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Abstract

As an emerging and promising technology, cognitive radio has been recently

proposed to alleviate spectrum scarcity by allowing unlicensed (secondary) users

to coexist with licensed (primary) users while not causing harmful interference.

In this work, we study two important components in constructing cognitive radio

networks: distributed time synchronization and cooperative spectrum sensing.

First, we focus on the task of synchronizing distributed cognitive radios to the

same timing reference, so that they may effectively communicate over a common

control channel and conduct network tasks, e.g., cooperative spectrum sensing,

distributed spectrum allocation, etc.. Although presented here in the context

of cognitive radio network formation, distributed timing synchronization is crit-

ical in all distributed network scenarios. In this dissertation, we propose a novel

discrete time second- and high-order distributed consensus time synchronization

(DCTS) algorithm for ad hoc networks and examine their convergence properties.

We claim that the optimal convergence rate of the second- and high-order DCTS

algorithm is superior to that of the first-order DCTS algorithm under an appro-

priate algorithm design. Furthermore, we extend our study on the convergence

of the DCTS algorithm when both deterministic and uncertain time delays im-

pact local pair-wise time information exchange. Specifically, we model random

delay between secondary users using a Gaussian approximation and determine the

resulting asymptotic behavior of global synchronization error.

In the second topic, we study cooperative spectrum sensing in cost constrained

cognitive radio networks with a centralized fusion center. Specifically, we examine

the case when cognitive radios forward local spectrum statistic to the fusion cen-
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ter over two channel scenarios: parallel access channel (PAC) and multiple access

channel (MAC). For both channel scenarios, we aim to maximize the global detec-

tion probability of available spectrum subject to a system level cost constraint. (1)

In PAC scenario, our objective is to choose appropriate number of energy samples

that must be collected at each secondary user and appropriate amplifier gain that

each secondary user must use to forward its statistics to the fusion center. When

jointly designing these two parameters, we demonstrate that only one secondary

user needs to be active, i.e., collecting local energy samples and transmitting en-

ergy statistic to fusion center. (2) In MAC scenario, our objective is to choose

appropriate beamforming weights subject to a global transmit power constraint.

Under correlated lognormal shadowing, we derive closed-form expressions of opti-

mal beamforming weights and claim that global detection probability increases as

the number of secondary users increases for a simplified linear array network.

2



Chapter 1

Introduction

1.1 Background

1.1.1 Cognitive Radio

In 2002, spectrum policy task force organized by Federal Communications Com-

mission (FCC) initialized a comprehensive review of spectrum policy. Preliminary

spectrum measurements indicated that the assigned spectrum are severely under-

utilized in both spatial and temporal domains [1]. According to the report by

FCC, some frequency bands are largely unoccupied most of the time; some other

frequency bands are only partially occupied and the remaining frequency bands

are heavily used [2, 3]. In order to enhance spectrum utility and alleviate spec-

trum scarcity, cognitive radio has been recently proposed as a potential solution.

A cognitive radio (secondary user) has the adaptability and agility to coexist with

3



primary users in a licensed band without causing harmful interference. One of

ongoing standards based on cognitive radio technology is IEEE 802.22 wireless re-

gional area networks (WRAN), which aims to provide broadband access services

in spectrum allocated to TV broadcast service [4]. It has been shown that these

spectrum bands are especially underutilized in rural areas and may be used for

(secondary) wireless broadband services.

The term and concept of cognitive radio were first introduced by Mitola [5],

where radio knowledge representation language (RKRL) was described as a un-

derlying language for cognitive radio to enhance the flexibility of personal wireless

services. Later, a formal definition of cognitive radio was given by Haykin [3]:

“Cognitive radio is an intelligent wireless communication system that is aware

of its surrounding environment (i.e., outside world), and uses the methodology of

understanding-by-building to learn from the environment and adapt its internal

states to statistical variations in the incoming RF stimuli by making corresponding

changes in certain operating parameters (e.g., transmit-power, carrier-frequency,

and modulation strategy) in real-time, with two primary objectives in mind: 1)

highly reliable communications whenever and wherever needed; 2) efficient utiliza-

tion of the radio spectrum.”

In other words, a secondary user in cognitive radio networks will detect available

spectrum holes (i.e., unoccupied spectrum), analyze and learn information from the

local environment, account for user preferences and demands, and reconfigure itself

by adjusting system parameters under certain policies and regulations [6,7]. Hence,

two fundamental components for cognitive radios are:

4



• Spectrum sensing: secondary users monitor local spectrum and detect spec-

trum holes when primary users are inactive; and

• Spectrum access: secondary users opportunistically utilize the spectrum holes

in an intelligent manner while not interfering with primary users.

Cogni�ve Radio
Network

Primary User

Secondary User Fusion Center

(a) Ad Hoc Cogni�ve Radio Networks (b) Centralized Cogni�ve Radio Networks

Figure 1.1: Topology of cognitive radio networks.

As illustrated in Fig. 1.1, cognitive radio networks can be classified into two

categories: ad hoc and centralized cognitive radio networks. In ad hoc cognitive

radio networks, secondary users communicate with each other in a distributed

fashion due to the lack of a centralized controller, e.g., a secondary base station

or a fusion center. By exchanging local observed information, secondary users

may gain the knowledge of network status. Usually, distributed algorithms [8] are

required among the secondary users to conduct a common task, e.g., distributed

spectrum sensing [9] and distributed spectrum access [10]. On the contrary, in

centralized cognitive radio networks, the secondary users directly communicate

to the centralized controller and report the local observed information to it. The

centralized controller then makes a global decision on how to avoid interfering with

5



primary networks [11].

In ad hoc cognitive radio networks, several recent studies have proposed and

designed a common control channel [12]. This channel can be used by the indi-

vidual cognitive terminals to report and share spectrum sensing results, conduct

distributed spectrum sharing, etc.. Since cognitive radio may be equipped with a

single transceiver, and may communicate over one of several available frequency

bands, several schemes (e.g., cognitive media access control (MAC) [13]) propose

using a prescribed time slot (e.g. 20ms every 100ms) on a common band as the

control channel. This requires the distributed nodes be synchronized to a common

notion of time.

In this dissertation, we mainly focus on two important components in cognitive

radio networks: distributed time synchronization in ad hoc cognitive radio networks

and cooperative spectrum sensing in centralized cognitive radio networks.

1.1.2 Time Synchronization in Cognitive Radio Networks

In a variety of applications of ad hoc cognitive radio networks, secondary users

are required to maintain accurate time synchronization, e.g., solving multi-channel

hidden terminal problem [14], time slotted MAC protocols [11], etc.. This neces-

sitates network algorithms that achieve and maintain global time synchronization

at all secondary users, i.e., algorithms that align all secondary users to a common

notion of time.

Due to decentralized nature of ad hoc cognitive radio networks, global time

synchronization has been recognized as a particularly challenging task. Conven-
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tional synchronization protocols such as time-synchronization protocol for sensor

networks (TPSN) [15], reference broadcast synchronization (RBS) [16] and flood-

ing time synchronization protocol (FTSP) [17] aim to perform centralized global

synchronization for all nodes in the wireless sensor network [18]. These protocols

achieve synchronization via time-stamped packet exchanges with a root node or a

data fusion center and are thus vulnerable to failure of these central nodes.

Recently, several distributed time synchronization algorithms have been pro-

posed. One important class of such algorithms is referred to as distributed consen-

sus time synchronization (DCTS) [19]. Such algorithms apply the general methods

of achieving consensus or agreement between distributed nodes [20] to the global

timing synchronization algorithm. In the DCTS approach, a global time consensus

can be sufficiently reached within a connected network by averaging pair-wise local

time information at network nodes. In [21], Olfati-Saber and Murray established

a theoretical framework for the analysis of consensus synchronization algorithms

using continuous and discrete time models, with the presence/absence of (determin-

istic) time delays, and assuming both a directed and undirected network. Later, a

fully distributed, asynchronous DCTS algorithm was proposed in [22]; this scheme

was designed to reach agreement on time offset and skew offset between network

nodes using MAC layer time-stamped packet exchanges. As an alternative, a phys-

ical (PHY) layer based DCTS algorithm was introduced in [23] by modeling sensor

nodes as coupled discrete time oscillators. In particular, the algorithm adopts

instantaneous received powers as weighted coefficients when updating local clocks.
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1.1.3 Spectrum Sensing in Cognitive Radio Networks

To enable the dynamic spectrum access in cognitive radio networks, secondary user

needs to continuously monitor local spectrum and detect spectrum holes [3, 24].

This technique, called spectrum sensing, requires that the secondary user reliably

detect weak signals from primary users in order to avoid harmful interference.

However, due to the nature of the wireless channel (e.g., fading), a secondary user

may not be able to reliably differentiate between a white space and a weak primary

signal if it conducts spectrum sensing on its own. To improve detection reliability,

multiple secondary users can engage in cooperative spectrum sensing and thus

take advantage of spatial diversity [25–27]. The topology of cooperative spectrum

sensing scenario in centralized cognitive radio networks is illustrated in Fig. 1.1(b).

For example, multiple secondary users can report spectrum measurements to a

fusion center, where the measurements are combined to make global decisions

about primary spectrum occupancy.

As described in [28, 29], cooperative spectrum sensing can be divided into two

stages: local statistic/decision update stage and global fusion stage. In the first

stage, secondary users process received signals to either make a local decision or

compute a local statistic based on the observed information. In the global fu-

sion stage, secondary users transmit the local statistic/decision update to a fusion

center over wireless links. The fusion center combines the updates and makes a

global decision. As shown in Fig. 1.2, two channel scenarios can be utilized in

distributed detection: parallel access channel (PAC) [30–32] and multiple access

channel (MAC) [33–35]. For PAC, the secondary users communicate to the fusion

center via orthogonal channels, while for MAC, the secondary users share a com-
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mon channel during transmission. The latter scheme can significantly reduce the

communication bandwidth and cost, but in general requires perfect synchroniza-

tion among the secondary users.

x1
Channel

Fusion  
Center

(a) Parallel Access Channel (b) Mul�ple Access Channel 

v

x2
Channel

v

xN
Channel

v

1

2

N
…

x1
Channel

Fusion  
Center

v

x2
Channel

xN
Channel

…

Figure 1.2: Channel scenarios for distributed detection.

In [36], it was shown that cooperative spectrum sensing under soft informa-

tion combining outperforms hard decision combining. In hard decision combining,

secondary users forward hard (binary) decisions based on their local spectrum

measurements. In [37], a logic “OR” fusion rule for hard-decision combining was

presented to cooperatively detect the primary user. The amplify-and-forward co-

operative strategy was used in [38] to improve overall spectrum agility by allowing

two secondary users to communicate with each other.

In soft decision combining, secondary users calculate soft information regard-

ing the presence of a primary signal. An optimal linear detector for cooperative

spectrum sensing was proposed in [25], where the received signals at the fusion

center were assigned different weights for global fusion and convex optimization

was formulated to find the linear weights. In [39], a linear quadratic fusion rule

based on a deflection criterion was proposed for cooperative spectrum sensing by

9



modeling received signals as correlated log-normal random variables. Low-energy

overhead cooperative spectrum sensing was studied in [40], where sensing reporting

overhead was reduced and optimal power allocation was computed for cooperative

spectrum sensing.

1.2 Outline of the Dissertation

As previously mentioned, this dissertation mainly focuses on two important com-

ponents in cognitive radio networks: distributed time synchronization in ad hoc

cognitive radio networks and cooperative spectrum sensing in centralized cognitive

radio networks. A brief outline of this dissertation is presented as follows.

In Chapter 2, we apply the principles of distributed consensus building to

achieve global time synchronization at all secondary users. Specifically, we pro-

pose a novel discrete time second- and high-order DCTS algorithm and examine

their convergence properties. Moreover, we investigate the convergence region and

optimal convergence rate of the second- and high-order DCTS algorithm in undi-

rected networks. We claim that the optimal convergence rate of the second- and

high-order DCTS algorithm is superior to that of the first-order DCTS algorithm

under an appropriate algorithm design.

In Chapter 3, we extend our study on the convergence of the DCTS algorithm

when both deterministic and uncertain time delays impact local pair-wise time in-

formation exchange. Specifically, we model random delay between secondary users

using a Gaussian approximation and determine the resulting asymptotic expecta-

tion of global synchronization error. Our results lead to the definition of a time

10



delay balanced network and we claim that under such network topologies average

timing consensus between secondary users can be achieved despite the presence of

random delays. Additionally, we show that the asymptotic mean square synchro-

nization error is lower and upper bounded by several values related to network

parameters. These results, while presented here in this dissertation within the

context of cognitive radio framework, can be extended to time synchronization in

any distributed scenario.

In Chapter 4, we study cooperative spectrum sensing in cost constrained cog-

nitive radio networks over PAC. In particular, we account for two major factors

that contribute to the system level energy cost of sensing: Local processing (sample

collection and local energy calculation) and transmission (forwarding local statistic

to the fusion center). We devise two optimization problems to maximize the global

detection probability by choosing the appropriate number of (energy) samples that

must be collected at each secondary user and the appropriate amplifier gain that

each secondary user must use to forward its statistics to the fusion center. When

jointly designing the number of samples and amplifier gains, we demonstrate that

only one secondary user needs to be actively processing and transmitting local

statistics to the fusion center, i.e., only one secondary user must conduct spectrum

sensing to achieve optimal performance. When either the amplifier gains or the

number of samples are fixed, we derive closed-form expressions for optimal solutions

and propose a generalized water-filling approach for cost constrained cooperative

spectrum sensing.

In Chapter 5, we study cooperative spectrum sensing in cost constrained cog-

nitive radio networks over MAC. In particular, we counter unreliable uplinks to

11



the fusion center by applying beamforming amongst secondary users who com-

municate locally measured SNRs to a common fusion center. Under correlated

lognormal shadowing, we derive optimal beamforming weights that maximize the

global detection probability subject to a global transmit power constraint. We then

compute the detection performance for a simplified linear array network and show

that detection probability increases as the number of secondary users increases.

In this dissertation, we use the following notation: column vectors are denoted

by boldface lowercase letters, i.e., x = [x1, x2, · · · , xN]T and xi is the ith entry of

x. 0 = [0, 0, · · · , 0]T and 1 = [1, 1, · · · , 1]T. (·)T and (·)† denote the transpose

and conjugate transpose operation, respectively. ‖x‖ denotes the `2 norm of x.

x � 0 denotes the generalized inequality, i.e., xi ≥ 0. ZN
+ and RN

+ denote the set

of nonnegative integer and real n-vectors, respectively. |S| denotes the cardinality

of a set S. d·e and b·c denote the ceiling and floor operations, respectively. [A]ij

denotes the element in the ith row and jth column of A. IN denotes the N × N

identity matrix. 0M×N denotes the M×N all zero matrix. tr(·) and det(·) denote

the trace and determinant of a matrix, respectively. ⊗ denotes the Kronecker

product. x ∼ N (µ, σ2) means that x is a Gaussian random variable with mean

µ and variance σ2. E{·} and Var{·} denote the expected and variance value,

respectively.
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Chapter 2

Distributed Consensus Time

Synchronization (DCTS) in

Cognitive Radio Networks

2.1 Introduction

In this chapter, we apply the principles of distributed consensus to achieve global

time synchronization at all secondary users. To the best of our knowledge, existing

literature on DCTS methods assumes local timing update at each node is done

using only current timing information, i.e., via a first-order DCTS approach. In

contrast, a second-order DCTS algorithm would utilize not only current timing

information but that available from the previous iteration of the algorithm to up-

date local clocks. Such an extension to the basic consensus algorithm was first

13



reported for a continuous time approach in [41]. Subsequent papers have ana-

lyzed this second-order continuous time consensus method assuming fixed network

topologies [42], time delay [43] and switching topologies [44]. More generally, a

high-order consensus algorithm (such as the general method reported in [45] for a

continuous time approach) could be extended to update local clocks at secondary

users.

Secondary user

Local !me informa!on
exchange 

Ad hoc cogni!ve 
radio network

Figure 2.1: Topology of ad hoc cognitive radio networks.

Fig. 2.1 illustrates the topology of ad hoc cognitive radio networks. In this

chapter, we apply the principles of the consensus approach to the distributed tim-

ing synchronization problem in ad hoc cognitive radio networks. Specifically, we

propose a novel discrete time second- and high-order DCTS algorithm for ad hoc

cognitive radio networks and examine their convergence properties. Moreover, we

investigate the convergence region and optimal convergence rate of the second-

and high-order DCTS algorithm in undirected networks. In particular, we derive

closed-form expressions for those of the second-order DCTS algorithm in undi-

rected networks. We claim that the optimal convergence rate of the second- and

high-order DCTS algorithm is superior to that of the first-order DCTS algorithm
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under an appropriate algorithm design. These results, while presented here in this

dissertation within the context of cognitive radio framework, can be extended to

time synchronization in any distributed scenario.

The remainder of this chapter is outlined as follows: Section 2.2 describes

network model and first-order DCTS algorithm. Section 2.3 discusses high-order

DCTS algorithm and analyzes its convergence properties. Simulation results are

presented in Section 2.4.

2.2 Network Model and Some Preliminaries

2.2.1 Network Model

In the following, we model an ad hoc cognitive radio network as a graph G = (V, E),

consisting of a set of N secondary users V = {1, 2, · · · ,N} and a set of edges E .

Each edge is denoted as e = (i, j) ∈ E where i ∈ V and j ∈ V are head and tail of

the edge e, respectively. In a cognitive radio network, the presence of an edge (i, j)

indicates that secondary user i can communicate with secondary user j reliably.

We assume here a connected graph; that is, there exists a directed path connecting

any pair of distinct secondary users in the network. In the following, we assume a

time invariant and connected network unless otherwise stated.

Given this network model, we denote A as the adjacency matrix of G such that

[A]ij =











1 (i, j) ∈ E

0 otherwise.
(2.1)
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Then, the in-degree and out-degree of a secondary user i (denoted as ci and di,

respectively) are given as ci =
∑N

j=1[A]ji and di =
∑N

j=1[A]ij . Specifically, di is

also equal to the number of neighbors of secondary user i from which it can receive

information reliably, i.e., di = |Ni|, where Ni is the set of neighboring secondary

users that can communicate reliably with secondary user i.

Next, we let L be the graph Laplacian matrix of G which is defined as L =

D − A, where D = diag{d1, d2, · · · , dN} is the degree matrix of G. Given this

matrix L, we can show that L1 = 0. In particular, for a connected graph, the rank

of L is N − 1. Furthermore, for a balanced directed network, the in-degree and

out-degree of a secondary user are equal, i.e., ci = di, thus we see that 1TL = 0T.

For an undirected network, the presence of an edge (i, j) indicates that sec-

ondary users i and j can communicate with each other reliably. Under this con-

dition, we can also show that 1TL = 0T. Additionally, L is a symmetric positive

semidefinite matrix (implying its eigenvalues are non-negative); and its eigenvalues

can be arranged in increasing order as 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN(L) [46].

