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ABSTRACT 

 

The medical community is transitioning from replacement to regeneration with 

the advent of tissue engineering; yet, it is not well understood how cells of the body can 

interact with the biologically active scaffolds used to guide tissue regeneration.  In order 

to design the ideal material for the regeneration of different tissues, we must first have a 

comprehensive understanding of the fundamental mechanisms that allow cells to not only 

attach to these bioscaffold materials, but to also take cues from them as to what tissue 

should be regenerated.  The Jain lab in Lehigh University’s Material Science and 

Engineering department developed a bioactive glass scaffold with a 70 mol% SiO2 -30 

mol% CaO composition, termed TAMP (Tailored Amorphous Multi Porous), for which 

many parameters of the material may be controlled independently including chemical 

composition, surface roughness, porosity and pore distribution, and surface area. The 

worked described here aimed to determine how characteristics of bioactive TAMP 

scaffolds influence cellular behavior (e.g. attachment, morphology, function, 

proliferation) and how proteins that absorb to the scaffold surface modify cellular 

response.  Not only did we find that cells attached to the surface and proliferated on and 

inside the TAMP scaffolds, but we also demonstrate that cells are able to sense and 

respond to topographical features of their substrate that are 1000 times smaller than the 

cells themselves.  This sensitivity is likely influenced by nano-structure imposed by 

either the natural glass surface or hydroxyapatite, which forms when glass is exposed to 

physiological solutions and in-turn influences the conformation of adsorbed proteins on 

the surface. Using immunofluorescence, qRT-PCR, immunological and enzymatic 

assays, potential applications for TAMP scaffolds were explored including for hard 

(bone) tissue, for which we determined that MC3T3-E1 pre-osteoblast cells differentiated 

and BMD pre-cursor cells matured into active osteoclasts.   Furthermore, soft tissue 

applications were explored including analyses of skin regeneration and polarization of 

uterine epithelium in culture.  The data described here support the potential utility of this 

novel scaffold material for tissue engineering applications. 
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Chapter 1: Introduction 

 

1.1 - The Problem  

Tissue engineering has become a major new frontier in medicine with the 

potential for regenerating tissue with the patient’s own cells, rather than replacing it from 

a donor, other part of the body, or foreign material [1]  Medicine has seen over the past 

few decades that replacing tissue can work, but not in all instances, and often not 

efficiently or permanently.  For example, bone tissue is often replaced with metals, like 

titanium or stainless steel, which are not bioactive meaning that cells of the body cannot 

interact with them.  Therefore, instead of incorporating the metal implant into the existing 

tissue structure, scar tissue forms around the foreign material.  This scar tissue may cause 

discomfort and over time can break free from the material, necessitating the removal and 

replacement of the original implant [2].  To circumvent this issue, metals are often 

textured or coated to allow cells to attach [3-5], but still the metals are not of the same 

mechanical properties as the tissue.  In addition to metallic implants, the medical 

community also replaces tissue with other tissue, which is called grafting.  Grafting has 

its drawbacks too with issues of donor compatibility and immunological rejection in the 

case of allografting (transplant from one person to another), along with extended surgery 

times and creation of a new defect with autografting (transplant from one location to 

another on the same person) [6, 7].  Tissue regeneration using a bioactive material offers 

an alternative to both of these techniques, while addressing each of their drawbacks 

directly. 

 

1.2 - A solution  

In the 1960’s, Larry Hench developed a novel material for tissue regeneration, 

which he called Bioglass®.  He began this pursuit after being intrigued by a Vietnam war 

veteran’s account of amputations that were necessary because of surgeons’ lack of 
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appropriate material in the field.  His innovative material was composed of 45%SiO2-

24.5%Na2O-24.5%CaO-6%P2O5 (mol%) [8].  When the 45S5 Bioglass® was placed into 

solution it quickly formed a layer of hydroxyapatite (Ca5(PO4)3OH), which is the main 

inorganic component of bone.  Additionally, analysis of 45S5 Bioglass
®
 implanted into 

the femur and tibias of rat, canine and monkeys showed that cells of the bone bonded to 

the glass, which suggested it was a bioactive material. 

  Since the advent of 45S5, there have been several versions of bioactive glasses 

developed. Hench’s 45S5 Bioglass® was produced using the melt-quench method which 

results in a dense bulk material that lacks pores.  Researchers have moved to using 

alternative strategies (reviewed in Jones et. al. 2015), including the sol-gel method 

(described below), for manufacturing bioactive glasses, which allow for greater flexibility 

in the structure and improved functionality of the glass. 

 

1.3 - Our solution 

 A scaffold material should provide the body’s native cells with cues to prompt 

regeneration of damaged tissue.  Therefore, the ideal material to do this would be 

bioactive, contain pores to allow for nutrient exchange, mimic the structure/morphology 

of the tissue to be regenerated, and be a temporary scaffold that resorbs into the body 

after the regeneration process. We have previously reported in Marquez et. al. 2009 about 

TAMP (Tailored Amorphous Multi-Porous) scaffolds, a material that could fulfill these 

requirements.  They are named as such because these scaffolds can be “Tailored,” 

meaning many of the parameters of the material may be controlled independently. These 

include chemical composition, surface roughness, porosity and pore distribution, and 

surface area [9-11].  Through this “Tailored” fabrication, scaffolds can be customized to 

the specific needs of a patient or tissue.  TAMP scaffolds are prepared through a novel 

sol-gel process (Figure 1) [10, 11] resulting in a glass and therefore “Amorphous” 

material.  Finally, the scaffolds are “Multi-Porous” in the sense that they have two or 

more types of pores, macropores which are important for allowing cells to enter into and 

colonize the scaffold, and nanopores which are critical for fluid exchange and large 
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surface area.  The chemical composition that we have chosen to work with is 70 mol% 

SiO2 -30 mol% CaO because of its simplicity, bioactivity, and potential osteoinductive 

properties [12, 10, 11, 8]. 

 

1.4 - Results 

 The material resulting from the sol-gel process is a dual-porous disc shaped 

TAMP scaffold with a diameter of app. 1.3 cm and a composition of 70 mol% SiO2 and 

30 mol% CaO [10, 11] (Figure 2A).  TAMP scaffolds featured interconnected macro-

pores ranging from app. 20-200µm measured by mercury porosimetry and imaged by 

SEM (Figure 2B), and interconnected nano-pores ranging from app. 2.5-20nm measured 

by BET nitrogen adsorption and imaged by SEM (Figure 2C).  From the BET analysis, 

we also learned that these scaffolds have a surface area of on average 90.2 ± 5.5m
2 

per 

gram (Figure 2D).  Additionally, when incubated in simulated body fluid (SBF) or cell 

culture medium, TAMP scaffolds become coated with a crystalline layer of 

hydroxyapatite which further contributes to the glass’ biocompatibility (Figure 2E) [10].  

Further, the glass slowly dissolved with a half-life dissolution rate of 15.4 days under 

quasi-dynamic conditions [13].  Taken together TAMP material fulfills all principle 

parameters desirable of an advanced bioactive tissue regeneration scaffold. 

 

 

1.5 – Materials and Methods 

 

1.5.1 – TAMP scaffold preparation  

70 mol% SiO2-30 mol% CaO TAMP scaffolds were produced using a modified sol-gel 

method previously described by Wang et al 2011 [12].  In brief, 1.4g polyethylene oxide 

(PEO) was dissolved in 20ml 0.05N acetic acid followed by addition of 9ml tetramethyl 

orthosilicate (TMOS) and 6.18g Ca(NO3)2-4H2O.  2.5% Hydrofluoric acid (HF) was 

added to catalyze the gelation process and the sol was pipetted into 24-well plates to gel.  

The gel was allowed to mature at 40°C for 24 hrs before 1N NH4OH was added for 
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solvent exchange (also at 40°C) over the next 3 days.  The samples were dried slowly 

over 3 days by increasing temperature from 24°C to 180°C in a controlled humidity 

environment, followed by sintering at 700°C.  Nanoporosity and surface area were 

confirmed using BJH (Barrett-Joyner-Halenda) and BET (Brunauer-Emmett-Teller) 

nitrogen adsorption (ASAP 2020; Micromimetics) by loading 0.6g of TAMP into the 

chamber of the BET which was evacuated and heated to 150°C to remove moisture 

before analysis [14].  Additionally, mercury porosimetry was performed by 

Micromerictics’ AutoPore IV 9500 to confirm the macropore size.  After sintering, the 

samples were sanded to produce a smooth surface and then autoclaved to ensure sterility 

for cell culture testing.  Before cells were seeded onto the TAMPs, the scaffolds were 

pre-incubated in phosphate buffered saline (PBS) for 3 days to allow for complete 

hydration and formation of hydroxyapatite.   

1.6 - Conclusion   

While the logic behind the design and preparation of the TAMP scaffolds has 

been explained above, the goals of my dissertation are to characterize cell-substrate 

interactions on a fundamental level by exploring how surface topology affects protein 

adsorption and cellular response.  This knowledge may then be utilized to design 

materials for regeneration of different tissues.  To achieve these goals, I characterized the 

scaffolds on a biological level, including: an in-depth characterization of cellular 

response on the mRNA and protein level (Chapter 2), I investigated how cells are able to 

sense and respond to the topology of the scaffold (Chapter 3), and I explored the utility of 

scaffolds for tissue regeneration and other tissue engineering purposes (Chapters 2 and 

4).  

 

1.7 - Figures 
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Figure 1: TAMP scaffolds produced using a novel sol-gel method 

This scheme outlines how the sol-gel process is used for fabrication of TAMP scaffolds. 

Precursors, TMOS and Ca(NO3)
2
,
 
are mixed together with PEO, the polymer that forms 

macropores.  HF is added to this sol to start the gelification process before pipetting the 

sol into a vessel that defines the glass shape.  The glass ages at 40°C before ammonium is 

added for the solvent exchange process.  Finally the glass is dried in a controlled 

humidity environment to prevent cracking and sintered to strengthen the structure.  
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Figure 2: TAMP scaffolds contain the necessary features for a tissue regenerative 

scaffold 

As the product of a novel sol-gel process, highly porous TAMP scaffolds are 1.3cm 

diameter opaque discs (A).  By SEM analysis, the highly porous structure of the TAMP 

scaffolds can be observed including macropores (B) and nanopores (C).  The macropores 

range in size from 20-200mm as measured by mercury porosimetry [10, 11] (B) while 

nanopores range from 2.5-20nm as measured by BET nitrogen adsorption (C).  Also 

measured by BET is surface area which is approximately 90.2 ±5.5m
2
/gram (E), and a 

layer of hydroxyapatite (HA) forms on the surface after incubation in physiological fluids 

such as simulated body fluid as observed by SEM [10] 
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Chapter 2- Characterization of osteoblast and osteoclast response to TAMP 

bioactive glass scaffolds 

(Kowal et. al. 2017 – in preparation) 

2.1 - Abstract  

Tissue regeneration is a significantly improved alternative to tissue replacement 

and requires porous bioscaffolds for the restoration of natural tissue rather than relying on 

bio-inactive, often metallic implants.  Recently, we have developed technology for 

fabricating novel, nano-macroporous bioactive ‘Tailored Amorphous Multi-Porous 

scaffolds’ (TAMPs) using a 70 mol% SiO2-30 mol% CaO model composition.  The 

TAMPs are fabricated by a modified sol-gel process, and have shown excellent 

biocompatibility via the rapid formation of hydroxyapatite in simulated body fluid as well 

as in early tests with bone forming cells.  Our results from imaging, gene expression, 

protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-

osteoblast cells adhere, proliferate, colonize, and differentiate on and inside the bioactive 

TAMP scaffolds.  Additionally, BMD precursor cells matured into active osteoclasts 

highlighting the exceptional qualities of this novel scaffold material for bone tissue 

regeneration. 
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2.2 - Introduction 

The word “scaffold” implies that the framework in future no longer will be 

needed to support the newly generated structure; however, most if not all traditional 

implant materials violate this definition as they remain in the body over time.  In contrast, 

bioactive glass ceramics have been shown to dissolve over time in biological fluids and 

when implanted, especially (1) when the material is highly porous allowing cells to 

colonize the scaffolds, and (2) when reactive surface area is increased and fluid exchange 

is enhanced by superimposed interconnected nanoporosity as is the case in our TAMP 

scaffolds [9-11].  Moreover, ions leaching from the dissolving bioactive glass have been 

reported to behave osteogenically, by stimulating the differentiation of osteoblast 

precursors into mature calcified matrix producing osteoblasts [15-17]. We have 

previously reported on the enhanced bioactivity of porous, sol-gel derived TAMP 

scaffolds [9-11], however a careful analysis of the biological performance of this material 

using advanced in vitro proliferation and differentiation assays has not been performed.   

In contrast to studies performed by others in which bioactive glass performance 

was judged by adding conditioned medium (medium exposed to glass) to cells [15-17], 

we seeded cells directly onto TAMP scaffolds.  Enzymatic, RNA, and protein analyses 

demonstrate that cells quickly and robustly attach to TAMP through the formation of 

focal adhesions and that MC3T3-E1 cells differentiate into mature bone producing 

osteoblasts.  Additionally, bone marrow derived (BMD) precursor cells were found to 

differentiate into active osteoclasts (bone degrading cells) supporting the extraordinary 

qualities of this novel bioactive material for bone tissue regeneration.   

 

 

2.3 - Results  

2.3.1 - Pre-osteoblast cells adhere to the surface of TAMP scaffolds 

TAMP scaffolds opaqueness due to porosity (Figure 2A) interferes with simple 

detection of cells growing on the scaffold surface by standard transmission light 
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microscopy.  Instead, scanning electron microscopic (SEM) analyses were preformed 

(Figure 3A).  In addition, to determine whether cells were forming stable cell adhesions 

when growing on the scaffolds, cells were fluorescently stained for actin (Alexa488-

labeled phalloidin, green), chromatin (cell nuclei, DAPI, blue), and vinculin (using anti-

vinculin specific and Alexa568-labeled secondary antibodies, red), a protein component 

of focal adhesion complexes responsible for forming cellular attachments to substrates 

(Figure 3B).  One hour post seeding MC3T3-E1 pre-osteoblasts onto the scaffolds, cells 

remained largely rounded, however had attached to the scaffold surface as indicated by 

the formation of numerous filopodial anchoring extensions (Figure 3A, 1 hour, depicted 

with white arrows).  Additionally, actin remained diffuse and located cortically as 

indicated by the brighter staining at the cell periphery as is typical for not yet well-

attached cells stained shortly after cell seeding (Figure 3B, top panel).  Vinculin was 

visible after 1 hour mainly as a soluble cytoplasmic pool as is typical for vinculin that is 

not bound to focal adhesions [18].  After 2 (Figure 3A, B, second row) and especially 

after 8 hours post seeding (Figure 3A, B, third row), cells were spreading acquiring their 

typical flat morphology including numerous lamellipodial extensions. Actin began to 

form distinct stress fibers as indicated by the filamentous staining pattern (Figure 3B, 

third row, yellow arrows).  After 3 days, a dense layer of cells, partially growing on top 

of each other featuring numerous filopodial and lamellipodial extensions were observed 

by SEM analyses (Figure 3A, bottom row), and pronounced focal adhesion complexes 

formed at the tip of robust actin stress fibers as is typical of cells growing on stiff 

substrates [19-21] (Figure 3B, bottom row, orange arrows) indicating that cells had 

established healthy attachments to the surface of the TAMP scaffold material.  Consistent 

with these data, cells could not easily be removed even after extended exposure to 

trypsin, a protease commonly used to release MC3T3-E1 and other cell types from tissue 

culture plates, suggesting that the cells attach robustly to TAMP scaffolds or that trypsin 

activity may in some way be blocked.  Average surface area per cell was quantitated for 

30-40 cells/time point using the outline function of Image J software package (Figure 3C) 

and showed that cells were indeed spreading over time.  Note the relatively large standard 
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deviations that are due to the 3D nature of the TAMP scaffolds that allows cells to grow 

in many different angles in relation to the image plane. 

 

2.3.2 - MC3T3-E1 cells colonize the inside of TAMP scaffolds.  

As analyses by SEM showed that: (1) cells covered the majority of the scaffold 

surface after 8 hours (Figure 4A, top panel) and 3 days post seeding (Figure 4A, bottom 

panel), (2) cells continued to proliferate to form a dense monolayer on the TAMP 

scaffold surface (Figure 5, days 10 and 21), and (3) cells were growing at the entrance of 

macro-pores (Figure 4A), we investigated whether MC3T3-E1 cells would also colonize 

the TAMP scaffold interior.  Cells were seeded onto the TAMP scaffolds and fixed 10 

days post seeding, then a center section was cut out, turned on its side and mounted 

(Figure 6).  SEM analyses of these cross-sections showed cells growing inside the TAMP 

scaffolds indicating that cells had migrated into the macro-pores and were also colonizing 

the inside (Figure 4B).  

 Next we wanted to determine the rate of cell proliferation on TAMP scaffolds.  

To do this, we needed to find a technique that allowed us to accurately determine the 

number of cells on and inside the scaffolds at progressive time points.  Imaging would 

not capture cells inside the scaffolds, and proteins from cell culture medium, e.g. bovine 

serum albumin (BSA, MW: 66kDa), an abundant serum component of fetal bovine 

serum, robustly absorbed to TAMP scaffolds (Figure 7, marked with arrow) and 

interfered with standard quantitative colorimetric protein assays such as Bradford and 

MTS.  We instead detected and quantified the levels of a constitutively expressed 

housekeeping protein, -adaptin (a component of the endocytic adaptor protein 2 (AP-2) 

[22] complex) by Western blot using -adaptin specific antibodies (Figure 4C). The large 

molecular weight of α-adaptin (MW: 112kDa) allowed for its accurate detection and 

quantification, as the detection and resolution of smaller, standardly used house-keeping 

proteins such as actin, tubulin, and GAPDH, which migrate faster on SDS-PAGE gels 

than BSA was impeded (Figure 7).  Based on these analyses, we found that MC3T3-E1 

cells proliferating on TAMP scaffolds entered the logarithmic growth phase of 
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proliferation by approximately day 2 and growth slowed to reach a plateau at 

approximately day 10 (Figure 4D).  Logarithmic growth resulted in a duplication time of 

app. 3 days under standard cell culture conditions, slower than proliferation on tissue 

culture plastic (app. 38 hours (ATCC)), with one possible explanation for this being that  

cells are differentiating (see below). 

