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Abstract

The work in this dissertation investigates selected topics concerning sensor networks

which focus on solving signal detection and estimation problems. In the interest of com-

plexity reduction or to facilitate efficient distributed computation using consensus, modified

versions of the optimal hypothesis test are considered for a canonical multivariate Gaussian

problem in the first part. As the optimal test involves all possible products of observations

taken at L different times or from L different sensors, the investigations consider truncated

tests which maintain only those products involving sensors or times with indices that differ by

k or less. Such tests can provide significant complexity and storage reduction and facilitate

efficient distributed computation using a consensus algorithm provided k is much smaller

than L. The focus is on cases with a large number L of observations or sensors such that

significant efficiency results with a truncation rule, k as a function of L, which increases very

slowly with L. A key result provides sufficient conditions on truncation rules and sequences

of hypothesis testing problems which provide no loss in deflection performance, an accepted

performance measure, as L approaches infinity when compared to the optimal detector. Sev-

eral popular classes of system and process models, including observations from wide-sense

stationary limiting processes as L → ∞ after the mean is subtracted, are employed as illus-

trative classes of examples to demonstrate the sufficient conditions are not overly restrictive.

In these examples, we find significant truncation can be employed even when we assume the

difficulty of the hypothesis testing problem scales in the least favorable manner, putting the

most stringent conditions on the truncation rule. In all the cases considered, numerical results

imply the fixed-false-alarm-rate detection probability of the truncated detector converges to

the detection probability of the optimal detector for our asymptotically optimal truncation
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in terms of deflection.

In the second part, distributed estimation of a deterministic mean-shift parameter in

additive zero-mean noise is studied when using binary quantized data in the presence of

man-in-the-middle attacks which falsify the data transmitted from sensors to the fusion cen-

ter. Several subsets of sensors are assumed to be tampered with by adversaries using different

attacks such that the compromised sensors transmit fictitious data. First, we consider the

task of identifying and categorizing the attacked sensors into different groups according to

distinct types of attacks. It is shown that increasing the number K of time samples at each

sensor and enlarging the size N of the sensor network can both ameliorate the identifica-

tion and categorization, but to different extents. As K → ∞, the attacked sensors can be

perfectly identified and categorized, while with finite but sufficiently large K, as N → ∞,

it can be shown that the fusion center can also ascertain the number of attacks and obtain

an approximate categorization with a sufficiently small percentage of sensors that are mis-

classified. Next, in order to improve the estimation performance by utilizing the attacked

observations, we consider joint estimation of the statistical description of the attacks and

the parameter to be estimated after the sensors have been well categorized. When using

the same quantization approach successfully employed without attacks, it can be shown that

the corresponding Fisher Information Matrix (FIM) is singular. To overcome this, a time-

variant quantization approach is proposed, which will provide a nonsingular FIM, provided

that K ≥ 2. Furthermore, the FIM is employed to provide necessary and sufficient conditions

under which utilizing the compromised sensors in the proposed fashion will lead to better

estimation performance when compared to approaches where the compromised sensors are

ignored.

In the last part, estimation of an unknown deterministic vector from possible nonbina-
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ry quantized sensor data is considered in the presence of spoofing attacks which alter the

data presented to several sensors. Contrary to previous work, a generalized attack model is

employed which manipulates the data using transformations with arbitrary functional forms

determined by some attack parameters whose values are unknown to the attacked system.

For the first time, necessary and sufficient conditions are provided under which the trans-

formations provide a guaranteed attack performance in terms of Cramer-Rao Bound (CRB)

regardless of the processing the estimation system employs, thus defining a highly desirable

attack. Interestingly, these conditions imply that, for any such highly desirable attack when

the attacked sensors can be perfectly identified by the estimation system, either the Fisher

Information Matrix (FIM) for jointly estimating the desired and attack parameters is singu-

lar or the attacked system is unable to improve the CRB for the desired vector parameter

through this joint estimation even though the joint FIM is nonsingular. It is shown that it

is always possible to construct such a highly desirable attack by properly employing a suffi-

ciently large dimension attack vector parameter relative to the number of quantization levels

employed, which was not observed previously. For a class of spoofing attacks, a computation-

ally efficient heuristic for the joint identification of the attacked sensors and estimation of the

desired vector parameter achieves the CRB when the sensor system can perfectly identify the

attacked sensors (a genie bound) for a sufficient number of observations in numerical tests.
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Chapter 1

Introduction

Encouraged by the great success in applications ranging from inexpensive commercial

systems to complex military and homeland defense surveillance systems, sensor systems em-

ployed for hypothesis testing and parameter estimation have seen growing interest in recent

years. Sensor systems usually consist of a large number of dispersed sensors which execute

multiple functions such as sensing, data processing, and communication. Several fundamental

issues remain open on the topic of sensor networks focusing on signal detection and estimation

problems, especially for the cases where practical concerns are taken into account.

In practical sensor systems, the communication power of each senor is limited. Hence,

every sensor can only communicate with its neighbor sensors which are sufficiently close to it.

For widely distributed sensor systems without a fusion center, two sensors can not directly

communicate with each other when they are very far apart, and hence it is impossible to

compute the optimum test statistic if single hop communications are employed. Motivated

by this fact and recent advancement in consensus algorithms, we investigate the truncated

multivariate Gaussian hypothesis testing problem, and show that under certain conditions,

4



the truncated detector can asymptotically achieve the optimum performance. It is worth

mentioning that there are numerous applications of the truncated detector beyond sensor

systems.

Recent technological advances in coding, digital wireless communications technology and

digital electronics have lead to the dominance of digital communications using quantized data

in sensor networks. Hence, a great deal of attention has focused on parameter estimation

using quantized data. For this kind of system, the time samples are converted to quantized

data and then transmitted to the fusion center (FC) due to the communications employed at

each sensor. After collecting the quantized data from all sensors, the FC makes an estimate

of the desired parameter. However, this kind of sensor system is vulnerable to malicious

attackers. The last work in this dissertation focuses on attacked sensor systems attempting to

perform parameter estimation by using quantized data. Two classes of malicious attacks are

considered. One class of attacks are called man-in-the-middle attacks, which capture several

subsets of sensors and falsify the quantized data transmitted from the attacked sensors to

the FC. The other class of attacks are referred to as spoofing attacks, which modify the

unquantized observations of the phenomenon presented to the attacked sensors.

In the presence of malicious attacks in sensor networks, two important issues involved in

the parameter estimation are of considerable interest. One is how to identify and categorize

the attacked sensors into different groups according to distinct types of attacks. The other

one is how much gain we can obtain by making using of the data from the attacked sensor.

For the man-in-the-middle attacks, we first study the ability of the FC to identify the attacked

sensors and categorize them into different groups corresponding to distinctly different types of

attacks. We only assume that the set of unattacked sensors is a larger percentage of all sensors

than any set of identically attacked sensors to avoid ambiguity between a set of attacked and
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a set of unattacked sensors. It can be shown that increasing the number K of time samples at

each sensor and enlarging the size N of the sensor network can both improve the performance

of the identification and categorization approach, but to different extents. To be specific, the

FC is able to determine the number P of attacks in the sensor network and achieve the correct

categorization as K → ∞, while as N → ∞ with finite but sufficiently large K, it can be

shown that the FC can also ascertain P and obtain an approximate categorization with a very

small percentage of sensors that are misclassified, so small that this misclassification impacts

performance in a manner which can be tolerated. In this sense, with sufficiently many time

samples at each sensor or a sufficiently large size sensor network, the FC is able to determine

the number of attacks in the sensor network and categorize the sensors into different groups

according to distinct types of attacks perfectly or with negligibly small misclassification.

Next, we consider estimation of the desired parameter. There are two approaches: (1) ignore

the data at the attacked sensors. (2) Use the data at the attacked sensors. We can easily

take approach (1) without estimating any parameters describing the attacks. However, to

attempt to take approach (2), and potentially do better than approach (1), we will investigate

the performance of the joint estimation of the desired parameter and the unknown attack

parameters. It is shown that the Fisher Information Matrix (FIM) for jointly estimating these

parameters is singular when we apply exactly the same quantization approach typically used

for the unattacked system. Thus, it is not possible to jointly estimate the desired and attack

parameters efficiently with an estimation error that decreases with KN by employing the

same quantization approach typically used for the unattacked system. In order to overcome

the FIM singularity, a time-variant quantization approach has been proposed. The basic

idea is that each sensor divides its observation time interval into several time slots, and in

each time slot, all sensors use an identical threshold to quantize the time samples. However,
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the thresholds utilized in different time slots are distinct. We can show that as long as at

least two different thresholds have been employed, the FIM of the time-variant quantization

approach is nonsingular. Further, this FIM has been used to provide necessary and sufficient

conditions under which taking advantage of the attacked sensors in the proposed fashion will

provide better estimation performance when compared to approaches where the attacked

sensors are ignored. These results are obtained by also employing the FIM for the case where

the attacked sensors are ignored and the comparisons were made assuming both approaches

use the same set of distinct thresholds over the same different time slots to provide a fair

comparison. In the numerical results, we show that for some cases, significant improvement

in the estimation performance can be obtained by employing the proposed approach. The

focus is on binary quantization in this chapter.

Spoofing attacks on sensor networks can occur in various engineering applications. For

instance, spoofing attacks have been described for the localization problem in wireless sensor

networks. Radar and sonar systems also suffer from spoofing attack threats in practice. As

one example of a spoofing attack technique, the application of an electronic countermea-

sure (ECM), which is designed to jam or deceive the radar or sonar system, can critically

degrade the detection and estimation performance of the system. One popular technique

for the implementation of ECM employs digital radio frequency memory (DRFM) in radar

systems to manipulate the received signal and retransmit it back to confuse the victim radar

system. DRFM can mislead the estimation of the range of the target by altering the delay

in transmission of pulses, and fool the system into incorrectly estimating the velocity of the

target by introducing a Doppler shift in the retransmitted signal. Unlike previous work, a

generalized attack model is employed which manipulates the data using transformations with

arbitrary functional forms determined by some attack parameters whose values are unknown

7



to the attacked system. For the first time, necessary and sufficient conditions are provid-

ed under which these transformations provide a guaranteed attack performance in terms of

Cramer-Rao bound (CRB) no matter what processing the estimation system employs, thus

defining a highly desirable attack. These conditions imply that for any such attack when

the attacked sensors can be perfectly identified by the estimation system, either the FIM for

jointly estimating the desired and attack parameters is singular or that the attacked system

is unable to improve the CRB for the desired vector parameter through this joint estimation

even though the joint FIM is nonsingular. It is shown that it is always possible to construct

such a desirable attack by properly employing a sufficiently large dimension attack vector

parameter relative to the number of quantization levels employed, which was not observed

previously. It is shown that when the attacked sensors can be perfectly identified, a spoof-

ing attack can render the attacked measurements useless in terms of reducing the CRB for

estimating the desired vector parameter if and only if it is such a desirable attack. For a

class of such desirable attacks, a computationally efficient heuristic is developed for the joint

identification of the attacked sensors and estimation of the desired vector parameter which,

in numerical tests for a sufficiently large number of observations, achieves a genie bound that

knows all the groups of identically attacked sensors. Possibly nonbinary quantizations are

considered in this chapter.
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Chapter 2

Asymptotically Optimal Truncated

Multivariate Gaussian Hypothesis

Testing with Application to

Consensus Algorithms

2.1 Introduction

Hypothesis testing for sensor networks with observations described by a multivariate

Gaussian distribution has attracted considerable attention, with applications ranging across

various engineering disciplines such as spectrum sensing in cognitive radio networks [1, 2],

multiple-input multiple-output radar detection [3–5], and more recently, fault and attack de-

tection in smart grids [6–9]. Here we consider the most general formulation of the simple

versus simple hypothesis test [10] for multivariate Gaussian observations which has numerous
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applications beyond sensor networking. Particular example application areas include quanti-

tative analysis of the economy [11], stochastic finite element analysis in civil and mechanical

engineering [12], and medical imaging [13]. Further applications are detailed in [14–16]. Let

xL = [x1, x2, ..., xL]
T represent an observed Gaussian random vector with real entries. Then

the general hypothesis testing problem can be stated as

H0 :xL ∼ N (0, I) (2.1)

H1 :xL ∼ N (µL,ΣL)

where N (v,C) denotes a multivariate Gaussian distribution with mean vector v and covari-

ance matrix C. A mild assumption is made throughout this chapter.

Assumption 1 µL and ΣL are known, and either µL 6= 0 or ΣL 6= I. The elements of

µL are finite, and the eigenvalues of ΣL are bounded by
[
ε0, ε

−1
0

]
for some positive number

ε0 < 1.

Note that, any test of H0 : xL ∼ N (µL,0,ΣL,0) versus H1 : xL ∼ N (µL,1,ΣL,1) can be

reduced to the canonical test (2.1), by subtraction and whitening to define µL = µL,1 −µL,0

and ΣL = Σ
− 1

2
L,0ΣL,1Σ

− 1
2

L,0.

The optimal test statistic to minimize error probability, risk, or one of several other

criteria for the problem in (2.1) compares the log-likelihood ratio

T opt
L = xTLRLxL + 2µTLΣ

−1
L xL =

L∑

i=1

L∑

j=1

xi(RL)i,jxj + 2

L∑

i=1

ζixi (2.2)

to a threshold [10], where RL
∆
=
(
I−Σ−1

L

)
and µTLΣ

−1
L

∆
= [ζ1, ζ2, ..., ζL]. If L is large, the

statistic in (2.2) is difficult to compute. Even if the components of the vector xL are time

10



samples available at a single location [17,18], then (2.2) requires storing the entire vector xL

which results in unreasonable storage requirements if L is large. Further the computation of

(2.2) generally requires O(L2) multiplications. On the other hand, if we were able to ignore

those terms in (2.2) which involve time samples xi and xj that are sufficiently far apart from

one another in the time sequence, thus |i − j| > k, then we compute (2.2) with a truncated

approximation as

T tr
L = xTLB

(k)
L xL + 2µTLΣ

−1
L xL =

L∑

i=1

L∑

j=1

xi

(

B
(k)
L

)

i,j
xj + 2

L∑

i=1

ζixi (2.3)

where
(

B
(k)
L

)

i,j

∆
=







(RL)i,j , if |i− j| ≤ k

0, otherwise

is the truncated matrix of RL, and k is the

truncation length. We refer to the detector based on the test statistic shown in (2.3) as the

truncated detector. To compute (2.3), we need only store a very small running window of

about 2k + 1 time samples around each incoming time sample which results in considerably

lower storage requirements. The number of multiplications is also reduced to grow linearly

with L.

Analogous benefits can be gained in distributed sensor networking applications where the

entries of xL come from remotely positioned sensors and a consensus algorithm is employed.

Motivated by early ground breaking work [19, 20], deterministic [21, 22] or randomized con-

sensus algorithms [23,24], are known to be very efficient methods to compute a test statistic

while simultaneously communicating the result to every node in the network when the num-

ber of nodes is very large, even for imperfect communication channels [25–28]. For simplicity,

consider the case where the sensors are placed along a line in what is often called a linear

array. Then to compute (2.2) exactly requires collecting, at a single location, observations

11



xi and xj that may be produced at sensors which are very far apart. Collecting this infor-

mation implies large energy communications if single hop communications and centralized

processing are employed. If multiple hop communications are employed, very large delays

result and complex control is required. On the other hand, the truncated test statistic in

(2.3) can be calculated in an efficient two step procedure. In the first step, each node collects

the data from its k neighbors on each side so the i-th node can compute the inner sum of

L∑

i=1

L∑

j=1
xi

(

B
(k)
L

)

i,j
xj from (2.3). In the second step, a single consensus algorithm [21–34] is

used to simultaneously compute the outer sum along with the other added term in (2.3) as

L∑

i=1

(

xi
L∑

j=1

(

B
(k)
L

)

i,j
xj + 2ζixi

)

. The ideas extend to cases where the sensors are not located

in an array, in that we would still like to have each sensor only collect observations from its

closest neighbors in the first step and then run consensus in the second step. The recent

flurry of activity focusing on developing the theory of consensus algorithms has produced an

extremely efficient method of distributed computation of a test statistic provided the test

statistic can be expressed as a linear function of local statistics which can each be computed

using only local observations at each sensor. Test statistics which are quadratic forms like

(2.2), which appear in some of the most basic and important signal detection problems, do

not satisfy this requirement and we have not seen previous work on using consensus algo-

rithms to compute such statistics. Our truncated test provides a method for computing the

test statistic in (2.2) using consensus, motivating our study of the impact of the truncation

on detection performance.

To alleviate the multiplication and storage unit requirements without consideration of

consensus algorithm implementation, [17] and [18] have considered a special class of (2.1)

involving signal-plus-noise hypothesis testing problems in which µL = 0 and ΣL is a Toeplitz

matrix. Given these assumptions, [17] and [18] investigated using a truncated test somewhat

12



similar to (2.3). However, they have shown that when the power of the signal is bounded, their

detectors have performance loss, as measured by deflection or asymptotic relative efficiency,

even as the size of the observation vector goes to infinity. In their analysis they assume the

k in (2.3) is constant with L. Here we consider employing truncation in the more general

hypothesis testing problem in (2.1), but unlike [17] and [18] we do not consider using a fixed

truncation length k as the size of the observation vector L grows. Instead, we consider a

slowly increasing function of the size of the observation vector L, denoted by k = ϕ(L). We

call the function ϕ(L), the truncation rule of the truncated detector. Since it is infeasible to

obtain a closed-form expression of the error probability of our test statistic, similar to [17]

we make use of the deflection or generalized SNR [35] [36], one of most useful performance

measures for quadratic detectors, to evaluate the detection performance of the truncated

detector (2.3). Deflection has been extensively studied and justified for problems of the

type we consider [35] [36]. In particular, in many problems of practical importance, the

test statistic which optimizes the deflection criterion is exactly the celebrated likelihood

ratio detector [36]. Please see [36] for a complete discussion of the properties of Deflection.

Here, we are primarily interested in the asymptotic (L → ∞) detection performance of the

truncated detector so we focus on the asymptotic deflection ratio (ADR) of the truncated

detector relative to the optimal detector (2.2). Sufficient conditions are given in this chapter

for a truncation rule ϕ(L) and a sequence of hypotheses tests from (2.1) which lead to no

loss in asymptotic deflection ratio of the truncated detector relative to the optimal detector.

Moreover, in contrast to the negative results in [17] and [18], we show that the sufficient

conditions are satisfied by several important classes of system and process models [37–39].

Further, our sufficient conditions shed light on how changes in the difficulty of the hypothesis

test with L will directly impact the effects of truncation. For example, if the difference

13



between the parameters (0, I) and (µL,ΣL) becomes more considerable (in a way we define)

as L → ∞, generally a more severe truncation can be employed without sacrificing unity

ADR when we compare to a case where the difference between the parameters (0, I) and

(µL,ΣL) is fixed with L. Finally, the ϕ(L) satisfying our sufficient conditions are very useful

for obtaining a rough idea of how the required truncation length k must increase with L in

order to judge the required complexity.

Since the truncated test statistic in (2.3) eliminates some terms from the optimal statis-

tic which may be necessary for good detection performance, its performance can seriously

degrade for some scenarios in which the truncation is too severe. Extremely severe truncation

can even make the detection problem singular. To avoid this, the following assumption is

made throughout the chapter.

Assumption 2 As it would not make sense to consider truncated detectors, whose truncation

makes the two hypotheses indistinguishable, the truncation length k is large enough to ensure

that if µL = 0 and RL 6= 0, then the matrix B
(k)
L 6= 0.

Some comment on the use of deflection as opposed to error probability is in order here.

First, analysis using error probability would be intractable. More importantly, we employ

deflection in a very constrained manner which we believe will mask any limitations of de-

flection. Thus we attempt to find truncation rules which render the asymptotic (L → ∞)

deflection of the truncated detector and the optimal detector to be equivalent. Thus in terms

of deflection, the dropped terms are not important as L → ∞. Employing deflection in this

way is intuitively appealing, moreover in all numerical examples we tried, the sufficient con-

ditions for the equivalence in terms of asymptotic deflection also ensure the equivalence in

terms of limiting error probability.
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Throughout this chapter, bold upper case letters and bold lower case letters are used to

denote matrices and column vectors respectively. The symbol I signifies the identity matrix,

while 0 and 1 stand for the all-zero and all-one column vectors respectively. The subscript of

a matrix or a column vector indicates its dimension, for example ΣL is an L-by-L matrix. The

dimensions of I, 0, and 1 are typically deducible from the context, hence are not explicitly

specified. We use ‖·‖ for the ℓ2 norm of a vector and (A)i,j for the element in the i-th row and

j-th column of the matrix A. The notation {AL} denotes the sequence {AL}
∞
L=1. Finally,

the expectation operator is denoted as E (·) and tr (A) is the trace of A.

The reminder of the chapter is organized as follows. The ADR of the truncated detector

relative to the optimal detector is investigated in Section 2.2. Sufficient conditions for unity

ADR are developed in Section 2.3. Section 2.4 discusses some illustrative hypothesis testing

problems using important classes of system and process models and provides slowly increasing

truncation rules which satisfy the sufficient conditions. Section 2.5 demonstrates how to apply

a two-step consensus algorithm to compute the truncated test statistic in (2.3) at each sensor.

In Section 2.6, several numerical results are provided to illustrate our theoretical analysis. In

Section 2.7, we extend our results to spatially and temporally correlated Gaussian hypothesis

testing problems and present the corresponding sufficient conditions. Finally, Section 2.8

provides our conclusions.
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2.2 Asymptotic Deflection Ratio of the Truncated Detector

relative to the Optimal Detector

For a binary hypothesis testing problem like (2.1), the deflection or generalized SNR

[35], [36] of a quadratic test statistic T is defined by

D(T ) =
[E (T |H1)− E (T |H0)]

2

E (T 2| H0)− [E (T |H0)]
2 . (2.4)

For the optimal test statistic T opt
L in (2.2) for the problem in (2.1), we can obtain

E

(

T opt
L

∣
∣
∣H1

)

=

L∑

i,j=1

(RL)i,jE (xjxi|H1) + 2µTLΣ
−1
L E (xL|H1) = tr (RLΣL) + 2µTLΣ

−1
L µL

(2.5)

and since H0 is H1 with µL = 0 and ΣL = I, we have

E

(

T opt
L

∣
∣
∣H0

)

= tr (RL) . (2.6)

Since

(

T opt
L

)2
=
(
xTLRLxL + 2µTLΣ

−1
L xL

)2
(2.7)

=
L∑

i,j,l,m=1

(RL)i,j(RL)l,mxixjxlxm + 4
L∑

i,j,l=1

ζl(RL)i,jxixjxl + 4µTLΣ
−1
L xLx

T
LΣ

−1
L µL
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we have

E

((

T opt
L

)2
∣
∣
∣
∣
H0

)

= E

(
L∑

i,j,l,m=1

(RL)i,j(RL)l,mxixjxlxm + 4

L∑

i,j,l=1

ζl(RL)i,jxixjxl

+ 4µTLΣ
−1
L xLx

T
LΣ

−1
L µL

∣
∣
∣
∣
H0

)

=
L∑

i,j,l,m=1

(RL)i,j(RL)l,m (Ii,jIl,m + Ii,lIj,m + Ii,mIj,l) + 4µTLΣ
−1
L IΣ−1

L µL

(2.8)

= [tr (RL)]
2 + 2tr

(
R2
L

)
+ 4µTLΣ

−2
L µL (2.9)

where (2.8) is a consequence of Isserlis’ theorem [40], and (2.9) is based on the result that

tr(AB) =
∑

i

∑

j
Ai,jBj,i.

As a result, the deflection of T opt
L can now be given by

D(T opt
L ) =

[

E

(

T opt
L

∣
∣
∣H1

)

− E

(

T opt
L

∣
∣
∣H0

)]2

E

((

T opt
L

)2
∣
∣
∣
∣
H0

)

−
[

E

(

T opt
L

∣
∣
∣H0

)]2
(2.10)

=

[
tr (RLΣL −RL) + 2µTLΣ

−1
L µL

]2

2tr
(
R2
L

)
+ 4µTLΣ

−2
L µL

.

Similarly, for the truncated test statistic T tr
L with truncation matrix B

(ϕ(L))
L , we can

obtain

D(T tr
L ) =

[
E
(
T tr
L

∣
∣H1

)
− E

(
T tr
L

∣
∣H0

)]2

E

((
T tr
L

)2
∣
∣
∣H0

)

−
[
E
(
T tr
L

∣
∣H0

)]2
(2.11)

=

[

tr
(

B
(ϕ(L))
L ΣL −B

(ϕ(L))
L

)

+ 2µTLΣ
−1
L µL

]2

2tr

[(

B
(ϕ(L))
L

)2
]

+ 4µTLΣ
−2
L µL

.
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Now, consider the sequence of optimal test statistics
{

T opt
L

}

in (2.2) for the sequence of

tests in (2.1) with {ΣL}, and the sequence of truncated test statistics
{
T tr
L

}
in (2.3) for the

same problem using
{

B
(ϕ(L))
L

}

. By (2.10) and (2.11), the asymptotic deflection ratio of the

truncated detector relative to the optimal detector is therefore

Λ(T tr
∞, T

opt
∞ )

∆
= lim

L→∞

tr
(
R2
L

)
+ 2µTLΣ

−2
L µL

tr

[(

B
(ϕ(L))
L

)2
]

+ 2µTLΣ
−2
L µL




tr
(

B
(ϕ(L))
L ΣL −B

(ϕ(L))
L

)

+ 2µTLΣ
−1
L µL

tr (RLΣL −RL) + 2µTLΣ
−1
L µL





2

(2.12)

= lim
L→∞

(

1 +
δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

)(

1−
δ
(ϕ(L))
2 (L)

ψ2 (L)

)2

where

δ
(ϕ(L))
1 (L)

∆
= tr

(
R2
L

)
− tr

[(

B
(ϕ(L))
L

)2
]

(2.13)

δ
(ϕ(L))
2 (L)

∆
= tr

[(

RL −B
(ϕ(L))
L

)

(ΣL − I)
]

(2.14)

ψ
(ϕ(L))
1 (L)

∆
= tr

[(

B
(ϕ(L))
L

)2
]

+ 2µTLΣ
−2
L µL (2.15)

and

ψ2 (L)
∆
= tr (RLΣL −RL) + 2µTLΣ

−1
L µL. (2.16)

2.2.1 Upper Bounds and Lower Bounds on (2.13)-(2.16)

In order to describe sufficient conditions for Λ(T tr∞, T
opt
∞ ) → 1, some upper and lower

bounds on the quantities in (2.13)-(2.16) are useful. First consider lower bounds on ψ
(ϕ(L))
1 (L)

and ψ2 (L).
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Lemma 1 Under Assumptions 1 and 2,

ψ
(ϕ(L))
1 (L) ≥ C1 (2.17)

and

ψ2 (L) ≥ C2 (2.18)

where C1 > 0 and C2 > 0 are constants.

Proof: [Proof of Lemma 1] Even without Assumption 2, we have tr

[(

B
(ϕ(L))
L

)2
]

≥ 0

and µTLΣ
−2
L µL ≥ 0. If µL 6= 0, then for any non-zero element of the µL, say µL,j which is

assumed to be the j-th element of µL, we have

ψ
(ϕ(L))
1 (L) = tr

[(

B
(ϕ(L))
L

)2
]

+ 2µTΣ−2
L µ ≥ 2

(
Σ−2
L

)

j,j
µ2L,j > 0 (2.19)

therefore we can choose C1 = 2
(
Σ−2
L

)

i,i
µ2L,j.

Otherwise, we must have B
(ϕ(L))
L 6= 0 according to Assumption 2. Then for any non-zero

entry of B
(ϕ(L))
L , say

(

B
(ϕ(L))
L

)

i,j
, we can obtain

ψ
(ϕ(L))
1 (L)

∆
= tr

[(

B
(ϕ(L))
L

)2
]

+ 2µTLΣ
−2
L µL ≥

[(

B
(ϕ(L))
L

)

i,j

]2

> 0 (2.20)

thus, C1 =

[(

B
(ϕ(L))
L

)

i,j

]2

.
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On the other hand since RL = I−Σ−1
L , we note that

ψ2 (L) = tr (RLΣL −RL) + 2µTLΣ
−1
L µL = tr

[
ΣL +Σ−1

L − 2I
]
+ 2µTLΣ

−1
L µL (2.21)

=

L∑

i=1

(

λi +
1

λi
− 2

)

+ 2µTLΣ
−1
L µL

where λi is the i-th eigenvalue of ΣL.

Since the minimum of
(

λi +
1
λi

− 2
)

occurs at λi = 1,
(

λi +
1
λi

− 2
)

must be non-

negative. If µL 6= 0, then by the same argument for ψ
(ϕ(L))
1 (L), we know ψ2 (L) ≥ C2 for

some positive constant C2. Otherwise, according to Assumption 1, we have ΣL 6= I. Thus,

there exists at least one eigenvalue of ΣL which is not equal to 1, say λj. Then we can obtain

ψ2 (L) =
L∑

i=1

(

λi +
1

λi
− 2

)

+ 2µTLΣ
−1
L µL ≥

(

λj +
1

λj
− 2

)

> 0 (2.22)

hence C2 =
(

λj +
1
λj

− 2
)

.

Using (2.13) and (2.14), we next describe upper bounds on the absolute values of

δ
(ϕ(L))
1 (L) and δ

(ϕ(L))
2 (L). The upper bounds are determined by both the size of the ob-

servation vector and the truncation length.