2.2.2 First-Order DCTS Algorithm

In each iteration of the first-order DCTS algorithm, each secondary user processes

and decodes the time-stamped message from its neighbors in the MAC layer based

approach or estimates the arrival time of its neighbors’ pulse signals in the PHY

layer scheme. Each secondary user then updates its local clock time using the

weighted average of the time differences with its neighbor secondary users. The

timing update rule of the first-order DCTS algorithm at each secondary user i is
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given as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[

tj(k − 1)− ti(k − 1)
]

, (2.2)

where ti(k) is the local time at secondary user i during iteration k and ε is the

constant step size for each iteration1. Let us define t(k) = [t1(k), t2(k), · · · , tN(k)]T.

Based on this definition, the evolution of DCTS algorithm in (2.2) can be written

as

t(k) = H̃t(k − 1), (2.3)

where H̃ = IN − εL is called a Perron matrix of a graph with parameter ε [21].

The eigenvalues of H̃ are λi(H̃) = 1 − ελi(L), and can be arranged in decreasing

order as 1 = λ1(H̃) > λ1(H̃) ≥ · · · ≥ λN(H̃). Moreover, it is easy to show that in

undirected networks, 1TH̃ = 1T and H̃1 = 1, hence, 1 is the left- and right-hand

eigenvector of H̃ corresponding to λ1(H̃) = 1. Additionally, we see that (2.3)

can be solved by t(k) = H̃kt(0). The known average consensus property of the

first-order DCTS algorithm is then described as follows [47]:

Theorem 2.2.1. For a time invariant, connected undirected network, when ε ∈

(0, 2/λN(L)), average consensus is asymptotically achieved with DCTS algorithm

in (2.3), or equivalently,

lim
k→∞

H̃k = (1/N)11T. (2.4)

The proof of this theorem is available in various sources, e.g., [47,48]. Here we

present an alternative approach to prove this theorem.

Proof. Since H̃ is a real symmetric, doubly stochastic matrix, it is diagonalizable.
1We assume a constant value of ε throughout this chapter unless otherwise stated. The

discussion presented here can be readily extended to the non-constant case.
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Let us define the spectrum of H̃ as σ(H̃) = {λ1(H̃), λ2(H̃), · · · , λl(H̃)}, which is

the set of distinct eigenvalues. According to [49], H̃k can be decomposed as

H̃k = λk
1(H̃)G1 + λk

2(H̃)G2 + · · ·+ λk
l (H̃)Gl,

where

Gi =
l
∏

j=1,j 6=i

[

H̃− λi(H̃)IN
]

/
l
∏

j=1,j 6=i

[

λi(H̃)− λj(H̃)
]

.

If λi(H̃) is an eigenvalue associated with right- and left-hand eigenvectors x and

y, respectively, then Gi = xyT/yTx. It is easy to show that, G1 = (1/N)11T is

associated with eigenvalue λ1(H̃) = 1.

When 0 < ε < 2/λN(L), we have |1 − ελi(L)| < 1, i = 2, · · · ,N. Thus,

limk→∞ λk
i (H̃) = 0, i = 2, · · · ,N. Then, for a stable system, we have

lim
k→∞

H̃k = lim
k→∞

λk
1(H̃)G1 = G1 = (1/N)11T.

This completes the proof.

Let us define the convergence rate of the DCTS algorithm as

ν = sup
t(0)6=t̄1

lim
k→∞

(‖t(k)− t̄1‖
‖t(0)− t̄1‖

)1/k

,

where t̄ = (1/N)1Tt(0). As shown in [48], the convergence rate of the first-order

DCTS algorithm can be computed as ν = ρ
(

H̃ − (1/N)11T
)

, where ρ(·) denotes
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the spectral radius of a matrix. Furthermore, when ε is chosen as

εopt, FO =
2

λN(L) + λ2(L)
, (2.5)

the optimal convergence rate of the first-order DCTS algorithm can be achieved as

νopt, FO =
λN(L)− λ2(L)
λN(L) + λ2(L)

.

2.3 High-Order DCTS Algorithm

In this section, we describe the high-order DCTS method regardless of whether it is

implemented at the PHY or MAC layers. In each iteration of the high-order DCTS

algorithm, each secondary user processes and decodes the time-stamped message

from its neighbors or estimates the arrival time of its neighbors’ pulse signals.

Each secondary user then updates its local clock using the weighted average of

the current time differences between itself and its neighboring secondary users as

well as stored time differences from the M−1 previous iterations of the algorithm.

It should be noted that in the M-th order DCTS algorithm, each secondary user

needs to store time information from all its neighbors for the past M− 1 iterations

as well as the current iteration; this is in contrast to the first-order DCTS approach

where only the current time information is processed in the current iteration.

The timing update rule of the M-th order DCTS algorithm at each secondary
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user i is proposed as

ti(k) = ti(k − 1) + ε
M−1
∑

m=0

cm(−γ)m∆ti(k,m)

∆ti(k,m) =
∑

j∈Ni

[

tj(k −m− 1)− ti(k −m− 1)
]

, (2.6)

where cm are predefined constants with c0 = 1 and cm 6= 0 (m > 0); and γ is

a forgetting factor and |γ| < 1. We assume initial conditions of the M-th order

DCTS algorithm are ti(−M + 1) = · · · = ti(−1) = ti(0) = ξi, where ξi is initial

time offset for secondary user i.

It is worth mentioning that when γ = 0, the high-order DCTS algorithm reduces

to the first-order DCTS algorithm; while when M = 2, the high-order DCTS

algorithm reduces to second-order DCTS algorithm, i.e.,

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[

tj(k − 1)− ti(k − 1)
]

− εc1γ
∑

j∈Ni

[

tj(k − 2)− ti(k − 2)
]

. (2.7)

The evolution of the high-order DCTS algorithm in (2.6) can be written as

t(k) = (IN − εL)t(k − 1)− ε
M−1
∑

m=1

cm(−γ)mLt(k −m− 1), (2.8)

with the initial conditions t(−M + 1) = · · · = t(−1) = t(0) = ξ, where ξ =

[ξ1, ξ2, · · · , ξN]T.
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2.3.1 Convergence Analysis of High-Order DCTS Algo-

rithm

(1) Convergence Properties of High-Order DCTS Algorithm

Before we investigate the convergence properties of the high-order DCTS algorithm,

we define two MN×MN matrices

H =



















IN − εL c1γεL · · · −cM−1(−γ)M−1εL

IN 0N×N · · · 0N×N

... . . . ...

0N×N · · · IN 0N×N



















and

J =



















K 0N×N · · · 0N×N

K 0N×N · · · 0N×N

... . . . ...

K 0N×N · · · 0N×N



















,

where K = 1βT/(βT1) and β is the left eigenvector of L associated with λ1(L) = 0,

i.e., βTL = 0T. Then we have the following lemma:

Lemma 2.3.1. The eigenvalues of H−J agree with those of H except that λ1(H) =

1 is replaced by λ1(H− J) = 0.

Proof. Let us define two MN × 1 vectors hl = (1/βT1)[βT 0T · · · 0T]T and hr =

[1T · · · 1T 1T]T. It is easy to check that hl and hr are left and right eigenvectors

of H corresponding to λ1(H) = 1, respectively, i.e., hT
lH = hT

l and Hhr = hr.
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Additionally, J = hrhT
l , h

T
lhr = hT

rhl = 1. In order to obtain the eigenvalues of

H− J, we have [49]

det (H− J− λIMN) = det
(

H− hrhT
l − λIMN

)

= det (H− λIMN)
[

1− hT
l (H− λIMN)

−1 hr
]

=
[

±
MN
∏

i=1

(λi(H)− λ)
](

1− h
T
lhr

1− λ

)

=
[

±
MN
∏

i=2

(λi(H)− λ)
]

(−λ) . (2.9)

The above equation is valid because

hr = (H− λIMN)−1(H− λIMN)hr = (H− λIMN)−1(1− λ)hr.

Therefore, the eigenvalues of H− J are:

λ1(H− J) = 0 and λi(H− J) = λi(H), i = 2, · · · ,MN.

This completes the proof.

Our main result regarding the global consensus property of the M-th order

DCTS algorithm in directed networks is stated in the following theorem.

Theorem 2.3.1. For a time invariant, connected, directed network, consider the

M-th order DCTS algorithm,

t(k) = (IN − εL)t(k − 1)− ε
M−1
∑

m=1

cm(−γ)mLt(k −m− 1), (2.10)
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with initial conditions t(−M+ 1) = · · · = t(−1) = t(0) = ξ. When ρ(H− J) < 1,

a global consensus is achieved asymptotically, or equivalently,

lim
k→∞

ti(k) =
βTξ
βT1

, ∀i ∈ V.

Proof. The proof of this theorem is similar to [45, 50]. Here we present a sketch

proof. Let us define ψ(k) =
[

t(k)T t(k − 1)T · · · t(k −M+ 1)T
]T. Then, the M-th

order DCTS algorithm in (2.10) can be rewritten as

ψ(k) = Hψ(k − 1), (2.11)

which implies ψ(k) = Hkψ(0). To calculate the eigenvalues of H, we have [49]:

det (H− λIMN)

= det
(

λMIN − (IN − εL)λM−1 + ε
M−1
∑

m=1

cm(−γ)mλM−1−mL
)

=
N
∏

i=1

[

λM − (1− ελi(L))λM−1 + ε
M−1
∑

m=1

cm(−γ)mλi(L)λM−1−m
]

= 0.

Thus, the eigenvalues of H should satisfy the following equation:

f(λ) = λM − (1− ελi(L))λM−1 + ε
M−1
∑

m=1

cm(−γ)mλi(L)λM−1−m = 0. (2.12)

Note that there are M roots corresponding to one λi(L), which implies M

eigenvalues of H are associated with one eigenvalue of L. For a time invariant,

connected, directed network, L has only one eigenvalue λ1(L) = 0. From (2.12),
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when λ1(L) = 0, the eigenvalues of H satisfy f(λ) = λM − λM−1 = 0. Then, for

this λ1(L) = 0, H has only two distinct eigenvalues λ1(H) = 1 (with algebraic

multiplicity 1) and λ2(H) = 0 (with algebraic multiplicity M− 1). Additionally, it

is easy to show that the algebraic multiplicity of eigenvalue λ(H) = 1 is equal to

1. Based on Lemma 2.3.1, we know that the eigenvalues of H−J agree with those

of H except that λ1(H) = 1 is replaced by λ1(H − J) = 0. Since ρ(H − J) < 1,

we see that the eigenvalues of H stay inside the unit circle except for λ1(H) = 1.

Thus, we have

lim
k→∞

Hk = V lim
k→∞







1 01×(MN−1)

0(MN−1)×1 Λk






V−1

= V







1 01×(MN−1)

0(MN−1)×1 0(MN−1)×(MN−1)






V−1

= hrhT
l , (2.13)

where Λ is the Jordan form matrix corresponding to eigenvalues λi(H) 6= 1 [49],

and hl and hr are defined in the proof of Lemma 2.3.1. Plugging hl and hr

into (2.13) and considering the M-th order DCTS algorithm in (2.10), we have

limk→∞Hk = J. Then, limk→∞ψ(k) = Jψ(0), which indicates

lim
k→∞

ti(k) =
βTξ
βT1

.

This completes the proof.

According to Theorem 2.3.1, we see that in general, although average con-

sensus is not achieved for directed networks using the high-order DCTS method,
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all secondary users in the network can still reach a global agreement. By “av-

erage consensus” we mean that all secondary users converge to the same timing

which is determined by the average of the initial timing differences between the

secondary users. However, when the M-th order DCTS algorithm is employed in

either an undirected network or a balanced directed network, average consensus

can be achieved asymptotically. We show this via the following theorem:

Theorem 2.3.2. Consider the M-th order DCTS algorithm in (2.10) in a time

invariant, connected, directed balanced network or a time invariant, connected,

undirected network, with initial conditions t(−M + 1) = · · · = t(−1) = t(0) =

ξ. When ρ(H − J) < 1, an average consensus is achieved asymptotically, or

equivalently,

lim
k→∞

ti(k) = (1/N)1Tξ, ∀i ∈ V.

We know that in a time invariant, connected, directed balanced or undirected

network, β = 1 and K = (1/N)11T. The rest of proof is similar to that of Theorem

2.3.1 and thus omitted here.

(2) Convergence Rate for High-Order DCTS Algorithm

One of the most important measures of any distributed, iterative algorithm is its

convergence speed. As we show next, the convergence rate of the high-order DCTS

algorithm is determined by the spectral radius of H − J, which is similar to the

first-order DCTS algorithm [47].

Let us define the global consensus value in each iteration as m(k) = βTt(k)
βT1

. In

the high-order DCTS algorithm, this value remains invariant during each iteration
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since

m(k) = (1/βT1)βT

[

(IN − εL)t(k − 1)− ε
M−1
∑

m=1

cm(−γ)mLt(k −m− 1)
]

= m(k − 1) = · · · = m(0).

We now define the disagreement vector as δ(k) = t(k)−m(k)1, which indicates

the difference between the updated times and the global consensus times of the

secondary users. Then, the evolution of the disagreement vector is obtained as:

δ(k) = (IN − εL)δ(k − 1)− ε
M−1
∑

m=1

cm(−γ)mLδ(k −m− 1). (2.14)

Given this dynamic of the disagreement vector, we note that

Lemma 2.3.2. For the M-th order DCTS algorithm in (2.10) in a time invariant,

connected network with initial conditions t(−M+1) = · · · = t(−1) = t(0) = ξ and

ρ(H− J) < 1, a global consensus is exponentially reached in the following form:

∑M−1
m=0 ‖δ(k −m)‖2
‖δ(0)‖2 ≤ Mν2k, (2.15)

where ν = ρ(H− J).

Proof. Let us define the error vector as e(k) =
[

δT(k) δT(k−1) · · · δT(k−M+1)
]T

which can be obtained from e(k) = ψ(k)− J1ψ(k), where J1 = IM ⊗K.

Based on this definition, we see that the error vector results in the following
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evolution:

e(k) = (H− J1H)ψ(k − 1)

= (H− J) [ψ(k − 1)− J1ψ(k − 1)]

= (H− J)e(k − 1). (2.16)

The above equation is valid because (H − J)J1 = 0MN×MN and J1H = J. Then,

we have

‖e(k)‖2 = ‖(H− J)e(k − 1)‖2 ≤ ν2‖e(k − 1)‖2 ≤ · · · ≤ ν2k‖e(0)‖2,

which is equivalent to (2.15). This completes the proof.

Therefore, we see that the convergence rate for the M-th order DCTS algorithm

in both directed and undirected networks is determined by the spectral radius of

H− J.

2.3.2 Convergence Region and Optimal Convergence Rate

of High-Order DCTS Algorithm

In this section, we investigate more specific convergence results (i.e., the conver-

gence region and optimal convergence rate) for the high-order DCTS algorithm in

undirected networks. Without loss of generality, we assume that ε and γ are real

values, and ε > 0.
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(1) Convergence Region for High-Order DCTS Algorithm in Undirected

Networks

From Theorem 2.3.2, we know that when ρ(H − J) < 1, the M-th order DCTS

algorithm in an undirected network can achieve average consensus asymptotically.

Let us define the convergence region R to satisfy ρ(H− J) < 1, i.e.,

R = {(ε, γ)|ρ(H− J) < 1} . (2.17)

It should be noted that in general, closed-form solution of the convergence region

of the high-order DCTS algorithm is hard to find due to the fact that high-order

polynomial equations are involved in calculating the eigenvalues of H − J. For

example, when M = 3 and c1 = 1, c2 = 1, we need to find the roots of the following

cubic equation to obtain the eigenvalues of H− J:

f(λ) = λ3 − (1− ελi(L))λ2 − γελi(L)λ+ γ2ελi(L) = 0. (2.18)

However, when M = 2, closed-form expressions of the convergence region for

second-order DCTS algorithm can be obtained. Without loss of generality, we

assume c1 = 1 for the second-order DCTS algorithm throughout the dissertation.

Using the steps outlined in the Appendix A.1, the convergence region for the

second-order DCTS algorithm in undirected networks is

R = R′ ∪ R′′, (2.19)
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where

R′ =
{

− 1
ελN(L)

< γ < 1, 0 < ε <
1

λN(L)

}

,

and

R′′ =
{

− 1
ελN(L)

< γ <
2

ελN(L)
− 1,

1
λN(L)

≤ ε <
3

λN(L)

}

.

The convergence region of the second-order DCTS algorithm in undirected

networks is shown in Fig. 2.2 and Fig. 2.3 using a three-dimensional and two-

dimensional perspective, respectively. We see that compared to the first-order

DCTS algorithm where the range of the step size ε is (0, 2/λN(L)), the range of ε

in the second-order DCTS approach increases to (0, 3/λN(L)).
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Figure 2.2: Convergence region for the second-order DCTS algorithm in undirected
networks: three-dimensional view.
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Figure 2.3: Convergence region for the second-order DCTS algorithm in undirected
networks: two-dimensional view.

(2) Optimal Convergence Rate for High-Order DCTS Algorithm in

Undirected Networks

Next, we investigate the fastest convergence rate of the high-order DCTS algorithm

based on ε and γ. To see this, we formulate the following spectral radius mini-

mization problem to find the optimal ε and γ for the high-order DCTS algorithm,

i.e.,

min
ε,γ

ρ(H− J)

s.t. (ε, γ) ∈ R. (2.20)
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Let us define the minimal spectral radius of H− J as

νopt = min{ρ(H− J)}.

Again, we see that the closed form solution for this optimization problem is difficult

to find when M > 2. In practical applications, however, since the optimal ε and γ

depend only on the network topology, a numerical solution can be obtained offline

based on secondary user deployment and all design parameters can be flooded to

the secondary users before they run the distributed algorithm.

Similar to the convergence region, when M = 2, we can obtain closed-form

solution for the optimal convergence rate of the second-order DCTS algorithm. As

we show next, the convergence rate of the second-order DCTS algorithm can be

superior to that of the first-order DCTS algorithm by choosing suitable ε and γ.

However, as stated in the following lemma, the convergence rate of the first-order

DCTS algorithm is faster under some circumstances.

Lemma 2.3.3. For the second-order DCTS algorithm in (2.7) in a time invariant,

connected, undirected network with initial conditions t(−1) = t(0) = ξ and (ε, γ) ∈

R in (2.19), if γ > 0, the convergence rate of the second-order DCTS algorithm

is less than that of the first-order DCTS algorithm with the optimal constant step

size in (2.5).

The proof of this lemma is omitted here since it can be readily extended

from the following result: Consider two real values a and b with b > 0, then

max
{

1
2

∣

∣a+
√
a2 + b

∣

∣ , 1
2

∣

∣a−
√
a2 + b

∣

∣

}

> a. Thus, we have |λk(H)| > 1−ελi(L),

which implies |λk(H)| > νopt,FO.
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Based on the above lemma, we see that there may exist possible choices of ε

and γ (e.g., when γ < 0) such that the convergence rate of the second-order DCTS

method is faster than the first-order DCTS algorithm. Using the steps outlined in

the Appendix A.2 and restricting γ < 0, the optimal ε and γ for the optimization

problem (2.20) can be obtained as

εopt,SO =
3λN(L) + λ2(L)

λN(L) [λN(L) + 3λ2(L)]

γopt,SO = − [λN(L)− λ2(L)]
2

[λN(L) + 3λ2(L)] [3λN(L) + λ2(L)]
. (2.21)

It is worth noting that (εopt,SO, γopt,SO) ∈ R′′. Then, the optimal convergence

rate for the second-order DCTS algorithm in undirected networks can be calculated

as

νopt,SO =
λN(L)− λ2(L)
λN(L) + 3λ2(L)

. (2.22)

We see that νopt,SO ≤ νopt,FO and νopt,SO = νopt,FO only when λ2(L) = λN(L). Thus,

we have the following theorem for the convergence rate of the second-order DCTS

algorithm.