 

2.3.3 - MC3T3-E1 cells differentiate into mature osteoblasts when grown on TAMP 

scaffolds : quantitative transcription analyses 

To assess whether MC3T3-E1 pre-osteoblasts differentiate into mature osteoblasts 

we quantitatively analyzed transcription of osteoblast differentiation-related genes 

(including genes related to (1) cell adhesion [orange], (2) extracellular matrix and 

remodeling [light blue], (3) proliferation [olive], (4) differentiation [grey], (5) collagen 

expression [off red], (6) bone specific transcription regulation [yellow], and (7) 

expression of osteoblast calcified matrix-specific proteins [purple]) by quantitative PCR 

analyses (qRT-PCR) using a commercially available 84-gene bone differentiation array 

(SA-Biosciences, Qiagen) supplemented by a few additional well-known bone cell 

marker proteins (osteocalcin, osteopontin, Figure 8A).  Genes that were not evaluated 

because they showed unrealistically high up-regulation profiles, did not obviously fall 

into one of the above described categories, their relation to bone-cell differentiation 

remains unclear, or their expression pattern remained unchanged are shown in white.    

RNA was isolated, quantified, and normalized on days 1, 7, 14, and 26 post 

seeding cells onto the scaffolds. We found that representative genes were either up 

(Figure 8A, labeled red) or down regulated (Figure 8A, labeled green), or that their 

expression remained unchanged (Figure 8A, grey).  The gene expression profiles of 

differentiating MC3T3-E1 cells has been well characterized [23-25] and the overall 

trends in gene expression observed here are consistent with MC3T3-E1 pre-osteoblast 

cells attaching to their substrate, proliferating, and differentiating into mature, calcified 

matrix secreting osteoblasts.  For example, the overall trend in gene expression for cell 

adhesion proteins (Figure 8B-1, black polynomial average line indicates functional group 
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trend) such as those encoding integrins (Itgam, Itga3, Itgb1, and Itga2b) was initially high 

post seeding and down regulated over time indicating that cells were expressing genes 

necessary to make initial attachments to the TAMP surface.  Additionally, secreted 

extracellular matrix and matrix remodeling proteins such as fibronectin (Fn1), biglycan 

(bgn), Serpin h1 peptidase inhibitor (Serpinh1), and matrix metalloproteases (Mmp9 & 

Mmp2) (Figure 8B-2) were up regulated at day 1.  In addition, several growth factors 

related to proliferation are more highly expressed on day 1 with down regulation 

overtime (Figure 8B-3) such as Tgfb1, Vegfa, Fgf2, Pdgfa, egf, vegfb; whereas other 

growth factors related to differentiation of MC3T3-E1 cells (Figure 8B-4) are expressed 

consistently, for example, Nfkb1, Fgf2, Tgfb3, Tgfbr2, Tgfbr3, Tfgb2, BMP1, BMP4 

suggesting that cells may stop proliferating to differentiate.  The two main transcription 

factors for bone cell differentiation are both up regulated early, with Sox9 elevated at day 

1 and RunX2 elevated at day 7 (Figure 8B-5). Collagens were upregulated both early and 

late (Figure 8B-6).  Finally, alkaline phosphatase (ALP), an enzyme that is up regulated 

during differentiation into mature osteoblasts was up regulated early on the mRNA level 

(Figure 8A).  Osteocalcin (OCN) and osteopontin (OPN), both late indicators of bone cell 

differentiation, were up regulated as expected at later time points (Figure 8B-7).  Taken 

together, these quantitative RNA expression analyses indicate that MC3T3-E1 cells 

express genes necessary for cellular adhesion, proliferation, and differentiation into 

mature osteoblasts when grown for 4 weeks on TAMP scaffolds. 

2.3.4 - MC3T3-E1 cells differentiate into mature osteoblasts when grown on TAMP 

scaffolds – protein level 

Alkaline phosphatase (ALP) expression and activity is a canonical indicator of 

osteoblast differentiation and is known to be up regulated during osteoblast 

differentiation [26, 27].  Increased expression of the ALP gene in MC3T3-E1 cells 

growing on TAMP scaffolds was observed and described above (Figure 9A, B).  

Consistent with these data, colorimetrically assessed enzymatic ALP activity increased 

almost three-fold from day 3 to day 21 (Figure 9A).  These data are also in agreement 

with the decreased proliferation rate of MC3T3-E1 cells grown for 3-4 weeks on TAMP 
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scaffolds (Figure 7C) as cell proliferation and differentiation are known to be cross-

correlated [28]. 

Mature osteoblasts are also known to express and secrete proteins such as 

osteocalcin (OCN) and osteopontin [OPN] that aid in the formation of secreted calcified 

bone-specific extracellular matrix.  To verify that the observed up regulation of mRNA 

expression for OCN and OPN was also detectable as an up regulation in protein 

expression, we used specific antibodies and immunofluorescence microscopic analyses to 

examine OCN and OPN protein expression of MC3T3-E1 cells growing on TAMP 

scaffolds over time (Figure 9B, C). OCN staining on day 3 presented as a diffuse 

perinuclear staining, whereas staining on day 10 resulted in both, diffuse perinuclear 

staining and some defined puncta localized in the cytoplasm and/or extracellular matrix 

that increased in number and size by days 16 and 32, while diffuse cellular staining 

diminished (Figure 9B, labeled with arrows ).  Since OCN is a late differentiation marker, 

its expression/staining pattern is consistent with the expected and previously observed 

late mRNA up regulation of this secreted protein. OPN is another late up regulated, bone-

specific matrix protein. Consistently, only diffuse OPN staining was observed on days 3, 

10, and 16 (Figure 9C), that either indicates early cytoplasmic expression similar to the 

expression profile observed for OPN, or unspecific background staining (Figure 10). In 

contrast, a prominent punctate OPN stain comparable to the late OCN stain was detected 

on day 32 (Figure 9C, labeled with arrows), suggesting a robust OPN expression of 

MC3T3-E1 cells growing on TAMP scaffolds at later time points. Taken together, these 

quantitative and qualitative marker protein expression analyses reiterate that MC3T3-E1 

cells appear to differentiate into mature osteoblasts when growing on TAMP scaffolds. 

 

2.3.5 - TAMP scaffolds support growth of a co-culture of osteoblasts and osteoclasts 

Since bone is a highly dynamic organ that is constantly remodeled by synthesis 

and degradation (via osteoblasts and osteoclasts, respectively) [29], we wanted to test 

whether TAMP scaffolds also support the growth of osteoclasts and whether co-culture of 

osteoblasts and osteoclasts would remodel TAMP scaffolds similarly to natural bone. 
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Osteoclasts feature a number of morphological characteristics including a very large cell 

size, multiple cell nuclei, relatively large vesicular inclusions, and a sealing zone 

composed of actin and vinculin.  Because osteoclasts mature via the fusion of several 

precursor cells and thus contain multiple cell nuclei, they no longer proliferate making it 

necessary to differentiate these cells from their precursors located in bone marrow.  Bone 

marrow was extracted from rat long bones and bone marrow derived (BMD) cells 

corresponding to ½ bone were mixed and grown together with 200,000 MC3T3-E1 cells.  

Co-cultures were maintained in complete α-MEM culture medium supplemented with 

macrophage colony stimulating factor (MCSF) to promote the survival and differentiation 

of the osteoclast precursor cells (reviewed in:[30-32]). MC3T3-E1 cells are known to 

enhance osteoclastogenesis [33, 34] through secretion of receptor activator of nuclear 

factor kappa-B ligand (RANKL), the main cytokine that regulates osteoclast 

differentiation and activation [30-32]. After 10 days of co-culture on microscopic cover 

slips, mature osteoclasts were clearly recognizable based on the above described 

morphological features by both Differential Interference Contrast (DIC) as well as 

fluorescent images (after staining nuclear chromatin and actin) (Figure 11A).  

Remarkably, co-culturing these cells for 10 days on TAMP scaffolds resulted in the 

formation of a complex bone-like tissue structure that consisted of a dense network of 

MC3T3-E1 osteoblasts recognizable by their small size, and interspersed osteoclasts 

recognizable by their large size, multiple cell nuclei, and their typical actin-based sealing 

zones (Figure 11B, labeled with OC and outlined with dashed lines).  Single channel 

black and white images of actin (Figure 11B, top) and DAPI (cell nuclei, Figure 11B, 

bottom) further supported these distinctive osteoclast features (depicted with arrows).  

Quantitative analyses revealed a ratio of 179+/-53 osteoblasts per osteoclast, a ratio 

similar to the ratio of these two cell types in human iliac crest bone [35] (Figure 11C). 

 To further support our conclusion that the large multi-nucleated cells indeed 

represented osteoclasts, we treated co-cultured TAMP scaffolds with Cellstripper 

(Corning), a proprietary mixture of chelators that gradually removes cells according to 

their size/adhesion strength, followed by staining remaining cells for actin, vinculin and 

chromatin (Figure 11C).  Osteoblasts/osteoclasts co-cultured in control on cover glasses 
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were analyzed in parallel. As expected, treating TAMP scaffolds with Cellstripper 

removed the small-sized/less adherent osteoblasts, while large-sized/strongly adherent 

osteoclasts remained on the scaffolds.  Vinculin (red) and actin (green) robustly 

colocalized in the sealing zones resulting in yellow, the overlay color of red and green as 

typical for osteoclasts (Figure 11C, depicted with arrows).  

Finally, to test whether osteoclasts are active when grown on TAMP scaffolds, we 

stained osteoclasts with antibodies specific for tartrate resistant acid phosphatase 

(TRAP).  TRAP is an enzyme found in active osteoclasts that aids in the degradation of 

of the bone matrix by dephosphorylating bone matrix phosphoproteins such as 

osteopontin [36-38]. In immunofluorescence images, TRAP (green) was detected as a 

diffuse as well as punctate, perinuclear stain (Figure 11D).  A similar staining pattern was 

observed on coverslips with TRAP being present in addition at the sealing zone of cells 

(Figure 11D, panel i).  The positive TRAP staining of osteoclasts co-cultured on TAMP 

scaffolds correlated with the enzymatic detection of TRAP activity that was demonstrated 

using a colorimetric acid phosphatase kit (Sigma).  The assay utilizes the TRAP substrate 

Naphthol AS-BI, which on hydrolysis couples with fast garnet GBC to form an insoluble 

pink product.  The presence of tartrate in the staining solution renders all other acid 

phosphatases inactive making the stain specific to only TRAP positive cells [39-41].  A 

strong pink staining of the co-cultured TAMP scaffold was detected, clearly indicating 

robust  TRAP enzyme activity (Figure 12A, panel 1 and quantified in B). No pink 

product was detected on control scaffolds seeded with MC3T3-E1 cells only, or scaffolds 

not seeded with cells (Figure 12A, panels 2 and 3, B).  Samples were counter-stained 

with DAPI to verify the presence of cells on scaffolds i and ii. No cells were detected on 

scaffold iii (Figure 12A, inserts, top left).  Pink scaffold color intensity in 3 independent 

experiments was measured quantitatively comparing pixel intensities using ImageJ image 

analyses software.  Taken together these analyses convincingly demonstrated that TAMP 

scaffolds support the growth of robustly TRAP-producing osteoclasts suggesting the 

active remodeling of TAMP scaffolds under osteoblast/osteoclast co-culture conditions, 

similarly to the dynamic remodeling of normal bone occurring in situ. 
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2.4 - Discussion 

Tissue regeneration using bioactive materials has many advantages over replacing 

tissue with inert, non-biological materials.  45S5 Bioglass® has been found to provide 

such bioactivity [8]. and its application in e.g. bone regeneration is well established [42].  

However, Bioglass® is a solid material and allows cells to bond to its surface only.  Here, 

we demonstrate by performing a comprehensive biological characterization utilizing bone 

cells growing directly on the scaffolds, that next-generation TAMP ceramics due to their 

high rate of interconnected macro and nanoporosity overcome these limitations.  TAMP 

bioscaffolds exhibit superior qualities for e.g. bone regeneration that include cell bonding 

and penetration, cell differentiation, and scaffold remodeling by co-cultured osteoblasts 

and osteoclasts.  Osteoblasts are the main, calcified matrix-secreting cell type in bone. 

Comprehensive SEM and immunofluorescence analyses show that MC3T3-E1 pre-

osteoblast cells rapidly attach to TAMP scaffolds (within 1 hour) and quickly spread out 

on the surface and inside the TAMP scaffolds. The formation of distinct actin stress 

fibers and robust focal adhesions are indicative of cells forming stable attachments to this 

stiff substrate [21, 19]. Cell proliferation analyses based on a quantitative Western blot-

based assay revealed a cell-duplication time of approximately 3 days, somewhat slower 

than the 38 hours reported by ATCC for these cells.  As cell proliferation is known to be 

inversely coupled to cell differentiation [43, 25] a slower proliferation rate observed for 

MC3T3-E1 cells growing on/in TAMP scaffolds thus may support cell differentiation (as 

detailed below). Additionally, ions known to leach from TAMP and other sol-gel derived 

bioactive glass materials have been found to be osteoinductive and to induce osteoblast 

precursor cells to differentiate [44, 16, 15], potentially further contributing to the 

differentiation of pre-osteoblasts growing on TAMP scaffolds. 

As cell differentiation involves the specific up- and down-regulation of many 

different proteins, we performed quantitative mRNA-based RT-PCR analyses of MC3T3-

E1 cells growing for 1, 7, 14, and 26 days on TAMP scaffolds using an oligonucleotide 

array probing 84 different bone cell-specific proteins (SABioscience).  For example, we 

found that integrins and growth factors were up-regulated early supporting our previous 

findings that MC3T3-E1 cells attached to, and proliferated on the TAMP scaffolds. These 
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findings are consistent with an earlier study performed by Xynos et al., who reported that 

human osteoblasts treated with conditioned cell culture medium (medium exposed to 

bioactive glass for some time, consequently containing the ionic dissolution products of 

the glass material) exhibited up-regulation of proliferative factors and of other genes 

responsible for cell attachment [15].  Furthermore, we observed the up-regulation of 

distinct collagens, such as Collagen 1a1, indicating bone cell differentiation.  MC3T3-E1 

cell differentiation is further supported by the regulated expression of bone cell 

differentiation specific transcription factors. We found that Sox9 expression is high early, 

then drops as RunX2 expression increases. This is expected, since it is known that Sox9 

expression must decrease to allow for RunX2 expression to increase and differentiation to 

occur [45]. Expression of bone-specific secreted extracellular matrix proteins indicative 

of osteoblast differentiation (OPN and OCN) was up-regulated as well.  These data are 

corroborated by studies done by others [17, 16, 15, 46], although several experimental 

differences including the use of cell types, time points of analyses, glass compositions, 

and most importantly, the use of conditioned medium in all other studies compared to 

growing and analyzing cells directly on TAMP scaffolds.  

Differentiation of MC3T3-E1 pre-osteoblasts when growing on TAMP scaffolds 

was further supported when analyzing differentiation markers on protein level. ALP 

enzyme activity was observed to continuously increase over time with a steeper increase 

towards longer time points (days 17, 21), correlating with observed reduced proliferation 

rates at these later times.  Upregulation of ALP activity correlates with data reported by 

Christodoulou et. al., who observed from day 7 to 14  a 4- to  8-fold increase in ALP 

activity of fetal osteoblasts exposed to low or high concentrations of bioactive glass 

conditioned medium respectively [17].  OCN and OPN, proteins known to be secreted by 

mature osteoblasts into the extracellular calcified matrix [47-49], were detected by 

immunofluorescence staining as well. OCN was first detected as diffuse and perinuclear 

punctate labeling that later matured into larger, more distantly located puncta. These 

results are consistent with Filova et al. who observed a punctate perinuclear stain of OCN 

in differentiating MG63 cells grown on hydroxyapatite [50]. Interestingly, punctate OPN 

was detected only at later time points (day 32) consistent with reports by Przybylowki et 
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al., Ruckh et al., and Tsutsumi et al. [51-53], who also detected osteopontin at late time 

points as a punctate golgi-like stain.  Taken together, our analyses strongly suggest 

MC3T3-E1 pre-osteoblastic cells differentiate into mature bone-producing osteoblasts 

when cultivated on TAMP scaffolds. 

Bone, however not only consists of osteoblasts but also of several distinct other 

cell types that interact to maintain strong and healthy bone, as well as a sufficient amount 

of calcium in the blood [54]. Indeed, bone is remodeled continually, it is built by 

osteoblasts and degraded by osteoclasts (reviewed in [55, 56, 30, 57].  Osteoclasts 

generally have 3-20 cell nuclei [58], indicating that e,g, 12 precursor cells may fuse to 

form a single osteoclast [59].  Typically these cells are very large, ranging from 100 – 

200 µm in diameter (but may be much larger in vitro) and characteristically form a 

sealing zone of actin and vinculin around the periphery of the cell [55, 56, 30, 32, 60].  

This sealing zone provides a contained, low pH environment necessary for the activity of 

secreted enzymes that degrade the bone matrix.  Osteoclasts are clearly distinguishable 

from other cells based on these unique morphological features.   

To mimic the natural in situ environment, we co-cultured MC3T3-E1 pre-

osteoblasts together with bone marrow derived (BMD) hematopoietic stem cells that we 

isolated and differentiated in vitro resulting in a ratio of 179+/-53, similar to ratios 

reported in humans [35]. Osteoclast identity was confirmed via their typical 

morphological features that were apparent in white-light microscopic images as well as 

by immunofluorescent labeling (actin, vinculin, and cell nuclei). Remarkably, the co-

cultured osteoblastic and osteoclastic cells formed a complex tissue-like structure when 

cultured on TAMP scaffolds. . In order to degrade calcified bone structure, osteoclasts 

produce specific enzymes, e.g. tartrate resistant acid phosphatase (TRAP), that are 

secreted into the resorption lacunae, a compartment formed basally between the bone 

surface, sealing zone, and ruffled boarder (a specialized invaginated membrane that 

resembles late endosomal membrane that serves to secrete substances required for 

degradation and resorption of the bone matrix) [55, 61]. Once proteins have been 

degraded, they are resorbed into the osteoclasts and follow a transcytotic pathway until 

they are secreted into the extracellular space at the apical side of the cell.  TRAP has been 
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described to be secreted, but to also localize to these transcytotic vesicles to further 

degrade collagen before secretion to the extracellular space [62, 32].  Using 

immunofluorescence detection of TRAP, these vesicles were observed in osteoclasts co-

cultured on TAMP scaffolds.  TRAP biosynthesis and secretion indicates that the 

osteoclasts actively degraded TAMP scaffold matrix, while osteoblasts secreted bone 

matrix, suggesting active remodeling of the scaffold material.  Our findings are consistent 

with results by Yamada et al., Detsch et al., and Monchau et al. [63-65], who showed that 

osteoclasts degraded hydroxyapatite in vitro. TRAP biosynthesis and secretion indicates 

that the osteoclasts actively degraded TAMP scaffold matrix, while osteoblasts secreted 

bone matrix, suggesting active remodeling of the scaffold material. 

