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Abstract

The presented research entails three critical areas of the electric power systems that can sig-

nificantly impact its reliability and resiliency: retail market design (Chapters 2 - 4), renewable

integration (Chapter 5) and post-disturbance grid recovery (Chapter 6).

With the increase of intermittent renewable resource on the electric grid, comes the potential

for more reliability issues. To increase reliability and efficient operation of the electric grid in

presence of renewables, a novel retail electricity pricing scheme (GenMinimax) is introduced. The

scheme incentivizes end-users to efficiently follow system operators/utilities optimal supply signals

while shaping their demand for lower energy bills. The presentation will highlight the performance

of GenMinimax compared to that of Time-of-Use and Real-time pricing. GenMinimax is preceded

by Minimax pricing, which helps improve the load factor.

Next, the work focuses on renewable market integration modeling. To increase renewable energy

farms marketability and integration while interfacing the grid from the inherent volatility of their

output, we devised optimal storage-based reliability-aware portfolio bidding strategies that enable

them to participate in multiple markets and play an active role in grid reliability. A short-term

reserve market was proposed and proved beneficial for both renewable farms and grid operation.

The third solution area aims at devising post-disturbance restoration strategies for resilient

power systems. For an efficient recovery after large disturbances such as weather-related power

outages, a post-disaster microgrid formation model is proposed. The model applies to any type

of network topology and accommodates demand-responsive loads and fixed or mobile distributed

black-start resources for grid recovery operation and planning. A heuristic approach introduced,

proves to reduce the CPU time.

1



Chapter 1

Introduction

1.1 Minimax pricing, providing incentives to improve the

load factor

Over the past 5 years, the average price of electricity for residential consumers in US has

increased by 29% [3]. Over the last 20 years, the residential electricity demand in US has increased

49% due to increasing number of energy-consuming household devices [4]. As a result, the average

home electricity bill now accounts for 2.8% of household income [4, 5]. The most direct way for

consumers to reduce their electricity bills is to simply use less electricity but this is not realistic

since each household has more and more energy-consuming devices e.g. more smartphones and

laptops. Another way to reduce the cost is to reduce demand peaks since a significant fraction of the

electric grid’s capital and operational expenses is incurred for satisfying its peak power demands.

The marginal cost for generating electricity is non-linear and increases rather exponentially as

more costly generators are used to meet peak demands [4]. Utilities have also explored using

large-scale centralized energy storage systems at strategic points within the grid to reduce peak

demands [6]. Consumers too are incentivized to install and control their own small-scale energy

storage systems [7,8] to reduce peak demands. In addition, to reduce peak demands, many utilities

have explored using market-based charging schemes instead of the conventional fixed-rate pricing

model. For example, Time of Use (TOU) pricing scheme which charges more during peak hours

and less during off-peak hours is being used in Ontario [9]. Three different price tiers (off-, mid-

and peak) are used. Similarly, Illinois already requires utilities to provide residential consumers the

option of using day-ahead wholesale hourly electricity prices [10]. However, such pricing schemes

2



put too much burden on consumers to continuously monitor their usage to reduce costs. Consumers

may need to install batteries to allow them to use less energy during peak hours and re-charge

the batteries during off-peak hours. Such installation costs them money and hence not many are

willing to respond to price changes and hence the grid operators may not see any cost-saving

benefits of peak reduction. Furthermore, there is a possibility of increasing grid peaks if demand is

highly elastic and responsive to price changes [4]. The authors in [4] show that the peak demand

will migrate to the previously off-peak period and might increase peak demand by nearly 120% if

TOU pricing scheme is used. With Real-Time Pricing, peak demand might decline and off-peak

demand might increase, so the price difference between peak and off-peak prices narrows and hence

the benefits of energy storage might also decrease which discourages consumers from adopting the

RTP.

The present work designs a new pricing scheme called the Minimax scheme which incentivizes

consumers to schedule their deferrable demands such that they can see reduction in energy bills

without causing the system to experience increase in peak load demands.

1.2 The Value of Aggregation Under Minimax

Responsiveness of demand is key in any efficient energy management program [11]. Price

has been extensively used as a management tool to incentivize end-users [12]. Witness, most

demand response (DR) programs are either cost reduction based or reward based [13]. However,

for consumers to participate in DR programs, they must have DR resources available [14]. These

are deferrable loads whose start-up can be shifted to another time, curtailable loads which can

be simply kept off-line, and interruptible loads which can be turned off if needed. Even if DR

programs encounter success in industry [15], they hardly write the same succes story in residential

settings due to small amount of deferrable load at individual end-user premises [16] The more DR

resource one has available, the more flexible his demand is in adjusting to different DR signals. By

pooling their individual DR resources, aggregate consumers can unleash the market power of the

load. Indeed, few works discussed the benefits of load aggregation benefits of demand aggregation

in the context of deregulated power industry. For instance Barsali et al. in [17] point out that

load aggregation provides simplified balancing procedures, helps achieve consumption thresholds

and provides consumers with contractual power which makes them non-negligible players in the

power and energy market. In fact, Kirby [18] showed that loads can even provide more reliable

3



contingency reserves than generators.

In this work, we explore both economical and technical benefits of load aggregation under the

electricity retail pricing scheme, Minimax, introduced in 2.

1.3 GenMinimax pricing, a market tool for reliable electric

grids

In electricity wholesale markets, producers, utilities, aggregators and load serving entities

(LSE), amongst others, trade energy under the management of a system operator (SO). The

wholesale price, set frequently (e.g., every 15 minutes), is settled by the dynamic equilibrium of

supply and demand. It is under such dynamic pricing situation that retailers buy electricity and

resell it to consumers who cannot directly participate in the wholesale market. The retail pricing

design is based on how much uncertainty or risk end-users are willing to face, and the availability

of both long and short-term contracts.1 There are two major forms of tariffs found in literature:

static and dynamic pricing.

In the case of static pricing, consumers are isolated from the wholesale dynamics, leading to

perfectly inelastic demands with respect to prices [14]. In compensation, as part of the flat rate,

consumers pay an insurance premium against the risk of price spikes [14,19,20].

In dynamic pricing, a measure of wholesale market uncertainties is passed onto end-users, tak-

ing advantage of the price elasticity of demand. The contracts offered to consumers are generally

based on the uncertainty level in wholesale markets, sometimes with provisions included to take

advantage of the consumer’s willingness to pay for coverage against price spikes.The most common

forms of dynamic pricing include time-of-use (TOU), critical peak pricing (CPP), peak time rebate

(PTR), variable peak pricing (VPP), real time pricing (RTP) [13,21–23].

Faruqui et al. observed in 34 projects across seven countries that TOU contracts induce 3 to

6% drop in peak demand, while CPP led to a 13 - 20% drop [22], with differences driven by the

heterogeneities in rates. The authors in [4] show that the peak demand may migrate to the previous

off-peak period and might be increased by nearly 120% if TOU is used. In our previous work [24],

we also showed through simulation that TOU might result in a higher peak demand if a consider-

1In this work, we focus on short-term contracts.
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able number of consumers simultaneously shift their flexible loads to off-peak hours. Even if RTP

tends to be the most efficient retail pricing scheme [25–27], it does not guarantee peak demand

reduction as proven in [24]. McDonald & Lo point to social welfare as a fundamental basis for

retail pricing design [28]. However, the communication technology and automation requirements

of RTP along with the uncertainty related anxiety caused to consumers seems to be far greater

than any potential bill reduction. Therefore, there are challenges associated with TOU and RTP

in terms of consumers’ incentives to follow the wholesale optimal energy profile. These schemes

do not ensure peak demand reduction, which is crucial for a more economical management of the

installed capacity. As Triki and Violi in [29] show, even customers with low consumptions during

peak periods are charged the same high rates caused by those who contribute more significantly

to the high peak demands [30], which is not fair. Hence, there is a pressing need to rethink retail

electricity pricing so as to achieve price responsive demands through price signals, while ensuring

reasonable peak demands. For DR resources to trigger the demand to follow the supply [31] in a

price-based DR environment, every participant should be encouraged to follow the supply signals.

To this end, [29] proposed a hybrid two-component pricing scheme made of a flat tariff followed

by a recourse dynamic price that captures the stochasticity of supply and demand. By combining

static and dynamic pricing, the authors in [29] aimed to flexibly compensate the shortcomings

of both pricing types with their benefits. The only challenge for the customers is that they do

not know their energy price until their demand is realized. To address uncertainty and reduce

end-users’ anxiety while enabling price responsiveness of demand and achieving lower peak loads,

we introduced in Chapter 2 [24]. The presented research formulates the interaction between the

players in the framework of our proposed reliability-driven pricing scheme as a bilevel (or more

accurately, two-stage) optimization problem.

Previous works on bilevel optimization [32, 33] usually have decision variables between inner

and outer problems depending on each other. In this work we propose an approximation method to

decouple these decisions. We measure the performance of the consumers’ decisions given the load

aggregator signal. In our model, the follower’s decision mostly affects her own payoff, contrasting

with models where the leader has to readjust his strategy depending on the follower’s response

(see e.g., [34–36]). We solve first the inner problem, and the optimal solution is used as input to

the outer problem. This approximation improves computational tractability while maintaining the

salient features of the model. A strand of the literature studies the incentives to manipulate the
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market prices to their own advantage [37–39]. We impose incentive compatibility conditions for

the consumer group to modify their behavior in response to the aggregator’s signal and remediate

this issue. Further, more sophisticated and intelligent energy consumption management approach

exists in the literature (e.g. [40]) but most of them may not be readily applicable due to their com-

plexity for customers or their cost compared to their potential benefits. We propose a day-ahead

scheduling model that produces a schedule any commercially available energy management system

can implement. Finally, there is a growing body of literature [41–44] showing that load aggrega-

tion is beneficial to both consumers and the grid due to its potential to reduce electricity market

average prices, provide more flexibility in shaping demand profiles and achieve greater savings for

customers.

In this work, we generalize the approach introduced in Chapter 2 [24] to any reference supply

curve having in mind the high renewable penetration expected worldwide by 2020 [45].

1.4 Reliabilty-aware Renewable Integration: Introduction

of a Short-term Reserve Market

The first and most daunting enemy of renewable energy integration into the electric grid remains

its inherent intermittency. This poses a reliability threat to the electric grid in addition to demand

variability and the unpredictable contingencies related to generation, transmission and distribu-

tion. Reserves are needed to balance supply-demand mismatches. The reserve market constitutes

a critical asset for reliable and economic system operation in providing, whenever necessary, the

missing portion of needed energy at an acceptable cost. Thus, with high renewable penetration,

the capacity of reserve (as an insurance premium) is expected to increase [46]. This can prove

to be a handicap for renewable integration since reserve costs may increase as well, limiting the

achievable percentage of renewable penetration for a reliable grid. To mitigate this reliability is-

sue, it is reasonable to involve renewable farms in the grid reliability efforts. In the attempt of

making renewable farms responsible for any mismatch between their day-ahead commitment and

their actual power output, some market policies impose supply shortfall penalties [47].

The focus of a significant amount of research in the literature is on devising better methods of in-

tegrating renewable energy converters (REC) into the existing power grid. A first category of work

seeks solution in more accurate short-term (24-36 hours) forecasting techniques [48–50]. Neverthe-
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less, forecasting errors cannot be completely eliminated. Thus, even though improving forecasting

accuracy could significantly contribute to reliability, the research community have sought after

other renewable integration strategies. Bathurst et. all [48] evaluated several market structures in

order to suggest to policy makers and market operators the one that promotes a fair and reliable

wind power integration. They came to the conclusion that the market clearing price calcula-

tion should not account for wind generation. Makarov et al. [51] contemplate intra-day markets

as critical to improving reliability of offered wind contracts given that short term forecasts tend

to be more accurate. Castronuovo and Lopes [52] designed a combined wind and hydro system

where the pump hydro is aimed at shifting the output of the wind energy converter (WEC) in time.

In the specific scope of this work, Dukpa et al. proposed an optimal participation strategy

for a WEC coupled with an energy storage system (ESS) that maximizes profit and mitigate the

risk of supply shortfalls. The authors confirm that it is imperative to combine a REC with an

ESS to increase reliability and profitability. Bathurst et al. [48], Matevosyan and Soder [53], and

Morales et al. [54] studied the wind farm profit maximization problem in a stochastic programing

approach. Botterud et al. [55], and Morales et al. [54] further added a risk sensitivity term, the

conditional value at risk (CVaR) to the objective in order to control the variability of the expected

profit. Pinson et al. [56] proved that the optimal day-ahead bid can be expressed as a probabilistic

quantile on prices as in the newsvendor problem, a classic problem in inventory theory [57]. Dent

et al. [58] allow wind and imbalance prices to be correlated, taking into account the practical

impacts of wind power injection on system balance. Moreover, Bitar et al. [59] derived an explicit

formulae for optimal contract offering and the corresponding optimal expected wind farm profit in

a competitive two-settlement market settings.

In this work, we exploit the analytical results of [59] to derive a criterion for renewable farms’

participation in the grid reliability efforts.The renewable energy farms’ bidding strategy is formu-

lated as a portfolio optimization problem assuming a storage system. The portfolio is made of

the day-ahead, real-time and short-term reserve offers. We first start by analyzing the renewable

day-ahead bidding problem as a newsvendor one. We formulate the farm’s intra-day strategy as a

two-stage stochastic optimization problem. Next we evaluate the impact of the short-term reserve

market opportunity on the farm’s profitability, at different levels of risk aversion. The main con-

tribution of this chapter is the assessment of potential benefits, if any, renewable energy resources
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would have in participating in short-term reserve markets with both capacity and energy offers.

The study also presents the change in risk range and profit reduction that result from the reserve

market. By separating the day-ahead and intra-day strategies, we aim to emphasize the corrective

nature of the intra-day market.

1.5 Post-disaster Grid Recovery Through Optimal Micro-

grid Formation

The socio-economic losses due to power outages during the last decades are evidence that

enhancing the ability to rapidly restore the functionality of the power system is a fundamental

concern for operators and planners. According to the Executive Office of the President, weather-

related outages are estimated to have cost the U.S. economy an inflation-adjusted annual average

of $18 to $33 billion over the period from 2008 to 2012 [1]. Campbell estimates that weather-

related outages cost the U.S. between $20 and $55 billion annually [60], and superstorm Sandy,

the second most costly storm in US history, left 8.5 million customers without electricity across

15 U.S. states [61]. The National Centers for Environmental Information (NCEI) [62] reports 196

weather and climate disasters from 1980 to 2016 in the U.S., with related costs of approximately

$1 billion, adjusted by the consumer price index (CPI). Further, according to NERC, all of the

top-10 most severe power outages (ranked based on the severity risk index - SRI) in 2014 were

initiated or aggravated by weather events [63].

Even though operational reliability and the effects of events with low impact but medium to

high probability of occurrence have long been in the realm of system operators [64], the capacity to

restore the functionality of the system after a low probability, high impact event, what we define

as grid resilience, is garnering increasing attention. The severe impact of natural disasters on the

electric power system and the increasing trend of power outages has been considered in [1]. The

criticality of resiliency in grid modernization efforts has been considered in [65]. Descriptive studies,

such as [66], examine the resiliency of the power network by developing spatial and non-spatial

econometric models to estimate factors affecting the restoration time, including the restoration

priority, infrastructure characteristics and weather related variables. Generally, strategies to deal

with extreme event disruptions can be grouped into two broad categories: preventive and corrective

actions. The objective of preventive pre-disaster strategies is to find the most potentially vulnerable

components in order to replace or upgrade them before any potential disturbance. Preventive
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actions include but are not limited to installing power lines underground, reinforcement of poles,

management of vegetation and stockpiling of power lines [67]. However, strategies such as installing

lines underground cost two to ten times as much as overhead lines [68], and create issues with

restoration [69]. Other works, such as Ma et al. [70], approach the grid resilience enhancement

problem from a preventive viewpoint by proposing an optimal hardening strategy that finds critical

components (lines, poles, etc.). This is done through a greedy search that minimizes the hardening

investment cost.

Corrective strategies are scenario-based backup plans designed to reduce the impact of a dis-

aster, if any, and recover from disruptions as quickly as possible. In a corrective approach, Sarkar

et al. [71] propose an adaptive distribution grid restoration method based on tie-line switching

that is formulated as a non-linear mixed-integer program (MIP) that is solved by a greedy search

algorithm to reduce the combinatorial search space. Choobineh and Mohagheghi [72] propose a

non-linear MIP to optimally dispatch energy resources within a microgrid subject to capacity and

fuel availability constraints, in the aftermath of a natural disaster. However, [72] does not address

how the post-disaster microgrids are formed.

Several system restoration models have been proposed in the literature to circumvent either

reliability or resiliency disrupting events (see, e.g., [73]). Ren et al. [74] develop a multi-agent sys-

tem with a dynamic agent team forming mechanism for interconnected power systems restoration.

Nagata et al. [75] propose a multi-agent framework for power system restoration in which bus

agents are coordinated by a facilitator agent in order to reach a suboptimal system configuration

after fault events, ten years before the work in [74]. Kirschen and Volkmann [76] introduce a

hierarchically structured expert system that separates strategic and tactical reasonings in order to

minimize the restoration time. The same grid resiliency is the subject of Z. Wang and J. Wang [77],

formulating a stochastic self-healing model, that accounts for intermittent energy resources. Farzin

et al. [78] devise a two-stage hierarchical outage management scheme to enhance the resilience of

a multi-microgrid distribution system as a mixed-integer linear program (MILP) using the total

energy curtailment as a resiliency index. In [78] the authors assume that the distribution grid is

designed as a collection of microgrids with a known structure prior to the events. In fact, micro-

grids are considered as key assets in improving grid resilience and studies to validate them as a

viable grid hardening solution are being conducted by New York, Connecticut and California as

well as the U.S. Department of Energy. One of the most attractive features of microgrids is their

ability to operate in island and grid-connected modes [79]. Tan et al. [80] propose a grid recovery
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scheme based on a black-start sequence algorithm and spanning tree search, assuming that a fixed

distributed generator (DG) with black-start capability is available after the disaster. Microgrids

are first formed around the DG units without including any load. Loads belonging to microgrids

are picked up according to Kirchhoff’s laws and other critical isolated loads are connected through

a spanning tree search. Gao et al. [81] introduce a critical load restoration method using microgrids

and considering generation resource availability as well as uncertainties associated to intermittent

energy sources and loads in a continuous operation time mode. Guidelines on microgrid operation

and system restoration dynamics can be found in [82,83].

Most of the existing methods based on topological control seek to isolate the faulted line

or area by reconfiguring the feeder to allow as much load as possible to be served. A general

assumption when these strategies are applied to the distribution grid is that the substation (the

interface between the transmission and distribution systems) is healthy after the fault. Recent

work by Chen et. al [84] relaxes this assumption in the context of chaotic weather events where

the only supply solutions available following the disaster might be DG units arbitrarily positioned.

The problem then transitioned from a topological structure alteration to a network partitioning

problem where each partition, called a microgrid, is supplied by a DG. However, the MILP model

proposed applies only to radial distribution grids, in which there is only one generation bus. In [84],

the DG units are prepositioned, possibly precluding to reach maximum load pick-up. In [85], the

authors address this DG location constraint by dynamically allocating DG units to candidate nodes.

They assumed DG units to be mobile emergency generators (e.g., truck-mounted), a conjecture

consistent with overall restoration efforts. In fact, amongst the lessons learned after the severe

ice storm that affected eastern Canada and the northeastern US from 20 to 23 December 2013,

the use of large-scale portable Diesel generators comes out as recommended in the preparedness

process [86]. These emergency generators can be placed in any location where there may be a need

to support the microgrid formation. However, the distribution system model considered in [85] is

still one with a single microgrid root.

In this work, we extend the previous work, particularly [84],2 to account for a future grid, where

the direction of flows on a given branch is not necessarily known beforehand. We focus on resiliency

events assuming reliability as a prerequisite [87–89]. Our main contributions are (1) we do not

assume a radial network, allowing distribution systems where consumers may have energy sources

on their premises, in which case the direction of the flow on a given branch is not predetermined,

2See the Appendix for a detailed discussion.

10



that is, the relationship parent-child nodes is reversible because there are potentially multiple root

nodes; (2) we account for both fixed and mobile DG units that can be optimally placed in the

system, and evaluate the benefits that this optimal location has on the objective function, a proxy

for social welfare.

Throughout this chapter, it is assumed that the state of the network (after a possible disruption)

is known before designing the microgrids. For articles in which the state of the network is not

known in advance, but a much simpler microgrid design problem is required to be solved, we direct

the reader to Eskandarpour et al. [90] and the references therein.

1.6 A Heuristic Approach to the Post-disturbance Micro-

grid Formation Problem

The dependence of humanity on electricity renders its unavailability truly handicapping, making

the electric power systems extremely critical. Nevertheless, disruptions are becoming more frequent

due to extreme weather events such as floods, tsunamis, hurricanes, earthquakes and ice storms.

Between 2009 and 2014, the number of power outages has increased by more than 200% (see Fig.

1.1). During Hurricane Sandy, 8.5 million people were left without electricity [61]. The Executive

Office of the President estimates the inflation-adjusted annual average cost of weather-caused power

outages to be between 18 and 33 billion dollars over the period from 2008 to 2012 [1]. According to

Campbell [60], weather-related grid disruptions cost the U.S. economy between 20 and 55 billion

dollars annually. At 2:30 pm EDT 09/11/2017, hurricane Irma caused loss of power to more than 7

million customers in Florida, Georgia and South Carolina [91]. In addition to weather events, the

increasing use of information technology in power system operation makes cyber-physical attacks

a real resiliency threat to the electric grid.

Due to the high impact of the above-mentioned disruptions, their mitigation strategies are

garnering increasing attention [65]. Prevention and corrective solutions have been widely proposed

and explored in the literature. In particular, preventive action plans include revising design, siting

and construction standards, promoting systematic inspection and maintenance schedules, devel-

oping best operating practices, and implementing cyber and physical security measures such as

system hardening, component upgrades, pole reinforcement, vegetation management, and stock-

piling of power lines [67,70]. Corrective plans focus on how to ensure basic urgent levels of service

(survivability) and how to recover from a forced outage as quickly as possible. This article is
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a contribution to the body of literature on post-disaster grid recovery and, in particular, to the

microgrid formation and resource allocation literature. In fact, due to their ability to operate

in island and grid-connected modes [79], microgrids are widely viewed as a viable grid resiliency

solution, and validation projects are being completed by New York, Connecticut and California as

well as the U.S. Department of Energy.

The literature is rich in interesting grid restoration approaches. In previous work, Choobineh

and Mohagheghi [72], and Sarkar [71] formulate the restoration problem as a non-linear mixed-

integer program (NLMIP). The model in [71] seeks to optimally reconfigure the distribution grid

by switching tie-lines. A proposed greedy search algorithm avoids the computational complexity

of solving the NLMIP by approximately solving the model. Reference [72] focuses on the optimal

dispatch of energy resources within supply capacity and fuel availability limits. In [78], the au-

thors assume the distribution system to be an interconnection of multiple preformed microgrids,

within which, a two-stage hierarchical outage management scheme maximizes the total load served

following a disruption.

The microgrid based grid restoration approach also received much attention in [80], [81] and

[84]. The scheme in [81] considers intermittent energy resource availability and uncertainties in a

continuous operation time mode. Reference [80] assumes that fixed distributed generation (DG)

units with black-start capability are available, and proposes a black-start sequence algorithm using

a spanning tree search for an efficient grid restoration. Chen et. al [84] present a mixed integer

linear program (MILP) formulation with fixed DG units. In [85], the authors relaxed the fixed DG

unit location constraint by optimally allocating mobile emergency DG units to candidate nodes.

The concept of mobile DG units is justified by the recommendations derived from the severe ice

storm that affected Eastern Canada and the Northeastern US in December 2013 [86]. Most of

0 100 200 300 400

2010–2014

2005–2009

2000–2004

330

100

44

Outage Frequency

ti
m

e
sp

an

Figure 1.1: Outage frequency increase between 2000 and 2014 [1]
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the aforementioned models only apply to the traditional radial distribution networks with directed

flows. The work in [92] extends the model in [84] to general network architectures (both radial

and meshed) while allowing both fixed and mobile DG units. The proposed model also accounts

for demand responsive loads. As in [84], each load is assigned a criticality factor to model the

utility or comfort level that a given load provides when served. However, the computation time

of the corresponding MILP models increases significantly with the network size and the number

of microgrids. This computational complexity is a major challenge when it comes to large electric

networks. Given that time is a critical factor in post-disturbance grid restoration, and due to

the fact that many instances of the problem with different parameter settings might have to be

considered to reach a microgrid formation policy for the network, it is important to devise solution

approaches for the problem that would provide answers in as reasonable a time as possible, as well

as using moderate memory resources.

In this work we propose an approximate solution approach for the model in [92] that solves

the microgrid formation problem in reasonable times and using moderate computational resources,

even in large network test cases. Specifically, we propose a 3-stage solution method that decouples

the DG unit placement and the associated grid partitioning problems. The first stage consists

of locating DG units. The second stage uses the DG unit location results from the first stage as

centroids to form corresponding microgrid partitions. The third stage assesses the feasibility of

the microgrids formed in the second stage within the power systems operation constraints.

