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Abstract 
 

 Atherosclerosis, an inflammatory disease characterized by the hardening of the 

arteries and often attributed to poor life style choices, is the leading cause of death in the 

United States, Europe, and most of Asia. This disease is caused by injury to the arterial 

wall, causing an inflammatory response which can become misregulated, and over the 

lifetime of an individual can lead to plaque formation. Hallmarks of atherosclerotic 

plaque formation include the proliferation and migration of vascular smooth muscle cells 

(VSMCs) to the injured site in the arterial wall and endothelial cell dysfunction, both of 

which contribute to plaque formation. In an attempt to control this unwarranted 

inflammation and cellular proliferation, heparin has been studied because of its anti-

inflammatory and anti-proliferative effects. Unfortunately, the mechanisms by which 

heparin induces these effects are not well understood.  In this study, experiments aimed at 

identification of a receptor for heparin furthered the understanding of the signaling 

mechanisms underlying heparin’s anti-inflammatory and anti-proliferative effects. To 

gain a better understanding of the underlying signaling cascade induced by heparin, 

various gene expression analyses were performed in heparin-treated VSMCs. While 

heparin is one of the major signals opposing vascular disease progression, other signals 

including laminar shear stress also provide similar opposing actions. Along with 

investigation of heparin signaling, experiments demonstrating a role for cofilin in actin 

remodeling during laminar shear stress have been completed. Cofilin, a member of the 

Actin Depolymerizing Factor family of proteins, is an actin severing protein which 

promotes actin depolymerization from the actin minus end when cofilin is 

unphosphorylated. This work also underscored the importance of cofilin and actin 



 

 

2 

 

realignment in shear stress-induced endothelial barrier integrity. The culmination of this 

work has unveiled a deeper understanding of the molecular mechanisms underlying 

atherosclerosis and the anti-inflammatory effects of heparin and laminar shear stress.   
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Chapter 1: Introduction 
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 Atherosclerosis and its complications claim more lives than any other single 

disease, and together they are the leading cause of death in Western societies and Japan 

(Fan J and Watanabe T 2003 and Rudijanto A 2007). Not only is vascular disease a 

health concern, it is also a financial issue because it has been predicted that in the United 

States alone, treatment of patients with vascular disease accounted for health care 

spending of over $300 billion in 2010 (Heidenreich PA et al. 2009). The cost of treatment 

of patients with vascular disease is predicted to increase for the foreseeable future with 

the cost predicted to be well over $800 billion by 2030, not accounting for inflation 

(Figure 1.1) (Heidenreich PA et al. 2009).  

Figure 1.1: The cost of treating cardiovascular disease  

(Adapted from Heidenreich PA et al. 2009) 

 

 

The cost of treating patients with cardiovascular disease correlates with the 

percentage of the population classified as obese. In a study conducted in 2009-2010, 

nearly one-third of the United States adult population and almost 17% of the adolescent 

population were considered obese (Ogden CL et al. 2012). These values have been 
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steadily increasing since 1999 and are predicted to increase at the same or a more rapid 

rate in the future (Ogden CL et al. 2012). These statistics emphasize the importance of 

furthering our understanding of the underlying causes of atherosclerosis and potential 

ways treat it.  

Atherosclerosis is an inflammatory disease which occurs in response to an injury 

to the arterial wall, resulting in endothelial cell dysfunction (Ross R 1999, Rudijanto A 

2007, and Libby P, Ridker PM, and Maseri A 2002). The endothelial cell dysfunction can 

be caused by a variety of factors, but most often it is attributed to elevated Low-Density 

Lipoprotein (LDL)/high cholesterol, diabetes mellitus, abnormally high radicals due to 

cigarette smoking, high blood pressure, certain genetic alterations, obesity, and pathogens 

such as Chlamydia pneumonia (Fan J and Watanabe T 2003) (Figure 1.2). Although these 

factors are known to predispose an individual to the development of atherosclerosis, they 

do not cause atherosclerosis. Many individuals may have one or multiple of these risk 

factors and never develop cardiovascular disease. It is also true that some patients do not 

have any of these risk factors and have advanced cardiovascular disease. The mechanistic 

relationships between these risk factors and atherosclerosis are still largely unclear.  

Figure 1.2: Risk factors for atherosclerosis 
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 Atherosclerosis begins with an injury to the endothelial cell layer in medium and 

large sized arteries (Ross R 1999, Rudijanto A 2007, and Libby P, Ridker PM, and 

Maseri A 2002), and the risk factors detailed above are in some way related to this injury. 

This initial lesion is called a fatty streak and can be found in infants and young children 

as well as adults (Napoli C et al. 1997). Fatty streaks are pure inflammatory lesions 

consisting of monocyte-derived macrophages and T lymphocytes (Stary HC et al. 1994). 

In most cases these inflammatory fatty streaks are resolved, and there is no further build 

up in these areas.  

Regardless of the cause of the injury to the arterial wall, endothelial cell 

dysfunction follows, leading to excessive, chronic inflammation and phenotypic changes 

in the endothelial cell layer. These changes alter the normal anticoagulant nature of the 

endothelial layer and change it to a pro-coagulant nature. This pro-coagulant nature 

triggers the release of inflammatory cytokines and growth factors, triggering the 

surrounding vascular smooth muscle cells (VSMCs) to become proliferative and 

migratory (Ross R 1993 and Ross R 1999). This change in the VSMC layer causes the 

cells to exit their normal non-proliferative, quiescent, and well-differentiated state and 

enter the cell cycle, proliferate, and lose their differentiated phenotype. This VSMC 

proliferation leads to thickening of the arterial wall, often referred to as arterial wall 

remodeling (Ross R 1993 and Ross R 1999). 

Continued inflammation leads to specific gene expression programs resulting in 

transcription of pro- and anti-inflammatory proteins which affect the attraction of 

leukocytes and platelets, vascular permeability, coagulation, and ultimately control the 
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course and outcome of the inflammatory reactions (Viemann D et al. 2006, Libby P, 

Ridker PM, and Maseri A 2002, and reviewed in Libby P 2012). The recruitment of 

macrophages and lymphocytes causes the release of additional inflammatory molecules 

such as hydrolytic enzymes, cytokines, chemokines, and growth factors leading to more 

wall damage and the development of a fibrous plaque (Ross R 1999, Viemann D et al. 

2006, Libby P, Ridker PM, and Maseri A 2002, and reviewed in Libby P 2012). Fibrous 

plaques are the most advanced and dangerous, in that they are generally unstable and do 

not have a well-defined structure. These characteristics often predispose the clot to 

rupture which can lead to devastating ischemia of the heart (heart attack), brain (stroke), 

or extremities (gangrene) (Ross R 1993 and Ross R 1999). 

 Endothelial cells lining all blood vessels play an important role during systemic 

inflammation because of their position and immediate exposure to inflammatory 

mediators. The two major inflammatory mediators (cytokines) that are elevated during 

systemic inflammation are Interleukin-1β (IL-1β) and tumor necrosis factor-alpha 

(TNFα) (Kishikawa H, Shimokama T, and Watanabe T 1993, Rus HG, Niculescu F, and 

Vlaicu R 1991, Moyer CF et al. 1991, and Galea J et al. 1996). Studies have documented 

that endothelial cells respond to various external stimuli, in part by altering gene 

expression for cytokines, adhesion molecules, pro-coagulation factors, and other proteins 

(Paleolog EM et al. 1994, Dixit VM et al. 1990, Ross R 1997, and Ross R 1999). 

Therefore, the response of endothelial cells to IL-1β and TNFα treatment will likely 

provide necessary information that may help to explain some of the dysfunction that 

occurs (Zhao B et al. 2003).  
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 As previously mentioned, one of the major hallmarks of atherosclerosis is the 

proliferation of VSMCs induced by inflammatory signaling. Therefore, a logical 

treatment for atherosclerosis would include a molecule or drug capable of attenuating 

VSMC proliferation and thereby inhibiting fibrous plaque development. The 

glycosaminoglycan (GAG) heparin has those capabilities. It has been shown to elicit a 

cell cycle block in VSMCs at the G1 phase (Reilly CF et al. 1989 and Fasciano S et al. 

2005) and has not been shown to trigger resistance in VSMCs (Mrabat H et al. 2009). 

Heparin is a naturally occurring complex carbohydrate which is well-known for its anti-

coagulant properties, but has been widely studied for potential use in attenuating or 

reversing the atherogenic process (Edelberg JM et al. 1991 and Fasciano S et al. 2005). 

The anti-proliferative effects of heparin in vivo and in vitro have been well-documented 

throughout the literature as well as from previous members of the Lowe-Krentz 

laboratory (Clowes AW and Karnowsky MJ 1977, Mrabat H et al. 2009, Kazi M et al. 

2002, Savage JM et al. 2001, and Blaukovitch CI et al. 2010). Despite the wealth of 

information regarding the anti-proliferative effects of heparin on VSMCs in the literature, 

relatively little is known about the actual mechanism(s) of action for heparin. 

Evidence in the literature suggests that heparin exerts its anti-proliferative effects 

via at least two mechanisms. One mechanism includes the regulation of Mitogen-

Activated Protein Kinase (MAPK) cascade intermediates (Yu L et al. 2006, Blaukovitch 

CI et al. 2012, Dickinson RJ and Keyse SM 2006, Pukac LA et al. 1997, and Dhillon AS 

et al. 2007), which are involved in cell growth and proliferation and by imposing a cell 

cycle block at the G1 phase through upregulation or down regulation of specific genes 
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necessary for the transition from the G1 to the S phase (Reilly CF et al. 1989, Fasciano S 

et al. 2005, Vadivello PK et al. 1997, Mishra-Gorur K and Castellot JJ 1999, Ottlinger 

ME, Pukac LA, and Karnovsky MJ 1993, and Pukac LA et al. 1997). Previous work in 

the lab and work done within this dissertation have built the case that heparin binding to a 

putative heparin receptor induced the synthesis of cGMP (cyclic Guanosine 

Monophosphate), leading to PKG (cGMP-dependent protein kinase) activation, and 

MKP-1 (MAPK phosphatase-1) upregulation (Figure 1.3) (Blaukovitch CI et al. 2012). 

MKP-1 localizes to the nucleus, functions as a dual-specificity phosphatase (DUSP), and 

removes both activating phosphorylations from ERK, thereby inactivating ERK (Rohan 

PJ et al. 1993). Sustained activation of ERK results in Elk-1 phorphorylation in the 

nucleus (Shin HS et al. 2003). This MKP-1-mediated loss of active ERK in the nucleus 

results in decreased Elk-1 activity as well (Shin HS et al. 2003). MKP-1 new protein 

synthesis as a result of heparin treatment can be seen as early as 10 min (Blaukovitch CI 

et al. 2010).  

