
Lehigh University
Lehigh Preserve

Theses and Dissertations

2015

Advanced Error Control Scheme for Noncoherent
Random Linear Network Coding
Hongmei Xie
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Xie, Hongmei, "Advanced Error Control Scheme for Noncoherent Random Linear Network Coding" (2015). Theses and Dissertations.
Paper 1676.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=preserve.lehigh.edu%2Fetd%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1676?utm_source=preserve.lehigh.edu%2Fetd%2F1676&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

ADVANCED ERROR CONTROL

SCHEME FOR NONCOHERENT

RANDOM LINEAR NETWORK

CODING

by

Hongmei Xie

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Lehigh University

January 2015

c⃝ Copyright 2015 by Hongmei Xie

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Date

Prof. Zhiyuan Yan
(Dissertation Advisor)

Accepted Date

Committee Members:

Prof. Zhiyuan Yan
(Committee Chair)

Prof. Tiffany Jing Li

Prof. Bruce A. Dodson

Dr. Bruce W. Suter
Air Force Research Lab.

iii

Acknowledgments

My gratitude goes first to my respectful advisor, Prof. Yan, for his guidance and

support through my PhD life. Pursuing a PhD degree is a hard and long process,

and it won’t be possible for me to achieve that without Prof. Yan’s dedicated effort

in every aspect, from his expertise in academy to his constructive advice in career

planing. I’m really grateful to have Prof Yan both as an advisor and a mentor to

start my life at Lehigh, to dig research topics over the years, and to formalize this

dissertation.

Thank my honorable committee members, Prof. Tiffany J. Li, Prof. Bruce A.

Dodson, and Dr. Bruce W. Suter, for serving in my committee. Prof. Li’s broad

knowledge and enthusiasm in research inspired and encouraged me to better perform

my work. It’s an honor to collaborate with Dr. Suter on a couple of research topics,

and I certainly gained a lot from his professional work style and abundant experience.

Though I haven’t had the opportunity to work directly with Prof. Dodson, I admire

his expertise in algebra and cryptography. Dear committee members, please accept

my sincere acknowledgment!

I shall thank Prof. Baoming Bai, Prof. Xinmei Wang, and Prof. Ying Li of

Xidian University for their inspiring teaching and research guidance, from which

iv

I gained beneficial experience in conducting research and projects. The Channel

Coding Lab would always be proud of its free research atmosphere and mutual

support and learning among its members. Thank Prof. Weihua Zong of Qingdao

University, who taught me the first lesson in research, if I have done any, for my

bachelor’s thesis. I was impressed by her dedication to research as well as little

interest in other people’s pursuits.

I’m glad to have spent my PhD years together with a bunch of warm hearted

friends at Lehigh: Xuebin Wu, Feng Shi, Lihua Jiao, Chenrong Xiong, Yan Yang,

Chen Chen, Yang Liu, Jun Lin, Xingjian Zhang, and so many others. I shall thank

them for helping me and having fun together. Thank Ahbishek Mishra, who sup-

ported me through hard times.

Finally, I’d love to express my deepest appreciation for my family members’

devotion. My dearest parents always encourage me to step out to the unknown, and

back me up no matter what happens. They have sacrificed so much for me to carry

out my happy life, hiding their own dreams behind mine. They, together with my

dear brother and sisters, are the source of my courage and happiness. Thank you,

and I’m so proud of you!

v

Contents

Acknowledgments iv

Contents vi

List of Tables xi

List of Figures xiii

Abstract 1

1 Introduction 3

1.1 Background . 5

1.1.1 Error Control Schemes in RLNC 6

1.1.2 Efficient Decoding of RLNC 7

1.1.3 Coding for Distributed Storage Systems 8

1.2 Contributions and Organization . 9

2 Linearized Polynomial Interpolation and Its Applications 13

2.1 Introduction . 13

2.2 Preliminaries . 16

vi

2.2.1 General Polynomial Interpolation over Polynomials Ring . . . 16

2.2.2 Linearized Polynomial Ring 16

2.2.3 Gabidulin Codes and Loidreau’s Reconstruction Algorithm . . 17

2.2.4 KK Codes and Their Decoding Algorithm 19

2.2.5 MV Codes and Their List Decoding Algorithm 21

2.3 Interpolation by Linearized Polynomials 22

2.3.1 Interpolation over Free L[x]-Modules 22

2.3.2 Complexity Analysis of Algorithm 1 25

2.4 Decoding of Gabidulin Codes . 26

2.4.1 Decoding of Gabidulin Codes 26

2.4.2 Comparison to Loidreau’s Reconstruction Algorithm 31

2.5 Decoding of KK Codes . 35

2.6 List Decoding of MV Codes . 36

2.7 Hardware Implementations and Comparison 41

2.7.1 Hardware implementation of the interpolation algorithm . . . 43

2.7.2 Implementation of Gaussian elimination 46

2.7.3 Implementation results comparison 46

2.8 Conclusion . 48

3 On List Decoding of Mahdavifar–Vardy Codes 49

3.1 Introduction . 49

3.2 List Decoding of MV Codes . 51

3.3 Correction of Erasures . 53

3.4 Effects of Multiplicities on the List Decoding 55

3.4.1 Definitions . 55

vii

3.4.2 Effect of Multiplicities . 57

3.5 Decoder Error Probability . 58

3.5.1 DEP without Erasures . 58

3.5.2 DEP with Erasures . 60

3.6 Conclusion . 61

4 Rank Deficient Decoding of Linear Network Coding 62

4.1 Introduction . 62

4.2 Rank Deficient Decoding . 64

4.2.1 System Model . 64

4.2.2 Full Rank Decoder . 65

4.2.3 Rank Deficient Decoding . 65

4.2.4 Hamming Norm Decoders . 66

4.2.5 Decoding Strategies . 69

4.2.6 Linear Programming Decoders 70

4.3 Simulation Results . 71

4.4 General LP Formulation over GF(2) 79

4.4.1 General LP Formulation with Arbitrary Parities 79

4.4.2 Analysis . 81

4.5 LP Decoding of Nonbinary Linear Block Codes 82

4.5.1 Preliminaries and Notations 82

4.5.2 LP Decoding of Nonbinary Linear Block Codes 84

4.5.3 LP Decoding of Nonbinary Linear Codes over GF(2m) 85

4.5.4 New LP Formulation for Nonbinary Linear Codes over GF(2m) 87

4.5.5 Simulation Results . 92

viii

4.6 Conclusion . 97

5 Distributed Storage Code Constructions from A Vector Space Ap-

proach 98

5.1 Introduction . 98

5.2 Preliminary . 103

5.2.1 Maximum Distance Separable (MDS) Codes 103

5.2.2 Locally Repairable Codes (LRC) 105

5.2.3 Minimum Storage Regenerating (MSR) Codes 107

5.3 DSS Coding from Vector Space Approach 108

5.4 New MDS Codes with Low Complexity 110

5.4.1 Linearized Polynomials . 112

5.4.2 Construction I over GF(qm) with q > 2 113

5.4.3 Data Reconstruction and Data Repair 117

5.4.4 Construction II over GF(2m) 119

5.4.5 Complexity Analysis . 120

5.5 LRC Code Construction from Vector Space 122

5.5.1 Achievability of Optimal Distance 123

5.5.2 Code Structure . 124

5.5.3 Local Repair and Data Reconstruction 127

5.5.4 Relation to Other Works . 129

5.5.5 Degraded Reads . 134

5.5.6 Code Rate . 136

5.6 MSR Code Construction from Vector Space 136

5.6.1 MSR Codes from Vector Space Approach 137

ix

5.6.2 MSR Codes Construction from Vector Spaces 139

5.6.3 Data Reconstruction . 140

5.6.4 Data Repair . 142

5.6.5 Discussions . 143

5.7 Conclusion . 144

6 Conclusions and Future Work 145

6.1 Conclusions . 145

6.2 Future Work . 147

Bibliography 150

A Proof of Lemmas 162

Vita 165

x

List of Tables

2.1 Example 1: Use Loidreau’s algorithm and Algorithm 1 to decode

Gabidulin codes . 30

2.2 Example 2: Use Algorithm 1 to decode an MV code 39

2.3 Computational complexities of Gaussian elimination and Algorithm 1

for MV codes . 40

2.4 Hardware implementation results of the interpolator and Gaussian

Eliminator. 47

4.1 Average packets for HN decoders (N = 8 over GF(2)) 71

4.2 Average packets for LP decoders (N = 8 over GF(2)) 71

4.3 Average packets for different decoders (N = 32 over GF(2)) 77

4.4 Average packets for different decoders (N = 100 over GF(2)) 78

4.5 Average packets for HN decoders (N = 8 over GF(22)) 86

4.6 Average packets for LP decoders (N = 8 over GF(22)) 87

5.1 A (4, 2, 4; 2, 3) MSR Code . 108

5.2 Complexity of data reconstruction and data repair 121

5.3 A (6, 3, 8, 3; 2, 3) optimal LRC code 133

xi

5.4 Another (6, 3, 8, 3; 2, 3) optimal LRC code 133

5.5 A (5, 2, 4; 2, 3) MSR Code . 137

xii

List of Figures

2.1 Interpolator top architecture . 43

2.2 The architecture of PolyEvli . 45

2.3 The architecture of OrderCompi . 45

2.4 The circuitry of PUUi,j . 46

4.1 Packet-level performance of HN decoders (N = 8 over GF(2)) 73

4.2 Bit-level performance of HN decoders (N = 8 over GF(2)) 73

4.3 Packet-level performance of LP I decoder(N = 8 over GF(2)) 74

4.4 Bit-level performance of LP I decoder(N = 8 over GF(2)) 75

4.5 Packet-level performance of LP I decoder (N = 32 over GF(2)) 76

4.6 Bit-level performance of LP I decoder (N = 32 over GF(2)) 77

4.7 Packet-level performance of HN decoders (N = 8 over GF(22)) 93

4.8 Bit-level performance of HN decoders (N = 8 over GF(22)) 94

4.9 Packet-level performance of FLP decoder (N = 8 over GF(22)) 94

4.10 Bit-level performance of FLP decoder (N = 8 over GF(22) 95

4.11 Packet-level performance of XLP decoder (N = 8 over GF(22)) 96

4.12 Bit-level performance of XLP decoder (N = 8 over GF(22)) 96

xiii

5.1 MDS codes in DSS . 105

5.2 Two-layer encoding structure. 126

5.3 A Systematic Code for Degraded Reads (reproduced from [1]) 134

xiv

Abstract

Random linear network coding (RLNC) has shown advantages in improved through-

put, robustness, and reduced delay over traditional routing in a communication net-

work. However, the underlying finite field has to be large enough for RLNC to work

effectively, leading to high computational complexity. This dissertation proposes

efficient decoding algorithms for RLNC with and without error control schemes, as

well as new error control code constructions for a particular realization of RLNC,

the coding for distributed storage systems (DSSs).

In RLNC, neither the source nor the sink node has knowledge of the channel

transfer characteristic. To deal with errors and erasures in this scenario, subspace

codes have been proposed in the literature, including Kötter and Kschischang (KK)

codes, lifting of Gabidulin code, and Mahdavifar and Vardy (MV) codes. All these

codes can be constructed from evaluations of linearized polynomials. Hence we pro-

pose a general interpolation algorithm over linearized polynomials ring, and decode

all the three families of codes efficiently. For Gabidulin code, our general interpo-

lation algorithm is deterministic compared to another current decoding algorithm,

i.e., it is always be able to produce the correct decoding result when errors are

within the error correction capability. For KK codes and MV codes, our algorithm

1

has lower complexity than solving linear equations, especially for MV codes with

large list sizes.

For RLNC without error control technique, rank deficient decoding (RDD) has

been proposed to decode the package at the receiver, which transforms the decoding

problem into that of a linear block code. To implement RDD efficiently, we first

adopt an existing linear programming (LP) approach to accommodate equations

with both even and odd parities over the binary field GF(2). Then, we propose a

simplified LP algorithm for codes over extension fields of GF(2), and provide some

simulation results to show that less packages are required at the receiver to get a

same rate of correctly decoded packets.

The data repair and reconstruction problems in distributed storage systems

(DSS) were shown to be a multicast problem, thus can be solved by RLNC. Ef-

fort has been devoted to explicit code constructions for different optimization goals.

We view the DSS coding from a vector space’s perspective, and transform data

reconstruction and repair requirements into intersection properties of certain sub-

spaces. Three code constructions are proposed for DSSs under the same vector

space structure, aiming at low repair complexity, minimized repair bandwidth, and

maximized minimum distance given a repair locality, respectively.

2

Chapter 1

Introduction

Communication systems suffer from signal distortions caused by the underlying

channel noise, hence error control is critical in providing reliable communications

between two ends of a system. Different error correction codes have been proposed

to tackle various kinds of channel noise, such as Reed Solomon codes in satellite

communications, Low-Density Parity-Check codes in hard disk and flash memory

channels, Turbo codes in 3G and WiMAX wireless communication networks, and so

on.

On the other hand, error control technique also brings redundancy in the message

to be sent over the channel, as well as extra latency and computational complex-

ity at both the encoder and decoder sides. Hence to design a good error control

scheme, multiple factors such as error correction capability, encoding and decoding

complexity, and so on have to be taken into consideration.

Recently, following increased storage and exchange of data over all kinds of net-

works, such as the computer and social networks, wireless networks, cloud storage,

3

to name a few, how to improve the throughput of a network poses a great chal-

lenge. To solve this problem, Ahlswede et al. proposed network coding to provide

improved throughput, robustness, and reduced delay over traditional routing [2].

In particular, random linear network coding (RLNC) [3] is an effective realization

that requires no knowledge of the network at both the sender and receiver ends.

However, for RLNC to work effectively, the underlying field has to be very large,

leading to high computational complexity and delay at the receiver.

Another problem coming with RLNC is the error and erasure from malicious

attacks and packet loss during transmission, as the random nature of generated

packets in the intermediate nodes makes it hard to tell which packets are erroneous.

Meanwhile, RLNC does not assume any channel information at either the sender

or the receiver, hence traditional error correction codes such as the afore mentioned

ones do not apply in this scenario. To introduce error control mechanism into RLNC,

subspace codes are proposed in the literature. These codes are also constructed over

large field size, while existing decoding algorithms either are not efficient or cannot

guarantee correct decoding results.

One important application of RLNC is coding problem for a distributed storage

system (DSS), where storage nodes such as servers or disks are physically distributed

over the network. To gather information from the network, certain subsets of the

storage nodes should be able to reconstruct the original message, or recover partial

message stored in one node when it fails or leaves the network. Though it has

been show that these problems can be modeled as multicast problems [4], hence can

be solved by RLNC, explicit code constructions need to be explored in a specific

manner for optimization of different metrics.

4

1.1. BACKGROUND

This dissertation investigates error control schemes for RLNC, including a gen-

eral decoding algorithm of subspace codes, linear programming algorithms to decode

RLNC efficiently, and code constructions for DSS with desirable repair features, such

as low computational complexity, reduced bandwidth consumption, and small I/O

overhead. We first give in Sec. 1.1 some background on the specific topics we will

discuss, an then present the major contributions of our work, as well as the organi-

zation of this dissertation in Sec. 1.2.

1.1 Background

In traditional routing technique for a communication network, intermediate nodes

do not perform extra process of their received packets but simply forward them along

the directed links. As a result, the throughput could be limited by some bottleneck

nodes, which are connected with fewer links while contribute to minimum cuts of the

network, according to the max-flow min-cut theorem. To solve this problem, network

coding is invented in [2] that allows intermediate nodes to “mix” the packets they

receive by some combinations over certain finite field, and then transmit them to the

next connected nodes. Latter, it is shown that linear combinations [5] are sufficient

to achieve the maximized throughput. Furthermore, random linear network coding

(RLNC) is proposed in [3], where random linear combinations are used to form the

mixed packets.

RLNC has been shown to improve the throughput, robustness, security etc.

of the underlying network under the error-free assumption [2] [3]. It also reduces

the overhead of the network as no record of the linear combination coefficients is

5

1.1. BACKGROUND

necessary to be stored in the packet header. However, for RLNC to approach the

maximal throughput with probability of 1, the underlying field has to be large

enough for the linear combinations seen at the receive to be of full rank. As a

result, the computational complexity is pretty high for the decoder. Also, to further

handle error and erasures over the network, complex error control schemes have to

be employed. Hence efficient decoding algorithms are necessary for RLNC with and

without error control schemes.

1.1.1 Error Control Schemes in RLNC

In network coding settings, errors occur from unreliable links, wiretappers or mali-

cious nodes. If unchecked, errors greatly deteriorate the throughput gains of network

coding and seriously undermine both reliability and security of data. To address

these problems, error correction for network coding has been investigated in the liter-

ature. Network error correcting codes was first introduced in [6], and generalizations

of fundamental bounds in classical algebraic coding theory, such as the Hamming

bound and the Gilbert-Varshamov bound were derived [6] [7] [8]. However, all the

work about error correction in network coding assumes coherent network, i.e., the

network topology and network code used is known at the sink node. However, in

scenarios such as random linear network coding (RLNC) [3], arguably the most im-

portant class of network coding, a noncoherent model serves better to describe the

changing network conditions.

In noncoherent RLNC, neither the source nor the sink node has knowledge of

the channel transfer characteristic. Error control in this scenario utilized the vector

space preserving property of the network, where subspaces were transmitted and

6

1.1. BACKGROUND

received over an operator channel [9]. Over the operator channel, errors and erasures

are defined to be additions and deletions of dimensions of the transmitted subspace.

The set of subspaces form a subspace code, which is able to accommodate errors

and erasures over the operator channel.

A particular family of subspace codes with constant dimensions was proposed

in [9], referred to as KK codes, as well as a Sudan-style list-1 minimum-distance

decoding algorithm. This list decoding algorithm has a list size of one, and hence

it is essentially a bounded distance decoder with a decoding radius approximately

half the minimum distance. The work was extended in [10] so that list decoding

with arbitrary list sizes was enabled, and we call this family of subspace codes MV

codes. Subspace codes can also be obtained from lifting of rank metric codes [11], say

Gabidulin codes [12]. All these three families of codes can be obtained via evaluation

of linearized polynomials, just as Reed-Solomon (RS) codes can be constructed from

evaluation of polynomials. Similarly, the decoding of these codes is composed of an

interpolation step and a factorization step. In particular, the interpolation is by

linearized polynomials, and a high decoding complexity is induced if conducted by

solving linear equations, especially for large list sizes.

In this dissertation, we will propose an efficient interpolation algorithm that

works for all the three families of codes, and show its advantages over existing

algorithms.

1.1.2 Efficient Decoding of RLNC

Due to its promise of significant throughput gains as well as other advantages,

network coding is already used or considered for a wide variety of wired and wireless

7

1.1. BACKGROUND

networks (see, for example, [13–17]). One significant drawback of network coding is

that a full rank of received packets at the receiver nodes of a multicast (or a unicast)

is needed before decoding can start, leading to long delays and low throughputs,

especially when the number of packets of a session is large. This is particularly

undesirable for applications with stringent delay requirements.

Aiming to solve this problem, Yan et al. [18] propose rank deficient decoding

(RDD) for linear network coding, which can start even when the received packets

are not full rank. By reformulating the decoding problem of network coding in a

different fashion, the decoding problem reduces to a collection of syndrome decoding

problems. In particular, the Hamming norm (HN) decoders from traditional linear

block codes can be adopted to implement the syndrome decoding, which take advan-

tage of the sparsity inherent in data and produce the data vectors with the smallest

Hamming weight. However, the HN decoders have high complexities for large size

systems, hence efficient decoding algorithms are necessary to make the best of RDD

decoders. In this dissertation, we will employ linear programming (LP) algorithm

to efficiently implement the RDD decoders.

1.1.3 Coding for Distributed Storage Systems

In distributed storage networks, data are stored in nodes that may be individually

unreliable. Hence coding is used to introduce redundancy for improved system

reliability against node failures. Two types of data recovery [4] are of interest: one

is the recovery of the entire message file, called data reconstruction, and the other is

the repair of partial messages stored in some nodes using supporting nodes, referred

to as data repair. The amount of data downloaded to repair one node is called

8

1.2. CONTRIBUTIONS AND ORGANIZATION

repair bandwidth. The number of supporting nodes to be connected for the repair

of a failed node is called repair locality, which is closely related to I/O overhead of

the system.

Data reconstruction from a subset of nodes is equivalent to erasure decoding

in traditional error correction codes, hence maximum distance separable (MDS)

codes can be used to maximize protection against erasures [19]. However, the data

repair problem is a new challenge for DSS coding, as failed servers or disks are not

uncommon, or some nodes may leave or join the system dynamically. Hence new

code constructions should be considered to accommodate practical data repair, with

features like low computational complexity, reduced bandwidth, and small locality.

Currently, there exist code constructions aiming at different metrics, such as

repair bandwidth, maximized minimum distance given a repair locality. However,

those constructions are scattered in the sense that different methods are used for

different optimization goals. In this dissertation, we tackle the DSS coding problem

from a new perspective of a vector space, and transform the data reconstruction and

repair requirements into desired properties of subsets of subspaces. Code construc-

tions under different optimization metrics are presented under the uniform structure

of a vector space.

1.2 Contributions and Organization

Main contributions of this dissertation are listed as follows, along with the organi-

zation of the following chapters.

• In Chapter 2, we tackle the decoding problem of subspaces codes used in

9

1.2. CONTRIBUTIONS AND ORGANIZATION

RLNC error control, namely, Gabidulin, KK, and MV codes. Based on the

common fact that all of them can be constructed from evaluation of linearized

polynomials, we devise a general interpolation algorithm in a free module of

the linearized polynomial ring. Analytical results show that our interpolation

algorithm has a polynomial time complexity. When used to decode Gabidulin

codes, the resulted decoding algorithm resembles Loidreau’s decoding algo-

rithm and both algorithms have quadratic complexity, but the two differ in

several key aspects. Our general interpolation approach is also used to decode

KK codes. In fact, in this case, our algorithm is equivalent to the Sudan-style

list-1 decoding algorithm. That is, the Sudan-style list-1 decoding algorithm

is a special case of our general interpolation algorithm, when some operations

and parameters are specified. Finally, we use our general interpolation algo-

rithm to obtain the multivariate polynomial for the list decoding of MV codes.

To the best of our knowledge, there is no other efficient algorithm to accom-

plish the task. We also show that our algorithm has lower complexity than

solving linear equations, both from analytical and hardware implementation

results.

• In Chapter 3, we further extend our work on the decoding of MV codes to ad-

dress some drawbacks of the code construction and their decoding algorithm

in [10]. First, no erasures are handled by the current code. To accommodate

erasures, we treat the degree of the multivariate linearized polynomial at the

interpolation step as a variable, and derive a new decodability condition. We

find that errors and erasure are asymmetric in the sense that erasures are more

10

1.2. CONTRIBUTIONS AND ORGANIZATION

costly in terms of the code distance. Second, we attempt to expand the decod-

ing radius for high rate codes by defining multiplicity for each interpolation

node, as the Guruswami–Sudan algorithm for RS codes [20]. Unfortunately,

analytical results show that the decoding radius is slightly reduced due to some

undesirable property of linearized polynomials. Finally, after the decoding list

is obtained, we form a nearest neighbor decoder, and calculate the decoder

error probability (DEP). Assuming no erasures, we obtain an upper bound on

the DEP, which decreases exponentially with the list size as well as the dimen-

sion of the subspaces in the code. When erasures occur during transmission,

a closed-form expression of the DEP is obtained.

• In Chapter 4, we formalize linear programming (LP) algorithms for the RDD

decoders based on the work in [18]. To efficiently implement RDD, we adapt

LP algorithms to handle both even and odd parities over GF(2), and then

propose a simplified LP algorithm for extension fields of GF(2). We prove that

our LP algorithm has the desired ML certificate property, and has a much lower

complexity than the original formulation in [21]. Simulation results show that

our LP decoding algorithm indeed requires less received packets for RLNC

to be decoded correctly, while runs faster than other traditional decoding

algorithms for linear block codes.

• In Chapter 5, we consider coding problems for DSS. We view the coding for

DSS from a new perspective of vector space, where nodes are represented by

different subspaces. As a result, data reconstruction and repair requirements

are transformed into union and intersection properties among some subset

11

1.2. CONTRIBUTIONS AND ORGANIZATION

of subspaces. We present three code constructions under this uniform sub-

space structure, aiming at different targets. First, we propose a new class of

MDS codes with low repair complexity, and then propose a two-layer encoding

scheme for optimized repair locality. Finally, we apply the subspace approach

to obtain minimum storage regenerating (MSR) codes with optimized repair

bandwidth. Though our current construction for MSR codes only works for

small parameters, our two-layer construction for LRC codes is a general ap-

proach, including some current constructions as special cases. Furthermore,

the LRC codes derived from our construction facilitates practical implemen-

tation when it comes to degraded reads.

• Conclusions of this dissertation are provided in Chapter 6, as well as some

ideas on future work.

12

Chapter 2

Linearized Polynomial

Interpolation and Its Applications

2.1 Introduction

Given a set of points, polynomial interpolation finds one or more polynomials that

pass through these points. Since error control codes are often defined through

polynomials, polynomial interpolation is instrumental in decoding such codes. For

instance, Reed-Solomon (RS) codes can be defined using evaluation of polynomi-

als [22], and bivariate polynomial interpolation has been used in RS decoders. In

particular, the Kötter interpolation [23] implements the interpolation step of the

Guruswami-Sudan algorithm [20] for RS codes with low complexity. Also, the Welch-

Berlekamp key equation can be viewed as a rational interpolation problem, and the

Welch-Berlekamp algorithm (WBA) solves this problem [24].

Polynomial interpolation was extended by Wang et al. [25] to interpolation in

13

2.1. INTRODUCTION

a free module that is defined over a polynomial ring over some finite field F and

admits an ordering. Since the free module is also a vector space over F, given any

set of linear functionals, the interpolation problem is to find a minimum element in

the intersection of the kernels of the linear functionals. Wang et al. proposed an

interpolation algorithm, and showed that the Kötter interpolation and the WBA

are both special cases of this general interpolation algorithm [25].

Recently, error control codes defined using evaluation of linearized polynomi-

als, such as Gabidulin codes [12] and a family of subspace codes proposed by Kötter

and Kschischang (referred to as KK codes) [9], have attracted growing attention.

While both Gabidulin and KK codes are important to error control in random linear

network coding (see, for example, [9, 11, 26]), Gabidulin codes are also considered

for potential applications in wireless communications [27], public-key cryptosys-

tems [28], and storage systems [22, 29]. A decoding algorithm of Gabidulin codes

through linearized polynomial reconstruction was proposed by Loidreau [30], and

Kötter and Kschischang proposed a Sudan-style list-1 decoding algorithm for KK

codes based on bivariate linearized polynomial interpolation [9]. Mahdavifar and

Vardy [10] proposed a new class of codes (referred to as MV codes henceforth) and

list decoding of MV codes with arbitrary list size.

Parallel to the work of Wang et al. [25], we investigate interpolation in a free

module of a linearized polynomial ring. The main contributions of this chapter

are listed as follows:

• We propose a polynomial complexity interpolation algorithm in a well ordered

free module of a linearized polynomial ring.

• We apply our interpolation algorithm to decode Gabidulin codes. The resulted

14

2.1. INTRODUCTION

decoding algorithm and Loidreau’s decoding algorithm (cf. [30, Table 1]) both

have quadratic complexity, but the two differ in their update rules for zero dis-

crepancies, and Loidreau’s algorithm malfunctions for a particular discrepancy

pattern.

• Our interpolation approach is also used to decode KK codes. In fact, the

Sudan-style list-1 decoding algorithm in [9] is a special case of our interpolation

algorithm.

• We use our interpolation algorithm to obtain the multivariate polynomial for

the list decoding of MV codes in [10]. Although Gaussian elimination can be

used for the list decoding of MV codes, our algorithm has a lower complexity.

• Finally, an efficient implementation of an interpolator for decoding MV codes

has been proposed. The synthesis results show that it has advantages in

throughput and efficiency than Gaussian elimination.

In this chapter, Section 2.2 reviews interpolation over free modules of polynomial

rings, and then introduces Gabidulin, KK and MV codes, as well as their respective

decoding algorithms. In Section 2.3, we propose our interpolation algorithm over a

free module of a linearized polynomial ring, and analyze its computational complex-

ity. We apply our interpolation algorithm to decode Gabidulin, KK, and MV codes

in Sections 2.4, 2.5, and 2.6, respectively. In Section 2.7, an interpolator for list

decoding of l-dimensional MV codes is implemented in hardware and is compared

with Gaussian elimination. The concluding remarks are provided in Section 2.8.

15

2.2. PRELIMINARIES

2.2 Preliminaries

2.2.1 General Polynomial Interpolation over Polynomials

Ring

Let F[x] be the ring of all the polynomials over some finite field F and V be a

free F[x]-module. Motivated by the Kötter interpolation, Wang et al. [25] consider

interpolation in V . Since V is a vector space over F with some basis M , one can

define a set of C (a positive integer) linear functionals Di’s from V to F, with kernels

Ki’s, where i = 1, 2, . . . , C. If there is a total ordering on M , V admits an ordering.

That is, for a subset of V we can find an element with the smallest order, and the

element is a minimum in this subset. The general interpolation algorithm in [25]

finds a minimum in K1 ∩K2 ∩ · · · ∩KC .

2.2.2 Linearized Polynomial Ring

Suppose GF(qm) is an extension field of GF(q), where q is a prime power and m is

a positive integer. A polynomial of the form l(x) =
∑n

i=0 aix
qi with coefficients ai ∈

GF(qm) is called a linearized polynomial over GF(qm). We assume q is fixed, and

denote xqi as x[i] in this chapter. For a linearized polynomial l(x) =
∑n

i=0 aix
[i] over

GF(qm), its q-degree, denoted as degq(l(x)), is given by max
ai ̸=0
{i}.

Consider the set of linearized polynomials over GF(qm), denoted by L[x]. Lin-

earized polynomials are so named because for a linearized polynomial l(x) over

GF(qm), β1 and β2 in an extension field K of GF(qm), and λ1, λ2 ∈ GF(q), we

have l(λ1β1 + λ2β2) = λ1l(β1) + λ2l(β2). In other words, l(x) can be treated as a

16

2.2. PRELIMINARIES

linear mapping from β ∈ K to l(β) ∈ K with respect to GF(q) [31]. Given two lin-

earized polynomials l1(x) and l2(x) over GF(qm), their GF(qm)-linear combination

α1l1(x)+α2l2(x) with α1, α2 ∈ GF(qm), is also a linearized polynomial over GF(qm).

We define the multiplication between l1(x) and l2(x) as l1(x)⊗ l2(x)
def
= l1(l2(x)), and

l(x) = l1(x)⊗ l2(x) is also a linearized polynomial over GF(qm). Since l1(x)⊗ l2(x)

does not necessarily equal l2(x)⊗l1(x), L[x] with polynomial addition and the multi-

plication ⊗ forms a noncommutative ring. Note that there is no left or right divisor

of zero in L[x] [32].

2.2.3 Gabidulin Codes and Loidreau’s Reconstruction Al-

gorithm

The rank of a vector x ∈ GF(qm)n is the maximal number of coordinates that are

linearly independent over GF(q), denoted as r(x; q). The rank distance between

two vectors x,y ∈ GF(qm)n is defined to be dr(x,y) = r(x− y; q). It is shown

in [12] that the rank distance is a metric on a vector space, and one can consider

the rank distance properties of a linear block code C. The minimum rank distance

of C, denoted as dr(C), is simply the minimum rank distance over all possible pairs

of distinct codewords, that is, dr(C) = min
xi ̸=xj∈C

dr(xi,xj).

The maximum cardinality of a rank metric code in GF(qm)n with minimum rank

distance d is min{qm(n−d+1), qn(m−d+1)} [12,33,34]. We refer to codes with maximum

cardinality as maximum rank distance (MRD) codes. A family of linear MRD codes

was proposed by Gabidulin [12], and is often referred to as Gabidulin codes. An

17

2.2. PRELIMINARIES

(n, k) Gabidulin code CR over GF(qm) (n ≤ m) is defined by a generator matrix

G =

g0 g1 · · · gn−1

g
[1]
0 g

[1]
1 · · · g

[1]
n−1

...
...

. . .
...

g
[k−1]
0 g

[k−1]
1 · · · g

[k−1]
n−1

, (2.1)

where g0, g1, . . . , gn−1 are linearly independent over GF(q). We introduce the vector

g = (g0, g1, . . . , gn−1) for future reference, called the generator vector. For a mes-

sage vector u = (u0, u1, . . . , uk−1) and its corresponding message polynomial f(x) =∑k−1
i=0 uix

[i], the codeword to be transmitted is x = (f(g0), f(g1), . . . , f(gn−1)). Sup-

pose an additive error e = (e0, e1, . . . , en−1) occurs, and the received vector is

y = x + e = (y0, y1, . . . , yn−1), where yi = xi + ei for i = 0, 1, . . . , n − 1. Given

y, a bounded distance decoder with decoding radius t ≤ (n − k)/2 tries to find

x′ ∈ CR and e′ ∈ GF(qm)n such that y = x′ + e′ with dr(y,x
′) ≤ t. If such x′ and

e′ exist, the received vector y is said to be decodable [12].

