
UNLV Theses, Dissertations, Professional Papers, and Capstones

5-1-2015

Concurrent Non-blocking Skip List Using Multi-word Compare and Concurrent Non-blocking Skip List Using Multi-word Compare and

Swap Operation Swap Operation

Anish Ratna Tuladhar
University of Nevada, Las Vegas, anishrtuladhar@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Tuladhar, Anish Ratna, "Concurrent Non-blocking Skip List Using Multi-word Compare and Swap
Operation" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2438.
https://digitalscholarship.unlv.edu/thesesdissertations/2438

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2438&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2438&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/2438?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F2438&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

CONCURRENT NON-BLOCKING SKIP LIST USING

MULTI-WORD COMPARE AND SWAP OPERATION

by

Anish Ratna Tuladhar

Bachelor of Computer Engineering

Tribhuvan University

Kantipur Engineering College, Nepal

2009

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science Degree in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2015

Copyright by Anish Ratna Tuladhar, 2015

All Rights Reserved

ii

We recommend the thesis prepared under our supervision by

Anish Ratna Tuladhar

entitled

Concurrent Non-blocking Skip List Using Multi-word Compare and

Swap Operation

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Ajoy K Datta, Ph.D., Committee Chair

John Minor, Ph.D., Committee Member

Lawrence L. Larmore, Ph.D., Committee Member

Venkatesan Muthukumar, Ph.D., Graduate College Representative

Kathryn Hausbeck Korgan, Ph.D., Interim Dean of the Graduate College

May 2015

Abstract

We present a non-blocking lock-free implementation of skip list data structure using multi word

compare and swap (CASN) operation. This operation is designed to work on arbitrary number of

memory locations as a single atomic step. We discuss the implementation details of CASN opera-

tion which only utilizes the single word compare and swap atomic primitive found in most of the

contemporary multiprocessor systems. Using this operation, we first design lock-free algorithms to

implement various operations on linked list data structure, then extend it to design skip lists. Skip

list is a probabilistic data structure composed of linked lists stacked together forming different levels.

It provides expected logarithmic time search like balanced search trees, but without requiring rebal-

ancing. The fundamental operations on a skip list data structure require traversing and updating

a number of memory locations. Due to this nature of the data structure, using a powerful atomic

primitive like CASN in its implementation simplifies the design and makes the concurrent reasoning

easier. In addition to fundamental operations, we present a variety of other operations on linked

list and skip list data structures and provide examples to support the correctness of the proposed

algorithms.

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Ajoy K Datta for his

continuous support on my thesis. I thank him for his humble behavior, patience, motivation and

enthusiasm. His guidance and immense knowledge helped me during the period of research and

writing of this thesis. I could not have imagined having a better advisor and mentor for my thesis.

I would like to thank Dr. Lawrence L. Larmore, Dr. John Minor and Dr. Venkatesan Muthukumar,

for being part of the committee and providing their insightful comments and encouragement. My

sincere gratitude goes to my parents, my sister Pritama Tuladhar and my beloved girlfriend Brizika

Rai as they have always inspired and supported me on each and every aspect of my life.

At last, I would like to thank all my friends, seniors and juniors who have made my stay at UNLV

a memorable one. I thank you for your wonderful company.

Anish Ratna Tuladhar

University of Nevada, Las Vegas

May 2015

iv

Contents

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Algorithms viii

1 Introduction 1

1.1 Motivation . 3

1.2 Objective . 4

1.3 Outline . 5

2 Background 7

2.1 Shared Memory and Synchronization . 7

2.1.1 Multi processors and Multi threaded systems 8

2.1.2 Atomic primitives and ABA Problem . 9

2.2 Behavior of Concurrent Objects . 11

2.2.1 Designing Concurrent data structures . 12

3 Literature Review 14

3.1 Universal Transformations . 14

3.2 Atomic Operations . 15

3.2.1 Single word compare and swap . 15

3.2.2 Double word compare and swap . 16

3.2.3 Multi-word compare and swap . 16

3.3 Concurrent Data Structures . 17

v

3.3.1 Linked Lists . 18

3.3.2 Balanced search trees . 20

3.3.3 Skip Lists . 21

4 Understanding CASN Operation 25

4.1 Implementing SubtractX Operation . 26

4.2 Illustration of CASN Operation . 29

4.2.1 Construction of Restricted Double Compare and Single Swap Operation . . . 30

4.2.2 Construction of CASN Operation . 33

5 Proposed Linked List and Skip List Implementation 37

5.1 Proposed Linked List Algorithms . 38

5.1.1 Adding a Node in a Linked List . 39

5.1.2 Deleting a Node in a Linked List . 42

5.1.3 Searching a Node in a Linked List . 44

5.1.4 Prepending a Node in a Linked List . 45

5.1.5 Appeding a Node in a Linked List . 46

5.1.6 Proof of Concurrency . 48

5.2 Proposed Skip List Algorithms . 53

5.2.1 Adding a Node in a Skip List . 54

5.2.2 Deleting a Node in a Skip List . 58

5.2.3 Searching a Node in a Skip List . 61

5.2.4 Prepending a Node in a Skip List . 62

5.2.5 Appending a Node in a Skip List . 63

5.2.6 Proof of Concurrency . 65

6 Conclusion and Future Work 68

Bibliography 70

Curriculum Vitae 72

vi

List of Figures

1.1 A sorted singly linked list with three nodes. 3

1.2 A simple skip list with five nodes. Each linked list serve as a level for skip list. . . . 3

2.1 UMA and NUMA multiprocessor architectures. 9

3.1 A binary search tree and its worst case scenario. 21

4.1 A RDCSS Descriptor. 32

4.2 A CASN Descriptor. 33

5.1 Adding a node in a linked list. 40

5.2 Deleting a node in a linked list. 43

5.3 Two concurrent threads A and B operating together. Thread A is trying to delete an

item from the list and thread B is trying to add an item. 49

5.4 Two concurrent threads A and B operating together. Thread A and B trying to delete

adjacent items at the same time. 50

5.5 Adding a node in skip list. 55

5.6 Deleting a node in skip list. 59

5.7 Searching a node in skip list. The search starts from the maxlevel and descends down

each level until the sought after key is found. 61

5.8 Two concurrent threads operating together simultaneously in skip list. Both threads

are trying to add an item in the skip list simultaneously. 66

5.9 Two concurrent threads A and B operating together simultaneously. Thread A is

trying to delete an item from the list and thread B is trying to add an item at the

same time. 67

vii

List of Algorithms

3.1 A basic syntax of CAS Operation . 16

3.2 A basic syntax of DCAS Operation . 16

4.1 A basic syntax of CASN Operation . 25

4.2 Pseudo code to implement subtractX and readX sequentially 27

4.3 Pseudo code to implement substractX and readX with descriptors 28

4.4 Pseudo code of RDCSS operation . 31

4.5 Pseudo code of CASN Operation . 34

4.6 Pseudo code of CASNRead operation . 35

5.1 Pseudo code to implement ‘add’ operation in a linked list. 41

5.2 The linked list ‘find’ operation: a helper function used by add and delete operations. . 42

5.3 Pseudo code to implement ‘delete’ operation in a linked list. 44

5.4 Pseudo code to implement ‘search’ operation in a linked list. 45

5.5 Pseudo code to implement ‘prepend’ operation in a linked list. 46

5.6 Pseudo code to implement ‘append’ operation in a linked list. 47

5.7 Two designs to generate a random level. The level thus generated can range from

minimum value 1 through maxlevel . 54

5.8 Pseudo code to implement ‘add’ operation in a skip list. 57

5.9 The skip list ‘find’ operation: a helper function used by add and delete operations. . . 58

5.10 Pseudo code to implement ‘delete’ operation in a skip list. 60

5.11 Pseudo code to implement ‘search’ operation in a skip list. 62

5.12 Pseudo code to implement ‘prepend’ operation in a skip list. 63

5.13 Pseudo code to implement ‘append’ operation in a skip list. 64

viii

Chapter 1

Introduction

With the advancement of technology, single core processors are fading away. Modern technology is

getting faster and faster every day. Processors were initially developed with only one core. Manufac-

turers are now concerned on the multicore architectures which allow high degree of parallelism. Mul-

ticore processor is a single component with two or more independent processing units that reads and

executes program instructions. Multicore processors being able to carry out multiple instructions at

the same time, they work together in parallel to execute a single task, thus making computing faster.

For the processors to become faster, as predicted by Moore, the number of transistors in a dense

integrated circuit doubles approximately every two years. But the speed up is not achieved with-

out overheating of the transistors. Although there is an exponential increase in transistor count,

the clock speed is flattening sharply. So, the manufacturers are now more concerned on building

efficiency on software rather than making the most of the hardware. Multiprocessor chips makes

computing more effective by enforcing a high degree of parallelism between the number of processes

working on the same shared memory.

With this major switch to enhance the software, existing algorithms on the sequential data struc-

tures needs to be revisited for them to work on multi-threaded environment. To make use of the

multi-core processors and achieve highest degree of parallelism, the data structures are in of improve-

ment in the implementation of the algorithms they operate on. The simplest and traditional way to

maintain concurrency between a number of threads is by using locks. Data structures implemented

using locks are also called blocking implementation of that data structure. But, they have prominent

drawbacks and are discussed in section 2.2.1.

1

An alternative to blocking implementations are non-blocking implementations where the failure

or suspension of any thread cannot cause failure or suspension of another thread. They are guaran-

teed to make progress system-wide or per-thread. In this research, we will concentrate on designing

lock-free implementations of data structures and operations needed to implement them. Another

strongest non-blocking guarantee of progress is the property of wait-freedom. We discuss all these

properties in section 2.2.1. Much of the research are done on concurrent data structures. Few of

them being binary search trees, AVL-trees, hash, stack and queues.

With few exceptions, non-blocking algorithms use atomic read-modify-write primitives. These

primitives are anticipated to be made available by the hardware. The most distinguished of which

is compare and swap (CAS) operation. Using these primitives, standard interfaces are designed to

implement critical sections. CAS however operates on single memory location. We are concerned

with the design of multi-word compare and swap operation which operates on arbitrary number

of memory locations in a non-blocking manner. We explore various non-blocking implementations

of this operation and present algorithms to implement it elaborating the operation with various

examples and details. The atomic primitive thus designed will be used in implementing various

non-blocking algorithms for linked list and skip list data structures.

Linked list is one of the basic data structures which consists of a group of nodes aligned together

representing a sequence. Each node has a key field to store the element and a next pointer which will

store the reference to the next item on the linked list. Each node in a linked list has two neighbor

nodes, one preceding it and one succeeding it. The first and last nodes are called head and tail and

are sentinel nodes. First non-blocking lock free implementation of linked list was presented by Valois

[11]. The design used traditional compare and swap operation. To implement it as a concurrent

non-blocking data structure, we will use CASN operation. Along with fundamental operations,

lock-free append and prepend operations will be introduced. The linked list thus designed when

stacked together into different levels, form a data structure called skip lists which was invented by

Pugh [16, 20, 21]. An example of linked list and skip list data structure is given in figure 1.1 and

1.2. Skip lists designed with this structure can serve as an alternative to balanced search trees.

Unlike balanced search trees, they use probabilistic approach to maintain the balance which makes

the implementation and concurrent reasoning easier for skip lists. This offers a path to carry out

experiments and implementations on this data structure. Neglecting the worst case scenarios, skip

lists offers logarithmic time complexities for the fundamental operations like balanced search trees.

2

Figure 1.1: A sorted singly linked list with three nodes.

Figure 1.2: A simple skip list with five nodes. Each linked list serve as a level for skip list.

1.1 Motivation

To take the advantage of the improvement on the performance gain by using the multi-core pro-

cessors, a software compatible to multiprocessor hardware needs to be designed. Exploiting the

hardware and obtaining gain by increasing the clock speed is not the solution in modern computer

science. Technology is now concerned on increasing parallelism in multi-core environments and not

on increasing clock speed. We need to design programs that exploit multi-core processors which

results increase in performance. Concurrent programs on the other hand needs to be supported by

concurrent data structures. Concurrent data structures can be accessed by multiple threads which

may access the data simultaneously because they run on different processors that communicate with

one another via a shared memory. It is usually easier to design algorithms for a data structure in a

sequential manner. Designing similar data structure to work in a concurrent environment requires

a lot of other invariants to be preserved - the safety and liveness properties.

Balanced search trees are designed for efficient search, insertion and deletion provided with log-

arithmic performance. The operations on these tree structures require rebalancing which is very

complex to implement and makes optimization difficult. An alternative to such a data structure

would be skip lists which is simpler than balanced search trees both in concept and implementation

3

[20]. Skip lists do not require rebalancing and use probabilistic approach to maintain the balance.

Under the assumption that the input sequence will not consistently produce worst-case performance,

implementing skip lists can be easier and faster than balanced trees. The expected average cost of

search, insertion and deletion is O(log n). Although skip lists have bad worst case performance than

balanced trees, the probability that the input sequence consistently produces a worst case perfor-

mance is very minimal.

In the construction of skip list data structure, a much simpler and most common data structure,

a linked list is used. It is a dynamic data structure. The main advantage of using a linked list over

a conventional array is that the list elements can easily be inserted or removed without reallocation

or reorganization of the entire structure because the data items need not be stored contiguously

in memory or on disk. Linked lists allow insertion and removal of nodes at any point in the list,

and can do so with a constant number of operations if the link previous to the link being added

or removed is maintained during list traversal. These linked lists serve as each level of the skip list

data structure. Designing concurrent algorithms for linked lists and skip lists may be challenging.

But with dominant CASN operation in hand, we can design a simpler non-blocking implementation

of linked lists and skip lists.

1.2 Objective

In concurrent programming, an operation is said to be atomic if it appears to occur instantaneously

to rest of the system. The property of a process to work independently without the interference

of other concurrent operations is called mutual exclusion. Mutual exclusion refers to the require-

ment of ensuring that no two concurrent processes are in their critical section at the same time.

To ensure the atomicity of the operation, the standard way to approach mutual exclusion is using

locks. The main disadvantage of using locks for mutual exclusion is they cause blocking. Some

processes might have to wait until a lock is released. If one of the threads holding a lock dies,

blocks or goes into any sort of infinite loop, other threads waiting for that lock may wait forever.

Problems like lock contention, priority inversion and deadlock can occur. Alternatives to locking

include non-blocking synchronization methods, like lock-free and wait-free programming techniques

and transactional memory [25]. Designing generalized lock-free algorithms is a hard task. So, we

will focus on understanding and designing lock-free data structures instead.

Lock-free data structures are often implemented in terms of simpler atomic primitives like com-

pare and swap (CAS). With the existence of universal primitives such as compare and swap, Herlihy

4

[26] showed this primitive is necessary and sufficient to construct any non-blocking object. With

this generalization, we will use compare and swap to construct a powerful atomic primitive multi

word compare and swap (CASN). CAS works on a single memory location. Various researches have

been conducted to find the efficient algorithm and propose the lock free and wait free designs for

implementing multi word compare and swap operation (CASN) [1, 5, 6, 7, 14]. Our designs are

highly influenced by the ones described in [2, 14]. We present the design of this operation using

simpler examples and will use it to implement lock-free linked lists and skip lists. The aim of this

thesis is to simplify the understanding of non-blocking linked list and skip list data structures in

concurrent environment with the help of CASN operation. In addition to that, we will design some

novel operations in the skip list data structure and implement optimized algorithms which will en-

hance the searching of nodes.