2.5 - Conclusion 

Here we show for the first time that MC3T3-E1 pre-osteoblasts attach, proliferate 

and differentiate into mature, calcified matrix secreting osteoblasts, and BMD cells 

differentiate into active, TRAP secreting osteoclasts when cultured on TAMP scaffolds, 

indicating that this bioactive glass material can mimic the dynamic remodeling activities 

that are required for successful bone growth and repair.  Our in vitro results are supported 

by results obtained in situ using subcutaneous rabbit skin and human mandible implant 

studies [66, 9].  As TAMP scaffold chemistry and porosity are easily “tailored”, 

modifications in the chemical composition promise that TAMP scaffolds will meet the 

many challenging specifics of various bone regeneration applications. 

2.6 – Materials and Methods 

 

2.6.1 – Osteoblasts culture on TAMP scaffolds 

MC3T3-E1 subclone 4 mouse pre-osteoblast cells (CRL-2593) were purchased 

from American Type Culture Collection (ATCC, Manassas,VA).  Cells were maintained 

using standard culture conditions at 37°C in a 5% CO2 atmosphere and 100% humidity 

in alpha-Modified Eagles Medium without ascorbic acid (α-MEM, Gibco/Invitrogen, 

Grand Island, NY, Cat. No. A10490-01) supplemented with 10% fetal bovine serum 
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(Atlanta Biologicals, Flowery Branch, GA Cat. No. S11150), 1% L-glutamine (HyClone, 

Logan, UT Cat. No. 25-005-C1) and 1% penicillin/streptomycin (Corning, Corning, NY 

Cat. No.30-001-Cl).  MC3T3-E1 cells were counted using a hemocytometer and seeded 

onto the TAMP glass disks placed into either 3.5cm diameter or 24-well polystyrene 

tissue culture plates (Genesee, San Diego, CA Cat. #25-107) at a density of 30,000 

cells/cm2.   

 

2.6.2 - Osteoclasts / osteoblasts co-culture on TAMP scaffolds 

Osteoclasts were derived from bone marrow collected from the long bones of SAS 

Sprague Dawley wild type rats.  Rats were anesthetized with isoflurane and euthanized in 

accordance with federal animal welfare guidelines and protocols reviewed and approved 

by the Lehigh Institutional Animal Care and use Committee (IACUC).  Long bones were 

isolated and both ends of the bones were cut off.  After transferring the bones to 1.5ml 

eppendorff tubes, they were centrifuged at 2000 rpm for 15 seconds to extract the marrow 

(modified from [67]).  Bone marrow derived (BMD) cells were seeded onto either glass 

coverslips or TAMP scaffolds with the addition of MC3T3-E1 cells.  Approximately 

400,000 MC3T3-E1 cells were seeded for every bones worth of BMD cells seeded.  The 

co-cultures were maintained in complete α-MEM as described above for osteoblasts with 

the addition of 50ng/ml Macrophage Colony Stimulating Factor (MCSF) (Prospec, Israel, 

Cat. # cyt-046) to promote survival of the osteoclast precursor cells.  In order to allow for 

better imaging of osteoclasts, most other cells from the co-culture were removed by 

incubation with Cellstripper® (Corning, Inc, Corning, NY, Cat. # 25-056-CI) using the 

following procedure.  Medium was removed and each sample was washed with PBS.  

Cell stripper was added to the dish and incubated for 10 min. at 37°C.  The Cellstripper® 

solution was pipetted aggressively over the sample to ensure the removal of unwanted 

cells was complete. The samples now containing only osteoclasts were fixed for 

visualization by immunofluorescence detection as described below.  The ratio of 

osteoblasts to osteoclasts was estimated by counting the number of nuclei not found in an 

osteoclast as determined by DAPI and Alexa488-phallodin staining. 
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2.6.3 - Scanning Electron Microscopy (SEM) detection 

Cells were fixed in 4% gluteraldehye at 4°C overnight followed by incubation in a 

series of ethanol dilutions (35%, 35%, 60% - 10 min each, 80%, 90%, 100% ethanol – 15 

min each). Finally samples were incubated for 10 min in hexamethyldisilazane (HMDS; 

Sigma, St. Louis, MI, cat. # 52619) to ensure the removal of moisture was complete [3].   

Samples were stored in a desiccator until analysis.  Just before examination by SEM, the 

samples were sputter coated with iridium using a turbo pumped sputter coater (Electron 

Microscopy Sciences – EMS575X) for 1min to prevent charging.  A Hitachi 4300 

FEGSEM was used to image samples using secondary electron collection mode and 

5.0kV accelerating voltage. 

 

2.6.4 - Determining cell proliferation on TAMP scaffolds 

MC3T3-E1 cells were seeded onto TAMP scaffolds as described above.  To 

quantitatively obtain accurate cell numbers, a constitutively expressed protein, α-adaptin 

(MW, 112kDa, mouse monoclonal, BD. Biosciences, San Jose, CA, Cat. # 610501) was 

analyzed by Western blot.  To collect the samples to be analyzed, the TAMP scaffolds 

were crushed in 4x sample buffer, boiled for 5 min, centrifuged to pellet the scaffold 

debris, and the supernatants were loaded onto a 10% SDS-PAGE gel.  Gels were 

electrophoresed at 120V for 90 min followed by transfer to nitrocellulose membranes for 

90 min at 120V on ice.  After transfer, the membranes were blocked in 5% fat free dry 

milk solution prepared in TBST (TBS with 1% Tween) for 1 hr at room temperature, 

rinsed briefly with TBS to remove excess blocking solution, and probed with primary 

antibody (1:2,000 dilution in 5% BSA solution) overnight at 4°C.  The membranes were 

incubated with HRP conjugated goat-anti-mouse secondary antibody (1:5,000 – Life 

Technologies, Eugene, OR. Cat. # G21040) at room temperature for 1 hr, and protein was 

detected using X-ray film and Enhanced Chemiluminescent (ECL) reagent.  

Densitometry was performed using ImageJ.  The number of cells per TAMP scaffold 
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(n=4) was calculated by generating a standard curve of α-adaptin using a Western blot 

sample with a known number of cells (1 million MC3T3-E1 cells). 

 

2.6.5 - Immunofluorescent staining of cells on TAMP scaffolds 

Cells were processed for analysis by fluorescence detection of nuclei by 

incubating in DAPI (Molecular Probes, Eugen, OR, Cat. # D1306), actin using Alexa488 

(or Alexa568)-phalloidin (Molecular Probes, Grand Island, Ny, Cat. # A-12379), and 

specific proteins by immuno-staining for vinculin (mouse monoclonal-Sigma, St. Louis, 

MO, Cat. # V9131), osteopontin (rabbit polyclonal – AnaSpec, Fremont, CA, Cat. # 

55455 ), osteocalcin (rabbit polyclonal – Abbiotec, San Diego, CA Cat. # 250483), and 

TRAP (goat polyclonal -Santa Cruz, Dallas, TX Cat. # sc-30833).  In brief, cells were 

fixed using 3.7% formaldehyde followed by permeabilization with 0.2% Triton X-100 for 

staining with the vinculin, osteocalcin, and TRAP antibodies. Alternatively cells were 

fixed and permeabilized using ice cold ethanol for osteopontin staining.  Cells were then 

blocked in 5% BSA/PBS at room temperature overnight.  The primary antibodies were 

diluted in blocking solution to 1:200 and incubated with cells at room temperature for 1 

hr.  Blocking solution containing DAPI (1µg/ml), Alexa488-phalloidin (1:100) and 

secondary antibody (1:200) Alexa568-conjugated goat-anti-mouse (Molecular 

Probes/Invitrogen, Grand Island, NY, Cat. # A11031) for vinculin, Alexa568-phalloidin 

(1:100) and secondary antibody (1:200) Alexa488-conjugated donkey-anti-goat 

(Molecular Probes/Invitrogen, Grand Island, NY, Cat. # A11055) for TRAP, and 

Alexa488-conjugated goat-anti-rabbit (Molecular Probes/Invitrogen, Grand Island, NY, 

Cat. # A11008) for osteopontin and osteocalcin was incubated with the cells at room 

temperature for 1 hr.  Samples were imaged by submersing the scaffolds in PBS on a 

glass bottom 3.5cm tissue culture plate with the side on which cells were seeded facing 

the glass bottom.  Imaging was performed using a Nikon Eclipse TE2000-E inverted 

fluorescence microscope equipped with 10x air, 20x air, 40x oil and a forced-air cooled 

Photometrics CoolSnap HQ CCD camera (Roper Scientific, Martinsried, Germany).  
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Images were captured using MetaVue (Molecular Devices, Sunnyvale, CA) software 

version 6.1r5. 

 

2.6.6 - qRT-PCR analysis of cells grown on TAMP scaffolds 

MC3T3-E1 cells were seeded onto TAMP scaffolds and grown for 1, 7, 16, and 

32 days before collection of RNA using either Arcturus® Picopure RNA isolation kit 

(Applied Biosystems, Carlsbad, CA Cat # Kit0204) or Qiagen RNeasy mini kit (Qiagen, 

Valencia, CA, Cat. # 74104).  cDNA was synthesized from these samples using 

SuperScript III First-strand synthesis (ThermoFisher, Carlsbad, CA, Cat # 18080-051).  

Analysis of these samples was performed using either Osteogeneisis PCR array 

(SABiosciences, Frederick, MD, Cat # PAMM-026Z) and RT
2
 Real-time SYBR green 

PCR master mix (SABiosciences, Frederick, MD, PA-012-12) on a model 7300 

Thermocycler (Applied Biosystems), or SYBRgreen-Rotorgene PCR kit (Qiagen, 

Valencia, CA, Cat. # 204074) and sets of custom-designed oligonucleotides (Integrated 

DNA Technologies, Coralville, IA ) that corresponded to the mRNAs encoding the 

relevant proteins on a Rotor-gene real-time PCR cycler. GAPDH was analyzed in parallel 

and used as expression reference. Fluorescence signal detection within 35 PCR cycles 

was considered significant.  mRNA level fold-change was normalized against GAPDH 

expression and compared to day 0. 

 

 

2.6.7 - Alkaline phosphatase (ALP) activity assay 

MC3T3-E1 cells were grown on TAMP scaffolds and samples were collected for ALP 

activity analysis on days 3, 7, 11, 14, and 21.  Samples were prepared by washing in TBS 

followed by incubation in 500µl lysis buffer (TBS, 0.5% SDS, and protease inhibitor 

cocktail (1:100), Sigma, Cat. # P8340) with agitation for 15 minutes on ice.  20µl of cell 

lysate was mixed with 20µl of 2x sample buffer and boiled for determination of cell 

number as described above.  ALP activity was quantitatively detected using a 
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colorimetric Quantichrom ALP detection kit (BioAssay Systems, Hayward, CA, Cat. # 

DALP-250).  Briefly, 50µl of cell lysate was incubated with 150 µl of ALP buffer 

(containing 10 mM p-nitrophenol phosphate (pNPP) and 5 mM MgAcetate) per reaction 

at room temperature for 1 hr.  The activity of ALP was determined by measuring the 

absorbance at 405nm using a Tecan Infinite M200 PRO plate reader spectrophotometer.  

ALP activity was normalized to cell number as determined by Western blot detection of 

α-adaptin (n=4). 

 

2.6.8 - TRAP staining of osteoclasts grown on TAMP scaffolds 

A co-culture of MC3T3-E1 and BMD cells were grown on TAMP scaffolds in 

parallel to TAMP scaffolds containing only MC3T3-E1 cells for 10 days as described 

above.  Next, the samples were fixed in 3.7% formaldehyde, stained with DAPI and 

imaged.  The same samples were then stained for TRAP activity using an Acid 

Phosphatase, Leukocyte (TRAP) Kit (Sigma, St. Loius, MO, Cat. # 387A-1KT).  In brief, 

scaffolds were incubated for 1 hr in staining solution, which contained tartrate to render 

all other phosphatases inactive and the substrate Naphthol AS-BI, which couples with 

fast garnet GBC on enzymatic hydrolysis to form a pink insoluble product. The samples 

were washed 3 times in dH2O following staining and imaged at 4x using a Nikon 

SMZ1500 dissection scope equipped with an HR plan Apo 1x WD 54 Nikon objective, a 

Nikon Digital DS-Fi2 camera using NIS Elements F4 32bit build 764.  The stain was 

quantified in ImageJ by analyzing the amount of red in each image of 5 images per 

condition (n=3) and normalized by subtracting background obtained on TAMP scaffolds 

stained without cells. 

 

2.6.9 - Statistical analyses 

Unpaired student t-tests were used to analyze statistical significance.  Data are 

presented as mean +/- SEM with a p-value < 0.05 to be considered significant. 
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2.7 – Figures  

 

Figure 3: MC3T3-E1 pre-osteoblasts adhere and colonize TAMP scaffold surface 
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MC3T3-E1 pre-osteoblast cells were observed attaching to TAMP scaffolds after 1 hour 

by SEM analysis (A, 500x and 2000x, blue box defines the region imaged at 2000x). 

Thin extensions that are likely probing the environment can be seen as early as 1 hour 

after seeding (A, 2000x, white arrows).  These cells can be seen progressively spreading 

out over the period of 2 and 8 hours (A, middle 2 sets of panels).  After 3 days on the 

scaffold, the cells appear fully spread and begin to form lamellipodial- and filopodial-like 

structures (A, bottom panels).  Immunofluorescence was performed for the corresponding 

time points (B) to visualize vinculin (red), actin (green), and chromatin (cell nuclei, blue).  

These images show that cells spread over time (1 hour to 2 hours) and begin to form 

definitive actin structures like stress fibers (8 hours, yellow arrows) and stable 

attachments like focal adhesions (3 days, orange arrows).  (C) Cell size increased over 

time as measured through ImageJ analyses of SEM images. Large standard deviations 

here result from the 3-dimensionality of the TAMP scaffold surface captured by SEM.  

Cells deep in pores appear smaller as a result of depth perception (compare 1hour SEM 

and fluorescent images). 
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Figure 4: MC3T3-E1 cells colonize the interior of TAMP scaffolds 

SEM analysis reveals that cells spread over the surface of the TAMP scaffolds by 8 hours 

(A, top panel) and form a monolayer of cells after 3 days (A, bottom panel) indicating 

that the cells are proliferating on the surface of the TAMP.  Additionally, cells can be 

observed in macropores suggesting that they are crawling into the scaffold (A, purple 
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insets highlight macropores).  Further analysis of the interior of a TAMP shows that cells 

are utilizing the macropores to enter into the scaffolds (B, red line indicates top of 

scaffold where cells were seeded, while green line indicates side that was on bottom of 

cell culture dish, orange boxes indicate magnified region in the image below).  Analyses 

of cellular proliferation on/in TAMP scaffolds were performed using an AP-2 Western 

blotting protocol (C, example blot) and revealed that cells initially proliferate slowly, 

reach a logarithmic phase, and eventually plateau in growth (D).  
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Figure 5: Cells continue to grow over extended periods of time on TAMP scaffolds 

MC3T3-E1 continue to form a monolayer on the surface of the TAMP scaffold over 10 

and 21 days 
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Figure 6: Section from TAMP scaffold for SEM analyses 

Cells were seeded on the top of the scaffold then fixed before a slice was cut from the 

center and mounted on its side for SEM analysis of the TAMP scaffold interior. 
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Figure 7: BSA adsorbs abundantly to TAMP scaffolds 

Coomasie stained gel demonstrating the amount of protein adsorbed to a TAMP scaffold 

from the cell culture medium.  A large band near 60kDa in all lanes corresponds to the 

band for BSA indicating that the scaffold adsorbs large amounts of BSA from the 

medium. 
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34 

 

 
Figure 8 : MC3T3-E1 cells differentiate into mature bone producing osteoblasts on 

the mRNA level 

A microarray from SA biosciences / Qiagen was used to analyze expression of bone cell 

differentiation related genes (A).  Highlighted genes were grouped into categories based 

on their function and summarized by trendlines in the graphs of (B). Early up-regulation 

occurs for genes related to cell attachment (1), extracellular matrix and remodeling 

proteins (2), and proliferative growth factors (3), followed by expression of 

differentiation growth factors (4). Importantly, expression of known bone cell 

differentiation transcription factor, Sox9, is high early and is down-regulated as RunX2 is 
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up-regulated (5).  Additionally, extracellular matrix components of bone, primarily 

collagens (6) and osteoblast specific extracellular matrix protein genes (7) were found to 

be expressed at late time points as anticipated. 
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Figure 9: MC3T3-E1 cells produce osteoblast specific proteins 

Alkaline phosphatase enzyme activity was analyzed colorimetrically and indicated that 

MC3T3-E1 cells were differentiating on the TAMP scaffolds (A). Immunofluorescence 

analyses for osteocalcin (B) and osteopontin (C) indicate that MC3T3-E1 cells grown on 

pelleted TAMP scaffolds differentiate into mature bone secreting osteoblasts.  

Osteocalcin appears as a punctate nuclear stain during early time points (B, OCN in green 

and nuclei in blue, days 3 and 10) and becomes a punctate cytoplasmic / extracellular 

matrix protein stain by days 10, 16, and 32 (arrows).   Additionally, osteopontin staining 

is not evident until day 32 (C, OPN in green and nuclei in blue).  Positive staining for 

these late stage protein markers at day 32 suggests that the cells are differentiating into 

mature osteoblasts.  
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Figure 10: TAMP scaffolds auto-fluoresce or reflect light 



 

39 

 

Cells fixed on a TAMP scaffold were subjected to the same protocol as was performed 

for immunofluorescence staining except that primary antibody incubation was performed 

in blocking solution only (no antibody).  The robust green in the image is likely from the 

auto-fluorescence or reflectance from the glassy material.  

