
Lehigh University
Lehigh Preserve

Theses and Dissertations

2012

A Context-Aware Reflective Middleware
Framework for Mobile Ad-hoc and Wireless
Sensor Networks
Shengpu Liu
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Liu, Shengpu, "A Context-Aware Reflective Middleware Framework for Mobile Ad-hoc and Wireless Sensor Networks" (2012). Theses
and Dissertations. Paper 1077.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1077?utm_source=preserve.lehigh.edu%2Fetd%2F1077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

A CONTEXT-AWARE REFLECTIVE MIDDLEWARE

FRAMEWORK FOR MOBILE AD-HOC AND

WIRELESS SENSOR NETWORKS

by

Shengpu Liu

A Dissertation
Presented to the Graduate and Research Committee

of Lehigh University
in Candidacy for the Degree of

Doctor of Philosophy
in

Computer Engineering

Lehigh University

January 2012

c⃝ Copyright 2012 by Shengpu Liu

All Rights Reserved

ii

Approved and recommended for acceptance as a dissertation in partial fullfill-

ment of the requirements for the degree of Doctor of Philosophy.

Date

Dissertation Director

Accepted Date

Committee Members:

Liang Cheng

Edwin Kay

Donald Hillman

Tiffany Jing Li

iii

This dissertation is dedicated to my wonderful family, particularly to my patient

and understanding wife, Li, who is always encouraging me and taking care of my

life. I must also thank my loving parents who have given me their fullest support.

iv

Acknowledgments

I would like to thank all of those people who helped me make this dissertation

possible.

I wish to thank my advisor, Dr. Liang Cheng for all his guidance, encour-

agement, support, and patience through out the time it took me to complete the

research and write this dissertation. His sincere focus on ”Original”, ”Significance”,

and ”Scholarship” is my most important research guideline. The inspiration for do-

ing this research came from the NSF project: Middleware for Adaptive Robust Col-

laborations across Heterogeneous Environments and Systems (MARCHES) that is

headed by Dr. Cheng in the Laboratory Of Networking Group (LONGLAB) at

Lehigh University. The project was one of the most important and formative

experiences in my life.

My committee members Dr. Edwin Kay, Dr. Donald Hillman, and Dr. Tiffany

Jing Li have given me very helpful insights, comments, and suggestions to improve

my work. I thank them for their contribution and their good-natured support.

I am grateful to many persons who shared their knowledge and experiences,

especially Dr. Qiang Wang and Dr. Qing Ye. They generously shared their

meticulous research and insights that supported and expanded my own work. I

also need to express my gratitude and deep appreciation to Lisa Frye, who has

helped so much with proof-reading my academic papers and has given me a lot of

v

research suggestions.

I must acknowledge as well the many friends, colleagues, students, teachers, and

other staffs who assisted, advised, and supported my research and writing efforts

over the years. I need to thank especially Dr. Peng Yang, who was my classmate

and is also my colleague now. He gave me a lot of suggestions on organizing and

formatting this dissertation. My thanks must go also to Eric Xu Li, who has

generously given his time to help me process my dissertation-related work.

vi

Contents

Acknowledgments v

List of Tables xi

List of Figures xii

Abstract 1

1 Introduction 3

1.1 Context-Aware Reflective Middleware and Applications 4

1.1.1 Context-Aware Reflective Middleware 4

1.1.2 Applications in Mobile Ad-hoc Networks 5

1.1.3 Applications in Wireless Sensor Networks 7

1.2 Motivations and Objectives . 9

1.2.1 Application Requirements 9

1.2.2 Middleware Requirements 11

1.2.3 Objectives . 12

1.3 Contributions and Significance . 12

1.4 Terminologies . 15

1.5 Organization of the Dissertation . 16

vii

2 Related Work 17

2.1 Middleware for Mobile Ad-hoc Networks 18

2.1.1 Communication Middleware 18

2.1.2 Component Middleware . 18

2.1.3 Adaptive and Reflective Middleware 19

2.1.4 Context-aware Reflective Middleware 19

2.2 Middleware for Wireless Sensor Networks 22

2.2.1 WSN Middleware Frameworks 22

2.2.2 WSN Reprogramming . 24

2.2.3 SOS: A Dynamic Sensor Operating System 25

3 MassWare for Mobile Ad-hoc Networks 26

3.1 System Architecture of MassWare 27

3.2 MassWare Reflective Model . 29

3.2.1 Components and Component-level Reflection 30

3.2.2 Reconfigurator and System-level Reflection 32

3.3 Awareness Measurement Layer . 33

3.3.1 Measurement Tools . 33

3.3.2 Context-awareness Categorization 34

3.4 Awareness Management Layer . 35

3.5 Adaptation Decision Layer . 37

3.6 Adaptation Execution Layer . 41

3.6.1 Local Behavior Reconfiguration 41

3.6.2 Distributed Behavior Synchronization 44

3.6.3 Correctness of MassWare Synchronization 46

3.6.4 Policy Modification at Runtime 49

3.7 MassWare Application Development 49

viii

4 MassWare for Wireless Sensor Networks 51

4.1 System Architecture of MassWare 52

4.2 MassWare Reflective Model . 55

4.2.1 MassWare Components . 55

4.2.2 MassWare Actuator . 58

4.3 MassWare Awareness Management 59

4.4 MassWare Compiler and Decision Engine 61

4.5 MassWare Efficient Reconfiguration 64

4.5.1 Local Behavior Reconfiguration 64

4.5.2 Distributed Behavior Synchronization 65

4.6 MassWare Application Development 67

5 Performance Analysis and Experiments 69

5.1 MassWare-MANET Evaluation by Analytical Models 70

5.1.1 Analytical Model . 71

5.2 MassWare-MANET Evaluation by Experimental Measurements . . 77

5.2.1 Test Bed . 78

5.2.2 Time Efficiency . 79

5.2.3 Memory Footprint and Scalability 82

5.2.4 Demo Applications and Releases 84

5.3 MassWare-WSN Evaluation . 84

5.3.1 Memory Footprint . 85

5.3.2 Time Efficiency . 88

5.3.3 Energy Consumption . 89

6 Applications and Implementation 91

6.1 MassWare-Supported Routing Application in MANETs 92

ix

6.1.1 Related Work . 94

6.1.2 Local Tree Based Geometric Routing (LTGR) 97

6.1.3 LTGR and MassWare Application Implementation 102

6.1.4 Simulation and Analysis of Results 105

6.1.5 LTGR Summary . 111

6.2 MassWare-Supported Data Compression Applications in WSNs . . 113

6.2.1 Related Work . 115

6.2.2 Distributed Source Coding and Lifting SchemeWavelet Trans-

form . 116

6.2.3 System Design . 120

6.2.4 MassWare-Supported Data Compression Application 124

6.2.5 Experiments and Simulations 127

6.2.6 LSWT-DSC Summary . 134

7 Conclusions 135

Bibliography 141

x

List of Tables

3.1 Categories of MassWare context-awareness 35

5.1 Parameter notation of reconfiguration time 71

5.2 The configuration time affected by various parameters 76

5.3 Resource consumption by MassWare 83

5.4 Benchmarking decision engine’s memory size (byte) 88

5.5 Benchmarking decision engine’s loading time (in CPU cycles) 89

6.1 Simulation parameters . 105

6.2 Computation time (s) for compressing 4096 sample values 133

xi

List of Figures

1.1 An example of vehicle application scenario. 6

1.2 Dynamic reconfiguration architecture 13

2.1 Middleware layers. 18

3.1 System architecture of MassWare-MANET. 27

3.2 The component declaration in MassWare-MANET. 30

3.3 MassWare actuator architecture and meta-interface. 33

3.4 The event notification model. 36

3.5 A detector example. 38

3.6 An XML script file example. 39

3.7 The MassWare script file development tool. 40

3.8 The MassWare reconfigurator. 43

3.9 The synchronization process. 44

4.1 System architecture of MassWare-WSN. 52

4.2 A MassWare-WSN component example. 56

4.3 A MassWare-WSN script file example. 57

4.4 The synchronization process in MassWare-WSN. 65

5.1 MobiPADS reconfiguration time. 72

xii

5.2 CARISMA reconfiguration time. 73

5.3 MassWare initialization time. 74

5.4 Experimental test bed. 78

5.5 MassWare initialization time. 79

5.6 MassWare reconfiguration time. 80

5.7 Component initialization time. 81

6.1 A local tree based routing example. 101

6.2 Dynamic reconfiguration architecture 102

6.3 The full MassWare application example using LTGR 104

6.4 Percentage of packets in recovery mode vs. pause time. 106

6.5 Packet delivery ratio vs. the number of nodes. 107

6.6 Source-destination connectivity probability vs. the number of nodes. 108

6.7 Average hop stretch vs. the number of nodes. 109

6.8 Protocol overhead vs. the number of nodes. 111

6.9 Basic structure of distributed source coding. 116

6.10 The wavelet decomposition tree with a scale level n = 2. 118

6.11 The compression process in sensor nodes. 121

6.12 The compressed data format. 123

6.13 A DSC masslet example. 125

6.14 The data compression application script file example. 126

6.15 Compression ratio vs. noise degree. 128

6.16 The peak signal to noise ratio vs. noise degree. 130

6.17 Comparisons between the original and the restored signals. 131

6.18 The frequency domain analysis. 131

xiii

Abstract

In smart environments, numerous devices need to be dynamically connected to for-

m a Distributed Real-time and Embedded (DRE) system based on Mobile Ad-hoc

NETworks (MANETs) or Wireless Sensor Networks (WSNs) and collaboratively

react to changing contexts with dependable quality of service (QoS). Tradition-

al middleware platforms, which have been designed as monolithic static systems,

cannot effectively support the flexible and dynamic computing environments for

emerging DRE applications. In consequence, there is an urgent need to provide a

powerful adaptation approach for existing middleware.

Context-Aware Reflective Middleware (CARM), which supports dynamic re-

configuration and distributed behavior synchronization of component-based appli-

cations, has been an appealing technique for DRE systems in MANETs and WSNs.

Existing CARM frameworks use single component-chain based architecture and

synchronous synchronization protocols that are inefficient since they impose de-

pendence restrictions and reconfiguration overhead. The achieved reconfiguration

time is in a range of several seconds or even tens of seconds. We argue that they can

not satisfy the efficiency requirements of some DRE applications in the dynam-

ic environments, where reconfiguration is triggered every second or millisecond.

Furthermore, there is no CARM framework implemented for extremely resource-

limited wireless sensor nodes due to the complexity and overhead.

1

The key contribution of this dissertation research is the design and realization

of a context-aware reflective middleware framework, called MassWare (Mobile Ad-

hoc and Sensor Systems’ Middleware), to meet the efficiency requirement of such

adaptive DRE applications in MANETs and WSNs. Our thesis is that the recon-

figuration efficiency can be improved by asynchronous synchronization support via

a middleware framework. To prove this thesis, we propose a multiple component-

chain based middleware architecture and an active-message oriented asynchronous

synchronization protocol for the reconfiguration. The key idea behind the proto-

col is that each application-layer data packet takes an active message header that

indexes the correct component-chain of the packet receiver to process the data

payload. Therefore, the distributed behavior synchronization time is dramatically

reduced by eliminating the operation suspension time and buffer clearance time.

Based on the protocol, we have developed MassWare in MANETs and WSNs that

helps the DRE applications adapt to changing contexts in an efficient and robust

way according to user-defined adaptation rules.

In this dissertation, we describe the complete architecture design, model anal-

ysis, and implementation of MassWare, which addresses the major challenges of

existing CARM frameworks: improving reconfiguration efficiency, realizing CARM

in WSNs, and offering a unified development model for both MANETs and WSNs.

MassWare and supported applications have been implemented on PDA platforms

and Mica sensor nodes. The reconfiguration efficiency has also been analyzed and

compared with those of peer CARM frameworks based on a novel theoretical mod-

el. Quantitative empirical results show that the reconfiguration time of MassWare

for MANETs is reduced from seconds to hundreds of microseconds. Evaluation-

s demonstrate that MassWare is robust, scalable and generates a small memory

footprint.

2

Chapter 1

Introduction

3

1. Introduction

1.1 Context-Aware Reflective Middleware and Ap-

plications

1.1.1 Context-Aware Reflective Middleware

Middleware [1][2] is a distributed software layer that sits above the network opera-

tion system and below the application layer and abstracts the heterogeneity of the

underlying environment. Traditional communication middleware, like CORBA [3],

Java RMI [4], and DCOM [5], has been a critical technology in the construction

of distributed applications. Recently, there is a need to migrate the middleware

platforms, which have been designed as monolithic static systems, to more flexible

and dynamic computing environments due to the popularity of portable devices

(e.g. laptops, PDAs, and sensor nodes) and advances in wireless communication

techniques (e.g. Wi-Fi and ZigBee). The limited resource and dynamic resource

availability requires applications to be adaptive and reconfigurable at runtime to

improve performances in the Mobile Ad-hoc Networks (MANETs) and Wireless

Sensor Networks (WSNs).

Adaptive and reflective middleware [6][7] has the ability to inspect its inter-

nal states by providing a representation of its internals through a process called

reification, and allows the internals to be dynamically manipulated and runtime

reconfigured through a process called absorption [8][9] to change its functional

behaviors. The adaptive and reflective middleware uses component-based meta-

model to build applications, in which an application consists of a set of interacting

reflective components (e.g. a component chain). Therefore, the reconfiguration

process is realized via the component interface-metamodel, which is able to dy-

namically discover and access the component interfaces to change its attributes

and functions, and the application architecture-metamodel, which is able to access

4

1. Introduction

and reconfigure the component graph (e.g. the component chain structure).

Context-aware reflective middleware (CARM) [10][11] can monitor real-time

contextual information and adapt the application behaviors to the context changes.

It provides a powerful reconfiguration approach to build Distributed Real-time

and Embedded (DRE) systems [12] in mobile wireless environments because it can

adapt the systems autonomously to changing contexts to ensure required quality

of service (QoS) [13]. The reconfiguration process includes local behavior change

and distributed behavior synchronization (e.g. changing or adding a compression

component in local program may require a corresponding change or insertion of a

decompression component in distributed peer programs).

1.1.2 Applications in Mobile Ad-hoc Networks

Distributed real-time and embedded (DRE) systems [12], such as aircraft mission

planning systems in battlefield, rapid response systems, and vehicle safety systems

in unmanned intelligent vehicles, provide an important approach to bridging the

gap between the cyber world and the physical world. Generally, DRE systems are

large-scale, integrated, and time-sensitive and operate in dynamic and resource

limited environments [14]. This challenges system designers and developers when

such DRE systems must be developed from scratch. Fortunately, CARM tech-

niques may be used to address this challenge by reducing application development

and maintenance costs, enabling component-based system integration, and sup-

porting time-sensitive and resource-limited application.

To clarify the potential advantages behind the context-aware reflective middle-

ware for DRE systems, we present an example of possible use case in vehicle safety

applications (see Fig. 1.1). Suppose a road has two lanes in one direction, on

which car 1 and car 5 are in lane 1 and car 2, 3, 4, and 6 are in lane 2. There are

5

1. Introduction

2

3

4

5 6

lane1 lane2

1

Figure 1.1: An example of vehicle application scenario.

two scenarios that a vehicle system may need to adapt its behaviors to real-time

contexts.

The first scenario is for robust communication. Car 1 and car 2 share their

visions by exchanging image data for action replan when they drive closely while

both only have partial vision of the road condition. Each image frame is separated

into tiles and transmitted in a sequence based on different priorities. The tiles

closer to the interest point have higher priority and will be transmitted first with

high image quality. However, the network condition, e.g. the bandwidth, between

car 1 and car 2 is dynamic and volatile. The middleware can automatically measure

the bandwidth and adaptively reconfigure the compression behaviors at runtime,

e.g. using or not using compression component, or setting varied compression ratio,

to satisfy the required QoS, like the specified transmission time, of the application

while provide images as clear as possible.

6

1. Introduction

The second scenario is for action replan. Car 4 finds that it is too congested to

drive in lane 2 while there are fewer cars in lane 1 by communicating with nearby

cars and roadside infrastructure. It then decides to switch to lane 1 to reduce traffic

congestion. The middleware in this scenario will automatically collect the position

and speed information of neighbor cars and the road conditions and then make the

decision of switching to lane 2 by adjusting the direction and speed parameters of

its software control components.

Another example is a dynamic collaborative mission planning DRE system

that contains a command and control (C2) aircraft and a fighter aircraft [15]. The

fighter aircraft and the C2 aircraft establish a collaboration to exchange virtual

target folders (VTFs), consisting of image data to update the fighter’s mission

which is required to be completed in milliseconds for some critical avionics tasks.

Context-aware reflective middleware can adapt the real-time collaboration task to

the dynamic constraints of the embedded system. It breaks a request for a VTF

image into tiles, monitors the progress of the tile acquisition, and changes the

quality level of subsequent tiles to compensate for late or early downloading of an

image.

1.1.3 Applications in Wireless Sensor Networks

Wireless Sensor Networks (WSNs) [16] can gather sensory data from the physical

world and monitor environmental conditions. Therefore, they have also played

an important role in the smart cyber-physical systems. A WSN consists of large

numbers of low-cost networked sensor devices (also called nodes), which are ca-

pable of sensing, computation, and wireless communication. The nodes can sense

and process environmental data and relay the sensor readings of other nodes to

the base station through automatically constructed ad-hoc networks. Compared

7

1. Introduction

with wired networks, WSNs can be deployed in highly dynamic and heterogeneous

environments to perform distributed sensing and collaborative data processing.

WSN application areas include cyber-physical systems, habitat monitoring, in-

truder detection, infrastructure health monitoring, and in the future, possibly inte-

grating all human-life applications in smart environments. The applications have

benefited from advances in context-aware reflective middleware.

Data compression is an attractive in-network processing research topic in WSNs

for reducing communication overhead since the amount of energy needed to send

one bit of data is equivalent to the amount of energy consumed by executing t-

housands of instructions to produce the same data [17]. Based on its contextual

information, a sensor node could select different compression algorithms to mini-

mize the data redundancy. For example, when a node detects that it has multiple

neighbor nodes (high density scenario), it needs to select a Distributed Source

Coding (DSC) algorithm to reduce distributed redundancy (the redundancy a-

mong local sensed data and data sensed from neighbor nodes). However, when

the neighbor nodes are in sleep mode or dead (low density scenario), the node

needs to select an independent algorithm (e.g. Unary Coding) to only reduce local

redundancy since there is no distributed redundancy.

Reprogramming WSNs [18] over the air is an appealing technique for the

management and maintenance of WSNs because manually ”burning” programs

to sensor nodes is labor intensive or even impossible after the nodes have been

deployed. In traditional reprogramming frameworks, a WSN program is compiled

into a monolithic code image, in which application modules and TinyOS kernel-

s are statically linked, and the entire code image needs to be updated even for

minor changes. Context-aware reflective middleware supports dynamically loaded

software components and provides a new reprogramming technique to update only

specific components. Furthermore, context-aware reflective middleware supports

8

1. Introduction

context measurement and dynamic reconfiguration of WSN applications by dynam-

ically loading and unloading components according to the contextual information

.

1.2 Motivations and Objectives

1.2.1 Application Requirements

The advances in microelectronics and wireless communication techniques have ben-

efited large-scale distributed, real-time, and embedded (DRE) systems [12], such

as cyber-physical systems [19], rapid response systems [20], vehicle safety systems

in unmanned intelligent vehicles [21][22][23][24][25], and possible all human-life ap-

plications in smart environments. Generally, the DRE systems are time-sensitive,

heterogeneous, and integrated with MANETs and WSNs and operate in dynamic

and resource limited environments, which challenges DRE system designers and

developers.

In MANETs, being real-time is one of the most critical requirements of DRE

systems. For the previous example, unmanned intelligent vehicles with DRE sys-

tems can reconfigure their behaviors (direction and speed) to adapt to situational

contexts collected at runtime through temporally built ad-hoc and dynamic net-

works based on vehicle-to-vehicle and vehicle-to-roadside communications. How-

ever, the long reconfiguration time may result in critical accidents and loss of lives

and property. In fact, two cars could hit each other in 1.5 seconds when they drive

face to face based on the 3 second safe distance rule, which requires a vehicle safety

system to respond in hundreds of milliseconds.

the reconfiguration time of the existing context-aware reflective frameworks

9

1. Introduction

[26][8] is too long to be acceptable for time-critical DRE systems. The reconfig-

uration time is normally in the range of seconds or more according to the data

reported in literature, but a DRE system requires the total processing time within

10ms for time-critical missions [27]. The reconfiguration process of a DRE appli-

cation consists of two steps: local behavior change, which modifies the structure

of the local functional path (or component chain), and distributed behavior syn-

chronization, which coordinates distributed behaviors after the local behavior is

changed. For example, in a distributed mobile video transmission application,

changing or adding a compression component in a sender program (a local behav-

ior) requires a corresponding change or insertion of a decompression component

in the receiver programs (a distributed behavior). The long reconfiguration time

of existing CARM techniques is caused by the inefficiency of their synchronization

protocols, which are synchronous and require the synchronization participants to

be blocked until the reconfiguration process is completed.

In WSNs, to the best of the author’s knowledge, there is no existing context-

aware reflective middleware. Due to the tight integration with the physical world

and limited resources in early-stage sensor platforms, applications are usually con-

structed as monolithic programs that include the underlying embedded operating

system and are tightly coupled with hardware components of sensor nodes. The

monolithic application structure has two disadvantages. First, it hampers reusabil-

ity. WSN applications often need to be developed from scratch, which increases the

developer workload and the development cost. Second, it makes the sensor repro-

gramming process energy-intensive and error-prone because the whole application

has to be updated even for a minor change of the application.

Another requirement of existing WSN applications is the flexibility and adapt-

ability in mobile environments [28]. Because sensor nodes are often randomly

deployed in heterogeneous environments, each individual node needs to deal with

10

1. Introduction

different situations and even change its behavior at runtime. However, all sensor

nodes are traditionally programmed with the same code and difficult to be changed

once they are deployed, which hampers their adaptation capability.

1.2.2 Middleware Requirements

Middleware has succeeded because it masks the heterogeneity of underlying en-

vironment and simplifies the task of programming and managing applications.

Traditional middleware focuses on integrating distributed computing systems to

serve as a unified resource to reduce the application development cost. However,

there are some challenges when migrating the traditional middleware to the flexible

and dynamic mobile devices and sensor nodes due to their limited resource and

dynamic resource availability. First, the hardware and operating systems deployed

in these platforms may be significantly different. Mobile devices, like PDAs and S-

mart Phones, may host Giga-Hertz processer and hundreds of Mega-Bytes memory

and support general operating systems (e.g. Window Mobile OS) and Wi-Fi com-

munication, while sensor nodes only have Mega-Hertz processor and Kilo-Bytes

memory and support device-specific operating system (e.g. tinyOS) and ZigBee

communication. Second, the application development model and programming

techniques are also different in mobile devices and sensor nodes. Mobile devices

normally support generic high-level programming languages (e.g. C# and .NET

in Windows mobile OS) and multiple threads, while sensor nodes only support

device-specific programming languages (e.g. NesC) and a single thread.

These hardware and software differences make the middleware techniques in

MANETs and WSNs distinct and require the application developers of DRE sys-

tems to have expertise in both areas. Therefore, it is desirable to provide a uni-

fied programming interface for developing both MANET and WSN applications.

11

1. Introduction

The middleware should be able to handle the low-level hardware and software

heterogeneity and provide high-level services to the application developers. The

developers can then efficiently construct an application based on existing software

components, choose application interested contexts for measurement, and define

the policies how the application adapts to the measured contexts.

1.2.3 Objectives

According to the requirements and motivations mentioned above, the objectives

of this dissertation include:

• Improve the reconfiguration efficiency of traditional context-aware reflective

middleware to satisfy the real-time requirement of DRE systems in MANETs.

• Propose context-aware reflective middleware for wireless sensor nodes so that

each individual node can adapt its behavior to the dynamic environments in

WSNs. The middleware can also benefit sensor reprogramming techniques

to update only required software components.

• Provide a unified middleware framework for developing context-aware reflec-

tive applications in both MANETs and WSNs. The framework should be

simple to use while flexible enough to develop generic applications.

1.3 Contributions and Significance

This dissertation focuses on the designs of context-aware reflective middleware

for MANETs and WSNs. The significant contributions of the dissertation are as

follows:

12

1. Introduction

One Chain

21
Modified Chain

21 3

Architecture 1 Architecture 2
(a) Single-component chain architecture in
existing middleware

21

21 3

Active Chain i

Inactive Chain j

21

21 3

Inactive Chain i

Active Chain j

Architecture 1 Architecture 2
(b) Multiple-component chain architecture
in MassWare

Figure 1.2: Dynamic reconfiguration architecture

• MassWare solves the critical issue of the long reconfiguration time of context-

aware reflective middleware. Compared to the traditional middleware that

supports single component-chain based application architecture (Fig. 1.2a),

MassWare-MANETmaintains multiple component chains (Fig. 1.2b). There-

fore, there is a new method proposed for the local behavior change that

switches active and inactive chains, which replaces the traditional method

of modifying the single-chain structure to reduce the local behavior change

time.

Further, based on the multi-component chain architecture, an efficient active-

message based synchronization protocol is designed to asynchronously coor-

dinate the behaviors of distributed programs and the distributed behavior

synchronization time is dramatically reduced by eliminating the operation

suspension time and buffer clearance time required by existing middleware

techniques.

We have proposed a generic analytical model for compariing the reconfigura-

tion efficiency of various CARM frameworks. According to the analysis and

empirical measurement results, we conclude that the reconfiguration time in

existing adaptive and reflective middleware has been reduced from second-

s to milli-seconds. the magnitude reduction of application reconfiguration

13

1. Introduction

time enabled a richer set of DRE systems for cyber-physical interactions to

be designed and implemented.

• MassWare also offers, to the best of our knowledge, the first context-aware

reflective middleware framework that has been implemented in a single sensor

node. MassWare is a component-based middleware built on top of SOS [29]

(a module-based dynamic operating system for WSNs). A MassWare com-

ponent provides a set of interfaces through which it can change its states at

runtime and communicate with other components. MassWare has the ability

to dynamically update these software components, reconfigure the connec-

tions between them, and synchronize the reconfigured behavior of a sensor

node with the base station. Moreover, MassWare can measure environmental

contexts of sensor nodes and then adapt sensor application behaviors to the

changing contexts at runtime based on user-defined policies. The MassWare

framework and supported applications have been implemented and evaluated

in MicaZ nodes. Experimental results show that MassWare is energy efficient

with small memory footprint.

