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Abstract

The presented research investigates topics relating to sensor systems focusing mainly on esti-

mation. The first topic studies Byzantine attacks on sensor systems estimating the value of an

unknown deterministic parameter based on quantized observations. The presented work initially

describes aspects of the optimal processing under a practical family of attacks where the sensors

employ bad data detectors to check if the observed sensor data fits the observation models assumed

by the estimation algorithm under no attack. Next, the performance of any estimation approach

employed by the sensor system under any general attack is described for cases where any number

of observations, sensors, and quantization levels could be employed.

The second topic studies sensor networks focused on estimating ocean waveforms. Our work

is the first to derive the Cramer-Rao bound (CRB) for the short-term forecasting of ocean waves.

The CRB is a lower bound on the mean square estimation error for an unbiased estimator. The

obtained results are general in the sense that they apply to a number of types of wave sensors.

A low-complexity estimation method is presented along with numerical results demonstrating its

accuracy and runtime performance. We also describe a method that relies on the CRB to calculate

the expected loss in absorbed power, under optimal control, by a single or multiple WEC devices

due to errors in the estimation of short-term future waveforms experienced by the devices.

The third topic focuses on developing a novel model accounting for the dependence of power

grids on communication networks for their safe and economic operation. Our model is formulated

as a two-settlement stochastic optimal power flow (OPF) problem where we account for errors in

forecasting while also considering random failures in the communication network.

Our work jointly optimizes the topology of the communication network and the control actions

in anticipation of the different random failures and errors that a given power grid may face. We

present results that identify optimal topologies for a communication network supporting the oper-

ation of an IEEE standard 9-bus system under different conditions and we discuss some properties
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of the optimal solutions.

Finally, the fourth topic studies topology estimation in power distribution networks. Accurate

topology estimates are crucial for maintaining situational awareness, properly dispatching dis-

tributed energy sources, detecting cyber attacks, and many other key tasks. The presented work

takes advantage of the ever increasing adoption of novel metering and sensing devices providing

data from network locations that were traditionally unmonitored by grid operators. We present a

topology estimation scheme for radial distribution networks relying on power flow measurements

and nodal load forecasts. We also describe a sensor placement method that enables the presented

scheme to identify all the detectable faults in the network. The performance of our detection

scheme is then demonstrated through several numerical results on the IEEE 123-bus test feeder.
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Chapter 1

Introduction

1.1 Attacks on Parameter Estimation Based on Quantized

Observations

Sensor systems employed for parameter estimation have been extremely successful in applica-

tions ranging from inexpensive commercial systems to complex military and defense surveillance

systems and have seen even greater interest in recent years [1]. Recent technological advances in

coding, digital wireless communications technology and digital electronics have lead to the dom-

inance of digital communications using quantized data in such systems. Hence, a great deal of

attention has focused on parameter estimation using quantized data [2–9]. In some work [2–4] the

unknown parameters are modeled as being random, while in other work the unknown parameters

are treated as deterministic unknowns [5–9]. Most of the existing work focused on binary quanti-

zation employed for the estimation of a single unknown parameter. However, [8] and [9] considered

some aspects of vector parameter cases for binary quantization.

Malicious attacks are widely regarded as one of the most serious problems faced in our dangerous

world, leading to several recent publications on this topic, including [10–20] and references therein.

The majority of the research related to sensor networks attempting to solve hypothesis testing and

parameter estimation problems has focused on Byzantine attacks [18, 21], in which an attacker

tampers with a subset of the sensors and forces them to send falsified messages to the fusion center

(FC) with the goal of interfering with the detection or estimation task at the FC. Byzantine attacks

on sensor networks attempting to perform hypothesis testing have been studied in [10,17–20], while

Byzantine attacks on networks performing parameter estimation have been studied in [11–13,22].

3



The presented work investigates Byzantine attacks on sensor systems estimating the value of an

unknown deterministic parameter based on quantized observations. We first focus on the optimal

processing under a practical family of attacks where the sensors employ bad data detectors that

check if the observed sensor data fits the unattacked observation model assumed by the estimation

algorithm under no attack. Afterwards, the estimation performance is considered for any general

estimation approach employed by the sensor system under any general attack for cases where any

number of observations, sensors, and quantization levels could be employed and expressions are

derived to describe the performance of any specific estimation algorithm under such attacks.

1.2 Ocean Wave Estimation

Ocean wave energy holds the potential to become a significant source of renewable energy.

Unfortunately, large costs associated with the production, deployment, and maintenance of wave

energy converters (WECs) present a challenge to their economic viability. As a result, extending

the lifetime of a WEC and maximizing the amount of energy it captures are of great interest.

To this end, several active control strategies have been developed where the controller adapts the

behavior or characteristics of a WEC in response to the prevailing ocean conditions in order to

more effectively capture the energy in the waves.

Complex-conjugate control [23] was the earliest control strategy considered for WEC devices

[24]. This control strategy focuses on heaving WECs and is formulated using a frequency based

description of WEC dynamics. Executing complex-conjugate control in the time domain was shown

in [24, 25] to require future information on the impending wave excitation forces. Alternative

control approaches that account for physical constraints on the motion of the WEC have also

been proposed. Latching control [26–28] is one such control strategy where the device is locked at

various points in the wave cycle and released later such that the device is always oscillating “in-

phase” with the incident excitation force. Since Latching control adapts to the incident excitation

force which is related to the motion of the WEC through a typically non-causal impulse response

function, this control strategy also requires knowledge of the future excitation forces acting on the

WEC. Another approach is Model Predictive Control (MPC) which has been the focus of several

recent work [29–35] on WEC control. A more comprehensive review of WEC control approaches

is provided in [36]. The focus of our work is on providing wave estimates that might be required

by a current or novel approach for WEC control.

4



The presented work investigates several aspects of the estimation and short-term prediction of

ocean waves using a network of spatially distributed sensors. We present general expressions for

the Fisher Information Matrix (FIM) and the Cramer Rao Bound (CRB). Our work is among the

first to account for noise in the sensor observations and employ tools from estimation theory to

derive expressions providing lower bounds on the estimation performance. Also presented is a low-

complexity estimation approach for the case where several stationary ocean sensors are employed

for estimation. We provide several numerical results to highlight the estimation accuracy of our

approach relative the CRB. Further, we present a method that relates errors in estimation to the

mean loss in the amount of absorbed power by WEC devices.

1.3 Stochastic Optimal Power Flow Under Forecast Errors

and Failures in Communication

The reliable and economic operation of an electric grid is a complex problem involving several

different tasks. Managing and executing such tasks requires collecting a great deal of information

delivered to grid operators through communication networks. Upon receiving new data, an op-

erator may seek to modify specific properties or values in the electric grid through transmitting

control commands back to the grid through the communication network. Clearly, this creates a

dependency where failures, malfunctions, or other unexpected changes affecting components in the

communication network could destabilize or even interrupt the operation of the electric grid or

some parts of it. In fact, the work in [37] showed that failures or attacks affecting the communica-

tion of sensor measurements to system operators may result in consistent and sustained economic

losses due to the misinformed operation of the grid.

Most related work has focused on the study of cascading failures under an interdependent model

where the communication network relies on the power grid for its operation. The study of inter-

dependent networks using a mathematical framework was first undertaken by the authors of [38]

who focused on the interdependency between two abstract randomly-generated networks having

the same number of nodes. Focusing on power networks, the work in [39] applied interdependency

models from [38] to a non-random graph representing the Italian power grid,which suffered a large

blackout in the year 2003 [40], and its supporting communication network. The recent work in [41]

and [42] incorporated Kirchoff’s laws and simple control operations into their models. The work

in [41] presented a load shedding algorithm that aims to mitigate the effects of failures in a random
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communication network supporting the operation of a power grid while the work in [42] studied

the effect of communication failures on state estimation and the delivery of control signals. In

both cases, the work in [41] and [42] assumed a given communication network with pre-defined

interdependencies and did not focus on identifying robust communication networks tailored to the

power grids they support although the work in [41] stressed the importance of this step. In fact,

the authors of [41] and [42] found that their results were sensitive to the assumed communication

topology and that some of the phenomena observed by studying random abstract interdependent

networks [38,43–47] may not hold for power networks supported by well designed communication

networks. Further, they cautioned that communication networks designed in isolation of the power

grids they will support may be unable to withstand or mitigate the effects of interdependence on

the system as a whole.

In the presented work, we focus on identifying the optimal communication network topology

and the optimal choice for dispatch and re-dispatch actions while accounting for forecasting errors

and failures in communication. Our problem is formulated as a stochastic optimal power flow

(OPF) problem [48–51] where the objective is to minimize the average overall economic cost of

operating the system under a set of constraints representing the stochastic scenarios that may result

from possible forecasting errors and communication failures. We believe our work is the first to

jointly consider the effects of forecast errors and failures in communication and study them under

a stochastic OPF formulation where the communication topology is also optimized. Our unique

formulation describes the communication network as a flow network where any node representing

a sensor measuring physical values from the power grid is assigned a positive ‘supply’ and the

node representing the system operator is assigned a negative supply. This description allows our

optimization problem to capture the effect of losing the ability to communicate between any sensor

and the system operator as a loss in the flow supply from the affected sensor. We present results

obtained using our model under test cases that we use to validate our model and identify the best

communication topologies for the power system we consider.

1.4 Topology Estimation in Power Distribution Networks

As novel controls, applications, and services continue to be integrated into distribution systems,

the demand for accurate and timely estimates of the network topology is becoming increasingly

more critical [52]. Maintaining situational awareness in distribution networks is imperative for
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the effectiveness of many important modern tools and applications that are currently being im-

plemented and developed. For example, having a correct estimate of the network topology is

crucial for efficiently and reliably dispatching distributed energy resources [53], sectioning into

microgrids [54], and providing demand response [55] capabilities. Further, many techniques for

distribution system state estimation (DSSE), [56–58] for example, are based on the assumption

that the correct network topology is already known. In fact, the performance of most DSSE

methods under a misspecified topology is generally not well understood and may be difficult to

characterize.

Due to several engineering and practical concerns, distribution networks are predominately

operated as radial (tree) graphs where power flows in one direction away from the root node

typically taken as the main feeder. Their special characteristics have traditionally led to fewer

installed sensors and monitoring devices making distribution networks historically less observable

than transmission systems which tend to have complex mesh topologies and extensive monitoring.

As a result of the differences between the two systems, topology estimation techniques devised

for transmission systems [59–62] have limited applicability in distribution networks and there is a

need for methods and techniques designed especially for distribution networks.

Many topology estimation efforts in distribution networks are based on information obtained

through phone calls from customers or expert systems [63] to identify and locate outages in the

network. Other knowledge-based methods combining different types of information [64] have also

been proposed to include data from advanced metering infrastructure (AMI) and supervisory

control and data acquisition (SCADA) systems. Voltage sag measurements and matching has also

been studied for fault detection in [65] and [66]. However, the majority of these methods were

generally limited in the number of simultaneous outages they are able to detect.

Fortunately, recent advances in the development of measurement units and the increased adop-

tion of monitoring devices will produce new and reliable data streams that may lead to improved

topology estimation techniques capable of detecting several topology changes. In fact, some new

phasor measurement units [67] are being designed specifically for distribution networks with promis-

ing results and new topology estimation methods [68, 69] assuming their widespread adoption are

already being proposed. Relying on a limited number of sensors, the insightful work in [70, 71]

uncovered some foundational properties for the topology estimation problem in distribution net-

works. In their work, the authors of [70, 71] show that the topology estimation problem, referred

to as outage detection in [70, 71], for radial distribution networks can be decoupled into smaller

7



detection problems within subtrees of the same network.

In our work, we study the topology estimation and fault detection problem based on infre-

quent and slow-changing nodal load forecasts and power flow measurements obtained from sensing

devices installed at a subset of the nodes in the network. Aided by the decoupling of the full prob-

lem, detailed in [71], we propose a novel sensor placement scheme allowing for the identification

of any number of detectable faults in the system. Further, we present a novel topology estimation

scheme designed to limit our dependence on unavoidable enumeration operations that could in-

crease the numerical complexity of the scheme. We also present numerical results demonstrating

the performance of our proposed estimation scheme.

1.5 Outline of The Dissertation

The reset of this dissertation is organized as follows. Chapter 2 presents our work considering

attacks on systems estimating an unknown deterministic parameter based on quantized observa-

tions. Next in Chapter 3, our research regarding the estimation and short-term forecasting of

ocean waves for the use by WEC devices is presented. Chapter 4 describes our work on the joint

optimization of communication networks and power flow control under forecast errors and fail-

ures in communication. Finally, Chapter 5 describes our work on topology estimation and fault

detection in radial distribution networks.

8



Chapter 2

Attacks on Systems Estimating an

Unknown Deterministic

Parameter Based on Quantized

Observations

The existing work on Byzantine attacks on estimation systems [11–13, 22] has covered a wide

variety of topics, including a game theoretic analysis and mitigation schemes, but has not in-

vestigated the topic of optimum processing of the attacked and unattacked sensor observations.

The work in [72] considered the optimum processing, under an asymptotically large number of

observations, for attacks that modify the quantized sensor data such that P distinct attacks are

launched on P distinct sets of sensors. However, the results in [72] are restricted to cases with

binary quantization and where a shift-in-mean parameter is to be estimated.

In the first section of this chapter, we consider a practical attack scenario where the sensors

employ bad data detectors that check if the observed sensor data fits the unattacked observation

model assumed by the estimation algorithm. Only sensor data which passes the checks made by the

bad data detectors will be employed in the subsequent estimation procedure. To be more specific,

we are assuming that a bad data detector will collect observations from a single sensor and compute

some similarity index between the empirically observed probability density function (pdf) and the

possible pdfs assumed under no attack, which are parameterized by the unknown the parameter of
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interest. Then, as the number of observations per sensor becomes very large, the only way for an

attacked sensor to pass the bad data detector is if the pdf of the observations at the sensor is that

of observations at an unattacked sensor, but with a different value for the unknown parameter.

In such cases, spoofing attacks, which modify the physical phenomenon observed by the sensors,

become of considerable interest since, unlike in man-in-the-middle attacks, the attacker can launch

spoofing attacks which are guaranteed to pass the bad data detectors even if the attacker has

no knowledge regarding the quantizers employed by the sensor system or the true value of the

parameter to be estimated. In fact, low complexity spoofing attacks capable of generating data

that is guaranteed to pass bad data detectors in this way have been employed in practice, but

have not been studied in previous work on attacks on estimation systems. Consider the case where

we want to estimate the position of an emitter or reflector by estimating the time taken for the

signal to reach an antenna. One practical example of a spoofing attack is when the attacker uses

a memory device to capture and regenerate the signal in order to add an extra time delay to it

when it finally reaches the antenna. As one example, this basic idea has been exploited [73] in

Civilian GPS systems which were been shown to be highly vulnerable to such attacks. Radar

systems have also been attacked in this way. In this chapter we assume the attacker launches one

of these spoofing attacks that are guaranteed to pass the bad data detectors while considering

general estimation problems.

Given that the attacked sets of sensors can be identified at the fusion center using a procedure

different from the bad data detectors, we show in this chapter that the attacked sensor data cannot

be employed to improve the estimation performance beyond that achieved by optimum processing

of the unattacked sensor data for cases with a sufficient number of observations. These results are

valid for arbitrary quantizer designs and for a large set of estimation problems.

While optimum processing is of considerable interest, the impact of attacks on both optimum

and suboptimum processing is also of great interest. For example, information about estima-

tion performance under different attacks could be used to determine the different advantages and

disadvantages provided by different estimation approaches. In the second section of this chap-

ter, we provide a general approach to characterize the after-attack estimation performance of any

estimation approach, optimum or suboptimum, under any general type of attack, without any as-

sumptions on the estimation problem, the observation models, the number of sensors, the number

of observations or the independence of any observations to any others. A classification of these

attacks, which are much more general than those assumed in the first section of this chapter,
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that categorizes them into classes according to the information available to the attacking entity is

introduced and some notable properties of these attack classes are studied and highlighted using

examples. Optimization problems over these attack classes are solved to provide, for the first time,

expressions which describe the performance of any specific estimation algorithm under the most

devastating attacks with full information and the generally less effective information free attacks.

Lastly, constraints on the different classes of attacks are considered to find the most devastating

attacks under some level of attack detection carried out by the sensor system. These ideas are

illustrated by considering the degradation in estimation performance under the appropriately con-

strained most devastating attacks with full information and the generally less effective information

free attacks. Such investigations could be of significant practical importance as some legacy or

even modern systems might not have been designed to detect and react to attacks.

The following assumptions and notations will be used throughout this chapter. We consider

the estimation of a deterministic parameter θ where θ ∈ ℜ. The parameter θ is estimated based

on quantized observations collected from N sensors, each producing K observations. The NK

observations are collected in the vector u = (u11, u12, . . . , uNK)T where ujk, j = 1, 2, . . . , N, k =

1, 2, . . . ,K is the quantized version of xjk, the unquantized output of sensor j at discrete time k

which has a pdf f(xjk|θ) that is parameterized by θ. At each sensor, the number of quantization

levels used is assumed to be R such that each ujk can take any value from 1, 2, . . . , R. Perfect, error-

free communication of u to the fusion center is assumed. In the case of no attack, the probability

of the vector u having a specific value r for a given value of θ is described by Pr(u = r|θ).

When attacked, the effect of the attack is captured completely by the after-attack probabilities

Pr(ũ = r|θ) for every possible realization of r, where ũ denotes the after-attack vector of quantized

observations.

The remainder of this chapter is organized as follows. Section 2.1 considers the optimum

processing of the attacked and unattacked sensor data when bad data detection is employed at

each sensor, provided the sets of attacked sensors are identified. Section 2.2 considers the impact

of general types of attacks on general types of estimation approaches and describes the most

devastating attacks which employ full information and the generally less effective information free

attacks. An example where an estimation system, which uses the estimation approach it would use

assuming no attack, experiences full information and information free attacks is given. Further,

constraints on the considered attacks, employed to account for some level of attack detection under

the described attack classes, are studied and an example showing the impact of such attacks is
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presented. Finally, Section 2.3 summarizes and concludes the work presented in the chapter.

2.1 Asymptotically Optimum Processing under Sensor Bad

Data Detection

In this section, we consider attacks that are launched without knowledge of the quantizers

employed by the sensor system or the true value of the parameter to be estimated, but that still

produce data guaranteed to pass the bad data detectors. The focus is on cases where the unattacked

sensor observations are statistically independent and identically distributed (iid) across all sensors

and time epochs. The following assumptions are made throughout this section.

Assumption 1. The pdf of the unquantized observations at time k and unattacked sensor j,

f(xjk|θ), is a twice differentiable log-concave [74] function of θ which obeys regularity (smoothness)

conditions such that interchanges involving derivatives (up to order 2) with respect to θ and integrals

with respect to xjk of f(xjk|θ) are valid.

Assumption 2. The unattacked observations at different sensors and times xjk, j = 1, . . . , N, k =

1, . . . ,K are iid. All xjk are quantized using the same thresholds which are fixed over all j =

1, . . . , N and k = 1, . . . ,K.

The common quantizer design is described by the regions A1, . . . , AR such that if the quantizer

input falls into the region Aℓ then the output is the symbol ℓ. Thus for k = 1, . . . ,K, j = 1, . . . , N ,

define the probability mass function (pmf) of the quantized version of xjk as

Pr(ujk = rjk|θ) =
∫
xjk∈Arjk

f(xjk|θ)dxjk, rjk = 1, . . . , R (2.1)

and denote the indicator function I(rjk = r′jk) as taking on the value unity when rjk = r′jk and

zero otherwise. Let J define a set of sensor indices that correspond to a set of selected sensors.

Thus the members of J are selected from 1, . . . , N . Under no attack and by Assumption 2, the

pmf of the vector of selected quantized observations uJ evaluated at uJ = r is

Pr(uJ = r|θ) =
∏
j∈J

K∏
k=1

R∏
r′jk=1

Pr(ujk = r′jk|θ)I(rjk=r′jk). (2.2)
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The log-likelihood function evaluated at uJ = r, the natural logarithm of (2.2), is

L(θ,J ) =
∑
j∈J

K∑
k=1

R∑
r′jk=1

I(rjk = r′jk) lnPr(ujk = r′jk|θ). (2.3)

To guarantee the attack will pass the bad data detector without knowledge of the quantizers

employed and the true parameter value, the attackers employ attacks that follow the same model

as in (2.1), (2.2), and (2.3) but with θ replaced by θ − e for some acceptable e, leading to the

following assumption which is also employed throughout this section.