Lemma 2 Under Assumption 1, consider a truncated detector with truncation rule ϕ(L) for

the hypothesis testing problem (2.1) where L denotes the size of the observation vector. Upper

bounds on the absolute values of δ
(ϕ(L))
1 (L) and δ

(ϕ(L))
2 (L) are given by

∣
∣
∣δ

(ϕ(L))
1 (L)

∣
∣
∣ ≤ LΩ

(ϕ(L))
ΣL

(2.23)
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and
∣
∣
∣δ

(ϕ(L))
2 (L)

∣
∣
∣ ≤

1

ε0
L
[

Ω
(ϕ(L))
ΣL

] 1
2

(2.24)

where Ω
(ϕ(L))
ΣL

is defined by

Ω
(ϕ(L))
ΣL

∆
= max

i

∑

j:|j−i|≥ϕ(L)+1

[(
Σ−1
L

)

i,j

]2
, (2.25)

which is related to the part of the inverse covariance matrix that is not accounted for in the

truncation rule ϕ(L).

Proof: [Proof of Lemma 2] Inserting tr
(

RLB
(ϕ(L))
L

)

= tr

[(

B
(ϕ(L))
L

)2
]

into (2.13), we

can obtain

δ
(ϕ(L))
1 (L) = tr

[

R2
L −

(

B
(ϕ(L))
L

)2
]

= tr
(

RL −B
(ϕ(L))
L

)2
=

L∑

i=1

∑

j:|j−i|≥ϕ(L)+1

[(
Σ−1
L

)

i,j

]2

(2.26)

which implies

∣
∣
∣δ

(ϕ(L))
1 (L)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

L∑

i=1

∑

j:|j−i|≥ϕ(L)+1

[(
Σ−1
L

)

i,j

]2

∣
∣
∣
∣
∣
∣

≤ LΩ
(ϕ(L))
ΣL

. (2.27)

21



Further, noting that tr
(

RL −B
(ϕ(L))
L

)

= 0 and applying the Cauchy-Schwarz inequality

[41] to (2.14), yields

[

δ
(ϕ(L))
2 (L)

]2
=
{

tr
[(

RL −B
(ϕ(L))
L

)

(ΣL − I)
]}2

=
{

tr
[(

RL −B
(ϕ(L))
L

)

ΣL

]}2
(2.28)

≤ tr

[(

RL −B
(ϕ(L))
L

)2
]

tr
(
Σ2
L

)
≤

1

ε20
L2



max
i

∑

j:|j−i|≥ϕ(L)+1

[(
Σ−1
L

)

i,j

]2





=
1

ε20
L2Ω

(ϕ(L))
ΣL

by employing (2.25) and Assumption 1.

Hence, the upper bound on
∣
∣
∣δ

(ϕ(L))
2 (L)

∣
∣
∣ can be expressed as

∣
∣
∣δ

(ϕ(L))
2 (L)

∣
∣
∣ ≤

1

ε0
L
[

Ω
(ϕ(L))
ΣL

] 1
2
. (2.29)

2.3 Sufficient Conditions for Unity ADR

Let ν denote a positive small constant, such that 0 < ν ≪ 1. Define ξ (L)
∆
=

L∑

i=1
1 (|µL,i| ≥ ν)

and η (L)
∆
=

L∑

i=1
1 (|λi − 1| ≥ ν), where 1 (·) is the indicator function and µL,i is the i-th ele-

ment of µL. As a result, ξ (L) describes the number of elements in µL which are sufficiently

different from zero, and η (L) represents the number of eigenvalues ofΣL which are sufficiently

different from unity.

Lemma 3 Considering the hypothesis testing problem (2.1), we can always choose a constant

ν such that

ξ (L) > 0, or η (L) > 0. (2.30)
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Proof: Suppose there is no number ν which can render ξ (L) or η (L) non-zero for some

L. Then we have 





µL,i = 0

λi = 1

for i = 1, 2, ..., L (2.31)

Since ΣL is a symmetric matrix, it can be diagonalized by the eigendecomposition

ΣL = QTQT (2.32)

where Q is an orthogonal matrix, and T is a diagonal matrix with λi on the diagonal.

Hence, we get the contradiction that µL = 0 and ΣL = QTQT = I, which implies the

two hypotheses in (2.1) are indistinguishable. This completes the proof.

Next, we develop sufficient conditions for unity ADR.

Lemma 4 The ADR of the truncated detector with truncation rule ϕ(L) relative to the op-

timal detector converges to unity if and only if







lim
L→∞

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

= 0

lim
L→∞

δ
(ϕ(L))
2 (L)
ψ2(L)

= 0

. (2.33)

Hence, a sufficient condition for (2.33) is that upper bounds on

∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣
and

∣
∣
∣
∣

δ
(ϕ(L))
2 (L)
ψ2(L)

∣
∣
∣
∣

decrease to 0, as the size of the observation vector L increases to infinity.

Since Lemma 4 is straightforward from (2.12), the proof is omitted.
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Before proceeding, it is important to define a family of sequences, as it will play a

significant role in our analysis. Using (2.25), let

U (ϕ)
∆
=

{

{ΣL}

∣
∣
∣
∣
lim
L→∞

ω (L)Ω
(ϕ(L))
ΣL

= 0

}

(2.34)

describe the family of all sequences of {ΣL} with the stated limit, where

ω (L)
∆
=







ω1 (L) = max
{

L, L2

η2(L)

}

,

if ξ (L) = 0 and η (L) > 0

ω2 (L) = max
{

L
ξ(L) , L

2[2ε0 (1 + ν) ξ (L) + η (L)]−2
}

,

if ξ (L) > 0 and η (L) ≥ 0

(2.35)

and ε0 was defined in Assumption 1.

We now give a Theorem providing sufficient conditions, under which the ADR converges

to unity.

Theorem 1 Given a sequence of covariance matrices {ΣL} in (2.1) which satisfy Assump-

tions 1 and 2 and a sequence of truncated test statistics
{
T tr
L

}
in (2.3) with truncation rule

ϕ0(L), sufficient conditions for Λ(T tr∞, T
opt
∞ ) = 1 are

{ΣL} ∈ U(ϕ0). (2.36)

If a given ϕ0(L) satisfies (2.36), then it follows that any truncation rule ϕ(L), which satisfies

lim
L→∞

ϕ(L)
ϕ0(L)

≥ 1, will also provide Λ(T tr∞, T
opt
∞ ) = 1.

Proof: [Proof of Theorem 1] Let’s first deduce upper bounds on

∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣
and

∣
∣
∣
∣

δ
(ϕ(L))
2 (L)
ψ2(L)

∣
∣
∣
∣

respectively for the two situations enumerated in (2.35).
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For the situation that ξ (L) = 0 and η (L) > 0, by (2.21), we can obtain

ψ2 (L) =

L∑

i=1

(

λi +
1

λi
− 2

)

+ 2µTLΣ
−1
L µL

≥
L∑

i=1

(

λi +
1

λi
− 2

)

≥

(

1 + ν +
1

1 + ν
− 2

)

η (L) =
ν2

1 + ν
η (L) . (2.37)

Consequently, (2.23), (2.24), (2.37) and Lemma 1 yield the upper bounds on

∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣

and

∣
∣
∣
∣

δ
(ϕ(L))
2 (L)
ψ2(L)

∣
∣
∣
∣

∣
∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣
∣
≤

1

C1
LΩ

(ϕ(L))
ΣL

(2.38)

∣
∣
∣
∣
∣

δ
(ϕ(L))
2 (L)

ψ2 (L)

∣
∣
∣
∣
∣
≤

1
ε0
L
[

Ω
(ϕ(L))
ΣL

] 1
2

ν2

1+ν η (L)
=

1 + ν

ε0ν
2

[
L2

η2 (L)
Ω

(ϕ(L))
ΣL

] 1
2

(2.39)

where C1 was defined in Lemma 1.

For the situation that ξ (L) > 0 and η (L) ≥ 0, the corresponding lower bound on

ψ
(ϕ(L))
1 (L) is obtained from (2.15) as

ψ
(ϕ(L))
1 (L) = tr

[(

B
(ϕ(L))
L

)2
]

+ 2µTLΣ
−2
L µL ≥ 2µTLΣ

−2
L µL ≥ 2ε20µ

T
LµL ≥ 2ε20ν

2ξ (L) . (2.40)

Similarly, we have

ψ2 (L) =

L∑

i=1

(

λi +
1

λi
− 2

)

+ 2µTLΣ
−1
L µL ≥

ν2

1 + ν
η (L) + 2ε0ν

2ξ (L) . (2.41)
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Hence, the corresponding upper bounds on

∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣
and

∣
∣
∣
∣

δ
(ϕ(L))
2 (L)
ψ2(L)

∣
∣
∣
∣
for this situation

can be expressed as

∣
∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣
∣
≤

1

2ε20ν
2

LΩ
(ϕ(L))
ΣL

ξ (L)
(2.42)

∣
∣
∣
∣
∣

δ
(ϕ(L))
2 (L)

ψ2 (L)

∣
∣
∣
∣
∣
≤

1
ε0
L
[

Ω
(ϕ(L))
ΣL

] 1
2

ν2

1+ν η (L) + 2ε0ν
2ξ (L)

=
1 + ν

ε0ν
2

{

L2

[2ε0 (1 + ν) ξ (L) + η (L)]2
Ω

(ϕ(L))
ΣL

} 1
2

.

(2.43)

Taking into account the upper bounds on

∣
∣
∣
∣

δ
(ϕ(L))
1 (L)

ψ
(ϕ(L))
1 (L)

∣
∣
∣
∣
and

∣
∣
∣
∣

δ
(ϕ(L))
2 (L)
ψ2(L)

∣
∣
∣
∣
for the different

situations, the conclusion that the ADR converges to unity follows from (2.36) and Lemma

4.

From (2.25), we can see that Ω
(ϕ(L))
ΣL

is a nonnegative decreasing function of truncation

length. Thus, if {ΣL} ∈ U (ϕ0) and lim
L→∞

ϕ(L)
ϕ0(L)

≥ 1, then

0 ≤ lim
L→∞

ω (L)Ω
(ϕ(L))
ΣL

≤ lim
L→∞

ω (L)Ω
(ϕ0(L))
ΣL

= 0 (2.44)

and hence, {ΣL} ∈ U (ϕ). This completes the proof.

Since 0 ≤ ξ (L) , η (L) ≤ L, then (2.35) implies that ω (L) is a non-decreasing function of

L. Therefore, in order to satisfy the limit in (2.34), Ω
(ϕ(L))
ΣL

should be a decreasing function

of L with a decay rate larger than the rate of increase of ω (L). Furthermore, we can see that

the growth rates of ω1 (L) and ω2 (L) with L are smaller or equal to L2, with equality if and

only if ξ (L) and η (L) do not grow with L which describes the least favorable situation that

the difficulty of the hypothesis testing problem does not reduce as L increases. Hence, the

sufficient conditions in (2.36) involve the smallest set of solutions when ω (L) = L2 and we
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call them the strongest sufficient conditions. In other words, if {ΣL} satisfies the sufficient

conditions in (2.36) with ω (L) = L2, then {ΣL} satisfies the sufficient conditions for the

other cases as well. Moreover, as (2.35) shows, ξ (L) and η (L) impact the rate of increase of

ω (L) differently. For instance, if ξ (L) = L and η (L) = 0, then the rate of increase of ω (L) is

0, while ω (L) is proportional to L when ξ (L) = 0 and η (L) = L. This seems consistent with

our intuition that the shift in mean testing problems considered in (2.35) are often easier

when compared to the change in covariance matrix testing problems (2.35) considers. The

next section provides analysis for some specific well-accepted classes of models.

2.4 Illustrative Classes of Problems

The previous section reveals that if the sequence of covariance matrices {ΣL} under

hypothesis H1 is contained in U(ϕ) for some ϕ, we can employ a truncated detector instead

of the optimal detector without performance loss when the size of the observation vector L

increases to infinity. We notice that the sufficient conditions described by U(ϕ) in (2.34)

are not expressed directly in terms of {ΣL}, but on
{
Σ−1
L

}
. Thus, the structure of the

required {ΣL} is not apparent. Nevertheless, we have found that the sufficient conditions

are satisfied by several important classes of system and process models [17, 18, 37–39] with

reasonable regularity conditions, provided an adequate truncation rule ϕ(L) is chosen. We

consider two well-accepted classes of models, which have been studied extensively in previous

research projects, and elucidate that for these models, the performance of the truncated

detector is asymptotically equivalent to that of the optimal untruncated detector for specific

ϕ(L) which increase slowly compared to L. In this section, we will just consider the strongest

sufficient conditions, i.e. U (ϕ) with ω (L) = L2, and provide a ϕ(L) which renders the
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strongest sufficient conditions satisfied for the models. Following the same procedure, the

corresponding results for the weaker sufficient conditions can be similarly obtained.

2.4.1 ΣL with Banded Structure

One general class of practical models is based on the following assumption.

Assumption 3 For a sequence of observations under hypothesis H1, each observation is only

correlated to its neighbors with sufficiently close indices. For these sort of practical models,

the covariance matrix ΣL is a banded matrix with fixed bandwidth m. That is to say, for

some m < L, (ΣL)i,j = 0, ∀ |i− j| > m
2 .

For spatial signals, Assumption 3 models the situation that an observation taken at a

given sensor is only correlated with observations from the sensors which are sufficiently close

to it. A similar signal model has been employed for temporal signals, which deems that two

observations are correlated only if the time interval between these two observations is not too

long.

Generally, the inverse of a banded matrix is not banded. However the following well-

known inequality for the inverse of a positive definite banded matrix from [42] will be useful

in our analysis.

Lemma 5 Let A be a positive definite banded matrix with band-width m, i.e. Ai,j = 0 if

|i− j| > m
2 . Let [a, b] be the smallest interval containing the spectrum of A. Set r = b

a ,

q =
√
r−1√
r+1

, D0 =
(1+

√
r)

2

2ar , and γ = q
2
m . Then we have

∣
∣
∣

(
A−1

)

i,j

∣
∣
∣ ≤ Dγ|i−j| (2.45)

where D = max{a−1,D0}.
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Using Assumption 3 and Lemma 5, we give the following theorem.

Theorem 2 As per (2.1), let ΣL denote the covariance matrix of the observations under

hypothesis H1 for a given L and consider the strongest sufficient conditions in (2.34) (ω (L) =

L2 in (2.35)). Under Assumptions 1, 2 and 3, {ΣL} ∈ U(ϕ0) for ϕ0(L) =
⌈

1+κ
lnγ−1 lnL

⌉

, where

κ is an arbitrary small positive constant and γ =
(
1−ε0
1+ε0

) 2
m
. Thus, the ADR of the truncated

detector relative to the optimal detector converges to 1. Note that any other truncation rule

ϕ(L) such that lim
L→∞

ϕ(L)
ϕ0(L)

≥ 1, will also provide unity ADR.

Proof: [Proof of Theorem 2] By Lemma 5, we have

∣
∣
∣

(
Σ−1
L

)

i,j

∣
∣
∣ ≤ Dγ|i−j| (2.46)

where γ =
(
1−ε0
1+ε0

) 2
m
< 1 and D = max

{

ε−1
0 ,

(1+ε0)
2

2ε0

}

are constants.

Employing ω (L) = L2 and ϕ0(L) =
⌈

1+κ
ln γ−1 lnL

⌉

, the condition in (2.36) becomes

L2Ω
(ϕ0(L))
ΣL

= L2 max
i

∑

j:|j−i|≥ϕ0(L)+1

∣
∣
∣

(
Σ−1
L

)

i,j

∣
∣
∣

2
≤ L2max

i

∑

j:|j−i|≥ϕ0(L)+1

D2γ2|i−j| (2.47)

≤ 2L2
L−1∑

l=ϕ0(L)+1

D2γ2l = 2L2D2

[
1− γ2(L−ϕ0(L)−1)

]

1− γ2
γ2(ϕ0(L)+1)

≤
2D2

1− γ2
L2γ2ϕ0(L) ≤

2D2

1− γ2
1

L2κ
.

Since 2D2

1−γ2 and κ are positive constants, and Ω
(ϕ(L))
Σ

is a nonnegative function, as L

increases to infinity, we have

0 ≤ lim
L→∞

L2Ω
(ϕ(L))
Σ

≤ lim
L→∞

2D2

1− γ2
1

L2κ
= 0. (2.48)
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We therefore have proved that {ΣL} ∈ U (ϕ0) for ϕ0(L) =
⌈

1+κ
lnγ−1 lnL

⌉

, and hence the

proof of the theorem is complete by applying Theorem 1.

Note that ϕ0(L) =
⌈

1+κ
lnγ−1 lnL

⌉

increases much slower than L, but Theorem 2 demon-

strates that its deflection performance is asymptotically equivalent to that of the optimal de-

tector. This significant advantage of the truncated detector can provide underlying benefits

in implementation in realistic problems. Furthermore, since we take the strongest sufficient

conditions into account here, we can expect that the truncated detector with some truncation

rule ϕ(L), whose rate of increase is even slower than ϕ0(L), can also achieve unity ADR if

ξ (L) or η (L) grow with L.

2.4.2 Wide-Sense Stationary Limiting Models after the Mean is Subtract-

ed

The other general class of practical models under consideration is based on the assump-

tion below.

Assumption 4 Assume that as L→ ∞, xL−µL approaches a wide-sense stationary random

process with power spectral density S (f) under hypothesis H1. Let S(m) (f) denote the m-

th derivative of S (f). We assume that S(f) is bounded away from 0 and ∞, that is to

say, 0 < ε ≤ S(f) ≤ ε−1 for some ε, and
∥
∥S(m)(f)

∥
∥
∞ ≤ C for some m > 1, where

‖S (f)‖∞
∆
= sup

f∈(− 1
2
, 1
2)

|S (f)|.

Note that Assumption 4 does not impose any restriction on µL. Due to this, the class of

limiting processes defined by Assumption 4 includes some that are not wide-sense stationary.

The part of Assumption 4 requiring 0 < ε ≤ S(f) ≤ ε−1 for some ε is similar to our previous

Assumption 1 that the eigenvalues of ΣL are bounded by
[
ε0, ε

−1
0

]
, since it is known from [43]
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that the largest and smallest eigenvalues of ΣL in the limit follow lim
L→∞

λmax = sup
f
S(f) and

lim
L→∞

λmin = inf
f
S(f), where λmax and λmin denote the largest and smallest eigenvalues of ΣL

respectively.

Before investigating the performance of the truncated detector applied to this class of

problems, we first introduce a lemma on the asymptotic behavior of the inverses of covariance

matrices of wide-sense stationary processes described above. Some similar results can also

be found in [44].

Lemma 6 Define r̃(i−j) =
(
Σ−1
L

)

i,j
. Under Assumption 4, S̃ (f) =

∞∑

t=−∞
r̃(t)e−i2πft = 1

S(f)

and Σ−1
L is asymptotically a symmetric Toeplitz matrix.

Proof: Suppose Σ−1
L is a symmetric Toeplitz matrix when L → ∞. Let r (i− j)

and r̃ (i− j) denote (ΣL)i,j and
(
Σ−1
L

)

i,j
respectively, and let S (f) =

∞∑

t=−∞
r(t)e−i2πft and

S̃ (f) =
∞∑

t=−∞
r̃(t)e−i2πft as L→ ∞.

Using the expression ΣLΣ
−1
L = I, we obtain the following equations

Ik,l =

∞∑

i=−∞
r(k − i)r̃(i− l) (2.49)

=

∞∑

i=−∞
r(k − l − i)r̃(i).
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Hence, we have

S(f)S̃(f) =

∞∑

t=−∞
r(t)e−i2πft

∞∑

k=−∞
r̃(k)e−i2πfk (2.50)

=

∞∑

t=−∞

∞∑

k=−∞
r(t)r̃(k)e−i2πf(k+t)

=
∞∑

l=−∞

[ ∞∑

k=−∞
r(l − k)r̃(k)

]

e−i2πfl

= 1

Since S(f) is bounded by
[
ε, ε−1

]
, we immediately have S̃(f) = 1

S(f) , and we can calcu-

late r̃(t) =
1/2∫

−1/2

S̃(f)ei2πftdf which implies Σ−1
L is a symmetric Toeplitz matrix when L→ ∞

as assumed. By the uniqueness of the inverse of ΣL, Σ
−1
L is a symmetric Toeplitz matrix.

The following theorem addresses the asymptotic equivalence of the truncated detector

to the optimal detector in terms of deflection.

Theorem 3 Consider the strongest sufficient conditions in (2.34) (ω (L) = L2 in (2.35)).

Given a sequence of covariance matrices {ΣL} in (2.1) satisfying Assumptions 1, 2 and

4, {ΣL} ∈ U(ϕ0) for ϕ0(L) =
⌈

L
2+α
2m−1

⌉

, where α is an arbitrary small positive constant.

Consequently, the ADR of the truncated detector with ϕ0(L) relative to the optimal detector

converges to unity. Note that any other ϕ(L) such that lim
L→∞

ϕ(L)
ϕ0(L)

≥ 1, will also provide unity

ADR.

Proof: [Proof of Theorem 3] Under Assumption 4, S(f) is bounded by
[
ε, ε−1

]
for some

ε > 0 and
∥
∥S(m)(f)

∥
∥
∞ ≤ C for some m > 1. Therefore by Lemma 6, S̃(f) is also bounded

by
[
ε, ε−1

]
and

∥
∥
∥S̃(m)(f)

∥
∥
∥
∞

≤ C̃, where C̃ is a constant.
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Let r̃(i− j) =
(
Σ−1
L

)

i,j
. Since r̃(t) = r̃(−t) with r̃(t) and S̃(f) a Fourier transform pair,

we can obtain

S̃(2l)(f) = S̃(2l)(−f) (2.51)

S̃(2l+1)

(
1

2

)

= S̃(2l+1)

(

−
1

2

)

= 0. (2.52)

Thus, utilizing integration by parts, we can obtain the following upper bound on |r̃(t)|

|r̃(t)| =

∣
∣
∣
∣
∣
∣
∣

1/2∫

−1/2

S̃(f)ei2πftdf

∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

1/2∫

−1/2

S̃(m)(f)

(i2πt)m
ei2πftdf

∣
∣
∣
∣
∣
∣
∣

(2.53)

≤
∥
∥
∥S̃(m)(f)

∥
∥
∥
∞

1

(2πt)m

1/2∫

−1/2

∣
∣
∣
∣

ei2πft

im

∣
∣
∣
∣
df ≤

C̃

(2πt)m
.

As a result, for ω (L) = L2 and ϕ0(L) =
⌈

L
2+α
2m−1

⌉

, the condition in (2.36) becomes

0 ≤ lim
L→∞

L2Ω
(ϕ0(L))
ΣL

= lim
L→∞

L2 max
i

∑

j:|j−i|≥ϕ0(L)+1

|r̃(i− j)|2 (2.54)

≤ lim
L→∞

2L2
L−1∑

t≥ϕ0(L)+1

|r̃(t)|2 ≤ lim
L→∞

2L2
L−1∑

t≥ϕ0(L)+1

C̃2

(2πt)2m

≤ lim
L→∞

2C̃2L2

(2m− 1)(2π)2m

{
1

[ϕ0(L)]
2m−1 −

1

(L− 2)2m−1

}

(2.55)

≤ lim
L→∞

2C̃2L2

(2m− 1)(2π)2m
1

[ϕ0(L)]
2m−1

≤ lim
L→∞

2C̃2

(2m− 1)(2π)2m
1

Lα
= 0

where (2.55) is obtained by using an integral to bound the sum.

Consequently, it is clear that {ΣL} ∈ U(ϕ0) for ϕ0(L) =
⌈

L
2+α
2m−1

⌉

.
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Invoking Theorem 1 again, we conclude the proof. Thus when we employ the truncated

detector with ϕ(L) ≥ ϕ0(L) =
⌈

L
2+α
2m−1

⌉

for the class of problems which satisfy Assumptions

1, 2 and 4, the ADR of the truncated detector relative to the optimal detector converges to

unity.

We also can see that the truncation length of the truncated detector, described by

ϕ0(L) =
⌈

L
2+α
2m−1

⌉

, increases slower than the growth of L. In addition, since the strongest

sufficient conditions are considered here, the minimum requirement for the truncation rule

can be further reduced for the problems where ξ (L) or η (L) are increasing functions of L.

Assumption 4 is satisfied by a very large class of well-studied and well-accepted wide-

sense stationary limiting models. As a particular example, we consider xL generated with

autoregressive moving average (ARMA) models.

Let {ei} denote a real sequence of independent random variables with zero mean and

variance σ2S . An ARMA(p,q) process {xi} can be defined by

xi =

p
∑

l=1

φlxi−l +
q
∑

t=1

θtei−t + ei. (2.56)

Accordingly, the power spectral density of the ARMA(p,q) process can be expressed as

S(f) =

σ2S

∣
∣
∣
∣
1 +

q∑

t=1
θt exp (−i2πft)

∣
∣
∣
∣

2

∣
∣
∣
∣
1−

p∑

l=1

φl exp (−i2πfl)

∣
∣
∣
∣

2 for |f | <
1

2
. (2.57)

Thus, with appropriate {θt} and {φl}, S(f) can easily satisfy Assumption 4.
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2.5 Implementation of Consensus based Truncated Detector

In this section, we will briefly discuss how to apply a two-step consensus algorithm to

compute the truncated test statistic (2.3) with truncation rule ϕ(L) at each sensor. For

simplicity, we assume ideal communication channels.

2.5.1 Initialization of Local Statistics

Let y (t) = [y1 (t) , y2 (t) , ..., yL (t)]
T denote a vector of local statistics at time t. In this

step, each sensor collects the observations from 2ϕ(L) neighbors, and then computes the

inner sum of
L∑

i=1

L∑

j=1
xi

(

B
(ϕ(L))
L

)

i,j
xj from (2.3) as its initial local statistic. To be specific, for

the i-th sensor, its initial local statistic can be written as

yi (0) =

L∑

j=1

xi

(

B
(ϕ(L))
L

)

i,j
xj + ζixi =

∑

j:|i−j|≤ϕ(L)
xi(RL)i,jxj + ζixi (2.58)

with ζi a constant from (2.2).

2.5.2 Consensus Procedure

After initialization, a standard consensus algorithm can be applied to compute the trun-

cated test statistic (2.3). Here, we assume a synchronous time model [23], in which time

is assumed to be slotted commonly across sensors. In each slot, each sensor received its

neighbors’ local statistics and updates its own local statistic. The updating rule for the local

statistics can be expressed as

yi (t+ 1) = Wi,iyi (t) +
∑

j:|i−j|≤ϕ(L)
Wi,jyj (t) (2.59)
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where t = 1, 2, ... and Wi,j is the weight on the local statistic of the j-th sensor. Thus, the

corresponding compact vector form is

y (t+ 1) = Wy (t) = Wty (0) . (2.60)

Theorem 4 For any doubly stochastic matrix W ∈ W such that ρ
(
W − 1

L11
T
)
< 1, then

we have

lim
t→∞

y (t) =
1

L
T tr
L · 1 (2.61)

where ρ (·) denotes the spectral radius of a matrix.

The proof is provided in [21,22].

Theorem 4 demonstrates that every sensor’s local statistic converges to a scaled version

of the truncated test statistic in (2.3), and hence each sensor can make its own decision based

on its own local statistic while achieving the same performance as the truncated detector

implemented in centralized manner. Furthermore, as [21] indicates, if we just consider sym-

metric W, we can easily find the best choice of W making the consensus procedure have the

fastest speed of convergence by solving a convex problem.

It is worth mentioning that though we assumed ideal communication channels and a

deterministic weight matrix W as an example here, other consensus algorithms and their

corresponding performance analysis for non-ideal channels [25,26] or random weight matrices

[23] can be directly adopted in our two-step consensus algorithms to compute our truncated

test statistic.
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2.6 Numerical Results

To illustrate our theoretical results, here we present a few numerical examples involving

the cases studied in the previous theorems.

2.6.1 Signals with Banded Covariance Matrices

We first consider a case where ΣL is banded and the bandwidth is fixed for all L.

Our particular example assumes a stationary signal with triangular correlation. For any L,

µL = 0, and ΣL=0.025ΣL,s + I, where

(ΣL,s)i,j =







1− |i−j|
20 , |i− j| < 20

0, otherwise

. (2.62)
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Using truncation rule: L/5−5

Using truncation rule: L0.6−7

Using truncation rule: 6ln(L)−20

Figure 2.1: Deflection ratio of the truncated detector relative to the optimal detector for a
triangularly correlated signal.

Figure 2.1 shows the deflection ratios (DR) of some truncated detectors with different

ϕ(L) which all satisfy our sufficient conditions for unity ADR. The deflection ratios of the
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truncated detectors with truncation rules ϕ(L) =
⌈
L
5

⌉
− 5, ϕ(L) =

⌈
L0.6

⌉
− 7, and ϕ(L) =

⌈6 lnL⌉ − 20 are plotted in dash, solid and dot-dash curves respectively. It is seen that the

numerical results agree with our analytical prediction that ADR equals to 1. As expected,

Figure 2.1 depicts that the larger the value of ϕ(L) for a given L, the better deflection ratio

performance that the corresponding truncated detector enjoys.

Figure 2.2 shows the relationship between the deflection ratio and the ROC curve1 for

various truncated detectors when L = 1000. It is seen that larger deflection ratio implies

better performance in terms of the ROC curve in this example. Furthermore, we investigate

the detection probability of some truncated detectors with different ϕ(L) which all satisfy our

sufficient conditions for unity ADR. Figure 2.3 illustrates that as L increases, the detection

probability performance of each truncated detector converges to that of the optimal detector.

Moreover, the larger the value of ϕ(L) for large L, the faster the rate of convergence to the

optimal detector. On the other hand, Figure 2.3 also shows that as L increases, the detection

probability performance of the truncated detector with constant truncation length diverges

from that of the optimal detector.

2.6.2 Autoregressive Moving Average Models

To illustrate Theorem 3, we use an ARMA(1,1) model. In our numerical results, µL = 0

and ΣL = 0.01ΣARMA
L + I, where ΣARMA

L is the covariance matrix of the ARMA(1,1) model

with dimension L. The parameters in (2.56) are taken as φ1 = 0.8, θ1 = 0.4 and σ2S = 1.

