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Abstract

Timing analysis has long been used to compromise users’ anonymity in networks. Even when

data is encrypted, an adversary can track flows from sources to the corresponding destinations by

merely using the correlation between the inter-packet timing on incoming and outgoing streams

at intermediate routers. Anonymous network systems, where users communicate without revealing

their identities, rely on the idea of Chaum mixing to hide ‘networking information’. Chaum mixes

are routers or proxy servers that randomly reorder the outgoing packets to prevent an eavesdropper

from tracking the flow of packets. The effectiveness of such mixing strategies is, however, diminished

under constraints on network Quality of Services (QoS)s such as memory, bandwidth, and fairness.

In this work, two models for studying anonymity, packet based anonymity and flow based anonymity,

are proposed to address these issues quantitatively and a trade-off between network constraints and

achieved anonymity is studied. Packet based anonymity model is proposed to study the short burst

traffic arrival models of users such as in web browsing. For packet based anonymity, an informa-

tion theoretic investigation of mixes under memory constraint and fairness constraint is established.

Specifically, for memory constrained mixes, the first single letter characterization of the maximum

achievable anonymity for a mix serving two users with equal arrival rates is provided. Further, for

two users with unequal arrival rates the anonymity is expressed as a solution to a series of finite

recursive equations. In addition, for more than two users and arbitrary arrival rates, a lower bound

on the convergence rate of anonymity is derived as buffer size increases and it is shown that under

certain arrival configurations the lower bound is tight.

The adverse effects of requirement of fairness in data networking on anonymous networking

is also studied using the packet based anonymity model and a novel temporal fairness index is

proposed to compare the tradeoff between fairness and achieved anonymity of three diverse and

popular fairness paradigms: First Come First Serve, Fair Queuing and Proportional Method. It

is shown that FCFS and Fair Queuing algorithms have little inherent anonymity. A significant

improvement in anonymity is therefore achieved by relaxing the fairness paradigms. The analysis

of the relaxed FCFS criterion, in particular, is accomplished by modeling the problem as a Markov

Decision Process (MDP). The proportional method of scheduling, while avoided in networks today,

is shown to significantly outperform the other fair scheduling algorithms in anonymity, and is proven

to be asymptotically optimal as the buffer size of the scheduler is increased.

Flow based anonymity model is proposed to study long streams traffic models of users such as in-

media streaming. A detection theoretic measure of anonymity is proposed to study the optimization
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of mixing strategies under network constraints for this flow based anonymity model. Specifically,

using the detection time of the adversary as a metric, the effectiveness of mixing strategies is max-

imized under constraints on memory and throughput. A general game theoretic model is proposed

to study the mixing strategies when an adversary is capable of capturing a fraction of incoming

packets. For the proposed multistage game, existence of a Nash equilibrium is proven, and the

optimal strategies for the mix and adversary were derived at the equilibrium condition.

It is noted in this work that major literature on anonymity in Internet is focused on achieving

anonymity using third parties like mixes or onion routers, while the contributions of users’ individual

actions such as accessing multiple websites to hide the targeted websites, using multiple proxy servers

to hide the traffic routes are overlooked. In this thesis, signaling game model is proposed to study

specifically these kind of problems. Fundamentally, signaling games consist of two players: senders

and receivers and each sender belongs to one of multiple types. The users who seek to achieve

anonymity are modeled as the sender of a signaling game and their types are identified by their

personal information that they want to hide. The eavesdroppers are modeled as the receiver of the

signaling game. Senders transmit their messages to receivers. The transmission of these messages can

be seen as inevitable actions that a user have to take in his/her daily life, like the newspapers he/she

subscribes on the Internet, online shopping that he/she does, but these messages are susceptible to

reveal the user identity such as his/her political affiliation or his/her affluence level. The receiver

(eavesdropper) uses these messages to interpret the senders’ type and take optimal actions according

to his belief of senders’ type. Senders choose their messages to increase their reward given that they

know the optimal policies of the receivers for choosing the action based on the transmitted message.

However, sending the messages that increases senders’ reward may reveal their type to receivers

thus violating their privacy and can be used by eavesdropper in future to harm the senders. In

this work, the payoff of a signalling game is adjusted to incorporate the information revealed to

an eavesdropper such that this information leakage is minimized from the users’ perspective. The

existence of Bayesian-Nash equilibrium is proven in this work for the signaling games even after

the incorporation of users’ anonymity. It is also proven that the equilibrium point is unique if the

desired anonymity is below a certain threshold.

2



1 Introduction

1.1 Motivation

The word anonymity has its root in the Greek word “anonymia” meaning the nameless. Anonymity

refers to the state of ones personal identity or personal identification information being unknown.

Personal Identification Information refers to any information or set of information that can be used

to identify an individual. For example, occupation and residence alone could be sufficient enough to

identify an individual without explicitly disclosing his/her name.

Anonymity is a very old concept. Different people may have different motivations for being

anonymous. For example many authors and poets have published numerous novels and poems

anonymously often for political and legal reasons. Anonymity is also provided to people who were

subjects of science experiments while reporting the results of the experiment.

In the dawn of 21th century, the evolution of Internet provided numerous ways to peep into

people’s personal lives. Surveys show that an average American users spend 13 hours per week

using the Internet and everyday people exchange numerous messages through the Internet. Securing

this enormous amount of information from eavesdropping and providing anonymity has become an

increasingly difficult task and it requires us to carefully look and understand what anonymity on

the Internet really means, how it can be guaranteed and what the costs of achieving it are.

According to [1], in any network “anonymity is the state of being not identifiable within a set

of subjects, the anonymity set. For any observed action, the anonymity set is the set of all possible

subjects who may have caused that action. Therefore, a sender may be anonymous only within a

set of potential senders, his/her sender anonymity set, which itself may be a subset of all subjects

worldwide who may send messages from time to time. The same is true for the recipient, who may

be anonymous within a set of potential recipients, which form his/her recipient anonymity set. Both

anonymity sets may be disjoint, identical, or they may overlap.”

Anonymity on the Internet requires this anonymity set to be as large as possible for each of its

user, consequently, hiding the identities of communicating parties and more generally, the paths of

data flow in the network topology. Enabling the retrieval of such information is a violation of users’

right to privacy, and further, equips malicious adversaries to launch targeted attacks to disrupt

network operations.

In this era of big data, there have been numerous incidents where users’ privacy and anonymity

have been compromised. Some of these events happened owing to the failure of social networking

giants such as Facebook, Twitter, and Google Plus to secure the privacy of their users. For instance,
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in November 2007, Facebook launched Facebook Beacon which gathers Facebook users’ personal

information from their activities on some partner websites of Facebook and put this information on

the users’ news feed on Facebook without their permission. Sean Lane, a Facebook user, had pur-

chased an intended surprise diamond ring from Overstock.com for his wife. Without his knowledge,

this purchase was broadcast to hundreds of people in his network on Facebook, including his wife,

resulting in a court case that was successfully fought by plaintiff Sean Lane against Facebook.

The search engine giant Google recently announced that Google opens email messages and scans

it for keywords – even when the message is from a non-Gmail user and has not agreed to Google’s

legal terms. It then uses those keywords to target advertisements at the users and their contacts.

Edward Snowden, former employee of the Central Intelligence Agency (CIA) and former con-

tractor for the National Security Agency (NSA), stirred the world by disclosing the NSA PRISM

program that allows the US government to collect Internet users’ data from companies such as Mi-

crosoft, Google, Apple, Yahoo, and others. Since most of the world’s Internet traffic passes through

United States, the PRISM program allows US government to look into personal life of people of

other countries, thus causing substantial geopolitical discord.

A huge number of companies, commonly known as data brokers, have spread like mushrooms

across the World Wide Web, and sell people’s personal information without their knowledge for

profit. These companies mostly use third-party cookies to gather information about users’ browsing

histories which are downloaded in users’ computers when they click some pop-up messages while

browsing through the Internet and collect a lot of sensitive information about people. Based on these

collected information, the data broker company easily predict peoples’ religion, political affiliation,

monthly income, sexual orientation and even more sensitive and personal information.

As the awareness for privacy and secrecy is increasing among Internet users, they are using

different protection mechanisms to hide their identity and to secure their personal information.

For example, to protect themselves against third-party cookies, users disable the option of storing

cookies or delete them in regular intervals on the web-browsing applications on their computers. To

prevent the Internet Service Providers (ISP)s to look into their transmitted messages, the use of

secure Internet protocols like https is rapidly increasing.

Sophisticated users employ anonymous remailers such as Cypherpunk anonymous remailers,

Mixmaster anonymous remailers, and nym servers to hide the identities of the recipients of their

messages. Generic Interrnet applications such as JuicyCampus, AutoAdmit, 2channel, and other

Futaba-based image boards (such as 4chan) are becoming popular because of their support for users’

anonymity.
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Anonymous web surfing–browsing the World Wide Web while hiding the user’s IP address and

any other personally identifiable information from the websites that one is visiting–is rapidly being

used by people from all over the world. There are mainly two ways of accomplishing anonymous

web browsing. The first is using proxy servers which acts as a wall between the user and the website

that he/she is visiting. The second is through network applications such as Tor(The Onion Router),

which sends information through a net of routers to hide the destination of information.

The main challenge with proxy servers is that they can be compromised and can be proved

a security hazard rather than providing security. For example, if a trojan is installed in a proxy

server, then it can communicate sensitive information such as credit card numbers or passwords

passing through the proxy servers. Moreover, government and other regulatory authorities can

order managers of proxy servers to reveal the identity of their users as was the case with Penet

remailer and Church of Scientology [2].

Tor takes a different approach for providing anonymity by employing encryption and random

routing of the data packets. Each Internet user who wants to be anonymous using Tor network

typically installs Tor software for browsing the Internet. This software first chooses a random path

from Tor network’s trusted routers and encrypts the transmitting data in layered fashion [3] where

each router in the selected Tor network strips the message from its encryption and send the message

to the next router. Due to this layered encryptions of packets, the routers in Tor network are known

as onion routers. Furthermore, each onion router knows only the immediate sender from which it

received the message and knows the immediate destination to which it need to send the shuffled

packet, therefore, end-to-end anonymity of source destination pairs can still be maintained even if

some routers are compromised.

Router 1

Router 2

Router 3

Router 4

Router 5

Sender Receiver

Tor Routers

Figure 1: Sender chooses a path consists of router 2, router 4 and router 5 and sends its data through
this route to the receiver.

By choosing this random routing of packets, Tor network tries to provide anonymity to its users.
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An eavesdropper who controls links of the Internet but not any link in Tor network, can be fooled

into thinking that the exit node of the Tor network (Router 5 in Figure 1) is actually the source

of packets. However, a pervasive eavesdropper who monitors all the links of the Internet used by

Tor network, can see the traffic originated at the sender in Figure 1, then passed through Router

2, Router 4, and Router 5, before it reaches the destination, therefore, no anonymity is provided

against this pervasive eavesdropper to the clients of Tor network even by using the random routing.

Government agencies, ISPs or search giants like Google control a bulk of internet links and can

play the role of a pervasive eavesdropper by collaborating with each other. Even if the routers of

the trusted Tor network are physically very far apart and far from control of any single agency

thus reduce the possibility of a pervasive adversary, the Tor network is not provably secure because

timing correlation of packets at the entry and exit nodes of Tor network can reveal who is talking

to whom as is explained in Figure 2. In fact, a careful read of the disclaimers in the Tor manual

reveals an open admittance of the vulnerability to timing analysis. Indeed, as described in [4], the

NSA did use the timing correlation between incoming incoming and outgoing flow in entry and exit

node of a Tor network to determine sources of data packets.

Bob

Tom

Pooling

Highly unfair
for ’Red’

Alice

Carol

 Onion Router

(First Come First
        Serve)

Figure 2: Packets from two sources, Bob and Tom, arrive to a router. Router schedules the packets
in First Come First Serve order. An eavesdropper who cannot decrypt the packets, but can see the
arrival and departure in each link of the network, is still able to know the destination of these packets
because departure order is same as the arrival order because of First Come First Serve Scheduling
Policies.

To prevent the information retrieval from timing analysis of communicated message, mix networks

were proposed to modify the transmission and relaying schedules in a network. Mix network is a

web of mixes where each mix is a router/server that receives packets from different sources and

employ packet padding and layered encryption (same as Tor networks) to ensure packets in the

outgoing streams are “indistinguishable”, thus making it infeasible for an eavesdropper to retrieve

any information about the communicating parties from the contents and structure of the packets.
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Importantly, mixes reduce the correlation between the timing of incoming and outgoing packets by

randomly reordering the arrived packets prior to transmission that makes mixes different from Onion

routers in Tor network.

Bob

Tom

Pooling

Highly unfair
for ’Red’

Alice

Carol

         Mix

Figure 3: Mix waits until it receives two packets from both the sources: Tom and Bob. Mix chooses
one from all the 6 possible combinations of packets and transmits the packets to their respective
receivers, Alice and Carol, in the chosen order.

Figure 3 shows that how a mix uses random ordering of packets to destroy the timing correlation

of its incoming and outgoing streams of packets. A mix can choose various different ways of ordering

packets as compare to the example given in Figure 10, but all the random orderings of packets require

that mix has packets from different senders to shuffle or reorder.

At this juncture of my thesis, I would like to draw the attention of the reader to two points that

are the basis of this work. The first point is although anonymity is important to network users, they

mostly give it lower priority than most of the other network Quality of Service metrics (QoS) such

as bandwidth, throughput, delay, and fairness. This fact can be observed from the popularity of Tor

network which even when unable to provide complete anonymity to its users but by maintaining low

latency in their services draws more attention than the mix networks, although, the mix networks’

ability to overcome the timing analysis that leaves Tor network vulnerable. The main reason for

the mix networks falling short on traditional QoS criteria lies in their requirement of waiting for

packets from different users. It is trivial to see that this requirement can cause unnecessary long

delay to its users with high arrival rates when some of its users have disproportionately low arrival

rates, thus could violate the delay constraint of the network. Similarly, memory limitation of mixes

7



can force them to drop packets of its users in case of burst of traffic from some users, consequently,

reduces the network throughput. The fairness requirement on the Internet (equal distribution of

network resources to users paying equally) can be affected severely from the random ordering of

packets by mixes as is shown in Figure 4. To provide higher degree of anonymity that is resilient

to timing analysis in the Internet, it is imperative to develop scheduling policies for mix networks

that are robust under QoS constraints of data network. It is this analytical study of the anonymity

maximizing scheduling policies of mix networks under different Quality of Service (QoS) constraints

of networks that this work throws light upon.

Figure 4: Mix receives first packets from Bob and then receives packets from Tom, but while choosing
the random order for serving the packets, it chooses the packets of Tom first, thus creating a unfair
situation for Bob.

The second important point that is illustrated in our work and is overlooked in the literature of

anonymity on the Internet is in the modeling and study of anonymity maximizing strategies when

users, themselves, implement various techniques like accessing websites of varying nature, choosing

multiple proxy serves located in different countries etc. to give confusing signals to an eavesdropper

who is trying to peep into their private lives. We model these problems with the help of special

kind of games, known as signaling games, well studied in literature of game theory but never used

to study problem of anonymity.

Broadly speaking, this thesis lays a scientific foundation for anonymity from timing analysis and

through the process provides key elements in the design of user and network strategies to provably

guarantee any desired degree of anonymity to network users.
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1.2 Summary of Contributions

We investigate formally the anonymity achieved using mixes under different traditional QoS con-

straints namely memory, fairness and throughput. All of these QoS constraints have one thing in

common i.e. they affect the mixes’ ability to randomly shuffle or reorder packets, consequently,

reducing the anonymity they can achieve.

The main challenge in quantifying this reduction in anonymity is to provide a mathematical

framework under which anonymity of mixes can be studied. We use two different mathematical

frameworks for this purpose. One framework that we refer as packet based anonymity treats

each packet as an individual entity and uses an information theoretic approach to quantify anonymity.

We refer to the second framework as flow based anonymity where packets are treated as part of

a common stream or flow and use a statistical inference driven approach to model the anonymity.

The reason behind considering these two models lie in different arrival models of packets. Where

packet based anonymity is suitable for short packet burst traffic such as web browsing, the flow

based anonymity is apt where long streams of packets are involved in communication such as media

streaming.

It is important to note here that the packet and flow based models are useful to study anonymity

in data networking when third party hardware such as mixes or onion routers are available for

hiding their clients’ identity, they are inflexible to study and model the incurred anonymity when

users, themselves, transmit confusing signals to obfuscate an eavesdropper about their identity. We

propose a signaling game model to study specifically these kind of problems.

The other challenges to study anonymity lie in rendering a model for network traffic that is both

close to real world and at the same time analytically tractable, in modeling eavesdropper, mixes and

their QoS constraints, and in defining metrics to quantify anonymity for packet based model, flow

based model, and signaling game model such that these metrics ably represent the uncertainty of the

identities of communicating parties without making restricting assumptions on an eavesdropper’s

observation or computational abilities. For each of the aforementioned frameworks, a metric that

best reflects the anonymity achieved therein is proposed, as is explained below.

1.2.1 Packet Based Anonymity

For packet based anonymity, we use the entropy rate of departure process of the mix as a measure of

anonymity as proposed in [5–9]. To understand this, consider the example given in figure 5, where

the mix receives packet from two sources, Bob and Tom, and transmits them in a random order

9
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Figure 5: Packet based anonymity model

using the mixing strategy ψ. Because of this random ordering of packets, an Eavesdropper, who

monitors all the incoming and outgoing links of the mix, may not know the sources of packets in

the outgoing link of the mix but has aposteriori probability distribution over the sources of packets

(Bob or Tom) based on his observation from timing of packets in the links and knowledge of mixing

strategy ψ. Let Yi be the random variable that represents the source of the ith packet transmitted

by the mix using the eavesdropper’s aposteriori probability distribution. For any mixing strategy

ψ, the per-packet source anonymity is defined as:

Aψ = lim
n→∞

H(Y1, Y2, Y3, ..., Yn)

n
, (1)

where H(Y1, Y2, Y3, ..., Yn) represent the Shannon entropy of the joint distribution of (Y1, ..., Yn)

which is, in fact, the aposterior distribution of packet sources of the n packets based on the eaves-

dropper’s knowledge of the arrival times in links and the mixing strategy ψ.

To model the network traffic for studying the packet based anonymity, we use the Poisson arrival

model. Poisson processes have been used to model packet arrivals into network routers [10, 11] pri-

marily since they are statistically a rich class of processes [12], and the analytical tractability allows

explicit characterization of required performance metrics and system properties. From the perspec-

tive of the Internet, slight variants of Poisson processes such as Markov modeled Poisson [13, 14] or

non-stationary Poisson processes [15] have been shown to have broad modeling applicability. Al-

though simple Poisson processes are used as models in this work, the closed form characterizations

in this work rely purely on the renewal nature of the arrival process and independence across packet

identities. Therefore arrival processes with heavy tail distributions, as is common in Internet traffic,

fit into our analysis provided the independence in packet source identities hold. Furthermore, the

Markovian framework for analysis proposed in this work could naturally address the more practi-
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cal models in [13–15] as well. Whether these general models would result in similar closed form

characterization remains an open question, and is beyond the scope of this paper.

We model the eavesdropper as a pervasive eavesdropper who can monitor all the incoming and

outgoing links in the network and also knows the mixing strategy. We note that this is a very strict

model for eavesdropping, anonymity provided under our model will serve as a lower bound when the

eavesdropper could monitor only a limited number of links of the network. For modeling the mixes

under QoS constraints, we provide a general approach and allow mixes to do all kind of shuffling of

packets within the QoS constraints of the network.

Equipped with this mathematical framework and measure of anonymity, we quantify the trade-

off between anonymity and two QoS constraints namely: buffer and fairness. Specifically, when the

mixes are memory limited, for the packet based anonymity, one of our important contribution lies in

finding the maximum achievable anonymity as a function of the buffer size of a mix and in proving

that the achievable anonymity converges to the maximum possible anonymity, as the buffer size

approaches to infinity and in characterizing this convergence rate. For some special cases, we also

answer the variation of achievable anonymity with number of users and arrival rates. The analysis,

in particular, of finding the optimal mixing strategy of a buffer constraint mix relies on reducing the

problem into a Markov Decision Process, subsequently, solving the resulting Bellman equations.

Another key contribution of our work is to find the relationship between an important QoS

requirement, fairness, and anonymity in data networking that was not explored before, despite the

fact that fairness criteria play a significant role in the design of network protocols to limit the threat

of congestion collapse–when little or no useful communication is happening due to congestion. The

main obstacle in quantifying the anonymity of mixes under fairness constraint lies in the inherent

subjectivity of fairness and the consequent vagaries in its definition. In this work, we overcome the

problem using the quantitative framework of anonymity and by defining a common fairness index

to measure achieved fairness by the popular and well studied fairness paradigms.

Specifically, we quantify and compare the achieved anonymity of three well known fair scheduling

policies: First Come First Serve (FCFS), Fair Queuing (FQ), and Proportional Method (PM). FCFS

is a popular and intuitively fair scheduling policy that transmits packets in the order of their arrival.

Fair queuing, which is the implementable counterpart of Processor Sharing [16, 17] scheme, is the

most commonly employed fair scheduling policy owing to its congestion control performance. The

proportional method, which schedules packet transmissions so that service rate is proportional to a

users backlog, is generally unpopular in network protocols owing to occasional uncontrollable delay,

but is considered a fair scheme in broader resource allocations problems [18].
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In this thesis, we compare these fair scheduling policies by characterizing their anonymity and

using a common scale to measure their temporal fairness. The main result that comes from this

study of anonymity of fair scheduling policies is that the Proportional Method, although unpop-

ular in scheduling, secures the best tradeoff between temporal fairness and anonymity. Moreover,

the achieved anonymity by the PM is demonstrably close to the maximum achievable anonymity

(without any fairness requirement) and is in fact, provably optimal asymptotically as the buffer

size is increased. Through our analytical approach, we also prove that the FCFS and Fair Queuing

policies have little or zero inherent anonymity. We consequently relax the fairness restrictions of

these scheduling policies and find that a significant improvement in anonymity can be achieved by a

little relaxation in fairness. The analysis of the relaxed FCFS scheme, in particular, is accomplished

by posing the problem as a stochastic control system and solving the resulting dynamic program.

1.2.2 Flow based anonymity

In contrast to the packet based anonymity described thus far, the flow based anonymity requires that

an entire stream of packets that have a common identity, be protected from adversarial inference.

For flow based anonymity, we model the adversary as an optimal detector, and use the maximum

duration of a packet stream protect-able (able to hide source-destination pairs of streams) by a mix

to quantify the achievable anonymity of the mixing strategies as shown in Figure 6. The main

motivation for choosing this metric to quantify the anonymity lies in the result of [19] which shows

that any packet preserving mixing strategy would, given a long enough stream of packets, eventually

reveal the sources of outgoing packets. It is, therefore, important to characterize the admissible length

of packet streams, where mixing strategies are effective. While the length of packet stream protect-

able by mixes does not directly measure the degree of anonymity achieved, this characterization

allows us to determine the range of applications and operating conditions under which the desired

degree of anonymity (as measured by entropy) is achievable in high data rate applications.

Consequent to the result in [19], the anonymity achieved by a mix for long streams is always

limited unless dummy transmissions – spurious packets that are added to create additional confusion–

by the mix are allowed. For flow based anonymity, our main contribution lies in finding the variation

of admissible length as the function of buffer capacity and allowable rate of dummy traffic of mixes.

While sufficient insertion of dummy packets can sustain perfect anonymity for an indefinite packet

stream, the rate of dummy packets required for such unobservability could reduce data throughput

below desired QoS levels, therefore, it is imperative to study the maximization of the admissible

length when a desired throughput QoS limits the allowed rate of dummy transmission. Further, this
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Figure 6: Mix receives packet from two sources Bob and Tom and transmits them to their respective
destinations in a random order while maintaining the QoS constraints. Eavesdropper, monitoring
each link, wants to know who is talking to whom as soon as possible thus acts as an optimal detector.
Mix’s goal is to use the scheduling policies that can prevent eavesdropper from knowing the source
destination pairs as long as possible.

work also classifies the optimal strategy for transmission of dummy traffic against an active adversary

who captures packets from incoming streams of mixes to create its signature that can be used to

identify the corresponding outgoing streams using a game theoretic approach. The analysis, in

particular, of optimal dummy rate relies on theory of stopping time and of optimal mixing strategies

against the active adversary relies on stochastic shortest path algorithms.

1.2.3 Signaling Game Model

Signaling gamemodel incorporates the effect of users’ actions while studying the problem of anonymity.

Signaling games are an important class of games in the literature of game theory, finding wide spread

applications in modelling financial behaviour of a market, economic behaviour in a job market, and

evolutionary behaviour in emergence of a language. Fundamentally, signaling games consist of two

players: senders and receivers. We model the users who wants to hide their identity as the senders

of signaling games and the eavesdropper as the receiver of the signaling games. Each sender belongs

to one of multiple types which represent his personal identification information that he/she wants

to hide from the eavesdropper. On the Internet, the website a user visits can be identified as his/her

type that he/she wants to hide from the eavesdropper. Senders transmit their messages to receivers

which, in data network, can be seen as the observations by the eavesdropper of the network traffics

of each user. The receiver (eavesdropper) uses these messages to interpret the senders’ type and

takes optimal actions according to his belief of senders’ type such as which advertisements to target

to a particular user. Senders choose their messages to increase their reward such that a Internet

user can choose the optimal path (delay, throughput, or congestion optimal) for the destination of
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his/her messages. However, sending the messages that increases senders’ reward can reveal their

type to the receiver thus violating their privacy and can be used by eavesdropper in future to harm

the senders as is shown in the example given in the Figure 7.

Bob

Tom

Alice

Carol

Mix M1

Mix M2

Figure 7: Bob and Tom are sending messages to Alice and Carol. The optimal paths (delay,
throughput, or congestion optimal) for Bob and Tom to their destinations are through the mixesM1

andM2 respectively, however, if they choose their optimal paths they reveal the destinations of their
packets to an eavesdropper who is monitoring the links. Although, by choosing the paths through
same mixes (either M1 or M2) they can achieve anonymity but one of them have to compromise
through suboptimal network conditions like high delay or low throughput.

As it should be clear from the example in Figure 7, the signaling games provide an approach to

model a scenario where choosing the best actions jeopardizes our anonymity. In the same manner, it

is not difficult to see, in our everyday lives, the actions we take according to our best interest without

thinking of anonymity, reveal some information about ourselves thus compromising our privacy. For

instance, purchasing receipts reveal our brand preferences, the cars we drive reveal the degree of

our affluence and the textbooks we carry reveal our profession. With our online behaviour under

constant surveillance, it is imperative that we understand and minimize the leakage of sensitive

information through our observed actions.

In this work, we adjust the payoff of a signaling game with the help of Shannon entropic measure

of anonymity to incorporate the information revealed to the receivers such that this information
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leakage is minimized from the sender’s perspective. Further, we prove the existence of Bayesian-

Nash equilibrium for the signaling games even after the incorporation of “type anonymity”. It is also

proven that the equilibrium point is unique if the desired anonymity is below a certain threshold.

With the help of an example, we also show that this proposed signaling game model is suitable to

formulate the problem of routing in the datagram networking where Quality of service (delay or

throughput) along with the source-destination anonymity are competing requirements.

To the best of our knowledge, this thesis provides the first comprehensive analytical framework

to study anonymity-QoS tradeoffs in networks without making any assumptions on adversarial abil-

ity. Furthermore the signaling game model we study is not only the first mathematical model to

incorporate user strategies to increase anonymity, but it’s application goes well beyond standard

networking applications to include broader commercial and social contexts.

The construction of the paper is as follows: We delineate a brief history of timing analysis

and its prevention in the context of network anonymity along with some information theoretic and

game theoretic approaches in achieving secrecy and privacy in Chapter 2. In Chapter 3, we study

the achievable anonymity of memory constrained mixes and also provide the system model and

quantitative definition of anonymity that we used to study packet based anonymity. In Chapter

4, we describe the different fair scheduling methods in data networks, define the common temporal

fairness index, and used it to compare the anonymity-fairness tradeoff of the policies for packet based

anonymity model. In Chapter 5, using a detection theoretic approach for quantifying anonymity,

we analysed the tradeoff between anonymity and memory limitation of mixes and anonymity and

allowable rate of dummy transmition. We also analyse the impact of adversaries’ power of capturing

packets from incoming streams on anonymity and the efficacy of mixes’ counter-attack using dummy

traffic against these active adversaries using a game-theoretic approach in Chapter 5. Signaling

games, their role in modelling problem related to anonymity, and the existence and characteristics

of equilibrium points of signaling games for such problems are presented in Chapter 6. Finally, some

concluding remarks and pointers to future directions of this work are provided in 7.
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2 Related Work

The history of information retrieval through timing analysis can be traced back to middle of twentieth

century when in World War II, the US Army Traffic Intelligence group (OP-G-20) on Corregidor

island [20] were able to use transmission timing to identify enemy chain of command and to a good

extent, predict troop movements. Timing analysis has been a major concern in computer network

security owing to the ease of extraction of timing information and the potential for significant

disruption. For instance, in [21], Paul Kocher proposed a methodology to weaken keys of RSA, DSS

and other asymmetric cryptosystems by measuring the execution time for the overall cryptographic

operation. Similarly, in [22], the authors showed that the passwords communicated through the

popular two host communication protocol, SSH, are vulnerable to timing analysis.

Timing analysis can also be used to correlate flows in a datagram network, thus compromising

users’ anonymity which is explained distinctly in [23]. The first major contribution to protect users’

anonymity against timing analysis was ChaumMixes [3] which was mainly intended for anonymously

sending and receiving emails. The main idea in [3] was to wait until emails from a certain number of

users arrive to the mix, and then transmit them in a batch, however, the waiting for emails caused

them unnecessary long delay. Subsequently, there were several other mixing strategies defined to

overcome this issues as described in the following section.

2.1 Mixing Strategies

A comprehensive survey of mixing strategies can be found in [24]. Here, we only give a brief

introduction to some of the widely known mixing strategies. These mixing strategies were developed,

typically, in an ad-hoc way to reduce the delay and increase the anonymity of users.

Threshold mixes: The mixing strategy of Threshold mixes is to wait until n packets arrives to

them and then transmit them in a single batch in a random order where n is a natural number

representing the threshold over the minimum number of packets required for mixing. It is important

to note here that Chaum mixes are actually threshold mixes for which the maximum delay of packets

can be unbounded if the arrival rates of some of its users is extremely low.