Gabidulin codes can be defined using evaluation of linearized polynomials, anal-

ogous to RS codes, which are defined using evaluation of polynomials. Hence

Loidreau devised a method to decode Gabidulin codes through reconstruction of

linearized polynomials (cf. [30, Table 1]), where a pair of linearized polynomials,

V (y) and N(x), are constructed such that V (yi) = N(gi) for i = 0, 1, . . . , n − 1,

with degq(V (y)) ≤ t and degq(N(x)) ≤ k + t − 1. It was shown in [30] that if

t ≤ (n − k)/2, one gets a solution of decoding Gabidulin codes from any solu-

tion of the reconstruction problem. Loidreau’s algorithm [30] constructs two pairs

of polynomials (V0(y), N0(x)) and (V1(y), N1(x)), and updates them iteratively by

18

2.2. PRELIMINARIES

discrepancy-based update rules, so that each pair satisfies the constraints defined

by the first i points after the ith iteration. To implement the degree constraints on

the linearized polynomials, Loidreau’s algorithm starts with initial polynomials of

designated q-degrees, and then aims to increase the q-degrees of each pair of polyno-

mials strictly once every two iterations. The algorithm outputs N1(x) with q-degree

no more than k + ⌊(n− k)/2⌋ − 1 and V1(y) of q-degree no more than ⌊(n− k)/2⌋.

2.2.4 KK Codes and Their Decoding Algorithm

KK codes [9] are a type of subspace codes for random linear network coding, where

subspaces are transmitted and received at both ends. Suppose W is a vector space

over GF(q), and P(W) is the set of all subspaces of W . For U, V ∈ P(W), the

subspace distance ds [9] between V and U is defined as ds(V, U)
def
= dim(V + U) −

dim(V ∩U), where dim(A) denotes the dimension of a subspace A ∈ P(W), V ∩U is

the intersection space of V and U , and V +U is the smallest subspace that contains

both V and U .

Suppose an l-dimensional subspace V ∈ P(W) is a codeword of a KK code.

The basis of V is obtained via evaluation of linearized polynomials. First we select

l (l ≤ m) elements α0, α1, . . . , αl−1 ∈ GF(qm) that are linearly independent over

GF(q). Theses l elements span an l-dimensional vector space ⟨A⟩ ⊆ GF(qm), where

A = {αi : i = 0, 1, . . . , l − 1}. We then construct W by W = ⟨A⟩⊕ GF(qm) =

{(α, β) : α ∈ ⟨A⟩, β ∈ GF(qm)}. Given a message vector u = (u0, u1, . . . , uk−1) over

GF(qm), the message polynomial is defined to be u(x) =
∑k−1

i=0 uix
[i]. Finally, the

subspace spanned by {(αi, βi) : βi = u(αi), i = 0, 1, . . . , l − 1} is an l-dimensional

subspace of W , as all the pairs (αi, βi) are linearly independent [9].

19

2.2. PRELIMINARIES

Suppose V is transmitted over the operator channel [9], and an (l − ρ + t)-

dimensional subspace U of W is received, with dim(U ∩ V) = l − ρ and ds(U, V) =

ρ + t. It is proved that the error is decodable by the list-1 decoding algorithm [9]

if ρ + t < l − k + 1. Let l − ρ + t = r, and {(x0, y0), (x1, y1), . . . , (xr−1, yr−1)}

be a basis for U . The decoding algorithm in [9] consists of an interpolation step

and a factorization step. First the interpolation procedure finds a nonzero bivariate

polynomial Q(x, y) = Qx(x) +Qy(y) such that

Q(xi, yi) = 0 for i = 0, 1, . . . , r − 1, (2.2)

where Qx(x) and Qy(y) are linearized polynomials of q-degrees at most τ − 1 and

τ − k respectively. Then a message polynomial û(x) is obtained in the factorization

step by right division [9] if Q(x, û(x)) ≡ 0. Decodability is guaranteed if we select

τ = ⌈(r + k)/2⌉ [9].

The interpolation procedure of the decoding algorithm in [9], called a Sudan-style

list-1 decoding algorithm, adopts some discrepancy based update rules. During the

i-th iteration, the algorithm generates an x-minimal bivariate polynomial and a

y-minimal bivariate polynomial, f
(i)
0 (x, y) and f

(i)
1 (x, y), that interpolate through

the first i points for i = 1, 2, . . . , r, where r is the total number of points to be

interpolated. Finally, the minimum one between f
(r)
0 (x, y) and f

(r)
1 (x, y), defined

under an order of ≺ [9], is the decoding output.

20

2.2. PRELIMINARIES

2.2.5 MV Codes and Their List Decoding Algorithm

MV codes are similar to but different from KK codes [9]. To enable list decoding,

different code constructions are proposed for different code dimensions in [10].

To construct an l-dimensional MV code over GF(qml), l has to be a positive

integer that divides q − 1. Then the equation xl − 1 = 0 has l distinct roots

e1 = 1, e2, . . . , el over GF(q). Choose a primitive element γ over GF(qml) with

γ, γ[1], . . . , γ[ml−1] being a normal basis for GF(qml). Then construct elements αi

over GF(qml) by αi = γ + eiγ
[m] + e2i γ

[2m] + · · · + el−1
i γ[m(l−1)] for i = 1, 2, . . . , l. It

is shown in [10] that the set {α[j]
i : i = 1, 2, . . . , l, j = 0, 1, . . . ,m − 1} is a basis of

GF(qml) over GF(q).

For a message vector u = (u0, u1, . . . , uk−1) over GF(q), the message polynomial

is u(x) =
∑k−1

i=0 uix
[i]. Let u⊗i(x) denote the composition of u(x) with itself by

i times for any nonnegative integer i, while u⊗0(x) = x. Then the codeword V

corresponding to the message u is spanned by a set of vectors vi for i = 1, 2, . . . , l,

where v1 = (α1, u(α1), u
⊗2(α1), . . . , u

⊗L(α1)), vi = (αi,
u(αi)
αi

, . . . , u
⊗L(αi)
αi

), and L is

the desired list size. Note that u⊗j(αi)
αi
∈ GF(qm) for any j ≥ 0 and i = 2, 3, . . . , l [10].

Then V is an l-dimensional subspace of the (Lm + l)-dimensional ambient space

W = ⟨α1, α2, . . . , αl⟩ ⊕ GF(qm)⊕ · · · ⊕GF(qm)︸ ︷︷ ︸
L times

. Suppose an error of dimension

t occurs, and an (l + t)-dimensional subspace U of W is received. The decoder

first finds subspaces Ui such that Ui = {(x, y1, y2, . . . , yL) : x ∈ ⟨αi⟩} for i =

1, 2, . . . , l. Then, a basis {(x1,j, y1,1,j, y1,2,j, . . . , y1,L,j) : j = 1, 2, . . . , r1} of U1 is

found, where r1 is the dimension of U1. If l = 1, we ignore the first step and simply

find a basis for the (t + 1)-dimensional received subspace U1. For i = 2, 3, . . . , l,

the decoder obtains U ′
i = {(x, αiy1, αiy2, . . . , αiyL) : (x, y1, y2, . . . , yL) ∈ Ui}, and

21

2.3. INTERPOLATION BY LINEARIZED POLYNOMIALS

finds a basis {(xi,j, yi,1,j, yi,2,j, . . . , yi,L,j) : j = 1, 2, . . . , ri} of U ′
i , where ri is the

dimension of Ui. Finally, the decoder constructs a nonzero multivariate polynomial

Q(x, y1, y2, . . . , yL) = Q0(x)+Q1(y1)+Q2(y2)+· · ·+QL(yL), where Qs is a linearized

polynomials over GF(qml) of q-degree at most ml− s(k − 1)− 1 for s = 0, 1, . . . , L,

such that for i = 1, 2, . . . , l, j = 1, 2, . . . , ri, and h = 0, 1, . . . ,m− 1,

Q(x
[h]
i,j , y

[h]
i,1,j, . . . , y

[h]
i,L,j) = 0. (2.3)

The decoder then finds all possible polynomials û(x)’s, using an LRR algorithm

in [10], such that Q(x, û(x), û⊗2(x), . . . , û⊗L(x)) ≡ 0. It is shown in [10] that (2.3)

has a nonzero solution if t < lL − L(L + 1)k−1
2m

, and there are at most L solutions,

among which the transmitted message polynomial u(x) is guaranteed to be included.

2.3 Interpolation by Linearized Polynomials

In this section, we investigate the interpolation problem by linearized polynomials.

We first present the interpolation problem, then propose our interpolation algorithm,

which follows a strategy similar to that in [25].

2.3.1 Interpolation over Free L[x]-Modules

Suppose L[x] is the ring of linearized polynomials over GF(qm), and V is a free L[x]-

module with a basis B = {b0, b1, . . . , bL}. We denote the multiplication between an

element in L[x] and an element in the module by ◦, and any element Q ∈ V can be

represented by Q =
∑L

j=0 lj(x) ◦ bj =
∑L

j=0

∑
i≥0 ai,jx

[i] ◦ bj, where lj(x) ∈ L[x] and

22

2.3. INTERPOLATION BY LINEARIZED POLYNOMIALS

ai,j ∈ GF(qm). Thus V is also a vector space over GF(qm) with a basis

M = {x[i] ◦ bj, i ≥ 0, j = 0, 1, . . . , L}. (2.4)

Suppose there exists a total ordering < on M that satisfies 1) x[i] ◦ bj < x[i′] ◦ bj if

i < i′, and 2) we can write M = {ϕj}j≥0 with ϕi < ϕj when i < j. Then Q ∈ V can

be represented by Q =
∑J

j=0 ajϕj, where ϕj ∈ M and aJ ̸= 0. J is called the order

of Q, denoted as order(Q), ϕJ is the leading monomial of Q, denoted as LM(Q),

and ajϕj is the leading term of Q. We write Q <o Q
′ if order(Q) < order(Q′), and

Q =o Q′ if order(Q) = order(Q′). An element Q is a minimum in a subset of V

if its order is the lowest among all the elements in the subset. Further, we define

Indy(l(x) ◦ bj) = j and Indy(Q) = Indy(LM(Q)), and then introduce a partition of

V : V =
∪

j Sj, where Sj = {Q ∈ V : Indy(Q) = j}.

Suppose C is a positive integer. For the vector space V over GF(qm), we consider

a set of C linear functionals Di from V to GF(qm): D1, D2, . . . , DC . Suppose Ki is

the kernel of Di and Ki = K1 ∩K2 ∩ · · · ∩Ki is an L[x]-submodule, then the inter-

polation problem is to find a minimum Q∗ ∈ KC , that is, to find an element Q∗ ∈ V

such that it lies in the kernels of all the given linear functionals. Furthermore, we

can show the uniqueness of Q∗ as in [25].

Lemma 1. The minimum in KC is unique up to a scalar.

The proof can be found in the appendix.

Define Ti,j = Ki ∩ Sj, and gi,j = min
g∈Ti,j

g, then the interpolation problem is

equivalent to finding gC,j. The key idea is to iteratively construct gi,j from its

previous values by a discrepancy based update for i = 1, . . . , C, starting from some

23

2.3. INTERPOLATION BY LINEARIZED POLYNOMIALS

Algorithm 1 Interpolation Algorithm

for j = 0 to L do
g0,j ← bj

end for
for i = 0 to C − 1 do
for j = 0 to L do
gi+1,j ← gi,j
∆i+1,j ← Di+1(gi,j)

end for
J ← {j : ∆i+1,j ̸= 0}
if J ̸= ∅ then
j∗ ← argmin

j∈J
{gi,j}

for j ∈ J do
if j ̸= j∗ then
gi+1,j ← ∆i+1,j∗gi,j −∆i+1,jgi,j∗

else if j = j∗ then
gi+1,j ← ∆i+1,j(x

[1] ◦ gi,j)−Di+1(x
[1] ◦ gi,j)gi,j

end if
end for

end if
end for
Q∗ ← min

j
gC,j

24

2.3. INTERPOLATION BY LINEARIZED POLYNOMIALS

initial values. We propose Algorithm 1 to solve this interpolation problem. In the

initialization step of Algorithm 1, g0,j is set to bj for j = 0, 1, . . . , L respectively. In

the intermediate steps, there are three cases, and in each case a different update is

used to obtain gi+1,j based on gi,j.

1. If gi,j ∈ Ki+1, then gi+1,j = gi,j.

2. For gi,j’s not in Ki+1, we find one of them with the lowest order, denoted

as gi,j∗ . Then for any gi,j with j ̸= j∗, we update gi+1,j = Di+1(gi,j∗)gi,j −

Di+1(gi,j)gi,j∗ . We call this type of update a cross-term update. Note in this

case, the order of gi,j is preserved, that is, gi+1,j =o gi,j.

3. For gi+1,j∗ , we construct gi+1,j∗ by gi+1,j∗ = Di+1(gi,j∗)(x
[1] ◦ gi,j∗)−Di+1(x

[1] ◦

gi,j∗)gi,j∗ . We call this type of update an order-increase update. In this case,

gi+1,j∗ takes a higher order than gi,j∗ , that is, gi,j∗ <o gi+1,j∗ .

Lemma 2. In each of the three cases, gi+1,j is a minimum in Ti+1,j.

The proof in the appendix follows a similar approach as in [35] and [25].

2.3.2 Complexity Analysis of Algorithm 1

There are a total of C iterations in Algorithm 1. In each iteration, L + 1 linear

functionals are first carried out to calculate the discrepancies, followed by at most

L finite field additions (subtractions) to find the minimum candidate and its index

among those with nonzero discrepancies. Then to update the candidates, we con-

duct at most 2(L + 1)2(D + 1) finite field multiplications, (L + 1)2(D + 1) finite

field additions, one multiplication between elements in the ring L[x] and elements

25

2.4. DECODING OF GABIDULIN CODES

in the module V , and one computation of the linear functional, where D is the

highest q-degree of the linearized polynomials in x for all iterations. Note that the

q-degree of each candidate is non-decreasing in an iteration based on the update

rules. Hence it is safe to choose D to be the highest q-degree of the polynomial in x

of the ultimate output. To sum up, the complexity of Algorithm 1 is dominated by

O(CDL2) finite field additions, O(CDL2) field multiplications, O(CL) linear func-

tional calculations, and O(C) multiplications between elements in the ring L[x] and

elements in the module V . Since the complexity of the linear functional calculations

and the multiplications between elements in the ring and elements in the module

might vary in different situations, we consider the complexity of each realization of

Algorithm 1 on a case-by-case basis.

2.4 Decoding of Gabidulin Codes

2.4.1 Decoding of Gabidulin Codes

We consider an (n, k) Gabidulin code over GF(qm) (n ≤ m) as defined in Sec-

tion 2.2.3, and the ring of linearized polynomials L[x] over GF(qm) discussed in

Section 2.2.2. Based on Loidreau’s polynomial reconstruction approach [30], we con-

sider the decoding problem of Gabidulin codes from an interpolation point of view.

Suppose we have a set of points (xi, yi) with yi = f(xi) + ei for i = 0, 1, . . . , n − 1,

where xi’s are linearly independent and r(e; q) ≤ t, and try to construct a nonzero

bivariate polynomial Q(x, y) = Q1(x)+Q2(y) with Q1(x) and Q2(y) being linearized

polynomials over GF(qm), such that max{degq(Q1(x)), k − 1 + degq(Q2(y))} is as

26

2.4. DECODING OF GABIDULIN CODES

small as possible and

Q(xi, yi) = Q1(xi)−Q2(yi) = 0 for i = 0, 1, . . . , n− 1. (2.5)

We will show that a solution of (2.5) gives a solution to the decoding problem of

Gabidulin codes under some conditions. Then we formalize (2.5) to an interpolation

problem over free L[x]-modules, and solve it by Algorithm 1.

Suppose degq(Q1) = τ + k − 1, and degq(Q2) = τ . To have a nonzero solution

of (2.5), the number of unknown coefficients should be greater than the number of

equations, that is, 2τ > n − k − 1. Suppose Q(x, y) = Q1(x) − Q2(y) is a nonzero

solution of (2.5). Substituting y by f(x), we get Q(x, f(x)) = Q1(x) − Q2(f(x)).

When Q(x, f(x)) ≡ 0, i.e., Q1(x) − Q2(f(x)) is the zero polynomial, f(x) satisfies

Q1(x) = Q2(x)⊗f(x) and thus can be obtained by right division over the linearized

polynomial ring [9].

It remains to identify the condition under which Q(x, f(x)) is identically zero.

Since Q(x, y) = Q1(x) − Q2(y) is a nonzero solution of (2.5), Q(xi, yi) = Q1(xi) −

Q2(yi) = 0, i.e., Q1(xi) − Q2(f(xi)) = Q2(ei) with (Q2(e0), Q2(e1), . . . , Q2(en−1))

of rank no more than t. Then there exists a nonzero linearized polynomial W of

q-degree at most t such that W (Q2(ei)) = W (Q2(xi) − Q2(f(xi))) = 0 for i =

0, 1, . . . , n − 1. Then we have a linearized polynomial W (Q1(x) − Q2(f(x))) of q-

degree at most t+τ+k−1 with n linearly independent roots xi for i = 0, 1, . . . , n−1.

Thus when t+ τ + k − 1 < n, we have W (Q1(x)−Q2(f(x))) ≡ 0. Since there is no

left or right divisor or zero in the linearized polynomial ring [32] and W is nonzero,

we have Q1(x) − Q2(f(x)) ≡ 0, hence f(x) can be obtained by right division over

27

2.4. DECODING OF GABIDULIN CODES

the linearized polynomial ring. The condition t+ τ + k − 1 < n will be satisfied by

forcing t ≤ τ , and restricting 2τ < n− k+1. Combining these conditions, we select

τ = ⌊(n− k)/2⌋, and have

t ≤ ⌊(n− k)/2⌋. (2.6)

Hence if (2.6) is satisfied, a solution of (2.5) gives a solution to the decoding problem

of Gabidulin codes. Next we formalize the interpolation problem in (2.5) to an

interpolation problem over free L[x]-modules.

We select B = {b0, b1} = {x, y} as a basis, and construct a free L[x]-module

V = {Q(x, y)} from Q(x, y) = l0(x) ◦ b0 + l1(x) ◦ b1, where l0(x), l1(x) ∈ L[x], and

the multiplication ◦ is defined as

l(x) ◦ bj
def
= l(bj), for j = 0, 1. (2.7)

Hence Q(x, y) = l0(x) + l1(y), and we call such Q(x, y) ∈ V a bivariate linearized

polynomial. To ensure that V is well ordered, we define a (1, k− 1)-weighted degree

for any x[i]◦bj ∈M to be deg1,k−1(x
[i]◦bj)

def
= i+j∗(k−1) for i ≥ 0, j ∈ {0, 1}, and a

positive integer k. A total ordering on M is established by writing x[i] ◦bj < x[i′] ◦bj′

if deg1,k−1(x
[i] ◦ bj) < deg1,k−1(x

[i′] ◦ bj′), or if deg1,k−1(x
[i] ◦ bj) = deg1,k−1(x

[i′] ◦ bj′)

and j < j′, for any i, i′ ≥ 0 and j, j′ ∈ {0, 1}. Thus, both conditions on the total

ordering of M in Section 2.3 are satisfied, and given a subset of V , a minimum

element in V can be found.

Finally, we define a set of linear functionals Di from V to GF(qm) to be Di(Q) =

Q(xi, yi) = l0(xi) + l1(yi) for i = 0, 1, . . . , n− 1, where (xi, yi)’s are the points to be

interpolated. If Di(Q(x, y)) = 0, Q(x, y) is said to be in the kernel Ki of Di. The

28

2.4. DECODING OF GABIDULIN CODES

kernels are L[x]-submodules by the following lemma.

Lemma 3. Ki is an L[x]-submodule.

The proof is straightforward and hence omitted. Based on Lemma 3, Ki is also

an L[x]-submodule. Consequently, the interpolation problem in (2.5) is to find a

minimum Q ∈ V such that Q is a minimum in Kn−1, and Algorithm 1 solves it by

finding a minimum nonzero solution.

To use Algorithm 1, first we set g0,0 = x, and g0,1 = y in the initialization

step. In the following iterations, multiplication between an element in L[x] and an

element in V in the cross-term and order-increase updates follow (2.7). In particular,

gi+1,j∗ = Di+1(gi,j∗)(x
[1] ◦ gi,j∗)−Di+1(x

[1] ◦ gi,j∗)gi,j∗ . Since Di+1(gi,j∗) ̸= 0, we omit

it from the right hand side, and instead use gi+1,j∗ = gqi,j∗ − (Di+1(gi,j∗))
q−1gi,j∗ , as

scaling by a nonzero scalar does not affect the order of an element in V .

29

2.4. DECODING OF GABIDULIN CODES

T
ab

le
2.
1:

E
x
am

p
le

1:
U
se

L
oi
d
re
au

’s
al
go
ri
th
m

an
d
A
lg
or
it
h
m

1
to

d
ec
o
d
e
G
ab

id
u
li
n
co
d
es

It
er
at
io
n

L
oi
d
re
au

’s
al
go
ri
th
m

A
lg
or
it
h
m

1

0
P
re
co
m
p
u
ta
ti
on

g 0
=

x
g 1

=
y

1
In
it
ia
li
za
ti
on

st
ep

∆
0
=

α
3
1
,∆

1
=

α
3
1

g 0
=

x
2
+
α
3
1
x

g 1
=

α
3
1
x
+
α
3
1
y

2
∆

0
=

1,
∆

1
=

α
1
6

N
0
=

x
4
+
α
5
x
2
+
α
3
1
x
,V

0
=

0
g 0

=
x
4
+
α
5
x
2
+
α
3
1
x

N
1
=

α
4
8
x
2
+
α
3
3
x
,V

1
=

y
g 1

=
α
1
6
x
2
+
α
x
+
α
3
1
y

3
s 0

=
α
7
,s

1
=

0
∆

0
=

α
7
,∆

1
=

0
N

0
=

α
3
3
x
4
+
α
3
x
2
,V

0
=

y
2

g 0
=

x
8
+
α
3
9
x
4
+
α
3
4
x
2
+
α
3
8
x

N
1
=

α
5
5
x
2
+
α
4
0
x
,V

1
=

α
7
y

g 1
=

α
1
6
x
2
+
α
x
+
α
3
1
y

4
s 0

=
α
1
7
,s

1
=

α
4
7

∆
0
=

α
5
0
,∆

1
=

α
8

N
0
=

α
4
7
x
4
+
α
4
x
2
+
α
2
4
x
,V

0
=

α
1
4
y
2
+
α
5
4
y

g 0
=

α
8
x
8
+
α
4
7
x
4
+
α
4
6
x
2
+
α
4
5
x
+
α
1
8
y

N
1
=

α
1
7
x
4
+
α
3
7
x
2
+
α
5
7
x
,V

1
=

α
4
7
y
2
+
α
2
4
y

g 1
=

α
3
2
x
4
+
α
5
2
x
2
+
α
9
x
+
α
6
2
y
2
+
α
3
9
y

5

s 0
=

α
3
1
,s

1
=

α
∆

0
=

α
1
8
,∆

1
=

α
1
6

N
0
=

α
3
4
x
8
+
α
3
7
x
4
+
α
1
0
x
2
+
α
5
8
x

g 0
=

α
2
4
x
8
+
α
2
2
x
4
+
α
4
7
x
2
+
α
5
8
x
+
α
1
7
y
2
+
α
4
9
y

V
0
=

α
3
1
y
4
+
α
2
5
y

g 1
=

α
x
8
+
α
4
x
4
+
α
4
0
x
2
+
α
2
5
x
+
α
6
1
y
4
+
α
5
5
y

N
1
=

0,
V
1
=

0

6
s 0

=
α
1
6
,s

1
=

0
∆

0
=

α
6
,∆

1
=

α
4
6

N
1
=

0,
V
1
=

0,
N

0
=

0,
V
0
=

0
g 1

=
α
4
x
4
+
x
2
+
α
2
9
x
+
α
4
y
4
+
y
2
+
α
2
9
y

30

2.4. DECODING OF GABIDULIN CODES

2.4.2 Comparison to Loidreau’s Reconstruction Algorithm

Although our cross-term and order-increase update rules are similar to that of the

alternate increasing degree step in Loidreau’s algorithm, we observe that Algorithm 1

differs from Loidreau’s algorithm in two key aspects, stated as follow.

First, Loidreau’s algorithm uses another algorithm [36] in the precomputation

step before initializing the main algorithm, for the purpose of reducing complex-

ity, whereas our decoding algorithm carries out all the iterations solely from the

interpolation approach. However, we can show the equivalence of the polynomials

derived after the initialization step of Loidreau’s algorithm and the ones obtained

after the first k iterations of Algorithm 1. The initialization step of Loidreau’s

algorithm actually introduces two bivariate polynomials Q0 = N0(x) − V0(y) and

Q1 = N1(x) − V1(y). Given our previous notations, Algorithm 1 produces two bi-

variate polynomials gk,0 and gk,1 after the first k iterations. The relation between

these four polynomials are stated in Lemma 4.

Lemma 4. The initial bivariate polynomials of Loidreau’s algorithm and the bivari-

ate polynomials derived after the first k iterations of Algorithm 1 are of the same

order correspondingly, i.e., Q0 =o gk,0 and Q1 =o gk,1.

The proof can be found in the appendix. Note that the q-degree of N0(x) is ex-

actly k, as it actually interpolates over k linearly independent points x0, x1, . . . , xk−1.

N1(x) is a linear combination of polynomials of q-degree k−1, but its q-degree might

be lower than k−1, as the most significant coefficients may cancel each other. Thus

the claim in [30] that after the final iteration degq(V1(y)) = ⌊(n−k)/2⌋ is inaccurate.

The second difference between Loidreau’s and our decoding algorithms lies in the

31

2.4. DECODING OF GABIDULIN CODES

update of the interpolation steps when some of the discrepancies are zero. It should

be pointed out that in the alternate increasing degree step of Loidreau’s algorithm,

s0 in operations (c) and (d) should be s
(q−1)
0 in ([30, Table 1]). After the correction of

this typo, the key difference between Loidreau’s algorithm and Algorithm 1 is that

the latter accounts for zero discrepancies, while the former only covers it partially.

To be specific, Loidreau’s algorithm [30, Table 1] malfunctions when s1 = 0 but

s0 ̸= 0, as shown in Lemma 5.

Lemma 5. If s1 = 0 but s0 ̸= 0 at the beginning of any iteration, all four lin-

earized polynomials of the V0, N0, V1 and N1 in Loidreau’s algorithm will be the zero

polynomial after a certain number of iterations.

The proof can be conducted simply by tedious calculations, hence it is omitted

here. Instead, an example is given to illustrate Lemma 5, where s1 = 0 but s0 ̸= 0

happens during an intermediate iteration. To solve the problem in Lemma 5, one

can update the candidates when the zero discrepancy is involved. However, such an

operation breaks the rule of updating the q-degrees of the candidates alternately,

which is designed to ensure strict degree constraints on the output of the algorithm.

Since s0 and s1 are involved in different types of update rules for the two pairs of

candidate polynomials, for the case of s1 ̸= 0 but s0 = 0, the algorithm in [30,

Table 1] works properly.

Example 1. We construct a (6, 2) Gabidulin code over GF(26) with a generator

vector g = (α31, α48, α32, α16, 1, α47), where α is a primitive element of GF(26) and

is a root of x6 + x+ 1 = 0. Given the message vector u = (1, 0), the message poly-

nomial is f(x) = x, with a codeword x = (f(g0), f(g1), . . . , f(gn−1)) = g. Suppose

32

2.4. DECODING OF GABIDULIN CODES

the error vector is e = (0, α48, α54, 0, 0, 0), and the received vector is y = x + e =

(α31, 0, α19, α16, 1, α47). The decoding procedures by Loidreau’s algorithm and Algo-

rithm 1 are presented in Table 2.1. For both algorithms, the inputs are the same

generator vector g and the same received vector y. Algorithm 1 outputs a nonzero

bivariate linearized polynomial Q(x, y) such that Q(gi, yi) ≡ 0 for i = 0, 1, . . . , 5,

while Loidreau’s algorithm is expected to output nonzero Qx(x) and Qy(u) such that

Qx(gi) = Qy(yi) for i = 0, 1, . . . , 5 respectively. Based on Lemma 4, we start from

the initial polynomials of Loidreau’s algorithm and the polynomials after the first k

iterations by Algorithm 1. Note that g0 in the final iteration is not listed, as it is of

higher order than g1. Since r(e; q) = 2 ≤ t = (n − k)/2, y is decodable. As shown

in Table 2.1, however, Loidreau’s algorithm fails. On the other hand, our algorithm

produces a bivariate polynomial gn,1 = α4x4 + x2 + α29x + α4y4 + y2 + α29y, from

which the correct decoding result f(x) = x is obtained.

Finally we consider the complexity of Algorithm 1 when used to decode Gabidulin

codes. Adopting the same set of parameters in the complexity analysis in Sec-

tion 2.3.2, we have L = 1, C = n, and D = ⌊n+k
2
⌋ based on the decodability

conditions. Second, each linear functional in this case carries out evaluations of

the bivariate linearized polynomial by the given points, which require a number of

multiplications and additions determined by the q-degree of the linearized polyno-

mial. Finally, the multiplication between x[1] and gi,j is accomplished by raising the

coefficients of gi,j to the q-th power, which is simply a cyclic shift if a normal basis

is chosen [37][38].

Actually, we do not have to use this maximum D to count the number of co-

efficients in the linearized polynomials in each iteration. Based on Lemma 4, for

33

2.4. DECODING OF GABIDULIN CODES

iteration i with 1 ≤ i ≤ k, g0,i is a linearized polynomial of q-degree i − 1 at the

beginning of each iteration, and is to be updated by the order-increase rule (see

iterations 1 and 2 in Table 2.1). On the other hand, g1,i is a bivariate linearized

polynomial with of the form c1y + g′0,i−1(x), where c1 is a constant and g′0,i−1(x) is

a linearized polynomial of x with q-degree no greater than i − 2, and g1,i is to be

updated by the cross-term rule (see iterations 1 and 2 in Table 2.1). For the last

n − k iterations, each bivariate linearized polynomial within each iteration has a

q-degree of no more than D = ⌊n+k
2
⌋ as analyzed above, which leads to a number of

at most D +D − (k − 1) = n− 1 coefficients for gj,0 and gj,1, where k + 1 ≤ j ≤ n.

According to Algorithm 1, for 1 ≤ i ≤ k, it will take i − 1 finite field mul-

tiplications and i − 1 finite field additions over GF(qm) to obtain ∆0, and i − 1

multiplications and i − 1 additions to update g0,i. To obtain ∆1, we need to carry

out i− 1 multiplications and i− 1 additions, plus 2(i− 1) multiplications and i− 1

additions to update g1,i. Hence there are 5i− 5 multiplications and 4i− 4 additions

in each iteration, with a total of 5
2
k2 − 5

2
k finite field multiplications and 2k2 − 2k

additions in the first k iterations (see iterations 1 and 2 in Table 2.1). For the last

n−k iterations, we assume the q-degree of each linearized polynomial is D = ⌊n+k
2
⌋

for each bivariate linearized polynomial within each iteration as analyzed above,

which leads to a number of at most D+D− (k− 1) = n− 1 coefficients for gj,0 and

gj,1, where k + 1 ≤ j ≤ n. Following similar arguments as in the first k iteration,

the last n− k iterations conduct (5n− 5)(n− k) multiplications and (4n− 4)(n− k)

additions. To sum up, Algorithm 1 requires at most 5n2 − 5nk + 5
2
k2 − 5n + 5

2
k

multiplications and at most 4n2 − 4nk + 2k2 − 4n+ 2k additions over GF(qm).

The algorithm in [30] needs an overall of 5
2
n2 − 3

2
k2 + n−k

2
multiplications and

34

2.5. DECODING OF KK CODES

5
2
n2 − 3

2
k2 + n−k

2
additions over GF(qm). The difference between the numbers of

multiplications required by the two algorithms is 5
2
(n − k)2 + 3

2
(k + 1)2 − 11

2
n − 3

2
,

which is approximately 3
2
n2 − 5

2
n for high rate codes, and 5

2
n2 − 11

2
n for low rate

codes. Hence both algorithms are of quadratic complexity, but Loidreau’s algorithm

will have a lower complexity in general. However, it should be pointed out that our

complexity analysis of Algorithm 1 is only an upperbound, where a maximum q-

degree is estimated for each linearized polynomial for the last n− k iterations.

2.5 Decoding of KK Codes

For a KK code over GF(qm) as described in Section 2.2.4, the decoding algorithm

in [9] finds a minimum solution to (2.2) based on an interpolation procedure. In

this section, we will show that this list-1 decoding algorithm is a special case of our

interpolation algorithm over free L[x]-modules, where L[x] is the ring of linearized

polynomials over GF(qm).

Lemma 6. When L = 1, Algorithm 1 reduces to the Sudan-style list-1 decoding

algorithm in [9].

