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Abstract

Efficient signal processing algorithms are essential in various communication sys-

tems, such as on-chip interconnect buses, wireless communication systems, magnetic

recording channels, and cryptosystems. These efficient algorithms either have low

computational complexities or have modular structures that are favorable in hard-

ware implementations. In this dissertation, we investigate several efficient signal

processing algorithms in different areas. These areas include crosstalk avoidance

codes, multiple-input and multiple-output (MIMO) communication systems, and

discrete Fourier transforms (DFTs) over finite fields.

Crosstalk avoidance codes (CACs) are of great interest since they are promis-

ing in combating the crosstalk delay problem of interconnect on-chip buses in deep

sub-micron technology. As feature shrinks, the gate delay is reduced while the

interconnect delay increases due to increasingly more severe crosstalk between ad-

jacent wires. CACs are a promising technology that can reduce the crosstalk delay

effectively. However, CACs require extra logic circuits as encoders and decoders

(CODECs), but CODECs of the CACs are so complex, prohibiting the usage of

CACs in practice. The areas and the delays of our CAC CODECs based on nu-

meral systems all increase quadratically with the width of bus. Furthermore, to

1



increase the code rates of CACs, we propose two dimensional CACs (TDCACs).

We investigate the properties of TDCACs with and without memory, respectively.

We also investigate efficient algorithms in MIMO detection. We apply several

novel ordering schemes to K-Best detectors, and show that they can improve the re-

liability of K-Best detecting results. The hardware implementations of our ordering

schemes show that they only incur a small overhead in comparison with traditional

ordering schemes, and they can achieve a high throughput with a pipelined archi-

tecture. Furthermore, we also propose a list MIMO detection algorithm using the

memory-constrained tree search strategy. This algorithm offers a flexible balance

of computational complexity and memory requirement, which can be tuned by the

number of available memory units.

DFTs over finite fields find wide applications in various communication systems,

and cyclotomic fast Fourier transforms (CFFTs) can reduce their multiplicative

complexities greatly. As DFTs over non-characteristic-2 fields are taken into con-

sideration in modern communication systems, we generalize CFFTs to arbitrary

finite fields by devising efficient algorithms for cyclic convolutions over arbitrary

finite fields. We also analyze the computational complexities of CFFTs in theory,

and our results confirm the advantages of CFFTs. To further reduce the compu-

tational complexity of DFTs, we propose composite cyclotomic Fourier transforms,

which integrate CFFTs and the idea of the prime-factor algorithm as well as the

Cooley-Tukey algorithm.
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Chapter 1

Introduction

Efficient signal processing algorithms are of great importance in various modern

communication systems, such as on-chip global buses, wireless communication sys-

tems, magnetic and optical recording systems, optical transmission systems, cryp-

tosystems, etc. These algorithms are efficient because they either have low com-

putational complexities or have modular structures that are favorable in hardware

implementations. In this dissertation, we investigate and propose several efficient

signal processing algorithms in different areas. In particular, these areas include

the crosstalk avoidance codes (CACs), multiple-input and multiple-output (MIMO)

communication systems, and discrete Fourier transforms (DFTs) over finite fields.

In this chapter, we first explain our motivations of our research in Sec. 1.1, and

then present our main contributions in this dissertation as well as the organization

of this dissertation in Sec. 1.2.
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1.1. MOTIVATIONS

1.1 Motivations

1.1.1 Crosstalk Avoidance Codes

The technology of integrated circuits has dramatically changed our lives. As the

feature shrinks, more gates can be placed on a single chip, and the speed of the chip

increases due to the reduced gate delay. However, the speed of the interconnect

bus slows down due to the shrinking process. Because of the coupling capacitance

between the adjacent wires, the transitions on one wire may affect other wires of the

same bus. Due to the shrinking process, the ratio between the coupling capacitance

and the loading capacitance between a single wire and ground is increasing, and

the crosstalk will significantly delay the transmission of the signals on the bus.

Therefore, the crosstalk delay has become a bottleneck in deep sub-micron system-

on-chip designs [1].

Crosstalk avoidance codes [2–4] are promising compared with other technologies,

such as shielding, pre-charging, and using repeaters, because they are technology

independent, require less bus area and power, and can make trade-offs between area

consumption and worst-case delay. However, they require extra logic for the encoders

and decoders (CODECs), and the complexity of the LUT-based CODEC increases

exponentially with the bus width, which prevents the usage of CACs in practice.

Inspired by the idea in [5] and [6], we propose a numeral system based CODEC for

general CACs, and design efficient CODECs for several families of CACs.

The CACs proposed previously are all sets of one dimensional column vectors

in the spatial domain. Although they require less bus area than shielding, we can

further reduce the area consumptions by two dimensional CACs (TDCACs), which
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1.1. MOTIVATIONS

transmit a group of vectors where the crosstalk has been reduced between adja-

cent vectors. The construction and properties of such codes are discussed in this

dissertation.

1.1.2 List MIMO detection and Ordering Schemes

Multiple-input and multiple-output (MIMO) communication systems have been at-

tractive in recent years because they can provide high data rate transmission and

improve link reliability. Though the detection of MIMO systems, if implemented

in a brute-force way, has an exponential complexity with the constellation size and

the transmit antennas number, the complexity will be significantly reduced if a tree

search algorithm is used. Different tree search strategies have different computa-

tional complexities and memory requirements. For example, the sphere decoding

(SD) algorithm [7–11] which employs the depth-first strategy has a fixed memory

requirement, but it has a very high computational complexity in the worst case,

which will affect the throughput of the MIMO detector. In contrast, the stack al-

gorithm which employs the best-first strategy has been shown to have the smallest

computational complexity [12], but it requires much more memory in the worst

case, which increases the cost of the MIMO detector. The memory-constrained tree

search (MCTS) strategy, proposed in [13], takes into account the available memory

sizes and dynamically alters between the best-first and depth-first strategies. It

requires a fixed size of memory, and its computational complexity decreases when

the memory size increases. It has a smaller computational complexity than the SD

algorithm even with a smaller size of memory. When the computational complexity

of the MCTS detector approaches that of the stack algorithm, it only requires a

5



1.1. MOTIVATIONS

fraction of the memory required by the stack algorithm.

One of the issues regarding the MIMO detection is the soft information gener-

ation. For coded MIMO systems, properly designed soft-decision MIMO detection

and soft-input and soft-output channel decoder can achieve near-capacity perfor-

mance on a multiple-antenna channel [14]. Therefore, soft information generation

is of great significance. The soft information is generated based on a candidate

list created by the list sphere decoding (LSD) detector [14], list sequential (LISS)

detector [15], or other list creation algorithms. The LSD and LISS detectors are

extensions of the SD algorithm and the stack algorithm, respectively. Similar to

the relation between the SD algorithm and the stack algorithm, the LSD algorithm

has a fixed and small memory requirement, but it has a high computational com-

plexity in the worst case, while the LISS algorithm has the smallest computational

complexity but a large memory requirement. Therefore, we need to find a trade-off

between the memory requirement and the computational complexity.

One of the key steps of the tree search based MIMO detection algorithm is

decomposing the channel matrix H = QR, where Q is a unitary matrix and R is

an upper triangular matrix. The column order of H can affect the computational

complexity of the tree search algorithm. In [13], several novel ordering schemes

are proposed, which are shown to reduce the computational complexity of the SD,

stack, and MCTS algorithms. Obviously, the ordering schemes cannot affect the

detection error rates of the maximum likelihood (ML) detectors, but for the other

types of tree search based MIMO detectors, e.g., the K-Best detector, it is possible

that different ordering schemes have different impact on the detector error rate.

In this dissertation, the MCTS tree search strategy is extended to the list MIMO

6



1.1. MOTIVATIONS

detection algorithms, and a list MCTS (LMCTS) algorithm is proposed. The ad-

vantages of the MCTS algorithm still hold for the LMCTS algorithm. It requires a

fixed size of memory, and the computational complexity is tunable through memory

size. We also apply our novel ordering schemes to the K-Best MIMO detector, which

employs breadth-first strategy and has a fixed computational complexity. The sim-

ulation results show that some of our ordering schemes can improve the reliability

of the K-Best detecting results.

1.1.3 Discrete Fourier Transforms over Finite Fields

Discrete Fourier transforms (DFTs) over finite fields are of great significance in

communication and storage systems. For example, Reed-Solomon (RS) codes are

an important family of error control codes in current communication and storage

systems, and the syndrome-based decoders of RS codes can be implemented ef-

ficiently with DFTs over finite fields. Very long RS codes over large fields, e.g.,

RS codes over GF(212) with up to thousands of symbols, are being considered in

the systems requiring a very low error rate, such as magnetic storage systems [16]

and high speed optical transmission systems [17]. However, the complexities of the

RS decoders prohibit their usages in practice. Therefore reducing the complexities

of DFTs over finite fields is always very important, especially in the RS code de-

coder implementations. Furthermore, DFTs over non-characteristic-2 finite fields,

e.g., GF(3m), are also considered in modern error control codes [18] and cryptosys-

tems [19], therefore low complexity DFT implementations over arbitrary finite fields

are needed in practice.

The recently proposed cyclotomic fast Fourier transforms (CFFTs) [20, 21] are
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1.1. MOTIVATIONS

promising due to their very low multiplicative complexities. However, they are

proposed for finite fields GF(2m). The key challenge in generalizing CFFTs to ar-

bitrary finite fields is the efficient algorithm for cyclic convolutions over arbitrary

finite fields, which is the key to the multiplicative complexity reduction for CFFTs.

Furthermore, CFFTs are attractive due to their low overall computational com-

plexities, which is demonstrated for DFTs with short and moderate lengths (see,

e.g., [22]), but their computational complexities in theory have never been studied

to the best of our knowledge.

The CFFTs have a disadvantage of high additive complexities. Their additive

complexities increase much faster than their multiplicative complexities, and will

dominate the computational complexities of long-DFTs. Though we can use some

preprocessing techniques, such as the common subexpression elimination (CSE),

to reduce the additive complexities, the complexity of the preporcessing makes it

impossible to derive efficient algorithm for very long DFTs, such as 2047-point DFT

over GF(211) and 4095-point DFT over GF(212). Therefore, we need to improve the

CFFTs by making trade-offs between the additive and multiplicative complexities.

In this dissertation, all the aforementioned problems regarding the CFFTs are

addressed to some extent. We devise an efficient algorithm for arbitrary length

cyclic convolutions over arbitrary finite fields so as to generalize the CFFTs. The

computational complexities of CFFTs are theoretically analyzed, and the bounds

on their additive and multiplicative complexities are given. To further reduce the

computational complexities for long DFTs, such as 2047-point DFTs over GF(211)

and 4095-point DFTs over GF(212), we propose a composite cyclotomic Fourier
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transform (CCFT) that combines the idea of prime-factor algorithm [23] and Cooley-

Tukey algorithm [24] as well as the idea of CFFT. When the length of DFT is prime,

the CCFT reduces to CFFT, and they have the same complexity. When the length

of DFT is composite, the CCFT decomposes the DFT into short sub-DFTs, and the

DFT result is constructed from the sub-DFT results. Each sub-DFT is implemented

by the CFFT to reduce the multiplicative complexity. Since the lengths of the sub-

DFTs are usually much shorter than the original DFT length, it is much easier to

use preprocessing technologies to reduce their additive complexities.

1.2 Contributions and Organization

This dissertation has the following contributions and is organized as follows.

• In Chapter 2, we first propose a generic CODEC based on numeral systems for

CACs, and then based on this generic CODEC, we find the numeral systems

for each family of CACs. Finally, we are able to encode the one lambda code

(OLC), forbidden pattern code (FPC), forbidden transition code (FTC), and a

subset of forbidden overlapping code (FOC). We also implement our CODECs.

The hardware implementation results show that our CODECs have quadratic

complexities with respect to the bus width. The delay and power consumption

of our CODECs also grow quadratically with the bus width.

• In Chapter 3, we propose the idea of two dimensional CAC (TDCAC). The

TDCAC has a higher code rate than the previously proposed one dimensional

codes, such as FTC and FPC. The construction of the TDCACs with memory

and memoryless TDCACs is discussed. The maximum code rates for certain

9
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TDCACs are computed in this dissertation, and we show by an example that

the TDCACs can be efficiently implemented.

• In Chapter 4, we apply the novel ordering schemes in [13] to the K-Best

detectors. The simulation results show that some of them can improve the

reliability of the K-Best detectors. Therefore, for the same detection error

rate requirement, we can use a smaller K in the K-Best detector by using our

ordering schemes, which will reduce both the hardware and computational

complexities. We also implement two of our ordering schemes in hardware.

Compared with previous designs, they only incur a small overhead. High

throughput can be achieved by pipelining our implementation, the architecture

of which is shown in this dissertation.

• In Chapter 5, we integrate the list MIMO detection algorithms with the MCTS

strategy, resulting in the LMCTS algorithm. Our simulation results show

that the LMCTS algorithm has a tunable computational complexity through

the memory size. It has a smaller computational complexity than the SD

algorithm, and requires only a fraction of the memory required by the stack

algorithm when they have almost the same complexity. We also implement the

LMCTS algorithm in hardware. Though it has a poor throughput compared

with the list detection implementations in the literature, it can be greatly

improved by carefully parallelizing the circuit and making trade-off between

the computational complexity and error rate performance.

• In Chapter 6, we generalize the CFFTs to arbitrary finite fields by first propos-

ing an algorithm for arbitrary size Toeplitz matrix vector product (TMVP)

10
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and then proposing an efficient algorithm for p-point cyclic convolutions over

arbitrary finite fields. We first reduce the p-point cyclic convolution to an

(p − 1) × (p − 1) TMVP, and then use our TMVP algorithm to construct

the cyclic convolution algorithm. With the multi-dimensional technologies

in [25], we devise efficient algorithms for arbitrary length cyclic convolutions

and then the CFFTs is generalized to arbitrary finite fields. Furthermore,

we also analyze the computational complexity of the CFFTs in theory. Our

results show that the multiplicative complexity of an n-point CFFT is on

the order of O(n(logp n)log2
3
2 ), and the additive complexity on the order of

O(n2/(logp n)log2
8
3 ). The CFFTs have the smallest multiplicative complexi-

ties, but their asymptotically sub-optimal additive complexities render them

asymptotically inefficient for long-DFTs.

• In Chapter 7, we propose the composite cyclotomic Fourier transform (CCFT),

which combines the ideas of the prime-factor algorithm and the Cooley-Tukey

algorithm as well as the CFFT. Compared with the direct implementation

of CCFT, this algorithm significantly reduces the overall computational com-

plexities for long DFTs with composite lengths. We derive the complexities

of all the possible DFTs over GF(2l) with 4 ≤ l ≤ 12. It is the first efficient

algorithm for 4095-point DFT over GF(212) to the best of our knowledge.

Furthermore, the regular structure of this algorithm is suitable for hardware

implementations. It is easy to reuse modules to save chip area or parallelize

the circuit to achieve a high throughput.

11



Chapter 2

Efficient CAC CODEC Desgins

Based on Numeral Systems

2.1 Introduction

Deep sub-micron system-on-chip designs suffer from the delay of global buses, which

increases while the gate delay decreases with the shrinking feature size. The delay

of the i-th wire of an m-bit bus is given by [26]

Ti =





τ0[(1 + λ)∆2
1 − λ∆1∆2], i = 1,

τ0[(1 + 2λ)∆2
i − λ∆i(∆i−1 + ∆i+1)], i 6= 1,m,

τ0[(1 + λ)∆2
m − λ∆m∆m−1], i = m,

(2.1)

where λ is the ratio of the coupling capacitance between adjacent wires and the

loading capacitance between the i-th wire and the ground, τ0 is the delay of a

transition on a single wire, and ∆i equals 1 for 0 → 1 transition, -1 for 1 → 0
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2.1. INTRODUCTION

transition, or 0 for no transition on the i-th wire. As the feature size shrinks, the

ratio λ increases, and the crosstalk delay may be several times more than the delay

of a single wire and thus dominates the delay of a bus. The crosstalk delay has

become a bottleneck in deep sub-micron system-on-chip designs. This problem is so

significant that global wiring scaling issues have been identified as Grand Challenges

in recent International Technology Roadmap for Semiconductors (ITRS) [1].

Since the crosstalk delay is the major part of the delay, different solutions have

been proposed to reduce it, e.g., skewing the timing of signals on the bus [27], bus

interleaving, pre-charging, or using repeaters. These solutions have varying degrees

of success. Unfortunately, these solutions are often technology-dependent, power

consuming, or susceptible to process variation. A technology-independent solution

to this problem is shielding, which cuts the worst case crosstalk delay by half, but

it nearly doubles the wiring area; hence it is unattractive since the routing resource

on a chip is scarce.

Crosstalk avoidance codes (CACs) (see, for example, [2,3,28–31]) have emerged

as an elegant and promising solution. It not only is technology-independent, but

also reduces crosstalk delay while requiring less area and power due to extra wires

than shielding. Different codes can be used to make a trade-off between area con-

sumption and worst case delay. For example, a worst-case delay of (1 + 2λ)τ0 can

be achieved through two families of crosstalk avoidance codes: forbidden transi-

tion codes (FTCs) [2,28] and forbidden pattern codes (FPCs) [3]. Furthermore, one

lambda codes (OLCs) and forbidden overlap codes (FOCs) are proposed to reduce

the maximum delay to (1 + λ)τ0 and (1 + 3λ)τ0, respectively [31]. Joint coding

schemes, which address the crosstalk delay problem as well as the reliability and/or
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power consumption problem of global buses, have also been considered [30,31].

Although most CACs in the literature require less area and power overhead due

to wires than shielding, extra logic circuits have to be implemented at both ends

of the bus as encoders and decoders (CODECs). Unfortunately, most CODEC de-

signs in the literature have very high complexities, rendering CACs-based solutions

impractical for wide buses. For example, the CODEC in [4] has an exponential

complexity with respect to the size of the bus. Researchers have made a lot of effort

in finding an efficient way to implement the CODEC of CACs, leading to solutions

such as partial coding [31]. In partial coding, a bus is first broken into sub-buses,

which are encoded by using CACs with smaller sizes; then a shielding wire is in-

serted between each pair of adjacent sub-buses to avoid transition patterns with

long crosstalk delay. Forbidden transition overlapping codes (FTOCs) and forbid-

den pattern overlapping codes (FPOCs) [30] combine partial coding with FTCs and

FPCs, respectively. At the expense of a lower code rate and hence larger area and

power consumption for the bus, partial coding reduces the complexities of CODECs

by keeping the numbers of wires in sub-buses small.

Recently, CODECs based on a Fibonacci-based numeral system (FNS) have effec-

tively solved the complexity problem for FPCs and FTCs [5,6]. Two FPC CODEC

designs are proposed based on an FNS [6], and both CODECs have quadratic

complexities with the size of the bus. One CODEC in [6] is suboptimal due to its

potentially lower code rate, but has a simpler CODEC; the other CODEC in [6] is

optimal in its code rate, but requires a more complex circuit. In [5], the FNS is used

to encode FTCs. All CODECs in [5, 6] have quadratic complexities.

In this chapter, we generalize the idea in [5,6] and establish a generic framework
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for the CODEC design of all classes of CACs based on binary mixed-radix numeral

systems. Using this framework, we propose CODECs for OLCs and FPCs with

optimal code rates as well as CODECs for FOCs with near-optimal code rates. Our

implementation results show that all our CAC CODECs have area complexity and

delay that increase quadratically with the number of wires. Our main contributions

are as follows:

• In Sec. 2.3, generalizing the idea in [5,6], we propose a generic encoding algo-

rithm for CACs based on numeral systems.

• In Sec. 2.4, we define a modified Fibonacci numeral system, and propose an

FPC CODEC based on it. Our FPC CODEC achieves the same code rate

as the optimal FPC CODEC in [6] and has a simple circuit, similar to the

near-optimal FPC CODEC in [6], integrating the advantages of the two FPC

CODECs in [6].

• In Sec. 2.5, we define a numeral system for OLC CODECs, and propose an

OLC encoding algorithm based on this numeral system. Our CODEC also has

a quadratic complexity, which are novel to the best of our knowledge.

• In Sec. 2.6, we first prove that we cannot use the generic CAC encoding al-

gorithm based on numeral systems to encode to the whole codebook of an

FOC with maximal size. Then we propose an encoding algorithm based on

a numeral system that encodes to a subset of an FOC with maximal size.

For small m, the code rate loss of our suboptimal encoder is small. Our FOC

CODECs are also novel to the best of our knowledge.
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• In Sec. 2.7, we present implementation results that show our CODECs have

area complexities, delays and power consumptions increasing quadratically

with m, the number of wires in a bus. We also discuss scenarios where our

efficient CODECs are most relevant.

We remark that CODECs for FTCs are not considered in our work for two

reasons. First, the FTC CODECs based on the FNS in [5] are already optimal.

Second, for a fixed number of wires, since FPCs have a larger codebook size than

FTCs, our FPC CODECs with maximal code rates render the investigation of FTC

CODECs unnecessary. However, the FTC CODECs proposed in [5] can still be

viewed as a special case of our generic CAC CODEC framework.

Our work is inspired by and generalizes the CODECs based on the FNS in [6]

and [5]. Our generalization is in two aspects. First, the work in [6] and [5] are for

FPCs and FTCs, respectively, whereas our generic CODEC is applicable to FPCs

and FTCs as well as other classes of CACs — OLCs and FOCs. Second, the works

in [6] and [5] always assume a binary FNS, whereas we consider all binary numeral

systems in general. In the case of FPCs, this generalization results in either a simpler

CODEC or higher code rates (i.e., fewer additional wires for the buses). In the case

of OLCs and FOCs, the generalization allows us to further simplify their CODECs.

Compared with partial coding, our efficient CODECs offer a different approach to

reducing the area, power, and delay of CAC CODECs. Our efficient CODECs have

area, power, and delay that increase quadratically with the number of wires, and

achieve the maximal code rates and hence minimize the area and power overheads

due to additional wires. On the other hand, CACs based on partial coding introduce

smaller area, power, and delay of CODECs since the sub-buses considered are small,
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but they need more additional wires due to their smaller effective code rates, and

thus more area and power overheads due to additional wires. When we integrate

these two approaches together (cf. [6, Fig. 9]), our efficient CODECs amplify the

benefits of partial coding in two ways. First, our efficient CODECs can be used for

the sub-buses for partial coding. Second, our efficient CODECs will allow partial

coding schemes to use sub-buses with more wires, leading to fewer shielding wires

and hence less area and power overheads. Thus, our efficient CODECs, used with

partial coding, help to find the balance between delay and area/power overheads so

as to minimize the area and power overheads while satisfying the speed requirement

for the bus.

We remark that, as pointed out in [32], the effectiveness of CACs is affected

by other factors, such as the synchronization of the switching of all the wires in

a bus. Although the effectiveness of CACs is certainly a critical issue to their

application, it is beyond the scope of our work. The thrust of our work is to devise

efficient CODECs for all classes of CACs, and our efficient CODECs improve the

effectiveness of CACs in all cases.

2.2 Crosstalk Avoidance Codes

By (2.1), the worst case delay of a global bus is given by (1 + 4λ)τ0. The delay

may be reduced by avoiding the transition patterns with a long delay, and hence

additional wires are required for an encoded bus, which are the price of the lower

crosstalk delay. To measure this redundancy, the rate of a CAC is defined to be

the ratio between the number of data bits and the number of wires. Based on this
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idea, different CACs have been proposed, and they have different code rates and

can reduce the crosstalk delay to different levels.

2.2.1 (1 + λ) Codes

The (1 + λ) codes can achieve a worst case delay of (1 + λ)τ0. OLCs, studied

in [4], are a kind of (1 + λ) codes. In an OLC, no adjacent wires can transition

in opposite directions when transitioning from one codeword to another. Thus the

transition patterns 01→ 10 and 10→ 01 are avoided. Consider a boundary between

two adjacent wires. If in all codewords, there are only 00, 01, and 11 across this

boundary, it is referred to as a 01-type boundary. Otherwise if only 00, 10, and

11 appear in this boundary, it is referred to as a 10-type boundary. All of the

boundaries in an OLC are either 01-type or 10-type. It was proved in [4] that the

OLC codebook with maximal size satisfies the following two conditions: (1) The

codebook has alternating 01- and 10-type boundaries, and (2) The bit patterns 010,

101, 1001, and 0110 cannot appear in any of the codewords. The maximal cardinality

of an m-bit OLC codebook, gm, satisfies following recursion relation [30]:

gm = gm−1 + gm−5 for m ≥ 6 (2.2)

with initial conditions g1 = 2, g2 = 3, g3 = 4, g4 = 5, and g5 = 7. We are not aware

of efficient OLC CODEC designs in the literature.
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2.2.2 (1 + 2λ) Codes

The (1 + 2λ) codes can achieve a worst case delay of (1 + 2λ)τ0. FTCs [2] and

FPCs [3] are two families of (1 + 2λ) codes, and they are the CACs that have been

studied mostly. In an FTC, the transition patterns 01 → 10 and 10 → 01 are

avoided, which is called forbidden transition (FT) condition. The size of the largest

codebook of an m-bit FTC is given by Fm+2 [2], where {Fn} is a Fibonacci sequence

satisfying Fn = Fn−1 + Fn−2 for n ≥ 3, and F1 = F2 = 1. In an FPC, the bit

patterns 010 and 101 are avoided, which is called forbidden pattern (FP) condition.

The codebook size of an m-bit FPC is given by 2Fm+1 [3], slightly greater than that

of an m-bit FTC. Since the number of codewords needed is a power of two, an m-bit

FPC leads to a higher rate than an m-bit FTC when there exists an l such that

Fm+2 < 2l ≤ 2Fm+1.

An efficient FTC CODEC was proposed in [5] based on the FNS, where a binary

string dmdm−1 · · · d1 represents v =
∑m

i=1 diFi. The CODEC in [5] can encode all of

the FTC codewords with a quadratic complexity and thus it is optimal. A similar

CODEC based on the FNS is designed for FPCs in [6]. However, the number of

integers that can be represented by the FNS is given by 1 +
∑m

i=1 Fi = Fm+2, which

is less than 2Fm+1, the maximal cardinality of an m-bit FPC codebook. Thus we

can only encode a subset of the FPC codebook based on the FNS directly. This

CODEC is referred to as a near-optimal FPC CODEC in [6]. An optimal FPC

CODEC design proposed in [6] solves this problem by employing extra logic to

encode the integers that cannot be encoded by the FNS. However, the extra logic

makes the CODEC more complex.
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2.2.3 (1 + 3λ) Codes

The (1 + 3λ) codes can achieve a worst case delay of (1 + 3λ)τ0. FOCs are a kind

of (1 + 3λ) CACs [31]. We say a 3 bit pattern b1b2b3 appears around a bit di

if di+1didi−1 = b1b2b3. The FOC codebook satisfies the following constraint: the

codebook cannot have both 010 and 101 appearing around any bit position. The

maximal size of an m-bit FOC is given by Tm, where

Tm = Tm−1 + Tm−2 + Tm−3 for m ≥ 4 (2.3)

and T1 = 2, T2 = 4, and T3 = 7 [31]. We are not aware of efficient CODEC designs

for FOCs in the literature.

2.3 Generic CAC CODEC Designs Based on Nu-

meral Systems

2.3.1 Introduction to Numeral Systems

A numeral system is a linguistic system and mathematical notation for representing

numbers of a given set by symbols in a consistent manner [33]. The most commonly

used numeral systems are positional numeral systems [33], where given a positive

natural number b, a string (am · · · a2a1)b represents a number
∑m

i=1 aib
i−1. For ex-

ample, the binary and decimal numeral systems use powers of two and powers of ten,

respectively, as bases. A binary mixed-radix numeral system is that given a basis set

of non-negative numbers {γm, · · · , γ2, γ1}, a binary string (dm · · · d2d1) represents a
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number
∑m

i=1 diγi. In our research, we focus on binary mixed-radix numeral systems

henceforth.

A numeral system is complete if any integer u ∈ [0,
∑m

i=1 γi] can be represented

by at least one binary string dmdm−1 · · · d1. To determine whether a numeral system

is complete, we have the following lemma:

Lemma 2.1. Given a basis set of non-negative numbers {γi}mi=1, suppose there is a

permutation of these numbers such that for all 2 ≤ k ≤ m, γk ≤ 1 +
∑k−1

i=1 γi, and

γ1 = 1, then the numeral system defined by {γk}mk=1 is complete.

Proof. Without loss of generality, suppose {γi}mi=1 has already been ordered with

the property stated in Lemma 2.1. When m = 1, this numeral system is complete

because the two numbers 0 and 1 can be represented by strings d1 = 0 and d1 = 1

respectively. Suppose this lemma holds for m = n. When m = n+1, {γi}ni=1 defines

a complete numeral system, and all the number less than or equal to
∑n

i=1 γi can be

represented by at least a bit string dndn−1 . . . d1. Consider an integer u ≤∑n+1
i=1 γi. If

u ≤∑n
i=1 γi, let dn+1 = 0, and dndn−1 · · · d1 be the representation of u in the numeral

system defined by {γi}ni=1. If 1 +
∑n

i=1 γi ≤ u ≤ ∑n+1
i=1 γi, v = u − γn+1 ≤

∑n
i=1 γi

and v ≥ (1 +
∑n

i=1 γi) − γn+1 ≥ 0. Thus v ∈ [0,
∑n

i=1 γi] can be represented by a

binary string dndn−1 · · · d1, and let dn+1 = 1, we have an (n + 1)-bit binary string

representation of u. Thus all the number less than or equal to
∑n+1

i=1 γi can be

represented by an (n+ 1)-bit binary string.

Note that if γi > 0 for 1 ≤ i ≤ m and γj ≥ γi for 1 ≤ i ≤ j ≤ m, then the

numeral system defined by {γk}mk=1 is complete if and only if for all 2 ≤ k ≤ m,

γk ≤ 1 +
∑k−1

i=1 γi, and γ1 = 1. Nevertheless, Lemma 2.1 is enough for our CODEC
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design.

2.3.2 Generic CAC Encoding Algorithm

Suppose we want to transmit a k-bit data message over a bus with m (m ≥ k) wires

in one clock cycle. These k bits are first encoded into an m-bit CAC codeword so

that the transition patterns with long crosstalk delays are avoided. The m-bit CAC

codeword is then transmitted over the bus and received by the decoder. Then the

k-bit message is recovered at the decoder.

The idea of numeral system based CAC CODEC is that the k-bit data message

can be viewed as an integer v such that 0 ≤ v ≤ 2k−1 in the binary numeral system,

and the goal of encoding algorithm is to convert v into an m-bit binary string, which

represents v under another numeral system and has no transition pattern with long

crosstalk delay. Since the encoded codeword contains only 0 and 1 and the numeral

system needs to be complete, we have to use a binary mixed-radix numeral system.

