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Abstract

Future electricity grids will enable greater and more sophisticated demand side

participation, which refers to the inclusion of mechanisms that enable dynamic

modification of electricity demand into the operations of the electricity market,

known as Demand Response (DR). The underlying information-flow infrastructures

provided by the emerging smart grid enhance the interactions between customers

and the market, by which DR will improve electricity grids in several aspects,

e.g., by reducing peak demand and reducing need for expensive peaker plants, or

by enabling demand to follow supply such as those from volatile renewable re-

sources, etc. Many types of appliances provide flexibilities in power usage which

can be viewed as demand response resources, and how to exploit such flexibilities

to achieve the benefits offered by DR is a central challenge. In this dissertation, we

design algorithms and architectures to bridge the gap between scheduling appli-

ances and the benefits that DR can bring to electricity grid by utilizing the smart

grid’s underlying information infrastructure.

First, we focus on demand response within the consumer premise, where an

energy management controller (EMC) schedules appliance operation on behalf of

customers to save energy cost. We propose an optimization-based control scheme

for the EMC in the building that integrates both the operational flexible appliances

such as clothes washer/dryer, dish washer and plug-in electric vehicles (PEVs),

but also the thermostatically controlled appliances such as HVAC (heating, venti-

lation, and air conditioning) systems together with the thermal mass of the build-

ing. Model predictive control is employed to account for uncertainty in electricity

prices and weather information. Under time-varying pricing, scheduling appliances

smartly using our scheme can incur notable energy cost saving for customers. As
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an alternative, we also propose a communication-based control approach which is

a joint appliance access and scheduling scheme in which the control algorithms

are embedded into the communication protocols used by appliances. The control

scheme is based on a threshold maximum power consumption set by the EMC; and

we discuss how this threshold can be chosen so that it integrates the availability

of local distributed renewable energy resources.

Then we investigate demand response in the retail market level which involves

interactions between customers and utilities. Pricing-based control and direct load

control (DLC) are two types of approaches that are used or envisioned for this

level. To address pricing based control methods, we propose real-time pricing

(RTP) signals that can be designed to work with customer premise EMCs. The

interaction between these EMCs and the pricing-setting utilities is modeled as a

Stackelberg game. We demonstrate that our proposed RTP scheme reduces peak

load and alleviates rebound peaks that are the typical shortcomings in existing

pricing approaches. To address DLC methods, we propose a distributed DLC

scheme based on a two-layer communication network infrastructure for large-scale,

aggregate DR implementations. In the proposed scheme, average consensus algo-

rithms are employed to distributively allocate control tasks amongst EMCs so that

local appliance scheduling within each home will eventually achieve the aggregated

control task, i.e., to alleviate mismatch between electricity supply and demand.

Finally, we study how demand response affects the wholesale electricity mar-

ket. As is conventional when studying interactions between electricity generators,

we employ the Cournot game model to analyze how DR aggregators may impact

wholesale energy markets. To do so, we assume that DR aggregators employ a com-

putationally efficient, centralized scheduling mechanism to manage deferrable load

over a large aggregate set of consumers. The load reduction from deferrable load
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can be seen as ‘generation’ in terms of balancing the market and is compensated

as such under current regulatory mandates. Thus, the DR aggregator competes

with other generators in a Cournot-Nash manner to make a profit in the wholesale

market; and electricity prices are consequently reduced. We provide equilibrium

analysis of the wholesale market that includes DR aggregators and demonstrate

that under certain conditions the equilibrium exists and is unique.
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Chapter 1

Introduction

1.1 Background

1.1.1 Demand response

U.S. electricity grids face increasing pressure to match supply and demand. This

pressure comes from two sources: On the one hand, electricity demand is increas-

ing in quantity and changing in quality. For example, the Energy Information

Administration (EIA) estimates that overall electricity demand will increase 30%

from 3.9 trillion kWh in 2009 to 5.0 trillion kWh in 2035 [1]. A portion of this

increase will come from wide adoption of electric vehicles (EVs) whose demand

profile is significantly different from current loads. On the other hand, driven by

increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emis-

sions, renewable energy resources are rapidly being introduced into the existing

electricity supply portfolio. For example, the U.S. Department of Energy (DOE)

estimates that wind power will meet 20% of the U.S. electricity demand by 2030,
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which means that the U.S. wind power capacity may reach more than 300 gigawatts

(GW) [2]. With emerging smart grid technologies, a key solution for the power

grids to alleviate the stresses of increasing demand and intermittent renewable

generation is to encourage demand response (DR) as demand side participation in

the electricity market [3]. According to the DOE, DR is defined as

“Changes in electric usage by end-use customers from their normal consumption

patterns in response to changes in the price of electricity over time, or to incentive

payments designed to induce lower electricity use at times of high wholesale market

prices or when system reliability is jeopardized.”

The capabilities of “changes in electric usage” in the definition above are the

resources available for demand response. It is observed that certain types of ap-

pliances with operational flexibility may serve as candidate resources for DR. For

example, some appliances offer flexibility in the operation time (e.g., dish washer

or clothes washer/dryer) so that their start time can be delayed under the con-

straint of a hard deadline. The plug-in electric vehicle (PEV) is another important

emerging load type that offers flexibility in the power consumed in charging PEV

batteries. This type of load is a great DR asset because individual PEV battery

charge can be modified (and coordinated across multiple PEV batteries) as long as

its total energy requirement is fulfilled by a given deadline. Thus, DR schemes that

exploit loads with flexible operation time and power draw can shift electricity usage

in time and benefit both consumers and the grid [4]. From the grid’s perspective,

shifting some load away from peak periods 1) lowers the cost of employing less effi-

cient generation during peak demand; 2) alleviates transmission congestion; and 3)

helps maintain grid stability during these critical peak hours. From the customer’s

perspective, shifting load to off-peak periods results in reduced electricity bills and

occurrences of blackouts and brownouts.
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Due to the underlying two-way communication infrastructures enabled by the

future smart grid renovation, the interactions between customers, utilities, and the

market can be largely enhanced. A central challenge on implementing demand re-

sponse in future smart grids is how to manage demand response resources, i.e., how

to exploit the underlying information infrastructure and operational flexibilities of

loads to achieve the promised benefits of DR.

1.1.2 Three levels of DR in the smart grid

Depending on the different levels of aggregation, DR implementation and partici-

pation in the layered structure of the electricity market can be divided into three

categories as shown in Figure 1.1.

EMC 

Utilities 

Generator 

Generator 

ISO 

Utilities 

Utilities 

Generator 

Retail electricity market

Wholesale electricity market 

Power transmission 

Power distribution 

In-home scheduling 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Figure 1.1: Three levels of DR implementation in electricity market

• Consumer premise level: The energy management controller (EMC) sched-

ules operation of appliances within home to save money or fulfill the control

task on behalf of customers;

• Retail market level: With appliance scheduling capabilities, the EMCs inter-
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act with utilities in the retail electricity market;

• Wholesale market level: Large-scale aggregation of DR resources can partic-

ipate in and affect the wholesale electricity market.

In this dissertation, we propose innovative algorithms and architectures for

scheduling appliances as demand response in these three levels, and evaluate the

benefits accordingly. The main contribution of our work is to bridge the gap

between the scheduling of appliances and the benefits that demand response can

bring to the grids utilizing underlying information infrastructure, and to guide the

implementation of residential demand response scheme in future smart grids.

(1) DR in consumer premise level

The demand response implemented in this level usually aims at minimizing the en-

ergy (electricity) cost by smartly scheduling appliances within a home. Besides the

operational flexibilities provided by some appliances such as clothes washer/dryer,

dish washer, thermal comfort flexibilities of customers provide additional freedom

in scheduling thermostatically controlled appliances like HVAC (heating, venti-

lation and air conditioning) systems. In addition, several utilities, e.g., Ameren

Illinois [5] and ComEd [6], already provide time-varying electricity tariffs to sub-

scribed customers. Such customers can utilize their load flexibilities to save on

electricity bills. However, current residential load control activities are mainly op-

erated manually, which poses great challenges to customers in optimally scheduling

the operations of their appliances. Customers may not have time to make such

scheduling decisions and if prices vary fast and frequently, scheduling may be too

complex. Hence, an automated energy management controller (EMC) is necessary

to optimize the appliances’ operation on behalf of customers.
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In this dissertation, we design appliance scheduling schemes for the EMC to

fully exploit the various degrees of flexibilities required by different appliances to

save energy cost on behalf of customers. One approach is to formulate optimization

problems of appliance scheduling in response to time-varying pricing, where opera-

tional and thermal flexibilities are integrated as a viable tool of changing the power

usage profile to save money. An alternative approach is to combine the control and

the underlying communication together, i.e., design a communication-based con-

trol scheme where the load control problem is embedded into the communication

protocol.

(2) DR in retail market level

The interactions between customers and utilities are usually involved when DR is

implemented in the retail market level. By these interactions, utilities can make

customers change their power usage profile, either directly or indirectly, to reduce

peak demand and alleviate the mismatch between supply and demand. In general,

there are two approaches for DR in the retail market, as shown in Figure 1.2:

Smart buildingInteraction with utilities/aggregator Smart buildingInteraction with utilities/aggregator

SmartControl signal

Direct Load Control (DLC) Approach

WAN

EMC

l

appliances

Distributed

Control signal

Utilities

/aggregator

El t i hi l

Electricity price

Power usage decision

storage

Distributed

generation

(renewable)S t P i i b d A h Electric vehicle (renewable)Smart Pricing based Approach

Figure 1.2: Two types of approaches for DR in retail market

a. Direct load control (DLC) approaches: Current DLC programs provided by

utilities are usually contract-based, i.e., by signing up for the contract, customers
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give utilities the option to remotely shut down appliances during high-demand

periods or power supply emergency, and receive credit on electricity bills for this

participation. Examples of these DLC programs include Contracted Direct Load

Control by Wisconsin Public Service [7] and Distribution Load Relief Program by

conEdison [8].

Several limitations exist for these types of DLC programs. Firstly, they are only

for emergency cases so that they do not fully exploit the operational flexibilities

of appliances which have potential for balancing supply and demand. Secondly, in

scenarios with a large number of customers (and loads) participating, complexities

of computation and communication are huge for the central controller. Another

limit is due to customers’ privacy concerns since their power usage is exposed as

each individual appliance is remotely controlled by the central controller.

In this dissertation, we propose a distributed direct load control scheme which

overcomes the drawbacks of the current DLC programs listed above. The schedul-

ing of appliances is conducted within each home by the EMC, and all EMCs are

coordinated by local communications so that the control task can be allocated in

a distributed way.

b. Smart pricing-based approaches: Utilities can also choose to control appli-

ances indirectly by sending price signals. Specifically, the variation of wholesale

electricity prices is brought to the retail electricity prices and affects customers’

electricity bills. With time-varying electricity prices, customers may be induced

to make smart energy decisions, e.g., shifting some power usage during high-price

periods to low-price periods which will save customers money and reduce overall

burden on the grid during peak demand periods. Examples of implementation of

these types of approaches include Ameren Illinois [5], and ComEd [6].
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Although there are time-varying pricing schemes currently, none of them are

fully dynamic. This means that there exists potential for ‘rebound peak demand’

[9], which are instances in which a significant number of customers shift their loads

to low-price periods and cause a new peak. In some cases, this rebound peak can be

far more problematic (i.e., far more of a mismatch to the available power supply)

than the original high-price peak. A possible solution is to introduce real-time

pricing (RTP) which reflects the more dynamical relationship between supply and

demand in the market. In this dissertation, we propose an innovative RTP scheme

which combines residential flexible appliance scheduling. The interaction between

the utilities and customers is modeled as a Stackelberg game and the algorithms

can be implemented via the underlying two-way communication network.

(3) DR in wholesale market level

Depending on the Independent System Operator’s (ISO’s) market design, DR may

provide energy, reserve ancillary service (A/S), or capacity in the wholesale electric-

ity market [10]. Currently, several trials of DR programs have been implemented

by some ISOs in the U.S., e.g. New York ISO (NYISO) [11], PJM [12] and ISO

New England (ISO-NE) [13]. At the same time, stimulus of DR in the wholesale

electricity market is also provided by regulatory institutions like Federal Energy

Regulatory Commission (FERC). For example, FERC Order No.719 [14] and No.

745 [15] specify how ISOs can permit Demand Response Providers (DRPs) to bid

DR on behalf of retail customers directly into the ISO’s organized markets, and get

compensated for the service they provide at the locational marginal price (LMP).

These efforts help integrate DR resources into the wholesale electricity market to

cope with future supply-demand matching challenges.
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When DR resources participate in the wholesale electricity market, aggregation

is usually needed. In such cases, an important question for future DR systems is

how will a DR aggregator manage operational flexibilities of loads across a large

number of customers. The approaches we propose for DR in the retail market, i.e.,

for direct load control, could be one way to do this. In this dissertation, we build

on an alternate computationally efficient architecture of managing deferrable loads

as a market asset and employ Cournot game model to analyze the effects of DR

aggregators’ participation in the wholesale market.

1.2 Outline of the Dissertation

As previously mentioned, this dissertation mainly focuses on three levels of de-

mand response in the grid: consumer-premise level DR where the EMC schedules

appliances to save money on behalf of customer; retail market level DR where

EMCs interact with the utilities to reduce peak demand or match the supply and

demand; wholesale market level DR where the aggregators apply DR resources

in the wholesale electricity market and influence the market, e.g., the electricity

prices. A brief outline of this dissertation is presented as follows.

In Chapter 2, we apply model predictive control (MPC) method to appliance

scheduling within a building under a time-varying pricing scenario. Specifically, the

building thermal mass is integrated by modeling the building’s thermal dynamics

as linear difference equality constraints in its optimization. Thus, electricity cost

can be saved when the scheduler utilizes the thermal mass (serving as heat storage)

in conjunction with time-varying prices and weather information when scheduling

loads. In addition, scheduling of non-thermal flexible appliances is modeled as a
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mixed-integer linear program and both inter-appliance and intra-appliance depen-

dencies are incorporated when scheduling in the face of time-varying prices. With

the proposed scheme, customers are shown to have notably reduced electricity

costs.

In Chapter 3, we focus on how a consumer premise communication network

(e.g., a home-area network) can be designed to permit load scheduling amongst

flexible and controllable loads. Our proposed scheme alleviates the EMC of the

communication and computation complexities of directly scheduling each individ-

ual load in the consumer premise. The functionalities of the EMC are reduced in

our model to calculating a threshold maximum power consumption for the home.

We cast the calculation of this time-varying threshold power as an optimization

problem which accounts for price variation and uncertainty due to local wind gener-

ation. Our proposed joint access and scheduling protocol describes how appliances

access a common control channel so that this total maximum demand target is

not exceeded for each time slot. Unlike existing local area network (LAN) me-

dia access protocols (e.g., Wi-Fi, G.hn, Zigbee), which could be used for one of

several applications, our proposed scheme specifically addresses the load control

problem. For in-home scenarios, relatively short control messages are occasion-

ally exchanged; thus the approach can be easily implemented on higher data-rate

LANs. To provide analytical foundations, we study the evolution of the protocol

as a two-dimensional Markov chain and quantify the average delay experienced by

individual appliances.

In Chapter 4, we move our focus on how the real-time pricing (RTP) can

make a connection between scheduling appliances and the benefits of this demand

response, e.g., peak load reduction. A Stackelberg game model is formulated to

analyze the interaction between a customer’s EMC and the serving electric utility,

12



where the utility plays the leader level game and the customer plays the follower

level game. The RTPs are signals that can indirectly make customers change their

power usage profile, and as a result, the peak load as well as the mismatch between

supply and demand can be alleviated. Due to the dynamic adjusting of the pricing

introduced in our approach, the ‘rebound peak demand’ can also be alleviated.

In Chapter 5, we aim at the direct load control (DLC) as an alternative ap-

proach for demand response in the retail market level. We propose a distributed

direct load control approach based on a two-layer communication network infras-

tructure. The lower-layer network is within each building, where the energy man-

agement controller (EMC) uses wireless links to schedule operation of appliances

upon request according to a local power consumption target. The upper-layer

network links a number of EMCs in a region whose aggregated demand is served

by a load aggregator. The load aggregator wants the actual (day-of) aggregated

demand over this region to match a desired aggregated demand profile (i.e., day-

ahead planned supply). Our approach utilizes the average consensus algorithm to

distribute portions of the desired aggregated demand to each EMC in a decen-

tralized fashion. The allocated portion corresponds to each building’s local power

consumption target which its EMC then uses to schedule the in-building appli-

ances. The result will be an aggregated demand over this region that more closely

reaches the desired demand.

In Chapter 6, we investigate the impact of demand response at the wholesale

market level. A Cournot game model is proposed to analyze the market effects with

participation of DR aggregators, which manage aggregated deferrable load using

a computationally efficient architecture. According to the FERC rules, the load

reduction of the DR aggregator from deferrable loads can be viewed as ‘generation’

in terms of balancing the market. Thus the DR aggregator competes with other
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traditional generators in a Cournot-Nash manner to make a profit in the market,

and market prices are reduced as a consequence. With the Cournot game model,

we provide equilibrium analysis of the wholesale market that includes the DR

aggregators. We show that under certain conditions, the market equilibrium exists

and is unique.
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Chapter 2

Residential Appliance Scheduling

in Buildings: An Optimization

Approach

2.1 Introduction

In this chapter, we focus on demand response in residential buildings, and formu-

late optimizations for scheduling of several types of appliances. Our approach takes

advantage of future two-way communication infrastructure underlying the emerg-

ing smart grid, and utilizes time-varying prices to save money for customers. The

proposed optimization-based control algorithms can be integrated into a building

energy management controller (BEMC) that schedules appliances on behalf of the

customer automatically. The residential appliances for scheduling can be divided

into non-thermal appliances with flexible operation (e.g. clothes washer/dryer, dish

washer, plug-in electric vehicle (PEV)), and thermostatically controlled appliances
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in which customers’ comfort ranges provide a degree of operational flexibility.

For non-thermal flexible appliances scheduling, we formulate a mixed-integer

linear programming (MIP) problem that captures the key features of appliance

operations, and also the inter-appliance and intra-appliance dependences to exploit

finer granularity when faced with time-varying prices. The MIP problems can be

solved efficiently within the building scale, and can be easily embedded into the

BEMC.

For thermostatically controlled appliances scheduling, our approach integrates

the thermal mass of the building in a linear programming (LP) problem. Specifi-

cally, a simplified 14-node thermal dynamics model is proposed as linear difference

equality constraints in the LP, such that the thermal mass of the building can rep-

resent heat storage and be effectively utilized to save money for customers. Model

predictive control (MPC) is applied in the optimization to incorporate updated

external information such as prices and weather information.

There are several studies about residential appliance scheduling. Certain types

of delay flexible appliance scheduling optimization is formulated in [9] and [16]. The

ON/OFF operations of individual appliances are modeled as independent Markov

chains in [17]. However, other operation constraints like operational dependencies

and minimum operation duration are omitted in these papers. For thermal ap-

pliances scheduling, Lu et al. presented a cost minimization problem for electric

water heater (EWH) scheduling considering the thermal dynamics of water heating

systems and customers’ preferences [18]. The thermal dynamics of heating, venti-

lation, and air conditioning (HVAC) is considered in [19]. But the thermal system

only incorporated the heat transfer between the room air and the outside envi-

ronment, omitting the thermal mass storage of the building itself. An exponential
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decay building thermal model is utilized in [20], and dynamic programming is used

for thermal appliance scheduling. Instead of using an optimization formulation,

simulation tests for certain pre-cooling strategies considering the thermal mass are

conducted in [21]. An MPC method for thermal appliance scheduling considering

the thermal dynamics of the building is employed in both [22] and [23]. The ther-

mal model in [22] only considers a simple three-node case to represent the building

while the thermal model used in [23] has non-linearity issues. Besides, both papers

apply only the temperature as a thermal comfort indicator in their formulations.

The remainder of this chapter is organized as follows: Section 2.2 describes the

system model. Section 2.3 formulates the optimization problems for non-thermal

appliances scheduling. Section 2.4 incorporates the thermal mass of buildings

in the thermal appliances scheduling optimization problem. Section 2.5 presents

numerical simulation results and we conclude our discussion in Section 2.6.

2.2 System Model

In this paper, we consider a residential building, in which home appliances are

scheduled by the BEMC, shown in Figure 2.1. In our model, appliances in the

building can be divided into the following categories for scheduling:

• Delay flexible appliances, e.g., clothes washer/dryer, dish washer, etc.

• Delay and power consumption flexible appliances, such as a PEV battery.

• Thermal appliances, which include electric heater and A/C.
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Figure 2.1: Residential building energy management system

The detailed models of these types of appliances for the scheduling optimization will

be discussed in Sections 2.3 and 2.4. The BEMC schedules operation of appliances

by exploiting these flexibilities. In our model, the BEMC (acting on behalf of the

customer) is a price taker so that its scheduling decision does not affect electricity

prices.