Timed Mixes: Timed mixes wait until t seconds from the previous round of transmission of packets

and transmit all the packets arrived in this t time interval in a random order. Timed mixes certainly

bound the maximum delay suffered by users but at the cost of anonymity because there may be

some time intervals in which except one particular user, no other users’ packets are present in the

mix, consequently, anonymity of the user can be compromised.
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Threshold pool mixes: Threshold pool mixes always have a certain number of packets in their

buffer, lets say f . When they receive n packets, they mix these packets with the f packets already

present in their buffer and choose n packets from total n+ f packets, transmit them, and keep the

remaining f packets in their buffer. Threshold pool mixes can suffer the same problem of unbounded

delay as threshold mixes but can provide higher anonymity compare to threshold mixes because of

presence of some extra packets to mix.

Timed pool mixes: Similar to threshold pool mixes, timed pool mixes always have f packets in

their buffer, but they transmit packets only at every t seconds. If fewer than f + 1 packets are

present in the mix in a time interval, then no packet would be transmitted. In comparison to timed

mixes, timed pool mixes can provide higher anonymity because of the presence of extra packets to

mix, however, at the cost of unbounded maximum delay when the traffic from users are low.

Generalized mixes: Generalized mixes use a probability function to represent their mixing strate-

gies that maps the number of packets present in the mix in a round of transmission to the fraction

of number of packets transmitted in that round. Generalized mixes are, essentially, a generalization

of above defined mixes, consequently, prone to suffer infinite delay or low anonymity.

Stop-and-Go mixes or Continuous mixes: In Stop-and-Go mixes, each packet is randomly

delayed where delay is chosen using an exponential distribution embedded within the header in each

packet. Stop-and-Go mixes can suffer the problem of both long delay because of unboundedness of

exponential distribution, although, with a low probability, or of low anonymity when packets of a

single user are transmitted from a link, however, they provide robustness against bending or (n−1)−

attacks where an adversary impersonates as the users of mixes to destroy their anonymity [25].

Although these mixing strategies were mostly developed in an ad-hoc way, there have been few

approaches towards a systematic study of these mixing strategies which also tried to quantify the

anonymity achieved by these strategies. A brief survey of metrics used to quantify the anonymity

in these approaches is given in the following section.

2.2 Metrics of Anonymity for mixess

The metrics proposed to quantify anonymity achieved by mixes belong to one of two categories:

Packet based Anonymity and Flow based Anonymity which is similar to the classification

proposed in Chapter 1 for studying anonymity of mixes. I would like to remind the reader, where

packet based anonymity treats each packet as a separate individual entity and measures the uncer-

tainty in source-destination pair of each packet, the flow based anonymity considers each packet as a
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part of a stream and measure the uncertainty in source-destination pairs of each stream. The differ-

ent types of metrics of anonymity proposed for packet based anonymity and flow based anonymity

are briefly described below:

2.2.1 Metrics for packet based anonymity:

• Counting the mixed messages (CMM): In [26], the authors mentioned CMM as a measure

of anonymity. Assume that at a certain time, a Chaum mix shuffles m messages and transmits

them, then the per packet anonymity of each message according to the metric CMM would be

m. This measure of anonymity suffers from two drawbacks: 1)All mixed messages can belong

to the same source and therefore even after mixing the messages there would be no anonymity

for the sources of each message. 2) The CMM metric is vulnerable against injection attack

where an eavesdropper can insert its m− 1 packets in the mix and can distinguish the source

and destination of the only other shuffled packet by the mix even though according to the

CMM metric the measure of anonymity is high.

• Cardinality of Anonymity Set (CAS): For each message, the anonymity set comprises all

the sender-receiver pairs that have non-zero probability of being the source and the destination

of the message. [26] considered the cardinality of this anonymity set as the measure of packet

based anonymity. The anonymity measure, CAS, does not take into account that all the sender-

receiver pairs in the anonymity set are not equally likely to be the source-destination pairs of

a message, therefore, CAS is not able to give a good measure of anonymity. To understand

this, consider a threshold pool mix (also called Cortell mix) as shown in Figure 8.

It is easy to see that there is always a non-zero probability for any senders whose packet has

arrived to the mix to be the sender of a present outgoing packet of the Cortell mix, hence CAS

metric of anonymity for the Cortell mix goes towards infinity as number of different senders

who are using the Cortell mix increases. While CAS goes toward infinity, it does not capture

the fact that senders who has transmitted packet in the past are very less likely to be the

source of the present outgoing packet.

• Entropy of the Anonymity Set (EAS): To overcome the problem of CAS, [27] proposed

EAS as a metric to measure the anonymity. Instead of choosing cardinality of the anonymity set

as the metric, EAS computes the probability distribution over the anonymity set that specifies

the probability of a particular sender-receiver pair of the anonymity set to be the source-

destination pair of the message under consideration. EAS designates the Shannon entropy
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Cortell Mix

 (n packets in its buffer)
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Received N message 
from N different users

Transmit N messages

Figure 8: Cortell Mix uses a feedback based policy for mixing the packets of different users. A
Cortell mix always has n packets in its buffer. After receiving N packets, it choose n packets from
n+N packets to store in its buffer, and transmit the remaining N packets.

of this probability distribution as the measure of anonymity. Note that EAS overcomes the

problem of CAS for quantifying the anonymity of Cortell mix by giving low weight to sender-

receiver pairs which are less likely to be the source-destination pair of a given message.

However, the EAS metric does not fully incorporate the knowledge of an attacker or eaves-

dropper. Consider the example given in Figure 9 . Note that each packet in every outgoing

link of the mix is equally likely to belong to any of the source S1, S2, and S3. Therefore, EAS

metric of anonymity would assign log(3) anonymity to each packet in the outgoing link of the

mix, consequently, per packet anonymity is 3 log(3)
3 = log(3). The problem with EAS is that

it does not incorporate the fact that knowledge of the source of the packet in the outgoing

link D1 affects the eavesdropper uncertainty over the sources of packets in the outgoing link

D2 and D3. Specifically, by choosing a marginal probability distribution over the source of

packets in each outgoing link, EAS overestimates the anonymity.

Mix

S1

S2

S3

D1

D2

D3

Figure 9: Mix receives packets from three sources S1, S2 and S3, randomly reorders them, and
transmits them to their respective destinations.
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• Entropy rate of departure process: To overcome the problem of EAS and incorporate all

the knowledge available to an eavesdropper, [5–9] uses the entropy rate of departure process

of the Chaum mix as the measure of anonymity. It is to be noted here that this is the metric

that we use in this work to quantify packet based anonymity of mixes as explained in Chapter

1.

This metric differs from EAS, as the anonymity here is measured using the joint entropy rather

than the marginal entropy of each packet source. To understand the difference between the

metrics, consider the example in Figure 9 . As is explained earlier, the measured anonymity

by EAS is log(3). However, since the 3 packets must necessarily be from 3 different sources,

the number of possible orderings of the packets is 3! = 6. Consequently the mean uncertainty

per packet is log(6)
3 < log(3). Thus, the joint entropy captures the fact that knowledge of

one source would automatically limit the possible sources of the other two packets while the

marginal entropy fails to capture the dependence. Since conditioning reduces entropy, the

anonymity as defined by EAS overestimates the actual entropy.

2.2.2 Metrics for flow based anonymity:

The flow based anonymity is used for mix networks where sources transmit long streams of packets

to their respective destinations. A common attack against these mixes is to find the correlation of all

the outgoing flow of the mix with the incoming flow of the mix for which the attacker is interested

in knowing the destination. The outgoing flow which have highest correlation with the incoming

flow is likely to be the destination of the incoming flow. The following metrics were introduced to

measure the effectiveness of flow correlation attacks against the mixes.

• Detection Probability: [19] proposed the detection probability as the measure of flow based

anonymity which is essentially the probability of correctly predicting the source-destination

pairs for each flow as a function of the number of packets observed of each flow. The authors

showed that the detection probability for all widely used Internet protocols goes towards one

if the number of observed packets are sufficiently large.

• Cross-over error probability: [28] proposed cross-over error probability to measure the ef-

fectiveness of mixing strategies against flow correlation attack for threshold based adversarial

strategies where the adversary determines a communication between two links if the correlation

coefficient of the traffic between these two links is greater than a threshold and the threshold

is computed by equalizing the probability of false positive (declaring a communication when
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actually there is no communication) to probability of false negative (declaring no communi-

cation when there is actually a communication). Cross-over error probability is, factually, the

probability of false positive of the mixing strategy which is, in turn, also equal to probability

of false negative because of the strategy of the adversary.

It is important to note here that all of the above metrics show that mixes’ ability of anonymizing

communicating parties decreases by limiting delay of packets. Several methods especially inclusion

of dummy traffic and dropping of packets are introduced to increase the achievable anonymity of

mixes with minimizing the delay, albeit, at the cost of other QoS constraints such as bandwidth

and throughput, and, importantly, some optimal mixing strategies were proposed especially for

constrained latency mix networks as explained in the next section.

2.3 Tradeoff between anonymity and QoS constraints in networks

Increasing the anonymity of mixes using dummy traffic is first proposed in [29, 30], albeit, at the

price of network bandwidth. It is shown in [29] that by generating dummy messages (although users

may also generate dummies) mixes can increase their anonymity level and at the same time, can

prevent end-to-end intersection attacks. It is to be noted here that dummy packets are typically

transmitted only to another mix instead of a real recipient.

[31] proposed the Pipenet system which heavily uses dummy traffic and maintains a constant

traffic in the links between mixes by padding them with dummy messages whenever the real traffic

is not enough to fill them. However, this system provides unobservability along with anonymity

where an adversary cannot even detect, whether, there is a communication happening or not, it is

impractical because of exceptionally over use of network bandwidth.

To prevent the dummy packets from consuming excessive network bandwidth, several policies

were proposed to optimize their use. For Stop-and-Go mixes, it is proposed by Reliable, one of the

mixes that composes the Mixmaster network, to generate a certain number of dummies every period

of time, selecting their delay (amount of time they are kept in the mix from their generation until

the moment in which they are sent) from a random distribution.

[32] proposed two different strategies to incorporate dummy transmission in pool mixes. One

technique is to insert the dummies in the pool from which the mix chooses packets for transmission

where these dummies are treated as real messages by the mix. The second way is to insert the

dummy packets at the output of the mix, where, the mix adds the dummies to the batch of real

messages taken from the pool. It is shown in [32] that inserting the dummies in the pool provides
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lesser anonymity and lesser delay compare to when dummies are inserted in the output of the mixes.

[28] proposed an adaptive padding strategy to add dummy traffic in flows of mixes that is

firstly dividing all the incoming flows into bins corresponding to their arrival rates, subsequently,

maintaining a different traffic rate for each bins using dummy packets, thus, reducing the demand

of dummy traffic when flow rates of users are disproportionate, but at the same time compromising

anonymity by reducing the cardinality of the anonymity set of its users.

[33] presents an adaptive technique for artificially delaying packets from multiple connections

at intermediate mixes in order to reduce the amount of dummy traffic. A similar technique without

any cover traffic was also proposed in [19].

One common thing with the above approaches to achieve higher anonymity with lower delay is

the use dummy packets, which in turn affects the network bandwidth. [34] was the first work to take a

direct approach towards analytically finding the optimal mixing strategies for delay constraint mixes

and subsequently provide an upper and lower bound on the anonymity of mixes, under a Poisson

assumption of arrival process, when the mixes are delay constraint which means they cannot delay

packets more than a certain limit but free to transmit packets any time within the delay limit, thus

provide bounds on anonymity for a generalized version of timed mixes. The authors extended their

work in [35] and characterized the optimal derivative of anonymity under light traffic conditions for

mixes with delay restrictions.

While the works in [34, 35] centred towards characterizing the optimal mixing strategies under

continuous time model of network traffics, [7] found the optimal scheduling strategy in a discrete

arrival time model when the mixes are constrained to delay packets for maximum one time unit

using a reformulation of the problem as a Markov Decision Process that is also used in our work

while characterizing the optimal strategy of memory constrained mixes.

While the low latency in mix networks is usually the important concern of their users, their

achieved anonymity can be severely limited by the memory constraint of mixes as shown in [36].

Further, [36] proposed an asymptotically optimal mixing strategy under buffer constraints and quan-

tified the anonymity of a single destination mix network, however, the optimal mixing strategy and

convergence rate of anonymity was not explored.

The main reason for success of [7,34–36] in quantifying the optimal mixing strategies stays in their

analytically tractable information theoretic metric of anonymity that are also capable to encompass

all the knowledge of eavesdropper along with resource and network constraints. However, the use of

information theory in secrecy and privacy related issues is not limited to mix networks, it goes well

beyond them as explained in the following section.
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2.4 Secrecy and information theory

While cryptography is based on the assumption of limited computing power of an adversary and

vulnerable against large scale deployment of quantum computers, the information theoretic secrecy

of a system ensures the security of the system even against the infinite computing capability of

adversaries.

The era of information theoretic secrecy starts from the work of Shannon in [37] where he

proved that providing information theoretic secrecy (no information revealed to eavesdropper about

communicated message) in a noiseless wireless environment is possible, only, through a completely

secure noiseless channel between sender and receiver with the same rate of secret keys as the rate of

message symbols. In this work, the author used Shannon entropy of the actual message transmitted

to receiver given that the message received by eavesdropper to quantify the information revealed to

eavesdropper which is also used in our work as the measure of anonymity for packet based anonymity

model.

The first major breakthrough for providing secrecy for noisy channel in comparison to noiseless

channel of Shannon’s work is done by Wyner in [38] by introducing wiretap channel and by proving

that secure communication is possible when the channel between sender and receiver is better than

the channel between sender and eavesdropper. [38] used the same, Shannon equivocation, as the

metric to measure information revealed to eavesdropper and importantly, with the help of the metric

characterized the tradeoff between maximum information rate possible between sender and receiver

at the level of secrecy achieved from the eavesdroppers perspective.

Csiszar and Korner extended the work of [38] in [39] and proved that the secret communication is

still possible if the channel between sender and adversary is better than the channel between sender

and receiver. Specifically, with the help of Shannon equivocation metric of information revealed to

eavesdropper, they characterized the triplet (R1, Re, R0) where R1 is the maximum information rate

from sender to receiver and R0 is the maximum rate of common information from sender to receiver

and eavesdropper for a given rate Re of the information revealed to eavesdropper about the message

intended for receiver.

While [38,39] analysed the tradeoff between maximum information rate possible between sender

and receiver for a given rate of information revealed to eavesdropper for discrete memoryless wiretap

channel, Leung-Yan-Cheong and Hellman extended the work for Gaussian wiretap channel in [40]

and proved that when the channel between sender and receiver is not better than the channel between

sender and eavesdropper, then to achieve any non-zero information rate between sender and receiver,
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there would be a non-zero rate of information leakage to eavesdropper, in other words, completely

secure communication is not possible.

Although, as is proved in [40] that to achieve any information theoretic secrecy, we need to be at

the mercy of nature i.e. the channel between sender and receiver should be better than the channel

between sender and eavesdropper, there have been some recent approaches using time diversity of

fading channels [41], using beam forming with the help of multiple antennas (MIMO) [42, 43], and

using cooperative jamming in multiple access wiretap channels [44] to better the tradeoff between

information rate between sender and receiver at the cost of information revealed to eavesdropper.

It is important to note here that in comparison to the above works where the tradeoff between

information leaked to eavesdropper and maximum information rate between sender and receiver is

analyzed, our work also characterizes the tradeoff between information leaked to eavesdropper but

at the cost of network QoS constraints.

Timing channel where secret messages are encoded in the timing of the message rather than in the

content of the message is another field of research for covert transmission where information theory

is extensively used to characterized secrecy capacity. The first information theoretic study of timing

channel is done in [45] where Anantharam and Verdu proved the secrecy capacity of timing channel

for a single serve queue with independent service time. Further advancement in this directions are

done by [46] and [47] where [46] developed decoding and encoding schemes for timing channels for

exponential and non-exponential servicing time of the queue and [47] developed a theoretical and

experimental analysis of timing channels with bounded servicing times of queues.

A noteworthy approach of studying the secrecy capacity of timing channels is provided in [48]

where a game is formulated between jammer and encoder such that the goal of the jammer is to

alter the packet timing with in the constraint of delay and buffer to minimize the information flow

while simultaneously the goal of the encoder is to develop the encoding scheme to maximize the

information flow.

It is important to note here that [48] was not the first work to introduced game theory for

studying the secrecy related problems, there has been a huge work done on this area on which we

shed some light in the next section.

2.5 Game theoretic approaches for network security and privacy

A detailed survey on the use of game theory in network security and privacy related issues can

be found in [49] which covers many diverse fields ranging from physical layer security to intrusion
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detection (network layer security) to cryptography (application layer security). In this section, we

briefly explain some of the important works done in this area.

The game theory is used to model conflicting role between jammers and network manager to-

wards the network performance where the goal of the network manager is to increase the performance

while jammers intend to decrease the network performance. This interplay between jammers and net-

works managers is studied for Gaussian channel in [50], for multiple-input-multiple-output (MIMO)

Rayleigh-fading channel in [51], and for multiple access channel (MAC) in [52] using zero-sum game.

Specifically, [50] considered the problem where transmitter sends a sequence of independent

Gaussian random variables over a memoryless Gaussian channel with average power constraint on

transmitted signal and jammer used the measurement received by tapping the channel to introduce

additional bounded noise in the transmitted signal. The payoff of the game is measured as the

average square distortion error between the received signal and the actual transmitted signal. The

author proved that the best policy of the jammer in equilibrium is either to choose a linear function of

the measurement it receives through the tapping or to choose, in addition, an independent Gaussian

noise sequence, depending on the region where the tapping parameters lie. The optimal policy of

the transmitter is to amplify the input sequence to the given power level by a linear transformation,

and that of the receiver is to use a Bayes estimator.

In comparison to [50], [51] considered the mutual information between input to the channel

and output of the encoder of the receiver as the measure of effectiveness of the communication be-

tween sender and receiver where the channel is modeled as Rayleigh-fading additive White Gaussian

noise channel. In this mutual information game, the goal of transmitter-receiver pair is to develop

encoding-decoding strategies to maximize the mutual information while the the jammer minimizes

the same quantity using the insertion of noise. [51] proved an interesting result that shows that a

jammer with access to the channel input can inflict only as much damage to communication as one

without access to the channel input. For this zero-sum game, the author showed that the saddle-

point strategy of the encoder is to transmit a circularly symmetric complex Gaussian (CSCG) signal

and that of the jammer is to inject a CSCG signal independent of the transmitters signal.

Similar to [51], [52] also considered a zero-sum mutual information game, but, for two users, one

receiver and one jammer model for both fading and non-fading additive white Gaussian noise channel.

For non-fading environment author showed that Gaussian signalling for users and linear jamming for

the jammer are the saddle points of the game when either the jammer knows the transmitted signals

or the jammer taps the channel to get a noisy version of transmitted signal. For fading channels, with

no channel state information at the receiver and at the jammer, the authors proved a generalization
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of [51] for multiuser case and showed that a jammer with no access to channel input information can

inflict as much damage as the jammer with channel input information, subsequently, also proved the

optimality of Gaussian signaling and linear jamming for users and the jammer respectively.

In contrast to above approaches based on zero-sum game, [53] used the Bayesian game approach

to model the incomplete information game between malicious nodes (jammer who want to destroy the

communications between nodes) and selfish nodes (users of the network who wants to maximize their

network’s performance) where the identity of each node is not a common knowledge. It is assumed

in this work that malicious nodes are at a conflict with only selfish nodes, attempting to minimize

their utility; however, do not have any incentive to jam other malicious nodes. The authors showed

the existence of different conditions under which nodes conceal their identity or reveal the identity

to improve their individual performance as a selfish nodes or to reduce the system performance as

a malicious nodes. The authors, further, extended the one-stage game to a dynamic multi-stage

game with incomplete information and used Bayes rule to update the beliefs on different types in

this dynamic setting.

[54] proposed a notable approach based on stochastic game to model the jamming problem in

cognitive radios where a jammer emulates as a primary user of the cognitive radios to discourage

a secondary user from using an unoccupied channel. In the proposed model in [54], the authors

assumed that the primary user dictates the system state and its transition probabilities whereas

the secondary users access the spectrum opportunistically by sensing unoccupied channels for data

communication while the jammer launches a primary user emulation attack to block a secondary

user from using the channel, regardless of the channel state. The main result of [54] is in proving

that the secondary users can increase their long-term payoffs by using their sensing capabilities to

choose to communicate under states where the available channels are less prone to jamming.

It is to be noted here that while jammers actively try to disrupt a network communication,

eavesdroppers passively hear network communications to gain secret information. [9] proposed a

game-theoretic formulation of anonymous networking for finite wireless networks against eavesdrop-

ping. The network managers use dummy packets within the limit of QoS constraints to hide the

network session by generating constant flows in some nodes of the network while the eavesdropper

chooses a subset of wireless nodes from all available nodes to monitor, thus a zero-sum game between

network managers and the eavesdropper is formulated with the payoff as the Shannon entropy of

the network session conditioned on players strategies. It was proven that there exist a saddle point

equilibrium such that the equilibrium strategy of the network designer is to ensure that any subset

of node monitored by adversary reveal same amount information about network session.
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While the above works utilizing game theory assume that jamming or eavesdropping is inevitable,

game theory is also used to model intrusion detection to determine the presence of jammer from the

anomaly in network traffic, consequently, to secure and prevent unauthorised use of network. [55]

used the transition probabilities of a stochastic game to model an expected attacker behaviour and

used the transition in the states of the stochastic game to determine the attack. [56] used the zero-

sum stochastic game to model the interaction between jammer and intrusion detector and optimize

their strategies using Q-learning and Markov Decision Process.

Along with eavesdropping, jamming, and intrusion detection, game theory is also used to measure

the effectiveness of cryptographic techniques. Specifically, information hiding games have been

studied in literature [57–59] to quantify the hiding capacity of watermarking and steganography.

The hiding capacity is represented as solution of a zero-sum mutual information game between

attacker and information hider where the distortion in the carrier signal by the hider and distortion

in watermarked data by the attacker are considered to be bounded.

In addition to its extensive use in modelling the interaction between network managers and

adversaries, game theory is also heavily used in modeling of general privacy utility tradeoffs as

explained in the next section.

2.6 General privacy utility tradeoffs

Security and privacy can be seen as common good where everybody reaps the benefit of a secure

network while everyone also suffers the consequence of breaching in a network link. This interdepen-

dence of security was first studied in [60] by addressing the question of whether agents have adequate

incentives to invest in protection against a risk whose magnitude depends on the actions of other

agents. The authors proved that the Nash equilibriums of this interdependent security problem can

be broadly classified into two classes for identical agents depending on their cost and risk parameters

of security: 1. every agent invests in protection 2. no agent invest in the protection. Moreover,

the authors also showed that the incentive to invest in protection approaches zero as the number of

unprotected agents increases.

For the case of multi-agent security problems, ‘trust’ plays an important role where agents

can share some private information to enhance trust among their peers while at the same time

make themselves vulnerable against malicious agents. This interaction between trust and privacy is

studied in [61] where the authors proposed a multistage zero-sum game such that the players of the

game are divided into two classes: attacker and defender, with two possible actions: send attributes
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(personal information) to a information verifier or wait until the next stage. By sending the personal

information, defenders increases the level of trust among its peers but the attackers can surpass it

in the next stage, thus can force defender to disclose even more attributes in the subsequent stage.

The winner of the game is the class of players who first achieve trust more than a desired level. The

authors prove that in Nash equilibrium, both attacker and defender would wait till the last stage of

the game to transmit their attributed to the information verifier. Accordingly, author introduced

incentives for players to disclose information and show that in this incentive driven trust-privacy

game, the information verifier does not have to wait till the last stage of the game to verify players.

[62] proposed an approach based on both complete and incomplete information games to model

the interaction between different mobile nodes at the mixing zone of the mobile network in obtaining

location privacy at the cost of exchanging pseudonyms. Specifically, the proposed models based on

complete and incomplete information game incorporate in it the beliefs of users about the tracking

power of the adversary, the amount of anonymity that users obtain in the mix zones, the cost of

pseudonyms, and the time of changing pseudonyms. The author assumed that each mobile node has

two strategies: they can cooperate and change their pseudonyms or they can defect. For an n−player

complete information static game, the authors showed that the all defection strategies profile are

always an equilibrium point and an equilibrium with cooperation does not always exist, as payoffs

in a n−player game can be very asymmetric. For incomplete information game, they designated the

level of privacy requirement of a user as his/her type and proved that probabilities of cooperation

is small if the number of users with lower types are in abundance.

[63] used the repeated-simultaneous game to model the cooperation from users in enhancing the

anonymity provided in a mix network depending on some extra incentives (like money, bandwidth

etc.) given to them and also introduced a cost of using the mix network to prevent free riders. The

main result of the paper lies in proving that incentives are necessary to prevent the system from

collapsing.

It is important to note here that, similar to [63], our work can also be seen as tradoff between

privacy and utility where we consider the network QoS requirements as the utility and for a given

QoS requirement, we optimize mixing strategies to enhance anonymity of mix networks as explained

in detail in subsequent chapters.

28



3 Packet based Anonymity of Mixes under the constraint of

Memory

In this chapter, we address the effect of memory limitation on anonymity of mixes using an informa-

tion theoretic framework to study optimal mixing strategies. The key to answering these questions

lies in defining a quantitative measure of anonymity. In this chapter, we use the Shannon entropy

of the a-posterior distribution of packet sources on the destination link to measure the achieved

anonymity. Consider the simple two hop setup in Figure 10 as an example. Sources transmit pack-

ets to the destination through the intermediate mix. The mix, in addition to the layered encryption,

uses a specific shuffling strategy to reorder the packets prior to transmission to the destination. As-

suming an eavesdropper can perfectly detect the timing of packets on each link, her knowledge of the

mixing strategy would result in a-posterior distribution of the sources of packets on the departure

process Y (t). We use the Shannon entropy of this distribution to measure the source anonymity

provided by the mix. Using this metric, we characterize the maximum achievable anonymity for

a single mix serving two equal rate independent Poisson sources; for a mix with buffer size k, the

maximum achievable anonymity is shown to be log
(

2 cos π
k+3

)

. The approach we use in this paper

to derive the single letter characterization of the maximum anonymity as a function of the buffer size

relies on a reduction of the problem to a Markov Decision Process and solving the resulting Bellman

equation. Although the maximum anonymity for a general multiuser system is as yet unknown, we

prove that as k → ∞, the maximum anonymity converges to the entropy of source arrival rates at a

convergence rate no lesser than 1
k2 . If the normalized arrival rates of the general multiuser system

can be expressed as a rational fraction m
2n for some fixed m and n, we show that this convergence rate

is indeed achievable. In this chapter, we also study the anonymity achievable in a single destination

network of mixes; specifically, we show that the anonymity achieved by a network of mixes is lower

bounded by a weighted sum of the anonymity achieved by individual mixes, and the lower bound is

asymptotically tight (as buffer size increases).
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Y (t)Mix

Figure 10: Chaum mix: The eavesdropper observes the arrival processes XR(t) and XB(t) from the
two sources and the departure process from the mix Y (t).
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3.1 Problem Setup

We consider the problem of hiding sources of packets transmitted to a particular destination node in

a network. Such a system can be modelled as a single-destination network; a 3−tuple M = (G,B,Λ),

where G is the graph that describes the network topology, B is the set of buffer sizes and Λ is the

set of arrival rates. These parameters are described in better detail as follows.

G = (V,E) is an in-tree directed graph, where the set of nodes V can be divided into a set of

leaf nodes S = {S1, · · · , Su} denoting the sources, a set of intermediate nodes M = {M1, · · · ,Mm}

denoting the mixes, and the root node R that represents the final destination. We assume all sources

transmit to single-destination and study the maximum achievable source anonymity of packets ar-

riving at the common destination link. Without loss of generality, we let Mm ∈ M be the only node

in the graph connected to R1.

M1

M2

M3

M4 M5

S1

S2

S3

S4

S5

R

S6

S7

Source

Mix

Figure 11:
A Mix Network:Es = {(S1,M1), (S2,M1), (S3,M2), (S4,M2), (S5,M3), (S6,M3), (S7,M5)},
Em = {(M1,M4), (M2,M3),M3,M4), (M4,M5)}.

We partition the set of edges as E = Es
⋃

Em
⋃

Er where

Es = {(A,B) ∈ E : A ∈ S} (Source Edges),

Em = {(A,B) ∈ E : A,B ∈ M} (Intermediate Edges),

Er = {(Mm, R)} (Destination Edge).

B = (k1, · · · , k|M|) is the set of buffer sizes of the mixes where kj ∈ Z+ denotes the maximum

number of packets that can be stored in mix Mj at any given time. Λ = (λ1, · · · , λ|S|) is the

set of arrival rates of sources. In part of the discussion we shall also refer to arrival probabilities

{qi, Si ∈ S} where qi
△
= λi

∑

j λj
refers to the prior probability that an arriving packet belongs to a

particular source.

1Since we assume that sources resort to single path transmission, if there are multiple mixes connected to the same
destination, then these ”final” mixes would effectively divide the system into distinct independently functioning single
destination mix networks of the model considered in this work.
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An example of a single-destination system is shown in Figure 11. Although single destination

systems are the focus of this work, we believe our framework can be extended to study multiple

destination networks as well. It is easy to see that the additional uncertainty in destinations can

only result in higher anonymity in multi-destination systems.

During the operation of the network, on each edge (A,B) ∈ E, a stream of packets is transmitted

by node A to B, which is denoted by a point process X(A,B)(t) (set of arrival times). We assume the

sources transmit packets according to independent Poisson processes with rates as specified in Λ.

Due to the independent Poisson assumption, the arrival processes can be viewed as a single marked

Poisson process of rate λ
△
=
∑

i λi, where each point is independently marked as belonging to source

Si with probability qi. Note that while the source arrival processes {Xe(t), e ∈ Es} are Poisson, the

intermediate and destination processes are not constrained to be so.

Mix: For a mix Mi ∈ M, let EMi
= {(A,Mi) : (A,Mi) ∈ E} denote the set of incoming links to

Mi. Mix Mi ∈ M observes only the set of incoming streams {Xe(t) : e ∈ EMi
}. All packets on any

particular stream XA,Mi
(t) have identical headers due to layered encryption, and the contents do

not reveal any information about the path of the packet prior to arriving at node A.

Each mix has exactly one outgoing stream (as is evident from the tree structure of the network).