Theorem 2.3.3. For the second-order DCTS algorithm in (2.7) in a time invari-

ant, connected, undirected network with initial conditions t(−1) = t(0) = ξ and

(ε, γ) ∈ R in (2.19), there exists a pair of ε and γ such that the convergence rate of

the second-order DCTS algorithm is greater than or equal to that of the first-order

DCTS algorithm with the optimal constant step size in (2.5).
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2.4 Simulation Results

In the following, we simulate networks in which the initial time phase2 of secondary

user i is (i− 1/2)T/N, i = 1, · · · ,N, where T = 1000µs. Specifically, we study the

following two undirected network topologies:

• Case I: Fixed network with 6 secondary users as shown in Fig. 2.4(a).

• Case II: Random network with 16 secondary users. The 16 secondary users

were randomly generated with uniform distribution over a unit square kilo-

meter; two secondary users were assumed connected if the distance between

them was less than η, a predefined threshold. One realization of such a

network is shown in Fig. 2.4(b).
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Figure 2.4: (a) Fixed network with 6 secondary users, (b) random network with
16 secondary users with η = 0.5.

2Trends similar to the ones noted below were observed when initial time offsets between
secondary users were arbitrary (e.g., when they were uniformly distributed over [0, T ]). We use
this fixed offset assumption here for comparison purposes.
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(1) Convergence Rate Comparison

For the sake of simplicity, we only consider M = 2, 3, 4 for the high-order DCTS

approach. In the simulations, we denote our proposed DCTS algorithm as best

constant (BC) high-order DCTS algorithm and choose two types of ad hoc weights

as comparison: maximum degree (MD) and metropolis hasting (MH) weights [51].

Furthermore, we assume c1 = 1, c2 = 1 and c3 = 1/6.
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MH: First−order DCTS Alg.
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Figure 2.5: Convergence rate comparison of first-, second-, third- and fourth-order
DCTS algorithms in random networks with different thresholds.

Fig. 2.5 shows the optimal convergence rates for the DCTS algorithms with

various weights in random networks with 16 secondary users as a function of η. The

results are based on 1000 realizations of the random network where we excluded

disconnected networks. From the plots, we note that the first-order BC DCTS al-

gorithm outperforms the first-order MH and MD DCTS algorithms. Furthermore,
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we see that the optimal convergence rate increases as M increases. However, we

also observe that the fourth-order DCTS algorithm has negligible improvement

compared to the third-order algorithm. Based on this, we restrict our examination

of higher-order DCTS algorithm to M = 2 and 3 in the subsequent results.

In Fig. 2.6, we compare the convergence rates of the second- and third-order

DCTS algorithms with the first-order DCTS algorithm for these two network

topologies. Specifically, we plot the mean square time synchronization error (de-

fined as (1/N)‖δ(k)‖2). In simulating random networks, we average results over

1000 network realizations and assume η = 0.9, i.e., secondary users are well-

connected with one another. We see that the second- and third-order DCTS al-

gorithms converge faster than the first-order DCTS algorithm for both network

scenarios.
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Figure 2.6: Convergence rate comparison of first-, second- and third-order DCTS
algorithms: (a) Case I, (b) Case II.
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(2) Convergence Properties of High-Order DCTS Algorithm

Simulation results for the evolution of the second- and third-order DCTS algo-

rithm under Case I and Case II network topologies are shown in Fig. 2.7 and 2.8,

respectively, where the results for the random network scenario are demonstrated

for one (typical) network realization in Fig. 2.4(b). In the simulation, we choose

the optimal values of ε and γ for the second- and third-order DCTS algorithm. As

expected, as the time index increases, an average consensus is achieved when using

the second- and third-order DCTS algorithms.
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Figure 2.7: Evolution of second-order DCTS algorithm: (a) Case I, (b) Case II.
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Figure 2.8: Evolution of third-order DCTS algorithm: (a) Case I, (b) Case II.

2.5 Chapter Summary

In this chapter, we have proposed a discrete time second- and high-order DCTS

algorithm to address the global timing synchronization problem in ad hoc cognitive

radio networks. Specifically, we have investigated the convergence region and opti-

mal convergence rate of the second- and high-order DCTS algorithm and claimed

that the optimal convergence rate of the second- and high-order DCTS algorithm

is superior to that of the first-order DCTS algorithm under an appropriate algo-

rithm design. Interestingly, the high-order discrete time consensus algorithm can

be regarded as a spatial-temporal processing technique, where secondary users in

the network represent the spatial advantage, the high order processing represents

the temporal advantage, and the optimal convergence rate can be viewed as the

diversity gain.
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Chapter 3

DCTS with Gaussian Delay in

Cognitive Radio Networks

3.1 Introduction

Distributed time synchronization algorithms, such as DCTS, rely heavily on local

time information exchange between two or more secondary users in an ad hoc cog-

nitive radio network. This information exchange can occur using either MAC layer

time-stamped packets or via PHY layer pulse signals. Based on our knowledge,

the existing body of literature on the DCTS approach does not examine the effects

of time delay uncertainty between secondary users. In this chapter, we study the

convergence of the DCTS algorithm when both deterministic and uncertain time

delays impact local pair-wise time information exchange.

In [52], Xiao et al. considered distributed average consensus with additive noise
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and investigated the design of network link weights to minimize the mean-square

deviation in steady state. Motivated by this idea, in this chapter, we analyze the

convergence characteristics of the DCTS algorithm under Gaussian delay uncer-

tainties. First, we model random delay between secondary users using a Gaussian

approximation and determine the asymptotic expectation of the global synchro-

nization error. Our results lead to the definition of a time delay balanced network

and we claim that under such network topologies, average timing consensus be-

tween secondary users can be achieved despite the presence of random delays.

Additionally, we show that the asymptotic mean square synchronization error is

lower and upper bounded by several values related to network parameters. As

examples, we analyze the global synchronization error of the DCTS algorithm for

several structured networks.

As a secondary contribution, the analytical results presented here also extend

existing literature in the broader area of distributed consensus. Specifically, earlier

work [52] has examined consensus updating when the locally received informa-

tion is corrupted by independent, zero-mean additive noise in each iteration of the

consensus algorithm. In the timing synchronization model used here, the local

information is corrupted by correlated, non-zero mean additive noise since timing

uncertainties between secondary users persist in each iteration of the DCTS algo-

rithm. As such, our results provide general convergence results for when distributed

consensus is conducted with additive Gaussian corruption at each iteration.

The remainder of this chapter is outlined as follows: Section 3.2 describes time

delay model for local time information exchange. Section 3.3 presents conver-

gence results on the synchronization error of the first-order DCTS algorithm due

39



to Gaussian random delays between secondary users. Section 3.4 discusses con-

vergence properties of the second-order DCTS algorithm with Gaussian delays.

Simulation results are presented in Section 3.5.

3.2 Time Delay Model for Local Time Informa-

tion Exchange

The DCTS algorithm requires local time information exchange between two or

more secondary users in a cognitive radio network. In either PHY or MAC layer

based scheme, the delay between two secondary users is defined as the interval

between when the time information is generated by the secondary sender and when

this information is determined by the secondary receiver. Furthermore, in either

case, this delay can be comprised of a deterministic and a random portion. In the

following, we discuss the delay sources at the two layers and argue that in both

cases, a common underlying model of Gaussian delay uncertainty1 can be adopted.

3.2.1 PHY Layer Based Time Delay

Secondary senders using PHY layer synchronization algorithms convey local time

information to secondary receivers by transmitting pulse signals according to their

local clocks. The secondary receiver, however, estimates the arrival time of the
1We have separately examined the performance of the DCTS algorithm considering alternate

delay distributions, e.g., exponential delay distribution [53]. Results show similar performance
bounds as those presented in this dissertation for the Gaussian assumption. For this reason, we
constrain our discussion here to the more common Gaussian delay model.
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pulse signal as the clock of the secondary sender. As shown in Fig. 3.1, there is

an offset between the transmit time of the pulse at the sender and the arrival time

estimate at the receiver.

 j

i

Tp  +     η

Secondary
Sender

Secondary
Receiver

Transmission

Recep�on

Es�mated Time of Arrival

Figure 3.1: PHY layer based time delay model.

One source of this lag is Tp, the propagation delay between the secondary

sender and receiver. The propagation delay is related to the distance between

the two secondary users such that Tp = `ij/c, where `ij is the distance between

secondary users i and j and c is the speed of light. Once the pulse signal propagates

to the receiver, the secondary receiver needs to reliably detect the pulse signal and

to make an arrival time estimate. However, since the pulse signal is received in

noise (may additionally experience fading over the wireless link), the actual arrival

time estimate will have an associated error. It is known from parameter estimation

theory that any maximum likelihood (ML) estimator is asymptotically unbiased

and an ML estimate is asymptotically Gaussian distributed [54]. We assume here

that an ML arrival time estimator is used and model this estimation error as a

Gaussian random variable, vPHY, with mean zero and variance σ2
PHY. The total

PHY layer delay is thus

TPHY−delay = Tp + vPHY (3.1)
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3.2.2 MAC Layer Based Time Delay

At the MAC layer, local time information at a secondary sender is clocked and

incorporated into a packet during packet formation. The overall delay between

two secondary users exchanging such time-stamped packets is, therefore, the time

interval between when the sender time is clocked and when the secondary receiver

decodes this time information from its received packet [16]. The sources of delay

during this interval are shown in Fig. 3.2.
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Ttp Ta Tp Tr Trp

Tt

Tx Process Access Transmission

Recep�on Rx Process

Secondary
Sender

Secondary
Receiver

Figure 3.2: MAC layer based time delay model.

The major sources of random delay at the MAC layer are Ttp, the transmission

processing time; Ta, the channel access time; and Trp, the receiver processing time.

The delay in processing a packet (at either the transmitter or receiver) depends on

several factors such as the protocol processing time, the CPU load, delays in the

operating system, etc.. Ta, on the other hand, is the time the secondary sender must

wait to access the transmit channel, which is determined by the MAC protocol in

use as well as the current network traffic. Here, we assume the overall delay, Ttp +

Ta+Trp results from the additive effect of delays introduced by several independent
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random processes (e.g., the instantaneous workload on the sender/receiver CPU,

packet generation processes at other secondary users, etc.). Using the central

limit theorem, we model this delay as a Gaussian random variable with mean

µMAC = E(Ttp)+E(Ta)+E(Trp) and variance σ2
MAC = Var(Ttp)+Var(Ta)+Var(Trp).

Additionally, the packet experiences a propagation delay of Tp; the overall MAC

layer delay is therefore given as

TMAC−delay = Tp + vMAC. (3.2)

In the following, we use a general delay model that incorporates the two delay

calculations for the PHY and MAC layers, i.e., we assume

Tdelay = Tc + Tp + v, (3.3)

where Tc is a constant equal to zero for PHY layer based schemes and µMAC for

MAC layer based schemes; and v is a zero mean Gaussian random variable. The

variance of v, σ2, is equal to σ2
PHY for PHY layer based schemes and to σ2

MAC for

MAC layer based schemes.

3.3 First-Order DCTS with Gaussian Delay

3.3.1 System Model

From Chapter 2, we know that in a connected, undirected network with non-

random delay between secondary users, the first-order DCTS algorithm can reach
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average consensus. In this section, we focus on the operation of the first-order

DCTS algorithm when there is both deterministic and random (Gaussian) delay

during local time information exchange, as described above. In this case, the timing

update rule of the first-order DCTS algorithm at each secondary user i is given as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[

t̂j(k − 1)− ti(k − 1)
]

, (3.4)

where t̂j(k − 1) = tj(k − 1) + Tdelay = tj(k − 1) + Tc + `ij/c + vj(k − 1); Tc is the

constant delay defined above and vj(k) are i.i.d Gaussian random variables, with

mean zero and variance σ2. Local time information exchange between secondary

user i and j under this delay model is shown in Fig. 3.3.
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Tc  +Tp +      v (k)j Tc  +Tp +      v (k+1)i
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Figure 3.3: First-order DCTS algorithm with Gaussian delay during local time
information exchange.

The first-order DCTS algorithm in (3.4) can be rearranged as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[

tj(k − 1)− ti(k − 1)
]

+ ñi(k − 1), (3.5)

where ñi(k − 1) = ε
∑

j∈Ni

[

Tc + `ij/c + vj(k − 1)
]

. It should be noted that
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ñi(k) and ñj(k) might not be independent between secondary users i and j since

the two secondary users might have identical noise coming from some potentially

overlapping neighbors. Without loss of generality, in this chapter, we model the

cognitive radio network as an undirected graph2.

Let us define vector ñ(k) = [ñ1(k), ñ2(k), · · · , ñN(k)]
T. Then, the evolution of

the first-order DCTS algorithm in (3.5) can be written as

t(k) = H̃t(k − 1) + ñ(k − 1), (3.6)

where H̃ is defined in Chapter 2. Let us define v(k) = [v1(k), v2(k), · · · , vN(k)]T

and u = [u1, u2, · · · , uN]T, where ui =
∑

j∈Ni
(Tc + `ij/c). Then the noise vector in

(3.6) is given as ñ(k) = ε[u+Av(k)].

In the following analysis, we use the following matrices: K = (1/N)11T, P̃ =

H̃ −K and Q̃ = IN −K. For matrices P̃ and Q̃, it is straightforward to show 1)

the eigenvalues of P̃ agree with those of H̃ except that λ1(H̃) = 1 is replaced by

λ1(P̃) = 0; 2) P̃k = H̃k −K such that lim
k→∞

P̃k = 0N×N; and 3) Q̃P̃kQ̃ = P̃k and

Q̃k = Q̃.

3.3.2 Convergence Analysis of First-Order DCTS with Ga-

ussian Delay

In this section, we investigate the convergence properties of the first-order DCTS

algorithm with Gaussian delay. First, we derive the mean and variance of the
2The convergence properties presented here can be easily extended for a directed graph. We

omit this extension here.
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average value in each iteration of the first-order DCTS algorithm. Then, we quan-

tify the overall impact of uncertainty by computing the first two moments of the

disagreement vector, i.e., the difference between the updated times and the actual

average times of the secondary users.

Recall that the average value in each iteration is defined asm(k) = (1/N)1Tt(k),

then the mean and variance of m(k) in the first-order DCTS algorithm are given

in the following lemma.

Lemma 3.3.1. For the first-order DCTS algorithm in (3.6), the mean and vari-

ance of average value m(k) are given as:

E [m(k)] = m(0) +
kε
N

N
∑

i=1

ui

Var [m(k)] =
kε2σ2

N2

N
∑

i=1

d2i . (3.7)

The proof of this lemma is straightforward and thus omitted from this chapter.

We see that as iteration time increases, both mean and variance in (3.7) increase

linearly with the time index k, i.e., as the algorithm evolves. Furthermore, the

variance of m(k) increases linearly with the variance of the random Gaussian delay,

σ2. Neither of these results were observed in [21], where the average valuem(k) was

determined to be invariant during each iteration. As we will see in the following

sections, although the average value m(k) grows linearly with iteration time when

there is Gaussian delay in the network, an average consensus may still be achievable

under certain network topologies.
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(1) Expectation and Second Central Moment of Disagreement Vector

Recall that the disagreement vector is defined as δ(k) = t(k)−Kt(k). Then, the

disagreement vector results in the following evolution:

δ(k) = P̃δ(k − 1) + Q̃ñ(k − 1). (3.8)

Lemma 3.3.2. For the first-order DCTS algorithm in (3.6), the expectation of

disagreement vector is given by:

E [δ(k)] = P̃kδ(0) + ε
k−1
∑

l=0

P̃lQ̃u, (k ≥ 1). (3.9)

The proof of this lemma is straightforward and thus omitted from the chap-

ter. Let us define the second central moment of disagreement vector as κδ(k)
def=

E{(δ(k)−E[δ(k)])T(δ(k)−E[δ(k)])} and the covariance matrix of noise vector as

Σn
def= E{(ñ(k)− E[ñ(k)])(ñ(k)− E[ñ(k)])T} = ε2σ2A2 , where

[

A2]

ij =











di i = j

|Iij| otherwise,
(3.10)

and Iij = {Ni ∩ Nj} is the set of secondary users that are neighbors of both

secondary user i and j. Given these definitions, we next note that

Lemma 3.3.3. For the first-order DCTS algorithm in (3.6), the second central

moment of disagreement vector is given as:

κδ(k) = δ(0)TP̃2kδ(0) + ε2σ2tr
[

Q̃
k−1
∑

l=0

P̃2lQ̃A2
]

, (k ≥ 1). (3.11)
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Proof. Please see the Appendix B.1.

(2) Asymptotic Expectation of Global Synchronization Error

Using Lemma 3.3.2, we see that the steady state of expectation of disagreement

vector is

µ∞
def= lim

k→∞
E [δ(k)] = εW1Q̃u, (3.12)

where W1 =
(

IN − P̃
)−1

. The equation holds because limk→∞ P̃k = 0. It is easy

to check that the eigenvalues of W1 are λ1(W1) = 1 and λi(W1) = 1/[ελi(L)], i =

2, · · · ,N. For this µ∞, we can show that

Theorem 3.3.1. In a network with fixed, connected topology, µ∞ in (3.12) is a

constant vector independent of the constant value of ε.

Proof. Let us denote the eigenvectors of W1 as ωi. It is easy to check that the

eigenvector corresponding to λ1(W1) = 1 is ω1 = 1. µ∞ in (3.12) can thus be

written as

µ∞ = ε11TQ̃u+
[ N
∑

i=2

1
ελi(L)

ωiωT
i

]

Q̃εu

=
[ N
∑

i=2

1
λi(L)

ωiωT
i

]

Q̃u

= (L+K)−1 Q̃u. (3.13)

Thus, µ∞ does not depend on ε. This completes the proof.

Thus, for a constant step size ε, the steady state of expectation of disagreement
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vector is a constant vector regardless of ε. In other words, in a network with fixed

topology, the expectation of global synchronization error is the same regardless of

the speed of synchronization.

In general, we see that the first-order DCTS algorithm with Gaussian delay

cannot achieve average consensus since µ∞ is a linear function of u (is not equal

to 0). This global synchronization error can be viewed as the accuracy of time syn-

chronization algorithm. If this synchronization error is tolerable or small compared

to time resolution of the system, we say that this first-order DCTS algorithm still

achieves the average consensus, but with “tolerable synchronization error”. Let us

now define the asymptotic expectation of pair-wise synchronization error as

∆ti,j = lim
k→∞

E [ti(k)− tj(k)] = µi,∞ − µj,∞, i, j ∈ V.