To begin with understanding of the implementation, comprehensive knowledge of working mech-

anism of CASN operation is crucial. The working mechanism of this operation is not as simple as

single word compare and swap or double word compare and swap. The algorithm we will go after

is complex and the design is intricate. The key to the implementation is the use of descriptor data

structure. We will begin with the understanding the basics of CASN operation, its requirements

and data structures involved in constructing this powerful operation. Various fundamental and other

operations on linked lists will be created using CASN. Skip lists, although not a tree, are a popular

alternative which share the same performance characteristics like balanced search trees while being

easier to implement and understand. Skip lists have their own unique behavior and are linked lists

stacked together. We will present a detailed implementation of skip lists using the linked lists.

1.3 Outline

In chapter 1, we provided the brief introduction to the area of research. We discussed the need and

motive to choose the particular area as the topic of research.

In chapter 2, we will discuss the importance of synchronization and various techniques available to

enforce it in shared memory multiprocessor systems. We will discuss the power of atomic primi-

tives offered by the multi-core systems and their role in synchronization along with the problems

associated with it. We will provide details on the correctness and progress conditions required for

concurrent objects. Also, we will discuss on the various techniques to design concurrent data struc-

tures - blocking and non-blocking.

5

In chapter 3, we will go briefly through all the ideas people have came forward for implementing

concurrent data structures. We will discuss atomic primitives which are essential for the research

area and discuss various approaches that has been implemented for designing these atomic prim-

itives. We will outline the research performed on linked lists, balanced search trees and skip list

concurrent data structures which have highly influenced this research topic itself.

In chapter 4, we will discuss the non blocking implementation of multi word compare and swap

atomic operation which we will need to implement lock-free implementation of linked lists and skip

lists, referencing the design from Harris, Fraser and Pratt [8]. We will provide detailed examples to

aid the understanding of this powerful operation. We will discuss the algorithms on how a restricted

form of DCAS will be used to implement generalized CASN operation.

In chapter 5, we discuss on the various operations we will be implementing for linked lists and

skip lists data structures. We will first propose lock-free algorithms to implement the fundamental

operations along with some novel operations like append and prepend. We will discuss how CASN

operation will help on gaining the non-blocking behavior. We will provide few examples to prove

the correctness of the algorithms. We will then extend the implementation to design skip lists and

provide the proof of correctness in some sample concurrent execution scenarios.

In chapter 6, we conclude our research topic and provide ideas and suggestions to extend the area

as a future work.

6

Chapter 2

Background

The computer industry is undergoing a paradigm transfer. Chip manufacturers are changing de-

velopment resources away from single processor chips to a new generation of multi-processor chips

known as multi-cores. At the beginning, a computer system came up with a single processing unit

that was used to execute computer tasks. All the operations were carried out sequentially on this

unit. This is called a uniprocessor system. With the advancement of technology, the uniprocessor

systems are vanishing away and multiprocessor systems have occupied the area. Multiprocessor

systems are able to support more than one process at the same time. With this evolution in parallel

hardware, the problem of allocation of resources to the multiple processes in operation and making

effective use of the hardware have came up.

Also, increasing clock speed to improved performance is no longer an option. Moores law has

shifted to mean that each generation of processors will provide more cores, leaving clock speed essen-

tially flat [2]. This has led technology to obtain parallelism in multi-core environment rather than

exploiting hardware. This fundamental change in the computing architecture require fundamental

alteration on the way a computer program is written with multiple processors in hand. Concurrency

and synchronization are fundamental issues that are critical for the design of concurrent programs.

The future of multiprocessor computers will rely on how well programmers can take advantage of

concurrency offered by such hardware.

2.1 Shared Memory and Synchronization

Shared memory is a method by which processes can exchange data more quickly than by reading

and writing using the regular operating system services. Shared memory is an efficient means of

7

passing data between programs. Concurrent processes in the multiprocessor architecture work on

the globally shared memory. Processes operate concurrently and share a common resource; a critical

section. The problem with concurrent processes operating together in a shared memory is that they

may interleave in arbitrary ways which may lead to incorrect results.

Synchronization is the art of managing those interleavings such that they are impossible to occur

[9]. It is a mechanism which ensures that the concurrent processes or threads do not simultaneously

use the same shared memory. This is also known as mutual exclusion [2]. Failure to apply proper

synchronization techniques might result in race condition where the values of variables may be un-

predictable and vary depending on the timings of context switches of the processes or threads. In

context of concurrent algorithm designing, they require the programmer to handle situations that

simply don’t occur when developing single-threaded, sequential algorithms. For instance, when two

or more threads try to access and modify a shared resource (race conditions), the design should

not leave the system in an inconsistent or deadlock state. Synchronization is needed in all sys-

tems and environments where several processors can be active at the same time. Without proper

synchronization, the integrity of the data may be destroyed.

2.1.1 Multi processors and Multi threaded systems

Both multi-threaded and multi-processor (multi-core) systems exploit concurrency. Multi-threaded

system is an execution model that allows a single process to have multiple threads to run concurrently

within the perspective of that process. To facilitate multi-threading, processors have hardware sup-

port to efficiently execute multiple processes or threads. Whereas multiprocessor systems refers to

executing multiple processes at the same time and share the resources of a single core: the computing

units, the CPU caches. It refers to the hardware (i.e., the CPU units) rather than the software (i.e.,

running processes). They are independent (but complementary) design decisions.

The correctness and performance of synchronization algorithms depend crucially on architectural

details of multi-core and multiprocessor machines. In a shared memory architecture, there are many

possible configurations of processors, cores, caches and memories [9]. It refers to a multiprocessing

design where several processors access globally shared memory. Two of the possible architectures

are uniform memory access (UMA) and non-uniform memory access (NUMA) shown in figure 2.1.

In UMA architecture, all processors share the physical memory uniformly. From processor p0, the

latency time to memory m0 and m2 is same. If placement of data is unimportant, this architecture is

8

Figure 2.1: UMA and NUMA multiprocessor architectures. Latency is long from processor to
memory in UMA and short in NUMA.

easier to implement. But as the system grows, the latency time will get longer. So, this architecture

is typically is suited for small machines for the sake of simplicity [9]. The physical distances in larger

machines hence motivate to switch to NUMA architecture where the latency time to local memory

is shorter and helps in performance. In NUMA architecture, memory access time depends on the

memory location relative to a processor. From the processor p0, the latency time to local memory

m0 is very short but is long for m2. This architecture is typically used in larger multiprocessors.

2.1.2 Atomic primitives and ABA Problem

To facilitate the construction of synchronization algorithms and concurrent data structures, most

of the modern multiprocessor architectures provide us with at least one of the atomic primitives

which is capable of reading and writing a memory location as a single atomic operation [9]. The

simplest idea to achieve synchronization between the threads is using locks to ensure the mutual

exclusion. Synchronization primitives such as mutexes, semaphores, and critical sections are few

techniques of achieving it. A thread trying to access the critical section will acquire the lock and

release it after it is done. Locks make sure that that no other threads will intervene in the critical

section of the thread acquiring the lock. This is also called blocking synchronization. Using locks

to ensure synchronization between processes may look straightforward but care must be taken to

avoid unexpected effects caused by multiple processes trying to acquire exclusive access to shared

resources. One obvious disadvantage of using locks is that a thread acquiring lock will block the

shared memory for all other threads until it releases the lock. It may cause other problems like

deadlock, priority inversion and long delays [2, 27].

9

The solution to avoid locking is to make use of the atomic primitives offered by the hardware itself

to ensure synchronization. Using these atomic primitives, an execution of a concurrent process can

be made linearizable. Atomic registers are supported by most of the contemporary multiprocessor

systems which support atomic reads and writes operations. A weaker idea of safe registers [2] where

a guarantee that a read not concurrent with writes obtain a correct value is implemented too. How-

ever, a read that is concurrent with write may return arbitrary value in safe registers. In addition

to reads and writes, most modern architectures support some strong form of atomic primitives like

compare and swap, test and set, fetch and increment, fetch and add, load linked/store conditional,

etc. [9]. If not, we can create atomic instruction like this easily using the atomic instructions offered

by the system. Detail discussion on the operations with conditional atomic modification of memory

location - CAS, DCAS and CASN is provided in section 3.2.

Atomic operation like compare and swap is sufficient to avoid blocking behavior in algorithms

and avoid the use of locks. Herlihy [3, 26] proved that the compare and swap operation is univer-

sal and can be implemented to design lock-free algorithms. He proved that CAS can implement

more of these lock-free algorithms than instructions like atomic read, write, or fetch-and-add, and

assuming a fairly large amount of memory, that it can implement all of them. He proved that is

impossible to design non-blocking or wait-free implementations of many simple data structures using

other well known synchronization primitives i.e. read, write, test and set, fetch and add and swap [3].

However, the compare and swap operation comes inherently with a package of difficulty which

needs to be addressed in designing concurrent non-blocking algorithms - the ABA problem. It is

possible that between the time the old value is read and the time CAS is attempted, some other

processes or threads change the memory location two or more times such that it acquires a bit

pattern which matches the old value. The value in the memory location seems to be as expected

but actually it has changed. Below is an example of the possible sequence of events that will result

in the ABA problem:

• Process P1 reads value A from shared memory.

• P1 is preempted, allowing process P2 to run.

• P2 modifies the shared memory value A to value B and back to A before preemption.

• P1 begins execution again, sees that the shared memory value has not changed and continues.

This may cause undesirable situations [4, 9]. It is a fundamental problem in CAS based designs

and there are many solutions. The problem is often solved by adding a time-stamp to the variable

10

that is increased every time it is changed. This lowers the probability that the ABA-problem will

occur, but it also lowers the amount of information that can be stored in the variable. Using LL/SC

pair of atomic primitives, if available will also avoid ABA problem [4]. Another solution is using

version tags [28] which also requires system to support DCAS primitive.

2.2 Behavior of Concurrent Objects

A concurrent object is a data structure shared by concurrent processes. The behavior of concurrent

objects are best described through their safety and liveness properties, often referred as correctness

and progress [2, 9]. A concurrent object provides a finite set of operations which are the only means

to modify the concurrent data structure. Since a concurrent operation can be invoked by many

processes simultaneously, the question of how to provide the perception of correctness and progress

for a system arises.

To begin the reasoning and understanding of the correctness properties, let us review some formal

terms first. An execution of a concurrent system is modeled by a history, a finite sequence of method

invocation and response events. A sequential history is a set of events where method calls do not

overlap. The first event is an invocation, and for each invocations, except possibly the last, there is a

matching response. An object or thread sub-history is the subsequence of events in history relating

to that thread or object. A sequential specification for an object is a set of sequential histories for

that object. A sequential history is legal if each object sub-history is legal for that object. Now, let

us discuss some ideas to develop the intuition regarding the specification of correctness in a system

- quiescent consistency, sequential consistency and linerizability.

• Lineraizability : An execution in a concurrent system is linearizable if it is equivalent to the legal

sequential execution. Every concurrent history is equivalent to some sequential history. An

object is linearizable if it appears to the rest of the system to occur instantaneously. It is done

by identifying a linearization point where the operation takes effect. Simply, a straightforward

approach in lock based system to define linearization point is to use the critical section.

• Sequential consistency : An execution in a concurrent system is sequentially consistent if each

method calls in the history appear as they occurred in a sequential order consistent with pro-

gram order. In any concurrent executions, there is a way to order the method calls sequentially.

In most of modern multiprocessor architectures, memory reads and writes are not sequentially

consistent. So, to ensure that reads and writes interact correctly, special instruction like mem-

ory barriers or fences are provided.

11

• Quiescent Consistency : An execution in a concurrent system is quiescent consistent if at any

time a concurrent object becomes quiescent (a period of time where no method is being called

by any thread), then the execution so far is equivalent to some sequential execution of the

completed method calls. This consistency condition is stronger than sequential consistency,

but is still not strong enough that we usually expect from a multiprocessor system.

Safety properties defined above ensure that bad things never happen and liveness properties

ensure that good things will eventually happen. In addition to ensuring the correctness of an algo-

rithm, we will also want the algorithm to make forward progress because in multiprocessor systems,

unexpected thread delays are common. An implementation of an algorithm is called blocking if

there is some reachable state in the system in which the thread that has called the method of the

algorithm blocks another thread. Lock-based algorithms are therefore inherently blocking. Liveness

properties for lock-based systems require the implementation to be deadlock free, critical sections to

be free of infinite loops and all threads will continue to execute. An algorithm is called non-blocking

if failure or suspension of any thread cannot cause failure or suspension of another thread. Some

progress conditions are:

• Deadlock freedom: An implementation is deadlock free if some thread trying to acquire the

lock eventually succeeds.

• Starvation-freedom: An implementation is starvation free if every thread trying to acquire the

lock eventually succeeds.

• Lock-freedom: An implementation is lock free if some threads are executed sufficiently for long

time, at least one of the threads makes progress.

• Wait-freedom: An implementation is lock free if every thread executing the algorithm opera-

tions succeeds.

• Obstruction-freedom: An implementation is obstruction-free if at any point, a single thread

executed in isolation for a bounded number of steps will complete its operation. All lock-free

algorithms are obstruction-free.

2.2.1 Designing Concurrent data structures

A concurrent data structure is a particular way of storing and organizing data for access by mul-

tiple computing threads on a multiprocessor system. Shared memory multiprocessor systems allow

multiple processes to work on same memory locations concurrently. So, designing concurrent data

12

structures is significantly more difficult than designing the sequential implementation of the same

data structure [2, 29]. Designing concurrent data structures for multiprocessor systems also pro-

vides numerous challenges with respect to performance and scalability. There are blocking and

non-blocking alternatives to implement concurrent data structures - non-blocking being harder to

implement and reason about the proof of correctness. We will outline few blocking and non-blocking

implementation strategies here:

• Coarse-grained locking : In this technique, on the sequential implementation of the data struc-

ture, we add a lock field and ensure that each operation acquires and releases the lock. It is

like adding a huge single lock on the whole data. But, coarse grain locks are slow. We should

use them cautiously and only when necessary. It also increases the chance of deadlocking if

implemented incorrectly.

• Fine-grained locking : In this technique, instead of using single lock, we divide it into multiple

locks. Each fine grained lock is responsible to protect the portion of data the operation is

working on. This will ensure that the operations interfere with each other only when trying

to access the same memory location at the same time. Fine-grained locking can improve the

overall throughput of a concurrent system. However, we must consider to avoid deadlock,

livelock, starvation, preemption, priority inversion, convoying, etc.

• Optimistic locking : Some data structures like trees, lists, skip lists consists of multiple compo-

nents linked together by references. Some operations only search for a particular component.

The idea here is to search without locking the whole component. The lock will only be placed

upon the finding of the required data. This will reduce the cost of fine-grained locking. This

technique is beneficial only if it succeeds more, so it is called optimistic method.

• Non-blocking : This technique avoids using locks and use atomic primitives like CAS to make

algorithms lock-free or wait-free. Non-blocking methods do not involve mutual exclusion, and

therefore do not suffer from the problems that blocking can cause.

• Transactional memory : Transactional Memory is a synchronization primitive which is a general

form of the LL/SC operation. This technique allows a group of load and store instructions

to be executed in an atomic way. Either the entire sequence of operations appear to occur

atomically, or else the system state is unchanged. It is a concurrency control mechanism

analogous to database transactions for controlling access to shared memory in concurrent

computing.

13

Chapter 3

Literature Review

In modern computing era, there has been a tremendous improvement in the hardware - building

multi-core systems from the computer system with a single central processing unit. To achieve a

gain in performance, there has been a lot of work in increasing the clock frequency. But recently it

has become much harder to increase performance just by increasing the clock speed. As predicted

by Moore, memory speed has not increased at the same rate and an already high clock frequency

has led to much greater power requirements with associated excessive processor heating.

So, researchers are now more concerned in the software side rather than exploiting hardware.

There is a need to translate the sequential algorithms to concurrent algorithms which are capable

to work on the multi-core hardware provided by the manufacturers to obtain the ultimate perfor-

mance gain. For these algorithms to execute correctly, efficient synchronization between processes

are needed to ensure that the safety and liveness properties are preserved in the implementation.

