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Abstract

With rapid advances in computational algorithms and silicon technology, there

has been a dramatic rise in research endeavors in all areas of wireless com-

munications - physical layer, medium access methods, networks and systems.

Information theory provides governing laws for communications systems by es-

tablishing fundamental limitations to reliable communications, and aids in lever-

aging this understanding into engineering solutions for wireless networks. Re-

cently, with increasing emphasis on efficient utilization of radio-frequency spec-

trum and growing interest in providing wireless services with higher data rates,

cooperative-communications has been proposed as a key enabling technology for

next generation wireless networks. Although user-cooperation has proven ben-

efits, the broadcast nature of the wireless medium exposes problems related to

information security, by facilitating malicious or unauthorized access to confiden-

tial data, denial of service attacks, corruption of sensitive data, etc. In this work,

we analyze the impact of cooperation and information security on the fundamen-

tal performance limits of four multiuser networks: (i) interference networks; (ii)

relay networks; (iii) broadcast networks; and (iv) Z-networks.

First, we consider a three-user interference channel to obtain novel insights

into the role of cooperation and interference management on its performance

limits. We consider three cooperation schemes - (i) cumulative message-sharing;

(ii) primary-only message-sharing; and (iii) cognitive-only message-sharing, and

employ different rate-splitting policies for interference management. As a case

study, we consider the Gaussian channels, present several corollaries to enlarge

the rate regions and derive outer bounds to obtain more insights.

Next, we explore the performance limits of the joint problem of cooperation and

information security over a four node discrete memoryless relay network compris-

ing a sender-destination pair, a relay node and an unauthorized eavesdropper.

We consider two communication scenarios: In the first scenario, the relay aids

1



transmissions from the source to the destination. In the second scenario, the

relay is considered to be malicious, constraining the source to keep its message

confidential from the relay node. In both scenarios, the relay is (i) opportunistic

in the sense that, it utilizes the communication opportunity to transmit its own

message to the destination and (ii) constrained to secure its communication from

the external eavesdropper.

Then, we derive the fundamental limits of three classes of two-user state-

dependent discrete memoryless broadcast channels, with noncausal

side-information at the encoder. The first class of channels comprises a sender

broadcasting two independent messages to two non-cooperating receivers; for

channels of the second class, each receiver is given the message it need not de-

code; and the third class comprises channels where the sender is constrained to

keep each message confidential from the unintended receiver.

Lastly, we derive inner and outer bounds on the capacity region of the cogni-

tive Z-channel, comprising two sender-receiver pairs with no cross-talk channel

gain between one of the sender-receiver pairs. The non-cognitive sender has two

messages, each message transmitted to the intended destination. The cognitive

transmitter has one message intended to its pairing receiver; in addition, it has

noncausal knowledge of the messages and the corresponding codewords of the

non-cognitive sender.

2



Chapter 1

Introduction

Existing spectrum allocation policies have led to imbalanced use of the radio fre-

quency (RF) spectrum. For example, there is increased congestion in certain fre-

quency bands in or near densely populated urban centers, while there exist large

amounts of unused bands in rural areas. To deal with such examples of ineffi-

cient spectrum usage, several techniques have been proposed, including in-band

sharing, the use of low power radios, multi-modal and ultra-wideband radios, lo-

gistical changes to licensing policies for spectrum leasing and trading, and the

clever use of unlicensed spectrum. In the U.S., the Federal Communications

Commissions (FCC) Spectrum Policy Task Force has been actively involved in op-

timizing the use of RF spectrum, avoiding and minimizing interference, and in

creating a framework for the design of short and long range frequency allocations

to ensure greater spectrum efficiency and flexibility.

One popular mechanism to improve the efficiency of the RF spectrum is coor-

dination or cooperation among users, which has gained momentum since the ad-

vent of cognitive radio (CR) technology [1], [2]. From an engineering point of view,

CR technology broadly falls into the category of user-cooperation diversity [3] - [5],

where certain communicating nodes exchange information in a particular man-

ner so as to improve the spectral efficiency of the overall communications system.

In the CR context, cognitive terminals rely on the broadcast nature of wireless

medium to cooperatively accommodate transmissions from non-cognitive or pri-

3



mary users. Although the broadcast medium, when accessed by such cognitive,

cooperative terminals, enables improved spectral efficiency, it also exposes prob-

lems related to information security. That is, the broadcast nature of wireless

networks facilitates malicious or unauthorized access to confidential data, denial

of service attacks, corruption of sensitive data, etc.

Motivated by the growing demand for improving spectrum efficiency and pro-

viding information security in wireless networks, we consider in this work an

information-theoretic viewpoint of these two issues in three basic wireless chan-

nels, which form building blocks for higher order wireless networks. Specifically,

we derive inner and outer bounds on the capacity region of (i) interference chan-

nels; (ii) relay channels; and (iii) broadcast channels, under user-cooperation

and information-security constraints. We note that, in the information theory

literature, the terms cooperation and cognition have been used interchangeably,

while confidentiality is also referred to as information-theoretic/wireless physical-

layer security [6].

1.1 Interference channels with transmitter cooperation

In this work, we consider the case of three-user CR interference channels, where

two (or one) CRs and one (or two) primary user(s) communicate with three re-

spective receivers. The transmitters are allowed to cooperate in a unidirectional

manner via noncausal message sharing mechanism. The following points sum-

marize the theme of this work:

1. Message-sharing mechanism: The first interesting observation we make is

that there are multiple ways in which the two-user CR channel can be ex-

tended to the three user CR channel, depending on the message sharing

mechanism employed. We consider three intuitive schemes, namely (i) cu-

mulative message sharing (CuMS); (ii) primary-only message sharing (PrMS);

and (iii) cognitive-only message sharing (CoMS).
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2. Interference management: Growing network-size presents issues related to

interference management. To deal with interference in this three-user chan-

nel, we use rate-splitting, which was first reported in [7] to enlarge the

achievable rate region for the classical two-user interference channel. The

main idea behind rate-splitting is to encode part of the message at a possibly

low rate, so that an unintended receiver can decode the interference caused

to it by performing joint decoding of part of the interference and its own

data. To highlight the benefits and drawbacks of rate-splitting, we define

five cognitive channel models, two each for CuMS and PrMS, and one for

CoMS, which correspond to different rate-splitting strategies. The different

types of message-sharing mechanisms and rate-splitting strategies will be

made precise in the next section.

3. Achievable rate regions: We derive an achievable rate region for each of the

five models by considering first the discrete memoryless version of the chan-

nel. To this end, we employ the technique of combining Gel’fand-Pinsker’s

(GP) binning principle [8] and superposition coding [9]. As a result, we illus-

trate the generality of the techniques employed here, and provide useful and

novel insights into the rate regions and their characterization.

4. Gaussian channel case: We specialize the achievable rate regions to the im-

portant special case of Gaussian CR channel; this enables comparisons of

the different rate regions both analytically and through simulations. It also

leads to the development of corollaries that help in enlarging the achievable

rate regions in the Gaussian case. Finally, we derive some outer bounds

to measure the optimality of the proposed coding scheme for our channel

models. Inner bounds are derived using dirty-paper coding [10], while re-

sults from the multiple antenna broadcast channels [11] and duality be-

tween multiple access and broadcast channels [12] are exploited to derive

outer bounds.
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The results of this work have appeared in [13] - [16]. Note that, noncausal

message-sharing is a very strong assumption leading to skepticism towards the

practical realization of such networks. However, the results presented here not

only provide useful performance limits, but also throw more light on the possibil-

ities of various cognition schemes and related interference management issues.

1.2 Opportunistic relay channels

In this work, we consider a four node wireless relay network comprising a sender-

destination pair, a relay node and an unauthorized external eavesdropper. We

consider two communication scenarios:

1. In the first scenario, the relay aids transmissions from the source to the

destination.

2. In the second scenario, the relay is considered to be malicious, constraining

the source to keep its message confidential from the relay node.

In both scenarios, the relay is (i) opportunistic in the sense that, it utilizes the

communication opportunity to transmit its own message to the destination and

(ii) constrained to secure its communication from the external eavesdropper. Fur-

thermore, we assume the eavesdropper to be geographically located outside the

transmission range, and hence remains oblivious to the transmissions of the main

sender. This channel model is practically well motivated and provides a basis to

jointly address the issues of cooperation, cognition and information security. Also

note that, in the second scenario, the relay node tries to decode the message of

the main sender (although unsuccessfully); therefore, the model conforms to the

classical relay setting.

We state and prove channel coding theorems, and derive a set of achievable

rates for these two communication scenarios by considering the discrete memo-

ryless model of the channel. Standard techniques - block Markov superposition

coding [17], binning [18], backward decoding [19] and simultaneous decoding [7]
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- are employed to prove the coding theorem. Stochastic encoders [20] are used to

satisfy confidentiality constraints. Outer bounds on the capacity region are de-

rived using auxiliary random variables for single-letter characterization. We also

discuss some of the advantages and drawbacks of our coding strategy in compari-

son to those in the existing literature, which provides interesting insights into the

relative merits of the methods employed in this work for obtaining the capacity

bounds. The results of this work can be found in [21].

1.3 State-dependent broadcast channels

In this work, our main goal is to analyze the impact of side information and con-

fidentiality constraints on the information theoretic performance limits of broad-

cast channels (BC). To this end, we derive capacity bounds on the following three

classes of two-user discrete memoryless BC, with noncausal side-information, for

e.g., fading in the wireless medium, interference caused by neighboring nodes in

the network, etc. at the encoder:

1. Class I: A sender broadcasts two independent messages to two non-cooperating

receivers. An inner bound for this class of channels was derived by Stein-

berg and Shamai in [22], by extending Marton’s achievability scheme [23] to

include noncausal side-information at the encoder. However, in this work,

we extend Marton’s achievability scheme and use results from the second

moment method [24] to derive an inner bound. Our proof is simpler and

generalizes well to derive an inner bound for channels of Class III (described

below). An outer bound is derived employing the procedure used to prove

the converse theorem for GP’s channels with random parameters [8]. The

bounds are shown to be tight for individual rate constraints, but can be

improved upon for the sum-rate. An example for Class I channels is a base

station transmitting to two mobile receivers, in the presence of a priori known

interference from a transmitter located in the vicinity of the base station.
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2. Class II: A sender broadcasts two independent messages to two receivers,

with each receiver having a priori knowledge of the message it need not de-

code. An example of this scenario is full-duplex communications between

two nodes, aided by a relay. The relay node broadcasts the messages to the

terminals, with each terminal knowing its own message. Class II channels

are also addressed in [25], where an inner bound matching our result was

derived; however, there was only an outline for deriving an outer bound. In

this work, an inner bound is derived by extending the method proposed by

Kramer and Shamai in [26], to include transmitter side-information for BC

where each receiver has knowledge of the other’s message; our proof is much

simpler than the one presented in [25]. Furthermore, our outer bounds are

derived using arguments from the proof of converse for GP’s channel which

is within a fixed gap away from the achievable region, where the gap is inde-

pendent of the distribution characterizing this class of channels.

3. Class III: A sender broadcasts two independent messages to two receivers,

such that each message is kept confidential from the unintended receiver.

The achievability theorem is proved by employing the technique used to de-

rive an inner bound for Class I channels, in conjunction with a stochastic

encoder to satisfy confidentiality constraints. The technique to derive outer

bounds hinges on the confidentiality requirements. We also derive a genie-

aided outer bound, where a genie gives a receiver the message it need not de-

code, while the other receiver computes the equivocation treating this mes-

sage as side-information. We also suggest a tighter outer bound for the sum

rate of this class of channels. As an example for this class of channels, we

can extend the example considered for Class I channels, with the additional

constraint of keeping each message ignorant from the unintended receiver.

For all the three classes of channels, Csiszár’s sum identity [27] plays a central

role in establishing the capacity outer bounds. The results in this work demon-

strate that, owing to rate-penalties for dealing with side-information and satisfy-
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ing confidentiality constraints, the rate region for channels of Class III is smaller

than that for Class I, which is further smaller compared to the classical two-user

BC. Note that, the comparisons are presented primarily to illustrate the role of

side information and secrecy constraints on the achievable rates. However, since

each model is characterized by its own probability distribution, these comparisons

should be made with caution. The results of this work can be found in [28], [29].

1.4 Z-channels with cooperation

In this work, we consider the cognitive Z-channel which is a combination of the

classic multiple access channel and the two-user broadcast channel. Essentially,

there are two sender-receiver pairs with the first sender having a message in-

tended to its pairing receiver; the second sender has two messages - one intended

to the receiver of the first transmitter, while the second message is intended to its

pairing receiver. Furthermore, in our model, the encoder of the first transmitter

(cognitive) has noncausal knowledge of the message sets and the corresponding

codewords of the second (non-cognitive). We consider both the discrete memory-

less and the Gaussian versions of this channel model to derive lower and upper

bounds on its capacity region.

For the discrete memoryless version of the channel we employ Marton’s achiev-

ability scheme for the classic two-user broadcast channel [23] at the non-cognitive

encoder. At the cognitive encoder, we introduce a generalization of the technique

used to prove the coding theorem for the Gel’fand-Pinsker channel with noncausal

side-information at the encoder [8]. Outer bounds are derived by employing the

technique used to prove the converse theorem for channels with side-information

in conjunction with Nair-El Gamal’s technique used to obtain the outer bounds

for the classic two-user broadcast channels [30]. For the Gaussian channel case,

the above mentioned techniques are translated to the corresponding Gaussian

model using standard transformations. The resulting achievable regions and

outer bounds are then numerically evaluated and plotted to reveal interesting
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observations.

1.5 Organization of the thesis

The remainder of the thesis is organized as follows:

1. In Chapter 2, we introduce the three-user cognitive interference channel,

and derive inner and outer bounds for three different message-sharing schemes

under various rate-splitting scenarios.

2. In Chapter 3, we consider the opportunistic relay channels and derive capac-

ity bounds for secure and reliable communications over the discrete memo-

ryless model of the channel.

3. In Chapter 4, we present results for three different models of state-dependent

broadcast channels. Here again, we consider the discrete memoryless ver-

sion of the channel.

4. In Chapter 5, we consider the Z-channel with degraded message sets, and

present inner and outer bounds on the capacity region of this channel by

considering both the discrete memoryless and Gaussian channel models.

5. In Chapter 6, we propose two problems dealing with cooperation and physical-

layer security over wireless networks, and relegate this to future work.
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Chapter 2

Interference channels with

transmitter cooperation

In this chapter, achievable rate regions and outer bounds are derived for three-

user interference channels where the transmitters cooperate in a unidirectional

manner via a noncausal message-sharing mechanism. The three-user channel

facilitates different ways of message-sharing between the primary and secondary

(or cognitive) transmitters. Three natural extensions of unidirectional message-

sharing from two users to three users are introduced: (i) Cumulative message

sharing; (ii) primary-only message sharing; and (iii) cognitive-only message shar-

ing. To emphasize the notion of interference management, channels are classified

based on different rate-splitting strategies at the transmitters. The techniques

of superposition coding and Gel’fand-Pinsker’s binning are employed to derive an

achievable rate region for each of the cognitive interference channels. The results

are specialized to the Gaussian channel, which enables a visual comparison of the

achievable rate regions through simulations and help us achieve some additional

rate points under extreme assumptions. We also provide key insights into the role

of rate-splitting at the transmitters as an aid to better interference management

at the receivers.
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2.1 Related work

Besides identifying the underlay, overlay and interweave CR network paradigms

mentioned above, [31] explored some of the fundamental capacity limits and asso-

ciated transmission strategies for CR wireless networks. In [32], [33], an achiev-

able rate region was derived for the two-user discrete memoryless genie-aided CR

channel. An outer bound was proposed for the corresponding Gaussian chan-

nel by allowing bidirectional cooperation between the transmitters in a noncausal

manner, resulting in a multiple antenna (MIMO) broadcast channel whose capac-

ity region is well-known [11]. In [34], terms like dumb and smart antennas were

introduced to refer to primary and cognitive senders, respectively. Inner and outer

bounds were derived for the general discrete memoryless channel, along with ca-

pacity results for some special cases. The capacity region was also derived for the

Gaussian CR channel under a weak interference assumption. In [35], the Gaus-

sian CR channel was presented and capacity results were derived for the low in-

terference regime where the primary receiver uses single-user decoding to achieve

the capacity, while in the high interference regime joint code design at the two

transmitters and multiuser decoding at the primary receiver was shown to be op-

timal to maximize the jointly achievable rates for the primary and cognitive users.

In [36], an achievable rate region was derived for the two-user CR interference

channel, where only the CR transmitter employs rate-splitting. In the high inter-

ference regime, the region presented in [36] subsumes the ones derived in [34]

and [35]. In [37], the capacity regions were established for several two-sender,

two-receiver channels with partial transmitter cooperation: compound multiple

access channels (MAC) with common information; compound MACs with confer-

encing; and interference channels with unidirectional cooperation under strong

interference assumptions. Capacity bounds for two-user interference channels

with cognitive and partially cognitive transmitters were reported in [38] - [43],

while [44] - [47] concerns interference channels with common information.

The most recent results on the cognitive channel include [48] - [50], where a
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new achievable rate region for the two-user CR channel has been derived encom-

passing all the previous ones, with capacity results for a few classes of channels.

The above mentioned references employ a combination of the coding scheme pro-

posed by Han and Kobayashi for the interference channel [7], the binning tech-

nique proposed by Gel’fand and Pinsker (GP) for coding over channels with ran-

dom parameters [8], superposition coding proposed first for the broadcast chan-

nel [9] and dirty-paper coding [10] for Gaussian channels with noncausal inter-

ference at the encoder.

2.2 System model and preliminaries

The three-user discrete memoryless cognitive interference channel is described by

the tuple (X1,X2,X3,P,Y1,Y2,Y3), where the notation is as follows. For k = 1, 2, 3,

1. senders and receivers are denoted by Sk and Rk, respectively;

2. finite sets Xk and Yk denote the channel input and output alphabets, respec-

tively;

3. random variables Xk ∈ Xk and Yk ∈ Yk are the inputs and outputs of the

channel respectively; and

4. P denotes the finite set of conditional probabilities p (y1, y2, y3|x1, x2, x3), when

(x1, x2, x3) ∈ X1 × X2 × X3 are transmitted and (y1, y2, y3) ∈ Y1 × Y2 × Y3 are

obtained by the receivers.

The channels are assumed to be memoryless. As in the classical three-user inter-

ference channel, the messages at the senders are denoted mk ∈Mk = {1, . . . ,Mk};

Mk being a finite set with Mk elements. The messages are assumed to be inde-

pendently generated.

2.2.1 Message-Sharing Mechanisms

We now describe the message-sharing mechanisms considered in this work.
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Figure 2.1: Three-user CR channel with CuMS

1. In the case of cumulative message-sharing (CuMS), sender S2 has noncausal

knowledge of the message m1 and the corresponding codewords of the pri-

mary sender, S1. Sender S3 has noncausal knowledge of the message m1 of

the primary transmitter as well as the message m2 of S2, and their respective

codewords. A schematic of CuMS is shown in Fig. 2.1.

2. In the case of primary-only message-sharing (PrMS), senders S2 and S3 have

noncausal knowledge of the message m1 and the corresponding codewords

of the primary sender, S1. There is no message-sharing mechanism between

S2 and S3 themselves. See Fig. 2.2 for a channel schematic.

3. In the case of cognitive-only message-sharing (CoMS), sender S3 has non-

causal knowledge of messages m1 and m2, and the corresponding codewords

of senders, S1 and S2. There is no message-sharing mechanism between the

S1 and S2. A channel schematic for CoMS is shown in Fig. 2.3.

An
(
M1,M2,M3, n, P

(n)
e

)
code exists for these channels, if there exists the fol-

lowing encoding functions:

f1 : M1 7→ X n1 , f ′1 : M1 7→ X n1 , f ′′1 : M1 7→ X n1

14



S1

S2

S3

R1

R2

R3

X1

X2

X3

Y1

Y2

Y3

m1

(m1,m2)

S1

S2

S3 (m1,m3)

Figure 2.2: Three-user CR channel with PrMS
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Figure 2.3: Three-user CR channel with CoMS
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f2 : M1 ×M2 7→ X n2 , f ′2 : M1 ×M2 7→ X n2 f ′′2 : M2 7→ X n2

f3 : M1 ×M2 ×M3 7→ X n3 , f ′3 : M1 ×M3 7→ X n3 , f ′′3 : M1 ×M2 ×M3 7→ X n3

and the following decoding functions, for k = 1, 2, 3:

gk : Ynk 7→ Mk, g′k : Ynk 7→ Mk, g′′k : Ynk 7→ Mk,

such that the decoding error probability max
{
P

(n)
e,1 , P

(n)
e,2 , P

(n)
e,3

}
is ≤ P

(n)
e . P

(n)
e,k is

the average probability of decoding error computed using:

P
(n)
e,k =

1

M1M2M3

∑
m1,m2,m3

p [m̂k 6= mk| (m1,m2,m3) sent] ; k = 1, 2, 3.

fk (or gk) correspond to the encoders (or decoders) used by channels with CuMS,

f ′k (or g′k) correspond to the encoders (or decoders) used by channels with PrMS

and f ′′k (or g′′k ) correspond to the encoders (or decoders) used by channels with

CoMS.

We define two channels denoted CtCuMS, two channels denoted CtPrMS and one

channel denoted CCoMS; t = 1, 2. A non-negative rate triple (R1, R2, R3) is achievable

for each of the channels, if there exists a sequence of
(

2dnR1e, 2dnR2e, 2dnR3e, n, P
(n)
e

)
codes such that P (n)

e → 0 as n → ∞. The capacity region for the channels is the

closure of the set of all achievable rate triples (R1, R2, R3).

2.2.2 Rate-Splitting Strategies

In [7], it has been shown that the achievable rate region for the classical two-user

interference channel can be enlarged by rate-splitting. Here, each transmitter

splits its message into a public part and private part. The former is decodable

at all receivers, and hence unintended receivers can use it to cancel part of the

interference. The latter is only decodable at the intended receivers. In the three-

user scenario, however, many more rate-splitting strategies exist compared to

the two-user case. For example, sender S1 can perform rate-splitting in one of
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the following four ways: (i) it can encode a part of its message such that both

unintended receivers, R2 and R3, can decode the sub-message; (ii) encode a part

of the message such that R2 can decode it but not R3; (iii) encode a part of

the message such that R3 can decode it but not R2; and finally, (iv) encode in

a manner such that the sub-message is not decodable at either R2 or R3 (i.e.,

decodable only at the R1). In this work, we consider the following rate-splitting

strategies:

1. In C1
CuMS and C1

PrMS, the senders encode part of their respective messages at

a rate such that it can be reliably decoded by all receivers. The other part

of the message is encoded to ensure that it is decodable at the intended or

pairing receiver. The other receivers do not attempt do decode this part of

the message.

2. In C2
CuMS and C2

PrMS, one part of the message is encoded such that the in-

tended receiver can decode it, and the other receivers treat it as noise. The

other part is encoded such that it can be decoded at the intended receiver

and the receiver R1, and the unintended receiver treats it as noise.

3. In CCoMS, sender S3 encodes one part of the message at a rate such that all

receivers can decode it, while the other part is encoded at a rate such that it

can be decoded at its pairing receiver, R3 (and the other receivers treat it as

noise). There is no rate-splitting at S1 and S2.

Note that, regardless of the manner in which rate-splitting is performed, Rt
should always be able to reliably decode the codewords from St, t = 1, 2, 3. We

consider the above described rate-splitting strategies for the following reasons:

1. To better understand the role of rate-splitting as a mechanism for interfer-

ence management at the receivers, especially with growing network-size (for

example, from two-user to three-user CR channels).

2. To demonstrate the increasing difficulty in characterizing theoretical limits

with the number of rate-splits at the encoder. The number of probability-
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of-error terms at a decoder increases exponentially with the number of rate-

splits at the encoder (both pairing and non-pairing encoders). Due to this,

characterizing the rate region becomes cumbersome, leading also to difficul-

ties in quantifying the performance through simulation results.

3. To demonstrate the effect of reduction in network-size on the rate region

characterization. Specifically, we show that the achievable rate regions for

the three-user CR channel reduces to known results in the two-user case,

corresponding to the rate-splitting strategies employed, when the network-

size is scaled down from three-users to two-users.

Sub-message Rate Description
m10 ∈ {1, ..., 2nR10} R10 Rate achieved: S1 → (R1,R2,R3)

m11 ∈ {1, ..., 2nR11} R11 Rate achieved: S1 → R1

m20 ∈ {1, ..., 2nR20} R20 Rate achieved: S2 → (R1,R2,R3)

m21 ∈ {1, ..., 2nR21} R21 Rate achieved: S2 → (R1,R2)

m22 ∈ {1, ..., 2nR22} R22 Rate achieved: S2 → R2

m30 ∈ {1, ..., 2nR30} R30 Rate achieved: S3 → (R1,R2,R3)

m31 ∈ {1, ..., 2nR31} R31 Rate achieved: S3 → (R1,R3)

m33 ∈ {1, ..., 2nR33} R33 Rate achieved: S3 → R3

m1 ∈ {1, ..., 2nR1} R1 Rate achieved: S1 → R1

m2 ∈ {1, ..., 2nR2} R2 Rate achieved: S2 → R2

Table 2.1: Achievable rates and their description. For ex., R11 is the rate achieved
between S1 and R1, while R21 is the rate achieved between S2, and R2, R1, etc.
The last two rows correspond to the channel CCoMS, wherein the senders S1 and
S2 do not employ rate-splitting.

The notation for describing the achievable rates of these sub-messages and their

respective description is tabulated in Table 2.1. The decoding capabilities of re-

ceivers, resulting from rate-splitting at the transmitters, are summarized in Ta-

bles 2.2, 2.3 and 2.4. We also introduce auxiliary random variables defined on fi-

Receiver Decoding capability
R1 m10, m11, m20, m30

R2 m10, m20, m22, m30

R3 m10, m20, m30, m33

Table 2.2: Effect of rate-splitting on the decoding capability of receivers for the
channels C1

CuMS, C1
PrMS. For ex., receiver R2 can decode messages m10, m20, m22,

m30
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Receiver Decoding capability
R1 m11, m21, m31

R2 m21, m22

R3 m31, m33

Table 2.3: Effect of rate-splitting on the decoding capability of receivers for the
channels C2

CuMS, C2
PrMS. For ex., receiver R3 can decode messages m31, m33

Receiver Can decode
R1 m1, m31

R2 m2, m31

R3 m31, m33

Table 2.4: Effect of rate-splitting on the decoding capability of receivers for the
channel CCoMS. For e.g. the receiver denoted R2 can decode messages m2 and m31.
Note that, there is no rate-splitting at the senders S1 and S2.

nite sets and tabulate them in Table 2.5. Depending on the rate-splitting strategy

employed by the senders, only a subset of these sub-messages, their correspond-

ing rates, and the corresponding auxiliary random variables will be used to derive

an achievable rate region for each channel model.

2.2.3 Channel Modification

Rate-splitting necessitates modification of the channels CtCuMS, CtPrMS and CCoMS; t =

1, 2. Here, we explicitly show the modification for one channel (C2
CuMS); the mod-

ification for the other channel models is similar. Referring to the rate-splitting

strategy for the channel C2
CuMS, the messages at the three senders in the modified

channel can be written as:

Variable Description
W0 ∈ W0 Public Information: S1 → (R1,R2,R3)

W1 ∈ W1 Private Information: S1 → R1

U0 ∈ U0 Public Information: S2 → (R1,R2,R3)

U1 ∈ U1 Public information: S2 → (R1,R2)

U2 ∈ U2 Private information: S2 → R2

V0 ∈ V0 Public information: S3 → (R1,R2,R3)

V1 ∈ V1 Public information: S3 → (R1,R3)

V3 ∈ V3 Private information: S3 → R3

Table 2.5: Auxiliary Random variables and their description. For e.g., U1 denotes
public information from S2 decodable at R1 and R2
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Sender 1: m11 ∈M11 = {1, . . . ,M11},

Sender 2: m21 ∈M21 = {1, . . . ,M21}, m22 ∈M22 = {1, . . . ,M22},

Sender 3: m31 ∈M31 = {1, . . . ,M31}, m33 ∈M33 = {1, . . . ,M33},

with all messages being defined on sets with finite number of elements. Note that,

there is no rate-splitting at sender S1, but for consistency in notation we write m1

as m11.

We define an
(
M11,M21,M22,M31,M33, n, P

(n)
e

)
code for the modified channel as

a set of M11 codewords for S1, M11M21M22 codewords for S2, and M11M21M22M31M33

codewords for S3, such that the average probability of decoding error is less than

P
(n)
e . We call a tuple (R11, R21, R22, R31, R33) achievable if there exists a sequence of(
2dnR11e, 2dnR21e, 2dnR22e, 2dnR31e, 2dnR33e, n, P

(n)
e

)
codes such that P (n)

e → 0 as n → ∞.