The mix Mi may collect up to ki packets beyond which, any further arrival mandates an immediate

departure; in other words no packets can be dropped. Since mixes cannot drop any packets or create

new packets, the average packet transmission rates on the outgoing link of any mix is a deterministic

function of the topology and Λ. We use a slight abuse of notation and allow λe to denote the rate of

packets on edge e ∈ E, i.e. the rate of the point process Xe(t). A mix is allowed to transmit multiple

packets in a single batch, in which case the order of packets within a batch is random2. The mixing

strategies are designed with knowledge of the topology and arrival rates of the sources. During the

operation of the network, the mixes do not possess shared randomness and do not communicate with

each other. The strategy ψi for mixMi generates a departure process that is a causal function of the

arrival processes while satisfying the packet conservation and buffer constraints. Let Ψ(M) denote

the set of all valid mixing strategies for the network M. Sinces we assume no shared randomness

and no communication between mixes, a strategy ψ ∈ Ψ(M) for a network M is a set of strategies

ψ1, · · · , ψm for the respective mixes.

2From a practical standpoint, a batched transmission implies that the mix picks a random ordering of the packets
in the batch, and transmits them accordingly in quick succession
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Eavesdropper (Eve): The omniscient eavesdropper observes the arrival time of every packet on

every link. As in the case of the mixes, the individual packets on each stream are indistinguishable

to the eavesdropper. He is aware of the topology of the network and the mixing strategies of all

nodes, but does not have access to the realization of the private randomness used by each mix

to implement its mixing strategy (private randomness would correspond to ordering of packets in

a batch, the choice of packets from the buffer etc). Using his complete knowledge, his goal is to

determine the original sources of the packets on the link of interest (in this case, the destination

stream X(Mm,R)(t).

3.1.1 Source Anonymity

In a single destination mix network, one can view the network of mixes as a “boxed” system where

all the sources feed packets into the box, and the box outputs a stream of packets to the final

destination. The eavesdropper wishes to determine the sources of packets at the output link (from

the box to the destination node) using his observation of the internal and external point processes,

and knowledge of the functioning of the components in the box. For any strategy of the mixes (that

adhere to the buffer and packet conservation restrictions), the output process would be a sequence of

departing packets on this final destination link. Since no mix can predict the future arrivals, and the

mixes do not communicate with each other, the a-posterior probability of sources of every departing

packet on the link would only be a function of the arrivals until that time. Let the packets on the

destination link be numbered according to their time of departure.

For purposes of defining anonymity, it is important to start at an initial state known to all

participants of the system. We assume Eve starts observing the system at time t = 0, at which point

all mixes are empty. The point processes observed by Eve are therefore one-sided. To determine

the sources of packets on the destination link, Eve can utilize the knowledge of all point processes

in the entire time duration [0,∞).

Definition 1 For a given observation of all point processes {Xe(t), e ∈ E}, the knowledge of the

set of mixing strategies denoted by ψ results in a-posterior distribution of sources of packets on

the destination link (Mm, R). Let Yi be the random variable (using the eavesdropper’s a-posteriori

probability distribution) that represents the source of the ith packet transmitted on the destination

link after t = 0. For the set of mixing strategies ψ, the per-packet source anonymity is defined as:

Aψ(M) = lim inf
n→∞

1

n
E(Hψ(Y1, Y2, Y3, · · · , Yn)), (2)
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where Hψ is the Shannon entropy of the joint a-posterior distribution (from Eve’s perspective) of

(Y1, · · · , Yn) generated by the mixing strategy ψ for the specific realization of the arrival and departure

processes, and the expectation is over the realization of the arrival and departure processes.

Specifically, when (x1, t1, x2, t2, . . .) is a realization of arrival process such that xi is the source

and ti is the arrival time of ith arrival to the mix and the set of mixing strategies ψ, the realiza-

tion (x1, t1, x2, t2 . . .), and Eve’s observations on each link of the network M impose a probability

distribution P on the random variable (Y1, · · · , Yn), then

Hψ(Y1, Y2, · · · , Yn) =
u
∑

yn=1

u
∑

yn−1=1

· · ·
u
∑

y1=1

P(y1, · · · , yn) log
1

P(y1, · · · , yn)

and the expectation in (2) is over all possible realizations of (x1, t1, x2, t2 · · · ).

Using the properties of Shannon entropy, we know that for a u−source mix, 0 ≤ Aψ(M) ≤ log u.

A = 0 implies the eavesdropper perfectly identifies the source of every outgoing packet, andA = log u

implies that from the eavesdropper’s perspective, every outgoing packet is equally likely to have

arrived from any of the sources. The general implication of this metric can be understood using

Fano’s inequality [64], which states that the adversary’s probability of error in determining the

source of an outgoing packet is lower bounded by the normalized conditional entropy.

In the subsequent sections, we use this definition to study optimal mixing strategies and prove

the following key results:

1. Let M1 = (G1, k, (λ, λ)) denote a single mix serving two equal rate poisson sources (see Figure

10). Then

sup
ψ∈Ψ(M1)

Aψ = log

[

2 cos

(

π

k + 3

)]

.

2. For a general mix network defined byM = (G,B,Λ), letMi = (Gi,Λi, ki) denote a sub network

containing exactly one mix Mi with the number of sources equal to the number of incoming

links of mix Mi in M and where each source in Mi transmits according to an independent

Poisson process with a rate equal to the net arrival rate on the corresponding incoming link in

M. Let ψi denote the strategy used by mix Mi in the sub network Mi. Then, under certain

conditions on the mixing strategies:

Aψ(M) =
m
∑

i=1

λi

λ
Aψi(Mi)

where ψ = (ψ1, · · · , ψm), λi is the total arrival rate in the sub-network Mi and λ is the total
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arrival rate to the network M.

3. For any mix network M with u sources transmitting at rates λ1, · · · , λu respectively (λ =

∑

λi), the maximum achievable anonymity is upper bounded as:

sup
ψ∈Ψ(M)

Aψ(M) ≤ −
u
∑

i=1

λi
λ

log

(

λi
λ

)

− Ω

(

1

k2total

)

where ktotal is the total buffer size available in the network.

4. If in a mix networkM, the arrival rates are such that there exists a positive integers n, n1, · · · , nu
and λi

λ = ni
2n ∀1 ≤ i ≤ u, then the maximum achievable anonymity is lower bounded as:

sup
ψ∈Ψ(M)

Aψ(M) ≥ −
u
∑

i=1

λi
λ

log

(

λi
λ

)

−O

(

1

k2min

)

where kmin is the minimum buffer size across the mixes of the system.

3.2 Anonymity of a Single Mix serving Two Sources

In this section, we analyze the anonymity of a single Chaum mix serving two users; this system is

represented by the 3−tuple M1 = (G1, k, (λ1, λ2)) where G1 is as shown in Figure 12. For this simple

system, we will derive the optimal mixing strategy, and characterize the achievable anonymity as a

function of the buffer size k. Prior to describing the results, we will present two key reductions to

the class of possible mixing strategies that simplifies the analysis without losing generality.

M

S1

S2

R

Figure 12: Two User Single Mix Network.

First, we claim that it suffices to consider only those mixing strategies where a packet is trans-

mitted only upon a new arrival to a full buffer, i.e. only when the mix has no other choice but

to transmit. To understand that this reduction does not lose generality, consider any strategy ψ

that does not belong to this class. Such a strategy would make a decision to transmit a packet

when the buffer is not full, or at a time when no new packet has arrived. Consider a modified

version of this strategy, say ψ′, described as follows. If at time t, there was no arrival point on any

incoming stream, and strategy ψ chooses to transmit a packet stored in its buffer, then strategy

ψ′ also chooses (at time t) the identical packet to transmit from its buffer, but does not transmit
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t

Figure 13: Original Strategy ψ: Arbi-
trary Departure Process

t

Figure 14: Modified Strategy ψ′: Depar-
ture Process is a deterministic function
of Arrival Process

Figure 15: Arrival and Departure Process for a mix with buffer size 3 serving two users: Red and
Blue packets denote arivals and black packets denote departures.

the packet immediately. Instead, the strategy waits until the buffer is full and when a new packet

arrives (thus making it necessary to transmit), say at time t′ > t, transmits the packet chosen at

time t. If multiple packets were chosen between t and t′, the packets are transmitted one at a time

upon a new arrival and in the order they were chosen. Note that according to this modification,

the state (time ordered contents) of the buffer for strategy ψ at any time t will be contained in the

state of the buffer for strategy ψ′ at time t, and consequently at all t, the information available

to the mix using ψ to make decisions is available to that using ψ′ as well. Therefore, assuming

identical realization of arrival processes and private randomness for both mixes, the realization of

the sequence of sources of the departing packets will be identical for both strategies. Note however

that when applying strategy ψ′, starting from the first instant that the buffer is full, a packet departs

from the mix at time t if and only if a new packet arrives at time t. Consequently, the departure

process is a fixed deterministic function of the arrival process independent of the sequence of sources

of arriving packets, and independent of the private randomness used by the mix (see Figure 15).

If, when the mix uses strategy ψ′, a genie were to provide Eve the point process representing the

departures were the original strategy ψ used, then the achieved entropy from Eve’s perspective for

any realization of the arrival and departure processes would be identical in both scenarios (original

strategy and genie aided ψ′ strategy). Since the actual departure process for strategy ψ′ is a fixed

deterministic function of the arrival process, the relationship between the entropy achieved by the

strategy ψ′ when the genie is absent and the entropy achieved when the genie is present is identical

to that between conditional entropy and entropy. Since conditioning reduces entropy, the anonymity

achieved by strategy ψ′ is always greater than or equal to that achieved by ψ thus justifying our

first reduction.

The second reduction is motivated by the reduced strategy space which ensures that the departure

process provides no information about the sources of departing packets. Specifically, since each
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departure occurs only upon a new arrival, it is sufficient for the strategy to decide which packet

to transmit only at the time of a new arrival. Any strategy that makes decisions without being

triggered by a new arrival can be modified thusly without reducing anonymity. Note that since no

delay constraints are imposed on the packets, an important consequence of this reduction is that the

actual times of arrival of packets are unimportant as long as the order of sources of arriving packets

are fixed. Consequently, the system can now be reduced to a discrete event model wherein each

event corresponds to a new arrival which instantaneously triggers a departure. By defining such a

discrete event model, the following result on the optimal anonymity for a two source mix is obtained.

On a broader note, since actual timing of arrivals is information that is perfectly available to the

eavesdropper, using the timing in the mix’s decision making process cannot increase the anonymity.

Theorem 1 The maximum achievable anonymity A(k) of a Chaum mix with buffer capacity k

serving two users

1. when arrival rate of both users are equal is

A(k) = 1 + log2

(

cos

(

π

k + 3

))

(3)

2. when the arrival rate of users are respectively qλ and (1− q)λ for q ∈ [0, 1] is

A(k) = t log2 ψ1

where ψns are obtained by solving following equations

ψ0 = 1

ψt
n

n + ψt
n

n−2 = ψt1ψ
tn

n−1 ∀2 ≤ n ≤ k + 1

ψt1ψ
tk+2

k+1 = ψt
k+2

k

(4)

where t = 1−q
q .

Proof: Since any strategy has to make decisions only upon a new arrival, the actual times of arrival

are irrelevant, and we reformulate the anonymity using a discrete event system model, wherein the

time n ∈ N corresponds to the the nth arrival point in the joint arrival process. To ease explanation of

the ideas we will henceforth refer to the packets from the two users as being red and blue respectively.

Let X1, · · · , Xn be the sequence of random variables representing the sources of arriving packets.

Let Xi = 1 denote a red arrival and Xi = 0 denote a blue arrival. Due to the Poisson assumption,
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Xis are i.i.d Bernoulli random variables with parameter q. Likewise Y1, · · · , Yn is the sequence of

random variables from Eve’s perspective denoting the sources of outgoing packets on the destination

link (M,R). Eve perfectly observes X1, · · · , Xn and using the knowledge of the mixing strategy

wishes to determine the sequence Y1, · · · , Yn.

At time n, the contents of the mix’s buffer including the new arrival are used to denote

the state of the discrete event system. Although the contents of the mix’s buffer at any time are

represented by a time ordered sequence of sources of packets in the buffer, we claim that since

1. the mix makes no distinction between packets that arrive from a particular source

2. no delay constraints are imposed

3. the sources of arriving packets are distributed i.i.d across time

the order of arrival of packets (including the new arrival) within the mix’s buffer can be ignored

in the decision making process of the mix. If a strategy ψ utilized the order of arrivals in deciding

which packet to transmit, then amongst all possible orderings of packets within the buffer, there

must exist one that results in the maximum entropy of departing packets. A modified strategy that

always makes a decision assuming the order of packets in the buffer is this entropy maximizing order

regardless of the actual arrival order would then achieve a higher anonymity than the strategy ψ.

Consequently, it is sufficient to denote the contents of the mix’s buffer by the number of packets

from each source. For a two source mix, the state of the mix’s buffer is a vector valued random

variable that takes values in {0, 1, · · · , k + 1}2 such that if the state S = (r, b), then r + b ≤ k + 1

where r and b denote the number of red and blue packets in the mix. Without loss of generality, we

assume that the buffer at time n = 0 contains zero packets.

The reduction in strategy space ensures that the buffer is full at all times n > k, and since no

decisions are made by the strategy before time n = k, we let Si to denote the state of the buffer at

time k + i. Note that since the buffer is full at all times n > k, if at any time n > k, Sn = (r, b),

then r+ b = k+1. We therefore represent the buffer state at time n > k as a scalar random variable

taking values in {0, · · · , k + 1}. In other words, if at time n > k, Sn = r then the buffer contains r

red packets, k + 1− r blue packets.
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In this discrete event model, we can rewrite the anonymity for a strategy ψ as defined as

A
ψ(k) = lim

n→∞

E[Hψ(Y1, · · · , Yn|X1, · · · , Xn+k+1)

n
(5)

(a)
= lim

n→∞

E[Hψ(Y1|X1, · · · , Xn+k+1)] + · · ·+ E[Hψ(Yn|Y
n−1
1 , X1, · · · , Xn+k+1)]

n
(6)

(b)
= lim

n→∞

E[Hψ(Y1|S1)] + · · ·+ E[Hψ(Yn|Sn, Y
n−1
1 )]

n
(7)

(c)

≤ lim
n→∞

E[Hψ(Y1|S1)] + · · ·+ E[Hψ(Yn|Sn)]

n
(8)

(a) follows from the chain rule of entropy.

(b) follows from the observation that (X1, · · · , Xn+k+1) has a one-one correspondence with (Y1, · · · , Yn−1)

and Sn, and that the source of a particular departing packet is independent of future arrivals.

(c) follows from the fact that conditioning reduces entropy.

In the above reduction, note that if a strategy ψ ensures that Yn − Sn− (Y1, · · · , Yn−1) is a Markov

chain for every n, then equality is achieved in (c). Indeed any strategy that does not satisfy this

Markov property can be modified to one that does by using the marginal distribution Pr{Yn|Sn}

in making the choice of packet to transmit thus increasing the achieved entropy. Consequently, we

only consider those strategies wherein conditioned on the state, the choice of packet to transmit is

independent of past departures. In effect the entropy achieved by such strategies is equal to the sum

of expected conditional entropies of outgoing packets at each time.

In this model, we denote the action of the mix at time n as a function p : {0, 1, · · · , k+1}×Z+ 7→

[0, 1] where p(Sn, n) denotes the probability of transmitting a red packet at time n if the state is

Sn (with probability 1 − p(Sn, n), the mix would transmit a blue packet). We can then write

H(Yn|Sn = r) = h2(p(r, n)) where h2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy

function. Furthermore, since only the present state is used in the decision, and the source of every

arriving packet is independent of the state and the history of the system, the discrete time state

process follows a Markovian evolution.

Sn+1 =























Sn + 1 w.p. (1− p(Sn, n))q

Sn − 1 w.p. p(Sn, n)(1 − q)

Sn w.p. p(Sn, n)q + (1− p(Sn, n))(1 − q)

. (9)

The anonymity achieved by the strategy defined by probability function p is computed using (44)
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as:

Ap(M1) = lim inf
n→∞

1

n
E

(

n
∑

i=1

h2(p(Sn, n))

)

where Sn evolves as in (9). Since the state evolution follows a Markov process such as that depicted

in Fig 16, and the anonymity is an average sum of rewards in each state over an infinite horizon,

the maximum achievable anonymity is in fact a solution to a Markov Decision Process (MDP) with

an infinite horizon and average rewards. The following known result from [65] about MDP proves

that the optimal strategy is stationary (p(n, r) = pr) and reduces the optimization to solving the

corresponding Bellman equation.

Lemma 1 If s represents the present state of a Markov process, s1 represent the next future state of

the Markov process, U represent the decision space, ξ(s, u) represent the cost incurred by the decision

u ∈ U at state s, and there exists a constant f and a bounded function φ, unique up to an additive

constant, satisfying the following optimality equation (where S0 is the random variable denoting the

initial state of the system)

f + φs = max
u∈U

{ξ(s, U) + E[φs1 |S0 = s, U0 = u]}

Then f is the maximal average-cost and optimal stationary policy is the one that chooses the optimal

action u that solves the Bellman equation for that state. ✷

Since φ is unique upto an additive constant, we would assume that φ0 = 0. The optimality

equation in Lemma 1 when applied to the MDP for the two user mixing strategy gives rise to the

following recursive equations

f + φ0 = qφ1 + (1 − q)φ0 (10)

f + φr = max
pr

{h2(pr) + pr(qφr + (1− q)φr−1) + · · ·

(1 − pr)(qφr+1 + (1 − q)φr)}1 ≤ r ≤ k (11)

f + φk+1 = qφk+1 + (1− q)φk (12)
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Figure 16: Markov Chain for the strategy Ψ∗ for equal arrival rate

The maximization in (11) can be solved using a simple Entropy power maximization [64] yielding:

p∗r = argmax
pr

{h2(pr) + pr(qφr + (1− q)φr−1) + (1− pr)(qφr+1 + (1− q)φr)}

=
2qφr+(1−q)φr−1

2qφr+(1−q)φr−1 + 2qφr+1+(1−q)φr
1 ≤ r ≤ k (13)

f + φr = log
(

2qφr+(1−q)φr−1 + 2qφr+1+(1−q)φr
)

1 ≤ r ≤ k (14)

Replacing 2φr

2φr−1
=
(

ψr
ψr−1

)
1
q
tr

the result for the general two user system in the theorem is obtained.

When arrival rates are equal, q = 1
2 =⇒ t = 1 and (4) reduces to the following set of equations:

ψ0 = 1

ψr + ψr−2 = ψ1ψr−1∀r = 2, · · · , k + 1

ψ1ψk+1 = ψk

Let ψ1 = 2 cos θ. The above recursion can be solved resulting in ψr = sin((r+1)θ)
sin(θ) where θ = π

k+3 ,

and the optimal average reward for the MDP is given by:

f = log

[

2 cos

(

π

k + 3

)]

.

Using equation (13) the optimal mixing strategy that achieves the above anonymity is given by:

p∗r =
ψr−1

ψr−1 + ψr+1
=

sin(rθ)

sin(rθ) + sin((r + 2)θ)
(15)

where p∗r is the probability of transmitting a red packet when the mix contains r red packets in its

buffer (including the new arrival). ✷

Theorem 1 represents the first closed form characterization of the maximum anonymity of a

buffer limited Chaum mix, and provides the optimal strategy to achieve the maximum anonymity.

When q 6= 0.5, the resulting series of nonlinear equations are hard to solve, and consequently a single

letter characterization is as yet unknown. However, numerical analysis and algebraic reduction can
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be used in some special cases. For instance, when k = 1, and q = 1
n where n ∈ N, then anonymity

A(1) = −q log2(1 − t) where t is the unique solution of polynomial xn−1 + x − 1 = 0 which lies in

(0, 1).

From the above theorem, we can write that for a two user system with equal arrival rates,

A(b) = 1 + log2(cos
π

k + 3
) ≥ 1 + log2

(

1− π2

2(k + 3)2

)

≥ 1− π2

2 ln(2)(k + 3)2
. (16)

Therefore, the optimal mixing strategy asymptotically (as k → ∞) achieves the maximum possible

anonymity in a two user system, the prior source entropy of 1, and the convergence rate is O( 1
k2 )

It is important to note that although formalizing the definition of anonymity required the buffer

at time 0 to contain 0 packets from either source, the proof reduces the system to a Markov decision

process and the optimal strategy results in a stationary distribution of the system state regardless

of the initial conditions. The anonymity of the optimal strategy therefore does not depend on the

initial composition of the mix’s buffer as long as Eve is perfectly aware of the initial state.

The analytical method can be extended to systems with more than two users and the resulting

multidimensional Markov chain results in a series of multidimensional recurrence relations which

limits the analytical tractability of the problem. Although the closed form characterization for the

optimum anonymity is as yet unknown for a general multi user configuration, in Section 3.4, we

study the asymptotic behavior of anonymity with respect to buffer size, and demonstrate that for

several multi user systems, the optimal convergence rate of the anonymity is Θ(1/k2).

In the next section, we study the anonymity of a mix network and characterize a lower bound as

a weighted sum of anonymities of individual mixes.

3.3 Achievable Anonymity in a Network of Mixes

The layered encryption described in [3], ensures that each mix in the system is only aware of the

immediate preceding and immediate succeeding node of any packet that arrives to it. Further, we

assume that mixes do not share common randomness nor do they communicate with each other

during network transmission (aside from forwarding packets). Consequently, each intermediate mix

performs its reordering without explicitly knowing the path/original source of any arriving packet

prior to the node it was transmitted by. It is possible that mixing strategies are designed such

that information is communicated implicitly, for instance through the timing of transmissions. Note

however that such implicitly communicated information, in the absence of shared randomness, would

automatically be deciphered by an eavesdropper as well. We therefore follow the reduction in class
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of strategies for individual mixes wherein the output process of any mix in a single destination

network will be a deterministic function of the net incoming process to that mix. Consequently,

given the topology, and the realization of the source arrival processes, the destination process and

all intermediate processes are deterministic in our analysis. We do note that while such an approach

is optimal in a single mix system, it may not be so in a network. In this work, we would like to

express the achievable anonymity of a network of mixes as a function of the anonymity achievable

by individual mixes.

By virtue of the single destination topology, the reordering of packets occurs in a fixed and

known sequence. Starting backward from the final mix Mm, each mix shuffles packets independent

of the actions of the prior mixes in the paths of the arriving packets and the actual time points of

arrival (due to the reduction). From the perspectve of an eavesdropper interested in determining

the sources of packets on the destination link, the sequence of actions of the mixes results in a

probability distribution over bijective graphs from the source arrival points to the destination points

through the intermediate processes. The independence in the actions of the mixes in this viewpoint

would corespond to an independence between the intermediate bijective graphs corresponding to

individual mixes. Formalizing this idea provides the following result which expresses the achievable

anonymity as a linear function of the anonymities of individual mixes.

Theorem 2 In a general mix network M = (G,B,Λ), let Mi = (Gi, ki,Λi) denote a single mix sub-

network containing only mix Mi with buffer size ki and the number of sources equal to the number

of incoming links to mix Mi in M, where each source in Mi transmits according to an independent

Poisson process with a rate equal to the arrival rate λe on the corresponding incoming link e ∈ EMi
in

M. If ψi denotes the strategy used by mix Mi in the sub network Mi. Then, there exists ψ ∈ Ψ(M)

such that:

Aψ(M) ≥
m
∑

i=1

λi

λ
Aψi(Mi) (17)

where λi =
∑

e∈EMi
λe is the total arrival rate to mix Mi and λ =

∑m
i=1 λ

i is the total arrival rate

to the network M.

Proof: In the network M, we assume each mix Mi uses the modified version of the strategy

ψi such that the departures are only triggered by arrivals to a full buffer. Therefore, given the

joint arrival process, the point processes denoting the intermediate and the destination processes

are determinstically known. Consequently we can study the discrete event model described in the

proof of Theorem 1.
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As with the single mix system, every time point n corresponds to a new arrival from some

source node in the network. Consider the joint arrival process from all sources in the system, let

X = X1, · · · , Xn be the random variables denoting the sequence of sources of the first n packets

arriving to the network. Since Eve can perfectly observe X, and has knowledge of the network

topology, the timing on the intermediate processes are also perfectly known to her; note that each

intermediate process will have packets arriving at different sets of discrete time points depending

on the original sources of arriving packets. Each mix has a set of incoming links, and the reduced

strategy space of all mixes will ensure that at each discrete time point at most one packet can arrive

on any one incoming link of a mix. We define the following random vectors from Eve’s perspective:

1. Consider the joint incoming process to a mix Mj; let Nj denote the total number of arrivals

to mix Mj until time n, and Zj = Zj,1, · · · , Zj,Nj(n) denote the sequence of incoming edges

of packets arriving to the mix where Nj(n) is the total number of arrivals to mix Mj at time

n. We know that EMj
= {ej,1, · · · , ej,|EMj |} is the set of incoming edges to the mix, therefore

Zj,i = l indicates that the ith packet that arrived to mix Mj arrived on incoming edge ej,l.

Eve has perfect knowledge of the variables Nj and Zj for every mix Mj ∈ M.

2. Let Ne be the random variable that denotes the number of packets transmitted on edge e ∈ E.

Let Ye = Y e1 , · · · , Y eNe(n) be the random variables representing the original source identities of

the packets observed on edge e in the network from Eve’s perspective.

While the variablesX,Zj are perfectly visible to Eve, there is uncertainty in the Y ei , e /∈ Es generated

by actions of the mixes. Let d denote the destination edge (Mm, R) (and Nd denote the number of

packets transmitted on the destination edge until time n). Then, the anonymity achieved by the

network using strategy ψ can be written in the discrete event model as:

Aψ(M) = lim inf
n→∞

Hψ(Yd|X,Z1, · · ·Zm)

n
. (18)

Note that given X and the topology of the network, the reduced strategy space will ensure that

Z1, · · · ,Zm are deterministic functions ofX, and removing the conditioning on variables Z1, · · · ,Zm
will not make a difference in the above equation. In the rest of the proof, we shall express the

conditional entropy Hψ(Yd|X,Z1, · · · ,Zm) as a sum of the conditional entropies corresponding to

the actions of each mix by working our way backwards starting from the action of the final mix.

Final Mix Let em,1, · · · , em,|EMm | ∈ EMm
denote the incoming edges to the final mix. In a single

destination mix network, it is easy to see that the sets of original sources leading into any two edges
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em,i and em,j are mutually exclusive for i 6= j. Let Sm,i ⊂ S denote the set of sources transmitting

packets through edge em,i to mix Mm. We define random variables W1, · · · ,WNd such that

Wi = em,j if Y
d
i ∈ Sm,j .

In other words, Wi identifies the incoming edge em,j ∈ EMm
of a particular departing packet from

mixMm. Let W =W1, · · · ,WNd . SinceWi is a deterministic function of Y di , for any set of strategies

ψ in the network,

H(W|Y) = 0

We can then rewrite (18) as:

Hψ(Yd|X,Z1, · · · ,Zm) = Hψ(W|X,Z1, · · · ,Zm) +Hψ(Yd|W,X,Z1, · · · ,Zm). (19)

The entropy Hψ(W|X,Z1, · · · ,Zm) is the entropy of the incoming edges (to Mm) for the departing

packets on the destination link (Mm, R), given the complete observation of Eve. Since the final

mix can only observe its own incoming links, conditioned on Zm, the variables X,Zj , j 6= m do not

impact the action of mix Mm. Further, since the uncertainty in W is only dependent on the action

of the final mix Mm, W − Zm − (X, {Zj , j 6= m}) is a Markov chain and

Hψ(W|X,Z1, · · · ,Zm) = Hψ(W|Zm).

We assume that n is large enough that the buffers of all mixes are full. At this point it is easy to see

that a new arrival from one of the sources in the set Sm,i would trigger a sequence of departures, one

from each mix on the path from the source to the destination. In particular, it would result in an

immediate arrival on the incoming edge em,i to the final mix Mm. Since sources transmit according

to independent Poisson processes, the probability that an incoming packet to mix Mm arrives on

edge em,i is then given by:
∑

Sj∈Sm,i
λj

λ

independent of past and future arrivals, where λ is the total arrival rate to the system. Consider a

sub-network Mm = (Gm,Λm, Bm) containing only the final mix Mm, such that each incoming edge

to Mm in the original network corresponds to a source edge in Mm. The source arrival rate on

incoming edge em,i in Mm is equal to the net arrival rate from sources in the set Sm,i in the original

network M, given by
∑

Sj∈Sm,i
λj . If a particular strategy ψm achieves anonymity Aψm(Mm) in
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this sub-network, then if the mix Mm applies the same strategy to arriving packets in the original

network M then

lim inf
n→∞

Hψ(W|Zm)

n
= Aψm(Mm) (20)

since all packets have to eventually arrive to the final mix (ie.
∑

i Nem,i
n → 1).

Residual Entropy Consider the conditional entropy term in (19)

H(Yd|W,X, Z1, · · · , Zn)

The above term is the entropy of original sources of the departing packets given the incoming edges

they arrived to the final mix Mm. Given W we can split the departing packets into mutually

exclusive sets Ii ∈ {1, · · · , n}, i = 1, · · · , |EMm
| such that

j ∈ Ii iff Wj = i

In other words, all packets with indices in the set Ii arrived on the incoming edge em,i to the final

mix. Since the final mix cannot distinguish packets on a particular incoming edge, we assume the mix

transmits packets that arrived on a given incoming edge on a first-come-first-serve basis. Therefore,

the order of original sources of packets on an incoming edge is preserved even after the actions of

the final mix. The conditional entropy H(Yd|W,X,Z1, · · · ,Zm) is then equivalent to the sum of

entropies of the packets on each incoming edge.

H(Yd|W,X, Z1, · · · , Zm) =

|EMm |
∑

i=1

H({Y dj , j ∈ Ii}|W,X,Z1, · · · ,Zm)

=

|EMm |
∑

i=1

H(Y
em,i
1 , · · · , Y em,iNem,i

|W,X,Z1, · · · ,Zm) (21)

where Nem,i is the number of packets that arrived on incoming link em,i to the final mix. Note that

since the randomness inW1, · · · ,Wn is generated solely by the action of the final mix, which functions

without knowledge of the original sources of packets on any incoming link, namely Y
em,i
1 , · · · , Y em,iNem,i

,

removing the conditioning on W does not change the entropy in (21).