Currently, majority of the researchers are concerned in the non-blocking implementations of concur-

rent data structures. They have proposed various algorithms for shared data objects.

Modern computer architectures have support for atomic primitive instructions like compare and

swap, test and set and fetch and add. Using these atomic primitives, non-blocking implementation

of concurrent data structures can be achieved.

3.1 Universal Transformations

A universal construction [26] is a mechanical translation protocol that takes as input a sequential

specification or algorithm (a specification of the desired behavior in the absence of concurrency),

14

transforms it, and outputs a provably equivalent non-blocking or wait-free concurrent algorithm.

Since sequential algorithms are well understood and relatively easy to reason about, the conceptual

burden on the programmer is lightened. At first this transformation does the copying of the entire

object, making necessary changes to it and trying to replace the old object by CAS operation. With

the support of atomic primitives like CAS and LL/SC, he showed that it is necessary and sufficient

to construct any non-blocking object using these primitives [14, 26].

Herlihy [26] proposed a new transformation, the Large Object Protocol. This protocol takes a

data structure made up of blocks connected by pointers. Only blocks which are modified, or contain

pointers to modified blocks, need be copied. A parallel structure is constructed with pointers to both

modified and unmodified blocks. When the root is updated by CAS, the new structure contains

new copies of each modified block. Referencing his work, there are many implementations done to

translate a sequential object into concurrent objects. The later approaches are more sophisticated

than simply copying the data structure. They reduce the amount of copying, increase the level of

parallelism, and lessen contention that arises due to multiple processes hammering on the same data-

structure. We will discuss the implementation of multi word compare and swap operation which

was the work done by Harris, Fraser and Pratt [8] using just compare and swap atomic primitive in

chapter 4.

3.2 Atomic Operations

An operation acting on shared memory is atomic if it completes in a single step relative to other

processes. Without this guarantees, lock-free programming would be impossible, since we can never

let different processes manipulate a shared variable at the same time. We will now discuss few

atomic operations which are used in the design of lock-free algorithms.

3.2.1 Single word compare and swap

Single word Compare and swap is an atomic operation that takes two arguments an expected value

and an update value. It writes a value to a memory location only if its current register value is equal

to a given expected value else the value is left unchanged. It has been justified that CAS hardware

primitive is universal and thus can be used to implement any shared data structure in a non-blocking

manner [3], in the sense that it can be used to implement other similar atomic instructions including

multi word compare and swap. This hardware primitive will be used to design other operations

described in other sections of this report. The basic syntax of the operation is given as:

15

Algorithm 3.1: A basic syntax of CAS Operation

int CAS(int &address, int old, int new){

//atomic execution begin

oldval temp = &address;

if(oldval temp == oldval){

&address = newval ;

}

return oldval temp;

//atomic execution end

}

3.2.2 Double word compare and swap

We can outline the double word compare and swap operation as an extension to the CAS operation.

It is also an atomic operation that takes two contiguous memory locations (not necessarily) and

writes new values into them only if they match pre-supplied expected values.

Algorithm 3.2: A basic syntax of DCAS Operation

bool DCAS(int&address1, int &address2, int oldval1, int oldval2, int newval1, int newval2){

//atomic execution begin

if((&address1 == oldval1) && (&address2 == oldval2)) {

&address1 = newval1 ;

&address2 = newval2 ;

return TRUE ;

}

else{

return FALSE ;

}

//atomic execution end

}

3.2.3 Multi-word compare and swap

Multi word compare and swap operation (CASN) is an operation that takes a number of arguments:

a series of memory locations and if all the memory locations the operation is trying to update con-

tains the expected values, the operation updates the memory locations with a new set of values.

16

Otherwise, the values are not updated and old values are restored in all the memory locations. It

is the generalization of CAS and DCAS operations defined above. This operation will be used in

implementing linked lists and skip lists in chapter 5. Details on the procedure to implement this

operation is provided in chapter 4. There have been various approaches proposed and implemented

to integrate this operation and many research papers implementing the CASN operation have ap-

peared in the literature [1, 5, 6, 7, 8, 17].

H. Sundell [5] have designed to work on the implementation of CASN operation which is wait-

free and use the technique of greedy helping and grabbing. In the first phase of this algorithm,

the thread attempts to place a reference to its descriptor object at as many of the addresses in its

operation as it can. In the next phase, if another CASN operation holds some of these addresses

needed for this operation, then one of the two operations will help the other process. Other atomic

primitives like Fetch and add, Compare and swap and Swap are used to construct the algorithm for

CASN in his design. To meet the algorithm wait free requirements, descriptors are used which keeps

all necessary information about a CASN operation in progress, and rather than locking the whole

word, it is performed by replacing the value with a pointer to the appropriate descriptor. As the

descriptor keeps a single status variable that indicates the standing of the whole CASN operation

in progress, it is possible to update the memory locations atomically using the primitives[5].

We will discuss in detail regarding the descriptor data structures in chapter 4. Recursive helping

technique is used in [1, 7, 8] to implement the CASN operation. Also, there is a different approach

introduced [6] where the CASN operation has the possibility to adapt its helping policy depending

on the level of contention in a dynamic fashion. Our designs are highly influenced by the ones

implemented in [16, 20, 21, 8, 17] which only utilizes the primitive CAS which can be found in most

of the contemporary multiprocessor systems and analyze it in detail. Remember that this is the lock

free non-blocking implementation of CASN operation. We will understand and describe in detail the

CASN operation implemented by Harris, Fraser and Pratt [8] and use the operation to implement

linked lists. Various researches have been conducted to find the efficient algorithm and propose the

lock free and wait free designs [5, 6].

3.3 Concurrent Data Structures

Multiprocessor machines are replacing single core architectures which implies the need to design

concurrent data structures. These are the data structures that can be accessed by multiple processes

which may actually access the data simultaneously because they run on different processors that

17

communicate with one another. These data structures are designed to operate on shared memory

systems. There are various data structures implemented to work in concurrent environment. Some

of them are:

3.3.1 Linked Lists

A linked list is a dynamic data structure. Each element of a list is comprising of two items - the

data and a reference to the next node. Details on linked lists are discussed in chapter 5. Linked lists

are important data structures. They are not only a foundation concept, they are very important in

implementing other data structures like skip lists. Various blocking and non-blocking techniques of

implementing linked lists can be found in the literature [2, 11, 12, 13, 14, 17]. All the operations

made on the linked list should be linearizable [2]. One way of simply ensuring this property is to

use locks. Use of locks will make sure that no two processes will interfere in between because only

one process will have the lock and will only release it after it is done. This clearly ensures that no

conflicting additions or removal of nodes will meddle in between. Various techniques of implementing

lock based linked list are provided in [2]. However, using locks to ensure linerizability, it is impos-

sible for one process to make progress while the list is locked by another process. So, as a liveness

property, it is essential that the operations are non-blocking. We will discuss and implement a lock

free approach to ensure that deadlock problems introduced by mutual exclusion locks are solved.

Various atomic primitives like compare and swap can be utilized to solve the problem. We will focus

with the non-blocking implementation of linked lists using multi word compare and swap operation.

First lock free design of linked list was presented by Valois [11]. He used compare and swap

atomic primitive to implement linked lists. He presented the use of auxiliary nodes to implement his

design. Auxiliary nodes are the nodes in the linked list which only contained the next field. These

nodes were to link the ordinary nodes and found between them. These nodes were used to connect

the nodes together for the purpose of deletion and addition of nodes. According to his design, each

ordinary node had this node as predecessor and successor nodes. The process of deletion left one

extra auxiliary node behind so these extra nodes needed to be cleaned up (keep trying to) by the

same process. He also presented the use of cursor pointers in his design. The use of back link field

to traverse in the reverse direction was used for the deletion operation. This field was used to track

back the node that has not been deleted from the list. The use of cursors was to identify the cell po-

sition while traversing the linked list. By the use of this cursor, nodes addition and deletion process

would advance further. However, this sophisticated technique of design made this implementation

highly intricate. Moreover, there are no proofs of linerizability provided for the basic operations.

18

Greenwald [31] suggested a different approach to design non-blocking implementation of linked

lists. He used another atomic primitive DCAS to fulfill the requirements linearizable and non-

blocking. He implemented a non-blocking priority queue as a linked list. The algorithm is simple

and linearizable but uses DCAS. He also presented a non-blocking implementation of CASN opera-

tion that supports multi objects with the DCAS primitive. The main idea he used was using DCAS

operation is to swing the references atomically while deleting a node from the link list. The DCAS

operation will atomically update the next pointer of the deleted node and that of its predecessor

using one instruction. DCAS however is not provided in most of the multiprocessor architectures.

However, he does provide us with a simple and linearizable linked list algorithm.

Harris and Fraser [12, 14] presented various non-blocking approaches to implement abstract data

structures. They presented three approaches for designing non-blocking implementations of arbi-

trary data structures. They discuss the MWCAS operation which we are going to use to implement

our data structure. They constructed this operation using conditional compare and swap operation

and simulated this operation in software as no hardware is able to support them. They compared the

performance of several concurrent tree implementations. They found that the skip lists with locks

are very fast and work well with concurrent accesses than other data structures. Lock-free skip lists

are hardly reliably faster than lock ones. They also discuss the performance of other tree structures

like red black trees. Various other abstractions are implemented and performance evaluations were

done to justify the operations [14]. Harris [12] used compare and swap primitive to implement a

lock free linked list. To delete a node, he used the concept of marked nodes to logically delete a

node and then swing pointers to physically delete it from the list. If in between the predecessor and

successor nodes, marked nodes are found during search, they are deleted at once. To justify the use

of marked nodes, he used the concept of ”bit stealing”.

The difference in designs of [12] and [13] is that while searching for a desired node, all the marked

nodes in the path are deleted in [13]. But, only the marked nodes in between the left and right

nodes are deleted in the implementation of Harris [12].

Harris suggested various alternatives to operate the delete operation. When an address is aligned

to a power of 2 then a number of low-order bits in its binary representation are zero. This unused

bit of address (might not be) can be exploited and used to implement delete operation in linked

lists [12, 13]. Both [12] and [13] use this unused bit to implement the delete operation. But, the bit

19

does not necessarily always remains unused. Harris [12] implemented his algorithm utilizing this bit

found in the next field of a node. But, he suggested an alternative to this because of the realization

that this bit can be used by the system for various other purposes. For example, the bit might

not be available in the implementation environment because the addresses might not always remain

ordered [12]. As an alternative to this, we can use an extra level of indirection in which marked

references are accessed through dummy nodes. A node is marked or deleted logically if and only if

it has a dummy node as its left node.

3.3.2 Balanced search trees

Balanced search trees are used for storing data in a way that supports fast retrieval, insertion and

deletion operations. Each item in the data structure is represented by a node of a tree. The main

problem with search trees is that they require balancing so that the searching of a node in the tree

structure becomes faster. The height of the balanced search trees is logarithmic and the fundamental

operations on the data structures requires O(log n) time. Various versions of balanced search tree

data structures (hundreds of them) are present and each of them with their unique properties. Some

of the popular tree structures are binary search trees, red black trees and 2-3 trees.

A binary tree [30] is a tree with exactly two sub-trees for each node, called the left and right

sub-trees. For each node, the left sub-tree only has nodes with keys smaller than (according to some

total order) the key, while the right sub-tree only has nodes with keys larger than that key. The

height of a tree is the number of nodes on its longest branch. Operations like insertion and deleting

item from binary search tree will violate the tree’s balancing property which is to be maintained as

invariant. So, balancing of the binary search tree is needed to ensure uniform distribution of data

which will aid on efficient retrieval. Also, these re-balancing transformations should also take O(log

n) time, so that the effort is worth it.

A binary search tree is a data structure designed for efficient search, insertion, and deletion in

the presence of a large number of items. But if balancing is needed, these operations will break the

balancing invariant of the binary search tree and the tree needs to be restructured. Also, balanced

trees are very complex when it comes to optimization. An alternative to balanced trees is to use

randomization to guarantee, with high probability, that a tree will not be so unbalanced as to lose

its O(log n) performance properties. These randomized trees are much simpler than their balanced

siblings and far safer than basic binary search trees. If an absolute guarantee of good performance

is not necessary, a recursive implementation and a slim chance of poor performance are acceptable,

20

randomized trees such as skip lists will provide a good solution. Binary search trees (Figure 3.1)

work well for many applications but they are limiting because of their bad worst-case performance

O(n). A binary search tree with this worst-case structure is no more efficient than a regular linked

list.

Figure 3.1: A binary search tree and its worst case scenario.

3.3.3 Skip Lists

Skip list is a probabilistic data structure which maintains a set of linked lists which are in sorted or-

der in multiple levels.. The maximum level of the skip list will be fixed and is calculated in advance.

Details on skip lists are discussed in chapter 5. Skip lists data structures were invented by Pugh [20,

21, 16] in early 1990s. It does not require any rebalancing like other popular search structures. In

concurrent applications, rebalancing can be a bottleneck and hence lead to high contention between

threads. As skip list do not need rebalancing, they can be a great alternative to balanced search

trees [20, 22]. Since levels are probabilistically calculated, they do not need rebalancing and provide

us with expected logarithmic search time [2, 13, 21, 23].

Pugh [16, 20, 21] was the first to give a notion of skip list data structure. He provided concurrent

algorithms to implement fundamental operations in a skip list data structure [16] and used proba-

bilistic balancing in skip lists to represent balanced trees. Skip lists are probabilistic data structure

that can be used as a replacement for balanced trees [20]. Since skip lists are built of many levels

of linked lists, searching for an item will be complicated. He discussed various solutions for the

21

problems encountered during the searching an element in skip list. As one of his solutions, in our

algorithm, we will start searching for an item in skip list from the highest level. Pugh compared

the performance of skip lists with other search trees like AVL trees and 2-3 trees and demonstrated

that insertion and deletion times of skip list implementation is far more faster than that of other

tree based structures. Although skip lists have bad worst case performance than these balanced

trees, the probability that the input sequence consistently produces a worst case performance is very

minimal. The expected cost of search, insertion and deletion is O(log n) [20, 21]. He also presented

algorithms for inserting an item after Kth element in a list as linear list operations. Implementing

these algorithms for skip list data structure, Pugh stated that skip lists may behave rivals to bal-

anced search trees in case of versatility and are in most cases faster and simpler.

Fraser and Harris [17] discussed various practical non-blocking programming abstractions. They

implemented multi word compare and swap using conditional compare and swap operation. They

also designed a higher level of programming abstraction - software transactional memory and object

based transactional memory called FSTM. They presented various implementation details on data

structures like binary search trees, red-black trees and skip lists using CAS, multi word CAS and

FSTM programming abstractions. In our implementation, we will use CASN operation discussed in

chapter 4 to implement skip lists in a lock-free manner. We will use the similar concept as used in

the linked lists to implement skip lists. We will follow the concept of Pugh [16, 21], the concept of

back pointing to avoid the overhead of maintaining ‘marked’ nodes [2, 10, 18] which is used as bits

of next field of the list node. We will refer to the work performed by [2, 17] to implement various

operations on lock-free skip list.