Hence, the maximum asymptotic expectation of global synchronization error

between any two secondary users is

∆tmax = max {|∆ti,j |} , i, j ∈ V. (3.14)

Definition 3.3.1. A connected network is called “average consensus achievable

with tolerable synchronization error” if the maximum asymptotic expectation of

global time synchronization error in (3.14) is less than a predefined threshold ∆tTh

when applying the first-order DCTS algorithm in (3.6), i.e., when ∆tmax < ∆tTh.

It is worth mentioning that, under certain network topologies, we can still

asymptotically achieve the average consensus when utilizing the first-order DCTS
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algorithm with Gaussian delay. Recall that µ∞ = (L+K)−1Q̃u. In this equation,

Q̃u = u−Ku is the disagreement vector of u. When u = Ku, we see that

∑

j∈Ni

(Tc + `ij/c) =
∑

m∈Nk

(Tc + `km/c) , (i, j) ∈ E and (k,m) ∈ E .

More specifically, when

di = dj, (i, j ∈ V) and `km = `lr, (k,m) ∈ E , (l, r) ∈ E ,

then µ∞ = 0 and ∆tmax = 0, implying that the first-order DCTS algorithm

achieves average consensus asymptotically. The condition above indicates that

the time delay between secondary users can be canceled if each secondary user re-

ceives the same amount of time delay from all neighbor secondary users. Networks

in this condition can be met are defined in the following:

Definition 3.3.2. A network is called “time delay balanced network” if the delay

∑

j∈Ni

(Tc + `ij/c) =
∑

m∈Nk

(Tc + `km/c) , (i, j) ∈ E and (k,m) ∈ E ,

or equivalently, ∆tmax = 0.

Otherwise we refer to the network as “time delay unbalanced”. It is worth

mentioning that a similar definition of “equal delay networks”was discussed in [55]

for continuous time network synchronization. Based on the definition above, we

see that time delay balance may be readily (but not exclusively) achieved in well-

structured networks.
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(3) Asymptotic Mean Square Time Synchronization Error

Using Lemma 3.3.3, the steady state of second central moment of disagreement

vector is

κδ,∞
def= lim

k→∞
κδ(k) = ε2σ2tr

(

W2A2) , (3.15)

where W2 = (IN − P̃2)−1 + Q̃ − IN. Then, the eigenvalues of W2 are λ1(W2) =

0 and λi(W2) = 1/[2ελi(L)− ε2λ2
i (L)], i = 2, · · · ,N.

Let us define the asymptotic mean square time synchronization error as

σ2
∆t

def= lim
k→∞

N
∑

i=1

E
[

|ti(k)−m(k)|2
]

, (3.16)

which indicates the amount of error by which the updated time at each secondary

user differs from the average value over all N secondary users. In particular, we

see that

σ2
∆t = uTQ̃ (L +K)−2 Q̃u+ ε2σ2tr

(

W2A2) . (3.17)

Theorem 3.3.2. For a connected, time delay unbalanced network, σ2
∆t in (3.16)

is bounded by

σ2
∆t ≥

uTQ̃u
α1

+ εσ2λmin(A2)
N
∑

i=2

λi

σ2
∆t ≤

‖u‖2
α2

+ εσ2min
{

DNmax
{

λi
}

, λmax(A2)
N
∑

i=2

λi

}

, (3.18)

where α1 = λ2
N(L), α2 = min{λ2

2(L), 1}, λi = 1/[2λi(L) − ελ2
i (L)], i = 2, · · · ,N

and DN =
∑N

i=1 di is the total degree in the networks.
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Proof. Please see the Appendix B.2.

Hence, we see that the lower and upper bounds of σ2
∆t are determined by several

values related to network parameters: eigenvalues of L and A2, total degree of

network, step size and delay time vector.

3.3.3 First-Order DCTS with Gaussian Delay in Struc-

tured Networks

In this section, we apply the first-order DCTS algorithm under Gaussian delay

for several structured networks. We note that structured networks studied here

may not necessarily be feasible in typical cognitive radio network deployments; we

study them as they are analytically tractable, provide some valuable insights and

can be used to validate our analytical findings above. Specifically, we study the

following network topologies:

Definition 3.3.3. “ A Complete Network with Equal Distance Degree (KN)”: In

a complete network, every pair of distinct secondary users is connected by an edge.

A complete network with equal distance degree is a complete network that has N

secondary users, edge set {(i, j), i 6= j} and ∑j∈Ni
`ij =

∑

i∈Nj
`ji.

Definition 3.3.4. “ A Ring Network with Equal Distance (RN)”: A ring network

is a network that consists of a single cycle. The ring network with equal distance

is a ring network that has N secondary users, N edges and `c = `ij = `km for

(i, j) ∈ E and (k,m) ∈ E .

Definition 3.3.5. “ A Path Network with Equal Distance (PN)”: A path network
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is a network that consists of edge set {(i, i + 1), 1 ≤ i < N}. The path network

with equal distance is a path network that has N secondary users, N− 1 edges and

`c = `ij = `km for (i, j) ∈ E and (k,m) ∈ E .

Definition 3.3.6. “ A Star Network with Equal Distance (SN)”: A star network

is a network that consists of edge set {(i,N), 1 ≤ i < N}. The star network with

equal distance is a star network that has N secondary users, N − 1 edges and

`c = `ij = `km for (i, j) ∈ E and (k,m) ∈ E .

Definition 3.3.7. “ A Hypercube Network with Equal Distance Degree (HN)”:A

hypercube network with equal distance degree is a hypercube network that has N

secondary users, N log2N edges and
∑

j∈Ni
`ij =

∑

i∈Nj
`ji.

Fig. 3.4 shows the examples of structured networks: a complete network K5, a

ring network R8, a path network P5, a star network S8 and a hypercube network

H8. We now explore the convergence properties of the global synchronization error

for these structured networks.

(a) (b)

(c) (d) (e)

Figure 3.4: Structured networks: (a) K5, (b) R8, (c) P5, (d) S8, (e) H8.
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(1) Convergence Properties for Complete Networks

The convergence characteristic of global synchronization error for a complete net-

work is described in the following lemma.

Lemma 3.3.4. For a complete network with N secondary users and equal distance

degree, the first-order DCTS algorithm in (3.6) yields a global synchronization error

with the following properties:

∆tmax = 0

σ2
∆t =

(N− 1)εσ2

2N− εN2 . (3.19)

Proof. The first equation holds because KN has the following property as men-

tioned earlier:

Q̃u = 0 ⇒ µ∞ = 0 ⇒ ∆tmax = 0.

Now let us prove the second property. Recall that for a complete network, Lapla-

cian matrix L has eigenvalue 0 with multiplicity 1 and N with multiplicity N− 1,

i.e., λ1(L) = 0 and λi(L) = N, i = 2, 3, · · · ,N, and the total number of degree is

DN = N(N− 1). Furthermore, we have

[

A2]

ij =











N− 1 i = j

N− 2 otherwise.
(3.20)

In addition, W2 can be simplified as 1/(2εN− ε2N2)Q̃.

Plugging (3.20) and W2 into (3.17) and keeping in mind that Q̃u = 0, then

54



we have

σ2
∆t =

εσ2

2N− εN2

[

DN − (N− 1)2
]

=
(N− 1)εσ2

2N− εN2 .

This completes the proof.

Thus, the complete network KN is a time delay balanced network. It should

be noted that when the first-order DCTS algorithm is employed with the optimal

step size, we get that σ2
∆t = (N − 1)σ2/N2 which is a decreasing function of N.

Furthermore, as N becomes large, σ2
∆t ≈ σ2/N.

(2) Convergence Properties for Ring Networks

For a ring network, Laplacian matrix L is a circulant matrix and the eigenvalues

of L can be calculated analytically as [56]: λi(L) = 2 − 2 cos [2π(i− 1)/N] , i =

1, 2, · · · ,N. Total degree for a ring network is DN = 2N. Moreover, A2 is a circulant

matrix with eigenvalues λi(A2) = 2 {1 + cos [4π(i− 1)/N]} , i = 1, 2, · · · ,N. It is

easy to show that λmax(A2) = λ1(A2) and λmin(A2) = λb(N+5)/4c(A2).

According to Theorem 3.3.2, we see that for a ring network with N secondary

users and equal distance, the first-order DCTS algorithm in (3.6) produces a global

synchronization error with the following properties:

∆tmax = 0

σ2
∆t ≥

εσ2

2

[

1 + cos
(

4πb(N + 1)/4c
N

)] N−1
∑

i=1

λi

σ2
∆t ≤ εσ2min

{

max
{

Nλi

2

}

,
N−1
∑

i=1

λi

}

, (3.21)
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where λi = 1/[1−ε+(2ε− 1) cos (2πi/N)−ε cos2 (2πi/N)], i = 1, · · · ,N−1. Thus

the ring network RN studied here is also a time delay balanced network.

(3) Convergence Properties for Path Networks

For a path network, the eigenvalues of L are equivalent to those of R2N [57] and can

be calculated analytically as [49]: λi(L) = 2 − 2 cos [π(i− 1)/N] , i = 1, 2, · · · ,N.

It should be noted that λN(L) = 2 − 2 cos [π(N− 1)/N], λ2(L) = 2 − 2 cos (π/N)

and when N > 2, λ2(L) < 1 and λN(L) > 1. Also, total degree for a path

network is DN = 2(N − 1). Furthermore, the eigenvalues of A2 are λi(A2) =

2 [1 + cos (2πi/(N + 1))] , i = 1, 2, · · · ,N. It is easy to check that λmax(A2) =

λ1(A2) and λmin(A2) = λb(N+1)/2c(A2).

According to Theorem 3.3.2, we see that for a path network with N secondary

users and equal distance PN, the first-order DCTS algorithm in (3.6) yields a global

synchronization error with the following properties:

σ2
∆t ≥

uTQ̃u
α1

+
εσ2

2

[

1 + cos
(

2πb(N + 1)/2c
N+ 1

)] N−1
∑

i=1

λi

σ2
∆t ≤

‖u‖2
α2

+
εσ2

2
min

{

max {(N− 1)λi} ,
[

1 + cos
(

2π
N+ 1

)] N−1
∑

i=1

λi

}

, (3.22)

where α1 = 4 [1− cos (π(N− 1)/N)]2, α2 = 4 [1− cos (π/N)]2 and λi = 1/[1− ε+

(2ε− 1) cos (πi/N)− ε cos2 (πi/N)], i = 1, · · · ,N− 1, (N > 2).

It is worth mentioning that for a path network, ∆tmax 6= 0 because the degrees

of secondary user 1 and N are different from other secondary users. Let us define

ucp = Tc + `c/c. As N becomes large, we have µ∞ ≈ −ucp (L +K)−1 (e1 + eN),
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where ei = [0 · · · 0 1 0 · · · 0]T is an N × 1 unit vector with the ith component

equal to 1.

(4) Convergence Properties for Star Networks

For a star network, the eigenvalues of L are λ1(L) = 0, λN(L) = N and λi(L) =

1, i = 2, · · · ,N− 1. Total degree for a star network is DN = 2(N− 1). Moreover,

the eigenvalues of A2 are λN−1(A2) = λN(A2) = N − 1 and λi(A2) = 0, i =

1, · · · ,N− 2. Hence, λmax(A2) = N− 1 and λmin(A2) = 0.

According to Theorem 3.3.2, we see that for a star network with N secondary

users and equal distance SN, the first-order DCTS algorithm in (3.6) produces a

global synchronization error with the following properties:

σ2
∆t ≥

uTQ̃u
N2

σ2
∆t ≤ ‖u‖2 + (N− 1)εσ2 ·min {max {2λ1, 2λ2} , (N− 2)λ1 + λ2} , (3.23)

where λ1 = 1/(2− ε) and λ2 = 1/(2N− εN2).

It should be noted that when operating the first-order DCTS algorithm with

an optimal constant step size εopt, FO, the steady state of second central moment of

disagreement vector is κδ,∞ = (N− 1)σ2/N. This is because W2 can be simplified

in this case to (N+1)2

4N Q̃. As a result, we see that as N becomes large, κδ,∞ ≈ σ2.

Furthermore, just in the case of the path network, as N becomes large, we have

µ∞ ≈ ucp (L +K)−1 (−∑N−1
i=1 ei +NeN).
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(5) Convergence Properties for Hypercube Networks

For a hypercube network, the eigenvalues of L are 2i, i = 0, 1, · · · ,ZN, each with

multiplicity
(

N
i

)

[58], where ZN = log2N. Total degree for a hypercube network

is DN = NZN. Moreover, the eigenvalues of A2 are obtained as follows: when ZN

is even, λi(A2) = 4i2, i = 0, 1, · · · ,ZN/2, and 0 with multiplicity
( ZN

ZN/2

)

, others

with multiplicity 2
( ZN

ZN/2 + i

)

, i = 1, 2, · · · ,ZN/2; when ZN is odd, λi(A2) =

(2i + 1)2, i = 0, 1, · · · , bZN/2c, each with multiplicity 2
( ZN

bZN/2c+ i+ 1

)

. It is

easy to show that λmax(A2) = Z2
N, λmin(A2) = 0 when ZN is even and λmin(A2) = 1

when ZN is odd.

According to Theorem 3.3.2, we see that for a hypercube network with N sec-

ondary users and equal distance degree, the first-order DCTS algorithm in (3.6)

yields a global synchronization error with the following properties:

∆tmax = 0

σ2
∆t ≥











0 when ZN is even

εσ2∑ZN
i=1

(ZN
i

)

λi when ZN is odd

σ2
∆t ≤ εσ2ZN min

{

max {Nλi} ,ZN

ZN
∑

i=1

(ZN

i

)

λi

}

, (3.24)

where λi = 1/(4i− 4εi2), i = 1, · · · ,ZN. Since ∆tmax = 0, the hypercube network

is also time delay balanced.
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3.4 Second-Order DCTS with Gaussian Delay

3.4.1 System Model

In this section, we investigate the convergence properties of the second-order DCTS

algorithm in undirected networks with Gaussian delay. Then, the timing update

rule of the second-order DCTS algorithm at each secondary user i is given as

ti(k) = ti(k − 1) + ε
∑

j∈Ni

[

t̂j(k − 1)− ti(k − 1)
]

− γε
∑

j∈Ni

[

t̂j(k − 2)− ti(k − 2)
]

, (3.25)

Similar to the first-order DCTS algorithm and according to the matrix theory,

the evolution of the second-order DCTS algorithm in (3.25) can be written as

t(k) = (IN − εL) t(k − 1) + γεLt(k − 2) + n(k − 1), (3.26)

where n(k − 1) = ε(1− γ)u+ εA(v(k − 1)− γv(k − 2)).

Recall that ψ(k) = [t(k)T t(k − 1)T]T. Let us additionally define ζ(k) =

[n(k)T 0T]T and

H =







IN − εL γεL

IN 0N×N






.

Then, (3.26) can be rewritten as

ψ(k) = Hψ(k − 1) + ζ(k − 1). (3.27)
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The mean and variance of the average value m(k) are given in the following

lemma.

Lemma 3.4.1. For the second-order DCTS algorithm in (3.26), the mean and

variance of the average value of m(k) are given as:

E [m(k)] = m(0) +
k
N

N
∑

i=1

ui

Var [m(k)] =
kε2σ2(1 + γ2)

N2

N
∑

i=1

d2i . (3.28)

The proof of this lemma is straightforward and thus omitted from this chapter.

Similar to the first-order DCTS algorithm, we see that as iteration time increases,

both mean and variance in (3.28) increase linearly with the time index k. Fur-

thermore, the variance of m(k) increases linearly with σ2. As we will see in our

numerical results, although the average value m(k) grows linearly with iteration

time when there is Gaussian delay in the network, an average consensus may still

be achievable under certain network topologies.

3.4.2 Convergence Analysis of Second-Order DCTS with

Gaussian Delay

(1) Expectation and Second Central Moment of Error Vector

In order to understand the convergence property of second-order DCTS algo-

rithm with Gaussian delay, we first quantify the overall impact of uncertainty

by computing the first two moments of the disagreement vector. Recall that
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e(k) =
[

δT(k) δT(k − 1)
]T. With Gaussian delay, we see that the error vector

e(k) results in the following evolution:

e(k) = Pe(k − 1) +Qζ(k − 1), (3.29)

where P = H− J, Q = I2N − J1. Here

J =







K 0N×N

K 0N×N






and J1 =







K 0N×N

0N×N K






.

Then, we have

Lemma 3.4.2. For the second-order DCTS algorithm in (3.26), the expectation

of the error vector e(k) is given by

e(k) = Pke(0) + (1− γ)ε
k−1
∑

l=0

PlQu1, (k ≥ 1),

where u1 = [uT 0T]T.

The proof of this lemma is straightforward and thus omitted from this chap-

ter. Let us define the second central moment of the error vector as κe(k)
def=

E{(e(k)−E[e(k)])T(e(k)−E[e(k)])} and the covariance matrix of the error vector

as Σe(k)
def= E{(e(k) − E[e(k)])(e(k) − E[e(k)])T}. It is worth mentioning that

κe(k) = tr(Σe(k)). Additionally, let us denote the covariance matrix of ζ(k) as

Σζ
def= E{(ζ(k)− E[ζ(k)])(ζ(k)− E[ζ(k)])T} which is given as

Σζ = ε2(1 + γ2)σ2







A2 0N×N

0N×N 0N×N






.
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Given these definitions, we next note that

Lemma 3.4.3. For the second-order DCTS algorithm in (3.26), the covariance

matrix of the error vector e(k) is given as:

Σe(k) = Pke(0)e(0)T(PT)k +
k−1
∑

l=0

PlQΣζQ(PT)l, (k ≥ 1), (3.30)

and the second central moment of the error vector e(k) is given as:

κe(k) = e(0)T(PT)kPke(0) + tr
(

Q
k−1
∑

l=0

(PT)lPlQΣζ

)

, (k ≥ 1). (3.31)

The proof of this lemma is similar to that of Lemma 3.3.3 and thus omitted

from the chapter.

(2) Asymptotic Expectation of Global Synchronization Error

Using Lemma 3.4.2, we see that the steady state of expectation of the error vector

e(k) is

lim
k→∞

e(k) = (1− γ)ε (I2N −P)−1Qu1. (3.32)

The above equation holds because limk→∞Pk = limk→∞(Hk − J) = 0N×N. Before

we investigate the convergence property of the second-order DCTS algorithm with

Gaussian delay, we give the following lemma for block matrix inversion.

Lemma 3.4.4. Consider N × N matrices A1, A2, A3 and A4, when A4 and
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C = A1 −A2A−1
4 A3 are nonsingular, then [49]:







A1 A2

A3 A4







−1

=







C−1 −C−1A2A−1
4

−A−1
4 A3C−1 A−1

4 +A−1
4 A3C−1A2A−1

4






.