• We have design and implement a unified context-aware reflective middleware,

called MassWare (Mobile Ad-hoc and Sensor Systems middeWare), for both

MANETs andWSNs. To develop a context-aware reflective application based

on MassWare, developers only need to provide a script file in XML syntax to

describe the application-required functional components, measurement tool

components, and adaptation policies. The middleware then constructs the

application, measures application contextual information, adapts the appli-

cation behavior to the contexts according to the defined adaptation policies,

and synchronizes with peer middleware agents or the base station. Mass-

Ware includes two separate middleware frameworks: MassWare-MANET for

14

1. Introduction

mobile ad-hoc networks and MassWare-WSN for wireless sensor networks.

1.4 Terminologies

The following terminology will be used in this dissertation:

• Synchronization is the process of coordinating the behaviors of collaborative

programs in a DRE system. When the behavior of a local program is recon-

figured to adapt to changing contexts, it requires its peer programs to change

their behaviors correspondingly for system consistency.

• Asynchronous synchronization means that the synchronization is realized

through an asynchronous method, in which the local program can resume

its operation right after its own behavior is changed for adaptation and oth-

er synchronization participants reactively change their behaviors only when

they communicate with this local program.

• Detector is the hierarchical context event sensor that can organize and e-

valuate specified contexts at runtime and notify subscribed actuators for

adaptation.

• Actuator is a reflective component that contains a set of functional compo-

nents and a meta-interface. The functional components form a functional

path or component chain, which process application-layer data. The meta-

interface can represent its internal states and reconfigure the actuator be-

haviors at runtime though component parameter tuning and chain structure

reconfiguration.

• Active actuator means that the actuator status is active. There is one and

only one actuator active at any time and only the component chain in the

15

1. Introduction

active actuator processes application-layer data. Various actuators can be

activated or deactivated to adapt to changing contexts according to user-

defined policies.

• Proactive actuators are the actuators constructed at the system initialization

phase to process local data. They can proactively change their behaviors to

adapt to changing contexts at runtime according to user-defined adaptation

policies (rules).

• Reactive actuators are the actuators constructed at the system synchroniza-

tion phase to process received data from peer programs. They reactively

change their behaviors according to the active message header of the received

data packet.

1.5 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 covers the existing

research results of related context-aware reflective middleware. Chapter 3 presents

the MassWare-MANET reflection model and system architecture and Chapter 4

presents the MassWare-WSN design and implementation. In Chapter 5, we theo-

retically analyze the reconfiguration time of MassWare and compare it with peer

research, followed by the system implementation and experiment validation. In

Chapter 6, some MassWare-supported applications are designed and implement-

ed. The dissertation concludes with Chapter 7.

16

Chapter 2

Related Work

17

2. Related Work

2.1 Middleware for Mobile Ad-hoc Networks

Middleware has been a critical technology for developing DRE systems because it

can mask the heterogeneity of the underlying environment and simplify the task

of programming and managing applications. It can be categorized into multiple

layers (Fig. 2) based on the various functions provided for DRE systems.

2.1.1 Communication Middleware

Hardware /
Network

Communication
middleware

Component
middleware

Adaptive
middleware

Context-aware
middleware

Applications

Figure 2.1: Middleware layers.

Communication middleware focuses on integrat-

ing distributed computing systems to serve as a

unified resource to reduce the application devel-

opment cost. Early stage middleware, like COR-

BA [3], Java RMI [4], and DCOM [5], is built on

Remote Procedure Call (RPC) to abstract the

low-level TCP/IP communication details and re-

place the communication interface with a local

procedure call or function invocation.

2.1.2 Component Middleware

Component middleware, normally based on a component model (e.g. CORBA

Component Model [30]), enables reusable service components to be organized, con-

figured, and deployed for developing applications efficiently and robustly. Compo-

nent middleware provides standards for object implementations and interactions so

that it can support generic service components and then reduce the complexity of

software upgrades and increase the reusability and flexibility of distributed appli-

cations. Existing component middleware contains both reusable common services,

18

2. Related Work

e.g. optimization of resource consumption (OSA+ [31], ACE [1]), configurability

(TAO [32], Zen [33]), reusability (nORB [34]) etc., and domain-specific services,

e.g. OSEK/VDX [35] for vehicle applications and ARINC 653 for avionics.

2.1.3 Adaptive and Reflective Middleware

Adaptive and reflective middleware [36][37][38] has the ability to inspect its inter-

nal states by providing a representation of its internals through a process called

reification. It also allows the internals to be dynamically manipulated and re-

configured through a process called absorption, which changes its non-functional

and functional behaviors. The non-functional behavior reconfiguration is realized

by dynamically replacing or changing the non-functional components of the mid-

dleware, like security check and concurrency control, etc. The functional behavior

reconfiguration is realized by reconfiguring the functional components of the appli-

cation at runtime. Open ORB [6] provides both structural reflection for functional

component reconfiguration and behavioral reflection for nonfunctional component

reconfiguration. Dynamic TAO [7] is a reflective ORB based on a set of compo-

nent configurators. The TAOConfigurator can inspect and dynamically change its

nonfunctional behaviors.

2.1.4 Context-aware Reflective Middleware

Context-aware reflective middleware can measure applications’ situational contexts

and adapt application behaviors to them at runtime. It may be further divided into

QoS-enabled middleware [39][40][41] and user-defined context-aware middleware

[42][43]. QoS-enabled middleware can dynamically measure application-specific

QoS and provide QoS reservation or adaptation to guarantee the required QoS, e.g.

19

2. Related Work

MUSIC [10], CIAO [44], Qoskets [45][46], and QuO [47][48]. User-defined context-

aware middleware supports not only application QoS, but also any other user-

defined contexts. MARCHES [49], MADAM [11], MobiPADS [26], and CARISMA

[8] are some example systems that belong to this category.

QuO (Quality Objects) [50][51][52] is a distributed object computing framework

based on the CORBA model. It provides a QoS monitor and composes dynamic

QoS provisioning capacity into DRE systems. QuO separates the QoS provisioning

functionality from the application functionality; however, it still relies on ACE and

TAO as it must use ORB based communication interfaces (e.g. TAO A/V stream-

ing) and QoS tools (e.g GQoS and IntServ). MUSIC separates the self-adaptation

concern from the business logic concern and delegates the complexity related to

self-adaptation to generic middleware. It offers an adaptation-planning framework

to evaluate the utility of alternative configurations in response to context changes,

select a feasible one (e.g., the one with the highest utility) for the current con-

text, and adapt the application accordingly. MADAM is a type of client/server

based CARM for adaptive mobile applications. A master node (client) negotiates

with slave nodes (servers) for an adaptation decision. It provides both reactive

and proactive negotiation mechanisms for distributed adaptation decision. None

of these frameworks provides any synchronization functionality; they assume that

the adaptation has been constrained in safe conditions in advance. For example,

the reconfiguration in QuO must be carefully studied so that the received data can

still be understood by the receiver after reconfiguration.

MobiPADS [26] is a policy- (or rule-) based CARM framework for mobile appli-

cations. It supports both middleware-layer and application-layer adaptations ac-

cording to user-defined policies. A client middleware agent uses a communication

channel to synchronize the application behaviors with a server middleware agent in

a synchronous way whenever the architecture is reconfigured. The reconfiguration

20

2. Related Work

process includes operation suspension, buffer clearance, and chain-structure mod-

ifications. Because the initiator of the synchronization must be suspended until

the system architecture of its own and other participants is reconfigured and the

buffered data for previous architecture is processed, the reconfiguration time is in

a range of seconds or even more according to the published experimental results.

CARISMA [8] employs a novel micro-economic approach that relies on a particular

type of sealed-bid auction to handle the adaptation conflicts between distributed

policies. The processing time of the conflict resolution algorithm includes com-

munication time among peer agents for message exchanges and local computation

time for context evaluation, bidding calculation, and solution set computation.

This reconfiguration process is still synchronous and the conflict resolution algo-

rithm must be invoked whenever a context is changed. Similar to these frameworks,

MassWare is also a policy-based CARM framework and focuses on the reconfigura-

tion of stateless applications. MassWare is different from existing work because it

maintains multiple component chains and leverages the active messages to realize

the synchronization in an asynchronous way. According to analysis and evalua-

tions, MassWare can significantly reduce the reconfiguration time and satisfy the

responsiveness requirement of DRE systems. The preliminary results of MassWare

were published in [49] and a substantial extension of the system and thorough eval-

uation of its performance based on a proposed analytical model and experiments

is presented in [53].

21

2. Related Work

2.2 Middleware for Wireless Sensor Networks

2.2.1 WSN Middleware Frameworks

Wireless Sensor Networks (WSNs) consist of large numbers of low-cost, small-

scale sensor nodes, which can sense and process environmental data and transmit

the sensor readings or processed results to the base station through automatically

constructed wireless ad-hoc networks. WSNs have shown many benefits in the

application areas of environment monitoring, event detecting, and object tracking.

And they will be an attractive means to bridge the gap between the physical world

and virtual cyber world in future smart environments. On the other hand, devel-

oping sensor applications is a very challenging task due to WSN characteristics.

First, sensor nodes are very limited in the hardware resource and energy. Second,

node mobility, node failures, and environmental obstructions make WSNs highly

dynamic. Third, the large number of sensor nodes also makes the deployment of

sensor applications difficult. Middleware is a novel approach for hiding low-level

implementation details and providing standard high-level interfaces to facilitate

the development of WSN applications.

Most WSN middleware frameworks focus on implementation of basic sensing

and routing operations. COUGAR [54] views sensor networks as a virtual database

and provides an SQL like language to query sensor data from the networks. Similar

to COUGAR, TinyDB [55] is also a sensor database system, which uses a semantic

tree routing protocol to accurately determine when queries should be propagated

from a node to its children to save energy and extend battery life. TinyDB also

supports event-based query and allow queries to be triggered by events generated

by other queries or a sensor program. SINA [56] is a more comprehensive sensor

database system. It not only supports SQL-like languages for sensor queries, but

22

2. Related Work

also incorporates such low-level mechanisms as hierarchical clustering of sensors

and efficient data aggregation. SINA views the sensor network as a logic datasheet

composed of cells and each cell represents an attribute of a sensor node. It also

provides a language called SQTL (Sensor Query and Tasking Language), which

can be injected into the network at run-time, for sensor hardware access, commu-

nication, and event handling. The database-oriented approaches are only suitable

for homogeneous networks because they require each sensor node to have identical

data structure.

TinyLIME [57] supports efficient data query from local sensors (one-hop) based

on a tuple space model with shared memory. TinyLIME applications create tuple

templates whose formats are determined by sensor nodes, and subscribe them to

the sensor nodes for their interested data. MiLAN [58] provides a standard API

for applications to specify their sensing requirements, like required data type, data

sets, and sensor Quality of Service (QoS) etc. The middleware can retrieve the

current application state and efficiently configure the network, so that only required

sensor nodes are organized to meet the application requirements.

The above middleware frameworks focus on the entire network and view nodes

as basic sensing elements. Along with the rapid progress of hardware resource of

WSNs, more and more data processing tasks have been migrated to individual

sensor nodes to extend battery life as the energy cost of sending one single bit of

data can consume the energy of executing thousands of instructions to produce

the same data [17]. As applications become more complex, middleware is also re-

quired for these tiny sensor nodes. Mate [59] uses a virtual machine approach built

on TinyOS to hide low-level operations and interpret received byte codes, which

are broken into capsules. Mate programs can be easily replaced by injecting new

capsules, which makes the network dynamic, flexible and reconfigurable. Howev-

er, Mate is not suitable for complex sensor applications. First, the interpretation

23

2. Related Work

overhead for large applications is wasteful; Second, Mate capsules, which contain

24 instructions at most, are not meaningful service components and difficult to

maintain or upgrade; Third, The interaction between different capsules is not ex-

pressive. A capsule can call another subroutine capsule, but there is no message

exchange between capsules; Fourth, Mate only supports bytecode; a higher-level

language and a programming model for application development are needed. Mag-

net [60] and Impala [61] also design a virtual layer to mask the low-level hardware

operation and heterogeneity for each node and provide a high-level interface to

simplify application development and support application adaptation. However,

they require complex software support (e.g. Magnet requires a Java virtual ma-

chine, and Impala only works on Linux systems) and not suitable for tiny sensor

nodes.

2.2.2 WSN Reprogramming

Reprogramming WSNs [18] over the air is a desired technique for the management

and maintenance of WSNs as manually ”burning” programs to all sensor nodes

is labor intensive or even impossible once they are deployed. On the other side,

reprogramming is also a challenging task. In TinyOS, the current state of the

art operating system for WSNs, a compiled program is a monolithic code image in

which application modules and TinyOS kernels are statically compiled and globally

optimized for execution efficiency. Therefore, the entire code image needs to be

updated even for minor changes. In MNP [62] and Deluge [63], a program is

divided into several segments (or pages), which are transferred in a pipeline fashion

in networks. They use REQ packets as negative acknowledgement (NACK) to

guarantee the integrity of the program. Incremental Network Programming [64]

uses the Rsync algorithm to generate the difference between the two program

24

2. Related Work

images and only transmit the incremental changes for the new program version.

The powerful host machine (e.g. base station) keeps the histories of the program

versions of all code receivers (e.g. sensor nodes) and calculates the differences

locally to save communication energy. However, this algorithm is not suitable for

major function changes or retasking in WSNs as the difference of compiled binary

programs are rather large in these situations.

2.2.3 SOS: A Dynamic Sensor Operating System

SOS [29] is a new dynamic operating system for WSNs. Different from TinyOS,

SOS consists of a statically-compiled kernel and dynamically-loaded modules. The

kernel supports dynamic memory allocation, message scheduling, and loading and

unloading modules. It also provides sensor APIs to help modules interact with

sensor drivers. SOS modules are position-independent binaries that implement a

specific task or function. The modules can communicate with each other and with

the kernel through a direct function call or by passing asynchronous messages that

are handled by the message scheduler. The dynamic memory is used to store mod-

ule states and pass data address across various modules. SOS not only provides

a reprogramming technique to update required functional modules, instead of the

entire program, but also supports dynamic reconfiguration by dynamically link-

ing and unlinking modules for WSN applications. MassWare is a context-aware

reflective middleware framework built above SOS. Compared to SOS modules,

MassWare components provide a set of interfaces that can be used to inspect and

modify component states and communicate with each other. MassWare also sup-

ports context measurement, adaptation, and synchronization so that each sensor

node can adapt its behavior to environmental contexts according to user-defined

policies.

25

Chapter 3

MassWare for Mobile Ad-hoc

Networks

26

3. MassWare for Mobile Ad-hoc Networks

3.1 System Architecture of MassWare

MassWare-MANET (also called MassWare in this chapter) uses a layered architec-

ture to monitor contexts and adapt supported-applications to the contexts accord-

ing to user-defined policies. It supports both component-level reflection for the

accommodation of standard components and system-level reflection for the recon-

figuration of component connections, it contains a hierarchical event notification

model to efficiently evaluate comprehensive contexts, and it provides a lightweight

XML-based script language to describe and manage adaptation policies.

Operating System and Network Substrate

MassWare

Network
Awareness

Device
Awareness

Environment
Awareness

Awareness measurement layer

Adaptation decision layer

Adaptation execution layer

Adaptation
Decision

Adaptation
Policy Parser

Architecture
Reconfiguration

Parameter
Tuning

Application
Adaptation

Policy

component component component

User
Preferences

Application
Awareness

Query
Interfaces

Notification
Interfaces

Awareness
Manager

Awareness management layerMeasurement
tool selection

Figure 3.1: System architecture of MassWare-MANET.

MassWare is located between the upper application layer and the lower op-

erating system and network layer to monitor contexts and support application

adaptations. It is peer-to-peer middleware with one middleware agent per appli-

cation in each host. MassWare consists of four major function layers as depicted

27

3. MassWare for Mobile Ad-hoc Networks

in Fig. 3.1:

• The awareness measurement layer consists of individual measurement tools,

which may measure context-awareness information about networks, devices,

end-user preferences, application internal states, and physical environments.

• The awareness management layer hosts an awareness manager that communi-

cates with the measurement layer through notification and query interfaces.

It organizes and evaluates measured contexts based on event trees (called

detectors) built on a hierarchical event notification model.

• The adaptation decision layer has a script parser and a decision engine. The

script parser parses the adaptation policy script file defined by application

developers based on a declarative language in an XML format. The decision

engine takes the adaptation policy file as input, creates the awareness man-

ager and a reconfigurator in the adaptation execution layer, and subscribes

the actuators in the reconfigurator to the detectors in the awareness manager

according to the adaptation policies. This allows the actuator to be triggered

by context changes for reconfiguration according to the policies.

• The adaptation execution layer contains a reconfigurator to execute the be-

havior changes of functional and nonfunctional components. In this disser-

tation, we focus on the functional reconfiguration for improving the perfor-

mance of DRE systems, which includes the component chain reconfiguration

and component parameter tuning. Between the middleware and application,

there is another layer called the operation layer, in which various services

are offered by software components. MassWare supports application-specific

components and standard third-party components based on its reflection

model.

28

3. MassWare for Mobile Ad-hoc Networks

Because MassWare-MANET aims at improving the reconfiguration efficiency of

DRE systems, the thesis focuses on stateless applications and the reconfiguration of

application-layer functional components. The proposed synchronization protocol

can be combined with state-machine and model-based reconfiguration techniques

to support the reconfiguration of stateful applications [65]. We also leave the re-

configuration of middleware-layer nonfunctional components, e.g. the concurrency,

security, etc. for future work, which can potentially be supported by MassWare.

In summary, MassWare is responsible for monitoring situational contexts that

trigger adaptations, deciding when, where, and how to adapt application behaviors,

and for executing the adaptation policies specified by application developers at

runtime.

3.2 MassWare Reflective Model

MassWare supports both component-level and system-level reflection. The component-

level reflection deals with the content and behavior of a given component via an

interface metamodel, which provides a way to discover and access the interfaces

of a software component. Thus, reflective components can be supported by Mass-

Ware to incorporate new techniques and services and deal with the upgrade and

extension of DRE systems. The system-level reflection deals with the structure

of the component connections via an architecture metamodel, which enables the

discovery and operation of the current active component chain. The system-level

reflection allows MassWare to examine its internal states at runtime and dynami-

cally reconfigure the application architecture to enhance its adaptability.

29

3. MassWare for Mobile Ad-hoc Networks

3.2.1 Components and Component-level Reflection

A MassWare component is a function-independent reflective element that provides

an interface metaobject. This interface metaobject enables a component to read its

own metadata, extract the metadata from the component (called reification), and

use that metadata to either inform the component user or modify the component’s

behavior (called absorption). By using the interface metamodel and component-

level reflection, MassWare can examine the types in a standard component, create

new types at runtime, instantiate the types, and dynamically invoke properties

and methods on the instantiated objects (called late binding).

<Masslets>
<component cid="2002">

<addr> D:\Masslets\JPEG.dll </addr>
<name> Masslets.Compress.JPEG </name>
<ctype> Masslet </ctype>
<alias> COMPRESS </alias>
<param pid="001">

<name> SetCompressQuality </name>
<vtype> Int32 </vtype>
<value> 50 </value>

</param>
<interface iid=“001”>

<name> PtrDataInput </name>
<itype> Input </name>
<Message> PDIBEventArgs </Message>

</interface>
<interface iid=“002”>

<name> DataOutput </name>
<itype> Output </name>
<Message> JPEGEventArgs </Message>

</interface>
</component>
...

</Masslets>

<MassTools>
<component cid=“3001”>

<name> Awaretools.AvailableBW </name>
<alias> AVI_BW </alias>
<param pid="001">

<name> packetSize </name>
<vtype> Int32 </vtype>
<value> 64 </value>

</param>
<param pid="002">

<name> packetNum </name>
<vtype> Int32 </vtype>
<value> 2 </value>

</param>
<param pid="003">

<name> Interval </name>
<vtype> Int32 </vtype>
<value> 300 </value>

</param>
<interface iid=“001”> ... </interface>
...

</component>
...

</MassTools>

Figure 3.2: The component declaration in MassWare-MANET.

To incorporate a new software component in MassWare, users need to describe

the types, interfaces, and other attributes of the component in a system script

file using the defined IDL (Interface Description Language), as shown in Fig. 3.2.

There are three methods to identify a MassWare component: 1) the exclusive

30

3. MassWare for Mobile Ad-hoc Networks

component name for a registered system component, 2) the complete address for

a local component, or 3) the desired attributes for a registered component in

the component manager. The component type is declared in the ctype part and

the alias is the name of the component used in the adaptation policy part of

the script. The component can be specified by setting its parameters, which can

also be reconfigured at runtime according to adaptation rules. It also provides

some interfaces. The input and output interfaces can be bound together through

connectors if they support compatible event messages and their connections can

also be reconfigured at runtime.

There are two types of MassWare components: reconfigurable functional com-

ponents (namely masslets) and extensible context-awareness components (namely

masstools).

Masslets are the basic functional units to construct DRE systems. Each masslet

provides output and input interfaces for component assembly and communication

based on the publish/subscribe model [66]. An output interface of a masslet can

be subscribed by message-compatible input interfaces of other masslets and can

publish messages to them through connectors.

Masstools, which measure and predict real-time context changes in MassWare,

are realized as reflective components to facilitate the reuse and extension of ex-

isting measurement tools. Masstools act as the lowest event sources that can be

subscribed by higher level event nodes and organized in a hierarchical way to build

detectors. There is a special type of masstool, called the function component,

which supports user-defined functions to pre-process the results of measurement

tools, e.g. getting the average value of the bandwidth in the last 5 minutes. A

function component can subscribe to masstools and process their raw data as input

parameters through interfaces.

To better maintain and update MassWare components, we have proposed a

31

3. MassWare for Mobile Ad-hoc Networks

distributed service module, called the component manager, which accepts compo-

nent registration and provides the components runtime environments. A registered

component can be identified by MassWare through its attribute name and value

pairs. The major functions of the component manager include component eval-

uation, which is used to discover and utilize components not considered when

the systems were designed [48], component migration, which is used to migrate

required components from peer agents when the components are not available lo-

cally [67], and virtual connection, which is used to process high workload tasks in a

resource-limited device by connecting to a physical component hosted in a power-

ful server [68]. However, since these functionalities are not related with the major

contribution of this research, which is to improve the reconfiguration efficiency of

CARM, their implementation details will not be discussed in the dissertation.

3.2.2 Reconfigurator and System-level Reflection

The MassWare reconfigurator contains multiple actuators and provides interfaces

to manipulate the actuators so that the application behaviors can be reconfigured.

The actuators are designed as reflective components to support MassWare system-

level reflection. Each actuator (see Fig. 3.3a) contains a component chain for

processing application data, a type library for browsing the component types, and

a meta-interface exemplified by Fig. 3.3b in C#. The meta-interface provides the

access to its underlying meta-information and internal states (reification), such as

the structure of component connections, the actuator status (active/inactive), etc.

By accessing the meta-interface, the reconfigurator can change the actuator’s meta-

information that leads to a change of the actuator implementation (absorption),

including the structure modification of component connections and component

parameter modifications.

32

3. MassWare for Mobile Ad-hoc Networks

The actuator
component

Component chain
or graph

Type library

Meta
Interface

Comm.
Interfaces

Other
Interfaces

(a) Actuator architecture

interfaceIMetaActuator
{

componentListget_components();
connectionListget_connections();
bool set_components(componentListcompList);
bool set_connections(connectionListconnList);

bool add_component(CMarchletObjmarchlet);
bool remove_component(string marchlet);

bool connect_all_components();
bool disconnect_all_components();

bool connect_components(string senderObj, stringsenderInterf,
string receiverObj, string receiverInterf);

bool disconnect_components(string senderObj, stringsenderInterf,
string receiverObj, string receiverInterf);

Objectget_component_parameter(string comp, string param);
bool set_component_parameter(string comp, stringparam, Objectvalue);

EnumActuatorStatusget_active_status();
bool activate();
bool deactivate();
……

}

(b) Actuator meta-interface

Figure 3.3: MassWare actuator architecture and meta-interface.

3.3 Awareness Measurement Layer

To support adaptation, DRE systems need to be aware of their running contexts.

In this dissertation, awareness is defined as the contextual information of DRE

systems. Most existing context-aware middleware frameworks have the function-

ality to detect a certain context. Our efforts in awareness measurement focus on

integrating existing tools that are publicly available and providing mechanisms for

application developers to specify and customize these tools in the XML format.

3.3.1 Measurement Tools

Measurement tools in MassWare are implemented as reflective components, which

can be declared in the script file, and then loaded and instantiated by MassWare to

33

3. MassWare for Mobile Ad-hoc Networks

measure interested contexts. For example, the real-time QoS monitoring tool and

the Mobile Service Testing and Measurement Tool (MOSET) [69] can be declared

in the Masstools section of the script file, see Fig. 3.2, to measure application-

related QoS. Masstools can also be reconfigured to realize feedback control.

For awareness data that are unavailable from local measurement tools or be-

yond the middleware knowledge, like the remote information, the measurement

is separated into two steps based on an information manager (IM). Awareness

providers, like remote measurement tools and applications, send the awareness re-

sults to the IM. Masstools then retrieve the data from the IM through pull or push

methods. By pulling, Masstools explicitly query awareness data. By pushing, the

IM pushes data to subscribed masstools when pre-defined conditions are satisfied.

3.3.2 Context-awareness Categorization

MassWare categorizes the context awareness data in five categories listed in Table

3.1. Among these five categories, network awareness has continuously stimulated

the interest in research and industry communities to provide reliable network-

awareness measurement tools. Device awareness data, such as the CPU power,

display size, memory capacity, display refresh rate, and battery consumption, may

be measured through system APIs. User awareness can be collected in an explicit

or implicit technique. In an explicit approach, users can specify their preferences

through graphical user interfaces. In an implicit approach, measurement tools

identify users’ preferences by using machine learning agents. Physical sensors

measure awareness of the environment.

34

3. MassWare for Mobile Ad-hoc Networks

Table 3.1: Categories of MassWare context-awareness

Network-
Awareness

Network characteristics and its measurements

Device-
Awareness

Capacity measurements of a particular device

Application-
Awareness

Internal states of an application or application required QoS

User-
Awareness

User specified preferences for the quality of the service

Environment-
Awareness

Environmental measurements by wireless sensor networks

3.4 Awareness Management Layer

The awareness manager in the management layer aims to organize and evaluate

the contexts measured from the awareness measurement layer. In DRE systems,

data from multiple awareness categories may be needed for evaluating contexts.

For example, a DRE system involving video transmissions may rely on the infor-

mation about both local hardware resource and network bandwidth to select a

proper compression strategy. The first difficulty of managing awareness is that the

communication network among masstools cannot be fixed in advance since it is

impossible to specify the masstools that are used by applications at middleware

design-time. Fortunately, this difficulty can be solved by the component-level re-

flection introduced in Section 3.2. With the reflection model, users only need to

specify the interfaces and parameters of masstools in a script file and the aware-

ness manager will set up the communication network at run-time based on the

subscribe/notification model.