Model predictive control (MPC) refers to a class of control methods that com-

pute a sequence of decision variable adjustments over a future time horizon it-

eratively based on an underlying optimization model and forecasts of uncertain

variables. In other words, MPC is a rolling process that runs the embedded op-

timization model repeatedly with updated forecasts. MPC is now recognized as

a very powerful approach with well established theoretical foundation and proven

capability to handle a large number of control problems with uncertainty [22]. The

thermal dynamics of the building which is viewed as a process model underlying

the appliance scheduling optimization, and the prediction of time-varying prices

as well as weather can all be incorporated in the MPC method for the BEMC to

utilize the building thermal mass and time-varying pricing.
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The MPC method is employed by the BEMC in scheduling appliances, shown

in Figure 2.2. The time-line is divided into slots for scheduling, each time slot

with a duration of ∆ minutes. The MPC-based approach works as follows: At

any time slot t, the BEMC gets the current electricity price and weather data and

forecast data from t + 1 to t + N − 1. The BEMC then solves an optimization

problem to minimize the energy cost of thermal appliances (A/C or heater) over

this N -slot time horizon. The actual operation (power consumption) at time t will

follow the optimization result for that time. Then at time t+1, the BEMC obtains

updated information for the next N time slots (from t+1 to t+N) and solves this

finite horizon optimization problem again, and schedules the power consumption

for time t + 1. The time horizon moves forward by one time slot for the new

optimization. For non-thermal flexible appliances scheduling, let Rt denote the set

of requested appliances at the beginning of t (these requests happen during t − 1

slot), the BEMC optimizes the operation (ON/OFF status) or power consumptions

for the next N slots starting from t, and the actual appliances’ operation will

follow the optimization results. As this finite time horizon optimization procedure

schedules the appliances’ operation considering not only the current information

by also the forecast information, short-sightedness in scheduling can be avoided.

Detailed optimization formulations are described in the next two sections, where

τ = 0, 1, . . . , N − 1 is used for the relative time index within the time horizon N .

t

= 0; 1 : : :N 1

timeline 

(Optimization time horizon) 

Rt

t + N 1

Figure 2.2: MPC-based appliance scheduling

Note that the future information, i.e., electricity prices and weather data, within

the time horizon N need forecasting techniques, which is not focus of our approach.
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Instead, we assume that the BEMC obtains perfect forecasts, which use the real

prices and weather data in the simulations as shown in Section 2.5. Extensive

studies about electricity price forecasting can be found in [24] [25], etc.

2.3 Operation Flexible Appliance Scheduling

In this section, the optimization problem of scheduling non-thermal appliances

is formulated. We consider two categories of appliances: delay flexible appliances

(such as dishwashers, clothes washers and clothes dryers) and both delay and power

consumption flexible appliances (such as PEV batteries).

In the first category, rather than scheduling each device, the BEMC schedules

the task of a user’s power consumption event, which considers both intra-appliance

and inter-appliance dependencies. In the second category, we consider both charg-

ing and discharging modes of a PEV battery so that it can further help to save

energy cost.

2.3.1 Delay flexible appliance scheduling

In a household, the operation of delay flexible appliances usually has the follow-

ing features: 1) The power consumption operation depends on the customers’

request, i.e., customers pushing the start button of the appliance. 2) There is

interdependence in appliances’ operation, which can be either intra-appliance or

inter-appliance. Intra-appliance dependence refers to cycles of an appliance opera-

tion. For example, the clothes washer has washing, rinsing, spinning, and mainte-

nance wash cycles, where each cycle may run several times depending on the user’s
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configuration. Inter-appliance dependence refers to the interaction of different ap-

pliances. For example, a clothes dryer must operate after completion of a clothes

washer. 3) Usually, some amount of time delay between tasks is allowed, for both

intra-appliance and inter-appliance tasks.

We designed our flexible appliance scheduling algorithm according to the fea-

tures listed above. When there is a power request from the customer, the schedul-

ing algorithm will be triggered at the beginning of next nearest slot. Rather than

scheduling the appliance as a consecutive block of power consumption, the BEMC

treats each task individually; and thus, considers the intra-appliance and inter-

appliance dependencies uniformly. In this way, the delay flexibility is not only from

the delay time between the customer’s request and actual appliance powering-on,

but also from the time interval between tasks. Optimally allocating the task sched-

ule and intervals between tasks may utilize low-price periods and hedge against

high-price periods.

Let i denote the index of an event, and k denote the index of a task for a

certain event. We define a binary variable uki,τ to indicate the ON/OFF status

of an appliance with regard to task k for event i at time slot τ within the time

horizon, where uki,τ = 1 indicates the ON status. For ease of formulation, we also

define ancillary binary variables zki,τ and yki,τ to represent the start-up and shut-

down actions, respectively, of task k for event i at time slot τ within the time

horizon, where zki,τ = 1 and yki,τ = 1 mean the start-up and shut-down actions.

(1) Objective function: Since each event operates independently and given the

assumption that the BEMC is a price taker (i.e., the power consumption of one

event does not influence the price of electricity, and thus, it does not affect the
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decision of scheduling another event), we model the optimization for each event

individually.

The objective of scheduling is to minimize the energy cost, which is the money

paid for the power consumption of that event over the time horizon of N slots.

min
uk
i,τ ,y

k
i,τ ,z

k
i,τ

STi∑

k=1

N−1∑

τ=0

uki,τ · P
k
i · κτ , (2.1)

where κτ is the electricity price at time slot τ , and P k
i is the power consumption

level of appliance i for task k. STi denotes the number of tasks in event i.

(2) Coupling constraints of individual task ON/OFF status, start-up

and shut-down indicator: (2.2)-(2.4) formulates the logic relation between the

ON/OFF status, start-up and shut-down indicators.

uki,τ − uki,τ−1 = zki,τ − yki,τ , ∀i, k ∈ {1..STi}, τ. (2.2)

zki,τ ≤ uki,τ , ∀i, k ∈ {1..STi}, τ. (2.3)

yki,τ ≤ 1− uki,τ , ∀i, k ∈ {1..STi}, τ. (2.4)

uki,τ , y
k
i,τ , z

k
i,τ ∈ {0, 1}, ∀i, k ∈ {1..STi}, τ. (2.5)

(3) Start-up and shut-down time constraints: We assume each task of the

event only operates once during the time horizon N , i.e., there is only one start-up

and shut-down action of each task. If one cycle of operation happens several times

during the event, these cycles are treated as different tasks sequentially. We write
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these constraints as

N−1∑

τ=0

zki,τ = 1,
N−1∑

τ=0

yki,τ = 1, ∀ i, k ∈ {1..STi}. (2.6)

(4) Operation time constraints: We assume that once a task has powered

on, the corresponding appliance remains on for T k,ON
i slots with a constant power

consumption level of P k
i . To map this requirement to the decision variable, we

employ the minimum-ON constraints of the unit commitment problem [26] in the

following.

τ∑

τ ′=max(0,τ−T k,ON

i +1)

zki,τ ′ ≤ uki,τ , ∀ τ, i, k. (2.7)

The inequality constraints in (2.7) guarantee that the operation time of task k is

greater than T k,ON
i . If electricity prices are positive, from the objective function

(2.1), we see that operation time of T k,ON
i always incur the lowest cost. So these

constraints actually specify that the operation time of task k is equal to T k,ON
i . For

the case of negative electricity prices, the task operation time may be extended

to earn extra money. If tasks allow extra operation time, our scheme still applies;

for the tasks with strict operation time, a hard deadline can be set in the actual

scheduling.

(5) Operation dependence constraints: Without loss of generality, we as-

sume the operation order of tasks for an event to be ascending in the index, i.e.,

task k can only operate after the (k − 1)-th task completes its operation. Us-

ing start-up (zki,τ ) and shut-down (yki,τ ) indicators, we formulate these operation
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dependence constraints as follows.

N−1∑

τ=0

τ · zki,τ ≥
N−1∑

τ=0

τ · yk−1
i,τ , ∀ i, k = 2, 3, . . . , STi. (2.8)

where
∑N−1

τ=0 τ ·z
k
i,τ represents the duration before task k starts up and

∑N−1
τ=0 τ ·y

k−1
i,τ

represents the duration before task k − 1 shuts down. Note that τ denotes the

relevant time slot index within the time horizon (e.g., τ = 0, 1, . . . , N −1), and the

request of the event happens at beginning of the time horizon (τ = 0).

(6) Delay constraints: As shown in the dependence constraints (2.8), an inter-

val between sequential tasks may be allowed. Different tasks have different delay

interval tolerances depending on the nature of the task. For example, after the

cycle of pumping the water to fill the drum of the clothes washer, it is beneficial to

wait for a while to make full use of the cleaning effect of the detergent, but waiting

too long is harmful to the clothes. The following task delay constraints guarantee

that these task delay flexibilities will not impact the task quality.

N−1∑

τ=0

τ · zki,τ −
N−1∑

τ=0

τ · yk−1
i,τ ≤ Dk

i , ∀k, (2.9)

where Dk
i is the delay tolerance for task k of event i.

Besides each individual task delay tolerance, the customer usually specifies an

overall event delay, i.e., once the customer pushes the start button of an appliance,

how much time he/she is willing to wait for until event completion. This total

delay constraint can be obtained by adding all delays of tasks for this event, as

shown in (2.10).

STi∑

k=2

(
N−1∑

τ=0

τ · zki,τ−
N−1∑

τ=0

τ · yk−1
i,τ

)

+
N−1∑

τ=0

τ · z1i,τ ≤ Di, ∀ i, (2.10)
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where Di is the overall delay tolerance of task i.

The optimization can be formulated as the objective function in (2.1) under

constraints (2.2) – (2.10), which together form an integer linear programming (ILP)

problem.

2.3.2 PEV battery charging/discharging scheduling

The PEV battery can either act as the demand – when in the charging mode – or

the supply of electricity when in the discharging mode. The flexibility of the PEV

batteries is not only from the charging/discharging status switching, but also from

the power drawn to and from the battery. The scheduling time horizon for the

PEV battery is from its arrival to the departure while it is plugged in. The BEMC

aims to minimize the energy cost of charging during this period, while guaranteeing

the battery being charged above some level at the departure time.

To capture the two possible modes of a PEV battery, we employ a binary

variable vτ to indicate mode status at time slot τ ; specifically, vτ = 0 for charging

mode and vτ = 1 for discharging mode. Two ancillary variables scτ and sdτ are

defined to indicate start charging and start discharging actions. Let continuous

variable Bτ denote charging/discharging rate, where positive value is for charging

and negative value is for discharging. Since there is an efficiency for both charging

and discharging, we define an ancillary variable B̃τ to indicate power drawn to

(charging, positive value) or from (discharging, negative value) the PEV battery.

In the following parts we model operation constraints for battery and formulate

the battery scheduling optimization to minimize the energy cost to customers.
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(1) Coupling status constraints: The coupling constraints of battery status,

start charging and start discharging indicator, which are similar to those of the

appliances’ ON/OFF status and start-up/shut-down, can be written as

vτ − vτ−1 = sdτ − scτ , ∀τ, (2.11)

sdτ ≤ vτ , ∀τ, (2.12)

scτ ≤ (1− vτ ), ∀τ, (2.13)

vτ , scτ , sdτ ∈ {0, 1}, ∀τ. (2.14)

(2) Minimum charging/discharging time constraints: To protect the lifes-

pan of the PEV battery, the frequent charging/discharging switch should be avoided.

We employ a minimum charging/discharging time denoted by CT/DT , which in-

dicates if the battery starts charging/discharging mode, it must remain in the same

mode for at least CT/DT time slots, respectively. These constraints are related

to the battery status, the start charging and the start discharging indicators as

follows:

τ∑

τ ′=max(0,t−DT+1)

sdτ ′ ≤ vτ , ∀τ (2.15)

τ∑

τ ′=max(0,t−CT+1)

scτ ′ ≤ 1− vτ , ∀τ (2.16)

(3) Charging/discharging rate constraints: The charging and discharging

rate should be bounded by [Bl
c, B

u
c ] and [Bl

d, B
u
d ], respectively. Note that for dis-

charging, Bl
d, B

u
d ≤ 0. The charging/discharging status vτ can be used to write
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this constraint in a uniform way.

(1− vτ )B
l
c + vτB

l
d ≤ Bτ ≤ (1− vτ )B

u
c + vτB

u
d , ∀τ. (2.17)

We can see when vτ = 1 (discharging), Bτ ∈ [Bl
d, B

u
d ], and when vτ = 0 (charging),

Bτ ∈ [Bl
c, B

u
c ].

(4) State of charge (SOC) constraints: Due to an efficiency parameter for

both charging and discharging, the charging/discharging rates Bτ are not the same

as the power drawn to/from the battery B̃τ . Let ηI and ηO denote the charging

and discharging efficiency, respectively. The relation of charging/discharging rates

and power drawn to/from the battery in terms of the efficiency can be written as:

B̃τ =







ηI · Bτ , if Bτ ≥ 0,

Bτ

ηO
, if Bτ < 0,

(2.18)

where the coefficients ηI and ηO lie in (0, 1]. However, (2.18) depends on the actual

value of charging/discharging rates Bτ , which are decision variables, so they cannot

be added as constraints directly. In order to express these conditional constraints

as linear constraints, we introduce big values (MB1−MB4) as an ancillary constant,

and convert (2.18) into the following four inequalities:

B̃τ ≥ Bτ · ηI − vτ ·MB1, (2.19)

B̃τ ≥
Bτ

ηO
− (1− vτ ) ·MB2, (2.20)

B̃τ ≤ Bτ · ηI + vτ ·MB3, (2.21)

B̃τ ≤
Bτ

ηO
+ (1− vτ ) ·MB4. (2.22)
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These ancillary variables should be set as small as possible for to accelerate the

speed. According to the structures of these inequalities, we can set MB1 = −
Bu

d

ηO
,

MB2 =
Bu

c

ηO
, and MB3 = MB4 = 0. It can be easily verified that with the values of

these ancillary variables, deterministic inequalities (2.19) – (2.22) are equivalent to

the conditional equalities in (2.18).

Let EC denote the capacity of the PEV battery, and the state of charge (SOC)

ζ is defined as the battery energy level normalized by the battery capacity EC.

Assume the SOC of the battery at time of arrival is ζ0. During charging/discharging

over the time horizon L, lower and upper bounds of SOC, [ζ−, ζ+], are specified

to help protect the battery. For example, the lead-acid battery should not be

discharged below 50% [27], and for the Lithium-based battery, deep discharge

(depletion) should be avoided to prolong battery’s lifespan [28].

ζ− ≤
ζ0 · EC +

∑τ
τ ′=1 B̃τ ′

EC
≤ ζ+, τ=1, . . . , L. (2.23)

At the time of departure, i.e., τ = L, additional SOC constraint is needed such

that the SOC of PEV battery needs to be above a certain level ζd specified by the

customer, i.e.,

ζd ≤
ζ0 · EC +

∑L
τ ′=1 B̃τ ′

EC
≤ ζ+. (2.24)

If electricity prices are positive, the left inequality in (2.24) is always binding to

incur lowest cost. But for negative electricity prices, the battery may be charged

more at departure to earn money, or to offset paying for the same charge during

future intervals with positive prices.
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(5) Optimization formulation: The BEMC schedules battery operation to

minimize electricity cost, i.e.,

min
Bτ

L∑

τ=1

Bτ · κτ . (2.25)

Note that when in discharging mode, the customer actually sells back electric-

ity at whatever the price is at the time. The optimization for battery charg-

ing/discharging scheduling can be formulated given the objective (2.25) and con-

straints (2.11) – (2.24), which is a mixed-integer linear programming (MIP) prob-

lem.

2.4 Thermal Appliance Scheduling

Unlike washing machines or dishwashers, thermal appliances’ scheduling is related

to the thermal dynamics of the building and the customer’s comfort level. In

the following sections, we provide specifications of a building room prototype and

model the thermal dynamics of the building room using a set of linear differential

equations and the customer’s comfort level using the predictive mean vote (PMV)

index. Then we study how these two factors are incorporated in the scheduling

optimization for thermal appliances.

2.4.1 Thermal dynamics of building room

We consider a case from a multi-family home which has at least five housing units,

each of which must share at least a floor or a ceiling with another unit. The en-

velope geometry of this room prototype is shown in Figure 2.3(a). We apply a
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typical floor plan assuming a single zone for the entire unit and no heat transfer

between the units, which is reasonable, since they are all similarly conditioned.

The building floor-to-floor height is assumed to be three meters. All the other

specifications of the building room prototype are based on the National Renewable

Energy Laboratory (NREL) building America house simulation protocols [29], con-

taining the physical property of walls, floor, windows, and the typical parameters

for infiltration, internal gain, and system efficiency. These specifications can be

used to compute the thermal mass capacity and heat transfer coefficient described

in the next part. Due to the limit of space, these specifications are omitted here

and the reader can refer to [29] for more details.

(a) One building room prototype [30]
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Figure 2.3: Building room prototype and model

When thermal appliances, such as the electric heater and A/C are scheduled by

the BEMC, the whole building is a thermal dynamic system; the walls, floor, and

ceiling transfer heat to the room while serving as a thermal mass for heat storage.

The building thermal dynamic characteristics determine the heating and cooling

demands of the room under specified comfort levels and given weather conditions.

To optimize the schedules of the thermal appliances, we model the building thermal

system using a finite element discretization technique. The technique discretizes

the space into nodes and an element connecting nodes represents one heat transfer
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phenomena [31]. Figure 2.3(b) shows a simple 14-node model of the prototype

house; node 1 represents the ambient environment, which is used as the boundary

conditions for the thermal dynamics. Hence, we regard the temperature for node

1 to be known and use the typical meteorological year (TMY) weather data to

quantify it [32].

Except for node 1, the heat transfer equation per node can be formulated as

Mj
dTj(τ)

dτ
+

14∑

k=1,k 6=j

Sjk [Tj(τ)− Tk(τ)] = fj(τ), (2.26)

where Mj is the heat capacity of a building component represented by node j

and Mj
dTj(τ)

dt
is the dynamic heat change due to the thermal inertia of the mass;

Sjk is the heat transfer coefficient from node j to node k, by either conduction,

convection, or radiation. Tj(τ) is the temperature of node j at time slot τ . fj(τ) is

the external heat gain to node j at time slot τ , i.e., solar radiation, heat dissipation

from lighting and appliances, and the thermal appliances like the heater and A/C.

The thermal equations for all nodes at time slot τ can be written in a matrix

form as (2.27).

M
dT̄ (τ)

dτ
+ ST̄ (τ) = f̄(τ), (2.27)

where M = diag{Mj} is the thermal inertia matrix and S is the heat transfer

coefficient matrix. Vector T̄ (τ) and f̄(τ) represent temperature and external heat

gain for all nodes. Since the ambient environment (node 1) is used as the boundary

conditions for the thermal dynamics system, we remove the first row of M and S

so that only thermal dynamics of node 2 – 14 are formulated.

The external heat gain can be divided into thermal appliances, lighting, non-
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thermal appliances, and solar radiation, i.e., f̄ = f̄sloar+ f̄lighting+ f̄app+ f̄thermalapp.

Heat gains from solar radiation and lighting are considered as known whereas

heat gain from appliances is associated with decision variables in the optimization

scheme.

2.4.2 PMV comfort level

Another important constraint is the human comfort level, which represents the

thermal flexibility of the customer. We employ the PMV index [33]. PMV is an

index that predicts the mean value of the votes of a large group of persons on the

7-point thermal sensation scale, i.e., [-3,3] represents 7 thermal sensations from

cold to hot, to describe the thermal comfort level.

The calculation of PMV can be referred to the ISO 7730 standard [33], which

depends on several factors such as human metabolic rate, clothing insulation, cloth-

ing surface area factor, air temperature, mean radiant temperature (MRT), relative

air velocity, and relative humidity. In our studies, we evaluate how the tempera-

tures (air temperature ta and (MRT) t̄r) influence the PMV value, so we set all

other factors to be constant nominal values as shown in Table 2.1.

Table 2.1: Parameters for PMV computation

Parameter Value

Metabolic rate 1 met = 58.2 W/m2

Clothing insulation 1 clo = 0.155 m2·◦C/W
Relative air velocity 0.5 m/s
Relative humidity 40 %

However, the calculation of PMV in [33] requires iterative numerical methods to

solve equations, which cannot be integrated into our optimization directly. Alter-
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natively, we vary the ta and t̄r from their normal range 10◦C–30◦C and 10◦C–40◦C,

respectively, and compute PMV values using the iterative algorithm in [33], which

is shown in Figure 2.4.
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Figure 2.4: PMV data computed using iterative algorithm

We observe that all the PMV data points in Figure 2.4 follow a plane, so we

apply linear regression to estimate the two-variable linear function of PMV in terms

of ta and t̄r, which gives the function as

PMV = −3.923 + 0.133 · ta + 0.0577 · t̄r, (2.28)

with an error variance as low as 4.5113× 10−4.

2.4.3 Optimization formulation

The BEMC aims to schedule the thermal appliances’ power consumption Qτ to

minimize energy cost, given that the PMV is within a customer specified range
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over time horizon N , i.e.,

min
Qτ

N−1∑

τ=0

Qτ · κτ , (2.29)

where Qτ needs to follow the specification of the electric heater or A/C as

Q− ≤ Qτ ≤ Q+, ∀τ, (2.30)

where Q− and Q+ are the lower and upper bounds of power consumption, respec-

tively.1

Thermal dynamic equations in (2.27) serve as equality constraints on the room’s

thermal evolution. To convert them into linear constraints, we employ approxi-

mated difference equations

M(T̄τ − T̄τ−1) + ST̄τ = f̄τ , ∀τ. (2.31)

The external heat gain of thermal appliance fthermalapp,τ in fτ takes effect in room

space (node 2), with the value of βQτ , where β is the heat efficiency for the thermal

appliance. So f̄thermalapp,τ can be expressed as (0, βQτ , 0, . . . , 0)
T. If the thermal

appliance is A/C for cooling, we can simply change the sign of f̄thermalapp,τ .