Proof. Suppose the received subspace is U at the decoder, with a dimension of r,

and a basis set is {(x0, y0), (x1, y1), . . . , (xr−1, yr−1)}. We assume that the condition

of decodability [9] is satisfied so that an interpolation approach works to gives a

solution of Q(x, y). Given the linearized polynomial ring L[x] over GF(qm), we set

L = 1, choose a set B = {b0, b1} = {x, y} as a basis, and construct the same free

L[x]-module V = {Q(x, y)} with the same ordering as that in Section 2.4. We define

a set of r linear functionals Di to be Di(Q(x, y)) = Q(xi, yi) for i = 0, 1, . . . , r − 1.

35

2.6. LIST DECODING OF MV CODES

Then Algorithm 1 has exactly the same initial values and the same update rules as

the Sudan-style list-1 decoding algorithm in [9] (it should be pointed out that the

pseudocode in [9] contains a typo, and no update is going to take place when both

discrepancies are zero).

It should be pointed out that in [9], bivariate linearized polynomials of x-minimal

and y-minimal are constructed iteratively, while we find minimums in Algorithm 1.

Here we show that the two definitions are equivalent and the final outputs of the

two algorithms are the same (of the same order). According to the definition in [9],

f
(i)
0 (x, y) is x-minimal if it interpolates through the first i points and is a minimal

polynomial under ≺, while its leading term is in x. Comparing this definition

to that in our interpolation construction, we find that this f(x, y) is a minimum

in Ti,0, hence f
(i)
0 (x, y) =o gi,0. Similarly, f

(i)
1 (x, y) being y-minimal means that

f
(i)
1 (x, y) =o gi,1 in Algorithm 1. Since KK’s decoding algorithm finds x-minimal

and y-minimal bivariate linearized polynomials in each iteration, it works the same

as Algorithm 1 during intermediate iterations. Finally, KK’s decoding algorithm

outputs the one with a smaller (1, k − 1)-weighted degree, which equals to finding

the minimum among gC,0 and gC,1 as performed in Algorithm 1. Hence the outputs

or the two algorithms are the same.

2.6 List Decoding of MV Codes

In [10], the list decoding first constructs a multivariate polynomialQ(x, y1, y2, . . . , yL)

that interpolates through a number of given points as indicated by (2.3). Hence we

36

2.6. LIST DECODING OF MV CODES

call this process the interpolation step of the list decoding of MV codes. No spe-

cific algorithm is mentioned in [10] on how to obtain this multivariate polynomial.

Of course, a nonzero solution can be obtained by solving the corresponding ho-

mogeneous systems using Gaussian elimination, but it requires high computational

complexity. Here, we utilize the interpolation over free L[x]-modules to solve this

problem efficiently. The complexity of our algorithm is compared to that of solving

homogeneous equations.

As in Section 2.4, we have to construct a free module for a given ring, and

define relative operations so that Algorithm 1 can be carried out. We consider an l-

dimensional MV codes over GF(qml) defined in Section 2.2.5, with a message vector

length of k and dimension of subspace l. In this case, the linearized polynomials

ring L[x] is defined over GF(qml), and a set B = {b0, b1, . . . , bL} = {x, y1, . . . , yL}

is selected to form a free L[x]-module V = {Q(x, y1, . . . , yL)}. Following a similar

definition of the multiplication between L[x] and V , V is constructed in the same

way as in Section 2.4. Hence an element Q(x, y1, . . . , yL) ∈ V can be written as

Q(x, y1, . . . , yL) = Q0(x) + Q1(y1) + · · · + QL(yL), called a multivariate linearized

polynomial, where Qi(x) ∈ L[x] for i = 0, 1, . . . , L.

Following a similar process as in the previous section, V is also a vector space

over GF(qml) with a vector space basis M = {x[i] ◦ bj, i ≥ 0, j = 0, 1, . . . , L}. Then

a (1, k − 1)-weighted degree, and a total ordering on M can be defined in a similar

way as in Section 2.5, by allowing j to be in {0, 1, . . . , L − 1}. It can be verified

that the two conditions on the total ordering in Section 2.3 are satisfied. Further,

we define the leading monomial and the order of any Q ∈ V in the same way as

in Section 2.3.1, as well as the minimum elements in a subset of V . Finally, a

37

2.6. LIST DECODING OF MV CODES

set of linear functionals Di for i = 1, 2, . . . , (t + l)m from V to GF(qml) are also

defined to be evaluations of multivariate linearized polynomials by the given points,

as indicated in (2.3).

Since the total number of points to be interpolated in (2.3) is (t + l)m, the

numbers of linear functionals Di are (t+ l)m. Furthermore, the kernels Ki are also

L[x]-submodules by Lemma 3. In summary, the interpolation problem in (2.3) is to

find a nonzero Q ∈ V such that Q ∈ K(t+l)m. Hence this is an interpolation problem

over free L[x]-modules, thus can be solved by Algorithm 1, which gives a minimum

nonzero solution to (2.3), as stated in the following lemma.

Lemma 7. The interpolation algorithm solves the interpolation problem of the list

decoding algorithm for l-dimensional MV codes if the dimension of the error t <

lL− L(L+ 1)k−1
2m

.

Proof. As shown in [10], when t < lL − L(L + 1)k−1
2m

, there exist nonzero solutions

for the interpolation step of the list decoding algorithm for MV codes. Hence we

assume t < lL−L(L+1)k−1
2m

, then Algorithm 1 solves the interpolation problem by

finding a minimum nonzero solution to (2.3), when we adopt the free modules and

related operations as described above.

For Algorithm 1, we set g0,0 = x, g0,i = yi for i = 1, 2, . . . , L in the initialization

step. The update rules in the intermediate iterations are the same as in Section 2.4,

except that we have to use the new ordering related definitions in this section to

determine a minimum among the L + 1 candidates. We give an example of list

decoding an MV code using Algorithm 1, with a list size of greater than one.

38

2.6. LIST DECODING OF MV CODES

Example 2. We construct an MV code with each message vector length k = 1 and

corresponding subspace dimension l = 1 over GF(22), where q = 2 and m = 2,

leading to ml = 2. Finally, we fix a decoding list size of L = 2. Suppose γ is a

root of the polynomial x2 + x + 1 irreducible over GF(2). It can be verified that

(γ, γ[1]) is a normal basis for GF(22) over GF(2). Suppose the message vector is

u = (1), with u(x) = x and u⊗2(x) = x. Then the subspace to be transmitted is

spanned by (γ, u(γ), u⊗2(γ)) = (γ, γ, γ). Suppose an error of dimension one occurs,

spanned by (γ0, 0, 0). Then the decoder is to find a bivariate linearized polynomial

Q(x, y, z) = Q0(x)+Q1(y)+Q2(z) that interpolate through the following three points,

(γ, γ, γ), (γ[1], γ[1], γ[1]), (γ0, 0, 0), as (γ0)[1] = γ0. The interpolation algorithm is

carried out as in Table 2.2, where the ultimate output is f2 = γ2z + γ2y. It can be

verified that u(x) = x satisfies f2(x, u(x), u
⊗2(x)) ≡ 0, hence the original message

vector is included in the decoding list.

Table 2.2: Example 2: Use Algorithm 1 to decode an MV code

i f0(x, y, z) f1(x, y, z) f2(x, y, z)

1
∆0 = γ ∆1 = γ ∆2 = γ
f0 = x2 + γx f1 = γy + γx f2 = γz + γx

2
∆0 = γ2 ∆1 = 0 ∆2 = 0
f0 = x4 + x f1 = γy + γx f2 = γz + γx

3
∆0 = 0 ∆1 = γ ∆2 = γ
f0 = x4 + x f1 = γ2y2 + γ2x2 f2 = γ2z + γ2y

+γ2y + γ2x

Finally we compare the complexities of Gaussian elimination and Algorithm 1

when used to decode l-dimensional MV codes. Since it is cumbersome and difficult

to derive the exact number of multiplications or additions conducted, we display

only the most significant terms for both algorithms. As mentioned above, a nonzero

39

2.6. LIST DECODING OF MV CODES

multivariate linearized polynomial Q(x, y1, . . . , yL) can also be obtained by solving

the homogeneous system determined by (2.3). The size of the coefficient matrix

is (t + l)m × [ml(L + 1) − k−1
2
L(L + 1)]. If solved by Gaussian elimination, the

calculation complexity is dominated by m3(t+ l)2lL/2−m2(t+ l)2L2(k−1)/4 finite

field multiplications and m3(t + l)2lL/2 −m2(t + l)2L2(k − 1)/4 additions. Given

the fact that ml−L(k− 1)− 1 ≥ 0 (the q-degree of QL(yL) has to be nonnegative),

this complexity can be simplified to be L2m2(t + l)2(k − 1)/4, with an order of

O(L2m2(t+ l)2(k − 1)), for multiplications and additions respectively.

For Algorithm 1, we have C = (t + l)m linear functionals in this case and a

total of L + 1 elements in the basis of the free module, and the highest q-degree

of the linearized polynomials in x is at most ml − 1 for all iterations. Since the

linear functional operation and the multiplication between elements in the ring and

elements in the module are defined in the same manner as for KK codes, Algorithm 1

requires about 2m2(t + l)lL2 − m(t + l)L2(k − 1) finite field multiplications and

2m2(t+l)lL2−m(t+l)L2(k−1) addition, with orders of O(L2m2(t+l)l), respectively.

Hence the complexity of Gaussian elimination is (t + l)(k − 1)/(4l) times that of

Algorithm 1 when k > 5. The complexities of the two algorithms are shown in

Table 2.3, where GE stands for Gaussian elimination.

Table 2.3: Computational complexities of Gaussian elimination and Algorithm 1 for
MV codes

Computation Finite Field Multiplication Finite Field Addition
GE L2m2(t+ l)2(k − 1)/4 L2m2(t+ l)2(k − 1)/4
Algorithm 1 2m2(t+ l)lL2 2m2(t+ l)lL2

40

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

2.7 Hardware Implementations and Comparison

In order to demonstrate the advantage of the proposed interpolation algorithm in

hardware implementation, an interpolator for list decoding of l-dimensional MV

codes is implemented in hardware and is compared with Gaussian elimination. To

this end, we focus on an MV code over GF(46) with k=1, l=3, m=2, t=5, and L=2.

However, the proposed architecture and the implementation results can be readily

extended to other MV codes.

For this code, Algorithm 1 reduces to Algorithm 2, where the interpolation fin-

ishes inN iterations. During iteration s (s = 0, 1, · · · , N−1), a packet (a0,s, a1,s, a2,s)

is received and processed, where ai,s ∈ GF(46), i = 0, 1, 2. To compare the through-

put, N received packets are treated as a received word. Since the list decoder

for MV codes fails when N > (t + l)m, N is set to (t + l)m. The polynomials

f0(x, y, z), f1(x, y, z) and f2(x, y, z) are updated based on their values and the re-

ceived packet, where fi(x, y, z) = fxi(x)+ fyi(y)+ fzi(z) =
∑Nx−1

j=0 COEXi(j)x
[j]+∑Ny−1

j=0 COEYi(j)y
[j] +

∑Nz−1
j=0 COEZi(j)z

[j]. fxi, fyi and fzi are linearized poly-

nomials in x, y and z, respectively, with coefficients COEXi(j), COEYi(j) and

COEZi(j), respectively. Nx, Ny and Nz are the highest possible powers of fxi,

fyi and fzi. The PolyEvl function in Algorithm 2 evaluates fi(x, y, z) at x = a0,s,

y = a1,s and z = a2,s, and computes ∆i = fi(x, y, z)|x=a0,s,y=a1,s,z=a2,s . The Order-

Comp function in Algorithm 2 computes the order of fi(x, y, z), expressed as Oi =

max(dxi, dyi + k − 1, dzi + 2(k − 1)), where dxi = degq(fxi(x)), dyi = degq(fyi(y)),

dzi = degq(fzi(z)).

41

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

Algorithm 2 Interpolation algorithm for L=2

Input: (a0,s, a1,s, a2,s); s = 0, · · · , N − 1
Output: d(x, y, z)

f0(x, y, z) = x, f1(x, y, z) = y, f2(x, y, z) = z
for s = 0 to N − 1 do
for i = 0 to 2 do
∆i = PolyEvl(fi(x, y, z), a0,s, a1,s, a2,s)
Oi = OrderComp(fi(x, y, z))

end for
I0 = {i : ∆i ̸= 0}; I1 = {i : ∆i = 0}
if I0 ̸= ∅ then
i∗ ← argmin

i∈I0
{Oi}

for i ∈ I0 do
if i ̸= i∗ then
fi(x, y, z) = ∆i∗fi(x, y, z) + ∆ifi∗(x, y, z)

else
fi(x, y, z) = ∆i(fi(x, y, z))

[1] +∆
[1]
i fi(x, y, z)

end if
end for

end if
if I1 ̸= ∅ then
for i ∈ I1 do
fi(x, y, z) = fi(x, y, z)

end for
end if

end for
Oi = OrderComp(fi(x, y, z)), i = 0, 1, 2
i∗ ← argmin

i=0,1,2
{Oi}

d(x, y, z) = fi∗(x, y, z)

42

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

Control

PUU0,0

PUU0,1

PUU0,M-1

D D D D D D D D D

PolyEvl0 PolyEvl1 PolyEvl2

...

...

COE0 COE1 COE2

PUU1,0

PUU1,1

PUU1,M-1

PUU2,0

PUU2,1

PUU2,M-1

[a0a1a2]

pipeline pipeline pipeline

w w w

w w w

w w w

w w w

w w w

w w w

OrderComp0 OrderComp1 OrderComp2

Figure 2.1: Interpolator top architecture

2.7.1 Hardware implementation of the interpolation algo-

rithm

The top architecture of the proposed interpolator, shown in Fig. 2.1, consists of

coefficient registers, polynomial update unit (PUU), PolyEvl and OrderComp units.

COEi stores the coefficients of fi(x, y, z), and contains three parts: COEXi, COEYi

and COEZi. Each coefficient is an element in GF(qml), and hence requires w =

ml log2 q bits to represent. For the MV code mentioned above, each coefficient is an

element of GF(46) and hence needs a 12-bit register. It takes N cycles to finish the

43

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

interpolation. During each cycle, the PolyEvli unit evaluates fi(x, y, z) to obtain ∆i

and the OrderCompi unit computes Oi. Using ∆i and Oi, the PUUi,j’s update the

coefficients of fi(x, y, z), which are written back to COEi.

As shown in Fig. 2.2, the PolyEvli unit evaluates fi(x, y, z). Each element over

GF(46) is represented as a six-dimensional vector over GF(4) with respect to some

basis. For the proposed interpolator, finite field multiplications assume a polyno-

mial basis representation. On the other hand, the exponentiation α[n] reduces to a

cyclic shift of six-dimensional vector when a normal basis is used. Thus, in Fig. 2.2,

the polynomial basis representation is first transformed to its corresponding normal

basis representation by using the Trans unit, and then an inverse transformation af-

ter cyclic shifts using the ITrans unit. We denote the polynomial and normal basis

representations as c = (c0, c1, c2, c3, c4, c5)
T and c′ = (c′0, c

′
1, c

′
2, c

′
3, c

′
4, c

′
5)

T , respec-

tively, where ci, c
′
i ∈ GF(4). The Trans and ITrans units implement the conversions

between them, namely, c′ = Tc and c = T−1c′, respectively, where

T =

1 0 0 0 1 1

1 0 3 1 0 0

1 3 2 0 0 0

1 2 0 1 3 0

1 0 0 2 2 0

1 1 1 2 0 0

,T−1 =

0 1 2 3 1 0

0 1 1 2 3 1

0 1 0 1 2 2

0 3 2 0 0 1

0 0 3 2 0 1

1 1 1 1 1 1

.

The summation in the PolyEvli unit is simply bit-wise XOR.

The circuitry of the PUUi,j is shown in Fig. 2.4. Using the results of polynomial

evaluation and order computation and control signals generated by the control unit

44

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

ITrans

Cyclic
Shift
0

Trans

ITrans

Cyclic
Shift
Nx-1

SUM0

...

SUM

...

...

a0

Δi

ITrans

Cyclic
Shift
0

Trans

ITrans

Cyclic
Shift
Ny-1

SUM1

...

...

...

ITrans

Cyclic
Shift
0

Trans

ITrans

Cyclic
Shift
Nz-1

SUM2

...

...

...
COEXi(0) COEXi(Nx-1) COEYi(0) COEYi(Ny-1) COEZi(0) COEZi(Nz-1)

w a1w a2w

w w w

w w w w w w

w w w w w w

w w w w w ww w w w w w

w w
w

w

Figure 2.2: The architecture of PolyEvli

Priority Decoder Priority Decoder Priority Decoder

k-1 2(k-1)

MAX
Oi

COEXi(0) COEXi(Nx-1) COEYi(0) COEYi(Ny-1) COEZi(0) COEZi(Nz-1)
w w w w w w

IsZero
1 1 1 1 1 1

IsZero IsZero IsZero IsZero IsZero

Figure 2.3: The architecture of OrderCompi

in Fig. 2.1, the PUUi,j performs the corresponding updates according to Algorithm 2.

When j = 0, COEXi(-1), COEYi(-1) and COEZi(-1) are set to zero.

For a (k, l,m, t) MV code with list size L, the hardware complexity of the pro-

posed interpolator is dominated by 4c multipliers over GF(qml) and c ml (log2 q)-bit

registers, where c = (L + 1)
[
(N + 1)(L+ 1)− L(L+1)

2
(k − 1)

]
and N = (t + l)m.

Without any pipelining, the critical path delay (CPD) of the proposed interpolator

architecture is max(TP , TO) + TC + TPUU, where TP , TO, TC and TPUU are the

delays of polyEvl, OrderComp, Control and PUU, respectively. TP and TPUU are

dominated by TM (delay of a finite field multiplier) and 2TM , respectively. Since

45

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

i1 j

i1

i2

i

i

i

i2 j

i j

i j

i j

w
w w

ww

w

w w

w

w
w

w w

w w
w

w

Figure 2.4: The circuitry of PUUi,j

TM increases as the field size grows, to improve the clock rate of the interpolator, a

stage of pipeline registers is inserted at the inputs of the PUUs, as shown in Fig. 2.1.

2.7.2 Implementation of Gaussian elimination

The interpolation for the list decoding of MV codes can also be done by applying

Gaussian elimination to a (t + l)m×
[
ml(L+ 1)− k−1

2
L(L+ 1)

]
coefficient matrix

M. For hardware implementation, Gaussian elimination can be performed using

[39, Alg. 7] , which involves three operations: the eliminate, shiftup and shiftleft

operations. For the MV code described above, we use the fully parallel architecture

in [39], which consists of a 2-D array of 16×18 processing elements.

2.7.3 Implementation results comparison

For the MV code mentioned above, we synthesize the interpolator and Gaussian

eliminator using the FreePDK 45nm standard cell library [40]. The results are

shown in Table 2.4, where the gate count is the number of two-input one-output

NAND gates and the efficiency is throughput per million NAND gates.

The proposed interpolator outperforms the Gaussian eliminator in two aspects.

46

2.7. HARDWARE IMPLEMENTATIONS AND COMPARISON

Table 2.4: Hardware implementation results of the interpolator and Gaussian Elim-
inator.

Int. GE

Frequency (MHz) 751 869
Gate count 439K 550K

number of cycles 32 18 to 136
Throughput (106 words/second) 46.9 6.4 to 48.2

Efficiency 106.8 11.6 to 87.6

First, while the throughput of the interpolator is constant, the throughput of the

Gaussian eliminator is variable and much smaller in the worst case. The interpolator

finishes a round of interpolation in exactly 32 cycles. However, even when a fully

parallel architecture is used, the throughput of the Gaussian eliminator varies with

the received words. Under the best condition when M0,0 is always non-zero, the

Gaussian eliminator requires 18 cycles, and achieves a throughput of 48.2M words/s.

Under the worst condition, the Gaussian eliminator takes T (T + 1)/2 cycles [39],

where T = 16 for the aforementioned MV code, and has a throughput of only 6.4M

words/s. The constant throughput of the proposed interpolator is attractive for some

applications. Second, the proposed interpolator saves 20% hardware compared to

that of the Gaussian eliminator, and its efficiency is about 1.22 to 8.9 times of that

of the Gaussian eliminator. The hardware implementation results are consistent

with the complexity comparison in Section 2.6.

47

2.8. CONCLUSION

2.8 Conclusion

In this chapter, we investigate the interpolation problem over free modules of a

linearized polynomial ring, and propose an interpolation algorithm. Our interpo-

lation algorithm is used to decode Gabidulin codes and KK codes. Comparisons

are made between our algorithm for Gabidulin codes and Loidreau’s decoding al-

gorithm. Analysis shows that the Sudan-style list-1 decoding algorithm for KK

codes is a special case of our interpolation algorithm. Our interpolation algorithm

is also used to find the multivariate linearized polynomial in the list decoding of MV

codes. An interpolator for list decoding of MV codes has also been implemented in

hardware, and hardware implementation results demonstrate the advantages of the

proposed interpolator over a Gaussian eliminator.

48

Chapter 3

On List Decoding of

Mahdavifar–Vardy Codes

3.1 Introduction

Error control is important to network coding due to network coding’s vulnerability

to errors, caused by unreliable links or malicious nodes. If unchecked, errors greatly

deteriorate the throughput gains of network coding and seriously undermine both

reliability and security of data. For noncoherent random linear network coding

(RLNC), an operator channel is proposed in [9] to describe the transmission model,

over which subspaces are transmitted and received, with errors and erasures defined

to be addition and deletion, respectively, of vectors (packets) in the transmitted

subspace. A family of subspace codes, referred to as KK codes, is also proposed

in [9]. Just as Reed–Solomon (RS) codes can be constructed from evaluation of

polynomials, KK codes are constructed from evaluation of linearized polynomials.

49

3.1. INTRODUCTION

KK codes are shown to be asymptotically optimal [9], and can be decoded by a

Sudan-style list decoding algorithm [9]. This list decoding algorithm has a list size

of one, and hence it is essentially a bounded distance decoder with a decoding radius

of approximately half the minimum distance.

To enable a larger list size and to achieve a greater decoding radius, Mahdavifar

and Vardy have recently proposed a family of subspace codes, referred to as MV

codes henceforth, and a list decoding algorithm for MV codes [10, 41]. Assuming

that no erasures have occurred, this algorithm has a greater decoding radius than

the decoding algorithm in [9] for low rate codes, and it is analogous to Sudan’s

algorithm for RS codes [42]. But MV codes and their decoding algorithm in [10] have

several drawbacks. First, the assumption of no erasures is not feasible in practice,

as erasures are common due to various reasons, such as dropped packets, node or

link failure, or malicious attacks. Second, a greater decoding radius is achieved only

for low rate codes. Third, no analytical performance evaluation is provided for the

decoding algorithm of MV codes in [10].

In this chapter, we address these three drawbacks. First, to accommodate era-

sures, we treat the degree of the multivariate linearized polynomial at the interpo-

lation step as a variable, and derive the condition of decodability. We also explain

the asymmetric importance of errors and erasures in the new decodability condi-

tion. Second, motivated by the Guruswami–Sudan algorithm for RS codes [20], we

introduce multiplicity into the interpolation step, attempting to achieve a greater

decoding radius for high rate codes. Unfortunately, our results show that the decod-

ing radius is slightly reduced due to properties of linearized polynomials. Finally,

50

3.2. LIST DECODING OF MV CODES

after the decoding list is obtained, we form a nearest neighbor decoder, and calcu-

late the decoder error probability (DEP). Assuming no erasures, we obtain an upper

bound on the DEP, which decreases exponentially with the list size as well as the

dimension of the subspaces in the code. When erasures occur during transmission,

a closed-form expression of the DEP is obtained based on the results in [43].

The rest of this chapter is organized as follows. Section 3.2 reviews MV codes

and their list decoding algorithm. Erasures and multiplicities are considered in

Sections 3.3 and 3.4, respectively. A nearest neighbor decoder is formed in Sec-

tion 3.5, and its DEP with and without erasures is analyzed. Section 3.6 offers some

concluding remarks.

3.2 List Decoding of MV Codes

A subspace code is a subset of the projective space of an ambient space, which is

the set of all the subspaces of an ambient space. Suppose W is a vector space over

a finite field GF(q), where q is a prime power, and P(W) is the set of all subspaces

of W . For U, V ∈ P(W), the subspace distance ds [9] between them is defined as

ds(V, U)
def
= dim(V + U) − dim(V ∩ U), where dim(A) denotes the dimension of a

subspace A ∈ P(W), V ∩ U is the intersection space of V and U , and V + U is the

smallest subspace that contains both V and U .

To construct an l-dimensional MV code over GF(qml), an extension field of

GF(q), l has to be a positive integer that divides q−1. Then xl−1 = 0 has l distinct

roots e1 = 1, e2, . . . , el over GF(q). In [10], first a primitive element γ in GF(qml)

51

3.2. LIST DECODING OF MV CODES

with γ, γ[1], . . . , γ[ml−1] being a normal basis for GF(qml) is chosen. Then the ele-

ments αi are constructed over GF(qml) by αi = γ+eiγ
[m]+e2i γ

[2m]+· · ·+el−1
i γ[m(l−1)]

for i = 1, 2, . . . , l, where [m] = qm. It is proved [41] that the set {α[j]
i : i =

1, 2, . . . , l, j = 0, 1, . . . ,m− 1} is a basis of GF(qml).

For a message vector u = (u0, u1, . . . , uk−1) over GF(q), the message polyno-

mial is u(x) =
∑k−1

i=0 uix
[i], where [i] = qi. u(x) is a linearized polynomial with a

q-degree of i∗ if i∗ is the largest index with ui∗ ̸= 0. The product between two

linearized polynomials u(x) and v(x) is defined to be u(x) ⊗ v(x)
def
= u(v(x)). Let

u⊗i(x) denote the product of u(x) with itself by i times for any nonnegative in-

teger i, with u⊗0(x) = x. Then the codeword V corresponding to the message

u is spanned by a set of vectors vi, where v1 = (α1, u(α1), u
⊗2(α1), . . . , u

⊗L(α1)),

vi = (αi,
u(αi)
αi

, . . . , u
⊗L(αi)
αi

) for i = 2, 3, . . . , l, and L is the desired list size. Then

V is an l-dimensional subspace of the (Lm + l)-dimensional ambient space W =

⟨α1, α2, . . . , αl⟩ ⊕GF(qm)⊕ · · · ⊕GF(qm)︸ ︷︷ ︸
L times

. Suppose an error of dimension t occurs,

and an (l + t)-dimensional subspace U of W is received. The decoder first finds

subspaces Ui such that Ui = {(x, y1, y2, . . . , yL) : x ∈ ⟨αi⟩} for i = 1, 2, . . . , l.

Then, a basis {(x1,j, y1,1,j, y1,2,j, . . . , y1,L,j) : j = 1, 2, . . . , r1} of U1 is found, where

r1 is the dimension of U1. If l = 1, we ignore the first step and simply find a

basis for the (t + 1)-dimensional received subspace U1. For i = 2, 3, . . . , l, the de-

coder obtains U ′
i = {(x, αiy1, αiy2, . . . , αiyL) : (x, y1, y2, . . . , yL) ∈ Ui}, and finds

a basis {(xi,j, yi,1,j, yi,2,j, . . . , yi,L,j) : j = 1, 2, . . . , ri} of U ′
i , where ri is the dimen-

sion of Ui. Finally, the decoder constructs a nonzero multivariate linearized poly-

nomial Q(y0, y1, y2, . . . , yL) =
∑L

i=0Qi(yi), where Qi is a linearized polynomials

over GF(qml) of q-degree at most ml − i(k − 1) − 1, such that for n = 1, 2, . . . , l,

52

3.3. CORRECTION OF ERASURES

j = 1, 2, . . . , ri, and h = 0, 1, . . . ,m− 1,

Q(x
[h]
n,j, y

[h]
n,1,j, . . . , y

[h]
n,L,j) = 0. (3.1)

We call this procedure the interpolation step of the list decoding algorithm for MV

codes. Using the LRR algorithm in [10], the decoder finds all possible polynomials

û(x)’s such that E(x) = Q(x, û(x), û⊗2(x), . . . , û⊗L(x)) ≡ 0, and we call such a

process the factorization step of the decoding algorithm. It is proved [41] that if

t < lL− L(L+ 1)
k − 1

2m
, (3.2)

Eq. (3.1) has a nonzero solution and there are at most L solutions satisfying E(x) ≡

0, among which the transmitted message polynomial u(x) is guaranteed to be in-

cluded.

3.3 Correction of Erasures

For MV codes [10], errors and erasures are not equally important, that is, MV codes

and their decoding algorithm in [10] do not handle erasures over the operator chan-

nel. For one-dimensional MV codes, no erasure can be corrected, as a single erasure

of dimension one results in a total loss of all the information of the transmitted

subspace. Hence we consider only l-dimensional MV codes with l > 1. The list

decoding algorithm in [10] constructs a nonzero multivariate linearized polynomial

Q(y0, y1, . . . , yL) of q-degree ml − 1 in the interpolation step. If an erasure of di-

mension ρ happens, there are m(l− ρ) linearly independent zeros for the linearized

53

3.3. CORRECTION OF ERASURES

polynomial E(x) = Q(x, û(x), . . . , û⊗L(x)) in the factorization step. To have E(x)

identically zero, we have m(l−ρ) > ml−1 in the factorization step. Hence ρ has to

be zero, that is, no erasures are accommodated in this decoding algorithm. We ob-

serve that this happens because the q-degree of Q(y0, y1, . . . , yL) is set to be a fixed

value, ml − 1. Here, we set the q-degree of this multivariate linearized polynomial

as a variable, and derive the condition of decodability when erasures occur over the

operator channel.

Suppose Q(y0, y1, . . . , yL) =
∑L

i=0Qi(yi), where the q-degree of Qi(yi) is τ −

1 − i(k − 1) for 0 ≤ i ≤ L. We assume an erasure of dimension ρ and an er-

ror of dimension t occur during the transmission. Then for a nonzero solution of

Q(y0, y1, . . . , yL), we have

m(l − ρ+ t) <
L∑
i=0

τ − i(k − 1). (3.3)

To let the linearized polynomial Q(x, û(x), . . . , û⊗L(x)) be identically zero, we have

m(l − ρ) > τ − 1. Then the condition of decodability is

Lρ+ t < Ll − k − 1

2m
L(L+ 1). (3.4)

When we select τ = ⌈ r+1
L+1

m + k−1
2
L⌉, the condition of decodability is satisfied. In

this case, an erasure of dimension ρ can be handled as long as (3.4) is satisfied. Note

that when we let ρ = 0, (3.4) is the same as (3.2).

The condition of decodability in (3.4) indicates that an erasure of dimension one

is equivalent to an error of dimension L, where L is the list size. The reason of

this asymmetry is explained here. m(l − ρ) > τ − 1 implies that a one-dimensional

54

3.4. EFFECTS OF MULTIPLICITIES ON THE LIST DECODING

erasure causes a reduction of the q-degree of Qi(yi) for i = 0, 1, . . . , L bym compared

to the case where only errors happen. Then the number of unknowns is reduced by

m(L + 1) in (3.3). Note that (3.3) involves the erasure on the left hand side and a

coefficient of m on both sides. Hence each dimension of erasure causes a decrease in

the number of unknowns by L compared to the case with only errors. As a result,

the largest possible dimension of the error is reduced by L. Hence an erasure of

dimension one is equivalent to an error of dimension L.

3.4 Effects of Multiplicities on the List Decoding

In the Guruswami-Sudan algorithm for RS codes [35], multiplicities are imposed on

each point to be interpolated so that a greater decoding radius can be achieved.

Naturally we try to improve the list decoding algorithm for MV codes by adding

multiplicity too. We first introduce a definition of multiplicity for multivariate

linearized polynomials, and then examine its effects on the list decoding algorithm.

3.4.1 Definitions

Suppose a multivariate linearized polynomial is given byQ(y0, y1, . . . , yL) =
∑L

i=0 Qi(yi),

where Qi(yi) =
∑ni

j=0 aj,iy
[j]
i is a linearized polynomial with aj,i ∈ GF(qm), and ni

a non-negative integer for i = 0, 1, . . . , L. We say the multivariate linearized poly-

nomial Q(y0, y1, . . . , yL) has a zero at a point (β0, β1, . . . , βL) if Q(β0, β1, . . . , βL) =

0, where β0, β1, . . . , βL are in some extension field K of GF(qm), and the point

(β0, β1, . . . , βL) is called a root of Q(y0, y1, . . . , yL). Next we introduce the concept

of multiplicity for multivariate linearized polynomials.

55

3.4. EFFECTS OF MULTIPLICITIES ON THE LIST DECODING

Definition 1. Q(y0, y1, . . . , yL) =
∑L

i=0

∑ni

j=0 aj,iy
[j]
i , a multivariate linearized poly-

nomial is said to have a zero of multiplicity qs at (0, 0, . . . , 0) if aj,i = 0 for any

j < s and any i ∈ {0, 1, . . . , L}.

Definition 2. We say a multivariate linearized polynomial Q(y0, y1, . . . , yL) has a

zero of multiplicity qs at (β0, β1, . . . , βL) if Q(y0+β0, y1+β1, . . . , yL+βL) has a zero

of multiplicity qs at (0, 0, . . . , 0).

The sufficient and necessary condition for a nonzero point to have a multiplicity

of qs is given by the following lemma.

