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ABSTRACT 

The Role of OsWRKY71 and Its Interacting Proteins in Seed Germination               
and Early Growth of` Cereal Grains 

 
By  

Margaret J. Shin 

Dr. Jeffery Q. Shen, Examination Committee Chair 
Associate Professor of Life Sciences 

University of Nevada, Las Vegas 
 

 During seed germination and early seedling growth, complex molecular and 

physiological events occur in rice (Oryza sativa) and other cereal grains. As the seed 

transitions to vegetative tissue, it responds to both favorable and unfavorable 

environmental conditions and is vulnerable to attack by predation and disease. Although 

seeds are relatively small and tender in size, extensive and sophisticated molecular 

networks enables the immobile seed to grow, survive and adapt in its environment. One 

of the networks I am interested in is in the crosstalk between the gibberellin (GA) and 

abscisic acid (ABA) signaling pathways. These pathways are interesting because they are 

largely antagonistic. GA is a hormone that generally promotes germination and growth-

related processes while ABA, also a hormone, promotes seed dormancy and represses 

growth. Although a great deal of research has been dedicated towards understanding 

these two pathways, the actual mechanism of crosstalk during seed germination is less 

understood. Any deficiencies in GA and ABA regulation and response may result in 

altered interpretation of environmental signals and aberrations in seed development and 

germination, leading to lower grain yields. My research is dedicated towards deciphering 

the specific role of Oryza sativa WRKY71 (OsWRKY71; amino acid W-R-K-Y) and 

harpin-induced1-like (HIL) members in the crosstalk between GA and ABA in rice, with 
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the goal that this research will be used to improve cereal grain yield in areas of the world 

with limited plant productivity.  

The crosstalk between GA and ABA directs the synthesis of α-amylase, which is 

an enzyme that breaks down starch in seeds to provide energy for germination. 

OsWRKY71 was shown to be a transcriptional regulator of α-amylase and was regulated 

by both GA and ABA in barley. In this study, I have provided a model of the regulation 

of OsWRKY71 in seed germination in rice. Although it was previously determined that 

OsWRKY71 negatively regulated α-amylase, I show that it positively regulated not only 

germination but also root growth. To support this, I performed seed germination and root 

elongation assays using knockout mutants of OsWRKY71. Mutant analysis determined 

that germination in oswrky71 was delayed for approximately 1 day and was able to 

recover from the delay. Additionally, after 4 days, oswrky71 seedling roots were nearly 2 

cm shorter than wildtype (wt), suggesting that OsWRKY71 may regulate other aspects of 

plant development. This is further supported by analysis of β-Glucuronidase (GUS) 

reporter expression of OsWRKY71p-GUS, which indicated that OsWRKY71 was localized 

to the third node of rice culms. Thus, the function of OsWRKY71 appears to be more 

complex and versatile than predicted.  

To further understand the mechanism of OsWRKY71 regulation in rice seed 

germination, I investigated the role of one of its interacting partners, Oryza sativa harpin-

induced1-like 58 (OsHIL58). Using rice aleurone RNA-sequencing data, I found that 

OsHIL58 was induced upon ABA treatment. Thus, the two proteins may interact during 

ABA induction. I also annotated the HIL family using in silico methods and identified 

several other HIL members that were differentially and significantly expressed in the 
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aleurone. One member, OsHIL16, was highly expressed and also coexpressed with an 

ABA receptor, regulatory component of ABA receptor 9 (RCAR9). Surprisingly, both 

were repressed by ABA, suggesting that they be involved in the same pathway in the 

aleurone aside from OsWRKY71 regulation. From this annotation, I also identified and 

compiled a large family of 104 unique HIL members expressed in various rice tissues. A 

classification system was designed based on the presence of several conserved amino 

acid motifs: NPN, RPP, and YQYF. Most HIL members, including OsHIL16 and -58, 

were Group I members with all three motifs present. These and further analyses suggest 

that HILs may have multiple roles in plant development, including in seed germination.  
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CHAPTER 1 

OVERVIEW 

 

Seed Germination 

Introduction  

Seed germination in angiosperms, or flowering plants, is a complex and diverse 

process. The process of germination is governed by many factors, including 

environmental conditions such as light and water availability, physical barriers on the 

seed, and intrinsic regulation within the seed. Diversity arises due to the distinct 

combination of these elements each species may require for this process to occur: the 

amount of water, cold or warm temperature, and light intensity or shade, for instance. I 

am interested in the endogenous regulation of seeds in response to their environment, in 

essence, to better understand the molecular control regarding seed germination. To 

illuminate on this process, I used rice, an important food staple, as a model organism to 

understand development in cereal crops, in general.  

 

What Is Seed Germination? 

 Seed germination begins when a quiescent, dry seed responds to favorable 

conditions, mainly light (Schwechheimer and Willige, 2009; Lau and Deng, 2010); 

temperature (Heggie and Halliday, 2005; Penfield et al., 2005); and nutrient availability, 

moisture, and oxygen (Linkies and Leubner-Metzger, 2012). As an initial response, seeds 

will allow water to pass through previously developed seed barriers, enabling cellular 

activity to be resumed (Linkies and Leubner-Metzger, 2012). The entrance and uptake of 
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water, also called imbibition, results in metabolic activity. This includes protein 

translation of stored mRNAs (Weitbrecht et al., 2011), mobilization of storage proteins 

(Tan-Wilson and Wilson, 2012), and the transport of stored nutrients and energy reserves 

from various parts of the seed to provide vigor for cell expansion, division, and 

development (Bewley 1997; Finkelstein et al., 2008). These activities climactically lead 

to the growth and transition of the seed to vegetative development (Suzuki and McCarty, 

2008). As seed tissues and layers swell due to imbibition, primary tissue from the part of 

the seed called the embryo will subsequently develop, elongate, and penetrate through the 

weakened seed coverings. The primary tissue to break through is generally the radicle or 

embryonic root (Bewley 1997; Finkelstein et al., 2008; Linkies and Leubner-Metzger, 

2012), but in some cases, the coleoptile, the tissue that covers the shoot, will emerge first 

(Kordan 1977). In this respect, it is evident that although metabolic activity occurs, seed 

germination is, by definition, successful and complete only when a visible tissue is able 

to emerge from the embryonic axis (Bewley 1997). 

 

The Importance of Seed Dormancy 

 In many respects, seed germination may not occur unless there is an allotted 

period of seed dormancy. Seed dormancy normally begins while the seed is still 

developing on the mother plant, where it will start to accumulate nutrient and protein 

reserves, and thereafter, initiate processes linked to dehydration (Finkelstein et al., 2008). 

During this course, regulators will be set in place to ensure that spontaneous germination 

does not occur while the seed is still maturing on the head of the plant, an agronomic 

issue known as vivipary or pre-harvest sprouting (Gubler et al., 2005). Once the seed has 



 3 

been developed and released, it will be able to survive for prolonged periods of time even 

in harsh environments. Lending to its low water content, desiccation tolerance, and robust 

seed coat structure, seeds may be dispersed far-distance, allow for the persistence of a 

species in the local habitat (Linkies and Leubner-Metzger, 2012), decrease competition 

between individuals of the same species, and prevent germination out of season 

(Finkelstein et al., 2008).  

By definition, then, seed dormancy is the blockage of seed germination, even 

under environmental conditions that would otherwise be favorable for growth 

(Finkelstein et al., 2008; Bewley 1997; Linkies and Leubner-Metzger, 2012). This is 

primarily caused by the presence of dormancy factors, which may need to be removed or 

perturbed. These factors may include external constraints of the seed or endogenous 

regulation within the seed, particularly within the embryo or surrounding layers. For 

instance, the outer layer of the seed, also called the husk or seed coat, may physically 

prevent water uptake. Seeds may need to undergo scarification or be broken down, which 

usually occurs due to normal existence in the natural environment. Hence, modification 

of the seed coat will allow for the penetration of water and nutrients readily into the seed 

(Finkelstein et al., 2008; Bewley 1997). Still, even with these physical changes, 

germination may be prevented internally, for example, by the synthesis of hormones. 

Hormones may repress gene expression and molecular processes linked to growth. 

Therefore, a change in hormone balance is necessary for the release of molecular 

repression. For instance, a period of cold weather, or stratification, may alter the hormone 

balance inside of the embryo of the seed, allowing it to survive through the winter and 

preparing it to germinate in the spring (Kucera et al., 2005). Seed germination is, 
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therefore, not only dependent on favorable environmental conditions but also the release 

of dormancy, which is dependent on seed maturation and desiccation completion, 

decomposition of the seed coat, and internal regulatory changes. 

 

Rice as a Model Organism 

Rice is an important cereal crop and a food staple for nearly 3 billion people 

around the globe, close to half of the world’s population (Marathi et al., 2012). As with 

other crops, the challenge is to produce rice varieties with higher yield potential and 

greater yield stability (Khush 2005), especially by virtue of sustainability issues 

concerning nutrient depletion in the soil, salt increases due to land overuse, and the 

buildup of insects, weeds, and diseases (Fujisaka et al., 1994).  

The rice plant is a member of the grass family, Poaceae or Gramineae. It is a 

tropical, annual grass that may grow up to about 3-6 ft, or 1-1.8 m, in height and produce 

hundreds to thousands of seeds per plant (World Crops Database). The general conditions 

for growing rice includes the following: a high moisture level, or a relative humidity of 

about 60-80%; long day conditions, for instance, 14h day/10h nights; and sufficient 

amounts of water. About 1,432 L of water is needed to produce 1 kg of rice, which is 

more than wheat, maize (Velázquez 2007), and barley (Bouman 2009). Therefore, rice 

grows best in paddy fields or submerged in water and is generally tolerant to flooding. On 

the other hand, a warm atmosphere, 24°C, will generally suffice, and plants may thrive 

given low levels of oxygen, particularly during seed germination and seedling growth 

(Magneschi and Perata, 2009).  
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As a model organism, rice is an ideal plant used to study many aspects of plant 

pathology and development. In particular, research in rice has contributed to the 

understanding of mechanisms regarding plant response to abiotic factors such as cold, 

heat, drought, salinity, waterlogging, soil toxicity, mineral loss, heavy metal 

accumulation, and herbicide treatment, to name a few (Khong et al., 2008; Witcombe et 

al., 2008; Santos et al., 2011). It has also been important in uncovering the modes of 

plant disease recognition, response, and resistance (White et al., 2009; Liu et al., 2010). 

This is impart supported by research of certain rice diseases such as bacterial blight, a 

vascular disease caused by Xanothomonas oryzae (Yang et al., 2006) and rice blast, 

fungal lesions in tissues caused by Magnaporthe grisea and its related species (Zhu et al., 

2000). Both abiotic and biotic stress affects the plant’s health, overall height, and 

production of a favorable number of reproducing stems, also called tillers. It may also 

increase the chance of pre-harvest spouting, poor seed development, or loss of seed vigor 

in major cereal crops. These implications result in significant grain loss, for instance, 

50% in rice due to biotic factors (Bandyopadhyay and Sanyal, 2011) and up to 100% in 

severe abiotic stress, 40% in maize due to drought (Castiglioni et al., 2008), and 70% due 

to abiotic stress in crops, in general (Xiao et al., 2007). This has led to considerable 

progress over the years encompassing advances in generating, breeding, and enhancing 

resistance in plants (Witcombe et al., 2008; Ahmad et al., 2012). With the availability of 

the rice genome, many functional genomic resources and global expression profiles 

(Jiang et al., 2011), and large proteomic resources and protein databases (Kosova et al., 

2011), are made available. This makes rice an ideal organism to use to decipher complex 

networks surrounding plant development and its response to the environment, in hopes to 
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further improve grain yields in rice and many other cereal crops, including corn, wheat, 

barley, oats, millet, sorghum, buckwheat, rye, and quinoa. 

 

Hormone Signaling Pathways that Regulate Seed Germination 

Introduction 

Hormones are one of many chemicals plants use to perceive stimuli from their 

surroundings. A stimulus may induce the synthesis of hormones or change the 

concentration of hormones, which then has the potential to regulate multiple signaling 

pathways. These lead to altered gene and protein expression, metabolism, and other 

cellular changes. Often called phytohormones, about 13 major classes of non-peptide 

hormones and growth regulators exist and are synthesized by the plant, all which have 

distinct and similar roles in plant development; many have been shown to be involved in 

seed germination. Some of these include abscisic acid (ABA), gibberellic acid (GA), 

ethylene, jasmonic acid (JA; Linkies and Leubner-Metzger, 2012), auxin (IAA), 

cytokinin (CK; Chiwocha et al., 2005), nitric oxide (NO; Bethke et al., 2006), salicylic 

acid (SA; Rajjou et al., 2006), and brassinosteroids (BR; Steber and McCourt, 2001; 

Chen et al., 2004). Of these phytohormones, the antagonistic role of GA and ABA in 

seed germination is well known. GA is primarily associated with germination or growth, 

while ABA is linked to seed dormancy or growth inhibition. Although multiple hormones 

influence seed germination, I am particularly interested in the crosstalk of the signaling 

pathways regulated by GA and ABA in rice. 
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The Roles of GA and ABA in Seed Development and Germination 

An important endogenous determinant to the timing of seed germination is the 

hormonal balance between the amounts of GA and ABA within the seed, notably within 

the embryo. The ratio of GA to ABA shifts over time and is altered by environmental 

stimuli.  

When seeds are developing on the mother plant, the level of ABA is important. 

Typically, ABA accumulation is low during the early stages of development, is greatest 

during mid-development and when storage reserves are being synthesized, and declines 

as the seed matures and dries (Bewley 1997). ABA is, therefore, a positive regulator of 

seed dormancy and an inhibitor of seed germination in maturing seeds (Kucera et al., 

2005). When seeds are dried for a prolonged state, such as during air-dry storage at 

ambient temperature, an effect called after-ripening occurs. During this stage, there is a 

transition of the seed from a dormant state to a non-dormant state, which decreases 

sensitivity to ABA. This is governed by catabolism of ABA by specific ABA 8’-

hydroxylases encoded by the cytochrome P450 monooxygenase (CYP707A) family 

(Finklestein et al., 2008, Kucera et al., 2005).  

A decrease in ABA levels may be required prior to an increase in GA levels and 

sensitivities. This decrease promotes the accumulation of the GA biosynthetic gene 

gibberellin 3-oxidase 2 (GA3ox2). Increased synthesis of GA may then promote 

degradation of ABA, as shown in lettuce seeds (Finklestein et al., 2008). The synthesis of 

GA may also increase during after-ripening, as the seeds are more sensitive to stimuli 

such as light and cold. To promote GA response, light signals, for example, may translate 

into hormones signals via the action of phytochromes, predominately phyA and phyB, 
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and cryptochromes, such as cry1 and cry2, which can directly sense different qualities of 

light (Seo et al., 2009; Lau and Deng, 2010). These then regulate transcription factors 

such as phytochrome-interacting factor 3-like 5 (PIL5)/PIF1, which integrates with GA 

signaling components, possibly by regulating DELLA degradation (Seo et al., 2009; Lau 

and Deng, 2010). Therefore, external processes may integrate with the GA pathway and 

modulate GA response, which will in turn, contribute to seed germination. Specifically, 

GA may stimulate the weakening of tissue barriers, the mobilization of seed storage 

reserves, and the expansion of the embryo. GA may also stimulate chromatin-remodeling 

factors such as PICKLE (PKL), which contributes to embryonic root growth and thereby 

transitions the seed to vegetative development (Finklestein et al., 2008).  

Shortly after the completion of seed germination, the levels of ABA have been 

shown to increase. In particular, ABA may be used to monitor water availability, respond 

to stress in the environment, and regulate the rate of seedling growth (Skriver and 

Mundy, 1990; Molina et al., 2001). The balance between GA and ABA appears, 

therefore, to be important throughout plant development. 

 

The GA Signaling Pathway 

GAs are plant growth hormones that are synthesized and active throughout a 

plant’s life cycle from seed germination, stem elongation, leaf expansion, flowering, and 

to fruit ripening, the most well known response being an increase in plant height when 

exogenous GA is applied (Daviere et al., 2008; Schwechheimer 2008; Schwechheimer 

and Willige, 2009). At the cellular level, GAs may stimulate cell division, differentiation, 

and elongation (Achard and Genschik, 2009). Hundreds of GAs have been identified and 
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collectively form a large family of tetracyclic, diterpenoid acids; however, only GA1, 

GA3, GA4, and GA7 are considered bioactive (Yamaguchi 2008).  

 GA signaling comprises of several steps: the perception of GA by a receptor, the 

action of secondary messengers, a change in transcriptional control, and an alteration in 

the expression of response genes. Two fundamental pathways have been deduced (Figure 

3-1). The general pathway begins with an initial perception of GA by a soluble receptor 

GA-insensitive dwarf 1 (GID1), which is homologous to hormone sensitive lipases in 

humans (HSLs; Ueguchi-Tanaka et al., 2005). Direct contact leads to interaction with a 

DELLA protein (conserved amino acid sequence D-E-L-L-A; Sun 2010), which is 

phosphorylated and targeted for degradation via the E3 ubiquitin ligase, S-phase kinase-

associated protein (Skp) Cullin F-box (SCF; Daviere et al., 2008; Schwechheimer 2008; 

Schwechheimer and Willige, 2009). DELLA degradation is central to this pathway, as 

this leads to the release of sequestered transcription factors, which can then promote GA 

response (Daviere et al., 2008; Schwechheimer 2008; Schwechheimer and Willige, 

2009). The regulation of DELLAs may also be an important in integrating the GA 

pathway with other signaling pathways, including crosstalk with ABA (Zentella et al., 

2007).  

The secondary pathway is hypothesized to occur during seed germination. It 

involves perception of GA by an uncharacterized plasma membrane receptor (Figure 3-

1). It has been reported that G-protein activation may be involved, which may lend to 

increases in calcium and calmodulin (CaM) activity (Lovegrove and Hooley, 2000). 

Calmodulin may interact with OsWRKY51 (Dr. Shen, unpublished), which would then 

lead to GA response.  
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The ABA Signaling Pathway 

ABA is a 15-carbon sesquiterpenoid carboxylic acid, similar in structure and 

biosynthesis to retinoic acid found in chordates (Xie et al., 2005). While GA promotes 

perpetuates growth and metabolism (Asad and Komatsu, 2006), ABA inhibits growth 

phase transitions and decelerates metabolism (Finklestein et al., 2008). Also, ABA 

mediates physiological responses to various stresses in plants including pathogen attack, 

high salinity, desiccation, hypoxia, cold, and wounding, to name a few (Raghavendra et 

al., 2005; Finklestein et al., 2008; Hubbard et al., 2010). It was also shown to aid in leaf 

abscission, to which its name was derived, stomatal closure, embryo development 

(Hubbar et al., 2010), and the coordination of ion-flux changes (Raghavendra et al., 

2005). Despite its adverse effects, it has been shown to work synergistically with other 

hormones to coordinate development, for instance, leaf size (Raghavendra et al., 2005).  

ABA signaling begins with the perception of ABA by a soluble receptor 

PYR1/PYL/RCAR (pyrabactin resistance 1/pyrobactin 1-like/regulatory component of 

ABA receptor), or RCAR for short (Figure 3-1; Raghavendra et al., 2005; Hubbard et al., 

2010). Other potential receptors, including membrane bound receptors, have been 

identified (Verslues and Zhu, 2007; McCourt and Creelman, 2008). Generally, the 

soluble receptor will bind to a co-receptor serine/threonine protein phosphatase type 2Cs 

(PP2Cs), such as ABA-insensitive 1 (ABI1), ABI2, and Hypersensitive to ABA 1 

(HAB1), leading to their deactivation (Raghavendra et al., 2005; Hubbard et al., 2010). 