Here, R11 corresponds to R1. The capacity region for the modified channel is the

closure of the set of all achievable rate tuples (R11, R21, R22, R31, R33). It can be

shown that if the rate tuple (R11, R21, R22, R31, R33) is achievable for the modified

channel, then the rate triple (R11, R21 +R22, R31 +R33) is achievable for the channel

C2
CuMS (see [7, Corollary 2.1]). In a similar fashion, the remaining channel models

can be appropriately modified; the details are omitted to avoid repetition.

2.2.4 Probability Distributions

Here, we present the probability distribution functions which characterize the

channels C1
CuMS, C2

CuMS, C1
PrMS, C2

PrMS and CCoMS. Let PtCuMS denote the set of all

joint probability distributions ptCuMS(.); t = 1, 2 respectively, that factor as follows:

p1
CuMS(q, w0, w1, x1, u0, u2, x2, v0, v3, x3, y1, y2, y3) =

p(q)p(w0, w1, x1|q)p(u0|w0, w1, q)p(u2|w0, w1, q)p(x2|u0, u2, w0, w1, q)p(v0|u0, u2, w0, w1, q)

p(v3|u0, u2, w0, w1, q)p(x3|v0, v3, u0, u2, w0, w1, q)p(y1, y2, y3|x1, x2, x3),(2.1)

p2
CuMS(q, w, x1, u1, u2, x2, v1, v3, x3, y1, y2, y3) =

p(q)p(w, x1|q)p(u1|w, q)p(u2|w, q)p(x2|u1, u2, w, q)p(v1|u1, u2, w, q)p(v3|u1, u2, w, q)
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p(x3|v1, v3, u1, u2, w, q)p(y1, y2, y3|x1, x2, x3).

(2.2)

Let PtPrMS denote the set of all joint probability distributions ptPrMS(.); t = 1, 2

respectively, that factor as follows:

p1
PrMS(q, w0, w1, x1, u0, u2, x2, v0, v3, x3, y1, y2, y3) =

p(q)p(w0, w1, x1|q)p(u0|w0, w1, q)p(u2|w0, w1, q)

p(x2|u0, u2, w0, w1, q)p(v0|w0, w1, q)p(v3|w0, w1, q)p(x3|v0, v3, w0, w1, q)p(y1, y2, y3|x1, x2, x3),

(2.3)

p2
PrMS(q, w, x1, u1, u2, x2, v1, v3, x3, y1, y2, y3) =

p(q)p(w, x1|q)p(u1|w, q)p(u2|w, q)

p(x2|u1, u2, w, q)p(v1|w, q)p(v3|w, q)p(x3|v1, v3, w, q)p(y1, y2, y3|x1, x2, x3).

(2.4)

Let PCoMS denote the set of all joint probability distributions pCoMS(.) respec-

tively, that factor as follows:

pCoMS(q, w1, x1, u2, x2, v0, v3, x3, y1, y2, y3) = p(q)p(w1, x1|q)p(u2, x2|q)p(v0|w1, u2, q)

p(v3|w1, u2, q)p(x3|v0, v3, u2, w1, q)p(y1, y2, y3|x1, x2, x3). (2.5)

The lower case letters (q, w, u2, v3, etc.) are realizations of their corresponding

random variables, and note that for notational simplicity, the same letter (p) is

used to denote all the different probability distributions above. Here, we only

describe an achievable rate region for the channel C2
CuMS, which is defined by a

set of non-negative real numbers (R11, R21, R22, R31, R33) that satisfy the following

information-theoretic inequalities:

R11 ≤ I(W ;U1, V1, Y1|Q), (2.6)
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R11 +R21 ≤ I(W,U1;V1, Y1|Q), (2.7)

R11 +R31 ≤ I(W,V1;U1, Y1|Q) + I(W ;V1|Q)− I(W,U1, U2;V1|Q), (2.8)

R11 +R21 +R31 ≤ I(W,U1, V1;Y1|Q) + I(W,U1;V1|Q)− I(W,U1, U2;V1|Q), (2.9)

R21 ≤ I(U1;U2, Y2|Q)− I(W ;U1|Q),(2.10)

R22 ≤ I(U2;U1, Y2|Q)− I(W ;U2|Q),(2.11)

R21 +R22 ≤ I(U1, U2;Y2|Q) + I(U1;U2|Q)− I(W ;U1|Q)− I(W ;U2|Q),(2.12)

R31 ≤ I(V1;V3, Y3|Q)− I(W,U1, U2;V1|Q),(2.13)

R33 ≤ I(V3;V1, Y3|Q)− I(W,U1, U2;V3|Q),(2.14)

R31 +R33 ≤ I(V1, V3;Y3|Q) + I(V1;V3|Q)− I(W,U1, U2;V3|Q)− I(W,U1, U2;V1|Q).(2.15)

An achievable rate region for the remaining channels considered in this work are

given in [16, Appendices A, B, C].

2.2.5 Achievability Theorem

Theorem 2.2.1. Let CtCuMS(or CtPrMS or CCoMS) denote the capacity region of the

channel CtCuMS or CtPrMS or CCoMS); t = 1, 2. Let

Rt
CuMS =

⋃
ptCuMS(.)∈PtCuMS

RCuMS(ptCuMS);

Rt
PrMS =

⋃
ptPrMS(.)∈PtPrMS

RPrMS(ptPrMS);

RCoMS =
⋃

pCoMS(.)∈PCoMS

RCoMS(pCoMS).

In the above, RCuMS(ptCuMS) denotes a set of achievable rates when the channel is

characterized by the joint probability distribution function ptCuMS, and similar def-

initions apply for the other notations used. The region Rt
CuMS(or Rt

PrMS or RCoMS)

is an achievable rate region for the channel CtCuMS(or CtPrMS or CCoMS), i.e., Rt
CuMS(or

Rt
PrMS or RCoMS) ⊆ CtCuMS (or CtPrMS or CCoMS).

We employ the technique of combining GP’s binning principle [8] and superpo-
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sition coding [9] to prove the coding theorem and derive a set of achievable rates

for each of the channel models. For sake of brevity, we only show the proof of The-

orem 2.2.1 for the channel C2
CuMS (see Appendix A.1). The proof for the remaining

three channels (C1
CuMS, C1

PrMS, C2
PrMS and CCoMS) can be proved along similar lines.

2.3 The Gaussian Case

In this section, we introduce the Gaussian CR channel to (i) evaluate and plot the

rate region for the different channel models considered in this work, (ii) describe

several extensions, in the form of corollaries, to the achievable rate regions de-

scribed above, and (iii) derive outer bounds to help us test the optimality of the

coding techniques that we have employed to derive the achievable rate regions.

2.3.1 The Gaussian CR channel

The achievable rate regions described for the discrete memoryless channels can

be extended to the Gaussian channels by quantizing the channel inputs and

outputs [51]. Let CtG,CuMS denote the cognitive Gaussian channel with cumu-

lative message sharing, CtG,PrMS the cognitive Gaussian channel with primary-

only message sharing and CtG,CoMS the cognitive Gaussian channel with cognitive-

only message sharing (G for Gaussian, CuMS, PrMS and CoMS are the same as

before); t = 1, 2. We show the extension for only one of the channel models - from

C2
CuMS to C2

G,CuMS.

The cognitive Gaussian channel is described by a discrete-time input X̃k, a

corresponding output Ỹk, and a random variable Z̃k denoting noise at the re-

ceiver; k = 1, 2, 3. Following the maximum-entropy theorem [52], the input ran-

dom variable X̃k; k = 1, 2, 3 is assumed to have a Gaussian distribution. The

transmitted codeword x̃k = (x̃k1, . . . , x̃kn) satisfies the average power constraint

given by E{‖x̃k‖2} ≤ P̃k; k = 1, 2, 3, where E{.} is the expectation operator. The

zero-mean random variable Z̃k is drawn i.i.d from a Gaussian distribution with

variance Ñk; k = 1, 2, 3, and is assumed to be independent of the signal X̃k. The
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Gaussian CR channel can be converted to a standard form using invertible trans-

formations [35], [53].

For the channel C2
G,CuMS, we have W , U1, U2, V1 and V3 as the random variables

(RV) which describe the sources at the transmitters. We also some consider ad-

ditional RVs - W̃ , Ũ1, Ũ2, Ṽ1 and Ṽ3 - with the following statistics: W̃ ∼ N (0, P1);

Ũ1 ∼ N (0, τP2), Ũ2 ∼ N (0, τ̄P2), with τ + τ̄ = 1; Ṽ1 ∼ N (0, κP3), Ṽ3 ∼ N (0, κ̄P3), with

κ+ κ̄ = 1. Further, W = W̃ ; U1 = Ũ1 + α1X1, U2 = Ũ2 + α2X1; V1 = Ṽ1 + α3X1 + β1X2,

V3 = Ṽ3 + α4X1 + β2X2, where the input RV’s X1, X2 and X3 are given by X1 = W̃ ,

X2 = Ũ1 + Ũ2 and X3 = Ṽ1 + Ṽ3. Notice that W̃ , Ũ1, Ũ2, Ṽ1 and Ṽ3 are mutually inde-

pendent. Therefore, X1 ∼ N (0, P1), X2 ∼ N (0, P2) and X3 ∼ N (0, P3). The values of

τ and κ are randomly selected from the interval [0, 1]. The values of α1, α2, α3, α4,

β1 and β2 are repeatedly generated according to N (0, 1). The channel outputs are

Y1 = X1 + a12X2 + a13X3 + Z1,

Y2 = a21X1 +X2 + a23X3 + Z2,

Y3 = a31X1 + a32X2 +X3 + Z3,

where Z1 ∼ N (0, Q1), Z2 ∼ N (0, Q2) and Z3 ∼ N (0, Q3) are independent additive

noise, and Q1, Q2 and Q3 are noise variances when the input-output relations are

represented in the standard form. Substituting for X1, X2 and X3, we get,

Y1 = W̃ + a12(Ũ1 + Ũ2) + a13(Ṽ1 + Ṽ3) + Z1,

Y2 = a21W̃ + (Ũ1 + Ũ2) + a23(Ṽ1 + Ṽ3) + Z2,

Y3 = a31W̃ + a32(Ũ1 + Ũ2) + Ṽ1 + Ṽ3 + Z3,

where the interference coefficients a12, a13, a21, a23, a31 and a32 are assumed to

be real and globally known. The rate region R2
CuMS for the channel C2

CuMS can be

extended to its respective Gaussian channel model by evaluating the mutual in-

formation terms. To this end, we construct a covariance matrix given by E{ΘTΘ},

where Θ = (Y1, Y2, Y3, W, U1, U2, V1, V3). The entries of this covariance matrix
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are used to compute the differential entropy terms, which are further used to

evaluate the mutual information.

Theorem 2.3.1. Let Υ = (τ, κ, α1, α2, α3, α4, β1, β2). For a fixed Υ, let G2
CuMS(Υ) be

achievable. The rate region G2
CuMS is achievable for the Gaussian channel C2

G,CuMS

with G2
CuMS =

⋃
Υ G2

CuMS(Υ).

Since the computation procedure is cumbersome and lengthy albeit straight-

forward, we do not provide the proof here. The same procedure is followed to com-

pute the mutual information terms for the remaining channel models - C1
G,CuMS,

CtG,PrMS; t = 1, 2, and CG,CoMS.

2.3.2 Extensions

We state several corollaries in this subsection that help in identifying additional

achievable rate points by treating the cognitive transmitters as relays, depending

on their knowledge of the other user’s message. Also note that we present the

achievable rate points as separate corollaries for clarity of presentation; one could

state them together as one single result as well.

2.3.2.1 CtG,CuMS

Corollary 2.3.1. Let G2
CuMS be the set of all points (R1, R21 +R22, R31 +R33) where

(R1, R21, R22, R31, R33) is an achievable rate tuple of Theorem 2.3.1. Then, the con-

vex hull of the region G2
CuMS with the points (R∗1, 0, 0) and (0, R∗2, R

∗
3) is achievable

for the CtG,CuMS model, where

R∗1 =
1

2
log2

1 +

(√
P 1 + |a12|

√
P 2 + |a13|

√
P 3

)2

Q1

 ,

R∗2 =
1

2
log2

(
1 +

P2

Q2 + |a23|2 P3

)
,

R∗3 =
1

2
log2

(
1 +

P3

Q3

)
.
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The proof of Corollary 2.3.1 can be found in Appendix A.2. The proofs of the

remaining corollaries are omitted as they are similar; the interested reader is

referred to [16] for details.

Corollary 2.3.2. Let G2
CuMS be the set of all points (R1, R21 +R22, R31 +R33), where

(R1, R21, R22, R31, R33) is an achievable rate tuple of Theorem 2.3.1. Then the con-

vex hull of the region G2
CuMS with the points (R∗1, 0, r) and (0, R∗2, r) are achievable

for the CtG,CuMS model, where

R∗1 =
1

2
log2

1 +

(√
P1 + |a12|

√
P2 + |a13|

√
PS13

)2

Q1 + |a13|2 PS33

 ,

R∗2 =
1

2
log2

1 +

(√
P2 + |a23|

√
PS23

)2

Q2 + |a23|2 PS33

 ,

r =
1

2
log2

(
1 +

PS33

Q3

)
,

where PS13 = PS23 = P3 − PS33 , ∀PS33 ∈ [0, P3].

Corollary 2.3.3. The convex hull of the region G2
CuMS with the points (R∗1, r, 0) and

(0, r, R∗3) is achievable for the CtG,CuMS model, where

R∗1 =
1

2
log2

1 +

(√
P1 + |a12|

√
PS12 + |a13|

√
P3

)2

Q1 + |a12|2PS22

 ,

r =
1

2
log2

(
1 +

PS22

Q2 + |a23|2P3

)
,

R∗3 =
1

2
log2

(
1 +

P3

Q3

)
,

where PS22 = (22r − 1)(Q2 + |a23|2P3), PS12 = P2−PS22 and r is the minimum rate that

S2 is guaranteed to achieve.

Corollary 2.3.4. The convex hull of the region G2
CuMS with the points (0, R∗2, 0) and
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(0, 0, R∗3) is achievable for the CtG,CuMS model, where

R∗2 =
1

2
log2

1 +

(√
P 2 + |a23|

√
P3

)2

Q2

 ,

R∗3 =
1

2
log2

(
1 +

P3

Q3

)
.

The following theorem follows directly from standard time-sharing arguments.

Theorem 2.3.2. The convex hull of the region G2
CuMS with the achievable points

in the Corollaries 2.3.1 - 2.3.4 results in an achievable rate region of the CtG,CuMS

channel model.

2.3.2.2 CtG,PrMS

Corollary 2.3.5. Let G2
PrMS be the set of all points (R1, R21 + R22, R31 + R33) such

that (R1, R21, R22, R31, R33) is an achievable rate tuple. Then the convex hull of the

region G2
PrMS with the points (R∗1, 0, 0) and (0, R∗2, R

∗
3) are achievable for the CtG,PrMS

model, where

R∗1 =
1

2
log

1 +

(√
P 1 + |a12|

√
P 2 + |a13|

√
P 3

)2

Q1

 ,

R∗2 =
1

2
log

(
1 +

P2

Q2 + |a23|2 P3

)
,

R∗3 =
1

2
log

(
1 +

P3

Q3 + |a32|2 P2

)
.

Corollary 2.3.6. The convex hull of the region G2
PrMS with the points (R∗1, 0, r) and

(0, R∗2, r) are achievable for the CtG,PrMS model, where

R∗1 =
1

2
log2

1 +

(√
P1 + |a12|

√
P2 + |a13|

√
PS13

)2

Q1 + |a13|2 PS33

 ,

R∗2 =
1

2
log2

(
1 +

P2

Q2 + |a23|2 P3

)
,
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r =
1

2
log2

(
1 +

P cr23

Q3 + |a32|2 P2

)
,

where PS13 = P3 − PS33 , ∀PS33 ∈ [0, P3].

Corollary 2.3.7. The convex hull of the region G2
PrMS with the points (R∗1, r, 0) and

(0, r, R∗3) are achievable for the CtG,PrMS model, where

R∗1 =
1

2
log2

1 +

(√
P1 + |a12|

√
PS12 + |a13|

√
P3

)2

Q1 + |a12|2 PS22

 ,

r =
1

2
log2

(
1 +

PS22

Q2 + |a23|2 P3

)
,

R∗3 =
1

2
log2

(
1 +

P3

Q3 + |a32|2 P2

)
,

where PS12 = P2 − PS22 , ∀PS22 ∈ [0, P2].

The following theorem follows directly from standard time-sharing arguments.

Theorem 2.3.3. The convex hull of the region G2
PrMS with the achievable points

in the Corollaries 2.3.5 - 2.3.7 results in an achievable rate region of the CtG,PrMS

channel model.

2.3.2.3 CG,CoMS

Corollary 2.3.8. Let GCoMS be the set of all points (R1, R2, R31 + R33) such that

(R1, R2, R31, R33) is an achievable rate tuple. Then the convex hull of the region

GCoMS with the points (R∗1, 0, 0), (0, R∗2, 0) and (0, 0, R∗3) are achievable for the CG,CoMS

model, where

R∗1 =
1

2
log2

1 +

(√
P 1 + |a13|

√
P 3

)2

Q1 + |a12|2 P2

 ,

R∗2 =
1

2
log2

1 +

(√
P 2 + |a23|

√
P 3

)2

Q2 + |a21|2 P1

 ,
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R∗3 =
1

2
log2

(
1 +

P3

Q3

)
.

Corollary 2.3.9. The convex hull of the region GCoMS with the points (R∗1, 0, r),

(0, R∗2, r) and (0, 0, r) are achievable for the CG,CoMS model, where

R∗1 =
1

2
log2

1 +

(√
P1 + |a13|

√
PS13

)2

Q1 + |a12|2 P2 + |a13|2 PS33

 ,

R∗2 =
1

2
log2

1 +

(√
P2 + |a13|

√
PS23

)2

Q2 + |a21|2 P1 + |a13|2 PS33

 ,

r =
1

2
log2

(
1 +

PS33

Q3

)
,

where PS13 = PS23 = P3 − PS33 , ∀PS33 ∈ [0, P3].

Again, the following theorem follows directly from standard time-sharing ar-

guments.

Theorem 2.3.4. The convex hull of the region GCoMS with the achievable points in

the Corollaries 2.3.8 and2.3.9 results in an achievable rate region of the CG,CoMS

channel model.

2.3.3 Outer Bounds

For the channel models considered in this work, we derive outer bounds by con-

sidering a scenario where the transmitters cooperate in a bidirectional manner,

i.e., every sender knows the message of every other sender in a noncausal man-

ner. Since bidirectional message sharing is tantamount to having additional in-

formation at the transmitters compared to the CR channels, it cannot hurt the

capacity. Then, the channel models reduce to a multiple antenna broadcast chan-

nel (MIMO-BC) with one sender having three antennas and three receivers with

one antenna each. Hence, the capacity region of the MIMO-BC (see [11]) is an
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outer bound on our achievable rate regions. We resort to duality results of the

broadcast (BC) and the multiple access channels (MAC), reported first in [12] to

calculate the capacity of the MIMO-BC.

Let P be the total power constraint for the MIMO-BC and P1, P2 and P3 be the

individual power constraint for the MAC. On the MAC channel, the rate achieved

by user j is given by

RMAC,j = log2

∣∣∣∣∣∣I +

K∑
i=j

HH
i PiHi

∣∣∣∣∣∣∣∣∣∣∣∣I +
K∑

i=j+1

HH
i PiHi

∣∣∣∣∣∣
, (2.16)

where |A| denotes the determinant of A; and the channel matrices are H1 =

[1 a12 a13], H2 = [a21 1 a23] and H3 = [a31 a32 1]; and I +
K∑

i=j+1

HH
i PiHi is the in-

terference experienced by the jth user. The MIMO-BC capacity region with power

constraint P is equal to the union of capacity regions of the dual MAC, where

the union is taken over all individual power constraint, P1, P2 and P3, such that

P = P1 + P2 + P3. Therefore,

CBC(P,H) =
⋃

P1,P2,P3:
∑3
j=1 Pj=P

CMAC(P1, P2, P3;HT ), (2.17)

where CMAC(P1, P2, P3;HT ) =
⋃

j∈{1,2,3}

RMAC,j, and RMAC,j is given by (2.16). We thus

obtain the capacity region of the MIMO-BC, which forms an outer bound for the

channel models considered in this work. Generally, this outer bound tends to be

loose, since the MIMO-BC capacity region was obtained by allowing bidirectional

(or complete) transmitter cooperation. Nonetheless, these outer bounds provide

useful insights into the strengths and weaknesses of the proposed achievable rate

regions, as will be shown in the simulation results section, Section 2.4. To the

best of our knowledge, this is the first set of outer bounds that have been derived

for the three-user Gaussian CR channel. The rates of individual users can be
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further bounded depending on the specific channel model.

1. In the case of CuMS, senders S2 and S3 have complete knowledge of the S1’s

message and S3 has knowledge of S2’s message but not vice-versa. Note that,

the rate of S1 cannot be bounded by the interference-free case where a12 = 0

and a13 = 0. This is because unidirectional message sharing enables S2 and

S3 to transmit the message of S1, thereby increasing the rate of S1 beyond

what is achievable with the S1 alone transmitting its message. Hence, rate

R1 can upper bounded as follows.

R1 ≤
1

2
log2

(
1 +

(
√
P1 + |a12|

√
P2 + |a13|

√
P3)2

Q1

)
. (2.18)

Similarly, the rate of S2 cannot be bounded by the interference free rate,

as S3 can use its knowledge of S2’s message to enable S2 increase its rate.

Hence, the rate of S2 can upper bounded as

R2 ≤
1

2
log2

(
1 +

(
√
P2 + |a23|

√
P3)2

Q2

)
. (2.19)

Finally, the rate of S3 can be upper bounded by the interference free case.

R3 ≤
1

2
log2

(
1 +

P3

Q3

)
. (2.20)

2. In the case of PrMS, although S2 and S3 have complete knowledge of S1’s

message, they do not have each other’s message. Therefore, the bound on

the S1’s rate given by (2.18) remains valid, as the S2 and S3 can use their

knowledge of S1’s message to increase its rate. The bound on S3’s rate is

same as in the case of CuMS and is given by (2.20). Lastly, the S2’s rate can

be upper bounded by the interference-free case as follows.

R2 ≤
1

2
log2

(
1 +

P2

Q2

)
. (2.21)

3. We upper bound now the sum rate of S2 and S3 by allowing full cooperation
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between their transmitters and pairing receivers. This results in a point-to-

point MIMO channel, whose capacity is expressed as follows.

CMIMO = max
i,
∑
i Pi≤P

1

2

N∑
i=1

log2

(
1 +

Piσ
2
i

Q

)
, (2.22)

where
Piσ

2
i

Q
is the signal-to-noise ratio associated with the ith channel, σis

are the singular values and N represents the number of singular values of

the MIMO channel. The optimum power allocation Pi can be obtained by the

water-filling algorithm [52].

4. In the case of CoMS, sender S3 has noncausal knowledge of S1 and S2. There-

fore, the rates of S1 and S2 cannot be bounded by the interference free sce-

nario. The rate of S1 can be upper bounded as follows:

R1 ≤
1

2
log2

(
1 +

(
√
P1 + |a13|

√
P3)2

Q1

)
. (2.23)

The rates of S2 and S3 can be upper bounded as in (2.19) and (2.20), respec-

tively. To bound the sum rate of S1 and S2 we allow full cooperation between

the transmitters and pairing receivers, resulting in a point-to-point MIMO

channel. The capacity of this channel is given by (2.22).

2.4 Simulation Results and Discussion

We consider a 3-user Gaussian cognitive channel with CuMS, PrMS and CoMS

for the simulations. We generate the source and channel symbols as described in

Section 2.3. The direct channel gains are a11 = a22 = a33 = 1. The interference

coefficients a12 = a13 = a21 = a23 = a31 = a32 = 0.55. The values of τ and κ are

assumed to be randomly selected from the interval [0, 1]. The values of α1, α2, α3,

α4, β1 and β2 are repeatedly generated according to N (0, 1). The noise variances

Q1 = Q2 = Q3 = 1. The transmit powers P1 = P2 = P3 = 7.8dB or 10dB, as specified.
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Figure 2.4: Rate of S1 (R1) versus the rate of S3 (R3) when S2 is guaranteed to
achieve a minimum rate R2 = 0.8 bps/Hz, for C2

CuMS and C2
PrMS along with the rate

region of the corresponding interference channel. The power at the transmitters
is 10dB.

2.4.1 Results and Discussion

1. Comparison of the three-user CR channels: The rate region for the channel

C2
CuMS is obtained following Theorem 2.3.1. Similar procedures are adopted

for C2
PrMS and CCoMS. We also plot the rate region for the three-user inter-

ference channels corresponding to C2
CuMS and C2

PrMS, by considering a simple

extension of the Han-Kobayashi scheme [7] to the three-user case. Table 2.3

summarizes the Han-Kobayashi strategy to the three-user case.

(a) We consider first the achievable rate regions for the channels C2
CuMS,

C2
PrMS and the three-user interference channel. In Fig. 2.4, we plot the

rates of S1 and S3, when S2 achieves a minimum rate of R2 = 0.8 bps/Hz.

We notice that, C2
CuMS has a bigger rate region than C2

PrMS. This follows

directly from the fact that in C2
CuMS, the cognitive transmitter S2 bene-

fits from S3, while in C2
PrMS there is no cooperation between S2 and S3.

Further, the rate regions for the CR channels are bigger than the corre-
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achieve a minimum rate R3 = 1 bps/Hz, for C2

CuMS, C2
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the transmitters is 10dB.

sponding three-user interference channel, a well-established fact in the

classical two-user scenario.

(b) In Fig. 2.5, we plot the rates of S1 and S2, when S3 achieves a mini-

mum rate of R3 = 1 bps/Hz, for the channels C2
CuMS, C2

PrMS and CCoMS.

Like in the previous scenarios ( Fig. 2.4), C2
CuMS has a bigger rate re-

gion than C2
PrMS. We notice that, interestingly, the maximum achievable

R1 for CCoMS is smaller than that of C2
CuMS and C2

PrMS. This is due to

the message-sharing strategy adopted by CCoMS, where only S3 aids the

communication of (S1,R1). We also observe that the maximum achiev-

able R2 is greater than those of C2
CuMS and C2

PrMS, when one would, at

first glance, expect it to be the same as in C2
CuMS, since in both C2

CuMS

and CCoMS, S3 aids the communication of (S2,R2). The reason can be

attributed to the difference in the rate-splitting strategy employed by

these channel models (compare Tables 2.3 and 2.4). In case of C2
CuMS, S2

performs rate-splitting, thereby reducing the effective maximum achiev-
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able R2. But, in case of CCoMS, S2 does not employ rate-splitting. This

suggests that, similar to the two-user scenario, rate-splitting seems to

be less effective than message-sharing. It also suggests that one can-

not comment on the superiority of a particular message-sharing scheme

compared to another. We also have the following conjecture.

Conjecture 2.4.1. There exists a tradeoff between message-sharing

mechanisms and rate-splitting strategies. In other words, a particular

message-sharing mechanism might not be more beneficial than a spe-

cific rate-splitting strategy and vice-versa, in terms of achievable rates

on the channel.

For example, consider the following. When a transmitter S1 shares its

message with another transmitter S2, message splitting by S1 is not nec-

essary, as it does not have a significant impact on the rates achievable

by S1 and S2. On the other hand, message splitting by S2 helps improve

the rate achievable by S1, but does not significantly impact the rate

achievable by S2. Several such instances are possible, and one could

argue that performing both rate-splitting and message-sharing would

enlarge the overall achievable region. Therefore, a proof of existence

and a complete characterization of the tradeoff suggested in Conjecture

2.4.1 is an interesting open problem. Also note that, in Fig. 2.5, we have

not plotted the rate region of the interference channel. This is because,

it is not fair to compare the rate region of the three-user interference

channel corresponding to the rate-splitting strategy in Table 2.3 with

that of CCoMS which is based on the rate-splitting strategy in Table 2.4.

In the following, we plot the rate regions, corollaries and outer bounds (see

Section 2.3.2) to obtain interesting insights into the achievable rate regions

of the different channel models considered in this work.

2. Three-user channels with CuMS (channel C2
CuMS):
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Figure 2.6: Rate of S1 (R1) versus the sum rate of S2 and S3 (R2 + R3) for the
channel C2

CuMS. The power at the transmitters is 10dB.

(a) In Fig. 2.6, we plot the rate of sender S1 (R1) versus the sum of the rates

of S2 and S3 (i.e., R2 +R3) for the channel C2
CuMS. In the figure, the outer

bound, labeled Outerbound, is the intersection of (2.17), (2.18)-(2.20) and

(2.22). The innermost region corresponds to the achievable region given

in Theorem 2.3.1. The second largest region corresponds to Corollary

2.3.1. Note that our inner bound is for a specific rate-splitting strategy

at the transmitters, which the outer bounds do not account for, due to

which the outer bounds may be suboptimal and hence loose, for the

examples considered here. More insight on the R2 and R3 achievable via

our scheme, and how it compares with the outer bound, can be obtained

from the plots presented later in the discussion.

