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The need for increased automation of learning, knowledge discovery, reasoning,

and inference from the rapid growth of the availability of a multitude of various types

of sensor/data feeds and databases has generated renewed interest in machine learning

(ML). The practical utility of ML algorithms and their effectiveness greatly depend

on how well one may learn the relevant parameters from data, and the parameter

learning phase of modern ML environments has emerged as a significant challenge

because of the increasing complexity of the data being gathered.

Adequate representative statistical training data are often too costly to obtain

or are simply unavailable; available real-world data are usually rife with incomplete,

unknown, or missing entries due to a host of reasons, including simple data entry

errors, security and privacy concerns, difficulty in obtaining data corresponding to

infrequent events, and others. Data imputation strategies being employed to deal

with data “missingness” run the gamut from interpolating the missing value from

values of other variables, to using a data “missingness” probability distribution to

estimate the missing value, to simply ignoring data records possessing missing values

and using only the “clean” records to learn the parameters. Interpolating or employ-

ing a “missingness” distribution for data imputation constitutes a recipe for making

impaired decisions lacking trustworthiness when there is little or no evidence to sup-



port the assumptions made; disregarding data records possessing imperfections has

the potential to destroy critical evidence.

The main objective of this research work is to develop a comprehensive strategy

that can model and account for a wider variety of data imperfections, including those

that are generated from human-generated “soft” data; incorporate and propagate the

information contained in these data imperfections throughout the decision-making

process; conduct the learning, knowledge discovery, reasoning, and inference processes

in a computationally efficient manner and generate conclusions that are appropriately

calibrated to reflect the underlying uncertainties.

The approach we take is based on a framework that employ interval-valued (i.v.)

probability functions. They are better suited and offer more flexibility for handling a

wider variety of uncertainties and they are what naturally arise in partial elicitation

(when insufficient knowledge is available), when it is too time consuming to gather

the necessary knowledge to estimate exact probabilities. We do not insist on any

monotonicity condition on the i.v. probability functions we utilize, and take the

viewpoint that these i.v. probabilities, which we refer to as PrBounds, emerge from

a single underlying probability distribution about which agents have only partial

information. With a fresh perspective of the i.v. counterpart notions of conditioning

and independence, we then propose a framework which allows parameter learning,

knowledge discovery, reasoning, and inference in a computationally efficient manner

in much the same way as one would with probabilistic graphical models.

We show how PrBounds could be extracted from imperfect datasets where the

values of different attributes may be dependent and embrace more general evidential

uncertainty. When the attribute values are unknown/missing or are known to lie



within a set of values, PrBounds can be learned via a computationally tractable and

efficient frequency counting method. The probabilities associated with an arbitrary

imputation strategy, including the underlying “true” probabilities, are guaranteed to

lie within the PrBounds learned in this manner. We also develop new Demspter-Shafer

(DS) belief theoretic and PrBounds-based models of an imperfect implication rule

which are consistent with Bayesian and classical logic models. We demonstrate how

it can be fused with an imperfect antecedent to generate the PrBounds associated with

the rule consequent. Finally, inspired by deep learning neural network architectures

but operating within the proposed PrBounds-based framework, we develop what we

refer to as a deep fusion network (DFN) which allows one to automate fusion of

evidence from input data, fusion parameter selection, and classification of potentially

uncertain data generated from multi-modal sensors.
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CHAPTER 1

Introduction

1.1 Machine Learning

“Machine Learning is the field of scientific study that concentrates on induction

algorithms and on other algorithms that can be said to ‘learn’ [from data]” [Kohavi

and Provost, 1998]. What has been learned from examples or training data is then

used for the knowledge discovery, reasoning, and inference processes. The increased

availability of a multitude of streaming/stored sensor and data feeds and databases

does not necessarily imply that the learning, knowledge discovery, reasoning, and

inference processes are easier [Premaratne et al., 2009], because one must now grapple

with heterogeneous data (meaning that attributes may be numerical or categorical,

and they may be scalar- or vector-valued), multi-scope data (meaning that sources

may not possess identical “scopes of expertise” because not all sources can be expected

to have access to global knowledge), and significantly higher volumes of streaming and

stored data. Increased automation of the learning, knowledge discovery, reasoning,

and inference processes is an overriding requirement for the purpose of easing the

immense burden associated with dealing with such data. This explains the renewed
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interest in effective and analytically tractable models for representation of data and

computationally viable machine learning (ML) techniques and algorithms.

1.2 Challenges

1.2.1 Real Data Are Imperfect

The practical utility of these ML algorithms and their effectiveness depend on

how well one may learn the relevant parameters from training data. The parameter

learning phase has become a significant challenge in modern ML environments mainly

because of the increased complexity of the data that are available and the data that

are being gathered for knowledge discovery, reasoning, and inference.

Adequate representative statistical training data are often too costly to obtain or

are simply unavailable, and when available, real-world training data are often incom-

plete, unknown or missing, due to absence or errors in data entry (e.g., in subject

surveys), security and privacy concerns, difficulty in obtaining data corresponding to

infrequent events, etc. [Liao and Ji, 2009]. There are other causes of data imperfec-

tions as well: reliability (or lack thereof) of sources providing the data, ambiguities

created by attempts to “equalize” the scopes of multi-scope data, differing opinions

of domain experts whose expertise is being sought (for the purpose of classifying the

training set, for example), etc. [Janez and Appriou, 1998,Premaratne et al., 2007].

1.2.2 Dealing With Data Imperfections

Judging by the datasets that are publicly available, one may be inclined to dispute

this claim that real-world data are rife with imperfections. But data are typically de-
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contaminated of unknown or missing values before they are utilized in ML algorithms

or before they are made publicly available.

A comprehensive survey of methods for handling data “missingness” appears in

[Liao and Ji, 2009]. A “piece” of data could be

(a) not missing at random (NMAR), i.e., the missingness could be related to both

its own value and the values of other variables,

(b) missing at random (MAR), i.e., the missingness is unrelated to its own value but

could be related to the values of other variables, or

(c) missing completely at random (MCAR), i.e., the missingness is unrelated to either

its own value or the values of other variables.

Data imputation strategies for dealing with data “missingness” run the gamut

from employing known attribute values to interpolate the missing attribute value,

to assuming that a probability distribution which dictates the value of the missing

attribute is known so that it can be used to estimate the missing attribute value, to

using only the “clean” data records to learn relevant parameters and ignoring data

records possessing missing attribute values.

1.2.3 Difficulties

The strategy of ignoring data records possessing missing attribute values and

learning relevant parameters from only the “clean” data records destroys what po-

tentially could have been critical evidence. Moreover, as the following example illus-

trates, such a strategy turns out to be inherently flawed.



4

Example 1 Consider the 7 data records (a1, b1, ?), (a2, ?, c2), (a1, b1, c1), (a2, b2, c2),

(?, ?, c1), (?, b1, c2), (a2, ?, c2), each attribute having 2 states, (a1, a2), (b1, b2), and

(c1, c2); “?” denotes missing attribute values.

In the absence of priors, the probability P (a1, b1, c1) of the occurrence of (a1, b1, c1)

must satisfy

P (a1, b1, c1) ∈ [1/7, 3/7],

regardless of the imputation strategy. If we count only the clean data records, we get

P (a1, b1, c1) = 1/2,

a value no imputation strategy can yield and hence unacceptable. Unless prior evi-

dence justifies it, committing to one imputation strategy, which is equivalent to picking

one value from [1/7, 3/7], can also be misleading (e.g., in classification).

Expectation Maximization (EM) algorithm [Dempster, 1968, Lauritzen, 1995],

Gibbs sampling methods [Geman and Geman, 1984], AI&M scheme [Jaeger, 2006],

and other related techniques [Cowell, 1999, Ramoni and Sebastiani, 2001], are often

the methods of choice for handling data “missingness”. However, these cater mainly

to the NMAR and MAR cases where imputation is guided by the values of other

variables. The MCAR case, or the case when the relationships between variables

are unknown or indeterminate (for example, when adequate evidence is lacking to

justify the use of an underlying distribution related to data “missingness”), is more

challenging. One is then compelled to harness human-generated soft data. In fact,

to deal with MCAR data, the method in [Liao and Ji, 2009] allows the more qualita-

tive subjective information of domain experts to provide interval-valued probabilities

which, as it turns out, are better suited to capturing soft evidence.
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Interpolating and employing an underlying distribution of “missingness” for the

purpose of data imputation can severely impair the decision-making process when

there is no evidence to justify the assumptions made [Hewawasam et al., 2005]. This is

specially problematic in medical/healthcare, defense, cybersecurity, and other critical

application scenarios where the trustworthiness of the decisions made is of paramount

importance.

Indeed, development of better techniques of handling data imperfections for learn-

ing, extracting knowledge, reasoning, and inference can be considered a chronic prob-

lem hampering data-driven studies that attempt to discern among competing hy-

potheses [Motro and Smets, 1997]. It remains one of the most challenging problems

confronting the application of ML techniques in real-world application domains.

1.3 Main Objective and Our Approach

1.3.1 Main Objective

Our main objective is to develop a comprehensive strategy that can

(a) model and account for a wider variety of data imperfections, including those that

one would encounter in soft evidence;

(b) incorporate the information contained in these imperfections (as opposed to

ignoring them or employing a data imputation strategy based on unjustifiable

assumptions regarding data “missingness”) into ML algorithms and propagate

this information throughout the decision-making process;
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(c) conduct the learning, knowledge discovery, reasoning, and inference processes so

that the conclusions provided to the decision-maker are appropriately calibrated

to reflect the underlying uncertainties; and of course

(d) carry out these tasks in a computationally efficient manner.

1.3.2 Our Approach

Conventional approaches may not be well equipped to handle the variety of uncer-

tainties that inhabit data, especially those in nuanced soft evidence which may play

a critical role in dealing with data imperfections. Being beholden to a-priori assump-

tions regarding the underlying distributions and priors, it is questionable whether

the Bayesian framework is well suited to the task of modeling such uncertainties [Be-

navoli et al., 2008, Sambhoos et al., 2008, Premaratne et al., 2009, Khaleghi et al.,

2013,Núñez et al., 2013,Heendeni et al., 2014].

1.3.2.1 Interval-Valued (I.V.) Probabilities

On the other hand, interval-valued (i.v.) probabilities because they are better

suited and offer more flexibility for handling these data uncertainties. In addition to

being better suited for the purpose at hand, i.v. probabilities

(a) overcome the difficulty of a single distribution (as used in the Bayesian approach)

to distinguish between uncertainty and ignorance (or between certainty and

confidence) [Levi, 1990,Tassem, 1992];

(b) are a more reasonable way to describe confidence (instead of using a single

point) [Chrisman, 1996b];
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(c) may arise from incomplete or partial elicitation (e.g., when insufficient knowledge

is available) or when it is too time consuming to obtain the necessary knowledge

to estimate exact probabilities [Good, 1962,Fertig and Breese, 1993];

(d) are useful for studying sensitivity and robustness in probabilistic inference [Berger,

1982,Walley, 1991,Wasserman and Kadane, 1992];

(e) can be used to weigh computational precision against modeling precision [Cozman

and Krotkov, 1996];

(f) arise in group decision problems [Seidenfeld et al., 1989] and in axiomatic ap-

proaches to uncertainty when the axioms of probability are weakened [Giron

and Rios, 1980,Walley, 1991];

(g) arise when determining constraints on probabilities given only the probabilities

of only a finite set of other events [Nilsson, 1986];

(h) may result from the abstraction of more detailed probabilistic models [Chrisman,

1992,Chrisman, 1996a,Haddawy and Suwandi, 1994].

1.3.2.1.1 Dempster-Shafer (DS) Theoretic Functions Dempster-Shafer (DS)

belief theoretic functions constitute the special class of ∞-monotone i.v. probability

functions. So, not too surprisingly, and in contrast to fuzzy sets, rough sets, and

similar uncertainty handling frameworks, the DS theoretic (DST) framework bears a

closer relationship to the probabilistic framework [Fagin and Halpern, 1990]. In fact,

(a) the inner and outer measures of a non-measurable event turn out to be closely

related to the DST notions of belief and plausibility, respectively [Fagin and

Halpern, 1990,Halpern and Fagin, 1992]; and
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(b) DST models converge to probability mass function (p.m.f.) models in the limiting

case [Shafer, 1976], thus enabling one to swiftly generalize legacy probabilistic

techniques.

Therefore, DST functions can be viewed as generalizations of p.m.f.s [Dempster,

1968, Shafer, 1976, Halpern and Fagin, 1992, Smets, 1992, Smets, 1994]. DST models

are also more intuitive in the way they capture probabilistic and possibilistic data and

the types of uncertainties and nuances of “soft” data [Yager et al., 1994, Blackman

and Popoli, 1999, Vannoorenberghe, 2004, Hewawasam et al., 2007, Wickramarathne

et al., 2014, Dabarera et al., 2016]. For example, completely missing/unknown data

can be captured via the DST “vacuous” model and data ambiguities precipitated by

the inability to discern between hypotheses due to lack of evidence can be captured by

allocating evidential support for non-singleton propositions. These factors explain the

popularity and the widespread use of the DST framework for dealing with different

types of data imperfections.

However, the utility of DS theoretic (DST) models for learning, knowledge dis-

covery, reasoning, and inference in a computationally efficient manner is still a cause

for concern. The expressive power of DST models comes at the expense of a higher

computational burden. While significant advances have been made for mitigating the

computational complexity, e.g., [Bauer, 1997, Wilson, 2001, Wickramarathne et al.,

2013], and the very recent work in [Polpitiya et al., 2016, Polpitiya et al., 2017],

this computational burden constitutes the main criticism that the DST approach has

drawn over the years.

1.3.2.1.2 Probability Bounds Instead, in this work, we develop a framework

which is grounded on i.v. probabilities which are not required to be monotonic, or,
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for convenience of reference, probability bounds. This is in stark contrast previous

work on i.v. probability functions which are required to be monotonic (see the works

quoted in Section 1.3.2.1).

Relinquishing the requirement of monotonicity yields a framework that enables

parameter learning, knowledge discovery, reasoning, and inference in much the same

manner as one would carry out these tasks with probabilities (as in a Bayesian net-

work, for example).

We pay special emphasis to datasets where attribute values could be unknown,

missing, known to lie within a set of values or are most general evidential data. For

such datasets, we show that an intuitive frequency counting method can be employed

to learn interval-valued parameters which are guaranteed to capture the underlying

probabilities. As it turns out, the parameters so learned are DS belief theoretic

functions.

1.4 Organization of the Document

Here we provide a brief overview of the contents of each chapter of this document.

1.4.1 Chapter 2 Preliminaries

Chapter 2 introduces the basic notions related to i.v. probabilities and DS theory

that are essential for the work being proposed.
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1.4.2 Chapter 3 Imperfect Implication Rules

Implication rules, which take the form “if A, then B” or, as is often expressed, R :

A =⇒ B, constitute the backbone of reasoning and inference engines. A large volume

of existing work addresses the extraction of such rules from databases and their use

in various application scenarios [Agrawal et al., 1993,Agrawal and Srikant, 1994,Liu

et al., 1998, Li et al., 2001, Nanavati et al., 2001]. However, most of these works do

not allow evidence/information to be imperfect. In reality, the rule consequent B

and the rule R : A =⇒ B itself are imperfect. And, of course, one cannot expect to

get “perfect” rules when only finite databases are available for parameter and rule

extraction.

Probabilistic and fuzzy models are perhaps the two most commonly used ap-

proaches to capture imperfect rules [Dubois et al., 2001,Nguyen et al., 2002]. Several

previous works provide DST models of imperfect rules: in [Ginsberg, 1984, Hau and

Kashyap, 1990], DST fusion/combination strategies are employed to get results that

are similar to ours, but the general bounds and inequalities that we derive are absent

and the approach taken is different; in [Benavoli et al., 2008], emphasis is placed

on satisfying the material implications of propositional logic statements; in [Nunez

et al., 2013], a complete uncertain logic framework (imperfect rules being a special

case) which is compatible with classical (perfect) logic [Nguyen et al., 2002] is pro-

vided. We take a different view: we do not impose compatibility with classical logic in

imperfect domains; rather, we expect compatibility only when the domain is perfect,

so that our model is very general and all probability and classical logic models follow

as special cases.
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Our model is based on the DST Fagin-Halpern (FH) conditional [Fagin and

Halpern, 1990]. While the use of the Bayesian conditional has been criticized as a

model of probabilistic imperfect rules [Lewis, 1976,Benavoli et al., 2008], we demon-

strate that the DST FH conditionals can be used as an effective i.v. model of an

imperfect rule which can then be fused with an imperfect antecedent. Given the un-

certainty intervals associated with the rule antecedent and the rule itself, we derive

explicit lower and upper bounds for the uncertainty interval of the rule consequent.

Then we explicitly show its consistency with Bayesian inference and classical logic.

1.4.3 Chapter 4 PrBounds: A Framework Based on Proba-

bility Bounds

From Bayesian networks (BNs) to factor graphs, graphical structures offer efficient

algorithms to deal with functions of many variables by exploiting how they can be

factorized into a product of functions of a smaller number of variables [Kschischang

et al., 2001]. For example, Bayesian networks (BNs) explicitly “code” and capitalize

on conditional independence properties to factor a joint probability distribution. This

information is then exploited for reasoning and inference with uncertain knowledge

[Pearl, 1988,Lauritzen and Wermuth, 1989,Daly et al., 2011,Whittaker, 1990,Castillo

et al., 1997]. The recent work in [Coden et al., 2016,D’Addabbo et al., 2016,Leicester

et al., 2016, Roudposhti et al., 2016, Villalba et al., 2016, Das et al., 2017, Kourou

et al., 2017] is representative of the widespread utility of graphical models in a broad

spectrum of application scenarios.

Existing works of graphical models that allow reasoning with i.v. probabilities

consist of two views. Bayesian sensitivity analysis views i.v. probabilities as the
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lower/upper bounds corresponding to a set of underlying probabilities which imme-

diately raises the difficulty of how to capture the notion of independence (including

conditional independence). Bayesian analysis interpretation-based work, including

work related to credal networks, the imprecise probability version of BNs [van der

Gaag, 1990,Tassem, 1992,Jaffray, 1992,Cozman, 2000], often utilizes strong indepen-

dence, a strong assumption requiring all the extreme distributions to display inde-

pendence [Augustin et al., 2014], as a surrogate of the notion of independence.

The alternate behavioral interpretation, which can be developed with no recourse

to probabilities, is the theory of coherent lower/upper previsions (or “expectations”)

[Walley, 1991,Walley, 1996,Miranda, 2008]. This work, including work on credal net-

works viewed through the lens of behavioral interpretation, employ another surrogate

notion of independence called epistemic independence which enables factorizibility

properties to be utilized as in BNs [de Cooman et al., 2010,de Cooman et al., 2011,Au-

gustin et al., 2014]. However, epistemic independence may not be a good indicator of

probabilistic independence when dealing with imperfect datasets. In addition, natural

extension, the mathematical procedure required to preserve “coherence”, requires ad-

ditional computations [Walley, 1991,Walley, 1996,de Cooman et al., 2010,de Cooman

et al., 2011,Augustin et al., 2014].

These different surrogate notions of independence are defined in terms of lower/upper

bounds, and no two notions are necessarily consistent with each other [de Campos

and Moral, 1995,Chrisman, 1996a,de Cooman et al., 2011,Augustin et al., 2014].

We prefer to view i.v. probabilities as emerging from a single underlying true prob-

ability distribution instead of from a set of underlying distributions. It is important

to draw a distinction between this view and the presumption of a single underlying
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distribution (which would essentially dictate how data imputation is to be carried

out), a strategy which has drawn criticism [Cozman, 1997, Zaffalon, 2002b, Halpern

and Leung, 2016]. We interpret i.v. probabilities — which, for convenience, we call

PrBounds — as how an agent captures and quantifies the underlying distribution

when it has access to only partial information about it. So the set of PrBounds an

agent generates is tacitly taken to be “consistent” in that it contains the underly-

ing distribution. In a multiple agent scenario, one then encounters multiple sets of

PrBounds, each agent generating its own set of consistent PrBounds depending on the

evidence it has access to. With this vantage point of a single underlying distribution,

we take a fresh look at the i.v. conditional and independence notions and demon-

strate how PrBounds could be maneuvered for parameter learning and reasoning with

computational complexity comparable to what is required in BNs. Of course, when

it comes to parameter learning from a dataset, we assume that any subjective knowl-

edge about variables (e.g., independence and conditional independence) is reflected

within the true dataset (which of course may not be available).

This viewpoint of a single underlying distribution, which is in fact a special case of

the Bayesian analysis interpretation, is not new and appears in, for example, [Quin-

lan, 1983, Grosof, 1985, van der Gaag, 1990]. The i.v. probability notion employed

in [Quinlan, 1983] impose additional constraints (called inferno propagation con-

straints). The work in [Grosof, 1985] utilizes an inequality paradigm to arrive at

the i.v. probabilities associated with a single underlying distribution (although no

explicit mention of a single underlying distribution is made). The work in [van der

Gaag, 1990] addresses a different issue in that it provides a linear algebraic strategy

to find unknown probabilities when the joint distribution is known only partially. Our
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work differs from this work in that we avoid imposing any additional constraints on

PrBounds, and in how we use and exploit i.v. conditionals and independence notions

and in how we attribute these explicitly to the underlying distribution.

1.4.4 Chapter 5 Learning Parameters From Imperfect Data

We pay special attention to a type of uncertainty that is most commonly en-

countered in realistic datasets: attribute values that are unknown/missing or that

are known to lie within a set of values but otherwise cannot be discerned further

(Definition 7). For datasets populated with only this type of uncertainty, we give

a computationally more tractable alternative to compute all the probability bounds

for each attribute (Corollary 3), an efficient way to obtain lower/upper probability

bounds for each data record (Lemma 6), and an intuitive frequency counting method

to learn the lower/upper bounds of probability and conditional probability parameters

that are needed for our i.v. graphical models. Importantly, the underlying proba-

bilities are guaranteed to be constrained within the bounds learned in this manner

(Corollary 5).

Example 2 (Example 1 Revisited) The results we develop (see Example 9) in-

deed show that, in Example 1,

P (a1, b1, c1) ∈ [1/7, 3/7].

Our results apply to conditional probabilities as well as intermediate results generated

in, for example, graphical models. For example, what is the probability P (a1|c1) that

attribute-1 takes the value a1 given that attribute-3 takes the value c1? If attribute-3

of (a1, b1, ?) is c1, P (a1|c1) is bounded by [2/3, 1]; if not, it is bounded by [1/2, 1].