Furthermore, the modeling of microgrids along with prevailing uncertainties is also critical in

achieving satisfactory microgrid formation plans in light of potential catastrophes. Such an idea

has been discussed in [93], [94], [95] and [96]. In [95], the author presented a two-stage stochastic

programing approach to minimize the expected social cost of microgrids and enhance the resilience

of microgrids in natural disasters. The authors in [94] propose a stochastic programming approach

for increasing resiliency of a distribution system exposed to an approaching wildfire. Also, [96]

and [97] focus on the microgrid energy scheduling and management using stochastic programming

techniques. However, in these works, stochastic programming techniques are not used to address

the crucial problem of microgrid formation under uncertainty on the potential failure scenarios

faced by the electrical grid. To our knowledge, this problem has received little attention in the

literature due to the numerical complexity associated with its solution.

More specifically, we consider a situation under which the uncertain failures that can affect a

power system are given in the form of a finite number of scenarios, together with their probability of
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occurrence. In this case one is interested in deciding where to increase the generation capacity of the

network (within resource constraints) so that, in expectation, the network load served is maximized

once microgrids are formed after the failure, based on the placement of the additional generation

capacity. This stochastic problem can be formulated as a two-stage stochastic program. Even

more dramatically than in the deterministic failure case, as the size of the network, or the number

of failure scenarios considered increases, this problem becomes too complex to solve to optimality

using MILP solvers. In this case too, the heuristic solution approach for the deterministic failure

case, proposed here, can be used to approximately solve the problem.

1.7 Outline of The Dissertation

The reset of this dissertation is organized as follows. Chapter 2 presents our work on im-

proving load factor through adoption of Minimax, our proposed retail electricity pricing scheme.

Next, Chapter 3 establishes the importance of load aggregation in achieving grid reliability under

Minimax, and shows how the pricing scheme encourages consumers to pool their deferrable loads.

Chapter 4 describes our work on the Generalized Minimax pricing mechanism, a scheme that in-

centivizes consumer groups to follow a predetermined optimal supply profile for a reduced energy

bill and an improved grid reliability. Chapter 5 describes our work on renewable integration in

which it is demonstrated that introducing a short-term reserve market would increase reliability in

a system with high penetration of renewable energy resources and provide market opportunities for

renewable farm owners. Chapter 6 presents our work on post-disturbance grid recovery through

optimal microgrid formation and resource allocation. Finally, Chapter 7 describes our work on re-

ducing computation time when solving the grid restoration problem discussed in Chapter 6 using

a heuristic approach. This work also extends the boundaries of the solution to resiliency-aware

generation siting problems which, in nature, are planning problems. Chapter 8 concludes the

dissertation.

14



Chapter 2

Minimax Pricing, Providing

Incentives to Consumers to

Improve their Load Factor

2.1 Introduction

Reducing peak demand is critically important in smartgrid as a significant fraction of the

electric grid’s capital and operational expenses is affected by the peak power demands. Time of

Use (ToU) and Real Time Pricing (RTP) pricing schemes have been used by power system operators

to incentivize customers to reduce their peak energy demands during peak hours. However, ToU

only provides a weak incentive for customers and does not promote adoption at scale. Similarly,

day-ahead Real-Time Pricing (RTP) scheme might create peaks in previoulsy off-peak periods and

causes some ping-pong effect in next day prices. In this chapter, we introduce a new incentive-

driven scheme called Minimax which encourages customers to flatten their daily load profiles such

that they can reduce their electricity bill and help lowering the aggregate peak power demands.

Using two real life energy usage datasets, we show via simulations how the peak energy usage and

load factor vary with different choices of parameter values we select for the Minimax scheme. In

addition, we present our optimal scheduling policy which yields the minimum energy bill assuming

a certain percentage of load demands is schedulable. Our results using energy usage data of 100

homes from the UMASS dataset show that customers can save 13-17% of their electricity bills if
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the Minimax scheme is used but only about 2-3% if RTP or TOU scheme is used. Furthermore,

the power system operators see a 10% reduction in peak power demand if appropriate parameter

values are used for the Minimax scheme while the peak demands increase by more than 70% using

RTP or TOU schemes.

The Minimax scheme charges consumers at a Cbase rate if a consumer’s demand is at a certain

basethrsh but charges higher if his demand exceeds or drops below basethrsh. If the consumer

demand exceeds basethrsh, he will pay at a rate Chigh while if his demand drops below basethrsh,

he will pay at a rate Clow where typically Chigh > Clow. We show via analysis and simulation

studies how appropriate choice of parameter values allow the Minimax scheme to achieve both

goals of reducing consumers’ energy bills while reducing peak load demand. In addition, we show

how elastic or scheduable loads can be scheduled to achieve these two goals using the Minimax

scheme. Using two real life energy usage datasets, one from UMASS researchers [98] and another

from a Lehigh residential building, we show the benefits of the Minimax pricing scheme over the

two existing pricing schemes, namely TOU and RTP schemes.

In the remainder of this chapter, we first introduce the novel retail pricing scheme. Section 2.3

presents the proposed deferrable load scheduling optimization model. Simulation case studies are

found in Section 2.4 and Section 2.5 highlights the main concluding remarks.

2.2 Minimax Pricing Scheme

In this section, we first present an overview of Minimax, our proposed pricing scheme. Then,

we present design guidelines by discussing how its parameter settings can be chosen to meet certain

goals.

2.2.1 Minimax Description

Minimax is a pricing scheme where the rate Ct at any time t depends on the amount of the

power request ptdem. Equation (2.1) presents the pricing schedule.

Ct =


Clow if ptdem < B,

Cbase if ptdem = B,

Chigh if ptdem > B.

(2.1)

where Clow in (2.1) is the applied rate if the realized demand is less than a pre-determined
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baseline threshold B. Cbase is the rate applied if the demand is equal to the threshold, and Chigh

is the rate applied if the demand is above B.

Let us define the tuning parameters k1, k2 as follows: k1 = Clow

Cbase
, and k2 =

Chigh

Cbase
. Furthermore,

let us denote k = B
Pavg

where Pavg is the daily average power request. Next, we will discuss how

these three parameters should be chosen to motivate consumers to flatten their load profiles.

2.2.2 Minimax Design

The performance metrics targeted in a peak load management program are (i) a lower energy bill

(customers’ benefit) and (ii) a higher load factor (utility companies’ benefit). The load factor LF ,

equation (2.2), is defined as the average-to-peak load ratio within the considered time horizon [99].

In this paper, we base our analysis on a 24-hour time horizon.

LF =
Pavg

Pmax
(2.2)

where Pavg is the average power request and Pmax the peak load. The daily bill is the sum of

all energy costs incurred by end-user throughout the day based on her/his power request and the

rate(s) charged by the utility company.

k1 and k2 Settings

We refer to k1 and k2 as the differential pricing parameters. One of the goals of designing

Minimax is to ensure a higher load factor or a lower peak-to-average load ratio. It means that we

want to reduce the variability of the demand. To incentivize end-users, the three rates presented

in equation (2.1) should satisfy the following inequality

Cbase < Clow < Chigh (2.3)

1 < k1 < k2 (2.4)

k =
B

Pavg

(2.5)

Equation (2.3) encourages consumers to flatten their load profiles as much as possible. In addition,

it is better for a consumer to keep his demand below the threshold than above the threshold. From

(2.3), we see that 1 < k1 < k2.

Let us break down a daily load profile into three components E(+), E(−) and E(0) defined by

equations (2.6) through (2.8).
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E(+) =

|T |∑
t

ptdem|ptdem > B (2.6)

E(−) =

|T |∑
t

ptdem|ptdem < B (2.7)

E(0) =

|T |∑
t

ptdem|ptdem = B (2.8)

where E(+) is the total power requests above the baseline threshold B, E(−) the total power

requests below the baseline threshold B and E(0) is the total power requests equal to the baseline

threshold B; ptdem is the power request at time t. Thus, according to equation (2.1), E(+) is charged

at a rate Chigh, E(−) is charged at a rate Clow, and E(0) is charged at a rate Cbase respectivley. It

follows that the daily bill can be expressed by

Bill =

(
k2

k1
E(+) + E(−) +

1

k1
E(0)

)
Clow (2.9)

Once the power system operators have fixed Clow, Chigh, Cbase, given equation (2.9), reducing

the quantity E(+) (meaning lesser power request above B) has the highest impact on decreasing

the customer’s bill because k2 > k1. E(+) can be reduced by either (i) scheduling deferrable loads

such that the peak demand is below B if feasible, or (ii) a larger B can be negotiated.

k Settings

We refer to k as the threshold parameter. According to equations (2.4) and (2.9), a consumer

would schedule his deferrable load to reach a peak demand as high as the baseline threshold B

to enjoy the lowest rate Cbase. Thus, from a customer prospective, the ideal peak demand under

Minimax is the threshold B. B has to satisfy equation (2.10)

k > 1 (2.10)

Just as a utility may set a minimum power factor of 0.9, a system operator may set a load

factor minimum target LF0 to meet in order to ensure reliability. In other words, all allowable

peak demands should be less than a certain maximum defined by LF0 and the average demand

Pavg. The baseline threshold B must be defined in a way that satisfies the minimum load factor

target. Because the end-user under Minimax is likely to peak at the threshold B, the condition of
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equation (2.11) should be satisfied

B ≤ Pavg
LF0

(2.11)

We derive (2.12) from (2.11) and k = B
Pavg

, which serves as a design principle for the threshold

parameter k.

k ≤ 1

LF0
(2.12)

In practice, however, the design principle (2.12) does not guarantee the minimum load factor.

Before we present how the minimum load factor can be guaranteed, we first describe the assumption

made of a user’s energy load profile in this paper. Given that in reality, not all power requests

are deferrable, the load profile considered in this paper consists of a non-deferrable load profile

which we call base load and a deferrable load profile which we call schedulable load. The amount

of schedulable load and the relative position of the baseline threshold compared to the maximum

power request of the base load profile are just as important as the choice of k in achieving the

target load factor. If an end-user has more schedulable load, then he can more easily improve the

load factor of his load profile. However, if the peak demand (the maximum power request) of the

non-deferrable load profile is higher than the baseline threshold, then this peak demand cannot

be changed no matter how the end-user dispatches its schedulable load. For the consumer to have

the opportunity to improve his load factor and achieve the target LF0, the condition (2.13) must

be satisfied.

B ≥ Pmax,BL (2.13)

where Pmax,BL is the peak demand of the base load profile. Given SL, the sum of the available

schedulable loads and BL, the sum of all non-deferrable loads, equations (2.5) and (2.13) lead to.

k
BL+ SL

24
≥ Pmax,BL (2.14)

We transform (2.14) by algebraic manipulation to express the minimum fraction of schedulable

load needed in order to satisfy the condition (2.13) for a given k and load factor of the non-deferrable

load profile LFBL as follows.

SL

BL
≥ 1

k
× 24.Pmax,BL

BL
− 1 (2.15)

SL

BL
≥ 1

k
× 1

LFBL
− 1 (2.16)
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The load factor minimum target LF0 can be guaranteed only if equations (2.12) and (2.16)

hold simultaneously. We validate this claim in section 2.4.

2.3 Optimal Load Scheduling

In this section, we formulate the load scheduling problem and propose an optimization model

under each pricing scheme (ToU and Minimax). To assess the performance of the Minimax pricing

scheme, we assume that an end-user has a load scheduler with perfect pricing information. The

customer’ reaction to a particular pricing scheme is evaluated via the scheduling decisions made by

the scheduler. The main concern for an end-user is the minimization of her/his daily bill, given the

available deferrable power requests and the pricing policy designed by the utility company. The

problem which needs to be considered is the scheduling of the deferrable power request(s) which

achieves the lowest possible daily bill.

2.3.1 Problem Formulation under ToU and RTP

Under time-based pricing schemes such as Time-of-Use and Real-Time Pricing, the rate applied

at every hour is known beforehand. Hence, there is no issue with non-linearity in the objective

function. In equations (2.17) through (2.21), we formulate the load scheduling problem which

minimizes the energy bill under ToU and RTP as a Mixed Integer Linear Problem (MILP).

min : Bill =

|T |∑
t

ptdem × Ct (2.17)

Subject to:

ptdem =
∑|I|
i=1 z

it × P i +BLt, ∀t ∈ T (2.18)

∑|T |
t=1 z

it = Di, ∀i ∈ I (2.19)

∑|T |−1
t=1 zit × (1− zi(t+1)) = 1, ∀i ∈ I (2.20)
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zit ∈ {0, 1} , ∀i ∈ I, ∀t ∈ T (2.21)

where:

T , the set of time (we assume 24 hours)

I, the set of schedulable loads

ptdem the demand in time t

Ct, the energy price in time t

zit, the decision variable equals 1 if load i is scheduled in time t and 0 otherwise

P i, power rating for load i

Di, duration of load i

BLt, the base load demand in time t.

Constraint (2.18) defines the resulting power request as a combination of a known demand BLt

and potential scheduled load(s). Constraints (2.19) and (2.20) ensure that once load i starts being

served, it stops to be served only after its operating time Di is over. Constraint (2.20) guarantees

that a deferrable power request cannot be fractioned.

2.3.2 Problem Formulation under Minimax

Under Minimax, Ct is a function of ptdem (equation (2.1)), and ptdem itself is function of zit, the

decision variable (equation (2.18)). To linearize the objective function (2.17), we reformulate the

problem as follows.

min :
|T |∑
t=1

[
1

k1

(
1 +Qtlow +Qthigh

)
×B +

k2

k1
× pthigh − ptlow

]
× Clow (2.22)

with:

Qtlow = (k1 − 1)Xt
low

Qthigh = (k2 − 1)Xt
high

(2.23)

Subject to:

ptdem =
∑|I|
i=1 z

it × P i +BLt, ∀t ∈ T (2.24)

pthigh − ptlow = ptdem −B, ∀t ∈ T (2.25)

21



M × (1−Xt
low) +B ≥ ptdem + ε, ∀t ∈ T (2.26)

M ×Xt
high +B ≥ ptdem + ε, ∀t ∈ T (2.27)

Xt
low +Xt

high ≤ 1, ∀t ∈ T (2.28)

∑|T |
t=1 z

it = Di, ∀i ∈ I (2.29)

zi0 = 0, ∀i ∈ I (2.30)

M × (1− yit) + zit ≥ zi(t−1) + ε, ∀i ∈ I, ∀t ∈ T (2.31)

M × yit + zi(t−1) ≥ zit − ε, ∀i ∈ I, ∀t ∈ T (2.32)

∑|T |
t=1 y

it = 1, ∀i ∈ I (2.33)

yit ∈ {0, 1} , ∀i ∈ I, ∀t ∈ T (2.34)

zit ∈ {0, 1} , ∀i ∈ I, ∀t ∈ T (2.35)

where:

T , the set of time (we assume 24 hours)

I, the set of schedulable loads

ptdem the demand in time t

Ct, the energy price in time t

zit, the decision variable equals 1 if load i is scheduled in time t and 0 otherwise

P i, power rating for load i
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Di, duration of load i

BLt, the base load demand in time t;

Xt
low, a decision variable, is equal to 1 if ptdem is less than B and 0 otherwise

Xt
high, a decision variable, is equal to 1 if ptdem is greater than B and 0 otherwise

ptlow, the gap between ptdem and B if ptdem is less than B and 0 otherwise

pthigh, the gap between ptdem and B if ptdem is greater than B and 0 otherwise

yit, a binary decision variable, is equal to 1 if load i comes online in time t after being offline in

time t− 1

M , a large number (big M method)

ε, an infinitesimal number (the inverse of M for example) used to enforce strict inequalities in (32)

and (33).

Equations (2.22) through (2.35) present the optimization problem which yileds minimum energy

bill under Minimax. We introduce new variables and used the “big M” method to reformulate the

problem as an MILP. In the next section we used real life energy usage datasets to compare the

effectiveness of the three pricing schemes in achieving (a) the minimum energy bill for a consumer

and (b) to reduce the peak load demands. Furthermore, we also validate the few Minimax design

principles discussed above.

2.4 Case Study

To compare how the different pricing schemes incentivize consumers in scheduling their elastic

load demands, we built a simulator which can schedule elastic load demands using the scheme

described in Section 3.2 under the following three pricing schemes, namely the (i) Minimax, (ii)

ToU, and (iii) RTP schemes. Our RTP pricing data is obtained from the Illinois energy price

clearing house website [10]. The RTP price we have chosen was the one used for Aug 20th, 2013.

The TOU price was based on Ontario’s rates [9], specifically, $0.063 per kWh from 11pm to 6

am(off-peak period); $0.118 per kWH between 6 am to 10 am and 4pm to 11 pm (peak periods),

and $0.099 per kWh from 10 am to 4pm (mid-peak period). For the Minimax scheme, we use

k = 1.05, k1 = 1.1, k2 = 1.3 unless otherwise specified. Figure 3 shows the price signals we used

for ToU and RTP.
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2.4.1 Comparison of Minimax, TOU and RTP

To compare the impact of the three different pricing schemes on two important metrics, namely

(i) the load factor achieved after scheduling all the deferrable loads, (ii) the resulting customer

daily energy bill, we used two real energy usage datasets. The first one (Dataset 1) is the energy

usage dataset released by UMASS researchers [4,98], and the second one (Dataset 2) is an energy

usage dataset of a 30-bed student residential building at Lehigh University.

In dataset 1, we aggregated the energy usage from 100 homes to create our base load profile.

The total base load energy usage amounts to 6546.3 kWh for the entire day and has a load factor

of 91%. We added 100 deferrable power requests ranging from 1 to 5 kW each to this base

load profile. The schedulable load amounts to 307 kWh total. These deferrable requests reflect

schedulable loads e.g. washer, dryer, dishwasher, etc, that other researchers have studied [100].Fig.

1 plots the hourly base load, the hourly schedulable load and the original hourly load profile which

is the sum of the hourly base and schedulable loads . The average, standard deviation and load

factor of this daily load profile is tabulated in Table 1.

In dataset 2, we pick the daily usage of a 30-bed Lehigh residential building on Aug 20, 2013

which has a load factor of 90%. This daily load of 1955.88 kWH will be our base load. Then, we

add an additional 30 scheduable loads, each of size 3 or 5 kW representing a cloth washer or a

dryer. The total schedulable loads amounts to 120 kWh. Figure 2 shows the load profile, the base

load and the schedulable load for Dataset 2. The average, standard deviation and load factor of

this load profile is tabulated in Table 1.

Table 2.1: Load profile characteristics

Datasets Average demand (kW) Standard deviation (kW) Load factor

Dataset 1 285.55 16.53 0.85
Dataset 2 86.49 12.76 0.74

-

To ensure a fair comparison between Minimax and ToU, we choose Clow such that the energy

bills yielded by both schemes are equal if we have an ideal flat load profile where the power request

at any time is equal to the average demand. In this case, because of (2.13), the Minimax rate

applied is Clow. For both bills to be equal, Clow must be equal to the average of the ToU pricing

vector. Next, let us assume that we want the load factor minimum target LF0 of 95%, hence, we

can select k using (2.15). Next, we verified that the available schedulable loads for both datasets
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Figure 2.1: Base Load and Schedulable Load Profile of dataset 1

Figure 2.2: Base Load and Schedulable Load Profile of dataset 2

satisfy the condition expressed in (2.19). In fact, the ratio SL
BL is 0.0469 while the right hand side

of the inequality, 1
k

1
LFBL

− 1, is 0.0466. Both k1 and k2 satisfy (2.8). With the above presented

data and parameter settings, we solved the MILP problems formulated in section III using AMPL

and CPLEX. The results are presented next.

Simulation Results

For both datasets, we first applied ToU, RTP and Minimax to the original load profile. Second,

we simulated the customers’ reaction to the pricing schemes and computed the energy bills incurred

using the optimal profiles obtained after load scheduling. Table 2 presents the load factors and

energy bills before and after scheduling.

25



Figure 2.3: ToU and RTP pricing signals

Table 2.2: Load factor and bill comparison before and after load scheduling

LFBS1 LFAS2 PDV3 EBBS4 EBAS5 EBR6

(%) (%) (%) ($) ($) (%)

ToU 48 +77 625.10 609.47 2.5
Dataset 1 RTP 85 49 +73 450.09 437.10 2.9

Minimax 95 -10 649.60 564.12 13.0

ToU 42 +76 193.50 186.80 3.5
Dataset 2 RTP 74 45 +64 132.54 129.45 2.3

Minimax 95 -22 206.00 170.80 17.1

1 Load factor before scheduling
2 Load factor after scheduling
3 Peak demand variation, (+): increase, (-): decrease
4 Energy bill before scheduling
5 Energy bill after scheduling
6 Energy bill reduction EBR = EBAS−EBBS

EBBS × 100%

The simulation results presented in figures 4, 5 and Table 2 show that the load factor improves

under the Minimax scheme while it worsens under ToU and RTP for both datasets 1 and 2. In fact,

we observe about 12% load factor increase for dataset 1, an equivalent 22% peak demand reduction

when Minimax is applied. In contrary, ToU and RTP led to 43% and 42% load factor decrease

respectively, meaning 77% peak demand increase for ToU and 73% peak demand increase for RTP.

Using dataset 2, the load factor increases by 28% under Minimax and decreases by 43% and 39%

for ToU and RTP respectively. From a Load Serving Entity (LSE)’s standpoint, an increased load

factor and thus a reduced peak demand is equivalent, in the long run, to less commitment in the

capacity market. Hence, Minimax has proven to meet LSE’s interest.

In addition, even though all three schemes led to a reduced customer electricity bill, Minimax
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Figure 2.4: Optimal Scheduled Load profiles under ToU, RTP and Minimax for dataset 1

Figure 2.5: Optimal Scheduled Load profiles under ToU, RTP and Minimax for dataset 2

induced the highest bill reduction. In fact, considering dataset 1, ToU and RTP helped reduce the

energy bill by less than 3% while the bill reduction is 13% under Minimax. When applied to dataset

2, the load scheduling models yielded less than 4% energy bill savings with ToU and less than 3%

with RTP while Minimax helped save 17% on the electricity bill. Even in energy bill savings,

Minimax outperforms ToU and RTP and hence meets consumers’ interest as well. Since the rates

in Minimax are not time-based but rather quantity-based, profile flattening and bill reduction are

achieved simultaneously, given a set of well-designed pricing and threshold parameters.

Note that for this set of experiments, the load factor minimum target of 0.95 is achieved.

However, we want to derive more insights as to the sensitivity of Minimax’s performance with

regards to the threshold parameter k. We explore this in the next subsection.
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2.4.2 Minimax Design Validation

Three main parameters, namely k1, k2 and k, characterize the Minimax pricing scheme . The

validation of the design principle (2.8) of the pricing parameters k1 and k2 is straightforward.

(2.12) along with the discussion of its detailed implications provided in section II-B is sufficient to

prove that the necessary and sufficient conditions expressed by (2.8). Therefore, in this subsection,

we will concentrate on the sensitivity of Minimax with regards to the threshold parameter k. We

will first present the data and parameters used in this experiment. -

Simulation Setup

In this experiment, we use the daily energy usage data (dataset 2) presented in figure 2 and

table 1. For Minimax, we set k1 = 1.1, k2 = 1.3 and vary k from 1.01 to 1.10 with an increment of

0.01.

Simulation Results

Table 3 tabulates how the left and right hand-side of (2.16) vary as k changes from 1.01 to

1.10. It also tabulates how the target load factor LF0 as k changes using (2.12). In fact, for each

value of the threshold parameter k, (2.12) assigns a target minimum load factor LF0 which can be

achieved under Minimax if (a) an end-user reacts perfectly as the optimal load scheduling model

developed in Section 2.3, and (ii) he has sufficient amount of schedulable loads. We also plot the

achievable load factor and the daily bill as k varies in Fig. 2.6 and 2.7.

Table 2.3: Sensitivity analysis and design validation

k Ratio SLBL
1
k ×

1
LFBL

− 1 LF0
1 ALF2 Daily bill ($)

1.01 0.10001 0.99 0.9572 178.20
1.02 0.0893 0.98 0.9572 178.04
1.03 0.0787 0.97 0.9572 177.89
1.04 0.0684 0.96 0.9572 175.52
1.05 0.06135 0.0582 0.95 0.9572 170.87
1.06 0.0482 0.94 0.9463 170.70
1.07 0.0384 0.93 0.9377 170.52
1.08 0.0288 0.92 0.9265 170.36
1.09 0.0194 0.91 0.9293 170.19
1.10 0.0101 0.90 0.9124 170.02

1 Target load factor
2 Achieved load factor
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Figure 2.6: Impact of the threshold parameter k on the load factor

Figure 2.7: Impact of the threshold parameter k on the energy bill

We observe that from k = 1.01 to k = 1.04, the condition in (2.16) is not satisfied, meaning

that the available schedulable load is not enough to empower the end-user to reach the target

load factor. The direct consequence is that for these values of k, the load factors achieved are

consistently less than their corresponding targets LF0. In fact, the achieved load factors remain

the same for these 4 k values because the baseline threshold B is below the base load maximum

Pmax,BL. Since the average load demand and the peak demand, Pmax,BL, are fixed, we have the

same load factor of 0.9572 for these 4 cases. From k = 1.05 to k = 1.10, (2.16) holds and the target

load factors defined in (2.15) can be achieved.

From Fig. 2.6, we see that the load factor in general decreases with increasing values of k.