Pugh [16] described the highly concurrent implementation of skip lists using locks. He presented

concurrent implementation for sorted linked list, proved the correctness of the algorithm and then

implemented skip lists using the same approach. We will use the same analogy to implement skip

lists. Because skip lists are an alternative to balanced trees [20], implementing concurrent update

algorithms for skip lists are much simpler than implementing the same for balanced trees. Also,

the degree of concurrency is higher. Pugh presented concurrent algorithm using pointers pointing

reverse direction - deleted nodes point their predecessors after being deleted to ensure that a search

concurrently backtracks if it traverses in a path of deleted nodes. An important point to consider,

he provided alternatives to make searching efficient. Because all the other operations like insert,

delete, update rely on searching, the algorithm would be efficient if searching is at best cost. He

proposed a solution that instead of searching for a key starting from maximum level, the number of

22

comparisons can be reduced if we search from the current maximum level, the maximum level of a

node in the current instance of skip list. He used levelHint variable in his algorithms to achieve this

[16]. We will use the same technique in our skip list implementation. We will not start from the

maximum level always but from the current maximum level which will be stored in a shared variable

‘curr maxlevel’(details on section 5.2). Conducting various experiments and analysis, Pugh affirmed

that concurrent skip list algorithms he described are at least as efficient as any possible concurrent

balanced tree implementation.

Herlihy et al. [10, 18] presented a blocking implementation of skip list which was based on opti-

mistic synchronization. In this technique, search operation does not acquire locks while traversing

the list. Only after the target node is found, it is verified and locked. Clearly, this method will

be efficient if there are large numbers of searches than other operations. It is very straightforward

to reason about the correctness and understand every concurrent execution. Various techniques to

make the algorithm efficient are proposed too. Moreover, this algorithm always maintains the skip

list property: higher level lists are always contained in lower level lists [2]. The algorithm uses lazy

synchronization technique to delete the marked node. This is done using the marked bit from the

next pointers of the nodes. The add and delete operations use optimistic fine grained locking and

contains operation is implemented wait-free. This implementation is very simple to understand and

can be used as an alternative to lock free implementation of skip lists ‘ConcurrentSkip listMap’ in

java platform, which was implemented by Doug Lea [19], based on the work by Fraser and Harris

[17]. Experiments have been conducted implementing the algorithm in java and shown that this al-

gorithm works as well as of Lea’s [19] under most of the conditions. The most important advantage

of this algorithm is it is very simple, yet effective.

Herlihy et al. [13] also provided a simple and effective approach to design non-blocking imple-

mentation of skip lists. This design is lock-free and is very simple and effective. Similar to lock

based implementations [10, 18], this algorithm also provides logarithmic search [20] without the

need to rebalance. However, this design might not preserve the skip list property because the design

is lock-free and locks cannot be used [2]. The nodes at higher level lists only serve as a path for

lower level list. We can understand this implementation as multi-level list implementation, which

consequently is a skip list. An item is said to be present in the set if it is contained in the list at

the lowest level. Also, similar to lock based optimistic implementation [18], the nodes will retain

‘marked’ flag. By using ‘AtomicMarkableReference’ object and its methods (compareAndSet, set,

attemptMark, get, etc.) from the java concurrency package, they provided a lock-free implementa-

23

tion of skip lists. The need of this object is to make sure two instructions (checking the marked field

and updating pointers) are executed atomically without any other concurrent threads interfering

in between. The add and delete operations are designed lock-free and the contains operation as

wait-free. So, the authors have presented two beautiful and very effective lock based and lock-free

approaches to build skip lists [10, 13, 18]. We will use the similar idea introduced by the authors in

implementing non-blocking skip lists using CASN operation.

Brian and Zachary [22] provided details on transforming skip lists to balanced search tree rep-

resentation. This was done by converting the skip lists into equivalent multi-way branching search

tree. They presented methods of transforming the fundamental skip lists operations into equivalent

BST operations. They described the analogy between left and right rotation of a BST to raising

and lowering of a section in a skip list [22].

24

Chapter 4

Understanding CASN Operation

Multi-word compare and swap operation (CASN) also popular as N-word compare and swap is an

operation that takes a number of arguments: a series of memory locations and if all the memory

locations the operation is trying to update contains the expected values, the operation updates the

memory locations with a new set of values. Otherwise, the values are not updated and old values

are restored in all the memory locations. The basic syntax of CASN operation is:

Algorithm 4.1: A basic syntax of CASN Operation

bool CASN(int &address1, int &address2,, addressN, int oldval1, int oldval2,, int

oldvalN, int newval1, int newval2,, int newvalN){

//atomic execution begin

if((&address1 == oldval1) && (&address2 == oldval2) &&

(&addressN == oldvalN)){

&address1 = newval1 ;

&address2 = newval2 ;

.

&addressN = newvalN ;

return TRUE ;

}

else{

return FALSE ;

}

//atomic execution end

}

25

The CASN operation conditionally updates a set of memory locations to a new set of values

given that the words currently match a given set of values [5]. A CASN descriptor will be used that

will contain all the information to describe the CASN operation. A CASN operation will need to

execute atomically. But if the conditions do not match, i.e., if any of the expected values do not

match the old values, the CASN operation is said to be failed and must re-write the previous values

in the corresponding memory addresses. The addresses to be updated needs to be sorted to some

total order which all threads agree to implement the non-blocking behavior [8].

The algorithm to implement CASN instruction begins by defining ‘descriptors’ and describing

descriptor object’s use. Descriptors are data structures in which the process initiating the operation

stores all the information necessary to perform the operation. As a first step, a descriptor is installed

or made active using a CAS operation by the concerning thread. When another concurrent thread

attempting an operation referring the same memory cell finds a descriptor instead of an ordinary

value, it can choose between various options - it can either back off or wait for the former thread

to finish, or complete the operation on its own. First option, the technique of helping other threads

to complete the operation ensures the progress of the overall system, which is a non-blocking im-

plementation. For concurrent objects, linearizability is an important correctness condition [2]. If a

concurrent operation appears to execute instantaneously in a given point of time ‘τ lin’ between the

time of invocation ‘τ inv’ and the time of its completion ‘τend’, the operation is linearizable [2]. The

literature often refers to ‘τ lin’ as a linearization point. A common programming technique applied

to guarantee the linearizability requirements for such operations is the use of a descriptor object [14].

CASN descriptors are described in detail in section 4.2. Now let us examine one simple example

to describe the use of descriptors which allow an interrupting thread to help the interrupted thread

complete an operation rather than wait for its completion.

4.1 Implementing SubtractX Operation

Let us consider an operation ‘subtractX’ that decrements a shared variable ‘x’ by a value of ‘a’.

Also, let us consider a trivial operation ‘readX’ on that shared variable which reads the contents of

the memory location ‘x’. The sequential behavior of the operation ‘subtractX’ is described by the

pseudo-code as:

26

Algorithm 4.2: Pseudo code to implement subtractX and readX sequentially

int subtractX(int &x, int a){

result = &x ;

&x = x - a;

return result ;

}

int readX(int &x){

result = &x ;

return result ;

}

The code provided above is trivial where the operation will subtract a value ‘a’ from the value in

the memory location found in ‘x’. Similarly, ‘readX’ is used to read the contents on that location.

Now, the pseudo-code presented in 4.3 describes the operation defined above with a simple use

of descriptors. It is however just an example and non-atomic implementation of ‘subtractX’ and

‘readX’. The implementations of both operations described consider the use of descriptors which

are made active by the thread itself installing it(or trying to) or other threads which might have

installed it already in the memory location the prior thread is referring to. The thread might help

perform the required operation on behalf of the other process that installed the descriptor(helping

technique). Pseudo-code to implement this operation with descriptor objects is given as:

27

Algorithm 4.3: Pseudo code to implement substractX and readX with descriptors

object{

int &x, &old ;

int a;

}SubDescriptor ;

int subtractX(int &x, int a){

//initialize a new descriptor

SubDescriptor &desc = newSubDescriptor ;

do{

desc.old = &desc.x ;

//install descriptor or help other thread

S1: result = CAS(desc.x, desc.old, desc);

if(isDescriptor(result))

C1: CAS(result.x, result, result.old - result.a);

}while(isDescriptor(result));

//subtraction is done and descriptors made inactive

C2: CAS(desc.x, desc, desc.old - desc.a);

return desc.old ;

}

int readX(int &x){

do{

result = &x ;

if(isDescriptor(result))

C3: CAS(result.x, result, result.old - result.a);

}while(isDescriptor(result));

return result ;

}

In this illustration implementation, a descriptor object is created first. The process invoking

subtractX will initialize the descriptor object. At the start (S1), the invoking thread installs the

descriptor (or will try to if the descriptor is already installed by prior threads in the same memory

location). It uses CAS to install the descriptor. If the descriptor installed by other threads is already

present in the memory location, it will help the thread which installed the descriptor to complete

the operation and thus is unsuccessful in installing the existing descriptor (C1). If there are multiple

28

threads trying to subtract the value from the same location, the one which have already placed the

descriptor pointers on the memory location will be able to complete the invocation first, the later

threads will help complete it. After the helping is done, the thread will finally be able to install its

descriptor. The invoking thread will now complete the subtract operation and delete its descriptor

(C2) on the memory location where the descriptor pointer is installed. The pseudo-code for the

readX operation is trivial. If a thread trying to read the location from the memory already has a

descriptor reference, it will help it try to complete the operation (C3), make the descriptor pointer

inactive and finally return the value from the location and the read operation is completed.

4.2 Illustration of CASN Operation

In multi-threaded programming, being able to update a number of shared variables at a same time

atomically might be very useful. During the design of dynamic data structures, several pointers

needs to be updated at the same time simultaneously. Because locks inherently limit the achievable

parallelism, non-blocking implementations are essential. The hardware of most of the contemporary

shared memory systems support at least one atomic primitives (like CAS). If not, there will be

other instructions through which CAS can be easily implemented with a small effort. This hardware

primitive is universal and can be used to implement any non-blocking shared data structure [7]. CAS

is sufficient to construct CASN atomic primitive in a non-blocking manner. The CASN operation is

implemented with the use of descriptor objects. It has a CASN descriptor which holds the number

of information required to complete the operation. Basically, the fields it will hold are:

• A status field

• The addresses of the locations to be updated

• The expected values to be found there

• The new values to be updated

• A counter ‘count’

The descriptor is active by placing the pointer to it in the location in shared memory. This will

hence avoid locking the location in the memory and provide us with the efficient non-blocking al-

ternative. If the location already refers to the descriptor pointer, later threads seeing the descriptor

pointer will use the information in it to help the prior thread complete its operation and then release

the location after the task is completed. A CASN operation carries on by placing pointers to its

descriptor in each location being updated. It checks if they contain the values which are expected

29

to be there. If this succeeds for every location then all the locations are released, replacing the

descriptor-pointers with the new values. If any location does not hold the expected value then the

CASN is said to have failed and each location is restored to its old value.

Hence, for simplicity, CASN can be divided into two sections [8], using descriptor pointers so

that other threads accessing the shared memory locations do not block (non-blocking method). The

CASN operation can be divided into two parts:

1. Constructing Restricted Double Compare and Single Swap (RDCSS) operation

2. Implementing CASN operation from RDCSS

Fraser [17] designed the CASN operation using CCAS or the conditional compare and swap.

CCAS uses a second memory location with the condition to control the execution of a normal CAS

operation. The main purpose of using the CCAS operation in the algorithm is to avoid the ABA

problem. But we will move ahead with the design of the RDCSS operation which uses only tradi-

tional CAS [8].

RDCSS can be understood as a restricted version of double DCAS operation described in section

3.2.3. This operation is implemented by using two CAS operations. The main purpose of this

operation is to extend its use to derive a generic multi CAS operation. We can also use other atomic

primitives like strong LL/SC primitives, conditional compare and swap [17] but the method we are

following here [8] to use restricted form of DCAS which looks promising because it utilizes only the

current primitive operation CAS which can be found on most of the current multiprocessor systems.

4.2.1 Construction of Restricted Double Compare and Single Swap Op-

eration

RDCSS can be understood as a restricted version of double DCAS operation described in section

3.2.3. This operation is implemented by using two CAS operations. The main purpose of this op-

eration is to extend its use to derive a generic multi word CAS operation. We can also use other

atomic primitives like strong LL/SC primitives,conditional compare and swap [17] but the method

we are following here [8] to use restricted form of DCAS which looks promising because it utilizes

only the current primitive operation CAS which can be found on most of the current multiprocessor

systems. RDCSS is also an atomic operation that takes two memory locations and writes new value

only in memory location address2. Below is the pseudo code to implement this:

30

Algorithm 4.4: Pseudo code of RDCSS operation

object{

int &address1, &oldvalue1, int &address2, int &oldvalue2, int &newvalue2 ;

}RDCSSDescriptor ;

int RDCSS(RDCSSDescriptor &rdcssdesc){

RDCSSDescriptor &rdcssdesc = new RDCSSDescriptor ;

do{

result = CAS(rdcssdesc.address2, rdcssdesc.oldval2, rdcssdesc); //step1

if(IsDescriptor(result)) //step2

Complete(result);

//IsDescriptor checks if the passed parameter points to a descriptor.

}while(IsDescriptor(result)); //step3

//If descriptor is not already installed, install the descriptor and complete the operation

if(result == rdcssdesc.oldval2)

Complete(rdcssdesc); //step4

return result ;

}

void Complete(RDCSSDescriptor &rdcssdesc){

value = &rdcssdesc.address1 ;

if(value == rdcssdesc.oldval1)

CAS(rdcssdesc.address2, rdcssdesc, rdcssdesc.newval2); //update with new value

else

CAS(rdcssdesc.address2, rdcssdesc, rdcssdesc.oldval2); //restore old value

}

int RDCSSRead(int &address)

do{

result = &address;

if(IsDescriptor(result))

Complete(result);

}while(IsDescriptor(result));

return result ;

}

31

RDCSSDescriptor data structure is a structure with the following fields:

Figure 4.1: A RDCSS Descriptor.

RDCSS descriptor is created and initialized when a process which starts the RDCSS operation

invokes it. Other threads will have no connection to it until the first CAS operation in the function

RDCSS succeeds, making the descriptor active [8, 17]. The main notion of the algorithm is to replace

the second memory location with a descriptor saying what you want to do. Then, given that the

descriptor is present, check the first memory location to see if its value has changed. If it hasn’t,

replace the descriptor at the second memory location with the new value. Otherwise, write the

second memory location back to the old value. So, to describe the above pseudo code for RDCSS in

4.4, in step1, first we try to change the value of address2 to our (own) descriptor rdcssdesc. If CAS

operation succeeds then result will contain rdcssdesc.oldval2 (i.e. result is NOT a descriptor) else it

will contain the pointer to descriptor installed by other processes invoking RDCSS operation. We

will now check in step2 if result is a reference to descriptor i.e., whether it was already referenced by

a descriptor of prior threads and step1 failed (another thread also might have changed address2). In

this case, we will help another thread to complete its operation and release the descriptor. In step3,

the loop will iterate again if descriptor not installed. In step4, if we succeed in fetching the expected

value from address2, then we succeeded in installing our descriptor pointer in address2 and we can

now move forward to complete our task of updating newval2 to address2 satisfying the condition

that address1 still contains oldval1.

RDCSSRead operation simply returns the value from the memory location of the address passed

to it. If the memory location is a reference to a descriptor, the operation will help the thread

complete the operation which installed the descriptor pointer on that memory location. The proof

of correctness of the RDCSS and RDCSSRead operations [8] explained above provides us with

linearizable and non-blocking implementations. A very useful modeling and refining of non-blocking

32

algorithms like the one implemented in RDCSS operation [15] provide a method and tool support

to linearize the implementation of operations like RDCSS. Various RDCSS operations performing

on the same memory location can be serialized and we can consider them individually.

4.2.2 Construction of CASN Operation

It is assumed that memory locations can store both descriptor pointers and ordinary values and they

can be separated from each other. The implementation states that the memory locations which are

subjected to change with RDCSS operation will require reading those locations with RDCSSRead

operation [8, 17]. Now, using the above RDCSS operation defined in algorithm 4.4, a multi word

CAS operation can be constructed. A CASN descriptor will be used that will keep all the necessary

information about the CASN operation in progress an d locking is done by replacing the value to be

updated with a pointer to the appropriate CASN descriptor. CASNDescriptor is a structure with

the following fields:

Figure 4.2: A CASN Descriptor.