So, P (a1|c1) is bounded by [1/2, 1], exactly what our results yield.
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1.4.5 Chapter 6 Deep Fusion Networks (DFNs)

Neural networks and/or deep learning architectures that can handle imperfect or

uncertain data with DS theory have already appeared in the literature [Denoeux and

Bjanger, 2000, Soua et al., 2016, Wang et al., 2016, Itkina and Kochenderfer, 2017].

The work in [Denoeux and Bjanger, 2000] employs the Dempster’s combination rule

(DCR) for evidence combination and allows only uncertainties in the label variables

and not in the attributes. The work in [Soua et al., 2016] does not use uncertain

attributes or uncertain labels, but it uses Dempster’s rule of conditioning to combine

two network outputs before making its final decision. The work in [Wang et al., 2016]

uses DS masses as inputs and certain combination strategies that are related to DCR

at the neurons. The work in [Itkina and Kochenderfer, 2017] uses the DCR to combine

different types of occupancy grid information before feeding the fused outputs to the

neural network. A

In this chapter, we develop what we refer to as a deep fusion network (DFN),

a PrBounds-based deep learning architecture which can be used to automate fusion

of input data streams, fusion parameter selection, and classification of potentially

uncertain data emanating from multi-modal sensors. This architecture consists of a

fusion layer, where data fusion of the input data streams occurs. The initial stages of

the network operates on the lower and upper PrBounds in parallel, and it utilizes new

activation functions that are more appropriate for PrBound pairs. It also incorporates

a layer to increase the system resilience to sensor failures. With these innovations,

the proposed DFN is able deal with uncertain data and deliver higher performance

compared to conventional methods used in deep learning.



CHAPTER 2

Preliminaries

2.1 Basic Notation

We use N and R to denote the integers and reals, respectively. We will attach a

subscript to these to restrict their domain of definition. For example, R≥0 denotes

the non-negative reals; R[0,1] denotes the reals taking values in [0, 1].

We use Θ to denote the sample or state space of outcomes of an experiment.

Given A ⊆ Θ, A is its set theoretic complement (in Θ), i.e., A = Θ \A, and |A| is its

cardinality. The power set of all possible subsets of Θ is denoted by 2Θ = {A | A ⊆ Θ}.

2.2 Interval-Valued (I.V.) Probabilities

Consider the probability space (Θ,X , p), where X is an event space or σ-algebra

(over Θ), and p is a probability measure. Then the inner and outer measures can be

thought of as the “best” probability interval one may allocate to a non-measurable

event [Fagin and Halpern, 1990].

When multiple probability measures are defined for the same sample and event

space pair (Θ,X ), they generate a lower/upper probability envelope pair. A notion

that is easier to characterize is the lower/upper probability function pair which is

16
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defined as a primitive concept with no recourse to an underlying set of probability

measures [Chateauneuf and Jaffray, 1989,Cozman, 1997,Huber and Ronchetti, 2009]:

Definition 1 (Lower/Upper Probability Function Pair) A K-monotone lower

probability function for (Θ,X ) is any function L(K)(·) : X 7→ [0, 1] s.t. L(K)(∅) = 0,

L(K)(Θ) = 1, and

(i) for K = 1: ∀A1, A2 ⊆ Θ, L(1)(A1) ≤ L(1)(A2) whenever A1 ⊆ A2; and

(ii) for K ≥ 2: ∀Ai ⊆ Θ,

L(K)

(
K⋃
i=1

Ai

)
≥

∑
I⊆{1,...,K}
I6=∅

(−1)|I|+1L(K)

(⋂
i∈I

Ai

)
.

The corresponding K-monotone upper probability function U(K)(·) : X 7→ [0, 1] is

U(K)(A) = 1 − L(K)(A), ∀A ⊆ Θ. A function which is K-monotone for all K ≥ 1 is

said to be ∞-monotone.

One can think of 1- and∞-monotonicity as the “weakest” and “strongest” mono-

tonicity conditions, respectively, because a K-monotone function is K ′-monotone for

all 1 ≤ K ′ ≤ K [Chateauneuf and Jaffray, 1989]. It turns out that lower/upper

probability envelopes are 1-monotone [Chrisman, 1996a] and inner measures are ∞-

monotone [Choquet, 1954, Chateauneuf and Jaffray, 1989, Fagin and Halpern, 1990].

In practice, higher monotone probability functions are preferred because they can lead

to mathematically more tractable and “cleaner” results [Chrisman, 1996a,Chrisman,

1996b].

Given a probability function pair {L(K)(·),U(K)(·)}, the p.m.f. P (·) is said to be

consistent with it if [Chateauneuf and Jaffray, 1989]

0 ≤ L(K)(A) ≤ P (A) ≤ U(K)(A) ≤ 1, ∀A ⊆ Θ. (2.1)
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An∞-monotone pair is guaranteed to possess at least one consistent p.m.f. [Chateauneuf

and Jaffray, 1989].

2.3 Demspter-Shafer (DS) Belief Theory

It turns out that ∞-monotone probability functions are essentially DS theoretic

(DST) belief functions [Chateauneuf and Jaffray, 1989,Fagin and Halpern, 1990,Chris-

man, 1996a,Choquet, 1954].

Suppose Θ = {θ1, . . . , θN} is a finite set of N mutually exclusive and exhaustive

outcomes. In our work, we restrict our attention to the case of a finite number of

outcomes, i.e., |Θ| = N, N ∈ N≥0. The lowest level of discernible information is

captured by the elementary outcomes θi ∈ Θ, which we refer to as singletons. In DS

theory, Θ is usually called the frame of discernment (FoD) [Shafer, 1976].

2.3.1 Basic DST Notions

2.3.1.1 Basic Belief or Mass Assignment, Belief, Plausibility

Definition 2 (Basic Belief or Mass Assignment, Belief, Plausibility) Consider

the FoD Θ.

(i) The mapping m : 2Θ 7→ [0, 1] : A 7→ m(A) is referred to as a basic belief

assignment (BBA) or mass assignment if∑
A⊆Θ

m(A) = 1 and m(∅) = 0.

(ii) The mapping Bl : 2Θ 7→ [0, 1] : A 7→ Bl(A), where

Bl(A) =
∑
B⊆A

m(B),
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is referred to as the corresponding belief function.

(iii) The mapping Pl : 2Θ 7→ [0, 1] : A 7→ Pl(A), where

Pl(A) =
∑

A∩B 6=∅

m(B),

is referred to as the corresponding plausibility function.

Remarks:

1. The mass m(A) can be thought of as a measure of the “support” being assigned

to the proposition A, and A only. On the other hand, the belief Bl(A) can be

thought of as the support for all propositions that are certain to be implied by A,

and the plausibility Pl(A) can be thought of as the support for all propositions

that may be implied by A. Alternately, Bl(A) represents the total support

committed to A without also being committed to its complement A, and Pl(A)

represents the total belief that does not contradict A.

2. Note that,

0 ≤ Bl(A) ≤ Pl(A) ≤ 1, ∀A ⊆ Θ, (2.2)

and

Bl(A) + Pl(A) = 1, ∀A ⊆ Θ. (2.3)

3. The interval Un(A) = [Bl(A), P l(A)] is referred to as the uncertainty interval

associated with A ⊆ Θ; |Un(A)| = Pl(A) − Bl(A) is the uncertainty interval

width.
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2.3.1.2 Focal Elements, Core, Body of Evidence

A focal element is a proposition that receives non-zero mass and the core F is the

set of focal elements, i.e,

F = {A ⊆ Θ | m(A) > 0}. (2.4)

A focal element can be a singleton or a non-singleton. For instance, the mass m(θi, θj)

allocated to the doubleton (θi, θj), θi, θj ∈ Θ, represents ignorance or lack of evidence

to differentiate between the occurrence of singleton θi or θj. The body of evidence

(BoE) is the triple E = {Θ,F,m}.

The vacuous BoE 1Θ, which has Θ as its only focal element, captures the state of

complete ignorance. A BoE is called Bayesian (or probabilistic) if its core consists of

only singletons. For a Bayesian BoE, the BBA, belief, and plausibility, all reduce to

the same probability (i.e., p.m.f.) assignment.

One can find a consistent probability mass function (p.m.f.) for the DST pair

{Bl(·), P l(·)} because it is ∞-monotone [Chateauneuf and Jaffray, 1989]. One such

consistent p.m.f. is the pignistic probability [Smets, 1999]

BetP (θi) =
∑

θi∈A⊆Θ

m(A)

|A|
, θi ∈ Θ. (2.5)

2.3.1.3 Computational Considerations

The expressive power wielded by the DST framework demands a high compu-

tational cost. For a given FoD Θ, where |Θ| = N , a DST model allocates 2N − 2

mass assignments; in contrast, only N − 1 probability assignments are required for a

p.m.f. Much advances have been made for the purpose of mitigating the associated

computational burden, e.g., [Bauer, 1997,Wilson, 2001,Wickramarathne et al., 2013],

and the more recent work in [Polpitiya et al., 2016,Polpitiya et al., 2017].
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A special DST model which retains the ability to capture complete ignorance with

only a slight increase in computational complexity is the Dirichlet BoE (so named be-

cause of its close relationship with Dirichlet probability distributions [Josang, 2010]).

The core of a Dirichlet BoE can only consist of the singletons {θi} and Θ only, thus

requiring only N mass assignments.

2.3.2 Conditioning

The conditional operation plays perhaps the most pivotal role in evidence updating

and fusion, and in general, in reasoning under uncertainty. When it comes to DST

functions, notable among the various conditional notions that have been proposed

over the years are the Dempster’s conditional [Shafer, 1976, Klawonn and Smets,

1992, Nguyen and Smets, 1993, Xu and Smets, 1996, Smets, 2002] and the Fagin-

Halpern (FH) conditional [Fagin and Halpern, 1990].

Definition 3 Consider the BoE E = {Θ,F,m} and B ⊆ Θ.

(i) For Pl(B) > 0, the Dempster’s conditional belief and plausibility of A given B

respectively are [Shafer, 1976]

Bl(A :B) =
Bl(A ∪ B)− Bl(B)

Pl(B)
; Pl(A :B) =

Pl(A ∩ B)

Pl(B)
.

(ii) For Bl(B) > 0, the Fagin-Halpern (FH) conditional belief and plausibility of A

given B respectively are [Fagin and Halpern, 1990]

Bl(A|B) =
Bl(A ∩ B)

Bl(A ∩B) + Pl(A ∩ B)
; Pl(A|B) =

Pl(A ∩ B)

Pl(A ∩ B) + Bl(A ∩ B)
.

The Dempster’s conditional and the FH conditional are related as [Fagin and

Halpern, 1990].

Bl(A|B) ≤ Bl(A :B) ≤ Pl(A :B) ≤ Pl(A|B). (2.6)
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It is well-known that the Dempster’s conditional may not be reconcilable with

probability theory [Smets, 1992,Smets, 1994,Smets, 1999,Heendeni et al., 2016]. On

the other hand, of the various notions of DST conditionals that abound in the litera-

ture, the FH conditional offers a unique probabilistic interpretation and constitutes a

natural transition to the Bayesian conditional notion because of its close connection

with the inner/outer conditional probability measures [Fagin and Halpern, 1990,Wick-

ramarathne et al., 2013]. The conditional approach, a newer strategy for updating

and fusion of DST evidence, is in fact based on this FH conditional [Premaratne

et al., 2009, Wickramarathne et al., 2011b, Wickramarathne et al., 2011a, Ferdous

et al., 2012,Sarathy et al., 2017,Shi et al., 2017,Zhang et al., 2017].

2.3.2.1 Computational Considerations

When it comes to the Dempster’s conditional, a thorough discussion on how

one may carry out the conditional computation is provided in [Klawonn and Smets,

1992, Smets, 2002]. As for the FH conditional, The conditional core theorem [Wick-

ramarathne et al., 2013] can be utilized to directly identify the conditional focal

elements. Perhaps the first work that directly deals with the FH conditional compu-

tation appears in [Polpitiya et al., 2017].



CHAPTER 3

Imperfect Implication Rules

In this chapter we describe how imperfect implication rules can be modeled so

that they could be utilized within rule-based systems. This work also forms the basis

on which one may develop systems that work with imperfect logic.

3.1 Model

3.1.1 Rule Uncertainty

Consider the implication rule R : A =⇒ B, where A denotes the antecedent, B

denotes the consequent, and =⇒ denotes the implication. In situations where A and

B belong to two different BoEs, we assume that a common BoE has been established

(e.g., the cross-product BoE) so that both the antecedent and consequent belong to

the same BoE.

As for the uncertainty interval associated with the rule R : A =⇒ B itself, let us

explore using the quantities

Bl(R) = Bl(B|A); Pl(R) = Pl(B|A). (3.1)

With the results we develop, we argue that these conditionals Bl(R) = Bl(B|A)

and Pl(R) = Pl(B|A) capture the uncertainty associated with the rule R : A =⇒ B

23



24

reasonably well. We also show that, if we have additional evidence regarding the rule

R : A =⇒ B, we may use the uncertainty associated with R : A =⇒ B (captured

via Bl(B|A) and Pl(B|A)) to obtain more refined results regarding the uncertainty

interval associated with the consequent B of R : A =⇒ B.

3.1.2 Consequent Uncertainty

What is the uncertainty interval associated with the consequent B of the rule

R : A =⇒ B given the uncertainty intervals associated with its antecedent A and

the rule R itself? To proceed, let us use the following notation:

Bl(A) = α1; Pl(A) = β1; Bl(B) = α2; Pl(B) = β2;

Bl(B|A) = αR; Pl(B|A) = βR; Bl(B|A) = αR; Pl(B|A) = βR. (3.2)

We then have the following result:

Theorem 1 (Consequent Uncertainty: General Bounds) The uncertainty in-

terval [α2, β2] associated with the consequent B of the rule R : A =⇒ B satisfies

0 ≤ α1αR + (1− β1)αR ≤ α2 ≤ β2 ≤ α1βR + (1− β1) βR + Un(A) ≤ 1.

Here, [αR, βR] and [αR, βR] refer to the uncertainty intervals associated with the rules

R : A =⇒ B and R : A =⇒ B, respectively, and Un(A) = (β1−α1) is the uncertainty

interval width associated with the antecedent A.

Proof. Note that

Bl(B) = Bl(B ∩ A) + Bl(B ∩ A) +
∑

∅6=P⊆(B∩A)

∅6=Q⊆(B∩A)

m(P ∪Q), (3.3)
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From (3.3), we get

Bl(B ∩ A) + Bl(B ∩ A) ≤ Bl(B). (3.4)

We also know that Bl(A) ≤ Bl(B ∩A) + Pl(B ∩A) [Kulasekere et al., 2004] . This,

together with the FH conditionals (where Bl(A) 6= 0), then lead us to

Bl(A)Bl(B|A) ≤ Bl(B ∩ A). (3.5)

This inequality holds true for Bl(A) = 0 as well. Substitute A for A in (3.5):

Bl(A)Bl(B|A) ≤ Bl(B ∩ A). (3.6)

Upper bound on α2: Use (3.4), (3.5), and (3.6), and use the fact that Bl(A) =

1− Pl(A), and the notation in (3.2) to get

α1αR + (1− β1)αR ≤ α2.

It is easy to verify that 0 ≤ α1αR + (1− β1)αR.

Lower bound on β2: Substitute B for B in (3.4),(3.5), and (3.6):

Bl(B) ≥ Bl(A)Bl(B|A) + Bl(A)Bl(B|A).

Use Bl(B) = 1− Pl(B), Bl(B|A) = 1− Pl(B|A), and Bl(B|A) = 1− Pl(B|A), and

the notation in (3.2) to get

β2 ≤ α1βR + (1− β1) βR + (β1 − α1).

It is easy to verify that α1βR + (1− β1) βR + (β1 − α1) ≤ 1.

Remarks:

1. Table 3.1 illustrates how the uncertainty interval of the consequent as given by

the general bounds in Theorem 1 are affected by the incorporation/removal of

information on each of the rules R : A =⇒ B and/or R : A =⇒ B.
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Table 3.1: Uncertainty Interval Associated With the Rule Consequent: Effect of the
Rules R : A =⇒ B and R : A =⇒ B.
Note: Columns 3 and 4 give bounds (not exact values) for α2 and β2, respectively.

Available Parameters Lower Bound Upper Bound
Information on α2 on β2

None αR = αR = 0; 0 1
βR = βR = 1

Ralaxed Bounds:
R only αR = 0; α1αR 1− α1(1− βR)

βR = 1

R only αR = 0; (1− β1)αR 1− β1(1− βR)
βR = 1

General Bounds:
Both R and R α1αR + (1− β1)αR α1βR + (1− β1) βR + Un(A)
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(a) Note that the bounds corresponding to both rules cannot be wider than the

bounds corresponding to one rule, i.e., the incorporation of more informa-

tion allows us to narrow the uncertainty interval [α2, β2] of the consequent.

(b) We will refer to the bounds obtained when information regarding only the

rule R is available as relaxed bounds, viz.,

0 ≤ α1αR ≤ α2 ≤ β2 ≤ 1− α1(1− βR) ≤ 1. (3.7)

2. We define the least commitment (LC) choice; that we are rely on the avail-

able intervals which are wider than the actual intervals. Accordingly, with the

LC choice, we may select the following values for α2 and β2 (therefore when

LC choice is used, α2 and β2 provide not exact values, but lower and upper

boundaries for Bl(B) and Pl(B) respectively):

(a) General bounds:

α1αR + (1− β1)αR = α2 ≤ β2 = α1βR + (1− β1) βR + (β1 − α1). (3.8)

(b) Relaxed bounds:

α1αR = α2 ≤ β2 = 1− α1(1− βR). (3.9)

As a comparison, the work in [Benavoli et al., 2008] gives α1αR = α2 ≤ β2 =

1− (1− β1)(1− βR).

Since the relaxed bounds in (3.7) considers the implication R : A =⇒ B only, we

propose to employ these to capture the uncertainty associated with the rule R:

Definition 4 (Consequent Uncertainty of an Implication Rule) Consider the

implication rule R : A =⇒ B where the uncertainty associated with the rule R and its
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antecedent A are [αR, βR] and [α1, β1], respectively. Then the uncertainty associated

with the consequent B is [α2, β2], where

α1αR ≤ α2 ≤ β2 ≤ 1− α1(1− βR).

With the LC choice, we use

α1αR = α2 ≤ β2 = 1− α1(1− βR).

3.1.2.1 Interpretation of the Consequent Uncertainty Interval

The general bounds in Theorem 1 yield the following upper bound on the conse-

quent uncertainty interval Un(B) = β2 − α2:

Un(B) ≤ Un(A) + α1Un(R) + (1− β1)Un(R), (3.10)

where Un(R) = βR − αR and Un(R) = βR − αR are the uncertainty intervals asso-

ciated with the rules R and R, respectively, and Un(A) = β1 − α1 is the antecedent

uncertainty interval. Note that 0 ≤ Un(B) ≤ 1.

This upper bound of the consequent uncertainty interval has an interesting in-

tuitive interpretation: the uncertainty interval Un(B) of the consequent is bounded

above by the uncertainty interval Un(A) of the antecedent plus the uncertainty in-

tervals of the rules R : A =⇒ B and R : A =⇒ B weighted by their corresponding

belief terms Bl(A) = α1 and Bl(A) = 1− β1, respectively.

3.2 Consistency With Probability

For p.m.f.s, notice the following:
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(i) The last summation term in (3.3) is absent. Therefore, the inequality (3.4)

reduces to an equality, thus yielding

Pr(B) = Pr(B ∩ A) + Pr(B ∩ A). (3.11)

(ii) The inequality in (3.5) reduces to an inequality, thus yielding

Pr(A)Pr(B|A) = Pr(B ∩ A). (3.12)

So, continuing through the proof of Theorem 1, we get the following “equalities”

instead of the “inequalities” in Theorem 1 for α2 and β2:

0 ≤ α1αR + (1− β1)αR = α2 ≤ β2 = α1βR + (1− β1) βR + (β1 − α1) ≤ 1. (3.13)

Note that these correspond to the LC choice associated with the general bounds (see

(3.8)).

We now obtain Table 3.2 which illustrates the situation when the antecedent

and/or the rules are probabilistic. Note the following:

(i) When the rules are probabilistic, the uncertainty interval width of the antecedent

propagates through to the consequent.

(i) When both the antecedent and the rules are probabilistic, so is the consequent,

and

α2 = β2 = α1αR + (1− α1)αR (3.14)

corresponds to the probabilistic relationship

Pr(B) = Pr(A)Pr(B|A) + Pr(A)Pr(B|A). (3.15)
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Table 3.2: Uncertainty Interval Associated With the Rule Consequent: Probabilistic
Case.
Note: Columns 3 and 4 give exact values (not bounds) for α2 and β2, respectively.

Probabilistic Parameters α2 Value β2 Value
Information

Antecedent α1 = β1 α1αR + (1− α1)αR α1βR + (1− α1) βR

Rules αR = βR; α1αR + (1− β1)αR α1αR + (1− β1)αR + Un(A)
αR = βR

Both α1 = β1; α1αR + (1− α1)αR α1αR + (1− α1)αR
antecedent αR = βR
and rules αR = βR

3.3 Consistency with Classical Logic

To explore the relationship between our implication rule model and what classic

logic yields, we associate the two cases α1 = β1 = 1 and α1 = β1 = 0 with the logical

True and logical False in classical logic. For example, we may interpret α1 = β1 = 1

and α1 = β1 = 0 as the occurrence or non-occurrence of proposition A with 100%

confidence.

3.3.1 Classical Logic

With α1 = β1 = {0, 1} and α2 = β2 = {0, 1}, Table 3.3 shows the truth table for

R : A =⇒ B in classical logic.
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Table 3.3: Truth Table for A =⇒ B in Classical Logic

A B A =⇒ B (αR = βR)

0 0 1
0 1 1
1 0 0
1 1 1

3.3.2 Proposed Rule Model

With α1 = β1 = {0, 1}, αR = βR = {0, 1}, and αR = αR = {0, 1} in Theorem 1,

Table 3.4 shows the truth table for R : A =⇒ B associated with the proposed rule

model.

Table 3.4: Truth Table for R : A =⇒ B Associated With the Proposed Rule Model.
Note: Information regarding both R : A =⇒ B and R : A =⇒ B are assumed to be
available.