Lemma 8. A multivariate linearized polynomial Q(y0, y1, . . . , yL) =
∑L

i=0

∑ni

j=0 aj,iy
[j]
i

has a zero of multiplicity qs at (β0, β1, . . . , βL) if and only if Q(β0, β1, . . . , βL) = 0

and aj,i = 0 for any j < s and any i ∈ {0, 1, . . . , L}.

The proof is omitted due to limited space. Lemma 8 and Definition 1 indi-

cate that any nonzero root of a multivariate linearized polynomial has the same

multiplicity as the all-zero root. Hence we conclude that all the roots of a multi-

variate linearized polynomial have the same multiplicity. This interesting fact could

be explained as follows. Since aj,i = 0 for any j < s and any i = 0, 1, . . . , L,

we can write the polynomial as Q(y0, y1, . . . , yL) = (Q′(y0, y1, . . . , yL))
[s], where

Q′(y0, y1, . . . , yL) =
∑L

i=0

∑ni−s
j=0 bj,iy

[j]
i is a multivariate linearized polynomial such

that b
[s]
j,i = aj−s,i. Hence every root ofQ

′(y0, y1, . . . , yL) is also a root ofQ(y0, y1, . . . , yL),

with a multiplicity of qs.

56

3.4. EFFECTS OF MULTIPLICITIES ON THE LIST DECODING

3.4.2 Effect of Multiplicities

For an l-dimensional MV code (l ≥ 1), we suppose each root has a multiplicity of qsl

for Q(y0, y1, . . . , yL) =
∑L

i=0Qi(yi), where Qi(yi) has a q-degree of τ−i(k−1)−1. As

explained in Section 3.4.1, we can write Q = (Q′)[sl] for some multivariate linearized

polynomial Q′ =
∑L

i=0Q
′
i, where Q′

i is a linearized polynomial with a q-degree

τ − sl − i(k − 1) − 1. We choose τ = ml, and let Q(β
[j]
i,0, β

[j]
i,1, . . . , β

[j]
i,L) = 0 for

i = 1, 2, . . . , n with n ≤ t+ l, and j = 0, 1, . . . ,m− s− 1, where (βi,0, βi,1, . . . , βi,L)

are the points to be interpolated (obtained as described in Section 3.2). Then there

are a total of no more than (m− s)(t+ l) equations, while the number of unknowns

is
∑L

i=0(m− s)l − i(k − 1). Hence when

t < lL− k − 1

2(m− s)
L(L+ 1), (3.5)

a nonzero solution of Q′ can be obtained. In addition, the q-degree of E ′(x) =

Q′(x, u(x), . . . , u⊗L(x)) is (m − s)l − 1, while it has (m − s)l linearly independent

roots, implying that E ′(x) is identically zero. Hence (3.5) ensures decodability when

the multiplicity of each point is qsl.

Comparing the decodability condition in (3.5) to that in (3.2), we note that the

introduction of multiplicity actually slightly reduces the decoding radius. This is

due to the unique properties of linearized polynomials. As mentioned above, for

multivariate linearized polynomials, the multiplicities of all the points are not inde-

pendent, and they have to be the same. Further, Lemma 8 and Definition 2 indicate

that a multiplicity of qs at each point defines a same set of s(L+1) extra constraints

on the unknowns. Hence unlike the case for RS codes, the same multiplicity on each

57

3.5. DECODER ERROR PROBABILITY

interpolated point does not produce a number of extra linear constraints that is

proportional to the number of points to be interpolated.

3.5 Decoder Error Probability

Motivated by classic coding theory, given the list of possible codewords returned by

the list decoding algorithm, we propose to choose a codeword with the minimum

subspace distance to the received subspace from the list. In classic coding theory,

this approach is attractive since it ensures that, when the returned list contains the

transmitted codeword, a list decoding algorithm performs no worse than a maximum

likelihood (ML) decoding algorithm, provided that a nearest neighbor decoder is

equivalent to an ML decoder. With this additional step, we obtain a nearest neighbor

decoder up to the decoding radius of the list decoding algorithm in [10].

A decoder error happens when this nearest neighbor decoder produces an incor-

rect codeword, and we analyze its decoder error probability (DEP) with and without

erasures. We assume that all possible received subspaces of the same dimension and

at the same subspace distance from the transmitted subspace are equiprobable.

3.5.1 DEP without Erasures

We first consider the case where only errors happen over the operator channel. Under

this assumption, the transmitted codeword is actually a subspace of the received

subspace. For an l-dimensional MV code C, suppose V ∈ C is transmitted, and an

error of dimension t occurs, resulting in a (t+l)-dimensional received subspace U . We

use a nearest neighbor decoder with a decoding radius t∗, where t∗ < lL− L(L+1)
2

k−1
m

58

3.5. DECODER ERROR PROBABILITY

based on (3.2). If t > lL − L(L+1)
2

k−1
m

, there is no nonzero solution for (3.1), and

the list decoding algorithm simply fails. Hence we consider the case with t ≤ t∗,

where the list decoding algorithm will generate a decoding list that includes the

transmitted codeword. Given that ds(U, V) = t, a decoder error occurs only when

ds(U, V
′) ≤ t, where V ′ ̸= V ∈ C. Then ds(U, V

′) = l+t+l−2dim(U∩V ′) ≤ ds(U, V)

only when dim(U ∩ V ′) = l, i.e., the received subspace U contains other codeword

V ′ as its subspace.

Let p(s|V) denote the probability that the list decoding algorithm returns a list

with s+ 1 codewords in C, where C has a minimum subspace distance of 2d. Then

p(s|V) is the number of (t + l)-dimensional subspaces that only contain V and s

other codewords in C divided by the number of (t + l)-dimensional subspaces that

contain V , which can be upper bounded by

p(s|V) ≤
t+l∑

ls=l+d

Ns,lsBs,ls∏l−1
i=0(q

l − qi)
∏t−1

j=0(q
Lm+l − ql+j)

, (3.6)

where Ns,ls is the number of sets of s codewords V1, V2, . . . , Vs ∈ C such that

Vi ̸= V for i = 1, 2, . . . , s and Uv = V + V1 + V2 + · · · + Vs is an ls-dimensional

subspace that does not contain any other codeword in C, Bs,ls =
∏ls−1

i=0 (q
ls −

qi)
∏t+l−ls−1

j=0 (qLm+l − qlC+j), and lC is the dimension of VC, the smallest subspace

that contains all the codewords in C. For further references, we denote p(s, ls) =

Bs,ls/(
∏l−1

i=0(q
l − qi)

∏t−1
j=0(q

Lm+l − ql+j)).

It can be easily shown that p(s, ls+1) < p(s, ls), then p(s|V) ≤
∑t+l

ls=l+dNs,lsp(s, ls =

l+d) <
∑t+l

ls=l+d Ns,lsq
−(Lm−(l+d))d from p(s, ls = l+d) < q−(Lm−(l+d))d. Furthermore,

an upper bound on Ns,ls can be given by (q
k−1

s
) ≤ (qk − 1)s < qks. Then the DEP is

59

3.5. DECODER ERROR PROBABILITY

bounded by

pe ≤
L−1∑
s=1

s

s+ 1
p(s|V) < (t− d)q−(L(md−k)−(l+d)d), (3.7)

which decreases exponentially with the list size L, the degree of extension m over

the base field, and the minimum subspace distance of the code.

3.5.2 DEP with Erasures

Now suppose an erasure of dimension ρ happens aside from the error of dimension t.

We use a nearest neighbor decoder after the list decoding algorithm in [10], with a

decoding radius t∗ < lL− L(L+1)
2

k−1
m

by (3.4). If Lρ+ t > lL− L(L+1)
2

k−1
m

, no nonzero

solution for (3.3) can be found, and the list decoding algorithm fails. Now suppose

Lρ + t ≤ t∗, then the decoder will produce an error if ds(U, V
′) ≤ ρ + t for some

V ′ ̸= V ∈ C. Suppose Aw(V) [43] is the distance distribution of C with respect to

V . Then based on the results of [43], the DEP is given by

pe(V, ρ, t, d) =
1

N(ρ, t)

l∑
w=d

Aw(V)

ρ+t∑
s=0

J(ρ, t, s, w), (3.8)

when N(ρ, t) > 0, and ρ + 2t ≥ d; and pe(V, ρ, t, d) = 0 otherwise. In (3.8), N(ρ, t)

is the number of (l − ρ + t)-dimensional subspaces at subspace distance ρ + t from

V , and J(ρ, t, s, w) is the number of (l− ρ+ t)-dimensional subspaces that are at a

subspace distance ρ+t from V and a subspace distance s from another l-dimensional

subspace at a distance w from V [43].

60

3.6. CONCLUSION

3.6 Conclusion

This chapter addresses three problems about the list decoding of MV codes: correc-

tion of erasures, effects of multiplicities, and decoder error probability for a nearest

neighbor decoder based on the list decoding algorithm. We derive the condition of

decodability for the list decoding algorithm assuming erasures. We also attempt

to achieve a greater decoding radius by introducing multiplicity to the interpolated

points. But our results show that the decoding radius is slightly reduced. Finally,

by forming a nearest neighbor decoder up to the decoding radius of the list decoding

algorithm in [10], we evaluate the decoder error probability of this nearest neighbor

decoder.

61

Chapter 4

Rank Deficient Decoding of Linear

Network Coding

4.1 Introduction

Due to its promise of significant throughput gains as well as other advantages,

network coding [2,3,5] is already used or considered for a wide variety of wired and

wireless networks (see, for example, [13–17]). One significant drawback of network

coding is that a full rank of received packets at the receiver nodes of a multicast

(or a unicast) is needed before decoding can start, leading to long delays and low

throughputs, especially when the number of packets of a session is large. This is

particularly undesirable for applications with stringent delay requirements.

Aiming to solve this problem, we propose rank deficient decoding for linear net-

work coding, which can start even when the received packets are not full rank. By

reformulating the decoding problem of network coding in a different fashion, the

62

4.1. INTRODUCTION

decoding problem reduces to a collection of syndrome decoding problems. Solving

these syndrome decoding problems, rank deficient decoding leads to smaller delays

and higher throughputs, at the expense of possible decoding errors. Specifically,

we propose two classes of rank deficient decoders with different complexities. The

decoders of the first class, called Hamming norm (HN) decoders, take advantage of

the sparsity inherent in data and produce the data vectors with the smallest Ham-

ming weight. Since the HN decoders have high complexities for large size systems,

we propose a class of decoders based on linear programming, referred to as lin-

ear programming (LP) decoders. Considering linear programming relaxation of the

Hamming norm decoders and solving them by using standard linear programming

procedures, the linear programming decoders have polynomial complexities and are

much more affordable. Both classes of decoders recover data from fewer received

packets and hence achieve higher throughputs and shorter delays than the full rank

decoder. Since these decoders could produce erroneous outputs, within each class

several different decoding strategies have been proposed for different tradeoffs be-

tween delay/throughput and data accuracy, and they include the full rank decoder

of network coding as a special case.

In the literature, there are two related different approaches to dealing with the

synergy of network coding and compressive sensing, and they also aim for different

applications. Our work is quite different from both existing approaches. Above

all, our reformulation of the decoding problem in network coding is novel, and this

reformulation was not considered in the open literature to the best of our knowledge.

One approach was proposed in [44], where statistical property of data blocks are

taken advantage of to alleviate the “all-or-nothing” drawback of network coding

63

4.2. RANK DEFICIENT DECODING

in distributed storage systems. In this approach, random linear network coding is

used to encode coded blocks in distributed storage networks. Hence, this approach

is not directly comparable to our work, which focuses on the decoding issue of

linear network coding in general and applies to a wide variety of applications. The

other approach [45, 46] aims to take advantage of the statistical correlation of data

generated by distributed sensor networks. A salient feature of this approach is

that in theory data are real values and linear combinations are now performed over

the real (or complex) field. The rationale for this is that the real representation

of data is a more natural one for sensor networks [45, 46]. In practice, data are

represented in a finite precision system. It has been shown that information loss

due to finite precision grows with the network size [47]. In contrast, in our work

network coding remains over some finite fields, and hence our scheme does not suffer

the information loss due to finite precision as the approach in [45,46]. Thus, the full

rank decoder remains the most relevant previous work, and henceforth we compare

our rank deficient decoders with the full rank decoder only.

The rest of this chapter is organized as follows.

4.2 Rank Deficient Decoding

4.2.1 System Model

In this work, we treat all packets as N -dimensional row vectors over some finite field

GF(q), where q is a prime power. Also, we focus on linear network coding (LNC)

only, which was shown to be optimal in most cases [5]. Finally, we assume that

the network is error-free, and error control (see, for example, [6, 9, 10, 48]) is not

64

4.2. RANK DEFICIENT DECODING

embedded in network coding.

Suppose a source node of a unicast or multicast injects a collection of n data

packets (or row vectors over GF(q)), X0,X1, · · · ,Xn−1, into the network. At any

sink node, m packets (or row vectors over GF(q)), Y 0,Y 1, · · · ,Y m−1, are received,

where Y i =
∑n−1

j=0 ai,jXj for i = 0, 1, · · · ,m − 1 and ai,j ∈ GF(q). Since the

sink node can locally generate more linear combinations of Y 0,Y 1, · · · ,Y m−1, it

is assumed that Y 0,Y 1, · · · ,Y m−1 are linearly independent, which implies that

m ≤ n. That is, the m× n matrix A = [ai,j], often called the global coding kernel

matrix, has a rank of m.

4.2.2 Full Rank Decoder

Let us further denote the matrices
[
XT

0 XT
1 · · · XT

n−1

]T
and

[
Y T

0 Y T
1 · · · Y T

m−1

]T
as

X and Y , respectively, where T is the matrix transpose operator. Since Y = AX,

the sink node can recover the transmitted data packets by reversing the encoding

of the data packets by the network. This is easily achievable when m = n, as

the sink node can recover the data packets by computing X = A−1Y . Thus, the

decoding in network coding starts only after the sink node has received n linearly

independent combinations of the transmitted data packets. The required number of

linearly independent packets received by the sink node leads to longer delays and

lower throughputs, which may be undesirable for some applications.

4.2.3 Rank Deficient Decoding

We can formulate the data recovery problem at the sink node in a different way. Let

us consider symbol l of Y i, and we have Yi,l =
∑n−1

j=0 ai,jXj,l for i = 0, 1, · · · ,m− 1

65

4.2. RANK DEFICIENT DECODING

and l = 0, 1, · · · , N − 1. Let us denote the column vectors (Y0,l Y1,l · · · Ym−1,l)
T and

(X0,l X1,l · · · Xn−1,l)
T as V l and W l, respectively. Clearly, we have V l = AW l for

l = 0, 1, · · · , N − 1. The sink node can recover the data packets if it can obtain W l

from

V l = AW l for l = 0, 1, · · · , N − 1. (4.1)

Eq. (4.1) shows that the data recovery problem at the sink node can be viewed as

N parallel decoding problems in Eq. (4.1), each corresponding to one symbol in the

packet (or row vector). These N parallel decoding problems are equivalent to the

decoding problem of linear network coding.

This reformulated problem is related to two well known decoding problems.

First, if we treat the m × n matrix A as a parity check matrix for a linear block

code of length n and dimension n−m, the decoding problem in Eq. (4.1) is closely

related to a syndrome decoding problem. That is, the sink node needs to recover

W l based on the syndrome V l. Second, if we treat W l as a data vector and A

a measurement matrix, this is analogous to the decoding problem in compressive

sensing.

4.2.4 Hamming Norm Decoders

Since the data recovery problem at any sink node is equivalent to a collection of

parallel problems in Eq. (4.1), we focus on one such problem. In other words, we

try to solve V = AW for W , where V and W are m- and n-dimensional column

vectors, respectively, and A remains an m× n matrix with full rank (m ≤ n).

For a linear block code of length n and dimension n−m with a parity check matrix

66

4.2. RANK DEFICIENT DECODING

A, V = AW can be viewed as a syndrome of the received vector W . It is well

known that for a linear block code, the syndromes have a one-to-one correspondence

with its cosets, each of which is of size qn−m. In other words, all vectors in a coset

lead to the same syndrome. Thus, solving V = AW for W is equivalent to finding

a vector within a coset.

If no side information is available, we can make a decision within the coset by

taking advantage of some inherent properties of the data vector. In this work, we

proceed by relying on the sparsity of the data vector, which is well justified in many

applications. That is, the proposed Hamming norm decoders produce the vector

with the smallest Hamming weight in the coset.

As is common in the compressive sensing literature, we consider two possible

scenarios for sparsity. First, when W is sparse, we use a vector with the smallest

Hamming weight in the coset corresponding to V as the estimate of W . Second,

suppose that ΦW is sparse for a known nonsingular n × n matrix Φ. Since V =

AW = AΦ−1ΦW , we can treat V as a syndrome for the linear block code defined

by AΦ−1. Thus, in this scenario, we first select a vector with the smallest Hamming

weight in the coset of the code defined by AΦ−1 corresponding to V , and then

produce an estimate of W by multiplying the selected vector with Φ−1. In both

scenarios, the key step is to select a vector with the smallest Hamming weight in the

coset corresponding to the given syndrome. Thus, we assume W is sparse without

loss of generality.

In coding theory terminology, a vector with the smallest Hamming weight among

a coset is called a leader of the coset. Note that some coset leaders may not be

unique, when more than one vector in the coset has the smallest Hamming weight.

67

4.2. RANK DEFICIENT DECODING

In this case, either the coset leader is selected among these vectors at random or a

list of all potential leaders is the output.

We remark that this problem is closely related to but different from the syndrome

decoding problem in classic coding theory. In our decoding, a vector or a list of

vectors with the smallest Hamming weight in the coset corresponding to the given

syndrome is the estimate of the data vector. In the syndrome decoding problem,

a coset leader is often considered as an estimate of the error vector. However, the

key step in both problems is to select a vector or a list of vectors with the smallest

Hamming weight in the coset corresponding to the given syndrome.

Thus, we have the following sufficient condition for successful decoding:

Lemma 9. The minimum Hamming distance of the linear block code defined by

A, denoted by dH(A), satisfies dH(A) ≤ m+ 1. When the Hamming weight of W ,

denoted by wH(W), is less than half of the minimum Hamming distance of the linear

block code defined by A, that is wH(W) < dH(A)
2

, W can be recovered by syndrome

decoding.

Proof. The first part is due to the Singleton bound on the minimum Hamming

distance of linear block codes. The second part holds because it is well known that

a coset leader with Hamming weight less than dH(A)
2

is unique.

When W is not a unique coset leader, there are two possibilities. First, when

the Hamming weight of W is minimal in its coset, either W has a probability to be

selected when coset leaders are chosen at random or W is one of the possible vectors

produced by the decoder, depending on whether the decoder needs to generate only

one vector or a list of vectors. Second, when the Hamming weight of W is not

68

4.2. RANK DEFICIENT DECODING

minimal, a wrong vector will be produced by the Hamming norm decoder.

4.2.5 Decoding Strategies

Possible outcomes of the full rank decoder are failure or success. In contrast, the

proposed Hamming norm decoders may produce wrong decisions. Analogous to

classical error control coding, the preference between decoding failures and decoding

errors varies from one application to another. For instance, for applications with

stringent delay constraints, partially correct data packets may be more desirable

than decoding failures. For other applications such as cloud storage, data integrity

may be a top priority than delays, especially when packet retransmission is possible.

Hence, it is necessary to consider a wide range of decoding strategies so as to offer

different tradeoffs between delay/throughput and accuracy.

Two extreme strategies are natural and straightforward. One extreme, called the

error-free (EF) decoder, is similar to the full rank decoder in the sense that it decodes

only if decoding success is guaranteed by Lemma 9. The other extreme, referred

to as the best-effort (BE) decoder, always tries to decode with available received

packets. The error-free and best-effort decoders represent the most conservative and

the most aggressive strategies, respectively.

We also devise a family of decoding strategies that fills the gap between these

two extremes based on one observation about error control codes. For an (n, k)

perfect code over GF(2), we have
∑t

i=0

(
n
i

)
= 2n−k, where t =

⌊
dH(A)−1

2

⌋
. In other

words, all coset leaders are unique and have Hamming weight up to t. However,

since most codes are not perfect and some allowance needs to be made. Hence, we

devise a greedy-l decoding strategy: decodes only if
∑cw−l

i=0

(
n
i

)
= 2n−k, where cw

69

4.2. RANK DEFICIENT DECODING

is the maximal possible Hamming weight of W . The parameter l represents how

aggressive the decoder is: for the same code defined by A, the greater l is, the more

aggressive the decoder. In fact, one can use different l values to approach the two

extremes, the best-effort and error-free strategies.

4.2.6 Linear Programming Decoders

Since both the computational complexity and the memory requirement of the Ham-

ming norm decoders grow exponentially with the size of A, we also adopt a linear

programming (LP) approach. Since A is not necessarily sparse, we formulate the

problem based on that for binary linear block code with high-density polytopes in

[49].

Let x0, x1, . . . , xn−1 be the variables representing the code bits of W , and V =

(v0, v1, . . . , vm−1)
T be the syndrome received. For each check node j ∈ J , let TE

j =

{0, 2, 4, . . . , 2⌊|N(j)|/2⌋} for vj = 0, and TO
j = {1, 3, 5, . . . , 2⌊(|N(j)| − 1)/2⌋ + 1}

for vj = 1. Then the linear programming formulation for the syndrome decoding is

to minimize
∑n−1

i=0 fi subject to the linear constraints in [49](14)–(19) except that

Tj = TE
j if vj = 0, and Tj = TO

j if vj = 1. In contrast, Tj = TE
j in [49](14)–(19). In

addition, we add a linear constraint to narrow down the optimal solutions:

n−1∑
i=0

xi ≤ cw.

Linear programming may produce non-integral results, in which case two ap-

proaches are considered. The first is to round off the real values into integers, which

are compared with the original data to compute decoding error or success rate, and

70

4.3. SIMULATION RESULTS

Table 4.1: Average packets for HN decoders (N = 8 over GF(2))

Strategy FR EF greedy-(-1) HN greedy-0 HN greedy-1 HN BE HN
100% PSR 9.60 8.84 8.12 7.57 7.44 7.44
95% BSR 9.60 8.84 8.05 7.40 7.17 7.17

Table 4.2: Average packets for LP decoders (N = 8 over GF(2))

Strategy
greedy-(-1) greedy-0 greedy-1 BE
LP I LP II LP I LP II LP I LP II LP I LP II

100% PSR 8.44 8.45 8.19 8.22 8.17 8.21 8.17 8.21
95% BSR 8.15 8.18 7.66 7.74 7.58 7.67 7.58 7.67

we call this approach LP I. The other, referred to as LP II, is to declare decoding

failure. Both LP I and LP II are applicable to all greedy as well as the BE strategies.

4.3 Simulation Results

To illustrate the advantages of the proposed rank deficient decoders, we present some

numerical simulation results with the following settings. Network coding is carried

out over GF(2). We assume each session (or generation) consists of n = 8 packets of

length N = 8 bits such that the transmission matrix has a constant column weight

of cw = 2. The matrix A is generated randomly, with each element being 0 or 1

with equal probability. For each iteration, as the number of (linearly independent)

received packets m increases from 1 to 15, the proposed decoders as well as the full

rank decoder are used to decode, and their decoding success, failure, or error on

both packet and bit levels are recorded. For each decoder, its packet- and bit-level

success, failure, or error rate is obtained by averaging over 100,000 generations.

We note that such small values for n and N are chosen so that the complexities of

71

4.3. SIMULATION RESULTS

the Hamming norm decoders are manageable. We also note that in this setting, the

data sparsity is manifested as an upper bound on the column weights in the trans-

mitted data packets. We also have simulation results assuming other deterministic

or stochastic manifestations of data sparsity, such as an upper bound on the row

weights in the transmitted data packets, or the bits in the transmitted data packets

being i.i.d. binary Bernoulli random variables with probability p (p < 1/2). Due to

limited space, the simulation results for these other manifestations are omitted, but

the proposed rank deficient decoders demonstrate similar advantages regardless of

the manifestation of data sparsity.

In Fig. 4.1 and Fig. 4.2, respectively, the packet- and bit-wise fraction of de-

coding success, failures, and errors of Hamming norm decoders are represented by

green, yellow, and red bars. Similarly, Fig. 4.3 and Fig. 4.4, respectively, compare

the packet- and bit-wise fraction of decoding success, failures, and errors of linear

programming decoders. In all figures, for each value of m, the six bars represent,

from left to right, the full rank, error-free, greedy-(−1), greedy-0, greedy-1, and

best-effort strategies, respectively. In order to measure and compare the through-

put and delay of linear network coding with these decoders, the average minimum

numbers of packets required to achieve a packet success rate (PSR) of 1 or a bit

success rate (BSR) of 0.95 are compared in Table 4.1 and 4.2.

The simulation results confirm our claims about rank deficient decoders. The full

rank decoder can recover data packets only when m ≥ n = 8 and recovers no packet

when m < 8. In contrast, our rank deficient decoders recover a greater fraction of

data packets when m ≥ n = 8, and recover a substantial fraction of data packets

even when m < 8.

72

4.3. SIMULATION RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.1: Packet-level performance of HN decoders (N = 8 over GF(2))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.2: Bit-level performance of HN decoders (N = 8 over GF(2))

73

4.3. SIMULATION RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.3: Packet-level performance of LP I decoder(N = 8 over GF(2))

The proposed decoders provide a wide range of tradeoffs between delay/throughput

and decoding errors. Just like the full rank decoder, the error-free strategy does not

produce any decoding errors. Nevertheless, it outperforms the full rank decoder

significantly for m < n. For instance, when m = 7, the error-free strategy recovers

over 20% of the packets, while the full rank decoder cannot recover anything. At the

other extreme, the performance of the best-effort strategy improves when m grows.

For instance, when m = 1, it recovers around 10% of the packets and 70% of the

bits. However, when m = 7, it recovers over 80% of the packets and 96% of the bits

in the session. The greedy-l strategies fill the gap between the two extremes.

There is a difference between packet- and bit-level performances. For the full

rank and error-free strategies, their packet- and bit-level performances are the same,

because their decoding strategies depend on A only, and are the same for all l’s in

Eq. (4.1). For the other four strategies, since their decoding strategies depend on

74

4.3. SIMULATION RESULTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.4: Bit-level performance of LP I decoder(N = 8 over GF(2))

A as well as V l, their packet- and bit-level performances are different. Of course,

their bit-level decoding success fractions are better than their respective packet-level

decoding success fractions. This is because a packet-level decoding success requires

bit-level decoding successes for all l’s in Eq. (4.1).

Compared with the full rank decoder, the average minimum numbers of packets

required for success decoding for the error-free and best-effort strategies are approx-

imately 10% and 20% smaller, respectively. Assuming that the received packets

arrive in a uniform interval, this means that throughputs achieved by the error-free

and best-effort strategies are roughly 10% and 20%, respectively, higher than the

full rank decoder. The actual advantage may be more significant, because it takes

longer to receive a linearly independent packet when more received packets already

exist.

As expected, the linear programming decoders perform slightly worse than the

75

4.3. SIMULATION RESULTS

22 24 26 28 30 32 34 36 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.5: Packet-level performance of LP I decoder (N = 32 over GF(2))

Hamming norm decoders. However, the performance difference is negligible when

the number of received packets is large.

As noted earlier, the computational complexity of Hamming norm strategy grows

exponentially with code parameters, hence we adopt linear programming for different

decoding strategies for simulations with larger parameters. Fig. 4.5 and 4.6 show

the packet- and bit-wise simulation results with LP I for n = N = 32 and m ranges

from 22 to 38, averaged over 1,000 sessions. Decoding success, failures, and errors

are represented by green, yellow, and red bars, respectively. For each m value, the

six strategies are FR, EF, greedy-(−1), greedy-0, greedy-1, and BE from left to

right. We note that simulation results with m from 1 to 50 are obtained, but are

truncated to between 22 and 38 to show results of interest.

Similar to the small parameter case, the FR strategy does not produce any

decoding results when m < 32, while it doesn’t produce any decoding errors, as the

76

4.3. SIMULATION RESULTS

22 24 26 28 30 32 34 36 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.6: Bit-level performance of LP I decoder (N = 32 over GF(2))

Table 4.3: Average packets for different decoders (N = 32 over GF(2))

Strategy FR EF
greedy-(-1) greedy-0 greedy-1 BE
LP I LP II LP I LP II LP I LP II LP I LP II

100% PSR 33.59 32.71 30.83 32.04 30.83 32.04 30.83 32.04 30.83 32.04
95% BSR 33.59 32.71 30.11 31.96 30.11 31.96 30.11 31.96 30.11 31.96

EF strategy. The last four decoding strategies, though bring errors, recovers 96%

of the packets and 99% of the bits at m = 31. In general, better BSR results are

obtained compared to the PSR results. However, the PSR results of the last four

strategies grows rapidly with m around 29 to 34. For example, though only about

25% of the packets are recovered successfully when m = 29, the values reaches about

65% for m = 30, which further grows to about 90% with m = 31. Note that the

results are almost the same for the last four decoding strategies when m ≥ 27, as

the conditions that trigger the decoding of the four strategies are all satisfied.

77

4.3. SIMULATION RESULTS

Table 4.4: Average packets for different decoders (N = 100 over GF(2))

Strategy FR EF
BE

LP I LP II
100% PSR 101.65 100.25 98.86 101.65
95% BSR 101.65 99.76 98.29 101.55

The average minimum numbers of packets required to achieve a PSR of 1 or

a BSR of 0.95 are compared in Table 4.3. Compared to the FR strategy, the EF

strategy requires about 0.8 less packets to achieve the same target PSR and BSR.

However, the other four strategies with LP I saves about 2.7 packets to reach the

same PSR and about 3 packets for a same BSR. The improvement with LP II is

reduced, but the last four strategies still requires about 1.5 and 1.6 less packets for

a same PSR and BSR, respectively.

Table 4.4 shows the average minimum numbers of packets for N = 8192 and

a maximum of m being 100. Since the LP solver works column wisely, the per-

formance is expected to be worse following increasing number of packet length N .

Note that with this parameter settings, all the three greedy-(−1), greedy-0, and

greedy-1 strategies have the same performance as the BE strategy, hence only the

BE results are shown in Table 4.4. Also, to avoid large complexity from the HN de-

coder, the EF strategy here adopts an LP solver to estimate the minimum Hamming

distance, where fractional numbers count for the Hamming weight of the codeword.

As demonstrated in Table 4.4, the advantage of BE strategy over FR shrinks, where

only about 3.3 less packets are required for BE to reach the same level of BSR, and

even smaller advantage for the same PSR.

78

4.4. GENERAL LP FORMULATION OVER GF(2)

4.4 General LP Formulation over GF(2)

4.4.1 General LP Formulation with Arbitrary Parities

In [50], a new LP decoding algorithm was proposed by Yang etc. to decode binary

codes, where both the number of linear constraints and variables are linear with

respect to the maximum check node degree. Here, we generalize the approach such

that linear codes with both even and odd parity checks can be decoded. A binary

equation with odd parity check can be formulated into linear constraints as follows.

Suppose there is an odd parity check equation with d variables:

f0 + f1 + · · ·+ fd−1 = 1, fi ∈ {0, 1}, for i = 0, 1, . . . , d− 1. (4.2)

We want to decompose this equation into a groups of equations with smaller number

of variables to facilitate the LP formulation. The goal is to reach an odd parity check

equation with only two variables, hence we decompose the equations in a recursive

manner. We denote by f
(j)
i the auxiliary variable xi in the jth decomposition step.

Naturally we set f
(0)
i = fi for i = 0, 1, . . . , d− 1 in Eq. (4.2).

If d(0) = d is an even number, i.e., d(0) = 2d(1) for some nonzero positive integer

d(1), we decompose Eq. (4.2) in the first step into

f
(0)
2k + f

(0)
2k+1 + f

(1)
k = 0,

d(1)−1∑
k=0

f
(1)
k = 1

k = 0, 1, . . . , d(1) − 1, f
(0)
2k , f

(0)
2k+1, f

(1)
k ∈ {0, 1}. (4.3)

If d is an odd number, i.e., d(0) = 2d(1)+1 for some nonnegative integer d(1), Eq. (4.2)

79

4.4. GENERAL LP FORMULATION OVER GF(2)

will be decomposed into

f
(0)
2k + f

(0)
2k+1 + f

(1)
k = 0, f

(0)

d(0)−1
+

d(1)−1∑
k=0

f
(1)
k = 1

k = 0, 1, . . . , d(1) − 1, f
(0)
2k , f

(0)
2k+1, f

(1)
k ∈ {0, 1}. (4.4)

If the odd parity check equation in the current step contains more than two

variables, the decomposition continues as in Eq. (4.3) or Eq. (4.4). Suppose d(ℓ−1) >

2 in step ℓ − 1, then we obtain d(ℓ) = ⌊d(ℓ−1)/2⌋, and the decomposition in the ℓth

step is

f
(ℓ−1)
2k + f

(ℓ−1)
2k+1 + f

(ℓ)
k = 0,

d(ℓ)−1∑
k=0

f
(ℓ)
k = 1,

k = 0, 1, . . . , d(ℓ) − 1, f
(ℓ−1)
2k , f

(ℓ−1)
2k+1 , f

(ℓ)
k ∈ {0, 1}, (4.5)

if d(ℓ−1) is even, and is

f
(ℓ−1)
2k + f

(ℓ−1)
2k+1 + f

(ℓ)
k = 0, f

(ℓ−1)

d(ℓ−1)−1
+

d(ℓ)−1∑
k=0

f
(ℓ)
k = 1,

k = 0, 1, . . . , d(ℓ) − 1, f
(ℓ−1)
2k , f

(ℓ−1)
2k+1 , f

(ℓ)
k ∈ {0, 1}, (4.6)

if d(ℓ−1) is odd.