Inhibition of PP2Cs subsequently activates protein kinases, specifically Open Stomata 1 

(OST1)/ sucrose-nonfermenting kinase1 (SNF1)-related protein kinase 2s (SnRK2s), 

which may phosphorylate and activate ion channels, additional secondary messengers, or 
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transcription factors such as ABI5 to direct ABA-related responses  (Raghavendra et al., 

2005; Hubbard et al., 2010). 

   

Seed Germination in Rice 

The rice seed consists of several basic parts, a covering or seed coat to protect the 

seed, an endosperm filled with starch to provide energy and nutrition for germination, 

and an embryo from where the vegetative tissue will grow and develop. Additionally, 

surrounding the seed but underneath the seed coat is a single layer of cells called the 

aleurone layer (Hoshikawa 1993), which aids in starch hydrolysis (Figure 1).  

In rice, seed germination begins with the uptake of water into living cells by 

aquaporins, namely OsPIP1;1, OsPIP1;2, OsPIP1;3 and OsPIP2;8, which regulates water 

flow and was found to be important for normal germination (Liu et al., 2007). Once water 

enters living cells, metabolic activity will increase or resume. GA will be biosynthesized 

in the embryo of the rice seed, and from there, it will mobilize to the aleurone layer 

where it is perceived by a receptor (Kaneko et al., 2002). This will activate the GA 

signaling pathway and lead to the expression and synthesis of α-amylase, which was 

previously repressed due to ABA regulation. Accumulated α-amylases will be secreted 

from the aleurone cells and into the endosperm where they may hydrolyze stored starch. 

As a result, the sugars may be used to promote vegetative growth of the embryo (Kaneko 

et al., 2002).  

The aleurone cells are also important in producing other hydrolases in addition to 

α-amylase. These include protease, phytase, phosphatase, lipase, RNase, esterase, 

peroxidase, catalase, β-glucosidase and α- and β-galactosidase (Palmiano and Juliano,  
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Figure 1-1. A model of seed germination in rice. (a) Before germination, ABA promotes 
seed dormancy. Under the right set of environmental conditions, including the removal of 
physical and endogenous dormancy factors, GA is synthesized in the embryo. (b) GA 
mobilizes to the aleurone layer where it will interact with GA receptors, and thus, initiate 
the GA signaling pathway. (c) In response, ABA-inhibition of α-amylase is removed and 
α-amylase is synthesized and secreted into the starchy endosperm, where it will (d) 
convert starch into sugars to be freely used as energy for embryonic development of (e) 
the primary root, also called the radicle, and then the coleoptile, from where the first leaf 
will emerge. During the early growth of the seedling, seminal roots, followed by crown 
roots will emerge, and additional leaves will begin to differentiate from the nodes of the 
developing shoot.  
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1973). Specifically, Palmiano and Juliano showed that phytase levels increased and 

coincided with oxygen uptake and ATP levels. Furthermore, an increased activity of 

lipase was present in the aleurone, which also stores lipids. Lipase activity appeared to 

increase prior to α-amylase activity, indicating that lipid metabolism in the aleurone may 

occur before the breakdown of the endosperm. Yet, despite the multitude of events that 

take place in the germinating rice grain, the role of α-amylases are fundamental, for the 

seed will depend on starch for energy until its depletion by the time the fourth leaf 

emerges. 

 

Protein Families Involved in This Study 

Introduction 

A small amount of hormone may initiate a network of downstream signaling 

cascades to promote global changes in gene regulation and protein expression to generate 

a particular cellular response. Many regulatory and response processes are due to the 

action of proteins. I am interested in several proteins in regards to their specific roles in 

seed germination. These proteins are members of the WRKY or HIL family, both of 

which have been shown to be involved in diverse physiological responses in plants.  

 

The WRKY Superfamily 

The WRKY superfamily is a large transcription factor family with diverse roles in 

plant development and physiological response. Of the 37 major transcription factor 

families in plants, the WRKY superfamily is one of the largest and may be found in both 

higher and lower plant species (Xiong et al., 2005; Riechmann et al., 2000). There are 



 14 

101 members in rice (Rushton et al., 2010) and 75 in Arabidopsis (Ulker and Somssich, 

2004). Members differ in sequence at large, but all possess a distinct DNA-binding 

domain containing amino acids W-R-K-Y-G-Q-K at the N-terminus and a zinc finger 

motif, CysX4-5CysX22-23HisXHis or CysX7CysX23HisXCys, at the C-terminus 

(Euglem et al., 2000; Ulker and Somssich, 2004; Ross et al., 2006; Rushton et al., 2010). 

Generally, WRKY transcription factors may bind to promoters of genes containing the 

sequence TTGAC(C/T), or the “W-box.” The coordination of Zn2+ (Xie et al., 2006) 

stabilizes the binding of the WRKY protein to this sequence (Rushton et al., 2010).  

Initially, many WRKY members were shown to respond to biotic stress, including 

fungal and bacterial pathogens, nematodes, and herbivores (Eulgem and Somssich, 2007; 

Pandey and Somssich, 2009; Rushton et al., 2010). More recent investigations identified 

roles of certain WRKY members in abiotic stresses such as salt, heat, osmotic, drought, 

cold, and high CO2 and ozone levels (Rushton et al., 2010). In regards to GA and ABA 

signaling, multiple WRKYs have been implicated in ABA-dependent abiotic and biotic 

stress signaling; some examples in rice include OsWRKY45, -24, -72, -77, -11, -25, and -

33 (Mauch-Mani and Mauch, 2005; Xie et al., 2006; Rushton et al., 2010). Only several 

WRKYs have been characterized in GA-mediated development, including OsWRKY24, -

51, and -71, (Rushton et al., 2010; Xie et al., 2006). WRKY members with roles in seed 

germination include the following: Arabidopsis thaliana WRKY 2 (AtWRKY2; Jiang 

and Yu, 2009), AtWRKY15, -53, and -70 (Cao et al., 2006), barley or Hordeum vulgare 

WRKY 38  (HvWRKY38; Xie et al., 2007, Salicylic Acid), TTG2 (Johnson et al., 2002), 

OsWRKY51 and -71 (Xie et al., 2006), ABA overly sensitive mutant 

(ABO3)/AtWRKY63; Ren et al., 2010), AtWRKY57 (Jiang et al., 2012), wheat or 
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Triticum aestivum WRKY6 (TaWRKY6; Guo et al., 2011), AtWRKY18, -40, -60 (Chen 

et al., 2010), OsWRKY72 (Yu et al., 2010), AtWRKY25 (Li et al., 2009), and 

AtWRKY39 (Li et al., 2010). Specifically, OsWRKY71, ~38 kDa, was found to regulate 

the expression of α-amylase in transient expression assays in barley (Zhang et al., 2004). 

In the present study, I further investigate the role of OsWRKY71 in plant development, 

particularly in seed germination and early seedling growth, in Chapters 2 and 3. 

 

The HIL Family 

 Although I describe this family as the HIL family herein, related proteins have 

been identified as HIN (harpin-induced; Gopalan and He, 1996), NDR (non-race-specific 

disease resistance; Dormann et al., 2000), or NHL (NDR1/HIN1-like; Varet et al., 2002) 

based on their roles in disease resistance. Few publications exist on individual members 

of this family. These include tobacco or Nicotiana tabacum HIN1 (NtHIN1; Gopalan and 

He, 1996), and NtHIN9 and -18 (Takahashi et al., 2004); AtNDR1 (Century et al., 1997; 

Dormann et al., 2000), AtNHL3 and -25 (Varet et al., 2002), AtNHL10 and related genes 

(Zheng et al., 2004); OsHIN1 (Kim et al., 2000); and oilseed rape or Brassica napus 

NHL18A (BnNHL18A; Lee et al., 2006). In most of these organisms, members were not 

linked to any particular family except in Arabidopsis, in which a total of 45 members 

were identified and described as the NHL family (Dormann et al., 2000; Zheng et al., 

2004). Since then, no particular reviews were found regarding this family, although 

references were found acknowledging the presence of a shared domain with a small 

subgroup of proteins in the late embryogenesis abundant (LEA) family called LEA14 

(Ciccarelli and Bork, 2005). In order to compile distinct members of the HIL family in 
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rice, I performed in silico analyses in the present study. Although not shown, I also 

updated the HIL family in Arabidopsis.  

Besides their roles in disease recognition, roles in other processes in plants are 

limited. HILs were induced by one or more of the following factors: harpin, SA, JA, 

(a)virulent bacterial and fungal pathogens, or polyamines such as spermine, which 

specifically induces the production of pathogenesis-related proteins (Takahashi et al., 

2004). NtHIN1, the first member found, was specifically induced by harpin, an elicitor 

produced by Erwinia amylovora (Wei et al., 1992), which causes fire blight in pear, 

apple, and other rosaceous plants (Gopalan and He, 1996). This suggested that related 

genes might also respond to pathogens. Interestingly, in rice, OsHIN1 was induced by 

rice blast, a common and potentially detrimental disease caused by Magnaporthe grisea  

(Kim et al., 2000). Further research suggested that HIL expression may mediate 

hypersensitive response or protection against a wide array of pathogens in other plant 

species, including Pseudomonas syringae (Gopalan and He, 1996; Dormann et al., 2000; 

Varet et al., 2002; Varet et al., 2003), Peronospora parasitica (Century et al., 1997), 

Cucumber mosaic virus (Zheng et al., 2004), and Tobacco mosaic virus (Takahashi et al., 

2004). Although, like WRKYs, members were initially discovered to play a role in biotic 

stress, it is possible that HILs may be also involved in abiotic stress or plant 

development. For example, BnNHL18A was induced by NaCl, ethephon, an ethylene 

derivative, and hydrogen peroxide, in addition to being induced by pathogen defense 

hormones SA and JA  (Lee et al., 2006). Furthermore, HILs share a common domain 

sequence with LEA14 proteins suggesting that they may have similar roles in osmotic 

stress (Ciccarelli and Bork, 2005). Although HILs were not previously found to mediate 



 17 

seed germination, in Chapter 5, I show that HILs may be involved in GA- and ABA- 

mediated seed germination.  

 Interestingly, despite limited information regarding the exact function of HILs in 

the cell, members of the HIL family were found to localize in the plasma membrane of 

cells (Varet et al., 2003; Lee et al., 2005). Protein localization in other parts of the cell 

were also discovered, for instance, retention in the endoplasmic reticulum (Lee et al., 

2006) and translocalization to the chloroplast, although the latter is subject to debate 

(Zheng et al., 2004). These suggest that a given stressor may alter the localization and 

function of HILs. A better understanding of the HIL family in its entirety will enable 

researchers to identify their unique and interesting roles in plant defense, abiotic 

response, and plant development.   

 

Conclusion 

Several key topics were introduced in this section including seed germination, 

hormone regulation, and the roles of WRKY and HIL members. My goal was to 

understand the function of one specific WRKY member, OsWRKY71, in GA- and ABA- 

mediated seed germination. Although OsWRKY71 has been studied in barley, its role in 

seed germination was not yet investigated in rice (Chapters 2 and 3). Furthermore, 

OsWRKY71 was linked to a member of the HIL family, from which another project was 

developed. For this second project, my goal was to annotate the HIL family in rice and 

then to identify HILs expressed in GA- and ABA-treated aleurone in rice seeds, to 

investigate their roles during seed germination (Chapter 4).  
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CHAPTER 2 

 SELECTION AND VERIFICATION OF OSWRKY71 MUTANTS 

 

Introduction 

To further understand the role of the WRKY superfamily in plant development, 

individual rice WRKY members were investigated such as OsWRKY71. To test whether 

or not OsWRKY71 had a role in seed germination, Zhang et al. (2004) performed 

transient expression assays in barley seeds. Specifically, UBI-OsWRKY71 was introduced 

in barley aleurone cells with GA- and ABA-inducible reporter constructs Amylase32b-

GUS and HVA22-GUS, respectively, using particle bombardment. After GUS 

quantification, Zhang et al. (2004) discovered that OsWRKY71 repressed GA-induced 

expression of Amylase32b-GUS 50-fold but not HVA22-GUS. Also, treatment with ABA 

increased OsWRKY71 expression, while GA slightly decreased its expression (Zhang et 

al., 2004; Xie et al., 2006). These suggested that OsWRKY71 might mediate the 

crosstalk between GA and ABA and have a specific role in the regulation of seed 

germination by repressing α-amylase.  

Additional discoveries followed showing that OsWRKY71 was able to regulate α-

amylase expression by 1) binding to the dual W-box core sequence in the Amylase32b 

promoter, 2) interrupting and preventing the major transcriptional activator Gibberellic 

Acid-Induced Myeloblastosis-like protein (GAMYB) from binding to the GA-response 

element (GARE) in a dosage-dependent manner, and 3) physically interacting with 

OsWRKY51 to enhance its repressive activity (Zhang et al., 2004; Xie et al., 2006). 

 Because these findings of OsWRKY71 in seed germination have been performed 
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using transient expression assays, I further addressed its role in rice mutants. Prior to 

analysis, rice mutant were obtained and verified. The main focus of Chapter 2 is to report 

my results regarding the verification of dSpm knockout mutants for OsWRKY71, which 

were obtained from Dr. Sundareson’s Lab, UC Davis, California (Kumar et al., 2005), 

and mutants that were produced in collaboration with Dr. Su May Yu’s lab in Academia 

Sinica, Taiwan. These include GUS reporter, overexpression, and dominant negative 

lines. In order to identify positive transgenic lines, PCR, qPCR, or chemical selection was 

performed.  

 

Materials and Methods 

Plant Materials  

 Transposon knockout lines for OsWRKY71, RdSpm1689 and RdSpm3171A (cv. 

Oryza sativa), were obtained from Dr. Sundareson’s Lab, UC Davis, California. Rice 

seeds were mechanically dehusked and sterilized with 10% commercial bleach (NaOCl) 

and 80% ethanol. Then seeds were germinated on moist filter paper at 23 ºC in a growth 

chamber under 14 h light/10 h dark cycles (light intensity: 450 µmol s–1 m–2) at a relative 

humidity (RH) of 60-80%. After 10 days, plants were transplanted in soil and watered 

daily. Every 5 days, the water was supplemented with 4 drops/L of Schultz Liquid Plant 

Food (Lowe’s, Product # 94652). Pots were rotated once every week to reduce position 

effects and unplugged for 2 days to cycle water. After a month, the pots were plugged 

with a rubber stopper and filled with water up to two inches above the soil level.  

For hygromycin or Basta selection, seeds were first dehusked and sterilized by 

rinsing in 80% ethanol for 1 min, sterile water for 1 min, and then in 10% commercial 
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bleach (NaOCl) and 80% ethanol. The seeds were then agitated on a Rotaflex apparatus 

for 30 min and rinsed. Finally, seeds were blotted on sterile filter paper before plating on 

1% agar plates containing 125 µg/ml Basta or 50 µg/ml hygromycin B in full-strength 

MS media adjusted to pH 5.6. Selection was finished after nine to ten days, and then the 

percent survival rates were calculated. 

 

PCR Genotyping   

PCR was used to screen for the insertion of dSpm in lines 1689 and 3171A. The 

leaves from 2-week-old seedling were used for genomic DNA preparation from plants 

using the CTAB/Chloroform:Isoamyl Alcohol Method (Stewart and Via, 1993). For 

standard PCR reactions, 4% (v/v) DMSO was used in GoTaq Reaction Buffers (Promega, 

Madison, WI). Primers were designed against gene- and transposon-specific primers and 

were synthesized by IDT (Integrated DNA Technologies; Table 2-1). PCR was 

performed using the following program: 94°C for 5 min; 10 cycles of 94°C for 1 min, 

64°C for 1 min (-1°C per cycle), and 72°C for 1 min and 20 s; 30 cycles of 94°C for 1 

min, 55°C for 1 min, and 72°C for 1 min and 20 s; and 72°C for 5 min. Digestion of the 

PCR products with EcoRI, PstI, and BamHI was used to confirm the insertion of the 

transposon. Some of the PCR products were sequenced to further verify the sequence of 

the inserts.  

 

Quantitative RT-PCR 

 Mature leaf tissue from rice plants were frozen in liquid nitrogen and ground in a 

mortar with a pestle. RNA was extracted from the frozen powder with the RNeasy Plant  
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Table 2-1. PCR primers used to verify dSpm knockout lines for OsWRKY71. 
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Mini Kit (Qiagen, Valencia, CA). To remove DNA, the TURBO DNA-free Kit (Applied 

Biosystems, Foster City, CA) was used. cDNA was synthesized using the standard 

procedure from the SuperScript III First-Strand Synthesis protocol (Invitrogen, Grand 

Island, NY).   

Primers were designed based on the sequences of the first exon and the 3’-UTR of 

OsWRKY71 (Table 2-1). Quantitative RT-PCR (qPCR) was performed using SYBR 

Green (Invitrogen, Grand Island, NY) according to the manufacturer’s instructions. The 

reactions were run on the iCycler Real-Time PCR Thermal Cycler (BioRad, Hercules, 

CA) using the following conditions: 94°C for 2 min; 40 cycles of 94°C for 15 s, 53°C for 

30 s, and 72°C for 30 s. The expression of OsWRKY71 was normalized to β-Actin, and 

the 2-ΔΔCt method (Livak and Schmittgen, 2001) was used to compare the expression of 

OsWRKY71 in dSpm knockout lines to wt samples. 

 

GUS Staining 

 Select rice tissues were harvested and sectioned. Seeds were first imbibed for 18 h 

in imbibing solution (20mM CaCl2, 20mM succinic acid pH 5.0) and sectioned 

longitudinally. Sections were transferred into a clean microtiter plate. To each microtiter 

well, 200µl of GUS stain (0.1 M Phosphate Buffer pH7.2; 20% methanol; 0.5 mM 

K3[Fe(CN)6]; 0.5 mM K4[Fe(CN)6] x 3H2O; 10 mM EDTA pH8.0; 1 mg/ml X-Gluc; 

0.5% Triton-X) was added. The tissues were vacuum infiltrated for 5 min to 1 hr and 

sealed. The plate was covered in foil and was agitated for 48 h at 37°C at 100 rpm. 

Sections were stored in 80% ethanol. 
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Protein Extraction and Western Analysis 

Rice tissues (500 mg of mature leaf tissue, 300 mg of 8-day old seedlings, and 40 

embryos) were ground in liquid nitrogen. For embryos, TCA was used to precipitate and 

purify total protein from embryos. First, the powdered tissue was suspended in cold 20% 

TCA (5 volumes of TCA: 1 volume embryo tissue). The suspension was inverted several 

times to mix and centrifuged at 13,000 rpm for 10 min. The pellet was then washed with 

cold Tris-buffered acetone (80% acetone in 25 mM Tris-HCl pH7.5) and centrifuged at 

13,000 rpm for 10 min twice. Finally, the pellet was gently washed with 100 mM Tris-

HCl pH6.8, centrifuged at 13,000 rpm for 5 min, and the supernatant was removed.  

For all tissues, two volumes of 2x SDS buffer (20% glycerol; 120 mM DTT; 6% 

SDS; 80 mM Tris-HCl pH6.8; 0.01% bromophenol blue) were added to the powdered 

tissue or, in the case of embryos, the resulting pellet from TCA precipitation. The sample 

was boiled for 1.5 minutes, mixed with another 0.5-1 volume of 2x SDS buffer, and 

boiled for an additional 2 min. The samples were centrifuged at 13,000 rpm for 2-5 min. 

Then, the supernatant was collected and centrifuged again at 13,000 rpm for another 2-5 

min to remove lipids and other byproducts. Samples were loaded and run on SDS-PAGE 

gels (90V for 140 minutes).  