Consider the sub-network, denoted by Mm,i that connects the sources in Sm,i to the incoming

edge em,i. Since all source processes are independent of each other, the uncertainty in Yem,i is

independent of all intermediate processes that arrive to or depart from mixes not present in the
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sub-network Mm,i. In other words, we can write

H(Yem,i |W,X,Z1, · · · ,Zm) = H(Yem,i |{Zj ,Mj ∈ Mm,i})

The above entropy is identical to that achieved by the sub-network Mm,i from the perspective of an

eavesdropper who only observes the processes in the sub-networkMm,i. Therefore, when normalized

by the total number of packets that arrived to the sub-network can therefore on incoming edge em,i,

we can write:

lim
n→∞

H(Yem,i |{Zj ,Mj ∈ Mm,i})
Nem,i

= Aψ(Mm,i)

By iteratively applying this reduction on each sub-network and working backwards to the sources,

the expression in the theorem is obtained. The weighting term for the anonymity of each mix is

obtained by using the fact that
E(Nem,i )

n converges to
λem,i
λ as n→ ∞. ✷.

The above theorem expresses the anonymity achievable in a single destination network of mixes as

a linear sum of anonymity achievable by the individual mixes. As long as all mixes utilize strategies

that belong to the reduced strategy space described in Section 3.2, the theorem holds. Within this

class of mixing strategies, if each mix uses the optimal strategy (obtained by solving the Bellman

equation described in Theorem 1), then the anonymity characterized by the Theorem is optimal

within the reduced class of strategies. We reiterate that while the reduced strategy space is optimal

for a single mix, it has not been proved to be optimal when the mix belongs to a network of mixes.

As a result, if mixes utilize strategies outside the reduced class, the anonymity characterized by the

above Theorem would serve as an achievable lower bound.

An Extension to Multipath Systems Although in-tree networks of the form described in Section

3.1 (and shown in Figure 11) is the primary focus of this paper, we present an extension of the

above result to a multipath system where sources can split their traffic through multiple paths to

the destination (see Figure 17). This extension will prove particularly useful when demonstrating

the optimal convergence rate of anonymity in a general multiuser system.

A single destination network with multipath is represented by a 3−tupleM = (G,B, λ) where G is

a multipath tree shown in Figure 17, wherein sources can transmit to multiple mixes while mixes have

single outgoing links. B is the set of buffer sizes of mixes and λ = (λi,j , i = 1, · · · , s, j = 1, · · · ,m})

is a matrix of arrival rates where λi,j denotes the arrival rate of packets from source Si directly to

mix Mj. Let Λi = {λi,1, · · · , λi,m} denote the vector of arrival rates from source Si. Let pi,j =
λi,j
λi

denote the fraction of packets transmitted by source Si to mix Mj . We assume that given Λi, each
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Figure 17:
A Single Destination Mix Network with Multipath:Es = {(S1,M1), (S1,M2), (S1,M3),
(S2,M1), (S3,M2), (S4,M2), (S4,M4), (S5,M3), (S6,M3), (S7,M5)},
Em = {(M1,M4), (M2,M3),M3,M4), (M4,M5)}.

individual process XSi,Mj
is an independent Poisson process with rate λi,j .

Theorem 3 In a single destination mix network with multipathM = (G,B, λ) let Mj = (Gj ,Λj , Bj)

denote a sub-network containing only mix Mj with buffer size kj and the number of sources equal to

the number of incoming links of mix Mj in M, where each source in Mj transmits according to an

independent Poisson process with a rate equal to the net arrival rate on the corresponding incoming

link in M. Let ψj denote the strategy used by mix Mj in the sub network Mj. Then, there exists a

set of strategies ψ ∈ Ψ(M) such that:

Aψ(M) ≥
m
∑

j=1

λj

λ
Aψj (Mj) +

u
∑

i=1

λi
λ





m
∑

j=1

pi,j log pi,j



 (22)

where λj is the total arrival rate in the sub-network Mj, λi is the net arrival rate from source Si

and λ is the total arrival rate to the network M.

Proof: Note that the key difference between the single path and multi path systems is the negative

entropy term corresponding to the splitting of traffic by the sources. The key idea driving the

multipath result is in viewing the anonymity in two stages: in the first stage the sources split their

traffic into multiple streams depending on the specified topology, in the second stage the network

of mixes shuffle the packets assuming each split stream arrives from a different source (see Figure

18). Specifically, the mixes assume that every incoming link corresponds to a different source, and

performs the shuffling actions. The achieved anonymity with respect to this set of artificial sources

in the inner system of Figure 18 is given by (17) in Theorem 2. By bounding the difference between

the entropy of the actual sources and artificial sources, the result is proved.

Specifically, consider a modified network M′ where each incoming link from a source in network

M corresponds to a different source, albeit artificial. For a given realization of arrivals denote
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by X = X1, · · · , Xn, let Y
′
1 , · · · , Y ′

n be the random variables that denote the artificial sources of

departing packets in M′. Using Theorem 2, we know that there exists a set of strategies ψ such that

lim inf
n→∞

Hψ(Y ′
1 , · · · , Y ′

n|X)

n
=

m
∑

j=1

λj

λ
Aψj (Mj). (23)

Let Y1, · · · , Yn be the random variables that denote the actual sources of departing packts from

the mix Mm in M. Assuming the mixes in M′ behave identically to that in M, for an identical

realization of arrival processes, we can write:

Hψ(Y1, · · · , Yn|X) = Hψ(Y ′
1 , · · · , Y ′

n|X) +Hψ(Y1, · · · , Yn|Y ′
1 , · · · , Y ′

n,X) (24)

−Hψ(Y ′
1 , · · · , Y ′

n|Y1, · · · , Yn,X) (25)

Since each artificial source corresponds to a unique original source, for a fixed known realization,

Hψ(Y1, · · · , Yn|Y ′
1 , · · · , Y ′

n) = 0. (26)

In any large window of observation, where n >>
∑

i ki, let Ni denote the number of packets that

arrived from source Si and Ni,j be the number of departing packets that were transmitted by source

Si directly to mix Mj on edge (Si,Mj) (alternatively the number of packets the corresponding

artificial source transmitted to mix Mj), then if Ni >>
∑

i ki,

|E(Ni,j |Ni)− npi,j | ≤
∑

i

ki (27)

regardless of the mixing strategies utilized. If the condition in (27) were not satisfied then the

probability of buffer overflow will be non zero which is unacceptable. Although Ni,j is not explicitly

known to the eavesdropper, when n >>
∑

i ki, the number of packets stored in the buffer is negligible

compared to the number of transmitted packets. In other words, as n→ ∞,

Ni,j
n

→ pi,j a.s.

Consequently, we can assume that the eavesdropper is perfectly aware of how many packets among

the departing packets belong to each artificial source; it is the permutation of packets from multiple

sources that provides the uncertainty in Hψ(Y ′
1 , · · · , Y ′

n|Y1, · · · , Yn,X).

Consider the conditional entropy H(Y ′
1 , · · · , Y ′

n|Y1, · · · , Yn,X). This is the uncertainty in arti-

48



���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

M1

M2

M3

M4 M5

S′
1

S′
2

S′
3

S′
4

S1

S2

S3

S4

S5

S6

R

S′
6

S′
7S′

8

S′
9

Actual Source

Artificial Source

Figure 18: Two Stage Analysis of Single Destination Network with Multipath

ficial sources of departing packets, given that the original sources of departing packets are known.

Since each artificial source corresponds to a unique original source, the knowledge of Y1, · · · , Yn can

be used to divide the departing packets into mutually exclusive sets I1, · · · , Is, where

j ∈ Ii iff Yj = i

Since conditioning reduces entropy, and given X, Eve’s normalized uncertainty (divided by n) about

the variables Ni, {Ni,j} is vanishing as n→ ∞

H(Y ′
1 , · · · , Y ′

n|Y1, · · · , Yn,X) ≤
s
∑

i=1

Hψ({Y ′
j , j ∈ Ii}|Ni, {Ni,j}) (28)

Given Ni, {Ni,j}, the entropy Hψ({Y ′
j , j ∈ Ii}|Ni, {Ni,j}) is upper bounded by the logarithm of

possible permutation of packets, ie

Hψ({Y ′
j , j ∈ Ii}|Ni, {Ni,j,X}) ≤ log

(

Ni!

Ni,1!Ni,2! · · ·Ni,m!

)

Since for large Ni, we can write E(Ni,j |Ni) = Nipi,j + O(1), from Stirling’s bound [66] and the

log-concavity of the multinomial coefficient, we can write:

E(Hψ({Y ′
j , j ∈ Ii}|Ni, {Ni,j})|Ni) ≤ −Ni

m
∑

j=1

pi,j log pi,j +O(1). (29)

Combining (23)-(29)and using the fact that E(Ni)
n = λi

λ the result in (22) follows. ✷.
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3.4 Asymptotic Anonymity: Rate of Convergence

In any network, the achievable entropy rate of sources of departing packets cannot exceed the prior

entropy rate of the arrival processes owing to the finite buffer size restriction. For instance, if in

a single mix system M1 with buffer size k, the arrival rates are given by λ1, · · · , λu, then for any

mixing strategy ψ

Aψ(M1) ≤ −
u
∑

j=1

λi
λ

log

(

λi
λ

)

(30)

where λ =
∑

i λi. A simple argument for this inequality is as follows. As the number of arrivals

n→ ∞, since the buffer size is fixed, the uncertainty in the composition of the departing packets from

Eve’s perspective which does not scale with n goes to zero. Given the composition, the uncertainty

in the sources of departing packets arises only from the permutation of packets which is upper

bounded by the logarithm of the multinomial coefficient which in turn converges to the entropy in

(30) as n → ∞. A rigorous proof formalizing this argument is provided as part of the convergence

rate analysis.

For the single mix system, let ψ(k), k = 1, 2, · · · , denote a sequence of strategies that varies with

the buffer size k of the mix. The sequence of strategies is asymptotically optimal for the single mix

system if:

lim
k→∞

Aψ(k)(M1) = −
u
∑

j=1

λi
λ

log

(

λi
λ

)

That such a sequence of strategies exists for any single mix system is not difficult to prove. Indeed

the proportional method of scheduling studied in [67], demonstrates that this limit is achievable

asymptotically in the buffer size, with a rate of convergence O(1/
√
k). For a two user equal rate

system, we know from Theorem 1 that this limit is achievable in a two user equal rate system with a

better convergence rate O( 1
k2 ). The focus of this and the subsequent section is to study the optimal

convergence rate in general multiuser systems. Prior to that, we note an important corollary of

Theorems 2 and 3, wherein if each mix in a network utilizes an asymptotically optimal sequence of

strategies, then the anonymity of the network as the total buffer size (keeping the relative proportions

constant) increases converges to the prior entropy of the arrival processes to the network. Therefore,

as long as we demonstrate the convergence properties of a single mix system, the extension to a

network of mixes will automatically follow.
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3.5 Lower Bound on Rate of Convergence

As observed in (16), the optimal convergence rate of anonymity with buffer size in a two user equal

rate system is O( 1
k2 ). In the following theorem, we prove that in any multiuser system with unequal

arrival rates, the convergence rate of the anonymity of a Chaum mix is no better than ( 1
k2 ).

Theorem 4 For a single mix system M1 serving u users with arrival rates λ1, · · · , λs, the anonymity

achievable by any strategy ψ is upper bounded as

Aψ(M1) ≤ hu(q1, . . . , qu)− Ω

(

1

k2

)

where qi =
λi

∑

i λi
∀ i = 1, . . . , u and hu is the u−ary entropy function

hs(q1, · · · , qu) = −
u
∑

i=1

qi log2 qi

Proof: We will first prove the result for a general two user system with arrival rates in the ratio

q : 1− q. We then provide an argument to show that the convergence rate for the multiuser system

can be no better than that for a two user system.

Without loss in generality let q ≤ 1 − q. The argument in the proof of Theorem 1 reformulates

the optimization problem as a Markov Decision Process with a continuous action space, and using

the lemma from [65], the optimal mixing strategy in a two user system was shown to be stationary.

Consequently, for the optimal strategy, the state of the system also follows a stationary distribution.

Since the sources of outgoing packets are deterministic functions of the state and input, once the

system has attained stationarity, the distribution of sources of outgoing packets will also be station-

ary. In this stationary regime, let random variable S denote the state at a time point of interest.

Let random variables Y1, · · · , Yn denote the sources of n consecutive outgoing packets immediately

following this time point, and X1, · · · , Xn denote the sources of incoming packets that triggered

these departures. The anonymity achieved by the optimal strategy ψ∗ can be written in the form:

A(M1) =
E(Hψ∗(Y1, · · · , Yn|S,X1, · · · , Xn)))

n

for any strictly positive n. For the purpose of this proof, we use a light abuse of notation wherein we

let Yi denote binary random variables wherein Yi = 0 denotes a packet from source S1 and Yi = 1

denote a packet from source S2. We let n = 4Ck2, where C is a large constant. Since the mix can
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hold at most k packets in its buffer, the stationary distribution of the random variable:

W =

4Ck2
∑

i=1

Yi

should necessarily have mean E(W ) = 4Ck2q. We further note that given the observed sources of

incoming packets X1, · · · , XCk2 ,

|W −
4Ck2
∑

i=1

Xi| ≤ k

Therefore, H(W |X1, · · · , X4Ck2) ≤ log(2k). Then

Aψ(M1) =
E(Hψ∗(Y1, · · · , Y4Ck2 |S,X1, · · · , X4Ck2)))

4Ck2

=
E(Hψ∗(Y1, · · · , Y4Ck2 ,W |S,X1, · · · , X4Ck2)))

4Ck2

=
E(Hψ∗(W |S,X1, · · · , X4Ck2)))

4Ck2
+

E(Hψ∗(Y1, · · · , Y4Ck2 |W,S,X1, · · · , X4Ck2)))

4Ck2

≤ log(2k)

4Ck2
+

E(Hψ∗(Y1, · · · , Y4Ck2 |W )

4Ck2
(31)

The term (H(Y1, · · · , Y4Ck2 |W )) is the entropy of the random binary sequence conditioned on its

sum which is upper bounded as:

H(Y1, · · · , Y4Ck2 |W ) ≤ log

(

4Ck2

W

)

Therefore:

Aψ(M1) ≤ log(2k)

4Ck2
+

E(log
(

4Ck2

W

)

4Ck2

≤ log(2k)

4Ck2
+ sup
p(W ):E(W )=4Ck2q

E(log
(

4Ck2

W

)

4Ck2

which due to log-concavity of
(

n
k

)

for a fixed n

Aψ(M1) ≤
log(2k)

4Ck2
+

log
(

4Ck2

⌈4Ck2q⌉

)

4Ck2
(32)

From Sterling’s inequality we know that for large n and m such that n >> m

log

(

n

m

)

≤ nh2(m/n)−
1

2
log(n) +O(1) (33)
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For C large enough, combining (31)-(33), the upper bound is proved for the general two user system.

We now present the argument for the general multiuser system with arrival rates in the proportion

q1 : q2 : · · · : qu. Without loss of generality we assume q1 ≤ ∑

i6=1 qi. Let Zi denote the indicator

random variable (from Eve’s perspective) that determines weather ith departure belongs to source

S1 or not. Specifically,

Zi =











1 Yi = 1

0 Yi 6= 1
(34)

Since Zi is a deterministic function of Yi,

H(Y1, · · · , Yn|X) = H(Z1, · · · , Zn|X) +H(Y1, · · · , Yn|Z1, · · · , Zn,X) (35)

Given the variables Z1, · · · , Zn, the variables Y1, · · · , Yn can be split into two mutually exclusive

sets defined by index sets I1 and I2, where

∀j ∈ {1, · · · , n}, j ∈ I1 iff Yj = Zj = 1 else j ∈ I2.

Therefore, we can write

H(Y1, · · · , Yn|Z1, · · · , Zn,X) = H({Yi, i ∈ I2}|Z1, · · · , Zn,X)

which using arguments similar to the proof of Theorem 2 is upper bounded by the entropy achievable

in a u − 1 user system with arrival rates λ2, · · · , λu, and is consequently upper bounded using the

prior entropy of arrival probabilities as:

H({Yi, i ∈ I2}|Z1, · · · , Zn,X)

|I2|
≤ h2

(

q2
1− q1

, . . . ,
qs

1− q1

)

(36)

Using the two user analysis in (31)-(33), we know that

lim
n→∞

H(Z1, · · · , Zn|X)

n
≤ h2(q1)− Ω(1/k2) (37)

Combining (35)-(37), and using the independent Poisson assumption to show that

lim
n→∞

|I2|
n

= 1− q1
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the theorem is proved. ✷

3.6 Upper Bound on the Convergence Rate

Thus far, we have shown that for a two source equal rate mix, the maximum achievable anonymity

as a function of the buffer size is given by:

A(k) = 1 + log

(

cos

(

π

k + 3

))

= 1−O(
1

k2
)

In combination with Theorem 3, we can prove that this convergence rate is achievable for a range

of multiuser systems. In particular, consider a binary tree single destination network as shown in

Figure 19 where all mixes have equal buffer size k. In this network, each one of the u = 2n sources

transmits at an equal arrival rate, and each mix utilizes the optimal mixing strategy that achieves

the maximum anonymity characterized in Theorem 1. Since all arrival rates are equal, the incoming

links to any mix must have equal arrival rates. Using Theorems 1 and 2, we know that the anonymity

of the system is given by:

Aψ(M) = n log

(

2 cos

(

π

k + 3

))

= log(u)−O(
1

k2
) (38)

Consider a single mix system M1 with arrival rates λ1, · · · , λu such that ∃n, n1, · · · , nu ∈ Z+

and:

λi
∑

λi
=
ni
2n

∀i (39)

If the mix divided its buffer into 2n − 1 equal parts, and simulated a binary tree network of mixes

(as in Figure 19) with 2n artificial sources, then using Theorem 3 and (38) above, the anonymity

achieved is lower bounded as:

A(M1) ≥ −
u
∑

i=1

ni
2n

log
ni
2n

−O(
2n−1

k2
)

Since n is a constant independent of the buffer size, the system exhibits optimal convergence rate

as k → ∞.

We do note that although the closure of the set of rates that satisfy the condition in (39), it

is a countable set. This is a consequence of the closed form expression for maximum anonymity

being available only for the two user equal arrival rate system. We believe that the convergence rate

should hold true for any proportion of arrival rates, but the proof remains elusive.
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Figure 19: Binary Tree Mix Network: All sources transmit at equal rates

3.7 Summary

One of the key contributions in this work is the theoretical model for anonymous communication in

networks under memory restrictions. To the best of our knowledge, this is the first comprehensive

analysis of buffer constrained anonymous systems. Based on the metric, we designed scheduling

and relaying strategies to maximize anonymity in arbitrary single destination networks of mixes.

The general quantitative framework we have used can be adapted to study anonymity under other

resource restrictions such as bandwidth, processing power etc and QoS constraints such as delay

and fairness. Although source anonymity is the focus of this article, the theory and results can be

extended to source-destination anonymity, by considering multi-destination systems. Note that the

adversary is considered to be omniscient here; from a practical standpoint, this is quite conservative.

Nevertheless, the anonymity achievable in real situations would only be better than the guaranteed

results in this model.
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4 Packet based Anonymity of Mixes under the constraint of

Fairness

In this chapter, using the framework developed in the previous chapter for buffer constraint mixes,

we study the anonymity of mixes under three fairness paradigms : First Come First Serve (FCFS),

Fair Queuing (FQ) and Proportional Method (PM). FCFS and FQ have widespread use in packet

switched data networks, the former because it satisfies an intuitive notion of fairness, and the latter

owing to its application in congestion control. PM, on the contrary, is an unpopular method for

scheduling because it may cause users with less demands to suffer disproportionately high delay,

but in comparison to FCFS and FQ, PM has an inherent randomness in the scheduling policies

which makes it amenable to anonymous communication. In the next section, we explain these fair

scheduling policies in details and define a measure to quantify their fairness.

4.1 Fair Scheduling Algorithms and Temporal Fairness Measure

It is important to note here that, although, there have been many different measures of fairness

proposed, most in the context of resource allocation for varying user demands [68–70], the notion of

fairness considered in this work arises not due to allocation of resources such as bandwidth or memory,

but due to the out-of-order transmissions and the resulting violation of temporal fairness. Since the

randomized shuffling of packets prior to transmission is critical to any anonymous scheduling, our

focus in this chapter is to understand and quantify how different fair scheduling policies fare when

trading temporal fairness for anonymity. In particular, we shall focus on the anonymity achieved

through a single mix, and the resulting relationship with temporal fairness. For this specific purpose,

we compare the maximum anonymity achievable by the class of schedules adhering to a relaxed

FCFS, Fair Queuing and the Proportional Method paradigms respectively. Although these fair

scheduling methodologies achieve inherently different notions of fairness, we will compare them by

defining a common measure of fairness, referred to as the Temporal Fairness Index (TFI), a quantity

that measures the degree of out-of-order transmissions.

4.1.1 FCFS

FCFS satisfies the intuitive notion of temporal fairness i.e. a packet that arrived earlier deserves

to be transmitted earlier. FCFS is a deterministic scheduling policy and consequently, provides no

anonymity. We, therefore, consider a relaxation of FCFS that allows limited swapping of packets
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from different users and show in section 4.2 that a slight relaxation can result in a significant increase

in anonymity.

4.1.2 Fair Queuing

The Fair Queuing paradigm satisfies an important notion of fairness called max-min fairness. Max-

min fairness requires maximizing the share of the user receiving the lowest fraction of a resource,

thereafter, maximizing the share of the user receiving the second lowest fraction of the resource, and

so forth.

The FQ algorithm is the emulation of a hypothetically fair scheme called Processor Sharing

(PS) [16]. Under the processor sharing scheme, a server simultaneously processes the request of u

users at a rate of 1/u. In many shared routers, at most one packet can be transmitted at any given

time, rendering the PS scheme impractical. In this respect, the FQ algorithm proposed in [17] is

viewed as the implementable counterpart of PS, wherein a packet which has the least finishing time

(time at which the packet is completely processed) in the corresponding PS scheme is chosen for

serving. When packets from all users require equal service time, which is the case in mix networks,

the algorithm reduces to serving each packet in a round robin fashion.

As will be shown in Section 4.3, the inherent anonymity of FQ lies far below from the maximum

possible anonymity even for a mix with infinite buffer capacity. We, therefore, propose a relaxation

of FQ that expands the window of fairness measurement of the round robin scheme, and show that

any desirable anonymity can be achieved by a sufficient relaxation of the fairness window.

4.1.3 The Proportional Method

The Proportional Method paradigm distributes resources among users proportional to their demands

i.e. if ith user demands xi units of a resource, then a single unit of the resource is served to user

i with probability xi
∑

i xi
. The PM uniquely satisfies the equity and consistency criteria of fairness

described in [18].

It is easy to see that under the PM, users with lesser demands face disproportionately high delays

because packets of users with high demands are preferred more often. Although this shortcoming

has rendered the policy unpopular in data networks, Our analysis in Sections 4.4 and 5.7 shows that

the PM asymptotically achieves maximum possible anonymity without any relaxation and offers the

best tradeoff between anonymity and temporal fairness amongst the three paradigms.
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4.1.4 Temporal Fairness Measure

The algorithms considered achieve philosophically different notions of fairness. However, from the

point of view of anonymity, the tradeoff is one of sacrificing temporal fairness (through out-of-order

transmissions) for anonymity from timing analysis. To that extent, we measure temporal fairness

using the average degree of out-of-order transmissions. In particular, each departing packet carries

a fairness state which equals the number of packets from other sources that departed prior to the

packet despite arriving after it. The fairness measure of the protocol is given by the temporal average

of fairness states across all departing packets. Since this metric quantifies the degree of out-of-order

transmissions, a higher value implies a greater violation of temporal fairness and consequently, lower

fairness.

Temporal Fairness-index (TFI) of the scheduling policy Ω: Let the ith departing packet

belong to source Si. Let random variable ζ(i) denote the number of packets that arrived after this

packet from a source different from Si, but departed prior to it as per the scheduling policy ψ. Then,

the Temporal Fairness-index of the scheduling policy is defined as

TFI(ψ) = lim inf
N→∞

∑N
i=1 Eψ [ζ(i)]

N
(40)

where Eψ[·] represent the expectation operator in the probability space determined by the arrival

process and scheduling policy ψ.

In subsequent sections, we shall quantify the achievable anonymity of the three scheduling policies

and compare the resulting tradeoffs with their respective temporal fairness indices.

4.2 Anonymity of relaxed FCFS

Classical FCFS, by virtue of its determinism, renders the mix incapable of providing any anonymity.

We propose the following relaxation of the temporal fairness of FCFS; for any given packet that

arrived from a particular source, at most η − 1 packets that arrived from other sources can be

transmitted prior to the given packet despite arriving after it. We refer to this relaxation as η−fair

FCFS, and all scheduling policies that satisfy this relaxed criteria are said to belong to the η−fair

FCFS class of scheduling policies. The classical FCFS scheduling policy does not allow any packet

to be transmitted out of order and is the unique 1−fair policy. The definition of the TFI in the

previous section can be viewed as the average version of the η−fairness notion defined here. Indeed,
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any policy belonging to the η−fair FCFS class will have a TFI less than or equal to η − 1.

We are interested in the η−fair FCFS policy that achieves maximum anonymity. In that regard,

let AFCFS(η, k) be the supremum of anonymity achieved by the scheduling policies belonging to

the η−fair FCFS class for a mix with buffer capacity k receiving packets from two users at equal

rates. In the forthcoming discussion, for ease of exposition, we will refer to packets from the sources

as being red and blue respectively.

To understand how this relaxation provides anonymity, consider a simple scenario, where the

mix’s buffer can hold at most 1 packet and the mix is allowed to transmit packets under the 2-fair

FCFS criterion, i.e. for a given arrival from a user, at most one packet from an alternate user can

be transmitted ahead of the given packet despite arriving after it. This is the minimum possible

relaxation of the FCFS fairness constraint. In this scenario, if a blue packet arrives to an empty

buffer, the mix can choose to transmit it or wait until a second packet arrives. If the second packet

also happens to be a blue packet, the mix has no choice but to transmit the first packet (so that

the new arrival can be stored in the buffer). In this case there is no uncertainty in the source of the

departing packet. If, however, the second packet happens to be a red packet, the mix has a choice to

either transmit the red packet ahead of the blue (thus exercising the fairness relaxation), or transmit

the blue and store the new red arrival in its buffer. If the mix makes this choice probabilistically,

then uncertainty is created about the source of the departing packet from Eve’s perspective. Under

the 2−fair requirement, the fairness relaxation can be exercised at most once for a given packet:

For instance, in this example, if the red packet was transmitted ahead of the blue, then the mix can

no longer transmit other packets ahead of the blue packet. The mix has to necessarily transmit the

blue packet before restarting the decision making process. Characterizing the optimal probabilities

of transmission is the key to evaluating the maximum anonymity of an η−fair FCFS policy.

In the context of privacy in stochastic systems, this optimization presents an important challenge

since eavesdroppers have access to the complete time window extending into the future to determine

the source information of a particular packet. Mathematically, the conditioning variables in the

definition of anonymity in (2) extend across the infinite time horizon, and is non-causal. The key

to resolving this challenge lies in a reduction of the policy domain into a class of strategies where

packets are transmitted by the mix only upon a new arrival to a full buffer. That this reduction

does not lose generality relies on the fact that no idling or delay constraints are imposed on the mix.

Consequently, any decision made by the mix at a time when the buffer is not full can be delayed

to the arrival time of a new packet to a full buffer without reducing anonymity. This reduction

ensures that the current and future departure times conditioned on the entire arrival process are
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uncorrelated, and the non-causality of the anonymity definition is removed. Additionally, when

the memory of a mix is limited, it is sufficient for Eve to know the sequence of arriving packets in

place of the complete timing information of the arrival point process; packets necessarily wait in the

buffer until the next packet arrives regardless of what time it arrives, so given the source of next

arrival, the actual timing is irrelevant, and the system reduces to a discrete event model. Under this

discrete event model, the optimization for a general η−fair system can be derived using a dynamic

programming model which is described in the following theorem.

Theorem 5 Let s =







b1 b2 · · · bk+1

f1 f2 · · · fk+1






∈ S where S = {R,B}k+1 × {0, · · · , η − 1}k+1. Let

sRR(s) =







R b1 b2 · · · biR−1 biR+1 · · · bk+1

0 f1 f2 · · · fiR−1 fiR+1 · · · fk+1







sRB(s) =







B b1 b2 · · · biR−1 biR+1 · · · bk+1

0 f1 f2 · · · fiR−1 fiR+1 · · · fk+1







sBR(s) =







R b1 b2 · · · biB−1 biB+1 · · · bk+1

0 f1 f2 · · · fiB−1 fiB+1 · · · fk+1







sBB(s) =







B b0 b1 · · · biB−1 biB+1 · · · bk+1

0 f1 f2 · · · fiB−1 fiB+1 · · · fk+1







when iR(s) = maxi{s(1, i) = R} ∈ {1, 2, . . . , k+1} and/or iB(s) = maxi{s(1, i) = B} ∈ {1, 2, . . . , k+

1}.

Then, the maximum anonymity achievable by a strict η−fair policy using a mix of buffer size k

is given by

AFCFS(η, k) = log c

where c is the solution to the set of recurrence relations:

ψ(s) = 1 if s =







B B · · · B

0 0 · · · 0






(41)

∀s, ψ2(s)c =























ψ(sRR(s))ψ(s
R
B(s)) s(1, j) = R∀j or fiR = η − 1

ψ(sBR(s))ψ(s
B
B(s)) s(1, j) = B∀j or fiB = η − 1

ψ(sRR(s))ψ(s
R
B(s)) + ψ(sBR(s))ψ(s

B
B(s)) o.w.

(42)

The above theorem expresses the maximum anonymity achievable by a strict η−fair FCFS policy
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as a solution to a series of recurrence relations. These recurrence relations are in fact a reduction of a

dynamic program based on an infinite horizon average reward Markov Decision Process. Although,

it is not possible to characterize the maximum achievable anonymity as a function of η and k in

closed form, it is numerically straightforward to compute. In fact, each of the equations in (42)

is a solution to the maximization in the original dynamic program and can be viewed as a step in

value iteration [65] with variables on the LHS of the equation being the new iterate computed using

previous iterates on the RHS.

Proof of Theorem 5: As argued earlier, since no idling constraints are imposed on the mix and it is

sufficient for the mix to make decisions to transmit a packet only when a new packet arrives to a full

buffer. We then rewrite the system using a discrete event model, wherein the time n ∈ N corresponds

to the the nth arrival point in the joint arrival process. Let Xn
1 = {X1, · · · , Xn} be the sequence of

random variables representing the sources of arriving packets. Let Xi = 1 denote a red arrival and

Xi = 0 denote a blue arrival. Likewise Y n1 = {Y1, · · · , Yn} is the sequence of random variables from

Eve’s perspective denoting the sources of outgoing packets. Eve perfectly observes X1, · · · , Xn and

using the knowledge of the mixing strategy wishes to determine the sequence Y1, · · · , Yn.