α1 = β1 αR = βR αR = βR α1αR + (1− β1)αR α1βR + (1− β1) βR α2 = β2

+Un(A)

0 0 0 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 1 1

Remarks:

1. Similar to the probabilistic case, the bounds in Theorem 1 reduce to equalities

in the classical logic case.
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2. The FH conditionals are not defined when α1 = β1 = 0 [Fagin and Halpern,

1990]. However, by taking a limiting argument where α1 = β1 → 0, it is easy to

show that the bounds in Theorem 1 remain valid with the formal subsstitution

of α1 = β1 = 0.

The truth table in Table 3.4 can be expressed as

(A ∧ (A =⇒ B)) ∨ (¬A ∧ (¬A =⇒ B)) = (A ∧ (¬A ∨ B)) ∨ (¬A ∧ (A ∨B))

= B. (3.16)

With α1 = β1 = {0, 1} and αR = βR = {0, 1} (and assuming that information

regarding the rule R : A =⇒ B is unavailable) in Definition 4, Table 3.5 shows the

truth table for R : A =⇒ B associated with the proposed rule model.

Table 3.5: Truth Table for R : A =⇒ B Associated With the Proposed Rule Model.
Note: Information regarding only R : A =⇒ B is assumed to be available.

α1 = β1 αR = βR α1αR 1− α1(1− βR) α2 β2

0 0 0 1 0 1
0 1 0 1 0 1
1 0 0 0 0 0
1 1 1 1 1 1

Let us compare the entries of Table 3.5 (obtained from the relaxed bounds in (3.7)

or Definition 4) and Table 3.3 (obtained from Table 3.3, the truth table for A =⇒ B

in classical logic).

(a) Antecedent is true: See lines 3-4, where both tables show identical behavior.

(b) Antecedent is false: See lines 1-2, where the tables behave differently.
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(b.1) When rule is true: The consequent can take 0 or 1 in both tables. Note

that the information in lines 1-2 of Table 3.3 are captured in line 2 of

Table 3.5 which explains that, when the antecedent is false and the impli-

cation rule is true, the consequent can be either true or false.

(b.2) When rule is false: This case does not appear in Table 3.3 whereas line 1

of Table 3.5 not only allows this, but it also allows the consequent to be

either true of false.

Tables 3.4 and 3.5 show that the model we have proposed is consistent with clas-

sical logic. In addition, it provides a better explanation of the behavior of implication

rules than what the classical logic model in Table 3.3 is able to provide.

In concluding this section, we wish to point out the following result which we can

use to refine the uncertainty interval associated with the consequent:

Lemma 1 Regarding the FH conditional,

min{Bl(B|A), Bl(B|A)} ≤ Bl(B) ≤ Pl(B) ≤ max{Pl(B|A), P l(B|A)}.

Proof: For convenience, let

M =
∑

∅6=P⊆(B∩A)

∅6=Q⊆(B∩A)

m(P ∪Q).
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Then,

Bl(B) = Bl(B ∩ A) + Bl(B ∩ A) +M

= Bl(B|A) [Bl(B ∩ A) + Pl(B ∩ A)] + Bl(B|A) [Bl(B ∩ A) + Pl(B ∩ A)]

+M

≥ min{Bl(B|A), Bl(B|A)} [Bl(B ∩ A) + Pl(B ∩ A) + Bl(B ∩ A)

+ Pl(B ∩ A)] +M

≥ min{Bl(B|A), Bl(B|A)} [Bl(B ∩ A) + Pl(B ∩ A) + Bl(B ∩ A)

+ Pl(B ∩ A) +M ]

= min{Bl(B|A), Bl(B|A)} [Bl(B) + Pl(B ∩ A) + Pl(B ∩ A)].

But, we know that

Pl(B ∩ A) + Pl(B ∩ A) ≥ Pl(B).

So,

Bl(B) ≥ min{Bl(B|A), Bl(B|A)} [Bl(B) + Pl(B)]

= min{Bl(B|A), Bl(B|A)}.

Substitute B instead of B in this lower bound Bl(B):

Bl(B) ≥ min{Bl(B|A), Bl(B|A)}.

So,

1− Bl(B) ≤ 1−min{Bl(B|A), Bl(B|A)},

i.e.,

Pl(B) ≤ max{1− Bl(B|A), 1− Bl(B|A)}

= max{Pl(B|A), P l(B|A)}.
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We may now use Lemma 1 to get

min{αR, αR} ≤ α2 ≤ β2 ≤ max{βR, βR}, (3.17)

which are also consistent with both Tables 3.4 and 3.5. So, together with the general

bounds in Theorem 1, one may employ the narrower bounds

0 ≤ max{α1αR + (1− β1)αR,min{αR, αR}}

≤ α2 ≤ β2

≤ min{α1βR + (1− β1) βR + Un(A),max{βR, βR}} ≤ 1. (3.18)

3.4 Illustrative Example

As an illustrative simple example, consider 3 urns A, B, and C containing red and

black balls. Table 3.6 describes the contents of each urn.

Table 3.6: 3-Urn Example: Contents of the Urns A, B, and C

Red Balls Black Balls Red or Black Balls
Urn (RB) (BB)

A 3 5 2
B 5 2 3
C 3 5 2

Consider the following experiment consisting of two trials:

(a) Trial 1: Select urn A and randomly take out a ball.

(b) Trial 2: If in Trial 1 we get a red ball (RB), take out a ball from urn B; otherwise,

if we get a black ball (BB), take out a ball from urn C.

What are the belief and plausibility values of getting a RB in Trial 2?
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In the DST framework, consider the following belief/plausibility pairs:

[α1, β1] = drawing a RB in Trial 1;

[αR, βR] = drawing a RB in Trial 2 given that Trial 1 yields a RB;

[α2, β2] = drawing a RB in Trial 2. (3.19)

Therefore,

[α1, β1] = [0.3, 0.5]; [α1, β1] = [0.5, 0.7];

[αR, βR] = [0.5, 0.8]; [αR, βR] = [0.3, 0.5]. (3.20)

Then, accounting for all the possibilities, we get

[α2, β2] = [0.36, 0.65]. (3.21)

Table 3.7 show what our results yield. Note that the general bounds are much

narrower than the relaxed bounds (which ignore the information in [αR, βR]).

Table 3.7: 3-Urn Example: Results

General bounds in Theorem 1: 0.30 ≤ α2 ≤ β2 ≤ 0.69

Relaxed bounds in Definition 4: 0.15 ≤ α2 ≤ β2 ≤ 0.94

Bounds in (3.17): 0.30 ≤ α2 ≤ β2 ≤ 0.80

Combined bounds in (3.18): 0.30 ≤ α2 ≤ β2 ≤ 0.69

True bounds in (3.21): 0.36 ≤ α2 ≤ β2 ≤ 0.65

3.5 Summary

Given the belief and plausibility pairs corresponding to the antecedent A and

the implication rule R : A =⇒ B, the work in this chapter provides bounds for the
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uncertainty interval of the rule’ consequent B. We also show that the uncertainty

interval of the consequent B can be further tightened by incorporating information,

if available, from the rule pair R : A =⇒ B and R : A =⇒ B.

The difficulty of capturing rule uncertainty via probability (e.g., using the con-

ditional Pr(B|A)) is well documented [Lewis, 1976, Benavoli et al., 2008]. Instead,

for our work, we model the implication rule in terms of the DST FH conditional

pair [Bl(B|A), P l(B|A)]. The justification of this model comes from the fact that

probability and classical logic models emerge as special cases of the proposed model.

Therefore, our model can be considered more general and more flexible than what

appears in previous works.



CHAPTER 4

PrBounds: A Framework Based on
Probability Bounds

4.1 Introductory Remarks

As mentioned in Section 1.4.3, our PrBound notion differ from the existing work

of interval valued probabilities. The main contributions of our work, which essentially

yields a framework for carrying out learning and reasoning with i.v. probabilities from

the vantage point of a single underlying distribution, are the following:

(a) No monotonicity or other constraint is imposed on the PrBound pairs (Defini-

tion 5). This allows one to carry out critical operations (e.g., evidence updating

in Bayesian inference) without having to ensure that intermediate results sat-

isfy the same constraints, i.e., it is not necessary to ensure that operations are

“closed under monotonicity” (Section 4.2.2.2).

(b) We develop PrBounds for conditionals in terms of the PrBounds of the underly-

ing unconditioned probability distribution (Theorem 2). At first glance, these

expressions we derive may appear trifling in that they take the same “struc-

tural” form as the many different i.v. conditional notions that have appeared

elsewhere. But these existing i.v. conditional notions require the lower bound
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of the interval associated with the conditioning proposition to be strictly posi-

tive, viz., the expressions for {PL(A|B), PU(A|B)}, the lower/upper bounds for

the conditional probability P (A|B), apply only when PL(B) > 0 [Fagin and

Halpern, 1990, Zaffalon, 2002a]. However, when one presupposes the existence

of a single underlying distribution, i.v. conditionals should exist as long as

P (B) > 0 (note that, while P (B) = 0 implies PL(B) = 0, the converse is not

necessarily true). Our i.v. conditional expressions are indeed valid whenever

P (B) > 0 (Theorem 2 and Corollary 1). To our knowledge, such expressions

have not appeared elsewhere (see [Walley, 1991] for some comments regarding

this exact issue.).

(c) Our vantage point allows us to take the stance that independence among vari-

ables is governed by the underlying distribution, and not by any i.v. probabil-

ity notion; rather, it emerges from the underlying distribution (Theorem 3).

In contrast, when one presupposes a set of underlying probabilities, one is

obliged to resort to defining independence in terms of surrogate notions in-

volving lower/upper bounds associated with i.v. probabilities, thus generating

notions that are neither consistent with each other nor rooted in probability. In-

deed, epistemic independence associated with the behavioral interpretation [de

Cooman et al., 2010,de Cooman et al., 2011,Augustin et al., 2014] may not re-

flect probabilistic independence when dealing with imperfect data (Example 5).

So the argument that Bayesian sensitivity analysis interpretation may be “un-

necessary” [Walley, 1996] has to be stated with the caveat to exclude the case

of a single underlying distribution.
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(d) The absence of additional constraints on PrBound pairs and, more importantly,

how the notion of independence is viewed, allow us to generalize graphical net-

works in that they operate much like their conventional counterparts [Pearl,

1988] but with PrBound pairs instead of probabilities (Section 4.3).

(e) The convenience, intuitiveness, and versatility that Dempster-Shafer (DS) belief

theoretic models offer can be harnessed to capture a wide variety of data im-

perfections in a principled manner [Blackman and Popoli, 1999]. The proposed

framework has the capability to learn PrBounds from more general evidential

datasets which are based on these DS theoretic (DST) models [Anand et al.,

1996, Vannoorenberghe, 2004, Hewawasam et al., 2007, Wickramarathne et al.,

2011a] (Section 5.2.1). However, because Dempster’s Combination Rule (DCR),

the popular DST fusion strategy [Shafer, 1976], may not be reconcilable with

probability [Smets, 1992,Smets, 1994,Smets, 1999,Heendeni et al., 2016,Núñez

et al., 2018], we avoid the DCR and its derivatives (e.g., the Dempster’s condi-

tional [Shafer, 1976]). This sets our work apart from work on DS theory, the

transferrable belief model, and Bayesian inference generalizations [Dempster,

1967,Dempster, 1968,Shafer, 1976,Smets, 1994].

(f) Previous work has explored how i.v. bounds could be learned in the presence of

a type of uncertainty that is most commonly encountered in real datasets, viz.,

attribute values that are unknown or missing or that are known to lie within a

set of values but otherwise cannot be discerned further [Tassem, 1992,Cozman,

2000, Zaffalon, 2002b, Zaffalon, 2002a, Augustin et al., 2014]. We also explore

this scenario (Definition 7), but from the vantage point of a single underly-

ing distribution. For such datasets, we give a computationally efficient and
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more tractable way to compute the PrBounds for each attribute and each data

record (Corollary 3 and Lemma 6) and an intuitive frequency counting method

to learn the PrBound and conditional PrBound parameters (Section 5.3.2.1).

The probabilities associated with an arbitrary imputation strategy, including

the underlying “true” probabilities, are guaranteed to be contained within the

PrBounds so learned (Section 5.3.2.2). This bestows a clear meaning to the

PrBounds thus introducing essentially a caveat to the argument that Bayesian

analysis interpretation of i.v. probabilities may be unable to offer a “useful

meaning” to the underlying set of distributions [Walley, 1996].

Our approach does share several similarities with existing imprecise probability ap-

proaches. For instance, upper/lower envelope computational methods, enumeration-

optimization algorithms, and decision making strategies employed within credal set

approaches to get bounds related to the credal set of distributions [Tassem, 1992,Coz-

man, 2000,Zaffalon, 2002b,Zaffalon, 2002a,Augustin et al., 2014] can also be employed

within the proposed framework, but now to get bounds associated with the single un-

derlying distribution.

4.2 Bounding the Probabilities

4.2.1 PrBounds

Definition 5 (PrBound Pairs) Suppose P (·) is a p.m.f. defined over Θ. A lower

PrBound for P (·) is any function L(·) : 2Θ 7→ [0, 1] s.t. L(∅) = 0, L(Θ) = 1, and

L(A) ≤ P (A), ∀A ⊆ Θ; an upper PrBound for P (·) is any function U(·) : 2Θ 7→ [0, 1]
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s.t. U(∅) = 0, U(Θ) = 1, and P (A) ≤ U(A), ∀A ⊆ Θ. Then, {L(A),U(A)} is said

to be a PrBound pair for P (A), and we denote as P (A) / {L(·),U(·)}.

We say that the PrBound pair {L′′(·),U′′(·)} is narrower than the PrBound pair

{L′(·),U′(·)} at A ⊆ Θ if L′(A) ≤ L′′(A) and U′(A) ≥ U′′(A).

Remarks.

1. Suppose P (A) / {L̃(A), Ũ(A)} and P (A) / {L̃(A), Ũ(A)}. But the fact P (A) +

P (A) = 1 yields 1−Ũ(A) ≤ P (A) ≤ 1−L̃(A) and 1−Ũ(A) ≤ P (A) ≤ 1−L̃(A),

meaning that we can use the narrower bound pairs

{L(A),U(A)} =
{

max{L̃(A), 1− Ũ(A)},min{Ũ(A), 1− L̃(A)}
}

;

{L(A),U(A)} =
{

max{L̃(A), 1− Ũ(A)},min{Ũ(A), 1− L̃(A)}
}
. (4.1)

Note that L(A)+U(A) = 1 and U(A)+L(A) = 1. So, with no loss of generality,

we take a PrBound pair to satisfy

L(A) + U(A) = 1, ∀A ⊆ Θ. (4.2)

2. Naturally, one should use the narrowest PrBounds. In fact, if the probability

P (A) of A ⊆ Θ is known, one should use {L(A),U(A)} = {P (A), P (A)}. In

particular, since it is always true that P (∅) = 0 and P (Θ) = 1, it is unnecessary

to explicitly state the PrBounds for ∅ and Θ in Definition 5.

3. Any monotone probability function pair, including a DST belief/plausibility

function pair (which is ∞-monotone [Pearl, 1990, Halpern and Fagin, 1992])

constitutes a valid PrBound pair. This enables us to learn PrBound parameters

from evidential datasets which are founded on DST models’ ability to capture
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a wide variety data imperfections. These learned PrBound parameters can

then be utilized within various operations (e.g., evidence updating, fusion, etc.)

without having to ensure that the resultants remain ∞-monotone.

4.2.2 Some Features of PrBound Pairs

We now highlight some features of the PrBounds as defined in Definition 5.

4.2.2.1 Synthesizing New PrBound Pairs

PrBound pairs are not unique in that multiple sets of PrBound pairs may bound

a given underlying p.m.f. When presented with multiple sets of PrBound pairs P (·) /

{Li(·),Ui(·)}, i ∈ 1, n, one can easily synthesize one “fused” set of narrower PrBound

pairs as P (·) / {{L(·),U(·)}, where

L(A) = max
i∈1,n
{Li(A)}; U(A) = min

i∈1,n
{Ui(A)}. (4.3)

Note that L(A) + U(A) = 1.

4.2.2.2 Jettisoning the Monotonicity Requirement

We do not require PrBounds to satisfy any monotonicity constraint because it can

be too restrictive and too unwieldy a property to maintain.

Example 3 Consider the underlying “true” probability

P (A) = 0.6; P (B) = 0.4, with P (A ∪B) = 0.7; P (A ∩ B) = 0.3.

Suppose we desire to “fit” a 2-monotone lower probability function PL(·) for P (·).

In the absence of any evidence, we must use PL(X) = 0, ∀X ⊆ Θ.
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Suppose we are now told that 0.5 ≤ P (A) and 0.3 ≤ P (B). To maintain 2-

monotonicity, the updated lower bounds must satisfy

PL(A ∪B) ≥ PL(A) + PL(B)− PL(A ∩ B) = 0.8,

which violates the true probability P (A ∪ B) = 0.7. In other words, we must ignore

the 2-monotonicity condition if we are to harness the new evidence.

How do PrBounds handle this scenario? Note that

P (A ∪ B) = P (A) + P (B)− P (A ∩ B) ≥ L(A) + L(B)− U(A ∩ B).

With L(A) = 0.5, L(B) = 0.3, and U(A ∩ B) = 1 (because we do not have any

evidence regarding P (A ∩B)), we get P (A ∩B) ≥ −0.2, and hence L(A ∩B) = 0, a

trivial yet non-contradictory statement.

However, with PrBounds, we have the opportunity to get a narrower set of PrBound

pairs. Indeed, note that

P (A ∪ B) ≥ max{P (A), P (B)} ≥ max{L(A),L(B)} = 0.5,

which yields P (A ∪ B) / {L(A ∪ B),U(A ∪ B)} = {0.5, 1}.

Monotonicity renders the bounds for each proposition interdependent, thus mak-

ing it difficult or impossible to update one (or a few) bounds without having to update

the bounds of other propositions.

Example 4 Take two events A,B ⊆ Θ for which we have no priors. So, as before,

we use the lower bounds PL(X) = 0, ∀X ⊆ Θ.

Suppose an expert now informs us that 0.2 ≤ P (A ∩ B). If we are to main-

tain monotonicity, then we cannot simply update PL(A ∩B) without updating PL(A)
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as well (although there is no direct evidence provided for P (A)). For instance, for

1-monotonicity, we must have PL(A ∩ B) ≤ PL(A) and therefore we cannot keep

PL(A) = 0 if we are to use PL(A∩B) = 0.2. This interdependence that monotonicity

compels leads to higher computational cost.

If we need, how could PrBounds be used to find a lower bound for P (A)? With

the given evidence, we would have L(A ∩ B) = 0.2 and L(A) = 0. Then, if P (·) is

the underlying probability,

P (A) = P (A ∩ B) + P (A ∩ B) ≥ L(A ∩ B) + L(A ∩ B) ≥ 0.2.

So if we need, we can update L(A) = 0 as L(A) = 0.2.

In this manner, provided that the required bounds are available, we can endow

PrBounds with up to ∞-monotonicity (because the underlying probability P (·) is

∞-monotone). This process of using the underlying probability to endow PrBounds

with monotonicity can be thought of as analogous to how natural extension is used

in imprecise probability formalisms to maintain coherence [Walley, 1991].

Jettisoning monotonicity also unshackles us from having to ensure that only op-

erations that are closed under monotonicity are employed within the learning and

reasoning processes. For instance, consider propositions Bi, i ∈ 1, n, that are con-

ditionally independent given A. The näıve Bayes classifier exploits this informa-

tion to extract the posterior P (A|B), where B = (B1, . . . , Bn), from the likelihoods

P (Bi|A), i ∈ 1, n, and the prior P (A). Various i.v. versions of this näıve Bayes

classifier have appeared in the literature (e.g., see [Zaffalon, 2002b, Heendeni et al.,

2016]); in Section 4.3.2.1 we develop its PrBound version. For now, take the lower

bound corresponding to the posterior in the näıve Bayes classifier in [Heendeni et al.,



46

2016]:

PL(A|B) =

PL(A)
n∏
i=1

PL(Bi|A)

PL(A)
n∏
i=1

PL(Bi|A) + PU(A)
n∏
i=1

PU(Bi|A)

. (4.4)

If the PL(·) and PU(·) terms in the right-hand side of this equation are∞-monotone

lower and upper functions respectively, then there is no guarantee that the computed

posterior PL(·|B) is ∞-monotone. Similarly, if PL(·) and PU(·) are lower and upper

envelopes respectively, then there is no guarantee that the computed posterior PL(·|B)

is the lower envelope of a conditional p.m.f. One may of course employ enumeration

techniques to ensure that the computed posterior retains the appropriate property,

but this would invariably add to the required computational complexity.

4.2.3 Conditioning

Hereafter, for the underlying p.m.f. P (·), we assume that P (·)/{L(·),U(·)}. When

referring to P (A|B), the assumption P (B) > 0 is implicit.

I.V. conditional notions have been developed in many different forms, including the

DST conditional belief in [Fagin and Halpern, 1990] (see Definition 3), the conditional

inner measure in [Fagin and Halpern, 1990], and the lower conditional credal set bound

in [Zaffalon, 2002b]. They all take a very similar “structural” form to that of DST

conditional belief Bl(A|B) in Definition 3.

Another common thread running through all these i.v. conditional notions is

that they require the lower bound of the interval associated with the conditioning

proposition to be strictly positive (e.g., Bl(B) > 0 in Definition 3). In this respect,

the conditional PrBounds that we develop below differ. The notion of PrBounds rests

on the premise that there is a single underlying true p.m.f. P (·), and in turn, for the
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conditional P (·|B) to exist, all one needs is P (B) > 0, a less conservative condition

than L(B) > 0.

First, here are the expressions for the conditional PrBounds:

Theorem 2 Let

∆L(A|B) = L(A ∩ B) + U(A ∩ B) and ∆U(A|B) = U(A ∩ B) + L(A ∩ B).

For ∆L(A|B) + ∆U(A|B) > 0, define {L(A|B),U(A|B)} as

L(A|B) =


L(A ∩B)

∆L(A|B)

, for ∆L(A|B) > 0, ∆U(A|B) ≥ 0;

0, for ∆L(A|B) = 0, ∆U(A|B) > 0;

U(A|B) =


U(A ∩B)

∆U(A|B)

, for ∆L(A|B) ≥ 0, ∆U(A|B) > 0;

1, for ∆L(A|B) > 0, ∆U(A|B) = 0.