For Western analysis, protein was electrophoretically transferred (90V, 60 min) 

onto a PVDF membrane (Bio-Rad). To visualize transferred protein, the membrane was 

first stained with Ponceau-S solution (0.1% Ponceau-S, 3% acetic acid). Then, the 

membrane was cut into strips and placed inside an Accutran slotted incubation tray 

(S&S). The strips were blocked with 3% milk solution (Carnation, non-fat dry milk in 1x 

PBST) for one hour prior to the addition of primary antibodies. A 1:1,000 dilution of 
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primary antibody was added to the strips in 1ml of 3% blocking buffer and incubated 

overnight at 4°C. After incubation, the strips were washed with 1x PBST for 5 min, five 

times. Lastly, the strips were incubated in 1:20,000 secondary antibody (KPL Reserve AP 

Anti-Rabbit Conjugate, HRP Anti-Rabbit/Mouse Conjugates). The strips were washed 

once with 1x PBST and prepared for Western detection.  

For horseradish peroxidase enhanced chemiluminescence-based Western 

detection, equal volumes of peroxide and luminol were mixed (WestDura ECL, Thermo 

Scientific). Strips were placed inside a small kapack pouch and 0.5-1 ml of luminol/ 

peroxide solution was applied to the strips. Exposures were taken using the UVP 

BioSpectrum machine using the “ECL” setting. For Western detection, sixteen 30 sec 

exposures were taken. Every 2, 4, 6, and 8 min, the exposures were extracted, and later 

compiled and analyzed.  

 

Results and Discussion 

Verification of oswrky71 Knockout Rice Lines  

PCR was used to screen and genotype dSpm insertional knockouts of OsWRKY71 

(Figure 2-1a). Among 11 plants examined for 1689, two were positive for dSpm, one 

homozygous, 1689-2-3, and the other heterozygous, 1689-2-4 (Table 2-2). Among 18 

plants screened for the second line, 3171A, a greater number of plants were found to be 

transgenic. Four plants were homozygous, 3171A-2-1, 2-2, 2-6, and 2-15, while five 

others were heterozygous for the insertion of dSpm, 3171A-1-2, 2-9, 2-10, 2-12, and 2-

14. Out of these plants, the lines that were propagated for seed production and used for 

analyses were the following: 1689-2-3, 1689-2-4, 3171A-2-1, and 3171A-2-15.  
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Figure 2-1. Diagram of dSpm knockouts for OsWRKY71. (a) Positions of dSpm in two 
different OsWRKY71 knockout lines, 1689-2-3 and 3171A-2-1, obtained from Dr. 
Sundareson’s lab, UC Davis, California. PCR primers, used to verify insertion of dSpm in 
the OsWRKY71 gene, are colored. Gold arrows represent transposon-specific primers; the 
purple arrow was used for 1689-2-3 verification; and the blue arrow was used for 3171A-
2-1 verification. Sequencing was used to verify the position of dSpm in OsWRKY71 in (b) 
1689-2-3 and in (c) 3171A-2-1. Partial sequence of the left border of dSpm, is bolded.  
Full genomic sequence for OsWRKY71 may be seen in Appendix A. 

 
 

 
 

-406 1047nt 

1689-2-3 

3171A-2-1 

+30 
+392 

+1 

TATATATATTAGGGCTCAGCTCCTCCTCTCACCTCG
TCTCCTCCTCTCCTCTCTTCTCTCACTACAAGAAAA
AAGGCAAGGAGTGTCGGCCAAAACCCCACACTCTTA
CGAAATAAGCCGACACTCTAAGTGAAGAG…
CTTGGCTCAGCTTGACATCGTCGGAGCAGCAGAAAA
GTTTGCTCGATCGAGCTAGCTAACTAGGTCGTCGGA
TCAGTGATAAATCGTTCGCCGATGAAACCCCATCTC 

+1 +1 
-30 

+245 

TCAGTGATAAATCGTTCGCCGATGGATCCGTGGATT
AGCACCCAGCCTTCGCTGAGCCTGGACCTCCGCGTC
GGGCTGCCGGCGACGGCGGCCGTCGCCATGGTTAAG
CCCAAGGTGCTCGTCGAGGAGGACTTCTTTCACCAG
CAGCCTCTCAAGAAAGACCCAGAGGTTGCGGCGCTG
GAGGCGGAGCTGAAGCGGATGGGCGCGGAGAACCCT
ACAAGAAAAAAGGCAAGGAGTGTCGGCCAAAACCCC
ATCTCTTACTGAAATAA…GCCGACACTTAAACATAA  

+1 
+210 

+410 
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Table 2-2. Screening results for OsWRKY71 knockout lines. PCR was used to identify 
positive (+) or (-) lines for the insertion of the dSpm transposon. PCR-genotyping also 
determined lines that were homozygous or heterozygous for the dSpm. DNA was 
obtained from mature leaf tissue from rice. The “1” or “2” represents the number of times 
a batch of seeds were obtained from Dr. Sundareson’s lab at UC Davis. The last 
numerical value represents the seed number from each batch able to be propagated. 
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Figure 2-2. qPCR verification of dSpm knockout lines for OsWRKY71. (a) Position of 
primer sets against OsWRKY71. P1 and P2 are against the first exon and 3’-UTR of 
OsWRKY71, respectively. (b) Relative expression of OsWRKY71 in 1689-2-3 and 3171A-
2-1.  
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To further verify the knockout lines, sequencing and qPCR were performed. First, 

the location of dSpm within 1689 and 3171A lines were confirmed by sequencing (Figure 

2-1b). For 1689-2-3, the dSpm transposon was inserted 30 nucleotides downstream from 

the transcription start site, within the 5’-UTR region of OsWRKY71. And for 3171A-2-1, 

the insertion was 392 nucleotides downstream, within the second exon, producing a 

truncated protein about 64 of 348 amino acids in length. qPCR was then used to 

determine the mRNA expression level of OsWRKY71 in both mutants (Figure 2-2). 

Compared to wt, the expression levels were dramatically lower in both lines, suggesting 

that two different knockout oswrky71 lines were obtained.   

 

Selection of OsWRKY71 GUS-Expressing Rice Plants  

Rice plants, transformed with the promoter of OsWRKY71 fused to a β-

glucuronidase (GUS) reporter gene, were selected for based on Basta or herbicide 

resistance (Figure 2-3a). Out of eleven T2 rice plants examined, all were either 

homozygous or heterozygous, based on their survival rates on media containing 125 µM 

Basta (Table 2-3). Nine seed batches were highly resistant to Basta treatment, with their 

survival rates equal to or greater than 75% (in comparison to their survival rates on 

control media). Based on these percentages, nine lines were considered to be 

homozygous. Of the nine lines, those with 100% survival rates were the following lines: 

13-1-5, 13-1-8, 19-1-6, 20-1-1, 23-1-1, and 24-1-12, which may be used for further 

analyses. Only two lines, 11-1-1 and 24-1-1, had low survival rates, therefore, presumed 

to be heterozygous for the insertion. Based on these selection results, it appears that 

several different transgenic lines for GUS were obtained. 
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Figure 2-3. Hygomycin and Basta selection photos. (a) Basta selection results after 9 days 
for wt (left side of plates) and the GUS reporter line 7113-11-1-1 (right side of plates) in 
the control treatment (left panel) or 125 µM Basta (right panel) (b) Hygromycin selection 
results after 11 days for wt (left side of plates) and the OsWRKY71 overexpression line, 
7112-25-1-2 (right side of plates) in the control treatment (left panel) or 50µg/ml 
hygromycin B (right panel). Growth conditions: 14h day/10hr night, 24°C, 60-80% RH.  
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Table 2-3. Identification of positive GUS reporter lines for OsWRKY71. For selection of 
OsWRKY71p-GUS lines, T2 generation rice seeds were selected for based on resistance 
against 125 µM Basta. Ratio of percent survival of the experimental treatment to the 
control was calculated for each line. If the value was over 75%, the seeds from that 
particular line were considered to be homozygous and heterozygous, if less.   
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Figure 2-4. Rice tissues with positive GUS staining. GUS was expressed in T1 generation 
plants in the (a) aleurone layer and (b) third node of mature rice plants.  
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To check for the expression of GUS, rice tissue from select lines were stained. No 

evidence of successful GUS staining was found in T2 generation lines. However, staining 

was observed in T1 lines, particularly in the aleurone layer of seeds, as expected, albeit 

the degree of staining was faint or low (Figure 2-4a). GUS expression was also localized 

to the third node of mature rice plants (Figure 2-4b), implying that OsWRKY71 might be 

expressed in rice nodes, meristematic regions on rice culms where additional tillers and 

adventitious roots emerge. Ethylene generally regulates while GA may aid in adventitious 

root growth, whereas the role of ABA is minimal (Steffens and Sauter, 2005). 

Furthermore, tiller growth is largely regulated by cytokinin and auxin, but not ABA (Liu 

et al., 2010). Therefore, OsWRKY71 may not only be involved mediating crosstalk 

between ABA and GA, but it may also be important in ethylene, cytokinin, or auxin 

signaling. 

 

Selection of OsWRKY71 Overexpression Rice Plants 

 Several plant lines containing UBI-OsWRKY71 tagged with a hemagglutinin 

epitope (HA) were selected for based on their resistance to hygromycin (Figure 2-3b, Hiei 

et al., 1994). Several heterozygous lines were found, 7-1-1, 14-1-1, and 15-1-2, while the 

remaining lines were homozygous, 12-1-10, 22-1-1, 22-1-7, and 25-1-2 (Table 2-4).  

Western analysis was used to determine the levels of OsWRKY71 in wt rice tissue. Since 

analysis using aleurone tissue requires the availability of more seeds, embryos were used 

instead. An ~42 kDa band was observed in embryos but not in leaf tissue (Figure 2-5a), 

which is consistent with previous data showing that OsWRKY71 was expressed in 

embryos (Xie et al., 2006), but was not highly expressed in mature leaves (Liu et al., 
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Table 2-4. Identification of positive overexpression lines for OsWRKY71. For 
hygromycin selection, T2 generation rice seeds were selected for based on resistance 
against 50µg/ml hygromycin B. Ratio of percent survival of the experimental treatment to 
the control was calculated for each line. If the value was over 75%, the seeds from that 
particular line were considered to be homozygous and heterozygous, if less.   
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Figure 2-5. Protein detection of OsWRKY71 in rice embryos. (a) OsWRKY71 was 
detected in rice embryos but not leaf tissue (500 mg). (b) Detection was not observed in 
seedlings (100 mg). 1:1000 primary antibody and 1:20,000 dilution was used for 
detection. 15µg of GST-OsWRKY71 was used as an antigen control. 
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2007). Since α-amylase is expressed in the embryo (Umemura et al., 1998), it is possible 

for the gene to be regulated by OsWRKY71. However, this Western analysis needs to be 

repeated and confirmed in knockout oswrky71 embryos. Furthermore, the expression of 

OsWRKY71 in aleurone tissue should be tested. 

Although OsWRKY71 was expressed in stems and young leaves (Liu et al., 

2007), no expression was detected in 8-day old seedlings, consisting of both shoot and 

leaf tissue (Figure 2-5b). The concentration of OsWRKY71 in seedling tissues might 

have been too low to be detected.  Furthermore, there was no detection in overexpression 

seedlings, T2 line 7112-1-1, when anti-HA was used as the primary antibody. This 

further suggests that silencing of OsWRKY71 may be an issue in T2 generation plants. 

For future analyses, T1 rice lines may be preferred. 

 

Selection of OsWRKY71 Dominant Negative Rice Plants 

Dominant negative lines contain UBI-OsWRKY71x193aa, which are missing part 

of the C-terminus of OsWRKY71, to retain only 193 out of 348 amino acids. Thus, the 

WRKY domain was removed to produce a defective OsWRKY71 protein. In order to 

select for dominant negative lines, 50 µg/ml of hygromycin was used. Of the seven T1 

generation lines screened, only one, line 18, survived in hygromycin treatment. 

Therefore, this line should be propagated for additional seeds.  

 

Conclusion 

            Knockout, GUS reporter, overexpression, and dominant negative mutants for 

OsWRKY71 were selected for using several techniques, including PCR, qPCR, GUS  
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Table 2-5. Identification of dominant negative lines for OsWRKY71. For hygromycin 
selection, T2 generation rice seeds were selected for based on resistance against 50µg/ml 
hygromycin B. Ratio of percent survival of the experimental treatment to the control was 
calculated. If the value was over 75%, the seeds from that particular line were considered 
to be homozygous and heterozygous, if less.   
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staining, and Basta or hygromycin selection. Although some of these mutants were used 

for immediate physiological tests, others need additional verification. Knockout lines, 

1689-2-3 and 3171A-2-1, were the main mutants used for further analyses since the 

detectable expression levels of OsWRKY71 were low in both and positive homozygous 

lines for dSpm were obtained; the insertion was also confirmed by sequencing. The seeds 

of these plants were harvested for subsequent analyses (Chapter 3). On the other hand, 

the remaining OsWRKY71 mutants, generated in Taiwan, may need to be further tested. 

Although select T2 generation rice plants were resistant to Basta or hygromycin, GUS 

staining and Western analyses were largely unsuccessful, implying that gene silencing 

might have occurred. From these tests, however, it was hinted that OsWRKY71 could be 

expressed in rice nodes, in addition to aleurone cells.  

 In the future, several additional homozygous and heterozygous 3171A plants, 

including heterozygous line 1689-2-4, should be propagated and examined. These would 

aid in verifying any phenotypes observed in 1689-2-3 and 3171A-2-1. One line, 3171A-

2-15 has been grown and used for seed weight (Figure 3-3) and germination tests (Figure 

3-5), although the expression of OsWRKY71 has not yet been verified in this mutant. 

Furthermore, additional mutants should be generated to rescue the knockout lines, for 

example, by incorporation of a GUS-tagged or overexpression transgene for OsWRKY71. 

A rescue line should be specifically made for 3171A-2-1, which appeared to have the 

stronger phenotype of the two lines (Chapter 3). Also, to ensure that any phenotypes 

observed in the two knockout lines indeed come from the same gene, a transheterozygote 

should be generated by crossing both 1689-2-3 and 3171A-2-1.  
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CHAPTER 3 

PHYSIOLOGICAL FUNCTION OF OSWRKY71 IN  

SEED GERMINATION AND IN EARLY ROOT DEVELOPMENT 

 

Introduction 

Despite the increased understanding of the GA and ABA pathways, the actual 

mechanism of crosstalk between the two signaling pathways in cereal aleurone cells is 

still not understood (Figure 3-1). Both GA and ABA appears to coordinate the expression 

of α-amylase genes during seed germination. The two pathways merge at several nodes 

(Figure 3-1). ABA was shown to inhibit GAMYB, a major transcriptional activator of α-

amylase, by an SnRK2, ABA-induced Protein Kinase 1 (PKABA1; Gomez-Cadenas et 

al., 2001) and further inhibited by ABA Response Element Binding Factor 1 (TaABF1; 

Johnson et al., 2008). On the other hand, GA was shown to activate GAMYB by 

promoting DELLA degradation, specifically Slender1 (SLR1) in rice (Weiss and Ori, 

2007). DELLA control is another point of integration between the two pathways. ABA 

generally upregulates DELLAs (Penfield et al., 2006), but degradation is promoted by the 

interaction of GA with a soluble receptor, GID1, or membrane-associated heterotrimeric 

G protein, Gα/D1 (Hartweck et al., 2006).  

As previously mentioned (Chapter 2), ABA-inducible OsWRKY71, along with 

OsWRKY51, competitively inhibited binding of GA-inducible GAMYB to α-amylase 

(Xie et al., 2006). OsWRKY71 could be a third node of communication between ABA 

and GA. While ABA induced OsWRKY71 expression, blocking α-amylase production, 

increasing GA levels was shown to degrade OsWRKY71 in transient expression assays in  
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Figure 3-1. Model of crosstalk between GA and ABA signaling pathways in the aleurone 
of cereal grains. Several nodes exist where the crosstalk between GA and ABA integrate 
to regulate α-amylase expression. (a) GAMYB is repressed by ABA by PKABA1 
(Gomez-Cadenas et al., 2001) independently or through TaABF1 (Johnson et al., 2008). 
GA instead activates GAMYB through SLN1 degradation (Weiss and Ori, 2001). 
GAMYB may also be repressed independently by interaction with Kinase Associated 
with GAMYB (KGM; Woodger et al., 2003). (b) DELLA, or SLN1, degradation by the 
ubiquitin E3 ligase complex (SCFSLY1/GID2) is activated by GA (Hartweck et al., 
2006; Sun 2010), but ABA stabilizes the DELLA protein (Penfield et al., 2006). 
SPINDLY (SPY), an O-linked GlcNAc (O-GlcNAc) transferase (OGT), has been shown 
to activate DELLA by GlcNAc modification (Sun 2010) (c) Transient expression 
analyses has shown that OsWRKY71 is upregulated by ABA but is hypothesized to be 
degraded by GA (Zhang et al., 2004; Xie et al., 2006). Further note that other 
transcriptional regulators form a complex with OsWRKY71 or GAMYB to form a 
repressosome or enhancesome, respectively, to collectively regulate α-amylase 
expression (Rushton et al., 2012). Myeloblastosis 33 (MYB33) is a positive regulator of 
GA-induced flowering and ABA-induced seed dormancy. Although it is not a node for 
integration, it depicts one homeostatic mechanism used to desensitize both signaling 
pathways via accumulation of miR159 (Weiss and Ori, 2007). The general mechanisms 
for the GA and ABA pathways are described in Chapter 1. Adapted and modified from 
Weiss and Ori, (2007). 
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barley (Dr. Zhonglin Zhang and Angi Liyuan Zhang, unpublished; Zhang et al., 2004). 

When UBI -OsWRKY71:GFP was introduced in barley aleurone cells treated with 100 

µM GA, the number of fluorescent spots detected decreased about 50% after 12 h, 

indicating that OsWRKY71 was degraded. Thus, along with DELLA and GAMYB, the 

regulation of seed germination by ABA and GA may be mediated by OsWRKY71.  

 If OsWRKY71 regulates α-amylase gene expression in rice and is important in 

regulating seed germination, then I predicted that knockouts of OsWRKY71 would result 

in impairment of germination, specifically by enhancing it. To test this, germination 

assays were performed. Seedling growth was also monitored to detect for impairments in 

development after germination. This was carried out using root elongation assays. 

 

Methods and Materials: 

Germination and Root Elongation Assays  

The following seeds were used for germination and root elongation assays: wt 

(Oryza sativa cv. Nipponbare), 7113-19-1-6 (control for overexpression line 7112-22-1-

1), 1689-2-3, 3171A-2-1, and 7112-22-1-1. Seeds were first dehusked and sterilized by 

rinsing in 80% ethanol for 1 min, sterile water for 1 min, and then in 10% commercial 

bleach (NaOCl) and 80% ethanol. The seeds were then agitated on a Rotaflex apparatus 

for 30 min and rinsed. Finally, seeds were blotted on sterile filter paper before plating on 

1% agar plates containing water only or full-strength Murashige and Skoog medium 

(MS) media adjusted to pH 5.6. Additionally, salt plates were supplemented with 100 

mM NaCl.  
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For root elongation assays, 12 seeds were lined up on each square plate, and then 

they were sealed with UV-sterilized Parafilm. The plates were placed in a growth 

chamber (25-28° C, 12 h day/12 h night, 60-80% RH) in an upright position on plate 

racks and monitored for five days. Germination rates were calculated based on radical 

emergence.  

For root length and seed measurements, the plates were scanned at 600dpi. 

Images were analyzed using ImageJ. To test for statistical significance, a Student’s t-test 

was performed (* = p < 0.05, ** = p < 0.005).  

 

Results and Discussion 

Seed Weight and Measurements for oswrky71 Rice Seeds 

Mature wt and knockout rice plants, 1689 and 3171A, did not display any obvious 

differences in development. Seed production appeared to be normal; the number of seed-

bearing panicles were similar between wt and oswrky71 lines (Table 3-1). The seeds, 

however, seemed to vary in size or form. From initial inspection, the size of 3171A-2-1 

seeds appeared to be slightly larger than wt and 1689-2-3 seeds. But upon measurement, 

there were no significant differences between the respective lines (Figure 3-2). Still, the 

mean length for 3171A-2-1 was 7.6 mm, or 0.4 mm longer than wt. There was also more 

variation in both populations of mutants compared to wt.  

