

Based on the above description, the problem has come up that the precoder GH

should be carefully designed aiming at a good system performance. Since symbol er-

ror probability(SEP) is a standard norm for assessing performance, it is natural to in-

vestigate the design criterion for G by pairwise error probability(PEP) analysis. The

disturbance at the sensor makes the noise n at the destination node colored and relevant

of the fading H, which case is seldom discussed in the classical point-to-point wireless

communication and makes the analysis difficult, as will soon be seen.

make its mean zero.
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4.3.1 PEP Analysis

Assume that the optimal detecting, i.e. Maximum Likelihood(ML) detecting, is

performed at the destination node. In the following, the PEP P
(
s0 → s1

)
is considered,

where s0 is actually transmitted and the decision ŝ is made as s1 instead of s0.

First according to (4.3), it is obvious that n is zero mean complex Gaussian noise.

Generally n is colored noise. Its covariance matrix Σn can be calculated as the follow-

ing:

Σn = E[nnH ] (4.5)

= E
[(

HGHn1 + n2

)(
nH
1 GHH + nH

2

)]
(4.6)

= σ2
1HGHGHH + σ2

2IK (4.7)

Since H is known at the center, the likelihood function p(r|s,H) can be given as:

p(r|s,H)= det
(
πΣn

)−1
exp
[
−(r−HGHs)HΣ−1

n (r−HGHs)
]

So the ML detection result ŝML should be given as:

ŝML = min
s
‖r−HGHs‖2

Σ−1
n

(4.8)

The conditional probability of pairwise error P (s0 → s1|H) can be approximately writ-
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ten as

P (s0 → s1|H)≈P
(
‖r−HGHs1‖2Σ−1

n

<‖r−HGHs0‖2Σ−1
n

)

=P
(
2Re{nHΣ−1

n HGH(s0 − s1)}<−‖HGH(s0 − s1)‖2Σ−1
n

)

Since the left hand side of the above equation follows the Gaussian distribution

N
(
0, 2‖HGH(s0 − s1)‖2Σ−1

n

)
, it can be further simplified into a compact form

P
(
s0 → s1|H

)
= Q

(√1

2
‖HGH(s0 − s1)‖2Σ−1

n

)
(4.9)

where Q(·) is the well-known Gaussian-Q function. The PEP P
(
s0 → s1

)
should be

obtained by averaging the conditional PEP over all possible realization of channel states,

that is

P
(
s0 → s1

)
= EH

[
P (s0 → s1|H)

]
. (4.10)

Thus the problem of design of G under PEP criterion has become an optimization prob-

lem aiming to minimizing the objective in (4.10) with the constraint by (4.4). However

noticing that Σn is a function of H and G and appears in equation (4.9) in a inverse

form, this problem is rather difficult and may not have closed form.

4.3.2 Discussion—High and Low SNR Cases

Since it seems not easy to get some explicit mathematical form of the design of G,

we turn to PEP performance corresponding to some special scenarios by introducing

reasonable approximation. In the following, we discuss two unilateral cases: low and
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high SNR of the channel. Observing that it is rare case that hi is zero, it is assumed that

H is invertible.

CASE I: High SNR

In this case, σ2
2 is small enough compared to σ2

1 , then the noise covariance in equation

(4.7) can be approximately written as

Σn = σ2
1HGHGHH + σ2

2IN (4.11)

≈ σ2
1HGHGHH . (4.12)

Substituting the above into the PEP calculation and by defining ∆ = s0 − s1, we have

‖HGH(s0 − s1)‖2Σ−1
n

= tr
{
∆HGHHΣ−1

n HGH∆
}

(4.13)

≈ 1

σ2
1

tr
{
∆HGHHH−H

(
GHG

)−1
H−1HGH∆

}
(4.14)

=
1

σ2
1

‖s0 − s1‖2 (4.15)

which is independent of G and H.

Substitute the equation (4.15) into (4.9) and then into (4.10), we can obtain

P
(
s0 → s1

)
≈ Q

(√ 1

2σ2
1

‖s0 − s1‖2
)
. (4.16)

The above result suggests that with the increasing of SNR, the effect of precoder G

will vanish and the system performance will be bottlenecked by the intrinsic noise n1

within the incoming data at the sensor, which will result in an error floor in the BER

performance.

CASE II: Low SNR
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In this case, σ2
2 is at least modestly large compared to σ2

1 . By defining gT
i as the i-th row

of GH and ∆ = s0 − s1, we focus on the argument of the Q function in (4.9)

‖HGH∆‖2
Σ

−1
n

= tr

(
Σ−1

n HGH∆∆HGHH

)
(4.17)

Noticing that H is a diagonal matrix,

‖HGH∆‖2
Σ

−1
n

= tr

{
Σ−1

n




h1g
T
1 ∆

h2g
T
2 ∆

...

hKg
T
K∆




[
h∗
1(g

T
1∆)∗, · · · , h∗

K(g
T
K∆)∗

]}

According to matrix theory, if A and B are both positive semi-definite matrices with

dimension N , then

N∑

i=1

λi(A)λN−i+1(B) ≤ tr{AB} ≤
N∑

i=1

λi(A)λi(B) (4.18)

where λ1(A) ≥ λ2(A) ≥ · · · ≥ λN (A) are ordered eigenvalues of matrix A and similar

definitions are given to λj(B). Here by choosing A as Σ−1
n and B as




h1g
T
1 ∆

h2g
T
2 ∆

...

hNg
T
2 ∆




[
h∗
1(g

T
1 ∆)∗, h∗

2(g
T
2∆)∗, · · · , h∗

N(g
T
N∆)∗

]
. (4.19)

Noting thatB is rank one matrix, which means λ1(B) =
∑K

i=1 |hi|2|gT
i ∆|2 and λ2(B) =
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λ3(B) = · · · = λK(B) = 0, we readily have

λ1(B)λK(Σ
−1
n )≤‖HGH∆‖2

Σ−1
n

≤λ1(B)λ1(Σ
−1
n ) (4.20)

By equation (4.7) we have Σn = σ2
1HGHGHH + σ2

2IK < σ2
2IK

2, due to the fact that

HGHGHH is positive semi-definite. According to matrix theory, we have

λi(Σn) ≥ λi(σ
2
2I) = σ2

2, i ∈ {1, 2, · · · , K}. (4.21)

Thus the eigenvalues of Σn can be bounded as:

0 ≤ λK(Σ
−1
n ) ≤ λ1(Σ

−1
n ) ≤ σ−2

2 (4.22)

If σ2
2 is sufficiently large, σ−2

2 is small enough and thus by the above equation both

λK(Σ
−1
n ) and λ1(Σ

−1
n ) are bounded in the small range (0, σ−2

2 ]. Thus by (4.20) it is

reasonable approximation of ‖HGH(∆)‖2
Σ

−1
n

by taking the midpoint of the interval

(0, σ−2
2 ), that is

‖HGH(∆)‖2
Σ

−1
n

≈ σ−2
2

2

K∑

i=1

|hi|2|gT
i ∆|2 (4.23)

Thus the conditional PEP is approximated as

P
(
s0 → s1|H

)
≈ Q

(
√√√√σ−2

2

4

( K∑

i=1

|hi|2|gT
i ∆|2

))
. (4.24)

When σ2
2 is modestly large, though obtaining a closed form of optimal solution of the

2
C < D means C−D is positive semi-definite.
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original problem is hard, we can at least obtain a lower bound of the conditional PEP as

P
(
s0 → s1|H

)
≥ Q

(
√√√√σ−2

2

2

( K∑

i=1

|hi|2|gT
i ∆|2

))
(4.25)

where the fact that Q(·) is monotonically decreasing is utilized. Averaging the lower

bound in (4.25) over all channel realization

P
(
s0 → s1

)
≥ EH

[
Q
(
√√√√σ−2

2

2

( K∑

i=1

|hi|2|gT
i ∆|2

))
]

(4.26)

=
1

π

∫ π
2

0

K∏

i=1

1

1 +
σ−2
2

4
|gT

i ∆|2 sin2 θ
dθ (4.27)

where the identity from (4.26) to (4.27) follows the Craig’s formula in [43] and general

MGF methods in [44], with details omitted here.

Up to here, under the assumption that channel has at most modestly large SNR,

the problem of minimizing PEP can be transformed to a problem minimizing averaging

right hand of (4.24) and (4.25) over all realization of H, which has a closed form of

(4.27). Actually this problem coincides with the linear constellation precoding design

problem presented in [47]. Thus the concluded design criteria in [47] can be borrowed

here which are detailed as:

C1) Diversity Gain: GHs0 should differ with GHs1 in every coordinates for any pair

{s0, s1} that s0 6= s1.

C2) Coding Gain: G should maximize min
s0 6=s1

∏K
i=1 ‖gT

i (s0 6= s1)‖ over all matrices

satisfying C1).
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Summarizing the above cases I and II, since PEP performance rarely depends on G

when SNR is high and optimal G approximately follow on criteria C1) and C2) when

SNR is modestly low. So generally the well designed G should follow the criteria C1)

and C2) above.

However noticing that finding out the optimal matrices satisfying above criteria

needs to solve an optimization problem which is non-convex, thus a closed form so-

lution is still impossible. Since criterion C1) guarantees the diversity gain, which is

the main contribution to performance improvement, the criteria can be loosed to just

C1). As proved in the appendix of [47], there always exists unitary matrices which can

guarantee C1). Besides, unitary precoder G has other merits: i) unitary matrices can

achieve the lower bound of mean squared error(MSE) over AWGN channel, as proved

in [38], i.e. unitary encoder G is the optimal linear encoder over AWGN channel; ii)

when G is unitary, the covariance matrix Σn in (4.7) reduces to diagonal matrices thus

the complexity of solving linear system will reduce from O(N3) to O(N), which is es-

pecially desirable for fusion center, which may have to perform detection of the data

from a bunch of sensors. Two kinds of algebraic structure unitary matrix is proposed

in [?]. However by extensive simulation, it has been found usually the randomly gener-

ated unitary G will have competing or even better BER performance than the class of

algebraic constructions, which will be discussed in details in Section 4.5 later. But still

these specially designed algebraic structures in [47] enjoy the merits of elegant math-

ematical representations and easiness for assessing performance, which is desirable in

theory and application.

To conclude this section, the optimal precoder G should follow the the criteria C1)

and C2) above. Though the method to find the exact realization of these criteria still re-
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mains an open problem, it is recommended here that randomly generated square unitary

matrices can be used which can usually provide decent performance for sensor trans-

mission.

4.4 Detection Scheme at the Destination

4.4.1 Exact and Nearly Exact Detection Methods

Once the designed G is fixed, the detection scheme at the detection node should

be considered. The optimal detection scheme is the ML detection which is presented

in (4.8). Since s is discrete, the genuine ML detection should be obtained by exhaus-

tively searching over all the 4K candidate codewords. Thus exponentially increasing

complexity rapidly makes ML detection prohibitive in practice.

As an alternative of the genuine ML detecting, sphere decoding(SD) [40] [41] is a

promising suboptimal detecting algorithm which can achieve near optimal performance.

Instead of enumerating all the possible high-dimension codewords, SD algorithm con-

straints all the candidates within a sphere which is centered around some starting point,

which is usually a good guess of the transmitted signal. Though SD has near ML perfor-

mance, its detecting complexity still remains very high. According to [42] its complexity

is approximately O(K6). Another drawback of SD algorithm is that its detecting delay

is not constant, the complexity in the worst case can be significantly higher than average.

Considering in the sensor system, the sensor node/fusion center usually has to pro-

cess the transmitted signals from multiple sensors, thus sub-optimal algorithms with
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lower complexity are desirable.

4.4.2 LMMSE Round Off

One alternative sub-optimal detection scheme with low complexity is linear mini-

mum mean squared error(LMMSE) estimation with round off. Though the transmit-

ted signal is discrete in value, we regard it as continuous and take the mean square

error(MSE) as performance criterion. Linear estimation is first performed and then es-

timate is rounded off to the nearest high dimensional signal point. Defining estimation

MSE as

E= tr{E[(s− ŝ)(s− ŝ)H ]} (4.28)

= tr{E
[(
s− F(HGHs+ n)

)(
s− F(HGHs+ n)

)H]}, (4.29)

and setting differential ∂E
∂F∗ = 0, optimal LMMSE estimator F is readily given as

F = EsGHH
(
EsHGHGHH +Σn

)−1
(4.30)

Specially when G is constructed as unitary, F above can be further simplified as

F = GHH
(
(1 +

σ2
1

Es

)HHH + σ2
2I
)−1

(4.31)

Noticing that the channel H in our problem is a diagonal matrix, thus the inverse in

the above equation just reduces to inverse of K scalars. So the LMMSE estimation

here enjoys a very low complexity in our problem. Once the linear optimal estimation

is performed, the decision is obtained by rounding off the each coordinate of linear
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estimate to the nearest signal point in the constellation.

4.4.3 Partially Nulling and Canceling Method

Although having a very low complexity, LMMSE round off suffers a significant

performance degradation. Here we introduce a simple detecting scheme named partially

nulling and canceling(PNC) algorithm to perform the detection, which lies between the

unsatisfying LMMSE round off and expensive SD algorithm.

When the signal s has large dimension, we first decode its “strongest” coordinates

to reduce the signal dimension. After the signal dimension is modestly decreased, ex-

haustive search is utilized for the remaining undetected coordinates. Intuitively, the

“strongest” coordinates must be the ones with smallest estimation error, which can be

presented by the MSE of the LMMSE estimation. Thus the partially nulling and cancel-

ing algorithm can be described as follows:

First we perform the linear MMSE detection to the receiver r as

ŝMMSE = Fr = EsGHH
(
EsHGHGHH +Σn

)−1
r. (4.32)

The covariance matrix of the above MMSE estimation can be easily given as

P = E{(s− ŝMMSE)(s− ŝMMSE)
H} (4.33)

=
(
E−1

s I+GHHΣ−1
n HGH

)−1
. (4.34)

When P is calculated, the “strongest” coordinate is the one which has the smallest

MMSE estimation error, i.e. the dimension corresponding to the minimal Pii. Then
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the MMSE estimate of the “strongest” coordinate is rounded off, detected and removed

from the receiver r. Since the signal model in (4.3) can be equivalently written as

r = HGHs+ n =
K∑

i=1

Hg
i
si + n (4.35)

with g
i
indicating the i-th column of GH . Once the index of the coordinate with minimal

MSE, say k, is determined, the remaining (K-1) coordinates with ŝk canceled can be

compactly expressed as

rK−1 = HGH
K−1sK−1 + n (4.36)

where rK−1 = r−Hg
k
ŝk, GH

K−1 = [g
1
, · · · , g

k−1
, g

k+1
, · · · , g

K
] and

sK−1 = [s1, · · · , sk−1, sk+1, sK ]
T . The same procedure can be performed to the deflated

system in (4.36) to extract the second strongest eliminate. This procedure is repeated

until the M “strongest” coordinates out of N-dimension s have been rounded off and

canceled from the receiver r. Then the remaining N−M undetected coordinates of s are

determined by exhaustive search. Usually the reasonable choice of M is a consideration

of complexity as well as performance.

In the above description, there seems a confusion of the “MMSE”. Since during the

iterative nulling and canceling procedure, one coordinate is estimated and rounded off

in each iterative, the “MMSE” should mean the minimal mean estimated error of each

individual coordinate of r, while not the sum of mean squared error of all coordinates,

which is used in (4.30) to derive LMMSE. However the fact is under some mild assump-

tion, the linear MMSE estimator corresponding to whole vector coincides with that for

every individual coordinates. This can be proved in the following

85



Theorem 4.4.1. When coordinates of s are independent and zero mean, the linear

MMSE estimator that minimizes the MSE of the whole vector coincides with that min-

imizes MSE of each seperate coordinate.

Proof: Denote si as the i-th coordinate of the signal s. According to the hypothesis

Rs = E{ssH} = EsIN . (4.37)

Assume that the optimal linear MMSE estimator of si is wi, then the MSE associated

with the i-th coordinate can be written as

Ei = E{(wH
i r− si)(w

H
i r− si)

H} (4.38)

to determine wi, set ∂
∂w∗

i
Ei = 0 and use (4.37) we have

wi = Es

(
EsHGHGHH +Σn

)−1
Hg

i
(4.39)

where g
i

is the i-th column of the matrix GH .

Thus if we pack the estimators wH
i for all i in rows, the MMSE estimator for each

86



separate coordinate can be written as

W =




wH
1

wH
2

...

wH
K




= EsGHH
(
EsHGHGHH +Σn

)−1
(4.40)

which is equivalent to MMSE estimator in (4.30). Thus the theorem is proved. It should

be noted that when Rs 6= EsI, W is not identical with F.

4.5 Numerical Results

In this section, numerical results are provided.

In Fig.4.2, the scenario where the noise at the destination node is relatively small

compared to that at the sensor is studied. The SNR at the sensor is fixed at 8dB. The

BER performance associated with precoded and non-precoded transmission systems is

illustrated. Among the precoded schemes, a group of BER curves corresponding to

randomly generated unitary matrices of dimension 4 × 4 are given. The well designed

4×4 algebraic structured precoder in [?] is also tested here 3. As illustrated in the figure,

the algebraic structured precoder has the same performance with that of random ones.

With increase of SNR over the wireless channel, the difference between the precoded

and unprecoded schemes tends to vanish and an error floor appears, which is suggested

by the high SNR case analysis in Section 4.3.

3For 4× 4 matrix, the construction A and construction B in [?] coincide with each other.
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In Fig.4.3 and Fig.4.4, the scenario where the wireless channel SNR is relatively

low compared to SNR at the sensor is studied. The SNR at sensor is fixed at 20dB.

For either figure, a group of randomly generated unitary matrices of dimension 4 × 4

or 5 × 5 with genuine ML detection are tested. Correspondingly, the 4 × 4 and 5 × 5

algebraic structured precoders in [?]4 is also tested as a benchmark. Also a group of

8 × 8 or 10 × 10 randomly generated unitary matrices are testes with both LMMSE

and half-PNC for comparison. Significant diversity gain in performance of precoded

systems can be obviously observed compared with the non-precoded systems. The 5×5

algebraic structured matrix has almost identical with those randomly generated ones of

the same dimension. While for 4 × 4 algebraic matrix, a performance degradation can

be observed by comparing to 4×4 random ones. By comparing 4/8-PNC v.s. 4×4 ML

and 5/10-PNC v.s. 5×5 ML, it can be seen that approximately 1dB gain is obtained for

PNC over the corresponding half dimension ML detection. Moreover it should be noted

that 4/8-PNC has only half of the complexity for 4 × 4 ML scheme(the complexity of

nulling and canceling is very low and thus ignored), as is similar to 5/10-PNC v.s. 5×5

ML case. This can be explained that the PNC partially exploits the significant diversity

gain out of high dimension signals and make a good trade off between the complexity

and performance.

4.6 Conclusion

In this chapter, we have focused on the wireless transmission scheme using rate-

1 precoder in between nodes in sensor network. Performance is studied from the PEP

viewpoint and precoder design criteria have been obtained. When SNR is good enough,

4The 5× 5 precoder uses the construction A in [?].

88



15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

Eb/No(dB)

B
E

R

Sensor, IID Rayleigh Fading Channel(SNR at Sensor 8dB)

 

 

Random 4×4 Unitary Matrix−1 ML

Random 4×4 Unitary Matrix−2 ML

Random 4×4 Unitary Matrix−3 ML

Algebraic Constructured 4×4 ML
Unprcoded

Figure 4.2: SNR at Sensor: 8dB, 4× 4 unitary matrix
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Figure 4.3: SNR at Sensor: 20dB, 4× 4 ML and 4/8 Partially Canceling and Nulling
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Figure 4.4: SNR at Sensor: 20dB, 5× 5 ML and 5/10 Partially Canceling and Nulling

the BER performance is not affected by the precoder; while the noise at sensor is mod-

estly large, the approximate criteria can be obtained as in section 4.3. Though the

method to construct exact optimal precoder is hard, generally the randomly generated

unitary matrix is recommended to use. For the detecting scheme, the PNC method is

proposed, which has good trade-off between the complexity and performance.
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Chapter 5

Joint Transceiver Design towards MSE

Minimization for Wireless Sensor

Network

5.1 Introduction

Consider a typical wireless sensor network (WSN) comprised of a fusion center

(FC) and numerous sensors that are spatially distributed and wirelessly connected to

provide surveillance to the same physical event. After harvesting information from the

environment, these sensors transmit distorted observations to the fusion center (FC) to

perform data fusion. A central underlying problem is how to design the sensors and the

fusion center to collaboratively accomplish sensing, communication and fusion task in

an efficient and trust-worthy manner.
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When the sensors and the fusion center are all equipped with multiple antennas and

linear filters, this problem may be regarded as one of the cooperative multi-input multi-

output (MIMO) beamforming design problems, which have been tackled from various

perspectives [48–56]. For example [48–51] target compression (dimensionality reduc-

tion) beamforming. [48] and [49] consider the scenarios where the orthogonal multiple

access channels (MAC) between the sensors and the fusion center are perfect without

fading or noise. For wireless communication, the assumption of ideal channel is unreal-

istic and the imperfect channels are considered in [50–56]. [50] researches the problem

of scalar source transmission with all sensors sharing one total transmission power and

using orthogonal MAC. Imperfect coherent MAC and separate power constraint for each

sensor are considered in [51], under the assumptions that all channel matrices are square

and nonsingular. The work [52] and [53] are particularly relevant to our problem. [52]

is the first to present a very general system model, which considers noisy and fading

channels, separate power constraints and does not impose any constraints on the di-

mensions of beamformers or channel matrices. [52] provides the solutions to several

interesting special cases of the general model for coherent MAC, such as the noiseless

channel case and the no-intersymbol-interference (no-ISI) channel case. In [53], the

authors develop a useful type of iterative method that is applicable to the general model

in [52] for coherent MAC. All the works mentioned above take the mean square error

(MSE) as performance metric. Recently, under the similar system settings of [52], joint

transceiver design to maximize mutual information(MI) attract attentions and are stud-

ied in [54] and [55], with orthogonal and coherent MAC being considered respectively.

The SNR maximization problem for wireless sensor network with coherent MAC is

reported in [56].

It is interesting to note that the beamforming design problems in MIMO multi-sensor
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decision-fusion system have significant relevance with those in other multi-agent com-

munication networks, e.g. MIMO multi-relay and multiuser communication systems. A

large number of exciting papers exist in the literature, see, for example, [58–61] and the

references therein.

This chapter considers the very general coherent MAC model discussed in [52, 53].

To solve the original nonconvex joint beamforming problem, we propose several iter-

ative optimization algorithms using the block coordinate descent (BCD) methodology,

with their convergence and complexity carefully studied. Specifically our contributions

include:

1) We first propose a 2 block coordinate descent (2-BCD) method that decomposes

the original problem into two subproblems— one subproblem, with all the beamformers

given, is a linear minimum mean square error (LMMSE) filtering problem and the other

one, jointly optimizing the beamformers with the receiver given, is shown to be convex.

It is worth mentioning that [52] considers the special case where the sensor-FC channels

are intersymbol-interference (ISI) free (i.e. the sensor-FC channel matrix is an identity

matrix) and solves the entire problem by semidefinite programming(SDP) and relax-

ation. Here we reformulate the joint optimization of beamformers, even with arbitrary

sensor-FC channel matrices, into a second-order cone programming(SOCP) problem,

which is more efficiently solvable than the general SDP problem. Convergence analysis

shows that this 2-BCD algorithm guarantees its limit points to be stationary points of

the original problem. Interestingly enough, although not presented in this article, the

proposed 2-BCD algorithm has one more fold of importance—the convexity of its sub-

problem jointly optimizing beamformers can be taken advantage of by the multiplier

method [70], which requires the original problem to be convex, and therefore gives birth
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to decentralized solutions to the problem under the 2-BCD framework.

2) We have also attacked the MSE minimization with respect to one single beam-

former and developed fully analytical solutions (possibly up to a simple one-dimension

bisection search). It should be pointed out that, although the same problem has been

studied in several previous papers (e.g. [53, 58, 60, 61]), we are able to carry out the

analysis to the very end and thoroughly solved the problem by clearly describing the

solution structure and deriving the solutions for all possible cases. Specifically, we ex-

plicitly obtain the conditions for judging the positiveness of the Lagrange multiplier.

Moreover, in the zero-Lagrange-multiplier case with singular quadratic matrix, we give

out the energy-preserving solution via pseudoinverse among all possible optimal solu-

tions. To the best of our knowledge, these exact results have never been discussed in

existing literature.

3) Our closed form solution for one single beamformer’s update paves the way to

multiple block coordinate descent algorithms. A layered-BCD algorithm is proposed,

where an inner-loop cyclically optimizing each separate beamformer is embedded in

the 2-BCD framework. This layered-BCD algorithm is shown to guarantee the limit

points of its solution sequence to be stationary. Besides we also consider a wide class

of multiple block coordinate descent algorithms with the very general essentially cyclic

updating rule. It is interesting to note that this class of algorithms subsumes the one

proposed in [53] as a specialized realization. Furthermore, as will be shown, by ap-

propriately adjusting the update of each single beamformer to a proximal version and

introducing approximation, the essentially cyclic multiple block coordinate descent al-

gorithm exhibits fast converging rate, guarantees convergence to stationary points and

achieves high computation efficiency.
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The rest of the chapter is organized as follows: Section 5.2 introduces the system

model of the joint beamforming problem in the MIMO wireless sensor network. Sec-

tion 5.3 discusses the 2-BCD beamforming design approach and analyzes its convexity

and convergence. Section 5.4 discusses the further decomposition of the joint optimiza-

tion of beamformers, including the closed form solution to one separate beamformer’s

update, layered BCD algorithms, essentially cyclic BCD algorithms and their variants

and convergence. Section 5.5 provides simulation verification and Section 5.6 concludes

this article.

Notations: We use bold lowercase letters to denote complex vectors and bold capital

letters to denote complex matrices. 0, Om×n, and Im are used to denote zero vectors,

zero matrices of dimension m × n, and identity matrices of order m respectively. AT ,

A∗ and AH are used to denote transpose, conjugate and conjugate transpose (Hermi-

tian transpose) respectively of an arbitrary complex matrix A. Tr{·} denotes the trace

operation of a square matrix. | · | denotes the modulus of a complex scalar, and ‖ · ‖2
denotes the l2-norm of a complex vector. vec(·) means vectorization operation of a ma-

trix, which is performed by packing the columns of a matrix into a long one column. ⊗

denotes the Kronecker product. diag{A1, · · · ,An} denotes the block diagonal matrix

with its i-th diagonal block being the square complex matrix Ai, i ∈ {1, · · · , n}. Re{x}

denotes the real part of a complex value x.