Figure 1.3: Heparin’s effect on the MAPK pathway in VSMCs  

(Adapted from Pugh R. Dissertation Lecture 2010) 
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 The case for PKG involvement in heparin-induced MKP-1 mediated 

dephosphorylation of ERK draws parallels from insulin and insulin-related growth factor 

(IGF) signaling. Both insulin and IGF induce the expression of inducible nitrous oxide 

synthase (iNOS), leading to increased cGMP in response to NO-activated soluble 

guanylyl cyclase (sGC) (Begum N et al. 1998 and Jacob A et al. 2002). This increase in 

cGMP was shown to be sufficient to induce MKP-1 and decrease ERK activity. Atrial 

natriuretic factor or peptide (ANF or ANP) has also been show to elevate cGMP levels in 

VSMCs (Baldini PM et al. 2002 and Tantini B et al. 2005). ANP activates intracellular 

guanylyl cyclase and thereby elevates cGMP (Baldini PM et al. 2002 and Tantini B et al. 

2005). Aside from their known roles in vasorelaxation, ANP and cGMP have been shown 

to decrease VSMC proliferation (Baldini PM et al. 2002); building the possibility that 

heparin’s effects could be mediated by cGMP and PKG signaling. Aside from inducing 

MKP-1 protein synthesis, heparin also down-regulates Raf activity. Since Raf is an 

upstream kinase of ERK, decreased Raf activity leads to decreased ERK activity (Pukac 

LA et al. 1997 and Slee JB, Pugh R, and Lowe-Krentz LJ 2012) (Figure 1.3). Since Raf 

activity is down-regulated in response to heparin treatment, it is clear that down-

regulation of ERK activity would follow. It has been shown in the literature that heparin 

treatment causes a rapid downregulation of mRNA levels of genes involved in the 

regulation of cell proliferation, including c-fos, c-jun, myb, and myc, again decreasing 

proliferation (Mishra-Gorur K and Castellot JJ 1999). 

 It was established in the mid-nineties that endothelial nitric oxide synthase 

(eNOS) interacts with caveolin, the structural component of caveolae (reviewed in: Rath 
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G, Dessy C, and Feron O 2009). Caveolae are flask-like invaginations of membranes 

which occur at different densities in most cell types and are prominent in vascular 

endothelial cells, adipocytes, fibroblasts, and epithelial cells (reviewd in: Childow JG Jr 

and Sessa WC 2010), where they form stable membrane domains often referred to as 

lipid rafts. Caveolae have also been shown to regulate vesicle transport by serving as 

carriers in exocytic and endocytic pathways (Parton RG and Simons K 2007 and Childow 

JG Jr and Sessa WC 2010). Caveolins (1, 2, and 3) have cytoplasmic N- and C- termini, 

sites for post translational modifications, and a scaffolding domain, all of which are 

involved in forming an organized hub for signal transduction (reviewed in: Patel HH, 

Murray F, and Insel PA 2008). Caveolins have been shown to group together upstream 

signaling components (including G-protein coupled receptors and receptor tyrosine 

kinases) and downstream components (including G-protein coupled receptor subunits, 

effector enzymes, and ion channels) to centralize and enhance signal processing and 

transduction. Caveolin-1 (cav-1) is of particular importance in the vasculature, 

predominantly vascular endothelial cells, due to its regulation of eNOS within caveolae. 

Endothelial cav-1 is involved in caveloae formation throughout the endothelium of the 

entire vascular system where it regulates endothelial nitric oxide (NO) production, 

vascular permeability, and vascular remodeling (Parton RG and Simons K 2007, Childow 

JG Jr and Sessa WC 2010, and Patel HH, Murray F, and Insel PA 2008).   

The second way in which heparin exerts its anti-proliferative affects in VSMCs is 

by imposing a cell cycle block at the G1 phase (Fasciano S et al. 2005, Vadivello PK et 

al. 1997, Reilly CF et al. 1989, Mishra-Gorur K and Castellot JJ 1999, Ottlinger ME 
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1993, and Pukac LA et al. 1997). Cellular proliferation is regulated primarily by control 

of the cell cycle, which consists of four distinct sequential phases (G0/G1, S, G2, and M). 

Most smooth muscle cells in the adult vascular system are in a quiescent state, typically 

arrested in the G0 or G1 phases of the cell cycle.  Research has shown that heparin 

strongly down-regulates the levels of cyclin D1 mRNA and protein, cdk2 mRNA, and 

cdc2 protein leading to cell cycle block at the G1 phase (Vadivello PK et al. 1997). One 

cyclin-dependent kinase inhibitor (CDKI) upregulated by heparin treatment is p27
kip1

. 

This stable accumulated p27
kip1

 protein level in G1 is essential for the heparin-induced 

decreases in VSMC proliferation because p27
kip1

 prevents the activation of cyclin-

dependent kinase 2 (Cdk2) (Fasciano S et al. 2005). It has also been shown by other 

groups that p27
kip1

is upregulated in response to heparin treatment, again blocking cellular 

proliferation at G1 (Yu L et al. 2006 and Fouty BW et al. 2001). It is also suggested in the 

literature that heparin blocks progression through G1 by inhibition of the PKC-dependent 

pathway of cell cycle progression (Pukac LA et al. 1990). This PKC inhibition results in 

the blocking of second messengers required for fos expression (Pukac LA et al.1992) and 

decreased ERK activation (Mishra-Gorur K and Castellot JJ 1999, Ottlinger ME et al. 

1993, and Pukac LA et al 1997).  

It is becoming clearer in the literature that heparin and low (or non-) anticoagulant 

heparin derivatives exhibit strong anti-inflammatory properties. These anti-inflammatory 

properties could be harnessed to improve the treatment of vascular diseases such as 

atherosclerosis and graft arteriosclerosis which can be caused by excessive inflammation 

and innate and adaptive immune responses (Hansson GK et al. 2002). Heparin and low 
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anticoagulant heparin have been shown to inhibit inflammation by disrupting multiple 

levels of the inflammatory cascade (Thourani VH et al. 2000). Heparin treatment inhibits 

complement activation in vivo (Weiler JM et al. 1992), adhesion molecules P- and L- 

selectin binding to thrombin-activated human lung microvascular endothelial cells (Wang 

L et al. 2001), Polymorphonuclear (PMN) elastase and cathepsin G activities in vitro and 

in vivo (Fryer A et al. 1997), and nuclear factor κB (NFκB) nuclear translocation 

(Thourani VH et al. 2000). Additionally, heparin treatment inhibits interferon-γ (IFN-γ) 

responses, competes for binding with IP-10, I-TAC, and Mig on endothelial cells, and 

prevents transendothelial migration and arterial recruitment of memory T cells 

(Ranjbaran H et al. 2006). 

 The NFκB pathway is involved in a variety of cellular processes including 

immune responses, cell survival, stress responses, and is mis-regulated in chronic 

inflammation and other diseases (reviewed in: Shih VF et al. 2011). In non-stimulated 

cells, NFκB is bound in the cytoplasm by its inhibitor, IκB, preventing nuclear 

translocation and DNA binding. In response to specific stimuli, IκB kinase 

phosphorylates IκB resulting in IκB degradation and NFκB release and activation. Active 

NFκB migrates to the nucleus, binds DNA and induces the transcription of pro-

inflammatory genes (Shih VF et al. 2011), such as TNFα, propagating the inflammatory 

response (reviewed in: Thourani VH et al. 2000). It has also been documented that 

inhibiting NFκB reduces level of circulating TNFα (Cain BS et al. 1999). Heparin has 

been reported to block this pathway in at least two ways. First, heparin treatment of 

cultured human umbilical vein endothelial cells (HUVECs) prevents NFκB nuclear 
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translocation and heparin inclusion in DNA binding assays inhibited NFκB binding to 

DNA (Thourani VH et al. 2000). If this anti-inflammatory mechanism is true, it would 

require heparin to be released in the cytoplasm, something for which a mechanism has 

yet to be elucidated. Heparin also decreases the activity of NFκB by inhibiting the 

interaction of RAGE (Receptor for Advanced Glycation End Products) with its ligands 

AGEs (Advanced Glycation End Products). The RAGE system is one mechanism known 

to elicit pro-inflammatory cascades in vascular endothelium and smooth muscle (Basta G 

et al. 2002, Goldin A et al. 2006, and Lander HM et al. 1997). Rao NV et al. (2010) 

reported that both heparin and low anti-coagulant 2-O, 3-O-desulfated heparin (ODSH) 

prevented inflammatory cells from utilizing RAGE as a vascular adhesion molecule. The 

overall importance of their work is that heparin and ODSH can disrupt several steps in 

leukocyte-mediated inflammation. However, the role of RAGE in heparin signaling was 

outside the scope of this dissertation.  

 It has been well established in the literature that many cells, including cells of the 

vasculature, such as endothelial and smooth muscle, bind and internalize heparin via 

receptor-mediated endocytosis shown using radiolabeled or fluorescent heparin (eg. 

Bârzu T et al. 1985 and Castellot JJ et al. 1985). Thourani VH et al. (2000) reported that 

pre-treatment of HUVECs with 200 µg/ml heparin or OSDH inhibited TNFα-induced 

translocation of NFκB from the cytoplasm to the nucleus. The authors employed 

immunohistochemistry for p65 nuclear staining and in vitro electrophoretic mobility shift 

assays showing that heparins reduce NFκB-DNA binding. The explanation given by 

Thourani VH et al., suggests that heparin is bound and internalized by vascular 



 

 

15 

 

endothelium and smooth muscle (Bârzu T et al. 1985 and Castellot JJ et al. 1985), 

allowing the negatively charged heparin molecule to bind to the positively charged 

nuclear localization sequence of NFκB thereby blocking its association with the nuclear 

pore complex (Thourani VH et al. 2000).  

Although Thourani VH et al. postulated this mechanism, they did not address how 

heparin was internalized or how it was released into the cytoplasm and did not rule out 

possible heparin-receptor binding and signaling. Other work performed by Penc SF et al. 

(1999) found that the GAG dermatan sulfate, which possesses different sugars and sulfate 

locations, actually induced the activation of NFκB and its downstream responses in 

cultured human dermal microvascular endothelium, but the authors were unable to 

confirm whether this was due to a direct or indirect response. These results suggest that 

that different GAGs can mediate different responses based on their differing chemistries 

(Lindahl U et al. 1998); although it is supported that exogenous heparin mediates similar 

responses to certain heparan sulfates given their similar chemistries (Gitay-Goren H et al. 

1992, Spivak-Kroizman T et al. 1994, Ono K et al. 1999, and Mamluk R et al. 2002). 