The second difficulty is that the awareness manager should get sufficient infor-

mation for accurate adaptation with as few messages as possible to fit the limited

resource of DRE systems. To solve this difficulty, a binary tree based hierarchical

35

3. MassWare for Mobile Ad-hoc Networks

Awareness Y

X 3

Y*

+

X*3+Y

Event Source X XEvent Source

>

LHS RHS

Compare
Conditioner

Compare
Conditioner<

LHS RHS

&&

LHS RHS

Boolean
Conditioner

subscribe notify
notifynotify

subscribe

subscribe subscribenotify notify

notify notifysubscribe subscribe

Detector

Actuator

notifysubscribe

Awareness X

Figure 3.4: The event notification model.

event notification model (see Fig. 3.4) is proposed for conditional subscription-

s. This allows context events to be organized and integrated in a tree structure

to construct a detector that only monitors and evaluates required contexts and

triggers reconfigurations at runtime when its conditions are satisfied.

Each node in the event tree contains a conditioner, a left hand side (LHS), and

a right hand side (RHS). There are two types of conditioners: the compare condi-

tioner and the Boolean conditioner perform comparison and Boolean operations

on the LHS and the RHS. The LHS and the RHS can subscribe to the conditioner

of a lower-layer event node or an event source. The event source can be a constant

value, single context awareness, or an awareness expression. The expression is also

36

3. MassWare for Mobile Ad-hoc Networks

built on a binary tree structure, in which each node has an operator, a LHS, and

a RHS. Therefore, all the contexts are organized in a hierarchical way to form a

detector. An upper-layer event node or an actuator can subscribe to a lower-layer

node as a listener, and only be notified when the conditions of the lower-layer

node are satisfied. This structure minimizes the message exchanges in complex

detectors.

To improve the efficiency of detectors, the hierarchical event tree is constructed

based on the Modified Directed Acyclic Graph (MDAG). That is, before creating

a new event node, it checks whether an identical node or an inverse node already

exists. Event node a is defined as the inverse node of b if a and b have the same

event source and comparison value, but inverse comparison operators. For example,

the inverse event of min(AV I CPU, 10) < 1.0 is min(AV I CPU, 10) ≥ 1.0.

To use the event model to identify interested contexts, DRE system developers

or end users declare corresponding detectors in a script file. The example shown in

Fig. 3.5a means when the average bandwidth during the last 5 seconds is greater

than 10Mbps and less than 20Mbps, the detector notifies its subscribed actuators.

To facilitate the configuration of the detector script, the MassWare Generator, a

tool with Graphic User Interface (GUI), has been developed to transfer a detector

defined in the advanced language (Fig. 3.5b) to a XML script (Fig. 3.5a) according

to the operator mapping (Fig. 3.5c). More details about the MassWare Generator

will be discussed in the Section 3.5.

3.5 Adaptation Decision Layer

The adaptation decision layer contains a decision engine and a script parser. The

decision engine takes the script file as input, creates the awareness manager in the

awareness management layer and the reconfigurator in the adaptation execution

37

3. MassWare for Mobile Ad-hoc Networks

<detector>
<event>
<otype> And </otype>
<lhs>
<event>
<otype> GT </otype>
<lhs>
<expr> Ave(AVI_BW, 5) </expr>

</lhs>
<rhs>
<expr> 10 </expr>

</rhs>
</event>

</lhs>
<rhs>
<event>
<otype> LT </otype>
<lhs>
<expr> Ave(AVI_BW, 5) </expr>

</lhs>
<rhs>
<expr> 20 </expr>

</rhs>
</event>

</rhs>
</event>
<detector>

(a) The detector declaration

Script
Operator

Development
Operator

GT >

GE >=

LT <

LE <=

NE <>

EQ ==

And &&

Or ||

(b) The mapping table

Ave(AVI_BW, 5)>10 && Ave(AVI_BW, 5)<20
(c) The detector usage in user development tool

Figure 3.5: A detector example.

layer, and subscribes the actuators in the reconfigurator to the detectors in the

awareness manager according to the adaptation policies. This allows the actuator

to be triggered by changing contexts for reconfiguration according to user-defined

policies.

The script parser parses the application script file, which customizes the ap-

plication configuration and adaptation policies based on a declarative language in

the XML format. In particular, the script file can be divided into a declaration

part and an adaptation-rule part (as shown in Fig. 3.6). The declaration part

declares all components (masslets and masstools as shown in Fig. 3.2) used in

38

3. MassWare for Mobile Ad-hoc Networks

<Marchlets> ... </Marchlets>
<MarchTools> ... </MarchTools>

<Rules>
<rule>

<detector> ... <detector>

<Actuator type=“proactive” sync=“Async”>
<SetParam>

COMPRESS.CompressQuality = 70;
</SetParam>
<SetArch>

GRAB.PtrOutput -> COMPRESS.PtrInput;
COMPRESS.StreamOutput -> SEND;
Grab.Start;

</SetArch>
</Actuator>

<Actuator type=“reactive” sync=“Async”>
<SetArch>

RECEIVE -> DECOMPRESS.StreamInput;
DECOMPRESS.StreamOutput -> DISPLAY.Input;

</SetArch>
</Actuator>

</rule>
...

</Rules>

Figure 3.6: An XML script file example.

a local program and the middleware agent. According to the declaration, Mass-

Ware loads and instantiates the components through the reflection model. The

adaptation-rule part contains adaptation policies and each policy can be further

separated into a detector, a proactive actuator, and an optional reactive actua-

tor. A detector section can be parsed by the event interpreter to build a detector

(as shown in Fig. 3.5) that monitors contexts and accepts the subscription of

the proactive actuator declared in the proactive actuator section. The proactive

actuator contains the system architecture information that is used to update the

39

3. MassWare for Mobile Ad-hoc Networks

actuator internal states by the reconfigurator when it performs reconfiguration

actions. Therefore, the system behaviors dynamically adapt to context changes

through the system-level and component-level reflection (respectively, architecture

reconfiguration and parameter tuning). The reactive actuator section describes the

meta-information of an actuator in peer agents that processes the received data

from the proactive actuator, so that the behaviors of the proactive and reactive

actuators can be synchronized in distributed systems. The script example in Fig.

3.6 shows that the proactive actuator in the sender agent of a video transmission

application contains three components: GRAB, COMPRESS, and SEND, which

are connected in a sequence. The reactive actuator described in the same policy

contains the meta-information of three components as well: RECEIVE, DECOM-

PRESS, and DISPLAY. The receiver agent constructs the reactive actuator based

on the meta-information received through the synchronization process.

(a) Component declaration (b) Adaptation policies

Figure 3.7: The MassWare script file development tool.

40

3. MassWare for Mobile Ad-hoc Networks

The MassWare Generator can facilitate users’ generation of script files. As

shown in Fig. 3.7, the GUI tool enables users to manipulate both the component

and policy configuration and runtime reconfiguration interactively. Furthermore,

the tool supports the advanced language for describing event detectors and the

re-sync function that can re-synchronize the local agent with peer agents when

adaptation policies are modified at run-time.

3.6 Adaptation Execution Layer

The reconfiguration process of DRE systems consists of two steps: local behavior

changes triggered by context changes and distributed behavior synchronization to

synchronize local behaviors with the changed behaviors of other programs.

3.6.1 Local Behavior Reconfiguration

For traditional reflective middleware, there is only one component chain (or func-

tional path) in each program. The reconfiguration process is to modify the chain

structure. For the video transmission example, the original chain of the sender

agent contains two components: GRAB and SEND, as shown in Fig. 1.2a. If

the chain is reconfigured to contain three components: GRAB, COMPRESS, and

SEND for adaptation, the reconfiguration process of the sender agent has the fol-

lowing steps:

• The sender agent stops its application workflow and stores component states

into parameter lists;

• The sender agent clears buffered data that are not processed or transmitted

to distributed peer agents;

41

3. MassWare for Mobile Ad-hoc Networks

• The sender agent disconnects the GRAB and SEND components and recon-

nects the GRAB, COMPRESS, and SEND components in sequence;

• The sender agent communicates with peer collaborative agents to synchronize

the modified structure with them;

• Peer agents take the same steps: stop current workflow, clear buffered data

received from the sender agent for old structure, and adjust component chains

by disconnecting RECEIVE and DISPLAY components and reconnecting

RECEIVE, DECOMPRESS, and DISPLAY components;

• The sender agent restores the states of the new component chain and restarts

the application workflow.

The above reconfiguration process is synchronous and repetitive for each recon-

figuration process. It is inefficient because the sender agent has to be suspended

until all peer agents finish their corresponding reconfiguration, and all buffered

data for previous structure are cleared.

By contrast, MassWare supports multiple component chains as shown in Fig.

1.2b. Each component chain is located in an actuator that is subscribed to an

event detector (see Fig. 3.8). When contexts change and trigger a new detector,

the detector will notify the decision engine for the reconfiguration by switching

active and inactive actuators. There is one and only one active actuator that

processes application data. For the above example, there are two chains in the

sender agent: the active chain i contains two components: GRAB and SEND and

the inactive chain j contains three components: GRAB, COMPRESS, and SEND.

The reconfiguration of the sender agent has the following steps:

• The sender agent deactivates the current active actuator that contains chain

i by suspending its workflow, storing run-time states, and disconnecting its

42

3. MassWare for Mobile Ad-hoc Networks

Program

Reconfigurator

Act1 Act2 Actn
Proactive Actuators

RActnRAct2RAct1
Reactive Actuators

CC1 CC2 CCn

Decision Engine Detectors

Program

Reconfigurator

Computing Components

CC1 CC2 CCn

C
o

m
m

u
n

ic
at

io
n

 C
h

an
n

el

Sync.

Sync.

Decision Engine Detectors

Act1 Act2 Actn
Proactive Actuators

RActnRAct2RAct1
Reactive Actuators

Computing Components

A DRE System

Figure 3.8: The MassWare reconfigurator.

components;

• It activates the target actuator containing chain j by connecting its compo-

nents, restoring states, and resuming its workflow.

To reduce resource consumption, an actuator only maintains a chain of ref-

erences, which point to masslet instances, and a customized parameter list for

each reference to store component runtime states. The proposed reconfiguration

process is asynchronous and efficient because it does not require peer agents to

synchronously reconfigure their structure and no buffered data need to be cleared.

The peer agents only synchronize their architecture on demand when their received

data cannot be processed by existing reactive actuators.

43

3. MassWare for Mobile Ad-hoc Networks

Initial state of sender:
ProActuator1: indx: 1; ReActuator1
ProActuator2: indx: 2; ReActuator2
ProActuator3: indx: 3, ReActuator3

Synchronization request msg.

Index 1
Integer

ReActuator1 structure
String

Index 2 ReActuator2 structure
Index 3 ReActuator3 structure

Synchronized state of receiver:
ReActuator1: index: 5;
ReActuator2: index: 6.
ReActuator3: index: 7.

Synchronization reply msg.

Index1
Integer

re-Index: 5
Integer

Index2
Index3

re-Index: 6
re-Index: 7

Synchronized state of sender:
ProActuator1: index: 1; re-index: 5
ProActuator2: index: 2; re-Index: 6
ProActuator3: index: 3, re-Index: 7

Sender’s agent Receiver’s agent

One time initialization

Package with active message:

re-Index payload
e.g. 6

Activate reactive actuator:
ReActuator2 is selected to
process the received packet
according to the index number 6

Synchronization
request

Synchronization
response

Application
payload
packets

Repetitive reconfiguration

Figure 3.9: The synchronization process.

3.6.2 Distributed Behavior Synchronization

Based on the multiple-chain based architecture, an active-message based synchro-

nization protocol is designed to coordinate reconfigured behaviors in an asyn-

chronous way. The idea of the proposed asynchronous protocol is that each mid-

dleware agent constructs the reactive actuators for all peer agents when the mid-

dleware starts up, and activates one of them to process received application layer

packets according to the active message header attached in the packets. This

initialization has the following steps, as shown in Fig. 3.9.

• When the middleware starts up, proactive actuators of each agent are built

based on the user-defined script file. Each proactive actuator is also associ-

ated with a middleware-assigned unique index and the meta-information of

44

3. MassWare for Mobile Ad-hoc Networks

an optional reactive actuator.

• The middleware agent sends a synchronization request packet to peer agents,

which contains the indices of proactive actuators and the meta-information

of reactive actuators.

• After receiving the synchronization request packet, the peer agent constructs

the reactive actuators according to the meta-information, each of which is

associated with a unique index. (The agent will notify the component manag-

er for component migration or virtual connection if the required components

can not be identified locally.)

• The receiver or the peer agent replies to the sender with a synchronization

response packet that contains a set of index pairs, each of which contains an

index of the proactive actuator and the index of the reactive actuator.

• The sender agent replaces the meta-information of each reactive actuator

with its corresponding index received from the synchronization response

packet.

The above-mentioned initialization is a one-time process. The middleware a-

gent will then append the index of the reactive actuator, corresponding to the

current active actuator, to the payload of each data packet as an active message

header. The peer agent receiving the data packet activates the reactive actuator

indexed by the received index to process the data packet correctly.

The active message based asynchronous synchronization protocol has four ad-

vantages: low overhead, short delay, high efficiency, and greater robustness. In

general, only the index of the reactive actuator needs to be stored in the active

message header for each data packet. By using the asynchronous method, the

system does not need to pause in the synchronization process, which dramatically

45

3. MassWare for Mobile Ad-hoc Networks

reduces the reconfiguration time. Furthermore, based on the information in the

active message header, a peer agent can always process the received packets by

choosing the correct reactive actuator and then no suspension for buffered data is

needed, which makes the reconfiguration by our middleware efficient. Moreover,

once the reactive actuators are constructed in the system initialization phase, the

local agent reconfiguration does not require the availability of other agents and

thus it is not affected by the network condition or the capacity of other agents.

Therefore the robustness of the application is improved and the communication

overhead is reduced.

3.6.3 Correctness of MassWare Synchronization

In MassWare, every received packet needs to be processed correctly by the agent

to choose the indexed reactive actuator, and the application workflow should not

be affected or interrupted by middleware errors. To prove the correctness of the

proposed synchronization protocol, we assume that:

• all errors are detected as errors;

• a synchronization process may fail due to network errors, but it succeeds

with at least some probability p > 0; and

• both sender agents and peer receiver agents may fail during the data trans-

mission.

We split the proof into two parts: safety and liveness. Safety is defined as the

fact that a protocol never produces an incorrect result, which in this case means a

received packet can always be properly processed. Liveness is defined as the fact

that an algorithm can continue forever to produce results, which in this case means

46

3. MassWare for Mobile Ad-hoc Networks

the capability to continue forever to send new packets at sender agents and accept

them at receiver agents.

MassWare uses re-transmission(s) for the synchronization process to handle

network errors. If the number of synchronization failures from a sender agent to a

peer agent is larger than a threshold, the peer agent is removed from the sender’s

receiver list. A new agent can request to join the sender’s receiver list by sending

a node join message to initialize the synchronization or leave the sender’s receiver

list by sending a node leave message to remove corresponding indices from the

sender. After synchronization, every proactive actuator of the sender agent has

an index (active message header) for each reactive actuator of every peer agent.

To prove that a receiver agent can always process a received packet correctly, we

consider the following three cases.

• The receiver agent can recognize the index in the received active message

header of the packet and the index is correct. This case represents the normal

situation. The peer agents can invoke the reactive actuator pointed by the

index to process the packet payload.

• The receiver agent cannot recognize the index in the received active mes-

sage header due to errors. This case happens when the receiver agent stops

unexpectedly and does not notify the sender to remove it from its receiver

list. The receiver can continue to receive packets from the sender after it is

reloaded, but all the indices in the packets cannot be recognized as its local

reactive actuators have been cleared. In this case, the receiver agent sends a

re-synchronization message to the packet sender to initialize a synchroniza-

tion process. Every received data packet can then be processed correctly

without deletion.

• For the completeness of discussion we consider the third case that will not

47

3. MassWare for Mobile Ad-hoc Networks

happen: the receiver agent may recognize the index, but the index is incor-

rect and points to a wrong reactive actuator that cannot process the packet

payload correctly. This case could be a concern if one would assume the fol-

lowing situation: both sender agent a and sender agent b communicated with

the same receiver agent c and later c stopped unexpectedly while it might

still be in the receiver lists of a and b; when c restarted and only synchro-

nized with a, it constructed a reactive actuator for a, which might be used to

process packets received from b if the reactive actuator for a shared the same

index with the reactive actuator previously constructed for b. However, such

assumed situation will not happen due to the way the index is created. In

fact, the index of a reactive actuator is generated by the receiver agent based

on the IP address of the synchronization requester and the hash value of the

actuator meta-information. When both sender agents a and b are located

at the same host and two different actuators from a and b have the same

hash value, we will add an UID, which is unique for every application with

respect to the host, in the active message header to ensure that each reactive

actuator has a unique index. Therefore, a recognized index must point to a

correct reactive actuator.

Based on the above analysis, we can conclude that a MassWare agent can

always process received packets correctly, which proves the safety of MassWare.

Once the synchronization process is completed, a sender agent only needs local

information for reconfigurations. It can then continue to process application data

forever during its life time. Thus the liveness of MassWare is proved as we have

concluded that a peer agent can always process received packets correctly.

48

3. MassWare for Mobile Ad-hoc Networks

3.6.4 Policy Modification at Runtime

The target users of MassWare are DRE system developers. However, end-user

requirements must also be considered in customizing the middleware behavior as

it is difficult to predict all desired adaptation policies in advance. The MassWare

Generator provides end-users with the GUI (shown in Fig. 3.9), through which

their preferences can be captured by MassWare to modify the policies at runtime.

MassWare supports a re-synchronization method for the runtime policy modifica-

tion, in which the agent suspends its operations, clears data buffer, re-synchronizes

the modified policies with peer agents, and resumes its operations.

3.7 MassWare Application Development

MassWare offers an effective approach to build adaptive DRE systems. To develop

a new system or migrate an existing system from another middleware framework

to MassWare, developers need to provide required components, an XML-based

script file, and an optional GUI program for UI systems. The first step is to create

MassWare components or migrate existing components to the MassWare platfor-

m. MassWare component model currently supports COM components and .NET

assemblies. To support other types of components, special component wrappers

need to be developed, which will be part of the component manager functionalities

in future work.

The second step is to develop a script file that declares all required compo-

nents, including functional components (marchlets) and measurement tool compo-

nents (marchtools), and adaptation rules using the XML language. The details of

the script file structure are presented in Section 3.5 and a full example is decom-

posed into Fig. 3.2, Fig. 3.5, and Fig. 3.6 for component declaration, detector

49

3. MassWare for Mobile Ad-hoc Networks

declaration, and policy declaration separately.

There are two different methods to instantiate and invoke MassWare agents for

constructing UI-based and service-based DRE applications. An UI application can

create and invoke a MassWare instance in their UI program through MassWare

interfaces. Some example UI applications using MassWare have been published on

our website [70]. A service application without a UI program can be constructed

implicitly through the script development tool. After a script file is composed, the

application can then be started, paused or stopped through the ”Action” menu of

the script development tool.

MassWare is reflective middleware and provides a set of reification interfaces

to present its internals to applications. The internals include component-chain

structure, component states, reconfiguration events, and context information etc.,

which can be used for application debugging and validation. The applications

also have the ability to reconfigure the internals through the absorption interfaces

provided by MassWare so that application users can manually manipulate the

application behaviors.

50

Chapter 4

MassWare for Wireless Sensor

Networks

51

4. MassWare for Wireless Sensor Networks

4.1 System Architecture of MassWare

MassWare-WSN (also called MassWare in this chapter) is located between the

lower hardware/operating-system layer and the upper application layer to monitor

contextual information and support application adaptation. It is client/server-

based middleware: the sensor nodes run in the client mode and the base station

runs in the server mode. To reduce communication overhead, there is one mid-

dleware agent in each sensor node. Because of limited resources of sensor nodes,

MassWare has to be lightweight and efficient to be implemented in the senor nodes,

while flexible and adaptable enough to support generic adaptive WSN applications.

For these considerations, MassWare is designed in a layered architecture, as shown

in Fig. 4.1.

Wireless Sensor Networks

���������	�
���

�����������
��

��� ���

�������

��� ���

��������

�������
�����

��������	
�����

���
�����

��������	
�����
�����

�����������
��������

�����������

���������	�

������

��������

�����

�����	
�

���
�

Sync.

Reporg.

�
�
�
�
�
�
�
�

Figure 4.1: System architecture of MassWare-WSN.

52

4. MassWare for Wireless Sensor Networks

A MassWare agent can be separated into a core layer and an operation lay-

er. The operation layer contains all MassWare components that can be shared by

different applications. There are two types of components, similar to MassWare-

MANET, in the operation layer: functional components (called masslets) for data

processing and communication, and measurement-tool components (called masstool-

s) for measuring and evaluating situational contexts.

The core layer is the part that should be pre-installed to every sensor node. It

consists of three function modules, which form the MassWare reflective framework

for monitoring contexts and reconfiguring applications.

• The awareness manager contains a set of detectors that detect context-

awareness information about networks, devices, and environments, e.g. node

density, remaining battery, etc. A detector refers to a list of masstools pro-

vided in the operation layer. In a detector, use of its referred masstools

is organized in a hierarchical event notification model. The details of the

awareness manager are presented in Section 4.3.

• The decision engine is a special MassWare component that is automati-

cally generated based on adaptation policies. An adaption policy is defined

by application developers or end users in a script file in XML syntax. The

decision engine can create detectors in the awareness manager and actuators

in the reconfigurator and subscribe the actuators to the detectors. Therefore

the actuators can be triggered by detectors to reconfigure application behav-

ior according to the policies. More information about the decision engine is

presented in Section 4.4.

• The reconfigurator contains a set of actuators that can perform reconfigu-

ration actions. An actuator refers to a list of masslets that form a functional

53

4. MassWare for Wireless Sensor Networks

path or component chain to process application-layer sensor data. There is

one and only one actuator active at any time, and only the active actua-

tor processes the data. Various actuators can be activated and deactivated

by detectors to adapt to the context. The details of the reconfigurator are

presented in Section 4.5.

To develop a sensor application based on MassWare, developers need to provide

an XML-based adaptation script file besides required components (masslets and

masstools). The script file uses exactly the same format with a MassWare-MANET

script file that describes the required components and adaptation policies. Each

policy specifies the meta-information of a detector, a proactive actuator, and a

reactive actuator. The meta-information of the detector and the proactive actuator

is used to construct a detector and an actuator. The meta-information of the

reactive actuator will be sent to the base station for synchronization, so that the

base station can correctly process the received data when the behavior of a remote

sensor node is reconfigured. After the adaptation script file is developed, it will

be compiled into a decision engine by the MassWare compiler. The MassWare

compiler generates SOS-supported binary modules.

In summary, a MassWare application consists of three types of components:

masslets, masstools, and the decision engine. When the decision engine component

is loaded, it builds detectors and actuators based on a user-provided script file,

subscribes the actuators to corresponding detectors that are described in the same

policy, and sends the meta-information of reactive actuators to the base station

for synchronization. When contexts trigger an event a detector monitors, the

subscribed actuator will be activated to perform the reconfiguration action.

54

4. MassWare for Wireless Sensor Networks

4.2 MassWare Reflective Model

MassWare provides both component-level and system-level reflections. The component-

level reflection deals with the content and behavior of a given component via an

interface metamodel. The interface metamodel provides discovery of and access

to the set of provided and required interfaces of the component. Based on the

component-level reflection, MassWare supports generic software components for

sensor nodes in a cost-efficient manner. It is easily upgradeable to incorporate new

components in its operation layer and meet the rapid progress of new algorithms

and standards for WSN applications. The system-level reflection deals with the

structure and graph of the component connections via an architecture metamod-

el. The architecture metamodel provides discovery and operation to the current

active actuator. The system-level reflection enables MassWare to expose the inter-

nal states of sensor nodes to end users and allows them to change the adaptation

policies at runtime by injecting a new decision engine component to the network.

4.2.1 MassWare Components

A MassWare component is a function-independent reflective element that provides

some interfaces by which a component can communicate with others, retrieve its

internal states (called reification), and changes the states at runtime (called ab-

sorption). By using the interfaces and the component-level reflection, MassWare

can dynamically connect masslets and masstools to build actuators and detectors

(called late binding) and change application architectures at runtime.

A MassWare component can be viewed as an SOS module with a set of Mass-

Ware interfaces. To develop a MassWare component, developers need to specify

these interfaces in the source code. Two new keywords - massware and interface -

55

4. MassWare for Wireless Sensor Networks

massware interface MSG_SET_FREQ
{

int ID = MOD_MSG_START+102
InterfType iType = Parameter
ActionType aType = Set
ValueType vType = uint8

}

massware interface MSG_OUTPUT
{

int ID = MOD_MSG_START+116
InterfType iType = Communication
ActionType aType = Output
MsgType mType = MassWareOutputMsg

}

(a) Component interfaces

<component cid="2001">
<name> BLINK_RED_COMP </name>
<comId> APP_MOD_MIN_PID + 44 </comId>
<alias> LSWT </alias>
<interface type=“Parameter”>

<name> MSG_SET_FREQ </name>
<interfId> MOD_MSG_START + 102 </interfId>
<actionType> Set </actionType>
<valueType> Integer </valueType>

</interface>
<interface type=“Communication”>

<name> MSG_OUTPUT </name>
<interfId> MOD_MSG_START + 116 </interfId>
<actionType> Output </actionType>
<msgType> MassWareOutputMsg </msgType>

</interface>
...

</component>

(b) Component metafile

Figure 4.2: A MassWare-WSN component example.

have been created to define MassWare interfaces. An interface describes the inter-

face name, the interface ID, the interface type, and the value type for a parameter

interface or the message type for a communication interface. Fig. 4.2a presents

the interfaces of the BLINK RED COMP component that controls the red LED

of a sensor node. MassWare interfaces have two functions. First, the interfaces are

used to reconfigure component behavior and connections at runtime. For exam-

ple, the blink frequency of the BLINK RED COMP component can be changed

at runtime through the MSG SET FREQ parameter interface and the component

connections to other components can be reconfigured through the MSG OUTPUT

communication interface. Second, a MassWare component with interfaces will be

compiled by a designed Component Compiler to create an SOS-supported bina-

ry module and a human-readable file (meta-file), which contains the component

meta-information. For example, through the meta-file of the BLINK RED COMP

as shown in Fig. 4.2b, we can get the name, ID, alias, and the parameter inter-

faces and communication interfaces of the component. With the meta-file, generic

sensor services can be implemented as standard MassWare components, which can

56

4. MassWare for Wireless Sensor Networks

be easily shared and reused by WSN applications. The component ID (comID) is

a hash value calculated by the compiler based on the component checksum. Thus,

different components can be identified by the decision engine according to their

IDs.