Consider an m-bit CAC codebook C(m) with size |C(m)|. If a numeral system

{γk}mk=1 is used to encode C, we consider an encoder, which is essentially a mapping

f from all integers in [0, |C(m)| − 1] to C with the following properties:

• All the codewords can be mapped from an integer in [0, |C(m)| − 1], which

implies that f is surjective;

• Different codewords represent different integers under the mapping.

Therefore f is a bijection from integers in [0, |C(m)| − 1] to C. Then we have the

following lemma for f :
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Lemma 2.2. f−1(00 · · · 0) = 0, and f−1(11 · · · 1) = |C(m)| − 1 when γi ≥ 0 for

1 ≤ i ≤ m.

Proof. Since the codewords 00 · · · 0 and 11 · · · 1 exist in all CACs, they are mapped

from the integers that can be represented by the numeral system respectively.

f−1(00 · · · 0) =
∑m

i=1 0 · γi = 0. Obviously, f−1(11 · · · 1) =
∑m

i=1 γi is the largest

integer that can be represented by this numeral system since the bases of the nu-

meral system are non-negative, thus it is |C(m)| − 1.

Note that we assume that f is a bijection from the integers in [0, |C(m)| − 1]

to C(m). Of course, one may find another set of |C(m)| integers to construct this

bijection, but this makes no difference for FTCs, FPCs, and OLCs. However, for

FOCs with maximal sizes, we cannot establish such bijection f based on numeral

system, which is proved in Proposition 2.12. It is still not clear that if there is a set

of Tm integers to help us derive an FPC CODEC with a quadratic complexity.

We propose a generic CAC encoding algorithm based on a numeral system

in Alg. 1 below. In Alg. 1, {γ1, γ2, · · · , γm} is the basis set of the encoding nu-

meral system, {αi}mi=1, {βi}mi=1, and Θ are some constants depending on the CACs.

dmdm−1 · · · d1 is the output of the encoding algorithm; also it is a codeword in

the CAC. It is easy to see that the data message is recovered by computing v =
∑m

i=1 diγi.

The CODEC for a CAC based on Alg. 1 is shown in Fig. 2.1. The encoder

consists of m − 1 processing elements, and all processing elements have the same

circuit, shown in Fig. 2.2. The top processing element is slightly different from the

others in that αm = βm = Θ, which renders the input dm+1 inconsequential (the

input dm+1 to the top processing element is don’t care in Fig. 2.1). Each processing
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Algorithm 1 Generic CAC encoding algorithm

Input: code length m, integer v (0 ≤ v ≤∑m
i=1 γi).

1: for k = m downto 2 do
2: if k = m then
3: if v ≥ Θ then
4: dm = 1;
5: else
6: dm = 0;
7: end if
8: rm = v − dm · γm;
9: else

10: if rk+1 ≥ αk then
11: dk = 1;
12: else if rk+1 < βk then
13: dk = 0;
14: else
15: dk = dk+1;
16: end if
17: rk = rk+1 − dk · γk;
18: end if
19: end for
20: d1 = r2;
21: Output: dmdm−1 · · · d1.

element consists of two comparators, one subtractor, and one multiplexer. Each

processing element has three parameters αk, βk, and γk, two inputs dk+1 and rk+1,

and two outputs dk and rk.

We observe the similarities between Alg. 1 and [6, Alg. 2] for FPCs, between the

generic CODEC in Fig. 2.1 and the FPC CODEC shown in [6, Figure 3], as well as

between the processing element in Fig. 2.2 and that in [6, Figure 4]. Despite these

similarities, there are some key differences. The CODEC in [6, Alg. 2 and Figure 3]

is for a near-optimal FPC, and the constants used therein are from the FNS. By

finding proper numeral systems (not necessarily Fibonacci) {γk} and constants Θ,
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Θ,Θ, γm
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Figure 2.1: The generic CODEC of an m-bit CAC based on Alg. 1 (note the simi-
larity to the CODEC shown in [6, Figure 3]).

{αk}, and {βk}, our generic CODEC can be used for all classes of CACs — OLCs,

FPCs, and FOCs — with different worst-case crosstalk delay. Furthermore, the

processing element in our generic CODEC can be further simplified for OLCs and

FOCs, which will be shown in Sec.s 2.5 and 2.6.

Since Alg. 1 is generic and applicable to all CACs, Alg. 1 includes the encoding

algorithms based on the FNS in [5, 6] as special cases. For example, the FNS

based FTC encoding algorithm (cf. [5, Alg. 1]) is a special case of Alg. 1, where

Θ = F2bm
2
c+1, αk = βk = F2b k

2
c+1, and γk = Fk. Furthermore, the near-optimal FPC

encoding algorithm (cf. [6, Alg. 2]) is also a special case of Alg. 1, where Θ = Fm+1,
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Figure 2.2: The processing element of the encoder in Fig. 2.1 (note the similarity
to [6, Figure 4]).

γk = Fk, αk = Fk+1, and βk = Fk.

We remark that our CODEC in Fig. 2.1 has a quadratic complexity with m. This

can be verified in two ways. First, we note that each parameter as well as each input

for one processing element has at most m bits. Since the comparators, subtractor,

and multiplexer in Fig. 2.2 all can be implemented with linear complexity with m,

each processing element also has a linear complexity and hence the encoder has a

quadratic complexity. The decoder is an m-input adder with each input an m-bit

number, and hence it also has a quadratic complexity. Thus our CODEC in Fig. 2.1

has a quadratic complexity. Second, this is confirmed by implementation results,

presented in Sec. 2.7, of our CODECs based on this generic CODEC.

We finally observe that our CODEC in Fig. 2.1 has a simple and regular circuit,

and it can achieve high throughput via pipelining if desired.

2.4 The FPC CODEC Design

2.4.1 Numeral Systems for FPC CODECs

Let {Fk} be a Fibonacci sequence. We have the following theorem:
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Theorem 2.3. When m ≥ 2, the set {pk}mk=1 defines a complete numeral system,

where pm = Fm+1 and pk = Fk for 1 ≤ k ≤ m− 1.

Proof. We have a property of Fibonacci sequence: 1 +
∑n

i=1 Fi = Fn+2 > Fn+1 [5].

Thus the numeral system defined by {pk}mk=1 is complete.

In the following, the numeral system defined by {pk}mk=1 is referred to as a mod-

ified Fibonacci numeral system (MFNS).

2.4.2 The FPC CODEC Design

With the help of the MFNS, the FPC CODEC can be designed as a special case of

our general CAC CODEC by choosing

γk = pk, Θ = Fm−1, αk = Fk+1, βk = Fk. (2.4)

We will show in Theorem 2.4 that this algorithm is correct and optimal that each

integer in [0, 2Fm+1 − 1] can be encoded into one codeword in the FPC codebook.

The decoding algorithm is given by the formula v =
∑m

i=1 dipi.

Theorem 2.4. The output of Alg. 1 with the constants specified in (2.4) is an FPC

codeword.

Proof. As in [6], the correctness of the FPC encoding algorithm can be proved by

showing that if the partially generated output vector dm · · · dk+1dk after the k-th

(k ≤ m − 2) stage has no forbidden pattern, adding the output of the (k − 1)-th

stage, dk−1, will not introduce a forbidden pattern. For k < m− 2, the proof is the

27



2.4. THE FPC CODEC DESIGN

same as the proof in [6] since our encoding algorithm is the same as [6, Alg. 2], and

thus it suffices to prove the case when k = m− 2.

If dm = 0, we know rm = v < Fm+1. If dm−1 = 0, no forbidden pattern will

be generated after adding dm−2, the output of the (m − 2)-th stage. If dm−1 = 1,

rm ≥ Fm, and then rm−1 = rm − Fm−1 ≥ Fm − Fm−1 = Fm−2, implying that

dm−2 = dm−1 = 1.

If dm = 1, we know Fm+1 ≤ v ≤ 2Fm+1 − 1, and 0 ≤ rm ≤ Fm+1 − 1. If

dm−1 = 1, no forbidden pattern will be generated regardless of dm−2. If dm−1 = 0,

then rm−1 = rm < Fm−1, implying dm−2 = 0.

As a special case of our generic CAC CODEC, the circuitry of our FPC CODEC

design has a quadratic complexity. In comparison to the near-optimal FPC encoder

in [6, Fig. 3], our FPC encoder uses a different formula to generate the most signifi-

cant bit and our decoder in multiplies dm with Fm+1 as opposed to Fm in [6, Fig. 3].

Therefore our CODEC design has a larger codebook with the same complexity of

the near optimal FPC encoder, resulting in a slightly higher code rate when there

exists l such that 2Fm+1 ≥ 2l ≥ Fm+2. Compared with the optimal FPC CODEC

in [6] (cf. [6, (21) and (22)]), our CODEC achieves the same code rate, and has

a slightly simpler circuit, thus achieving a shorter latency and requiring a smaller

area. As for the CODECs in [6], high throughput can be achieved for our CODEC

through pipelining if necessary.
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2.5. THE OLC CODEC DESIGN

2.5 The OLC CODEC Design

2.5.1 Numeral Systems for OLC CODECs

Based on the property of the sequence {gi}∞i=1 defined in (2.2), we have the following

theorem:

Theorem 2.5. For m ≥ 4, let {fi}mi=1 be defined by fm = gm−3, fi = gi−1− gi−2 for

3 ≤ i ≤ m−1, f2 = 0, and f1 = 1. Then {fi}ji=1 defines a complete numeral system

for j ≤ m.

Proof. It is easy to see that all the entries in the sequence {gk}∞i=1 are positive and

strictly increasing. Since gk = gk−1 + gk−5, we can see that gk−1 < gk < 2gk−1.

Since
∑m−1

i=1 fi = gm−2 − g1 + 1 = gm−2 − 1, fm = gm−3 ≤ gm−2 − 1 =
∑m−1

i=1 fi. If

2 < k < m, fk = gk−1 − gk−2 ≤ gk−2 − 1 =
∑k−1

i=1 fi. Since f2 = 0 < f1 = 1, {fk}jk=1

defines a complete numeral system for j ≤ m by Lemma 2.1.

2.5.2 The OLC CODEC Design

The maximal cardinality of an m-bit OLC codebook is given by gm as defined in

(2.2) [30]. The numeral system defined by {fi}mi=1 can be used to encode an m-bit

OLC. Construct a sequence {Gn} such that Gn = Gn−1 +Gn−5 for n ≥ 6 with initial

conditions G1 = G3 = G4 = G5 = 1 and G2 = 0. By inspection, we can easily verify

that Gn = gn−6 for n > 6, which means that {Gn} is an extension of the sequence

{gn}. We also note that fn = Gn when n < m, and fm = Gm+3. Therefore, by
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setting the constants in Alg. 1 as follows,

γk = fk, Θ = G2bm
2
c+4,

αk =





G2l+2 k = 2l − 1,

∞ k = 2l,

βk =





0 k = 2l − 1,

G2l+2 k = 2l,

(2.5)

the numeral system defined by {fi}mi=1 can be used to encode the OLC by Alg. 1.

The decoding algorithm is given by the formulae v =
∑m

i=1 difi.

We first establish four technical results, all of which are instrumental in proving

the correctness of our OLC encoding algorithm.

Lemma 2.6. Gn = Gn−2 +Gn−3 for n ≥ 4.

Proof. For 4 ≤ n ≤ 8, Lemma 2.6 can be shown by inspection. Suppose it holds for

all n up to k ≥ 8. When n = k + 1,

Gk+1 = Gk +Gk−4

= Gk−2 +Gk−3 +Gk−6 +Gk−7

= Gk−1 +Gk−2.

Thus the lemma holds for all n ≥ 4.

Since {Gn} is an extension of sequence {gn}, Lemma 2.6 implies that

Lemma 2.7. gn = gn−2 + gn−3 for n ≥ 4.
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Lemma 2.7 gives a novel recursive relation of the sequence {gn}. Note that {gn}

is the maximal cardinality of an m-bit OLC codebook [30].

Lemma 2.8. 1 +
∑2n−1

i=1 Gi = G2n+4 for n ≥ 1.

Proof. If n = 1, then G1 = 1, G6 = g1 = 2, and thus 1 + G1 = G6. Suppose that

Lemma 2.8 holds for n ≤ k. When n = k + 1,

1 +
2k+1∑

i=1

Gi = 1 +
2k−1∑

i=1

Gi +G2k+1 +G2k

= G2k+4 +G2k+3

= G2k+6

by Lemma 2.6. Thus this lemma holds for all n ≥ 1.

To show that the output of the OLC encoding algorithm is an OLC codeword,

we need to show that it is a binary string first. From the algorithm, when k ≥ 2, dk

is either 0 or 1. Then it suffices to show that d1 can only be either 0 or 1. To prove

this, we need Lemma 2.9.

Lemma 2.9. When the constants of Alg. 1 are set as specified in (2.5) , 0 ≤ rk ≤
∑k−1

i=1 fi for each integer k ∈ [2,m].

Proof. We prove this property by induction on k from m to 2. First we are going

to show that rk ≤
∑k−1

i=1 fi. Since the input integer v ≤ gm − 1 =
∑m

i=1 fi by

Theorem 2.5, if dm = 1, rm = v − fm ≤
∑m−1

i=1 fi, and if dm = 0, rm = v ≤

G2bm
2
c+4− 1 =

∑2bm
2
c−1

i=1 Gi ≤
∑m−1

i=1 fi by Lemma 2.8. For 2 ≤ k < m, suppose that

rk+1 ≤
∑k

i=1 fi. It is obvious rk ≤
∑k−1

i=1 fi if dk is encoded as 1. Therefore it suffices

to consider the case when dk is encoded as 0. If k = 2l + 1, then d2l+1 = 0 implies
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that r2l+1 = r2l+2 ≤ G2l+4 − 1 =
∑2l−1

i=0 fi <
∑2l

i=0 fi. If k = 2l, then d2l = 0 implies

that either r2l = r2l+1 ≤ G2l+2 − 1 =
∑2l−3

i=1 fi <
∑2l−1

i=1 fi, or d2l = d2l+1 = 0. In the

latter case, d2l+1 = 0 implies that r2l+1 ≤
∑2l−1

i=0 fi, thus r2l = r2l+1 ≤
∑2l−1

i=0 fi.

Next, we are going to show that rk ≥ 0. If dm = 0, then rm = v ≥ 0. If dm = 1,

then rm = v−fm ≥ G2bm
2
c+4−Gm+3. If m is even, rm ≥ Gm+4−Gm+3 = Gm−1 ≥ 0,

and if m is odd, then rm ≥ Gm+3−Gm+3 = 0. Suppose at step k+1, rk+1 ≥ 0. Then

at step k, if dk = 0, then rk = rk+1 ≥ 0. Suppose dk = 1 and k is even. Therefore

rk+1 ≥ Gk+2, and rk = rk+1 − fk ≥ Gk+2 −Gk = Gk−1 ≥ 0. If dk = 1 and k is odd,

there are two possible cases: either dk = 1 because rk+1 ≥ Gk+3 or dk = dk+1 = 1.

In the first case, rk = rk+1 − fk ≥ Gk+3 −Gk = Gk+1 ≥ 0. In the latter case, since

k + 1 is even, by the above argument, dk+1 = 1 implies that rk+1 ≥ Gk = fk, and

rk = rk+1 − fk ≥ 0. Then we have rk ≥ 0 at each step.

By Lemma 2.9, 0 ≤ r2 ≤ f1 = 1, therefore d1 is either 0 or 1. From our OLC

encoding algorithm, it is also easy to see that v =
∑m

i=1 difi. Thus the output of

our OLC encoding algorithm cannot be identical binary string for different integers.

Theorem 2.10. The output of Alg. 1 is an OLC codeword by setting the constants

as specified in (2.5).

Proof. First, let us prove that the output of our OLC encoding algorithm has al-

ternating 01- and 10-type boundaries. At the 2l-th stage, the output d2l is 1 only

if d2l+1 = 1. Thus the 01 pattern is avoided at the boundary d2l+1d2l, and this is

a 10-type boundary. At the (2l − 1)-th stage, the output d2l−1 is 0 only if d2l = 0.

Thus the 10 pattern is avoided at the boundary d2ld2l−1, and this is a 01 boundary.

Thus the output dmdm−1 · · · d1 has alternating 01- and 10-type boundaries.
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Next, let us show that the bit patterns 101 and 010 are avoided in the output

of the OLC encoding algorithm. From the constraint of alternating boundary type,

only d2l+1d2l can have an output 10. Thus r2l = r2l+1 ≤
∑2l−3

i=1 Gi < G2l+2 by

Lemma 2.8, and d2l−1 will be zero as well; hence 101 is avoided in the output vector.

Similarly, bit pattern 01 appears only in d2l+2d2l+1. Thus r2l+1 = r2l+2 − f2l+1 ≥

G2l+4 − G2l+1 = G2l+2. Thus d2l is the same as d2l+1, and hence 010 is avoided in

the output vector.

The bit patterns 1001 and 0110 violate the alternating boundary type constraint,

and thus they cannot appear in the output vector. Thus the output vector is an

OLC codeword.

Since the largest codebook size of an m-bit OLC is gm, and we can get gm differ-

ent codewords satisfying the constraints of OLC codewords by the OLC encoding

algorithm, the algorithm gives a bijection from integers in [0, gm − 1] to the m-bit

OLC codebook, implying that the algorithm is optimal.

Our numeral system based OLC CODEC has a quadratic complexity since it is a

special case of Alg. 1, and thus the same structure of the general CODEC in Fig. 2.1

can be applied to implement OLC CODEC. Note that α2l =∞ and β2l−1 = 0, all the

processing element except the top one can be simplified to have only one comparator

instead of two in the general case, which is shown in Fig.2.3. The decoder of our

OLC CODEC is implemented by the formula v =
∑m

i=1 difi, which is an m-input

adder. We can also design a high throughput CODEC by pipelining if desired.
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(a) processing element circuit when k is odd.
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(b) processing element circuit when k is even.

Figure 2.3: The OLC CODEC processing element.

2.6 The FOC CODEC Design

In Sec. 2.6.1, we first show that unfortunately, it is impossible to find constants

{αk}, {βk}, {γk}, and Θ, so that our generic CAC encoding algorithm can be used

to encode all the codewords in the largest codebook of an m-bit FOC when the code

length m ≥ 4. Instead, we propose an FOC which is a subset of the largest FOC

codebook that can be encoded with Alg. 1 in Sec. 2.6.2.

2.6.1 Numeral Systems for FOC CODECs

We will show in Proposition 2.12 that when m ≥ 4, no numeral system can establish

a bijection from the integers [0, Tm − 1] to the FOC codebook CFOC(m) with the

maximal size Tm. Before proving Proposition 2.12, we are going to prove a lemma.

Lemma 2.11. If a numeral system {γi}mi=1 establishes a bijection f : Sm 7→ CFOC(m)

where Sm is the set of integers in [0, Tm−1], and for a codeword c = (c1, c2, · · · , cm),

f(
∑m

i=1 ciγi) = c, then

(a) γi 6= γj for 1 ≤ i < j ≤ m;

(b) γi > 0 for all 1 ≤ i ≤ m;
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(c) either γ1 = 1 and γm = 2, or γ1 = 2 and γm = 1 if m ≥ 2;

(d) if m ≥ 4, γi 6= 3 and γi 6= 4, for all 1 ≤ i ≤ m.

Proof. There are two types of m-bit FOCs that both achieve the maximal (1 + 3λ)

codebook size. One type avoids 101 pattern around even bit position, and avoids 010

around odd bit position; the other type avoids 010 pattern around even bit position,

and avoids 101 pattern around odd bit position. We will prove Lemma 2.11 by

considering only the first type of FOCs. A similar argument holds for the second

type of FOCs.

Part (a). There is a codeword c1 with alternating ones and zeros with d1 = 0 in

CFOC(m). We can obtain another codeword c2 in CFOC(m) by flipping a bit d2p from 1

to 0 and a bit d2q+1 from 0 to 1, where 1 ≤ 2p, 2q+1 ≤ m. Then we have γ2p 6= γ2q+1,

otherwise we will have f−1(c2) = f−1(c1)−γ2p +γ2q+1 = f−1(c1), which contradicts

that f is a bijection. Consider two codewords c3 and c4 with all zeros except a single

one at d2p and d2q, respectively. f−1(c3) 6= f−1(c4) implies γ2p 6= γ2q. Consider two

codewords c5 and c6 with all ones except a single zero at d2p+1 and d2q+1, respectively.

f−1(c5) 6= f−1(c6) implies Tm−1−γ2p+1 6= Tm−1−γ2q+1, and hence γ2p+1 6= γ2q+1.

Summarizing all these results, we have γi 6= γj for 1 ≤ i 6= j ≤ m.

Part (b). Suppose γi = 0. If i is even, the all zeros codeword and the codeword

with all zeros except a single 1 at di coexist in CFOC(m), and they represent the

same integer 0. If i is odd, then the all ones codeword and the codeword with

all ones except a single 0 at di coexist in CFOC(m), and they represent the same

integer Tm− 1. In either case, f is no longer a bijection. Therefore γi is positive for

1 ≤ i ≤ m.
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Part (c). To make our numeral system defined by {γi}mi=1 complete, there is

one and only one element γi = 1 for some 1 ≤ i ≤ m by Lemma 2.11(a). By

Lemma 2.11(b), there is only one way to map the integer 1 to an FOC codeword,

which is setting all bits to 0 except di = 1. Similarly setting all bits to 1 except

di = 0 is the only way to represent the integer Tm − 2. Thus i can not be a value

other than 1 or m since otherwise we will have both 010 and 101 centered around

di. Since we cannot have two elements in the base set equal to 1 by Lemma 2.11(a),

we need a 2 appeared in the base set to represent the integer 2. A similar argument

shows that if γi = 2, then i is either 1 or m.

Part (d). If m ≥ 4, then the following 8 codewords 000 · · · 000, 000 · · · 001,

100 · · · 000, 100 · · · 001, 011 · · · 110, 011 · · · 111, 111 · · · 110, and 111 · · · 111 are all in

CFOC(m). They are mapped from integers in [0, 3] and [Tm−4, Tm−1] by Lemmas 2.2

and 2.11(c). If γi = 3, then i has to be an integer lies in [2,m−1] because γ1 and γm

have to take the values 1 and 2 by Lemma 2.11(c). Thus either the codeword with

all zeros except a single 1 at di or the codeword with all ones except a single 0 at di

is in CFOC(m), which will be mapped to the same integer that can be represented by

one of the aforementioned eight codewords, and f is no longer a bijection. Therefore

γi 6= 3 for all 1 ≤ i ≤ m. If γi = 4, by Lemma 2.11(b), we have to use the codeword

with all zeros except di = 1 to represent the integer 4, and the codeword with all

ones except di = 0 to represent the integer Tm − 5 at the same time. Since i can be

neither 1 nor m, both bit patterns 010 and 101 appear around di in CFOC(m), and

the FOC constraint is violated. Therefore γi 6= 4 for all 1 ≤ i ≤ m.

Theorem 2.12. For m ≥ 4, no numeral system can establish bijection from Sm to

an FOC codebook.
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Proof. By Lemma 2.11(d), we cannot map the integer 4 to an FOC codeword when

m ≥ 4. Thus we cannot find a numeral system to establish a bijection from [0, Tm−1]

to an FOC codebook.

We acknowledge that our proof relies on Sm = {0, 1, · · · ,m}, which is required by

our generic encoding algorithm. In general, one may find a set of Tm distinct integers

that can be mapped from Sm efficiently and can be expressed by the codewords in

CFOC(m) under some numeral systems. However, it is not clear now how these

integers can be designed and encoded into CFOC(m) while achieving a quadratic

complexity.

2.6.2 The Sub-optimal FOC CODEC Design

Consider a set C ′FOC(m) of m-bit codewords derived by avoiding bit pattern 10 on the

boundaries d2l+1d2l. It is easy to see that C ′FOC(m) is actually a subset of CFOC(m),

because it does not have 010 on d2l+2d2l+1d2l, and does not have 101 on d2l+1d2ld2l−1.

LetHm = |C ′FOC(m)|. We can construct the codebook C ′FOC(m+1) from C ′FOC(m).

Let xm and ym denote the number of codewords starting with 1 and 0 respectively.

When m = 1, no constraint can be applied on the codebook, therefore H1 = 2,

and x1 = y1 = 1. If m = 2l − 1, since no restriction is applied on the boundary

d2ld2l−1, d2l can be either 1 or 0. Thus H2l = 2H2l−1 and x2l = y2l = H2l−1. If

m = 2l is even, since 10 is avoided from the boundary d2l+1d2l, x2l+1 = x2l and

y2l+1 = x2l + y2l, and H2l+1 = 2x2l + y2l = 1.5H2l since x2l = y2l = 0.5H2l. Thus the

codebook size of this subset is given by 4×3
m−2

2 when m is even, and 2×3
m−1

2 when

m is odd. We note that blog2Hmc increases with m, and the code rate approaches

a limit 1
2

log2 3 = 0.7925 when m grows large. This limit is higher than the limit
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for m-bit FPCs (0.6943), but is lower than that of m-bit FOCs (0.8791). The code

rates of CFOC(m) and C ′FOC(m) are compared in Fig. 2.4. From the comparison, if

m is small, the difference between the code rates of CFOC(m) and C ′FOC(m) is quite

small, and the area overhead of C ′FOC(m) is close to that of CFOC(m).
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Figure 2.4: The comparison of the code rates of CFOC(m) and C ′FOC(m).

Let {hi}∞i=1 be the following sequence: h2l = 3h2l−2 and h2l−1 = h2l−2 for l > 1

with inial conditions h1 = 1 and h2 = 2. This sequence has the following property

Lemma 2.13. h2l = 1 +
∑2l−1

i=1 hi for all l > 0.

Proof. 1+
∑2l−1

i=1 hi = 2+
∑2l−1

i=2 hi = 2+2
∑l−1

i=1 h2i. {h2i}∞i=1 is a geometric sequence

by its definition. Therefore 2 + 2
∑l−1

i=1 h2i = 2× 3l−1 = h2l.

Then we have the following proposition:
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Table 2.1: The constants used in Alg. 1 for different CACs.

CAC Θ αk βk γk

OLC G2bm
2
c+4

G2l+2 k = 2l − 1
∞ k = 2l

0 k = 2l − 1
G2l+2 k = 2l

fk

FTC F2b k
2
c+1 F2b k

2
c+1 F2b k

2
c+1 Fk

FPC Fm+1 Fk+1 Fk
Fm+1 k = m
Fk 1 ≤ k < m

FOC
∑m

i=2bm
2
c hi

∑k
i=2b k

2
c hi

∑k
i=2b k

2
c hi hk

Theorem 2.14. The numeral system defined by the basis set {hi}mi=1 is complete.

Proof. If k > 1 is odd, then hk = hk−1 <
∑k−1

i=1 hi + 1. If k = 2l is even, then

hk = 1 +
∑k−1

i=1 hi by Lemma 2.13. Thus the theorem follows by Lemma 2.1.

Lemma 2.15. Hm = 1 +
∑m

i=1 hi, for all m ≥ 0.

It is easy to prove this lemma by induction, and hence the proof is omitted.

We can encode C ′FOC(m) with Alg. 1 by choosing

γi = hi, Θ =
m∑

i=2bm
2
c

hi, αk = βk =
k∑

i=2b k
2
c

hi. (2.6)

Similar with what we did in proving the correctness of OLC encoder algorithm,

we first need to show that the output of Alg. 1 with the constants specified in (2.6

is a binary string, which is a result of Lemma 2.16.

Lemma 2.16. For all k ∈ [2,m], 0 ≤ rk ≤
∑k−1

i=1 hi in the FOC encoding algorithm.

Proof. We prove this lemma by induction on k from m to 2. Let us first show

rm ≤
∑m−1

i=1 hi. Whenm = 2l, if d2l is encoded as 0, then r2l = v ≤ h2l−1 ≤∑2l−1
i=1 hi
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by Lemma 2.13; if d2l is encoded as 1, then r2l = v− h2l ≤ Hm− h2l− 1 =
∑2l−1

i=1 hi

by Lemma 2.15. When m = 2l + 1, if dm is encoded as 0, then r2l+1 = v ≤

h2l + h2l+1 − 1 = 2h2l − 1 =
∑2l

i=1 hi by Lemma 2.13. Suppose at step k + 1,

rk+1 ≤
∑k

i=1 hi. If dk is encoded as 1, then rk = rk+1 − hk ≤
∑k

i=1 hi − hk =
∑k−1

i=1 hi. Therefore we need to consider only the case where dk is encoded as 0.

If dk = 0 and k is even, then rk < hk which implies rk ≤ hk − 1 =
∑k−1

i=1 hi by

Lemma 2.13. When k is odd, hk = hk−1, therefore if dk = 0, rk < hk−1 + hk implies

rk ≤ 2hk−1 − 1 =
∑k−2

i=1 hi + hk−1 =
∑k−1

i=1 hi. Thus rk ≤
∑k−1

i=1 hi is proved.

Now we are going to show that rk ≥ 0 by induction from m to 2. When k = m,

if dm = 0, then rm = v ≥ 0. If dm = 1, then rm = v − hm ≥ hm − hm = 0. Suppose

at step k + 1, rk+1 ≥ 0. At step k, if dk = 0, then rk = rk+1 ≥ 0. If dk = 1, then

rk+1 ≥
∑k

i=2b k
2
c hk ≥ hk, hence rk = rk+1 − hk ≥ 0.

Theorem 2.17. The output of FOC encoding algorithm satisfies the constraints of

C ′FOC(m).

Proof. We prove it by induction on k from m to 2. Suppose the previous output

dmdm−1 · · · dk satisfies the constraints of C ′FOC(m), which is that d2l+1d2l 6= 10. When

k = m and m = 2l, there is no constraint on d2l−1. If m = 2l + 1, there are two

possible cases: if d2l+1 = 0, there is also no constraint on d2l; if d2l+1 = 1, then

v ≥ h2l + h2l+1, and rm = v − h2l+1 ≥ h2l, implying that dm−1 = 1. Therefore, the

bit pattern 10 is avoided from dmdm−1 when m is odd. If k = 2l + 1, and d2l+1 is

encoded as 1, then r2l+1 = r2l+2−h2l+1 ≥ α2l+1−h2l+1 = γ2l = α2l. Thus dk−1 = d2l

has to be encoded as 1, and the bit pattern 10 is avoided at d2l+1d2l. Since there is

no constraint on d2ld2l−1, the output is a codeword in C ′FOC(m).
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Figure 2.5: The FOC CODEC processing element. Although neither output depends
on dk+1, it is shown here to be consistent with Fig. 2.2

The decoding algorithm is given by the formula v =
∑m

i=1 dihi. Since different

integers generate different codewords, the FOC encoding algorithm gives a bijection

from the integers in [0, Hm − 1] to the codebook C ′FOC(m).