Both heparin and ODSH block the adhesion of P-selectin to P-selectin 

glycoprotein ligand-1 expressing U937 cells and disrupt leukocyte arrest by Mac-

1/RAGE inhibition (Rao NV et al. 2010). Again, both heparin and ODSH were shown to 

inhibit Mac-1-mediated binding of AMJ2-C11 mouse alveolar macrophages, to 

immobilized RAGE, and both prevented U937 cells from binding to RAGE. They were 

also able to show that heparin and ODSH disrupt diapedesis through the inhibition of the 

binding of azurocidin to heparin-BSA-coated wells. Lastly, their work indicated that 
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heparin and ODSH disrupted the secretion of pro-inflammatory granular contents. 

Heparin and ODSH inhibited Human Leukocyte Elastase and cathepsin G enzyme 

activity with synthetic chromogenic substrates. It was also determined that both blocked 

RAGE from binding to S100 calgranulins, which are also secreted by leukocytes (Rao 

NV et al. 2010). The Rao study not only strengthens our understanding of the anti-

inflammatory aspects of heparin, it also provides evidence that the anti-coagulant 

functions of heparin can be removed, specifically, by 2-O and 3-O desulfation, while the 

important anti-inflammatory capabilities are retained (Rao NV et al. 2010).  

 A model that is well-established and well-supported in the literature is that 

heparin can compete for binding with pro-inflammatory molecules and thus exert its anti-

inflammatory effects (Ali S et al. 2003, Ranjbaran H et al. 2006, and Hatakeyama M et 

al. 2004). This model is supported by evidence that heparin or heparin-like molecules 

bind various growth factors, cytokines, and chemokines including fibroblast growth 

factor (FGF) (Mongiat M et al. 2000), vascular endothelial growth factor (VEGF) (Gitay-

Goren H et al. 1992), interleukins 1-8 (Ramsden L and Rider CC 1992, Roberts R et al. 

1988, Lortat-Jacob H et al. 1997, Clarke D et al. 1995, and Webb LM et al. 1993), and 

interferon-gamma (IFN-γ) (Ranjbaran H et al. 2006 and Hatakeyama M et al. 2004).  The 

last of which, IFN-γ, has received much attention due to the discovery that heparin can 

inhibit certain IFN-γ-inducible cytokine profiles (Ranjbaran H et al. 2006 and 

Hatakeyama M et al. 2004). These findings are intriguing, because of the role of IFN-γ as 

a pro-inflammatory cytokine, and because analyses of atherosclerotic lesions in clinical 

specimens indicate that they possess T-cell infiltrate with IFN-γ-secreting cytokine 
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profiles and up-regulated IFN-γ-inducible molecules (Frostegård J et al. 1999, van 

Besouw NM et al. 1997, and Mach F et al. 1999). These findings suggest that in vascular 

disease there is an aberrant up-regulation of the IFN-γ responses which could be 

therapeutically attenuated with heparin or heparin-like molecules.  

 The IFN-γ response is initiated by CD4+ helper T cells (Th) or CD8+ cytotoxic T 

cells (Tc) which produce IFN-γ, whose maturity is regulated by IL-12 and promoted by 

IL-18 (Salgame P et al. 1991). IFN-γ strongly induces IFN-γ-inducible protein of 10 kDa 

(IP-10)/CXCL10, IFN-inducible T cell α chemoattractant (I-TAC)/CXCL11, and 

monokine induced by IFN-γ (Mig)/CXCL9 (Bonecchi R et al. 1998) in vascular cells 

which are important for T cell behavior (Ranjbaran H et al. 2006). It has been determined 

that heparin is a competitive inhibitor of ligands, including IP-10, I-TAC, and Mig, for 

the IFN-γ receptor.  Clinical doses (3 mg/kg) of heparin increase plasma levels of all 

three in patients with coronary atherosclerosis undergoing coronary artery bypass graft 

surgery (Ranjbaran H et al. 2006). Exposing EDTA-mobilized HUVECs pre-incubated 

with IP-10 to heparin resulted in an increase in IP-10 in the supernatant.  This suggests a 

competitive binding model in which heparin displaces bound IP-10 from HUVECs 

(Ranjbaran H et al. 2006). Control experiments with trypsin did not result in the release 

of IP-10, further suggesting the release of surface-bound IP-10 (Ranjbaran H et al. 2006).  

The Ranjbaran study also indicated that at relatively high doses, heparin may 

inhibit the production of these chemokines in atherosclerotic coronary arteries of patients 

undergoing coronary artery bypass graft surgery (Ranjbaran H et al. 2006). 

Corresponding to the lack of receptor bound IP-10; heparin was also able to inhibit IP-10-
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dependent transendothelial migration of T cells (Ranjbaran H et al. 2006). A related study 

performed by Hatakeyama M et al. in 2004 suggested that heparin can inhibit INF-γ-

induced fractalkine (CX3CL1) expression in HUVECs, preventing chemoattraction of 

mononuclear cells and their eventual adhesion. Using ELISA binding assays, the authors 

determined that heparin decreased the amount of IFN-γ bound to wells coated with IFN-γ 

Receptor 1 (Hatakeyama M et al. 2004). Western blotting using native gels showed that 

pre-incubation of HUVECs with heparin resulted in a shift in the molecular weight of 

IFN-γ, suggesting that heparin can bind directly to IFN-γ (Hatakeyama M et al. 2004). 

The results of these assays indicate a plausible mechanism in which heparin binds IFN-γ 

and blocks it from binding to its receptor (Hatakeyama M et al. 2004). The authors also 

concluded from Western blot data that heparin was capable of inhibiting the IFN-γ-

induced phosphorylation of STAT-1 (Hatakeyama M et al. 2004). These two articles 

suggest that the IFN-γ arm of the inflammatory pathway may be a preferential target of 

heparin. The anti-inflammatory effects of heparin are summarized in Table 1.1. 

Table 1.1: The anti-inflammatory effects of heparin  

(Adapted from Slee JB, Pugh R, and Lowe-Krentz LJ 2012) 

Exogenous Heparin 

Complement System 
Inhibition of complement activation  

(Weiler JM et al. 1992) 

Leukocyte Tethering and 

Rolling 

Inhibition of P- and L-Selectin  

(Wang L et al. 2001) 

NFκB Signaling 

Inhibition of NFκB nuclear translocation  

(Thourani VH et al. 2000) 

Inhibition of AGE-RAGE binding  

(Rao NV et al. 2010) 

IFN-γ Responses 

Competitive inhibition of IP-10, I-TAC, and Mig 

for the IFN-γ receptor  

(Ranjbaran H et al. 2006) 

Inhibition of STAT-1 phosphorylation  

(Hatakeyama M et al. 2004) 
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The anti-inflammatory mechanisms of heparin and heparan sulfates discussed 

herein only represent a small subset of the known anti-inflammatory capabilities of this 

class of molecules. Ongoing research suggests that heparin can be experimentally 

modified to reduce the anti-coagulant properties while maintaining the anti-inflammatory 

properties. In addition, it has been shown that heparin treatment induces endothelial cells 

to produce additional heparan sulfates (Morrison P and Lowe-Krentz LJ 1989), 

suggesting that triggering this pathway, even without heparin as the signal, could increase 

the anti-inflammatory nature of the vasculature. It is likely that our understanding of the 

anti-inflammatory properties of heparin and heparan sulfates is still in its infancy. Since it 

has been established that heparin can be internalized by cells of the vasculature (Bârzu T 

et al. 1985 and Castellot JJ et al. 1985), one can speculate that many of the anti-

inflammatory behaviors of heparin could be receptor-mediated. Heparin internalization 

suggests receptor involvement, supporting the possibility of receptor-based signaling, 

which has yet to be identified in the literature.   

 It has been widely documented in the literature and by previous members of the 

Lowe-Krentz laboratory that heparin mediates a portion of its effects through a cell 

surface receptor, suggesting that a putative heparin receptor exists on the surface of 

VSMCs (Savage JM et al. 2001) and vascular endothelial cells (Patton WA et al. 1995). It 

has also been documented by previous members of the Lowe-Krentz lab that treatment 

with monoclonal antibodies that block heparin binding to endothelial cells also mimics 

the effects of heparin in vascular smooth muscle cells (Blaukovitch CI et al. 2010 and 

Savage JM et al. 2001) and vascular endothelial cells (Patton WA et al. 1995). Although 
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it is well-documented that the heparin receptor exists, there has not been published 

evidence reporting the isolation and characterization of the receptor. Due to this fact, 

there is not much known about the receptor itself.  However, given the highly charged 

nature of heparin chains, the most likely mechanism for transport across the membrane 

would be through a receptor. Therefore our lab set out to identify a receptor for heparin.  

Along with heparin as an anti-inflammatory agent, shear stress plays an important 

role in maintaining vascular homeostasis. The hypothesis that shear stress was a causative 

agent in atherosclerosis was originally proposed in the late 1960s (reviewed in Caro CG, 

Fitz-Gerald JM, and Schroter RC 1969). Atheroprotective conditions are found in regions 

of the vasculature where blood flow is continuous and undisturbed (laminar), which can 

be mimicked in a laboratory setting using 15 dynes/cm
2
 shear stress (high fluid shear 

stress – FSS) (Birukov KG et al. 2002, Dewey C et al. 1981, Mott RE and Helmke BP 

2007). Atheroprone regions of the vascular system occur in areas of turbulent blood flow 

(i.e. artery bifurcations), which can be mimicked in the lab using 4 dynes/cm
2 

shear stress 

(low FSS) (Siasos G et al. 2007 and Kadohama H et al. 2006) (Figures 1.2 and 1.4). 

Figure 1.4: The relationship between FSS and atherosclerosis 

 

In vivo and in vitro evidence indicates that laminar shear stress causes endothelial 

cell, nuclei, and actin microfilament alignment in the direction of FSS (Birukov KG et al. 

2002, Dewey C et al. 1981, Mott RE and Helmke BP 2007, and Mengistu M et al. 2011).  

It has been well-documented in the Lowe-Krentz lab and in the literature that under high 
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FSS (15 dynes/cm
2
), endothelial cells undergo a series of morphological changes, 

culminating in the alignment of the whole cell, actin microfilaments, microtubules, and 

intermediate filaments in the direction of FSS (Figure 1.5) (Flitney FW et al. 1996, 

Franke R et al. 1984, Galbraith CG, Shalak R, Chien S 1998, Helmke BP et al. 2001, 

Malek AM and Izumo S 1996, Sato M, Levesque M, and Nerem R 1987, Wechezak A, 

Viggers R, and Sauvage L 1985, Mengistu M et al. 2011, and Azuma N et al. 2001), but 

the molecular mechanisms underlying this remodeling are unclear.  