5.2 System Model

Consider a centralized wireless sensor network with L sensors and one fusion center

where all the nodes are equipped with multiple antennae, as shown in Figure 5.1. Let
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M and Ni (i = 1, 2, · · · , L) be the number of antennas provisioned to the fusion center

and the i-th sensor respectively. Denote s as the common source vector observed by

all sensors. The source s is a complex vector of dimension K, i.e. s ∈ CK×1, and is

observed by all the sensors. At the i-th sensor, the source signal is linearly transformed

by an observation matrix Ki ∈ C
Ji×K and corrupted by additive observation noise ni,

which has zero mean and covariance matrix Σi.
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Figure 5.1: Multi-Sensor System Model

Each sensor applies some linear precoder, Fi ∈ CNi×Ji , to its observation (Kis+ni)

before sending it to the common fusion center. Denote Hi ∈ CM×Ni as the fading

channel between the i-th sensor and the fusion center. Here we considers the coherent

MAC model, where the transmitted data is superimposed and corrupted by additive

noise at the fusion center. Without loss of generality, the channel noise is modeled as

a vector n0 ∈ CM×1 with zero mean and white covariance σ2
0IM . The fusion center,

after collecting all the results, applies a linear postcoder, GH ∈ C
K×M , to retrieve the

original source s.

This system model depicted in Figure 5.1 is the same as the general model presented
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in [52, 53]. Following their convention, we assume that the system is perfectly time-

synchronous (which may be realized via the GPS system) and that all the channel state

information Hi is known (which may be achieved via channel estimation techniques).

Since the sensors and the fusion center are usually distributed over a wide range of space,

it is reasonable to assume that the noise ni at different sensors and n0 at the fusion center

are mutually uncorrelated.

The signal transmitted by the i-th sensor takes the form of Fi(Kis+ni). The output

ŝ of the postcoder at the fusion center is given as

ŝ = GHr = GH

( L∑

i=1

HiFi(Kis+ ni) + n0

)
(5.1)

= GH

( L∑

i=1

HiFiKi

)
s +GH

( L∑

i=1

HiFini + n0

︸ ︷︷ ︸
n

)
, (5.2)

where the compound noise vector n has covariance matrix Σn given by

Σn = σ2
0IM +

L∑

i=1

HiFiΣiF
H
i H

H
i . (5.3)

In this chapter, we take the mean square error as a figure of merit. The mean square

error matrix Φ is defined as

Φ , E
{(

s− ŝ
)(
s− ŝ

)H}
. (5.4)

Assume that the source signal s has zero mean and a covariance matrix Σs , E{ssH}.

By plugging (5.2) into (5.4), we can express the MSE matrix Φ as a function of {Fi}
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and G as:

Φ
(
{Fi}Li=1,G

)
=GH

( L∑

i=1

HiFiKi

)
Σs

( L∑

i=1

HiFiKi

)H
G

−GH
( L∑

i=1

HiFiKi

)
Σs−Σs

( L∑

i=1

HiFiKi

)H
G

+
L∑

i=1

GHHiFiΣiF
H
i H

H
i G+σ2

0G
HG+Σs. (5.5)

The total MSE is then given by

MSE
({

Fi

}L
i=1

,G
)
, Tr

{
Φ
({

Fi

}L
i=1

,G
)}

. (5.6)

We consider the case where each sensor has its own transmission power constraint.

This means E{‖Fi(Kis+ni)‖22} = Tr{Fi(KiΣsK
H
i +Σi)F

H
i } ≤ Pi. The overall beam-

forming design problem can then be formulated as the following optimization problem:

(P0) : min .
{Fi}Li=1,G

MSE
(
{Fi}Li=1,G

)
, (5.7a)

s.t. Tr
{
Fi(KiΣsK

H
i +Σi)F

H
i

}
≤Pi, i ∈ {1, · · · , L}. (5.7b)

The above problem is nonconvex, which can be verified by checking the special case

where {Fi}Li=1 and G are all scalars.

The following of this chapter consults to block coordinate descent (BCD) method

[62–65], which is also known as Gauss-Seidel method, to solve (P0) by partitioning the

whole variables into separate groups and optimize each group (with the others being

fixed) in an iterative manner. Appropriate decomposition can lead to efficiently solvable
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subproblems and may also provide opportunities for parallel computation.

5.3 Two-Block Coordinate Descent (2-BCD)

In this section, we study a two block coordinate descent (2-BCD) method that de-

couples the design of the postcoder G (conditioned on the precoders), thereafter referred

to as (P1), from the design of all the precoders {Fi}Li=1 (conditioned on the postcoder),

thereafter referred to as (P2).

5.3.1 (P1 ): Optimizing G given {Fi}

For any given {Fi}Li=1, minimizing MSE with respective to G becomes a strictly

convex non-constrained quadratic problem (P1):

(P1) : min
G

Tr
{
Φ
(
G

∣∣∣
{
Fi

}L
i=1

)}
. (5.8)

By equating the derivative ∂
∂G∗MSE

(
G
)

with zero, the optimal receiver is readily ob-

tained as the well-known Wiener filter [34]

G⋆
(P1)=

[( L∑

i=1

HiFiKi

)
Σs

( L∑

i=1

HiFiKi

)H
+Σn

]−1( L∑

i=1

HiFiKi

)
Σs, (5.9)

where Σn is given in (5.3).
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5.3.2 (P2 ): Optimizing {Fi} given G

With G being fixed, the subproblem (P2) minimizes MSE with respect to {Fi}Li=1 is

formulated as

(P2) : min .
{Fi}Li=1

Tr
{
Φ
({

Fi

}L
i=1

∣∣∣G
)}

, (5.10a)

s.t. Tr
{
Fi(KiΣsK

H
i +Σi)F

H
i

}
≤Pi, i∈{1, · · · , L}. (5.10b)

Below we discuss the convexity of (P2).

Theorem 5.3.1. (P2 ) is convex with respect to {Fi}Li=1.

Proof. First consider the function f
(
X
)
: Cm×n 7→ R, f(X) = Tr{AHXΣXHA},

where the constant matrices A and Σ have appropriate dimensions and Σ is Hermitian

and positive semidefinite.

By the identitiesTr{AB} = Tr{BA} and Tr{ABCD} = vecT (DT )
[
CT⊗A

]
vec(B),

f
(
X
)

can be equivalently written as f(X) = vecH(X)[Σ∗ ⊗ (AAH)]vec(X).

According to [67], i) [A⊗B]H =AH⊗BH ; ii) for any two Hermitian matrices Am×m

and Bn×n having eigenvalues {λi(A)}mi=1 and {λj(B)}nj=1 respectively, the eigenvalues

of their Kronecker product A⊗B are given by {λi(A)λj(B)}m,n
i=1,j=1. As a result, A⊗B

is positive semidefinite when A and B are positive semidefinite.

Since AAH and Σ∗ are both positive semidefinite, [Σ∗⊗(AAH)] is positive semidef-

inite and therefore f(X) is actually a convex homogeneous quadratic function of vec
(
X
)
.

Now substitute X in f(X) by
∑L

i=1

(
HiFiKi

)
and recall the fact that affine opera-
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tion preserves convexity [68], the term Tr
{
GH
(∑L

i=1HiFiKi

)
Σs

(∑L
i=1HiFiKi

)H
G
}

in the objective function (P2) is therefore convex with respect to {Fi}Li=1. By the same

reasoning, the remaining terms in the objective and the constraints of (P2) are either con-

vex quadratic or affine functions of {Fi}Li=1 and therefore the problem (P2) is convex

with respective to {Fi}Li=1.

In the following we reformulate the subproblem (P2) into a standard second order

cone programming(SOCP) presentation. To this end, we introduce the following nota-

tions:

fi , vec
(
Fi

)
; g , vec

(
G
)
; (5.11a)

Aij , (KjΣsK
H
i )

T ⊗
(
HH

i GGHHj

)
; (5.11b)

Bi , (KiΣs)
T ⊗Hi; (5.11c)

Ci , Σ∗
i ⊗

(
HH

i GGHHi

)
. (5.11d)

By the identity Tr{ABCD} = vecT (DT )
[
CT ⊗ A

]
vec(B) and the above notations,

we can rewrite the MSE in (P2) as

MSE
({

fi
}L
i=1

∣∣∣g
)
=

L∑

i=1

L∑

j=1

fHi Aijfj − 2Re
( L∑

i=1

gHBifi

)

+
L∑

i=1

fHi Cifi + σ2
0‖g‖2 + Tr

{
Σs

}
. (5.12)
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By further denoting

fT ,
[
fT1 , · · · , fTi , · · · , fTL

]
; (5.13a)

A ,




A1,1 A1,2 · · · A1,L

A2,1 A2,2 · · · A2,L

...
...

. . .
...

AL,1 AL,2 · · · AL,L




; (5.13b)

B ,
[
B1, · · · ,Bi, · · · ,BL

]
; (5.13c)

C , diag
{
C1, · · · ,Ci, · · · ,CL

}
; (5.13d)

Di , diag
{
O∑i−1

j=1 JjNj
,Ei,O∑L

j=i+1 JjNj

}
, i ∈ {1, · · · , L}; (5.13e)

Ei ,
(
KiΣsK

H
i +Σi

)T⊗INi
, i ∈ {1, · · · , L}; (5.13f)

c , Tr{Σs}+ σ2
0‖g‖2, (5.13g)

the problem (P2) can be rewritten as (P2′):

(P2′) : min
f

fH
(
A+C

)
f−2Re{gHBf}+c, (5.14a)

s.t. fHDif ≤ Pi, i ∈ {1, · · · , L}. (5.14b)

As proved by Theorem 5.3.1, (P2′) (or equivalently (P2)) is convex, which implies

(A+C) is positive semidefinite. Thus the square root (A+C)
1
2 exists. The above
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problem can therefore be reformulated in an SOCP form as follows

(P2SOCP ) : min .
f ,t,s

t, (5.15a)

s.t. s− 2Re{gHBf}+ c ≤ t; (5.15b)
∥∥∥∥∥∥∥

(A+C)
1
2 f

s−1
2

∥∥∥∥∥∥∥
2

≤ s+1

2
; (5.15c)

∥∥∥∥∥∥∥

D
1
2
i f

Pi−1
2

∥∥∥∥∥∥∥
2

≤ Pi+1

2
, i ∈ {1, · · · , L}; (5.15d)

(P2SOCP ) can be numerically solved by off-the-shelf convex programming solvers,

such as CVX [69].

Summarizing the above discussions, the problem (P0) can be solved by a 2-BCD

algorithm: updating G by solving (P1) and updating
{
Fi

}L
i=1

by solving (P2′) alterna-

tively, which is summarized in Algorithm 1.

Algorithm 1: 2-BCD Algorithm to Solve (P0)

1 Initialization: Randomly generate feasible {F(0)
i }Li=1, i ∈ {1, · · · , L}; Compute

G(0) using (5.9);

2 repeat

3 With G(j−1) fixed, solve (P2′) and obtain {F(j)
i }Li=1;

4 With {F(j)
i }Li=1 fixed, compute G(j) using (5.9);

5 until decrease of MSE is small enough or predefined number of iterations is

reached;
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5.3.3 Convergence of 2-BCD Algorithm

In this subsection we study the convergence of the above 2-BCD algorithm. Con-

sider the optimization problem min{f(x)|x ∈ X} with f(·) being continuously differ-

entiable and the feasible domain X being closed and nonempty. A point x0 ∈ X is a

stationary point if and only if ∇f(x0)(x − x0) ≥ 0, ∀x ∈ X, where ∇f(x0) denotes

the gradient of f at x0. For the proposed 2-BCD algorithm, we have the following

convergence conclusion.

Theorem 5.3.2. The objective sequence {MSE(j)}∞j=0 generated by the 2-BCD algo-

rithm in Algorithm 1 is monotonically decreasing. If KiΣsK
H
i ≻ 0 or Σi ≻ 0 for all

i ∈ {1, · · · , L}, the solution sequence
{
{F(j)

i }Li=1,G
(j)
}∞
j=1

generated by the 2-BCD

algorithm has limit points and each limit point of
{
{F(j)

i }Li=1,G
(j)
}∞
j=1

is a stationary

point of (P0 ).

Proof. Since each block update solves a minimization problem, MSE keeps decreasing.

Let Xi =
{
X ∈ CNi×Ji

∣∣Tr{X(KiΣsK
H
i +Σi)X

H} ≤ Pi

}
, for i = 1, · · · , L and

XL+1 = CM×K . Under the strictly positive definiteness assumption of KiΣsK
H
i or Σi,

we have
(
KiΣsK

H
i+Σi

)
≻ 0 and thus

(
KiΣsK

H
i+Σi

)T⊗INi
≻ 0 for all i ∈ {1, · · · , L}.

This implies that the null space of
(
KiΣsK

H
i+Σi

)T⊗INi
is {0} and consequently fi has to

be bounded to satisfy power constraint. Therefore Xi is bounded for all i ∈ {1, · · · , L}.

Since the feasible set for each Fi is bounded, by Bolzano-Weierstrass theorem, there

exists a convergent subsequence
{
{F(jk)

i }Li=1

}∞
k=1

. Since G is updated by equation (5.9)

as a continuous function of {Fi}Li=1, the subsequence {G(jk+1)}∞k=1 also converges and

thus bounded. By further restricting to a subsequence of
{
{F(jk+1)

i },G(jk+1)
}∞
k=1

, we

can obtain a convergent subsequence of
{
{F(j)

i }Li=1,G
(j)
}∞
j=1

.
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Since Algorithm 1 is a two block coordinate descent procedure and the problem (P0)

has continuously differentiable objective and closed and convex feasible domain, Corol-

lary 2 in [64] is valid to invoke, we conclude that any limit point of
{
{F(j)

i }Li=1,G
(j)
}∞
j=1

is a stationary point of (P0).

5.4 Multi-Block Coordinate Descent

For the above 2-BCD algorithm, although we can solve the subproblem (P2) as a

standard SOCP problem, its closed-form solution is still inaccessible. The complexity

for solving (P2) can be shown to be O

(√
L
(∑L

i=1NiJi

)3)
, This implies that when the

sensor network under consideration has a large number of sensors and/or antennae, the

complexity for solving (P2) can be rather daunting. This motivates us to search for more

efficient ways to update sensor’s beamformer.

5.4.1 Further Decoupling of (P2 ) and Closed-Form Solution

Looking back to problem (P2), although it has separable power constraints, its

quadratic terms in its objective tangles different sensors’ beamformers together and thus

makes the Karush-Kuhn-Tucker(KKT) conditions of (P2) analytically unsolvable. Here

we adopt the BCD methodology to further decompose the subproblem (P2). Instead of

optimizing all the Fi’s in a single batch, we optimize one fi at a time with the others

being fixed. By introducing the notation qi ,
∑L

j=1,j 6=iAijfj , each subproblem (P2′i)
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of (P2′) is given as

(P2′i) : min
fi

fHi
(
Aii+Ci

)
fi + 2Re{qH

i fi}−2Re{gHBifi} (5.16a)

s.t. fHi Eifi ≤ Pi. (5.16b)

Now our problem boils down to solving the simpler problem (P2′i), for i = 1, · · · , L.

The following theorem provides an almost closed-form solution to (P2′i). The only

reason that this is not a fully closed-form solution is because it may involve a bisection

search to determine the value of a positive real number.

Theorem 5.4.1. Assume KiΣsK
H
i ≻ 0 or Σi ≻ 0. Define parameters Mi, Ui and pi

as in equations (5.26) in the appendix, ri as the rank of Mi and pi,k as the i-th entry of

pi. The solution to (P2 ′
i) is given as follows:

CASE (I)—if either of the following two conditions holds:

i) ∃k ∈ {ri + 1, · · · , JiNi} such that |pi,k| 6= 0;

or ii)
∑JiNi

k=ri+1
|pi,k| = 0 and

∑ri
k=1

|pi,k|2
λ2
i,k

> Pi.

The optimal solution to (P2 ′
i
) is given by

f⋆i =
(
Aii+Ci+µ

⋆
iEi

)−1(
BH

i g− qi

)
, (5.17)

with the positive value µ⋆
i being the unique solution to the equation: gi(µi) =

∑JiNi

k=1
|pi,k|2

(λi,k+µi)2
=

Pi. An interval
[
lbdi, ubdi

]
containing µ⋆

i is determined by Lemma 5.4.1 which comes

later.

CASE (II)—
∑JiNi

k=ri+1
|pi,k| = 0 and

∑ri
k=1

|pi,k|2
λ2
i,k

≤ Pi,
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The optimal solution to (P2 ′
i
) is given by

f⋆i = E
− 1

2
i

(
E

− 1
2

i

(
Aii+Ci

)
E

− 1
2

i

)†
E

− 1
2

i

(
BH

i g − qi

)
. (5.18)

Proof. See Appendix 5.7.1.

Here we have several comments and supplementary discussions on the solution to

(P2′i).

Comment 5.4.1. When µ⋆
i = 0 and Mi is singular, the solution to (P2′i) is usually

non-unique. According to the proof procedure in Appendix 5.7.1, (5.18) is actually the

power-preserving optimal solution, which has the minimal transmission power among

all optimal solutions to (P2′i).

Comment 5.4.2. It is worth noting that the three cases discussed in the proof of The-

orem 5.4.1, CASE(I)-case i), CASE(I)-case ii) and CASE(II), are mutually exclusive

events. One and only one case will occur.

Comment 5.4.3. The problem of minimizing MSE with respect to one separate beam-

former with one power constraint is a rather standard problem that has been discussed

in previous works such as [53, 58, 60, 61]. A big contribution here is that we have fully

solved this problem by clearly identifying the solution structure and writing out the al-

most closed-form solutions for all possible cases, whereas the previous papers have

not. One key consideration is the case of rank deficient Mi for zero µ⋆
i . Although [58]

and [53] mention that µ⋆
i can be zero, the solution for singular Mi in this case is miss-

ing. In fact when Mi does not have full rank and µ⋆
i is zero, its inverse does not exist

and consequently the solutions given in [53, 58, 60, 61] do not stand any more (they all

provide solutions by matrix inversion). It is noted that [53] imposes more assumptions
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on the number of antennas to exclude some cases where Mi is rank deficient. How-

ever these assumptions undermine the generality of the system model and, still, adverse

channel parameters can result in rank deficiency of Mi. Turns out, the rank deficiency

scenario is actually not rare. In fact, whenever K < Ni or M < Ni holds, the matrices

Aii and Ci are both born rank deficient. If they share common nonzero components

of null space, Mi will be rank deficient. For example, consider the simple case where

Ki = IK , Σs = σ2
sI, Σi = σ2

i I and min(K,M) < Ni. At this time Mi is not of full

rank. Besides inappropriate channel parameters Hi can also generate rank deficient

Mi. Thus taking the rank deficiency of Mi when µ⋆ = 0 into consideration is both

necessary and meaningful.

Comment 5.4.4. In the special case where K = Ji = 1, the fully closed form solution

to (P2i) does exist! At this time, the optimal µ⋆
i and f⋆i can be obtained analytically

without bisection search. In this case, eigenvalue decomposition is also unnecessary.

So when K = Ji = 1, solving (P2i) is extremely efficient. The details can be found

in [57]1.

Recall that in CASE (I) of Thoerem 5.4.1, µ⋆
i is obtained as the solution to gi(µi) =

Pi. This equation generally has no analytic solution. Fortunately gi(µi) is strictly de-

creasing in µi and thus the equation can be efficiently solved by a bisection search. The

following lemma provides an interval [lbdi, ubdi] containing the positive µ⋆
i , from which

the bisection search to determine µ⋆
i can be started.

Lemma 5.4.1. The positive µ⋆
i in (P2 ′

i) (i.e. CASE (I) in Theorem 5.4.1) has the fol-

lowing lower bound lbdi and upper bound ubdi:

1 [57] actually solves an approximation of problem (P2′
i
) with scalared source , where a specific affine

term of fi in the objective of (P2′
i
) is approximated by its latest value (approximation is discussed in

subsection 5.4.4 of this chapter). However fully analytic solution of (P2i) can be obtained by following

very similar lines as [57] without introducing approximation of fi.
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i) For subcase i)

lbdi =

[‖pi‖2√
Pi

− λi,1

]+
, ubdi =

‖pi‖2√
Pi

; (5.19)

ii) For subcase ii)

lbdi =

[‖pi‖2√
Pi

− λi,1

]+
, ubdi =

‖pi‖2√
Pi

− λi,ri, (5.20)

where [x]+ = max{0, x}.

Proof. For subcase i), by definition of gi(µi) in (5.30), we have

‖pi‖22
(µi + λi,1)2

=

∑JiNi

k=1 |pi,k|2
(µi + λi,1)2

≤ gi(µi) = Pi

≤
∑JiNi

k=1 |pi,k|2
µ2
i

=
‖pi‖22
µ2
i

, (5.21)

which can be equivalently written as

‖pi‖2√
Pi

− λi,1 ≤ µi ≤
‖pi‖2√

Pi

. (5.22)

Also notice that µ⋆
i should be positive; the bounds in (5.19) thus follow.

For subcase ii), by assumption,
∑JiNi

k=ri+1 |pi,k|2=0. This leads to

‖pi‖22
(µi + λi,1)2

=

∑ri
k=1 |pi,k|2

(µi + λi,1)2
≤ gi(µi) = Pi

≤
∑ri

k=1 |pi,k|2
(µi + λi,ri)

2
=

‖pi‖22
(µi + λi,ri)

2
. (5.23)

Following the same line of derivation as in subcase i), we obtain the bounds in (5.20).
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Algorithm 2: Solving the Problem (P2′i)

1 Initialization: Perform eigenvalue decomposition Mi = UiΛiU
H
i ; Calculate pi

using (5.26d);

2 if
(
∃k ∈ {ri + 1, · · · , JiNi} s.t. |pi,k| 6= 0

)
or
(∑JiNi

k=ri+1 |pi,k|2=0 and

∑ri
k=1

|pi,k|2
λ2
i,k

>Pi

)
then

3 Determine bounds lbdi and ubdi via (5.19) or (5.20) ;

4 Bisection search on
[
lbdi, ubdi

]
to determine µ⋆

i ;

5 f⋆i =
(
Aii+Ci+µ

⋆
iEi

)−1(
BH

i g−qi

)
;

6 else

7 f⋆i =E
− 1

2
i

(
E

− 1
2

i

(
Aii+Ci

)
E

− 1
2

i

)†
E

− 1
2

i

(
BH

i g−qi

)
;

8 end

Algorithm 2 summarizes the results obtained in Theorem 5.4.1 and Lemma 5.4.1

and provides a (nearly) closed-form solution to (P2′i).

5.4.2 Layered-BCD Algorithm

The above analysis of (P2′i), combined with (P1), naturally leads to a nested or

layered-BCD algorithm, that can be used to analytically solve the joint beamforming

problem (P0). The algorithm consists of two loops (two layers). The outer-loop is a

two-block descent procedure alternatively optimizing G and {Fi}Li=1, and the inner-

loop further decomposes the optimization of {Fi}Li=1 into an L-block descent procedure

operated in an iterative round robin fashion. Algorithm 3 outlines the overall procedure.

As will be seen in the next, this layered-BCD has strong convergence property.

Theorem 5.4.2. Assume that KiΣsK
H
i ≻ 0 or Σi ≻ 0, ∀i ∈ {1, · · · , L}. The objec-

tive sequence {MSE(j)}∞j=0 generated by Algorithm 3 is monotonically decreasing. The
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Algorithm 3: Layered-BCD Algorithm to Solve (P0)

1 Initialization: Randomly generate feasible {F(0)
i }Li=1 ;

2 Obtain G(0) by (5.9);

3 repeat

4 repeat

5 for i = 1; i <= L; i++ do

6 Given G and {Fj}j 6=i, update Fi by Theorem 5.4.1;

7 end

8 until decrease of MSE is sufficiently small;

9 Given
{
Fi

}L
i=1

, update G via (5.9) ;

10 until decrease of MSE is sufficiently small or predefined number of iterations is

reached;

solution sequence
{
{F(j)

i }Li=1,G
(j)
}∞
j=1

generated by Algorithm 3 has limit points, and

each limit point is a stationary point of (P0).

Proof. The proof of the monotonicity of {MSE(j)}∞j=0 and the existence of limit points

for the solution sequence follows the same lines as those of Theorem 5.3.2.

From Theorem 5.3.1, given G, the objective function MSE
(
{Fi}Li=1

∣∣G
)

of Problem

(5.14) is convex (and therefore, of course, pseudoconvex) with respect to {fi}Li=1. Since

the objectiveMSE
(
{Fi}Li=1

∣∣G
)

in (P2) is continuous and the feasible domain of {Fi}Li=1

is bounded, there exists some feasible point {F̄i}Li=1 making the level set
{
{Fi}Li=1 ∈

CJ1N1×1×· · ·×CJLNL×1
∣∣MSE

(
{Fi}Li=1

∣∣G
)
≤ MSE

(
{F̄i}Li=1

∣∣G
)}

closed and bounded.

Thus Proposition 6 in [64] is valid to invoke. For a given G at any step of outer-loop, the

inner loop generates limit point(s) converging to a stationary point of the problem (P2).

Since (P2) is a convex problem, any stationary point is actually an optimal solution [63].

Therefore the subproblem (P2) is actually globally solved. By Theorem 5.3.2, each limit

point of solution sequence is a stationary point of the original problem (P0).
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Although the convergence analysis in Theorem 5.4.2 states that the layered-BCD

algorithm guarantees convergence, it requires the inner-loop to iterate numerous times

to converge sufficiently. In fact if each inner loop is performed with a small number

of iterations, the layered BCD algorithm becomes a specialized essentially cyclic BCD

algorithm, which will be discussed in next subsection.

5.4.3 Essentially Cyclic (L+ 1)-BCD Algorithm

In this subsection, we propose an (L + 1)-BCD algorithm, where in each update

the linear FC receiver or one single beamformer is updated efficiently by equation (5.9)

or Theorem 5.4.1 respectively. Compared to the 2-BCD algorithm, the block updating

rule for multiple block coordinate descent method can have various patterns. Here we

adopt a very general updating manner called essentially cyclic rule [65]. For essentially

cyclic update rule, there exists a positive integer T , which is called period, such that

each block of variables is updated at least once within any consecutive T updates. The

classical Gauss-Seidel method is actually a special case of essentially cyclic rule with

its period T being exactly the number of blocks of variables.