A decrease in starch closely parallels with a decrease in seed dry weight (Murata 

et al., 1968). Both wt and oswrky71 seeds were weighed with or without the seed coat as 

an approximate indication of starch abundance. Both 1689-2-3 and 3171A-2-1 seeds (36 

seeds per line) weighed ~0.2 g less than wt, which weighed about 1.1 g (Figure 3-3).  
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Figure 3-2. Comparison of the length of rice seeds in knockout lines of OsWRKY71. 
Whole seeds were scanned and measured using Image J. One experiment was performed; 
seed lengths (n=36) were measured for each line, and the average lengths are shown.  
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Figure 3-3. Comparison of the weight of rice seeds in knockout lines of OsWRKY71.  
Seeds were weighed (a) with or (b) without the seed coat. For seed measurements with 
the seed coat, three biological replicates were used. Each replicate consisted of seed 
weights (n=36; * = p < 0.05) for each line. Only one replicate was used for dehusked 
seeds; the seeds (n=36; * = p < 0.05) were weighed several times to obtain error bars. 
3171A-2-15 is an additional homozygous 3171A line with dSpm localized within the 
second exon of OsWRKY71.  
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Even when the seed coats were removed, mutants weighed ~0.05-0.1 g less than wt, 

albeit the differences were much smaller. Wildtype weighed 0.86 g; therefore the seed 

coat was ~0.25 g. On the other hand, 1689-2-3 and 3171A-2-1 weighed 0.77 g and 0.80 g 

respectively; thus, the seed coats weighed 0.1-0.15 g. Therefore, it appeared that there 

might be a difference in the abundance of starch in oswrky71 seeds and in the weight of 

the seed coat, although the differences were small. Indeed, if OsWRKY71 could no 

longer repress α-amylase expression in oswrky71 seeds, it would be expected that seeds 

would hydrolyze some starch, causing the seeds to weigh less than wt. The change was 

not drastic, however, possibly due to redundancy or regulation of α-amylase by other 

repressors (Rushton et al., 2012). Since seed coat development is also regulated by ABA-

mediated dormancy and the balance of GA to ABA (Moise et al., 2005), it is possible that 

the loss of OsWRKY71 may lead to aberrations in the seed coat as well as in seed 

germination. 

 

Germination Rate Differences in oswrky71 Rice Seeds 

To further understand the role of OsWRKY71 in seed germination, the 

germination rates between wt and knockout lines, 1689-2-3 and 3171A-2-1 were 

compared (Figure 3-4). Although ~80% of wt seeds germinated in water alone or in MS 

media by the first day, germination rates were much lower for both mutants (Figure 3-

4a,b). In water, only 10% of 3171A-2-1 seeds germinated on the first day, while 30% 

more germinated in MS media. 1689A-2-3 seeds germinated slightly better, 30% and 

60%, respectively. For both lines, germination rates increased when supplemented with 

nutrients. When the seeds were sown in 100 mM NaCl, wt seeds were also delayed; only  
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Figure 3-4. Seed germination was delayed in seeds of dSpm knockout 3171A-2-1. 
Germination rates were compared in knockout lines of OsWRKY71 in (a) water, (b) MS 
media, and (c) 100 mM NaCl. Three to four biological replicates were used (n=12 seeds 
per replicate; * = p < 0.05, ** = p < 0.005). This experiment was repeated three times.  
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Figure 3-5. Differences in germination rates of OsWRKY71 knockouts occurring within 
6-hour intervals. Germination rates were measured every 6 h for 2.5 days. Three to four 
biological replicates were used (n=12 seeds per replicate). Germination rates appear to be 
sigmoidal. This experiment was performed one time. 
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20% of seeds germinated (Figure 3-4c), comparable to 3171A-2-1 seeds germinating in 

water alone. Likewise, NaCl caused a delay in both mutants. Percentages for 1689 

dropped to 20%, similar to wt, while 3171A-2-1 failed to germinate on the first day.  

 Although initially delayed, both oswrky71 lines were able to recover by the 

second day, with at least 80% of seed germinating in water or MS (Figure 3-4a,b). Steady 

germination rates proceeded thereafter; nearly 100% of seeds were able to overcome 

dormancy by the fourth day. The trend was similar in 100mM NaCl (Figure 3-4c). 

Although the percent germination was lower for the first couple of days, most seeds were 

able to recover by the third or fourth day. From these results, 3171A-2-1 seeds exhibited 

a distinctive delay in germination, while germination rates for 1689-2-3 were only 

slightly delayed with some overlap with wt. Because 1689-2-3 seeds were more variable, 

this suggested that the position of dSpm within OsWRKY71 might have caused the 

differences seen in these phenotypes. Since dSpm is localized within the 5’-UTR of 

OsWRKY71 in 1689-2-3, any leaky expression of OsWRKY71 might yield functional 

protein.  

 When the germination rates were measured within shorter time intervals, every 6 

h for 2.5 days, the trend for 3171A-2-1 was more distinct (Figure 3-5). 3171A-2-1 seeds 

started to germinate around 36 h; about 50% of seeds germinated by the second day and 

greater than 80 to 90% by 2.5 days. Wildtype seeds germinated about 6 h earlier than 

3171A-2-1, and thereafter increased to nearly 50% by 36 h, about the same time 3171A-

2-1 seeds started to break dormancy. Most wt seeds germinated by 42 h. This suggested 

that there could be a delay in germination of about one day for 3171A-2-1 seeds. To 

further show that environmental differences during seed development had no effect in the 
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phenotype observed, another line, 3171A-2-15, was tested. Although the seeds were 

grown in separate pots positioned in different places in the greenhouse, 3171A-2-15 also 

exhibited a delay in germination.  

These results were contrary to my initial prediction. Loss of repression of α-

amylase was predicted to increase germination rates, but instead, germination was 

delayed. Indeed, the loss of α-amylase control could have disrupted the process of 

dormancy during seed maturation (Gubler et al., 2005). Since seeds must complete 

dormancy in order to successfully germinate (Kucera et al., 2005; Finklestein et al., 

2008), the inability to repress α-amylase completely during development might have 

reduced seed vigor. 

 

Root Length Differences in oswrky71 Rice Seedlings 

In order to examine the role of OsWRKY71 in seedling growth, root elongation 

assays were performed. The roots of 3171A-2-1 seedlings were noticeably shorter than 

wt. This was seen by the second day, and more prominently by the seventh day (Figure 3-

6). Although inhibition was also seen in 1689-2-3, the results were variable and not as 

distinct. Again, my explanation is that the differences in phenotype are attributed to the 

differences in the positions of dSpm, lending to functional protein from leaky expression 

of OsWRKY71 in 1689-2-3.  

In 3171A-2-3 seedlings, root inhibition was more pronounced in MS media 

(Figure 3-7), than in water (Figure 3-6). Furthermore, both wt and 3171A-2-1 roots were 

inhibited by 100 mM NaCl, as expected. To show that differences in light, nutrition, and  
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Figure 3-6. Root inhibition was observed in seedlings of dSpm knockout 3171A-2-1. 
Wildtype, 1689-2-3, and 3171A-2-1 root lengths were compared after 2, 3, and 7 days in 
water. dSpm knockout 3171A-2-3 roots were noticeably shorter compared to wt. Three to 
four biological replicates were used (n=12 seedlings per replicate). The experiment was 
repeated three times. 
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Figure 3-7. Root inhibition in 3171A-2-1 was exhibited in salt treatment. Wildtype, 1689-
2-3, and 3171A-2-1 root lengths were compared after 4 days. Roots of 3171A-2-1 were 
noticeably shorter in MS and in 100mM NaCl. Three to four biological replicates were 
used (n=12 seedlings per replicate). The experiment was performed one time. 
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the position of the plates did not influence the phenotype observed, wt and oswrky71 

seeds were also sown side-by-side in each plate. 

 The actual root lengths were measured and graphed (Figure 3-8). By the second 

day, roots from all lines were visible. Wildtype roots were ~5 mm and thereafter grew, on 

average, about 15 mm/day. By the fourth day, wt roots were nearly 35 mm. Likewise, 

1689-2-3 root lengths were similar to wt, although there was more variation seen among 

seedlings. 3171A-2-1 seedling roots were ~2.5 mm by the second day, about half of the 

length of wt. The rate of growth was about 5 mm/day, resulting in roots that were about 2 

cm shorter than wt by the fourth day. 3171A-2-1 roots were also significantly shorter 

than wt in 100 mM NaCl. These data suggest that OsWRKY71 may be necessary for n 

normal germination and root development in early seedling growth. 

 Since 3171A-2-1 roots were inhibited, it was predicted that overexpression of 

OsWRKY71 might enhance root elongation. However, when T2 overexpression lines, 

7112-22-1-1 and -25-1-2, were tested, no differences were observed in either water or 

100 mM NaCl. This further verifies that silencing of the transgene has occurred in T2 

generation seeds. Or, there may be an optimum level of gene expression of OsWRKY71 

that may affect root elongation. 

 

Conclusion 

Mutation of OsWRKY71 resulted in decreased seed weight, and abnormal seed 

germination and root growth. These results were based on seed measurements, and 

germination and root elongation assays. Specifically, knockdown line, 3171A-2-1, 

exhibited a delay in seed germination and an inhibition in root elongation in water, MS,  
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Figure 3-8. Roots of dSpm knockout 3171A-2-1 were significantly inhibited. Root 
lengths in (a) water and (b) 100mM NaCl. Three biological replicates were used (n=12 
seedlings per replicate; ** = p < 0.005). This experiment was repeated three times. 
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Figure 3-9. Overexpression lines for OsWRKY71 do not exhibit differences in root length.  
Roots were measured in (a) water and in (b) 100mM NaCl. Three biological replicates 
were used (n=12 seedlings per replicate). This experiment was performed one time. 
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and 100 mM NaCl. Interestingly, the recovery observed in seed germination suggests that 

additional mechanisms or redundant functions exist during germination. Also, once the 

process of germination does begin, it appears that germination may not be inhibited but 

progresses towards completion, suggesting that there is a threshold or all-or nothing event 

to ensure that germination completes itself, by forth the emergence of the radical 

(Finklestein et al., 2008). Hence, this ensures survival even if surrounding conditions are 

unpleasant, since the seed is vulnerable at this stage and cannot revert back to dormancy 

without facing possibilities of deterioration. Therefore, OsWRKY71 appears to affect the 

initial start of germination. 

Unexpectedly, these observations were contrary to my initial predication, based 

on initial transient expression assays. It is possible that OsWRKY71 may indeed regulate 

α-amylase but mutation may have resulted in a loss in seed vigor in developing seeds. Or 

OsWRKY71 may regulate other genes (Chujo et al., 2008), resulting in indirect 

repression of α-amylase or other growth-related genes. From these analyses, it appears 

that OsWRKY71 is a positive regulator of seed germination and root elongation. 

Therefore, to confirm that the phenotypes are indeed caused by the disruption of 

OsWRKY71, the germination and root elongation assays should be performed in the near 

future on rescue or heterozygous lines, particularly for 3171A-2-1. The delay should be 

lessened or removed in these lines compared to homozygous lines. Also, since there were 

some differences exhibited in both knockout lines for OsWRKY71, the phenotypes should 

be examined in a transheterozygote of 1689-2-3 and 3171A-2-1. The strong delay in 

germination and root growth should thus be observed in the transheterozygote, if not 

emphasized. If the mutations are not on the same gene, then the addition of a wt copy 
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would rescue the delay or make the phenotype less pronounced.  Furthermore, it is 

possible that the enhancement in the knockout line 3171A-2-1 is overshadowed by a 

dominant negative function of the N-terminal peptide, about 64 amino acids long, 

resulting from the transcription of OsWRKY71 upstream of the dSpm insertion at the 

second exon (Chiu et al., 2010). Since OsWRKY71 shares sequence similarity to 

OsWRKY18, it is possible that the truncated peptide acts as a dominant negative for 

OsWRKY18, which may act as a positive regulator of seed germination. If 3171A-2-1 is 

indeed a dominant negative, then heterozygotes would still exhibit repression instead of 

improved growth.  

To further attribute low levels of α-amylase to the delay in growth, particularly 

during seed germination, qPCR should be performed to test the level of expression of α-

amylase in germinating seeds. Furthermore, the expression of α-amylase should be 

measured in developing seeds, during the maturation stage, on the mother plant to 

associate a possible loss in repression to lower seed weight, incomplete dormancy, and a 

loss in seed vigor. Finally, because leaky expression of OsWRKY71 might be one 

possible explanation for the phenotype differences between 1689-2-3 and 3171A-2-1, the 

expression of OsWRKY71 should be examined in germinating seeds and roots. Although 

the expression was low in mature leaves (Figure 2-2), the level of leaky expression might 

be higher in other tissues, contributing to differences in phenotype. 
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CHAPTER 4 

ANNOTATION OF THE HIL SUPERFAMILY AND INVESTIGATION OF THEIR 

EXPRESSION PATTERNS IN RESPONSE TO GA AND ABA  

IN THE RICE ALEURONE 

 

Introduction 

Recently, OsWRKY71 was found to interact with several proteins expressed in 

the rice aleurone, as suggested by yeast-2-hybrid experiments (Dr. Lingkun Gu, 

unpublished). One of these proteins (Locus #Os05g45070 or LOC_ Os05g45070) was 

interesting because it shares some sequence similarity to a harpin-induced protein, 

NtHIN1, but the actual roles in plants has not yet been described. Homologs of this 

protein in Arabidopsis were identified as a family of NHL proteins, which consisted of 45 

members (Dormann et al., 2000; Zheng et al., 2004). However, this family has not been 

annotated in rice or other plant species. The primary aim for this project is to compile all 

members of the HIL family in rice using a hidden Markov model (HMM) and to further 

annotate this family using additional in silico applications.  

Because “LOC_Os05g45070” was able to interact with OsWRKY71, I 

hypothesized that it was involved in ABA- and GA-mediated seed germination. HIL 

members that were previously reported were found to be involved in pathogen stress, 

some of which were induced by defense hormones SA and JA (Varet et al., 2002; Zheng 

et al., 2004; Lee et al., 2006). Since SA and JA were shown to contribute to seed 

germination (Linkies and Leubner-Metzger, 2012), it is not unlikely that other HILs 

might be expressed in the aleurone cells. Therefore, for the second aim, RNA-sequencing 
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data (Dr. Shen’s lab) was used to identify HILs expressed in the aleurone and when 

treated with GA or ABA. Other rice tissues were analyzed as well, using the Michigan 

State University Rice Genome Annotation Project (MSU RGAP) collection of deep 

sequencing data. 

  

Methods and Materials 

Identification and Annotation of the HIL Family in Rice   

HIL members were identified from the protein sequence database from MSU 

RGAP (7th Release) using an HMM approach. First, the Basic Local Alignment Search 

Tool (BLAST) from the National Center for Biotechnology Information (NCBI) was 

used to identify closely related rice paralogs to LOC_Os05g45070. Of these, 10 of the 

most closely related sequences to LOC_Os05g45070 were used to build the HMM, a 

probability model, using the HMMER (v2.3.2) software (Sonnhammer et al., 1998). The 

software was then used to search the MSU RGAP protein sequence database for potential 

HIL proteins similar to the input at an e-value of 1.0, which is the same e-value used for 

the Protein Family database (PFAM) HMM. These proteins were used as a new input for 

another reiteration of HMM, which would build an improved probability model that 

could then search for additional HIL members. Several reiterations of the HMM model 

constructions and searches were performed until no other unique protein members were 

identified. The resulting protein sequences were named according to their MSU 

annotation identifier.  

Protein motifs were identified using MEME software (Bailey et al. 1994). With 

the resulting motifs, the HIL members were classified into eight groups, based on the 
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presence or absence of the identified motifs. Multiple alignment was performed to 

highlight these motifs within representative members using the PRALINE alignment tool 

(Simossis et al. 2005).  

To reconstruct the phylogeny of the HIL family, protein domain sequences 

(output from HMMER v3.0 searches) were used to construct a bootstrap consensus tree 

(10,000 bootstrap replications) with MEGA 5.0. Reconstruction was based on amino acid 

differences, with colored dots used to represent the group to which each member 

belonged.  

A chromosome map was built to visualize the distribution of HIL members in the 

rice genome. The MSU annotation identifiers of all HIL members were inputted into the 

map tool of National BioResource Project (NBRP) Oryzabase 

(http://viewer.shigen.info/oryzavw/maptool/MapTool.do). The map was reproduced to 

contain the general name and the locus of each member.  

 

Analysis of RNA Expression in Rice Aleurone and Other Tissues 

 Total RNA was extracted from hormone-treated rice aleurone tissue treated with 

or without hormone treatment for five hours (1 µM GA, 20 µM ABA, or 1 µM GA and 

20 µM ABA). RNA was extracted using the guanidinium sulfate–phenol–chloroform 

extraction and purified using RNeasy RNA purification columns (Qiagen, Valencia, CA). 

The mRNA was then purified from the total RNA using Oligo(dT) Dynabeads 

(Invitrogen, Grand Island, NY). RNA library preparation and sequencing was performed 

using the Illumina HiSeq 2000 at the Huntsman Cancer Institute (University of Utah). 

Reads were aligned to the rice genome using Cufflinks and Tophat. RNA expression of 
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HIL members was analyzed using normalized RPKM (reads per kilobase of exon per 

million fragments mapped to the genome) values. For identification of HILs in other rice 

tissues, the entire MSU RGAP (7th Release) RPKM collection of the rice genome was 

extracted and organized by Patricia Ringler. Then, the expression of specific HIL 

members in select rice tissues were identified and compiled.  

 

Gene Clustering  

Gene clustering experiments were conducted using R programming to generate a 

heat map. The HIL members and ABA receptors or RCARs were clustered based on 

similar expression patterns in response to the hormone treatments using aleurone RNA-

sequencing data.  

 

Results and Discussion 

Identification of the HIL Protein Family in Rice  

In order to identify members belonging to the HIL family in rice, HMM was 

performed using LOC_Os05g45070 and 10 closely related proteins in rice. The HMM 

search against the rice genome was able to identify 104 unique HIL proteins (Table 4-1) 

after 4 iterations. The identified members were named in the order of their chromosome 

and locus number (HIL1-104), to which LOC_Os05g45070 was identified as OsHIL58.  

Of the 104 HILs identified, 66 members were also described by PFAM HMM as 

LEA_2 (PF03168) domain proteins or putative harpin-induced proteins. None of the 

putative LEA14 proteins, which were also part of PF03168, were identified as part of the  
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Table 4-1. List of HIL members in rice. HIL proteins were named based on the 
consecutive order of their chromosome position. Helpful assession identifiers of gene 
models were included. Group numbers were based on the presence of the NPN, RPP, and 
YQYF motifs (Figure 4-2). Members with multiple motifs were identified with astericks. 
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HIL family. LEA14 is a small, atypical subgroup of the LEA family, a large group of 

proteins with many functions but particularly recognized for their role as an 

osmoprotectant during dehydration in embryogenesis (Wise et al., 2004; Tunnacliffe and 

Wise, 2007; Hand et al., 2011). Despite the conservation of the LEA_2 domain 

(Ciccarelli and Bork 2005), the HIL family is distinct from the LEA14 subgroup, as 

predicted by PFAM HMM (Appendix C). Additionally, 38 HIL proteins were 

undescribed by the PFAM and considered novel HIL members.  

Efforts were made to identify rice homologs of the HIL proteins in other species. 

The closest homolog of NtHIN1 (Gopalan and He, 1996), the first member discovered 

and found to be harpin-induced, was OsHIL50, which was previously described as 

OsHIN1 (Kim et al., 2000). Two other NtHIN1 homologs, NtHIN9 and NtHIN18 

(Takahashi et al., 2004), were also homologous to OsHIL50. Additionally, OsHIL97 was 

discovered to be the homolog of BnNHL18A and -B in rapeseed (Brassica napus). The 

expression of BnNHL18A and -B was elevated upon treatment with NaCl, H2O2, and SA, 

which induced changes in localization (Lee et al., 2006).     