<DecisionEngine xmlns:xsi=... >
<MassTools>

<component cid= "1001“ > ... </component>
...

</MassTools>

<Masslets>
<component cid= "2001" >

<name> BLINK_RED_COMP </name>
<comId> APP_MOD_MIN_PID + 44 </comId>
<alias> BLINKR </alias>
<interface type= “Parameter" >

<name> MSG_SET_FREQ </name>
<interfId> MOD_MSG_START + 102</interfId>
<value> 3072 </value>

</interface>
<interface type= “Communication" >

<name> MSG_START </name>
<interfId> MOD_MSG_START + 100</interfId>
<actiontype> Start </actiontype>

</interface>
<interface type= “Communication" >

<name> MSG_OUTPUT </name>
<interfId> MOD_MSG_START + 116</interfId>
<actiontype> Output </actiontype>

</interface>
</component>
...

</Masslets>

<AdaptationPolicies>
<policy pid= "001" >

...
</policy>
...

</AdaptationPolicies>

</DecisionEngine>

<policy pid= "001" >
<detector did= "001" >

<event>
<otype> AND </otype>
<lhs> <event>

<otype> GT </otype>
<lhs><expr> NEIGHBER.NUMBER</expr></lhs>
<rhs><expr> 1 </expr></rhs>

</event> </lhs>
<rhs> <event>

<otype> LT </otype>
<lhs><expr> POWER.REMAINING</expr></lhs>
<rhs><expr> 5 </expr></rhs>

</event> </rhs>
</event>

</detector>

<Actuator aid= "001" >
<atype> ProActive </atype>
<SetParam>

BLINKR.MSG_SET_FREQ = 5*1024;
</SetParam>
<SetArch>

BLINKR.MSG_OUTPUT -> BLINKG.MSG_INPUT;
BLINKG.MSG_OUTPUT -> BLINKY.MSG_INPUT;
BLINKY.MSG_OUTPUT -> BASE_STATION
BLINKR.MSG_START

</SetArch>
</Actuator>
<Actuator aid= "101" >

<atype> ReActive </atype>
<SetArch>

PACKET_RECEIVE -> BLINKY.MSG_INPUT;
BLINKY.MSG_OUTPUT -> BLINKG.MSG_INPUT;
BLINKG.MSG_OUTPUT -> BLINKR.MSG_INPUT;

</SetArch>
</Actuator>

</policy>

Figure 4.3: A MassWare-WSN script file example.

To incorporate a new reflective component in MassWare, users need to describe

the component meta-information, which is generated by the Component Compiler,

in the XML Script file, as shown in the component section of Fig. 4.3. A MassWare

component can be identified based on its component ID and specified by setting

57

4. MassWare for Wireless Sensor Networks

its parameters, which can also be reconfigured at runtime according to adaptation

policies. Components can be connected through input and output interfaces that

support compatible message types to construct an application. The connections

can also be reconfigured to change the application architecture at runtime through

the late binding.

There are two types of MassWare components: reconfigurable functional com-

ponents (masslets) and measurement tool components (masstools). Masslets are

the basic functional units to construct programs in sensor nodes. MassWare sup-

ports the publish/subscribe model for communication - the output interface of a

masslet can be subscribed by message-compatible input interfaces of other masslets

and publish messages to them.

Masstools measure and predict real-time context awareness, like node density,

remaining power, and connectivity etc., so that sensor applications can adapt to

changing contexts. They are implemented as reflective components to facilitate

the reuse and extension of existing measurement tools. Masstools are the lowest

event sources to build hierarchical event detectors.

4.2.2 MassWare Actuator

MassWare actuators are located in the decision engine component and constructed

based on the actuator section of each adaptation policy, as shown in the actuator

section of Fig. 4.3. It consists of a set of masslets, a parameter lists, and a

component graph. Every actuator is subscribed to a detector and will be activated

when the conditions of the detector are satisfied by changing contexts. MassWare

indexes all its actuators and synchronize with the base station in its initialization

phase by sending the indices and the meta-information of the actuators. After

synchronization, each packet processed by a local actuator takes the actuator index

58

4. MassWare for Wireless Sensor Networks

as an active message header. Since only active actuator can process application

data, users then know the current active actuator and its architecture of component

connections base on the received active message header (called reification). The

architecture can be changed for adaptation by actuators through the configuration

of component connections (called absorption). The active message header is also

used to identify a correct actuator in the base station to process the received data

since the packets processed by different actuators need to be treated differently.

For example, packets processed by a special compression algorithm in sensor nodes

need to be decompressed by a corresponding decompression algorithm in the base

station. By examining the sensor node status, users can also change the adaptation

policies at runtime by injecting a new decision engine component to the network.

4.3 MassWare Awareness Management

To support adaptation, MassWare needs to be aware of its running contexts. In

this dissertation, awareness is defined as the contextual information of WSN appli-

cations [53]. By using masstools, developers can integrate existing measurement

tools that are publicly available and customize these tools in the script file. The

awareness management aims to organize and evaluate the contexts measured from

masstools by creating detectors. The difficulty is to measure information with

little overhead and not stretch the limited resources of sensor nodes. In complex

WSN applications, contexts from multiple masstools may be needed for context

evaluations. For example, a sensor node may rely on the information of both node

density and its remaining power to decide its sampling rate. To solve this difficul-

ty, we have designed two approaches. The first approach uses a flat structure, in

which all masstools are directly subscribed by the decision engine. The decision

engine gets notified when any measurement result of the masstools is changed. The

59

4. MassWare for Wireless Sensor Networks

detectors described in the XML script file are translated into expressions in the

decision engine, which takes responsibility for evaluating the adaptation rules. In

this way, the number of required messages is minimized, as all measurement results

are directly sent to the decision engine. On the other hand, the decision engine is

frequently interrupted and needs to perform an evaluation for every notification.

Detectors described in the script file are also limited to the operators supported by

the C language because in SOS they are translated into C language expressions.

The second approach utilizes a binary-tree based hierarchical structure for con-

ditional subscriptions [53]. Context events are organized in a tree structure to

construct detectors that monitor only required contexts with minimal evaluations,

and actuators can be subscribed directly to the detectors. In this way, the decision

engine does not need to evaluate rules and is only triggered to activate an actuator

when an adaptation rule is satisfied. Because every node in the event tree is a

masstool, this approach supports user-defined operations implemented in specified

components.

Each node in the event tree is a MassWare component that contains a condi-

tioner, a left hand side (LHS), and a right hand side (RHS) (see Fig. 3.4). There

are two types of conditioners: the compare conditioner and the Boolean conditioner

perform comparison and Boolean operations on the LHS and the RHS. The LHS

and the RHS can subscribe to the conditioner of a lower-layer event node or an

event source. The event source can be a constant value, single context awareness,

or an awareness expression. The expression is also built on a binary tree structure,

in which each node has an operator, a LHS, and a RHS. Therefore, all the con-

texts are organized in a hierarchical way to form a detector. An upper-layer event

node or an actuator can subscribe to a lower-layer node as a listener, and only be

notified when the conditions of the lower-layer node are satisfied. The detector in

Fig. 3.4 means ((X × 3 + Y) > X)&&.... This structure minimizes the message

60

4. MassWare for Wireless Sensor Networks

exchanges in detectors.

To use the event model to identify interested contexts, developers or end users

declare corresponding detectors in a script file. The example shown in the detector

section of Fig. 4.3 means when the number of neighbors is larger than 1 and

remaining energy is less than 5mJ , the red LED blink rate is set to 5s. The

detector script is compiled by the MassWare compiler to create extra masstools for

intermediate operational nodes in the event tree. For the example in Fig. 4.3, there

are three operational masstools that are created for neighbor > 1, power < 5, and

LHS&&RHS. To improve the efficiency of sensors, the event tree is constructed

based on a Directed Acyclic Graph (DAG). That is, before creating a new event

node, it checks whether an identical node already exists. The tree structure is

compiled into the decision engine, which will connect all the masstools to build

detectors when it is loaded.

4.4 MassWare Compiler and Decision Engine

A major advantage of MassWare is that it facilitates the development of adaptive

WSN applications, which are comprised of masslets, masstools, and the decision

engine. Because masslets and masstools can be shared components from existing

or third-party applications based on MassWare component-level reflection, users

only need to provide an XML-based script file that is compiled by the MassWare

compiler to generate the decision engine component and probably some operational

masstools. Therefore, developers and users are not burdened by the details of

coding sensor programs and complex adaptation logic using NesC or C languages.

The script file is also easily customized by users to satisfy their preference and

application specifications.

MassWare supports the same script files as the ones in MassWare-Manet. A

61

4. MassWare for Wireless Sensor Networks

script file can be divided into a declaration part and an adaptation-rule part. The

declaration part declares all masslets and masstools - components used in a local

sensor program and the decision engine. Based on the declaration, the decision

engine can identify the masslets and masstools located in a sensor node and initial-

ize the components with provided parameters. The adaptation-rule part contains

adaptation policies and each policy can be further separated into three sections:

a detector, a proactive actuator, and an optional reactive actuator. The detector

section is parsed by the compiler to create detectors: the result is either a context

evaluation expression in the flat structure or operational masstools in the hierar-

chical structure. The proactive actuator section describes the meta-information of

local actuators, which adapt application behavior to the changing context through

the system-level and component-level reflections (respectively, architecture recon-

figuration and parameter tuning). The reactive actuator section describes the

meta-information of an actuator that can process the data from the proactive ac-

tuator of the same policy. The meta-information will be sent to the base station in

the initialization phase of the decision engine, and the reactive actuators are con-

structed in the base station according to the meta-information to process received

data from sensor nodes, so that the behaviors of the sensor nodes and the base sta-

tion can be synchronized in distributed WSN applications. For example, the first

policy shown in Fig. 4.3 means when a sensor node has one or more neighbors and

its remaining energy is more than 5mj, the three components, BlinkR, BlinkG, and

BlinkY, are connected in a chain and the BlinkR starts to blink the red LED with

a frequency of 5s when the application is booted, BlinkG and BlinkY blink green

and yellow LEDs each time they receive a message from their input components.

The base station then connects BlinkY, BlinkG, and BlinkR and blinks the LEDs

in a sequence when it receives a packet from the sensor node.

The decision engine, created by the MassWare compiler based on the script file,

62

4. MassWare for Wireless Sensor Networks

is the major component of MassWare and is the last component loaded into sensor

nodes. Once the decision engine is loaded, it executes the following setup steps:

• The decision engine sends a synchronization request packet, including the

meta-information and a unique index for every reactive actuator, to the base

station for synchronization in the callback function of the MSG INIT event,

which is the first event the decision engine triggers. It then sets a timer to

wait for the base station to receive and process the packet.

• When the timeout event of the timer is triggered, the decision engine connects

all masstools to construct detectors, subscribes its actuators to the detectors,

and initializes all the components using their parameter interfaces. It then s-

tarts the components that have the ”START” interface to process application

data.

• When the decision engine receives a message from a masstool (for flat struc-

ture) or a detector (for tree structure), it will either evaluate all adaptation

policies to activate the actuator with satisfied conditions or directly activate

the actuator subscribed to the detector. The new active actuator reconfigures

masslet connections and/or masslet status according to the policy

• If the base station receives a packet with an unknown active message head-

er after synchronization, it sends back a re-synchronization message to the

packet sender, which will resend the synchronization request packet to the

base station.

63

4. MassWare for Wireless Sensor Networks

4.5 MassWare Efficient Reconfiguration

The reconfiguration process of a MassWare-WSN application is similar to that of

a MassWare-MANET application, which consists of two steps: the local behavior

change of sensor nodes that is triggered actively by the changing context and the

distributed behavior synchronization of the base station that is triggered reactively

to process received packets. MassWare-WSN also adopts the asynchronous method

introduced in [53] to improve reconfiguration efficiency.

4.5.1 Local Behavior Reconfiguration

MassWare supports multiple component chains, each of which is located in an ac-

tuator. There is one and only one active actuator that processes application data.

For the above example, there are two chains in the sender agent: the active chain

i contains two components: SAMPLE and SEND and the inactive chain j con-

tains three components: SAMPLE, COMPRESS, and SEND. The reconfiguration

process of the sender agent then has the following steps (see Fig. 1.2b):

• The sender agent deactivates the current active actuator that contains chain

i by suspending its workflow, storing run-time states, and disconnecting its

components;

• It activates the target actuator containing chain j by connecting its compo-

nents, restoring states, and resuming its workflow.

The proposed reconfiguration process is asynchronous and efficient since it does

not require the base station to synchronously reconfigure its structure and no

buffered data need to be cleared. The base station chooses different reactive actu-

ators to process data packets based on their active message header. The details of

the synchronization protocol will be detailed in the next section.

64

4. MassWare for Wireless Sensor Networks

4.5.2 Distributed Behavior Synchronization

Initial state of sender:
ProActuator1: indx: 1; ReActuator1
ProActuator2: indx: 2; ReActuator2
ProActuator3: indx: 3, ReActuator3

Synchronization request msg.

Index 1
Integer

ReActuator1 struct
String

Index 2 ReActuator2 struct
Index 3 ReActuator3 struct

Synchronized state of receiver:
ReActuator1: node id + index 1;
ReActuator2: node id + index 2.
ReActuator3: node id + index 3.

Sender’s agent Receiver’s agent

One time initialization

Package with active message:

Index payload
e.g. 2

Activate reactive actuator:
ReActuator2 is selected to
process the received packet
according to the index number 6

Synchronization
request

Application
payload
packets

Repetitive reconfiguration

Figure 4.4: The synchronization process in MassWare-WSN.

Based on the multiple-chain architecture, an active-message based synchroniza-

tion protocol is designed to coordinate reconfigured behaviors in an asynchronous

way. The idea of the proposed asynchronous protocol is that the base station

constructs the reactive actuators for all sensor nodes when the nodes starts up,

and selects one of them to process received packets according to the active mes-

sage header attached in the packets. Since communication is energy-consuming

in WSNs, the MassWare-WSN synchronization process is even more efficient than

that in MassWare-MANET and reduces half hand-shaking communication pro-

cess by using sender assigned active message header. The initialization has the

following steps, as shown in Fig. 4.4.

• When the decision engine starts up, actuators are built based on the meta-

information of the proactive actuator section in the script file. Each proactive

65

4. MassWare for Wireless Sensor Networks

actuator is also associated with a unique index calculated based on the ac-

tuator hash value.

• The middleware agent sends a synchronization request packet to the base

station, which contains the index of the proactive actuators and the meta-

information of corresponding reactive actuator for every policy.

• After receiving the synchronization request packet, the base station con-

structs the reactive actuators according to the meta-information of the pack-

et, each of which is associated with the IP address of the packet sender and

the received index.

The above-mentioned initialization is a one-time process. The decision engine

will then append the index of the current active actuator as active message header

to the payload of each data packet. The base station activates the reactive actuator

indexed by the received index to process the data packet correctly. The initializa-

tion phase is one-way communication, which is energy-efficient. However, a sensor

node cannot get any feedback if the synchronization fails. In the situation, the

base station sends a ”re-synchronization” message to the packet sender (node) for

re-synchronization if it cannot identify the active message header of the received

packets.

The active message based asynchronous synchronization protocol has four ad-

vantages: low overhead, short delay, high efficiency, and better robustness. In

general, only the index of the reactive actuator needs to be stored in the active

message header for each data packet. By using the asynchronous method, the

system does not need to pause in the synchronization process, which dramatically

reduces the reconfiguration time. Furthermore, based on the information in the

active message header, the base station can always process the received packets by

choosing the correct reactive actuator, and then no suspension for buffered data

66

4. MassWare for Wireless Sensor Networks

is needed, which makes the reconfiguration by MassWare efficient. Moreover, once

the reactive actuators are constructed in the system initialization phase, the lo-

cal node reconfiguration does not require the availability of the base station, and

thus it is not affected by the network condition or the capacity of other agents.

Therefore the application robustness is improved and the communication overhead

is reduced.

4.6 MassWare Application Development

MassWare offers an effective approach to build adaptive WSN applications. To

develop a new WSN application or migrate an existing application to MassWare,

developers need to provide required components and an XML-based script file.

The first step is to create MassWare components (masslets and masstools) or use

existing components shared by other MassWare applications. MassWare com-

ponents are developed using the C language, like SOS modules, with MassWare

interfaces. The developed source files are compiled by the component compiler to

create SOS-supported modules and associated meta-files.

The second step is to develop a script file that declares all required components,

including functional components (marchlets) and measurement tool components

(marchtools), and adaptation rules using the XML language (The details of the

script file structure are presented in Section 4.3 and a full example is shown in Fig.

4.3). The script file is compiled by the MassWare compiler to create the decision

engine component and probably some operational masstools if detectors are built

on the hierarchical structure.

The third step is to load all compiled components to sensor nodes with SOS,

which provides a method to distribute modules through wireless links. The static

SOS core burned into the nodes allocates dynamic memory for components and

67

4. MassWare for Wireless Sensor Networks

boots them up by triggering a ”MSG INIT” event. Masslets and masstools need

to be loaded before the decision engine component. After the decision engine is

loaded, it will configure the components to start the application.

The target users of MassWare are WSN application developers. However, end-

user requirements must also be considered in customizing the application behavior

as it is difficult to predict all desired adaptation policies in advance. By examin-

ing a received active message header, users can check the current status of each

sensor node and easily change the adaptation policies by injecting a new decision

engine component created on a modified script file. Based on the MassWare re-

flection model, other components (masslets and masstools) can also be efficiently

re-programmed via wireless links.

68

Chapter 5

Performance Analysis and

Experiments

69

5. Performance Analysis and Experiments

5.1 MassWare-MANET Evaluation by Analyti-

cal Models

In this section, we theoretically analyze the performance of MassWare-MANET in

terms of the one-time initialization time in the middleware startup phase and the

repetitive reconfiguration time whenever the reconfiguration process is triggered

by context changes. To verify the time efficiency of the proposed multi-chain

structure and active message oriented synchronization protocol, we compare the

reconfiguration time of MassWare with that of MobiPADS and CARISMA. These

context-aware reflective middleware frameworks can be fairly compared because:

• All these three frameworks are policy based with predefined adaptation poli-

cies specified in a script file.

• They all target stateless applications, which do not require the guarantee of

application states or packet delivery sequence in the reconfiguration process.

• They all consider the behavior synchronization problem for distributed ap-

plications. However, the synchronization protocols they employ are different.

MobiPADS uses a communication channel for synchronization and suspend-

s application operations in the reconfiguration process. CARISMA uses a

micro-economic approach to handle the adaptation conflicts between dis-

tributed policies. MassWare uses an active-message-oriented asynchronous

method for synchronization to solve the behavior inconsistency.

In the comparison, we ignore the component and code migration among differ-

ent middleware agents, which will impose the same overhead for each framework.

Since the theoretical analysis is system and implementation independent, we can

then fairly compare their performance [71].

70

5. Performance Analysis and Experiments

Table 5.1: Parameter notation of reconfiguration time

Notation Parameter

RTT The minimum round trip time excluding the transmission delay
t tcp TCP socket establishing time
t pend Operation suspension time for component deletion
t init Initialization time for a component addition
n add The number of components to be added in a reconfiguration process
s chain The average size of a meta-chain

t reso
The total local computation time of the conflict resolution algo-
rithm in CARISMA

n policy The number of policies in an application
t react Reactive actuator construction time in MassWare
t conn Connection time of two components
t rest Restoration time of a component
n The number of components in a component chain
B The average available bandwidth

5.1.1 Analytical Model

To compare the reconfiguration efficiency of MassWare with that of MobiPADS

and CRISMA, we use a unified model to formulate the reconfiguration time as the

sum of the communication time Tcomm among distributed middleware agents and

the local computation time Tcomp.

T = Tcomm + Tcomp (5.1)

To simplify of the model and for fair comparison, we ignore the component

migration time required by all systems, the transmission delay of control messages,

which is much smaller than their propagation delay as the control message size

is negligible, and other overhead, like socket buffering time, thread switch time,

and internal message exchange time, which may be affected by different operating

71

5. Performance Analysis and Experiments

systems and programming languages. All the middleware agents use TCP three-

way handshakes for each reconfiguration message exchange, which takes 1.5RTT

for the connection establishment. Some of the notation are defined in Table 5.1.

10 50 100
200 400 600 800

1000

9.6
19.2

38.456
72

148250
500

8001000
0

2000

4000

6000

8000

10000

minimum RTT (ms)

MobiPADS Reconfiguration Time

Bandwidth (Kbps)

R
ec

o
n

fi
g

u
ra

ti
o

n
 t

im
e

(m
s)

Figure 5.1: MobiPADS reconfiguration time.

In MobiPADS, there is only one component chain, and the reconfiguration pro-

cess involves three steps: (i) initializing reconfiguration, (ii) deleting components,

and (iii) adding components. The reconfiguration time expressed by Eq. (4) in

[26] is shown as:

TMobiPADS = (β + γ + δ)/B + 2kn+ 2m+ 5.5RTT + C (5.2)

where β is the meta-chain size; γ and δ are the component request message size

and component size for component migration; 2kn is the component initialization

time; m is the deletion time; and C is other overhead. we further separate m into

1.5 RTT for message exchange and an operation suspension time [26], and ignore

the component migration time, the component initialization time, which is very

small (i.e. few milliseconds as shown in Fig. 5.7), and other overhead to follow

our model. we then rewrite Eq. 5.2 using the notations shown in Table 5.1 as Eq.

72

5. Performance Analysis and Experiments

5.3 to express the reconfiguration time of MobiPADS for comparisons with those

of MassWare and CARISMA in a unified model.

TMobiPADS = Tcomm + Tcomp = (7RTT + s chain/B) + t pend (5.3)

t pend is affected by the number of buffered data and their processing time,

and its value may vary for different applications. we set its default value as 300ms

to match the experiment results shown in Fig. 13 of [26] for numerical evaluations.

The meta-chain size s chain is analyzed in Section 5.2.3 and we set its default

value as 10Kbits for a chain with 10 components. The reconfiguration time of

MobiPADS is depicted in Fig. 5.1.

10 50 100
200 400 600 800

1000

0
1

23
5

710
15

20

0

1000

2000

3000

4000

5000

6000

minimum RTT (ms)

CARISMA Reconfiguration Time

number of policies (n)

R
ec

o
n

fi
g

u
ra

ti
o

n
 t

im
e

(m
s)

Figure 5.2: CARISMA reconfiguration time.

In CARISMA, the reconfiguration conflict resolution process consists of the

following steps: 1) service request, 2) local context evaluation and enabled policy

selection, 3) the enabled policy exchange, 4) solution set computation and conflict

detection, 5) bidding request and reply, 6) winning policy calculation, and 7) the

winning policy broadcast. Steps 1, 3, 5, and 7 involve communications for message

exchanges, and steps 2, 4, and 6 involve local computations for conflict resolution,

73

5. Performance Analysis and Experiments

which is related to the number of policies, contexts, resources, and conflicts. To

compare CARISMA with MassWare in terms of reconfiguration time, we use the

simplest case of CARISMA with minimum overhead, which is that each policy

contains only one context and one resource and there is no conflict. The total

reconfiguration time of CARISMA can then be expressed as:

TCARISMA = Tcomm + Tcomp = 4RTT + t reso = 4RTT + f(n policy) (5.4)

We use the values of the conflict resolution time t reso that are directly obtained

from the Fig. 15 in [8]. The reconfiguration time of CARISMA is shown in Fig.

5.2.

9.6 19.238.456 72 1482505008001000

0
1

23
5

710
15

20

0

0.5

1

1.5

2

2.5

x 10
4

Bandwidth (Kbps)number of policies (n)

R
ec

o
n

fi
g

u
ra

ti
o

n
 t

im
e

(m
s)

MassWare Initialization Time

Figure 5.3: MassWare initialization time.

In MassWare, the one-time initialization time in the startup phase includes

2.5RTT communication time, where 1.5RTT is for the TCP connection and 1RTT

is for synchronization message exchanges and the transmission delay of the meta-

data for multiple component-chains stored in the synchronization request message.

The initialization time is represented as:

74

5. Performance Analysis and Experiments

TMassWare INIT = Tcomm + Tcomp = 2.5RTT + n policy × s chain/B (5.5)

The initialization time of MassWare reconfiguration is related to the RTT , the

number of policies, and bandwidth. we set the RTT as 100ms (referring [26]) to

compute the initialization time on the number of policies and the bandwidth, as

shown in Fig. 5.3.

In the repetitive reconfigurations after the one-time initialization, the reconfig-

uration time is the sum of the component assembly and restoration time that is

related to the number of components in the component chain. The reconfiguration

time is expressed as:

TMassWare = Tcomp = 2n(t conn+ t rest) (5.6)

The coefficient of 2 is needed because the reconfiguration process is carried

out at both the proactive actuator of the sender and the reactive actuator of the

receiver. Fig. 5.6 shows the reconfiguration time obtained by the benchmark

experiments, see Section 5.2.2.

From the above analysis, we can see that the repetitive reconfiguration time

of each middleware framework is dependent on different parameters. To compare

their performance directly and prove the efficiency of MassWare, we list the effect

of each parameter to the repetitive reconfiguration time in Table 5.2.

The minimum RTT has a major impact to the reconfiguration time of Mobi-

PADS since there are a lot of control message exchanges in the synchronization

process of the MobiPADS reconfiguration. The minimum RTT is set as 100ms in

[26], which is in the same level as our experiment results. The performance of the

75

5. Performance Analysis and Experiments

Table 5.2: The configuration time affected by various parameters

Parameter MobiPADS CARISMA MassWare

RTT
Related (major fac-
tor)

Related Not related

B Related Related (negligible) Not related

n policy Not related
Related (major fac-
tor)

Not related

n component Related Not related Related

t conn/t rest Related (negligible) Related (negligible)
Related (major fac-
tor)

CARISMA conflict resolution mechanism significantly depends on the number of

policies. For example, it takes about 900ms to determine which policy to apply out

of ten [8]. Both MobiPADS and CARISMA use synchronous synchronization pro-

tocols and their performance depends on the network conditions. On the contrary,

MassWare uses an asynchronous synchronization protocol and there is no com-

munication involved in the reconfiguration process. Its reconfiguration time only

depends on the component restoration time and connection time, which is in the

range of hundreds of micro seconds in our experiments. The component restora-

tion time and connection time are also required by MobiPADS and CARISMA,

but negligible compared with their communication time.

In summary, the reconfiguration time of MobiPADS and CARISMA is typically

in the range of seconds and related to the network condition and system complexity.