(b) In Fig. 2.7, we plot the rate of S1 (R1), versus that of S2 (R2), when S3

achieves a minimum rate of R3 = 0, 1 and 1.5 bps/Hz. The gap between

the inner bound and the outer bound is relatively small. The rate of S2

does not decrease much as it employs dirty-paper coding to eliminate

interference when S1 and S3 achieve relatively smaller rates. It can be
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Figure 2.7: Rate of S1 (R1) versus the rate of S2 (R2) when S3 is guaranteed to
achieve a minimum rate R3 = 0, 1 and 1.5 bps/Hz, for the channel C2

CuMS. The
power at the transmitters is 10dB.

observed that as S3 achieves higher rates, the achievable rate region of

the S1 and S2 shrinks. Also, when R3 > 0, the rates achievable using the

extensions provided by the corollaries lies completely above the rates

achievable by the coding scheme in Section 2.2.5, which is due to the

suboptimality of that scheme with respect to the achievable rates of S1

and S2 for a fixed R3. The rate of S1 has a larger relative reduction com-

pared to that of S2, yet S1 achieves a higher rate than S2, as expected.

Figure 2.8 shows a similar plot, but the rate of the S1 is compared with

that of S3 instead of with S2. As S2 achieves a higher and higher rate,

the rates of S1 and S3 decrease, but the reduction is smaller than that

in Fig. 2.7. Note that, in this case, the rate achieved by S3 matches the

outer bound at the corner points when R2 = 0.

3. Three-user channels with PrMS (channel C2
PrMS):

(a) In Fig. 2.9, we plot the rate achieved by S1 versus the sum rate of S2
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Figure 2.9: Rate of S1 (R1) versus the sum rate of S2 and S3 (R2 + R3) for the
channel C2

PrMS. The power at the transmitters is 10dB.
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Figure 2.10: Rate of S1 (R1) versus the rate of S2 (R2) when S3 is guaranteed to
achieve a minimum rate R3 = 0, 0.5 and 0.8 bps/Hz, for the channel C2

PrMS. The
power at the transmitters is 10dB.

and S3 along with the outer bound. Here, the outer bound is different

from the C2
CuMS as the cutoff value used to bound R2 is different for S2.

The plot labeled Outer bound is the intersection of the capacity region

given by (2.17), (2.18), (2.20) - (2.22). Also shown is the plot of Corollary

2.3.5.

(b) Fig. 2.10 shows the plot of the rate of S1 versus that of S2, when S3

achieves a minimum rates of 0, 0.4 5and 0.8 bps/Hz. Here again, we see

that the rates of S1 and S2 decrease with increasing rate of S3. However,

the decrease in S2’s rate is relatively smaller than that of S1, but S1

achieves a higher maximum rate compared to S2.

4. Three-user channel with CoMS:

(a) In Fig. 2.11, we plot the sum rate of senders S1 and S1, R1 + R2, versus

the rate of S3, along with the outer bound and the plot of Corollary 2.3.8.

The outer bound is the intersection of (2.17), (2.19), (2.20), (2.22) and
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Figure 2.11: Rate of S3 (R3) versus the sum rate of S1 and S2 (R1 + R2) for the
channel CCoMS. The power at the transmitters is 10dB.

(2.23).

(b) Figure 2.12 shows the plots of the rates of S1 and S2, when S3 achieves

a minimum rate of 0.5, 1 and 1.5 bps/Hz, along with the plot of Corollary

2.3.9. Here again, we see that the rates of S1 and S2 decrease with in-

creasing rate of S3. However, compared to Fig. 2.10, the reduction in the

size of the region is more symmetric i.e., both R1 and R2 simultaneously

decrease, and roughly speaking, by the same relative amount.

Note 2.4.2. The inner bounds for the C1
CuMS and C1

PrMS have not been plotted

here. This is mainly because applying the Fourier-Motzkin elimination procedure

on the rate region is a formidable task, given the number of inequalities involved

(see [16, Appendices A and B]). This demonstrates practical difficulties involved

with rate-splitting, especially with growing network size. Nevertheless, one can

expect (i) the achievable rate regions for C1
CuMS and C1

PrMS to be larger than that

for C2
CuMS and C2

PrMS and (ii) the gap between the achievable rate region and the

outer bound for C1
CuMS and C1

PrMS to be smaller than that to C2
CuMS and C2

PrMS
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Figure 2.12: Rate of S1 (R1) versus the rate of S2 (R2) when S3 is guaranteed to
achieve a minimum rate R3 = 0.5, 1 and 1.5 bps/Hz for the channel CCoMS. The
power at the transmitters is 10dB.

respectively, because S1 also employs rate-splitting strategy in the former case.

As a concluding remark, note that, as mentioned above, there is a gap between

the inner and outer bounds in all the cases plotted. There are a couple reasons

for this.

1. In the case of C2
CuMS and C2

PrMS, S1 does not perform rate-splitting, thereby

rendering the receivers of S2 and S3 vulnerable to interference caused due

to S1’s transmissions. In the case of CCoMS, neither S1 nor S2 performs rate-

splitting, leading to poor interference management at all the receivers. How-

ever, several corollaries were derived based on the idea of allowing senders

to dedicate (part of) their power for transmitting the primary sender’s mes-

sage, which resulted in several additional rate points being achievable. And,

it was shown that these rate tuples meet the outer bounds at several corner

points. A systematic way of expanding the rate region by including the dif-

ferent coding schemes is an open problem, which can be explored by future

researchers.
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2. The outer bounds were derived by taking the intersection of the capacity

region with bidirectional sharing and the individual user rates with uni-

directional sharing, and hence have a natural advantage over the purely-

unidirectional model assumed in deriving the rate regions. Furthermore, the

duality result implicitly assumes that the receivers can successfully decode

the interfering signals to a large extent.

Outer bounds can be made tighter by considering discrete memoryless channel

models and introducing auxiliary RVs. Existing literature lacks results for tighter

outer bounds, except for the most recent work in [48] which are for two-user CR

channels not directly applicable to our channel models. From the above discus-

sion, we conclude that, though the three-user channel models considered in this

work are logical extensions of the classical two-user scenario, we are able to make

interesting observations and draw several inferences on the effect of rate-splitting

and message-sharing on larger networks. The techniques to analyze two-user net-

works may carry over to these larger networks, but issues related to interference

management via rate-splitting are nontrivial and need further investigation.

2.4.2 Effect of reduction in size of the network

Let us consider the case of removing a transmitter-receiver pair from the three-

user CR channel model. In particular, let us assume that (S3,R3)-pair is removed,

resulting in a two-user CR channel. We make the following observations:

1. The channels C2
CuMS and C2

PrMS will now reduce to the model employed in

[36]. The achievability scheme results in a rate region which coincides with

[36, Theorem 1], which includes the rate regions derived in [34] and [35].

Furthermore, the rate regions derived in [34, Theorem 3.5] and [35, Theorem

4.1] are in fact the capacity regions for the two-user CR channels in the low-

interference regime. In our three-user channel models C2
CuMS and C2

PrMS, low-

interference regime can be considered by letting the auxiliary RVs U1 and V1

be constants. However, this does not yield the capacity region (unlike the
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two-user scenario) for C2
CuMS and C2

PrMS.

2. The channels C1
CuMS and C1

PrMS will reduce to the model employed in [32].

However, our achievability scheme results in a slightly larger rate region

compared to the one presented in [32, Theorem 1]. This is because of the

fact that the rate region of [32, Theorem 1] takes into account noisy message-

sharing (captured by Eq. (3) − (5) in [32, Theorem 1]), while our problem

setup concerns degraded message sets.

3. For the channel C1
CoMS, let us consider removing (S2,R2)-pair. This results in

the model employed in [36], which has been addressed in the above discus-

sion.

2.4.3 A recent result on the two-user CR channel

Recently, in [48, Theorem V.1] a new inner bound has been derived for the two-

user CR channel which encompasses all of the previously known achievable re-

gions. The technique used to prove their main achievability theorem employs rate-

splitting, superposition coding and a sequential binning procedure. However, we

notice that their achievability scheme involves a rate-split at both encoders. This

does not conform well to some of our channel models, specifically C2
CuMS, C2

PrMS and

CCoMS, where one (or two) encoder(s) do not employ rate-splitting. This suggests

that their technique may not be appropriate for our problem setup since, owing

to the presence of three transmitters, more than one rate-splitting scheme can be

considered leading to a large class of three-user channel models. Furthermore,

it remains to be ascertained whether the achievability scheme of [48] generalizes

to the three-user channel irrespective of the rate-splitting technique employed by

the encoders.

A new outer bound has also been derived in [48, Theorem IV.1], which is looser

than previously known outer bounds, but has the advantage of not involving

auxiliary RVs. However, we have not investigated outer bounds for the discrete

memoryless case, because of the complexity of our problem setup. Instead, we

43



resorted to obtaining outer bounds for the Gaussian channel model. Deriving

tighter inner and outer bounds for the discrete memoryless channel model of our

problem setup is challenging and is an interesting open problem.

2.5 Conclusions

We introduced multiuser channels with noncausal transmitter cooperation in the

overlay cognitive radio network paradigm and presented three different ways of

message sharing which we termed cumulative message sharing (CuMS), primary-

only message sharing (PrMS) and cognitive-only message sharing (CoMS). We de-

rived an achievable rate region for each of the channels by employing a combi-

nation of superposition and Gel’fand-Pinsker coding techniques. We considered

the Gaussian channel model to plot the rate regions and presented some corol-

laries using which several achievable rate tuples for the Gaussian channel were

identified. Later, we derived outer bounds for the Gaussian case by considering

bidirectional cooperation between the transmitters, and calculating the capacity

region of the resulting Gaussian MIMO broadcast channel using BC-MAC duality

results. Simulation results enabled us to compare rate-splitting and message-

sharing as a mechanism to improve spectral efficiency. We observed that, while

message-sharing is superior to rate-splitting in both two and three-user scenar-

ios, it is not fully clear as to which type of message-sharing mechanism (CuMS,

PrMS or CoMS) gives the largest rate region. Open problems include deriving

tighter outer bounds; considering rate-constrained cooperation, wherein the cog-

nitive radio estimates the message index transmitted by the primary user in a

causal manner; and characterizing the tradeoff between message sharing and

rate-splitting in a multi-user cognitive network.
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Chapter 3

Opportunistic relay channels

3.1 Introduction

Base station

Relay1

Relay2

Relay3

Eavesdropper

Mobile1

Mobile2

Figure 3.1: A schematic of a relay network aiding cellular infrastructure.

With increasing emphasis on efficient utilization of radio-frequency spectrum

and growing interest in providing wireless services with higher data rates, coop-

erative communications has been proposed as a key enabling technology for next

generation wireless networks. User-cooperation is especially popular in multi-

ple node networks, where a node expresses willingness to share its resources

(transmit power, computation, etc.) with its neighboring nodes with the objective

45



of improving the overall performance of the network in terms of its throughput.

Information-theoretic studies are rigorously pursued to understand the funda-

mental performance limitations of reliable communications in such cooperative

scenarios [54]. In this chapter, we consider the relay network [55], [56], which

has emerged as a strong contender to realize cooperation in a wireless infrastruc-

ture and derive the performance limits for two different communication scenarios.

We motivate the problems addressed in this chapter through the following

example. Consider a typical cellular environment (see Fig. 3.1), in which the re-

motely located Mobile1 transmits to the Base station over the broadcast medium

using the uplink communication protocols. In order to ensure higher date rates,

Mobile1 enlists the help of relay nodes located at various points in space; relays

transmit replicas of the signal of interest, providing diversity and thereby improv-

ing spectral efficiency. Relay nodes participating in a cooperative-communication

scenario can also use this opportunity to transmit their own data to intended ter-

minals [57] leading to improved spectrum efficiency, and thereby broadly fall into

the cognitive radio network paradigm. Although user-cooperation and cognition

have benefits, the broadcast nature of wireless medium exposes problems re-

lated to information security. In the scenario considered in Fig. 3.1, the terminal

denoted Eavesdropper can gain unauthorized access to the wireless link between

Relay1 and Base station. That is, the broadcast nature of wireless networks fa-

cilitates malicious or unauthorized access to confidential data, denial of service

attacks, corruption of sensitive data, etc.

However, due to geographical separation, it might not be possible for Eavesdropper

to hear from Mobile1, even though we have considered the wireless broadcast

medium. In cellular architecture, such scenarios are a commonplace when the

eavesdropper is outside the coverage area of the mobile device, but lies in close

proximity of an intermediate relay node. Furthermore, the transmit power con-

straint on the mobile device is a significant factor for Eavesdropper to remain obliv-

ious to the transmissions of Mobile1. Such an example is admittedly contrived.

Nonetheless, it provides a useful model for cases where the mobile device is less
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sophisticated to tackle the malicious intent of an eavesdropper, and where the

relay node has advanced functionalities to achieve secure communications.

In this chapter, we present an information-theoretic viewpoint of the joint

problem of cooperation, cognition and information security/confidentiality over

such relay networks. Although the benefits of user-cooperation for secure com-

munications have been reported in the literature (for e.g., see [58] - [60]), to the

best of the author’s knowledge, this is the first instance where the three issues

- cooperation, cognition and confidentiality - are simultaneously addressed. It is

worthwhile to note that, in the information theory literature, the terms coopera-

tion and cognition have been used interchangeably, but in this chapter we make a

clear distinction between the two. We also note that, confidentiality is commonly

referred to as information-theoretic/wireless physical-layer security [6].

3.1.1 Communication scenarios

We consider a four node wireless network whose channel schematic is shown in

Fig. 3.2, and define the following two communication scenarios:

Node1

Node2

Node3

Node4

m13

m23

(m̂13, m̂23)

(m̂13, m̂23)

X1

Y2

X2

Y3

Y4

Figure 3.2: Relay network with cooperation, cognition and information security.
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1. Scenario I, which captures the essence of the following three issues:

(a) Cooperation: Node 1 intends to transmit a message m13 to Node 3. Node 2

is used as a cooperative-relay to aid transmissions from Node 1 to Node 3.

It employs decode-process-forward mechanism to improve the spectral

efficiency of (Node 1,Node 3)-pair.

(b) Cognition: Node 2 also uses this opportunity to transmit its own mes-

sage m23 to Node 3. We term such type of relays as opportunistic-relays;

they can also be considered as cognitive-relays, since they not only aid

other’s transmissions, but also better utilize the spectrum by transmit-

ting their own messages.

(c) Security: Transmissions from Node 2 are also received by Node 4, who is

considered to be an eavesdropper with malicious intent, unauthorized

to participate in the communication scenario. Therefore, Node 2 is con-

strained to keep the message of Node 1 (m13) and its own message (m23)

confidential from Node 4.

For this scenario, we let the channel to be physically degraded, since the

processing to achieve secrecy is performed at the relay.

2. Scenario II, with the following setup:

(a) Node 1 intends to transmit a message m13 to Node 3, by deeming Node 2

to be untrustworthy. Therefore, Node 1 is constrained to keep m13 secret

from Node 2.

(b) Node 2 transmits its message m23 to Node 3, by keeping it confidential

from Node 4.

This scenario is not applicable for physically degraded relay channels, since

the secrecy capacity will be zero as pointed out in [61].

Note 3.1.1. 1: In both scenarios, we consider Node 4 to be geographically located

outside the transmission range of Node 1, and that it remains oblivious to signals
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transmitted by Node 1. Owing to the broadcast nature of the wireless medium,

Node 4 can get to hear the transmissions of Node 1. However, if the geographical

separation is significant, then the received signal-to-noise ratio at Node 4 due to

Node 1 will be negligible; it is reasonable to assume that Node 4 receives a highly

corrupted and noisy version of the signal from Node 1, making it difficult for Node 4

to infer anything about Node 1’s transmissions. Though this is not the worst case

analysis, the assumption is well motivated by real world scenarios (described in

the previous paragraph), and provides a basis to jointly address the aforemen-

tioned issues. We also note that, in Scenario II, Node 2 tries to decode the mes-

sage of Node 1 (although, unsuccessfully), and the model conforms to the classical

relay setting.

3.1.2 Main contribution

We derive capacity bounds for secure and reliable communications for the above

two described scenarios. Towards this end, we introduce a novel achievability

scheme, namely layered coding, to derive lower bounds on the capacity regions of

the two communication scenarios. Outer bounds are derived using auxiliary ran-

dom variables for single-letter characterization. We compare the layered coding

scheme with the noise-insertion strategy, which is prominently used in the exist-

ing literature, and explain why layered principle is better suited for opportunistic-

relays. We characterize the rate-penalty that incurs for having to deal with se-

curity constraints on the messages. We also argue that the channel models

presented in this chapter for opportunistic-relays are better - from a practical

viewpoint - compared to the classical cognitive radio network model for efficient

radio-frequency spectrum utilization.

Note that, we are primarily concerned with establishing the theoretical per-

formance limits of the relay networks considered in this chapter, without dealing

with the practical realization of such systems. The interested reader is referred

to [62] - [65], where communication infrastructure required for multi-hop relay
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networks, along with implementation and performance evaluation of relay-based

wireless networks are addressed. It is of interest to note that, for the case of

opportunistic-relays (where the relays have their own messages) the physical-

layer aspects like modulation and signal design, and medium-access control layer

schemes suggested in the above cited references should be appropriately modi-

fied. However, these issues are beyond the scope of this chapter.

3.1.3 Organization of the chapter

In Section 3.2, we provide references from the existing literature that closely re-

late to our chapter. In Section 5.2, we introduce the notation used and provide

a mathematical model for the relay network considered in this chapter. In Sec-

tion 5.3, we describe achievable rate regions and outer bounds on the capacity

region of the above described communication scenarios. In Section 3.5, we out-

line the layered coding principle and provide related discussion. We conclude the

chapter in Section 4.6. The proofs of the achievability theorem, outer bounds and

a required lemma are relegated to appendices.

3.2 Related work

The problem of confidentiality/security in relay networks has been addressed

along various lines in the information theory literature. Capacity bounds for co-

operation in wireless networks was presented in [66], where authenticated relay

nodes employ noise insertion strategies [67] to achieve secrecy. In [68], an op-

portunistic selection technique of two relay nodes was presented to secure com-

munications between a source-destination pair from the eavesdropper. The first

relay employed a simple decode-and-forward strategy, while the second relay is

used to create intentional interference at the eavesdropper, thereby jamming its

reception. The relay-eavesdropper channel was considered in [69], where user-

cooperation has been exploited to achieve secrecy. In particular, the relay node

employed a novel noise-forwarding strategy to confuse the eavesdropper. How-
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ever, the relay was considered to be a deaf-helper, in the sense that it is totally

ignorant of the transmitted messages.

In some other scenarios, the relay was treated as an eavesdropper. For ex-

ample, in [70], confidential messages were transmitted to a receiver which also

served as a relay to its neighboring node. The trade-off between cooperation and

secrecy was characterized, along with the rate-equivocation region for the discrete

memoryless network. Some jamming strategies as a means to increase secrecy for

the Gaussian channel case was also proposed. Likewise, in [71], capacity bounds

were derived when cooperation is achieved with the help of untrustworthy re-

lays. Specifically, two models of relay networks with orthogonal components was

studied. In the first model, where there is an orthogonal link from the source to

the relay, it was shown that cooperating with an untrustworthy relay was never

beneficial. However, cooperation was shown to be beneficial in the second model,

where there is an orthogonal link from the untrustworthy relay to the destination.

Other noteworthy contributions include cooperation over a two-hop commu-

nication network using untrustworthy relays [72], capacity results for orthogonal

relay eavesdropper channels [73], cooperative relay broadcast channels [74] and

improving wireless security via multiple cooperating relays in the presence of one

or more eavesdroppers [75]. Coding for relay channels, where the relay acts as an

eavesdropper, was reported in [61].

Most of the results in the existing literature pertain solely to cooperative re-

lays, in the sense that the relay nodes aid the communication between a sender-

receiver pair, though they may or may not contribute to achieve secrecy. In this

chapter, we consider the case where the relay (Node 2) has a private message

intended to the destination (Node 3). Hence, these relays can be thought of as

cognitive relays in addition to being cooperative, in the sense that it can oppor-

tunistically utilize the scarce radio-frequency spectrum. A similar model has been

considered in [57], without addressing the security issues considered in this chap-

ter.
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3.3 System Model and Preliminaries

In this chapter, we only consider the discrete memoryless versions of the relay

channels described in Section 3.1. We denote the relay channel characterizing

Scenario I by C; and the channel characterizing Scenario II by C∗. Discrete

random variables (RV) defined on finite sets X1 ∈ X1 and Y3 ∈ Y3 denote the input

and output at Node 1 and Node 3, respectively. X2 ∈ X2 and Y2 ∈ Y2 denote the

input and output, respectively, at Node 2, while the output at Node 4 is denoted

Y4 ∈ Y4. The channels are assumed to be memoryless and is characterized by the

conditional distribution

p(yN2 , y
N
3 , y

N
4 |xN1 , xN2 ) =

N∏
n=1

p(y2,n, y3,n, y4,n|x1,n, x2,n),

where N is the number of channel uses. The lower case letters y2, y3, y4, x1 and

x2 are particular realizations of the corresponding RVs. Further, the channel C

will be considered to be physically degraded, so that

p(xN1 , x
N
2 , y

N
2 , y

N
3 , y

N
4 ) =

N∏
n=1

p(y2,n|x1,n, x2,n)p(y3,n, y4,n|y2,n, x2,n).

To transmit its message, Node 1 generates an RV M13 ∈ M13, where M13 =

{1, . . . , 2NR13} denotes a set of message indices. Without loss of generality, 2NR13

is assumed to be an integer, with R13 being the transmission rate of Node 1. M13

denotes the message Node 1 intends to transmit to Node 3, and is assumed to be

independently generated and uniformly distributed over the finite setM13. Integer

m13 is a particular realization of M13 and denotes the message-index. Node 2 has

message M23 ∈ M23 = {1, . . . , 2NR23} intended to Node 3. The symbols M23, M23,

m23 and R23 are similarly notated.

1. For the channel C, a ((2NR13 , 2NR23), N, P
(N)
e ) code comprises:

(a) An encoder f1 :M13 → XN1 ,

(b) A set of N relay functions {rn}Nn=1, such that x2,n = rn(Y2,1, . . . , Y2,n−1,M23),
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1 ≤ n ≤ N . Further, to ensure information security, the relay makes use

of a stochastic encoder which is defined by the matrix of conditional

probabilities φ(xN2 |m̄13,m23), such that∑
xN2
φ(xN2 |m̄13,m23) = 1. m̄13 is the guess of m13 made by the relay.

φ(xN2 |m̄13,m23) denotes the probability that a pair of message-indices

(m̄13,m23) is encoded as xN2 ∈ XN2 to be transmitted by the relay.

(c) Two decoders - g2 : YN2 →M13, g3 : YN3 →M13 ×M23.

The average probability of decoding error for the code, averaged over all

codes, is

P
(N)
e = max{P (N)

e,2 , P
(N)
e,3 }, where,

P
(N)
e,2 =

∑
m13

1
2NR13

Pr
[
g2(YN2 ) 6= m13|m13 sent

]
,

P
(N)
e,3 =

∑
m

1
2N [R13+R23]

Pr
[
g3(YN3 ) 6= m|m sent

]
,

where m = (m13,m23). A rate pair (R13, R23) is said to be achievable for the

channel C, if there exists a sequence of (2NR13 , 2NR23 , N, P
(N)
e ) codes and any

ε > 0, such that P (N)
e → 0 as N → ∞ and the following secrecy constraints

are satisfied:

NR13 −H(M13|Y4) ≤ Nε, (3.1)

NR23 −H(M23|Y4) ≤ Nε, (3.2)

where H(x|y) is the conditional entropy of x given y. The capacity region is

defined as the closure of the set of all achievable rate tuples (R13, R23).

2. For the channel C∗, a ((2NR13 , 2NR23), N, P
(N)
e ) code comprises:

(a) Two stochastic encoders defined by the matrix of conditional probabili-

ties φ∗(xN1 |m13) and φ∗(xN2 |m23), such that
∑

xNt
φ∗(xNt |mt3) = 1. φ∗(xNt |mt3)

denotes the probability that the message-index mt3 is encoded as xNt ∈

XNt ; t = 1, 2.
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(b) A decoder - g3 : YN3 →M13 ×M23.

The average probability of decoding error for the code, averaged over all

codes, is

P (N)
e =

∑
m

1
2N [R13+R23]

Pr
[
g3(YN3 ) 6= m|m sent

]
,

where m = (m13,m23). A rate pair (R13, R23) is said to be achievable for the

channel C∗, if there exists a sequence of (2NR13 , 2NR23 , N, P
(N)
e ) codes and

any ε > 0, such that P (N)
e → 0 as N → ∞ and the following weak-secrecy

constraints are satisfied:

NR13 −H(M13|Y2) ≤ Nε, (3.3)

NR23 −H(M23|Y4) ≤ Nε, (3.4)

The secrecy constraint (3.3) signifies that in order to keep the message of the

source (m13) confidential from the relay, the source has to transmit at a rate

R13 which must be less than the conditional entropy H(M13|Y2). Similarly,

the secrecy condition (3.4) states that, in order to keep the message of the

relay (m23) confidential from the eavesdropper, the relay has to transmit at

a rate R23 which must be less than the conditional entropy H(M23|Y4). The

capacity region is defined as the closure of the set of all achievable rate

tuples (R13, R23).

In the remainder of this chapter, the following notation is used. For any ε > 0,

we denote by A
(N)
ε (PX) an ε-typical set comprising sequences picked from the

distribution p(x).

3.4 Summary of results

In this section, we present achievable rate regions and outer bounds for C and

C∗. We consider the following auxiliary RVs defined on finite sets: W ∈ W, U ∈ U ,

54



V ∈ V and Z ∈ Z. For C, let P denote the set of all joint probability distributions

p(w, u, v, z, x1, x2, y2, y3, y4) that is constrained to factor as follows:

p(w, u, v, z, x1, x2, y2, y3, y4) = p(w, u)p(x1|w, u)p(v, z|w)

×p(x2|w, v, z)p(y2|x1, x2)p(y3|x2, y2)p(y4|x2).

The auxiliary RVs serve a dual purpose. On one hand they render the channel

causal, while on the other hand they represent the sources to be transmitted when

the encoder has side-information to deal with. Note also that, establishing the

cardinality bounds of these auxiliary RVs is a tedious task and is not considered

in this chapter. The interested reader to referred to [52, Chapter 15] for a brief

exposition on the cardinality bounds of auxiliary RVs for simple channel models.

3.4.1 Achievable region for C

For a given p(.) ∈ P, an achievable rate region for C is described by the set Rin(p),

which is defined as the convex-hull of the set of all rate pairs (R13, R23) that si-

multaneously satisfy (3.5) - (3.7).

0 ≤ R13 ≤ min{I(U ;Y2|W,V,Z), I(W,U, V ;Y3|Z)−max[H(W ), I(W,V ;Y4)]},(3.5)

0 ≤ R23 ≤ I(Z;Y3|W,U, V )− I(Z;Y4), (3.6)

0 ≤ R13 +R23 ≤ I(W,U, V, Z;Y3)−max[H(W ), I(W,V ;Y4)]− I(Z;Y4). (3.7)

Theorem 3.4.1. Let C denote the capacity region of the channel C. Let Rin =⋃
p(.)∈P Rin(p). The region Rin is an achievable rate region for C, i.e., Rin ⊆ C.

The proof of Theorem 3.4.1 can be found in Appendix B.1. From the rate

region, we clearly see that one has to incur a rate-penalty for having to secure

the messages from the eavesdropper. Specifically, the quantities I(W,V ;Y4) in

(3.5), I(Z;Y4) in (3.6), and I(W,V ;Y4) and I(Z;Y4) in (3.7) signify the rate-penalties

Node 1 and Node 2 incur due to the presence of the eavesdropping Node 4. In the

absence of an eavesdropper, the rate region reduces the one presented in [57]
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for relay channels with private messages. The interesting observation is the case

when Node 2 does not have a message for Node 3, i.e., Z = {∅}. In this sce-

nario, R13 ≤ min{I(U ;Y2|W,V,Z), I(W,U, V ;Y3|Z) − max[H(W ), I(W,V ;Y4)]}. Com-

paring this with the achievable rate-equivocation using noise-insertion strategy

(see [69]), we notice that the layered coding scheme experiences a bottleneck if

the channel between Node 1 and Node 2 is noisier than the one between Node 1

and Node 3. In Section 3.5.3, we provide more discussion related to this issue

by highlighting the relative merits and demerits of the layered coding principle

compared to the noise-insertion strategy.