Given a PMV range [PMV −, PMV +] specified by the customer, the comfort

level constraint can be formulated using the linear regression result in (2.28) for

all time slots as

PMV −≤−3.923+0.133ta+0.0577t̄r≤PMV +, ∀τ, (2.32)

1For the thermal appliances that only offer ON/OFF operation flexibility, binary variables
can be introduced, and the optimization problem will change to a mixed-integer programming
(MIP) problem.
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where ta is the room air temperature (T2), and the MRT t̄r of the room can be

expressed in an empirical formula [34] as

t̄r = [0.18× (T13+T14)+0.22× (T7+T8)+(0.3−0.01)

×(T6+T11)+0.01× (T4+T9)] /[2× (0.18+0.22+0.3)].

This PMV constraint in (2.32) is a linear inequality constraint. Combining the ob-

jective in (2.29) and constraints (2.30) – (2.32) gives a linear programming problem.

In the external heat gain vector f̄ , the solar radiation and the lighting part

f̄solar, f̄lighting can be viewed as fixed value inputs. The thermal appliance part

f̄thermalapp is the decision variable. The non-thermal appliance external heat gain

part f̄app can be divided into heat gain from non-schedulable (critical) appliances’

operation, f̄n
app, and schedulable appliances’ operation, f̄ s

app. The latter depends on

the scheduling optimization discussed in Section III, i.e., there are coupling effects

on non-thermal appliances’ scheduling and thermal appliances’ scheduling. When

the customer requests to turn on a non-thermal scheduleable appliance (event i),

the following objective function is formulated

min
uk
i,τ ,y

k
i,τ ,z

k
i,τ ,Qτ

N−1∑

τ=0

(
STi∑

k=1

uki,τ · P
k
i +Qτ

)

· κτ , (2.33)

where the term in parenthesis denotes the total power consumption of both the

schedulable non-thermal appliance and thermal appliance. Note that the time

horizon N in Section III and Section IV may be different, so we set the time-

horizon in (18) as the maximum of these two values. The constraints for (18) are

(2) – (10) and (15) – (17) except that in constraint (16), the heat gain from non-

thermal schedulable appliances (all tasks from event i) is applied to the room air
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(node 2), i.e.,

f̄ s
app,τ = [0,

∑

k∈STi

γki u
k
i,τP

k
i , 0, . . . , 0]

T, (2.34)

where γki is the ratio of heat dissipation of task k of event i to its power consump-

tion. Once this appliance has been scheduled, the corresponding heat dissipation

part will be added to the heat gain from non-scheduleable appliances (f̄n
app).

2.5 Numerical Results

In this section, we evaluate our proposed MPC-based appliance scheduling scheme.

Since current time-varying retail market prices are based on wholesale electricity

prices, in our simulations we employ the wholesale market prices directly as a proxy

for the time-varying retail prices.2 Specifically, we pick three pricing schemes for

city of Chicago (PJM) [35], and New York City (NYISO) [36], [37] shown in Table

2.2. The means κ̄ and standard deviations κstd of these three pricing schemes are

also compared in Table 2.2. We can see pricing scheme 1 has a lower average

Table 2.2: Pricing schemes comparison

Pricing Scheme 1 Scheme 2 Scheme 3

Source Chicago [35] N.Y.C [36] N.Y.C [37]
Type day-ahead (hourly) day-ahead (hourly) real-time (10-min)

κ̄ ($/MWh) 36.2324 75.8323 75.7839
κstd 9.5389 32.7524 105.3502

price compared to pricing schemes 2 and 3. With the similar average price, pricing

scheme 3 has a higher standard deviation than that of pricing scheme 2.

To explore the energy-cost savings potential of our proposed scheme, we deploy

2The price forecasts are assumed to be perfect as the actual values in the simulation; thus the
results serve as upper bounds for the MPC method. Similar assumptions apply for the weather
forecast.
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the prototype residential case in two distinct climate zones [32]: Chicago and

Dallas, whose mean temperatures T̄ in winter and summer are shown in Table 2.3.

We can see that Chicago has a lower temperature in the winter, while Dallas has

a higher temperature in the summer.

Table 2.3: Average temperature comparison for two places

Data Season Chicago Dallas

T̄
Winter -3.97◦C 7.18◦C
Summer 22.42◦C 30.80◦C

Washing machines, clothes dryers, and dishwashers are delay flexible appliances

considered in the simulation. We categorize them into clothes washing event (Event

1) and dish-washing event (Event 2), each of which having four tasks. Note that

both the washing machine and clothes dryer are included in the clothes washing

event, where Task 4 is the operation of the clothes dryer. The parameters including

operation time, power consumption, and delay tolerance of each task are shown

in Table 2.4.3 The customers’ request times of these events are assumed to be

uniformly distributed from 10:00 AM to 10:00 PM in the simulation; however, in

practice, this distribution can vary according to customers’ power usage patterns.

Table 2.4: Appliances (events) parameters

Event Task Operation time Power Delay tolerance

E 1

Task 1 30 min 400 W 180 min
Task 2 20 min 600 W 30 min
Task 3 30 min 500 W 60 min
Task 4 50 min 2400 W 90 min

E 2

Task 1 30 min 1000 W 240 min
Task 2 40 min 1200 W 60 min
Task 3 30 min 800 W 60 min
Task 4 30 min 1300 W 120 min

3Since different devices have different specifications and operation modes, these parameters
are assumed values.
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The Nissan Leaf electric vehicle [38] is considered as the PEV prototype in the

simulation, which has a battery capacity of 24 kWh sufficient for driving up to

100 miles. Both charging and discharging have a maximum rate of 3kW and an

efficiency of 90%. We assume the arrival time is uniformly distributed between

5:00 PM to 7:00 PM, and departure time is uniformly distributed between 6:00

AM to 8:00 AM.

The duration of one time slot for scheduling is set to ∆ = 10 minutes in the

simulation, but the actual duration can be adjusted to other values in practice. In

the simulation, we assume the BEMC obtains real data for both electricity prices

and weather (temperature and solar radiation) in order to conduct the optimiza-

tion. In practice, the cost savings to customers will be lower due to forecasting

errors. The CPLEX 12.4 optimization solver [39] is used for MIP and linear pro-

gramming problems formulated in Sections III and IV. MATLAB 2009a is used

to formulate the problem and link the CPLEX solver. The simulation environ-

ment is of Intel Duo Core 2.0GHz with 2GB memory. The computation time for

thermal appliances scheduling optimization for each iteration (LP) is 0.03s, and

the time for joint non-thermal and thermal appliances scheduling optimization for

each iteration (MIP) is 0.27s.

(1) One-day scheduling results

Figure 2.5 shows the one-day scheduling results of the electric heater, clothes

washer/dryer, and dishwasher for pricing scheme 2. We can see during a low-

price period, the heater consumes more power and the PMV increases, i.e., the

building temperature increases (but it is still within the comfort level range) to

store heat. During the high-price period, the heater consumes less or zero power,
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making use of the stored heat in the building.
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Figure 2.5: One-day scheduling results for pricing scheme 2

Figure 2.6 show battery charging/discharging scheduling results for pricing

scheme 3. We can see that the optimization allows the battery to be charged at

low price periods, and discharged at high price periods. By the time of departure,

the customer is able to drive the PEV with proper SOC.

(2) Cost saving to customers

We evaluate the monetary cost saving to a customer for our MPC-based appliance

scheduling method over 40 consecutive days. Different pricing schemes and places

with different temperature profiles are compared. To compare the energy cost sav-

ing, in the following sections, we also implement a benchmark scheduling scheme,

in which non-thermal delay-flexible appliances are scheduled to operate without

delay as customers request, and thermal appliances are scheduled to operate under
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Figure 2.6: One-day battery scheduling result for pricing scheme 3

the same thermal dynamics and PMV comfort constraints without the objective

of minimizing the energy cost.

Table 2.5 compares the energy cost using our proposed method for the three

pricing schemes. We set the PMV comfort level bounds as [-0.5, 0.5], and consider

the heater in winter. We can see the electricity cost for pricing scheme 1 is much

lower than that for scheme 2, due to the low values for both the mean and standard

deviation of prices. With a similar mean value of prices for schemes 2 and 3, the

higher standard deviation for scheme 3 results in a lower cost. The saving for

scheme 3 almost reaches 20%.4

Table 2.5: Cost comparison for different pricing schemes

Pricing Scheme 1 Scheme 2 Scheme 3

Energy Cost $34.09 $74.96 $56.42
Saving 10.76% 12.88% 19.74%

Figure 2.7 compares the energy cost (saving) for winter and summer cases of

4The actual saving will be less due to the assumption of the wholesale prices as the retail
prices, and in reality the wholesale price is only part of the retail price. Also the accuracy of the
model and prediction affect the cost saving.

40



Chicago and Dallas, using the same pricing scheme 1. We can see in the summer,

since Dallas has a higher temperature (see Table 2.3), the energy cost is larger than

that in Chicago. In the winter, however, energy cost in Chicago is larger due to

the colder weather. In regard to the energy cost savings, which are also labeled in

Figure 2.7, we see that these four cases give similar cost savings. Together with the

results from Table 2.5, we can see the cost savings largely depend on the pricing

schemes.
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Figure 2.7: Energy cost comparison for winter and summer

(3) Impact of customers’ preference

Apart from the pricing and weather, the customers’ preference over operational

flexibilities of an appliance also plays an important role in energy cost savings. In

this subsection, we evaluate the influence of thermal comfort (PMV) and delay

flexibilities on energy cost savings.

Because customers will have diverse requirements in their comfort levels, the

energy cost for the thermal appliance varies. For example, the stringent comfort

range will not allow building thermal mass to store much energy;5 thus, this pro-

vides less flexibility to hedge against price spikes or take advantage of lower or even

5Here the energy means heat in winter, or coolness in summer.
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negative prices. Figure 2.8(a) shows the energy cost versus different PMV comfort

levels for a 40-day simulation. We can see the more relaxed thermal comfort levels

are, the less energy cost for customers. Consequently, these potential cost savings

may also change the comfort preference for some customers.
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Figure 2.8: Impact of customers’ preference

The customers may also have different delay tolerance flexibilities for their

(non-thermal) appliances. Figure 2.8(b) shows how the delay flexibilities impact

the energy cost savings. For a nominal delay tolerance Dk
i for each task, we vary

a delay ratio θ to uniformly describe the delay flexibilities, i.e., the delay tolerance

is θ · Dk
i . We can see that the energy cost saving increases as delay tolerance is

relaxed. In other words, customers with more (delay) operational flexibilities with

their appliances will enjoy more energy savings. However, we can also see from

Figure 2.8(b) that as delay tolerance increases, the cost savings saturate.

(4) Time horizon trade-off with price prediction uncertainty

In the MPC-based optimization, the time horizon N for planning is a significant

parameter. On the one hand, employing longer time horizons will account for
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more information in the future when making decisions; and thus, avoids short-

sightedness. On the other hand, the future forecast information, i.e., electricity

prices and weather data, usually have more uncertainty as the time horizon in-

creases; since our model uses the deterministic forecast, the uncertainty in forecast

incurs uncertainty to the results of our model. A trade-off lies between these two

extremes for N .

In the simulation, we evaluate how the uncertainty of electricity prices affects

this trade-off. Since the forecasts of electricity prices are not the focus of this

paper, in the simulation we model the uncertainty of price forecasts as the actual

data plus a noise distortion with a Gaussian distribution, i.e., κ′τ = κτ + δτ , where

δτ ∼ N (0, σ2
τ ), and the variance στ increases with time τ . The optimization is

based on the distorted (forecast) electricity price data, but the billing applies actual

prices. Figure 2.9 shows the energy cost over the 40 days versus the time horizon

length, N , using pricing scheme 3.
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Figure 2.9: Time horizon length trade-off under price uncertainty

We can see when the time horizon length is small, the energy cost is higher due

to not including much future information. As the time horizon length increases,

the energy cost decreases. But excessively longer time horizons increase the energy

cost as the uncertainty of electricity price forecasts increases. For Figure 2.9, the

time horizon length of 6 hours gives the minimum energy cost. Note that Figure

43



2.9 is only an example to illustrate the time horizon length trade-off; however,

the optimal time horizon length for the actual BEMC scheduling depends on the

accuracy of the electricity price forecasts and variation of the prices.

2.6 Chapter Summary

In this chapter, an MPC-based appliance scheduling method is proposed for the

residential BEMC assuming time-varying retail pricing in place. Several types

of operational flexibilities of both non-thermal appliances and thermal appliances

are exploited to help customers save on electricity bills. In our models, the op-

erational dependence of non-thermal appliances is incorporated to further exploit

price variations. In the thermal appliance optimization problem, the thermal mass

of the building is modeled in thermal dynamics as linear difference equality con-

straints, in which the thermal appliances are scheduled smartly together with the

thermal mass storage to incur potential savings from time-varying pricing. Simu-

lation results demonstrate energy-cost savings using our method and the influence

of customers’ preferences is evaluated.
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Chapter 3

Residential Appliance Scheduling:

A Communication-based Control

Approach

3.1 Introduction

In this chapter, we focus on how a consumer premise communication network (e.g.,

a home-area network) can be designed to permit load scheduling amongst flexible

and controllable loads. In contrast to other existing models of EMCs, our proposed

scheme alleviates the EMC of the communication and computation complexities

of directly scheduling each individual load in the consumer premise. The function-

alities of the EMC are reduced in our model to calculating a threshold maximum

power consumption for the premise (e.g., the home). We cast the calculation of

this time-varying threshold power as an optimization problem which accounts for

price variation and uncertainty due to local wind generation. Our proposed joint
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access and scheduling protocol describes how appliances access a common control

channel for coordination so that this total maximum demand target is not ex-

ceeded for each time slot. Unlike existing local area network (LAN) media access

protocols (e.g., Wi-Fi, G.hn, Zigbee), which could be used for one of several appli-

cations, our proposed scheme specifically addresses the load control problem. For

in-home scenarios, relatively short control messages are occasionally exchanged;

thus the approach can be easily implemented on higher data-rate LANs (such as

those listed above) that support other applications as long as the load control mes-

sages are given transmission priority. To provide analytical foundations, we study

the evolution of the protocol as a two-dimensional Markov chain and quantify the

average delay experienced by individual appliances.

Besides improving demand side management, the role of the EMC also involves

managing and making better use of local renewable distributed energy resources

(DERs). Existing regulations incentivize residential and small business consumers

to install renewable resources like solar panels and wind turbines [40]. Several

products and installation services of residential renewable DER are also currently

available [41]. As the penetration of these devices increases, the customers using

them will become increasingly interested in how to best manage the local electricity

supply and demand in the face of future pricing based DR mechanisms. To this

end, we formulate the EMC’s optimization of the target power value, which shows

how this target value can be computed so that it accounts for both price variation

and distributed wind power uncertainty. In this regard, we employ the Markov

Chain Monte Carlo (MCMC) method to describe the stochastic property of power

generation from wind turbines.

We note that unlike existing studies on EMC design (e.g., [9], [42], [43], [44]), the

energy management approach presented here is tightly coupled with the underlying
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communication algorithm used among the appliances. In this chapter, we present

the whole picture of the proposed protocol, with detailed analysis, and we discuss

how the protocol accommodates hard delay deadlines and any critical appliances

that must be turned on without delay. Simulation results verify our analysis and

demonstrate customers’ savings using this proposed scheme.

The remainder of this chapter is organized as follows. Section 3.2 describes the

joint appliance access and scheduling scheme for the EMC. Section 3.3 derives the

average delay of an appliance using Markov chain model. Section 3.4 formulates

an optimization for EMC to compute a target power budget. Numerical results

are presented in Section 3.5, and we summarize our discussion in Section 3.6.

3.2 Access and Scheduling Scheme for Appliances

3.2.1 Protocol description

We assume a HAN with N appliances that share a common control channel. Time

is segmented into scheduling frames, which are of the order of several (e.g., 5)

minutes, and there may be multiple scheduling frames in the duration between

target power updates. Let t denote the index of (scheduling) frame. Due to the

long frame and short packet durations in the proposed scheme, we assume that

collisions occur on the control channel with negligible probability.

We define the active set (At) as the set of appliances which are operating during

frame t. We also assign a leader appliance (ℓt) that broadcasts beacon signals and

makes admission control decisions during frame t. In a centralized scheme, the

in-home EMC could be the (static) leader; or in a distributed scheme, any one of
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the appliances in At can be the leader. Later in this section, we present a possible

leader assignment approach. Two types of appliances are considered in the home:

1. Critical appliances, that must join At immediately. Examples include light-

ing, medical devices, laptops, TV, etc.

2. Schedulable appliances, that can be powered on with a tolerable delay.

We first consider the case with only schedulable appliances and then discuss mod-

ifications to include critical appliances. Figure 3.1 shows the frame structure of

the proposed media-access and scheduling protocol. The frame consists of three

phases: power update, power request and power scheduling, with duration T1, T2

and T3, respectively.

PUM1 PUM2 PRM2PRM1Beacon

Power Update Phase (T1)
Power Request 

Phase (T2) Power Scheduling 

Phase (T3)

PSM

Figure 3.1: Frame structure of proposed protocol

(1) Power update phase (T1): Any active appliance which finishes its power

usage sends a power update message (PUM) packet, indicating the amount of

power the appliance is releasing. Any appliance that completes operation during

the other two phases waits until the next power update phase to transmit the PUM

packet. At the end of the power update phase, the leader appliance ℓt calculates

the remaining power budget:

P (t)
r = Pmax,t −

∑

j∈At

Pj, (3.1)
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where P (t)
r is the remaining power at time t, Pmax,t is the total demand target

value and Pj is the power usage for an appliance j. The leader then broadcasts

this information in the beacon signal, which marks the start of the second phase.

(2) Power request phase (T2): This phase is divided into time slots. In the

first slot, the leader appliance sends out a beacon signal indicating the remain-

ing power budget P (t)
r . Any (schedulable) appliance, i, which wishes to join the

active set listens to the control channel and, upon receiving the leader’s beacon

signal, compares its requested power level with the remaining power budget. If

its requested demand exceeds the remaining power budget, i.e., Pi ≥ P (t)
r , then

appliance i will defer requesting access to the active set until the next time frame.

Otherwise, it attempts joining the active set in the current frame. Appliances that

pass this “power check” enter into the feasible appliance set (Ft).

In order to be scheduled to power on, each appliance in Ft waits for a random

number of time slots (uniformly distributed over [1, w], where w is the number of

slots in this phase), and then sends out a power request message (PRM) packet

to request the power usage. Appliances in Ft whose PRM packets are received

correctly by the leader enter into the admissible appliance set (Dt). During this

time, the leader monitors the control channel and collects all the power request

information.

(3) Power scheduling phase (T3): During this phase, the leader appliance

makes an admission control decision, i.e., decides which (schedulable) appliances

in Dt can join the active set. These appliances form the newly admitted appliance

set (Nt). Several admission control methods will be discussed later in this section.

The leader then broadcasts a power scheduling message (PSM) packet, heard by all

49



(including active) appliances. Upon reception of the PSM packet, the appliances

in Nt start consuming power immediately. Any non-admitted appliances will wait

until next frame to request again.

In the case that there is no EMC in the home (e.g., if the aggregator/utility

determines the target power and send this to the home), the first appliance which

powers on will be the leader and sends out the beacon signal to synchronize all

appliances in the system. Subsequently, the last admitted appliance (the one listed

last in the PSM message) is the leader for the upcoming frame. Thus, the role of

the leader could potentially change from one frame to the next.

3.2.2 Admission control methods (ACM)

When the total request power is greater than the remaining power budget, i.e.,
∑

i∈Dt
Pi ≥ Pmax,t −

∑

j∈At
Pj, the leader appliance makes an admission decision.

We consider the following ACMs, though others are possible:

(1) Random ACM: The leader appliance randomly removes appliances from

the admissible set Dt to meet Pmax,t:

Step 1: Randomly remove appliance i from Dt. Let Dt = Dt\{i} and calculate

Pl =
∑

i∈Dt∪At
Pi − Pmax,t.

Step 2: If Pl ≤ 0, set Nt = Dt and stop; else go to Step 1.
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(2) Max-power oriented ACM: The leader appliance maximizes the total

additional power supported without exceeding the remaining power budget:

max
xi

∑

i∈Dt

xiPi

s.t.
∑

i∈Dt

xiPi ≤ Pmax,t −
∑

j∈At

Pj

xi ∈ {0, 1}. (3.2)

This is a classical 0−1 knapsack problem, and can be solved using various existing

approaches, e.g., [45]. The newly admitted set can be chosen as Nt = {i|xi =

1, i ∈ Dt}.

(3) Max-appliance oriented ACM: The leader appliance selects in a way to

support maximum number of appliances:

max
xi

∑

i∈Dt

xi

s.t.
∑

i∈Dt

xiPi ≤ Pmax,t −
∑

j∈At

Pj

xi ∈ {0, 1}. (3.3)

The optimization problem in (3.3) can be solved by first sorting the requested

power of individual appliances in an ascending order. Without loss of generality,

we assume that P1 ≤ P2 ≤ · · · ≤ P|Dt|, where | · | denotes the cardinality of a set.