As a special case of Alg. 1, the same CODEC structure in Fig. 2.1 can be used as

the FOC CODEC after replacing the constants specified in (2.6). Because αk = βk,

as shown in Fig.2.5, in each processing element one comparator suffices and the input

dk+1 is inconsequential. The quadratic complexity of our FOC CODEC follows by

the complexity of the general CAC CODEC. The throughput of this CODEC can

be increased via pipelining if desired.

2.7 Implementation Results and Discussion

To quantify the delay as well as area and power overheads introduced by our CAC

CODECs, we implement our OLC, FPC, and FOC CODECs based on numeral

systems without pipelining. Our CODECs are simulated on Modelsim [34] and

synthesized by Cadence Encounter RTL Compiler [35] with an OKSU FreePDK 45

nm process [36]. The figures for power consumption of our CODECs are derived by

the power analysis tool in Encounter. To measure the CODEC power consumption,
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we assume the clock rate is 100 MHz and set the input switching rate to be 0.5 for

all CODECs. The clock rate is selected merely for the purpose of demonstrations,

and are inconsequential to our conclusions below. In practice, the clock rate should

be determined by bus delays as well as CODEC delays. Our CODEC delays are

not likely to be the bottleneck of achievable clock rates for two reasons. First, the

delays of our CODECs can be easily improved by pipelining or partitioning the bus.

Second, since the technology trend indicates increasing bus delays and decreasing

gate delays, the bus delays will be more likely to be the bottleneck.

The implementation results are shown in Figs. 2.6–2.8. Fig. 2.6 shows the

delay introduced by our CODECs, while Figs. 2.7 show CODEC complexities in

terms equivalent gate count. The result of area consumption includes the cell area

only. Fig. 2.8 shows the power consumption of our CODECs, including the leakage

power and the estimated internal and switching power. Our simulation results show

that the delay and the area complexity as well as the power consumption of our

CODECs increase quadratically with the bus width. The gate counts and delay of

our CODECs can be estimated with the following quadratic functions,

GEOLC(m) = 13.44m2 − 64.53 + 200.1, (2.7)

GEFPC(m) = 11.14m2 − 45.25m+ 131.6, (2.8)

GEFOC(m) = 7.648m2 − 40.72m+ 112, (2.9)

DOLC(m) = 0.0550m2 + 0.2008m− 0.0485 ns, (2.10)

DFPC(m) = 0.0358m2 + 0.8152m− 3.096 ns, (2.11)

DFOC(m) = 0.0250m2 + 0.1476m− 0.0412 ns. (2.12)
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We observe that our implementation results of FPC CODECs differ from those in [6]

(cf. [6, Fig. 7]), possibly due to different technology and design tools. Despite this

difference, our CODECs also have quadratic complexities, which is consistent with

the conclusion in [5, 6]. We also remark that the quadratic functions can be used

Fig. 2.9 compares the area consumptions of the CAC CODECs based on look-up

table (LUT) and those based on numeral systems. Although they have the same

codebook mapping, the synthesis results are different. From Fig. 2.9, we can see

that when the bus input width is small (less than 8 for OLC and FPC, and less

than 9 for FOC), the LUT-based CODECs take up smaller area than our CODECs.

However, when the bus input width increases, the area consumption of the LUT-

based CODEC increases exponentially and they become infeasible. In contrast, the

area consumption of our numeral system based CODECs increases quadratically

with the bus input width, and therefore our CODECs remain practical even when

the LUT-based CODECs become infeasible.

Based on our implementation results above, our CODECs are applicable to the

buses with severe crosstalk delay and moderate bus width. Note that the delay as

well as area and power overheads of our CODECs increase quadratically with the

bus width. Since CACs trade additional area and power for reduced delay, the delays

of CAC CODECs need to be kept small so as not to offset the delay improvement

by CAC encoding. Hence the number of wires cannot be too large, say m < m0.

Furthermore, the area and power overheads of our CODECs also increase with the

bus width; when the bus width is too large, it may be better to divide the bus

into sub-buses with shielding or duplication wires between sub-buses. Moreover,

as observed above, when the bus width is very small, LUT-based CODECs have
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smaller area and power overheads. Finally, the technology trends indicate that as

the CMOS technology scales, the gate delay decreases while the interconnect delay

increases. Therefore, the delay of our CODECs will become relatively small as

opposed to crosstalk delay, and will be more relevant in the future.

To find and achieve the appropriate balance between delay, area, power, and

latency, other techniques, such as partial coding and pipelining, can be used together

with our efficient CODECs. Although the quadratic functions in (2.7)–(2.12) are

approximate and may vary with technology, they can be used to find the proper

tradeoff with m being the key parameter. Both partial coding and pipelining are

useful tools to achieve the appropriate balance. First, our CODECs have regular

circuitry and can be pipelined to have a smaller delay (and hence a higher clock rate)

at the expense of a larger area and longer latency. A bus with a high clock rate (and

thus throughput) and long latency may be useful in certain scenarios. However,

pipelining of CODECs transforms the bus into a multi-cycle bus; thus, whether

CACs are worthwhile should be evaluated by taking this into account. Second,

our CODECs can be integrated with the partial coding technologies (cf. [6, Fig. 9]).

Since our CODECs have quadratic complexity, the delay is reduced to approximately

1
n2 of the original delay and the total area is reduced to roughly 1

n
, by breaking the

bus into n sub-buses. The price of this approach is that it needs extra shielding

or duplication wires inserted between the sub-buses. In summary, when integrated

with other techniques, our efficient CODECs help to find the balance between the

delay and area/power overheads so as to minimize the overheads while satisfying

the speed requirement for the bus when integrated with other techniques.
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Figure 2.6: Delay of numeral system based CAC CODECs

2.8 Summary

In this chapter, we establish a framework for the CAC CODEC design based on

numeral systems, and devise efficient CODECs for OLCs, FPCs, and FOCs by

choosing appropriate numeral systems and constants. The results are summarized

in Tab. 2.1. Implementation results show that our CODECs all have area and delay

that increase quadratically with the bus width. Used together with partial coding,

our efficient CODECs help make CACs a viable option in combating crosstalk delay,

which is a bottleneck in deep sub-micron system-on-chip designs.
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Figure 2.7: Gate count of numeral system based CAC CODECs
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Figure 2.8: Power consumption of numeral system based CAC CODECs
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Chapter 3

Two-Dimensional Crosstalk

Avoidance Codes

We have introduced in Chapter 2 that different crosstalk avoidance codes (CACs)

are proposed to alleviate the problem of the increasing crosstalk delay on the inter-

connect bus in the deep sub-micron technologies. These CACs, such as One lambda

codes (OLCs) [4], forbidden transition codes (FTCs) [2], forbidden patterns codes

(FPCs) [3], and forbidden overlap codes (FOCs) [31], are all one dimensional since

both encoding and decoding are restricted in the spatial domain.

In this chapter, we propose two-dimensional crosstalk avoidance codes (TD-

CACs). In TDCACs, encoding and decoding occur in both spatial and temporal

domains. The main advantage of TDCACs is higher code rates, which implies

less area and power overhead to reduce crosstalk delay. The rates of crosstalk

avoidance codes are due to the restriction on the transitions over the wires to reduce
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Figure 3.1: Channel model of our TDCAC.

crosstalk delay. Since TDCACs have an additional temporal dimension, the restric-

tion on the transitions does not have so severe an impact on their code rates as

traditional one dimensional CACs. Indeed, our results (details shown below) show

that TDCACs result in higher code rates than their one-dimensional counterparts.

However, two potential drawbacks for TDCACs are encoding/decoding complexity

and latency. As later shown in an example, the encoding and decoding complexities

are low for properly designed TDCACs. Furthermore, partial coding can be used

to reduce encoding and decoding complexities. As regard to latency, it is impor-

tant to emphasize that in many systems the latency of global buses is much less

important than throughput. Even one-dimensional crosstalk avoidance codes incur

latency penalty up to two clock cycles (cf. [28, Figs. 7.2 and 7.4]). Longer latency

may be needed when the decoding cannot begin until the whole code matrices are

received. However, when the TDCACs are memoryless and systematic, the decod-

ing may start after only part of the code matrices are received. Furthermore, our

results show that even TDCACs with a small n can achieve higher code rates with-

out incurring severe latency penalty. Thus, properly designed TDCACs represent a

promising solution to the crosstalk delay problem for global buses.

This chapter aims to establish a theoretical framework for TDCACs. In this

sense, the results in this chapter parallel those in [2]. In Sec. 3.1, we first consider

TDCACs with memory. Specifically, we first determine the maximum code rates
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for TDCACs with memory for n ≤ 15; we also conjecture the maximum code rates

for TDCACs with memory for n > 15. In Sec. 3.2, we present our graph model for

TDCACs without memory. We also show an example of 3 × 3 TDCACs including

its encoding and decoding circuits in Sec. 3.3. In Sec. 3.4, the code rates of some

TDCACs are compared with one-dimensional CAC.

3.1 Two Dimensional Codes with Memory

3.1.1 System Model

Let us consider TDCACs that consist of m×n code matrices, where m is the width

of the bus and n is the number of consecutive clock cycles. The channel model of

our TDCACs is shown in Figure 3.1. First, b data bits are encoded into an m × n

code matrix, and the code matrix is placed in the encoder’s buffer, waiting to be

transmitted. The encoding may also depend on the previous encoded code matrix,

which is saved in the memory. Each m × n code matrix is then transmitted over

the m-bit bus in n clock cycles, and the received vectors are saved in the decoder’s

buffer. Finally, the decoder recovers the b data bits using each received code matrix

and possibly the previous code matrix saved in the memory. In the worst case

scenario, both the encoder’s and decoder’s buffers need to hold one code matrix,

and hence the latency is at most 2n + 1 clock cycles. However, if the decoder can

start when only part of the code matrix is received, the latency is shorter and the

buffer is smaller. Although the latency of the bus increases, the throughput of the

bus is the same as that for the bus using one-dimensional CAC. The rates of such

TDCACs are defined to be b
mn

, which again measures the efficiency of the codes.
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The TDCACs shown in Figure 3.1 are called codes with memory since their encoding

and decoding operations depend on the code matrices stored in the memory. When

the encoding and decoding operations of TDCACs do not rely on the code matrices

stored in the memory, such TDCACs are referred to as memoryless TDCACs.

3.1.2 Minimization Problem to Determine Codebook Size

The goal of our m × n TDCACs is to reduce the worst-case delay in (2.1) from

(1 + 4λ)τ0 to (1 + 2λ)τ0. Based on (2.1), this translates into a crosstalk avoidance

condition on the transitions of all the wires. The i-th column vector in the code

matrix is the vector transmitted on the bus at the i-th clock cycle. The crosstalk

avoidance condition is then represented by a 2m × 2m transfer matrix M(m). The

entry Mij in M(m) is 1 if the transition from the vector representing i to the vector

representing j satisfies the crosstalk avoidance condition, and is 0 if the transition

does not satisfy the condition. Suppose the last column vector of a code matrix

is v = (v0, v1, · · · , vm−1), representing an integer v =
∑m−1

i=0 2ivi. The number of

the valid code matrices that can transition from such a code matrix ending with v

is given by Kn(v,m) = etvM
n(m)1m, where 1m is a 2m-dimensional column vector

with all entries equal to one, and ev is a 2m-dimensional column vector with the

entry at position v equal to one and all the other entries are zero.

As in [2, 28], we assume that all vectors can appear in all code matrices and no

further restriction (such as pruning) is put on the codebook, the maximum number

of code matrices allowed in the codebook is limited by the minimum number of

the possible code matrices transitioning from an arbitrary vector v. That is, the
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maximum codebook size, denoted by |C(m,n)|, is given by

|C(m,n)| = min
0≤v≤2m−1

Kn(v,m). (3.1)

It is actually quite difficult to solve the minimization problem in (3.1) when

M(m) reflects all valid transitions. Thus, we focus on the FT condition as the

crosstalk avoidance condition henceforth in this section. In this case, M(m) can

be constructed from M(m− 1). Suppose the vector on the bus before transition is

denoted by va and the vector after transition is vb. If vam−1 = vbm−1, the transition

va → vb is valid if and only if the transition of the remaining m− 1 bits are valid.

If vam−1 6= vbm−1, the transition va → vb is valid if and only if the other m − 1 bits

make a valid transition and the transition of vam−2 → vbm−2 can not transition in an

opposite direction with vm−1. Since the valid transitions of (m− 1)-bit vectors are

given by M(m− 1),

M(m) =




M(m− 1) M(m− 1)

M(m− 1) M(m− 1)


�




1 1 1 1

1 1 0 1

1 0 1 1

1 1 1 1



,

where � means an entry-wise matrix multiplication, and 1 and 0 are 2m−2 × 2m−2

matrices with all entries equal to 1 and 0, respectively. The initial value M(1) is a

2× 2 matrix with all entries equal to 1.
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3.1.3 Reformulation of the Minimization Problem

We first reformulate the minimization problem in (3.1) for n = 2 when the FT

condition is employed to avoid crosstalk delay. For a code matrix ending with an

m-bit vector v, the set of the code matrices it can transition to is divided into 4

sets according to the activity of the first bit in the two clock cycles: (unchanged,

unchanged), (unchanged, changed), (changed, unchanged), and (changed, changed).

We keep track of the numbers of the code matrices in these 4 sets by a vector

y2(v,m) = [yuu(m) yuc(m) ycu(m) ycc(m)]T respectively. These numbers are related

to y2(v,m − 1). By looking at the transition pattern of the first two bits, we

can see that if vm−1 6= vm−2, y2(v,m) = D2y2(v,m − 1), and if vm−1 = vm−2,

y2(v,m) = S2y2(v,m− 1), where

D2 =




1 1 1 1

1 0 1 1

1 1 0 0

1 1 0 0




and S2 =




1 1 1 1

1 1 1 0

1 1 1 1

1 0 1 1



.

The total number of the code matrices that can transition from a matrix end-

ing with vector v K2(v,m) is simply the sum of the numbers of code matrices in

these four cases, and is given by K2(v,m) = [1 1 1 1]y2(v,m). Thus K2(v,m) =

1T2 P
(m−1)
2 P

(m−2)
2 · · ·P(0)

2 y2(0), where P
(0)
2 = D2 and P

(i)
2 is equal to D2 if vi 6= vi−1

and S2 if vi = vi−1. The initial value y2(0) = [1 0 0 0]T .

We now extend our reformulation of the minimization problem when n = 2 to the

general case. The key of the extension is to generalize D2 and S2. Suppose the pre-

vious m×n code matrix ends with an m-dimensional vector v = {v0, v1, · · · , vm−1}.
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We still keep track of the number of the code matrices which have the same transi-

tion patterns of new row in n clock cycles, and these numbers form a 2n-dimensional

vector yn(v,m). Similar as n = 2, we can construct two 2n × 2n matrices Dn and

Sn thus when vm−1 6= vm−2, yn(v,m) = Dnyn(v,m − 1), and when vm−1 = vm−2,

yn(v,m) = Snyn(v,m− 1). The matrix Dn and Sn can both be constructed recur-

sively from Dn−1 and Sn−1. Suppose we are going to add a new row to each m× n

code matrix to get an (m + 1) × n TDCAC and the previous vector vm 6= vm−1.

Consider the two first entries of the new row and the row adjacent to the new one.

If these two entries have different transition pattern, they are the same now, and the

rest of the transition patterns in these two rows can be described by Sn−1. If these

two entries stays the same, they are still different, and the rest of the transition

patterns can be described by Dn−1. If these two entries are both changed, the FT

condition is violated, and the rest of the transition patterns can be described by an

2n−1 × 2n−1 zero matrix. Thus we have Dn =
[
Dn−1 Sn−1

Sn−1 0

]
. By a similar argument,

we have Sn =
[

Sn−1 Dn−1

Dn−1 Sn−1

]
. The initial value is D0 = S0 = 1.

Now consider a code matrix ending with a vector v = (v0, v1, · · · , vm−1)T , and

we will determine Kn(v,m), the number of the code matrices that can transition

from v. Consider the first k bits of the vector v. The set of the k×n code matrices

that can transition from the first k bits of v can be partitioned into 2n sets according

to the activity of the last bit in this vector, vk−1. The numbers of the code matrices

in these sets form a vector yn(v, k). From the analysis and the definition of Dn and
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Sn, we know that yn(v, k) can be calculated from yn(v, k − 1):

yn(v, k) =





Dnyn(v, k − 1), vk 6= vk−1,

Snyn(v, k − 1), vk = vk−1.

Thus Kn(v,m) is given by

Kn(v,m) = 1Tyn(v,m)

= 1TP(m−1)
n P(m−2)

n · · ·P(0)
n yn(0),

where yn(0) is a 2n-dimensional column vector with the first entry 1 and all the

other entries 0, P
(0)
n = Dn, and P

(i)
n is a matrix defined in the following way,

P(i)
n =





Dn, vi 6= vi−1,

Sn, vi = vi−1,
for 1 ≤ i ≤ m− 1.

Since one-dimensional CAC are special cases of TDCACs with n = 1, many

results for one-dimensional CAC (such as those in [28]) can be readily obtained from

our results for TDCACs. For example, the aforementioned result that the degree

of class 1 codewords is Fibonacci sequence [28] is a special case with n = 1 of our

results. The matrix D1 is given by D1 = [ 1 1
1 0 ]. The matrix D1 satisfies D2

1 = I+D1.

Thus K1(m) admits a recursive relation: K1(m) = K1(m− 1) + K1(m− 2), which

is exactly the recurrence relation of Fibonacci number. Our results also lead to

K1(1) = 2 and K1(2) = 3, same as those in [28].

Another example is the result in [28] that the degree of any vector is equal to

d{n1,n2,··· ,nc} =
∏c

i=1 dni
, where dni

= F (ni + 2), and ni is the length of the section
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with alternating 0 and 1. Since all the adjacent bits in the section with alternating

0 and 1 are different, the expression of K1(v,m) is given by

K1(v,m) = 1T1 Dn1−1
1 S1D

n2−1
1 S1 · · ·Dnc

1 y1(0). (3.2)

Plugging S1 = D1y1(0)1T1 in (3.2), we get

K1(v,m) = 1T1 Dn1
1 y1(0)1T1 Dn2

1 y1(0) · · ·1T1 Dnc
1 y1(0)

=
c∏

i=1

K1(ni) =
c∏

i=1

F (ni + 2),

which is exactly the same result as in [28].

3.1.4 The Solution to the Minimization Problem

In this section, we will derive the solution for the minimization problem in (3.1) for

n up to 15. Before presenting our result, we need to establish two lemmas first. For

the simplicity of our expression, we call a matrix or a vector non-negative if all of its

elements are non-negative. For example, from the construction of the Sn and Dn,

we can see that both Sn and Dn are binary and so they are non-negative.

Lemma 3.1. S2
n −D2

n is a non-negative matrix.

Proof. We are going to show this lemma by induction. When n = 0, S2
0−D2

0 = 0 is
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non-negative. Suppose the lemma holds for n up to k. When n = k + 1,

S2
k+1 −D2

k+1

=




S2
k + D2

k SkDk + DkSk

SkDk + DkSk S2
k + D2

k


−




S2
k + D2

k DkSk

SkDk S2
k




=




0k SkDk

DkSk D2
k


 ,

which is also a non-negative matrix, because both Sk and Dk are non-negative and

so are their products.

Lemma 3.2. When n ≤ 15, the vector 1TnDk
n(Sn−Dn)Dn is a vector with all entries

non-negative for all k ≥ 0.

Proof. We can check that the matrix D7
n(Sn −Dn)Dn is a non-negative one for all

n ≤ 15. Therefore, when k > 7, 1TnDk
n(Sn −Dn)Dn = 1TnDk−7

n ·D7
n(Sn −Dn)Dn is

a product between a non-negative vector and a non-negative matrix, and the result

is a non-negative vector. When k < 7, the lemma can be verified by inspection on

each n and each k.

Theorem 3.3. When n ≤ 15, given an positive integer m, the function Kn(v,m)

is minimized by a vector with alternating zero and one, i.e., P
(i)
n = Dn for 1 ≤ i ≤

m− 1.

Proof. Given an arbitrary m-dimensional vector v, we first check if it consists of

the pattern vi−1vivi+1 = 000 or 111, for 1 ≤ i ≤ m − 2. If such pattern exists,

we flip vi, resulting in a new vector v′. Therefore, in the expression of Kn(v,m),
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P
(i)
n = P

(i+1)
n = Sn, and in that of Kn(v′,m), P

(i)
n = P

(i+1)
n = Dn. By Lemma 3.1,

Kn(v′,m) < Kn(v,m). After we remove all such patterns, we get a new vector u,

and Kn(u,m) < Kn(v,m).

After removing all such patterns, we check if the new vector u consists of pattern

ui−1 = ui from i = m − 1 to 1. If such pattern exists, we flip all the bits uj with

j < i, resulting in a new vector u′. In the expression ofKn(u,m), P
(m−1)
n = P

(m−2)
n =

· · · = P
(i+1)
n = Dn, P

(i)
n = Sn, and since there are no three consecutive bits identical,

P
(i−1)
n = Dn. In the expression of Kn(u′,m), we have P

(m−1)
n = P

(m−2)
n = · · · =

P
(i−1)
n = Dn. Therefore

Kn(u,m)−Kn(u′,m) = 1TnDm−1−i
n (Sn −Dn)Dn

1∏

j=i−2

P(j)
n 1n ≥ 0,

since 1TnDm−1−i
n (Sn −Dn)Dn is a non-negative vector by Lemma 3.2, and it is also

obvious that
∏1

j=i−2 P
(j)
n 1n is non-negative. After removing all such patterns, we get

a vector c with no two consecutive bits identical, i.e., a vector with alternating zero

and one. Thus we have shown that Kn(c,m) ≤ Kn(v,m), where v is an arbitrary

m-dimensional binary vector.

We conjecture that the Theorem 3.3 can be generalized to arbitrary positive

integer n, and we restate it in the following conjecture:

Conjecture 3.4. Given m, the function Kn(v,m) is minimized by a vector with

alternating zero and one, i.e., P
(i)
n = Dn for 1 ≤ i ≤ m− 1.

The proof of this conjecture relies on generalizing the Lemma 3.2 to arbitrary

positive integer n. Now Lemma 3.2 is actually shown by direct computation. When
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n > 15, Sn and Dn are so big that direct computation is impractical. The structure

of Sn and Dn need to be explored to generalize Lemma 3.2 to arbitrary n and to

prove Conjecture 3.4 in the end.

3.2 Memoryless Two Dimensional Codes

The TDCACs we discussed above are with memory, i.e., the encoding and decoding

of a code matrix depend on its previous code matrices. The existence of memory

increases the complexity of the encoder and decoder, and thus in this section we

will consider memoryless TDCACs. As in the case n = 1, memoryless TDCACs

should consist of a set of code matrices so that the transition between any two code

matrices in this set has a crosstalk delay at most (1 + 2λ)τ0. Let us denote the

first and last column vectors in an m× n code matrix as v0 and vn−1, respectively.

We will now establish a graph model for memoryless TDCACs. Let V1 be a set

containing 2m nodes, and each node denotes a possible vector v0. Similar, V2 is a

set representing all possible vectors vn−1. If the transition from vn−1 to v0 is valid,

there is an edge connecting the nodes v0 in V1 and vn−1 in V2, and the weight of

the edge is set to the number of all valid code matrices starting with v0 and ending

with vn−1, which is given by ev0M
n−1(m)evn−1 . When the transition from vn−1 to

v0 is invalid, there is no edge between these two nodes. Thus B = (V1, V2, E) is a

bipartite graph, where E is the set of edges. In graph theory, a complete bipartite

graph is referred to as biclique [37]. The problem of finding the largest codebook

of memoryless codebook is then equivalent with the problem of finding the biclique

with maximum weight in B.
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Although it is hard to find the optimal memoryless TDCACs, we can design

suboptimal memoryless TDCACs by ensuring the first and last vectors of the code

matrices to satisfy the FP condition. The transition between the vectors in a code

matrix can satisfy either the FT condition or a complete valid transition condition

[26], which forbids the transitions 010 ↔ 001, 010 ↔ 100, 101 ↔ 110, 101 ↔ 011,

and 010↔ 101.

If the transitions between the vectors in a code matrix satisfy the FT condition

or the complete valid transition condition, we can use transfer matrix to calculate

the size of the codebook of memoryless TDCACs. Let M(m) denote the transfer

matrix of the crosstalk avoidance condition, and a 2m × 1 vector x denote the

FPC codewords, where xi is 1 when there is no 010 and 101 pattern exist in the

binary representation of i and otherwise 0. Then the size of the codebook of m× n

memoryless TDCAC is

|C| = xTMn−1(m)x.

3.3 Example: 3× 3 TDCAC

From our simulation, the highest code rate for the 3× 3 memoryless matrix code is

given by 7
9

if the methodology presented in Sec. 3.2 is used, so we can encode seven

data bits to one code matrix. The seven data bits, denoted as b0, b1, b2, · · · , b6,

are encoded to three column vectors [d0 d1 d2]T , [d3 d4 d5]T , and [d6 d7 d8]T as follows.

First, divide these seven bits into three groups: {b0, b1}, {b2, b3, b4}, and {b5, b6}, and

encode them to the three column vectors respectively. The encoding of the middle

column is simply [d3 d4 d5] = [b2 b3 b4], and the first and last columns are encoded so
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Table 3.1: Encoding rule for a 3×3 CAC. “×” means don’t care, which can be used
to simplify the encoding circuit. The code rate is 7

9
.

b0b1 or b5b6
d0 d1 d2 or d6 d7 d8

b2 b3 b4 = 010 b2 b3 b4 = 101 others
00 000 000 000
01 011 001 0×1
10 110 100 1×0
11 111 111 111

AND1

AND2
NOT

OR1 OR2

b0
b1

b0
b1

b2

d1

Figure 3.2: Encoder circuit for a 3× 3 CAC.

as to satisfy both the FP and FT conditions. The encoding rule for the first and

last columns is listed in Tab. 3.1. To simplify encoding and decoding, the encoding

of {b0, b1} and {b5, b6} are both systematic, and only the wire in the middle needs

to be encoded. For example, we can use d1 = b0b1 + b1b̄2 + b0b̄2. Implementing this

encoder will use 2 AND gate, 2 OR gate and 1 NOT gate, and the circuit of the

encoder is shown in Fig. 3.2.

Since the encoding is systematic, it is very easy to decode. For the received

vectors [d0 d1 d2]T , [d3 d4 d5]T , and [d6 d7 d8]T , the decoding result is given by (d0, d2,

d3, d4, d5, d6, d8). No extra logic is needed.

Note that the code rate of this 3× 3 TDCAC is 7
9
, as opposed to 2

3
if using FTC

coding scheme. Also the encoding and decoding complexities are low when properly

designed.
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Table 3.2: The code rates for m × n TDCACs with memory, satisfying the FT
condition.

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m =∞
n = 1 0.6667 0.7500 0.6000 0.6667 0.7143 0.6250 0.6667 0.6942
n = 2 0.8333 0.7500 0.8000 0.7500 0.7857 0.7500 0.7778 0.7768
n = 3 0.7778 0.8333 0.8000 0.7778 0.8095 0.7917 0.8148 0.7998
n = 4 0.8333 0.8125 0.8000 0.8333 0.8214 0.8125 0.8056 0.8119
n = 5 0.8667 0.8500 0.8400 0.8333 0.8286 0.8250 0.8222 0.8192
n = 6 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333 0.8240
n =∞ 0.8941 0.8826 0.8757 0.8712 0.8679 0.8654 0.8635

3.4 Result and Discussion

To compare with FTCs and FPCs, the code rates of our TDCACs are defined to be

the maximum number of data bits that can be transmitted over a wire in one clock

cycle, which is given by

R =
blog2 |C|c
mn

=
blog2Kn(m)c

mn
, (3.3)

where |C| denotes the codebook size. Note that the definition of the code rate also

provides a measure of redundant bus usage and hence is equivalent with the code

rates of one dimensional CACs. For TDCACs with memory, the simulation results

as well as the asymptotic values of the code rate when m or n approaches infinity

are shown in Tab. 3.2. From Tab. 3.2 we can see that the code rate decreases with

m but increases with n. We observe that the code rate increase rapidly when n

increases from 1 to 4. Thus, it suffices to consider TDCACs with small n.

The code rates of TDCACs are compared with those of one-dimensional CAC in

Tab. 3.3. Our TDCACs have higher code rates than FTCs and FPCs.

We don’t impose any restriction on the selection of code matrices. Thus the
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Table 3.3: The code rates can be achieved by different coding schemes. Code 1 is
a memoryless code using the FT condition to reduce crosstalk delay, code 2 is a
memoryless code using complete valid transition, and code 3 is a code with memory
using the FT condition to reduce crosstalk delay.

m FTC FPC
TDCAC with n = 4

Code 1 Code 2 Code 3
3 0.6667 0.6667 0.8333 0.8133 0.8333
4 0.7500 0.7500 0.8125 0.8125 0.8125
5 0.6000 0.8000 0.8000 0.8500 0.8000
6 0.6667 0.6667 0.7917 0.8333 0.8333
7 0.7143 0.7143 0.7857 0.8214 0.8214
8 0.6250 0.7500 0.7813 0.8125 0.8125
9 0.6667 0.6667 0.7778 0.8056 0.8056
10 0.7000 0.7000 0.7750 0.8000 0.8250

maximum codebook size is bounded by the code matrices that have the minimum

number of possible code matrix to transition to. If these code matrices are removed

from the codebook (this technique is called pruning [2]), it is likely to achieve a

larger codebook size. Pruning is not considered in our research. TDCACs with

pruning will be the topic of our future work.
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Chapter 4

Efficient Ordering Schemes for

High-Throughput MIMO

Detectors

4.1 Introduction

The multiple-input multiple-output (MIMO) systems for wireless communication

systems have attracted a lot of attention because of their high data rate transmission

and improved link reliability. The maximum diversity gains of MIMO systems can be

achieved by the exhaustive search based maximum likelihood (ML) detection, which

has an exponential complexity with respect to the order of the modulation and the

number of transmit antennas and hence is infeasible when high order modulation and

many transmit antennas are employed. Numerous low-complexity ML or near-ML

detection algorithms [7–12,15,38–42] have been proposed. Among these algorithms,
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4.1. INTRODUCTION

the sphere detection (SD) algorithm [7–11], the stack algorithm [42], the K-Best

algorithm [43, 44], and the memory-constraint tree-search (MCTS) [45] algorithm

are able to achieve the exact ML or near ML performance while maintaining an

affordable computational and hardware complexity for a wide range of signal-to-

noise ratios (SNRs), constellation sizes, and numbers of antennas.