Based on this lemma, the steady state of error vector e(k) is

lim
k→∞

e(k) = (1− γ)ε







W3 γεW3L

Q̃W3 IN + γεQ̃W3L













Q̃u

0







= (1− γ)ε







W3Q̃u

W3Q̃u






, (3.33)

where W3 = [(1− γ)εL+K]−1. The above equation is valid because KW3 = K,

which implies KW3Q̃ = 0N×N, which in turn implies Q̃W3Q̃ = W3Q̃. Specifi-

cally, we see that the eigenvalues of W3 are λ1(W3) = 1 and λi(W3) = 1/[(1 −

γ)ελi(L)], i = 2, · · · ,N. Additionally, the steady state of the disagreement vector

δ(k) is upper half of the vector limk→∞ e(k), i.e.,

µ∞ = lim
k→∞

δ(k) = (1− γ)εW3Q̃u. (3.34)

For this µ∞, we can show that

Theorem 3.4.1. In an undirected network with fixed, connected topology, µ∞ in

(3.34) is a constant vector independent of the constant values of ε and γ.

Proof. Let us denote the eigenvectors of W3 as ωi. It is easy to check that the

eigenvector corresponding to λ1(W3) = 1 is ω1 = 1. µ∞ in (3.34) can thus be
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rewritten as

µ∞ = (1− γ)ε11TQ̃u+ (1− γ)ε
[ N
∑

i=2

λi(W3)ωiωT
i

]

Q̃u

= (L+K)−1 Q̃u. (3.35)

Therefore, µ∞ does not depend on ε and γ. This completes the proof.

Thus, for constant ε and γ, the steady state of the expectation of the dis-

agreement vector is a constant vector regardless of ε and γ. In other words, in an

undirected network with fixed topology, the expectation of global synchronization

error is the same regardless of the speed of synchronization. Furthermore, we see

that the steady state of disagreement vector in the first-order DCTS algorithm

is exactly same as that of the second-order DCTS algorithm, then we can con-

clude that the second-order DCTS algorithm can improve the convergence speed

without increasing the maximum asymptotic expectation of global synchronization

error ∆tmax. Thus, we have the same definitions for the network“average consensus

achievable with tolerable synchronization error” and “time delay balanced network”

as the first-order DCTS algorithm.

(3) Asymptotic Mean Square Time Synchronization Error

Using Lemma 3.4.3, the steady state of the second central moment of the error

vector is

κe,∞
def= lim

k→∞
κe(k) = tr (QW4QΣζ) , (3.36)
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where W4 =
∑∞

l=0(P
T)lPl. It is worth mentioning that W4 satisfies the following

condition:

I2N +PTW4P = W4.

Recall that the covariance matrix and second central moment of the disagree-

ment vector are defined as Σδ(k) and κδ(k), respectively. We see that

tr(Σe(k)) = tr(Σδ(k)) + tr(Σδ(k − 1)).

Therefore, as k → ∞, the steady state of second central moment of disagreement

vector is

κδ,∞ = lim
k→∞

κδ(k) = κe,∞/2 = tr (QW4QΣζ) /2.

Given the asymptotic mean square time synchronization error defined in (3.16),

we see that in the second-order DCTS algorithm with Gaussian delay,

σ2
∆t = uTQ̃ (L +K)−2 Q̃u+ tr (QW4QΣζ) /2. (3.37)

3.5 Simulation Results

The simulation parameters are described as follows: initial time phase of secondary

user i is (i−1/2)T/N, i = 1, · · · ,N, where T = 1000µs and the standard deviation

of delay variance is σ = 1µs. The DCTS simulation results are based on 5000 runs.
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(1) First-Order DCTS with Gaussian Delay

Structured Networks

We consider the simulation for structured networks and assume ucp = 10µs and the

optimal constant step size εopt, FO. The simulation results and asymptotic mean

square time synchronization error for structured networks with 16 secondary users

are shown in Fig. 3.5. The asymptotic mean square time synchronization error σ2
∆t

is calculated from (3.17). From the plot, we see that as time index increases, mean

square time synchronization error approaches the steady state value when utilizing

first-order DCTS algorithm with Gaussian delay. In particular, first-order DCTS

algorithm in a complete network achieves the smallest variance of synchronization

error and the fastest convergence among all structured networks. This is primarily

due to the high degree of connectivity in the complete network, which also results

in the smallest value of εopt, FO. From Fig. 3.5, we see that first-order DCTS

algorithm performs poorest in a path network where it has the largest value of σ2
∆t

and the slowest convergence speed. This is not surprising since information flow

from secondary user 1 to secondary user N requires N− 1 hops.

Table 3.1 gives the asymptotic results for structured networks. As expected,

the maximum asymptotic expectation of global time synchronization error for KN,

RN and HN is 0 as discussed earlier. It is worth mentioning that first-order DCTS

algorithm in hypercube network HN has a relatively small value of σ2
∆t because of

its symmetric and well-connected structure. Furthermore, we see that the first-

order DCTS algorithm in SN performs slightly worse than HN. In fact, first-

order DCTS algorithm for a star network can be viewed as a type of centralized
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Figure 3.5: σ2
∆t as a function of iteration time index for the first-order DCTS

algorithm in structured networks (K16, R16, P16, S16, H16) with Gaussian delay.

time synchronization algorithm, in which a root secondary user determines and

propagates the average of local time information of all other secondary users in the

networks.

Table 3.1: Asymptotic Results for First-order DCTS Algorithm in Structured Net-
works with Gaussian Delay

K16 R16 P16 S16 H16

∆tmax(µs) 0 0 35 8.75 0
σ2
∆t 0.0586 27.7429 2295.2 72.7148 2.6667

In Fig. 3.6, we show the asymptotic value of σ2
∆t as a function of the number

of secondary users in the various structured networks. We see that when using the

optimal constant step size, the asymptotic mean square time synchronization error

for a star network is nearly constant as the number of secondary users increases;

we observe a similar trend in Section 3.3.3. Furthermore, as stated in Section 3.3.3,
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for a complete network, σ2
∆t decreases as number of secondary users increases. On

the contrary, σ2
∆t is an increasing function of the number of secondary users for

both path and ring networks.
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Figure 3.6: σ2
∆t as a function of the number of secondary users for the first-order

DCTS algorithm in structured networks with Gaussian delay.

Random Networks

Fig. 3.7 shows the simulation results when the first-order DCTS algorithm is im-

plemented in a random network of Fig. 2.4(b) assuming Gaussian delay between

secondary users. In the simulation, we choose εopt, FO and assume the average

distance between two secondary users is 0.5km. From the plot, we see that asymp-

totically, there exists global synchronization error between some pairs of secondary

users, and ∆tmax = 26.4130µs for this random network. If we specify a threshold
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∆tTh to be greater than or equal to this ∆tmax, we call this network as“average con-

sensus achievable with tolerable synchronization error” as described in Definition

3.3.1.
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Figure 3.7: Evolution of the average disagreement of the first-order DCTS algo-
rithm in random network (Fig. 2.4(b)) with Gaussian delay.

(2) Second-Order DCTS Algorithm with Gaussian Delay

Structured Networks

In our simulations of the second-order DCTS algorithm with Gaussian delay, we

assume ucp = 10µs and the optimal values of εopt, SO and γopt, SO as discussed in

Chapter 2. The simulation results and the asymptotic mean square time synchro-

nization errors for the K16, R16, P16, S16 and H16 networks are shown in Fig. 3.8.

For each network topology, the asymptotic mean square time synchronization er-
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ror σ2
∆t is calculated from (3.37). We see that as time index increases, mean

square time synchronization error approaches the steady state value when utiliz-

ing second-order DCTS algorithm with Gaussian delay. Similar to the first-order

DCTS algorithm, the second-order DCTS algorithm performs poorest in a path

network where it has the largest value of σ2
∆t and the slowest convergence speed.

Interestingly, the second-order DCTS algorithm behaves exactly same as the first-

order DCTS algorithm in a complete network as shown in Fig. 3.5. This is due to

the fact that for a complete network, λ2(L) = λN(L) = N, and when utilizing the

optimal values of εopt, SO and γopt, SO, we have γopt, SO = 0, which implies that the

second-order DCTS algorithm reduces to the first-order DCTS algorithm.
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Figure 3.8: σ2
∆t as a function of iteration time index for the second-order DCTS

algorithm in structured networks (K16, R16, P16, S16, H16) with Gaussian delay.

Table 3.2 summarizes the asymptotic results of the second-order DCTS algo-

rithm for structured networks. As expected, the maximum asymptotic expectation
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of global time synchronization error for KN, RN and HN is 0 since KN, RN and HN

are time delay balanced networks. Furthermore, the second-order DCTS algorithm

in PN has the largest ∆tmax because of its highly unbalanced time delay structure.

Similar to the first-order DCTS algorithm, the second-order DCTS algorithm in

hypercube network HN has relatively small values of σ2
∆t.

Table 3.2: Asymptotic Results for Second-Order DCTS Algorithm in Structured
Networks with Gaussian Delay

K16 R16 P16 S16 H16

∆tmax(µs) 0 0 35 8.75 0
σ2
∆t 0.0586 304075 13329 84.2996 4.0850

In Fig. 3.9, we show the asymptotic value of σ2
∆t as a function of the number

of secondary users in these structured networks. From the plot, we see that when

using the optimal εopt, SO and γopt, SO, the asymptotic mean square time synchro-

nization error for a star network is nearly constant as the number of secondary

users increases. However, σ2
∆t is an increasing function of the number of secondary

users for both path and ring networks.

Random Networks

Fig. 3.10 shows the simulation results when the second-order DCTS algorithm is

implemented in a random network of Fig. 2.4(b) assuming Gaussian delay between

secondary users. We see here that an asymptotic global synchronization error

persists between some pairs of secondary users, i.e., ∆tmax = 26.4130µs for this

random network. If we specify a threshold ∆tTh to be greater than or equal to
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Figure 3.9: σ2
∆t as a function of the number of secondary users for the second-order

DCTS algorithm in structured networks with Gaussian delay.
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Figure 3.10: Evolution of the average disagreement of the second-order DCTS
algorithm in random network (Fig. 2.4(b)) with Gaussian delay.
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this ∆tmax, we call this network as “average consensus achievable with tolerable

synchronization error” as described in Definition 3.3.1. It should be noted that

the first-order DCTS algorithm has the same asymptotic global synchronization

error as the second-order DCTS algorithm.

3.6 Chapter Summary

In this chapter, we have presented theoretical results on the convergence of the

first- and second-order DCTS algorithm for cognitive radio networks with gen-

eral Gaussian delay between secondary users. Specifically, we have computed the

asymptotic expectation and mean square of the global synchronization error of the

DCTS algorithm. The results lead to the definition of a time delay balanced net-

work in which average timing consensus between secondary users can be achieved

despite random delays. Furthermore, several structured network architectures have

been studied as examples and their associated simulation results have been used

to validate analytical findings.
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Chapter 4

Cooperative Spectrum Sensing in

Cost Constrained Cognitive

Radio Networks: Parallel Access

Channels

4.1 Introduction

In this chapter, we study the cooperative spectrum sensing in cost constrained cog-

nitive radio network over PAC channels. As spectrum sensing proposes significant

overhead in the performance of cognitive radios, it must be conducted while balanc-

ing its gains against its costs. Low-energy overhead cooperative spectrum sensing

was studied in [40]. Optimally allocated powers were computed without taking
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into account the underlying system level cost of sensing. Our work on energy-

constrained spectrum sensing is motivated by [59], in which detection problems

were formulated to account for constraints on expected cost due to transmission

and measurement. For cost constrained cognitive radio networks, we build on these

formulations here to design optimal strategy for cooperative spectrum sensing.

H0  H1/

Primary user

x1
Channel

Fusion  
Center

v

x2
Channel

v

xN
Channel

v

1

2

N
…

Measurement

Measurement

Measurement

…

Secondary users Fusion center

Figure 4.1: Cooperative spectrum sensing in cognitive radio networks over PAC.

As shown in Fig. 4.1, secondary users forward local energy detection statistics

to a secondary base station using amplify-and-forward (AF) over PAC. Based on

this model, we account for two major factors that contribute to the system level

energy cost of sensing: Local processing cost due to sample collection and local

energy calculation and transmission due to forwarding local statistic to the fusion

center. We present two optimization problems to maximize the global detection

probability by choosing the appropriate number of energy samples that must be

collected at each secondary user and the appropriate amplifier gain that each sec-

ondary user must use to forward its statistics to the fusion center. When jointly

designing the number of samples and amplifier gains, we demonstrate that only

one secondary user needs to be actively processing and transmitting local statistics
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to the fusion center, i.e., only one secondary user must conduct spectrum sensing

to achieve optimal performance. When either the amplifier gains or the number of

samples are fixed, we derive closed-form expressions for optimal solutions and pro-

pose a generalized water-filling approach for cost constrained cooperative spectrum

sensing.

The remainder of this chapter is outlined as follows: Section 4.2 describes

the system model. Sections 4.3 and 4.4 collectively present our results for energy-

constrained spectrum sensing: Section 4.3 discusses the optimization for maximiza-

tion of global detection probability while Section 4.4 provides the optimization for

minimization of system level cost. Simulation results are presented in Section 4.5.

4.2 System Model

(1) Communication Model

We consider a network model in Fig. 4.1, where secondary user conducts local

spectrum sensing and transmits its local energy statistic to the fusion center using

AF on PAC. The received signal at the fusion center is shown in Fig. 4.1, i.e.,

yi = gihixi + vi, (4.1)

where xi is the energy of received signal at the secondary user i; gi is the amplifier

gain for the secondary user i; hi is channel gain between secondary user i and and

the fusion center and vi is independent and identically distributed (i.i.d.) Gaussian

76



noise, i.e., vi ∼ N (0, σ2
v) and is independent of xi. We assume that hi is known at

the fusion center (e.g., via channel estimation) and remains constant during the

sensing period. We can then rewrite (4.1) in a matrix form as

y = Ωx+ v, (4.2)

where x = [x1, x2, · · · , xN]T, y = [y1, y2, · · · , yN]T, v = [v1, v2, · · · , vN]T and Ω =

diag{g1h1, g2h2, · · · , gNhN}.

(2) Local Energy Statistic

For secondary user i, (1 ≤ i ≤ N), the hypothesis test for xi is











H0 : xi = (1/κi)
∑κi

k=1 |ni(k)|2

H1 : xi = (1/κi)
∑κi

k=1 |h̃is(k) + ni(k)|2,
(4.3)

where κi is the number of samples, s(k) is the transmitted signal from the primary

user and ni(k) is the noise received by secondary user i. We assume s(k) is com-

plex PSK modulated and i.i.d. with mean zero and variance σ2
s ; h̃i is the channel

gain between the primary user and secondary user i and is assumed to be constant

during the cooperative spectrum sensing period; and ni(k) is i.i.d. circularly sym-

metric complex Gaussian random variable with mean zero and variance σ2
n and is

independent of s(k). We define the local received SNR at the secondary user i as

γi = σ2
s |h̃i|2/σ2

n.

When κi is large, xi can be approximated as Gaussian random variable [25,60],

77



i.e.,










H0 : xi ∼ N (σ2
n, σ4

n/κi)

H1 : xi ∼ N ((1 + γi)σ2
n, (1 + 2γi)σ4

n/κi).
(4.4)

In this chapter, we assume the local received SNR γi is known at the secondary user

i. For instance, in IEEE 802.22, this value could be obtained through estimation

of pilot signals periodically transmitted from TV stations [61].

Given this system model, we see that

ξi
def= E{x2

i } = [1 + 1/κi + π1 (γi + 2 (1 + 1/κi)) γi]σ4
n,

where π0 = P(H0) and π1 = P(H1) are the probabilities that spectrum is idle

and occupied, respectively. In cognitive radio networks, the received primary user

power measured by the secondary user is expected to be very small [62], i.e.,

γi � 1. Additionally, the number of samples is expected to be more than a few,

i.e., κi � 1. Then, we can approximate the transmitted power for the secondary

user i as Pi = ξig2i ' g2i (1 + 2π1γi)σ4
n.

(3) Neyman-Pearson (NP) Detection Rule

Under hypothesis H0 and H1, the received signal y has a Gaussian distribution,

i.e.,










H0 : y ∼ N (Ω1σ2
n, Σ0)

H1 : y ∼ N (Ω(1+ γ)σ2
n, Σ1) ,

(4.5)

where Σ0=σ4
nΩU−1Ω†+σ2

vIN, here, U=diag{κ1, κ2, · · · , κN}; Σ1 = σ4
nΩU−1(IN+

2Γ)Ω† + σ2
vIN, here Γ = diag{γ1, γ2, · · · , γN}; and γ = [γ1, γ2, · · · , γN]T.
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Since γi � 1 and κi � 1, then, γi/κi ≈ 0 and we have Σ0 ≈ Σ1. Thus, the

optimal LRT can be approximated as

T (y) = (Ωγ)†Σ−1
0 y

H1

≷
H0

τg, (4.6)

where τg is the global decision threshold. Furthermore, we note that











E{T (y)|H0} = (Ωγ)†Σ−1
0 Ω1σ2

n

E{T (y)|H1} = (Ωγ)†Σ−1
0 Ω(1+ γ)σ2

n,

and

Var{T (y)|H0} = Var{T (y)|H1} = (Ωγ)†Σ−1
0 Ωγ.

After some steps, for NP detection with false alarm probability Pf = α, the global

decision threshold can be obtained as

τg = (Ωγ)†Σ−1
0 Ω1σ2

n +Q−1(α)
[

(Ωγ)†Σ−1
0 Ωγ

]1/2,

where Q(x) is the complementary distribution function of the standard Gaussian,

i.e., Q(x) = 1√
2π

∫∞
x exp(−t2/2)dt. The global detection probability is then given

as

Pd = Q
(

Q−1(α)− σ2
n

[

(Ωγ)†Σ−1
0 Ωγ

]1/2
)

= Q
(

Q−1(α)−
( N
∑

i=1

g2i κiγ2
i |hi|2

g2i |hi|2 + κiσ̃2
v

)1/2
)

, (4.7)

where σ̃2
v = σ2

v/σ4
n. It is also easy to see that the asymptotic detection probability

expressions when the number of samples or amplifier gains approach infinity are
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given by

Pd(κ∞) def= lim
κi→∞

Pd = Q
(

Q−1(α)− 1
σ̃v

( N
∑

i=1

g2i γ
2
i |hi|2

)1/2
)

, (4.8)

and

Pd(g∞) def= lim
gi→∞

Pd = Q
(

Q−1(α)−
( N
∑

i=1

κiγ2
i

)1/2
)

, (4.9)

respectively.

(4) System Level Cost for Cooperative Spectrum Sensing

In this chapter, we consider system level cost for cooperative spectrum sensing

in cognitive radio networks. The system level cost consists of three parts: local

processing cost, transmission cost, reporting and broadcasting cost.

• Local processing cost includes the receiver RF scanning and local energy

calculation. For simplicity, we assume that the local processing cost Cpi(·)

for secondary user i is a linear function of the number of samples, i.e.,

Cpi(κi) = c0κi,

where c0 is the local processing cost per sample.