3.4.2 Outer bounds for C

For a given p(.) ∈ P, an outer bound for C is described by the set Rout(p), which is

defined as the convex-hull of the set of all rate pairs (R13, R23) that simultaneously

satisfy (3.8) - (3.10).

0 ≤ R13 ≤ I(W,U, V ;Y3|Z)− I(V ;Y4), (3.8)

0 ≤ R23 ≤ I(Z;Y3|V )− I(Z;Y4), (3.9)

0 ≤ R13 +R23 ≤ I(W,U, V, Z;Y3)− I(V ;Y4)− I(Z;Y4). (3.10)

Theorem 3.4.2. Let C denote the capacity region of the channel C. Let Rout =⋃
p(.)∈P Rout(p). The region Rout is an outer bound for C, i.e., C ⊆ Rout.

The proof of Theorem 3.4.2 can be found in Appendix B.2. The outer bounds

are derived utilizing the secrecy constraints (3.1) - (3.2).

For C∗, let P∗ denote the set of all joint probability distributions

p(w, u, z, x1, x2, y2, y3, y4) that is constrained to factor as follows:

p(w, u, z, x1, x2, y2, y3, y4) = p(w, u)p(x1|w, u)p(z|w)

×p(x2|w, z)p(y2|x2)p(y3|x2, y2)p(y4|x2).
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3.4.3 Achievable region for C∗

Given p(.) ∈ P∗, an achievable rate region for C∗ is described by the set R∗in(p),

which is defined as the convex-hull of the set of all rate pairs (R13, R23) that si-

multaneously satisfy (3.11) - (3.13).

0 ≤ R13 ≤ I(W,U ;Y3|Z)−max[H(W ), I(W,U ;Y2)], (3.11)

0 ≤ R23 ≤ I(Z;Y3|W,U)− I(Z;Y4), (3.12)

0 ≤ R13 +R23 ≤ I(W,U,Z;Y3)−max[H(W ), I(W,U ;Y2)]− I(Z;Y4). (3.13)

Theorem 3.4.3. Let C∗ denote the capacity region of the channel C∗. Let R∗in =⋃
p(.)∈P∗ R

∗
in(p). The region R∗in is an achievable rate region for C∗, i.e., R∗in ⊆ C∗.

The proof of Theorem 4.3.4 can be found in Appendix B.3. In this case, we see

that Node 1 incurs a rate-penalty for securing the message from Node 2 (signified

by max[H(W ), I(W,U ;Y2)] in (3.11), while Node 2 incurs a penalty I(Z;Y4) in (3.12)

for keeping its message secret from Node 4. The benefits of using layered coding

over noise-insertion for this scenario is discussed in Section 3.5.3.

3.4.4 Outer bounds for C∗

For a given p(.) ∈ P∗, an outer bound for C∗ is described by the set R∗out(p), which is

defined as the convex-hull of the set of all rate pairs (R13, R23) that simultaneously

satisfy (3.14) and (3.16).

0 ≤ R13 ≤ I(W,U ;Y3|Z)− I(U ;Y2), (3.14)

0 ≤ R23 ≤ I(Z;Y3|U)− I(Z;Y4), (3.15)

0 ≤ R13 +R23 ≤ I(W,U ;Y3|Z) + I(W,Z;Y3|U)− I(U ;Y2)− I(Z;Y4). (3.16)

Theorem 3.4.4. Let C∗ denote the capacity region of the channel C∗. Let R∗out =⋃
p(.)∈P∗ R

∗
out(p). The region R∗out is an outer bound for C∗, i.e., C∗ ⊆ R∗out.

The proof of Theorem 4.3.5 can be found in Appendix B.4.
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3.5 Discussion

In this section, we first present a high-level explanation of some well-known cod-

ing schemes, namely binning; block Markov superposition coding; and backward

decoding to familiarize the reader with these important techniques. Then we

present an outline of the coding scheme that we have devised to derive lower

bounds on the capacity regions of the two communication scenarios described in

the preceding sections. We then discuss our coding strategy in comparison with

the noise-forwarding technique that has been used in the existing literature. Fi-

nally, we compare our channel model with the classical cognitive radio channel

setup.

3.5.1 Some standard coding techniques

In this subsection, we present the salient features of those standard coding prin-

ciples - binning; block Markov superposition coding; and backward decoding -

which forms the basis for the coding technique devised in this chapter.

1

1

2N(R+R′)

2NR

2NR′

side-information
sequence

jointly typical

bins

distribute
uniformly

Figure 3.3: Binning principle.
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In binning [76], let us suppose there are 2NR messages to be transmitted across

the channel. Then generate 2N(R+R
′
) independent sequences, and uniformly dis-

tribute them into 2NR bins so that each bin comprises 2NR
′

sequences. To trans-

mit a message k ∈ {1, . . . , 2NR}, go to the bin indexed by k and pick a sequence

which is jointly typical with a side-information codeword that is available at the

encoder in a noncausal/causal manner. A pictorial representation of binning is

shown in Fig. 3.3.

Block 1

Block b; b = 2, . . . , B − 1

Block B

High rate information

Low rate information

x1 = x1(1,m1,H)

xb = xb(mb−1,L,mb,H)

xB = xB(mB−1,L, 1)

Figure 3.4: Markov superposition coding.

In Markov superposition coding [19], transmissions are in the form of blocks of

coded data (see Fig. 3.4). In each block, there are two types of data being encoded.

In block b, the message to be transmitted is coded at a rate higher than what the

receiver can actually decode. In block b + 1 the high-rate message of block b is

coded at a low rate, upon which is superimposed a new codeword which will be

at a higher rate, and this process continues till block B.

In backward decoding [19], all the B blocks of data are accumulated at the

decoder, and the codewords are decoded from the last block. Furthermore, in

block b only the low-rate information is decoded. By doing so, the high-rate infor-
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Markov superposition code

Binning

Stochastic encoding

(Node 1,Node 2)

Node 2

Node 2

Block 1Block B . . . . . .Block transmission
(Node 1,Node 2)

Block 1

Block B

...

Block B

Block 1

Backward decoding

Node 3

decode

Node B − 1

Node B − 1

Node B − 1

Cooperation

Cognition

Security

Figure 3.5: Layered coding architecture.

mation of block b− 1 is automatically decoded (because of the block construction

during encoding). And, this process continues till block 2, which also decodes the

high-rate message of block 1.

3.5.2 Layered coding

The achievability scheme devised to prove the coding theorems in this chapter is

termed “layered coding”, which is a combination of block Markov superposition

coding [17], binning [18] and stochastic encoding [20]. A schematic of the layered

coding architecture is shown in Fig. 3.5. For Scenario I, we employ the following

layering principle: The bottom most layer is the Markov superposition code, which

is devised to realize cooperation between Node 1 and Node 2. Random binning is

implemented in the middle layer to enable Node 2 to opportunistically transmit

its own messages to Node 3. This is similar to the coding principle employed

in the classical cognitive radio channels, where the secondary transmitter uses

random binning against known interference from the primary user (for instance,

see [32], [35]). The topmost layer incorporates stochastic encoding, using which
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Node 2 keeps the messages of Node 1 and its own messages secure from Node 4. For

Scenario II: Node 1 uses the block Markov superposition code and stochastic en-

coding, while Node 2 employs binning and stochastic encoding in conjunction with

Markov superposition coding to achieve the described rates. Block transmission

is used to transmit encoded data, while at the receiver we employ backward [19]

and simultaneous decoding [7] techniques to recover the transmitted information.

3.5.3 Comparison with some existing results

1. Scenario I:

(a) This scenario is similar to the models presented in [66], [69] in that the

relay plays an active role in confusing the eavesdropper to achieve infor-

mation confidentiality. In order to achieve this objective, in this chapter

we employ a stochastic encoder at the relay node, where we generate

additional codewords and randomly transmit one of them. Equivocation

calculations show that the additional uncertainty confuses the eaves-

dropper, who cannot decode the received signal with arbitrarily small

probability of error. Whereas, in case of [66] and [69], special noise in-

sertion strategies (for example, see [67]) are employed, where the relay

node sends codewords independent of the source message to confuse

the eavesdropper. Also, in our chapter, the main sender (Node 1) is obliv-

ious to the presence of the eavesdropper (Node 4) and does not play an

active role in ensuring secrecy. Therefore, the relay node in our chapter

cannot be a deaf helper by remaining ignorant of the main sender’s mes-

sage. In fact, in our chapter, the relay node (Node 2) learns the message

of Node 1 by decoding the received codewords. As pointed out in [69],

this creates a bottleneck if the channel between Node 1 and Node 2 is

noisier than that between Node 1 and Node 3. In order to circumvent

this problem, [69] presented a noise-forwarding strategy where the re-

lay node does not decode the message, but transmits codewords that are
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independent of the source’s message to confuse the eavesdropper. This

is similar to the stochastic encoder that we have employed, where the

relay generates additional codewords for every message and transmits

one of them at random. However, in order to achieve this objective, in

our chapter the relay has to decode the message from the main sender

which may result in the bottleneck described above.

(b) Since Node 2 needs to decode Node 1’s messages, our coding technique is

not applicable to relays with half-duplex constraints [77], [78]. Whereas,

the noise-forwarding strategy of [69] permits cooperation via half-duplex

relays.

(c) Our coding strategy is designed to accommodate for the messages of

Node 2 intended to Node 3, along with the need to cooperate with Node 1.

Therefore, noise-forwarding strategies may degrade the throughput of

the channel between Node 2 and Node 3. In this sense, our strategy

better utilizes the spectrum compared to the noise-forwarding strategy.

(d) Referring to Fig. 3.2, we realize the following multiple access channel in

our setting: MAC: (Node 1,Node 2) → Node 3, which models a multiple

access eavesdropper channel with Node 2 aiding the transmissions of

Node 1 in a causal manner. This resembles the multiple access channel

with an eavesdropper setup of [79], but unlike our model the eavesdrop-

per in their case observes a degraded version of the channel seen by the

destination.

2. Scenario II:

(a) For this scenario, noise-forwarding strategies at Node 2 may not be ap-

propriate, since it has a private message intended to Node 3. This is be-

cause, when the channel between Node 2 and Node 3 has a higher gain,

noise-insertion at Node 2 might result in the noise being amplified and

reducing the received signal-to-noise ratio at Node 3. However, noise-

forwarding may be employed by Node 1 to keep its message confidential
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from Node 2.

(b) This scenario is similar to the model considered in [70], where the chan-

nel model comprises a source broadcasting messages to two receivers.

In [70], the message has two parts: A common part and a private part.

The receiver of the private part also acts a relay and attempts to keep

a part of the received message secret from the other receiver. However,

in our chapter, we keep the message of Node 1 fully secret from the re-

lay (Node 2). Further, there is also an external eavesdropper (Node 4) in

our setting, whereas in [70], the model has only three communicating

nodes without an external eavesdropper. Scenario II is also similar

to the model considered in [71], where the source enlists the help of

a relay who is considered to be untrustworthy. However, in our chap-

ter, Node 1 completely abandons the help from Node 2 who is deemed

untrustworthy, by keeping the message fully secret. Note that, Node 2

tries to decode the message from Node 1 so as to keep the relay channel

setting fully functional.

(c) For Scenario II, MAC: (Node 1,Node 2) → Node 3 is a multiple access

channel with Node 2 eavesdropping on the (Node 1,Node 3) link. This

scenario is similar to multiple access channels with confidential mes-

sages [80], where the transmitting nodes keep their messages confiden-

tial from each other. However, in our setup, Node 2 is an untrustwor-

thy relay, which tries to decode the messages of Node 1 on a block-

wise/causal basis.

From the above discussion, we can infer that, though the noise-forwarding strat-

egy has several advantages over stochastic encoders, it is not particularly useful

for opportunistic/cognitive relays which have private messages to intended desti-

nations. Also, if the link between the relay and the final destination has a higher

gain, then noise-forwarding may result in reduced data rates for the main sender-

receiver pair.
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3.5.4 Comparison with the classical cognitive radio setting

In the existing literature on information theory for cognitive radios, the cognitive

terminal which is willing to share its resources (like transmit power, computa-

tion, etc.) is assumed to have a priori knowledge of the messages and codewords

of the incumbent primary user. The cognitive node then treats the codewords of

the primary as known interference and cancels it out using dirty-chapter coding

strategy. It has been shown in [31] - [48] that such a message-sharing mecha-

nism not only aids the primary to achieve better (or higher) data rates, but also

increases the overall throughput of the system. The cognitive radio thus ‘relays’

the message of the primary for better spectrum utilization. Such a model, though

clairvoyant, provides reasonable upper bounds for the performance limits for fu-

ture cooperative networks. On the other hand, the opportunistic-relay considered

in this chapter can be thought of as cognitive in a more realistic perspective. In

our model, the relay utilizes the cooperative paradigm to opportunistically trans-

mit its own message to the intended destination, thereby improving the spectrum

efficiency. Our model is practically more appealing, since the relay nodes do not

have a priori knowledge of the main sender’s message, unlike the classical cogni-

tive radio channel setup.

3.5.5 Connection between the two scenarios

It would be of great interest to construct a unifying model for the two commu-

nication channels - Scenario I and Scenario II - considered in this chapter. A

crucial point which acts against such a unifying model is that the resulting model

would not be feasible to compare our results with those in the existing literature.

This is especially true when one attempts to compare Scenario II in the chapter

with references [70] and [71] where similar models have been considered, and

also when comparing our results with the model presented in [80]. However, the

realization of such a unifying model would be a significant next step, and there is

much room for further research in this direction.
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3.6 Conclusions

We derived achievable rate regions and outer bounds for secure communica-

tions over discrete memoryless relay channels. We considered two different com-

munication scenarios over a four node wireless network comprising a source-

destination pair, a relay node and a malicious node eavesdropping on the link

between the relay and the destination. In both the scenarios, the relay was con-

sidered to be opportunistic, in the sense that it had a private message to the

destination. To derive inner bounds, we propose the layered coding architecture

to simultaneously deal with cooperation, cognition and confidentiality. Auxiliary

random variables are used to derive outer bounds to enable single-letter char-

acterization. We pointed out the advantages and drawbacks of layered coding

strategy in comparison to those in the existing literature. To the best of the au-

thor’s knowledge, this is the first instance concerning confidentiality over a relay

channel, when the relay has its own message intended to the destination. Gaus-

sian channel models can be considered to plot the rate regions and outer bounds,

and is relegated to future chapter.
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Chapter 4

State-dependent broadcast

channels

4.1 Introduction

The information-theoretic study of broadcast channels (BC) was initiated first by

Cover in [76]. In the classical setting, the BC comprises a sender who wishes

to transmit k independent messages to k noncooperative receivers. The largest

known inner bound on the capacity region when k = 2 was derived by Marton [23].

Recently, some ideas were discussed in [82], that is conjectured to lead to a larger

inner bound. Capacity outer bounds were presented by Sato in [83] by utilizing

the fact that the capacity region of BC depends on the marginal transition prob-

abilities. Nair and El Gamal provided outer bounds for the two-user case [30],

based on the results of the more capable BC [84]. Liang et. al generalized the

outer bounds of [30] by deriving the New-Jersey outer bound. Some properties of

the New-Jersey outer bound were exposed in [85], where it was shown to be equiv-

alent to the computable UVW-bound with bounded cardinalities of the auxiliary

random variables.

Several variants of this classical setting have also received considerable at-

tention. One of the most prominent variants is the state-dependent BC with
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side-information, where the probability distribution characterizing the channel

depends on a state process, and with the channel state made available as side-

information at the transmitter, or at the receiver, or at both ends. Capacity inner

bounds for the two-user BC with noncausal side-information at the transmit-

ter were derived in [22], where Marton’s achievability scheme was extended to

state-dependent channels. In [86], inner and outer bounds were derived for the

degraded BC with noncausal side-information at the transmitter; the capacity re-

gion was derived when side-information was obtained to the encoder in a causal

manner. The capacity region for BC with receiver side-information was derived

in [87], where a genie provides each receiver with the message it need not decode.

To the best of the authors’ knowledge, outer bounds for the two-user BC with

noncausal side-information at the encoder have not appeared in the literature.

Yet another issue in wireless communications, owing to the broadcast nature

of the wireless medium, is related to information security. That is, the broad-

cast nature of wireless networks facilitates malicious or unauthorized access

to confidential data, denial of service attacks, corruption of sensitive data, etc.

An information-theoretic approach to address problems related to security has

gained rapid momentum, and is commonly referred to as information-theoretic

confidentiality or wireless physical-layer security [6]. An information-theoretic

approach to secure broadcasting was inspired by the pioneering work of Csiszár

and Körner [88], who derived capacity bounds for the two-user BC, when the

sender transmits a private message to receiver 1 and a common message to both

receivers, while keeping the private message confidential from receiver 2. Secure

broadcasting with a single transmitter and multiple receivers in the presence of

an external eavesdropper was considered in [89], where the secrecy capacity re-

gion was obtained for several special classes of channels. In [90], capacity bounds

were derived for BC where a sender broadcasts two independent messages to two

receivers, while keeping each message confidential from the unintended receiver.

Capacity results and bounds for Gaussian BC with confidential messages were

reported in [91] - [93]. The reader is referred to [94] for a comprehensive review
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of physical-layer security in BC. However, to the best of the authors’ knowledge,

the joint problem of side-information and confidentiality on the BC has not been

addressed in the literature.

4.1.1 Main contributions

In this chapter, we aim to provide useful insights into the effect of noncausal side-

information at the encoder on (1) the classical two-user BC; (2) the BC with genie-

aided receiver side-information; and (3) the BC with confidentiality constraints

on the messages. Towards this end, we define three different classes of two-

user discrete memoryless BC with noncausal side-information at the encoder.

Of particular interest is the Class III channels (described below), which provides a

fundamental building block to jointly address side-information and confidentiality

in BC.
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Figure 4.1: State-dependent broadcast channels with side-information at the
transmitter: (a) Class I; (b) Class II; and (c) Class III.

1. Class I: A sender broadcasts two independent messages to two non-cooperating

receivers (see Fig. 4.1(a)). We derive an inner bound for this class of channels

and characterize the rate penalty for dealing with noncausal side-information

at the encoder. We are mainly concerned with outer bounds for this class of

channels, where we present an explicit single-letter characterization of the

sum-rate bound, along with bounds on single-user rates. An example for

Class I channels is a base-station transmitting to two mobile receivers, with

the base-station having prior knowledge of interference from a transmitter

located in its vicinity, e.g., through a backhaul network.
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2. Class II: A sender broadcasts two independent messages to two receivers,

with each receiver having a priori knowledge of the message it need not de-

code (see Fig. 4.1(b)). An example of this scenario is full-duplex communi-

cations between two nodes, aided by a relay. The relay node broadcasts the

messages to the terminals, with each terminal knowing its own message.

We devise an achievability scheme to derive an inner bound for this class of

channels and show that the achievable rate for each user is in fact the max-

imum rate achievable for a single-user channel with states known a priori at

the encoder. We also derive an outer bound which is within a fixed gap away

from the achievable region, where the gap is independent of the distribution

characterizing this class of channels.

3. Class III: A sender broadcasts two independent messages to two receivers,

such that each message is kept confidential from the unintended receiver

(see Fig. 4.1(c)). To the best of the authors’ knowledge, this is the first

instance of a study of simultaneous impact of side-information and confi-

dentiality constraints on BC. An inner bound for this class of channels is

derived employing stochastic encoders to satisfy confidentiality constraints;

we characterize the rate penalties for having to deal not only with side-

information, but also to satisfy confidentiality constraints. One of the outer

bounds is derived by employing a genie, which gives one of the receivers the

message it need not decode, while the other receiver computes the equivoca-

tion rate treating this message as side-information. We also derive another

outer bound, with an explicit characterization of the sum-rate bounds. As

an example for this class of channels, we can extend the example considered

for Class I channels, with the additional constraint of keeping each message

confidential from the unintended receiver.

The remainder of the chapter is organized as follows. In Section 4.2, we in-

troduce the notation used and provide a mathematical model for the discrete

memoryless version of the channels considered in this chapter. In Section 4.3,
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we summarize the main results of this chapter by describing inner and outer

bounds for all the channel models, and provide related discussion. The proofs

of the achievability theorems can be found in Section 4.4, while the proofs of the

outer bounds are provided in Section 4.5. Finally, we conclude the chapter in

Section 4.6. The encoder error analysis is relegated to Appendix C.1.

4.2 System model and notation

The channels belonging to Class I, Class II and Class III are denoted C1, C2 and C3,

respectively. Calligraphic letters are used to denote finite sets, with a probability

function defined on them. N is the number of channel uses, and n = 1, . . . ,N de-

notes the channel index. Uppercase letters denote random variables (RV), while

boldface uppercase letters denote a sequence of RVs. The following notation for

a sequence of RVs is useful: YN
1 , (Y1,1, . . . ,Y1,N ); Yn−1

1 , (Y1,1, . . . ,Y1,n−1); and

YN
1,n+1 , (Y1,n+1, . . . ,Y1,N). Lowercase letters are used to denote particular realiza-

tions of RVs, and boldface lowercase letters denote vectors. The sender is denoted

S and the receivers are denoted Dt, where t = 1, 2 is the receiver index. Discrete

RV X ∈ X and Yt ∈ Yt denote the channel input and outputs, respectively. The

encoder of S is supplied with side-information W ∈ WN, in a noncausal manner.

The channel is assumed to be memoryless and is characterized by the conditional

distribution p(Y1,Y2|X,W) =
∏N

n=1 p(Y1,n,Y2,n|Xn,Wn). For sake of brevity, in the re-

mainder of this chapter, we use p(x) to denote p(X = x). Unless otherwise stated,

p(x) =
∏N

n=1 p(xn).

To transmit its messages, S generates two RVs Mt ∈Mt, where

Mt = {1, . . . , 2NRt} denotes a set of message indices. Without loss of generality,

2NRt is assumed to be an integer, with Rt being the transmission rate intended

to Dt. Mt denotes the message S intends to transmit to Dt, and is assumed to be

independently generated and uniformly distributed over the finite setMt. Integer

mt ∈Mt is a particular realization of Mt and denotes the message-index.

Given the conditional distribution characterizing the channel, a
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((2NR1 , 2NR2),N, P
(N)
e ) code for the channels C1 and C2 comprises N encoding func-

tions f , such that X = f(m1,m2,W); for the channel C3, it comprises a stochastic

encoder, which is defined by the matrix of conditional probabilities φ(X|m1,m2,W),

such that
∑

X φ(X|m1,m2,W) = 1. Here, φ(X|m1,m2,W) denotes the probability that

a pair of message-indices (m1,m2) is encoded as X ∈ XN to be transmitted by S, in

the presence of noncausal side-information W. For all channel models, there are

two decoders gt : YN
t →Mt.

The average probability of decoding error for the code, averaged over all codes,

is P
(N)
e = max{P (N)

e,1 , P
(N)
e,2 }. A rate pair (R1, R2) is said to be achievable for the

channel Cc; c = 1, 2, 3, if there exists a sequence of ((2NR1 , 2NR2),N, P
(N)
e ) codes,

such that ∀ε > 0 and sufficiently small, P (N)
e ≤ ε as N → ∞. Furthermore, for

the channel C3, the following constraints [95] on the conditional entropy must be

satisfied for (R1, R2) to be considered achievable:

NR1 −H(M1|Y2) ≤ Nε, (4.1)

NR2 −H(M2|Y1) ≤ Nε. (4.2)

The capacity region is defined as the closure of the set of all achievable rate pairs

(R1, R2).

4.3 Main results

In this section, we state the achievability and converse theorems for all the chan-

nel models considered in this chapter, and provide related discussion. Let Cc

denote the capacity region of the channel Cc; c = 1, 2, 3. We use the following

auxiliary RVs defined on finite sets: U ∈ U , V1 ∈ V1 and V2 ∈ V2.

4.3.1 Class I channels

For the channel C1, we consider the set P1 of all joint probability distributions p1(.)

that can be factored as p(w)p(v1, v2|w)p(x |w , v1, v2)p(y1, y2|x). For a given p1(.) ∈ P1,
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a lower bound on the capacity region for C1 is described by the set R1,in(p1), which

is defined as the union over all distributions p1(.) of the convex hull of the set of

all rate pairs (R1, R2) that simultaneously satisfy (4.3) - (4.5).

R1 ≤ I(V1;Y1)− I(V1;W ), (4.3)

R2 ≤ I(V2;Y2)− I(V2;W ), (4.4)

R1 +R2 ≤ I(V1;Y1) + I(V2;Y2)− I(V1;V2)− I(V1,V2;W ), (4.5)

where V1 and V2 are constrained to satisfy the Markov chain (V1,V2) → (X ,W ) →

(Y1,Y2).

Theorem 4.3.1. Let R1,in =
⋃
p1(.)∈P1

R1,in(p1). Then, R1,in ⊆ C1.

For proof, see Section 4.4.1.

For a given p1(.) ∈ P1, an outer bound for C1 is described by the set R1,out(p1),

which is defined as the union of all rate pairs (R1, R2) that simultaneously satisfy

(4.6) - (4.7).

R1 ≤ I(V1;Y1)− I(V1;W ), (4.6)

R2 ≤ I(V2;Y2)− I(V2;W ), , (4.7)

where (V1,V2)→ (X ,W )→ (Y1,Y2).

Theorem 4.3.2. Let R1,out =
⋃
p1(.)∈P1

R1,out(p1). Then, C1 ⊆ R1,out.

The proof of Theorem 4.3.2 can be found in Section 4.5.1. However, this outer

bound does not include a bound on the sum-rates. To explicitly bound the sum-

rate, we provide the following alternative outer bound for the channel C1. We

consider the set P∗1 of all joint probability distributions p∗1(.) that can be factorized

as follows: p(w)p(u, v1, v2|w)p(x|w, u, v1, v2)p(y1, y2|x). For a given p∗1(.) ∈ P∗1 , an outer

bound for C1 is described by the set R∗1,out(p
∗
1), which is defined as the union of all
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rate pairs (R1, R2) that simultaneously satisfy (4.8) - (4.11).

R1 ≤ I(U,V1;Y1)− I(V1;W |U), (4.8)

R2 ≤ I(U,V2;Y2)− I(V2;W |U), (4.9)

R1 +R2 ≤ I(U,V1;Y1)− I(V1;W |U) + I(U,V2;Y2|V1)− I(V2;W |U,V1), (4.10)

R1 +R2 ≤ I(U,V2;Y2)− I(V2;W |U) + I(U,V1;Y1|V2)− I(V1;W |U,V2), (4.11)

where the following Markov chain is satisfied: (U,V1,V2)→ (X ,W )→ (Y1,Y2).

Theorem 4.3.3. Let R∗1,out =
⋃
p∗1(.)∈P∗1

R∗1,out(p
∗
1). Then, C1 ⊆ R∗1,out.

Section 4.5.2 contains the proof of Theorem 4.3.3.

4.3.2 Class II channels

For the channel C2, we consider the set P2 of all joint probability distributions

p2(.) of the form p(w)p(u|w)p(x |w , u)p(y1, y2|x). For a given p2(.) ∈ P2, a lower bound

on the capacity region for C2 is described by the set R2,in(p2), which is defined as

the union over all distributions p2(.) of the convex-hull of the set of all rate pairs

(R1, R2) that simultaneously satisfy (4.12) - (4.13).

R1 ≤ I(U;Y1)− I(U;W ), (4.12)

R2 ≤ I(U;Y2)− I(U;W ), (4.13)

where the Markov chain U → (X ,W )→ (Y1,Y2) holds.

Theorem 4.3.4. Let R2,in =
⋃
p2(.)∈P2

R2,in(p2). Then, R2,in ⊆ C2.

The proof of Theorem 4.3.4 is relegated to Section 4.4.2.

For a given p2(.) ∈ P2, an outer bound for C2 is described by the set R2,out(p2),

which is defined as the union of all rate pairs (R1, R2) that simultaneously satisfy
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(4.14) - (4.15).

R1 ≤ I(U;Y1)− I(U;W ) +H(U), (4.14)

R2 ≤ I(U;Y2)− I(U;W ) +H(U), (4.15)

with U → (X ,W )→ (Y1,Y2).

Theorem 4.3.5. Let R2,out =
⋃
p2(.)∈P2

R2,out(p2). Then, C2 ⊆ R2,out.

The proof of Theorem 4.3.5 can be found in Section 4.5.3.

4.3.3 Class III channels

For the channel C3, we consider the set P3 of all joint probability distributions

p3(.) that can be written as p(w)p(u)p(v1, v2|w , u)p(x |w , v1, v2)p(y1, y2|x). For a given

p3(.) ∈ P3, an inner bound on the capacity region for C3 is described by the set

R3,in(p3), which is defined as the union over all distributions p3(.) of the convex-

hull of the set of all rate pairs (R1, R2) that simultaneously satisfy (4.16) - (4.18).