The SD, stack, and MCTS algorithms formulate the ML detection as a tree

search problem, and they employ the depth-first, best-first, and MCTS strategy [45],

respectively. The SD algorithm has a fixed memory requirement, but its worst

case computational complexity — in terms of the number of the visited nodes —

is significantly higher than its average computational complexity. In contrast, the

stack algorithm has the smallest computational complexity among all the tree search

strategies [12]. However, its worst case memory requirements are significantly larger

than its average memory requirement. The MCTS algorithm requires a fixed size

of memory. When the memory size is sufficient, it uses the best-first strategy and

behaves like the stack algorithm; otherwise, it uses the depth-first strategy and

behaves like the SD algorithm. Because of its mixed behavior, its computational

complexity lies between the SD and the stack algorithm, even in the worst case.

The K-Best algorithm is based on a breadth-first tree search strategy. It is not

an ML detection algorithm and suffers performance loss, especially when K is small.

However, the K-Best algorithm is very suitable for hardware implementation, since

it has a fixed memory requirement and computational complexity and can be easily

pipelined to achieve high throughput due to its feed-forward structure.

The order of the columns in the channel matrix plays a significant role in the

performance of MIMO detectors. For example, the computational complexities, in
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terms of nodes visited, of the SD, MCTS, and stack algorithms depend on the col-

umn order. Thus, several ordering schemes have been proposed for MIMO detectors

in the literature. The vertical Bell Labs layered space-time (V-BLAST) ordering

scheme reduces the average computational complexity of the SD algorithm [46],

albeit not the worst case computational complexity [47]. The V-BLAST ordering

scheme itself has a high computational complexity, and hence an efficient ordering

scheme based on sorted QR decomposition (QRD) is proposed [48], which has a

lower computational complexity. Ordering schemes that take into account both the

channel matrix and the received signal (hence noise) have also been proposed [41,49].

The geometrically-inspired ordering scheme proposed in [41] leads to significant re-

duction of both average and worst case computational complexities for the SD algo-

rithm in comparison to the V-BLAST ordering scheme. However, the scheme in [41]

is proposed for a real-valued signal model, which is not suitable for hardware imple-

mentation [50, 51]. It also has a higher computational complexity than the sorted

QRD ordering scheme and cannot be embedded in the QRD. Recently, we have

proposed several new ordering schemes [13,52], which have the following properties:

taking into account both the channel matrix and the received signal; reducing both

the average and worst-case computational complexities of the SD, MCTS, and stack

algorithms [13,52]; some being easily embedded into QRD.

In this chapter, we extend our previous work by investigating two problems that

are important to high-throughput MIMO detectors. Since the K-Best algorithm

is suitable for high-throughput MIMO detectors and hardware implementations, we

first study how our ordering schemes affect the K-Best algorithm and compare them

with previously proposed ordering schemes. Since our ordering schemes are more
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complex than some previously proposed ordering schemes, we are also interested

in evaluating the incurred area and throughput penalty. To this end, the main

contributions in this chapter are as follows:

• We apply our ordering algorithms to the K-Best algorithm. Our ordering

schemes lead to better detection error rate for the K-Best detector than other

ordering schemes, especially when K is small. Thus, with a given detection

error rate, our ordering schemes either lead to SNR gains, or enable the usage

of an even smaller K.

• We implement in hardware two of these ordering schemes, which can be eas-

ily embedded into the QR decomposition. Givens based QRD algorithms

are adopted due to their numerical stability when fixed point representations

are used. Our hardware implementation results show that our novel order-

ing schemes incur negligible overheads, when compared with other ordering

schemes, and are particularly suitable for high-throughput implementations.

The remainder of the chapter is organized as follows. In Sec. 4.2, we briefly

describe our system model and review the K-Best algorithm and various ordering

schemes. In Sec. 4.3, our ordering schemes are applied to the K-Best algorithm and

their effects are evaluated. The VLSI implementations of our ordering algorithms

are described in Sec. 4.4. Finally, this chapter concludes in Sec. 4.5.
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4.2 Background Review

4.2.1 System Model

Consider a MIMO system with Nr receive and Nt transmit antennas and assume

that the channel is flat fading. The received signal vector r = (r1, r2, · · · , rNr)
T can

be expressed as

r = Hs + n,

where ri is the complex signal received at the i-th receive antenna. H is an Nr×Nt

matrix characterizing the channel which is known perfectly at the receiver. The

entry Hi,j is a complex zero-mean unit-variance Gaussian random variable that

represents the path gain from the j-th transmit antenna to the i-th receive antenna.

The transmit signal vector is given by s = (s1, s2, · · · , sNt)
T ∈ ΩNt , where the signal

sj transmitted from the j-th antenna is chosen from a complex constellation point

set Ω with |Ω| = 2Mc . Therefore each constellation point can be mapped into Mc

bits. For the noise vector n = (n1, n2, · · · , nNr)
T , ni is circular symmetric complex

additive white Gaussian noise (CSAWGN).

The ML MIMO detection problem can be formulated as

sML = arg min
s∈ΩNt

||r−Hs||2.

An exhaustive search among all 2McNt possible candidates in ΩNt can solve this

problem when Mc and Nt are relatively small. However, this strategy has an ex-

ponential complexity and it is impractical when high order modulation and many

transmit antennas are employed. Assuming Nr ≥ Nt and rank(H) = Nt, H can be
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decomposed as H = QR, where Q is an Nr×Nr unitary matrix satisfying QHQ = I

(the superscription (·)H denotes conjugate transpose) and R is an Nr×Nt upper tri-

angular matrix with diagonal elements Ri,i > 0. Let the unconstrained zero-forcing

(ZF) estimate ŝ be given by

ŝ = (HHH)−1HHr = (ŝ1, ŝ2, · · · , ŝNt)
T , (4.1)

and the received vector r is then transformed to y, where

y = QHr = Rŝ = (y1, y2, · · · , yNr)
T . (4.2)

Then the ML MIMO detection problem can be reformulated as

sML = arg min
s∈ΩNt

||y −Rs||2

= arg min
s∈ΩNt

||R(ŝ− s)||2

= arg min
s∈ΩNt

Nt∑

i=1

∣∣∣
Nt∑

j=i

Ri,j(ŝj − sj)
∣∣∣
2

= arg min
s∈ΩNt

Nt∑

i=1

∣∣∣yi −
Nt∑

j=i

Ri,jsj

∣∣∣
2

.

(4.3)

Based on this formulation, the ML detection problem can be solved by a tree search

algorithm. Consider an (Nt + 1)-level tree. Each node at the k-th level of this

tree corresponds to a unique partial candidate vector sk = (sk, sk+1, · · · , sNt)
T when

k ≤ Nt, and an empty vector when k = Nt + 1. Each node at the lowest level

(k = 1), called a leaf node, corresponds to a complete signal vector. Every node at

the k-th level when k ≤ Nt is associated with a metric w(sk) =
∑Nt

i=km(si), where
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m(si) = |yi −
∑Nt

j=iRi,jsj|2, and the root node has a metric w(sNt+1) = 0. The

leaf node(s) with the smallest metric corresponds to the ML estimate, which can

be found efficiently with proper tree search algorithms and pruning techniques, e.g.,

the SD algorithm, the stack algorithm, and the MCTS algorithm.

4.2.2 The K-Best Algorithm

Instead of the depth- or best-first strategy, the K-Best algorithm uses the breadth-

first strategy to search the tree and to try to find the ML estimate. A strict breadth-

first tree search algorithm without compromising on the ML performance expands

all the nodes in each level, and hence it has the same computational complexity with

the exhaustive search, which is exponential and becomes infeasible when higher order

modulation and many transmit antennas are employed. Given a predefined number

K and denote the number of nodes in the l-th level by Kl, the K-Best algorithm only

expands min{Kl, K} nodes that have the smallest metrics among all the nodes in the

l-th level of the tree [43,44], and the computational complexity can be significantly

reduced. The K-Best algorithm has a constant computational complexity (it visits

no more than KNt nodes) and has an easily pipelined architecture [44]. Therefore

it is easy to achieve high throughput. It is an attractive solution of the MIMO

detectors in practice.

However, the leaf node found by the K-Best algorithm may not be the ML es-

timate, and hence the K-Best algorithm suffers from a performance degradation

in terms of detection error rate. The performance of the K-Best algorithm is tun-

able through the parameter K. When a larger K is used, the detection error rate

degradation becomes smaller while the computational complexity is increased.
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4.2.3 Ordering Schemes

The column ordering of the channel matrix is an important factor which affects

the computational complexity of the tree search based MIMO detection algorithms.

For example, when the initial radius of the SD algorithm is set to infinity, the first

point that the SD algorithm finds, often called the Babai point, is also called the

ZF interference cancelation (ZF-IC) estimate [10]. Different column ordering affects

the distance between the Babai point and the ML estimate, and hence the number

of nodes falling inside the sphere [11]. Therefore the column ordering of the channel

matrix can affect the computational complexity of the SD algorithm. Thus, the

tree search is usually preceded by a preprocessing phase, which consists of ordering

and QRD. To reduce the complexity of the preprocessing phase, the ordering needs

to be carried out with a low computational complexity. For the same reason, it is

desirable that the ordering scheme can be embedded in the QRD process.

The V-BLAST ordering scheme proposed in [46] maximizes min
1≤i≤Nt

Ri,i by max-

imizing Ri,i for i from Nt to 1, and requires O(N2
t /2) QRDs of permutations of

H [48]. The sorted QRD ordering algorithm [48] simplifies the V-BLAST ordering

by minimizing Ri,i for i from 1 to Nt, and it can be readily embedded into the QRD

process. The H-norm ordering scheme [11] orders the columns of the channel matrix

according to the column norm ||hi||, where hi is the i-th column of the channel

matrix, and hence it has the lowest computational complexity because it only needs

to calculate Nt column norms. These three ordering schemes consider the channel

matrix only. In [49], an ordering scheme is proposed to detect the symbols by an

increasing order of min
si∈Ω
|si − ŝi|2, where ŝi is the i-th element of the unconstrained

ZF estimate.
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Our new ordering schemes proposed in [52] are based on a study of the data

collected from worst-case scenarios in the simulation of the SD algorithm and aim

to reduce the computational complexities in these scenarios. It is observed that the

SD algorithm has a much higher computational complexity when the channel is ill-

conditioned and the symbol with the largest unconstrained ZF estimate is detected

last. In this case, the Babai point is far from the ML estimate, and hardly any nodes

can be pruned from the tree. The simulation results show that if the symbol with the

largest unconstrained ZF estimate is detected first, the computational complexity

can be significantly reduced. However, the symbol with the largest unconstrained

ZF estimate usually corresponds to the weakest signal, and detecting the weak-

est signal first will increase the computational complexity in the well-conditioned

channel. Therefore the benefit from reducing the computational complexity in the

ill-conditioned channel is mitigated or even eliminated by the increase of the com-

plexity in the well-conditioned channel, and the average computational complexity

may be significantly increased. We need to make a computational complexity bal-

ance between the well-conditioned and ill-conditioned channels.

Our first ordering scheme proposed in [13,52], referred to as the balanced sorted

QRD (BSQRD) algorithm, sorts the columns of the channel matrix according to the

product between the diagonal element of the upper-triangular matrix and the abso-

lute value of the unconstrained ZF estimate, i.e., Ri,i|ŝi|. When the unconstrained

ZF estimate ŝ is not available, our simplified BSQRD (SBSQRD) ordering scheme

orders the channel matrix columns according to the inner product of the channel

matrix columns and the received vector, i.e., |hHi r|. Those two ordering schemes
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Algorithm 2 Modified Gram-Schmidt based SBSQRD algorithm

Input: channel matrix H, received signal vector r
1: R = 0, Q = H, p = (1, 2, · · · , Nt)
2: for i = 1 to Nt do
3: pi = arg min

i≤j≤Nt

(|qHj r|)
4: exchange columns i and pi in Q, R, p, and rT

5: Ri,i = ||qi||
6: qi = qi/Ri,i

7: for j = i+ 1 to Nt do
8: Ri,j = qHi · qj
9: qj = qj −Ri,j · qi

10: end for
11: end for
12: Output: upper-triangular matrix R, order vector p

can both be embedded in a QRD algorithm. In [13], they are embedded in a mod-

ified Gram-Schmidt (MGS) based QRD algorithm in particular. The MGS based

SBSQRD algorithm is shown in Alg. 2, which is very similar to the MGS based

BSQRD algorithm shown in [13]. In Alg. 2, qi is the i-th column of the matrix Q.

The idea of V-BLAST can also be applied to our ordering schemes, i.e., max-

imizing min
1≤i≤Nt

Ri,i|ŝi| and min
1≤i≤Nt

|qHi r|, respectively [13]. However, the V-BLAST

versions of the BSQRD and SBSQRD have a much higher complexity than the orig-

inal BSQRD and SBSQRD, and they cannot be embedded in QRD. In [13], it is

shown that our ordering schemes significantly reduce the computational complexities

of the SD, MCTS, and stack algorithms.

4.3 K-Best Detection Error Rate Improvement

It is easy to show that the ordering of the channel matrix columns affects the perfor-

mance of the K-Best algorithm. Consider the extreme case of K = 1 for the K-Best
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Figure 4.1: The detection error rates of the K-Best detector under different ordering
schemes when K = 2 for a 4× 4 QPSK modulated MIMO system.

algorithm. In this case, the detection process of the K-Best algorithm corresponds

to that of the SD algorithm until finding the first leaf node, and the K-Best algo-

rithm produces the aforementioned Babai point in Sec. 4.2.3. As the ordering of the

channel matrix columns affects the distance between the Babai point and the ML

estimate, it also affects the detection error probability of the K-Best detector.

In order to evaluate the detection error rate improvement of our ordering schemes

to the K-Best algorithm and to compare them to other ordering schemes, we numer-

ically obtain the detection error rates of the K-Best detector with different ordering

schemes for MIMO systems with various numbers of transmit and receive antennas

and constellation sizes.

Figs. 4.1–4.3 compare the detection error rates of the K-Best algorithm for K =
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Figure 4.2: The detection error rates of the K-Best detector under different ordering
schemes when K = 3 for a 4× 4 QPSK modulated MIMO system.

2, 3, and 4, respectively, with different ordering schemes for a QPSK modulated

4 × 4 MIMO system. The detection error rates of the ML detector are also shown

in the these figures as a benchmark. Due to the small constellation size and small

numbers of transmit and receive antennas, small values of K are selected to illustrate

the impact of our ordering schemes. For a larger constellation size and/or larger

numbers of transmit and receive antennas, larger K’s can be used as well. As shown

in Fig. 4.3, when K = 4, the detection error rates of the K-Best detector with all

different ordering schemes approach that of the ML detector. Thus, for K ≥ 4,

our ordering schemes achieve no gains since the K-Best detector achieves near-ML

performance. As shown in Figs. 4.1 and 4.2, when K = 2 and K = 3, the detection

error rates depend on the ordering scheme. We now compare our BSQRD and
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Figure 4.3: The detection error rates of the K-Best detector under different ordering
schemes when K = 4 for a 4× 4 QPSK modulated MIMO system.

SBSQRD ordering schemes with the sorted QRD ordering algorithm since they have

similar complexities, and similarly compare the V-BLAST versions of our BSQRD

and SBSQRD ordering schemes with the V-BLAST ordering scheme. For K = 2,

when compared with the sorted QRD algorithm, our SBSQRD ordering scheme is

slightly worse, while our BSQRD has a gain of roughly 5 dB at the detection error

rate of 10−3. The V-BLAST versions of our BSQRD and SBSQRD ordering schemes

also have gains of roughly 5 dB at the detection error rate of 10−3, when compared

with the V-BLAST ordering scheme. The comparisons for K = 3 are similar. When

compared with the sorted QRD algorithm, our SBSQRD ordering scheme is slightly

worse, while our BSQRD ordering scheme has a gain of roughly 4.5 dB at the

detection error rate of 10−3. When compared with the V-BLAST ordering scheme,
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the V-BLAST versions of our BSQRD and SBSQRD ordering schemes have gains

of at least 2.5 dB at the detection error rate of 10−3. We remark that the curves for

our BSQRD ordering scheme and two V-BLAST versions have steeper slope than

their respective counterparts and possibly lower error floors. Thus, the SNR gains

are greater for a smaller detection error rate.

0 5 10 15 20 25
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

detection error rate vs. SNR (K=2)

d
e
te

c
ti
o
n
 e

rr
o
r 

ra
te

SNR (dB)

 

 

V−BLAST

sorted QRD

BSQRD

BSQRD(V−BLAST)

SBSQRD

SBSQRD(V−BLAST)

ML

Figure 4.4: The detection error rates of the K-Best detector under different ordering
schemes when K = 2 for a 8× 8 QPSK modulated MIMO system.

Figs. 4.4 and 4.5 compare the detection error rates of the K-Best algorithm for

K = 2 and 4, respectively, with different ordering schemes for a QPSK modulated

8× 8 MIMO system. The comparisons show a similar trend. For K = 2 (Fig. 4.4),

our SBSQRD algorithm is slightly worse than the sorted QRD algorithm, while our

other ordering schemes achieve even greater gains over their counterparts than in

Fig. 4.1. Due to greater numbers of antennas, our BSQRD ordering scheme and two
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Figure 4.5: The detection error rates of the K-Best detector under different ordering
schemes when K = 4 for a 8× 8 QPSK modulated MIMO system.

V-BLAST versions show small gains even when K = 4.

Figs. 4.6 and 4.7 compare the detection error rates of the K-Best algorithm for

K = 6 and 12, respectively, with different ordering schemes for a 16QAM modulated

4 × 4 MIMO system. Due to the greater signal constellation, even at K = 6, our

BSQRD ordering scheme and two V-BLAST versions show modest gains versus their

respective counterparts at the detection error rate of 10−3. For K ≥ 12, the K-Best

detector achieves near-ML performance regardless of ordering schemes.

We have also obtained numerical results for other settings (for example, 64QAM

modulated MIMO systems), and the conclusions are similar. Due to limited space,

these additional numerical results are omitted.

Our SBSQRD ordering scheme always has slightly worse performance than the
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sorted QRD algorithm. To reduce complexity, our SBSQRD approximates our

BSQRD ordering scheme by using qHi r to approximate ||qi|| · |ŝi|, and it seems

that this approximation leads to worse performance of the K-Best detector. On the

other hand, our BSQRD ordering scheme and two V-BLAST versions all achieve

SNR gains versus their respective counterparts. Furthermore, when K is fixed, these

SNR gains increase as the constellation size or the numbers of antennas increase.

This is because the performance loss by the K-Best detector is greater when the

tree is wider or has more levels, and good ordering schemes help in minimizing the

loss. Finally, for a given MIMO system, these SNR gains decrease as K increases,

and become negligible when K is such that the K-Best detector approaches the ML

detector.

In summary, our BSQRD ordering scheme and two V-BLAST versions improve

the performance of the K-Best detector. As shown above, they improve the detec-

tion error rate of the K-Best detector, thereby leading to improved overall system

performance. For a fixed detection error rate, our BSQRD ordering scheme and

two V-BLAST versions either lead to SNR gains, as shown above, or enable the

usage of a smaller K. For example, when a detection error rate of 10−3 is required,

the substitution of our BSQRD ordering scheme for the V-BLAST algorithm would

allow us to use K = 2 instead of 3 in a QPSK modulated 4× 4 MIMO system. Of

course, a smaller K in turn leads to advantages, such as smaller areas, in hardware

implementations.
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Figure 4.6: The detection error rates of the K-Best detector under different ordering
schemes when K = 6 for a 4× 4 16QAM modulated MIMO system.

4.4 Hardware Implementation of Our Ordering

Schemes

In order to evaluate the overheads incurred by our ordering schemes and to verify

their feasibility for high-throughput hardware implementations, the BSQRD and SB-

SQRD ordering schemes are implemented in hardware. These two ordering schemes

are selected because of their relative simplicity and good performance. Both can

be embedded into a QRD algorithm in order to reduce the complexity and delay of

the preprocessing stage. Both are simpler than their respective V-BLAST versions,

while achieving good performance. The corresponding V-BLAST version ordering

schemes have much higher complexities, and they cannot be embedded into the
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Figure 4.7: The detection error rates of the K-Best detector under different ordering
schemes when K = 12 for a 4× 4 16QAM modulated MIMO system.

QRD algorithm. We list the complexities of the BSQRD and SBSQRD ordering

schemes as well as their V-BLAST versions in Tab. 4.1. As shown in Sec. 4.3, our

BSQRD ordering scheme improves the error performance of the K-Best detector,

and also reduces the computational complexities of the SD, stack, and MCTS al-

gorithms [13, 52]. Despite its relative poor performance with the K-Best detector,

our SBSQRD ordering scheme is still considered here because it has an even lower

complexity than the BSQRD and reduces the computational complexities of the SD,

stack, and MCTS algorithm, although it incurs small detection performance loss to

the K-Best algorithm.
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Table 4.1: Complexities of the ordering schemes in terms of the number of multipli-
cations.

Ordering scheme Complexity
BSQRD O(N2

t Nr)
SBSQRD O(N2

t Nr)
V-BLAST BSQRD O(N3

t (2Nr +Nt))
V-BLAST SBSQRD O(N3

t (2Nr +Nt))

4.4.1 Givens Rotation Based BSQRD and SBSQRD Order-

ing Schemes and Fixed Point Representations

Our BSQRD and SBSQRD ordering schemes proposed in [52] are embedded into a

MGS based QRD procedure. Both have performed well in our numerical simulations

thus far since we use the floating point numbers with double precision, for which

numerical errors are negligible. However, fixed point numbers are more suitable for

VLSI implementations, and hence both quantization errors and numerical stability

must be taken into account now. To this end, we simulate the detection error rate

performance of the SD algorithm with double precision floating numbers. However,

the preprocessing is done with our BSQRD ordering schemes using different set-

tings, and the simulation results are shown in Fig. 4.8. The QRD algorithm in

settings 1 and 2 in Fig. 4.8 uses floating point numbers with double precision, and

in settings 3 and 4 uses a fixed point representation, where a number is represented

by 13 bits, including one sign bit and 8 fractional bits. Therefore, a 13-bit integer d

represents a rational number d/28 ∈ [−16, 16). The fixed point toolbox in MATLAB

is used in our simulations.

We first evaluate the effect of quantization errors by comparing settings 1 and

2. In both settings, the double precision floating point representation are used for
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1. SD detection, floating point

2. SD detection with quantized H and S

3. SD detection with MGS based BSQRD

4. SD detection with Givens rotation based BSQRD

Figure 4.8: Detection error rates comparison between floating point BSQRD, float-
ing point BSQRD with quantized inputs, fixed point MGS based BSQRD, and fixed
point Givens rotation based BSQRD. The detection algorithm for all these curves
is the SD algorithm using double precision floating numbers.

our BSQRD ordering scheme. The two settings differ in their inputs. In setting 1,

the channel matrix H and the unconstrained ZF estimate ŝ are both represented

in double precision floating point and hence the SD algorithm is an ML detector.

In setting 2, the channel matrix H and the unconstrained ZF estimate ŝ are both

quantized using the 13-bit fixed point number representation. In Fig. 4.8, the two

curves corresponding to these two settings are on top of each other. This shows that

the 13-bit fixed point number representation is precise enough to represent H and

ŝ, and the incurred quantization errors are inconsequential.

We then consider numerical stability when a fixed point number representation

is used. As observed in [53], the MGS based QRD algorithm is not numerically
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stable due to the division operations it involves, and hence the performance of the

MGS based QRD with a fixed point number representation is far from that with a

double precision representation. Division is not stable since when the absolute value

of the divisor is very small, a small error in the divisor will cause a large error in the

quotient. Furthermore, dividing a small number usually results in a large quotient,

and the range of the fixed point numbers has to be designed large enough in order to

avoid overflow, which will increase the hardware complexity. Our simulation results

confirm this observation. When the BSQRD procedure is carried out with a fixed

point number representation based on the MGS algorithm, the detection error rate

curve deviates greatly from the ML performance, as shown by setting 3 in Fig. 4.8.

Due to its numerical instability, the sorted QRD based on the MGS algorithm [48,

53] is costly in hardware implementations. For example, the preprocessing module

in [54] uses floating number representation directly. In [53], to mitigate the impact

of the MGS numerical instability, the word length is designed to have 20 bits and

each column hi of the matrix is associated with a column exponent ei. The number

saved in the matrix is thus given by Hi,j · 2ei . Due to this compromise between

the floating point number and fixed point number representations, the MGS based

QRD becomes more stable with only a small detection error rate degradation at the

expense of more complex logic. However, this scheme requires more area and has a

long latency and a low throughput.

Instead, the Givens rotation based QRD algorithm is considered since it is nu-

merically more stable than that based on MGS algorithm (see, e.g., [55]). A Givens

rotation is represented by an N × N matrix G(i, j, θ), which is an identity matrix

with the substitutions Gi,i = Gj,j = cos θ, Gi,j = sin θ, Gj,i = − sin θ [56]. Note
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that G(i, j, θ) is a unitary matrix. Given a matrix A with Ai,k = a and Aj,k = b,

if we want to introduce a zero element at position (j, k), we can simply multiply

A from the left with the matrix G(i, j, θ), where θ = arctan
(
b
a

)
or arctan

(
b
a

)
+ π

if a 6= 0, and θ = ±π
2

if a = 0. Finding the appropriate Givens rotation G(i, j, θ)

and applying it to a matrix can both be done at the same time with the coordi-

nate rotation digital computer (CORDIC) algorithm [57]. Given a two-dimensional

vector (x, y)T , a vector mode CORDIC algorithm can rotate it to a vector (r, 0)T

where r = κ
√
x2 + y2 and the scaling factor κ = 1.64676 is a constant. Thus, after

a Givens rotation by the CORDIC algorithm, it is necessary to re-scale the result

with 1
κ
. The CORDIC algorithm is easy to be implemented with only addition and

shift operations. Therefore, applying a sequence of Givens rotations can transform

a matrix A into an upper triangular matrix in a numerically stable way. The details

of the VLSI architecture of Givens rotation based QRD algorithms by the CORDIC

algorithm can be found in [55].

The SBSQRD algorithm based on Givens rotation is restated in Alg. 3. The

Givens rotation based BSQRD algorithm is the same with Alg. 3 except for the

following changes: (1) the input is the channel matrix H and the unconstrained ZF

estimate ŝ; (2) line 3 should be changed to xi = ||hi||2||ŝ||2; (3) the i-th and pi-th

elements of ŝ should also be exchanged when executing line 7; and (4) line 17 should

be changed to xk = xk − |hi,k|2 · |ŝk|2. Note that our algorithm does not produce

the unitary matrix Q, which is unnecessary if the unconstrained ZF estimate is

computed ahead of the ordering module since y = Rŝ by (4.2). However, Q can be

derived by performing to an Nr ×Nr identity matrix the same row multiplications

and Givens rotations on H at the expense of extra logic and registers.
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Algorithm 3 Givens rotation based SBSQRD algorithm

Input: channel matrix H, received signal vector r
1: p = (1, 2, · · · , Nt)
2: for i = 1 to Nt do
3: xi = hTi · r
4: end for
5: for i = 1 to Nt do
6: pi = arg min

i≤k≤Nt

|xk|2

7: exchange columns i and pi in both H and p
8: for k = i to Nr do
9: Using CORDIC algorithm to find out φk such that Hk,ie

−jφk = |Hk,i|
10: for l = i to Nt do
11: Hk,l = Hk,le

−jφk

12: end for
13: end for
14: Compute a sequence of Givens rotation Θu such that the rows i + 1, i +

2, · · · , Nr in columns hi become zero.
15: H = (

∏
Θu)H

16: for k = i+ 1 to Nt do
17: xk = xk −Hi,kxi
18: end for
19: end for
20: R = H
21: Output: upper-triangular matrix R, order vector p

The Givens rotation based BSQRD is much more numerically stable than the

MGS based BSQRD. As a result, as shown in Fig. 4.8, setting 4 which corresponds

to the Givens rotation based BSQRD has a much smaller detection error rate than

that for the MGS based BSQRD, and it is quite close to the ML detector. This also

shows that the aforementioned 13-bit fixed point number representation is accurate

enough for the Givens rotation based BSQRD algorithm. As the numerical stability

issue only affects the QRD algorithm where our ordering schemes are embedded, a

similar conclusion holds for the Givens rotation based SBSQRD algorithm.
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Figure 4.9: A pipelined architecture for QR decomposition of a 4×4 complex matrix
(CC stands for clock cycle). All dashed lines represent pipeline registers. Each stage
are further decomposed into sub-stages, and each sub-stage takes 5 CCs. Ri and
Hi denotes the i-th row of R and H, respectively.

CORDIC
vector mode

CORDIC
rotation mode

rotate directionHk

Hk,i+1, Hk,i+2, · · · , Hk,Nt

Hk,i

Re(Hk,j)

Im(Hk,j) |Hk,j |

0

κ

κ

0

cosφk

− sinφk

e−jφk

Hk

Figure 4.10: The circuitry for type-2 PEs at the i-th stage. The inputs are the
elements of the j-th row of H. The description of the vector mode and rotation
mode CORDIC algorithm can be found in literature, e.g., [58]. Note that Hk,i is a
real number at the output.
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Figure 4.11: The circuitry for type-3 PEs at the i-th stage. The inputs are the j-
and k-th rows of H. The box on the upper right computes the linear combinations
of the j- and k-th rows of H with the equations on the box.

4.4.2 Pipelined Architectures for High Throughput

MIMO communication systems nowadays often have a very high data throughput

(measured by data bits per second). For example, in IEEE 802.11n [59], the max-

imum data rate is 600 Mbit/s with a 64QAM modulated 4 × 4 MIMO system.

Therefore, the preprocessing stage should be designed to achieve high throughput.

However, the data throughput of the preprocessing stage depends on the processing

speed of the ordering scheme and sometimes the channel condition. For example,

the sorted QRD needs to process each channel instantiation instead of each received

signal vector. Hence, in VLSI implementations of the sorted QRD in [53] and [55] ,

the speed is measured in the number of channel matrices processed per second. The

drawback of this metric is that the data throughput it translates into depends on the

channel condition. Under a slow fading channel, the speed in [53] and [55] — roughly
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1.56 and 2.08 million channel matrices per second, respectively — may represent a

much higher throughput. But for a fast fading channel, the data throughputs of

these implementations are much lower, and can become a bottleneck. In contrast,

as remarked in [52], our BSQRD or SBSQRD ordering schemes are performed for

each received signal vector, since both ordering schemes depend not only on the

channel matrix but also on the received signal. For our ordering schemes, the num-

ber of channel matrices processed per second is proportional to the data throughput,

regardless of the channel condition.