For the convergence of essentially cyclic BCD algorithm, when the whole solution

sequence converges, the limit of the solution sequence is stationary. In fact, assume

that the sequence
{
{F(j)

i }Li=1,G
(j)
}∞
j=1

converges to the limit point X̄ ,
{
{F̄i}Li=1, Ḡ

}
.

Denote X =
{
{Fi}Li=1,G

}
and Xi as the i-th block of X, which can be G or Fj ,

∀j ∈ {1, · · · , L}, and Xī as the variables other than Xi, i.e. Xī = {X}\{Xi}.

Since X
(j+1)
i minimizes MSE with given {X(j)

ī
}, as optimality conditions, we have

Tr{∇Xi
MSE(X

(j+1)
i ,X

(j)

ī
)T
(
Xi−X

(j+1)
i

)
} ≥ 0 for any feasible Xi. Since {X(j)

ī
} →
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X̄ī, X
(j+1)
i → X̄i and MSE is continuously differentiable, we haveTr{∇Xi

MSE(X̄)T
(
X−

X̄i

)
} ≥ 0 for any feasible Xi, ∀i ∈ {1, · · · , L+ 1}. By summing up all L+ 1 variable

blocks, we obtain Tr{∇XMSE(X̄)T
(
X−X̄

)
} ≥ 0 for any feasible X. This suggests

that the convergent limit point
{
{F̄i}Li=1, Ḡ

}
is actually a stationary point of (P0).

However the assumption that the whole solution sequence converges is actually a

very strong assumption and cannot be theoretically proved, although extensive numeri-

cal results show that this fact seem always hold in practice for our problem.

For rigorous proof of the convergence to stationary points of BCD algorithms, one

usually requires uniqueness of solutions for each block update, as the analysis performed

in [63–65]. Without the uniqueness assumptions, convergence to stationary points is

not guaranteed and a counter example has been reported in [66], where the solution

sequence is always far away from stationary points. In retrospect to Theorem 5.4.1,

specific parameter settings (CASE(II) with singular (Aii+Ci) and zero µ⋆
i ) will result

in infinitely many optimal solutions to (P2′i). To overcome this difficulty, we adopt

proximal method (Exercise 2.7.1 in [63]), which locally modifies the (P2′i) by imposing

a squared norm and guarantees that each block update is uniquely solved.

Specifically, to update the i-th beamformer, we consult to the proximal version ob-

jective MSE
(
fi
∣∣{fj}j 6=i, g

)
+κ‖fi− f̂i‖22 of (P2′i) with f̂i being the latest value of fi until

the current update and κ being any positive real constant. Thus the problem updating

the i-th sensor’s beamformer is equivalent to (P4i) as follows

(P4i) :min
fi

fHi
(
Aii+Ci+κINiJi

)
fi+2Re

{(
qH
i −gHBi−κf̂Hi

)
fi
}

s.t. fHi Eifi ≤ Pi. (5.24)
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As shown by the following theorem, the proximal version of any essentially cyclic (L+

1)-BCD algorithm guarantees monotonic decreasing of objective and stationary-point-

achieving convergence of the solution sequence.

Theorem 5.4.3. Assume that KiΣsK
H
i ≻ 0 or Σi ≻ 0, ∀i ∈ {1, · · · , L}. By updating

G and Fi by solving (P1 ) and (P4 i) respectively, any essentially cyclic (L+1 )-BCD

algorithm generates monotonically decreasing MSE sequence and the solution sequence

has limit points with each limit point being a stationary point of the original problem

(P0 ).

Proof. See Appendix 5.7.2.

Note the solution to (P4i) can be easily obtained by Theorem 3 with the terms
(
Aii+

Ci

)
and

(
BH

i g−qi

)
being replaced by

(
Aii+Ci+κINiJi

)
and

(
BH

i g−qi+κf̂i
)

respectively

and no additional complexity is required.

Recall the layered-BCD algorithm discussed in previous subsection, when the inner-

loop is performed by small number of iterations, it actually reduces to a specialized

essentially cyclic BCD algorithm. One special case is the iterative algorithm proposed

in [53] whose inner-loop updates each beamformer for once. According to the above

theorem, by updating each beamformer with the proximal method, the convergence to

stationary points can be guaranteed.

One drawback of the above proximal update is its slow convergence rate, as will

be shown in Section 5.5. However this shortcoming can be well compensated by the

following acceleration scheme in the next subsection.
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5.4.4 Acceleration by Approximation

The aforementioned (L+1)-BCD algorithm can be accelerated by introducing ap-

proximation when updating single beamformer Fi in (P2′i). In addition to setting the

{Fj}j 6=i as known and fixed, we assume that the term Aiifi is also known by leveraging

the value of fi in the previous updates. In other words, we define q̂i =
∑L

j=1,j 6=iAijfj+

Aiif̂i = qi+Aiif̂i with f̂i being the latest value of fi. Thus to update fi we solve the

approximate version (P5i) of (P2′i) as follows

(P5i) : min
fi

fHi Cifi + 2Re{q̂H
i fi}−2Re{gHBifi} (5.25a)

s.t. fHi Eifi ≤ Pi. (5.25b)

The problem (P5i) can still be efficiently solved by Theorem 5.4.1. Interestingly enough,

this approximation can significantly improve the convergence rate of the cyclic-BCD

procedure!

Actually similar idea appears in [58], where the precoders of multiusers is updated

in a cyclic manner. In Implementation 2 (Table II) of [58], with others being fixed, one

separate precoder is updated by minimizing the total MSE function with some terms of

the to-be-updated precoder approximated by previous values. As reflected by the exten-

sive numerical results in [58], this approximated BCD implementation has surprisingly

faster convergence compared to the original one (Implementation I in Table I) in [58].

The surprisingly fast convergence of the approximate update inspires us the idea

that it can become perfect complement of the aforementioned proximal update. In im-

plementation, (L+1)-BCD algorithms can be performed in an approximate-proximal
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manner—in the first few outer-loop iterations we run the approximate update and then

convert to proximal update in the subsequent updates. This approximate-proximal com-

bination exhibits fast convergence and also guarantees stationary-points-achieving con-

vergence as shown previously.

5.5 Numerical Results

In this section, numerical results are presented to verify and compare the perfor-

mance of the proposed algorithms.

In the following experiments, a wireless sensor network with L = 3 sensors is con-

sidered. The antenna numbers of the sensors and the fusion center are set as N1 =

3, N2 = 4, N3 = 5 and M = 4 respectively. All observation matrices Ki are set as

identity matrices. The source signal s has dimension K = 3 with zero mean, unit-power

and uncorrelated components. The observation noise at each sensor is colored and has

covariance matrix Σi = σ2
iΣ0,i, i ∈ {1, · · · , L}, where the Ji × Ji matrix Σ0,i has the

Toeplitz structure with its (j, k)-th element [Σ0,i]j,k = ρ|k−j|. The parameter ρ is set as

0.5 for all sensors in our test. The transmission power and observation noise at each

sensor are set as P1 = 2, P2 = 2, P3 = 3, σ−2
1 = 6dB, σ−2

2 = 7dB and σ−2
3 = 8dB,

respectively.

In the test of each algorithm, channel noise level increases from SNR0 = 0dB to

18dB. For one specific channel noise level, 500 channel realizations {H1,H2,H3} are

randomly generated with each matrix entry following standard complex circular Gaus-

sian distribution CN(0, 1). The mean square error averaged over all 500 random channel
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realizations are evaluated as a function of the number of (outer-loop) iterations and the

channel SNR.

2-BCD algorithm is implemented by utilizing CVX(with SDPT3 solver) to solve its

subproblem (P2). For the essentially cyclic (L+1)-BCD algorithm, here we test two

special cases: i) the layered BCD algorithm with finite inner-loop iterations, where the

inner-loop cyclically updates each beamformer for two times; ii) (L+1)B-FG algorithm,

where beamformers are cyclically updated with each Fi’s update followed by the cali-

bration of G. That means the variables are updated in an order of F1,G,F2,G, · · · . In

one outer-loop it updates each Fi once and G for L times. The performance of these two

cases are presented in Figure 5.2 and 5.3 respectively. The 2-BCD algorithm is plotted

in each figure to serve as a benchmark. On average, the layered-BCD algorithm with

finite inner-loop iteration and the (L+1)B-FG algorithm converges in 30-40 outer-loop

iterations to the identical MSE as that of the 2-BCD algorithm.

The approximate and proximal version (with κ = 1) of (L+1)B-FG algorithm are

also tested and presented in Figure 5.4 and 5.5 respectively. As shown in Figure 5.4,

the performance of approximate method is surprisingly fast and exhibits excellent per-

formance within only 3 to 5 outer-loop iterations. Comparatively the proximal method,

although whose convergence to stationary points can be proved, exhibits a much slower

convergence than other algorithms, as shown in Figure 5.5.

In Figure 5.6 the approximate-proximal version of (L+1)B-FG is tested. Here in

the first 10 outer-loop iterations, approximate version of (L+1)B-FG is performed and

after that the proximal method is used. As shown in the figure, this combination scheme

inherits the fast convergence rate of approximate method and, as proved previously,

guarantees convergence to stationary points.
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Figure 5.2: MSE Performance of 2-BCD v.s. Layered (L+1)-BCD (with 2 inner-loop

iterations) Algorithms
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Figure 5.5: MSE Performance of 2-BCD v.s. Proximal (L+1)B-FG
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Figure 5.6: MSE Performance of 2-BCD v.s. Approximate-Proximal (L+1)B-FG

Next, we take a close look at the convergence behaviors of these algorithms. We set

SNR0 = 2dB and fix the channel by a randomly-generated realization. We randomly

generate 10 feasible initial points. We run 2-BCD, (L+1)B-FG, proximal (L+1)B-

FG and approximate-proximal (L+1)B-FG algorithms from these 10 random initial

points and represent the resultant MSE itineraries in Figures 5.7-5.9. These plots clearly

demonstrate that these algorithms are insensitive to initial points and exhibit rather stable

converged MSE from different startings. As shown in the figures, different algorithms

with random initials finally converge to identical MSE value with different convergence

rates. Proximal method has an obviously slower convergence and the approximate-

proximal method exhibits fast convergence in the first 3 outer-loop iterations, which

coincides with the observations presented in previous figures.

We present in Table 5.1 the average MATLAB running time for different algorithms
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Figure 5.7: MSE Itineraries of 2-BCD v.s. (L+1)B-FG Algorithm
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Figure 5.8: MSE Itineraries of 2-BCD v.s. Proximal (L+1)B-FG Algorithm
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Figure 5.9: MSE Itineraries of 2-BCD v.s. Approximate-Proximal (L+1)B-FG Algo-

rithm

(running in a regular laptop). For simplicity, we focus on homogeneous sensor network,

where each sensor has the same number of antennae and Ji = Ni. Different values

of K (size of the source vector) and L (number of sensors) are tested to take into ac-

count different problem sizes. The algorithms are run multiple times and the average

MATLAB running time per outer-loop iteration is recorded. For the 2-BCD algorithm,

CVX is utilized to solve its subproblem and the solver SDPT3 is chosen. In Table 5.1,

the average running time of 2-BCD, (L+1)B-FG and layered (L+1)-BCD algorithm is

presented. Note that the approximate, proximal and approximate-proximal (L+1)B-FG

algorithms have the same complexity as that of (L+1)B-FG algorithm. The analytic so-

lutions obtained in Theorem 5.4.1 entitles the essentially cyclic (L+1)-BCD algorithm

and its variants high efficiency for implementation. However it should be pointed out

that the 2-BCD method still has great significance in decentralized optimization for our
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Table 5.1: MATLAB Running Time Per (Outer-Loop) Iteration

Dim.

L
Algorithms L = 2 L = 4 L = 6 L = 8

K = 1 2-BCD 0.2167s 0.2490 0.2987s 0.3500s

M = 3 (L+1)B-FG 0.0026s 0.0066s 0.0120s 0.0189s

Ni = 3 Lay. BCD 0.0031s 0.0094s 0.0181s 0.0301s

K = 3 2-BCD 0.2432s 0.3068s 0.3636s 0.4285s

M = 3 (L+1)B-FG 0.0056s 0.0159s 0.0328s 0.0560s

Ni = 3 Lay. BCD 0.0087s 0.0241s 0.0493s 0.0839s

K = 6 2-BCD 0.2529s 0.3786s 0.5861s 0.7526s

M = 6 (L+1)B-FG 0.0075s 0.0203s 0.0397s 0.0664s

Ni = 6 Lay. BCD 0.0116s 0.0319s 0.0622s 0.1031s

K = 9 2-BCD 0.4352s 0.7956s 1.1401s 1.9593s

M = 9 (L+1)B-FG 0.0120s 0.0302s 0.0557s 0.0902s

Ni = 9 Lay. BCD 0.0205s 0.0514s 0.0928s 0.1467s
Notes: (i) layered-BCD is run with 2 inner-loop iterations.

(ii) SDPT3 solver of CVX is chosen to implement 2-BCD.

problem. As proved in Theorem 5.3.1, its subproblem (P2) is convex. In fact, by taking

advantage of this key property and utilizing multiplier method, the problem (P0) can be

solved under the 2-BCD framework, where (P2) is solved in a highly distributed manner

with each sensor updating its own beamformer.

5.6 Conclusion

In this chapter we study the joint transceiver design problem for the wireless sen-

sor network under the MSE criterion. Due to the nonconvexity of the original prob-

lem, block coordinate descent methods are adopted. A two-block coordinate descent

method is first proposed, which decomposes the original problem into two subproblems

and alternatively optimizes the linear postcoder and the linear precoders jointly. This 2-

BCD algorithm guarantees convergence (of its solution limit points) to stationary points.
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We also completely solve the one single beamformer’s optimization problem with one

power constraint. This conclusion gives birth to highly efficient multiple block coordi-

nate descent methods. We prove the fact that updating the separate beamformer or the

linear receiver in any essentially cyclic rule with proximal method can guarantee the

convergence to stationary points. Moreover combining approximation with the prox-

imal method significantly improves the convergence rate while maintaining its strong

convergence and high efficiency. Extensive numerical results are provided to verify our

findings.

5.7 Appendix

5.7.1 Proof of Theorem 5.4.1

Proof. The assumption implies
(
KiΣsK

H
i +Σi

)
≻ 0. Therefore Ei =

(
KiΣsK

H
i +Σi

)
⊗

INi
≻ 0. We introduce the following notations

f̃ , E
1
2
i f ; (5.26a)

Mi , E
− 1

2
i

(
Aii+Ci

)
E

− 1
2

i = UiΛiU
H
i ; (5.26b)

bi , E
− 1

2
i

(
BH

i g − qi

)
; (5.26c)

pi , UH
i bi; (5.26d)

where the j-th column ui,j of Ui is the eigenvector associated with the eigenvalue λi,j ,

[Λi]j,j. Without loss of generality, we assume that the eigenvalues of Mi are arranged

in a decreasing order and that Mi has rank ri, ri ≤ JiNi. In other words λi,1 ≥ · · · ≥
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λi,ri > λi,ri+1 = · · · = λi,JiNi
= 0.

Then the problem (P2′i) is rewritten as

(P3i) : min
f̃i

f̃Hi Mif̃i − 2Re{bH
i f̃i}, (5.27a)

s.t. ‖f̃i‖22 ≤ Pi. (5.27b)

Since Mi is positive semidefinite, (P3i) is convex and is obviously strictly feasible.

Thus solving (P3i) is equivalent to solving its KKT conditions:

(
Mi + µiI

)
f̃i = bi; (5.28a)

‖f̃i‖22 ≤ Pi; (5.28b)

µi

(
‖f̃i‖22 − Pi

)
= 0; (5.28c)

µi ≥ 0. (5.28d)

The Lagrangian multiplier µi should be either positive or zero, our next discussion

focuses on identifying the positivity of µi.

Assume that µi > 0, then
(
Mi + µiI

)
is strictly positive definite and thus invertible.

Consequently f̃i =
(
Mi + µiI

)−1
bi. By the slackness condition (5.28c), the power

constraint (5.28b) should be active. Plugging f̃i into (5.28b) and noting the eigenvalue

decomposition in (5.26b), we get

‖f̃i‖2=bH
i Ui

(
Λi+µiI

)−2
UH

i bi=Pi. (5.29)
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By the definition of pi in (5.26d), we rewrite (5.29) as

‖f̃i‖2 = gi(µi) =

ri∑

k=1

|pi,k|2
(λi,k + µi)2

+

JiNi∑

k=ri+1

|pi,k|2
µ2
i

= Pi. (5.30)

Note that here gi(µi) is a positive, continuous and strictly decreasing function in µi.

To identify the positivity of µi, the following different cases are considered:

CASE (I)— µ⋆
i > 0 This case further involves two subcases:

case i)— ∃k ∈ {ri + 1, · · · , JiNi} s.t. |pi,k| 6= 0:

In this case, it is easily seen that gi(µi) → +∞ when µi → 0+, so gi(µi) has the

range of
(
0,∞

)
for positive µi. So in case i) there always exists a unique positive µi

satisfying (5.30). Suppose that the unique solution of (5.30) is µ⋆
i . Plugging µ⋆

i back

into the KKT condition (5.28a), we obtain the optimal solution f̃⋆i as

f̃⋆i =
(
Mi + µ⋆

i I
)−1

bi. (5.31)

Plugging (5.26) into the above, (5.17) is obtained. It is easily verified that the µ⋆
i and f⋆i

in (5.17) satisfy all the KKT conditions in (5.28) and therefore is the optimal solution to

(P2′i).

case ii)
∑JiNi

k=ri+1 |pi,k|2=0 and
∑ri

k=1
|pi,k|2
λ2
i,k

>Pi:

In this case, the second part in the summation of gi(µi) in (5.30) vanishes and gi(µi)

has the bounded range
(
0,
∑ri

k=1
|pi,k|2
λ2
i,k

]
, with its maximum value achieved at µi = 0.

When
∑ri

k=1 |pi,k|2λ2
i,k > Pi, a positive µ⋆

i satisfying (5.30) still exists and is unique.

Consequently, the optimal solution f⋆i can be determined by (5.31) as in the subcase i).

CASE (II)—
∑JiNi

k=ri+1 |pi,k|2=0 and
∑ri

k=1
|pi,k|2
λ2
i,k

≤Pi
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In this case, a positive µi satisfying KKT conditions does not exist any more, and

µ⋆
i = 0. As such, the optimal solution f⋆i should satisfy (5.28a):

Mif̃i = bi. (5.32)

We now claim that the above equation (5.32) has a feasible solution. Indeed, this

equation is solvable if and only if the right hand side bi belongs to the column space

R
(
Mi

)
. Recall that Mi is Hermitian and has rank ri; so R

(
Mi

)
= span

(
ui,1, · · · ,ui,ri

)

and the null space of Mi satisfies N
(
Mi

)
= R⊥(Mi

)
= span

(
ui,ri+1, · · · ,ui,JiNi

)
. In

fact, CJiNi = R
(
Mi

)
⊕N

(
Mi

)
. Invoking the assumption of CASE (II) that |pi,k| = 0,

∀k ∈ {ri + 1, · · · , JiNi} and the definition of pi, we obtain pi,k = uH
i,kbi, ∀k ∈ {ri +

1, · · · , JiNi}. Actually this implies bi ∈ N⊥(Mi

)
= R

(
Mi

)
and thus the consistency

(i.e. the feasibility) of (5.32) is guaranteed.

Next we proceed to analytically identify one special feasible solution of (5.32).

Eigenvalue decomposing Mi, (5.32) can be equivalently written as

ΛiU
H
i f̃i = pi. (5.33)

Let Λ̄i represent the top-left ri × ri sub-matrix of Λi, i.e. Λi = diag
{
Λ̄i,OJiNi−ri

}
.

Let Ūi and Ũi represent the left-most ri columns and the remaining columns of Ui

respectively, i.e. Ui =
[
Ūi, Ũi

]
. We can then simplify (5.33) to

Λ̄iŪ
H
i f̃i = pi. (5.34)

Since the columns of Ui form a set of orthonormal basis for CJiNi , f̃i can be ex-
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pressed via columns of Ui as f̃i =
∑JiNi

k=1 αi,kui,k. Noticing the key fact that ŪH
i ui,k =

0, ∀k ∈ {ri + 1, · · · , JiNi}, we know that the values of {αi,ri+1, · · · , αi,JiNi
} have no

impact on (5.34) and can therefore be safely set to zeros to save energy. As for αi,k,

∀k ∈ {1, · · · , ri}, we substitute f̃i =
∑ri

k=1 αi,kui,k into (5.34) and obtain

αi,k = λ−1
i,kpi,k, ∀k ∈ {1, · · · , ri}. (5.35)

Summarizing the above analysis, the optimal solution f̃⋆i to (P3i) is given by

f̃⋆i = UiΛ
†
iU

H
i bi, (5.36)

with Λ
†
i being the Moore-Penrose pseudoinverse of Λi given as diag

{
Λ̄−1

i ,OJiNi−ri
}

.

Matrix theory suggests that an arbitrary matrix X with its singular value decomposi-

tion (SVD) given by X = UXΛXV
H
X has its unique Moore-Penrose pseudoinverse

X† = VXΛ
†
XU

H
X, where UX and VX are left and right singular square matrices, re-

spectively, and ΛX is a diagonal matrix with appropriate dimensions. Hence, (5.36) can

be equivalently written as

f̃⋆i = M
†
ibi. (5.37)

Obviously µ⋆
i = 0, and µ⋆

i and f̃⋆i satisfy the KKT conditions (5.28a), (5.28c) and

(5.28d). What remains to be shown is that f̃⋆i satisfies the power constraint. We verify

this using (5.35) and get

‖f̃⋆i ‖2 =
ri∑

k=1

|αi,k|2 =
ri∑

k=1

|pi,k|2
λ2
i,k

≤ Pi, (5.38)

128



where the inequality in the above follows the assumption of CASE (II). Plugging (5.26)

into (5.37), (5.18) is obtained. The proof is complete.

5.7.2 Proof of Theorem 5.4.3

Proof. This proof is inspired by Proposition 2.7.1 in [63]. To simplify the following

exposition, we define x , [xT
1 , · · · ,xT

L+1] = [fT1 , · · · , fTL , gT ] and x ∈ X , X1 ×

· · · × XL+1 with Xi =
{
fi ∈ CJiNi

∣∣fHi Eifi ≤ Pi

}
, for i = 1, · · · , L and XL+1 =

CKM . For any specific essentially cyclic update BCD algorithm, we assume that it

starts from an initial feasible solution x(0) , [xT
1
(0), · · · ,xT

L+1
(0)] and the iteration index

(k) increases by one after any block’s update. Denote x
(k)
i as the i-th block of x(k)

and xī = [x1, · · · ,xi−1,xi+1, · · · ,xL+1], i ∈ {1, · · · , L + 1}, i ∈ {1, · · · , L + 1}.

Assume that T is a period of the essentially cyclic update rule and {t1, · · · , tT}, with

tj ∈ {1, · · · , L + 1} ∀j ∈ {1, · · · , T}, as the indices of the updated blocks in a period

in order. If xtj is updated in the (k)-th iteration, then xtj⊕1
is updated in the (k+1)-th

iteration. Define j⊕1 ,j(mod T )+1, ∀j ∈ {1, · · · , T} and j⊕m as j⊕1 by m times.

By repeatedly invoking Bolzano-Weierstrass theorem to fi to fL and noticing that g

is updated in closed form by equation (5.9), the existence of limit points of {x(k)}∞k=0

can be proved.

Then we prove that MSE(k) is decreasing. If xL+1(or g) is updated in the (k+1)-th

iteration, then (P1) is solved and thus MSE is decreasing. Assume that in the (k+1)-th

iteration, the (tj⊕1)-th block is updated, tj⊕1 ∈ {1, · · · , L}. Then

x
(k+1)
tj⊕1

= argmin .
xtj⊕1∈Xtj⊕1

MSE
(
xtj⊕1

∣∣x(k)

tj⊕1

)
+κ
∥∥xtj⊕1

−x
(k)
tj⊕1

∥∥2
2
.
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Since x
(k)
tj is feasible, it should give no smaller objective than x

(k+1)
tj for the above prob-

lem. This implies

MSE
(
x(k+1)

)
≤MSE

(
x(k)
)
−κ
∥∥x(k)−x(k+1)

∥∥2
2
≤MSE

(
x(k)
)
.

Thus MSE(k) is decreasing. At the same time notice that MSE should be nonnegative,

thus MSE(k) converges.

Next we prove that any limit point is stationary. Assume that a subsequence of

solution x(kj) converges to a limit point x̄ , [x̄T
1 , · · · , x̄T

L+1]. Since there are finite

blocks, we assume the block i ∈ {1, · · · , L + 1} is updated infinitely many times and

assume that i = tl for some l ∈ {1, · · · , T}. It should be noted that such l may be

non-unique and arbitrary one can be chosen to do the job.