Then,

Nt =

{
{
1, · · · ,max{iS}

}
∣
∣
∣
∣

iS∑

k=1

Pk ≤ Pmax,t −
∑

j∈At

Pj

}

.
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3.2.3 Critical appliance consideration

When a critical appliance has a power request, it starts operating immediately and

sends out PRM packets over the control channel. If there is sufficient power budget

to support this appliance, the leader simply needs to adjust the remaining power

level for use in admission control. Since all active appliances have access to the

control channel, they too can update their measurement of the remaining power

to account for the critical appliance’s power usage.

On the other hand, if there is not enough remaining power to accommodate the

current usage, then the leader must employ a curtailment control method (CCM).

Towards this end, the leader constructs the curtailable appliance set (Ct) from

the active set at each time t. If Ct 6= ∅, the leader selects a member of Ct that

needs to be removed from At. Similar to ACM, the CCM adopted by the leader

has three criteria: random curtailment; min-power curtailment; and min-appliance

curtailment. The reader is referred to [46] for details, where we also discussed the

case when Ct = ∅, and modification of the protocol when adding deadlines to the

appliances.

3.3 Markov Chain Analysis of the Protocol

In this section, we provide analysis to quantify the average delay performance

of our proposed scheme for schedulable appliances only. We focus on schedulable

appliances only as this assumption eases analysis. To do so, we model its stochastic

behavior as a two-dimensional, discrete-time Markov chain and derive its stationary

distribution. First, we define some additional appliance sets as follows: Released
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appliance set (Rt), comprising appliances that complete usage cycle during time

t; Joining appliance set (Jt), consisting of appliances that wish to join At during

time t; Arrival appliance set (It), containing appliances that request to power-on

during time t.

3.3.1 Power usage statistic

We assume a finite number L of power levels for all appliances. Let εl denote the

l-th power level, and without loss of generality we assume εl = lε. Appliances’

power draws are assumed to be random, with probability mass function (PMF) for

appliance with power level P = lε as pl , Pr(P = lε).

For a set of ω appliances and each appliance with power usage Pi, let PΣ =
∑ω

i=1 Pi denote the overall power usage of appliances. Then the PMF of PΣ can

be written as

φΣ(ω, l0) , Pr(PΣ = l0ε) =
∑

Ω

pl1 · pl2 · · · plω , (3.4)

where

Ω=

{

(l1, . . . , lω) ∈ L
ω
∣
∣

ω∑

i=1

li = l0, L = {1, . . . , L}

}

,

l0 ∈ {ω, ω + 1, · · · , ωL}.

The cumulative distribution function (CDF) of PΣ is, therefore, given by

Pr
(

PΣ ≤ P̄
)

=

⌊P̄/ε⌋
∑

l0=ω

φΣ(ω, l0). (3.5)
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3.3.2 Two-dimensional discrete-time Markov chain model

Define the state S(t) = {|At|, |Jt|
∣
∣|At| + |Jt| ≤ N}, for frame t, indicating the

number of active appliances and the number of appliances that wish to power on,

respectively. The evolution of S(t) can be modeled as two-dimensional discrete-

time Markov chain. From the structure of the protocol (see Figure 3.1), we have

At = At−1 ∪ Nt−1\Rt ⇒ |At| = |At−1|+ |Nt−1| − |Rt|;

Jt = Jt−1 ∪ It\Nt−1 ⇒ |Jt| = |Jt−1| − |Nt−1|+ |It|;

Nt ⊆ Dt ⊆ Ft ⊆ Jt ⇒ |Nt| ≤ |Dt| ≤ |Ft| ≤ |Jt|.

Let Θ
(t)
A,J (i, j) indicate the event that S(t) = {i, j}, i.e., in frame t, |At| = i,

and |Jt| = j. The state transition probability Pr
(
Θ

(t)
A,J (i, j)

∣
∣Θ

(t−1)
A,J (n,m)

)
for this

two-dimensional Markov chain can be obtained as follows:

Pr
(
Θ

(t)
A,J (i, j)

∣
∣Θ

(t−1)
A,J (n,m)

)

=Pr
(
|Nt−1|−|Rt|= i−n, |Nt−1|−|It|=m−j

∣
∣Θ

(t−1)
A,J (n,m)

)

=

k0∑

k=0

Pr
(
|Nt−1| − |Rt| = i− n, |Nt−1| − |It| = m− j, |Nt−1| = k

∣
∣ΘA,J (n,m)

)

=

k0∑

k=0

Pr
(
|Rt| = k + n− i

∣
∣|Nt−1| = k,Θ

(t−1)
A,J (n,m)

)

× Pr
(
|It| = k + j −m

∣
∣|Nt−1| = k,Θ

(t−1)
A,J (n,m)

)
× Pr

(
|Nt−1| = k

∣
∣Θ

(t−1)
A,J (n,m)

)

=

k0∑

k=0

(
µ′Tf

)k+n−i(
λ′Tf

)k+j−m

(k + n− i)!(k + j −m)!
e−(µ′+λ′)Tf × Pr

(
|Nt−1| = k

∣
∣Θ

(t−1)
A,J (n,m)

)
, (3.6)

where k0 = min{m,N − n}. Here, we assume each appliance’s power request and

power release to independently follow the Poisson distribution with rates λ and µ,

respectively. Then, given the number of active appliances in the previous frame
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(|At−1| = n) and the number of newly requested appliances in the previous frame

(|Jt−1| = m), we see that |It| and |Rt| follow a finite-sized queuing system with

rates λ′ = (N − n−m)λ and µ′ = nµ, respectively.

The second term in (3.6) can be written as

Pr
(
|Nt| = k

∣
∣Θ

(t)
A,J (n,m)

)

=
m∑

p=k

p
∑

q=k

Pr
(
|Nt| = k, |Dt| = q, |Ft| = p

∣
∣Θ

(t)
A,J (n,m)

)

=
m∑

p=k

p
∑

q=k

Pr
(
|Ft| = p

∣
∣Θ

(t)
A,J (n,m)

)

︸ ︷︷ ︸

P0

×Pr
(
|Dt| = q

∣
∣|Ft| = p,Θ

(t)
A,J (n,m)

)

︸ ︷︷ ︸

P1

× Pr
(
|Nt| = k

∣
∣|Dt| = q, |Ft| = p,Θ

(t)
A,J (n,m)

)

︸ ︷︷ ︸

P2

. (3.7)

(1) Calculation of P0: Given n active appliances and m appliances which wish

to join At, P0 is the probability that m − p appliances can not pass the power

check, i.e., their individual power request levels are greater than the remaining

power budget. The probability that an appliance i ∈ Jt has its individual power

request levels less than the remaining power budget is given by

αn,Pr
(

Pi≤Pmax,t−
∑

j∈At

Pj

∣
∣
∣|At|=n

)

=

⌊Pmax,t/ε⌋∑

l0=n+1

φΣ(n+1, l0).

Thus, P0 =
(
m
p

)
αp
n(1− αn)

m−p .

(2) Calculation of P1: Given p appliances in feasible appliance set (Ft), P1 is

the probability that exactly q appliances’ packets can be successfully received and

p−q appliances collide with each other when transmitting the PRM packets during
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the power request phase.

P1 = Pr
(
|Dt| = q

∣
∣|Ft| = p

)

= Pr
(
p− q collisions

∣
∣q successes, |Ft| = p

)

︸ ︷︷ ︸

P10

×Pr
(
q successes

∣
∣|Ft| = p

)
,

︸ ︷︷ ︸

P11

(3.8)

where P11 =
w!

wq(w−q)!
. Let h denote the number of successful power request packets

sent among the remaining p− q appliances given the conditions in P10. Therefore,

P10=Pr (h=0)=1−Pr (h ≥ 1), where h ≥ 1 signifies that, among p−q appliances’

packets, at least one packet can be successfully received. Further, these packets

can only choose a back-off value among w − q numbers. Let Gi denote the event

that the i-th appliance out of p − q successfully transmits its packet given the

conditions in P10. Thus,

P10 = 1− Pr (h ≥ 1) = 1− Pr

(
p−q
⋃

i=1

Gi

)

= 1−

p−q
∑

j=1

(−1)j−1

(
p− q

j

)
(w − q)!(w − q − j)p−q−j

(w − q)p−q(w − q − j)!
. (3.9)

(3) Calculation of P2 Given n active appliances and q appliances in Dt, P2 is

the probability that k appliances are granted admission by the leader appliance.

We employ random ACM to analyze the admission success probability, where,

given |Dt| = q, q steps may exist for admission control. The admissible set at the

(i + 1)-th step is denoted D(i)
t . Initially, we have D(0)

t = Dt. Figure 3.2 shows the

. . .

1st step admission 

success

2nd step admission 

success

q-th step admission 

success

Figure 3.2: Admission success probability given |Dt| = q and |At| = n
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admission success probability given |Dt| = q and |At| = n. P2 can be regarded as

the admission success probability at the (q− k+1)-th step, and can be written as

P2 =Pr
(
|Nt| = k

∣
∣|Dt| = q, |At| = n

)

=Pr
(
admission success

∣
∣ΨA,D(n, q),

∣
∣D(q−k)

t

∣
∣ = k

)
× Pr

(∣
∣D(q−k)

t

∣
∣ = k

∣
∣ΨA,D(n, q)

)

=βq−k

q−k−1
∏

j=0

(1− βj) (3.10)

where ΨA,D(n, q) =
{
|At| = n, |Dt| = q

}
. Given D(i)

t , the admission success

probability βi indicates the probability that the total request power level in D(i)
t is

less than the remaining power budget, i.e.,

βi
def

= Pr
(
admission success

∣
∣|At|=n,

∣
∣D(i)

t

∣
∣=q−i

)
=

⌊Pmax/ε⌋∑

l0=q−i+n

φΣ(q − i+ n, l0), (3.11)

i = 0, · · · , q − 2 and βq−1 = 1. Finally, given P0, P1 and P2, we compute the

state-transition probability given by (3.6).

3.3.3 Steady-state distribution

Let πn,m , limt→∞Θ
(t)
A,J (n,m) denote the steady-state distribution. For (N +

1)(N +2)/2 states, the steady-state distribution vector is π , [π0,0, π0,1, · · · , πN,0].

The steady-state distribution is obtained by solving π = πP and π1T = 1, where

the state-transition probability matrix P is given by (3.6). The marginal PMF

for |At| and |Jt| can be computed as: πn , Pr
(
|At| = n

)
=
∑N−n

m=0 πn,m; and

πm , Pr
(
|Jt| = m

)
=
∑N−m

n=0 πn,m. For further analysis, we define the following
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probabilities:

ξp , Pr
(
|Ft| = p

)
=

N∑

n=0

N−n∑

m=0

πn,mP0, (3.12)

ζn,q , Pr
(
|At| = n, |Dt| = q

)
=

N−n∑

m=0

m∑

p=q

πn,mP0P1. (3.13)

3.3.4 Delay analysis

Figure 3.3 shows the state transition diagram of the protocol, for one arbitrary ap-

pliance i in the system. Six states are considered for the appliance in this protocol.

Idle

Active
Power 

On

Power 

Check
Contention

Admission 

Control

(PAA; T3)

(1¡PAA; T1+T3)

(PCA; T2)

(1¡PCA; Tf )
(1¡PPC; Tf )

(1; Tf=2)

(PPC; 0)

Figure 3.3: State transition diagram for an arbitrary appliance

An appliance is in the Idle state until it is requested into the Power On state

by the customer. When an appliance is requested to power on, it first enters the

Power Check state and correspondingly joins the feasible appliance set (Ft) in

phase T2. Next, the Contention state corresponds to joining admissible appliance

set (Dt) in phase T2 (or returning to Power Check state if contention is unsuccess-

ful). Admission Control is corresponds to joining newly admitted appliance set

(Nt) in T3 phase and becoming an Active appliance (or returning to Power Check

if admission is not granted). We now compute the power check success probabil-

ity (PPC), contention success probability (PCA) and admission success probability

(PAA).
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(1) PPC: Power check success indicates that an appliance i perceives its power

request level less than the remaining power budget, i.e., this appliance is in the

feasible appliance set Ft. Then, the power check success probability PPC , Pr(i ∈

Ft) is given by

PPC=
N∑

n=0

Pr
(
|At|=n

)
·Pr
(
a ∈ Ft

∣
∣|At|=n

)
=

N∑

n=0

πnαn. (3.14)

(2) PCA: Contention success indicates that no collisions happen when an ap-

pliance i ∈ Ft sends out the PRM packet and the leader appliance can receive

it without errors, i.e., this appliance is in the admissible appliance set Dt. From

(3.12), PCA , Pr(i ∈ Dt) is given by

PCA =
N∑

p=0

Pr
(
|Ft| = p

)
× Pr

(
no packet collision

∣
∣|Ft|=p

)

=
N∑

p=0

ξp

(

1−
1

w

)[p−1]+

, (3.15)

where [x]+ = max[0, x].

(3) PAA: Admission success indicates that the appliance i ∈ Dt can be granted

admission by the leader appliance, i.e., this appliance is in the new active appliance

set Nt. From (3.13), PAA , Pr(i ∈ Nt) is given by

PAA=
N∑

n=0

N−n∑

q=0

Pr
(
|At| = n, |Dt| = q

)
× Pr

(
a ∈ Nt

∣
∣|At| = n, |Dt| = q

)

=
N∑

n=0

N−n∑

q=0

ζn,q

[

β0+

q−1
∑

i=1

q − i

q − i+ 1
βi

i−1∏

j=0

(1−βj)

]

. (3.16)
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We denote the average delay in the Power Check, Contention and Admission

Control states as TP, TC and TA, respectively. From the state-transition diagram

(see Figure 3.3), the average delay TD is given by TD = Tf/2 + TP, where

TP = PPCTC + (1− PPC)(TP + Tf ), (3.17)

TC = PCA(T2 + TA) + (1− PCA)(TP + Tf ), (3.18)

TA = PAAT3 + (1− PAA)(TP + T1 + T3). (3.19)

From (3.17) - (3.19), we have

TD =
Tf
2

+
Tf − PPCPCAPAAT1

PPCPCAPAA

. (3.20)

We can see if all three probabilities are 1, TD =
3Tf

2
− T1, which is the overhead of

a schedulable appliance joining the Active Set for this protocol. The smaller the

product of these three probabilities PPCPCAPAA is, the longer average delay an

appliance will have.

3.4 Optimization of Pmax,t for EMC

In this section, we formulate an optimization problem that helps the EMC decide

Pmax,t integrating the distributed renewable generation.1 The EMC aims to min-

imize the total cost of electricity on a daily basis while considering variations in

electricity prices and uncertainty of local wind power generation. We assume that

the EMC has hourly day-ahead prices for the entire day and receives real-time

prices several minutes before each hour.

1We focus on the wind power here in the optimization; solar power can also be integrated if
proper prediction algorithms can be applied.
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3.4.1 Wind power statistics

We use wind speed data from the National Renewable Energy Laboratory (Solar

Radiation Research wing), which is located at latitude 39.742◦ North and longitude

105.18◦ West. The elevation is 1828.8 meters. The data are gathered during the

following period: January 1st, 2009 to December 31st, 2009, with 10 minutes

sampling interval [47].

We model the stochastic behavior of wind power using the Markov Chain Monte

Carlo (MCMC) technique, where the transition probability matrix is constructed

from the historical wind speed data and wind turbine power curve. This matrix

can be used to predict the wind power generation and aid in EMC scheduling

framework. Given the wind speed, the power output of the wind turbine can

be obtained from the power curves, which map the wind speed to wind turbine

generation. For our model, we use the RAUM ENERGYTM3.5kW wind turbine,

and the instantaneous system power curve is shown in its data-sheet [48], where

the wind power outputs form a set H with number of |H| = 11 states, i.e., s1,

. . . , s11 representing the |H| wind turbine generation values. For the first-order

Markov Chain (FO-MC), the state evolution can be described by the transition

probability matrix Q, whose entry qij represents the transition probability from

state i at frame t− 1 to state j at frame t, i.e., qij = Pr{Xt = j|Xt−1 = i}, which

is independent of frame t. Second and third order Markov chains can also be used

to describe the stochastic behavior. However, following the results in [49], these

models provide approximately the same level of modeling accuracy as FO-MC.

Thus, for simplicity in exposition, we choose FO-MC. Given the wind power data,
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qij can be estimated using the Monte Carlo method:

qij =
nij

∑

k∈H nik

, (3.21)

where nij is the number of transitions from i to j encountered in the records.

Figure 3.4 shows the transition probability matrix Q obtained from the data. We

notice that the diagonal and near-diagonal entries dominate, demonstrating the

high auto-correlation of the wind power sequence.

1
2
3
4
5
6
7
8
9
10
11

1 2 3 4 5 6 7 8 9 10 11

0

0.5

1

State j (1−11)

State i (1−11)

Figure 3.4: Transition probability matrix of wind power

3.4.2 Optimization formulation

Given Q and the initial state si0, an estimate of the expected value of wind power

at frame t is given by

W̃t =

|H|
∑

j=1

sj
[
Qt
]

i0,j
, (3.22)

where [X]i,j indicates the entry with row i and column j in matrixX. We formulate

the optimization problem for the EMC at frame t0 with T -hour look ahead, K-min
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time slots in a rolling-based manner. Note that T = 24 is for daily optimization.

For each frame t, the EMC optimizes Pmax,t for Z = 60T/K cycles from t0, i.e.,

t ∈ [t0 + 1, t0 + Z], with the predicted values of wind power W̃t0+1 . . . W̃t0+Z using

the actual wind powerWt0 as the initial state in (3.22). The problem can, therefore,

be formulated as follows:

min
Pmax,t

t0+Z∑

t=t0+1

κt(Pmax,t − W̃t)

s.t. Lt + W̃t ≤ Pmax,t ≤ Ut + W̃t,

t0+Z∑

t=t0+1

Pmax,t ·
K

60
≥ Et0 . (3.23)

Here, κt is the electricity price with K-minute the interval. Since wind power

data intervals and pricing signal updates are 10-minute and 1-hour, respectively,

the optimization interval K can be chosen as 10 minutes. The price κt during

the first hour after t0 can be the real-time price (obtained several minutes before

that hour). The following prices can either use the forecast hourly price as shown

in [42], or the day-ahead price for approximation. Lt and Ut denote the lower and

upper bounds, respectively, for power consumption level at frame t. Et0 denotes

the minimum total power consumption for T hours horizon starting from t0. These

parameters can be determined by the EMC using learning algorithms that follow

the consumer’s usage patterns. Alternatively, we may select Lt as the aggregate

power consumption level by real-time appliances, i.e., Lt =
∑

i∈Vt
Pi+ δt, where Vt

denotes the set of critical appliances at frame t, while δt denotes the slack power

level that corresponds to critical appliances with cycle power (e.g. air conditioners).

Such a selection of Lt guarantees sufficient power budget to accommodate real-time

appliances. Additionally, Ut may be provided by the utility/aggregator to avoid

aggregate peak power. We note that, with additional (predicted) wind power, the
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lower and upper bounds for Pmax,t are adjusted accordingly in (3.23).

3.5 Numerical Results

We assume the time frame length Tf = 5 min, where T1 = 4.5 minutes, T2 =

29.9s and T3 = 0.1s. The beacon signal and each packet are 0.1s long, and thus

the number of slots in the power request phase is w = 298 (not including the

beacon signal). We consider L appliance types, and assume the power Pi = kε;

i = 1, · · · , N , k = 1, · · · , L, which is uniformly distributed, i.e., pk , Pr(Pi =

kε) = 1/L, to match our assumption in Section 3.3. Note that the proposed

protocol and our simulation approach itself do not require this uniform distribution;

the assumption is made here to validate our analysis. In the simulation results

presented, we choose L = 5 and ε = 100W. For simplicity, we assume all L

appliance types to have a duration of use that is exponentially distributed with

mean 1/µ.

(1) Delay Characteristics

We assume Pmax,t = Pmax and a fixed arrival rate of λ for all hours. First, in

Figure 3.5, we plot the average delay as a function of Pmax for different (λ, µ)

combinations.
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Figure 3.5: Average delay versus Pmax with various (λ, µ) (random ACM, N = 15)
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Results demonstrate that the average delay (i) decreases with increasing Pmax;

(ii) increases with appliance request (arrival) rate λ; and (iii) decreases with power

usage completion (departure) rate µ. We also plot the theoretical average delay,

given by (3.20), and see that it matches with the simulation results. We also

note that, as Pmax increases beyond a certain value, i.e., when the total power

consumption without scheduling is at most Pmax, the average delay converges to

the overhead of the protocol ≈ Tf/2 + T2 + T3 = 180s. This can also be seen from

(3.20) corresponding to PPCPCAPAA = 1.2

In Figure 3.6, we plot the average delay as a function of the number N of

appliances with different ACMs. We see that the average delay increases as N

increases, since larger number of appliances cause more congestion. We also note

that the average delays of the three ACMs are comparatively close to each other.