For example, MobiPADS reconfiguration takes about 2s for 20Kbps bandwidth and

1.4s for 1Mbps bandwidth according to our theoretical analysis, which achieve the

same results as those reported in [26]. CARISMA conflict resolution time is about

1.2s for 10 policies and 1.7s for 20 policies, and the time grows exponentially with

the number of contexts and conflicts by our theoretical analysis, which conforms

to the empirical results in [8]. Furthermore, their robustness is affected by the

76

5. Performance Analysis and Experiments

reconfiguration because it requires the availability of all the related peer agents

and its failure would cause the crash of succeeding data packets.

Although the initialization time of the proposed asynchronous method in Mass-

Ware is similar to the reconfiguration time of the synchronous methods in Mobi-

PADS and CARISMA, the MassWare initialization is a one-time process while the

reconfiguration of MobiPADS and CARISMA is a repetitive process. The repet-

itive reconfiguration time of MassWare after initialization is significantly shorter

than that of MobiPADS or CARISMA. Moreover, the local agent reconfiguration

is not affected by the network condition or the capacity of other agents, and the re-

ceived data packets can be processed asynchronously based on their active message

headers. Thus the robustness of the system is improved.

5.2 MassWare-MANET Evaluation by Experimen-

tal Measurements

In this section, we evaluation MassWare performance in MANETs using bench-

mark applications, which consist of a set of simple components, each of which

has a parameter interface, an input interface, and an output interface so that two

components can be connected. Each adaptation policy has the same components

in a single test and each reconfiguration process will disconnect and reconnect all

the components and load one parameter for each component. The number of the

policies and the number of components in each policy are varied in the experiments

to simulate different applications. All the data are calculated based on the average

of 10 test samples.

One of the goals of MassWare is to reduce the reconfiguration time for DRE

systems. However, the reconfiguration process introduces some performance cost,

77

5. Performance Analysis and Experiments

such as the active message header and extra resource consumptions for maintaining

the multiple chains. Therefore it is important to check the feasibility and efficiency

of using MassWare. We evaluate its performance benefit and cost in this section

in terms of the reconfiguration time, memory footprint, and scalability through

benchmark applications on both PCs and PDAs.

5.2.1 Test Bed

192.168.0.10

255.255.255.0
Gateway:

192.168.0.1

FastEthernet0/0

192.168.0.1
255.255.255.0

FastEthernet0/0

172.16.3.1
255.255.255.0

DCE DTE

172.16.3.10

255.255.255.0
Gateway:

172.16.3.1

Cisco 3200 Cisco 3200

Serial0/0

10.10.10.1
255.255.255.252

Serial0/0

10.10.10.2
255.255.255.252

switch switch

192.168.0.10

1

Figure 5.4: Experimental test bed.

We have implemented MassWare in C# for both Windows XP (WXP) and

Windows Mobile 5 (WM5) systems using visual studio 2005, and we have encod-

ed the script file using XML. The testbed consists of two PCs (Thinkpad-X60:

Intel T2300 1.66GHz, 512MB, and WXP), two PDAs (Dell x51v: Intel XScale

624MHz, 64MB, and WM5), two Cisco routers (Cisco 3200), and two switches

(Cisco 2900XL) as shown in Fig. 5.4 . The routers are connected back-to-back

78

5. Performance Analysis and Experiments

through serial ports so that the network bandwidth can be controlled through the

HyperTerminal tool.

5.2.2 Time Efficiency

One-time reconfiguration initialization time

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

12000

14000

16000

Bandwidth (kbps)

O
n

e
tim

e
in

iti
al

iz
at

io
n

 ti
m

e
(m

s)

PDA
PC

MassWare Reconfiguration Initialization TimeMassWare Reconfiguration Initialization Time

Figure 5.5: MassWare initialization time.

MassWare reconfiguration is separated into two phases: one-time initialization

phase occurring once when the system starts up and repetitive reconfiguration

phase occurring every time the reconfiguration is triggered. The one-time initial-

ization time of MassWare has been analyzed theoretically and the analysis results

are shown in Fig. 5.3. In this section, we evaluate the one-time initialization time

using experimental results. According to Eq. 5.5, the initialization time of Mass-

Ware reconfiguration is related to the RTT, the number of policies, and bandwidth.

To simplify the experiments, we set the RTT between the sender and receiver as

100ms and the number of policies as 10. The size of each policy, which contains an

actuator meta-chain, is 10Kbit. We then control the bandwidth by changing the

79

5. Performance Analysis and Experiments

clock rate of the router serial ports to measure the variation of the initialization

time to bandwidth. The experiment results are shown in Fig. 5.5, in which X-axis

is the network bandwidth and Y -axis is the measured initialization time. In low

bandwidth conditions, PDA and PC have similar performance since the commu-

nication time is the major part of the initialization time, which is only related to

the network conditions. In high bandwidth conditions, local processing overhead

also contributes to the initialization time and PDA has larger initialization time

than PC due to its limited hardware resource. The experimental result also match

well with the theoretical analysis with just slightly larger values because the uni-

fied model has ignored some processing overhead and control message transmission

delay.

Repetitive reconfiguration time

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

log. of the number of components (log10(n))

lo
g

. o
f

th
e

re
co

n
fi

g
u

ra
ti

o
n

 t
im

e
(l

o
g

10
(t

))
 m

s

MARCHES Reconfiguration Time

PDA Restoration Time
PDA Connection Time
PC Restoration Time
PC Connection Time

MassWare Reconfiguration Time

Figure 5.6: MassWare reconfiguration time.

The repetitive reconfiguration the most important part of MassWare reconfigu-

ration since it occurs every time the reconfiguration is triggered. According to Eq.

80

5. Performance Analysis and Experiments

5.6, it contains the connection time and status restoration time of the components

in the active actuator, which are all local processing time and only related with

the number of components. We then measure the component connection time and

status restoration time separately in the experiments by changing the number of

components. The experiment results are shown in Fig. 5.6. From the results, we

can see that the change of both component connection time and status restora-

tion time are linear of the number of components. PDA has larger reconfiguration

time than PC due to its limited hardware resource. Because all the operations are

executed in the same memory space and CPU process, it is in the range of several

hundred microseconds to a few milliseconds. Moreover, the reconfiguration time

is only determined by local hardware resources so that the time is very stable for

every test.

Component initialization time

0 0.5 1 1.5 2 2.5 3
-1

0

1

2

3

4

5

log. of the component number (log10(n))

lo
g

. o
f t

h
e

in
iti

al
iz

at
io

n
 ti

m
e

(lo
g

10
(t

))
 m

s

Component Initialization Time

PDA
PC

Figure 5.7: Component initialization time.

MassWare supports standard software components. After a MassWare agent is

81

5. Performance Analysis and Experiments

loaded in the system initialization phase, it initializes all the components declared

in the application script file. The component initialization time then represents

the efficiency of the MassWare component model. It is defined as the time needed

to load a component, check its types, and instantiate the component based on the

encoded parameters. Fig. 5.7 shows the initialization time of the simple MassWare

components based on the number of components. The initialization time is only

related with local hardware resource and the change is linear of the number of

component. The time is in the micro- to milli- second range.

We have also tested the event notification time of MassWare sensors, which

is another important metric to evaluate the responsiveness of MassWare. Results

show that it is in the microsecond level and much smaller than the repetitive

reconfiguration time.

5.2.3 Memory Footprint and Scalability

In this experiment, we evaluate the local storage size and the run-time memory

consumptions of MassWare framework, components and actuators. We utilize the

C# serialization function to serialize MassWare and system objects and measure

their run-time memory usage. Serialization means that objects are marshaled by

value, that is, all their various member data are written out to the stream as a

series of bytes. Therefore, we can use the length of the stream as the metric for

memory consumption.

The local file size and run-time memory usage of MassWare middleware and

components are shown in Table 5.3 for both Windows XP (WXP) and Win-

dows Mobile 5 (WM5) respectively. The run-time memory usage of the middle-

ware is measured after initializing the system and before loading and instantiat-

ing any components. An empty masslet is a reflective component containing no

82

5. Performance Analysis and Experiments

Table 5.3: Resource consumption by MassWare

Components
Windows XP system Windows Mobile 5

Local file
size

Run-time
memory

Local file
size

Run-time
memory

Middleware 56KB 896KB 46KB 123KB
Empty masslet 4KB 139Byte 4KB 74Byte

Simple masslet 16KB 356Byte 5KB 147Byte
Simple masstool 16KB 279Byte 4KB 94Byte

application-specific method or variable. A simple masslet contains one input inter-

face, one output interface, and 5 double-type parameters. Although we use very

similar source code for both WXP and WM5, the run-time memory consumption

of WM5 is much less than that of WXP due to the code optimization in the mobile

system.

Because MassWare contains multiple actuators, it is important to analyze the

overhead of the actuators. The memory consumption R is then expressed as:

R =
∑
i

(
∑
j

(
∑
k

pijk + lij) + ai) (5.7)

where pijk (10Byptes) is the size of parameter k for masslet j in actuator i;

lij (12B) is the name and reference size of masslet j in actuator i; and ai (8B)

is the index size of actuator i. For a MassWare agent that contains 5 actuators,

10 masslets for each actuator, and 10 parameters for each masslet, the resource

consumption is 5640bytes (≈ 5.5KB). In MassWare, a middleware agent maintains

not only local proactive actuators, but also reactive actuators built for remote peer

agents through the synchronization. Thus, the memory consumption is closely

related to the application scale. According to Eq. 5.7, the memory consumption

R for a DRE system is then modified as:

83

5. Performance Analysis and Experiments

R =
∑
t

(Rt) (5.8)

where t is the index of peer middleware agents.

For a DRE system that has 10 distributed programs and each program has

a middleware agent described above, the memory consumption of the program is

5640bytes × 10 (≈ 55KB), which is still small compared to the capacity of most

embedded devices.

5.2.4 Demo Applications and Releases

We have developed some adaptive DRE systems based on MassWare, like a first

responder system in PDA platforms and a distance education system in heteroge-

neous platforms (PCs, Laptops, and PDAs). The implementation of real applica-

tions demonstrate that MassWare are easy to use, achieving fast responsiveness in

reconfigurations, and supporting generic DRE systems. All the software we have

developed and documents have been released on our website [70].

5.3 MassWare-WSN Evaluation

The MassWare-WSN system and supported applications have been developed in

Ubuntu 6.10 Linux OS using the C language and tested on MicaZ nodes. We eval-

uated MassWare performance costs and benefits in terms of the memory footprint

and component loading time. More comprehensive evaluations, including recon-

figuration time and runtime memory consumption etc., will be part of our future

work.

84

5. Performance Analysis and Experiments

5.3.1 Memory Footprint

The memory footprint is the total static file size of the compiled MassWare compo-

nents that are burned to sensor nodes. It is calculated by the component compiler.

Because the decision engine is the extra part of MassWare in sensor nodes, we

define the middleware memory overhead Om as the ratio of the decision engine

size to the application component size:

Om = Sm/Sa = Sdc/(
∑

Smasslet +
∑

Smasstool) (5.9)

where Sm is the middleware’s memory-footprint size, which equals the decision

engine’s memory footprint (Sdc); Sa is the application’s memory-footprint size,

which equals to the total memory consumed by all masslets (Smasslet) and masstools

(Smasstool).

Blink application

The blink application consists of three masslets: BlinkR (562bytes), BlinkG (532bytes),

and BlinkY (478bytes), which control red, green, and yellow LEDs of a sensor node,

one masstool: NeighborNum (586bytes), which measures the number of neighbor

nodes, and the decision engine component (1178bytes). There are two adaptation

policies for the Blink application:

• When there is no neighbor, BlinkY is connected to BlinkR and the frequency

of BlinkR is one blink per 2 seconds;

• When there are one or more neighbors, BlinkR, BlinkG, and BlinkY are

connected in sequence, and the frequency of BlinkR is one blink per 3 seconds.

The memory overhead of MassWare in the Blink application is 55%. MassWare

is not memory efficient for simple applications since the application size is small.

85

5. Performance Analysis and Experiments

Data compression application

The data compression application is developed based on a proposed sensor da-

ta compression algorithm [72] that aims to reduce distributed data redundan-

cy. It consists of five masslets: Sensing (822bytes), LSWT (6628bytes), Quantz

(8254bytes), DSC (1858bytes), and Unary (1614bytes), one masstool: Neighbor-

Num (586bytes), and the decision engine component (1354bytes). Sensing has a

start interface to start sampling data and sending them to output interfaces. L-

SWT, Quantz, DSC, and Unary perform Lifting Scheme Wavelet Transfer, Scalar

Quantization, Distributed Source Coding, and Modified Unary Coding respective-

ly. There are two adaptation policies:

• When there is no neighbor, which means there is no distributed redundancy,

Sensing, LSWT, Quantz, and Unary are connected in sequence.

• When there are one or more neighbors, the Unary component is replaced by

the DSC component, and Sensing, LSWT, Quantz, and DSC are connected

in sequence.

The memory overhead of the data compression application is 6.9%, which is

much lower than that of the blink application. This is because the decision engine

size is only slightly larger for complex applications.

Benchmark experiment

Because the decision engine is generated based on a script file, its size is related

to the number of adaption policies (Np) and the number of masslets in each policy

(Nc/p). The memory consumption can be expressed as:

M = A×Np+B×Np(Nc/p−1)+C(Nc/p−1)+D×Nc/p+E×Np(Nc/p−1)+F (5.10)

86

5. Performance Analysis and Experiments

where A, B, C, D, E, and F are coefficients. ANp is the code memory for

calculating the size of the synchronization request packet; BNp(Nc/p − 1) is the

code memory for generating the synchronization request packet; C(Nc/p−1) is the

memory for constructing the default actuator; DNc/p is the memory for initializing

the default actuator; ENp(Nc/p − 1) is the memory for building all actuators and

subscribing them to corresponding detectors. F is other code memory consump-

tion.

It is a special case when there is only one component in each actuator: since

there is no component connection in this case, there is no code required to build

actuators. When there is more than one component in each actuator, Eq. 5.10

can be simplified as:

M = A1 ×Np ×Nc/p + A2 ×Np + A3 ×Nc/p + A4 (5.11)

where A1, A2, A3, and A4 are coefficients. To measure these coefficients, we

have developed some benchmark experiments based on the number of policies (Np)

and the number of masslets in each policy (Nc/p). Every benchmark masslet has an

input interface, an output interface, and a parameter interface. There is only one

benchmark masstool used by all policies. In each policy, there is only one masstool

in the detector; there are Nc/p masslets connected in a sequence in the proactive

actuator and the reactive actuator. The memory consumption of the decision is

listed in Table 5.4.

Based on the measurement result, we get the coefficients [A1, A2, A3, A4] =

[7.82, 117.16, 90.88, 613.44]. The standard deviation between the measurement re-

sults and calculation results using the coefficients are 36.53 (about 2% of the mean

value), which also proves the correctness of the Eq. 5.11.

From the results, there are two observations:

87

5. Performance Analysis and Experiments

Table 5.4: Benchmarking decision engine’s memory size (byte)

PPPPPPPPPNc/p

Np 1 2 3 4 5 6

1 792 818 838 858 878 898
2 910 1030 1214 1322 1428 1534
3 1014 1130 1320 1494 1626 1754
4 1118 1236 1478 1616 1752 1846
5 1208 1340 1594 1734 1842 1978
6 1296 1434 1678 1820 1962 2106

• the decision engine size is approximately linear to the number of policies and

the number of masslets in each policy, which follows Eq. 5.11;

• even for a complex application (6× 6), the decision engine size is still quite

small (about 2KB), compared to the size of most on-board programmable

flash memory of sensor nodes (e.g. 128KB in MicaZ).

5.3.2 Time Efficiency

The decision engine loading time includes the time for creating and sending the

Synchronization Request packet, constructing actuators and detectors, and starting

the application, which can be expressed as:

M = A×Np +B ×Np(Nc/p − 1) + C(Nc/p − 1) +D ×Nc/p + F (5.12)

Compared to Eq. 5.10, the decision engine loading time does not contain

ENp(Nc/p−1) since all other actuators are dynamically constructed except the de-

fault one. Eq. 5.12 can also be simplified as Eq. 5.11. Based on the benchmark re-

sults listed in Table 5.5, we get its coefficients: [A1, A2, A3, A4] = [35.85,−4.5, 1.83,

273.02]. The standard deviation between the measurement results and calculation

88

5. Performance Analysis and Experiments

Table 5.5: Benchmarking decision engine’s loading time (in CPU cycles)

PPPPPPPPPNc/p

Np 1 2 3 4 5 6

1 335 362 363 390 417 445
2 358 408 485 536 600 664
3 381 494 581 695 781 934
4 417 554 691 840 990 1099
5 454 626 800 972 1145 N/A
6 490 699 936 1118 N/A N/A

results using the coefficients are 12.19 (about 1.5% of the mean value).

From the results, there are two observations:

• the CPU loading time is also approximately linear to the number of policies

and components in each policy;

• MassWare is time efficient for most applications (less than 1000 CPU clock

cycles). (The last three readings (N/A) are caused by the failure to gener-

ate the Synchronization Request packet due to the limited memory of MicaZ

nodes. This issue could be solved in new-generation sensor nodes with ad-

vances of micro-electronics, e.g. Imote2 hosts 256kB SRAM and 32MB

SDRAM.)

5.3.3 Energy Consumption

MassWare consumes extra energy for application reconfiguration, which includes

application local behavior change and distributed behavior synchronization. S-

ince the energy is primarily consumed by wireless communications in WSNs [73],

MassWare is energy efficient compared with other middleware frameworks since

it does not require extra communication in the repetitive reconfiguration process

89

5. Performance Analysis and Experiments

by using the active-message-based synchronization protocol. The only communi-

cation energy consumption for the reconfiguration is the one-time transmission of

the ”Synchronization Request” packet at the system initialization phase, which is

negligible compared to the energy consumption of the life time sensor data trans-

mission.

On the other hand, MassWare can reduce the energy consumption when re-

programming sensor applications. MassWare is component-based adaptive mid-

dleware and it supports partial updates of the sensor application by only replacing

the required software components instead of the whole application.

90

Chapter 6

Applications and Implementation

91

6. Applications and Implementation

To justify the functionality of MassWare in real applications, we have im-

plemented MassWare to support two popular applications: Ad-hoc routing in

MANETs and data compression in WSNs. Beyond the implementation, we have

designed two new algorithms in these application areas to solve some existing

problems. Evaluations demonstrate the significant performance improvement of

MassWare-supported applications by using the designed algorithms in the specific

contexts.

6.1 MassWare-Supported Routing Application in

MANETs

In Mobile Ad-hoc NETworks (MANETs), how to select an optimal route from the

source to the destination is a critical issue. Due to node mobility and link/channel

dynamics, a link that exists between two nodes now may not exist in the future.

Therefore, many routing protocols [74][75][76] have been proposed for various sce-

narios of MANETs. Due to the heterogeneity of the networks or the mobile devices,

a single routing algorithm may not be suitable for the whole network. MassWare-

supported applications have the ability to select different routing algorithms based

on contextual information. Therefore, it can significantly improve the application

performance by adopting the optimal routing algorithm in the current scenario.

Traditional ad-hoc routing can be divided into three categories: on-demand

routing, table-driven routing, and hybrid routing. In on-demand routing, nodes

only maintain route information when they need to send or relay packets. However,

on-demand routing has longer response time than table-driven routing, and it does

not scale well because of flooding of routing requests. In table-driven routing, each

node always maintains up-to-date information about routing to any other nodes.

92

6. Applications and Implementation

It would induce a heavy overhead for maintaining routing information in highly

mobile scenarios. The hybrid routing is designed to achieve a tradeoff between the

characteristics of on-demand and table-driven routing, mostly with a cost of high

algorithm complexity. However, how to improve the routing scalability as well as

reducing the routing overhead in MANETs is still an open problem.

Geometric routing is a special type of routing approach designed for MANETs

where data packets are routed based on position information when node positions

are known. In general, geometric routing is simple and efficient, and it improves

the routing scalability because each node only needs to keep its neighbors’ position

information. There are common assumptions when designing geometric routing

protocols. First, every node knows its own position. This information can be

collected by using GPS devices or other means. Second, every node knows its

neighbors’ positions that can be obtained by one hop beacon messages. Third,

the source node knows the destination position. This function can be provided by

some location service mechanisms [77]. As the development of positioning devices

such as GPS, geometric routing is becoming more and more practical.

Most existing geometric routing protocols are based on the greedy algorithm

where every forwarder chooses the neighbor that is the closest to the destination as

the next hop. Although the greedy algorithm is simple and efficient, it fails when

a node cannot find a neighbor close to the destination for forwarding a packet (a

”void area”). To guarantee the packet delivery, some geometric routing algorithms,

such as GPSR (Greedy Parameter Stateless Routing) [77] and GOAFR (Greedy

Other Adaptive Face Routing) [78], use face routing to bypass void areas. Face

routing only works in planar graphs where there is no cross link. However, failures

of face routing based on planarization have been observed in test-bed experiments

[79][80] due to inconsistent radio ranges and asymmetric links.

We have designed a new geometric routing protocol for MANETs called LTGR

93

6. Applications and Implementation

(Local Tree based Greedy Routing), which uses a local tree, instead of face rout-

ing, to recover routing bypassing void areas. LTGR uses the same assumptions

as existing geometric routing protocols, but it does not require assumptions of

uniform radio ranges and bi-directional links that are hard to be satisfied in real

implementations. LTGR has the following features. It is simple and stateless so

that it is suitable for highly dynamic MANETs. LTGR does not rely on planariza-

tion. Thus it keeps cross links in the network topology to achieve good hop stretch

performance. It augments the greedy algorithm with routing history information

to make informed decisions in routing.

In this section, we first present the design details of the LTGR. After that,

we provide the implementation method and an example of a MassWare applica-

tion that uses the LTGR algorithm when geometric information is available and

switches to DSR (a traditional routing algorithm) when geometric information is

unavailable. Last, we evaluate the performance improvement of the MassWare

application by using LTGR in terms of the packet delivery ratio, routing overhead,

and hop stretch.

6.1.1 Related Work

There exists ongoing research on geometric (position based) routing protocol-

s [77][78][79][81]. The simplest one is based on the greedy algorithm by which

each node, when forwarding traffic as a forwarder, chooses its neighboring node

closest to the destination as the next hop. However, the greedy algorithm can not

pass any void area where a forwarder can not find a neighbor that is closer than

itself to the destination.

In order to recover packet routing from void areas and improve the packet

delivery ratio, Karp et al. propose GPSR [77] to switch from the greedy mode to

94

6. Applications and Implementation

a perimeter mode if a node cannot find the next hop using the greedy algorithm.

In the perimeter mode, face routing [77][82] combined with a right-hand rule is

utilized to traverse the perimeter of the void area. The basic idea of the face

routing is to travel along the perimeter of the faces, which are intersected by the

virtual line between the source and the destination. GPSR only uses the right

hand rule to choose the next face for traversal. GPSR is not efficient if it can not

find the correct face quickly; and in the worst case, it traverses all the bad faces

and finds the correct one last.

To improve the performance of face routing, Kuhn et al. propose a Greedy

Other Adaptive Face Routing (GOAFR) protocol [78]. GOAFR uses an adaptive

face routing (AFR) mode if the greedy mode encounters a void area. The basic

idea of AFR is to adjust the boundary of a traverse ellipse area around the face

and choose an optimal value to reach the destination. The boundary is decided by

the Boundary Face Routing (BFR) that uses the same rule of face routing except

that the exploration around a face will walk back when it reaches the boundary.

If a packet can not reach the destination via BFR, it will be routed back to the

source node [78]. The boundary is then doubled, and the process is repeated again

until the destination is reached.

Both the GPSR and GOAFR protocols planarize network topology to support

face routing and the planarization (GG or RNG [77]) algorithms assume that the

connectivity between nodes can be described by unit graphs, i.e. a node is always

connected to all neighbors within its fixed transmission range while not connected

to nodes outside this range. In an experimental deployment of GPSR protocol

in wireless sensor networks, Kim et al. [79][80] observe that permanent routing

failure occurs because the unit-graph assumption cannot be satisfied in practical

scenarios. To solve this problem, Kim et al. [79] propose a distributed Cross-Link

Detection Protocol (CLDP) to planarize the network. However, CLDP is complex

95

6. Applications and Implementation

and costly because it induces new routing overhead caused by ”probe” packets

used for planarization.

In [81], Leong et al. present a new geometric routing protocol without using

network planarization, i.e. Greedy Distributed Spanning Tree Routing (GDSTR).

The GDSTR protocol generates spanning tree(s) and every node maintains a con-

vex hull based on its children in the spanning tree and their convex hulls. When

a node can not forward a packet using the greedy algorithm, it switches to the

recovery mode and checks if the destination is contained in its convex hull and de-

cides whether to forward the packet to a proper child or just send it to its parent,

which has a bigger convex hull. GDSTR can achieve better hop stretch and path

stretch than CLDP with less overhead. However, GDSTR is proposed for static

sensor networks and not stateless ones. Therefore it is not suitable for MANETs

because the convex hull maintenance is costly in dynamic scenarios.

Similar to GDSTR, our proposed protocol, LTGR, does not use planarization

either. However, LTGR differs from GDSTR in that it is stateless and does not

need any global information or extra message exchange to recover packet routing

from void areas. Like GOAFR, LTGR keeps the adaptability of routing explo-

ration in the recovery process, i.e. LTGR adaptively selects a sub-tree for packet

forwarding based on the position information of the leaf nodes in each sub-tree

when it routes packets. And because the selection utilizes position information,

instead of a constant boundary value used in GOAFR, LTGR can make better

routing decisions than GOAFR.

96

6. Applications and Implementation

6.1.2 Local Tree Based Geometric Routing (LTGR)

Overview of LTGR

Like existing geometric routing protocols, LTGR takes advantage of a greedy al-

gorithm to route packets whenever possible. A packet can be either routed in the

greedy mode if the greedy algorithm works or in the recovery mode if the packet

routing reaches a void area. A flag in the packet header marks the routing mode of

a packet. LTGR uses a local tree based routing algorithm to route packets in the

recovery mode to bypass void areas. Whenever a node receives a recovery-mode

packet, it checks whether it is closer to the destination than the originator of the

recovery process, and if positive, it switches the packet back to the greedy mode

and uses the greedy algorithm to forward the packet. This process is repeated

until the destination is reached, or all the possible paths are tried once and still

no route is found to reach the destination, i.e. the network is partitioned.

If a packet is routed in the greedy mode, it would not encounter any routing

loop. If the packet is routed in the recovery mode, the local tree information used

by the LTGR to bypass the void area will be embedded in the packet header, thus

any node can get the history of the tree to avoid forming routing loops. The local

tree could expand to a spanning tree covering all nodes in the network. Therefore,

LTGR can guarantee the packet delivery if there exists a path between the source

and the destination.

Search Algorithms

LTGR uses local tree based search algorithms to find paths bypassing void areas

so that packets in the recovery mode can be routed.