To achieve high throughput, a pipelined architecture for our ordering schemes

is proposed, and Fig. 4.9 illustrates the pipelined architecture for a 4 × 4 MIMO

system. In this pipelined architecture, the QRD process, in which our ordering

schemes are embedded, is divided into Nt stages. Stage i corresponds to the i-

th column, and consists of three types of processing elements (PEs), denoted by

type-1, 2, and 3, respectively in Fig. 4.9. We are going to explain this figure by

embedding Alg. 3 into it. The type-1 PEs correspond to lines 2-4 or lines 16-18

as well as lines 6 and 7 in Alg. 3. The type-1 PEs initialize or update the vector

X = (x1, x2, · · · , xNt) in Alg. 3, find the minimum, and exchange the columns of H

and p. Corresponding to lines 8-13 in Alg. 3, the type-2 PEs rotate the elements of

the rows in H simultaneously to make the elements Hj,i = |Hj,i| for all j ≥ i in the

i-th stage, and the structure for these PEs are shown in Fig. 4.10. The type-3 PEs

in the i-th stage correspond to lines 14 and 15, and perform on adjacent rows of H

to introduce 0 in rows i + 1, i + 2, · · ·Nr of hi, and the structure for these PEs are

shown in Fig. 4.11. The structures of the vector mode and rotation mode CORDIC

modules in Fig. 4.10 and 4.11 can be found in literature, e.g. [58], and hence are
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omitted. Note that in the last stage, since only one column is left, the type-1 PE is

not needed. Furthermore, when Nr = Nt, no row in the last column needs to be set

to zero, and hence we do not need the type-3 PE in the final stage. When Nr = Nt,

type-3 PEs are still required to introduce 0 elements to rows Nt + 1, Nt + 2, · · · , Nr

of hi. Hence, in Fig. 4.9, only the type-2 PE is needed in the last stage. Since we

have explained the difference between the Givens rotation based BSQRD algorithm

and Alg. 3, it is easy to implement the BSQRD ordering scheme in the architecture

shown in Fig. 4.9.

To balance the work load and achieve high throughput, each stage is further

divided into sub-stages, and pipeline registers are inserted between all sub-stages.

In stage i, the type-1 PEs and the type-2 PEs occupies a sub-stage together, respec-

tively, and each type-3 PEs requires one sub-stages (this is determined by the longest

delay which can be seen from Fig. 4.9) to introduce 0 to Nr − i elements in the i-th

column, hence the i-th stage requires Nr − i+ 2. To improve the throughput, each

sub-stage is assigned five clock cycles in our implementation. This pipelined architec-

ture can process one matrix every five clock cycles. Furthermore, assuming Nr = Nt,

there are (Nt − 1) 4+Nt

2
+1 sub-stages, and hence the latency is 5

[
(Nt − 1) 4+Nt

2
+ 1
]

clock cycles. For example, the pipelined architecture for a 4 × 4 MIMO system in

Fig. 4.9 has a latency of 65 clock cycles.
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4.4.3 Implementation Results and Comparison

It is often difficult to compare hardware implementation results due to various fac-

tors, such as cell libraries, software, and quantization schemes. Our hardware im-

plementations serve two purposes. First, we would like to evaluate the overheads

incurred by our ordering schemes. Second, we would like to verify the suitability of

our ordering schemes for high data throughput applications. To this end, both non-

pipelined and pipelined architectures of the BSQRD and SBSQRD ordering schemes

are implemented in VHDL and synthesized in RTL compiler with a 45 nm library

from Oklahoma State University [36] for a 4×4 MIMO system. The synthesis results

are summarized in Tab. 4.2.

To evaluate the overheads incurred by our ordering schemes, we implement our

BSQRD and SBSQRD ordering schemes as well as the sorted QRD algorithm based

on the non-pipelined architecture in [55], using the distributed source code from

[60], and compare them in the leftmost three columns of Tab. 4.2. Note that the

only difference among these three implementations is their underlying ordering

schemes. Compared with the sorted QRD algorithm, our ordering schemes achieve

the same speed with roughly 10% greater gate count. Thus, the overheads incurred

by our ordering schemes are negligible. We note that our ordering schemes reduce

computational complexities of the SD, stack, and MCTS algorithms, and allow

smaller K values for the K-Best algorithm as shown above. Since the complexity of

the preprocessing is much smaller than that of the tree search, we conjecture that

our ordering schemes would reduce the overall complexities of MIMO systems.

For easy reference, the implementation technology results in [53, 55] which are

based on non-pipelined architectures and using 250 nm technology are also listed in
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4.4. HARDWARE IMPLEMENTATION OF OUR ORDERING SCHEMES

Tab. 4.2 because both implementations are dealing with the 4×4 MIMO system, the

same system as our exemplary system. Since they are based on 250 nm cell libraries

and/or different quantization schemes, their results are not directly comparable to

our results. The implementation in [54] is designed for 8× 8 MIMO systems, hence

it is not comparable to ours.

Assuming Nr ≥ Nt and no channel coding is employed, the data throughput and

speed of our ordering schemes have the following relation: data throughput = speed

×NtMc. For easy comparison, both metrics are provided in Tab. 4.2. Assuming a

constellation of 64QAM, the data throughput of our non-pipelined architectures of

our ordering schemes is at most 75 Mbit/s, which is much lower than the maximal

data throughput of 600 Mbit/s specified in 802.11n. Thus, we also implement the

pipelined architectures of our BSQRD and SBSQRD ordering schemes shown in

Fig. 4.9, and present their results in the rightmost two columns of Tab. 4.2. Both

implementations are for 4× 4 MIMO systems, and are optimized at the same clock

rate of 300 MHz. Since our pipelined architectures process one channel matrix in

every five clock cycles, their processing speed is 60 million matrices per second. For

a 64QAM modulated MIMO system, the data throughput of our implementations

is 1.44 Gbit/s, much higher than the maximal data throughput specified in 802.11n.

Unfortunately, the price of high speed and data throughput is greater gate counts

due to pipeline registers. Finally, trade-offs can be easily made between hardware

complexity and throughput. For applications that do not require very high through-

put, the gate counts can be reduced by reducing the number of pipeline stages, or

even using the non-pipelined architectures.
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4.5 Summary

In this chapter, we apply the novel ordering schemes proposed in our previous

work [13,52] to the K-Best detector, and show that the performance of the K-Best

detector is improved by our BSQRD ordering scheme and the V-BLAST versions

of our BSQRD and SBSQRD ordering schemes. These ordering schemes lead to

smaller detection error rates, reduce the required SNR, or allow even smaller values

for K. The SBSQRD ordering scheme does not seem to improve the performance

of the K-Best detector. We also implement both non-pipelined and pipelined ar-

chitectures for our BSQRD and SBSQRD ordering schemes. Our implementation

results show that our BSQRD and SBSQRD ordering schemes incur roughly 10%

overheads in hardware implementations, and that their implementations can achieve

high throughput at the expense of greater gate counts. Finally, trade-offs can be

easily made between hardware complexity and throughput.
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Chapter 5

List Based Soft-Decision MIMO

Detection by the MCTS

Algorithm

5.1 Introduction

In the previous chapter, we focus on the effects of different ordering schemes on the

detection error rate of a K-Best detector. In this chapter, we are going to explore the

computational complexity and memory requirement of MIMO detection algorithm.

The maximum diversity gain of a MIMO communication system can be achieved by

the maximum likelihood (ML) detection, but it has an exponential complexity if ex-

haustive search strategy is employed. Converting the ML detection problem to a tree

search problem can significantly reduce the computational complexity. Many tree

search detection algorithms have been proposed, such as the sphere decoding (SD)
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algorithm [10, 11, 61] based on depth-first strategy, the stack algorithm [42] based

on best-first strategy, the K-Best algorithm [43] based on breadth-first strategy,

and the memory constraint tree search (MCTS) algorithm [45]. Since the K-Best

algorithm is not guaranteed to find the ML estimate and hence results in BER per-

formance degradation, we do not consider it further in this chapter. The other three

tree search algorithms all lead to the ML estimate.

The aforementioned ML tree search algorithms all have advantages and disad-

vantages in hardware implementations. Two key metrics are the computational

complexity, which is usually measured by the number of visited nodes [50], and the

size of required memory, which is used to store temporary data so as to facilitate the

tree search. The computational complexity of a tree search algorithm determines the

throughput, area, and power of its hardware implementation. The computational

complexity and memory requirement of a tree search algorithm vary, and both the

average and the worst-case figures are important to hardware implementation. For

example, the worst-case computational complexity determines the lowest instanta-

neous throughput and the worst-case memory requirement determines the memory

size of hardware implementations. While the memory requirement of the SD algo-

rithm is fixed and linear with the product of tree depth, it visits many nodes in

the worst case, resulting in a high average computational complexity. On the other

hand, the stack algorithm visits the fewest nodes among all ML tree search algo-

rithms [12], but the memory requirement of the stack algorithm in the worst case is

much higher than the average requirement. Since the hardware implementation has

to meet the memory requirement in the worst case, the stack algorithm is infeasi-

ble when higher order modulation and more transmit antennas are employed. The
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MCTS algorithm fills the gap between the SD and stack algorithms. It requires a

fixed but tunable memory, and its computational complexity depends on its mem-

ory size. When the memory is set at the minimum, the MCTS algorithm visits

slightly fewer nodes than the SD algorithm while requiring slightly less memory.

When the memory of the MCTS algorithm increases, its average number of visited

nodes decreases and approaches that of the stack algorithm while requiring much

less memory than the latter.

The result of the MIMO detection algorithm is the constellation point with the

maximum likelihood, which can be viewed as a hard decision detector. However,

For coded MIMO systems, the generation of soft information by soft-decision MIMO

detection is very important. Properly designed soft-decision MIMO detection and

soft-input and soft-output channel decoder can achieve near-capacity on a multiple-

antenna channel [14]. List based soft-decision MIMO detection is an efficient way

to generate reliable soft information. The soft information is generated based on a

candidate list created by the list sphere decoding (LSD) detector [14], list sequential

(LISS) detector [15], or other list creation algorithms. The LSD and LISS detectors

are extensions of the SD algorithm and the stack algorithm, respectively. The main

contribution of this chapter is a list-based soft-decision MIMO detector based on the

MCTS algorithm. Our list MCTS (LMCTS) algorithm achieves a better tradeoff

between memory requirement and computational complexity, and this tradeoff can

be tuned through the number of the available memory units. When its memory is

set at the minimum, our LMCTS algorithm achieves smaller computational com-

plexity than the LSD algorithm while requiring slightly less memory. When the

memory of our LMCTS algorithm increases, its computational complexity decreases
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and approaches that of the LISS detector. Given its fixed memory requirement

and low computational complexity, our LMCTS algorithm is suitable for hardware

implementations.

The rest of this chapter is organized as follows. Sec. 5.2 briefly describes the

MCTS algorithm and the list based soft information generation for MIMO commu-

nication systems. Sec. 5.3 proposes our LMCTS algorithm and analyzes its memory

requirement. Our simulation and implementation results are presented in Sec. 5.4.

5.2 Background Review

5.2.1 MCTS Algorithm

It has been shown in Chapter 4 that we can reformulate the ML MIMO detection

problem into a tree search problem. While the SD algorithm based on the depth-

first tree search strategy [10, 11, 61] has a fixed memory requirement and a high

computational complexity, the stack algorithm based on the best-first strategy [42]

has the smallest computational complexity but requires a lot of memory in the worst

case. The MCTS algorithm [45] fills the gap between the SD and stack algorithm by

alternating between the best-first and depth-first strategies. It determines at each

iteration which node should be visited based on the number of the memory units

currently available, and it always visits the node with the smallest metric while not

exceeding the memory requirement. Thus it behaves like the stack algorithm when

there is sufficient memory, and like the SD algorithm when the available memory is

limited.

In one iteration, if the algorithm wants to visit a node at level k, 2 ≤ k ≤ Nt, the
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number of the currently available memory units must satisfyN ≥ (k−2)(|Ω|−1) [45].

Thus given the current available units number N , the maximum tree level in which a

node can be visited is given by k̃ = min
{
b N
|Ω|−1
c+ 2, Nt

}
. Therefore the node to be

visited is the node sk with the smallest metric in the memory and k ≤ k̃. As shown

by theoretical analysis and simulation results in [45], the MCTS algorithm provides

a balance between the computational complexity and the memory requirement, and

the balance can be easily tuned by the memory size for the MCTS algorithm.

5.2.2 List Based Soft Decision Detection

In a coded MIMO system based on the turbo principle [62], the transmitted signal s

is mapped from a binary vector x = (x1, x2, · · · , xk)T ∈ X , where xi ∈ {1,−1}, and

X = {1,−1}k, i.e., s = map(x). Then the max-log approximation of the extrinsic

likelihood value of a bit xi is given by [14]

LE(xi|r) ≈ 1

2
max

x∈Xi,+1

{
− 1

σ2
||y −Hs||2 + x[i]LA,[i]

}

− 1

2
max

x∈Xi,−1

{
1

σ2
||y −Hs||2 + x[i]LA,[i]

}
,

(5.1)

where Xi,+1 and Xi,−1 are the sets of the vectors with xi = 1 and xi = −1, respec-

tively. x[i] is the sub-vector of x consisting of all the elements in x but xi, and

LA,[i] is a vector consisting of the corresponding a priori likelihood ratios of the

elements in x[i]. However, when higher order modulation and more transmit and

receive antennas are used, the cardinalities of Xi,+1 and Xi,−1 become very large

and calculating LE(xi|r) become computationally intensive. Thus we may choose a

subset L ⊂ X which contains the maximizers in (5.1) with high probability, and the
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approximate extrinsic values is thus given by

LE(xi|r) ≈ 1

2
max

x∈L∩Xi,+1

{
− 1

σ2
||y −Hs||2 + x[i]LA,[i]

}

− 1

2
max

x∈L∩Xi,−1

{
1

σ2
||y −Hs||2 + x[i]LA,[i]

}
.

(5.2)

The size of the candidate list L is relatively small compared with the size of X while

maintaining good performance.

The candidate list L contains the ML estimate and the other |L| − 1 ML can-

didates with the smallest metric ||r−Hs||2 among all possible transmitted signals.

By formulating the ML detection problem as a tree search problem, L can be found

by using tree search techniques discussed below.

5.2.3 The LSD Algorithm and the LISS Algorithm

The LSD algorithm uses the depth-first strategy to search the tree and create the

candidate list L. An initial radius C0 is set at the beginning, and only those nodes

with metric w(sk) < C0 are visited. A leaf node within the sphere may be found by

solving w(sk) < C0 successively from Nt to 1. If L is full, remove the node with the

largest metric from L, and add the new leaf node into it. The radius C0 is reduced

to the largest metric of the nodes in L, and the tree is pruned. If L is not full, add

the leaf node to L directly. This process is repeated until there are no leaf nodes

within the sphere. If the initial radius C0 is too small, the list L may be not full or

even empty. In this case, we increase C0 and then restart the tree search. Similar

to the SD algorithm, the LSD algorithm has fixed memory requirement but it also

has a higher average complexity than the LISS algorithm.
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The LISS algorithm uses the best-first strategy to search the tree and create the

candidate list. At the beginning, the candidate list is set to be empty, and the root

node is added into the stack with metric 0. In each iteration, the node with the

smallest metric in the stack is removed from the stack. If this removed node is a leaf

node, then add this node to the candidate list; otherwise add its children to the stack

with their metrics. The algorithm ends when we have |L| nodes in the list, and |L| is

a predefined number set at the beginning of the algorithm. The LISS algorithm has

smaller computational complexity than the LSD algorithm, but its variable memory

requirement is a significant drawback. As opposed to the LSD algorithm, the LISS

algorithm proposed in [15] has two additional features to overcome this drawback.

First, in each iteration, the stack is sorted with the node metrics in ascending order,

and the nodes with indexes exceeding a predefined number Lmax are discarded.

Note that this modified search no longer guarantees to produce the candidates with

the smallest metrics, and the ML estimate may not even exist in L. Second, the

reliability of the soft output is improved by augmenting the stack entries, and the

BER performance is thus improved [15].

5.3 The List MCTS Algorithm

5.3.1 Generic Algorithm for List Generation

The key difference between the LSD algorithm and the LISS algorithm is the strategy

they use to decide which node should be visited. The LSD algorithm uses the

depth-first strategy while the LISS algorithm uses the best-first strategy, and the

performances of these two algorithms are determined by these strategies. Hence
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we can summarize the LSD and LISS algorithms in a generic framework, which is

embedded in the previous works [14,15,62] and stated explicitly in Alg. 4. The input

of this algorithm is the receive vector r, the upper triangular matrix R derived from

the QR decomposition of the channel matrix H, the candidate list size L. We also

keep track of T , the number of non-leaf nodes saved in the memory which has been

determined to be within the sphere of radius C0. At the end of the algorithm, a

candidate list L consisting of L ML candidates as well as their metric is returned.

Algorithm 4 Generic List Detection Algorithm

Input: r, R, L
1: Set the initial radius C0, list length l = 0, the size of the tree T = 0.
2: Add the root node sNt+1 to the memory. Now the tree in the memory has one

node sNt+1. Set T = T + 1.
3: while T > 0 do
4: choose a node s̃k to visit according to the tree search strategy.
5: Find the K children of s̃k within the sphere of radius C0 and remove sk from

the memory. Set T = T − 1.
6: if k > 2 then
7: Add the K children of s̃k to the memory. Set T = T +K.
8: else
9: if l +K ≤ L then

10: Add the K children of s̃k to the candidate list, and set l = l +K.
11: else
12: Set l = L. Find L nodes with the smallest metric out of the K children

and the nodes in the candidate list. Update the candidate list with these
L nodes and there weights.

13: end if
14: if l = L and max{wi}Li=1 < C0 then
15: set C0 = max{wi}Li=1, prune the tree and update the memory as well as

the tree size T .
16: end if
17: end if
18: end while
19: Output: L = {s̃i}Li=1, {wi}Li=1.
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Our LMCTS algorithm is derived by using the tree search strategy in the MCTS

algorithm, i.e., replacing line 4 of Alg. 4 by s̃k = MCTSS({s}, N), where MCTSS

is the memory constraint tree search strategy generalized from [45] and stated in

Alg. 5. Note that {s} is the current nodes of the tree in the memory, and N is

the total memory available for the tree search. How to calculated N is shown in

Sec. 5.3.2.

Algorithm 5 Memory Constraint Tree Search Strategy [45]

Input: {s}, N .
1: Suppose the nodes in the memory span D distinct levels: 2 ≤ k1, k2, · · · , kD ≤
Nt. Find the best nodes s̃kj of all nodes in the ki-th level according their weights.

2: Sort these best nodes in increasing order, assuming the sorted result is w(s̃k1) ≤
w(s̃k2) ≤ · · · ≤ w(s̃kD) without loss of generality.

3: Find the maximum tree level k̃ = min
{
b N
|Ω|−1
c+ 2, Nt

}

4: Let s̃kj , 1 ≤ j ≤ D, be the first nodes in the sorted best nodes that satisfies
kj ≤ k̃

5: Output: s̃k

5.3.2 Minimum Memory Requirement of LMCTS

The memory used by the LMCTS algorithm can be separated into two parts: the

candidate list memory containing M1 memory units and the tree search memory

containing M2 memory units. Clearly the first part should have M1 ≥ L memory

units. It is proved in [45] that the minimum memory required to extend a tree

from the k-th level to level 2 is (k − 2)(|Ω| − 1), and hence it requires at least

(Nt − 1)(|Ω| − 1) memory units to extend the tree from the root node to level 2.

Therefore, we need M2 ≥ (Nt− 1)(|Ω| − 1) + 1 memory units to save the tree nodes

to be visited. Thus with (Nt − 1)(|Ω| − 1) + 1 + L memory units, our LMCTS
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algorithm can create the candidate list successfully.

However, note that in the MCTS algorithm, one memory unit is used to save

the best leaf node that has been found. Since this leaf node can be saved in the

candidate list memory instead in our LMCTS algorithm, one memory unit can be

saved from the tree search memory. We can use the following strategy: when the

candidate list is empty, use the tree search memory and one memory unit from

the candidate list memory to search the tree, and in line 4 the number of available

memory units N is set to M2 + 1−T ; when the candidate list is non-empty, use the

tree search memory only, and N is thus set to M2 − T . Therefore, when the total

memory units number M ≥ (Nt − 1)(|Ω| − 1) + L, our LMCTS algorithm can find

all L ML candidates. Note that when L = 1, which means we only want to find the

ML estimate, our LMCTS algorithm degenerates to the MCTS algorithm, and they

have the same memory requirements.

5.4 Simulation and Implementation Results

5.4.1 Simulation Results

In this section, we compare the computational complexities as well as the memory

requirements of the LSD, the LISS, and the LMCTS algorithms. As we are interested

in the performance of ML candidate list generation, we implement a simplified LISS

algorithm without the two features mentioned in Sec. 5.2.3. Therefore the memory

requirement of the LISS algorithm is given by the worst case in our simulation. Since

all these three algorithms generate the same candidate list, they have the same BER

performance, and hence their BER performances are omitted. All these algorithms
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are implemented in the framework of Alg. 4. Our simulation results are based on the

system model described in Sec. 4.2 and obtained over 2 × 105 channel realizations

for each SNR value. We use the sorted QRD ordering [48] to reorder the columns

of H to speed up the tree search convergence.

Our simulation results are summarized in Tables 5.1. Nc is the number of visited

nodes, i.e., the number of the executions of line 4 in Alg. 4, and M is the number of

memory units used in the algorithm. We use Nc as a measure of the computational

complexities of these algorithms, which provides a good estimate of the throughput

of the MIMO detector in hardware implementation [50]. We simulate the LSD,

LISS, and LMCTS algorithms with different memory configuration for 4× 4 QPSK,

4×4 16QAM, and 8×8 QPSK modulated MIMO systems. Note that the maximum

computational complexity and memory requirement are only those observed among

2×105 channel realizations. Since both the LSD and LMCTS algorithms have fixed

memory requirements, the maximum and average memory usages are equal for the

LSD and LMCTS algorithms in the same simulation setting. The memory size

required by the LSD algorithm is given by (Nt − 1)|Ω|+ L. Since the performance

of our LMCTS algorithm can be tuned through the memory constraint, we provide

two or three memory sizes of the LMCTS algorithm in each simulation setting. One

of the memory sizes is the minimum size, (Nt − 1)(|Ω| − 1) + L, of our LMCTS

algorithm, and the others are larger than the minimum. Since we wish to compare

the performance of finding the ML candidates of the received vector, we set the size

of the memory used by the simplified LISS algorithm to be large enough to avoid

discarding nodes. The initial radius C0 is set large enough for all three algorithms

to avoid adjusting the initial radius of the search sphere.
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5.4. SIMULATION AND IMPLEMENTATION RESULTS

We now compare the performance of our LMCTS algorithm with those of the

LSD and simplified LISS algorithms. Our LMCTS algorithm has smaller average

and maximum complexities than the LSD algorithm even if its memory size is set to

the minimum requirement, which is slightly smaller than the memory requirement

of the LSD algorithm. For example, for a 4×4 16QAM modulated system, when the

SNR is 5dB and L=96, our LMCTS algorithm visits 201.39 nodes with 141 memory

units on average, and the LSD algorithm visits 228.39 nodes with 144 memory

units on average. Our LMCTS algorithm visits more nodes than the simplified

LISS algorithm, but as the memory size increases, both the average and maximum

numbers of the visited nodes of our LMCTS algorithm decrease and approach those

of the simplified LISS algorithm. For example, for a 4×4 16QAM modulated system,

when the SNR is 15dB and L=96, when the memory size of our LMCTS algorithm

increases to 255, our LMCTS algorithm needs to visit 153.28 nodes on average, only

about 2% more than that of the simplified LISS algorithm. Note that the memory

requirement for the LISS algorithm is bounded by its worst case, it needs more

than 4171 memory units, more than 16 times of the memory size of our LMCTS

algorithm. Therefore our LMCTS algorithm and the simplified LISS algorithm have

similar computational complexity, the memory required by the LMCTS is only a

fraction of that for the simplified LISS algorithm in the worst case. From our

simulation results, our LMCTS algorithm achieves a flexible tradeoff between the

memory requirement and the computational complexity, and hence is more suitable

for hardware implementations than the LSD and the LISS algorithms.
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5.4.2 Implementation

To further justify the feasibility of our LMCTS algorithm, we implement the LMCTS

algorithm in VHDL. Our design is divided into three modules. The first one is

the metric calculation unit. The children node metrics of the visited nodes are

calculated in the same architecture shown in [63], and then the K children with

metrics less than C0 are sent to the second module, memory unit. In this module,

the input children nodes are first added to the tree search memory or the candidate

list according to their levels as described in Alg. 4. Then the tree search memory is

traversed to find the nodes with the smallest metric in each level and prune those

with metrics larger than the radius C0, which may be updated when new leaf nodes

are found. The nodes with the smallest metric in each level and the number of

available memory units are then sent to the third module, selection unit. The node

with the smallest metric and without violating the memory constraint is selected

and sent to the metric calculation unit, and a new iteration starts.

We synthesize our design for a 4 × 4 16QAM modulated MIMO system with

RTL compiler and OKSU 45 nm technology [36] as a demonstration of our algo-

rithm. The available tree search memory unit is set to 160 and the list length is

5. The cell area is 0.355 mm2, and the equivalent gate count is 189123. Our de-

tector can achieve a maximum clock speed of 116.6 MHz. In the worst case of an

iteration, we have to sort the metrics of the founded nodes and traverse the tree

search memory. To reduce the complexity of sorting, we can first sort the metrics of

the leaf nodes just found, and then merge this sorted list with the previous ordered

candidate list to find the L smallest candidates. As our design sorts the list and

traverses the memory sequentially, an iteration needs at most |Ω|2/2 +L+M2 clock
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5.4. SIMULATION AND IMPLEMENTATION RESULTS

Table 5.2: Comparison of implementations of list MIMO detectors.

Ours [64] [65]
Technology 45 nm 0.25 µm 0.25 µm

MIMO system 4× 4 4× 4 4× 4
Modulation 16QAM 16QAM 16QAM

Equivalent gate count 190 k 205 k 95 k
Clock rate (MHz) 116.6 67.8 170

Throughput @ 20dB (Mvec/s) 0.0128 0.425 5

cycles, where |Ω| is the constellation size, and M2 is the tree search memory size.

Therefore our implementation can output the decoding result of a received vector

in about Nc(|Ω|2/2 + L + M2) clock cycles. Note that Nc is decreased when we

increase M2, there is an optimal size of M2 that achieves the largest throughput.

The simulation shows that our LMCTS detector has a throughput of 0.0128 Mvec/s

when SNR=20dB.

We summarize our results and other results from literature in Tab. 5.2. Com-

paring with [64], their detector is highly parallelized while our LMCTS detector

needs many cycles to process one node since our design works in a sequential way,

and thus our throughput is much lower. However, our throughput may be greatly

increased by parallelizing our LMCTS detector or using a number of LMCTS detec-

tors working together. For example, sorting the leaf nodes and traversing the tree

search memory can both be done in one clock cycle with extra logic, as what has

been done in [64]. In [65], the LSD algorithm is simplified. While processing one

node per clock cycle, the detector only add the best leaf node of one node at level

2, and all of its sibling nodes are discard, even if they have a smaller metric than

the nodes in the list. With the simplification, the clock speed is increased and area

is reduced. However, the ML property of the list no longer holds. Our design can
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also adopt this simplification if needed.

5.5 Summary

We propose a list-based soft-decision MIMO detection algorithm to find a list of

ML candidates based on the MCTS strategy. Our simulation results show that our

LMCTS algorithm achieves a flexible balance by tuning its available memory size

between the memory requirement and the computational complexity. The feasibil-

ity of our LMCTS algorithm is shown by our implementation results. Since our

demonstration design works sequentially, it does not have an attractive throughput.

However, with more sophisticated technique (e.g. [63, 64]) and an expense of more

area consumption and proper BER performance degradation, our LMCTS algorithm

has a potentiality to achieve a high throughput with the flexible balance between

memory requirement and computational complexity.
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Chapter 6

On Algorithms and Complexities

of Cyclotomic Fast Fourier

Transforms over Arbitrary Finite

Fields

6.1 Introduction

Discrete Fourier transforms (DFTs) over finite fields [25] have been widely used

in cryptography and error control codes. However, direct implementation of an

n-point DFT requires O(n2) multiplications and additions, and this complexity be-

comes prohibitive for very large n. Recently, Reed-Solomon codes over GF(212) with

thousands of symbols are considered for hard drive [16] and tape storage [17] as well

as optical communication systems [66] to achieve a lower error rate; the syndrome
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based decoders (e.g., [67]) of such codes require DFTs of lengths up to 4095 over

GF(212). Elliptic curve cryptosystems involve multiplications over finite fields up

to GF(2571) [68, 69], which can also be implemented as polynomial multiplications

and hence be implemented by DFTs via the convolution theorem [25]. Therefore

efficient DFT algorithms are required in practice. Recently proposed cyclotomic

fast Fourier transforms (CFFTs) [20,21,70] have attracted a lot of attention due to

their low multiplicative complexities.

One open problem for CFFTs is that all of the existing CFFTs [20,21,70] are for

characteristic-2 finite fields, while it is necessary to generalize CFFTs to arbitrary

finite fields. This is because recently non-characteristic-2 fields such as GF(3m) have

been considered in modern error control codes [18] and cryptosystems [19]. The

low multiplicative complexities of CFFTs are primarily due to the efficient short

cyclic convolutions used to construct CFFTs. Thus, a key challenge in generalizing

CFFTs to arbitrary finite fields is efficient cyclic convolution algorithms over any

finite field. To the best of our knowledge, there is no efficient general algorithm

for cyclic convolutions over arbitrary finite fields other than the implementation via

the convolution theorem [25]. Unfortunately, this approach is not efficient for short

cyclic convolutions and hence not suitable for CFFTs.

Another issue regarding CFFTs is that their computational complexities have

not been carefully examined. Although their advantages in both multiplicative and

overall complexities have been demonstrated for DFTs with short and moderate

lengths (see, for example, [22]), it is unknown whether these advantages hold for

very long DFTs. This question becomes particularly important, as applications

require DFTs of increasingly longer lengths. Furthermore, it is also interesting to
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compare the complexities of CFFTs to other existing DFT algorithms [71–74]. Such

comparison will help system designers to select appropriate long-DFT algorithms

with minimal complexities.