From the plot we conclude that, since random ACM has linear implementation

complexity, it can be considered to be a desirable option.
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Figure 3.6: Average delay versus N with various ACMs. (Pmax = 3000W, λ =
1/900, and µ = 1/3000)

Figure 3.7(a) shows the average delay versus the target power budget Pmax with

different number of critical appliances in the system. We only present results for

the random CCM policy as the performance of other schemes matches closely with

this. We see that with more critical appliances, the average delay for schedulable

2Since the numberN of appliances is not large, the PRM packet receiving probability PCA ≈ 1.
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appliances become larger. This is primarily due to the fact that when one schedu-

lable appliance is curtailed by the EMC/leader appliance, it needs to re-compete

with other appliances to join the active set. When accounting for all appliances,

it is interesting to note that the average delay is almost the same as the case of

no critical appliance, indicating the presence of critical appliances will not increase

the average delay in the system. Figure 3.7(b) shows the average curtailment with

different number of critical appliances. As expected, we see that with a larger

number of critical appliances or smaller Pmax, the average number of curtailment

becomes larger.
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Figure 3.7: Critical appliances effects. (N = 15, λ = 1/900, and µ = 1/3000)

(2) Load Scheduling Results

We plot the power consumption of the proposed scheme using an optimized Pmax,t

obtained from (3.23). We employ the price profile of 100 consecutive days as the

day-ahead location marginal price (LMP) in the New York City zone from archival

data (09/01/2011−12/31/2011) of New York ISO [36]. Given the wind power data,

the specified upper and lower bounds (Ut, Lt) and the total power consumption

constraint (Et0), the plot of the optimized Pmax,t for a day is shown in Figure 3.8(c).

For comparison, we also show the plot of Pmax,t which does not consider the wind
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power in Figure 3.8(b), i.e., W̃t = 0 in the optimization problem (3.23). The wind

power and electricity price profile for that day are shown in Figure 3.8(a). The

following comments are in order: (i) The optimization enables Pmax,t to be lower

during high-price periods and vice versa, which improves the customers’ savings in

energy cost; (ii) during periods of wind power, Pmax,t is higher, which encourages

customers to use the cheaper wind power, alleviating congestion in appliance access

and thereby lowering average delay for each appliance.
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Figure 3.8: Optimized power budget Pmax,t for a day

We note that the benefits discussed above depend on how closely the actual de-

mand using the proposed scheduling scheme approaches to the target value Pmax,t.

Figure 3.9 shows the scheduling results of our scheme using the power budget ob-

tained in Figure 3.8. Here, we vary the mean arrival rate of appliances based on the

time-of-day. Specifically, we assume an arrival rate of λ = 1/1800 during the hours

[1 : 7]; λ = 1/900 during the hours [8 : 17] and [23 : 24]; and λ = 1/200 during the

hours [18 : 22]. We see that, for both the cases of with and without wind power, the

scheduled total power consumption is below and close to the target value Pmax,t.

The proposed scheme enables powering-on of appliances to be scheduled as long

as the power budget is available. Further, the max-power ACM guarantees the
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smallest gap between actual consumption and the target power Pmax,t.
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(b) Total power consumption profile with wind power

 

 

With scheduling
Without scheduling
Power budget profile: P

max,t

With scheduling
Without scheduling
Power budget profile: P

max,t

Figure 3.9: Total power consumption under our scheme using Pmax,t with/without
wind power. (N = 25, µ = 1/3600 and random ACM)

Next, in Figure 3.10(a), we compare the cost of buying electricity from the grid

over 100 days under the proposed scheme, and the non-scheduling policy; both

policies consider the influence of wind power. We see that, with and without wind

power the cost saving using the proposed scheme is 34.11% and 33.73%, respec-

tively, better compared to the non-scheduling policy. The reason can be attributed

to the fact that optimized Pmax,t values encourage power usage during low price

periods, and the proposed protocol enables appliances to make the best effort to

approach the target without exceeding it. We also see that wind power integration

can further lower the cost by about 7.39% under our scheme, demonstrating the

benefits of using distributed renewable energy at the residential level. The saving

is further increased when wind power accounts for a larger portion of the overall

supply in-home.

Lastly, Figure 3.10(b) compares the average delay of our scheme with and

without consideration of the wind power. We see that the average delay with wind

power is slightly lower (6%) than that without wind power. This is because the
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optimized Pmax,t can be larger at the time when there is wind power; larger power

budget incurs less congestion and lower average delay.
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Figure 3.10: Comparison of electricity cost and average delay.

3.6 Chapter Summary

In this chapter, we propose a joint access and scheduling scheme for appliances

operating over a consumer-premise communication network. The scheme could be

incorporated in various DR schemes, such as smart pricing-based or DLC-based.

The scheme considers both schedulable appliances, whose powering-on can be de-

layed, and critical appliances that require real-time power usage. We model the

evolution of the protocol as a two-dimensional Markov chain and derive the av-

erage delay of an arbitrary appliance. We formulate an optimization problem for

the EMC, enabling it to compute the target power level for the home while incor-

porating effects of price variations and local wind power uncertainty. Simulations

verified the analysis and showed that the proposed scheme lowers electricity costs

for customers.
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Chapter 4

Reducing Peak Demand by

Real-time Pricing

4.1 Introduction

In this chapter, we focus on demand response in the retail market, and study how

scheduling capability of certain types of flexible appliances combined with real-time

pricing (RTP) interact with objectives of the electric utility. RTP is considered

as a very direct and efficient approach for DR [50]. With RTP, the electricity

utility announces electricity prices on a rolling basis, i.e., the price for a given

time period (e.g., an hour) is determined and announced before the start of the

period (e.g., 15 minutes beforehand). With the development of smart metering

technologies [3], which will enable secure, reliable, real-time, and two-way infor-

mation exchange between consumers and their electricity service providers, these

RTPs can be provided to consumers multiple times a day, hour, or even second. To

handle the resulting data volume and decision making velocity, consumers will rely
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on energy management controllers (EMCs) [9], which are devices or programs that

use electricity prices and user preferences to modify power usage across a home or

building. From the service provider’s perspective, providing high frequency pric-

ing updates to EMCs will enable better load shaping and thus better matching

of volatile supply and demand. From the consumer’s perspective, RTP will pro-

vide new opportunities to lower rates, provided that they (i.e., EMCs) make smart

usage decisions.

Here we propose a smart RTP-based power scheduling scheme for residential

power usage using a Stackelberg game model. In this model, the electricity provider

plays the leader level game by setting the real-time price and the consumer’s EMC,

which schedules appliances in a home, plays the follower level game. The sequential

equilibrium is obtained through a two-way information exchange enabled by some

underlying communication infrastructure (e.g., the smart metering network). Re-

sults show that our scheme can alleviate peak load and reduce the variance between

the actual demand and desired demand profile set by the service provider/utilities,

which implies substantial cost and stability benefits for the service provider. At

the same time, we show that our approach can enable benefits for consumers as

well through reduced electricity bills.

The results and analysis in this chapter differ from the related work in several

aspects. In [44], consumers (i.e., EMCs) make decisions on their hourly aggregate

power consumption using current RTPs. Since individual devices have start and

end times that can be deterministic or random, or they may cycle on and off,

hourly aggregate consumption values may not be easily mapped to how each de-

vice or appliance is operated. By contrast, in our scheme, EMCs schedule power

consumption on an appliance-by-appliance basis. In [51, 52], the RTP scheme as-

sumes that the power consumption of each appliance can be modified to optimize
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power allocation during each hour. This assumption is suitable for a few devices

(e.g., electric vehicle batteries), but most end-use devices do not offer that level of

flexibility. On the other hand, several devices do offer flexibility regarding when

they are operated, and it is this ‘schedulability’ of appliances that we exploit to

demonstrate the power of RTPs and EMCs to collectively match demand with

supply. In [53], a bilevel model is proposed to convert the interaction between a

large customers with flexible loads and an electricity service provider into a lin-

ear programming problem, while in our approach the price is updated when each

appliance starts to consume power in a real-time manner.

The remainder of this chapter is organized as follows. Section 4.2 formulates

and analyzes the proposed Stackelberg game. Section 4.3 proposes algorithms for

our RTP-based power scheduling scheme. Section 4.4 presents numerical results,

and we summarize our discussion in Section 4.5.

4.2 Stackelberg Game Model Analysis

We consider a residential power system which consists of a service provider and

several consumers in a neighborhood, as shown in Figure 4.1. The service provider

buys electricity from the wholesale market and sells it to consumers. The EMC

in each home interacts with the service provider through an underlying two-way

communication network (e.g., the smart metering infrastructure). The EMC co-

ordinates power use among in-home smart appliances; of particular interest in our

model, it schedules the time of use of schedulable appliances within the home.

Time is divided into slots for scheduling and RTP updates. Let T denote the

set of time slots in a given time horizon, and N denote the set of consumers, where
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Figure 4.1: The interaction between consumers and electricity service provider

T , |T |, N , |N |. For each consumer n ∈ N , let An denote the set of schedulable

appliances in the home. For appliance a ∈ An, the operation duration is denoted

by ln,a, which will be set at the time of request, and the power usage for this

duration is cn,a kW.

We employ a Stackelberg game which is divided into two levels: the service

provider plays the leader level game and EMCs play the follower level game.

4.2.1 EMC/follower level decisions

The EMC aims to minimize the cost to the consumer for an appliance’s usage. Its

action is to determine the optimal start time s for a schedulable appliance that

was requested to turn on at time slot t0. Delaying the appliance to a cheaper price

period will save money, but this delay itself also incurs an inconvenience cost. We

assume each time slot of delay for appliance a ∈ An implies a cost of ψn,a dollars.

We assume the consumer specifies a maximum allowable delay of dn,a time slots

and the EMC is required to schedule all appliances within the horizon T . Given

the price vector Π = {π1, π2, · · · , πT} for the time horizon, the optimal scheduled

start time s∗ is obtained by solving the following optimization:
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min
s

(s− t0)ψn,a +

s+ln,a∑

r=s

πr cn,a

s.t. t0 ≤ s ≤ t0 + dn, s+ ln,a ≤ T. (4.1)

The minus of the objective function above thus forms the utility function for the

EMC follower game. In the objective function of (4.1), the first term represents the

delay cost incured by waiting a time of s− t0 slots to turn the appliance on. The

second term represents the money charged to the consumer by using this appliance.

Note that this minimization problem can be solved in O(dn,a · ln,a) time, which is

of polynomial complexity.

4.2.2 Service provider/leader level decisions

The service provider sets the retail price πt, which is the sum of the wholesale price

φt and the price gap ǫt. In our model, the wholesale price affects EMCs’ scheduling

so that peak load is reduced while the price gap enables the actual load to be more

close to the planned supply. The wholesale price φt is defined as φt = Ct(qt)/qt,

where qt in kW is the planned supply load for time slot t and forms the vector

Q = [q1, q2, · · · , qT ] for the time horizon. Ct(qt) is the cost function [52], which we

assume is an increasing and strictly convex function of qt; thus φt is higher during

high load periods than during low load periods. We can choose the cost function

as Ct(qt) = αq2t , where the coefficient α converts the cost to a monetary value. In

this case, φt = Ct(qt)/qt = αqt.

The price gap ǫt is designed to influence the difference between the actual

demand and the available supply. The service provider maintains a real-time load

vector Z = [z1, z2, · · · , zT ] in kW which tracks the aggregated load for the time
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horizon T . We design ǫt such that it is proportional to a function g(qt, zt, w), which

decreases with δt = qt − zt, i.e., the larger δt, the lower price gap ǫt so that the

EMC is more willing to schedule the appliance to operate during this period, and

vice versa. In this paper, we adopt g(qt, zt, w) as:
1

ǫt ∝ g(qt, zt, w) =







1
(qt−zt)w

, if qt > zt

(zt − qt)
w, if qt < zt

1, if qt = zt;

(4.2)

where w is an incentive factor.

We assume a constraint for the price gap which can be seen as the effect of

either market competition or price caps set by some regulatory body. For an

appliance’s request at t0, this constraint is
∑T

t=t0
ǫt = Mt0 =

∑T
t=t0

ǫ0, where ǫ0 is

the comparable constant price gap in some (alternate) fixed rate pricing scheme.

The price gap ǫt is expressed in terms of g(qt, zt, w) as:

ǫt =
g(qt, zt, w)

∑T
t=t0

g(qt, zt, w)
Mt0 . (4.3)

The retail price πt is then:

πt = φt + ǫt = αqt +
g(qt, zt, w)

∑T
t=t0

g(qt, zt, w)
Mt0 . (4.4)

Given the scheduled start time s, cn,a and ln,a, the service provider forms a

power consumption vector Pn,a = [p1n,a, p
2
n,a, · · · , p

t
n,a, · · · , p

T
n,a] in kW for this ap-

1We round qt and zt to integer numbers in kW.
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pliance, where

ptn,a =







cn,a, t ∈ [s, s+ ln,a)

0, t ∈ T \ [s, s+ ln,a).
(4.5)

The real-time load vector is then updated as

Z ′ = Z + Pn,a = [z′1, z
′
2, · · · , z

′
T ]. (4.6)

The utility function of the service provider is defined as the gross profit, GP ,

which is
∑T

t=1 πt · p
t
n,a, minus the cost of this usage to the provider. This cost

has two parts: One cost Ce comes from purchasing electricity for this appliance

usage from the wholesale market, i.e., Ce =
∑T

t=1 φt · p
t
n,a; the other cost Cm is

due to the “mismatch” between the actual load and planned supply caused by this

appliance, i.e., Cm = β
[
∑T

t=1 (qt − z′t)
2 −

∑T
t=1 (qt − zt)

2
]

, where β is a coefficient

that converts the cost to a monetary value.

The service provider will maximize its utility by choosing incentive factor2 w;

this optimization problem can be written as

max
w

T∑

t=1

ǫtp
t
n,a −β

[
T∑

t=1

(qt − z′t)
2−

T∑

t=1

(qt − zt)
2

]

. (4.7)

4.2.3 Equilibrium of the Stackelberg game

For each w chosen by the provider, there is a corresponding retail price vector

Πw. Using these price vectors, the EMC can determine an optimal start time sw

for the appliance under consideration. The sequential equilibrium for this game is

2There is a trade-off in selecting w: Larger w provides more incentive for shifting the current
appliance’s load to a period with a larger δt value (thus reduces the mismatch cost Cm). But
larger w also reduces the money charged to the consumer, and therefore the gross profit.
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the set of values (w∗, s∗) such that the optimal start time s∗ corresponding to the

price vector Πw∗

maximizes the provider’s utility function, i.e. implying that w∗

is optimal.

Using backward induction [54], the sequential equilibrium can be solved ana-

lytically. On the other hand, we can simplify the optimization problem in (4.7)

by discretizing the set of feasible values of w as W = {w1, w2, · · · , wW}, where

W , |W|. Then the optimization problem in (4.7) can be rewritten as

max
w∈W

T∑

t=1

ǫtp
t
n,a −β

[
T∑

t=1

(qt − z′t)
2−

T∑

t=1

(qt − zt)
2

]

. (4.8)

In this simplified model, the sequential equilibrium (s∗, ŵ∗) ∈ S × W can be

achieved through information exchange taking advantage of the two-way commu-

nication network.

4.3 RTP-based Power Scheduling Scheme

In a neighborhood scenario which contains N EMCs and thus
∑N

n=1 |An| appli-

ances, the service provider can use its pricing scheme to influence the aggregate

load from all these scheduled appliances. For example, in day-ahead pricing (where

the prices for each time period in the next day are set a day in advance), each

home’s EMC can schedule appliance usage to avoid high load (and thus high cost)

periods. However, since local neighboring EMCs may make similar usage decisions,

the aggregate load for the neighborhood may not experience peak load reduction

since a “rebound” peak may appear during what was supposed to be a low load

(i.e., low cost) period. Our scheme, presented here as set of interactive algorithms
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(Algorithm 1 for the provider, Algorithm 2 for the EMC3), alleviates this problem

by updating the price according to the real-time load vector Z ′. In this way, a new

appliance’s scheduled use will affect future prices and thus the scheduling decisions

for future appliances.

Algorithm 1 Executed by the service provider
1: Initialization.
2: repeat
3: if receive request signal from EMC n for app a then
4: for w=w1 to wW do
5: Compute the price vector Πw using (4.4).
6: Send Πw to EMC n.
7: for all start time s∗,w received do
8: Solve (4.8) to find the optimal ŵ∗.
9: end for
10: Send the ŵ∗ to EMC n, and update Z as (4.6).
11: end for
12: end if
13: until The end of the day

Algorithm 2 Executed by EMC n
1: Initialization.
2: if consumer n has a request for appliance a at t then
3: Send the request signal to service provider.
4: for all price vector Πw received do
5: Solve (4.1) to find optimal s∗,w for each w.
6: Send s∗,w to the service provider.
7: end for
8: if receive the optimal ŵ∗ from provider then
9: Select s∗ = s∗,ŵ

∗

and schedule the appliance a.
10: end if
11: end if

3Both provider and EMC can compute and receive data simultaneously.
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4.4 Numerical Results

We simulate a neighborhood consisting of 80 consumers, and each consumer has

3 schedulable appliances, i.e., dishwasher, clothes dryer and clothes washer, con-

trolled by the EMC. We assume ln,a has an exponential distribution with mean of

l̄n,a. We assume homogeneous end-use consumers, i.e., cn,a=ca, dn,a=da, ψn,a=ψa,

and l̄n,a= l̄a. In this simulation, we further assume a time horizon of one day, start-

ing from 7:00 AM until the 7:00 AM the next day. Appliances have an on-peak

period from 5:00 PM to 8:00 PM, during which time they are requested by con-

sumers with higher probability. We divide time into 10 minute scheduling/pricing

slots and use the appliance parameters given in Table 4.1.

Table 4.1: Appliances’ parameters for each home
Appliance ca(kW) da(hr) ψa($/hr) l̄a(hr)

Dishwasher 1.8 6.0 0.10 3.0

Clothes Dryer 3.4 4.0 0.25 1.0

Clothes Washer 0.4 2.0 0.40 0.5

(1) Benefits to the service provider

Figure 4.2 compares non-scheduling aggregate demand for the neighborhood to

the load using our RTP-based scheduling scheme. For reference, we also plot the

planned supply curve. Without RTP-based power scheduling, the peak load is

102.2 kW at 6:50 PM, while our scheme has a 28.9% lower peak load of 72.8 kW.

At the same time, our scheduled consumption curve is much closer to the planned

supply curve, i.e., the deviation of the non-scheduled demand curve to the supply

curve is 28.3%, which reduces to 16.1% under our scheme.

In Figure 4.2 we also compare the demand curve for our scheme with the

demand curve using day-ahead pricing, where each local EMC makes decisions
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Figure 4.2: One-day power usage comparison

based on the same day-ahead prices. From the plot, we can see that at 6:50 PM,

where there is an original peak load, both our real-time pricing and the day-ahead

pricing schemes reduce demand by 28.9% and 71.7%, respectively. However, at

8:20 PM, the demand curve for day-ahead pricing exceeds the planned supply load

by 81.7%, thereby producing a “rebound” peak. In contrast, our scheme has no

such rebound effects.

(2) Benefits to consumers

Next, we examine the benefits of our proposed scheme for consumers. To do so, we

plot in Figure 4.3, the costs (using the objective function in (4.1)) for 10 random

consumers for our scheme, the non-scheduling approach and scheduling based on

day-ahead prices. Compared to the non-scheduled curve, consumers see a 9.46%

reduction in cost for our scheme; while for the day-ahead prices scheme, cost saving

is only 5.84%. When considering only electricity costs (i.e., electricity bills), the

savings of our proposed scheme is 24.22% over the non-scheduled case, compared

to 14.63% savings for the day-ahead scheme.

Our simulation results further show that these cost reductions for the consumers
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Figure 4.3: Money saving evaluation (100 days)

are consistent across the neighborhood of homes. That is, based on a 100-day

average, we observed that the standard deviation in the electricity bills across the

80 homes is within 2.5% of the average electricity bill for the same consumption

level. This demonstrates the fairness of our pricing scheme from the consumer’s

perspective.

4.5 Chapter Summary

In this chapter, we propose a RTP-based power scheduling scheme as a demand re-

sponse mechanism for residential electric power consumption. A Stackelberg game

model is formulated to analyze the interaction between a consumer’s EMC and

the service provider. Our scheme can reduce peak load and the mismatch between

actual load and planned supply, while avoiding a rebound peak. Using EMCs, con-

sumers can exploit the proposed real-time prices to reduce their electricity bills.
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Chapter 5

Matching Demand and Supply: A

Distributed Direct Load Control

Approach

5.1 Introduction

In this chapter, instead of the pricing-based method for DR at the retail market

level, we focus on an alternative direct load control (DLC) approach, and an in-

novative distributed direct load control scheme is proposed here to better match

demand and supply. The approach utilizes the underlying two-layer communi-

cation networks, as shown in Figure 5.1. Specifically, the lower-layer network is

within each building, where the energy management controller (EMC) schedules

operation of appliances upon request according to a local power consumption tar-

get via wireless links. The upper-layer network consists of EMCs in a region of

which demand is served by a load aggregator. The load aggregator wants the ac-
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tual aggregated demand over this region to match a desired aggregated demand

profile determined day-ahead, which is viewed as supply from customers’ perspec-

tive. Our approach utilizes the average consensus algorithm to distribute portions

of the desired aggregated demand to each EMC in a decentralized fashion. The

allocated portion corresponds to each building’s local power consumption target

which its EMC then uses to schedule the in-building appliances. The result will

be an aggregated demand over this region that more closely reaches the desired

demand.