Assumption 3. The pdf of the unquantized observations at time k and attacked sensor j is

f(xjk|θ − e), where f(xjk|θ) follows Assumption 1

Consider a general case where there are P such attacks that each employ a different and non-

zero value for e, denoted by ep, p = 1, . . . , P and the unattacked sensors are considered to be

affected by the 0th attack for which e0 = 0. Assume that the indices of all sensors under the pth

attack are described by the set Ap and, for a sufficiently large N , the number of these sensors

|Ap| is a fixed non-zero percentage Pp of the total number of sensors, N . Such an assumption is

required so that as N → ∞ the effect of an attack will not shrink to zero (Ap becoming a set of

measure zero). Further, the sets A0,A1, . . . ,AP are disjoint and cover J so that

J =
∪

p=0,...,P

Ap and Ap

∩
Ap′ = ∅ if p ̸= p′. (2.4)

For the general case just described and from (2.2), the pmf of the quantized observations uJ at

the selected sensors j ∈ J evaluated at uJ = r becomes

Pr(uJ = r|θ) =
P∏

p=0

∏
j∈Ap

K∏
k=1

R∏
r′jk=1

Pr(ujk = r′jk|θ − ep)I(rjk=r′jk),Pp =
|Ap|
N

fixed. (2.5)

Note that (2.5) includes the case where some sensors are unattacked since e0 = 0.

In order to gain a better understanding of what is presented next, consider the Fisher Infor-

mation obtained from a selected set of sensors, some unattacked and others attacked with known
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e1, . . . , eP , which can be shown to be

J(θ) = |A0|K
R∑

r′jk=1

(∫
xjk∈Ar′

jk

d
dθf(xjk|θ)dxjk

)2

∫
xjk∈Ar′

jk

f(xjk|θ)dxjk
+

P∑
p=1

|Ap|K
R∑

r′jk=1

(∫
xjk∈Ar′

jk

d
dθf(xjk|θ − ep)dxjk

)2

∫
xjk∈Ar′

jk

f(xjk|θ − ep)dxjk
. (2.6)

The first term on the right of the equality sign in (2.6) represents information from the unattacked

sensors and the second term represents information from attacked sensors. Now consider the

following lemma, based on (2.6), which is concerned with the case of attacks that are perfectly

known.

Lemma 1. With e1, . . . , eP known in (2.5), an efficient (Cramer Rao bound (CRB) achieving)

unbiased estimator of θ will generally utilize the attacked observations in the process of estimating

θ.

Contrast the just described Lemma with the following theorem based on the special structure

of the Fisher Information Matrix (FIM) for problems of the type given in (2.5).

Theorem 1. With the attacked sensors in (2.5) known (know all Ap for which |ep| > 0) but

the corresponding magnitudes of the attacks (ep when |ep| > 0) unknown, the mean-square error

(MSE) of an efficient unbiased estimator of θ is as large or larger than the MSE of an efficient

unbiased estimator that knows the magnitudes of the attacks for any finite K (from (2.6)). In fact,

the MSE of the efficient unbiased estimator of θ when the attack magnitudes are unknown but the

attacked sensors are known is that of an efficient unbiased estimator that only uses the unattacked

observations for any value of K.

Proof. Let J0 denote the first sum in (2.6) and let Jp, p = 1, 2, . . . P denote the pth term from the

second sum in (2.6), then the FIM J(θ), where θ = (θ, e1, e2, . . . , eP )
′, when the attacked sensors
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are known but the corresponding magnitudes of the attacks are unknown is

J(θ) =



J0 + J1 + . . . JP −J1 −J2 . . . −JP

−J1 J1 0 . . . 0

−J2 0 J2 . . . 0

...
...

...
. . .

...

−JP 0 0 . . . JP


. (2.7)

The MSE of an efficient unbiased estimator of θ is the first element on the diagonal of the inverse

of (2.7) and due to the special structure of (2.7), it can be shown to be, as one might expect, given

by

[J−1(θ)]1,1 =
1

J0
≥ 1

J0 +
∑P

p=1 Jp
, (2.8)

where 1
J0+

∑P
p=1 Jp

is the reciprocal of (2.6), which is the MSE of an efficient estimator of θ that

knows the magnitudes of the attacks. The last statement in the theorem can be proved by a direct

comparison between [J−1(θ)]1,1 and the MSE of an efficient unbiased estimator that only uses the

unattacked observation.

The asymptotic identification of the attacked sensors is discussed in1 [75].

The next section considers the impact of general types of attacks on general types of estimation

approaches and describes the most devastating attacks which employ full information and the

generally less effective information free attacks.

2.2 Bounds on the Performance of General Estimation Ap-

proaches under General Attacks

In this section, we consider the estimation of a deterministic parameter θ such that θ ∈ [Ωl,Ωh]

for some known finite Ωl and Ωh. The most general attacks will change the after-attack probabilities

Pr(ũ = r|θ) in an arbitrary way as opposed to the specific changes considered in Section 2.1. Since

there exists a wide range for such possible attacks, there is a need to classify the various types of

possible attacks and to describe their impact on systems employing general estimation approaches.

1The asymptotic identification of the attacked sensors was based on work by Jiangfan Zhang and is thus excluded
from this dissertation
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Working towards this goal, a classification for attacks is presented in this section that separates the

attacks according to the knowledge or information available to the entity carrying out the attack

about the estimation system it is attacking and the true value of the parameter being estimated.

Having full information, which describes the most devastating type of attacks, is defined as knowing

the design of the quantizer used at each sensor, the estimation algorithm employed at the fusion

center, and the true value of the parameter to be estimated. The least informed attacks, described

as information free attacks, are those attacks that lack any information in regards to the design

of the quantizers, the estimation algorithm, or the true value of the parameter being estimated.

Adopting the mean square error (MSE) as a performance metric throughout the remaining part

of this chapter, the effect on the estimation performance of the different attacks just described is

presented in the following theorems. The same analysis can be carried out using other metrics as

well. The following theorem describes full information attacks.

Theorem 2. Without any loss of generality, consider an attack on only the first p sensors (all

times) with quantized samples ũp = rp. Denote the quantized observations at the other sensors

as uo = ro so that the full vector of quantized observations presented to the fusion center is

ũ = (ũp,uo) = (rp, ro). The general estimation rule based on the actual realization of the quantized

observations is denoted by θ̂(ũ). Assume the attacker is unable to observe the realizations of uo

and is also unable to change them and that the attacker has full information concerning the actual

value of θ and the estimation system. Then the largest MSE of any such attack when p = N is

MSE(θ̂)OCU = max
r

(θ̂(r)− θ)2. (2.9)

An attack resulting in this MSE is called an optimum complete knowledge uncoordinated attack

(OCU). When 0 < p < N the MSE under an OCU attack is

MSE(θ̂)OCU =
∑
all ro

Pr(uo = ro|θ)(θ̂((r∗p, ro))− θ)2 (2.10)

where r∗p is an rp maximizing
∑

all ro
Pr(uo = ro|θ)(θ̂((rp, ro))−θ)2. If p = 0 then the unattacked

performance is achieved.

If the attacker is able to observe the realizations of both uo and up but is only able to change

up, while still having full information, then the attack is called the optimum complete knowledge

coordinated attack (OCC). The largest possible MSE under an OCC attack, which is larger than
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or equal to (2.10) becomes

MSE(θ̂)OCC =
∑
all ro

max
rp

(
Pr(uo = ro|θ)(θ̂((rp, ro))− θ)2

)
(2.11)

when 0 < p < N . For p = N , an OCC attack provides the same largest possible MSE as an OCU

attack.

Proof. In the general case, the MSE can be written as

MSE(θ̂) =
∑
all r

Pr(ũ = r|θ)(θ̂(r)− θ)2 (2.12)

=
∑
all rp

∑
all ro

Pr(ũp = rp,uo = ro|θ)(θ̂((rp, ro))− θ)2. (2.13)

If the attacker is unable to observe the realizations of uo and is also unable to change them, then

the attacker is forced to attack with a ũp that must be independent from uo. In this case (2.13)

becomes

MSE(θ̂)OCU =
∑
all rp

Pr(ũp = rp|θ)
∑
all ro

Pr(uo = ro|θ)(θ̂((rp, ro))− θ)2. (2.14)

As the attacker has control over only Pr(ũp = rp|θ), (2.14) is maximized by putting all the

probability mass on Pr(ũp = r∗p|θ) where r∗p is an rp maximizing
∑

all ro
Pr(uo = ro|θ)(θ̂((rp, ro))−

θ)2 and, hence, (2.10) follows. If p = N then r = rp so the same maximization can be applied to

(2.12), now putting all probability mass on the r that maximizes (θ̂(r)− θ)2.

For an OCC attack, (2.13) is expressed as

MSE(θ̂)OCC =
∑
all rp

∑
all ro

Pr(ũp = rp|uo = ro, θ)Pr(uo = ro|θ)(θ̂((rp, ro))− θ)2. (2.15)

Now for each realization of uo, the attacker can choose a different realization of ũp by setting

Pr(ũp = rp|uo = ro, θ) in (2.15). Thus, the attacker can maximize (2.15), by picking Pr(ũp =

rp|uo = ro, θ) = 1 for the rp that makes Pr(uo = ro|θ)(θ̂((rp, ro))− θ)2 largest for the given ro. In

this case the MSE becomes (2.11).

An OCC attack maximizes the MSE for each possible realization of uo which results in the

largest possible MSE values and, therefore, the MSE under an OCC attack outlines the upper

17



boundary of the achievable MSE by an attack. Using MSE curves produced under OCC attacks

should allow system designers to quantify the worst case under-attack performance of their systems.

This could be employed as one of the design criteria for estimation systems where the worst case

performance is required to be smaller than a certain tolerable MSE value. Further, considering

the MSE values under a given number of OCC-attacked sensors can provide system designers

with information regarding the number of sensors that need to be protected in order to guarantee

MSE values smaller than a certain tolerable MSE value. Another use is to obtain these curves

for different estimation approaches in order to compare their performance under attacks. The

following defines an information free attack and presents a theorem considering the estimation

performance under such attacks.

Definition 1. Under an information free (IF) attack,

Pr(ũp = rp|θ) =
(
1

R

)pK

, ∀rp, (2.16)

where p is the number of attacked sensors and ũp is the vector of quantized observations from the

p attacked sensors.

Remark 1. An (IF) attack is attempting to model a case where the attacker has no information

regarding the true value of θ, the estimation algorithm used at the fusion center, the threshold

values employed for quantizing the sensor observations, or the interpretation of the quantized sensor

observations. Further, the attack is unable to accumulate any information over the duration of the

attack. Here it is assumed that the sensors and fusion center can essentially employ coding to hide

the true values of quantized data. As a result, each attacked sensor must be attacked in a way

that appears completely random and uncoordinated when viewed over many realizations, resulting

in all the possible values for any attacked quantized sensor sample being equally likely. Since we

are interested in statistically characterizing the average performance of the system, such a model

seems appropriate. Note that the model makes it impossible for the attackers to repeatedly produce

the same attack owing to the attackers inability to interpret the attacked samples throughout their

attack.

Remark 2. An attack which turns out to be mathematically equivalent to IF attacks was introduced

in [22] where it was called a ‘blinding’ attack. The approach in [22] is different from the one adopted

here and the authors of [22] provide an alternative argument that motivates the attacker to resort

to this attack.
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Theorem 3. Under Definition 1, and without loss of generality, consider an IF attack on only the

first p sensors (all times) with quantized observations ũp = rp. Denote the quantized observations

at the other sensors as uo = ro so that the full vector of quantized observations presented to the

fusion center is ũ = (ũp,uo) = (rp, ro). Then, the MSE when p = N is

MSE(θ̂)IF =

(
1

R

)NK ∑
all r

(θ̂(r)− θ)2. (2.17)

When 0 < p < N the MSE of an IF attack is

MSE(θ̂)IF =

(
1

R

)pK

∑
all rp

∑
all ro

Pr(uo = ro|θ)(θ̂((rp, ro))− θ)2. (2.18)

If p = 0, there is no attack.

Proof. Since the attacker does not have any information about the estimation system or the true

value of θ, the changes this attacker makes are completely random and unrelated to how the

estimation system is operating and to the true value of θ. Thus, the IF attack can be modeled as

the attacker observing a quantized sensor value r′jk and then modifying r′jk to each of its possible

values2 1, . . . , R with equal probability of 1
R . This mapping implies the conditional pmf of the

modified value ũjk = rjk given the unmodified value ujk = r′jk is Pr(ũjk = rjk|ujk = r′jk) =
1
R so

that the assumption of uncoordinated (independent) attacks on all sensors implies

Pr(ũ = r|θ) =
∑
all r′

Pr(ũ = r|u = r′)Pr(u = r′|θ)

=
∑
all r′

 N∏
j=1

K∏
k=1

1

R

Pr(u = r′|θ)

=

(
1

R

)NK
∑
all r′

Pr(u = r′|θ)


=

(
1

R

)NK

(2.19)

2Another IF attack could be described where the attacker modifies the value of r′jk to each of its possible values

except for the original one with equal probability of 1
R−1

. The analysis would be nearly identical and is, therefore,

omitted.
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which is independent of θ. For an attack on only the first p sensors

Pr(ũ = r|θ) =∑
all r′p

Pr(ũ = rp|u = r′p)Pr(ũp = r′p,uo = ro|θ)

=

(
1

R

)pK ∑
all r′p

Pr(ũp = r′p,uo = ro|θ)

=

(
1

R

)pK

Pr(uo = ro|θ). (2.20)

Using (2.19) and (2.20) in (2.12), the theorem follows

Although IF attacks lack any information regarding the parameter to be estimated and the

estimation algorithm employed by the system, IF attacks are still capable of causing significant

increases in the after-attack MSE values in some cases. Next, an example problem showing the

effect of the different attacks just introduced is presented.

2.2.1 An example: Maximum Likelihood estimation of a Constant in

Truncated Gaussian Noise

Consider the case where each sensor observes a constant θ ∈ [−3, 3] observed in truncated zero-

mean unit-variance Gaussian noise. The noise is truncated to represent the case where the sensors

produce only finite valued observations in the range [−5, 5] prior to quantization, which may be

considered more realistic. For the analysis, we employ a system comprised of eight sensors that

each transmit a single quantized observation to a fusion center with perfect transmission. Under

no attack, the observations at different sensors xj1, j = 1, . . . , N are assumed to be statistically

independent and identically distributed (iid). Further, the sensors are assumed to use identically

designed three-level quantizers having lower and upper thresholds of -1 and 1, respectively. For all

the presented figures, the estimation algorithm used at the fusion center is taken to be maximum

likelihood (ML) estimation under no attack, where the estimate θ̂(r)ML is defined to be the solution

to maxθ L(θ,J ), where L(θ,J ) is the log-likelihood function.
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2.2.2 Estimating a Constant in Truncated Gaussian Noise

Using the estimation system just described, and with four out of the eight sensors being at-

tacked, Figure 2.1 shows the resulting MSE values for the estimation under the different attacks

described in this section. Figure 2.1 also shows that, for the considered case, an attack having

full information always provides an MSE which is at least twice as large when compared to the

IF attack, which is the one lacking any information. System designers can use figures similar to

θ = True Constant Value
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MSE vs True Constant Value for different attack classes

No attack

OCC attack

OCU attack

IF attack

Figure 2.1: MSE for Constant in Truncated Gaussian estimation with N = 8,K = 1.

Figure 2.1 in order to understand the possible impacts of attacks on different estimation algorithms

and quantizer designs for a specific estimation problem.

Figure 2.2 shows the MSE curves under an increasing number of OCC attacked sensors for

the same estimation system. OCC attacks are the most devastating attacks since the attacker has

complete information regarding the parameter being estimated and the estimation system as a

whole, including the employed estimation algorithm. Therefore, system designers can use figures

similar to Figure 2.2 in order to deduce the number of sensors that need to be protected in order

to guarantee MSE levels below a certain tolerable value.

2.2.3 Special properties for IF attacks

In figure 2.3, the same estimation system described earlier is used with the only exception of

changing the thresholds of the quantizers from -1 and 1 to −Q−1( 13 ) and Q−1( 13 ) respectively
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θ = True Constant Value
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Figure 2.2: MSE for Constant in Truncated Gaussian estimation with N = 8,K = 1 and
an increasing number of OCC attacked sensors.

where Q−1 is inverse of the Q function, which is defined as Q(x) = 1√
2π

∫∞
x
e

−u2

2 du. This choice

for the thresholds sets Pr(ũ = r|θ) = 1/R for all r when θ = 0. Such a quantizer setting disarms

the IF attack when θ = 0 by starting with (2.19) even before the IF attack. As a result, this creates

a point (at θ = 0) of insensitivity towards IF attacks regardless of the number of sensors attacked.

This is shown in Figure 2.3. In general, system designers can choose the set of thresholds used in

the quantizers such that a point of insensitivity towards IF attacks occurs at any given value of θ.

Another interesting result shown in Figure 2.3 that is not seen in Figure 2.1 is that there exists a

region for the parameter values where the after-attack MSE is smaller than the unattacked MSE.

This indicates that defending against some attacks might not be necessary for some values of the

parameter being estimated since the IF attack is a random attack and it can actually result in

improved MSE values.

2.2.4 Bounds on the Performance of Constrained General Estimation

Approaches under General Attacks

In this subsection, we consider a case where the system employs some attack detection method

that constrains the passable attacks faced by the system. One way to make this possible could be

through spending extra resources on a selected set of sensors to protect them from being attacked.
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Figure 2.3: MSE for Constant in Truncated Gaussian estimation with N = 8,K = 1
showing IF insensitive point.

With a certain number of sensors protected against attacks, the information from those sensors

could be used by the fusion center to estimate the nominal unattacked pmf of the quantized data

which can then be compared to the estimated pmf of the data originating from unprotected sensors.

Now, with no loss of generality, consider an attack on only the first p sensors (all times)3 with

quantized samples ũp = rp which is characterized by the attacked pmf Pr(ũp = rp|θ) and let

Pr(up = rp|θ) denote the nominal unattacked pmf. Denote the quantized observations at the

unattacked sensors as uo = ro so that the full vector of quantized observations presented to the

fusion center is ũ = (ũp,uo) = (rp, ro). A sensor system where the fusion center rejects data when

a suitable distance, for example

g(p, p̃) =
∑
all rp

(
Pr(ũp = rp|θ)− Pr(up = rp|θ)

)2

(2.21)

3A marginally more general attack model could allow for an attack that chooses, at each time epoch, to either
corrupt the measurements or leave them unaltered. We worked out expressions for such attacks and they were
deemed to be a trivial extension of the work presented here. Consequently, those results were excluded.
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is larger than a certain threshold, d, will have a maximum MSE given by

max
{Pr(ũp=rp|θ),∀rp}

∑
all rp

∑
all ro

Pr(ũp = rp|θ)Pr(uo = ro|ũp = rp, θ)(θ̂((rp, ro))− θ)2

subject to
∑
all rp

Pr(ũp = rp|θ) = 1,

g(p, p̃) ≤ d,

0 < Pr(ũp = rp|θ) < 1, ∀rp, (2.22)

which, when compared to the general attacks described in this section turns out to be an OCU

attack with the added constraint that g(p, p̃) ≤ d. For the case where the attacker has no

information, it is not possible for the attacker to optimize the attack as proposed in (2.22). Instead,

the attacker could resort to some generalization of the information free attack which incorporates

the constraint that g(p, p̃) ≤ d. The powerful entropy concept [76], a natural measure for the

randomness of some observations, suggests replacing the objective function in (2.22) with

max
{Pr(ũp=rp|θ),∀rp}

(
−
∑
all rp

Pr(ũp = rp|θ) log (Pr(ũp = rp|θ))
)
, (2.23)

under the same constraints. The objective-maximizing solution in this case is the set of values

Pr(ũp = rp|θ) for all rp. After this solution is obtained, the MSE value is given by substituting

the appropriate value for Pr(ũp = rp|θ) in (2.14). It can be shown that (2.23) reduces to (2.18)

when d is sufficiently large so (2.23) does generalize IF attacks in this sense.