In this dissertation, we first study the uniform cost search where the source

node knows nothing about the whole topology and the destination’s position. For

97

6. Applications and Implementation

example, the breadth first search, in which all nodes at level d are expanded before

any nodes at level d + 1 , finds the shallowest goal state, i.e. the shortest path.

If we define the function DEPTH(n) as the depth of the node n , then the node

with the lowest DEPTH(n) value is always expanded first. If the route cost is a

function of the depth of the solution, e.g. the hop count of the route, the breadth

first search can achieve the best solution, i.e. the optimal path.

Although the uniform cost search can find the optimal route provided that there

is no negative cost, it would traverse most of the possible routes, which could induce

a large amount of overhead. Assume B stands for the average branching factor,

and D is the depth of the solution, the complexity of the uniform cost search is

O(BD). This overhead is prohibitive in large scale MANETs.

To address the overhead issue, we consider the greedy search algorithm. A node

using the greedy search algorithm always finds a neighbor node as the next hop

that is the closest to the destination among all neighbor nodes. Thus the greedy

algorithm can select the next hop exclusively, therefore eliminating the overhead

of traversing other possible route in the uniform cost search algorithm. Moreover,

it is faster than the uniform cost search algorithm on average.

However, the greedy search algorithm is efficient but incomplete, which can not

guarantee finding an existing path to the destination because no history informa-

tion is recorded. The uniform cost search is complete because it records its history;

and it can find the optimal path but is not as efficient as the greedy search. Thus

it is desirable to combine them for path searching.

In this dissertation, we augment the greedy search algorithm with its history

and propose the local tree based search algorithm.

A tree consists of a root, branch nodes and leaf nodes. The first node N0 that

routes a packet reaching a void area marks the packet to be in the recovery mode

and initializes the recovery process and the local tree: it sets itself as the root of the

98

6. Applications and Implementation

local tree and its neighbors as the leaf nodes. After the tree is constructed, the tree

information is stored in the packet header and forwarded along with the payload

to the next-hop node N1 that is a leaf node of the tree closest to the destination

according to the greedy search algorithm. When a leaf node, say N1, receives

the packet, it first retrieves the local tree information from the packet header and

checks if it is closer than the root to the destination. If so, the routing mode of

the packet will be switched back to the greedy mode and the tree information will

be removed from the packet header. Otherwise, the node N1 expands the local

tree by adding all its neighbors as its children; and thus it is changed from a leaf

node to a branch node. The description of the expanded local tree is stored in the

packet header and the packet is forwarded to a leaf node of the updated tree, say

N2, which is the closest one to the destination among all leaf nodes, based on the

greedy search algorithm. Note that N2 may not be the neighbor of N1 but N1 can

find a path to N2 based on the local tree information.

The local tree based search algorithm is complete since it can guarantee the

packet delivery if there exists a path to the destination.

LTGR Protocol

Based on the LTGR protocol, a node in MANETs routes a packet by the greedy

algorithm if the packet does not encounter a void area. Otherwise the packet will

be routed in the recovery mode of the LTGR protocol.

Because LTGR uses a tree structure, there is no loop in the path. And in

the worst case, the local tree will expand to a spanning tree that can reach every

node in the network. The challenge of embedding local tree information in the

packet header is that the header overhead may be very large in dense networks.

To address this challenge, we propose two techniques used in LTGR.

99

6. Applications and Implementation

First, each node divides the network space into four quadrants when it receives

a recovery mode packet. The division is based on the axis x, which is the line

connecting itself with the destination, and axis y, which is the line perpendicular

to axis x and passing this node. After that, the node adds only three neighbors to

the local tree, which are distributed in the three quadrants (except the quadrant

that contains the previous hop node) and are closest to the destination among the

neighbors in each quadrant. This means that each branch node in the local tree

only has a maximum of three children no matter how dense the network is, and

only the root has maximum four children from all four quadrants. The above-

mentioned process may need to be repeated to guarantee the packet delivery when

the network is not partitioned if a packet could not be routed to the destination

node in the first round.

Second, we propose a new compression technique to compress the local tree

information stored in the packet header. For the tree structure, we only use 2

bit memory to save the structure for each branch node because it only has 3

children. For the node information, because only the to-destination-distance values

of the root and the leaf nodes are useful in the recovery mode, we do not need

to include the values of branch nodes in the packet header. Compared to face

routing algorithm that keeps the position information for all the nodes along a

face, LTGR has much less overhead. Suppose that there are n nodes in total and

m leaf nodes in a local tree, and the node id and the to-destination-distance value

are represented by kbits and tbits respectively, the total bits that are needed to

store the tree information is:

T (n,m, k, t) = 2(n−m) + k × n+ t(m+ 1) (6.1)

An example that uses LTGR to recover from the void area is illustrated in

100

6. Applications and Implementation

A

S

C B

E

F G

H

D

I

II

III

IV

Figure 6.1: A local tree based routing example.

Fig. 6.1. A is the sender and D is the destination. First, A sends a packet to S

using the greedy algorithm because S is closer than A to D. When S receives the

packet, it initializes the recovery process because it has no neighbor closer to D

than itself. It constructs a local tree by setting itself (S) as the root and adding

three neighbors F , B, and E as leaf nodes, which are closest to D in the quadrants

I, II, IV respectively. Then the packet is forwarded to B because B is the closest

to D among all the leaf nodes. When B receives the packet, it adds C to the local

tree. However, B finds that the leaf node with the shortest distance to D is F ,

instead of C or E. And it forwards the packet to F through the path B → S → F .

After that, when F receives this packet, it adds its neighbors H and G to the local

tree, and forwards the packet to H that is the closest to D among all the leaf

nodes. At last, H receives the packet and finds it is closer than the root S to the

D. It changes the packet to the greedy mode and forwards the packet using the

greedy algorithm.

101

6. Applications and Implementation

6.1.3 LTGR and MassWare Application Implementation

To develop a MassWare-supported MANET application, developers need to pro-

vide application required software components (masslets and masstools) and an

adaptation-policy script file. In this example, masslets include the LTGR algo-

rithm and other routing algorithms that are implemented as independent software

components to be used by MassWare; masstools include the measurement tool

(called GPS) that detects whether geometric information is available for a current

mobile device.

Component Implementation

public class LTGR : Masslet, DataInput
{

public LTGR() { /*…*/ }

#region Interface functions
public override bool Start() { /* Start LTGR */ }
public override bool Stop() { /* Stop LTGR */ }
public void SetRouteCalcFreq(int frequency) { /*...*/ }
public void SetBeaconInterval(int interval) { /*...*/ }
#endregion

#region Masslet functions
public event DataReadyHandler DataReadyEvent;
public AppDataReadyHandler DataRequestHandler;
void DataOutput.AddSubcriber(DataReadyHandler subs,

bool bAdd)
{

if (bAdd) DataReadyEvent += subs;
else DataReadyEvent -= subs;

}
AppDataReadyHandler DataInput.GetSubscriber()
{

if (DataRequestHandler == null)
DataRequestHandler = new

AppDataReadyHandler (DataReceived);
return DataRequestHandler;

}
void DataReceived (object sender, AppDataEventArgs e)
{

if (DataReadyEvent != null) SendData(e.mData);
}
#endregion Masslet functions

void SendData(IntPtr data) { /* Send data using LTGR */ }
//...

}

(a) LTGR masslet implementation

<Masslets>
<component cid="2002">

<addr> D:\Masslets\LTGR.dll </addr>
<name> Masslets.Routing.LTGR </name>
<ctype> Masslet </ctype>
<alias> LTGR </alias>
<param pid="001">

<name> SetRouteCalcFreq </name>
<vtype> Int32 </vtype>
<value> 5000 </value>

</param>
<param pid="001">

<name> SetBeaconInterval </name>
<vtype> Int32 </vtype>
<value> 1000 </value>

</param>
<interface iid=“001”>

<name> DataInput </name>
<itype> Input </name>
<Message> AppDataEventArgs </Message>

</interface>
<interface iid=“002”>

<name> Start </name>
<itype> Start </name>

</interface>
</component>
...

</Masslets>

(b) LTGR masslet declaration

Figure 6.2: Dynamic reconfiguration architecture

102

6. Applications and Implementation

The first step is to implement specific algorithms or protocols into masslets.

Since masslets are function-independent software components, they can be easily

shared by various applications to reduce development cost. In this section, we

present an implementation example of LTGR masslet as shown in Fig. 6.2.

Fig. 6.2a shows the C# code of the LTGR masslet that is developed for Win-

dow Mobile systems with .Net Compact framework 2.0. The interface functions

implement the component interfaces that can be declared in the script file to set

parameters (parameter interfaces) or communicate with other masslets (communi-

cation interfaces). The masslet functions connects the user-defined interfaces with

real functionality implementation (the SendData function in this example). There-

fore, any masslet can implement its own interfaces independently. To communicate

with each other, an output interface must support the same message type with the

input interface (the AppDataEventArgs in this this example).

By reading the metadata of the LTGR masslet, developers can create a script

file to declare the component based on implemented interfaces. The masslet dec-

laration script, as shown in Fig. 6.2b, is part of the application adaptation-policy

script file (shown in Fig. 6.3) that is used to build the MassWare application.

Similar to LTGR masslets, developers need to create the other masslets and

masstools if they are not shared components for the application.

Script file Implementation

After all components are prepared, the next step is to create a script file that

declares the required components and adaptation policies as discussed in Chapter

3. A full script file example of the LTGR-based dynamic routing application is

depicted in Fig. 6.3. The simplified application contains 3 masslets: LTGR and

DSR, which implement LTGR and DSR routing protocols separately, and Sender,

103

6. Applications and Implementation

<Marchlets>
<component cid="2002">

<addr> D:\Masslets\LTGR.dll </addr>
<name> Masslets.Routing.LTGR </name>
<ctype> Masslet </ctype>
<alias> LTGR </alias>
…

</component>
<component cid="2002">

<addr> D:\Masslets\DSR.dll </addr>
<name> Masslets.Routing.DSR </name>
<ctype> Masslet </ctype>
<alias> DSR </alias>
…

</component>
<component>
<addr> D:\Masslets\Sender.dll </addr>

<name> Masslets.AppTest.Sender </name>
<ctype> Masslet </ctype>
<alias> Sender </alias>
…

</component>
…

</Marchlets>

<MarchTools>
<component cid=“3001”>

<name> Masstools.GPS </name>
<alias> GPS </alias>
<interface iid=“001”>

<name> isAvailable </name>
<itype> Output </name>

</interface>
</component>

</MarchTools>

<Rules>
<rule>

<sensor>
<event>

<otype> EQ </otype>
<lhs><expr>GPS.isAvailable</expr></lhs>
<rhs><expr> 1 </expr> </rhs>

</event>
<sensor>

<Actuator type=“proactive” sync=“Async”>
<SetParam>

LTGR.SetRouteCalcFreq = 10000;
LTGR.SetBeaconInterval = 2000

</SetParam>
<SetArch>

Sender.DataOutput -> LTGR.DataInput;
DSR.Stop;
LTGR.Start;

</SetArch>
</Actuator>

</rule>

<rule>
<sensor><-- GPS.isAvailable == 0></ sensor>
<Actuator type=“proactive” sync=“Async”>
<SetArch>

Sender.DataOutput -> DSR.DataInput;
LTGR.Stop;
DSR.Start;

</SetArch>
</Actuator>

</rule>
…

</Rules>

Figure 6.3: The full MassWare application example using LTGR

which sends test data to another device in the same MANET. It also contains one

masstool: GPS that detects whether geometric information is available. There

are two adaptation policies used by the be application: LTGR is selected to route

application data when GPS information is available since LTGR achieves better

performance than DSR, and DSR is used when GPS information is unavailable to

guarantee that the data can be delivered successfully.

104

6. Applications and Implementation

6.1.4 Simulation and Analysis of Results

MassWare supports context-aware reflective applications, which can dynamically s-

elect optimal software components based on contextual information to improve the

application performance. To validate the performance improvement of MassWare-

supported routing application comparing to static applications, we compare LTGR

with peer protocols. We implemented LTGR in ns-2(.28) and simulated the pro-

tocol using various mobile ad-hoc network topologies. We have also tested this

protocol with different traffic patterns. LTGR is compared with GPSR instead

of DSR since GPSR is also a geometric routing protocol and has been proved to

outperform DSR in [77]. The GPSR source code was downloaded from its authors’

website [83]. We do not compare LTGR with CLDP and GDSTR since they are

designed for static sensor networks and not suitable for highly dynamic MANETs.

Although there are numerous metrics to evaluate a routing protocol design for

MANETs, we focus mainly on the packet delivery ratio, routing overhead, and

average hop stretch achieved by the routing protocols.

Simulation Setup

We use the same parameters that are listed in Table 6.1 for both LTGR and GPSR

simulations.

Table 6.1: Simulation parameters

Parameter Value

Beacon interval 1s
Transmission range 250m
Position variable size 12 bits
Network size 1000m × 1000m
Simulation time 900s

105

6. Applications and Implementation

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pause time (s)

da

ta
 p

ac
ke

ts

packet number with 20 cbr sources

Greedy
Recovery

Figure 6.4: Percentage of packets in recovery mode vs. pause time.

• Movement model: Nodes move according to the ”random waypoint” model

[74]. We observe that the probability that a packet would be routed in

the recovery mode is inversely proportional to the pause time (Fig. 6.4).

Because both protocols use the greedy algorithm whenever possible, we set

the pause time as 0 to compare their performance in the recovery process.

We use CMU scene generator to generate 80 different pattern files based on 8

different numbers of nodes: 20, 30, 40, 50, 60, 70, 80 and 90 (10 files for each

number respectively). The moving speed of nodes is distributed uniformly

between 1 and 20 m/s. Both protocols are simulated in all the scenarios and

the average values are calculated.

• Traffic pattern: we choose UDP as our transport layer protocol. Randomly

selected 14 nodes generate 20 traffic flows. The transmission rate of every

flow is 1Kbps: one 512bytes packet is generated every 4 seconds. The starting

time instances of the traffic flows are uniformly distributed between 0 and

180 seconds.

106

6. Applications and Implementation

Both LTGR and GPSR are simulated based on 80 various scenarios combining

the above-mentioned traffic pattern and movement models.

Packet Delivery Ratio

Packet delivery ratio is the number of packets received by the destinations divided

by the number of packets originated from the sources in the application layer. It

describes the loss rate of networks and characterizes both the completeness and

the correctness of a routing protocol [74].

20 30 40 50 60 70 80 90
0.75

0.8

0.85

0.9

0.95

1

number of nodes (n) in 1000mX1000m

da

ta
 p

ac
ke

ts
 re

ce
iv

ed
 /

da

ta
 p

ac
ke

ts
 s

en
t

delivery ratio with 20 cbr sources

GPSR
LTGR

Figure 6.5: Packet delivery ratio vs. the number of nodes.

Both protocols can achieve good delivery ratio and there is only a slight dif-

ference between them as shown in Fig. 6.5. This is because both protocols can

guarantee the packet delivery if there is a path between the source and the des-

tination. LTGR performs slightly better than GPSR because they use different

recovery algorithms. In fact, some packets are dropped by LTGR because of ARP

errors that are caused by neighbors’ mobility, while more packets are dropped by

GPSR due to TTL (set to be 128 in both protocols) errors in that the face routing

107

6. Applications and Implementation

may cause infinite routing loops in the dynamic scenarios. Because both LTGR

and GPSR use the greedy algorithm when it works, we can conclude that the lo-

cal tree based routing can achieve a higher success ratio than face routing when

bypassing void areas.

20 30 40 50 60 70 80 90
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

number of nodes (n) in 1000mX1000m

co
nn

ec
tiv

ity
 p

ro
ba

bi
lit

y

connectivity pattern with 20 cbr sources

Connectivity Prob

Figure 6.6: Source-destination connectivity probability vs. the number of nodes.

The delivery ratio increases along with the increase of the node density be-

cause the connectivity probabilities of the source nodes and the destination nodes

increase when the node density increases, as shown in Fig. 6.6.

Average Hop Stretch

The average route hop stretch stands for the route optimization degree of a routing

protocol. By establishing a shorter route, a routing protocol can take advantage of

the network resources more efficiently. In this dissertation, we define hop stretch

as the ratio of the real hop count that a packet passes from the source to the

destination to the hop count of the optimal path. Because both protocols use the

greedy algorithm whenever possible and most packets can reach the destination

108

6. Applications and Implementation

by only using the greedy algorithm as the shown in Fig. 6.4, it is undesirable to

compare the average hop stretch of all transferred packets. In our simulation, we

mark every packet that has been delivered in the recovery mode (via the local

tree algorithm or the face routing algorithm), and only compare the average hop

stretch of these packets.

20 30 40 50 60 70 80 90
1.5

2

2.5

3

3.5

4

4.5

number of nodes (n) in 1000mX1000m

re

al
 ro

ut
e

ho
p

co
un

t /
 #

 o
pt

im
al

 h
op

 c
ou

nt

hop strech with 20 cbr sources

GPSR
LTGR

Figure 6.7: Average hop stretch vs. the number of nodes.

The average hop stretch of LTGR is much better than that of GPSR as shown

in Fig. 6.7. GPSR use the face routing algorithm to recover from the void area.

However, face routing is not efficient because of the following reasons. First, it uses

the right hand rule to choose a face blindly. Second, it has to complete the face if it

chooses a wrong face before changing to the next face. Third, in the planarization

process, some shorter paths would be deleted, e.g. the diagonals of a full connected

rectangle would be deleted to planarize the graph. LTGR is efficient because it

still utilizes the position information to decide the next hop, i.e. the greedy search

uses the to-destination-distance values of each leaf node. Because LTGR does not

use planarization, it also keeps the shortest path to the destination.

109

6. Applications and Implementation

The average hop stretches of both protocols roughly increase as the node density

increases. This is because the number of possible paths to the destination increases

as the node density increases. Thus the probability of selecting a right but not

optimal path increases too.

Protocol Overhead

Routing overhead is another important metric for comparing the routing protocols

because it implies the efficiency of a protocol in terms of bandwidth consumption

and battery power usage. Large routing overhead induces congestion in a low-

bandwidth environment and harms the scalability of the network. Here we define

the routing overhead as the number of bytes sent by all nodes divided by the

number of payload data bytes received by the destinations. The overhead does not

include IEEE 802.11 RTS/CTS packets or ARP packets. However, it does include

the overhead of the IP header because we modify the IP header in LTGR to store

the position information of the destination as what is done in the GPSR. Thus

the IP header in LTGR implementation could be larger than those in other ad-hoc

routing algorithms, such as AODV. The routing overheads of GPSR and LTGR

are shown in Fig. 6.8.

The overheads of both protocols generally decrease as the node density in-

creases. This is because the connectivity probability of the network increases as

the node density increases (as shown in Fig. 6.6). If the network is partitioned,

both algorithms would try all the possible paths before dropping the packets, which

generates more overhead.

There are two features of LTGR that contribute to its better overhead perfor-

mance than that of GPSR. One is that the delivery ratio achieved by LTGR is

higher than that of GPSR. Because GPSR drops extra packets due to TTL errors,

110

6. Applications and Implementation

20 30 40 50 60 70 80 90
2

4

6

8

10

12

14

16

18

20

22

number of nodes (n) in 1000mX1000m

bi

t s
en

t /
 #

 d
at

a
bi

t r
ec

ei
ve

d

overhead with 20 cbr sources

GPSR
LTGR

Figure 6.8: Protocol overhead vs. the number of nodes.

these packets generate extra overhead. The other is that LTGR is more efficient

than GPSR in terms of hop stretch, which means that the local tree based routing

algorithm in LTGR can bypass the void area quicker than the face routing algo-

rithm in GPSR. A longer search process for a correct path requires the packets to

be delivered to more invalid path candidates that cause more overhead.

6.1.5 LTGR Summary

In this section, we have developed a MassWare-supported routing application in

MANETs and proposed a stateless geometric routing protocol LTGR to overcome

the shortcomings of face-routing-based protocols. The MassWare-supported rout-

ing application outperforms static routing applications since it is able to dynam-

ically select an optimal routing protocol based on the availability of geometric

information. As validated in our simulations, LTGR is more efficient than GPSR,

which outperforms traditional routing protocols, in terms of routing overhead and

111

6. Applications and Implementation

hop stretch shown by extensive simulation results, e.g. LTGR can reduce the rout-

ing overhead by 25 ∼ 40% and hop stretch by 30 ∼ 50% comparing to GPSR in

our simulation scenarios.

112

6. Applications and Implementation

6.2 MassWare-Supported Data Compression Ap-

plications in WSNs

Data compression has been an important technique to reduce the redundancy of

the raw data in WSNs. Large volumes of sensor data generated will make the data

transmission between sensor nodes and a remote data acquisition center a very

challenging task, especially given the limited power and bandwidth of currently

available wireless sensors [84]. Data compression facilitates the power conserva-

tion of WSNs since the energy of a sensor node is consumed primarily by wireless

communications [73]. In a dense sensor network, redundancy exists in both data

collected at individual sensor nodes, which is called local redundancy, and data

obtained from correlated sensor nodes, called distributed redundancy (assuming

the sensor network is synchronized [85][86]). Classical data compression techniques

[87], which involve transformation, quantization, and encoding, can reduce the lo-

cal redundancy. Due to the nature of distributed sensor deployment in WSNs, an

appealing technology for reducing distributed redundancy is DSC [88][89]. DSC

refers to the compression of multiple correlated sensor outputs without commu-

nication among the sensor nodes: sensor data are encoded locally according to a

predefined correlation and decoded at the remote sink based on the side informa-

tion.

MassWare can support the data compression applications to dynamically s-

elect optimal compression algorithms based on contextual information (e.g. the

existence of the data correlation). When there is no distributed redundancy (no

data correlation), the applications have to choose local data compression algo-

rithms to ensure the data quality. And when there is distributed redundancy, the

applications can choose distributed data compression algorithms to improve the

113

6. Applications and Implementation

compression ratio. Since sensor nodes are usually randomly deployed in heteroge-

nous environments, it is difficult or impossible to predict the data correlation of

distributed sensor nodes. MassWare then provides a power tool to measure the

data correlation and switch to the optimal algorithm based on the correlation at

runtime.

For the implementation of DSC in WSNs, one of the requirements is that

the correlation is well known by each sensor node and sink. Most existing DSC

algorithms take the correlation in time or space domain that constraints DSC’s

implementation only to process smooth (low frequency) signals. For high frequency

signals, the correlation is hard to be found duo to high frequency noise pollution.

In structural health monitoring applications, the collected raw vibration sample

data consists of both a high frequency component, which is induced by high sample

frequency (50Hz) and noise, and a low frequency component, which is our primary

interest in because it contains the critical information of structure health menace

[90].

We have designed a constructive algorithmic framework that supports DSC

for high- and low-frequency signal compression in WSNs. To separate the low

frequency component from the high frequency component, while keep the time-

domain correlation among distributed sensor data, LSWT is used to preprocess the

original data for signal decomposition and noise reduction. Since LSWT is more

efficient than FFT or DCT and its transformed data keep time domain informa-

tion, it can be naturally combined with DSC to reduce both local and distributed

redundancy. To the best of the author’s knowledge, it is the first time that the

LSWT and DSC have been integrated for vibration data compression.

In this section, we first introduce the proposed LSWT-DSC algorithm. Then,

we present the implementation details of a MassWare-supported data compression

algorithm that uses the LSWT-DSC algorithm. Last, we evaluate the performance

114

6. Applications and Implementation

improvement of the MassWare application by using the new algorithm, which

achieves a higher compression ratio than the classical compression technique [90]

while obtaining the same data quality.

6.2.1 Related Work

The problem of distributed data compression and data aggregation in sensor net-

works has led to new research challenges in networking, information theory and

algorithm [91][92][88]. In [93], Slepian and Wolf have theoretically shown that sep-

arate encoding (with increased complexity at the joint decoder) is as efficient as

joint encoding for lossless compression. Similar results were obtained by Wyner

and Ziv with regard to lossy coding of joint Gaussian sources [94]. Currently, DSC

is an active research area - more than 30 years after Slepian and Wolf laid the the-

oretical foundation [95]. S.S. Pradhan et al. [88] provide a constructive practical

framework based on algebraic trellis codes dubbed as Distributed Source Coding

Using Syndromes (DISCUS). They address the problem of compressing correlated

distributed sources. They also discuss the rate loss from the DISCUS which is

separated into source coding loss and channel coding loss.

Although DSC has been implemented successfully in some sensor network sce-

narios [96][97][98], most of them are based on time or space domain correlation.

These algorithms work well only for low frequency signal. In the application, the

sample frequency is 50Hz, making it difficult to decide the correlation of the sensor

data as traditional DSC compression algorithms due to noise pollution. In this dis-

sertation, we apply DSC in the frequency domain, and the proposed algorithms are

suitable for both high- and low- frequency sensor data. In our work, the original

data are decomposed into the low frequency component and the high frequency

115

6. Applications and Implementation

component by LSWT. Scalar quantization is then utilized to treat each input sym-

bol separately in producing the output to reduce the noise and strengthen the

correlation. This algorithm can achieve a much higher compression ratio than an-

other vibration data compression algorithm [90] with favorable signal-restoration

quality.

There have been some implementations of LSWT in the structure health mon-

itoring system based on WSNs. Both [99] and [90] utilize the LSWT to compress

vibration data. Although their methods successfully reduced the high frequency

information and achieved a good compression performance, e.g. a compression ra-

tio of 1:14 in [90], they only compressed the individual data in every single sensor

node instead of reducing the redundancy of distributed source data. In the pro-

posed algorithms of this section, we not only compress the data generated by the

individual source, but also consider the correlation of data from neighbor nodes.

Experimental results indicate that the proposed algorithms can achieve a higher

compression ratio while attaining the same signal to noise ratio as theirs because

DSC is a lossless algorithm.

6.2.2 Distributed Source Coding and Lifting SchemeWavelet

Transform

Distributed Source Coding

X ′ = H(X|Y)

sinkA B

Y′ = H(Y)
Y = Decode(Y′)

Decode(X′) based on Y

Figure 6.9: Basic structure of distributed source coding.

When DSC is implemented in WSNs, the correlated sensor nodes send their

116

6. Applications and Implementation

encoded data to the base station (sink) for joint decoding. Assume {Xi} and

{Y i} are the sequences of sample values collected in the sensor node A and B

respectively (see Fig. 6.9). In the individual source coding, the entropy H(X)

and H(Y) must be sent respectively to the base station. However, according to

Shannon’s theory, if they are correlated discrete random variables of independent

and identical distribution (i.i.d), only joint entropy H(X, Y) is needed for lossless

compression if they are encoded together. Slepian-Wolf extends Shannon’s theorem

further to that even if X and Y must be separately encoded, a rate H(X, Y) can

also be achieved if decoding of X and Y is done jointly. In WSNs, that means every

individual node can compress its data and reduce the distributed redundancy only

based on its own information. DSC is very suitable for WSNs because it excludes

the data exchange, which would be very expensive for the extremely limited power

and bandwidth, among the correlated neighbor nodes in WSNs. Slepian-Wolf

source coding is lossless. While in practice, Slepian-Wolf coding is often combined

with quantization to provide an approach to address lossy DSC problems.