R1 ≤ I(V1;Y1|U)−max[I(V1;Y2|U,V2), I(V1;W |U)], (4.16)

R2 ≤ I(V2;Y2|U)−max[I(V2;Y1|U,V1), I(V2;W |U)], (4.17)

R1 +R2 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;Y2|U,V2)− I(V2;Y1|U,V1)

−I(V1;V2|U)− I(V1,V2;W |U), (4.18)

where the following Markov chain is satisfied: U → (V1,V2)→ (X ,W )→ (Y1,Y2).

Theorem 4.3.6. Let R3,in =
⋃
p3(.)∈P3

R3,in(p3). Then, R3,in ⊆ C3.

Section 4.4.3 contains the proof of Theorem 4.3.6.

For a given p3(.) ∈ P3, an outer bound for C3 is described by the set R3,out(p3),

which is defined as the union of all rate pairs (R1, R2) that simultaneously satisfy

74



(4.19) - (4.20).

R1 ≤ min[I1, I
∗
1 ], (4.19)

R2 ≤ min[I2, I
∗
2 ], , (4.20)

where I1, . . . , I
∗
2 are given by (4.21) - (4.24), respectively.

I1 , I(V1;Y1|U)− I(V1;Y2|U) +H(W |U, V1), (4.21)

I2 , I(V2;Y2|U)− I(V2;Y1|U) +H(W |U, V2), (4.22)

I∗1 , I(V1;Y1|U,V2)− I(V1;Y2|U,V2) +H(W |U,V1,V2), (4.23)

I∗2 , I(V2;Y2|U,V1)− I(V2;Y1|U,V1) +H(W |U,V1,V2), (4.24)

where U → (V1,V2)→ (X ,W )→ (Y1,Y2). The expressions (4.23) - (4.24) are obtained

by letting a genie give D1 message M2, while D2 computes the equivocation using

M2 as side-information.

Theorem 4.3.7. Let R3,out =
⋃
p3(.)∈P3

R3,out(p3). Then, C3 ⊆ R3,out.

The proof of Theorem 4.3.7 can be found in Section 4.5.4. We also provide

the following outer bound for the channel C3, which explicitly characterizes the

sum-rates. Consider the set P∗3 of all joint probability distributions p∗3(.) that can

be factorized as follows: p(w)p(u, v1, v2|w)p(x|w, u, v1, v2)

p(y1, y2|x). For a given p∗3(.) ∈ P∗3 , an outer bound for C3 is described by the set

R∗3,out(p
∗
3), which is defined as the union of all rate pairs (R1, R2) that simultane-

ously satisfy (4.25) - (4.28).

R1 ≤ I(U,V1;Y1)− I(V1;W |U)− I(V1;Y2), (4.25)

R2 ≤ I(U,V2;Y2)− I(V2;W |U)− I(V2;Y1), (4.26)

R1 +R2 ≤ I(U,V1;Y1)− I(V1;W |U) + I(U,V2;Y2|V1)

−I(V2;W |U,V1)− I(V1;Y2), (4.27)

R1 +R2 ≤ I(U,V2;Y2)− I(V2;W |U) + I(U,V1;Y1|V2)
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−I(V1;W |U,V2)− I(V2;Y1), (4.28)

where (U,V1,V2)→ (X ,W )→ (Y1,Y2).

Theorem 4.3.8. Let R∗3,out =
⋃
p∗3(.)∈P∗3

R∗3,out(p
∗
3). Then, C3 ⊆ R∗3,out.

The proof of Theorem 4.3.8 can be found in Section 4.5.5.

4.3.4 Discussion
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Figure 4.2: Pictorial representation of the rate region for Class I channels.

A pictorial representation of the rate region for the channel C1 is shown in

Fig. 4.2. When R2 = 0, the channel resembles a single-user channel (S,D1) with

side-information (the Gel’fand-Pinsker’s (GP) channel [8]) and S can transmit at

the maximum achievable R1 given by (4.3), denoted by point the H. At the point

H, the maximum achievable R2 is given by the point E1 ≡ I(V2;Y2) − I(V1;V2) −

I(W ;V2); this is obtained by treating the channel (S,D2) as a single-user channel

with side-information. Therefore, the rectangle OHGE1 is achievable. By exchang-

ing R1 and R2 and following similar arguments the points E, given by (4.4), and

F1 ≡ I(V1;Y1) − I(V1;V2|U) − I(W ;V1) are achievable. Hence, the rectangle OEFF1

is also achievable. Since the points F and G are shown to be achievable, any point

which lies on the line FG can also be achieved by deriving a bound on the binning

rates (see (C.2) - (C.4), Appendix C.1). This leads to a sum rate bound given by
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(4.5). Finally, owing to convexity of the rate region, any point in the interior of the

line FG is also achievable. Therefore, an achievable rate region for C1 is described

by the pentagon OEFGH.

In the absence of side-information, i.e., W = {φ}, the channel reduces to the

classical two-user BC whose rate region is described by the convex-hull of the set

of all rate pairs (R1, R2) that satisfy the following inequalities:

R1 ≤ I(V1;Y1), (4.29)

R2 ≤ I(V2;Y2), (4.30)

R1 +R2 ≤ I(V1;Y1) + I(V2;Y2)− I(V1;V2). (4.31)

For channels of Class II, each bound in (4.12) - (4.13) is the capacity of GP’s

single-user channel with noncausal side-information. In the absence of side-

information, i.e., W = {φ}, we get Rt ≤ I(U ;Yt) = I(X;Yt), which represents the

capacity region of BC when each receiver is given the message it need not de-

code [87]. Furthermore, the outer bounds (4.14) - (4.15) is within a fixed gap,

H(U), from the achievable region, where H(U) is independent of the distribution

characterizing this class of channels.

For Class III channels, the terms I(V1;Y2|U,V2) and I(V2;Y1|U,V1) quantify the

rate-penalty for having to deal with confidentiality constraints on the messages,

while the terms I(V1;W |U) and I(V2;W |U) quantify the rate-penalty for having

to deal with side-information. Using a combination of results from GP’s chan-

nel and wiretap channels with side-information [96], we obtain a pictorial rep-

resentation of the rate region for the channel C3 as shown in Fig. 4.3. The ar-

guments used to obtain this schematic are similar to those used for the chan-

nel C1; therefore, we briefly explain the construction of Fig. 4.3. The point

A1 corresponds to the maximum achievable R1 (when R2 = 0) and is given by

(4.16). Exchanging R1 and R2 we get the point C1 given by (4.17). The points

B1 ≡ I(V2;Y2|U)−I(V2;Y1|U,V1)−max[I(V1;V2|U), I(W ;V2|U)] and D1 ≡ I(V1;Y1|U)−

I(V1;Y2|U,V2) − max[I(V1;V2|U), I(W ;V1|U)] are achievable by treating channels
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Figure 4.3: Pictorial representation of the rate region for Class III channels.

(S,D2) and (S,D1), respectively, as wiretap channels with side-information. The

line E1F1 corresponds to the sum rate bound given by (4.18). Finally, owing to con-

vexity of the rate region, any point in the interior of the line E1F1 is also achiev-

able. Therefore, an achievable rate region for C3 is described by the pentagon

OA1F1E1C1.

If the confidentiality constraints (4.1) - (4.2) are relaxed, the channel C3 re-

duces to the channel C1, whose rate region is described by (4.3) - (4.5). Further,

in the absence of side-information, i.e., W = {φ}, the channel reduces to the clas-

sical two-user BC whose rate region is described by (4.29) - (4.31). Lastly, if the

encoder satisfies confidentiality constraints in the absence of side-information,

the channel C3 reduces to BC with two independent and confidential messages

whose rate region was first characterized by Liu et. al [90]. It is described by the

convex-hull of the set of all rate pairs (R1, R2) that satisfy the following inequali-

ties:

R1 ≤ I(V1;Y1|U)− I(V1;Y2|U)− I(V1;V2|U), (4.32)

R2 ≤ I(V2;Y2|U)− I(V2;Y1|U)− I(V1;V2|U). (4.33)
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4.3.5 Relation to past work

For Class I channels, an inner bound was presented in [22] by extending Marton’s

achievability scheme for the classical two-user BC to include noncausal side-

information at the encoder. In this chapter, we employ Marton’s technique and

use results from the second moment method [24] to derive the inner bound which

matches with the results presented in [22]. However, our method is simpler and

generalizes well for obtaining inner bounds with other channel models, e.g., for

channels of Class III considered in this chapter. For the outer bound (specifically,

for the sum-rate), we generalize the technique presented in [30], to handle side-

information at the encoder. When the side-information constraint is relaxed, our

result reduces to the one presented for the classical two-user BC [30].

Class II channels were also addressed in [25], where an inner bound was de-

rived by employing Marton’s achievability scheme. An outer bound was also sug-

gested in [25], but without a formal proof. In this chapter, we derive an inner

bound by generalizing the method suggested in [87] by incorporating noncausal

side-information at the encoder. Our inner bound coincides with the one pre-

sented in [25], but once again the proof technique is much simpler. Furthermore,

for the outer bounds, we explicitly address the problem of dealing with the two-

dimensional rate region with a single auxiliary random variable.

For Class III channels, we show that when the confidentiality constraints are

relaxed, our achievable rate region reduces to region presented for the Class I

channels, and hence to the one presented in [22]. On the other hand, in the ab-

sence of side-information, our achievable region includes an explicit bound on the

sum-rate for the two-user BC with confidentiality constraints (a model considered

in [90]). This further strengthens the generalization of our proof technique.

4.4 Proofs of achievability theorems

In this section, we prove Theorem 4.3.1, Theorem 4.3.4 and Theorem 4.3.6. For

any ε > 0, we denote by A
(N)
ε (PX ) an ε-typical set comprising sequences picked
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from the distribution p(x). For all the channel models, the encoder is given an

ε−typical sequence W ∈ A(N)
ε (PW ) in a noncausal manner.

4.4.1 Proof of Theorem 4.3.1

For the channel C1, generate 2N[Rt+R
′
t] independent typical sequences Vt(it, jt) ∈

A
(N)
ε (PVt); t = 1, 2. Here, it ∈ {1, . . . , 2NRt}; jt ∈ {1, . . . , 2NR

′
t}. Uniformly distribute

2N[Rt+R
′
t] sequences into 2NRt bins, so that each bin, indexed by it, comprises

2NR
′
t sequences. To send the message pair (m1 = i1,m2 = i2), the encoder at S

looks for a pair (j1, j2) that satisfies the following joint typicality condition: ES ,

{(W,V1(i1, j1),V2(i2, j2)) ∈ A(N)
ε (PW ,V1,V2)}. An error is declared at the encoder of S,

if it is not possible to find the (j1, j2)−pair to satisfy the condition ES. The encoder

error analysis can be found in Appendix C.1. The channel input sequence is

X ∈ A(N)
ε (PX |W ,V1 ,V2

).

At the destination Dt, the decoder looks for (̂it, ĵt) that satisfies the following

joint typicality condition: EDt , {(Vt(̂it, ĵt),Yt) ∈ A(N)
ε (PVt,Yt)}. An error is declared

at decoder of Dt, if it not possible to find a unique integer ît to satisfy the condition

EDt. From the union of events bound, the probability of decoder error at Dt can

be upper bounded as follows: P (N)
e,Dt
≤ Pr(EcDt |ES) +

∑
ît 6=it

∑
jt

Pr(EDt |ES). From the

asymptotic equipartition property (AEP) [52], ∀ε > 0 and sufficiently small; and for

large N, Pr(EcDt |ES) ≤ ε. Further, for ît 6= it, Pr(EDt |ES) ≤ 2−N[I(Vt;Yt)−ε]. Therefore,

we have P (N)
e,Dt
≤ ε+2N[Rt+R

′
t]2−N[I(Vt;Yt)−ε], leading us to conclude that, for any ε0 > 0

and sufficiently small; and for large N, P (N)
e,Dt
≤ ε0 if

Rt +R
′
t < I(Vt;Yt). (4.34)

For the channel C1, the rate inequalities (4.34) and the bounds on the binning

rates (C.2) - (C.4) (see Appendix C.1) are combined to obtain an achievable rate

region given by (4.3) - (4.5). This completes the proof of Theorem 4.3.1.
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4.4.2 Proof of Theorem 4.3.4

For the channel C2, we consider the following two cases.

1. When R1 ≤ R2: Generate 2N(R2+R∗) typical sequences U(i, j) ∈ A
(N)
ε (PU); i ∈

{1, . . . , 2NR2};

j ∈ {1, . . . , 2NR∗}. Uniformly distribute these sequences into 2NR2 bins, so

that each bin comprises 2NR∗ sequences. The bins are indexed by i. Define

now the following mappings:

mt ∈ {1, . . . , 2NRt} 7→ Int(mt) ∈ {0, . . . , 2NR2 − 1}; t = 1, 2,

where Int(α) denotes an integer to represent α. To transmit the message

pair (m1,m2), compute
(
Int(m1) + Int(m2) mod 2NR2

)
. By construction, the

bin index

i , Int−1
(
Int(m1) + Int(m2) mod 2NR2

)
. Given the sequence W, the encoder

looks for an integer j to satisfy the following joint typicality condition:

(U(i, j),W) ∈ A(N)
ε (PW ,U).

Finally, X , f(U(i, j),W) is transmitted in N channel uses.

At receiver D1, given m2, the decoder looks for the pair (̂i , m̂1, ĵ) such that

the following joint typicality condition is satisfied:

ED1 , {(U(Int−1
(
Int(m̂1) + Int(m2) mod 2NR2

)
, j),Y1) ∈ A(N)

ε (PU,Y1)}.

From AEP, it can be shown that Pr(EcD1
) ≤ δ1;∀δ1 > 0 and sufficiently small;

and for large N, if R1+R∗ ≤ I(U;Y1). Similarly, it can be shown that Pr(EcD2
) ≤

δ2;∀δ2 > 0 and sufficiently small; and for large N, if R2 + R∗ ≤ I(U;Y2).

Additionally, by following a procedure similar to the one presented in Ap-

pendix C.1, we bound the binning rate as follows: R∗ > I(U;W ). Therefore,
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m1 (resp. m2) can be reliably decoded at D1 (resp. D2) if

R1 ≤ I(U;Y1)− I(U;W ), (4.35)

R2 ≤ I(U;Y2)− I(U;W ). (4.36)

2. When R2 ≤ R1: By symmetry, we get the same rate bounds as in (4.35) and

(4.36).

This completes the proof of Theorem 4.3.4.

4.4.3 Proof of Theorem 4.3.6

For the channel C3, generate a typical sequence U ∈ A(N)
ε (PU), known to all nodes

in the network. Generate 2N[Rt+R
′
t+R

∗
t ] independent typical sequences Vt(it, jt, kt) ∈

A
(N)
ε (PVt); it ∈ {1, . . . , 2NRt}; jt ∈ {1, . . . , 2NR

′
t}; kt ∈ {1, . . . , 2NR∗t }. Uniformly dis-

tribute 2N[Rt+R
′
t+R

∗
t ] sequences into 2NRt bins, so that each bin, indexed by it,

comprises 2N[R
′
t+R

∗
t ] sequences. Uniformly distribute 2N[R

′
t+R

∗
t ] sequences into 2NR

′
t

sub-bins indexed by (it, jt), so that each sub-bin comprises 2NR∗t sequences.

To send the message pair (m1,m2), S employs a stochastic encoder. In the bin

indexed by it, randomly pick a sub-bin indexed (it, jt). The encoder then looks for

a pair (k1, k2) that satisfies the following joint typicality condition:

(W,V1(i1, j1, k1),V2(i2, j2, k2)) ∈ A
(N)
ε (PW ,V1,V2|U). The channel input sequence X ∈

A
(N)
ε (PX |W ,V1,V2

) is transmitted in N uses of the channel.

At the destination Dt, given U, the decoder picks kt that satisfies the following

joint typicality condition: EDt , {(Vt(it, jt, kt),Yt) ∈ A
(N)
ε (PVt,Yt|U)}. An error is

declared at the decoder of Dt if it not possible to find an integer ît satisfying EDt.

From union of events bound, the probability of decoder error at Dt can be upper

bounded as follows: P (N)
e,Dt
≤ Pr(EcDt |ES) +

∑
ît 6=it

∑
jt,kt

Pr(EDt |ES). From AEP [52],

∀ε > 0 and sufficiently small; and for large N, Pr(EcDt |ES) ≤ ε and for ît 6= it, we

have Pr(EDt |ES) ≤ 2−N[I(Vt;Yt|U)−ε]. Therefore, P (N)
e,Dt
≤ ε+ 2N[Rt+R

′
t+R

∗
t ]2−N[I(Vt;Yt|U)−ε].
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For any ε0 > 0 and sufficiently small; and for large N, P (N)
e,Dt
≤ ε0 if

Rt +R
′
t +R∗t < I(Vt;Yt|U). (4.37)

The equivocation at the decoder of D2 is calculated by first considering the fol-

lowing lower bound: H(M1|YN
2 ) ≥ H(M1|YN

2 ,U
N,VN

2 ). Following the procedure

in [90, Section V-B] and using the fact that M1 → (UN,VN
1 ,V

N
2 ) → YN

2 forms a

Markov chain, we get

H(M1|YN
2 ) ≥ H(VN

1 |UN)− I(VN
1 ;VN

2 |UN)−H(VN
1 |M1,U

N,VN
2 ,Y

N
2 )−

I(VN
1 ;YN

2 |UN,VN
2 ). (4.38)

Now, ∀εl > 0; l = 4, . . . , 10 and sufficiently small; and for large N, the terms in (4.38)

become

H(VN
1 |UN)

(a)
= N[R1 +R′1 +R∗1]; I(VN

1 ;VN
2 |UN)

(b)
= NI(V1;V2|U) + Nε4;

H(VN
1 |M1,U

N,VN
2 ,Y

N
2 )

(c)

≤ Nε5; I(VN
1 ;YN

2 |UN,VN
2 )

(d)
= NI(V1;Y2|U,V2) + Nε6. (4.39)

In (4.39), (a) follows from the codebook construction; (b) and (d) follow from stan-

dard techniques (for e.g., see [90, Lemma 3]); and (c) is proved in [90, Lemma 2].

A similar procedure is followed to calculate the equivocation at the decoder at D1.

Finally, the security constraints (4.1) and (4.2) are satisfied by letting

R′1 = I(V1;Y2|U,V2)− ε7;R∗1 = I(V1;V2|U)− ε8; (4.40)

R′2 = I(V2;Y1|W ,U,V1)− ε9;R∗2 = I(V1;V2|W ,U)− ε10. (4.41)

For the channel C3, rate inequalities (4.37), constraints (4.40) - (4.41) and bounds

on the binning rates (C.5) - (C.7) (see Appendix C.1) are combined to obtain the

rate region described by (4.16) - (4.18). This completes the proof of Theorem 4.3.6.
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4.5 Proofs of converse theorems

In this section, we prove Theorem 4.3.2, Theorem 4.3.3, Theorem 4.3.5, Theo-

rem 4.3.7 and Theorem 4.3.8.

4.5.1 Proof of Theorem 4.3.2

For the channel C1, ∀ε > 0 and sufficiently small; and for large N, R1 can be

bounded as follows:

NR1 = H(M1) = I(M1;YN
1 ) +H(M1|YN

1 )

(a)

≤ I(M1;YN
1 ) + Nε

(b)
=

N∑
n=1

[H(Y1,n|Yn−1
1 )−H(Y1,n|Yn−1

1 ,M1)] + Nε

(c)

≤
N∑

n=1

[H(Y1,n)−H(Y1,n|Yn−1
1 ,M1)] + Nε =

N∑
n=1

I(M1,Y
n−1
1 ;Y1,n) + Nε

=
N∑

n=1

[I(M1,Y
n−1
1 ,WN

n+1;Y1,n)− I(WN
n+1;Y1,n|M1,Y

n−1
1 )] + Nε

(d)
=

N∑
n=1

[I(M1,Y
n−1
1 ,WN

n+1;Y1,n)− I(Yn−1
1 ;Wn|M1,W

N
n+1)] + Nε

(e)
=

N∑
n=1

[I(M1,Y
n−1
1 ,WN

n+1;Y1,n)− I(M1,W
N
n+1,Y

n−1
1 ;Wn)] + Nε,

where (a) follows from Fano’s inequality [52], (b) follows from the chain rule, (c)

follows from the fact that conditioning reduces entropy, (d) follows from Csiszár’s

sum identity [27] and (e) is due to the fact that (M1,WN
n+1) is independent of Wn.

We let V1,n = (M1,WN
n+1,Y

n−1
1 ) and note that this choice satisfies the Markov chain

requirement V1 → (X ,W ) → (Y1,Y2), specified in Section 4.3 for the channel C1.

Thus, we get

NR1 ≤
N∑

n=1

I(V1,n;Y1,n)− I(V1,n;Wn) + Nε. (4.42)
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Proceeding in a similar manner and letting V2,n = (M2,WN
n+1,Y

n−1
2 ), we get

NR2 ≤
N∑

n=1

I(V2,n;Y2,n)− I(V2,n;Wn) + Nε. (4.43)

4.5.2 Proof of Theorem 4.3.3

For the channel C1, ∀ε > 0 and sufficiently small; and for large N, R1 can be

bounded as

NR1 = H(M1) = I(M1;YN
1 ) +H(M1|YN

1 )

(a)

≤ I(M1;YN
1 ) + Nε,

where (a) follows from Fano’s inequality. Proceeding in a manner similar to the

proof of Theorem 4.3.2 (see Section 4.5.1), and letting Un = (WN
n+1,Y

n−1
1 ,YN

2,n+1)

and V1,n = M1.

NR1 ≤
N∑

n=1

I(Un,V1,n;Y1,n)− I(V1,n;Wn|Un) + Nε. (4.44)

Similarly, letting V2,n = M2, R2 can be upper bounded as follows:

NR2 ≤
N∑

n=1

I(Un,V2,n;Y2,n)− I(V2,n;Wn|Un) + Nε. (4.45)

We next upper bound R1 +R2 as follows. ∀ε > 0 and sufficiently small; and for

large N, we have

N(R1 +R2) = H(M1,M2) = H(M1) +H(M2|M1)

= I(M1;YN
1 ) +H(M1|YN

1 ) + I(M2;YN
2 |M1) +H(M2|YN

2 ,M1)

(a)

≤
N∑

n=1

I(M1;Y1,n|Yn−1
1 ) +

N∑
n=1

I(M2;Y2,n|YN
2,n+1,M1) + 2Nε,
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where (a) follows from Fano’s inequality. Consider

N∑
n=1

I(M1;Y1,n|Yn−1
1 ) ≤

N∑
n=1

I(M1,Y
n−1
1 ;Y1,n)

=

N∑
n=1

I(M1,Y
n−1
1 ,YN

2,n+1;Y1,n)−
N∑

n=1

I(YN
2,n+1;Y1,n|M1,Y

n−1
1 )

=

N∑
n=1

[I(M1,Y
n−1
1 ,YN

2,n+1,W
N
n+1;Y1,n)

− I(WN
n+1;Y1,n|M1,Y

n−1
1 ,YN

2,n+1)]

−
N∑

n=1

I(YN
2,n+1;Y1,n|M1,Y

n−1
1 )

(b)
=

N∑
n=1

[I(M1,Y
n−1
1 ,YN

2,n+1,W
N
n+1;Y1,n)

− I(M1;Wn|WN
n+1,Y

n−1
1 ,YN

2,n+1)]

−
N∑

n=1

I(YN
2,n+1;Y1,n|M1,Y

n−1
1 ) (4.46)

Next consider

N∑
n=1

I(M2;Y2,n|YN
2,n+1,M1) ≤

N∑
n=1

I(M2,Y
n−1
1 ;Y2,n|YN

2,n+1,M1)

=
N∑

n=1

I(Yn−1
1 ;Y2,n|YN

2,n+1,M1) +
N∑

n=1

I(M2;Y2,n|Yn−1
1 ,YN

2,n+1,M1)

=
N∑

n=1

I(Yn−1
1 ;Y2,n|YN

2,n+1,M1) +
N∑

n=1

I(M2,W
N
n+1;Y2,n|Yn−1

1 ,YN
2,n+1,M1)

−
N∑

n=1

I(WN
n+1;Y2,n|Yn−1

1 ,YN
2,n+1,M1,M2)

=
N∑

n=1

I(Yn−1
1 ;Y2,n|YN

2,n+1,M1) +

N∑
n=1

I(M2,Y
n−1
1 ,YN

2,n+1,W
N
n+1;Y2,n|M1)

−
N∑

n=1

I(M2;Wn|WN
n+1,Y

n−1
1 ,YN

2,n+1,M1)

(c)
=

N∑
n=1

I(Yn−1
1 ;Y2,n|YN

2,n+1,M1) +

N∑
n=1

I(M2,Y
n−1
1 ,YN

2,n+1,W
N
n+1;Y2,n|M1)

−
N∑

n=1

I(M2;Wn|WN
n+1,Y

n−1
1 ,YN

2,n+1,M1) (4.47)
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where (b) and (c) follow from Csiszár’s sum identity. With Un = (WN
n+1,Y

n−1
1 ,YN

2,n+1);

V1,n = M1; and V2,n = M2, from (4.46) and (4.47), we get

N(R1 +R2) ≤
N∑
n=1

[I(Un,V1,n;Y1,n)− I(V1,n;Wn|Un)]

+

N∑
n=1

[I(Un,V2,n;Y2,n|V1,n)− I(V2,n;Wn|V1,n,Un)] + 2Nε. (4.48)

Similarly, it can be shown that

N(R1 +R2) ≤
N∑

n=1

[I(Un,V2,n;Y2,n)− I(V2,n;Wn|Un)]

+
N∑

n=1

[I(Un,V1,n;Y1,n|V2,n)− I(V1,n;Wn|V2,n,Un)] + 2Nε. (4.49)

4.5.3 Proof of Theorem 4.3.5

For the channel C2, ∀ε > 0 and sufficiently small; and for large N, R1 can be

bounded as follows:

NR1 = H(M1) = I(M1;YN
1 ) +H(M1|YN

1 )

(a)

≤ I(M1;YN
1 ) + Nε

(b)

≤ I(M1;YN
1 ,M2) + Nε = I(M1;YN

1 |M2) + Nε

(c)
=

N∑
n=1

[H(Y1,n|Yn−1
1 ,M2)−H(Y1,n|Yn−1

1 ,M1,M2)] + Nε

(d)

≤
N∑

n=1

[H(Y1,n)−H(Y1,n|Yn−1
1 ,M1,M2)] + Nε

=
N∑

n=1

I(M1,M2,Y
n−1
1 ;Y1,n) + Nε

=

N∑
n=1

[I(M1,M2,Y
n−1
1 ,WN

n+1;Y1,n)− I(WN
n+1;Y1,n|M1,M2,Y

n−1
1 )] + Nε

(e)
=

N∑
n=1

[I(M1,M2,Y
n−1
1 ,WN

n+1;Y1,n)− I(M1;Wn|M2,Y
n−1
1 ,WN

n+1)] + Nε

(f)
=

N∑
n=1

[I(M1,M2,W
N
n+1;Y1,n)− I(M1,M2,W

N
n+1;Wn|Yn−1

1 )] + Nε
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(g)

≤
N∑

n=1

[I(M1,M2,W
N
n+1;Y1,n)− I(M1,M2,W

N
n+1;Wn) +H(M1,M2,W

N
n+1)] + Nε.

(4.50)

where (a) follows from Fano’s inequality; (b) follows from the data-processing in-

equality; (c) follows from chain rule; (d) follows from the fact that conditioning

reduces entropy; (e) follows from Csiszár’s sum identity; (f) is due to the mem-

oryless nature of the channel; and (g) is obtained after simple calculations. We

let Un , (M1,M2,WN
n+1) and note that this choice satisfies the Markov chain re-

quirement U → (X ,W ) → (Y1,Y2) specified in Section 4.3 for the channel C2 to

get

NR1 ≤
N∑
n=1

[I(Un;Y1,n)− I(Un;Wn) +H(Un)] + Nε. (4.51)

By symmetry, we get the following bound on R2:

NR2 ≤
N∑
n=1

[I(Un;Y2,n)− I(Un;Wn) +H(Un)] + Nε. (4.52)

We note that the factor H(Un) is independent of the distribution characterizing

the channel C2.