There exists many suitable algorithms for solving the optimization problems in (2.22) and

(2.23). One possible algorithm is to start with the solution Pr(ũp = rp|θ) = Pr(up = rp|θ), ∀rp

and then start shifting probability mass from the rp making the smallest contribution to the metric

being optimized to the rp making the largest contribution, until a constraint is reached. If the

constraint reached is Pr(ũp = rp|θ) = 0 for some rp then the component of the pmf Pr(ũp = rp|θ)

for that rp has been emptied and one should start emptying mass from the rp making the next

smallest contribution to the metric. The optimum solution is reached when g(p, p̃) = d is satisfied

or when Pr(ũp = rp|θ) = 1 for some rp which indicates that all the probability mass has been

emptied into the rp making largest contribution to the objective function. The algorithm is justified

based on the fact that each step always increases the objective function without violating any

constraints. In fact, each step provides the largest possible increase from the last solution with the
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given amount of probability transferred.

Figure 2.4 shows the different achievable MSE curves under different values of the distance

constraint value, d in (2.22). The same sensor system employed in Figures 2.1 and 2.2 was used

to generate Figure 2.4 with the exception of using only three senors instead of eight. The jumps

in the curves are the result of a change in the ordering of the rp making the smallest contribution

to the objective function for different values of θ. When the rps are emptied in a different order

for a different θ, a jump in the MSE curve results. From Figure 2.4, it can be seen that smaller

values of d result in limiting the attack and having better MSE values.
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Figure 2.4: MSE for Constant in Truncated Gaussian estimation with N = 3,K = 1
with varying distance constraint values under an OCU attack.

2.3 Conclusion

In this chapter, attacks on systems estimating an unknown deterministic parameter based on

quantized observations were studied. As bad data detectors are frequently employed in practice,

initially, we considered attacks that pass bad data detectors employed at the sensors that check

that the sensor data fits the unattacked observation model assumed by the estimation approach.

The class of attacks considered include attacks that cannot be represented by the previously

studied man-in-the-middle attacks for general estimation problems. For example, they include

spoofing attacks which have not been extensively studied for attacks on sensor networks performing
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parameter estimation. Assuming that all the observations are independent, we demonstrated that

the optimum processing will discard all the observations from the attacked sensors and that the

estimation performance cannot be improved beyond that achieved through the optimum processing

of unattacked sensor data for cases with a sufficient number of observations, provided the sets of

attacked sensors are identified at the fusion center. These results are valid for arbitrary quantization

schemes, any estimation problem, and any attack which passes the bad data detectors.

In the second section, we provided a general approach to characterize the after-attack estimation

performance of any optimum or suboptimum approach under any general type of attack, with

no assumptions on the estimation problem, the observation models, the number of sensors or

observations, or the dependence of the observations. The general attacks were classified into the

full information OCC and OCU attacks and the generally less effective IF attacks. Expressions

which describe the performance of any specific estimation algorithm under these attack classes

were provided. We showed that a quantizer can be designed such that there exists a value of

the parameter at which the estimation performance is insensitive to IF attacks regardless of the

number of attacked sensors. Further, a case where the after-attack MSE under an IF attack is

smaller than the unattacked MSE was presented. To account for some level of attack detection

carried out by the sensor system, constraints on the attack classes were considered and methods

to obtain the after-attack MSE in these cases were described.
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Chapter 3

Ocean Wave Estimation

It is well known that the optimal control that maximizes the power absorbed by a wave energy

converter (WEC) is future-dependent (non-causal). In most cases, this means that in order to

enhance the efficiency of energy conversion, the system controlling the WEC ought to be guided

by estimates of the impending time waveforms of the ocean waves. In fact, there are several

control strategies, described in [32,77,78], which have shown that through relying on estimates of

future waves, delivered just a few seconds ahead, it is possible to achieve a twofold increase in the

conversion efficiency of WEC devices. Additionally, more recent work on novel control strategies

of WEC devices, for example the work in [33,34], has continued to rely on the use of estimates for

future ocean waves.

The idea of using (short-term) estimates of future waves for enhanced WEC efficiency was

originally suggested by the authors of [79, 80]. The work in [81] provided experimental results

demonstrating the possible benefits of using sensors for the estimation of ocean waves. The same

work also described some heuristic measures for obtaining better predictions but those measures

did not account for noise in the measurements and errors in the predictions. Requirements for the

provided estimates (or predictions) and how they change in relation to a device’s hydrodynamic

properties were studied in [82]. Some of the more recent work on ocean wave estimation, like that

in [83,84], proposed adopting purely stochastic univariate time series solutions where predictions of

wave elevation at a certain point are generated based solely on past measurements of the same type

at that same location. While this approach has its benefits, stemming mainly from its adoption

of simplified models that do not require estimating the directionality of the waves, it may suffer

from some drawbacks. One such drawback is that whenever an estimate is produced, a univariate
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and purely stochastic time series approach will discard any valuable information contained in

measurements collected at other nearby locations which, if properly employed, may lead to more

accurate estimates. Also, such an a approach is unable to provide any information regarding the

directionality of the waves, which could become important when several WECs are operating in a

farm.

In this chapter, we consider an alternate approach of having a network of spatially distributed

sensors where all their measurements are fused together to create a spatial and temporal description

of the wave surface surrounding the sensors and the WEC devices. Having a full description of

the wave surface means that we are able to provide estimates pertaining to locations that are

possibly different from the locations of the sensors. Another advantage of using this approach is

that the number of sensors in the network is no longer related to the number of WEC devices or

the number of locations at which the estimates are needed. Therefore, we may employ a number of

sensors that is larger than the number of WECs in order to collect a larger number of time samples,

obtained within the same amount of time, and hence produce more accurate predictions. Thus,

for robustness under failures, it may suffice to have a few extra sensors in the network that allow

us to produce accurate estimates even if a small number of sensors in the network fail over time

whereas univariate time series approaches would require each sensor to have its own backup. Since

the approach we consider has the potential to provide more information about the ocean surface, it

does suffer from having a fairly more complex wave model and is typically associated with relatively

higher upfront costs when compared to the other method. However, because our approach has

the potential to provide very valuable information that is especially useful for novel WEC control

methods, we believe that studying this approach, where a lot of work remains to be explored and

completed, is of great interest from both research and practical prospectives. The authors of [85]

and [86] also considered employing a network of spatially distributed sensors but their work was

purely deterministic and did not account for noise in the sesnors’ measurements. As a result, the

performance of the filters designed in [85] and [86] under noisy measurements is not known as they

have not been compared to any bounds on performance including the Cramer-Rao Bound (CRB)

which, as demonstrated by our numerical results, is shown to be nearly achievable. It is worth

mentioning that the resulting wave models under our approach involve many complexities that we

do not claim to have solved or completely answered and that, through the work presented here,

we rather aim to contribute to the advancement of the work attempting to address some of them.

We believe that having the ability to compare approaches relying on measurements from spatially
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distributed sensors to those employing univariate time series approaches is of great value and that

much remains to be understood about the performance-cost trade-offs that exist between the two

methods. A necessary first step towards that comparison is to develop an accurate estimation

approach under an array-based model which we present in this chapter.

The presented work derives general expressions for the Fisher Information Matrix (FIM) and the

CRB. The CRB tightly bounds the smallest mean square error (MSE) of any unbiased estimation

approach. This is the first work to provide closed form expressions providing a bound on the

accuracy of the estimation for the problem of estimating ocean waves. These expressions are

general in the sense that the set of collected measurements is not restricted to originating from a

single type of sensor, elevation or acceleration for example, as it allows the measurements to be a

mixture of any number of types from a given set of possible sensor types. In the chapter, we also

present a low-complexity method for the parametric estimation of the quantity of interest (elevation

for example) and provide numerical results highlighting the accuracy of the method. Although

our method is suboptimal, its performance seems to come very close to the CRB for almost all the

cases we considered under the assumptions specified in this chapter. Moreover, as shown by the

numerical results presented in this chapter, the suggested method has a running time that greatly

improves on that of more conventional methods typically employed for solving problems similar to

the one addressed in this chapter. All the work in this chapter is conducted while describing the

ocean as a sum of incident plane waves, each parameterized by amplitude, frequency, direction,

and phase. Such a wave model is obtained under stated fluid mechanics assumptions and the

assumption that the sensors employed to collect the measurements are sufficiently small to have

no effect on the wave field.

In the following section the wave model used to describe the sensor measurements is formally

introduced. Section 3.2 describes the CRB and includes all the general equations for calculating the

FIM and the CRB under noisy observations. In Section 3.3, we present our estimation approach

and describe several key ideas regarding its operation. Section 3.4 presents numerical examples

demonstrating the performance of our proposed approach relative to the CRB. In Section 3.5, we

propose a method to quantify the loss in mean absorbed power by WEC devices due to errors in

estimation. Finally, Section 3.6 summarizes our results and concludes the work presented in this

chapter.
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3.1 Ocean Wave Model

For our analysis involving the plane waves, we use the well accepted standard wave equation

model from [24] where we assume the ocean is an ideal incompressible fluid with no loss of me-

chanical energy. We also adopt the common assumptions that the fluid motion is irrotational and

that the wave amplitudes are small enough so that linear theory is applicable. Moreover, the de-

ployment area in the ocean is assumed to be of sufficient depth such that finite depth effects, other

than dispersion, are small. Finally, we assume that the incident waves were created by forcing

functions, distant storms for example, that were applied at sufficient distances away resulting in

the observation of fully developed ocean waves. These assumptions are used extensively in the

area of control for ocean WEC devices and are generally well accepted. Under the just described

assumptions, a measurement of any of the quantities identified in Table 3.1 made at any location

(x, y)T in the two-dimensional incident field and any time t of interest is described by the general

expression1

ψ(x, y, t;θ) =

L∑
i=1

Mi∑
j=1

Ai,jw
a
i cos

(
(
w2

i

g
)x cos(βi,j) + (

w2
i

g
)y sin(βi,j)− twi + ϕi,j − b

π

2

)
, (3.1)

which is parameterized by

θ =(A1,1, A1,2, . . . , A1,M1
, A2,1, . . . , AL,ML

,

ω1, . . . , ωL,

β1,1, β1,2, . . . , β1,M1 , β2,1, . . . , βL,ML
,

ϕ1,1, ϕ1,2, . . . , ϕ1,M1 , ϕ2,1, . . . , ϕL,ML
)T (3.2)

where Ai,j is the amplitude in meters, ωj is the frequency in radians per second, βi,j is the angular

direction in radians measured relative to the x-axis, ϕi,j is the phase in radians and the following

1While L and Mi, i = 1, . . . , L are often picked based on experimental investigations by WEC manufacturers
and researchers, there are studies in the signal processing community [87] that suggest methods to optimize these
choices, but we omit such a discussion for brevity and assume Mi i = 1, . . . , L and L are known here.
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hold true.

0 < Ai,j ∀i and ∀j, (3.3)

0 < wi ∀i, and wi ̸= wi′ for i ̸= i′, (3.4)

0 ≤ βi,j < 2π ∀i and ∀j, (3.5)

0 ≤ ϕi,j < 2π ∀i and ∀j. (3.6)

The constants ‘a’ and ‘b’ in (3.1) are integer constants whose values are set according to Table 3.1

to determine the quantity under consideration. The quantities provided in Table 3.1 are a subset

of a larger group of possible types of measurements, provided in our preliminary work [88] and [89]

and the work presented here could be easily extended to include the larger set of measurements.

Since the wave field, given by (3.1), is parameterized by the unknown θ, given by (3.2), it is by

producing estimates of θ that we are able to generate, at any point in space and any time, future

predictions of ψ(x, y, t;θ) which could be used for control. While θ will slowly change over long

periods of time, it may be assumed to remain constant for few minutes at a time, at least over the

area monitored by the sensors. This assumption was adopted in [78] and [85] and as long as the

values of the parameters are continuously re-estimated several times over far shorter time periods,

this assumption is a reasonable one.

Table 3.1: Integer Constant Values for Selected Predicted Quantities or Sensor Measurements

Sensor Measurement a b
Surface Elevation 0 0
Vertical Surface Velocity 1 1
Vertical Surface Acceleration 2 0

In the next section, we derive general expressions for the FIM and CRB.

3.2 Cramer-Rao Bound

In this section we derive the CRB [90] on the MSE for the prediction, made at location (xp, yp)
T

and time tp, of the value ψ(xp, yp, tp;θ) given values for the constants ‘a’ and ‘b’ specified according

to one of the rows from Table 3.1. We consider having a network with N sensors, possibly of

different types, each having known position (xr, yr)
T , r = 1, . . . , N and providing the noisy sensor
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measurements

Ψ(xr, yr, tm) =ψ(xr, yr, tm;θ) + vr(tm), tm = 0, . . . , (K − 1)Ts (3.7)

where Ts is the sampling period, K is the total number of time samples collected by each sensor,

and vr(tm) represents noise and distortion. The noise in the measurements is meant to capture

errors due to electrical and thermal noise and other random measurement errors in the system

which are bound to exist. For simplicity, assume

(v1(0), . . . , vN (0), . . . , v1((K − 1)Ts), . . . , vN ((K − 1)Ts))
T

is jointly Gaussian with a zero mean vector and a covariance matrix that is diagonal with (σ2
1,0, . . . , σ

2
N,K−1)

along the diagonal. Then, the joint probability density function (pdf) of the observations condi-

tioned on θ, often called the likelihood function, is

fΨ(Ψ;θ) =
N∏
r=1

K−1∏
k=0

1√
2πσ2

r,k

exp

(
−
(
Ψ(xr, yr, kTs)− ψ(xr, yr, kTs;θ)

)2
2σ2

r,k

)
. (3.8)

Let θ̂ and ψ̂(xp, yp, tp; θ̂) be unbiased estimators of θ and ψ(xp, yp, tp;θ), respectively. Then

by [91, 92] the MSE of the estimator ψ̂(xp, yp, tp; θ̂), which is equal to the variance in this case,

must satisfy

var(ψ̂(xp, yp, tp)) ≥ q(θ)TJ(θ)−1q(θ), (3.9)

where the quantity on the right hand side of (3.9) is the CRB which is computed using the vector

q(θ) and the FIM, J(θ). The vector q(θ) is defined as

q(θ) =q(xp, yp, tp;θ)

=

(
∂ψ(xp, yp, tp;θ)

∂θ1
, . . . ,

∂ψ(xp, yp, tp;θ)

∂θ3M+L

)T

, (3.10)
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where θi, i = 1, 2, . . . , 3M + L is the ith element in θ which was given in (3.2) and M =
L∑

i=1

Mi.

The ℓ− nth element of J(θ) is calculated according to [91,92] and is given by

Jℓ,n(θ) = E

{
∂

∂θℓ
ln fΨ(Ψ;θ)

∂

∂θn
ln fΨ(Ψ;θ)

}
, (3.11)

which is a function of the sensor locations and the sampling times but is not a function of (xp, yp)
T

and tp, the location and time of prediction respectively. The FIM also allows us to obtain the

CRB for the MSE in estimating the elements of θ since the MSE for estimating the ith element in

θ, equal to the variance in this case, must satisfy

var(θ̂i) ≥
[
J(θ)−1

]
i,i
, i = 1, . . . , 3M + L. (3.12)

We note that (xp, yp)
T is not limited to locations where sensors are available and could be any

location of interest. We also note that, for almost all the considered situations, we did not observe

any significant difference between the CRB values at sensor locations and the CRB values at nearby

locations where no measurements (sensors) are available. Under our assumptions about the noise,

(3.11) takes on the general form

Jℓ,n(θ) =
N∑
r=1

K−1∑
k=0

1

σ2
r,k

(
∂

∂θℓ
ψ(xr, yr, kTs;θ)

)(
∂

∂θn
ψ(xr, yr, kTs;θ)

)
(3.13)

which is a sum over the product of two derivatives of (3.1) with respect to either amplitude,

direction, frequency or phase depending on the parameters that θℓ and θn correspond to in θ. We

derived the expressions for these derivatives, and give them below as

∂

∂Ai,j
Φ(xr, yr, t) = war

i cos

(
w2

i

g

(
xr cos(βi,j) + yr sin(βi,j)

)
− twi + ϕi,j − br

π

2

)
, (3.14)
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∂

∂wi
Φ(xr, yr, t) =

Mi∑
j=1

Ai,jarw
ar−1
i

cos

(
w2

i

g

(
xr cos(βi,j) + yr sin(βi,j)

)
− twi + ϕi,j − br

π

2

)
−

Ai,jw
ar
i sin

(
w2

i

g
(xr cos(βi,j) + yr sin(βi,j))− twi

+ ϕi,j − br
π

2

)(
2wi

g
(xrcos(βi,j) + yrsin(βi,j))− t

)
(3.15)

∂

∂βi,j
Φ(xr, yr, t) = Ai,jw

ar
i (

w2
i

g
)(xr sin(βi,j)− yr cos(βi,j))

sin

(
w2

i

g
(xr cos(βi,j) + yr sin(βi,j))− twi + ϕi,j − br

π

2

)
, (3.16)

and

∂

∂ϕi,j
Φ(xr, yr, t) = −Ai,jw

ar
i sin

(
w2

i

g
(xr cos(βi,j) + yr sin(βi,j))− twi + ϕi,j − br

π

2

)
, (3.17)

where the values of the constants ar and br determine the type of the measurement available at

(xr, yr)
T . A numerical example where the CRB is calculated using the just provided expressions

is given in section 3.4 where we compare the accuracy our proposed estimation approach, which

we present next, to the CRB.

3.3 The Parametric Estimation of Ocean Waves

For this section, we consider the same network setup introduced in Section 3.2 where we have

a network of N distributed sensors with known locations (xr, yr)
T , r = 1, . . . , N . Since the choice

of the origin is arbitrary, we will assume, with no loss of generality, that (x1, y1) = (0, 0)T . We

adopt the signal model for the noisy sensor measurements given by (3.7). Further, throughout this

section we assume that2 σ2
1,0 = · · · = σ2

N,K−1 = σ2.

Under the just stated assumptions and before introducing our suggested estimation approach,

let us consider the maximum likelihood (ML) estimator for θ. The ML estimate θ̂ML is defined

2The assumption that σ2
1,0 = · · · = σ2

N,K−1 = σ2 is adopted only to simplify the presentation of our method.

Once the presented method is understood, the extension to the case where it possible that σ2
1,0 ̸= · · · ̸= σ2

N,K−1 is
fairly straightforward.
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as θ̂ML = argmaxθ ln(fΨ(Ψ;θ)) where L(Ψ;θ) , ln(fΨ(Ψ;θ)) is the natural logarithm of the

likelihood function (3.8), typically called the log-likelihood function, which in our case is given by

L(Ψ;θ) = ln(2πσ2)
−NK

2 − 1

2σ2

N∑
r=1

K−1∑
k=0

(Ψ(xr, yr, kTs)− ψ(xr, yr, kTs;θ))2, (3.18)

and since the first term in (3.18) does not depend on θ and neither does 1
2σ2 , it can be shown that

the ML estimate θ̂ML can be described as

θ̂ML = argmin
θ

N∑
r=1

K−1∑
k=0

(Ψ(xr, yr, kTs)− ψ(xr, yr, kTs;θ))2, (3.19)

which is the value of θ that minimizes the sum of the squared error over all time measurements

and all sensors (least squares fit). For a simple convex problem, the ML estimate could be found

using derivatives of the objective function but, unfortunately, the considered problem is non-convex

which hinders the use of such methods due to the existence of local extrema.

We now present our proposed estimation approach in the following subsection.

3.3.1 A Proposed Estimation Approach

Consider the general wave model given in (3.1). If none of the component waves in (3.1) have

the same frequency, then the inner sum in (3.1) would be over only a single value and we would

essentially have a single sum. Now, as an approximation, if we take all the waves in (3.1) that share

the same frequency and just slightly perturb the frequency values for those waves such that the

resulting frequency values are all unique yet very close to the unperturbed value, then we essentially

have a single sum approximation of (3.1). A step-by-step explanation for reducing the double sum

to a single sum is given in the appendix for this chapter. Having the frequencies of all the waves be

different provides us with great benefits when it comes to the design of the estimation algorithm,

which we present next, and since the frequencies could be made arbitrarily close to their original

value, the amount of loss due to the modeling error can be controlled and driven to be smaller

than any predetermined acceptable value. We believe that such an approximation is reasonable,

especially since the amount of modeling error introduced by this approximation is controllable.