An Example of Slepian-Wolf Coding [88]

For binary sample value Xi, Y i ∈ {000, 001, . . . , 111}, each of them needs to be

encoded by 3 bits/sample. However, if the correlation is known that the hamming

distance between Xi and Yi is dH ≤ 1, the value space can be divided into four

cosets: Z00 = {000, 111}, Z01 = {001, 110}, Z10 = {010, 101} and Z11 = {100, 011}.

In every coset, the hamming distance between any two values is larger than or equal

to 3. Y is encoded into H(Y) = 3 bits/sample and this original data is sent to the

base station. Additionally, X is encoded as the index of the cosets H(X | Y) = 2

bits/sample and this compressed data is also sent to the base station. In the base

station, Y is first decoded, and then X can be decoded depending on the side

117

6. Applications and Implementation

information Y . For a given Y , there are only four possible choices which belong

to four separate cosets under the condition dH ≤ 1. For example, when Y = 000,

X ∈ {000, 001, 010, 100}. Assume encoded value X ′ = 01 is the index of the coset,

the only answer X = 001 can be decided because the hamming distance between

Y = 000 and 110 (the other value in the coset) is 2 which is larger than max(dH).

Thus the Slepian-Wolf limit of H(X,Y) = H(Y) +H(X | Y) = 3 + 2 = 5 bits is

indeed achieved in this example with lossless decoding.

From the above example, we can generalize the Slepian-Wolf coding to the

case when X and Y are equiprobable 2n bit binary sources. Here n ≥ 3 is a

positive integer. The correlation model between X and Y is again characterized

by dH(X, Y) ≤ 2k − 1. Let m = k + 1, then H(X) = H(Y) = n bits per sample,

H(X | Y) = m bits per sample, and H(X, Y) = n+m bits per pair of samples for

joint encoding.

For the implementation of DSC in WSNs, the choice of parameters n (the

source codebook size) and k (the correlation) is an interesting topic. It could be

automatically adjusted based on the history information. In this dissertation, these

values are generated by statistic analysis.

Wavelet and Lifting Scheme Wavelet Transform

V0

V-1 W-1

V-2 W-2

Figure 6.10: The wavelet decomposition tree with a scale level n = 2.

Because the interesting information of the structure monitoring application lies

118

6. Applications and Implementation

in the low frequency component, it is important to decompose it from the high

frequency component. Wavelet Transform (WT) can analyze the signals in a fre-

quency domain and decompose signals into the low frequency and high frequency

components. DSC works well for the low frequency component, and the high fre-

quency component is quantized to a small value later. WT outperforms traditional

frequency transforms, i.e. FFT and DCT, because it does not need to know the

global time domain information and can detect both the low frequency and the

high frequency information automatically. Another important advantage of WT

is that it can analyze the signal in multi-scales - the low frequency component

can be decomposed again (Fig. 6.10), which provides us the potential to achieve

a tradeoff between the data quality and compression ratio. The computational

complexity of Mallat WT is O(n) and lower than that of FFT and DCT, which

is O(n lg n). Therefore, Mallat WT is also called fast wavelet transform. All of

these characteristics indicate that WT is suitable for data compression and DSC

naturally in WSNs.

LSWT is the second generation WT which is extended from Mallat algorith-

m. LSWT replaces the translating and dilating operations of conventional WT

with splitting, prediction (dual lifting) and updating (primal lifting) operations.

Compared to the first generation WT, LSWT has three main advantages when

implemented in sensor networks [100][101]. First, it is faster than the Mallat algo-

rithm (although the computational complexity is still O(n)). Second, unlike the

first generation WT, its inverse transform is easy to find and implement. Last,

LSWT provides integer to integer mapping which is favorable in WSNs because

the sensed data is a 10 bit integer.

In the simulation, we have tested two kinds of popular wavelets: CDF(1,1)

(Haar wavelet) and Daubechies D4 wavelet [102]. In the version of Daubechies D4

transform, LSWT consists of splitting, two updates, prediction, and normalization.

119

6. Applications and Implementation

Splitting refers to splitting the original data set λj+1 into the even part λj and the

odd part γj. The first update is to use the odd part to update the even part.

After that, the even part is used to predict the odd part, followed by the update

process again. The last step is normalization. The sequence of the steps is listed

as equations (6.2) ∼ (6.5):

Update 1:

λj = λj +
√
3γj (6.2)

Predict:

γj = γj −
√
3

4
λj +

√
3− 2

4
λj−1 (6.3)

Update 2:

λj = λj − γj+1 (6.4)

Normalize:

λj =

√
3− 1√
2

λj and γj =

√
3 + 1√
2

γj (6.5)

Assume that the length of data set λj+1 is 2n. To handle the edge problem,

λ−1 and γn is replaced by λn−1 and γ0 respectively.

6.2.3 System Design

Simulation System Structure

In the simulation, we analyze the performance of our proposed algorithms and

compare them with the algorithms in [90] based on the same sample data. The

data are collected using Micaz nodes with 128K program flash memory and 10bit

analog to digital converter by a civil engineering research group. The sensor notes

are fixed in a five layer civil infrastructure model [90] and the distance between

each layer is 15cm. The first layer is attached to a motherboard which is driven by

120

6. Applications and Implementation

a vibration exciter. All the upper layers oscillate along with the lower layers. One

sensor node is put in each layer and acceleration data is collected at a sample fre-

quency 50Hz. Related research [99] has evaluated the accuracy of the ADXL202E

onboard accelerometer for structure health monitoring and its modifications have

been proposed. All the data collected are saved in the RAM. After collecting 4096

samples, the data will be compressed in the sensor node and sent to the base s-

tation which is connected to a PC. The data compression process is described in

details in the next section.

Compression Process

To take advantage of DSC, the node in the first layer of the structure sends the

original (self compressed) data as side information to the base station, and each

other node sends the DSC compressed data.

Channel codebook

Source codebook

Sampling Value

Scalar Quantization

Source codewords

channel codewords

Wavelet Transform

Figure 6.11: The compression process in sensor nodes.

The compress process is illustrated in Figure 6.11.

• The first step is LSWT. LSWT can be repeated by iteration on the λj,

creating a multi-level or multi-resolution decomposition.

121

6. Applications and Implementation

• The second step is quantization. Scalar quantization is used in the applica-

tion to reduce the individual redundancy since it has been widely studied and

successfully implemented in data compression combined with WT. After the

quantization, most of the high frequency data value are set to zero. A mod-

ified unary coding algorithm is used to encode the high frequency data set.

That is: only the nonzero data set {xi} are encoded. If xi > 0, it is encoded

with 2 × xibits 1 and 10bits relative position information. If xi < 0, it is

encoded with 2xi − 1bits 1 and 10bits relative position information. For the

low frequency component, it is encoded by DSC described in the following

steps.

• The third step is to map the coefficient to the source codebook. The codebook

area is from 0 to 2n−1. n is decided by the vibration character and statistical

analysis. After the mapping, every data value is encoded into n bits per

sample which represents H(Y). We rename the encoded data as base data.

If the data are collected in the first layer sensor node, the compression process

will be ended here and the base data will be sent to the base station, otherwise

it continues to the next step.

• The fourth step is DSC. The data set is partitioned into different cosets as

the channel codebook, and the original data are replaced with the channel

codeword, which is the coset index and represents H(X | Y). We rename

these kinds of data as fully compressed data.

After the base station receives all the collected data, it will decompress all the

data step by step. The decompression process includes:

• First, the base station decompresses base data received from first layer sensor

node. Because these data representH(Y), they can be decompressed without

122

6. Applications and Implementation

any side information.

• Then, the second layer data are decompressed based on the decompressed

first layer data as side information.

• After that, the decompressed data of the second layer node can be utilized

to estimate and decompress the data from the third layer. This process is

repeated till all the data are decompressed.

The proposed compression algorithms are lossy ones. The distortion includes

quantization error conduced by scalar quantization and estimation error conduced

by the channel coding. To achieve tolerable distortion ratios, we can adjust the

quantization parameter and correlation parameter k.

Data Format and System Topology Extension

(1)Bits (8) (16)

type lenbase_ID payload

Figure 6.12: The compressed data format.

The encoded data structure in the application is illustrated in Fig. 6.12:

Type field distinguishes the base data (0) from fully compressed data (1). If

type field is 0, base ID field is its own node ID. Otherwise base ID is the ID of its

correlated node whose data is used as side information. Len field is the length of

payload data.

For the implementation of the proposed algorithms to large scenarios of WSNs,

we should also consider the topology management for DSC. In [103], four DSC

encoding schemes are provided, with the compression rate and loss factor discussed

separately. The cluster head, which sends the original data, could be selected

123

6. Applications and Implementation

dynamically to balance the power consumption. The topology-controlled data

compression algorithms will also be part of our future research topics.

6.2.4 MassWare-Supported Data Compression Application

We have briefly discussed the implementation of the MassWare-supported data

compression application in 5. In this section, we will discuss more details about

the application implementation. A sensor data compression algorithm normally

contains three computing components (masslets): Transformation, Quantization,

and Coding. In this example, we have implemented LSWT as the transformation

masslet, scalar quantization as the quantization masslet, and two coding masslets:

DSC and Modified Unary coding to reduce distributed and local redundancy sepa-

rately. There is only one masstool in the application: Neighboring, which measures

the number of neighbor nodes and maps the number to node density.

Component Implementation

As discussed in Chapter 5, there are five masslets: Sensing, LSWT, Quantz, DSC,

and Unary; and one masstool: Neighboring in the data compression application.

We only present the DSC masslet implementation as an example. The rest of

component implementation can be found on the MARCHES website [70].

To develop a MassWare component, developers need to specify required inter-

faces in the source code using the keywords massware and interface, as shown in

Fig. 6.13a. the source code is then be compiled with the Component Compiler

to create a SOS-supported binary module and a human-readable file (meta-file),

which contains the component meta-information as shown in Fig. 6.13b. Through

the meta-file, users can get the component name, ID, alias, and its parameter

interfaces and communication interfaces. Therefore, generic sensor services can

124

6. Applications and Implementation

massware interface MSG_SET_CORRELATION
{
int ID = MOD_MSG_START+102
InterfType iType = Parameter
ActionType aType = Set
ValueType vType = uint8

}
massware interface MSG_FORWARD_INPUT
{
int ID = MOD_MSG_START+100
InterfType iType = Communication
ActionType aType = Input
MsgType mType = MassWareInputMsg

}
massware interface MSG_FORWARD_OUTPUT
{
int ID = MOD_MSG_START+101
InterfType iType = Communication
ActionType aType = Output
MsgType mType = MassWareOutputMsg

}
massware interface MSG_INVERSE_INPUT
{
int ID = MOD_MSG_START+103
InterfType iType = Communication
ActionType aType = Input
MsgType mType = MassWareInputMsg

}
massware interface MSG_INVERSE_OUTPUT
{
int ID = MOD_MSG_START+104
InterfType iType = Communication
ActionType aType = Output
MsgType mType = MassWareOutputMsg

}

(a) DSC interfaces

<component cid="2003">
<name> DSC_MOD_ID </name>
<comId> APP_MOD_MIN_PID + 46 </comId>
<alias> DSC </alias>
<interface type=“Paramter”>

<name> MSG_SET_CORRELATION </name>
<intfId> MOD_MSG_START + 102 </paramId>
<actionType> Set </actionType>
<valueType> Integer </valueType>

</interface>
<interface type=“Communication”>

<name> MSG_FORWARD_INPUT </name>
<intfId> MOD_MSG_START + 100 </intfId>
<actionType> Input </actionType>
<msgType> MassWareInputMsg </msgType>

</interface>
<interface type=“Communication”>

<name> MSG_FORWARD_OUTPUT </name>
<intfId> MOD_MSG_START + 101 </intfId>
<actionType> Output </actionType>
<msgType> MassWareOutputMsg </msgType>

</interface>
<interface type=“Communication”>

<name> MSG_INVERSE_INPUT </name>
<intfId> MOD_MSG_START + 103 </intfId>
<actionType> Input </actionType>
<msgType> MassWareInputMsg </msgType>

</interface>
<interface type=“Communication”>

<name> MSG_INVERSE_OUTPUT </name>
<intfId> MOD_MSG_START + 104 </intfId>
<actionType> Output </actionType>
<msgType> MassWareOutputMsg </msgType>

</interface>
</component>

(b) DSC metafile

Figure 6.13: A DSC masslet example.

be implemented as standard MassWare components and easily shared by different

WSN applications. Different components can be identified by the decision engine

according to their IDs.

Script file Implementation

After all components are prepared, the second step is to develop a script file that

declares the required components and adaptation rules using the XML language.

In this example, one possible adaptation policy is: when a node has five or more

125

6. Applications and Implementation

<DecisionEngine xmlns:xsi=... >
<MassTools> … </MassTools>
<Masslets>

<component cid= "2003" >
<name> DSC_MOD_ID </name>
<comId> APP_MOD_MIN_PID + 46 </comId>
<alias> DSC </alias>
<interface type= “Parameter" >

<name> MSG_SET_CORRELATION </name>
<interfId> MOD_MSG_START + 102</interfId>
<value> 1 </value>

</interface>
<interface type= “Communication" >

<name> MSG_FORWARD_INPUT </name>
<interfId> MOD_MSG_START + 100</interfId>
<actiontype> Input </actiontype>

</interface>
<interface type= “Communication" >

<name> MSG_FORWARD_OUTPUT </name>
<interfId> MOD_MSG_START + 101</interfId>
<actiontype> Output </actiontype>

</interface>
<interface type= “Communication" >

<name> MSG_INVERSE_INPUT </name>
<interfId> MOD_MSG_START + 100</interfId>
<actiontype> Input </actiontype>

</interface>
<interface type= “Communication" >

<name> MSG_INVERSE_OUTPUT </name>
<interfId> MOD_MSG_START + 101</interfId>
<actiontype> Output </actiontype>

</interface>
</component>
...

</Masslets>

<AdaptationPolicies>
<policy pid= "001" >

<detector did= "001" >
<event>

<otype> GE </otype>
<lhs><expr> NEIGHBER.NUMBER</expr></lhs>
<rhs><expr> 5 </expr></rhs>

</event>
</detector>

<Actuator aid= "001" >
<atype> ProActive </atype>
<SetParam>

DSC.MSG_SET_CORRELATION = 1;
</SetParam>
<SetArch>

SENSOR.MSG_OUTPUT_DATA->LSWT.MSG_FORWARD_INPUT;
LSWT.MSG_FORWARD_OUTPUT->QUAN.MSG_FORWARD_INPUT;
QUAN.MSG_FORWARD_OUTPUT->DSC.MSG_FORWARD_INPUT;
DSC.MSG_FORWARD_OUTPUT->MASSWARE.OUT(BCAST_ADDR);

</SetArch>
</Actuator>
<Actuator aid= "101" >

<atype> ReActive </atype>
<SetArch>

MASSWARE.IN->DSC.MSG_INVERSE_INPUT;
DSC.MSG_INVERSE_OUTPUT->QUAN.MSG_INVERSE_INPUT;
QUAN.MSG_INVERSE_OUTPUT->LSWT.MSG_INVERSE_INPUT;

</SetArch>
</Actuator>

</policy>
...

</AdaptationPolicies>

</DecisionEngine>

Figure 6.14: The data compression application script file example.

neighbors, which means there exists distributed redundancy, DSC is selected to

reduce distributed redundancy and the correlation value is set 1. According to

the application requirement, users can change or add more policies. For example,

when a node has more neighbors, the correlation value can be increased; on the

other hand, if the number of neighbors is less than 5, unary coding instead of DSC

should be selected to reduce local data redundancy only. The script file is compiled

by the MassWare compiler to create the decision engine component.

The third step is to load all compiled components to sensor nodes with SOS.

Masslets and masstools need to be loaded before the decision engine component.

After the decision engine is loaded, it will configure the components to start the

126

6. Applications and Implementation

application.

6.2.5 Experiments and Simulations

MassWare can optimize application performance by dynamically choosing suit-

able software components or adjusting component parameters in the current con-

text. The performance of a sensor data compression application stands for its

compression ratio, restored data performance (distortion ratio) and computational

complexity. In this section, we will analyze these characters of the proposed algo-

rithms and compare them with other peer algorithms in various scenarios so that

application developers can take advantage of their merits to meet the application

requirements in different scenarios when designing adaptation policies.

The system structure of the experiment is depicted in the previous section. The

vibration exciter generates the vibration and drives the motherboard which con-

nects the five-layered structure. The basic methodology used to measure the prop-

erties of the proposed compression algorithms is to change the vibration frequency

of the exciter. However, because the highest sample frequency of the accelerom-

eter (ADXL202E) in the sensor board is 60Hz, we can’t detect higher frequency

information. To justify the proposed WT-DSC based algorithms, Different White

Gaussian Noises, varying in noise degree, are added to the collected sample val-

ue. We have compared the results of the proposed algorithms with other existing

compression algorithms [90]. We name the proposed algorithms Haar-DSC (Haar

wavelet based DSC) and Daub-DSC (Daubechies4 wavelet based DSC) and rename

the algorithms in [90] as Haar-MUC and Daub-MUC.

The experiments also compare the compression properties based on different

wavelets and DSC parameters. The results are analyzed for each experiment. In

127

6. Applications and Implementation

order to enable a direct, fair comparison between different algorithms, we have im-

plemented each selected algorithm on 20 sets of raw data sampled from 20 scenarios

with disparate vibration frequencies. Because these algorithms are challenged in

the same identical condition, their performance can be compared directly.

In the experiments, we only measure the performance and results of the com-

pression algorithms, rather than simulate the wireless sensor network topology.

We have implemented the experimental code [102] using MassWare structure.

Compression Ratio

Figure 6.15: Compression ratio vs. noise degree.

Compression ratio is one of most important criterion for a compression algo-

rithm. Fig. 6.15 highlights the relative compression ratio of the three compression

algorithms as the noise degree increases. From the results, we can see that for

the collected original signal without high frequency noise, Haar-DSC can achieve

128

6. Applications and Implementation

a higher compression ratio than that of Daub-DSC. However, as the noise de-

gree increases, the compression ratio of Daub-DSC increases rapidly while that

of Haar-DSC decreases. Haar WT performs an average and difference on each

pair of neighbor values. For the original signal without noise, the high frequency

component that stands for the difference consists of mostly zeros, and the low fre-

quency component that stands for the average is smoother than that of Daubechies

wavelet transformed signal, which picks up some neighbor nodes for high pass and

low pass filters, because there is an overlap between iterations in the transform

step, and the overlap makes the transformed data not as smooth as that of Haar

WT. The smoother the signal, the higher the correlation, allowing Haar-DSC to

achieve a better compression ratio than Daub-DSC. However, as the noise power

increase, the high frequency component in the Haar-DSC conserved more high fre-

quency information which can not be filtered and it makes Modified Unary Coding

inefficient.

DSC based compression algorithms, which reduce both the local and distribut-

ed redundancy, always outperform MUC based algorithms. Haar-DSC achieves

almost the same compression ratio with the Haar-MUC when the noise ratio is

larger than 0.5dBW . The reason is that the high frequency component contains

large values under this condition, and most of the compressed data bits come from

this part which is encoded by MUC in both algorithms.

Compression Performance

The proposed compression algorithms in this dissertation are lossy algorithms, and

the information is lost for quantization and estimation error. The compression

performance is evaluated using three means: Peak Signal to Noise Ratio (PSNR),

time domain analysis and low frequency domain analysis. PSNR of a reconstructed

129

6. Applications and Implementation

signal x∗
i compared to the original signal xi is defined as:

PSNR = 20 log10

(xpeak

RMSE

)
dB (6.6)

where xpeak = maxi | xi | and the Root Mean Square Error:

RMSE =

√∑n
i=0

(xi − x∗
i)

2

n

where n is the length of the sample data set.

Figure 6.16: The peak signal to noise ratio vs. noise degree.

PSNR is related to the properties of (bi)orthogonal wavelets [100]: neglecting

the wavelet coefficients with the smallest magnitudes is a good compression ap-

proach if one wants to keep a high PSNR. Fig. 6.16 shows that the proposed DSC

based compression algorithms can always get the same compression quality as the

130

6. Applications and Implementation

MUC based algorithms. Because MUC is a lossless entropy coding algorithm, it

also justifies the estimation error is negligible in the proposed algorithms.

(a) Noise: 0dBW (b) Noise: 0.5dBW (c) Noise: 5dBW

Figure 6.17: Comparisons between the original and the restored signals.

(a) Noise: 0dBW (b) Noise: 0.5dBW (c) Noise: 5dBW

Figure 6.18: The frequency domain analysis.

To better illustrate the performance of LSWT based algorithms and compare

them with other algorithms, the original and reconstructed signals in time and

frequency domains are shown in Fig. 6.17 and Fig. 6.18. Both the Haar-DSC

algorithm and Daub-DSC algorithm can achieve favorable performance in the low

noise situation. However, when the noise increases slightly, the effect of Haar-DSC

is weakened quickly, while Daub-DSC can still achieve fairish effect for the favorable

131

6. Applications and Implementation

characters of Daubechies wavelet. In structure health monitoring applications, low

frequency information of the sample signal is the important part. As the noise

increases, the Haar-DSC algorithm can’t restore the original low frequency signal,

while Daub-DSC algorithm can still restore the original signal when the noise power

increases to 5dBW . The results validate the feasibility of the proposed algorithms

in structure health monitoring applications. It is suitable for vibration and other

high frequency correlated data compression.

Computational Complexity

Computational complexity is another important criterion when evaluating the com-

pression algorithm, especially in the WSNs with limited resources. The compres-

sion process consists of three steps in the proposed algorithms: LSWT, scalar

quantization and DSC or MUC. The computational complexity can be expressed

as:

C(n) = CLSWT + Cquan + p× CDSC + (1− p)× CMUC (6.7)

where p = 1/2n and n is the scale level of LSWT.

As analyzed in Section 6.2.2, the complexity of LSWT (CLSWT) is O(n). How-

ever, the complexity of Haar LSWT is less than Daubechies D4 LSWT because

Haar LSWT only has two steps and counts two filter coefficients, while Daubechies

D4 has four steps and counts four filter coefficients.

The computation of the scalar quantization matrix is nontrivial. However,

based on the experiments, we found that sample data from the same layer observe

the same curve model in each experiment. To improve the efficiency of the al-

gorithms, the quantization matrix is only calculated once, and the same matrix

132

6. Applications and Implementation

Table 6.2: Computation time (s) for compressing 4096 sample values

Algorithm
Wavelet

Quantization
Source Total

transform coding Time

Haar-DSC 0.0102 0.0070 0.0629 0.0801
Haar-MUC 0.0102 0.0071 0.0611 0.0783
Daub-DSC 0.0450 0.0070 0.1196 0.1717
Daub-MUC 0.0451 0.0070 0.0447 0.0968

is used in all the later quantization processes, so that the quantization complex-

ity (Cquan) is reduced to O(n). Results show it does not affect the compression

performance under this condition.

The computational complexity of both DSC (CDSC) and MUC (CMUC) is O(n),

while DSC is still faster than MUC because the coding complexity of DSC for every

symbol is 1, compared to the complexity 2× | xi | of MUC for symbol xi. Overall,

the total computational complexity of the proposed algorithms is still O(n).

From the above analysis, we can get the total complexity:

C(n) ∈ O(n) (6.8)

The running time of all the algorithms is listed in table 6.2. All the data are

measured in Micaz platform associated with an ADXL202E onboard accelerometer.

As the experiments and analysis result demonstrated previously, we can see that

the proposed LSWT and DSC based algorithms outperform their peer algorithms

on compression ratio with the same data quality and similar computation over-

head. Comparing Haar-Wavelet and Daubechies-Wavelet, Haar-Wavelet is more

suitable for low-noise conditions because it is simpler and can also achieve good

performance. In high-noise conditions, Daubechies-Wavelet, which outperforms

Haar-Wavelet significantly, is the better choice.

133

6. Applications and Implementation

6.2.6 LSWT-DSC Summary

In this section, we have designed and implemented a MassWare-supported sensor

data compression application and proposed a new data compression algorithm

that integrates LSWT and DSC for civil infrastructure health monitoring. The

MassWare-supported application outperforms static data compression applications

since it is able to dynamically select optimal data compression algorithms based on

distributed data correlation. To help developers effectively design good adaptation

policies, we have analyzed and compared the characters of a set of masslets and

their combinations based on compression ratio, data quality, and computational

complexity. Therefore, the application can choose suitable software components

or change component parameters based on real-time contexts. Experiments also

demonstrate that the proposed algorithms can achieve 1:27 to 1:80 compression

ratios without weakening the data quality when data redundancy exists in dense

WSNs.

134

Chapter 7

Conclusions

135

7. Conclusions

In this dissertation, we have designed and implemented a context-aware reflec-

tive middleware (CARM) framework, called MassWare (Mobile Ad-hoc and Sensor

Systems middeWare), to improve the reconfiguration efficiency of existing CAR-

M frameworks in MANETs and WSNs. MassWare has two separate middleware

frameworks: MassWare-MANET for mobile ad-hoc networks and MassWare-WSN

for wireless sensor networks.

MassWare-MANET solves the critical issue of the long reconfiguration time of

context-aware reflective middleware to satisfy the stringent real-time requirement

of DRE systems. MassWare offers an original structure of multiple component

chains to reduce local behavior change time and a novel synchronization protocol

using active messages to reduce distributed behavior synchronization time. The key

idea behind the protocol is that each application-layer data packet takes an active

message header that indexes the correct component-chain of the packet receiver to

process the data payload. Therefore, the distributed behavior synchronization time

is dramatically reduced by eliminating the operation suspension time and buffer

clearance time. To effectively support the new structure and protocol, MassWare-

MANET is designed with a layered architecture and provides both component-

level and system-level reflection to incorporate standard components, a hierarchical

event notification model to evaluate contexts, and a lightweight XML-based script

language to describe and manage adaptation policies.

We have established a generic analytical model for fair comparisons of the re-

configuration efficiency of MassWare and peer CARM frameworks: MobiPADS and

CARISMA. Besides a theoretical analysis, the system performance of MassWare

has been evaluated using benchmark applications. The complete implementation

of MassWare and the benchmark applications allows us to test the feasibility and

efficiency of MassWare and gain insights into the DRE system design supported

by it. The theoretical and experimental results demonstrate that

136

7. Conclusions

• the reconfiguration time in traditional adaptive and reflective middleware is

reduced by several magnitudes from seconds to hundreds of microseconds,

• the extra costs introduced by the multi-actuator architecture in MassWare

are extremely low, and

• the robustness and scalability are improved as well in MassWare when com-

pared with traditional middleware.