Then, for P (B) > 0, P (A|B) / {L(A|B),U(A|B)}.

Proof: For P (B) > 0, the pair {L(A|B),U(A|B)} is well defined.

(a) Suppose ∆L(A|B) > 0 and ∆U(A|B) > 0. This is case 1 for {L(A|B),U(A|B)}.

(a.1) Suppose L(A ∩ B) > 0. Then P (A ∩ B) > 0 and we can write

P (A|B) =
P (A ∩B)

P (A ∩ B) + P (A ∩ B)
=

1

1 + P (A ∩ B)/P (A ∩ B)
.

Now use the bounds L(A∩B) ≤ P (A∩B) ≤ U(A∩B) and L(A∩B) ≤ P (A∩B) ≤

U(A∩B) to get 1/[1 +U(A∩B)/L(A∩B)] ≤ P (A|B) ≤ 1/[1 +L(A∩B)/U(A∩B)],

which yields L(A|B) ≤ P (A|B) ≤ U(A|B).

(a.2) Suppose L(A ∩ B) = 0. Then U(A ∩ B) > 0 and L(A|B) = 0. If

P (A ∩ B) > 0, then we can write P (A|B) = 1/[1 + P (A ∩ B)/P (A ∩ B)] ≤ 1/[1 +
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L(A ∩ B)/U(A ∩ B)] = U(A|B). So, clearly, L(A|B) = 0 ≤ P (A|B) ≤ U(A|B). If

on the other hand P (A ∩ B) = 0, then P (A|B) = P (A ∩ B)/P (B) = 0, and so

L(A|B) = 0 ≤ P (A|B) = 0 ≤ U(A|B).

(b) Suppose ∆L(A|B) = 0 and ∆U(A|B) > 0. This is case 2, i.e., {L(A|B),U(A|B)} =

{0, 1}.

(c) Suppose ∆L(A|B) > 0 and ∆U(A|B) = 0. This is case 3, i.e., {L(A|B),U(A|B)} =

{0, 1}. In both these cases, it is trivially true that L(A|B) = 0 ≤ P (A|B) ≤ U(A|B) =

1.

Verify that {L(∅|B),L(Θ|B)} = {0, 1} directly.

Remarks.

1. Note the following: When ∆L(A|B) > 0 and ∆U(A|B) = 0, we must have U(A∩B) =

L(A ∩ B) = 0 and U(A ∩ B) > 0 so that L(A ∩ B)/∆L(A|B) = 0. On the other

hand, when ∆L(A|B) = 0 and ∆U(A|B) > 0, we must have U(A∩B) = L(A∩B) =

0 and U(A ∩ B) > 0 so that U(A ∩ B)/∆U(A|B) = 1.

2. Observe that L(A|B) + U(A|B) = 1, ∀A ⊆ Θ.

Note that the conditional PrBound pair {L(A|B),U(A|B)} in Theorem 2 is well

defined whenever P (B) > 0 (and not L(B) > 0). In fact, as we now show, the condi-

tional PrBounds expressions in Theorem 2 explicitly capture the condition P (B) > 0:

Corollary 1 P (B) > 0 iff ∆L(A|B) + ∆U(A|B) > 0, or equivalently, P (B) = 0 iff

∆L(A|B) = ∆U(A|B) = 0.

Proof: We will show that P (B) = 0 iff ∆L(A|B) = ∆U(A|B) = 0.
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Necessity. Suppose ∆L(A|B) = ∆U(A|B) = 0. This implies that ∆L(A|B) = ∆U(A|B) =

0 =⇒ L(A ∩ B) = U(A ∩ B) = U(A ∩ B) = L(A ∩ B) = 0, meaning that

P (B) = P (A ∩ B) + P (A ∩ B) ≤ U(A ∩ B) + U(A ∩ B) = 0, i.e., P (B) = 0.

Sufficiency. Suppose P (B) = 0. This implies that P (A∩B) = P (A∩B) = 0 =⇒

L(A ∩ B) = L(A ∩ B) = 0 and U(A ∩ B) = U(A ∩ B) = 0 (Remark 2 section 4.2.1),

meaning that ∆L(A|B) = ∆U(A|B) = 0.

4.2.4 Independence

In probability, the two events A and B are said to be independent if either of the

following two equivalent conditions is true:

Factorizability: P (A ∩ B) = P (A)P (B); Irrelevance: P (A|B) = P (A). (4.5)

With i.v. probability functions, the notion of independence is hardly a settled

issue. As we elaborated upon earlier, when one presumes that the i.v. probabilities

are generated by a set of underlying p.m.f.s, no one consistent notion of independence

can be employed. In fact, neither factorizability nor irrelevance of the i.v. probability

bounds, viz.,

Factorizability: L(A ∩B) = L(A)L(B) and U(A ∩ B) = U(A)U(B);

Irrelevance: L(A|B) = L(A) and U(A|B) = U(A), (4.6)

is a good indicator of independence with respect to the underlying p.m.f.

Example 5 Consider the two datasets (5a) and (5b) in Table 4.1. Each attribute

can assume two states, viz., A = {a, a} and B = {b, b}.

Dataset (5a): P (a) = 0.5, P (b) = 0.5 and P (ab) = 0.25. So,

P (ab) = P (a)P (b); P (a|b) =
P (ab)

P (b)
= P (a),
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Table 4.1: Datasets for Examples 5 and 6

Example 5 Example 6

(5a) (5b) (6a) (6b)
A B A B A B A B

a b a b a � a b
a b a � a b a b
a b a b a b a b

a b � � a � a b

revealing an independence relation between A and B.

Dataset (5b): This is the same dataset in (5a), except that some attribute val-

ues are missing. We get {L(a),U(a)} = {0.25, 0.50}, {L(b),U(b)} = {0.25, 0.75},

{L(ab),U(ab)} = {0, 0.50}, and {L(ab),U(ab)} = {0.25, 0.5}. So,

L(ab) 6= L(a)L(b); U(ab) 6= U(a)U(b),

and

L(a|b) =
L(ab)

L(ab) + U(ab)
6= L(a); U(a|b) =

U(ab)

U(ab) + L(ab)
6= U(a).

So, independence is not being reflected in either condition in (4.6).

Example 6 Consider the two datasets (6a) and (6b) in Table 4.1. As before, each

attribute can assume two states, viz., A = {a, a} and B = {b, b}.

Dataset (6a): Data reveal that {L(a),U(a)} = {0.5, 0.5}, {L(b),U(b)} = {0.5, 1},

and {L(ab),U(ab)} = {0.25, 0.5}. So, L(ab) = L(a)L(b) and U(ab) = U(a)U(b).

Dataset (6b): Here we have “filled” in the missing entries in dataset (6a). It

yields P (a) = 0.5, P (b) = 0.75, and P (ab) = 0.5, i.e., no independence relationship

exists between A and B.
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We maintain that independence is determined by the underlying p.m.f. P (·), and

not an i.v. probability pair. Regarding the PrBound pairs of independent events, we

have the following important result:

Theorem 3 Suppose P (·)/{L(·),U(·)} for the p.m.f. P (·) defined over Θ. If A,B ⊆

Θ are independent, then the following are true:

Factorizability: P (A ∩ B) = P (A)P (B) / {max{L(A ∩ B),L(A)L(B)},

min{U(A ∩ B),U(A)U(B)}} ;

Irrelevance: P (A|B) = P (A) / {max{L(A|B),L(A)},

min{U(A|B),U(A)}} .

Proof:

Factorizability. For A and B independent, we have P (A∩B) = P (A)P (B). Using

the PrBounds for P (A ∩ B), P (A), and P (B) we immediately get

max{L(A ∩ B),L(A)L(B)} ≤ P (A ∩ B) = P (A)P (B)

≤ min{U(A ∩ B),U(A)U(B)}.

First, note that we must have L(A ∩ B) ≤ U(A)U(B); otherwise, we would have

P (A)P (B) ≤ U(A)U(B) < L(A ∩ B) ≤ P (A ∩ B), which is impossible since P (A ∩

B) = P (A)P (B). Similarly, we must have L(A)L(B) ≤ U(A ∩ B).

What remains to be established are the “boundary” cases, viz., P (A ∩ B = ∅) /

{0, 0} and P (A ∩ B = Θ) / {1, 1}.

Suppose A ∩B = ∅, P (A ∩B) = P (A)P (B) = 0: This yields L(A ∩B) = U(A ∩

B) = 0 and either P (A) = 0, which yields L(A) = U(A) = 0, or P (B) = 0, which

yields L(B) = U(B) = 0. So, for A ∩ B = ∅, we have max{L(A ∩ B),L(A)L(B)} =

min{U(A ∩ B),U(A)U(B)} = 0.
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Suppose A∩B = Θ: We must have A = B = Θ and P (A∩B) = P (A)P (B) = 1.

This yields L(A ∩B) = U(A ∩B) = 1, L(A) = U(A) = 1 and L(B) = U(B) = 1. So,

for A∩B = Θ, we have max{L(A∩B),L(A)L(B)} = min{U(A∩B),U(A)U(B)} = 1.

Irrelevance. For A andB independent, we have P (A|B) = P (A) whenever P (B) >

0. Using the PrBounds for P (A|B) and P (A) we immediately get

max{L(A|B),L(A)} ≤ P (A|B) = P (A) ≤ min{U(A|B),U(A)}.

As before, we can show that L(A|B) ≤ U(A) and L(A) ≤ U(A|B).

We can also directly verify the “boundary” cases as before.

Remark. As Examples 5 and 6 demonstrate, independence with respect to the un-

derlying p.m.f. cannot be ascertained from the factorizability and/or irrelevance

relationships in Theorem 3.

4.2.5 Bayesian Inference

In Bayesian inference, one updates the probabilities by computing the posteriors

from the likelihoods and priors via the Bayes’ rule:

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|B)P (B)
, for 0 < P (B) < 1, P (A) > 0. (4.7)

A PrBound-based i.v. counterpart to Bayes’ rule which allows one to update the

PrBounds by computing the posterior PrBounds from likelihood and prior PrBounds

is the following result:

Lemma 2 For 0 < P (B) < 1, P (A) > 0, P (B|A) / {L(B|A),U(B|A)}, where

L(B|A) =
L(A|B)L(B)

L(A|B)L(B) + U(A|B)U(B)
;

U(B|A) =
U(A|B)U(B)

U(A|B)U(B) + L(A|B)L(B)
.
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Proof: The pairs {L(A|B),U(A|B)} and {L(B|A),U(B|A)} are well defined for

0 < P (B) < 1 and P (A) > 0. We prove the claim for the L(A ∩ B) > 0 case

only. In this case, (4.7) yields P (B|A) = 1/[1 + P (A|B)P (B)/P (A|B)P (B)]. Now

make use of Theorem 2 to get 1/[1 + U(A|B)U(B)/L(A|B)L(B)] ≤ P (B|A) ≤

1/[1 + L(A|B)L(B)/U(A|B)U(B)], which yields L(B|A) ≤ P (B|A) ≤ U(B|A).

Verify that {L(∅|A),L(Θ|A)} = {0, 1} directly.

4.3 Propagation of Bounds

4.3.1 Bayesian Network (BN)

A BN is a directed acyclic graph (DAG) N = (V , E , P ), where the set of nodes

V denotes the N random variables {v1, . . . , vN}. The p.m.f. P (·) denotes the joint

distribution over the random variables in V . The set of directed edges E captures

the conditional dependence between pairs of nodes; eij ∈ E , i, j = 1, . . . , N , is the

directed edge from node vj to node vi. Then,

P (V) =
N∏
i=1

P (vi|V̂(vi)), (4.8)

yields the joint probability distribution of the random variables {v1, . . . , vN}. Here,

V̂(vi) are the parents of node vi ∈ V , i.e., V̂(vi) = {vj ∈ V | eij ∈ E}. This

representation enables one to use a BN for reasoning and inference with uncertain

knowledge in a computationally efficient manner.

One may think of the graphical structure which “codes” the conditional depen-

dence between variables as the qualitative aspect of the BN and the conditional

probabilities at each node as its quantitative aspect.
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A

B1 B2 Bn· · ·

Figure 4.1: Näıve Bayes’ Classifier. The variables Bi, i = 1, . . . , n, are conditionally
independent given A.

4.3.2 PrBound-Based I.V. Bayesian Network (I.V. BN)

From (4.8) it follows that we can use PrBound pairs for P (vi|V̂(vi)), i = 1, . . . , N ,

to generate P (V) / {L(V),U(V)}, where

L(V) =
N∏
i=1

L(vi|V̂(vi)); U(V) =
N∏
i=1

U(vi|V̂(vi)). (4.9)

Now, each term in a probabilistic expression arising within N = (V , E , P ) can be

simply substituted with its corresponding PrBound pair that yields the narrowest

interval with the evidence at hand. We will refer to the graphical structure resulting

from N when it is endowed with the relevant PrBound pairs as an interval-valued

Bayesian network (i.v. BN) N = ((V , E), {L,U}) = (N , {L,U}).

With the results we have developed in Section 4.2, we are now able to propagate

these PrBound pairs within an i.v. BN in much the same way as probabilities are

propagated within a BN. In other words, our framework allows the utility of i.v. BNs

with all the advantages that BNs offer.
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4.3.2.1 Näıve Bayes’ Classifier

To explain, consider the näıve Bayes’ classifier in Fig. 4.1 which codes the fact

that Bi, i = 1, . . . , n, are conditionally independent given A, i.e.,

P (B|A) =
n∏
i=1

P (Bi|A), where B = (B1, . . . , Bn). (4.10)

4.3.2.1.1 BN When treated as the BN N , the parameters hosted at the nodes

are the following: P (A) at node A and P (Bi|A) at node Bi. For P (A) > 0, the joint

p.m.f. is given by

P (A ∩ B) = P (A)
n∏
i=1

P (Bi|A). (4.11)

For 0 < P (A) < 1 and P (Bi) > 0, ∀i = 1, . . . , n, we have

P (A|B) =

P (A)
n∏
i=1

P (Bi|A)

P (A)
n∏
i=1

P (Bi|A) + P (A)
n∏
i=1

P (Bi|A)

. (4.12)

4.3.2.1.2 I.V. BN When endowed with the PrBound pairs, the parameters hosted

at nodes of the corresponding i.v. BN N are the following: {L(A),U(A)} at node

A and {L(Bi|A), U(Bi|A)} at node Bi. As an i.v. counterpart to (4.11), we have

P (A ∩ B) / {L(A ∩ B),U(A ∩ B)}, where

{L(A ∩ B),U(A ∩B)} =

{
L(A)

n∏
i=1

L(Bi|A),U(A)
n∏
i=1

U(Bi|A)

}
. (4.13)

Next we get the following result:
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Lemma 3 As an i.v. counterpart to (4.12), we have P (A|B) / {L(A↓B),U(A↓B)},

where

L(A↓B) =

L(A)
n∏
i=1

L(Bi|A)

L(A)
n∏
i=1

L(Bi|A) + U(A)
n∏
i=1

U(Bi|A)

;

U(A↓B) =

U(A)
n∏
i=1

U(Bi|A)

U(A)
n∏
i=1

U(Bi|A) + L(A)
n∏
i=1

L(Bi|A)

,

when 0 < P (A) < 1 and P (Bi) > 0, ∀i = 1, . . . , n.

Proof: Write (4.12) as

P (A|B) =
1

1 + P (A)
4∏
i=1

P (Bi|A)/P (A)
4∏
i=1

P (Bi|A)

.

Now substitute each term by its corresponding PrBound pair to show that P (A|B) /

{L(A↓B),U(A↓B)}.

Verify that {L(∅↓B),L(Θ↓B) = {0, 1} directly.

4.4 Revisiting Imperfect Implication Rules

We now describe how imperfect implication rules, developed in Chapter 3 based

on DS theory, can be expressed, and hence generalized, in terms of PrBounds. Note

that we only need to establish Theorem 1 and Lemma 1 of Chapter 3 in terms of

PrBounds.
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We will henceforth utilize the following PrBound-based notation:

L(A) = α1; U(A) = β1; L(B) = α2; U(B) = β2;

L(B|A) = αR; U(B|A) = βR; L(B|A) = αR; U(B|A) = βR. (4.14)

Recall that, as mentioned in Chapter 3, A is the antecedent and B is the consequent.

4.4.1 PrBounds-Based Statement of Theorem 1

The PrBounds-based statement of Theorem 1 of Chapter 3 is as follows:

Theorem 4 (Consequent Uncertainty: General Bounds) A PrBound pair cor-

responding to the consequent B of rule R : A =⇒ B is

P (B) / {α1αR + (1− β1)αR, α1βR + (1− β1) βR + (β1 − α1)}.

Here, {αR, βR} and {αR, βR} refer to PrBound pairs associated with the rules R :

A =⇒ B and R : A =⇒ B, respectively, and {α1, β1} is a PrBound pair associated

with the antecedent A.

Proof: Note that

P (B) = P (A)P (B|A) + P (A)P (B|A) ≥ L(A)L(B|A) + L(A)L(B|A)

= L(A)L(B|A) + [1− U(A)]L(B|A) = α1αR + (1− β1)αR,

and

P (B) = P (A)P (B|A) + P (A)P (B|A) ≥ L(A)L(B|A) + L(A)L(B|A)

= L(A) [1− U(B|A)] + [1− U(A)] [1− U(B|A)]

= α1(1− βR) + (1− β1) (1− βR).
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So,

1− P (B) ≥ α1(1− βR) + (1− β1) (1− βR),

which yields

P (B) ≤ 1− [α1(1− βR) + (1− β1) (1− βR)] ≤ α1βR + (1− β1) βR + (β1 − α1)

Therefore

P (B) / {α1αR + (1− β1)αR, α1βR + (1− β1) βR + (β1 − α1)}.

Remark. Without the LC choice, we can write

L(B) = α2 = α1αR + (1− β1)αR;

U(B) = β2 = α1βR + (1− β1) βR + (β1 − α1)

4.4.2 PrBounds-Based Statement of Lemma 1

The PrBounds-based statement of Lemma 1 of Chapter 3 is as follows:

Lemma 4 A PrBound pair corresponding to the consequent B of rule R : A =⇒ B

is

P (B) / {min{αR, αR},max{βR, βR}}.

Proof: Note that

P (B) = P (B|A)P (A) + P (B|A)P (A)

≥ min{P (B|A), P (B|A)}P (A) + min{P (B|A), P (B|A)}P (A)

= min{P (B|A), P (B|A)}[P (A) + P (A)] = min{P (B|A), P (B|A)}

≥ min{L(B|A),L(B|A)}.
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Similarly,

P (B) ≤ max{P (B|A), P (B|A)} ≤ max{U(B|A),U(B|A)}.

Therefore

P (B) / {min{αR, αR},max{βR, βR}}.

4.5 Summary

In this work we have proposed a framework for reasoning with i.v. probabilities.

The lower/upper bounds, which we refer to as PrBound pairs, are not required to

satisfy a monotonicity or other constraint. This enables us to develop i.v. versions of

graphical networks which operate much like their conventional counterparts.

We have also developed PrBound pairs for conditionals in terms of the PrBound

pairs of the underlying probability distribution. We also take a fresh look at how

independence and conditional independence between variables are viewed, viz., we

take these notions to be governed by the underlying probability distribution and not

by any set of lower/upper bounds.



CHAPTER 5

Learning Parameters From Imperfect
Data

5.1 Overview

In this chapter, we explore how the parameters that are needed for ML algorithms,

in particular, for the implication rules in Chapter 3 and the probability bound-based

framework in Chapter 4, can be extracted from a datasets which may potentially be

imperfect.

We pay special attention to a type of uncertainty that is most commonly en-

countered in realistic datasets: attribute values that are unknown/missing or that

are known to lie within a set of values but otherwise cannot be discerned further

(Definition 7).

5.2 Model

Hereafter, we assume that the data record R is comprised of attribute variables

Aj, j = 1, . . . , NR.

60
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(a) We assume that Aj can take a value or state from the sample space Θj =

{θ1j, · · · , θNjj}. The (possibly unknown) p.m.f. associated with Aj is Pj(·)

(defined over Θj).

(b) We use ΘR to denote the cross-product

NR⊗
j=1

Θj and the short-hand notation 2ΘR

to denote the set of all subsets of the cross-product ΘR, i.e.,

NR∏
j=1

2Θj .

(c) By 〈Aj = aj〉, or by simply aj, we denote the (potentially uncertain) state aj ∈

2Θj , or equivalently aj ⊆ Θj, that the attribute Aj assumes. Note that aj = ∅

denotes that the attribute Aj is “not applicable”. As in [Anand et al., 1996,

Hewawasam et al., 2007], we assume that an attribute vector whose attributes

are all “not applicable” (i.e., the “null set” of ΘR) is nonexistent.

5.2.1 AttBounds and RecBounds

DST models have been successfully utilized to capture various types of imperfec-

tions in data (e.g., unknown/missing and incomplete/ambiguous values, probabilistic

uncertainty, etc.) [Anand et al., 1996,Hewawasam et al., 2007,Wickramarathne et al.,

2011a]. To capture the uncertainty associated with the value an attribute assumes,

one can employ a DST AttBBA mj : 2Θj 7→ [0, 1] defined over the FoD Θj; the cor-

responding AttBoE is {Θj,FAj
,mj}. To capture the uncertainty associated with a

complete record, one can then employ a DST RecBBA mR : 2ΘR 7→ [0, 1] defined over

the cross-product FoD ΘR; the corresponding RecBoE is {ΘR,FR,mR} .

Instead, in our work, we utilize PrBound pairs to capture imperfections in data.