 



 

40 

 

 

Figure 11: TAMP scaffolds support growth of osteoblast / osteoclast co-culture 

Osteoclasts derived from bone marrow cultured with MC3T3-E1 cells on a coverslip are 

large cells with actin bands at the periphery of the cell and clusters of nuclei (A, phase (i); 
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fluorescence (ii): actin in green, chromatin (cell nuclei) in blue; merge (iii)). Co-cultured 

cells on TAMP scaffolds form a complex tissue-like structure (B, actin in green and 

nuclei in blue, osteoclasts are outlined with a dashed line and labeled with “OC”).  The 

black and white single channel image of actin makes the actin bands easier to identify 

(marked with arrow), and the single channel nuclear image shows large empty spaces 

near clusters of nuclei (marked with arrow) suggesting that these large multinucleated 

cells are osteoclasts.  Osteoblasts and osteoclasts were counted and found to be present in 

the co-culture in a ratio of 179 ±53:1 respectively (C).  Co-culture cells were seeded onto 

coverslips (Ai, Bi) and scaffolds (Aii & Aiii, Bii & Biii), and incubated in Cellstripper to 

remove most other cells.  This allowed for detection of sealing zones distinguished by the 

actin (green) and vinculin (red) bands (D), and tartrate resistant acid phosphatase 

(TRAP), an enzyme specific to osteoclasts (E, TRAP in green, actin in red, nuclei in 

blue). TRAP staining shown as single channel black and white images to more easily 

identify the punctate vesicular stain.  
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Figure 12: Osteoclasts are active on TAMP scaffolds 

Osteoblast/osteoclast co-culture and MC3T3-E1 cells alone were grown on TAMP 

scaffolds for 10 days followed by staining for TRAP activity.  The pink stain on the co-

culture sample (Ai) indicates there are active osteoclasts present on the scaffolds versus 

the lack of pink stain observed on the scaffold with only MC3T3-E1 cells (Aii).  The 

same scaffolds were stained by DAPI to show that cells were present on both samples (A 

insets, nuclei in blue).  Blank scaffolds without cells were also stained and imaged to 

normalize the background staining (Aiii). ImageJ analysis of co-culture compared to 

MC3T3-E1 cells indicated that the co-culture was statistically more pink than the 

MC3T3-E1 cells confirming the presence of active osteoclasts on the TAMP scaffold (C). 
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Chapter 3 - How cells sense their non-biological extracellular environment: The role 

of surface nano-structure 

 

3.1 - Abstract  

Here we present evidence of the ability of MC3T3-E1 pre-osteoblasts to detect 

differences in nano-structure on two different substrates.  The first substrate is a bioactive 

glass with a simple composition of 30 mol%CaO – 70 mol%SiO2 and contains both nano- 

and macropores.  The only variable between samples of this type of substrate is the 

nanopore size (3.7 nm vs. 17.7 nm), which is measured using BET (nitrogen adsorption 

analysis), while total surface area is kept constant.  The second substrate, a bioactive 

glass with a more complex composition of 24.4 mol%Na2O–26.9 mol%CaO–2.6 

mol%P2O5–46.1 mol%SiO2 called 45S5 Bioglass® [8], varies in the nano-structure due 

to phase separation, resulting in either a spinodal interconnected morphology or a droplet 

nucleation morphology as determined by SEM analysis ([68]).  Cellular response to 

either substrate was measured to quantify the initial adhesion to the surfaces using 

immunofluorescence analyses.  On the glass samples varying in nanopore size, we 

observed that cells preferred the smaller nanopores (Wang, Kowal et al., 2013; Tissue 

Engineering, PartA).  Additionally, a clear preference was observed using the glass that 

differed in nano-structure in that more adherence was observed on the spinodal 

interconnected morphology than the droplet nucleation morphology.   

In the case of both substrates, cells showed a significant preference to one of the 

nano-structures, indicating that remarkably, cells are able to sense morphological details 

of the substrates that are app. 1000 times smaller than the cells themselves.  Research 

performed here aimed to uncover the underlying principles that allow cells to respond to 

such nano-scaled substrate details, allowing for the innovative design of tissue 

regenerative materials. 
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3.2 – Contribution  

 

Nanoporosity significantly enhances the biological performance of engineered glass 

tissue scaffolds  

(Wang, Kowal et. al. 2013) 

My contribution to the Wang, Kowal el. al. 2013 paper was assisting with 

performing the experiments that resulted in Figure 13.  From these data, we learned that 

cells were able to detect and respond to the difference in size of nanopores, suggesting 

that cells can in some way recognize topographical differences that are smaller than the 

cells themselves.   

 

  

Role of phase separation on the biological performance of 45S5 Bioglass® 

(Kowal
ψ
, Golovchak

ψ
 et. al.  - in review) 

Ψ
 both authors contributed equally 

My contribution to the Kowal, Golovchak, et. al. manuscript (in review) includes 

data acquisition and analysis for figures 15, 16, 17, 18, and 19.  From Figure 15, it was 

realized that more MC3T3-E1 pre-osteoblast cells had attached to the spinodal glass than 

to the droplet glass.  In agreement with this result, cells were more spread out with more 

actin stress fibers and focal adhesions on the spinodal glass (Figure 16).  We learned that 

both of the glass structures investigated behave in the same way when exposed to 

biological fluids with respect to calcium and phosphate dissolution and pH (Figure 17).  

In addition a layer of hydroxyapatite (HA) forms on the surface of both glasses after 

exposure to physiological solutions.  The HA is similar in appearance by SEM analyses 

(Figure 18) at high magnification especially after exposure to PBS followed by medium.  

The HA has plate-like lamellae crystals forming; however, the packing or density of these 

crystals is slightly different between the spinodal and droplet glasses.  Figure 19 in 

conjunction with data from Table 1 allowed us to determine that the BSA layer is likely 

to be thin since it is undetectable by SEM analyses on either glass type.  Roman 

Golovchak performed and analyzed XPS and Raman experiments (Table 1, Figures 20 
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and 21) which demonstrated that protein adsorbed to the glass surface in different 

amounts and with different conformations.  These results allowed us to conclude that the 

glass structure is influential in how proteins adsorb to the glass surface and in turn affects 

how cells respond to the glass, suggesting that it is critical to understand the mechanism 

behind cell-substrate interaction for the innovative design of bioscaffolds.   

 

 

3.3 - Introduction 

The importance of nanotopography on the ability of cells to attach to biomaterials 

is now well established [69, 70], and also has been demonstrated recently for bioactive 

glasses [9].  Shaojie Wang from Dr. Jain’s lab developed ways to control the nanopore 

size of TAMP scaffolds while maintaining similar surface area between the samples.  

This was achieved by either sintering the glass to decrease the nanopore size or by 

incubating the glass in ammonium during the aging process to enlarge the nanopores.  

The pore size and surface area were both measured by BET, with samples resulting in an 

average nanopore size of 17.7nm and surface area of 81±2m
2
/gram, and samples resulting 

in 3.7nm average nanopore size and 83±2m
2
/gram surface area.  Remarkably, these 

studies showed that cells are able to ‘sense’ the nanostructure of the substrate at a scale 

that is approximately 1000 times smaller than the cells themselves (as described below) 

and in the size-range of individual integrin cell-adhesion receptors (11-19 nm depending 

on the state of activity) [71-73].  

It was later reported that even traditional 45S5 Bioglass® can be prepared with 

different morphologies related to phase separation, as determined by the melt quenching 

during glass fabrication procedure [68]. However, influence of the type of phase 

separation on the bioactivity of these materials has not been investigated. We investigated 

the influence of phase separated microstructure of these differently melt-quenched 45S5 

Bioglass® varieties on their ability to adsorb proteins and adhere cells, in a first attempt 

toward establishing the role of different morphologies of Bioglass® at the micro- and 

nanometer scale on cell response. To understand the difference in the response of cells, 
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we have focused on the growth of hydroxyapatite (HA) layer and adsorption of proteins, 

since these processes influence the surface that is exposed to cells during attachment. In 

the past, the HA layer has been credited for the superior bioactive properties of 45S5 

Bioglass® [74], however there is little published information about what role, if any, 

adsorbed proteins abundantly present in biological solutions may play toward cell 

attachment. Since adhered cells remain in contact with culture medium, potential changes 

in its chemistry have been monitored as well.  

3.4– Results 

3.4.1.a – Cellular response to TAMP with different pore sizes  

MC3T3-E1 cells were seeded onto samples with nanopore sizes of 17.7nm and 

3.7nm, yet the samples had similar surface areas.  Cells were allowed to adhere and grow 

on the scaffolds for 12 and 48 hours before being fixed and analyzed for cell morphology 

and density.  Cells on both samples were similar in morphology with a fibroblast-like 

appearance (Figure 13A); however, after 12 hours there was a difference in density with a 

preference of the cells to samples which had a smaller nanopore size (Figure 13A 

compare a to b, and quantitatively measured in B).  In addition, after 48 hours, the 

preference for the smaller nanopores was no longer observed (Figure 13A compare c to d, 

and quantitatively measured in B).  These data suggest that nanopore size may be critical 

for initial attachment of cells to their substrate.  A more in-depth characterization of the 

mechanism behind these results is described below using Hench’s traditional 45S5 

Bioglass®. 

 

3.4.1.b - Biolass® morphologies 

By casting traditional 45S5 Bioglass® from different equilibration temperatures 

(≥1380 ˚C compared to ≤1370 ˚C), we produced Bioglass® samples with two types of 

phase separated morphologies: (i) spinodal type when the melt was quenched from 

temperature ≥1380 ˚C (Figure 16A), and (ii) droplet type when quenched from 

temperatures <1380 ˚C (Figure 1B) (21). The scale of droplet type phase separation in the 
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glass is on a submicron scale, whereas the scale of spinodal phase separation was found 

to be much smaller (Figure 14) [68]. 

In order to evaluate their chemical characteristics, the surfaces of the two 

Bioglass® varieties were analyzed by XPS in their pristine and polished states. Analyses 

described earlier [68] demonstrated that the overall chemical composition of both pristine 

glass varieties were nearly identical. In addition, their compositions were very similar to 

the calculated theoretical composition (Table 1). Both findings confirm their chemical 

identity as 45S5 Bioglass®. After polishing, a slight difference in the surface 

concentration of sodium and silicon was detected between the two sample types (Si: 

13.9±1.7% in spinodal, and 18.6±1.9% in droplet; Na: 20.6±1.8% in spinodal, and 

15.5±1.8% in droplet, Table 1). This difference may be due to Na
+
 leaching out more 

efficiently from the droplet than the spinodal-type phase separated glass samples; or a 

more pronounced Na
+
 ion migration during polishing towards the surface in spinodal 

samples [75]. However, these changes were observed in a thin surface layer after 

polishing only. The underneath bulk composition was found to be comparable for both 

droplet and spinodal-type phase separated glass samples, and close to the theoretical 

value of 45S5 Bioglass® [68]. 

 

3.4.2 - Attachment and morphology of cells seeded on Bioglass® varieties 

MC3T3-E1 pre-osteoblast cells, frequently used in studies investigating the osteo-

inductive properties of bioactive glasses [76, 24], were seeded onto the surface of 

spinodal and droplet type Bioglass® samples. Attached cells were fixed after 2 and 24 

hours and processed for the detection of cell nuclei using fluorescent chromatin (DAPI, 

blue) staining (Figure 15A). Cell nuclei were counted to determine the number of cells 

that had attached to the surface of the glasses. After merely 2 hours, based on the number 

of attached cells a clear preference of the cells for the glass samples with spinodal 

morphology compared to the droplet morphology (n = 5) was observed. On average more 

than double the number of cells (spinodal: 203±4.4 cells vs droplet: 80.8±6.5 cells) 

attached to the surface of spinodal phase-separated glass samples compared to droplet 
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type phase-separated glass samples (Figure 15B). A similar result was observed after 24 

hours  (spinodal: 213±13.2 cells vs droplet : 84±7.5 cells, n = 4), with more than 2 times 

the number of cells attached to the spinodal glass than the droplet glass (Figure 15A, B). 

Together, these results indicate that MC3T3-E1 cells attached more efficiently to 

spinodal than to droplet type phase-separated Bioglass® samples. 

To determine whether the preference of cells for spinodal glass was also 

supported by morphological features that typically are associated with cell attachment, 

after 2 hours of exposure we stained the actin cytoskeleton and focal adhesions in cells on 

both glass varieties. Cellular actin organization was detected by decorating actin with 

Alexa488-labelled phalloidin (green). The presence, number and robustness of assembled 

focal adhesions were assessed by fluorescence labeling using an antibody targeting 

vinculin (red), a protein localizing to focal cell adhesion complexes. We observed that 

cells growing on the spinodally phase separated Bioglass® samples assembled robust 

actin stress fibers that preferentially ended in pronounced focal adhesions as is typical of 

cells growing on stiff substrates. By comparison, cells growing on droplet type phase-

separated glass samples assembled an array of much thinner, disoriented actin fibers and 

only a few, not well-developed vinculin-based focal adhesions (Figure 16A, images in 

column 1). This significant difference in morphological organization was further 

exemplified when monochromatic images representing the actin and vinculin channels 

were black/white inverted and thresholded to enhance the appearance of stress fibers and 

of focal adhesion complexes (Figure 16A, images in columns 2 and 3).  

To quantify actin and vinculin signal strength, fluorescence intensity of both was 

measured inside defined squares that were placed in comparable peripheral cytoplasm 

regions of cells (green and red example squares shown in Figure 16A). Quantitative 

analyses (Figure 16B) showed that cells growing on spinodal glass, on average assembled 

65% more stress fibers than cells growing on the droplet glass as indicated by increased 

peripheral actin fluorescence intensity (Figure 16B, a). In addition, we detected 38% 

more focal adhesion-localized vinculin in cells growing on spinodal samples, indicating 

that cells growing on spinodal type glass attached more readily to their substrate (Figure 

16B, b). Lastly, we observed that the cells growing on spinodal type samples on average 
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occupied approximately 84% more surface/cell area compared to cells that attached to 

droplet type glass (Figure 16B, c), indicating that they spread out much faster.  Together, 

these data demonstrate that the cells were able to recognize, differentiate and react to the 

underlying glass surface.  

 

3.4.3 - Chemical behavior of Bioglass® varieties exposed to biological solutions 

To better understand cell behavior in respect to Bioglass® substrate we next 

investigated Bioglass® performance upon exposure to biological solutions. As ions 

dissolving from Bioglass® may influence the formation of HA by increasing the local 

concentration of calcium and phosphate ions in solution [77, 78], or by changing the pH 

of the solution [15, 79, 80], and this may influence cellular activity [79, 80], we analyzed 

the concentration of calcium (Ca
2+

) and phosphate (PO4
-3

) ions and the pH in the 

solutions before and after exposure to the differently phase separated Bioglass® samples. 

We chose to use PBS (phosphate buffered saline) and cell culture medium for these 

analyses, as both are physiological solutions that are used routinely when culturing cells 

as opposed to simulated body fluid (SBF) which is not appropriately formulated for the 

culture of mammalian cells [80].  

As expected, since PBS does not contain Ca
2+

 ions, no calcium was detected in 

PBS solution before exposure to glass samples, and only a small amount of Ca
2+

 was 

detected in the PBS solution after incubation with either glass type (Figure 17A), 

suggesting some leaching and/or dissolution of the samples. However, no significant 

difference in Ca
2+

 concentration was observed between spinodal and droplet type glasses 

(0.90±0.27 and 1.30±0.07 mg/dL respectively, n=4). In contrast, the concentration of 

Ca
2+

 in cell culture medium decreased somewhat over time with exposure to both glass 

types (from 7.78±0.90 mg/dL for medium without glass exposure to 5.75±0.94 mg/dL for 

spinodal glass and 6.13±0.64 mg/dL for droplet glass after 24 hours), suggesting 

deposition of Ca
2+

 on the glass surfaces eventually leading to HA formation. However, 

again no significant difference for Ca
2+

 was found for the two Bioglass® varieties (2 hr 
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spinodal/droplet: 7.25±0.47/7.19±1.24; 24 hr spinodal/droplet: 5.75±0.94/6.13±0.69; 

Figure 17A).  

A similar result was obtained for PO4
3-

 (Figure 17B), with an overall decrease of 

PO4
3-

 in solution over time, but no significant difference in the concentration of PO4
3-

 

between spinodal and droplet samples at any time point.  The concentration of PO4
3-

 in 

PBS solution decreased from 37.8±0.2 mg/dL (n=4) before glass exposure to 35.8±2.8 

mg/dL for spinodal glass and 35.0±2.6 mg/dL for droplet glass.  Additionally, the 

concentration of PO4
3-

 in culture medium decreased from 9.7±2.3 mg/dL (before 

exposure) to 9.1±0.8 and 9.1±0.7 mg/dL after 2 hours and 6.3±0.6 and 6.2±0.8 mg/dL 

after 24 hours for spinodal and droplet glasses, respectively (Figure 17B), again 

correlating with the formation of HA on the glass sample surfaces.   

A comparable result was also obtained when pH of Bioglass®-exposed biological 

solutions was determined. On average, the pH of PBS solution before exposure to glass 

was 7.72±0.05 and increased to 8.62±0.02 (spinodal) and 8.59±0.02 (droplet) after a 3-

day incubation period. The pH of cell culture medium before exposure to glass was very 

similar to the pH of PBS (7.48±0.02, n=4) (Figure 17C), however in contrast to PBS 

remained almost unchanged during Bioglass® exposure. After 2-hour the pH measured 

7.48±0.03 for spinodal and 7.44±0.08 for droplet glass exposed medium samples. After 

24 hours, the pH dropped slightly to 7.45±0.03 for spinodal, and 7.39±0.02 for droplet 

glass exposed medium samples (Figure 17C).  Together these data indicate that droplet 

and spinodal type Bioglass® varieties exhibit very similar dissolution characteristics in 

biological fluids. 

 

3.4.4 - Formation of hydroxyapatite on Bioglass® varieties 

Generally, good biological performance of bioactive glasses is attributed to the 

formation of a layer of hydroxyapatite (HA) on its surface, which is credited with 

providing the material with bioactivity [74]. As can be inferred from the comparison of 

the samples’ surface composition obtained through XPS analysis and theoretical 

composition of HA (Table 1), a HA layer had indeed formed after a 3 day incubation 
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period in PBS solution. As indicated by our measurements summarized in Table 1, there 

is little observable difference in the concentration of calcium and phosphate on the two 

Bioglass® varieties, suggesting that the composition of the HA layers was essentially the 

same. Notwithstanding, to assess the physical structure of the respective HA layers, 

samples were imaged by SEM after exposure to PBS for 3 days at 37 °C. SEM analyses 

confirmed the formation of HA layers on both glass varieties (Figure 18). Both samples 

were found to be covered with dense, intertwined long lamella- or plate-like HA crystals. 

However, on the fine structure (18,000x magnification), the HA crystals on the spinodal 

type Bioglass® appeared larger in size and less densely packed compared to the crystals 

that formed on the droplet type Bioglass®. In addition, lower magnification analyses 

(6,000x magnification) indicated that on spinodal type Bioglass®, HA deposited as a 

more or less homogenous smooth layer of lamella-like crystals, whereas on droplet type 

Bioglass®, HA formed ‘boulders’ reminiscent of the underlying phase separation. In fact, 

the center-to-center distance between HA boulders correlated well with the phase-

separation features of the droplet type Bioglass® samples (compare Figures 14 and 18). 

Since Bioglass® samples were pre-incubated for 3 days in PBS followed by 

incubation in medium when cells were seeded on the glass samples, analyses of the 

structure of the HA coat that formed under these conditions was performed as well.  The 

resulting SEM images convincingly show little variation in the structure of the HA 

crystals once the glass samples were submerged in cell culture medium after either 2 or 

24 hours (Figure 18, middle and right panels).  Moreover, pronounced HA ‘boulders’ that 

were detected on droplet-type Bioglass® samples after incubation in PBS solution 

partially disappeared, making the overall morphology of HA coats that formed on both 

Bioglass® varieties much more similar (Figure 18, middle and right panels).  