The total number of recursions needed to reach an odd parity check equation

with two variables is ℓ∗ = ⌈log2(d/2)⌉. Hence after the ℓ∗th step, we replace the odd

parity check equation with 0 < f
(ℓ∗)
0 +f

(ℓ∗)
1 < 1, all other even parity check equations

with linear constraints as that in [50], relax the integer constraints f
(ℓ)
k ∈ {0, 1} to

f
(ℓ)
k ∈ [0, 1], and form a representation of Eq. (4.2) by linear constraints. Then given

80

4.4. GENERAL LP FORMULATION OVER GF(2)

an objective function, the decoding of a linear block code with both even and odd

parity checks can be performed by linear programming.

4.4.2 Analysis

For an odd parity check equation with d variables, let A(d) be the number of auxil-

iary variables introduced into the original nonlinear constraint, and C(d) the number

of groups of linear constraints with two or three variables. Then in the tree repre-

sentation [50], there will be one constraint with two variables, and C(d) − 1 with

three variables. Hence the total number of edges in the tree is

3(C(d))− 1 = d+ 2A(d), (4.7)

while the total number of nodes is

3(C(d)) = d+ A(d) + C(d). (4.8)

Solving these two equations, we obtain

A(d) = d− 2, C(d) = d− 1, (4.9)

linear with respect to the number of variables involved in the original equation.

Since each even parity check equation with three variables is represented by four

linear constraints in [50], while only one is needed for the one with an odd parity, the

total number of linear constraints in the LP formulation will be 4(C(d)− 1) + 1 =

4d − 7. The total number of variables will be d + A(d) = 2d − 2. Compared

81

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

to the formulation with even parity checks in [50], one additional constraint and

one additional auxiliary variable are needed for the odd parity case given the same

number of original variables. linear network coding, our proposed decoders require

fewer received packets to decoder and hence achieve higher throughputs and shorter

delays.

4.5 LP Decoding of Nonbinary Linear Block Codes

4.5.1 Preliminaries and Notations

Suppose an (N,K,M) nonbinary linear block code C is defined over GF(q), where

N is the code length, K the dimension of the code, and M the number of rows in the

parity check matrix H . Denote by I = {0, 1, . . . , N −1} and J = {0, 1, . . . ,M −1}

the column and row indicies of H , respectively, and Ij the supporting set of the row

vector Hj. For each j ∈ J , a single parity check code Cj is defined by Cj = {b =

(bi)i∈Ij :
∑

i∈Ij biHj,i = 0}. Then for each codeword c ∈ C, we have xj(c) ∈ Cj,

where xj(c) = (ci)i∈Ij .

For α ∈ GF(q), define a vector ξ(α) = (α(0), α(1), . . . , α(q−1)), where α(β) = 1

if β = α and 0 otherwise, for β ∈ GF(q). Hence ξ(α) is a length-q binary vector

with Hamming weight one, “pointing” to the value of α. Let us denote the set of

images of the function ξ(·) by Ω, hence ξ : GF(q)→ Ω ⊂ {0, 1}q. Note that different

from the mapping denoted by the same symbol in [21], the vector ξ(α) always has

a Hamming weight of one for any α ∈ GF(q), i.e.,
∑

β∈GF(q) α(β) = 1. Further

for a vector c = (c0, c1, . . . , cN−1) ∈ GF(q)N , define Ξ : GF(q)N → ΩN ⊂ {0, 1}Nq

by Ξ(c) = (ξ(c0)|ξ(c1)| · · · |ξ(cN−1)). Both mappings of ξ and Ξ are one-to-one

82

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

correspondence, hence their inverse exist respectively.

Example 3. Let γ be a primitive element over GF(22) and a root of γ2 + γ +

1 = 0. Hence elements in GF(22) can be represented by 0, 1, γ, γ2, or binary vec-

tors (0, 0), (1, 0), (0, 1), (1, 1) given (1, γ) as a basis set. Denote these elements

by 0, 1, 2, 3, respectively. Then ξ(3) = (0, 0, 0, 1), ξ−1 = (0, 1, 0, 0) = 1, and

Ξ(2, 0, 3) = (0, 0, 1, 0|1, 0, 0, 0|0, 0, 0, 1).

As an extension, for f = (f 0|f 1| · · · |fN−1) ∈ RNq, if f ∈ ΩN , define Ξ−1(f) =

(ξ−1(f 0), ξ
−1(f 1), . . . , ξ

−1(fN−1)), and Ξ−1(f) = c̄ otherwise, where c̄ ∈ GF(q)N

but c̄ /∈ C. c̄ ∈ indicates a decoding failure.

Given a q-ary input memoryless channel, suppose the transition probability is

p(y|x), where x ∈ GF(q) (q = 2m), and y ∈ Y . Define vector

λ(yi) =

(
0, log

p(yi|0)
p(yi|1)

, log
p(yi|0)
p(yi|2)

, . . . , log
p(yi|0)

p(yi|q − 1)

)
,

and the ML decoding is to find

ĉ = arg maxc∈C

N−1∏
i=0

p(yi|ci)

= arg minc∈C

N−1∑
i=0

λ(yi)ξ(ci)
T

= arg minc∈CΛ(y)Ξ(c)T . (4.10)

Equivalently in our case, this is to find ĉ = Ξ−1(f̂), where

f̂ = arg min f∈K(C)Λ(y)fT , (4.11)

83

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

and K(C) is the convex hull of all points f ∈ RNq. Hence the ML decoding reduces

to the minimization of a linear objective function over a polytope in RNq. However,

the number of variables and constraints for this LP problem is exponential with

respect to the code length, hence relaxed LP formulations are proposed in [21] and

[51] for nonbinary linear codes and that over GF(2m), respectively.

4.5.2 LP Decoding of Nonbinary Linear Block Codes

In [21], linear programming was used to decode nonbinary linear codes with zero

parity. We generalize this approach to decoding of nonbinary linear block codes

with arbitrary parity checks. Suppose the nonbiary linear block code is defined by

C = {c ∈ GF(q)n : Ac = β}, where GF(q) is the underlying field, and β is an

arbitrary element in GF(q).

To solve the linear programming problem in 4.11, auxiliary variables wj,b are

introduced for j ∈ J , b ∈ Cj with constraints

∑
b∈Cj

wj,b = 1, ∀j ∈ J , (4.12)

f
(α)
i =

∑
b∈Cj ,bi=α

wj,b, ∀j ∈ J ,∀i ∈ Ij,∀α ∈ GF(q)\{0}, (4.13)

and ∑
α∈GF(q)\{0}

f
(α)
i ≤ 1,∀i ∈ I, (4.14)

with

0 ≤ wj,b ≤ 1, ∀j ∈ J ,∀b ∈ Cj, (4.15)

84

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

and

0 ≤ f
(α)
i ≤ 1, ∀i ∈ I,∀α ∈ GF(q)\{0}. (4.16)

4.5.3 LP Decoding of Nonbinary Linear Codes over GF(2m)

In [51], LP decoding of LDPC codes over GF(2m) is proposed, where the number

of constraints is linear in the size of the field q = 2m. However, the LP relaxation

becomes loose when q ≥ 8.

Each element z ∈ GF(q) = {0, 1, . . . , q − 1} is mapped into a binary string

of length q by G : GF(q) → F as G(z) = (0, ..., . . . , 0, 1, 0, . . . , 0), where the

only nonzero element is located as position z for z = 0, 1, . . . , q − 1, and F =

{(f 0, ..., f q−1) ∈ [0, 1]q :
∑q−1

z=0 f
z = 1}. Define Gn(z) = (G(z1), . . . , G(zn)) for

z ∈ GF (q)n correspondingly. Then the objective function of the relaxed problem is

L̃({fi},y) =
n∑

i=1

q−1∑
a=0

fa
i log Wm(yi|a),

where y = (y1, y2, . . . , yn) with yi = ((yi)1, . . . , (yi)m) is the received vector, and

Wm(yi|a) =
∏m

l=1W ((yi)l|(a)l) is the transition probability of the channel.

Following similar notations as previous sections, let i(j, l) denote the l-th element

of N(j) for l = 1, 2, . . . , |N(j)|. For r ∈ N, define Se
r = {s = (s1, s2, . . . , sr) ∈

GF(2)r :
∑r

l=1 sl = 1}, and So
r = {s = (s1, s2, . . . , sr) ∈ GF(2)r :

∑r
l=1 sl = 0},

where the summation is over GF(2). Then the feasible region of the original LP

relaxation problem in [49] is the set of points in Fn such that

|N(j)|∑
l=1

f sl
i(j,l) ≤ |N(j)| − 1

85

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

Table 4.5: Average packets for HN decoders (N = 8 over GF(22))

Strategy FR EF greedy-(-1) greedy-0 greedy-1 BE
100% PSR 8.52 7.02 8.52 8.52 8.52 8.52
95% BSR 8.52 7.02 8.52 8.52 8.52 8.52

is satisfied for all j ∈ J and s ∈ Se
|N(j)| for binary linear codes with even parity

checks, while s ∈ So
|N(j)| for codes with odd parity checks.

For codes over GF(2m), define (z)B =
∑

l∈B(z)l for z ∈ GF(2m) and B ∈ B

∅, where B is the set of nonempty sets of {1, 2, . . . ,m}. Without loss of generality,

let us suppose the parity check corresponding to the j-th check node is 1, the

multiplication identity, with binary representation (1, 0), i.e., (1)1 = 1 and (1)2 =

0. It can be shown from the uniqueness of the inverse that equations with other

nonzero parity checks can be transformed into equations with parity check 1 without

changing the solutions. Then the feasible region of the LP relaxation is

P =
∩

j∈J ,s∈S|N(j)|,B∈B

PB,s
j ,

where PB,s
j is the set of {fi} ∈ Fn satisfying

|N(j)|∑
l=1

∑
z:(Hj,i(j,l)×qz)B=sl

f z
i(j,l) ≤ |N(j)| − 1.

If the parity check is 0, then S|N(j)| = Se
|N(j)| for any B ∈ B. If the parity check is 1,

then S|N(j)| = So
|N(j)| for B = {1} and B = {1, 2}, and S|N(j)| = Se

|N(j)| for B = {2}.

86

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

Table 4.6: Average packets for LP decoders (N = 8 over GF(22))

Strategy
EF greedy-(-1) greedy-0 greedy-1 BE

FLP XLP FLP XLP FLP XLP FLP XLP FLP XLP
100% PSR 8.52 8.52 6.67 7.32 6.60 7.32 6.60 7.32 6.60 7.32
95% BSR 8.52 8.52 6.28 7.04 6.00 7.02 5.97 7.02 5.97 7.02

4.5.4 New LP Formulation for Nonbinary Linear Codes over

GF(2m)

Given a codeword c = (c0, c1, . . . , cN−1) ∈ C, each symbol ci ∈ GF(2m) can also be

viewed as a length-m vector over GF(2), represented by ci = (ci,0, ci,1, . . . , ci,m−1) for

each i ∈ {0, 1, . . . , N − 1}. Hence the notation ci can be a variable over GF(2m) , or

a vector over the base field throughout this chapter. Also, we write (ci)ℓ to indicate

the ℓth bit of ci when treated as a binary vector, i.e., (ci)ℓ = ci,ℓ. Also, we fix

q = 2m, and will use GF(q) and GF(2m) alternatively. Without loss of generality,

we can denote elements in GF(q) by 0, 1, . . . , q − 1, with 0 the addition identity.

Let B = {B : B ⊆ {0, 1, . . . ,m − 1}}. Given an element α ∈ GF(2m), define

(α)B =
∑

j∈B(α)j. Conversely, (α)j = (α)B with B = {j}.

For nonbinary codes over GF(2m), each parity check equation defined by each

row of the parity check matrix can be represented bym equations over the base field.

We aim to express the variables over the extension field by that over the base field,

and then solve the corresponding binary constraints by existing LP formulations.

Suppose the check node degree of the parity check matrix H is d, and the d

87

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

nonzero elements in the jth row of H are (hj,i0 , hj,i1 , . . . , hj,id−1
). Then the corre-

sponding parity check equation is

hj,i0xi0 + hj,i1xi1 + · · ·+ hj,id−1
xid−1

= 0, (4.17)

which corresponds to m binary constraints

(hj,i0xi0 + hj,i1xi1 + · · ·+ hj,id−1
xid−1

)ℓ =

(hj,i0xi0)ℓ + (hj,i1xi1)ℓ + · · ·+ (hj,id−1
xid−1

)ℓ = 0, (4.18)

for 0 ≤ ℓ ≤ m− 1. In addition, it also holds

(hj,i0xi0 + hj,i1xi1 + · · ·+ hj,id−1
xid−1

)B =

(hj,i0xi0)B + (hj,i1xi1)B + · · ·+ (hj,id−1
xid−1

)B = 0, (4.19)

for B ∈ B, with a total of 2m − 1 binary constraints.

Next, we represent the constraints in (4.19) in terms of fi(α)’s. Define tj,ℓ,k
def
=

(hj,ikxik)Bℓ
, the k-th 0 ≤ k ≤ d− 1 bit participating in the ℓth binary constraint of

Eq. (4.19), defined by the jth parity check equation Eq. (4.17).

Then

tj,ℓ,k
def
= (hj,ikxik)Bℓ

=
∑

α:(hj,ik
α)Bℓ

=1

fi(α), (4.20)

∀j ∈ {0, 1, . . . ,M − 1},

88

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

where

∑
α∈GF(q)

fi(α) = 1, 0 ≤ fi(α) ≤ 1, (4.21)

∀i ∈ {i0, i1, . . . , id−1},∀j ∈ {0, 1, . . . ,M − 1}.

Hence the ℓth (ℓ ∈ {0, 1, . . . , 2m − 1}) constraint of Eq. (4.19) is

∀j,∀ℓ,
d−1∑
k=0

tj,ℓ,k ≡ 0, 0 ≤ tj,ℓ,k ≤ 1, (4.22)

and the total number of tj,ℓ,k is M(2m − 1)d.

Eq. (4.22) is a binary parity check constraint, and can be solved by any of

the linear programming approaches introduced in [49] and [50], where the number

of linear equations or variables are in the order of 2d (in [49]) or O(d) (in [50]),

compared to O(qd) in [21].

The variables f and t’s together with their constraints form a polytope denoted

by Q. Depending on the specific binary linear programming used to solve (4.22), Q

can be different.

Example 4. Using the same GF(22) as in Example 3. Suppose a code over GF(22)

is C = {(0, 0, 0), (1, 0, γ), (γ, 0, γ2), (γ2, 0, 1)}, defined by

H =

 H0

H1

 =

 1 γ γ2

γ 1 1

 .

89

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

Based on Eq. (4.19)-(4.22), we have

∑
α:(α)Bℓ

=1

f0(α) +
∑

α:(γα)Bℓ
=1

f1(α) +
∑

α:(γ2α)Bℓ
=1

f2(α) = 0,

corresponding to H0, where B0 = {0}, B1 = {1}, B2 = {0, 1}. Specifically,

(f0(1) + f0(γ
2)) + (f1(γ) + f1(γ

2)) + (f2(1) + f2(γ))

= t0,0,0 + t0,0,1 + t0,0,2 = 0

for ℓ = 0 (Bℓ = {0}),

(f0(γ) + f0(γ
2)) + (f1(1) + f1(γ)) + (f2(1) + f2(γ

2))

= t0,1,0 + t0,1,1 + t0,1,2 = 0

for ℓ = 1 (Bℓ = {1}), and

(f0(1) + f0(γ)) + (f1(1) + f1(γ
2)) + (f2(γ) + f2(γ

2))

= t0,2,0 + t0,2,1 + t0,2,2 = 0

for ℓ = 2 (Bℓ = {0, 1}).

For codeword c = (1, 0, γ), f = Ξ(c) = (f0,f1,f2) = (0, 1, 0, 0|1, 0, 0, 0|0, 0, 1, 0),

t0,0,0 = 1, t0,0,1 = 0, t0,0,2 = 1, t0,1,0 = 0, t0,1,1 = 0, t0,1,2 = 0, t0,2,0 = 1, t0,2,1 =

0, t0,2,2 = 1, and the previous binary equations are satisfied. Similarly, c satisfies the

other two binary constraints corresponding to H1, and so are other three codewords.

90

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

Remark 1. In our approach, (α)Bℓ
= 1 works exactly the same as the function of

(α)B = s with s = 1 in [51]. Further, if the equivalent polytope Q̄ represented in Eq.

(9) of Section III.C in [49] is used to get linear constraints for binary equations in

Eq. (4.19), our approach leads to linear constraints as that in [51]. Hence [51] can

be viewed as a special case of our formulation.

On the other hand, in our approach, the introduction of tj,ℓ,k’s enable explicit

expression of the value of each bit participating in the binary constraints as demon-

strated in (4.19). As a result, any LP decoding algorithm for binary codes can be

adopted to formulate nonbinary linear codes decoding into a linear programming

problem.

The new formulation also features the ML certificate property, as shown below.

Proposition 1. There is a one-to-one correspondence between each codeword and

each integral point of (t) in Q.

Proof. Based on previous results on binary LP formulation, it only needs to show

the correspondence between codewords and integral (f , t)’s in Q.

First consider a codeword c = (c0, c1, . . . , cN−1). For each i ∈ {0, 1, . . . , N − 1},

we have fi(α) = 1 if α = ci, and f(β) = 0 for all other β ̸= α, hence constraint (4.21)

is satisfied. Then, tj,ℓ,k =
∑

α:(hj,ik
α)Bℓ

=1 fi(α) = fi(ci)1(hj,ik
ci)Bℓ

=1 = (hj,ikci)Bℓ
,

where 1E = 1 if the event E is true, and 0 other wise.

As a result,
∑d−1

k=0 tj,ℓ,k =
∑d−1

k=0(hj,ikci)Bℓ
≡ 0 given c a codeword, and Eq. (4.20)

and Eq. (4.22) are satisfied. Once Eq. (4.22) holds, we can find an integral point in

the polytope corresponding to each LP formulation as that shown in [49] and [50].

Conversely, given an integral vector of f = (f i) with fi(α) ∈ {0, 1} that satisfies∑
α∈GF(q) fi(α) = 1, let c = Ξ−1(f), hence ci = fi(α) with fi(α) = 1. Then tj,ℓ,k =

91

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

∑
α:(hj,ik

α)Bℓ
=1 fi(α) = fi(ci)1(hj,ik

ci)Bℓ
=1 = (hj,ikci)Bℓ

, leading to
∑d−1

k=0(hj,ikci)Bℓ
= 0

for every B ∈ B. Specifically, it is true for B = {j} where j = 0, 1, . . . ,m − 1.

Equivalently we have
∑

i∈Ij hj,ici = 0, and c is a local codeword of Cj for every

j ∈ J , hence a codeword of C.

Proposition 2. Whenever the cross LP decoder outputs a codeword c ∈ C, c is the

ML codeword.

The proof is straightforward as that in [49].

4.5.5 Simulation Results

We performed simulations of network coding over GF(22) for the six different strate-

gies, while linear programming is performed by both extended Flanagan’s approach

(FLP) in Section 4.5.2 and our new algorithm (XLP) in Section 4.5.4. Again, we

adopt the toy model with n = 8, N = 8, cw = 2, and m ranging from 1 to 15. A is

generated randomly in the sense that each element takes one of the four symbols in

GF(22) with equal probability. For each decoder, its packet- and bit-level success,

failure, or error rate is calculated over 100,000 generations. It should be noted that

because of the mapping Ξ in Section 4.5.2, decoding failure will be reported in our

simulations when the two LP decoders output fractional results.

In Fig. 4.7 and Fig. 4.8, respectively, the packet- and bit-wise fraction of decoding

success, failures, and errors of Hamming norm decoders are represented by green,

yellow, and red bars. Similarly, Fig. 4.9 and Fig. 4.10, respectively, compare the

packet- and bit-wise fraction of decoding success, failures, and errors of the FLP

decoder. Due to similarities, bar figures of the XLP results are not displayed here. In

92

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

all figures, for each value ofm, the six bars represent, from left to right, the full rank,

error-free, greedy-(−1), greedy-0, greedy-1, and best-effort strategies, respectively.

In order to measure and compare the throughput and delay of linear network coding

with these decoders, the average minimum numbers of packets required to achieve

a packet success rate (PSR) of 1 or a bit success rate (BSR) of 0.95 are compared

in Table 4.5 and 4.6, where the EF, greedy-ℓ, and BE decoders use HN decoding

algorithm in Table 4.5, and their LP results including both the FLP and the XLP

are shown in Table 4.6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.7: Packet-level performance of HN decoders (N = 8 over GF(22))

Generally speaking, better results are obtained at bit-level compared to that in

the packet-level, especially for the HN decoders at Fig. 4.7 and Fig. 4.8. The LP

decoder significantly reduces both the PER and the BER as shown in Fig. 4.9 and

Fig. 4.10, compared to the HN decoders, but the cost is larger failure rates. However,

LP failure decreases as m increases, leading to better PSR and BSR results than

93

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.8: Bit-level performance of HN decoders (N = 8 over GF(22))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.9: Packet-level performance of FLP decoder (N = 8 over GF(22))

94

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.10: Bit-level performance of FLP decoder (N = 8 over GF(22)

the HN decoders for the last four strategies. Hence the average numbers of packets

required by the LP decoder to achieve the same PSR and BSR are smaller than that

by the HN decoder. As shown in Table 4.5 and 4.6, the BE strategy, when using

the FLP decoder, only requires less than 6 packets to achieve a BSR of 0.95, which

is 2.5 less than using HN decoder. On the other hand, improvement from the XLP

decoder is about 1.5, due to larger fractional outputs compared to the FLP decoder.

Also because of larger failure rate, the EF strategy does not benefit from the LP

solver, as the minimum distances are underestimated.

Fig. 4.11 and Fig. 4.12 show packet- and bit- level performance of the XLP

decoder, respectively. Compared to the corresponding results from the FLP decoder

as shown in Fig. 4.9 and Fig. 4.10, the XLP suffers from a higher rate of decoding

failure from fractional results, especially when m is small. On the other hand, the

advantage is a tradeoff of a lower decoding error rate. As m increases, the difference

95

4.5. LP DECODING OF NONBINARY LINEAR BLOCK CODES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.11: Packet-level performance of XLP decoder (N = 8 over GF(22))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of received packets

F
ra

ct
io

n
of

 d
ec

od
in

g
su

cc
es

s/
fa

ilu
re

/e
rr

or

Figure 4.12: Bit-level performance of XLP decoder (N = 8 over GF(22))

96

4.6. CONCLUSION

between the two LP decoders becomes negligible.

4.6 Conclusion

In this chapter, we propose two classes of rank deficient decoders for network coding,

where the receiver can start decoding even if the received packets are not of full rank.

As a result, reduced delays and improved throughput can be achieved. Taking

advantage of data sparsity, we first use Hamming norm decoder for rank deficient

decoding, and then introduce linear programming decoders to handle bigger data.

We also propose LP formulations with reduced complexity when network coding is

performed over a large field. Simulation results show that rank deficient decoders

require less received packets than the traditional full rank decoders to achieve the

same packet/bit success rate.

97

Chapter 5

Distributed Storage Code

Constructions from A Vector

Space Approach

5.1 Introduction

In distributed storage systems (DSSs), data is spread across nodes in the network,

while users are geographically dispersed. To avoid data loss from node failures,

coding techniques such as replication and erasure codes [52] are employed to create

redundancy for two types of data recovery [19]. First, a user (data collector) must

be able to retrieve the original data by connecting to a certain number of storage

nodes in the system, called data reconstruction. Second, data stored in a failed node

should be recovered and stored in a new replacement node by contacting other nodes

in the network, called data repair.

98

5.1. INTRODUCTION

Compared to repetition schemes, erasure codes such as maximum distance sep-

arable (MDS) codes can be used to maximize protection against data reconstruc-

tion [19], which is equivalent to correction of erasures by traditional MDS codes.

However, data repair is a new challenge, as node failure is a routine rather than

an exception for larger scale DSSs such as cloud and peer-to-peer storage systems.

Also, nodes carrying partial information may join or leave the network dynamically.

Hence new MDS codes should be devised for data repair with low cost.

To measure the performance of data repair, different metrics have been proposed,

such as repair bandwidth, the total number of symbols transmitted in the network,

and repair locality, the number of nodes to be contacted, during the repair process.

Codes aiming at optimizing these two metrics are regenerating codes [4] and locally

repairable codes [53], respectively. In addition, repair of low computational com-

plexity is also desirable for the information to be recovered locally in an efficient

manner at a new replacement node.

Regenerating codes reduce the bandwidth consumed to repair a failed node, by

contacting more nodes but only downloading part of information stored in each

node. It was shown in [4] that there exists a tradeoff between repair bandwidth

and storage capacity of each node, and codes that achieve the tradeoff curve are

called regenerating codes. In particular, codes that achieve the minimal storage

are called minimum storage regenerating (MSR) codes. Various repair models have

been proposed in literature, including functional repair (see, for example, [4]), exact

repair [54][55], and the hybrid repair [56]. Exact repair recovers the original symbols

in failed nodes, and is preferred in some scenarios. MSR codes achieving this goal

are called exact-MSR codes [54] [55] [57]. Recently, exact-MSR codes have been

99

5.1. INTRODUCTION

proposed based on interference alignment [54, 58] and a product-matrix approach

[59].

Both traditional MDS codes and MSR codes are optimal in terms of storage

assumption. However, existing constructions of both codes require decoding of the

original message before data repair. Hence the computational complexity of data

repair has the same magnitude as that of data reconstruction, which usually involves

matrix inversion (see, for example, [54,58,59]).

For local repair, as pointed out in [60], the number of nodes involved is closely

related to the disk input/output (I/O) overhead, which is the main performance

bottleneck in the repair problem. Hence various codes have also been proposed to

reduce repair locality, such as scalar linear codes [53][61] and vector codes [60] [62]

[63]. In [53][61], extra parity constraints are introduced into encoded symbols of

an MDS code to enhance repair locality, and a trade-off is demonstrated between

the minimum distance and the repair locality of the resulting code. The trade-

off is extended in [60] to accommodate vector codes for local repair of one failed

node, and explicit code construction based on a two-layer encoding structure is

proposed for a specific set of parameters. Vector codes capable of repairing more

than one failed node locally at the same time are proposed in [63]. Those vector

codes with local repair property are called locally repairable codes (LRCs), and

LRCs achieving the optimal minimum distance are said to be optimal. Optimal

LRCs are also constructed in [63] featuring a two-layer encoding structure, where

Gabidulin codes [12] are used in the first layer encoding. However, the adoption of

Gabidulin codes leads to a finite field size growing exponentially with the number

of nodes in the DSS.

100

5.1. INTRODUCTION

In this dissertation,we propose three code constructions for DSSs with different

repair features. We view a code for DSSs as an linear array or vector code, where each

coded symbol stored in the nodes is a linear combination of the message symbols. All

the coefficient vectors form a linear transformation matrix that maps the message

space into the code space. Hence we call the vector space spanned by the coefficient

vectors a linear transformation (LT) space, and those corresponding to encoded

symbols in each node span a subspace of the LT space. For simplicity, we also

say the subspace is spanned by a node. Under this setting, data reconstruction

(recovery of the message space) from a set of nodes is equivalent to retrieving the

LT space from the union of subspaces spanned by the these nodes. Data repair

is to recover the subspace spanned by a node from union and/or intersections of

subspaces spanned by other nodes.

We first propose a new family of MDS code that has low computational com-

plexities for both data repair and reconstruction. Encoding can be performed from

evaluation of linearized polynomials, whose linear mapping property leads to low-

complexity data repair by simple linear combinations of participating symbols.

Meanwhile, data reconstruction, or decoding of our new MDS codes can be con-

ducted efficiently by the interpolation algorithm over linearized polynomial ring

[64][65]. Hence data reconstruction has a quadratic complexity with respect to code

parameters, compared to a cubic complexity of some traditional MDS codes and

existing MSR codes [54,58,59].

Second, we propose optimal LRC codes with a two-layer encoding structure, and

present a special property for an MDS code to be used in the first layer to ensure data

reconstruction. In particular, we prove that Gabidulin codes satisfy this property,

101

5.1. INTRODUCTION

and obtain explicit optimal LRC codes. It turns out that this LRC code is the same

as that in [63], hence it is a special case of our construction. Our construction has

flexible structures, and can also lead to comparable codes proposed in [60] given the

same set of parameters. However, compared to the construction in [60], our codes

are more storage efficient, as they are constructed based on array codes approach

instead of traditional scalar codes. Meanwhile, our codes have smaller penalty when

successive reads are performed in the scenario of degraded reads.

Finally, we construct MSR codes from our vector space analysis. Since the origi-

nal message space is uniquely defined by the LT space, data reconstruction is nothing

but collecting basis vectors of the LT space from a subset of nodes. Inversely, the

coding procedure is to distribute different sets of basis vectors into subsets of nodes.

Since intersection properties of subspaces quickly become intractable as dimension

grows, we only consider MSR code construction with small parameters. An inter-

esting outcome of this construction is that data repair is automatically guaranteed,

though we do not apply special rules for data repair during the construction process.

The rest of this chapter is organized as follows. Section 5.2 provides some pre-

liminaries on distributed storage coding schemes such as MSR and LRC codes.

Section 5.4, 5.5 and 5.6 present our new MDS, optimal LRC, and MSR codes, re-

spectively. Section 5.7 provides some concluding remarks and possible extensions of

our work.

102

5.2. PRELIMINARY

5.2 Preliminary

Suppose there are n nodes in a DSS, each having a storage capacity of α. We also

say there are α storage units in each node. A message file of M symbols over GF(q)

(q is a prime power) will be encoded by a distributed storage code into nα coded

symbols, stored in the nα storage units, α encoded symbols in each node. Data

reconstruction requires that the original message file should be recovered from the

kα encoded symbols stored in any k nodes, where 0 < k < n and kα ≥ M . Data

repair is to recover the α encoded symbols in any node from any other r nodes,

where 0 < r < n.

Depending on different values of r, different metrics have been proposed in the

literature to measure the repair performance, repair bandwidth and repair locality,

termed as locally repairable codes [53] and regenerating codes [4], to be addressed

in Section 5.5 and Section 5.6, respectively. In this dissertation, we also consider

computational complexity for data repair, and propose new MDS codes with low

complexity in Section 5.4.

5.2.1 Maximum Distance Separable (MDS) Codes

Intuitively, an array codes (or vector codes, we will use these two terms alternatively

in this chapter) can be used to provide protection again both kinds of data loss. Each

codeword of a linear array code is a two-dimensional array, instead of a vector as for

linear block codes. Suppose an array code C encodes the M symbols into a codeword

c = (ci,j), with each coded symbol ci,j ∈ GF(q) a linear combination of the message

symbols, and stored in unit j of node i for i ∈ [n] and j ∈ [α− 1], as shown in Fig.

103

5.2. PRELIMINARY

5.1. Throughout this chapter, we use [n] to denote the set {0, 1, . . . , n− 1}.

Array codes can also be obtained from linear block codes over the extension field

GF(qα). As shown in Fig. 5.1, we denote c⊥i = (ci,0, ci,1, . . . , ci,α−1) for i ∈ [n],

and write c = (c⊥0 , c
⊥
1 , . . . , c

⊥
n−1). Then an (n, k) linear block code over GF(qα)

can be used to generate coded symbols c⊥i , a length-α vector over GF(q), whose

elements are then stored in node i. The minimum distance d of the array code is

then defined to be the Hamming distance of this (n, k) code over GF(qα), see [66]

and the references therein.

Equivalently, the minimum distance d of C can also be defined to be the minimum

number of erased nodes so that the entropy of the non-erased coded nodes is strictly

less than M [60][63]. That is,

d = n− max
S:H(c⊥S)<M

|S|, (5.1)

where S ⊆ [n] and c⊥S = {c⊥i : i ∈ S}. The code C is referred to as an (n, α,M, d)

array code. An (n, α,M, d) array code is called an maximum distance separable

(MDS) array code if d = n− k + 1 [66][63].

MDS array codes correct up to n − k erasures, hence can be used in DSS to

ensure data reconstruction from up to n − k failed nodes. Based on the previous

analysis, we can always use traditional MDS codes such as an (n, k) Reed-Solomon

codes over GF(qα) to get MDS array codes.

In fact, the construction can be further simplified into the base field GF(q). We

denote cj = (c0,j, c1,j, . . . , cn−1,j), a length n vector over GF(q) for j ∈ [α], as shown

in Fig. 5.1. If each cj is a codeword of an (n, k) MDS code over GF(q), we can also

104

5.2. PRELIMINARY

Figure 5.1: MDS codes in DSS

recover the original data from up to n− k node failures. Note that in this case, we

don’t even have to ask each cj is from the same MDS code, though it is preferred

for simplicity.