Figure 2.4 shows the deflection ratios of two truncated detectors with different ϕ(L)

which both satisfy our sufficient conditions for unity ADR. We can see that the numerical

1In the ROC curve, the false alarm probability Pfa
∆
= Pr (Declare H1 |H0 is true ) and the detection proba-

bility is defined as Pd
∆
= Pr (Declare H1 |H1 is true).
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The optimal detector
The truncated detector with k=45, DR=1
The truncated detector with k=5, DR=0.6249
The truncated detector with k=2, DR=0.3347
The truncated detector with k=0, DR=0.0757

Figure 2.2: Relationship between the deflection ratio and the ROC (L=1000).

results agree with our analytical prediction that ADR equals to 1. As expected, Figure 2.4 also

depicts that the truncated detector with larger ϕ(L) has better deflection ratio performance

for that L.

Figure 2.5 shows the relationship between the deflection ratio and the ROC curve for

various truncated detectors when L = 1000. We can see from the figure that larger deflection

ratio implies better performance in terms of the ROC curve in this example also. Figure 2.6

illustrates the detection probability performance of each truncated detector. It is seen that

as L increases, the detection probability performance of the truncated detectors converges

to that of the optimal detector. Moreover, the truncated detector with larger ϕ(L) achieves

better detection probability performance. However, the difference between the the detection

probability performance of the optimal detector and that of the truncated detector with

constant truncation length becomes larger and larger as L increases.
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Figure 2.3: Detection probabilities of several truncated detectors (Pfa = 0.1).

2.7 Extension to Spatially and Temporally Correlated Gaus-

sian Observations

Then the general hypothesis testing problem for spatially and temporally correlated

Gaussian observations can be expressed as

H0 : z(K,L) ∼ N (0, I) (2.63)

H1 : z(K,L) ∼ N (µ(K,L),Σ(K,L)).

The following assumption is made in this section.

Assumption 5 µ(K,L), and Σ(K,L) are known, and either µ(K,L) 6= 0 or Σ(K,L) 6= I. The

elements of µ(K,L) are finite, and the eigenvalues of Σ(K,L) are bounded by
[
ε0, ε

−1
0

]
for some

positive number ε0 < 1.

Similar to (2.2), the optimal test statistic to minimize error probability, risk, or one of
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Figure 2.4: Deflection ratio of the truncated detector relative to the optimal detector for an
ARMA(1,1) model with φ1 = 0.8, θ1 = 0.4 and σ2S = 1.

several other criteria for the problem in (2.63) compares the log-likelihood ratio

T opt
(K,L)

= zT(K,L)R(K,L)z(K,L) + 2µT(K,L)Σ
−1
(K,L)

z(K,L) =
K∑

i=1

K∑

j=1

uTi Dijui + 2µT(K,L)Σ
−1
(K,L)

z(K,L)

(2.64)

to a threshold, where

R(K,L) = I−Σ−1
(K,L) =














D11 D12 · · · D1K

D21 D22 · · · D2K

...
...

. . .
...

DK1 DK2 · · · DKK














(2.65)

and Dij is the (i, j)-th block of R(K,L). Since Σ(K,L) is assumed known in Assumption 5,

every Dij can be calculated beforehand. As in (2.3), our truncation rule will ignore those
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Figure 2.5: Relationship between the deflection ratio and the ROC (L=1000).

terms in (2.64) which involve ui,l and uj,m with |l−m| > ϕ(L), and hence the truncated test

statistic is

T tr
(K,L) = zT(K,L)B

(ϕ(L))
(K,L) z(K,L)+2µT(K,L)Σ

−1
(K,L)z(K,L) =

K∑

i,j=1

uTi E
(ϕ(L))
ij uj+2µT(K,L)Σ

−1
(K,L)z(K,L)

(2.66)

whereB
(ϕ(L))
(K,L) is the truncated matrix of R(K,L), and the elements of the (i, j)-th block E

(ϕ(L))
ij

of B
(ϕ(L))
(K,L) can be expressed as

(

E
(ϕ(L))
ij

)

p,q

∆
=







(Dij)p,q, if |p− q| ≤ ϕ(L)

0, otherwise

.

Consider the following generalization of Assumption 2.

Assumption 6 As it would not make sense to consider truncated detectors whose truncation

makes the two hypotheses indistinguishable, the truncation rule ϕ(L) is required to ensure that

if µ(K,L) = 0 and R(K,L) 6= 0, then the matrix B
(ϕ(L))
(K,L) 6= 0.

By (2.64) and (2.66), as the number of sensors increases to infinity, the asymptotic
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Figure 2.6: Detection probability performance of the truncated detectors (Pfa = 0.1).

deflection ratio of the truncated detector relative to the optimal detector is

Λ(T tr
(K,∞), T

opt
(K,∞)) = lim

L→∞

tr
(

R2
(K,L)

)

+ 2µT(K,L)Σ
−2
(K,L)µ(K,L)

tr

[(

B
(ϕ(L))
(K,L)

)2
]

+ 2µT(K,L)Σ
−2
(K,L)µ(K,L)

(2.67)





tr
(

B
(ϕ(L))
(K,L) Σ(K,L) −B

(ϕ(L))
(K,L)

)

+ 2µT(K,L)Σ
−1
(K,L)µ(K,L)

tr
(

R(K,L)Σ(K,L) −R(K,L)

)

+ 2µT(K,L)Σ
−1
(K,L)µ(K,L)





2

= lim
L→∞

(

1 +
δ̃
(ϕ(L))
1 (L)

ψ̃
(ϕ(L))
1 (L)

)(

1−
δ̃
(ϕ(L))
2 (L)

ψ̃2 (L)

)2

where

δ̃
(ϕ(L))
1 (L)

∆
= tr

(

R2
(K,L)

)

− tr

[(

B
(ϕ(L))
(K,L)

)2
]

, (2.68)

ψ̃
(ϕ(L))
1 (L)

∆
= tr

[(

B
(ϕ(L))
(K,L)

)2
]

+ 2µT(K,L)Σ
−2
(K,L)µ(K,L), (2.69)

δ̃
(ϕ(L))
2 (L)

∆
= tr

[(

R(K,L) −B
(ϕ(L))
(K,L)

)(

Σ(K,L) − I
)]

, (2.70)

43



and

ψ̃2 (L)
∆
= tr

(

R(K,L)Σ(K,L) −R(K,L)

)

+ 2µT(K,L)Σ
−1
(K,L)µ(K,L). (2.71)

Lemma 7 Under Assumption 5, consider a truncated detector with truncation rule ϕ(L) for

the hypothesis testing problem (2.63). Upper bounds on the absolute values of δ̃
(ϕ(L))
1 (L) and

˜
δ
(ϕ(L))
2 (L) are given by

∣
∣
∣δ̃

(ϕ(L))
1 (L)

∣
∣
∣ ≤ K2LΩ̃

(ϕ(L))
Σ(K,L)

(2.72)

and
∣
∣
∣δ̃

(ϕ(L))
2 (L)

∣
∣
∣ ≤

KL

ε0

[

Ω̃
(ϕ(L))
Σ(K,L)

]1
2

(2.73)

where Ω̃
(ϕ(L))
Σ(K,L)

is defined by

Ω̃
(ϕ(L))
Σ(K,L)

∆
= max

i,j,p

∑

q:|p−q|≥ϕ(L)+1

(
Dij

)2

p,q
. (2.74)

Proof: [Proof of Lemma 7] Noting that tr
(

R2
(K,L)

)

=
K∑

i,j=1
tr
(

D2
ij

)

and tr

[(

B
(ϕ(L))
(K,L)

)2
]

=

K∑

i,j=1
tr

[(

E
(ϕ(L))
ij

)2
]

, we can obtain

δ̃
(ϕ(L))
1 (L) = tr

(

R2
(K,L)

)

− tr

[(

B
(ϕ(L))
(K,L)

)2
]

=
K∑

i,j=1

tr

[

D2
ij −

(

E
(ϕ(L))
ij

)2
]

=

K∑

i,j=1

tr

[(

Dij −E
(ϕ(L))
ij

)2
]

=

K∑

i,j=1

L∑

p=1

∑

q:|p−q|≥ϕ(L)+1

(
Dij

)2

p,q
. (2.75)

Hence, it is easy to see that

∣
∣
∣δ̃

(ϕ(L))
1 (L)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

K∑

i,j=1

L∑

p=1

∑

q:|p−q|≥ϕ(L)+1

(
Dij

)2

p,q

∣
∣
∣
∣
∣
∣

≤ K2LΩ̃
(ϕ(L))
Σ(K,L)

(2.76)
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Using Assumption 5, (2.74) and the same bounding approach used in (2.28) yields

[

δ̃
(ϕ(L))
2 (L)

]2
=
{

tr
[(

R(K,L) −B
(ϕ(L))
(K,L)

)

Σ(K,L)

]}2
≤ tr

[(

R(K,L) −B
(ϕ(L))
(K,L)

)2
]

tr
(

Σ2
(K,L)

)

≤
L

ε20

K∑

i,j=1

tr

[(

Dij −E
(ϕ(L))
ij

)2
]

≤
K2L2

ε20
Ω̃

(ϕ(L))
Σ(K,L)

, (2.77)

which implies
∣
∣
∣δ̃

(ϕ(L))
2 (L)

∣
∣
∣ ≤

KL

ε0

[

Ω̃
(ϕ(L))
Σ(K,L)

] 1
2
. (2.78)

Let ν denote a positive small constant, such that 0 < ν ≪ 1. Define

ξ̃ (L)
∆
=

L∑

i=1

1 (∣∣µ(K,L),i∣∣ ≥ ν
)
and η̃ (L)

∆
=

L∑

i=1

1 (∣∣λ(K,L),i − 1
∣
∣ ≥ ν

)
, (2.79)

where µ(K,L),i and λ(K,L),i are the i-th element of µ(K,L) and the i-th largest eigenvalue of

Σ(K,L) respectively. Before proceeding, define

ω̃ (L)
∆
=







max
{

L, L2

η̃2(L)

}

, if ξ̃ (L) = 0 and η̃ (L) > 0

max

{

L
ξ̃(L)

, L2
[

2ε0 (1 + ν) ξ̃ (L) + η̃ (L)
]−2
}

, if ξ̃ (L) > 0 and η̃ (L) ≥ 0
.

(2.80)

We now give a Theorem providing sufficient conditions for the general hypothesis testing

problem (2.63) with spatially and temporally correlated Gaussian observations, under which

the ADR converges to unity.

Theorem 5 Given a sequence of covariance matrices
{

Σ(K,L)

}

in (2.63) which satisfy As-

sumptions 5 and 6 and a sequence of truncated test statistics T tr
(K,∞) in (2.66) with truncation
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rule ϕ0(L), sufficient conditions for Λ
(

T tr
(K,∞), T

opt
(K,∞)

)

= 1 are

{

Σ(K,L)

}

∈ Ũ(ϕ0), (2.81)

where Ũ(ϕ0)
∆
=

{{

Σ(K,L)

}
∣
∣
∣
∣
lim
L→∞

ω̃ (L) Ω̃
(ϕ0(L))
Σ(K,L)

= 0

}

. If a given ϕ0(L) satisfies (2.81), then

it follows that any truncation rule ϕ(L), which satisfies lim
L→∞

ϕ(L)
ϕ0(L)

≥ 1, will also provide

Λ
(

T tr
(K,∞), T

opt
(K,∞)

)

= 1.

Noting that K is a finite constant, the proof of Theorem 5 is very similar to that of Theorem

1. Hence, the proof is omitted here.

2.7.1 Separable Space-Time Covariance Model

The separable covariance model has been widely used in statistical modeling of space-

time observations, which assumes that the space-time covariance can be factored into the

product of a purely spatial covariance and a purely temporal covariance. Since the separable

covariance model is nicely interpretable in practical problems and can facilitate computational

procedures for large space-time observations set [45–48], we will investigate the performance

of the truncated detector based on this model in the following part.

Assumption 7 The covariance between two observations ui,l and uj,m can be expressed as

cov
(
ui,l, uj,m

)
= (ΣK)i,j(ΣL)l,m, (2.82)

where ΣK and ΣL are the purely temporal covariance matrix for a given sensor and the purely

spatial covariance matrix for a given time epoch respectively. In addition, we assume that

the eigenvalues of positive definite matrices ΣK , ΣL and Σ(K,L) are bounded by
[
ε0, ε

−1
0

]
for
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some positive number ε0 < 1. Hence, the covariance matrix of z(K,L) can be obtained as1

Σ(K,L) = ΣK ⊗ΣL. (2.83)

According to Assumption 7, the optimal test statistic in (2.64) can be rewritten as

T opt
(K,L) = zT(K,L)R(K,L)z(K,L) + 2µT(K,L)Σ

−1
(K,L)z(K,L) (2.84)

=
K∑

i=1

uTi
(
I− ρiiΣ

−1
L

)
ui −

K∑

i,j=1,i 6=j
ρiju

T
i Σ

−1
L uj + 2µT(K,L)Σ

−1
(K,L)z(K,L),

where R(K,L)
∆
= I−Σ−1

(K,L) = I−Σ−1
K ⊗Σ−1

L and ρij
∆
=
(
Σ−1
K

)

i,j
. Furthermore, the elements

of the matrix E
(ϕ(L))
ij in (2.66) can be expressed as

(

E
(ϕ(L))
ij

)

p,q
=







ρij
(
Σ−1
L

)

p,q
, if i 6= j, |p− q| ≤ ϕ(L)

(
I− ρiiΣ

−1
L

)

p,q
, if i = j, |p− q| ≤ ϕ(L)

0, otherwise

. (2.85)

Lemma 8 Under Assumption 5, 6 and 7, consider a truncated detector with truncation

rule ϕ(L) for the hypothesis testing problem (2.63). Upper bounds on the absolute values of

δ̃
(ϕ(L))
1 (L) and

˜
δ
(ϕ(L))
2 (L) are given by

∣
∣
∣δ̃

(ϕ(L))
1 (L)

∣
∣
∣ ≤ ρ2maxK

2LΩ
(ϕ(L))
ΣL

(2.86)

and
∣
∣
∣δ̃

(ϕ(L))
2 (L)

∣
∣
∣ ≤

ρmaxKL

ε0

[

Ω
(ϕ(L))
ΣL

] 1
2
, (2.87)

1⊗ denotes kronecker product.
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where ρmax
∆
= max

i,j

∣
∣
∣ρij

∣
∣
∣ and Ω

(ϕ(L))
ΣL

is defined in (2.25). Thus, the sufficient conditions

described by Ũ(ϕ0) in Theorem 5 can be simplified to

{

Σ(K,L)

}

∈ U∗(ϕ0)
∆
=

{{

Σ(K,L)

}
∣
∣
∣
∣
lim
L→∞

ω̃ (L)Ω
(ϕ0(L))
ΣL

= 0

}

. (2.88)

Proof: [Proof of Lemma 7] Noting that

tr
(

R2
(K,L)

)

= tr
[(
I−Σ−1

K ⊗Σ−1
L

)2
]

=

K∑

i=1

tr
[(
I− ρiiΣ

−1
L

)2
]

+

K∑

i,j=1,i 6=j
ρ2ijtr

[(
Σ−1
L

)2
]

(2.89)

and

tr

[(

B
(ϕ(L))
(K,L)

)2
]

=

K∑

i,j=1

tr

[(

E
(ϕ(L))
ij

)2
]

, (2.90)

we can obtain

δ̃
(ϕ(L))
1 (L) = tr

(

R2
(K,L)

)

− tr

[(

B
(ϕ(L))
(K,L)

)2
]

=
K∑

i=1

tr
[(
I− ρiiΣ

−1
L

)2
]

+
K∑

i,j=1,i 6=j
tr
[(
ρijΣ

−1
L

)2
]

−
K∑

i,j=1

tr

[(

E
(ϕ(L))
ij

)2
]

=

K∑

i=1

tr

[(

I− ρiiΣ
−1
L −E

(ϕ(L))
ii

)2
]

+

K∑

i,j=1,i 6=j
tr

[(

ρijΣ
−1
L −E

(ϕ(L))
ij

)2
]

=

K∑

i,j=1

ρ2ij

L∑

p=1

∑

q:|p−q|≥ϕ(L)+1

[(
Σ−1
L

)

p,q

]2
. (2.91)

Hence, it is easy to see that

∣
∣
∣δ̃

(ϕ(L))
1 (L)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

K∑

i,j=1

ρ2ij

L∑

p=1

∑

q:|p−q|≥ϕ(L)+1

[(
Σ−1
L

)

p,q

]2

∣
∣
∣
∣
∣
∣

≤ ρ2maxK
2LΩ

(ϕ(L))
ΣL

, (2.92)
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where Ω
(ϕ(L))
ΣL

is defined in (2.25).

Using Assumption 5, 7 and the same bounding approach used in (2.28) yields

[

δ̃
(ϕ(L))
2 (L)

]2
=
{

tr
[(

R(K,L) −B
(ϕ(L))
(K,L)

)

Σ(K,L)

]}2
≤ tr

[(

R(K,L) −B
(ϕ(L))
(K,L)

)2
]

tr
(

Σ2
(K,L)

)

≤
L

ε20







K∑

i=1

tr

[(

I− ρiiΣ
−1
L −E

(ϕ(L))
ii

)2
]

+
K∑

i,j=1,i 6=j
tr

[(

ρijΣ
−1
L −E

(ϕ(L))
ij

)2
]






≤
ρ2maxK

2L2

ε20
Ω

(ϕ(L))
ΣL

, (2.93)

which implies
∣
∣
∣δ̃

(ϕ(L))
2 (L)

∣
∣
∣ ≤

ρmaxKL

ε0

[

Ω
(ϕ(L))
ΣL

] 1
2
. (2.94)

Using Assumption 6, (2.92), (2.94) and the same approach used in the proof of Theorem

1, we can conclude the proof.

Theorem 6 Given a sequence of covariance matrices
{

Σ(K,L)

}

in (2.63) which satisfy As-

sumption 5, 6 and 7, if {ΣL} satisfy Assumption 3, then {ΣL} ∈ U∗(ϕ0) for ϕ0(L) =
⌈

1+κ
ln γ−1 lnL

⌉

, where κ is an arbitrary small positive constant and γ =
(
1−ε0
1+ε0

) 2
m
. Similarly, if

{ΣL} satisfy Assumption 4, {ΣL} ∈ U∗(ϕ0) for ϕ0(L) =
⌈

L
2+α
2m−1

⌉

, where α is an arbitrary

small positive constant. As a result, for both cases, the ADR of the truncated detector with

ϕ0(L) relative to the optimal detector converges to unity. Furthermore, any other ϕ(L) such

that lim
L→∞

ϕ(L)
ϕ0(L)

≥ 1, will also provide unity ADR.

It is seen that the limit stated by U∗(ϕ0) in (2.88) is the same as that described by U(ϕ0) in

(2.34). Thus, the proof of Theorem 6 is very similar to Theorem 2 and 3 and hence is omitted

here.
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It is worth mentioning that we adopt the separable covariance model and we let the

size of the sensor network L increase to infinity while the size of temporal observations at

each sensor K is fixed and finite. Hence, intuitively, the covariance matrix of total set of

observations Σ(K,L) should be dominated by the purely spatial covariance matrix ΣL. Thus,

as the size of the sensor network L increases to infinity, it is seen that the limit in U∗(ϕ0)

only describes the requirement of the purely spatial covariance, which is the same as that

described by U(ϕ0) in (2.34). As a result, if the purely spatial covariance matrix ΣL is

contained in the two general classes of system and process models discussed in Section IV,

the sufficient conditions described in Theorem 5 can be easily satisfied, provided an adequate

truncation rule ϕ(L) is chosen. We can show that large classes of nonseparable covariance

models also satisfy the conditions of Theorem 5, for example the class of all models where the

covariance on the left-hand side of (2.82) can be expressed as a weighted sum of separable

terms like those on the right-hand side of (2.82) provided the other assumptions in Theorem

6 hold. However, the largest class of nonseperable covariance models satisfying the conditions

of Theorem 5 is still an open problem.

2.8 Summary

In this chapter, we study the large observation size performance of a truncated detector

for a canonical multivariate Gaussian hypothesis testing problem. The benefits gained by

utilizing the truncated detector instead of the optimal detector can be summarized from two

viewpoints. If the components of xL are time sampled observations, the truncated detector

can reduce the storage and multiplications needed when compared to the optimal detector. If

the components of xL are obtained from distributed sensors, the truncated detector not only
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reduces the communication energy requirement, it allows efficient implementation by adopting

a consensus algorithm. Motivated by these benefits, we have investigated the performance of

the truncated detector in terms of deflection, and derived sufficient conditions for a truncation

rule and a sequence of tests which lead to no loss in ADR of the truncated detector relative to

the optimal detector. The sufficient conditions provided depend on how the hypothesis testing

problem scales with L. When either ξ (L) or η (L) grow with L, indicating the difficulty

of the hypothesis testing problem decreases when L increases, we find a more aggressive

truncation rule can be tolerated. Further, the amount of truncation which can be tolerated

is different depending on which function, ξ (L) or η (L), grows with L. Moreover, we employ

several well-accepted and popular classes of system and process models as examples to show

that the sufficient conditions are not overly restrictive. For all the examples considered,

we find truncation rules which increase slowly with L, implying significant savings, even

for the least favorable case where the difficulty of the hypothesis testing problem doesn’t

decrease as L increases. In all the cases considered, numerical results imply that not only

do the deflections of the truncated and the optimal detectors converge for large L for our

asymptotically optimal truncation rules, but the probability of detections also converge for

fixed false alarm probabilities.

While we have focused on asymptotic analysis in this chapter, some comments on finite

L cases are in order for completeness. Finite L analysis employing (2.10) and (2.11) can be

useful to evaluate deflection loss. Simplifications like

∣
∣
∣
∣

δ
(k)
2 (L)
ψ2(L)

∣
∣
∣
∣
≪ 1 can be employed when

justified. Even for finite L, unity deflection can be obtained in some extreme cases. The

following result provides one example.

Theorem 7 Assume the elements of ΣL are bounded and L is finite. As ‖µL‖ increases

without bound, the deflection ratio Λ(T tr
L , T

opt
L ) of a truncated detector relative to the optimal
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detector converges to unity regardless of the truncation length k.

The proof is obvious. Even with bounded ‖µL‖, we have found models satisfying Assumption

1 that achieve unity deflection for finite k and L. However, the full class of models of this

type seems to be one of a number of open problems in this area.

There are some other important problems still open. Necessary conditions for asymptotic

optimality are still unknown. In this chapter, we have derived sufficient conditions which

lead no loss in ADR of the truncated detector relative to the optimal detector. However, the

deflection is a sub-optimal metric and the error probability is a better measure of detection

performance. Our numerical results imply that the sufficient conditions for the equivalence

in terms of deflection lead to an equivalence in terms of the limiting error probability in the

cases we studied. A theoretic proof will be pursued in future work for the largest possible

class of truncation rules and detection problems. It would be of great interest to consider tests

employing constrained communications with neighbors for other hypothesis testing problems

with dependent observations.
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Chapter 3

Asymptotically Optimum

Distributed Estimation in the

Presence of Attacks

3.1 Introduction

Sensor networks employed for parameter estimation have been extremely successful in

applications ranging from inexpensive commercial systems to complex military and homeland

defense surveillance systems and have seen even greater interest in recent years [49]. Recen-

t technological advances in coding, digital wireless communications technology and digital

electronics have lead to the dominance of digital communications using quantized data in

such systems. Hence, a great deal of attention has focused on parameter estimation using

quantized data [50–56].

Under the assumption that several subsets of sensors are forced to send data corrupted
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by a set of adversaries, we consider the problem of estimating a deterministic mean-shift

parameter in the presence of zero-mean noise by using quantized data for a large number of

observations in this chapter. Under the control of adversaries, the malicious sensors, which

are called Byzantine sensors in recent literature [57–62], attempt to confuse the fusion center

(FC) by sending modified quantized observations. The FC attempts to identify the different

sets of malicious sensors and mitigate the impact on the estimation performance caused by the

adversaries. This kind of distributed estimation problem under attacks is well motivated by

the vulnerability of sensor networks in practice. For example, large scale sensor networks are

typically comprised of inexpensive nodes with low computing capacity and limited battery

power. Hence, highly complicated encryption algorithms cannot be implemented at each

sensor which provides the adversaries an opportunity to modify the data to undermine the

estimation performance of the sensor network. On the other hand, adversaries can also

capture some limited set of sensors and force them to send altered data.

We assume that, without attack, all sensors make independent and identically distributed

(i.i.d.) observations of the unknown deterministic parameter corrupted by zero-mean noise

with known distribution. At each sensor, the time samples are converted to one-bit data and

then transmitted to the FC due to the stringent energy and bandwidth limitations. However,

the quantized outputs of some vulnerable subsets of sensors are hijacked by adversaries. We

grant the adversaries, assumed to employ a finite number of different attacks in total at any

given time, the largest power to manipulate their compromised sensors under some constraints

concerning the information they have about the estimation system and the environment

as well as to their access to the attacked sensors. In particular, the adversaries can only

get physical access to the quantized data but they do not have access to the input of the

quantizer (so called man-in-the-middle attacks) and they do not have information about what
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computations the fusion system is using. Among other things they do not have information

about the parameter to be estimated and the quantization thresholds. Thus, the adversaries

do not really understand what the bits at each sensor actually mean since the fusion center and

the sensors can agree on any interpretation they like. Thus, we assume that each adversary

can modify the quantized data to bring about an arbitrary probability mass function (pmf)

at the output of each sensor the adversary controls. Further, during the time window over

which the estimation is performed, the statistical descriptions of the modification strategies

of the adversaries are described by probability transition matrices unknown to the FC.

The communication channel between the FC and each sensor is assumed ideal, and

hence the FC is able to accurately receive what was transmitted from both the unattacked

and Byzantine sensors. The FC is assumed unaware of which subsets of sensors have been

tampered with by adversaries. In order to avoid ambiguity between a set of attacked and

a set of unattacked sensors, the set of unattacked sensors is assumed to occupy a larger

percentage of the total number of sensors than any set of identically attacked sensors. The

FC will attempt to identify not only the set of unattacked sensors but also each set of malicious

sensors employing a distinct attack. After the identification and categorization of the sensors,

an asymptotically optimum1 estimate that involves all unknown parameters, including the

parameter to be estimated and all the attack parameters, will be considered at the FC. The

appropriate performance metric for the framework is the Cramer-Rao Bound (CRB) which

provides a lower but asymptotically achievable bound on mean squared error (MSE). We will

make use of CRB analysis to benchmark the estimation performance of unbiased estimators

of these parameters.

In some parts of this chapter, we are primarily interested in the distributed estimation

1Maximum likelihood is one such estimate that achieves the asymptotically optimum performance.
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problem for sufficiently large scale sensor networks so we pursue analytical characterization of

the asymptotic estimation performance as the number of sensors grows to infinity. Attention

is restricted to cases where each distinct attack occupies a nonzero percentage of all sensors

in the limit to avoid consideration of attacks on sets of sensors with zero measure in the limit.

Such would be the case if, for example, only a single sensor was attacked in the limit.

3.1.1 Summary of Results and Main Contributions

For the distributed estimation problem in the presence of attacks, we first study the

ability of the FC to identify the attacked sensors and categorize them into different groups

corresponding to distinctly different types of attacks. We only assume that the set of u-

nattacked sensors is a larger percentage of all sensors than any set of identically attacked

sensors to avoid ambiguity between a set of attacked and a set of unattacked sensors. It

can be shown that increasing the number K of time samples at each sensor and enlarging

the size N of the sensor network can both improve the performance of the identification and

categorization approach, but to different extents. To be specific, the FC is able to determine

the number P of attacks in the sensor network and achieve the correct categorization as

K → ∞, while as N → ∞ with finite but sufficiently large K, it can be shown that the FC

can also ascertain P and obtain an approximate categorization with a very small percentage

of sensors that are misclassified, so small that this misclassification impacts performance in

a manner which can be tolerated. In this sense, with sufficiently many time samples at each

sensor or a sufficiently large size sensor network, the FC is able to determine the number of

attacks in the sensor network and categorize the sensors into different groups according to

distinct types of attacks perfectly or with negligibly small misclassification. Based on this

fact, we can assume that the sensors have been well identified in the next part of the chapter.
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Next, we consider estimation of the desired parameter. There are two approaches: (1)

ignore the data at the attacked sensors. (2) Use the data at the attacked sensors. We can

easily take approach (1) without estimating any parameters describing the attacks. However,

to attempt to take approach (2), and potentially do better than approach (1), we will in-

vestigate the performance of the joint estimation of the desired parameter and the unknown

attack parameters. It is shown that the Fisher Information Matrix (FIM) for jointly esti-

mating these parameters is singular when we apply exactly the same quantization approach

used for the unattacked system. Thus, it is not possible to jointly estimate the desired and

attack parameters efficiently with an estimation error that decreases with KN by employing

the same quantization approach used for the unattacked system.

In order to overcome the FIM singularity, a time-variant quantization approach has

been proposed. The basic idea is that each sensor divides its observation time interval into

several time slots, and in each time slot, all sensors use an identical threshold to quantize

the time samples. However, the thresholds utilized in different time slots are distinct. We

can show that as long as at least two different thresholds have been employed, the FIM of

the time-variant quantization approach is nonsingular. Further, this FIM has been used to

provide necessary and sufficient conditions under which taking advantage of the attacked

sensors in the proposed fashion will provide better estimation performance when compared

to approaches where the attacked sensors are ignored. These results are obtained by also

employing the FIM for the case where the attacked sensors are ignored and the comparisons

were made assuming both approaches use the same set of distinct thresholds over the same

different time slots to provide a fair comparison. In the numerical results, we show that

for some cases, significant improvement in the estimation performance can be obtained by

employing the proposed approach.
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3.1.2 Related Work

The distributed detection and estimation problem in the presence of Byzantine attacks

has seen great interest in recent years, see [57–62] and references therein. The closest work we

have seen to that proposed in this chapter appears in [62]. Still, there are major differences.