Therefore, using the just described approximation and through re-indexing the parameter values
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in (3.1), we will adopt, as our wave model for the remainder of this chapter, the expression

ψ(x, y, t;θ) =
M∑
i=1

Aiw
a
i cos

(
(
w2

i

g
)x cos(βi) + (

w2
i

g
)y sin(βi)− twi + ϕi − b

π

2

)
, (3.20)

where M =
L∑

i=1

Mi and the unknown parameters are

θ = (A1, . . . , AM , ω1, . . . , ωM , β1, . . . , βM , ϕ1, . . . , ϕM )T . (3.21)

However, to ensure that we are able to correctly estimate the frequencies in (3.20), we will assume

that K, the number of samples from a single sensor, is chosen sufficiently large such that

|wi − wi′ | >
4π

K
∀i ̸= i′, 1 < i < M, 1 < i′ < M, (3.22)

is satisfied. The right-hand side in (3.22) is equal to twice the value of what is known as the

frequency or spectral resolution of the employed periodogram [93] approach. Since K is typically

a design variable, there will always exist a choice of K that is sufficiently large such that (3.22) is

satisfied and the approximation of (3.1) by (3.20) is sufficiently accurate. Lastly, since the ordering

of the frequencies ω1, . . . , ωM is arbitrary, we will assume, without any loss of generality, that

ω1 < ω2 < · · · < ωM . (3.23)

Next, we present our proposed estimation method under Algorithm 3.1. The presented

method depends on the subroutines Estimate Frequencies, Linear LS and Find Betas given,

respectively, by Subroutine 3.1, Subroutine 3.2, and Subroutine 3.3. The presented method

employs the function Size which accepts an input vector and then simply returns the size, or

length, of the vector. and the function Sort which takes in an input vector and a sorting mode

(either ascending or descending) and returns as output a sorted version of the input vector as

well as a vector giving the position in the original vector of the now sorted element. The arctan 2

function which is also known as the four quadrant arctan is also employed. We also employ the
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p modulo q operation which is defined as the operation returning a value v such that

p modulo q , v = p− qn, (3.24)

where 0 ≤ v < q, n ∈ Z, (3.25)

and Z is the set of integer numbers.

Algorithm 3.1: Proposed Estimation Approach - (Partial)

1: Input: Sensor locations (x1, y1)
T and types (ar, br)

T for r = 1, . . . , N with (x1, y1)
T =

(0, 0)T . Total number of frequencies L. Sampling period Ts. Sensor measurements Yr =
(Ψ(xr, yr, 0), . . . ,Ψ(xr, yr, (K − 1)Ts))

T , r = 1, . . . , N .
2: Output: θ̂ = (A1, . . . , AL, ω1, . . . , ωL, β1, . . . , βL, ϕ1, . . . , ϕL)

T

3: Begin
4: for r = 1 to N do
5: Ŵr,inital = Estimate Frequencies(L, Ts,Yr)
6: end for
7: for i = 1 to L do
8: Ŵinit[i] =

1
N

∑N
r=1 Ŵr,init[i]

9: end for
10: for r = 1 to N do
11: [Âr,init, Γ̂r,init] = Linear LS(Ŵintial, ar, br,Yr)
12: end for
13: for i = 1 to L do
14: Âinit[i] =

1
N

∑N
r=1 Âr,init[i]

15: end for
16: for r = 1 to N do
17: Define ψ′

r(t;θ
′
r) =

∑L
i=1Ai cos(Γi,r − wit − br

π
2 ) where θ′

r = (A,W,Γr)
T =

(A1, . . . , AL, w1, . . . , wL,Γ1,r, . . . ,ΓL,r).

18: Use local search algorithm with θ′
r = (Âinit,Ŵinit, Γ̂r,init)

T as initial guess to find a

new θ′
r = (Â,Ŵr, Γ̂r)

T that minimizes
∑K−1

k=0 (Ψ(xr, yr, kTs)− ψ′
r(t;θ

′
r))

2

19: Ŵr = (ŵ1, . . . , ŵL)
T = θ′

r[L+ 1 : 2L]
20: end for
21: for i = 1 to L do
22: Ŵ[i] = 1

N

∑N
r=1 Ŵr[i]

23: end for

The presented approach relies on a few key ideas. The first key idea, utilized in Subroutine 3.1,

is that of obtaining estimates for frequency as those values of w that correspond to the largest L

peaks in the periodogram, which is given by

I(w) =
1

K

∣∣∣∣K−1∑
k=0

Ψ(xr, yr, kTs)e
−jwk

∣∣∣∣2. (3.26)

This idea is well-studied for estimating frequency and is used in several signal processing problems

[92].
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Algorithm 3.1: Proposed Estimation Approach - Continued

24: for r = 1 to N do
25: [Âr, Γ̂r] = Linear LS(Ŵ, ar, br,Yr)
26: end for
27: for i = 1 to L do
28: Â[i] = 1

N

∑N
r=1 Âr[i]

29: end for
30: ϕ̂ = Γ̂1

31: for r = 2 to N do
32: Ξ̂r = (Γ̂r − ϕ̂) modulo 2π
33: end for
34: for i = 1 to L do
35: Pi = (Ξ̂2[i], . . . , Ξ̂N [i])T

36: Ŵe,i = (Ŵ[i], Ŵ 1[i], Ŵ 2[i], . . . , ŴN [i])T

37: Bi = Find Betas
(
Ŵ[i],Pi, (x2, y2)

T , . . . , (xN , yN )T
)

38: end for

39: Define ψ(xr, yr, t;θ) =
L∑

i=1

Aiw
ar
i cos

(
(
w2

i

g )xr cos(βi) + (
w2

i

g )yr sin(βi)− twi + ϕi − br π
2

)
with

θ = (A1, . . . , AL, ω1, . . . , ωL, β1, . . . , βL, ϕ1, . . . , ϕL)
T .

40: θpossible = (Â,Ŵ,B1[1],B2[1], . . . , ,BL[1], ϕ̂)
T

41: for i = 1 to L do
42: for j = 1 to Size(Bi) do
43: θpossible[2L+ i] = Bi[j]
44: fit[i, j] =

N∑
r=1

K−1∑
k=0

(Ψ(xr, yr, kTs)− ψ(xr, yr, kTs;θpossible))
2

45: end for
46: j∗ = min

j
(fit[i, j])

47: β[i] = Bi[j
∗]

48: end for
49: θ̂ = (Â,Ŵ,β, ϕ̂)T

50: (optional) Use local search algorithm with θ̂ as initial guess to find a new θ̂ that minimizes∑N
r=1

∑K−1
k=0 (Ψ(xr, yr, kTs)− ψ(xr, yr, kTs;θpossible))

2

51: Return θ̂

The second key idea, utilized in Subroutine 3.2, is based on repeatedly employing the trigono-

metric identity

cos(Pi,r −Qi) = cos(Pi,r) cos(Qi) + sin(Pi,r) sin(Qi), (3.27)

in equation (3.1) with

Pr,i = (
w2

i

g
)xr cos(βi) + (

w2
i

g
)yr sin(βi) + ϕi − b

π

2
, (3.28)

Qi = twi, i = 1, 2, . . . , L,
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Subroutine 3.1: Estimate Frequencies

1: Input: Total number of frequencies L. Sampling period Ts. Sensor measurements Yr =
(Ψ(xr, yr, 0), . . . ,Ψ(xr, yr, (K − 1)Ts))

T

2: Output: Ŵ = (ŵ1, . . . , ŵL)
T

3: Begin
4: for i = 1 to 1/2Ts do
5: Ω[i] = 2π(i− 1)/(Ts2

⌈log2(Size(Yr))⌉)

6: I[i] = 1
K

∣∣∣∣∑K−1
k=0 Ψ(xr, yr, kTs)exp(−jΩ[i]k)

∣∣∣∣2
7: end for
8: for i = 2 to Size(I)− 1 do
9: if I[i] > I[i− 1] and I[i] > I[i+ 1] then

10: peak[i− 1] = I[i]
11: peak freq[i− 1] = Ω[i]
12: end if
13: end for
14: [peak sorted,index] = Sort(peak, ‘descending’)
15: for i = 1 to L do
16: Ŵ[i] =peak freq[index[i]]
17: end for
18: [Ŵ, index2] = Sort(Ŵ, ‘ascending’)

19: Return Ŵ

such that the observations from a sensor located at (xr, yr)
T , collected in the vector

Yr = (Ψ(xr, yr, 0), . . . ,Ψ(xr, yr, (K − 1)Ts))
T , (3.29)

where Ψ(xr, yr, kTs) for k = 0, 1, . . . , (K − 1) is defined in (3.7), are described by the linear model

Yr = Hr(αr,1,1, αr,1,2, . . . , αr,L,1, αr,L,2)
T + (vr(0), vr(Ts), . . . , vr((K − 1)Ts))

T (3.30)

where the noise terms vr(kTs), k = 0, 1, . . . , (K−1) are as defined in (3.7), the observation matrix

Hr is obtained according to Step 4 through Step 7 in Subroutine 3.2, and

αr,i,1 = Awar

l cos(Pr,i), (3.31)

αr,i,2 = Awar

l sin(Pr,i), (3.32)

where Pi,r is given by (3.28). Given this linear model we implement a linear least squares estimator,

which is known to have desirable properties, in Step 8 of Subroutine 3.2.

The third key idea employed in the presented approach is recognizing that the initial estimates

from executing Step 4 through Step 15 of Algorithm 3.1 can be employed as great starting
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Subroutine 3.2: Linear LS

1: Input: Frequency estimates Ŵ = (ŵ1, . . . , ŵL)
T , sensor constants ar, br, and sensor measure-

ments Yr

2: Output: Âr = (Â1,r, . . . , ÂL,r)
T and Γ̂r = (Γ̂1,r, . . . , Γ̂L,r)

T

3: Begin
4: for l = 1 to Size(Ŵ ) do

5: Ĥl,r =


cos( brπ2 ) sin( brπ2 )

cos(ω̂lTs − brπ
2 ) sin(ω̂lTs +

brπ
2 )

...
...

cos(ω̂l(K-1)Ts − brπ
2 ) sin(ω̂l(K-1)Ts +

brπ
2 )


6: end for
7: Ĥr = [Ĥ1,r Ĥ2,r . . . ĤL,r]

8: (α̂1,1, α̂1,2, . . . , α̂L,1, α̂L,2)
T = (ĤT

r Ĥr)
−1ĤT

r Yr

9: for l = 1 to Size(Ŵ ) do
10: Âl,r =

√
(α̂l,1)2 + (α̂l,2)2/(ŵl)

ar

11: Γ̂l,r = arctan 2(α̂l,2, (−1)br α̂l,1) modulo 2π
12: end for
13: Âr = (Â1,r, . . . , ÂL,r)

T

14: Γ̂r = (Γ̂1,r, . . . , Γ̂L,r)
T

15: Return Âr, Γ̂r

points (guesses) to standard iterative optimization algorithms. Since these starting points are

fairly accurate to begin with, the optimization algorithms will typically converge relatively quickly

and have favorable running times. Safeguards limiting the maximum number of iterations for the

optimization algorithm could be employed in order to limit the total running time of the algorithm

but this might cause losses in the accuracy of the estimates.

The fourth and most important key idea is that used in Subroutine 3.3 which is employed

to facilitate the estimation of the directions βi, i = 1, . . . , L. The problem that Subroutine 3.3

solves stems from the fact that the estimates of Γi,r, r = 2, . . . , N, i = 1, . . . , L, obtained in

Step 11 and Step 25 of Algorithm 3.1, which contain the information regarding the wave di-

rections are produced through an inverse tangent operation whose range is limited to [−π, π]. Due

to this fact, each of the obtained Γi,r’s is possibly shifted by some unknown integer multiple of 2π

and instead of obtaining estimates of

γi,r , (
w2

i

g
)x cos(βi) + (

w2
i

g
)y sin(βi) + ϕi, (3.33)

we are obtaining estimates of

Γi,r , γi,r modulo 2π. (3.34)
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Subroutine 3.3: Find Betas

1: Input: Frequency estimate ŵ and local frequency estimates ŵ1, . . . , ŵN , collected into W =
(ŵ, ŵ1, . . . , ŵN ) . Vector of phase terms P. Sensor locations (xr, yr)

T , r = 2, . . . , N
2: Output: The vector Possible betas
3: Begin
4: L = {0}
5: for r = 2 to N do
6: Lr = {}
7: for i = 1 to N + 1 do

8: nr =

⌊
(W [i])2

√
(xr)2+(yr)2

2πg

⌋
9: for k = −nr to nr do

10: ζ1 = arccos
( k(2πg)

(W [i])2
√

(xr)2+(yr)2

)
+ arctan 2(yr, xr)

11: Lr = Lr ∪ (ζ1 modulo 2π)
12: Lr = Lr ∪ ((ζ1 − π) modulo 2π)
13: end for
14: end for
15: L = L ∪ Lr

16: end for
17: S = Sort(L, ‘ascending’)
18: R =

[
(x2 . . . xN )T , (y2 . . . yN )T

]
19: for j = 1 to Size(S)− 1 do
20: ζ2 = 0.5(S[j] + S[j + 1])
21: for r = 1 to N − 1 do

22: Q[r, j] = floor

(
(ŵ)2

2πg

(
xr cos(ζ2) + yr sin(ζ2)

))
23: end for
24: end for
25: for j = 1 to Size(S)− 1 do

26:

[
ρ̂r,1
ρ̂r,2

]
= (RTR)−1RT


P[1] + 2πQ[1, j]
P[2] + 2πQ[2, j]

...
P[N -1] + 2πQ[N -1, j]


27: Possible betas[j] = arctan 2(ρ̂r,2, ρ̂r,1)
28: end for
29: Return Possible betas

Subroutine 3.3 generates a list of possible combinations of (ni,2, . . . , ni,N )T , the number of

integer multiples of 2π, that ought to be added to the obtained estimates of Γi,r such that

γi,r = Γi,r+2πni,r, i = 1, . . . , L, r = 2, . . . , N . While one might expect the number of possible com-

binations generated to grow exponentially with N , the clever construction of these combinations by

Subroutine 3.3 results in the total number of possible combinations of (ni,2, . . . , ni,N )T being at

most 2N2

(
2

⌊
(wi)

2D
2πg

⌋
+1

)
which is polynomial in N since D , maxr=2,...,N

√
(xr)2 + (yr)2. The

great reduction in the number of generated combinations stems from the fact that Subroutine 3.3

takes advantage of knowing the locations of the sensors and judiciously avoids generating combi-

nations of (ni,2, . . . , ni,N )T that are not possible under all values of βi given the locations of the

41



sensors. Since the number of generated combinations is relatively small, and the correct com-

bination lies amongst the generated combinations, the proposed approach tries all the possible

combinations and generates a list of possible values for each βi, i = 1, 2, . . . , L and then, for each

i, chooses the one that results in the best squares fit over all sensor measurements and sensors

locations as the estimate of βi.

3.4 Discussion and Numerical Results

In this section we present numerical results that demonstrate the estimation accuracy of the

presented approach and also compare its runtime to that of possible global optimization methods.

We first consider the case of a regular ocean environment and then consider the case where the

ocean environment is described by 3 different component waves. We also consider having correlated

noise for a case where the ocean environment is described by 6 components waves.

3.4.1 Estimation Performance: Simple Ocean Environment

In this subsection we consider the simple case where the ocean is described by a single com-

ponent wave. That is, we assume the ocean is given by (3.20) with L = 1 and that the value of

the unknown variable θ = (A,w, β, ϕ)T is given. For the result presented in Figure 3.1, we set

the value of the unknown variable to θ = (0.5, 0.5, 0.5, 0.5)T . We assumed that 8 elevation sensors

were employed in the network and that they were placed, equally spaced along the perimeter, on a

circle of radius equal to 100m and centered at (0,−100)T such that one of the sensors is located at

the origin. Further, we assumed that the sensors will collect their measurements over an interval of

60s starting at time t = 0 and that the variance of the additive noise in the sensors’ measurements

is equal to σ2 = (0.25)2 for all the sensors. Under the just stated conditions and assumptions, we

employed our estimation method to produce estimates of the unknown variable θ as we varied the

sensors’ sampling frequency, and hence the total number of samples, in increments of 60Hz, from

60Hz to 300Hz and then increasing the sampling frequency to 500Hz and afterwards to 1000Hz.

For each sampling frequency, we ran a Monte Carlo simulation of 10000 runs where we generated a

new realization of the noise for each run. In Figure 3.1, we include a plot of the obtained MSE for

estimating each element of θ and compare it to the CRB for estimating that same element of θ.

The CRB is obtained according to the expressions and equations derived and presented in Section

3.2. The different curves were multiplied by different scaling factors, given in the legend of Figure
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3.1, in order to include all the curves in a single figure. From Figure 3.1, we can see that the MSE

obtained using our estimation approach seems to come extremely close to the CRB3.
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Figure 3.1: CRB and MSE curves for estimating θ = (0.5, 0.5, 0.5, 0.5)T

3.4.2 Estimation Performance: Three Component Waves

For this subsection, we consider the case where the ocean environment is described by 3 different

component waves. This means that we have L = 3 in (3.20) and that our unknown variable is

given by

θ = (A1, A2, A3, w1, w2, w3, β1, β2, β3, ϕ1, ϕ2, ϕ3)
T . (3.35)

Using the same sensor types, sensor layouts, and the same noise variance as those assumed in the

previous subsection and only changing the length of the interval over which the measurements are

collected to 30s, starting at t = 0, we generated 100 different random ocean environments with

L = 3 where the amplitudes were chosen uniformly randomly over a range from 0.5− 2m and the

directions and phases were each chosen uniformly randomly over the full range of 0−2π. Since the

frequencies must be sufficiently far apart, w1 was chosen uniformly randomly from 0.5−1rad/s, w2

was chosen uniformly randomly from 2 − 2.5rad/s, and w3 was chosen uniformly randomly from

3.5−4rad/s. To obtain our numerical results, we employed our presented estimation method under

sampling frequencies that were increased in increments of 200Hz from 100Hz to 1100HZ. For each

3While the provided results are for a single possible value of the unknown parameter θ, we attempted a very
large number of different and random values for θ and in every attempted case, the obtained results were essentially
identical to the ones presented here.
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sampling frequency and for each of the 100 ocean environments, we ran a Monte Carlo simulation

of 300 runs where we generated a new realization of the noise for each run. Afterwards, for every

sampling frequency and every environment, the MSE for each component of the unknown variable

θ, given in (3.35), was obtained and compared to the CRB, calculated according to the expressions

derived in Section 3.2. Then, for each of the considered ocean environments, we obtained curves

of MSE and CRB similar to those presented in Figure 3.1. Since the number of such curves is very

large, and although the curves were generally very similar to each other and to those in Figure

3.1, we decided to rank the curves according to the sum of the percentage difference between

the MSE and CRB values at each of the considered sampling frequencies and present some of

the worst scoring curves for the different types of parameters in θ. In Figure 3.2 we present the

worst scoring MSE curves, on a logarithmic scale, for estimating A1, w2, β3, and ϕ1 over the 100

considered ocean environments along with the CRB associated with estimating that parameter for

the ocean environment returning the worst score for that parameter.
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Figure 3.2: Worst scoring MSE curves according to the sum of percentage difference between MSE
curve and associated CRB curve, which is also included

From Figure 3.2, we can see that even the worst scoring MSE curves came very close to the

CRB which highlights the great accuracy we were continually able to achieve with our presented

estimation approach not just under regular wave environments but also under complex, irregular

wave environments. It is important to note that the presented results are numerical and while

we have not been able to generate cases where the presented estimation approach fails to produce

accurate estimates, this does not provide a mathematical or analytical guarantee regarding the

performance of the estimation approach over the entire space of the unknown variables.
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In the following subsection, we consider an even more complicated wave environment containing

6 component waves and where the noise in the measurements is correlated.