As shown in Figure 1.5, at approximately 5 to 15 min, an upregulation in actin 

microfilaments is seen in response to high FSS, which has been termed Phase 1. The 

formation of stress fibers can be seen as early as 5 min of high FSS. Stress fibers are 

actomyosin bundles composed of 10-30 actin filaments held together by cross-linking 

proteins such as alpha-actinin and filamin, and non-muscle myosin and tropomyosin 

(Cramer L, Siebert M, and Mitchinson T 1997, Lazarides E and Burridge K 1975, Wang 

K, Ash J, and Singer S 1975, Weber K and Groeschel-Steward U 1974). Stress fiber 

formation is a conserved adaptation of eukaryotic cells, but its assembly is not well 

understood. Phase 2 is marked by the formation of a dense cortical actin band around 30 

min of high FSS. This dense contractile endothelial actin ring not only helps maintain 

cell-cell junctions, but also gives these cells the capability to contract and regulate the 

permeability of the endothelium (Schnittler H 1998 and Schnittler H et al. 2001).  Lastly, 

Phase 3 is marked by the alignment of the whole cell and actin microfilaments in the 

direction of shear stress at time points greater than 60 minutes of high FSS (Mengistu M 

et al. 2011 and reviewed in Mengistu M, Slee JB, and Lowe-Krentz LJ 2012).  The 
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alignment in the direction of FSS allows ECs to reduce their height in order to decrease 

the magnitude of the strain they experience from hemodynamic forces (Barbee K, Davies 

P, and Lal R 1994, Hu S et al. 2003, Karcher H 2003, Pellegrin S and Mellor H 2007).  

Figure 1.5: The three phases of actin microfilament rearrangement in response to 

high fluid shear stress  

(Adapted from Mengistu M et al. 2011 and Mengistu M, Slee JB, Lowe-Krentz LJ 

2012) 

 

Several mechanisms have been proposed for sensing, transducing, and responding 

to FSS. The cytoskeleton has been shown to be responsible for the transmission of 

stresses from the cell surface to various intracellular locations such as cell-cell adhesion 

sites, focal adhesion sites, and the nucleus (reviewed in: Barakat A and Davies P 1998).  

It has also been suggested that a mechanosensing complex is found in endothelial cells to 

elicit mechanical signals to the actin cytoskeleton, which is discussed further in Chapter 3 

(Conway D and Schwartz MA 2012). A role for cell-cell junctions in this process is also 

emerging and plays a large role in the mechanosensing complex (Tzima E et al. 2005). 

Although much is known about responses to FSS in vascular endothelium, a detailed 

mechanism has yet to be determined.  

Regulation of actin microfilament dynamics depends in part upon the Actin 

Depolymerizing Factor (ADF) family of proteins, of which cofilin is a prominent player 

(reviewed in: Lin M-C et al. 2010, Suurna MV et al. 2006, Chen Q and Pollard TD 2013, 

and Nishida E et al. 1987). It is well-documented that phospho-cofilin is 
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dephosphorylated by cofilin phosphatases, including chronophin and the slingshot (SSH) 

family of protein phosphatases and therefore activated by various external stimuli 

(Suurna MV et al. 2006, Won KJ et al. 2008, Keezer SM et al. 2003, and Cote M et al. 

2010). Once dephosphorylated, cofilin is involved in the regulation of actin dynamics 

(Suurna MV et al. 2006, Won KJ et al. 2008, Keezer SM et al. 2003, and Cote M et al. 

2010). To inactivate cofilin various extracellular signals trigger its phosphorylation via 

the Lin-11/Isl-1/Mec-3 domain-containing protein kinase (LIM Kinase) family (reviewed 

in: Bernard O 2007, Moriyama K, Iida K, and Yahara I 1996) or by the related testicular 

protein kinase (TESK) (Suurna MV et al. 2006, Won KJ et al. 2008, Keezer SM et al. 

2003, and Cote M et al. 2010), inducing the inhibition of actin dynamics leading to actin 

stress fiber accumulation (Suurna MV et al. 2006, Won KJ et al. 2008, Keezer SM et al. 

2003, and Cote M et al. 2010). As shown in Figure 1.6, cofilin regulation is opposite of 

traditional phosphorylation control mechanisms, in that phosphorylation of cofilin is 

required to, in essence, inactivate the protein, inducing the inhibition of actin dynamics 

(Suurna MV et al. 2006, Won KJ et al. 2008, Keezer SM et al. 2003, and Cote M et al. 

2010). 

Figure 1.6: Regulation of cofilin 
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 Published evidence indicates that c-Jun N-terminal kinase (JNK) and p38, both 

members of sub-groups of the larger MAPK family, associate with actin microfilaments 

and mediate shear stress-induced endothelial cell and actin filament realignment (Azuma 

N et al. 2001, Hamel M et al. 2006, Wang J et al. 2005, and Mengistu M et al. 2011). 

MAPKs are a ubiquitous group of serine/threonine kinases which play a role in 

transmitting extracellular signals required for various cellular functions. All MAPKs are 

activated by specific kinases (MAPKKs) that phosphorylate a threonine and tyrosine 

residue in a conserved TEY (Threonine-Glutamic Acid-Tyrosine) motif for ERKs, TPY 

(Threonine-Proline-Tyrosine) motif for stress-activated protein kinases (SAPKs)/JNKs, 

and TGY (Threonine-Glycine-Tyrosine) motif for p38 (Nishida E and Gotoh Y 1993, 

Ruderman JV 1993, Seger R and Krebs EG 1995, Cano E and Mahadevan LC 1995, 

Davis RJ 1994, and Kyriakis JM et al. 1994).  

The MAPKs are a family of protein kinases involved in of three pathways which 

are defined as follows.  First, the “classical” MAPKs or extracellular signal regulated 

kinases (ERKs) is involved in proliferation and differentiation (Nishida E and Gotoh Y 

1993, Ruderman JV 1993, Seger R and Krebs EG 1995, Cano E and Mahadevan LC 

1995, Davis RJ 1994, and Kyriakis JM et al. 1994). The second pathway is the JNK or 

stress-activated protein kinases (SAPK) which is involved in inflammation and stress-

induced signaling (reviewed in: Kyriakis JM et al. 1994).  Lastly the p38 pathway was 

originally thought to be involved mainly in cellular signaling in response to osmotic 

shock. But it is becoming clear that this pathway is involved in much more than 

previously thought (reviewed in: Zarubin T and Han J 2005, Daum G et al. 1997, and 



 

 

25 

 

Thornton TM and Rincon M et al. 2009). A recent review article highlights evidence in 

the literature suggesting that p38 MAPK is involved in the regulation of the G1-S and G2-

M phase transitions of the cell cycle (reviewed in: Thornton TM and Rincon M 2009).  

The work collected within this dissertation advances our understanding of the 

anti-inflammatory capabilities of heparin and shear stress in the vasculature. The heparin 

signaling cascade, heparin-induced gene expression changes, and the relationship 

between FSS and actin realignment in vascular endothelium were investigated. It was 

shown that TMEM184A is a cell surface receptor for heparin and that TMEM184A is 

involved in vesicular trafficking and signal transduction, fitting with it being a receptor 

for heparin. It was determined that heparin signaling involves cGMP and PKG; 

presenting the possibility that heparin signaling depends on eNOS (endothelial nitric 

oxide synthase) which also co-localizes with TMEM184A. An anti-inflammatory quality 

of heparin was determined by showing that it attenuates stress responses induced by 

TNFα as assayed by stress fiber induction and nuclear stress kinase (pJNK and pp38) 

activity in sub-confluent vascular endothelial cells. Along with investigating the anti-

inflammatory qualities of heparin, microarray data reveal that heparin regulates a large 

number of genes in vascular smooth muscle cells, which cluster in groups related to 

integrin interactions, receptor signaling, proteoglycans, and proteolysis pathways to 

highlight a few. Lastly, the anti-inflammatory nature of shear stress involves cofilin 

which is required for FSS-induced actin realignment and barrier integrity, emphasizing 

the importance of the actin cytoskeleton in the atheroprotective regions of the 

vasculature.  
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Chapter 2: General Methods 
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2.1: Cell Culture 

 Bovine aortic endothelial cells (BAOECs) were obtained from Cell Applications 

(San Diego, CA) and cultured using Cell Applications BAOEC media according to their 

recommendations or gradually exchanged to supplemented MEM media (described 

below) for large volume experiments. Briefly, BAOECs were initially cultured in Cell 

Applications media for 2-3 passages, after which supplemented MEM media was blended 

in each passage until the Cell Applications media was completely removed. This was 

typically performed over 2-3 passages. A7r5s (rat aortic smooth muscle cells) obtained 

from ATTC, Manassas, VA, primary rat aortic smooth muscles cells (RAOSMCs) and 

primary bovine aortic endothelial cells (BAOSMCs) obtained from Cell Applications, 

San Diego, CA were cultured according to the manufacturer’s recommended instructions 

using minimum essential eagle’s medium (MEM) (Sigma, St. Louis, MO ) supplemented 

with pre-tested 10% heat inactivated fetal bovine serum (hiFBS) (Gibco, Grand Island, 

NY or Biowest, Miami, FL), 5% L-glutamine (Sigma), 1% sodium pyruvate (Sigma, 

#S8636), 1% minimum non-essential amino acids (Sigma, #M7145), and 1% 

penicillin/streptomycin antibiotics (Sigma, #P0781). Chinese Hamster Ovary (CHO) cells 

obtained from Dr. Bryan Berger and Mouse Embryonic Fibroblast (MEF) cells obtained 

from Dr. Matthias Falk were cultured using Dulbecco’s Modified Eagle’s Media 

(DMEM) supplemented identical to the MEM media. Madin-Darby Canine Kidney 

Epithelial (MDCK) cells obtained from Dr. Anastasia Thevenin/Dr. Matthias Falk  were 

cultured in low glucose DMEM supplemented (Sigma) with 10% hiFBS, 5% L-

glutamine, and 1% penicillin/streptomycin antibiotics. Cells were cultured at 37 ºC and 
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5% CO2 with humidity. Culture plates were pre-treated with 0.2% porcine gelatin for 1 hr 

prior to cell seeding. Typically, vascular cells were between passages 5 and 20 for 

experiments, except A7r5s, CHOs, and MDCKs which are cloned lines and last much 

longer in cell culture.  