In this chapter, we address both issues mentioned above. To this end, our main

contributions are as follows:

• We propose an efficient bilinear algorithm to compute Toeplitz matrix vector

products (TMVPs). It works on all finite fields as well as the real and complex

fields, and has a smaller computational complexity than existing TMVP algo-

rithms, such as that in [75]. This TMVP algorithm not only enables us to de-

vise efficient algorithms for cyclic convolutions and CFFTs over arbitrary finite

fields, but also is instrumental in our analysis of the computational complex-

ities of CFFTs. Moreover, TMVPs are important in themselves due to their

many applications, such as low-complexity finite field multiplications [75].

• We propose an efficient algorithm for cyclic convolutions with prime lengths

over arbitrary finite fields. The cyclic convolutions are first reformulated as

the product of a Toeplitz matrix and a vector at the expense of only one extra

multiplication, and then we can use the efficient TMVP algorithm we propose

to derive the cyclic convolution results. The algorithm for cyclic convolutions

with arbitrary lengths can be derived through multidimensional technology.

This efficient cyclic convolution algorithm enables us to extend CFFTs to

arbitrary fields with low computational complexities.

• We derive the bounds on both the multiplicative and additive complexities of

CFFTs over arbitrary finite fields. The multiplicative complexities of CFFTs
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are lower than all known algorithms, but their additive complexities are much

higher, rendering them asymptotically suboptimal. However, CFFTs are still

of practical value for DFTs with up to thousands of symbols.

The rest of this chapter is organized as follows. We first propose an efficient

algorithm for TMVPs in Sec. 6.2. Then we propose an algorithm for cyclic convo-

lutions and CFFTs over an arbitrary finite field in Sec. 6.3. The multiplicative and

additive complexities of CFFTs over arbitrary finite fields are derived in Sec. 6.4

and this chapter concludes in Sec. 6.5.

6.2 An Efficient Algorithm for Toeplitz Matrix

Vector Product

An n×n matrix T is called a Toeplitz matrix when each of its diagonals is constant,

that is, Ti,j = ti−j. Hence T is also represented by a corresponding vector t =

(t−n+1, t−n+2, · · · , tn−1)T . The product between T and an n-dimensional vector v,

u = Tv =




u0

u1

...

un−1




=




t0 t−1 · · · t−n+1

t1 t0 · · · t−n+2

...
...

. . .
...

tn−1 tn−2 · · · t0







v0

v1

...

vn−1



, (6.1)

is referred to as an n× n Toeplitz matrix vector product (TMVP).
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6.2.1 Background and Motivation

Efficient algorithms for cyclic convolutions of short lengths are essential to achieving

CFFTs of low multiplicative complexities. We will show in Sec. 6.3 that cyclic

convolutions over finite fields can be formulated as TMVPs. Hence efficient TMVPs

are important to our cyclic convolutions and CFFTs over finite fields in Sec. 6.3 and

to the complexity analysis of CFFTs in Sec. 6.4. We present our efficient algorithm

for TMVPs separately in this section for two reasons. First, while cyclic convolutions

and CFFTs considered in Secs. 6.3 and 6.4 are over finite fields, our algorithm for

TMVPs applies to finite fields as well as the real and complex fields. Second and

more importantly, efficient algorithms for TMVPs are important in themselves due

to other applications of TMVPs besides their relation to cyclic convolutions. For

instance, efficient algorithms for TMVPs are used to devise low-complexity finite

field multiplications [75].

Efficient algorithms for TMVPs are often derived using multidimensional tech-

nologies, which decompose long TMVPs into short TMVPs with efficient algorithms.

If n = n1n2, an n× n TMVP can be decomposed into n1× n1 and n2× n2 TMVPs,

and n1 and n2 can be further decomposed. When n is not a composite number, both

n+ 1 and n− 1 are composite and hence two ad-hoc techniques are often used (see,

for example, [75]): 1) one can obtain an (n+1)×(n+1) TMVP by padding a zero at

the end of the vector and extending the n×n Toeplitz matrix to an (n+1)× (n+1)

one by setting T0,n = Tn,0 = 0, and then apply the multidimensional techniques; 2)

one can first obtain an (n − 1) × (n − 1) TMVP by ignoring the first row and the

last column of the n × n Toeplitz matrix as well as the last element of the vector,

and then apply the multidimensional techniques to (n − 1) × (n − 1) TMVP and
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account for the ignored parts separately. In practice, the most efficient algorithm is

selected among these ad-hoc approaches.

In this section, however, based on a systematic approach, we propose a bilinear

algorithm of n×n TMVPs that is fixed for any given n. Its computational complexity

can be expressed explicitly, which is useful for our complexity analysis of CFFTs

later. Furthermore, our algorithm achieves a smaller computational complexity than

existing TMVP algorithms to the best of our knowledge.

6.2.2 A Bilinear TMVP Algorithm

We compute the n×n TMVP in (6.1) by a bilinear algorithm, i.e., u = E(n)(G(n)t ·

H(n)v), where · denotes an entry-wise multiplication between two vectors, E(n) is an

n×M(n) matrix, G(n) is an M(n)×(2n−1) one, and H(n) is an M(n)×n one. M(n)

denotes the number of columns of E(n), which is the same as the number of rows

of G(n) and H(n). We will show that M(n) is in fact the number of multiplications

required by our bilinear algorithm later.

We will first construct the matrices E(n), G(n), and H(n) for the bilinear algorithm

inductively, then show that our bilinear algorithm indeed computes the n×n TMVP

in (6.1), and finally derive the additive and multiplicative complexities of our bilinear

algorithm.

The 1 × 1 TMVP is just a multiplication between t0 and v0, and hence E(1) =

G(1) = H(1) = 1.

Assume that the matrices E(k), G(k), and H(k) are known. When n = 2k, we

partition the Toeplitz matrix T into four k×k matrices, and both v and u into two
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k-dimensional vectors as




u0

u1


 =




T0 T−1

T1 T0







v0

v1


 , (6.2)

then we can construct the bilinear algorithm with matrices

E(2k) =




E(k) E(k) 0k×M(k)

E(k) 0k×M(k) E(k)


 ,

G(2k) =




G(k)P
(k)
0

G(k)(P
(k)
−1 −P

(k)
0 )

G(k)(P
(k)
1 −P

(k)
0 )



,H(2k) =




H(k) H(k)

0M(k)×k H(k)

H(k) 0M(k)×k



,

(6.3)

respectively, where 0s×t is an s× t zero matrix, and the matrices P
(k)
−1, P

(k)
0 , and P

(k)
1

are all (2k−1)× (4k−1) ones, given by [I2k−1 0(2k−1)×2k], [0(2k−1)×k I2k−1 0(2k−1)×k],

and [0(2k−1)×2k I2k−1], respectively.

When n = 2k + 1, we partition the TMVP in a symmetric way as




u0

uk

u1




=




T0 t−1
−k T−1

(t1
k)
T t0 (t−k−1)T

T1 tk1 T0







v0

vk

v1



, (6.4)

where tba denotes the vector (ta, ta+1, · · · , tb)T if a ≤ b, or (ta, ta−1, · · · , tb)T if a > b.
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Accordingly, our bilinear algorithm uses

E(2k+1) =




E(k) E(k) 0k×M(k)

01×M(k) 01×M(k) D2k+1 01×M(k)

E(k) 0k×M(k) E(k)


 ,

G(2k+1) =




G(k)Q
(k)
0

G(k)(Q
(k)
−1 −Q

(k)
0 ) + g

(k)
0

0(2k+1)×k D2k+1 0(2k+1)×k

G(k)(Q
(k)
1 −Q

(k)
0 ) + g

(k)
1



,

H(2k+1) =




H(k) 0M(k)×1 H(k)

0M(k)×k 0M(k)×1 H(k)

DT
2k+1Y2k+1

H(k) 0M(k)×1 0M(k)×k



,

(6.5)

where the matrices Q
(k)
−1, Q

(k)
1 , and Q

(k)
0 are all (2k − 1) × (4k + 1) ones and given

by [I2k−1 0(2k−1)×(2k+2)], [0(2k−1)×(2k+2) I2k−1], and [0(2k−1)×(k+1) I2k−1 0(2k−1)×(k+1)],

respectively. The matrix D2k+1 is a (2k + 1)× (2k + 1) matrix given by

D2k+1 =




−Ik 0k×1 0k×k

11×k 1 11×k

0k×k 0k×1 −Ik



, (6.6)

where 1s×t is an s × t matrix with all entries one. The matrices g
(k)
0 and g

(k)
1 are

both M(k)× (4k+ 1) matrices, and both depend on H(k): if row i of H(k) has only

one non-zero element at column j, then the element at row i of column 2k − j − 1

in g
(k)
0 and the element at row i of column 3k− j in g

(k)
1 are set to one; all the other

elements in g
(k)
0 and g

(k)
1 are zeros. Since 0 ≤ i ≤ M(k) − 1 and 0 ≤ j ≤ k − 1,
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the non-zero columns in g
(k)
0 and g

(k)
1 are from k to 2k − 1 and from 2k + 1 to

3k, respectively. The matrix Ys is an s × s anti-diagonal matrix with ones on its

anti-diagonal.

Before showing that the matrices we construct in (6.3) and (6.5) induce a bilinear

algorithm to compute the n × n TMVP in (6.1), we first establish some technical

results about the matrices introduced in (6.3) and (6.5).

Lemma 6.1. E(n) = (H(n)Yn)T , and both E(n) and H(n) consist of only 0, 1, and

−1.

Proof. When n = 1, E(1) = H(1) = Y1 = 1, and the lemma is satisfied. Suppose the

lemma holds for n up to k.

When n = 2k, note that we can partition Y2k into

Y2k =




0k×k Yk

Yk 0k×k


 ,

we have

(H(2k)Y2k)
T =




(H(k)Yk)
T (H(k)Yk)

T 0k×M(k)

(H(k)Yk)
T 0k×M(k) (H(k)Yk)

T




=




E(k) E(k) 0k×M(k)

E(k) 0k×M(k) E(k)


 = E(2k),

and by the construction, E(2k) and H(2k) contain only 0, 1, and −1.
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When n = 2k + 1, We can partition the matrix Y2k+1 into

Y2k+1 =




0k×k 0k×1 Yk

01×k 1 01×k

Yk 0k×1 0k×k



,

and the product of (H2k+1Y2k+1)T can be computed as




(H(k)Yk)
T (H(k)Yk)

T 0k×M(k)

01×M(k) 01×M(k) (DT
2k+1Y

2
2k+1)T 01×M(k)

(H(k)Yk)
T 0k×M(k) (H(k)Yk)

T




=




E(k) E(k) 0k×M(k)

01×M(k) 01×M(k) D2k+1 01×M(k)

E(k) 0k×M(k) E(k)




=E(2k+1).

Since the matrix D2k+1 contains only 0, 1, and −1, E(2k+1) and H(2k+1) also contain

only these three numbers.

Lemma 6.2. H(n) does not contain any zero rows, and the rows of H(n) that contain

only one non-zero element form an anti-diagonal matrix Yn.

Proof. We are going to prove this lemma by induction. When n = 1, H(1) = 1, and

the lemma holds. Suppose the lemma holds for n up to k, which means removing

the rows of H(k) with more than one non-zero element results in an anti-diagonal

matrix Yk.

When n = 2k, H(2k) in (6.3) has no zero rows, and removing the rows containing
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more than one non-zero element results in a matrix given by




0k×k Yk

Yk 0k×k


 = Y2k.

When n = 2k + 1, in the block DT
2k+1Y2k+1 in H(2k+1) only row k contains one

nonzero element, and there is no zero rows. Therefore, removing the rows with

more than one non-zero element results in a matrix given by




0k×k 0k×1 Yk

01×k 1 01×k

Yk 0k×1 0k×k




= Y2k+1.

Corollary 6.3. E(n) contains no zero columns, and removing all the columns con-

taining more than one non-zero element in E(n) results in the identity matrix In.

Proof. By Lemma 6.1, the number of the non-zero elements in a column in E(n)

is the same with the number of the non-zero elements in the corresponding row in

H(n), and removing columns containing more than one non-zero element results in

a matrix (YnYn)T = In.

Corollary 6.4. Removing both the zero rows and zero columns of either g
(k)
0 or g

(k)
1

in (6.5) results in Ik.

Proof. We prove this corollary for g
(k)
0 first. The zero rows in g

(k)
0 correspond to

the rows in H(k) containing more than one non-zero element. Removing these rows
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from g
(k)
0 and H(k) result in a k× (4k− 1) matrix g

(k)′

0 and Yk, respectively. By the

construction of g
(k)
0 , we know that in row j of g

(k)′

0 , the element at position k + j

is one, and other elements are zeros. Therefore, the non-zero columns are from k

to 2k − 1, and removing the zero columns results in an identity matrix Ik. The

corollary also holds for g
(k)
1 , which can be shown in a similar way.

Proposition 6.5. The bilinear algorithm induced by E(n), G(n), and H(n) in (6.3)

and (6.5) computes the n× n TMVP in (6.1).

Proof. We are going to prove this proposition by induction. When n = 1, E(1) =

H(1) = G(1) = 1, and the proposition holds. Assume that the proposition holds for

n up to k. When n = 2k, we can check by inspection that the bilinear algorithm

given by E(2k), G(2k), and H(2k) in (6.3) is actually the well-known two way split

method in [76],

u0 = T0(v0 + v1) + (T−1 −T0)v1,

u1 = T0(v0 + v1) + (T1 −T0)v0,

(6.7)

which computes the 2k × 2k TMVP.

When n = 2k+ 1, note the structure of D2k+1 in (6.6) and that Q
(k)
0 t and Q

(k)
−1t

correspond to T0 and T−1, respectively, the vector u0 as partitioned in (6.4) can be

computed as

u0 = T0(v0 + v1) + (T−1 −T0)v1

+ E(k)(g
(k)
0 t ·H(k)v1) + t−1

−k · (vk1k×1 −Ykv1).

Since the zero rows of g
(k)
0 correspond to the rows with more than one non-zero
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element in H(k) as well as the columns with more than one non-zero element in E(k)

and since the non-zero columns of g
(k)
0 are from column k to column 2k−1, we have

E(k)(g
(k)
0 t ·H(k)v1) = t−1

−k ·Ykv1,

and then we have u0 = T0v0 + vkt
−1
−k + T−1v1. Similarly we have u1 = T1v0 +

T0v1 + vkt
k
1. Note that

uk = vk

k∑

i=−k

ti −
k∑

i=−k

ti(vk − vk−i) =
k∑

i=−k

tivk−i,

hence the output of the bilinear algorithm is the TMVP.

6.2.3 Complexity Calculation

We now analyze the additive and multiplicative complexities of our bilinear algo-

rithm constructed above. By Lemma 6.1, the matrices E(n) and H(n) consist of

only 0, 1, and −1, and hence a multiplication between such a matrix and any

vector requires only additions and subtractions. Since the Toeplitz matrix T and

its corresponding vector t are known in advance in our application, G(n)t is pre-

computed. Hence, the computational complexity required by G(n)t is one-time and

is not counted in the computational complexity of our bilinear algorithm. Thus, all

multiplications required by our bilinear algorithm are attributed to the entry-wise

multiplication between vectors, G(n)t ·H(n)v. That is, M(n), the number of rows

in H(n), is also the number of multiplications required by our bilinear algorithm.

We denote the additive complexities of the bilinear algorithm for an n × n TMVP
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constructed by Eqs. (6.3) and (6.5) as A(n), which is defined as the numbers of ad-

ditions and subtractions required by the algorithm. Our explicit construction leads

to recursive relations for M(n) and A(n), as shown below.

Proposition 6.6. For an n×n TMVP, the multiplicative complexity of our bilinear

algorithm M(n) satisfies

M(n) =





3M(k), n = 2k,

3M(k) + 2k + 1, n = 2k + 1,
(6.8)

with initial condition M(1) = 1, and the additive complexity A(n) satisfies A(n) =

3M(n)− 3n.

Proof. The recursive relation (6.8) is derived by counting the rows of H(2k) and

H(2k+1) in (6.3) and (6.5), respectively.

The matrices E(n) and H(n) consist of only 0, 1, and −1 by Lemma 6.1, which

implies the multiplication between such a matrix and a vector requires only addi-

tions and subtractions. Assume that w = G(n)t · H(n)v, we denote the additive

complexities of H(n)v and E(n)w as A1(n) and A2(n), respectively.

First, let us show that A1(n) = M(n) − n by induction. When n = 1, no

addition is needed, and hence A1(n) = M(1) − 1 = 0. Suppose it holds for

n up to t. If t = 2k − 1, then when n = t + 1 = 2k, by (6.2) and (6.3),

H(2k)v = [(H(k)(v0+v1))T (H(k)v0)T (H(k)v1)T ]T . We first compute a k-dimensional

vector addition v0 + v1, and then multiply H(k) with v0, v1, and v0 + v1, re-

spectively. Hence we have A1(2k) = 3A1(k) + k = 3M(k) − 2k = M(2k) − 2k.

If t = 2k, then when n = t + 1 = 2k + 1, by (6.4) and (6.5), H(2k+1)v =
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[(H(k)(v0 + v1))T (H(k)v1)T (DT
2k+1Y2k+1v)T (H(k)v0)T ]T . Considering the structure

of D2k+1 in (6.6), we have A1(2k+1) = 3A1(k)+3k = 3M(k) = M(2k+1)−(2k+1).

Then we have A1(n) = M(n)− n.

Next, let us show that A2(n) = 2M(n)−2n. when n = 1, A2(n) = 2M(1)−2 = 0.

Suppose it holds for n up to t. If t = 2k − 1, then when n = t + 1 = 2k, we

can partition w into [wT
0 wT

1 wT
2 ]T with proper sizes, and E(2k)w = [(E(k)w0 +

E(k)w1)T (E(k)w0 + E(k)w2)T ]T . We first compute E(k)wi for i = 0, 1, and 2, and

then with two additional k-dimensional vector additions, we can derive the product

u. Therefore, A2(2k) = 3A2(k) + 2k = 6M(k)− 4k = 2M(2k)− 4k. If t = 2k, then

when n = t+ 1 = 2k + 1, we can partition w into [wT
0 wT

1 wT
2 wT

3 ]T , and we have

u0 = E(k)w0 + E(k)w1 − [Ik 0k×(k+1)]w2,

uk = 11×(2k+1)w2, (6.9)

u1 = E(k)w0 + E(k)w3 − [0k×(k+1) Ik]w2,

and hence A2(2k + 1) = 3A2(k) + 6k = 2M(2k + 1)− 4k − 2.

Since G(n)t can be pre-computed, we have A(n) = A1(n) + A2(n) = 3M(n) −

3n.

Alternatively, when computing H(k)(v1 + v2), one can first compute H(k)v1 and

H(k)v2 first, and then sum up them together. This strategy will lead to a different

recursion for the additive complexities of A1(n), given by

A′1(n) =





2A′1(k) +M(k), n = 2k,

2A′1(k) +M(k) + 2k, n = 2k + 1,

125



6.2. AN EFFICIENT ALGORITHM FOR TMVP

with A′1(1) = 0. It is easy to show by induction that A′1(n) = A1(n) = M(n) − n.

Similarly, when computing E(k)(w0 + w1) and E(k)(w0 + w2), one can first compute

w0 +w1 and w0 +w3, and then multiply E(k) with both sum vectors. This approach

will also leads to the same additive complexity with A2(n).

6.2.4 Comparison with Other TMVP Algorithms

We now compare our bilinear algorithm with its counterpart proposed in [75]. We

note that our algorithm is bilinear and the algorithm in [75] is constructed recursively

and not presented in a bilinear form. When n = 2k, both our bilinear algorithm

and that in [75] are based on (6.2). When n = 2k + 1, the algorithm in [75] first

ignores the first row and the last column of the Toeplitz matrix T as well as the

last element of the vector v, and then computes the 2k× 2k TMVP by (6.7), which

requires three k× k TMVPs. The ignored parts are accounted for separately. That

is, the algorithm in [75] is based on




u0

u0

u1




=




(t−k+1
0 )T (t−2k+1

−k )T t−2k

T0 T−1 t−k−2k+1

T1 T0 t0
−k+1







v0

v1

v2k



. (6.10)

Denoting the additive and multiplicative complexities of the algorithm in [75] as

A′(n) and M ′(n), respectively, we have

A′(n) =





3A′(k) + 3k, n = 2k,

3A′(k) + 7k, n = 2k + 1,
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and

M ′(n) =





3M ′(k), n = 2k,

3M ′(k) + 4k + 1, n = 2k + 1,

with initial conditions A′(1) = 0 and M ′(1) = 1. Compared with the algorithm

in [75], when n is odd, the recursive relation of A(n) saves 2k multiplications and

uses 2k more additions; when n is even, A(n) has the same recursive relation. Since

A′(1) = A(1) and M ′(1) = M(1), one can show that A′(n) +M ′(n) = A(n) +M(n)

for any n. When n is a power of two, both algorithms have the same computational

complexities. When n is not a power of two, our algorithm requires fewer multipli-

cations while needing more additions, which implies that, as long as a multiplication

is more complex than an addition, our algorithm has a smaller computational com-

plexity than its counterpart in [75]. In Tab. 6.1, we compare the computational

complexities of both the recursive algorithm in [75] and our bilinear algorithm for

n× n TMVPs up to n = 16. Although the additive and multiplicative complexities

of both algorithms are asymptotically on the order O(nlog2 3) for an n × n TMVP,

the reduced complexities of our algorithm for small TMVPs have a significant im-

pact on CFFTs. This is because the multiplicative complexities of CFFTs depends

on efficient cyclic convolutions of small lengths, which will be reformulated as short

TMVPs in Sec. 6.3.

6.2.5 Remarks

Our bilinear algorithm includes several well-known efficient (and possibly optimal)

TMVP algorithms as special cases. These include 2×2 and 3×3 TMVPs [25,76] as

well as the 5×5 TMVP algorithm used in deriving our 11-point cyclic convolutions in
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Table 6.1: Comparison of computational complexities of our algorithm and its coun-
terpart in [75] for n× n TMVPs.

n
[75] ours

n
[75] ours

A′(n) M ′(n) A(n) M(n) A′(n) M ′(n) A(n) M(n)
1 0 1 0 1 9 73 44 81 36
2 3 3 3 3 10 84 54 96 42
3 7 8 9 6 11 104 75 126 53
4 15 9 15 9 12 108 72 126 54
5 23 18 27 14 13 132 97 162 67
6 30 24 36 18 14 147 111 183 75
7 42 37 54 25 15 175 140 225 90
8 57 27 57 27 16 195 81 195 81

Appendix A, which is the most efficient one to the best of our knowledge. However,

A(n) and M(n) are not necessarily the lowest computational complexities for n× n

TMVP. For example, in Tab. 6.1, M(15) = 90 and A(15) = 177, while M(16) = 81

and A(16) = 195. As described above, one can extend a 15 × 15 TMVP to a

16× 16 TMVP by padding zeros. To devise an efficient algorithm for any TMVP, it

is necessary to explore different approaches described above, including our bilinear

algorithm. Our analysis of A(n) assumes a rather straightforward implementation,

and A(n) may be further reduced by sophisticated additive complexity reduction

tools such as the common subexpression elimination algorithm in [22].

Our bilinear algorithm is designed for TMVPs over any finite field as well as the

real and complex fields. Hence, it is possible that the computational complexities

of our bilinear algorithm can be reduced by taking advantage of further properties

of any particular field.
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6.3 CFFTs over Arbitrary Finite Fields

Cyclotomic fast Fourier transforms (CFFTs) considered in the literature [20–22,67,

70] are for GF(2m) only. In this section, we generalize CFFTs to any finite field

GF(pm), where p is a prime and m is a positive integer. First, we will formulate

CFFTs over any finite field in Sec. 6.3.1. Although our formulation is straight-

forward and not significantly different from that in previous works [20, 21, 70], we

formally present it here so that the content in this chapter will be self-contained.

The key ingredient of CFFTs over any finite field is efficient cyclic convolutions over

finite fields. Cyclic convolution algorithms over arbitrary finite fields have not been

investigated in detail in previous works [20, 21, 70]. We propose an efficient cyclic

convolution algorithm for any finite field in Sec. 6.3.2, which in turn enables us to

construct CFFTs over any finite field.

6.3.1 CFFTs over Arbitrary Finite Fields

Given a vector f = (f0, f1, · · · , fn−1)T over GF(pm), we define its polynomial rep-

resentation by f(x) =
∑n−1

i=0 fix
i. The Fourier transform of the vector f is the

collection of elements

Fj = f(αj) =
n−1∑

i=0

fiα
ij, (6.11)

where 0 ≤ j ≤ n − 1, and α ∈ GF(pm) is an element of order n, i.e. α is an n-th

primitive root of one. Therefore n has to divide pm − 1 so that such an element

exists in GF(pm).

A linearized polynomial over GF(pm) is a polynomial of the form L(x) =
∑

i lix
pi ,

where li ∈ GF(pm). Linearized polynomials are so named because for a linearized
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polynomial L(x) over GF(pm), β1 and β2 in an extension field K of GF(pm), and

λ1, λ2 ∈ GF(p), we have L(λ1β1 +λ2β2) = λ1L(β1) +λ2L(β2). Thus, if the elements

β0, β1, · · · , βm−1 form a basis of GF(pm), and a =
∑m−1

i=0 aiβi, ai ∈ GF(p), then

L(a) =
∑m−1

i=0 aiL(βi).

Suppose the set of integers {0, 1, · · · , n−1} can be partitioned into k cyclotomic

cosets modulo n over GF(p):

{0}, {s1, ps1, · · · , pm1−1s1}, {s2, ps2, · · · , pm2−1s2}, · · ·

{sk−1, psk−1, · · · , pmk−1−1sk−1},

where si = sip
mi (mod n) and mi is the size of the i-th cyclotomic coset. Then

any polynomial f(x) =
∑n−1

i=0 fix
i with fi ∈ GF(pm) can be decomposed as f(x) =

∑k−1
i=0 Li(x

si), where Li(y) =
∑mi−1

j=0 fsipj modn y
pj . Note that for s0 = 0, the term f0

can be written as the value of the polynomial L0(y) = f0y at y = x0 = 1.

Example: the cyclotomic cosets of {0, 1, · · · , 12} modulo 13 with respect to

three are given by {0}, {1, 3, 9}, {2, 6, 5}, {4, 12, 10}, {7, 8, 11}. Hence the polyno-

mial f(x) =
∑12

i=0 fix
i, fi ∈ GF(33) can be decomposed as

f(x) = L0(x0) + L1(x) + L2(x2) + L3(x4) + L4(x7),

L0(y) = f0y,

L1(y) = f1y + f3y
3 + f9y

9,

L2(y) = f2y + f6y
3 + f5y

9,

L3(y) = f4y + f12y
3 + f10y

9,

L4(y) = f7y + f8y
3 + f11y

9.
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According to the decomposition, we can write f(αj) =
∑k−1

i=0 Li(α
jsi). All the el-

ements (αsi)j ∈ GF(pmi) can be represented by a normal basis {γp0i , γp
1

i , · · · , γp
mi−1

i }

of GF(pmi) (the existence of such basis in any finite field is guaranteed by the normal

basis theorem [77]). That is, αjsi =
∑mi−1

s=0 ai,j,sγ
ps

i , where ai,j,s ∈ GF(p). Hence

f(αj) =
k−1∑

i=0

mi−1∑

s=0

ai,j,sLi(γ
ps

i )

=
k−1∑

i=0

mi−1∑

s=0

ai,j,s

(
mi−1∑

t=0

γp
s+tmodmi

i fsipt modn

)
.

This expression can be rewritten in the matrix form as

F = ALf ′ (6.12)

where fi = (fsi , fpsi · · · , fpmi−1si) and f ′ = (f0, f1, f2, · · · , fk−1)T is just a permutation

of f according to the cyclotomic cosets. The matrix A consists of the elements

ai,j,s ∈ GF(p). The matrix L is block diagonal given by diag(L0,L1, · · · ,Lk−1),

where

Li =




γp
0

i γp
1

i · · · γp
mi−1

i

γp
1

i γp
2

i · · · γp
0

i

...
...

. . .
...

γp
mi−1

i γp
0

i · · · γp
mi−2

i




is a cyclic matrix. The multiplication between Li and the vector fTi can be formu-

lated as a cyclic convolution between bi = (γp
0

i , γ
pmi−1

i , · · · , γp1i )T and fi. Hence with

efficient cyclic convolution algorithms (see, e.g., [25]), the multiplicative complexi-

ties of CFFTs can be greatly reduced. Therefore, for CFFTs over arbitrary finite
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fields, efficient cyclic convolution algorithms over arbitrary finite fields, especially

those for short cyclic convolutions are needed.

6.3.2 A Cyclic Convolution Algorithm over GF(pm)

Efficient cyclic convolution algorithms over arbitrary finite fields play an important

role in the multiplicative complexity reduction of CFFTs. Unfortunately, cyclic

convolution algorithms over arbitrary finite fields have not been investigated in detail

in previous works on CFFTs [20, 21, 70]. Herein we propose an efficient algorithm

for cyclic convolutions over arbitrary finite fields.

Consider an n-point cyclic convolution over GF(pm), where p is prime and m

is a positive integer. If n = n1n2, we can use the multidimensional technologies

(see, e.g., [25]) to construct an n-point cyclic convolution from n1- and n2-point

cyclic convolutions. Thus, henceforth we consider only the cases where n is a prime

number.

For an n-dimensional vector x = (x0, x1, · · · , xn−1)T over GF(pm), where n is

any prime integer, we consider its polynomial representation x(w) =
∑n−1

i=0 xiw
i.

Assuming that the n-point cyclic convolution of two vectors x and y is z, all of

which are n-dimensional vectors over GF(pm), their polynomial representations are

related by

z(w) = x(w)y(w) (mod wn − 1). (6.13)

Note that wn−1 = (w−1)(wn−1+wn−2+· · ·+1), and w−1 and wn−1+wn−2+· · ·+1

are co-prime in GF(pm) when n 6= p. Hence by the Chinese remainder theorem [77],
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z(w) can be uniquely determined by Z0 and Z ′(w) =
∑n−2

i=0 z
′
iw

i, where

Z0 = z(w) (mod w − 1),

Z ′(w) = z(w) (mod wn−1 + wn−2 + · · ·+ 1).

(6.14)

It is easy to see that Z0 =
∑n−1

i=0 zi, Z
′
i = zi− zn−1 for 0 ≤ i ≤ n− 2, and the vector

Z = (Z0, Z
′
0, Z

′
1, · · · , Z ′n−2)T = (Z0,Z

′T )T can be derived by multiplying the vector

z with an n× n matrix:

Z = Bz =




1 1 . . . 1

−1

In−1
...

−1




z.