Definition 6 Consider the data record R.
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Table 5.1: Generating AttBound Pairs From AttBoEs

Attribute Aj Type Value Prob. DS-Mass AttBound Pair

[Sample Space] 〈Aj = aj〉 Pj(aj) mAj
(aj) [L(a),U(a)]

A1 Probabilistic θ11 0.6 0.6 P1(θ11)∈ [0.6, 0.6]

[Θ1 = {θ11, θ21}] θ21 0.4 0.4 P1(θ21)∈ [0.4, 0.4]

A2 Unknown/Missing (θ12, θ22) 1.0 1.0 P2(θ12)∈ [0.0, 1.0]

[Θ2 = {θ12, θ22}] P2(θ22)∈ [0.0, 1.0]

A3 Known exactly θ13 1.0 1.0 P3(θ13)∈ [1.0, 1.0]

[Θ3 = {θ13, θ23}] P3(θ23)∈ [0.0, 0.0]

A4 Known to lie (θ14, θ24) 1.0 1.0 P4(a)∈[1.0, 1.0],

within a set ∀a ⊇ (θ14, θ24);

[Θ4 = {θ14, θ24, θ34}] P4(a)∈ [0.0, 1.0],

∀a ∩ (θ14, θ24) 6= ∅;
P4(a)∈ [0.0, 0.0],

∀a ∩ (θ14, θ24) = ∅;

A5 General θ15 [0.6, 0.7] 0.6 P5(θ15)∈ [0.6, 0.7]

[Θ5 = {θ15, θ25}] θ25 [0.3, 0.4] 0.3 P5(θ25)∈ [0.3, 0.4]

(θ15, θ25) 1.0 0.1 P5(θ15, θ25)∈ [1.0,1.0]

Note. Pj(Θj) ∈ [1.0, 1.0], ∀j = 1, . . . , 5.

(i) An AttBound pair {Lj(·),Uj(·)} is a PrBound pair for the p.m.f. Pj(·) defined

over Θj. We denote this as Pj(·) / {Lj(·),Uj(·)}.

(ii) A RecBound pair {LR(·),UR(·)} is a PrBound pair for the joint p.m.f. PR(·)

defined over ΘR. We denote this as PR(·) / {LR(·),UR(·)}.

If an AttBoE or a RecBoE is available (say, from the work in [Hewawasam et al.,

2007]), then an AttBound pair or a RecBound pair can be directly generated from

the corresponding belief/plausibility functions, respectively.

As Example 7 below illustrates, AttBound pairs are more directly associated with,

and hence are more easily generated from, the confidence or probability one can place

on an attribute taking a particular state or a set of states.

Example 7 Table 5.1 depicts a data record R = [〈A1 = a1〉, 〈A2 = a2〉, 〈A3 =

a3〉, 〈A4 = a4〉, 〈A5 = a5〉], where A1 exhibits probabilistic uncertainty, A2 is un-
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known/missing, A3 is known exactly, and A4 is known to lie within a set of states;

A5’s form of uncertainty is more general, viz., a5 = θ15 with a [60%, 70%] confidence

and a5 = θ25 with a [30%, 40%] confidence.

5.2.2 From AttBound Pairs to RecBound Pairs

The i.v. BN parameters are learnt from the RecBound pairs associated with the

data records (see Section 5.3). How do we generate a RecordsBound pair from the

AttBound pairs?

For DST models, [Hewawasam et al., 2007] employs the following scheme for this

purpose:

(a) “extend” the AttBoE defined over Θj to the cross-product space ΘR via the so

called “cylindrical extension”;

(b) repeat this for each AttBoE to generate NR cylindrical extensions; and

(c) fuse these using the DCR to get a DST BoE for the complete data record. But

by doing so, we are conceding that the AttBoEs are “independent” although

evidence to support such an assumption is absent.

5.2.2.1 Independent Attributes

As mentioned earlier, our independence notion emerges, as we believe it should,

from the underlying joint p.m.f. Indeed, with independent attributes Aj(·), the joint

p.m.f. PR(·) associated with the data record R can be expressed as

PR(a) =

NR∏
j=1

Pj(aj), for a = (a1, . . . , aNR
) ⊆ ΘR. (5.1)

Theorem 3 now immediately yields
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Corollary 2 Suppose Pj(·) / {Lj(·),Uj(·)} for the attribute p.m.f. Pj(·) defined over

Θj. With independent attributes Aj, j = 1, . . . , NR, for the record p.m.f. PR(·) defined

over the cross-product ΘR, PR(·) / {LR(·),UR(·)}, where

LR(a) =

NR∏
j=1

Lj(aj); UR(a) =

NR∏
j=1

Uj(aj),

for a = (a1, . . . , aNR
), aj ⊆ Θj.

5.2.2.2 Attributes With Dependencies

With dependent attributes, one may proceed as follows.

General Case: For aj ⊆ Θj and 2 ≤ K ≤ NR, let

a[K] = (a1, . . . , aK); a
[K]
j = (a1, . . . , aj−1, aj+1, . . . , aK). (5.2)

So, a
[K]
j is essentially a[K] but with its j-th entry removed. Note that, for K = 1, a[K]

yields a single attribute; for K = NR, a[K] yields the complete record.

The result below allows one to generate a RecBound pair from the AttBound pairs

of each attribute p.m.f.:

Lemma 5 With the initial conditions L(a
[2]
1 ) = L2(a2) and L(a

[2]
2 ) = L1(a1), for

2 ≤ K ≤ NR, consider the recursion

L(a[K]) = max

{
0, max

j=1,...,K

{
L(a

[K]
j ) + L(aj)− 1

}}
;

U(a[K]) = min
j=1,...,K

{
U(a

[K]
j )
}

;

Use (4.1) to narrow the bound pair {L(a[K]),U(a[K])}.

Then, PR(·) /
{
L(a[NR]),U(a[NR])

}
for the p.m.f. PR(·) defined over the cross-product

space ΘR.
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Proof: For K ≥ 2, we note that

1 = P (a
[K]
j ) + P (aj)− P (a[K]) + P (aj)− P (a

[K]
j , aj), K ≥ 2.

(a) We have

P (a[K]) ≥ max
{

0, P (a
[K]
j ) + P (aj)− 1

}
≥ max

{
0,L(a

[K]
j ) + L(aj)− 1

}
since P (aj) − P (a

[K]
j , aj) ≥ 0. This is true for arbitrary j = 1, . . . , K, yielding

the lower bound.

(b) Obviously, P (a[K]) ≤ P (a
[K]
j ) ≤ U(a

[K]
j ). This is true for arbitrary j = 1, . . . , K,

yielding the upper bound.

5.2.2.2.1 Single Focal Element (SFE) Attributes A special case which offers

both analytical convenience and significantly reduced computational complexity while

providing adequate flexibility for capturing the types of data imperfections that one

would typically encounter is the following:

Definition 7 The attribute Aj with the p.m.f. Pj(·) is said to be a single focal

element (SFE) attribute if, for some ∅ 6= Bj ⊆ Θj, Pj(·) / {Lj(·),Uj(·)}, where

Lj(aj) = 1, if aj ⊇ Bj; Lj(aj) = 0, otherwise;

Uj(aj) = 1, if aj ∩ Bj 6= ∅; Uj(aj) = 0, otherwise.

A data record R comprised of only SFE attributes is called an SFE data record; a

dataset D comprised of only SFE data records is called an SFE dataset.

Remarks:
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1. Note that the SFE attribute in Definition 7 is guaranteed to assume a state

from the set Bj. Within the context of DST models, the AttBoE of an SFE

attribute is of the form mj(Bj) = 1 and mj(aj) = 0, ∀aj 6= Bj, i.e., it has only

one focal element (hence the term SFE attribute).

2. The AttBound pair {Lj(·),Uj(·)} of an SFE attribute can only assume the

values {0, 0}, {0, 1}, or {1, 1}, and {Lj(Bj),Uj(Bj)} = {1, 1}.

3. The attributes A2, A3, and A4 of the data record in Table 5.1 are all SFE

attributes. Note that, an unknown/missing attribute corresponds to the case

when Bj = Θj.

4. Note that, {Lj(Θj),Uj(Θj)} = {1, 1}, for any Bj.

One can now easily establish the following important property regarding SFE

attributes:

Corollary 3 Consider Pj(·) / {Lj(·),Uj(·)} as in Definition 7. Suppose {a(`)
j }, ` =

1, . . . ,M , is a partition of aj ⊆ Θj, i.e., a
(`)
j ⊆ Θj and a

(`1)
j ∩ a(`2)

j = ∅, ∀`1, `2 =

1, . . . ,M , and aj =
M⋃
`=1

a
(`)
j . Then,

Lj(aj) ≥
M∑
`=1

Lj(a(`)
j ); Uj(aj) ≤

M∑
`=1

Uj(a
(`)
j ).

Proof: First, suppose that a
(`)
j ⊇ Bj, for some `. Then, aj =

⋃
a

(`)
j ⊇ Bj and

a
(k)
j 6⊇ Bj, ∀k 6= ` (since a

(`)
j are mutually disjoint). So, from Definition 7, Lj(a(`)

j ) =

Lj(aj) = 1.

Next, suppose that a
(`)
j 6⊇ Bj, for any `. But it is still possible that aj =

⋃
a

(`)
j ⊇

Bj. In such a case, we have Lj(a(`)
j ) = 0, ∀`, and Lj(aj) = 1.
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So, Lj(aj) ≥
∑

Lj(a(`)
j ).

The claim regarding Uj(aj) can be proven similarly.

It turns out that Corollary 3 applies to the general evidential case too:

Corollary 4 Consider Pj(·) / {Lj(·),Uj(·)} as in Definition 7. Suppose {a(`)
j }, ` =

1, . . . ,M , is a partition of aj ⊆ Θj, i.e., a
(`)
j ⊆ Θj and a

(`1)
j ∩ a(`2)

j = ∅, ∀`1, `2 =

1, . . . ,M , and aj =
M⋃
`=1

a
(`)
j . Then for the general evidential data case,

Lj(aj) ≥
M∑
`=1

Lj(a(`)
j ); Uj(aj) ≤

M∑
`=1

Uj(a
(`)
j ).

Proof: Suppose m(.) denotes the associated DST mass function. Then for the

general evidential data case,

Lj(aj) =
∑
bj⊆aj

m(bj) and Lj(a(`)
j ) =

∑
bj⊆a

(`)
j

m(bj).

So,

Lj(aj) =
∑
bj⊆aj

m(bj) ≥
M∑
`=1

∑
bj⊆a

(`)
j

m(bj) =
M∑
`=1

Lj(a(`)
j ).

Note that there can exist some bj for which m(bj) > 0 and bj ⊆ aj, but bj 6⊆ a
(`)
j , for

any `.

The claim regarding Uj(aj) can be proven similarly.

In essence, when the PrBound pair {Lj(·),Uj(·)} of an SFE attribute is con-

structed as in Definition 7, it is super-additive (and hence 1-monotone). Also,{
M∑
`=1

Lj(a(`)
j ),

M∑
`=1

Uj(a
(`)
j )

}
constitutes a wider PrBound pair for Pj(·) than {Lj(·),

Uj(·)}. So when it is required to compute the PrBound pairs {Lj(aj),Uj(aj)} at all

elements of the powerset of Θj, a computationally more tractable, but admittedly

more conservative, alternative is to compute {Lj(aj),Uj(aj)} only at the singletons

of Θj. The i.v. näıve Bayes’ classifier in Section 5.5 exploits this property.
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We now have the following interesting result which allows one to very easily obtain

a RecBound pair for an SFE data record:

Lemma 6 A PrBound pair for the record p.m.f. PR(·) of the SFE data record R is

{LR(·),UR(·)}, where

LR(a) =

NR∏
j=1

Lj(aj); UR(a) =

NR∏
j=1

Uj(aj),

for a = (a1, . . . , aNR
) ⊆ ΘR.

Proof: We show the result for the K = 2 case; K > 2 cases are similar. For

K = 2, for a = (a1, a2), use Definition 7 to get

LR(a) = max{0,L(a1) + L(a2)− 1}

=


1, if L(a1) = L(a2) = 1;

0, otherwise

=


1, if a ⊇ B;

0, if a 6⊇ B;

UR(a) = min{U(a1),U(a2)}

=


1, if U(a1) = U(a2) = 1;

0, otherwise

=


1, if a ∩ B 6= ∅;

0, if a ∩ B = ∅.

So, LR(a) = L(a1)L(a2) and UR(a) = U(a1)U(a2).

Noting Remark 2 above (i.e., the AttBound pair of an SFE attribute can only

assume the values {0, 0}, {0, 1}, or {1, 1}), a computationally efficient method to get

the RecBound pair of an SFE data record is

LR(a) = 1, if Lj(aj) = 1, ∀j; LR(a) = 0, otherwise;

UR(a) = 1, if Uj(aj) = 1, ∀j; Uj(aj) = 0, otherwise. (5.3)
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5.3 Parameter Mining From Uncertain Data

Consider a dataset D of ND records Ri, i = 1, . . . , ND, where the extra subscript

i is used to differentiate between data records. As before, Aj, j = 1, . . . , NR, denote

the attribute variables and Θj = {θ1j, . . . , θNjj} denotes the corresponding sample

space. By 〈Aj = aji〉, or simply by aji, we denote the (potentially uncertain) state

aji ⊆ Θj that the attribute Aj of the record Ri assumes.

5.3.1 General Case

Definition 8 Suppose PRi
(·) / {LRi

(·),URi
(·)} for the record p.m.f. PRi

(·) defined

over the cross-product ΘR.

(i) The pair {LD(·),UD(·)}, where

LD(a) =

ND∑
i=1

LRi
(a)/ND; UD(a) =

ND∑
i=1

URi
(a)/ND,

for a ⊆ ΘR, is referred to as a DatasetBound pair associated with the dataset

D.

(ii) For a, a′ ⊆ ΘR s.t. ∆L(a|a′) + ∆U(a|a′) > 0, the pair {LD(a|a′),UD(a|a′)} con-

structed as specified in Theorem 2 is referred to as the conditional pair at a

given a′ associated with the dataset D.

Note that, ∆L(a|a′) = LD(a∩a′)+UD(a∩a′) and ∆U(a|a′) = UD(a∩a′)+LD(a∩a′)

(see Theorem 2).
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5.3.2 SFE Dataset Case

A justification for Definition 8 emerges as an intuitive frequency counting method

for extracting the DatasetBound pair from an SFE dataset. Consider the SFE data

record

Ri = [〈A1 = α1i〉, . . . , 〈ANR
= αNRi〉], αji ⊆ Θj. (5.4)

For convenience, we will use Ri = 〈A = αααi〉, where αααi = (α1i, . . . , αNRi), to denote the

data record in (5.4); a = (a1, . . . , aNR
), aj ⊆ Θj, denotes an arbitrary vector. Notice

how the computation may proceed:

5.3.2.1 Computation of Bound Pairs

Let us compute the following:

5.3.2.1.1 AttBound Pair of Attribute Aj of Ri From Definition 7,

LjRi
(aj) = 1 if aj ⊇ αji; else LjRi

(aj) = 0;

UjRi
(aj) = 1 if aj ∩ αji 6= ∅; else UjRi

(aj) = 0. (5.5)

5.3.2.1.2 RecBound Pair of Ri Use (5.3) to get these. We also note that

{LjRi
(Θj),UjRi

(Θj)} = {1, 1}. So, one can ignore AttBound pairs for which aj = Θj

in computing (5.3).

5.3.2.1.3 DatasetBound Pair of D From Definition 8,

LD(a) = (# of records where a ⊇ αααi)/ND;

UD(a) = (# of records where a ∩αααi 6= ∅)/ND. (5.6)
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Table 5.2: Dataset D in Example 8.
D contains 3 data records {R1, R2, R3}; a = (θ22, θ23), a′ = (θ22, (θ13, θ33)), c = θ23,
c′ = θ22.

〈A1 = α1i〉 〈A2 = α2i〉 〈A3 = α3i〉 〈A4 = α4i〉 〈A5 = α5i〉
Data Record Θ1 = Θ2 = Θ3 = Θ4 = Θ5 = RecBound

{θ11, θ21, θ31} {θ12, θ22} {θ13, θ23, θ33} {θ14, θ24} {θ15, θ25, θ35, θ45, θ55}

R1 = 〈A = ααα1〉 θ21 θ22 θ23 Θ4 Θ5

AttBounds @ a [1, 1] [1, 1] [1, 1]

AttBounds @ a′ [1, 1] [0, 0] [0, 0]

R2 = 〈A = ααα2〉 (θ21, θ31) Θ2 (θ23, θ33) θ14 θ15

AttBounds @ a [0, 1] [0, 1] [0, 1]

AttBounds @ a′ [0, 1] [0, 1] [0, 1]

R3 = 〈A = ααα3〉 Θ1 Θ2 θ23 Θ4 (θ15, θ25)

AttBounds @ a [0, 1] [1, 1] [0, 1]

AttBounds @ a′ [0, 1] [0, 0] [0, 0]

Example 8 Consider a dataset D of ND = 3 data records {R1, R2, R3}, each having

NR = 5 attribute variables {A1, A2, A3, A4, A5} with {Θ1,Θ2,Θ3,Θ4,Θ5} being the

corresponding sample spaces. Table 5.2 shows the 3 data records Ri = 〈A = αααi〉, i =

1, . . . , 3.

Consider the bound pairs at

a = (Θ1, θ22, θ23,Θ4,Θ5); a′ = (Θ1, θ22, (θ13, θ33),Θ4,Θ5),

or, more compactly written without the unknown/missing values,

a = (θ22, θ23); a′ = (θ22, (θ13, θ33)).

(i) AttBound Pairs: Apply (5.5). We need to compute AttBounds for attributes A2

and A3 only. All other AttBound pairs (Table 5.2 does not show these) are [1,

1].

Consider R1: for attribute A2, a2 = θ22 ⊇ α21 = θ22 so that L2R1(a) = 1 which

implies that U2R1(a) = 1, i.e, {L2R1(a),U2R1(a)} = {1, 1}; for attribute A3,

a3 = θ23 ⊇ α31 = θ23 and so {L3R1(a),U3R1(a)} = {1, 1}.
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Consider R2: for attribute A2, a2 = θ22 6⊇ α22 = Θ2 so that L2R2(a) = 0, but

a2 ∩ α22 = θ22 ∩ Θ2 6= ∅ so that U2R2(a) = 1, i.e., {L2R2(a),U2R2(a)} = {0, 1};

for attribute A3, a3 = θ23 6⊇ α32 = (θ23, θ33) so that L3R2(a) = 0, but a3 ∩ α32 =

θ23 ∩ (θ23, θ33) 6= ∅ so that U3R2(a) = 1, i.e., {L3R2(a),U3R2(a)} = {0, 1}.

Consider R3: for attribute A2, a2 = θ22 6⊇ α23 = Θ2 so that L2R3(a) = 0, but

a2 ∩ α23 = θ22 ∩ Θ2 6= ∅ so that U2R3(a) = 1, i.e., {L2R3(a),U2R3(a)} = {0, 1};

for attribute A3, a3 = θ23 ⊇ α33 = θ23 so that L3R3(a) = 1 which implies that

U3R3(a) = 1, i.e., {L3R3(a),U3R3(a)} = {1, 1}.

These AttBounds at a, and those at a′ which are computed similarly, appear in

Table 5.2.

(ii) RecBound Pairs: Apply (5.3) to get the RecBounds. These appear in the last

column of Table 5.2.

(iii) DatasetBound Pairs: Simply apply Definition 8(i):

{LD(a),UD(a)} = ([1, 1] + [0, 1] + [0, 1])/3 = {1/3, 1};

{LD(a′),UD(a′)} = ([0, 0] + [0, 1] + [0, 0])/3 = {0, 1/3}.

(iv) Conditional Pairs: We compute {LD(c|c′),UD(c|c′)}, for c = θ23 and c′ = θ22,

which we have deliberately selected s.t. c ∩ c′ = a and c ∩ c′ = a′. Using

Theorem 2 in Definition 8(ii) we get {LD(c|c′),UD(c|c′)} = {1/2, 1}.

Example 9 (Example 1 Revisited) Let x = (a1, b1, c1).

(i) RecBound Pairs @ x: Applying (5.3) at x, we get {Li(x),Ui(x)} as {1, 1} for

i = 3, {0, 1} for i = 1, 5, and {0, 0} for i = 2, 4, 6, 7.
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(ii) DatasetBound Pair @ x: Applying Definition 8(i) at x, we get {LD(x),UD(x)} =

{1/7, 3/7}.

(iii) Conditional Pair @ a1 Given c1: Here, a1 = (a1,ΘB,ΘC) and c1 = (ΘA,ΘB, c1),

where ΘA = (a1, a2), ΘB = (b1, b2) and ΘC = (c1, c2).

So, a1 ∩ c1 = (a1,ΘB, c1) and a1 ∩ c1 = (a2,ΘB, c1). Apply Definition 8 to get

{LD(a1 ∩ c1),UD(a1 ∩ c1)} = {1/7, 3/7},

{LD(a1 ∩ c1),UD(a1 ∩ c1)} = {0, 1/7},

and then {LD(a1|c1),UD(a1|c1)} = {1/2, 1}.

5.3.2.2 Goodness of DatasetBound Pair

How good is the dataset bound pair {LD(·),UD(·)} when compared with the pa-

rameters one could have learnt if the dataset had no uncertainties? The following

result helps us answer this question:

Lemma 7 Consider two SFE datasets D(1) and D(2) each comprised of the data

records Ri, i = 1, . . . , ND. For ` = 1, 2, suppose the attribute value vector in D(`)

associated with Ri is ααα
(`)
i ⊆ ΘR. Then the following are true:

(i) If ααα
(1)
i ⊆ ααα

(2)
i , ∀i, then {LD(1)(a),UD(1)(a)} is narrower than {LD(2)(a),UD(2)(a)},

∀a ⊆ ΘR.

(ii) If, in addition, ααα
(1)
k ⊂ ααα

(2)
k , for some k = 1, . . . , ND, then there exist a1, a2 ⊆ ΘR

s.t. LD(2)(a1) < LD(1)(a1) and UD(1)(a2) < UD(2)(a2).

Proof:
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(i) Suppose b
(1)
i ⊆ b

(2)
i : Clearly, a record where a ⊇ b

(2)
i must also have a ⊇ b

(1)
i ,

meaning that LD(2)(·) ≤ LD(1)(·); a record where a ∩ b
(1)
i 6= ∅ must also have

a ∩ b
(2)
i 6= ∅, meaning that UD(1)(·) ≤ UD(2)(·).

(ii) Suppose, in addition, b
(1)
k ⊂ b

(2)
k : Then, it is easy to show that LD(2)(a1) <

LD(1)(a1) at a1 = b
(1)
k , and UD(1)(a2) < UD(2)(a2) at a2 = b

(1)

k ∩ b
(2)
k .

This immediately yields:

Corollary 5 Consider the SFE dataset D comprised of the data records Ri, i =

1, . . . , ND. Suppose D∗ denotes the underlying “clean” dataset created by replacing

all the SFE attributes in D by their “true” attribute values, i.e., to create D∗, the

attribute value vector αααi ⊆ ΘR in D is replaced by the clean attribute value vector

ααα∗i ∈ ΘR so that ααα∗i ∈ αααi, ∀i = 1, . . . , ND. Then,

LD(a) ≤ LD∗(a) = UD∗(a) ≤ UD(a), ∀a ⊆ ΘR.