However, we note a little increase (0.9265 to 0.9293) of load factor from k = 1.08 to k = 1.09.
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This is because when k=1.09, the maximum load demand after optimal scheduling is below the

baseline threshold B which causes the load factor to decrease below the Pmax value obtained for

k=1.08. Fig. 2.7 and column 6 of Table 2.3 show that the energy bill incurred is also decreasing

with increasing threshold parameter k.

2.5 Conclusion

Our proposed Minimax pricing scheme has much potential for electricity peak demand man-

agement. In addition to improving the load factor and reducing the peak demand, it lowers the

consumers’s daily bill, providing enough incentive for consumers to adopt it. Contrary to the

Time-of-use and Real-time pricing schemes under which customers tend to shift schedulable loads

to off-peak hours and thus create new peak hours, the Minimax scheme encourages an even distri-

bution of loads. In addition, we explored the sensitivity of our chosen parameters and validated our

design principles. The pricing parameters are chosen in order to provide incentives to customers

and the threshold parameter is designed based on a load factor target set by the utility company

or system operator and on the available deferrable loads. The target load factor can be achieved

only if the schedulable load is a certain percentage of the overall load demand.
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Chapter 3

The Value of Aggregation Under

Minimax

3.1 Introduction

The electric grid’s capital and operational expenses are significantly affected by the system’s

peak. In an effort to reduce peak electricity demands, electricity market analysts and researchers

have designed different pricing schemes that provide a certain incentive to end-users to reduce

their usage during what are considered peak consumption periods. Among those schemes, Time of

Use (ToU) and Real Time Pricing (RTP) have been well researched and implemented. However, it

became apparent that there are incentive compatibility issues with both. In addition, it has been

reported that they can even lead to peak migration instead of reduction. Recently, we introduced a

new incentive-driven scheme named Minimax whose objective is to incentivize customers to flatten

their daily load profiles and help lower the aggregate peak power demands. Simulation studies

showed that customers can save 13-17% of their electricity bills if the Minimax scheme is used but

only 2-3% if RTP or ToU scheme is used. In addition, Minimax can save 10% of the generation

cost. The benefits of Minimax are threefold: consumer bill reduction, peak power reduction, and

generation cost reduction. In our previous work related to Minimax, we used aggregated household

energy data. In this chapter, we are interested in exploring the value of aggregation under the

Minimax pricing mechanism. We evaluate the impact of aggregation on energy bill reduction,

power factor, voltage profile and generation cost reduction using the IEEE 33-bus distribution

system. Our studies based on piece-wise linear generation cost function show that, for the same
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total load, larger aggregate groups achieve lower energy bill, lower generation cost, lower aggregate

peak demand and better voltage profile. Aggregation results in 40% peak power reduction, 6%

consumers’ bill reduction, 13% supply cost reduction and no voltage bound violation.

The rest of this chapter is organized as follows. Section 3.2 gives a brief overview of Minimax,

followed by section 3.3 which presents the consumers’ reaction model to a Minimax price signal.

Next, we discuss the DSO’s problem in section 3.4. Section 3.5 exposes the load aggregation

evaluation framework while section 3.6 discusses the results. We conclude the chapter in section

3.7.

3.2 The Pricing Scheme

In this section, we present an overview of Minimax (cf., 2). Minimax is a pricing scheme which

aims to incentivize end-users to reduce their peak power demand [24]. It is a 3-rate scheme with an

attractive low rate Cbase offered to consumers when they reach a threshold level B (see equation

(3.2)). Below and above B, higher rates Clow and Chigh are respectively charged. Note that Clow is

less than Chigh. Equation (3.1) presents the pricing schedule Ct as a function of the power request

pt. See [24] for more detail about Minimax.

Ct =


Clow if pt < B,

Cbase if pt = B,

Chigh if pt > B.

(3.1)

with

B = k.mean(pt) (3.2)

3.3 Optimal Consumer Response Model

In this section, we summarize the load scheduling problem formulation under Minimax [24]. To

simulate consumer’s response to Minimax, we assume the ideal case where any end-user has a load

scheduler with perfect pricing information. His/her main concern is the minimization of her/his

daily bill. We adopt the load model made of base load (non-deferrable) and deferrable load. The

end-user is interested in how to schedule the deferrable loads in order to achieve the lowest possible

daily bill (see equations (3.3) through (3.16)).
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min :
|T |∑
t=1

P tbCbase (3.3)

s.t.:

P tb =
[
1 + (k1 − 1)Xt

− + (k2 − 1)Xt
+

]
B + k2p

t
+ − k1p

t
− (3.4)

pt =
∑|I|
i=1 z

i,tSLi +BLt, ∀t ∈ T (3.5)

pt+ − pt− = pt −B, ∀t ∈ T (3.6)

M.Xt
− + pt+ε ≥ B, ∀t ∈ T (3.7)

M.Xt
+ +B ≥ pt + ε, ∀t ∈ T (3.8)

Xt
− +Xt

+ ≤ 1, ∀t ∈ T (3.9)

∑|T |
t=1 z

i,t = Di, ∀i ∈ I (3.10)

zi,0 = 0, ∀i ∈ I (3.11)

M.(1− yi,t) + zi,t ≥ zi,t−1 + ε, ∀i ∈ I, ∀t ∈ T (3.12)

M.yi,t + zi,t−1 ≥ zi,t − ε, ∀i ∈ I, ∀t ∈ T (3.13)

∑|T |
t=1 y

i,t = 1, ∀i ∈ I (3.14)
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yi,t ∈ {0, 1} , ∀i ∈ I, ∀t ∈ T (3.15)

zi,t ∈ {0, 1} , ∀i ∈ I, ∀t ∈ T (3.16)

where:

T , the set of time (we assume 24 hours); I, the set of schedulable loads; pt the demand in time t;

Ct, the energy price in time t; zi,t, the decision variable equals 1 if load i is scheduled in time t

and 0 otherwise; SLi, power rating for the schedulable load i; Di, duration of load i; BLt, the base

load demand in time t; Xt
−, a decision variable, is equal to 1 if pt is less than B and 0 otherwise;

Xt
+, a decision variable, is equal to 1 if pt is greater than B and 0 otherwise; pt−, the absolute

deviation of pt from B when pt is less than B and 0 otherwise; pt+, the absolute deviation of pt

from B when pt is greater than B and 0 otherwise; k1 and k2 define the ratios Clow/Cbase and

Chigh/Cbase respectively; yi,t, a binary decision variable, is equal to 1 if load i comes online in time

t after being offline in time t− 1; M , a relatively large number (big M method); ε, a small number

used here to enforce strict inequalities.

In the following section we describe the distribution system operator’s problem.

3.4 The Distribution System Operator’s (DSO) Problem

Once the consumers determine their optimal load schedules, the DSO’s responsibility is to keep

the electric system stable, reliable and at a low cost while end-users enjoy the service of their

appliances. We will model in this chapter the DSO’s role as an optimal AC power flow (OPF)

problem presented in equations (3.17) through (3.21).

min :

ng∑
j=1

f jP(pjg) + f jQ(qjg) (3.17)

s.t.:

θkmin ≤ θk ≤ θkmax, ∀k = 1, 2, ...nb (3.18)

vkmin ≤ vk ≤ vkmax, ∀k = 1, 2, ...nb (3.19)
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pjg,min ≤ pjg ≤ pjg,max, ∀j = 1, .., ng (3.20)

qjg,min ≤ qjg ≤ qjg,max, ∀j = 1, .., ng (3.21)

where the decision variables θk, vk, pjg and qjg stand for voltage angle, voltage magnitude, active

power output and reactive power output respectively; ng and nb are respectively the number of

generation units and number of buses; f jP and f jQ are the active and reactive power cost functions.

In the case of a conventional distribution system where we assume power is being supplied from

only one bus ng = 1.

3.5 Case Study Setup

Our objective is to compare how the total energy bill, generation cost and peak power differs

when customers react to Minimax signals locally as an aggregate group (bus level coalition) and

when they are in a much larger aggregate group.

The flow chart of the aggregation value evaluation can be summarized as follows: (i) the DSO

sends a price signal made of pricing parameters Cbase, k1, k2 and k; (ii) consumers form coalition(s)

and react to the pricing signal by shifting the available deferrable loads and submit the resulting

demand profile(s) to the DSO who solves his OPF problem assess the steady-state operation of his

system. At this point the DSO is concerned about not only the supply cost but also the constraint

violations if any.

We first used a simulator we built to schedule elastic load demands based on the optimal

response model of section 3.3. The pricing parameters we used for the Minimax scheme are

k = 1.05, k1 = 1.1, k2 = 1.3 and Cbase = $0.05/kWh.

As test power system, we use the IEEE 33-bus distribution system [2] shown in Fig. 3.1. This

system consists of 33 buses. We hypothetically place a 10 MW generator at bus 01. We consider

a piece-wise linear generation cost function presented in Fig.3.2.

We use the energy usage data set released by UMASS researchers [4, 98]. We select 40 homes

from this dataset and then add additional schedulable load such as 40 space heaters, 20 large and

10 small EVs to these homes. We assume each space heater consumes 10 kW with 1 hour operation

time. The large fast-charging EV can be charged in 2 hours at a charging rate of 12.5 kW while
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Figure 3.1: IEEE 33-bus System [2]

Figure 3.2: Generation cost function

the small EV can be charged at a rate of 3.5 kW for 4 hours [101]. We then form 10 groups of

4 homes each. Each group is allocated the same deferrable load i.e 4 space heaters, 2 large EVs

and 1 small EV. At buses 18, 6, 29, 33, 25, 22, 15, 9, 21 and 8 of the IEEE 33-bus system we add

the loads of these 10 groups. To keep the same order of magnitude as in the original ”case33”,

the original loads at these buses were scaled down by half and the added loads up by ten. The 23

other buses were kept intact.

We then construct three different demand scenarios: (i) in Scenario 0, we generate base case

load schedule and derive for each bus, the demand profile; (ii) in Scenario 1, the consumers serviced

by the same bus put their deferrable loads together and react to the DSO’s price signal by optimally

shifting them in a way that minimize their daily bill; (iii) in Scenario 2, all consumers pool their
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deferrable resources and centrally optimize their demand schedule so as to reduce their daily bill,

and the central schedule obtained is then dispatched among consumers according to their respective

loads.

We solved the consumers’ MILP formulated in Section 3.3 using AMPL and CPLEX. We solved

the DSO’s problem formulated in section 3.4 using MATPOWER [102]. The results are presented

in the next section.

3.6 Results and Discussion

Figure 3.3: Demand Profile comparison

Fig.3.3 shows the load profiles at each bus where there are schedulable loads for each scenario.

In Scenario 1, there are very limited amount of deferrable load at each bus, which makes it difficult

to smooth out the profiles. The scheduling ends up in some instances, e.g. buses 06, 33, 21 and

15, result in a worst load profile. Fig.3.4 compares the demand profiles obtained for each of the
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Figure 3.4: Total aggregate demand profile comparison

3 scenarios. Compared to Scenario 0, the globally optimized option (Scenario 2) yields a flatter

load profile than the bus-by-bus optimized profile (Scenario 1). The reason behind this fact is that

in Scenario 2, we have more flexibility in scheduling due to the larger amount of deferrable load

available to choose from.

To compare the impact of the two aggregation solutions proposed in scenarios 1 and 2, we

define four performance metrics, namely (i) the peak power reduction, (ii) the accumulated ab-

solute voltage magnitude deviation (AAVMD) 4V , (iii) the consumer bill reduction and (iv) the

generation cost reduction. The AAVMD is defined by (3.22).

4V =
∑
t,k

(vk,t − vkmax)uk,t+ + (vkmin − vk,t)u
k,t
− (3.22)

with uk,t+ and uk,t− equals 1 if the voltage magnitude at bus k in time t, vk,t is greater than vk,tmax

and less than vk,tmin respectively; and 0 otherwise.

The results obtained in the aggregation scenarios 1 and 2 are compared with the base case

scenario 0 in Table 3.1. Our results indicate that consumers enjoy an overall daily bill reduction

of 3% in Scenario 1 and 6% in Scenario 2. In the same time the DSO experiences a generation

cost reduction of 10% in Scenario 1 and 13% in Scenario 2. It is clear that the more flexible

load, the more savings both DSO and consumer groups can achieve. From a technical standpoint,

both power and voltage profiles are improved. As Fig.3.4 supports, the DSO obtains 35% peak

power reduction in Scenario 1 and 40% in Scenario 2. This is equivalent to a load factor of 99% in
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Table 3.1: Performance evaluation

Scenario 0 Scenario 1 Scenario 2

(Non-opt.) (Locally opt.) (Globally opt.)

Peak demand (MW) 8.664 5.646 (-35%) 5.239 (-40%)

Voltage deviation (p.u) 0.209 0.020 0

Consumer bill ($) 6,667 6,488 (-3%) 6,236 (-6%)

Generation cost ($) 5,972 5,367 (-10%) 5,217 (-13%)

Scenario 2, 92% in Scenario 1 against 60% in Scenario 0. Fig.3.5, 3.6 and 3.7 plot the bus voltage

magnitude profile across all 33 buses and throughout the 24 hours horizon for scenarios 0, 1 and 2

respectively. One can easily see that there are more voltage violations in Scenario 0, e.g. in hour

24 for buses 15 through 23, than in Scenario 1. Scenario 2 does not violate any voltage constraint

as confirms the AAVMD value 4V in Table 3.1. Note that the voltage references considered in the

IEEE 33-bus system are 0.94 and 1.06. From a theoretical point of view, the implication of voltage

violation may simply be an unfeasible problem (see the DSo’s problem in equations (3.17) through

(3.21)). In practice, this is perceived as voltage drop or voltage spike which can be damaging for

appliances. The DSO would have to deploy other (likely costly) solutions to hedge these violations.

Figure 3.5: Voltage Profile - Scenario 0
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Figure 3.6: Voltage Profile - Scenario 1

3.7 Conclusion

This chapter gives the evidence that consumers can significantly impact the electric grid’s

operations both economically and technically for good if they pool their DR resources under an

appropriate retail pricing scheme such as Minimax. Economically, both DSOs and consumer groups

can see significant reduction in their costs. In this particular study on the IEEE 33-bus system with

40-home energy usage along with deferrable loads, end-users achieved 3% bill reduction when they

optimized their profile on a bus-by-bus basis (Scenario 1) and 6% in case of globally optimized

profile (Scenario 2). The DSO’s savings amounted 10% in Scenario 1 and 13% in Scenario 2.

From a technical standpoint, we observed 35% peak power reduction in Scenario 1 against 40% in

Scenario 2. In addition, the base case scenario (Scenario 0) incurred 0.209 p.u voltage magnitude

violation against 0.020 p.u for scenario 1. With a more regular voltage profile, Scenario 2 showed

no voltage violation. Clearly, under Minimax, massive load aggregation is a win-win game. This is

also another evidence that Minimax pricing scheme has much potential for electricity peak demand

management.
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Figure 3.7: Voltage Profile - Scenario 2
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Chapter 4

GenMinimax Pricing, a Market

Tool For Reliable Electric Grids

4.1 Introduction

High peak power demand can threaten grid reliability as it drives the power system to its

operational limits. Even though, these peak events occur only a few hours a year as shown

in Fig.4.1, they significantly affect the electric grid’s capital and operational expenses. Thus,

increasing demand responsiveness at end-user level in order to reduce peak demands is a key

asset for efficient grid operations. Options to achieve responsive demands range from reducing or

curtailing loads against payment to dynamic pricing.

The main contribution of this chapter is the introduction of a new retail pricing scheme that

uses a combined threshold-penalty/reward approach to provide end-users with the opportunity to

affect the price they pay for their energy usage at any time by reducing or increasing their demand.

While in other schemes, consumers are charged a given rate at a given time, GenMinimax charges

consumers at any given time according to how close or far their consumption is to their threshold of

that time. In a sense, the energy price is a function of end-users’ ”consumption performance” with

respect to a predetermined threshold profile. This provides a performance differentiated scheme

that incentivizes consumers to adjust their demand on the identified reference profile and therefore

enables them to become more active participants. This way, efficient users are charged less than

inefficient users.

The remainder of the chapter is organized as follows. Section 4.2 presents the GenMinimax
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Figure 4.1: Load Duration Curve for New York & New England,2006

pricing scheme, Section 4.3 describes how aggregator and consumer groups would potentially react

to GenMinimax. To evaluate the impacts of the proposed novel scheme on grid reliability and

consumer bills, we conduct a case study in Section 4.4. The results are presented and discussed in

the same section. Section 4.5 presents the concluding remarks of the chapter.

4.2 The proposed scheme

The generalized Minimax maintains the concept we previously described in [24], assuming that

at any time there is a desirable demand level that ensures efficient generation dispatch, transmis-

sion and distribution. In [24] we assumed this demand level to be constant throughout the day.

Therefore, customers are charged a higher rate once their aggregate demand exceeds a certain

threshold, and they are charged a lower rate when their demand drops under the threshold. In

the event their demand equals the threshold, they are charged the lowest rate. We extend this

by relaxing the assumption that the desirable demand level (reference profile) is constant. The

objective here is to incentivize the consumer group to follow the aggregator’s reference profile as

closely as possible while allowing consumers to curtail some of their loads, if necessary. The rate

Ct at any time t depends on the amount of the power request pt. The pricing schedule is (see

Fig.4.2)
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Figure 4.2: Generalized Minimax Rate Structure

Ct =


Clow = k1Cbase if pt < Bt∗ − δ,

Chigh = k2Cbase if pt > Bt∗,

Cbase otherwise,

(4.1)

where δ defines the width of the tolerance band below the threshold Bt∗ as shown in Fig. 4.2.

Clow, Cbase and Chigh are the rates charged if the realized demand is below, within, or above the

threshold band, defined by Bt∗ and Bt∗− δ, respectively. The parameter δ can be expressed either

as a percentage of Bt∗ or as a constant value. It determines how much deviation below the ref-

erence Bt∗ the aggregator is willing to tolerate without charging extra premium.1 The consumer

group can negotiate the value of δ based on his load granularity and his response history. However,

δ has to be bounded. Note that in GenMinimax, the threshold Bt∗ is not necessarily a constant

as opposed to B in [24]. Bt∗ is the solution of the aggregator’s optimization problem. k1 and k2

are rate differentiating parameters defined by (4.2) [24].

1 < k1 < k2. (4.2)

4.3 Players’ response models

To evaluate the performance of GenMinimax, we devise in this subsection optimization models

to mimic both aggregator and consumer group’s response to market signals.

1This constitutes an additional incentive for the consumer group who is no longer forced to exactly attain the
threshold to qualify for the lowest rate Cbase.
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Figure 4.3: Typical supply-demand curve and aggregators’ impact

4.3.1 The Leader’s Problem

To understand the Aggregator’s problem, we refer to the typical supply-demand curve, pre-

sented in Fig. 4.3.

The mission of the aggregator is twofold: to provide demand response services to the system

operator, and to furnish bill reduction opportunities to users [16]. The aggregator is rewarded by

the operator for helping shape the consumption in order to meet all technical constraints (e.g.,

capacity limits) and/or achieve optimal operation costs. Fig. 4.3 illustrates a representative aggre-

gator’s impact on supply costs. Here, we assume an initial demand D with corresponding supply

cost P . By reducing the demand by an amount ∆, the aggregator helps the system operator to

reduce the supply cost, to P∆. The aggregator is then rewarded with a portion of the cost savings

P − P∆ for every unit of demand. To maximize her reward from the operator, the aggregator

develops a strategy around the expected price signal received from the operator for each time

slot in the 24-hour time horizon. [103] shows that the aggregator’s optimal strategy would be to

determine for each time slot a threshold price Pthres above which not to buy.2

On the other hand, in the aggregator’s attempt to shape the users’ demands, some power

requests may be delayed or even curtailed. End-users are rewarded for the changes experienced

in those cases. Additionally, the aggregator pays a distribution charge cd for the energy that

flows through the distribution system toward her customers. The aggregator’s objective function

is therefore given by.

Total-Cost = TEC −DRR+ TDC + TCC, (4.3)

where (i) TEC is the total energy purchase cost, (ii) DRR is the total reward earned by par-

ticipating in demand reduction upon system operator’s call, (iii) TDC is the total distribution

2The consumer group can also buy only the minimum required.
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charges paid to the system operator (or the entity in charge of the distribution system), and (iv)

TCC (Total Curtailment Cost) is the total reward paid by the aggregator to consumers because

of delays and curtailments. In this work, we only consider curtailment rewards. Equations (4.4),

(4.6), (4.7) and (4.9) define these components.

TEC =
∑
t

b(t) ∗ c(b0(t)), (4.4)

where b0(t) is the ex-ante (starting) demand the aggregator requests a day ahead, b(t) is the

actual demand requests due to the aggregator’s participation in Demand Response (DR) or to the

consumer group’s unwillingness to cooperate, and c(b0(t)) is the rate that the aggregator has to

pay based on her initial bid. The procurement cost is assumed to be a piecewise discrete function

of bo(t) as shown in Fig. 4.4. We adopt a three-rate model to represent c(b0(t)).

c(b0(t)) =


rate1(t) if b0(t) < b0ref1(t),

rate3(t) if b0(t) > b0ref2(t),

rate2(t) otherwise.

(4.5)

We assume this discretization is based on historical data. The cost c(b0(t)) is completely defined by

2 thresholds, b0ref1 and b0ref2, and three rates, rate1, rate2 and rate3. The aggregator may request

a b0(t) higher than her expected b(t). But if b0(t) falls in a higher rate zone, the aggregator would

end up paying more than necessary. The fact that the aggregator is paying c(b0(t)) instead of

c(b(t)) would prevent him to request a higher quantity than what her consumers really need (and

potentially trade the difference in the DR market). It is in both the SO and aggregator’s interest

that b(t) and b0(t) are kept in the same rate zone. In fact, if aggregators are allowed to choose b(t)

and b0(t) in different rate zones, the supplier may adjust its rates such that they end up paying

more. In addition the system operator’s next planning period may be drastically affected by the

present gap between the expected and the actual demand level; this gap could be very large if

all aggregators have anticipated a call for DR participation which does not happen. The demand

response reward DRR is given by

DRR =
∑
t

α(t) ∗∆c(t) ∗ (b0(t)− b(t)), (4.6)

where ∆c(t) is the anticipated total cost savings yielded by the DR program at time t and α(t)
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denotes a coefficient which is inversely proportional to the amount of anticipated demand reduction

that would yield the above savings. Equation (4.6) suggests that the aggregator is penalized if her

actual demand b(t) goes beyond her ex-ante bids.

The total curtailment cost TCC is given by

TCC =[l −
∑
t

b(t)] ∗ cc, (4.7)

with:

l =
∑
t

BLt +
∑
i

SLi ∗Duri, (4.8)

where l is the total daily demand from the consumer group defined by (4.8),
∑
t b(t) the actual

energy provided by the aggregator and cc the contractual curtailment reward.

The total distribution cost TDC is the ”rent” paid by the aggregator to the owner of the

distribution infrastructure.

TDC =
∑
t

b(t) ∗ cd, (4.9)

where cd is the fixed distribution cost per kWh.

We adopt the same load model as in [24]. BLt stands for the non-deferrable demand in time

slot t and SLi and Duri the rated power and duration of deferrable load i respectively.

Based on the above problem definition, the aggregator’s problem can be formulated as follows:

min : Aggregator Cost =TEC −DRR+ TDC + TCC (4.10)

Subject to:

∑
t b(t) ≥ µ ∗ (

∑
tBL

t +
∑
i SL

i ∗Duri) (4.11)

bmax ≥ b(t) ≥ BLt, ∀t ∈ T (4.12)

0 < α(t) ≤ 1, ∀t ∈ T (4.13)
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α(t) ∗ (b0(t)− b(t)) ≤ γ, ∀t ∈ T (4.14)

b0(t) ≤ bmax, ∀t ∈ T (4.15)

0 ≤ γ ≤ 1, ∀t ∈ T, (4.16)

where besides the variables and parameters already defined, γ represents the portion of DR market

shared by the aggregator, i.e., the maximum portion of the DR resource that the aggregator is

allowed to provide.

Constraint (4.12) ensures that the consumer group’s non-deferrable demand is serviced regard-

less of the market conditions. Constraints (4.14) and (4.16) limit the supplied energy to at most

100% of the required DR resource. The aggregator agrees to serve at least µ fraction of the total

demand (constraint (4.11)).

The formulation in (4.10) through (4.16) has a non-linearity introduced by the definition of

TEC, equation (4.4). In fact, the energy rate c(b0(t)) paid at any time t depends on the aggregator’s

original demand b0(t) which is a decision variable. Hence, the energy cost b(t) ∗ c(b0(t) in (4.4)

is non-linear. (4.5) is non-convex because c(b0(t)) is not continuous. To make the aggregator’s

problem solvable, we reformulate equation (4.4) by decoupling rates and demands. This requires

additional constraints and binary variables. Equations (4.17) through (4.33) present the constraints

to replace (4.4) in the formulation.