3.4.5 - Adsorption of protein to Bioglass® variety surfaces – ESEM and XPS 

analyses 

To investigate whether spinodal and droplet type Bioglass® varieties would 

absorb a coat of proteins to their surface when exposed to bodily fluids, we incubated the 

samples in a model protein solution, bovine serum albumin (BSA), that is abundantly 

present in blood serum as well as in the serum component of cell culture medium [81]. 
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We first applied environmental scanning electron microscopic (ESEM) analyses of wet 

and dry Bioglass® samples that were incubated in BSA-solution or not. All samples 

appeared similarly un-contoured, both at lower (500x) and higher (5,000x) 

magnifications, suggesting that if a protein coat had formed, it must be thin and overall of 

homogenous appearance (Figure 19). Note these samples were not pre-incubated in PBS 

solution; hence no HA coat is present on the samples. 

Next, we used XPS to better determine whether a coat of protein had adsorbed to 

the sample surfaces. A pronounced nitrogen (N) signal was detected by XPS analyses on 

all samples that were submersed in BSA-solution but not on the bulk glass, indicating 

that indeed a protein coat had formed on the surfaces of the BSA-incubated samples. 

Moreover, the percentage of nitrogen detected in the BSA-coated spinodal type 

Bioglass® samples was significantly higher compared to droplet type samples 

(20.5±1.5%, compared to 13.4±1.6%, Table 1), suggesting that more protein adsorbed to 

spinodal compared to droplet-type Bioglass® samples. Additionally, the amount of Ca 

and particularly the amount of Na detected by XPS on the glass samples immersed in 

BSA solution was significantly reduced (Ca on spinodal: 6.8±1.5 % before, 4.6±1.7 % 

after immersion; Ca on droplet: 6.9±1.5 % before, 4.3±1.8 % after immersion; Na on 

spinodal: 20.6±1.8 % before, 4.3±1.9 % after immersion; Na on droplet: 15.5±1.8 % 

before, 6.5±2.0 % after immersion, Table 1), further suggesting that a thin layer of 

protein had coated the Bioglass® surface. 

Additionally, XPS analyses of the surfaces of spinodal and droplet Bioglass® 

samples after 2h pre-incubation in PBS (and hence with a layer of HA present on their 

surface) led to a significant difference in the detection of nitrogen (Table 1), indicating 

that BSA robustly adsorbed to both, HA and polished Bioglass® sample surfaces; and 

again, that more protein adsorbed to the HA layer on spinodal type Bioglass® compared 

to the amount adsorbed to HA-coated droplet-type Bioglass® surfaces (concentration of 

N ~22.0±0.5 vs 14.7±0.5 %, Table 1). Combined, our data indicate that indeed a thin 

protein film (still allowing detection of the underlying glass and HA chemistry) had 

formed on both Bioglass® surfaces (too thin for ESEM detection), with significantly 

more protein adsorbing to spinodal Bioglass® samples. 
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3.4.6 - Conformation of proteins adsorbed on Bioglass® samples – Raman 

spectroscopy 

To investigate whether BSA adsorbed to spinodal and droplet phase separated 

Bioglass® varieties adopted different conformations we applied Raman spectroscopic 

analyses. Both infrared (IR) and Raman vibrational spectroscopies have been used 

successfully in the past to analyze the conformational state of proteins such as BSA 

adsorbed on different glass surfaces [82-86]. The amide groups of proteins possess nine 

characteristic vibrational modes or group frequencies [82]. Of these, the most useful for 

vibrational spectroscopic analysis of the secondary structure of proteins in aqueous media 

is the so-called Amide I band located between ~1600 and 1700 cm
-1

 [82-86]. This band 

represents primarily the C=O stretching vibrations of the amide groups coupled to the in-

plane N-H bending and C-N stretching modes [82, 84, 85]. The exact frequency of this 

vibration is determined by the particular secondary structure adopted by the polypeptide 

chains. However, when conformations of proteins in solution are of interest, Raman 

spectroscopy is usually preferred over IR spectroscopy as the signal at 1645 cm
-1

 from 

water is very weak in Raman spectra (corresponding vibrations have very low Raman 

activity) and thus does not interfere with the reliable detection of the critical Amide I 

band. The Raman Amide I band representing the contours of BSA protein and shown in 

Figure 20 consists of a number of overlapping component bands, representing α-helices, 

β-sheets, β-turns and non-ordered structures comparable to previous analyses [82-86]. 

The exact assignments of the observed Raman peaks in the Amide I band (shown in 

Figure 21A-C) were made on the basis of known data [82, 84, 85], and are summarized in 

Figure 21D. Decomposition of the experimental Raman spectra of the Amide I band into 

Gaussians (Figure 21D) allows for evaluating the β-sheet/β-turn ratio, which is known to 

indicate biocompatibility of the material under consideration [82, 83, 86]. We determined 

a 2-3 times higher β-sheet/β-turn ratio and also an increased α-helix content for BSA-

polypeptides adsorbed to spinodally phase separated Bioglass® in comparison to droplet 

type phase separated glass (Figure 21D). Interestingly, the α-helix content in BSA-

polypeptides adsorbed on both Bioglass® varieties was lower compared to lyophilized 

BSA, further indicating that the conformation of BSA-polypeptides adsorbed on the 
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Bioglass® samples was modified (less ordered). This observation is in agreement with 

previous findings on proteins adsorbed to other biomaterials [87, 70]. 

3.5 - Discussion 

Here we demonstrate using two types of bioactive glasses that sub-micron 

structure is influential to how cells sense their substrates.  Initial experiments performed 

using TAMP scaffolds with different nanopore sizes yet similar surface areas suggested 

that the glass surface characteristics had an influence only during initial attachment of the 

cells, as after longer time points the difference was no longer observed.  These data 

suggest that cells may recognize the glass surface initially and then secrete their own 

extracellular matrix making the glass surface nano-structure negligible. Still the 

mechanism by which the cells sensed the surface of the glass was not realized.  Further 

analysis into this mechanism was performed using 45S5 Bioglass®. 

 Conventional 45S5 Bioglass® invented by Hench in the 1960s has mostly been 

considered to be a structurally homogeneous, single phase glass [88-90, 8]. However, this 

may not always be true [91-93], as the morphology of Bioglass can for example be 

modulated following a simple melt-quench procedure, resulting in spinodal versus 

droplet-type phase separation [68]. In the Bioglass® samples investigated here, the two 

types of phase-separation arise from the difference in the melt temperature just prior to 

casting and the quench rate during solidification [68]. We show that the type of phase 

separation can have a pronounced effect on cellular response. Thus, better understanding 

Bioglass®/cell interaction appears crucial for the future design of improved bioactive 

glass applications.   

When seeding MC3T3-E1 pre-osteoblast cells on the two phase-separated 

Bioglass® varieties we found that, on average, more than double the number of cells 

attached to the surface of spinodal glass at 2 and 24 hours post seeding as compared to 

droplet-type phase-separated Bioglass® samples. Increased cell adhesion correlated with 

significantly increased cell spreading (individual cells on average covered 84% more area 

on spinodal glass samples), the formation of significantly more, and more robust stress 
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fibers (by 65%), and better-developed focal cell adhesions (by 38%). What then causes 

the difference in cellular behavior?  

As adhered cells are surrounded by culture medium, it is feasible to postulate that 

spinodal and droplet Bioglass® varieties differently modify the culture medium (e.g. pH, 

and the ability to form a HA coat), which in turn would affect cell response. However, 

when we incubated spinodal and droplet-type phase-separated Bioglass® samples in 

biological solutions (PBS, cell culture medium), we only observed minimal changes in 

pH that remained well within the physiological range of biological systems [94, 95]; and 

both Bioglass® varieties exhibited very similar dissolution characteristics (concentration 

of Ca2+ and PO43- in solution over time).   

SEM as well as XPS analyses showed that on both Bioglass® varieties a robust 

layer of HA formed within 3 days in PBS.  The chemical composition and the fine 

structure of the HA crystals was similar on both Bioglass® varieties consisting of 

comparable dense, intertwined long lamella- or plate-like HA crystals (Figure 18), yet 

composed of crystals exhibiting a somewhat different size (Figure 18, panels 1).  

However, resulting surface roughness differences on this scale are unlikely to produce a 

discernable difference to the attachment and performance of MC3T3-E1 cells [96].  

Interestingly, the morphology of the formed HA layer corresponded to the underlying 

Bioglass® morphology, with spinodal phase separated samples accumulating an overall 

homogeneous layer of HA crystals, while droplet-type phase-separated samples 

accumulated a layer of boulder-like HA clusters. As expected, the boulder center-to-

center spacing correlated well with the phase-separated pattern of this Bioglass® variety 

(compare Figures 14 and 18).  However, when samples were incubated in cell culture 

medium after exposure to PBS (as was done with Bioglass® samples examined for cell 

attachment), HA boulders partially disappeared and were much less pronounced, making 

both HA coats morphologically similar (Figure 18, middle and right panels), suggesting 

that differences in HA coat formation also only has a minor impact on cell response. 

Intriguingly, XPS analyses further indicted that both Bioglass® varieties absorbed 

a layer of proteins, either adsorbed directly to the polished glass surface (if samples were 

not incubated in PBS solution or cell culture medium), or on top of the HA layer (see 
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Table 1).  As XPS only probes the top ~10 nm of a sample surface, and in all cases the 

glass or HA chemistry was detectable underneath the protein coat (as indicted by the 

signal for Si, Ca, and Na, none of which is present in proteins, see Table 1), our results 

indicate that the protein coat likely is thin, consisting of only 1 – 2 layers of protein 

molecules, consistent with reports on protein films that adsorb to the surfaces other 

biomaterials [97-101, 70, 102]. In its mature, soluble form BSA is a globular protein, 

which consists of 583 amino acid residues, has a molecular weight of 66.5 kDa, and 

measures 14 x 4 x 4 nm in diameter [103, 104]. We chose bovine serum albumin (BSA) 

as a model protein, although it likely is not the protein species that directly interacts with 

integrin cell adhesion receptors (it has no arginine-lysine-aspartic acid-based amino acid 

integrin binding sequences, commonly known as RGD signals). However, BSA is 

abundantly present in blood and the serum component of cell culture medium (61% of all 

protein present [81], and thus has the potential to readily adsorb onto the surface of 

bioactive glasses when exposed to body fluids. Likely, BSA also mediates the adsorption 

of other, less abundant serum proteins (e.g. ECM proteins) [105], further supporting a 

critical role of BSA in mediating cellular response to biomaterials surfaces. 

Interestingly, we found that significantly more protein adsorbed to spinodal 

Bioglass® samples compared to droplet-type samples (20.5±1.5%, compared to 

13.4±1.6%, Table 1), suggesting that the adsorbed protein potentially formed a thicker, or 

more homogenously distributed film that may contribute to the better biological 

performance of the spinodal phase separated Bioglass® samples. Remarkably, Raman 

spectroscopy further indicated a 2-3 times higher β-sheet/β-turn ratio of BSA-

polypeptides adsorbed to spinodally phase separated Bioglass® samples in comparison to 

BSA polypeptides adsorbed to droplet type phase separated samples. Higher β-sheet/β-

turn ratios of adsorbed proteins have been correlated with an increased biocompatibility 

of protein-coated surfaces [82, 83, 86]. Furthermore, the α-helix content in BSA-

polypeptides adsorbed to both Bioglass® varieties was lower compared to the α-helix 

content of solubilized BSA. As BSA in solution is a well-ordered protein, exhibiting 

approximately 60% α-helicity [106, 105, 104], the observed decrease in α-helicity 

indicates that BSA polypeptides are less folded when adsorbed to Bioglass®.  These 
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observations correlate well with conformational alterations seen generally in proteins that 

adsorb to other surfaces [87, 70].  

As it is now well accepted that proteins in solution (e.g. blood, lymph, or cell 

culture medium) are readily and robustly adsorbed on the surface of bioactive materials 

[97-99, 107, 100, 101, 70, 102], we expect that cells did not attach directly to the native 

Bioglass® surface or to the HA layer, but through a protein film that adsorbed onto the 

surface of the scaffolds (or the HA layer). Our work investigating nanopore size influence 

on cellular attachment is on the scale of ~10 nm [9] which correlates with the dimension 

of adsorbed proteins.  

Whether the glass surface was activated by HA or not apparently did not 

significantly influence the amount of BSA that adsorbed to the surface of Bioglass®, as 

the amount of nitrogen detected by XPS analyses was comparable on both, HA-coated 

and as-polished, uncoated samples. Similarly, Garcia et al. found no difference in the 

amount of fibronectin (an extracellular matrix protein) that adsorbed to the surface of 

bioactive glass either unreacted or reacted for 1 day and 7 days in simulated body fluid 

(SBF) [108].  Furthermore, they found that cells attached more strongly to the glass that 

had been reacted to form HA and attributed it to the morphology of the adsorbed proteins. 

In this context, our results suggest that HA formation per se is not required for a glass to 

be considered bioactive, as proteins present in biological solutions will – upon exposure – 

likely absorb immediately to the glass surface.  However, nanoscale structure of HA, 

when present, will likely modulate the level of bioactivity by influencing the amount and 

conformation of proteins that adsorb. Taken together, our results provide evidence that 

cell attachment to 45S5 Bioglass® is mediated by a protein layer whose conformational 

state on spinodally phase-separated glass samples evidently represents a more favorable 

attachment surface for MC3T3-E1 pre-osteoblast cells. This type of surface makes 

spinodal Bioglass® varieties biologically favorable over droplet-type phase separated 

varieties. Apparently, these characteristics are more conducive for cell attachment and 

proliferation on spinodal than droplet type phase separated Bioglass®.  
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3.6 - Conclusions 

Several important conclusions can be drawn regarding how cells interact with 

bioactive glasses. The present results demonstrate that initial cell attachment to the 

bioactive glass surface is likely influenced by a thin film of protein that is adsorbed 

whether or not an HA layer is present. Thus, the cells do not interact with glass directly. 

Further, the results support the concept that cell-attachment to a bioactive glass is 

mediated by this protein layer whose magnitude and conformational state depend on the 

local chemistry and nanoscale structure of underlying bioactive glass/HA surface. Taken 

together, our results provide novel, exciting insight into the interactions of proteins and 

cells with bioactive scaffolds that should be considered for the future development and 

use of bioactive glass scaffolds. Additionally, the biological performance of 45S5 

Bioglass® and of other bioactive glass and glass-ceramics can be improved further with a 

relatively simple, inexpensive fabrication procedure that provides optimized micro-nano 

structure of glass. 

 

3.7 - Materials and Methods 

3.7.1 - Glass fabrication 

45S5 Bioglass® (45SiO2 – 24.5Na2O – 24.5CaO – 6P2O5 by wt. %) was 

synthesized using melt quenching and casting in stainless steel molds. High purity (99.99 

% or better; Alfa Aesar, MA, USA) carbonates (CaCO3, Na2CO3), silicon dioxide (SiO2) 

and calcium phosphate tribasic (Ca5OH(PO4)3) powders (Alfa Aesar, MA, USA) were 

used as raw precursors, and melted in a platinum crucible. To induce spinodal phase 

decomposition, the melt was quenched from ≥1380 
o
C into preheated molds (termed 

“spinodal” glass). Quenching from ≤1370 
o
C produced 45S5 Bioglass® with pronounced 

droplet type phase separation (termed “droplet” glass) [68]. Post-cooling, cylindrical 

casts were cut into approximately 2 mm thin disks using a low-speed diamond-plate 

circular saw (IsoMet, Buehler, IL, USA), polished to optical quality using a series of 

silicon carbide abrasive papers with decreasing particle size (d) (paper #120 with d = 125 

m; #240 with d = 58 m; #800 with d = 8 m; #1200 with d = 3 m) and finally with 1 
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m size CeO2 powder on an automatic polishing machine (ATA, Sapphir500, Germany). 

Polished glass samples were cleaned in acetone prior to use. 

. 

 

3.7.2 - X-ray photoelectron spectroscopy of uncoated and protein-coated samples 

Polished and acetone-cleaned glass samples were rinsed with deionized (DI) 

water, dried, and characterized initially with high-resolution X-ray photoelectron 

spectroscopy (XPS). Then the samples were submerged into an aqueous bovine serum 

albumin (BSA) protein solution (2.5 mg/ml) for 2 hours at room temperature. 

Additionally, a set of samples was sterilized by autoclaving and incubated in 1xPBS 

(phosphate buffered saline) at 37°C for 3 days prior to incubation in BSA/PBS (2.5 

mg/ml) solution for 2 hours. All samples after immersion were washed with DI water to 

remove excess salts/protein and dried before XPS analyses. The high-resolution XPS 

measurements were performed with a Scienta ESCA-300 spectrometer using 

monochromatic Al Kα X-rays (1486.6 eV). XPS spectra were recorded in a normal 

emission mode, using a low energy (<10 eV) electron flood gun to neutralize surface 

charging from photoelectron emission. The XPS data consisted of survey scans over the 

entire binding energy (BE) range and selected scans over the core-level photoelectron 

peaks of interest. Data were collected from different locations of the same samples (at 

least 5/sample) as well as on different samples (n = 3/sample type) to confirm the 

reproducibility of results. This resulted in compositional data, calculated as a ratio 

between the areas of core level XPS peaks of constituent chemical elements and 

appropriate sensitivity factors, with maximum statistical uncertainty of 2%. 

 

3.7.3 - Raman spectroscopy of protein-coated samples 

To characterize the structure of proteins adsorbed on glass surface Raman 

spectroscopy measurements were performed in the 800-2000 cm
-1

 range with a Horiba 

Xplora confocal microscope (Horiba, NJ, USA), using a 532 nm laser for excitation. 

Spectra collected from five different locations of each sample were averaged to increase 
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confidence in the data. Peaks for BSA were assigned to known structural motifs (α-helix, 

β-sheet, and β-turn) according to published literature. To calculate β-sheet/β-turn ratio, 

the β-sheet band area was divided by the average area of the two assigned β-turn bands as 

per Gaussian fit. 

 

3.7.4 - SEM and ESEM surface analyses of uncoated and protein-coated samples 

Scanning electron microscopy (SEM) images of the microstructure of the 

prepared glasses were acquired from freshly fractured surface of the glass samples using 

a Hitachi 4300 (USA) SEM in high-vacuum mode at 12,000x and 18,000x magnification. 

To examine the Bioglass® samples with adsorbed protein coat under physiological (wet) 

conditions, polished specimens were imaged as reference before protein-incubation with 

a FEI XL-30 environmental scanning electron microscope (ESEM) at 250x, 500x, 1000x, 

and 5000x magnification using the gaseous secondary electron detector (GSE) at 

approximately 30% humidity. Then, samples were submerged in bovine serum albumin 

(BSA) (2.5 mg/ml)/DI water protein solution for 2 hours at room temperature and re-

imaged immediately (wet) under the same conditions. After drying of the samples, a third 

set of images was acquired (dry).  