As a result, the design of MDS array code over GF(qα) is reduced to design of

(n, k) MDS code over GF(q), and we will construct new MDS codes with low com-

putational complexity for both data reconstruction and data repair in Section 5.4.

5.2.2 Locally Repairable Codes (LRC)

Locally repairable codes [53] aims at a small number of nodes to be contacted in

data repair, to reduce system I/O overhead [60]. This type of data repair is called

local repair, and the number of node contacted, 0 < r < k, is repair locality.

In [53], local repair was originally considered for scalar codes, i.e., traditional

linear block code, which was later extended to vector codes [60] suitable for DSSs.

Since scalar codes can be viewed as vector codes with dimension one for each encoded

elements, we use vector codes uniformly in this chapter.

Using same notations in Section 5.2.1, if for each coded symbol c⊥i with i ∈ [n]

105

5.2. PRELIMINARY

of a codeword c ∈ C, there exists a set of nodes Γ(i) ⊆ [n] such that 1) i ∈ Γ(i);

2) |Γ(i)| ≤ r + δ − 1; and 3) minimum distance of C|Γ(i) is at least δ, where r, δ are

positive integers and C|Γ(i) is the code obtained by restricting C over Γ(i), then C is

said to have (r, δ) locality [63]. Note that the (r, δ) locality indicates that each node

i ∈ [n] can be expressed as a function of at most r other elements j ∈ Γ(i)\{i},

a property called locally repairable, and Γ(i) is referred to as a local repair group.

The (n, α,M, d) vector code C is then called a locally repairable code (LRC) [60][63],

denoted as (n, α,M, d; r, δ) LRC C.

It is established in [67] that the minimum distance of an (n, α,M, d; r, δ) LRC

code is bounded by

d ≤ n−
⌈
M

α

⌉
+ 1−

(⌈
M

rα

⌉
− 1

)
(δ − 1), (5.2)

and codes attaining this bound are said to be optimal. When δ is fixed at 2, the

bound in Eq. (5.2) reduces to d ≤ n−
⌈
M
α

⌉
−
⌈
M
rα

⌉
+2, which was first proved in [60].

Note that if we let k = ⌈M
α
⌉ and δ = 2, we’ll obtain

d ≤ n− k −
⌈
k

r

⌉
+ 2,

which is exactly the same bound for scalar codes in [53], hence the results of scalar

and vector codes are consistent.

The upper bound in Eq. (5.2) is proved in [67], based on an iterative algorithm

that finds a set S in Eq. (5.1) in a fast way, and bounds the minimum distance d

accordingly. Generally speaking, in each iteration, the algorithm picks a node and

adds its local repair group into the current set S. If this group has at least δ − 1

106

5.2. PRELIMINARY

nodes outside the current S, then S is updated to accommodate the newly added

nodes. The iteration carries on till the set S provides entropy ⌈M
α
⌉α− α.

A two-layer encoding scheme is used in [63] to construct LRC codes that reach

the optimal minimum distance in Eq. (5.2), based on Gabidulin codes [12] and MDS

array codes. When δ = 2, a similar two-layer encoding approach is also proposed

to obtain optimal LRC codes with parameters that satisfy (r + 1)|n and r + 1 = α

in [60].

5.2.3 Minimum Storage Regenerating (MSR) Codes

If β encoded symbols are downloaded from each of the r supporting nodes in the

repair process, a repair bandwidth of γ = rβ will be consumed in the network.

Clearly, if we can reconstruct the entire message file from any k nodes, we can

always re-encode and repair any node in the DSS. However, this approach costs a

total bandwidth of kα ≥ M in order to repair one node of capacity α. It is shown

in [4] that by connecting to more nodes (r ≥ k), less bandwidth will be needed to

conduct data repair, and there exists an optimal tradeoff between α, the storage

per node, and γ, the bandwidth to repair one node. Codes that attain the optimal

tradeoff curve are called regenerating codes.

In particular, the extreme point with the smallest α in this curve corresponds to

a minimum-storage regenerating (MSR) code, with

(αMSR, γMSR) =

(
M

k
,

Mr

k(r − k + 1)

)
. (5.3)

As pointed out in [59], one can always construct an MSR code with β ≥ 1 if one can

107

5.3. DSS CODING FROM VECTOR SPACE APPROACH

construct one with β = 1. Hence we will assume β = 1 in the rest of this chapter,

resulting in α = r− k+ 1 and M = kα, denoted an (n, α,M ; k, r) MSR code. Note

that according to Eq. 5.2, MSR codes are also MDS array codes.

Table 5.1: A (4, 2, 4; 2, 3) MSR Code

node 0 node 1 node 2 node 3
m0 m2 m0 +m2 m1 +m2

m1 m3 m1 +m3 m0 +m2 +m3

Table 5.1 presents a (4, 2, 4; 2, 3) MSR code over GF(2), where m0,m1,m2,m3

are the message symbols. It can be verified that any k = 2 nodes suffice to recover

the four message symbols, and any r = 3 nodes repair the other node. For example,

when node 3 fails, the other three nodes will be contacted, and m1 from node

0 and m2 from node 1 will recover the first symbol, while m1 from node 0 and

m0 +m1 +m2 +m3 from node 2 recovers the second symbol in node 3. Note that

node 2 passes m0 +m1 +m2 +m3, a linear combination of its encoded symbols for

the repair. Hence even only β symbols are to be transmitted in the network, up to

α symbols may have to be accessed from each helping node.

5.3 DSS Coding from Vector Space Approach

In this dissertation, we construct linear array codes for DSSs, viewed from a vector

space’s perspective. Since each coded symbol of a linear array code is a linear

combination of the message symbols, it can be represented by a vector of coefficients.

All the coefficient vectors compose of a matrix that defines the linear transformation

from the message space into the code space. Accordingly, we call the space spanned

108

5.3. DSS CODING FROM VECTOR SPACE APPROACH

by the coefficient vectors the linear transformation (LT) space, and vectors from

one node span a subspace of the LT space. To recover the message space from a

subset of nodes, submatrix of the LT matrix must be invertible, which is equivalent

to the retrieving of the LT space from summation of subspaces spanned by the

corresponding nodes.

To facilitate the illustration of this vector space approach, we first represent the

array code by that of traditional linear block codes, by aligning the coded symbols

ci,j’s into a one-dimensional vector. For example, we group the encoded symbols

within one node together following the order of the storage unit, and write c =

(c0,0, c0,1, . . . , c0,α−1, c1,0, . . . , c1,α−1, . . . , cn−1,α−1)
T , where T is the matrix transpose

operation. This is an (nα,M) linear block code, and the codewords span an M -

dimensional subspace of GF(qnα) over GF(q).

Let m = (m0m1 . . .mM−1)
T be the message vector. Suppose c = (ci,j)

T =

(gT
i,jm)T is the corresponding codeword, where gi,j anM -dimensional column vector

called a generator vector for i ∈ [n] and j ∈ [α]. We can write a generator matrix

G of size M × nα for C to be

GM×nα = (g0,0g0,1 . . . g0,α−1g1,0 . . . g1,α−1 . . . gn−1,α−1),

and define Gi = (gi,0gi,1 . . . gi,α−1), called a node generator for i ∈ [n].

From c = GTm, we know that GT is the matrix that defines the linear transfor-

mation from message spaceM = {m} into the code space C. In order to recover the

original message space from a subset of nodes, the corresponding submatrix of GT

109

5.4. NEW MDS CODES WITH LOW COMPLEXITY

should be invertible. Consequently, we call the vector space spanned by the genera-

tor vectors the linear transformation (LT) space V , i.e., V = ⟨g0,0, g0,1, . . . , gn−1,α−1⟩

and dim(V) = M , where ⟨·⟩ is the span of vectors in it, and dim(V) is the dimension

of V . The α generator vectors from node i span a subspace Vi of V , that is, Vi =

⟨gi,0gi,1 . . . gi,α−1⟩ ⊆ V . Then data reconstruction from k nodes i0, i1, . . . , ik ∈ [n] is

equivalent to V ⊆
∑k−1

j=0 Vij , where Vi + Vj = {x+ y : x ∈ Vi, y ∈ Vj} is the smallest

subspace that contains both Vi and Vj. Further, repair of one node i from any other

r nodes i0, i1, . . . , ir−1 means Vi ⊆
∑r−1

j=0 V
′
ij
, where V ′

ij
is a subspace of Vij spanned

by the β vectors from node ij.

Basically, the construction from vector space is how to choose the generator

vectors such that the spanned subspaces satisfy data reconstruction and repair con-

straints. In the following sections, we will demonstrate three different constructions

with specific data recovery advantages.

5.4 New MDS Codes with Low Complexity

As explained in Section 5.2.1, construction of MDS array codes for DSSs can be re-

duced to the scalar case as in traditional linear block codes, and we can use the same

code for different storage units. Hence we will simply use c = (c0, c1, . . . , cn−1) to de-

note the n encoded symbols stored across n nodes, instead of cj = (c0,j, c1,j, . . . , cn−1,j),

for an arbitrary storage unit j ∈ [α]. Correspondingly, a generator matrix is

Gk×n = (g0, g1, . . . , gn−1), and we only have to consider generator vectors gi for

i ∈ [n].

Since for traditional MDS codes, data repair is through decoding first and then

110

5.4. NEW MDS CODES WITH LOW COMPLEXITY

re-encode to get the coded symbols in the failed node, code construction is to en-

sure data reconstruction. For MDS codes, we have dim(V) = dim(
∑k−1

j=0 Vij) =∑k−1
j=0dim(Vij), i.e., Vij ’s have trivial intersections, where i0, i1, . . . , ik ∈ [n] is a sub-

set of [n] of size k. Note that in this case Vi = ⟨gi⟩, hence we should choose gi’s to

be linearly independent over the underlying field for any i ∈ {i0, i1, . . . , ik} ⊆ [n].

For our new MDS codes, two constructions over GF(qm) with q > 2 and over

GF(2m), respectively, are proposed. In both constructions, the encoded symbols

are obtained by first treating the message vector as a linearized polynomial and

then evaluating it at a set of evaluator points. This turns the linear dependency

properties of generator vectors into corresponding requirements of evaluator points.

To construct an (n, k) MDS code, the evaluator points are chosen so as to satisfy two

conditions: (1) all the evaluator points form a k-dimensional subspace over GF(q),

and (2) any k of them are linearly independent over GF(q). A Cauchy matrix is

used to construct elements satisfying these two conditions.

Computational complexities benefit from the usage of linearized polynomials

in two key aspects. First, the decoding procedure for data reconstruction can be

performed by an interpolation algorithm for linearized polynomials, which has a

quadratic complexity with respect to code parameters. Second, data repair has

only a linear complexity, since only linear combinations of the encoded symbols in

supporting nodes are required.

Note that GF(qm) here is equivalent to GF(q) in Section 5.2, not an extension

over it. We use GF(qm) here for easier explanation of our ideas in this section.

The focus of this work is on computational complexity of MDS codes for dis-

tributed storage networks, and our current constructions are not optimal in terms of

111

5.4. NEW MDS CODES WITH LOW COMPLEXITY

repair bandwidth. However, our codes are suitable for applications where bandwidth

is not a primary concern but a large amount of data repair is required.

5.4.1 Linearized Polynomials

A linearized polynomial f(x) [31] over GF(qm), where q is a prime power and m

a positive integer, can be written as f(x) =
∑l

i=0 aix
[i], where ai ∈ GF(qm) and

[i]
def
= qi. Suppose K is an extension field of GF(qm), then f(x) has the following

properties:

f(δ + ρ) = f(δ) + f(ρ) for any δ, ρ ∈ K, and (5.4)

f(cδ) = cf(δ) for any c ∈ GF(q) and δ ∈ K. (5.5)

In other words, f(x) can be viewed as a linear mapping from δ ∈ K to f(δ) ∈ K

with respect to GF(q) [31].

Encoding by evaluation of linearized polynomials is not unique in our work.

Gabidulin codes [12] can be constructed from evaluation of linearized polynomials,

as are a family of MDS codes based on Gabidulin codes in [68]. If we select the eval-

uator points such that they form an n-dimensional subspace over GF(q), an (n, k)

Gabidulin code over GF(qm)(n ≤ m) is obtained. However, similar to traditional

MDS code, data repair for Gabidulin codes requires decoding of the message file.

A similar usage of linearized polynomial is also adopted for code constructions in

distributed storage in [69], and data repair is also performed by linear dependencies

incurred from properties of linearized polynomials. However, codes constructed in

[69] work in a probabilistic way, i.e., neither data reconstruction nor data repair is

guaranteed from an arbitrary subset of k nodes. That is, the construction in [69]

112

5.4. NEW MDS CODES WITH LOW COMPLEXITY

does not produce MDS codes.

5.4.2 Construction I over GF(qm) with q > 2

In this section, we propose a construction of MDS codes over GF(qm), where q is a

prime power greater than two. Our (n, k) MDS code over GF(qm) requires a base

field size of q ≥ n, and the code dimension satisfies k ≤ m.

In our construction, each encoded symbol over GF(qm) is evaluation of a lin-

earized polynomial, whose coefficients come from the message vector, at one evalu-

ator point. The evaluator points and the linearized polynomial are chosen to ensure

linear and nonlinear constraints of the encoded symbols, so that data repair of our

MDS codes can be simply performed by linear combinations of encoded symbols

from the supporting nodes, while data reconstruction benefits from an efficient in-

terpolation algorithm for linearized polynomials.

We start from an (n, k) linear block code defined by evaluation of linearized

polynomials, and then propose specific constructions on the evaluator points that

lead to an (n, k) MDS code over GF(qm). Suppose the message vector is u =

(u0, u1, . . . , uk−1), where ui ∈ GF(qm) for i = 0, 1, . . . , k − 1. A linearized poly-

nomial is defined to be u(x) =
∑k−1

i=0 uix
[i]. Then the corresponding codeword

c = (c0, c1, . . . , cn−1) is given by ci = u(vi), where vi ∈ GF(qm) is an evaluator

point for i = 0, 1, . . . , n− 1.

Observe that in this case a generator vector gi = (v
[0]
i , v

[1]
i , . . . , v

[k−1]
i)T . It

was proved in [31] that choosing gi’s to be linearly independent over GF(qm) can

be achieved by choosing vi’s to be linearly independent over GF(q). Hence the

code is determined by the evaluator points, and we call the length-n vector v =

113

5.4. NEW MDS CODES WITH LOW COMPLEXITY

(v0, v1, . . . , vn−1) an evaluator vector. The evaluator points are chosen such that the

following two conditions are satisfied:

1. The n evaluator points form a k-dimensional subspace over GF(q).

2. Any k elements among v0, v1, . . . , vn−1 are linearly independent over GF(q).

Note that Condition 1) requires k ≤ m. Condition 2) indicates that any k elements

in v constitute a basis of the k-dimensional subspace formed by the n elements. In

particular, we can fix the first k elements, and write the evaluator vector as follows.

v0

v1
...

vn−1

=

 Ik

Ec

v0

v1
...

vk−1

, (5.6)

where Ik is the k×k identity matrix and Ec is an (n−k)×k matrix over GF(q). Let

us denote the coefficient matrix on the right hand side (RHS) by E = (Ik|Ec
T)T .

Hence to satisfy the two conditions, we can first pick any k linearly independent

elements in GF(qm) to be v0, v1, . . . , vk−1, and then select Ec such that any k rows

of E are linearly independent over GF(q). To achieve this, henceforth we assume

Ec to be a Cauchy matrix over GF(q).

Lemma 10. Any k rows in E are linearly independent.

Proof. Let us denote the k × k matrix formed by any k rows of E to be Ek, and

assume that Ek has k1 rows from Ik and k2 = k − k1 rows from Ec. Ek is non-

singular when k2 = 0. When k1 = 0, Ek is a square submatrix of Ec, and hence

114

5.4. NEW MDS CODES WITH LOW COMPLEXITY

is nonsingular. Now for k1 ̸= 0 and k2 ̸= 0, we permute the columns of Ek to

obtain E′
k =

 Ik1 0

A B

, where Ik1 is the k1× k1 identity matrix, 0 is the k1× k2

all zero matrix, and A and B are submatrices of Ec of size k2 × k1 and k2 × k2,

respectively. We have det(E′
k) = det(Ik1)× det(B) = det(B) ̸= 0, where det(·) is

the determinant of a matrix. Since the permutation does not change the singularity

of a matrix, Ek is nonsingular.

Note that in order for Ec in Lemma 10 to be well defined, we need q ≥ n,

while the message symbols in this construction are over GF(qm). This constraint on

the base field size does not cause any significant difficulty in practice. In practice,

messages are in bits, and hence we can choose q to be a power of 2 and divide the

message bits into groups of size log2(q
m) to be mapped into symbols over GF(qm).

Once the evaluator vector v is fixed, the linear block code is determined. A

generator matrix G for this linear block code can be found based on the following

lemma.

Lemma 11. For any l ∈ {0, 1, . . . , n − 1}, we have vl =
∑k−1

i=0 eivi for some ei ∈

GF(q), then v
[j]
l =

∑k−1
i=0 eiv

[j]
i for any j ∈ {0, 1, . . . , k − 1}.

Proof. In the first part, ei’s are elements of the coefficient matrix E in Eq. (5.6).

Then we calculate v
[j]
l = (

∑k−1
i=0 eivi)

[j] =
∑k−1

i=0 eiv
[j]
i since ei ∈ GF(q).

115

5.4. NEW MDS CODES WITH LOW COMPLEXITY

According to the encoding procedure and Lemma 11, we have

G =

v0 v1 . . . vk−1

v
[1]
0 v

[1]
1 . . . v

[1]
k−1

...
...

. . .
...

v
[k−1]
0 v

[k−1]
1 . . . v

[k−1]
k−1

(

Ik Ec
T

)
. (5.7)

It is easily verified that H = (−Ec|In−k) is a parity check matrix for this code.

Lemma 12. Any n− k columns of the parity check matrix H are linearly indepen-

dent over GF(qm).

By definition, the Cauchy matrix Ec = {(xi− yj)
−1} in Eq. (5.6), where xi, yj ∈

GF(q) for i = 0, 1, . . . , n− k − 1 and j = 0, 1, . . . , k − 1. Since elements over GF(q)

are also elements over GF(qm), Ec is also a Cauchy matrix over GF(qm). Following

similar arguments to those in the proof of Lemma 10, we can show that any n− k

columns of H are linearly independent over GF(qm).

Theorem 1. The (n, k) linear block code constructed from Construction I is an

(n, k) MDS code.

Proof. Following Lemma 12, the minimum Hamming distance of this linear block

code is n− k + 1, and hence it is an (n, k) MDS code.

Remark 2. The MDS codes in [68] also pick n evaluator points so that any k of

them are linearly independent, similar to Condition 2) of our approach. However,

there is a key difference between the MDS codes in [68] and our codes: for our codes,

any k + 1 evaluator points need to be linearly dependent, while for codes in [68],

there exist k + 1 evaluator points that are linearly independent.

116

5.4. NEW MDS CODES WITH LOW COMPLEXITY

Remark 3. Cauchy matrices have been used to construct MDS codes such as gener-

alized Reed-Solomon (GRS) codes [70] and Cauchy Reed-Solomon (CRS) codes [71].

GRS codes are obtained via evaluation of polynomials, not linearized polynomials

as in this dissertation. Both GRS codes and CRS codes insert a Cauchy matrix

explicitly in the generator matrix to ensure that the encoding leads to MDS codes.

However, both codes are still traditional MDS codes in the sense that data repair still

has to decode the original message first. In our constructions, aside from ensuring

MDS codes, Cauchy matrices are also used to introduce linear dependency among

evaluator points, hence data repair requires no decoding and is done by forming

linear combinations of the encoded symbols from supporting nodes.

5.4.3 Data Reconstruction and Data Repair

The two conditions on the evaluator vector bring linear dependency among the

evaluator points, while keeping certain independency among them. After encoding,

these properties are maintained due to the linear mapping properties of linearized

polynomials. As a result, data reconstruction is guaranteed, while data repair can

be conducted by linear combinations of the encoded symbols from supporting nodes.

Theorem 2. (Data Reconstruction) The MDS code obtained from Construction I

can reconstruct the original message vector from any k nodes.

Proof. Suppose {i0, i1, . . . , ik−1} is an arbitrary subset of size k of {0, 1, . . . , n− 1}.

Then given encoded symbols ci0 , ci1 , . . . , cik−1
from node i0, i1, . . . , ik−1, we have the

117

5.4. NEW MDS CODES WITH LOW COMPLEXITY

following linear equations:

vi0 v
[1]
i0

. . . v
[k−1]
i0

vi1 v
[1]
i1

. . . v
[k−1]
i1

...
...

. . .
...

vik−1
v
[1]
ik−1

. . . v
[k−1]
ik−1

u0

u1

...

uk−1

=

ci0

ci1
...

cik−1

. (5.8)

Condition 2) implies that vi0 , vi1 , . . . , vik−1
are linearly independent, hence the coef-

ficient matrix on the left hand side (LHS) is nonsingular [31]. As a result, Eq. (5.8)

can be solved by multiplying both sides with the inverse of the coefficient matrix,

i.e, the message vector u can be recovered from any k nodes.

Theorem 3. (Data Repair) The MDS code obtained from Construction I can repair

the encoded symbol in any node by linear combining the encoded symbols from any

other k nodes.

Proof. Suppose we want to repair node i, where i ∈ {0, 1, . . . , n − 1}, from nodes

l0, l1, . . . , lk−1, where {l0, l1, . . . , lk−1} = Lk is a subset of size k of {0, 1, . . . , n −

1}\{i}. Condition 2) satisfied by v implies that vi =
∑

l∈Lk
elvl, where el’s are

elements in the coefficient matrix E in Eq. (5.6). Then ci = u(vi) = u(
∑

l∈Lk
elvl) =∑

l∈Lk
elu(vl) =

∑
l∈Lk

elcl from the linear mapping properties of linearized polyno-

mials in Eq. (5.4) and Eq. (5.5).

Hence data repair by our MDS codes can be performed by additions and multi-

plications over GF(q), instead of a matrix inversion over GF(qm), which is required

in traditional MDS codes from decoding the message vector in the first place.

118

5.4. NEW MDS CODES WITH LOW COMPLEXITY

5.4.4 Construction II over GF(2m)

Since the MDS construction in Section 5.4.2 employs Cauchy matrix, q has to be

greater than 2. Hence, these codes require multiplications and additions over GF(q)

for data repair. In extension fields of GF(2), these operations reduce to simple

AND and XOR operations, respectively. But if we set q = 2 in the construction

in Section 5.4.2, only trivial repetition codes are obtained. In this section, we

propose constructions to obtain nontrivial MDS codes over GF(2m) with low repair

complexity. Note that this construction fixes k = n− 1, leading to (n, n− 1) linear

block codes.

We pick an evaluator vector v = {v0, v1, . . . , vn−1} over GF(2m) such that it

also satisfies the two conditions in Section 5.4.2. Note that Condition 2) reduces to

vn−1 =
∑k−1

i=0 vi, i.e., any evaluator point is the XOR of all other n− 1 points. Then

given a message vector, the formation of a linearized polynomial and the encoding

follow a similar manner as that in Section 5.4.2.

Similarly, we can write a generator matrix for this linear block code as in

Eq. (5.7). Note that Ec is (1, 1, . . . , 1︸ ︷︷ ︸
k

) here, and a parity check matrix can be

found to be H = (1, 1, . . . , 1︸ ︷︷ ︸
n

), in which any one column is linearly independent,

leading to minimum Hamming distance of two. Hence this linear block code is also

an (n, n − 1) MDS code over GF(2m). Then following similar arguments in Sec-

tion 5.4.2, we can show that data reconstruction and data repair can be performed

correctly as in Theorems 2 and 3, respectively. Note that repairing one node now is

simply XORing the encoded symbols from all other nodes.

119

5.4. NEW MDS CODES WITH LOW COMPLEXITY

5.4.5 Complexity Analysis

To solve Eq. (5.8), a general interpolation algorithm by linearized polynomials in [64]

can be used, which requires O(k2) multiplications and O(k2) additions over GF(qm).

Hence, data reconstruction has a quadratic complexity with respect to the code

dimension. Data repair for our MDS codes needs only k multiplications and k −

1 additions over GF(qm) to form linear combinations of encoded symbols from k

supporting nodes as shown in Theorem 3, and hence has a linear complexity with

respect to k.

We also make a comparison of the computational complexities between our MDS

codes and a family of MSR codes. As pointed out in Section 5.2.3, MSR codes are

also MDS array codes, and both codes store the same amount of message given the

same k and n. Hence it is feasible to make a comparison between the two types of

codes. Current exact-repair MSR codes have been proposed based on interference

alignment [54, 58] or a product-matrix approach [59], all of which require matrix

inversions for data repair. Hence without loss of generality, we compare the data

repair complexities between our MDS codes and codes obtained from the product-

matrix approach in [59].

Since our constructions are determined by n and k, we express the complexities

in terms of these two parameters. Since the construction in [59] requires d ≥ 2k−2,

we fix d = 2k − 2 to obtain α = k + 1, and have α expressed as O(k). To make

a fair comparison, we assume all operations are over characteristic two fields, and

map all the multiplications and additions into equivalent operations over GF(2).

For the product-matrix MSR code [59] constructed over a finite field of size at

least n, message and encoded symbols are mapped into a binary vector of length

120

5.4. NEW MDS CODES WITH LOW COMPLEXITY

at least ⌈log2(n)⌉. Similarly, for our codes constructed over GF(qm), we assume

the base field has a size of at least n, and map each element into a binary vector

of length at least m⌈log2(n)⌉. For codes constructed over GF(2m), the mapping is

straightforward. Under these assumptions, the complexities of the three codes are

listed in Table 5.2, where REC stands for data reconstruction, REP data repair, ⊗

binary multiplication, ⊕ binary addition, and all logarithms are base-2.

Table 5.2: Complexity of data reconstruction and data repair

Construction [59] Construction I Construction II

Base Field 2⌈log(nk)⌉ 2⌈log(n)⌉ 2

REC
⊗ O(k3⌈log(nk)⌉2) O(k5⌈log(n)⌉2) O(k5)
⊕ O(k3⌈log(nk)⌉2) O(k5⌈log(n)⌉2) O(k5)

REP
⊗ O(k3⌈log(nk)⌉2) O(k2⌈log(n)⌉2) 0
⊕ O(k3⌈log(nk)⌉2) O(k2⌈log(n)⌉2) O(k2)

Table 5.2 shows that our MDS codes may have higher complexity for data re-

construction. But for data repair, the computational complexity of our MDS codes

is much lower than the bandwidth-optimal distributed code in [59]. Hence our

constructions are suitable for applications that need a small amount of data recon-

struction but a large amount of data repair.

Remark 4. As pointed out earlier, our new MDS codes are not optimal in terms

of repair bandwidth. However, both data reconstruction and repair feature low com-

putational complexity, from the usage of linearized polynomials. In particular, only

linear combination operations will be carried out locally in new replacement nodes to

recover failed ones, hence it suits applications where bandwidth is not a big concern

but data repair is frequent, such as nodes leaving or joining the system dynamically.

Furthermore, this construction provides some clue to construct optimal LRC codes

121

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

in Section 5.5.

5.5 LRC Code Construction from Vector Space

In this section, we propose optimal LRC codes based on a two-layer encoding struc-

ture, viewed from a vector space perspective. We present a sufficient condition for

the first layer MDS code to achieve the optimal minimum distance of the resulted

LRC codes. We also prove that Gabidulin codes satisfy this condition, leading to

the code proposed in [63]. Hence it is a special case of our construction. Though the

condition is not necessary, which requires a bigger field than a current approach [60]

for a special set of parameters, it is derived based on array codes analysis, hence is

more efficient in terms of storage. Furthermore, efficient degraded reads [1] can be

performed in DSS from our code structure.

It should be pointed out that the two-layer encoding (or concatenated encoding)

is not a new technique. It has been widely used in the literature for different desired

advantages in the DSS aside from [60][63]. For example, fractional repetition codes

are proposed in [72] from concatenation of an outer MDS code and an inner repeti-

tion code for uncoded repair process. An outer MDS code and an inner fractional

repetition code are employed in [73] to construct regenerating codes with local, ex-

act and uncoded repair. Scalar linear codes such as Pyramid codes investigated

in [53][74] and that proposed in [61] can also be viewed as examples of two-layer

encoding.

First we discuss the achievability of the optimal distance in Eq. (5.2) under

different parameter settings, and then present our code construction accordingly.

122

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

5.5.1 Achievability of Optimal Distance

As mentioned in Section 5.5, an iterative algorithm is used in [67] to prove the upper

bound in Eq. (5.2). Based on the work in [67], we further claim the achievability of

the optimal distance in Lemma 13.

Lemma 13. The optimal distance in Eq. (5.2) is reachable if and only if (r+δ−1)|n,

or n(mod r + δ − 1)− (δ − 1) ≥ ⌈M
α
⌉(mod r) > 0 when (r + δ − 1) - n.

Proof. The optimal distance d in Eq. (5.2) can be obtained in two cases by using

the algorithm in [67].

• The algorithm in [67] terminates in ⌈M
rα
⌉ − 1 steps, with each step adding

exactly r + δ − 1 nodes with entropy rα. Hence local repair groups should

be non-overlapping in the first place. Further, the algorithm should reach the

same result regardless of which ⌈M
rα
⌉−1 local repair groups are selected. Hence

(r+δ−1)|n. Simply speaking, the optimal distance is achievable only if nodes

in the DSS can be divided into non-overlapping local repair groups of the same

size. Conversely, if we can divide the nodes into non-overlapping groups of size

r + δ − 1, any (r, δ) LRC codes can be used to accommodate entropy of rα

within each group, which satisfies the termination of the algorithm.

• The algorithm in [67] terminates in ⌈M
rα
⌉ steps, where r + δ − 1 nodes with

entropy rα are added in each of the first ⌈M
rα
⌉ − 1 steps, and a other nodes

with entropy (a − δ + 1)α are added in the last step, where a is a positive

integer. As in the first case, non-overlapping local repair groups are also

required. The last portion of entropy indicates that ⌈M
α
⌉(mod r) > 0, and

n(mod r+ δ− 1)− (δ− 1) ≥ ⌈M
α
⌉(mod r) for the last group added to provide

123

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

this portion of entropy. In other words, when (r + 1) - n, the optimal d is

reachable only if n(mod r+ δ− 1)− (δ− 1) ≥ ⌈M
α
⌉(mod r) > 0. The converse

can be proved similarly as in the first case.

5.5.2 Code Structure

We use the same two-layer encoding structure as that in [63] to construct optimal

LRCs for the two cases in Lemma 13. A scalar MDS code is used in the first layer,

whose encoded symbols are partitioned into sets of size rα, to be stored in non-

overlapping local repair groups. Then a second layer encoding is performed within

each local repair group by an (r+ δ− 1, r) MDS array code to ensure (r, δ) locality.

We will show that as long as the first layer MDS code satisfies a special property,

the overall code reaches the desired repair locality as well as the optimal minimum

distance.

Suppose a message file of M symbols over GF(q) is to be encoded and stored

in a DSS with n nodes, each of which has a storage capacity of α symbols. We

construct (n, α,M, d; r, δ) LRC codes such that the system has (r, δ) locality and

minimum distance d = n −
⌈
M
α

⌉
+ 1 −

(⌈
M
rα

⌉
− 1

)
(δ − 1), or any k∗ =

⌈
M
α

⌉
+(⌈

M
rα

⌉
− 1

)
(δ − 1) nodes suffice for data reconstruction. Note that if M ≤ rα, each

node will be repaired locally by r other nodes, while the traditional repair through

data reconstruction needs ⌈M
α
⌉ ≤ r nodes, which is not the purpose of LRC codes.

Hence we assume M > rα in the rest of this chapter. We introduce M∗ = ⌈M
α
⌉α

for simplicity. It can be easily shown that ⌈M
α
⌉ = ⌈M∗

α
⌉ and ⌈M

rα
⌉ = ⌈M∗

rα
⌉, hence

k∗ =
⌈
M∗

α

⌉
+
(⌈

M∗

rα

⌉
− 1

)
(δ − 1).

124

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

As discussed in Section 5.5.1, we assume non-overlapping local repair groups to

obtain optimal distance. Suppose the n nodes of storage capacity α are labeled as

0, 1, . . . , n− 1, and divided into ∆ non-overlapping groups, denoted by Gj, where ∆

is a positive integer greater than 1, and j ∈ [∆]. Depending on whether r + δ − 1

divides n or not, we construct the optimal LRC code for the two cases accordingly.

1) n = ∆(r+ δ− 1). The optimal distance achievability analysis in Section 5.5.1

suggests that δ − 1 nodes in each local repair group will solely be used for local

repair, while the other r nodes ensures reliability of the overall code. Hence we need

to embed M information symbols in ∆rα encoded symbols. First we pad M∗ −M

zeros into the message, and use a (∆rα,M∗) MDS code C(1) to obtain ∆rα encoded

symbols, and store them into the first r nodes of each repair group, shown as the

blank areas in Fig. 5.2, with r∆−1 = r. Based on Fig. 5.2, we may refer to a node as

a column, and another dimension a row of the DSS. Next, within each group Gj, an

(r + δ − 1, r) systematic MDS array code C(2) over GF(q) is used to encode the rα

encoded symbols of C(1) and store the parity checks in the δ − 1 shaded columns.