TEC =
∑
t TEC1(t) + TEC2(t) + TEC3(t) (4.17)

with, ∀t ∈ T :

TEC1(t) = rate1(t) ∗ (r1(t) ∗ b0ref1(t)− b−1 (t)) (4.18)

TEC2(t) = rate2(t) ∗ (r2(t) ∗ b0ref2(t)− b′−2 (t)) (4.19)

TEC3(t) = rate3(t) ∗ (r3(t) ∗ b0ref2(t) + b+2 (t)) (4.20)
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b+j (t)− b−j (t) = b(t)− b0refj(t),∀j = 1, 2 (4.21)

b′+1 (t) = b+1 (t)− (r3(t) ∗ (b0ref2(t)− b0ref1(t)) + b+2 (t)) (4.22)

b′−2 (t) = b−2 (t)− (r1(t) ∗ (b0ref2(t)− b0ref1(t)) + b−2 (t)) (4.23)

M ∗ r1(t) + b(t) + ε ≥ b0ref1(t) (4.24)

M ∗ (1− r1(t)) + b0ref1(t) ≥ b(t) + ε (4.25)

M ∗ r3(t) + b0ref2(t) ≥ b(t) + ε (4.26)

M ∗ (1− r3(t)) + b(t) + ε ≥ b0ref2(t) (4.27)

M ∗ r0
1(t) + b0(t) + ε ≥ b0ref1(t) (4.28)

M ∗ (1− r0
1(t)) + b0ref1(t) ≥ b0(t) + ε (4.29)

M ∗ r0
3(t) + b0ref2(t) ≥ b0(t) + ε (4.30)

M ∗ (1− r0
3(t)) + b0(t) + ε ≥ b0ref2(t) (4.31)

r0
k(t) = rk(t), ∀k = 1, 2, 3 (4.32)

∑3
k=1 rk(t) = 1 (4.33)
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bsj (t) ≥ 0,∀j = 1, 2,∀s ∈ {−,+} (4.34)

b0ref2(t) ≥ b0ref1(t) ≥ 0 (4.35)

rate3(t) ≥ rate2(t) ≥ rate1(t) ≥ 0 (4.36)

rk(t) ∈ {0, 1},∀k = 1, 2, 3, (4.37)

where r1(t), r2(t), r3(t) are binary variables, equal to 1 if the original demand b0(t) is less than

b0ref1(t), between b0ref1(t) and b0ref2(t), or greater than b0ref2(t) respectively. b−1 (t) and b+1 (t) are

the absolute values of the negative and positive deviations of the actual demand b(t) from the

lower reference b0ref1(t); analogously, b−2 (t) and b+2 (t) are the absolute values of the negative and

positive deviations of the actual demand b(t) from the upper reference b0ref2(t). Because b−1 (t) in

zone C and b−2 (t) in zone A are non-zero, we introduce b′+1 (t) and b′−2 (t) such that b′+1 (t) is equal

to b+1 (t) within the threshold band and 0 outside, (4.22), and b′−2 (t) is equal to b−2 (t) within the

threshold band and 0 outside, (4.23). For each relevant constraint, M is chosen according to the

principles of the so-called ”big M” method [104]. ε is a small real number that helps enforce strict

inequality. Given our formulation, the following can be shown.

Theorem 1. Assuming that b0(t) and b(t) need to be in the same rate zone as required by constraint

(4.31), equation (4.4) is exactly the same as (4.17) given that (4.18) through (4.37) hold.

Proof: For clarity, refer to Fig. 4.4, which illustrates the expected supply cost structure along

with key variable values for each demand zone. All the relations shown in Fig. 4.4 are trivial,

except for b′−2 (t) in Zone A, and b′+1 (t) in Zone C, which are explained by constraints (4.22) and

(4.23). By replacing the variable values of Fig. 4.4 in (4.18), (4.19) and (4.20) for each demand

zone, one can see that:

For demands b0(t) and b(t) in Zone A.

(1): TEC1(t) = rate1(t) ∗ (b0
ref1(t)− b−1 (t)) = c(b0(t)) ∗ b(t),

(2): TEC2(t) = 0,

(3): TEC3(t) = 0.
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Figure 4.4: Expected Supply cost structure as viewed by the aggregator

For demands b0(t) and b(t) in Zone B

(4): TEC1(t) = 0,

(5): TEC2(t) = rate2(t) ∗ (b0
ref2(t)− b′−2 (t)) = c(b0(t)) ∗ b(t),

(6): TEC3(t) = 0.

For demands b0(t) and b(t) in Zone C

(7): TEC1(t) = 0,

(8): TEC2(t) = 0,

(9): TEC3(t) = rate3(t) ∗ (b0
ref2(t) + b+

2 (t)) = c(b0(t)) ∗ b(t).

In all cases, (4.4) is exactly the same as (4.17). Therefore, the leader’s problem can be linearized

by replacing (4.4) with constraints (4.17) through (4.37).

4.3.2 The Follower’s Problem

The consumer group’s problem is to find an optimal schedule for all deferrable loads with the

objective to minimize the group’s daily cost. The follower’s decision is based on (i) the optimal

reference demand profile B∗ given by the aggregator, and (ii) the pricing scheme presented in

section 4.2. We use similar techniques as in the leader’s problem to formulate the follower’s
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problem presented in equations (4.38) through (4.71). The consumer group’s total cost is made of

(i) the daily energy bill denoted by Bill, (ii) the total cost of utility cost CU which represents the

dissatisfaction experienced due to load curtailment, and (iii) the curtailment reward CR.

min : Consumer-Cost =Bill + CU − CR (4.38)

Subject to:

Bill =
∑
t

Bill1(t) +Bill2(t) +Bill3(t) (4.39)

CU =
∑
i

SLiuiucosti (4.40)

CR =(
∑
t

BLt +
∑
i

SLi ∗Duri −
∑
t

pt) ∗ cc (4.41)

pt = BLt +
∑
i

zitSLi, ∀t ∈ T (4.42)

Bill1(t) = Clow ∗ (Xt
−(Bt∗ − δ)− pt1−), ∀t ∈ T (4.43)

Bill2(t) = Cbase ∗ (Xt
baseB

t∗(t)− pt2−), ∀t ∈ T (4.44)

Bill3(t) = Cthigh(Xt
+ ∗Bt∗ + pt2+), ∀t ∈ T (4.45)

pt1+ − pt1− = pt − (Bt∗ − δ), ∀t ∈ T (4.46)

pt2+ − pt2− = pt −Bt∗, ∀t ∈ T (4.47)

p′t1+ = pt1+ − (δXt
+ + pt2+), ∀t ∈ T (4.48)
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p′t2− = pt2− − (δXt
− + pt1−), ∀t ∈ T (4.49)

MXt
− + pt + ε ≥ (Bt∗ − δ), ∀t ∈ T (4.50)

M(1−Xt
−) + (Bt∗ − δ) ≥ pt + ε, ∀t ∈ T (4.51)

MXt
+ +Bt∗ ≥ pt + ε, ∀t ∈ T (4.52)

M(1−Xt
) + pt + ε ≥ Bt∗), ∀t ∈ T (4.53)

Xt
− +Xt

base +Xt
+ = 1, ∀t ∈ T (4.54)

ptsj ≥ 0, ∀s = −,+ ∀j = 1, 2 ∀t ∈ T (4.55)

Bt∗ ≥ δ ≥ 0, ∀t ∈ T (4.56)

Chigh ≥ Clow ≥ Cbase ≥ 0 (4.57)

Xt
−, X

t
base, X

t
+ ∈ {0, 1}, ∀t ∈ T (4.58)

∑
t z
it = Duri ∗

∑
t y
it, ∀i ∈ I (4.59)

ui = Duri −
∑
t z
it, ∀i ∈ I (4.60)

zi0 = 0, ∀i ∈ I (4.61)
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M ∗ (1− yit) + zit ≥ zi(t−1) + ε, ∀i ∈ I ∀t ∈ T (4.62)

M ∗ yit + zi(t−1) ≥ zi(t)− ε, ∀i ∈ I ∀t ∈ T (4.63)

∑
t y
it ≤ 1, ∀i ∈ I (4.64)

esi ≥ 1 ∀i ∈ I (4.65)

lci ≤ |T | ∀i ∈ I (4.66)

Duri ≤ lci − esi + 1 ≤ |T |, ∀i ∈ I (4.67)

zit = 0, ∀t ≥ lci + ε, or ∀t ≤ esi − ε, ∀i ∈ I (4.68)

yit ∈ {0, 1} , ∀i ∈ I ∀t ∈ T (4.69)

zit ∈ {0, 1} , ∀i ∈ I ∀t ∈ T (4.70)

Bt∗ = argmin{b(t)}{Aggregator-Cost}, ∀t ∈ T, (4.71)

where, besides the previously defined variables and parameters: zit is a binary decision variable,

1 if deferrable load i of the set I is scheduled to be powered at time t of the horizon T ; BLt the

aggregate base load or non-deferrable demand from the consumer group; SLi the rated power of

the deferrable load i; pt the total scheduled demand (including deferrable load and base load) to

be serviced in time slot t. δ is the width of the threshold band; Xt
−, Xt

base and Xt
+ are binary

variables indicating that the demand pt falls respectively under, within, or above the threshold

band in the time slot t; pt1− and pt1+ are the absolute values of the negative and positive deviations
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of pt from the lower threshold limit (Bt∗ − δ) respectively; pt2− and pt2+ are the absolute values of

the negative and positive deviations of pt from the upper threshold limit Bt∗ respectively. ui is

the inventory of the amount of time during which the deferrable load i is not serviced (equation

(4.60)); and yit is a binary variable, equal to 1 if load i comes online in time t after being offline

in time (t− 1).

Constraints (4.39) through (4.45) define the objective function (4.38). Constraints (4.46)

through (4.47) decouple demand and energy price and are key in linearizing the objective func-

tion. Constraints (4.50) through (4.58) define variables and cost components associated with the

linearized form of the objective function [104]. Constraint (4.59) states that the load i should not

be scheduled for more than its duration Duri, and ensures that the load i is not interrupted in

its operation. Hence, once a load comes online it has to be powered for its entire operation cycle.

Constraint (4.68) prevents load i to be scheduled outside certain boundaries defined by esi (earliest

starting time) and lci (latest completion time).

4.4 Case Study

This section presents simulation results of aggregator and consumer strategies. We also com-

pare the optimal consumer demand profiles under GenMinimax, ToU and RTP. In our simulation,

we use an energy utilization dataset released by researchers at the University of Massachusetts

Amherst (UMass) [4,98]. We select 40 homes from this dataset and then add additional deferrable

loads such as 40 space heaters, 20 large and 10 small electric vehicles (EVs). We assume each space

heater is rated 10 kW and an average usage time of four hours or one hour according to scenarios.

The large fast-charging EV can be charged in two hours at a charging rate of 12.50 kW while the

small EV can be charged at a rate of 3.50 kW for four hours [101]. The base load demand ranges

from 151.28 kWh to 212.03 kWh with an average and standard deviation of 167.35 kWh and 17.25

kWh respectively. We set fundamental model parameters as presented in table 4.1 to explore key

possible scenarios. α is given in kWh−1, 4c in $, b0ref1 and b0ref1 in kWh and the rates in $. Besides

the parameter of table 4.1, we set the curtailment cost cc to $0.12/kWh, the distribution charge

cd to $0.02/kWh, the share factor γ to 20%, the minimum load service factor µ to 90%, and the

threshold bandwidth δ to 3 kW. The maximum allowable demand bmax is set to 350 kW. The

consumer group modifies their deferrable loads’ consumption patterns to reduce their daily energy
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Table 4.1: Aggregator’s model input parameters

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

α(t)× 1000 1 1 1 2 1 2 1 1.5 .8 1 1 5 1 1.5 1.5 .9 1 1 1 1 2 1 2 1

4c(t)/100 .02 .01 .02 .05 .12 0.6 1.2 .8 1.5 1.2 4 7 5 8 5 7 4 9 10 5 4 1 .5 .02

b0ref1(t)/10 20 19 19 18 19 19 19 18 20 17 18 17 18 18 17 15 17 19 19 17 17 17 19 20

b0ref2(t)/10 26 24 22 23 23 22 21 20 22 25 23 24 22 24 21 20 26 22 21 20 20 23 25 26

rate1(t)× 100 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 4 4 4 4 4 4 4

rate2(t)× 100 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

rate3(t)× 100 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Table 4.2: Simulation setup

SCENARIO 1 : The reference profile covers 90% of the total load SCENARIO 2 : The reference profile covers 100% of the total load

Case 1 cc = $0.12, ucost < $0.22; SH duration: 4 hrs. cc = 0, ucost = $0.1 for SH and $0.07 for the rest; SH duration: 1 hr.
Case 2 cc = $0.12, ucost = $0.22; SH duration: 4 hrs. cc = 0, ucost = $0.1 for all deferrable loads; SH duration: 1 hr.
Case 3 cc = $0.12, ucost > $0.22 ; SH operating time: 4 hrs. -

cost. Note that the bi-level GenMinimax problem is one in which the objective and constraints

of the inner problem do not depend on the outer’s problem decision variables. Therefore, the

GenMinimax problem can be solved sequentially, that is, the inner problem is solved first, and the

optimal values of the inner problem are used to define B∗(t) ∀t in the outer problem, which is then

solved as a single-level optimization problem. Thus, we solve the Mixed Integer Linear Program

(MILP) problems formulated in Section 4.3 using AMPL and CPLEX.

We consider two scenarios to evaluate the impacts of Generalized Minimax with different chosen

pricing parameter values so that we can confirm their proper settings.

1. In scenario 1, the aggregator provides only 90% of consumers’ total demand. Consumers react

to the aggregator’s signal based on their own deferrable loads’ utility costs and the proposed

curtailment reward. Under this scenario, three cases corresponding to three different utility

cost settings are explored.

2. In scenario 2, the aggregator provides 100% of the total load. No curtailment reward is

proposed. Two cases corresponding to two utility cost settings are considered.

Table 4.2 shows the details of these scenarios and cases.

4.4.1 Aggregator’s strategy

We obtain the ex-ante demand b0(t) and actual demand b(t) curves shown in Fig. 4.5 for

scenario 1, using the UMass data to simulate the aggregator’s response. It is noteworthy that

in hours 1, 2, 3, 4, 5 and 24, b0(t) and b(t) are exactly the same. There is no ”gaming” on the

aggregator’s side. This is consistent with her perception of the market. In fact, the aggregator
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perceives a very low potential DR reward for these hours and consequently does not bid for any

extra demand to trade in the DR market, a strategy which is fairly intuitive. On the other

hand, for the rest of the time, she bids beyond the actual demand because of substantial DR

reward anticipated. The aggregator bids the least of her maximum market share imposed by γ in

constraint (4.14) and the maximum of the pricing zone in which the actual demand falls. Note

that the actual planned demand b(t) and related aggregator profit are realized only if the consumer

group follows exactly the consumption signal b(t), which is not trivial since consumers have their

own profits to maximize. In the event of a different demand profile, the aggregator would have to

update her profit. The only tools the aggregator has at hand are the contract parameters. Given

that for the sake of privacy, the aggregator only knows the base load profile and the gross deferrable

demand, we can not expect the consumer group to exactly match the reference profile. However, if

all parameters are appropriately chosen, the reference profile should envelop the scheduled profile

or set a trend for it. The next subsection discusses the consumers’s strategy.

4.4.2 Consumer group’s strategy

The consumer group’s response to the aggregator’s demand signal depends not only on the

pricing parameters but also on the utility cost and the curtailment reward offered. In fact, looking

at only one time unit, for the consumer group to schedule an additional deferrable load i on top of

the current demand pt, the energy bill growth [(pt +SLi) ∗C(pt +SLi)− pt ∗C(pt)] has to be less

than the cost of keeping load i offline which is SLi ∗ (ucosti− cc). We assume a case where the de-

mand is initially under the threshold band i.e., C(pt) = Clow. With the added deferrable load i, the

demand (pt +SLi) can (i) still stay under the threshold band (in which case C(pt +SLi) = Clow),

(ii) fall within the band (in which case C(pt + SLi) = Cbase) or (iii) go above it (in which case

C(pt + SLi) = Chigh). These cases are respectively expressed by (4.72) through (4.74).

Clow ≤ ucosti − cc, (4.72)

Cbase

[
1 + pt

SLi (1− k1)
]
≤ ucosti − cc, (4.73)

Chigh

[
1 + pt

SLi (1− k1
k2

)
]
≤ ucosti − cc. (4.74)
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Figure 4.5: Aggregator’s optimal strategy - scenario 1

For the load aggregator, the desirable situations are the first two (see (4.72) and (4.73)). Given

that k1 ≥ 1, the second case (equation (4.73)) is always realized as long as ucosti ≥ cc. However,

the situation depicted by (4.74) is detrimental to the load aggregator since she would like to

discourage the consumer group’s aggregate demand to exceed the threshold band. Hence the

aggregator has to set the prices so as to reverse the inequality in (4.74). Without lost of generality,

we suggest the contractual constraint (equation (4.75)) to bind all pricing parameters. In practice,

the actual values of k1 and k2 must be obtained from price elasticity based consumer behavioral

studies [105,106].

Clow ≤ (ucosti − cc) ≤ Chigh, ∀i ∈ I. (4.75)

Fig. 4.6 shows how critical the utility cost is in the consumers’ reaction. We recall that the

utility cost ucosti of deferrable load i is the measure of the ”harm” caused to end-users if load

i is not served. Thus, we understand that in the current load model, the base load has a util-

ity cost of +∞. It is intuitive to foresee that if the curtailment reward cc is greater than the

utility cost ucost, consumers would rather have all their flexible loads curtailed. The profile ob-

tained in scenario 1, case 1 of Fig. 4.6 represents the consumer group’s optimal demand profile

under the assumption that the curtailment reward is greater than the utility cost. This profile is

exactly the same as the base load profile which the aggregator has to serve under any circumstance.
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Figure 4.6: Consumer group’s optimal strategy in scenario 1 for cases 1, 2 and 3

However, we observe a change in the profile only at a utility cost of $0.22 for all i. Recall

that we use a curtailment reward cc of $0.12 in this simulation. Note that the reference profile in

this scenario covers only 90% of the total load, i.e., µ in equation (4.11) is set to 0.9. Fig. 4.6

underlines the fact that the utility cost is key in the consumers’ decision. If the utility costs are

very high compared to the curtailment reward and pricing penalties expressed by k2 in (4.1), the

threshold band is violated to prevent high CU . This is shown by both scheduled profiles which are

not confined within or under the threshold band. These outcomes confirm the discussion around

equations (4.72) through (4.75).

In addition, Fig. 4.6 reveals a certain inertia in the scheduled profiles. Recall that we set

space heaters’ operating time to 4 hours, that of large EVs to 2 hours and small EVs to 4 hours.

Constraints (4.59), (4.62), (4.63) and (4.64) ensure that load i, if served, is not interrupted before

its completion time. No such requirement is accounted for in the aggregator’s model. This means

that the longer the non-stop operation times, the more inertia we see in the scheduled profile and

the less likely the latter is to match a reference profile. To illustrate this analysis, we set the

space heaters’ duration to 1 hour for all cases in Scenario 2. For simplicity, we assume there is no

curtailment reward (cc = 0) meaning that consumers have no profit based incentive to withhold

some of their flexible loads. After all, the difference (ucosti− cc) compared to the consumer’s rate
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is what matters.

Fig. 4.7 presents the consumer group’s strategy for 2 types of utility cost. The resulting profile

in scenario 2, case 1 corresponds to the optimal demand profile when the cost of utility of the space

heaters is $0.10/kWh and the EVs are worth $0.07/kWh based on their relative criticality. We

chose $0.09/ kWh as Cbase, k1 and k2 are respectively 1.1 and 1.3 as in Scenario 1. Hence, Clow is

slightly lower than the cost of utility of the heaters. In this case, only the heaters came online in

the optimal scheduling. All EVs are curtailed because serving them would lead to a higher total

cost.

In the second case (Scenario 2, Case 2), we set the cost of utility for all deferrable loads to

$0.10/kWh to keep the difference (ucosti − cc) at $0.10/kWh as in Scenario 1, Case 2. This

time, 5 heaters and 1 large EV are curtailed and the scheduled profile matches almost perfectly

the reference profile in Fig. 4.7. The effect of short-term loads can be seen in hours 17, 21

and 23 where relatively sharp transitions are obtained without violating the threshold band. For

more flexibility in matching the reference profile under Generalized Minimax, we suggest that the

continuity constraints embodied by equations (4.59) and (4.64) can be relaxed by removing the

term
∑
t y
it and replacing the equality by less or equal in (4.59), and simply changing (4.64) into∑

t y
it ≥ 0. Even if this cannot realistically be done for all types of loads, one can create a subset of

loads for which this relaxation is possible and thus contribute to a better demand responsiveness.

To evaluate how well (or tight) the scheduled consumption of the consumer group matches the

reference profile, we define a performance index (relative error) εt given by (4.76). The lower εt,

the better the performance.

εt =
Bt∗ − pt∗

Bt∗
. (4.76)

The daily performance can be assessed by either averaging the absolute value of εt or taking its

maximum absolute value. Fig.4.8 shows the performance index for the different cases and scenarios

investigated. in Scenario 1, the average and maximum absolute deviations are 27% and 52% for

Case 1, 18% and 51% for Case 2, and 19% and 48% for Case 3 respectively. The large deviation

is caused by the fact that the aggregator had planned ahead of time to curtail 10% of the loads

while the consumer group simply reacts to the pricing signal given the costs of utility. In Scenario
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Figure 4.7: Consumer group’s optimal strategy in scenario 2 (cases 1 and 2)

2, the average and maximum absolute deviations are 13% and 39% for Case 1, 2% and 5% for

Case 2 respectively. The relatively large deviation in Case 1 is due to the fact that according to

the consumer group, the EVs are not worth paying $0.09/kWh to serve them, their cost of utility

being only $0.07/kWh in this case, while the aggregator has planned to serve them. One can easily

see that the right profiling signal is the one made of concordant price settings satisfying constraint

(4.75) for Scenario 2 case 2, our best performance instance. Additionally, both aggregator and

consumer group should be in harmony with regard to how much load is to be covered.

4.4.3 Comparison of GenMinimax, TOU and RTP

Under TOU and RTP, the rate applied at any time t does not depend on the demand while in

GenMinimax the rate is a discrete function of the demand, a function that varies according to the

desired demand profile.

To evaluate GenMinimax with regard to TOU and RTP, we simulate the consumer group’s

optimal profiles in response to the above pricing scheme and compute the relative error given

by equation (4.76). Consumers respond to GenMinimax according to the strategy presented in

subsection 4.4.2. We briefly discuss in this subsection the consumer group’s response model. In

TOU pricing, consumers are bound to 2 or 3 rates corresponding each to predefined off-peak,

mid-peak and/or peak periods. On the other hand, the energy rate paid by consumers in RTP

is subject to change every hour. Consumers are given a day-ahead RTP signal to which they
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Figure 4.8: Performance evaluation in all scenarios and cases

react by scheduling their daily demand profile. Fig.4.9 shows the TOU signal adapted from the

2012 Ontario rates [107] and the RTP signal is obtained as inversely proportional to the reference

or desirable demand profile such that it has the same average daily rate as the TOU rate, for

comparison purposes.

The consumer group’s objective has not changed: minimize the group’s total energy cost. Given

that the energy rates are independent on the demand in RTP and TOU pricing, the consumer model

can be expressed by equations (4.77) through (4.80).

min : Bill =

|T |∑
t=1

Ct ∗ pt (4.77)

Subject to: constraints (4.42), (4.61) - (4.63), (4.65) - (4.70)

pt ≤ Pmax, ∀t ∈ T (4.78)

∑
t

zit = Duri, ∀i ∈ I (4.79)

∑
t

yit = 1, ∀i ∈ I (4.80)

The only new parameter in this formulation is Pmax which is the maximum demand possible.
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Figure 4.9: TOU and RTP pricing signals

Figure 4.10: Comparison of response performance factor for TOU, RTP and GenMinimax

zit, the decision variable is the same as defined in previous models in this part. C is the rate vector

whether we are in TOU or RTP.

We use the GenMinimax parameters used in scenario 2 case 2 and compare the resulting demand

profile with those obtained under TOU and RTP as described above. We base the comparison

on the performance factor ε defined by equation (4.76). Fig.4.10 plots ε for TOU, RTP and

GenMinimax. One can see that with GenMinimax, the resulting profile is closer to the reference.

The maximum relative gap between the reference supply profile and the scheduled one is 163% for

TOU, 97% for RTP and 5% for GenMinimax. The average relative gaps are 37%, 25% and 1.7%

for TOU, RTP and GenMinimax respectively. The performance of GenMinimax is justified by its

time and demand dependency.
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4.5 Conclusion

Price responsiveness of demand is key under the future smart grid paradigm where higher re-

newable penetrations are expected. Major dynamic pricing mechanisms such as TOU and RTP

do not provide incentives to match the available resources with the demand due to behavioral

and strategic considerations amongst others. In this work, we generalize the concept of Minimax

pricing first introduced in [24], seeking to nudge end-users to match their demand to any type

of supply reference either variable or flat provided that they have sufficient deferrable loads. The

results also show that selfish gaming on aggregator’s and/or consumers’ side is likely to lead to

an unstable power system. For a proper response from consumers, aggregator should consider

the average cost of utility of the deferrable loads. Results indicate that it is crucial to set cost

of utility higher than the curtailment reward for a consumer to schedule the corresponding loads.

Additionally, the second highest rate (Clow) should not be higher than the difference between cost

of utility and the curtailment reward. With appropriately chosen pricing parameters, Generalized

Minimax can incentivize the customer group to follow closely the reference supply profile sent by

a single aggregator as a solution to her own profit maximization problem given anticipated market

conditions, and the consumer group is able to fit the reference profile with 5% maximum error

and less than 2% average error. The consumers, under GenMinimax, have the opportunity or the

power to reduce their energy rate by reducing or increasing their demand. In fact, the demand is

time-dependent and GenMinimax rates are demand-dependent with respect to the optimal demand

signal. In contrary, TOU and RTP are solely time-dependent. Consumers cannot change their

energy rate at any time if they reduce or increase their consumption. Consequently, TOU and RTP

lead to higher maximum and average errors: 163% and 37% for TOU, and 97% and 25% for RTP.