First and foremost, the model in [62] is very different from that in our work. The model in [62]

assumes that each sensor is attacked with a certain probability, which is known to the FC,

and the probability that any given sensor is attacked is the same. We consider an observation

time interval and assume that only some subsets of sensors can be attacked over that time due

to the limited resources available. Further, the statistical description of the attack strategy

in [62] is also assumed known to the FC, while we do not make this assumption and consider

the joint estimation of the parameter to be estimated and the attack parameters.

An encrypted sensor network scheme is investigated in [63,64], where the stochastic enci-

pher flips the binary sensor outputs with a certain probability to disguise the sensor outputs

with the goal of confusing an enemy fusion center (EFC) while preserving the detection or

estimation performance at the authorized fusion center (AFC). From the EFC perspective,

the encryption process can be treated as a malicious attack, since the EFC does not know

the probability a sensor output is flipped in the encryption process while the AFC knows this

probability. The EFC in [63], which is the counterpart of the FC in our scheme, implements

what we call the naive MLE. Hence, our proposed work is quite different. Moreover, since

the focus is on a different problem, encryption, the overlap with our investigations is not

significant.

The effect of attacks can also be considered as coming from sensors which transmit their

original data through a bit-flipping channel to the FC [65]. Some research has investigated
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distributed detection and estimation performance when the sensor network suffers from this

kind of non-ideal channel, see [55, 66] and the references therein. This work assumes that

the FC is aware of the set of sensors which are subject to the non-ideal channels and that

the error probability of each of these binary channels is known to the FC (channel-aware).

Together, these two assumptions are equivalent to assuming that the sets of attacked sensors

and the attack strategies are known to the FC in our scheme. We do not make this assump-

tion (we are channel-unaware). Instead, we investigate the identification and categorization

of the attacked sensors. Further, in the previous literature on channel-aware distributed es-

timation, only the standard fixed-quantizer approach (fixed threshold for all time samples)

is considered. However, we show that if the standard fixed-quantizer approach is used at

each sensor, without information on the flipping probabilities of the binary channels, then

the corresponding FIM is singular which implies that one cannot jointly estimate the de-

sired parameter and the attack parameters with an accuracy that grows with the number of

observations.

3.1.3 Notation and Organization

Throughout this chapter, bold upper case letters and bold lower case letters are used to

denote matrices and column vectors respectively. The symbol I signifies the identity matrix,

while 1(·) stands for the indicator function. Let [A]i,j denote the element in the i-th row and

j-th column of the matrix A. A ≻ 0 and A � 0 imply that the matrix is positive definite and

positive semidefinite respectively. For any set S of sensors, |S| denotes the number of sensors

in the set S, and PS represents the percentage of all sensors occupied by S. Let AC denote the

complement of the set A. To avoid cumbersome sub-matrix and sub-vector expressions in this

chapter, we introduce the following notation. Let A ({i1, i2, ..., iL} , {j1, j2, ..., jM}) denote
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the sub-matrix which consists of the elements located in the {il}
L
l=1-th rows and {jm}

M
m=1-th

columns of matrix A, and A ({i1, i2, ..., iL} , {:}) represents the sub-matrix which consists of

the elements located in the {il}
L
l=1-th rows of matrix A. The notation v (i1, i2, ..., iL) stands

for the sub-vector which only contains the {il}
L
l=1-th elements of v, and the i-th element of

the vector v is denoted by vi. Finally, the expectation, determinant and rank operators are

denoted E (·), det (·) and rank (·) respectively.

The remainder of the chapter is organized as follows. The signal and adversary model is

introduced in Section 3.2. The ability of the FC to identify and categorize attacked sensors

is studied in Section 3.3. Section 3.4 analyzes the corresponding FIM. In Section 3.5, a time-

variant quantization approach is proposed. Necessary and sufficient conditions are developed

under which using the attacked sensors with this time-variant quantization approach will lead

to better estimation performance. In Section 3.6, several numerical results are provided to

illustrate our theoretical analysis. Finally, Section 3.7 provides our conclusions.

3.2 Signal and Adversary Models

3.2.1 Signal Model and Naive Maximum Likelihood Estimator

We consider a set of N distributed sensors, each makingK observations of a deterministic

scalar parameter θ corrupted by additive noise. At the j-th sensor, the observation at the

k-th time instant is described by

xjk = θ + njk, ∀j = 1, 2, ..., N, ∀k = 1, 2, ...,K, (3.1)
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where njk denotes the additive noise sample with common zero-mean probability density

function (pdf) f(njk) and {njk} is an independent and identically distributed sequence.

Due to the stringent energy and bandwidth limitations in realistic sensor networks, each

sensor is restricted to transmit a single bit per observation xjk to the fusion center (FC). In

this chapter, to simplify the problem in terms of both implementation and analysis, all xjk

are quantized to ujk by using threshold quantizers of the same design

ujk = 1 {xjk ∈ (τ,∞)} . (3.2)

We assume that the quantizer design and the threshold τ is known to the FC. The common

probability mass function (pmf) at the output of the quantizer under no attack is







Pr (ujk = 0 |θ ) = F (τ − θ)

Pr (ujk = 1 |θ ) = 1− F (τ − θ)

, (3.3)

where F (x)
∆
=
∫ x
−∞ f (t) dt denotes the cumulative distribution function (cdf) corresponding

to the pdf f(x). We assume that F−1 (x) is differentiable on the open interval (0, 1). After

collecting the binary observations {ujk} from all sensors, by employing the invariance of an

ML estimate, the naive Maximum Likelihood Estimate (NMLE), the MLE formulated under

the assumption of no attack, of the parameter θ can be expressed as [50,51]

θ̂NML = τ − F−1



1−
1

KN

N∑

j=1

K∑

k=1

ujk



 , (3.4)

which, without the presence of an adversary, can be expected to provide asymptotically

unbiased and efficient estimation of θ.
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3.2.2 Adversary Model

The adversaries aim at tampering with the quantized observations {ujk}, hoping to cause

the FC to reach an inaccurate estimate in terms of large bias and variance. Consider a set of

P distinct types of malicious attacks, where each attack will sometimes modify some sensors’

observations. Let Ap denote the set of sensors subjected to the p-th attack. Let ũjk represent

the after-attack quantized observation which is a modified version of ujk. The statistical

description of the p-th attack can be described by a probability transition matrix Ψp,

Ψp
∆
=






ψp,0 1− ψp,1

1− ψp,0 ψp,1




 , (3.5)

where ψp,0
∆
= Pr (ũjk = 0 |ujk = 0) and ψp,1

∆
= Pr (ũjk = 1 |ujk = 1) are the modification

probabilities. Due to the p-th attack, the after-attack pmf of the observations can be related

to the before-attack pmf using






1− p̃ (Ψp, θ)

p̃ (Ψp, θ)






∆
=






Pr (ũjk = 0 |θ )

Pr (ũjk = 1 |θ )




 = Ψp






Pr (ujk = 0 |θ )

Pr (ujk = 1 |θ )




 (3.6)

Substituting (3.3) into (3.6), we can obtain

p̃ (Ψp, θ) = (1− ψp,0) Pr (ujk = 0 |θ ) + ψp,1 Pr (ujk = 1 |θ )

= (1− ψp,0 − ψp,1)F (τ − θ) + ψp,1. (3.7)

For the sake of expressing the after-attack pmfs of observations in a uniform form for

both attacked and unattacked sensors, the set A0 of unattacked sensors are considered “under
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attack” with probability transition matrix Ψ0 = I, where Ψ0 is known to the FC.

From a practical point of view, the following assumption is made through this chapter.

Assumption 8

1. Over the estimation time interval and for all p, the p-th attack is statistically described

as in (3.6) for all the sensors in the set Ap. The set Ap and Ψp are both unknown to

the FC (except Ψ0), and for sufficiently large N the number of sensors in Ap, |Ap|,

is a fixed percentage Pp of the total number N of sensors in the sensor network. Such

an assumption is required so that as N → ∞ the effect of an attack will not shrink

to zero (Ap becoming a set of measure zero). Moreover, we assume that the group of

unattacked sensors is the largest group and P0 > Pp +∆0 for all p ≥ 1 where ∆0 is a

positive constant. Further the sets A0,A1, . . . ,AP are disjoint so that

Ap ∩ Ap′ = ∅ if p 6= p′. (3.8)

2. Significant Attacks. In order to give rise to sufficient impact on the statistical charac-

terization of the outputs from attacked sensors, every attacker is required to guarantee

a minimum distortion dimpact on p̃ (Ψ0, θ) and tamper with at least ∆ percent of sensors

so that the following relations should be satisfied

|p̃ (Ψp, θ)− p̃ (Ψ0, θ)| ≥ dimpact, ∀p = 1, 2, ..., P, (3.9)

Pp ≥ ∆ > 0, ∀p = 1, 2, ..., P. (3.10)

3. Various Attacks. The changes caused by two distinct types of attacks are considerably
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different, otherwise these two types of attacks can be treated as identical. To this end,

we assume that

|p̃ (Ψl, θ)− p̃ (Ψm, θ)| ≥ ddiff, ∀l 6= m. (3.11)

4. Non-trivial Attacks. If the FC perceives some sensor produces a constant value of 0 or

1, then the FC can easily recognize the sensor is under attack. For this reason, in order

to reduce the probability of being detected, we assume that the adversaries ensure

p̃ (Ψp, θ) 6= 0 or 1, ∀p. (3.12)

It is worth mentioning that the adversary model assumed in (3.6) can change the after-

attack pmf to have any desired valid values satisfying (4.59), (3.11), and (3.12) through

proper choice of the two attack parameters ψp,0 and ψp,1. In this sense, it is a fairly general

adversary model.

3.3 Identification and Categorization of Attacked Sensors

In order to mitigate the effect caused by the adversaries, we seek to identify the attacked

sensors and categorize them into different groups according to the different attacks. In this

section, we investigate our ability to undertake these two tasks.

Let ST
∆
= ∪Pp=0Ap denote the set of all sensors in the sensor network, and let C0 and

C1(κ) define two collections of sets of the sensors, whose elements are the subsets of ST

C0
∆
= {S ⊂ ST | ∃ p s.t. S ⊂ Ap} , (3.13)

64



C1(κ)
∆
=
{
S ⊂ ST | ∃ S1, S2 ⊂ S and S1, S2 ∈ C0,

s.t. PS1 ≥ κ, PS2 ≥ κ, and S1 ∪ S2 /∈ C0

}
, (3.14)

where κ ∈ (0, ∆) is a constant. C0 is the collection of all homogeneous sets of sensors which

are also referred to as statistically identical sets, while C1(κ) is the collection of all non-

homogeneous sets of sensors made up from combining homogeneous parts which each occupy

more than a given percentage κ of all sensors. Every subset of Ap for any p is an example of

an element in C0, and one example of an element in C1(κ) is Al ∪ Am provided l 6= m.

Lemma 9 Consider a subset J of the sensors which includes a fixed percentage PJ
∆
=

|J |/N ≥ ∆ of all sensors in a sensor network such that J ∈ C0 ∪ C1(κ) for some κ. Let S1

and S2 denote two disjoint subsets of J with PS1 = PS2 = κ. Let dmin
∆
= min{dimpact, ddiff},

and hence 0 < dmin < 1 due to (4.59) and (3.11). Define

λ
∆
=

dmin

2 sup
ν
f (ν)

. (3.15)

Now, consider the hypothesis testing problem







H0 : J ∈ C0

H1 : J ∈ C1(κ)

(3.16)

and the decision rule

̟ (ũJ ) =







0, T (ũJ , κ) ≤ λ;

1, T (ũJ , κ) > λ,

(3.17)
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where

T (ũJ , κ)
∆
= sup

{S1,S2:PS1
,PS2

=κ}

{∣
∣
∣θ̂S1

NML − θ̂S2
NML

∣
∣
∣

}

(3.18)

and θ̂SNML denotes the naive ML estimate from (3.4) based on the observations from the subset

S. Let π0 and π1 denote the prior probabilities of H0 and H1 respectively. Under Assumption

8, if K is larger than some constant K∗, then

Perror
∆
= π0 Pr (Declare H1| H0) + π1 Pr (Declare H0| H1)

≤ CeκγKN , (3.19)

where γ is a negative constant, and C is a positive constant.

Proof: Consider a subset S of J with PS percent of all sensors in the sensor network,

which is only tampered with by the l-th attack, where l ∈ {0, 1, ..., P }. The naive ML estimate

θ̂SNML based on the observations from the sensors in S can be expressed as

θ̂SNML = τ − F−1 (ξS) , (3.20)

where ξS is defined as

ξS
∆
=

1

K |S|

∑

j∈S

K∑

k=1

(1− ũjk), (3.21)

and ũjk, for j ∈ S, follows a Bernoulli distribution with probability p̃ (Ψl, θ).

Under hypothesis H1, there are at least two disjoint statistically distinct groups of sen-

sors, say S∗
1 and S∗

2 with PS∗
1
= PS∗

2
= κ. Without loss of generality, assume S∗

1 and S∗
2 are

attacked by the l-th and m-th attacks respectively, and p̃ (Ψl, θ) > p̃ (Ψm, θ), where l 6= m
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and l,m ∈ {0, 1, ..., P }. Define T
(S∗

1 ,S∗
2 )

1
∆
= θ̂

S∗
1

NML − θ̂
S∗
2

NML. By employing (3.20), we can obtain

that

∣
∣
∣T

(S∗
1 ,S∗

2 )
1

∣
∣
∣ =

∣
∣
∣θ̂

S∗
1

NML − θ̂
S∗
2

NML

∣
∣
∣ =

∣
∣F−1

(
ξS∗

2

)
− F−1

(
ξS∗

1

)∣
∣

≥

[

inf
ν

∣
∣
∣
∣

∂F−1(ν)

∂ν

∣
∣
∣
∣

]
∣
∣ξS∗

2
− ξS∗

1

∣
∣

≥
1

sup
ν
f(ν)

∣
∣ξS∗

2
− ξS∗

1

∣
∣ , (3.22)

and therefore, (3.15), (3.21), and (3.22) yield an upper bound on the error probability under

hypothesis H1 that

Pr (Declare H0| H1) = Pr (T (ũJ , κ) ≤ λ| H1)

≤ Pr
(∣
∣
∣T

(S∗
1 ,S∗

2 )
1

∣
∣
∣ ≤ λ

∣
∣
∣H1

)

≤ Pr

(
∣
∣ξS∗

2
− ξS∗

1

∣
∣ ≤ λ sup

ν
f(ν)

∣
∣
∣
∣
H1

)

≤ Pr

(

ξS∗
1
− ξS∗

2
≥ −

1

2
dmin

∣
∣
∣
∣
H1

)

= Pr

(
κKN∑

i=1

Xi ≥ −
1

2
dminκKN

∣
∣
∣
∣
∣
H1

)

(3.23)

where {Xi} is a sequence of i.i.d. random variables with distribution

pX1

∆
= Pr (Xi = 1| H1) = [1− p̃ (Ψl, θ)] p̃ (Ψm, θ) , (3.24)

pX̄1

∆
= Pr (Xi = −1|H1) = [1− p̃ (Ψm, θ)] p̃ (Ψl, θ) , (3.25)
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and

pX0

∆
= Pr (Xi = 0| H1)

= p̃ (Ψl, θ) p̃ (Ψm, θ) + [1− p̃ (Ψl, θ)] [1− p̃ (Ψm, θ)] . (3.26)

Since E (Xi) = p̃ (Ψm, θ) − p̃ (Ψl, θ) ≤ −dmin < −1
2dmin, by the large deviations theory

[67,68], we know

Pr

(
κKN∑

i=1

Xi ≥ −
1

2
κKNdmin

∣
∣
∣
∣
∣
H1

)

≤ e
κγ

(l,m)
dmin

KN
, (3.27)

where the rate function γ
(l,m)
dmin

is defined as

γ
(l,m)
dmin

∆
= lim

κKN→∞
1

κKN
ln Pr

(
κKN∑

i=1

Xi ≥ −
1

2
κKNdmin

∣
∣
∣
∣
∣
H1

)

=
1

2
dminη

∗ + lnϕX(η
∗) < 0, (3.28)

and

ϕX(η)
∆
= E {exp (ηXi)} = pX0 + pX1e

η + pX̄1
e−η. (3.29)

Moreover, the quantity η∗ in (3.28) is the positive solution of the equation

d

dη
ϕX(η) = −

1

2
dminϕX(η). (3.30)
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By employing (3.24)–(3.26) and (3.28)–(3.30), the rate function γ
(l,m)
dmin

can be expressed as

γ
(l,m)
dmin

=
1

2
dmin ln bX + ln

[
pX0 + pX1bX + pX̄1

b−1
X

]
, (3.31)

where bX represents

bX
∆
=

−dminpX0 +
√

d2minp
2
X0

+ 4(4 − d2min)pX1pX̄1

2(2 + dmin)pX1

. (3.32)

Define

γ1
∆
= max

l,m:l 6=m
γ
(l,m)
dmin

, (3.33)

then by noting (3.23) and (3.27), we can obtain

Pr (Declare H0|H1) ≤ eκγ1KN . (3.34)

On the other hand, under hypothesis H0, all sensors in J are statistically identical

to each other. Without loss of generality, we assume J are tampered with by the l-th

attack, l ∈ {0, 1, ..., P }. Consider two disjoint subsets S1 and S2 of J with fixed percentages

PS1 = PS2 = κ respectively. Define

T
(S1,S2)
0

∆
= θ̂S1

NML − θ̂S2
NML = F−1 (ξS2)− F−1 (ξS1) , (3.35)
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and therefore, the error probability under hypothesis H0 is bounded above as per

Pr (Declare H1| H0) = Pr (T (ũJ , κ) > λ| H0)

= Pr



 sup
{S1,S2:PS1

,PS2
=κ}

{∣
∣
∣T

(S1,S2)
0

∣
∣
∣

}

> λ

∣
∣
∣
∣
∣
∣

H0





≤ 22|J | sup
{S1,S2:PS1

,PS2
=κ}

Pr
(∣
∣
∣T

(S1,S2)
0

∣
∣
∣ > λ

∣
∣
∣H0

)

(3.36)

= 22PJN Pr
(∣
∣
∣T

(S1,S2)
0

∣
∣
∣ > λ

∣
∣
∣H0

)

, (3.37)

where (3.37) is due to the fact that Pr
(∣
∣
∣T

(S1,S2)
0

∣
∣
∣ > λ

∣
∣
∣H0

)

is the same for every pair of

disjoint S1 and S2 with PS1 = PS2 = κ, since all observations from J are independent and

identically distributed under hypothesis H0.

Let E1 and E2 denote the events {ξS1 ∈ [ε, 1 − ε]} and {ξS2 ∈ [ε, 1 − ε]} respectively and

E
∆
= E1 ∩ E2, where ε is a positive small constant such that







0 < ε < 1−max
p
p̃ (Ψp, θ)

0 < ε < min
p
p̃ (Ψp, θ)

. (3.38)

Since it is assumed beforehand that F−1 (x) is differentiable on the open interval (0, 1), we

know F−1 (x) is a Lipschitz continuous function with some Lipschitz constant LF > 0 over
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the compact set [ε, 1 − ε]. Hence, by noticing (3.21), we can obtain that

Pr
(∣
∣
∣T

(S1,S2)
0

∣
∣
∣ > λ

∣
∣
∣H0

)

≤ Pr
({∣
∣
∣T

(S1,S2)
0

∣
∣
∣ > λ

}

∩ E

∣
∣
∣H0

)

+ Pr
(
E
C
∣
∣H0

)

≤ Pr ({LF |ξS2 − ξS1 | > λ} ∩ E| H0) + 2Pr
(
E
C
1

∣
∣H0

)

≤ Pr

(

LF

∣
∣
∣
∣
∣

1

κKN

κKN∑

i=1

Yi

∣
∣
∣
∣
∣
> λ

∣
∣
∣
∣
∣
H0

)

+ 2Pr
(
E
C
1

∣
∣H0

)

≤ 2Pr

(
κKN∑

i=1

Yi ≥ κKNaY

∣
∣
∣
∣
∣
H0

)

+ 2Pr
(
E
C
1

∣
∣H0

)
, (3.39)

where

aY
∆
= min

{
1

2
,
λ

LF

}

> 0, (3.40)

and under hypothesis H0, {Yi} is a sequence of i.i.d. random variables with distribution

pY1
∆
= Pr (Yi = −1|H0) = Pr (Yi = 1|H0)

= p̃ (Ψl, θ) [1− p̃ (Ψl, θ)] , (3.41)

and

pY0
∆
= Pr (Yi = 0|H0)

= [p̃ (Ψl, θ)]
2 + [1− p̃ (Ψl, θ)]

2. (3.42)

Since aY > E(Yi) = 0, by applying a similar argument as in (3.27)–(3.32), we can obtain

Pr

(
κKN∑

i=1

Yi ≥ κKNaY

∣
∣
∣
∣
∣
H0

)

≤ eκγ
(l)
aY
KN , (3.43)
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where the rate function γ
(l)
aY is given by

γ(l)aY = −aY ln bY + ln
[
pY0 + pY1

(
bY + b−1

Y

)]
< 0, (3.44)

and bY represents

bY
∆
=
aY pY0 +

√

a2Y p
2
Y0

+ 4(1 − a2Y )p
2
Y1

2(1 − aY )pY1
. (3.45)

Similarly, by employing (3.21) and the large deviations theory, we can obtain

Pr
(
E
C
1

∣
∣H0

)
= Pr ({ξS1 < ε} ∪ {ξS1 > 1− ε}|H0)

≤ Pr (ξS1 ≤ ε| H0) + Pr (ξS1 ≥ 1− ε|H0)

= Pr

(
κKN∑

i=1

Z̄i ≥ κKN (1− ε)

∣
∣
∣
∣
∣
H0

)

+ Pr

(
κKN∑

i=1

Zi ≥ κKN (1− ε)

∣
∣
∣
∣
∣
H0

)

≤ eκγ̄
(l)
ε KN + eκγ

(l)
ε KN , (3.46)

where Z̄i
∆
= 1−Zi, and {Zi} is a sequence of i.i.d. random variables with Bernoulli distribution

under hypothesis H0







pZ0

∆
= Pr (Zi = 0| H0) = p̃ (Ψl, θ)

pZ1

∆
= Pr (Zi = 1| H0) = 1− p̃ (Ψl, θ)

. (3.47)

The rate functions γ̄
(l)
ε and γ

(l)
ε in (3.46) can be written as

γ̄(l)ε = −(1− ε) ln
(1− ε)(1 − pZ0)

εpZ0

+ ln
1− pZ0

ε
< 0, (3.48)
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γ(l)ε = −(1− ε) ln
(1− ε)pZ0

ε(1 − pZ0)
+ ln

pZ0

ε
< 0. (3.49)

Taking into account (3.37), (3.39), (3.43), and (3.46), yields

Pr (Declare H1|H0)

≤ 21+2PJN
(

eκγ
(l)
aY
KN + eκγ̄

(l)
ε KN + eκγ

(l)
ε KN

)

≤ 6 exp

[(

γ∗ +
2PJ ln 2

κK

)

κKN

]

, (3.50)

where

γ∗
∆
= max

{

max
l
γ(l)aY ,max

l
γ(l)ε ,max

l
γ̄(l)ε

}

< 0. (3.51)

Thus, if K is large enough such that

K > K∗ ∆
= −

2 ln 2

κγ∗
≥ −

2PJ ln 2

κγ∗
, (3.52)

then γ0
∆
= γ∗ + 2PJ ln 2

κK < 0, and hence an upper bound on the error probability under

hypothesis H0 can be expressed as

Pr (Declare H1|H0) ≤ 6eκγ0KN . (3.53)

As a result, by (3.34) and (3.53), we conclude the proof by noting that

Perror = π0 Pr (Declare H1|H0) + π1 Pr (Declare H0|H1)

≤ 6π0e
κγ0KN + π1e

κγ1KN ≤ CeκγKN , (3.54)

where γ
∆
= max {γ0, γ1} < 0 and C

∆
= 2max {6π0, π1} is a positive constant.
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The rate functions merit some attention. Fig. 3.1 depicts the rate functions in (3.28),

(3.44), (3.48) and (3.49) for different p̃ (Ψl, θ), where aY = 1/4, dmin = 10−4, p̃ (Ψm, θ) =

0.009, and ε = 10−3. It is seen that the rate functions are all smaller than 0 for every p̃ (Ψl, θ)

and the dominant rate function can be different for different range of p̃ (Ψl, θ).
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Figure 3.1: Rate functions versus p̃ (Ψl, θ).

Lemma 9 demonstrates that the error probability in (3.19) decreases to 0 as either

K → ∞ or N → ∞, which implies that both enlarging the size of the sensor network and

increasing the number of time observations at each sensor can improve the FC’s ability to

determine whether a given set J ∈ C0 ∪ C1(κ) for some κ with PJ ≥ ∆ is homogeneous

or not. This fact motivates us to further investigate the identification and categorization

performance when K or N increases.
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3.3.1 The Number K of Time Samples at Each Sensor is Sufficiently Large

First, we study the identification and categorization performance we can obtain in the

scenario that the number K of time samples is sufficiently large.

Theorem 8 Take Assumption 8 as a given. For any N as K → ∞, the FC can always

identify from the observations, without further knowledge, a group of sensors which make

up P0 percent of all sensors such that this group contains zero percent attacked sensors with

probability 1. In this sense, one can always identify the unattacked sensors. Moreover, as

K → ∞, the FC is also able to identify the other P groups of sensors, which respectively

make up {Pp}
P
p=1 percent of all sensors, such that for p = 1, 2, ..., P , group p contains zero

percent sensors not experiencing attack p with probability 1.

Proof: By Lemma 9, for any given κ ∈ (0,∆) and any set J ∈ C0 ∪ C1(κ) of sensors

which includes at least ∆ percent of all sensors, we know from Lemma 9 that as K → ∞,

Perror → 0. Thus, for any given κ and J ∈ C0 ∪ C1(κ),

Pr (̟ (ũJ ) = 1 |J ∈ C1(κ) ) = 1, (3.55)

and so if the decision rule in (3.17) yields ̟ (ũJ ) = 0, then

J ∈ (C1(κ))
C. (3.56)

Consider

κ∗ =
1

N
. (3.57)
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By the definition of C1(κ) in (3.14), it is easy to see that C1(κ
∗) ⊂ C

C
0 . On the other hand,

for any S ∈ C
C
0 , ∃ nonempty S1 and S2 ⊂ S such that S1 ⊂ Al and S2 ⊂ Am for some l 6= m.

Since both S1 and S2 at least contain 1 sensor, PS1 ,PS2 ≥ 1/N = κ∗. Thus, S ∈ C1(κ
∗), and

hence C
C
0 ⊂ C1(κ

∗). As a result, C1(κ
∗) = C

C
0 , and therefore C0 ∪ C1(κ

∗) is the power set of

ST , that is, for any set J ⊂ ST with PJ ≥ ∆,

J ∈ C0 ∪ C1(κ
∗), (3.58)

By the result in (3.56), if the decision rule in (3.17) yields ̟ (ũJ ) = 0, then

J ∈ (C1(κ
∗))C = C0. (3.59)

Consequently, for any subset J ⊂ ST with PJ ≥ ∆, we can identify whether J ∈ C0 or

not by checking the output of the decision rule as K → ∞. In other words, we can determine

whether J is homogeneous or not. By examining all possible such subsets in such a way, we

can find the collection {Ãp}
P̃
p=0 of the largest subsets, where ∪P̃p=0Ãp = ST and Ãp ∈ C0 for

all p = 0, 1, ..., P̃ . Moreover, the collection of the largest subsets implies that Ãl ∪ Ãm 6∈ C0,

if l 6= m.

According to Assumption 8, {Ap}
P
p=0 is the collection of the largest subsets. Therefore,

P̃ = P and Ãp = Ap. Furthermore, the largest one in these P + 1 subsets is the set of

unattacked sensors and its corresponding percentage equals to P0. The rest of subsets in

{Ap}
P
p=0 are the sets of attacked sensors which are taken over by different types of attacks.
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As demonstrated by Theorem 8, the FC is able to perfectly identify the set of unattacked

sensors and categorize the attacked sensors into different groups according to their distinct

types of attacks as the number K of time samples at each sensor increases to infinity.

3.3.2 The Number N of Sensors is Sufficiently Large while the Number K

of Time Samples at Each Sensor is Finite

We now give a Theorem demonstrating the ability of the FC to identify and catego-

rize different subsets of sensors as the number N of sensors in the sensor network becomes

sufficiently large.

Theorem 9 Consider a sensor network with N sensors. Each sensor observes a finite num-

ber K of time samples which satisfies

K ≥ −
8 ln 2

γ∗min {∆∆0,∆2}
+ 1, (3.60)

where γ∗ are defined in (3.51). Under Assumption 8, as N → ∞, the FC can determine the

number of attacks in the sensor network. Moreover, for the p-th attack ∀p ≥ 0, the FC can

identify a corresponding group of sensors Ãp which satisfies

0 ≤ |P̃p − Pp| ≤ P∗
p < δ with probability 1, (3.61)

where P̃p
∆
= |Ãp|/N , P∗

p
∆
= |(Ãp\Ap) ∪ (Ap\Ãp)|/N , and

δ
∆
= −

4 ln 2

∆(K − 1)γ∗
. (3.62)

In addition, the group Ã0 which approximates the set A0 of unattacked sensors is still the
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largest group in {Ãp}
P
p=0.

Proof: See Appendix 3.8.1.