Additionally, to examine formation of hydroxyapatite (HA) and/or other 

alterations of the glass surface that may occur upon exposure to medium containing 

phosphate ions, images were collected using a Zeiss 1550 electron microscope. As 

described above, samples were pre-incubated in PBS before exposure to BSA solution, 

then dried overnight in a desiccator before imaging at 1,000x, 6,000x, and 18,000x 

magnification. 

3.7.5 - pH measurement, colorimetric calcium and phosphate concentration assays 

Samples were autoclaved for sterilization followed by incubation in 1x PBS at 37 

°C.  After 3 days, the PBS was replaced with cell culture medium (described below) and 

incubated for 2 and 24 hrs.  The medium was collected and pH measured immediately to 

prevent any potential changes due to environmental exposure. Calcium (Ca
2+

) and 

phosphate ion (PO4
3-

) concentrations were measured in PBS solution and cell culture 
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medium using Quantichrom bio kits (BioAssays Systems, Hayward, CA; Cat. # DICA-

500 and DIPI-500, respectively). The former assay was performed by generating a 

standard curve using the supplied reference solution. 5μl of medium sample was 

incubated with 200μl of working reagent. Reactions continued for 3 minutes at room 

temperature before absorbance was measured at 612nm using a Tecan Infinite M200 

PRO spectrophotometer.  Each solution was measured in triplicate. To determine Pi the 

Quantichrom Phosphate assay used a standard curve utilizing the supplied solution. 50μl 

of each sample were diluted 1:50 with DI water and incubated in a 96-well plate together 

with 100μl of working reagent at room temperature for 30 minutes.  Absorbance was 

measured for each solution in triplicate at 620nm. 

 

3.7.6 - Cells and cell assays 

MC3T3-E1 subclone 4 mouse pre-osteoblast cells (CRL-2593) were purchased 

from American Type Culture Collection (ATCC, Manassas, VA). Cells were maintained 

at standard culture conditions at 37 °C in a 5% CO2 atmosphere and 100% humidity in 

complete medium as follows: Alpha-Modified Eagles Medium (α-MEM, 

Gibco/Invitrogen, Grand Island, NY, cat. # A10490-01) was supplemented with 10% 

fetal bovine serum (Atlanta Biologicals, Flowery Branch, GA, Cat. # S11150), 1% L-

glutamine (HyClone, Logan, UT, Cat. # 25-005-C1) and 1% penicillin/streptomycin 

(Corning, Corning, NY, Cat. # 30-001-Cl) according to vendor’s instructions. 

Before cell seeding, polished and acetone-cleaned glass samples were sterilized 

by autoclaving and pre-incubated in 1xPBS for 3 days at 37 °C. MC3T3-E1 cells were 

seeded at a density of 35,000 cells/cm
2
 onto respective glass disks placed into 3.5 cm 

diameter polystyrene tissue culture dishes (Corning, Corning, NY, Cat. # 353001). Cells 

were processed for analysis by fluorescence detection of nuclei by incubating in DAPI 

solution (Molecular Probes, Eugene, OR, Cat. # D1306), actin by incubating in 

Alexa488-phalloidin solution (Molecular Probes, Cat. # A-12379), and focal adhesions 

by immunofluorescence detection of the protein vinculin. In brief, cells were fixed using 

3.7% formaldehyde followed by permeabilization with 0.2% Triton X-100. Then, cells 
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were blocked in 1% BSA/1xPBS at room temperature for 1 hour. The primary antibody, 

anti-vinculin (mouse monoclonal-Sigma, St. Louis, MO – Cat. #V9131; at 1:200), was 

diluted in blocking solution and incubated with cells overnight at 4 °C. A solution of 

1xPBS containing DAPI (1 µg/ml:), Alexa488-phalloidin (1:100), and secondary 

antibody, Alexa568-conjugated goat-anti-mouse (1:200) (Molecular Probes/Invitrogen, 

Grand Island, NY, Cat. # A11031) was incubated with the cells at room temperature for 1 

hour. Samples were placed with cells facing down in 1xPBS into glass-bottom culture 

dishes (LabTek) for microscopic examination. Cells were imaged using a Nikon Eclipse 

TE2000-E inverted fluorescence microscope equipped with 10x, 40x, 60x and 100x 

objectives and a forced-air cooled Photometrics CoolSnap HQ CCD camera (Roper 

Scientific, Martinsried, Germany). Images were captured using MetaVue (Molecular 

Devices, Sunnyvale, CA) software version 6.1r5.  

For quantification of the number of cells attached to each sample, cell nuclei were 

counted for each of 6 images acquired with a 10x objective (approximate imaging field = 

1 mm
2
) for each sample (2 hour time point, n = 5; 24 hour time point, n = 4). Statistical 

analyses were performed by ANOVA followed by a Bonferroni correction to reduce the 

chance of obtaining a false positive, which reduced the p-value from p = 0.05 to p = 

0.0167, increasing the stringency of the statistical analyses. Average cell size was 

determined on images of Alexa488-phalloidin stained cells (i.e. actin) by outlining the 

periphery of individual cells and measuring the cell area using ImageJ (droplet samples, n 

= 44; spinodal samples, n = 23 cells). Abundance of peripheral actin (stress fibers) was 

analyzed by drawing 7.5 µm x 7.5 µm squares (= 55 µm
2
) near the periphery of 

Alexa488-phalloidin stained cells. Fluorescence intensity within the square areas was 

measured using ImageJ (droplet-type samples, n = 40; spinodal samples, n = 27).  

Similarly, abundance and robustness of focal adhesions was analyzed by drawing 10 µm 

x 10 µm squares (= 100 µm
2
) near the periphery of vinculin stained cells and measuring 

fluorescence intensity within the squares (droplet-type samples, n = 15; spinodal samples, 

n = 12). 
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3.8 – Figures 

 
 

Figure 13: Cells sense differences in nanopore size 

 (A) Representative images of (a) samples E at 12h, (b) samples F at 12h, (c) samples E at 

48h, and (d) samples F at 48h post cell seeding.  MC3T3-E1 cells were stained for actin 

(green) to evaluate cell morphology and nuclei to quantify cell density.  (B) Cell density 

on samples E and F 12 and 48 h after seeding showed a strong difference after 12h but 

not after 48h. 
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Figure 14: 45S5 Bioglass® varieties with different morphologies 

45S5 Bioglass® samples with spinodal and droplet type phase-separation morphologies 

were prepared by quenching the melt from different equilibration temperatures following 

specific regimens. Representative SEM images of the two varieties are shown in A and B. 

Simplified schematics of the morphologies to the right illustrate that silicon enriched
 
and 

depleted regions co-exist in the two 45S5 Bioglass® varieties. 
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Table 1 

Composition of as-polished spinodal and droplet type phase-separated 45S5 Bioglass® 

samples before and after exposure to 0.25% (w/v) aqueous BSA-protein solution as 

determined by XPS surface analyses. 

 

Sample Composition in at%  

O Si Ca Na P N 

Glass Composition, 

Theoretical 

55.2 16.3 9.5 17.2 1.8 0 

Spinodal, as polished  56.91.2 13.91.7 6.81.5 20.61.8 1.81.0 0 

Spinodal, exposed to PBS 

solution 

61.22.0 <1 20.92.0 <1 16.31.5 0 

Spinodal, exposed to BSA 

solution 

54.51.7 14.52.0 4.61.7 4.31.9 1.61.3 20.51.5 

Spinodal, exposed to PBS 

then BSA solution  

57.02.0 <1 10.82.0 <1 9.11.5 22.00.5 

Droplet, as polished  57.01.2 18.61.9 6.91.5 15.51.8 1.91.1 0 

Droplet, exposed to PBS 

solution 

60.62.0 <1 22.22.0 <1 15.81.4 0 

Droplet, exposed to BSA 

solution 

56.31.8 18.42.0 4.31.8 6.52.0 1.71.5 13.41.6 

Droplet, exposed to PBS 

then BSA solution  

55.92.0 <1 15.82.0 <1 12.51.5 14.70.5 

Hydroxyapatite (HA) 60.8  21.7  13.0   
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Figure 15: MC3T3-E1 pre-osteoblast cells attach more efficiently to spinodally 

phase separated Bioglass® 
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 (A) Equal numbers of MC3T3-E1 pre-osteoblast cells were seeded onto polished, 

spinodal and droplet-type Bioglass® varieties. Cells were fixed 2 and 24 hours post 

seeding and cell nuclei stained with DAPI. Representative images are shown. (B) 

Quantitative analyses based on counting nuclei of 5 samples and of 5 areas for each glass 

type revealed that on average more than two times the number of cells attached to 

Bioglass® samples with spinodal compared to droplet type morphology. 
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Figure 16: MC3T3-E1 pre-osteoblast cells attach more robustly to spinodally phase 

separated Bioglass® 



 

69 

 

 (A) MC3T3-E1 pre-osteoblasts were seeded onto spinodal and droplet-type Bioglass® 

samples, fixed and stained 2 hours post seeding for actin (phalloidin, green), integrin-

based focal adhesions (vinculin, red) and cell nuclei (DAPI, blue). Representative merged 

images are shown. Monochrome images of actin and vinculin fluorescence channels were 

black/white converted and thresholded for quantitative analyses. (B) Fluorescence 

intensities inside defined squares placed in cytoplasmic, plasma membrane-adjacent 

regions (example squares are shown in A) were quantified, averaged and graphed. Note 

that cells on spinodal-type samples assemble robust, well-organized stress fibers that 

often end in pronounced integrin-based focal adhesions. In contrast, cells growing on 

droplet-type samples assembled much less pronounced, less organized actin filaments 

and only a few, not well-developed focal adhesions. 
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Figure 17: Effects of exposing spinodal and droplet phase separated Bioglass 

samples to biological solutions: calcium, phosphate, and pH 
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The concentration of Ca (A) and Pi (B) and the pH (C) was measured in phosphate 

buffered saline (PBS) and cell culture medium before and after exposure to either 

spinodal or droplet-type phase separated bioactive glass. Ca, Pi, and pH decreased 

slightly overtime, however no significant differences were detected between the two 

Bioglass® varieties. 
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Figure 18: Surfaces of Bioglass® varieties after incubation in PBS and cell culture 

medium 

Spinodal (top panel) and droplet type (bottom panel) phase-separated Bioglass® samples 

were investigated by scanning electron microscopy (SEM) after incubation in PBS for 3 

days (left columns) and after an additional 2or 24 hour incubation in cell culture medium 

(middle and right columns respectively). A pronounced HA coat developed on both 

Bioglass® varieties that appeared more comparable when samples were incubated in PBS 

followed by cell culture medium as was done in cell culture experiments described in 

Figures 17 and 18. 
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Figure 19: ESEM analyses of Bioglass samples before and after incubation in BSA-

protein solution 

Spinodal and droplet type phase-separated Bioglass® samples were investigated by 

environmental scanning electron microscopy (ESEM) before and after incubation in 

0.25% aqueous BSA-protein solution imaged wet, and after drying. Samples appear un-

contoured at both lower (500x) and higher (5000x) magnification under physiological 

conditions (wet) and after drying, indicating that the adsorbed protein layer is thin and 

below the applied SEM detection limit correlating with our XPS data (see below). Note 

contaminating dust particles (depicted with asterisk in image 1) and the edge of the glass 

sample (depicted with arrowhead in image 2) that served as reliable focusing guides. 
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Figure 20: Raman spectra of protein-coated Bioglass® varieties 

Representative Raman spectra of lyophilized bovine serum albumin (BSA, red), and 

45S5 Bioglass® varieties after incubation in aqueous BSA solution (spinodal, black; 

droplet, blue). Note the Amide I and II bands (enlarged and superimposed below) in all 

samples indicative of a protein layer that adsorbed on the glass sample surfaces. 

 

 
 

Figure 21: Gaussian fittings of Raman spectra indicate a different conformation of 

BSA adsorbed to spinodal and droplet Bioglass® varieties 

Gaussian fittings (colored lines in graphs A to C) of Raman spectra of dried, BSA-protein 

coated spinodal (A), and droplet type phase separated 45S5 Bioglass® samples (B); and 

(C) of lyophilized BSA. (D) Quantitative analyses of Gaussian fittings of Raman spectra 

recorded for samples A to C and assignment of corresponding secondary protein 
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structures according to previously published studies. Note the increased -sheet and -

helix content of BSA adsorbed to spinodal compared to droplet type phase-separated 

Bioglass® samples (depicted in red).  FWHM = full width at half maximum of 

Gaussians. 
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Chapter 4 - Additional uses for the TAMP scaffolds - Soft tissues 

 

4.1 – Abstract 

 

The unique properties of our 30mol% CaO-70mol% SiO TAMP scaffolds may 

have potential for additional tissue engineering applications aside from bone tissue 

regeneration.  For example, the porosity of the scaffold makes it similar to a porous 

membrane providing fluid / nutrient exchange to cells from all sides as opposed to tissue 

culture plastic.  In addition, the cells might take cues from the scaffold topography that 

forms from the pores.  These two features might provide researchers with a platform to 

grow cells in an environment that is more similar to the in vivo environment, allowing 

cells to maintain their normal structure / function (discussed in 4.2) or to even select for a 

specific cell type out of a mixture of cells (discussed in 4.3).  The unique properties of the 

TAMP along with our ability to alter these properties allows for a broad range of 

potential applications.   

 

4.2 – In vitro fertilization 

 During the process of in vitro fertilization, an egg is harvested from the mother-

to-be and fertilized using sperm from the father-to-be.  This fertilized egg is cultured in a 

dish for 3-5 days and then is implanted back into the mother-to-be [109]. The success rate 

of in vitro fertilization is in fact quite low, around only 30% [110], and is increased if a 

sample of the endometrial epithelial cells lining the uterus is collected and co-cultured 

with the egg, a technique called autologous endometrial co-culture (AEC) [111, 112]. 

These cells act as a nest and support development of the embryo.  In the body, 

endometrial epithelial cells have a polarized morphology; however, when grown in 

culture, they lose their 3-dimensional structure and grow flat against the dish [113].  

Since the TAMP scaffolds have a 3-dimensional structure and contain pores that allow 

the cells to be exposed to nutrients from all sides, the scaffolds might promote the 
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endometrial epithelial cells to retain their polarized morphology in culture. Evidence 

supporting this theory can be found in a study done by Cherney and Findlay, who 

observed that uterine epithelial cells (UEC) grown on Matrigel coated porous membranes 

maintained polarization [113]. However, Matrigel is a protein solution composed of the 

extracellular matrix produced by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells 

[114-117]; so even though it maintains polarization of the cells, this protocol is not likely 

to be approved by the FDA for use in fertility clinics.  

 

4.2.1 – Results and discussion  

 Through collaboration with Dr. Stephen Somkuti at Abington Reproductive 

Medicine, we have characterized the growth of human uterine endometrial cells (hUECs) 

on our TAMP scaffolds.  In brief, the surgeon takes a tissue biopsy of the lining of the 

uterus and stores the tissue in cell culture medium at 37°C until the sample can be 

transported to Lehigh that same day.  Then the tissue is processed through digestion with 

collagenase to release the cells into solution. The cells are pelleted by centrifugation, 

collected, and plated for culture. The cells are grown in culture until they are nearing 

confluency before being frozen for storage.  We followed this protocol of freezing before 

using the cells for experiments on the TAMP scaffolds because this is the protocol that 

Abington uses for AEC.  

 Initial experiments were performed to characterize the cells in their native state.  

Through this analysis, we could learn what morphological features to search for to 

indicate that the cells were growing polarized or more “naturally.”  To do this, a piece of 

tissue from a biopsy was fixed and prepared for analysis by SEM. The images showed 

that many of the cells were covered with cilia and microvilli (Figure 22 A, i and ii), 

suggesting that we should consider looking for cilia or microvilli to indicate polarization 

of the cells.  Next we sought to determine which cells were present after tissue digestion.  

It was apparent that there were at least two cell types growing based on morphology.  

One cell type had a long stretched out shape that resembled a fibroblast.  The other cell 

type had a smaller, rounder shape that resembled a glandular or epithelial cell (Figure 
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22B).  The cells with the epithelial morphology tended to cluster together in groups.  

Although we expected to see two cell types from these digests, the results varied from 

patient to patient with some tissue digests resulting in a primarily epithelial morphology 

and others with a primarily fibroblast morphology. In order to identify these cell types, 

we utilized protein markers specific to the types of cells that were expected to be in the 

mixture (Chen et. al. 2013), stromal cells and endometrial epithelial cells.  The stromal 

cells were expected to have the fibroblast-like morphology and to be positive for 

vimentin, whereas the epithelial cells were expected to be round and positive for 

cytokeratin.  Uterine cells on coverslips were subjected to immunofluorescent staining of 

these protein markers, and analyses showed that while only some cells stained positive 

for cytokeratin (red), all cells stained positive for vimentin (green)(Figure 23, top panels).  

This result was unexpected, but still we see that there are two populations of cells 

present, those that are cytokeratin positive (likely epithelial cells) and those that are not 

(likely stromal cells).  Once we determined that both cell types were likely present in the 

tissue digests, we looked to see whether both cell types would grow on the scaffold.  

Cells were seeded onto TAMP scaffolds and subjected to the same immuno-staining 

protocol for the coverslips.  We overserved a similar result, with all cells staining positive 

for vimentin and some, but not all cells staining positive for cytokeratin, suggesting that 

both cell types grew on the scaffolds (Figure 23, bottom panels). 

Finally, analysis was performed to determine whether cells were polarizing on the 

TAMP scaffolds.  Initial experiments aimed at visualizing the morphology of the cells to 

determine whether the cells were stretching out across the glass surface or growing tall 

(polarized) on the scaffolds.  To do this, we stained with Alexa488-phalloidin to visualize 

the actin cytoskeleton and DAPI to visualize the nuclei.  Cells on a coverslip were more 

spread out by comparison to cells growing on a TAMP scaffold as evidenced by the 

bright cortically located actin bands near the periphery of the cells on TAMP.  The 

difference in morphology of these cells and the transition from prominent stress fibers on 

coverslips to more diffuse and cortically localized actin bands on TAMP scaffolds 

suggests that cells on TAMP grow more 3-dimensionally and potentially tall (Figure 24).  

Since we had observed cilia on the surface of cells in the tissue sample by SEM, we next 
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looked for cilia on the surface of cells growing on TAMP.  Both Arl13-b, a small GTPase 

that localizes to the ciliary shaft, and acetylated-tubulin were used as protein markers 

specific to the cilia.  Uterine epithelial cells grown on coverslips had primary cilia on 

their surface (Figure 25), but did not have multiple motile cilia like the cells in the SEM 

images of the tissue.  After a few unsuccessful attempts to visualize multiple cilia on cells 

growing on the TAMP scaffolds, besides one unconvincing pair of cells (Figure 25), we 

went back to the literature and realized that in reality, the number of ciliated cells is low.  