The problem setup structure in this part supports further research in models with increased user

cooperation, most importantly by modeling the strategic interactions between several aggregators.
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Chapter 5

Reliabilty-aware Renewable

Integration: Introduction of a

Short-term Reserve Market

5.1 Introduction

With the expected increase of intermittent renewable energy resources on the electric power

grid, short-term reserve markets can prove to be a critical reliability asset. This chapter considers

a hypothetical market structure that includes a short-term reserve market where the realized

energy is drawn within the bounds of the hourly capacity offered. The study presents a risk-aware

stochastic solution process that determines, based on the day-ahead offer derived using a classic

newsvendor formula, the best intra-day offers for a wave energy farm. Uncertainties related to

energy production and market prices are accounted for. To demonstrate the effectiveness of the

proposed formulation, we study the case of a wave farm. The introduction of the short-term reserve

market results in a wider risk range but induces 5% profit increase and a lower profit reduction

across the risk range.

The remainder of this chapter is structured as follows. Section 5.2 describes the market model

and energy management framework under consideration in this work. Section 5.3 introduces the

analysis of the day-ahead energy bidding as a newsvendor problem and evaluates the implications

of such a bidding strategy. Section 5.4 formulates the resulting second stage offering problem in
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Table 5.1: Nomenclature (Part A)

Symbol Description

α confidence level.
β loss of profit risk sensitivity factor.
cd storage unit depletion cost incurred when the state of charge soc violates

healthy operation thresholds.
Cto overage cost in time t, ∀t ∈ T .
Ctu underage cost of time slot t, ∀t ∈ T .
CV aRα conditional value at risk, at the confidence level α.
DAt day-ahead energy offer for the time t, ∀t ∈ T .
δtsωC , δtsωD charge, discharge energy for scenario ω in time t and time-slot s, ∀ t ∈ T ,

s ∈ S, ω ∈ Ω.
∆s duration in hour of one time-slot unit (∆s = 0.0833 h (5 min)).
∆t duration in hour of one time unit (∆t = 1 h).
EtsωG energy output of the renewable converter in scenario ω, time t and time-slot s,

∀t ∈ T , s ∈ S, ω ∈ Ω.
Etωnet net energy output of the renewable farm after reserve energy in scenario ω and

time t, ∀ t ∈ T , ω ∈ Ω.
Etsωout energy output of the renewable farm in scenario ω, time t and time-slot s,

∀t ∈ T , s ∈ S, ω ∈ Ω.
ηC, ηD charge and discharge efficiency.
F t(.) cumulative distribution function of all possible realizations in time t, ∀ t ∈ T .
γt price fractile in time t, ∀t ∈ T .
λtω positive imbalance charge for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
Ω set of scenarios.
Pcap storage power capacity.
Pmax interconnection feeder capacity.
pt day-ahead market clearing price in time t, ∀t ∈ T .
pωr probability of scenario ω, ∀ω ∈ Ω.
πtω farm profit for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
qtω negative imbalance charge in scenario ω and time t, ∀ t ∈ T , ω ∈ Ω.
rtsω reserve market energy price ($/kW) for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
Rtsωg energy output in the reserve market for scenario ω in time t and time-slot s,

∀t ∈ T , s ∈ S, ω ∈ Ω.
RT t real-time market bid in time t, ∀t ∈ T .
RV t reserve market bid in time t, ∀t ∈ T .
ρtω real-time market price for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
S set of time-slots.
S− minimum healthy storage state of charge threshold.
S+ maximum healthy storage state of charge threshold.
Scap storage energy capacity.
soctsω state of charge for scenario ω in time t and time-slot s, ∀t ∈ T , s ∈ S, ω ∈ Ω.
σ storage efficiency.
T set of times.
V aRα value at risk.
vtω reserve market capacity price ($/kWh) for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.

the presence of an ESS as a risk-aware two-stage stochastic model. In Section 5.5, we conduct

a case study to evaluate the impacts of the short-term market on farm profitability. Section 5.6

concludes the chapter.
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Table 5.2: Nomenclature (Part B)

Symbol Description

xtωz output energy deviation binary variables of zone z (z ∈ {1, 2, 3}) for scenario ω
in time t, ∀ t ∈ T , ω ∈ Ω.

ŷ expected value of the stochastic parameter y.
Y ω CVaR’s slack variable for scenario ω, ω ∈ Ω.
ztωDA day-ahead energy shortage for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
ztsωES+ deviation above the healthy storage operation upper threshold for scenario ω in

time t and time-slot s, ∀t ∈ T , s ∈ S, ω ∈ Ω.
ztsωES− deviation below the healthy storage operation lower threshold for scenario ω in

time t and time-slot s, ∀t ∈ T , s ∈ S, ω ∈ Ω.
ztsωES Total state of charge deviation in scenario ω, time t and time-slot s, ∀t ∈ T ,

s ∈ S, ω ∈ Ω.
ztωout market energy excess for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
ztωRT real-time energy shortage for scenario ω in time t, ∀ t ∈ T , ω ∈ Ω.
ζtsω reserve energy signal for scenario ω in time t and time-slot s, ∀t ∈ T , s ∈ S,

ω ∈ Ω.

5.2 System Framework

Environmental concerns raised about predominant conventional energy fuels such as oil and

coal, position renewable energy resources as a must-have in any electricity fleet worldwide. Calls

for an increased renewable share in the energy portfolio are persistent. The increasing levels of

intermittent energy are adding to the inherent uncertain variability of electricity grids. System

operators will have to deal with a decreasing inertia grid. On the other hand, renewable pro-

ducers would have to face high imbalance penalties or frequent curtailments. To hedge against

these alarming future challenges for both system operators and sustainable energy producers, it is

important that renewable generation units are operated in a reliability-centered fashion. This calls

for establishing a standard operation framework that showcases a composite reliability assets such

as accurate recurrent forecasts, energy storage, multi-step and multi-period control techniques,

and multi-market opportunities. We present in Fig. 5.1 a typical renewable market integration

framework. The framework comprises a renewable farm (e.g., wave, wind, or solar) coupled with

an energy system. The farm has the opportunity to bid in day-ahead, real-time and short-term

reserve markets. The day-ahead market clears daily, the real-time market clears hourly and 15

minutes before realization hour. We introduce a short-term reserve market made of capacity offers

and energy outputs. The energy output is imposed by the system operator (via an energy signal)

within the limits of the cleared reserve capacity. In all these markets, the renewable producer is a

price-taker. The framework boasts a forecasting engine that predicts price and energy information

needed by the decision making modules. The farm controller executes the optimal schedules. Fig.
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5.1 presents the operating environment of the wave energy farm considered in this chapter.

Forecasting engine

Day-ahead offer decision

Real-time and re-
serve offer decisions

Farm control systemRenewable en-
ergy converter

Energy storage

Market:

1. Day-ahead

2. Real-time

3. Reserve

Grid operation

Figure 5.1: Renewable integration framework

5.3 Day-ahead Bidding as a Newsvendor Problem

We pose the day-ahead optimal bidding problem as a newsvendor problem [59]. The market

considered is of the traditional two-settlement structure. Under this model, energy supplier i places

his offer made of the amount of energy DAit he plans to output and the price pit he will sell it,

for any time slot t ∈ T the next day. The system operator (SO) clears the market at a price pt

and all suppliers with pit less than or equal to pt are selected and get pt for each unit of energy

output the next day at time t, for all t ∈ T . At the time of realization, depending on the grid

balancing needs (with the use of emergency generators) in any time t, the SO charges for any

unit of negative deviation the price qt. For any extra unit of energy above DAit, the supplier i is

charged λt. For the sake of simplicity and clarity we will consider only one renewable farm and

get rid of the subscript i. According to the formulae established by Bitar et al. [59], the optimal

68



day-ahead bid at time t, DAt
∗
, is given by (5.1)

DAt
∗

=


0, p̂t < −λ̂t

F t
−1

(γt), −λ̂t ≤ p̂t ≤ q̂t

EtGmax, p̂t > q̂t

(5.1)

with the price fractile γt:

γt =
p̂t + λ̂t

q̂t + λ̂t
(5.2)

where F t is the CDF of the REC’s output energy distribution in time-slot t; q̂t and λ̂t the expected

negative and positive imbalance prices at time t.

The classical way of proving (5.1) in inventory theory is to determine the underage (or shortfall)

and overage (or holding) costs associated with the farm’s participation in the DA market. In fact,

if the actual output ends up being EG
t = DAt + 1, the expected revenue becomes the sum of the

opportunity revenue (DAt + 1).pt and the positive imbalance charge λ̂t instead of DAt.pt initially

expected. The financial impact of the extra unit generated, known as the overage cost is:

Cto = pt + λ̂t (5.3)

Analogously, the expected revenue, when the realized output is one unit short, becomes the sum

of the opportunity revenue (DAt − 1).pt and the negative imbalance charge q̂t instead of DAt.pt

initially expected. The underage cost is given by (5.4)

Ctu = −pt + q̂t (5.4)

Randomizing over all possible realizations, (5.5) defines the optimality condition.

Ctu.P rob(EG
t ≤ DAt∗) = Cto.P rob(EG

t > DAt
∗
) (5.5)

(5.5) leads to the results presented by Snyder and Shen in [108]

DAt
∗

=F t
−1
(

Ctu
Ctu + Cto

)
(5.6)

Ct
u

Ct
u+Ct

o
being the price fractile γt defined in (5.2).
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According to (5.1), once pt < −λ̂t, the renewable farm should bid its maximum expected or

forecast energy output EtGmax in the real-time market even though realistically it is uncertain

whether the foreseen output will be achieved. The opposite happens whenever the negative de-

viation charge is believed to be less than the expected DA market clearing price. In both cases,

there is little incentive for the renewable farm to be reliability minded. We can draw an important

observation from (5.1): To provide enough incentive for renewable farm to be concerned about grid

reliability, q̂t, λ̂t and p̂t should satisfy (5.7):

−λ̂t ≤ p̂t ≤ q̂t (5.7)

Consequently, for the remainder of this work we assume condition (5.7) satisfied and the DA

optimal bid given by (5.8).

DAt
∗

=F t
−1

(
p̂t + λ̂t

q̂t + λ̂t

)
(5.8)

Given that the distribution is involved in the determination of the DA bidding solution, the offer

DAt
∗

obtained is the best across the entire spectrum of all possible realizations. However, in

each instance only one element in the spectrum can be realized at the time. This leaves room

for improvement. To enable the renewable farm to actively participate in the real-time market,

assume that the REC is coupled with an energy storage system (ESS). The purpose of the intra-

day participation is to mitigate deviations and reduce the balancing needs. Section 5.4 presents a

strategic offering solution model for an active real-time and reserve market participation.

5.4 Intra-day market strategy

Because the REC’s output EG is prone to uncertainty, an intra-day offer optimization model

is needed to maximize the renewable farm’s profit while contributing to enhance grid reliability.

The first stage solution, the DA offer, is given by equation (5.8). Due to intermittent output, one

should expect discrepancies between DAt
∗

and the actual realization EtG, for all t ∈ T . Instead of

”polluting the grid” with or spilling the difference (EtG −DAt
∗
), it can be traded in the real-time

market and/or in the reserve market. We consider the following post day-ahead market structure:

for every hour t, at the beginning of the hour, the farm is allowed to submit an energy offer RT t

to the real-time market and a capacity offer RV t to the reserve market. The RT energy offer is
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binding, but the reserve capacity offer is not. However, the system operator sends a reserve energy

signal ζts every time slot s, say every five minutes, of the corresponding hour t that the farm

has to follow. The reserve energy output Rtsg is determined by ζts and the “committed” reserve

capacity RV t as shown in (5.22). In terms of compensation, the farm is paid vt for every capacity

unit of RV t, rts for each unit of reserve energy Rtsg provided, and ρt for any fulfilled unit of its

real-time energy offer RT t. Day-ahead and real-time deviations with respect to offers are subject

to positive and negative imbalance penalties λt and qt respectively. We assume that the farm is a

zero marginal cost producer, and thus, is a price taker. As such, it is always cleared.

To account for the uncertainties related to these parameters, we formulate the intra-day market

problem as a two-stage stochastic optimization model.

5.4.1 The Profit Function

At the outset of the intra-day bidding process, the farm manager knows the values of pt,∀t ∈ T ,

but only has a belief about the parameters ρt, qt, λt, vt, rt, Rtsg and the generation output EtsG ,

for all t ∈ T , s ∈ S. In the rest of this chapter, we denote by ŷ, the expected or believed value

of the parameter y. In general, this belief comes from a trusted forecasting package. We express

the objective function in terms of the expected revenue and a penalty value that accounts for all

possible realizations of the above uncertain parameters. We define a scenario set Ω to represent

these realizations. All uncertain parameters and second-stage variables bear the superscript ω,

ω being the scenario index. Equation (5.9) presents the profit function for all hour t ∈ T and

scenario ω ∈ Ω.

πtω = Revtω − Costtω (5.9)

with:

Revtω = ptDAt
∗

+ ρtωRT t + vtωRV t +

|S|∑
s=1

rtsωRtsωg (5.10)

Costtω = qtω(ztωDA + ztωRT) + λtωztωout + cdz
tω
ES (5.11)

where ztωDA and ztωRT are day-ahead and real-time shortages respectively; ztωout represents the real-

time excess at hour t ∈ T and scenario ω ∈ Ω. ztωES defines the total state of charge deviations,

and cd, the fixed storage deviation cost.
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5.4.2 The Operational Constraints

Storage management is key in the second-stage of the stochastic model. The energy storage

system (ESS) control is designed to adapt to all scenarios ω ∈ Ω. An ESS of capacity Scap operates

efficiently in the range S− - S+ given by (5.12). Typical healthy operating thresholds are γ− = 10%

and γ+ = 90%. Once these thresholds are violated, the ESS is said depleted or overcharged. This

can speed up its aging process and shorten its lifespan. To account for this in the objective function,

we assign a depletion/overcharge penalty unit cost cd incurred each time the healthy operation

bounds are violated. Constraints (5.13) - (5.14) track the state of charge, soc.

S− = γ−Scap

S+ = γ+Scap

0 < γ− < γ+ < 1

(5.12)

0 ≤ soctsω ≤ Scap,∀t ∈ T , s ∈ S, ω ∈ Ω (5.13)

S− − ztsωES− ≤ soctsω ≤ S+ + ztsωES+

ztsωES+ ≥ 0,∀t ∈ T , s ∈ S, ω ∈ Ω

ztsωES− ≥ 0,∀t ∈ T , s ∈ S, ω ∈ Ω

(5.14)

ztsωES = ztsωES− + ztsωES+,∀t ∈ T , s ∈ S, ω ∈ Ω (5.15)

ztωES =

|S|∑
s=1

ztsωES , ∀t ∈ T , ω ∈ Ω (5.16)

Because ESSs do not retain 100% of the charge stored on them, we introduce the storage efficiency

factor σ to represent the portion of charge available in time slot s, hour t and scenario ω, that is

still available at the beginning of time period s+ 1 in scenario ω, hour t. Taking into account the

charge and discharge efficiencies ηC and ηD, the storage inter-temporal equilibrium constraint is

given by (5.17).

soct(s+1)ω = σsoctsω + ηCδ
tsω
C − δtsωD

ηD
,∀t ∈ T, s ∈ S, ω ∈ Ω (5.17)
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where δtsωC and δtsωD are respectively the charge and discharge amounts. They must satisfy the

ramping constraints (5.18).

0 ≤ δtsωC ≤ Pcap∆s,∀t ∈ T, s ∈ S, ω ∈ Ω

0 ≤ δtsωD ≤ Pcap∆s,∀t ∈ T, s ∈ S, ω ∈ Ω
(5.18)

The system’s balance constraints are given by (5.19).

EtsωG + δtsωD = Etsωout + δtsωC ,∀t ∈ T, s ∈ S, ω ∈ Ω (5.19)

with the farm output Etsωout satisfying (5.20).

0 ≤ Etsωout ≤ Pmax∆s,∀t ∈ T, s ∈ S, ω ∈ Ω (5.20)

5.4.3 Market Constraints

In the assumed market model, a supplier makes a portfolio of offers and fulfill those offers in

one package at a single point of interconnection. The main challenge would be how to determine

what is considered as shortage or excess with regard to a specific offer (DA or RT for example).

To clarify, let us consider a farm which offers in DA 2 kWh and 1 kWh in RT. If at the time of

realization, the farm ends up with an output of 1 kWh, how do we determine the mismatches?

Would we say we have 1 kWh unfulfilled in DA and 1kWh unfulfilled in RT, or 2kWh unfulfilled

in DA? Since the mismatch charges can differ from one market to the other, there is a potential

for conflict. A conservative way of avoiding such conflict is to clearly define a market hierarchy.

In this chapter, we assume the following order of priority: reserve offers have to be fulfilled first,

followed by DA offers, then RT offers.

Given the high priority of the reserve energy output Rtsωg , the renewable farm would make sure

that the reserve market offer RV t is available to be deployed whenever necessary. Constraints

(5.21) and (5.22) bind the reserve capacity and energy offers.

0 ≤ RV t ≤ Pcap,∀t ∈ T (5.21)

Rtsωg = ζtsωRV t∆s, ∀t ∈ T, s ∈ S, ω ∈ Ω

0 ≤ ζtsω ≤ 1, ∀t ∈ T, s ∈ S, ω ∈ Ω
(5.22)
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Due to uncertain production, market offers are may not be exactly supplied. The net energy

output, Etωnet (see (5.23)), can fall in any of the three zones described by (5.24). We introduce in

(5.25) slack binary variables xtω1 , xtω2 , xtω3 to indicate the deviation zone in which lies the farm

output for all hour t ∈ T , and scenario ω ∈ Ω. Constraints (5.27) through (5.30) define energy

shortage and excess in day-ahead and real-time realizations.

Etωnet =

|S|∑
s=1

Etsωout −Rtsωg (5.23)


(zone1) : 0 ≤ Etωnet ≤ DAt

∗

(zone2) : DAt
∗ ≤ Etωnet ≤ RT t +DAt

∗

(zone3) : Etωnet ≥ RT t +DAt
∗

(5.24)

Emaxx
tω
1 + Etωnet + ε ≥ DAt∗

Emax(1− xtω1 ) +DAt
∗ ≥ Etωnet + ε

Emax(1− xtω3 ) + Etωnet + ε ≥ DAt∗ +RT t

Emaxx
tω
3 +DAt

∗
+RT t ≥ Etωnet + ε

xtω1 + xtω2 + xtω3 = 1, ∀t ∈ T, ω ∈ Ω

(5.25)

with:

Emax = Pmax∆t (5.26)

where Pmax is the interconnection feeder capacity, and ∆t, the duration in hour of one time unit.

Any day-ahead shortage zDA (zone1) is given by:

ztωDA ≤ DAt
∗ − Etωnet + (1− xtω1 )DAt

∗

ztωDA ≥ DAt
∗ − Etωnet − (1− xtω1 )DAt

∗

0 ≤ ztωDA ≤ xtω1 DAt
∗
, ∀t ∈ T, ω ∈ Ω

(5.27)

Real-time shortage can happen in both zone1 (ztωRT1) and zone2 (ztωRT2) as expressed respectively

by (5.28) and (5.29).

ztωRT1 ≤ RT t + (1− xtω1 )Emax

ztωRT1 ≥ RT t − (1− xtω1 )Emax

0 ≤ ztωRT1 ≤ xtω1 Emax, ∀t ∈ T, ω ∈ Ω

(5.28)
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ztωRT2 ≤ DAt
∗

+RT t − Etωnet + (1− xtω2 )Emax

ztωRT2 ≥ DAt
∗

+RT t − Etωnet − (1− xtω2 )Emax

0 ≤ ztωRT2 ≤ xtω2 Emax, ∀t ∈ T, ω ∈ Ω

(5.29)

At any hour t ∈ T , and for any scenario ω ∈ Ω, the overall real-time market shortage is:

ztωRT = ztωRT1 + ztωRT2, ∀t ∈ T, ω ∈ Ω. (5.30)

When it comes to market excess zout (zone3), we have:

ztωout ≤ Etωnet −DAt
∗ −RT t + (1− xtω3 )Emax

ztsωout ≥ Etωnet −DAt
∗ −RT t − (1− xtω3 )Emax

0 ≤ ztωout ≤ xtω3 Emax, ∀t ∈ T, ω ∈ Ω.

(5.31)

5.4.4 The Model

We propose two modeling approaches in connection with this problem. The farm can choose

to optimize its intra-day portfolio as often as every hour while looking ahead up to the end of

the bidding horizon, which is hour t = 24, or to the end a given rolling horizon. This approach

offers the advantage of updating the scenario set Ω with shorter term forecasting outputs that are

expected to be more accurate. In this case, the objective at the beginning of any time t0 is given

by:

max : π̂ =
∑
ω∈Ω

pωr π
ω (5.32)

with:

πω =

|T |∑
t=t0

πtω (5.33)

where t0 is the starting time (we will use t0 = 1) The objective in (5.32) provides a very conservative

solution approach in the sense that it maximizes the expected profit.

The second modeling approach takes into account risk through a conditional value-at-risk

(CVaR) formulation. It minimizes the risk of losses for the intra-day portfolio {RT,RV }, at a

confidence level α. Equation (5.34) gives the corresponding objective function.

max : CV aRα (5.34)
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with:

CV aRα = V aR− 1

1− α
∑
ω∈Ω

pωr Y
ω (5.35)

Y ω ≥ V aR− πω

Y ω ≥ 0, ∀ω ∈ Ω
(5.36)

We adopt a more general objective by combining the above approaches. Equation (5.37) expresses

the weighted hybrid objective function of our proposed model, with β, a trade-off parameter.

max : π̂ + βCV aRα (5.37)

where π̂ is the expected farm profit (see, (5.32)). The trade-off parameter β indicates how risk-

averse the farm intends to be. Thus, a high β means low risk tolerance. Conversely a low β is

indicative of a high risk allowance. The extreme risk tolerance, also known as risk neutrality, is

achieved when β = 0. The extreme risk aversion is obtained when β = +∞.

Proposition

The expected profit π̂ as a function of the risk measure CV aRα(β), β ∈ [0,+∞[, is concave.

Proof

Consider the objective function θ:

θ = π̂ + βCV aRα

Assuming θ is continuous in both π̂ and CV aRα, we can write the optimality condition:

dθ(β) =
∂θ

∂π̂
dπ̂ +

∂θ

∂CV aRα
dCV aRα = 0

i.e.:

dπ̂(β)

dCV aRα(β)
= −β (5.38)
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Let’s consider a set of risk aversion parameters βi−1, βi and βi+1 such that 0 ≤ βi−1 ≤ βi ≤ βi+1

and CV aRα(βi−1) ≤ CV aRα(βi) ≤ CV aRα(βi+1). The following approximation holds:

π̂(βi+1)− π̂(βi−1)

CV aRα(βi+1)− CV aRα(βi−1)
= −βi (5.39)

There exists µ ∈ [0, 1] such that:

CV aRα(βi) = µCV aRα(βi+1) + (1− µ)CV aRα(βi−1)

i.e.:

µ =
CV aRα(βi)− CV aRα(βi−1)

CV aRα(βi+1)− CV aRα(βi−1)
(5.40)

From (5.39), (5.41) gives π̂(βi+1):

π̂(βi+1) = π̂(βi−1)− βi
[
CV aRα(βi+1)− CV aRα(βi−1)

]
(5.41)

Using (5.40) and (5.41), we have:

µπ̂(βi+1) + (1− µ)π̂(βi−1) = π̂(βi−1)− βi
[
CV aRα(βi)− CV aRα(βi−1)

]
(5.42)

Hence,

π̂(βi)−
[
µπ̂(βi+1) + (1− µ)π̂(βi−1)

]
= π̂(βi)− π̂(βi−1) + βi(CV aRα(βi)− CV aRα(βi−1))

(5.43)

There exists βi
′

such that βi−1 ≤ βi′ ≤ βi for which the optimality condition (5.39) holds, that is:

π̂(βi)− π̂(βi−1)

CV aRα(βi)− CV aRα(βi−1)
= −βi

′
(5.44)

Thus, (5.43) is equivalent to:

π̂(βi)−
[
µπ̂(βi+1) + (1− µ)π̂(βi−1)

]
= (βi − βi

′
)(CV aRα(βi)− CV aRα(βi−1)) (5.45)

It follows that:

π̂(βi) ≥ µπ̂(βi+1) + (1− µ)π̂(βi−1) (5.46)
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Given that it is logical to rewrite π̂(βk) as π̂(CV aRα(βk)), the concavity of the expected profit as

a function of the risk measure CV aRα is proven by (5.47):

π̂(µCV aRα(βi+1) + (1− µ)CV aRα(βi−1)) ≥ µπ̂(CV aRα(βi+1)) + (1− µ)π̂(CV aRα(βi−1))

(5.47)

5.5 Case Studies

5.5.1 The Data

To evaluate the proposed market integration model, we consider a hypothetical 750 kW wave

energy farm placed in the same sea state conditions as Station 32012 [109]. We use 2007 through

2015 sea state data and assume a Pelamis wave energy converter. We use the real-time and day-

ahead historical price data from PJM to generate market imbalance charges, and reserve capacity

and energy prices. The price and imbalance charge expectations, prior to the day-ahead market

offer, are presented in Fig. 5.2. The imbalances charges are simulated using the day ahead and
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Figure 5.2: Day-ahead model price input

real-time price scenarios in such a way that:

λt ≤ pt ≤ qt (5.48)

Following the DA market clearing, the assumed realized DA price is represented in Fig. 5.3.
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Figure 5.3: Cleared DA market prices

5.5.2 Day-ahead model results

As shown in (5.8), the day-ahead (DA) model produces day-ahead market offers. Fig. 5.4

presents the wave farm’s resulting DA bids. The obtained DA offers constitute an input for the
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Figure 5.4: Day-ahead energy offers

intra-day market portfolio model described in Section 5.4.