The pseudo code of CASN operation is given as:

33

Algorithm 4.5: Pseudo code of CASN Operation

object{

char status;

int count ;

int &address[], int &oldvalue[], int &newvalue[] ;

}CASNDescriptor ;

bool CASN(int count, int &address[], int oldvalue[], int newvalue[]){

CASNDescriptor &casndesc = new CASNDescriptor ; //descriptor object is created

(casndesc.count, casndesc.address, casndesc.oldvalue[], casndesc.newvalue[],

casndesc.status) = (count, address, oldvalue[], newvalue[], UNDECIDED); //tuples of item

Sortbyaddress(casndesc); //memory locations sorted in order of address

if(casndesc.status == UNDECIDED) {

//begin of phase 1:

status = SUCCEEDED ;

for(int i = 0; (i < casndesc.count) && (status == SUCCEEDED) ; i++){

insert item: item = casndesc.item[i] ;

result = RDCSS(new RDCSSDescriptor(&casndesc.status,

UNDECIDED,item.address, item.oldvalue, casndesc));

if(IsCASNDescriptor(result)) {

if(result != casndesc) { CASN(result); goto insert item; }

}

else if(result != item.oldvalue) status = FAILED ;

}

CAS(&casndesc.status, UNDECIDED, status); //operation is successful

}

//begin of phase 2:

succeeded = (casndesc.status == SUCCEEDED); //true or false depending on status

for(i = 0; i < casndesc.count; i++){

if(succeeded == TRUE)

CAS(casndesc.item[i].address, casndesc, casndesc.item[i].newvalue);

else

CAS(casndesc.item[i].address, casndesc, casndesc.item[i].oldvalue);

}

return succeeded ;

}

34

Algorithm 4.6: Pseudo code of CASNRead operation

int CASNRead(int &address) {

do{

S1: result = RDCSSRead(address); //complete the incomplete RDCSS operation

if(IsCASNDescriptor(result))

CASN(result);

}while(IsCASNDescriptor(result));

return result ;

}

Similar to the RDCSS descriptor, a CASN descriptor is created and initialized when a process

which starts the CASN operation invokes it. The status field held by the descriptor may have values

UNDECIDED, FAILED or SUCCEEDED depending upon the progress of the CASN operation. In

CASN algorithm, the RDCSS operation will operate conditional on this status field.

The pseudo-code for CASN is divided into two phases. The first phase will install (try to) the

CASN descriptors in the memory locations. At the end of this phase, pointers from each address to

be updated are introduced to the descriptor. Each CASN invocation will create a descriptor which

fully describes the updates to be made (let us say a set of (address, oldvalue, newvalue) tuples) and

the current status of the operation which can be one of the following: UNDECIDED, FAILED or

SUCCEEDED. For each of the entry tuples, the algorithm tries to reference it with the associated

CASN descriptor by validating the old values with the expected values. For each item to be refer-

enced, it will check if the update address already has the reference to the descriptor. This is done

using the function IsCASNDescriptor which validates if the passed parameter points to a descriptor.

If it is a reference to a descriptor, it will help the owning thread complete the operation. Thus, it

permits recursive helping for the incomplete operations. The CASN operation is called recursively

until all the values to be updated contains the reference to the descriptor. The coherent value of

an owned location (by a descriptor) is found by asking the CASN descriptor that is active on that

location. At the end of first phase, if the status of descriptor is UNDECIDED or FAILED, the

coherent value is then expected value. If the status is SUCCESSFUL, the value is the new value.

Based on the status of the descriptor, second phase of the algorithm advances to update the old

value with the new value. If any of the memory locations failed to reference the descriptor pointer,

we will assume that CASN failed and will update each of the memory locations with the old values.

And the descriptor pointers are made inactive or freed from the memory locations recently updated.

35

CASNRead defined in algorithm 4.6 is similar to RDCSSRead. Both employ the helping func-

tionality in the sense that if the memory location a CASNRead it trying to refer to already contains

reference to the descriptor pointer, it will invoke the CASN operation and will let the thread com-

plete its operation. Or if the location contains reference to a RDCSS descriptor, it will help it

complete it first and then return an ordinary value or CASN descriptor pointer (S1). The algorithm

will advance further to complete the CASN operation (if in case a CASN descriptor returned) and

finally return the ordinary value in the memory location.

36

Chapter 5

Proposed Linked List and Skip List

Implementation

Linked list is a data structure consisting of a group of nodes aligned together representing a sequence.

This data structure comprise of cells containing two fields: a key field which is used to store the

element and a next pointer which will store the reference to the next item on the linked list data

structure. Each node in a linked list has two neighbor nodes, one preceding it and one succeeding

it. The first node in the list is called the head and the last is called the tail of the linked list (Figure

1.1). These are the sentinel nodes of the list.

A linked list is a general data structure which can be used to implement various different abstract

data types. We will use this data structure to build non-blocking implementation of skip lists later.

We here consider a sorted linked list with head and tail sentinel nodes at the ends of the linked

list. There are various operations that can be done on the linked list data structure. Let us

demonstrate the execution of each of the operations. Later we will describe and discuss the non-

blocking implementations of the operations on this data structure. The operations supported by

linked list are:

• Adding a node:

This operation introduces a new node with the desired key in between the two nodes strictly

less than and greater than it. If the linked list already contains a node with the key to be

inserted, the add operation should fail. In case of successful addition of a node, the desired

node’s next pointer is pointed to the node having key just greater than it. We will call this

node a successor node. The node with the key just below the desired key’s node will be called

37

a predecessor node. This predecessor node’s next pointer will be then updated to point the

new node. If both the steps are successful, the new node has been added to the linked list.

• Deleting a node:

This operation will delete the node with the desired key from the linked list. If the linked list

does not contain a node with the key to be deleted, the delete operation should fail. In case

of a successful deletion of a node, the next pointer of predecessor’s desired node is updated to

point to its successor.

• Searching a node: This is a trivial operation where the node with the desired key is searched in

the entire list. If the linked list contains or does not contain the node with the desired key, the

operation will move ahead with the decision accordingly. The decision can be acknowledged

with true/false values simply.

• Prepending a node:

The prepend operation will prependa node at the start of the linked list. To prependa node,

the node to be prepended must have a key strictly less than any other keys in the list. If the

key to be prepended is the least among all, a node is created and added just after the head of

the linked list.

• Appending a node:

The append operation will add a node at the end of the linked list. To append a node, the

node to be appended (added at the end of the linked list) must have a key strictly greater than

any other keys in the list. If the key to be added at the end is greatest of all, a node is created

and added just before the tail of the linked list.

5.1 Proposed Linked List Algorithms

There are various approaches to perform addition, deletion, appending, prepending and other op-

erations in a linked list, both blocking and non-blocking alternatives. The case will be trickier if

we want to implement this data structure in a non-blocking manner. The major problems occur

during concurrent updates to the same part of the list. These include deletion of adjacent nodes,

concurrent insertion of nodes between the same pair of nodes, and concurrent insertion and deletion

of adjacent nodes. For the deletion of the node, we will follow the technique implemented by Pugh

[16], using the concept of back pointers. Briefly, the concept is, when deleting a node, we will up-

date the predecessor of the node to point to its successor. In addition to it, we will also update the

38

node’s next pointer to point back to its predecessor. Other threads that were passing through the

node at the time of its deletion can follow this reversed pointer to get back into the current list, at

the correct place to continue the work [16]. We will exercise this technique in our implementation

of lock free linked list (using CASN atomic primitive) and then design skip lists using this linked list.

We will design our linked list implementation with the help of CASN operation described in

chapter 4. Since memory locations can be concurrently updated, this implementation will ease the

overhead of maintaining the marked node as implemented in designs [12, 13]. The primary use

of marked node is to mark the node in the process of deletion. This marked node is said to be

logically deleted from the list and the next step will be to delete the node physically by swinging its

predecessors next pointer to its successor. This two-step deletion process will require the concept of

marking nodes before removing it physically to maintain concurrency in the data structure. Here in

our algorithm, we will instead incorporate the approach suggested by Pugh [16] which is using the

concept of back pointers along with CASN atomic primitive to implement the data structure. Each

node in a linked list is connected to each other using the next pointer reference. The linked list is

empty first, only having the head and tail sentinel nodes. In concurrent data structures, addition

and deletion of nodes occur simultaneously. The lock free implementation should guarantee the

progress of the operations even if the other processes are on their paths. Now let us describe in

detail the implementation of various linked list operations in concurrent non-blocking manner using

the CASN primitive.

5.1.1 Adding a Node in a Linked List

Adding a node in a linked list will be successful if and only if the node is not previously present in

the list. The key to be added in the linked list is inserted between two nodes - the predecessor and

successor nodes which are strictly less than and greater than the key to be inserted. During the ad-

dition of node, a new node is created and inserted between the predecessor and successor nodes. The

add operation starts with the invocation of find method call which will supply the predecessor and

successor for the key attempted to be inserted. Based on the find values, the pointer references of

the node to be added and the predecessor nodes are updated atomically using the CASN operation.

This primitive help us ensure the lock-free implementation of the add operation. The execution of

the add operation is illustrated in figure 5.1.

39

Figure 5.1: Adding a node in a linked list. A linked list with three nodes: 10, 20 and 30. Addition of
a node with key 25 between pred and curr nodes. In fig (a), in the first step, the new node updates
its next pointer with the address of curr node. In fig (b), in second step, the preds next pointer is
updated to point the new node. The addition of node is successful.

A successful addition of nodes will require new nodes next pointer and pred nodes next pointer

to be updated atomically without any interference from other concurrent processes. We ensure this

not by using traditional CAS operation [11, 12, 2] but by using CASN. The add operation (Al-

gorithm 5.1) proceeds with a find call (Algorithm 5.2). The find operation is also used by delete

operation. The find operation takes a key and returns the reference to two nodes. These nodes are

called predecessor and successor nodes of the key provided, which are denoted by ‘pred’ and ‘curr’.

The operation always starts traversing the list from the head. A CASNRead operation is invoked

40

which will ensure that any other concurrent CASN operations working on that memory location will

continue to complete its work first and then release the location. The nodes are traversed one after

another until the key with the searched value greater than or equal to it is encountered. After this

comes the validation step, where we need to ensure that the predecessor still refers to the current

node. This is because other concurrent operations might add or delete the nodes in between. After

the validation is successful, references to pred and curr nodes are returned. If it fails, the pred and

curr values must have changed, so the operation will start over again. After the find call returns

the valid pred and curr values, addition will proceed checking if the curr node is itself the node

the operation is trying to add. If the node already exists as curr node, the addition should fail be-

cause the node is already present in the list. If not, a new node with the key to be inserted is created.

We will now use the powerful CASN operation to update the next pointers of new node and the

predecessor - both at one single step, atomically. The CASN operation will try to modify these two

memory locations atomically by installing the CASN descriptor pointers to the locations first. There

will be no problem to install the descriptor reference to a newly created node. But, if any other

operation will update the preds next reference, the CASN operation will fail to install the descriptor

on that location and the CASN operation fails. This will guide the code to execute find, to identify

the new set of pred and curr nodes. If CASN operation succeeded, both the memory locations are

confirmed to be updated atomically without any intervening processes. This will ensure that our

node with the desired key is inserted between the pred and curr nodes returned by the find method.

The pseudo code to implement add operation along with find method is given as:

Algorithm 5.1: Pseudo code to implement ‘add’ operation in a linked list.

bool add(int key){
Node pred, curr = new Node();
int cas1 = 0, cas2 = 1;
do{

(pred, curr) = find(head, key);
if(curr.key == key){

return FALSE ;
}
else{

Node node = new Node(key);
(address[cas1], oldvalue[cas1], newvalue[cas1]) = (&node.next, null, curr);
(address[cas2], oldvalue[cas2], newvalue[cas2]) = (&pred.next, curr, node);

}
}while(CASN(2, address[], oldvalue[], newvalue[]) == FALSE); //if CASN fails, retry

adding.
return TRUE ;

}

41

Algorithm 5.2: The linked list ‘find’ operation: a helper function used by add and delete
operations.

(Node, Node) find(Node head, int key){
start: Node pred, curr = NULL;
pred = CASNRead(&head);
while(TRUE){

curr = CASNRead(&pred.next);
//CASNRead will consequently return a value rather than descriptor reference.
if(curr.key >= key){

break;
}
pred = curr ;

}
if(CAS(pred.next, curr, curr)){

return (pred, curr);
}
else{

goto start;
}

}

5.1.2 Deleting a Node in a Linked List

A successful deletion of a node will require target nodes preds next reference to be updated with

its successor nodes memory location. Similar to add operation, find operation will distinguish the

predecessor and current nodes of the target key. If the curr nodes reference is not equal to the target

key, the node with the key to be deleted is not said to be present on the linked list and will return

false (Figure 5.2). If the key is present in the curr reference, the deletion of the node will proceed.

The execution of deletion operation is given in Figure 5.2.

The deletion of the node will advance with the find operation (Algorithm 5.2). The operation will

return the pred and curr node references for the key passed to it. For deletion, if the find call does

not return the curr node with the reference of node having key searched for, there will be no node

to delete and deletion fails. If there is a key with the target value in the list, the deletion operation

will move forward with the operation. First, the successor node for the curr node is identified using

CASNRead operation. As usual, if there is another operation working on that memory location,

CASNRead will find the descriptor reference already present there and will help that operation

complete it first. Ultimately, it will return the curr nodes successor reference. For deletion of the

node, we will need to update two memory locations atomically. The reason we are updating the

pointer of the node to be deleted to point to its predecessor is that other concurrent operations that

42

Figure 5.2: A linked list with four nodes: 10, 20, 25 and 30. Deletion of a node with key 25’. In fig
(a), in the first step, the pred node updates its next pointer with the address of succ node. In fig
(b), in second step, the currs next pointer is updated to point the previous node. The deletion of
node is successful.

were traversing through the deleted node at the time of its deletion can follow this reversed pointer

path pointed back to its predecessor to get back into the current list, at the correct place and to

continue their work [16]. Also, this will prevent other concurrent threads adding other nodes after

the deleted nodes. Changing the next reference of the deleted nodes will ensure the failing of CASN

for other add operations trying to add nodes after the deleted node (preds next will no longer point

to the curr node). This verification while adding nodes is done in the add operations CASN when

updating the second memory location (Algorithm 5.1). So, deletion will proceed only after both the

currs next and preds next references are correctly updated. If at any point between updating these

nodes next field, the references are updated by other concurrent threads, than CASN will fail and

the deletion process retries. If both the memory locations are updated correctly, the node will no

longer be reachable in the linked list from the head and the deletion process returns with a true

value. The pseudo code to implement delete operation is given as:

43

Algorithm 5.3: Pseudo code to implement ‘delete’ operation in a linked list.

bool delete(int key){
Node pred , curr = new Node();
int cas1 = 0, cas2 = 1;
do{

(pred, curr) = find(head, key);
if(curr.key != key){

return FALSE ;
}
else{

Node succ = CASNRead(&curr. next);
(address[cas1], oldvalue[cas1], newvalue[cas1]) = (&pred.next, curr, succ);
(address[cas2], oldvalue[cas2], newvalue[cas2]) = (&curr.next, succ, pred);

}
}while(CASN(2, address[], oldvalue[], newvalue[]) == FALSE);
return TRUE ;

}

5.1.3 Searching a Node in a Linked List

Another operation we define is the search operation which returns boolean result ‘true’ or ‘false’

depending upon if the node with the target key is present or absent from the linked list. There are

various wait-free implementations of this operation. Herlihy et. al [2] implemented lock-free linked

list using atomicmarkable reference object from java concurrent library. He presented a wait-free

implementation of search operation by the use of concept of marking nodes logically deleting nodes

before physically deleting it. Our search operation will not be wait-free but will be non-blocking

implementation, a lock-free operation. The search operation will advance starting from the head of

the list, traversing each node one by one. CASNRead operation will be used to read the memory

location because other processes might have already acquired the memory location and will need to

help them complete it. This behavior will make this operation lock-free and limit from wait-freedom

property [2, 10, 12, 18]. However, if the node yet traversed reaches the value greater than or equal

to the lookup key, a decision is made returning true or false depending upon if the key is present in

the set. The pseudo code to implement search in linked list is given as:

44

Algorithm 5.4: Pseudo code to implement ‘search’ operation in a linked list.

bool search(int key){
Node pred = new Node();
Node curr = new Node();
pred = CASNRead(&head);
while(TRUE)
{

curr = CASNRead(&pred.next);
if(curr.key >= key)
{

break;
}
pred = curr ;

}
return (curr.key == key);

}

5.1.4 Prepending a Node in a Linked List

Prepending a node in linked list refers to adding a new item at the beginning of the linked list.