Additional rice homologs were identified for several Arabidopsis members. 

OsHIL83 was homologous to AtNDR1, the first HIL identified in Arabidopsis found to 

be required for resistance to bacterial and fungal infection (Century et al., 1997). HILs 

were also homologous to previously described NHL proteins (Varet et al., 2002; Varet et 

al., 2003, Zheng et al., 2004; Lee et al., 2006). AtNHL1, -2, and -3 were differentially 

expressed in response to pathogen-induced stimuli. OsHIL97 was a homolog of AtNHL1. 

OsHIL50 was homologous to AtNHL2, which was found to elevate pathogenesis-related 

1 (PR-1) gene expression. It was also similar to AtNHL3, which was implicated in 
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wounding-responsiveness and suppressed by virulent Pseudomonas syringae pv. tomato 

DC3000 during pathogenesis (Dörmann et al., 2000; Varet et al., 2002; Varet et al., 

2003). AtNHL25, which was induced by SA and the pathogen Peronospora parasitica, 

was similar to OsHIL49 (Varet et al., 2002). In addition, Yellow Leaf-Specific-9 

(AtNHL10/YLS9), a member induced during hypersensitive response to CMV and 

senescence in leaf tissue, was found to be homologous to OsHIL17 (Zheng et al., 2004).  

 

Analysis of Motifs within the HIL Family of Proteins 

MEME was used to determine the amino acid motifs that were most conserved in 

all members of the HIL family in rice (Figure 4-1). Based on the results, three motifs 

were highly conserved throughout all members. The first motif discovered had a highly 

conserved asparagine, proline, followed by another asparagine, with the consensus 

sequence T[VL]A[AV]RNPNxRAG[VI]YY (E-value of 2.10e-190). This first motif was 

called the NPN motif. It was generally present near the center of the HIL protein 

sequences. The second most conserved motif was characterized by two highly conserved 

proline residues preceded by either an arginine or a lysine with the consensus sequence 

[VA][VL][YW]LV[LY]RPRxP[RS]FS[VL] (E-value of 6.10e-126). This motif was called 

the RPP motif and was nested in the predicted transmembrane region towards the N-

terminal region; the residues preceding the RPP signature were typically hydrophobic. 

Third, a stretch of amino acids was identified characterized by a highly conserved 

tyrosine, followed by a phenylalanine and a tyrosine, and separated by a stretch of 

hydrophobic residues. The consensus for this motif was determined to be  
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Figure 4-1. Motif analysis of proteins in the HIL family. Rice protein sequences were 
inputted into MEME software (Bailey et al., 1994) and shown are the (a) output results 
with the most conserved amino acids in large letters. Colors represent physiological 
properties as determined by MEME. (b) Motifs were named NPN, RPP, and YQYF, 
according to their respective consensus sequence, which is highlighted in bold. 
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Figure 4-2. Schematic diagram of the subgroups in the HIL family. (a) HIL groups were 
determined based on the presence or absence of the three major motifs: NPN, RPP, and 
YQYF. (b) Total number of HIL members within each group.  
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Figure 4-3. Multiple sequence alignment for HIL subgroups I-VII. Alignment was 
performed using PRALINE (Simossis et al., 2005). Representative HILs from each group 
are shown. 
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VSYRGVR[LV][AG][AS][GA]x[VL]PAF[YC]Q[GP]P[RK] (E-value of 4.70e-134) and 

was generally found in the C-terminus region. It was given the name YFYQ based on the 

consensus determined from previous MEME/MAST analysis performed on the NHL 

members of Arabidopsis  (Dörmann et al., 2000).  

The HIL members in rice were organized based on the presence or absence of the 

three key protein motifs (Figure 4-2). Members belonging to Group I have all three of the 

motifs, NPN, RPP, and YQYF, present. This group encompassed the most members in 

rice, 34 out of 104, including the OsWRKY71-interacting protein, OsHIL58. Major rice 

HIL members OsHIL50, the homolog of NtHIN1, AtNHL2 and -3; OsHIL49 

(AtNHL25); OsHIL83 (AtNDR1); and OsHIL97 (AtNHL1 and BnNHL18A/B) were 

classified in Group I (Dörmann et al., 2000; Varet et al., 2002; Varet et al., 2003; Zheng 

et al., 2004; Lee et al., 2006). Group II-IV had a combination of any two of the motifs, 

with Group II having the most members of the three, 28 of the 104 members. Described 

HIL member OsHIL1, a homolog of AtNHL10/YLS9, belonged to Group III, which is 

classified as having an RPP and YQYF motif but not the highly conserved NPN motif. In 

rice, no members were classified into Group IV. Members with at least one of the three 

motifs were classified into Groups V-VII, with Group VII having the most members of 

the three (15 members out of 104 members). Group VIII HIL proteins were atypical, in 

that the three motifs were not present in the amino acid sequence. The alignments of 

reference members from each group may be seen (Figure 4-3).  
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Figure 4-4. Distribution of the HIL family in the rice genome. Rice members were 
distributed along the 12 chromosomes in rice. NBRP Oryzabase 
(http://viewer.shigen.info/oryzavw/maptool/MapTool.do) was used to develop the 
chromosome map. The locus identifiers were provided without the “LOC_Os##” for 
simplicity. Group identification was designated by the same color codes as those for 
Figure 4-2. The color codes are: turquoise for motif 1, NPN; blue for motif 2, RPP; and 
red for motif 3, YQYF. Triangles symbolize the absence of the motifs.  
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Figure 4-5. Phylogenetic tree of the members in the HIL family. Alignment was 
performed using the ClustalW algorithm included in the MEGA 5.0 software package 
and the default parameters (Gap Opening 10, Gap Extension 0.2, Gonnett weight matrix). 
The tree was constructed with 10,000 bootstraps. Group identification was designated by 
the same color codes as those seen in Figure 4-2. The color codes are: turquoise for motif 
1, NPN; blue for motif 2, RPP; and red for motif 3, YQYF. Triangles symbolize the 
absence of the motifs.  
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Distribution of HIL Members in the Rice Genome 

 The genes encoding the HIL proteins were fairly evenly distributed throughout 

the rice genome (Figure 4-4). Of the 12 rice chromosomes, chromosomes 1 and 6 

encompassed the most HIL genes, 20 and 17, respectively. Large clusters may be found  

on these chromosomes. Of the eight major groups in the family, Group I HILs were 

predominant on chromosome 1. The major gene cluster on chromosome 6 comprised of 

Group II members, suggesting an occurrence of gene duplication events. On chromosome 

2, the majority of members in the minor gene cluster of eight members belonged to 

Group VII; one member was a Group III protein. Chromosomes 9 and 10, the smallest 

chromosomes, had the fewest members with three HILs on each.  

To better understand the relationship of HILs to one another, a phylogenetic tree 

was created using MEGA 5.0 (Figure 4-5). Members of a particular group were generally 

clustered together, and those that did were also clustered in the genome (Figure 4-4). For 

example Group II members shared sequence similarities and were clustered together on 

chromosome 6. Group VII members were also similar based on phylogenetic analysis and 

were arranged in a cluster on chromosome 2. This further suggested that gene duplication 

events might have occurred.  

On the other hand, some members, such as those belonging to Group I, were 

generally dispersed throughout the phylogenetic tree; OsHIL1, -2, and -3 were neighbors 

on chromosome 1, but their sequences were divergent. OsHIL102, -103, and -104 were 

clustered on chromosome 12, but OsHIL104 shared sequence similarity to OsHIL97, 

which was localized on chromosome 11. Furthermore, OsHIL91 and -56 were Group II 

members with sequence similarity but were found on separate chromosomes. Therefore, 
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transposition of these duplicated genes might have occurred. The paralog of OsHIL58, 

OsHIL23, was localized on chromosome 2, whereas OsHIL58 was located on 

chromosome 4. The tree also identifies OsHIL13 as a closely related protein; thus, 

OsHIL13 and -23 may share some functional redundancy with OsWRKY71.  

 

Expression of HIL Members in Various Rice Tissues 

 The expressions of the HIL genes were extracted from different developmental 

stages and tissues in rice from the MSU RGAP (7th Release) RPKM collection. Of the 

tissues examined, including seedlings, mature leaves and shoots, and reproductive tissue, 

most HILs, 50 genes, were expressed in pre-emergence inflorescence, whereas the least 

number of HILs were expressed in the endosperm (Figure 4-6). Interestingly, OsHIL50 

was a highly expressed HIL in 4 day seedlings (>200 RPKM), leaves (100-200 RPKM), 

and throughout all tissues examined. The expression is consistent with the strong 

elicitation of hypersensitive response observed in tobacco leaves in NtHIN1 (Gopalan and 

He, 1996). Therefore, OsHIL50 may be a primary responder during pathogen attack in 

rice. Other HILs such as OsHIL44, -25, -77, and -97 also had a large number of reads in 

multiple tissues.  

Unlike the HILs mentioned, OsHIL56 may have a more specific role during a 

specific time in development. The expression of OsHIL56 was largely restricted to any 

stage regarding seed development. Specifically, the number of reads in embryos was 100-

200 RPKM, and 50-100 RPKM in 5 days after pollination (DAP) and 10 DAP, with an 

average number of reads in the endosperm after 25 DAP.  
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Figure 4-6. Expression of HIL members in respective rice tissues. (a) Number of 
members expressed within each tissue analyzed ranging from low read count (blue) to 
high read count (orange). Actual HIL members are listed in Appendix D. 
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So far, the expression of HILs in the cereal aleurone has not yet been investigated. 

Based on RNA-sequencing data from libraries prepared with aleurone mRNA, several 

HILs were highly expressed in the aleurone. OsHIL16 transcripts were relatively  

abundant (Log2RPKM ~8-9), and moreover, was not expressed in any other rice tissue 

examined. This suggested that OsHIL16 might have specific role in the aleurone and 

possibly in seed germination. Elucidation of its function may aid in deciphering the 

unique role that the aleurone has in cereal development. Besides OsHIL16, other HILs 

were highly expressed in the aleurone, including OsHIL50. Despite what was predicted, 

the OsWRKY71-interacting protein, OsHIL58, was not expressed in the control 

treatment. 

 

Expression of HIL Members in ABA- and GA-treated Aleurone Cells  

To identify HILs that may be important in seed germination, RNA-sequencing 

libraries were prepared from aleurone mRNA treated with 1 uM GA, 20 uM ABA, or 

both (Dr. Shen’s lab). For the most part, HILs that were highly were expressed in the 

control were also expressed in the experimental treatments (Figures 4-7 thru 4-10). 

Notably OsHIL16 was highly expressed under all conditions. HILs with Log2RPKM 

values greater than 4, also had high read count in ABA, GA, and ABA+GA treatments. 

Of the HILs that were expressed, those with low Log2RPKM values generally had lower 

read counts throughout all treatments, with few exceptions. Specifically, the Log2RPKM 

for OsHIL96 was around 4 but less reads were present in all experimental treatments. 

When the aleurone was treated with ABA or GA, several HILs were induced 

(Figures 4-11 thru 4-13; Appendix E). ABA induced OsHIL40, 56, -58, -60, -81, -88, and  
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Figure 4-7. Expression of HIL members in the aleurone under control treatments. Total 
RNA was purified from rice aleurone tissue treated with or without hormone, 1 µM GA, 
20 µM ABA, or 1 µM GA and 20 µM ABA, for 5 hours (3 independent biological 
replicates). Control treatments were imbibed in water. The RNA library was sequenced 
using the Illumina HiSeq at the Huntsman Cancer Institute, University of Utah. Only 
HILs significantly expressed are shown (average control RPKM + average experimental 
RPKM ≥ 1). RPKM=reads per kilobase of exon per million fragments mapped to the 
genome.  
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Figure 4-8. Expression of HIL members in ABA-treated aleurone tissue. Total RNA was 
purified from rice aleurone tissue treated with 20 µM ABA for 5 hours (3 independent 
biological replicates). The RNA library was sequenced using the Illumina HiSeq at the 
Huntsman Cancer Institute, University of Utah. Only HILs significantly expressed are 
shown (average control RPKM + average experimental RPKM ≥ 1). RPKM=reads per 
kilobase of exon per million fragments mapped to the genome.  
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Figure 4-9. Expression of HIL members in GA-treated aleurone tissue. Total RNA was 
purified from rice aleurone tissue treated with 1 µM GA for 5 hours (3 independent 
biological replicates). The RNA library was sequenced using the Illumina HiSeq at the 
Huntsman Cancer Institute, University of Utah. Only HILs significantly expressed are 
shown (average control RPKM + average experimental RPKM ≥ 1). RPKM=reads per 
kilobase of exon per million fragments mapped to the genome.  
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Figure 4-10. Expression of HILs in GA- and ABA-treated rice aleurone tissue. Total 
RNA was purified from rice aleurone tissue treated with 1 µM GA and 20 µM ABA for 5 
hours (3 independent biological replicates). The RNA library was sequenced using the 
Illumina HiSeq at the Huntsman Cancer Institute, University of Utah. Only HILs 
significantly expressed are shown (average control RPKM + average experimental 
RPKM ≥ 1). RPKM=reads per kilobase of exon per million fragments mapped to the 
genome.  
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-97, (Figure 4-11a), all of which, except for OsHIL56, were also repressed by GA (Figure 

4-12b). Although OsHIL58 was not expressed under normal conditions, it was 

specifically induced by ABA, similar to OsWRKY71. This supports the prediction that the 

two proteins may interact in the aleurone to regulator seed germination. Particular 

members that were induced by GA were OsHIL4, 83, -18, -39, -50, and -73 (Figure 4-

12a). And of these, all, except OsHIL83, were simultaneously repressed by ABA (Figure 

4-11b). HILs induced by both ABA and GA included OsHIL2, -7, and -53 (Figures 4-11a 

and 4-12a). However, OsHIL53 was not induced when compared to ABA+GA treatment; 

OsHIL2, and -7, in addition to other HILs, were induced (Figure 4-13a). Lastly, of the 

remaining HILs that were repressed in experimental treatments, those that were repressed 

under GA treatment were also repressed by ABA. For example, OsHIL75 was not 

induced in any treatment but was highly repressed by ABA and GA (Figure 4-13b). In 

this respect, HIL members were differentially regulated by ABA and GA.  

 

Coexpression of HIL Members with ABA Receptors 

Coexpression analysis of the HIL members with hormone receptors was 

performed to better associate the function of HILs in hormone signaling pathways. 

Although GA receptors and those in other hormone pathways would like to be considered 

eventually, coexpression using ABA receptors were tested first. 

Nearly 14 ABA receptors, or RCARs, were identified in Arabidopsis (Hubbard et 

al, 2010), but despite their importance, only one receptor was found to function in rice, 

RCAR5, while most other receptors have only been recognized based on sequence 

homology (Kim et al., 2012). Herein, RCARs were coexpressed with several HIL 
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  a 

 
  b 

 
 
 
Figure 4-11. ABA-induced and repressed HILs in the rice aleurone. HIL members are 
shown that were significantly (a) induced or (b) repressed by ABA. Total RNA was 
purified from rice aleurone tissue treated with 20 µM ABA for 5 hours (3 independent 
biological replicates). The RNA library was sequenced using the Illumina HiSeq at the 
Huntsman Cancer Institute, University of Utah. RPKM=reads per kilobase of exon per 
million fragments mapped to the genome.  
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   a 

 
   b  

 
 
 
Figure 4-12. GA-induced and repressed HILs in the rice aleurone. HIL members are 
shown that were significantly (a) induced or (b) repressed by GA. Total RNA was 
purified from rice aleurone tissue treated with 1 µM GA for 5 hours (3 independent 
biological replicates). The RNA library was sequenced using the Illumina HiSeq at the 
Huntsman Cancer Institute, University of Utah. RPKM=reads per kilobase of exon per 
million fragments mapped to the genome.  
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 a 

 
   b 

 
 
 
Figure 4-13. GA- and ABA-induced and repressed HILs in the rice aleurone. HIL 
members are shown that were significantly (a) induced or (b) repressed by ABA + GA. 
Total RNA was purified from rice aleurone tissue treated 1 µM GA and 20 µM ABA, for 
5 hours (3 independent biological replicates). The RNA library was sequenced using the 
Illumina HiSeq at the Huntsman Cancer Institute, University of Utah. RPKM=reads per 
kilobase of exon per million fragments mapped to the genome.  
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members in the rice aleurone, based on hierarchical clustering data.  Several distinct 

expression clusters were identified, with each cluster containing at least one RCAR 

receptor. OsHIL2, -7, -53, -60, and -81 (0 ≤ Log2Fold ≤ 1) was coexpressed with RCAR7 

and -8, which were mildly induced by ABA, forming the first cluster. The second 

identified cluster contained members associated with RCAR9 and was typically repressed 

only in the presence of ABA. These members included OsHIL4, -9,  -15, -16, -18, -35, -

39, -45, -50, -73, -83, and -91. The third major cluster consisted of members that were 

generally repressed in at least two hormone treatments. Within this cluster, RCAR4, -5, -

62, -10, and -3 were found to be associated with several HIL members. As a result, 

respective HIL members were indeed coexpressed with ABA receptors in the aleurone, 

suggesting that they may mediate or relay ABA response during germination.  

 

Conclusion 

In summary, 104 proteins were identified as members of the HIL family in rice. 

Using in silico analyses, several motifs were recognized in these proteins, including the 

NPN, RPP, and YQYF domains, from which members were further categorized into eight 

groups. Group I members were characterized with all three motifs were the most 

prevalent. Members were also evenly distributed throughout the rice genome, although 

some large and small clusters were found, which suggests functional redundancy and 

gene duplication events. 

 The OsWRKY71-interacting protein, LOC_Os05g45070, was named OsHIL58 

based on chromosome location. It was identified as a Group I member and was 

homologous to OsHIL13 and -23. OsHIL58 was expressed at low levels upon ABA 
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induction in the aleurone, suggesting possible interaction with OsWRKY71 during seed 

germination. Although OsHIL58 was not highly expressed, another HIL member, 

OsHIL16, was highly and specifically expressed in the aleurone and was coexpressed 

with the ABA receptor, RCAR9. Other HILs were also coexpressed with respective 

RCARs, and some were found be differentially regulated ABA and GA, suggesting 

possible roles in seed germination. In addition, HILs were identified that were not 

affected by either ABA or GA in the rice aleurone, as well as in other vegetative and 

reproductive rice tissues, implying that HILs might have many roles in the physiology of 

plants. 
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Figure 4-14. Coexpression profile of HIL members differentially expressed with ABA 
receptors in rice. The HIL members and ABA receptors or RCARs were clustered based 
on similar expression patterns in response to the hormone treatments used RNA-
sequencing data. Total RNA was purified from rice aleurone tissue treated with or 
without hormone, 1 µM GA, 20 µM ABA, or 1 µM GA and 20 µM ABA, for 5 hours (3 
independent biological replicates). Control treatments were imbibed in water. The heat 
map was generated using R programming. Similar expression patterns suggest possible 
involvement in the same pathway based on “guilt-by-association.” 
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CHAPTER 5 

SUMMARY AND DISCUSSION 

 

Introduction 

The aleurone tissue has the primary function of responding to endogenous 

hormones, namely GA and ABA, during seed germination in cereal grains. It is in the 

aleurone where hydrolases, such as amylases, are secreted into the endosperm to break 

down stored compounds such as starch to supply nutrients for the germinating plant. 

During germination, it is crucial for the seed to sense the environment; GA and ABA may 

mediate this process and may affect the rate of growth. Whether or not germination 

proceeds depends on the action of proteins regulated by these hormones. I propose that 

OsWRKY71 and HIL members may facilitate processes that may be important during 

GA and ABA signaling and response in the aleurone.  