2.2: Immunofluorescence Staining 

 For cofilin staining and select TMEM184A staining, cells were washed with 

phosphate buffered saline (PBS), fixed, and permeabilized with ice-cold methanol for 5 

min at -20 ºC and washed again with PBS. The cover slips were incubated with primary 

antibodies overnight at 4 ºC. Cells were then washed with PBS and incubated with 

secondary antibodies conjugated to FITC/AlexaFluor488® or TRITC (Jackson 

ImmunoResearch, West Grove, PA) overnight at 4 ºC. In all other experiments, cells 

were fixed with 2.0% formaldehyde (Sigma) or 4.0% paraformaldehyde (Sigma) for 15 

min at room temperature with shaking and permeabilized with 0.2% or 0.3% Triton-X-

100 (Sigma) for 5 min at room temperature with shaking. Coverslips were incubated with 

primary antibodies overnight at 4 ºC and secondary antibodies for 2 hr at room 

temperature. Both primary and secondary antibodies were used at dilutions recommended 

by the suppliers. Cover slips were mounted in mowoil (Calbiochem, Darmstadt, 

Germany) to minimize photobleaching. 

2.3: SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Western Blotting 

 100 mm plates of cultured cells were harvested with SDS sample buffer as 

previously described (Hamel M et al. 2006). Proteins were resolved by SDS-PAGE and 

electrophoretically transferred onto nitrocellulose and blots were probed with primary 



 

 

29 

 

antibodies specific for the protein of interest and secondary antibodies conjugated to 

biotin (Jackson ImmunoResearch). Blots were developed using ExtraAvidin™ alkaline 

phosphatase, BCIP, and NBT (Sigma). Bands of interested were identified by comparison 

with lanes using only secondary antibodies and by molecular weight based on migration 

of pre-stained Rainbow™ molecular weight markers (GE Healthcare Biosciences, 

Piscataway, NJ). Rf values for the molecular weight markers were used to generate a 

standard curve which was used to calculate the molecular weight of the bands of interest. 

Acylamide solutions were obtained from Amresco (Solon, OH). 

For select TMEM184A work, blots were developed using ECL reagents for 

enhanced clarity. Briefly, membranes were washed 3X with TBST following biotin-

conjugated secondary antibody incubation and placed into pre-mixed ABC (Avidin-

Biotin Complex, Thermo Scientific) reagent for 30 min with shaking at room 

temperature. Following ABC reagent incubation, membranes were washed 3X with 

TBST. In the dark room, membranes were incubated with pre-mixed ECL (Enhanced 

Chemiluminenscence, Thermo Scientific) reagent for 3 min, followed by film exposure. 

Film exposures varied from 1 – 15 min depending on signal intensity. Once film was 

exposed it was developed manually using Kodak D-76 Film Developer and fixed with 

Sprint Record Speed Fixer (Dan’s Camera City, Allentown, PA). Development time 

averaged around 5 min, but varied with signal intensity. Once developed, films were 

fixed for 1 min. ABC and ECL reagents were used at concentrations recommended by the 

manufacturer.  
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2.4: Confocal Microscopy 

 Fluorescent labels were visualized using the Zeiss© LSM 510 Meta with a 63X 

oil-immersion lens at room temperature. All images were taken at approximately the 

same Z-plane of the cell where intensity was the greatest. Gain intensity was set just 

below saturating levels for the control [or static (and no inhibitor in some cases) for 

cofilin experiments] slide and those settings were used to image the remaining slides 

within a replicate for each protein of interest. The images shown are representative of the 

mean integrated fluorescence density for the protein indicated at each time point tested.  

2.5: Fluorescent Microscopy 

 Fluorescent microscopy was used to obtain whole cell levels of various proteins. 

Fluorescent labels were visualized using a Nikon eclipse TE 2000-U fluorescence 

microscope with a 60X oil-immersion lens (Nikon, Tokyo Japan) at room temperature. 

Micrographs were captured with a SPOT RT KE camera. All images were taken at the 

same gain intensity and exposure time to allow for comparison across images. Gain 

intensity and exposure time were set just below saturating levels for the control slide and 

those settings were used to image the remaining slides in a replicate.  

2.6: DNA Plasmid Sub-Cloning 

 To propagate DNA plasmids (GFP-vinculin (Kenneth Yamada, National Institute 

of Dental and Craniofacial Research, Bethesda, MD), cofilin mutant constructs (Theo 

Rein, Max Plank Institute of Psychiatry, Munich, Germany), TMEM184A shRNA 

constructs, and GFP-tagged TMEM184A (OriGene, Rockville, MD) standard 

microbiology techniques and Qiagen QIAprep mini-prep kits (Cat. No. 27104) (Valencia, 
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CA) were used. LB broth (Lennox) and LB agar (Lennox) (Difco Labs, Detroit, MI) were 

prepared by adding 25 g or 40 g (respectively) to 1 L of Millipore water and autoclaved 

for 30 min. Once autoclaved, solutions were allowed to cool to room temperature and 100 

µg/ml antibiotic was added (typically kanamycin or ampicillin (Sigma) depending on the 

resistance gene on the plasmid). Plates were poured and once solidified were placed in 

the refrigerator. LB broth was kept in the refrigerator until needed.  

 The JM109 (Promega, Madison, WI) E. coli strain was used to propagate most 

plasmids, and the DH5α (Invitrogen, Grand Island, NY) E. coli strain was used to 

propagate GFP-Tagged TMEM184A and TMEM184A shRNA constructs. E. coli were 

transformed with ~50 ng of plasmid using the following protocol. Briefly, 100 µl of 

JM109s/DH5αs were mixed with 50 ng of plasmid and incubated on ice for 10 min and 

were then heat shocked at 42 ºC for 2 min. Following heat shock, they were placed on ice 

and 500 µl of LB (no antibiotic) was added. The mixture was then incubated at 37 ºC for 

1 hr with shaking. Bacteria were then spun down for 15 min to pellet and the pellet was 

re-suspended with the liquid in the tube. 100 µl of transformed bacteria solution was 

added to 1 LB + antibiotic plate. Each transformation yields 5 plates. Plates were 

incubated at room temperature for 10 min and then flipped upside down and placed in an 

incubator overnight at 37 ºC. 

 After overnight incubation, 1 colony was placed into a tube containing 5 ml of LB 

broth + antibiotic and incubated for ~ 16 hr at 37 ºC with shaking. After the 16 hour 

incubation, Qiagen’s miniprep plasmid isolation protocol was followed. Briefly, the 

bacteria were pelleted and supernatant removed. The pellet was re-suspended in 250 µl of 



 

 

32 

 

Buffer P1 and transferred to a microcentrifuge tube. 250 µl of Buffer P2 was then added 

and the tube was inverted 4-6 times to mix. 350 µl of Buffer N3 was added and the tube 

was mixed by inversion 4-6 times. Tubes were centrifuged for 10 min at 13,000 rpm. The 

supernantant was then applied to a QIAprep spin column and centrifuged for 1 min. 

Flow-through was discarded and the column was washed with 500 µl of Buffer PB and 

centrifuged for 1 min. Flow-through was discarded and 750 µl of Buffer PE was added 

and centrifuged for 1 min. Flow-through was discarded and centrifuged for an additional 

1 min to remove any residual wash buffer. The QIAprep column was then placed in a 

clean 1.5 ml tube. DNA was eluted by adding 50 µl of Buffer EB directly to the center of 

the QIAprep spin column, and letting stand for 1 min. Tubes were centrifuged for 1 min 

to elute DNA. Nanodrop analysis was performed to obtain DNA concentration and purity 

based on A260/280nm. A260/280nm values of ~1.8 were considered suitable to further use. 

Purified plasmids were stored at -20 ºC until needed.  

2.7: Heparin Preparation and Treatment 

 In all experiments requiring heparin treatment, a 20 mg/ml stock was made fresh 

daily and diluted to 200 µg/ml in complete culture medium or starvation medium (media 

without hiFBS). Throughout all experiments, heparin pretreatment was held constant at 

20 min prior to other stimulation. Heparin from porcine skin was obtained from Sigma.  
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Chapter 3: 

Actin realignment and cofilin regulation are essential for barrier integrity during 

shear stress 
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3.1: Induction 

Fluid shear stress (FSS) plays important roles in embryonic morphogenesis of the 

vasculature, regulation of vessel diameter in adulthood, maintaining vascular 

homeostasis, and is implicated in the development of atherosclerosis (reviewed in Hahn 

C and Schwartz MA 2009). Vascular endothelial cells (ECs) respond to sustained laminar 

FSS by increasing their anti-thrombic activity, decreasing reactive oxygen species, 

increasing antioxidant enzymes, and altering growth factor signaling (reviewed in 

Yamamoto K and Ando J 2011). It has been estimated that more than 600 EC genes 

respond to FSS (Ohura N et al. 2003). FSS has been shown to activate a variety of 

signaling pathways in ECs, but it is still unclear how the cell initially senses this 

mechanical stress. The signaling pathways which have been shown to be activated by 

FSS include: ion channels leading to Ca
2+

 influx, tyrosine kinase receptors leading to 

JNK activation, G-protein coupled receptors, and various adhesion proteins (reviewed in 

Yamamoto K and Ando J 2011).  

There have been recent advances in understanding the mechanotransduction 

induced by FSS, such as the importance of cell-cell junctions (Tzima E et al. 2005) and 

involvement of the actin cytoskeleton (Osborn EA et al. 2006). It is becoming clear that 

at least one mechanosensing mechanism involves a complex of PECAM-1 (platelet 

endothelial cell adhesion molecule-1), VE-cadherin (vascular-endothelial cadherin), and 

VEGFR2 (vascular endothelial growth factor receptor 2) (Figure 3.1) (Conway D and 

Schwartz MA 2012). Within this complex, PECAM-1 and VEGFR2 are responsible for 

downstream signaling, while VE-cadherin functions as an adaptor (Tzima E et al. 2005). 
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VE-cadherin is an endothelial cell specific component of adherens junctions and is 

essential for maintaining endothelial barrier integrity (Vincent PA et al. 2004). The 

cytoplasmic domain of VE-cadherin associates with p120-, β-, γ-, and α-catenin in 

endothelial cell-cell junctions to mediate downstream signaling (Dejana E, Orsenigo F, 

and Lampugnani MG 2008), with VE-cadherin connecting to the actin cytoskeleton via 

β-catenin (Tharakan B et al. 2012). Given the importance of the endothelial barrier for 

vascular permeability, it is imperative that the endothelial barrier remain intact during 

FSS. ECs exposed to FSS exhibit a marked increase in transendothelial resistance, 

illustrating a strengthening of the barrier compared to static cells (DePaola N et al. 2001, 

Seebach J et al. 2000). Given that the VE-cadherin/β-catenin adhesions are linked to 

actin, we predicted that disruptions to the actin realignment process during FSS would 

disrupt endothelial barrier integrity. 