This operation inserts a new node at the beginning of the linked list only if the condition that the

key to be inserted is the least among all keys of the list is satisfied. It is similar to add operation

described above but careful observations are required to prepend a node at the beginning of the list.

The linked list data structure we are referring to is in sorted order. So, the new node which will be

inserted will be the first item in the linked list. This key of this item must strictly be less than any

of the other keys in the linked list. If it is not the least of all, this operation should fail and rather

the add operation should be called to insert the node.

The operation starts by finding the next reference of the head in the linked list (Algorithm

5.5). The node to be prepended must have the key smaller than first item in the list (referred

to as firstnode in the code). If the condition is not satisfied, the key should not be inserted and

the operation terminates. If the key to be inserted is the least among all, the next pointers of

the head of the list and that of new node is updated using atomic CASN primitive. Two CAS

operations are executed atomically to ensure that the next reference of new node points to the first

item in the linked list and the next reference of the head points to the new node itself. If during

the placement of descriptor pointers by the CASN operation, anything changes (new node added or

another operation working on the same memory location), the CASN operation will fail or help the

other pending operations. The CASN operation used to update the head and new nodes pointers

will start (try to) by placing the descriptor pointers on the memory locations to be updated. If the

45

operation succeeds to install the descriptor pointers, no other threads will interfere in between but

rather help the operation to complete. The implementation of prepend operation (Algorithm 5.5) is

lock-free. The pseudo code to implement prepend operation is given as:

Algorithm 5.5: Pseudo code to implement ‘prepend’ operation in a linked list.

bool prepend(int key){
int cas1 = 0;
int cas2 = 1;
Node firstnode = new Node();
do{

firstnode = CASNRead(&head.next);
if(firstnode.key <= key)
{

return FALSE ;
}
else
{

Node node = new Node(key);
(address[cas1], oldvalue[cas1], newvalue[cas1]) = (&node.next, null, firstnode);
(address[cas2], oldvalue[cas2], newvalue[cas2]) = (&head.next, firstnode, node);

}
}while(CASN(2, address[], oldvalue[], newvalue[]));
return TRUE ;

}

The prepend operation presented here adds an element strictly at the beginning of the list. This

unique behavior of the operation can lead us with other useful implementations. The prepending

and deletion of an item from the beginning of the list only requires O(1) time. This behavior can

be used to implement a prominent data structure stack. The item inserted just after the head of

the list can also be seen as push operation in a stack. An operation which will ensure the removal

of first item in the list can be introduced easily and will act like a pop operation. This resulting

behavior can provide us with a stack with Last In First Out (LIFO)nature.

5.1.5 Appeding a Node in a Linked List

This operation inserts a new node at the end of the linked list, just before the tail sentinel node

only if the condition that the key to be inserted is the greatest among all keys of the list is satisfied.

Appending a node at the end of the linked list is similar to inserting a node with the greatest key

in the linked list. The key must satisfy the condition that it must strictly be greater than any other

keys in the linked list. If the key to be inserted is not greatest, or equals the already present key in

the linked list, the operation must fail and the operation terminates.

46

The operation starts the traversal from the head of the linked list (Algorithm 5.6). Each of

the nodes in the list is traversed until the tail sentinel node is reached. The node just before the

tail node is recorded and is the last element on the linked list. This node is now compared with

the intended key to be appended in the linked list. If the recorded keys value is greater than or

equal to the key to be appended, the operation will fail. Otherwise, with the help of CASN atomic

primitive, the next pointers of the new node to be appended and the recorded last node are updated

atomically. As we can see, in case of the empty list (C1), with head directly pointing to tail,

traversing the node is unnecessary and may cause undesirable effects. So, we limit this in the code

by visualizing the head of the empty list as the last item. Other updates of the pointers will go

similarly. This implementation of append operation(Algorithm 5.6) is lock-free. All the memory

locations are updated in a non-blocking manner using the CASN operation. The pseudo code to

implement append operation is given as:

Algorithm 5.6: Pseudo code to implement ‘append’ operation in a linked list.

bool append(int key){
int cas1 = 0, cas2 = 1;
Node pred, curr, lastnode = new Node();
pred = CASNRead(&head);
do{

while(TRUE){
curr = CASNRead(&pred.next);
C1:if(CASNRead(&head.next) == CASNRead(&tail)){
curr = pred ; //if the list is empty
break;
}
if(CASNRead(&curr.next) == CASNRead(&tail)){

break;
}
pred = curr ;

}
lastnode = curr ;
if(lastnode.key >= key){

return FALSE ;
}
else{

Node node = new Node(key);
(address[cas1], oldvalue[cas1], newvalue[cas1]) = (&node.next, null,

CASNRead(&tail));
(address[cas2], oldvalue[cas2], newvalue[cas2]) = (&lastnode.next,

CASNRead(&tail), node);
}

}while(CASN(2, address[], oldvalue[], newvalue[]) == FALSE);
return TRUE ;

}

47

The append operation presented here takes O(n) time. The operation can be optimized to O(1)

if we can maintain a certain level of bookkeeping. If we can track the last node in the list, the

prepending the operation can be done easily in constant time. For making this happen, all the

changes to the last item in the list (removal of the item, other append operations, insertion of the

item, clearing of the list, etc.) should be tracked. If we are able to store this extra bit of information

every time for the list, we will be able to prepend an item without traversing the list from the head.

This will behave similar to enqueuing an item in the queue data structure. With an additional op-

eration which ensures the removal of item from the head, the nature of these operations will provide

us with a queue with First In First Out (FIFO) behavior.

To summarize the linked list operations presented above which can also be viewed as an imple-

mentation of set using linked list,

• The add(x) method adds x to the linked list based set, returning true if and only if x was not

present in the list.

• The delete(x) method deletes x from the list based set, returning true if and only if x was

present in the list.

• The search(x) returns true if and only if the list based set contains x, else returns false.

• The prepend(x) method adds a node at the beginning of the linked list, just after the head

sentinel node.

• The append(x) method adds a node at the end of the linked list, just before the tail sentinel

node.

All these operations are implemented to work in a lock free manner.

5.1.6 Proof of Concurrency

To prove the correctness of the algorithms of the operations presented above, let us demonstrate few

sample executions of the various operations and analyze each of the invocations and responses of the

concurrent operations in detail. It will be easier to reason about the operations because of the use of

the powerful CASN operation in the implementation. Let us consider a scenario described Figure 5.3.

A thread A is about to delete item 20 and another concurrent thread B is about to add item 25

in the list. As we can see, both the threads will operate on the same memory locations to make their

48

Figure 5.3: Two concurrent threads A and B operating together. Thread A is trying to delete an
item from the list and thread B is trying to add an item.

respective changes to the pred and curr node’s next pointers. If thread B would add 25 just after

thread A completed its update of its pred’s next field (node 10’s next field point to node 30) but

thread A yet to update the deleted node’s back pointer, the net effect would be that 20 would be

deleted successfully but 25 would not be added correctly. Harris [12] and Herlihy [2] solved this using

both CAS together with the ‘marked’ bit of the node’s next field. In our implementation, we use

CASN to update both the pointers atomically, solving this issue. Hence, this will not be a problem

in the implementation using CASN because if deletion by thread A preceded before addition by

thread B, thread A will install its descriptor pointers prior to thread B and complete its operation.

In addition to it, if thread B finds A’s descriptor pointer in the memory location, it will help thread

A to complete the operation. Thread B will again call find() to get a new set of pred and curr nodes

and proceed with addition. Also, if we consider a case where thread A has installed its descriptor

pointer on pred’s next field but yet to install on curr’s next. Thread B at the same time adds the

item in the list. In this case, thread A’s CASN will fail because the curr will no longer be pointing

to the expected succ node. So, the find() method of delete operation will be called again to get a

new set of pred and curr nodes and delete operation will proceed.

Now, let us consider another scenario described in figure 5.4. Thread A is trying to delete node

20 from the linked list and thread B is trying to delete node 30, both operating concurrently.

In Figure 5.4, if compare and set operations used were disjoint and executed individually, and

if thread A after performing its updating of pointer from its pred’s next (node 10) to its succ node

(node 30), if another concurrent thread B tries to perform deletion of node 30 swinging its pred’s

(node 20) next pointer to its succ (node 40), the result would be that node 30 would not be deleted

49

Figure 5.4: Two concurrent threads A and B operating together. Thread A is trying to delete
an item from the list and thread B is trying to delete another adjacent item at the same time.
Operations of both operations are shown for clarity only.

correctly because node 20 is not reachable from previous deletion. In our implementation, this will

not be problem because we ensure that the concurrent deletion operations do not interfere with each

other. Let us assume if thread B preceded thread A. In this case thread B will execute CASN on

its pred’s next field to point to its successor and the target node’s (node 30) next field itself to its

predecessor. Another concurrent thread (thread A) trying to delete node 20 (thread B has placed

its descriptor pointer) while trying to update node 20’s next pointer to point its predecessor (node

10) will find updated values and CASN for thread A will fail and thread A restarts to get new set

of pred and curr values to continue deletion. So, thread A will only proceed after CASN of thread

B is completed. This ensures that concurrent deletions do not interfere with each other. Because

of the powerful CASN operation, we are able to modify all of the locations needed to be modified

atomically without any other thread intervening in between the thread’s invocation and response

period.

Now we will move ahead with describing the skip list and designing lock free operations for this

data structure. Basically, we will extend the implementation of linked lists and implement it on skip

lists.

Skip lists are a data structure that can be used in place of balanced trees. Skip lists use probabilistic

balancing rather than strictly enforced balancing and as a result the algorithms for insertion and

deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced

trees.

-William Pugh

50

Skip lists are basically composed of linked lists stacked together forming levels. The maximum

level of the skip list will be fixed and is calculated in advance. The leftmost and rightmost nodes

are the head and tail of the data structure (Figure 1.2) with the minimum and maximum possible

keys. The lowest level of the skip list contains every item in the list, and the levels above it proba-

bilistically contain that item up to some maximum level that is chosen independently and randomly

for each node using some random level generator function. The level of a node to be added in skip

list is determined using a random level generator [21].The number of nodes in each level of skip

list decreases exponentially with the level, implying that a key can be quickly found by searching

first at higher levels, skipping over large numbers of nodes, and progressively working downward

until a node with the desired key is found, or the bottom level is reached. Thus, the expected time

complexity of skip list operations is logarithmic in the length of the list [2, 13, 21, 23].

Each node in a skip list is part of at least one linked list (the lowest level), and at maximum it

could be part of all the lists in all levels. It can also be visualized as a single linked list with each

node containing more than one next pointer. This set of next pointers will allow us to traverse the

list of nodes, skipping over them. We can see that by maintaining a sorted order in the list, it will

help us traverse the list to find the desired node. As the higher level lists are sparser, we can use

them to reach the key we are looking for in fewer steps.

Balanced search trees need to re-arrange its height accordingly as the fundamental operations

(insert, delete) are performed to maintain good performance [20]. Skip lists can be used as a re-

placement to balanced search trees. Skip lists do not require re-balancing and takes a probabilistic

approach to maintain the balance. The probability of the level of a node in a skip list is generated

using a random generator. The probability that a node is at level 1 is 1, at level 2 is 0.5, at level 3 is

0.25, at level 4 is 0.125 and so on [20, 21]. Due to this probability distribution, each higher level list

in skip list roughly skips about 2i nodes in the list just below it [2]. For example, maximum level of

8 is appropriate for skip list data structure of 28 elements. Between any two nodes at a given level,

the number of nodes in the level below it is constant. So, the height of the skip list is logarithmic

to the number of nodes. Balanced trees can do everything that a skip list can do. The only reason

skip lists can replace balanced search trees is its probabilistic approach used to insert nodes in the

data structure, which makes it very simple to implement, modify and scale. Under the assumption

that the input sequence will not consistently produce worst-case performance, implementing skip

lists can be easier and faster than balanced trees.

51

A skip list is built in layers. The bottom layer is an ordered linked list with all the items present.

Each higher layer acts as an ”express lane” for the lists below, where an element in level ‘i’ appears

in level ‘i+1’ with some fixed probability p (two commonly used values for p are 1/2 or 1/4) [23, 21].

On average, each element appears in 1/(1-p) lists. Searching of an item in a skip list begins at the

head. Each layer of the skip list above is the lock-free linked described in section 5.1. Each node in

the skip list contains a next reference that is the array of list level references, one for each of the lock-

free skip list’s list-levels to which the node can be linked. The position of a node during searching

is allocated by finding the set of predecessors and successors for that node. The set refers to the

each of the predecessor and successor for that node in each level of the skip list. All the operations

performed in the linked lists can be done with skip lists. Let us demonstrate the execution of each

of the operations. The operations supported by skip list we discuss here are:

• Adding a node:

This operation introduces a new node with the desired key in between the two nodes of the

skip list, strictly less than and greater than it. A random top level is generated for the new

node and is spliced in between the calculated set of predecessor and successor nodes at each

level. At each level, the new node’s next pointer will point its successor for that level (up to

the top level). Starting from the bottom level, the predecessor node’s next pointer for that

level will be then updated to point the new node. If both the steps are successful, the new

node has been added to the skip list.

• Deleting a node:

This operation will delete the node with the desired key from the skip list. The item will be in

the skip list if it is in the bottom level list. This is because all the higher level lists are subsets

of lower level list and the list at the bottom level contains all the items in the skip list. If the

skip list does not contain a node with the key to be deleted, the delete operation should fail.

At each level, predecessor of the node to be deleted will point its successor and the node’s next

pointer will point its predecessor (using the concept of back pointers) [16, 21].

• Searching a node:

This operation will make a decision whether a node is present in the skip list. A search starts

from the current maximum level of the list of the head and descends down to the bottom level

list maintaining list-level references to a predecessor node and a current node. The search

will skip over nodes at each level if the key of desired node is greater than the nodes in path.

The process of skipping nodes continues until the node with key greater than or equal to the

52

desired key is found. The execution stops at the bottom level and acknowledgement is made

with yes/no decision.

• Prepending a node:

The prepend operation will append a node at the start of the skip list. To prepend a node,

the node to be prepended must have a key strictly less than any other keys in the skip list.

If the key to be prepended is the least among all, a node is created and added just after the

head of the skip list.

• Appending a node:

The append operation will add a node at the end of the skip list. To appenda node, the node

to be appended (added at the end of the skip list) must have a key strictly greater than any

other keys in the skip list. If the key to be added at the end is greatest of all, a node is created

and added just before the tail of the skip list.