 

Several questions were addressed in this thesis as follows: 

1. Are current mutants for OsWRKY71 indeed transgenic? 

2. In these stable transgenic mutants, does OsWRKY71 mediate seed 

germination as predicted by transient expression assays in barley? 

3. How many members is the HIL family composed of? If OsWRKY71 interacts 

with OsHIL58, does OsHIL58 and/or other HIL members have roles in 

mediating seed germination?  
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To address these questions, I first verified and propagated oswrky71 mutant. 

Second, I performed physiological germination and root elongation assays using 

oswrky71 mutants to study its role in early plant development. And third, I performed 

computational analyses to identify and annotate all members of the HIL family in rice. 

Following this, I using RNA-sequencing of the aleurone in rice seeds treated with GA 

and ABA to identify potential HILs that may mediate seed germination. 

 

Chapter 2 Summary and Discussion 

Identification and Verification of dSpm Knockout Mutants for OsWRKY71  

Mutants for oswrky71 were identified using standard screening techniques. Two 

different knockout lines were obtained from the Sundareson lab at UC Davis, one 

containing a transposable element, dSpm, within the 5’-UTR, named 1689, and another 

within the 2nd exon of OsWRKY71, labeled 3171A. There are several benefits from using 

these mutants as described by Kumar et al. in (2005). The insertion of dSpm is immobile 

and stable due to the removal of sequences necessary for transposition; this ensures that 

plants will be stably transgenic throughout subsequence generations. Additionally, dSpm 

insertional mutagenesis adapts a fluorescence-based tagging strategy based on the 

En/Spm transposon, which makes it feasible to distinguish between heterozygous and 

homozygous plants based on fluorescence intensity. Moreover, once the T-DNA is 

inserted into the genome, a single copy could be identified, since GFP is not mobile and 

25% of the selfed progeny will be GFP negative.  

To identify positive dSpm insertional mutants, PCR was used to screen plant lines 

1689 and 3171A. One homozygous and one heterozygous plant were identified in the 
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1689 line. In the 3171A line, multiple plants were identified that were positive for the 

insertion of dSpm. These knockout mutants are valuable tools to further uncover the 

function of OsWRKY71 in rice. This present study is the first mention of using knockout 

lines for OsWRKY71 for analyses in plant growth and development; previous research has 

been performed in overexpression lines in regards to disease resistance (Liu et al., 2007; 

Chujo et al., 2008).  

In addition to knockout oswrky71 lines, other OsWRKY71 mutants were 

generated, transformed, and grown by members of the Shen lab in coordination with 

members from labs in Taiwan. Select T1 and T2 seeds were screened for the transgene, 

including GUS reporter, overexpression, and dominant negative lines. Several lines were 

identified to be positive for the insertion of a GUS reporter or an overexpression 

transgene, but only one line was identified among the dominant negative transformants. 

To further verify the transformants, GUS staining and Western analysis was performed 

on T2 generation rice tissue. However, it was found that silencing of the transgene could 

be an issue (Kilby et al., 1992). Hence, for analyses, T1 generation rice plants should be 

tested and used for future analyses, or the effects of silencing may be released by the 

application of compounds such as sulfamethazine (Zhang et al. 2012).  

 

Expression of OsWRKY71 in Rice Nodes 

Preliminary GUS staining results in T1 OsWRKY71p-GUS reporter lines suggest 

that OsWRKY71 may be localized in various parts of the rice plant. In seeds, GUS 

expression was found, albeit low, in the aleurone tissue and the scutellum of embryos 

(data not shown), as expected for OsWRKY71. Expression was also found at the base of 
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shoots in growing seedlings, although this data must too be confirmed due to the low and 

inconsistent expression in several T1 lines and potential effects of silencing in T2 lines.  

However, it is interesting to note that GUS expression was also observed in the 

nodes of rice culms. The node is generally described as the region on a stem where leaves 

and branches are attached, but in rice, nodes are distinguishing features. In a single rice 

culm, over a dozen nodes may exist. Only several of these nodes may actually elongate, 

while the remaining unelongated nodes reside at the base of the plant with the potential to 

generate into various tissues via meristematic cell differentiation. If nutrient and space is 

available, additional reproducing culms or tillers with independent root systems may 

differentiate from the lower nodes (Li et al., 2003). Under certain circumstances such as 

submergence, rice has the potential to promote internode elongation at these lower nodes 

as well, at a growth rate of 20 to 25 cm/d to enable it to tolerate flooded water (Kende et 

al., 1998). Furthermore, adventitious root growth aside from the main root system is 

stimulated at these nodes to aid in stabilization of the growing semiaquatic plant 

(Mergemann and Sauter, 2000). During this process, molecular regulation of internode 

and root elongation is primarily controlled by ethylene, but crosstalk with GA and ABA 

and the balance of these hormones is also important (Mergemann and Sauter, 2000; 

Steffens and Sauter, 2005). Together, these hormones may regulate programmed cell 

death prior to growth (Steffens and Sauter, 2005) and/or expansion afterwards (Cho and 

Kende, 1997). In fact, several expansin proteins, which aid in loosening of cell wall 

material to promote growth, were expressed in the intercalary meristems positioned near 

the nodal regions of deepwater rice. (Cho and Kend, 1997). It is possible that 

OsWRKY71 may regulate growth by interacting with expansins in nodes (Figure 5-1a). 
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This is further supported by positive interaction results of OsWRKY71 and expansins in 

previous yeast-2-hybrid assays (Dr. Lingkun Gu, unpublished). Since transcription 

factors have been found to localize and function in other parts of the cell other than the 

nucleus in plants and other organisms (Hoppe et al., 2000; Kim et al., 2006; Slabaugh 

and Brandizzi, 2011), interaction of OsWRKY71 with non-nuclear expansins may be 

inevitable. In fact, the homolog of OsWRKY71 in Arabidopsis was found to interact with 

a cytosolic protein; AtWRKY40 interacted with a chloroplast protein, the magnesium-

protoporphyrin IX chelatase H subunit (CHLH/ABAR). The interaction between 

OsWRKY71 and expansins could be further investigated using co-immunoprecipitation 

or transient expression in rice protoplasts (Zhang et al., 2011).  

 

Future Aims for the OsWRKY71 Project 

One future goal for this project is aimed towards global identification of the 

promoters of genes regulated by OsWRKY71, which may be identified using chomatin-

immunoprecipitation followed by high-throughput sequencing or ChiP-Seq (Libault et 

al., 2009; Zhang et al., 2009; Zhu et al., 2008; Picardi et al., 2010). This would lend to a 

more complete understanding of the impact of OsWRKY71 on multiple cellular 

processes. To perform ChiP-Seq in the future, antibodies that would specifically detect 

OsWRKY71 is of pertinence. Two antibodies are available, polyclonal anti-OsWRKY71 

and anti-HA, which would identify OsWRKY71 in wt rice tissue and overexpression 

lines tagged with HA, respectively. However, the detection of OsWRKY71 in rice has 

been challenging, as the detection was not always reproducible. Detection issues may 

result from the relatively low abundance of OsWRKY71 in tissues, protein modification, 
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chemical interference due to amino acid composition, low levels of protein despite high 

levels of mRNA, or rapid turn over rates. To resolve these issues, it may be necessary to 

focus on one tissue type shown to have a high expression and relative abundance of 

OsWRKY71, such as the aleurone or embryo, instead of on multiple tissues. Tissues 

considered previously were germinating roots, seedlings, mature leaves, and wounded 

leaves, while the embryo and aleurone tissues were generally neglected due to difficulty 

in harvesting tissue and possible degradation. Therefore, protein extraction and other 

methods may need to be adapted for recalcitrant tissue (Wang et al., 2003), the amount of 

tissue used for detection may need to be increased, a larger gel device may be helpful for 

protein separation, and other methods such as immunoprecipitation (Park et al., 2008) 

should be considered. In summary, protein detection of OsWRKY71 may need to be 

improved, transgenic lines produced in Taiwan need to be verified further before they can 

be used for analyses, but knockout oswrky71 lines are readily available for use in 

germination and other developmental studies in plants.  

 

Chapter 3 Summary and Discussion 

The Role of OsWRKY71 in the Regulation of Seed Germination  

OsWRKY71 was shown to be involved in many processes such as disease 

response (Liu et al., 2007; Chujo et al., 2008), but its role in rice seed germination was 

not thoroughly investigated. In this study, OsWRKY71 was discovered to play a role in 

seed germination and seedling root growth. If OsWRKY71 represses α-amylase 

production, then the loss of repression and the “brake” for growth was predicted to 

enhance germination. However, the germination rates for 3171A seeds were opposite of 
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what was predicted and were delayed compared to wt and root growth was inhibited. 

Seed germination and root growth in 1689 seeds were not repressed as in 3171A but was 

more variable than wt, which may be a result of positional differences of dSpm in 

OsWRKY71. Since the insertion of dSpm did not affect the coding region of OsWRKY71 

and was instead inserted within the 5’-UTR, any leaky expression of OsWRKY71 may be 

able to produce functional protein. Because of the differences in phenotype observed 

between 1689 and 3171A, a rescue line would need to be developed, primarily for 

3171A, to prove that OsWRKY71 is in fact involved in these processes. 

Several reasons could explain the unexpected delay in germination that was 

observed in 3171A seeds. Because OsWRKY71 is a transcriptional regulator, the 

expression of many other genes besides α-amylase may be altered. This could lead to an 

indirect repression of α-amylase production or in the expression of other metabolic and 

growth-related genes (Figure 5-1b). Also, OsWRKY71 shares sequence similarity to 

OsWRKY18 (Ross et al., 2007), thus, redundancy in function could play a role. 

Furthermore, it is possible that OsWRKY71 may indeed regulate α-amylase production 

during seed germination, but the loss in repression in oswrky71 mutants may have also 

affected seed development (Figure 5-1c). While the seed is maturing on the mother plant 

and is preparing for dormancy, ABA levels increase and regulators such as OsWRKY71 

may repress germination-related genes in order to prevent instances such as pre-harvest 

sprouting (Gubler et al., 2005). Although redundancy may exist and the effects of 

OsWRKY71 may not be sufficient alone in causing pre-harvest sprouting, there may be 

some disruption or abnormalities occurring within the developing seed. Activation of α-

amylase during seed maturation, especially during dehydration, may reduce the amount 
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of starch stored in the seed, which is consistent with the slightly reduced seed weights 

seen in knockout seeds. Loss in seed vigor then, could reduce germination rates. To better 

understand the function of OsWRKY71, a global expression analysis of wt and 3171A 

seeds may be performed to reveal the large-scale effect of OsWRKY71 in seed 

maturation and germination. I predict that multiple genes would be affected in oswrky71 

lines, including genes involved in metabolism, nutrient balance, cell enlargement, and 

multiple hormone signaling pathways. 

 

The Role of OsWRKY71 in the Regulation of Root Development  

Based on root elongation assays, oswrky71 appeared to not only cause a delay in 

seed germination but also an inhibition in root growth. However, it was questionable as to 

whether or not the appearance of shorter roots in 3171 seedlings was caused by the initial 

delay in germination or if root growth was independent. Yet, even when accounting for a 

one-day delay in germination, the primary roots appeared to be shorter in 3171A 

seedlings. For example, 3171A seedlings on the seventh day were overall shorter than wt 

roots, even when compared to wt roots from the third day. Therefore, OsWRKY71 may 

not only have a role in seed germination but also in root elongation. 

 Root growth is directed by the coordination of multiple hormones, including 

ABA (Chen et al., 2005) and GA (Tanimoto 2005), although the role of auxin is more 

familiar when considering root architecture (Rahman et al., 2007). ABA has been shown 

to be specifically involved in primary root growth in rice (Yao et al., 2003) and other 

cereal crops such as maize (Spollen et al., 2000), as a way to promote water stress 

avoidance or tolerance. Since ABA was shown to induce OsWRKY71, and ABA and GA 
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inhibit and promote root growth, respectively (Steffens and Sauter, 2005), it is possible 

that OsWRKY71 might have disrupted GA and ABA crosstalk. In Arabidopsis, root 

growth was stimulated by the degradation of specific DELLA repressors RGA (Repressor 

of Gal-3) and GAI (Gibberellic Acid Insensitive) (Steffens and Sauter, 2005) and LA and 

CRY in peas (Pisum sativum; Weston et al. 2008). GA also stimulated response genes 

such asα-expansins, which were expressed in rice roots (Lee and Kende, 2002) and in 

primary roots of maize (Wu et al., 2007). Since OsWRKY71 was shown to interact with 

an expansin protein as previously suggested, it is possible that the loss of OsWRKY71 

positively affects cell expansion and cell wall extensibility in root growth (Figure 5-1a).  

Although it is predicted that OsWRKY71 may be mediating the crosstalk between 

ABA and GA, I also hypothesize that OsWRKY71 may be important in auxin-dependent 

response, since auxin is the major hormone involved in root elongation (Rahman et al., 

2007). Auxin is a fundamental determinant to cell fate and patterned root development 

and is unique in that it is synthesized primarily in meristematic regions at the shoot apex 

and transported in a polar fashion to the root tip, through Pin-formed (PIN) proteins, 

which serve as efflux carriers (Sabatini et al., 1999). In rice, specifically, the role of auxin 

has generally been shown to be involved in lateral root growth. Interestingly, the 

formation and elongation of lateral roots via auxin was recently shown to be regulated by 

another WRKY member, OsWRKY31 (Zhang et al., 2008). Because the primary roots of 

3171A were unable to elongate during seedling growth, I hypothesize that OsWRKY71 

could be regulating proteins such a PIN to prevent auxin transport and response. Several 

PIN proteins were identified in rice, including OsPIN1, -5, -9, and -10 and were 

expressed in various locations in the root (Wang et al., 2009). The expression of these 
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proteins may be analyzed in 3171A roots in future analyses. Additionally, other physical 

attributes of the rice root system should be analyzed, including the appearance, number, 

and elongation of crown roots, typically observed in cereal crops (Coudert et al., 2010), 

and the growth of seminal and lateral roots. These would aid in understanding the precise 

role of OsWRKY71 in GA, ABA, and possibly auxin signaling and response in root 

development. 

 

Additional Physiological Tests Used to Study OsWRKY71 Function 

 To further investigate the role of OsWRKY71 in plant development, other 

experiments or measurements were carried out including starch plate assays, analyses of 

mature seedling, preliminary measurements of shoots, and electrolyte leakage tests. 

Starch plates assays (Zhen et al., 2007) were used to examine the degree of starch 

degradation in the presence of ABA, GA, or in both hormones. Although 3171A seeds 

were predicted to have a greater degree of starch hydrolysis than wt, the results were 

inconsistent (data not shown). However, it is possible that long-term storage of seeds and 

after-ripening effects could alter the balance of ABA and GA in the seed (Kucera et al., 

2005) thereby increasing the chance of observing variation in the results. To remain 

consistent, then, a set period of time should be considered when performing starch assays. 

Since 3171A seeds were actually delayed in germination, then it is predicted that wt 

seeds would exhibit more starch hydrolysis. Therefore, a longer incubation time, for 

example 4-5 days, may produce noticeable differences between wt and 3171A seeds. 

Furthermore, since OsWRKY71 was shown to be involved in disease response (Chujo et 
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al., 2008), the use of salicylic acid in starch assays (Xie et al., 2007) may be considered 

for future analyses.  

In addition to starch plate tests, the shoots of mature seedlings were measured 

after 5 days of growth in MS media or 100mM NaCl (data not shown). There appeared to 

be no significant difference in shoot lengths between wt and knockout mutants, although 

this data needs to be confirmed. Interestingly, although the shoots were similar in height, 

the lengths of the first internodes were surprisingly different. 3171A seedlings had longer 

internodes that were significantly more resistant to NaCl damage (data not shown). It was 

expected that 3171A seedlings would experience less damage to NaCl stress, but initial 

electrolyte leakage tests showed that there was no difference in ion leakage between wt 

and 3171A (data not shown). Although these experiments need to be repeated, this 

further demonstrates that OsWRKY71 may regulate internode development at rice nodes 

or that it may have other roles in plant development.  

 

Chapter 4 Summary and Discussion 

The HIL Family as a Large Protein Family  

 Like the WRKY superfamily, the HIL family was discovered to be a large family 

in flowering and non-vascular plants, with occurrence in smaller organisms. From this 

study, 104 members were found in rice, of which 66 were identified as part of the LEA_2 

domain family or described as putative harpin-induced proteins, and 38 proteins were 

never described. Although not shown, annotation was also performed in Arabidopsis. 

Previously, 45 members were identified; however, using the prescribed HMM, 21 

additional members were found for a total of 66 members (data not shown). Several other 



 95 

dicots were also examined, to which 128 members were discovered in soybean (Glycine 

max), 49 in tomato (Solanum lycopersicum), 38 in grape vine (Vitis vinifera), and 78 in 

poplar (Populus trichocarpa). Furthermore, two other monocots of the grass family 

besides rice were analyzed, for which 97 members were identified in sorghum (Sorghum 

bicolor) and 167 in corn or maize (Zea mays). Moreover, the HIL family was found in 

moss (Physcomitrella patens), which consisted of 36 members. For these organisms, HIL 

(Harpin-Induced1 Like), was chosen as a more simplified family name rather than NHL 

(Ciccarelli and Bork, 2005), while still maintaining credit given to the original HIN that 

was first identified as being harpin-induced. It is clear that naming a family based on the 

expression of one member may cause confusion (Wise et al., 2007), as not all members 

may actually be harpin-induced. However, this name was chosen until the true cellular 

function of HILs might be revealed, to which a more suitable name could be designated.  

To further annotate this family in rice, motif analysis, chromosome distribution, 

phylogenetic analysis, and multiple alignments were built using in silico tools. From 

these analyses, HILs in rice and Arabidopsis appeared to share conserved motifs 

(Dormann et al., 2000). Herein, the core sequences were identified and used to name each 

motif, in particular, NPN, RPP, and YQYF, based on highest to lowest conservation. 

Despite the presence of the core motif in both organisms, the flanking sequences were 

variable, although some amino acids shared similar chemical properties, such as neutral, 

non-polar amino acids valine, alanine, and isoleucine (data not shown). The exact roles of 

these motifs have yet to be discovered. Interestingly, the RPP motif was localized within 

a largely hydrophobic, predicted transmembrane region, near the N-terminal region. The 

conserved role of arginine (R) may be an important marker for the protein, since it is 
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positively charged and has been shown to exist in non-transmembrane parts of the protein 

or  ‘loops’, particularly on the cytoplasmic side (Sonnhammer et al., 1998). This supports 

previous findings that HILs might be localized to the plasma membrane (Varet et al., 

2003; Lee et al., 2005), and thus, may function to permit transport of certain substances 

under specific conditions. Furthermore, the NPN and the YQYF motifs were located 

towards the C-terminal side in most proteins and were in close approximation to each 

other. The highly conserved asparagine (N) present in almost all HIL members suggests a 

critical role in the function of these proteins. Asparagine has been shown to be important 

in stabilizing an active site in ubiquitin-conjugating enzymes (Berndsen et al., 2013) and 

promoting catalytic activity in ribonucleotide reductase and autotransporters in bacteria 

(Kasrayan et al., 2002; Barnard et al., 2012), thus, could possibly be a target for fully 

understanding HIL function. And whether or not these any of these motifs are important 

for protein-protein interaction has yet to be determined. 

 

Shedding Light on Interaction between OsHIL58 and OsWRKY71 

The protein interaction observed between OsHIL58 and OsWRKY71 (Lingkun 

Gu, unpublished) lent to further characterization of OsHIL58. Herein, it was identified as 

a Group I protein, containing all three motifs, and was located on chromosome 5, with 

neighboring HILs approximately 5 KB away. Based on phylogenetic analysis, OsHIL58 

was closest in identity to OsHIL13 and -23, which were located on chromosomes 1 and 2, 

respectively. The expression of OsHIL58 was restricted to mature shoots and leaves, and 

was induced by ABA in the aleurone (Figure 5-1d), albeit in low levels, which was 
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surprising but not eliminating the possibility that interacting is occurring with 

OsWRKY71, since it is also upregulated by ABA. 