• Transmission cost is the transmit power required from a secondary user to

transmit the local calculated energy to the fusion center. Here, we assume
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that this cost for secondary user i is given as

Cti(gi) = Pi = ξig2i .

• For optimal system design, the fusion center needs to know the local re-

ceived SNR for each secondary user. In practice, this means that secondary

users will report their local received SNRs to the fusion center. The fusion

center then determines the resource allocated to each secondary user, and

broadcasts this to all secondary users. In this chapter, we assume that total

reporting and broadcasting cost Crb is fixed, and thus do not consider it in

the optimization problem.

The system level cost during the cooperative spectrum sensing is given as

C(κ, g) =
N
∑

i=1

Cpi(κi) +
N
∑

i=1

Cti(gi)

=
N
∑

i=1

(

c0κi + ξig2i
)

,

where κ = [κ1, κ2, · · · , κN]T and g = [g1, g2, · · · , gN]T.

4.3 Optimization: Maximization of Detection

Probability

In this section, we aim to maximize the detection probability for the system model

in Fig. 4.1 subject to a system level cost constraint of sensing. Specifically, we de-
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termine the appropriate number of samples and amplifier gains for each secondary

user and consider the following two scenarios for this optimization problem:

1. Scenario A: First, we consider the system level cost constraint. Hence, the

optimization problem is formulated as:

max
κ,g

Pd(κ, g)

s.t. C(κ, g) ≤ C̄,

κ ∈ ZN
+ , g ∈ RN

+, (4.10)

where C̄ is the system level cost constraint. Here we denote the optimal

solution of (4.10) as
(

κ(opt,1)
p,i , g(opt,1)p,i

)

and the maximum detection probability

as P(opt,1)
d .

2. Scenario B: In some applications, local sample collection for each secondary

user may be scheduled in a fixed time slot. In other words, the number of

samples is upper bounded by a maximum value κmax. Furthermore, the

transmission power for each secondary user may be required to be below a

predefined power limit Pmax. By incorporating these additional individual

constraints imposed on each secondary user, we can model the optimization

problem as

max
κ,g

Pd(κ, g)

s.t. C(κ, g) ≤ C̄, κ ∈ ZN
+ , g ∈ RN

+,

κ � κmax1, ξig2i ≤ Pmax. (4.11)
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To better understand the optimal resource allocation for cooperative spectrum

sensing, we consider the following two cases in Scenarios A and B: joint optimiza-

tion of κ and g; and optimization of either κ or g.

4.3.1 Case I: Joint Optimization of Number of Samples

and Amplifier Gains

(1) Scenario A

In this case, we consider the optimization in (4.10) over both κ and g. We note

that (4.10) is a mixed integer nonlinear optimization problem (MINLP). In gen-

eral, there is no polynomial-time algorithm for solving general MINLPs [63]. A

potentially clearer insight into the solutions can be obtained by considering a con-

vex relaxation for this optimization problem, where we simply relaxed the integer

constraint of the number of samples:

max
κ,g

Pd(κ, g)

s.t. C(κ, g) ≤ C̄,

κ ∈ RN
+, g ∈ RN

+. (4.12)

Let us define zi = g2i , pi = σ̃2
v/(γ2

i |hi|2) and qi = 1/γ2
i . To simplify our analysis,

when κi = zi = 0, we assume κizi/(piκi + qizi) = 0. In practice, this assump-

tion can be alleviated by adding a sufficiently small constant in the denominator.
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Plugging (4.7) into (4.12), the optimization problem becomes

max
κ,z

N
∑

i=1

κizi
piκi + qizi

s.t. c01Tκ+ ξTz ≤ C̄,

κ � 0, z � 0. (4.13)

where z = [z1, z2, · · · , zN]T and ξ = [ξ1, ξ2, · · · , ξN]T. Then, we note that

Lemma 4.3.1. (4.13) is a convex optimization problem.

Proof. Let us define

Fi(κi, zi) =
κizi

piκi + qizi
.

After some manipulations, we see that the Hessian of Fi(κi, zi) is given as

∇2Fi(κi, zi) = − 2piqi
(piκi + qizi)3







zi

κi













zi

κi







T

� 0.

Thus, Fi(κi, zi) is a concave function, which indicates that the objective function

in (4.13) is also concave. This completes the proof.

Since (4.13) is a convex problem, it can be solved efficiently using interior-point

methods or other iterative methods [64]. This will be a recurring theme in the

optimization problems we consider in the sequel. In the numerical results, we shall

see that the approximation as detailed below results in near optimal performance

without the curse of complexity. Given this convex optimization problem, first we

introduce the following lemma.
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Lemma 4.3.2. Optimal solution of (κ, z) in (4.13) should satisfy either 1) κi > 0

and zi > 0, or 2) κi = 0 and zi = 0 for secondary user i.

Proof. Please see the Appendix C.1.

This lemma is not surprising because when one secondary user does not collect

the energy samples, it will not have anything to transmit to the fusion center.

Similarly, when one secondary user decides not to transmit the data to the fusion

center, it is reasonable to expect that this secondary user should remain inactive

and not collect local energy samples. Using Lemma 4.3.2, the optimal solution of

(κ, g) can be found as stated in the following theorem.

Theorem 4.3.1. Consider the optimization problem in (4.13), let us define

ρi =
γ2
i |hi|2

(σ̃v
√
ξi + |hi|

√
c0 )2

(4.14)

and assume ρ1 ≥ ρ2 ≥ · · · ≥ ρN. Then, the optimal solution of (κ, g) is

κ(opt,2)
p,i =











|hi|C̄
σ̃v

√
ξic0+|hi|c0 , i = 1

0, i > 1,

g(opt,2)p,i =











(

σ̃v C̄
σ̃vξi+|hi|

√
ξic0

)1/2
, i = 1

0, i > 1.
(4.15)

Proof. Please see the Appendix C.2.

Given the optimal solution of (κ, g), the optimal detection probability in (4.13)
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is

P(opt,2)
d = Q

(

Q−1(α)−
√

C̄max
{

γi|hi|
σ̃v
√
ξi + |hi|

√
c0

})

.

Since (4.12) is the relaxation of the MINLP (4.10), we see that P(opt,1)
d ≤ P(opt,2)

d

[63]. In practice, we may consider a floor operation for the number of samples as

a suboptimal solution for (4.10), i.e.,

κ(sub)
p,i =

⌊

κ(opt,2)
p,i

⌋

and g(sub)p,i = g(opt,2)p,i , ∀i. (4.16)

Let us denote the resulting global detection probability as P(sub)
d . Then we see

that P(opt,2)
d ≥ P(opt,1)

d ≥ P(sub)
d . Furthermore, when κ(opt,2)

p,1 is large, based on the

first-order Taylor series, we have

P(opt,2)
d − P(sub)

d = Pd(κ, g)− Pd(κ−∆κ, g)

≈ ∆κ1δ0δ1
2
√
2π

exp
(

−1
2
(

Q−1(α)− δ0
)2
)

(κ1 + δ1)−2

→ 0+,

where δ0 = g1γ1|h1|/σ̃v and δ1 = g21|h1|2/σ̃v. With small value of ∆κ1 (normally

∆κ1 < 1), it is interesting to note that our rounding algorithm is near optimal

with large system level cost constraint. When C̄ is relatively small, as we will show

in our simulations, our proposed suboptimal algorithm can also provide a good

approximation to the optimal solution.

Based on (4.16), when we jointly design the number of samples and amplifier

gains subject to the system level cost constraint, only one secondary user needs

to be active in the cognitive radio network, i.e., collecting local energy samples
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and transmitting the energy statistic to the fusion center. It is interesting to note

that this strategy is similar to multiuser diversity where the base station selects

the user with the highest channel to achieve maximum sum rate capacity [65]. In

this case, the fusion center will select the secondary user with the largest ρi to

perform local spectrum sensing and data forwarding. This will significantly reduce

the bandwidth cost for data forwarding.

Remark : We note that the result in (4.16) can be implemented in a distributed

fashion. The idea is based on opportunistic carrier sensing [10] or opportunistic

relaying [66] in which a backoff timer is set to be a decreasing function of channel

state information. In particular, at the beginning of each sensing time slot, the

fusion center broadcasts a beacon signal to synchronize all secondary users in the

cognitive radio network. After estimating the channel gain1 |hi|, the secondary

user calculates the control parameter ρi based on its local received SNR γi and

then maps ρi to a backoff timer f(ρi) (equal to c/ρi in [66], where c is a constant).

Under a collision free situation, the secondary user with largest ρi will expire first

and perform local energy calculation and data forwarding during this time slot2.

Note that in this case, fusion center does not need to broadcast the optimal design

parameter for each secondary user and this will reduce the cooperative sensing cost

for broadcasting and reporting.
1We assume reciprocity of the uplink and downlink channels between the fusion center and

secondary users [67].
2Detailed analysis on how to reduce the collision probability for this scheme can be found

in [10].
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(2) Scenario B

We examine the optimization (4.11) over both κ and g. Similar to Scenario A, we

first consider the relaxation to the original MINLP in (4.11), i.e.,

max
κ,z

N
∑

i=1

κizi
piκi + qizi

s.t. c01Tκ+ ξTz ≤ C̄,

0 � κ � κmax1, z � 0, ξizi ≤ Pmax. (4.17)

Again, we see that this is a convex optimization problem and can be solved by

standard methods. Let us denote the optimal solution as
(

κ(opt)
p,i , g(opt)p,i

)

. Similarly,

we note that

Lemma 4.3.3. Optimal solution of (κ, z) in (4.17) should satisfy either 1) κi > 0

and zi > 0, or 2) κi = 0 and zi = 0 for secondary user i.

The proof is similar to that of Lemma 4.3.2 and thus omitted. With the ad-

ditional constraints imposed on κ and z, we see that in general it is difficult to

obtain the closed-form solutions for (κ, z). Since the optimal solution of (κ, z)

needs to be equal to 0 or greater than 0 simultaneously, we propose a heuristic

suboptimal algorithm for Scenario B. Specifically, first we assign κmax and Pmax

to the secondary user with largest ρi. If there are remaining resources, we assign

κmax and Pmax to the secondary user with second largest ρi and so on until κmax

and Pmax cannot be assigned to any one secondary user. In this case, we merely

utilize the solution in (4.16) to allocate (κi, gi) to the secondary user with the next

largest ρi and κi = 0, gi = 0 to the rest of the secondary users.
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Let us denote the suboptimal solution as
(

κ(sub)
p,i , g(sub)p,i

)

. The detailed algorithm

for Scenario B is illustrated in Algorithm 1.

Algorithm 1 Heuristic Suboptimal Algorithm
Sort ρi in a decreasing order.
for i = 1 to N do
if c0κmax + Pmax < C̄ then
C̄ ← C̄ − c0κmax − Pmax; κi ← κmax; zi ← Pmax/ξi.

else
Compute κi and zi from (4.16);
Adjust and truncate κi and zi to guarantee κi ∈ (0, κmax] and zi ∈
(0,Pmax/ξi] and stop.

end if
end for

4.3.2 Case II: Optimization of Number of Samples or Am-

plifier Gains

In some applications, either g or κ may be fixed for secondary users. For example,

local energy calculation may be scheduled in a fixed time slot and each secondary

user is assigned same number of samples. In this case, we need to optimize the

amplifier gain to achieve the desired detection probability. On the other hand, we

may need to choose appropriate number of samples when the amplifier gains are

fixed. Here, we first assume fixed number of samples, i.e., κ = κ̃, then we need to

maximize the detection probability by choosing appropriate amplifier gains. Let us

define global transmission power constraint as Ptot = C̄ − c01Tκ̃. We now examine

both these cases.
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(1) Scenario A

Here, we maximize global detection probability assuming the global transmit power

constraint is given as Ptot. We define ai = κ̃iγ2
i and bi = κ̃iσ̃2

v/|hi|2. Then, the

optimization problem in (4.10) is equivalent to

min
z

N
∑

i=1

aibi
zi + bi

s.t. ξTz ≤ Ptot, z � 0. (4.18)

It is easy to see that (4.18) is a convex optimization problem. After some

manipulations, we see that the Karush-Kuhn-Tucker (KKT) conditions are

aibi
(zi + bi)2

+ ui − λ0ξi = 0 (4.19)

λ0(ξTz − Ptot) = 0 (4.20)

uizi = 0. (4.21)

where λ0 ≥ 0 and ui ≥ 0 are Lagrangian multipliers.

First we assume that λ0 > 0 and ui = 0, then from (4.19), we see that

zi =
[

√

aibi/(ξiλ0)− bi
]+

, (4.22)

where [x]+ = max{0, x}. Plugging this into (4.20), we have

√

λ0 =
∑

i∈S0

√
aibiξi

Ptot +
∑

i∈S0
biξi

. (4.23)
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where S0 = {i|zi > 0}. Then, we need to determine the set S0 to obtain the

closed-form solution for z. To do this, let us define βi =
√

biξi/ai. Without loss of

generality, we assume β1 ≤ β2 ≤ · · · ≤ βN. After some derivations, as outlined in

the Appendix C.3, we have

S0 =











{1, · · · , iS |f(iS) < 1, f(iS + 1) ≥ 1}, f(N) ≥ 1

{1, · · · ,N}, otherwise,
(4.24)

where

f(i) =
βi
∑i

j=1

√

ajbjξj
Ptot +

∑i
j=1 bjξj

. (4.25)

Thus, plugging (4.23) into (4.22), the optimal amplifier gains can be obtained as

g(opt)p,i =











[

κ̃iσ̃2
v

|hi|2
(

γi|hi|√
ξi
η − 1

)]1/2
, i ∈ S0

0, i /∈ S0,
(4.26)

where η =
∑

i∈S0
κ̃iξi/|hi|2+Ptot/σ̃2

v∑
i∈S0

κ̃i
√
ξiγi/|hi| .

Remark : The optimal amplifier gains follow the water-filling strategy, i.e., with

larger βi, the chance for the secondary user to be inactive is higher, where βi is a

measure of the observation and fusion channel quality. Note that βi ∝ 1/(γi|hi|).

Hence, when the local received SNR is low or the fusion channel quality is poor,

the secondary user tends not to transmit the local calculated energy to the fusion

center.

For comparison, we consider two suboptimal solutions for this optimization

problem as follows:
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• A simple solution is to choose equal transmission power for each secondary

user, i.e., g(equ)p,i =
√

Ptot/(Nξi).

• Using the Cauchy-Schwarz inequality, we see that Pd(κ∞) in (4.8) can be

maximized when gi = cγ2
i |hi|2/ξ2i , where c is a constant. Based on this, we

propose an alternate suboptimal solution for amplifier gains, i.e.,

g(sub)p,i =
(

γ2
i |hi|2/ξ2i

∑N
i=1 γ

2
i |hi|2/ξi

Ptot

)1/2

.

Let us denote the asymptotic detection probability when κ̃i → ∞ for these

three solutions of amplifier gains as P(opt)
d (κ∞), P(equ)

d (κ∞) and P(sub)
d (κ∞). Then,

we note that

Lemma 4.3.4. When β2 > β1, P
(equ)
d (κ∞) ≤ P(sub)

d (κ∞) ≤ P(opt)
d (κ∞).

Proof. From Appendix C.3, we see that

f(2) =
b1ξ1 + b2ξ2 + (β2 − β1)

√
a1b1ξ1

b1ξ1 + b2ξ2 + Ptot
.

As κ̃i → ∞, we have a1, b1 → ∞. Additionally, since β2 > β1, then (β2 −

β1)
√
a1b1ξ1 > Ptot. Thus, f(2) > 1 and S0 = {1}. This indicates that the op-

timal amplifier gains are g21 = Ptot/ξ1 and gi = 0 (i > 1). Then, we have

P(opt)
d (κ∞) = Q

(

Q−1(α)− 1
σ̃v

(

Ptot max{θi}
)1/2

)

,
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where θi = γ2
i |hi|2/ξi. Furthermore, we note that

P(sub)
d (κ∞) = Q

(

Q−1(α)− 1
σ̃v

(

Ptot‖θ‖2/(1Tθ)
)1/2

)

,

P(equ)
d (κ∞) = Q

(

Q−1(α)− 1
σ̃v

(

Ptot(1Tθ)/N
)1/2

)

,

where θ = [θ1, θ2, · · · , θN]T. Since max{θi} · (1Tθ) ≥ ‖θ‖2 and N · ‖θ‖2 ≥ (1Tθ)2,

we can conclude the proof.

(2) Scenario B

Next, we maximize global detection probability assuming the global transmit power

constraint Ptot and the individual transmit power limit Pmax. In this scenario, the

optimization problem in (4.11) becomes

min
z

N
∑

i=1

aibi
zi + bi

s.t. ξTz ≤ Ptot, z � 0, ξizi ≤ Pmax. (4.27)

With the additional constraint in (4.27) as compared to (4.18), the updated KKT

conditions can be computed as

aibi
(zi + bi)2

+ ui − viξi − λ0ξi = 0 (4.28)

vi(ξizi − Pmax) = 0, (4.29)
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where vi ≥ 0 are Lagrangian multipliers. First we assume that λ0 > 0 and ui =

vi = 0, then from (4.28), we see that

zi =
√

aibi/(ξiλ0)− bi.

Thus, based on the value of
√
λ0, we can determine the optimal solution of zi as

zi =























0, if
√
λ0 >

√

ai/(biξi)

Pmax/ξi, if 0 <
√
λ0 <

√
aibiξi/(Pmax + biξi)

√

aibi/(ξiλ0)− bi, otherwise.

Let us define two disjoint sets for secondary users as S1 = {i|zi = Pmax/ξi} and

S2 = {i|0 < zi < Pmax/ξi}. Plugging zi into (4.20), we have

|S1|Pmax +
1√
λ0

∑

i∈S2

√

aibiξi −
∑

i∈S2

biξi = Ptot,

which implies that

√

λ0 =
∑

i∈S2

√
aibiξi

Ptot − |S1|Pmax +
∑

i∈S2
biξi

.

In order to determine S1, S2 and
√
λ0 and thus obtain the closed-form solution

for zi, we propose a two-stage generalized water-filling algorithm as follows:

1. In the first stage, we aim to determine the set S1. To do this, let us define

β̃i = Pmax+biξi√
aibiξi

. Without loss of generality, we assume β̃1 ≤ β̃2 ≤ · · · ≤ β̃N.
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Then, similar to Scenario A, S1 can be obtained by (4.24) with

f̃(i) =
β̃i
∑

m∈S̃i

√
ambmξm

Ptot − iPmax +
∑

m∈S̃i
bmξm

, i ≤
⌊ Ptot

Pmax

⌋

, (4.30)

where S̃i = {m|βm < β̃i, i < m ≤ N}. After S1 is determined, we have

zi = Pmax/ξi, ∀i ∈ S1. For an outline, please see Appendix C.4.

2. In the second stage, we follow the similar procedure in Scenario A to obtain

S2 and zi for i /∈ S1. The solution is given in (4.26), except that Ptot and N

are replaced by Ptot − |S1|Pmax and N− |S1|, respectively.