Proof: From Lemma 7, it follows that {LD∗(a),UD∗(a)} is narrower than {LD(a),UD(a)},

for all a ⊆ ΘR. For the clean dataset D∗, (5.6) yields the claim, viz.,

LD∗(a) = UD∗(a) = (# of records where a = b∗i )/ND.

Corollary 5 essentially states that, when the frequency counting strategy in Defini-

tion 8 is employed for parameter learning, the underlying probabilities are guaranteed

to be constrained within the corresponding DatasetBound pair.
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5.4 Experiment 1: Bound Propagation in an I.V.

BN

Our first experiment illustrates how bounds of parameters of an i.v. BN could be

learnt from an imperfect dataset and how they could be propagated within the i.v.

BN.

5.4.1 Dataset

We use the breast cancer (BC) dataset in [Velikova et al., 2012] which consists of

20,000 records (each representing a patient) with 16 feature attribute variables, each

attribute having multiple states. This dataset, which we refer to as the ground truth

(GTR) dataset, is clean in that it has no data uncertainties.

5.4.2 Model

Out of the 16 attributes, we selected the 5 attributes {A,C,M,E, S} which ap-

pear in Table 5.3. The corresponding sample spaces are ΘA = {θ1A, θ2A, θ3A, θ4A},

ΘC = {θ1C , θ2C , θ3C}, ΘM = {θ1M , θ2M , θ3M}, ΘE = {θ1E, θ2E, θ3E}, and ΘS =

{θ1S, θ2S, θ3S, θ4S}.

Table 5.3: Breast Cancer Dataset: Details of the 5 Selected Attributes

Age Breast Cancer Mass Extent/Size Shape
A (Yrs) C M E (cm) S

States:
θ1A = <35 θ1C = No θ1M = No θ1E = <1 θ1S = Oval
θ2A = 35-49 θ2C = In-Situ θ2M = Benign θ2E = 1-3 θ2S = Round
θ3A = 50-74 θ3C = Invasive θ3M = Malignant θ3E = >3 θ3S = Irregular
θ4A = >74 — — — θ4S = Other
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Figure 5.1: BN for the 5 Selected Attributes of the BC Dataset
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Figure 5.2: Comparison of P (A,C,M,E, S) and P (E|M)P (S|M)P (M |C)P (C|A)
P (A). Both P (A,C,M,E, S) (black) and P (E|M)P (S|M)P (M |C)P (C|A)P (A)
(red) are estimated directly from the GTR dataset. The absolute value of the differ-
ence |P (A,C,M,E, S)-P (E|M)P (S|M)P (M |C)P (C|A)P (A)| (blue, right-hand axis
@ 1/10th the scale) confirms the validity of the BN in Fig. 5.1. Note: For clarity,
plots show variable x as log10(1 + x).
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(a) 1% data “ambiguation”.
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(b) 5% data “ambiguation”.
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(c) 10% data “ambiguation”.

Figure 5.3: Estimation of the PrBound Pairs [L̃(C,M,E, S), Ũ(C,M,E, S)].

Note. The BN in Fig. 5.1 is used to estimate the bounds [L̃(C,M,E, S),

Ũ(C,M,E, S)] (gray) and P̃ (C,M,E, S) (red) from the GTR dataset; the BN is not
used to estimate P (C,M,E, S) (black). The difference between the red and black
plots is indistinguishable. Figs 5.3(a), 5.3(b), and 5.3(c) correspond to 1%, 5%, and
10% levels of data “ambiguation”, respectively. Note: For clarity, plots show variable
x as log10(1 + x).
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Relying on intuition, the BN model in Fig. 5.1 is taken to represent the interrela-

tionships among these 5 attributes. To test its validity, we used frequency counting to

get GTR dataset-based estimates of the joint p.m.f. P (A,C,M,E, S) and the product

P (E|M)P (S|M)P (M |C)P (C|A)P (A). These two quantities and the error between

them are plotted in Fig. 5.2. The horizontal axis spans 1 to 4 × 3× 3× 3× 4 = 432

possible states that the 5 variables may assume. The two plots agree with each other

extremely well confirming that the BN in Fig. 5.1 is a reasonable model for the 5

attributes.

Introducing Uncertainty. We employ a principled approach to artificially

muddle (or “ambiguate”) the GTR dataset to generate an imperfect (IMP) dataset

possessing only SFE records. The 5 selected attributes provide 5× 20, 000 = 100, 000

data points. We first randomly selected 1% of these data points. The value of a

selected data point was then “ambiguated” by replacing it with a set of values which

includes the original value. For example, if a selected data point has value θ1M , then

it was replaced by (θ1M , θ2M), (θ1M , θ3M), or ΘM = (θ1M , θ2M , θ3M); the cardinality

of the new set of values was randomly selected.

5.4.3 Method

We can now compute any probability of interest, or more precisely, its correspond-

ing PrBound pair, from the IMP dataset-based i.v. BN and compare it with the result

that the GTR dataset-based BN gives.
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5.4.4 Results

Let us see how we can use the i.v. BN in Fig. 5.1 to get the answers to some

questions.

Question 1. What is the Marginal P (C,M,E, S)?

Note that

P̃ (A,C,M,E, S) = P̃ (E|M) P̃ (S|M) P̃ (M |C) P̃ (C|A)P̃ (A);

P̃ (C,M,E, S) = P̃ (E|M) P̃ (S|M) P̃ (M |C) P̃ (C). (5.7)

Here P̃ (·) identifies quantities that are based on the validity of the BN in Fig. 5.1.

So we have P̃ (C,M,E, S) / {L̃(C,M,E, S), Ũ(C,M,E, S)}, where

L̃(C,M,E, S) = L̃(E|M) L̃(S|M) L̃(M |C) L̃(C);

Ũ(C,M,E, S) = Ũ(E|M) ŨS|M) Ũ(M |C) Ũ(C). (5.8)

IMP dataset-based estimates of the right-hand side terms in (5.8) are now ob-

tained using the methods in Section 5.3. Fig. 5.3(a) depicts the PrBound intervals

[L̃(C,M,E, S), Ũ(C,M,E, S)] so obtained and the GTR dataset-based estimates of

P̃ (C,M,E, S) and P (C,M,E, S). Note that, P̃ (C,M,E, S) is based on the BN in

Fig. 5.1 and hence is computed from the right-hand side of (5.7); P (C,M,E, S) does

not make use of the BN.

We get similar results when the experiment is repeated with 5% and 10% lev-

els of data “ambiguation” (see Figs 5.3(b) and 5.3(c), respectively), except that the

PrBound intervals get increasingly wider. Importantly, note that P̃ (C,M,E, S) and

P (C,M,E, S) are guaranteed to lie within their corresponding PrBound intervals

[L̃(C,M,E, S), Ũ(C,M,E, S)] and [L(C,M,E, S),U(C,M,E, S)], respectively. The
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fact that P̃ (C,M,E, S) and P (C,M,E, S) agree very well (see Fig. 5.3) further con-

firms the BN model’s validity.

Question 2. Given that our data is imperfect, can we determine the probability

that a patient’s tumor is in-situ and benign if her age is 63 (yrs) and the extent and

shape of the tumor is over 3 (cm) and round, respectively? Use the BN in Fig. 5.1:

P (C,M |A,E, S) =
P (A,C,M,E, S)

P (A,E, S)
=
P (E|M)P (S|M)P (M |C)P (C|A)∑

M

P (E|M)P (S|M)P (M |A)
. (5.9)

So, a PrBound pair for P (C,M |A,E, S) is
L(E|M)L(S|M)L(M |C)L(C|A)∑

M

U(E|M)U(S|M)U(M |A)
,
U(E|M)U(S|M)U(M |C)U(C|A)∑

M

L(E|M)L(S|M)L(M |A)

 . (5.10)

With the proposed framework, we get P (C,M |A,E, S) / [0.3130, 0.3570] for C =

In-Situ, M = Benign, 50 ≤ A ≤ 74 (yrs), E > 3 (cm), and S = Round.

Question 3. Attributes themselves could be ambiguous as well, e.g., we get

P (C,M |A,E, S) / [0.4297, 0.5911] for C = (In-Situ, Invasive), M = Malignant, A ≥

50 (yrs), E < 1 (cm), and S = (Oval,Round).

5.5 Experiment 2: I.V. Näıve Bayes Classifier

We now illustrate the use of an i.v. näıve Bayes’ classifier.

5.5.1 Dataset

This experiment is based on data gathered in the AstroML (Machine Learning and

Data Mining for Astronomy) project and the Sloan Digital Sky Survey [VanderPlas

et al., 2012, Ivezic et al., 2014], where the näıve Bayes’ classifier is used to classify
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objects as stars and quasars based on four photometric variables. A quasar is an

active galactic nucleus of very high luminosity. On Earth quasars appear as stars

making it difficult to distinguish between stars and quasars. The classification is

mainly done via their spectra where quasars exhibit greater redshift compare to stars

due to the distance and the expansion of the universe (Fig. 5.4).

Figure 5.4: Redshift

In the dataset, each spectrum is divided into five regions, u (ultraviolet), g (green),

r (red), i (i-infrared), and z (z-infrared) (Fig 5.5). Different factors (e.g., atmospheric

conditions, time of the measurement, etc.) may affect flux values within each region,

and to compensate for these changes, only the relative photometric values u−g, g−r,

r−i, and i−z are used for classification purposes. This dataset, which is treated

as the ground truth (GTR) dataset, is also clean. It contains 705,290 data records,

each record consisting of the four relative photometric values (each spanning the range

[−21,+20]) and the corresponding red-shift value (which determines the object label).

The percentages of records of stars and quasars are 87.56% and 12.44%, respectively.
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Figure 5.5: Redshfting of a Spectrum

5.5.2 Model

We use A to identify the classification or “hidden” variable which has two states,

STAR and QUASAR, i.e., ΘA = {STAR,QUASAR}. The observed variables {Bi}, i =

1, 4, which are taken to be conditionally independent given A, correspond to the 4

photometric variables, u−g, g−r, r−i, and i−z, respectively. We discretize the obser-

vation values to create a finite sample space for each observed variable. Let Θj denote

this sample space associated with the observed variable Bj so that bj ⊆ Θj, where

〈Bj = bj〉. The classification decision is made from P (A|B) where 〈B = b〉, b =

(b1, b2, b3, b4). So, we essentially have the näıve Bayes’ graphical model in Fig. 4.1

(with n = 4).

Introducing Uncertainty. We generate an imperfect (IMP) dataset having an

SFE structure by first randomly selecting r% of data points and then “ambiguating”

each selected data point by replacing its value, say xi, by an interval (of width ∆)
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which contains xi. We refer to ∆ as the “ambiguation” width. The location of xi

within this interval is randomly selected. For our experiments, we “ambiguated” only

the attributes and not the class label.

5.5.3 Method

For a selected resolution q (the width of a discretized state), each observed value

xi is rounded and allocated its corresponding discretized state; an “ambiguated” i.v.

entry is allocated all discretized states falling within its interval.

We use the frequency count of each discretized state and construct a frequency

histogram. The resolution q affects the classification performance: with a smaller q,

the number of samples available to estimate the frequency of each discretized state

becomes insufficient; with a larger q, the frequency histograms lose their variability

in shape.

We employed 5-fold cross validation with a {80%, 20%} random split of data

records for training and testing.

5.5.3.1 Training

Note that, Lemma 3 with n = 4 yields

L(ak ↓ b) =
L(ak)

∏n
j=1 L(bj|ak)

L(ak)
∏n

j=1 L(bj|ak) + U(ak)
∏n

j=1 U(bj|ak)
;

U(ak ↓ b) =
U(ak)

∏n
j=1 U(bj|ak)

U(ak)
∏n

j=1 U(bj|ak) + L(ak)
∏n

j=1 L(bj|ak)
, (5.11)

where ak ∈ {STAR,QUASAR}. We employ the methods in Section 5.3 to mine the

terms in the right-hand side of (5.11) from the imperfect training dataset.
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5.5.3.1.1 Accommodating Uncertain Observations It is often the case that

attributes within the observation vector b assume non-singleton values. With such

uncertain observations, the calculation of the posterior pairs (left-hand sides of (5.11))

require the computation of likelihood pairs {L(bj|ak),U(bj|ak)} (right-hand side of

(5.11)) where some bj s are now non-singletons.

If we restrict the data uncertainty of each attribute to be of the SFE type, we

may proceed by adopting one of the following approaches:

• Method (1): Mine all the parameters {L(bj|ak),U(bj|ak)} from the training set

(where bj could be a non-singleton). The main disadvantage of this method is

the computational complexity because, in the worst case, one would have to

find 2|Θj | − 1 number of parameters for each L(bj|ak) and U(bj|ak). This is the

method that we used in Section 5.5 with the breast cancer dataset because it

has less number of parameters.

• Method (2): Compute {L(bij|ak),U(bij|ak)}, for all singleton bij ∈ bj only and

make use of Corollary 3. This offers significant computational savings but the

PrBounds are more conservative. This is the method we employed for this

star/quasar classification task. Note that if the result for upper PrBound from

Corollary 3 grows bigger than 1, then 1 can be used as the upper bound.

• Method (3): Use the PrBound pair {L(bj|ak),U(bj|ak)} with

L(bj|ak) = min
bij∈bj
{L(bij|ak)}; U(bj|ak) = max

bij∈bj
{U(bij|ak)}. (5.12)

This method, which is quite similar to the conservative inference rule in [Au-

gustin et al., 2014], can be considered the most conservative method.
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• Method (4): Ignore uncertain observations and use only clean observations for

classification purposes. This is equivalent to using {L(bj|ak),U(bj|ak)} = {1, 1}

in (5.11) whenever bj is a non-singleton. Of course, as Example 1 illustrates,

this can generate flawed results.

Remark: For all of the above methods, when bj = Θj, L(Θj|ak) = U(Θj|ak) = 1

can be employed.

For the GTR dataset, we can represent the mined data as 8 probability histograms,

4 each for the observed variables of STARs and QUASARs. For the IMP dataset, we

get 16 such histograms, 8 each for the lower and upper PrBounds. Fig. 5.6 shows the

lower/upper histograms of {L(bj|STAR),U(bj|STAR)} for the 4 photometric variables

(bj s are singletons in this case). Fig. 5.6 also shows the GTR dataset-based estimates

(red) and, as claimed, these lie within their corresponding lower/upper histograms.

5.5.3.1.2 Computational Complexity One can employ alternate methods to

arrive at similar bounds. For example, an enumeration-optimization method would

be more exhaustive and, in some cases, may even produce tighter bounds, but at

higher computational complexity. In fact the worst case complexity of such a method

is O(ND×N⊗), where ND is the number of data records in the dataset and N⊗ is

total number of distinct data records that the cross-product space of feature vari-

ables can generate [Zaffalon, 2002a]. In our example, for instance, the number of

states associated with a single feature variable is {206, 412, 4120} corresponding to

the three different resolutions {0.2, 0.1, 0.01}, respectively. Noting that ND=705, 290,

we get ND×N⊗ = 705, 290×{2064, 4124, 41204}, for the resolutions {0.2, 0.1, 0.01},

respectively. This computational complexity quickly becomes prohibitive with the

number of variables and the number of states for each variable. While one may em-
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ploy other methods (e.g., see [Zaffalon, 2002b, Augustin et al., 2014]) to reduce this

computational burden, these would still incur additional computations.
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(a) Variable b1 = u−g.
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(d) Variable b4 = i−z.

Figure 5.6: Lower/Upper Histograms (gray) of {L(bj|STAR),U(bj|STAR)} for the 4
Observed Photometric Variables of STARs.
Note. “Ambiguation” level (r) = 10%, resolution (q) = 0.2, “ambiguation” width
(∆) = 0.4. The GTR dataset-based estimates (red) lie within their corresponding
lower/upper histograms.

5.5.3.2 Classification

With the IMP dataset, we must determine the label A from {L(A|B),U(A|B)}

and not P (A|B).
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Suppose we receive a new observation b. We apply the parameters learnt from

the training set into (5.11) to compute the PrBound pairs {L(STAR|b),U(STAR|b)}

and {L(QUASAR|b),U(QUASAR|b)} for this new observation b. Finally, we assign

a “winning” class label (STAR or QUASAR) to b by employing a decision criterion

in Table 5.4. As an aside, we must mention that similar decision criteria have ap-

peared elsewhere, e.g., Criterion (A) in Table 5.4 is similar to the notions of interval

dominance in [Zaffalon, 2002b,Augustin et al., 2014] and strong dominance in [Luce

and Raiffa, 1957].

Table 5.4: Decision Criteria for Selecting Class Label

Criterion Select Class Label a`

(A) if L(a`|b) ≥ maxk 6=`U(ak|b)

(B) if ` = argmax
k

L(ak|b) = argmax
k

U(ak|b)

(C) if ` = argmax
k

L(ak|b)

(D) if ` = argmax
k

U(ak|b)

5.5.4 Results

We conducted the experiment with different “ambiguation” levels (r%), different

resolution values (q), and different “ambiguation” widths (∆). We hold r = 10% and

q = 0.2 constant and report the results for the three values of ∆ = 0.4, 1.0, and∞, in

Tables 5.5, 5.6, 5.7 respectively. Here,∞ refers to the case when the entry is replaced

by an interval of “full” [−21,+20] width.

Table 5.8 shows the corresponding results for the GTR dataset, i.e., the perfect

dataset for which ∆ = 0. Note that it gives same values for all the criteria since with-
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Table 5.5: Classification Performance of Different Class Label Selection Criteria With
“Ambiguation” Width (∆) = 0.4.
Parameters: “ambiguation” level (r%) = 10%, resolution (q) = 0.2, TS = Star classi-
fied as STAR, TQ= Quasar classified as QUASAR, FS = Quasar classified as STAR,
FQ = Star classified as QUASAR.

Dataset Criterion

“Ambiguation” width (∆) = 0.4

Classified (%) Unclassified (%)

Correctly Incorrectly

Total Total

(TS+TQ) (FS+FQ)

IMP

A 93.34 1.91 4.75

(83.44+9.89) (1.14+0.77)

B 96.18 3.38 0.44

(85.50+10.68) (1.58+1.80)

C 96.39 3.61 0.00

(85.61+10.78) (1.66+1.95)

D 96.42 3.58 0.00

(85.65+10.77) (1.67+1.91)

Table 5.6: Classification Performance of Different Class Label Selection Criteria With
“Ambiguation” Width (∆)=1.0.
Parameters: “ambiguation” level (r%) = 10%, resolution (q) = 0.2, TS = Star classi-
fied as STAR, TQ= Quasar classified as QUASAR, FS = Quasar classified as STAR,
FQ = Star classified as QUASAR.

Dataset Criterion

“Ambiguation” width (∆) = 1.0

Classified (%) Unclassified (%)

Correctly Incorrectly

Total Total

(TS+TQ) (FS+FQ)

IMP

A 87.90 1.20 10.90

(79.14+8.76) (0.93+0.28)

B 95.55 3.62 0.83

(85.02+10.54) (1.61+2.01)

C 95.95 4.05 0.00

(85.22+10.73) (1.71+2.34)

D 95.98 4.02 0.00

(85.35+10.63) (1.81+2.21)
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Table 5.7: Classification Performance of Different Class Label Selection Criteria With
“Ambiguation” Width (∆)=∞.
Parameters: “ambiguation” level (r%) = 10%, resolution (q) = 0.2, TS = Star classi-
fied as STAR, TQ= Quasar classified as QUASAR, FS = Quasar classified as STAR,
FQ = Star classified as QUASAR.

Dataset Criterion

“Ambiguation” width (∆) = ∞
Classified (%) Unclassified (%)

Correctly Incorrectly

Total Total

(TS+TQ) (FS+FQ)

IMP

A 46.72 0.40 52.88

(43.44+3.28) (0.35+0.05)

B 93.65 2.62 3.73

(85.41+8.24) (2.02+0.61)

C 95.84 4.16 0.00

(85.42+10.42) (2.02+2.14)

D 95.18 4.82 0.00

(86.94+8.24) (4.20+0.62)

out uncertainty upper and lower probability values converge to a single probability

value.

The following observations are noteworthy:

(a) While criterion (A) is able to classify a decreasing fraction of data records with

increasing “ambiguation” width, it consistently yields the highest precision, and

recall (which are based on only the classified cases) and lowest error. In this

sense, criterion (A) can be considered the most conservative in that it renders

the most guarded or safest decision. Thus it tends to leave undecided a winner

for a large proportion of observation vectors. Criteria (B) and the pair (C) and

(D) are increasingly less conservative. This is apparent in True Positive Rate

(TPR) vs False Positive Rate (FPR) graphs for both stars and quasars, Fig. 5.7
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Table 5.8: Ground Truth (GTR) Dataset Sorresponds to the Perfect Dataset Where
Data are not “Ambiguated”, i.e., ∆ = 0.
Parameters: “ambiguation” level (r%) = 10%, resolution (q) = 0.2, TS = Star classi-
fied as STAR, TQ= Quasar classified as QUASAR, FS = Quasar classified as STAR,
FQ = Star classified as QUASAR.

Dataset Criterion

“Ambiguation” width (∆) = 0

Classified (%) Unclassified (%)

Correctly Incorrectly

Total Total

(TS+TQ) (FS+FQ)

GTR
All 96.40 3.60 0.00

(85.60+10.80) (1.64+1.96)
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(d) Star / ∆ =∞.

Figure 5.7: TPR vs FPR for Different “Ambiguation” Widths (∆) for Stars. Color
code: red=criterion A, yellow=criterion B, green=criterion C, blue=criterion D
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(d) Quasar / ∆ =∞.

Figure 5.8: TPR vs FPR for Different “Ambiguation” Widths (∆) for Quasars. Color
code: red=criterion A, yellow=criterion B, green=criterion C, blue=criterion D
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and Fig. 5.8, where the classifier is considered better when the corresponding

point is closer to top left corner but that is based on only the classified cases.

(b) Interestingly, with narrower values of “ambiguation” width, one may get compa-

rable performance from the IMP and GTR datasets (especially with the decision

criteria (C) and (D)). We believe that this is due to the lower risk posed by the

IMP dataset regarding over-fitting during training.