As Theorem 9 demonstrates, with a finite number of time samples at each sensor, even as

the numberN of sensors in the sensor network grows to infinity, the FC is able to ascertain the

number of attacks in the sensor network, but there is no guarantee that the FC can perfectly

categorize the sensors into different groups according to distinct attack types. Essentially,

Theorem 9 provides an upper bound which quantifies the maximum percentage of sensors

that are misclassified in finding every Ap. As stipulated in (3.62), this upper bound depends

on K and monotonically decreases to 0 as K increases to infinity. It is worth noting that the

upper bound given in Theorem 9 is very informative, as it reveals the relationship between the

accuracy of the categorization and the requirement of the number of time samples at each

sensor, which provides the FC with a tradeoff between the accuracy of the categorization

and time efficiency. More specifically, based on our derived results, the FC can obtain the

maximum percentage of misclassified sensors in the categorization for various K and choose

K such that the maximum percentage of misclassified sensors is tolerable for the scenario of

interest.

3.3.3 Discussion

It is worth mentioning that the assumption that the percentage of the unattacked sensors

is larger than any percentage of similarly attacked sensors is not necessary for Lemma 9,

Theorem 8 and 9. Once all the sensors have been categorized, the side information that the

unattacked sensors constitute the largest fractions of the sensors can help the FC to identify

the group of unattacked sensors.
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A particular note of interest is that the performance improvements in categorization

induced by increasing K or N are different. As specified in (3.19), Lemma 9 implies that

increasing K or N gives rise to the same effect on reducing the error probability of the

hypothesis test. However, Theorem 8 and Theorem 9 indicate that under Assumption 8,

the FC is able to determine the number P of attacks in the sensor network and achieve the

correct categorization as K → ∞, while as N → ∞ with finite but sufficiently large K, it

can be shown that the FC can also ascertain P and upper bound the maximum percentage

of misclassified sensors in the categorization. In this sense, the effect of enlarging the size

of the sensor network is not equivalent to that of increasing the number of time samples at

each sensor in the presence of attacks. In other words, adding more spatial observations is

different from adding more temporal observations in the sensor network under attack. The

reason is that the additional temporal observations can provide the FC with more information

than the additional spatial observations. To be specific, when the number of sensors in the

sensor network increases, the set of additional observations produced by the new sensors

is a mixture of differently attacked observations. Thus, the FC needs to categorize the

additional sensors into different groups according to distinct types of attacks, since the FC

is unaware of the attack each additional sensor undergoes. In contrast, as K increases, the

information buried in the additional temporal observations not only encompasses that implied

by the additional spatial observations, but also conveys that, according to Assumption 8, the

additional temporal observations from a certain sensor are statistically identical to those

original observations from the same sensor, and hence they are under the same attack. Thus,

the FC doesn’t need to categorize the additional temporal observations, since the additional

temporal observations will be automatically categorized once the FC has categorized the

original observations. For this reason, one can intuitively expect that the performance of
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categorization can be better ameliorated by increasing the number of time samples at each

sensor rather than increasing the number of sensors in the sensor network.

The number of hypothesis tests needed to implement the categorization approach pro-

posed in Theorem 8 and Theorem 9, which is referred to as its complexity, deserves some

discussion. Admittedly, the approach we proposed in Theorem 8 and Theorem 9 is to check

all possible subsets of the sensor network. It is observed that for a sensor network ST with

N sensors, the number of nonempty subsets is (2N − 1). In addition, each subset contains

at most (2N − 1) nonempty sub-subsets. Thus, the complexity of the proposed approach

must be smaller than 8N . For the scenario discussed in Theorem 8, as K increases, the

complexity remains the same and finite, and hence the proposed approach is amenable to

implementation. For the scenario in Theorem 9, the complexity of the proposed approach

can be very high when N is sufficiently large. Clearly, the task of identification and catego-

rization, no matter what algorithm is applied, must be arduous when the number of sensors

is large. The purpose of presenting the results in Theorem 9 is twofold. On one hand, the

results in Theorem 9 are a nice complement to those results in Theorem 8 which further the

understanding of the categorization performance in the two types of asymptotic regions and

highlight some differences between increasing N as opposed to K. On the other hand, we

feel it is useful to demonstrate that it is possible, at least in theory, to categorize the sensors

into different groups for these two cases in the specific sense previously discussed. These

results can encourage further investigation on the pursuit of more efficient identification and

categorization algorithms for large scale sensor networks.
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3.4 Fisher Information Matrix in the Presence of Attacks

As shown in Section 3.3, when each sensor accumulates sufficiently many time samples

or the size of the sensor network is sufficiently large, the FC is able to determine the number

of attacks in the sensor network and categorize the sensors into different groups according

to distinct types of attacks perfectly or with a tolerable small misclassification which can be

ignored. Thus, in the following part, we assume that the sensors have been well identified

and categorized into {Ap}
P
p=0. Then we attempt to estimate θ. There are two approaches:

(1) ignore the data at the attacked sensors. (2) Use the data at the attacked sensors. We can

easily take approach (1) without estimating any parameters describing the attacks. However,

to attempt to take approach (2), and potentially do better than approach (1), we will in-

vestigate the performance of the joint estimation of the desired parameter and the unknown

attack parameters in this section.

Although Section 3.3 showed that {Ap}
P
p=0 can be determined, the FC is still unaware of

the attack parameters Ψp for p = 1, 2, .., P . Let Θ denote a vector containing the parameter

θ along with all the unknown parameters of the attacks

Θ
∆
= [θ, ψ1,0, ψ1,1, ..., ψP,0, ψP,1]

T . (3.63)
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The log-likelihood function evaluated at ũ = r is

L (Θ) = lnPr (ũ = r |Θ)

= ln

P∏

p=0

∏

j∈Ap

K∏

k=1

1∏

r′
jk

=0

Pr
(
ũjk=r

′
jk |Θ

)1{rjk=r′jk}
=

P∑

p=0

∑

j∈Ap

K∑

k=1

1∑

r′
jk
=0

1{rjk = r′jk
}
ln Pr

(
ũjk = r′jk |Θ

)
.

In order to gain insight into the impact of attacks and evaluate the estimation perfor-

mance, we carry out an analysis of the FIM for Θ.

By noting that p̃ (Ψp, θ) = Pr (ũjk = 1 |θ ), ∀j ∈ Ap, the (l,m)-th element of the FIM for

Θ, therefore, is given by

[J (Θ)]l,m = −E{ ∂2L (Θ)

∂Θl∂Θm

}

= KN

P∑

p=0

Pp
p̃ (Ψp, θ) [1− p̃ (Ψp, θ)]

∂p̃ (Ψp, θ)

∂Θl

∂p̃ (Ψp, θ)

∂Θm
. (3.64)

Define φl
∆
= ∂p̃(Ψl,θ)

∂Θ . Then, the FIM described in (3.64) can be formulated as

J (Θ) = KN

P∑

p=0

Ppφpφ
T
p

p̃ (Ψp, θ) [1− p̃ (Ψp, θ)]
= KN

P∑

p=0

̺pΦp, (3.65)

where ̺p
∆
=

Pp

p̃(Ψp,θ)[1−p̃(Ψp,θ)]
and Φp

∆
= φpφ

T
p . Apparently, rank (Φp) = 1.

In the following theorem, we provide results concerning the FIM in the presence of

attacks.

Theorem 10 In the presence of attacks, the FIM J (Θ) for Θ described in (3.65) is singular.
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Proof: Since rank (Φp) = 1 for all p, and noting that the dimensions of J (Θ) are

(2P + 1)× (2P + 1), we can obtain

rank (J (Θ)) = rank



KN
P∑

p=0

̺pΦp





≤
P∑

p=0

rank (Φp) = P + 1 < 2P + 1,

and hence, the FIM J (Θ) for Θ is singular.

Theorem 10 reveals that we cannot jointly estimate the parameter θ and the attack

parameters with an accuracy that grows with KN . Actually, this negative conclusion is

conceivable. Reexamining the after-attack pmf in (3.7) for the sensor taken over by the p-th

attack, it is observed that for any given before-attack probability Pr (ujk = 1 |θ ) and after-

attack probability Pr (ũjk = 1 |θ ), the pair of attack parameters (ψp,0, ψp,1) of the p-th attack

in (3.6) is not unique. Moreover, there exists an infinite number of pairs of attack parameters

(ψp,0, ψp,1) which can map the given before-attack probability Pr (ujk = 1 |θ ) to the given

after-attack probability Pr (ũjk = 1 |θ ) by using (3.6). From the perspective of the FC, even

though the FC can ascertain the after-attack probability Pr (ũjk = 1 |θ ) as KN → ∞, the

FC is unable to determine the exact (ψp,0, ψp,1) employed by the p-th attack because of this

non-uniqueness. For this reason, it is reasonable that in the presence of attackers who modify

the data in the manner shown in (3.6), the corresponding FIM for Θ is singular. To this end,

it is of great interest to investigate approaches which lead to nonsingular FIMs to allow us to

efficiently estimate Θ and take advantage of attacked observations to improve the estimation

performance for the parameter θ.
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3.5 Time-variant Quantization Approach to Achieve Nonsin-

gular FIM

In this section, we first develop the time-variant quantization approach (TQA) to over-

come the singular FIM in the presence of attacks. We then examine the CRB performance

of our approach and compare it to that of the simple estimation approach where only the set

A0 of unattacked sensors are used to estimate the parameter θ. Furthermore, necessary and

sufficient conditions are derived under which the attacked observations can be utilized in the

proposed fashion to improve the CRB performance for estimating the parameter θ.

3.5.1 Time-variant Quantization Approach

In the time-variant quantization approach, the quantizer at each sensor is equipped with

a set of Q distinct thresholds Q = {τ1, τ2, ..., τQ}. In each of Q different time slots {Tt}
Q
t=1,

where Tt contains Kt time samples and
∑Q

t=1Kt = K, the quantizer employs a different

threshold to quantize its time samples into one-bit observations which are sent to the FC.

We assume that the length Kt of each time slot Tt is the same for all the sensors, and in each

time slot Tt, all sensors use an identical threshold τt to quantize their time samples. In this

manner, the after-attack pmf of the quantized observations received at the FC in the t-th

time slot can be written using, ∀k ∈ Tt and j ∈ Ap,

p̃ (Ψp, θ, t)
∆
= Pr (ũjk = 1 |θ )

= (1− ψp,0) Pr (ujk = 0 |θ ) + ψp,1 Pr (ujk = 1 |θ )

= (1− ψp,0 − ψp,1)F (τt − θ) + ψp,1, (3.66)
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Then, the log-likelihood function of the TQA, evaluated at ũ = r, is given by

LTQA (Θ)

=

P∑

p=0

∑

j∈Ap

Q
∑

t=1

∑

k∈Tt

1∑

r′
jk

=0

1{rjk = r′jk
}
ln Pr

(
ũjk = r′jk |Θ

)
.

Applying a similar argument as in (3.64), the (l,m)-th element of the corresponding FIM for

Θ can be calculated as

[JTQA (Θ)]l,m = N

P∑

p=0

Q
∑

t=1

KtPp
∂p̃(Ψp,θ,t)

∂Θl

∂p̃(Ψp,θ,t)
∂Θm

p̃ (Ψp, θ, t) [1− p̃ (Ψp, θ, t)]
. (3.67)

Define

φp,t
∆
= ̺p,t

∂p̃ (Ψp, θ, t)

∂Θ

= ̺p,t

[
∂p̃ (Ψp, θ, t)

∂θ
,
∂p̃ (Ψp, θ, t)

∂ψ1,0
,
∂p̃ (Ψp, θ, t)

∂ψ1,1
,

...,
∂p̃ (Ψp, θ, t)

∂ψP,0
,
∂p̃ (Ψp, θ, t)

∂ψP,1

]T

, (3.68)

where ̺p,t
∆
=
(

KtPp

p̃(Ψp,θ,t)[1−p̃(Ψp,θ,t)]

) 1
2
. Therefore, for all t and p ≥ 1, we can obtain

φp,t = ̺p,t[− (1− ψp,0 − ψp,1) f (τt − θ) , 0,

..., 0, −F (τt − θ)
︸ ︷︷ ︸

the (2p)-th element

, −F (τt − θ) + 1
︸ ︷︷ ︸

the (2p+1)-th element

, 0, ..., 0]T , (3.69)

while, for all t and p = 0,

φ0,t = ̺0,t[f (τt − θ) , 0, ..., 0]T . (3.70)
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As a result, the FIM in (3.67) can be rewritten as

JTQA (Θ) = N

P∑

p=0

Q
∑

t=1

φp,tφ
T
p,t

= N

P∑

p=0

ΞpΞ
T
p = N

P∑

p=0

Γp, (3.71)

where

Ξp
∆
= [φp,1,φp,2, ...,φp,Q] , (3.72)

Γp
∆
= ΞpΞ

T
p � 0. (3.73)

Theorem 11 If Q ≥ 2, then the FIM for Θ in the TQA, i.e., JTQA (Θ) described in (3.71),

is nonsingular for any value of θ.

Proof: Since F (·) is a strictly monotonic function, F (τl − θ) 6= F (τm − θ) provided

l 6= m. This implies φp,l and φp,m in (3.69) are linearly independent for p ≥ 1. As a result,

if Q ≥ 2, then ∀p ≥ 1,

rank (Γp) = rank
(
ΞpΞ

T
p

)
= rank (Ξp)

≥ rank (Ξp ({2p, 2p + 1} , {:})) = 2. (3.74)

Noticing that

Γp ({2p, 2p + 1} , {2p, 2p + 1}) = Ξp ({2p, 2p+ 1} , {:}) [Ξp ({2p, 2p + 1} , {:})]T � 0, (3.75)
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we can obtain

rank (Γp ({2p, 2p + 1} , {2p, 2p + 1}))

= rank (Ξp ({2p, 2p + 1} , {:})) = 2, ∀p ≥ 1. (3.76)

and hence

Γp ({2p, 2p + 1} , {2p, 2p + 1}) ≻ 0, ∀p ≥ 1. (3.77)

Moreover, since for all p ≥ 1,

Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1})

= Ξp ({1, 2p, 2p + 1} , {:}) [Ξp ({1, 2p, 2p + 1} , {:})]T � 0,

we know that for any w 6= 0,

wTΓp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1})w ≥ 0. (3.78)

Noting that Γ0 only contains one nonzero element which is [Γ0]1,1 =
Q∑

t=1
̺20,tf

2 (τt − θ) >

0, yields ∀p ≥ 1 and for any w = (ω,ν)T 6= 0,

wT

([
1

P
Γ0 + Γp

]

({1, 2p, 2p + 1} , {1, 2p, 2p + 1})

)

w

=
ω2

P
[Γ0]1,1 +wTΓp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1})w

(3.79)
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If ω 6= 0, then by (3.78) and (3.79), we can obtain

wT

([
1

P
Γ0 + Γp

]

({1, 2p, 2p + 1} , {1, 2p, 2p + 1})

)

w

≥
ω2

P
[Γ0]1,1 > 0. (3.80)

If ω = 0, then ν 6= 0, and hence (3.79) simplifies to

wT

([
1

P
Γ0 + Γp

]

({1, 2p, 2p + 1} , {1, 2p, 2p + 1})

)

w

= νTΓp ({2p, 2p + 1} , {2p, 2p + 1}) ν > 0, (3.81)

where we have employed Γp ({2p, 2p + 1} , {2p, 2p + 1}) ≻ 0, ∀p ≥ 1 in (3.77).

In consequence, we have shown that ∀p ≥ 1,

[
1

P
Γ0 + Γp

]

({1, 2p, 2p + 1} , {1, 2p, 2p + 1}) ≻ 0. (3.82)

As a result, for any given vector v 6= 0, we can obtain

vT





P∑

p=0

Γp



v =

P∑

p=1

vT
(
1

P
Γ0 + Γp

)

v

=

P∑

p=1

{

vT (1, 2p, 2p + 1)

([
1

P
Γ0 + Γp

]

({1, 2p, 2p + 1} , {1, 2p, 2p + 1})

)

v (1, 2p, 2p + 1)

}

> 0. (3.83)

Thus,
P∑

p=0
Γp ≻ 0 for Q ≥ 2, and hence JTQA (Θ) described in (3.71) is nonsingular.
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Theorem 11 implies that as long as K ≥ 2, we can always obtain a nonsingular FIM

as described in (3.71), since we can divide the time samples into at least two time slots and

employ distinct thresholds to quantize the time samples in different time slots. To gain insight

into the proposed TQA estimation scheme, we now revisit the relationship in (3.6) between

the before-attack pmf, the after-attack pmf, and the pair of attack parameters (ψp,0, ψp,1).

It is seen from (3.7) that for any given before-attack pmf and after-attack pmf, the attack

parameters pair (ψp,0, ψp,1) will span a one dimensional space since if ψp,0 is chosen then ψp,1

is also determined to satisfy the equation shown in (3.7). If we change the threshold of the

quantizer at each sensor, we can obtain another pair of before-attack and after-attack pmfs

which must be related by the same (ψp,0, ψp,1) under our assumption that these parameters

are fixed over the estimation interval. This second set of equations combined with the first

set will yield a unique solution for (ψp,0, ψp,1). Consequently, it is intuitively possible for the

FC to jointly estimate the parameter θ and the attack parameters simultaneously when the

quantized observations are generated by at least two distinct thresholds.

3.5.2 CRB Performance Analysis of the Time-variant Quantization Ap-

proach

The main goal of the sensor network is to estimate the parameter θ. Hence, the FC can

carry out a simple estimation approach (SEA) which just utilizes the set A0 of unattacked

sensors to estimate the parameter θ rather than employing the TQA to obtain both the

estimate of θ and the estimates of the attack parameters with the purpose of improving

the estimation of θ. The SEA is obviously easier to implement in practice and can lower

the computational complexity of the estimation by reducing the number of parameters to

be estimated from 2P + 1 to 1. However, the SEA discards the possible information on
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θ buried in the attacked observations which may lead to performance loss in estimating θ

when compared to the TQA. In this subsection, the CRB performance of estimating θ by

employing the TQA is compared to that in the SEA. The comparisons are made assuming

both approaches use the same set of Q distinct thresholds {τ1, τ2, ..., τQ} over the same Q

different time slots Tt to provide a fair comparison. We also develop necessary and sufficient

conditions under which the CRB performance of estimating θ can be improved by using the

attacked observations in our proposed fashion.

For the SEA, the FC ignores the observations from the attacked sensors, and only makes

use of the unattacked observations to estimate the parameter θ. By noting that

[Γ0]1,1 =

Q
∑

t=1

KtP0

p̃ (Ψ0, θ, t) [1− p̃ (Ψ0, θ, t)]

[
∂p̃ (Ψ0, θ, t)

∂θ

]2

= P0

Q
∑

t=1

Ktf
2 (τt − θ)

F (τt − θ) [1− F (τt − θ)]
, (3.84)

the Fisher Information Matrix in (3.71) degenerates to a scalar which can be expressed as

JSEA (θ) = N [Γ0]1,1 = NP0

Q
∑

t=1

Ktf
2 (τt − θ)

F (τt − θ) [1− F (τt − θ)]
.

Hence, the corresponding CRB performance of SEA for θ is given by

CRBSEA (θ) =
1

JSEA (θ)

=
1

NP0

{
Q
∑

t=1

Ktf
2 (τt − θ)

F (τt − θ) [1− F (τt − θ)]

}−1

. (3.85)

On the other hand, considering the TQA which takes advantage of attacked observations

to estimate the parameter θ, the CRB of estimating θ is the (1, 1)-th element of the inverse
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of the FIM described in (3.71), i.e. CRBTQA (θ) =
[

J−1
TQA (Θ)

]

1,1
.

Using the expression J−1
TQA (Θ)JTQA (Θ) = I, we have following identities,

[

J−1
TQA (Θ)

]

1,1
[JTQA (Θ)]1,1

+

2P+1∑

l=2

[

J−1
TQA (Θ)

]

1,l
[JTQA (Θ)]l,1 = 1, (3.86)

and ∀m = 2, 3, ..., 2P + 1,

[

J−1
TQA (Θ)

]

1,1
[JTQA (Θ)]1,m

+
2P+1∑

l=2

[

J−1
TQA (Θ)

]

1,l
[JTQA (Θ)]l,m = 0. (3.87)

Since there is one nonzero element in Γ0 which is the (1, 1) element and Γv only has 9

nonzero elements at the intersections of the 1st, 2v-th, and (2v + 1)-th rows and columns

for v = 1, 2, ..., P , the nonzero elements of Γv and Γv′ do not overlap except for the (1, 1)

element provided that v 6= v′. As a result, taking into account JTQA (Θ) = N
P∑

v=0
Γv from

(3.71), (3.86) can be rewritten as

[

J−1
TQA (Θ)

]

1,1






[Γ0]1,1 +

P∑

p=1

hp (Θ)






=

1

N
, (3.88)
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where

hp (Θ)
∆
= [Γp]1,1 +

[

J−1
TQA (Θ)

]

1,2p
[

J−1
TQA (Θ)

]

1,1

[Γp]2p,1

+

[

J−1
TQA (Θ)

]

1,2p+1
[

J−1
TQA (Θ)

]

1,1

[Γp]2p+1,1. (3.89)

Similarly, (3.87) simplifies to

[

J−1
TQA (Θ)

]

1,1
[Γp]1,2p +

[

J−1
TQA (Θ)

]

1,2p
[Γp]2p,2p

+
[

J−1
TQA (Θ)

]

1,2p+1
[Γp]2p+1,2p = 0, (3.90)

[

J−1
TQA (Θ)

]

1,1
[Γp]1,2p+1 +

[

J−1
TQA (Θ)

]

1,2p
[Γp]2p,2p+1

+
[

J−1
TQA (Θ)

]

1,2p+1
[Γp]2p+1,2p+1 = 0 (3.91)

for all p = 1, 2, ..., P .

Note that Γp is symmetric for all p. Then from (3.90) and (3.91),
[

J−1
TQA (Θ)

]

1,2p
and

[

J−1
TQA (Θ)

]

1,2p+1
can be determined by

[

J−1
TQA (Θ)

]

1,2p

=
[Γp]1,2p+1[Γp]2p,2p+1−[Γp]1,2p[Γp]2p+1,2p+1

[Γp]2p,2p[Γp]2p+1,2p+1−
{

[Γp]2p,2p+1

}2

[

J−1
TQA (Θ)

]

1,1
, (3.92)
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and

[

J−1
TQA (Θ)

]

1,2p+1

=
[Γp]1,2p[Γp]2p,2p+1 − [Γp]1,2p+1[Γp]2p,2p

[Γp]2p,2p[Γp]2p+1,2p+1 −
{

[Γp]2p,2p+1

}2

[

J−1
TQA (Θ)

]

1,1
. (3.93)

Substituting (3.92) and (3.93) into (3.89), we obtain

hp (Θ)

= [Γp]1,1+
[Γp]1,2p+1[Γp]2p,2p+1−[Γp]1,2p[Γp]2p+1,2p+1

[Γp]2p,2p[Γp]2p+1,2p+1−
{

[Γp]2p,2p+1

}2 [Γp]1,2p

+
[Γp]1,2p[Γp]2p,2p+1 − [Γp]1,2p+1[Γp]2p,2p

[Γp]2p,2p[Γp]2p+1,2p+1 −
{

[Γp]2p,2p+1

}2 [Γp]1,2p+1

=
det (Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1}))

det (Γp ({2p, 2p + 1} , {2p, 2p + 1}))
, (3.94)

which yields

CRBTQA (θ) =
[

J−1
TQA (Θ)

]

1,1

=
1

N






[Γ0]1,1 +

P∑

p=1

hp (Θ)







−1

=
1

N

{

[Γ0]1,1

+
P∑

p=1

det (Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1}))

det (Γp ({2p, 2p + 1} , {2p, 2p + 1}))

}−1

(3.95)

where Γp is defined in (3.73).

In the following theorem, we provide the result with regard to the necessary and sufficient
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conditions under which the CRB performance of estimating θ can be improved by employing

TQA.

Theorem 12 The CRB performance for θ can be improved by utilizing the observations from

the set of attacked sensors in our proposed fashion, if and only if at least one member of the

set {Ξp}
P
p=1 has rank (Ξp) = 3, where Ξp is defined in (3.72). Otherwise, there is no CRB

improvement, but also no loss in performance, from utilizing the attacked observations.

Proof: Since Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1}) � 0 and Γp ({2p, 2p + 1} , {2p, 2p + 1}) ≻

0, we can conclude that ∀p = 1, 2, ..., P ,

det (Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1}))

det (Γp ({2p, 2p + 1} , {2p, 2p + 1}))
≥ 0. (3.96)

Consequently, by noticing (3.95), we can obtain

CRBTQA (θ) ≤
1

N

{

[Γ0]1,1

}−1
= CRBSEA (θ) . (3.97)

Moreover, the equality holds if and only if ∀p = 1, 2, ..., P ,

det (Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1})) = 0, (3.98)

which implies that

rank (Ξp) = 2, ∀p = 1, 2, ..., P. (3.99)

Noting that Ξp only contains at most 3 nonzero rows, we know rank (Ξp) ≤ 3. As a result, in

order to improve the CRB for θ by taking advantage of the attacked observations, we must

have rank (Ξp) = 3 for some p.
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The result in Theorem 12 implies that a proper estimation approach will never lead to

any loss in asymptotic performance from using the observations from the attacked sensors.

In order to obtain rank (Ξp) = 3 for some p, the number of thresholds Q cannot be less than

3. So that the number of time samples K at each sensor is required to be larger or equal to

3. Generally, if Q is large, it is easy to obtain rank (Ξp) = 3 for some p. However, for some

specific attacks, using the observations from the attacked sensors in the fashion of the TQA

will not provide better asymptotic estimation performance. For example, if for all p, the

p-th attack sets ψp,0 + ψp,1 = 1, then each Ξp only contains at most 2 nonzero rows for any

thresholds. Hence rank (Ξp) = 2 < 3 for all possible set of thresholds Q = {τ1, τ2, ..., τQ}. For

this scenario, it is seen from (3.7) that the after-attack pmf is independent of the parameter

θ, thus it is obvious that the attacked observations cannot improve the CRB for θ.

In order to evaluate the superiority of TQA, we are primarily interested in the relative

CRB gain which is defined as the ratio of the CRB for θ when applying SEA relative to that

employing TQA. From (3.85) and (3.95), the relative CRB gain can be obtained as

CRBrelative gain (θ)
∆
=
CRBSEA (θ)

CRBTQA (θ)

=

1
N

{

[Γ0]1,1

}−1

1
N

{

[Γ0]1,1 +
P∑

p=1

det(Γp({1,2p,2p+1},{1,2p,2p+1}))
det(Γp({2p,2p+1},{2p,2p+1}))

}−1

= 1 +
1

[Γ0]1,1

P∑

p=1

det (Γp ({1, 2p, 2p + 1} , {1, 2p, 2p + 1}))

det (Γp ({2p, 2p + 1} , {2p, 2p + 1}))
, (3.100)

which is not a function of N but depends on the percentage of attacked sensors, the thresholds

Q = {τ1, τ2, ..., τQ}, the attack parameters, and the value of θ. It can be shown from (3.100)

that if the attack parameters (ψp,0, ψp,1) are close to (0, 0) or (1, 1) for all p, the FC can
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expect to attain significant relative CRB gain by making use of attacked observations.

3.6 Numerical Results

3.6.1 Identification and Categorization of Attacked Sensors

In this subsection, we first test the performance of the identification and categorization

technique described in Section 3.3 for some example cases. Specifically, we consider a sensor

network consisting of N = 10 sensors, which is subject to 2 attacks. The 2 attacks control

30% and 20% of sensors respectively, and modify their observations with attack parameters

(ψ1,0, ψ1,1) = (0.2, 0.8) and (ψ2,0, ψ2,1) = (0.7, 0.1). The parameter to be estimated is θ = 1,

the threshold of the quantizer is τ = 1, ∆0 = ∆ = 20%, and the additive noise obeys a

standard normal distribution. Fig. 3.2 depicts the Monte Carlo approximation (200 times)

of the ensemble average of the percentage of all mis-categorized sensors as a function of the

numberK of time samples at each sensor. As expected from our analysis, the curve in Fig. 3.2

clearly shows a diminishing trend of the average percentage of mis-categorized sensors and

this percentage appears to decrease towards 0 as the number K of time samples at each

sensor increases. This implies that the FC can identify and categorize the attacked sensors

into different groups according to distinct types of attacks to achieve any desired level of

accuracy for a sufficiently large K.

Next, we present numerical results in support of our theoretical analysis which illus-

trate the CRB performance of our proposed TQA for estimating θ. The numerical re-

sults also corroborate the superiority of the CRB performance of the proposed TQA when

compared to that of the SEA. In the following subsections, we consider a sensor network

consisting of N = 100 sensors. The additive noise obeys a standard normal distribu-
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Figure 3.2: Identification and categorization of attacked sensors.

tion. The length of each time slot is fixed at Kt = 10, and the set of 801 thresholds is

Q = {0,−0.125, 0.125,−0.250, 0.250, ...,−5, 5}.

3.6.2 CRB Comparison between the TQA and the SEA

We firstly compare the CRB performance for estimating θ by using the proposed TQA

to that obtained by using the SEA. Here, the parameter to be estimated is θ = 2 and two

different attacks (P = 2) are considered. The first attack tampers with 25% of the sensors

with attack probabilities ψ1,0 = 0.9 and ψ1,1 = 0.95. The other attack takes over 20% of

the sensors while using the attack probabilities ψ2,0 = 0.15 and ψ2,1 = 0.2. Fig. 3.3 depicts

the CRB of estimating θ for the two approaches with a varying number of thresholds Q

from 400 to 800. In the numerical results, for a given number of thresholds Q, each sensor

observes QKt time samples, and picks the first Q thresholds from the set of thresholds Q to
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quantize the time samples in different time slots. It is seen that the CRB for both approaches

decreases as Q, the number of thresholds, grows, since the number of time samples at each

sensor increases. Moreover, it is easy to see that the relative CRB gain increases with Q. In

addition, Fig. 3.3 illustrates that the TQA provides significant CRB performance gain when

compared to the SEA, which implies that the set of thresholds leads to rank (Ξp) = 3 for at

least one p.
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Figure 3.3: Comparison between the CRB for θ when employing either the TQA or the SEA.