4.5.4 Proof of Theorem 4.3.7

For the channel C3, ∀ε > 0 and sufficiently small; and for large N, R1 can be

bounded as follows:

NR1 = H(M1) = I(M1;YN
1 ) +H(M1|YN

1 )

(a)

≤ I(M1;YN
1 ) + Nε

(b)

≤ I(M1;YN
1 )− I(M1;YN

2 ) + 2Nε

=

N∑
n=1

[I(M1;Y1,n|YN
1,n+1)− I(M1;Y2,n|Yn−1

2 )] + 2Nε

(c)
=

N∑
n=1

[I(M1,Y
n−1
2 ;Y1,n|YN

1,n+1)− I(M1,Y
N
1,n+1;Y2,n|Yn−1

2 )] + 2Nε
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(d)
=

N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 )− I(M1;Y2,n|YN

1,n+1,Y
n−1
2 )] + 2Nε

≤
N∑
n=1

[I(M1,Wn;Y1,n|YN
1,n+1,Y

n−1
2 )− I(M1;Y2,n|YN

1,n+1,Y
n−1
2 )] + 2Nε

(e)
=

N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ) + I(Wn;Y1,n|M1,Y

N
1,n+1,Y

n−1
2 )

−I(M1;Y2,n|YN
1,n+1,Y

n−1
2 )] + 2Nε

=
N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ) +H(Wn|M1,Y

N
1,n+1,Y

n−1
2 )

−H(Wn|M1,Y1,n,Y
N
1,n+1,Y

n−1
2 )− I(M1;Y2,n|YN

1,n+1,Y
n−1
2 )] + 2Nε

≤
N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ) +H(Wn|M1,Y

N
1,n+1,Y

n−1
2 )

−I(M1;Y2,n|YN
1,n+1,Y

n−1
2 )] + 2Nε,

where (a) is from Fano’s inequality, (b) is from confidentiality constraints, (c)

and (d) follow from Csiszár’s sum identity and (e) is the chain rule for mutual

information. Letting Un , (YN
1,n+1,Y

n−1
2 ); and V1,1 = · · · = V1,N , M1, where U and

V1 satisfy the Markov chain U → V1 → X specified in Section 4.3 for the channel

C3, we get

NR1 ≤
N∑
n=1

[I(V1,n;Y1,n|Un) +H(Wn|Un,V1,n)− I(V1,n;Y2,n|Un)] + 2Nε. (4.53)

Proceeding in a similar fashion and letting V2,1 = · · · = V2,N , M2,

NR2 ≤
N∑
n=1

[I(V2,n;Y2,n|Un) +H(Wn|Un,V2,n)− I(V2,n;Y1,n|Un)] + 2Nε. (4.54)

For the channel C3, we also derive a genie-aided outer bound by letting a

hypothetical genie give D1 message M2, while D2 computes the equivocation using

M2 as side-information. ∀ε > 0 and sufficiently small; and for large N, R1 can be

upper bounded as follows:

NR1 = H(M1) ≤ H(M1|YN
2 ) + Nε ≤ H(M1,M2|YN

2 ) + Nε
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= H(M1|YN
2 ,M2) +H(M2|YN

2 ) + Nε ≤ H(M1|YN
2 ,M2) + Nε

≤ H(M1|YN
2 ,M2)−H(M1|YN

1 ) + Nε
(a)

≤ H(M1|YN
2 ,M2)−H(M1|YN

1 ,M2) + Nε

≤ I(M1;YN
1 |M2)− I(M1;YN

2 |M2) + 2Nε

=
N∑
n=1

[I(M1;Y1,n|YN
1,n+1,M2)− I(M1;Y2,n|Yn−1

2 ,M2)] + 2Nε

(b)
=

N∑
n=1

[I(M1,Y
n−1
2 ;Y1,n|YN

1,n+1,M2)− I(M1,Y
N
1,n+1;Y2,n|Yn−1

2 ,M2)] + 2Nε

(c)
=

N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ,M2)− I(M1;Y2,n|YN

1,n+1,Y
n−1
2 ,M2)] + 2Nε

≤
N∑
n=1

[I(M1,Wn;Y1,n|YN
1,n+1,Y

n−1
2 ,M2)− I(M1;Y2,n|YN

1,n+1,Y
n−1
2 ,M2)] + 2Nε

=
N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ,M2) + I(Wn;Y1,n|M1,Y

N
1,n+1,Y

n−1
2 ,M2)

−I(M1;Y2,n|YN
1,n+1,Y

n−1
2 ,M2)] + 2Nε

=
N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ,M2) +H(Wn|M1, Y

N
n+1,Y

n−1
2 ,M2)

−H(Wn|M1,Y1,n,Y
N
1,n+1,Y

n−1
2 ,M2)− I(M1;Y2,n|YN

1,n+1,Y
n−1
2 ,M2)] + 2Nε

≤
N∑
n=1

[I(M1;Y1,n|YN
1,n+1,Y

n−1
2 ,M2) +H(Wn|M1,Y

N
1,n+1,Y

n−1
2 ,M2)

−I(M1;Y2,n|YN
1,n+1,Y

n−1
2 ,M2)] + 2Nε,

where (a) follows since the genie gives D1 message M2, (b) and (c) follow from

Csiszár’s sum identity. Letting Un , (YN
1,n+1,Y

n−1
2 ), V1,1 = · · · = V1,N , M1 and

V2,1 = · · · = V2,N , M2, where U, V1 and V2 satisfy the Markov chains U → V1 → X

and U → V2 → X specified in Section 4.3 for the channel C3, R1 can be bounded

as

NR1 ≤
N∑
n=1

[I(V1,n;Y1,n|Un,V2,n) +H(Wn|Un,V1,n,V2,n)− I(V1,n;Y2,n|Un,V2,n)] + 2Nε.(4.55)

Similarly,

NR1 ≤
N∑
n=1

[I(V2,n;Y2,n|Un,V1,n) +H(Wn|Un,V1,n,V2,n)− I(V2,n;Y1,n|Un,V1,n)] + 2Nε.(4.56)
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For the channel C3, the outer bound on R1 + R2 can be made tighter by the

following procedure. From (4.19) - (4.20), we see that

R1 +R2 ≤ I1 + I2, (4.57)

R1 +R2 ≤ I∗1 + I∗2 . (4.58)

Therefore,

R1 +R2 ≤ min[I1 + I∗2 , I2 + I∗1 ]. (4.59)

We show now that the bound (4.59) is a tighter bound than (4.57) and (4.58). It is

easy to see that

I1 + I2 = I∗1 + I∗2 + I(W ;V1|U, V2) + I(W ;V2|U, V1).

Consider 2(I1 + I2) = 2[I∗1 + I∗2 + I(W ;V1|U, V2) + I(W ;V2|U, V1)], which implies the

following:

min[I1 + I∗2 , I2 + I∗1 ] ≤ I1 + I2,

min[I1 + I∗2 , I2 + I∗1 ] ≤ I∗1 + I∗2 .

Therefore, the sum rate bound given by (4.59) is tighter than (4.57) and (4.58).

4.5.5 Proof of Theorem 4.3.8

For the channel C3, ∀ε > 0 and sufficiently small; and for large N, R1 can be

bounded as follows:

NR1 = H(M1) = I(M1;YN
1 ) +H(M1|YN

1 )

(a)

≤ I(M1;YN
1 ) + Nε

(b)

≤ I(M1;YN
1 )− I(M1;YN

2 ) + 2Nε,
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where (a) follows from Fano’s inequality; and (b) follows from confidentiality con-

straints. Following the procedure used to prove Theorem 4.3.3 (see Section 4.5.2)

and letting Un = (WN
n+1,Y

n−1
1 ,YN

2,n+1) and V1,n = M1,

NR1 ≤
N∑

n=1

I(Un,V1,n;Y1,n)− I(V1,n;Wn|Un)− I(V1,n;Y2,n) + 2Nε. (4.60)

Similarly, letting V2,n = M2, we get

NR2 ≤
N∑

n=1

I(Un,V2,n;Y2,n)− I(V2,n;Wn|Un)− I(V2,n;Y1,n) + 2Nε, (4.61)

and the following bounds on the sum-rate R1 +R2:

N(R1 +R2) ≤
N∑
n=1

[I(Un,V1,n;Y1,n)− I(V1,n;Wn|Un)]

+
N∑

n=1

[I(Un,V2,n;Y2,n|V1,n)− I(V2,n;Wn|V1,n,Un)]− I(V1,n;Y2,n) + 2Nε, (4.62)

N(R1 +R2) ≤
N∑

n=1

[I(Un,V2,n;Y2,n)− I(V2,n;Wn|Un)]

+
N∑

n=1

[I(Un,V1,n;Y1,n|V2,n)− I(V1,n;Wn|V2,n,Un)]− I(V2,n;Y1,n) + 2Nε. (4.63)

A time sharing RV Q, which is uniformly distributed over N symbols and in-

dependent of the RVs M1, M2, W , U, V1, V2, X , Y1 and Y2 is introduced for the

single letter characterization of the above derived outer bounds. Applying the

procedure similar to the one presented in [52, Chapter 15.3.4] on the N-letter

expressions obtained in the above stated theorems, we get the outer bounds pre-

sented in Section 4.3. This completes the proofs of Theorem 4.3.2, Theorem 4.3.3,

Theorem 4.3.5, Theorem 4.3.7 and Theorem 4.3.8.
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4.6 Conclusions

We presented inner and outer bounds on the capacity region of three classes of

two-user discrete memoryless broadcast channels, with noncausal side-information

at the encoder. We generalized existing approaches to prove the achievability theo-

rems, and characterized the rate penalties for having to deal with side-information

at the encoder. For channels with confidentiality constraints, we showed that

rate penalties exist for dealing with both side-information and confidentiality con-

straints. In the case of outer bounds, we focus on the explicit characterization of

the sum-rate bounds. For channels where each receiver has a priori knowledge

of the message of the other receiver, we showed that the outer bounds are only

a factor away from the achievable region, where the factor is independent of the

channel distribution.
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Chapter 5

Z-channels with cooperation

5.1 Introduction

An information theoretic model of the CR channel comprises the classic K−user

interference channel with one (or more) transmitter(s) having a priori knowledge

of the messages and the corresponding codewords of the others, and is commonly

referred to as the interference channel with degraded message sets. For the case

with K = 2 users, the best known bounds and in some cases the capacity region

were reported in [48], [97]. With K = 3 users, the capacity bounds for three

different message sharing schemes first appeared in [13] - [15], while some recent

advances were reported in [98], [99].

Yet another popular channel model in multiuser information theory is the ‘Z’

channel (see Fig. 5.1(a)) [100] - [104], comprising a sender-receiver pair such

that one of the senders encodes two independent messages intended to the two

receivers, while the other sender only encodes one message without causing in-

terference to the unintended receiver. A special case of the ‘Z’ channel is the

Z-interference channel - the two senders encode independent messages, with

each message intended to the pairing receiver, such that one of the transmit-

ters does not interfere with the unintended receiver. Cooperation/cognition on

the Z-interference channel was studied in [43] - [107].

In this chapter, we consider a Z-channel with degraded message sets (see
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Figure 5.1: (a) Z-channel, (b) Z-channel with degraded message sets.

Fig. 5.1(b)), where sender S1 (named cognitive) has noncausal knowledge of the

messages and the corresponding codewords of S2 (named primary). This channel

model was considered in [108], where the authors employ rate-splitting at S1 to

derive bounds on the capacity region of only the discrete memoryless version of

the channel. When the link between S1-D1 is noiseless, the bounds were shown to

be tight, yielding the capacity region of the channel. In this chapter, we consider

first the discrete memoryless channel model without employing rate-splitting at

either of the encoders to derive lower and upper bounds on the capacity region.

We then extend our results to the Gaussian case, to numerically evaluate and plot

these bounds.

To prove our inner bounds, we employ Marton’s broadcast code [23] at S2,

and derive an extension of Gel’fand-Pinsker’s binning principle [8] at S1. For the

outer bounds, we generalize Nair and El Gamal’s technique devised to derive the

outer bounds for the classic two-user broadcast channel [30]. Graphical results

obtained for the Gaussian case demonstrates the benefits, in terms of achievable

rates, of noncausal message sharing between the primary and cognitive users.

In addition, we report useful insights obtained by comparing the derived bounds

with those for some well-known channel models.

The rest of the chapter is organized as follows. We first consider the discrete

memoryless Z-channel with degraded message sets, for which we provide a math-

ematical model in Section 5.2 and state the achievability and converse theorems
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in Section 5.3. In Section 5.4, we introduce the Gaussian channel model, plot the

inner and outer bounds, and provide related discussion. We conclude the chapter

in Section 5.5.

5.2 Channel Model and Preliminaries

The discrete memoryless Z-channel with degraded message sets is denoted C.

For t = 1, 2, finite sets Xt and Yt denote the channel input and output alphabets,

respectively, random variables (RVs) Xt ∈ Xt and Yt ∈ Yt denote the inputs and

outputs, respectively. N is the number of channel uses, and n = 1, . . . ,N denotes

the channel index. The following notation for a sequence of RVs is useful: YN
1 ,

(Y1,1, . . . ,Y1,N ); Yn−1
1 , (Y1,1, . . . ,Y1,n−1); and YN

1,n+1 , (Y1,n+1, . . . ,Y1,N). For sake of

brevity, we use p(x) to denote p(X = x). Unless otherwise stated, p(x) =
∏N

n=1 p(xn).

The two transition probabilities p(y1|x1, x2) and p(y2|x2) characterize the channel

when (X1,X2) ∈ X1 × X2 is transmitted and (Y1,Y2) ∈ Y1 × Y2 is obtained by the

receivers.

To transmit its messages, S2 generates two RVs M2t ∈ M2t, where M2t =

{1, . . . , 2NR2t} denotes a set of message indices. Without loss of generality, 2NR2t

is assumed to be an integer, with R2t being the transmission rate intended to Dt.

M2t denotes the message S2 intends to transmit to Dt, and is assumed to be in-

dependently generated and uniformly distributed over the finite set M2t. Integer

m2t ∈ M2t is a particular realization of M2t and denotes the message-index. S1

generates one RV M11 ∈M11, whereM11 = {1, . . . , 2NR11} with R11 being the trans-

mission rate intended to D1. Furthermore, S1 treats the codewords corresponding

to m21 and m22 as non-causally known interference at the encoder.

Given the conditional distribution characterizing the channel, a

((2NR11 , 2NR21 , 2NR22),N, P
(N)
e ) code for the channel C comprises N encoding func-

tions f1 and f2, such that X1 = f1(m11,X2) and X2 = f2(m21,m22); and two decoding

function g1 : YN
1 7→ M11×M12 and g2 : YN

2 7→ M2 such that the average probability

of decoding error P (N)
e ≤ λ. The average probability of decoding error for the code,

96



averaged over all codes, is P (N)
e = max{P (N)

e,1 , P
(N)
e,2 }, where

P
(N)
e,1 =

∑
m11,m21

Pr
[
g1(YN

1 ) 6= (m11,m21)|(m11,m21,m22)
]

2N[R11+R21]
,

P
(N)
e,2 =

∑
m22

Pr
[
g2(YN

2 ) 6= (m22)|(m21,m22)
]

2NR22
.

For the channel C, (R11, R21, R22) ∈ R+ is said to be achievable if there exists a

(2dnR11e, 2dnR21e2dnR22e,N, P
(N)
e ) code such that P (N)

e → 0 as N → ∞. The capacity

region is the closure of the set of all achievable rate triples (R11, R21, R22) and is

denoted by C.

5.3 Capacity Bounds for C

For the channel C, let P∗ denote the set of all joint probability distributions p(.),

that factor as follows:

p(w , u, v , x1, x2, y1, y2) = p(u, v)p(x2|u, v)p(w |u, v)

p(x1|w , u, v)p(y1|x1, x2)p(y2|x2),

where u, v , and w are particular realizations of the auxiliary RVs U ∈ U , V ∈ V,

and W ∈ W, respectively, defined on finite sets. For a given p(.) ∈ P∗, an achiev-

able rate region for C is described by Rin(p), defined as the set of all rate triples

(R11, R21, R22) ∈ R+ such that the inequalities (5.1) - (5.5) are simultaneously sat-

isfied:

R11 ≤ I(W ;Y1|U)− I(U, V ;W ), (5.1)

R21 ≤ I(U ;Y1|W )− I(U ;V ), (5.2)

R11 +R21 ≤ I(W,U ;Y1)− I(U ;V )− I(U, V ;W ), (5.3)

R22 ≤ I(V ;Y2)− I(U ;V ), (5.4)

R21 +R22 ≤ I(U ;Y1|W ) + I(V ;Y2)− I(U ;V ). (5.5)
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Theorem 5.3.1. Let Rin =
⋃
p(.)∈P∗ Rin(p). The region Rin is an achievable rate

region for the channel C, i.e., Rin ⊆ C.

The proof of Theorem 5.3.1 is relegated to the Appendix D.

For a given p(.) ∈ P∗, an outer bound on the capacity region C is described

by Rout(p), defined as the set of all rate triples (R11, R21, R22) ∈ R+ such that the

inequalities (5.6) - (5.11) are simultaneously satisfied:

R11 ≤ I(W ;Y1), (5.6)

R21 ≤ I(W,U ;Y1), (5.7)

R11 +R21 ≤ I(W,U, V ;Y1), (5.8)

R22 ≤ I(W,V ;Y2), (5.9)

R21 +R22 ≤ I(W,U ;Y1) + I(V ;W,U, Y2)

−I(V ;W,U), (5.10)

R21 +R22 ≤ I(W,V ;Y2) + I(U ;W,V, Y1)

−I(U ;W,V ), (5.11)

where W , U and V satisfy the Markov chains: W → X1 → Y1 and (U,V ) → X2 →

(Y1,Y2).

Theorem 5.3.2. Let Rout =
⋃
p(.)∈P∗ Rout(p). The region Rout is an outer bound for

the channel C, i.e., C ⊆ Rout.

The proof of Theorem 5.3.2 follows from the one presented in Chapter 4 and is

omitted.

5.4 The Gaussian Case

The Gaussian Z-channel with degraded message sets is denoted by CG and is

specified by the following input-output relationship.

Y1 = h11X1 + h21X2 + Z1, (5.12)
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Figure 5.2: R21 Vs R22 for fixed R11 = 0 bps/Hz, R11 = 0.5 bps/Hz and R11 = 1
bps/Hz along with the outer bound.The power at the transmitters is 10dB.

Y2 = h22X2 + Z2, (5.13)

where Z1 ∼ N (0, Q1) and Z2 ∼ N (0, Q2) are drawn i.i.d. The channel coefficients

h11, h21 and h22 are assumed to be real and globally known. For the channel CG,

the RVs W , U and V denote the sources at the transmitters. We also consider the

following RVs: W̃ ∼ N (0, P1); Ũ ∼ N (0, τP2); and Ṽ ∼ N (0, τ̄P2), where τ + τ̄ = 1.

Further, we let W = W̃ + αX2; U = Ũ; and V = Ṽ + βU. The input RVs X1 = W̃

and X2 = Ũ + Ṽ , so that X1 ∼ N (0, P1) and X2 ∼ N (0, P2). τ and τ̄ are randomly

selected from the interval [0, 1], while the values α and β are repeatedly generated

according to N (0, 1).

Substituting for X1 and X2, we get

Y1 = h11W̃ + h21(Ũ + Ṽ ) + Z1, (5.14)

Y2 = h22(Ũ + Ṽ ) + Z2. (5.15)
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Figure 5.3: R11 Vs R22 for fixed R21 = 0 bps/Hz, R21 = 0.5 bps/Hz and R21 = 1
bps/Hz along with the outer bound.The power at the transmitters is 10dB.

We construct the following vector θ = (Y1,Y2,W ,U,V ). The covariance matrix

Σ , E[θθT] is then used to compute the mutual information terms (5.1) - (5.5) and

(5.6) - (5.11). Owing to space limitation, we do not show this computation.

The resulting plots of achievable rate regions and outer bounds are shown

next. In Fig. 5.2, we plot the rate regions and the outer bound for R21 versus

R22 when R11 is promised a constant rate of 0, 0.5 and 1 bps/Hz. As shown, with

increasing R11, the achievable region shrinks. Furthermore, it is important to

note that there is no change in the maximum achievable rate of R22 since the

transmissions of S1 does not interfere with D2. The shrinkage in the rate region is

solely attributed to the reduction in the maximum achievable rate R21. Also note

that, the outer bound is only plotted for the case of R11 = 0 bps/Hz. In Fig. 5.3, we

plot the rate regions and the outer bound for R11 versus R22 when R21 is promised

a constant rate of 0, 0.5 and 1 bps/Hz. Similar to Fig. 5.2, with increasing R21, the

achievable region shrinks. However, unlike Fig. 5.2, the shrinkage is due to the
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Figure 5.4: R11 Vs R21 for fixed R22 = 0 bps/Hz, R22 = 0.5 bps/Hz and R22 = 1
bps/Hz along with the outer bound.The power at the transmitters is 10dB.

reduction in the maximum achievable rates of both R11 and R22 since the rate R21

not only acts as interference to D2, but also penalizes the maximum achievable

R11. As before, the outer bound is only plotted for the case of R21 = 0 bps/Hz,

which coincides with the achievable rate region, thereby yielding the capacity

region of the channel.

Lastly, in Fig. 5.4, we plot the rate regions and the outer bound for R11 versus

R21 when R22 is promised a constant rate of 0, 0.5 and 1 bps/Hz. Similar to

Fig. 5.2 and Fig. 5.3, with increasing R22, the achievable region shrinks. Again,

the shrinkage is due to the reduction in the maximum achievable rates of both

R11 and R21 since the rate R22 acts as interference to both D1 and D2. The outer

bound is only plotted for the case of R22 = 0 bps/Hz.
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5.5 Conclusions

We studied cooperation on the Z-channel under the assumption that the cognitive

transmitter had noncausal knowledge of the message sets and the corresponding

codewords of the primary user. We derived lower bounds on the capacity re-

gion by employing Marton’s coding technique at the non-cognitive encoder; at the

cognitive transmitter, we presented a generalization of Gel’fand-Pinsker’s binning

technique for handling two sequences known a priori at the encoder. Plots of

the achievable rate regions and outer bounds were presented by considering the

Gaussian channel model, and some interesting observations were revealed.
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Chapter 6

Future work

In this chapter, we propose two research problems dealing with cooperation and

security in wireless networks. First, we plan to establish upper and lower bounds

on the capacity region of a broadcast network aided by a layer of relay nodes,

such that the encoder is constrained to keep each message confidential from the

unintended receiver(s). Second, we plan to work on deriving capacity bounds,

and in some case even the capacity regions, for the Z-channel. The Z-channel is

especially difficult since it is a combination of the broadcast and multiple access

channels. In this chapter, we formally define the problem and suggest some

avenues for possible solution of the proposed problems.

6.1 Secure broadcasting with relays

Consider a broadcast network aided by relay nodes, as shown in Fig. 6.1. The

main sender, denoted Base Station, has k confidential messages intended to k re-

ceivers non-cooperating receivers. The encoder of the Base Station is constrained

to keep each message secrect/confidential from the unintended receivers. For

example, in Fig. 6.1, message m1 intended to Receiver1 has to be kept confiden-

tial from Receiver2 and Receiver3; similarly for messages m2 and m3. We plan to

establish inner and outer bounds on the capacity region of this channel, by em-

ploying a combination of Marton’s achievability scheme for the classical broad-
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Figure 6.1: Secure broadcasting with relays.

cast channel [23], block Markov superposition coding [17] and backward decod-

ing [19], in conjunction with stochastic encoders to achieve information-theoretic

secrecy [20].

6.1.1 Related work

The problem of confidentiality/security in relay networks has been addressed

along various lines in the information theory literature. Capacity bounds for co-

operation in wireless networks was presented in [66], where authenticated relay

nodes employ noise insertion strategies [67] to achieve secrecy. In [68], an op-

portunistic selection technique of two relay nodes was presented to secure com-

munications between a source-destination pair from the eavesdropper. The first

relay employed a simple decode-and-forward strategy, while the second relay is

used to create intentional interference at the eavesdropper, thereby jamming its

reception. The relay-eavesdropper channel was considered in [69], where user-

cooperation has been exploited to achieve secrecy. In particular, the relay node

employed a novel noise-forwarding strategy to confuse the eavesdropper. How-

ever, the relay was considered to be a deaf-helper, in the sense that it is totally

104



ignorant of the transmitted messages.

An information-theoretic approach to secure broadcasting was inspired by the

pioneering work of Csiszár and Körner [88], who derived capacity bounds for the

two-user BC, when the sender transmits a private message to receiver 1 and a

common message to both receivers, while keeping the private message confiden-

tial from receiver 2. In [90], capacity bounds were derived for BC where a sender

broadcasts two independent messages to two receivers, while keeping each mes-

sage confidential from the unintended receiver. Capacity results and bounds for

Gaussian BC with confidential messages were reported in [91] - [93]. The reader

is referred to [94] for a comprehensive review of physical-layer security in BC.

6.1.2 Proposed methodology

We propose the following coding/decoding scheme:

1. The main sender employs a combination of block Markov superposition cod-

ing and Marton’s achievability scheme, which further involves GPs’ bin-

ning principle [8] and the second moment method for bounding the binning

rates [24]. It also employs stochastic encoders to achieve secrecy.

2. The relay nodes perform decode-and-forward operations for every block of

data it receives from the sender. However, before forwarding, they again

perform stochastic binning to ensure full secrecy to respective receivers.

Furthermore, during the first block when the relays receive no data from

the main sender, they use special noise-insertion strategies [67] to ensure

that secrecy is not compromised on any block.

3. The receivers employ backward decoding, where they accumulate all the

blocks and start decoding from the last block. Note that, this introduces

extensive delays; however, under asymptotic conditions (in the number of

blocks), the rates achieved cannot be traded against secrecy.
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6.2 Secure broadcasting via distributed coordination
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Classical broadcasting
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Figure 6.2: Secure broadcasting via distributed coordination.

In this work, we suggest an information-theoretic viewpoint of broadcasting,

cooperation and security. Specifically, as shown in Fig. 6.2, it is a variation (in

fact, a special case) of the work proposed in Section 6.1. In this model, the

Base Station has no direct channel gain to the receivers. As such, it enlists the

help of the intermediate relay nodes to improve its throughput to the desired des-

tination. Similar to Section 6.1, we wish to keep the messages confidential from

the unintended receiver. However, the notable difference is that the Base Station

does not need to perform stochastic encoding since it does not see a channel gain

to either of the receivers. Instead, the full responsibility of secure communica-

tions is handed over the intermediate relay nodes. That is, all the relay nodes

participating in the communication scenario perform stochastic encoding in con-

junction with Markov superposition coding to achieve the desired secrecy.

6.2.1 Related work

The channel model considered in Section 6.2 is the broadcast version of the di-

amond channel first presented in [109], in which a single source transmits to a

single destination in the presence of two relay nodes; there is no direct channel

gain between the source and the destination. In [110], a special case of the di-
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amond channel was considered where the channel between the source and one

of the relays is noisy, while the channel between the source and the other relay

is noiseless. The capacity region was derived, and is shown to be strictly smaller

than the cut-set bound. Another special case of the diamond channel is consid-

ered in [111], where the channel between the source and the relays are of finite

capacities, while the channel between the relay nodes and the destination is a

Gaussian multiple access channel. The capacity region of this channel is estab-

lished when the separate links to the relays are of the same capacity and the

power constraints of the two relays are identical. In [112], the capacity region of

the diamond channel is established when the outputs of the two relays are deter-

ministic functions of the source’s input, and the channel between the relays and

destination is noiseless.

6.2.2 Proposed methodology

For the channel model presented in Fig. 6.2, we propose the following coding

scheme:

1. The Base Station employs the standard Marton’s achievability scheme [23]

for the two-user broadcast channel to transmit the message pair (m1,m2) to

the relays Relay1 and Relay2. Note that, Base Station does not have a direct

channel gain to either Receiver1 or Receiver2.

2. Relayk, k = 1, 2, then uses a combination of block Markov superposition cod-

ing [19], binning [76], and stochastic encoding to not only aid transmissions

from Base Station, but also to keep m1 secret from Receiver1 and m2 secret

from Receiver2.

3. Lastly, Receiverk, k = 1, 2, employ backward decoding to recover the trans-

mitted information.
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[38] I. Marić, A. Goldsmith, G. Kramer, and S. Shamai, “On the capacity of

interference channels with one cooperating transmitter,” European Trans.

Telecomm., vol. 19, pp. 405–420, Apr. 2008.

[39] ——, “On the capacity of interference channels with a cognitive transmitter,”

in Proc. IEEE Inf. Theory and App. Workshop, La Jolla, CA, Jan. - Feb. 2007,

pp. 268 –273.

[40] ——, “On the capacity of interference channels with a partially-cognitive

transmitter,” in Proc. IEEE Int. Symp. Inf. Theory, Nise, France, Jun. 2007,

pp. 2156 –2160.

[41] ——, “An achievable rate region for interference channels with one coop-

erating transmitter,” in Proc 41st Asilomar Conf. Signals, Syst. and Comp.,

Pacific Grove, CA, Nov. 2007, pp. 888–892.
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Appendix A

Proofs for the interference

channel

A.1 Proof of Theorem 2.2.1

Here, we present the proof of achievability for the channel C2
CuMS. The proof is

presented in four parts, namely, codebook generation, encoding, decoding and

analysis of probabilities of decoding errors at the three receivers. We start with

the codebook generation scheme.