We assert that x(kj+1) → x̄, i.e. x
(kj+1)
tl⊕1

→ x̄tl⊕1
. This claim can be proved in two

cases—i) tl⊕1=L+1 and ii) tl⊕1 ∈ {1, · · · , L} .

i) tl⊕1 =L+1. Notice that xL+1 = g is updated in a closed form (5.9), which is a

continuous function of [xT
1 , · · · ,xT

L]. Since x
(kj)

L+1
converges, by taking j → ∞, x

(kj+1)
tl⊕1

should converge to some limit, i.e. x
(kj+1)
tl⊕1

→ x̃L+1. Notice that MSE(k) converges, so

MSE
(
x̄L+1, x̄L+1

)
= MSE

(
x̄L+1, x̃L+1

)
. This means both x̄L+1 and x̃L+1 are solutions

to the problem (P1) with sensors’ beamformers [x̄T
1 , · · · , x̄T

L] given. Since (P1) is strictly

convex and thus has unique solution, we conclude x̃L+1 = x̄L+1. So x
(kj+1)
tl⊕1

→ x̄tl⊕1

holds for the case tl⊕1 = L+ 1.

ii) tl⊕1 ∈ {1, · · · , L}. By contradiction, we assume that x
(kj+1)
tl⊕1

does not converge to

x̄tl⊕1
. By denoting γ(kj) , ‖x(kj+1)

tl⊕1
−x̄tl⊕1

‖2 and possibly restricting to a subsequence,

we assume that there exists a γ̄ > 0 such that γ(kj) ≥ γ̄ for all j. Let s
(kj)
l =(x

(kj+1)
tl⊕1

−
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x
(kj)
tl⊕1

)/γ(kj). Since s(kj) is bounded, by Bolzano-Weierstrass theorem and restricting to

a subsequence, we assume that s(kj) → s̄. Then we obtain

MSE
(
x(kj+1)

)
=MSE

(
x
(kj+1)
tl⊕1

∣∣x(kj)

tl⊕1

)
(5.39)

≤MSE
(
x
(kj+1)
tl⊕1

∣∣x(kj)

tl⊕1

)
+κ
∥∥x(kj+1)

tl⊕1
−x

(kj)
tl⊕1

∥∥2
2

(5.40)

=MSE
(
x
(kj)
tl⊕1

+γ(kj)s(kj)
∣∣x(kj)

tl⊕1

)
+κ
∥∥γ(kj)s(kj)

∥∥2
2

(5.41)

≤MSE
(
x
(kj)
tl⊕1

+ǫγ̄s(kj)
∣∣x(kj)

tl⊕1

)
+κ
∥∥ǫγ̄s(kj)

∥∥2
2
, ∀ǫ∈ [0, 1] (5.42)

≤MSE
(
x
(kj)
tl⊕1

∣∣x(kj)

tl⊕1

)
= MSE

(
x(kj)

)
, (5.43)

where the last two inequalities follow the fact that MSE
(
xtl⊕1

∣∣x(kj)

tl⊕1

)
+κ‖xtl⊕1

−x(kj)
tl⊕1

‖22
is strictly convex and attains the minimum at point x

(kj+1)
tl⊕1

. Noting MSE(kj) converges

and letting j → ∞, we obtain

MSE
(
x̄
)
≤ MSE

(
x̄tl⊕1

+ǫγ̄s̄
∣∣x̄tl⊕1

)
+κǫ2γ̄2

≤ MSE
(
x̄
)
, ∀ǫ ∈ [0, 1], (5.44)

which immediately implies

MSE
(
x̄tl⊕1

+ǫγ̄s̄
∣∣x̄tl⊕1

)
+κǫ2γ̄2=MSE

(
x̄
)
, ∀ǫ ∈ [0, 1]. (5.45)

However the above is impossible. Notice that MSE
(
x̄tl⊕1

+ǫγ̄s̄
∣∣x̄tl⊕1

)
is a quadratic

function of ǫ with nonnegative quadratic coefficient and γ̄, κ > 0. Thus the left hand

side(LHS) of equation (5.45) is a strictly convex quadratic function of ǫ, which has

at most two different ǫ giving the function value of MSE(x̄). Contradiction has been

reached.
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In the above we have proved that x(kj+1) → x̄. Next we show that∇xtl⊕1
MSE

(
x̄
)T (

xtl⊕1
−

x̄tl⊕1

)
≥ 0, ∀xtl⊕1

∈ Xtl⊕1
, which is also proved in two cases:

When tl⊕1 ∈ {1, · · · , L}, we have

x
(kj+1)
tl⊕1

=argmin .
xtl⊕1

∈Xtl⊕1

MSE
(
xtl⊕1

∣∣x(kj)

tl⊕1

)
+κ
∥∥xtl⊕1

−x
(kj)
tl⊕1

∥∥2
2
.

By optimality condition, the above implies

∇xtl⊕1
MSE

(
x
(kj+1)
tl⊕1

∣∣x(kj)

tl⊕1

)T (
xtl⊕1

−x
(kj+1)
tl⊕1

)
, (5.46)

+2κ
(
x
(kj+1)
tl⊕1

−x
(kj)
tl⊕1

)T (
xtl⊕1

−x
(kj+1)
tl⊕1

)
≥ 0, ∀xtl⊕1

∈ Xtl⊕1
.

Let j → ∞ in the above equation and note that MSE is continuously differentiable, we

obtain

∇xtl⊕1
MSE

(
x̄
)T (

xtl⊕1
−x̄tl⊕1

)
≥ 0, ∀xtl⊕1

∈ Xtl⊕1
. (5.47)

When tl⊕1 = L+1, the above reasoning still works except that the proximal term is

absent (i.e. κ = 0). So we also obtain ∇xtl⊕1
MSE

(
x̄
)T (

xtl⊕1
−x̄tl⊕1

)
≥ 0.

Now replace the subsequence {kj} with {kj + 1}, tl⊕1 with tl⊕2 and utilize the

verbatim argument as above, we can prove

∇xtl⊕2
MSE

(
x̄
)T (

xtl⊕2
−x̄tl⊕2

)
≥ 0, ∀xtl⊕2

∈ Xtl⊕2
. (5.48)

Repeating this argument for (T−1) times and recalling that for essentially cyclic update
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rule, {tl⊕1, · · · , tl⊕T}={1, · · · , L}, we have proved that

∇xi
MSE

(
x̄
)T(

xi−x̄i

)
≥0, ∀xi ∈ Xi, ∀i∈{1,· · ·,L+1}. (5.49)

Summing up the above (L+1) inequalities, we obtain

∇xMSE
(
x̄
)T(

x−x̄
)
≥0, ∀x ∈ X. (5.50)

So x̄ is actually a stationary point of (P0).
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Chapter 6

Joint Transceiver Design towards MI

Maximization for Wireless Sensor

Network

6.1 Introduction

In last chapter, we have discussed joint transceiver design problem in centralized

wireless sensor networks, where mean square error(MSE) is adopted as our system’s

performance metric. As we have discussed before, MSE is a standard metric for sig-

nal estimation problem, which measures the average deviation of the estimator output

compared to the original source. For system’s performance evaluation, we usually have

many different perspectives. Now the wireless sensor network is a communication sys-

tem in the first place. It transfers the information of the source(the observed events
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here) to the fusion center(FC). So the information rate that we can transfer from the

source to FC is of great concerns. How to jointly design the transceivers to maximize

the information of the source revealed at the FC is an interesting and important problem.

This is actually the motivation of this chapter. Here we research the problem of jointly

designing transceivers to maximize the mutual information of the source at the FC.

The contribution of this chapter is that for MI optimization, inspired by the seminal

idea of weighted minimum mean square error (WMMSE) method in [60, 73], we intro-

duce weight matrix and a virtual FC receiver as intermediate variables(receiver does not

impact MI, so the original problem is independent of FC receiver). Here we develop two

BCD algorithms. Firstly, we decompose the MI problem into three subproblems—one

subproblem to update the virtual FC receiver, one subproblem to update the weight ma-

trix and the third subproblem to jointly optimize the entire beamformers of all sensors.

Both of the two former subproblems have closed form solutions and the third one is

convex, which actually can be converted into a second order cone programming(SOCP)

problem, and thus efficiently solved by standard numerical solvers. The convergence of

this 3-block BCD algorithm is carefully examined and we prove that its limit points are

stationary. Secondly, following the route of the first algorithm, we proceed to further

decompose its third subproblem into multiple atom problems, with each atom problem

optimizing one separate sensor’s beamformer. We carefully examine its optimality con-

ditions and obtain the almost closed form solution. It should be noted that, although the

technique of checking KKT condition for each separate beamformer is rather standard

and has also been adopted in several previous papers (e.g. [58], [61], [53] and [60]),

we are able to fully solve the problem by clearly describing the solution structure and

deriving the exact closed-form solutions. To be specific, we explicitly obtain the equiv-

alent conditions for judging the positiveness of the Lagrange multipliers, and, in the
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case of zero-Lagrange-multipliers, we derive the solution via pseudoinverse. These ex-

act results, and especially the case of the zero-Lagrange-multiplier, are not discussed

previously in the literature.

Recently the wireless sensor network (WSN) has attracted great attentions due to its

wide applications in practice [48–54, 56, 57, 71, 72]. A typical wireless sensor network

has multiple sensors which are spacially distributed and wirelessly connected. Sensors

in the same neighborhood monitor the same physical event or measure some common

environmental parameters and transmit their (usually contaminated) observations to a

preassigned fusion center (FC) to perform further data processing and fusion. The goal

of data transmission and fusion in wireless sensor networks can be achieved more effec-

tively by leveraging multiple antenna and linear beamforming techniques. It is always

an interesting and meaningful problem to collaboratively design the beamformers so

that the wireless sensor network can reliably transmit and recover the observed signals.

Magnitudes of studies have been performed on the beamforming design problem

in wireless sensor networks and solutions are provided from various perspectives. For

example, the papers [48–51] aim at designing effective beamformers for signal compres-

sion. [48] and [49] consider the perfect channel case, i.e. there exists no noise or fading

in transmission from the sensors to the FC. Although the perfect channel assumption

in [48] and [49] excludes power constraints and greatly simplifies the problem, it is too

restrictive for wireless settings. More practical models with noisy channels are consid-

ered in [50–54, 56, 57, 71, 72] [50] considers the problem of transmission and fusion of

scalar source signal for noisy multiple access channels (MAC), where all sensors share

one total transmission power. In practice total power constraint could still be stringent

since the sensors are usually sufficiently distributed within a large area and therefore
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power sharing is hard to realize. [51] studies noisy and fading channels and separate

power constraint for each sensor, under the assumptions that all channel matrices are

square and nonsingular. [57] considers the special case of scalar source signal, where

separate power constraints and noisy channels are assumed.

Compared to the forementoined literature, the most generic model for centralized

wireless sensor network is first introduced in [52]. The model proposed by [52] con-

siders fading and noisy channels, separate power constraint for each sensor and both

orthogonal and coherent MAC. Besides the above, no additional assumptions are im-

posed on the dimension/rank of beamformers or channel matrices, i.e. beamformers

can be compressive, redundancy-added or rate-1 and channel matrices can be slim,

flat or square (singular or nonsingular). Due to the difficulty of the problem, [52]

provides solutions to several important special cases subsumed in the generic model

for coherent MAC, including the scalar source signal case, the noiseless sensor-FC

channel case and the no-intersymbol-interference (no-ISI) noisy channel case. Fol-

lowing the exact generic model in [52], [53] develops an iterative block coordinate

descent (BCD) method that is applicable to any general case for coherent MAC. Re-

cently various strong-convergence-guaranteed BCD-based algorithms have been pro-

posed in [71], which can solve the most generic model in [52] for coherent MAC and

subsume the algorithm by [53] as a specialized realization. All of the above mentioned

papers [48–53, 57, 71] adopt mean square error (MSE) as performance metric.

Besides the MSE criterion, signal to noise ratio (SNR) is another crucial and com-

monly used metric for scalar signal recovery. For the coherent MAC wireless sensor net-

works proposed in [52], joint beamforming design towards maximizing SNR is reported

in [56] and [72]. Recently joint beamforming design to maximize mutual information
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(MI) for orthogonal MAC is considered in [54].

It worth noting that the beamforming design problems in MIMO multi-sensor decision-

fusion system are closely related with those in other multi-agent communication net-

works, e.g. MIMO multi-relay and multiuser communication systems. Plenty of excit-

ing results exist in literature, see, for example, [58, 59, 61] and the reference therein.

The contribution of this chapter is follows:

1) In this chapter we research the joint beamforming design in coherent MAC wire-

less sensor network towards MI maximization. Just as the MSE and SNR metric, MI is

also a very meaningful design criterion, which is commonly adopted in communication

theory to evaluate the average information transmission rate of a system. In wireless

sensor network, MI represents the average information of the source signal which can

be extracted at the fusion center from the sensors’ observations for each use of channel.

Compared to the great deal of existing literature focusing on MSE, however, not many

results have been reported on MI optimization in the WSN context due to its difficult

nature. One recent inspiring paper [54] provides the beamforming solution to maxi-

mize MI in the orthogonal MAC wireless sensor network. As will be seen, the original

MI optimization problem in coherent MAC wireless sensor networks is also a highly

nonconvex hard problem and efficient solutions are meaningful and desirable.

2) Inspired by the seminal idea of weighted minimum mean square error (WMMSE)

method in [73] and [60], we introduce a weight matrix and a virtual FC receiver as inter-

mediate variables (the original MI maximization problem does not assume the presence

of linear filter at FC, since, according to the data-processing inequality in [77], MI will

never increase whatever processing procedure is performed at the receiver) and develop
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block coordinate ascent (BCA) algorithms to efficiently solve the original problem. Here

we decompose the MI problem into three subproblems—one subproblem to update the

virtual FC receiver, one subproblem to update the weight matrix and the third one to

jointly optimize the entire beamformers of all sensors. The two former subproblems

have closed form solutions and the third one can be proved to be a standard second or-

der cone programming (SOCP) problem. The convergence analysis shows that the limit

points of our solutions satisfy Karush-Kuhn-Tucker (KKT) conditions of the original

MI maximization problem.

3) Besides the above 3 block BCA algorithm, we also come out a multiple block

BCA algorithm, which has closed form solutions (possibly up to a simple bisection

search) for each subproblem and is consequently highly efficient for implementation

and not reliant on numerical solvers. Moreover we show that, in special circumstance,

fully analytical update is even possible for the multiple BCA algorithm. Complexity of

this algorithm is examined and extensive numerical results show that this multiple block

BCA algorithm exhibits quite good convergence performance.

The rest of the chapter is organized as follows: Section 6.2 introduces the system

model of the coherent MAC wireless sensor network and formulates the joint beam-

forming problem towards maximizing mutual information. In section 6.3 we propose

two BCA based algorithms to solve our original problem, with the convexity, closed

form solutions and convergence being discussed in full details. Section 6.4 provides

numerical experiment results. Section 6.5 concludes the article.

Notations: In the sequel, we use bold lowercase letters to denote complex vectors

and bold capital letters to denote complex matrices. 0, Om×n, and Im are used to de-

note zero vectors, zero matrices of dimension m × n, and identity matrices of order
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m respectively. AT , A∗, AH , and A† are used to denote the transpose, the conjugate,

the conjugate transpose(Hermitian transpose), and the Moore-Penrose pseudoinverse

respectively of an arbitrary complex matrix A. Tr{·} denotes the trace operation of a

square matrix. | · | denotes the modulus of a complex scalar, and ‖ · ‖2 denotes the

l2-norm of a complex vector. vec(·) means vectorization operation of a matrix, which

is performed by packing the columns of a matrix into a long one column. ⊗ denotes

the Kronecker product. Diag{A1, · · · ,An} denotes the block diagonal matrix with its

i-th diagonal block being the square complex matrix Ai, i ∈ {1, · · · , n}. Hn
+ and Hn

++

represent the cones of positive semidefinite and postive definite matrices of dimension

n respectively. Here � 0 and ≻ 0 denote that a square complex matrix belongs to Hn
+

and Hn
++ respectively. Re{x} means taking the real part of a complex value x.

6.2 System Model

Here we consider the centralized wireless sensor network as illustrated in Fig.6.1.

This system has L sensors and one fusion center. We assume that all sensors and

the FC are equipped with multi-antenna. Denote the number of the antennae of the

i-th sensor as Ni, i ∈ {1, · · · , L}, and that of the FC as M . The source signal s

is a complex vector of dimension K, i.e. s ∈ CK×1. Each sensor utilizes a linear

beamformer(transmiter/precoder) Fi ∈ CNi×K to transmit its observed data. In the

beamforming problem to optimize MSE or SNR, a linear receiver(postcoder) is usually

employed on the side of fusion center. In fact the presence of linear receiver at the FC

leads to joint optimization of transmitters and receivers and can greatly improve the per-

formance metric in terms of MSE or SNR. However linear receiver is not considered
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Figure 6.1: Multi-Sensor System Model

for MI maximization problem. According to information nonincreasing principle, any

kinds of processing at the receiver will not increase the mutual information between the

source and receiver. Thus, without loss of optimality, no filter is necessary at FC.

Here we adopt the assumption that the source signal follows zero mean circularly

symmetric complex Gaussian distribution, i.e. s ∼ CN(0,Σs) with Σs being positive

definite. The meaning of the Gaussian signaling assumption has many folds as follows:

generally MI lacks of analytical expression and the Gaussian signaling is one of the few

exceptions having elegant closed form, which makes our problem analyzable. Moreover,

for given source covariance and Gaussian vector channel, Gaussian source maximizes

the mutual information [77], i.e. achieves the channel capacity. So in practice sensors

can perform signaling transformation to approximate the transformed signals’ distri-

bution to Gaussian distribution to improve transmission efficiency [75, 76]. At least,
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Gaussian source can provide an upper bound of the reduced uncertainty of the source

at the fusion center. At the same time by central limit theory, the Gaussian signaling

can serve as a good approximation for a large number of observations which follow

independent and identical distribution.

The channel status {Hi}Li=1 are assumed to be known at the receiver, which can be

achieved by standard channel estimation technique via pilots. We denote Hi ∈ CM×Ni

as the channel coefficients from the i-th sensor to the fusion center. Due to interfer-

ence from surroundings or thermal noise from the sensor device, the observed signals

at the sensors are typically contaminated. We assume that the corruptions are additive

zero mean circularly symmetric complex Gaussian noise, i.e. ni ∼ CN(0,Σi), i ∈

{1, · · · , L} with Σi ∈ C
K×K being covariance matrix. Since the sensors are spatially

distributed, it is reasonable to assume that the noise ni at different sensors are mu-

tually uncorrelated. Here we consider the coherent multiple access channels (MAC),

which means the data from different sensors are superimposed at the fusion center.

Here we assume that the transmissions is the network are time-synchronous, i.e. the

FC receives data from different sensors in the same time slot, which can be realized via

GPS system. The collected data at the fusion center is corrupted by additive Gaussian

noise n0. Without loss of generality, n0 is assumed to be white and zero-mean, i.e.

n0 ∈ CM×1 ∼ CN(0, σ2
0IM).

Based on the system model above, the transmitted signal at the i-th sensor is Fi(s+
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ni), and the received signal at the fusion center is presented as:

r =

L∑

i=1

HiFi

(
s + ni

)
+ n0 (6.1)

=
( L∑

i=1

HiFi

)
s +

( L∑

i=1

HiFini + n0

︸ ︷︷ ︸
n

)
, (6.2)

where the compound noise vector n is still Gaussian, i.e. n ∼ CN(0,Σn) with its

covariance matrix Σn as

Σn = σ2
0IM +

L∑

i=1

HiFiΣiF
H
i H

H
i . (6.3)

It should be pointed out that the whiteness assumption of the Gaussian noise n0 at

the receiver does not undermine generality of the model. Indeed if n0 ∼ CN(0,Σ0) has

coloured covariance Σ0, by redefining r̃ , Σ
− 1

2
0 r, H̃i , Σ

− 1
2

0 Hi and ñ0 , Σ
− 1

2
0 n0, the

received signal can be equivalently written as

r̃ =
L∑

i=1

H̃iFi

(
s+ ni

)
+ ñ0, (6.4)

with ñ0 ∼ CN(0, IM), which coincides with the model in (6.1).

The mutual information between the source signal and the received signal at FC can
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be given as

MI
({

Fi

}L
i=1

)

= log det

{
IM +

( L∑

i=1

HiFi

)
Σs

( L∑

i=1

HiFi

)H(
σ2
0I+

L∑

i=1

HiFiΣiF
H
i H

H
i

)−1
}

(6.5)

In practice, each sensor has independent transmission power according to its own

battery condition. The average transmitted power for the i-th sensor is E
{∥∥Fi

(
s +

ni

)∥∥2
2

}
= Tr

{
Fi

(
Σs +Σi

)
FH

i

}
, which must respect its power constraint Pi. Thus the

beamforming problem of the multiple sensor system can be formulated as the following

optimization problem:

(P0) :max .MI
(
{Fi}Li

)
, (6.6a)

s.t.Tr
{
Fi

(
Σs +Σi

)
FH

i

}
≤Pi, i∈{1, · · · , L}. (6.6b)

The above optimization problem is nonconvex, which can be easily seen by exam-

ining the convexity of the special case where {Fi}Li=1 are all scalars. Efficient solutions

to (P0) are desirable.

Since the above problem can hardly be solved in one shot, we propose iterative

algorithms which fall in the framework of block coordinate descent/ascent (BCD/A)

algorithms [63], also known as alternative minimization/maximization algorithm(AMA)

[62] or Gauss-Seidel (GS) algorithms somewhere else [63] [64].
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6.3 Algorithm Design

In this section, we focus on solutions to the problem (P0). Note that directly uti-

lizing BCA method to partition the beamformers into groups does not help to simplify

our problem. Even if only one separate beaformer is considered, the objective is still

hard. Inspired by the weighted mean square error(WMMSE) method proposed by the

seminal papers [73] and [60], we introduce auxiliary variables to convert the objective

into a BCA-friendly form and then decompose the problem into solvable subproblems.

Interestingly, although mutual information is independent of processing techniques at

the receiver, our solution actually introduces a virtual linear filter at the fusion center to

achieve our goal.

Firstly we introduce two useful lemmas which pave the way for transforming the

original hard problem (P0).

Lemma 6.3.1 ( [60,73]). For any positive definite matrix E ∈ Hn
++ , the following fact

holds true

− log det(E) = max .
W∈Hn

++

{
log det

(
W
)
− Tr{WE}+ n

}
(6.7)

with the optimal solution W⋆ given as

W⋆ = E−1. (6.8)

Lemma 6.3.2. Define a matrix function E
(
G
)

of variable G as

E
(
G
)
,
(
I−GHH

)
Σs

(
I−GHH

)H
+GHΣnG, (6.9)

145



with Σs and Σn being positive definite matrices. Then for any positive definite matrix

W, the following optimization problem

min .
G

Tr
{
WE(G)

}
(6.10)

can be solved by the optimal solution

G⋆ =
(
HΣsH

H +Σn

)−1
HΣs. (6.11)

At the same time, E(G⋆) is given as

E(G⋆) =
(
HHΣ−1

n H+Σ−1
s

)−1
. (6.12)

Proof. The problem in (6.10) is a convex problem. To see this, notice that the objective

function in (6.10) is a quadratic function of G with its quadratic terms being given as

Tr
{
WGHHΣsH

HG
}
+ Tr

{
WGHΣnG

}
. (6.13)

By the identities Tr{AB} = Tr{BA} and Tr{ABCD} = vecT (DT )
[
CT ⊗A

]
vec(B),

the first term of the above quadratic terms can be rewritten as

Tr
{
WGHHΣsH

HG
}
=vecH(G)

[
W∗⊗

(
HΣsH

H
)]
vec(G). (6.14)

Notice that W and HΣsH
H are both positive semi-definite, so

[
W∗⊗

(
HΣsH

H
)]

is

positive semi-definite [67] and thus the first quadratic term is a convex function of G.

Similarly the second quadratic term in (6.13) can also be proved to be convex function

of G. Thus (6.10) is non-constrained convex problem of G. By setting the derivative
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with respective to G to zero [78], we obtain

∂Tr
{
WE(G)

}

∂G∗ =
[(

HΣsH
H+Σn

)
G−HΣs

]
W=O. (6.15)

Notice that W is positive definite, it can be cancelled and thus the equation (6.11) has

been obtained. By substituting (6.11) into (6.9), (6.12) can be proved.

Comment 6.3.1. For the special case W = I, the result in lemma 6.3.2 is the well

known Wiener filter. Here lemma 6.3.2 actually slightly generalizes this well known

result. As we have shown above, when the mean square error is weighted by a matrix

W, the Wiener filter maintains its optimality as long as the weighted parameter W is

positive definite.

Now by introducing the notation

H̃ ,
L∑

i=1

HiFi, (6.16)

and the notations in equation (6.3), we can transform our objective functionMI
(
{Fi}Li=1

)
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as the following:

MI
(
{Fi}Li=1

)
=log det

(
IM + H̃ΣsH̃

HΣ−1
n

)
(6.17)

=log det
((

H̃HΣ−1
n H̃+Σ−1

s

)
Σs

)
(6.18)

=−log det
(
H̃HΣ−1

n H̃+Σ−1
s

)−1
+log det

(
Σs

)
(6.19)

= max .
W∈HK

++

{
log det

(
W
)
−Tr

{
W
(
H̃HΣ−1

n H̃+Σ−1
s

)−1}
+K
}
+log det

(
Σs

)
(6.20)

= max .
W∈HK

++,

G

{
log det

(
W
)
−Tr

{
W
[(
I−GHH̃

)
Σs

(
I−GHH̃

)H
+GHΣnG

]}}

+K+log det
(
Σs

)
, (6.21)

where the last two steps follow lemma 6.3.1 and 6.3.2 respectively.

Thus the optimization problem (P0) maximizing MI has been transformed into an

equivalent problem (P1) in (6.22) as follows

(P1) max .
W∈HK

++
,

{Fi}Li=1,G

MI
(
{Fi}Li=1,W,G

)
(6.22a)

=

{
log det

(
W
)
−Tr

{
W
[(
I−GH

( L∑

i=1

HiFi

))
Σs

(
I−GH

( L∑

i=1

HiFi

))H
+GHΣnG

]}}

+log det(Σs)+K,

s.t. Tr
{
Fi

(
Σs+Σn

)
FH

i

}
≤Pi, i ∈ {1, · · · , L}. (6.22b)

As a straightforward consequence of the above two lemmas, we have obtained the

optimal solutions to the following two subproblems of (P1).
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When {Fi}Li=1 and G are given, the optimal W⋆ is given as

W⋆ = arg max .
W∈HK

++

MI
(
W

∣∣∣{Fi}Li=1,G
)

(6.23)

=

[(
I−GH

( L∑

i=1

HiFi

))
Σs

(
I−GH

( L∑

i=1

HiFi

))H
+GHΣnG

]−1

.

When {Fi}Li=1 and W are given, the optimal G⋆ is given as

G⋆ = argmax .
G

MI
(
G

∣∣∣{Fi}Li=1,W
)

(6.24)

=
[( L∑

i=1

HiFi

)
Σs

( L∑

i=1

HiFi

)H
+Σn

]−1( L∑

i=1

HiFi

)
Σs,

with Σn being given in equation (6.3).