Several hypotheses might explain possible reasons for the interaction of 

OsWRKY71 with OsHIL58. Although OsWRKY71 is expressed in untreated aleurone, 

ABA treatment may alter the regulation of OsWRKY71 via expression of OsHIL58. This 

may result in mobilization or differential regulation of OsWRKY71 during seed 

development or germination. Since HILs are known for their roles in disease response, 

perhaps differential regulation of OsWRKY71 would allow it to mediate GA and ABA 

crosstalk with the SA and JA signaling pathways. Although SA and JA signaling are 

mostly known for their roles in biotic stress, they also have been shown to mediate seed 

germination (Linkies and Leubner-Metzger, 2012). Moreover, SA was shown to decrease 

GA production of α-amylase (Xie et al. 2007), and SA, pathogen infection, and wounding 

induced the expression of OsWRKY71 (Liu et al., 2007). Therefore, interaction with HIL 

members may not be surprising. This would be feasible for OsWRKY71, since other 

sequences besides the WRKY domain and nuclear localization signals have been 

identified (Appendix A). Near the N-terminal region there is an LX motif suggesting a 

role in ethylene signaling; a leucine zipper, for accommodating protein-protein 

interactions; a proline-rich region, possibly for osmoprotectant activity; and an alanine-

rich region on the C-terminal side, which may aid in activation/repression activity. 

Proline-rich regions are also characteristic of cell wall proteins in plants (Fowler et al., 

1999) and osmotic stress in yeast (Ooms et al., 2000). The expression of a PvPRP1 

(Proline-Rich Protein 1), in bean, (Phaseolus vulgaris) appeared to be integrated with the 

remodeling of the plant cell wall during defense response (Sheng et al., 1991). In yeast, 
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the proline-rich region was found to be sufficient for stress-mediated localization (Ooms 

et al, 2000). These proline-rich regions may direct OsWRKY71 or even HILs to the 

membrane under certain circumstances. In addition, predicted sumoylation and 

ubiquitination sites have been found throughout the OsWRKY71 protein. Attachment of 

ubiquitin and sumo, may occur on the same or different residue, particularly lysine, 

leading to either the same effect, antagonistic effect, or multiple effects resulting in 

protein degradation or stability, subcellular transport, localization, and 

compartmentalization (Denuc, A. and M. Gemma, 2010). These implications further 

suggest that OsWRKY71 is able to mobilize to various parts of the cell, including the cell 

membrane where it may interact with OsHIL58 or other HIL members. This is the first 

identified interaction between a HIL member and another protein. 

 

Comparison of the HIL Family with the LEA14 Subfamily 

To further understand the cellular function of HILs, this family perhaps could be 

compared to the LEA14 members of the LEA family. LEA14 proteins, also called D-95 

(Galau et al., 1993), Group 5C, or Group 7 (He et al., 2012) consists of only five 

members in rice according to PFAM. Together with respective HILs, the LEA14 proteins 

share the same domain family LEA_2 (PF03168) in the PFAM database; this domain 

includes the NPN domain and possibly the YQYF. It was initially predicted that LEA14 

members would be identified by HMM analysis, however, despite their sequence 

similarity, was not detected and thereby distinct. Although subject to further examination, 

preliminary results suggest that LEA proteins share an NPY instead of an over-

represented NPN motif (data not shown). Or, LEA proteins may be missing an RPP 
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motif, despite the presence of a predicted transmembrane region. Unlike other LEA 

proteins, which are generally hydrophilic and structurally more ordered upon dessication 

(Wise et al., 2004 reviews; Tunnacliffe and Wise, 2007; Hand et al., 2011), LEA14 

members are considered atypical because they are hydrophobic, similar to HILs, and 

generally stable (Singh et al., 2005; Battaglia et al., 2008 review). LEA14 members were 

shown to be induced by various abiotic stresses: soybean D95 was induced by drought 

(Maitra and Cushman, 1994); tomato ER5 was stimulated by drought, ABA, and 

wounding (Zegzouti et al., 1997); hot pepper (Capsicum annuum), CaLEA6 (Kim et al., 

2005), and sweet potato (Ipomoea batatas) IbLEA14 (Park et al., 2011) were upregulated 

by PEG, ABA, and NaCl; and OsLEA5 from rice enabled tolerance to osmotic stress and 

NaCl, as well as from heat, freezing, and UV radiation (He et al., 2012). It appears as 

though HILs may also mediate dehydration stress, as the presence of a LEA_2 domain in 

certain proteins indicates (Battaglia et al., 2008).  

In addition to possible overlapping functions, HILs from rice were predicted to 

adopt a similar protein structure to a LEA14 protein in Arabidopsis, based on Phyre 

analysis (data not shown). This protein, from gene At1g01470, is the only LEA protein 

with a solution structure available, possibly due to protein stability (Singh et al., 2005). 

Singh et al. (2005) has shown that LEA14 adopted an α-β-fold consisting of one α -helix 

and seven β-strands that form two antiparallel β-sheets. The beta-sheets appear to form a 

rather narrow or flattened barrel, possibly for some kind of molecular transport, 

chaperoning, molecular shielding, or membrane stability. On the other hand, homology 

modeling of Arabidopsis NDR1, a HIL protein identified in Arabidopsis, suggested that 

NDR1 was similar in structure to integrins (Knepper et al., 2011). Therefore, it is 
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possible that HILs may mediate abiotic, biotic, or other chemical signals through the 

plasma membrane. Such examples provide clues to discovering the physiological 

function(s) of HIL in plants. And although questions were raised regarding whether or 

not atypical LEA14 proteins should be considered as part of the LEA family (Tunnacliffe 

and Wise, 2007; He et al., 2012;), from the analyses in the present study, LEA14 

members appear to be quite distinct from the HIL family, although they may share 

similar attributes. 

 

The Role of HIL Members in Seed Germination and Plant Development 

 Previous research suggested that HILs had a major role in biotic defense and 

minor roles in abiotic stress (Lee et al., 2006). Herein, the expressions of HILs were 

investigated to better understand the role of HILs in plant development. Several HILs, 

OsHIL44, -50, and -97 were highly expressed in almost all rice tissues, thus, appears to 

be important throughout plant development, while OsHIL56 was mainly expressed in 

seeds. Furthermore, several HILs were found to be expressed in the aleurone of rice seeds 

and were differentially regulated by ABA and GA. Namely, OsHIL56 and -58 were 

induced by ABA, while OsHIL2, -18, and -83 may be induced by GA. Several HIL 

members such as OsHIL75 and -96, and -101 were repressed by both GA and ABA. In 

addition, ABA receptors were coexpressed with specific HILs in hormone treated 

aleurone tissue. In particular, ABA induced ABA receptors RCAR7 and -8 (Figure 5-1e), 

and was coexpressed with HIL members such as OsHIL60 (not shown in Figure 5-1). 

Interestingly, RCAR9 was repressed in ABA-treated aleurone (Figure 5-1f) and was 

coexpressed with OsHIL16 (Figure 5-1, star). Although several HILs, including 
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OsHIL13, -17, -18, -49, -50, -95, -97, and -100, were highly expressed in untreated 

aleurone tissue, OsHIL16 was highly and specifically expressed in the aleurone (Figure 

5-1g) and not in other rice tissues investigated (Appendix D). Therefore, OsHIL16 might 

have a major role in aleurone specificity or in seed germination and may be an interesting 

target for future research.  

 

Concluding Remarks 

Plant physiology and development in its entirety is a unique, intricate, and 

complicated process, the understanding of which is an immense task. Because of the 

generally immobile nature characteristic to plants, the study of plant interaction with its 

environment is of great importance.  

Several discoveries were made in this research. Firstly, OsWRKY71 was shown 

to function in not only seed germination, but also in root elongation and possibly in the 

meristematic activity of rice nodes. Although the latter has yet to be verified, implications 

may aid in understanding stem cell regulation, differentiation, and expansion. Also, 

contrary to what was predicted, OsWRKY71 might be a positive regulator of these 

processes. Secondly, OsHIL58, an OsWRKY71-interacting protein, was induced under 

ABA treatment in the aleurone, suggesting an interaction with OsWRKY71 during seed 

germination. Thirdly, OsHIL16 was highly expressed in the aleurone and coexpressed 

with RCAR9, both of which were repressed in ABA treatment. Fourthly, ABA receptors 

RCAR-7 and -8 were induced by ABA in coexpression studies. And finally, 104 members 

of the HIL family were identified in rice; 21 additional members were identified in 

Arabidopsis; and HIL members were also identified in other plant species. 
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This research facilitates the CSREES (Cooperative State Research, Education, 

and Extension Service) Strategic Plan Goals 1 and 3: to enhance economic opportunities 

for agricultural producers and to enhance the protection of the nation’s agriculture and 

food supply. Developmental issues such as pre-harvest sprouting, and abiotic and biotic 

factors may result in poor grain and flour products, which may increase economic costs 

for both growers and consumers, in addition to reducing food value by 20% to 50% as 

emphasized by CSREES. This research will aid in the development of biotech 

applications in reducing yield loss in not only rice, but in closely related crops and other 

plants.  
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Figure 5-1. Predicted model of OsWRKY71 in regulation of seed germination and rice 
development. (a) OsWRKY71 may be a positive regulator of root growth as suggested by 
root elongation studies, and it may also regulate meristematic differentiation in rice 
nodes, based on GUS expression. This may be mediated by the interaction between 
OsWRKY71 and expansins based on yeast interaction studies (Dr. Lingkun Gu). (b) 
Although OsWRKY71 appears to be a positive regulator of growth, it was shown to be a 
negative regulator of α-amylase, suggesting a much more complex network than was 
originally hypothesized. It is possible that OsWRKY71 may be repressing additional 
genes that may repress α-amylase or (c) OsWRKY71 may be repressing α-amylase 
specifically during seed maturation. Loss of seed vigor, then, may be attributed to 
immature seed development, resulting in a delay of germination instead of enhancement. 
(d) Although OsWRKY71 and OsHIN58 were shown to interact (Dr. Lingkun Gu), in 
this study I show that ABA induced OsHIN58 in global expression analyses of the 
aleurone. This further suggests that interaction may be important during seed 
germination. (e) Furthermore, RCAR7 and -8 were induced by ABA in the aleurone, 
while RCAR9 was repressed, based on RNA sequencing data. Interestingly, OsHIN16 
was highly and solely expressed in the aleurone and was coexpressed with RCAR9; both 
were repressed by ABA. Red lines or text: novel discovery; dotted red arrows: 
hypothesized; dotted lines: interaction; star: coexpression. Adapted and modified from 
Weiss and Ori, (2007). 
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APPENDIX A 

OSWRKY71 STRUCTURE, MOTIFS, AND SEQUENCES 
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APPENDIX B 

OSWRKY71 FAMILY TREE 
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APPENDIX C 

COMPARISON OF HIL MEMBERS WITH PROTEINS LISTED  

IN THE PFAM DATABASE 

 

 

HILs Identified by                              
PFAM (68, 66 unique)

HILs Not Identified                       
by PFAM (39, 38 unique)

PFAM Members Not Identified 
as HILs (5)*

E-value=0.1 LOC_Os06g02940.1 LEA_2 (PF03168) E-value=0.1 LOC_Os01g12580
LOC_Os01g09880.1 LOC_Os06g03030.1 LOC_Os10g39970.1 LOC_Os01g51460.1 LOC_Os01g43530
LOC_Os01g12820.1 LOC_Os06g03059.1 LOC_Os07g10610.1 LOC_Os01g51490.1  LOC_Os03g62620 
LOC_Os01g13340.1 LOC_Os06g03070.1 LOC_Os02g44670.1 LOC_Os01g51500.1 LOC_Os05g50710
LOC_Os01g39290.1 LOC_Os06g03099.1 LOC_Os05g40400.1 LOC_Os01g51510.1 LOC_Os07g17120
LOC_Os01g51460.1 LOC_Os06g03110.1 LOC_Os08g23460.1 LOC_Os01g51520.1
LOC_Os01g51470.1 LOC_Os06g06780.1 LOC_Os03g15630.1 LOC_Os01g56500.1
LOC_Os01g51490.1 LOC_Os06g32970.1 LOC_Os05g50720.1 LOC_Os02g40560.1
LOC_Os01g51500.1 LOC_Os06g49650.1 LOC_Os08g44410.1 LOC_Os02g40590.1
LOC_Os01g51510.1 LOC_Os07g10610.1 LOC_Os02g33550.1 LOC_Os02g40600.1
LOC_Os01g51520.1 LOC_Os07g10610.2 LOC_Os03g62010.1 LOC_Os02g40610.1
LOC_Os01g53470.1 LOC_Os07g14660.1 LOC_Os03g48950.1 LOC_Os02g40620.1
LOC_Os01g56500.1 LOC_Os07g14700.1 LOC_Os01g64450.1 LOC_Os02g40640.1
LOC_Os01g59680.1 LOC_Os07g14740.1 LOC_Os11g03600.1 LOC_Os02g40650.1
LOC_Os01g64450.1 LOC_Os07g34040.1 LOC_Os06g32970.1 LOC_Os02g44740.2
LOC_Os01g64470.1 LOC_Os07g34050.1 LOC_Os01g12820.1 LOC_Os03g09160.1
LOC_Os01g64480.1 LOC_Os07g34720.1 LOC_Os01g13340.1 LOC_Os03g11710.1
LOC_Os01g68080.1 LOC_Os08g01210.1 LOC_Os11g05870.1 LOC_Os04g02410.1
LOC_Os01g68090.1 LOC_Os08g01220.1 LOC_Os05g14880.1 LOC_Os04g35130.1
LOC_Os02g01060.1 LOC_Os08g23460.1 LOC_Os06g02840.1 LOC_Os04g42970.1
LOC_Os02g16030.1 LOC_Os08g38580.1 LOC_Os01g59680.1 LOC_Os06g02630.1
LOC_Os02g16610.1 LOC_Os08g44410.1 LOC_Os04g58850.1 LOC_Os06g02670.1
LOC_Os02g30450.1 LOC_Os09g09460.1 LOC_Os01g51470.1 LOC_Os06g02810.1
LOC_Os02g33550.1 LOC_Os09g26480.1 LOC_Os03g62020.1 LOC_Os06g02930.1
LOC_Os02g40560.1 LOC_Os09g36210.1 LOC_Os08g38580.1 LOC_Os06g03030.1
LOC_Os02g40590.1 LOC_Os10g34550.1 LOC_Os12g06220.1 LOC_Os06g03059.1
LOC_Os02g40600.1 LOC_Os10g39970.1 LOC_Os09g26480.1 LOC_Os06g03070.1
LOC_Os02g40610.1 LOC_Os11g02730.1 LOC_Os03g48950.2 LOC_Os06g03099.1
LOC_Os02g40620.1 LOC_Os11g03600.1 LOC_Os06g02940.1 LOC_Os06g03110.1
LOC_Os02g40640.1 LOC_Os11g05860.1 LOC_Os09g36210.1 LOC_Os10g34550.1
LOC_Os02g40650.1 LOC_Os11g05870.1 LOC_Os07g10610.2 LOC_Os11g37680.1
LOC_Os02g44670.1 LOC_Os11g37680.1 LOC_Os04g33990.1 E-value=1.0
LOC_Os02g44740.1 LOC_Os12g02700.1 LOC_Os02g44740.1 LOC_Os01g46670.1
LOC_Os02g44740.2 LOC_Os12g03370.1 LOC_Os04g59330.1 LOC_Os01g46730.1
LOC_Os03g09160.1 LOC_Os12g06210.1 LOC_Os02g30450.1 LOC_Os02g40630.1
LOC_Os03g11710.1 LOC_Os12g06220.1 LOC_Os12g03370.1 LOC_Os03g26080.1
LOC_Os03g15630.1 LOC_Os12g06260.1 LOC_Os01g53470.1 LOC_Os04g43519.1
LOC_Os03g48950.1 E-value=1.0 LOC_Os04g53650.1 LOC_Os06g02800.1
LOC_Os03g48950.2 LOC_Os01g46670.1 LOC_Os05g11010.1 LOC_Os06g03040.1
LOC_Os03g62010.1 LOC_Os01g46730.1 LOC_Os07g34050.1 LOC_Os06g10990.1
LOC_Os03g62020.1 LOC_Os02g40630.1 LOC_Os05g24760.1 LOC_Os10g34560.1
LOC_Os04g02410.1 LOC_Os03g26080.1 LOC_Os05g45070.1
LOC_Os04g33990.1 LOC_Os04g43519.1 LOC_Os07g14700.1
LOC_Os04g35130.1 LOC_Os06g02800.1 LOC_Os01g39290.1
LOC_Os04g42970.1 LOC_Os06g03040.1 LOC_Os02g01060.1
LOC_Os04g53650.1 LOC_Os06g10990.1 LOC_Os07g34720.1
LOC_Os04g58090.1 LOC_Os10g34560.1 LOC_Os11g02730.1
LOC_Os04g58850.1 LOC_Os12g02700.1
LOC_Os04g58860.1 LOC_Os02g16610.1
LOC_Os04g59330.1 LOC_Os12g06210.1
LOC_Os05g11010.1 LOC_Os01g68080.1
LOC_Os05g14880.1 LOC_Os01g64470.1
LOC_Os05g24760.1 LOC_Os12g06260.1
LOC_Os05g30490.1 LOC_Os04g58860.1
LOC_Os05g40400.1 LOC_Os09g09460.1
LOC_Os05g45070.1 LOC_Os01g68090.1
LOC_Os05g50720.1 LOC_Os08g01220.1
LOC_Os06g02630.1 LOC_Os01g09880.1
LOC_Os06g02670.1 LOC_Os06g06780.1
LOC_Os06g02810.1 LOC_Os04g58090.1
LOC_Os06g02840.1 LOC_Os11g05860.1
LOC_Os06g02930.1 LOC_Os05g30490.1

LOC_Os07g34040.1
Putative Harpin-Induced

LOC_Os01g64480.1
LOC_Os02g16030.1
LOC_Os06g49650.1
LOC_Os07g14660.1
LOC_Os07g14740.1
LOC_Os08g01210.1

* Putative LEA14 Proteins

Updated HIL (107, 104 unique)
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APPENDIX D 

HILS EXPRESSED IN RICE TISSUES BASED ON RPKM VALUES FROM THE 

MSU RGAP COLLECTION 

 

 

 

 

 

 

 Legend 
(RPKM)

Seedling                  
(Four-Leaf 

Stage) Leaves Shoots

Pre-
Emergence 

Inflorescence

Post-
Emergence 

Inflorescence Anther Pistil
Seed            

(5 DAP)
Embryo          
(25 DAP)

Endosperm   
(25 DAP) 

Seed            
(10 DAP) Aleurone

1-3 OsHIL50 OsHIL50 OsHIL44 OsHIL44 OsHIL44 OsHIL89 OsHIL97 OsHIL97 OsHIL56 OsHIL45 OsHIL56 OsHIL16
3-10 OsHIL44 OsHIL77 OsHIL25 OsHIL50 OsHIL97 OsHIL97 OsHIL44 OsHIL52 OsHIL97 OsHIL38 OsHIL38 OsHIL100
10-50 OsHIL25 OsHIL17 OsHIL97 OsHIL25 OsHIL25 OsHIL36 OsHIL50 OsHIL51 OsHIL38 OsHIL50 OsHIL50 OsHIL95

50-100 OsHIL85 OsHIL97 OsHIL73 OsHIL52 OsHIL85 OsHIL82 OsHIL85 OsHIL85 OsHIL44 OsHIL56 OsHIL2 OsHIL50
100-200 OsHIL104 OsHIL85 OsHIL85 OsHIL97 OsHIL104 OsHIL39 OsHIL52 OsHIL50 OsHIL2 OsHIL53 OsHIL97 OsHIL97