5.5.3 Intra-day model results

Using a confidence level α = 95% and a risk factor range 0 through ∞, the sensitivity study

reveals the efficient frontier shown in Fig. 5.5. Fig. 5.5(a) shows, for β ∈
[
0, 109

]
, how the expected

profit varies as a function of the risk measure CV aRα(β). When the short-term reserve market

is introduced the efficient frontier obtained is shown in Fig. 5.5(b). The sensitivity curves are

annotated with the risk aversion factor values. Overall, from β = 0 to β = 1, we have a small

drop in expected profit compared to a relatively large increase in CVaR. We observe the opposite
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Figure 5.5: Farm profit risk sensitivity

variation when β ∈
[
3, 106

]
for the market with reserve, and β ∈

[
1.7, 109

]
when no reserve market

is considered. The expected profit decrease quicker than CVaR increases. The risk of profit loss

is not uniformly distributed. Depending on how risk-averse a farm owner or operator is, the farm

can experience a significant profit reduction. Fig. 5.5 shows the corresponding variation of the

real-time energy offer for both no-reserve intra-day market (cf., Fig. 5.6(a)) and a market with the

proposed short-term reserve structure (see, Fig. 5.6(b)). To evaluate the impact of the introduced

short-term reserve market, we define a risk metric called risk range (RR) and a profit metric

designated by risk impact (RI) defined as:

RR = CV aRα(β = +∞)− CV aRα(β = 0) (5.49)

RI =
π̂(β = 0)− π̂(β = +∞)

π̂(β = 0)
(5.50)

With the introduction of the short-term reserve, comes more price and energy signal uncertainty.

This justifies the wider risk range observed, nearly 3.5 times the RR when no reserve market is

considered. However, the risk impact in case of reserve market is lower compared to the no-reserve

case, 24% against 29%. The RI expresses the maximum profit reduction due to risk consideration.

That said, the farm experiences more profit reduction in a market without reserve than in a

market with reserve. What is more, the overall profit increases by 5% in a market with short-term

reserve opportunity compared to a real-time only intra-day market, for the same expected energy

generation. The concavity proven in 5.4.4 is confirmed by Fig.5.5

80



156.0 156.5 157.0 157.5 158.0 158.5 159.0
CVaR ($)

3300

3400

3500

3600

3700

3800

3900

4000

Re
al
-ti
m
e 
of
fe
r (
kW

h)

0.0
0.1

0.3
0.6

1.0

1.7

10e9

(a) RT offer - no reserve

158 160 162 164 166
CVaR ($)

2000

2250

2500

2750

3000

3250

3500

3750

Re
al
-ti
m
e 
of
fe
r (
kW

h)

0.0 0.1
0.3

0.6 1.0

1.7
3.0

5.5
10.0
15.0

10e6

(b) RT offer - with reserve

Figure 5.6: Risk sensitivity of the RT offer

5.6 Conclusion

There is a value in introducing the proposed short-term reserve market for both the system

operator and the wave energy farm considered. The system operator gains in securing additional

generation capacity, even from renewable farms, to pull from whenever necessary for balancing

purposes. The simulation case study shows that there is a financial incentive for renewable energy

farms to participate in the short-term reserve market. In the particular case studied in this chapter,

even though the risk range is multiplied by 3.4, participating in the reserve market results in 5%

profit increase and lower profit reduction for the same expected energy generation. As we witness

more renewable grid penetration, in addition to long-term capacity contracts, short-term reserve

markets would be critical for a reliable system operation. In this work, we considered a simplistic

reserve market structure. In future work, we expect more insights from studies that allow for more

detailed market structures with access to more accurate market and system data.
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Chapter 6

Post-disaster Grid Recovery

Through Optimal Microgrid

Formation

6.1 Introduction

Microgrid formation is a potential solution in post-disaster electric grid recovery efforts. Recent

works propose a distribution level microgrid formation model that applies to radial distribution

systems characterized by directed power flows. However, with high renewable penetration levels

in future power systems, the flows are expected to be undirected even in distribution grids. In this

work, we develop a model to deal with the restoration process of future power systems, embedding

some of the characteristics these systems are likely to have. More specifically, our formulation

can deal with radial and meshed topologies, and it requires little pre-processing of the input data.

Additionally, we extend the model to allow for possible mobile and fixed distributed generation

technologies and distributed energy resources, and explicitly include demand responsive loads with

a minimum satisfiability constraint. Thus, this extended formulation can be used as an operation

and a short term planning tool for the DG scenario-based location problem. We compare our

extended formulation results to those obtained for the radial cases found in the literature. Also,

we apply the proposed approach to other instances of the problem based on the IEEE 37-bus,

30-bus and 118-bus systems.
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The socio-economic losses due to power outages during the last decades are evidence that

enhancing the ability to rapidly restore the functionality of the power system is a fundamental

concern for operators and planners. According to the Executive Office of the President, weather-

related outages are estimated to have cost the U.S. economy an inflation-adjusted annual average

of $18 to $33 billion over the period from 2008 to 2012 [1]. Campbell estimates that weather-

related outages cost the U.S. between $20 and $55 billion annually [60], and superstorm Sandy,

the second most costly storm in US history, left 8.5 million customers without electricity across

15 U.S. states [61]. The National Centers for Environmental Information (NCEI) [62] reports 196

weather and climate disasters from 1980 to 2016 in the U.S., with related costs of approximately

$1 billion, adjusted by the consumer price index (CPI). Further, according to NERC, all of the

top-10 most severe power outages (ranked based on the severity risk index - SRI) in 2014 were

initiated or aggravated by weather events [63].

Even though operational reliability and the effects of events with low impact but medium to

high probability of occurrence have long been in the realm of system operators [64], the capacity to

restore the functionality of the system after a low probability, high impact event, what we define

as grid resilience, is garnering increasing attention. The severe impact of natural disasters on the

electric power system and the increasing trend of power outages has been considered in [1]. The

criticality of resiliency in grid modernization efforts has been considered in [65]. Descriptive studies,

such as [66], examine the resiliency of the power network by developing spatial and non-spatial

econometric models to estimate factors affecting the restoration time, including the restoration

priority, infrastructure characteristics and weather related variables. Generally, strategies to deal

with extreme event disruptions can be grouped into two broad categories: preventive and corrective

actions. The objective of preventive pre-disaster strategies is to find the most potentially vulnerable

components in order to replace or upgrade them before any potential disturbance. Preventive

actions include but are not limited to installing power lines underground, reinforcement of poles,

management of vegetation and stockpiling of power lines [67]. However, strategies such as installing

lines underground cost two to ten times as much as overhead lines [68], and create issues with

restoration [69]. Other works, such as Ma et al. [70], approach the grid resilience enhancement

problem from a preventive viewpoint by proposing an optimal hardening strategy that finds critical

components (lines, poles, etc.). This is done through a greedy search that minimizes the hardening

investment cost.

Corrective strategies are scenario-based backup plans designed to reduce the impact of a dis-
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aster, if any, and recover from disruptions as quickly as possible. In a corrective approach, Sarkar

et al. [71] propose an adaptive distribution grid restoration method based on tie-line switching

that is formulated as a non-linear mixed-integer program (MIP) that is solved by a greedy search

algorithm to reduce the combinatorial search space. Choobineh and Mohagheghi [72] propose a

non-linear MIP to optimally dispatch energy resources within a microgrid subject to capacity and

fuel availability constraints, in the aftermath of a natural disaster. However, [72] does not address

how the post-disaster microgrids are formed.

Several system restoration models have been proposed in the literature to circumvent either

reliability or resiliency disrupting events (see, e.g., [73]). Ren et al. [74] develop a multi-agent sys-

tem with a dynamic agent team forming mechanism for interconnected power systems restoration.

Nagata et al. [75] propose a multi-agent framework for power system restoration in which bus

agents are coordinated by a facilitator agent in order to reach a suboptimal system configuration

after fault events, ten years before the work in [74]. Kirschen and Volkmann [76] introduce a

hierarchically structured expert system that separates strategic and tactical reasonings in order to

minimize the restoration time. The same grid resiliency is the subject of Z. Wang and J. Wang [77],

formulating a stochastic self-healing model, that accounts for intermittent energy resources. Farzin

et al. [78] devise a two-stage hierarchical outage management scheme to enhance the resilience of

a multi-microgrid distribution system as a mixed-integer linear program (MILP) using the total

energy curtailment as a resiliency index. In [78] the authors assume that the distribution grid is

designed as a collection of microgrids with a known structure prior to the events. In fact, micro-

grids are considered as key assets in improving grid resilience and studies to validate them as a

viable grid hardening solution are being conducted by New York, Connecticut and California as

well as the U.S. Department of Energy. One of the most attractive features of microgrids is their

ability to operate in island and grid-connected modes [79]. Tan et al. [80] propose a grid recovery

scheme based on a black-start sequence algorithm and spanning tree search, assuming that a fixed

distributed generator (DG) with black-start capability is available after the disaster. Microgrids

are first formed around the DG units without including any load. Loads belonging to microgrids

are picked up according to Kirchhoff’s laws and other critical isolated loads are connected through

a spanning tree search. Gao et al. [81] introduce a critical load restoration method using microgrids

and considering generation resource availability as well as uncertainties associated to intermittent

energy sources and loads in a continuous operation time mode. Guidelines on microgrid operation

and system restoration dynamics can be found in [82,83].
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Most of the existing methods based on topological control seek to isolate the faulted line

or area by reconfiguring the feeder to allow as much load as possible to be served. A general

assumption when these strategies are applied to the distribution grid is that the substation (the

interface between the transmission and distribution systems) is healthy after the fault. Recent

work by Chen et. al [84] relaxes this assumption in the context of chaotic weather events where

the only supply solutions available following the disaster might be DG units arbitrarily positioned.

The problem then transitioned from a topological structure alteration to a network partitioning

problem where each partition, called a microgrid, is supplied by a DG. However, the MILP model

proposed applies only to radial distribution grids, in which there is only one generation bus. In [84],

the DG units are prepositioned, possibly precluding to reach maximum load pick-up. In [85], the

authors address this DG location constraint by dynamically allocating DG units to candidate nodes.

They assumed DG units to be mobile emergency generators (e.g., truck-mounted), a conjecture

consistent with overall restoration efforts. In fact, amongst the lessons learned after the severe

ice storm that affected eastern Canada and the northeastern US from 20 to 23 December 2013,

the use of large-scale portable Diesel generators comes out as recommended in the preparedness

process [86]. These emergency generators can be placed in any location where there may be a need

to support the microgrid formation. However, the distribution system model considered in [85] is

still one with a single microgrid root.

In this chapter, we extend the previous work, particularly [84] to account for a future grid, where

the direction of flows on a given branch is not necessarily known beforehand. We focus on resiliency

events assuming reliability as a prerequisite [87–89]. Our main contributions are (1) we do not

assume a radial network, allowing distribution systems where consumers may have energy sources

on their premises, in which case the direction of the flow on a given branch is not predetermined,

that is, the relationship parent-child nodes is reversible because there are potentially multiple root

nodes; (2) we account for both fixed and mobile DG units that can be optimally placed in the

system, and evaluate the benefits that this optimal location has on the objective function, a proxy

for social welfare.

Throughout this chapter, it is assumed that the state of the network (after a possible disruption)

is known before designing the microgrids. For articles in which the state of the network is not

known in advance, but a much simpler microgrid design problem is required to be solved, we direct

the reader to Eskandarpour et al. [90] and the references therein.

The remainder of this chapter structured as follows. Section 6.2 describes the microgrid forma-
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Table 6.1: Nomenclature

Symbol Description

α real positive number scaling factor
bij switch state variable: 1 if line (i, j) is closed, 0 otherwise
cijk line-to-microgrid assignment variable: 1 if line (i, j) is assigned to microgrid k,

0 otherwise
di load dispatchability indicator: 1 if the load at node i is dispatchable,

0 otherwise
δij voltage slack variable for line (i, j)
K set of microgrids
Kf subset of fixed distributed generator (DG) units
Km subset of mobile or truck-mounted DG units
L set of lines
Lc subset of lines with faulted closed line switches
Lo subset of faulted open lines
N set of nodes
Nc subset of nodes with faulted closed switches
nk location index of fixed DG k
No subset of nodes with faulted open switches
pid dispatched active load at node i
Pgi dispatched active power generation at node i
pi total active load at node i
P ij active power flow from node i to node j
pilb minimum demand to serve if the dispatchable load at node i is picked up
P kmax active power generation capacity of DG k
P kmin minimum active power of DG k
pis served active load at node i
Qgi dispatched reactive power generation at node i
qi total reactive load at node i
Qij reactive power flow from node i to node j
Qkmax reactive power generation capacity of DG k
Qkmin minimum reactive power of DG k
si load-to-node switch state binary variable: 1 if load at node i is picked up,

0 otherwise

T ijP active transmission capacity of line (i, j)

T ijQ reactive transmission capacity of line (i, j)

V i Voltage magnitude of node i
vik node-to-microgrid assignment binary variable: 1 if node i is assigned to microgrid

k, 0 otherwise
Vo nominal voltage magnitude
VR rated voltage
wi criticality weight of the load at node i
zki DG-to-node assignment variable: 1 if DG k is physically connected at node i,

0 otherwise

tion problem and elaborates on the assumptions made. Section 6.3 presents the proposed MILP

formulation and discusses its application to the pre-located DG units and mobile DG units prob-

lems. Section 6.4 evaluates the proposed formulation on different cases and discusses the results

obtained. Section 6.5 concludes the article.
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6.2 Problem Statement

Let us consider a power system defined by its graph-theoretical notation G(N,L), where N and

L stand for the sets of nodes (vertices) and lines (edges) respectively. After an extreme weather

or disturbance event, the system can experience the loss of individual elements, e.g., lines, poles,

substations, or loads. It can also end up with non-controllable elements, e.g., faultily hardened

lines and node-load switches. The resulting post-disaster graph can be specified by the distinct

subsets of faulty closed and open node-load switches, Nc and No respectively, and the distinct

subsets of faulty closed and open line switches, Lc and Lo respectively, such that (Nc ∪No) ⊆ N

and (Lc ∪ Lo) ⊆ L. We assume that the aftermath graph G′ is observable and fully observed i.e.,

the sets and subsets N , Nc, No, L, Lc, Lo are known. We consider undirected graphs.

We additionally assume that DG units with black-start capability are available. We designate

the set of DG units by K. Given that DG units can be fixed (unchangeable location) [84] or mobile

(e.g., truck-mounted) [85, 86], we account for both cases by defining subsets Kf ,Km ⊆ K (with

Kf ∩Km = ∅ and Kf ∪Km = K) to represent the sets of fixed and mobile DG units respectively.

Around each DG k ∈ K, we aim to form a self-sustaining microgrid that we denote using the same

index k ∈ K.

The problem we have is to (i) locate mobile DG units, (ii) form microgrids with a DG for

each one, (iii) dispatch the DG units in order to serve the maximum criticality-weighted total load

possible, and (iv) dispatch responsive loads from a contractual minimum satisfiability threshold,

while taking into account the post-disaster grid conditions. Post-disaster conditions include line

capacities and voltage constraints within the limits of the aforementioned assumptions. Section 6.3

presents the corresponding MILP formulation of this problem for any network topology.

6.3 Problem Formulation

Equations (6.1) through (6.19) present the MILP formulation of the post-disaster microgrid

formation problem. The objective is to maximize the total load pickup given the criticality factor

vector w ∈ IRN
+ as expressed in (6.1). To solve the problem described in Section 6.2, the following

set of constraints need to be satisfied. First, to achieve the grid partitioning objective, a key

constraint is that line (i, j) can be assigned to a microgrid k only if its end-nodes i and j belong to

microgrid k. In other words, the line switch bij is forced to open (i.e., bij = 0), whenever possible,

if node i and node j are not assigned to the same microgrid. The set of constraints (6.5) take care
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of this. In addition, since our objective is to serve as much load as possible, every node must be

assigned to a microgrid. Constraints (6.2) ensure that each node is part of exactly one microgrid.

Constraints (6.3) guarantee that each DG node is automatically assigned to the microgrid formed

around the corresponding DG, with a single DG per microgrid as enforced by (6.4).

When it comes to load pickup conditions, it is not necessary to keep track of which load is picked

up in which microgrid, because a load is served only through the node at which it is located. Thus,

the load belongs to the same microgrid as its host-node. Therefore, given that each node i belongs

to exactly one microgrid, the load pick-up variable is the load-node switch state binary variable si

for all i ∈ N . This observation, among others, is key in obtaining a model that is much simpler

to solve than simply extending in a naive way the model proposed in [84] for radial networks and

fixed DG units. This fact is discussed in more detail in the Appendix. Another direct consequence

of this observation is that faulty closed load-node switches impose their loads as priority. As a

corollary, the only ways to avoid locating DG units at isolated nodes i ∈ N are to (1) set their

load (pi, qi) to zero, or to (2) remove them from the graph during a preprocessing stage.

The post-disaster system constraints are expressed by (6.17) for lines and (6.18) for load-node

switches. An outaged substation can be modeled by opening all lines connected to it.

Kirchhoff laws (KCL and KVL) are satisfied by all microgrids, as well as acceptable operational

boundary limits, as established by (6.7) through (6.16). The constraints (6.7) and (6.8) maintain

the nodal balance (KCL). The line flow limits are enforced by constraints (6.9) and (6.10). The

operational dispatch bounds of the DG units are enforced by constraints (6.11) and (6.12). The

voltage drop is one of the most important factors in how the nodes are clustered into microgrids.

The voltage drop from node i to node j is a function of parameters rij (resistance) and xij

(reactance) of the line (i, j) and the corresponding flows. This drop must fit into an allowable

gap generally expressed as a percentage of the nominal voltage Vo of the system. Equation (6.13)

calculates the voltage at node i as a function of the voltage at node j and the potential drop for

all (i, j) ∈ L. The slack variable δij bounded in (6.15) takes care of the cases where node i and

node j are no longer connected. Equation (6.16) sets the voltage bounds given the voltage drop

tolerance factor ε ≥ 0, whereas constraint (6.14) sets the DG nodes’ voltage to Vo.

For each pre-located DG k, i.e., k ∈ Kf , there exists exactly one node nk where the DG is

located. For this node, the DG location variable zkn
k

= 1, meaning DG k is located at node nk,

as enforced by (6.19).

max :
∑
i∈N

wisipi (6.1)
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subject to: ∑
k∈K

vik = 1,∀i ∈ N (6.2)

vik ≥ zki, ∀i ∈ N, k ∈ K (6.3)

∑
k∈K

zki ≤ 1,∀i ∈ N (6.4)

cijk ≤ vik, ∀k ∈ K, (i, j) ∈ L

cijk ≤ vjk, ∀k ∈ K, (i, j) ∈ L

cijk ≥ vik + vjk − 1, ∀k ∈ K, (i, j) ∈ L

(6.5)

bij =
∑
k∈K

cijk,∀(i, j) ∈ L (6.6)

∑
j:(j,i)∈L

P ji −
∑

j:(i,j)∈L

P ij + Pgi − sipi = 0,∀i ∈ N (6.7)

∑
j:(j,i)∈L

Qji −
∑

j:(i,j)∈L

Qij +Qgi − siqi = 0,∀i ∈ N (6.8)

−T ijP b
ij ≤ P ij ≤ T ijP b

ij ,∀(i, j) ∈ L (6.9)

−T ijQ b
ij ≤ Qij ≤ T ijQ b

ij ,∀(i, j) ∈ L (6.10)

∑
k∈K

zkiP kmin ≤ Pgi ≤
∑
k∈K

zkiP kmax,∀i ∈ N (6.11)

∑
k∈K

zkiQkmin ≤ Qgi ≤
∑
k∈K

zkiQkmax,∀i ∈ N (6.12)

V i = V j + rijP ij+xijQij

Vo
+ δij , ∀(i, j) ∈ L (6.13)

Vo
∑
k∈K

zki ≤ V i ≤ Vo,∀i ∈ N (6.14)

(−1 + bij)Vo ≤ δij ≤ (1− bij)Vo,∀(i, j) ∈ L (6.15)

(1− ε)VR ≤ V i ≤ (1 + ε)VR, ∀i ∈ N (6.16)

bij = 1, ∀(i, j) ∈ Lc

bij = 0, ∀(i, j) ∈ Lo
(6.17)

si = 1, ∀i ∈ Nc

si = 0, ∀i ∈ No
(6.18)
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zki = 1,∀i = nk, k ∈ Kf . (6.19)

It is important to note that the exclusive use of discrete loads might not guarantee an efficient

use of the available black-start resource. In fact, if a discrete load is picked up, its total value

must be served. If the available generation capacity cannot serve its total value, then the load

is not picked up at all. This can leave fractions of unused generation capacity or cause more

critical loads to be left out to avoid voltage bound violations. We introduce a scenario with hybrid

loading to increase the resource allocation efficiency. This setup is made of dispatchable and non-

dispatchable loads, with dispatchable loads participating in a demand response (DR) program that

allows utility operators to do partial or total curtailment. The objective function then changes

from (6.1), to
∑
i∈N w

isipid where the dispatched load pid is bounded by constraints (6.20). The

binary parameter di indicates whether the load at node i is dispatchable (di = 1) or not (di = 0).

The parameter pilb ≤ pi denotes a minimum load amount that must be served, as specified in the

DR contract, if the load at node i is picked up.

dipilb + (1− di)pi ≤ pid ≤ pi,∀i ∈ N. (6.20)

Given that pid and si are variables, the new objective function
∑
i∈N w

isipid is nonlinear. We

introduce an additional variable called served demand pis, defined by the linearization constraints

(6.21).

pis ≤ sipi, ∀i ∈ N

0 ≤ pis ≤ pid, ∀i ∈ N

pis ≥ pid − (1− si)pi, ∀i ∈ N.

(6.21)

Analogously, we define a served reactive load qis at node i orthogonal to pis as defined by (6.22).

qis =
qi

pi
pis,∀i ∈ N : pi 6= 0. (6.22)

In this context, the nodal balance constraints (6.7) and (6.8) become (6.23) and (6.24) respectively.

∑
j:(j,i)∈L

P ji −
∑

j:(i,j)∈L

P ij + Pgi − pis = 0,∀i ∈ N (6.23)

∑
j:(j,i)∈L

Qji −
∑

j:(i,j)∈L

Qij +Qgi − qis = 0,∀i ∈ N. (6.24)
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The resulting DR-enabled model is given by:

max :
∑
i∈N

wipis (6.25)

subject to: Equations (6.2) - (6.6), (6.9) - (6.19) and (6.20) - (6.24).

6.4 Case Studies

In order to evaluate the effectiveness of our proposed model, we present a series of case studies

in this section. We consider instances with both fixed and mobile DG units. The location of the

fixed DG units in the network is assumed to be known in advance; that is, their location is an

initial condition of the problem, while the location of the mobile DG units is optimally chosen for

each network instance using the mixed integer linear problem described in Section 6.3.

6.4.1 Experiment Setup

The instances considered in our case studies are defined by five main features. Each instance is

unique depending on (1) whether the network topology is radial or not, (2) whether the inputs used

correspond to a reduced post-disaster network by eliminating isolated nodes or not, (3) whether

fixed generators are used, (4) whether mobile DG units are used, and (5) whether dispatchable (or

DR) loads are considered. In order to compare the proposed model with the one in [84] for the

radial network cases, we define an instance S0 corresponding to the results in [84] (see equations

(20-26) in [84]). Instances S1 - S4 are based on the formulation given by (6.1) through (6.19) with

the following differences in the setup. In S1, Kf ≡ K, i.e., the subset of mobile DG units Km

is empty. In instance S2 Km ≡ K, making the subset of fixed DG units Kf empty. Instance S3

extends S2 to the non-preprocessed network. Instance S4 is a “reconciliation” of S1 and S2, applied

to the whole network (i.e., without any reduction), where Km and Kf are non-empty. Instance S5

integrates dispatchable loads by using the DR-enabled model formulated in (6.2) - (6.6), (6.9)

- (6.24) and (6.25). Table 6.2 presents all instances S0 through S5 as defined across the above-

mentioned five features. In the next subsection, we consider three network cases. In Case 1, the

network studied is the post-disaster IEEE 37-bus system as presented by Chen et al. in [84] and

shown in Fig. 6.1(a). In this case, we study instances S0 through S5. Instances S0 and S1 assume

DG1, DG2 and DG3 are located at buses 702, 728 and 710 respectively, as in [84], for comparison

and benchmarking purposes. In instances S4 and S5, DG3 is fixed and located at bus 710. In

91



Table 6.2: Scenario Description

Network Reduced Fixed Mobile DR
Instances Topology Network? DG units? DG units? Loads?