Now we focus on the subproblem of optimizing {Fi}Li=1 with W and G given. To-

wards this end, we have two options—we can either jointly optimize {Fi}Li=1 in one

shot, or we can further consult to BCA methodology again to partition the entire vari-

ables {Fi}Li=1 into L blocks, {F1}, · · · , {FL} and attack L smaller problems one by

one in a cyclic manner. For both of these two options, solutions, hopefully in a closed

form, are desirable and complexity are concerned. In the following, we discuss these

two alternatives in details.
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6.3.1 Jointly Optimizing {Fi}Li=1

The subproblem of (P1) maximizing MI
(
{Fi}Li=1

∣∣W,G
)

with W and G given is

rewritten as follows

(P2) min .
{Fi}Li=1

Tr

{
W
[(

I−GH
( L∑

i=1

HiFi

))
Σs

(
I−GH

( L∑

i=1

HiFi

))H
+GHΣnG

]}
, (6.25a)

s.t. Tr
{
Fi

(
Σs+Σi

)
FH

i

}
≤Pi, i ∈ {1, · · · , L}. (6.25b)

The following theorem identifies the convexity of (P2).

Theorem 6.3.1. The problem (P2 ) is convex.

Proof. To begin with, we first look at the function f
(
X
)
: Cm×n 7→ R given as follows:

f
(
X
)
, Tr

{
Σ1XΣ2X

H
}

(6.26)

with constant matrices Σ1 and Σ2 being positive semi-definite and having appropriate

dimensions. By the identity Tr{ABCD} = vecT (DT )
[
CT ⊗A

]
vec(B), f

(
X
)

can be

equivalently written as

f
(
X
)
= vecH

(
X)
[
Σ∗

2 ⊗Σ1

]
vec
(
X
)
. (6.27)

Since Σ1 and Σ2 are positive semi-definite, [Σ∗
1 ⊗ Σ2] is positive semi-definite [67].

Thus f
(
X
)

is actually a convex function with respect to X.

For a further step, we replace X =
∑L

i=1HiFi. Since
∑L

i=1HiFi is an affine (linear

actually) transformation of variables {Fi}Li=1, and affine operations preserve convexity
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by [68], the following function

f
(
{Fi}Li=1

)
= Tr

{
Σ1

( L∑

i=1

HiFi

)
Σ2

( L∑

i=1

HiFi

)H}
(6.28)

is a convex function with respect to variables {Fi}Li=1 jointly.

To identify the convexity of the objective in (6.25a), it suffices to prove the nonlinear

terms of {Fi}Li=1 are convex, which are given as

Tr
{(

GWGH
)( L∑

i=1

HiFi

)
Σs

( L∑

i=1

HiFi

)H}
+

L∑

i=1

Tr
{(

HH
i GWGHHi

)
FiΣiF

H
i

}
.

(6.29)

Based on the discussion at the beginning of this proof, each of above terms is convex and

thus the objective is convex. Similarly the convexity of each power constraint function

can also be recognized. Thus the problem (P2) is convex.

After identifying the convexity of problem (P2), we reformulate it into a standard

quadratic constrained quadratic problem(QCQP) problem. To this end, we introduce the
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following notations

fi , vec
(
Fi

)
; (6.30a)

g , vec
(
G
)
; (6.30b)

Aij , Σ∗
s ⊗

(
HH

i GWGHHj

)
; (6.30c)

Bi ,
(
WΣs

)∗ ⊗Hi; (6.30d)

Ci , Σ∗
i ⊗

(
HH

i GWGHHi

)
; (6.30e)

f ,
[
fT1 , · · · , fTL

]T
; (6.30f)

A ,
[
Aij

]L
i,j=1

; (6.30g)

B ,
[
B1, · · · ,BL

]
; (6.30h)

C , Diag
{
C1, · · · ,CL

}
; (6.30i)

Di,Diag
{
OK(

∑i−1
j=1Nj)

,
(
Σs+Σi

)∗⊗INi
,OK(

∑L
j=i+1Nj)

}
; (6.30j)

c , Tr
{
WΣs

}
+ σ2

0Tr
{
GWGH

}
. (6.30k)

Based on the above notations, problem (P2) can be equivalently written as the following

QCQP problem,

(P3) : min
f

fH
(
A+C

)
f−2Re

{
gHBf

}
+c, (6.31a)

s.t. fHDif ≤ Pi, i ∈ {1, · · · , L}. (6.31b)

By theorem 1, (P3) is convex, thus (A+C) is positive semidefinite, which implies that

its square root (A+C)
1
2 exists. Therefore the above problem can be further rewritten in
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a standard SOCP form as follows:

(P3SOCP ) : min .
f ,t,s

t, (6.32a)

s.t. s− 2Re{gHBf}+ c ≤ t; (6.32b)
∥∥∥∥∥∥∥

(A+C)
1
2 f

s−1
2

∥∥∥∥∥∥∥
2

≤ s+1

2
; (6.32c)

∥∥∥∥∥∥∥

D
1
2
i f

Pi−1
2

∥∥∥∥∥∥∥
2

≤ Pi+1

2
, i ∈ {1, · · · , L}. (6.32d)

The above problem can be solved by standard numerical tools like CVX [69].

The method discussed above is summarized in algorithm 4.

Algorithm 4: 3-Block BCA Algorithm to solve (P0)

1 Initialization: randomly generate feasible {F(0)
i }Li=1; obtain G(0) by (6.24);

obtain W(0) by (6.23);

2 repeat

3 with G(j−1) and W(j−1) being fixed, solve (P3) in (6.32), obtain {F(j)
i }Li=1;

4 with {F(j)
i }Li=1 and W(j−1) being fixed, obtain G(j) by (6.24);

5 with {F(j)
i }Li=1 and G(j) being fixed, obtain W(j) by (6.23);

6 until increase of MI is sufficiently small or predefined number of iterations is

reached;

For the proposed 3-BCA algorithm, we have the following conclusion on its conver-

gence

Theorem 6.3.2. Assume that the covariance matrix Σs ≻ 0. Algorithm 4 generates

increasing MI sequence. Its solution sequence has limit points, and each limit point of

the solution sequence is a KKT point of the original problem (P0 ).
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Proof. Refer to appendix 6.6.1.

6.3.2 Cyclic (L+1)-BCA Algorithm

Although the above proposed 3-block BCA algorithm guarantees a satisfactory con-

vergence, the subproblem (P3) relies on standard numerical solvers, e.g. interior point

method [69], to obtain solutions. Closed form solutions to (P3) is unknown. According

to the complexity analysis performed in next subsection 6.3.3, when the number of sen-

sors and/or antenna number of each sensor grows, the problem (P3) can be very large

size and consequently highly computation demanding. So effective algorithms with

lower complexity are desirable. In this subsection, we consult to BCA methodology

again to further partition the variables {Fi}Li=1 into L singleton sets: {F1},· · · ,{FL}.

This results in a cyclic (L+1)-BCA algorithm, where only one separate beamformer

Fi is optimized at each time and different beamformers are updated in an round robin

manner.

Now the problem of updating one separate beamformer becomes

(P3i) min .
fi

fHi
(
Aii+Ci

)
fi − 2Re

{(
gHBi−qH

i

)
fi
}
, (6.33a)

s.t. fHi Eifi ≤ Pi (6.33b)

with the definitions of qi and Ei as follows

qi ,
∑

j 6=i

Aijfj ; Ei ,
(
Σs+Σi

)∗⊗INi
. (6.34)
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We introduce the following notations

E
−1

2
i

(
Aii+Ci

)
E

−1
2

i = Ui




λi,1

. . .

λi,KNi



UH

i ; (6.35a)

pi = UH
i E

− 1
2

i

(
BH

i g − qi

)
, (6.35b)

with the eigenvalues {λi,j}KNi
j=1 arranged in an decreasing order, i.e. λi,1 ≥ · · · ≥ λi,KNi

.

We denote the k-th element of pi as pi,k and assume that ri = rank
(
Aii+Ci

)
.

Then the solution to problem (P3i) is given by the following theorem.

Theorem 6.3.3. Under the assumption that Σs ≻ 0 or Σi ≻ 0, i ∈ {1, · · · , L}, the

optimal solution of problem (P3 i ) is given as follows:

CASE(I)—if either of the following two conditions holds:

i) ∃k ∈ {ri + 1, · · · , KNi} such that |pi,k| 6= 0;

or ii)
∑KNi

k=ri+1
|pi,k| = 0 and

∑ri
k=1

|pi,k|2
λ2
i,k

> Pi.

The optimal solution to (P3 i ) is given by

f⋆i =
(
Aii+Ci+µ

⋆
iEi

)−1(
BH

i g− qi

)
, (6.36)

with the positive value µ⋆
i being the unique solution to the following equation:

f(µi) =

ri∑

k=1

|pi,k|2
(λi,k + µi)2

= Pi. (6.37)

CASE(II)—otherwise,i.e.
∑KNi

k=ri+1
|pi,k|=0,

∑ri
k=1

|pi,k|2
λ2
i,k

≤Pi,
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The optimal solution to (P3 i ) is given by

f⋆i = E
− 1

2
i

(
E

− 1
2

i

(
Aii+Ci

)
E

− 1
2

i

)†
E

− 1
2

i

(
BH

i g − qi

)
. (6.38)

Proof. For limit of space, please refer to Theorem 3 in [71] for detailed proof.

In CASE(I) of theorem 6.3.3, equation (6.37) generally has no closed form solution.

Notice that f(µi) is a one-dimension strictly decreasing function of µi. So the determi-

nation of µ⋆
i can be efficiently performed by a bisection search. Thus a finite interval

containing µ⋆
i is necessary from which the bisection search can start. The following

lemma provides us bounds for µ⋆
i .

Lemma 6.3.3. A lower bound lbdi and upper bound ubdi for positive µ⋆
i in (6.36) in

theorem 6.3.3 can be given as follows:

i) For subcase i) of CASE(I)

lbdi =

[‖pi‖2√
Pi

− λi,1

]+
, ubdi =

‖pi‖2√
Pi

; (6.39)

ii) For subcase ii) of CASE(I)

lbdi =

[‖pi‖2√
Pi

− λi,1

]+
, ubdi =

‖pi‖2√
Pi

− λi,ri, (6.40)

where [x]+ , max(x, 0).

Proof. For limit of space, please refer to Lemma 1 in [71] for detailed proof.

By theorem 6.3.3 and lemma 6.3.3, we have obtained a nearly closed form solution
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to the problem (P3i). Here we claim the above solution nearly closed form since it

involves a bisection search.

It is worth noting that the fully closed form solution to problem (P3i) does exist in

the special but important case of scalar source signal, i.e. K = 1. As will be seen

in the complexity analysis in subsection 6.3.3, the increase of source signal dimension

can extensively enlarge the beamforming problem size and therefore its complexity. So

in practice, when the wireless sensor network has adequate bandwidth, it is preferred

to transmit the sensed data component by component to decrease the processing and

beamforming design complexity at the fusion center. Another tempting reason to do

so is that when the source signal is scalar, µ⋆
i can be obtained in an explicit way and

therefore the bisection search is not needed. Moreover, at this time, the eigenvalue

decomposition (recall (6.35a)) will not be involved in solving (P3i). This conclusion

reads as the following corollary.

Corollary 6.3.1. For scalar transmission (K = 1 ), fully analytic solution to subproblem

(P3 i) can be obtained without evoking bisection search or eigenvalue decomposition.

Proof. In the special case where the signal source is scalar, the variables and parameters

in the subproblem optimizing one separate beamformer are specialized as follows

W → w; Fi → fi; G → g; Σs → σ2
s ; Σi → σ2

i . (6.41)

By defining q̃i ,
∑

j 6=iHjfj , ignoring the terms independent of fi and omitting the
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constant positive factor w in the objective, the problem (P3i) is rewritten as follows

(P3i) : min .
fi

(σ2
s + σ2

i )f
H
i

(
HH

i gg
HHi

)
fi

− 2σ2
sRe
{
(1− q̃H

i g)g
HHifi

}
(6.42a)

s.t. ‖fi‖2 ≤
Pi

σ2
s + σ2

i

, P̄i. (6.42b)

Solving the problem (P3i) just follows the outline of theorem 6.3.3. Here, the key

point leading to a closed form solution is the fact that the quadratic matrix HH
i gg

HHi

has rank-1, i.e. ri = 1 in theorem 6.3.3. Thus we obtain

(σ2
s + σ2

i )H
H
i gg

HHi (6.43)

= Ui




(σ2
s + σ2

i )g
HHiH

H
i g 0H

0 O(KNi−1)×(KNi−1)


UH

i ,

with unitary matrix Ui ,
[
ui,1,ui,2, · · · ,ui,KNi

]
having its columns {ui,j}KNi

j=1 satisfy-

ing the following properties

ui,1=
HH

i g

‖HH
i g‖2

, and uH
i,jH

H
i g=0, for j=2, · · · , KNi. (6.44)

It can be readily checked that the parameter pi in theorem 6.3.3 is given as:

pi,1=σ2
s(1− gHq̃i)‖HH

i g‖2; pi,j=0, j={2, · · · , KNi}. (6.45)
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At this time, the function f(µi) in (6.37) reduces to an elegant form

f(µi) =
σ4
s

∣∣1− gH q̃i

∣∣2∥∥HH
i g
∥∥2
2(

µi + (σ2
s + σ2

i )g
HHiH

H
i g
)2 . (6.46)

Based on the above observations, it can be concluded that the subcase i) of CASE(I)

in theorem 6.3.3 will never occur. The two cases for positive and zero µ⋆
i can be specified

as follows:

CASE(I)— µ⋆
i > 0

This is equivalent to σ4
s

∣∣1 − gH q̃i

∣∣2 > (σ2
s + σ2

i )
2P̄i‖HH

i g‖22 and optimal solutions

are determined by

µ⋆
i =σ2

s P̄
− 1

2
i

∣∣1−gHq̃i

∣∣∥∥HH
i g
∥∥
2
−(σ2

s+σ2
i )
∥∥HH

i g
∥∥
2
, (6.47a)

f⋆i =σ2
s(1−gHq̃i)

(
µ⋆
i I+(σ2

s+σ2
i )H

H
i gg

HHi

)−1

HH
i g. (6.47b)

CASE(II)— µ⋆
i = 0

This holds if and only if σ4
s

∣∣1−gH q̃i

∣∣2≤ (σ2
s+σ2

i )
2P̄i‖HH

i g‖22 and the optimal f⋆i is

given by

f⋆i =
σ2
s (1−gHq̃i)H

H
i g

(σ2
s+σ2

i )g
HHiH

H
i g

. (6.48)

Thus we have seen that for scalar transmission case, fully closed form solution to (P3i)

can be obtained without bisection search or eigenvalue decomposition.

The cyclic (L+1)-BCA algorithm is summarized in algorithm 5.
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Algorithm 5: Cyclic (L+ 1)-BCA Algorithm to Solve (P0) Optimizing MI

1 Initialization: randomly generate feasible {F(0)
i }Li=1; obtain G(0) by (6.24);

obtain W(0) by (6.23);

2 repeat

3 for i = 1; i <= L; i++ do

4 with G, W, {Fk}k 6=i being fixed, perform eigenvalue decomposition and

obtain pi (6.35);

5 if ∃k ∈ {ri + 1, · · · , KNi} s.t. |pi,k| 6= 0 then

6 determine bounds lbdi and ubdi by (6.39);

7 bisection search on
[
lbdi, ubdi

]
to determine µ⋆

i satisfying (6.37);

8 obtain Fi by (6.36);

9 else if
∑KNi

k=ri+1 |pi,k|2=0,
∑ri

k=1
|pi,k|2
λ2
i,k

>Pi then

10 determine bounds lbdi and ubdi by (6.40);

11 bisection search on
[
lbdi, ubdi

]
to determine µ⋆

i satisfying (6.37);

12 obtain Fi by (6.36);

13 else

14 obtain Fi by (6.38);

15 end

16 update G by (6.24) ;

17 update W by (6.23) ;

18 end

19 until increase of MI is sufficiently small or predefined number of iterations is

reached;
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6.3.3 Complexity

In this subsection, we discuss the complexity of the proposed algorithms.

The two subproblems optimizing G and W have closed form solutions in (6.24) and

(6.23), their complexities come from matrix inversion and are given as O
(
K3
)
.

For the 3-block BCA algorithm, the SOCP problem (P3SOCP ) in (6.32) is solved by

jointly optimizing all beamformers. The complexity of solving an SOCP is [93]

O

(
k

1
2
SOC

(
m3

SOC+m
2
SOC

kSOC∑

i=1

nSOC,i+

kSOC∑

i=1

n2
SOC,i

))
, (6.49)

where kSOC is the number of second order cone constraints, mSOC is the dimension of

optimization problem and nSOC,i denotes the dimension of the i-th second order cone

constraint. For the problem in (6.32), kSOC = L+ 1, mSOC = K
(∑L

i=1Ni

)
, nSOC,1 =

K
(∑L

i=1Ni

)
+ 1 for the first second order cone constraint in (6.32c) and nSOC,i+1 =

KNi + 1 for the i-th power constraint in (6.32d), i ∈ {1, · · · , L}. Substituting these

parameters into (6.49), the complexity of solving (P3) is O
(√

LK3(
∑L

i=1Ni)
3
)

, this is

also the complexity for each loop of 3-block BCA algorithm.

For the cyclic (L+1)-BCA algorithm, the problem (P3i) optimizing one separate

sensor’s beamformer has its major complexity coming from eigenvalue decomposition,

which is O(K3N3
i ). Thus the complexity for each loop is O

(∑L
i=1K

3N3
i

)
. Clearly

by fully decomposing the original problem and researching the solution structure of

the subproblems, the (L+ 1)-block BCA algorithm effectively lowers the computation

complexity.
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6.4 Numerical Results

In this section, numerical results are presented to verify the algorithms proposed in

the previous section.

In our following experiments, we test the case where the source signal and all ob-

servation noise are colored. Specifically, we set the covariance matrices of the source

signal and observation noise as

Σs = σ2
sΣ0, Σi = σ2

iΣ0, i ∈ {1, · · · , L}, (6.50)

where the K ×K Toeplitz matrix Σ0 is defined as

Σ0 =




1 ρ ρ2
. . . ρK−1

ρ 1 ρ
. . .

. . .

ρ2 ρ 1
. . . ρ2

. . .
. . .

. . .
. . . ρ

ρK−1 . . . ρ2 ρ 1




. (6.51)

The parameter ρ in the above equation is used to adjust the correlation level between

different components of the signal or noise. In our test, ρ is set as ρ = 0.5. Here we

define the observation signal to noise ratio at the i-th sensor as SNRi , σ2
s

σ2
i

and the

channel signal to noise ratio as SNR , σ2
s

σ2
0
.

In figure 6.2 and 6.3 we test the performance of the 3-block BCA and cyclic (L+1)-

BCA algorithms for multiple dimension source signal. Here two cases are tested—

heterogeneous network and homogeneous network, in figures 6.2 and 6.3 respectively.
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In the heterogeneous network, the transmission power, observation noise level and num-

bers of antennae of each sensor are different. We set up a wireless sensor network with

three sensors, i.e. L = 3. The dimension of the source signal and the number of antenna

of the FC are chosen as 3 and 4 respectively, i.e. K = 3 and M = 4. We randomly

set the antenna number for each sensor as N1 = 3, N2 = 4, and N3 = 5 respectively,

the transmission power constraint for each sensor as P1 = 2, P2 = 2 and P3 = 3 re-

spectively and the observation signal to noise ratio for each sensor as SNR1 = 8dB,

SNR2 = 9dB and SNR3 = 10dB respectively. Comparatively, in homogeneous sensor

network each sensor has the same transmission power, observation noise level and num-

ber of antenna. In this test case we assume that K = 4, M = 4, each sensor has Ni = 5

antennae and transmission power Pi = 2, with observation noise level SNRi = 9dB.

In our test, to take into account the impact of the channel parameters, for the above

system set-up and any specific channel SNR we randomly generate 500 channel real-

izations. For each channel realization, two proposed algorithms are run, both of which

start from one common random feasible solution. The progress of MI with respect to

outer-loop iteration numbers are recorded. For one given iteration number, the average

MI performance over all 500 channel realizations is presented in figure 6.2 and 6.3. For

the implementation of 3-BCA algorithm, SDPT3 solver of CVX is chosen. The blue

solid curves represent the average MI performance obtained by 3-block BCA algorithm

with different numbers of iterations and the red dotted ones represent those obtained

by cyclic (L + 1) BCA algorithm. The black dotted curve represents the average MI

obtained by random full-power-transmission solutions, which are actually the average

MI performance for feasible solutions which make all power constraints active. From

figures 6.2 and 6.3, we see that the optimized beamformers obtained by the proposed al-

gorithms present significant MI improvement compared to nonoptimized beamformers.
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Figure 6.2: Heterogenous Test Case: 3-Block BCA Algorithm and Cyclic (L+1)-Block

BCA Algorithm with Different Numbers of Iterations.

Usually 40 to 50 iteration loops are sufficient to make the two algorithms converge and

the two algorithms finally converge to almost identical MI performance.

In figure 6.4 we test the special case of scalar source signal (K = 1), where (L+1)-

block BCA algorithm has fully closed form solution, which is summarized in corollary

6.3.1. In this experiment, we have the system setup as follows M = 4, N1 = 3, N2 = 4,

N3 = 5, P1 = 1, P2 = 2, P3 = 3 SNR1 = 7dB, SNR2 = 8dB and SNR3 = 9dB.

Similar results as in the multiple dimension source signal case have been obtained.

In figure 6.5 and 6.6, we check the impact of the random initials to the proposed

algorithms. We use the same system setup as those in figure 6.2 and 6.3 respectively.

Here the channel parameters are randomly chosen and fixed. 10 feasible solutions, each

of which makes all the power constraints active(satisfied with equality) are randomly
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Figure 6.3: Homogeneous Test Case:3-Block BCA Algorithm and Cyclic (L+1)-Block

BCA Algorithm with Different Numbers of Iterations
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Figure 6.4: Scalar Source Signal Case: 3-Block BCA Algorithm and Cyclic (L + 1)-
Block BCA Algorithm with Different Numbers of Iterations.
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Figure 6.5: Heterogenous Test Case: Optimizing Generalized MI by 3-Block BCA Al-

gorithm and Cyclic (L+ 1)-Block BCA Algorithm with Different Initial Points

generated. For each random initial point, we invoke the 3-block BCA and cyclic (L+1)-

block BCA algorithms to optimize the beamformers. The MI progress of the proposed

algorithms with different initials are illustrated in 6.5 and 6.6. It can be seen that both

the 3-block BCA and cyclic (L + 1)-block BCA are rather insensitive to selection of

initial points. The two different algorithms with different initial points finally converge

to almost identical value.

Last we test the complexity of the proposed algorithms. In Table 6.1 the average

MATLAB running time for each out-loop is presented. Here we consider the homo-

geneous sensor network. Different values of K, L and Ni are tested, which result in

different sizes of problem. SDPT3 solver of the CVX is used to implement 3-BCA al-

gorithm. As shown in the table, the cyclic (L+1) BCA algorithm is highly efficient,

since each of its update step can be performed in an almost analytical way.
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Figure 6.6: Homogeneous Test Case: Optimizing Generalized MI by 3-Block BCA

Algorithm and Cyclic (L+ 1)-Block BCA Algorithm with Different Initial Points

Table 6.1: MATLAB Running Time Per Outer-Loop (in Sec.)

Dim.

L
Algorithms L = 5 L = 10 L = 20

K = 1 3-BCA 0.2748 0.4018 0.7627

M = Ni = 2 Cyc. (L+1) 0.0125 0.0446 0.1792

K = 4 3-BCA 0.5079 2.168 12.93

M = Ni = 4 Cyc. (L+1) 0.0319 0.0999 0.3761

K = 8 3-BCA 10.41 90.51 729.2

M = Ni = 8 Cyc. (L+1) 0.0488 0.1310 0.4747

Notes: SDPT3 solver of CVX is chosen to implement 3-BCA.
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6.5 Conclusion

In this chapter, we consider the linear beamforming design problem for a coherent

MAC wireless sensor network to maximize the mutual information. As we have seen,

the original problem is nonconvex and difficult. To solve this problem, we adopt the

weighted minimum mean square error method and block coordinate ascent method to

decompose the original difficult problem into subproblems and examine the solution to

each subproblem, especially their closed form solution. The complexity and conver-

gence of proposed algorithms are also discussed in details. Extensive numerical results

are presented to verify and compare the behaviors of the proposed algorithms.

6.6 Appendix

6.6.1 Proof of Theorem 6.3.2

Proof. Since for each sub-problem, we solve an optimization problem with respect to a

subset of variables with others being fixed, the objective value obtained by solving the

current sub-problem cannot be smaller than previous one. Thus the entire MI sequence

keeps increasing.

Under the positive definiteness assumption of Σs,
(
Σs+Σi

)
≻ 0. Thus ∀i ∈

{1, · · · , L} we have

‖Fi‖2Fλmin

(
Σs+Σi

)
≤ Tr{Fi

(
Σs+Σi

)
FH

i } ≤ Pi, (6.52)

168



where λmin(·) denotes the minimum eigenvalue of a Hermitian matrix. Since λmin

(
Σs+

Σi

)
> 0, ‖Fi‖2F is finite for all i. Thus the variable {Fi}Li=1 is bounded. By Bolzano-

Weierstrass theorem, there exits a subsequence {kj}∞j=1 such that {F(kj)
i }Li=1 converges.

Since G and W are updated by continuous functions of {Fi}Li=1 in (6.24) and (6.23),

(
{F(kj)

i }Li=1,W
(kj),G(kj)

)
converges. Thus the existence of limit points in solution se-

quence has been proved.

We assume that
(
{F̄i}Li=1,W̄, Ḡ

)
is any limit point of

(
{F(k)

i }Li=1,W
(k),G(k)

)
.

Then there exists a subsequence {kj} such that
(
{F(kj)

i }Li=1,W
(kj),G(kj)

)

j→∞−→
(
{F̄i}Li=1,W̄, Ḡ

)
. Since {F(k)

i }Li=1 is bounded, by possibably restricting to a sub-

sequence, we can assume that
(
{F(kj+1)

i }Li=1

)
converges to a limit

({
F̂i

}L
i=1

)
.

Since for each j, {F(kj+1)
i }Li=1 are feasible, i.e.

Tr{F(kj+1)
i

(
Σs+Σi

)(
F

(kj+1)
i

)H
)} ≤ Pi, i ∈ {1, · · · , L}. (6.53)

By taking j → ∞ in the above inequalities, we obtain

Tr{F̂i

(
Σs+Σi

)
F̂H

i )} ≤ Pi, i ∈ {1, · · · , L}. (6.54)

So
{
F̂i

}L
i=1

are feasible.