Analyzing the discrete event model requires defining the state space of the mix upon every new

arrival. At time n, the complete contents of the mix’s buffer including the new arrival contribute

to the state of the discrete event system. Specifically, we define the state of the system to be the

time ordered sequence of sources of packets in the buffer and the respective fairness states of the

packets. The fairness state of a particular packet in the buffer refers to the number of packets from

other sources that have departed the mix despite having arrived after that packet. In other words,

the fairness state of a packet refers to the number of times the fairness relaxation has been exercised

on that packet, which is upper bounded by η−1. Every new packet that arrives starts with a fairness

state of 0, and as packets that arrive after it depart ahead, the fairness state of the packet increases

until it reaches η − 1 at which point, no packet from any other source can be transmitted until the

packet with fairness state η − 1 departs. Mathematically, we define the state of the system at time

t using a matrix St ∈ {R,B}k+1 × {0, · · · , η − 1}k+1 △
= S.

Take for instance, a mix with buffer size k = 3. If the first four packets belong to sources red,

blue, red and blue respectively, then the state of the system upon the arrival of the fourth packet

is given by S4 =







B R B R

0 0 0 0






. Note that S4(1, 4) denotes the head of the queue and S4(1, 1)

denotes the newest arrival. Since no packets have been transmitted, the fairness states of all packets

are 0. If at this time, if the mix transmits a blue packet, then the fairness state of the red packet
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at the head of the queue is increased while those of the others remain 0. Consequently, the mix can

move into one of two possible states S5 =







B B R R

0 0 0 1






if the next arrival is a blue packet, or

S5 =







R B R R

0 0 0 1






if the next arrival is a red packet. Designing the probabilities of choosing

red or blue packets in each state is the key to optimizing the strategies.

Note that, not all vectors in the domain S = {R,B}k+1 × {0, · · · , η − 1}k+1 denote valid states.

The η−fairness restriction and the fact that amongst all packets from the same source, the order of

departure is necessarily FCFS limits the number of states realized in the domain. As will be seen

later, defining a valid state and computing the number of valid states for a given (η, k) pair is not

critical to maximizing the anonymity of an η-fair FCFS policy.

The reduction in strategy space ensures that the buffer is full at all times n > k, and since no

decisions are made by the strategy before time n = k, we let Si to denote the state of the buffer

upon arrival of the (k + i)th packet. In this discrete event model, we can rewrite the anonymity for

a strategy ψ as defined as

Aψ(η, k)

= lim
n→∞

E[Hψ(Y
n
1 |Xn+k+1

1 )

n
(43)

(a)
= lim

n→∞

E[Hψ(Y1|Xn+k+1
1 )] + · · ·+ E[Hψ(Yn|Y n−1

1 , Xn+k+1
1 )]

n
(b)

≤ lim
n→∞

E[Hψ(Y1|S1)] + · · ·+ E[Hψ(Yn|Sn, Y n−1
1 )]

n
(c)

≤ lim
n→∞

E[Hψ(Y1|S1)] + · · ·+ E[Hψ(Yn|Sn)]
n

(44)

(a) follows from the chain rule of entropy.

(b)(c) follow from the fact that conditioning reduces entropy and Sn is completely determined by

Y n−1
1 and Xn+k+1

1 .

In the above reduction, note that if a strategy ψ ensures that Yn−Sn−(Y1, · · · , Yn−1, X1, · · · , Xn+k+1)

is a Markov chain for every n, then equality is achieved in (b) and (c). Indeed any strategy that does

not satisfy this Markov property can be modified to one that does by using the marginal distribution

Pr{Yn|Sn} in making the choice of packet to transmit thus increasing the achieved entropy. Con-

sequently, we only consider those strategies wherein conditioned on the state, the choice of packet
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to transmit is independent of past departures. In effect the entropy achieved by such strategies is

equal to the sum of expected conditional entropies of outgoing packets at each time as given in (44).

The following observations are true for the discrete event model:

A1. At any state, the subsequent state is perfectly determined by the current state, the current

action and the subsequent new arrival.

A2. Conditioned on present state, the action (transmission probability) is independent of the past.

A3. The net reward is expressed as a sum of instantaneous rewards at each state, and the instan-

taneous reward depends only on the present state and the action.

Since Markov strategies are optimal, and the reward can be expressed as a sum of rewards

in every time step, the solution for the optimal η−fair strategy can be obtained using a Markov

Decision Process Optimization over a continuous action space. The Bellman equation resulting from

the MDP can be characterized by modeling the state transitions appropriately, and the equation can

further be reduced to the recurrence relations in (42) by applying an Entropy Power maximization

as shown below.

Let the state Sn of the mix at time step n, be denoted by Sn = (s(i, j), i ∈ {1, 2} and j ∈

{1, 2, . . . , k + 1}) where ∀j, s(1, j) ∈ {B,R} and ∀j, s(2, j) ∈ {0, · · · , η − 1}. The vector {s(1, j)}

denotes the time ordered sequence of packets in the buffer (s(1, k) is the source of the earliest arrival

and s(1, 1) is the source of the latest) , and the vector {s(2, j)} denotes their respective fairness

states. We categorize the set of states into the following three groups according to the anonymity

they are likely to provide:

• Group C1: s ∈ C1 if {s(1, j) = B ∀j} or {s(1, k + 1) = B and s(2, k + 1) = η − 1}. In these

states, the mix has to transmit a blue packet and given the states no anonymity is achieved.

• Group C2: s ∈ C2 if {s(1, j) = R ∀j} or {s(1, k + 1) = R and s(2, k + 1) = η − 1}. In these

states, the mix has to transmit a red packet and given the states no anonymity is achieved.

• Group C3: s ∈ C3 if s /∈ C1
⋃ C2. These are the only states where the mix has the freedom

to choose between red or blue packets for transmissions. Let the mix choose a red packet to

transmit with probability ps for transmission of red packets when s ∈ C3.

From A1 - A3, and the expression of instantaneous rewards in (44), we know that the system

can be described as an infinite horizon average reward Markov Decision Process. The transition

probabilities can be obtained using the transmission probability ps and the arival probability of a
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new packet. Consider the instantaneous reward term in (44) given by H(Yi|Si). For states belonging

to C1
⋃ C2, this instantaneous reward is 0. For all other states, this is the entropy of the departing

packet which, if state Si = s is given by:

H(Yi|Si) = h(ps). (45)

We use the above arguments in the 1.

Since φ(s) is unique up to an additive constant in the above lemma, we assume that φ(s1) = 0

when s1 =







B B · · · B

0 0 · · · 0







Further, the optimality condition in Lemma 1 for our model gives

φ(s) + v = 0.5φ(sBR) + 0.5φ(sBB) s ∈ C1
φ(s) + v = 0.5φ(sRR) + 0.5φ(sRB) s ∈ C2
φ(s) + v = maxps

{

h(ps) + ps
(

1
2φ(s

R
R) +

1
2φ(s

R
B)
)

+(1− ps)
(

1
2φ(s

B
R) +

1
2φ(s

B
B)
)}

s ∈ C3

(46)

where sRR, s
R
B, s

B
R , and s

B
B are defined in Theorem 5.

The supremum in (46) can be solved using the classical Entropy Power maximization yielding:

ps =























0 s ∈ C1
1 s ∈ C2

ψ(sRR(s))ψ(sRB(s))

ψ(sR
R
(s))ψ(sR

B
(s))+ψ(sB

R
(s))ψ(sB

B
(s))

s ∈ C3

and consequently the recurrence relation

ψ2(s)c = ψ(sBR(s))ψ(s
B
B(s)) + ψ(sRB(s))ψ(s

R
R(s))) s ∈ C3

where ψ(s) = 20.5φ(s) and v = log c. ✷

The use of the Entropy Power maximization to solve the Bellman equation of the dynamic pro-

gram also provides the anonymity maximizing policy in the class of η−fair FCFS which is expressed

using the probability of transmitting a red packet as a function of state. Specifically, from (46), we

get that the probability of transmission of a red packet as a function of the state is given by:
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p(s) =























1 when s(1, j) = R∀j or fiR = η − 1

0 when s(1, j) = B∀j or fiB = η − 1

ψ(sRR(s))ψ(sRB(s))

ψ(sR
R
(s))ψ(sR

B
(s))+ψ(sB

R
(s))ψ(sB

B
(s))

o.w.

(47)

where ψ(·) is the solution to the recurrence relations in (42).

A special case of this theorem, when k = 1, the recurrence relations simplify to:

ψ(η − 1) = 1

ψ2(i) = 1 + ψ(i+1)
ψ(0) 0 ≤ i ≤ η − 2

(48)

which is an equation for the Mandelbrot set [71], albeit with different initial conditions. For η = 2

and k = 1, the cubic equation resulting from (48) yields

AFCFS
2 (1) = logψ(0) ∼ 0.4066.

which is the anonymity achievable with minimum possible relaxation of the FCFS fairness criterion

and smallest buffer size.

It is important to note that for a fixed buffer size k, the achievable anonymity as fairness relax-

ation parameter η is increased would converge to the maximum anonymity achievable by a mix with

buffer size k and no fairness constraints, which was characterized in Chapter 3 as:

A(k) = log

[

2 cos

(

π

k + 3

)]

(49)

Figure 30a demonstrates this for k = 1, where the anonymity as η is increased converges to A(1) =

0.5. We do note that the dimensionality of the state space increases exponentially with buffer size,

and polynomially in the fairness parameter η thus making it computationally harder to implement

for large buffer sizes.

Figures 30a and 30b plot the anonymity-fairness-buffer relationship for the optimal η−fair FCFS

policies, obtained by solving the recurrence relations numerically. As evidenced from the plots, for

slight relaxations on the FCFS fairness criterion, the anonymity increases significantly and for η = 5,

the optimal policy performs close to the unconstrained anonymity (η = ∞) computed using (49).

Note that the anonymity is plotted as a function of the parameter η which, as argued earlier, is

strictly greater than the achieved Temporal Fairness Index defined in (40). The TFI for the η−fair

FCFS is easily computed using the derived optimal policy. Specifically, the optimal policy for the
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Figure 20: Anonymity - Temporal Fairness Tradeoff: η−Fair FCFS

MDP model of the η−fair system provides the stationary transition probabilities between the states,

which can be used to compute the stationary distribution of states. The TFI for the η−fair FCFS

is then computed as the expected fairness state of the departing packet, where the expectation is

over the states and actions. In Section 5.7, we compute the TFI for the η−fair FCFS numerically

and plot the tradeoff between the anonymity and TFI of the η−fair FCFS in comparison with the

respective tradeoffs of the Fair Queuing and the Proportional Method scheduling algorithms.

Based on the arguments described in this section for deriving the optimal η−fair FCFS policy, it

seems conceivable that such a stochastic control approach can be adopted to determine the maximum

achievable anonymity as a function of TFI (instead of η); in other words a fundamental tradeoff

between temporal fairness and anonymity. Unfortunately, such a model would require a countably

infinite state space, since TFI is a temporal average and the fairness state of any individual packet

can be indefinitely large with non zero probability, thus making it impractical to compute. The

characterization of the fundamental tradeoff between anonymity and temporal fairness remains an

open question.

4.3 Anonymity of fair queuing

In a general networking context, the fair queuing algorithm serves packets in decreasing order of

their required service times. In anonymous systems based on mix networks, the layered encryption

and packet padding ensures that all packets in the outgoing stream of the Mix have identical length,

in which case, the FQ algorithm is equivalent to scheduling packets in round robin fashion. The

classical round robin implementation needs to be modified in the context of mix networks for two
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reasons: First, the mix can store a limited number of packets in its buffer. Second, classical round

robin requires packets to be served in a deterministic order, which does not provide any uncertainty

from Eve’s perspective. In the following, we describe a randomized round robin scheme (referred to

as ψRR(k)) for the buffer constrained mix that achieves the desired max-min fairness.

Randomized Round Robin Scheme (ψRR(k)):

The mix’s action, under the strategy ψRR(k), upon the arrival of nth packet is described as follows:

• At any given time, the mix waits until one of two events occur

E1. At least one packet from each user is present in the buffer: At this time, the mix chooses

the respective packet that arrived earliest from each source, reorders them uniformly

randomly (equal likelihood across all u! permutations), and transmits them in that order.

E2. The buffer is full and not all users have packets present in the buffer: At this time, the

mix chooses the respective packet that arrived earliest from each user (whose packets are

present in the buffer), reorders them uniformly randomly, and transmits them in that

order.

According to the strategy, for a two source mix, at any time the buffer of the mix would only

hold packets from one user, and uncertainty in the departure is generated only when a packet arrives

from the other user and is then shuffled along with a packet present in the buffer and transmitted.

This observation is used to evaluate the anonymity of the strategy.

More specifically, evaluation of the anonymity of the relaxed round robin scheme can be ac-

complished by modeling the system as yet another Markov decision process, and expressing the

anonymity as the expected reward per state, which is shown in the following theorem.

Theorem 6 For a mix with a maximum buffer capacity of k packets, receiving packets from 2 users

at rates λ1 and λ2 respectively, the anonymity achieved using strategy ψRR(k) is given by:

A(k) =











σ(σ2k−1)
(σ+1)(σ2k+1−1) σ 6= 1

k
2k+1 σ = 1

where σ = λ1

λ2
.

Proof: At any instant t, we model the mix’s buffer to be in state St = xr if it contains xr red

packets or in state St = −xb if it contains xb blue packets. According to the strategy, the state
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transitions only when a new packet arrives, at which point, if neither of the two events E1 or E2

occurs, the mix merely adds the arrived packet to its buffer. If one of the events occur, the mix

transmits one or more packets, thus influencing the state transition. Note that the action and the

subsequent state transition only depends on the current state and the subsequent new arrival, thus

the state of the mix’s buffer evolves as a Markov chain (see Figure 21). Furthermore, the choice of

packets to transmit is also dependent only on the state, and is thus a classical MDP policy. At any

state, a non zero reward (conditional entropy) is generated only if event E1 occurs. The expected

entropy achieved at each state would give the anonymity of the strategy ψRR(k).

Prior to characterizing this intuition for quantifying anonymity, we prove a redefinition of the

anonymity metric for a class of stationary mixing strategies that is key in proving the theorem.

In the following exposition, it is assumed that the strategy transmits a ‘batch’ of packets upon

every new arrival (the number of packets in a batch could, however, be zero). Since the mix has a

finite buffer, every batch would contain a finite number of packets. Let w be the total number of

batch sizes that a mix can transmit, and let l1, l2, · · · , lw denote their respective lengths.

Lemma 2 Consider a strategy ψ1 that satisfies the following conditions:

1. The strategy is stationary i.e.the probability distribution of system’s states defined under strat-

egy ψ1 converges to a fixed probability distribution.

2. The randomness in reordering packets in a batch depends only on the number of packets in that

batch independent of past or future actions of the mix. Let a1, a2, · · · , aw denote the entropy

of batches with lengths l1, · · · , lw respectively.

If Ln is the random variable that represents the length of the batch transmitted upon the nth arrival

and limn→∞ P (Ln = i) → pi, ∀i = 1, · · · , k. where pis are constant, then anonymity of the strategy

ψ1 is

Aψ1 =

w
∑

i=1

piai

Proof: Let Ni(n) be the random variable that represents the number of batches of length li in

n transmissions. Also consider a random variable Nresidue(n) that represents number of packets of

the last batch of this n transmissions. The reason behind considering the last batch separately is

because the anonymity definition given in (2) is valid for all n, and it is possible that last batch

is not completely allotted in the first n transmissions. It is easy to follow from the definition that

residual packets in the transmission Nresidue(n) < maxi{li}, and the entropy of this partial last

batch, aresidue ≤ maxi{ai}. Therefore, both Nresidue and aresidue are finite.
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Using the arguments in the proof of Theorem 5 on the Markov strategy ψ1,we can express the

anonymity as the sum of instantaneous rewards such that E[H(Y1, · · · , Yn|Φ)] =
∑k

i=1 E[Ni(n)]ai +

aresidue. But, owing to the stationarity of the strategy ψ1, E[Ni(n)] → M̄pi as n → ∞, where M̄

is the average number of arrivals that are required for the n transmissions. Furthermore, M̄n → 1

as n → ∞ because n ≤ M̄ ≤ n + k. The lower bound follows from the fact that at least n arrivals

are required for first n transmissions, and the upper bound is a consequence of the finite buffer size

of the Chaum mix which necessitates that at least n departures should occur prior to the arrival

of the (n + k + 1)th packet. Further, as stated above, aresidue is finite which implies aresidue
n → 0.

Combining the above arguments, we can see that E[H(Y1,··· ,Yn|Φ)]
n =

∑w
i=1 piai which completes the

proof. ✷

From Lemma 2, we can see that for strategies satisfying the conditions of the lemma, the only

unknowns in calculating the anonymity of strategies are the limiting probabilities pi and batch

entropies ai. That the randomized round robin falls into this class is easy to ascertain. Specifically,

according to the randomized round robin strategy ψRR(k), the state of the mix is given by Sn = +xr

if the buffer has xr red packets, or Sn = −xb if the buffer contains xb blue packets. The mix transmits

packets in batches of lengths 1 or 2. When only 1 packet is transmitted, the eavesdropper is aware

of the source of the packet, and the batch has zero entropy i.e.a1 = 0. A batch of two packets

always contains one packet from each user ordered according to a fair coin flip which implies that

a2 = 1. Since transmissions are history independent, the state of the mix’s buffer follows a Markov

chain (see Figure 21). Futhermore, the the Markov Chain is finite, irreducible and aperiodic, and

the limiting distribution of this Markov chain is unique and identical to its stationary distribution.

Therefore, the strategy satisfies the conditions of Lemma 2.

The stationary distribution of the Markov chain is given by

µ0 =











(p−q)pkqk

p2k+1−q2k+1 p 6= q

1
2k+1 p = q

(50)

µi = µ0

(

p

q

)i

i = −k, · · · , k (51)

where p = λ1

λ1+λ2
and q = 1− p.

Let πi be the limiting probability of transmitting packets in a batch of length i by the mix under

strategy ψRR(k). πis can be easily calculated from the stationary distribution of the Markov chain
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as shown in the following equations:

π1 = µkp+ µ−kq

π2 =
∑−1

i=−k µip+
∑k

i=1 µiq

π0 = 1− π1 − π2

(52)

Since a1 = 0 and a2 = 1, using Lemma 2, we get

A(k) = π2. (53)

(50)-(53) proves the result of the theorem. ✷

As is evident from the theorem, the anonymity is maximum when arrival rates of users are equal.

We can also see that as the buffer size increases anonymity saturates to min{p, q}. In other words,

the maximum achievable anonymity of the randomized round robin can never exceed 0.5 which is

far below the maximum anonymity of 1. We, therefore, propose a relaxation to the max min fairness

criterion in the subsequent discussion and demonstrate that any desired anonymity can be achieved

by sufficiently relaxing fairness.

4.3.1 Relaxed Round Robin Scheduling Policy

The conventional definition of max-min fairness requires that the minimum fairness be computed

on every pair of packets, one from each user, which limits the mix’s ability to maximize anonymity.

We consider a relaxed round robin strategy ψRRR(n, k) that does not satisfy the criterion in the

conventional pairwise sense; instead, the window of computation of minimum fairness is expanded to

µ(0, 0) = pµ(n− 1, n) + qµ(n, n− 1) (54)

When k + 1− 2n < xr < k and xr ≡ k + 1 mod 2 or k + 1− 2n < xb < k and xb ≡ k + 1 mod 2, then

µ(xr , 0) = pµ(xr − 1, 0) + qµ

(

k + 1 + xr

2
,
k − 1− xr

2

)

+ pµ

(

k − 1 + xr

2
,
k + 1− xr

2

)

(55)

µ(0, xb) = qµ(0, xb − 1) + pµ

(

k − 1− xb

2
,
k + 1 + xb

2

)

+ qµ

(

k + 1− xb

2
,
k − 1 + xb

2

)

(56)

µ(k+1−2n, 0) = pµ(k−2n, 0)+qµ (k + 1− n, n− 1) and µ(0, k+1−2n) = qµ(0, k−2n)+pµ (n− 1, k + 1− n) (57)

When (0 < xr < k+1−2n or xr > k+1−2n and xr ≡ k mod 2) or (0 < xb < k+1−2n or xb > k+1−2n and xb ≡ k

mod 2), then

µ(xr , 0) = pµ(xr − 1, 0) and µ(0, xb) = qµ(0, xb − 1) and µ(k, 0) =
p

q
µ(k − 1, 0) and µ(0, k) =

q

p
µ(0, k − 1) (58)

When xr, xb > 0, and xr + xb ≤ k, and xr and xb are not simultaneously greater than or equal to n, then

µ(xr , xb) = pµ(xr − 1, xb) + qµ(xr , xb − 1) (59)
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Figure 21: Mix states represented as a Markov process where p = λ1

λ1+λ2
and q = λ1

λ1+λ2

2n packets, wherein at most n packets from each user can be arbitrarily shuffled prior to transmission.

This class of strategies can be viewed as max-min fair with a 2n-length window. Specifically, the

strategy ψRRR(n, k) for the 2−user system, parametrized by integer n where n ∈ [1,
⌊

k+1
2

⌋

] is

described as follows:

• The mix stores all arrived packets in its buffer until one of the following two events occur:

E1n. The buffer contains at least n packets from each user: At this point, the mix picks n

packets that arrived earliest from each user, reorders them uniformly randomly (equal

likelihood over the
(

2n
n

)

permutation) and transmits them in a batch.

E2n The buffer is full prior to the mix receiving at least n packets from each user, and a

new packet arrives. At this point, the mix chooses the first x = min{xr, xb} packets

that arrived from each user, where xr and xb denote the number of packets in the buffer

from the red and blue sources respectively. The mix reorders the 2x packets uniformly

randomly and transmits the 2x packets in a batch.

Extending the argument from the simple randomized round robin described earlier, the state of

this system can also be modeled using a Markov chain, albeit with multidimensional states. We use

the stationary distribution of the Markov chain resulting from the policy to obtain the following

theorem on anonymity of strategy ψRRR(n, k)

Theorem 7 For n ∈ [1,
⌊

k+1
2

⌋

], the anonymity of strategy ψRRR(n, k) is

A(k) =

n
∑

i=1

πi log2

(

2i

i

)

where

πi = p(µ(k − i, i) + µ(i − 1, k − i+ 1)) +

q(µ(k − i+ 1, i− 1) + µ(i, k − i)) 0 < i < n

πn = q

(

k
∑

i=n

µ(i, n− 1)

)

+ p

(

k
∑

i=n

µ(n− 1, i)

)
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p = λ1

λ1+λ2
, q = λ2

λ1+λ2
and µ(xr, xb)s are the stationary distribution of the Markov chain associ-

ated with strategy ψRRR(n, k) given by the solution to the stationarity equations given in (54)-(59)

combined with
∑

(xr,xb)
µ(xr , xb) = 1.

Proof: The Markov chain formulation for ψRRR(n, k) would be two-dimensional since the mix’s

buffer can hold packets from both users at any given time. Let {Sn} = (xr, xb) be the state of

the mix when nth packet arrives, where xr and xb are the number of red and blue packets in the

buffer respectively. According to the strategy, the state transitions only when a new packet arrives,

at which point either one the events E1n,E2n occurs or the mix does not transmit any packet.

Conditioned on the present state, the action of the mix, the instantaneous anonymity reward, and

the subsequent state transition are independent of the past, thus forming a classical MDP. Moreover,

the resulting Markov chain is finite (because of the finite buffer size), aperiodic (because of presence

of self loop in the Markov chain), and irreducible. Hence its limiting distribution exists and limiting

probabilities can be calculated from the stationarity criterion of the Markov chain. Consequently,

the stationarity requirement of the Lemma 2 is satisfied. Further, as it is clear from the description

of the strategy, anonymity of a batch only depends on its length, hence condition 2 of the Lemma

2 is also satisfied.

Under the strategy ψRRR(n, k), whenever the mix transmits 2i packets in a batch, the Shannon

entropy associated with this batch is log
(

2i
i

)

∀i = 1, · · · , n. Hence, using Lemma 2, the anonymity

of strategy ψRRR(n, k) is

A(k) =
n
∑

i=1

πi log2

(

2i

i

)

which completes the proof. ✷

Since the Markov chain for the mix’s buffer state for strategy ψRRR(n, k) is two dimensional and

analytically intractable, we numerically compute the anonymity for strategy ψRRR(n, k) and plot it

in Figure 22b for equal arrival rates. It is easy to verify that for equal arrival rates, anonymity of

strategy ψRRR(n, k) asymptotically reaches 1 as n→
⌊

k+1
2

⌋

and k → ∞.

Note that the fairness metric considered here, window size n, is inherent to the fair queuing

paradigm and the tradeoff curves in Figure 22 do no quite reflect the relationship between anonymity

and the corresponding TFI. It is intuitive that the degree of out-of-order transmissions increases

with the fair queuing window n, and consequently the relationship between the TFI and n will be

monotonic. However, computing the TFI for the relaxed round robin algorithm requires a dynamic

program similar to that described for the η−fair FCFS. Specifically, the state of the mix should be
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Figure 22: Anonymity of relaxed round robin and comparison with the optimal scheme for no fairness
restriction

redefined to reflect the time ordered sequence of packets in the buffer along with their temporal fair-

ness states. The relaxed round robin algorithm will ensure that the fairness state for any departing

packet does not exceed η = k + n, thus making it a finite state MDP. According to the randomized

round robin policy, the system with the expanded definition of state will continue to be a Markov

Decision Process, and the computation of the TFI for the algorithm amounts to solving a system of

linear equations (stationary distribution of states) albeit over a high dimensional space. In Section

5.7, the TFI for different round robin policies are computed numerically and used to plot the tradeoff

between anonymity and TFI for the relaxed fair queuing algorithm.

We note that the idea of a batched transmission used in this section, rather than referring to a

mode of transmission, specifies the group of packets whose order of transmission has been decided
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regardless of subsequent arrivals. The eavesdropper with his knowledge of the policy, is also aware

of the size of the batch, but not the order of packets. Consequently, the actual implementation of

the batched transmission does not influence the results with regards to anonymity. The mix can

send these packets in quick succession, or wait for a full buffer to transmit the current packet at the

head of the batch.

Thus far, the analytical results presented for the η−fair FCFS and the FQ paradigms were

focused on the 2−user system. The 2−user system was considered solely as a matter of convenience

to ease presentation of the results and enhance the understanding of the reader. The key reductions

that allowed the analysis of the algorithms, such as the discrete event model, the Markov Decision

Process formulation, and the derived recurrence relations can be imminently generalized to systems

with more than 2 users. In the evaluation of the anonymity of the Proportional Method (PM) of

scheduling described in the subsequent section, the generalization to systems with more than 2 users

is shown to be straightforward and is described in clear detail.

4.4 Anonymity of the Proportional Method

The Proportional Method (PM) for a buffer constrained mix serves users’ packets in proportion to

their demands. Translating this idea in the scheduling context, the probability of transmitting a

packet from a particular source is proportional to the number of packets from that source in the

shared buffer. To ensure that Eve does not get any information from the departure times of packets,

we resort to the reduction mentioned in the FCFS discussion wherein a packet is transmitted if and

only if a new packet arrives to a full buffer; i.e. the (n + k)th arrival to the mix triggers the nth

departure. Following this reduction, the description of the Proportional Method of scheduling is as

follows:

At the time of arrival of new packet to a full buffer, let there be ai untransmitted packets from

the user i where the new arrival is included in the collection of untransmitted packets. At that time:

• The mix randomly chooses one user such that the probability that user i is chosen is equal to

ai
k+1 .

• The packet in the buffer that arrived earliest from the selected user is then transmitted.

Using a state space description identical to that uilized in the analysis of the relaxed round

robin algorithm, the following theorem characterizes the anonymity of the proportional method of

scheduling in a 2−user system:
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Theorem 8 Under the PM, for a two source mix with arrival rate λ1 and λ2 respectively, the

anonymity is given by

A(k) =

k
∑

r=0

µr

(

ph

(

r

k + 1

)

+ qh

(

r + 1

k + 1

))

where µr =
(

k
r

)

prqk−r, p = λ1

λ1+λ2
, and q = λ2

λ1+λ2
.

Proof: Following the arguments in the analysis of the randomized round robin, we define the state

of the mix at any time n to be a vector Sn = (r, k − r) when there are r red packets and k − r blue

packets in the buffer. According to the strategy, the choice of packet to transmit and the subsequent

state transition are independent of the past conditioned on the present state. Therefore, the states of

the mix follow a Markov process as illustrated in Figure 23. Let (µ0, · · · , µk) denote the stationary

distribution of this Markov process. Then using the properties of stationarity distribution of the

Markov process, we obtain:

(k − r + 1)pµr−1 = qrµr =⇒ µr

(

k

r

)(

p

q

)r

µ0 1 ≤ r ≤ k

Furthermore,
k
∑

r=0

µr = 1 =⇒ µ0 = qk and µr =

(

k

r

)

prqk−r (60)

Rewriting the anonymity for the Markov process as a sum of the instantaneous conditional

entropies, we get

limn→∞
E[H(Y1,··· ,Yn|Φ)]

n

(a)
= E

[

limn→∞
H(Y1,··· ,Yn|Φ)

n

]

(b)
= E [limn→∞H(Yn|Y1, · · · , Yn−1,Φ)]

(c)
= E [limn→∞H(Yn|Sn, Xn)]

=
∑k

r=0 µr

(

qh
(

r
k+1

)

+ ph
(

r+1
k+1

))

(61)

(a) follows from dominated convergence theorem and H(Y1···Yn)
n ≤ 1 ∀ n ≥ 1.

(b) follows because states of the mix under the PM forms a Markov process.

(c) follows from the fact that knowledge of source of first n− 1 departures and Eves observation

completely determines the mix’s state and given the state of the mix Sn and the nth arrival,

Yn is independent from all previous departures and future arrivals. ✷

75



Figure 23: Mix states under PM

In the above theorem, µr, the limiting probability of the buffer being in state (r, k − r) was

shown to be the binomial distribution with parameter k and p. The anonymity is the expressed

using the expected conditional entropy of departing packets from each state. Based on the binomial

state distribution for a two user case, intuition suggests that for more than two users, the limiting

probability would satisfy the multinomial distribution. This intuition is confirmed in the following

theorem which allows us to characterize the anonymity for a general multiuser system.