5.6 Summary

The work in this chapter looks at how the parameters needed for ML algorithms

could be extracted from an imperfect dataset. In particular, we give several important

results pertaining to datasets where attribute values could be unknown/missing or are

known to lie within a set of values. These include computationally more tractable and

efficient strategies for computing the probability bounds and an intuitive frequency

counting method for learning the lower/upper bounds of probability and conditional

probability parameters. The underlying probabilities are guaranteed to be constrained

within these bounds. We also extend the techniques to more general evidential data

representation.

Prior to concluding this chapter, it is noteworthy that the classification scheme we

have employed in the experiment in Section 5.5 applies to an SFE observation vector.

In the general case of evidential data where one can have several focal elements,

learning can still be carried out with the help of Lemma 5 and generalized versions

of Methods (1)-(3) above (Method (4) remains the same because it ignores uncertain

observations).



93

To explain, consider the observed attribute variable bj of the observation vector

b. Suppose its AttBoE is {Θj,Fbj ,mbj}. Both SFE and probabilistic cases are special

cases of this more general case. Let

b∪j =
⋃

b
(`)
j ∈Fbj

b
(`)
j . (5.13)

Then, in place of the PrBounds used within Methods (1)-(3) in Section 5.5.3.1.1, we

may use the following more general evidential counterparts:

• Evidential Counterpart to Method (1): Use

L(bj|ak) =
∑

b
(`)
j ⊆b∪j

m(b
(`)
j )L(b

(`)
j |ak); U(bj|ak) =

∑
b
(`)
j ⊆b∪j

m(b
(`)
j )U(b

(`)
j |ak). (5.14)

• Evidential Counterpart to Method (2): Use

L(bj|ak) =
∑

b
(`)
j ⊆b∪j

m(b
(`)
j )

∑
bij∈b

(`)
j

L(bij|ak);

U(bj|ak) = min

{ ∑
b
(`)
j ⊆b∪j

m(b
(`)
j )

∑
bij∈b

(`)
j

U(bij|ak), 1
}
. (5.15)

• Evidential Counterpart to Method (3): Here we may utilize two methods.

– Method (3.1): Use

L(bj|ak) =
∑

b
(`)
j ⊆b∪j

m(b
(`)
j ) min

bij∈b
(`)
j

{L(bij|ak)};

U(bj|ak) =
∑

b
(`)
j ⊆b∪j

m(b
(`)
j ) max

bij∈b
(`)
j

{U(bij|ak)}. (5.16)

– Method (3.2): Use

L(bj|ak) = min
bij∈b∪j
{L(bij|ak)}; U(bj|ak) = max

bij∈b∪j
{U(bij|ak)}. (5.17)
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Note that Method (3.2) is more conservative than Method (3.1).

Here we employ Corollary 4, the generalized version, instead of Corollary 3 in

contrast to Section 5.5.3.1.1.



CHAPTER 6

Deep Fusion Networks (DFNs)

6.1 Overview

In this chapter we take inspiration from deep learning neural network (NN) ar-

chitectures and develop a PrBounds-based architecture — we refer to this as a deep

fusion network (DFN) — which allows one to automate fusion of input data streams,

fusion parameter selection, and classification of potentially uncertain data that are

generated from multi-modal sensors.

For convenience of reference, Table 6.1 summarizes the notation that we have

used so far. Additionally, when working in an environment with multiple sensors, we

use NS to denote the number of sensors. Moreover, without loss of generality, we

assume that each sensor generates the same number ND of synchronous data records

and possesses the capability to generate data associated with the same number NR

of attributes and the same attribute types {A1, . . . , ANR
}.

6.2 Deep Fusion Network (DFN) Architecture

Figure 6.1 shows the deep learning architecture which we envision for the proposed

DFN. We now provide the details of the different layers of this architecture, where

95
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Table 6.1: Notation

ND; Ri Number of data records (or data instances); i-th data
record, i = 1, . . . , ND.

NR; Aj Number of data attributes; j-th attribute, j = 1, . . . , NR.

Nj Size (cardinality) of the state space associated with at-
tribute Aj.

Θj = {θ1j, . . . , θNjj} State space associated with attribute Aj.

ΘR =

NR⊗
j=1

Θj Cross-product state space associated with a data record.

〈Aj = aji〉 or aji Potentially uncertain state of attribute Aj of record Ri,
aji ⊆ Θj.

NS; Sk Number of sensors; k-th sensor, k = 1, . . . , NS.

{Θj,Fji,k,mji,k} DST AttBoE associated with attribute Aj of record Ri

of sensor Sk.

Pji,k(·)/{Lji,k(·),Uji,k(·)} PrBound pair for the p.m.f. Pji,k(·) associated with at-
tribute Aj of record Ri of sensor Sk.

the word layer is meant to refer to the inputs, the neuron layers, as well as those

layers that do not possess neurons.

6.2.1 Input Processing Layer

When the data can have only probabilistic data uncertainties, one may channel

each data record or data instance (say, Ri) generated by a sensor (say, Sk) as a vector

of length not more than

NR∑
j=1

(Nj − 1). Here, a “block” of size (Nj − 1) corresponds

to the probabilities associated with individual singletons of the state space Θj. Of

course, this “one channel/singleton” representation is inadequate when it comes to

data records possessing i.v. uncertainties.
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Figure 6.1: DFN Architecture.
Note. Sensor Failure Resiliency (SFR) Layer is active only during the training phase.
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6.2.1.1 Inputs With DS Theory-Based Data Uncertainties

Previous work on DS theory-based generalizations of neural networks [Denoeux

and Bjanger, 2000,Soua et al., 2016,Wang et al., 2016,Itkina and Kochenderfer, 2017]

have essentially channeled each data record (say, Ri) generated by a sensor (say, Sk)

as a vector of length not more than

NR∑
j=1

(2Nj − 1). Here, the “block” of size (2Nj − 1)

corresponds to the maximum number of focal elements that the attribute FoD Θj can

generate. This “one channel/each subset of the sample space” representation clearly

necessitates the learning of a prohibitively large number of parameters.

However, in practice, the number of focal elements of an AttBoE is significantly

smaller than the maximum possible value it could have (viz., |Fji,k| versus (2Nj − 1)

for the AttBoE {Θj,Fji,k,mji,k}). This “one channel/focal element” representation

significantly reduces the number of parameters that need to be learned. However, the

burden can remain rather high even for moderately-sized problems.

This “one channel/focal element” representation also poses an additional chal-

lenge: the trained neural network will not have a channel available to dedicate to a

new focal element which it has not encountered during the training phase. One could

conceive of at least two solutions to address this problem:

(a) Associate the new focal element with the channel corresponding to the next

available superset or the channel corresponding to the FoD.

(b) Restrict the number of channels to only certain focal elements (e.g., restricting

the BoEs to be Dirichlet).

In either case, we must ensure that all channels associated with one AttBoE have

DST masses summing to unity (so that it is a valid DST mass function).
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6.2.1.2 Inputs With PrBounds-Based Data Uncertainties

With data records whose uncertainties are captured via PrBounds, we employ

a “one channel/singleton” representation, meaning that each data record (say, Ri)

generated by a sensor (say, Sk) is channeled as two vectors, each of length

NR∑
j=1

Nj.

Here, a “block” of size Nj corresponds to the singletons of the attribute FoD Θj; two

vectors are needed because PrBounds occur in pairs. We note the following:

1. The computational burden associated with learning parameters is just twice

that what is required with probabilistic data uncertainties.

2. PrBounds generalize DST belief/plausibility functions in that they do not im-

pose any monotonicity condition, and therefore they offer more flexibility.

While this “one channel/singleton” representation (instead of the “one chan-

nel/each subset of the sample space” representation) cannot capture the full infor-

mation regarding the data uncertainties, we believe that it constitutes a reasonable

compromise between computational feasibility and representative power. Indeed, in

the SFE data case, it turns out that this “one channel/singleton” representation is

adequate to capture all the PrBounds-based uncertainty information. The reason for

this is that the PrBound pairs of singletons completely determine the PrBound pairs

of all propositions.

Lemma 8 Consider the SFE attribute Aj with the p.m.f. Pj(·) (over the state space

Θj = {θ1j, . . . , θNjj}). Suppose Pj(θ`,j) / {Lj(θ`,j),Uj(θ`,j)}, θ`,j ∈ Θj, ` = 1, . . . , Nj,

i.e., {Lj(θ`,j),Uj(θ`,j)} constitute PrBound pairs for the singletons θ`,j ∈ Θj, ` =
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1, . . . , Nj. Let

Θ
[0,0]
j =

 ⋃
`=1,...,Nj

θ`,j | θ`,j ∈ Θj and {Lj(θ`,j),Uj(θ`,j)} = [0, 0]

 ;

Θ
[0,1]
j =

 ⋃
`=1,...,Nj

θ`,j | θ`,j ∈ Θj and {Lj(θ`,j),Uj(θ`,j)} = [0, 1]

 ;

Θ
[1,1]
j =

 ⋃
`=1,...,Nj

θ`,j | θ`,j ∈ Θj and {Lj(θ`,j),Uj(θ`,j)} = [1, 1]

 .

Then, the following are true:

(a) {Θ[0,0]
j ,Θ

[0,1]
j ,Θ

[1,1]
j } forms a partition of Θj, i.e., they are mutually disjoint and

their union yields Θj.

(b) |Θ[0,1]
j | > 0 iff |Θ[1,1]

j | = 0. Moreover, |Θ[1,1]
j | can take values 0 or 1 only.

(c) The focal element associated with the SFE attribute Aj is Bj = Θ
[0,1]
j ∪ Θ

[1,1]
j .

Moreover, the PrBound pairs of all propositions can be constructed as

{Lj(A),Uj(A)} =



{0, 0}, if A ∩ Bj = ∅;

{0, 1}, if Bj ∩ A 6= ∅ and Bj ∩ A 6= ∅;

{1, 1}, if Bj ⊆ A.

Proof:

(a) The fact that {Θ[0,0]
j ,Θ

[0,1]
j ,Θ

[1,1]
j } forms a partition of Θj follows directly from

Definition 7 because, for an SFE attribute, {Lj(·),Uj(·)} can only be {0, 0},

{0, 1}, or {1, 1} (see Remark 2 immediately after Definition 7).

(b) We clearly cannot have |Θ[0,1]
j | = |Θ[1,1]

j | = 0 because, by Definition 7, an SFE

attribute must have one and exactly one non-empty focal element.
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(b.1) If this focal element is a singleton, it will have {1, 1} as its PrBound

pair; the other singletons (if any) will have {0, 0} as their PrBound pairs.

This means that |Θ[0,1]
j | = 0 and |Θ[1,1]

j | = 1.

(b.2) If this focal element is not a singleton, then no singleton will have {1, 1}

as its PrBound pair; all singletons that constitute this focal element will

have {0, 1} as their PrBound pairs; the other singletons (if any) will have

{0, 0} as their PrBound pairs. This means that |Θ[0,1]
j | > 0 and |Θ[1,1]

j | = 0.

The fact that |Θ[1,1]
j | can take values 0 or 1 only is already clear.

(c) This part is now easy to establish.

6.2.1.3 PrBounds-Based Input Representation

One can also place these blocks of size Nj side-by-side and view the lower or upper

PrBound of each data record of a sensor as a “matrix” with its columns having the

lengths {N1, N2, . . . , NNR
}. While, for convenience, we will refer to this structure

as a matrix, it is understood that its columns are not necessarily of equal length.

See Figure 6.2 and Table 6.2. Notice that the j-th columns of this pair of matrices

constitute a PrBound pair for the attribute Aj of the i-th data record of the k-th

sensor Sk, i.e.,

Pji,k(·) / {Lji,k(·),Uji,k(·)}, j = 1, . . . , Nj, i = 1, . . . , ND, k = 1, . . . , NS. (6.1)

Therefore at the Input Processing Layer, potentially uncertain sensor data are

converted to PrBounds-based inputs (unless of course the sensor data are already

given as PrBounds-based inputs). This conversion employs the methods described in

Chapter 5.
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1 2 3 j NR

N1

N2

N3

N j

NNR

(l ,j)- th entry

Figure 6.2: PrBounds-Based Input of the i-th Data Record Ri and k-th Sensor Sk.
The j-th column has the set of PrBounds {Lji,k,Uji,k} associated with p.m.f. Pji,k of
the attribute Aj, i.e., Pji,k / {Lji,k,Uji,k}; the (`, j)-th entry, or `-th entry of the j-th
column, has the PrBound pair of the singleton θ`,j ∈ Θj.

Table 6.2: PrBound-Based Input Matrix of the i-th Data Record and k-th Sensor.
See Figure 6.2.

(`, j)-th entry pair PrBound pair for the singleton θ`,j ∈ Θj.

j-th column pair Set of PrBounds {Lji,k,Uji,k} associated with p.m.f.
Pji,k of the attribute Aj, i.e., Pji,k / {Lji,k,Uji,k}.
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6.2.2 Intermediate Layers

6.2.2.1 Sensor Failure Resiliency (SFR) Layer

The Sensor Failure Resiliency (SFR) Layer is purely an operational layer without

any neurons. During the training phase, it deliberately makes randomly selected

sensors fail in order to ensure that the system is more robust to real-time sensor

failures. This is done by simply making the selected senors’ PrBounds vacuous, i.e.,

by setting {Lji,k,Uji,k} = {0, 1} for all (`, j)-th entry pairs of randomly selected data

records Ri and sensors Sk. The number of data records and the number of sensors

so affected are parameters that can be adjusted within the algorithm. This strategy

indeed made the system more robust to real-time sensor failures during the testing

phase. See Section 6.3.

6.2.2.2 Fusion Layer

The Fusion Layer is charged with the task of fusing the different sensor input

channels which so far has been treated separately. In other words, within this layer,

{Lji,k,Uji,k}, k = 1, . . . , NS, which gives a set of PrBounds for the p.m.f.s Pji,k(·), k =

1, . . . , NS, of attribute Aj of record Ri that the NS sensors provide are fused together.

The immediate question is, what is an appropriate fusion strategy to be used?

While the DCR [Shafer, 1976] is perhaps the most popular strategy of fusing DST

evidence, its drawback of irreconcilability with probability is now well established

[Smets, 1992, Smets, 1994, Smets, 1999, Heendeni et al., 2016, Núñez et al., 2018].

The Conditional Fusion Equation (CFE) is a more recent DST fusion strategy which

has been shown to possess several attractive properties when compared with the

DCR [Wickramarathne et al., 2012].
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6.2.2.2.1 CFE: DST Version Expressed within the current context, the CFE

fuses the DST BoEs provided by all the sensors and generates the following fused

DST BoE [Wickramarathne et al., 2012]:

Blji(A) =

NS∑
k=1

αi,k
∑

B∈Fji,k

βji,k(B)Blji,k(A|B), (6.2)

where the non-negative real-valued parameters {αi,k, βji,k(·)} satisfy

1 =

NS∑
k=1

αi,k
∑

B∈Fji,k

βji,k(B). (6.3)

Here, {Θj,Fji,k,mji,k}, k = 1, . . . , NS, is the DST BoE that the sensor Sk provides

for attribute Aj of the i-th data record.

Several strategies for the selection of these CFE parameters appear in [Wickrama-

rathne et al., 2012]. One particularly interesting strategy, referred to as the receptive

strategy, suggests

βji,k(B) = mji,k(B), B ∈ Fji,k. (6.4)

6.2.2.2.2 CFE: Probabilistic Version With probabilistic BoEs, (6.2) and (6.3)

yield

Pji(A) =

NS∑
k=1

αi,k
∑
B∈Θj

βi,k(B)Pji,k(A|B), (6.5)

where the non-negative real-valued parameters {αk, βi,k(·)} satisfy

1 =

NS∑
k=1

αi,k
∑
B∈Θj

βji,k(B). (6.6)

If we were to select the parameters to be receptive, we have

βji,k(B) = Pji,k(B), B ∈ Θj. (6.7)

Substitute these paramenters in (6.5) to get

Pji(A) =

NS∑
k=1

αi,k
∑
B∈Θj

Pji,k(B)Pji,k(A|B) =

NS∑
k=1

αi,kPji,k(A), (6.8)
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where

1 =

NS∑
k=1

αi,k
∑
B∈Θj

Pji,k(B) =

NS∑
k=1

αi,k. (6.9)

Essentially, the CFE strategy, when the parameters are selected to be receptive,

reduces to simply the weighted sum of the p.m.f.s that the sensors provide for attribute

Aj of the i-th data record.

6.2.2.2.3 CFE: PrBounds-Based Version With (6.8) and (6.9), it is now quite

straight-froward to obtain the following PrBounds-based version:

Pji(·) / {Lji(·),Uji(·)} =

{
NS∑
k=1

αi,kLji,k(A),

NS∑
k=1

αi,kUji,k(A)

}
, (6.10)

where

1 =

NS∑
k=1

αi,k ; αi,k ≥ 0. (6.11)

We use a pair of parallel sets of neurons to implement this PrBounds-based CFE

strategy, one set for the L-matrices and the other for the U-matrices. We will refer

to these two sets of neurons as the L-sublayer and U-sublayer, respectively. The

architectures of the L- and U-sublayers being identical, let us consider the L-sublayer.

• The L-sublayer has NF neurons which is an algorithmic parameter.

• Each neuron has SN input weights and these are the non-negative real-valued

CFE parameters αi,k, k = 1, . . . , NS, in (6.11). NF sets of such parameters

are chosen from a random uniform distribution (with the required conditions in

(6.11) satisfied) and each set is fed into one neuron.

• At each neuron, CFE-based fusion in (6.10) takes place. Since the input weights

are allowed to take the value 0, during training, the network essentially collates
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sensor groups for optimum performance. Therefore each neuron can be consid-

ered a fusion-cum-collation filter. No bias is used for the neurons.

• The output of each neuron is once again a matrix of the type in Figure 6.2. We

use {Lji,m}, m = 1, . . . , NF , to denote these NF outputs. The outputs do not

go through any activation function.

The U-sublayer, where the same sets of input weights are utilized, operates in the

same manner and generates the outputs {Uji,m}, m = 1, . . . , NF .

Henceforth, when no confusion can arise, we will drop the subscripts i (which

identifies the data record) and j (which identifies the attribute), and retain only the

subscript m (which identifies the output count).

6.2.2.3 Activation Function Layer

As with the Fusion Layer, the Activation Function Layer also has two sublayers,

the L-sublayer and the U-sublayer. Each sublayer possesses the following features:

• Each sublayer has NAF neurons which is an algorithmic parameter.

• Each neuron in the L-sublayer takes theNF output matrices Lm, m = 1, . . . , NF ,

of the L-sublayer of the preceding Fusion Layer. Similarly, each neuron in the

U-sublayer takes the NF output matrices Um, m = 1, . . . , NF , of the U-sublayer

of the preceding Fusion Layer. Both weights and biases are employed in the neu-

rons of the Activation Function Layer. For each neuron of the L-sublayer, the

weights as well as the biases are chosen from a random uniform distribution.

The same set of weights and biases are used for the corresponding U-sublayer.
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• The output of each L- and U-sublayer neurons are fed to the following new

activation function AFG:

AFG: Lout,n = [2 sig(φLn)− 1]× [1− (sig(Un)− sig(Ln))];

Uout,n = [2 sig(φUn)− 1]× [1− (sig(Un)− sig(Ln))]. (6.12)

Here,

sig(x) =
1

1 + e−x
; tanh(x) =

ex − e−x

ex + e−x
= 2 sig(2x)− 1. (6.13)

The novel feature of this activation function AFG, which is essentially a pruning

mechanism, is that it takes two inputs which are the corresponding outputs of

each parallel neurons {Ln, Un}, n = 1, . . . , NAF , of the L- and U-sublayers,

and “fades” the neuron output when the level of uncertainty exhibited via the

PrBound pair is higher. More precisely, the higher the uncertainty, the lower the

weight, and vice versa. The activation function operating on the n-th neuron of

the L-sublayer generates an output matrix which is determined by Ln and the

associated uncertainty interval sig(Un)− sig(Ln). These output matrices, which

once again are of the type in Figure 6.2, are faded with increasing uncertainty

intervals. The U-sublayer operates in a similar manner. Note the activation

functions AF1 and AF2 obtained as special cases of AFG with φ = 1 and
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φ = 2, respectively:

AF1: Lout,n = [2 sig(Ln)− 1]× [1− (sig(Un)− sig(Ln))];

Uout,n = [2 sig(Un)− 1]× [1− (sig(Un)− sig(Ln))], (6.14)

and

AF2: Lout,n = tanh(Ln)× [1− (sig(Un)− sig(Ln))];

Uout,n = tanh(Un)× [1− (sig(Un)− sig(Ln))]. (6.15)

• There are NAF outputs generated from each of the L and U-sublayers of the

Activation Function Layer. Note that the outputs generated from the activation

functions are bounded to within [−1,+1]. The reason for using −1 as the lower

bound (instead of 0) is to distinguish it from a value that fades to 0 because of

high uncertainty.

In our experiments, AF1 performed slightly better than AF2. We speculated

that this is due to the fact that AF1 has a wider input range before the gradient of

the function become low compare to AF2. This was confirmed with the results we

obtained with φ < 1 which performed even better than AF1. The value of φ can also

be made to learn during the training phase instead of fixing its value beforehand.

6.2.2.4 Concatenation and Flattening Layer

The Concatenation and Flattening Layer does not have neurons. It simply con-

catenates the output matrices of the preceding L- and U-sublayers resulting in a

sequence of 2NAF matrices, each being of the type in Figure 6.2. The first NAF

matrices of this sequence are {Lout,n}, n = 1, . . . , NAF , and the second NAF matrices

of the sequence are {Uout,n}, n = 1, . . . , NAF . These matrices are “flattened” by



109

reshaping them to one column vector of length of NC , where

NC = 2NAF

NR∑
j=1

Nj. (6.16)

6.2.2.5 Fully Connected Layers

Next, we have two Fully Connected Layers. These Fully Connected Layers possess

the following features:

• Both Fully Connected Layers operate in a similar manner except that the first

layer has NC1 number of neurons and the second layer has NC2 number of

neurons. Both NC1 and NC2 are algorithmic parameters.

• Each neuron has NC number of inputs from each entry of the column vector

generated from the preceding Concatenation and Flattening Layer. The input

weights are chosen from a random distribution; biases are optional in this layer.

• At each neuron, the weighted sum of the inputs is taken and a bias, which is

optional, is added.

• Each neuron outputs a single value. This output passes through batch normal-

ization (if batch learning is used), sigmoid activation, and dropout operations,

respectively.