For any feasible
{
Fi

}L
i=1

, we have

MI
(
{Fi}Li=1

∣∣W(kj),G(kj)
)
≤MI

(
{F(kj+1)

i }Li=1

∣∣W(kj),G(kj)
)
. (6.55)
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Noticing that MI function is continuous and taking j → ∞ in the above, we obtain

MI
(
{Fi}Li=1

∣∣W̄, Ḡ
)
≤ MI

(
{F̂i}Li=1

∣∣W̄, Ḡ
)
, (6.56)

for any feasible {Fi}Li=1.

Notice the {F(k)
i }Li=1 generated by algorithm 4 are feasible, by continuity of power

constraint functions, {F̄i}Li=1 are feasible. Thus we have

MI
(
{F̄i}Li=1

∣∣W̄, Ḡ
)
≤ MI

(
{F̂i}Li=1

∣∣W̄, Ḡ
)
. (6.57)

At the same time, since the MI sequence is increasing and
(
{F̄i}Li=1,W̄, Ḡ

)
is a limit

point of the solution sequence,

MI
(
{F̄i}Li=1

∣∣W̄, Ḡ
)
≥ MI

(
{F(k)

i }Li=1

∣∣W̄, Ḡ
)
, (6.58)

for any integer k. Substitute k with kj in (6.58), take limit j → ∞ and combine it with

(6.57), we have shown that {F̄i}Li=1 is actually an optimal solution to the problem (P2)

with parameters W̄ and Ḡ. So {F̄i}Li=1 satisfy KKT conditions of (P2) with parameters

W̄ and Ḡ, which are listed in (6.59) as follows

−HH
i ḠW̄

(
I−ḠH

( L∑

i=1

HiF̄i

))
Σs+HH

i ḠW̄ḠHHiF̄iΣi

+λiF̄i

(
Σs+Σi

)
= O, (6.59a)

λi

(
Tr
{
F̄i

(
Σs+Σi

)
F̄H

i

}
− Pi

)
= 0, (6.59b)

Tr
{
F̄i

(
Σs+Σi

)
F̄H

i

}
≤ Pi, (6.59c)

λi ≥ 0. (6.59d)
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To simplify the following exposition, we introduce the following two notations:

H̄ ,
L∑

i=1

HiF̄i; (6.60a)

Σ̄n , σ2
0I+

L∑

i=1

HiF̄iΣiF̄
H
i H

H
i . (6.60b)

According to the update step in algorithm 4, the limit points W̄ and Ḡ have the

relations with
{
F̄i

}L
i=1

as follows.

Ḡ =
[
H̄ΣsH̄

H+Σ̄n

]−1
H̄Σs, (6.61a)

W̄ = H̄HΣ̄−1
n H̄+Σ−1

s . (6.61b)

Utilizing (6.61) we can prove two identities in (6.62) and (6.63) as follows

ḠW̄
(
I−ḠHH̄

)

=
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄Σs

(
H̄HΣ̄−1

n H̄+Σ−1
s

)(
I−ΣsH̄

H
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄
)

=
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄

+
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄Σs

[
H̄HΣ̄−1

n

(
H̄ΣsH̄

H+Σ̄n

)
−
(
H̄HΣ̄−1

n H̄+Σ−1
s

)
ΣsH̄

H

︸ ︷︷ ︸
=O

]

·
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄

=
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄ (6.62)
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and

ḠW̄ḠH=
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄Σs

(
H̄HΣ̄−1

n H̄+Σ−1
s

)
ΣsH̄

H
(
H̄ΣsH̄

H+Σ̄n

)−1

=
(
H̄ΣsH̄

H+Σ̄n

)−1
[
H̄ΣsH̄

HΣ̄−1
n H̄ΣsH̄

H+H̄ΣsH̄
H
](
H̄ΣsH̄

H+Σ̄n

)−1

=
(
H̄ΣsH̄

H+Σ̄n

)−1
[
H̄ΣsH̄

HΣ̄−1
n

(
H̄ΣsH̄

H+Σ̄n

)](
H̄ΣsH̄

H+Σ̄n

)−1

=
(
H̄ΣsH̄

H+Σ̄n

)−1
H̄ΣsH̄

HΣ̄−1
n (6.63)

Substituting equations (6.62) and (6.63) into (6.59a), we can rewrite the first order

KKT conditions associated with only {F̄i}Li=1 in the following

HH
i

[(
σ2
0I+

L∑

i=1

HiF̄iΣiF̄
H
i H

H
i

)
+
( L∑

i=1

HiF̄i

)
Σs

( L∑

i=1

HiF̄i

)H]−1( L∑

i=1

HiF̄i

)
Σs

[
I (6.64)

−
( L∑

i=1

HiF̄i

)H(
σ2
0I+

L∑

i=1

HiF̄iΣiF̄
H
i H

H
i

)−1
HiF̄iΣi

]
− λiF̄i

(
Σs+Σi

)
= O;

To check the conditions of the original problem (P0), we need to determine the

derivative of its Lagrangian function, or equivalently the derivative of MI with respect

to {Fi}. By defining

H ,
L∑

i=1

HiFi, (6.65)

the derivative of MI is calculated in (6.66) in the following with C1(dFi) and C2(dFi)

being uninteresting terms involved dFi only and independent of d(F∗
i ).
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d(MI) = Tr
{(

I+HΣsH
HΣ−1

n

)−1
d
(
HΣsH

HΣ−1
n

)}

= Tr
{(

I+HΣsH
HΣ−1

n

)−1
[
HΣsd(H

H)Σ−1
n +HΣsH

Hd(Σ−1
n )
]}

+ C1(dFi)

= Tr
{
HH

i

(
Σn+HΣsH

H
)−1

HΣs

[
I−HHΣ−1

n HiFiΣi

]
d(Fi)

H
}
+ C2(dFi),

(6.66a)

⇒∂MI

∂F∗
i

=

HH
i

[(
σ2
0I+

L∑

i=1

HiFiΣiF
H
i H

H
i

)
+
( L∑

i=1

HiFi

)
Σs

( L∑

i=1

HiFi

)H]−1( L∑

i=1

HiFi

)
Σs

[
I−

( L∑

i=1

HiFi

)H(
σ2
0I+

L∑

i=1

HiFiΣiF
H
i H

H
i

)−1
HiFiΣi

]
, i ∈ {1, · · · , L}.

(6.66b)

By comparing the equations (6.64) with the derivative in (6.66b), it is easily to recog-

nize that (6.64) is actually the first order KKT condition of problem (P0) optimizing MI.

Together with equations (6.59b), (6.59c) and (6.59d), the KKT conditions of original

problem have been proved to be satisfied by {F̄i}Li=1. Thus the proof is complete.
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Chapter 7

Joint Transceiver Design towards SNR

Maximization for Wireless Sensor

Network

7.1 Introduction

In the last two chapters, we have discussed joint transceiver design problem in cen-

tralized wireless sensor networks with respect to metrics of mean square error(MSE)

and mutual information(MI) respectively. MSE and MI are very standard and important

criteria to evaluate the wireless sensor netowrks’ performance from the perspectives of

signal estimation deviation and network throughput. As we mentioned before, usually

we have many different perspectives to assess the performance of wireless sensor net-

work. In this chapter, besides of the two criteria discussed before, we turn to another
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useful criterion—average signal to noise ratio(SNR) criterion. We know usually the

observation obtained at the fusion center(FC) is corrupted by noise. When the source

signal is a scalar and has finite alphabet, for example, it is finite-alphabet (e.g. QPSK

or 16-QAM) or hybrid, then the forementioned criteria like MSE or MI are not suitable

enough. In these cases, one solution is to consult to signal to noise ratio measure, which

maximize the average power of the signals to that of noise. When the transmitted signal

is one-dimension, the maximizing SNR criterion is equivalent to minimizing bit error

ratio(BER) criterion, which is a standard signal detection criterion. So the method to

jointly design transceivers to maximize average SNR motivates this chapter.

Nowadays the linear transceiver (beamforming) technique has been extensively stud-

ied and widely used in various kinds of communication systems. Taking advantage of

linear filters at the transmitters and/or the receivers, the system performance can be

significantly improved(e.g. spacial multiplexing gain). Linear transceivers provide suf-

ficient flexibility for system design while maintain easiness for implementation. Un-

der various system setup, the linear transceiver design in wireless sensor networks has

raised many meaningful but also challenging problems, onto which enormous attention

has been cast recently [48–53, 55, 71, 81, 82]. In [81] and [48], compression beamform-

ing is considered for sensor networks, where the transmission channels from sensors

to fusion center are assumed to be ideal(no fading and no noise). The model adopted

in [81] and [48] is unrealistic since a typical wireless communication channel should be

fading and noisy. Compression beamforming is also considered in [49], which makes

a further step to jointly optimize precoders as well as the compression dimension as-

signment to each precoder. The research in [49] is performed under the assumption that

noise covariance matrices at different sensors are identical (up to a scaling factor) and

the all transmission channels are ideal. The beamforming problems under noisy channel
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assumptions are considered in [50–53, 55, 71, 82]. [82] studies the simple case where

each sensor-FC channel is a scalar fading channel with additive noise and all sensors

share one total power constraint. Thus the beamforming problem in [82] boils down to

a power allocation problem. [50] considers high dimension transmission channels un-

der the assumptions that channel matrices are all square and nonsingular. As in [82],

all sensors in [50] share transmission power and thus has one single power constraint.

Note that the power sharing assumption in [82] and [50] is still stringent since in real-

ity sensors are usually distributed in a sufficiently large area without wired connections

between each other and powered separately by build-in batteries. [51] considers sepa-

rate power constraint for each sensor under the assumption that all sensor-FC channels

are square and nonsingular. Taking the additive channel noise and separate power con-

straint into account, [52] considers the special cases where all sensor-FC channels are

scalars or identity matrices(nonfading). The most generic system models are considered

in the recent work [53, 55, 71]. [53] and [71] consider the case that each sensor has sep-

arate power constraint and do not make any assumptions on beamformers’ dimensions

or channel matrices, i.e. each beamformer can be compressing, encoding or dimension-

maintained and each channel matrix can be flat, slim or square (singular or nonsingular).

All the above mentioned reference take mean square error (MSE) as performance met-

ric. The beamforming problem aiming to maximize mutual information (MI) under the

same generic system model is considered in [55].

The problem considered in this chapter is suitable for oversampling or cluster-based

wireless sensor networks. Oversampling of the target is desirable since the observations

of the sensors are usually corrupted by noise. More samples will lead to more accurate

estimation/detection result at the fusion center. Multiple samples of the target are often

obtainable in applications. For example when the target is slowly variant in time relative
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to sensor’s sampling procedure, sensor can perform sampling multiple times. Or each

sensor can have multiple sets of sampling devices which can perform sampling within

the same time slot. Furthermore it is interesting to note that mathematically, the over-

sampling model is equivalent to cluster-based sensing problem discussed in [50]. For the

cluster-based sensor network, each cluster is composed of a group of sensors which can

communicate with others free of error and share transmission power(this happens in the

case where sensors in the same cluster are located closely within a small nighborhood).

Thus the head of each cluster collects observations from cluster members and then trans-

mits all data to FC. In this chapter we adopt the general model used in [53,55,71], where

the transmission channels are fading and noisy, each sensor or sensor cluster has sep-

arate transmission power constraint and no additional assumptions are posed on beam-

formers or channel matrices. Moreover we use the signal-to-noise ratio(SNR) as our

performance metric, which is equivalent to symbol error rate(BER) metric for discrete

signaling or channel capacity for Gaussian signaling. To solve the problem, we propose

different iterative algorithms, with their convergence and complexity being examined

and discussed.

The rest of this chapter is organized as follows. In section 7.2 we introduce our

system model and formulate the beamforming design problem. Section 7.3 studies the

optimal linear receiver. Section 7.4 proposes two 2-block coordinate ascent algorithms

to solve our problem and section 7.5 introduces another framework which leads to low

complexity algorithm in certain scenarios. Section 7.6 provides numerical results and

section 7.7 concludes this chapter.

Notations: we use bold lowercase letters to denote complex vectors and bold capital

letters to denote complex matrices. 0, Om×n, and Im are used to denote zero vectors,
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zero matrices of dimension m × n, and identity matrices of order m respectively. AT ,

A∗ and AH are used to denote transpose, conjugate and conjugate transpose(Hermitian

transpose) respectively of an arbitrary complex matrix A. Tr{·} denotes the trace oper-

ation of a square matrix. | · | denotes the modulus of a complex scalar, and ‖ · ‖2 denotes

the l2-norm of a complex vector. vec(·) means vectorization operation of a matrix, which

is performed by packing the columns of a matrix into a long one column. ⊗ denotes the

Kronecker product. Diag{A1, · · · ,An} denotes the block diagonal matrix with its i-th

diagonal block being the square complex matrix Ai, i ∈ {1, · · · , n}. Re{x} and Im{x}

denote the real and imaginary part of a complex value x respectively.

7.2 System Model

First we look at the system model for oversampling wireless sensor network, as

shown in Fig.7.1. The system is composed of multiple sensors and one fusion center, all

 

Figure 7.1: Models for Oversampling or Cluster-Based WSN

equipped with multiple antennas. Ni and M denote the number of antennas of the i-th
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sensor and FC respectively. All sensors observe a common unknown parameter θ ∈ C.

Without loss of generality, it is assumed that the target parameter θ has zero mean and

unit covariance, i.e. E{|θ|2} = 1. All sensors sample/oversample the target parameter

and obtain noisy observations which are corrupted by thermal or environmental noise.

The noisy observations are given as

xi = 1Ki
θ + ni, i = 1, · · · , L, (7.1)

where 1Ki
is vector of dimension Ki × 1 with all its entries being 1 and Ki denotes

the number of samples. ni denotes the observation noise with zero mean value and

covariance matrices E
{
nin

H
i

}
= Σi. Here we make the mild assumption that Σi ≻ 0.

The sensors in the network are sufficiently distributed in space thus it is reasonable to

assume that the observations noise at different sensors are uncorrelated.

The noisy observation is beamformed by linear filter Fi ∈ C
Ni×Ki at each sensor

before transmission. We denote the channel parameters from the i-th sensor to the fusion

sensor as Hi ∈ CM×Ni . Here we assume that all the channel matrices are known at the

fusion center, which can be obtained by standard channel estimation techniques. The

received signal r at the fusion center reads:

r =
L∑

i=1

(
HiFixi

)
+ n0 (7.2)

=
L∑

i=1

(
HiFi1Ki

)
θ +

( L∑

i=1

HiFini + n0

)
, (7.3)

where n0 is additive noise at the fusion center. Without loss of generality n0 has zero

mean value and white covariance matrix, i.e. E{n0n
H
0 } = σ2

0IM . Since the fusion center

is usually far away from the sensing field, n0 is uncorrelated with the observation noise
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ni.

In practice, the wireless sensors are supported by build-in batteries or harvest en-

ergy from its surroundings, like polar energy or terrestiral heat. Thus due to different

battery or environment conditions, each sensor has different transmission power con-

straint. The average transmission power for the i-th sensor is given as E{Fi(1Ki
θ +

ni)(1Ki
θ + ni)

HFH
i } = Tr

{
Fi

(
1Ki

1H
Ki

+ Σi

)
FH

i

}
, which must be no greater than a

power constraint Pi.

Note that the above signal model is also suitable for the cluster-based wireless sensor

network, with each sensor in figure 7.1 being interpreted as a sensor cluster. In each

cluster, the cluster head collects noisy samples from Ki cluster members as in (7.1),

beamforms the observations and then transmits to FC. Each cluster has one separate

power constraint and the noise between different clusters are uncorrelated.

At the fusion center, we utilize a linear receiver g to perform data fusion and obtain

an estimate θ̂. The estimate obtained at the fusion center is given as

θ̂=gHr=
(
gH

L∑

i=1

HiFi1Ki

)
θ+gH

( L∑

i=1

HiFini+n0

)
. (7.4)

For the above sensor system, the merit of the recovered signal can be evaluated

from different perspectives. One commonly used metric is mean square error(MSE),

which is defined as MSE = E{|θ − θ̂|2}. When the target parameter θ comes from a

continuous alphabet set, MSE serves as a standard metric for estimators’ performance

and the problem of jointly optimizing transceivers in wireless sensor network towards

minimizing MSE is extensively discussed in existing literature [48–53, 71, 82]. One

other important metric is average signal to noise ratio(SNR). When the target parameter
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θ comes from a finite discrete alphabet set(e.g. M-PAM or M-QAM), the detection

performance, which is measured by the symbol error probability(SER), usually has the

form SER = c1Q
(√

c2SNR
)

with c1 and c2 being some positive constants. Another

important problem is the mutual information I(θ, θ̂) between the target parameter and

its estimate, which reads I(θ, θ̂) = 1
2
log2(1 + SNR). As seen above the transceiver de-

sign problems to optimize detection or mutual information reduce to SNR maximization

problem. In (7.4) the linearly processed signal θ̂ is composed of signal component and

noise component. The average SNR can be calculated as

SNR
(
{F}Li=1, g

)
=

E

{∣∣∣
(
gH
∑L

i=1HiFi1Ki

)
θ
∣∣∣
2
}

E

{∣∣∣gH
(∑L

i=1HiFini+n0

)∣∣∣
2
} (7.5)

=
gH
[∑L

i=1HiFi1Ki

][∑L
j=1HjFj1Kj

]H
g

σ2
0‖g‖22 +

∑L
i=1 g

HHiFiΣiF
H
i H

H
i g

, (7.6)

where the assumptions of uncorrelated noise between the fusion center and different

sensors have been invoked.

Thus the joint transceiver design problem maximizing SNR for oversampling or

cluster-based wireless sensor network can be formulated as follows

(P0) : max .
{Fi}Li=1,g 6=0

SNR
(
{F}Li=1, g

)
, (7.7a)

s.t. Tr
{
Fi

(
1Ki

1H
Ki
+Σi

)
FH

i

}
≤Pi, i = 1, · · · , L. (7.7b)

The problem (P0) is a non-convex problem, which can be easily examined by check-

ing the special case where all transceivers are scalars. In the following we consult to

block coordinate ascent framework and propose iterative methods to solve the problem.
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7.3 Optimal Linear Receiver

In this section, we obtain the optimal linear receiver g which leads to maximal SNR.

The main result is as follows:

Theorem 7.3.1. For any predefined {Fi}Li=1, SNR is maximized if and only if g⋆ has

the following form

g⋆=α

(
σ2
0IM+

L∑

i=1

HiFiΣiF
H
i H

H
i

)−1( L∑

i=1

HiFi1Ki

)
, (7.8)

where α is arbitrary nonzero complex scalar. The maximal SNR is given as

SNR⋆=

∥∥∥∥∥

(
σ2
0IM+

L∑

i=1

HiFiΣiF
H
i H

H
i

)−1
2( L∑

i=1

HiFi1Ki

)∥∥∥∥∥

2

2

. (7.9)

Proof. For simplicity we introduce the following notations

h ,
L∑

i=1

HiFi1Ki
; (7.10a)

M , σ2
0IM+

L∑

i=1

HiFiΣiF
H
i H

H
i . (7.10b)

With all sensors’ beamformers {Fi}Li=1 given, the SNR maximization problem is the

following optimization problem

max .
g 6=0

gHhhHg

gHMg
. (7.11)
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Since M ≻ 0, define g̃ , M
1
2g. The above problem becomes

max .
g̃ 6=0

g̃HM− 1
2hhHM− 1

2 g̃

g̃H g̃
. (7.12)

From variational perspective, the maximal value of the above fractional is obtained if

and only if g̃ is aligned with eigen-vector corresponding to the maximal eigenvalue of

the matrix M− 1
2hhHM− 1

2 [92]. Notice that matrix M− 1
2hhHM− 1

2 is rank-one and has

only one positive eigenvalue whose eigen-vector is αM− 1
2h, with α being any nonzero

complex value. Thus the optimal solution of the above problem is g̃⋆ = αM− 1
2h, from

which (7.8) and (7.9) can be readily obtained.

In practice the factor α can be chosen as 1 for convenience.

7.4 Jointly Optimizing Beamformers at Sensors

After obtaining the optimal linear receiver g, we focus on optimizing precoders at

the sensors’ side in this section.

First by utilizing the identitiesTr
{
AB

}
= Tr

{
BA

}
andTr

{
ABCD

}
= vecH

(
D
)[
CT⊗
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A
]
vec
(
B
)

[89], the numerator of SNR in (7.6) can be rewritten as follows

gH

[ L∑

i=1

HiFi1Ki

][ L∑

j=1

HjFj1Kj

]H
g

=

L∑

i,j=1

Tr
{(

HH
j gg

HHi

)
Fi

(
1Ki

· 1T
Kj

)
FH

j

}
(7.13)

=
L∑

i,j=1

vecH
(
Fj

)[(
1Kj

·1T
Ki

)
⊗
(
HH

j gg
HHi

)]
vec
(
Fi

)
. (7.14)

Similarly the denominator of SNR can be written as

σ2
0‖g‖22 +

L∑

i=1

gHHiFiΣiF
H
i H

H
i g

=

L∑

i=1

Tr
{(

HH
i gg

HHi

)
FiΣiF

H
i

}
+σ2

0‖g‖22 (7.15)

= vecH
(
Fi

)[
Σ∗

i ⊗
(
HH

i gg
HHi

)]
vec
(
Fi

)
+σ2

0‖g‖22, (7.16)

and the i-th power constraint is expressed as

Tr
{
Fi

(
1Ki

·1T
Ki
+Σi

)
FH

i

}
(7.17)

= vecH
(
Fi

)[((
1Ki

·1T
Ki

)
+Σ∗

i

)
⊗INi

]
vec
(
Fi

)
≤ Pi.
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Here we introduce the following notations

fi , vec
(
Fi

)
, i = 1, · · · , L; (7.18a)

Aij ,
[(
1Ki

·1T
Kj

)
⊗
(
HH

i gg
HHj

)]
, i, j=1, · · · , L; (7.18b)

Bi ,
[
Σ∗

i ⊗
(
HH

i gg
HHi

)]
, i = 1, · · · , L; (7.18c)

Ci ,
[((

1Ki
·1T

Ki

)
+Σ∗

i

)
⊗INi

]
, i = 1, · · · , L; (7.18d)

c0 , σ2
0‖g‖22. (7.18e)

and define the matrices A , [Aij ]
L
i,j=1, (i.e. the (i, j)-th elementary block of A is Aij),

B , Diag{B1, · · · ,BL} and Di , Diag{O∑i−1
j=1 KjNj

,Ci,O∑L
j=i+1 KjNj

} and pack all

fi’s into one vector f , [fT1 , · · · , fTL ]T . Then the problem of optimizing beamformers

{Fi}Li=1 with g given is reformulated as follows

(P1) : max .
f

fHAf

fHBf + c0
, (7.19a)

s.t. fHDif ≤ Pi, i ∈ {1, · · · , L}. (7.19b)

In the following we discuss several methods solving the problem (P1).

7.4.1 Solving (P1 ) by Semidefinite Relaxation

In this subsection we solve problem (P1) with help of recent progress in semidefinite

relaxation techniques.

First we rewrite the quadratic terms fHAf , fHBf and fHDif in (P1) into inner-

product forms Tr
{
AX

}
, Tr
{
BX

}
and Tr

{
DiX

}
respectively by introducing the an
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intermediate variable X = ffH . Omitting this rank-one constraint, a relaxation of (P1)

is obtained as follows

(P2) : max .
X

Tr
{
AX

}

Tr
{
BX

}
+ c0

, (7.20a)

s.t. Tr
{
DiX

}
≤ Pi, i ∈ {1, · · · , L}, (7.20b)

X < 0. (7.20c)

The fractional SDP objective in (P2) is still nonconvex. To solve it, we utilize

Charnes-Cooper’s approach, which was originally proposed in [83] and were widely

adopted in fractional SDP optimization problems like [84, 85], to turn (P2) into the fol-

lowing SDP problem:

(P3) : max .
Y,ν

Tr
{
AY

}
, (7.21a)

s.t. Tr
{
BY

}
+ c0ν = 1, (7.21b)

Tr
{
DiY

}
≤ Piν, i ∈ {1, · · · , L} (7.21c)

Y < 0, ν ≥ 0. (7.21d)

The equivalence between (P2) and (P3) is established by the following lemma.

Lemma 7.4.1. The problem (P2 ) and (P3 ) have equal optimal values. If X⋆ solves

(P2 ), then
(

X⋆

Tr{BX⋆+c0} ,
1

Tr{BX⋆+c0}

)
is an optimal solution to (P3 ). Conversely, if

(Y ⋆, ν⋆) solves (P3 ), then ν⋆ > 0 and Y ⋆/ν⋆ solves (P2 ).

Proof. See appendix 7.8.1.

Since (P3) is SDP problem, it can be solved by standard numerical solvers like
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CVX [69]. Remember that our goal is to solve problem (P1). If the optimal solution

Y⋆ to (P3) is rank-one, then the relaxation (P2) is tight to (P1) and the optimal solution

of (P1) can be obtained by eigenvalue decomposition of Y⋆/ν⋆. When the optimal

solution Y⋆ has rank larger than one, constructing a solution to (P1) from (Y⋆, ν⋆) still

needs to be addressed.

To introduce our first major conclusion we need the following lemma.

Lemma 7.4.2. The problem (P3 ) and its dual are both solvable.

Proof. See appendix 7.8.2.

For wireless sensor network with small number of sensors or sensor clusters, we

have the following conclusion.

Theorem 7.4.1. If the wireless sensor network has no more than 3 sensors or sensor

clusters, i.e. L ≤ 3, then the relaxation (P2 ) is tight with respect to (P1 ). An optimal

solution (Y ⋆, ν⋆) to (P3 ) with Y ⋆ being rank-one can be constructed and solution to

(P1 ) can be obtained by eigenvalue-decomposing Y ⋆/ν⋆.