Lower Layer NetworkUpper Layer Network

EMC

Lower Layer NetworkUpper Layer Network

Figure 5.1: Two-layer communication-based control structure

Current DLC programs provided by utilities are usually contract-based, i.e., by

signing up for the contract, customers give utilities the option to remotely shut

down appliances during high-demand periods or power supply emergency, and

receive credit on electricity bills for this participation. Examples of this kind of

DLC program include Contracted Direct Load Control by Wisconsin Public Service

[7] and Distribution Load Relief Program by conEdison [8]. Several limitations

exist for these types of DLC programs. Firstly, they are only for emergency cases so

that they do not fully exploit the operational flexibilities of appliances which have

greater and longer-term potential for balancing supply and demand. Secondly,

when there are a large number of customers, there are huge computational and
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communication burdens placed on the centralized controller. Another limit is due

to privacy concerns that customers may have since their usage profile is exposed

each time an individual appliance is remotely controlled by the central controller.

Whereas there are many existing studies that examine pricing-based approaches

for the retail market level DR (e.g., see [42], [44], [55], [56] and references in Chap-

ter 4), there are much fewer papers that look at how direct load control may

be conducted under the emerging smart grid infrastructure. Alizadeh et al. [57]

proposed a digital direct load control method that categorizes appliances into dif-

ferent queues according to their power consumption request profile, so control of

the deferrable load is equivalent to management of the queue parameters, and

the control is conducted in a centralized way. [58] proposed a ColoredPower dis-

tributed algorithm with a probability control method for each appliance such that

the switch-on/off decision is based on the probability reflecting the overall supply-

demand conditions. However, some parameters of individual appliances still need

to be transmitted to the central controller, which incurs a communication burden

in larger system.

Our approach has the following advantages compared to the existing methods

for large-scale residential DR implementation:

a. Low complexity for communication and computation: The distributed

algorithm in the upper-layer network that sets local power consumption targets

involves only local communications between neighboring EMCs. This approach

is therefore of low complexity compared to the centralized method which requires

links between each EMC and the centralized controller. Scheduling is conducted

in each building by its EMC which incurs lower computation complexity than if

the centralized controller made such decisions for each appliance in each building
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over the larger region.

b. Powerful load shaping tools to alleviate the mismatch between demand and

supply: By dividing the desired demand among each building’s local power con-

sumption target and designing EMCs that exploit load flexibilities to closely meet

these targets, the mismatch between the actual aggregated demand and the desired

demand can be alleviated.

c. Privacy protection for customers: In our approach, only the aggregated

power consumption information of customers is visible in the upper-layer network.

Thus, individual appliance usage profile of customers is kept private.

d. Fairness: In the proposed scheme, the local power consumption targets for

each building are set according to DR resources each customer can provide, with

no bias to any individual customer.

e. Non-intrusiveness for appliance operation: Our approach integrates non-

intrusiveness features for appliance scheduling. This includes options for overriding

the control of the EMC, a scheme for preventing frequent ON/OFF switch, and

for guaranteeing operation deadlines.

f. Reliable and robust: Since local power consumption targets are set in a

distributed manner, our approach does not rely on a central controller for the load

aggregator, which implies our scheme is more reliable and robust.

The remainder of this chapter is organized as follows. Section 5.2 describes the

problem and proposes our distributed DLC architecture. Section 5.3 discusses the

distributed demand target allocation in the upper-layer EMC network. Section

5.4 discusses the lower-layer communication and control scheme used by the EMC

in each building. Section 5.5 provides numerical results for our approach and we
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conclude our discussion in Section 5.6.

5.2 Problem Formulation

We consider a region with B buildings whose power consumptions are served by

a load aggregator. The set of buildings is denoted by B. Each building i ∈ B has

a set of appliances which is denoted by Ki. Among these appliances, some are

flexible in operation such that they can be switched on either when requested or

possibly some time later. The aggregator serving this region has a desired demand

Zτ for each time slot τ , where the unit of τ can be one hour or several minutes

depending on the granularity of the design. The desired demand Zτ can be the day-

ahead cleared demand bid that the load aggregator submitted into the wholesale

electricity market. In real-time, day-of operations, the load aggregator wants the

actual aggregated demand of the B buildings over this region to be lower than

Zτ such that the demand commitment in day-ahead (Zτ ) always fulfills the actual

demand; meanwhile the actual aggregated demand should be as close to this Zτ as

possible in order to minimize the deviation cost.

Instead of a centralized direct load control method, we propose a two-layer

communication-based distributed direct load control scheme, shown in Figure 5.1.

Each building is equipped with an EMC which locally schedules operation of ap-

pliances within the building via a lower-layer (wireless) network. These EMCs are

connected by a upper-layer network without a central controller, i.e., each EMC

only communicates to its neighboring EMCs.

The main idea underlying the proposed approach is to allocate the desired

demand target value Zτ to each EMC via its local power consumption target. This
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target is used by the EMC to control appliance operation within the building.

Thus, the actual aggregated demand can approach the target Zτ . To reach this

goal, two problems need to be solved:

1) How is the local power consumption target within each building computed

utilizing the upper-layer network?

2) Within each building, how does the EMC schedule appliances in real-time

to reach the local power consumption target, and how are the two-layer processes

integrated into a protocol?

In the following sections, we will address how these two problems are tackled

in our proposed approach.

5.3 Distributed Demand Target Allocation

Let θτi denote the local demand target set by the EMC within building i for time slot

τ . We design a distributed scheme to compute this θτi so that scheduling appliances

locally within each building can result in aggregated demand that approaches the

desired demand Zτ .

5.3.1 Allocating demand target (Zτ) to EMCs

Let q̃τi denote the overall power request from delay flexible appliances within build-

ing i for time τ . This information can be collected via the lower-layer network

which will be discussed in the Section 5.4. These flexible appliances serve as de-

mand response resources that the EMC can exploit to control overall load of the
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building. The total demand from already turned-on appliances, i.e., fixed demand,

within building i for time τ is denoted by q̂τi . We design ητ as the ratio of the total

demand target gap, Zτ −
∑

i∈B q̂
τ
i , to the total demand from flexible appliances,

∑

i∈B q̃
τ
i , i.e.,

ητ =
Zτ −

∑

i∈B q̂
τ
i

∑

i∈B q̃
τ
i

, (5.1)

and the EMC for building i applies this ratio ητ to set its local target power

consumption target, θτi , as

θτi = q̂τi + ητ · q̃
τ
i . (5.2)

If each EMC schedules appliances to follow this target value θτi , then we get

∑

i∈B

θτi =
∑

i∈B

q̂τi + ητ
∑

i∈B

q̃τi = Zτ , (5.3)

i.e., the aggregated target demand matches the desired demand Zτ for time τ . In

this approach, the status of aggregated demand reflected by the ratio ητ is applied

in the local target demand computation for each EMC. Besides guaranteeing the

fixed demand q̂τi , the additional part of the local target demand θτi in building i

is proportional to the demand of delay flexible appliances requested in time τ . In

other words, this demand target allocation is unbiased to each individual customer,

only depending on demand response resources.

If there exists a central controller for the aggregator, all EMCs send the fixed

demand q̂τi and flexible demand q̃τi to the central controller, which then computes

the ratio ητ according to (5.1), and the central controller then broadcasts this ητ
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back to each EMC. However, the up-link in this scheme will suffer from high com-

munication complexity when the number of EMCs becomes large; meanwhile, this

centralized approach is also vulnerable due to its reliance on the central controller,

which can be a single point of failure of the system.

An alternative approach is to employ a distributed method, in which the local

demand target θτi is computed at each EMC side via information exchange with its

neighboring EMCs using the upper-layer network shown in Figure 5.1. Although

q̃τi and q̂τi are different for each building, the summation
∑

i∈B q̂
τ
i and

∑

i∈B q̃
τ
i are

the same for all EMCs, so they can be viewed as a consensus point that all EMCs

reach. In this way, the average consensus algorithm [59] and [60] can be applied to

compute the ητ iteratively.

5.3.2 Distributed consensus algorithm to compute θτi

The topology of the upper-layer network of EMCs can be represented by an undi-

rected graph G = (V , E) with the set of nodes V = {1, 2, . . . , B} and edges

E ⊆ V × V . The connectivity of the graph G is described by the adjacency matrix

A with its entries as

Ai,j =







1, (i, j) ∈ E ,

0, otherwise.
(5.4)

The set of neighbors of an EMC i is denoted by Ni, where Ni = {j ∈ V : Ai,j 6= 0}.

By employing the average consensus algorithm [59] and [60] over a connected graph,

each EMC i updates q̂τi and q̃τi iteratively as the following steps (k as the iteration
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index)

q̂τi (k + 1) = q̂τi (k) + ε ·
∑

j∈Ni

[
q̂τj (k)− q̂τi (k)

]
, (5.5)

q̃τi (k + 1) = q̃τi (k) + ε ·
∑

j∈Ni

[
q̃τj (k)− q̃τi (k)

]
. (5.6)

The values of all q̂τi and q̃τi will converge to the average value q̂τ∗ and q̃τ∗, respec-

tively, with a proper step size ε. After the updates converge, the global ratio ητ

can be computed at each EMC side as:

ητ =
Zτ − B · q̂τ∗

B · q̃∗t
, (5.7)

where the overall desired target demand, Zτ , and total number of EMCs B, are

known to all EMCs beforehand.

The convergence of the average consensus algorithm in (5.5) and (5.6) is re-

lated to the graph Laplacian matrix of the network graph G, which is denoted by

L such that L = D − A, where D = diag{d1, . . . , dB} is the degree matrix of G,

with di being the number of neighbors of node i with which it can communicate

reliably, i.e., di = |Ni|. Given this matrix L, it can be shown that L1 = 0 and

1TL = 0T, where 1 = [1, . . . , 1]T, and 0 = [0, . . . , 0]T with proper size. Addition-

ally, L is a symmetric positive semi-definite matrix, and for a connected graph,

the rank of L is B − 1 and its eigenvalues can be arranged in increasing order

as 0 = λ1(L) < λ2(L) ≤ · · · ≤ λB(L) [61]. From [60] and [62], it can be shown

that for a time-invariant, connected, undirected network, when ε ∈ (0, 2/λB(L)),

average consensus can be asymptotically achieved. Specifically, the minimal con-

vergence time is obtained when ε = 2/[λ2(L)+λB(L)] [62], i.e., the second smallest

eigenvalue of graph Laplacian quantifies the speed of convergence of consensus al-

90



gorithms.

In regard to convergence speed, [63] shows that a discrete-time consensus is

globally exponentially reached with a speed that is faster or equal to κ2 = 1 −

ελ2(L) for a connected undirected network. This property helps in designing the

network topology to achieve a better trade-off between the infrastructure cost and

convergence rate. Figure 5.2 shows four typical network topologies of 20 nodes,

where the second largest eigenvalue of graph Laplacian, λ2(L), and the convergence

speed parameter κ2 of each network is computed and shown in the figure. We

(a) Ring network, λ2(L) =
0.0979, κ2 = 0.9522

(b) Mesh network, λ2(L) =
0.382, κ2 = 0.897

(c) Star network, λ2(L) =
1.00, κ2 = 0.9048

(d) Small world network
[64], λ2(L) = 1.0794, κ2 =
0.7846

Figure 5.2: Four sample networks with 20 nodes

can see among these four networks, the small-world network has the lowest κ2

values, indicating the fastest convergence speed. This can be verified in Figure

5.3 where the convergence for these four sample networks are illustrated. The
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Figure 5.3: Convergence properties for four networks

convergence speed can also help design the parameters of the communication and

control protocol to guarantee that the distributed method gives an accurate result;

this will be discussed in Section 5.4.

Given the ratio ητ from the average consensus algorithm, the local power con-

sumption target θτi for building i can be computed locally according to (5.2). De-

pending on the values of ητ , three scenarios need to be considered:

If ητ ≤ 0, i.e., the desired demand Zτ is less than the aggregated fixed demand,

the local power consumption target could be set as the its fixed value, q̂τi , by letting

ητ = 0. In this case, all flexible appliances will not be turned on during that time

slot, and a deviation cost will be incurred in order to fulfill the fixed demand.

If 0 < ητ ≤ 1, i.e., the current demand from delay flexible appliances’ request

is larger than the desired demand less the overall fixed demand, then θτi can be

computed directly using (5.2).
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If ητ > 1, then the local power consumption target can be set as θτi = q̂τi + q̃τi ,

i.e., by letting ητ = 1. This represents the best effort that the EMC can do to

schedule appliances at time τ to reach the target. On the other hand, if battery

storage is locally available and can be utilized, this gap can be filled. But this

scheme needs to quantify the fairness of the batteries’ charging allocation among

customers as well as other constraints for batteries; these issues are left for future

work.

The distributed algorithm proposed here only requires local communication

between neighboring EMCs, and does not rely on a central controller. In addition,

since only aggregated information of each building, q̂τi and q̃τi , are transmitted

(instead of individual appliance information), customer privacy is better protected.

5.4 Lower-Layer Communication and Admission

Control Scheme

Each EMC i in the lower-layer network has two tasks: 1) Collect power request

information from appliances within the building and update the q̂τi and q̃τi for

upper-layer consensus algorithm to compute θτi . 2) Conduct admission control for

delay flexible appliances to decide whether they can be turned on to achieve the

local power consumption target θτi . Before providing details on how these two tasks

may be executed, we first describe the structure of our two-layer communication-

based control approach, as shown in Figure 5.4.

Time is segmented into frames which last as long the slot τ used in Section 5.3.

Each frame τ has three phases:
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Figure 5.4: Two-layer communication and control protocol

(1) Load Information Update Phase (LIUP): During the LIUP, the lower-

layer communication interface module receives the power-on requests and power-

off requests from appliances in the building. With this data collected, the control

module updates the flexible load q̃τi and fixed load q̂ti accordingly. The details of

the scheme during this phase is described in Section 5.4.1.

(2) Target Update Phase (TUP): During the TUP, the upper-layer commu-

nication interface module at each EMC communicates with its neighboring EMCs

to execute the average consensus algorithm discussed in Section 5.3 and compute

the local demand target value θτi for frame τ . The length of this phase should

guarantee the convergence of the average consensus algorithm discussed in Section

5.3.

(3) Admission Control Phase (ACP): During the ACP, the EMC’s control

module makes the admission decision, i.e., decide which delay flexible appliances

can be turned on, given the local demand target value θτi . At the end of the

ACP, the lower-layer communication interface module sends a beacon signal to

broadcast the admission decision and synchronizes to the next frame. Details of

the admission control scheme are described in Section 5.4.2.

Note that in Figure 5.4 the length of the blocks do not show the relative length
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of each phase. The duration of each phase is a design parameter of the protocol

which can be adjusted according to the implementation scenario.

5.4.1 Load information update

To track fixed demand q̂τi and flexible demand requests q̃τi , each EMC i maintains

the following sets of appliances in building i ∈ B:

- Active Appliance Set (Aτ
i ) contains already powered on appliances during the

frame τ in building i.

- Request Appliance Set (Rτ
i ) tracks appliances that are requested to power on

by the customer and their power-on request messages (PRQMs) are successfully

received by the EMC in building i during frame τ . If appliance j ∈ Ki \ (A
τ
i ∪Rτ

i )

is requested to power on, it sends a PRQM; upon receiving this message, the EMC

updates Rτ
i as Rτ

i = Rτ
i ∪ {j}.

- Release Appliance Set (X τ
i ) tracks appliances that wish to power off and their

power release messages (PRLMs) have been successfully received by the EMC in

building i during frame τ . Upon receiving the PRLM from an appliance j ∈ Aτ
i ,

the EMC updates X τ
i to X τ

i = X τ
i ∪ {j}.

Note that for a delay flexible appliance,1 whose PRQM (PRLM) is received by

the EMC, the appliance is not added to (removed from) Active Appliance Set (Aτ
i )

immediately; instead it is added to Rτ
i (X τ

i ) and waits until the ACP phase to

be scheduled on/off by the EMC. Thus, Rτ
i and X τ

i only contains delay flexible

1Note that some appliances have delay flexibilities in both turning-on and turning-off, e.g.,
electric vehicle battery and water heater. Some appliances, however, only provide delay flexibil-
ities regarding when they turn-on, e.g., clothes washer; in such cases, we can treat their turn-off
requests via the override option, discussed in Section 5.4.3
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appliances. When non-flexible appliances wish to turn on or off, they will be

treated as appliances with override option and will be added to (removed from)

Aτ
i immediately; this option will be discussed in Section 5.4.3.

The EMC updates these appliance sets according to the packets (PRQMs or

PRLMs) transmitted by appliances. Table 5.1 shows the essential fields in these

packets required for our approach. The RRI indicates whether this packet is a

PRQM or PRLM packet, and PCV is the power consumption value of the ap-

pliance. Other fields (ORI, MON, MSUS, DT) are related to the non-intrusive

operation of appliances which will be discussed in Section 5.4.3.

Table 5.1: Fields description in appliance TX packet

ID Appliance/EMC ID
RRI PRQM/PRLM indicator (0/1 binary)
ORI Override indicator (0/1 binary)
PCV Power consumption value in W
MON Minimum on time
MSUS Minimum suspension time
DT Delay tolerance

The EMC transmits an ACK packet to acknowledge successfully reception of

the PRQM/PRLM sent by an appliance. ACK is integrated in the general EMC

transmission packet. Table 5.2 shows the fields needed in the EMC transmis-

sion packet. For the EMC’s ACK transmission, the ACKID field is assigned the

appliance’s ID and thus acknowledges the success of packet reception from that

appliance. Other fields (BCI, OPD, RXD) are valid in the ACP phase which will

be discussed in Section 5.4.2.

Carrier sense multiple access with collision avoidance (CSMA/CA), which is

widely used in wireless local area networks like IEEE 802.11 [65], is applied for

packet transmissions in our scheme. At the end of the LIUP, if an appliance’s
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Table 5.2: Fields description in EMC TX packet

ID Appliance/EMC ID
BCI Beacon packet indicator
ACKID ACK destination appliance ID, ACKID=0 for broadcast
OPD Appliances operation (on/off) decision vector, valid for the beacon

and broadcast (ACKID=0) packet
RXD Specify a RX duration in which appliances are allowed to transmit

request/release messages, valid for beacon packet

request is not received by the EMC due to collision, it will wait until the next

frame to send its request; however, if the duration of LIUP is long and the number

of requests is not large, the impact of collisions can be neglected.

At the end of the LIUP phase, with updated set Rτ
i and X τ

i as well as Aτ
i for

frame τ , the fixed demand of building i can be computed as

q̂τi =
∑

j∈Aτ
i \X

τ
i

P τ
i,j , (5.8)

where P τ
i,j is the power consumption value for appliance j in building i during

frame τ .2 The requested demand from flexible appliances q̃τi can be computed as

q̃τi =
∑

j∈Rτ
i

P τ
i,j . (5.9)

5.4.2 Admission control mechanism

Given the flexible appliances request set Rτ
i and the local demand target value

θτi , the EMC makes admission decisions in the ACP phase, i.e., chooses which

2Note that in this discussion we assume P τ
i,j is a fixed constant over the frame τ . In reality,

the power consumption may vary with time. To this end, the length of the frame needs be
carefully designed so that our assumption gives accurate results. For those flexible appliances
that have fast variation of power consumption with time, we can also treat the change in power
consumption as an additional power-on/power-off request that is handled via the override option.
The override option will be discussed in Section 5.4.3.
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appliances in Rτ
i to turn on. The aim of the controller is to make the aggregated

load in building i approach θτi as close as possible, without being over θτi . We

employ a binary decision variable xj associated to each appliance j ∈ Rτ
i indicating

whether it can be turned on. The EMC’s optimization can be formulated as:

max
xj

∑

j∈Rτ
i

xj · Pi,j (5.10)

s.t. q̂τi +
∑

j∈Rτ
i

xj · Pi,j ≤ θτi (5.11)

xj ∈ {0, 1}, j ∈ Rτ
i , (5.12)

where xj = 1 indicates that appliance j is scheduled to turn on. (5.10) – (5.12) is

a classical 0 − 1 knapsack problem, which can be solved efficiently using various

existing approaches [45].

At the end of the ACP phase, the EMC broadcasts a packet containing the

admission results, i.e., it sets the OPD field in Table 5.2 accordingly. This packet

also serves as a beacon signal (set BCI=1 in Table 5.2) to specify the transmis-

sion/receiving duration (length of LIUP) for the next frame, by setting the RXD

field in Table 5.2, during which the power on/off request packets can be sent.

With the decision result {xj}, Admitted Appliance Set Dτ
i can be updated as

Dτ
i = {j|j ∈ Rτ

i , xj = 1 in (5.10)-(5.11)}.

The Active Appliance Set for the next frame τ + 1 is updated as

Aτ+1
i = Aτ

i ∪ Dτ
i \ X

τ
i . (5.13)
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Note that the solution of (5.10) may result in a gap between q̂τi +
∑

j∈Rτ
i
xj ·Pi,j

and θτi , in which any appliance inRτ
i can not be accommodated. This gap will most

likely exist at each building; the cumulative effect will produce a gap between the

actual scheduled aggregate demand and the desired aggregate demand. To alleviate

this gap, we employ a relaxed target θ̃τi = θτi +Pmax
i , where Pmax

i is the maximum

value of the appliances’ power consumptions within building i during frame τ .

With a probability of ζ, we assume the EMC uses this θ̃τi in the admission control

optimization. The parameter ζ is tuned according to the actual implementation.

This practical adjustment allows some buildings to use extra power beyond the

local demand target, but all buildings have this opportunity without bias due to the

probability ζ. Note that this scheme cannot remove the gap totally. Although large

values of ζ may decrease the gap, there may be a possibility that the aggregated

demand will exceed the desired demand; thus the trade-off in values of ζ should

be carefully considered in actual implementation.