Theorem 9 For a mix with buffer size k receiving packets from u users with arival rates {λ1, · · · , λu},

the anonymity of the proportional method is given by:

A(k) =

x1+···+xu=k
∑

x1,··· ,xu
x1,··· ,xu≥0

µ(x1, · · · , xu)
u
∑

i=1

pih

(

x1
k + 1

, · · · , xi + 1

k + 1
, · · · xu

k + 1

)

where µ(x1, · · · , xu) = k!
x1!···xu!

px1

1 · · · pxuu and pi =
λi

∑

u
j=1 λj

∀ i = 1, . . . , u.

Proof: For a u−user system, the state of the mix at any instant is represented as a vector

(x1, · · · , xu) where xi is the number of packets of ith user present in the buffer respectively. The

arguments that determined the Markovian property of the state space and the action continue to

hold for the u−user case as well. Furthermore, using the fact that in state (x1, · · · , xu) the prob-

ability of transmitting a packet from user i is given by xi
k+1 , we get he following equations for the

state transitions in stationarity:

Case1: 0 < xi < k

µ(x1, · · · , xu) =

u
∑

i=1

pi
xi + 1

k + 1
µ(x1, · · · , xu) + · · ·

i6=j
∑

1≤i,j≤u

pi
xj
k + 1

µ(x1, · · · , xi − 1, · · · , xj + 1, xu)
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Case 2: WLOG x1, · · · , xm = 0 and 1 ≤ m ≤ n− 1

µ(x1, · · · , xu) =
u
∑

i=1

pi
xi + 1

k + 1
µ(x1, · · · , xu) + · · ·

i6=j and i6=1,··· ,m
∑

1≤i,j≤u

pi
xj
k + 1

µ(x1, · · · , xi − 1, · · · , xj + 1, xu)

For the state transition equations delineated above, it is easy to ascertain that

µ(x1, · · · , xu) =
k!

x1! · · ·xu!
px1
1 · · · pxuu

is a solution to the system of equations. Since the Markov process is finite, irreducible and aperiodic

for any buffer size k, the multinomial distribution is the unique stationary distribution. The rest of

the proof follows the same argument as for the 2−user case. ✷

Figure 24 plots the variation of anonymity with respect to buffer size for different number of

users. As it can be observed in Figures 24a and 24b, the anonymity saturates with buffer size.

This limiting anonymity of the strategy as buffer size increases is, in fact, the maximum achievable

anonymity h(p) which is proven in the following theorem.

Theorem 10 Under the PM, for a mix with two users, if the probability of a red packet arrival is

p and a blue packet is q, then asymptotic behaviour of anonymity with buffer size k is

A(k) = h(p)−O
(

1

k1/2

)

Proof: Let δ = k−
1
2+ǫ where 0 < ǫ << 1

2 . From Theorem 8,

A(k) =
k

∑

r=0

µr

(

qh

(

r

k + 1

)

+ ph

(

r + 1

k + 1

))

=
∑

|r−kp|≤kpδ

µr

(

qh

(

r

k + 1

)

+ ph

(

r + 1

k + 1

))

+
∑

|r−kp|>kpδ

µr

(

qh

(

r

k + 1

)

+ ph

(

r + 1

k + 1

))

Without loss of generality, we let p < 1
2 . Let k be large enough so that kp(1+δ)+1

k+1 ≤ 1
2 . When

|r − kp| ≤ kpδ, then

h

(

kp(1− δ)

k + 1

)

≤ h

(

r

k + 1

)

≤ h

(

kp(1 + δ)

k + 1

)

(62)
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since h(x) is an increasing function of x if 0 ≤ x ≤ 1
2 . Note that

h
(

kp
k+1 + kpδ

k+1

)

− h
(

kp
k+1

)

kpδ
k+1

≤ dh(x)

dx

∣

∣

∣

∣

x= kp
k+1

(63)

since h(x) is a continuous and concave function of x. Therefore,

h

(

kp(1 + δ)

k + 1

)

≤ h

(

kp

k + 1

)

+
kpδ

k + 1
log2

1− p+ 1
k

p
(64)

It is easy to see that kp
k+1 log2

1−p+ 1
k

p is bounded by some finite positive constant for all 0 < p < 1

for all k , therefore,

h

(

kp(1 + δ)

k + 1

)

≤ h

(

kp

k + 1

)

+O(δ)

Using the same method as above, we can show that

h

(

kp

k + 1

)

= h(p) +O
(

1

k

)

Therefore,

h

(

kp(1 + δ)

k + 1

)

≤ h(p) +O
(

1

k
1
2−ǫ

)

(65)

Similarly, we can show that

h

(

kp(1− δ)

k + 1

)

≥ h(p)−O
(

1

k
1
2−ǫ

)

(66)

Therefore, using the (62,65, 66) we can see that

h

(

r

k + 1

)

= h(p)−O
(

1

k
1
2−ǫ

)

∀ |r − kp| ≤ kpδ (67)

Similarly, we can show that

h

(

r + 1

k + 1

)

= h(p)−O
(

1

k
1
2−ǫ

)

∀|r − kp| ≤ kpδ (68)

Using the Chernoff bound, we know that

∑

|r−kp|≤kpδ

µr ≥ 1− 2 exp

(

−k
2ǫp

3

)
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Figure 24: Anonymity of the PM as a function of buffer size of the Chaum Mix

Therefore

A(k) = h(p)−O
(

1

k
1
2−ǫ

)

Since the above equation is true for all 0 < ǫ < 1
2 , we get A(k) = h(p)−O

(

1

k
1
2

)

. ✷

The result in Theorem 10 shows that the PM achieves the maximum possible anonymity as the

buffer size increases thus demonstrating the asymptotic optimality of the scheduling policy with

regard to anonymity. It remains to be seen, how the proportional method trades off temporal

fairness for anonymity. Unlike the FQ and η−fair FCFS, the TFI for the Proportional Method can

not be computed using the expanded state space model described in Theorem 5. Since a packet

can be stored in the buffer indefinitely by the Proportional Method, the fairness state of the stored

packet can also grow indefinitely thus requiring countably infinite states which makes the analysis

impractical. In the subsequent section, we use Monte Carlo simulations to compute the TFI for the

Proportional Method as a function of the buffer size, and plot the tradeoff between temporal fairness

and anonymity.

4.5 Comparative analysis of Scheduling policies

A comparative picture of the three fair scheduling paradigms, namely the PM, η−fair FCFS, and

Fair Queuing is drawn in Figure 35. From this figure, it appears that for a fixed buffer size the

PM provides a higher anonymity compared to the FQ and FCFS algorithms. This is true in part

due to the natural randomization in the Proportional Method of scheduling. It is however to be
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Figure 25: Comparison of anonymities of different scheduling scheme

noted that with sufficient relaxation of their inherent fairness paradigms, FQ and FCFS can provide

an anonymity comparable to that of the PM. We would also state here that rather than viewing

this plot as a comparison of different schemes to achieve anonymity, it should be looked at from the

perspective of relaxing different notions of fairness to increase anonymity. Although the Proportional

Method and optimal strategies achieve higher anonymity for similar buffer size, the actual choice of

a scheduling algorithm would also depend on the notion of fairness desired in the application.
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Figure 26: TFI index as a function of maximum achievable anonymity for different scheduling policies

In Figure 26, we compare the tradeoffs between anonymity and the TFI for the three classes of
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scheduling algorithms. These plots were obtained by using the analysis in the previous sections to

evaluate the anonymity, and using Monte Carlo simulations to compute the respective TFI for the

different algorithms. As it appears in Figure 26, the Proportional Method and the optimal strategy

achieve the minimum TFI for a given level of anonymity while the round robin scheme achieves

the maximum. For higher value of anonymity, the η−fair FCFS approaches the performance of the

PM as the inherent fairness parameter η is increased. It is important to note here that although

optimal scheduling strategy for a finite buffer capacity developed in Section 3 provides the best

tradeoffs between temporal fairness and anonymity, we still need to investigate the performance

of the optimal strategy from the perspective of throughput, delay, and congestion control before

making a case for the strategy in data networking.

Figure 27 which plots the TFI for the algorithms as a function of the buffer size, suggests that

the TFI of the PM increases linearly with buffer capacity. As described in the previous section, when

the PM is employed, there is no upper bound on the fairness state of any individual packet, and the

probability that fairness state exceeds any positive integer is non zero. The TFI for a relaxed round

robin scheme with relaxation criteria n also increases with buffer size. This is not surprising since

the maximum fairness state of a packet when employing the round robin algorithm with fairness

window n is k + n. It is interesting to note that the TFI of an η−fair FCFS, which by definition is

less than η − 1, saturates to a value less than η − 1. Determining the asymptotic TFI for a given

η−fair FCFS is an interesting problem to consider for future extensions of this work.

81



4.6 Summary

In this work, we studied a previously unexplored dimension in fair scheduling algorithms, the source

anonymity. An important conclusion for our analyses is that the Proportional Method, although

thus far unpopular in the context of data networks, can, in fact, be a valuable fair scheduling scheme

in anonymous networking systems. More generally, this work takes an important step in identifying

the relationship of anonymity to fairness in the landscape of different metrics of evaluating scheduling

strategies. We have used Poisson processes to model packet arrivals. However, since the analyses

reduce the system to discrete event models, the actual times of arrivals do not impact the achievable

anonymity as long as the source of each arrival is independent and identically distributed. Although

the focus of this paper is the anonymity of a single mix, an extension of the results to network

of mixes can be obtained by applying the networking arguments in [72]. In particular, the results

in [72] characterize the anonymity achieved by a network of mixes as a weighted sum of the anonymity

achievable by each individual mix.
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5 Flow based Anonymity of Mixes under the constraints of

Memory and Throughput

In comparison to previous chapters where we study the effect of resource constraints on packet based

anonymity of mixes, in this chapter we study the optimization of mixing strategies under buffer and

throughput constraints for flow based anonymity using a detection theoretic approach. We will also

propose a general game theoretic model to study the mixing strategies when an adversary is capable

of capturing a fraction of incoming packets. For this proposed multi-stage game, we will prove the

existence of a Nash equilibrium, and will derive the optimal strategies for the mix and adversary at

the equilibrium condition. The key to study the flow based anonymity in our work is the use of the

detection time of the adversary (time required to know the source-destination pair of flows) as a

metric that is explained in detail in the system model in the following section.

5.1 System Model

Consider a mix receiving packets from multiple users where every user has a unique incoming and

outgoing stream as shown in Figure 28.

The key elements of the system model are described as follows:

Arrival Process: We consider a continuous time system model, where the mix receives packets

from u users; arrival processes of these users are modelled as independent Poisson processes with

arrival rates λi ∀ i ∈ {1, . . . , u}. In the game theoretic model described in Section 5.6, we propose a

discrete time approximation of the Poisson process to study the multistage game. This approxima-

tion will be described in better detail in Section 5.6.

Chaum Mix: As is explained earlier, the mix is a relay node or a proxy server that uses layered

encryption and packet padding, so that packets in outgoing streams of the mix cannot be linked to

packets of incoming streams using its contents. The key design task for the mix is to randomly re-

order the packets so that outgoing streams cannot be linked to their corresponding incoming streams

using their timing. We assume that the mix can store a maximum of k packets in its buffer to fa-

cilitate the reordering of packets, and this random ordering of packets is known only to the mix.

The mix is not allowed to drop any packets; if the buffer of the mix is full and a new packet arrives

then the mix necessarily has to transmit at least one packet. In order to increase the degree of

achievable anonymity, we allow the mix to transmit dummy packets; the maximum rate of dummy

packets is, however, bounded so that the desired throughput QoS is achieved. Specifically, the mix
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Figure 28: Mix receives packets from three users, encrypts and randomly reorders them, and trans-
mits them in their corresponding outgoing link. Eve observes the arrival and departure processes.

can transmit d(t) dummy packets in t seconds such that d(t)
t ≤ r ∀t ∈ R

+ for a given constant r

(determined based on QoS requirements).

Eavesdropper (Eve): Eve observes the incoming and outgoing streams of the packets and attempts

to deduce the source of packets on each outgoing stream. Eve knows the mix’s buffer capacity, and

she also has the ability to capture a limited number of, c, packets on the incoming links. Capturing

a limited number of packets can be accomplished by jamming links for short intervals, or by com-

promising the intermediate nodes between the source and the mix. It is important to note that Eve

is aware of the mix’s random strategy but does not have access to the realization of the randomness.

5.1.1 Admissible Length: A Detection Theoretic Metric

If an eavesdropper does not observe any arrival or departure process, and has no prior knowledge

about the sources of outgoing links, the probability of associating an outgoing link with any particular

source would be the prior probability (in this case 1
u for each user). A mixing strategy provides

perfect anonymity, if it ensures that the probability of Eve predicting the outgoing links of users

correctly remains 1
u , independent of the number of packets observed. No mixing strategy can,

however, provide perfect anonymity using a limited buffer capacity as is proved in the following

lemma.

Lemma 3 For a mix with buffer capacity k, there exists no mixing strategy that can provide perfect

anonymity indefinitely unless the mix is allowed to add or drop packets.

84



Proof: Let Eve observe the above system for t seconds. The probability that there exists a

sequence of 2k+1 consecutive arrivals in which packets of only one user arrives goes to 1 as t→ ∞.

From beginning until the end of these 2k+1 arrivals, the mix, independent of the strategy it follows,

has to transmit at least k + 1 packets of the user to its outgoing link3. At this point Eve, having

observed more consecutive outgoing packets on a particular stream than the number of packets

stored, can perfectly identify that the outgoing link corresponds to that specific user, hence the

perfect anonymity of the system is lost. ✷

In effect, the objective of any memory limited mix is to maintain perfect anonymity for as long

as possible, whereas the objective of Eve is to detect the source of outgoing packets as quickly as

possible, thus representing the scenario for a zero-sum game. It is the length of time that the system

can be in perfect anonymity, that we designate as the payoff of the aforementioned zero-sum game.

Perfect anonymity ensures that for every observed packet, the posterior probability of associating

an outgoing stream with any source is equally likely, which would be the case if Eve had zero

observations and no knowledge of the mixing strategy. We aim to characterize this stream length as

a function of the system parameters, namely buffer size, rate of dummy transmissions and capture

capacity. This metric will not only serve as a measure of the effectiveness of the mixing strategy, but

would be of practical utility in determining the allowable duration of packet streams from sources.

Let ψ denote a mixing strategy, and Tψ denote the average duration of time that Eve requires

to violate the perfect anonymity state of the departing packets, where the average is taken over

all realizations of arrival processes. Let Ψk denote the collection of all valid mixing strategies that

require a buffer size no greater than k. We define the Admissible Length Ak of the Chaum Mix

as

Ak = sup
ψ∈Ψk

Tψ

Although admissible length is a measure of time, in the next lemma, we prove that the average

number of arrivals that are required to obtain the information about source-destination pairs is

sufficient for calculating the admissible length.

Lemma 4 Let E[Nψ] be the average number of arrivals that are required to violate the perfect un-

observability of the system for strategy ψ, then

E[Tψ ] =
E[Nψ ]
∑u

i=1 λ
(69)

3 Even if the buffer of the mix is filled with only one users’ packets, a sequence of 2k + 1 consecutive arrivals of a
user will ensure that no other user has more departures.
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and

Ak = max
ψ∈Ψk

E[Nψ ]
∑u

i=1 λi
(70)

Proof: Lets assume that for a given sample path of arrivals, strategy ψ requires Nψ arrivals and Tψ

time units to know the source-destination pairs. Let Ti be the inter-arrival time between (i − 1)th

and ith arrival. Then,

Tψ =

Nψ
∑

i=1

Ti

We know that Ti are i.i.d. random variables with mean 1
∑

u
i=1 λ

. We also know from [73] that

E[Nψ] <∞. Therefore, using Wald’s equation [74]

E[Tψ] = E[Nψ]E[T1]

=
E[Nψ]
∑u
i=1 λ

(71)

✷

In subsequent sections we characterize this metric analytically as a function of the buffer size,

allowable rate of dummy transmissions (r), and the number of packets of Eve can capture (c), and

through the process, determine the optimal mixing strategies. Based on the key parameters, we

study the system under four different regimes:

1. Basic model GB: r = 0, c = 0: In the basic model where the adversary is passive and the

mix is not allowed to add dummy transmission, we determine the optimal mixing strategy and

provide an analytical characterization of the admissible length as a function of the buffer size.

In particular, the admissible length will be shown to scale quadratically in buffer size.

2. Empowered mix model GM : r > 0, c = 0: When the mix is allowed to transmit dummy packets,

the admissible length for a passive adversary is shown to be inverse linearly related to the

allowed rate of dummy transmissions. A special case of our analysis provides the rate of

dummy transmissions required to maintain perfect anonymity indefinitely.

3. Empowered Eve model GE : r = 0, c > 0: When the adversary is allowed to capture a finite

number of packets, the optimal mixing strategy (without dummy transmissions) is shown to

be identical to the basic model, and the optimal adversary strategy is shown to be a simple

threshold strategy.
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4. General model GG: r > 0, c > 0: For the general model, when dummy transmissions and cap-

ture are allowed, the resulting game is shown to have a pure strategy saddle point equilibrium

owing to the existence of a dominant strategy for the mix and a generalized threshold strategy

for the adversary.

In subsequent sections, we will characterize the optimal strategies of the players and admissible

length for the different models. In particular, we will demonstrate, as intuition would suggest, that

the empowered mix model (GM ) achieves the maximum admissible length while the empowered Eve

model (GE) achieves the minimum. The performances of the basic and general model lie between

these extremes. We note that while a majority of the analytical results in this paper have been

derived for the two user model, the broad inferences about strategies of the mix and Eve would hold

in general. We further note that in the subsequent discussion we refer to the two sources in the

model as being a Red and Blue source.

5.2 Basic Model (GB)

In the basic model, the capture capacity c = 0, and the allowable dummy rate r = 0; in other words

the mix is not allowed to transmit any dummy packets to append to its traffic pattern, and Eve

cannot capture any packets from the incoming streams of the mix.

In the basic model, the mix merely stores packets in its buffer, and transmits them in a random

order to hide their identities while Eve, not having access to realization of this random ordering,

passively observes the arrival and departure process. In this scenario, the only method available

to Eve to determine the source of an outgoing stream is to analyse the correlations between the

timing on incoming and outgoing streams. Consequently, as long as each outgoing stream is equally

correlated to all incoming streams, the system will remain in perfect anonymity (each stream equally

likely to belong to each source). More specifically, if the mix ensures that at all times the number

of departed packets on any outgoing link is less than the minimum number of arrivals across all

incoming links, then it is possible for all outgoing streams to have identical timing, thus maintaining

perfect anonymity. This idea is used to prove that the optimal strategy for the mix is to transmit

one packet of each user only when packets from all users are present in the buffer, and consequently

characterize the admissible length of the system.

Theorem 11 For a mix with buffer capacity, k, receiving packets from 2 users where arrival rate
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of users are λ1 and λ2 respectively, the maximum admissible length is

Am =















(

k+1
λ1−λ2

)

(

(

λ1
λ2

)k+1
−1

(

λ1
λ2

)k+1
+1

)

λ1 6= λ2

(k+1)2

2λ∗
λ1 = λ2 = λ∗

(72)

Proof:

Let X1(t), X2(t), Y1(t) and Y2(t) denote four continuous-time counting processes. X1(t) and

X2(t) represent the number of red and blue packets arrived up to time t respectively. Y1(t) and

Y2(t) represent the number of packets that have departed on links L1 and L2 respectively up to time

t . If the number of departed packets of each outgoing link is less than the number of arrived packets

on every incoming link, then the mix can ensure that the departure timing on every outgoing process

is identical and an eavesdropper has no way of connecting an outgoing and an incoming link. In

other words, any strategy that satisfies the conditions;

X1(t) ≥ max{Y1(t), Y2(t)}∀t ≤ t0 (73)

X2(t) ≥ max{Y1(t), Y2(t)}∀t ≤ t0 (74)

maintains perfect anonymity until time t0. However, owing to the memory limitation an strategy is

bound to fail at time t if

|X1(t)−X2(t)| = k + 1

since, at time t, the number of departures on one outgoing link would be larger than the number

of arrivals on one incoming link thus eliminating the source uncertainty and losing anonymity.

Consequently, a strategy that ensures that conditions (73) and (74) will be violated for first time

for some time t0 if and only if

|X1(t0)−X2(t0)| = k + 1 and |X1(t)−X2(t)| < k + 1 ∀ t < t0 (75)

will be an optimal strategy.

Consider a strategy ψ that transmits one packet of each user in their outgoing link if packets of

both the users are present in the buffer. It is easy to see that strategy ψ satisfies the criterion given

in (75) and is hence an optimal strategy. We now compute the admissible length for ψ.

Let Z(t) = X1(t) −X2(t). Since X1(t) and X2(t) are Poisson process, Z(t) evolves as a simple

random walk. Note that jumps of this random walk occurs at irregular time intervals that are
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exponentially distributed with mean value of 1
λ1+λ2

. Let ith jump occur at time Ti, the probability

distribution of the jump in positive or negative direction is as follows:

P(Z(ti) = Z(t−i ) + 1) =
λ1

λ1 + λ2
= p

P(Z(ti) = Z(t−i )− 1) =
λ2

λ1 + λ2
= q

From (75), we can see that the time at which this random walk hits k+1 or −k−1, an eavesdropper

can determine the source-destination pairs perfectly.

Let Ns be the average number of jumps required from time t = 0 by the random walk Z(t) to

hit the boundaries ±(k+1) when Z(0) = s. Then Ns would satisfy the following recursive equation

Ns = pNs+1 + qNs−1 + 1 − k ≤ s ≤ k

and the boundary conditions for the above recursive equation are Nk+1 = N−k−1 = 0. The general

solution to a recursive equation such as the one described above is given by:

Ns =











s
q−p +A1 +B1

(

q
p

)s

p 6= q

−s2 +A2 +B2s p = q
(76)

Solving the recursive equation for A1, B1, A2, and B2 using the given boundary conditions, we get

A1 = k+1
p−q

p2(k+1)−q2(k+1)

p2(k+1)+q2(k+1) B1 = 2(k+1)
q−p

(pq)k+1

p2(k+1)+q2(k+1)

A2 = (k + 1)2 B2 = 0
(77)

Therefore, we get

Ns =











s
q−p + k+1

p−q
p2(k+1)+q2(k+1)−2p(k+1−s)q(k+1+s)

p2(k+1)−q2(k+1) p 6= q

(k + 1)2 − s2 p = q
(78)

N0 is the average number of jumps required to hit the boundary ±(k + 1).

Consider a sample path of a random walk where T is the amount of time it is required to hit the

boundary ±(k + 1) and Ti is the inter-arrival time between (i− 1)th and ith jump. Let this sample

path require N jumps to hit the boundary. Clearly, T =
∑N

i=1 Ti. We know in case of Poisson

arrivals, inter-arrival time Tis are i.i.d. exponential random variable with mean 1
λ1+λ2

. Using the

theory of stopping time [75], we see E[T ] = E[N ]E[T1] =
N0

λ1+λ2
. Substituting the value of N0 from
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equation (78) gives the desired result. ✷

Theorem 12 For a mix with buffer capacity, k, receiving packets from u(> 2) users where arrival

rates of all users are equal to λ, then admissible length Ak is l(k+1,··· ,k+1)
uλ where l(k+ 1, · · · , k + 1)

satisfies the following recursive equation

l(v1, · · · , vu) = 1 +
1

u

u
∑

i=1

l(v1 + 1, · · · , vi − u+ 1, · · · , vu + 1) (79)

where vis are positive integers satisfying the condition
∑

i vi = u(k + 1). Boundary conditions for

the recursive equation are l(v1, · · · , vu) = 0 if any vi is non-positive.

Proof:

In the forthcoming analysis, let Xi(t) be a random variable that denotes the total number of

arrived packets of the ith user until time t and Yi(t) be the number of departed packets from ith

outgoing stream until time t. Also assume that Xmin(t) = min{X1(t), · · · , Xu(t)}.

Extending (73), (74) to u > 2, if Yi(t) ≤ min1≤j≤u{Xi(t)}, then Eve cannot extract any infor-

mation about source-destination pair using timing analysis of packets. But, this condition is bound

to fail for time t for which
u
∑

j=1

(Xj(t)− uXmin(t)) = k + 1 (80)

because the mix’s buffer can hold maximum k packets and the mix is not allowed to drop packets.

Hence, any strategy that ensures that Yi(t) > Xmin(t) only if
∑u

j=1 (Xj(t)− uXmin(t)) = k + 1

will be an optimal strategy. Note that the analogous strategy to two users case, ψ1, where the mix

transmits packets if and only if non-zero packets from all u users are present in the buffer would

satisfy this optimality criterion.

Xi(t)s are i.i.d. Poisson distributed random variables with parameter λt. Let S(t) be a continuous

time stochastic process such that

S(t) =

u
∑

i=1

Xi(t)− uXmin(t).

Let T be the hitting time of the above stochastic process to the boundary k + 1. Specifically,

T = min{t ∈ R : S(t) ≥ k + 1}
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Then, admissible length for a Chaum Mix serving u users and buffer capacity k is

Ak(u) = E[T ]

Let X(t) =
∑u

i=1Xi(t). We know X(t) is a Poisson process with rate uλ. Let {ti}∞i=1 be a sample

path of X(t) which means that ith event of the Poisson process occurs at time ti. R(i, j, tm) =

Xi(tm)−Xj(tm). Note that S(tm) = max1≤j≤u
∑u
i=1 R(i, j, tm).

Define for each tm, a u × u matrix H(m) such that Hi,j(m) = R(i, j, tm). For a u× 1 vector v,

we define “H(m) < v” to be the set of following u inequalities

u
∑

i=1

Hi,j(m) < vj , 1 ≤ j ≤ u

Now for a vector v consisting of integer entries such
∑

j vj = u(k + 1), we define P (v, n) =

P[H(m) < v, ∀m < n].

We know E[N ] =
∑∞
n=1 P ([k + 1, · · · , k + 1]

′

, n) because we assume here that all vectors v have

only integer entries.

P (v, n) can be written in the form of a recursive equation based on the arrival of the time t1

follows:

P (v1, · · · , vu, n) =
1

u

u
∑

i=1

P (v1 − 1, · · · , vi + u− 1, · · · , vu − 1, n− 1) (81)

Note that sum of coefficients of variables in the right hand side of equation (81) is (k + 1)u.

Let l(v1, · · · , vu) =
∑∞

n=1 P (v1, · · · , vu, n) and note using the definition of P (v, n) that

P (v1, · · · , vu, 1) = 1. Adding P (v1, · · · , vu, n) from n = 2 to ∞ in (81), we get the desired result. ✷

The recursive solution for the admissible length is, in general, hard to characterize analytically

but can be computed numerically. For u = 3, the equation is solvable and the solution is given by

Ak = (k+1)3

3λ(3k+5) .

Figure 29a shows the admissible length normalized with respect to total arrival rate of the mix

for two users as a function of buffer capacity of the mix for different arrival rates. As expected from

eq. (72) and shown in Figure 29a, the normalized admissible length only depends on the relative

proportions of the arrival rates (order independent) and achieves its maximum when arrival rates

are equal. This is not surprising since unequal arrival rates would result in the mix’s buffer to be

overfilled with packets of the user having higher arrival rate forcing the mix to transmit an unpaired

packet quickly, thus reducing the admissible length.

It is interesting to note from the theorem that the admissible length increases quadratically
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Figure 29: Admissible length when mix is not allowed to transmit dummy packets

with the buffer capacity when users have equal arrival rate. Consequently for network applications

which do not require long streams of communication (such as web browsing) but require a smaller

latency, the buffer capacity of mixes can be limited sufficiently to prevent traffic analysis while not

sacrificing the QoS. As will be seen in Section 5.3, the quadratic relationship is unaltered when the

mix is allowed to transmit dummy transmissions, albeit with a larger scaling factor. Note that the

adversary, as modelled here, is assumed to have complete information about packet arrivals on all

links, and a practical adversary with noisy observations would have a larger admissible length than

that characterized above.

Figure 29b compares the admissible length between a 2 user system and a 3 user system as a

function of the mix’s buffer size. The admissible length for three users is uniformly less than the

admissible length for two users. The reason behind this decrement is the increasing difficulty in

maintaining source-destination pairs equally probable as their number increases. While anonymity,

as measured by entropy [5,25,76], increases with the number of users, the admissible length provides

a measure of how long this maximum anonymity is sustainable. The analysis demonstrates that this

increased anonymity is indeed temporary from Eve’s perspective and applicable only to short bursts

of traffic. The burst lengths can be increased by intelligently adding dummy packets, the study of

which is the focus of the next section.

5.3 Empowered Mix Model (GM)

Note that any pattern of traffic flow can be anonymized indefinitely through sufficient insertion

of dummy traffic. For example, consider a network where all nodes transmit packets according to
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scheduled departure times. If an actual packet is unavailable for transmission at its time of departure,

a dummy packet can be transmitted in its place and perfect anonymity is still maintained. But such

extensive use of dummy packets will severely reduce network throughput. We consider a scenario

where the mix is allowed to transmit dummy packets as long as the maximum rate of dummy packets

transmitted is upper bounded by r. Under this model, the achievable admissible length as a function

of r can be bounded as in the following theorem:

Theorem 13 For a Chaum Mix having buffer capacity k and a maximum dummy packet rate r

receiving packets from two users with equal arrival rate λ, the admissible length (Ar,k) is bounded as

k2

2λ− (2k + 1)r
≤ Ar,k ≤ (k + 1)2

2λ− (2k + 1)r
(82)

Proof:

As we have seen in the proof of theorem 11 that optimality conditions for maximizing the

admissible length is

|X1(t0)−X2(t0)| = k + 1 and |X1(t)−X2(t)| < k + 1 ∀ t < t0

However, when the mix has dummy packets and the above situation occurs, it can transmit a

dummy packet in the outgoing link of the user with lesser packets and can still maintain the perfect

anonymity.

Consider a realization of a random walk for dummy rate r and buffer size k. Let T be the time

at which this realization terminates; Eve knows the source-destination pairs at the time T . Due to

the dummy rate constraint, the mix can use maximum ⌊Tr⌋ dummy packets during this realization

which requires that this realization hits the boundaries a total of ⌊Tr + 1⌋ times because ⌊Tr⌋

dummy packets are generated and utilized during this realization. Let T0 be the time required in

the realization from 0 to hitting the boundaries for the first time, and let Ti be the time duration

between ith and (i + 1)th hitting. T can be expressed using the Tis as follows.