A.1.1 Codebook Generation

Let us fix p(.) ∈ P2
CuMS. Generate a random time sharing codeword q, of length n,

according to the distribution
∏n
i=1 p(qi). Generate 2nR11 independent codewords

W(j), according to
∏n
i=1 p(wi|qi). For every w(j), generate one codeword X1(j)

according to
∏n
i=1 p(x1i|wi(j), qi). For τ = 1, 2, generate 2n(R2τ+I(W ;Uτ |Q)+4ε) inde-

pendent codewords Uτ (lτ ), according to
∏n
i=1 p(uτi|qi). For every codeword triple

[u1(l1),u2(l2),w(j)], generate one codeword X2(l1, l2, j) according to∏n
i=1 p(x2i|u1i(l1), u2i(l2), wi(j), qi). Uniformly distribute the 2n(R2τ+I(W ;Uτ |Q)+4ε) code-

words Uτ (lτ ) into 2nR2τ bins indexed by kτ ∈
{

1, . . . , 2nR2τ
}

such that each bin

contains 2n(I(W ;Uτ |Q)+4ε) codewords. For ρ = 1, 3, generate
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2n(R3ρ+I(W,U1,U2;Vρ|Q)+4ε) independent codewords Vρ(tρ), according to
∏n
i=1 p(vρi|qi).

For every codeword quadruple [v1(t1),v3(t3),u1(l1),u2(l2),w(j)], generate one code-

word X3(t1, t3, l1, l2, j) according to
∏n
i=1 p (x3i|v1i(t1), v3i(t3), u1i(l1), u2i(l2), wi(j), qi).

Distribute 2n(R3ρ+I(W,U1,U2;Vρ|Q)+4ε) codewords Vρ(tρ) uniformly into 2nR3ρ bins in-

dexed by rρ ∈
{

1, . . . , 2nR3ρ
}

such that each bin contains 2n(I(W,U1,U2;Vρ|Q)+4ε) code-

words. The indices are given by j ∈
{

1, . . . , 2nR11
}
, lτ ∈

{
1, . . . , 2n(R2τ+I(W ;Uτ |Q)+4ε)

}
and tρ ∈ {1, . . . , 2n(R3ρ+I(W,U1,U2;Vρ|Q)+4ε)}.

A.1.2 Encoding & Transmission

Let A(n)
ε be a typical set. We will be using the notation A

(n)
ε to describe a typical

set over many different random variables, but the definition will be clear from the

context.

Let us suppose that the source message vector generated at the three senders

is

(m11,m21,m22,m31,m33) = (j, k1, k2, r1, r3). At the encoders, the first component is

treated as the message index and the last four components are treated as the

bin indices. S2 looks for a codeword u1(l1) in bin k1 and a codeword u2(l2) in

bin k2 such that (u1(l1),w(j),q) ∈ A(n)
ε and (u2(l2),w(j),q) ∈ A(n)

ε , respectively. S3

looks for a codeword v1(t1) in bin r1 and a codeword v3(t3) in bin r3 such that

(v1(t1),u1(l1),u2(l2),w(j),q) ∈ A(n)
ε and (v3(t3),u1(l1),u2(l2),w(j),q) ∈ A(n)

ε , respec-

tively. S1, S2 and S3 then transmit codewords x1(j), x2(l1, l2, j) and x3(t1, t3, l1, l2, j),

respectively, through n channel uses. The transmissions are assumed to be syn-

chronized.

A.1.3 Decoding

Recall that in C2
CuMS, the primary receiver can decode the public parts of the non-

pairing sender’s messages, while the secondary receivers can only decode the

messages from their pairing transmitters. The three receivers accumulate an n-

length channel output sequence: y1 at R1, y2 at R2 and y3 at R3. Decoders
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1, 2 and 3 look for all indices (ĵ,
ˆ̂
l1,

ˆ̂t1), (l̂1, l̂2) and (t̂1, t̂3), respectively, such that

(w(ĵ),u1(l1),v1(t1),y1,q) ∈ A(n)
ε , (u1(l̂1),u2(l̂2),y2,q) ∈ A(n)

ε and (v1(t̂1),v3(t̂3),y3,q) ∈

A
(n)
ε . If ĵ in all the index triples found are the same, R1 declares m11 = ĵ, for some

l1 and t1. If l̂1 in all the index pairs found are indices of codewords u1(l̂1) from the

same bin with index k̂1, and l̂2 in all the index pairs found are indices of codewords

u2(l̂2) from the same bin with index k̂2, then R2 determines (m21,m22) = (k̂1, k̂2).

Similarly, if t̂1 in all the index pairs found are indices of codewords v1(t̂1) from the

same bin with index r̂1, and t̂3 in all the index pairs found are indices of codewords

v3(t̂3) from the same bin with index r̂3, then R3 determines (m31,m33) = (r̂1, r̂3).

Otherwise, the receivers R1, R2 and R3 declare an error.

A.1.4 Analysis of the Probabilities of Error

Upper bounds on the probabilities of error events which could happen during

encoding and decoding processes are derived using typicality arguments [52].

Here, we only show the analysis of the probability of encoding error at the sender

S2, and the probability of decoding error at the receiver R1.

We assume that a source message vector (m11,m21,m22,m31,m33) = (j, k1, k2, r1, r3)

is encoded and transmitted. First, let us define the following events:

(i) Ejl1 ,
{

(W(j),U1(l1),q) ∈ A(n)
ε

}
,

(ii) Ejl2 ,
{

(W(j),U2(l2),q) ∈ A(n)
ε

}
,

(iii) Ejl1t1 ,
{

(W(j),U1(l1),V1(t1),Y1,q) ∈ A(n)
ε

}
.

Ec(.) , complement of the event E(.). Events (i) and (ii) will be used in the analysis

of probability of encoding error while the event (iii) will be used in the analysis of

probability of decoding error.

A.1.4.1 Probability of Error at the Encoder of S2

An error is made if (a) the encoder cannot find a u1(l1) in the bin indexed by k1

such that the event Ejl1 occurs or (b) it cannot find a u2(l2) in the bin indexed by

k2 such that the event Ejl2 occurs. The probability of encoding error at S2 can be
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bounded as

Pe,S2 ≤ P

 ⋂
U1(l1)∈bin(k1)

(W(j),U1(l1),q) /∈ A(n)
ε


+ P

 ⋂
U2(l2)∈bin(k2)

(W(j),U2(l2),q) /∈ A(n)
ε

 , (A.1)

≤ (1− P (Ejl1))2n(I(W ;U1|Q)+4ε)

+ (1− P (Ejl2))2n(I(W ;U2|Q)+4ε)

,

where P (.) is the probability of an event. Since q is predetermined, and w and u1

are independent given q,

P (Ejl1) =
∑

(w,u1,q)∈A(n)
ε

P (W(j) = w|q)P (U1(l1) = u1|q)

≥ 2n(H(W,U1|Q)−ε)2−n(H(W |Q)+ε)2−n(H(U1|Q)+ε) = 2−n(I(W ;U1|Q)+3ε).

Similarly, P (Ejl2) ≥ 2−n(I(W ;U2|Q)+3ε). Therefore,

Pe,S2 ≤ (1− 2−n(I(W ;U1|Q)+3ε))2n(I(W ;U1|Q)+4ε)
+ (1− 2−n(I(W ;U2|Q)+3ε))2n(I(W ;U2|Q)+4ε)

.

Now,

(1− 2−n(I(W ;U1|Q)+3ε))2n(I(W ;U1|Q)+4ε)
= e2n(I(W ;U1|Q)+4ε) ln(1−2−n(I(W ;U1|Q)+3ε))

≤ e2n(I(W ;U1|Q)+4ε)(−2−n(I(W ;U1|Q)+3ε)) = e−2nε .

Clearly, Pe,S2 → 0 as n→∞.

A.1.4.2 Probability of Error at the Decoder of R1

There are two possible events which result in errors: (a)The codewords transmit-

ted are not jointly typical i.e., Ecjl1t1 happens or (b) there exists some ĵ 6= j such

that E
ĵ
ˆ̂
l1

ˆ̂t1
happens. Note that ˆ̂

l1 need not equal l1, and ˆ̂t1 need not equal t1, since

R1 is not required to decode ˆ̂
l1 and ˆ̂t1 correctly. The probability of decoding error
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can, therefore, be expressed as

P
(n)
e,R1

= P
(
Ecjl1t1

⋃
∪ĵ 6=jEĵˆ̂l1ˆ̂t1

)
(A.2)

Applying union of events bound, (A.2) can be written as,

P
(n)
e,R1
≤ P

(
Ecjl1t1

)
+ P

(
∪ĵ 6=jEĵˆ̂l1ˆ̂t1

)

= P
(
Ecjl1t1

)
+
∑
ĵ 6=j

P
(
Eĵl1t1

)
+

∑
ĵ 6=jˆ̂l1 6=l1

P
(
E
ĵ
ˆ̂
l1t1

)
+

∑
ĵ 6=jˆ̂t1 6=t1

P
(
E
ĵl1

ˆ̂t1

)
+

∑
ĵ 6=jˆ̂l1 6=l1ˆ̂t1 6=t1

P
(
E
ĵ
ˆ̂
l1

ˆ̂t1

)
.

P
(
Eĵl1t1

)
, P
(
E
ĵ
ˆ̂
l1t1

)
, P
(
E
ĵl1

ˆ̂t1

)
and P

(
E
ĵ
ˆ̂
l1

ˆ̂t1

)
can be upper bounded as follows.

P
(
Eĵl1t1

)
≤ 2−n(I(W ;U1,V1,Y1|Q)−3ε),

P
(
E
ĵ
ˆ̂
l1t1

)
≤ 2−n(I(W,U1;V1,Y1|Q)+I(W ;U1|Q)−4ε),

P
(
E
ĵl1

ˆ̂t1

)
≤ 2−n(I(W,V1;U1,Y1|Q)+I(W ;V1|Q)−4ε),

P
(
E
ĵ
ˆ̂
l1

ˆ̂t1

)
≤ 2−n(I(W,U1,V1;Y1|Q)+I(W,U1;V1|Q)+I(W ;U1|Q)−5ε).

Substituting these in the probability of decoding error at R1, we have,

P
(n)
e,R1

= ε+ 2nR112−n(I(W ;U1,V1,Y1|Q)−3ε)

+2n(R11+R21+I(W ;U1|Q)+4ε)2−n(I(W,U1;V1,Y1|Q)+I(W ;U1|Q)−4ε) +

2n(R11+R31+I(W,U1,U2;V1|Q)+4ε)2−n(I(W,V1;U1,Y1|Q)+I(W ;V1|Q)−4ε) +

2n(R11+R21+I(W ;U1|Q)+4ε+R31+I(W,U1,U2;V1|Q)+4ε)2−n(I(W,U1,V1;Y1|Q)+I(W,U1;V1|Q)+I(W ;U1|Q)−5ε).

P
(n)
e,R1
→ 0 as n→∞ if R11, R21 and R31 satisfy the following constraints:

R11 ≤ I(W ;U1, V1, Y1|Q)

R11 +R21 ≤ I(W,U1;V1, Y1|Q)

R11 +R31 ≤ I(W,V1;U1, Y1|Q) + I(W ;V1|Q)− I(W,U1, U2;V1|Q)
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R11 +R21 +R31 ≤ I(W,U1, V1;Y1|Q) + I(W,U1;V1|Q)− I(W,U1, U2;V1|Q).

The analysis of error-probabilities for the sender S3, and the receivers R2 and R3

can be found in [16]. Therefore, we conclude that, the probability of error terms

can be made arbitrarily small, if the rate inequalities (2.6)-(2.15) are simultane-

ously satisfied. This concludes the proof of the achievability of the rate region for

C2
CuMS.

A.2 Proof of Corollary 2.3.1

In the case of CtG,CuMS, when senders S2 and S3 do not have any message of their

own to transmit, they can use their noncausal message knowledge to entirely help

sender S1. The rate tuple (R∗1, 0, 0) is therefore achievable, where R∗1 is the capacity

of the vector channel (S1,S2,S3)→ R1, given by

R∗1 =
1

2
log2

1 +

(√
P 1 + |a12|

√
P 2 + |a13|

√
P 3

)2

Q1

 . (A.3)

Next, when the rate achieved by sender S1 is zero, S2 can cancel the interference

from S1 completely by employing dirty-paper coding. However, due to the the

message splitting model assumed here, R2 sees interference from S3 regardless of

the R3 achieved, except in the case where S3 helps R2 in receiving its message.

This case is dealt with in Corollary 2.3.2. Hence, the rate achievable by (S2,R2) is

R∗2 =
1

2
log2

(
1 +

P2

Q2 + |a23|2 P3

)
. (A.4)

When R1 = 0 and R2 = R∗2, due to the noncausal knowledge of S1 and S2’s mes-

sages, S3 can completely mitigate the effect of interference and achieve the inter-

ference free rate, R∗3, given by

R∗3 =
1

2
log2

(
1 +

P3

Q3

)
. (A.5)
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Hence, the rate tuple (0, R∗2, R
∗
3) is achievable. Finally, the convex hull of the rate

region G2
CuMS with these points is achievable by standard time-sharing arguments.
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Appendix B

Proofs for the relay channel

B.1 Proof of Theorem 3.4.1

Here, we provide the proof of Theorem 3.4.1. Let n = 1, . . . , N ; j = 1, . . . , 2NR
′
13; and

k = 1, . . . , 2NR
′
23. Generate 2NR13 N−sequences w(m′13) with the nth symbol of every

sequence picked i.i.d from the distribution P (w′n). For every sequence w(m′13),

generate

1. 2NR13 N−sequences u(m′13,m13) with the nth symbol of every sequence picked

i.i.d from P (un|wn).

2. 2NR
′
13 N−sequences v(m′13, j) with the nth symbol of every sequence picked

i.i.d from P (vn|wn). This resembles 2NR13 bins, each comprising 2NR
′
13 se-

quences. These bins are indexed by m′13.

Also, generate 2N [R23+R′23] N−sequences z(m23, k) with the nth symbol of every se-

quence picked i.i.d from P (zn). Uniformly distribute these 2N [R23+R′23] sequences

into 2NR23 bins, so that each bin comprises 2NR
′
23 sequences. These bins are

indexed by m23. For every pair of sequences (w,u), generate one N− sequence

x1(m′13,m13) with the nth symbol picked i.i.d from P (x1,n|wn, un). For every triplet

of sequences (w,v, z), generate one N− sequence x2(m′13, j,m23, k) with the nth

symbol picked i.i.d from P (x2,n|wn, vn, zn).
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For notational convenience, the messages are denoted m′13,b, m13,b and m23,b,

and are transmitted in B blocks each with N channel uses; b = 1, . . . , B is the

block index. First, we define the following events:

(a) E2,1 , {(w(1),u(1, m̄13,1),v(1, j1), z(m23,1, k1),y2,1) ∈ A(N)
ε (PW,U,V,Z,Y2)},

(b) E2,b , {(w(m̄′13,b),u(m̄′13,b, m̄13,b),v(m̄′13,b, jb), z(m23,b, kb),y2,b) ∈ A(N)
ε (PW,U,V,Z,Y2)}.

1. In block 1,

(a) Node 1 transmits x1,1 = x1(1,m13,1),

(b) Node 2 transmits x2,1 = x2(1, j1,m23,1, k1).

In block 1, Node 2 has no information necessary for cooperation. Therefore,

its transmits x2,1. Without loss of generality, one can assume such a protocol

to exist between Node 2 and Node 3. The resulting loss in rate is negligible

as B → ∞. At the end of block 1, Node 2 chooses m̄13,1 such that the joint

typicality condition E2,1 is satisfied. This information will be used by Node 2

to transmit x2(m̄′13,2, j2,m23,2, k2) in block 2.

2. In block b = 2, . . . , B − 1,

(a) Node 1 transmits x1,b = x1(m′13,b,m13,b),

(b) Node 2 transmits x2,b = x2(m̄′13,b, jb,m23,b, kb).

At the end of block b, Node 2 chooses m̄13,b such that the joint typicality

condition E2,b is satisfied. This information will be used by Node 2 to transmit

x2,b+1 in block b+ 1. Here, m̄′13,b = m̄13,b−1 is obtained by Node 2 in block b− 1.

3. In block B,

(a) Node 1 transmits x1,B = x1(m′13,B, 1),

(b) Node 2 transmits x2,B = x2(m̄′13,B, jB, 1, kB).

Here, m̄′13,B = m̄13,B−1 is obtained by Node 2 in block B − 1.
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The encoding and decoding (described later in this Appendix) operations are done

on a “block-by-block” basis. In each block, there are n channel uses; on the

current channel use, the relay will output a codeword which is a function of

the previous n − 1 symbols of the source and its own message intended to the

destination.

We describe now the transmission procedure adopted by Node 2. In block b+ 1,

to transmit the message pair (m̄13,b,m23,b+1), Node 2 employs a stochastic encoder:

1. Randomly choose a sequence v(m̄′13,b+1, jb+1) in the bin indexed m̄′13,b+1.

2. In the bin indexed by m23,b+1, randomly choose a sequence z(m23,b+1, kb+1).

Corresponding to the triplet (w,v, z), Node 2 transmits x2(m̄′13,b+1, jb+1,m23,b+1, kb+1).

We employ a combination of backward and simultaneous decoding techniques

to recover the transmitted information, where the decoders accumulate B blocks

of data and start decoding from the last block. Before proceeding, we define the

following events:

(a) E3,B , {
(
w(m̂′13,B),u(m̂′13,B, 1),v(m̂′13,B, jB), z(m′13,b, 1, kb),y3,B

)
∈ A(N)

ε (PW,U,V,Z,Y3)},

(b) E3,b , {
(
w(m̂′13,b),u(m̂′13,b, m̂13,b),v(m̂′13,b, jb), z(m′13,b, m̂23,b, kb),y3,b

)
∈ A(N)

ε (PW,U,V,Z,Y3)},

(c) E3,1 , {(w(1),u(1,m13,1),v(1, j1), z(1, m̂23,1, k1),y3,1) ∈ A(N)
ε (PW,U,V,Z,Y3)}.

1. In block B, the decoder of Node 3 looks for the pair (m̂′13,B, 1) that satisfies

the joint typicality condition E3,B.

2. In block b = 2, . . . , B − 1, the decoder of Node 3 first sets m̂13,b = m̂′13,b+1 and

looks for (m̂′13,b, m̂23,b) that satisfies the joint typicality condition E3,b.

3. In block 1, the decoder of Node 3 sets m13,1 = m̂′13,2 and looks for m̂23,1 such

that E3,1 is satisfied.

The message m13 was coded at a higher rate, R′13 + R13. However, during the

decoding process, the receiver can only decode the low rate message m′13 which
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was coded at a rate R′13. Also, note that, there is no difference between m′13 and

m13, both denote the message indices of the same message set M13; the former

is the message coded at a lower rate, while the latter will be coded at a higher

rate using superposition principle. This is the essence of Markov superposition

coding.

The average error probability at Node 3, averaged over all codes, is given by

P
(N)
e,3 = Pr

{⋃
b

⋃
t

(M̂t3,b 6= Mt3,b)

}
; b = 1, . . . , B; t = 1, 2.

We now derive an upper bound for P (N)
e,3 . For notational convenience, we drop the

block index b and without loss of generality assume that (m′13,m13,m23) = (1, 1, 1)

was transmitted. By the union of events bound, we have

P
(N)
e,3 ≤

B∑
b=2

Pr (Ec3) +
B∑
b=2

∑
(m̂′13,m̂23)6=(1,1)

∑
j,k

Pr (E3) +
B−1∑
b=1

Pr (Ec2) +
B−1∑
b=1

∑
m̄13 6=1

Pr (E2) .

From the asymptotic equipartition property [52], Pr (Ec3) ≤ ε and Pr (Ec2) ≤ ε, ∀ε > 0

and sufficiently small for large N . Furthermore, from the properties of jointly typ-

ical sequences [52, Section 15.2, pp. 520-524], the probabilities of the individual

error events can be upper bounded as follows:

Pr (E3) ≤ 2−N [I(W,U,V ;Y3|Z)−3ε], when m̂′13 6= 1,

Pr (E3) ≤ 2−N [I(Z;Y3|W,U,V )−3ε], when m̂23 6= 1,

Pr (E3) ≤ 2−N [I(W,U,V,Z;Y3)−4ε], when (m̂′13, m̂23) 6= (1, 1),

Pr (E2) ≤ 2−N [I(U ;Y2|W,V,Z)−4ε], when m̄13 6= 1.

Therefore, we have,

P
(N)
e,3 ≤ 3(B − 1)ε+ (B − 1)2N(R13+R′13)2−N [I(W,U,V ;Y3|Z)−3ε]

+(B − 1)2N(R23+R′23)2−N [I(Z;Y3|W,U,V )−3ε]

+(B − 1)2N(R13+R′13+R23+R′23)2−N [I(W,U,V,Z;Y3)−4ε] + (B − 1)2NR132−N [I(U ;Y2|W,V,Z)−4ε].
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Finally, P (N)
e,3 can be made arbitrarily small if, ∀ε > 0 and sufficiently small for

N →∞, the following inequalities are simultaneously satisfied:

R13 +R′13 ≤ I(W,U, V ;Y3|Z), (B.1)

R23 +R′23 ≤ I(Z;Y3|W,U, V ), (B.2)

R13 +R′13 +R23 +R′23 ≤ I(W,U, V, Z;Y3), (B.3)

R13 ≤ I(U ;Y2|W,V,Z). (B.4)

An error is declared at the encoder of Node 2, if (i) it is not able to find a

typical sequence v(m′13, j) ∈ A
(N)
ε (PV |W ) or (ii) it is not able to find a typical se-

quence z(m23, k) ∈ A(N)
ε (PZ). Let us define the event E1 , {v ∈ A(N)

ε (PV |W )}. The

probability of encoder error at Node 2 can be bounded as follows:

P
(N)
e,2 ≤ P

⋂
j

v /∈ A(N)
ε (PV |W )

 ≤ (1− P (E1))2N(R′13+4ε)

.

P (E1) =
∑

A
(N)
ε (PV |W )

P (W = w)P (V = v|W = w)

≥ 2N(H(V |W )−ε)2−N(H(W )+ε)2−N(H(V |W )+ε) = 2−N [H(W )+3ε].

Therefore,

P
(N)
e,2 ≤

(
1− 2−N [H(W )+3ε]

)2N [R′13+4ε]

= e2N [R′13+4ε] ln(1−2−N [H(W )+3ε])

≤ e2N [R′13+4ε]

(−2−N [H(W )+3ε]) = e−2N [R′13−H(W )]ε

.

Clearly, P (N)
e,2 → 0, ∀ε > 0 and sufficiently small for N →∞ iff R′13 > H(W ).

An error is also declared at the encoder of Node 2 if it is not able to find a

typical sequence z(m23, k) ∈ A(N)
ε (PZ). Let us define the event E2 , {z ∈ A(N)

ε (PZ)}.
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The probability of encoder error at Node 2 can be bounded as follows:

P
(N)
e,2 ≤ P

(⋂
k

z /∈ A(N)
ε (PZ)

)
≤ (1− P (E2))2N(R′23+4ε)

.

P (E2) =
∑

A
(N)
ε (PZ)

P (Z = z) ≥ 2N(H(Z)−ε)2−N(H(W )+ε) = 2−2Nε.

Clearly, P (N)
e,2 → 0, ∀ε > 0 and sufficiently small for N →∞.

We compute now the equivocation at Node 4’s receiver and show that the code

satisfies confidentiality constraints. In each block b = 1, . . . , B, consider the fol-

lowing equivocation lower bound:

H(M13|Y N
4 ) = H(M13,W

N , V N , Y N
4 )−H(WN , V N |M13, Y

N
4 )−H(Y N

4 )

= H(M13,W
N , V N ) +H(Y N

4 |M13,W
N , V N )−H(WN , V N |M13, Y

N
4 )

− H(Y N
4 )

= H(M13,W
N , V N )−H(WN , V N |M13, Y

N
4 )− I(M13,W

N , V N ;Y N
4 )

(a)
= H(M13,W

N , V N )−H(WN , V N |M13, Y
N

4 )− I(WN , V N ;Y N
4 ),

≥ H(WN , V N )−H(WN , V N |M13, Y
N

4 )− I(WN , V N ;Y N
4 ),

where (a) follows from the Markov chain M13 →WN → V N → Y N
4 , with

I(M13;Y N
4 |WN , V N ) = 0. Let us consider each term separately.

1. H(WN , V N ) = N(R13 +R′13) (see codebook construction),

2. H(WN , V N |M13, Y
N

4 ) ≤ Nε1 (see Appendix B.5),

3. I(WN , V N ;Y N
4 ) ≤ NI(W,V ;Y2) (using standard techniques).

Therefore, H(M13|Y N
4 ) ≥ NR13 +NR′13−Nε−NI(W,V ;Y2). Let R′13 = I(W,V ;Y2)− ε2,

∀ε2 > 0 and sufficiently small for large N . Therefore, we have H(M13|Y N
4 ) ≥ NR13−

Nε and the secrecy constraint (3.1) is satisfied.
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Also consider the following:

H(M23|Y N
4 ) = H(M23, Z

N , Y N
4 )−H(ZN |M23, Y

N
4 )−H(Y N

4 )

= H(M23, Z
N ) +H(Y N

4 |M23, Z
N )−H(ZN |M23, Y

N
4 )−H(Y N

4 )

= H(M23, Z
N )−H(ZN |M23, Y

N
4 )− I(M23, Z

N ;Y N
4 )

(a)
= H(M23, Z

N )−H(ZN |M23, Y
N

4 )− I(ZN ;Y N
4 ),

≥ H(ZN )−H(ZN |M23, Y
N

4 )− I(ZN ;Y N
4 ),

where (a) follows from the Markov chain M23 → ZN → Y N
4 , with I(M23;Y N

4 |ZN ) = 0.

Let us consider each term separately.

1. H(ZN ) = N(R13 +R∗13) (see codebook construction),

2. H(ZN |M23, Y
N

4 ) ≤ Nε1 (see Appendix B.5),

3. I(ZN ;Y N
4 ) ≤ NI(Z;Y4) (using standard techniques).

Therefore, H(M23|Y N
4 ) ≥ NR23+NR′23−Nε−NI(Z;Y4). Let R′23 = I(Z;Y4)−ε3, ∀ε3 > 0

and sufficiently small for large N . Therefore, we have H(M23|Y N
4 ) ≥ NR23−Nε and

the secrecy constraint (3.2) is satisfied.

Finally, an achievable rate region for C, given by (3.5) - (3.7), is obtained by

substituting for R′13 and R′23 in (B.1) - (B.3).