Figure 3.1: Proposed mechanosensing complex  

(Adapted from Conway D and Schwartz MA 2012 with established links to actin 

added) 

 

In vivo and in vitro evidence indicates that laminar FSS (15dynes/cm
2
) causes 

endothelial cell and actin microfilament alignment in the direction of FSS (Mengistu M et 
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al. 2011, Kadohama T et al. 2006, Noria S et al. 2004, Malek AM and Izumo S 1996) 

(see Figure 3.2), but the molecular mechanisms underlying this remodeling remain 

unclear. JNK and p38 are critically important during FSS-induced actin realignment. 

Studies investigating the role of JNK during FSS indicate that the JNK signaling pathway 

mediates, at least in part, FSS-induced actin realignment (Mengistu M et al. 2011, Hahn 

C et al. 2011). It has also been demonstrated that p38 activity is required for complete 

FSS-induced actin remodeling (Azuma N et al. 2001 and Mengistu M, Slee JB, and 

Lowe-Krentz LJ 2012). There is a large amount of data detailing the roles of JNK and 

p38 in migrating cells during wound healing (Reviewed in: Mengistu M, Slee JB, and 

Lowe-Krentz LJ 2012), as well as evidence for association with cytoskeletal structures in 

proliferating ECs (Hamel M et al. 2006).  

Regulation of actin microfilaments depends in part upon the Actin 

Depolymerizing Factor (ADF)/cofilin family of proteins, of which cofilin-1 is the most 

prominent in non-muscle tissue (Lin MC et al. 2010, Suurna MV et al. 2006, Berstein 

BW and Bambrug JR 2010). The ADF/Cofilin proteins are expressed in all eukaryotes 

and can, for the most part, rescue deletions of other family members (Berstein BW and 

Bambrug JR 2010). However, cofilin-1 cannot be rescued by other family members and 

knockout is embryonically lethal in mice (Gurniak CB, Perlas E, and Witke W 2005). 

One of the major regulatory mechanisms controlling cofilin (from this point forward 

refers to cofilin-1) activity is phosphorylation at serine-3 (Figure 3.2) (reviewed in: 

Bernard O 2007, Moriyama K, Iida K, and Yahara I 1996, and Nagaoka R, Abe H, 

Obinata T 1996). Phospho-cofilin (serine-3) (p-cofilin) is dephosphorylated by cofilin 
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phosphatases, including chronophin and the slingshot (SSH) family of protein 

phosphatases and therefore activated. Once dephosphorylated, cofilin binds to both G-

actin and F-actin in a 1:1 molar ratio and promotes F-actin depolymerization (Nishida E, 

Maekawa S, and Sakai H 1984). Cofilin is inactivated by phosphorylation at serine-3 via 

the Lin-11/Isl-1/Mec-3 domain-containing protein kinase (LIMK) family, resulting in the 

formation of actin stress fibers (Suurna MW et al. 2006, Won KJ et al. 2008, Keezer SM 

et al. 2003, Côté MC et al. 2010, and Bernard O 2007).  

Figure 3.2: Cofilin structure, with Serine-3 phosphorylation site circled 

(Bernstein BW & Bamburg JR 2010) 

 

It is becoming clear in the literature that actin is essential not only in the 

cytoplasm, but also in the nucleus, for regulation of transcription and gene expression 

(Zheng B et al. 2009 and Pederson T 2008). Actin alone is incapable of entering the 

nucleus, as it lacks a nuclear localization sequence, requiring it to associate with other 

proteins to facilitate nuclear entry. One of the leading hypotheses is that cofilin is 

responsible for localizing actin to the nucleus (Berstein BW and Bamburg JR, 2010, 

Mengistu M, Slee JB, Lowe-Krentz LJ 2012). Cofilin has a nuclear localization sequence 
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(KKRKK) similar to that of SV40 large T antigen (Iida K, Matsumoto S, and Yahara I 

1992 and Karderon D et al. 1984), and dephosphorylated cofilin has been reported to 

localize to the nucleus after various cell stresses, such as heat shock, latrunculin B 

treatment, or ATP depletion (Pendleton A et al. 2003 and Iida K, Matsumoto S, and 

Yahara I 1992). LIMK-1 possesses two leucine-rich nuclear export signals within its PDZ 

domain and one NLS-like sequence responsible for nuclear localization (Yang N and 

Mizuno K 1999 and Matsuzaki F et al. 1988), suggesting that LIMK-1 could 

phosphorylate cofilin in the nucleus. Definitive roles for cofilin in the nucleus have yet to 

be elucidated, but it has been predicted to facilitate nuclear actin depolymerization, as it 

does in the cytoplasm.  

 In this study, we exposed vascular ECs to 15dynes/cm
2
 FSS to determine the role 

of cofilin in FSS-induced actin realignment, further our understanding of the role of stress 

kinases in this process, and assess the effect of FSS-induced actin realignment on EC 

barrier integrity. The results indicate that FSS induces accumulation of p-cofilin in the 

nucleus, likely phosphorylated by pLIMK1/2, whose activity in the nucleus is also 

responsive to FSS.  Our results indicate that proper FSS-induced regulation of cofilin and 

actin are essential for FSS-induced realignment and barrier maintenance and 

enhancement. This work has been published in its entirety as J. Cell. Biochem. 114: 782–

795, 2013. 
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3.2: Methods 

3.2.1: Cell Culture 

 BAOECs were cultured onto 30 mm diameter, 0.17 mm thick glass cover slips 

coated with 30 µg/ml bovine collagen type I  (BD, San Jose, CA) in phosphate-buffered 

saline, placed in six-well culture plates, and grown for approximately 18 hours until they 

formed a confluent monolayer.  BAOECs were incubated for 1 hr in shear media (MEM 

containing HEPES (Sigma-Aldrich, St. Louis, MO), supplemented with 0.5% heat-

inactivated FBS (Biowest, Miami, FL or Invitrogen, Grand Island, NY)) prior to shear 

exposure to maintain pH and to minimize bubble formation. The cover slips were 

assembled into a modified POC-mini-plate flow chamber (Yalcin HC, Perry SF, and 

Ghadiali SN 2007) for exposure to FSS conditions. Typically, BAOECs between 

passages 5 and 20 were used for these experiments.  

3.2.2: JNK and p38 Inhibitor Treatments 

 JNK activity was inhibited using SP600125 (Calbiochem-EMD Millipore 

Chemicals, Billerica, MA), a competitive inhibitor for JNK (Bogoyevitch MA et al. 

2004). p38 activity was inhibited using SB203580 (Calbiochem) which binds to the ATP-

binding pocket inhibiting its catalytic activity, but not p38 phosphorylation (Kumar S et 

al., 1999). BAOECs were cultured as described above and were then incubated with 

10µM of either the JNK or the p38 inhibitor in shear media for 1 hour prior to FSS 

exposure. FSS exposure was carried out as described below.  
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3.2.3: FSS Experiments 

 A POC mini chamber from Hemogenix (Colorado Springs, CO) was modified by 

adding a gasket with a rectangular flow channel to create an adjustable-height parallel-

plate flow chamber as previously described (Yalcin HC, Perry SF, and Ghadiali SN 

2007). FSS was calculated using the following equation: 
2

6

WH

Q
w


   where τw is the wall 

shear stress, µ is the viscosity (0.007 dynes/cm
2
 at 37 ºC), Q is the flow speed, and W and 

H are the width and height of the gasket, respectively. BAOECs were exposed to 15 

dynes/cm
2
 shear stress (τw) according to the following parameters: W = 1 cm, H = 0.01 

cm and Q = 2.14 ml/min. A constant flow of shear media was supplied to the POC mini 

parallel-plate flow chamber using a REGLO Digital continuous flow pump from 

ISMATEC International (IDEX Health & Science, Wertheim-Mondfeld, Germany). The 

FSS experiments were carried out at 37 ºC. 

3.2.4: Immunofluorescence Staining 

 Primary antibodies against p-Cofilin (serine-3), pLIMK1/2 (threonine-508/505), 

VE-cadherin, β-catenin (Santa Cruz Biotechnology, Santa Cruz, CA), total Cofilin (Santa 

Cruz Biotechnology and Cell Signaling, Boston, MA), pLIMK (serine-323), or pSSH 

(serine-978) (ECM Biosciences, Versailles, KY) were used as described in Chapter 2. 

Sample preparation for immunofluorescence staining is described in the Chapter 2.  

 In experiments in which actin stress fibers were detected, TRITC-phalloidin 

(Sigma-Aldrich, St. Louis, MO) was used. For these samples, the cells were fixed with 

2.0% formaldehyde (Sigma-Aldrich) and permeabilized with 0.2% Triton-X-100 (Sigma-

Aldrich). Cover slips were washed with PBS and incubated with TRITC-phalloidin at the 
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supplier’s recommended dilution overnight at 4ºC. Following incubation, cover slips 

were mounted as described in Chapter 2. 

3.2.5: Cofilin Mutant Transfection Protocol 

 A constitutively active, phosphorylation defective cofilin (serine-3-alanine – S3A) 

mutant construct and a constitutively inactive, phosphomimic cofilin (serine-3-aspartic 

acid – S3D) mutant were used (Mutants provided by Theo Rein, Max Planck Institute of 

Psychiatry, Müchen, Germany) (Rüegg J et al. 2004). BAOECs were electroporated with 

20 µg/ml of one cofilin construct and GFP-vinculin (GFP-vinc - provided by Kenneth 

Yamada, National Institute of Dental and Craniofacial Research, Bethesda, MD) as a 

fluorescent control using the Bio-Rad Gene Pulser X-Cell System (Hercules, CA) and the 

manufacturer’s recommended protocol modified to achieve a confluent monolayer of 

BAOECs. Briefly, 100 mm confluent plates of cells were trypsinized, rinsed with PBS, 

suspended in HEPES-buffered saline (HeBS), electroporated, and re-plated. The 

BAOECs were electroporated with a single 15.0 ms pulse of 160 V. Once confluent, the 

cells were split onto glass cover slips as described above, grown to confluency 

(approximately 18 hr), and exposed to FSS as described above.  GFP-vinc is readily taken 

up and expressed by BAOECs, but in our experiments did not associate appreciably with 

focal adhesions in the time between seeding and FSS experiments. Transfection 

efficiencies close to 100% were consistently obtained based on GFP-vinc transfection.  

3.2.6: SDS-PAGE and Western Blotting 

 Confluent BAOECs expressing GFP-vinc, S3A cofilin, or S3D cofilin were 

harvested and a Western Blot was performed as described in Chapter 2, with antibodies 
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for p-cofilin or total-cofilin and secondary antibodies conjugated to biotin (Jackson 

ImmunoResearch). Blots were developed using ExtraAvidin™ alkaline phosphatase 

system. 