3.4.3 Estimation Performance: Six Component Waves and Correlated

Noise

To further demonstrate the accuracy of the presented approach, in this subsection we consider

an ocean environment that could be regarded as more realistic under the presence of wind waves

and other real-world conditions. The considered environment was chosen to have L = 6 component

waves. Since ocean environments are sometimes decomposed into wave systems where waves from

any given system all travel in the same direction, the first three component waves were chosen to all

have the same wave direction of π/4 and the last three components were chosen to all have the same

wave direction of 2π/3. The amplitudes were all chosen uniformly randomly over 0.5− 1.5m and

the phases were all chosen uniformly randomly over the full range of 0− 2π. Further, we assumed

the first three components waves had frequencies of w1 = 0.25rads/s, w2 = 0.5rads/s, and w3 =

0.75rads/s and we assumed the last three component waves had w4 = 1.25rads/s, w5 = 1.5rads/s,

and w6 = 1.75rads/s as their frequencies. It is also assumed that we employ the same sensor types,

number, and layouts outlined earlier and we consider the case where the sensor measurements are

collected over an interval of 60s starting at time t = 0 and at a sampling frequency of 200Hz.

As for the noise, we compared the performance of our algorithm under both correlated and

uncorrelated noise. For the uncorrelated case, we assumed the noise is Gaussian with zero mean

and a variance of σ2 = 0.2m2. For the correlated case we assumed that, at each time interval, the

noise in the measurements collected by the eight sensors in the system is jointly Gaussian with

zero mean and a covariance matrix given by

Σ =



σ2 σ4 σ6 σ8 σ10 σ8 σ6 σ4

σ4 σ2 σ4 σ6 σ8 σ10 σ8 σ6

σ6 σ4 σ2 σ4 σ6 σ8 σ10 σ8

σ8 σ6 σ4 σ2 σ4 σ6 σ8 σ10

σ10 σ8 σ6 σ4 σ2 σ4 σ6 σ8

σ8 σ10 σ8 σ6 σ4 σ2 σ4 σ6

σ6 σ8 σ10 σ8 σ6 σ4 σ2 σ4

σ4 σ6 σ8 σ10 σ8 σ6 σ4 σ2



, (3.36)
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where we assume that the correlation decreases as the distance between the sensors increases

which is a typical method of modeling correlation between sensors in a network. Similar to the

uncorrelated case, we assumed that σ2 = 0.2m2 in this case as well.

Table 3.2 summarizes the results obtained under the just described conditions and assumptions.

In Table 3.2, we provide the values for each of the 24 variables describing the assumed environment

with six component waves, the CRB value associated with estimating each of the 24 variables

assuming the noise is uncorrelated, and the MSE values obtained using our presented estimation

approach both with and without correlation in the noise. The MSE values were obtained by

averaging the results over 1000 Monte Carlo runs where each run generated a new realization of

the correlated and uncorrelated noise.

Table 3.2: Comparing MSE values obtained using the presented algorithm with correlated and
uncorrelated noise

Unkown True CRB MSE with MSE with
Value uncorr. noise corr. noise

A1 1.282 4.181e-06 3.996e-06 5.167e-06
A2 1.412 4.179e-06 4.186e-06 4.413e-06
A3 0.940 4.171e-06 4.174e-06 3.970e-06
A4 0.960 4.171e-06 4.220e-06 4.382e-06
A5 0.787 4.176e-06 4.250e-06 4.597e-06
A6 1.055 4.164e-06 4.396e-06 4.219e-06
w1 0.250 8.162e-09 8.076e-09 1.186e-08
w2 0.500 6.020e-09 6.177e-09 6.330e-09
w3 0.750 1.160e-08 1.191e-08 1.089e-08
w4 1.250 7.314e-09 7.448e-09 7.417e-09
w5 1.500 8.795e-09 8.893e-09 8.953e-09
w6 1.750 4.048e-09 4.128e-09 4.248e-09
β1 0.785 1.249e-05 1.260e-05 1.561e-05
β2 0.785 6.440e-07 6.826e-07 6.835e-07
β3 0.785 2.893e-07 2.818e-07 2.835e-07
β4 2.094 3.594e-08 3.616e-08 3.691e-08
β5 2.094 2.578e-08 2.578e-08 2.748e-08
β6 2.094 7.751e-09 7.714e-09 8.197e-09
ϕ1 5.598 1.367e-05 1.372e-05 1.941e-05
ϕ2 3.605 1.259e-05 1.308e-05 1.306e-05
ϕ3 4.605 2.882e-05 2.909e-05 2.693e-05
ϕ4 1.654 1.360e-05 1.375e-05 1.500e-05
ϕ5 4.191 1.896e-05 1.806e-05 1.907e-05
ϕ6 5.940 1.004e-05 1.005e-05 1.113e-05

As seen from Table 3.2, the presented approach seems to work very well relative to the CRB

even under correlated noise. Further, the results from Table 3.2 seem to support results from the

previous subsection suggesting that the presented approach works well under complicated wave
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environments described by multiple component waves. We also note that a noise variance equal to

σ2 = 0.2m2 is considered a relatively very large value especially that the largest amplitude among

all component waves was A1 = 1.282m so our results seem to suggest that the presented approach

is able to perform at near optimal accuracy even under very large, and possibly correlated, noise

values.

Next, we present numerical results involving the runtime of our presented estimation approach.

3.4.4 Runtime Performance

In this subsection, we compare the runtime of the presented estimation approach to that of

a Genetic Algorithm (GA) and a Particle Swarm Optimizer (PSO) which are well-known global

optimization techniques that, similar to the presented approach, do not require an initial guess for

the unknown variable θ. For the presented results, we used a population size of 100 for both GA

and PSO. Included in Figure 3.3 are curves for the average runtime of the three different estimation

methods obtained while assuming the ocean is described by a single component wave (L = 1). The

same sensor types, sensor layouts, and noise variance assumed in Figure 3.1 and Figure 3.2 are

employed and it also assumed that the sensors collect their measurements over an interval of

60s starting at time t = 0. In Figure 3.3, at each of the considered sampling frequencies, 100

different values of θ = (A,w, β, ϕ)T were generated uniformly randomly such that the amplitude

is between 0.5 − 1.5m, the frequency is between 0.2 − 0.7rads/s, and both the β and ϕ where

between 0 − 2π. Due to the complexity of the estimation problem, and although the selected

population size for both GA and PSO is relatively large, our best recorded percentages for having

the estimates produced by the algorithms fall within ±2.5% of their correct values over all the

considered sampling frequencies were 94% for GA and 95% for PSO while the estimation approach

presented here produced estimates that fell within the ±2.5% threshold 100% of the time. As a

result, the running times for both GA and PSO in Figure 3.3 are averaged over only the cases

where the algorithms were able to produce estimates that fell within the ±2.5% range around the

the correct value. However, if we did include the cases where the algorithms produced poor results

(outside of the 2.5% threshold), the results would have been almost identical as the times were

almost the same regardless of whether the algorithms converged to estimates inside or outside the

2.5% threshold. Also, we note that in all the considered cases, both GA and PSO terminated due

to convergence to a local minimum and not due to reaching the maximum number of iterations or

the maximum allowable running time so the cases where they produced poor estimates most likely
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resulted from converging to poor local minimums. From Figure 3.3, we can see that the presented

estimation approach clearly outperforms both GA and PSO in terms of runtime performance as

the number of observations is increased by increasing the sampling frequency.

We attempted to obtain a similar figure for cases where the ocean surface is described by

multiple component waves (L ̸= 1), but we were unable to obtain any results where either GA or

PSO were able to produce estimates within the ±2.5% range for at least 90% of the cases while

maintaining a runtime of less than 120s. In comparison, the runtime of our presented approach

was consistently less than 20s over all attempted cases and it was again able to produce the correct

estimate values 100% of the time.
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Figure 3.3: Average runtime of presented method in comparison with GA and PSO.

In the next section, we consider the impact of estimation errors on the amount of loss in the

power absorbed by WEC devices.

3.5 Power Loss Due to Estimation Errors

Throughout this section, we assume that the ocean is described by a single component wave

(L=1). We also focus on measurements of wave elevation which are given by setting the values of

‘a’ and ‘b’ according to the first row of Table 3.1 such that Φ(x, y, t) is given by

Φ(x, y, t) = A cos

(
(
w2

g
)x cos(β) + (

w2

g
)y sin(β)− tw+ϕ

)
, (3.37)
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since the provided analysis can be easily applied to the remaining measurements given in Table

3.1.

From the work by Evans [94] and Falnes [95], we know that the mean (mechanical) power

absorbed by N devices under monochromatic, plane incident waves is given by

P =
1

4
(UHF+ FHU)− 1

2
UHBU, (3.38)

where U is the column vector of complex velocity amplitudes, F is the column vector of exciting

forces, B is the matrix of (real) damping coefficients, and (·)H denotes the Hermitian transpose.

The expression for power given by (3.38) may be maximized such that the maximummean absorbed

power is

Pmax =
1

8
FHB−1F, (3.39)

which is achieved when the vector of complex velocity amplitudes, U, is set to

Uoptimal =
1

2
B−1F, (3.40)

where we assume that B−1 exists.

From the literature on hydrodynamics [24], the wave elevation is related to the excitation force

acting on device r = 1, 2, . . . N located at (xr, yr)
T through

fext(xr, yr, t) =

∞∫
−∞

hext(t− τ)Φ(xr, yr, t)dτ, (3.41)

where fext is the excitation force in Newtons, hext(t) is the excitation impulse response function,

and Φ(x, y, t) is the wave elevation in meters. Assuming that Φ(x, y, t) is given by (3.37), the

excitation force from monochromatic, plane incident waves can be expressed as

fext(xr, yr, t) = A|Hext(w)| cos
(
(
w2

g
)x cos(β) + (

w2

g
)y sin(β)− tw+ϕ+ ∠Hext(w)

)
, (3.42)

where Hext(w) = F{hext(t)} is the excitation force transfer function and F{·} denotes the Fourier
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transform. Thus, the excitation force has a complex (phasor) given by

F (xr, yr) = A|Hext(w)| exp(jγ), (3.43)

where γ = (w
2

g )
(
xr

yr

)
·
(
cos(β)
sin(β)

)
+ϕ+∠Hext(w). To be able to use the power equation given in (3.38),

we will assume that the value of w is known exactly. This will cause our errors to be slightly

underestimated. However, in practice, we have found that one can obtain an estimate of w that

is much more accurate than the other parameters so this is not an unreasonable assumption. As

a result, our task of estimating the complex amplitude of the excitation force in order to set our

control such that the velocity of the WEC is set to satisfy (3.40) becomes the task of estimating the

value of the θ = (A, β, ϕ)T using an estimator θ̂ based on collected measurements. Note that (3.40)

describes a control law that is optimal when the complex excitation force is known exactly so due

to errors from estimating the excitation force, the resulting control will actually be sub-optimal

and cause a drop in the average absorbed power.

Since we assume that the collected measurements contain a random component due to noise, the

values of θ̂ obtained from different sets of measurements collected under the same wave conditions

will be slightly different from set to set because the realized values of the noise will not be exactly

the same from one set to the other. Thus, it is possible to have a set of measurements that results

in a very accurate value for θ̂ which causes only a small loss in the power but it also possible that

we collect a set of measurements that happens to be corrupted by noise such that the value of θ̂ is

not as accurate, causing a larger loss in the absorbed power. In order to handle this variability in

the amount of power lost, we use the statistical description of θ̂ in order to calculate the expected

value for the loss which provides us with an indication of the amount of power lost on average.

Given a certain realization (value) for θ̂ , the predicted value of the complex amplitude of the

excitation force at device r = 1, 2, . . . , N will be

F̂ (xr, yr) = Â|Hext(w)| exp(jγ̂), (3.44)

where γ̂ = (w
2

g )
(
xr

yr

)
·
(cos(β̂)
sin(β̂)

)
+ϕ̂+∠Hext(w), and we can use this value to set the velocity amplitude

according to (3.40) as

Û =
1

2
B−1F̂, (3.45)
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where F̂ = (F̂ (x1, y1), . . . , F̂ (xN , yN ))T . As a result, the average power absorbed given an estimate

θ̂, according to (3.38), will be given by

Pest(θ̂) =
1

4
(Û

H
F+ FHÛ)− 1

2
Û

H
BÛ,

=
1

8
((B−1F̂)HF+ FH(B−1F̂))− 1

8
(B−1F̂)HB(B−1F̂),

=
1

8
(F̂

H
B−1F+ FHB−1F̂)− 1

8
F̂

H
B−1F̂, (3.46)

and this is a random quantity depending on the value of θ̂ which is a random variable due to the

noise added to the sensor measurements used for the estimation. If the probability distribution for

θ̂ is given, we can proceed to calculate the expected value of Pest(θ̂) under the given distribution. If

not, we will assume that the distribution for θ̂ is a multivariate normal with mean θ and covariance

matrix equal to the Cramer Rao Bound matrix (inverse of the FIM) as justified in [92, 96]. This

assumes the performance of the estimator is optimal and should therefore provide a lower bound on

the loss in power. The FIM for this problem was derived in Section 3.2. After finding the expected

value for Pest(θ̂), we can divide that number by Pmax which is given by (3.39) to determine the

percentage of the maximum power that we expect to absorb under losses due errors in estimation.

In the next section, we present a numerical example where the just presented ideas and equa-

tions are employed.

3.5.1 Numerical Example: Power loss for a single device in isolation

Consider the case where we have a single device in isolation. Assuming the excitation force

acting on the device is given by (3.43), the power absorbed by N devices given the estimate θ̂ is

given by (3.46) and, for a single device, it simplifies to

Pest(θ̂) =
ÂA

4B
cos(γ − γ̂)− (Â)2

8B
. (3.47)

For this numerical example, we assume that the WEC is a heaving vertical cylinder having a radius

of 5m and a length of 20m. Also, we assume that the true value of θ = (A,B, ϕ)T is given by

θ = (1, 1, 1)T and that w is known to be equal to unity. The values for the damping coefficient B

and the excitation force transfer function are obtained using WAMIT R⃝ [97] assuming the device

is placed in an ocean of infinite depth. Further, we assume that the WEC is surrounded by 4 wave

elevation sensors that have been placed, along the major axes, on a circle of radius 100m. The
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measurements collected by the sensors are assumed to be described by

ϕ(tm, xl, yl) = Φ(tm, xl, yl) + vl(tm),

tm = Ts, . . . ,KTs, l = 1, . . . , 4 (3.48)

where Ts is the sampling period, K is the total number of time samples, vl(tm) is noise, (xl, yl) is

the location of the lth sensor, and Φ is given in (3.37). For simplicity, we assume

(v1(Ts), . . . , vN (Ts), . . . , v1(KTs), . . . , vN (KTs))
T

is jointly Gaussian with zero mean vector and covariance matrix which is diagonal with (σ2
1 , . . . , σ

2
NK)

along the diagonal and σ2 = σ2
1 = . . . = σ2

NK = 1. The distribution of the employed estimator θ̂ is

taken to be a multivariate normal distribution with mean equal to θ and a covariance matrix equal

to the CRB matrix (inverse of the FIM). To quantify the power loss, we calculate the percentage

of the power absorbed while accounting for estimation errors relative to the maximum power as

given in (3.39) as

Prel =
E(Pest(θ̂))

Pmax
=

∞∫
−∞

∞∫
−∞

∞∫
−∞

Pest(θ̂)f(θ̂)dÂdβ̂dϕ̂

Pmax
, (3.49)

where f(θ̂) is the probability density function of θ̂. Figure 3.4 includes a plot of the value for Prel

as we varied the total sampling time KTs for different sampling frequencies, where the values of the

Prel we obtained through numerically approximating the triple integral in (3.49). Figure 3.4 shows

that increasing both quantities decreases the power loss due to errors in estimation. Figure 3.4

also shows that increasing the sampling frequency and the sampling time will eventually provide

diminishing returns with respect to the gain in absorbed power, which should be expected.

3.6 Conclusion

In this chapter, we investigated the parametric estimation of spatial and temporal ocean wave-

forms using a network of spatially distributed ocean sensors whose measurements are corrupted by

additive white Gaussian noise. We derived and presented, for the first time, the CRB associated

with the estimation of wave properties critically important to novel control strategies. The pre-

sented CRB expressions are general in that they allow for employing any combination of types of
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Figure 3.4: Expected power loss vs sampling time for different sampling frequency

measurements from a given set of possible ocean measurements. We also presented a suboptimal

estimation approach that works to overcome possible problems associated with the non-convexity

of the estimation problem and the existence of many local extrema in the objective function. We

provided numerical results that demonstrate the near optimal accuracy of the presented approach

under different ocean environments and also its superior runtime performance in comparison to

that of reasonable possible alternative approaches. Finally, we introduced a method that quantifies

the loss in the average absorbed power due to errors in estimating the elevation of the waves that

are incident on a single WEC in isolation or multiple WECs in a farm. The devices are assumed

to be controlled such that their velocity would be optimal had the estimates been exactly correct.

A lower bound on the expected loss in the average absorbed power was be obtained by relying on

the CRB of the estimates and a numerical example considering the case where a heaving cylindri-

cal WEC is controlled optimally based on measurements collected from four sensors surrounding

the device was presented. Results giving the percentage of the expected absorbed power under

estimation errors relative to the maximum possible absorbed power by the device were obtained

for different values of total sampling time and sampling frequency. The results clearly showed that

the loss in power could be very significant if the values of the total sampling time or the sampling

frequency were chosen to be too small while also showing that there are diminishing returns when

increasing either variable in order to recover the otherwise lost power.
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3.7 Appendix

A Method for Reducing the Double Sum to a Single Sum

Suppose we adopt

ψ(x, y, t;θ) =
L∑

i=1

Mi∑
j=1

Ai,jw
a
i cos

(
(
w2

i

g
)x cos(βi,j) + (

w2
i

g
)y sin(βi,j)− twi + ϕi,j − b

π

2

)
, (3.50)

as our wave model. Then, the unknown parameters would be given by

θ =(A1,1, A1,2, . . . , A1,M1 , A2,1, . . . , AL,ML ,

ω1, . . . , ωL,

β1,1, β1,2, . . . , β1,M1 , β2,1, . . . , βL,ML
,

ϕ1,1, ϕ1,2, . . . , ϕ1,M1 , ϕ2,1, . . . , ϕL,ML
)T . (3.51)

Now, for each j in (3.50), slightly perturb the value of wi to wi,j , wi + δj where δj ̸= δj′ for

j ̸= j′ and let Φ(x, y, t;θs) denote the resulting wave model after the change in the values of wi to

wi,j . Then, we have that

Φ(x, y, t;θs) =

L∑
i=1

Mi∑
j=1

Ai,j(wi,j)
a cos

(
(
w2

i,j

g
)x cos(βi,j)

+ (
w2

i,j

g
)y sin(βi,j)− wi,jt+ ϕi,j − b

π

2

)
, (3.52)

which now has all the parameters inside the double sum indexed over both i and j, and thus can

be written as the single sum

Φ(x, y, t;θs) =

M∑
k=1

Akw
a
k cos

(
(
w2

k

g
)x cos(βk) + (

wk
i

g
)y sin(βk)− twk + ϕk − b

π

2

)
, (3.53)
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where M =
L∑

i=1

Mi and Ak, βk, wk, and ϕk are obtained by relabeling the Ai,j values, according to

New Label ← Old Label

Ak ← Ai,j

A1 ← A1,1

A2 ← A1,2 ,

...
...

AM1 ← A1,M1 ,

AM1+1 ← A2,1,

AM1+2 ← A2,2,

...
...

AM1+M2 ← A2,M2

AM1+M2+1 ← A3,1

...
...

AM ← AL,ML

, (3.54)

and then following the same exact scheme to relabel wk ← wi,j , βk ← βi,j , ϕk ← ϕi,j . Note that

the vector of unknown parameters is now given by

θs =(A1, A2, . . . , AM ,

ω1, ω2, . . . , wM

β1, β2, . . . , βM ,

ϕ1, ϕ2, . . . , ϕM )T , (3.55)

rather than (3.51).