Based on MassWare, mission-critical DRE systems, like intelligent vehicle sys-

tems and unmanned aircraft systems, will be able to take advantage of future

advances in CARM software in a dependable, timely, and cost effective manner.

MassWare-WSN is the first context-aware reflective middleware framework ,to

the best of the author’s knowledge, which has been implemented in single sensor

nodes to support adaptive WSN applications. The overall objective of MassWare-

WSN is to improve the reusability and flexibility of WSN applications, which has

been achieved by a new component model and a reflective middleware framework.

To be lightweight to fit resource-limited sensor nodes while flexible enough to

support generic adaptive WSN applications, MassWare-WSN supports software

components for efficient reconfiguration and utilizes the active-message-based syn-

chronization protocol to synchronize the behaviors among the base station and

reconfigured sensor nodes. It also uses the hierarchical event model to monitor

application-interested contexts. MassWare-WSN offers other benefits, including:

• simplifying the task of developing and managing WSN applications;

• facilitating energy-efficient WSN reprogramming;

• providing an efficient synchronization protocol; and

• monitoring node status at runtime.

137

7. Conclusions

MassWare-WSN has been implemented in MicaZ sensor nodes and evaluated

based on benchmark applications. Results and analysis demonstrate that

• the extra costs introduced by the middleware, like memory consumption and

configuration time, are very low with respect to the hardware resources of

sensor nodes; and

• the middleware is stable for complex WSN applications.

MassWare-WSN can significantly improve the reusability and reduce the re-

programming cost of WSN applications since an application can be separated into

function-independent software components. It also improves the flexibility and

adaptability of WSN applications in mobile environments.

MassWare offers an unified, hardware-independent application development

model for both MANETs and WSNs to efficiently develop context-aware reflec-

tive applications. Application developers only need to provide a standard script

file in XML syntax to declare application-required functional components, mea-

surement tool components, and adaptation policies. Massware then uses the script

file to construct the application, measure application contextual information, adapt

the application behavior to the contexts according to the adaptation policies, and

synchronize with peer middleware agents or the base station.

To prove the usability and justify the performance of the proposed middle-

ware framework in real applications, we have implemented MassWare-supported

applications in MANET and WSN environments and designed two new algorithms:

Local Tree based Geometric Routing (LTGR) and Lifting Scheme Wavelet Transfer

and Distributed Source Coding (LSWT-DSC) data compression.

When geometric information is available, a MassWare-supported MANET ap-

plication can dynamically switch to use LTGR protocol for better performance.

LTGR uses a local tree based search algorithm to overcome the shortcomings of

138

7. Conclusions

the face routing based protocols. Compared to GPSR, LTGR is more efficient in

terms of routing overhead and hop stretch shown by extensive simulation results,

e.g. LTGR can reduce the routing overhead by 25 ∼ 40% and hop stretch by

30 ∼ 50% comparing to GPSR in our simulation scenarios.

In WSNs, a MassWare-supported sensor data compression application can dy-

namically switch to use LSWT-DSC algorithm for improved compression ratio

when the distributed redundancy exists in dense areas (detected by measuring the

node density via measurement tools). The LSWT-DSC algorithm integrates L-

SWT and DSC and reduces both local and distributed sensor data redundancy,

which can achieve 1:27 to 1:80 compression ratios without weakening data quali-

ty. The nodes deployed in sparse areas can still use traditional data compression

algorithm to reduce local data redundancy only to ensure the data quality.

Although the experimental results are encouraging, there are unexplored issues

of MassWare for the future work.

• MassWare extension for stateful applications: The proposed synchronization

protocol can be combined with state-machine and model based reconfigura-

tion techniques to improve the reconfiguration efficiency of a state applica-

tion, like the GSM-Oriented coding application [65].

• MassWare component model: MassWare supports COM components and

.NET assemblies so far. It may be useful to extend the component manager to

support more component models and components like CORBA components

and JAVA Beans etc.

• MassWare deployment in a wide range of sensor platforms: MassWare-WSN

is built on top of SOS, which is supported by limited platforms. Migrating

the SOS core to other platforms is desired.

139

7. Conclusions

• Comprehensive evaluation of MassWare-WSN: Since sensor nodes are pow-

er constrained, energy consumption is an important metric of the software

based on sensor networks. Thus future experiments about energy efficiency

of MassWare are expected.

140

Bibliography

[1] D.C. Schmidt and S. Huston. C++ Network Programming: Resolving Com-

plexity with ACE and Patterns. Addison-Wesley, Reading, MA, 2001. ISBN:

0201604647.

[2] Q.H. Mahmoud. Middleware for Communications. Wiley, 2004. ISBN:

9780470862063.

[3] R. Ben-Natan. CORBA: A Guide to Common Object Request Broker Archi-

tecture. Mcgraw-Hill Inc., 1995. ISBN: 0070054274.

[4] T. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide,

1998. ISBN: 0764580434.

[5] T.L. Thai. Learning DCOM. O’Reilly, 1999. ISBN: 1565925815.

[6] S.B. Gordon, C. Geoff, and A. Anders. The design and implementation of

open orb 2. IEEE Distributed Systems Online, 2(6), 2001.

[7] K. Fabio, R. Manuel, and L. Ping. Monitoring, security, and dynamic con-

figuration with the dynamictao reflective orb. In Proceedings of IFIP Inter-

national Conference on Distributed Systems Platforms and Open Distributed

Processing (Middleware’00), Aarbus, Denmark, 2000.

141

BIBLIOGRAPHY

[8] L. Capra, W. Emmerich, and C. Mascolo. Carisma: Context-aware reflective

middleware system for mobile applications. IEEE Transaction on Software

Engineering, 29(10):929–945, 2003.

[9] E.P. Kasten and P.K. McKinley. Adaptive java: Refractive and transmuta-

tive support for adaptive software. Technical Report MSU-CSE-01-30, 2001.

[10] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen, J. Lorenzo,

A. Mamelli, and U. Scholz. Music: Middleware support for self-adaptation

in ubiquitous and service-oriented environments. Software Engineering for

Self-Adaptive Systems, LNCS 5525:164–182, 2009.

[11] MADAM Consortium. Specification of the madam core architecture and

middleware services. Final report within the 6th Framework Programme,

2006. Priority 2.3.2.3.

[12] T. Abdelzaher, C.D. Gill, R. Rajkumar, and J.A. Stankovic. Distributed real-

time and embedded systems research in the context of geni. NSF Workshop

on Distributed Real-time and Embedded Systems, 2006.

[13] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Context-aware

middleware for resource management in the wireless internet. IEEE Trans-

action ON Software Engineering, 23(12), December 2003.

[14] D.C. Schmidt. Adaptive and reflective middleware for distributed real-time

and embedded systems. Lecture Notes in Computer Science, 2491:282–293,

2002.

[15] J.P. Loyall. Emerging trends in adaptive middleware and its application to

distributed real-time embedded systems. Lecture Notes in Computer Science,

2855:20–34, 2003.

142

BIBLIOGRAPHY

[16] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: a survey. Computer Networks, 38(4):393–422, March 2002.

[17] S. Hadim and N. Mohamed. Middleware for wireless sensor networks: A

survey. In Proceedings of The First International Conference on Communi-

cation System Software and Middleware (COMSWARE 2006), New Delhi,

India, January 2006.

[18] Q. Wang, Y. Zhu, and L. Cheng. Reprogramming wireless sensor networks:

challenges and approaches. IEEE Network, 20(3):48–55, May/June 2006.

[19] L. Parolini, N. Tolia, B. Sinopoli, and B.H. Krogh. A cyber-physical systems

approach to energy management in data centers. In Proceedings of the 1st

ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS

’10), New York, NY, 2010.

[20] K. Lorincz, D.J. Malan, T.R.F. Fulford-Jones, A. Nawoj, A. Clavel,

V. Shnayder, G. Mainland, M. Welsh, and S. Moulton. Sensor networks for

emergency response: Challenges and opportunities. IEEE Pervasive Com-

puting, 3(4):16–23, October-December 2004. doi:10.1109/MPRV.2004.18.

[21] R. Ray. Vehicle infrastructure integration program status. http://www-

nrd.nhtsa.dot.gov/pdf/nrd-01/NRDmtgs/2005Honda/Resendes VII.pdf, Ac-

cessed on November 15 2008.

[22] M. Gene. Cicas program overview. In TRB VII / CICAS Workshop, January

2008.

[23] K. Jiro. Advanced cruise-assist highway system (ahs) technology: System de-

sign and proving test facility design. In Proceedings of the 6th AHS Research

Seminar, June 2002.

143

BIBLIOGRAPHY

[24] A. Yasuyulu. Driving safety support system (dsss) in the aging society. In

Proceedings of Intelligent Transportation Systems, Tokyo, Japan, 1999.

[25] CAR 2 CAR Communication Consortium. Online document.

http://www.car-2-car.org/fileadmin/downloads/C2C-CC manifesto v1.1.pdf,

Accessed on November 15 2008.

[26] A. T.C. Chan and S.N. Chuang. Mobipads: A reflective middleware for

context-aware mobile computing. IEEE Transaction on Software Engineer-

ing, 29(12), 2003.

[27] J. Hu and S. Gorappa. A lightweight component middleware framework for

composing distributed, real-time, embedded systems with real-time java. In

Proceedings ACM/IFIP/ USENIX 8th International Middleware Conference

(Middleware’07), volume 4834, pages 41–59, Newport Beach, CA, November

2007.

[28] D.C. Schmidt, R. Schantz, M. Masters, J. Cross, D. Sharp, and L. DiPalma.

Towards adaptive and reflective middleware for network centric combat sys-

tems. CrossTalk C The Journal of Defense Software Engineering, November

2001.

[29] C.C. Han, R. Kumar, R. Shea, E. Kohler, and M.B. Srivastava. A dynamic

operating system for sensor nodes. In Proceedings of the 3rd Internation-

al Conference on Mobile Systems, Applications, and Services (MobiSys’05),

pages 163–176, Seattle, WA, June 2005.

[30] D.S. Ruiz. Corba and corba component model. http://ditec.um.es/ dsevil-

la/ccm/, June 2008.

144

BIBLIOGRAPHY

[31] B. Uwe, B. Aurelie, P. Florentin, and S. Etienne. Distributed real-time com-

puting for microcontrollers - the osa+ approach. In Proceedings of the Fifth

IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing, page 169, Crystal City, VA, April/May 2002.

[32] D.C. Schmidt, D.L. Levine, and S. Mungee. The design of the tao real-time

object request broker. Computer Communications, 21(4):294–324, 1998.

[33] K. Raymond, D.C. Schmidt, and O. Carlos. Towards highly configurable

real-time object request brokers. In Proceedings of the Fifth IEEE Inter-

national Symposium on Object-Oriented Real-Time Distributed Computing

(ISORC’02), pages 437–447, Crystal City, VA, April/May 2002.

[34] V. Subramonian, G. Xing, C. Gill, and R. Cytron. The design and perfor-

mance of special purpose middleware: A sensor networks case study. Tech-

nical Report WUCSE-2003-6, 2003.

[35] OSEK Comitee. Corba and corba component model. http://www.osek-

vdx.org/, Accessed on August 2010.

[36] B. Garbinato, R. Guerraoui, and K.R. Mazouni. Distributed programming

in garf. In Proceedings of the ECOOP Workshop on Object-Based Distributed

Programming, pages 225–239, Kaiserslautern, Germany, 1995.

[37] J. McAffer. Meta-level programming with coda. In Proceedings of the Euro-

pean Conference on Object-Oriented Programming (ECOOP), Aarbus, Den-

mark, 1993.

145

BIBLIOGRAPHY

[38] G.S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa,

H. Duran-Limon, T. Fitzpatrick, R. Moreira L. Johnston, N. Parlavantza-

s, and K. Saikoski. The design and implementation of open orb 2. IEEE

Distributed Systems Online, 2(6), 2001.

[39] M.A. Miguel. Qos-aware component frameworks. In the 10th International

Workshop on Quality of Service (IWQoS2002), Miami Beach, FL, 2002.

[40] F. Kon, F. Costa, G. Blair, and R.H. Campbell. The case for reflective

middleware. Communications of the ACM, 45(6):33–38, 2002.

[41] N. Wang, D.C. Schmidt, M. Kircher, and K. Parameswaran. Toward-

s a reflective middleware framework for qos-enabled corba componen-

t model applications. IEEE Distributed Systems Online, 2(5), 2001.

http://dsonline.computer.org/0105/features/wan0105 print.htm.

[42] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingti-

er, and J. Irwin. Aspect-oriented programming. In Proceedings of the 11th

European Conference on Object-Oriented Programming, Jyvaskyla, Finland,

1997.

[43] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G. Gris-

wold. An overview of aspectj. Lecture Notes in Computer Science, 2072:327–

355, 2001.

[44] N. Wang, M. Kircher, and D.C. Schmidt. Towards an adaptive and reflective

middleware framework for qos-enabled corba component model applications.

IEEE Distributed System Online, Special Issue on Reflective Middleware,

2003.

146

BIBLIOGRAPHY

[45] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal. Packaging quality of service

control behaviors for reuse. In Processdings of the 5th IEEE International

Symposium on Object-Oriented Real-time Distributed Computing (ISORC),

pages 375–385, Crystal City, VA, 2002.

[46] P.K. Sharma, J.P. Loyall, G.T. Heineman, R.E. Schantz, R. Shapiro, and

G. Duzan. Component-based dynamic qos adaptations in distributed real-

time and embedded systems. In Proceedings of the International Sympo-

sium on Distributed Objects and Applications (DOA ’04), volume 3291, pages

1208–1224, Larnaca, Cyprus, October 2004.

[47] J.A. Zinky, D.E. Bakken, and R. Schantz. Architectural support for quality

of service for corba objects. Theory and Practice of Object Systems, 3(1):1–

20, 1997.

[48] J.M. Paluska, H. Pham, U. Saif, G. Chau, C. Terman, and S. Ward. Struc-

tured decomposition of adaptive applications. In Proceedings of the 6th IEEE

International Conference on Pervasive Computing and Communication (Per-

Com), Hong Kong, China, March 2008.

[49] S. Liu and L. Cheng. Active message oriented adaptation middleware for

collaborative applications in heterogeneous environments. In Proceedings of

the 2008 IEEE International Conf. on Communications (ICC 2008), pages

1866–1870, Beijing, China, 2008.

[50] J.P. Loyall, D.E. Bakken, R.E. Schantz, J.A. Zinky, D. Karr, R. Vanegas,

and K.R. Anderson. Qos aspect languages and their runtime integration.

In Proceedings of the 4th Workshop on Languages, Compilers and Runtime

Systems for Scalable Components (LCR98), pages 28–30, Pittsburgh, PA,

1998.

147

BIBLIOGRAPHY

[51] R. Vanegas, J.A. Zinky, J.P. Loyall, D. Karr, R.E. Schantz, and D. Bakken.

Quo’s runtime support for quality of service in distributed objects. In Pro-

ceedings of the IFIP International Confereence on Distributed Systems Plat-

form and Open Distributed Processing (Middleware 98), The Lake District,

England, September 1998.

[52] R.E. Schantz, J.A. Zinky, D.A. Karr, D.E. Bakken, J. Megquier, and J.P.

Loyall. An object-level gateway supporting integrated-property quality of

service. In Proceedings of the 2nd IEEE International Symposium on Object-

oriented Real-time Distributed Computing (ISORC 99), Saint Malo, France,

May 1999.

[53] S. Liu and L. Cheng. A context-aware reflective middleware framework for

distributed real-time and embedded systems. Journal of Systems and Soft-

ware, 84(2):205–218, 2011.

[54] P. Bonnet, J.E. Gehrke, and P. Seshadri. Towards sensor database systems.

In 2nd International Conference on Mobile Data Management (MDM), pages

3–14, 2001.

[55] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tinydb: An ac-

quisitional query processing system for sensor networks. ACM Transactions

on Database Systems, 30(1):122–173, 2005.

[56] C.C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information net-

working architecture and applications. IEEE Personal Communications,

8(4):52–59, August 2001.

[57] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A.L. Murphy, and G.P. Picco.

Tinylime: Bridging mobile and sensor networks through middleware. In the

148

BIBLIOGRAPHY

3rd IEEE International Conference on Pervasive Computing and Communi-

cations (PerCom), pages 61–72, March 2005.

[58] W.B. Heinzelman, A.L. Murphy, H.S. Carvalho, and M. A. Perillo. Mid-

dleware to support sensor network applications. IEEE Network, 18(1):6–14,

2004.

[59] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In

the 10th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-X), October 2002.

[60] R. Barr, J.C. Bicket, D.S Dantas, B. Du, T.W. Kim, B. Zhou, and E.G.

Sirer. On the need for system-level support for ad hoc and sensor networks.

Operating Systems Review, ACM, 36(2):1–5, April 2002.

[61] T. Liu and M. Martonosi. Impala: A middleware system for managing auto-

nomic. In Parallel Sensor Systems (PPoPP03), San Diego, CA, June 2003.

[62] S.S. Kulkarni and L. Wang. Mnp: Multihop network reprogramming service

for sensor networks. In Proceedings of the 25th International Conference on

Distributed Computing Systems (ICDCS 2005), pages 7–16, Columbus, OH,

June 2005.

[63] J.W. Hui and D. Culler. The dynamic behavior of a data dissemination

protocol for network programming at scale. In Proceedings of the 2nd ACM

Conference on Embedded Networked Sensor Systems (SenSys 2004), pages

81–94, Baltimore, MD, November 2004.

[64] J. Jeong and D. Culler. Incremental network programming for wireless sen-

sors. In Proceedings of the 1st Annual IEEE ComSoc. Conference on Sensor

and Ad Hoc Communication and Networks (SECON), pages 25–33, 2004.

149

BIBLIOGRAPHY

[65] J. Zhang and B. H.C. Cheng. Model-based development of dynamically

adaptive software. In Proceedings of the 28th international conference on

Software engineering (ICSE 2006), Shanghai, China, May 2006.

[66] A. Ranganathan and R.H. Campbell. An infrastructure for context-

awareness based on first order logic. Journal of Personal and Ubiquitous

Computing, 7(6):353–364, December 2003.

[67] S. Zachariadis, C. Mascolo, and W. Emmerich. The satin component system-

a metamodel for engineering adaptable mobile system. IEEE Transaction on

Software Engineering, 32(10), October 2006.

[68] R. Litiu and A. Prakash. Dacia: A mobile component framework for building

adaptive distributed applications. Technical Report CSE-TR-416-99, 1999.

[69] M. Palola, M. Jurvansuu, and J. Korva. Breaking down the mobile service

response time. In Proceedings of IEEE International Conference on Networks

(ICON 04), volume 1, pages 31–34, Singapore, November 2004.

[70] S. Liu and Q. Wang. Marches homepage. http://marches.cse.lehigh.edu/,

Accessed on May 2011.

[71] N. Shankarany, D.C. Schmidty, X.D. Koutsoukosy, Y. Chenz, and Chenyang

Lu. Design and performance evaluation of configurable component middle-

ware for end-to-end adaptation of distributed real-time embedded systems.

In Proceedings of the 10th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC’07), pages

291–298, Santorini Island, Greece, May 2007.

150

BIBLIOGRAPHY

[72] S. Liu and L. Cheng. Efficient data compression in wireless sensor networks

for civil infrastructure health monitoring. In Proceedings of the 2006 Inter-

national Workshop on Wireless Ad-hoc and Sensor Networks, pages 823–829,

New York, NY, 2006.

[73] L. Doherty, B.A. Warnake, B. Baser, and K.S.J. Pister. Energy and perfor-

mance considerations for smart dust. International Journal of Parallel and

Distributed Systems and Networks, 4(3), 2001.

[74] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva. A perfor-

mance comparison of multi-hop wireless ad hoc network routing protocols.

In Proceedings of ACM/IEEE Mobile Computing and Network, pages 85–97,

Dallas, TX, October 1998.

[75] E.M. Royer and C.K. Toh. A review of current routing protocols for ad-

hoc mobile wireless networks. IEEE Personal Communications Magazine,

6(2):46–55, April 1999.

[76] V. Ramasubramanian, Z.J. Haas, and E.G. Sirer. Sharp: A hybrid adaptive

routing protocol for mobile ad hoc networks. In Proceedings of the ACM

Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc), pages

303–314, Annapolis, MD, June 2003.

[77] B. Karp and H.T. Kung. Gpsr: Greedy perimeter stateless routing for wire-

less networks. In Proceedings of the Sixth Annual ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom 2000), pages

243–254, Boston, MA, August 2000.

[78] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case optimal and average-

case efficient geometric ad-hoc routing. In Proceedings of the Fourth ACM

151

BIBLIOGRAPHY

International Symposium on Mobile and Ad hoc Networking and Computing

(MobiHoc ’03), pages 267–278, Annapolis, MD, June 2003.

[79] Y.J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographical routing

made practical. In Proceedings of the 2nd Annual Symposium on Networked

Systems Design and Implementation, pages 217–230, Boston, MA, May 2005.

[80] Y.J. Kim, R. Govindan, B. Karp, and S. Shenker. On the pitfalls of geograph-

ic face routing. In Proceedings of the 2005 Joint Workshop on Foundations

of Mobile Computing (DIALM-POMC ’05), pages 34–43, Cologne, Germany,

September 2005.

[81] B. Leong, B. Liskov, and R. Morris. Geographic routing without planariza-

tion. In Proceedings of the 3rd Symposium on Network Systems Design and

Implementation (NSDI 2006), San Jose, CA, May 2006.

[82] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric net-

works. In Proceedings of the 11th Canadian Conference on Computational

Geometry, pages 51–54, Vancouver, Canada, August 1999.

[83] B. Karp. Gpsr website. http://www.cs.cmu.edu/ bkarp/gpsr/gpsr.html, Ac-

cessed on September 2006.

[84] W. Feng, E. Kaiser, W.C. Feng, and M.L. Baillif. Panoptes: scalable low-

power video sensor networking technologies. ACM Transactions on Multi-

media Computing, Communications, and Applications, 1(2), May 2005.

[85] Q. Ye and L. Cheng. Handbook on Theoretical and Algorithmic Aspects of

Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, chapter Time Synchro-

nization in Wireless Sensor Networks. CRC Press, 2005. ISBN: 0849328322.

152

BIBLIOGRAPHY

[86] S. Ganeriwal, R. Kumar, and M.B. Srivastava. Timing-sync protocol for sen-

sor networks. In Proceedings of the First ACM International Conference on

Embedded Networked Sensor Systems (Sensys’03), Los Angeles, CA, Novem-

ber 2003.

[87] D. Salomon. Data Compression: The Complete Reference, 3rd Edition.

Springer, 2004. ISBN: 0387406972.

[88] S.S. Pradhan, J. Kusuma, and K. Ramchandran. Distributed compression in

a dense microsensor network. IEEE Signal Processing Magazine, 19:51–60,

March 2002.

[89] Z. Xiong, A. Liveris, and S. Cheng. Distributed source coding for sensor

networks. IEEE Signal Processing Magazine, 21:80–94, September 2004.

[90] Y. Zhang and L. Cheng. Issues in applying wireless sensor networks to health

monitoring of large scale civil infrastructure systems. In ASCE Structure

Congress 2005, New York, NY, April 2005.

[91] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 1991.

ISBN: 0471062596.

[92] S.S. Pradhan and K Ramchandran. Distributed source coding using syn-

dromes: Designand construction. In Proceedings of the Data Comression

Conference (DCC’99), Snowbird, UT, March 1999.

[93] D. Slepian and J.K. Wolf. Noiseless coding of correlated information sources.

IEEE Transaction on Information Theory, 19(4):471–480, July 1973.

[94] A. Wyner and J. Ziv. The rate-distortion function for source coding with

side information at the decoder. IEEE Transaction on Information Theory,

22:1–10, January 1976.

153

BIBLIOGRAPHY

[95] T. Berger. The Information Theory Approach to Communications, chapter

Multiterminal source coding. Springer-Verlag, 1977. ISBN: 3211814841.

[96] S.S. Pradhan and K Ramchandran. Distributed source coding: Symmet-

ric rates and applications to sensor networks. In Proceedings of the Data

Comression Conference (DCC’00), Snowbird, UT, March 2000.

[97] J. Chou, D. Petrovic, and K. Ramchandran. A distributed and adaptive sig-

nal processing approach to reducing energy consumption in sensor network-

s. In Proceedings of the 22nd IEEE International Conference on Computer

Communications (Infocom 03), San Francisco, CA, March 2003.

[98] R. Puri and K. Ramchandran. Prism: A new ’reversed’ multimedia coding

paradigm. In Proceedings of the IEEE International Conference on Image

Processing (ICIP 03), Barcelona, Spain, September 2003.

[99] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan,

and D. Estrin. A wireless sensor network for structural monitoring. In

Proceedings of the ACM Conference on Embedded Networked Sensor Systems,

Baltimore, MD, November 2004.

[100] G. Uytterhoeven, D. Roose, and A. Bultheel. Wavelet transforms using the

lifting scheme. ITA-Wavelets Report WP 1.1, 1996.

[101] G. Uytterhoeven, F. Van Wulpen, M. Jansen, D. Roose, and A. Bultheel.

Waili: Wavelets with integer lifting. TW Report 262, 1997.

[102] I. Kaplan. Basic lifting scheme wavelets.

http://www.bearcave.com/misl/misl tech/wavelets/lifting/basiclift.html,

Accessed on April 2005.

154

BIBLIOGRAPHY

[103] D. Marco and D.L. Neuhoff. Reliability vs. efficiency in distributed source

coding for field-gathering sensor networks. In Information Processing in

Sensor Networks (IPSN 04), Berkeley, CA, April 2004.

155

VITA

Shengpu Liu was born in Yueyang, China on April 24, 1979. After completing

high school at Yueyang First High School, Yueyang, China in 1997, he attended

the University of Science and Technology of China in Hefei, China from 1997-2004.

There, he received a Bachelor of Engineering degree and a Master of Engineering

degree in the Automation department in 2001 and 2004 respectively. From 2004-

2009, he attended Lehigh University in Bethlehem, Pennsylvania to pursue his

PH.D. degree under the guidance of Professor Liang Cheng in the Laboratory

Of Networking Group (LONGLAB). After finishing his major research work, he

changed to be a part-time student in 2009 to get more industry experience. From

2009 till now, he has been a software engineer in the Epic Systems Corporation.

156

	Lehigh University
	Lehigh Preserve
	2012

	A Context-Aware Reflective Middleware Framework for Mobile Ad-hoc and Wireless Sensor Networks
	Shengpu Liu
	Recommended Citation

	tmp.1363264564.pdf.xKQ8R