Even during the proliferative phase, the stage of the menstrual cycle that has the most 

ciliated cells, only around 20% of cells are ciliated [118, 119]. Future experiments would 

be better aimed at targeting microvilli or the localization of tight junctions in the 

membrane of the cells using confocal microscopy.  

4.2.2 – Conclusions 

The initial intention of this collaboration with Abington Reproductive Medicine 

was aimed at finding a way to increase the success of in vitro fertilization through 

providing the uterine endometrial cells with a more natural environment to grow, 

ultimately promoting development of the embryo during AEC.  This project could 

however be taken in several different directions as outlined in more detail in section 5.2, 

including first using different methods of analysis to better show whether cells are 

polarized (look for microvilli, tight junctions, confocal and SEM analysis). In addition, 

parameters of the TAMP scaffolds (pore size, chemistry, etc) may be modified to 

enhance polarization of the cells. Finally, it may not even be necessary that cells polarize 

to indicate that they are growing in a more natural state, for example cellular secretion 

could be analyzed. The TAMP scaffolds could be used for other applications such as 

research requiring analysis to be performed on polarized cells in culture. 

 

4.2.3 – Materials and methods 

4.2.3.1 – Tissue digestion 

Endometrial tissue was collected from a timed biopsy 5-9 days post luteinizing hormone 

surge and placed into a sterile container with RMPI medium (Sigma, St. Louis, MO, Cat. 
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# R8758) that was supplemented with 10% fetal bovine serum (Atlanta Biologicals, 

Flowery Branch, GA, Cat. # S11150), 1% L-glutamine (HyClone, Logan, UT, Cat. # 25-

005-C1) and 1% penicillin/streptomycin (Corning, Corning, NY, Cat. # 30-001-Cl).  The 

tissue was kept at 37°C until it was collected from the surgicenter that same day by me 

and transported back to Lehigh. Once at Lehigh, the tissue was immediately processed by 

a series of digestions in warmed collagenase (Sigma, St. Louis, MO, Cat. # C6885).  In 

brief, under the hood, tissue was removed from the sterile container and minced if 

samples were large enough to necessitate that.  Next the tissue was transferred to a 15ml 

tube and incubated for 5 min at 37°C with agitation in 10ml of 0.2% collagenase, which 

had been prepared prior by solubilizing the collagenase in Hanks buffered saline solution 

and 0.5% penicillin/streptomycin.  After agitation, tissue was allowed to settle for 5 

minutes and the supernatant containing the cells was transferred to a new tube and 

centrifuged to pellet the cells, which were then re-suspended and plated for culture.  

Fresh collagenase was added to the tube with the tissue and the process was repeated a 

total of 4 times to make up 1-2 plates for culture.  The remaining tissue pieces were 

plated in a separate dish.  The following day, the plates were analyzed for cell growth and 

signs of contamination and half of the medium was exchanged for fresh medium to help 

remove red blood cells and other debris.  Cells growth was observed for the next few 

days until they were nearing confluency, then they were cryopreserved in liquid nitrogen. 

 

4.2.3.2 – Cell seeding 

Cells were thawed quickly by incubation in a 37°C water bath before counting and 

seeding directly onto coverslips or PBS pre-incubated TAMP scaffolds (see section 

1.5.1).  200,000 viable cells (determined by trypan blue) were seeded per well of a 24-

well plate. 

 

4.2.3.3 – SEM for tissue 

A small portion of a tissue biopsy was fixed directly in 4% glutaraldehyde over night at 

4°C before dehydration in a series of ethanol dilutions as described in section 2.6.4.  The 
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tissue was coated with iridium and imaged using the Hitachi 4300 FEGSEM with 

secondary electron collection mode and 5.0kV accelerating voltage SEM. 

4.2.3.4 - Immunofluorescence 

Cells were processed for analysis by fluorescence detection of nuclei by 

incubating in DAPI solution (Molecular Probes, Eugene, OR, Cat. # D1306), actin by 

incubating in Alexa488-phalloidin solution (Molecular Probes, Cat. # A-12379), and 

vimentin, cytokeratin, and acetylated-tubulin by immunofluorescence detection. In brief, 

cells were fixed using 3.7% formaldehyde followed by permeabilization with 0.2% 

Triton X-100. Then, cells were blocked in 1% BSA/1xPBS at room temperature for 1 

hour. The primary antibodies, anti-vimentin (rabbit monoclonal –D21H3, Cell Signaling, 

Beverly, MA, Cat. #5741; at 1:200) and anti-pan-cytokeratin (mouse monoclonal –C11, 

Santa Cruz Biotechnologies, Cat. #SC8018; at 1:200), or anti-acetylated-tubulin (rabbit 

polyclonal, Sigma, St. Louis, MO cat # 6-11B-1; at 1:250; at 1:200) and anti--tubulin 

(rabbit polyclonal, Sigma, St. Louis, MO Cat. # T3559; at 1:500) were diluted in 

blocking solution and incubated with cells overnight at 4 °C. A solution of 1xPBS 

containing DAPI (1 µg/ml:) and secondary antibodies, Alexa568-conjugated goat-anti-

rabbit or mouse (1:200) (Molecular Probes/Invitrogen, Grand Island, NY) or Alexa488-

conjugated goat-anti-rabbit or mouse (1:200) (Molecular Probes/Invitrogen, Grand 

Island, NY) was incubated with the cells at room temperature for 1 hour. Samples were 

placed with cells facing down in 1xPBS into glass-bottom culture dishes (LabTek) for 

microscopic examination. Cells were imaged using a Nikon Eclipse TE2000-E inverted 

fluorescence microscope equipped with 10x, 40x, 60x and 100x objectives and a forced-

air cooled Photometrics CoolSnap HQ CCD camera (Roper Scientific, Martinsried, 

Germany). Images were captured using MetaVue (Molecular Devices, Sunnyvale, CA) 

software version 6.1r5.  
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4.2.4 – Figures 

 

Figure 22: Morphological features of uterine endometrial cells 

Cilia (i) and microvilli (ii) were imaged by SEM on the surface of cells in uterine 

endometrial tissue.  Cells were isolated from these tissues by digestion in collagenase to 

releace the cells from the matrix.  The resulting mixture of cells seemed to have two cell 

types, one with a fibroblast-like morphology and the other with an epithelial-like 

morphology.   

 

 

 

Figure 23: Both epithelial and stromal cells grow on TAMP scaffolds 

Protein markers for stromal cells and epithelial cells were used to determine whether both 

cell types grew on the TAMP scaffolds.  Stromal cells were expected to stain positive for 

vimentin while epithelial cells were expected to stain positive for cytokeratin.  While all 

cells stained positive for vimentin, only a population of cells stained positive for 
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cytokeratin suggesting that both cell types were growing on the coverslips (top panels) 

and TAMP scaffolds (bottom panels). 

 

 

 

Figure 24: Uterine cells grow differently on coverslips compared to TAMP scaffolds 

Uterine cells seeded onto coverslips and TAMP scaffolds have different morphologies 

based on actin cytoskeleton.  Cells on coverslips are spread out with prominent actin 

stress fibers compared to cells on TAMP scaffolds which are smaller and more round 

with cortical actin bands at the perimeter of the cells which might suggest that cells on 

scaffolds are polarizing. 
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Figure 25: Cilia on uterine cells in culture 

Uterine cells grown on coverlips have primary cilia as observed by acetylated- tubulin 

(green ciliary shaft) and γ-tubulin staining (red centrosomes), however we found a pair of 

cells on TAMP scaffolds that appears to have multiple red and green puncta 

unconvincingly suggesting that these cells might have cilia.  
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4.3 – Skin regeneration – burn wounds  

Current methods of treating damage to the skin may result in severe 

complications. For example, in the case of severe burns, immediate excision of the 

damaged area and skin grafting is critical to reduce the likelihood of bacterial 

colonization that may lead to sepsis, organ failure, and ultimately death [120]. Because 

immediate excision of the wound is critical, culturing to expand the number of cells from 

autologous tissues is not an option. An alternative to growing tissue to cover the damaged 

area is a skin graft from another region of the body, generally the thigh or other discrete 

region. However, this creates another site on the patient for possible infection and pain, 

lengthened recovery time, or greater scarring [120].   Allogenic skin grafting, a graft from 

another individual, is another method of treating burn wounds, but immunosuppressive 

measures must be taken to ensure the graft is not rejected by the recipient, which may be 

detrimental since burn victims already have a very high risk of infection [121] .  

Contraction at the site of the healed wound presents another problem.  Fibroblasts at the 

wound site will differentiate into myofibroblasts, which act in a fashion similar to muscle 

cells. Contraction due to these myofibroblasts is part of the normal process of healing, but 

in many cases, contraction may become so strong that it causes severe scarring or may 

even cause a loss of function by impairing range of motion [122]. 

The examples of potential complications involved with current treatments of skin 

damage described above clearly demonstrate that there is great need for better treatment 

of skin wounds. To this end, we investigated whether our TAMP material could be used 

to treat skin wounds. Initial experiments providing support of this hypothesis were done 

by our group (Shaojie Wang) in collaboration with Mona Marei at the Alexandria 

University in Egypt.  TAMP scaffolds were implanted under the skin (soft tissue) of New 

Zealand rabbits and the result was the formation of soft tissue [9]. Additionally, in vitro 

experiments using normal dermal fibroblasts (ATCC CCL-110) demonstrated that 

fibroblasts attach to and proliferate on TAMP scaffolds (Figure 26) suggesting they may 

be suitable for the growth of skin cells. 
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4.3.1 – Results and discussion  

A collaborative relationship with Dr. Sigrid Blome-Eberwein at the burn center of 

Lehigh Valley Hospital was established.  Similar to the in vitro fertilization project with 

Abington Reproductive Medicine, we received human tissue samples that we digested to 

release the cells for culture.  In this case, we received remnants of meshed skin grafts that 

we digested with trypsin [101].  Similar to the in vitro project, we expected the digests to 

result in a culture with two cell types, keratinocytes and dermal fibroblasts.  From initial 

experiments, it appeared that both cells types might be growing on the TAMP scaffolds 

based on the morphology of cells stained for actin and focal adhesions (vinculin) (Figure 

27), since there were both rounded and stretched cells.  The two expected cell types could 

be distinguished based on morphology and proteins markers, with the fibroblast 

morphology as long, stretched out, and positive for collagen compared to round 

epithelial-like keratinocytes positive for cytokeratin. After subjecting cells grown on a 

coverslip to immunofluorescent staining for collagen and cytokeratin, we observed that 

the cellular morphology matched the expected staining pattern, such that fibroblast cells 

were positive for collagen (green) and keratinocytes were positive for cytokeratin (red) 

(Figure 28, top panels).  We confirmed using this staining protocol that both cell types 

grew on the surface of our TAMP scaffolds (Figure 28, bottom panels); however, 

although the collagen stain was easily discernable for the fibroblasts on coverslips, the 

topography of the scaffolds combined with the fact that collagen is a secreted protein 

prevented accurate detection of collagen on the TAMP scaffolds.  It does appear 

however, that both cell types are growing on the scaffold using this stain since there are 

nuclei not associated with red cytokeratin staining, this type of analysis should be 

repeated using vimentin to stain for the dermal fibroblasts.   

4.3.2 – Conclusions 

 Keratinocytes and dermal fibroblasts isolated from human tissue samples 

could be successfully grown on TAMP scaffolds.  These results suggest that further 

analyses to investigate the activity of the cells on the scaffolds should be performed.  

Additionally, one of the major issues with successful healing of a burn wound is that 

there is not a material available that supports the growth of fibroblasts as a bottom layer 
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with the keratinocytes as the top layer, the same cellular organization as the natural 

tissue.  To address this problem, the TAMP could be prepared with different parameters 

that select for a specific cell type.  Additionally, to use the TAMP scaffolds for clinical 

applications in wound healing, we would need to generate them in another form, either by 

weaving the glass into a fiber pad or by using the glass in powder form.  These two 

potential modifications to the original TAMP scaffold preparation are discussed further in 

section 5.2.  

 

4.3.3 – Materials and methods 

4.3.3.1 – Tissue digestion 

Skin tissue was collected by Dr. Sigrid Bome-Eberwein at Lehigh Valley Hospital and 

stored at 4°C before digestion with by a series of incubations in warmed trypsin 

(Corning, Corning, NY, Cat. # 25-053-CI).  In brief, under the hood, tissue was removed 

from the sterile container and minced.  Next the tissue was transferred to a 15ml tube and 

incubated for 5 min at 37°C with agitation in 5ml of trypsin.  After agitation, tissue was 

allowed to settle for 5 minutes and the supernatant containing the cells was transferred to 

a new tube containing 5ml of D-MEM (Hyclone, Logan, UT, cat. # SH30021.01) that 

was supplemented with 10% fetal bovine serum (Atlanta Biologicals, Flowery Branch, 

GA, Cat. # S11150), 1% L-glutamine (HyClone, Logan, UT, Cat. # 25-005-C1) and 1% 

penicillin/streptomycin (Corning, Corning, NY, Cat. # 30-001-Cl), and centrifuged to 

pellet the cells, which were then re-suspended and plated for culture.  Fresh trypsin was 

added to the tube with the tissue and the process was repeated a total of 4 times to make 

up 1-2 plates for culture.  The remaining tissue pieces were plated in a separate dish.  The 

following day, the plates were analyzed for cell growth and signs of contamination and 

half of the medium was exchanged for fresh medium to help remove red blood cells and 

other debris.  Cells growth was observed for the next few days until they were nearing 

confluency, before seeding onto coverslips of PBS pre-incubated TAMP scaffolds. 
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4.3.3.2 - Immunofluorescence 

Cells were processed for analysis by fluorescence detection of nuclei by 

incubating in DAPI solution (Molecular Probes, Eugene, OR, Cat. # D1306), actin by 

incubating in Alexa488-phalloidin solution (Molecular Probes, Cat. # A-12379), and 

collagen and cytokeratin by immunofluorescence detection using anti-collagen and anti-

cytokeratin antibodies. In brief, cells were fixed using 3.7% formaldehyde followed by 

permeabilization with 0.2% Triton X-100 for DAPI and Phalloidin staining, or fixed and 

permeabilized in acetone for staining with primary antibodies. Then, cells were blocked 

in 1% BSA/1xPBS at room temperature for 1 hour. The primary antibodies, anti-pan-

cytokeratin (mouse monoclonal –C11, Santa Cruz Biotechnologies, Cat. #SC8018; at 

1:200) and anti-collagen I (mouse monoclonal, Abcam, Cambridge, UK cat # ab6308; at 

1:200) were diluted in blocking solution and incubated with cells overnight at 4 °C. A 

solution of 1xPBS containing DAPI (1 µg/ml:) and secondary antibodies, Alexa568-

conjugated goat-anti-rabbit or mouse (1:200) (Molecular Probes/Invitrogen, Grand 

Island, NY) or Alexa488-conjugated goat-anti-rabbit or mouse (1:200) (Molecular 

Probes/Invitrogen, Grand Island, NY) was incubated with the cells at room temperature 

for 1 hour. Samples were placed with cells facing down in 1xPBS into glass-bottom 

culture dishes (LabTek) for microscopic examination. Cells were imaged using a Nikon 

Eclipse TE2000-E inverted fluorescence microscope equipped with 10x, 40x, 60x and 

100x objectives and a forced-air cooled Photometrics CoolSnap HQ CCD camera (Roper 

Scientific, Martinsried, Germany). Images were captured using MetaVue (Molecular 

Devices, Sunnyvale, CA) software version 6.1r5.  

 

4.3.4 – Figures 
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Figure 26: CCL-110 dermal fibroblasts grow on TAMP scaffolds 

CCL-110 dermal fibroblasts seeded onto coverslips and TAMP scaffolds had similar 

morphologies as visualized by staining for DAPI (blue, nuclei) and A488-phalloidin 

(green, actin). 

 

 

 

Figure 27: Cells from skin tissue digests have variable morphologies 

Cells released from skin tissue by trypsin digestion were seeded onto TAMP scaffolds 

and stained for actin, vinculin, and nuclei.  There are two cellular morphologies that can 

be observed growing on the scaffolds, a round epithelial-like cell and a stretched 

fibroblast-like cell. 
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Figure 28: Both keratinocytes and dermal fibroblasts grow on TAMP scaffolds 

Immuno-staining indicated that dermal fibroblasts stained positive for collagen (green) 

while keratinocytes stained positive for cytokeratin (red) indicating that both cells types 

were present in the tissue digest (top panels – coverslip) and grew on the TAMP scaffolds 

(bottom panels – TAMP).   
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Chapter 5 – Conclusions and future perspectives 

 

5.1 - Conclusions 

This dissertation aimed at analyzing cellular response to a novel material for 

tissue regeneration, TAMP scaffolds.  Initial studies analyzed cellular adhesion and 

proliferation on the TAMP scaffolds and found that cells adhered by means of focal 

adhesions and proliferated and colonized both the surface and interior.  Additional 

analyses were geared towards bone tissue regeneration because of the similarities of the 

structure of the TAMP scaffolds and that of bone, and because of the reported 

osteoinductive properties of the dissolution products of the scaffolds.  We found using 

immunofluorescence, qRT-PCR, immunological and enzymatic assays that MC3T3-E1 

pre-osteoblast cells differentiated into mature bone producing osteoblasts, and BMD pre-

cursor cells matured into active osteoclasts, demonstrating potential for TAMP scaffolds 

utility in bone tissue regeneration.   

Further analyses of the scaffolds were performed to determine the mechanism by 

which cells were sensing their substrate.  Using two different types of bioactive glasses, 

we showed that substrate morphology was influential to the response of the cells.  

Further, we demonstrated that differences in glass morphology resulted in subtle yet 

potentially influential differences in the morphology of hydroxyapatite layer that forms 

on the surface of the glass after incubation in physiological solutions. Surface 

morphology from either glass itself or HA in-turn influences the conformation of proteins 

adsorbed to the surface.  It is likely that these differences in protein conformation direct 

cellular response.   

Finally, we explored the potential use of TAMP scaffolds for growing cells more 

naturally and for soft tissue regeneration since the porosity of the scaffolds makes them 

similar to a porous membrane providing fluid / nutrient exchange to cells from all sides, 

and providing specific topographical cues to the cells.  In these studies, we used uterine 

endometrial cells isolated from tissue biopsies to analyze whether the features of the 

TAMP scaffolds would allow the cells to grow more naturally or polarized in culture.  
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We found that both epithelial cells and stromal cells from the tissue digests grow on the 

TAMP scaffolds; however, additional analyses are necessary to determine whether 

polarization is occurring (see below).  In addition, keratinocytes and dermal fibroblasts 

isolated from human skin tissue samples were also shown to grow on the surface of the 

TAMP scaffolds.  Further analyses are required to investigate how the TAMP scaffold 

may be used for burn wound healing. 