Proof. The proof is inspired by theorem 3.2 of [87]. If Y⋆ has rank one, nothing needs

to be proved. Otherwise since the problem (P3) and its dual (D3) are both solvable by

lemma 7.4.2, theorem 3.2 of [87] is valid to invoke. Define r = rank(Y⋆) and perform

the following procedure:

- While rank2(Y⋆) + rank(ν⋆) > L+ 1 Do

Step-1: Perform a full rank decomposition Y⋆ = VVH , where V ∈

C(
∑L

i=1 KiNi)×r;
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Step-2: Find a nonzero pair (∆, δ), where ∆ is a r × r Hermitian matrix

and δ is real scalar, such that the following linear equations are

satisfied

Tr
{
VHBV∆

}
+c0ν

⋆δ=0; (7.22)

Tr
{
VHDiV∆

}
−Piν

⋆δ=0, i=1, · · · , L; (7.23)

Step-3: Evaluate κ=max
(∣∣λmin(∆)

∣∣,
∣∣λmax(∆)

∣∣, |δ|
)

;

Step-4: Update Y⋆ = V
(
I∑L

i=1 KiNi
−κ−1∆

)
VH , ν⋆ = ν⋆(1−κ−1δ) and

r = rank(Y⋆);

- End While

In fact (P3) has two semidefinite variables Y and ν(note that ν is actually a nonnegative

real scalar) and L + 1 constraints. As long as the condition rank2(Y⋆) + rank(ν)⋆ >

L + 1 holds, nonzero solutions to (7.22) and (7.23) exist. Thus after each repetition a

new optimal solution is constructed with rank(Y⋆) being reduced by at least 1. Finally

we obtain rank2(Y⋆) + rank(ν)⋆ ≤ L + 1. Recall that ν⋆ > 0 by lemma 7.4.1, so

rank(ν)⋆ = 1 and we have rank2(Y⋆) ≤ L ≤ 3. So rank(Y⋆) = 1 and the theorem is

proved.

In the above, we have seen that (P1) can be tackled by solving a SDP problem and

then a finite number of linear equations when L ≤ 3. However the assumption that

L ≤ 3 is still very stringent since in practice a sensor network can usually be composed

of numerous sensors or clusters. A method to solve (P1) suitable for arbitrary L is still

desirable. In the sequel, we proceed to discuss randomization method inspired by the
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recent literature [88]. Before going into details, first we modify the problem (P3) a little

bit. By changing the equality constraint (7.21b) into inequality, we have another SDP

problem (P4) as follows

(P4) : max .
Y,ν

Tr
{
AY

}
, (7.24a)

s.t. Tr
{
BY

}
+ c0ν ≤ 1, (7.24b)

Tr
{
DiY

}
≤ Piν, i ∈ {1, · · · , L} (7.24c)

Y < 0, ν ≥ 0. (7.24d)

We assert that (P3) and (P4) are equivalent and for any solution (Y ⋆, ν⋆) to (P4), ν⋆ must

be positive. In fact since (P4) is a relaxation of (P3), opt(P4) ≥ opt(P3). Conversely, if

(Y⋆, ν⋆) is an optimal solution to (P4), then the constraint (7.24b) must indeed be active.

Otherwise, Y⋆ and ν⋆ could be simultaneously inflated with a factor ρ > 1 such that

(ρY⋆, ρν⋆) satisfies all constraints with (7.24b) being active and gives an strictly larger

objective, which contradicts the optimality of (Y⋆, ν⋆). So (Y⋆, ν⋆) is feasible for (P3)

and thus opt(P4) ≤ opt(P3). Consequently (P3) and (P4) have equal optimal value.

This means solution to either problem also solves the other one. Thus any solution

(Y⋆, ν⋆) to (P4) is also a solution to (P3) and by lemma 7.4.1, ν⋆ > 0.

Assuming that we have obtained an optimal solution (Y⋆, ν⋆) to (P4), then we gener-

ate a sufficiently large number of independent complex random variables following the

Gaussian distribution CN
(
0,Y⋆

)
. The intuition of randomization lies in the following
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observation. Consider the following stochastic optimization problem

(P5) : max .
f ,ν

Ef∼CN(0,Y)

{
fHAf

}
, (7.25a)

s.t. Ef∼CN(0,Y)

{
fHBf

}
+ c0ν ≤ 1, (7.25b)

Ef∼CN(0,Y)

{
fHDif

}
≤Piν, i=1, · · · , L, (7.25c)

ν ≥ 0. (7.25d)

By utilizing the relation Ef∼CN(0,Y){ffH} = Y, the stochastic problem (P5) is actually

the SDP problem (P4). The random variable f ∼ CN(0,Y⋆) solves the problem (P4)

in expectation. Thus if we have sufficiently large number of samples, the “best” sample

should solve the problem.

The “best” sample can be found as follows. Note that random samples are not always

feasible for (P4). This issue can be addressed by the following rescaling procedure. For

each sample f̃ , we define the scaling factor β(f̃) as

β
(
f̃
)
= min .

i=1,··· ,L

{
1,

√
1− c0ν⋆

f̃HBf̃
,

√
Piν⋆

f̃HDif̃

}
, (7.26)

and rescale the sample f̃ as

f̄ =
β
(
f̃
)

√
ν⋆

f̃ . (7.27)

It is easy to check that the obtained f̄ is guaranteed to be feasible for (P4). Thus by

performing the above rescaling procedure we can obtain ra large number of feasible

samples to approximate the optimal solution Y⋆. Then we choose the one giving max-

imal objective value as solution to the problem (P1). When the number of samples is
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sufficiently large, the obtained best objective value of (P4) by rescaled random samples

can be extremely close to true optimal value of (P4) so the randomization solution can

be regarded as tight to the original problem (P1).

In retrospect the previous discussion, the motivation of transforming the problem

(P3) into its equivalent (P4) now becomes clear. For implementation there is no chance

that the randomly generated samples will satisfy the equality constraint (7.21b). At the

same time the positivity of ν⋆ guarantees that the rescaling in (7.27) can be performed.

Up to here, we have actually come out an alternative maximization method to solve

the SNR optimization problem (P0) in (7.7). The algorithm starts from a random feasi-

ble point. In each iteration g is optimized in a closed form by theorem 7.3.1 with {Fi}Li=1

being fixed and {Fi}Li=1 are optimized by solving (P3) followed by randomization-

rescaling or solving linear equations with g given.

This algorithm is summarized in algorithm 6 as follows.

7.4.2 Iteratively Solving (P1 )

In the last subsection, we solve the problem (P1) with help of semidefinite relax-

ation by first solving its SDP relaxation and than construct the rank-one solution through

solving linear equations or randomization method. In this subsection, we propose an al-

ternative method which to solve (P1) in an iterative manner. First we have the following

conclusion

Lemma 7.4.3. Matrix A in (P1 ) is rank-one. Specifically A = aaH with the vector a
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Algorithm 6: 2-Block Coordinate Ascent Method to solve (P0) (SDR based)

1 Initialization: Randomly generate nonzero feasible {F(0)
i }Li=1 such that g(0)

obtained by theorem 7.3.1 is also nonzero; j = 0;

2 repeat

3 Solve (P3) and obtain (Y⋆, ν⋆);
4 if L ≤ 3 then

5 Reducing rank of Y⋆ as in theorem 7.4.1, obtain {F(j+1)
i }Li=1;

6 else

7 Generate sufficiently large number of samples following CN
(
0,Y⋆

)
;

8 Rescale each sample by (7.26) and (7.27);

9 Select among all rescaled samples the one giving maximal SNR as

{F(j+1)
i }Li=1;

10 end

11 Update g(j+1) by theorem 7.3.1; j ++;

12 until increase of SNR is small enough or predefined number of iterations is

reached;

being given as

a ,




1K1 ⊗HH
1 g

...

1KL
⊗HH

L g



. (7.28)

Proof. See appendix 7.8.3.

Now looking at the fractional SDP objective of (P1) we have the following observa-

tion. For any given nonnegative real value γ, the SNR is no smaller than γ is equivalent

to the fact

fHAf ≥ γfHBf + γc0. (7.29)

In other words, if opt(P1) ≥ γ, then there exits some f such that the inequality (7.29)
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and all power constraints fHDif ≤ Pi for i = 1, · · · , L are simultaneously satisfied. If

we define u as follows

u , max .
i=1,··· ,L

{
fHDif

Pi

}
, (7.30)

then the fact that all power constraints are satisfied is equivalent to u ≤ 1. Thus the

statement opt(P1) ≥ γ holds if and only if the following optimization problem (P6γ)

(P6γ) : min .
f ,u≥0

u (7.31a)

s.t. fHAf ≥ γfHBf + γc0, (7.31b)

fHDif

Pi
≤ u, i ∈ {1, · · · , L}. (7.31c)

has optimal value smaller than 1, i.e. opt(P6γ) ≤ 1.

Next we show that all constraints of problem (P6γ) can be written in a second order

cone form. The constraint (7.31b), utilizing the result of lemma 7.4.3, can be written as

γfHBf + γc0 ≤ |aHf |2 (7.32)

Another key observation is that the optimal f⋆ to (P6γ) is phase invariant—(f⋆, u⋆) is op-

timal solution to (P6γ) if and only if (ejθf⋆, u⋆) is optimal for any real value θ. So without

loss of optimality we assume that aHf = v with v being a nonnegative real value. Thus

the constraint (7.32) readily becomes the second order cone
√
γ
∥∥[fHB 1

2 ,
√
c0
]∥∥

2
≤ v.

For the i-th power constraint in (7.31c), it can also be written in a second order cone

form P
−1/2
i ‖D

1
2
i f‖2 ≤ u. Thus the problem (P6γ) can be equivalently written in a stan-
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dard SOCP form:

(P7γ) : min .
f ,u,v

u, (7.33a)

s.t.

∥∥∥∥∥∥∥




√
γB

1
2 0

0T √
γc0







f

1




∥∥∥∥∥∥∥
2

≤ v, (7.33b)

Re{aHf} = v, (7.33c)

Im{aHf} = 0, (7.33d)
∥∥∥
√
P−1
i D

1
2
i f

∥∥∥
2
≤ u, i = 1, · · · , L. (7.33e)

Thus if we know that the opt(P1) lives in some interval, then opt(P1) can be deter-

mined by a bisection search—we set γ as middle point of the current search interval,

if (opt(P7γ) ≤ 1), then opt(P1) can achieve higher value and γ is a lower bound of

opt(P1). Otherwise γ upper-bounds opt(P1).

Now the remaining problem is to determine an interval containing opt(P1), from

which the bisection search can start with. Since (P1) is maximization problem, any

feasible solution gives a lower bound of opt(P1). The following lemma provides an

upper bound of opt(P1).

Lemma 7.4.4. Optimal value of (P1 ) has an upper bound as follows

opt(P1) ≤ c−1
0

(
L∑

i=1

Ki

√
Pi

λmin(Ci)

∥∥HH
i g
∥∥
2

)2

. (7.34)

Proof. See appendix 7.8.4.

Thus we have obtained an alternative method to solve the original problem (P0),
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which also falls in the 2-block coordinate ascent framework. This algorithm is summa-

rized in algorithm 7.

Algorithm 7: 2-Block Coordinate Ascent Method to solve (P0) (SOCP based)

1 Initialization: Randomly generate nonzero feasible {F(0)
i }Li=1 such that g(0)

obtained by theorem 7.3.1 is also nonzero; j = 0;

2 repeat

3 Obtain bdl = SNR
(
{F(j)

i }Li=1, g
(j)
)

and bdu by (7.34);

4 repeat

5 Set γ = (bdu + bdl)/2; solve (P7γ);

6 if opt(P7γ) ≤ 1 then

7 bdl = γ;

8 else

9 bdu = γ;

10 end

11 until (bdu − bdl) is small enough;

12 γ = bdl;

13 Solve (P7γ) to update {F(j+1)
i }Li=1;

14 Update g(j+1) by theorem 7.3.1; j ++;

15 until increase of SNR is small enough or predefined number of iterations is

reached;

7.4.3 Convergence and Complexity

For the proposed algorithms in previous subsections, we have the following conclu-

sion on convergence:

Theorem 7.4.2. The sequence of SNR obtained by algorithm 6 or 7 converges. More-

over the solution sequence generated by algorithm 6 or 7 has limit points and each limit

point is a stationary point of problem (P0 ).

Proof. See appendix 7.8.5.
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The complexity of the proposed algorithms is complicated since the whole network

has too many factors (Ki’s and Ni’s) that impact the problem size. To simplify the anal-

ysis, we consider homogeneous sensor networks, where each sensor or sensor cluster

has the same the number of sampling copies and antennas, i.e. Ki = K and Ni = N for

all i = 1, · · · , L.

According to [94], by use of primal-dual interior point method, the complexity to

solve (P4) can be shown to be O
(
L4.5K3.5N3.5

)
. The complexity to update g by (7.8)

lies in the matrix inversion operation, which has complexity O
(
M3
)
. In practice several

thousands of random samples are sufficient to guarantee a satisfying tightness of the

obtained rank-reduced solutions (usually within 10−4) and the number of samples does

not increase with size of wireless sensor network. So the complexity for each outer-layer

iteration of the SDP based 2BCA algorithm is O
(
L4.5K3.5N3.5+M3

)
.

By [93] the complexity for solving SOCP problem (P7γ) is O
(
L3.5K3N3

)
. Note

that each iteration of bisection search solves (P7γ) for one time, so (P7γ) is solved mul-

tiple times within one outer-layer iteration. Taking different channel conditions and

levels of predefined precision into account, numerical results show that the number of

times solving (P7γ) varies between the narrow range [25, 35] and thus can be consid-

ered as a constant. Thus the complexity of outer-layer SOCP based 2BCA algorithm is

O
(
L3.5K3N3+M3

)
.
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7.5 Multiple Block Framework to Maximize SNR

In the previous sections, the proposed algorithms are both 2-block coordinate ascent

methods where all the beamformers’ sensors are jointly updated. One problem for these

algorithms is that the complexity of solving the associated SDP or SOCP problem grows

intensively with the increase of the size of the wireless sensor network. Instead of jointly

optimizing all beamformers, we can alternatively focus on just one sensor’s beamformer

each time. This actually results in a multiple-block coordinate ascent method. As it will

be seen by complexity analysis and numerical results, this method can often significantly

decrease complexity. Furthermore in some special but important case each block can

be updated in a closed form, which does not depend on any numerical solver and has

extremely low complexity.

Now we consider the problem of optimizing the i-th beamformer Fi with g and

{Fj}j 6=i being fixed. By introducing the following notations

qi ,
∑

j 6=i

Aijfj ; ci,
∑

j,k 6=i

fHj Ajkfk; (7.35a)

di , σ2
0‖g‖22+

∑

j 6=i

fjBjfj , (7.35b)

this problem is formulated as follows

(P1i) : max .
fi

fHi Aiifi+2Re{qH
i fi}+ ci

fHi Bifi+di
, (7.36a)

s.t. fHi Cifi ≤ Pi. (7.36b)
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7.5.1 One-Shot SDR-Rank-Reduction Method

First we introduce a one-shot method to solve (P1i), which performs semidefinite

programming and rank-one matrix decomposition in tandem. This method is discussed

in recent work [84] and [85].

By use of Charnes-Cooper’s transformation and rank-one relaxation we turn (P1i)

into the following relaxed version

(P7i) : max .
Z,η

Tr
{
Q1Z

}
, (7.37a)

s.t. Tr
{
Q2Z

}
= 1, (7.37b)

Tr
{
Q3Z

}
≤ Piη, (7.37c)

Tr
{
Q4Z} = η, (7.37d)

Z < 0, η ≥ 0. (7.37e)

with parameter matrices being defined as

Q1 ,




Aii qi

qH
i ci


 ,Q2 ,




Bi 0

0T di


 , (7.38a)

Q3 ,




Ci 0

0T 0


 ,Q4 ,




O 0

0T 1


 . (7.38b)

Solving the SDP (P7i) we obtain an solution (Z⋆, η⋆). If the Z⋆ is rank one, i.e. Z⋆

η⋆
=

z⋆z⋆H with z⋆ , [zT1 , z2]
T , then z⋆1/z2 is an solution to (P1i) and the relaxation (P7i)

is actually tight with respect to (P1i). Actually the rank-one solution Z⋆ always exits

due to the recent matrix decomposition result in [86]. In fact if Z⋆ has rank larger than
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one, by help of theorem 2.2 in [86], we can obtain a vector z such that the equations

Tr{(Q1−opt(P7i)Q2)zz} = 0, Tr{Qjzz
H} = Tr{QjZ

⋆} for j = 3, 4. This means

(zz, η⋆) is rank-one optimal solution to (P7i) and thus (P1i) can be solved.

7.5.2 Iterative Method

Besides the above one-shot method, here we propose an alternative iterative method

to solve (P1i). As we will see this iterative method can give birth to extremely efficient

solution to (P1i) in specific circumstance.

For any given positive real value α, the fact that the SNR objective in (P1i) is no

smaller than α equivalently reads

fHi
[
αBi−Aii

]
fi−2Re

{
qH
i fi
}
+(αdi−ci) ≤ 0. (7.39)

This immediately implies that if the following problem with

(P8iα) : min .
fi

fHi
[
αBi−Aii

]
fi−2Re

{
qH
i fi
}
+(αdi−ci), (7.40a)

s.t. fHi Cifi ≤ Pi. (7.40b)

with α given has a nonnegative optimal value then opt(P1i) ≥ α. Otherwise α can

serve as an upper bound of opt(P1i). Thus we can perform a bisection search to solve

(P1i). Now the problem reduces to how to solve the problem (P8iα)? Note that the

quadratic matrix
[
αBi−Aii

]
can be negative semidefinite or indefinite and thus (P8iα)

is possibly nonconvex. The following theorem convinces us that (P8iα) can always be

solved regardless of the convexity of its objective.
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Theorem 7.5.1. If the i-th sensor or sensor cluster has multiple copies of observation

or is equipped with multiple antenna, i.e. Ki ≥ 2 or Ni ≥ 2, the problem (P8 i

α) can be

solved.

Proof. See appendix 7.8.6.

Although theorem 7.5.1 shows that the problem (P8iα) can be solved by SDR and

thus the iterative method to solve (P1i) works, it is generally less efficient than the one-

shot method discussed above. Since the former performs semidefinite programming

and rank-one reductions multiple times while the latter for just once. However in the

circumstance where Ki = 1, the following theorem indicates that (P8iα) has fully closed

form solution and consequently the iterative method can become extremely efficient.

Theorem 7.5.2. When Ki = 1 the solution f ⋆
i to (P8 i

α) is

f ⋆
i=





β∗
i H

H
i g

‖HH
i g‖22(ασ2

i−1)
, if ασ2

i >1,
|β∗

i |
‖HH

i g‖2(ασ2
i−1)

≤
√

P̄i;√
P̄iβ

∗
i H

H
i g

|βi|‖HH
i g‖2 , otherwise,

with βi and P̄i being defined by equation (7.69) in the appendix.

Proof. See appendix 7.8.7.

Note that the closed form solution in theorem 7.5.2 neither requires matrix decom-

position or solving linear equations(matrix inversion) nor depends on numerical solver.

Thus iteratively solving (P1i) is easy for implementation and has very low computa-

tion cost. Comparatively the one-shot method to solve (P1i) depends on numerical
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solvers(like CVX) which are in fact iterative-based(interior point method) solvers and

each iteration performs matrix decomposition and solving linear equations.

To start the bisection search, the latest SNR can serve as a lower bound for opt(P1i).

By equation (7.56) it can be shown that an upper bound for opt(P1i) is given as

d−1
i

(
‖HH

i g‖22Piλ
−1
min

(
Ci

)
+2‖qi‖2P

1
2
i λ

− 1
2

min

(
Ci

)
+ci

)
. (7.41)

Note that the above upper bound can be much tighter than the one given in (7.34) since

it utilizes the knowledge of {Fj}j 6=i.

From the above discussion, we can utilize multiple block coordinate ascent method

to solve the original SNR problem (P0). For each update we optimize one separate

sensor’s precoder or the FC receiver. For the i-th sensor, if Ki > 1, its beamformer can

be updated by the one-shot SDR-rank-reduction method. Otherwise theorem 7.5.2 can

be invoked. This is summarized in algorithm 8.

Although the multiple BCA method generates monotonically increasing SNR se-

quence, it is hard to prove that the limit points of its solution sequence guarantee to

converge to stationary points of (P0). Numerical results in section 7.6 show that multi-

ple BCA algorithm usually has a very satisfying convergence behaviors.

By primal-dual inter point method [94], the complexity of each outer-layer iteration

of multiple BCA for homogeneous wireless sensor network is O
(
LK3.5N3.5+LM3

)
.

Particularly for homogeneous network with K = 1, the complexity becomes O
(
LM3

)

with the help of theorem 7.5.2.
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Algorithm 8: Multiple-Block Coordinate Ascent Method to solve (P0)

1 Initialization: Randomly generate nonzero feasible {F(0)
i }Li=1 such that g(0)

obtained by (7.8) is nonzero;

2 repeat

3 for i = 1, · · · , L; do

4 if Ki > 1 then

5 Solve (P7i) then perform rank-reduction by theorem 2.2 in [86];

update Fi ;

6 else

7 Set bdl as current SNR; obtain bdu by (7.41);

8 repeat

9 Set α = (bdu + bdl)/2;

10 Solve (P8iα) by theorem (7.5.2);

11 if opt(P8iα) ≤ 0 then

12 bdl = α;

13 else

14 bdu = α;

15 end

16 until (bdu − bdl) is small enough;

17 α = bdl;
18 solve (P8iα) by theorem 7.5.2; update Fi;

19 end

20 Update g by theorem 7.3.1 ;

21 end

22 until increase of SNR is small enough or predefined number of iterations is

reached;

202



7.6 Numerical Results

In this section, numerical results are presented to testify the proposed algorithms’

performance. In our experiments, the observation noise at each sensor is colored, which

has a covariance

Σi = σ2
iΣ0, i ∈ {1, · · · , L}, (7.42)

where the Ki ×Ki matrix Σ0 has the Toeplitz structure

Σ0 =




1 ρ
. . . ρK−1

ρ 1
. . .

. . .

. . .
. . .

. . . ρ

ρK−1 . . . ρ 1




. (7.43)

The parameter ρ is set to 0.5 for all sensors in the following experiments. Here we

define the observation signal to noise ratio at the i-th sensor as SNRi , σ−2
i and the

channel signal to noise ratio as SNR , σ−2
0 .

In figure 7.2 and 7.3 the average SNR obtained at the FC are plotted. It is assumed

that the sensor network has 5 sensors and FC has 4 antennas. We set N1 = 3, N2 =

4, N3 = 5, N4 = 4, N5 = 5, K1 = 3, K2 = 4, K3 = 5, K4 = 6, K5 = 6 and P1 =

0.2, P2 = 0.2, P3 = 0.3, P4 = 0.2, P5 = 0.3. For each fixed channel SNR level, 50

random channel realizations are generated with each element of channel matrix follows

circularly symmetric complex Gaussian distribution with zero mean and covariance 2.

With channel SNR and channel matrices given, the proposed algorithms are performed
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Figure 7.2: Average SNR Obtained by SDR Based 2BCA Algorithm and SOCP Based

2BCA Algorithm

starting from one common random initial. The obtained average SNR is plotted in

figure 7.2 and 7.3. The obtained average SNR of SDR based and SOCP based 2BCA

algorithms are plotted in figure 7.2 with respect to different outer iterations. The curve

associated with random initials actually represents the performance of random feasible

linear transmitters. From figure 7.2, optimized SNR converges in 10 outer-iterations on

average. These two algorithms have identical average convergence performance, this

will also be verified by figure 7.4. The average SNR performance obtained by multiple

BCA algorithm is presented in figure 7.3, where SDR based 2BCA algorithm serves as a

benchmark. Multiple BCA algorithm presents identical average SNR performance with

the other 2 block algorithms.

In figure 7.4 and 7.5, the impact of different initial points to the algorithms are ex-

amined. The system setup is identical with the experiment in figure 7.2 and 7.3. We set
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Figure 7.3: Average SNR Obtained by SDP Based 2BCA Algorithm and Multiple BCA

Algorithm

the channel SNR as 2dB and fix the channel matrices with one specific random realiza-

tion. The three proposed algorithms are started from 10 different random initials and

each SNR itinerary with respect to number of outer-layer iterations is plotted in figure

7.4 and 7.5, where the itineraries of SDR based 2BCA algorithm serve as benchmarks.

From figure 7.4 it can be seen that the two 2BCA algorithms have almost identical SNR

itineraries. Comparatively, multiple BCA algorithm’s itineraries are usually very dif-

ferent but finally it will converge to identical value. Figures 7.4 and 7.5 reflect the fact

that: the proposed three algorithms are initial-insensitive; they finally converge to iden-

tical SNR value; and usually 30 iterations are sufficient for these proposed algorithms

to converge.

Next we present numerical results for complexity. Still we take homogeneous wire-

less sensor network as example. N and M denote the number of antennas for each
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Figure 7.4: Convergence with Different Initials: SDR Based 2BCA Algorithm v.s.

SOCP Based 2BCA Algorithm
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Figure 7.5: Convergence with Different Initials: SDR Based 2BCA Algorithm v.s. Mul-

tiple BCA Algorithm
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sensor or sensor cluster and FC respectively and take modest values within several tens.

Comparatively the number of sensors or sensor clusters can be large, and one cluster

can have numerous sensors. So we focus on the impact of L and K on the complexity.

Figure 7.6 and 7.7 represent the complexity for each outer-layer iteration for proposed

algorithms with respect to K and L respectively. Generally SDR based 2BCA algorithm

has higher complexity than the two others. The SOCP based algorithm has lowest com-

plexity for large K with small L and multiple BCA algorithm has the lowest complexity

for large L.

In the following the average execution time of proposed algorithms using MATLAB

with the standard toolbox CVX v2.1 on the same computer are presented in table 7.1 and

7.2. The multiple BCA algorithm requires much lower time for networks with large L

and SOCP based 2BCA algorithm is more efficient for large K and small L. Although

the complexity of SDR-based 2BCA algorithm increases drastically with the increase

of K, N and L in general, it can still be useful in specific scenarios. Note that when

the size of wireless sensor network is small, the execution time of SDR based 2BCA

algorithm mainly comes from random samples generation and rescaling. In the case

where parallel computation is available, this procedure can requires very little time and

thus competitive to the other two algorithms.

7.7 Conclusion

This chapter considers the joint transceiver design problem in oversampling or clus-

ter based wireless sensor network. To jointly optimize the SNR at the fusion center, the

difficult original problem is decomposed into two or more subproblems and solution to
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Table 7.1: MATLAB Running Time Per (Outer) Iteration(in sec.)