3.6.3 Relative CRB Gain versus the Percentage of Attacked Sensors under

One Attack

We now study the relationship between the relative CRB gain in (3.100) and the percent-

age of attacked sensors. To simplify the problem, we consider a scenario where P = 1, the

parameter to be estimated is θ = 2, and each sensor observes Q = 801 time slots of time sam-
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ples which are quantized by employing the threshold set Q. Fig. 3.4 illustrates the relative

CRB gain as the percentage of the compromised sensors varies from 0% to 45% for different

statistical attack matrices. The relative CRB gain for the distinct statistical attack matrices

with ψ1,0 = ψ1,1 = 0.05, ψ1,0 = ψ1,1 = 0.15, ψ1,0 = ψ1,1 = 0.25, and ψ1,0 = ψ1,1 = 0.35

are marked with rectangles, circles, diamonds, and triangles respectively. It is seen that

the relative CRB gain increases with the percentage of attacked sensors for all cases. As

expected from the discussion after the proof of Theorem 12, Fig. 3.4 depicts that for a given

percentage of attacked sensors, the larger the difference between ψ1,0 = ψ1,1 and 0.5 (where

ψ1,0 + ψ1,1 = 1), the larger the relative CRB gain that the corresponding TQA enjoys.
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Figure 3.4: Relative CRB gain versus the percentage of attacked sensors.
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3.7 Summary

In this chapter, we study the distributed estimation problem using quantized data in the

presence of attacks. The sensor data modifications implemented by the adversaries are sta-

tistically characterized by a set of unknown probability transition matrices. We demonstrate

that the FC is able to identify the attacked sensors and categorize these sensors into different

subsets according to distinct types of attacks perfectly or with a very small percentage of

misclassified sensors, as K → ∞ or N → ∞ respectively, provided that the set of unattacked

sensors is larger than any of these subsets. In order to improve the estimation performance by

utilizing the attacked sensors, a joint estimation of the statistical description of the attacks

and the parameter to be estimated is considered. However, it is shown that the corresponding

FIM is singular if the previously used data quantization approach is employed. Thus, it is

not possible to accurately estimate the parameters using this approach with an estimate that

would always become more and more accurate as we increase the number of observations.

Aiming to overcome this, the TQA is proposed which divides the observation time interval

at each sensor into several time slots and employs distinct thresholds to quantize the time

samples in different time slots. If the number of time samples at each sensor is not less than

2, then it can be proven that the FIM for all unknown parameters in TQA is nonsingular

which implies that the statistical properties of the attacks and the parameter to be estimated

can be accurately estimated with a sufficiently large number of observations. We also derive

necessary and sufficient condition under which the attacked observations can be taken advan-

tage of to improve the asymptotic estimation performance. A notable fact is that for many

cases, significant improvement in CRB performance for the parameter to be estimated can be

attained by making use of attacked observations in our proposed fashion. However, for some
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specific cases, using the attacked observations will not provide better asymptotic estimation

performance. It is worth mentioning that both the theoretical analysis and numerical results

illustrate that the improvement in CRB performance by utilizing attacked observations in

our proposed fashion depends not only on the statistical description of the attacks and the

parameter to be estimated, but also on the sets of thresholds of the quantizer, which moti-

vates us to pursue the optimum quantizer design for distributed estimation in the presence

of attacks in future work.

3.8 Appendix

3.8.1 Proof of Theorem 9

In order to satisfy the condition in Lemma 9, that is, K > K∗ = −2 ln 2/(κγ∗) as shown

in (3.52), we consider

κ
∆
= −

2 ln 2

γ∗(K − 1)
. (3.101)

Hence, from (3.60), we can obtain that

κ ≤ min
{
∆∆0,∆

2
}
/4. (3.102)
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Let CC denote the complement of C0 ∪ C1(κ), that is,

CC
∆
= (C0 ∪ C1(κ))

C

= {S | S 6⊂ Ap,∀ p}

∩
{
S | ∀ S1, S2 ⊂ S, {S1, S2} ⊂ C0, and S1 ∪ S2 /∈ C0

s.t. PS1 < κ or PS2 < κ
}
. (3.103)

By Lemma 9, for any subset J ∈ C0 ∪ C1(κ) of sensors with percentage PJ ≥ ∆, we

know that as N → ∞, Perror → 0, and hence

Pr (̟ (ũJ ) = 1 |J ∈ C1(κ) ) = 1.

Therefore, for any subset J ⊂ ST , if ̟ (ũJ ) = 0, then J ∈ C0 ∪ CC.

From the assumption in (3.10), we know that P < 1/∆ and

κP < ∆2/(4∆) = ∆/4 (3.104)

by employing (3.102). Hence, if J ∈ C0 ∪ CC and PJ ≥ ∆, then by the definition of C0

and CC in (3.13) and (3.103), most of sensors in J must come from some unique Al which

constitute the core subset EJ of J , and the rest of sensors in J come from the other Ap,

∀p 6= l which constitute the minor part ĒJ of J . To be specific, the core subset EJ of J is

defined as

EJ
∆
= J ∩ Al (3.105)
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for some unique l, which satisfies

PEJ
∆
= |EJ |/N > PJ − κP > PJ −∆/4 ≥ 3∆/4, (3.106)

and the minor part ĒJ of J can be expressed as

ĒJ
∆
= J \EJ =

P
∪

p=0, p 6=l
ĒpJ (3.107)

where ĒpJ
∆
= (J \EJ ) ∩ Ap = J ∩ Ap for all p 6= l and moreover

PĒp
J

∆
= |ĒpJ |/N = |J ∩ Ap|/N < κ. (3.108)

The first inequality in (3.106) and the inequality in (3.108) are due to the definition of C0

and CC in (3.13) and (3.103). The second inequality in (3.106) is from (3.104). Furthermore,

by (3.104), the percentage of the minor part ĒJ of J is upper bounded by

PĒJ
∆
=
∣
∣ĒJ
∣
∣ /N =

∣
∣
∣
∣

P
∪

p=0, p 6=l
ĒpJ

∣
∣
∣
∣
/N

=

P∑

p=1, p 6=l
PĒp

J
< κP < ∆/4. (3.109)

By checking all possible such subsets J with PJ ≥ ∆ and̟ (ũJ ) = 0, one can determine

the collection of the largest subsets {Ãp}
P̃
p=0 ⊂ C0 ∪ CC which satisfies







̟
(

ũÃp

)

= 0, P̃p ≥ ∆ ∀p = 0, .., P̃

|Ãi ∩ Ãj|/N < 2κP < 2κ/∆ < ∆/2, ∀i 6= j

P̃
∪
p=0

Ãp =
P
∪
p=0

Ap

, (3.110)
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where the collection of the largest subsets implies that one is unable to replace any Ãl with

Ã∗
l such that |Ã∗

l | > |Ãl| and the new collection of subsets still meets (3.110), and there is

not any other collection of subsets {Ã∗
l }
L
l=0 with L < P̃ which also satisfies (3.110).

Since Ãp ∈ C0 ∪ CC and P̃p ≥ ∆ for all p as defined by (3.110), we can replace J with

any Ãp in (3.106), (3.107), (3.108), and (3.109), and the results still hold. The proof of

Theorem 9 can be completed by proving the following bullets.

• The number of groups in {Ãp}
P̃
p=0 equals to the number of attacks, i.e., P̃ = P .

Suppose P̃ < P . Replacing J with Ãl in (3.106), we know that for each l = 0, 1, ..., P̃ ,

Ãl has a core subset EÃl
⊂ Al̃ for some unique l̃. Thus, there is at least one Ap which doesn’t

contain any core subset of Ãl, ∀l = 0, 1, ..., P̃ . By employing (3.104) and replacing J with

Ãl in (3.108), we can obtain

∣
∣
∣
∣

P̃
∪
l=0

(Ãl ∩ Ap)

∣
∣
∣
∣
/N ≤

P̃∑

l=0

∣
∣
∣Ãl ∩ Ap

∣
∣
∣ /N =

P̃∑

l=0

PĒp

Ãl

< κ(P̃ + 1) ≤ κP < ∆/4 < Pp. (3.111)

Thus,

Ap 6⊂
P̃
∪
l=0

Ãl, (3.112)

which contradicts the third equation in (3.110). Therefore, P̃ ≥ P .

On the other hand, noting that {Ap}
P
p=0 ⊂ C0 are disjoint and Pp ≥ ∆, ∀p as shown in

(3.10), {Ap}
P
p=0 is a collection of subsets satisfying (3.110). Since {Ãp}

P̃
p=0 is the collection

of the largest subsets, we know P̃ ≤ P . It follows that P̃ = P , since we have proven P̃ ≥ P .

• The core subsets of different groups in {Ãl}
P̃
l=0 are tampered with by distinct types of

attacks.
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Suppose there are two core subsets controlled by the same attack type, then there exists

some Ap which contains at least two core subsets of different groups in {Ãl}
P̃
l=0. Since P̃ = P

and every Ãl only has one core subset which comes from some unique Ap, there is at least

one Ap which doesn’t contain any core subset of Ãl, ∀l = 0, 1, ..., P̃ . By the same argument

in (3.111) and (3.112), we reach a contradiction. Therefore, for different groups Ãl and Ãm,

∀l 6= m, their core subsets EÃl
and EÃm

satisfy that if for some p, EÃl
⊂ Ap, then

EÃm
6⊂ Ap. (3.113)

As a result, without loss of generality, we renumber the indices of {Ãl}
P̃
l=0 to satisfy that

the core subset EÃl
of Ãl is contained in Al for all l = 0, 1, ..., P in the following part.

• For all m = 0, 1, ..., P , P̃0 > P̃m and 0 ≤ |P̃m − Pm| = P∗
m < δ.

Since EÃm
⊂ Am, by replacing J with Ãm in (3.109), an upper bound on |Ãm\Am|/N

is given by
∣
∣
∣Ãm\Am

∣
∣
∣ /N =

∣
∣
∣Ãm\EÃm

∣
∣
∣ /N = PĒ

Ãm
< κP, (3.114)

For all p 6= m, by (3.113), we know that EÃp
6⊂ Am, and hence by replacing J with Ãp in

(3.108), we can obtain

∣
∣
∣Ãp ∩ Am

∣
∣
∣ /N =

∣
∣
∣ĒmÃp

∣
∣
∣ /N = PĒm

Ãp

< κ, (3.115)
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which yields

∣
∣
∣
∣

P̃
∪

p=0, p 6=m
(Ãp ∩ Am)

∣
∣
∣
∣
/N

≤
P̃∑

p=0, p 6=m

∣
∣
∣Ãp ∩ Am

∣
∣
∣/N < κP. (3.116)

Since ST =
P
∪
p=0

Ap =
P̃
∪
p=0

Ãp, we can obtain ÃC
m = (

P̃
∪
p=0

Ãp)\Ãm ⊂
P̃
∪

p=0,p 6=m
Ãp, and hence, by

employing (3.116),

∣
∣
∣Am\Ãm

∣
∣
∣ /N =

∣
∣
∣Am ∩ ÃC

m

∣
∣
∣ /N

≤

∣
∣
∣
∣

P̃
∪

p=0, p 6=m
(Ãp ∩ Am)

∣
∣
∣
∣
/N < κP. (3.117)

Thus, (3.114) and (3.117) yield

P̃0 = |Ã0|/N ≥ |A0 ∩ Ã0|/N

=
(

|A0| − |A0\Ã0|
)

/N > P0 − κP, and (3.118)

P̃m = |Ãm|/N ≤ |Am ∪ Ãm|/N

=
(

|Am|+ |Ãm\Am|
)

/N < Pm + κP, (3.119)

and hence, by employing (3.102) and noticing that P < 1/∆,

P̃0 − P̃m > P0 − Pm − 2κP > ∆0 − 2κP

> ∆0 − 2κ/∆ > ∆0/2 > 0. (3.120)
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Furthermore, we can obtain from (3.114) and (3.117) that

P∗
m =

∣
∣
∣

(

Ãm\Am

)

∪
(

Am\Ãm

)∣
∣
∣ /N

≤
∣
∣
∣Ãm\Am

∣
∣
∣ /N +

∣
∣
∣Am\Ãm

∣
∣
∣ /N < 2κP. (3.121)

Finally, we conclude the proof by noting that

0 ≤ |P̃m − Pm| =
∣
∣
∣|Ãm| − |Am|

∣
∣
∣ /N

≤
(

|Ãm ∪ Am| − |Ãm ∩ Am|
)

/N = P∗
m < 2κP

< 2

(

−
2 ln 2

(K − 1)γ∗

)
1

∆
= δ. (3.122)

107



Chapter 4

Functional Forms of Optimum

Spoofing Attacks for Vector

Parameter Estimation in Quantized

Sensor Networks

4.1 Introduction

Recent developments in sensor technology have encouraged a large number of appli-

cations of sensor networks for parameter estimation ranging from inexpensive commercial

systems to complex military and homeland defense surveillance systems [49]. Typically,

large-scale sensor networks are comprised of low-cost and spatially distributed sensor nodes

with limited battery power and low computing capacity, which makes the system vulnerable

to cyberattacks by adversaries. This has led to great interest in studying the vulnerability
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of sensor networks in various applications and from different perspectives, see [61,69–73] and

the references therein. Due to the dominance of digital technology, a great deal of attention

has focused on parameter estimation using quantized data [50, 51, 53, 54, 56]. The sequel

considers the problem of estimating a vector parameter by using quantized data collected

from a distributed sensor network under the assumption that the measurements from several

subsets of sensors have been falsified by spoofing attacks, a topic that has received virtually

no attention to date. To be specific, the spoofing attacks maliciously modify the temporal

analog measurements of the phenomenon acquired at the subset of attacked sensors.

4.1.1 System and Adversary Models

Consider a distributed sensor network SN consisting of N spatially distributed sensors,

each making some measurements of a particular phenomenon. We assume that the j-th

sensor acquires Kj measurements, and we denote the before-attack measurement of the j-th

sensor at time instant k by xjk which follows a pdf fj (xjk |θ ) depending on an unknown

deterministic vector parameter θ with dimension Dθ that is desired to estimate for the

measurements. For simplicity, we assume that the measurements {xjk} from the same sensor

j but for different times (k 6= k′) are statistically independent and identically distributed

(i.i.d.), while the measurements from different sensors are statistically independent but not

necessarily identically distributed.

The adversaries alter the physical phenomenon as in Fig. 4.1, thus tampering with the

measurements at a subset of sensors in the sensor network, hoping to undermine the estima-

tion performance of the system. Let V ⊂ SN denote the set of sensors undergoing spoofing

attacks while the set U
∆
= SN\V represents the set of unattacked sensors. A generalized math-

ematical model of spoofing attacks which maliciously modify the distribution of the analog
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Figure 4.1: Distributed estimation system in the presence of spoofing attacks.

observations of the physical phenomenon at the attacked sensors is considered employing

general probability density functions {fj} and {gj} which depend of the desired and attack

vector parameters. To conform to previous work, the functional forms of the attacks, thus

{fj} and {gj}, are assumed known to the attacked system but the desired and attack vector

parameters are not. Thus, the after-attack version x̃jk of xjk obeys the statistical model

that1 {x̃jk} is independent over j and i.i.d. over k, moreover,

x̃jk ∼







fj (xjk |θ ) , if j ∈ U

gj
(
xjk
∣
∣θ, ξ(j)

)
, if j ∈ V

, (4.1)

where if j ∈ V, the after-attack pdf gj(xjk|θ, ξ
(j)) is parameterized by the desired vector

parameter θ and the attack vector parameter ξ(j). It is worth mentioning that the notation2

gj(x|θ, ξ
(j)) does not imply that the after-attack pdf gj(x|θ, ξ

(j)) of the measurements at the

1The notations x̃jk and ũjk denote the after-attack analog measurements and the corresponding quantized
measurements.

2Since the temporal analog measurments at the same sensor are assumed to be i.i.d, we use fj(x|θ) and
gj(x|θ, ξ

(j)) instead of fj(xjk|θ) and gj(xjk|θ, ξ
(j)) in the following for the sake of notational simplicity.
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j-th sensor has to depend on θ. For example, the adversaries can intercept the signal from

the physical phenomenon and generate a new signal using some different pdf solely based on

its attack vector parameter. A detailed example of a practical attack of the type described

in (1) is provided in Section 4.2.

The set V of attacked sensors can be divided into disjoint subsets {Ap}
P
p=1 in terms of

distinct attack vector parameters {ξ(j)} such that

V =
P
∪
p=1

Ap, and Al ∩ Am = ∅, ∀l 6= m, (4.2)

where the attacked sensors in the subset Ap are known by the system under attack to employ

an identical attack vector parameter τ (p) with dimension Dp so that ξ(j) = τ (p), ∀j ∈ Ap.

The identical attack vectors are possibly due to the sensors in Ap being attacked by the same

attacker. For the sake of notational simplicity, we use A0 to denote the set U of unattacked

sensors and let Np denote the number of sensors contained in Ap for all p = 0, 1, ..., P .

Due to the communications employed, each sensor is restricted to convert analog mea-

surements to digital data before transmitting this data to the fusion center (FC) as shown in

Fig. 4.1. At the j-th sensor, each after-attack measurement x̃jk is quantized to ũjk by using

a Rj-level quantizer with quantization regions {I
(r)
j }

Rj

r=1, that is,

ũjk =

Rj∑

r=1

r1{x̃jk ∈ I
(r)
j

}

. (4.3)

We adopt this general quantization model due to the fact that optimized quantization regions

{I
(r)
j }

Rj

r=1 for different sensors can be very different, since the measurements from different

sensors do not necessarily obey an identical pdf [51,74]. We assume that the quantizer design
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{I
(r)
j }

Rj

r=1 for each sensor is predefined and known to the FC, but not the attacker.

Let Θ denote a vector containing the unknown parameter θ along with all the unknown

attack vector parameters which parameterize the spoofing attacks in the sensor network

Θ
∆
=

[

θT ,
(

τ (1)
)T
, ...,

(

τ (P )
)T
]T

. (4.4)

For the sake of notational simplicity in the following parts, we use p
(r)
j to denote the after-

attack probability mass function (pmf) of the quantized measurement ũjk evaluated at ũjk =

r, that is,

p
(r)
j

∆
= Pr (ũjk = r |Θ )

=







∫

I
(r)
j

fj (x |θ ) dx, ∀j ∈ A0

∫

I
(r)
j

gj
(
x
∣
∣θ, τ (p)

)
dx, ∀j ∈ Ap, ∀p ≥ 1

. (4.5)

For simplicity, the communication channel between the FC and each sensor is assumed

ideal, and hence the FC is able to accurately receive what was transmitted from both the

unattacked and attacked sensors. After receiving the quantized data from all sensors, the

FC attempts to make an estimate of the desired vector parameter without knowing which

sensors have been tampered nor the attack parameters used by the attackers.

4.1.2 Performance Metric

It is of considerable interest to investigate the performance of spoofing attacks, and

mathematically characterize the class of the most devastating spoofing attacks under the as-

sumption that the adversaries have no information about what computations the FC is using.

Hence, this chapter develops guarantees for the attacker’s performance that are independent
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of the computations performed at the FC. It is clear that if the FC has the information about

the attack groupings for the sensors, i.e., {Ap}, it can use this information to improve esti-

mation performance over the case where this information is not employed, since the FC can

always do better in estimating the desired vector parameter with extra knowledge. There-

fore, for the case of spoofing attacks employing some specific {fj(x|θ)} and {gj(x|θ, τ
(p))},

the case where the compromised sensors are well identified and categorized into P different

groups according to distinct types of spoofing attacks by the FC corresponds to the case

where the FC has the best chance to combat the spoofing attacks. In other words, the best

possible estimation performance (smallest error) under this case provides a lower bound on

the estimation performance for any other cases, which implies that the corresponding spoofin-

g attack performance under this case provides a guaranteed attack performance in degrading

the estimation performance no matter what computations the FC is using. The recent work

in [73] has shown that for some classes of spoofing attacks, with a sufficient number of ob-

servations, the FC is able to perfectly identify the set of unattacked sensors and categorize

the attacked sensors into different groups according to distinct types of spoofing attacks.

For these reasons, we adopt the following definition of the optimal guaranteed degradation

spoofing attacks in this chapter.

Definition 1 Consider attacks employing {fj(x|θ)} and {gj(x|θ, τ
(p))}. The optimal guar-

anteed degradation spoofing attack (OGDSA) maximizes the degradation of the Cramer-Rao

Bound (CRB) for the vector parameter of interest at the FC when the attacked sensors are

well identified and categorized according to distinct types of spoofing attacks by the FC.

The estimation performance for a vector parameter in a distributed sensor network

can be expressed using an error correlation matrix. However, in most cases, a closed form
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expression for the error correlation matrix is intractable. Thus the CRB, an asymptotically

achievable lower bound on the error correlation matrix, is employed inDefinition 1. It is worth

mentioning that the optimal guaranteed degradation spoofing attack defined in Definition 1

achieves the classical definition of attack optimality (largest CRB) for the scenario where

the FC has the best chance to combat the spoofing attacks. It might not be the classically

optimal spoofing attack for the scenario where the FC is unable to determine which sensors

are attacked, or to classify sensors into groups of distinct types of spoofing attacks. However,

the OGDSAs defined in Definition 1 can provide a guarantee that the actual degradation in

the CRB must exceed some critical value no matter what computations the estimation system

employs. This guarantee makes OGDSA an excellent spoofing attack from the adversaries’

point of view.

4.1.3 Summary of Results and Main Contributions

Unlike previous work, a generalized attack model is employed which manipulates the

data using transformations with arbitrary functional forms determined by some attack pa-

rameters whose values are unknown to the attacked system. For the first time, necessary and

sufficient conditions are provided under which these transformations provide an OGDSA.

These conditions imply that, for an OGDSA, either the Fisher Information Matrix (FIM)

under the conditions of Definition 1 for jointly estimating the desired and attack parameters

is singular or that the attacked system is unable to improve the CRB under the conditions

of Definition 1 for the desired vector parameter through this joint estimation even though

the joint FIM is nonsingular. It is shown that it is always possible to construct an OGDSA

by properly employing a sufficiently large dimension attack vector parameter relative to the

number of quantization levels employed, which was not observed previously. It is shown
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that a spoofing attack can render the attacked measurements useless in terms of reducing

the CRB under the conditions of Definition 1 for estimating the desired vector parameter if

and only if it is an OGDSA. For a class of OGDSAs, a computationally efficient heuristic is

developed for the joint identification of the attacked sensors and estimation of the desired

vector parameter which, in numerical tests for a sufficiently large number of observations,

achieves a genie bound that knows all the groups of identically attacked sensors.

4.1.4 Related Work

In recent years, the estimation problem under different attacks has seen great interest in

various engineering applications, see [9, 61, 69–73, 75–77] and the references therein. Rather

than the man-in-the-middle attacks which falsify the data transmitted from the sensors to

the FC [61, 72], we are primarily interested in spoofing attacks in the distributed sensor

estimation system in this chapter, which maliciously modify the measurements of the physical

phenomenon at a subset of sensors, see Fig. 4.1.

As previously introduced, spoofing attacks have been widely considered in wireless sensor

networks, smart grids, radar systems and sonar systems [9, 69–71, 73, 75–78]. Each of these

recent works takes one specific type of spoofing attack into account, and investigates the

attack or the estimation performance. In this chapter, we don’t focus on one specific type

of spoofing attack. Instead, we consider a generalized attack model which can describe the

different kinds of spoofing attacks employed in all recent work, and moreover, we make use

of this generalized model to provide uniform tools to test if a spoofing attack is optimal in

our defined sense. Both CRB-based analysis and a finite sample sized estimation approach

are presented for a class of OGDSAs provided in this chapter.

Another difference between our work and other recent work on spoofing attacks in [9,
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69–71, 75–78] is that we consider a distributed sensor estimation system which employs a

quantization using a finite alphabet at each sensor which is typically the case in practice.

Interestingly, we show that the quantization limits the capacity of the estimation system to

combat the spoofing attacks. In partcular, it is shown that the adversaries can launch a class

of quantization induced OGDSAs which are easily constructed in practice.

4.1.5 Notation

Throughout this chapter, bold upper case letters and bold lower case letters are used to

denote matrices and column vectors respectively. The symbol 1(·) stands for the indicator

function. Let [A]i,j denote the element in the i-th row and j-th column of the matrix A,

and R(A) represents the range space of A. A ≻ 0 and A � 0 imply that the matrix is

positive definite and positive semidefinite respectively. To avoid cumbersome sub-matrix and

sub-vector expressions in this chapter, we introduce the following notation. The notation

[A]S,: stands for the sub-matrix of A which consists of the elements with row indices in the

set S, and [A]1:N represents the N -by-N leading principle minor of A. The i-th element of

the vector v is denoted by vi, and [v]S represents the sub-vector of v which only contains

the elements with indices in the set S. The symbols ∇vf and ∇2
vf respectively signify the

gradient and Hessian of f with respect to v. Finally, the expectation and rank operators are

denoted by E (·) and rank(·) respectively.

4.2 Illustrative Example of a Practical Spoofing Attack

Spoofing attacks on sensor networks can occur in various engineering applications. For

instance, spoofing attacks have been described for the localization problem in wireless sensor
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networks, see [69, 70] and the references therein. Table I in [69] provides a summary of

different types of spoofing attack threats for the localization problem. Radar and sonar

systems also suffer from spoofing attack threats in practice. As one example of a spoofing

attack technique, the application of an electronic countermeasure (ECM), which is designed to

jam or deceive the radar or sonar system, can critically degrade the detection and estimation

performance of the system [79]. One popular technique for the implementation of ECM

employs digital radio frequency memory (DRFM) in radar systems to manipulate the received

signal and retransmit it back to confuse the victim radar system. DRFM can mislead the

estimation of the range of the target by altering the delay in transmission of pulses, and fool

the system into incorrectly estimating the velocity of the target by introducing a Doppler

shift in the retransmitted signal [75]. An example of a spoofing attack created by nature is

environmental variation in shallow water sonar systems. According to waveguide-invariant

theory [80], the environmental variation, such as sound-speed or water-depth perturbations,

essentially introduces an apparent shift in the position of the target of interest when the data

is processed by matched field processing [78, 81]. Hence these environmental variations can

be treated as spoofing attacks which falsify the physical model of the received signal in sonar

systems. More recently, the data-injection attack considered in smart grids is another typical

example of a spoofing attack, see [9, 71,76,77] and the references therein.

In order to motivate the mathematical description of spoofing attacks, we consider a

spoofing attack utilizing a DRFM in a radar system as an example, which stores the received

signal and strategically retransmits it back by introducing an additional delay to mislead

the estimation of the range of the target. In the absence of spoofing attacks, the simplified

signal model of the measurement xj at the j-th receiver at time instant tj , which ignores the
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Doppler shift, can be expressed as

xj =
√

Ejajs (tj − θj) + nj, (4.6)

where s(·), Ej and aj respectively represent the transmitted signal, the transmitted energy,

and the reflection coefficient. The time delay is denoted by θj which is the parameter to be

estimated. We assume that the clutter-plus-noise nj is a zero-mean Gaussian random variable

with known variance σ2j while all other quantities in (4.6) are deterministic. As a result, the

probability density function (pdf) fj(xj |θj) of xj in the absence of spoofing attacks is given

by3

fj (xj |θj ) = N
(√

Ejajs (tj − θj) , σ
2
j

)

. (4.7)

In the presence of a spoofing attack, the after-attack measurement x̃j can be described as

x̃j =
√

Ejajs (tj − θj − ξj) + nj, (4.8)

where ξj is the delay introduced by the DRFM. Therefore, we can obtain the corresponding

after-attack pdf of x̃j

gj (x̃j |θj, ξj ) = N
(√

Ejajs (tj − θj − ξj) , σ
2
j

)

= fj (x̃j |θj + ξj ) . (4.9)

In this example, the after-attack pdf gj(x̃j |θj, ξj) and the before-attack pdf fj(xj |θj) are in

the same family as shown in (4.9), i.e., the family of Gaussian distributions with the same

3N (a, b) denotes a Gaussian pdf with mean a and variance b.

118



variance σ2j . While this may not always be true, the after-attack pdf is generally not only

parameterized by the desired parameter θj but also by an unknown attack parameter ξj .

Motivated by this example and other popular spoofing attack examples, such as those

in [9, 69–71, 73, 75–78], the essential impact of a spoofing attack, which maliciously modifies

the measurements at the j-th sensor in a manner similar to (4.8), can be described as a

mapping which maps the before-attack pdf fj(x|θ) of the measurements at the j-th sensor to

an after-attack pdf gj(x|θ, ξ
(j)), where θ and ξ(j) account for the desired vector parameter

and the attack vector parameter at the j-th sensor which represents those deterministic

unknowns which can determine the after-attack pdf.

4.3 The Optimality of Spoofing Attacks

In this section, we pursue the explicit characterization of the optimal spoofing attack

defined in Definition 1. The adversaries can attempt to maximize CRB for θ in the positive

semidefinite sense to achieve an optimal spoofing attack as per Definition 1. The FIM JΘ

for Θ is defined as [82]

[JΘ]l,m
∆
= −E{ ∂2L (Θ)

∂Θl∂Θm

}

, (4.10)

where L (Θ) denotes the log-likelihood function.

When the attacked senors are well identified and categorized into different groups accord-

ing to distinct types of spoofing attacks, the log-likelihood function L (Θ) in (4.10) evaluated

at

ũ
∆
=[ũ11, ũ12, ..., ũ1K1 , ũ21, ..., ũNKN

]T =r
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can be expressed as

L (Θ) = lnPr (ũ = r |Θ )

=

P∑

p=0

∑

j∈Ap

Kj∑

k=1

Rj∑

r=1

1 {rjk = r} ln p
(r)
j (4.11)

by employing (4.5).