3.2.7: Confocal Microscopy Image Analysis 

 Confocal microscopy performed as described in Chapter 2. ImageJ software was 

used to determine the integrated fluorescence density of the nucleus and cytoplasm of 10 

to 15 cells per replicate. A single replicate consisted of a static, 15 min, 30 min, and in 

some cases a 60 min time point. Given that gain intensity differs between replicates, a 

normalization protocol was developed to allow for comparison across replicates with 

regard to a specific protein. Within a replicate, the changes in integrated fluorescence 

density values were determined relative to the mean integrated fluorescence density of 

the static (and no inhibitor in some cases) time point. Cell values for each time point 

within a replicate were averaged, yielding a single mean for each time point within the 

replicate. These time point mean values were then averaged across replicates and a 

statistical analysis was performed.  For image presentation, the brightness and contrast of 

all p-cofilin and total cofilin images were increased by a value of 10 in the Zeiss software 

after analysis to enhance visual clarity. All images are orientated with the direction of 

FSS from the bottom to the top of the page.  
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3.3: Results 

3.3.1: FSS-induced changes in cofilin phosphorylation 

 To address the question of cofilin involvement in early actin realignment, FSS-

induced changes in cofilin activity were tracked by fluorescently labeling p-cofilin 

(serine-3) in confluent BAOECs exposed to 15 dynes/cm
2
 FSS for 15 and 30 min. The 

intensity and spatial distribution of p-cofilin were different depending on the duration of 

FSS exposure (Figure 3.3). Under static conditions, p-cofilin was distributed throughout 

the cytoplasm and the nucleus, with nuclear staining being more intense, signifying a 

slightly higher concentration of cofilin phosphorylation (inactive) in the nucleus.  

Cytoplasmic p-cofilin decreased in response to FSS by 43.56% at 15 min (n=9, 

p<0.0001) and by 31.68% at 30 min (n=5, p=0.0036) relative to static conditions. Nuclear 

p-cofilin increased in response to FSS by 39.00% at 15 min (n=9, p=0.0011) and by 

28.00% at 30 min (n=4, p=0.0253) relative to static conditions, suggesting that FSS may 

induce cofilin phosphorylation (inactivation) in the nucleus. By 60 min, p-cofilin had 

returned closer to control levels and differences were no longer significant. These results 

indicate that cofilin is responsive to FSS as illustrated by FSS-dependent changes in p-

cofilin intensity and spatial distribution. Similar experiments to evaluate total cofilin with 

two different cofilin antibodies showed no FSS-induced differences relative to static 

conditions (Figure 3.3), indicating that cofilin is phosphorylated and inactivated in a 

particular location rather than FSS-inducing significant changes in p-cofilin movement or 

protein degradation. Secondary antibody only controls for both p-cofilin and total cofilin 

indicate that non-specific detection does not account for the staining patterns seen in both 
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cases (data not shown). Similar results for p-cofilin and total-cofilin were also obtained 

with formaldehyde and Triton-X-100 fixed and permeabilized cells (data not shown). 

Because cofilin staining patterns of other cell types reported in the literature are different 

than what we observed in confluent endothelial cells, cofilin localization in sub-confluent 

BAOECs was also determined. Total cofilin localization in sub-confluent BAOECs was 

primarily cytoplasmic with little nuclear staining. Cytoplasmic total cofilin in sub-

confluent BAOECs was slightly elevated compared to confluent BAOECs (data not 

shown). The staining pattern for p-cofilin in sub-confluent cells largely resembled p-

cofilin staining in confluent endothelial cells (data not shown). These results suggest that 

confluent endothelial layers have different cofilin distributions than sub-confluent cells of 

many types.  

3.3.2: Cofilin activity is required for FSS-induced actin realignment 

 In order to determine whether cofilin activity was required for FSS-induced actin 

realignment, two cofilin mutants were employed (Figure 3.4A). GFP-vinc was used as a 

transfection control and had no effect on FSS-induced actin realignment in the direction 

of FSS (Figure 3.4A, top panel). BAOECs expressing the phosphorylation defective, 

constitutively active, serine-3-alanine (S3A) cofilin mutant formed atypical cortical actin 

bands at 30 min, but failed to start elongating in the direction of FSS at 60 min (Figure 

3.4A, middle panel). BAOECs expressing the phospho-mimic, constitutively inactive, 

serine-3-aspartic acid (S3D) cofilin mutant failed to form cortical actin bands at 30 min 

and did not start elongating in the direction of FSS at 60 min (Figure 3.4A, bottom 

panel). BAOECs expressing either of the mutants have disorganized actin networks prior 
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to the onset of FSS which persist through FSS, with the S3D mutant resulting in highly 

atypical actin networks (Figure 3.4A). Both S3A and S3D-expressing BAOECs had 

increased stress fibers relative to GFP-vinc expressing BAOECs, with BAOECs 

expressing S3D cofilin exhibiting the highest amount of stress fibers (Figure 3.4A). 

Western blots to detect p-cofilin (Figure 3.4B) and total cofilin (Figure 3.4C) in BAOECs 

expressing S3A and S3D cofilin show similar cofilin levels in BAOECs expressing the 

mutants as compared to GFP-vinc only cells. As shown in Figure 3.4B, specific p-cofilin 

bands were detected around 20.3 kD corresponding to the approximate molecular weight 

of cofilin, and around 27.9 kD corresponding to the approximate molecular weight of 

cofilin plus one ubiquitin. A large specific p-cofilin band around 12.5 kD was also 

detected, indicative of cofilin degradation (Figure 3.4B). Consistent with the total cofilin 

immunofluoresence data, total cofilin western blotting yielded very faint banding patterns 

similar to those detected in the p-cofilin blot (Figure 3.4C). Control cells and cells 

expressing either cofilin mutant exhibit specific banding patterns consistent with up to 

four ubiquitin chains indicative of increased targeting for protein degradation in cofilin 

mutant transfected BAOECs (data not shown). Staining with a different total cofilin 

antibody resulted in darker staining of the 12.5 kD bands, but not darker staining of the 

intact or high molecular weight specific bands. Taken together, the results indicate that 

proper cofilin regulation is necessary for FSS-induced actin realignment and that cofilin 

is significantly degraded in confluent BAOECs. 
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3.3.3: JNK and p38 involvement in FSS-induced cofilin phosphorylation 

 It has previously been reported that chemically inhibiting JNK with SP600125 

and p38 with SB203580 blocked FSS-induced actin realignment in the direction of FSS 

(Mengistu M et al. 2011, Azuma N et al. 2001, Mengistu M, Slee JB, and Lowe-Krentz 

LJ 2012). Under static and FSS conditions, the roles of JNK and p38 in modulating 

cofilin phosphorylation were determined (Figure 3.5). Pretreatment of BAOECs with 

SP600125 prior to FSS exposure resulted in significantly decreased cytoplasmic and 

nuclear p-cofilin. Cytoplasmic p-cofilin was decreased by 42.57% (n=4, p=0.0004) and 

nuclear p-cofilin was decreased by 45.00% (n=4, p=0.0012) relative to uninhibited 

BAOECs at static conditions (Figure 3.4, middle panel).  Upon FSS, SP600125-treated 

BAOECs exhibited a 50.36% decrease in nuclear p-cofilin at 15 min (n=3, p=0.0264) and 

a non-significant nuclear p-cofilin decrease of 40.63% (n=3, p=0.0745) at 30 min (Figure 

3.5, middle panel) relative to uninhibited BAOECs exposed to FSS for the same duration. 

BAOECs treated with SP600125 and SB203580 vehicle did not differ from untreated 

cells at static conditions (data not shown). Pretreatment of BAOECs with SB203580 prior 

to FSS exposure resulted in significantly decreased p-cofilin in the cytoplasm and the 

nucleus. Cytoplasmic p-cofilin decreased 38.61% (n=5, p=0.0009) and nuclear p-cofilin 

decreased 30.00% (n=5, p=0.0213) relative to uninhibited BAOECs (Figure 3.5, bottom 

panel). p-cofilin levels in SB203580 pretreated cells were not significantly different from 

untreated cells after 15 and 30 min of FSS (Figure 3.5, bottom panel). Continual exposure 

of BAOECs to SP600125 during FSS did not differ from pre-treatment prior to FSS 

exposure (data not shown). Similar experiments investigating the affect of SP600125 on 
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total cofilin localization showed no difference from untreated cells at the same time 

points (data not shown). Together these results imply that JNK and to a lesser extent p38 

are involved in modulating cofilin activity in BAOECs before and during FSS.  

3.3.4: FSS-induced increased LIMK phosphorylation 

Given that the majority of cofilin literature indicates that only dephoshorylated 

cofilin is capable of nuclear import under various cellular stressors (i.e. Pendleton A et al. 

2003 and Iida K, Matsumoto S, and Yahara I 1992), it is unlikely that p-cofilin is able to 

translocate to the nucleus. Therefore the major cofilin kinases, LIMK1/2, were analyzed 

for their roles in FSS-induced phosphorylation of cofilin in the nucleus. Under static 

conditions, pLIMK1/2 (threonine-508/505 – active) was distributed throughout the 

cytoplasm and the nucleus, with nuclear staining being slightly more intense (Figure 

3.6A). Cytoplasmic pLIMK1/2 increased 46.00% (n=5, p=0.0003) at 15 min and 54.00% 

(n=5, p=0.0348) at 30 min of FSS relative to static conditions. Nuclear pLIMK1/2 

increased 22.00% (n=5, p=0.0407) at 15 min and 47.00% (n=5, p=0.0338) at 30 min of 

FSS relative to static conditions. SP600125 was used to inhibit JNK and determine the 

role of JNK in mediating the effects on LIMK1/2 phosphorylation. Cells treated with 

SP600125 showed no significant differences in pLIMK1/2 relative to cells not treated 

with inhibitor at the same time point, suggesting that JNK is not upstream of pLIMK1/2 

(Thr-508/505) (Figure 3.6A).  These results indicate that pLIMK1/2 (Thr-508/505) is 

FSS responsive, providing a potential mechanism for the FSS-induced increase of p-

cofilin in the nucleus, but this process does not appear to be mediated by JNK. 
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 A second phosphorylation site on LIMK1L (serine-323), shown to be a p38-

mediated phosphorylation site (Kobayashi M et al. 2006), was also probed for FSS-

induced activity changes. Under static conditions, pLIMK1L exhibited cytoplasmic and 

nuclear distribution (Figure 3.6B). Upon exposure to 15 dynes/cm
2 

FSS for 15 and 30 

min, there were no apparent changes in pLIMK1L activity and spatial distribution (Figure 

3.6B), suggesting that this phosphorylated form of LIMK1L is not responsive to FSS. 

These results, taken together with the p38 inhibitor results, indicate that p38 is likely not 

a major player in FSS-induced cofilin changes. Together with the pLIMK1/2 results, 

these results imply that only the conserved Thr-508/205 phosphorylation sites on 

LIMK1/2 are responsive to FSS. 