Representing x and y in the same fashion, it is easy to see that Z0 = X0Y0, and

Z ′(w) = X ′(w)Y ′(w) (mod wn−1 + wn−2 + · · ·+ 1). (6.15)

Therefore, to compute the n-point cyclic convolution of x and y, we first compute

X = Bx and Y = By, then compute Z from X and Y, and finally obtain z = B−1Z.

From (6.15), the polynomial product can be computed as

X ′(w)Y ′(w) =
n−2∑

k=0

n−2∑

j=0

(Y ′k−j + Y ′k−j+n + Y ′n−1−j)X
′
jw

k

(mod wn−1 + wn−2 + · · ·+ 1), (6.16)

and hence the vector Z′ can be computed through a matrix product Z′ = MX′,
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where the elements of matrix M are

Mk,j = Y ′k−j + Y ′k−j+n − Y ′n−1−j. (6.17)

Note that in (6.16) and (6.17), Y ′i is zero outside its valid range, i.e., Y ′i = 0 if i < 0

or i > n− 2.

We can check that B is invertible, and B−1 is given by

B−1 = n−1




1 A1

A2 A3


 ,

where n−1 ∈ GF(p) is an integer such that n−1n = 1 (mod p), the (n − 1)-

dimensional row vector A1 = (n − 1, −1,−1, · · · ,−1), the (n − 1)-dimensional

column vector A2 = (1, 1, · · · , 1)T , and the (n − 1) × (n − 1) matrix A3 has n − 1

on the first upper diagonal and −1 everywhere else.

Now consider z = (z0, z
′T )T as the product of B−1 and Z:

z =



z0

z′


 = B−1



Z0

Z′


 = n−1




1 A1

A2 A3






Z0

Z′


 .

Note that A1 and A3 are related by A1 = −(1, 1, . . . , 1) A3. This implies that the

sum of the components of A3Z
′ gives A1Z

′. Furthermore, A2 contains only ones.

Thus the computation of z0 and z′ reduces to

z0 = n−1(Z0 − 1Tn−1(A3Z
′)),

z′ = n−1([Z0, Z0, . . . , Z0]T + A3Z
′),

(6.18)
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where 1n−1 is an (n− 1)-dimensional all-one column vector. Eq. (6.18) shows that

multiplying a vector with B−1 needs only an evaluation of A3Z
′. Though the final

results have to be derived by multiplying n−1, whence an operand of the cyclic

convolution is a constant vector, multiplying n−1 can be done in the pre-computation

by scaling the constant operand.

Since Z′ = MX′, one needs to compute RX′ where the (n− 1)× (n− 1) matrix

R = A3M. We now show that R is a Toeplitz matrix. From the structure of A3,

we have

Ri,j = Mi+1,j − n−1

n−2∑

k=0

Mk,j. (6.19)

Using appropriate ranges for the three terms of the right hand side of (6.17), we get

n−2∑

k=0

Mk,j = −nY ′n−1−j +
n−2∑

s=0

Y ′s . (6.20)

Finally, combining (6.17), (6.19) and (6.20) leads to

Ri,j = Y ′i−j+1 + Y ′i−j+n+1 − n−1

n−2∑

s=0

Y ′s . (6.21)

Since Ri,j is a function of only i− j, R is a Toeplitz matrix. Recall that Y ′i is zero

if its index is outside the valid range of 0 to n − 2. Thus in (6.21), at most one of

the first two terms is valid for any combination of i and j.

With this method, we reformulate the n-point cyclic convolution into the prod-

uct between a Toeplitz matrix R and a vector X′. Direct implementation of RX′

requires (n − 1)2 multiplications over GF(pm), but we can reduce its multiplica-

tive complexity since R is a Toeplitz matrix. For any odd prime n > 3, n − 1 is
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composite and RX′ can be obtained by using multidimensional technologies from

Toeplitz matrix vector products of smaller sizes [75, 76, 78–80], using our efficient

TMVP algorithm in Sec. 6.2.

When n = p, wp−1 = (w−1)p, and Z0 and Z ′(w) cannot determine Z(w), hence

the above method is not valid in such cases. We formulate the cyclic convolution as

the multiplication between a cyclic matrix and a vector, i.e.,

z =




x0 xp−1 xp−2 · · · x1

x1 x0 xp−1 · · · x2

x2 x1 x0 · · · x3

...
...

...
. . .

...

xp−1 xp−2 xp−3 · · · x0







y0

y1

y2

...

yp−1




. (6.22)

It is easy to see that the cyclic matrix is also a Toeplitz matrix, and hence we can

evaluate this matrix vector product using our TMVP algorithm in Section 6.2.

In summary, an n-point (n is prime) cyclic convolution over any finite field is

reformulated as either an (n − 1) × (n − 1) TMVP or an n × n TMVP. Based

on our efficient TMVP algorithm in Sec. 6.2, both the multiplicative and additive

complexities of an n-point (n is prime) cyclic convolution over any finite field is

on the order of O(nlog2 3) asymptotically. However, when used for CFFTs, a small

reduction in the computational complexities of cyclic convolutions yields a large

reduction of the total complexities of CFFTs. The merit of our reformulation above

is in that we can take advantage of multidimensional technologies at the expense of

only one extra multiplication when the cyclic convolution length is prime and not

equal to the characteristic of the field.
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We remark that the cyclic convolution algorithm based on our efficient bilinear

TMVP is also a bilinear one. That is, over GF(pm), given a prime n and n 6= p,

the cyclic convolution of two n-dimensional vectors x and y can be computed by

n−1Q(n)(P(n)x ·R(n)y), where Q(n), P(n), and R(n) are matrices containing only −1,

0, and 1, and multiplying with such matrices only requires additions and subtrac-

tions. Since this algorithm is bilinear, whence an operand is a constant, it can be

pre-scaled with n−1, and hence multiplying n−1 does not account for any multipli-

cation. Furthermore, in characteristic-2 fields, which are most commonly used in

practice, n−1 = 1 and hence this term can be neglected.

Example: 11-point cyclic convolution algorithm does not exist in the literature

to the best of our knowledge. As this algorithm is instrumental in deriving CFFTs

over GF(211), we propose an 11-point cyclic convolution algorithm in Appendix A,

which is designed based on the reformulation introduced in this section. Note that

in GF(2), −1 = 1 and hence the matrices Q(11), P(11), and R(11) are all binary.

6.4 Computational Complexities of CFFTs

The advantages of CFFTs in their multiplicative and total computational com-

plexities have been established by numerical comparison with other algorithms so

far [20–22]. The goal of our research is to theoretically show that they do have the

smallest multiplicative complexities among all known algorithms, and to determine

the optimality of the total computational complexity of CFFTs.

In this section, we focus on CFFTs of lengths n = pm − 1 over GF(pm). As

shown in Sec 6.3.1, a CFFT computes the DFT of an n-dimensional vector f by
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ALf ′, where the matrix A is over GF(p). We assume that multiplying a vector with

A can be done by additions, since ab =
∑a

i=1 b for a ∈ GF(p) and b ∈ GF(pm). The

vector v = Lf ′ is computed via k cyclic convolutions, with Lif
′
i being an mi-point

cyclic convolution. Thus the multiplicative complexity of a CFFT is contributed by

the k convolutions, and the additive complexity is due to both the convolutions and

computing Av.

6.4.1 Multiplicative Complexities of CFFTs

We first introduce some notations instrumental to our derivations. We partition the

set {0, 1, · · · , n−1} into k cyclotomic cosets modulo n with respect to p, denoted by

C0, C1, · · · , Ck−1. We assume the size of Ci is given bymi, and si is its representative.

We know that mi divides m. We divide the cosets Ci’s into d groups, denoted by

G0, G1, · · · , Gd−1, so that all Ci’s in the same group Gj are of the same size gj. The

size of Gj is given by |Gj|.

The convolutions are the only source of the multiplicative complexity of an n-

point CFFT. It is a well-known result that an mi-point cyclic convolution has a

multiplicative and additive complexities on the order of O(m
log2 3
i ) [76], which implies

that there exists a constant c independent with mi such that its multiplicative

complexity is less than cm
log2 3
i . Therefore, the total multiplicative complexity of

an n-point CFFT is less than c
∑k−1

i=0 m
log2 3
i . We have that the size of the cosets

in Gj divides m, i.e., gj|m, and also we have d ≤ m. Since log2 3 > 1, we have

m
gj

(gj)
log2 3 = m(gj)

log2
3
2 ≤ m(m)log2

3
2 = mlog2 3. Then when m ≥ 4, we can show

that d ≤ m ≤ (2m − 1)/m ≤ (pm − 1)/m, and hence the total multiplicative
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complexity satisfies

c

k−1∑

i=0

m
log2 3
i = c

d−1∑

j=0

|Gj|glog2 3
j

=c
d−1∑

j=0

b|Gj|gj
m
cm
gj
g

log2 3
j + c

d−1∑

j=0

(|Gj| mod m/gj)g
log2 3
j

≤cbp
m − 1

m
cmlog2 3 + cdmlog2 3

≤2c
pm − 1

m
mlog2 3.

The first inequality is because m
gj

(gj)
log2 3 ≤ mlog2 3, and the second one is because

d ≤ (pm − 1)/m when m ≥ 4. We are considering the asymptotic complexity,

and hence we do not need to consider the cases m < 4. The total multiplicative

complexity of an n-point CFFT is thus O(n(logp n)log2
3
2 ) since m = logp(n+ 1).

6.4.2 Additive Complexities of CFFTs

The additive complexity of an n-point CFFT over GF(pm) has two sources, the

convolutions and computing Av. The total additive complexity contributed by the

convolutions is given by O(n(logp n)log2
3
2 ), the same as the CFFT multiplicative

complexity since the additive and multiplicative complexities of a cyclic convolution

are on the same order. Even though A is a matrix over GF(p), the multiplication

between A and a vector can still be implemented with only additions. A multipli-

cation between an element in GF(p) and one in GF(pm) can be done via at most

p − 2 additions. Computing Av is the primary source of the additive complexity

and we will derive the additive complexity of Av.
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Multiplication between an Arbitrary Matrix over GF(p) and a Vector

Consider the multiplication between an arbitrary M ×M matrix over GF(p) and

an M -dimensional vector x. Implementing directly, it requires O(pM2) additions.

When p = 2, the Four-Russian algorithm [81] can be used to reduce the additive

complexity. We are going to generalize the Four-Russian algorithm to GF(p).

Let s = blogpMc. If s does not divide M , we need to pad at most s − 1 zero

columns to M, and the new matrix is of size M×M ′. Since M ≤M ′ < M+s < 2M ,

M and M ′ are on the same order, and we can assume that s divides M without loss

of generality. We first partition M as

M =

[
M0 M1 · · · MM

s
−1

]
,

where Mi is an M × s matrix. To compute the product Mx, we first partition the

vector x into appropriate sizes, and then Mx =
∑M

s
−1

i=0 Mixi. We can compute the

product between the M × s matrix Mi and the vector xi by first computing all

the ps possible linear combinations of the elements in the s-dimensional sub-vector

xi. Then each element in Mixi can be looked up in these combinations. All ps

combinations can be done by Alg. 6, where C+x
def
= {c+x : c ∈ C}. The k-th round

requires (p − 1)pk additions, and the total additive complexity of this algorithm is

(p − 1)
∑s−1

k=0 p
k = ps − 1 ≤ M . Therefore, computing all Mixi requires at most

M
s

(ps − 1) ≤M2/s additions.

After evaluating all the products Mixi, the final result can be derived by at most

another M2/s additions. Since s = blogpMc, the additive complexity for computing

Mx is O(M2/ logpM).
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Algorithm 6 Compute all combinations of s elements with coefficients up to p− 1

Input: s numbers x0, x1, · · · , xs−1

1: Initialize: C = 0.
2: for k = 0 to s− 1 do
3: C = C ∪ (C + xk) ∪ · · · ∪ (C + (p− 1)xk)
4: end for
5: Output: All combinations of x0, x1, · · · , xs−1 with coefficients from GF(p).

Additive Complexity of Av

The result we derived above assumes that the matrix operand is arbitrary and does

not consider its structure. To further reduce the additive complexity of Av, we need

to explore the inner structure of the n× n matrix A.

Consider an n-point CFFT over GF(pm) with n = pm − 1. Let α be a primitive

element in GF(pm). As shown in Sec. 6.3.1, we can partition A into 1 × k blocks.

Each block Ai is of size (pm − 1) ×mi, and its row j is the representation of αjsi

under a normal basis in the subfield GF(pmi). In other words, the columns of A

correspond to the k cyclotomic cosets of {0, 1, · · · , n− 1} modulo n with respect to

p. We further reformulate Av in the following three steps.

1. We first reorder the rows of the matrix A according to these cyclotomic cosets.

We then obtain a new matrix A′ after the permutation, and partition it into

k × k blocks. Each block A′ij is an mi × mj matrix, and its row t is the

representation of αp
tsisj under a normal basis in GF(pmj). Because of the

property of normal bases, row t (1 ≤ t ≤ mi − 1) is just a cyclic shift of its

previous row, and therefore A′ij is a cyclic matrix [21]. Then we partition

the vector v into k sub-vectors accordingly, i.e., each sub-vector vi has mi

elements. The product Av is then recovered by reordering the elements in the
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product A′v.

2. The next step is extending all the mi ×mj blocks of A′ to m×m ones while

maintaining the cyclic property. Since mi and mj both divide m, this can

be done by first partitioning an m × m matrix into m
mi
× m

mj
blocks of size

mi ×mj, and then setting each block to A′ij. Obviously, the m×m matrix is

still a cyclic matrix. Then we obtain a km × km matrix A′′ after extending

all the blocks to m ×m ones in this way. Each sub-vector vi should also be

extended to an m-dimensional one by padding zeros in the end, resulting in a

km-dimensional vector v′′. The product Av can be recovered from A′′v′′ by

discarding the elements corresponding to the extended rows.

3. The last step is constructing a matrix B and a vector u from A′′ and v′′,

respectively, according to the following rules:

Bi2k+i1,j2k+j1 = A′′i1m+i2,j1m+j2
, ui2k+i1 = v′′i1m+i2

,

where for 0 ≤ i1, j1 < k and 0 ≤ i2, j2 < m, A′′i,j and Bi,j are the elements in

row i and column j in A′′ and B, respectively, and ui and v′′i are the elements

at position i in the vector u and v′′, respectively. It is easy to check that B

and u are just permutations of A′′ and v′′, respectively, and they are reordered

in the same way so that the product A′′v′′ can be recovered from Bu by only

reordering. Furthermore, since the matrix A′′ contains k × k blocks of cyclic

matrices, each of which is of size m×m, the matrix B is a block-cyclic matrix

with m × m blocks of size k × k, i.e., the block row t (1 ≤ t ≤ m − 1) is a

cyclic shift of its previous block row.
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The computational complexity of Bu serves as an upper bound of that of Av be-

cause Av can be obtained from Bu without any additional computation. Since the

matrix B is block-cyclic, we can compute Bu with the bilinear algorithm of m-point

block cyclic convolution, which requires three kinds of operations: the multiplication

between a k× k matrix and a k-dimensional vector, the addition between two k× k

matrices, and the addition between two k-dimensional vectors. Each operation have

to be performed O(mlog2 3) times [25, 76]. Since the matrix B is fixed, all the addi-

tions between k × k matrices do not contribute to the additive complexity because

they can be pre-computed. Since those blocks are over GF(p), we use Alg. 6 to

compute the k× k matrix vector product. Since each k-dimensional vector addition

requires k additions, the total computational complexity is given by

O(mlog2 3 k2

log2 k
) +O(mlog2 3k) = O(mlog2 3 k2

log2 k
).

We need to find out the lower and upper bounds of k to further simplify the additive

complexity bound. Let us prove a lemma before giving the bounds.

Lemma 6.7. For each group Gj of the cyclotomic cosets of {0, 1, · · · , pm−2} modulo

pm − 1 with respect to p, |Gj| ≤ (pgj − 1)/gj.

Proof. Let α be a primitive element in GF(pm). Each nonzero element in GF(pm) can

be represented as αt. There is at least one normal basis in GF(pm) by normal basis

theorem [77]. Given a normal basis {γp0 , γp1 , · · · , γpm−1} in GF(pm), every element

in GF(pm) can be represented by an m-dimensional vector over GF(p). That is, if

αt =
∑m−1

i=0 biγ
pj , then the vector (bm−1, bm−2, · · · , b0) is the vector representation

of αj.
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The normal basis representation of αpt is just a cyclic shift of that of αt. There-

fore, if t ∈ Ci which is in group Gj, the vector representation of αt repeats itself after

gj shifts since t = pgj t (mod pm − 1). If gj < m, then gj|m, and we can partition

the vector representation of αj into m/gj blocks of lengths gi. All of these blocks

are identical, otherwise the vector cannot repeat itself after gj cyclic shifts. Hence

there are at most (pgj − 1)/gj cyclotomic cosets with size gj.

Lemma 6.8. Let k be the number of the cyclotomic cosets of {0, 1, · · · , pm − 2}

modulo pm − 1 with respect to p. When m ≥ 9, pm − 1 < km < 2(pm − 1).

Proof. The lower bound of km is because m is the maximum size of cyclotomic

cosets. To prove the upper bound of km, we first assume that the group G0 contains

the cosets with a size of m, and that other groups contain the cosets with sizes less

than m. Then we have

km = |G0|m+
d−1∑

j=1

|Gj|m

≤ (pm − 1) +m

bm
2
c∑

mi=1,mi|m

pmi − 1

mi

≤ (pm − 1) +m

bm
2
c∑

mi=1

pmi

= (pm − 1) +m(pb
m
2
c+1 − 1)

≤ (pm − 1) +m(p
m+2

2 − 1).

(6.23)

The first inequality is given by Lemma 6.7. When m ≥ 9, (pm − 1)/(p
m+2

2 − 1) ≥

p
m−2

2 − 1 ≥ 2
m−2

2 − 1 ≥ m, therefore, m(p
m+2

2 − 1) ≤ pm − 1 and then we have

km ≤ 2(pm − 1).
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Since we are considering the asymptotic computational complexity of an n-point

CFFT over GF(pm), and there are only a finite number of m’s that do not satisfy the

upper bound given by Lemma 6.8, we do not need to consider them. Furthermore,

Lemma 6.8 holds for all m ≥ 1 when p = 2.

The total additive complexity of computing Bu is O(mlog2 3k2/ logp k), hence

there exists a constant c independent of m and k such that computing Bu requires

less than cmlog2 3k2/ logp k additions. By Lemma 6.8, we have

cmlog2 3 k2

logp k
≤ cmlog2 3 4(pm − 1)2

m2
[
logp(p

m − 1)− logpm
]

≤ cmlog2 3 4(pm − 1)2

m2(m+ logp
1−p−m

m
)
. (6.24)

Since limm→∞
1
m

logp
1−p−m

m
= 0, there exists a number N such that when m > N ,

logp
1−p−m

m
≥ −m

2
. Substituting this result to (6.24), we have

cmlog2 3 k2

logp k
≤ cmlog2 3 8(pm − 1)2

m3
= 8c

(pm − 1)2

mlog2
8
3

.

We do not need to consider the cases m ≤ N since our focus is on the asymptotic

additive complexity of Bu.

When n = pm−1, the additive complexity of computing Bu is upper bounded by

O(n2/(logp n)log2
8
3 ), a complexity lower than that of Alg. 6. The additive complexity

of Av is on the same order since it can be obtained from Bu without additional com-

putation. Since this complexity is higher than the additive complexity contributed

by the convolutions, the total additive complexity of CFFT is also bounded by

O(n2/(logp n)log2
8
3 ).
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6.4.3 Discussions

Applying our results to GF(2m), i.e., p = 2, we have that for an n-point CFFT over

GF(2m) with n = 2m − 1, the multiplicative complexity is O(n(log2 n)log2
3
2 ) and

the additive complexity is O(n2/(log2 n)log2
8
3 ). To evaluate the tightness of these

asymptotic bounds, we compare them with the actual computational complexities of

CFFTs in [22]. We scale our bounds to match the actual complexities when n = 1023

in Fig. 6.1. Our bounds on both the additive and multiplicative complexities are
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Figure 6.1: Comparison of the actual complexities and our bounds for n-point
CFFTs over GF(2m) with n = 2m − 1.

rather tight, which is shown in Fig. 6.1. The dashed curves corresponding to the

theoretical bounds almost coincide with the solid curves corresponding to the actual

complexities, which implies the actual additive complexities increase in a similar
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order to O(n2/(log2 n)log2
8
3 ), and the multiplicative complexities increase in a similar

order to O(n(log2 n)log2
3
2 ). Since we have scaled our bounds to match the actual

complexities at n = 1023, it is not necessary that our bounds are strictly larger than

the actual complexities.

In the following we are going to compare the asymptotic bounds of our results

and other DFT algorithms in the literature. Here we still consider the case p = 2 in

our results. A fast algorithm is proposed in [71] for DFTs in GF(2m) with arbitrary

integer m, and its multiplicative and additive complexities are both of O(n(log2 n)2).

Another algorithm with the complexities on the same order are proposed [82], re-

spectively. In [83], an FFT algorithm with O(n log2 n) multiplicative complexity

and O(n(log2 n)2) additive complexity is proposed. When m is a power of two,

more efficient algorithms are proposed in [71,73,74,84], and [83]. The most efficient

one proposed in [83] has a multiplicative complexity of O(n log2 n) and an additive

complexity of O(n log2 n log2 log2 n). Cantor’s algorithm [72] is more general and

it works for arbitrary algebras rather than finite fields. When DFT with a length

of n = sr is well-defined in the underlying algebra, Cantor’s algorithm has both

multiplicative and additive complexities of rn(s− 1).

We compare the asymptotic computational complexities of CFFTs and other

existing algorithms in Tab. 6.2, applying them to the DFTs with length 2m − 1

over GF(2m). The total complexity is defined to be a weighted sum of the additive

and multiplicative complexities. We assume that one multiplication has the same

complexity as (2m− 1) additions over the same field. This assumption comes from

both the hardware and software considerations [22,85]. Since we focus on (2m− 1)-

point DFT, m = log2(n+ 1) and 2m− 1 is on the order of O(log2 n).
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From Tab. 6.2, CFFTs have the smallest multiplicative complexities among all

algorithms. and hence our results confirm the advantage of CFFTs in low multi-

plicative complexity. However, due to their high additive complexities, the additive

and total complexities of CFFTs are asymptotically suboptimal. On the other hand,

CFFTs and the fast DFT algorithm in [71] have no additional assumptions, while

the other three algorithms all have additional constraints. Cantor’s algorithm re-

quires n = 2m − 1 = sr, but due to Mihǎilescu’s Theorem [86], the only way to

satisfy this conditions is n = n1. When r = 1, Cantor’s algorithm has a quadratic

additive and multiplicative complexities, and has no computational advantage. The

other algorithms work only in the field GF(2m) with m = 2K .

Even though CFFTs have a suboptimal asymptotic total complexity, they remain

very significant because they have the smallest total complexities for most practical

lengths up to thousands of symbols over GF(2m) with m ≤ 12 [22]. The only

exception is that for 255-point DFT over GF(28), Mateer’s algorithm has the

lowest total computational complexity, roughly 4% smaller than a 255-point CFFT.

6.5 Conclusion

CFFTs are of great importance due to their very low multiplicative complexities

and small total complexities for DFTs with practical lengths. In this chapter, we

generalize CFFTs from characteristic-2 fields to arbitrary finite fields, and analyze

their computational complexities. To this end, we first propose an efficient algorithm

for TMVPs that is instrumental in CFFTs. We then propose an efficient cyclic

convolution algorithm over arbitrary finite fields. Since efficient cyclic convolution
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algorithm is the key to reducing the multiplicative complexities of CFFTs, our

cyclic convolution algorithms for arbitrary finite fields enable us to generalize CFFTs

to arbitrary finite fields. Finally, we analyze the computational complexities of

CFFTs over arbitrary finite fields. Our results confirm that CFFTs have the smallest

multiplicative complexities of all known algorithms, but they are asymptotically

suboptimal due to their relatively high additive complexities. Nonetheless, they are

still of great practical value because for DFTs of practical lengths, since they have

the smallest total computational complexity in most cases.
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Chapter 7

Composite Cyclotomic Fourier

Transform with Reduced Additive

Complexity

7.1 Introduction

In Chapter 6, we introduce a cyclic convolution algorithm which is the key to the

CFFT implementation, and investigate the additive and multiplicative complexities

of CFFTs in theory. However, our results show that the high additive complexity

renders CFFT computationally inefficient for very long DFTs, e.g., 2047-point DFTs

over GF(211) and 4095-point DFTs over GF(212). As Reed-Solomon codes [87, 88]

over GF(212) with thousands of symbols have already been considered for hard

drive [16] and tape storage [17] as well as optical communication systems [66] to

achieve better error performance, and their syndrome based decoders require DFTs
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of lengths up to 4095 over GF(212). Therefore, efficient DFT algorithm is needed

in practice. In addition to complexity, a modular structure is desirable for efficient

hardware implementations of DFTs.

In the literature, fast Fourier transforms (FFTs) based on the prime-factor al-

gorithm [23] and the Cooley-Tukey algorithm [24] have been proposed for DFTs

over complex field. When FFTs based on the prime-factor algorithm are adapted to

DFTs over finite fields [89], they still have high multiplicative complexities. In con-

trast, CFFTs [20,21] are promising since they have significantly lower multiplicative

complexities while their high additive complexities are a drawback. In this chapter,

we try to integrate CFFT with the prime-factor algorithm and the Cooley-Tukey

algorithm, and our contributions are as follows.

• Due to the high additive complexities of CFFTs, we propose composite cyclo-

tomic Fourier transforms (CCFTs). When the length n of a DFT is factored,

i.e., n = n1 × n2, CCFT uses n1- and n2-point CFFTs as sub-DFTs via the

prime-factor and Cooley-Tukey algorithms. Thus, CFFTs are simply a special

case of our CCFTs, corresponding to the trivial factorization, i.e., n = 1× n.

This generalization reduces overall complexities in three ways. First, this

divide-and-conquer strategy itself leads to lower complexities. Second, the

moderate lengths of the sub-DFTs enable us to apply complexity-reducing

techniques such as the CSE algorithm in [22] more effectively. Third, when the

length n admits different factorizations, the one with the lowest complexity is

selected. In the end, while an n-point CCFT may have a higher multiplicative

complexity than an n-point CFFT, the former achieves a lower overall com-

plexity for long DFTs because of its significantly lower additive complexity.
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Moreover, when n is composite, an n-point CCFT has a modular structure,

which is suitable for efficient hardware implementations. Our CCFTs provide

a systematic approach to designing long DFTs with low complexity.

• Our efficient algorithms for cyclic convolutions devised in Sec. 6.3.2 allow us

to obtain longer DFTs over larger fields. For example, we propose CFFTs

over GF(211), which are unavailable in the literature heretofore partially due

to the lack of efficient 11-point cyclic convolution algorithms. Our 2047-point

DFTs over GF(211) and 4095-point DFTs over GF(212) are also first efficient

DFTs of such lengths to the best of our knowledge, and they are promising

for emerging communication systems.

Our work extends and improves previous works [20, 22] on CFFTs over finite

fields of characteristic-2 in several ways. First, previously proposed CFFTs focus

on (2m − 1)-point CFFTs over GF(2m) for m ≤ 10. In contrast, our CCFTs allow

us to derive long DFTs with low complexity over larger fields. Our approach can

be applied to any finite field, but we present CCFTs over GF(211) and GF(212)

due to their significance in applications. Furthermore, our work investigates n-point

CFFTs over GF(2m) for any n that divides 2m−1, i.e., n|2m−1. Second, our CCFTs

achieve lower overall complexities than all previously proposed FFTs for moderate

to long lengths, and the improvement significantly increases as the length grows.

The rest of this chapter is organized as follows. Sec. 7.2 briefly reviews the nec-

essary background of this chapter, such as the prime-factor algorithm, the Cooley-

Tukey algorithm, and the CSE algorithm. We then use an 11-point cyclic convolu-

tion algorithm devised in Sec. 6.3.2 to construct a 2047-point CFFT over GF(211)

in Sec. 7.4, and discuss the difficulties of implementing very long CFFTs. We also
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propose our CCFTs and compare their complexities with previously proposed FFTs

in Sec. 7.4. Concluding remarks are provided in Sec. 7.5.

7.2 Background

7.2.1 Common Subexpression Elimination

Given an N ×M binary matrix M and an M -dimensional vector x over a field F.

The matrix vector multiplication Mx can be done by additions over F only, the

number of which is denoted by C(M) since the complexity is determined by M,

when x is arbitrary. The problem of determining the minimal number of additions,

denoted by Copt(M), has been shown to be NP-complete [90].

Instead, different common subexpression elimination algorithms (see, e.g., [81,

91, 92]) have been proposed to reduce C(M). The CSE algorithm proposed in [22]

takes advantage of the differential savings and recursive savings, and can greatly

reduce the number of additions in calculating Mx, although the reduced additive

complexity, denoted by CCSE(M), is not guaranteed to be the minimum. Like other

CSE algorithms, the CSE algorithm in [22] is randomized, and the reduction results

of different runs are not necessarily the same. Therefore in practice, a better result

can be obtained by first running the CSE algorithm many times and then selecting

the smallest number of additions. The CSE algorithm in [22] greatly reduces the

additive and overall complexities of CFFTs with length up to 1023, but it is much

more difficult to reduce the additive complexity of longer CFFTs. This is because

though the CSE algorithm in [22] has a polynomial complexity (it is shown that

its complexity is O(N4 + N3M3)), the runtime and memory requirements become
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prohibitive when M and N are very large, which occurs for long CFFTs.

7.2.2 Prime-Factor and Cooley-Tukey Algorithms

We have reviewed DFT over finite field in Sec. 6.3.1. Both the prime-factor algorithm

and the Cooley-Tukey algorithm first decompose an n-point DFT into shorter sub-

DFTs, and then construct the n-point DFT from the sub-DFTs [25]. The prime-

factor algorithm requires that the length n has at least two co-prime factors, i.e.,

there exist two co-prime numbers n1 and n2 such that n = n1n2. For an integer

i ∈ {0, 1, · · · , n− 1}, there is a unique integer pair (i1, i2) such that 0 ≤ i1 ≤ n1− 1,

0 ≤ i2 ≤ n2 − 1, and i = i1n2 + i2n1 (mod n), since n1 and n2 are co-prime.