T = T0 +

⌊Tr⌋
∑

i=1

Ti (83)

E[T ] = E[T0] + E [⌊Tr⌋]E[T1] (84)

E[T0] + (E [Tr]− 1)E[T1] ≤ E[T ] ≤ E[T0] + E [Tr]E[T1] (85)

E[T0]− E[T1]

1− E[T1]r
≤ E[T ] ≤ E[T0]

1− E[T1]r
(86)
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But we can see from the proof of Theorem 11 that E[T0] =
(k+1)2

2λ and E[T1] =
2k+1
2λ for equal arrival

rate of users. Hence,

k2

2λ− (2k + 1)r
≤ Ar,m ≤ (k + 1)2

2λ− (2k + 1)r

It is to be noted that the equality in (84) is an outcome of Wald’s equation, hence we need to show

that Tis are independent, but it is trivially true when arrival rate of users are equal. ✷
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Figure 30: Admissible length when mix is allowed to transmit dummy packets

Although the theorem provides bounds in place of exact admissible length, these bounds are

fairly close when k is large compared to r (see Figure 30).

Figure 30a shows the normalized admissible length as a function of mix’s buffer capacity when

the dummy rate r < 1
4k+1 packets per unit time, and compares it against the condition when mix is

not allowed to transmit any dummy packet. Figure 30b shows the variation of admissible length as

a function of normalized dummy rate where normalized dummy rate is the product of dummy rate

and mix’s buffer capacity. As can be ascertained from the theorem and noted from from the Figure

30b, the admissible length approaches infinity (perfect unobservability) for a dummy rate r = 2λ
2k+1 ,

a result previously shown in [77].

It is to be noted that this is the first such analysis of mixing strategies as a function of a fixed

rate of dummy transmissions. Further the bounds also confirm that for any fixed fraction of dummy

transmission per unit of memory, the admissible length continues to increase quadratically with

buffer size.
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5.4 Empowered Eve Model (GE)

In this section, we analyse the admissible length for an active adversary who captures a limited

number of packets of the incoming streams while the mix cannot transmit dummy packets. The

limitation on capture ability is important in the context of intrusion detection mechanisms. In-

trusion detectors monitor the network activity to identify active disruption by adversaries such as

modification to traffic patterns. In the context of this work, the more packets captured by Eve, the

higher likelihood that the actions are detected by an intrusion detector. In effect, for Eve to ensure

that her actions are not detectable by such systems, the number of packets captured should lie below

the missed-detection threshold of an intrusion detector. Since the intrusion detection is designed

as part of the network operation, it is fair to assume that mixing strategies can be designed with

knowledge of the capture capacity of the adversary.

It is important to note that as long as the number of packets captured by Eve is within the

specified limit, the mix is assumed to be unaware how many packets, if any, are captured by Eve.

As a result, the optimal strategy of the mix will be no different as in the case when Eve does not

capture packets. In other words, the mix has to ensure that the departure times are identical across

all outgoing streams as long as feasible. For any arrival sequence, regardless of capture or not, the

strategy ψ described in Theorem 11, that transmits one packet of each user in the corresponding

outgoing link as soon as both users’ packets are available to the mix achieves the desired optimality

from the mix’s perspective. Consequently, in this two player game, the optimal strategy for the mix

is a dominant strategy. It is easy to see then that under the optimal strategy, ψ, the mix would

always have packets of only one user in its buffer. The space of all possible strategies of Eve is very

large and dependent on the state of the mix’s buffer and the actions of the mix. In the following

theorem, we prove that against the dominant strategy of the mix, the optimal strategy for Eve is a

threshold strategy; Eve decides to capture an arriving packet if and only if the number of packets

in the mix’s buffer is greater than a threshold.

Theorem 14 The optimal strategy ψE of Eve when she is allowed to capture a maximum of c

packets from the incoming streams of the mix against the dominant strategy ψ of the mix receiving

packets from two users with equal arrival rate λ and when the mix’s buffer has x red (blue) packets

in its buffer is

• If the arrived packet is blue (red), then capture it if and only if the x ≥ τc + 1.

• If the arrived packet is red (blue), then Eve let it go to the mix.
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Proof: The key idea behind the threshold strategy is as follows. When there are sufficient number of

packets accumulated in the buffer, then capturing a packet of another user would significantly reduce

the admissible length per packet captured. When the buffer has few packets, the uncertainty over

future arrivals would mean that capturing a packet of another user may not reduce the admissible

length, and could possibly, increase the length. This intuition suggests a threshold strategy for Eve,

the optimality of which is proven below using a stochastic shortest path algorithm.

In the forthcoming analysis, we model the system to be in state (x, y) if the mix has x red packets

and Eve can capture y packets, and our system is in state (−x, y) if the mix has x blue packets and

Eve can capture y packets.

If the system is in state (x, y), then Eve’s actions and dependent future states can be described

as follows:

1. If a red packet arrives, then Eve has two choices:

• If y < c, she can capture the red packet and the next system state would be (x, y − 1).

• She can let the red packet to go to the mix and next system state would be (x + 1, y).

2. Similar to previous case, if a blue packet arrives, then Eve has two choices:

• If y < c, she can capture the blue packet and the next system state would be (x, y − 1).

• She can let the blue packet to go to the mix and next system state would be (x− 1, y).

It is clear that terminating states of the system are (k + 1, y) or (−k − 1, y) where 0 ≤ y ≤ c.

We use the stochastic shortest path algorithm [78] to choose optimal actions for Eve. Let D(x, y)

be the shortest number of average jumps required for Eve to reach any terminating state when the

system is in state (x, y). According to the stochastic shortest path algorithm, D(x, y) satisfies the

following recursive equation: If y ≥ 1

D(x, y) = 1 + 1
2 min{D(x, y − 1), D(x+ 1, y)}+ 1

2 min{D(x, y − 1), D(x− 1, y)} (87)

If y = 0, then Eve cannot capture any packet, and the average number of jumps, it would require

for Eve to reach the terminating state would be ((k + 1)2 − x2), if the system is in state (x, 0) as

shown in Theorem 11.

Note that

D(x, y) ≤ D(x, y − 1)∀ 0 ≤ y < c (88)
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because the set of Eve’s actions for any possible arrival process under the system state (x, y) contains

the set of Eve’s actions for that arrival process when mix is in state (x, y − 1).

We use mathematical induction to prove the theorem.

The base case: Theorem 14 is true for c = 1. Moreover, D(x, 1) decreases as x increases in

magnitude.

Proof: To prove the base case we need to show that ∃ τ1 ∈ N s.t. 0 ≤ τ1 < k and

D(x, 1) ≥ D(x+ 1, 0)∀x ≥ τ1 and D(x, 1) ≥ D(x − 1, 0)∀x ≤ −τ1

D(x, 1) ≤ D(x+ 1, 0)∀x < τ1 and D(x, 1) ≤ D(x − 1, 0)∀x > −τ1

which is equivalent to show that D(x + 1, 1) ≤ D(x + 2, 0) =⇒ D(x, 1) ≤ D(x + 1, 0) for x > 0

and D(−x− 1, 1) ≤ D(−x− 2, 0) =⇒ D(−x, 1) ≤ D(−x− 1, 0) for x < 0.

We know from the boundary conditions that D(k + 1, 0) = D(−k − 1, 0) = 0. Therefore,

D(k, 1) ≥ D(k+1, 0) and D(−k, 1) ≥ D(−k−1, 0) which implies that if there exist a threshold then

it should be less than or equal to k.

Let x > 0. We know that D(x, 0) = ((k + 1)2 − x2). Therefore D(x, 0) > D(x+ 1, 0). Moreover,

we know from (88) that D(x + 1, 0) > D(x + 1, 1). Therefore D(x, 0) > D(x + 1, 1). Note that

D(x, 0) > D(x + 1, 1) implies that it is optimal for Eve not to capture the red packet if the red

packets are already present in the mix’s buffer. Consequently, we can write (87) as

D(x, 1) = 1 +
1

2
D(x+ 1, 1) +

1

2
min{D(x, 0), D(x− 1, 1)} (89)

But we know that D(x+ 1, 0) satisfies the following equation

D(x+ 1, 0) = 1 +
1

2
D(x + 2, 0) +

1

2
D(x, 0) (90)

It is clear from (89) and (90) that

D(x+ 1, 1) ≤ D(x+ 2, 0) =⇒ D(x, 1) ≤ D(x+ 1, 0) (91)

Because of symmetry of the system model, an equivalent equation of (91) would exist for x < 0.

Now we will show that D(x, 1) decreases as x increases in magnitude.
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From the preceding argument, we know that D(x, 1) satisfies the following equation:

D(x, 1) = 1 +
1

2
(D(x+ 1, 1) +D(x− 1, 1)) ∀ − τ1 < x < τ1 (92)

General solution for the above recursive equation will be D(x, 1) = A1 +B1x − 2x2. But, because

of symmetry of the system model D(x, 1) = D(−x, 1), therefore, B1 = 0 and

D(x, 1) = A1 − 2x2

Therefore, the D(x, 1) decreases as |x| increases for |x| < τ1. For x ≥ τ1,

we know by definition of τ1 that D(x, 1) ≥ D(x + 1, 0) ∀ x ≥ τ1. But using (88), we know that

D(x+ 1, 0) ≥ D(x+ 1, 1). Therefore, D(x, 1) ≥ D(x+ 1, 1) x ≥ τ1.

Inductive Step:

Lets assume that D(x, c− 1) decreases as |x| increases and there exist a threshold τc−1 such that

D(x, c− 1) ≥ D(x+ 1, c− 2)∀x ≥ τc−1

D(x, c− 1) ≥ D(x− 1, c− 2)∀x ≤ −τc−1

D(x, c− 1) ≤ D(x+ 1, c− 2)∀x < τc−1

D(x, c− 1) ≤ D(x− 1, c− 2)∀x > −τc−1

(93)

Note that the optimal strategy of Eve implies that if a blue (red) packet arrives to the mix when

the mix has x red (blue) packets in the buffer, then Eve who is allowed to capture y packet, should

capture the packet if and only if the mix’s buffer has sufficient packet in its buffer otherwise wait

for this favourable condition in the future.

It is obviously true that the optimal strategy of Eve when she can capture y packets form the

incoming streams allow her to capture the packet when the mix has x packets in its buffer, then the

optimal strategy would always allow her to capture the packet when she can capture more than y

packets. Therefore,

D(x, c) ≥ D(x + 1, c− 1)∀x ≥ τc−1

D(x, c) ≥ D(x − 1, c− 1)∀x ≤ −τc−1

(94)

Note using the induction hypothesis that

D(x, c− 1) = 1 +
1

2
D(x − 1, c− 1) +

1

2
D(x, c− 1)∀|x| < τc−1 (95)

The above equation is similar to eq. 90 for |x| < τc−1 and eq. 94 implies that D(x, c) ≥
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Figure 31: Admissible length of the model GE

D(x+1, c− 1)∀x > τc−1. Therefore, we can use the same argument as we use to prove the base case

to prove the theorem. ✷

The above theorem provides an existence proof of the optimal strategy of Eve. Although the

optimal threshold is not evaluated to a closed form expression, the class of threshold strategies is

significantly smaller in dimension than the set of all adversarial strategies, and consequently, an

O(k) search is sufficient to determine the optimal threshold.

In Figure 31a, we perform the numerical search for the optimal threshold, and plot the equilibrium

payoff of the mix as a function of buffer capacity and compare it with the maximum admissible

length of the mix when Eve is not allowed to capture packets. It is clear from the figure that Eve

can significantly reduce her detection time in determining the source-destination pairs by effectively

capturing packets from the incoming streams. Figure 31b plots the numerically computed admissible

length of the model GE as a function of maximum number of packets Eve can capture. As is evident

from the figure, the admissible length saturates with c. In other words, Eve’s capability to shorten

the admissible length by capturing changes negligibly beyond a certain value of c, and the admissible

length is close to that of an adversary with infinite capture capacity which is explored in the next

section.

5.4.1 Asymptotically Optimal Adversary Strategy (c = ∞)

In this section, we investigate the scenario in the absence of intrusion detection application. Specif-

ically, we study the admissible length when Eve is allowed to capture any number of packets from

the incoming streams of the mix.
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As is proved in the previous section, the optimal strategy for the mix is ψ. It is easy to see that

the optimal strategy would still be ψ in this limiting case where c = ∞ because all the arguments of

the proof of Theorem 11 would still follow. In the next theorem, we show that the optimal strategy

for Eve is still a threshold strategy where the threshold is 1.

Theorem 15 The optimal strategy ψE(∞) when c = ∞ is

• Eve does not capture the first arrived packet.

• Eve captures all the subsequent arrivals from different users compare to the first arrival.

The admissible A(k,∞) for the strategy ψE(∞) is

A(k,∞) =
2k + 1

2λ

Proof: The proof of the theorem is a limiting case of the proof of Theorem 14. However, to provide

an intuitive argument, assume that the first arrival is red. Note that if Eve decides to capture all

subsequent blue (or red) arrivals, then she needs to wait for k (or (k+2)) more red (or blue) arrivals

to violate the condition in (75). Since each user has equal arrival rate, the former case is more

probable.

It is easy to see that the average number of arrivals required for strategy ψE(∞) to violate

condition (75) is equivalent to the expected number of coin tosses required to obtain k heads in

tosses of a fair coin and including the original stored arrival is equal to 2k+ 1 tosses. Subsequently,

using Lemma 4, we get the desired result. ✷

Note that the closed form expression for the optimal strategy ψE(c) is as yet uncharacterized.

Therefore, we investigate the admissible length of strategy ψE(∞) when Eve is allowed to capture

c <∞ packets to provide an upper bound on the admissible length of the equilibrium strategy ψE(c)

and characterize the admissible length for an adversary who knows all the future arrivals to provide

a lower bound on the admissible length of the equilibrium strategy ψE(c) in the next section.

5.5 Bounds on the optimal admissible length

5.5.1 Upper Bound

We characterize the admissible length of asymptotically optimal strategy ψE(∞) in the next theorem

to provide an upper bound on the admissible length of the strategy ψE(c).

100



Theorem 16 The admissible length A(k, c) when Eve is allowed to capture c packets and the mix

can store k packets in its buffer is upper bounded as

A(k, c) ≤
(1 + k)2 − (c+ 1)2 + 1 +

∑c

y=1
2y(k+1)+y2

2k+c−y

(

k−1+c−y
c−y

)

2λ
(96)

Proof: As is mentioned earlier, the mix’s buffer under the dominant strategy ψ would have packets

of at most one user its buffer. Let D(x, c) be the average number of arrivals required to violate

condition (75) under strategy ψE(∞) when the mix has x packets in its buffer and Eve can capture

c packets from the incoming streams of the mix. Conditioning on the upcoming arrival, it is easy to

check that for all c ≥ 1

D(x, c) = 1 +
1

2
D(x, c− 1) +

1

2
D(x+ 1, c)∀1 ≤ x ≤ k (97)

For c = 0, the following condition is satisfied

D(x, 0) = 1 +
1

2
D(x− 1, 0) +

1

2
D(x+ 1, 0)∀1 ≤ x ≤ k (98)

The boundary conditions for the above recursive equations are D(k + 1, y) = 0 ∀ 0 ≤ y ≤ c. From

the theory of random walks, we know that D(x, 0) = (k + 1)2 − x2.

It is easy to check that D(x, c) = (k + 1)2 − (x+ c)2 +
∑c
y=1

2y(k+1)+y2

2k+1+c−y−x

(

k+c−y−x
c−y

)

satisfies (97).

To prove the uniqueness of the above solution, consider that there exist another solution D
′

(x, c).

Let ∆(x, c) = D(x, c) −D
′

(x, c). Since D(x, c) and D
′

(x, c) both satisfies the equation (97),

∆(x, c) = 0.5∆(x+ 1, c) + 0.5∆(x, c− 1) (99)

with boundary conditions ∆(x, 0) = 0 and ∆(k + 1, c) = 0. It is easy to see using the boundary

conditions that ∆(x, 1) = 0. Similarly, we can recursively prove that ∆(x, c) = 0∀x, c, therefore,

D(x, c) = D
′

(x, c). Note that

D(0, c) = D(1, c) + 1

= (1 + k)2 − (c+ 1)2 + 1 +
∑c

y=1
2y(k+1)+y2

2k+c−y

(

k−1+c−y
c−y

)

(100)

Using Lemma 4, we get the desired result. ✷

As is seen the capturing capacity of the Eve can reduce the admissible length significantly. In

the next subsection, we investigate the optimal strategy and admissible length for a Clairvoyant

Eve who is equipped with additional information of future arrivals to provide a lower bound on the
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admissible length of optimal strategy ψE(c).

5.5.2 Lower Bound (Clairvoyant Eve)

Theorem 17 The admissible length A(k, c) for a Chaum mix with buffer capacity k, serving two

users having Poisson arrival process with equal arrival rate λ against an Eve having capture capability

c is lower bounded by

A(k, c) ≥



















(k+1)

(

2−
(2k+2
k+1 )

22k+1

)

+
∑k
i=c+1

(

(k+ii )(i−c)(2k+2−i−c)

2k+i

)

2λ ∀c < k

2(k+1)−(k+1)
(2k+2
k+1 )

22k+1

2λ ∀c ≥ k

(101)

Proof:

Case 1: c ≥ k

Since Eve knows all the future arrivals, she knows which source would transmit k+1 arrivals earliest.

She can capture packets of the other source which transmitted fewer than k+1 packets at the time

of the system losing anonymity. Therefore, it is easy to see that ∀c ≥ k the admissible length would

be a constant. Note that the probability of the event that exactly k + 1 + i total arrivals required

such that one user has exactly k + 1 packets among these k + 1 + i arrivals is

(

k+i
i

)

2k+i
∀0 ≤ i ≤ k.

Therefore, the expected number of arrivals requires to obtain first k + 1 arrivals of a user is

NCE =
∑k

i=0(k + 1 + i)
(k+ii )
2k+i

= (k + 1)
∑k
i=0

(k+i+1
i )

2k+i

= (k + 1)
∑k
i=0 coeff. of xk+1 in (1+x)k+i+1

2k+i

= (k + 1)

(

2− (2k+2
k+1 )

22k+1

)

Using Lemma 69, we get the desired result.

Case 2: c < k

Without loss of generality, assume that k + 1 red packets arrive before k + 1 blue packets. Let Z

be the random variable denoting the number of arrived blue packets when k + 1 red packets arrive.

Clearly, from the assumption, Z ∈ {0, 1, . . . , k} and P(Z = i) =
(k+ii )
2k+i

. If z ≤ c, the number of

arrivals required for Clairvoyant Eve to know the source-destination pairs is k + 1+ z by capturing

the packets of blue user. If z > c, it is clear that to achieve condition (75), Clairvoyant eve should
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Figure 32: Comparison between admissible length of optimal strategy, Clairvoyant Eve and the
asymptotically optimal strategy as the function of number of packets Eve can capture for k = 10

be aware when the difference between number of arrived packets from each user becomes k + 1 − c

(by capturing c packets of the user with minimum packets the difference between two users packets

would become k+1). Note that when one user has k+1 packets and other user has z packets where

z ∈ {c+1, c+2, · · · , k}, then the additional arrivals required for the difference between the number

of packets arrived from the two users to be k + 1 − c is equivalent to duration of a simple random

walk starting from position k+1−z before getting absorbed in the barriers |k+1−c|. We know from

theory of random walks that the duration is (z−c)(2k+2−(z+c)). Therefore, the total time for the

Clairvoyant Eve to know the source-destination pairs when z > c is (k+1+z)+(z−c)(2k+2−(z+c)).

Subsequently,

E[N ] = E[E[N |Z]]

=
∑c
z=1 P(Z = z)E[N |Z = z] +

∑k
z=c+1 P(Z = z)E[N |Z = z]

=
∑k
z=1 P(Z = z)(k + 1 + z) +

∑k
z=c+1 P(Z = z)(z − c)(2k + 2− z − c)

Using (101) and Lemma 4, we get the desired result. ✷

We plot the upper and lower bounds on the normalized admissible length given in Theorem 16

and Theorem 17 as a function of number of packets Eve can capture and compare it against the

optimal admissible length. As is obvious, the upper bound provides a very good approximation

when c is large compared to k, thus suggests that by applying the simple strategy ψE(∞), instead

of ψE(c), Eve can achieve almost equal admissible length for large c.
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Figure 33: Extensive form of game between Eve and the mix

5.6 General Model (GG)

The models presented in Sections 5.3 and 5.4 studied the system when only one party, the mix or

Eve, have additional capabilities. In this section, we analyse the general model GG when both parties

are empowered. Specifically, we allow the mix to transmit limited number of dummy packets d(t)

in t time units such that d(t)
t ≤ r for a given positive constant r, and Eve can capture at most c

packets from the incoming streams.

As both parties are empowered, it becomes necessary to describe the system as a game played

in stages, where each stage is triggered by an event identifiable to both the mix and Eve. The

payoff of the game merely measures the number of stages played until the game stops which then is

used to evaluate the admissible length. At any given time point, the mix cannot know if an arrival

is captured by Eve or not, therefore an arrival cannot be used to trigger a stage in the game. In

fact, the mix, as a player, cannot identify the time of arrival of a captured packet. It is therefore

necessary to describe the problem in a discrete time system model where we assume that time is

divided into infinitesimal slots of length ∆t, so that the stage of a game can be identified with a slot

rather than an arrival. Owing to the Poisson assumption, in an infinitesimal slot, the probability of

multiple packets arriving is negligible and further, the arrival probability of a packet in each slot is

independent.

Discrete Time Approximation of a Poisson Process: A red packet can arrive in a slot with

probability p ≈ λ1∆t, a blue packet can arrive with probability q ≈ λ2∆t and the probability that

a slot contains no arrivals is 1 − p− q. Arrivals in each slot are independent of arrivals in any past

or future slot. Note that the above slotted arrival process is an accepted approximation of Poisson

arrival process as it converges to the continuous time Poisson as ∆t → 0. In this slotted arrival

model, we assume that the mix transmits d(n) dummy packets in n time slots such that d(n)
n ≤ r.

At every stage of the model GG, there are three possible arrival sets ( a red packet arrives, a
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blue packet arrives or no packet arrives) whose probability distribution is fixed. At every stage,

Eve needs to decide to capture the arrival or not and the mix needs to decide whether to store an

(uncaptured) arrival or/and transmit data or dummy packets. The actions of the mix and Eve are

dependent on arrivals and the state of the system. The information available to Eve and the mix

are however different in each stage, since the mix is unaware of Eve’s actions and consequently is

uncertain about the actual arrival set. This necessitates a formal description of the extensive form

of the game along with the different information sets.

We reuse the notation GG to denote this game between Eve and the mix. To incorporate the

random arrivals of packets, we include a third player “nature” which has a fixed strategy known to

both players. The game GG consists of three elements 1) Actions’ space of players, 2) Information

sets of Players, and 3) Player’s payoff. Let {UE, UM} and {NE, NM} denote the action’s space and

information sets of Eve and the mix respectively.

The extensive form of a single stage of the game is shown in the figure 33. The notations are

explained as follows:

1. Nature’s Moves (UN ):

AB: A blue packet arrives AR: A red packet arrives AN: No packet arrives

2. Eve’s Moves (UE):

C: Capture the arrived packet D: Do not capture the arrived packet

3. Mix’s Moves (UM ):

NA: No action TR: Transmit a red packet SR: Store the arrived red packet if the buffer

space allowed TB: Transmit a blue packet SB: Store the arrived blue packet if the buffer

space allowed TRSB: Transmit a red and store the arrived blue packet if the buffer space

allowed TRTB: Transmit a red and a blue packet. TD Transmit a dummy packet. TRTD

Transmit a red and a dummy packet. SRTD: Store the arrived red packet and transmit a

dummy packet. TBTD: Transmit a blue packet and transmit a dummy packet SBTD: Store

the arrived blue packet and transmit the dummy packet SRTBTD: Store the arrived red

packet and transmit the blue packet and dummy packet TRSBTD: Transmit the red and

dummy packet and store the arrived blue packet

As is clear from the figure, nature plays each move with equal probability from the possible three

moves: AR, AB, and AN. Eve perfectly knows nature’s moves, therefore, she has three information
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sets: NE = {ηEAB, ηEAR, ηEAN} where ηEx represents that nature played the move x. Eve’s alternatives

corresponding to these information sets are: UE
ηENR

= {C,D}, UE
ηENB

= {D,C}, and UE = {UE
ηENB

∪

UE
ηEAR

}. It is not feasible for the mix to perfectly identify Eve’s or nature’s move, and its information

sets are completely determined by the packets that arrived to it: NM = {ηMAN , ηMAR, ηMAB} where ηMx

represents that x packets arrive to the mix. The mix’s alternatives corresponding to its information

sets are as follows:

UM
ηM
AN

= {NA, TR, TB, TRTB, TD, TRTD, TBTD, TRTBTD}

UM
ηM
AR

= {TR, TRTB, SR, SRTB, TRTD, TRTBTD, SRTD, SRTBTD}

UM
ηM
AB

= {TB, TRTB, SB, TRSB, TBTD, TRTBTD, SBTD, TRSBTD}

At the end of each stage of the game, the mix receives payoff 1 while Eve receives payoff −1.

The game ends when Eve determines the source-destination pairs or equivalently total transmissions

of packets of any color by the mix is greater than total arrivals of packets of any color by nature.

Therefore, it is trivially true using the definition of the admissible length that the payoff of the game

measures the admissible length (in multiples of ∆t) exactly.

As is evident from Figure 33, the game between Eve and the mix is not a feedback game [79]

because information sets of the mix include nodes corresponding to branches emanating from dif-

ferent information sets of Eve. Although, it is not always true for a non-feedback game to have a

pure-strategy Nash equilibrium, we show in the following theorem that there exist a pure dominant

strategy for the mix which is identical to that in the model GM , and the optimal strategy for Eve

is a time varying threshold strategy, a generalization of the optimal strategy of Eve in model GE ,

which consequently, proves that there exists a pure strategy Nash equilibrium of the game G.

Theorem 18 For the above mentioned game G, the dominant strategy δM : NM → UM for the mix

is

1. δM (ηMAN ) = {NA}

2. δM (ηMAR) =



















{TRTB} if the mix’s buffer has blue packets

{TRTD} If the mix’s buffer is full and it

can transmit a dummy packet

{SR} otherwise
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3. δM (ηMAB) =



















{TRTB} if the mix’s buffer has red packets

{TBTD} If the mix’s buffer is full and it

can transmit a dummy packet

{SB} otherwise

and the optimal strategy δE : NE → UE for the Eve which can capture c packets against the dominant

strategy δM of the mix at the time epoch n is

1. δE(ηEAN ) = {NA}

2. δE(ηEAR) =

























{D} Mix’s buffer has red packets

{D} Mix’s buffer has x blue packets

and x ≤ τc(n)

{C} Mix’s buffer has x blue packets

and x > τc(n)

3. δE(ηEAB) =

























{D} Mix’s buffer has blue packets

{D} Mix’s buffer has x red packets

and x ≤ τc(n)− 1

{C} Mix’s buffer has x red packets

and x > τc(n)− 1

where τc(n) ∈ N such that τc(n) < k + ⌊nr⌋

Proof: Refer to appendix. ✷

The above theorem is the first such characterization of an optimal mixing strategy in the face of an

active adversary. Further, the theorem also characterizes the optimal strategy of Eve as a threshold

strategy, which allows for numerical methods to compute the optimal thresholds by reducing the

dimensionality of the search. Note that the time variance of the threshold is an outcome of the

number of dummy packets transmitted by the mix. For a fixed number of dummy transmissions

available, the threshold strategy is still time invariant.

The admissible length for this game is not characterized using a closed form expression and we

plot the Monte Carlo simulation of the variation of the mix’s payoff with its buffer capacity in Figure

34a for c = 5 and r = 1
8k+1 and compare it against the two extreme cases when c = 5 and r = 0, and

c = 0 and r = 1
8k+1 . As is expected, the payoff of the modified game when Eve and the mix are both

empowered lies between the cases when individual players are separately empowered. In figure 34b,
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Figure 34: Payoff of the game G

we plot the variation of the mix’s payoff for game GG as a function of the capture capacity when the

mix’s buffer capacity is 10 and the maximum allowable dummy packet rate is 1/81 packets per slot.

Infinite Capture Capacity It is important to note here that as Figure 34b indicates, the impact of

dummy packets on the payoff of the game GG can be reduced significantly if Eve is allowed to capture

sufficient packets from the incoming streams of the mix. However, decrement in admissible length

saturates after a certain c, and the asymptotic admissible length is characterizable analytically. In

fact, under asymptotic conditions, the discrete time approximation of the Poisson arrival is not

necessary, and the following theorem characterizes the admissible length at the equilibrium of the

general model for Poisson arrival process when Eve is allowed to capture any number of packets.

Theorem 19 The admissible length A(r, k, c = ∞) when Eve can capture any amount of packets

(c = ∞) and the maximum allowable dummy rate of the mix is r serving two users with Poisson

arrival process of rate λ , then

2k − 1

2λ− 2r
≤ A(r, k, c = ∞) ≤ 2k + 1

2λ− 2r
(102)

Proof: When c = ∞, the optimal strategy for Eve is to wait for the first arrival, and then capture

every subsequent packet that belongs to a source other than that of the packet in the buffer. By

applying the stopping time argument used in the proof of Theorem 13, the upper and lower bounds

are characterized analytically. The details of the proof can be found in the appendix. ✷
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Figure 35: Comparison of admissible lengths as a function of buffer size

5.7 Comparative analysis

Figure 35 plots the variation of admissible length as function of buffer capacity for the different

models that we studied. For purposes of comparison, we use the optimal mixing strategy for game

G in Section 5.6 to simulate the normalized admissible length for the system model GG when the

arrival processes are Poisson. Although the saddle point result was derived using a discrete time

approximation, we believe the optimality of the strategies to hold in the general Poisson arrival

model.

As is obvious, the admissible length is maximum for the case (c = 0, r > 0) and is minimum for

(c > 0, r = 0). The admissible length of the other two cases (c = 0, r = 0) and (c > 0, r > 0) lie

between the above two cases. We can also see from the figure that admissible length increases as

c decreases for a constant r. Also note that in comparison to the admissible length for the basic

model (c = 0, r = 0), the performance of the general model could be greater or lesser depending on

the allowed c and r (the admissible length for (c = 2, r = 1
8k+1 ) is lesser while the admissible length

for (c = 1, r = 1
8k+1 ) is greater). In general, for a given allowable dummy rate r∗ > 0, there exists

a minimum capture limit c∗ such that the general model has lower admissible length. Determining

the relationship between r∗ and c∗ would provide valuable insights into joint design of intrusion
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detection and mixing systems.