S0 [84] Radial Yes Yes No No
S1 Any Yes Yes No No
S2 Any Yes No Yes No
S3 Any No No Yes No
S4 Any No Yes Yes No
S5 Any No Yes Yes Yes

(a) IEEE 37-bus (b) IEEE 30-bus

Figure 6.1: Modified post-disaster systems

Case 2, we investigate instances S1 through S5 for a meshed network of average node degree 2: the

IEEE 30-bus system in its post-disaster state as shown in Fig. 6.1(b). In instance S1 we assume,

after a random draw, that DG1, DG2 and DG3 are located at buses 1, 23 and 28 respectively. In

instances S4 and S5, after a random draw, DG2 is fixed and located at bus 10.

In Case 3, we present the IEEE 118-bus system (with average node degree 3) under in-

stances S1, S3 and S5. The aftermath status of the IEEE 118-bus test system is presented in

Fig. 6.2. In instance S1 we assume, after a random draw, that DG1 is located at bus 12, DG2

at bus 32, DG3 at bus 112 and DG4 at bus 118. Instance S3 considers all DG units mobile.

92



Figure 6.2: The modified post-disaster IEEE 118-bus system

In instance S5, after a random draw, DG1 and DG2 are fixed and located at buses 12 and 32

respectively while DG3 and DG4 are mobile.

In all cases, the minimum served demand pilb of dispatchable loads is set to 10% their total

load pi for all i ∈ N . The dispatchable loads (DR loads) are marked in the figures related to

instance S5, see e.g., Figs. 6.4(b), 6.5(c) and 6.7. The generation characteristics of the DG units

are summarized in Table 6.3, and further details about load and criticality weight data used are

shown in Table 6.5 for Cases 1 and 2 and Table 6.6 for Case 3.

Changing the location of the fixed DG units in the network would result in a different optimal

location for the mobile DG units. However, running the proposed approach in problem instances

with different locations of the fixed DG units would lead to similar results as the ones presented in

the article in terms of solution time and benefits (in terms of served load) with respect to assuming

that all DG units must be initially set to a fixed location.

The models are implemented in AMPL, solved using CPLEX 12.6 and tested on an AMD

Opteron 2.0 GHz machine with 32GB memory and 16 cores (each core is a 2.0 GHz. 64 bit

architecture), from the COR@L laboratory.
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Table 6.3: Parameters of the DG units

IEEE 37-bus IEEE 30-bus IEEE 118-bus

DG (Pmax, Qmax) (Pmax, Qmax) (Pmax, Qmax)

DG1 (252.53 , 46.30) (60 , 40) (100 , 80)
DG2 (120.42 , 171.72) (50 , 35) (250 , 160)
DG3 (202.99 , 197.48) (40 , 25) (400 , 240)
DG4 - - (500 , 100)

6.4.2 Results and Discussion

Table 6.4 presents the post-disaster resource allocation solutions after applying the models

described in Section 6.3 to the scenarios and cases presented in Section 6.4.1.

For the IEEE 37-bus radial system, Figs. 6.3(a) and 6.3(b) show consistency between the results

of our proposed model and those in [84], leading to the same microgrid formation. The fact that

the objective functions are different in Table 6.4 for S0 (Chen’s) and S1 (ours) is explained by the

decision of our model to serve the load at bus 701 instead of the one at 703 as found by Chen et al.

Our model’s decision is justified by the discrepancy between the products w701p701 and w703p703,

respectively 100.928 and 41.559. This results in the difference of about 59 observed in the objective

functions of instances S0 and S1.

Comparing instances S1 and S2, we notice that the achievable total criticality-weighted load

pickup depends on DG location. In fact, by optimally locating the available DG units, the objective

function value increases from 2, 892 in S1 to 3, 384 in S2. Instances S3 and S4 yield the same

objective value as S2 due to two reasons: (1) in the full network approach, the load at bus 725

can be served through the post-disaster hardened line 706− 725; and (2) the hardened load-node

switch s725 has been set to 0 to avoid locating a DG at either 706 or 725, as recommended in

Section 6.3. This contrasts with the initial condition s725 = 1 in S0, as shown in Table 6.5.

Otherwise, the objective value functions in S3 and S4 would be less than that of S2. It is also

important to note that the choice of the fixed DG location set Kf is critical for instance S4. Here

we choose a subset of the location set K obtained in previous instances. In general, instances S2, S3

and S4 lead to the same microgrids even though the DG locations may vary from one instance to

the other. Fig. 6.4 (a) shows the microgrid formation solution obtained in instance S3 for the IEEE

37-bus system. Instance S5 outperforms the others, by allowing certain loads to be dispatchable.

Fig. 6.4(b) showcases the strategic mobile DG placement and the optimal topology control. This

highlights once again the value of demand-responsive loads in grid resiliency.1 The results in non-

1In normal operation, responsive loads also support the reliability of the system (see, e.g., [110]).
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(a) Chen’s result (S0) (b) Proposed model (S1)

Figure 6.3: Microgrid formation on the IEEE 37-bus

radial network cases 2 and 3 are consistent. Figs. 6.5(a), 6.5(b) and 6.5(c) show the microgrid

formation solutions S1, S3 and S5 respectively for the IEEE 30-bus system (case 2). Because S2

and S4 are similar to S3, we do not explicitly represent them.

The most common practical action to take in any instance is to open line and load-node switches

in order to form the suggested microgrids.

It is important to point out that in non-radial network cases, instance S5 tends to suggest

greater number of lines to open (e.g., see Fig. 6.7). However, in the practice of power systems

operations, taking a line out of service involves more than merely opening a switch. The time,

logistical effort, and resources required to restore the system is increasing in the number of lines

taken out. Additionally time is critical in grid restoration. It would be practical to take this fact

into consideration by adding to our objective functions in (6.1) and (6.25) the term α
∑

(i,j)∈L b
ij ,

with α > 0, denoting a real number small enough so that it minimally affects the overall solution.

Specifically, (6.1) and (6.25) become (6.26) and (6.27) respectively. We suggest choosing α such

that 0 < α � min{wi, i ∈ N}, since the objective of keeping as many existing lines as possible is
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(a) Instance S3 (b) Instance S5

Figure 6.4: Microgrid formation results on the IEEE 37-bus

(a) Instance S1 (b) Instance S3 (c) Instance S5

Figure 6.5: Microgrid formation results on the IEEE 30-bus

secondary. The new objectives ensures that lines are not opened unnecessarily.

max :
∑
i∈N

wisipi + α
∑

(i,j)∈L

bij (6.26)
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Figure 6.6: Microgrid formation results for IEEE 118-bus, Instance S3

Figure 6.7: Microgrid formation results for the IEEE 118-bus, instance S5

max :
∑
i∈N

wipis + α
∑

(i,j)∈L

bij (6.27)

Here we choose α = 10−4. However, changing this parameter by an order of magnitude does not
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Figure 6.8: Microgrid formation results for the IEEE 118-bus, instance S5 with reduced recovery
actions

alter the optimal solutions. Using the modified objective on instance S5 in the IEEE 118-bus case,

we obtain an objective value that is numerically close to the one shown in Table 6.4 (the slight

difference comes from the added term), with reduced number of open lines. In fact, the number of

lines taken out of service drops from 37 (see, Fig. 6.7) to only 6 (see, Fig. 6.8). Note that the mobile

DG units 3 and 4 are now located at buses 92 and 62 respectively. For S5 in the IEEE 30-bus case,

the number of lines to open drops from 9 in Fig. 6.5(c) to 3 (i.e., lines 2− 6, 4− 6 and 6− 7) and

the mobile (e.g., truck-mounted) DG units 1 and 3 are located respectively at buses 7 and 24. In

all cases, the amount of load pickup is the same as in instance S5, 30-bus and 118-bus systems of

Table 6.4. In terms of computational time, the case IEEE 118-bus takes 774.27 seconds to solve,

the 30-bus case takes 19.98 seconds to solve, and the 37-bus case takes 9.50 seconds to solve.

6.5 Conclusion

In this chapter, we present a methodology to form microgrids based on an optimization model

whose objective is to restore critical loads after a large external disturbance, while satisfying post-

disaster and operational constraints within each microgrid. Our proposed model applies to general

power network topologies, including radial and meshed configurations and integrates demand re-
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Table 6.4: Case study Results

DG1 DG2 DG3 DG4

Cases Inst. Obj. n1 Pg1 Qg1 n2 Pg2 Qg2 n3 Pg3 Qg3 n4 Pg4 Qg4
(kW) (kVar) (kW) (kVar) (kW) (kVar) n4 (kW) (kVar)

37-bus S0 2833 702 163.51 45.13 728 98.65 26.03 710 199.76 96.42 - - -
S1 2892 702 155.07 44.46 728 98.65 26.03 710 199.76 96.42 - - -
S2 3384 703 238.25 43.75 704 114.4 85.37 732 199.76 96.42 - - -
S3 3384 703 238.25 43.75 704 114.4 85.37 732 199.76 96.42 - - -
S4 3384 701 238.25 43.75 713 114.4 85.37 710 199.76 96.42 - - -
S5 3421 728 241.94 46.31 713 114.39 85.36 710 203 103.21 - - -

30-bus S1 558 1 53 24.2 23 32.9 21.8 28 28.6 12.9 - - -
S2 666 13 59.2 26 11 35.8 32 21 32.9 21.8 - - -
S3 666 2 59.2 26 28 35.8 32 21 32.9 21.8 - - -
S4 666 15 59.2 26 10 35.8 32 22 32.9 21.8 - - -
S5 671 19 60 40 10 35.8 35 23 32.9 21.8 - - -

118-bus S1 7349 12 98 19 32 197 81 112 268 116 118 400 92
S3 8177 12 81 19 8 237 72 96 400 168.9 62 500 100
S5 8325 12 100 23.87 32 250 160 94 400 170.9 69 495 100

Table 6.5: Load data for the IEEE 37 & 30-bus test network

IEEE 37-bus IEEE 30-bus

i pi qi wi si i pi qi wi si

701 30.4 5.09 3.32 0/1 1 0 0 3.32 0/1
702 18.61 23.6 2.89 0/1 2 21.7 12.7 2.89 0
703 38.84 5.76 1.07 0/1 3 2.4 1.2 1.07 0
704 26.39 18.4 9.11 0/1 4 7.6 1.6 9.11 0
705 12.58 19.25 7.06 0/1 5 0 0 7.06 0/1
706 29.58 9.9 2.66 0 6 0 0 2.66 0/1
707 31.09 21.79 3.87 0/1 7 22.8 10.9 3.87 0/1
708 22.57 15.65 6.06 0/1 8 30 30 6.06 0/1
709 43.08 8.82 4.47 0/1 9 0 0 4.47 0/1
710 12.57 8.45 7.05 0/1 10 5.8 2 7.05 0/1
711 48.23 7.13 8.59 0/1 11 0 0 8.59 0/1
712 21.06 25.36 4.84 0/1 12 11.2 7.5 4.84 0/1
713 37.61 26.48 9.09 0/1 13 0 0 9.09 0/1
714 31.51 11.29 4.21 0/1 14 6.2 1.6 4.21 1
718 18.89 29.2 3.11 0/1 15 8.2 2.5 3.11 1
720 12.17 18.96 6.74 0/1 16 3.5 1.8 6.74 1
722 15.36 21.26 9.29 0/1 17 9 5.8 9.29 0/1
724 29.37 4.35 2.5 0/1 18 3.2 0.9 2.5 0/1
725 33.82 7.55 6.06 1 19 9.5 3.4 6.06 0/1
727 43.9 14.81 5.12 0/1 20 2.2 0.7 5.12 0/1
728 41.18 7.45 2.95 0/1 21 17.5 11.2 2.95 0/1
729 35.71 3.51 7.57 1 22 0 0 7.57 0/1
730 43.98 4.07 5.19 0/1 23 3.2 1.6 5.19 0/1
731 24.38 16.95 7.5 0/1 24 8.7 6.7 7.5 0/1
732 48.5 12.72 8.08 0/1 25 0 0 8.08 0/1
733 5.98 25.31 1.79 0/1 26 3.5 2.3 1.79 0/1
734 7.49 4.8 2.99 0/1 27 0 0 2.99 0/1
735 12.45 13.76 6.96 0/1 28 0 0 6.96 0/1
736 35.12 19.28 7.09 0/1 29 2.4 0.9 7.09 0/1
737 11.03 12.74 5.82 0/1 30 10.6 1.9 5.82 0/1
738 46.84 22.32 7.47 0
740 7.41 15.54 2.94 0/1
741 31.86 22.34 4.49 1
742 12.73 24.77 7.19 0/1
744 19.04 7.71 3.23 0/1
775 40.6 28.64 2.48 0/1
799 5.27 19.39 1.21 0
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Table 6.6: Load data for the IEEE 118-bus test network

IEEE 118-bus (1) IEEE 118-bus (2)

i pi qi wi si i pi qi wi si

1 51 27 3.32 0/1 60 78 3 8.88 0/1
2 20 9 2.89 0/1 61 0 0 9.11 0/1
3 39 10 1.07 0/1 62 77 14 3.24 1
4 39 12 9.11 0/1 63 0 0 2.82 0/1
5 0 5 7.06 0/1 64 0 0 8.71 0/1
6 52 22 2.66 0/1 65 0 0 5.94 0/1
7 19 2 3.87 0/1 66 39 18 2.08 0/1
8 28 0 6.06 0/1 67 28 7 9.36 0/1
9 0 0 4.47 0/1 68 0 0 4.78 0/1
10 0 0 7.05 0 69 0 0 6.02 0/1
11 70 23 8.59 0/1 70 66 20 4.49 0
12 47 10 4.84 1 71 0 0 8.23 0/1
13 34 16 9.09 0/1 72 12 0 8.17 0/1
14 14 1 4.21 0/1 73 6 0 6.92 0/1
15 90 30 3.11 0/1 74 68 27 8.18 0/1
16 25 10 6.74 0/1 75 47 11 5.53 0/1
17 11 3 9.29 0/1 76 68 36 4.89 0/1
18 60 34 2.5 0/1 77 61 28 3.21 0/1
19 45 25 6.06 0/1 78 71 26 1.71 0/1
20 18 3 5.12 0 79 39 32 9.76 0/1
21 14 8 2.95 0/1 80 130 26 5.53 0/1
22 10 5 7.57 1 81 0 0 7.23 0/1
23 7 3 5.19 0/1 82 54 27 9.15 1
24 13 0 7.5 0/1 83 20 10 2.02 0/1
25 0 0 8.08 0/1 84 11 7 2.19 0/1
26 0 0 1.79 0/1 85 24 15 8.92 0/1
27 71 13 2.99 0/1 86 21 10 2.34 0/1
28 17 7 6.96 0/1 87 0 0 2.76 0/1
29 24 4 7.09 0/1 88 48 10 1.13 0/1
30 0 0 5.82 0 89 0 0 4.88 0/1
31 43 27 7.47 0/1 90 163 42 4.35 0
32 59 23 2.94 0/1 91 10 0 2.72 0/1
33 23 9 4.49 0/1 92 65 10 2.35 1
34 59 26 7.19 0/1 93 12 7 7.35 0/1
35 33 9 3.23 0/1 94 30 16 1.96 0/1
36 31 17 2.48 0/1 95 42 31 4.55 0/1
37 0 0 1.21 0/1 96 38 15 9.55 0/1
38 0 0 4.17 0/1 97 15 9 5.57 0/1
39 27 11 5.7 0/1 98 34 8 8.43 0/1
40 66 23 7.32 0 99 42 0 5.82 0/1
41 37 10 8.27 0/1 100 37 18 1.27 0/1
42 96 23 3.8 1 101 22 15 1.6 0/1
43 18 7 4.96 0/1 102 5 3 6.88 0/1
44 16 8 6.04 0/1 103 23 16 10 0/1
45 53 22 4.84 0/1 104 38 25 7.19 0/1
46 28 10 8.56 0/1 105 31 26 8.64 0/1
47 34 0 3.32 0/1 106 43 16 4.54 0/1
48 20 11 3.95 0/1 107 50 12 3.11 0/1
49 87 30 4.67 0/1 108 2 1 2.95 0/1
50 17 4 2.42 0 109 8 3 1.86 0/1
51 17 8 1.32 0/1 110 39 30 8.75 0
52 18 5 6.21 0/1 111 0 0 5.1 0/1
53 23 11 7.35 0/1 112 68 13 2.29 1
54 113 32 9.04 0/1 113 6 0 2.27 0/1
55 63 22 8.14 0/1 114 8 3 4.88 0/1
56 84 18 3.86 0/1 115 22 7 5.17 0/1
57 12 3 1.58 0/1 116 184 0 2.45 0/1
58 12 3 1.43 0/1 117 20 8 5.38 0/1
59 277 113 3.19 0/1 118 33 15 6.99 0/1
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sponsive loads. We consider five instances that express different system resource flexibility levels.

A case study on the modified IEEE 37-bus, 30-bus and 118-bus systems reveals that the more

flexible the available restoration resource, the higher the total criticality weighted load pickup.

In fact, our most advanced model outperforms previous formulations in terms of the critically

weighted load pickup by 20% in the case of the modified 37-bus system, with similar number of

actions taken as of lines to open, and optimal placement of the generators.

Future work directions are along two main thrusts. On the methodological side, there are

possible gains in performance that can be obtained by leveraging the structure of the formulation

and doing post-processing that may result in overall shorter solution times. On the policy side,

our current formulation adds a parameter α to explicitly account for the number of actions taken,

as part of a weight for the objective function. The restoration of resilient systems may have

several objectives instead of a weighted one. These situations are particularly prone to arise when

interdependencies with other critical infrastructures are added (see, e.g., [111,112]). In such a case,

constraints can be placed on some of the objectives to build a Pareto frontier problem.
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Chapter 7

A Heuristic Approach to the

Post-disturbance Microgrid

Formation Problem

7.1 Introduction

Microgrid formation is a potential solution in post-disaster electric grid recovery efforts. Recent

works propose distribution level microgrid formation models using mixed integer linear program-

ming techniques. However, these models can only be solved for small and medium size power

systems due to their computational intractability. In this chapter we introduce a heuristic ap-

proach that allows to approximately solve the microgrid formation problem for medium to large,

more realistic, instances. Furthermore, the proposed approach allows to approximately solve the

stochastic version of the problem, in which the aim is to allocate extra generation capacity to the

network to immunize it, as best as possible, against uncertain potential cascading failures. Our

results are illustrated by solving versions of the problem on ten IEEE test cases with up to 3012

nodes.

From a conceptual point of view, the deterministic post-disturbance microgrid formation is an

operation problem, whereas the uncertain microgrid formation is a planning problem. In fact, after

a disturbance, the resulting network configuration is known and the failure is fully determined.

The deterministic solution approach provides the best microgrid formation plan for that particular
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Table 7.1: Nomenclature(Part A)

Symbol Description

πω probability of scenario ω, ∀ ω ∈ Ω
bijω switch state variable under scenario ω: 1 if line (i, j) is closed, 0 otherwise,

∀ (i, j) ∈ L, ω ∈ Ω
cijkω line-to-microgrid assignment variable under scenario ω: 1 if line (i, j) is assigned to

microgrid k, 0 otherwise, ∀ (i, j) ∈ L, k ∈ K, ω ∈ Ω
Dω |K| × |N |-distance matrix Dω, (k, j)-th element of Dω represents the distance between

the location n(k) of the DG unit k and node j under scenario ω, and Djω,
the j-th column of Dω, ∀ j ∈ N , k ∈ K, ω ∈ Ω

di load dispatchability indicator: 1 if the load at node i is dispatchable, 0 otherwise,
∀ i ∈ N

δijω voltage slack variable for line (i, j) under scenario ω, ∀ (i, j) ∈ L, ω ∈ Ω
K set of microgrids
Kfix set of fixed Distributed Generation (DG) units, Kfix ⊆ K
Km set of mobile or truck-mounted DG units, Km ⊆ K
L set of lines
Lωc set of lines with faulted closed line switches under scenario ω, Lωc ⊆ L, ∀ ω ∈ Ω
Lωo set of faulted open lines under scenario ω, Lωo ⊆ L, ∀ ω ∈ Ω
Lkωc set of lines with faulted closed line switches in microgrid k under scenario ω,

Lkωc ⊆ L, ∀ k ∈ K, ω ∈ Ω
Lkωo set of faulted open lines in cluster k under scenario ω, Lkωo ⊆ L, ∀ k ∈ K, ω ∈ Ω
Lkω set of lines under scenario ω in cluster k, Lkω ⊆ L, ∀ k ∈ K, ω ∈ Ω
Mkω graph of the cluster k under scenario ω, ∀ k ∈ K, ω ∈ Ω
N set of nodes
Nω

c set of nodes with faulted closed switches under scenario ω, Nω
c ⊆ N , ∀ ω ∈ Ω

n(k) location index of fixed DG unit k
Nω

o set of nodes with faulted open switches under scenario ω, Nω
o ⊆ N , ∀ ω ∈ Ω

N kω
c set of nodes with faulted closed switches in cluster k under scenario ω, N kω

c ⊆ N ,
∀ k ∈ K, ω ∈ Ω

N kω
o set of nodes with faulted open switches in cluster k under scenario ω, N kω

o ⊆ N ,
∀ k ∈ K, ω ∈ Ω

piωd dispatched active load at node i under scenario ω, ∀ i ∈ N , ω ∈ Ω
Pgiω dispatched active power generation at node i under scenario ω, ∀ i ∈ N , ω ∈ Ω
pi total active load at node i, ∀ i ∈ N
P ijω active power flow from node i to node j under scenario ω, ∀ (i, j) ∈ L, ω ∈ Ω
pilb minimum demand to serve if the dispatchable load at node i is picked up, ∀ i ∈ N
P kmax active power generation capacity of DG unit k, ∀ k ∈ K
P kmin minimum active power of DG unit k, ∀ k ∈ K
piωs served active load at node i under scenario ω, ∀ i ∈ N , ω ∈ Ω
Qgiω dispatched reactive power generation at node i under scenario ω, ∀ i ∈ N , ω ∈ Ω
qi total reactive load at node i, ∀ i ∈ N
Qijω reactive power flow from node i to node j under scenario ω, ∀ (i, j) ∈ L, ∀ ω ∈ Ω
Qkmax reactive power generation capacity of DG unit k, ∀ k ∈ K
Qkmin minimum reactive power of DG unit k, ∀ k ∈ K
qis served reactive load at node i, ∀ i ∈ N
siω load-to-node switch state binary variable under scenario ω: 1 if load at node i is

picked up, 0 otherwise, ∀ i ∈ N , ω ∈ Ω
Ω set of scenarios
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Table 7.2: Nomenclature(Part B)

Symbol Description

T ijP active transmission capacity of line (i, j), ∀ (i, j) ∈ L
T ijQ reactive transmission capacity of line (i, j), ∀ (i, j) ∈ L
V iω Voltage magnitude of node i under scenario ω, ∀ i ∈ N , ω ∈ Ω
vikω node-to-microgrid assignment binary variable under scenario ω: 1 if node i is assigned

to microgrid k, 0 otherwise, ∀ i ∈ N , k ∈ K, ω ∈ Ω
Vo nominal voltage magnitude
VR rated voltage
wi criticality weight of the load at node i, ∀ i ∈ N
zki DG-to-node assignment variable: 1 if DG unit k is physically connected at node i,

0 otherwise, ∀ k ∈ K, i ∈ N

failure instance. On the other hand, the stochastic solution approach seeks to optimally locate

fixed additional DG units within the existing grid while taking into account all potential failures

that can affect the power system. In this approach, the grid operator plans for the best locations of

the DG units in order to make the system robust to potential failures by using microgrid formation

as a resiliency strategy.

Although the deterministic and uncertain versions described above represent two fundamen-

tally different decision problems, from a mathematical point of view, the deterministic microgrid

formation problem is a particular instance of the uncertain microgrid formation version of the

problem. For the rest of this chapter, we focus on the presentation of the uncertain microgrid

formation formulation with the understanding that the deterministic version is derived by reduc-

ing the set of failure scenarios to a singleton. In Section 7.5, we present illustrative examples of

the effectiveness of the proposed heuristic approach when applied to these two related microgrid

formation problems.

The remainder of this chapter is structured as follows. Section 7.2 describes and formulates the

microgrid formation problem from both a deterministic and a stochastic point of view. Section 7.3

presents the case study set-up. Section 7.4 evaluates the proposed models on ten IEEE-based test

cases and discusses the results obtained. Section 7.5 provides some concluding remarks.

7.2 Model and Solution Approach

7.2.1 Uncertain microgrid formation model

We extend the formulation in [92] to consider a problem in which the power network failure

scenario is uncertain, and the aim is to allocate additional generation capacity throughout the
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network (within capacity constraints), and set microgrid formation plans, in order to maximize

the expected load pick up after a network failure. We assume that the information about the

uncertain failures is provided in the form of a finite set of scenarios Ω, with known probability of

occurrence πω∀ω ∈ Ω. Furthermore, we represent the available additional generation capacity in

the form of mobile DG units. In this way, the model can be seen as a generalization of the microgrid

formation problem considered in [16]. However, in this version of the problem, it is assumed that

the location of these additional generation capacity units will remain fixed regardless of the realized

failure scenario. The DG units represent additional capacity added to the network to make it more

resilient. In this two-stage stochastic programming, locations of DG units are first stage variables

while other variables including voltages, served loads, power flow and formation of microgrids are

second stage variables. All the second stage variables bear the corresponding scenario index ω, for

all ω ∈ Ω. The objective function (7.1) is the expected total criticality weighted load across all

scenarios.