2) n = (∆ − 1)(r + δ − 1) + r∆−1 + δ − 1, where r∆−1 ≥ ⌈Mα ⌉(mod r) > 0.

Similarly, we pad zeros to the message file if necessary, and encode M∗ symbols into

(∆ − 1)rα + r∆−1α symbols using a ((∆ − 1)rα + r∆−1α,M
∗) MDS code C(1), and

store them in the blank columns of Fig. 5.2. Next, each of the first ∆ − 1 groups

employs an (r+ δ− 1, r) systematic MDS array code C(2) over GF(q), and store the

parity checks in its shaded columns respectively, as in the first case. For G∆−1, an

(r∆−1 + δ − 1, r∆−1) systematic MDS array code C(3) over GF(q) is used to obtain

coded symbols in the last r∆−1 + δ − 1 nodes.

In both cases, we obtain an (n, α,M∗) vector code C. Letm = (m0m1 . . .mM∗−1)
T

125

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

Figure 5.2: Two-layer encoding structure.

be the message vector after padding of zeros (if necessary), and gi,j the generator

vectors for i ∈ [n] and j ∈ [α] in a generator matrix G. Note that C(2) (and C(3) in

case 2) is an (r + δ − 1, r) systematic MDS array code over GF(q), which can be

obtained by employing a systematic (r + δ − 1, r) MDS scalar code over GF(q) in

each row of the local repair group for simplicity. In this case, we get G(1) = (gi′,j)

where j ∈ [α] and i′ ∈ [n]\{t(r + δ − 1) + r0, t(r + δ − 1) + r0 + 1, . . . , t(r + δ −

1) + r0 + δ − 2 : r0 ∈ {r, r∆−1}, t ∈ [∆ − 1]}. Then G(1) is a generator matrix of

C(1). Let G(2) = (I0, I1, . . . , Ir0−1|η0,η1, . . . ,ηδ−2) be a generator matrix of C(2) (or

C(3)), where Ij, j ∈ [r0] is the jth column of the r0 × r0 identity matrix Ir0 . Then

gi+r0+ϵ,ℓ = [gi,ℓgi+1,ℓ . . . gi+r0−1,ℓ]ηϵ, (5.9)

where i = j(r+δ−1) for j ∈ [∆−1], ϵ ∈ [δ−1], ℓ ∈ [α], and r0 ∈ {r, r∆−1}. Eq. (5.9)

establishes the linear dependency of generator vectors of C(2) and C(3) on that of C(1).

A different set of equations will be obtained if we use arbitrary (r+δ−1, r) systematic

MDS array code over GF(q) for C(2) (C(3)), but the dependency between generator

vectors of C(2) and C(3) on that of C(1) will not be changed, which is the basis of our

proof of the data reconstruction.

126

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

5.5.3 Local Repair and Data Reconstruction

As described in the previous section, the local repair property is solely determined

by the second layer encoding, which guarantees the desired locality for the DSS.

Theorem 4. The LRC code constructed in Section 5.5.2 has a repair locality of r.

Proof. Each node participates in a (r+ δ − 1, r) or (r∆−1 + δ − 1, r∆−1) MDS array

code, which can be repaired by at most r other nodes. Hence the LRC code has a

repair locality of r.

The data reconstruction, on the other hand, depends on the erasure correction

capability of the overall code C. Note that generator vectors from blank columns of

Fig. 5.2 are exactly the same ones from C(1), hence any subset of them have full rank

as long as the set size is no greater than M∗. In particular, those from the same

local repair group Gj span a vector space Vj of dimension r0α over GF(q) given that

rα < M ≤M∗, where j ∈ [∆], r0 ∈ {r, r∆−1}.

Meanwhile, generator vectors in the shaded columns are linear combinations

of that from the blank columns, as shown in Eq. (5.9). Hence all the r0 + δ − 1

nodes in Gj span the same vector space Vj as obtained from the first r0 nodes for

j ∈ [∆], r0 ∈ {r, r∆−1}, as shown in Fig. 5.2. Now we are ready to prove the data

reconstruction of C.

The data reconstruction problem requires the original message be recovered

based on any k∗ nodes, or equivalently, k∗α generator vectors from any k∗ node

generators have rank M∗. We will show that this condition is satisfied by employing

some special MDS codes as C(1) that have the following property.

127

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

Subspaces of Vj’s have trivial intersections if the summation of their dimensions

is no greater than M∗.

In the next section, we will prove that Gabidulin codes satisfy Property 5.5.3.

Here, we consider the data reconstruction of the code derived from employing MDS

codes with Property 5.5.3.

Theorem 5. Data reconstruction can be performed by any k∗ =
⌈
M
α

⌉
+
(⌈

M
rα

⌉
− 1

)
(δ−

1) columns of code C.

Proof. The theorem can be proved by showing that the k∗α generator vectors corre-

sponding to any k∗ columns of C span a vector space of dimension M∗ over GF(q).

We prove this for the two cases of construction in Section 5.5.2 respectively.

1) n = ∆(r+ δ− 1). From previous analysis, subspaces with smaller dimensions

can be obtained by picking nodes from the same local repair group as many as

possible. Since α|M∗, we can write M∗ = λrα + r1α, where 0 ≤ r1 ≤ r − 1, and

have two different k∗’s:

• k∗ = λr + (λ− 1)(δ − 1) = (λ− 1)(r + δ − 1) + r if r1 = 0 or rα|M∗. In this

case, we pick the k∗ nodes by first choosing (λ−1)(r+ δ−1) nodes from λ−1

different local repair groups, and then selecting another r nodes randomly from

the remaining repair groups. Based on Property 5.5.3, the last r nodes span

a subspace U0 of dimension rα, while the first (λ− 1)(r+ δ− 1) nodes span a

subspace U1 of dimension (λ−1)rα, given that rα < M∗ and (λ−1)rα < M∗.

Using Property 5.5.3 again, U0 and U1 have only trivial intersection since the

summation of their dimensions is exactly M∗. Hence any k∗ nodes will span

a subspace with dimension at least M∗.

128

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

• k∗ = λ(r+δ−1)+r1 if r1 > 0 or rα - M∗. Similarly, we compose the k∗ worst-

case nodes with λ(r+δ−1) elements from λ different local groups, and r1 others

randomly selected from the remaining groups. Following a similar argument as

the first case, those nodes span a vector space of dimension λrα+ r1α = M∗.

In either setting, any k∗ nodes will span a subspace with dimension at leastM∗. Con-

versely, the largest possible dimension spanned by any k∗ nodes is also M∗. Hence

generator vectors from any k∗ =
⌈
M∗

α

⌉
+
(⌈

M∗

rα

⌉
− 1

)
(δ−1) =

⌈
M
α

⌉
+
(⌈

M
rα

⌉
− 1

)
(δ−1)

nodes span an M∗-dimensional vector space over GF(q), and the original message

file can be reconstructed.

2) n = (∆−1)(r+δ−1)+r∆−1+δ−1, where r∆−1 ≥ ⌈Mα ⌉(mod r) > 0. In this case,

M∗ = λrα+r1α, where 0 < r1 ≤ r∆−1 ≤ r−1, and k∗ = λ(r+δ−1)+r1. Similarly,

we pick λ(r + δ − 1) elements from λ different local groups, and r1 randomly from

other remaining groups. Note that every group suffice to provide a r1α dimensional

subspace given that r∆−1 ≥ r1. Following a similar argument as the first case, those

nodes span a vector space of dimension λrα+ r1α = M∗, and data construction can

be performed correctly.

5.5.4 Relation to Other Works

The general construction in Section 5.5.2 requires C(1) to be an MDS code that sat-

isfies Property 5.5.3, and we will show that Gabidulin codes [12] have this desirable

property, leading to an explicit construction of our approach.

Claim 1. Gabidulin codes can satisfy Property 5.5.3.

129

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

Proof. Consider an (∆rα,M∗) Gabidulin code over GF(qm) with m ≥ ∆rα, deter-

mined by generator vectors g0, g1, . . . , g∆rα−1, and corresponding evaluator points

v0, v1, . . . , v∆rα−1. Note that the ∆rα evaluator points are linearly independent over

GF(q), and will span a vector space W of dimension ∆rα over GF(q). Based on our

code construction, those evaluator points will be divided into ∆ non-overlapping

groups, and the rα evaluator points of group j will span a subspace Wj ⊆ W of

dimension rα over GF(q). Note that Wj’s have trivial intersections, as otherwise

we will have dim(W) = dim(
∑∆−1

j=0 Wj) < dim(
∑∆−1

j=0 ⊕Wj) = ∆rα. In particular,

subspaces of Wj’s of dimension dj have trivial intersections if the summation of their

dimensions is no greater than M∗, as M∗ ≤ ∆rα, where j ∈ [∆′] ⊆ [∆]. Equiva-

lently, all the basis vectors v′j,t for j ∈ [∆′], t ∈ [dj] from those subspaces are linearly

independent over GF(q). Now we use v′j,t as an evaluation point, and construct

a generator vector ηj,t = ((v′j,t)
[0], (v′j,t)

[1], . . . , (v′j,t)
[M∗−1]), and those

∑
j∈[∆′] dj vec-

tors are linearly independent over GF(qm), i.e., they span a (
∑

j∈[∆′] dj)-dimensional

subspace of V . Naturally, subspace V ′
j spanned by ηj,t with a fixed j must have

trivial intersections with those from groups j′ ∈ [∆′] and j′ ̸= j. Hence for our

code construction, we choose ηj,t =
∑rα−1

ℓ=0 at,j,ℓgj,ℓ, where at,j,ℓ ∈ GF(q) for j ∈ [∆′]

and t ∈ [dj]. Then their evaluation points are v′j,t =
∑rα−1

ℓ=0 at,j,ℓvj,ℓ from Eq. (5.4)

and (5.4), and we have shown that they will guarantee that ηj,t’s span subspaces of

Vj’s with trivial intersections.

When using Gabidulin codes as in the proof of Claim 1, we obtain codes proposed

in [63]. Hence the codes in [63] can be viewed as a special case of our construction.

It should be pointed out that Property 5.5.3 is a sufficient but not a necessary

condition for optimal LRC code. By requiring certain subset of Vj subspaces have

130

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

trivial intersections, it is guaranteed that any set of their basis vectors are linearly

independent over some field, including the k∗α generator vectors from any k∗ nodes.

Hence as long as we have generator matrix of C(2) over the coefficient field, the

original data can be recovered correctly. Since these k∗α generator vectors only

compose one particular basis set, Property 5.5.3 requires more than necessary, which

is reflected by the large field size.

Also note that although we use the same two-layer encoding structure as that

in [63], and reach to the same code when adopting Gabidulin codes, we tackle the

problem from a totally different perspective. In [63], Gabidulin codes are considered

so that d− 1 node erasures can be turned into d− 1 rank erasures, which are then

proved to be correctable by the Gabudulin code. In our approach, we treat d − 1

node erasures as (d − 1)α erasures of coded symbols, and consider the subspace

spanned by the corresponding generator vectors.

Our vector space approach also has a flexible structure. The proof of Theorem 5

is based on subspaces spanned by generator vectors of C(1). Note that the same Vj

will be obtained if we rearrange coded symbols (generator vectors) of C(1) within

each local repair group in Fig. 5.2. Hence there’s actually no strict rule of how

the encoded symbols should be placed in the storage units within the same local

group, as far as data reconstruction is concerned. Of course, repair locality must be

guaranteed by the placing of encoded symbols. Though it doesn’t seem to provide

meaning benefits for now, it will facilitate our comparison with another piece of

work.

For some particular set of parameters, optimal LRC codes have been proposed

over smaller fields than our vector space approach, such as those with δ = 2, (r+1)|n

131

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

and r + 1 = α in [60]. However, we show that our construction, though requires

a bigger field, stores more information given the same set of parameters, and also

induces efficient degraded reads in practice.

As pointed out earlier, we may store the encoded symbols in each local group

arbitrarily. In particular, for r+1 = α, we can store the rα encoded symbols of C(1)

in the first r rows, and the α parity checks from C(2) in the last row, instead of the

last column of Gj.

Note that encoded symbols of the same codeword of C(2) should come from

different columns (nodes) in order to obtain the desired repair locality, which can

be implemented by simple permutations. Let π = (r, r − 1, . . . , 0), and πℓ the ℓ-th

right circulant of π, that is, πℓ(t) = π((t + ℓ) mod (r + 1)) for ℓ, t ∈ [r + 1]. Then

the ℓ-th codeword of C(2) is obtained by
∑r

t=0 ci,t = 0, where i = πℓ(t). For example,

πr = (r − 1, r − 2, . . . , 0, r), and cr−1,0 + cr−2,1 + · · · + cr,r = 0, from which cr,r can

be calculated and stored into row r of node r.

Example 5. We construct an example with n = 6, α = 3,M = 8, r = 2, δ = 2,

leading to M∗ = 9, k∗ = 4 and a designed distance d = 3. A (12, 9) Gabidulin code

over GF(qm) with m ≥ 12 is adopted as C(1), and C(2) a (3, 2) single parity check code

(an MDS code). A length-8 message is first padded with a 0. Suppose c = (ci,j)
T ∈

C(1) is obtained in the first layer encoding, where i ∈ {0, 1, 3, 4}, j ∈ {0, 1, 2}. The

corresponding codeword of C is shown in Table 5.3, where ni is storage node i with

i ∈ [6], and ci,j = ci−1,j + ci−2,j for i ∈ {2, 5}, j ∈ {0, 1, 2}. It can be verified that

any node has a repair locality of 2, and any k∗ = 4 nodes suffice to reconstruct m.

Hence the maximums minimum distance d = 3 is reached, and the code in Table 5.3

is a (6, 3, 8, 3; 2, 3) optimal LRC code.

132

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

Table 5.3: A (6, 3, 8, 3; 2, 3) optimal LRC code

n0 n1 n2 n3 n4 n5

c0,0 c1,0 c0,0 + c1,0 c3,0 c4,0 c3,0 + c4,0
c0,1 c1,1 c0,1 + c1,1 c3,1 c4,1 c3,1 + c4,1
c0,2 c1,2 c0,2 + c1,2 c3,2 c4,2 c3,2 + c4,2

The code in Table 5.3 has the original structure as in Fig. 5.2. Table 5.4 gives

another (6, 3, 8, 3; 2, 3) optimal LRC code with exactly the same parameters but

a different structure, as that in [60]. Note that given the same input message,

codeword b = (b0, b1, . . . , b11)
T in Table 5.4 is the same as c = (ci,j)

T for i ∈

{0, 1, 3, 4}, j ∈ {0, 1, 2} in Table 5.3. However, parity check symbols from C(2) are

formed according to the permutation approach above to ensure a repair locality of

2.

Table 5.4: Another (6, 3, 8, 3; 2, 3) optimal LRC code

n0 n1 n2 n3 n4 n5

b0 b2 b4 b6 b8 b10
b1 b3 b5 b7 b9 b11

b3 + b4 b0 + b5 b1 + b2 b9+10 b6 + b11 b7 + b8

Though both of our code and that in [60] have a message size of M = 8, our code

construction can actually accommodate M∗ = 9 message symbols given the same

DSS and the same data reconstruction and repair requirement. In the worst case,

up to α−1 storage units will be wasted by the structure in [60]. Hence our approach

is more efficient, as it is constructed based on array codes, instead of dividing the

DSS into units to suit for scalar codes, which is performed in [60].

133

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

Figure 5.3: A Systematic Code for Degraded Reads (reproduced from [1])

5.5.5 Degraded Reads

Both schemes in Table 5.3 and 5.4 achieve the desired data repair and reconstruction

parameters. However, compared to [60], our codes in Section 5.5.2 feature other

merits such as efficient degraded reads [1].

As pointed out in [1] and the references therein, disk failures are dominated by

temporary unavailability due to network partitions, software updates and so on. In

the period between failure and recovery, reads are degraded because data from failed

nodes must be recovered to complete the read process. For single disk failures, a

penalty is defined to be the number of symbols required to perform the read minus

the number of symbols desired to be read.

If random reads do not cause extra cost (e.g., delay), both codes from our con-

struction and [60] induce a penalty of at most r − 1 in degraded reads. Given the

same repair locality of r, reading one symbol from a failed node can be performed

by reading at most r other symbols in other nodes. In practice, however, reading

from random positions of a disk could be time consuming, and successive reads are

134

5.5. LRC CODE CONSTRUCTION FROM VECTOR SPACE

preferred. In this case, degraded reads performed by our construction have less

penalty than that in [60].

Suppose a systematic code C is used for simplicity, and the message symbols

are stored in data disks D0, D1, . . . , Ds−1, and parity symbols are stored in parity

disks P0, P1, . . . , Pt, respectively, as shown in Fig. 5.3 (reproduced from [1, Fig. 1]),

where s = ⌈M
α
⌉ and t = n − s − 1. Without loss of generality, let us assume the

first ∆ parity disks stores the single parity check symbols of C(2) for local group

0, 1, . . . ,∆− 1, respectively, and the rest stores that from C(1).

As in [1], we assume contiguous data symbols are stored in successive disks to

take better advantage of parallel I/O, i.e., successive reads are performed from the

starting point to the end in a row by row manner. For our construction, at most r

extra symbols in the same row are required to be read if one node fails, as local repair

constraints are conducted row wisely. Hence a penalty of at most r− 1 is necessary.

On the other hand, the structure in [60] stores the α = r + 1 symbols participating

in the same parity check equation of C(2) in different rows. To be specific, node t

stores a symbol of the ℓ-th codeword in row πℓ(t), hence up to πℓ(t) + 1 symbols

are to be read from node t to repair some other symbol participating in the same

codeword. Given that πℓ(t) ∈ [r + 1], in the worst case, reading of r + 1, r, . . . , 2

symbols (rows) from r nodes respectively is necessary to repair one symbol in a

failed node. Hence a penalty of (r+1)(r+2)
2

− 2 is resulted, in the oder of O(r2).

For example, suppose node 0 fails in Table 5.4, and b0 is to be read. If using

successive reads, we have to read 3 symbols in node n1 till b0 + b5 is reached and 2

symbols in node n2 till b5 is obtained to repair b0. Therefore a total of 5 reads and a

penalty of 4 is necessary, reaching the upper-bound of (r+1)(r+2)
2

− 2 above. On the

135

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

other hand, if c0,0 is to be read in Table 5.3 while node 0 fails, we only need to read

c1,0 from node 1 and c0,0 + c1,0 from node 2 to recover c0,0, and the penalty is 1.

5.5.6 Code Rate

We define the code rate R of C to be the ratio of the number of original message

symbols over the total number of storage units required to store the encoded symbols,

that is

R
def
=

M

nα
≤ M∗

nα
=

M∗

((∆− 1)(r + δ − 1) + r∆−1 + δ − 1)α

= R(1) (∆− 1)r + r∆−1

(∆− 1)(r + δ − 1) + r∆−1 + δ − 1
,

where R(1) = M∗

(∆−1)rα+r∆−1α
is the code rate of code C(1). Hence the code rate of

C is bounded by that of C(1), and the factor (∆−1)r+r∆−1

(∆−1)(r+δ−1)+r∆−1+δ−1
reflects the cost

of extra storage to obtain the (r, δ) repair locality. Note when we set δ = 2 and

(r + 1)|n, we have R = R(1) r
r+1

, the same as that presented in [60].

5.6 MSR Code Construction from Vector Space

In this section, we consider deterministic linear constructions of distributed storage

coding from a perspective of linear vector space. We present explicit MSR codes with

small field size when the code parameters are small. Though our construction process

focuses only on data reconstruction, the subspaces under the set of parameters

considered display some very nice intersection properties, which also lead to the

desired data repair results.

136

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

No explicit constructions for lager code parameters are found, as certain key

properties of subspaces soon become too complicated to be tracked when their di-

mension increases. However, we want to point out that our current construction is

quite “passive”, in the sense that no constraints are imposed during the construction

process to ensure data repair. If both data reconstruction and data repair require-

ments are taken into account, our subspace approach may produce MSR codes with

general parameters.

5.6.1 MSR Codes from Vector Space Approach

We now use the same vector space approach and notations presented in Section 5.5

to interpret MSR codes. For MSR codes, we have M = kα, i.e., dim(V) = M and

dim(Vi) = α. Hence V =
∑k−1

j=0 Vij =
∑k−1

j=0 ⊕Vij , where ⊕ is the direct sum of two

subspaces. This means the kα generator vectors from any k nodes should be linearly

independent, and span the LT space V . On the other hand, data repair imposes

linear dependencies among any r + 1 node generators.

Table 5.5: A (5, 2, 4; 2, 3) MSR Code

node i 0 1 2 3 4
xi 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 0
yi 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1

zi 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1

We illustrate our idea first with a simple example. Table 5.5 shows a (n = 5, α =

2,M = 4; k = 2, r = 3) MSR code, where xi and yi are the generator vectors for

node i over GF(2). Here V is the 4-dimensional vector space spanned by all the

137

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

length M = 4 vectors. A generator matrix G for this code is

GT =

0 0 0 1 1 0 0 1 1 0

0 0 1 0 0 1 1 0 1 1

0 1 0 0 1 0 1 1 1 1

1 0 0 1 0 1 0 1 0 1

.

Here V is the 4-dimensional vector space spanned by all the length M = 4

vectors. It can be verified that Vi = ⟨xi,yi⟩ ⊆ V has dimension 2, where i ∈ [5].

Further, the 4 generator vectors from any two Vi and Vj are linearly independent

for i, j ∈ [5] and i ̸= j, and will span the entire vector space V . Hence the original

message can be recovered by multiplying the coded symbol with the inverse of

the corresponding matrix. Meanwhile, some three vectors from any r = 3 nodes,

one from each, can repair the rest nodes by simple linear combinations (XOR’s

in this example). For example, to repair node 3 from node 0, 1, and 2, we have

x3 = (0110) = (0010) + (0100) = y0 + x1 and y3 = (1011) = (0100) + (1111) =

x1 + (x2 + y2). Hence three symbols corresponding to y0,x1,x2 + y2 from node

0, 1, 2, respectively, repair the two symbols x3,y3 in node 3. Note that x2 +

y2 is used in node 2, meaning that a helping node can do linear combinations

locally before sending out the symbol to repair the failed node, which is the essence

of reducing bandwidth in regenerating codes, compared to erasure correction of

traditional codes.

Note there is an extra row of vectors zi = xi + yi in Table 5.5, displayed for

better illustration of our code construction, though they are not to be stored in node

i. It can be seen that Vi = {0,xi,yi, zi}, where 0 is the all-zero vector, and Vi and

138

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

Vj’s are mutually exclusive, i.e., with trivial intersections, for i, j ∈ [5] and i ̸= j.

As a result, data reconstruction property is guaranteed.

5.6.2 MSR Codes Construction from Vector Spaces

Our code construction is based on the idea shown in Table 5.5. We pick up generator

vectors for each node one by one, avoiding those already contained in previous

subspaces to ensure data reconstruction. On the other hand, certain dependencies

between the generator vectors must exist for data repair.

The first k nodes are always easy, as we can pick an arbitrary basis set and

distribute the B basis vectors randomly into the k nodes. Then we consider the

(k+1)-th node, picking gk,0 out of ∪k−1
i=0 Vi, where ∪ is the union the subspaces viewed

as sets of vectors. Then we choose gk,1 out of ∪k−1
i=0 Vi,0, where Vi,0 = Vi + ⟨gk,0⟩.

The process continues till we reach gk,α−1, chosen out of ∪k−1
i=0 Vi,α−2, where Vi,α−2 =

Vi + ⟨gk,0, gk,1, . . . , gk,α−2⟩. The process then moves on to node k + 1. In general,

for a node j ∈ [n]\[k], we shall choose gj,ℓ out of ∪i∈Sk
Vi,ℓ−1, where Sk is any subset

of [j] of size k.

Clearly, to pick an element out of a union of subspaces, we have to know the

intersections of the subspaces, and enumerate the elements in the union. Unfortu-

nately, the intersections of subspaces soon become intractable when their dimen-

sions increase. Hence we only present a construction for a set of small parameters,

(n = 5, α = 2,M = 4; k = 2, r = 3). However, throughout the construction pro-

cess, we can still show some generality of the construction. Another interesting

property of this special case is that the data repair is naturally fulfilled, though the

construction above only focuses on data reconstruction.

139

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

5.6.3 Data Reconstruction

It can be seen that following this construction, the data reconstruction requirement

will be satisfied naturally, as the construction process guarantees that the kα gen-

erator vectors from any k nodes are linearly independent. But before we jump to

this conclusion, we have to show that there are indeed enough vectors left to choose

from, such that subspaces Vi’s exist for i ∈ [5].

Note that the construction method above does not impose any special constraint

on how to choose the vectors for Vi’s, as long as they are out of a certain set. In

other words, we only need to count the number of vectors included in some sets,

instead of enumerate them. Hence all the Vi’s are equivalent for any i ∈ [5]. We

will examine the intersection and union properties displayed by any two and three

of them, as stated below. Since α = 2 in this case, we still use xi and yi to denote

the generator vectors of node i, and define Vi,xℓ
= Vi + ⟨xℓ⟩ for i, ℓ ∈ [5].

Lemma 14. dim(Vi,xℓ
∩ Vj,xℓ

) = 2, where i, j, ℓ ∈ [5] and are mutually distinct.

Proof. dim(Vi,xℓ
∩Vj,xℓ

) = dim(Vi,xℓ
) + dim(Vj,xℓ

) - dim (Vi,xℓ
+Vj,xℓ

) = 3+3−4 = 2,

as Vi,xℓ
+Vj,xℓ

= Vi + ⟨xℓ⟩+Vj + ⟨xℓ⟩ = Vi +Vj = V , leading to dim(Vi,xℓ
+Vj,xℓ

) =

4.

Furthermore, we can say something more about what is contained in the inter-

section of the two subspaces.

Lemma 15. There exists a nonzero vector x ∈ (Vi,xℓ
∩ Vj,xℓ

) such that x ∈ Vi and

x+ xℓ ∈ Vj.

Proof. Since dim(Vi,xℓ
∩ Vj,xℓ

) = 2, there exists a nonzero x∗ ∈ Vi,xℓ
and x∗ ̸= xℓ

such that (Vi,xℓ
∩ Vj,xℓ

) = ⟨x∗,xℓ⟩. If all the three nonzero elements x∗,xℓ,x
∗ + xℓ

140

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

are out of Vi, then Vi and (Vi,xℓ
∩ Vj,xℓ

) have trivial intersection. Hence dim(Vi +

(Vi,xℓ
∩ Vj,xℓ

)) = dim(Vi ⊕ (Vi,xℓ
∩ Vj,xℓ

)) = dim(Vi)+ dim((Vi,xℓ
∩ Vj,xℓ

)) = 2, a

contradiction. Hence there exists x ∈ (Vi,xℓ
∩ Vj,xℓ

) which is also in Vi.

Similarly, there exists a nonzero y ∈ (Vi,xℓ
∩ Vj,xℓ

) such that y ∈ Vj. From our

construction of xℓ, we know that y ̸= xℓ. Further, if y = x ∈ Vi, we would have a

nonzero y in both Vi and Vj, contradicting our construction rule that Vi ∩ Vj = ∅.

Hence y = x+ xℓ.

Now consider the intersection of any three of the subspaces spanned by any three

nodes, as stated in Lemma 16.

Lemma 16. dim(Vi,xℓ
∩ Vj,xℓ

∩ Vk,xℓ
) = 1, where i, j, k, ℓ ∈ [5] and are mutually

distinct.

Proof. From Lemma 15, we have a nonzero x ∈ Vi such that ⟨x,xℓ⟩ = (Vi,xℓ
∩

Vj,xℓ
). Similarly, we have a nonzero z ∈ Vk such that ⟨z,xℓ⟩ = (Vj,xℓ

∩ Vk,xℓ
). If

dim(Vi,xℓ
∩ Vj,xℓ

∩ Vk,xℓ
) = 2, we must have ⟨x,xℓ⟩ = ⟨z,xℓ⟩, as both of them have

dimension 2, and are subspaces of (Vi,xℓ
∩ Vj,xℓ

∩ Vk,xℓ
). Hence either x = z ∈ Vk or

x = z + xℓ ∈ Vj, contradicting the trivial intersection constraints among any pair

of Vi, Vj, Vk. Hence dim(Vi,xℓ
∩ Vj,xℓ

∩ Vk,xℓ
) ≤ 1. Given this subspace contains a

nonzero vector xℓ, we have dim(Vi,xℓ
∩ Vj,xℓ

∩ Vk,xℓ
) = 1.

After the intersection properties are clear, we can count the number of elements

included in previous subspaces (nodes), and use what’s left to construct the rest

nodes. After selecting an arbitrary basis and distribute the basis vectors into node

0 and node 1, a total of 2 · 22 − 1 = 7 elements will be covered by V0 ∩ V1 since the

two have trivial intersections. Hence we have 24 − 7 = 9 elements left for x2. After

141

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

picking one of them randomly, we will have V0,x2 ∩ V1,x2 containing 2 · 23 − 22 = 12

elements covered, and y2 has to be chosen from the rest of 24 − 12 = 4 vectors.

Next, we choose x3 out of V0, V1, V2. Since they have trivial intersections with

each other, we have 24 − 3 · 22 + 2 = 6 choices. To pick y3, we consider V0,x3 ∪

V1,x3 ∪ V2,x3 , which has a total of 3 · 23 −
(
3
2

)
22 +

(
3
3

)
21 = 14, where

(
3
2

)
is the

number of combinations of Vi,x3 and Vj,x3 with intersection a 2-dimensional subspace.

Eventually we still have 24 − 14 = 2 possible vectors to assign to y3.

Finally, we can choose from 24 − 4 · 22 + 3 = 3 vectors not covered by the union

of Vi’s to form V4, where i ∈ [4]. Note that V4 itself is a 2-dimensional subspace

with 3 nonzero vectors, with trivial intersection with any previous Vi’s, hence we

can choose any two out of these three vectors as x4 and y4 respectively.

Note that after V4 is obtained, we will have 5 · 22 − 4 = 16 vectors occupied by

the 5 subspaces, which is exactly the total number of vectors in V . Hence we cannot

get a code with larger parameters over GF(2) with this parameter settings.

5.6.4 Data Repair

We will show that the code construction procedure above, which focuses on data

reconstruction, also naturally satisfies data repair requirement of regenerating codes,

leading to MSR codes under our parameter setting.

Lemma 17. Any node in the DSS constructed above can be repaired by any other

three nodes.

As we stated, no specific constraints are imposed to individual nodes aside from

their trivial intersection property, hence all the nodes are equivalent. Without loss

of generality, we consider repairing node ℓ from node i, j, k.

142

5.6. MSR CODE CONSTRUCTION FROM VECTOR SPACE

Proof. Consider Vi,xj
∩ Vℓ,xj

from Vi, Vℓ and ⟨xj⟩. From the proof of Lemma 15, we

have a nonzero x∗
i ∈ Vi and x∗

ℓ ∈ Vℓ such that ⟨x∗
i ,xj⟩ = ⟨x∗

ℓ ,xj⟩ and x∗
ℓ = x∗

i +xj.

Similarly, for Vk,xj
∩ Vℓ,xj

, we can have y∗
ℓ = x∗

k + xj for some y∗
ℓ ∈ Vℓ and x∗

k ∈

Vk. Further, we have x∗
ℓ ̸= y∗

ℓ , from trivial intersection requirement, which is also

shown in Lemma 15. Hence if both xℓ,yℓ ∈ {x∗
ℓ ,yℓ∗}, the repair is done by the

three symbols x∗
i ,xj,x

∗
k. Otherwise, we’ll have cases like xℓ = x∗

ℓ = x∗
i + xj but

xℓ+yℓ = y∗
ℓ . In this case, we can get yℓ = x∗

ℓ +y∗
ℓ = x∗

i +x∗
k, i.e., the two symbols

xℓ,yℓ can be repaired by x∗
i ,xj,x

∗
k, still three helping symbols.

5.6.5 Discussions

Clearly, if we pick any 4 nodes from the example given, we get a class of (4, 2, 4; 2, 3)

MSR codes. Also, no restriction is mentioned on the field of the data or encoded

symbols. Actually symbols from any extension fields of GF(2) will share the same

data reconstruction property, and simple data repair by XOR operations.

Another interesting fact is that the result of the construction process above is

actually a non-overlap partition of the nonzero vectors of V into 5 nodes, each

spanning a two-dimensional subspace of V . Hence the code shown in Table 5.5 is

only one specific code obtained from our construction. In this sense, our construction

is a general approach.

For other parameters with arbitrary α, k, r parameters, code construction can

be very complicated as behaviors of subspaces may be very hard to track with high

dimensions. This also rises an open problem in our construction, which is passive

in the sense that no constraints is imposed on data repair during the construction.

If we can design the combinations to form the vectors to be picked in latter nodes,

143

5.7. CONCLUSION

we may have control over intersection properties of the subspaces.