5.8 Summary

In this chapter, the admissible length for perfect anonymity was used as a tool to study optimal

mixing strategies. The admissible length not only provides the best operating criteria for anony-

mous systems, but also helps evaluate the effectiveness of mixing strategies in providing maximum

anonymity. Furthermore, since the admissible length directly models the adversary action, the

framework can be generalized to include active adversaries capable of capturing packets. While

equal arrival rates and Poisson models have been used to determine the analytical results in this

work, the mixing strategies derived work independent of the nature and rate of arrivals, and only

depend on the state of the buffer and dummy packet limitations. Indeed, we believe, for arrivals

modelled as general renewal processes, the insights derived in this work would apply directly [80].
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6 Tradeoff between anonymity and QoS constraints in sig-

naling games

Signaling games are an important class of games which are used to model financial behavior in

markets [81], economic reasoning in a job market [82], and evolutionary behavior in emergence of a

language [83]. Signaling games consist of many senders and a common receiver. Each sender belongs

to one of multiple types. These types represent sensitive information such as individual economic

condition, a company’s financial status or political affiliation. In a signaling game, each sender

transmits a message to the common receiver, who reads the message and responds with an action.

Every transmitted message and it’s receiver response results in a pair of rewards for the receiver

and the corresponding sender. The rewards are a function of the transmitted message, receiver

action and the type of the sender. The sender is perfectly aware of his/her type whereas the receiver

generates a belief about the type knowing the senders’ strategies. An important aspect of study in

signaling games is to find the equilibrium conditions which are characterized by a strategy of the

sender and a strategy of the receiver such that they are optimal against each other. In the study

of equilibrium conditions in signaling games, there are two types of equilibria that are considered

important:

1. Pooling Equilibrium: Senders of all types transmit the same message.

2. Separating Equilibrium: Each type of sender transmits a distinct message.

Note that under the separating equilibrium, no sender cannot hide its type from the receiver whereas

under the pooling equilibrium, senders are completely anonymous. The explicit study of anonymity

in signaling games is the focus of this work. In particular we investigate the tension between the

tangible rewards of the classical signaling games and the information leaked to the receiver about

a senders type. Although not a classical example of signaling games, the following description of a

data networking problem captures the underlying theme of our contributions.

Consider a six node network as shown in Figure 36. There are two sources S1 and S2 who want to

send their packets to their corresponding destination D1 and D2 respectively. There are two paths

from S1 to D1: the path through mix M1, S1 → M1 → D1 and the path through mix M2, S1 →

M2 → D1. Similarly, there are two paths from S2 to D2: the path from mixM1, S2 →M1 → D2 and

the path through mix M2, S2 → M2 → D2. There is a passive eavesdropper who has access to all

the communication links in this network. This eavesdropper wants to know the source-destination

pairs while sources want to hide their destination. Assume that all communications are encrypted
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Figure 36: An interpretation of the requirement of anonymity in data network as a signaling game
between sources and eavesdroppers

thus the eavesdropper cannot access any information from packets’ headers. Consider the following

two cases:

1. The optimal path (delay, throughput, or congestion optimal) between S1 −D1 and S2 −D2

are the paths through mix M1 (S1 → M1 → D1 and S2 → M1 → D2 ) or the paths through

mix M2 (S1 →M2 → D1 and S2 →M2 → D2) which means that all the messages of both the

sources go through either mix M1 or mix M2.

2. The optimal paths between S1 − D1 and S2 −D2 are S1 → M1 → D1 and S2 → M2 → D2

respectively.

In case 1, where all the packets of both the sources go through a common mix (M1 or M2), even

by choosing their QoS optimal path both the sources can achieve perfect anonymity (if buffer size of

the common mix is sufficiently large 3). In contrast, under case 2, when the optimal paths for both

users are non overlapping, an eavesdropper can merely monitor the traffic on the links to identify

the source destination pairs accurately. This scenario then raises the following questions:

1. How much traffic the sources should divert to their sub-optimal paths to achieve some desti-

nation anonymity?
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2. How can the tradeoff between anonymity and network QoS be quantified and optimized?

3. If different users have different anonymity requirements, is there an equilibrium solution that

no user has incentive to deviate from?

The example described above can be interpreted as a signaling game by considering the path that

the sources (senders of the signaling game) choose for transmitting their packets as the message of

the signaling game transmitted to the eavesdropper (receiver of the signaling game), by choosing the

type of the sources (senders of the signaling game) as its destination (D1 or D2), and by choosing a

suitable payoff that reflects the requirement of anonymity along with the users QoS.

In this work, we choose the average Shannon entropy over the types of senders of signaling games

as the measure of type anonymity which is described in detail in Section 6.1. Such information-

theoretic measures, based on Shannon’s entropy [37] have been proposed to measure the anonymity

provided by mixes and mix-networks [3, 76, 84]. The system model is described in detail in the

following section.

6.1 System Model

In this section, we describe the signaling game model and the measure of type anonymity used to

derive our results on the equilibrium behaviour. We define the signaling game model Gk as a 5−tuple

Gk = {T ,M,A,Λ,RD} where each element of this tuple described below:

• Senders, their types (T ), and the message set (M): A sender is the player who transmits

messages in a signaling game. Senders can be of different types and T is the set representing

all the possibilities over the type of senders. In this work, we assume T = {T1, T2}. The

prior probability of each type is equal and senders are aware of their types which they wish

to hide from the receiver. Each sender chooses one message from the message set M =

{m1,m2, · · · ,mk} to transmit. We define the strategies of type T1 and type T2 senders as

probability distributions p = {p1, · · · , pk} and q = {q1, · · · , qk} over the message set M

respectively.

• Receiver and its action space (A): A sender transmits its message to the receiver. The

receiver after receiving the message mi where i ∈ {1, 2, · · · , k} can choose an action from the

set Ai. We define A △
= ∪ki=1Ai as all possible actions to the receiver. In this work, we exclude

the effect of actions of the receiver on the game and assume Ai is a singleton set identical for

all i.
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• Direct Payoff: Since Ai is a singleton set, the payoff of a sender depends only on the

transmitted message. Assume that by transmitting message mi, the payoff of a type T1 sender

is ci and a type T2 sender is di where ci, di ∈ R ∀i ∈ 1, ..., k. This payoff that comes directly

from transmitting the signal, we refer as the direct payoff. We define RD
△
= {{ci}ki=1, {di}ki=1}

as the collection of all possible direct rewards of senders. If the type T1 and the type T2 sender

use strategy p and q respectively then their direct payoffs are defined as

Type T1 : PD1 (p)
△
=

∑

i pici

Type T2 : PD2 (q)
△
=

∑

i qidi.

• Information leakage cost or anonymity reward: Note that if senders belonging to the

two types use different strategies, i.e. p 6= q, then the received message could provide some

information about the type of the sender. We use the average Shannon entropy of this posterior

distribution as the measure of anonymity. According to Bayes’ rule, if the message mi is

transmitted, then given that the receiver knows the strategy of the sender, the probability

that the sender belongs to type T1 is pi/(pi+ qi) ∀i ∈ {1, · · · , k} when pi+ qi > 0. Specifically,

the anonymity reward of the senders are defined as:

Type T1 : PA1 (p,q)
△
=
∑k

i=1 pih
(

pi
pi+qi

)

Type T2 : PA2 (p,q)
△
=
∑k
i=1 qih

(

pi
pi+qi

)

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary Shannon entropy for x ∈ [0, 1]

when each types of senders knows the strategy of the other types. In this definition for cost of

anonymity, we assume that 0h
(

0
0

)

= 0.

• Net payoff (P): We define the net payoff of Gk as a linear combination of the direct payoff

and anonymity reward. Specifically, the net payoffs of type T1 and type T2 senders are defined

as

P1(p,q)
△
= λ1PD1 (p) + (1 − λ1)PA1 (p,q)

P2(p,q)
△
= λ2PD2 (q) + (1− λ2)PA2 (p,q)

(103)

respectively.

It is important to note here that the weighting factors λis allow us to study the trade-off between

the two opposing objectives: anonymity and the direct payoff of the signaling game. Furthermore,
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by using different λi for different users, we are able to study equilibrium conditions for users with

different privacy requirements. To the best of our knowledge, this is the first work to study the joint

optimization of strategies for users with differing privacy requirements.

The key component of the analysis of any game theoretic model is the study of equilibrium con-

ditions where no player of the game has an incentive to deviate from. The equilibrium conditions

of signaling games are known as Perfect Bayesian-Nash equilibrium conditions which are an exten-

sion of Bayes-Nash equilibrium conditions [85]. This Perfect Bayesian-Nash equilibrium conditions

require the fulfillment of the following three conditions:

1. Receiver generates a posterior belief on the type of the sender using the received message and

knowledge of the strategies of all types of senders.

2. The strategy that receiver chooses must maximize its expected reward based on the derived

posterior belief of sender’s type.

3. Each sender’s strategy is chosen to optimize the net reward for his/her type knowing that the

receiver is perfectly aware of the chosen strategies of all types of senders.

In this work, we consider a receiver with a singleton action space, therefore, the Perfect-Bayesian

Nash equilibrium would rely on senders of both the types optimizing their strategies knowing the

optimal strategies of other types and also knowing that receiver uses the knowledge of the senders’

strategies to determine the type from the message.

Definition: A pair of strategies p∗ = {p∗1, ..., p∗k} and q∗ = {q∗1 , ..., q∗k} is defined to be Perfect

Bayesian-Nash equilibrium of Gk if and only if

p∗ = argmaxpP1(p,q
∗)

q∗ = argmaxq P2(p
∗,q)

(104)

Note that perfect Bayesian-Nash equilibrium conditions describe the optimal sender’s strategy

in the worst case scenario from the sender’s perspective where an intelligent (perfectly rational)

receiver knows the sender’s strategy. An important part of the analysis of our signaling game model

is to prove the existence of Perfect Bayesian-Nash equilibrium conditions and interpret the outcome

of games with the help of these equilibrium conditions.
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6.2 Existence of Bayesian-Nash equilibrium

In this section, we show that Perfect Bayesian-Nash equilibrium of a signaling game

G2 = {T , {m1,m2}, {a}, {λ1, λ2}, {(c1, c2), (d1, d2)} exists for all λ1, λ2 ∈ [0, 1]. It is important

to note that fixed point theorems (such as Kakutani and Brouwer) that are central in proving the

existence of equilibrium conditions in game theory [86–88] can not be applied to our analysis because

the convexity property of the best response function is not satisfied in our model. In the classical

signaling games, the convexity property of the best response function is maintained because the

senders’ payoff is a deterministic function of receivers and its own actions which is not the case here

because the actions of different types of senders affect each other’s payoff directly.

In the following theorem, we show the existence of perfect Bayesian-Nash equilibrium in the

game G2 when λ1 = λ2. We prove the existence by analyzing different cases separately as shown

below:

Theorem 20 If λ1 = λ2 = λ ∈ [0, 1], a perfect Bayesian-Nash equilibrium point of game G2 always

exists. The pair of sender strategies that achieve the equilibrium are as follows:

1. λ = 0: p∗1 = q∗1 (Pooling)

2. 0 < λ < 1

i. c1 ≤ c2, d1 ≤ d2 : p∗1 = q∗1 = 0 (Pooling)

ii. c1 ≥ c2, d1 ≥ d2 : p∗1 = q∗1 = 1 (Pooling)

iii. c1 > c2, d1 ≤ d2 or c1 ≥ c2, d1 < d2:

A. 0 ≤ λ ≤ λ∗ : p∗1 = 1, q∗1 = 1 or p∗1 = 0, q∗1 = 0 (Pooling)

B. λ∗ ≤ λ ≤ 1: p∗1 = 1, q∗1 = 0 (Separating)

where λ∗ = max
{

1
1+c1−c2

, 1
1+d2−d1

}

.

Proof:

Case1: Note that

p∗1 = argmax
p1

p1h

(

p1
p1 + q∗1

)

+ p2h

(

p2
p2 + q∗2

)

Since binary entropy h(x) is maximized at x = 0.5, p1 = q∗1 is a unique maximum of the right hand

side in the above equation.
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Case 2(i), 2(ii): We know p∗1 = argmaxp1 P1(p1, q1). Note that

p∗ = argmax
p

PA1 (p, q∗) = q∗ ∀ q∗ ∈ [0, 1]

and p∗ =











argmaxp PD1 (p) = 0 when c1 < c2

argmaxp PD1 (p) = 1 when c1 > c2

=⇒ p∗1 = argmax
p1

λPD1 (p1) + (1− λ)PA1 (p1, q
∗)

< q∗∀q∗ > 0 when c1 < c2

> q∗∀q∗ > 0 when c1 > c2

Similarly, we can show that 0 ≤ q∗1 ≤ p∗ (p∗ ≤ q∗1 ≤ 1) for all p∗ > 0 when d1 ≤ d2 (d1 ≥ d2).

Therefore, equilibrium point exist only for p∗1 = q∗1 = 0 (p∗1 = q∗1 = 1).

Case 2 (iii) A.: Assume that a type T1 sender’s strategy is p∗1 = 1, then we investigate the condition

on λ such that a type T2 sender’s optimal strategy is q∗1 = 1. Specifically, we require

P2(1, 1) > P2(1, q1) ∀0 ≤ q1 < 1

=⇒ λ <
q2+q1

(

1−h
(

q1
1+q1

))

q2(1+d2−d1)+q1
(

1−h
(

q1
1+q1

))∀0 ≤ q1 < 1
(105)

Note that
q2 + q1

(

1− h
(

q1
1+q1

))

q2(1 + d2 − d1) + q1

(

1− h
(

q1
1+q1

)) ≥ 1

1 + d2 − d1
(106)

∀q1 ∈ [0, 1) and equality occurs in (106) if and only if q1 = 0. Therefore (105) and (106) imply that

when

λ <
1

1 + d2 − d1
(107)

then P2(1, 1) > P2(1, q1)∀q1 ∈ [0, 1). Furthermore, it is trivial to see that

p∗1 = argmax
p1

P1(p1, 1) = 1 (108)

since p1 = 1 maximizes both the direct and anonymity payoffs in this case. Consequently, p∗1 =

1, q∗1 = 1 is an equilibrium point when λ < 1
1+d2−d1

. Using the similar argument as given in (105)-

(108), we can show that the criterion P1(0, 0) ≥ P1(p, 0) ∀ p ∈ (0, 1] proves that p∗1 = 0, q∗1 = 0 is

also an equilibrium point when λ < 1
1+c1−c2

.

Case 2 (iii) B.: Assume that a type T2 sender’s strategy is q1 = 0, then the condition on λ such
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that a type T1 sender’s optimal strategy is p1 = 1, is

P1(1, 0) > P1(p1, 0) ∀ p1 < 1

=⇒ λc1 > λ(p1c1 + p2c2) + (1 − λ)p2h
(

p2
1+p2

)

=⇒ λ(c1−c2)
1−λ > h

(

p2
1+p2

)

∀ p2 ∈ (0, 1]

=⇒ λ > 1
1+c1−c2

(109)

Using the similar argument as given in (109), we can show that the criterion P2(1, 0) > P2(1, q) ∀ q ∈

(0, 1] results in the condition λ > 1
1+d2−d1

. Therefore, when λ > max
{

1
1+c1−c2

, 1
1+d2−d1

}

, then

p∗1 = 1 and q∗1 = 0 is an equilibrium point. ✷

The first case of the above theorem is an extreme case where only anonymity is important for

sender, therefore, as long as senders of both types use identical strategies (probability distributions),

the posterior probability upon receiving a message is identical to the prior probability. Consequently,

the anonymity is maximized and a pooling equilibrium exists. The second case considers the equi-

librium point where both anonymity and direct payoff of the signaling game is important to sender.

Under the conditions in 2 i. and 2 ii., the direct rewards provide senders of both types incentive to

transmit the same message, and therefore a pooling equilibrium exists, albeit trivially.

The most interesting case of the above theorem is 2 iii. case where senders belonging to the

two types have opposite incentives for choosing a common message according to their direct payoffs.

For this case, we showed that there exists a threshold λ∗ such that when λ > λ∗, then each sender

chooses to transmit the message that maximizes the direct payoff for his/her type, and when λ < λ∗

then senders of both types choose the same message. It is important to note here that a similar

result is proven in [89] in the context of conformity where senders choose to conform if and only if

the reward for conforming is greater than a threshold.

The above theorem proves the existence of Bayesian-Nash equilibrium by finding an equilib-

rium point for all possible values of RD and λ but doesn’t prove that the equilibrium condi-

tions are unique. In fact, the equilibrium conditions are not always unique. For instance, when

λ < min
{

1
1+c1−c2

, 1
1+d2−d1

}

, then both p1 = 0, q1 = 0 and p1 = 1, q1 = 1 are equilibrium points.

There are conditions under which the uniqueness of the equilibrium point can be proven. Note

that when c1 > c2 and d1 ≤ d2 and λ > λ∗, senders belonging to the two types choose non-

overlapping messages in their equilibrium strategies or in other words, a separating equilibrium

exists. In the following theorem, we show that when a separating equilibrium exists, it is a unique

equilibrium point.
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Figure 37: Optimal strategy of types T1 and T2 sender for the case 3(iii) of Theorem 20 when
c1 − c2 < d2 − d1 as a function of λ where (·, ·) = (p∗1, q

∗
1)

Theorem 21 If c1 > c2, d1 ≤ d2, λ > λ∗, then G2 with λ1 = λ2 has a unique Perfect Bayesian-Nash

equilibrium point defined by the strategies p∗ = (1, 0) and q∗ = (0, 1).

Proof: Using (109), we know that λ > 1
1+c1−c2

is required for the existence of a separating equi-

librium. To prove that the separating equilibrium is the unique equilibrium, it is sufficient to show

that even if a type T2 sender uses strategy q1 > 0 instead of q∗1 = 0, it is optimal for a type T1 sender

to choose strategy p∗1 = 1 when λ > 1
1+c1−c2

. Specifically, we require

P1(1, q1) > P1(p1, q1) ∀ 0 ≤ p1 < 1 and q1 ∈ [0, 1]

=⇒ λc1 + (1− λ)h
(

1
1+q1

)

> λ(p1c1 + p2c2) + · · ·

(1− λ)
(

p1h
(

p1
p1+q1

)

+ p2h
(

p2
p2+q2

))

∀ p2 ∈ (0, 1]

(110)

Combining (109) and (110), the condition for the uniqueness of the separating equilibrium reduces

to

p2 + h

(

1

1 + q1

)

> p1h

(

p1
p1 + q1

)

+ p2h

(

p2
p2 + q2

)

(111)

Note that h(x) is a concave function, and h(0) = 0, therefore, h(tx+(1− t)0) ≥ th(x) ∀ t ∈ [0, 1].

Consequently,

h

(

q1
p1 + q1

p1 + q1
1 + q1

)

>
p1 + q1
1 + q1

h

(

q1
p1 + q1

)

∀p1 < 1 (112)

(112) along with h(x) ≤ 1 proves (111).

Using the similar argument as given in (110)-(112), we can show that when λ > 1
1+d2−d1

, then

P2(p1, 0) > P2(p1, q1) ∀ 0 < q1 ≤ 1 and a given p1 ∈ [0, 1]. ✷
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Note that in the above results, we consider that senders of both types have identical desires for

anonymity, i.e. λ1 = λ2. In practice, however, different users have different preferences for privacy,

and the identical weighting of privacy across users need not hold. The existence of Perfect Bayesian-

Nash equilibrium conditions when different types have different requirements for anonymity is proven

in the following theorem:

Theorem 22 The Perfect Bayesian-Nash equilibrium of G2 exists even if λ1 6= λ2.

Proof: Without loss of generality, assume that λ1 6= 0 and λ2 6= 1. Lets consider the game

G′
2 = {T ,M,A,Λ′,R′

D} such that Λ′ = {λ1, λ1} and R′
D = {(c1, c2),

(

1−λ1

1−λ2

λ2

λ1
d1,

1−λ1

1−λ2

λ2

λ1
d2

)

}. We

know from Theorem 20 that there exist p∗1 and q∗1 such that

p∗1 = argmaxp λ1
∑2
i=1 pici + (1 − λ1)pih

(

pi
pi+qi

)

q∗1 = argmaxq λ1
∑2

i=1 qi
1−λ1

1−λ2

λ2

λ1
di + (1− λ1)qih

(

qi
pi+qi

) (113)

Note that (113) is equivalent to equilibrium conditions given in (104) for G2 when λ1 6= λ2. Therefore,

p∗1 and q∗1 are equilibrium point of G2. ✷

The above theorem is important because anonymity is subjective and even amongst users with

different privacy requirements there exist equilibrium strategies which neither player has incentive

to deviate from. This is of particular importance in the context of the data networking problem

presented in Figure 36. If different users have different weights for anonymity, the results show that

under a perfect Bayesian-Nash equilibrium, each user still chooses a single path to transmit the

packets. This is a parallel result to the work in [90] which shows that under light traffic conditions,

the optimal rate allocation that maximizes anonymity under delay constraints results in single paths

for the users.

6.3 Equilibrium conditions for general Message sets

In this section, we prove the existence of equilibrium conditions and investigate their properties for

some special cases when the users can choose a message from a set of k > 2 messages and give a

reduction methodology for finding the equilibrium conditions for a general finite set of messages.

Theorem 23 For k > 2, the Perfect Bayesian-Nash equilibrium conditions of G = {T , {mi}ki=1, {a},Λ,RD}
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are identical to G′ = {T , {mi}ki=1

i6=n
, {a},Λ,RD} when

cn = min{ci}ki=1

dn = min{di}ki=1

for some n ∈ {1, 2, ..., k}

Proof: To simplify the mathematical notation, we prove the result for k = 3. WLOG assume that

c3 < min{c1, c2} and d3 < min{d1, d2}. To prove the theorem, it is equivalent to show that when

a type T1 sender uses the strategy (0, p2, p3), then the optimal strategy for a type T2 sender is of

the form (0, q2, q3). We prove this by contradiction. Assume that the optimal strategy for a type T2
sender is (q1, q2, q3) where q1 > 0, then its payoff is

P2({pi}3i=2, {qi}3i=1) = λ

3
∑

i=1

qidi + (1− λ)

3
∑

i=2

qih

(

pi
pi + qi

)

We know p2 + p3 = 1 and q1 + q2 + q3 = 1, therefore, either q2 < p2 or q3 < p3 since q1 > 0.

WLOG assume that q2 < p2, then it is easy to see that the payoff of strategy (q1 − ǫ, q2 + ǫ, q3) is

greater than the payoff of (q1, q2, q3) because d1 < d2 and h
(

p2
p2+q2

)

< h
(

p2
p2+q2+ǫ

)

where 0 < ǫ <

min{q1, p2 − q2}. ✷

An important consequence of the above theorem is if there is a message that is uniformly bad

for both types of sender, then in equilibrium no type of sender would transmit that message. In

the following theorem, we derive sufficient conditions on the direct payoff of Gk which result in

separating and pooling equilibria. However, the above result just give a reduction methodology to

find the equilibrium condition, in the following theorem we prove the existence of equilibrium points

for a special reward structure of signaling games.

Theorem 24 For a signaling game Gk with k > 2 messages, let

c1 > c2 ≥ . . . ≥ ck and d1 ≤ d2 ≤ . . . ≤ dk−1 < dk, (114)

then

1. If λ > µ∗, then p∗1 = 1, q∗k = 1 is a perfect Bayesian-Nash equilibrium of Gk (Separating).

2. If λ < µ∗, then p∗1 = 1, q∗1 = 1 and p∗k = 1, q∗k = 1 are perfect Bayesian-Nash equilibria of Gk
(Pooling).

where µ∗ = max
{

1
1+c1−ck−1

, 1
1+dk−d1

}
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Proof: To simplify the notations, assume k = 3. WLOG, assume that c1 > c2 ≥ c3 and d3 > d2 ≥

d1. It is easy to verify that

P1({p1, p2, p3}, {0, 0, 1}) < P1({p1 + p2, 0, p3}, {0, 0, 1})∀p2 > 0 (115)

because c2 < c1 and transmitting m2 does not contribute in anonymity given that a type T2 sender

does not transmit m2. (115) implies that finding the optimal strategy for a type T1 sender on

message set {m1,m2,m3} is reduced to finding the optimal strategy on message set {m1,m3} given

that a type T2 sender is playing the strategy {0, 0, 1}. Similarly,

P2({1, 0, 0}, {q1, q2, q3}) < P2({1, 0, 0}, {q1, 0, q2 + q3})∀q2 > 0

implies that finding the optimal strategy for a type T2 sender on message set {m1,m2,m3} is reduced

to finding the optimal strategy on message set {m1,m3} given that a type T1 sender is playing the

strategy {1, 0, 0}. Thereafter, applying the same argument for two messages case as in Theorem 20

given in (105)-(109), we get the result. ✷

For signaling games that satisfy (114), the above theorem proves that there exists a threshold µ∗

such that when λ > µ∗, then senders of both the types are interested only in maximizing their direct

payoff while ignoring the payoff of the anonymity completely, and this scenario is reversed completely

when λ < µ∗. Note that the threshold µ∗ depends only on the direct payoff of transmitting messages

with lowest and highest payoff for both types. Although the above result proves the existence of a

separating equilibrium when λ > µ∗, it does not prove that the separating equilibrium is unique.

We provide in the following theorem a lower bound on λ for the existence of a unique separating

equilibrium.

Theorem 25 If c1 > . . . > ck, d1 < . . . < dk, λ > max{ 1
1+c1−c2

, 1
1+dk−dk−1

}, then game Gk has a

unique Perfect Bayesian-Nash equilibrium point defined by the strategies p∗1 = 1 and q∗k = 1.

Proof: Assume that e1 = {1, 0, . . . , 0} and ek = {0, 0, . . . , 1}. To prove the uniqueness of separating

equilibrium, we need to show that λ > 1
1+c1−c2

implies that

P1(e1,q) > P1(p,q) ∀p,q

⇐⇒ λc1 + (1− λ)h
(

1
1+q1

)

>
∑k
i=1 λpici + (1− λ)pih

(

pi
pi+qi

)

⇐⇒
∑k

i=2 pi

(

λ
1−λ(c1 − ci)− h

(

pi
pi+qi

))

+ h
(

1
1+q1

)

> p1h
(

p1
p1+q1

)

(116)
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Note λ
1−λ (c1 − ci) ≥ λ

1−λ(c1 − c2) > 1 ∀ i ∈ {2, . . . , k}, therefore, (112) along with h(x) ≤ 1 proves

(116). Similarly, it can be shown that λ > 1
1+dk−dk−1

implies that

P2(p, ek) > P2(p,q)∀ p,q. (117)

✷

6.4 Summary

In this work, we provide basic foundation for encompassing anonymity in signaling games. We

proved the existence of equilibrium conditions for a basic scenario where sender could be of two

types. Our results prove the intuition that there exists thresholds on the requirement of anonymity,

such that above the threshold, all types of senders are incentivized to transmit identical messages.
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7 Conclusion and Future Works

To the best of our knowledge, this is the first work that provides a first comprehensive analytical

framework to study anonymity-QoS tradeoff in data networks. Moreover, our work also provides a

general infrastructure to model utility-privacy tradeoff for broader commercial and social contexts.

Using this analytical framework, we present our main findings along with some direction for future

works in the following.

7.1 Memory Constrained mixes

One of our key contributions in this work is to find the optimal mixing strategy for a Chaum mix

under memory restrictions. To the best of our knowledge, this is the first such characterization.

Moreover, for some special cases we show that the convergence rate of the optimal anonymity is

O
(

1
k2

)

. The extension of this result to a network of mixes, while investigated in Chapter 3, still

ignores the possibility of shared randomness across mixes and is a useful area for further study. In

addition, the achievable anonymity of a system under dynamic routing configurations is yet another

important topic for further investigation. Another extension that we are currently interested is the

topological design given a set of source destination pairs to guarantee anonymity α.

7.2 Mixes performance under fairness restrictions

In this work, we studied a previously unexplored dimension in fair scheduling algorithms, the source

anonymity. Specifically, we characterize and compare the anonymity of three popular scheduling

policies: First-Come-First-Serve (FCFS), Fair Queuing (FQ), and Proportional Method (PM). In-

terestingly, the FCFS and FQ while popular metrics to design scheduling algorithms performs poorly

from an anonymity perspective unless the fairness criteria are sufficiently relaxed. Indeed, we proved

in this work that the anonymity of a modified max-min Fair Queuing algorithm can never exceed .5

and the anonymity achieved by a strict FCFS scheduling policy is zero. We proposed relaxations of

the fairness criteria, and demonstrated that any desired anonymity can be achieved by sufficiently

expanding the window of fairness computation in Fair Queuing algorithms and by relaxing the fair-

ness criterion in FCFS such that a bounded number of packets of other users that comes after a

packet of a user are allowed to be served before the packet. Further, we showed analytically that the

proportional method, although thus far unpopular in the context of data networks, can, in fact, be

a valuable fair scheduling scheme in anonymous networking systems. With a sufficient buffer size,

the scheme can achieve an anonymity arbitrarily close to the maximum desired. Further, this works
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takes an important step in identifying the relationship of anonymity to fairness using a temporal

measure of fairness that in essence measure the out of order transmission. Extension of this analysis

to networks of mixes is an interesting and important step for the future.

7.3 Flow based anonymity of mixes

In this work, the admissible length for perfect anonymity was used as a tool to study optimal mixing

strategies. The admissible length not only provides the best operating criteria for anonymous sys-

tems, but also helps evaluate the effectiveness of mixing strategies in providing maximum anonymity.

Furthermore, since the admissible length directly models the adversary action, the framework can be

generalized to include active adversaries capable of capturing packets. While equal arrival rates and

Poisson models have been used to determine the analytical results in this work, the mixing strategies

derived work independent of the nature and rate of arrivals, and only depend on the state of the

buffer and dummy packet limitations. Indeed, we believe, for arrivals modelled as general renewal

processes, the insights derived in this work would apply directly [80]. While this paper studies the

problem of anonymity using a single shared scheduler, the extension to networks of scheduler is an

interesting and necessary subject for future research. A strict capture limit was considered in this

work to model an active adversary. An interesting game theoretic extension would be to jointly

consider an intrusion detection mechanism, wherein the more packets an adversary captures the

higher likelihood of getting caught.

7.4 Role of signaling games for studying anonymity

In this work, we provide a basic foundation for encompassing anonymity in signaling games. We

proved the existence of equilibrium conditions for a basic scenario where sender could be of two

types and extend the results for some special reward structures of signaling games for more than

two types of sender. Our results prove the intuition that there exists thresholds on the requirement of

anonymity, such that above the threshold, all types of senders are incentivized to transmit identical

messages. The extension of these results to active receiver and stochastic games are promising

directions for future investigation.
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