5.2 Proposed Skip List Algorithms

All these operations described above will be implemented using CASN operation in a non-blocking

manner. We will design our skip list implementation with the help of CASN operation described

in chapter 4. With the above described powerful CASN primitive, deletions, additions, appending

and prepending of nodes will be atomic. All the respective pointers to be updates at each of the

levels of the skip list will be carried out as a single atomic step. This will ease the implementation

in the highest degree and make the concurrent reasoning of the operations easier. During the imple-

mentation of various operations, we make an assumption that some random level generator function

provides us with the level of a node in a skip list. Let us discuss on this function first.

Finding a random level is not as easy as just picking any random between some of the possible

levels. An important point to note in a skip list is that the maximum level should be fixed during

its design. If a lot of time is spent moving down to the next level from an unreasonably high column

compared to the rest, any gain from the skip list could be lost. So there should be a bound to the

upper limit to the maximum level in a skip list [24]. A skip list with a maximum level of 16, for

example, could hold approximately 216 nodes [21, 23]. So, level can be logarithmic and still support

a large number of nodes. For finding a proper random level, using random number generators is not

a good idea. Random number generators return a random number with uniform distribution. This

will make every level to be equally probable. This will not make an efficient data structure that we

53

are creating using randomization. So, we will need a function that will return a weighted random

number based on a probability equation. To get the binary tree-like structure in a skip list, each

level must be about half as probable as the level below it, or in more precise terms, the random

height should be chosen with a probability of 1/2. To find such a probabilistic number, the easiest

way to achieve is to “flip coins”. Starting from the lowest level, we will flip the coin until we will

find the “head”. Few examples of random level generating functions are:

Algorithm 5.7: Two designs to generate a random level. The level thus generated can range
from minimum value 1 through maxlevel

int randomlevel(){// returns a random level for a node to be added [21]
int level = 1; //should never return 0
while(random() < 0.5 and level <maxlevel) //random function returns value 01

level = level + 1;
return level ;

}
int randomlevel(int maxlevel){

int a = 0, b = 0 ;
for(int level = 0; b = 0; level++){

if(a == 0) {
a = random(); //calculate a random number

}
b = a % 2; //if the remainder is 1, the loop will terminate
a = a / 2;

}
if(level > maxlevel){

level = maxlevel - 1;
}
return level ;

}

Above are the two designs to calculate the random level. The first one is expensive because it

calls the random() function in every iteration of the loop which might cause bottlenecks. So, in

the second design [24], the random function is called only once and using the bits of the returned

data, the level is calculated. Now let us describe the implementation of various skip list operations

designed to work in concurrent non-blocking environment.

5.2.1 Adding a Node in a Skip List

The add operation adds a node between the two nodes of a skip list with the keys strictly less

than and greater than the node to be added (Figure 5.5). If the key intended to be added is

already present in the skip list, the operation fails. For a successful add operation, first the set of

predecessor and successor nodes are calculated for each of the levels of the skip list using the find

54

operation (Algorithm 5.9). The new node to be added is to be spliced between these levels of the

skip list. A helper function randomlevel (Algorithm 5.7) generates a random value ‘toplevel’ for the

new node. The new node will then be linked on all the levels, starting from bottom level to top level

between the predecessor and successor nodes. The linking of the pointers require the new node’s

next pointer to be updated with successors from bottom to top level and the predecessor nodes next

pointer updated with the address of the new node. We use CASN primitive to update all these

set of pointers, all at once atomically in a lock-free manner. Let us consider the example below to

illustrate the add operation:

Figure 5.5: A skip list with five nodes and four levels. Addition of a node with key 12 in the skip
list.find() operation is executed first to find the set of predecessors and successors(stored in preds[]
and currs[] array). For key 12, the set of nodes of preds[] and currs[] in each level are denoted by P
and S respectively.

The add operation (Algorithm 5.8) advances with the find call (Algorithm 5.9). The find call

provides the predecessor and successor nodes at each levels for the key supplied with the results

stored in preds and currs arrays. The value of each preds in each level is strictly greater and the

value of currs is strictly greater than or equal to the supplied key. The find call starts from the

55

head of the maximum level(here 4). As it moves down the levels up to the lowest level, it stores the

predecessor and successor for the supplied key in the preds and currs array for that level.

The current maximum level (curr maxlevel) is a shared variable maintained to store the current

maximum level of any node in the skip list. This will help us to start from the midst of the skip list

levels rather than always starting from the maximum level. We will use it in search operation and

not in find because we will need all set of predecessors and successors for a node at all levels in find

method (new node to be added can have any toplevel upto maxlevel allowed).

After the set of apparent predecessors and successors are calculated, we verify if the key to be

added is already present in the list. Verifying the successor node at bottom level of the skip list

is enough because each of the higher level is the subset of the lower levels and the bottom level

contains all keys. If the key is already present, the add operation fails. If no such key is found, a

new node is created with a randomly generated top level. This node will be spliced between the

predecessor and successor nodes from the random top level to the bottom level. The new node’s next

pointer is updated with the successor nodes for each of its levels. To update the predecessor node’s

pointers, add operation uses CASN operation to ensure all the updates are atomic. For this, the

CASN operation begins by installing the descriptor pointers at each of the predecessor’s next fields

at each level. This operation provides us with the lock-free implementation of the add operation.

The descriptor pointers are correctly installed only if none of the concurrent threads have interfered

in between the add operation’s invocation and response. If any other operation had changed the

predecessor’s next field, or may be deleted it, the CASN will fail because the predecessor no longer

point to the successor. In such a case, all the memory locations with descriptors already placed are

replaced with old values and the add operation retries. If no any interference is caused by other

processes, the CASN operation will update the entire predecessor’s next field with the address of

new node and the add operation terminates with a success.

56

Algorithm 5.8: Pseudo code to implement ‘add’ operation in a skip list.

object{
int key ;
int toplevel ;
Node next[toplevel] ;

}Node;
bool add(int key){

Node[] preds, currs = (Node[]) new Node[maxlevel] ;
int bottomlevel = 1;
int cas1 = 0;
int toplevel = randomlevel(); //assign a random level to new node
do{

(preds[], currs[]) = find(head, key);
if(currs[bottomlevel].key == key){

return FALSE ;
}
else{

Node node = new Node(key, toplevel);
for(int level = bottomlevel; level <= toplevel; level++){

node.next[level] = curr[level] ;
(address[level], oldvalue[level], newvalue[level]) =

(&preds[level].next[level], currs[level], node);
}

}
}while(CASN(toplevel, address[], oldvalue[], newvalue[]) == FALSE);

//update the current max level.
do{

result = CASNRead(&curr maxlevel);
if(result < maxlevel && head.next[result+1] != tail){

temp maxlevel = result ;
while(temp maxlevel < maxlevel && head.next[temp maxlevel+1] != tail){

temp maxlevel = temp maxlevel + 1;
}

}
else{

break;
}
(address[cas1], oldvalue[cas1], newvalue[cas1]) = (&curr maxlevel, result,

temp maxlevel);
}while(CASN(1, address[], oldvalue[], newvalue[]) == FALSE);
return TRUE ;

}

57

Algorithm 5.9: The skip list ‘find’ operation: a helper function used by add and delete
operations.

(Node [], Node [])find(Node head, int key){
int bottomlevel = 1;
Node[] preds, currs = (Node[]) new Node[maxlevel] ; //maximum level in the skip list

permitted.
Node pred = null, curr = null ;
pred = CASNRead(&head); //start from the head of the skip list
for(int level = maxlevel; level >= bottomlevel; level–){ //start from maximum level.

while(TRUE){
curr = CASNRead(&pred.next[level]);
if(curr.key >= key){

break;
}
pred = curr ;

}
(preds[level], currs[level]) = (pred, curr);

}
return (preds, currs);

}

5.2.2 Deleting a Node in a Skip List

The delete operation will remove a key supplied to it, if the node is already present in the skip list

(Figure 5.6). A successful delete operation requires the predecessor of target nodes next reference

updated with the successor of target node in each of the levels starting from the top level. Similar

to add, delete will invoke find() operation to retrieve the set of probable predecessors and successors

(stored in preds[] and currs[] arrays) at each level of the skip list. For deletion to move ahead, the

target key must be present in the skip list and recorded in currs[] array. The predecessors next point-

ers at each level are updated at once using CASN operation. Also, the deleted nodes next pointers

are pointed backwards to point to its predecessor [16]. The reason to do this is to ensure that no

other nodes are added after this deleted node and search operations traversing through this node

can follow the back path to return to the original list. Using CASN as a primitive will ensure that

the delete operation is non-blocking. Let us consider the example to illustrate the delete operation

described in figure 5.6.

The deletion of a node starts with the invocation of find operation which returns arrays of prede-

cessors and successors for the supplied key. If the key is present in the skip list, all the currs[] array

values contains the key to be deleted. If the find call does not return the currs values with the key

searched for, the node is not present in the skip list and deletion fails. After the set of preds[] and

58

Figure 5.6: An instance of a skip list with delete(8) invocation. In fig (a), find fetches the set of
predecessors and successors (current node in this case) stored in preds[] and currs[] array. Also, an
arrysuccs[] is used to store the successors with keys just greater than the current node. For key 8,
the set of nodes of preds[], currs[] and succs[] in each level are denoted by P, C and S respectively.
The next pointers of the predecessor point to successors. In fig (b), in second step, the currs next
pointer is updated to point backwards at each level. The deletion of node is completed.

currs[] arrays are calculated and if the key is present in the skip list, we use the CASN operation to

update all the set of pointers. The pseudo code to implement delete operation is given in algorithm

5.10.

59

Algorithm 5.10: Pseudo code to implement ‘delete’ operation in a skip list.

bool delete(int key){
int bottomlevel = 1;
int newlevel = 0;
int cas1 = 0;
Node[] preds, currs, succs = (Node[]) new Node[maxlevel] ;
do{

(preds[], currs[]) = find(head, key);
if(currs[bottomlevel].key != key){

return FALSE ;
}
else{

Node node = currs[bottomlevel] ;
for(int level = bottomlevel; level <= node.toplevel; level++){

Node succs[level] = CASNRead(&currs[level].next[level]);
(address[level], oldvalue[level], newvalue[level]) =

(&preds[level].next[level], currs[level], succs[level]);
(address[newlevel+1], oldvalue[newlevel+1], newvalue[newlevel+1]) =

(&currs[level].next[level], succs[level], preds[level]); //back pointing
newlevel = newlevel + 2;

}
}

}while(CASN(2*node.toplevel, address[], oldvalue[], newvalue[]) == FALSE);
//update the current max level.

do{
result = CASNRead(&curr maxlevel);
if(result > 1 && head.next[result] == tail){

temp maxlevel = result ;
while(temp maxlevel > 1 && head.next[temp maxlevel] == tail){

temp maxlevel = temp maxlevel - 1;
}

}
else{

break;
}
(address[cas1], oldvalue[cas1], newvalue[cas1]) = (&curr maxlevel, result,

temp maxlevel);
}while(CASN(1, address[], oldvalue[], newvalue[]) == FALSE);
return TRUE ;

}

The pointers update starts with installing the CASN descriptors in all the memory locations

to be updated such that no intervening threads will muddle with the invoked delete process. If

all the pointers are successfully installed, CASN will move ahead with updating the pointer, all at

once. If CASN is unable to install descriptor in any of the memory locations due to many possible

reasons (concurrent threads deleting the curr node, new node added in between, etc.), all the memory

locations where the descriptors are installed are updated with old values and the delete operation

60

retries. In figure 5.6, in case of successful installation of descriptor pointers, the update of set of

pointers in part a and b both are executed all at once using CASN. The operation is lock-free because

of the use of this atomic primitive. If all the memory locations are updated correctly, the node will

no longer be reachable in the skip list and the deletion process returns with a true value.

5.2.3 Searching a Node in a Skip List

The search operation returns boolean result depending upon if the node with the target key present

in the skip list (Algorithm 5.11). Searching of a key value in the skip list starts from the head of

the current maximum level (Figure 5.7). Since we are not searching for a node from the maximum

level of the list and only from the current maximum level which depends on the data stored in the

skip list, a lot of unnecessary comparisons are avoided. This idea was suggested by Pugh [16] and

we used it in our skip list design. Since higher level lists are sparser than the lower level lists, a large

amount of keys will be skipped as we move down towards the bottom level. Because the number

of nodes in each higher level of skip list decreases exponentially with the level decreasing , a key

can be quickly found by searching first at higher levels, skipping over large numbers of nodes, and

progressively working downward until a node with the desired key is found, or the bottom level is

reached. We have discussed this already that the expected time complexity of search operation is

logarithmic in the length of the list [2, 13, 21, 23]. An example of searching a node in a skip list is

given below:

Figure 5.7: Searching a node in skip list. The search starts from the maxlevel and descends down
each level until the sought after key is found.

However, the search operation we use here is not wait-free as implemented in [2, 10, 18]. But

this operation is non-blocking, lock-free operation. The reason this operation is lock-free and not

wait-free is both because of the use of atomic primitive CASN. As the operation advances from the

61

head to all other nodes across and down the levels, reading of the memory locations needs to be done

with CASNRead operation. This is because other concurrent thread is already operating on that

memory location. So, we will help that thread complete first and then place our CASN descriptor

to complete the search. Hence, this operation is lock-free but not wait-free. The pseudo code to

implement search operation is given as:

Algorithm 5.11: Pseudo code to implement ‘search’ operation in a skip list.

bool search(int key){
int bottomlevel = 1;
Node[] pred, curr, succ = (Node[]) new Node[maxlevel] ;
pred = CASNRead(&head);
curr maxlevel = CASNRead(&curr maxlevel);
for(int level = curr maxlevel; level >= bottomlevel; level–){

curr = CASNRead(&pred.next[level]);
while(TRUE){

succ = CASNRead(&curr.next[level]);
if(curr.key < key){

pred = curr ;
curr = succ;

}
else{

break;
}

}
}
return (curr.key == key); //checking only in bottomlevel list is sufficient

}

5.2.4 Prepending a Node in a Skip List

This operation inserts a new node at the beginning of the skip list satisfying the condition that

the key to be inserted must be the least among all keys in the skip list (Algorithm 5.12. Since the

skip list has to be in sorted order, the key to be added must be least of all the keys. Otherwise,

this operation will fail. The operation starts with storing all the next references of the head in

all levels in an array. The bottom level list contains all the items. So, if the first node of the list

at the bottom level is greater than the supplied key to be added, the operation advances. A new

node is created with a randomly generated level. The new node’s next pointers are updated with

the head’s next references which are already stored in an array. We don’t need to ensure atomic

updates here because the node is not yet added to the skip list and if any other concurrent operations

changed something in between; we will track it in CASN update and retry prepending. All the heads

next field update is carried out using CASN operation. The CASN operation moves forward with

62

installing the descriptor pointers in each of the memory locations to be updated. If nothing has

changed, i.e. if no other nodes has been added between the head and first node or the first node

is not deleted, than installing descriptors at all levels (only upto top level needed) will succeed and

CASN will proceed with atomic update of all the memory locations. If other concurrent threads

changed something in between, then CASN will fail and prepend operation retries. We can see that

this operation is also lock-free. If other processes are working on the memory locations it is trying

to place its descriptor, it will help them complete first and then move ahead with own process. The

use of CASN primitive allows the lock-free behavior of this operation. We will also need to update

the current maximum level variable for this operation similar to add operation. The pseudo code to

implement prepend operation is given below:

Algorithm 5.12: Pseudo code to implement ‘prepend’ operation in a skip list.

bool prepend(int key){
int toplevel = randomlevel(); //assign a random level to new node
int bottomlevel = 1;
Node[] firstnode = (Node[]) new Node[maxlevel] ;
do{

for(int level = maxlevel; level >= bottomlevel; level–){
firstnode[level] = CASNRead(&head.next[level]);