To summarize, the detailed generalized water-filling algorithm for Scenario B

is illustrated in Algorithm 2. With amplifier gains fixed, we need to optimize the

number of samples to achieve the desired detection probability. We note that in

this case, the optimal solutions of the number of samples are similar to those of the

amplifier gains in both scenarios (with additional relaxation consideration), thus

omitted from this dissertation.

4.4 Optimization: Minimization of System Level

Cost

In the section, we aim to minimize the system level cost of cooperative spectrum

sensing to achieve a targeted detection probability. Similar to the optimization

problem in Section 4.3, we consider two scenarios which depend on whether addi-

tional constraints are imposed or not. For instance, in Scenario A, the optimization
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Algorithm 2 Generalized Water-filing Algorithm
Stage 1: Sort β̃i in an increasing order.
for i = 1 to

⌊ Ptot
Pmax

⌋

do
Compute f̃(i) from (4.30);
if f̃(i) ≥ 1 then
Set S1 = {1, · · · , i} and stop.

end if
end for
for i ∈ S1 do
zi ← Pmax/ξi.

end for
Stage 2: For j /∈ S1, sort βj in an increasing order and set Ptot ← Ptot−|S1|Pmax

and N← N− |S1|.
for j = 1 to N do
Compute f(j) from (4.25);
if f(j) ≥ 1 then
Set S2 = {1, · · · , j} and stop.

end if
end for
for j ∈ S2 do
Compute η and zj from (4.26).

end for

problem can be formulated as:

min
κ,g

C(κ, g)

s.t. Pd(κ, g) ≥ P̄d,

κ ∈ ZN
+ , g ∈ RN

+, (4.31)

where P̄d is a predefined detection probability threshold and P̄d > α. Similar to the

analysis in Section 4.3.1, we consider the relaxation, i.e., κ ∈ RN
+ to this MINLP,

and the optimal solution of this relaxation problem is stated as follows:

Theorem 4.4.1. Consider the relaxation optimization problem in (4.31) and ρi
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as defined in (4.14). Then,

κ(opt)
d,i =











ε
γ2
i

(

1 +
√

ξi
c0

σ̃v
|hi|

)

, i = 1

0, i > 1,

g(opt)d,i =











[

εσ̃2
v

γ2
i |hi|2

(

1 +
√

c0
ξi

|hi|
σ̃v

)]1/2
, i = 1

0, i > 1,

where ε = [Q−1(α)−Q−1(P̄d)]2.

The proof is similar to that of Theorem 4.3.1 and thus omitted. Similarly,

we may consider a ceiling operation for the number of samples as a near-optimal

solution for (4.31). Additionally, we see that only one secondary user needs be ac-

tive for collecting the samples for local energy calculation and transmitting energy

statistics to fusion center. We have separately examined the optimization problem

for the remaining cases considered in Section 4.3, i.e., when jointly designing κ

and g for Scenario B; and when designing either κ or g for both Scenario A and

Scenario B.

4.5 Simulation Results

In this section, we present numerical results for the optimal design of cooperative

spectrum sensing in cost constrained cognitive radio networks. In the following re-

sults, we assume N = 6, σ2
n = σ2

v = 1, c0 = 1, h = [1.56, 1.99, 0.37, 1.52, 0.39, 1.98]T,

γ = [−8.86,−15.23,−7.21,−5.09,−10.00,−10.97]T(dB) and π0 = π1 = 0.5. Here,

we define the global fusion SNR as SNR = Ptot/σ2
v .
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(1) Optimization: Maximization of Detection Probability

In Fig. 4.2, we plot the receiver operating characteristic (ROC) performance for op-

timization in Case I (joint optimization of κ and g) for different solutions of (κ, g).

In this simulation, we choose C̄ = 20dB and utilize standard MINLP method [68] in

Scenario A and interior-point method to solve the optimization problem in Scenario

B. In Scenario B, we choose κmax = 0.2bC̄/c0c and Pmax = 0.2C̄. For comparison,

we consider equal number of samples and amplifier gains as a suboptimal solu-

tion. As illustrated in Fig. 4.2, in Scenario A, our proposed suboptimal solution in

(4.16) is near optimal as previously mentioned. Furthermore, we observe that the

detection performance is degraded with the additional constraints in Scenario B.

Additionally, we note that our proposed suboptimal algorithm in both Scenario A

and B has negligible performance loss compared to the optimal solution.
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Figure 4.2: Optimization in Case I: global detection probability versus false alarm
probability for different solutions of (κ, g).

98



14 16 18 20 22 24 26 28 30 32 34
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

   : system level cost constraint (dB)

P
m

d: m
is

s 
de

te
ct

io
n 

pr
ob

ab
ili

ty

 

 

C̄

Scenario A: (κ
p
(equ), g

p
(equ))

Scenario A: (κ
p
(sub), g

p
(sub))

Scenario A: (κ
p
(opt,1), g

p
(opt,1))

Scenario A: (κ
p
(opt,2), g

p
(opt,2))

Scenario B: (κ
p
(sub), g

p
(sub))

Scenario B: (κ
p
(opt), g

p
(opt))

Figure 4.3: Optimization in Case I: miss detection probability for different solutions
of (κ, g).

Fig. 4.3 shows the miss detection probability versus system level cost constraint

for optimization in Case I for different solutions of (κ, g). In this simulation, we

choose α = 0.01, which indicates the desired probability of false alarm is 1%. As

expected, we observe a similar trend as in Fig. 4.2.

Fig. 4.4 shows the miss detection probability versus total number of samples

for optimization in Case II (optimization of g given κ̃). In the simulations, we

choose α = 0.01, SNR = 25dB and fixed number of samples κ̃i = bκtot/Nc. In

Scenario B, we choose Pmax = 0.4Ptot. As expected, we see that the optimal

solution provides superior performance to suboptimal solutions. From the plots,

we also observe that with additional individual constraints, the optimal solution

for Scenario B performs worse than that of Scenario A. Furthermore, when total

number of samples increases, we see that the error probability approaches the

asymptotic bound. In particular, P(equ)
d (κ∞) ≤ P(sub)

d (κ∞) ≤ P(opt)
d (κ∞) as stated
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Figure 4.4: Optimization in Case II: miss detection probability for different solu-
tions of g.

in Lemma 4.3.4.

(2) Optimization: Minimization of System Level Cost

In Fig. 4.5, we plot the system level cost versus global detection probability thresh-

old for optimization in Case I for different solutions of (κ, g). As expected, we see

that the optimal solution in Scenario A can greatly save the system level cost com-

pared to equal solution and optimal solution in Scenario B. For instance, 5.8dB

gain can be achieved when comparing the optimal solution to the equal solution

in Scenario A. From the plots, we also observe that our proposed suboptimal algo-

rithm in both Scenario A and B has negligible performance loss compared to the

optimal solution.
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Figure 4.5: Optimization in Case I: system level cost for different solutions of
(κ, g).

4.6 Chapter Summary

In this chapter, we have presented the optimal design for spectrum sensing in the

cost constrained cognitive radio networks over the PAC scenario. Specifically, we

have derived closed-form expressions for optimal solutions and proposed a gener-

alized water-filling algorithm when number of samples or amplifier gains are fixed

and additional constraints are imposed. Furthermore, when jointly designing the

number of samples and amplifier gains, we have demonstrated that only one sec-

ondary user needs to be actively processing and transmitting local statistics to the

fusion center.
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Chapter 5

Cooperative Spectrum Sensing in

Cost Constrained Cognitive

Radio Networks: Multiple Access

Channels

5.1 Introduction

In this chapter, we study the cooperative spectrum sensing in cost constrained

cognitive radio network over MAC channels. Previous works [36,69] only assumed

perfect reception of hard/soft information at the fusion center, which may be inap-

propriate in practical settings, e.g., when cognitive radios forward their decisions

to the fusion center using (unreliable) wireless links. In fact, it was shown that
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unreliable links between a secondary user and a fusion center can significantly im-

pact the probability of correctly detecting the primary user when hard decision

combining [70] or soft decision combining [71] is employed.

H0  H1/

Primary user

x1
Channel

Fusion  
Center

x2
Channel

xN
Channel

…

Measurement

Measurement

Measurement

…

Secondary users Fusion center

v

Figure 5.1: Cooperative spectrum sensing in cognitive radio networks over MAC.

As shown in Fig. 5.1, secondary users forward local measured SNR to the

fusion center over MAC channels. Based on this model, we counter unreliable

uplinks to the fusion center by applying beamforming amongst secondary users who

communicate locally measured SNRs to a common fusion center. Under correlated

lognormal shadowing, we derive optimal beamforming weights that maximize the

global detection probability subject to a global transmit power constraint. We then

compute the detection performance for a simplified linear array network and show

that detection probability increases as the number of secondary users increases.

The remainder of this chapter is outlined as follows: Section 5.2 provides the

system model; Section 5.3 presents the optimal beamforming design; Section 5.4

evaluates the detection performance. Simulation results are presented in Section

5.5.
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5.2 System Model

(1) Local Measured SNR

In this chapter, we adopt the system model in [36, 69] for locally measured SNR.

Specifically, we assume the logarithmic value of this SNR is given as xi and we de-

note x = [x1, x2, · · · , xN]T. Assuming perfect local SNR estimation, the hypothesis

test for x can be given as











H0 : x ∼ N (µ01, σ2
sΣ)

H1 : x ∼ N (µ11, σ2
sΣ),

(5.1)

where µ0 = f(R + δ), µ1 = f(R) such that f(·) is a distance dependent path loss

function, R is the range from the TV (primary) transmitter at which secondary

users are unlikely to cause interference to the primary receiver; δ > 0 indicates the

distance outside R; σ2
s is the variance of xi; and Σ is the normalized covariance

matrix of x. Without loss of generality, we assume an exponential correlation

model [72], i.e.,

[Σ]ij = exp(−adij), i, j = 1, 2, · · · ,N,

where dij is the distance between secondary user i and j; a is a constant which

depends on the environment, e.g., a ≈ 0.12 in urban environments and a ≈ 0.002

in suburban environments.

Using the lognormal distribution, we can first show that

ξ def= E{x2
i } = exp

(

2c2σ2
s

)[

π0 exp(2cµ0) + π1 exp(2cµ1)
]

,
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where c = (ln 10)/10.

(2) Data Forwarding with Beamforming

We assume secondary users synchronize local SNR measurements and synchronous-

ly forward them to the fusion center using beamforming. In particular, secondary

user i forwards the data xi with beamforming weight bi.

As shown in Fig. 5.1, the received signal at the fusion center is given as1

y = b†Hx+ v, (5.2)

where b = [b1, b2, · · · , bN]T; H = diag{h1, h2, · · · , hN}, here hi is channel gain

between the secondary user i and fusion center; v is Gaussian noise, i.e., v ∼

N (0, σ2
v) and is independent of xi. The transmit power for the secondary user i

can be computed as

Pi = b2iE[x
2
i ] = ξb2i .

In this chapter, we assume a global power constraint, i.e.,

1TP = Ptot,

where P = [P1,P2, · · · ,PN]T. This is equivalent to

‖b‖2 = P ′
tot = Ptot/ξ.

1We assume perfect phase synchronization among the secondary users and fusion center. The
effects of imperfect phase synchronization are left for future work.
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(3) NP Detection Rule

Under hypothesis H0 and H1, the received signal at the fusion center y has a

Gaussian distribution, i.e.,











H0 : y ∼ N
(

µ0b†H1, σ2
sb

†HΣH†b+ σ2
v

)

H1 : y ∼ N
(

µ1b†H1, σ2
sb

†HΣH†b+ σ2
v

)

.
(5.3)

Then, optimal LRT can be computed as

T (y) = y
H1

≷
H0

τg, (5.4)

where τg is the global decision threshold. After some manipulations, for NP de-

tection with false alarm probability Pf = α, the global decision threshold can be

obtained as

τg = µ0b†H1+Q−1(α)
(

σ2
sb

†HΣH†b+ σ2
v

)1/2
.

Assuming ∆µ = µ1 − µ0, the global detection probability is then given as

Pd = Q
(

Q−1(α)− ∆µ|b†H1|
√

σ2
sb†HΣH†b+ σ2

v

)

. (5.5)

5.3 Optimal Beamforming Design

To obtain the optimal beamforming weights, we formulate an optimization problem

to maximize the global detection probability in (5.5). SinceQ(x) is a monotonically
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decreasing function, we see that this is equivalent to

max
b

|b†H1|2
b†HΣH†b+ σ2

v/σ2
s

s.t. ‖b‖2 = P ′
tot, b � 0. (5.6)

Using Cauchy-Schwarz inequality, we see that

|b†H1|2
b†HΣH†b+ σ2

v/σ2
s

=
|b†H1|2

‖(HΣH† + γ̃IN)1/2b‖2

=
|b̃†(HΣH† + γ̃IN)−1/2H1|2

‖b̃‖2

≤
∥

∥(HΣH† + γ̃IN)−1/2H1
∥

∥

2

and equality holds only when b̃ = η(HΣH† + γ̃IN)−1/2H1, or equivalently, b =

η(HΣH† + γ̃IN)−1H1, where η is a constant and γ̃ = σ2
vξ/(σ2

sPtot). Since ‖b‖2 =

P ′
tot, the optimal beamforming weights are given as

bopt =
√

P ′
tot

(HΣH† + γ̃IN)−1H1
∥

∥(HΣH† + γ̃IN)−1H1
∥

∥

. (5.7)

Plugging the optimal beamforming weights into (5.5), the global detection prob-

ability reduces to

P(opt)
d = Q

(

Q−1(α)− ∆µ

σs

√

1T
(

Σ+ γ̃(H†H)−1
)−11

)

. (5.8)

In practice, cooperative spectrum sensing with beamforming consists of two

phases: 1) a beamforming weight update phase; and 2) a sensing and reporting
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phase. During the first phase, the secondary users transmit training sequences to

the fusion center so that the fusion center can estimate the channel gain H. After

calculating the optimal beamforming weight bopt from (5.7)2, the fusion center

broadcasts them to the secondary users. During the second phase, the secondary

users perform local spectrum measurement and then synchronously forward the

data to the fusion center using bopt.

5.4 Performance Evaluation with Optimal Bea-

mforming Weights

(1) Performance Evaluation

Let us denote λi and υi as the eigenvalue and eigenvector of Σ, respectively. With

identical channel gains, i.e., H = h0IN, we see that the global detection probability

can be given as

P(opt)
d = Q

(

Q−1(α)− ∆µ

σs

( N
∑

i=1

|1Tυi|2
λi + γ̃/|h0|2

)1/2
)

. (5.9)

In the case for independent shadowing, i.e., Σ = IN, we see that the global

detection probability can be simplified as

P(opt)
d = Q

(

Q−1(α)− ∆µ

σs

( N
∑

i=1

|hi|2
|hi|2 + γ̃

)1/2
)

. (5.10)

2In this chapter, we assume that network topology and thus Σ are available at the fusion
center.
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Lemma 5.4.1. The global detection probability in (5.9) can be bounded as

Q
(

Q−1(α)− ∆µ

σs

√

N/ζ0

)

≤ P(opt)
d ≤ Q

(

Q−1(α)− ∆µ

σs

√

N/ζ1

)

,

where ζ0 = max{λi}+ γ̃/|h0|2 and ζ1 = min{λi}+ γ̃/|h0|2.

Proof. Let us define ζi = λi + γ̃/|h0|2. Then, it is easy to check that

N
∑

i=1

|1Tυi|2/ζi ≤
N
∑

i=1

|1Tυi|2/ζ1 = N/ζ1.

Similarly, we have
∑N

i=1 |1Tυi|2/ζi ≥ N/ζ0. Thus, we obtain the bounds for P(opt)
d .

This completes the proof.

High Fusion SNR Analysis

In the high fusion SNR regime, based on the first-order Taylor series, we note that

the global detection probability can be approximated as

P(opt)
d ≈ Q

(

Q−1(α)− ∆µ

σs

√

1T [Σ−1 − γ̃Σ−1(H†H)−1Σ−1] 1
)

.

In particular, when Ptot →∞, then γ̃ → 0 and we have

P(opt)
d,∞

def= lim
Ptot→∞

P(opt)
d = Q

(

Q−1(α)− ∆µ

σs

√
1TΣ−11

)

.

This is equivalent to the global detection probability with perfect reception in [69].
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Low Fusion SNR Analysis

In the low fusion SNR regime, we have

P(opt)
d ≈ Q

(

Q−1(α)− ∆µ

σs

√

1T
[

H†H− (1/γ̃)H†HΣH†H
]

1/γ̃
)

.

In particular, when Ptot → 0, we have

P(opt)
d,0

def= lim
Ptot→0

P(opt)
d = Q

(

Q−1(α)− ∆µ

σs

√

tr(H†H)/γ̃
)

.

(2) Case Study: Linear Array Network with Equal Distance

As a case study, we now consider a special network scenario where N secondary

users are deployed in a linear network with (equal) distance d between them. Topol-

ogy of the linear network with equal distance is shown in Fig. 5.2. For such a net-

work, the elements of the normalized covariance matrix are given as [Σ]ij = ρ|i−j|,

where ρ = exp(−ad).

It is shown that the inverse of Σ is [73]

Σ−1 =
1

1− ρ2

























1 −ρ 0 · · · 0

−ρ 1 + ρ2 −ρ · · · 0
... . . . . . . . . . ...

0 · · · −ρ 1 + ρ2 −ρ

0 · · · 0 −ρ 1

























,
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Figure 5.2: Cooperative spectrum sensing in cognitive radio networks over MAC
in a linear array network with equal distance.

and the eigenvalues of Σ are

λi =
1− ρ2

1− 2ρ cos θi + ρ2
, i = 1, · · · ,N,

where θi ∈ (0, π) is the ith solution of

sin(N + 1)θ − 2ρ sinNθ + ρ2 sin(N− 1)θ = 0.

Based on this, we note that −1 ≤ cos θi ≤ 1 and then 1−ρ
1+ρ ≤ λi ≤ 1+ρ

1−ρ . Thus,

in Lemma 5.4.1, we have

ζ0 =
1 + ρ
1− ρ

+
γ̃
|h0|2

and ζ1 =
1− ρ
1 + ρ

+
γ̃
|h0|2

.

Furthermore, when Ptot →∞, we have

P(opt)
d,∞ = Q

(

Q−1(α)− ∆µ

σs

√

(1− ρ)N + 2ρ
1 + ρ

)

. (5.11)
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With identical channel gains, i.e., H = h0IN, we see (following the derivation

in [74]) that when N is large,

1T
(

Σ+ γ̃0IN
)−11 =

1− ρ
1 + ρ+ γ̃0(1− ρ)

N + o(N),

where γ̃0 = γ̃/|h0|2 and f(x) ∈ o(g(x)) indicates that limx→∞ f(x)/g(x) = 0. Thus,

the global detection probability can be approximated as

P(opt)
d ≈ Q

(

Q−1(α)− ∆µ

σs

√

1− ρ
1 + ρ+ γ̃0(1− ρ)

N

)

. (5.12)

From (5.12), we see that P(opt)
d is an increasing function of N.