Constraints (7.2) and (7.3) assign DG units and nodes to microgrids. The set of constraints (7.4)

through (7.6) define the load dispatch levels and (7.7) through (7.9) are node microgrid formation

constraints. Nodal balance constraints (7.10) and (7.11), line flow constraints (7.12) and (7.13),

generation placement and dispatch constraints (7.14) through (7.15), voltage constraints (7.16)

through (7.19), and post-disturbance constraints (7.20) and (7.21) complete the formulation.

max :
∑
ω∈Ω

πω
∑
i∈N

wipiωs (7.1)

subject to: ∑
i∈N

zki = 1,∀ k ∈ K (7.2)

∑
k∈K

zki ≤ 1,∀ i ∈ N (7.3)

dipilb + (1− di)pi ≤ piωd ≤ p
i, ∀ i ∈ N , ω ∈ Ω (7.4)

piωs ≤ siωpi, ∀ i ∈ N , ω ∈ Ω

0 ≤ piωs ≤ piωd , ∀ i ∈ N , ω ∈ Ω

piωs ≥ piωd − (1− siω)pi, ∀ i ∈ N , ω ∈ Ω

(7.5)

qiωs =
qi

pi
piωs ,∀ i ∈ N : pi 6= 0, ω ∈ Ω (7.6)∑

k∈K
vikω = 1, ∀ i ∈ N , ω ∈ Ω (7.7)

vikω ≥ zki, ∀ i ∈ N , k ∈ K, ω ∈ Ω

cijkω ≤ vikω , ∀ k ∈ K, (i, j) ∈ L, ω ∈ Ω

cijkω ≤ vjkω , ∀ k ∈ K, (i, j) ∈ L, ω ∈ Ω

cijkω ≥ vikω + vjkω − 1, ∀ k ∈ K, (i, j) ∈ L, ω ∈ Ω

(7.8)
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bijω =
∑
k∈K

cijkω , ∀ (i, j) ∈ L, ω ∈ Ω (7.9)

∑
j:(j,i)∈L

P jiω −
∑

j:(i,j)∈L
P ijω + Pgiω − piωs = 0,∀ i ∈ N , ω ∈ Ω (7.10)

∑
j:(j,i)∈L

Qjiω −
∑

j:(i,j)∈L
Qijω +Qgiω − qiωs = 0, ∀ i ∈ N , ω ∈ Ω (7.11)

−T ij
P bijω ≤ P ijω ≤ T ij

P bijω ,∀ (i, j) ∈ L, ω ∈ Ω (7.12)

−T ij
Q bijω ≤ Qijω ≤ T ij

Q bijω , ∀ (i, j) ∈ L, ω ∈ Ω (7.13)∑
k∈K

zkiPk
min ≤ Pg

iω ≤
∑
k∈K

zkiPk
max, ∀ i ∈ N , ω ∈ Ω (7.14)

∑
k∈K

zkiQk
min ≤ Qg

iω ≤
∑
k∈K

zkiQk
max, ∀ i ∈ N , ω ∈ Ω (7.15)

V iω = V iω + rijP ijω+xijQijω

Vo
+ δijω , ∀ (i, j) ∈ L, ω ∈ Ω (7.16)

Vo
∑
k∈K

zki ≤ V iω ≤ Vo, ∀ i ∈ N , ω ∈ Ω (7.17)

(−1 + bijω)Vo ≤ δijω ≤ (1− bijω)Vo, ∀ (i, j) ∈ L, ω ∈ Ω (7.18)

(1− ε)VR ≤ V iω ≤ (1 + ε)VR, ∀ i ∈ N , ω ∈ Ω (7.19)

bijω = 1, ∀ (i, j) ∈ Lωc , ω ∈ Ω

bijω = 0, ∀ (i, j) ∈ Lωo , ω ∈ Ω
(7.20)

siω = 1, ∀ i ∈ Nω
c , ω ∈ Ω

siω = 0, ∀ i ∈ Nω
o , ω ∈ Ω

(7.21)

zkn(k) = 1, ∀ k ∈ Kfix. (7.22)

We get the deterministic microgrid formation model (cf., equations (1) - (6), (9) - (19) and (20)

- (24) in [92]) formulation by simply dropping the scenario index ω. In other words, the scenario

set Ω, in the deterministic case, is reduced to a singleton. The single scenario has a probability

π1 = 1.

7.2.2 Heuristic Solution Approach

The microgrid formation problem, under failure scenario ω for all ω ∈ Ω, can be defined as a

clustering problem with flow and connectivity constraints. The objective is to cluster the set of

vertices N into |K| microgrids [84]. However, even with predetermined DG units locations, forming

all |K| microgrids simultaneously using an MILP approach is computationally expensive [92] and

cannot be solved for medium to large network instances. For a more tractable solution approach,

we propose the heuristic approximation presented in Fig. 7.1.

To obtain an approximate solution to the problem in a reduced time, we decompose the prob-

lem into three stages: 1) Locate the mobile DG units, 2) Partition the network based on the DG
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Start

1) Optimal DG location;
Initialize ω = 1.

2) Get system graph
for scenario ω;

Cluster nodes for scenario ω.

3.1) Initialize cluster k: k = 1

3.2) Dispatch and check mi-
crogrid feasibility for Mkω

3.3) Update the set of mi-
crogrids: {Mkω,∀ k ∈ K}

k < |K|?

ω < |Ω|?

Stop

Update k: k = k + 1

Update ω: ω = ω + 1

YES

NO

YES

NO

Figure 7.1: Flowchart of the microgrid formation algorithm

unit locations, and 3) Assess operational feasibility and load pickup (comprising the steps 3.1, 3.2

and 3.3 in Fig. 7.1).

The DG Units Location Model

In this stage, the mobile DG units are placed, taking into account the location of fixed DG

units and post-disturbance network conditions such as line and node switch outages and hardened

lines. The objective is to maximize the total criticality weighted load pickup. This objective

is satisfied within the boundaries of load dispatch constraints (7.4) through (7.6), nodal balance
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constraints (7.10) and (7.11), line flow constraints (7.12) and (7.13), generation placement and

dispatch constraints (7.14) through (7.15), voltage constraints (7.16) through (7.19), and post dis-

turbance constraints (7.20) and (7.21). The main goal of this model is to locate mobile DG units

according to the actual load distribution across the aftermath grid, taking into account demand

responsive or dispatchable loads. Hence, the first stage model can be summarized as follows:

max : (7.1)

subject to:

Constraints (7.2)-(7.6), and (7.10)-(7.22).

There are no node clustering variables and constraints (i.e., (7.7) - (7.9)) in this first stage

model. Whereas the uncertain failure MILP model of section 7.2.1 solves the DG unit placement

and microgrid formation problems concurrently, the optimal DG unit location stage focuses only on

locating the DG units. The DG unit locations obtained in the first stage model serve as centroids

for the node clustering stage (see Fig. 7.1).

Microgrid Formation Algorithm

Once the first stage problem is solved, that is, the value of zki is known for all i ∈ N and

k ∈ K, we define n(k) as the bus i where DG unit k is located for all k ∈ K. The aim of the second

stage model is to cluster the non-isolated nodes into microgrids around the locations of the DG

units set in the first stage. This clustering is based on the k-means concept. Nodes are clustered

around DG nodes considered as centroids.

For that purpose, for each scenario ω ∈ Ω, we consider a |K| × |N |-distance matrix Dω such

that (k, j)-th element of Dω is the distance between the location n(k) of the DG unit k and the

node j for all j ∈ N . Here, we define the term distance as the shortest path measured in number

of edges between two nodes. For simplicity, we designate by Djω ∈ R|K|, the j-th column of Dω.

Thus, a node j is assigned to a microgrid Mkω if the condition of equation (7.23) is satisfied, for

all k ∈ K. The graph of the microgrid Mkω is defined by the sets of nodes and lines N kω ⊆ N

and Lkω ⊆ L, respectively (see equations (7.24) and (7.25)).

k = argmin{Djω}. (7.23)
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N kω = {j ∈ N : k = argmin{Djω}}, (7.24)

Lkω = {(i, j) ∈ L : i ∈ N kω and j ∈ N kω}. (7.25)

This stage yields a set of microgrids Mkω that are used in the feasibility study in the next

stage, for all k ∈ K and ω ∈ Ω.

Dispatch and Feasibility Assessment

It is important to assess how feasible the microgrids formed in the second stage are, under

power systems operation constraints, in order to determine the corresponding generation dispatch

and load pickup. At this stage, the model presented in (7.1) through (7.22) is customized as (7.26)

through (7.43) to decide which load to serve within each microgridMkω, that is, (7.26) - (7.43) is

solved for all k ∈ K and ω ∈ Ω.

max :
∑
i∈Nkω

wipiωs (7.26)

subject to: ∑
i∈Nkω

zki = 1, (7.27)

dipilb + (1− di)pi ≤ piωd ≤ pi,∀ i ∈ N kω (7.28)

piωs ≤ siωpi, ∀ i ∈ N kω

0 ≤ piωs ≤ piωd , ∀ i ∈ N kω

piωs ≥ piωd − (1− siω)pi, ∀ i ∈ N kω

(7.29)

qiωs =
qi

pi
piωs ,∀ i ∈ N kω : pi 6= 0 (7.30)

∑
j:(j,i)∈Lkω

P jiω −
∑

j:(i,j)∈Lkω

P ijω + Pgiω − piωs = 0,∀ i ∈ N kω (7.31)

∑
j:(j,i)∈Lkω

Qjiω −
∑

j:(i,j)∈Lkω

Qijω +Qgiω − qiωs = 0,∀ i ∈ N kω (7.32)

−T ijP b
ijω ≤ P ijω ≤ T ijP b

ijω,∀ (i, j) ∈ Lkω (7.33)

−T ijQ b
ijω ≤ Qijω ≤ T ijQ b

ijω,∀ (i, j) ∈ Lkω (7.34)

zkiP kmin ≤ Pgiω ≤ zkiP kmax,∀ i ∈ N kω (7.35)
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zkiQkmin ≤ Qgiω ≤ zkiQkmax,∀ i ∈ N kω (7.36)

V iω = V jω + rijP ijω+xijQijω

Vo
+ δijω, ∀ (i, j) ∈ Lkω (7.37)

Voz
ki ≤ V iω ≤ Vo,∀ i ∈ N kω (7.38)

(−1 + bijω)Vo ≤ δijω ≤ (1− bijω)Vo,∀ (i, j) ∈ Lkω (7.39)

(1− ε)VR ≤ V iω ≤ (1 + ε)VR, ∀ i ∈ N kω (7.40)

bijω = 1, ∀ (i, j) ∈ Lωc

bijω = 0, ∀ (i, j) ∈ Lωo
(7.41)

siω = 1, ∀ i ∈ Nω
c

siω = 0, ∀ i ∈ Nω
o

(7.42)

zkn(k) = 1,∀ k ∈ Kfix.
1 (7.43)

There are two main differences between the formulation presented by (7.26) through (7.43) and

the single scenario version of (7.1)–(7.22) (see also (1) - (6), (9) - (19) and (20) - (24) in [92]): (a)

this model deals with only one microgrid at a time whereas the model in [92] concurrently solves

multiple microgrids, and (b) no node-to-microgrid variable is needed since all nodes considered in

one round (i.e., i ∈ N kω) are all part of the same partition.

7.3 Case Study

In order to evaluate the effectiveness of our proposed methodology, we present a series of case

studies in this section. We generate failure scenarios and compare our proposed heuristic approach

with the MILP solution approach, that is solving (7.1) - (7.22) directly with a MILP solver.

7.3.1 Scenario Generation Using Cascading Descent System

To generate the potential failure scenarios, we use the cascading failure model proposed in [113].

The steps to generate the cascading failure scenarios are as follows:

1In the stochastic heuristic formulation, all DG unit locations found in 7.2.2 are fixed. Thus, after the step (a)
in Fig. 7.1, Kfix ≡ K. However, in the deterministic formulation, Kfix remains unchanged. The DG units are
allowed to ”move” in the dispatch and feasibility analysis phase (step c).
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1. Initially set loads, generators outputs, and power flows in order to maximize criticality

weighted load under OPF constraints with the full power system.

2. Let the lines be broken with:

Prob{line (i, j) becomes outaged} = h1 max

{
|P ij |
T ij

P

,
|Qij |
T ij

Q

}
, (7.44)

where h1 is a positive number. Reference [113] suggests using h1 = 0.001 for lines that are

not overloaded and h1 = 0.3 for lines that are overloaded. Instead of two values for h1, we

use a uniform value for all the lines in the network as shown in Table 7.5.

3. Reset loads, generators outputs, and power flows to adjust to line outages.

4. Let the lines be broken according to rule (7.44).

5. If the system is balanced, stop and use remaining lines to get one scenario. If not, go back

to step 3.

From (7.44) we know that lines with higher fractional load are more likely to fail. This is

reasonable as lines with high load experience thermal stress and are more likely to be outaged.

Steps 1-5 give us the dynamics of a cascade and how line outages interact with new power flow to

continue the cascading process. The scenario set obtained feeds the uncertain microgrid formation

model.

In our experiments, we simulate the above cascading descent system 1000 times to get the

possible scenarios set. Repeated scenarios are collected into a single one with an appropriate

cumulative probability value. Because we only care about disruptive scenarios, only scenarios in

which at least one line has failed are considered.

7.3.2 Case Data and Analysis

To evaluate the effectiveness of the proposed methodology for the microgrid formation problem,

we compare in Tables 7.3 and 7.4 the solution obtained by the heuristic approach outlined in Section

7.2.2 (designated by Heur.) to those obtained from directly solving the two-stage stochastic MILP

presented in Section 7.2.1. We consider 10 test cases. These cases are adapted from Matpower

case files to reflect post-disturbance scenarios [102]. In each scenario, there are line outages,

generator outages, and line and node switch failures. The network size varies from 30 to 3012

buses. For the deterministic version (see Table 7.3), the singleton post-disaster scenario sets

considered in the 30-bus and 118-bus systems are the same as the failure cases studied in [92].
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To evaluate the performance of the proposed heuristic, we consider the criticality weighted load

served (i.e., the objective function), the computation time, and the resource allocation efficiency

(RAE). The latter metric is defined as the portion of the total available restoration resource

(TARR) that is used to serve loads in the resulting microgrid configuration. TARR is taken here

as the total available DG unit’s capacity. The total load served (TLS) is a byproduct of the

resource allocation models. The resource allocation efficiency is given by:

RAE(%) =
TLS

TARR
× 100. (7.45)

7.4 Results and Discussion

We discuss our findings with regard to the use of our heuristic approach to approximately solve

both the deterministic and uncertain versions of the microgrid formation problem. The models

are implemented in Python, solved using Gurobi 7.0.2 and tested on an Intel computer Core

i7-4770HQ with 2.20 GHz frequency and 16 GB RAM memory. Unless otherwise stated, the MIP

gap is set to 1% for the MILP models.

7.4.1 Deterministic Failure Cases

Table 7.3 compares the MILP approach (i.e., solving the singleton version of (7.1) - (7.22))

to the proposed heuristic (Heur.) for each of the study cases from 30 to 3012-bus systems across

three performance metrics, namely, computation time, objective value, and total load served (TLS

or interchangeably RAE).

Across all 10 cases, the MILP approach is more computationally expensive than the heuristic.

The computation time for the MILP approach tends to increase very rapidly with the network size.

The MILP is even unsolvable for the 2383-bus and 3012-bus cases because time limit is reached.

In these two cases, Table 7.3 provides the upper bounds reached in 10 hours of computation. A

2%-suboptimal solution is achieved in 3 hours on the 1354-bus system. On the other hand, the

largest solution time of the heuristic is less than 15 minutes. Fig. 7.3 compares the solution times.

When it comes to the criticality weighted load pickup (the objective value), the MILP solution

is optimal and provides an upper bound to the heuristic which achieves a suboptimal solution in

less computation time. The average optimality gap found across the test cases 30 through 300-bus

is 7.82%, with a maximum of 24.92% in the 57-bus case and a minimum of 0% in the 30-bus case.
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Table 7.3: Case study results: Deterministic formulation

Case Time (s) Objective TLS (kW)1 TARR2

MIP Heur MIP Heur MIP Heur (kW)

30-bus 1.37 0.10 691.25 691.25 135.90 135.90 150.00
39-bus 0.49 0.10 5,240.60 4,945.18 724.00 747.60 750.00
57-bus 23.15 0.11 5,078.68 3,813.00 983.10 724.10 1,000.00
89-bus 18.27 0.35 9,322.83 8,001.45 1,100.00 1,050.00 1,100.00
118-bus 61.003 0.44 8,325.31 7,796.58 1,245.00 1,203.00 1,250.00
145-bus 51.21 0.76 8,251.80 7,425.26 1,146.00 1036.42 1,150.00
300-bus 15.56 5.10 16,587.60 16,330.50 1,850.00 1,801.00 1,850.00
1354-bus 11,079.48 43.44 29,817.503 29,845.70 3,084.30 3,085.00 3,085.00
2383-bus 36,000.00 868.23 28,887.194 28,017.90 * 3,107.78 3,340.00
3012-bus 36,000.00 864.31 31,249.494 30,248.90 * 3,397.27 3,400.00

1 Total load served
2 Total available restoration resource or total DG capacity
3 Best integer solution at 2% optimality gap
4 Best upper bound

Table 7.4: Case study results: Stochastic formulation

Case Time (s) Objective TLS (kW) TARR

MIP Heur MIP Heur MIP Heur (kW)

30-bus 160.60 0.81 621.37 543.20 113.34 95.07 150.00
39-bus 1,229.24 1.68 6,457.12 6021.40 749.19 724.18 750.00
57-bus 165.84 3.21 4,163.26 3,752.62 764.84 687.70 1,000.00
89-bus 7,383.33 11.80 9,629.49 7,767.20 1,053.70 862.21 1,100.00
118-bus 36,000.00 94.20 9,765.131- 10,330.132 9,127.50 * 1,160.18 1,250.00
145-bus 36,000.00 155.31 4,730.721- 10,227.782 8,542.64 * 1,086.37 1,150.00
300-bus 6,335.08 68.18 16,404.90 16,303.00 1,833.00 1,833.00 1,850.00

1 Best lower bound
2 Best upper bound

There is a tighter variation in the resource allocation efficiency (cf., (7.45)) metric. From Fig.

7.2, we can see that the RAE gap between the MILP and the heuristic solutions is on average

5.09% with a maximum of 25.90% in the 57-bus case. In terms of RAE, the heuristic outperforms

the MILP model in cases 39 and 1354-bus.2 Overall, the MILP solution achieves 97.82% RAE

whereas the proposed heuristic achieves 92.73% on cases 30 through 1354-bus, and 93.48% across

all 10 cases.

7.4.2 Uncertain Failure Cases

Table 7.4 compares the stochastic MILP approach (i.e., solving (7.1)-(7.22)) to the proposed

stochastic heuristic approach for cases from 30 to 300-bus systems across three performance metrics,

namely, computation time, objective value, and total load served. Table 7.5 provides the number of

2Since RAE is not the objective function, this does not mean that Heur. is optimal.
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Figure 7.2: Resource allocation comparison: Deterministic formulation

scenarios and corresponding parameters for each case.

For all of these 7 cases, the stochastic MILP approach is much more computationally expensive

than the stochastic heuristic approach. For the 145-bus system, the solver does not converge even

in 10 hours with the stochastic MILP approach whereas we can get a sub-optimal solution with

the stochastic heuristic in 155.31 seconds.

When comparing criticality weighted load pickup, the stochastic MILP approach offers an upper

bound for the stochastic heuristic approach with less computational time. The average optimal

objective gap is 9.83%, with a maximum of 19.34% in the 89-bus system and a minimum of 0.08%

in the 300-bus system.

When considering RAE, none of the approaches is outstanding. This is reasonable as the

location assignment of additional DG units is based on various scenarios. Moreover, the power

system is heavily sabotaged in some scenarios. However from Fig. 7.4, we see that the RAE of

the stochastic heuristic approach is close to the stochastic MILP approach which is much more

computationally expensive. The average gap between these two approaches is 8.33%, with a

maximum of 17.42% in the 89-bus system and a minimum of 0% in the 300-bus system.
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Figure 7.3: Solution time comparison: deterministic formulation

Table 7.5: Information of Scenarios

Case No. of scenarios h value

30-bus 8 0.10
39-bus 14 0.10
57-bus 13 0.10
89-bus 19 0.10
118-bus 8 0.05
145-bus 6 0.05
300-bus 5 0.05
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Figure 7.4: Resource allocation comparison: Stochastic formulation

7.5 Conclusion

In this chapter, we approach the post-disaster grid recovery problem using microgrid formation

from two perspectives. We propose a deterministic or after-the-matter model, and a stochastic or
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before-the-matter model. The first solves an operations problem whereas the second deals with

a planning problem. More importantly, for both versions of the problem, we propose a heuristic

method that makes the solution process tractable. The heuristic approach reaches 8%-suboptimal

solution on average, 10 to 100s times faster than the traditional MILP approach, and achieving

93% resource allocation efficiency on average. The stochastic heuristic approach reaches 10%-

suboptimal solution on average, 50 to 150 times faster than the stochastic MILP approach. For

both large and small systems, stochastic MILP is much more computational expensive compared

to the stochastic heuristic approach. In future work we envision to include the restoration time

and task scheduling in the post-disaster grid recovery optimization problem. This would take into

account interdependencies among all critical infrastructures (e.g., bridges, roads, towers and poles)

that may affect the restoration process.
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Chapter 8

Conclusion

This dissertation work has demonstrated that all grid participants share a vital role in main-

taining grid reliability and resiliency. Chapters 2 through 4 concentrate on how to design retail

pricing mechanisms that implicitly beckon end-users to undertake and active role in shaping their

demand after a desired supply profile. In fact, our proposed Minimax pricing scheme has much

potential for electricity peak demand management. In addition to improving the load factor and

reducing the peak demand, it lowers the consumers’s daily bill, providing enough incentive for con-

sumers to adopt it. Case studies prove that Minimax pricing outperforms well-known schemes such

as Time-of-Use and Real-time pricing. Chapter 3 pinpoints the importance of load aggregation in

reliable grid operation under dynamic retail pricing. It clearly proves that under Minimax, massive

load aggregation is a win-win game. By pooling more deferrable loads together, demand response

programs or third party group load control systems are likely to experience more flexibility and

achieve an increased reliability. Chapter 4 generalizes the concept presented in Chapter 2 into a

scheme designated by GenMinimax. Consumers, under GenMinimax, have the opportunity or the

power to reduce their energy rate by reducing or increasing their demand because the energy rate is

not only time dependent, it is also demand dependent. Case studies show that consumers are able

to follow closely the reference supply profile sent by a single aggregator as a solution to her own

profit maximization problem given anticipated market conditions, with 5% maximum error and

less than 2% average error. Clearly, price responsiveness of demand is key under the future smart

grid paradigm where higher renewable penetrations are expected. Future work should concentrate

on implementing the proposed schemes in quasi-realistic settings in order to derive behavioral pa-

rameters that would potentially hinder their expected impacts and engineer ways to hedge against
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possible drawbacks.

In Chapter 5, we note that there is a value in introducing a short-term reserve market for both

the system operator and renewable energy farms. The system operator gains in securing additional

generation capacity to pull from whenever necessary for balancing purposes. The simulation case

study shows that there is a financial incentive for renewable energy farms to participate in the short-

term reserve market. In the particular case studied, the induced risk range increase does not result

in profit decrease. The profit increased by 5%. As we witness more renewable grid penetration, in

addition to long-term capacity contracts, short-term reserve markets would be critical for a reliable

system operation. Future work may use a comprehensive data-driven approach to better calibrate

the two-stage stochastic model proposed in order to derive more realistic practical insight for the

short-term reserve market design.

In Chapters 6 & 7, the post-disturbance grid restoration is considered. The proposed microgrid

formation model aims to restore critical loads after a large external disturbance, while satisfying

post-disaster and operational constraints within each microgrid. The model applies to general

power network topologies, including radial and meshed configurations, and integrates demand

responsive loads as well as mobile emergency generation units. Case studies with different flexibility

levels across several electric network cases reveal that the more flexible the available restoration

resource, the higher the total criticality weighted load pickup. Chapter 7 proposes a heuristic

algorithm purposed at reducing the solution time of the microgrid formation problem. It also

introduces a stochastic or before-the-matter model that is designed to deal with the restoration

problem in its emergency preparedness version. The heuristic approach reaches 8%-suboptimal

solution on average, 10 to 100s times faster than the traditional MILP approach, and achieving

93% resource allocation efficiency on average. The stochastic heuristic approach reaches 10%-

suboptimal solution on average, 50 to 150 times faster than the stochastic MILP approach. For

both large and small systems, stochastic MILP (Chapters 6) is much more computational expensive

compared to the stochastic heuristic approach. In this area, future directions should consider

interdependencies among critical infrastructures that might affect the power systems. In addition,

inter-temporal features along with the cranking process of conventional generation units need to

be accounted for.
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