}
if(firstnode[bottomlevel].key <= key){

return FALSE ;
}
else{

Node node = new Node(key, toplevel);
for(int level = bottomlevel; level <= toplevel; level++){

node.next[level] = firstnode[level] ;
(address[level], oldvalue[level], newvalue[level]) = (&head.next[level],

firstnode[level], node);
}

}
}while(CASN(toplevel, address[], oldvalue[], newvalue[]));
return TRUE ;

}

5.2.5 Appending a Node in a Skip List

This operation inserts a new node at the end of the skip list satisfying the condition that the key

to be inserted must be the greatest among all keys in the skip list (Algorithm 5.13). Since the skip

list has to be in sorted order, the key to be added must be greatest of all the keys. Otherwise, this

operation will fail. Analogous to searching the last element in the skip list, this operation needs to

go all the way to the end of the list to verify if the last element of the skip list is greater than the

63

intended key to be added. If the last element of the skip list is greater than the key to be added,

this operation will fail. Pseudo code to implement append operation is given as:

Algorithm 5.13: Pseudo code to implement ‘append’ operation in a skip list.

bool append(int key){
int toplevel = randomlevel();
int bottomlevel = 1;
Node[] lastnode, pred, curr = (Node[]) new Node[maxlevel] ;
pred = CASNRead(&head);
do{

for(int level = maxlevel; level >= bottomlevel; level–){
while(TRUE){

curr = CASNRead(&pred.next[level]);
if(CASNRead(&head.next[level] == CASNRead(&tail))){

curr = pred ;
break;

}
if(CASNRead(&curr.next) == CASNRead(&tail)){

break;
}
pred = curr ;

}
lastnode[level] = curr ;

}
if(lastnode[bottomlevel].key >= key){ return FALSE ; }
else{

Node node = new Node(key, toplevel);
for(int level = bottomlevel; level <= toplevel; level++){

node.next[level] = CASNRead(&tail);
(address[level], oldvalue[level], newvalue[level]) = (lastnode[level].next,

CASNRead(&tail), node);
}

}
}while(CASN(toplevel, address[], oldvalue[], newvalue[]) == FALSE);
return TRUE ;

}

An array will store the entire last nodes (node just before the tail pointer) across all levels of the

skip list. If the list is empty, the head of the skip list will act as the last node of the skip list. This is

because the new key to be added needs to be spliced in between the last node and the tail sentinel

node. If the last node at the bottom level list is less than the supplied key, appending proceeds with

the creation of a new node with a random level. The new nodes next references are updated will the

tail up to the top level of new node. To update the next reference of the last nodes at each level,

we will use CASN operation. The operation begins with installing the descriptors of the invoked

64

CASN operation in next fields of the last nodes. If anything changed after the invocation of the

CASN or any other previously was working on the same location, CASN will help that operation to

complete first and then install its own descriptor pointers. If the memory locations were updated in

between, CASN will fail and the operation retries from the start. If nothing bad had happened and

after all the references to the descriptor pointers are installed, CASN will execute all the update at

once, verifying nothing has been changed in between. This will complete the appending of new node

with the highest key at the end and the operation terminates. The use of CASN primitive allows

the lock-free behavior of this operation. We will also need to update the current maximum level

variable for this operation similar to add operation.

To summarize the operations presented above on skip list which can also be viewed as an implemen-

tation of linked list stacked at multiple levels,

• The add(x) method adds x to the skip list, returning true if and only if x was not present in

the list.

• The delete(x) method deletes x from the skip list, returning true if and only ifx was present

in the list.

• The search(x) returns true if and only if the skip list contains x, else returns false.

• The prepend(x) method adds a node at the beginning of the skip list, just after the head

sentinel node.

• The append(x) method adds a node at the end of the skip list, just before the tail sentinel

node.

All these operations are implemented to work in a lock free manner.

5.2.6 Proof of Concurrency

To prove the correctness of the algorithms of the operations presented above, let us demonstrate few

sample executions of the various operations and analyze each of the invocations and responses of

the operations in detail. It will be easier to reason about the execution of operations because of the

use of the powerful CASN operation in their implementation. Let us consider a scenario described

in figure 5.8.

Two threads A and B are trying to add items to the skip list simultaneously. To add an item, a

process will invoke CASN operation to update the next pointers of its predecessors to point to itself.

65

Figure 5.8: Two concurrent threads operating together simultaneously in skip list. Both threads are
trying to add an item in the skip list simultaneously.

This is done by installing the thread’s CASN descriptor in that location. In the scenario above, let us

assume both threads started simultaneously. Thread A and B will invoke add operation and create

new nodes and point its next references to its successors. There is no problem up to here. But, both

these operations are trying to work on the same memory locations i.e., at their predecessor’s next

fields (node 8 at level 1,2, 3 and head at level 4). But, we will be safe from these two simultaneous

additions because only one of them will be able to install its CASN descriptor at the predecessor’s

next fields. If thread A was able to install its descriptor, thread B will see that another thread

already has a reference to descriptor in that location and help it complete first. After thread A is

done adding item 9, it will terminate its operation with a success. Thread B will then start to place

its descriptor values in its predecessor’s next field (node 8). Thread B while executing CASN will

find that the its predecessor’s next reference is no longer pointing to the successor (set of preds[]

and currs[] returned by find() call for thread B) because a new node 9 has already been added and

node 8’s next references are pointing to 9. So, CASN for thread B will fail and will retry the add

operation by finding a new set of apparent predecessors and successors. So, both the simultaneous

operations are safe from intervention of each other. This is due to the powerful CASN operation we

are using which makes the operations atomic without using locks.

Now, let us consider another scenario where two threads are invoking a delete and an add oper-

ation exploiting same memory addresses as described in figure 5.9.

Two threads are operating concurrently. Thread A is trying to remove key 8 from the skip

list and thread B is trying to add an item 9 in the skip list. With the lock-free implementation

66

Figure 5.9: Two concurrent threads A and B operating together simultaneously. Thread A is trying
to delete an item from the list and thread B is trying to add an item at the same time.

using CASN primitive described above, this will not be a problem. Let us assume add(9) operation

started first. And just before updating the predecessors next reference to itself (8s next reference to

itself), a delete(8) operation is invoked. After thread A has installed all its descriptor pointers in

node 8s next references, deleting that node will fail because it requires updating the deleted nodes

next pointer to point to its predecessor. If delete operation finds descriptor pointers already in the

memory location it is trying to update, it will help the operation complete first (help thread B).

So, add will win in this situation. If the delete operation which began already and succeeded in

installing descriptors in its predecessor nodes will redo the installing because a new node has just

been added and the next reference of the deleted node has changed. Similarly, if delete(8) was able

to install its descriptor pointers first in all the memory locations to be updated, add(9) will find that

the node 8s references have changed to point backwards, i.e. the node is deleted and add operation

retries again. Hence, this simple example shows that in any case none of the operations invoked by

any number of processes will interfere with each other because all the operations use powerful CASN

primitive and so add, delete, prepend and append operation are all lock free operations.

67

Chapter 6

Conclusion and Future Work

In this report, we have discussed the implementation of various atomic primitives like CAS, DCAS

and CASN. We explored various alternatives for implementation of these atomic primitives and ex-

plored different ideas to implement a non-blocking CASN operation. CASN being the most powerful

atomic primitive can update a number of memory locations atomically. We presented simple ex-

amples to understand and implement the CASN atomic operation using traditional CAS operation

which are found many of the current multi-processor systems.

We proposed the non-blocking, lock-free implementation of various operations on linked list using

CASN and demonstrated the proof of correctness of the algorithms for various operationsconsider-

ing different scenarios and presenting various examples. The lock-free linked lists thus implemented

served as each levels of skip list. Using the implementation of linked list, various operations on skip

lists were implemented. In a skip list, to insert, delete, append and prepend a node, a number of

memory locations needs to be worked on to ensure the operation worked correctly. For a data struc-

ture like this, the powerful CASN operation fits best. The nature of CASN operation complements

the data structure like skip lists. We explored the various techniques to implement skip lists and

borrowed ideas to complete our design. We implemented our own operations and proposed various

algorithms.

The linked list and skip lists algorithms we presented are designed to be lock-free and work with

multiple concurrent processes. Because of the nature how CASN works, we were unable to make the

search operation wait-free, but it is non-blocking nonetheless. However, because most of the modern

multi-processor systems only support the traditional compare and swap operation, the implementa-

tion of CASN operation as a machine instruction in operating system is yet to be implemented.

68

The append and prepend operations have their unique significance. We are considering sorted

lists in our implementation. With a small modification, we can implement these operations to insert

items at the first and last positions of the list (not considering the key values). Prepending a node

ensures that an item is inserted only at the beginning of the list. Removing this node from the list

requires O(1) time. So, this behavior will provide us with a stack of Last In First Out (LIFO)nature.

Similarly, appending an item will serve as a queue with First In First Out (FIFO) behavior.

Skip lists are logarithmic with high probability and are designed for fast searching. However,

skip lists are not to be considered as a complete replacement of balanced trees. Skip lists require

more comparisons than binary search trees. Due to the extra comparisons, skip lists are not always

faster than binary search trees on average. Skip lists use multiple pointers and multiple copies of

the data for the same item. So it requires a lot more space than balanced search trees. But because

simpler data structures like linked lists and arrays are used to construct skip lists, they are easier to

implement, optimize and experiment with than their other tree based cousins.

There are various areas to broaden the work presented in this report. Using the position of nodes

in the skip list, a variety of useful operations can be implemented. Some of them could be search a

node by position, insert a node by position or delete a node by position of a node in the skip list

data structure. A very careful thought is necessary to implement operations like these. Because the

environment is concurrent and threads can work independently on disjoint memory locations [1],

determining the position might be hard task. Coarse grained locking might be one blocking solution

for this. Non-blocking techniques are to be determined.

The similar idea can be used to implement various other data structures. The CASN operation

used can offer very simple designs for complex structures like binary trees and other balanced tree

data structures.

Another area to extend this work will be to implement this algorithm in a programming language,

mathematically derive the proof of correctness of the algorithms proposed, perform experimental

estimations and compare the performance of this algorithm with other algorithms.

69

Bibliography

[1] A. Israeli and L. Rappoport, “Disjoint-Access-Parallel Implementations of Strong Shared Mem-

ory Primitives”. Proceedings of the 13th Annual ACM Symposium on Principles of Distributed

Computing, pp. 151-160, 1994.

[2] M. Herlihy and N. Shavit, “The Art of Multiprocessor Programming”. Morgan Kaufmann

Publishers Inc., 2008.

[3] M. Herlihy, “Wait-free synchronization”. ACM Transactions on Programming Languages and

Systems, vol. 13, no. 1, pp. 124-149, 1991.

[4] D. Dechev, P. Pirkelbauer, and B. Stroustrup, “Understanding and effectively preventing the

ABA problem in descriptor-based lock-free designs”. Proceedings of the 13th IEEE Symposium

on Object/Component/Service-Oriented Real-Time Distributed Computing, pp. 185-192, 2010.

[5] H. Sundell, “Wait-free multi-word compare-and-swap using greedy helping and grabbing”.

International Journal of Parallel Programming, vol. 39, no. 6, pp. 694-716, 2011.

[6] P. H. Ha and P. Tsigas, “Reactive multi-word synchronization for multiprocessors”. Journal

of Instruction-Level Parallelism, vol. 6, 2004.

[7] J. H. Anderson and M. Moir, “Universal Constructions for Multi-Object Operations”. Pro-

ceedings of the 14th Annual ACM Symposium on the Principles of Distributed Computing, pp.

184-193, 1995.

[8] T. Harris, K. Fraser, and I. Pratt, “A practical multi-word compare-and-swap operation”.

Proceedings of the 16th International Symposium on Distributed Computing, 2002.

[9] M. L. Scott, “Shared-Memory Synchronization”. Morgan & Claypool, 2013.

[10] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A simple optimistic skiplist algorithm”.

Proceedings of the 14th international conference on Structural information and communication

complexity, pp. 124-138, 2007.

[11] J. D. Valois, “Lock-free linked lists using compare-and-swap”. Proceedings of the 14th Annual

ACM Symposium on the Principles of Distributed Computing, pp. 214-222, 1995.

[12] T. Harris, “A pragmatic implementation of non-blocking linked-lists”. Proceedings of the

15th International Symposium on Distributed Computing, pp. 300-314, 2001. Available as

www.google.com/patents/US7117502.

[13] M. Herlihy, Y. Lev, and N. Shavit, “A lock-free concurrent skiplist with wait-free

search”. Unpublished Manuscript, Sun Microsystems Laboratories, 2007. Available as

www.google.com/patents/US7937378.

70

[14] K. Fraser and T. Harris, “Concurrent programming without locks”. ACM Transactions on

Computer Systems, vol. 25, no. 2, 2007.

[15] D. Deharbe, L. Fejoz, P. Fontaine, and S. Merz., “Verified Incremental Development of Lock-

Free Algorithms”.

[16] W. Pugh, “Concurrent Maintenance of Skip Lists”. University of Maryland at College Park,

1990.

[17] K. Fraser, “Practical lock freedom”. Ph.D. thesis, University of Cambridge, 2003.

[18] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A provably correct scalable concurrent skip

list”. Proceedings of the 10th International Conference On Principles Of Distributed Systems,

2006.

[19] Lea, D, ConcurrentSkipListMap. In java.util.concurrent.

[20] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees”. Communications of the

ACM, vol. 33, no. 6, pp. 668-676, 1990.

[21] W. Pugh, “A skip list cookbook”. University of Maryland at College Park, 1990.

[22] B. C. Dean and Z. H. Jones, “Exploring the duality between skip lists and binary search trees”.

Proceedings of the 45th annual ACM southeast regional conference, 2007.

[23] Wikipedia contributors, “Skip list”. Wikipedia, The Free Encyclopedia,

http://en.wikipedia.org/wiki/Skip list.

[24] Eternally Confuzzled, Retrieved from

http://eternallyconfuzzled.com/tuts/datastructures/jsw tut skip.aspx.

[25] P. E. McKenney, M. M. Michael, J. Triplett, and J. Walpole, “Why the grass may not be

greener on the other side: a comparison of locking vs. transactional memory”. Proceedings of

the 4th workshop on Programming languages and operating systems, pp. 1-5, 2007.

[26] M. Herlihy, “A methodology for implementing highly concurrent data objects”. ACM Trans-

actions on Programming Languages and Systems, vol. 15, no. 5, pp. 745-770, 1993.

[27] H. Sundell, “Efficient and Practical Non-Blocking Data Structures”. PhD thesis, Chalmers

University of Technology, 2004.

[28] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele Jr., “Lock-free reference counting”.

Proceedings of the 20th Annual ACM Symposium on Principles of Distributed Computing, pp.

190-199, 2001.

[29] M. Moir and N. Shavit, “Concurrent data structures”. Handbook of Data Structures and

Applications, D. Metha and S. Sahni, eds. Chapman and Hall/CRC Press, 2007.

[30] Eternally Confuzzled, Retrieved from

http://www.eternallyconfuzzled.com/tuts/datastructures/jsw tut bst1.aspx

[31] M.B. Greenwald, “Non-Blocking Synchronization and System Design”. Ph.D. thesis, Stanford

University, 1999.

71

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Anish Ratna Tuladhar

Degrees:

Bachelor of Computer Engineering 2009

Tribhuvan University

Kantipur Engineering College, Nepal

Thesis Title: Concurrent Non-blocking Skip List Using Multi-word Compare and Swap Operation

Thesis Examination Committee:

Chairperson, Dr. Ajoy K. Datta, Ph.D.

Committee Member, Dr. Lawrence L. Larmore, Ph.D.

Committee Member, Dr. John Minor, Ph.D.

Graduate Faculty Representative, Dr. Venkatesan Muthukumar, Ph.D.

72

	Concurrent Non-blocking Skip List Using Multi-word Compare and Swap Operation
	Repository Citation

	tmp.1443218406.pdf.XpXGi