By substituting the expression of the log-likelihood function L (Θ) in (4.11) into the

definition of the FIM in (4.10), it can be shown that the FIM JΘ for Θ takes the form

JΘ

∆
=

















Jθ B1 B2 · · · BP

BT
1 Jτ (1) 0 · · · 0

BT
2 0 Jτ (2)

. . .
...

...
...

. . .
. . . 0

BT
P 0 · · · 0 Jτ (P )

















(4.12)

where Jθ ∈ R
Dθ×Dθ , Jτ (p) ∈ R

Dp×Dp , and Bp ∈ R
Dθ×Dp for all p = 1, 2, ..., P . Moreover,

following from (4.4) and (4.10), we can obtain that ∀p

Jτ (p) =
∑

j∈Ap

Rj∑

r=1

Kj

p
(r)
j

∂p
(r)
j

∂τ (p)

[

∂p
(r)
j

∂τ (p)

]T

, (4.13)

Bp =
∑

j∈Ap

Rj∑

r=1

Kj

p
(r)
j

∂p
(r)
j

∂θ

[

∂p
(r)
j

∂τ (p)

]T

, (4.14)

and

Jθ =

P∑

p=0

JAp , (4.15)
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where JAp , which is contributed from the measurements observed at the sensors in Ap, is

defined as

JAp

∆
=
∑

j∈Ap

Rj∑

r=1

Kj

p
(r)
j

∂p
(r)
j

∂θ

[

∂p
(r)
j

∂θ

]T

. (4.16)

By denoting the indices of sensors in Ap by {jpi }
Np

i=1, we define the matrices Φθ(p) and

Φτ (p) for all p as

Φθ(p)
∆
=

[

φθ(p)

jp11
,φθ(p)

jp12
, ...,φθ(p)

jp1Rj
p
1

,φθ(p)

jp21
, ...,φθ(p)

jp
Np
R

j
p
Np

]

, (4.17)

and

Φτ (p)
∆
=

[

φτ (p)

jp11
,φτ (p)

jp12
, ...,φτ (p)

jp1Rj
p
1

,φτ (p)

jp21
, ...,φτ (p)

jp
Np
R

j
p
Np

]

, (4.18)

where the vectors φθ(p)

jr and φτ (p)

jr in (4.17) and (4.18) are given by

φθ(p)

jr
∆
=

√

Kj

p
(r)
j

∂p
(r)
j

∂θ
and φτ (p)

jr
∆
=

√

Kj

p
(r)
j

∂p
(r)
j

∂τ (p)
. (4.19)

By employing the singular value decomposition of Φθ(p) and Φτ (p) for all p

Φτ (p)=Uτ (p)Λτ (p)VT
τ (p) and Φθ(p)=Uθ(p)Λθ(p)VT

θ(p) , (4.20)

the expressions of Jτ (p) , Bp, and Jθ in (4.13)–(4.15) can be written in compact forms following

Jτ (p) = Φτ (p)ΦT
τ (p) = Uτ (p)Λτ (p)ΛT

τ (p)U
T
τ (p) , (4.21)

Bp = Φθ(p)ΦT
τ (p) , (4.22)
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and

Jθ =

P∑

p=0

JAp =

P∑

p=0

Φθ(p)ΦT
θ(p)

=

P∑

p=0

Uθ(p)Λθ(p)ΛT
θ(p)U

T
θ(p) . (4.23)

4.3.1 Inestimable Spoofing Attacks

Next we show that just due to the sensor system employing a quantization with a limited

alphabet, the adversaries can launch a class of spoofing attacks which bring about a singular

FIM JΘ due to the singularity of Jτ (p) for some p ∈ {1, 2, ..., P}. We formally define these

inestimable spoofing attacks as follows.

Definition 2 (Inestimable spoofing attack) The p-th spoofing attack is referred to as an

inestimable spoofing attack (ISA) if the corresponding Jτ (p) defined in (4.13) is singular.

From (4.13), we have the following result with regard to the singularity of Jτ (p) .

Theorem 13 For the p-th spoofing attack, if the dimension Dp of the attack parameter τ (p)

satisfies

Dp >
∑

j∈Ap

Rj − |Ap|, (4.24)

then Jτ (p) is singular, and furthermore, the FIM JΘ is also singular.

Proof: It is clear that
Rj∑

r=1

p
(r)
j = 1, (4.25)
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for all j. Hence, we can obtain that

Rj∑

r=1

∂p
(r)
j

∂τ (p)
= 0, ∀j, (4.26)

which yields

rank





Rj∑

r=1

∂p
(r)
j

∂τ (p)

[

∂p
(r)
j

∂τ (p)

]T


 ≤ Rj − 1, ∀j. (4.27)

Thus, the rank of Jτ (p) is bounded above as per

rank (Jτ (p)) = rank




∑

j∈Ap

Rj∑

r=1

Kj

p
(r)
j

∂p
(r)
j

∂τ (p)

[

∂p
(r)
j

∂τ (p)

]T




≤
∑

j∈Ap

rank





Rj∑

r=1

∂p
(r)
j

∂τ (p)

[

∂p
(r)
j

∂τ (p)

]T




≤
∑

j∈Ap

(Rj − 1)

=
∑

j∈Ap

Rj − |Ap| (4.28)

Since Jτ (p) is a Dp-by-Dp positive semidefinite matrix, we know that Jτ (p) is singular if

Dp >
∑

j∈Ap
Rj − |Ap|. Finally, the proof concludes by noting that JΘ is singular as long as

Jτ (p) is singular.

The proof of Theorem 13 demonstrates that the rank of Jτ (p) is upper bounded by the

sum of the sizes of the alphabet sets employed at the sensors under the p-th spoofing attack

minus the size of Ap. This implies that the numbers of quantization levels employed at the

compromised sensors will limit the size of the attack vector parameter the quantized esti-

mation system can estimate with accuracy that increases with more observations. Theorem

13 provides a sufficient condition under which inestimable spoofing attacks can be launched.
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Thus, these inestimable spoofing attacks, which are quantization induced, can be easily con-

structed in practice, even without any information about the value of θ and the quantization

regions {I
(r)
j } at each sensor. Further, if the adversaries have knowledge of the number of

quantization levels of each attacked sensor, they know the minimum size of the attack vector

parameter they can employ to ensure an inestimable spoofing attack. One simple example of

an inestimable spoofing attack employs Dp >
∑

j∈Ap
Rj − |Ap| and

x̃jk =

Dp∑

i=1

τ
(p)
i (xjk)

i . (4.29)

If (4.24) is not satisfied, the inestimability is determined by the {I
(r)
j } employed at the

attacked sensors and the set of after-attack pdfs {gj(x|θ, τ
(p))}. From (4.21), it is seen that

the inestimability of the p-th spoofing attack is equivalent to

rank (Λτ (p)) < Dp. (4.30)

In the presence of inestimable spoofing attacks, the FIM JΘ for joint estimation of the

desired vector parameter and the attack vector parameters is singular, which implies that the

FC is unable to improve the estimation of θ via jointly estimating θ and the attack vector

parameters in the CRB sense. If (4.30) is true for all p = 1, 2, ..., P , this means the best the

FC can do in this sense is to estimate θ using only unattacked data, and hence the CRB for

θ in such case can be obtained as

CRBISA (θ) = J−1
A0

= Uθ(0)

(
Λθ(0)ΛT

θ(0)

)−1
UT

θ(0) (4.31)

by employing (4.23).
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4.3.2 Optimal Estimable Spoofing Attacks

In this section, we focus on estimable spoofing attacks which are defined as follows.

Definition 3 (Estimable spoofing attack) The p-th spoofing attack is said to be estimable

if the corresponding Jτ (p) defined in (4.13) is nonsingular.

Without loss of generality, we assume all spoofing attacks are estimable in this subsection.

Otherwise, we can eliminate the observations at ISA sensors, and just consider the joint

estimation of the desired vector parameter θ and the estimable attack vector parameters.

From (4.12) and (4.15), we can obtain the CRB for θ in the presence of estimable spoofing

attacks as

[
J−1
Θ

]

1:Dθ

=



Jθ −
P∑

p=1

BpJ
−1
τ (p)B

T
p





−1

=



JA0 +

P∑

p=1

(

JAp −BpJ
−1
τ (p)B

T
p

)





−1

. (4.32)

In the following theorem, we provide an upper bound on the CRB for θ in (4.32) in the

positive semidefinite sense.

Theorem 14 In the presence of estimable spoofing attacks, the CRB for θ is bounded above

as per

CRBESA (θ) =
[
J−1
Θ

]

1:Dθ

� J−1
A0
. (4.33)

Equality in (4.33) holds if and only if ∀p = 1, 2, ..., P ,

R
(
Vθ(p)ΛT

θ(p)

)
⊆ R

(
Vτ (p)ΛT

τ (p)

)
. (4.34)
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Proof: Let’s first examine the term in the sum in (4.32). Noticing by (4.21), (4.22) and

(4.23), we can express JAp −BpJ
−1
τ (p)B

T
p as

JAp −BpJ
−1
τ (p)B

T
p

=Φθ(p)ΦT
θ(p)−Φθ(p)ΦT

τ (p)

(
Φτ (p)ΦT

τ (p)

)−1
Φτ (p)ΦT

θ(p) . (4.35)

Denote

D
∆
=
(
Φτ (p)ΦT

τ (p)

)−1
Φτ (p)ΦT

θ(p) , (4.36)

then by employing (4.35), we can obtain that

JAp −BpJ
−1
τ (p)B

T
p

=
(
ΦT

θ(p) −ΦT
τ (p)D

)T (
ΦT

θ(p) −ΦT
τ (p)D

)

� 0. (4.37)

What’s more, the equality in (4.37) is attained if and only if

ΦT
θ(p) −ΦT

τ (p)D = 0,∀p ≥ 1, (4.38)

which is equivalent to ∀p ≥ 1,

Vτ (p)

[

I−ΛT
τ (p)

(
Λτ (p)ΛT

τ (p)

)−1
Λτ (p)

]

VT
τ (p)Vθ(p)ΛT

θ(p) =0,

and therefore, we can obtain that

R
(
Vθ(p)ΛT

θ(p)

)
⊆ R

(
Vτ (p)ΛT

τ (p)

)
,∀p ≥ 1. (4.39)
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Consequently, from (4.32), (4.37), and (4.39), we can conclude that

[
J−1
Θ

]

1:Dθ

� J−1
A0
, (4.40)

with equality if and only if ∀p = 1, 2, ..., P ,

R
(
Vθ(p)ΛT

θ(p)

)
⊆ R

(
Vτ (p)ΛT

τ (p)

)
. (4.41)

In Theorem 14, we provide the necessary and sufficient conditions under which the

estimable spoofing attacks can deteriorate the CRB for estimating θ to its upper bound as

shown in (4.33). We formally define this class of optimal estimable spoofing attacks next.

Definition 4 (Optimal Estimable Spoofing Attack) An estimable spoofing attack which

satisfies the necessary and sufficient condition in (4.34) is called an optimal estimable spoofing

attack (OESA).

The physical meanings of the terms in (4.32) and the insight into Theorem 14 deserve

some discussion. The term JA0 represents the information on θ embedded in the data from

A0, while JAp indicates the information on θ that can be provided by the data from Ap if

τ (p) is known to the FC. The term BpJ
−1
τ (p)B

T
p specifies the degradation of the information on

θ from Ap, which is induced by the uncertainty of τ (p). By considering the interpretations of

these terms, the insight into Theorem 14 is that if and only if (4.34) holds, the uncertainty

of τ (p) can reduce the information on θ conveyed by the data from Ap to 0 in which case the

sum in the inverse does not contribute to (4.32). Moreover, Theorem 14 points out that the

degradation BpJ
−1
τ (p)B

T
p cannot be strictly larger than JAp .
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Theorem 14 also describes how to design optimal estimable spoofing attacks. The ad-

versaries choose {gj(x|θ, τ
(p))} to meet the necessary and sufficient condition in (4.34). One

trivial example of OESA, which may be relatively easy to detect, is to replace the original

measurements at the attacked sensors by some regenerated data obeying a distribution not

parameterized by θ, which leads to Φθ(p) = 0 for all p ≥ 1, and therefore, (4.34) is satisfied.

In the following part, some typical OESA examples of practical interest are investigated.

Corollary 1 If the spoofing attacks are such that for any p ≥ 1, ∃λp satisfying

Φθ(p) = λpΦτ (p) , (4.42)

then the CRB [J−1
Θ

]1:Dθ

for θ will be maximized in the positive semidefinite sense, more

specifically

[
J−1
Θ

]

1:Dθ

= J−1
A0
. (4.43)

Furthermore, the necessary and sufficient condition under which (4.42) is satisfied for any θ,

τ (p) and {I
(r)
j } is that ∀j ∈ Ap, the after-attack pdf gj(x|θ, τ

(p)) can be expressed as

gj

(

x
∣
∣
∣θ, τ (p)

)

= g̃j

(

x
∣
∣
∣λpθ + τ (p)

)

, (4.44)

for some g̃j.

Proof: Note that if for any p ≥ 1, ∃λp such that

Φθ(p) = λpΦτ (p) , (4.45)
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then ∀p ≥ 1, Dθ = Dp and

R
(
Vθ(p)ΛT

θ(p)

)
⊆ R

(
Vτ (p)ΛT

τ (p)

)
.

Thus, by Theorem 14, we can obtain that

[
J−1
Θ

]

1:Dθ

= J−1
A0
. (4.46)

In addition, (4.45) is equivalent to

∂p
(r)
j

∂θ
= λp

∂p
(r)
j

∂τ (p)
, ∀j ∈ Ap, ∀r. (4.47)

Noticing by (4.5), in order to render (4.47) be assured for any θ, τ (p) and {I
(r)
j }, the adver-

saries need to ensure that

∂

∂θ
gj

(

x
∣
∣
∣θ, τ (p)

)

= λp
∂

∂τ (p)
gj

(

x
∣
∣
∣θ, τ (p)

)

(4.48)

for all j ∈ Ap and for any θ and τ (p).

It is clear that if

gj

(

x
∣
∣
∣θ, τ (p)

)

= g̃j

(

x
∣
∣
∣λpθ + τ (p)

)

, (4.49)

for some g̃j, then (4.48) holds. On the other hand, if (4.48) is true for any θ and τ (p), then

∀l = 1, 2, ...,Dθ ,

(1,−λp)







∂
∂θl
gj

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, θl, τ

(p)
l

)

∂

∂τ
(p)
l

gj

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, θl, τ

(p)
l

)






=0
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for any θ and τ (p), which implies that the gradient of gj(x|{θm}m6=l, {τ
(p)
m }m6=l, θl, τ

(p)
l ) with

respect to [θl, τ
(p)
l ]T is parallel to the vector [λp, 1]

T for any θl and τ
(p)
l . Therefore, for any l,

if

(λp, 1)






0

t




 = (λp, 1)






θl

τ
(p)
l




 , (4.50)

that is, t = λpθl + τ
(p)
l , then we can obtain that

gj

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, 0, t

)

= gj

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, θl, τ

(p)
l

)

. (4.51)

As a result, for any l, by employing (4.51) and defining

g̃j,l

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, t

)

∆
= gj

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, 0, t

)

, (4.52)

we can express gj(x|{θm}m6=l, {τ
(p)
m }m6=l, θl, τ

(p)
l ) as

gj

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, θl, τ

(p)
l

)

= g̃j,l

(

x
∣
∣
∣{θm}m6=l, {τ

(p)
m }m6=l, λpθl + τ

(p)
l

)

(4.53)

for some g̃j,l, which implies that

gj

(

x
∣
∣
∣θ, τ (p)

)

= g̃j

(

x
∣
∣
∣λpθ + τ (p)

)

(4.54)

for some g̃j .
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As demonstrated by Corollary 1, if the spoofing attack gives rise to an after-attack pdf

gj(x|θ, τ
(p)) which is only parameterized by the sum of λpθ and τ (p) for any λp, then the

spoofing attack is optimal in the sense of Definition 4. This class of OESAs are interesting

and powerful in practice, since their optimality is independent of the values of the desired

vector parameter and the attack vector parameter. The DRFM example discussed in the

introduction which introduces a time delay is one example of this class of OESAs (with

λp = 1). For the scenario where the desired parameter is the mean of the observations,

which is a popular signal model for sensor network estimation systems with quantized data

[51, 54, 56, 72], this class of OESAs can be easily launched by just adding an offset to the

measurements at each attacked sensor.

Another representative example of the class of OESAs described by (4.44) is extensively

considered in smart grid systems under the name data-injection attacks, see [9,71,76,77] and

the references therein. At time instant k, the direct current power flow model in the absence

of spoofing attacks can be expressed as

xk = Hθ + nk. (4.55)

Considering the p-th data-injection attack, the after-attack measurements from the sensors

in Ap at time instant k are given by

[x̃k]Ap
= [xk]Ap

+ a(p) = [H]Ap,:
θ + a(p) + [nk]Ap

, (4.56)

131



where a(p) represents the data injected by the p-th spoofing attack. If the adversaries choose

a(p) such that

a(p) = [H]Ap,:
τ (p) (4.57)

for some τ (p), then the after-attack measurements from the sensors in Ap can be equivalently

written as

[x̃k]Ap
= [H]Ap,:

(

θ + τ (p)
)

+ [nk]Ap
, (4.58)

and therefore, (4.44) is satisfied by the data-injection attack. Further, by Corollary 1, the

CRB for θ is maximized in the positive semidefinite sense if all the attacks are of this type.

Moreover, it can be shown that the stealth attack or undetectable attack in [9,71,76], which

attracts extensive attention in recent literature on smart grids, is just such an attack with

P = 1.

In addition to the class of OESAs described in (4.44), there are many other OESAs. For

example, if the p-th spoofing attack satisfies that ∀j ∈ Ap, gj(x|θ, τ
(p)) = g̃j(x|hj(θ, τ

(p)))

for some g̃j and some symmetric function hj of θ and τ (p), then it can be shown that the

p-th spoofing attack is an OESA provided that the values of τ (p) and θ are equal.

4.3.3 Discussion

Under the conditions ofDefinition 1, it is clear that J−1
A0

is an upper bound on the CRB for

θ, no matter what kind of attacks have been launched. From (4.31) and Theorem 14, the CRB

for θ under ISA or OESA equals to its upper bound J−1
A0

. Therefore, according to Definition 1,

both ISA and OESA are OGDSAs. Furthermore, note thatΛτ (p) is aDp×(
∑

j∈Ap
Rj) matrix,

and hence, rank(Λτ (p)) ≤ Dp. Thus, any OGDSA is either an ISA when rank(Λτ (p)) < Dp,

or an OESA when rank(Λτ (p)) = Dp.
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A particular note of interest is that the results in Section 4.3.1 and 4.3.2 can be used

to judge whether the attacked measurements are useful or not in terms of reducing CRB

under the conditions of Definition 1. In particular, it is seen from (4.31) and Theorem 14

that the CRB for θ in the presence of ISA or OESA is the same as the CRB for θ when only

unattacked data is used. Thus, we obtain the following corollary.

Corollary 2 Under the conditions of Definition 1, the necessary and sufficient condition un-

der which the attacked measurements are useless in terms of reducing CRB is that the spoofing

attacks belong to either ISA or OESA which are defined in Definition 2 and 4 respectively.

However, the fundamental mechanisms of ISA and OESA for making the attacked mea-

surements useless in terms of reducing CRB are very different. To be specific, ISA renders

the task of estimating the attacks beyond the capabilities of the quantized estimation system

by causing the FIM for jointly estimating the desired and attack parameters to be singular,

thus preventing the FC from potentially improving the CRB of the estimate of θ by jointly

estimating θ and the attacks. In contrast, even though the FC is able to estimate the attacks,

paying a big price in computational complexity for jointly estimating θ and the attacks, the

FC is not able to obtain any improvement in the CRB performance for θ under OESA.

It is worth mentioning that (4.31) and Theorem 14 demonstrate that under the conditions

of Definition 1, the CRB for θ reaches its upper bound in the presence of ISA or OESA. In

practice, however, the FC may not be able to well identify the set of unattacked sensors and

categorize the attacked sensors into different groups according to distinct types of spoofing

attacks. Thus, the actual estimation performance under ISA and OESA can be expected to

be inferior to the analytical results in this section. To illustrate this, consider the example

of the data-injection attack in smart grids as described in (4.56). It can be shown that if
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the adversaries only employ one spoofing attack, then it is possible for the adversaries to

dramatically impact the estimate of the desired vector parameter to produce an arbitrarily

large bias [9, 76].

4.4 Joint Identification and Estimation under Optimal Es-

timable Spoofing Attack

In this section, we focus on a class of OESAs in which for any p, ∀j ∈ Ap, the FIM for

τ (p) based on the data from the j-th sensor is nonsingular. Further, we assume that JA0

defined in (4.16) is nonsingular in the presence of spoofing attacks. This could occur, for

example, if only a small subset of sensors can be attacked in a distributed sensor setting or

if a subset of sensors can be well protected in advance to give rise to a nonsingular JA0 .

Before proceeding, the following assumptions are made from a practical viewpoint.

Assumption 9 As the sensors are assumed to be spread over a wide area and typically

adversaries have limited resources, we assume that no more than half of sensors are attacked.

Assumption 10 (Significant Attack) In order to give rise to sufficient impact on the

statistical characterization of the measurements at each attacked sensors, every attacker is

required to guarantee a minimum norm of the attack vector parameter, that is,

‖τ (p)‖2 > dτ , ∀p. (4.59)

We do not conisder modifications smaller than (4.59) as attacks and assume they have little

impact on performance.
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The results in Section 4.3 demonstrate that under OESA, the CRB for θ which employs

the data from both attacked and unattacked sensors is equal to the CRB for θ which only

makes use of unattacked data. Since CRB is the adopted performance metric, we only need to

identify the set of unattacked sensors, and the categorization of the attacked sensors according

to distinct types of spoofing attacks is no longer necessary for estimating θ in the presence

of OESA. To this end, we use {ξ(j)}Nj=1 instead of {τ (p)}Pp=1 to denote the attack vector

parameters employed by the adversaries in the following part. To be specific, ξ(j) denotes the

attack vector parameter employed at the j-th sensor. For the sake of notational simplicity,

we introduce the following notations

qjr
∆
=

∫

I
(r)
j

fj (x |θ ) dx and q̃jr
∆
=

∫

I
(r)
j

gj

(

x
∣
∣
∣θ, ξ(j)

)

dx (4.60)

where q̃jr and qjr represent the r-th value of the after-attack pmf at the j-th sensor when it

is attacked and unattacked respectively.

Let Ω denote a vector containing the desired vector parameter θ, the set of unknown

attack vector parameters {ξ(j)} as well as a set of unknown binary state variables {ηj} that

Ω
∆
=
[
ΞT ,ηT

]T
, (4.61)

where

Ξ
∆
=

[

θT ,
(

ξ(1)
)T
,
(

ξ(2)
)T
, ...,

(

ξ(N)
)T
]T

(4.62)

and

η
∆
= [η1, η2, ..., ηN ]T . (4.63)
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The j-th element of η is zero, i.e., ηj = 0, if the j-th sensor is unattacked, while ηj = 1

implies the j-th sensor is attacked. The log-likelihood function evaluated at ũ = r is

L (Ω)
∆
= lnPr (ũ = r |Ω)

=

N∑

j=1

Kj∑

k=1

[
ηj ln q̃jrjk + (1− ηj) ln qjrjk

]
. (4.64)

Based on this setting, the FC can jointly identify the state of each sensor and estimate the

desired vector parameter θ by solving the following constrained optimization problem

Ω̂ = argmax
Ω

N∑

j=1

Kj∑

k=1

[
ηj ln q̃jrjk + (1− ηj) ln qjrjk

]
(4.65a)

s. t. ηj ∈ {0, 1} , ∀j, (4.65b)

N∑

j=1

ηj <
N

2
, (4.65c)

‖ξ(j)‖2 > dτ , ∀ηj = 1, (4.65d)

where the constraints in (4.65c) and (4.65d) are due to Assumption 9 and Assumption 10.

The integer constraint in (4.65b) makes the optimization problem difficult to solve. For

small N , it may be solved exactly simply by exhaustively searching through all possible

combinations of {ηj}, while for large N , this is not feasible in practice, since the number

of all possible combination of {ηj} is on the order of 2N . To this end, it is of considerable

practical interest to develop an efficient algorithm to solve the optimization problem in (4.65).

In this section, we propose a heuristic for solving (4.65).
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4.4.1 Random Relaxation with the EM Algorithm

According to the constraint in (4.65b), ηj is an unknown deterministic binary variable,

and hence, (4.65b) is equivalent to

πj
∆
= Pr (ηj=1) ∈ {0, 1} and Pr (ηj=0) = 1− πj,∀j. (4.66)

Further, by dropping the constraint (4.65c) as well as (4.65d), and then relaxing the deter-

ministic {ηj} to be random, that is, allowing πj = Pr (ηj = 1) ∈ [0, 1] for all j = 1, 2, ..., N ,

the problem in (4.65) reduces to

Ω̂π = argmax
Ωπ

N∑

j=1

Kj∑

k=1

ln
[
πj q̃jrjk + (1− πj) qjrjk

]
(4.67a)

s. t. πj ∈ [0, 1], ∀j = 1, 2, ..., N, (4.67b)

where Ωπ
∆
= [ΞT ,πT ]T and π

∆
= [π1, π2..., πN ]

T .

The physical interpretation behind (4.67) is that via random relaxation of the determin-

istic binary vector state variable η, the set A0 of unattacked sensors is no longer deterministic,

and moreover, each sensor in the sensor network is attacked with a certain probability πj at

every time instant.

By introducing a latent vector variable

z = [z11, z12, ..., z1K1 , z21, ..., zNKN
]T , (4.68)

where zjk = 1 indicates that the k-th measurement at the j-th sensor was attacked, and

zjk = 0 implies that the k-th measurement at the j-th sensor was unattacked, we can employ
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the Expectation-Maximization (EM) algorithm [?, 83], which is an iterative method that

alternates between performing an expectation (E) step and a maximization (M) step, to

solve the relaxed problem in (4.67).

E-step

The E-step computes the expected log-likelihood function Q(Ωπ|Ω
′
π), with respect to

z given the quantized data ũ = r and the current estimate of the vector parameter Ω̂′
π =

[(Ξ̂′)T , (π̂′)T ]T , as following

Q
(

Ωπ

∣
∣
∣Ω̂′

π

)
∆
= E

z|Ω̂′
π,ũ=r

{L (Ωπ)} , (4.69)

where the log-likelihood function L (Ωπ) is given by

L (Ωπ) = lnPr (z, ũ = r|Ωπ)

= lnPr ( ũ = r|Ωπ, z) + lnPr (z|Ωπ)

=

N∑

j=1

Kj∑

k=1

{1{zjk=1}
(
ln q̃jrjk + lnπj

)

+1{zjk=0}
[
ln qjrjk + ln (1− πj)

]}

. (4.70)

Define

υ
(1)
jk

∆
=E

z|Ω̂′
π,ũ=r

{1{zjk=1}}= π̂′j q̃jrjk

π̂′j q̃jrjk+
(

1− π̂′j

)

qjrjk

(4.71)

and

υ
(0)
jk

∆
= E

z|Ω̂′
π,ũ=r

{1{zjk=0}

}

= 1− υ
(1)
jk , (4.72)
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then by employing (4.69) and (4.70), we can obtain the expected log-likelihood function

Q
(

Ωπ

∣
∣
∣Ω̂′

π

)

=

N∑

j=1

Kj∑

k=1

{

υ
(1)
jk

(
ln q̃jrjk + lnπj

)

+υ
(0)
jk

[
ln qjrjk + ln (1− πj)

]}

. (4.73)

M-step

TheM-step seeks to find a new estimate of the vector parameter Ω̂π to update the current

estimate of the vector parameter Ω̂′
π by maximizing the expected log-likelihood function

Q(Ωπ|Ω̂
′
π), that is,

Ω̂π =
[

Ξ̂T , π̂T
]T

= argmaxQ
(

Ωπ

∣
∣
∣Ω̂′

π

)

. (4.74)

Updated estimate of π According to (4.74), the updated estimate π̂j should satisfy

∂Q
(

Ωπ

∣
∣
∣Ω̂′

π

)

∂πj
=

1

πj

Kj∑

k=1

υ
(1)
jk −

1

1− πj

Kj∑

k=1

υ
(0)
jk = 0, (4.75)

which yields, by employing (4.72),

π̂j =
1

Kj

Kj∑

k=1

υ
(1)
jk . (4.76)

Updated estimate of Ξ Similarly, the updated estimate Ξ̂ is the solution of the following

equation

∇ΞQ
(

Ωπ

∣
∣
∣Ω̂′

π

)

= 0. (4.77)

Generally, a closed-form solution for the above equation may not exist. To solve (4.77) in such

cases, Newton’s method can be employed with an initial point Ξ̂(0) = Ξ̂′. At the (i + 1)-th
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iteration of Newton’s Method, the updated point Ξ̂(t+1) can be expressed as

Ξ̂(t+1)

= Ξ̂(t) − κt

[

∇2
ΞQ

(

Ω(t)
π

∣
∣
∣Ω̂′

π

)]−1
∇ΞQ

(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

(4.78)

where Ω
(t)
π = [(Ξ̂(t))T , (π̂′)T ]T , and κt ∈ (0, 1) is the t-th step size computed by using a

backtracking line search [84].