As an example, suppose we start with the (double sum) wave model given by (3.52) with L = 2,
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M1 = 2,M2 = 3, and

θ =(A1,1, A1,2, A2,1, A2,2, A2,3,

ω1,1, ω1,2, ω2,1, ω2,2, ω2,3

β1,1, β1,2, β2,1, β2,2, β2,3,

ϕ1,1, ϕ1,2, ϕ2,1, ϕ2,2, ϕ2,3)
T . (3.56)

Then, we have that

Φ(x, y, t;θs) =
L∑

i=1

Mi∑
j=1

(wi,j)
aAi,j cos

(
(
w2

i,j

g
)x cos(βi,j) + (

w2
i,j

g
)y sin(βi,j)− wi,jt+ ϕi,j − b

π

2

)

= A1,1(w1,1)
a cos

(
(
w2

1,1

g
)x cos(β1,1) + (

w2
1,1

g
)y sin(β1,1)− w1,1t+ ϕ1,1 − b

π

2

)
+A1,2(w1,2)

a cos

(
(
w2

1,2

g
)x cos(β1,2) + (

w2
1,2

g
)y sin(β1,2)− w1,2t+ ϕ1,2 − b

π

2

)
+A2,1(w2,1)

a cos

(
(
w2

2,1

g
)x cos(β2,1) + (

w2
2,1

g
)y sin(β2,1)− w2,1t+ ϕ2,1 − b

π

2

)
+A2,2(w2,2)

a cos

(
(
w2

2,2

g
)x cos(β2,2) + (

w2
2,2

g
)y sin(β2,2)− w2,2t+ ϕ2,2 − b

π

2

)
+A2,3(w2,3)

a cos

(
(
w2

2,3

g
)x cos(β2,3) + (

w2
2,3

g
)y sin(β2,3)− w2,3t+ ϕ2,3 − b

π

2

)
, (3.57)

which by applying the relabeling scheme given by (3.54) is equal to

Φ(x, y, t;θs) = A1(w1)
a cos

(
(
w2

1

g
)x cos(β1) + (

w2
1

g
)y sin(β1)− w1t+ ϕ1 − b

π

2

)
+A2(w2)

a cos

(
(
w2

2

g
)x cos(β2) + (

w2
2

g
)y sin(β2)− w2t+ ϕ2 − b

π

2

)
+A3(w3)

a cos

(
(
w2

3

g
)x cos(β3) + (

w2
3

g
)y sin(β3)− w3t+ ϕ3 − b

π

2

)
+A4(w4)

a cos

(
(
w2

4

g
)x cos(β4) + (

w2
4

g
)y sin(β4)− w4t+ ϕ4 − b

π

2

)
+A5(w5)

a cos

(
(
w2

5

g
)x cos(β5) + (

w2
5

g
)y sin(β5)− w5t+ ϕ5 − b

π

2

)
, (3.58)

which can be expressed as the single sum

Φ(x, y, t;θs) =
5∑

k=1

Akw
a
k cos

(
(
w2

k

g
)x cos(βk) + (

wk
i

g
)y sin(βk)− twk + ϕk − b

π

2

)
. (3.59)

Since we slightly perturbed the frequency values from (3.50) in order to arrive at the single

56



sum model (3.53), it remains to show that the error introduced by our perturbation could be

controlled such that it is always within any given level of tolerable modeling error. To do so, we

now show that there will always exist a choice for the values of δj such that the difference between

Φ(x, y, t;θs) and ψ(x, y, t;θ) is made sufficiently small.

For simplicity, suppose we set δj = δ(j − 1) where δ > 0. Then, we have that

Φ(x, y, t;θs) =
L∑

i=1

Mi∑
j=1

(wi + δj)
aAi,j

cos

(
(
w2

i

g
)x cos(βi,j) + (

w2
i

g
)y sin(βi,j)− wit+ ϕi,j − b

π

2

+ (
(δj)

2

g
)x cos(βi,j) + (

(δj)
2

g
)y sin(βi,j)− δjt

)
=

L∑
i=1

Mi∑
j=1

(wi + δ(j − 1))aAi,j

cos

(
(
w2

i

g
)x cos(βi,j) + (

w2
i

g
)y sin(βi,j)− wit+ ϕi,j − b

π

2
+

δ2(j − 1)2

g
x cos(βi,j) +

δ2(j − 1)2

g
y sin(βi,j)− δ(j − 1)t

)
. (3.60)

Now, if we consider the limit of Φ(x, y, t;θs) as δ goes to zero, we get that

lim
δ→0

Φ(x, y, t;θs) =
L∑

i=1

Mi∑
j=1

(wi + 0(j − 1))aAi,j

cos

(
(
w2

i

g
)x cos(βi,j) + (

w2
i

g
)y sin(βi,j)− wit+ ϕi,j − b

π

2
+

02(j − 1)2

g
x cos(βi,j) +

02(j − 1)2

g
y sin(βi,j)− 0(j − 1)t

)
=

L∑
i=1

Mi∑
j=1

(wi)
aAi,j cos

(
(
w2

i

g
)x cos(βi,j)+

(
w2

i

g
)y sin(βi,j)− wit+ ϕi,j − b

π

2

)
= ψ(x, y, t;θ). (3.61)

By the definition of limits, this means that given any ϵ > 0, there exists a δ > 0 such that

|Φ(x, y, t;θs)− ψ(x, y, t;θ)| < ϵ, (3.62)

which implies that, by choosing an appropriate value of δ, approximating ψ(x, y, t;θ) by Φ(x, y, t;θs)

can be made as accurate (within a tolerable approximation error of ϵ > 0) as the user desires.
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Chapter 4

Stochastic Optimal Power Flow

Under Forecast Errors and

Failures in Communication

Nomenclature
G Set of all generators/loads

pi Power produced/demanded by generator/load i ∈ G

Ci Per unit cost of power produced/demanded

C−
i , C

+
i Per unit cost for negative/positive adjustment in dispatch of generator/load i

Λkj (k, j)th entry of the PTDF matrix

tmax
k Power flow limit for power line k

pmin
i , pmax

i generation/consumption capacities for generator/load i

pmin
s,i , pmax

s,i pmin
i , pmax

i under scenario s

pno comm
i Pre-set power generation/consumption under no communication for genera-

tor/load i

S Set of all possible random scenarios

πsc
s Probability that scenario s ∈ S will occur

∆ps,i Change in dispatch for generator/load i under scenario s

Γ−
s,i,Γ

+
s,i Under/over dispatch of generator/load i under scenario s

D−
i , D

+
i Per unit cost for under/over utilization of generator/load i under scenario s

C Set of all nodes in the communication network

Bi,j Cost of leasing a comm. link between nodes i and j
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Owing to the great size of most electric grids, data collected from sensors is typically trans-

mitted to the grid operator using a communication network. The communication network is also

responsible for sending control signals from the system operator to loads and generators in the

power grid. In many cases, the control signals represent corrective re-dispatch commands based on

the data collected from the sensors in the power grid. As a result, communication failures between

the grid and the system operator could affect the ability to correct or control the dispatch level of

a load or generator.

We consider the case where the system operator initially dispatches the loads and generators

based on the forecasts for their capacities and then relies on sensors and the communication net-

work to obtaining the actual load and generator capacities. Based on the measured capacities, the

operator may decide to issue re-dispatch commands which must be carried to the communication

network to the required load or generator. Facilitating the communication of the measured capaci-

ties and re-dispatch commands is a communication network whose links are susceptible to random

failures.

We focus on identifying the optimal communication network topology and the optimal choice

for dispatch and re-dispatch actions while accounting for forecasting errors and failures in com-

munication. Our problem is formulated as a stochastic optimal power flow (OPF) problem where

the objective is to minimize the average overall economic cost of the system under a large set

of constraints representing the different stochastic scenarios we consider. While our study is on

optimal power flow (OPF) problems, the underlying framework and analysis we employ could be

easily extended to investigate the effect of failures and forecast errors on other important grid

operations like unit commitment and economic dispatch for example. OPF problems sit at the

core of many modern day power markets and operations with different variations of the problem

solved several times a day at varying intervals that range from every hour to, in some cases, every

five minutes. In general, OPF problems seek to minimize the cost of balancing power demand

and generation while satisfying various physical and operational constraints relating to generation

limits, electric line capacities and laws governing the flow of electricity. The generality of OPF

allows the presented work to be extended to other market operations and problems as they will

mostly involve the same or very similar constraints and considerations. Throughout this chapter,

we employ the well known direct current (DC) approximation for power networks [98] to formulate

our DC OPF problems that we simply refer to as OPF problems.

The rest of this chapter is organized as follows. In the next section, we describe our problem
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setup and discuss the stochastic scenarios we consider. In section 4.2, we formulate our stochastic

OPF problem and provide details on modeling communication failures and their effect on the

system. Section 4.3 presents several numerical results obtained using our presented model. Finally,

Section 4.4 summarizes the main findings presented in this chapter.

4.1 Model Setup and Description

We consider a stochastic, two-settlement, OPF problem for a power grid whose operation is

supported by a communication network having a topology this chosen by the system operator as

a first-settlement decision. In the first settlement, the system operator must rely on stochastic

forecasts for the generation capacity of the system’s renewable energy sources and the demand

capacities of the system’s loads which are all assumed to be controllable. Also included in the first

settlement is the system operator’s decision on the communication topology leased (activated) in

anticipation of the different possible failures that some of the links might experience in between

the two settlements. The stochastic events occurring between the two settlements are due to three

factors:

• Errors in forecasting renewable generation capacity,

• Errors in forecasting load capacities (demands),

• Failures in the communication network.

The second settlement takes place after the actual capacity values are realized and the failure-prone

communication network is employed to transmit the updated capacity values to the control center.

The delivery of the actual capacity values to the control center is not guaranteed since the random

link failures may result in having no active communication path connecting the control center to

the sensor measuring a certain capacity.

We model the forecasts for renewable capacity and their errors by a discrete probability mass

function (pmf) where the most likely outcome represents the forecast value and the remaining

outcomes represent the possible realized capacity values above or below the forecast. We let

Nrenew
levels denote the number of possible capacity values the renewable source could take including

its forecast. Similarly, we assume forecasts and errors in load capacities are also modeled by a

discrete pmf with N load
levels levels with the most probable level taken as the forecast. Capacity

forecasts are typically based on historical user data, weather conditions, and other seasonal trends
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which are all impossible to predict or forecast with perfect accuracy so fluctuations in capacities

around their forecasts will always exist especially for intermittent renewable resources like wind

and solar energy.

Failures in the communication network are modeled as a loss in any number of links from the

graph describing the communication network. Failures in communication links are assumed to

be independent and we model the failure of any given link by a Bernoulli random variable with

probability πon
comm such that the link fails with probability 1−πon

comm. For a real network, different

communication links may be more likely to fail than others since the network may include different

communication technologies or links having different characteristics. Further, the assumption of

independent link failures may be inaccurate if a failure occurs due to severe weather conditions

affecting links in a certain area of the network or if the failures are due to a complex cyber

attack affecting multiples links at the same time. More complex probability models allowing

communication links to have different failure probabilities or accounting for correlated link failures

may be employed and should apply directly to our presented problem.

The number of possible link failures grows exponentially with Nnodes the number of nodes

in the communication network since a network with Nnodes nodes could have up to Nlinks ,
Nnodes(Nnodes−1)

2 communication links and since each of those links is subject to failure, the total

number of failure scenarios is N comm
scenarios = 2Nlinks .

Throughout this chapter, we assume that the pmfs describing load forecasts share the same

N load
levels and that if the ith level is observed for a given load, the observed capacity for every load

will be the one represented by the ith capacity level. This assumption is meant to simplify our

analysis by having a smaller number of possible scenarios and it may be removed in exchange for

an increase in the computational complexity of the analysis. To further simplify our analysis, we

also assume that only one generator in the grid is a renewable energy source and this assumption

may also be removed in exchange for an increase in computational complexity.

Taken together, the three factors contributing to the stochasticity in the system may be used

to index S the set of all possible random scenarios where elements of S may be given as a tuple

(a, b, c) where A ∈ {1, 2, . . . , Nrenew
levels },B ∈ {1, 2, . . . , N load

levels}, C ∈ {1, 2, . . . , N comm
scenarios} such that

|S| = Nrenew
levels ×N load

levels×N comm
scenarios. We may also use s ∈ S as a general element of S to simplify the

presentation when appropriate. We note that given a sufficiently robust communication network,

the connectivity between sensor nodes and the control center could be maintained even under

cases where many communication links have failed. For example, in Figure 4.1, all the sensor
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nodes remain connected to the control center although five of the nine communication links have

failed or are inactive. Next, we present our OPF formulation and we formally describe the effect

of communication failures on the power grid.

Figure 4.1: System Diagram for a communication network supporting a 9-bus system while having
5 failed links

4.2 Stochastic OPF Problem Formulation

In the stochastic DC OPF problem we consider, decision variables go beyond choosing dispatch

levels for the loads and power generators as they include an added set of variables relating to the

leased topology of the communication network. The optimal decisions are chosen to minimize the

total expected cost for operating the power system while accounting for the different scenarios

resulting from random fluctuations in load and renewable capacities and losing communication

and control capabilities due to communication link failures. The objective function we consider is

minimize
∑
i∈G

Cipi +

Nnodes∑
i=1

Nnodes∑
j=1

Bi,jXi,j +

|S|∑
s=1

∑
i∈G

πsc
s

(
C+

i ∆p+s,i + C−
i ∆p−s,i

)
+

|S|∑
s=1

∑
i∈G

πsc
s

(
D+

i Γ
+
s,i +D−

i Γ
−
s,i

)
, (4.1)
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where the minimization is over the problem decisions variables given in Table 4.1. The variables

∆p+s,i and ∆p−s,i are, respectively, the positive and negative parts of the decision variable ∆ps,i

which represents the adjustment in the dispatch level for generator/load i ∈ G under scenario

s ∈ S.

Table 4.1: Problem Decision Variables

Variable Description

p Vector of first settlement dispatch levels for
all loads and generators

∆ps Vector of adjustments in the first settlement dispatch
levels under scenario s ∈ S

X Comm. links leased. A binary Nnodes ×Nnodes matrix
Yc Matrix of Communication flow under link failure

scenario c ∈ {1, 2, . . . , N comm
scenarios}

wc Vector of node reachability from control center under
communication link failure scenario c ∈ {1, 2, . . . , N comm

scenarios}

We formally define them by including

∆ps,i = ∆p+s,i −∆p−s,i ∀s ∈ S, i ∈ G, (4.2)

∆p+s,i ≥ 0 ∀s ∈ S, i ∈ G, (4.3)

∆p−s,i ≥ 0 ∀s ∈ S, i ∈ G, (4.4)

in our problem’s constraints. Similarly, Γ+
s,i and Γ−

s,i are the positive and negative parts of the

variable Γs,i. The variable Γs,i represents the difference between the dispatch level and the capacity

of generator/load i under scenario s. Since we take generating power to be positive and consuming

it to be negative, Γ+
s,i and Γ−

s,i are defined by the constraints

pi +∆ps,i − pmax
s,i = Γ+

s,i − Γ−
s,i ∀s ∈ S, (4.5)

Γ+
s,i ≥ 0 ∀s ∈ S, (4.6)

Γ−
s,i ≥ 0 ∀s ∈ S, (4.7)

when i ∈ G corresponds to a generator. When i corresponds to a load (4.5) is replaced with

pi +∆ps,i − pmin
s,i = Γ+

s,i − Γ−
s,i ∀s ∈ S. (4.8)

The decision variables Yc ∀ c ∈ C and wc ∀ c ∈ C do not appear in the objective function but
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their values have a very significant role in affecting the optimal solution. We explain the role of Yc

and wc next by first introducing the remainder of the constraints we consider that we categorize

into

• Communication network constraints,

• Power grid constraints,

• Joint power and communication constraints,

and describe separately in the following subsections.

4.2.1 Communication Constraints

Communication constraints determine the system’s ability to relay sensor measurements to

the control center and the control center’s ability to adjust power dispatch levels. Successful

communication between sensors and the control centered is modeled by the existence of a path

consisting of leased communication links connecting the control center to the load or renewable

generator. We describe the initial communication topology as an undirected graph representing a

‘flow’ network whose topology is chosen as a first-settlement decision variable. The first-settlement

constraints setting up our failure-free communication network are

X = XT (4.9)

Xi,i = 0, ∀ i ∈ N (4.10)

Xi,j ∈ {0, 1}∀ i ∈ N , j ∈ N , (4.11)

where N , {1, 2, . . . , Nnodes} and X is the matrix whose (i, j)th element is given by Xi,j and is

thus the adjacency matrix of the communication network.

A node in the communication network is either a sensor node, the control center, or a relay node.

Since there can only be one control center, the size of X is one more than the sum of Nsensors (the

number of sensor nodes) and Nrelays (the number of relay nodes). Each sensor node is assigned

a flow supply of positive one, each relay node is assigned zero supply, and the control center is

assigned a supply equal to −Nsensors. Then, for every link failure scenario, the communication

network will attempt to send a unit of ‘flow’ along its active links from each sensor node to the

control center. If an active path connecting the control center to a sensor exists, they are able

to exchange realized capacity updates and control commands. If no active path exists between a
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certain sensor node and the control center, we shut off that sensor’s supply under that scenario by

setting it to zero and also adjusting the ‘flow’ demand of the control center to accommodate the

supply loss. We formally state these conditions by the following second-settlement communication

network constraints, which are all repeated for every c ∈ C

0 ≤ Y c
i,j , Y

c
i,j ∈ N ∀ i ∈ N , j ∈ N , (4.12)

Y c
i,j + Y c

j,i ≤MQc
i,jXi,j , ∀ i ∈ N , j ∈ N , (4.13)

Nnodes∑
t=1

Y c
i,t −

Nnodes∑
t=1

Y c
t,i = 1− wc

i , ∀ sensor i ∈ N , (4.14)

Nnodes∑
t=1

Y c
i,t −

Nnodes∑
t=1

Y c
t,i = 0, ∀ relay i ∈ N , (4.15)

Nnodes∑
t=1

Y c
j,t −

Nnodes∑
t=1

Y c
t,j =

Nsensors∑
i=1

wc
i −Nsensors, (4.16)

wc
i ≥ 1−

Nnodes∑
t=1

Y c
j,t, ∀ sensor i ∈ N , (4.17)

wc
i ∈ {0, 1}∀ sensor i ∈ N , (4.18)

where the elements Qc
i,j in (4.13) make up the symmetric and binary Nnodes ×Nnodes parameter

matrix QC that specifies the failed communication links under scenario c ∈ C. Constraint (4.13)

is of great importance since it sets the capacity of every link (i, j) in the communication network

to M > 0 if and only if the link (i, j) was leased in the first settlement (true when Xi,j = 1) and it

was free from any failures (true when Qc
i,j = 1) under c the considered scenario. M in constraint

(4.13) is chosen as a sufficiently large positive number such that link (i, j) effectively has unlimited

capacity when it is active1. For the remainder of the chapter, we will refer to links that have been

leased by the operator and are free from failures as active communication links and we otherwise

refer to them as inactive links.

Constraints (4.14)-(4.18) set up the flow problem between the sensors and the control center

and adjust their supplies when no path of active communication links exists between a sensor

node and the control center. Based on constraints (4.12)-(4.18), decision variables Y c
i,j represent

the amount of ‘communication flow’ between nodes i and j under scenario c ∈ C and the binary

decision variable wc
i is equal to one only if no path exists connecting sensor node i to the control

center and the sensor supply is therefore shut off.

1While M may be chosen to be arbitrarily large, we set it to M = Nsensors since the amount of flow along any
link cannot exceed the total flow supply in the network
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Remark 3. For constrains (4.12)-(4.18) to function as just explained, the cost parameters in the

objective function, given in (4.1), must be chosen such that losing connectivity between a sensor

node and the control center has a positive net effect on the objective function. Choosing the cost

parameters in a manner that does not satisfy this condition is not reasonable as we see no possible

practical situation where losing communications will be beneficial to the system operator.

Next, we present our constraints that deal solely with the power grid before presenting our joint

power and communication constraints which specify the effects of losing connectivity between a

sensor and the control center.

4.2.2 Power Grid Constraints

Power grid constraints are the most typical constraints in a standard OPF problem and since

they represent physical constraints, they must be satisfied in both the first and second settlement.