5.4.3 Non-intrusive operation for appliances

Our approach exploits operational flexibility of appliances in terms of delaying

turning-on. In other words, the control scheme may change the original usage

profile of appliances. It is feasible for some kinds of non time-critical appliances

such as washing machine and clothes dryer, but appliances with critical time re-

quirement, such as TV, desktop, and emergency devices, are required to turn on

immediately once the customer wants to use them. In some cases, even for flexible

appliances, customers may not prefer to delay usage for a variety of reasons. The

underlying DR scheme should provide such override options for customers even

though overriding may affect the incentive rebates that customers receive. Besides
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the override option, non-intrusive operation may be needed, i.e., guaranteeing the

appliance’s task is completed before a deadline set by the customer. Furthermore,

this should be done while avoiding frequent appliance ON/OFF switches in the

scheduling. In the following, we will describe how non-intrusive operations are

integrated into our control scheme discussed above.

(1) Customer override option

Our control scheme provides customers with override option, e.g., to specify time

critical appliances or change request preferences. In such cases, the appliance

should be turned on/off as soon as the customer requests; meanwhile the appliance

sends a PRQM/PRLM packet with the ORI field set, as shown in Table 5.1, to

indicate the request is due to an override option.

If the PRQM packet with an override option from appliance j is received by

the EMC, the Active Appliance Set is updated as Aτ
i = Aτ

i ∪ {j}. However, since

during this frame τ , the demand of the building needs to be kept below the demand

target value computed at the end of the last frame, i.e., θτ−1
i , this newly added

appliance may cause the actual demand to go above this target. In this scenario, a

curtailment is needed to ensure the demand target θτ−1
i bound not being violated.

Define the Curtailable Appliance Set Cτ
i , where C

τ
i ⊆ Aτ

i , as the set of appliances

that can be curtailed in frame τ . A curtailment optimization is formulated by the
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EMC as:

max
yj

∑

j∈Cτ
i

(1− yj) · Pi,j (5.14)

s.t.
∑

k∈Aτ
i \C

τ
i

Pi,k +
∑

j∈Cτ
i

(1− yj) · Pi,j ≤ θτ−1
i (5.15)

yj ∈ {0, 1}, j ∈ Cτ
i , (5.16)

where the binary variable yj = 1 indicates appliance j in Cτ
i is scheduled to be

curtailed. The curtailed appliances will be added to Rτ
i for future scheduling, i.e.,

Rτ
i = Rτ

i ∪ {j|j ∈ Cj, yj = 1 in (5.14)-(5.16)}.

If the PRLM packet with an override option from appliance j is received by the

EMC, the Active Appliance Set is updated as Aτ
i = Aτ

i \ {j}. In this scenario, the

gap between the actual demand
∑

j∈Aτ
i
Pi,j and the target value θτ−1

i will increase,

so that some additional appliances in Rτ
i may be accommodated and turned on.

Define the Admissible Appliance Set Sτ
i , Sτ

i ⊆ Rτ
i as the set of appliances

that can be admitted to power on at this moment. An admission optimization is

formulated for the EMC as:

max
zj

∑

j∈Sτ
i

zj · Pi,j (5.17)

s.t.
∑

k∈Aτ
i

Pi,k +
∑

j∈Sτ
i

zj · Pi,j ≤ θτ−1
i (5.18)

zj ∈ {0, 1}, j ∈ Sτ
i , (5.19)

where the binary variable zj = 1 indicates appliance j in Sτ
i is scheduled to turn

on and be added to Aτ
i , i.e., A

τ
i = Aτ

i ∪ {j|j ∈ Sj, zj = 1 in (5.17)-(5.19)}.
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For both cases, after the decision is made, the EMC (via lower-layer communi-

cation interface module) broadcasts an ACK packet in which the BCI and ACKID

fields, as shown in Table 5.2, are set to 0 indicating non-beacon and broadcast

packet, and the OPD field is set to the admission decision vector to inform all

appliances. Upon receiving this broadcast ACK, the corresponding appliances will

suspend power consumption (curtailment) or turn on.

Note that the override action may happen during TUP period, so the local

target demand θτi computation by the average consensus algorithm may not be

accurate in terms of actual demand status. However, this problem is trivial since

the duration of TUP can be designed to be very short, e.g., several seconds. In

such a case, the override operation of many appliances happen during this phase

with negligible probability; the override option during this short time can also be

disabled, which is feasible for customers.

(2) Preventing frequent ON/OFF switching

With the override option, some flexible appliances may be shut down temporarily

(suspended) or resumed. However, too frequent ON/OFF switching is harmful to

appliances. To accommodate this non-intrusive constraint, min-ON and min-OFF

parameters are specified for each appliance to indicate the minimum power-on

time after it is turned on and minimum off time after it is suspended. These two

parameters are passed to the EMC by the MON and MSUS fields, respectively, of

the PRQM packet shown in Table 5.1.

Accordingly, there are ON and OFF timers for each appliance in the EMC’s

control module to record the ON/OFF times. When the appliance is turned on,

either for the first time or when it resumes from a suspended state, the ON timer
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counts down with initial value min-ON. The appliance cannot be added to the

Curtailable Appliance Set, Cτ
i , until the timer reaches 0; this prevents the appli-

ance from being curtailed and suspended again. Similarly, when the appliance is

curtailed, the OFF timer counts down with initial value of min-OFF. The appli-

ance will not be added to the Admissible Appliance Set Sτ
i , until the timer reaches

0. This mechanism helps avoid frequent ON/OFF switching for appliances due to

curtailment and admission from the override operation.

(3) Operation deadline constraint

Although some flexible appliances allow delayed power-on or suspension, an oper-

ation deadline is usually needed to guarantee that the appliance’s task operation is

completed by the customer’s desired deadline. Our scheme integrates this require-

ment by specifying a DT field in the PRQM packet (shown in Table 5.1), which

represents the delay tolerance. This delay tolerance can be directly specified by the

customer, or if the customer indicates the deadline for the operation completion,

the DT can be computed as tci,k − tri,k − tdi,k, where tci,k, tri,k, and tdi,k are the

deadline point, the request time point, and the duration of operation, respectively.

After the EMC receives the PRQM packet containing the DT, a deadline timer

is set to the value of DT. When the appliance waits to get access or suspends,

the timer counts down. If the appliance is in power-on status, the timer pauses.

If the value of the timer is less than min-OFF parameter (MSUS), it can not be

scheduled to be suspended. If the timer reaches 0 before the task completion,

the appliance powers on as an override operation and continues to consume power

without interruption until the task is completed.
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5.5 Numerical Results

In the simulation, we consider a region with B = 400 buildings over which the

corresponding EMCs form a 20 × 20 mesh network. Each building in turn has

40 appliances to schedule, i.e., |Ki| = 40, 20 of which are delay flexible appli-

ances. Since typical residential appliances’ power consumption ranges from 50W

to 2000W [66], we assume power consumption values in our simulation to be uni-

formly distributed, i.e., Pi,k ∼ U(50W, 2000W), i ∈ B and k ∈ Ki. We assume the

power duration of appliances follows an exponential distribution with mean of µτ
i,k

(i.e., with rate of 1
µτ
i,k

). The request interval (that is, the duration from the time

at which appliance becomes idle to the time when the appliance is requested to

power on by the customer) is assumed to be exponentially distributed with mean

of ατ
i,k.

To make aggregate demand in the simulation be more practical, we employ

the actual real-time demand data of New York City from NYISO [67] to tune the

appliance power-on request interval parameter ατ
i,k. Specifically, we denote the base

value of this parameter by α0
i,k, and the tuned value is computed as ατ

i,k = γτ ·α0
i,k,

where the ratio γτ is computed in terms of actual real-time demand data Qτ as

γτ =

(

1/L ·
∑L−1

τ=0 Q
τ

Qτ

)ω

, ω ≥ 1, (5.20)

where ω is the tuning parameter, and we choose ω = 1 in our simulation. From

(5.20) we can see the higher actual demand results in smaller power-on request

interval parameter ατ
i,k; thus the higher demand in the simulation due to more

frequent power-on requests. Figure 5.5 shows the aggregated demand of our test

system using the tuned parameters (Figure 5.5-b), and the actual average demand
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of N.Y.C used for tuning parameter ατ
i,k (Figure 5.5-a) is also shown for comparison.

We can see that the simulated demand follows the trend of the actual demand data.
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(a) Average demand of N.Y.C.
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(b) Simulated aggregated demand

Figure 5.5: Aggregated demand profile for simulation

The step size of the average consensus algorithm in (5.5)–(5.6) can be computed

as ε = 2/[λ2(L) + λB(L)] = 0.2508, where the second smallest eigenvalue of graph

Laplacian matrix λ2(L) = 0.0246, which gives the convergence speed parameter

κ2 = 1 − ελ2(L) = 0.9938. Assuming the initial standard deviation of {q̂τi } and

{q̃τi }, i ∈ B to be ϕ0, and the converged deviation to be ϕc, the iteration time I

can be computed as

I =
ln(ϕc/ϕ0)

ln(κ2)
. (5.21)

Consider the worst case in which {q̂τi } and {q̃τi } are polarized for all EMCs, i.e.,

half of the EMCs have the largest value of
∑40

j=1 P
max
i,j = |Ki| · P

max
i and half of

the EMCs have zero values, so ϕ0 = |Ki| ·P
max
i /2. We set the converged deviation

as ϕc = 0.1, so from (5.21) the upper bound of convergence iteration is computed

as I = 2083. Assuming the time of each iteration in the upper-layer network

(transmission and processing time) as 0.1ms, we can set the duration of TUP as

0.3s to guarantee convergence.

Figure 5.6 shows the scheduling results for one day under our proposed scheme.
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We can see the scheduled aggregated demand (blue curve) is closer to the desired

demand (black curve) than the original demand (red curve). With the proposed

scheme, the average deviation between the desired demand and actual demand

levels over the day decreases by 35.6% compared to that of the original demand.
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Figure 5.6: Scheduling demand using the proposed approach

5.6 Chapter Summary

In this chapter, an innovative two-layer communication-based distributed direct

load control approach is proposed for future large-scale residential demand re-

sponse. The idea is to allocate the overall control task into each building by EMC

in a distributed way. We employ average consensus algorithms in the upper layer

network, which consists of connections between neighboring EMCs, to allocate tar-

get power consumption levels for each building. The EMC in each building then

schedules appliances operation according to the local power consumption target.

The protocol integrates these two-layer seamlessly and also enables non-intrusive

operation of appliances. Numerical results show notable improvement in the sys-

tem’s ability to match day-ahead demand predictions (i.e., supply) with day-of,

actual demand levels.
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Chapter 6

Market Effects of Deferrable

Loads as Demand Response

6.1 Introduction

In this chapter, we focus on how demand response may influence the wholesale

electricity market. Favored by the FERC Order 745 [15] described in Section 1

stating compensation to DR resources in the wholesale electricity market, we are

interested in the market effects of demand side participation of DR aggregators.

Specifically, we employ the model proposed in [57], which quantizes load requests

from flexible load devices and bundles them into a set of discrete load categories,

each category being a queue of energy requests that has a specific load profile.

By dispatching appliances activating at a certain time from each queue, the DR

aggregator manages a load reservoir formed by the queues of requests. The ability

to queue and dispatch loads can be viewed as a special type of generation, from

the perspective of balancing supply and demand, with its own generation and
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cost. The “generation capacity” for the DR aggregator is largely dependent on

the schedulable resource, i.e., the number of flexible loads it controls, their arrival

rates, etc. On the other hand, the “generation cost” is the delay inconvenience cost

to customers due to queued loads.

In order to analyze market effects of the DR participation in the wholesale

energy market as a DR aggregator, in this chapter we adopt the Cournot game

model, which is widely used to describe the behavior of traditional generators in the

electricity market [68–75]. In contrast to market analysis using the supply function

equilibrium (SFE) model [76–78], the Cournot model is generally computationally

tractable and much easier to analyze. More detailed reviews of game-theoretic

models for the wholesale electricity market can be found in our work [79]. In

the Cournot model, each strategic generator chooses its generation level in order

to compete in the market and maximize its own profits. The price of electricity

is determined by the ISO using these offered generation quantities and a given

demand function. A major contribution of our work is to demonstrate how the

Cournot game model is modified when a large DR aggregator participates in the

game by not just reducing load but queuing and shifting loads in time. Given that

load reduction can be compensated as generation, the DR aggregator can now

compete with traditional generators in a Cournot-Nash manner to make a profit

in the wholesale electricity market.

There are some existing studies that examine inclusion of DR entities in whole-

sale electricity markets. [80] incorporated the hourly demand response into security-

constrained unit commitment (SCUC) for economic and security purposes, where

the responsive loads are modeled with their inter-temporal characteristics. [81] pre-

sented a stochastic model to schedule reserves as an ancillary service provided by

DR in the wholesale electricity market. The proposed stochastic model is formu-
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lated as a two-stage stochastic mixed-integer programming (SMIP) problem. [82]

proposed a security-constrained forward market clearing algorithm within which

the inherent characteristics of demand flexibility are acknowledged when the pro-

vision of reserve from the demand side is considered. [83] applied a Cournot game

model to examine the specific effect of pumped hydro storage in Germany. The

integration of EVs as specific DR resources into wholesale electricity markets is

discussed in [84], [85]. Some game-theoretic methods applied to smart grid can be

found in [86] and [87].

The remainder of this chapter is organized as follows. Section 6.2 describes

the computationally efficient model of deferrable load. Section 6.3 describes the

Cournot game model in which DR aggregators participate in the wholesale market

from the supply side. Section 6.4 analyzes the equilibrium of the DR-participating

Cournot game. Section 6.5 presents numerical results and we conclude our discus-

sion in Section 6.6.

6.2 Modeling the Deferrable Load

In [57], a computationally efficient model is proposed to account for the underlying

components that constitute the aggregate deferrable load. This model can mainly

be used to account for non-interruptible long duration loads with predictable job

lengths. Examples include electric vehicles, washing machines, tumble dryers, etc.

In the following part, we show how this model for aggregate deferrable load is

integrated in the wholesale dispatch optimization.

We assume that electric demand due to any deferrable appliance can be ap-

proximated by one of q = 1, . . . , Q discrete time pulses gq(.). We associate a service
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queue with each of these pulses. Every appliance that arrives in the system can be

categorized as a deferrable load. It is assigned to one of these queues and needs to

wait in order to be authorized to turn on. Denote the total number of arrivals and

departures (appliance activations) in the q-th queue, from the origin of time until

epoch ℓ, by aq(ℓ) and dq(ℓ) respectively. Note that this means that the number of

appliance arrivals and activations at epoch ℓ is respectively given by aq(ℓ)−aq(ℓ−1)

and dq(ℓ) − dq(ℓ − 1). Now, we can write the aggregate deferrable load LS(ℓ) at

time ℓ as,

LS(ℓ) =

Q
∑

q=1

ℓ∑

k=1

[dq(k)− dq(k − 1)]gq(ℓ− k). (6.1)

Details of this formulation can be found in [57]. In addition, we need to specify

the constraints for scheduling the deferrable load as follows.

(1) Causality and deadline constraints: From (6.1) we can see that deter-

mining the optimal values of LS(ℓ) is equivalent to finding the optimal values of the

Q queue departure processes dq(ℓ). However, several constraints for this departure

process dq(ℓ) need to be specified.

First, we look at simple causality constraints. An appliance cannot be turned

on before it requests energy. Also, by definition, the values of dq(ℓ) should be

non-decreasing. Thus,

0 ≤ dq(ℓ− 1) ≤ dq(ℓ) ≤ aq(ℓ), ∀ℓ, q. (6.2)

Additional constraints can be added to ensure that an acceptable quality of

service (QoS) is delivered to the deferrable loads. For example, we can ensure that
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all the deferrable loads participating in the wholesale market are served by the last

hour of the day t = H. If we denote by τq the length of the pulse gq(.) associated

to the q-th queue, this would mean that:

dq(H − ℓ) = aq(H − ℓ), ∀q, ℓ < τq. (6.3)

However, ensuring that all the loads are served by the end of the day may not

result in an acceptable level of QoS and is too optimistic in terms of modeling the

flexibility of customers. To penalize the operator for overly delaying the service to

the appliances waiting in queues, we propose one of the following options depending

on complexity and reliability preferences:

(2) Per queue maximum delay constraints: Denote the maximum delay that

appliances in the q-th queue can tolerate by γq. Then, maximum delay constraints

for the q-th queue are:

dq(ℓ) > aq(ℓ− γq), ∀q, ℓ. (6.4)

(3) Addition of an average delay cost: A less computationally intensive

option is to define a new cost term that can be added to the dispatch optimization

in order to avoid dispatches with unacceptable levels of delay. Here, the operator

will define a cost term proportional to the average delay experienced by the entire

population. The number of appliances waiting in the q-th queue at time ℓ without

receiving service is given by aq(ℓ)− dq(ℓ). Thus, if we weigh queues differently, the

delay cost increment at time ℓ is given by:

DCI(ℓ) =

Q
∑

q=1

υq(ℓ) [aq(ℓ)− dq(ℓ)] . (6.5)
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6.3 Cournot Game of Wholesale Market with DR

Aggregator Participation

We consider an electric network with N = |N | nodes, where N denotes the set of

all nodes in the network. LetN g ⊂ N denote nodes at which traditional generators

are located. DR aggregators are located at a set of nodes, which we denote by NG.

In addition, we assume N g
⋂
NG = ∅.

We model the day-ahead energy market as Cournot game, which has been well

established in a series of papers [70], [74], [73] and [75] by Oren et al. In this model,

suppliers determine generation quantities to compete in a Nash-Cournot manner

over a time horizon H. The suppliers here include both traditional generators

and DR aggregators. Each traditional generator i ∈ N g decides its generation

quantities as ζgi (ℓ) for ℓ = 1, 2, . . . , H, while the scheduling capability enables DR

aggregator to make a load modification decision ζdlj (ℓ), for j ∈ N dl, ℓ = 1, 2, . . . , H.

Both traditional generators and the DR aggregator aim to maximize their profit,

given as the revenue collected minus the generation cost.
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Figure 6.1: Participation of DR aggregators in the wholesale market

The ISO in this model determines how to dispatch electricity within the network

so as to maximize total social surplus subject to transmission constraints. Specif-
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ically, it obtains the optimal power import value ri(ℓ) at each node. Since the

generator and the ISO take into consideration each other’s actions, their decisions

are treated as simultaneous moves in the model. The structure of the wholesale

market with inclusion of DR aggregators is shown in Figure 6.1.

In Cournot model, the demand behavior at node i is described by the inverse

demand function (IDF) [74] , [70], and is given as p = Pi(w), where p is the

price of electricity and w is the demand. This function describes how the demand

responds to the price, and in general it is a decreasing function indicating that

as price increases, customers will decrease their demand. Given IDF Pi(·) at each

node i, the demand as well as the locational price for each node can be obtained by

jointly solving the optimization problem of generators, DR aggregators and ISO

(i.e., the equilibrium point). We will formulate optimization problems for each

entity in next section.

For ease of analysis, we employ the linear demand function, which is widely

used in the Cournot game model in Oren’s work [70], [74], [73] and [75], as

pj = Pj(wj) = cj − bj · wj, j ∈ N (6.6)

where wj is the demand at node j. The slope bj indicates the demand responsive-

ness, i.e., how the price affects the quantity demanded, while cj indicates factors

other than price that affect demand. The parameter bj could be time-varying, as

bj(ℓ) for hour ℓ.

6.3.1 Optimization for generators

Traditional generators aim to maximize their profit by simultaneously choosing

generation quantities ζgi (ℓ), i ∈ N g, ℓ = 1, 2, . . . , H. Since there is no temporal
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correlation of each hour’s generation,1 the profit maximization for the whole day is

just to maximize the profit for each hour independently. For notational simplicity,

we omit the hour index ℓ here. The profit maximization problem for a generator

located at node i can be formulated as:

max
ζgi :i∈N

g
Pi(ri + ζgi )ζ

g
i − Ci(ζ

g
i ) (6.7)

s.t. ζmin
i ≤ ζgi ≤ ζmax

i , i ∈ N g (6.8)

where Pi(ri + ζgi ) is the price with demand of ri + ζgi . Note that ri is the power

import value at node i determined by ISO. When ri > 0, power is delivered to this

node; when ri is negative, node i transmits power into the electricity network. The

first term in the objective function (6.7) represents the revenue of generating ζgi of

power, while the second term refers to the generation cost. The cost of generation

is usually modeled to be convex, e.g., quadratic or piece-wise linear function. The

ζmin
i and ζmax

i in the constraint indicate the minimum generation when ON and

capacity limit of the generator located at node i. The generators here are assumed

to have been scheduled ON in the unit commitment (UC) problem.

6.3.2 Optimization for DR aggregator

With schedulability from deferrable loads, the DR aggregator can make load re-

ductions, which is equivalent to generation in terms of balancing power on the

electricity market. In order to formulate the optimization problem for the DR

aggregator, how the ‘generation’ value ζdl(ℓ) are mapped in terms of deferrable

load parameters (e.g., the departure process and the q-th queue’s load profile) as

well as constraints of these parameters need to be modeled mathematically. The

1We omit the ramp constraint for simplicity.