>200 OsHIL97 OsHIL103 OsHIL52 OsHIL1 OsHIL1 OsHIL77 OsHIL51 OsHIL44 OsHIL45 OsHIL4 OsHIL45 OsHIL18
OsHIL73 OsHIL104 OsHIL50 OsHIL73 OsHIL73 OsHIL84 OsHIL104 OsHIL4 OsHIL50 OsHIL40 OsHIL73 OsHIL17
OsHIL1 OsHIL73 OsHIL51 OsHIL104 OsHIL77 OsHIL50 OsHIL77 OsHIL56 OsHIL52 OsHIL9 OsHIL4 OsHIL49
OsHIL52 OsHIL52 OsHIL103 OsHIL85 OsHIL52 OsHIL59 OsHIL38 OsHIL53 OsHIL104 OsHIL73 OsHIL85 OsHIL13
OsHIL17 OsHIL4 OsHIL104 OsHIL51 OsHIL38 OsHIL86 OsHIL4 OsHIL77 OsHIL25 OsHIL97 OsHIL52 OsHIL59
OsHIL21 OsHIL95 OsHIL53 OsHIL38 OsHIL51 OsHIL73 OsHIL73 OsHIL38 OsHIL4 OsHIL81 OsHIL40 OsHIL101
OsHIL53 OsHIL80 OsHIL4 OsHIL4 OsHIL22 OsHIL100 OsHIL98 OsHIL104 OsHIL98 OsHIL2 OsHIL77 OsHIL45
OsHIL77 OsHIL40 OsHIL80 OsHIL98 OsHIL21 OsHIL104 OsHIL45 OsHIL1 OsHIL53 OsHIL101 OsHIL104 OsHIL51
OsHIL63 OsHIL44 OsHIL1 OsHIL39 OsHIL74 OsHIL85 OsHIL21 OsHIL73 OsHIL73 OsHIL52 OsHIL53 OsHIL96
OsHIL41 OsHIL39 OsHIL39 OsHIL77 OsHIL50 OsHIL98 OsHIL35 OsHIL45 OsHIL85 OsHIL77 OsHIL9 OsHIL60
OsHIL51 OsHIL41 OsHIL38 OsHIL22 OsHIL100 OsHIL95 OsHIL1 OsHIL2 OsHIL40 OsHIL85 OsHIL101 OsHIL9
OsHIL40 OsHIL59 OsHIL41 OsHIL74 OsHIL40 OsHIL52 OsHIL53 OsHIL98 OsHIL54 OsHIL91 OsHIL98 OsHIL38
OsHIL95 OsHIL21 OsHIL59 OsHIL40 OsHIL98 OsHIL51 OsHIL59 OsHIL91 OsHIL74 OsHIL104 OsHIL81 OsHIL85
OsHIL100 OsHIL100 OsHIL100 OsHIL63 OsHIL4 OsHIL2 OsHIL25 OsHIL40 OsHIL35 OsHIL98 OsHIL44 OsHIL83
OsHIL103 OsHIL98 OsHIL17 OsHIL83 OsHIL95 OsHIL44 OsHIL40 OsHIL59 OsHIL1 OsHIL96 OsHIL51 OsHIL77
OsHIL66 OsHIL45 OsHIL95 OsHIL41 OsHIL63 OsHIL4 OsHIL74 OsHIL25 OsHIL39 OsHIL21 OsHIL21 OsHIL91
OsHIL38 OsHIL49 OsHIL77 OsHIL94 OsHIL59 OsHIL9 OsHIL83 OsHIL100 OsHIL100 OsHIL44 OsHIL91 OsHIL73
OsHIL59 OsHIL65 OsHIL22 OsHIL62 OsHIL45 OsHIL31 OsHIL88 OsHIL15 OsHIL95 OsHIL87 OsHIL1 OsHIL52
OsHIL22 OsHIL53 OsHIL63 OsHIL53 OsHIL39 OsHIL45 OsHIL103 OsHIL95 OsHIL77 OsHIL100 OsHIL39 OsHIL104
OsHIL4 OsHIL66 OsHIL98 OsHIL88 OsHIL53 OsHIL74 OsHIL39 OsHIL74 OsHIL59 OsHIL7 OsHIL87 OsHIL75
OsHIL62 OsHIL38 OsHIL40 OsHIL34 OsHIL83 OsHIL40 OsHIL100 OsHIL21 OsHIL88 OsHIL51 OsHIL100 OsHIL39
OsHIL98 OsHIL58 OsHIL35 OsHIL35 OsHIL35 OsHIL38 OsHIL54 OsHIL101 OsHIL103 OsHIL96 OsHIL98
OsHIL39 OsHIL79 OsHIL45 OsHIL54 OsHIL84 OsHIL35 OsHIL2 OsHIL18 OsHIL41 OsHIL40
OsHIL65 OsHIL60 OsHIL69 OsHIL23 OsHIL65 OsHIL101 OsHIL79 OsHIL88 OsHIL7
OsHIL80 OsHIL35 OsHIL87 OsHIL67 OsHIL87 OsHIL21 OsHIL87 OsHIL39 OsHIL4
OsHIL74 OsHIL101 OsHIL62 OsHIL87 OsHIL62 OsHIL88 OsHIL22 OsHIL87 OsHIL80
OsHIL24 OsHIL1 OsHIL71 OsHIL79 OsHIL41 OsHIL87 OsHIL95 OsHIL3 OsHIL53
OsHIL45 OsHIL87 OsHIL79 OsHIL69 OsHIL88 OsHIL17 OsHIL41 OsHIL22
OsHIL34 OsHIL34 OsHIL71 OsHIL54 OsHIL6 OsHIL37 OsHIL54
OsHIL56 OsHIL54 OsHIL3 OsHIL101 OsHIL80 OsHIL96
OsHIL87 OsHIL49 OsHIL78 OsHIL82 OsHIL63 OsHIL35
OsHIL33 OsHIL83 OsHIL37 OsHIL2 OsHIL62 OsHIL83
OsHIL35 OsHIL65 OsHIL21 OsHIL9 OsHIL3 OsHIL63
OsHIL76 OsHIL101 OsHIL102 OsHIL66 OsHIL17
OsHIL54 OsHIL58 OsHIL103 OsHIL103 OsHIL79
OsHIL96 OsHIL60 OsHIL42 OsHIL6 OsHIL94
OsHIL93 OsHIL45 OsHIL3 OsHIL103

OsHIL100 OsHIL60 OsHIL42
OsHIL95 OsHIL79 OsHIL41
OsHIL76
OsHIL60
OsHIL68
OsHIL55
OsHIL59
OsHIL84
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APPENDIX E 

LIST OF LOG2 (RPKM) VALUES FOR ALL HIL MEMBERS IN THE RICE 

ALEURONE TREATED WITH GA OR ABA 

 

 

 

 

 

 

 

Name Locus Log2,Fold,GA Log2,Fold,ABA Log2,Fold,GA+ABA Name Locus Log2,Fold,GA Log2,Fold,ABA Log2,Fold,GA+ABA
OsHIL1 LOC_Os01g09880 1.79769e+308 1.79769e+308 0 OsHIL53 LOC_Os05g11010 <0.970859 <1.49093 <1.23503
OsHIL2 LOC_Os01g12820 #N/A #N/A #N/A OsHIL54 LOC_Os05g14880 <1.81979 <1.79769e+308 <1.79769e+308
OsHIL3 LOC_Os01g13340 #N/A #N/A #N/A OsHIL55 LOC_Os05g24760 0 0 0
OsHIL4 LOC_Os01g39290 1.60976 <1.91543 <1.69606 OsHIL56 LOC_Os05g30490 <0.5974 3.67453 6.79949
OsHIL5 LOC_Os01g46670 0.624992 0.00210799 2.10601 OsHIL57 LOC_Os05g40400 0 0 0
OsHIL6 LOC_Os01g46730 0 0 0 OsHIL58 LOC_Os05g45070 2.08067 <0.734858 5.2879
OsHIL7 LOC_Os01g51460 <0.433901 <0.412929 <1.36793 OsHIL59 LOC_Os05g50720 <2.61855 <2.41946 <2.58676
OsHIL8 LOC_Os01g51470 <0.597396 <1.41292 <1.79769e+308 OsHIL60 LOC_Os06g02630 #N/A #N/A #N/A
OsHIL9 LOC_Os01g51490 <5.09383 <2.29045 <4.26232 OsHIL61 LOC_Os06g02670 0 0 0
OsHIL10 LOC_Os01g51500 <4.05682 <1.79769e+308 <3.76846 OsHIL62 LOC_Os06g02800 0 0 0
OsHIL11 LOC_Os01g51510 <1.79769e+308 <3.22027 <1.79769e+308 OsHIL63 LOC_Os06g02810 0 0 0
OsHIL12 LOC_Os01g51520 <3.59739 <1.41293 <3.30903 OsHIL64 LOC_Os06g02840 0 0 0
OsHIL13 LOC_Os01g53470 <0.5974 <1.09705 0.186247 OsHIL65 LOC_Os06g02930 0 0 0
OsHIL14 LOC_Os01g56500 0.665634 0.0724973 <1.79769e+308 OsHIL66 LOC_Os06g02940 0 0 0
OsHIL15 LOC_Os01g59680 2.03487 0.0724973 0.369039 OsHIL67 LOC_Os06g03030 0 0 0
OsHIL16 LOC_Os01g64450 #N/A #N/A #N/A OsHIL68 LOC_Os06g03040 0 0 0
OsHIL17 LOC_Os01g64470 3.15224 0.289685 3.52832 OsHIL69 LOC_Os06g03059 0 0 0
OsHIL18 LOC_Os01g64480 #N/A #N/A #N/A OsHIL70 LOC_Os06g03070 0 0 0
OsHIL19 LOC_Os01g68080 <2.18236 <1.99789 <1.79769e+308 OsHIL71 LOC_Os06g03099 0 0 0
OsHIL20 LOC_Os01g68090 0.4026 <0.41293 <1.79769e+308 OsHIL72 LOC_Os06g03110 0 0 0
OsHIL21 LOC_Os02g01060 0 0 0 OsHIL73 LOC_Os06g06780 0.167471 <0.228054 0.570551
OsHIL22 LOC_Os02g16030 <1.7349 <3.87236 <1.79769e+308 OsHIL74 LOC_Os06g10990 0 1.79769e+308 1.79769e+308
OsHIL23 LOC_Os02g16610 0 0 0 OsHIL75 LOC_Os06g32970 1.79769e+308 0 0
OsHIL24 LOC_Os02g30450 0 0 0 OsHIL76 LOC_Os06g49650 1.79769e+308 0 0
OsHIL25 LOC_Os02g33550 0 0 0 OsHIL77 LOC_Os07g10610 <1.41078 <0.547085 <2.27262
OsHIL26 LOC_Os02g40560 0 0 0 OsHIL78 LOC_Os07g14660 0 0 0
OsHIL27 LOC_Os02g40590 0 0 0 OsHIL79 LOC_Os07g14700 0 1.79769e+308 0
OsHIL28 LOC_Os02g40600 0.4026 <0.41293 <1.79769e+308 OsHIL80 LOC_Os07g14740 1.79769e+308 1.79769e+308 0
OsHIL29 LOC_Os02g40610 <1.5974 <1.79769e+308 <1.30903 OsHIL81 LOC_Os07g34040 <0.182363 0.58707 0.690968
OsHIL30 LOC_Os02g40620 <2.5974 0.28751 0.77843 OsHIL82 LOC_Os07g34050 <0.5974 <1.41293 <1.79769e+308
OsHIL31 LOC_Os02g40630 0 0 0 OsHIL83 LOC_Os07g34720 <4.22967 <0.812537 <3.9413
OsHIL32 LOC_Os02g40640 0 0 0 OsHIL84 LOC_Os08g01210 0 0 0
OsHIL33 LOC_Os02g40650 0 0 0 OsHIL85 LOC_Os08g01220 <1.24329 1.07482 1.35678
OsHIL34 LOC_Os02g44670 0 0 0 OsHIL86 LOC_Os08g23460 <0.5974 <1.79769e+308 <0.309032
OsHIL35 LOC_Os02g44740 <0.0966873 <1.14238 <1.99595 OsHIL87 LOC_Os08g38580 1.79769e+308 0 1.79769e+308
OsHIL36 LOC_Os03g09160 <1.18236 <1.99789 0.106005 OsHIL88 LOC_Os08g44410 <1.79769e+308 <1.79769e+308 <1.79769e+308
OsHIL37 LOC_Os03g11710 1.79769e+308 0 0 OsHIL89 LOC_Os09g09460 0 0 0
OsHIL38 LOC_Os03g15630 1.30198 <1.16728 0.165244 OsHIL90 LOC_Os09g26480 0 0 0
OsHIL39 LOC_Os03g26080 <1.04486 <0.0177005 <0.940645 OsHIL91 LOC_Os09g36210 <0.658801 <2.67596 <0.684542
OsHIL40 LOC_Os03g48950 0.192804 <0.00819362 0.554008 OsHIL92 LOC_Os10g34550 0 0 0
OsHIL41 LOC_Os03g62010 0 0 0 OsHIL93 LOC_Os10g34560 0 0 0
OsHIL42 LOC_Os03g62020 1.57252 <1.41293 <0.309032 OsHIL94 LOC_Os10g39970 0 0 0
OsHIL43 LOC_Os04g02410 0 0 0 OsHIL95 LOC_Os11g02730 0.112591 <2.26382 <0.999604
OsHIL44 LOC_Os04g33990 0.572525 <1.79769e+308 <1.30903 OsHIL96 LOC_Os11g03600 0.126626 <2.82797 <3.41595
OsHIL45 LOC_Os04g35130 <0.560997 <0.965318 <1.66526 OsHIL97 LOC_Os11g05860 <0.0240478 0.118684 1.80047
OsHIL46 LOC_Os04g42970 <1.79769e+308 <1.79769e+308 <1.79769e+308 OsHIL98 LOC_Os11g05870 #N/A #N/A #N/A
OsHIL47 LOC_Os04g43519 4.3568 <1.41293 1.27593 OsHIL99 LOC_Os11g37680 1.79769e+308 0 0
OsHIL48 LOC_Os04g53650 0 0 0 OsHIL100 LOC_Os12g02700 0.140371 <1.63622 <0.522942
OsHIL49 LOC_Os04g58090 0.811124 <0.885417 1.3144 OsHIL101 LOC_Os12g03370 <0.629173 <2.88527 <3.58873
OsHIL50 LOC_Os04g58850 0.335837 <0.470695 <0.111472 OsHIL102 LOC_Os12g06210 0 0 0
OsHIL51 LOC_Os04g58860 0.133652 <1.12781 <0.966443 OsHIL103 LOC_Os12g06220 0 0 0
OsHIL52 LOC_Os04g59330 1.8575 <1.68595 <2.50405 OsHIL104 LOC_Os12g06260 1.81764 1.00211 2.80644
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APPENDIX F 

LIST OF ABBREVIATIONS 

 
ABA   abscisic acid 
ABI1    aba-insensitive 1 
ABO3   aba overly sensitive mutant  
anti-   antibody against  
AP   alkaline phosphatase 
BLAST  basic local alignment search tool  
BR   brassinosteroids 
CaM    calmodulin or calcium-modulated protein 
cDNA   complementary dna 
cGMP   cyclic guanidine monophosphate 
ChIP-seq  chromatin immunoprecipitation high throughput sequencing 
CHLH/ABAR  magnesium-protoporphyrin IX chelatase H subunit/aba receptor  
CK   cytokinin  
CMV   cucumber mosaic virus       
CRY   della clone in peas 
cry1   cryptochrome 1 
CSREES   cooperative state research, education, and extension service 
Ct   cycle threshold 
CTAB   cetyltrimethylammonium bromide 
cv.   cultivar 
CYP707A   cytochrome p450 monooxygenase 
D-95   cloned lea gene number 
DAP   days after pollination 
DELLA  conserved amino acid sequence d-e-l-l-a 
DMSO   dimethylsulfoxide 
DNA   deoxyribonucleic acid 
dSpm   transposition-defective suppressor-mutator (spm) 
DTT   dithiothreitol 
EDTA   ethylenediaminetetraacetic acid 
En/Spm  enhancer/suppressor-mutator  
ER5   ethylene-responsive lea-like protein 
Gα/D1    alpha subunit of the heterotrimeric G protein/dwarf 1 
GA    gibberellic acid, gibberellin 
GA3ox2  gibberellin 3-oxidase 2 
GAI    gibberellic acid insensitive  
GAMYB  gibberellic acid-induced myeloblastosis-like protein  
GFP   green fluorescent protein 
GID1   ga-insensitive dwarf 1 
G protein  guanine nucleotide-binding proteins  
GST   glutathione S-transferase 
HA   hemagglutinin epitope 
HAB1    hypersensitive to aba 1  
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HIN    harpin-induced 
HMM   hidden markov model  
HRP   horse radish peroxidase 
HSL   hormone sensitive lipases  
HVA22  hordeum vulgare abscisic acid-induced 22 
IAA   auxin 
ID   identifier 
JA   jasmonic acid 
kDa   kilodalton  
KGM   kinase associated with gamyb 
LA   della clone in peas 
LEA   late embryogenesis abundant  
LOC   locus number 
MAST   multiple alignment and search tool 
MEGA   molecular evolutionary genetics analysis   
MEME  multiple em for motif elicitation tool 
miR159  microrna 
mRNA   messenger ribonucleic acid  
MS   murashige and skoog medium 
MSU RGAP  michigan state university rice genome annotation project  
MYB33  myeloblastosis 33 
NBRP   national bioresource project  
NCBI   national center for biotechnology information 
NDR   non-race-specific disease resistance  
NHL   ndr1/hin1-like 
NO   nitric oxide  
OST1   open stomata 1  
OsWRKY71  oryza sativa; conserved amino acid sequence w-r-k-y 71 
P1 or -2  primer set 1 or 2 
PBST   phosphate buffered saline + tween 20     
PCR   polymerase chain reaction 
PEG   polyethylene glycol 
PFAM   protein family database 
phyA   phytochrome A 
PIF1   phytochrome-interacting factor 3-like 1; alias of pil5 
PIL5   phytochrome-interacting factor 3-like 5  
PIN   pin-formed proteins 
PIP   plasma membrane intrinsic protein  
PKABA1  aba-induced protein kinase  
PKL   pickle 
PP2C   serine/threonine protein phosphatase type 2Cs 
PR-1   pathogenesis-related 
Praline   profile alignment application tool 
pv.   pathovar 
PVDF   polyvinylidene fluoride 
PvPRP1   proline-rich protein 1 
PYL   pyrobactin 1-like 
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PYR1   pyrabactin resistance 1 
qPCR   quantitative real time polymerase chain reaction  
RCAR   regulatory component of aba receptor  
RdSpm  red fluorescence dSpm 
RGA    repressor of gal-3 
RH   relative humidity 
RNA   ribonucleic acid 
RNAi   rna interference 
RPKM   read per kilobase of exon per million fragments mapped to the 

genome 
RT-PCR   quantitative real time polymerase chain reaction  
SA   salicylic acid 
SCF   s-phase kinase-associated protein (skp) cullin f-box  
SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SLR1   slender1  
SLY1   sleepy 1 
SnRK2s   sucrose-nonfermenting kinase1 (snf1)-related protein kinase 2s                               
SPY   spindly 1 
T1   first generation transformed plant  
T2   second generation transformed plant 
TaABF1  triticum aestivum aba response element binding factor 1 
TCA   trichloroacetic acid 
T-DNA  transfer-dna 
Tm   temperature 
TMV   tobacco mosaic virus 
TTG2   transparent testa glabra 2 
UBI   ubiquitin 
UTR   untranslated region 
W51   oswrky51 
W-box   wrky box 
wt   wildtype 
YLS9   yellow leaf-specific-9 
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