For the first settlement, we express these constraints as

∑
i∈G

pi = 0, (4.19)

∑
i∈G

Λk,ipi ≤ tmax
k , ∀ power lines k, (4.20)

pmin
i ≤ pi ≤ pmax

i , ∀i ∈ G, (4.21)

where (4.19) is a power balance constraint requiring the total power generated to be equal to

the total power consumed, Λk,i is an element from the power transfer distribution factor (PTDF)

matrix [98] such that (4.20) are line flow capacity constraints ensuring that the power flowing

through lines in the power grid does not exceed the line’s thermal limit. Constraint (4.21) is a

capacity constraint limiting the amount of power we can draw from a generator or supply to a

load. We take pi > 0 to represent generating power and pi < 0 to represent consuming power so

we set pmin
i = 0, pmax

i ≥ 0 for generators and pmin
i ≤ 0, pmax

i = 0 for loads.

After the stochastic events are realized, the system operator must choose ∆ps,i ∀s ∈ S, i ∈ G

(the second-settlement recourse actions) and adjust the power dispatch levels according to the
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realized scenario s ∈ S. Therefore, for each scenario s ∈ S, we will have the constraints

∑
i∈G

∆ps,i = 0, (4.22)

∑
i∈G

Aki(pi +∆ps,i) ≤ tmax
k , ∀k, (4.23)

pmin
i ≤ pi +∆ps,i ≤ pmax

i , ∀i a conventional generator, (4.24)

where constraints (4.22)-(4.23) correspond to constraints (4.19)-(4.20) respectively. The constraints

defined by (4.24) represent generation limits for conventional generators which we model as being

independent of the communication network or capacity forecasts. The second settlement con-

straints corresponding to constraint (4.21) for loads and renewable generators are given in the

following subsection as they are affected by both the status of the communication network and the

random capacity fluctuations in the power grid.

4.2.3 Joint Power and Communication Constraints

This set of constraints specifies the possible effects of losing communications between a sensor

node and the control center. When a sensor node is disconnected, the system operator will force the

disconnected load/generator to draw/generate a pre-set amount of power pno comm
i . For example,

if pno comm
i = 0, then the system operator and load/generator i have an agreement to disconnect

from the grid if the they are unable to communicate with each other. In the numerical results, we

explore an alternative agreement where loads and generators do no completely disconnect from the

grid when their communication fails. We express our joint power and communication constraints

as

wc,ip
no comm
i ≤ pi +∆ps,i ≤ wc,ip

no comm
i + (1− wc,i)p

max
s,i

∀ s ≡ (a, b, c) ∈ S, (4.25)

when i represents a renewable generator and as

(1− wc,i)p
min
s,i + wc,ip

no comm
i ≤ pi +∆ps,i ≤ wc,ip

no comm
i

∀ s ≡ (a, b, c) ∈ S, (4.26)

when i represents a load.
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Taking everything together, our stochastic OPF problem minimizes the objective function (4.1)

subject to the large set of constraints (4.2)-(4.26). In the following section, we present several

numerical results and some key findings obtained using our stochastic OPF model.

4.3 Numerical Results and Discussion

In this section, we provide numerical results validating our presented model. We also present

results describing the optimal communication topology under different conditions and stochastic

events. For our results, we focus on the standard IEEE 9-bus system where we assume the first

generator represents a renewable energy source and that all loads in the grid are controllable. Thus,

we have one renewable generator, two conventional generators, and 3 controllable loads which we

refer to as generators 1− 6 respectively since we may consider loads as ‘negative’ generators.

Throughout this section, we set πon
comm = 0.9 so that the probability for any communication link

to fail is 0.1. We further assume that the pmfs representing the forecasts for load and renewable

generation are described by three capacity levels making Nrenew
levels = N load

levels = 3. where the middle

level is the most probable outcome and, hence, represents the forecast value.

As mentioned earlier, we assume that the observed load capacities behave the same relative to

their forecast value in the sense that, under any given scenario, the loads will all be either below,

at, or above their own forecast level. The numerical results presented in this section all use the

pmfs given in Table 4.2 to describe the possible realized capacity values.

Table 4.2: Forecast pmfs for stochastic Generators

Level Prob Gen. 1 Gen. 4 Gen. 5 Gen. 6

LOW 0.25 170 −85.5 −95 −118.75
FORECAST 0.50 200 −90 −100 −125
HI 0.25 230 −94.5 −105 −131.25

For the presented results, we adopted a strategy where Pno comm
i is set to LOW forecast if i is

the renewable source and Pno comm
i is set to the HI forecast if the i represents a load. The adopted

strategy may be regarded as a defensive, or worst-case, strategy since losing communications might

force us to oversupply power to loads and under-utilize the cheapest generator in the system.

Other variables held constant for all the results we present in this section are the cost parameters

given in Table 4.3. The cost values given in Table 4.3 were chosen and tuned in order for the optimal

solutions obtained with our model to represent reasonable real world decisions.
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Under the given cost structure, the system operator will always prefer to dispatch the free

renewable generation first and will always aim to satisfy the load demands communicated to the

control center. Although costs C4, C5, C6 are all positive, they actually reward the system operator

Table 4.3: Values for Select Cost Parameters

Parameter Value Parameter Value

C1 0 C+
1 , C−

1 0
C2 60 C+

2 , C−
2 120

C3 40 C+
3 , C−

3 80
C4, C5, C6 1000
C+

4 , C
+
5 , C

+
6 200 C−

4 , C
−
5 , C

−
6 200

D+
1 , D

−
1 500

D+
2 , D

−
2 0 D+

3 , D
−
3 0

D+
4 , D

+
5 , D

+
6 1000 D−

4 , D
−
5 , D

−
6 5000

for delivering power to loads in the system since their power consumption is negative. Costs C+
i , C

−
i

for i = 1, 2, . . . , 6 penalize the operator for the different adjustments in dispatch levels while costs

D+
i , D

−
i for i = 1, 2, . . . , 6 penalize the operator if the net dispatch of the renewable generator is

below its measured capacity or if the net dispatch for a load is different from its capacity. The

only model parameter left to specify is Bi,j for i, j ∈ N which represents the cost to lease links in

the communication network.

For all the presented results, we set Bi,j = B for all i, j ∈ N . Figure 4.2 shows the impact

of increasing B on the optimal number of leased communication links in a 5-node (4 sensors

and 1 control center) communication network supporting the operation of an IEEE 9-bus system.

Since we have Nnodes = 5 nodes in the communication network, the maximum possible number of

communication links is 0.5Nnodes(Nnodes− 1) = 10 which corresponds with the optimal number of

leased links in Figure 4.2 when the cost is very close zero. As the cost to lease a communication

link is increased, Figure 4.2 allows us determine the cutoff points where the number of leased

communication links must be decreased as it will no longer be justified by the added communication

paths they may provide. In fact, our model provides us with the actual optimal topology under any

given cost and Figure 4.3 provides optimal topologies obtained when the optimal number of leased

links was eight, six, five, and four. The optimal topology with four links is not surprising since

it simply establishes direct connections between each generator and the control center. Optimal

topologies with extra links, however, were not always straightforward to justify. For example, the

optimal topology with six links displays a higher preference towards keeping generator six, which

is the largest load in the network, connected to the control center over any of the other stochastic
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generators. Of the three loads, generator six has the largest capacity deviations over its possible

realized capacity values so the preference towards maintaining connection with it may be regarded

to be lowering the probability that the system operator will have to incur the large cost associated

with re-dispatching generator six to meet its realized demand or for over-supplying it with power

when the communication with it is lost.

Figure 4.4 shows the change in the optimal objective value as B the leasing cost per link

is increased for the same 5-node communication network supporting an IEEE 9-bus system we

considered for Figure 4.2. As B is increased, the objective function is linear over the intervals

where the optimal communication topology is unchanged since the only change in the objective

function will be the number of communication links leased multiplied by the amount of increase

in B. Further, since the optimal number of leased communication links is a decreasing function in

B, the slope of the linear segments making up the objective function will also decrease with B as

it is equal to the total number of leased communication links. As a result, the objective function

is a concave function in B which can be easily observed from Figure 4.4.

The same experiments whose results are presented in Figures 4.2-4.4 were run for a communi-

cation network of size 6 where the extra communication node was taken as a relay. The results

obtained with 6 nodes in the communication network were nearly identical to the ones presented

in 4.2-4.4 with the main difference being that the optimal communication network would lease all

15 links when B is very close to zero and, therefore, those results were omitted.
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Figure 4.2: Number of links leased vs. increasing link costs for a 5-node communication network
supporting an IEEE 9-Bus system

Figures 4.2-4.4 show results where we consider every possible combination of communication
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(a) 8 Links Leased (b) 6 Links Leased (c) 5 Links Leased (d) 4 Links Leased

Figure 4.3: Optimal Topologies for Different Numbers of Links Leased
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Figure 4.4: Optimal objective value vs. increasing link costs for a 5-node communication network
supporting an IEEE 9-Bus system

link failures. As a result, the communication topologies obtained under such conditions take

into account what might be extreme and highly unlikely scenarios where all the links in the

communication network may fail. In reality, it is perhaps more reasonable to only consider scenarios

where at most only a few links may fail at the same time.

Figure 4.5 shows the optimal number of leased communication links asK the maximum number

of communication links that may fail at any given time is increased from 1 to its maximum value

of 10 under several different values for B. Similar to the results from Figure 4.2 (where K was

fixed at 10), Figure 4.5 indicates that the optimal number of leased communication links decreases

as B is increased. More importantly, Figure 4.5 indicates that the optimal number of leased

communication links increases with K which should be expected as more communication links

would be needed to defend against the increased risk of having more links fail at the same time.

With K = 1, the optimal communication topology leased 5 links and arranged them, as indicated

in Figure 4.3c, such that the communication network is a single loop. A loop topology provides the

ability for all the generators to remain connected to the control center under any single link failure
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so the system operator will not gain from leasing any additional links. With K = 2, the optimal

communication topology required 8 links arranged according to Figure 4.3a where all the sensors

would remain connected under any two-link failure scenario. We note that the optimal link choice

is not unique for the 5 link topology since the order of the different generators in the loop will have

no affect on the scenario probabilities or any other factor in the optimization problem. The same

is true for the 8 link topology where the actual leased link may be exchanged with another set of

links as long as the general network structure is preserved.
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Figure 4.5: Number of links leased vs. maximum number of failed links for a 5-node communication
network supporting an IEEE 9-Bus system

Finally, Figure 4.6 provides plots showing the change in the optimal objective value as K is

increased under the same cost values considered for Figure 4.5. Figure 4.6 seems to indicate that

the optimal objective function is also concave in K. While this is associated with the fact that

the number of leased links is an increasing function of K, having higher K values changes the

probabilities of the different stochastic scenarios so proving that the objective function is concave

in K may be more complex. Figure 4.6 also demonstrates that accounting for a single link failure

could greatly underestimate the optimal objective value for the full problem accounting for all

the possible failure scenarios and that considering just a few more failures may lead us to a more

accurate estimate.

Our formulation relies on enumerating all possible communication link failures and so the

number of scenarios in the full problem grows exponentially with every added link in the system. As

a result, applying our full model to larger power grids and their possible communication networks

may not be practical from a numerical viewpoint. Fortunately, this problem in not unique to our
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Figure 4.6: Optimal objective value vs. maximum number of failed links for a 5-node communica-
tion network supporting an IEEE 9-Bus system

model and there are many techniques in the literature discussing possible methods of reducing

the size of a stochastic optimization problem in a manner that preserves its essence and closely

approximates its optimal solution. One of the possible solutions was already introduced in this

chapter by considering smaller values of K since that decreases the total number of communication

scenarios. Other possible solutions may include well-established techniques in the literature on

sampling, see [99–102] for example. Also, there may be practical considerations that limit the

problem’s numerical complexity. For example, establishing a communication link between nodes

associated with loads or generators that are sufficiently far away from each other in the power

grid may not be possible in the real world and so we may be able to exclude such links from our

analysis.

4.4 Conclusion

In this chapter, we presented a novel two-settlement stochastic OPF model accounting for

failures in communication as well as errors in forecasting loads and renewable generation. Our OPF

model’s decision variables extend beyond power dispatch and re-dispatch decisions to include the

decision variables identifying the optimal topology for the communication network supporting the

considered power system. We presented several numerical results on the optimal communication

network supporting an IEEE 9-bus system. Based on the presented results, we are able to determine

the effect that increasing the per link cost for leasing a communication network will have on the

optimal communication topology and we are able to uncover preferences towards establishing more
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communication paths between certain sensors in the grid and the control center that are not be

obvious.
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Chapter 5

Topology Estimation in Power

Distribution Networks

In this chapter, we consider the case where sensors are placed at nodes in the system and

we assume that endowing a node with a sensor allows us to measure the power flow along every

line incident to that node. We present a novel topology estimation scheme for radial distribution

networks based on slow-changing nodal demand forecasts and power flow measurements obtained

from sensors installed at subset a of the nodes. Also included in this chapter is a proposed

sensor placement scheme based on a deterministic treatment of the load forecasts. The sensor

placement obtained by following the proposed scheme allows for the identification of any number

of detectable faults in the system. Numerical results are presented demonstrating the performance

of our topology estimation scheme for the case where the distribution network is the IEEE-123

bus test feeder and the employed sensors are placed at the locations obtained by following our

proposed sensor placement scheme.

The remainder of this chapter is organized as follows. In the next section, we present a de-

scription of the system model and introduce some of our notation. In Section 5.2, we present the

fault detection problem along with our proposed sensor placement scheme. Next in Section 5.3,

we describe our novel topology estimation approach. Section 5.4 presents numerical results where

we employ our proposed sensor placement scheme along with the presented topology estimation

approach to detect randomly generated faults in the IEEE 123-bus distribution feeder. Finally,

Section 5.5 summarizes our results and concludes this chapter.
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5.1 System Description and Notation

We consider power distribution networks operated in a radial (tree) structure where the power

is supplied to the feeder at the root node of the tree. We assume that all lines in the network are

susceptible to faults except for the line connecting the root node to the main power grid. We focus

on detecting the number and location of faults in the network by relying on forecasts of nodal

power demands and power flow measurements obtained from a limited number of carefully placed

sensors.

We assume the complete error-free network topology is known and described by the graph

Tfull = (V,E) where the nodes are given by V = {v0, v1, . . . , vN} and the lines are given by

E = {e1, e2, . . . , eN} where en , (vm, vn) and vm is the parent node of vn. Figure 5.1 shows a

simple tree demonstrating our naming convention.

Sensor placements are defined as a set of nodes P where P ⊂ V and we denote by E(P) the set

of lines whose power flows are measured under placement P. If a node is endowed with a sensor,

we are able to measure the power flow along all lines incident to that node and, therefore, we may

define E(P) as

E(P) = {e| e ⊂ E and e is incident on some v ∈ P}. (5.1)

Each node in the network is taken to have a power demand (load) that must be supplied through

a fault-free path connecting it to the root node. Nodal power demands are set to zero if the node

serves as a relay which is a common function of at least a few nodes in any real world distribution

network. Nonzero nodal demands are assumed to be based on load forecasts and are denoted by

the vector d+ = (di1 , di2 , . . . , diM )T where dim represents the load forecast for the (im)th node with

im ∈ {1, . . . , N} andM ≤ N is the number of nodes having a nonzero demand forecast. Since nodal

load forecasts are typically based on infrequent grid measurements, historical data, and prevailing

weather conditions, they are bound to have some errors and other inaccuracies. We assume the

forecasting errors may be modeled as additive noise such that d̃+ = (d̃i1 , d̃i2 , . . . , d̃iM )T the vector

of realized nodal demands is jointly Gaussian with zero mean and a known diagonal covariance

matrix Σ = σ2I of size M resulting in the vector d̃+ being distributed as d̃+ ∼ N(d+,Σ).

Under a radial network drawing power from its root, the power flow through a line en ∈ E is

given as the sum of the demand for node vn and all the nodes downstream from vn. Thus, the
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Figure 5.1: Tree showing naming convention

measured power flow through line en ∈ E is given by

yTtrue(en) =
∑

i∈Downstream(vn;Ttrue)

d̃i, (5.2)

where Downstream(vn; Ttrue) is a function returning a set comprised of n and the indices of all

the nodes downstream from vn in Ttrue the unknown true (actual) network topology. Based on our

assumption for the noise in the load forecasts, a nonzero yTtrue(en) will be normally distributed

with a mean ȳTtrue(en) given by the right hand side of (5.2) where each nonzero d̂i value is replaced

by di (its forecast) and a variance equal to σ2 multiplied by the number of downstream nodes with

nonzero forecasts.

Faults are modeled as a loss in any number of lines in the network and are given by F ⊂ E

such that the resulting faulted network is a forest Ffault = (V,Ef ) where Ef , E \ F and |F | are

both unknown. Because Tfull, the error-free network, is a single connected tree, every line fault

will increase the number of trees in the faulted graph describing the network by one. Thus, if we

suppose that |F | = k faults have occurred, the graph describing the faulted network Ffault is a

forest comprised of k + 1 components or trees T0, T1, T2, . . . , Tk.

Since power is drawn solely from the root node, only one of the trees comprising Ffault will be

energized and that will be tree the containing the root node which we denote by T0 without any

loss in generality since the numbering is arbitrary. T0 may be described as T0 = (V0, E0) where

V0 ⊂ V and E0 ⊂ Ef ⊂ E are respectively the set of nodes and lines that remain connected to the

power feeder after the occurrence of all the faults. As a result, all the lines not included in E0 will

have zero power flowing through them and all sensor measurements collected under any possible

placement on these lines will be equal to zero. Therefore, a fault occurring in a line (vm, vn) where
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both vm ̸= V0 and vn ̸= V0 will have no effect on the grid-connected part of the system or any of

the measurements collected from lines in E0. The detection of this type of faults excluded from

our analysis Definition 1 highlights this type of faults and the reason for excluding them.

Definition 1 (Topologically Undetectable Faults). Any fault affecting a line (vi, vj) ∈ E that

would otherwise still be excluded from the grid-connected part of the network will have no effect on

any possible measurement under any possible sensor placement. Such a fault carries no practical

significance on the topology estimation problem and is called a topologically undetectable fault.

An alternate description of a topologically undetectable fault is given in [70, 71] where it is

defined as a fault occurring downstream from another fault and the authors of [70,71] also excluded

these faults from their analysis.

Next, we provide a brief description of the fault detection problem and present our sensor

placement scheme.

5.2 Sensor Placement and The Fault Detection Problem

To better explain our proposed sensor placement scheme, we first define the fault detection

problem. An optimal detector solving the topology estimation (fault detection) problem must

determine both the number of faults and the lines affected by those faults. We consider the case

where the detector is based on the knowledge of Tfull (the fault-free network topology), nodal load

forecasts, and the sensor measurements Y = (y(en1), y(en2), . . . , y(en|P|))
T . One possible detection

method is to employ a maximum likelihood (ML) detector that may be expressed as

F̂ ∈ argmax
F∈P(E)

Pr(Y|d̂+, F ), (5.3)

where F is a set containing the lines that are in outage, P(E) is the superset of E, and F̂ is chosen

after enumerating over all elements of P(E). Sadly, the size of P(E) is exponential in |E| (the

number of links in the network) making enumerating all the possible fault scenarios infeasible for

most real distribution networks. The number of fault scenarios was shown in [71] to still grow

exponentially in |E| for a worst case distribution network even after excluding all topologically

undetectable faults. However, the authors of [71] were able to show that the ML detection problem

(5.3) may be decoupled and solved over smaller disjoint subtrees in the network as long as each

subtree is rooted at a node where the amount of power it draws from its parent node is measured
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under the employed sensor placement. As a result, having a few sensors measuring power flows

along several lines in the network can help us solve (5.3) by decoupling the full distribution network

into smaller and more manageable problems.

Ambiguity in the ML detector (5.3) is another problem affecting the detection performance.

This problem occurs when the sensor locations are such that multiple fault scenarios result in the

same expected flow along the lines we measure. In most cases, adding carefully placed sensors

to the network will enable us to differentiate between the different faults causing the ambiguity.

This may be done by placing a sensor closer to the lines whose failure is causing the ambiguity

of the detector. An example showing the effect of sensor placement on our ability to identify and

differentiate between all detectable faults is demonstrated in Figure 5.2. The gray nodes in Figure

5.2 represent a node endowed with a sensor, which allows us to measure the power flow along all

the lines incident to it, and the number next to each node represents the node’s load or demand.

With the sensor placed at v0 in Figure 5.2a, we are able to observe the power flow only along

line e1 where we expect the measured flow to belong to the set C(e1) = {0, 10, 30, 50}. Since the

demands for nodes v2 and v3 are both 20, all the values in C(e1) can be mapped to unique detectable

fault scenarios except for 30 which represents either of e2 and e3 being in outage. Alternatively,

placing the sensor at v1 in Figure 5.2b allows us to measure the power flow along e1, e2, and e3.