114



load modification ζdl(ℓ) from deferrable load managed by a DR aggregator can be

computed as

ζdl(ℓ) = L̄S(ℓ)− LS(ℓ) =

Q
∑

q=1

ℓ∑

k=1

[λq(k)− dq(k) + dq(k − 1)]gq(ℓ− k), (6.9)

where L̄S(ℓ) =
∑Q

q=1

∑ℓ
k=1 λq(k)g(ℓ − k) is the original demand from these de-

ferrable loads, and λq(k) = [aq(k) − aq(k − 1)] is the arrival rate for time k. As

discussed in Section 6.2, the DCI can be viewed as cost that customers experience

due to a ‘generation’ of ζdl(ℓ).

By choosing the departure processes {dq,j(ℓ)}, the DR aggregator aims to max-

imize its profit over the time horizon H, which is the money it gets for load modifi-

cation ζdlj , minus the inconvenience cost DCI. For notational simplicity, we omit the

DR aggregator index subscript of j, and the optimization for the DR aggregator

is:

max
{dq(ℓ)}

H∑

ℓ=1

[
Pℓ

(
r(ℓ) + ζdl(ℓ)

)
ζdl(ℓ)

]
−DCI (6.10)

s.t. dq(H − ℓ) = aq(H − ℓ), ∀q, ℓ < τq (6.11)

dq(ℓ) ≤ aq(ℓ) =
ℓ∑

s=1

λq(s), ∀q, ℓ (6.12)

dq(ℓ− 1) ≤ dq(ℓ), ∀q, ℓ (6.13)

dq(ℓ) ≥ aq(ℓ− γq), ∀q, ℓ (6.14)

dq(ℓ) ∈ Z+ ∪ {0}, ∀q, ℓ (6.15)

where ζdl(ℓ) and DCI are expressed as in (6.9) and (6.5), respectively. The con-

straints (6.11)-(6.15) are corresponding to (6.2), (6.3) and (6.4) in Section 6.2.
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6.3.3 Optimization for the ISO

The ISO aims to maximize the social welfare of the entire system, which is given by

the total consumer willingness-to-pay (the aggregated area under the nodal inverse

demand curves) minus the total generation cost. (See [74], [88] for details.) The

social welfare of node i can be written as:
∑

i∈N

(∫ ri(ℓ)+ζi(ℓ)

0
Pi(τi)dτi − Ci(ζi(ℓ))

)

,

where ζi(ℓ) is the ℓ-th hour’s generation value (ζgi (ℓ) if i ∈ N g, or ζdli (ℓ) if ∈ N dl)

at node i. Ci(·) is the corresponding generation cost function (delay inconvenience

cost) for generators (DR aggregator). The {ri(ℓ)}i∈N is the power import value for

each node, which is decided by the ISO. We next specify the constraints for ISO

optimization.

(1) Power balance constraint: Since ri(ℓ), i ∈ N is the power import value

at node i, the demand at node i is actually ζgi (ℓ) + ri(ℓ), if there is a traditional

generator, and ζdli (ℓ) + ri(ℓ), if a DR aggregator is located at node i. Since the

total load and total generation must be balanced at all moments, {ri(ℓ)} should

satisfy the energy balancing constraint:
∑

i∈N ri(ℓ) = 0. ℓ = 1, 2, . . . , H

(2) Demand constraint: For all nodes, the demand value should not be neg-

ative, i.e., ζi + ri ≥ 0, i ∈ N . For the DR aggregator node, although it has an

equivalent ‘generation’ ζdl(ℓ), it is actually a demand node, i.e., it consumes power

from the network. So the power import at a DR aggregator node should be a

non-negative value, i.e., ri(ℓ) ≥ 0, i ∈ N dl.

(3) Transmission constraint: {ri(ℓ)} must satisfy the network line power con-

straint, i.e., the resulting power flows should not exceed the thermal limits of the
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corresponding transmission line in both directions. We use Power Transfer Distri-

bution Factor (PTDF) to describe the linear approximation of the relation between

power flow and power injection. Given the PTDF of node i in relation to branch

m as Smi, if the injection change at node i is ∆ri, the power flow change in the

branch m would be ∆Pm =
∑N

i=1 Smi∆ri. Let M denote the set of all the trans-

mission lines in the system and Km denote the limit of transmission line m. The

transmission constraints in terms of {ri} is: −Km ≤
∑

i∈N Smiri ≤ Km, m ∈ M.

Note that the ζi(ℓ) values, decided by generators/DR aggregator, are known

to the ISO, so the cost function part can be removed from the objective function.

Hence, the optimization for ISO for hour ℓ can be formulated as

max
{ri}

∑

i∈N

∫ ri(ℓ)+ζi(ℓ)

0

Pi,ℓ(τi)dτi (6.16)

s.t.
∑

i∈N

ri(ℓ) = 0 (6.17)

ri(ℓ) + ζi(ℓ) ≥ 0, i ∈ N (6.18)

ri(ℓ) ≥ 0, i ∈ N dl (6.19)

−Km ≤
∑

i∈N

Smiri(ℓ) ≤ Km, m ∈ M, (6.20)

6.4 Equilibrium Analysis

The equilibrium conditions are the result of jointly solving the optimization prob-

lems for the ISO, generators and DR aggregators. It is easy to see that the opti-

mization for each entity is convex so the optimal (KKT) conditions can be derived.

In the following parts, we let bold font X denote matrix, ~X denote vector, (X)i,j

denote i, j entry of matrix X, ~XT(XT) denote transpose of vector ~X (matrix X),
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and diag{~x} denote the diagonal matrix with diagonal entries as vector ~x.

6.4.1 Optimality conditions for DR aggregator

Let vector ~D = [~d1, ~d2, . . . , ~dQ]
T denote decision variables of the DR aggregator,

where each element is a row vector ~dq = [dq(1), dq(2), . . . , dq(H)]. To express

the optimization in a general matrix form, we denote arrival rate vector by ~Λ =

[~λ1, ~λ2, . . . , ~λQ]
T, where ~λq = [λq(1), λq(2), . . . , λq(H)]; load profile matrix by G =

[ ~G(1), ~G(2), . . . , ~G(H)]T, where each row is a transpose of a vector ~G(ℓ) with length

H · Q given as: ~G(ℓ) = [~g1(ℓ), ~g2(ℓ), . . . , ~gQ(ℓ)]
T, with ~gq(ℓ) = [gq(ℓ − 1), gq(ℓ −

2), . . . , gq(ℓ−H)], and we define gq(ℓ− k) = 0 if ℓ− k < 0.

Define matrix U as

U = IQ ⊗ Ũ, (Ũ)i,j =







−1, i = j

1, i− 1 = j

0, o.w.

, i, j ∈ [1, H]

where IQ is identity matrix of size Q, and ⊗ denotes the Kronecker product. So

ζdl(ℓ) can be expressed in matrix form as

ζdl(ℓ) = ~G(ℓ)T(~Λ +U ~D).

The arrival process vector of appliances ( ~A) can be expressed in terms of arrival
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rate vector ~Λ as ~A = L~Λ, where L is defined as

L = IQ ⊗ L̃, (L̃)i,j =







1, i ≥ j

0, o.w.
, i, j ∈ [1, H]

The delay inconvenience cost (DCI) in (6.5) can also be expressed in matrix

form as

DCI = ~υT(L~Λ− ~D),

where ~υ = [~υD1 , ~υ
D
2 , . . . , ~υ

D
Q ]

T is vector of delay cost per hour, such that ~υDq =

[υDq (1), υ
D
q (2), . . . , υ

D
q (H)]. Thus, ~υ has a length of H ·Q. The inequality constraint

(6.12) and (6.13) can be expressed as

~D − L~Λ ≤ ~0, (6.21)

U ~D ≤ ~0, (6.22)

and the inequality constraint (6.14) can be expressed as

~D ≥ NL~Λ, (6.23)

where N is defined as

N=












Ñ1 0 · · · 0

0 Ñ2 · · · 0

...
...

. . .
...

0 0 · · · ÑQ












, (Ñq)i,j=







1, ∀i ∈ [1, H], j= i−τq > 0,

0, o.w.

So we can see N is a square matrix with size of H ·Q.

119



The equality constraint (6.11) can be expressed as

M ~D = ML~Λ, (6.24)

where the matrix M is defined as

M=












M̃1 0 · · · 0

0 M̃2 · · · 0

...
...

. . .
...

0 0 · · · M̃Q












, (M̃q)i,j=







1, ∀i ∈ [1, γq], j=H−i+1

0, o.w.

So we can see M has rows of
∑Q

q=1 γq elements and columns of H ·Q elements.

With linear IDF defined in (6.6), the objective function of DR aggregator can

be written as
∑H

ℓ=1

[
c(ℓ)ζdl(ℓ)− b(ℓ)r(ℓ)ζdl(ℓ)− b(ℓ)(ζdl(ℓ))2

]
−DCI. Note that we

omit the subscript j for simplicity. The matrix form of the objective function can

then be written as

z + ~Y T ~D + ~DTX ~D. (6.25)

where constant z, vector ~Y , and matrix X are

z = ~cTG~Λ− ~rTBG~Λ− ~vTL~Λ− ~ΛTGTBG~Λ,

~Y T = (~cT −~bTR− 2~ΛTGTB)GU+ ~vT,

X = −UTGTBGU,

such that ~c = [c(1), c(2), . . . , c(H)]T, ~b = [b(1), b(2), . . . , b(H)]T with B = diag{~b}

and ~r = [r(1), r(2), . . . , r(H)]T. Since z is a constant, it can be removed from the

objective function.
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Note that since dq(ℓ) must take non-negative integer values, this optimization is

an integer programming problem, so the optimality conditions can not be derived

directly. Here we relax dq(ℓ) to be a continuous variable, and we show that the

floor value of the solution for the relaxed problem is feasible, as shown in Lemma

6.4.1.

Lemma 6.4.1. If the optimal solution to the relaxation problem, in which dq(ℓ) is

relaxed as a continuous non-negative value, is d∗q(ℓ), then the floor of this value,

i.e., ⌊d∗q(ℓ)⌋ is always feasible.

Proof. Let ~D∗ denote the vector of optimal solutions of departure process {d∗q(ℓ)}

to the relaxation problem. Since ⌊x⌋ ≤ x, we get

⌊ ~D∗⌋ ≤ ~D∗ ≤ L~Λ.

So the solution ⌊ ~D∗⌋ satisfies constraint (6.21). Also since d∗q(ℓ − 1) ≤ d∗q(ℓ), the

floor of d∗q(ℓ) satisfies ⌊d∗q(ℓ − 1)⌋ ≤ ⌊d∗q(ℓ)⌋. Thus, the constraint (6.22) is also

satisfied. For inequality constraint (6.23), since NL~Λ is an integer vector, we get

⌊ ~D∗⌋ ≥ NL~Λ.

For the equality constraints, the original solutions {d∗q(H − ℓ)}, ℓ < τq, are

integer values, so ⌊d∗q(H−ℓ)⌋ = d∗q(H−ℓ). This means that ⌊ ~D∗⌋ satisfies constraint

(6.24).

So the floor solution ⌊ ~D∗⌋ is feasible.

Using Lemma 6.4.1, we can get the optimality conditions of the relaxed problem

and floor it to get the (sub-optimal) final solution. The relaxed problem can be
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written as a standard quadratic program as

min
~D

f( ~D) = −~Y T ~D − ~DTX ~D (6.26)

s.t. M ~D −ML~Λ = ~0 (~Θ1) (6.27)

U ~D ≤ ~0 (~Θ2) (6.28)

− ~D +NL~Λ ≤ ~0 (~Θ3) (6.29)

~D − L~Λ ≤ ~0, (~Θ4) (6.30)

where ~Θ1–~Θ4 are the corresponding Lagrangian multiplier vectors. The KKT con-

ditions can be written accordingly:

−~Y − 2X ~D +MT ~Θ1 +UT ~Θ2−~Θ3+~Θ4=0 (6.31)

M ~D −ML~Λ = ~0 (6.32)

U ~D ≤ ~0 (6.33)

− ~D +NL~Λ ≤ ~0 (6.34)

~D − L~Λ ≤ ~0 (6.35)

~Θ2, ~Θ3, ~Θ4 ≥ ~0 (6.36)

diag{~Θ2}U ~D = ~0 (6.37)

diag{~Θ3}( ~D −NL~Λ) = ~0 (6.38)

diag{~Θ4}( ~D − L~Λ) = ~0 (6.39)

6.4.2 Optimality conditions for the ISO and generators

Since the optimization variables of ISO and generators are not time correlated,

they can be conducted independently for each hour. For ease of notational simpli-
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fication, we omit the time index ℓ. For the ISO, the power import for each node

can be expressed as a vector ~R = [r1, r2, . . . , rN ]
T. Let ~bn = [b1, b2, . . . , bN ]

T and

~cn = [c1, c2, . . . , cN ]
T denote the slope and intercept vector of linear IDF in (6.6)

for all nodes, respectively, and Bn = diag{~bn}. Let vector ~ζ = [ζ1, ζ2, . . . , ζN ]
T

represent ζi for all nodes, where ζi can be represented as follows.

ζi =







ζgi , if i ∈ N g,

ζdli , if i ∈ N dl,

0, otherwise.

(6.40)

The optimization (6.16)-(6.20) can be written in matrix forms as

min
~R

(~ζTBn − ~cTn )~R +
1

2
~RTBn

~R (6.41)

s.t. ~1T ~R = 0 (Φ1) (6.42)

− ~R− ~ζ ≤ ~0 (~Φ2) (6.43)

− Idl ~R ≤ ~0 (~Φ3) (6.44)

− S~R− ~K ≤ ~0 (~Φ4) (6.45)

S~R− ~K ≤ ~0 (~Φ5) (6.46)

where ~1 = [1, 1, . . . , 1]T with length of N , and diagonal matrix Idl =diag{~1N dl},

with ~1N dl denoting the unit vector representing the DR aggregator nodes. S is the

PTDF matrix with size of M ×N . Let Φ1, ~Φ2-~Φ5 denote the Lagrange multiplier

(vectors) of equality and inequality constraints, and the KKT conditions can be

written accordingly.
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(~cn −Bn
~ζ)−Bn

~R + Φ1
~1−~Φ2−IG~Φ3−ST~Φ4+ST~Φ5=~0 (6.47)

~1T ~R = 0 (6.48)

−~R− ~ζ ≤ ~0 (6.49)

−Idl ~R ≤ ~0 (6.50)

−S~R− ~K ≤ ~0 (6.51)

S~R− ~K ≤ ~0 (6.52)

~Φ2, ~Φ3, ~Φ4, ~Φ5 ≥ ~0 (6.53)

diag{~Φ2}(~R + ~ζ) = ~0 (6.54)

diag{~Φ3}I
dl ~R = ~0 (6.55)

diag{~Φ4}(S~R + ~K) = ~0 (6.56)

diag{~Φ5}(S~R− ~K) = ~0 (6.57)

For the generator at node i, let ξ−i and ξ+i denote the Lagrange multiplier of

inequality constraints for lower and upper bound of ζgi , respectively. The KKT

conditions can be formulated accordingly.

−ci + biri + 2biζ
g
i + C ′

i(ζ
g
i )− ξ−i + ξ+i = 0 (6.58)

ξ−i ≥ 0, ξ+i ≥ 0 (6.59)

ζmin
i ≤ ζgi ≤ ζmax

i (6.60)

ξ−i · (ζmin
i − ζgi ) = 0 (6.61)

ξ+i · (ζgi − ζmax
i ) = 0, (6.62)

where C ′
i(ζ

g
i ) is the first derivative of the generator cost function.
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6.4.3 Existence and uniqueness of the equilibrium

The equilibrium point can be solved by jointly solving the equilibrium conditions

for DR aggregators, generators, and the ISO. With linear inverse demand function,

and cost function of generators being convex quadratic or piece-wise linear, which

is a common assumption, we have Lemma 6.4.2 about the existence and uniqueness

of the equilibrium.

Lemma 6.4.2. If we assume a convex cost function, e.g., quadratic or piece-wise

linear, for generators, and linear inverse demand function, the equilibrium point

of the Cournot game with participating DR aggregators exists and is unique.

Proof. a) For the DR aggregator’s optimization in (6.26), since −X = UTGTBGU

is a positive definite matrix (B is positive definite diagonal matrix), the objective

is a convex function. So the utility function that the DR aggregator wants to

maximize is concave. b) For the ISO’s optimization, from (6.16) we can see the

objective is also a convex function, implying the utility function is concave. c) For

generators’ optimization in (6.7), if the cost function Ci(ζ
g
i ) is a convex (quadratic

or piece-wise linear as general forms), the utility function is a concave function. d)

The constraints for these optimizations are linear. In this case, the existence of an

equilibrium directly results from Theorem 1 in [89]. Moreover, the equilibrium is

unique due to Theorem 2 and 3 in [89].

With Lemma 6.4.2, we can get the market equilibrium by jointly solving the

optimizations of the DR aggregator, generators, and the ISO.
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6.5 Numerical Results

We apply the proposed Cournot model to the IEEE 24-bus test network shown

in Figure 6.2, which is composed of 24 nodes and 38 lines. The time horizon

is set as H = 24 hours. We assume the generators’ cost function as quadratic,

where the coefficients of cost functions, lower and upper bounds of generation,

as well as the transmission line parameters for this 24-bus network can be found

in case file ‘case24 ieee rts.m’ in MATPOWER [90]. The function ‘makePTDF’

in MATPOWER can be used to compute the PTDF parameters for the system.

We choose nodes 20, 19, 17, and 6 as candidates for DR aggregators shown in

Figure 6.2. The DR aggregator is responsible for providing battery recharging

services to a population of 40k plug-in hybrid electric vehicles (PHEVs), where a

realistic arrival, charge request, and maximum delay model developed in [91] is

employed in the simulation. We assume all nodes have the same IDF intercept
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Figure 6.2: IEEE 24-bus test network with DR aggregators
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c = $70, which keeps unchanged over time ℓ. The IDF slope bi at each node

employs the values in [73]. The CPLEX 12.4 [39] optimization solver is used to

solve the quadratic programming problem for DR aggregators, generators, and the

ISO. MATLAB 2009a is used to formulate the problem and link the CPLEX solver.

The simulation environment is of Intel Duo Core 2.0GHz with 2GB memory. The

execution time for solving the DR aggregator’s optimization in (6.26) with H = 24

hours and the number of queues Q = 5 is 0.016s.

In order to make this Cournot game energy market similar to the real market,

we need to adjust the slope of each hour in a day such that the hours with a higher

actual price have a lower slope; thus gives a higher price in Cournot model. We

use day-ahead prices of New York City from NYISO [36] for these adjustments,

i.e., given day-ahead LMP as κ(ℓ) for hour ℓ, the adjusted coefficient is computed

as

β(ℓ) =
(1/24)

∑24
k=1 κ(k)

κ(ℓ)
,

and adjusted time-variant slope at bus i can be computed as bi(ℓ) = β(ℓ) · bi.
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Figure 6.3: Cournot game price validation at node 20 (No DR aggregator)

Figure 6.3 plots the market prices of electricity at node 20 for the 24 hours

obtained from the Cournot model, compared with the actual day-ahead price of

N.Y.C.; in this case, we do not include the DR aggregator’s participation. We can

see the price profile has the same trend as the actual case, verifying our Cournot
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game model is reasonable. In the Cournot model, since each node has an inverse

demand function, this demand responsiveness serves as a feedback scheme which

prevents the price from reaching a very high value. Note that we use a 24-hour

planning horizon from 6:00AM to 5:59AM the next day. With this shifting, there is

enough off-peak time for the delayed load coming from the peak hours of yesterday

to spread, thus avoiding a load bump in the last hours. This time-shift actually

does not affect the ISO’s day-ahead optimization since we ignore the generation

ramp in our model and there is no time correlation in the optimization.

Figure 6.4 provides the electricity price profile for the day at DR aggregator

node (Bus 20) and regular node (Bus 5), using the Cournot model with presence

and absence of the DR aggregator. We can see during the original peak price hour
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Figure 6.4: Price comparison with/without DR aggregator

(5:00 PM–8:00 PM), the price when DR aggregator participates in the market

decreases compared to the case when there is no DR aggregator for both nodes.

During peak times, the DR aggregator will benefit more from load reduction due

to higher prices. The load reduction will allow other generators to lower their gen-

eration, so avoiding the high cost generation and alleviating the congestion make
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electricity prices decrease. The price reduction at the DR aggregator node (Bus

20) is more obvious than that at regular nodes. We also notice that during off-peak

price hour (12:00 AM – 6:00 AM), the price increases since the DR aggregator shifts

deferrable loads during this period, which can be seen in the power consumption

profile of aggregated PHEVs load in Figure 6.4(c).

Figure 6.5(a) shows as more load nodes are equipped with DR aggregators,

prices decrease further during peak hours. Figure 6.5(b) shows as more DR ag-

gregators are added, the overall profit of DR aggregators increases, i.e., all DR

aggregators make profit for participation in the market, which is the customers’

saving to enroll in this program.
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Figure 6.5: Price reduction and profit of DR aggregator

6.6 Chapter Summary

In this chapter, we apply a Cournot game model to analyze market effects of DR

aggregators’ participation in the wholesale market. We show how the deferrable

load as a market asset is managed by the DR aggregator to compete with other

generators in a Cournot-Nash manner. We formulate optimization problems for

DR aggregators, generators and the ISO, and analyze the market equilibrium. Nu-

merical results show that with DR participation, the market price will be lowered

and thus save money for customers.
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