5.5 Simulation Results

In our simulations, we assume α = 0.01, µ0 = 3, µ1 = 9, σs = 2.3, σv = 1 and

π0 = π1 = 0.5. We define the global fusion SNR as SNR = Ptot/σ2
v . Here we

assume a linear equi-distant array network as in Section 5.4 and measure the miss

detection probability Pmd = 1− Pd.

Fig. 5.3 shows the miss detection probability versus global fusion SNR. In

the simulations, we choose N = 5 and h = [0.23 − 0.44j, 0.14 − 1.08j,−0.54 −

0.30j, 0.51 + 0.82j, 0.43 + 0.37j]T. From the curves, we see that the miss detection

probability increases as ρ increases. Furthermore, when the global fusion SNR

increases, the detection performance approaches the asymptotic bound in (5.11).

In Fig. 5.4, we plot the miss detection probability versus number of secondary
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Figure 5.3: Miss detection probability versus global fusion SNR.
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Figure 5.4: Miss detection probability versus the number of secondary users.

113



users. In the simulation, we choose SNR = 5dB and H = IN. As expected, we

see that when more secondary users cooperatively sense the spectrum, the miss

detection probability decreases. Additionally, the result in (5.12) provides a close

match to the exact performance.

5.6 Chapter Summary

In this chapter, we have countered unreliable uplinks to the fusion center by ap-

plying beamforming amongst secondary users who communicate locally measured

SNRs to a common fusion center. Under correlated lognormal shadowing, we have

derived optimal beamforming weights that maximize the global detection prob-

ability subject to a global transmit power constraint. Then, we have computed

the detection performance for a simplified linear array network and showed that

detection probability increases as the number of secondary users increases.
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Appendix A

Proofs for Results in Chapter 2

A.1 Solution for Convergence Region in (2.17)

Let us denote the pairs of eigenvalues of H corresponding to λi(L) as λi′(H) and

λi′′(H), i.e.,











λi′(H) = 1
2

[

1− ελi(L) +
√

(1− ελi(L))2 + 4γελi(L)
]

λi′′(H) = 1
2

[

1− ελi(L)−
√

(1− ελi(L))2 + 4γελi(L)
]

.

Now, we examine the convergence region for the second-order DCTS algorithm

based on the conditions |λi′(H)| < 1, 1 < i′ ≤ N and |λi′′(H)| < 1, 1 < i′′ ≤ N.
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Case I: When λi′(H) and λi′′(H) are real values

In this case, we have (1− ελi(L))2 + 4γελi(L) ≥ 0, i.e.,

γ ≥ − [1− ελi(L)]
2

4ελi(L)
, 1 < i ≤ N. (A.1)

In the following, we assume that 1 < i, i′, i′′ ≤ N unless otherwise stated.

1. First, we consider the convergence region for λi′(H). After some manipula-

tions, we can show that the convergence region is

{

γ < 1, 0 < ε <
3

λi(L)

}

∪
{

2− ελi(L)
ελi(L)

< γ < 1, ε >
3

λi(L)

}

.

2. Then, we consider the convergence region for |λi′′(H)| < 1 which is given as

{

γ <
2− ελi(L)
ελi(L)

, 0 < ε <
3

λi(L)

}

.

Combining the convergence region for λi′(H) and λi′′(H) with (A.1), the con-

vergence region R1 for this case is

R1 =
{

− [1− ελi(L)]
2

4ελi(L)
≤ γ < 1, 0 < ε <

1
λi(L)

}

∪
{

− [1− ελi(L)]
2

4ελi(L)
≤ γ <

2− ελi(L)
ελi(L)

,
1

λi(L)
≤ ε <

3
λi(L)

}

. (A.2)

126



Case II: When λi′(H) and λi′′(H) are complex values

In this case, we have (1− ελi(L))2 + 4γελi(L) < 0, i.e.,

γ < − [1− ελi(L)]
2

4ελi(L)
.

Here, <{λi′(H)} = <{λi′′(H)} and ={λi′(H)} = −={λi′′(H)}. Thus we only need

to examine the convergence region for |λi′(H)|. In order to satisfy the conditions,

we have

1. The real part of λi′(H) should be less than 1, i.e., |< {λi′(H)} | < 1, then we

have

0 < ε <
3

λi(L)
.

2. The imaginary part of λi′(H) should be less than 1, i.e., |= {λi′(H)} | < 1,

then we have

−4 + [1− ελi(L)]
2

4ελi(L)
< γ < − [1− ελi(L)]

2

4ελi(L)
.

3. The absolute value of λi′(H) should be less than 1, i.e., <2 {λi′(H)} +

=2 {λi′(H)} < 1, then we have

γ > − 1
ελi(L)

.

Combining the above results, the convergence region R2 for this case is

R2 =
{

− 1
ελi(L)

< γ < − [1− ελi(L)]
2

4ελi(L)
, 0 < ε <

3
λi(L)

}

. (A.3)
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By taking the union ofR1 in (A.2) and R2 in (A.3) and considering the increas-

ing order of λi(L), the convergence region for the second-order DCTS algorithm in

(2.19) is obtained.

A.2 Solution for Spectral Radius Minimization

in (2.20)

Here we give a sketch solution to the spectral radius minimization problem in

(2.20). Since λ2(L) ≤ · · · ≤ λN(L), the optimization problem is equivalent to

minimizing

max {|λ2′(H)|, |λ2′′(H)|, |λN′(H)|, |λN′′(H)|} . (A.4)

1. First, we find the optimal γ given ε to minimize (A.4). Here we consider four

different cases depending on whether λ2′(H), λ2′′(H), λN′(H), λN′′(H) are real

values or complex values. After algebraic derivations, we can show that the

minimum of (A.4) given ε can be achieved when λ2′(H) and λ2′′(H) are

real values and λN′(H) and λN′′(H) are complex values. Additionally, the

following equation should be satisfied:

|λ2′(H)| = |λN′(H)| = |λN′′(H)|.

Thus, we have

γ = − λN(L) [1− ελ2(L)]
2

ε [λ2(L) + λN(L)]
2 . (A.5)

2. Next, we find the optimal ε given γ to minimize (A.4). Again, this can be
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achieved by taking ={λN′(H)} = 0. Then, we have the following relationship

between ε and γ:

γ = − [1− ελN(L)]
2

4ελN(L)
. (A.6)

Combining (A.5) with (A.6), we get (2.21).
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Appendix B

Proofs for Results in Chapter 3

B.1 Proof of Lemma 3.3.3

Proof. Define δ̃(k) = δ(k)− E[δ(k)]. Then, the dynamics of this vector are given

as follows

δ̃(k) = P̃δ̃(k − 1) + εQ̃Av(k − 1). (B.1)

To prove this lemma, we consider instead the evolution of the covariance matrix

of the disagreement vector Σδ(k) since

E
[

δ̃(k)Tδ̃(k)
]

= tr [Σδ(k)] = tr
{

E
[

δ̃(k)δ̃(k)T
]}

.

Then, the proof of the lemma is equivalent to proving the following statement:

Σδ(k) = P̃kδ(0)δ(0)TP̃k + ε2σ2
k−1
∑

l=0

P̃lQ̃A2Q̃P̃l. (B.2)
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It is straightforward to show that (B.2) holds when k = 1. Now let us assume

that (B.2) is true when k = m (m > 1), i.e.,

Σδ(m) = P̃mδ(0)δ(0)TP̃m + ε2σ2
m−1
∑

l=0

P̃lQ̃A2Q̃P̃l.

When k = m+ 1, we have

Σδ(m+ 1) = E

{

[

P̃δ̃(m) + εQ̃Av(m)
] [

P̃δ̃(m) + εQ̃Av(m)
]T
}

= P̃m+1δ(0)δ(0)TP̃m+1 + ε2σ2
m
∑

l=1

P̃lQ̃A2Q̃P̃l + ε2σ2Q̃A2Q̃

= P̃m+1δ(0)δ(0)TP̃m+1 + ε2σ2
m
∑

l=0

P̃lQ̃A2Q̃P̃l. (B.3)

Therefore, Σδ(m+ 1) has the same form as (B.2) for k = m+ 1. Thus, (3.11)

is valid and we conclude the proof.

B.2 Proof of Theorem 3.3.2

Before proving the theorem, first we present some known results.

Theorem B.2.1. For any matrix A1 and any symmetric matrix A2, let Ā1 =

(A1 +AT
1)/2, then we have [75]

N
∑

i=1

λN−i+1(Ā1)λi(A2) ≤ tr(A1A2) ≤
N
∑

i=1

λi(Ā1)λi(A2),

where λi(·) denotes the ith smallest eigenvalue of a matrix. In particular, if A2 is
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a positive semidefinite matrix, we have

λ1(Ā1)tr(A2) ≤ tr(A1A2) ≤ λN(Ā1)tr(A2). (B.4)

If A1 is a positive semidefinite matrix, replacing A1 with A2 in (B.4), we

have [76]

λ1(Ā2)tr(A1) ≤ tr(A1A2) ≤ λN(Ā2)tr(A1). (B.5)

Combining (B.4) with (B.5), we have the following theorem:

Theorem B.2.2. If A1 and A2 are two positive semidefinite matrices, we have

tr(A1A2) ≥ max {λ1(A1)tr(A2), λ1(A2)tr(A1)}

tr(A1A2) ≤ min {λN(A1)tr(A2), λN(A2)tr(A1)} . (B.6)

We can now prove Theorem 3.3.2.

Proof. We know that the eigenvalues of (L +K)−2 are 1 and 1/λ2
i (L), i = 2, · · · ,N.

Also, λmax(Q̃) = 1 and λmin(Q̃) = 0. Recall that

λi(W2) =
1
2

[

1
ελi(L)

+
1

2− ελi(L)

]

, i = 2, · · · ,N.

Since ε ∈ (0, 2/λN(L)), the eigenvalues of W2 are nonnegative. Thus, λmin(W2) =

0. In addition, W2 and A2 are positive semidefinite matrices with tr(A2) = DN.

For a time delay unbalanced network, Q̃u 6= 0. Based on (3.17) and (B.6), σ2
∆t is
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upper bounded by

σ2
∆t ≤

‖uQ̃‖2
min{λ2

2(L), 1}
+ ε2σ2tr

(

W2A2)

≤ uTQ̃u
α2

+ ε2σ2min
{

λmax(W2)tr(A2), λmax(A2)tr(W2)
}

≤ ‖u‖
2

α2
+ εσ2min

{

DN max {λi} , λmax(A2)
N
∑

i=2

λi

}

. (B.7)

From [58], we know that λN(L) ≥ N
N−1 max{di} > max{di} > 1, ∀i ∈ V. Then,

σ2
∆t is lower bounded by

σ2
∆t ≥

‖uQ̃‖2
max{λ2

N(L), 1}
+ ε2σ2tr

(

W2A2)

≥ uTQ̃u
α1

+ ε2σ2max
{

λmin(W2)tr(A2), λmin(A2)tr(W2)
}

=
uTQ̃u
α1

+ εσ2λmin(A2)
N
∑

i=2

λi. (B.8)

This completes the proof.
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Appendix C

Proofs for Results in Chapter 4

C.1 Proof of Lemma 4.3.2

Proof. Here we prove this lemma by contradiction. First we assume that (κ, z)

with κi = 0, zi > 0 or κi > 0, zi = 0 for secondary user i is the optimal solution for

(4.13). Let us define the optimal value is p∗. Since κizi = 0, the objective function

remains unchanged in (4.13). Then, the optimization problem becomes

max
κ,z

N
∑

j=1,j 6=i

Fj(κj, zj)

s.t. c0
N
∑

j=1,j 6=i

κj +
N
∑

j=1,j 6=i

ξjzj ≤ C̄′

κj ≥ 0, zj ≥ 0, ∀j 6= i. (C.1)
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where C̄′ = C̄ − ξizi when κi = 0, zi > 0, or C̄′ = C̄ − c0κi when κi > 0, zi = 0. In

either case, we see that C̄′ < C̄. To prove this lemma, we need to find a substitute

solution (κ′, z′) with optimal value p′∗ > p∗. To do this, let us replace the solution

for secondary user i as κ′
i = z′i = 0. In this case, the optimization problem becomes

max
κ,z

N
∑

j=1,j 6=i

Fj(κj , zj)

s.t. c0
N
∑

j=1,j 6=i

κj +
N
∑

j=1,j 6=i

ξjzj ≤ C̄

κj ≥ 0, zj ≥ 0, ∀j 6= i. (C.2)

Then, we see that it is equivalent to proving that the optimal value p′∗ in (C.2) is

greater than p∗ in (C.1). Since the objective and constraint functions in these two

optimization problems are identical, this can be easily proved by convex relaxation

in optimization problem, which implies that we can find a substitute solution

(κ′, z′), i.e., p′∗ > p∗. This contradicts the assumption that (κ, z) is the optimal

solution and we can conclude the proof.

C.2 Proof of Theorem 4.3.1

Proof. The Lagrangian function of (4.13) can be given as

L(κ, z, λ0,u, v) = −
N
∑

i=1

κizi
piκi + qizi

+ λ0(c01Tκ+ ξTz)− uTκ− vTz − λ0C̄,

where λ0 ≥ 0, u = [u1, u2, · · · , uN]T and v = [v1, v2, · · · , vN]T, here ui ≥ 0 and

vi ≥ 0 are Lagrangian multipliers. After some manipulations, the KKT conditions
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are

qiz2i
(piκi + qizi)2

+ ui − c0λ0 = 0 (C.3)

piκ2
i

(piκi + qizi)2
+ vi − ξiλ0 = 0 (C.4)

λ0
(

c01Tκ+ ξTz − C̄
)

= 0 (C.5)

uiκi = 0, vizi = 0. (C.6)

From Lemma 4.3.2, we see that ui and vi need to be 0 or greater than 0 simulta-

neously. First we assume ui = vi = 0 and λ0 > 0, which indicates that κi > 0 and

zi > 0. Then from (C.3) and (C.4), we have zi = ωiκi, where ωi =
√

c0pi/(qiξi).

Plugging this into (4.13), the original optimization problem becomes

max
κ

∑

i∈I
s1iκi

s.t.
∑

i∈I
s2iκi ≤ C̄, κi ≥ 0, ∀i ∈ I, (C.7)

where I = {i|κi > 0, zi > 0}, s1i = (qi + pi/ωi)−1 and s2i = c0 + ξiωi. Let us

define s1 = [s11, s12, · · · , s1N]T and s2 = [s21, s22, · · · , s2N]T. Since adding zero will

not change the objective function and constraints in (C.7), we can rewrite this

optimization problem as

max
κ

sT1κ

s.t. sT2κ ≤ C̄, κ � 0. (C.8)

This is a classic linear optimization problem, thus we can solve this easily. Since

the vertices of the polyhedron are the basic feasible solution for linear optimization
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problem [77], the optimal solution of (C.8) suggests that only one of κi is non-zero

while others are all zero. Let us define ρi = s1i/s2i and assume ρ1 ≥ ρ2 ≥ · · · ≥ ρN.

Then, the optimal solution of (κ, g) can be given in Theorem 4.3.1. This completes

the proof.

C.3 Solution for Set S0

Here we follow the analysis in [78] to find S0. From (4.22), we see that in order to

guarantee zi ≥ 0, we need to have
√
λ0 ≤

√

ai/(biξi), which indicates f(i) < 1 for

some is. Then, the problem can be stated as: given β1 ≤ β2 ≤ · · · ≤ βN, f(iS) < 1

and f(iS + 1) ≥ 1, we have

1. f(i) is an increasing function of i for i ≤ iS ;

2. f(i) ≥ 1 for i > iS .

Proof. It is straightforward to show that f(1) < 1. This indicates that S0 6= ∅ and

thus there exist feasible solutions for z. When i > 1, we have

f(i+ 1) =
βi+1

∑i
j=1

√

ajbjξj + bi+1ξi+1
∑i

j=1 bjξj + Ptot + bi+1ξi+1

≥
βi
∑i

j=1

√

ajbjξj + bi+1ξi+1
∑i

j=1 bjξj + Ptot + bi+1ξi+1

(a)
≥











f(i), i < iS

1, i > iS .

The first inequality in (a) is valid since when x/y < 1, we have (x+c)/(y+c) ≥ x/y,
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where x, y, c > 0. Then, we see that f(i) is an increasing function of i for i ≤ iS .

The second inequality in (a) is valid since when x/y ≥ 1, we have (x+c)/(y+c) ≥ 1.

This indicates that when f(i) ≥ 1, f(i + 1) ≥ 1 for i > iS . This completes the

proof.

C.4 Solution for Set S1

Similar to the solution for S0, we need to show that: given β̃1 ≤ β̃2 ≤ · · · ≤ β̃N,

f̃(iS) < 1 and f̃(iS + 1) ≥ 1, we have

1. f̃(i) < 1 for i ≤ iS ;

2. f̃(i) ≥ 1 for iS < i ≤
⌊ Ptot
Pmax

⌋

.

Proof. To prove part 1), here we consider 4 cases which depend on the values of β̃i

and βi: a) S̃i = S̃i−1 ∪ S̃ ′
i \ {i}, b) S̃i = S̃i−1 ∪ S̃ ′

i, c) S̃i = S̃i−1 \ {i}, d) S̃i = S̃i−1,

where S̃ ′
i = {m|β̃i−1 < βm < β̃i, i < m ≤ N}. Now we start with case a). In case

a), we have βi < β̃i−1 and S̃ ′
i 6= ∅. Furthermore, we note that

β̃i−1

∑

m∈S̃i−1

√

ambmξm

≤ β̃i

(

∑

m∈S̃i

√

ambmξm +
√

aibiξi −
∑

m∈S̃′
i

√

ambmξm
)

≤ β̃i

∑

m∈S̃i

√

ambmξm + (Pmax + biξi)−
∑

m∈S̃′
i

bmξm.
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The last inequality is valid since when m ∈ S̃ ′
i, βm < β̃i, which implies

β̃i

∑

m∈S̃′
i

√

ambmξm ≥
∑

m∈S̃′
i

βm

√

ambmξm =
∑

m∈S̃′
i

bmξm.

After some manipulations, when f̃(i) < 1, ∀i < iS , we have

f̃(i− 1) ≤
β̃i
∑

m∈S̃i

√
ambmξm + c1

(Ptot − iPmax +
∑

m∈S̃i
bmξm) + c1

< 1,

where c1 = (Pmax + biξi)−
∑

m∈S̃′
i
bmξm. The last inequality is valid because when

x/y < 1, we have (x+ c1)/(y+ c1) < 1, where x, y > 0 and c1 > −x. Similarly, we

see that for other three cases, we also have f̃(i− 1) < 1.

Now let us prove part 2). Similarly, for case a), we have

f̃(i+ 1) ≥
β̃i
∑

m∈S̃i

√
ambmξm − c2

(Ptot − iPmax +
∑

m∈S̃i
bmξm)− c2

≥ 1.

where c2 = (Pmax + bi+1ξi+1)−
∑

m∈S̃′
i+1

bmξm. The last inequality is valid because

when x/y ≥ 1, we have (x− c2)/(y− c2) ≥ 1, where x, y > 0 and c2 < y. Similarly,

we see that for other three cases, we have f̃(i + 1) ≥ 1. This completes the

proof.
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