This placement now enables us to distinguish between the case where e2 is in outage and the case

where e3 is in outage since the sets of expected flow measurements are C(e2) = {0, 20} for e2 and

C(e3) = {0, 20} for e3 and each value in both sets now maps to a unique fault. Note that if v0

was connected to other nodes and having a sensor there was required so that other faults in the

network remain distinguishable, we would have needed to add an extra sensor at v1 instead of

simply moving the one at v0.

v010

v110

v220

e2

v3 20

e3

e1

(a) Faults in e2 and
e3 indistinguishable

v010

v110

v220

e2

v3 20

e3

e1

(b) Faults in e2 and
e3 are distinguishable

Figure 5.2: The effect of sensor placement on the ability to distinguish faults
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Unfortunately, there are fault scenarios that result in cases where the ambiguity of the ML

detector (5.3) cannot be resolved under any possible sensor placement. This type of faults exists

due to having relay nodes with zero load demand. Consider for example the tree and sensor

placement given in Figure 5.2b but suppose that v1 is a relay node with zero demand instead of

10. In this case, we will be unable to distinguish between the scenario where e1 is in outage and

the scenario where both e2 and e3 are in outage although our sensor allows us to measure the flow

along every line in the network. We refer to this type of faults as numerically indistinguishable

since distinguishing between them is not possible by any detector under any sensor placement and

they are indistinguishable due to the numerical value of a node’s demand. We call a group of such

faults that are all associated with the same expected flow measurements as a set of numerically

indistinguishable faults. Throughout this chapter, we consider the occurrence of a fault from a set

of numerically indistinguishable faults as being equivalent to having all the faults in that set occur

and we consider the detection of a fault that is numerically indistinguishable as being equivalent

to detecting all the faults from the same set.

In the next subsection, we present a sensor placement scheme where the sensor locations are

chosen such that numerically indistinguishable faults are the only indistinguishable faults in the

network.

5.2.1 Proposed Placement Scheme

In this subsection, we propose a sensor placement scheme for the purpose of detecting faults in

a radial distribution network based on nodal load forecasts and line flow measurements. The ob-

tained sensor locations result in all topologically detectable faults in the network being identifiable.

Definition 2 formalizes the concept of identifiability.

Definition 2 (Identifiable faults). A fault in line en is identifiable under a given placement and

nodal load forecasts if the expected power flow along em, the first line endowed with a sensor along

the path from vn to v0 (the root node), is unique under all topologically detectable faults involving

en and any or none of the lines that are downstream from vm along em. The uniqueness of the

expected flow along em is allowed to be violated only when numerically indistinguishable faults are

being considered.

Our placement scheme is given in Algorithm 5.1 as the recursive function Placement. The

presented method depends on the functionsChild, UpFlow, UpdateTopology, Size, IsEmpty,

and CombineVects that are all briefly described in Appendix 5.6. The sensor placement for the
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full distribution network is obtained by calling the function Placement with the inputs vn set as

the root node, P chosen as an empty set, T chosen as Tfull (the fault-free distribution network),

and the vector d = (d0, d1, . . . , dN )T constructed such that di is the load forecast for node i and

di = 0 when vi is a relay node.

Since the detection problem may be decoupled over disjoint subtrees rooted at a node whose

incoming power flow is measured by a sensor [71], the set of expected flow values for a line may be

constructed through considering the subtree it belongs to as an isolated network independent from

the remainder of the distribution network. The difficulty in taking advantage of the decoupling of

the problem is that it is by placing the sensors that we create the subtrees over which the problem

may be decoupled.

Our proposed placement approach starts at the root node and traverses the tree in a depth-first

search manner while constructing arrays (vectors) of expected power flows for the lines it visits.

The full vector of expected power flows for a line en is constructed only after visiting all child

nodes of vn so the complete vectors we construct start at leaf nodes of the tree. The constructed

vectors continue to grow as we backtrack from leaf nodes since they will always have a unique

set of expected power flows (a leaf node cannot have zero demand) and, therefore, no sensors are

placed at leaf nodes. We also do not place sensors at nodes having a single child, since if vn is

a node with only one child node, the expected power flows for the line en will always be unique,

provided the node does not have a zero demand. If node vn has a single child and its demand is

zero, the repeated value in the expected flows for line en is discarded since it is associated with

a numerically indistinguishable fault. As a result, we only place sensors at a node vm with more

than one child node if the expected power flow values for line em are not all unique.

Choosing to place a sensor at vm creates a subtree that we may ignore when continuing to

traverse the remainder of the distribution network due to the decoupling in the ML detection

problem. Therefore, when we backtrack from a node where we decided to place a sensor (Lines

41-45 in Algorithm 5.1), we return to the parent node an empty array of expected flow values.

Otherwise, if the elements in the vector of expected flow measurements are all unique and no

sensor is required at vm, we continue to grow the vector until another sensor is placed or we finish

traversing the remainder of the tree.

Having repeated values in the vector of expected flows for a line en indicates that some faults

occurring downstream of the node vn will be unidentifiable if the sensor is placed at vn’s parent.

Therefore, it is by construction that our presented scheme ensures that all the detectable faults in
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the network will be identifiable since we use the test for repeated values in the vector of expected

flows for ever line we visit as the condition for including a sensor in the placement. Further, the

obtained placement is guaranteed to have the minimum number of sensors required to achieve

identifiability. This can be explained by first supposing that we remove a sensor from the obtained

placement. By construction, removing any sensor from the obtained placement is guaranteed to

result in having some unidentifiable faults. We could attempt to recover identifiability in the

network by changing the locations of some of the sensors we did not remove. However, we are

unable to move any of the remaining sensors upstream since doing so was originally prevented

by the algorithm because it would have led to having unidentifiable faults. Moving a sensor

downstream and closer to the location of the removed sensor will not work either since we will be

required to move it all the way to the location of the removed sensor and that would lead us to a

case equivalent to the one we are trying to solve my moving the sensor. Thus, no other placement

scheme can guarantee the identifiability of all faults in the network while also employing fewer

sensors than we require under our proposed placement scheme.

Next, Remark 4 discusses the effect of having noisy nodal load forecasts on the detectability of

identifiable faults and then we present our fault detection scheme.

Remark 4. It is important to note that having a placement where all detectable faults satisfy

Definition 2 does not guarantee their perfect detection when noise is added to the system. For

example, consider the case where the distribution network and sensor placement are given in Figure

5.2a and suppose that the nodal loads forecasts for v2 and v3 are respectively 19.9 and 20.1. In

this case, all faults in the network are identifiable but if the variance of the noise affecting the load

forecasts is sufficiently large, the performance of a fault detector relying on measurements of power

flow along e1 will likely be unfavorable unless we are able to collect a sufficiently large number of

measurements for the flow on e1 in order to obtain a better estimate of the mean power along e1.

On the other hand, having a placement where some faults fail to satisfy Definition 2 guarantees

that any employed detection method will not be able to differentiate between those fault under any

number of collected measurements, and even in the absence of noise, since the mapping between

the expected flow measurements and the possible fault scenarios will not be unique.

82



5.3 Fault Detection Scheme

This section presents a novel fault detection scheme under the problem setup described in

Section 5.1. In the absence of noise, our approach will detect all the topologically detectable

faults in the network if the employed sensor placement is such that all faults in the system are

identifiable. If the sensor placement is such that there are some unidentifiable faults in the system,

our presented approach will detect all the possible fault scenarios that map to the measured power

flows.

We first summarize the steps taken by our scheme and then provide more detailed descriptions

of the steps afterwards:

1. For every node endowed with a sensor, remove any directly identifiable faults on the lines

connecting the node to its children.

2. Identify all the lines measuring zero flow.

3. Adjust the expected flow along the remaining lines in E(P) based on Step 1 and Step 2.

4. Test if the flow on the lines with nonzero flow matches with the updated expected flows,

starting with the deepest lines first.

5. Identify subtrees as the ones where the expected flow along the line separating the tree

from the network is significantly different from its expected value and estimate the difference

between the measured flow and its expected value.

6. Generate a vector of expected flows for each identified subtree with faults having expected

flow smaller than the difference estimated in Step 5.

7. Use ML to detect faults in the subtree.

8. Check for faults on lines connected to nodes endowed with a sensor from above.

9. Generate estimate of grid-connected tree based on results from Step 1, Step 7, and Step 8.

Since installing a sensor at a node vn allows us to measure the flow on every line incident on it,

if we measure zero flow along a line drawing power from vn but measure a positive flow on the line

en, then we may directly identify that a fault has occurred on the line with zero flow. Identifying

and removing such faults is done in Step 1 of the proposed approach. Step 2 simply identifies
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the lines with zero flow and Step 3 simply adjusts our expected values of Y according to Step 1

and Step 2.

Next in Step 4, for all the lines with a nonzero measured flow, and following a decreasing

depth order, we test whether the measured flow matches with our expected value for it where the

test is formulated as the simple binary hypothesis

H0 : yTtrue(en) = ȳTupdated
(en),

H1 : yTtrue(en) < ȳTupdated
(en), (5.4)

where ȳTupdated
(en), which is obtained by using (5.2) after replacing d̃i with di, is our updated

expected value for yTtrue(en) (the measured flow on line en). The hypothesis under H1 in (5.4) is

one sided since we expect the mean flow on a line to decrease under a fault. Under our assumption of

additive white Gaussian noise for the errors in load forecasts, deciding between the two hypotheses

may be done based on

zn =

(
yTtrue(en)− ȳTupdated

(en)
)2

σ2
, (5.5)

for a chosen value of σ and later comparing zn to a threshold value obtained under a given desired

false alarm probability.

For every line en identified in Step 4 as having a flow that is less than its expected value,

in Step 5 we identify all the lines and nodes downstream from vn in our network as an isolated

subtree S(en) and we update Tupdated after each such step. Further, we associate with each isolated

subtree a value ∆y(en) = yTtrue(en) − ȳTupdated
(en) which is the difference between the measured

flow on en and our expected value for it.

Next in Step 6, for each identified subtree S(en), we generate a vector of expected power flows

under all the detectable faults that may occur in S(en). Generating the vector of expected flows

under all possible faults could be computationally expensive. Thus, if there are single line faults

that would result in a ∆y(en) that is significantly larger than the one we obtained in Step 5,

we will choose to exclude it from the process of generating the vector of expected power flows

for the subtree. We formulate the test determining whether to include faults involving a line en

in the generation of the vector of expected power flows for a subtree S(en) as the simple binary
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hypothesis

H0 : ∆(yn) ≤ yTtrue(en)− ȳS(en)\em(en),

H1 : ∆(yn) > yTtrue(en)− ȳS(en)\em(en), (5.6)

where ȳS(en)\em(es) represents the expected power flow on line en under the single fault scenario

where line em is in outage. If we accept H1 in (5.6), we may ignore all faults involving em when

constructing the vector of expected power flows for subtree S(en). To generate the vector of

expected power flows for Step 6, we may traverse S(en) using a depth first search method as long

as we continue to accept H1 in (5.6). Then, if we find a line where H1 in (5.6) is rejected, we can

generate a vector of expected power flows associated with the faults involving that line and all the

lines below it before backtracking and continuing to traverse the tree using depth first search as

long as we accept H1. Once all the vectors of expected power flows are generated over the different

regions of S(en) where we accept H1, they can be used to create the vector of expected flows for

Step 6 by using the function CombineVects which is given in the Appendix and was previously

used by Algorithm 5.1.

In Step 7 and for each subtree S(en), we employ the ML detector given in (5.3) after replacing

P(E) with the set of faults that map to the values comprising the vector of expected flows obtained

in Step 6 and also replacing Y by the power flow measurement for line en. Step 7 is where we

tend to identify the majority of the faults in the network.

In Step 8, we focus on the faults occurring on lines en ∈ E(P) when vn is a node endowed with

a sensor and the measured flow on en is zero. For every such line, if none of the faults identified

in Step 1 or Step 7 are on the upstream path from the vn to the root node (or the next node

endowed with a sensor), we declare the line en as being in outage. Finally, Step 9 combines all

the faults found in Step 1, Step 7, and Step 8 to produce a final estimate of the gird connected

tree T0 and the set of topologically detectable faults.

The next section presents numerical results demonstrating the performance of the just presented

fault detection scheme for the case where the sensors in the system are installed according to the

placement scheme described in Section 5.2.
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5.4 Numerical Results

This section presents results demonstrating the performance of the fault detection scheme

proposed in Section 5.3 when the sensors in the network are placed according to the approach

given in Section 5.2. Throughout this section, we consider the case where the distribution network

is the IEEE 123-bus test distribution feeder where are all the switches are assumed to be at their

nominal positions and we take the load demands to be the sum of the spot loads over all three

phases.

For the IEEE 123-bus test feeder, the approach described in Section 5.2 will result in a sensor

placement with 20 sensors located at nodes

P∗ ={1, 3, 8, 13, 18, 23, 26, 36, 40, 44, 57,

67, 76, 78, 81, 89, 93, 97, 105, 110}, (5.7)

where the node numbers in (5.7) follow those given in the documentation of the test feeder. Figure

5.3 shows the IEEE-123 bus feeder with the locations of the sensors under P∗ indicated by circles.

Figure 5.3: IEEE 123-bust test feeder with the sensor placement obtained using our proposed
approach indicated

To test the performance of the estimation approach introduced in Section 5.3 under the sensor

placement given by (5.7), we first set a value for the standard deviation σ of the additive noise in
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the nodal load forecasts. Next, a number N1 is chosen at random and then we randomly select

N1 different lines in the network to be in outage. For every chosen value for σ, we repeat the

process of randomly choosing N1 followed by randomly generating N1 faults for 1000 different

runs. Afterwards, we record the number of runs where the faults identified by our approach were

all the topologically detectable faults that were randomly generated for that run. Then, we divide

the number of runs where we were successful and divide that by the number of runs (1000) in order

to obtain an estimate for the probability of detection of our approach.

Figure 5.4 includes plots showing the estimated probability of detection with our approach for

increasing values of the noise standard deviation of 0.1, 0.25, 0.5, 1,
√
2, 2. We note that the small-

est nodal demand in the IEEE-123 feeder is 20 so a standard deviation of 2 is quite significant.

The two graphs in Figure 5.4 represent the case where we only rely on measurements of real power

flow (N = 1) for our fault detection and the case where we use both real and active power flow

measurements (N = 2) under the assumption that the noise in the two measurements is indepen-

dent and identically distributed (iid). From Figure 5.4, it easy to see that employing both real and

active power flow measurements significantly increases our probability of detection, especially for

higher values of σ. This should be expected as including active power flow measurements doubles

the number of measurements we employ for our detection.
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Figure 5.4: Estimated probability of detection vs increasing values of noise standard deviation
under an unrestricted number of faults

The results from Figure 5.4 were obtained for the case where the number of faulted lines in

the network was chosen at random from a uniform distribution over the number of lines in the

feeder. Consequently, a large number of the generated faults scenarios involved cases where the
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majority of the faults were undetectable since the probability that random fault is generated very

close to the root is relatively high when N1 is sufficiently large. Therefore, we decided to obtain

additional results where we restricted N1 to be chosen uniformly at random between 1 and 20

in order to generate more scenarios having topologically detectable faults at locations that are

far from the root node. Figure 5.5 also includes two graphs representing the performance of our

approach for the case where we rely only on measurements of real power flow (N = 1) for our fault

detection and the case where we use both real and active power flow measurements (N = 2) under

the assumption that the noise in the two measurements is iid. From Figure 5.5, it seems that the

probability of detection for our approach remains unchanged when compared to the results from

Figure 5.4 for small values of σ whereas it was slightly lower in Figure 5.5 for larger values of σ.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E
st

im
at

ed
 P

r(
de

te
ct

io
n)

 N=1
 N=2

Figure 5.5: Estimated probability of detection vs increasing values of noise standard deviation
with number faults at most 20

Finally, Figure 5.6 shows the effect of increasing the number of measurements collected by each

sensor on our estimated probability of detection. The results for Figure 5.6 were obtained for the

case where we assumed that N = 1, 25, 50, 75, 100 measurements were collected by real power flow

measurements under fixed load forecasts having iid additive white Gaussian noise with σ = 2. The

results in Figure 5.6 show that only a small number of measurements is needed in order to achieve

significant increases in the probability of detection. Figure 5.6 also shows that employing more

measurements will continue to improve the detection performance. This should be expected since

having more measurements allows us to obtain more accurate estimates for the mean power flow

along the lines we observe.
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Figure 5.6: Estimated probability of detection vs increasing number of measurements per sensor

5.5 Conclusion

In this chapter, we focused on topology estimation and fault detection in radial distribution

networks based on noisy nodal demand forecasts and power flow measurements collected from a

subset of the lines in the network. We proposed a sensor placement scheme providing the mini-

mum number of sensors required such that all the topologically detectable faults in the network are

identifiable. Afterwards, we described a novel fault detection scheme taking advantage of the de-

coupling of the ML detector over subtrees in the network. Finally, we presented several numerical

results where we employed our proposed sensor placement scheme along with the presented topol-

ogy estimation approach to detect randomly generated faults in the IEEE 123-bus distribution

feeder.

5.6 Appendix

Description of the Functions Employed by the Proposed Sensor Place-

ment Scheme

Throughout this appendix, we take vn to represent a node in the distribution network, d to

represent a vector of load demands, and T to represent the topology of a distribution network.

1. Child(vn, T ) : this function returns a set containing all child nodes of vn in the network T .

2. UpFlow(vn,d, T ) : The output of this function is a scalar quantity equal to the flow along

line en where en is the node connecting vn to its parent node. We may calculate the output
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using equation (5.2).

3. UpdateTopology(vn, T ) : This function return the network T after removing the line en

from it.

4. Size() : this function simply returns the size (or length) of the set or vector provided to it

as an input.

5. IsEmpty(x) : this function return a logical true if all elements of the vector x are unique

and returns a logical false otherwise.

6. CombineVects(x1,x2) : This function return a vector constructed from combining the

vectors x1 and x2 as described by Subroutine 5.1

90



Algorithm 5.1: Placement(vn,P,d, T )
A recursive sensor placement scheme

1: Input: Node vn, old sensor placement set P, load forecasts d, and topology T
2: Result: Updated set P contains the proposed sensor placement
3: Begin
4: S = Child(vn, T )
5: s = Size(S)
6: if s == 0 then
7: flow vector = UpFlow(vn,d, T )
8: return
9: else if s == 1 then

10: [f vector,P, T ] = Placement(S,P,d, T )
11: if d[n] == 0 then
12: flow vector = f vector
13: else
14: flow vector = (f vector,UpFlow(vn,d, T ))T
15: end if
16: return
17: else
18: //Node vn has multiple child nodes
19: index = [ ]
20: for i = 1 to s do
21: [f vect i,P] = Placement(S[i],P,d, T )
22: if IsEmpty(f vect i) == 0 then
23: index.append(i)
24: end if
25: end for
26: if d[n] ̸= 0 and Size(index) == 1 then
27: flow vector = (f vect index,UpFlow(vn,d, T ))
28: else if d[n] == 0 and Size(index) == 1 then
29: flow vector = (f vect index)
30: else
31: flow vector = [ ]
32: for j = 1 to Size(index) do
33: flow vector = CombineVects(flow vector, f vect index[j])
34: end for
35: end if
36: //Check if all values are unique
37: if unique(flow vector) == 1 then
38: return
39: else
40: //Place Sensor at vn
41: P = P ∪ vn
42: flow vector = [ ]
43: //Update expected flow above sensor
44: [T ] = UpdateTopology(vn, T )
45: return
46: end if
47: end if
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Subroutine 5.1: CombineVects(x1,x2)

1: Input: Vectors x1 and x2

2: Result: Vector x
3: Begin
4: n1 = Size(x1)
5: n2 = Size(x2)
6:

7: if n1 == 0 then
8: x = x2

9: return
10: else if n2 == 0 then
11: x = x1

12: return
13: end if
14:

15: x = (x1,x2)
T

16: for i = 1 to n1 do
17: for j = 1 to n2 do
18: x.append(x1[i] + x2[j])
19: end for
20: end for
21: return
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