Dim. Alg. L=5 L=10 L=20 L=30 L=40
K= 1 Alg.6 1.814 3.561 8.462 18.58 34.76

N=4 Alg.7 5.677 9.163 15.84 23.14 38.82

Alg.8 0.067 0.380 2.603 8.344 19.38

K=1 Alg.6 2.175 5.413 21.97 59.23 148.5

N=8 Alg.7 7.488 12.21 25.58 51.19 84.17

Alg.8 0.073 0.406 2.741 9.387 19.27

K=3 Alg.6 2.650 9.002 43.07 158.5 689.5

N=4 Alg.7 10.462 21.40 54.79 111.9 45.60

Alg.8 1.106 2.423 6.549 14.29 26.95

K=3 Alg.6 7.222 32.32 536.9 — —

N=8 Alg.7 19.765 50.99 173.6 59.32 85.81

Alg.8 1.650 3.519 9.286 18.19 31.74

K=5 Alg.6 4.468 19.65 160.3 — —

K=4 Alg.7 14.944 32.85 125.8 50.04 69.08

Alg.8 1.455 2.989 7.749 16.63 30.41

K=5 Alg.6 16.442 115.8 — — —

N=8 Alg.7 32.273 121.0 80.21 134.2 201.3

Alg.8 2.662 5.617 13.51 24.99 42.33
Note: “—” means the problem is too large to be solved.

Alg.1: SDR-2BCA alg.; Alg.2: SOCP-2BCA alg.; Alg.3: multiple BCA alg.

Table 7.2: MATLAB Running Time Per (Outer) Iteration(in sec.)

Dim. Alg. K=20 K=30 K=40
L= 2 Alg.6 — — —

N=16 Alg.7 625.8 1.903× 103 5.378×103

M = 3 Alg.8 89.47 2.171×103 —
Note: “—” means the problem is too large to be solved.

Alg.1: SDR-2BCA alg.; Alg.2: SOCP-2BCA alg.; Alg.3: multiple BCA alg.
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each subproblem is obtained. Convergence and complexity are carefully examined. Ex-

tensive numerical results show that the proposed algorithms provide equivalently good

SNR values while have different efficiency characteristics and suitable for various sys-

tem setup. As an extension of current problem, robust design and decentralized algo-

rithms are very desirable and interesting for future study.

7.8 Appendix

7.8.1 Proof of Lemma 7.4.1

Proof. Assume that X⋆ and (Y⋆, ν⋆) are optimal solutions to (P2) and (P3) respectively,

and opt(P2) and opt(P3) are optimal values of the two problems.

First we claim that ν⋆ > 0. This can be proved by contradiction. If ν⋆ = 0, then we

readily obtain Tr
{
DiY

⋆
}
= 0, for i = 1, · · · , L. This leads to Tr

{
(
∑L

i=1Di)Y
⋆
}
=

0. Since it is assumed that Σi ≻ 0, for i ∈ {1, · · · , L}, it holds that Ci ≻ 0, for

i ∈ {1, · · · , L}. Thus
∑L

i=1Di = Diag{C1, · · · ,CL} ≻ 0 and we obtain Y⋆ = O.

However this violates the constraint (7.21b), since its left hand side equals zero. Thus

ν⋆ > 0.

If (Y⋆, ν⋆) solves (P3), since ν⋆ > 0, it is easy to check Y⋆/ν⋆ is feasible for (P2)

and gives an objective value of
Tr{A(Y⋆/ν⋆)}

Tr{B(Y⋆/ν⋆)+c0} = opt(P3). So opt(P3) ≤ opt(P2). On

the other hand, if X⋆ solves (P2), then
(

X⋆

Tr{BX⋆+c0} ,
1

Tr{BX⋆+c0}

)
is a feasible solution to

(P3) and gives objective value of Tr{A X⋆

Tr{BX⋆+c0}} = opt(P2). So opt(P2) ≤ opt(P3).

The proof is complete.
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7.8.2 Proof of Lemma 7.4.2

Proof. First we prove that (P3) is solvable. By (7.21b) we have 0 ≤ ν ≤ c−1
0 , so

ν is bounded. Combining (7.21c) we readily obtain Tr{DiY} ≤ Piν ≤ Pi/c0, i ∈

{1, · · · , L}, which implies Tr{(
∑L

i=1Di)Y} ≤ (
∑L

i=1 Pi)/c0. Since (
∑L

i=1Di) =

Diag{C1, · · · ,CL} ≻ 0, this means Y is bounded. So the feasible region of (P3) is

bounded. Obviously the feasible region of (Y, ν) is also closed. So (P3) has compact

feasible region. Since the objective Tr{AY} always takes finite values on the whole

feasible region, by Weierstrass’ theorem(proposition 3.2.1-(1) in [90]), (P3) is solvable.

The Lagrangian function of problem (P3) is given as

L
(
Y, ν, λ, {µi}Li=1

)
(7.44)

=Tr
{
YA

}
+λ
(
1−Tr

{
YB

}
−c0ν

)
−

L∑

i=1

µi

(
Tr
{
YDi

}
−Piν

)

= Tr
{[

A−λB−
L∑

i=1

µiDi

]
Y
}
+
(
− c0λ+

L∑

i=1

Piµi

)
ν+λ.

By taking the supremum of Lagrangian function with respect to Y < 0 and ν ≥ 0, the

dual function is obtained as

g(λ, {µi}Li=1) = sup .
Y<0,ν≥0

L
(
Y, ν, λ, {µi}Li=1

)
= λ (7.45)

with the conditions
[
A−λB−

∑L
i=1 µiDi

]
4 0 and

(
−c0λ+

∑L
i=1 Piµi

)
≤ 0 satisfied.
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So the dual problem of (P3) can be given as

(D3) : min .
λ,{µi}Li=1

λ (7.46a)

s.t. λB+
L∑

i=1

µiDi < A, (7.46b)

c0λ ≥
L∑

i=1

Piµi, (7.46c)

µi ≥ 0, i = 1, · · · , L. (7.46d)

Next we prove that (D3) is solvable. To do this it is sufficient to show that there exists

a real value γ such that the level set {(λ, {µi}Li=1)|λ ≤ γ, (λ, {µi}Li=1) ∈ dom(D3)}

is nonempty and bounded, where dom(D3) means feasible region of (D3). Here we

choose µ̃i = λmax(A)/λmin(Ci) for i = 1, · · · , L, where λmax(·) and λmax(·) represent

the maximal and minimal eigenvalue of a matrix respectively. Set λ̃ = c−1
0 (
∑L

i=1 µ̃iPi).

By definition the constraints (7.46c) and (7.46d) are satisfied by (λ̃, {µ̃i}Li=1). Since

B < 0 and λ̃ ≥ 0,

λ̃B+
L∑

i=1

µ̃iDi <
L∑

i=1

µ̃iDi = Diag{µ̃1C1, · · · , µ̃LCL}

< λmax

(
A
)
I∑L

i=1 KiNi
< A. (7.47)

Thus constraint (7.46b) is also satisfied by (λ̃, {µ̃i}Li=1). Set γ̃ = λ̃. Combination of

λ ≤ γ̃ and the constraint (7.46c) guarantees that λ and all µi’s are bounded. So we con-

clude that the level set {(λ, {µi}Li=1)|λ ≤ γ̃, (λ, {µi}Li=1) ∈ dom(D3)} is nonempty and

bounded. Invoking Weierstrass’ theorem(proposition 3.2.1-(2) in [90]), (D3) is solv-

able.
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7.8.3 Proof of Lemma 7.4.3

Proof. Recall in definition of Aij in (7.18b) and utilize the identity
(
AB

)
⊗
(
CD

)
=

(
A⊗C

)(
B⊗D

)
[89], we have

Aij =
(
1Ki

1T
Kj

)
⊗
(
HH

i gg
HHj

)

=
(
1Ki

⊗HH
i g
)(
1T
Kj

⊗ gHHj

)
. (7.48)

Then the j-th block column of A is given as

A:j=




A1j

...

ALj



=




(
1K1 ⊗HH

1 g
)(
1T
Kj

⊗ gHHj

)

...

(
1KL

⊗HH
L g
)(
1T
Kj

⊗ gHHj

)




(7.49)

=




(
1K1 ⊗HH

1 g
)

...

(
1KL

⊗HH
L g
)



(
1T
Kj

⊗ gHHj

)
(7.50)

=a
(
1T
Kj

⊗ gHHj

)
. (7.51)

The last equality utilizes the definition of a in (7.28). Then the matrix A can be repre-

sented by packing all the column blocks as follows

A = [A:1, · · · ,A:L] (7.52)

=
[
a
(
1T
K1

⊗ gHH1

)
, · · · , a

(
1T
KL

⊗ gHHL

)]
(7.53)

= a
[(
1T
K1

⊗ gHH1

)
, · · · ,

(
1T
KL

⊗ gHHL

)]
(7.54)

= aaH . (7.55)
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The proof is complete.

7.8.4 Proof of Lemma 7.4.4

Proof. By the i-th power constraint (7.19b) we have

λmin

(
Ci

)
‖fi‖22 ≤ fHi Cifi ≤ Pi, (7.56)

which implies

‖fi‖2 ≤
√

Pi

λmin(Ci)
, i = 1, · · · , L. (7.57)

By Cauchy-Schwarz inequality the numerator fHAf of SNR is bounded as

fHAf =
∣∣aHf

∣∣2 ≤
∣∣∣

L∑

i=1

∣∣fHi
(
1Ki

⊗HH
i g
)∣∣
∣∣∣
2

(7.58)

≤
∣∣∣

L∑

i=1

∥∥fi
∥∥
2

∥∥1Ki
⊗HH

i g
∥∥
2

∣∣∣
2

(7.59)

=

(
L∑

i=1

√
Pi

λmin

(
Ci

)Ki

∥∥HH
i g
∥∥
2

)2

, (7.60)

where the above first inequality utilizes 7.4.3. Combining the fact that fHBf + c0 ≥ c0,

the upper bound in lemma is proved.
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7.8.5 Proof of Theorem 7.4.2

Proof. Since each update of {Fi}Li=1 or g is obtained by solving a maximization prob-

lem, SNR monotonically increases. SNR is also bounded. In fact since the SNR is

invariant to scaling of g we can assume that ‖g‖2 = 1. According to (7.57) in the

proof of lemma 7.4.4, Fi is bounded for all i = 1, · · · , L. Thus the numerator of SNR is

bounded above and the denominator of SNR is bounded away from zero, so SNR should

be bounded. Consequently the objective value sequence by algorithms 6 or 7 converges

since it is monotonically increasing and bounded.

Since {Fi}Li=1 are bounded, by Bolzano-Weierstrass theorem [91] there exists a se-

quence {jk}∞k=1 such that
{
{F(jk)

i }Li=1

}∞
k=1

converges. Since g(jk) is updated by (7.8)

which is a continuous function of {F(jk)
i }Li=1, thus the sequence

{(
{F(jk)

i }Li=1, g
(jk)
)}∞

k=1

also converges. The existence of limit points of the solution sequence is proved.

The feasible region of (P0) is a Cartesian productX1×X2 withX1 ,
{
{Fi}Li=1

∣∣(7.7b)

is satisfied fori = 1, · · · , L
}

and X2 , CM×1\{0}. Corollary 2 in [64] states that any

limit point of solution sequence generated by 2-block coordinate ascent method is sta-

tionary. It should be noted that this conclusion is obtained under the assumption that

the objective function is continuously differentialbe on feasible region and each block

feasible region(each term in the Cartesian product) is nonempty, closed and convex set.

Unfortunately the problem (P0) does not satisfy this assumption since X2 is nonconvex

and not closed. In the following we will show that conclusion in [64] still applies to our

problem after appropriate adjustment in its proof.

First we assert that the solution sequence always has nonzero g, i.e. g(k) 6= 0 for all

k = 0, 1, · · · . Since algorithms 6 or 7 starts from
(
{F(0)

i }Li=1, g
(0)
)

with g(0) 6= 0, the as-
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sertion holds for k = 0 and SNR
(
{F(0)

i }Li=1, g
(0)
)
> 0. Assume that m ≥ 1 is the small-

est integer such that g(m) = 0, then according to (7.8)
(∑L

i=1HiF
(m)
i 1Ki

)
= 0. Notice

g(m−1) 6= 0. This readily implies SNR
(
{F(m)

i }Li=1, g
(m−1)

)
= 0 < SNR

(
{F(0)

i }Li=1, g
(0)
)
,

which contradicts the increasing monotonicity of SNR.

Then we assert that any limit point of solution sequence has nonzero ḡ. By contradic-

tion we assume that the subsequence
{(

{F(jk)
i }Li=1, g

(jk)
)}∞

k=1
converges to ({F̄i}Li=1, ḡ)

with ḡ = 0. Then by (7.8)
{∑L

i HiF
(jk)
i 1Ki

}∞
k=1

→ 0. By rescaling each g(jk) to

ĝ(jk) such that ‖ĝ(jk)‖2 = 1 for all k = 1, 2, · · · , we actually construct another so-

lution sequence which is also generated by 2-block coordinate ascent method, since

scaling of g does not change the SNR value. Now for this new solution sequence

{(
{F(jk)

i }Li=1, ĝ
(jk)
)}∞

k=1
, since

{∑L
i HiF

(jk)
i 1Ki

}∞
k=1

→ 0 while {ĝ(jk)}∞k=1(consequently

the denominator of SNR) is bounded away from zero, we have SNR
(
{F(jk)

i }Li=1, ĝ
(jk)
)
→

0, which again contradicts the increasing monotonicity of SNR sequence.

In [64] the closedness assumption of X2 is implicitly invoked in its proposition 2 to

ensure that any limit point of solution sequence is feasible. Through the above proof we

can see that this result holds true thus proposition 2 in [64] applies to our problem.

The convexity assumption of X2 is explicitly utilized in [64] in its proof of proposi-

tion 3. Here we identify the notations i, xi+1, Xi+1 and w(k, i) used in the original proof

of proposition 3 in [64] as 1, g, X2 and
(
{F(k+1)

i }Li=1, g
(k)
)

respectively in our case.

According to the proof in [64], the convexity of X2 guarantees that g(k)+α
(k)
2 d

(k)
2 ∈

X2 such that Armijo-type line search algorithm’s properties can be applied, where d
(k)
2 =
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g̃ − g(k) with g̃ ∈ X2 and

∂H
g∗(k)SNR

(
{F(k+1)

i }Li=1, g
(k)
)(
g̃ − g(k)

)
< 0 (7.61)

((7.61) corresponds to the inequality ∇i+1f(w(k, i))Tdki+1 < 0 in the original proof of

proposition 3 in [64], which lies under equation (11) and is not labeled).

Now we show that the fact g(k) +α
(k)
2 d

(k)
2 ∈ X2 still holds for our problem although

our X2 is nonconvex. By contradiction assume that g(k) + α
(k)
2 d

(k)
2 /∈ X2, i.e.

g(k) + α
(k)
2 d

(k)
2 = 0. (7.62)

This is actually impossible. By substituting d
(k)
2 = g̃ − g(k) into (7.62) we have

(α
(k)
2 − 1)g(k) = α

(k)
2 g̃. (7.63)

As a result of Armijo-type line search algorithm(refer to (3) and proposition 1 in [64]),

(α
(k)
2 − 1) ∈ (0, 1]. If α

(k)
2 = 1, then g̃ = 0, which contradicts the fact g̃ ∈ X2. If

(α
(k)
2 − 1) < 1, then g̃ =

(α
(k)
2 −1)

α
(k)
2

g(k). This is also impossible since SNR is invariant

to scaling of g and thus ∂H
g(k)∗SNR

(
{F(k+1)

i }Li=1, g
(k)
)(
g̃− g(k)

)
= 0, which contradicts

the fact (7.61). Thus the proposition 3 in [64] also stands for our problem.

As a direct implication of proposition 2 and 3, the corollary 2 in [64] holds true and

thus any limit point provided by algorithm 6 or 7 is stationary point of (P0).
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7.8.6 Proof of Theorem 7.5.1

Proof. Since the problem (P8iα) is a quadratic problem with one quadratic constraint

and is obviously strictly feasible, the result of Appendix B.1 in [68] is valid to invoke,

which states that (P8iα) has the following relaxation

(P9iα)min .
X,x

Tr
{[
αBi−Aii

]
X
}
−2Re

{
qH
i x
}
+(αdi−ci), (7.64a)

s.t. Tr
{
CiX

}
− Pi ≤ 0, (7.64b)




X x

xH 1


 � 0. (7.64c)

with opt(P9iα) = opt(P8iα). We replace the variables (X,x) in (P9iα) by one matrix

variable X̃ and rewrite it into a SDP form

(P10iα) min .
X̃

Tr
{
P1X̃

}
, (7.65a)

s.t. Tr
{
P2X̃

}
≤ Pi, (7.65b)

Tr
{
P3X̃

}
= 1, (7.65c)

with the parameter matrices being defined as

P1,



αBi−Aii −qi

−qH
i αdi−ci


 ,P2,



Ci 0

0T 0


 ,P3,



O 0

0T 1


 .

Since Ci ≻ 0, the feasible set of (P10iα) is bounded. Obviously the objective of

(P10iα) takes finite value over the feasible set, so (P10iα) is solvable by WeierstrassâĂŹs
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theorem(proposition 3.2.1-(1) in [90]).

Assume that X̃⋆ is one optimal solution. Obviously X̃⋆ is non-zero(otherwise con-

straint P3X̃
⋆ = 1 would fail). Since X̃⋆ has dimension KiNi + 1 ≥ 3, evoking the-

orem 2.2 of [86], we can obtain a vector x̃ such that Tr{PjX̃
⋆} = Tr{Pjx̃x̃

H} for

j = 1, 2, 3. Denote x̃ = [x̃T
1 , x̃2]

T . Notice that x̃2 is nonzero(otherwise the constraint

Tr{P3x̃x̃
H} = |x̃2|2 = 1 would fail). Define x̂ , [x̃T

1 /x̃2, 1]
T , it is easy to check that

f0
( x̃1

x̃2

)
=Tr{P1x̂x̂

H}=Tr{P1x̃x̃
H}=Tr{P1X̃

⋆}=opt(P10iα);

f1
( x̃1

x̃2

)
=Tr{P2x̂x̂

H}=Tr{P2x̃x̃
H}=Tr{P2X̃

⋆}≤Pi. (7.67)

where f0(·) denotes the objective function of (P8iα) and f1(x) , xHCix. The above two

equations imply that x̃1/x̃2 is an optimal solution to (P8iα) since which gives optimal

value opt(P10iα) and is feasible.

7.8.7 Proof of Theorem 7.5.2

Proof. When Ki = 1, the covariance matrices Σs and {Σi}Li=1 become scalars σ2
s and

{σ2
i }Li=1 respectively and we have

Aii = HH
i gg

HHi, Bi = σ2
iH

H
i gg

HHi, (7.68a)

Ci = (σ2
i+σ

2
s)INi

, (7.68b)

Aij = 1T
Kj

⊗
(
HH

i gg
HHi

)
= HH

i g
(
1T
Kj

⊗ gHHj

)
, (7.68c)

qi =
∑

j 6=i

Aijfj = HH
i g
[∑

j 6=i

(
1T
Kj

⊗ gHHj

)
fj

]
. (7.68d)
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To simplify the following discussion, we introduce the notations

βi ,
∑

j 6=i

fHj

(
1Kj

⊗HH
j g
)
, P̄i ,

Pi

σ2
i + σ2

s

. (7.69)

Then the problem (P8iα) in (7.40) is expressed as

(P11iα) : min .
fi

(
ασ2

i −1
)
fHi HH

i gg
HHifi−2Re

{
βig

HHifi
}

+
(
αdi−ci

)
, (7.70a)

s.t. ‖fi‖2 ≤ P̄i. (7.70b)

The key observation is that the quadratic matrix HH
i gg

HHi in the objective function

has rank one and thus an eigenvalue decomposition as follows

HH
i gg

HHi=U




gHHiH
H
i g

O(Ni−1)×(Ni−1)


UH , (7.71)

with U,
[
u1,u2, · · · ,uNi

]
being eigenvectors of HH

i gg
HHi. The first eigenvector u1

corresponds to the unique nonzero eigenvalue and the other eigenvectors span the null

space of HH
i gg

HHi. In other words, we have

u1 =
HH

i g

‖HH
i g‖

, uH
j H

H
i g = 0, j = {2, · · · , Ni} (7.72)

Since {ui}Li=1 is an orthonormal basis, fi can be represented as fi = Uτ =
∑Ni

j=1 ujτj

with vector τ being the coordinates in terms of basis {uj}Ni
j=1.

By (7.72) the objective of (P11iα) is independent of {τj}Ni
j=2. To save power, we
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should set all {τj}Ni
j=2 as zero, which means fi = τ1

HH
i g

‖HH
i g‖2 . Thus, the problem (P11iα)

boils down to the following problem with respect to one complex scalar τ1

(P12iα) : min .
τ1

g(τ1),(ασ2
i −1)‖HH

i g‖22|τ1|2 (7.73a)

−2‖HH
i g‖2Re{βiτ1}+

(
αdi−ci

)
,

s.t. |τ1|2 ≤ P̄i. (7.73b)

Based on the sign of (σ2
i −α), the problem (P12iα) can be tackled in the following three

cases:

CASE (I): α = σ−2
i . In this case, the objective function in (P12iα) degenerates to an

affine function

g(τ1) = −2σ2
i ‖HH

i g‖2Re{βiτ1}+ (αdi − ci). (7.74)

By the Cauchy-Schwarz inequality, the optimal τ ⋆1 and minimum objective is obtained

as

τ ⋆1 =

√
P̄iβ

∗
i

|βi|
; g(τ ⋆1 )=−2σ2

i ‖Hig‖2|βi|
√
P̄i+
(
αdi−ci

)
; (7.75)

When α 6= σ−2
i by denoting

ζi ,
(
αdi−ci

)
− |βi|2
ασ2

i − 1
, (7.76)

221



the objective function is equivalently written as

g(τ1)=(ασ2
i−1)‖HH

i g‖22
∣∣∣∣τ1−

β∗
i

‖HH
i g‖2(ασ2

i −1)

∣∣∣∣
2

+ζi, (7.77)

CASE (II): α > σ−2
i . To minimize g(τ1), τ1 should be along the direction of β∗

i . De-

pending on whether the zero point of the absolute term in (7.77) satisfies the power

constraint, two subcases are examined:

i) If
|β∗

i |
‖HH

i g‖2(ασ2
i−1)

≤
√

P̄i, the optimum is given as

τ ⋆1 =
β∗
i

‖HH
i g‖2(ασ2

i−1)
; g(τ ⋆1 )=ζi; (7.78)

ii) If
|β∗

i |
‖HH

i g‖2(ασ2
i−1)

>
√

P̄i, the optimum is given as

τ ⋆1 =

√
P̄iβ

∗
i

|βi|
; (7.79)

g(τ ⋆1 )=(ασ
2
i−1)‖HH

i g‖22
∣∣∣∣
√
P̄i−

|βi|
‖HH

i g‖2(ασ2
i −1)

∣∣∣∣
2

+ζi

CASE (III): α < σ−2
i . Still τ1 should be along the direction of β∗

i , and takes full power.

At this time the optimum is literally identical with (7.79) in the above.

Remember that optimal f⋆i to (P8iα) is obtained by f⋆i = τ ⋆1
HH

i g

‖HH
i g‖2 , the proof is

complete.
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Chapter 8

Conclusion

This dissertation research focuses on efficient signal encoding and decoding schemes

in both point-to-point and network communication systems. It is briefly summarized in

the follows.

In chapter 2 we discuss the performance limits of linear analog codes under AWGN

channel using ML and LMMSE decoding methods. The performance bound has been

obtained and the optimal linear analog codes have been obtained. It is shown that these

two different decoding methods lead to identical linear encoding schemes— unitary

codes. Extensive numerical results verify what we have found.

Chapter 3 researches a kind of nonlinear analog encoding scheme based on chaotic

dynamic systems. Under the general AWGN channel setup, various optimal and sub-

optimal decoding algorithms, including MMSE, ML and ML-MMSE algorithms, have

been developed. Based on the Cramer-Rao bound(CRB) for the baker’s encoding sys-

tems and analysis of its performance, two improving schemes are proposed—mirrored
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baker’s dynamic systems and one input baker’s system. These two improvements effec-

tively depress the threshold effect of the original system and significantly outperform

the classical tent’s map chaotic encoding system.

Chapter 4 considers the precoding design for single sensor with single antenna by

exploiting signal space diversity. By analyzing pairwise error probability(PEP), we dis-

cuss precoder design criteria. Additionally PNC algorithm is proposed which presents

a good compromise between the decoding complexity and bit error rate(BER) perfor-

mance.

Chapter 5 focuses on transceiver design problem minimizing MSE in a centralized

wireless sensor network. Since the original problem is difficult, we adopt BCD method

to attack it. A 2-BCD algorithm is first proposed, which has an easy subproblem of

MMSE receiving and one much harder convex subproblem, which can be turned into a

SOCP problem. Based on that another multiple block BCD algorithm has been proposed

by further decomposing the harder subproblem into more blocks with closed solution to

each block obtained. The convergence and complexity of the proposed algorithms have

been discussed.

In chapter 6, we consider the problem of maximizing MI in the centralized wire-

less sensor network. Inspired by the WMMSE method, we introduce two complicating

intermediate variables—and perform the BCD method to decompose the MI problem

into three subproblems. Two subproblems have closed form solutions and the other

one is similar to one in 2-BCD decomposition in MSE problem. The Karush-Kuhn-

Tucker(KKT) conditions have been examined and we manage to prove that the solu-

tions of this 3-BCD algorithm are KKT points. Convergence has also been carefully

examined.
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In chapter 7, we consider the problem of maximizing signal to noise ratio(SNR) in

centralized wireless sensor network. Still utilizing the block coordinate descent method,

we decompose the original problem into subproblems optimizing individual transmitter

or FC receiver alone. For the receiver optimization, the subproblem can be easily solved

by generalized eigenvalue decomposition. For the transmitter optimization subproblem,

by use of S-lemma and rank-one decomposition, it can be solved semidefinite program-

ming rank-one decomposition. Numerical results are provided to verify our proposed

algorithms.
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source-channel coding,” IEEE Trans. Commun., vol. 57, no. 11, pp. 94-105, Jan.

2009.

[26] P. A. Floor, T. A. Ramstad, “Shannon-KotelâĂŹnikov mappings for analog point-
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