6.2.3 Output Layer

The Output Layer has the following features:

• As usual, the number of neurons the Output Layer has is equal to the number

of class labels (M).
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• Each neuron has NC2 number of inputs from each output of the second Fully

Connected Layer. The input weights and biases are chosen from a random

distribution.

• No activation function is used.

6.2.3.1 Dealing with Imperfect Labels

The class labels of the training data records may themselves be imperfect.

(a) Perfect class labels: During the training phase, the DFN may be presented with

data records where the attributes values can be imperfect but the associated

class labels are perfect. Even if the class labels are imperfect, one may opt to

train the DFN with only those data records that have perfect class labels.

(b) Imperfect class labels: In this scenario, the DFN may be presented with data

records whose class labels are imperfect. We did not explore this case further,

mainly due to the difficulty in obtaining such a dataset. Generating an ap-

propriate synthetic dataset presented a significant challenge because inserting

or incorporating uncertainties to the class labels because one would have to

maintain the underlying relationship, which is of course unknown, between the

attributes and the class label during this process. We leave this task for future

development.

6.2.3.1.1 Loss Function The loss function should be selected depending on the

type of label that the DFN is anticipated to encounter. Given that we only considered

perfect class labels, the loss function that we employed is not new. It simply takes

the softmax of the outputs and use cross-entropy with one-hot encoding of the target
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label vector. To explain, suppose the number of labels is M . So the output layer has

M number of neurons. For i = 1, . . . ,M , let xi denote the output of the i-th neuron.

Then the softmax xi is taken as

yi =
exi

M∑
j=1

exj

. (6.17)

The corresponding loss function is defined as

loss = −
M∑
i=1

ti log yi, (6.18)

where the ti s denote the 1-hot encoding of the labels.

We use back-propagation to train the parameters. We also employ mini-batch

learning to achieve higher performance.

6.3 Experiment and Results

6.3.1 Dataset

We used the Letter Recognition Dataset of the UCI Machine Learning Repository

[Dheeru and Taniskidou, 2017]. The dataset is perfect in that it does not contain any

missing values or uncertainties. The relevant parameters are summarized in Table 6.3.

To mimic a multi-sensor dataset, we then employed the following strategy on the

given “single-sensor” data set:

• Select a value for the number of sensors NS.

• Group NS number of single-sensor data records having the same label together.
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Table 6.3: Letter Recognition Dataset.
(from the UCI Machine Learning Repository [Dheeru and Taniskidou, 2017]).

Parameter Symbol Value

Number of data records ND 20,000

Number of attribute variables NR 16

Number of states in each attribute Nj 16

State space of each attribute Θj = {θ1j, . . . , θNjj} {0, . . . , 15}
Class labels {A,B, · · · , Z}
Number of labels in label variable M 26

11 3

5 14

4 0

7

1

9

.  .  .  .  .

.  .  .  .  .

.  .  .  .  .

K

A

S

2 9 10 .  .  .  .  . S

3 8 2 .  .  .  .  . A

15 6 2 .  .  .  .  . B

7 3 14 .  .  .  .  . J

5 10 8 .  .  .  .  . A

5 14 1 .  .  .  .  .

3 8 2 .  .  .  .  .

. . . .  .  .  .  .

. . . .  .  .  .  .

5 10 8 .  .  .  .  .

A

Attributes

Label

Original 
Data 

Records

A single record with NS  
number of sensor data with 

a single label

NS 
sensors

Add Sensor Specific 
Uncertainties + Random 

Uncertainties

Figure 6.3: Mimicking Multi-Sensor Data Records

• Treat each such group of NS single-sensor data records as one multi-sensor data

record generated from NS sensors and having the common label as its class

label.

Figure 6.3 illustrates this strategy with a class label A. Let NMD denote the

number of such multi-sensor data records. Given that each multi-sensor data record

is constituted of NS single-sensor data records, we must have NMDNS ≤ ND, i.e.,

NMD ≤ ND/NS. The chosen value of NMD takes the role of ND in Tables 6.1 and

6.3.
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For our experiment with the Letter Recognition Dataset, we used NS = 10, ND =

10, 000 by randomly selecting 10,000 records out of the 20,000 total (10,000 was

selected due to the time constraints of the experiments), and NMD = 855. The same

10,000 records were employed for all the comparisons.

6.3.1.1 Introducing Uncertainties

We introduced two types of uncertainties into the attribute values (as mentioned

above in Section 6.2.3.1, no uncertainties were introduced into the class labels):

(a) Sensor-Specific Uncertainties: Here, we assume that the sensor determines

the attribute of which the value may be uncertain. In other words, in a given

multi-sensor data record, each sensor Sk determines which attribute/attributes

Aj,k, j ∈ {1, . . . , NR}, should have uncertainties. At each selected attribute

Aj,k, an SFE type uncertainty is introduced. The focal element Bj ⊆ Θj asso-

ciated with this SFE uncertainty is selected so that it contains the true state of

the attribute.

In the experiments, we allowed the uncertainty to occur in all the data records

i = 1, . . . , NMD. We took the relationship between k and j as j = k, i.e., for

the k-th sensor, the uncertainty occurs in its k-th attribute. Note that, since

NS = 10 ≤ NR = 16, the use of j = k means that no uncertainties will be

introduced into the last 6 attributes. With the size |Bj| of the focal element Bj

of the SFE uncertainty randomly picked to be an integer lying in [2, |Θj|], the

elements of Bj are chosen s.t. it contains the true attribute state aj while the

remaining |Bj| − 1 states are selected randomly from Θj \ {aj}. An illustration

of this scheme appears in Figure 6.4.



114

(b) Random Uncertainties: These uncertainties are not sensor-specific. A set

percent r% of records are selected from the NMD number of multi-sensor data

records. For each such selected record, all the sensors are assumed to introduce

uncertainties. At each sensor, another random set of attributes is selected. Let

NAG be the number of such selected attributes. At each selected attribute,

an SFE uncertainty is introduced. So in contrast to the Figure 6.4, now we

make uncertain the randomly selected set of attributes instead of only the kth

attribute for the kth sensor. As in the previous case, the focal element Bj ⊆ Θj

associated with this SFE uncertainty is selected so that it contains the true

state of the attribute. In the experiments, we used r = 10%, 1 ≤ NAG ≤ 4, and

1 ≤ |Bj| ≤ 5.

6.3.2 Algorithm Implementation

The algorithm was implemented in Python with the TensorFlow library [Abadi

et al., 2016]. The parameters employed for our experiment are summarized in Ta-

ble 6.4.

All experiments were conducted with 5-fold cross-validation. With NMD = 855,

at each phase, we had 684 training records and 171 testing records. We also employed

mini-batch learning.

As for the SFR Layer, during each training phase, we randomly selected 30% of

multi-sensor data records. From each such selected record, 7 sensors were randomly

selected (with repetition allowed) and allowed to fail in the sense described in Sec-

tion 6.2.2.1. During each testing phase, 20% of the records are selected to do the

same thing (this is to mimic the real sensor failures in testing).
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Figure 6.4: Sensor-Specific Uncertainties in Sensor S2.
Note. Sensor S2 corresponds to k = 2. Sensor-specific uncertainty is introduced
into the second attribute, i.e., j = k = 2 (pink column in the illustration showing
1-hot encoding of sensor data). This attribute’s true state is a2 = 8 and its state-
space has 16 states, i.e., Θ2 = {0, 1, · · · , 15}. The size of the focal element B2

of the SFE uncertainty is randomly picked from the integers lying in [2, |Θ2|] =
[2, 16] as |B2| = 6. The elements of B2 are chosen s. t. it contains the true value
a2 = 8 while the remaining |B2| − 1 = 5 states are randomly selected from Θ2 \
{a2} = {0, . . . , 7, 9, . . . , 15}. In this figure, the focal element randomly selected in
this manner is B2 = {0, 1, 4, 6, 7, 8}. The PrBound pair [0,1] is introduced into each
of the corresponding entry (pink columns in the L- and U-matrices).
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Table 6.4: Parameters

Description Symbol Value

DFN:

Input Processing Layer: # of sensors NS 10

# of data records ND 10,000

# of multi-sensor data records NMD 855

[training/testing] [684/171]

# of data attributes NR 16

Size of state space of each attribute Nj 16

SFR Layer: # of affected sensors 7

# of affected data records

[training/testing] [30/20]%

Fusion Layer: # of neurons in each sublayer NF 256

Activation Function Layer: # of neurons in each sublayer NAF 256

Concatenation and Flattening Layer: Size of the output vector NC 131,072

Fully Connected Layer #1: # of neurons NC1
256

Fully Connected Layer #2: # of neurons NC2
256

Output Layer: # of neurons NM 26

TensorFlow:

Drop-outs keep-prob 0.95

Optimizer Adam (during training) default

Epochs 1

Other:

Cross-validation 5-fold

Mini-batch learning Mini-batch size 171
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We also used following TensorFlow parameters: dropouts with 0.95 keep-prob;

Adam optimizer with its default parameters for parameter training. Number of epochs

was set to 1 due to time constraints.

6.3.3 Results

The results below are grouped into four sections: Section 6.3.3.1 explores the

effect of different DFN configurations in the system performance; Section 6.3.3.2

explores the impact of using different activation functions; Section 6.3.3.3 explores

the performance of the system when pruning is incorporated within the Fusion Layer

where the pruning is done at the inputs of the layer; and Section 6.3.3.4 explores the

performance when the input data are differently “formatted” prior to insertion into

the DFN.

We employed AF1 as the “default” activation function (except within Section 6.3.3.2,

where different activation functions are utilized). All the results are presented in the

form of macro average ROC curves. Within each plot, the area under the ROC curve

is indicated as “area”, and the accuracy is indicated as “Acc”.

6.3.3.1 Effect of Different DFN Configurations

Figure 6.5 compares the macro average ROC curves for four different DFN config-

urations: the “complete” DFN (as described in Secrtion 6.2 and Figure 6.1), the DFN

without normalization of CFE coefficients (without CFE Fusion), the DFN without

the SFR Layer, and the DFN with the parallel coefficient constraints (relaxing the

constraint of identical coefficients for L and U sublayers in both Fusion and Activation

Function layers at onece).
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It is clear that both CFE fusion (with CFE normalization coefficients) and SFR

Layer increase the performance of the system significantly. On the other hand, as the

zoomed-in version in Figure 6.5(b) shows, relaxing the parallel constraints improves

the performance only modestly. The SFR Layer appear to contribute the most to the

performance.

6.3.3.2 Effect of Different Activation Functions

Here we compare the system performances associated with some popular activa-

tion functions with our new activation functions. Figure 6.6 shows the results. The

proposed new activation function AFG has the disadvantage of the vanishing gradient

problem [Hochreiter, 1991]. However, for appropriate values of φ, it outperforms all

the existing activation functions that we used in this experiment. This includes the

the Rectified Linear Unit (ReLU) and Leaky Rectified Linear Unit (Leaky-ReLU):

ReLU(x) =


x, if x ≥ 0;

0, otherwise;

; Leaky-ReLU(x) =


x, if x ≥ 0;

αx, otherwise,

(6.19)

where we used α = 0.2.

The AFG with φ = 0.1 gave the highest accuracy while φ = 0.01 gave the highest

area under the ROC curve. We also explored learning φ values, meaning that φ is

learned during the training phase (denoted by “AFG(phi=learn)” in Figure 6.6). It

also outperformed existing activation functions as well as AF1, AF2 and AFG with

φ = 0.5. It might outperform φ = 0.1 and φ = 0.01 cases too provided that learning

is conducted over a large dataset.
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(a) Macro average ROC curves.

(b) A zoomed-in version of (a).

Figure 6.5: Macro Average ROC Curves of Different DFN Configurations
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(a) Macro average ROC curves.

(b) A zoomed-in version of (a).

Figure 6.6: Macro Average ROC Curves of Different Activation Functions
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6.3.3.3 Effect of Collation

Here the inputs to the Fusion Layer are “collated” in the sense that groups of

sensors that should be fused together are identified by pruning. To be more specific,

input weights are made zero if their values are below than a certain threshold. The

other parameters are kept unchanged. Figure 6.7 depicts the results. Although the

accuracies are lower when collation — we used the threshold values 0.001, 0.01, 0.1 —

is present, the area under the ROC curve for collation threshold 0.001 is higher than

when collation is absent.

6.3.3.4 Effect of Input Data Format

Here we carried out the experiment with the input data being formatted differ-

ently. To be specific, instead of viewing NS different data records having the same

label as data coming from NS different sensors, we select one record, replicate it 10

times as depicted in Figure 6.8, and then introduce both sensor-specific and random

uncertainties (as described in Section 6.3.1.1) so that each sensor gets a sensor spe-

cific uncertainty as well as a more general uncertainty. Due to time and complexity

restrictions, NMD had to be limited to 3,420. The results are depicted in Figure 6.9.

The accuracies are lower compared to the previous case due to the lower number of

training records: 3,420 versus 8,550 in the previous case. Interestingly, in contrast

to the previous case, now CFE-based fusion does not appear to improve the perfor-

mance. These results seem to indicate that CFE-based fusion is more useful when

the sensors have more variability.
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(a) Macro average ROC curves.

(b) A zoomed-in version of (a).

Figure 6.7: Macro Average ROC Curves With Different Collation Thresholds
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Figure 6.8: Mimicking Multi-Sensor Data Records With Input Data Formatted Dif-
ferently
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(a) Macro average ROC curves.

(b) A zoomed-in version of (a).

Figure 6.9: Macro Average ROC Curves With Input Data Formatted Differently



CHAPTER 7

Conclusion

7.1 Contributions

To summarize the major contribution of this dissertation, we have proposed and

developed a new framework for learning and reasoning with i.v. probabilities where

the latter are interpreted as having been generated from a single underlying true

p.m.f. These i.v. probabilities, which we refer to as PrBound pairs, can be viewed as

how an agent quantifies the underlying p.m.f. when it does not have full access to it.

We embarked on this work as a result of certain difficulties that we encountered in

attempting to develop the notion of an imperfect implication rule as a counterpart to

the classical logic-based implication rule. For this purpose, we at first employed the

FH conditional from DS theory and proceeded to derive mathematical expressions for

the rule consequent, given an imperfect antecedent and an imperfect rule. The results

we obtained turned out to be more general and more flexible than what has so far

appeared in previous works in that the probabilistic and classical logic relationships

emerge as special cases of this model. However, it was apparent that, when the

imperfect antecedent and rule are captured via DST belief functions, the resulting

imperfect consequent does not necessarily retain the same property, viz., the ∞-
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monotonic property which is equivalent to being a valid DST belief function. It is

this recognition that monotonicity can be too restrictive and too unwieldy a property

to maintain that eventually led us to the development of a more general, and hence

more flexible, framework based on PrBounds.

While PrBounds turn out to belong to the genre of i.v. probabilities, it differs

from the countless i.v. probability notions that exist in the literature. To be specific,

PrBounds do not impose any monotonic condition and they are viewed as emerging

from a single underlying probability distribution. This viewpoint enabled us to take

a fresh look at the notions of conditioning and independence applicable to i.v. prob-

abilities, thus allowing us to resolve several issues in i.v. probability notions that

were discordant with probability. In turn, we were then able to utilize PrBounds in

probabilistic graphical models so that the associated computations could be carried

out with a complexity that is comparable to what is required in probabilistic settings.

Then we developed new data mining methods to learn parameters from imper-

fect datasets, where special attention was given to the SFE-type data imperfection

which is perhaps the most commonly encountered type of uncertainty in practice.

Finally, the validity of the proposed PrBounds-based framework was demonstrated

by a PrBounds-based version of a BN and a PrBounds-based version of a näıve Bayes

classifier.

This PrBounds-based work then inspired to build a new deep learning architecture

that improves classification accuracy of imperfect data. In this architecture, the

utilization of “one channel/singleton” input method reduced the number of inputs

from exponential to linear, which in tern reduced the number of input parameters to

be trained. Hence, the number of required training data is lesser. PrBounds-based
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inputs also provided a better representation of imperfect data while relaxing the

constraints of the inputs, meaning that it does not require monotonicity constraints,

and the architecture facilitated multi-sensor data fusion and provided robustness to

real-time sensor failures while improving classification accuracy.

7.2 Future Research Directions

We believe that the PrBounds-based framework and the DFN architecture that

we have proposed can be extended so that it could be utilized in various application

scenarios. In this section, we identify some of these avenues of potentially significant

research that one can embark on.

7.2.1 PrBounds-Based Framework

7.2.1.1 General Types of Uncertainty

Some of the the work developed in this dissertation applies to the SFE-type of

uncertainty. While this SFE-type of uncertainty is quite commonly encountered in

practical situations (e.g., when an attribute/class label value is missing or ambiguous),

it cannot adequately well capture more general types of uncertainty (e.g., when the

confidence one places on an attribute/class label value or a set of values is below 100%,

when different confidence values are placed on different attribute/class label values,

etc.). Modeling such general types of uncertainty usually results in wider PrBound

pairs which can become useless (e.g., when the PrBound pair is closer to {0, 1}). One

interesting avenue of research is to develop methods and efficient algorithms to deal

with general type of evidential data uncertainty, with tighter PrBound pairs.
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Another type of imperfection that one often encounters in practice are errors.

These imperfections cannot be directly captured via evidential uncertainty. Therefore

another stream of research is to explore how erroneous data entries could be captured

[Brazdil and Clark, 1990,Brodley and Friedl, 1999].

7.2.1.2 Imperfect Logic Processing

Implication rules play a significant role in machine learning, in particular, in rule-

based systems. However, how one may learn and manipulate imperfect implication

rules is an issue that has attracted much less attention. The recent work in [Núñez

et al., 2018] deals with this exact issue where the authors continue on to develop

a complete framework for imperfect logic processing. However this work in [Núñez

et al., 2018] assumes that the uncertainties are captured via DST functions.

Our PrBounds-based framework allows one to jettison the monotonicity require-

ment that DST functions are burdened with. So a PrBounds-based view of imperfect

implication rules, and how they can be cascaded to arrive at “fused” imperfect rules,

will be able to entertain more general classes of uncertainty while being consistent

with probability. We also expect this work to reveal the conditions under which it

makes “sense” to cascade imperfect implication rules. In other words, when the un-

certainty associated with the rule itself and/or the antecedent is too high, cascading

rules may not be feasible, and we might be able to determine exactly what levels of

uncertainty pushes one to this realm. It is our belief that one may then continue on

to develop an imperfect logic processing framework based completely upon the notion

of PrBounds.
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7.2.1.3 Decision Trees and Random Forests

Decision trees are well known for their accuracy and efficiency. Generalizations

of decision trees to imperfect data are already available in the literature [Denoeux

and Bjanger, 2000, Elouedi et al., 2001, Hady et al., 2008]. The work in [Denoeux

and Bjanger, 2000] is based on the transferable belief model (TBM) developed by

Smets [Smets, 1994] and it considers label uncertainties only. In addition, its emphasis

is different: it considers the algorithms used in decision trees to determine splitting

order such as entropy and provides TBM-based models. The work in [Elouedi et al.,

2001] also uses the TBM. It does not consider uncertainties in the attribute variables

at training; rather, it only considers uncertainties in the class labels. The model

described in [Hady et al., 2008] does not use uncertain data at all, but uses DS

theory to combine the decisions of individual decision trees of their multi-view forest.

Apart from DS theory, possibility theory has also been used to handle uncertainty

and imprecision in decision trees [Jenhani et al., 2008].

In contrast to the methods available in the literature, we suggest a method that

uses PrBounds of focal elements in the decision tree, which branches along all the

focal elements of attribute variables. This would allow uncertainties in the attribute

variables. At each leaf of the tree, a table can be introduced to keep track of focal

elements of label variables, which would allow the decision tree to handle label uncer-

tainties as well. To make classifications based on PrBounds, different decision criteria

similar to those elaborated upon in Chapter 5 can be employed. Such a work also

can incorporate other algorithms that are already available in the literature [Denoeux

and Bjanger, 2000], as well as new algorithms for splitting order, pruning etc. Then
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the work can be carried out further to develop imperfect information based random

forests.

7.2.2 DFN Architecture

7.2.2.1 Imperfect Class Labels

As mentioned in Section 6.2.3.1, the main hindrance we have had to extend the

proposed DFN architecture to deal with this scenario has been the unavailability of

appropriate datasets. A tempting solution is to introduce uncertainties artificially

into the labels. However, if this task were to be carried out independently from the

attribute values, then there would have no relationship between the attributes and the

uncertain labels that the DFN could learn. The DFN in turn can be misled resulting

in poor performance.

What this essentially means is that the underlying relationship between the at-

tributes and the class label has to be maintained when introducing uncertainties into

the dataset. However, this relationship itself is unknown. If one were to utilize derive

or develop a mathematical relationship between attributes and their corresponding

uncertain labels and use that relationship to artificially muddle the dataset, the result

will be a DFN that simply mimics the same mathematical relationship. One is then

left with the question of why the DFN is required because the same mathematical

relationship could be employed for classification in the first place. Another solution

might be to introduce a form of “sensor-specific” uncertainty into the class label, a

strategy that is somewhat similar to what we employed in Section 6.3.1.1 to introduce

uncertainties into the attribute values.
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7.2.2.2 DFN Parameters

Within the Fusion Layer of our DFN, we used the receptive strategy for parameter

selection for the PrBound-based version of the CFE, which we have shown to yield the

weighted sum of individual PrBounds (see (6.10)). But a fair amount of work has been

conducted on different ways of parameter selection, the receptive strategy being only

one among many others [Kulasekere et al., 2004,Premaratne et al., 2007,Premaratne

et al., 2009,Wickramarathne et al., 2010,Wickramarathne et al., 2012]. An interesting

area for further exploration is how these and other strategies could be incorporated

and what impact they would have on the associated fusion mechanism and the DFN

performance.

7.2.2.3 Deliberate Use of Data Uncertainty

While carrying out the experiment in Section 5.5, we noticed that the introduction

of low levels of data uncertainty in photometric data had the effect of a slight increase

in accuracy over a setting where data were perfect (see Section 5.5.4). This leads us

to postulate that i.v. data and the methods developed within this dissertation may

in fact be capable of improving the performance of machine learning algorithms over

what could be achieved with no imperfect data. We believe that low levels of data

uncertainty during training help alleviate issues related to over-fitting and increase

the robustness against variations in data. Much work needs to be directed toward

exploring this issue in depth.
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