B.2 Proof of Theorem 3.4.2

We prove now Theorem 3.4.2. For any sequence of
((

2NR13 , 2NR23
)
, N
)

codes such

that P (N)
e,3 → 0 and P

(N)
e,2 → 0 for N →∞, the probability mass function on the joint

ensemble space M13 ×M23 ×XN1 ×XN2 × YN2 × YN3 × YN4 is given by

p(m13,m23,x1,x2,y1,y2,y3,y4) = p(m13)p(m23)p(x1|m13)

N∏
n=1

p(x2,n|m23, y
n−1
2 )

×p(y2,n|x1,n, x2,n)p(y3,n, y4,n|y2,n, x2,n).
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For reliable communications, we have from Fano’s inequality [52],

H(M13|Y N
2 ) ≤ NR13P

(N)
e,2 + 1 = Nδ2,N , (B.5)

H(M13,M23|Y N
3 ) ≤ N(R13 +R23)P

(N)
e,3 + 1 = Nδ3,N , (B.6)

where δ2,N > 0, δ3,N > 0 and sufficiently small for large N . We also use the

following: M13 = V1 = · · · = VN , M23 = Z1 = · · · = ZN , Y n−1
3 = Wn and Y n−1

2 =

Un. R13 can be upper bounded as follows. Consider the following bound on the

equivocation obtained from the security constraint (3.1) and Fano’s inequality

(B.6):

NR13 = H(M13)

≤ H(M13|Y N
4 ) +Nε

≤ H(M13|Y N
4 )−H(M13|Y N

3 ) +Nδ3,N

= H(M13|Y4,1)−H(M13|Y3,N )

+
N∑
n=2

[H(M13|Y4,n)]−
N−1∑
n=1

[H(M13|Y3,n)] +Nδ3,N

=

N∑
n=1

[H(M13|Y4,n)]−
N∑
n=1

[H(M13|Y3,n)] +Nδ3,N

=

N∑
n=1

[I(M13;Y3,n)]−
N∑
n=1

[I(M13;Y4,n)] +Nδ3,N

(a)

≤
N∑
n=1

[H(M13|M23)−H(M13|M23, Y3,n)]−
N∑
n=1

[I(M13;Y4,n)] +Nδ3,N

=

N∑
n=1

[I(M13;Y3,n|M23)]−
N∑
n=1

[I(M13;Y4,n)] +Nδ3,N

(b)

≤
N∑
n=1

[H(Y3,n|M23)−H(Y3,n|Y n−1
2 , Y n−1

3 ,M23,M13)]−
N∑
n=1

[I(M13;Y4,n)] +Nδ3,N

=

N∑
n=1

[I(Y n−1
2 , Y n−1

3 ,M13;Y3,n|M23)]−
N∑
n=1

[I(M13;Y4,n)] +Nδ3,N ,

where (a) and (b) follow from the fact that conditioning reduces entropy. There-
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fore,

NR13 ≤
N∑
n=1

I(Wn, Un, Vn;Y3,n|Zn)− I(Vn;Y4,n) +Nδ3,N . (B.7)

R23 can be upper bounded as follows. Consider the following bound on the

equivocation obtained from the security constraint (3.2) and Fano’s inequality

(B.6):

NR23 = H(M23)

≤ H(M23|Y N
4 ) +Nε

≤ H(M23|Y N
4 )−H(M23|Y N

3 ) +Nδ3,N

= H(M23|Y4,1)−H(M23|Y3,N )

+
N∑
n=2

[H(M23|Y4,n)]−
N−1∑
n=1

[H(M23|Y3,n)] +Nδ3,N

=
N∑
n=1

[H(M23|Y4,n)]−
N∑
n=1

[H(M23|Y3,n)] +Nδ3,N

=
N∑
n=1

[I(M23;Y3,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

(a)

≤
N∑
n=1

[H(M23|M13)−H(M23|M13, Y3,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

=
N∑
n=1

[I(M23;Y3,n|M13)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N ,

where (a) follows because of the fact that (i) M13 and M23 are independent and (ii)

conditioning reduces entropy. Therefore,

NR23 ≤
N∑
n=1

I(Zn;Y3,n|Vn)− I(Zn;Y4,n) +Nδ3,N . (B.8)

R13 + R23 can be upper bounded as follows. Consider the following bound

on the equivocation obtained from the security constraint (3.1), (3.2) and Fano’s
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inequalities (B.5), (B.6):

N(R13 +R23) = H(M13,M23)

≤ H(M13,M23|Y N
4 ) +Nε

≤ H(M13,M23|Y N
4 )−H(M13,M23|Y N

3 ) +Nδ3,N

= H(M13,M23|Y4,1)−H(M13,M23|Y3,N )

+
N∑
n=2

[H(M13,M23|Y4,n)]−
N−1∑
n=1

[H(M13,M23|Y3,n)] +Nδ3,N

=
N∑
n=1

[H(M13,M23|Y4,n)]−
N∑
n=1

[H(M13,M23|Y3,n)] +Nδ3,N

=
N∑
n=1

[H(M13|Y4,n)] +
N∑
n=1

[H(M23|Y4,n)]−
N∑
n=1

[H(M13,M23|Y3,n)] +Nδ3,N

=
N∑
n=1

[I(M13,M23;Y3,n)]−
N∑
n=1

[I(M13;Y4,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

(a)

≤
N∑
n=1

[H(Y3,n)−H(Y3,n|Y n−1
2 , Y n−1

3 ,M13,M23)]

−
N∑
n=1

[I(M13;Y4,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

=
N∑
n=1

[I(Y n−1
2 , Y n−1

3 ,M13,M23;Y3,n)]−
N∑
n=1

[I(M13;Y4,n)]

−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N ,

where (a) follows from the fact that conditioning reduces entropy. Therefore,

N(R13 +R23) ≤
N∑
n=1

I(Wn, Un, Vn, Zn;Y3,n)− I(Vn;Y4,n)− I(Zn;Y4,n) +Nδ3,N . (B.9)

Finally, a time-sharing RV Q, which is uniformly distributed over N symbols

and and independent of M13, M23, XN1 , XN2 , YN2 ,YN3 ,YN4 , can be introduced for

the single letter characterization of the above derived outer bounds. Applying

the procedure similar to the one presented in [52, Chapter 15.3.4] on (B.7), (B.8)

and (B.9), we get the outer bounds on R13 and R23 as given by (3.8) - (3.10),
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respectively.

B.3 Proof of Theorem 4.3.4

Let n = 1, . . . , N ; l = 1, . . . , 2NR
∗
13; and k = 1, . . . , 2NR

′
23. Generate 2NR13 N−sequences

w(m′13) with the nth symbol of every sequence picked i.i.d from the distribution

P (w′n). For every sequence w(m′13), generate 2NR
∗
13 N−sequences u(m′13, l) with the

nth symbol of every sequence picked i.i.d from P (un|wn). This resembles 2NR13 bins

with each bin comprising 2NR
∗
13 sequences. These bins are indexed by m′13.

Generate 2N [R23+R′23] independent N−sequences z(m23, k) with the nth symbol

of every sequence picked i.i.d from P (zn). Uniformly distribute these 2N [R23+R′23]

sequences into 2NR23 bins, so that each bin comprises 2NR
′
23 sequences. These

bins are indexed by m23.

For every pair of sequences (w,u), generate one N− sequence x1(m′13, l) with

the nth symbol picked i.i.d from P (x1,n|wn, un). For every sequence z, generate one

N− sequence x2(m23, k) with the nth symbol picked i.i.d from P (x2,n|zn).

For notational convenience, the messages are denoted m′13,b and m23,b, and are

transmitted in B blocks each with N channel uses; b = 1, . . . , B is the block index.

Let us first define the following event: E2,b , {(w(m̄′13,b),u(m̄′13,b, lb), z(m23,b, kb),y2,b) ∈

A
(N)
ε (PW,U,Z,Y2)}.

1. In block 1,

(a) Node 1 transmits x1,1 = x1(1, l1),

(b) Node 2 transmits x2,1 = x2(m23,1, 1).

2. In block b = 2, . . . , B − 1,

(a) Node 1 transmits x1,b = x1(m′13,b, lb), where m′13,b = lb−1,

(b) Node 2 transmits x2,b = x2(m23,b, kb).

3. In block B,

(a) Node 1 transmits x1,B = x1(m′13,B, 1),

137



(b) Node 2 transmits x2,B = x2(1, kB).

At the end of block b, Node 2 tries to pick a m̄13,b such that the joint typicality

condition E2,b is satisfied. Here, m̄′13,b = l̄b−1 which Node 2 tries to obtain in block

b − 1. However, we will later show that this condition is indeed not satisfied.

We describe now the transmission procedure adopted by Node 1 and Node 2. In

block b, Node 1 employs a stochastic encoder by randomly picking a sequence

u(m′13,b, lb). Corresponding to u, Node 1 transmits x1(m′13,b, lb). Likewise, to transmit

the message m23,b, Node 2 randomly chooses a sequence z(m23,b, kb) in the bin

indexed by m23,b. Corresponding to z, Node 2 transmits x2(m23,b, kb).

We employ a combination of backward and simultaneous decoding techniques

to recover the transmitted information, where the decoders accumulate B blocks

of data and start decoding from the last block. First, we define the following

events:

(a) E3,B , {
(
w(m̂′13,B),u(m̂′13,B, 1), z(1, kB),y3,B

)
∈ A(N)

ε (PW,U,Z,Y3)},

(b) E3,b , {
(
w(m̂′13,b),u(m̂′13,b, l̂b), z(m̂23,b, kb),y3,b

)
∈ A(N)

ε (PW,U,Z,Y3)},

(c) E3,1 , {(w(1),u(1,m13,1, l1), z(m̂23,1, k1),y3,1) ∈ A(N)
ε (PW,U,Z,Y3)}.

1. In block B, the decoder of Node 3 looks for a pair (m̂′13,B, 1) that satisfies the

joint typicality condition E3,B.

2. In block b = 2, . . . , B− 1, the decoder of Node 3 first sets l̂b = m̂′13,b+1 and looks

for a pair (m̂′13,b, m̂23,b) that satisfies the joint typicality condition E3,b.

3. In block 1, the decoder of Node 3 sets l1 = m̂′13,2 and looks for m̂23,1 such that

E3,1.

The average error probability at Node 3, averaged over all codes, is given by

P
(N)
e,3 = Pr

{⋃
b

⋃
t

(M̂t3,b 6= Mt3,b)

}
; b = 1, . . . , B; t = 1, 2.
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The procedure to derive an upper bound for P (N)
e,3 is similar to that presented in

Appendix B.1 and is omitted here for sake of brevity. Finally, P (N)
e,3 can be made

arbitrarily small if, ∀ε > 0 and N → ∞, the following inequalities are simultane-

ously satisfied:

R13 +R∗13 ≤ I(W,U ;Y3|Z), (B.10)

R23 +R′23 ≤ I(Z;Y3|W,U), (B.11)

R13 +R∗13 +R23 +R′23 ≤ I(W,U,Z;Y3|). (B.12)

An error is declared at the encoder of Node 1, if it is not able to find a typical

sequence u(m′13, l) ∈ A
(N)
ε (PU |W ). Let us define the event E1 , {u ∈ A(N)

ε (PU |W )}.

The probability of encoder error at Node 1, P (N)
e,1 → 0, ∀ε > 0 and sufficiently small

for N →∞ iff R∗13 > H(W ) (for proof see Appendix B.1).

An error is declared at the encoder of Node 2, if it is not able to find a typical

sequence z(m23, k) ∈ A(N)
ε (PZ). Let us define the event E2 , {z ∈ A(N)

ε (PZ)}. The

probability of encoder error at Node 2, P (N)
e,2 → 0, ∀ε > 0 and sufficiently small for

N →∞ (for proof see Appendix B.1).

We compute now the equivocation at Node 2’s receiver and show that the code

satisfies confidentiality constraints. In each block b = 1, . . . , B, consider the fol-

lowing equivocation lower bound:

H(M13|Y N
2 ) = H(M13,W

N , UN , Y N
2 )−H(WN , UN |M13, Y

N
2 )−H(Y N

2 )

= H(M13,W
N , UN ) +H(Y N

2 |M13,W
N , UN )−H(WN , UN |M13, Y

N
2 )

− H(Y N
2 )

= H(M13,W
N , UN )−H(WN , UN |M13, Y

N
2 )− I(M13,W

N , UN ;Y N
2 )

(a)
= H(M13,W

N , UN )−H(WN , UN |M13, Y
N

2 )− I(WN , UN ;Y N
2 ),

≥ H(WN , UN )−H(WN , UN |M13, Y
N

2 )− I(WN , UN ;Y N
2 ),

where (a) follows from the Markov chain M13 →WN → UN → Y N
2 , with
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I(M13;Y N
2 |WN , UN ) = 0. Let us consider each term separately.

1. H(WN , UN ) = N(R13 +R∗13) (see codebook construction),

2. H(WN , UN |M13, Y
N

2 ) ≤ Nε1 (see Appendix B.5),

3. I(WN , UN ;Y N
2 ) ≤ NI(W,U ;Y2) (using standard techniques).

Therefore, H(M13|Y N
2 ) ≥ NR13 +NR∗13−Nε−NI(W,U ;Y2). Let R∗13 = I(W,U ;Y2)− ε4,

∀ε4 > 0 and sufficiently small for large N . Therefore, we have H(M13|Y N
2 ) ≥

NR13 − Nε and the secrecy constraint (3.3) is satisfied. The equivocation cal-

culation at Node 4 leads to H(M23|Y N
4 ) ≥ NR23 −Nε with R∗13 = I(Z;Y4)− ε5 ∀ε5 > 0

and sufficiently small for large N . The proof is similar to that of channel C (see

Appendix B.1) and is omitted. Thus, the secrecy constraint (3.4) is satisfied.

Finally, an achievable rate region for C∗, given by (3.11) - (3.13), is obtained by

substituting for R∗13 and R′23 in (B.10) - (B.12).

B.4 Proof of Theorem 4.3.5

We present now the proof of Theorem 4.3.5. For any sequence of
((

2NR13 , 2NR23
)
, N
)

codes such that P (N)
e,3 → 0 and P

(N)
e,2 → 0 for N →∞, the probability mass function

on the joint ensemble space M13 ×M23 ×XN1 ×XN2 × YN2 × YN3 × YN4 is given by

p(m13,m23,x1,x2,y1,y2,y3,y4) = p(m13)p(m23)p(x1|m13)
N∏
n=1

p(x2,n|m23)

×p(y2,n|x1,n)p(y3,n, y4,n|x1,n, x2,n).

For reliable communications, we have from Fano’s inequality [52],

H(M13|Y N
3 ) ≤ NR13P

(N)
e,3 + 1 = Nδ3,N , (B.13)

H(M23|Y N
3 ) ≤ NR23P

(N)
e,3 + 1 = Nδ3,N , (B.14)

where δ3,N > 0 and sufficiently small for large N . We also use the following to

derive the upper bounds: M23 = U1 = · · · = UN , M23 = Z1 = · · · = ZN and Y n−1
3 =
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Wn.

R13 can be upper bounded as follows. Consider the following bound on the

equivocation obtained from the security constraint (3.3) and Fano’s inequality

(B.13):

NR13 = H(M13)

≤ H(M13|Y N
2 ) +Nε

≤ H(M13|Y N
2 )−H(M13|Y N

3 ) +Nδ3,N

= H(M13|Y2,1)−H(M13|Y3,N )

+

N∑
n=2

[H(M13|Y2,n)]−
N−1∑
n=1

[H(M13|Y3,n)] +Nδ3,N

=

N∑
n=1

[H(M13|Y2,n)]−
N∑
n=1

[H(M13|Y3,n)] +Nδ3,N

=

N∑
n=1

[I(M13;Y3,n)]−
N∑
n=1

[I(M13;Y2,n)] +Nδ3,N

(a)

≤
N∑
n=1

[H(M13|M23)−H(M13|M23, Y3,n)]−
N∑
n=1

[I(M13;Y2,n)] +Nδ3,N

=

N∑
n=1

[I(M13;Y3,n|M23)]−
N∑
n=1

[I(M13;Y2,n)] +Nδ3,N

(b)

≤
N∑
n=1

[H(Y3,n|M23)−H(Y3,n|Y n−1
3 ,M23,M13)]−

N∑
n=1

[I(M13;Y2,n)] +Nδ3,N

=

N∑
n=1

[I(Y n−1
3 ,M13;Y3,n|M23)]−

N∑
n=1

[I(M13;Y2,n)] +Nδ3,N ,

where (a) follows from the fact that M13 and M23 are independent, while (b) follows

from the fact that conditioning reduces entropy. Therefore,

NR13 ≤
N∑
n=1

I(Wn, Un;Y3,n|Zn)− I(Un;Y2,n) +Nδ3,N . (B.15)

R23 can be bounded as follows:

NR23 = H(M23)
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≤ H(M23|Y N
4 ) +Nε

≤ H(M23|Y N
4 )−H(M23|Y N

3 ) +Nδ3,N

= H(M23|Y4,1)−H(M23|Y3,N )

+

N∑
n=2

[H(M23|Y4,n)]−
N−1∑
n=1

[H(M23|Y3,n)] +Nδ3,N

=

N∑
n=1

[H(M23|Y4,n)]−
N∑
n=1

[H(M23|Y3,n)] +Nδ3,N

=

N∑
n=1

[I(M23;Y3,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

(a)

≤
N∑
n=1

[H(M23|M13)−H(M23|M13, Y3,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

=

N∑
n=1

[I(M23;Y3,n|M13)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

(b)

≤
N∑
n=1

[H(Y3,n|M13)−H(Y3,n|Y n−1
3 ,M23,M13)]−

N∑
n=1

[I(M23;Y4,n)] +Nδ3,N

=

N∑
n=1

[I(Y n−1
3 ,M23;Y3,n|M13)]−

N∑
n=1

[I(M23;Y4,n)] +Nδ3,N ,

where (a) and (b) follow from the fact that conditioning reduces entropy. There-

fore,

NR23 ≤
N∑
n=1

I(Wn, Zn;Y3,n|Un)− I(Zn;Y4,n) +Nδ3,N . (B.16)

An upper bound on R13 + R23 can be derived by using the fact that M13 and

M23 are independent, and following the procedure used to derive (B.15) and (B.16)

. Consider the following bound on the equivocation obtained from the security

constraint (3.3), (3.4) and Fano’s inequalities (B.13), (B.14):

N(R13 +R23) = H(M13,M23)

= H(M13) +H(M23|M13) = H(M13) +H(M23)

≤ H(M13|Y N
2 ) +H(M23|Y N

4 ) +Nε

≤ H(M13|Y N
2 )−H(M13|Y N

3 ) +H(M23|Y N
4 )−H(M23|Y N

3 ) +Nδ4,N
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=

N∑
n=1

[H(M13|Y2,n)]−
N∑
n=1

[H(M13|Y3,n)]

+

N∑
n=1

[H(M23|Y4,n)]−
N∑
n=1

[H(M23|Y3,n)] +Nδ4,N

=

N∑
n=1

[I(M13;Y3,n)]−
N∑
n=1

[I(M13;Y2,n)]

+

N∑
n=1

[I(M23;Y3,n)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ4,N

≤
N∑
n=1

[I(M13;Y3,n|M23)]−
N∑
n=1

[I(M13;Y2,n)]

+

N∑
n=1

[I(M23;Y3,n|M13)]−
N∑
n=1

[I(M23;Y4,n)] +Nδ4,N

≤
N∑
n=1

[I(Y n−1
3 ,M13;Y3,n|M23)]−

N∑
n=1

[I(M13;Y2,n)]

+

N∑
n=1

[I(Y n−1
3 ,M23;Y3,n|M13)]−

N∑
n=1

[I(M23;Y4,n)] +Nδ4,N .

Therefore,

N(R13 +R23) ≤
N∑
n=1

[I(Wn, Un;Y3,n|Zn)]−
N∑
n=1

[I(Un;Y2,n)]

+

N∑
n=1

[I(Wn, Zn;Y3,n|Un)]−
N∑
n=1

[I(Zn;Y4,n)] +Nδ4,N . (B.17)

Finally, a time-sharing RV Q, which is uniformly distributed over N symbols and

and independent of M13, M23, XN1 , XN2 , YN2 ,YN3 ,YN4 , can be introduced for the single

letter characterization of the above derived outer bounds. Applying the procedure

similar to the one presented in [52, Chapter 15.3.4] on (B.15), (B.16) and (B.17),

we get the outer bounds on R13 and R23 as given by (3.14) - (3.16), respectively.

B.5 Bound on the conditional entropy

Here, we prove that H(V N |M13,W
N , Y N

4 ) ≤ Nε for any ε > 0 and N sufficiently

large. Given M13 = m13, the decoder at Node 4 chooses j such that the following
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typicality condition is satisfied: Ẽ = {(w,v,y4) ∈ A(N)
ε (PW,V,Y4)}. Let P (N)

e,4 denote

the average probability of error of decoding j at Node 4. Therefore, we have

P
(N)
e,4 ≤ P (Ẽc|m13 sent) +

∑
j

P (Ẽ|m13 sent),

where Ẽc , {(w,v,y4) /∈ A
(N)
ε (PV,Y4|W )}. From joint AEP [52], P (Ẽc|K̃) ≤ ε, for

ε > 0 and sufficiently small for large N . And, P (Ẽ|m13 sent) ≤ 2−N [I(W,V ;Y4)−ε].

Therefore, P (N)
e,4 ≤ ε + 2NR

′
132−N [I(W,V ;Y4)−ε]. But, from equivocation computation,

R′13 = I(W,V ;Y4)− ε2. Choosing ε2 > ε, we get P (N)
e,4 ≤ ε. Next, from Fano’s inequal-

ity, we have for any ε1 > 0,

1

N
H(V N |M13 = m13,W

N , Y N
4 ) ≤ 1

N

[
1 + P

(N)
e,4 R′13

]
≤ 1

N
+ εI(W,V ;Y4) , ε1.

Finally,

1

N
H(V N |M13,W

N , Y N
4 ) ≤ 1

N

∑
m13

P (M13 = m13)H(V N |M13 = m13,W
N , Y N

4 ) ≤ ε1.
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Appendix C

Proofs for the broadcast channels

C.1 Bound on the probability of error using the second

moment method

Here, we upper bound the probability of encoder error for the channel C1, by using

results from the second moment method [24]. This method was also employed in

[18] and [26, Chap. 7, pp. 354] to provide an alternative proof of Marton’s achiev-

ability scheme. An error is declared at the encoder of S if it is not possible to find a

pair (i1, i2) to satisfy the condition ES , {(W,V1(i1, j1),V2(i2, j2)) ∈ A(N)
ε (PW ,V1,V2)}.

Let Pe,ES
denote the probability of error at the encoder, i.e., Pe,ES

, Pr(EcS). Let I

be an indicator RV that the event ES has occurred. Let Q =
∑

j1,j2
I ; Q̄ = E[Q];

and Var[Q] = E[(Q − Q̄)2], where E(.) denotes the expectation operator. Pe,ES
can

be upper bounded as follows:

Pe,ES
= Pr(Q = 0)

(i)

≤ Var[Q]/Q̄2, (C.1)

where (i) follows from Markov’s inequality for non-negative RVs. Consider now

Q̄ =
∑
j1,j2

E(I ) ≥
∑
j1,j2

(1− δ(N))2−N[I(V1;V2|U)+I(V1,V2;W |U)+4ε]

= (1− δ(N))2−N[R∗1+R∗2−I(V1;V2|U)−I(V1,V2;W |U)−4ε].
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Next, consider Var[Q] =
∑

j1,j2

∑
j′1,j
′
2
{E[I (j1, j2)I (j′1, j

′
2)] − E[I (j1, j2)]EI (j′1, j′2)]}. We

have the following four cases:

1. If j′1 6= j1 and j′2 6= j2, then I (j1, j2) and I (j′1, j
′
2) are independent and Var[Q] = 0.

2. If j′1 = j1 and j′2 = j2, then E[I (j1, j2)I (j′1, j
′
2)] = E[I (j1, j2)] ≤ 2−N[I(V1;V2)+I(V1,V2;W )−4ε].

3. If j′1 6= j1 and j′2 = j2, then E[I (j1, j2)I (j′1, j
′
2)] ≤ 2−N[I(V1;V2|U)+I(V1,V2;W )+I(V1;V2,W )−6ε].

4. If j′1 = j1 and j′2 6= j2, then E[I (j1, j2)I (j′1, j
′
2)] ≤ 2−N[I(V1;V2|U)+I(V1,V2;W )+I(V2;V1,W )−6ε].

Substituting for Q̄ and Var[Q] in (C.1), we can show that P (ES) ≤ δ(N)
C1

, ∀δ(N)
C1

> 0

and sufficiently small; and for N large, if the following conditions are simultane-

ously satisfied:

R
′
1 > I(W ;V1)− ε1, (C.2)

R
′
2 > I(W ;V2)− ε2, (C.3)

R
′
1 +R

′
2 > I(V1;V2) + I(V1,V2;W )− ε3. (C.4)

Similar analysis is done to bound the binning rates for the channel C3. The

probability of encoder error P (ES) ≤ δ
(N)
C3

, ∀δ(N)
C3

> 0 and sufficiently small; and for

N large, if the following conditions are simultaneously satisfied:

R∗1 > I(W ;V1|U)− ε11, (C.5)

R∗2 > I(W ;V2|U)− ε12, (C.6)

R∗1 +R∗2 > I(V1;V2|U) + I(V1,V2;W |U)− ε13. (C.7)

146



Appendix D

Proofs for the Z-channel

D.1 Proof of Theorem 5.3.1

D.1.1 Encoding and transmission

At S2, generate 2NR′21 sequences u(m21,m
′
21) for every m21 and 2NR′22 sequences

v(m22,m
′
22) for every m22 according to p(u) and p(v), respectively. Here, m′21 ∈

{1, . . . , 2NR′21}; m′22 ∈ {1, . . . , 2NR′22}. For every pair of (u, v) sequences, generate one

sequence x2 according to p(x2|u, v). Given (m21,m22), the encoder looks for the pair

(m′21,m
′
22) that satisfies the joint typicality condition

ES2 , {(u(m21,m
′
21), v(m22,m

′
22)) ∈ AN

ε P (U,V )}. If there is one or more such pairs,

the encoder chooses one and transmits the corresponding x2 in N channel uses.

Otherwise, an encoding error is declared at S2.

At S1, given the pair (m21,m22), generate 2NR′11 sequences w(m11,m
′
11) for every

m11 according to p(w); m′11 ∈ {1, . . . , 2NR′11}. For every sequence triple (w,u, v),

generate one sequence x1 according to p(x1|w,u, v). Given the triple (m11,m21,m22),

the encoder looks for m′11 that satisfies the joint typicality condition

ES1 , {(w(m11,m
′
11),u(m21,m

′
21), v(m22,m

′
22)) ∈ AN

ε P (W ,U,V )}. We note that, the

encoder at S1 is given (u(m21,m
′
21), v(m22,m

′
22)) in a noncausal manner, so that

it need not look for the pair (m′21,m
′
22) to satisfy ES1. Finally, S1 transmits the

corresponding x1 in N channel uses. Otherwise, an encoding error is declared at
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S1.

D.1.2 Decoding

Since (m′11,m
′
21,m

′
22) is a function of (m11,m21,m22), it does not matter if the de-

coders at D1 and D2 have knowledge of (m′11,m
′
21,m

′
22) ahead of time. The de-

coder at D1 accumulates an N-sequence y1 and looks for the index pair (m̂11, m̂21)

that satisfies the joint typicality condition ED1 , {(w(m̂11,m
′
11),u(m̂21,m

′
21), y1) ∈

AN
ε P (W ,U,Y1)}. If there is one or more such pair, the decoder picks one and de-

clares (m̂11, m̂21) to be the transmitted message indices. Otherwise, an error is

declared at D1.

At D2, the decoder accumulates an N-sequence y2 and looks for the index m̂22

that satisfies the joint typicality condition ED2 , {(v(m̂22,m
′
22), y2) ∈ AN

ε P (V ,Y2)}.

If there is one or more such indices, the decoder picks one and declares m̂22 to be

the transmitted message index. Otherwise, an error is declared at D2.

D.1.3 Analysis of the probability of error

D.1.3.1 Probability of error at S1 and S2

An error is declared at S1, if the encoder cannot find an index m′11 that satis-

fies the joint typicality condition ES1 , {(w(m11,m
′
11),u(m21,m

′
21), v(m22,m

′
22)) ∈

AN
ε P (W ,U,V )}. Let PN

e,S1
denote the probability of error at the encoder of S1, i.e.,

PN
e,S1

, Pr(EcS1
). Using the second moment method [24], it can be shown that,

∀δ1, ε1 > 0, PN
e,S1
≤ δ1 as N→∞ if the following constraints are satisfied:

R′11 > I(U, V ;W )− ε1. (D.1)

Similarly, an error is declared at S2, if the encoder cannot find a pair (m′21,m
′
22)

that satisfies the joint typicality condition

ES2 , {(u(m21,m
′
21), v(m22,m

′
22)) ∈ AN

ε P (U,V )}. Let PN
e,S2

denote the probability of

error at the encoder of S2, i.e., PN
e,S2

, Pr(EcS2
). Using the second moment, it can
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be shown that, ∀δ2, ε2, ε3, ε4 > 0, PN
e,S2
≤ δ2 as N→∞ if the following constraints are

satisfied:

R′21 > I(U ;V )− ε2, (D.2)

R′22 > I(U ;V )− ε3, (D.3)

R′21 +R′22 > I(U ;V )− ε4. (D.4)

D.1.3.2 Probability of error at D1 and D2

An error is declared at D1, if the encoder cannot find a pair (m̂11, m̂21) that satisfies

the joint typicality condition ED1 , {(w(m̂11,m
′
11),u(m̂21,m

′
21), y1) ∈ AN

ε P (W ,U,Y1)}.

Let PN
e,D1

denote the probability of error at the decoder of D1, i.e., PN
e,D1

, Pr(EcD1
).

Using standard arguments, it can be shown that, ∀δ3, ε5, ε6, ε7 > 0, PN
e,D1

≤ δ3 as

N→∞ if the following constraints are satisfied:

R11 +R′11 ≤ I(W ;Y1|U)− ε5, (D.5)

R21 +R′21 ≤ I(U ;Y1|W )− ε6, (D.6)

R11 +R′11 +R21 +R′21 ≤ I(W,U ;Y1)− ε7. (D.7)

An error is declared at D2, if the decoder cannot find an index m̂22 that satis-

fies the joint typicality condition ED2 , {(v(m̂22,m
′
22), y2) ∈ AN

ε P (V ,Y2)}. Let PN
e,D2

denote the probability of error at the decoder of D2, i.e., PN
e,D2

, Pr(EcD2
). Using

standard arguments, it can be shown that, ∀δ4, ε8 > 0, PN
e,D2
≤ δ4 as N → ∞ if the

following constraints are satisfied:

R22 +R′22 ≤ I(V ;Y2)− ε8. (D.8)
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