For completeness, the explicit expressions for the gradient and Hessian of the expected

log-likelihood function with respect to Ξ are provided. The gradient ∇ΞQ(Ω
(t)
π |Ω̂′

π) consists

of the quantities ∂
∂θl
Q(Ω

(t)
π |Ω̂′

π) and ∂

∂ξ
(j)
l

Q(Ω
(t)
π |Ω̂′

π) for different j and l, which can be

computed by

∂

∂θl
Q
(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

=

N∑

j=1

Kj∑

k=1

{

υ
(1)
jk

1

q̃jrjk

∂

∂θl
q̃jrjk + υ

(0)
jk

1

qjrjk

∂

∂θl
qjrjk

}

(4.79)

and

∂

∂ξ
(j)
l

Q
(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

=

Kj∑

k=1

υ
(1)
jk

1

q̃jrjk

∂

∂ξ
(j)
l

q̃jrjk . (4.80)

140



The elements of the Hessian ∇2
Ξ
Q(Ω

(t)
π |Ω̂′

π) can be calculated by the following expressions

∂2

∂θl∂θm
Q
(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

=
N∑

j=1

Kj∑

k=1

{

υ
(1)
jk

(

1

q̃jrjk

∂2q̃jrjk
∂θl∂θm

−
1

q̃2jrjk

∂q̃jrjk
∂θl

∂q̃jrjk
∂θm

)

+υ
(0)
jk

(

1

qjrjk

∂2qjrjk
∂θl∂θm

−
1

q2jrjk

∂qjrjk
∂θl

∂qjrjk
∂θm

)}

, (4.81)

∂2

∂θl∂ξ
(j)
m

Q
(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

=

Kj∑

k=1

υ
(1)
jk

(

1

q̃jrjk

∂2q̃jrjk

∂θl∂ξ
(j)
m

−
1

q̃2jrjk

∂q̃jrjk
∂θl

∂q̃jrjk

∂ξ
(j)
m

)

, (4.82)

∂2

∂ξ
(j)
l ∂ξ

(j)
m

Q
(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

=

Kj∑

k=1

υ
(1)
jk

(

1

q̃jrjk

∂2q̃jrjk

∂ξ
(j)
l ∂ξ

(j)
m

−
1

q̃2jrjk

∂q̃jrjk

∂ξ
(j)
l

∂q̃jrjk

∂ξ
(j)
m

)

, (4.83)

and

∂2

∂ξ
(i)
l ∂ξ

(j)
m

Q
(

Ω(t)
π

∣
∣
∣Ω̂′

π

)

= 0, if i 6= j. (4.84)

The quantities in (4.79)–(4.84) are all evaluated at Ω
(t)
π . Repeating the calculation of (4.78)

until {Ξ̂(t)} converges, the limit point Ξ̂ of {Ξ̂(t)} is the solution for (4.77), and also the

updated estimate of Ξ.

The convergence of the EM algorithm is guaranteed and the detailed analysis can be

found in [83, 85], that is to say, by iteratively alternating between E-step and M-step, the
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solution for (4.67) can be obtained. It is worth mentioning that since we do not require a very

accurate solution for the relaxed optimization problem in (4.67), once the difference between

the updated and current estimates is sufficiently small, we can terminate the iterations in the

EM algorithm and utilize the current estimate of Ωπ in the following rounding step.

4.4.2 Constrained Variable Threshold Rounding and Barrier Method

By utilizing the EM algorithm as illustrated in Section 4.4.1, we can obtain the solution

Ω̂π for the relaxed optimization problem in (4.67). The element π̂j of Ω̂π specifies the

probability of the j-th sensor being attacked over time. However, according to (4.65c) and

(4.66), we know that before relaxation, π̂j ∈ {0, 1} and 1T π̂ < N/2. To this end, we consider

the task of rounding π̂ to a valid binary vector. To accomplish this task, we propose a

constrained variable threshold rounding (CVTR) approach which is based on the heuristic

developed by Zymnis et al. [86]. The basic idea of the CVTR is that we first round π̂ to

generate a set of most likely probability vectors {π̃(l)} with binary elements which satisfy

the constraints in (4.65c). Then, under constraint (4.65d), the joint maximum likelihood

estimate of the desired vector parameter and attack vector parameters are pursued over the

generated set of valid probability binary vectors {π̃(l)}.

We first generate the set of the most likely valid binary probability vectors {π̃(l)} by

employing the CVTR which can be described as

{

π̃(l)
}

∆
=

{

sgn (π̂ − λ1) : 0 ≤ λ ≤ 1,

‖sgn (π̂ − λ1)‖1 <
N

2

}

. (4.85)

Since the j-th element π̃
(l)
j of π̃(l) denotes the probability the j-th sensor is attacked, each
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probability vector π̃(l) with binary values corresponds to a deterministic state variable vector

η̃(l) as following

η̃(l) = π̃(l), ∀l. (4.86)

We refer to {η̃(l)} as the set of the most likely state variable vectors, and we only consider the

combinations of {ηj} in this set. Further, it is seen from (4.85) that as λ increases from 0 to

1, this approach only generates up to ⌊N/2⌋ distinct valid binary probability vectors. Thus,

it is feasible to exhaustively evaluate the maximum likelihood function, which is maximized

with respect to Ξ, for each given η̃(l). As a result, the optimization problem in (4.65) can be

reduced to

Ω̂R =
[

Ξ̂T
R, η̂

T
R

]T
=arg max

η∈{η̃(l)}
max
Ξ

L (Ω) (4.87a)

s. t. ‖ξ(j)‖2 > dτ , ∀ηj = 1, (4.87b)

As (4.87) demonstrates, we need to solve the inner maximization for each candidate state

variable vector η̃(l), and then keep the solution which gives rise to the maximal objective

function in (4.87). Noticing that the constraint in (4.87b) only has effects on the inner

maximization, the inner constrained maximization for each η̃(l) in (4.87) can be converted to

an unconstrained problem by employing a logarithmic barrier function as

max
Ξ







N∑

j=1

Kj∑

k=1

[

η̃
(l)
j ln q̃jrjk +

(

1− η̃
(l)
j

)

ln qjrjk

]

+ µ
N∑

j=1

η̃
(l)
j ln

(

‖ξ(j)‖2 − dτ

)






, (4.88)

where the positive barrier parameter µ determines the accuracy with which (4.88) approx-
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imates the inner constrained maximization in (4.87). Since the objective function in (4.88)

is differentiable, the unconstrained problem in (4.88) can be similarly solved by Newton’s

Method as in Section 4.4.1 for any given µ.

Let Ξ̂
(l)
µ denote the solution of (4.88) for any given η̃(l) and µ, and let L

(l)
∗ represent the

optimal objective value of the inner constrained maximization in (4.87a) for any given η̃(l). It

can be shown that as µ→ 0, any limit point Ξ̂
(l)
∗ of the sequence {Ξ̂

(l)
µ }µ is a solution of the

inner constrained maximization in (4.87) [87]. Thus, we can obtain an accurate solution of

the inner constrained maximization in (4.87) by iteratively solving (4.88) for a sequence {µm}

of positive barrier parameters, which decrease monotonically to zero, such that the solution

Ξ̂
(l)
µm for µm is chosen as the starting point for the next iteration with barrier parameter µm+1.

By defining l∗
∆
= maxl L

(l)
∗ , the solution of the constrained optimization problem in (4.87)

can be obtained as

Ω̂R =
[

Ξ̂R, η̂R

]T
=

[(

Ξ̂
(l∗)
∗
)T
,
(

η̃(l∗)
)T
]T

. (4.89)

4.4.3 Discussion

The random relaxation and constrained variable threshold rounding approach proposed

for solving the joint identification and estimation problem in (4.65) is a heuristic approach.

Further improvement in the identification and estimation can sometimes be obtained by

performing a local optimization by searching around η̂R [84]. To be specific, we cycle through

j = 1, 2, ..., N , and at j-th step, we flip the j-th element of η̂R. If this change can result in an

increase in the optimal value in (4.87a) for some Ξ, then we accept this change, otherwise we

move on to the next index. We continue checking each element of the state variable vector

until we have rejected any new change. After this local optimization, the estimate of state

variable vector is at least 1-OPT, since no change in one element of the estimate can increase
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the likelihood function.

It is well known that the condition number of the Hessian matrix of the logarithmic

barrier function in (4.88) might become increasingly larger as the barrier parameter decreases

to 0. In order to overcome the ill-conditioning issue in practical computation, the numerically

stable approximation of the Newton direction can be utilized in Newton’s method for solving

(4.88) with small barrier parameter, see [87] and the references therein. It is worth mentioning

that to preserve the generality, we don’t make additional assumptions to ensure the convexity

of the objective functions in the section. Hence, the EM algorithm and Newton’s method

involved in our approach might converge to a locally optimal point if the starting point is not

close to the globally optimal point. To avoid this possibility, multiple starting points can be

employed and we choose the one that yields the maximal objective function at convergence

[82].

It is seen from (4.87)–(4.89) that the proposed approach employs joint estimation of the

desired vector parameter and the attack vector parameters in the identification process, and

moreover, as shown in (4.89), the final estimate of the desired vector parameter is directly

obtained from the joint estimation once l∗ is determined. Thus, for some scenarios where

the spoofing attacks are not OGDSAs, one can expect that the proposed approach is able to

outperform the estimation approach which just utilizes the unattacked data to estimate the

desired vector parameter, since the attacked data is employed in the proposed approach.

4.5 Numerical Results

In this section, we investigate the performance of the approaches proposed in Section

4.4 for some example cases. Specifically, we consider a sensor network consisting of N = 10
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sensors. Each sensor makes K measurements of the physical phenomenon, and employs an

identical 4-bit quantizer with a set of thresholds {0,±1,±2, ...,±7,±∞} to convert analog

measurements to quantized data before transmitting them to the FC. We take the following

signal model of the before-attack measurements, which has been studied the most in sensor

network area,

xjk = θ + njk, ∀k and ∀j, (4.90)

where θ is a deterministic unknown parameter, and {njk} is an i.i.d. zero-mean Gaussian

noise sequence with distribution N (0, σ2). Further, we assume that the first 3 sensors in the

sensor network are under data-injection spoofing attacks. The after-attack measurements are

described as

x̃jk = θ + ajk + njk, ∀k and ∀j = 1, 2, 3, (4.91)

where ajk is the unknown attack injected at the j-th sensor at time k.

4.5.1 Scalar Parameter Case with Deterministic {ajk}

In this subsection, we assume that the injected attacks a1k = −2, a2k = −1, and a3k = 1

are deterministic unknown for all k, and the variance of the noise σ2 = 5 is known to the

FC. The desired scalar parameter is θ = 1, and the constraint on the attack parameter

defined in (4.59) is dτ = 0.8. We first test the performance of the approach of the random

relaxation (RR) with the EM and CVTR in identifying the attacked and unattacked sensors.

Fig. 4.2 illustrates the Monte Carlo approximation (1000 times) of the ensemble average of

the percentage of all mis-classified sensors as a function of the number K of measurements

at each sensor. As Fig. 4.2 shows, the average percentage of mis-classified sensors decreases

towards 0 as K increases.
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Figure 4.2: Performance of identifying the attacked and unattacked sensors for scalar param-
eter.

Next, we examine the estimation performance of the proposed approaches in Section 4.4,

that is, the approach of the RR with the EM, and the approach of the RR with the EM and

CVTR. Fig. 4.3 depicts the mean squared error (MSE) performance of the two approaches

for estimating θ. For comparison, the genie CRB for θ which assumes the FC is aware of

the true states of sensors and only utilizes the unattacked data to estimate θ is also provided

in Fig. 4.3. It is seen that as K increases, the MSE performance of the approach with

CVTR for estimating θ converges to the genie CRB for θ from above, which would be the

case if the proposed estimator for the desired parameter is asymptotically efficient for this

case. The results in Fig. 4.3 also corroborates the previous theoretical results in Section 4.3

that under OESA, jointly estimating the desired parameter and the attack parameter does

not improve the estimation performance for the desired parameter in the CRB sense when
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compared to the case where only unattacked data is employed to estimate θ. In addition, the

MSE performance of the approach with CVTR is shown to be better than the approach which

only employs the RR with the EM algorithm, which implies that the proposed constrained

variable threshold rounding can further improve the estimation performance for the deisred

parameter.
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Figure 4.3: Estimation performance of the proposed approaches for scalar parameter.

4.5.2 Vector Parameter Case with Random {ajk}

In this subsection, we extend the results in Section 4.5.1 to the vector parameter case. We

consider the scenario that the parameter θ = 1 and the variance of the noise σ2 = 3 are both

the parameters of interest. Moreover, the unknown injected attacks {ajk} are independent

random variables, where ajk obeys the Gaussian distribution N (αj , βj) for all k. The desired
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vector parameter θ
∆
= [θ, σ2]T and the attack vector parameters {ξ(j)

∆
= [αj , βj ]

T }j=1,2,3 are

θ = [1, 3]T , ξ(1) = [−2, 1]T , ξ(2) = [−1, 2]T , and ξ(3) = [1, 2]T . In our simulations, the

constraint on the attack vector parameter defined in (4.59) is dτ = 2. We first study the

performance of the approach of the RR with the EM and CVTR in identifying the attacked

and unattacked sensors for the vector parameter case. Fig. 4.4 depicts the Monte Carlo

approximation (1000 times) of the ensemble average of the percentage of all mis-classified

sensors versus K. It is seen from Fig. 4.4 that the average percentage of mis-classified

sensors reduces towards 0 as K increases. In Fig. 4.5, we plot the MSE performance of

our proposed approaches for θ. The genie CRB performance for θ which assumes the FC is

aware of the true states of sensors and only utilizes the unattacked data to estimate θ is also

plotted for comparison. As Fig. 4.5 shows, we obtain similar results to those for the scalar

parameter case in Section 4.5.1. To be specific, the MSE performance of the RR with the

EM and CVTR is very close to the genie CRB and outperforms the approach which only

employs the RR with the EM algorithm.

4.6 Summary

In this chapter, we study the distributed estimation of a deterministic vector parameter

by using quantized data in the presence of spoofing attacks. A generalized attack model is

employed which manipulates the data using transformations with arbitrary functional forms

determined by some attack parameters whose values are unknown to the attacked system.

Novel necessary and sufficient conditions are provided under which these transformations

provide an OGDSA. It is shown that an OGDSA implies that either the FIM under the

conditions of Definition 1 for jointly estimating the desired and attack parameters is singular
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Figure 4.4: Performance of identifying the attacked and unattacked sensors for vector pa-
rameter.

or that the attacked system is unable to improve the CRB under the conditions of Definition

1 for the desired vector parameter through this joint estimation even though the joint FIM

is nonsingular. It is demonstrated that it is always possible to construct an OGDSA by

properly employing a sufficiently large dimension attack vector parameter relative to the

number of quantization levels employed, which was not observed previously. In addition,

we demonstrate that under the conditions of Definition 1, a spoofing attack can corrupt the

original measurements to make them useless in terms of reducing the CRB for estimating

the desired vector parameter if and only if it is an OGDSA. For a class of OGDSAs, a

computationally efficient heuristic which employs the Expectation-Maximization algorithm

and the constrained variable threshold rounding is proposed for the joint identification of

attacked sensors and estimation of the desired vector parameter. The proposed heuristic
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Figure 4.5: Estimation performance of the proposed approaches for vector parameter.

approach is guaranteed to provide a locally optimal solution, but will find globally optimal

solutions when they exist when suitable conditions are satisfied. Numerical results show cases

where the proposed approach can correctly identify the attacked sensors while providing an

estimate whose mean squared error converges to the genie bound based on knowledge of the

set of attacked sensors, provided a sufficient number of measurements are available.
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Chapter 5

Conclusions

This dissertation presents our research on several selected issues concerning sensor net-

works which focus on signal detection and estimation problems.

In Chapter 2, the large observation size performance of a truncated detector for a canon-

ical multivariate Gaussian hypothesis testing problem is studied. If the observations consist

of data taken at different times, the truncated detector can reduce the storage and multi-

plications needed when compared to the optimal detector. If the observations are obtained

from distributed sensors, the truncated detector not only reduces the communication energy

requirement for computing the test statistic, it allows efficient implementation by adopting

a consensus algorithm. Motivated by these benefits of utilizing the truncated detector, the

performance of the truncated detector in terms of deflection is investigated. Sufficient con-

ditions for a truncation rule and a sequence of tests which lead to no loss in asymptotic

deflection ratio of the truncated detector relative to the optimal detector are derived. Several

well-accepted and popular classes of system and process models are employed as examples to

show that the sufficient conditions are not overly restrictive. For all the examples considered,
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we find truncation rules which increase slowly with the number of the observations, implying

significant savings. In all the cases considered, numerical results imply that not only do the

deflections of the truncated and the optimal detectors converge to the same values for large

number of observations for our asymptotically optimal truncation rules, but the probability

of detections also converge to the same values for fixed false alarm probabilities.

In Chapter 3, the distributed estimation problem using binary quantized data in the

presence of man-in-the-middle attacks is studied. In this work, the sensor data modifications

implemented by the adversaries are statistically characterized by a set of unknown probabili-

ty transition matrices. We demonstrate that the fusion center is able to identify the attacked

sensors and categorize these attacked sensors into different subsets according to distinct types

of attacks perfectly or with a very small percentage of misclassified sensors, as the number

of temporal observations at each sensor grows to infinity or the number of sensors increases

to infinity respectively, provided that the set of unattacked sensors is larger than any set

of identically attacked sensors. In order to improve the estimation performance by utilizing

the attacked sensors, a joint estimation of the statistical description of the attacks and the

parameter to be estimated is considered. However, it is shown that the corresponding Fisher

information matrix (FIM) is singular if a standard data quantization approach is employed.

Thus, it is not possible to accurately estimate the parameters using this approach with an

estimate that would always become more and more accurate as we increase the number of

observations. Aiming to overcome this, the time-variant quantization approach is proposed

which divides the observation time interval at each sensor into several time slots and employs

distinct thresholds to quantize the time samples in different time slots. If the number of time

samples at each sensor is not less than 2, then it can be shown that the FIM for all unknown

parameters in time-variant quantization approach is nonsingular which implies that the statis-
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tical properties of the attacks and the parameter to be estimated can be accurately estimated

with a sufficiently large number of observations. A necessary and sufficient condition under

which the attacked observations can be taken advantage of to improve the asymptotic estima-

tion performance is derived. A notable fact is that for many cases, significant improvement

in Cramer-Rao Bound (CRB) performance for the parameter to be estimated can be at-

tained by making use of attacked observations in our proposed fashion. However, for some

specific cases, using the attacked observations will not provide better asymptotic estimation

performance. It is worth mentioning that both the theoretical analysis and numerical results

illustrate that the improvement in CRB performance by utilizing attacked observations in

our proposed fashion depends not only on the statistical description of the attacks and the

parameter to be estimated, but also on the sets of thresholds of the quantizer, which moti-

vates us to pursue the optimum quantizer design for distributed estimation in the presence

of man-in-the-middle attacks in future work.

In Chapter 4, we investigate the distributed estimation of a deterministic vector pa-

rameter by using possibly nonbinary quantized data in the presence of spoofing attacks. A

generalized attack model is employed which manipulates the data using transformations with

arbitrary functional forms determined by some attack parameters whose values are unknown

to the attacked system. Novel necessary and sufficient conditions are provided under which

these transformations provide a guaranteed attack performance in terms of CRB regardless

of the processing the estimation system employs, thus defining a highly desirable attack. It

is shown that this highly desirable attack implies that for any such attack when the fusion

center can perfectly identify the attacked sensors, either the FIM for jointly estimating the

desired and attack parameters is singular or the attacked system is unable to improve the

CRB for the desired vector parameter through this joint estimation even though the joint
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FIM is nonsingular. It is demonstrated that it is always possible to construct such a de-

sirable attack by properly employing a sufficiently large dimension attack vector parameter

relative to the number of quantization levels employed, which was not observed previously.

In addition, we demonstrate that when the fusion center can perfectly identify the attacked

sensors, a spoofing attack can corrupt the original measurements to make them useless in

terms of reducing the CRB for estimating the desired vector parameter if and only if it is such

a desirable attack. For a class of such desirable attacks, a computationally efficient heuristic

which employs the Expectation-Maximization algorithm and the constrained variable thresh-

old rounding is proposed for the joint identification of attacked sensors and estimation of the

desired vector parameter. For the cases considered, numerical results illustrate that the pro-

posed approach can asymptotically correctly identify the attacked sensors while providing an

estimate whose mean squared error converges to the genie bound based on knowledge of the

set of attacked sensors, provided a sufficient number of measurements are available.
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[43] U. Grenander and G. Szegő, Toeplitz forms and their applications. Univ of California

Press, 1958.

[44] P. Bickel and E. Levina, “Regularized estimation of large covariance matrices,” The

Annals of Statistics, vol. 36, no. 1, pp. 199–227, 2008.

[45] C. W. Therrien and K. Fukunaga, “Properties of separable covariance matrices and

their associated gaussian random processes,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, no. 5, pp. 652–656, 1984.

161



[46] J. A. Ritcey and A. Chindapol, “A kronecker product improvement to pca for space time

adaptive processing,” in Signals, Systems and Computers, 2000. Conference Record of

the Thirty-Fourth Asilomar Conference on, vol. 1. IEEE, 2000, pp. 651–655.

[47] M. G. Genton, “Separable approximations of space-time covariance matrices,” Environ-

metrics, vol. 18, no. 7, pp. 681–695, 2007.

[48] M. Sherman, Spatial Statistics and Spatio-Temporal Data: Covariance Functions and

Directional Properties. Wiley, 2011.

[49] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor net-

works,” Communications magazine, IEEE, vol. 40, no. 8, pp. 102–114, 2002.

[50] H. C. Papadopoulos, G. W. Wornell, and A. V. Oppenheim, “Sequential signal encod-

ing from noisy measurements using quantizers with dynamic bias control,” Information

Theory, IEEE Transactions on, vol. 47, no. 3, pp. 978–1002, 2001.

[51] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed estimation for

wireless sensor networks-part I: Gaussian case,” Signal Processing, IEEE Transactions

on, vol. 54, no. 3, pp. 1131–1143, 2006.

[52] Z.-Q. Luo, “Universal decentralized estimation in a bandwidth constrained sensor net-

work,” Information Theory, IEEE Transactions on, vol. 51, no. 6, pp. 2210–2219, 2005.

[53] J.-J. Xiao, A. Ribeiro, Z.-Q. Luo, and G. B. Giannakis, “Distributed compression-

estimation using wireless sensor networks,” Signal Processing Magazine, IEEE, vol. 23,

no. 4, pp. 27–41, 2006.

162



[54] R. Niu and P. K. Varshney, “Target location estimation in sensor networks with quan-

tized data,” Signal Processing, IEEE Transactions on, vol. 54, no. 12, pp. 4519–4528,

2006.

[55] O. Ozdemir, R. Niu, and P. K. Varshney, “Channel aware target localization with quan-

tized data in wireless sensor networks,” Signal Processing, IEEE Transactions on, vol. 57,

no. 3, pp. 1190–1202, 2009.

[56] J. Fang and H. Li, “Hyperplane-based vector quantization for distributed estimation in

wireless sensor networks,” Information Theory, IEEE Transactions on, vol. 55, no. 12,

pp. 5682–5699, 2009.

[57] S. Marano, V. Matta, and L. Tong, “Distributed detection in the presence of Byzantine

attacks,” Signal Processing, IEEE Transactions on, vol. 57, no. 1, pp. 16–29, 2009.

[58] A. Vempaty, K. Agrawal, H. Chen, and P. Varshney, “Adaptive learning of Byzantines’

behavior in cooperative spectrum sensing,” in Wireless Communications and Networking

Conference (WCNC), 2011 IEEE. IEEE, 2011, pp. 1310–1315.

[59] A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative spectrum sensing

in the presence of Byzantine attacks in cognitive radio networks,” Signal Processing,

IEEE Transactions on, vol. 59, no. 2, pp. 774–786, 2011.

[60] X. He, H. Dai, and P. Ning, “A Byzantine attack defender in cognitive radio networks:

The conditional frequency check,” Wireless Communications, IEEE Transactions on,

vol. 12, no. 5, pp. 2512–2523, 2013.

163



[61] A. Vempaty, L. Tong, and P. Varshney, “Distributed inference with Byzantine data:

State-of-the-art review on data falsification attacks,” Signal Processing Magazine, IEEE,

vol. 30, no. 5, pp. 65–75, 2013.

[62] A. Vempaty, O. Ozdemir, K. Agrawal, H. Chen, and P. K. Varshney, “Localization in

wireless sensor networks: Byzantines and mitigation techniques,” IEEE Transactions on

Signal Processing, vol. 61, pp. 1495–1508, 2013.

[63] T. C. Aysal and K. E. Barner, “Sensor data cryptography in wireless sensor networks,”

Information Forensics and Security, IEEE Transactions on, vol. 3, no. 2, pp. 273–289,

2008.

[64] R. Soosahabi and M. Naraghi-Pour, “Scalable phy-layer security for distributed detection

in wireless sensor networks,” Information Forensics and Security, IEEE Transactions on,

vol. 7, no. 4, pp. 1118–1126, 2012.

[65] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,

2012.

[66] B. Chen, L. Tong, and P. K. Varshney, “Channel-aware distributed detection in wireless

sensor networks,” Signal Processing Magazine, IEEE, vol. 23, no. 4, pp. 16–26, 2006.

[67] F. den Hollander, Large deviations (Fields Institute Monographs). Providence, RI:

American Mathematical Soc., 2000.

[68] A. Dembo and O. Zeitouni, Large deviations techniques and applications, 2nd ed. New

York: Springer-Verlag, 2009.

164



[69] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical methods for securing

wireless localization in sensor networks,” in Information Processing in Sensor Networks,

2005. IPSN 2005. Fourth International Symposium on, April 2005, pp. 91–98.

[70] J. H. Lee and R. Buehrer, “Characterization and detection of location spoofing attacks,”

Communications and Networks, Journal of, vol. 14, no. 4, pp. 396–409, Aug 2012.

[71] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, and A. Tajer, “Coordinated data-injection

attack and detection in the smart grid: A detailed look at enriching detection solutions,”

Signal Processing Magazine, IEEE, vol. 29, no. 5, pp. 106–115, 2012.

[72] J. Zhang, R. S. Blum, X. Lu, and D. Conus, “Asymptotically optimum distributed

estimation in the presence of attacks,” Signal Processing, IEEE Transactions on, vol. 63,

no. 5, pp. 1086–1101, March 2015.

[73] B. Alnajjab, J. Zhang, and R. S. Blum, “Attacks on sensor network estimation systems

with quantization: Performance and optimum processing,” accepted to IEEE Transac-

tions on Signal Processing.

[74] P. Venkitasubramaniam, L. Tong, and A. Swami, “Quantization for maximin ARE in

distributed estimation,” Signal Processing, IEEE Transactions on, vol. 55, no. 7, pp.

3596–3605, July 2007.

[75] S. Roome, “Digital radio frequency memory,” Electronics Communication Engineering

Journal, vol. 2, no. 4, pp. 147–153, Aug 1990.

[76] D. Liu, P. Ning, A. Liu, C. Wang, and W. K. Du, “Attack-resistant location estimation

in wireless sensor networks,” ACM Transactions on Information and System Security

(TISSEC), vol. 11, no. 4, p. 22, 2008.

165



[77] T. T. Kim and H. V. Poor, “Strategic protection against data injection attacks on power

grids,” Smart Grid, IEEE Transactions on, vol. 2, no. 2, pp. 326–333, 2011.

[78] S. Kim, W. Kuperman, W. Hodgkiss, H. Song, G. Edelmann, and T. Akal, “Robust time

reversal focusing in the ocean,” The Journal of the Acoustical Society of America, vol.

114, p. 145, 2003.

[79] M. I. Skolnik, Introduction to Radar Systems, 2nd ed. New York: McGraw Hill Book

Co., 1980.

[80] G. Grachev, “Theory of acoustic field invariants in layered waveguides,” Acoustical

physics, vol. 39, no. 1, pp. 33–35, 1993.

[81] G. D’spain, J. Murray, W. Hodgkiss, N. Booth, and P. Schey, “Mirages in shallow water

matched field processing,” The Journal of the Acoustical Society of America, vol. 105,

no. 6, pp. 3245–3265, 1999.

[82] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation theory.

Upper Saddle River, NJ: Prentice Hall, 1993.

[83] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete

data via the EM algorithm,” Journal of the Royal Statistical Society. Series B (Method-

ological), vol. 39, no. 1, pp. pp. 1–38, 1977.

[84] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,

2004.

[85] C. F. J. Wu, “On the convergence properties of the EM algorithm,” The Annals of

Statistics, vol. 11, no. 1, pp. pp. 95–103, 1983.

166



[86] A. Zymnis, S. Boyd, and D. Gorinevsky, “Relaxed maximum a posteriori fault identifi-

cation,” Signal Process., vol. 89, no. 6, pp. 989–999, Jun. 2009.

[87] S. Nash, R. Polyak, and A. Sofer, “A numerical comparison of barrier and modified

barrier methods for large-scale bound-constrained optimization,” in Large Scale Opti-

mization, W. Hager, D. Hearn, and P. Pardalos, Eds. Springer US, 1994, pp. 319–338.

167



Vita

Jiangfan Zhang received the B.Eng. degree in communication engineering from Huazhong

University of Science and Technology, Wuhan, China, in 2008, and the M.Eng. degree in in-

formation and communication engineering from Zhejiang University, Hangzhou, China, 2011.

Since 2011, he has been working towards the Ph.D. degree in the Department of Electrical

and Computer Engineering, Lehigh University, Bethlehem, PA. His research interests include

signal processing for sensor networking, smart grid, communications, radar, and sonar pro-

cessing. Mr. Zhang is a recipient of the Dean’s Doctoral Student Assistantship, Gotshall

Fellowship, and a P. C. Rossin Doctoral Fellow at Lehigh University.

168


	Lehigh University
	Lehigh Preserve
	2016

	Selected Topics in Signal Detection and Estimation in Sensor Networking
	Jiangfan Zhang
	Recommended Citation


	DissertationV2.dvi