 

5.2 – Future directions 

There are several avenues that can be taken based on the data collected from the 

studies described here.  Although the most comprehensive analysis was performed for 

bone tissue regeneration, making it the most promising application, the complexity of the 

next step in analysis might interfere with progress along this path.  Moving to using 

animal models is the next logical step for the bone tissue analysis, and although we have 

already performed some in vivo tests through collaborators in Egypt with promising 

results [66], this type of analysis in the U.S. is not as simple.  Significant funding, 

training, and approval would be required to initiate animal testing locally.  Rather there is 

significant potential for progress on the skin project that can be done with somewhat 

readily available supplies to further investigate the use of TAMP scaffolds for skin 

regeneration.   

As stated in section 4.3, there is a lack of effective material available to surgeons 

that promotes keratinocytes to grow as a top layer over proliferating dermal fibroblasts.  

This creates a real problem, as a portion of the wound fibroblasts become myofibroblasts, 

a necessary step in the wound healing process that may become hyperactivated resulting 

in severe scaring and contraction.  Dr. Sigrid Blome-Eberwein is very enthusiastic about 

this project and frequently has skin tissue samples that are donated to Lehigh for research 

purposes.  She is conveniently located just 20 minutes away at Lehigh Valley Health 

Network Regional Burn Center making progress on this project feasible.  Since we know 

that both keratinocytes and dermal fibroblasts grow on the basic 70 mol% SiO2 -30 

mol% CaO TAMP scaffolds, the next step would be to modify parameters to develop 2 
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unique scaffolds that would each select for one cell type.  Parameters of the scaffolds that 

can be changed include chemistry or pore size using methods established by Ukrit 

Thamma. These analyses can be performed using the established immunofluorescent 

staining protocol for vimentin and cytokeratin described above (section 4.3.3.2).  Once it 

has been confirmed that the different cell types preferentially grow on different scaffolds, 

the next analyses that could be performed would examine deposition, orientation, and 

organization of extracellular matrix proteins such as fibronectin and collagen for dermal 

fibroblasts and laminin for keratinocytes [123].  Analyses of the organization of these 

extracellular matrix proteins will be critical since this is known to influence scar 

formation.  Parallel bundles of collagen are seen in the scar tissue of regenerated skin 

compared to the interwoven matrix observed in normal skin tissue [123, 124].  

Additionally, analysis of the expression of certain types of cell-matrix adhesion 

complexes should be done, for example hemidesmosomes establish attachment of 

keratinocytes to the laminin basement membrane whereas several different integrins are 

involved in fibroblast attachment during wound healing [125, 123, 126].  Furthermore, 

analyses of the expression of α-smooth muscle actin could be performed to determine 

what portion of the fibroblast population become myofibroblasts [127-129]. 

Although the stiffness of the TAMP and pelleted TAMP scaffolds makes them not 

likely to be useful in wound healing due to their inflexibility, they should be used for the 

ease of imaging during initial studies.  Once it has been determined that scaffolds with 

different parameters select for one cell type over the other, it will be necessary to find a 

means of producing the scaffolds in a flexible form.  For example, it is possible to spin 

the glass pre-cursor into a fiber to make a fibrous pad [130, 131] that could be packed 

into the wound.  Another potential method to make the TAMP more functional for this 

application would be to use the TAMP scaffolds in powder form.  For example, cells 

isolated from tissue digests would be incubated with powder of one type to selectively 

bind the dermal fibroblasts, followed by incubation with powder to selectively bind the 

keratinocytes.  Then the first powder with cells would be packed into the wound followed 

by the second powder.  It might be necessary to separate the two powders using for 

example, a thin membrane that would dissolve away over time.  Ukrit Thamma has 
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already established protocols for grinding and sieving the glass to a particular particle 

size.  This avenue for TAMP scaffolds research in my opinion has the most potential, 

with a variety of changes that can be done to the parameters of the scaffolds and a fruitful 

supply of tissue samples from the Lehigh Valley Hospital collaboration. 

The in vitro fertilization project can also be taken in a few different directions. 

This project has proven to be difficult as the samples are prone to contamination despite 

being cultured with penicillin / streptomycin and because sometimes samples do not grow 

in culture.  In addition to these complications, the number of cells isolated from a tissue 

sample allows for seeding a maximum of one well from a 24-plate with a TAMP scaffold 

and two additional wells with 12 mm coverslips, making it difficult to analyze more than 

one aspect of the cells per tissue digest.  With the hospital located more than an hour 

away and only performing surgeries on Wednesdays, it becomes somewhat difficult to 

get adequate samples for analyses.  Nevertheless, there is valuable information that can 

be learned from these studies.   

Additional analyses are required to determine whether or not cells are polarizing 

on the surface of the TAMP scaffolds.  For example, imaging by SEM or using protein 

markers such as villin to demonstrate that microvilli are forming on the surface of the 

cells.  Analysis for tight junction formation using ZO-1, claudin, or occludin  antibodies 

and imaging by confocal microscopy to show that tight junctions are forming near the 

apical side of the cells [132] could be done also to show that cells are polarized. Secretion 

of certain factors could be monitored as well to determine whether or not cells are 

polarizing or growing more naturally.  For example, PGF2a secretion by uterine epithelial 

cells is an indication of polarization [113], interleukin-1α is secreted by uterine 

endometrial epithelial cells to stimulate stromal cells to differentiate during 

decidualization / implantation [133], and granulocyte macrophage-colony stimulating 

factor secretion may be associated with improved IVF outcome [134].  Secretion analyses 

could be performed by using inserts designed for membrane studies.  By cutting out the 

membrane from the insert using a razorblade and sanding the edges of TAMP scaffolds to 

make it fit into the plastic insert, followed by sealing the scaffold in place with aquarium 

silicon (Figure 29), one could create the separate compartments necessary for secretion 
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studies.  If cells are found not to be polarizing on the TAMP scaffolds, parameters of the 

scaffolds can be modified to hopefully promote polarization.  If polarization occurs, other 

cell types that also polarize should be analyzed to determine if the TAMP scaffolds have 

the same effect for cells from other tissues, and also to aid in exploring other potential 

applications, e.g. airway epithelial or intestinal cells.    

To establish whether the TAMP scaffolds may be useful in designing a new AEC 

protocol to enhance the efficiency IVF, analyses should be performed using mouse 

embryos.  These can be purchased from Embryotech and analyzed to determine whether 

they are developing more efficiently on the TAMP scaffolds than a regular tissue culture 

plastic dish.  These analyses can be performed using already established protocols from 

the Abington Reproductive Medicine group.   

 

5.3 – Figure 
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Figure 29: Cell culture inserts with TAMP scaffolds in place of membranes 

Membranes were removed from the insert using a razorblade.  TAMP scaffolds were 

polished to make them thin and smaller in diameter so they would fit in the inserts, then 

sealed in place using silicon aquarium sealant.
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th
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-2016 Spring- (February 9
th
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-2013 Fall- Bios 116- Core II: Genetics lab 

                           -2013 Spring- Bios 041- Core I: Cellular and Molecular Biology  

-2012 Spring- Bios 041- Core I: Cellular and Molecular Biology        
    

 

Fellowships      -Marjorie Nemes Fellowship – Lehigh University – Summer 2015 

And Awards    -ATCC Photo contest – Most popular photo award – 2015 
-Graduate Student Spotlight – Lehigh University Department of 

Biological Sciences – Fall 2015 
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          The role of substrate nano-structure on cell behavior 

Tia J. Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,                                   

Matthias M. Falk 

 

-2016- HHMI – BDSI – Bioconnect - RARE - Invited Talk  

                  July 14
th

: Lehigh University 

Anatomy of a Poster: Creating an effective scientific poster 

Tia J. Kowal 

 

-2015- Materials Science and Technology - Invited Talk 

        October 6
th

: Columbus, OH 

          The role of substrate nano-structure on cell behavior 

Tia J. Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,                                   

Matthias M. Falk  
  

-2015- HHMI – BDSI - Invited Talk  

July 23
rd

: Lehigh University 

Anatomy of a Poster: Creating an effective scientific poster 

Tia J. Kowal 

 

-2015- Biological Sciences Graduate Student Seminar series 
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th

: Lehigh University 

Cell-bioactive glass scaffold interactions: Biological response 

to chemistry and topology  

Tia J. Kowal 
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th
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Biological characterization of “Tailored Amorphous Multi-
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Symposium 2: Glasses in Healthcare – Fundamentals and 

Applications 

Cell-Bioactive glass interactions: The role of substrate nano-

structure  

Tia J. Kowal, Tanuj Chokshi, Roman Golovchak, Matthias M. 
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Control of Nano/Micro Structure of Bioactive Glass and Its 
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Roman Golovchak, Tanuj Chokshi, Tia J. Kowal, Matthias M 

Falk, Himanshu Jain 

 

-2012- Innovations in Biomedical Materials (Invited talk-   
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          Sept 10
th

: Raleigh, NC 

Three Dimensional Scaffolds for Tissue Regeneration I 

Performance of silicate TAMP bioscaffolds 

Tia Kowal, Jutta Marzillier, Matthias Falk, Manal Saad, 

Mona Marei, Ukrit Thamma, Christine LaPorte, Himanshu 

Jain 

 

-2012- ACerS-Glass and Optical Materials (Presented by Co-

Advisor) 

          May 22
th

: St. Louis, MO 

Session 4: Glasses for Biomedical Applications 
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In vitro and in vivo response of tailored amorphous multi 

porous (TAMP) bioscaffolds 

Manal Saad, Mona Sabry, Mona Marei, Shaojie Wang, Tia 

Kowal, Jutta Marzillier, Matthias Falk, Himanshu Jain 

 

 

Professional      - American Society of Cell Biology – Member since 2010 

 Affiliations       - Materials Research Society – Member since 2011  

- Biomedical Engineering Society – Member since 2012 

- Sigma Xi – Member since 2014 
- Women In Science & Engineering – Member since 2014 

 

Professional       -2010-American Society of Cell Biology Meeting 

Conferences                    Dec 10-15
th

: Philadelphia, PA 

                                 -2011-Materials Research Society Meeting 

                                                Nov 27-30
th

: Boston, MA 

                                 -2012-Delaware Membrane Protein Symposium: COBRE 

                                                May 14
th

: Newark, DE 

                                 -2012-Biophysical Society Pennsylvania Network Meeting 

                                                Sept 14
th

: Bethlehem, PA 

                                 -2012-Biomedical Engineering Society Meeting 

                                                Oct 24-27
th

: Atlanta, GA 

                                 -2013-Delaware Membrane Protein Symposium: COBRE 

                                                April 22
nd

: Newark, DE  

                                 -2013- Materials Research Society Meeting 

                                                Dec 1-6
th

: Boston, MA 

                                 -2014- BMES: Cell and Molecular BioEngineering Meeting 

                                                Jan 7-11
th

: La Jolla, CA 

                                 -2014- American Society for Cell Biology Meeting 

                                                Dec 6-10
th

: Philadelphia, PA 

-2015- Materials Science and Technology 

                                                Oct 5-8
th

: Columbus, OH 

 

 

Poster                -2010-Graduate School open house poster presentation 

Presentations              Oct 16
th

: Lehigh University 

-2011-Materials Research Society Meeting Poster Presentation 

                                           Nov 29
th

: Boston, MA - Session KK 

Role of Nanoporosity on the performance of Bioactive Nano-  

Macro Dual-Porous Glass Scaffolds 

Shaojie Wang, Tia Kowal, Ahmad Rashad, Mona Marei,   

Matthias Falk, Himanshu Jain  
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-2012-Graduate School open house poster presentation 

Jan 26
th

: Lehigh University 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang, Jutta Marzillier, Paulina 

Krzyszczyk, Himanshu Jain, Matthias Falk 

-2012-IMI Day and NSF Site Visit Poster Presentation 

                                           Sept. 13th: Lehigh University 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang, Jutta Marzillier, Paulina 

Krzyszczyk, Himanshu Jain, Matthias Falk 

-2012-Biomedical Engineering Society Meeting Poster Presentation 

                                           Oct 24-27th: Atlanta, GA- Novel Biomaterials/Scaffolds 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang, Jutta Marzillier, Paulina 

Krzyszczyk, Himanshu Jain, Matthias Falk 

-2013-Graduate School open house poster presentation 

Feb 4
th

: Lehigh University 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang,  Jutta Marzillier, Paulina 

Krzyszczyk, Himanshu Jain, Matthias Falk 

-2013-College of Arts and Sciences poster presentation 

                     March 25
th

: Lehigh University 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang, Jutta Marzillier, Paulina 

Krzyszczyk, Himanshu Jain, Matthias Falk 

         -2013-Thought and Action: 2013 Academics Symposium 

                     April 4
th

: Lehigh University 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang, Jutta Marzillier, Paulina 

Krzyszczyk, Himanshu Jain, Matthias Falk 

       -2013-Materials Research Society Meeting Poster Presentation 

                     Dec 5th: Boston, MA – Session H 

Biological Characterization of TAMP Scaffolds for Hard    

Tissue Regeneration 

Tia Kowal, Shaojie Wang, Jutta Marzillier, Mona Marei, 

Himanshu Jain, Matthias Falk 

-2014-Graduate School open house poster presentation 

Jan 3
th

: Lehigh University 
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Cell-bioactive glass scaffold interactions: The role of substrate 

nano-structure 

Tia Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,    

Matthias M. Falk 

         -2014- BMES: Cell and Molecular BioEngineering Meeting Poster  

                                            Jan 7-11th: La Jolla, CA 

Cell-bioactive glass scaffold interactions: The role of substrate 

nano-structure 

Tia Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,    

Matthias M. Falk 

-2014- Lehigh University Biological Sciences Undergraduate    

          Research Symposium Poster Presentation (presented by 

undergraduate) 

         April 10
th

: Lehigh University 

          Osteoblast-Osteoclast Co-culture investigations on TAMP      

          Scaffolds for Hard Tissue Regeneration  

          Natalie Hahn, Tia Kowal, Himanshu Jain, Matthias M. Falk 

                               -2014- Lehigh University Biological Sciences Undergraduate    

          Research Symposium Poster Presentation (presented by 

undergraduate) 

       April 10
th

: Lehigh University 

          MC3T3-E1 Preosteoblasts respond differently to 45S5   

          Bioglass Samples Varying in Nanostructure 

Tanuj Chokshi, Tia Kowal, Roman Golovchak, Himanshu 

Jain, Matthias Falk  

-2014- American Society for Cell Biology Poster Presentation 

          December 9th: Philadelphia, PA 

          Cell-bioactive glass scaffold interactions: The role of substrate  

          nano-structure 

                                           Tia J. Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,   

                                           Matthias M. Falk  

-2015-Graduate School open house poster presentation 

Jan 29
th

: Lehigh University 

Cell-bioactive glass scaffold interactions: The role of substrate  

          nano-structure 

                                           Tia J. Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,   

Matthias M. Falk 

-2015- Lehigh University Biological Sciences Undergraduate    

          Research Symposium Poster Presentation (presented by 

undergraduate) 

         April 21
th

: Lehigh University 

          An In vitro bone model for tissue regeneration  

          Natalie Hahn, Tia Kowal, Himanshu Jain, Matthias M. Falk 
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-2015- Lehigh University College of Arts and Sciences 

Undergraduate Research Symposium Poster Presentation 

(presented by undergraduate) 

         April 29
th

: Lehigh University 

          An In vitro bone model for tissue regeneration  

          Natalie Hahn, Tia Kowal, Himanshu Jain, Matthias M. Falk 

-2016-Graduate School open house poster presentation 

Feb 4
th

: Lehigh University 

Cell-bioactive glass scaffold interactions: The role of substrate  

          nano-structure 

                                           Tia J. Kowal, Tanuj Chokshi, Ukrit Thamma, Himanshu Jain,   

Matthias M. Falk 

-2017- Lehigh University College of Arts and Sciences 

Undergraduate Research Symposium Poster Presentation 

(presented by undergraduate) 

          April 20
th

: Lehigh University 

          Identification of Skin and Endometrial Marker Proteins to   

          Distinguish Between Cell Types Growing on TAMP Scaffolds 

      Jannah Wing, Tia Kowal, Himanshu Jain, Sigrid Blome-  

       Eberwein, Steve Somkuti, Matthias M. Falk 

-2017- Lehigh Valley Molecular and Cell Biology Symposium  

            Undergraduate Research Symposium Poster Presentation 

(presented by undergraduate) 

          April 27
th

: DeSales University 

          Identification of Skin and Endometrial Marker Proteins to   

          Distinguish Between Cell Types Growing on TAMP Scaffolds 

      Jannah Wing, Tia Kowal, Himanshu Jain, Sigrid Blome-  

       Eberwein, Steve Somkuti, Matthias M. Falk 

 

 
   Undergraduates 

Persons                   -2011 to 2012- Paulina Krzyszczyk – Bioengineering Student    

Mentored    -2011 Spring- Diego Liriano – Biology Student 
-2012 to 2014- Natalie Hahn – IDEAS student                           
-2013 to 2014- Tanuj Chokshi – Biology student    

 -2016 to 2017- Jannah Wing – IDEAS student 

 
Visiting Scientists 

 -Fall 2011 - Jui Chakraborty - India 

-Spring 2011- Ahmad Rashad - Egypt 

 -Spring 2011 - Di Zhang - Finland 
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Community          -2017 PA DNA day ambassador and organizer – Liberty High 

Outreach                 School – DNA repair module – April 25, 2017 

 

-2017 Broughal Middle School Bio Fair volunteer –Protein synthesis     
   and trafficking station – March 21, 2017 

 

-2016 Judge for Third Annual Allentown School District Science 

Fair –June 2, 2016 

 

-2016 GRAD Experience–The Cell: How cells communicate to one     

    another–May 23
rd

 Alumni Weekend 

 

-2016 Broughal Middle School Bio Fair volunteer –Protein synthesis    

             and trafficking station – March 23, 2016 

 

-2016 PA DNA day ambassador and organizer – Liberty High 

School - Personalized medicine module – April 26, 2016 

 

-2015 Judge for Second Annual Allentown School District Science  

             Fair –May 28, 2015 

 

-2015 Broughal Middle School Bio Fair volunteer –Protein     

    synthesis and trafficking station – March 20, 2015 

 

         -2014 Broughal Middle School Bio Fair volunteer –Protein synthesis    

             and trafficking station – March 15, 2014 

 

        -2014 AAUW bookfair – science book pricing and sale     

            

           -2014 Allentown School District Science Fair Judge 

 

 