For any integer j ∈ {0, 1, · · · , n − 1}, let j1 = j (mod n1), j2 = j (mod n2),

where 0 ≤ j1 ≤ n1 − 1 and 0 ≤ j2 ≤ n2 − 1. By the Chinese remainder theorem,

(j1, j2) uniquely determines j, and j can be represented by j = j1n
−1
2 n2 + j2n

−1
1 n1

(mod n), where n−1
2 n2 = 1 (mod n1) and n−1

1 n1 = 1 (mod n2). Substituting the

above representation of i and j in (6.11), we get αij = (αn2)i1j1(αn1)i2j2 , where αn2

and αn1 are the n1-th root and the n2-th root of 1, respectively. Therefore, (6.11)

becomes

Fj =

n1−1∑

i1=0

(
n2−point DFT︷ ︸︸ ︷

n2−1∑

i2=0

fi1n2+i2n1α
n1i2j2

)
αn2i1j1

︸ ︷︷ ︸
n1−point DFT

. (7.1)

In this way, the n-point DFT is obtained by using n1- and n2-point sub-DFTs. The

n-point DFT result is derived by first carrying out n1 n2-point DFTs and n2 n1-

point DFTs, and then combining the results according to the representation of j.

The prime-factor algorithm can also be applied to n1- and n2-point DFTs if they
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have co-prime factors.

The Cooley-Tukey algorithm has a different decomposition strategy from the

prime-factor algorithm. Let n = n1n2, where n1 and n2 do not have to be co-prime.

Let i = i1 + i2n1, where 0 ≤ i1 ≤ n1 − 1 and 0 ≤ i2 ≤ n2 − 1, and j = j1n2 + j2,

where 0 ≤ j1 ≤ n1 − 1 and 0 ≤ j2 ≤ n2 − 1. Then (6.11) becomes

Fj =

n1−1∑

i1=0

(
n2−point DFT︷ ︸︸ ︷

n2−1∑

i2=0

fi1+i2n1α
n1i2j2

)
αi1j2αn2i1j1

︸ ︷︷ ︸
n1−point DFT

. (7.2)

In this way, the Cooley-Tukey algorithm also decomposes the n-point DFT into n1-

and n2-point DFTs. However, compared with (7.1), (7.2) has an extra term αi1j2 ,

which is called a twiddle factor and incurs additional multiplicative complexity. The

Cooley-Tukey algorithm can be used for arbitrary non-prime length n, including

the prime powers to which case the prime-factor algorithm cannot be applied. The

Cooley-Tukey algorithm is very suitable if n has a lot of small factors: for example,

a 2m-point DFT by the Cooley-Tukey algorithm requires O(m · 2m) multiplications.

7.3 Long Cyclotomic Fourier Transforms

7.3.1 2047-point CFFT over GF(211)

The 11-point cyclic convolution proposed in Appendix A is the key to CFFTs over

GF(211). A direct implementation of a 2047-point CFFT with this cyclic convolution

algorithm requires 7812 multiplications and 2130248 additions. The prohibitively

high additive complexity is dominated by the multiplication between the 2047×2047
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binary matrix A (see Sec. 6.3.1) and a 2047-dimensional vector, which requires

2095280 additions. Unfortunately, if we use the CSE algorithm in [22] to reduce its

additive complexity, the time complexity of the CSE algorithm itself is too high. It

may need months to finish.

Due to the high time complexity of the CSE algorithm in [22], we have tried a

simplified CSE algorithm with limited success. In the original CSE algorithm in [22],

only one of the patterns with the greatest recursive savings is selected and removed

in each round of iterations. Instead of selecting only one pattern, our simplified

CSE algorithm has a reduced time complexity as it removes multiple patterns at

one time. The simplified CSE algorithm with a reduced time complexity allows us

to reduce the additive complexity for the 2047-point CFFT to 529720 additions,

about one fourth of that for the direct implementation. Despite this improvement,

the effectiveness of this simplified CSE algorithm is rather limited.

7.3.2 Difficulty with Long CFFTs

Consider an n-point CFFT over GF(2m). Let C0, C1, · · · , Ck−1 be the k cyclo-

tomic cosets modulo n over GF(2), and |Ci| = mi. Suppose an mi-point cyclic

convolution can be done with M(mi) multiplications, and hence directly imple-

menting the n-point DFT with CFFT requires
∑k−1

i=0 M(mi) multiplications and

C(AQ) + C(P) additions, where C(·) denotes the number of additions we need to

evaluate the product of a binary matrix and a vector. The multiplicative complex-

ity can be further reduced because we can pre-compute the vector c in (6.12) and

some of its elements may be unitary. Then the CSE algorithm can be applied to

the matrices AQ and P to reduce C(AQ) and C(P) to CCSE(AQ) and CCSE(P),
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respectively. Since P = diag(P0,P1, · · · ,Pk−1) is a block diagonal matrix, we have

CCSE(P) =
∑k−1

i=0 CCSE(Pi). That is, we can reduce the additive complexity of each

Pi to get a better result of C(P). Since the size of Pi is much smaller than that of

P, it allows us to run the CSE algorithm many times to achieve a smaller additive

complexity. However, the matrix AQ is not a block diagonal matrix, and therefore

we have to apply the CSE algorithm directly to AQ. When the size of AQ is large,

the CSE algorithm in [22] requires a lot of time and memory and hence it is im-

practical for extremely long DFTs. As mentioned above, it would take months for

the CSE algorithm in [22] to reduce the additive complexity of 2047-point CFFT

over GF(211), let alone 4095-point CFFTs over GF(212). The prohibitively high

time complexity of the CSE algorithm in [22] and the limited effectiveness of the

simplified CSE algorithm motivate our composite cyclotomic Fourier transforms.

7.4 Composite Cyclotomic Fourier Transforms

7.4.1 Composite Cyclotomic Fourier Transforms

Instead of simplifying the CSE algorithm or designing other low complexity opti-

mization algorithms, we propose composite cyclotomic Fourier transforms (CCFTs)

by first decomposing a long DFT into shorter sub-DFTs, via the prime-factor or the

Cooley-Tukey algorithm, and then implementing the sub-DFTs by CFFTs. Note

that both the decompositions require only that α is a primitive n-th root of 1, hence

they can be extended to finite fields easily. When n is prime, our CCFTs reduce

to CFFTs. When n is composite, we first decompose DFT into shorter sub-DFTs,
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and then combine the sub-DFT results according to (7.1) or (7.2). The shorter sub-

DFTs are implemented by CFFTs to reduce their multiplicative complexities, and

then we use the CSE algorithm in [22] to reduce their additive complexities. Finally,

when n has multiple factors, the factorization can be carried out recursively.

Suppose the length of DFT is composite, i.e., n = n1n2. Either the prime-factor

algorithm or the Cooley-Tukey algorithm can be used to decompose the n-point

DFT into sub-DFTs when n1 and n2 are co-prime. When n1 and n2 are not co-

prime, only the Cooley-Tukey algorithm can be used. It is easy to show that if n1

and n2 are co-prime, the prime-factor and the Cooley-Tukey algorithms lead to the

same additive complexity for CCFTs, but the latter results in a higher multiplicative

complexity due to the twiddle factors. Hence the prime-factor algorithm is better

than the Cooley-Tukey algorithm in this case, and the Cooley-Tukey algorithm is

used only if the prime-factor algorithm cannot be applied.

We denote the multiplicative and additive complexities of an n-point DFT by

Kmult(n) and Kadd(n), respectively, and the algorithm used to implement this DFT

is specified in the subscription of K. Assuming that n =
∏s

i=1 ni and the total

number of non-unitary twiddle factors required by the Cooley-Tukey algorithm de-

compositions is denoted by T , the complexity of this decomposition is given by

Kadd
CCFT(n) =

s∑

i=1

n

ni
Kadd

CFFT(ni), (7.3)

Kmult
CCFT(n) =

s∑

i=1

n

ni
Kmult

CFFT(ni) + T. (7.4)

For n|2m − 1, 4 ≤ m ≤ 12, there is at most one pair of ni’s that are not co-prime

in the decomposition of n, say n1 and n2, without loss of generality. In this case,
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T =
n

n1n2

(n1−1)(n2−1). If all the elements in the decomposition of n are co-prime

to each other, then T = 0.

The decomposition allows our CCFTs to achieve lower complexities for several

reasons. First, this divide-and-conquer strategy is used in many fast Fourier trans-

forms. If we assume CFFTs have quadratic additive complexities with their length

n when directly implemented, the CCFT decomposition reduces the additive com-

plexity from O(n2) to O(n
∑s

i=1 ni). Second, the lengths of the sub-DFTs are much

shorter, which enables us to apply several powerful but complicated techniques to

reduce the complexities of the sub-DFTs. For example, it takes much less time and

memory to apply the CSE algorithm in [22] to the sub-DFTs, and thus we can run

it multiple times to get a better reduction result. Third, when the length of the

DFT admits different factorizations (for example, 26− 1 = 63 = 3× 21 = 9× 7), we

choose the decomposition(s) with the lowest complexity.

7.4.2 Complexity Reduction

We reduce the additive and the overall complexities of our CCFTs in three steps.

First, we reduce the complexities of short cyclic convolutions. Second, we use these

short cyclic convolutions to construct CFFTs of moderate lengths. Third, we use

CFFTs of moderate lengths as sub-DFTs to construct our CCFTs.

Complexity reduction of short cyclic convolutions

Efficient short cyclic convolution algorithms, such as the p-point reformulations we

propose in Sec. 6.3.2, are the keys to the multiplicative complexity reduction of
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CFFTs and our CCFTs. Suppose an L-point cyclic convolution b(L)⊗a(L) is calcu-

lated with the bilinear form Q(L)(R(L)b(L) ·P(L)a(L)). Since b(L) is the normal basis

in our CCFTs, R(L)b(L) can be precomputed to reduce the multiplicative complex-

ity. We apply the CSE algorithm in [22] to reduce the additive complexities in the

multiplication with binary matrices Q(L) and P(L). The complexity reduction results

CCSE(Q(L)), CCSE(P(L)), the total additive complexity CCSE(Q(L)) + CCSE(P(L)), and

the multiplicative complexities are listed in Table 7.1. Note that the complexity of

the 11-point cyclic convolution is derived from the algorithm in Appendix A.

Table 7.1: Complexities of short cyclic convolutions over GF(2m).

L mult.
additive complexities

CCSE(Q(L)) CCSE(P(L)) total
2 1 2 1 3
3 3 5 4 9
4 5 9 4 13
5 9 16 10 26
6 10 21 11 32
7 12 24 23 47
8 19 35 16 51
9 18 40 31 71
10 28 52 31 83
11 42 76 44 120
12 32 53 34 87

Additive complexity reduction of CFFTs with moderate lengths

Blocks of CFFTs with moderate lengths are used to build our CCFTs. Their moder-

ate lengths allow us to use multiple techniques to reduce their additive complexities.

• First, for any CFFT, we run the CSE algorithm in [22] multiple times and

then choose the best results.
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• Second, for each CFFT in (6.12), we may reduce C(AQ) together as a whole,

or reduce C(A) and C(Q) separately. Since (AQ)v = A(Qv), Copt(AQ) ≤

Copt(A)+Copt(Q). However, this property may not hold for the CSE algorithm

because it may not find the optimal solutions. Furthermore, we may benefit

from reducing C(A) and C(Q) separately for the following reasons. First, Q

has a block diagonal structure, which is similar as P, and we can find a better

reduction result for C(Q). Second, AQ has much more columns than A, and

hence the CSE algorithm requires less memory and time to reduce A than to

reduce AQ.

• Third, there is flexibility in terms of normal bases used to construct the ma-

trix A in (6.12), and this flexibility can be used to further reduce the additive

complexity of any CFFT. For each cyclotomic coset, a normal basis is needed.

A normal basis is not unique in finite fields, and any normal basis can be used

in the construction of the matrix A, leading to the same multiplicative com-

plexity. But different normal bases result in different As and hence different

additive complexities due to A. There are several options regarding the nor-

mal basis. One can simply choose a fixed normal basis for all cyclotomic cosets

of the same size as in [22]. A more ideal option is to enumerate all possible

normal bases and their corresponding As and to select the smallest additive

complexity. However, when the underlying field is large, the number of possi-

ble normal bases is very large, and hence it becomes infeasible to enumerate

all possible constructions. Thus, we use a compromise of these two options:

for each cyclotomic coset we choose a normal basis at random and the combi-

nation of random normal bases leads to A; we minimize the complexity over
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as many combinations as complexity permits. We refer to this as a random

normal basis option.

We emphasize that all three techniques require multiple runs of the CSE algorithm.

Since the time and memory requirements of the CSE algorithm grow with the length

of DFT, the moderate length of the sub-DFTs is the key enabler of these techniques.

Though the CSE algorithm may be costly for moderate length CFFTs, it is a one-

time task.

For any n ≤ 320 so that n|2m − 1 (4 ≤ m ≤ 12), the multiplicative and additive

complexities of the n-point CFFT are shown in Table 7.2. Table 7.2 shows four

different schemes to reduce the additive complexity for CFFTs. Schemes A and B

both use the fixed normal basis option in the construction of the matrix A, while

schemes C and D are based on the random normal basis option. Schemes A and

C reduce C(A) and C(Q) separately, while schemes B and D reduce C(AQ) as a

whole. For smaller CFFTs, we typically minimize the complexity over hundreds of

combinations of normal bases, and fewer combinations for longer CFFTs. In Table

7.2, the smallest additive complexities are in a boldface font. We observe that the

random normal basis option offers further additive complexity reduction in most

of the cases. However, since the fixed normal basis is not necessarily one of the

combinations, in some cases the fixed normal basis option outperforms the random

normal basis option. Also, sometimes applying the CSE to AQ together as a whole

leads to lower complexity, and in some cases it is better to apply the CSE to A and

Q separately.

163



7.4. COMPOSITE CYCLOTOMIC FOURIER TRANSFORMS

Table 7.2: The complexities of the CFFTs whose lengths are less than 320 and are
factors of 2m − 1 for 1 ≤ m ≤ 12.

n l mult.
additive complexities

A B C D

3 2 1 6 6 6 6
5 4 5 20 16 20 16
7 3 6 31 24 31 24
9 6 11 51 48 51 48
11 10 28 109 102 102 84
13 12 32 125 100 110 91
15 4 16 87 74 87 74
17 8 38 153 163 151 153
21 6 27 167 179 147 153
23 11 84 335 407 323 357
31 5 54 354 299 335 350
33 10 85 413 440 404 434
35 12 75 406 303 358 299
39 12 97 502 425 472 391
45 12 90 481 415 498 414
51 8 115 641 755 676 739
63 6 97 798 759 806 1031
65 12 165 1092 901 1114 915
73 9 144 1498 1567 1447 1526
85 8 195 1601 1816 1589 1810
89 11 336 2085 4326 2247 3973
91 12 230 1668 1431 1596 1421
93 10 223 1772 1939 1736 1788
105 12 234 1762 1481 1776 1333
117 12 299 2304 2028 2366 1947
195 12 496 4900 4230 4942 4166
273 12 699 8064 7217 8082 7223
315 12 752 8965 8032 9899 8099

Construction of CCFTs using moderate-length CFFTs as sub-DFTs

We use the CFFTs with moderate lengths in Table 7.2 as sub-DFTs to construct

our CCFTs. With (7.3) and (7.4), the computational complexities of our CCFTs

over GF(2m) (4 ≤ m ≤ 12) with non-prime lengths can be calculated. The results
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are summarized in Table 7.3, where the factorizations in parentheses are not co-

prime and the Cooley-Tukey algorithm is used in these cases. We have tried all

the decompositions with lengths smaller than 320, and the decompositions with the

smallest overall complexities are listed in Table 7.3. Note that for each sub-DFT,

the scheme with the smallest additive complexity listed in Table 7.2 is used in the

CCFT implementation to reduce the total additive complexity. We also note that

all DFT lengths in Table 7.3 are composite. The prime lengths are omitted because

in these cases, a CCFT reduces to a CFFT, which can be found in Table 7.2.

Since some lengths of the DFTs have different decompositions, it is possible that

one decomposition has a smaller additive complexity but a larger multiplicative

complexity than another one. Therefore, we need a metric to compare the overall

complexities between different decompositions. We follow [22] and assume that the

complexity of a multiplication over GF(2m) is 2m−1 times of that of an addition over

the same field, and the total complexity of a DFT is a weighted sum of the additive

and multiplicative complexities, i.e., total = (2m−1)×mult+add. This assumption

is based on both the software and hardware implementation considerations [22].

Table 7.3 lists the decompositions with the smallest overall complexities.

Table 7.3 provide complexities of all n-point DFTs over GF(2m) when n|2m − 1

and 4 ≤ m ≤ 12. Note that the decomposition corresponding to 1× n is merely the

n-point CFFT over GF(2m). We have used the simplified CSE algorithm described

in Sec. 7.3.1 to reduce the complexity of the 2047-point CFFTs over GF(211), and

applied the CSE algorithm in [22] to the other CFFTs. Thus, we have expanded the

results of [22], where only the (2m − 1)-point CFFTs over GF(2m) were given. We

also observe that for some short lengths (see, for example, n = 15, 33, or 65), the

165



7.4. COMPOSITE CYCLOTOMIC FOURIER TRANSFORMS

Table 7.3: The smallest complexity of our n-point CCFTs over GF(2m) for composite
n and n|2m − 1 for 4 ≤ m ≤ 12 (we assume the sub-DFTs are shorter than 320).

l n Decomposition mult. add. total

4 15 1× 15 16 74 186

6
9 (3× 3) 10 36 146
21 3× 7 25 114 389
63 (3× 3)× 7 124 468 1832

8
51 1× 51 115 641 2366
85 1× 85 195 1590 4515
255 3× 85 670 5277 15327

9 511 7× 73 1446 11881 36463

10

33 1× 33 85 404 2019
93 3× 31 193 1083 4750
341 1× 341 922 15184 32702
1023 33× 31 4417 22391 106314

11 2047 23× 89 15204 76702 395986

12

35 5× 7 65 232 1727
39 1× 39 97 391 2622
45 (3× 15) 91 312 2405
65 1× 65 165 902 4697
91 1× 93 230 1421 6711
105 7× 15 202 878 5524
117 1× 117 299 1947 8824
195 3× 65 560 3093 15973
273 3× 91 781 4809 22772
315 5× 63 800 4803 23203
455 7× 65 1545 7867 43402
585 5× 117 2080 11607 59447
819 7× 117 2795 16437 80722
1365 7× 195 4642 33842 140608
4095 65× 63 16700 106098 490198

n-point CFFTs lead to the lowest complexity for the n-point CCFTs. For the DFTs

longer than 320, i.e., 511-point CFFTs over GF(29), 341-point CFFTs over GF(210),

and 455-, 585-, 819- and 1365-point CFFTs over GF(212), the time complexity of the

CSE algorithm in [22] is still considerable, and we cannot minimize their complexities

using schemes A, B, C, and D, and hence they are not listed in Table 7.2.
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7.4. COMPOSITE CYCLOTOMIC FOURIER TRANSFORMS

Though the twiddle factors in the Cooley-Tukey decomposition incur extra mul-

tiplicative complexity, Table 7.3 show that the Cooley-Tukey decomposition reduces

the total complexity of our CCFTs in some cases (the decompositions in parenthe-

ses). For example, a 9-point CFFT requires 11 multiplications and 48 additions, and

a 3×3 CCFT based on the Cooley-Tukey decomposition requires 10 multiplications

and 36 additions. Despite the twiddle factors, the CCFT based on the Cooley-Tukey

decomposition have lower multiplicative and additive complexities, because we can

take advantage of the low complexity of the 3-point DFT.

7.4.3 Complexity Comparison and Analysis

We compare the complexities of our CCFTs with those of previously proposed FFTs

in the literature in Table 7.4. For each length, the lowest total complexity is in

boldface font. In Table 7.4, our CCFTs achieve the lowest complexities for n ≥ 255.

Although the algorithm in [71] is proved asymptotically fast, the complexities of our

CCFTs are only a fraction of those in [71], and the advantage grows as the length

increases. Although the FFTs in [89] are also based on the prime-factor algorithm,

our CCFTs achieve lower complexities for two reasons. First, since our CCFTs use

CFFTs as the sub-DFTs, the multiplicative complexities of our CCFTs are greatly

reduced compared with the FFTs in [89]. For example, the multiplicative complexity

of our 511-point CCFT is only one fourth of the prime-factor algorithm in [89].

Furthermore, using the powerful CSE algorithm in [22], the additive complexities

of our CCFTs are also greatly reduced. Compared with the CFFTs, our CCFTs

have somewhat higher multiplicative complexities, but this is more than made up

by their reduced additive complexities. The additive complexities of our CCFTs
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are only a small fraction of those of CFFTs when directly implemented. Compared

with the CFFTs with reduced additive complexities in [22], our CCFTs still have

much smaller additive complexities due to their decomposition structure for n ≥ 63.

For example, the additive complexities of our CCFT is only about half of that of

the CFFT for n = 511, and one third for n = 1023. Due to the significant reduction

of the additive complexities, the total complexities of our CCFTs with n ≥ 255

are lower than those of CFFTs. In comparison to CFFTs, the improvement by our

CCFTs also grows as the length increases. For the prime-length DFTs, such as the

31-point DFT over GF(25), 127-point DFT over GF(27), and 8191-point DFT over

GF(213), our CCFTs reduce to the CFFTs, and they have the same complexities.

In the end, we remark that our CCFT is built from shorter DFTs, and short

DFTs can be used as modules in the hardware design. We may either pipeline them

to achieve a high speed, or reuse them to save the chip area. This modular structure

is favorable to hardware implementations.

7.5 Summary

We propose a novel composite cyclotomic Fourier transform algorithm that leads

to lower complexities through decomposing long DFTs into shorter ones using the

prime-factor or Cooley-Tukey algorithm. Our CCFTs over GF(2m) (8 ≤ m ≤ 12)

have lower complexities than previously known FFTs over finite fields. They also

have a modular structure, which is desirable in hardware implementations.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we investigate efficient signal processing algorithms in several

areas. These algorithms are divided into three categories, CACs for on-chip global

buses in deep sub-micron technology, MIMO detection, and efficient DFTs over finite

fields. We design efficient algorithms that are favorable in hardware implementations

because of their low computational complexity and modular structure. We provide

simulation and hardware implementation results to demonstrate the advantages of

our algorithms. We also provide theoretical complexity analysis for most of these

algorithms. Our work was published in the following conference and journal papers

[85, 93–101]. We briefly summarize our main contributions in this dissertation as

follows.

In Chapter 2, we generalize the CODEC designed in [5] and [6] and propose a

generic CAC CODEC framework based on binary mix-radix numeral system. Based
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on this framework, we devise efficient CODECs for OLCs, FPCs, and FOCs by

choosing appropriate numeral systems and constants. Our CODECs have areas and

delays increasing quadratically with the bus width in theory, which is also shown by

the hardware implementation results. Our efficient CODECs can also be integrated

with the partial coding technology, making CACs a viable option in combating

crosstalk delay.

In Chapter 3, we propose the TDCAC technology, whose encoding and decoding

are not only done in the spatial domain, but also in the temporal domain. We

investigate the TDCACs with and without memory, respectively, which reduces

the crosstalk delay in the worst case to (1 + 2λ)τ0. We also derive the codebook

sizes of the TDCACs with memory when n ≤ 15, and propose a conjecture for the

cases when n > 15. The simulation results show that both the TDCACs with and

without memory have higher code rates than the FTCs and FPCs. The CODEC of

the TDCACs can be simple and efficient if designed properly, which is shown by an

example, a 3× 3 TDCAC with a code rate of 7
9
.

In Chapter 4, we apply some novel ordering schemes to the K-Best detector,

and show that the detection error rate of the K-Best detector is improved by the

BSQRD ordering scheme as well as the V-BLAST versions of the BSQRD and SB-

SQRD ordering schemes. As the reliability of the K-Best detector is improved, these

ordering schemes lead to smaller detection error rates, reduce the SNR required, or

allow even a smaller value for K to reduce the hardware complexity. Our hardware

implementations show that our BSQRD and SBSQRD algorithms incur roughly

10% overhead in comparison with the hardware implementation of the sorted QRD

algorithm, and they can achieve high throughput with our pipelined architecture at
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the expense of greater gate counts.

In Chapter 5, we propose a list-based soft-decision MIMO detection algorithm to

find a list of ML candidates based on the MCTS strategy [45]. Our simulation results

show that our LMCTS algorithm achieves a flexible balance between the memory

requirement and the computational complexity, which can be tuned by changing

its available memory size. Our hardware implementation of the LMCTS algorithm

shows its feasibility. Although our implementation has a low throughput due to its

sequential architecture, it has a potentiality to achieve a high throughput with the

flexible balance between memory requirement and computational complexity .

In Chapter 6, we first propose an efficient algorithm for TMVPs that is instru-

mental in CFFTs, and then propose an efficient cyclic convolution algorithm over

arbitrary finite fields. Our cyclic convolution algorithm is the key to reducing the

multiplicative complexities of the CFFTs, and hence it enables us to generalize the

CFFTs from characteristic-2 fields to arbitrary finite fields. Then we analyze the

additive and multiplicative complexities of the CFFTs over arbitrary finite fields in

theory. Our results confirm that the CFFTs have the smallest multiplicative com-

plexities of all known algorithms, but they are asymptotically suboptimal because of

their relatively high additive complexities. Nonetheless, they are of great value be-

cause for DFTs of practical lengths, they still have the smallest total computational

complexity in most cases.

In Chapter 7, we propose a novel composite cyclotomic Fourier transform algo-

rithm leading to lower overall computational complexities. This algorithm integrates

the ideas of the prime-factor algorithm and the Cooley-Tukey algorithm as well as

the idea of CFFTs. With efficient cyclic convolution algorithms, our CFFTs over
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GF(2l) (8 ≤ l ≤ 12) have lower complexities than previously known FFTs over

finite fields. The modular structure of our CCFTs is also favorable in hardware

implementations.

8.2 Future Work

For future work, the following point may be worthy to be looked into:

• The CAC CODECs we design in Chapter 2 and the TDCACs we propose

in Chapter 3 are all based on the delay model (2.1) in [26]. However, this

model has several drawbacks. First of all, its accuracy is limited, which can

be seen from simulations. Secondly, it assumes that only the transitions on

the two adjacent wires affect the transition delay on the middle wire, which

is no longer valid in the modern deep sub-micron technology. Moreover, it

does not consider the crosstalk caused by mutual inductance between wires,

which could be a significant problem as feature shrinks. Therefore, we can

derive more accurate delay models by considering more adjacent wires and

mutual inductance. We already have some preliminary results in [102]. In this

paper, we derive a delay model by considering the capacitive crosstalk from

four adjacent wires, and then classify the 5-bit transition patterns. Based

on this novel transition pattern classification, we can design new families of

CACs, and their CODECs should be designed accordingly.

• The CAC CODECs we design in Chapter 2 are based on mixed binary numeral

systems. We find those numeral systems used in different families of CAC

CODECs in an ad hoc way. We are not sure if we can find other numeral
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systems to encode and decode the novel CAC families in [102], and it is also of

great interest to find the necessary and sufficient condition for the existence of

such numeral systems. Furthermore, as the CACs are all non-linear codes [31],

this approach may also lead to efficient CODEC for other non-linear codes,

e.g., the modulation codes in [103].

• The TDCACs we design in Chapter 3 only reduce the transition delay to

(1+2λ)τ0, and other transition delay reduction targets need to be looked into.

As we analyze in Chapter 3, the codebook size of TDCACs with memory is

limited by the vectors with the smallest number of code matrices these vectors

could transition to. If we could remove such vectors, we may derive a larger

codebook, and this technology is called pruning. The pruning technology can

effectively increase the codebook size of the one dimensional CAC [28], but its

effects to the TDCACs are unknown, which should also be examined in future

work. Furthermore, although we can show that the CODECs of TDCACs

can be efficiently implemented by a small example, the efficient CODECs of

TDCACs are unknown in general. This is another point that is worthy to be

investigated.

• The hardware implementation of the LMCTS algorithm we design in Chapter 5

has a much lower throughput than the other list detection implementations

in literature, although we are using a more advanced 45 nm process. This is

mainly because our implementation has a sequential architecture and makes

no trade-off between the detection error rate performance and the throughput.

A more practical LMCTS detector for MIMO communication systems should
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be implemented to demonstrate the advantages of the LMCTS algorithm.

• Although the additive complexities of CFFTs can be effectively reduced by the

CSE algorithm in [22], the reduction results always have an irregular structure

and therefore incur some difficulty in hardware implementation, especially for

very long CFFTs. The analysis of the additive complexities of the CFFTs in

Chapter 6 actually suggests a novel method to reduce the additive complexity

of the CFFTs. Due to its modular structure, this approach may lead to an

efficient implementation of the additive networks in the CFFTs. However,

hardware implementation is needed to demonstrate this advantage.

• The CCFTs we propose in Chapter 7 have the smallest computational com-

plexities for DFTs over GF(2m) with 8 ≤ m ≤ 12. Their modular structures

are also favorable in the hardware implementation. We should also demon-

strate this advantage by hardware implementation. Furthermore, as DFTs are

important in the communication systems, we can apply our CCFT to these

systems, e.g., a syndrome based decoder for RS code over GF(212).
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Appendix A

11-point Cyclic Convolution

algorithms over GF(2m)

The cyclic convolution of two 11-dimensional vectors x and y can be computed

as Q(11)(P(11)x ·R(11)y), where · denotes an entry-wise multiplication between two

vectors, and the matrices Q(11), P(11), and R(11) are give by

Q(11) =




1000000000000001111100000000011111000000000

1000010000101110000100001011100000000000000

1000100010010110001000100101100000000000000

1001000101011000010001010110000000000000000

1010001001100010100010011000100000000000000

1100001110000011000011100000100000000000000

1000010000101110000000000000000001000010111

1000100010010110000000000000000010001001011

1001000101011000000000000000000100010101100

1010001001100010000000000000001000100110001

1100001110000010000000000000010000111000001




,
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(P(11))T =




1100000101101011111100001100001111000011000

1000001111111101111110101001111111101010011

1000010110011011111000110000011111001100000

1000110001011011110101000000011111010000010

1001111101011011101110000001011111100000100

1011110101011011011100000010011111000011000

1111110101011010111100001100011111101010011

1111110101011011111110101001111110001100000

1111100101011011111100110000011101010000000

1111000101011111111101000001011011100000010

1110000101010011111110000010010111000000100




,

and

(R(11))T =




1100001110000010000000000000010000111000001

1010001001100010000000000000001000100110001

1001000101011000000000000000000100010101100

1000100010010110000000000000000010001001011

1000010000101110000000000000000001000010111

1100001110000011000011100000100000000000000

1010001001100010100010011000100000000000000

1001000101011000010001010110000000000000000

1000100010010110001000100101100000000000000

1000010000101110000100001011100000000000000

1000000000000001111100000000011111000000000




.
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