5.7 Conclusion

In this chapter, we propose three code constructions aiming at different features for

data repair in the DSS, MDS codes with low computational complexity, LRC codes

for local repair with optimal minimum distance, and MSR codes for minimum repair

bandwidth. All the three classes of codes can be constructed based on a vector space

analysis. The new MDS codes benefit from the utilization of linearized polynomials,

invoking linear repair and quadratic reconstruction. Our LRC codes have a two-layer

structure, which generalize existing constructions as special cases. The structure also

facilitates efficient degraded reads in the DSS. Our construction for MSR codes are

not complete as explicit codes are only obtained for small parameters. However,

if we consider extra constraints when choosing basis vectors for latter nodes, this

approach may also lead to codes with larger parameters.

144

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we investigate advanced error control schemes for random lin-

ear network coding (RLNC). We first propose a general interpolation algorithm to

decode subspace codes used for error correction in both coherent and noncoherent

RLNC, such as KK codes, MV codes and that from lifting of rank metric codes.

Then based on an approach that transforms the decoding of RLNC into that of

linear block codes, we further utilize linear programming (LP) to implement the

corresponding decoder, and formulate efficient LP decoding algorithms for codes

defined over nonbinary finite fields. Finally, we consider error control schemes for a

particular type of network, the distributed storage system (DSS), and propose code

constructions and decoding algorithms for different optimization goals. Theoretical

feasibility and complexity analysis are provided for our encoding and decoding al-

gorithms, as well as examples of our code construction and decoding procedure. We

145

6.1. CONCLUSIONS

also present hardware implementations to prove the efficiency of our interpolator.

Our work was published in the following conferences and journals [18,64,65,75–

83]. We briefly summarize our main contributions in this dissertation as follows.

In Chapter 2, we investigate interpolation in a free module of a linearized poly-

nomial ring, in parallel to the work of Wang et al. [25], and propose a polynomial

complexity interpolation algorithm in a well ordered free module of a linearized

polynomial ring. This interpolation algorithm is applied to decode subspace codes

used in random linear network coding, such as KK codes [9], MV codes [10], and

that from lifting of Gabidulin codes [11,12]. For Gabidulin codes, our interpolation

algorithm always produces the correct decoding results compared to some exist-

ing approach. It also has a lower complexity for KK and MV codes, compared to

Gaussian elimination, currently the only algorithm existing aside from ours.

In Chapter 3, we extend the work of [10] on list decoding of MV codes, in

terms of greater decoding radius and analytical performance evaluation. We first

remove the impractical assumption of no erasures in [10], and derive the condition of

decodability in the presence of both errors and erasures. Analysis on the asymmetric

importance of the two types of error patterns in the new decodability condition is

also provided. Then we attempt to achieve a greater decoding radius for high rate

codes by introducing multiplicity into the interpolation step. However, our results

show that the decoding radius is slightly reduced, and we point out the reason lies in

some nasty property of linearized polynomials. Finally, based on the results of [43],

we obtain the decoder error probability (DEP) of a nearest neighbor decoder, after

the decoding list is obtained.

In Chapter 4, based on the work of Yan et al. [18], where the decoding of linear

146

6.2. FUTURE WORK

network coding was transformed into classic decoding problems of linear block codes

named rank deficient decoding, we further propose their implementation by linear

programming. Hence the problem turns into the formulation of decoding linear block

codes into solving linear equations. We adapt Yang’s formulation in [50] of reduced

complexity for binary codes to accommodate both even and odd parity equations,

and then propose a simplified formulation for codes over nonbinary fields. We prove

that our LP algorithm has the desired ML certificate property, i.e., whenever our LP

decoder outputs a codeword, it is the ML codeword. Simulation results who that

LP decoding algorithm performs the rank deficient decoding algorithms efficiently.

In Chapter 5, we construct linear codes for distributed storage systems (DSS),

viewed from a vector space’s perspective. Encoded symbols in each node corre-

spond to a subspace of the linear transformation space that defines the code, and

then data reconstruction and repair from a number of nodes are formed into inter-

section properties of the corresponding subspaces. Using this approach, we propose

constructions of three codes for DSSs, maximum distance separable (MDS) codes,

minimum storage regenerating (MSR) codes and locally repairable codes (LRC),

for low computational complexity, optimized repair bandwidth and locality, respec-

tively. We prove the optimality of the codes obtained from our approach, and also

present explicit constructions. We also show that our LRC code structure induces

efficient degraded reads [1] in practice.

6.2 Future Work

For future work, the following points may be worthy to be examined:

147

6.2. FUTURE WORK

• The interpolation algorithm we investigated in Chapter 2 works over a lin-

earized polynomial ring. It has two major differences with the ordinary poly-

nomial interpolation [25]. First, the polynomial ring is commutative, while the

linearized one not. Second, the definitions of multiplication between models

and rings are different for the two cases. However, the two algorithms do share

some basic principles, such as a free module, a total ordering, linear function-

als, etc, so as to find a minimum element satisfying certain constraints. Hence

it would be reasonable to device a general interpolation algorithm that can

accommodate these two algorithms as special cases.

• In Chapter Chapter 3, we found that applying multiplicities to the interpo-

lation points directly does not produce an expanded decoding radius as for

RS codes in [20]. As we analyzed, the reason is the fact that multiplicities of

different interpolation points have to be the same for multivariate linearized

polynomials. As a result, not enough extra linear constraints are invoked

from the introduction our multiplications. Hence an interesting topic is to

define a new multiplication for linearized polynomials, such that the number

of new linear equations is at least proportional to the number of points to be

interpolated.

• The linear programming algorithm over nonbinary field we propose in Chap-

ter 4 has a reduced complexity compared to that in [21]. However, given the

high computational complexity of large finite field, there are still too many

calculations involved, which hinders its application in practice. One possible

way to reduce the complexity is to shrink the number of linear equations used

148

6.2. FUTURE WORK

to represent the constraints over finite fields. For our LP formulation over

extension fields of GF(2), the number of binary equations produced by one

parity check equation over the extension field is exponential with respect to

the dimension of the field. Naturally, one way to reduce the complexity is

to reduce the number of binary equations used to represent the constraints

over the extension field. As a tradeoff, the performance will be sacrificed.

Fortunately, the rank deficient decoding in [18] introduces an embedded error

control mechanism for the underlying RLNC. How to utilize this property to

compensate the loss from the simplified LP deserves further examination.

• In Chapter 5, we present some code constructions for DSS, where the require-

ment of data repair and reconstruction on the nodes are transformed into

properties of corresponding subspaces. However, our current results are not

complete in two aspects. First, code constructions for MSR codes only work

with small parameters, as intersection properties of subspaces soon become

intractable following the increase of subspace dimensions. Part of the reason

is that our current construction does not impose any constraints in choosing

the basis vectors for subspaces spanned by latter nodes. Hence one possible

way to extend this work is to strict our selection of later formed subspaces

under some constraints that will satisfy data repair property. Second, the

construction for LRC codes requires a large field size, from the sufficient but

not necessary condition imposed on the first layer MDS codes. How to loose

the constraint while still maintain the desired data reconstruction parameters

is another way to derive practical codes for DSS.

149

Bibliography

[1] O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking erasure

codes for could file system: Minimizing I/O for recovery and degraded reads,”

in 10th USENIX Conference on FIle and Storage Technologies (FAST’12), San

Jose, CA, Feb. 2012.

[2] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,” IEEE

Trans. Info. Theory, vol. 46, pp. 1204–1216, July 2000.

[3] T. Ho, M. Médard, R. Kötter, D. R. Karger, M. Effros, J. Shi, and B. Leong,

“A random linear network coding approach to multicast,” IEEE Trans. Info.

Theory, vol. 52, no. 10, pp. 4413–4430, October 2006.

[4] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,

“Network coding for distributed storage systems,” IEEE Trans. Info. Theory,

vol. 56, no. 9, pp. 4539–4551, September 2010.

[5] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Trans.

Info. Theory, vol. 49, no. 2, pp. 371–381, February 2003.

[6] N. Cai and R. W. Yeung, “Network coding and error correction,” in Proc. IEEE

Information Theory Workshop, Bangalore, India, October 2002, pp. 20–25.

150

BIBLIOGRAPHY

[7] R. W. Yeung and N. Cai, “Network error correction, part I: Basic concepts and

upper bounds,” Commun. Info. Syst., vol. 6, no. 1, pp. 19–36, 2006.

[8] N. Cai and R. W. Yeung, “Network error correction, part II: Lower bounds,”

Commun. Info. Syst., vol. 6, no. 1, pp. 37–54, 2006.

[9] R. Kötter and F. R. Kschischang, “Coding for errors and erasures in random

network coding,” IEEE Trans. Info. Theory, vol. 54, no. 8, pp. 3579–3591,

August 2008.

[10] H. Mahdavifar and A. Vardy, “Algebraic list-decoding on the operator channel,”

in Proc. IEEE Int. Symp. Info. Theory, Austin, USA, June 2010, pp. 1193–1197.

[11] D. Silva, F. R. Kschischang, and R. Kötter, “A rank-metric approach to error

control in random network coding,” IEEE Trans. Info. Theory, vol. 54, no. 9,

pp. 3951–3967, September 2008.

[12] E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problems of

Information Transmission, vol. 21, no. 1, pp. 1–12, January 1985.

[13] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale content

distribution,” Proceedings of 2005 IEEE Infocom, vol. 4, pp. 2235–2245, March

2005.

[14] S. Deb, M. Médard, and C. Choute, “Algebraic gossip: a network coding

approach to optimal multiple rumor mongering,” IEEE Trans. Info. Theory,

vol. 52, no. 6, pp. 2486–2507, June 2006.

151

BIBLIOGRAPHY

[15] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard, “The importantance

of being opportunistic: practical network coding for wireless environments,”

September 2005.

[16] J.-S. Park, M. Gerla, D. S. Lun, Y. Yi, and M. Médard, “Codecast: a network-

coding-based ad hoc multicast protocol,” vol. 13, no. 5, pp. 76–81, October

2006.

[17] Z. Liu, C. Wu, B. Li, and S. Zhao, “Uusee: Large-scale operational on-demand

streaming with random network coding,” pp. 1–9, March 2010.

[18] Z. Yan, H. Xie, and B. W. Suter, “Rank deficient decoding of linear network

coding,” in The 38th International Conference on Acoustics, Speech, and Signal

Processing (ICASSP 2013, Vancouver, Canada, May 2013.

[19] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran, “Net-

work coding for distributed storage systems,” in IEEE INFOCOM 2007, An-

chorage, AK, 2007.

[20] V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon Codes

and Algebraic Geometry Codes,” IEEE Trans. Info. Theory, vol. 45, no. 6, pp.

1757–1767, September 1999.

[21] M. Flanagan, V. Skachek, E. Byrne, and M. Greferath, “Linear-programming

decoding of nonbinary linear codes,” IEEE Trans. Info. Theory, vol. 55, no. 9,

pp. 4134–4154, September 2009.

[22] R. M. Roth, Introduction to Coding Theory. Cambridge University Press,

2006.

152

BIBLIOGRAPHY

[23] R. Kötter, “Fast Generalized Minimum-Distance Decoding of Algebraic Geom-

etry and Reed-Solomon Codes,” IEEE Trans. Info. Theory, vol. 42, no. 3, pp.

721–736, May 1996.

[24] L. R. Welch and E. R. Berlekamp, “Error correction for algebraic block codes,”

U.S. Patent no. 4,633,470, December 30, 1986.

[25] B. Wang, R. J. McEliece, and K. Watanabe, “Kötter interpolation over free

modules,” in Proc. 2005 Allerton Conf. Communications Control and Comput-

ing, Monticello, IL, October 2005, pp. 2197–2206.

[26] D. Silva and F. R. Kschischang, “On metrics for error correction in network

coding,” IEEE Trans. Info. Theory, vol. 55, no. 12, pp. 5479–5490, December

2009.

[27] P. Lusina, E. M. Gabidulin, and M. Bossert, “Maximum rank distance codes as

space-time codes,” IEEE Trans. Info. Theory, vol. 49, no. 10, pp. 2757–2760,

October 2003.

[28] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a non-

commutative ring and their application in cryptology,” in Proc. Eurocrypt,

Brighton, UK, April 1991, pp. 482–489.

[29] E. M. Gabidulin, “Optimal codes correcting lattice-pattern errors,” Problems

of Information Transmission, vol. 21, no. 2, pp. 3–11, 1985.

[30] P. Loidreau, “AWelch-Berlekamp like algorithm for decoding Gabidulin codes,”

in Proc. International Workshop on Coding and Cryptography, Bergen, Norway,

March 2005, pp. 36–45.

153

BIBLIOGRAPHY

[31] R. Lidl and H. Niederreiter, Finite Fields, ser. Encyclopedia of Mathematics

and its Applications, G. Rota, Ed., 1983, vol. 20.

[32] O. Ore, “On a special class of polynomials,” Transactions of the American

Mathematical Society, vol. 35, pp. 559–584, 1933.

[33] P. Delsarte, “Bilinear forms over a finite field, with applications to coding the-

ory,” Journal of Combinatorial Theory A, vol. 25, no. 3, pp. 226–241, November

1978.

[34] R. M. Roth, “Maximum-rank array codes and their application to crisscross

error correction,” IEEE Trans. Info. Theory, vol. 37, no. 2, pp. 328–336, March

1991.

[35] R. J. McEliece, “The Guruswami-Sudan Decoding Algorithm for Reed-Solomon

Codes,” Interplanetary Network Progress Report 42-153, May 2003.

[36] O. Ore, “Contribution to the theory of finite fields,” Transactions of the Amer-

ican Mathematical Society, vol. 36, pp. 243–274, 1934.

[37] D. Silva and F. R. Kschishcang, “Fast encoding and decoding of Gabidulin

codes,” in Proc. IEEE Int. Symp. Info. Theory, Seoul, Korea, June 2009, pp.

2858–2862.

[38] M. Gadouleau and Z. Yan, “Complexity of decoding Gabidulin codes,” in 42nd

Annual Conference on Information Sciences and Systems, Princeton, USA,

March 2008, pp. 1081–1085.

154

BIBLIOGRAPHY

[39] N. Chen, Z. Yan, M. Gadouleau, Y. Wang and B. W. Suter, “Rank metric

decoder architectures for random linear network coding with error control,”

IEEE Trans. VLSI Systems, vol. 20, no. 2, pp. 296–309, Feb 2012.

[40] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.

Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “FreePDK: An

open-source variation-aware design kit,” in Proc. IEEE Int. Conf. Microelec-

tron. Syst. Education (MSE07), San Diego, USA, Jun. 2007, pp. 173–174.

[41] H. Mahdavifar and A. Vardy, “Algebraic List-Decoding on the Operator Chan-

nel,” submitted to IEEE Trans. Info. Theory, April 2010.

[42] M. Sudan, “Decoding of Reed-Solomon codes beyond the error-correction

bound,” J. Complexity, vol. 13, pp. 180–193, 1997.

[43] M. Gadouleau and Z. Yan, “On the decoder error probability

of rank metric codes and constant-dimension codes,” available at

http://arxiv.org/abs/0812.2379.

[44] H. Chen, “Distributed file sharing: Network coding meets compressed sens-

ing,” Proceedings of First International Conference on Communications and

Networking in China (ChinaCom’06), pp. 1–5, October 2006.

[45] S. Katti, S. Shintre, S. Jaggi, D. Katabi, and M. Médard, “Real network cod-

ing,” Proceedings of Forty-Fifth Annual Allerton Conference on Communica-

tion, Control, and Computing, pp. 389–395, September 2007.

[46] N. Nguyen, D. Jones, and S. Krishnamurthy, “Netcompress: Coupling network

coding and compressed sensing for efficient data communication in wireless

155

BIBLIOGRAPHY

sensor networks,” Proceedings of 2010 IEEE Workshop on Signal Processing

Systems (SiPS 2010), pp. 356–361, October 2010.

[47] S. Shintre, S. Katti, S. Jaggi, B. K. Dey, D. Katabi, and M. Médard, “‘Real’

and ‘complex’ network codes: Promises and challenges,” Fourth Workshop on

Network Coding, Theory and Applications (NetCod 2008), pp. 1–6, January

2008.

[48] Z. Zhang, “Linear network error correction codes in packet networks,” IEEE

Trans. Info. Theory, vol. 54, no. 1, pp. 209–218, January 2008.

[49] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming to

decode binary linear codes,” IEEE Trans. Info. Theory, vol. 51, no. 3, pp.

954–972, March 2005.

[50] K. Yang, X. Wang, and J. Feldman, “A new linear programming approach to

decoding linear block codes,” IEEE Trans. Info. Theory, vol. 54, no. 3, pp.

1061–1072, March 2008.

[51] J. Honda and H. Yamamoto, “Fast linear-programming decoding of LDPC

codes over GF(2m),” in ISITA 2012, Honolulu, Hawaii, USA, October 2012,

pp. 754–758.

[52] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication: A

quantiative comparison,” in Proc. Int. Workshop Peer-to-Peer Syst., Cam-

bridge, MA, USA, March 2002.

156

BIBLIOGRAPHY

[53] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of code-

word symbols,” IEEE Trans. Info. Theory, vol. 58, no. 11, pp. 6925–6934, Nov.

2012.

[54] Y. Wu and A. G. Kimakis, “Reducing repair traiffic for erasure coding-based

storage via interference alighment,” in Proc. IEEE Int. Symp. on Information

Theory, Seoul, Korea, Jun. 2009, pp. 2276–2280.

[55] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit

construction of optimal exact regenerating codes for distributed storage,” 2009,

available online at http://arxiv.org/abs/0906.4913v2.

[56] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Interference

alignment in regenerating codes for distributed storage: Necessity and code

constructions,” available online at http://arxiv.org/abs/1005.1634, September

2010.

[57] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network

codes for distributed storage,” Proceedings of the IEEE, vol. 99, no. 3, pp.

476–489, March 2011.

[58] C. Suh and K. Ramchandran, “Exact-repair MDS codes for distributed storage

using interference alignment,” in IEEE Int. Symp. Info. Theory, Austin, Texas,

USA, June 2010, pp. 161–165.

[59] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating

codes for distributed storage at the MSR and MBR points via a product-matrix

157

BIBLIOGRAPHY

construction,” IEEE Trans. Info. Theory, vol. 57, no. 8, pp. 5227–5239, August

2011.

[60] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in Proc.

IEEE Int. Symp. on Information Theory, Cambridge, MA, July 2012.

[61] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally repairable

codes and connection to matroid theory,” February 2013, available online at

http://arxiv.org/abs/1301.7693v2.

[62] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with local

regeneration,” in 2013 Information Theory and Applications Workshop (ITA

2013), San Diego, USA, Feb. 2013.

[63] A. S. Rawat, N. Silberstein, O. O. Koyluoglu, and S. Vishwanath, “Optimal

locally repairable codes with local minimum storage regeneration via rank-

metric codes,” in Information Theory and Applications Workshop (ITA), San

Diego, CA, Feb. 2013.

[64] H. Xie, Z. Yan, and B. W. Suter, “General linearized polynomial interpolation

and its applications,” in 2011 International Symposium on Network Coding

(NetCod11), Beijing, China, July 2011.

[65] j. . I. y. . . v. . . n. . . p. . . n. . . m. . J. Hongmei Xie and Jun Lin and Zhiyuan

Yan and Bruce W. Suter, title = Linearized Polynomial Interpolation and Its

Applications.

[66] M. Blaum and R. M. Roth, “On lowest density MDS codes,” IEEE Trans. Info.

Theory, vol. 45, no. 1, pp. 46–59, January 1999.

158

BIBLIOGRAPHY

[67] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Optimal

locally repairable and secure codes for distributed storage systems,” August

2013, available online at http://arxiv.org/abs/1210.6954v2.

[68] T. P. Berger and A. V. Ourivski, “Construction of new MDS codes

from Gabidulin codes,” available online at http://www.unilim.fr/pages perso/

thierry.berger/publis/actes/actes-04-acct9-2.pdf.

[69] F. Oggier and A. Datta, “Self-repairing homomorphic codes for distributed

storage systems,” in IEEE INFOCOM 2011, Shanghai, China, April 2011, pp.

1215–1223.

[70] R. M. Roth and A. Lempel, “On MDS codes via Cauchy matrices,” IEEE

Trans. Info. Theory, vol. 35, no. 6, pp. 1314–1319, November 1989.

[71] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman,

“An XOR-based erasure-resilient coding scheme,” Technical Report TR-95-048,

International Computer Science Institute, August 1995.

[72] S. E. Rouayheb and K. Ramchandran, “Fractional repetition codes for repair

in distributed storage systems,” in 48th Annual Allerton Conference on Com-

munication, Control, and Computing, Urbana Champaign, IL, Sep. 2010, pp.

1510–1517.

[73] O. Olmez and A. Ramamoorthy, “Replication based storage systems with local

repair,” May 2013, available online at http://arxiv.org/abs/1305.5764.

159

http://www.unilim.fr/pages_perso/thierry.berger/publis/actes/actes-04-acct9-2.pdf
http://www.unilim.fr/pages_perso/thierry.berger/publis/actes/actes-04-acct9-2.pdf

BIBLIOGRAPHY

[74] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade

space for access efficiency in reliable data storage systems,” in Proc. 6th IEEE

Int. Symp. Netw. Comput. Appl. (NCA), 2007, pp. 79–86.

[75] H. Xie, Z. Yan, and B. W. Suter, “On list decoding of mahdavifar – vardy

codes,” in 2011 International Symposium on Network Coding (NetCod11), Bei-

jing, China, July 2011.

[76] J. Lin, H. Xie, and Z. Yan, “Efficient kötter-kschischang decoder architectures

for noncoherent error control in random linear network coding,” in 2012 IEEE

Workshop on Signal Processing Systems (SiPS 2012), Qubec City, Canada,

Oct. 2012.

[77] Z. Yan and H. Xie, “Enhanced algebraic error control for random linear net-

work coding,” in Military Communications Conference 2012 (Milcom 2012),

Orlando, USA, Oct. 2012.

[78] H. Xie and Z. Yan, “MDS codes with low repair complexity for distributed stor-

age networks,” in 2013 22nd Wireless and Optical Communication Conference

(WOCC 2013), Chongqing, China, May 16-18 2013.

[79] C. Chen, H. Xie, and B. Bai, “Layered subspace codes for random network cod-

ing,” Transactions on Emerging Telecommunications Technologies, Jun. 2013.

[80] J. Lin, H. Xie, and Z. Yan, “Efficient error control decoder architectures for

noncoherent random linear network coding,” The Journal of Signal Processing

Systems, Aug. 2013.

160

BIBLIOGRAPHY

[81] Z. Yan, H. Xie, and B. W. Suter, “Rank deficient decoding of linear network

coding,” journal draft in preparation.

[82] H. Xie and Z. Yan, “Two-layer locally repairable codes for distributed stor-

age systems,” in The 2014 IEEE International Conference on Communications

(ICC’14), Sydney, Australia, Jun. 2014.

[83] ——, “Distributed storage code constructions from a vector space approach,”

journal draft in preparation.

161

Appendix A

Proof of Lemmas in Chapter 2

Proof of Lemma 1. Suppose both Q∗ and Q′ have the minimum order in KC , with

leading terms αϕJ and βϕJ respectively, where α, β ∈ GF(qm). Then there exists

a nontrivial linear combination βQ∗ − αQ′, such that βQ∗ − αQ′ <o Q∗. Since

βQ∗ − αQ′ ∈ KC , this contradicts the minimality of Q∗ and Q′.

Proof of Lemma 2. We deal with the three cases separately:

1. When ∆i+1,j = 0, gi+1,j = gi,j if gi,j ∈ Ti+1,j. Since gi,j is a minimum in Ti,j

and Ti,j ⊇ Ti+1,j, gi,j is also a minimum in Ti+1,j.

2. For any gi,j with j ̸= j∗, gi+1,j = Di+1(gi,j∗)gi,j−Di+1(gi,j)gi,j∗ . One can verify

that Di+1(gi+1,j) = 0, and thus gi+1,j ∈ Ki+1. Furthermore, Dk(gi+1,j) =

Di+1(gi,j∗)Dk(gi,j)−Di+1(gi,j)Dk(gi,j∗) = 0 for any k ≤ i, since gi,j, gi,j∗ ∈ Ki.

Hence gi+1,j ∈ Ki+1. Since Indy(gi+1,j) = Indy(gi,j), gi+1,j is also in Sj, thus

gi+1,j ∈ Ti+1,j. Since gi+1,j =o gi,j and gi,j is a minimum in Ti,j, gi+1,j is also a

minimum in Ti,j, hence a minimum in Ti+1,j ⊆ Ti,j.

162

3. In this case, gi+1,j∗ = Di+1(gi,j∗)(x
[1] ◦ gi,j∗)−Di+1(x

[1] ◦ gi,j∗)gi,j∗ . First note

that Di+1(gi+1,j∗) = 0, and hence gi+1,j∗ ∈ Ki+1. For any k ≤ i, when we

apply Dk to gi+1,j∗ , we also get zero because both gi,j and x[1] ◦ gi,j∗ lie in

Ki, as Ki is a submodule of L[x]. Thus gi+1,j∗ ∈ Ki+1. Also, Indy(gi+1,j∗) =

Indy(x
[1]◦gi,j∗) = j∗ by our definition Indy(l(x)◦bj) = j. Thus we have gi+1,j∗ ∈

Ti+1,j∗ . Next we show that gi+1,j∗ is a minimum in Ti+1,j∗ by contradiction.

Suppose there exists fi+1,j∗ ∈ Ti+1,j∗ such that fi+1,j∗ <o gi+1,j∗ . Note that

order(gi+1,j∗) = order(x[1] ◦ gi,j∗). Since Ti,j∗ ⊇ Ti+1,j∗ , fi+1,j∗ also lies in

Ti,j∗ . Hence order(fi+1,j∗) ≥ order(gi,j∗), as gi,j∗ is a minimum in Ti,j, which

results in order(gi,j∗) ≤ order(fi+1,j∗) < order(x[1] ◦ gi,j∗). Since both gi,j∗ and

x[1] ◦ gi,j∗ lie in the set Sj∗ by definition, we can write LM(gi,j∗) = x[k] ◦ bj∗

and LM(gi,j∗) = x[k+1] ◦ bj∗ for some nonnegative integer k. Similarly, we can

write fi+1,j∗ = x[k′] ◦ bj∗ for some nonnegative integer k′. Then given the two

conditions of the total ordering on M defined previously, there does not exist

fi+1,j∗ ∈ Sj∗ such that order(gi,j∗) < order(fi+1,j∗) < order(x[1] ◦gi,j∗), as there

does not exist a nonnegative integer k′ such that k < k′ < k + 1. Hence the

only possibility is that fi+1,j∗ =o gi,j∗ . But in this case, we could construct

h = αfi+1,j∗ +βgi,j∗ with α, β ∈GF(qm) such that h <o gi,j∗ . Note that h ∈ Ki

but h /∈ Ki+1 as fi+1,j∗ ∈ Ti+1 but gi,j∗ /∈ Ti+1. The fact that h ∈ Ki\Ki+1

but h <o gi,j∗ contradicts the minimality of gi,j∗ in Ki\Ki+1, as gi,j∗ has the

lowest order among all gi,j’s where gi,j ∈ Ki but gi,j /∈ Ki+1.

Proof of Lemma 4. In the initialization step of Algorithm 1, g0,0 = x is of lower

order than g0,1 = y, and D1(g0,0) = x0 ̸= 0 as xi’s are linearly independent, so

163

g0,0 = x updates by the order-increase rule, while g0,1 = y updates according to its

discrepancy value. Then g1,0 is actually a linearized polynomial in x of q-degree 1,

and g1,1 is a bivariate polynomial with a leading monomial cy, where c ∈ GF(qm) is

a constant.

In the second iteration, again g1,0 <o g1,1 based on our total ordering on M , and

D2(g1,0) ̸= 0 as xi’s are linearly independent, i.e., there does not exist a linearized

polynomial of q-degree 1 that has two linearly independent roots. Hence g1,0 takes

the order-increase rule and g1,1 adopts others accordingly. Similar situation occurs

in all the first k iterations, given the total ordering we defined on M and the fact

that Di+1(gi,0) ̸= 0 for any i ≤ k.

Finally, a polynomial gk,0 in x of q-degree k is derived, which actually only

interpolates over the first k xi’s. Note that N0(x) is obtained in a similar way in

Loidreau’s algorithm. Given that V0(y) = 0, we have Q0 = N0(x). Hence gk,0 =o Q0.

On the other hand, gk,1 is a bivariate polynomial with a leading monomial c′y, where

c′ ∈ GF(qm) is also a constant. Since N1(x) is a linear combination of linearized

polynomials of q-degree k− 1, it is a linearized polynomial in x of q-degree at most

k − 1, then the leading monomial of Q1 is y. As a result, gk,1 =o Q1.

164

Vita

Hongmei Xie received the B.E. degree from Qingdao University, Qingdao, China,

in 2005, and the M.E. degree from Xidian University, Xi’an, China, in 2008, both

in electrical engineering. She is currently pursuing the Ph.D. degree in electrical

engineering at Lehigh University, Bethlehem, Pennsylvania.

Her research interests are in coding theory and its applications in communication

systems.

165

	Lehigh University
	Lehigh Preserve
	2015

	Advanced Error Control Scheme for Noncoherent Random Linear Network Coding
	Hongmei Xie
	Recommended Citation

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Background
	1.1.1 Error Control Schemes in RLNC
	1.1.2 Efficient Decoding of RLNC
	1.1.3 Coding for Distributed Storage Systems

	1.2 Contributions and Organization

	2 Linearized Polynomial Interpolation and Its Applications
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 General Polynomial Interpolation over Polynomials Ring
	2.2.2 Linearized Polynomial Ring
	2.2.3 Gabidulin Codes and Loidreau's Reconstruction Algorithm
	2.2.4 KK Codes and Their Decoding Algorithm
	2.2.5 MV Codes and Their List Decoding Algorithm

	2.3 Interpolation by Linearized Polynomials
	2.3.1 Interpolation over Free L[x]-Modules
	2.3.2 Complexity Analysis of Algorithm 1

	2.4 Decoding of Gabidulin Codes
	2.4.1 Decoding of Gabidulin Codes
	2.4.2 Comparison to Loidreau's Reconstruction Algorithm

	2.5 Decoding of KK Codes
	2.6 List Decoding of MV Codes
	2.7 Hardware Implementations and Comparison
	2.7.1 Hardware implementation of the interpolation algorithm
	2.7.2 Implementation of Gaussian elimination
	2.7.3 Implementation results comparison

	2.8 Conclusion

	3 On List Decoding of Mahdavifar–Vardy Codes
	3.1 Introduction
	3.2 List Decoding of MV Codes
	3.3 Correction of Erasures
	3.4 Effects of Multiplicities on the List Decoding
	3.4.1 Definitions
	3.4.2 Effect of Multiplicities

	3.5 Decoder Error Probability
	3.5.1 DEP without Erasures
	3.5.2 DEP with Erasures

	3.6 Conclusion

	4 Rank Deficient Decoding of Linear Network Coding
	4.1 Introduction
	4.2 Rank Deficient Decoding
	4.2.1 System Model
	4.2.2 Full Rank Decoder
	4.2.3 Rank Deficient Decoding
	4.2.4 Hamming Norm Decoders
	4.2.5 Decoding Strategies
	4.2.6 Linear Programming Decoders

	4.3 Simulation Results
	4.4 General LP Formulation over GF(2)
	4.4.1 General LP Formulation with Arbitrary Parities
	4.4.2 Analysis

	4.5 LP Decoding of Nonbinary Linear Block Codes
	4.5.1 Preliminaries and Notations
	4.5.2 LP Decoding of Nonbinary Linear Block Codes
	4.5.3 LP Decoding of Nonbinary Linear Codes over GF(2m)
	4.5.4 New LP Formulation for Nonbinary Linear Codes over GF(2m)
	4.5.5 Simulation Results

	4.6 Conclusion

	5 Distributed Storage Code Constructions from A Vector Space Approach
	5.1 Introduction
	5.2 Preliminary
	5.2.1 Maximum Distance Separable (MDS) Codes
	5.2.2 Locally Repairable Codes (LRC)
	5.2.3 Minimum Storage Regenerating (MSR) Codes

	5.3 DSS Coding from Vector Space Approach
	5.4 New MDS Codes with Low Complexity
	5.4.1 Linearized Polynomials
	5.4.2 Construction I over GF(qm) with q>2
	5.4.3 Data Reconstruction and Data Repair
	5.4.4 Construction II over GF(2m)
	5.4.5 Complexity Analysis

	5.5 LRC Code Construction from Vector Space
	5.5.1 Achievability of Optimal Distance
	5.5.2 Code Structure
	5.5.3 Local Repair and Data Reconstruction
	5.5.4 Relation to Other Works
	5.5.5 Degraded Reads
	5.5.6 Code Rate

	5.6 MSR Code Construction from Vector Space
	5.6.1 MSR Codes from Vector Space Approach
	5.6.2 MSR Codes Construction from Vector Spaces
	5.6.3 Data Reconstruction
	5.6.4 Data Repair
	5.6.5 Discussions

	5.7 Conclusion

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	A Proof of Lemmas
	Vita