3.3.5: Slingshot (serine-978) phosphorylation is not FSS-dependent 

 Because the changes seen in pLIMK1/2 localization cannot completely explain 

the changes in p-cofilin, FSS-induced localization changes in the major cofilin 

phosphatase, slingshot, were determined using antibodies specific for phosphorylation at 

serine-978 (pSSH), an established inhibitory phosphorylation site (Soosairajah J et al. 

2005). Prior to FSS exposure, pSSH is distributed fairly evenly throughout the nucleus 

and cytoplasm. Upon exposure to 15 dynes/cm
2
 FSS for 15 and 30 min, pSSH intensity 

did not significantly change in the nucleus or the cytoplasm, suggesting that slingshot 

activity is not responsive to FSS. In addition, when JNK was inhibited with SP600125 or 

p38 with SB203580, no significant differences were seen relative to the same time point 

without corresponding inhibitor (Figure 3.7A and B).  In some cases, independent of FSS 

exposure or inhibitor treatment, a small subset of pSSH was localized to puncta along the 
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cell membrane. Together these results indicate that slingshot phosphorylation at serine-

978 is not responsive to FSS and that JNK and/or p38 is not involved in phosphorylating 

and inactivating slingshot under these conditions.  

3.3.6: FSS-Induced VE-Cadherin and β-Catenin Localization at Cell-Cell Junctions 

 It has previously been shown that FSS decreases endothelial barrier permeability 

and strengthens the endothelial barrier (DePaola N et al. 2001, Seebach J et al. 2000). 

Therefore, we sought to determine the effects of actin realignment on barrier integrity by 

determining VE-cadherin, and β-catenin localization using the cofilin mutants and stress 

kinase inhibitors. Under static conditions, VE-cadherin staining was localized primarily 

to cell-cell contacts (Figure 3.6a, top panel – BAOECs expressing GFP-vinc as a 

transfection control). Upon exposure to FSS, VE-cadherin staining became more regular 

at cell-cell contacts with fewer small gaps or breaks in the staining (Figure 3.8A, top 

panel), indicating an increase in apparent barrier integrity. This FSS-induced barrier 

tightening was absent from BAOECs expressing either S3A (Figure 3.8A, middle panel) 

or S3D (Figure 3.8A, bottom panel) cofilin mutants as illustrated by large gaps (Figure 

3.8A, arrowheads) or small breaks (Figure 3.8A, arrows) in VE-cadherin staining at cell-

cell contacts. The gaps present in barrier staining were noticeably larger in BAOECs 

expressing either cofilin mutant compared to GFP-Vinc. Similar results were obtained 

when cells were stained for β-catenin (Figure 3.8B). Taken together, these results imply 

that proper cofilin activity and actin alignment is required for enhancing cell-cell 

junctions during FSS. 
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 In similar experiments, BAOECs were treated with SP600125 (JNK inhibitor) or 

SB203580 (p38 inhibitor), exposed to 15 dynes/cm
2
 FSS, and VE-cadherin was 

fluorescently stained.  Again, under control conditions, VE-cadherin was localized to 

cell-cell contacts and apparent barrier integrity increased after FSS exposure (Figure 

3.9A, top panel). BAOECs treated with either SP600125 or SB203580 failed to exhibit 

the FSS-induced endothelial barrier tightening seen in the control experiments (Figure 

3.9A, bottom panels), as evidenced by large gaps (Figure 3.9A, arrowheads) or small 

breaks (Figure 3.9A, arrows) in VE-cadherin staining. The gaps present in barrier 

staining were noticeably larger in BAOECs treated with either inhibitor compared to 

uninhibited cells. Similar results were obtained when stained for β-catenin (Figure 3.9B). 

BAOECs treated with SP600125 and SB203580 vehicle did not differ from untreated 

cells at static conditions (data not shown). Together, these results suggest that JNK and 

p38 are required to enhance endothelial barrier integrity during FSS.  

 

3.5: Discussion 

To my knowledge, this is the first report documenting that elevated FSS causes a 

significant decrease in active cofilin in the nucleus and an increase in active cofilin in the 

cytoplasm without affecting total cofilin levels in either compartment. The lack of change 

in total cofilin indicates that FSS likely does not cause expression changes or alter protein 

degradation during FSS exposure up to 30 min, but rather induces phosphorylation 

(activity) changes. The increase in active cofilin in the cytoplasm would allow for 

increased actin polymerization needed for cortical actin band formation and realignment 
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of stress fibers in the direction of FSS. The increase in p-cofilin in the nucleus may be 

necessary to prevent cofilin from being exported back to the cytoplasm. These results 

help further our understanding of the atheroprotective nature of regions in the vasculature 

where blood flow is laminar with ECs exhibiting an elongated shape aligned in the 

direction of FSS (Langille BL and Adamson SL 1981, Nerem RM, Levesque MJ, and 

Cornhill JF 1981). My data also indicate that total cofilin in confluent BAOECs is 

predominantly nuclear, whereas in sub-confluent BAOECs total cofilin is predominantly 

cytoplasmic, suggesting that confluent cells require more nuclear cofilin than sub-

confluent cells, but the reason for this difference unknown. 

 BAOECs expressing either S3A or S3D cofilin failed to start elongating in the 

direction of FSS at 60 min, and exhibited highly disorganized actin structures prior to the 

onset of FSS, suggesting that cofilin is essential for the process of FSS-induced actin 

realignment. The importance of cofilin activity regulation during FSS-induced actin 

realignment is illustrated in the fact that both cofilin mutants disrupt proper FSS-induced 

actin realignment. The increased stress fiber accumulation in the BAOECs expressing 

S3D cofilin coincides with what would be more p-cofilin (inactive) leading to more stress 

fiber accumulation. S3A-expressing BAOECs still form impaired cortical actin bands, 

again stressing the need for proper cofilin activity regulation during FSS. All cells 

(control or cofilin mutant) show high levels of cofilin degradation as assayed by western 

blotting, suggesting that confluent BAOECs significantly degrade cofilin. Banding 

consistent with ubiquitination was observed in control and cofilin mutant cells, consistent 

with published evidence suggesting cofilin ubiquitination and proteosomal degradation 
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(Yoo Y et al. 2010). Western blotting data for total cofilin was consistent with 

immunofluorescent imaging suggesting that cofilin is predominantly phosphorylated in 

BAOECs.  

 Having established that the cofilin activity changes are regulated in part by FSS, 

the roles of stress kinases in this process were determined. Inhibition of JNK with 

SP600125 and inhibition of p38 with SB203580 significantly reduced the levels of p-

cofilin in both the nucleus and the cytoplasm prior to the onset of FSS, establishing a role 

for JNK and p38 in modulating cofilin phosphorylation under static conditions. After the 

onset of FSS, we observed no additional affects of p38 inhibition, while JNK inhibition 

had significant continuing effects on nuclear p-cofilin but not cytoplasmic p-cofilin or 

nuclear or cytoplasmic total cofilin during FSS. An established p38-mediated 

phosphorylation site on LIMK1L (serine-323) (Kobayashi M et al. 2006) was not FSS-

responsive, suggesting that while p38 mediates FSS-induced actin remodeling, it is not 

due to LIMK1L phosphorylation at serine-323.  

pLIMK1/2 (threonine-508/505) increased in the nucleus in response to 15 

dynes/cm
2
 FSS, ultimately leading to cofilin phosphorylation in the nucleus. Evidence 

from the literature supports the notion that both LIMK1 and LIMK2 possess a NLS and 

are capable of nuclear import and export (Yang N and Mizuno K 1999, Goyal P et al. 

2005). These results suggest that cofilin can be phosphorylated in the nucleus, likely by 

pLIMK1/2. Despite the responsiveness of pLIMK1/2 to FSS, no effects of inhibiting JNK 

were seen. Although JNK and p38 have established roles in FSS-induced actin 

realignment and effects on cofilin phosphorylation, it appears that neither is acting 
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through LIMK to facilitate these changes. The increase in cytoplasmic pLIMK1/2 in 

response to FSS is opposite to what we would expect given our data showing decreased 

cytoplasmic p-cofilin.  Evidence from the literature indicates that FSS activates 

Rho/ROCK, leading to LIMK activation, as shown by in vitro cofilin phosphorylation, 

without distinguishing between nuclear and cytoplasmic compartments (Lin T et al., 

2003).   

To examine the pattern of FSS-induced decrease of p-cofilin in the cytoplasm, the 

responsiveness of the phosphatase slingshot to FSS was determined. Looking specifically 

at pSSH (serine-978), an established inhibitory phosphorylation site known to cause 

sequestration via 14-3-3 (Soosairajah J et al. 2005), it was noted that overall pSSH levels 

do not change in response to FSS. Despite no FSS-induced pSSH protein level changes, 

puncta were evident in numerous cells. If SSH is the phosphatase responsible for cofilin 

dephosphorylation during FSS, JNK or p38 modulation of SSH activity is not mediated 

through serine-978 phosphorylation. It is also possible that these stress kinases do not 

modulate SSH activity. Other phosphatases may be necessary for transducing FSS 

stimuli. The exact mechanism leading to decreased cytoplasmic cofilin phosphorylation 

remains unclear.  

Having determined that common cofilin kinases and phosphatases do not appear 

to be controlled by JNK or p38, we suspect that inhibiting JNK and p38 does not directly 

alter cofilin phosphorylation. Rather the effects of JNK and p38 on changes in cofilin 

phosphorylation may be due to altered cofilin accessibility instead of altered LIMK or 

SSH activity. Thus, the p-cofilin product would change, but not the covalent 
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modifications that activate/inactivate the upstream kinases and/or phosphatases. One 

potential pathway known to regulate cofilin which has also been linked to FSS is the 

Rho/ROCK pathway, which leads to LIMK activation (Lin T et al. 2003). Expression of 

dominant negative mutants of both Rho and ROCK disrupt FSS-induced actin 

realignment in BAOECs (Li S et al. 1999). Although this could explain the cofilin 

phosphorylation under FSS conditions, it does not appear to explain why blocking JNK 

or p38 decreases cofilin phosphorylation under control conditions. The cofilin regulation 

system is highly complex making it difficult to map out the signaling events downstream 

of FSS. It has been shown that SSH not only dephosphorylates (activates) cofilin, but is 

also capable of dephosphorylating (inactivating) LIMK, furthering the cell’s ability to 

activate cofilin (Soosairajah J et al. 2005 and reviewed in Huang TY, DerMardirossian C, 

and Bokoch GM 2006). An additional layer of complexity exists in that SSH is also 

enhanced by F-actin binding to enhance cofilin activation (Nagata-Ohashi K et al. 2004, 

Soosairajah J et al. 2005, and reviewed in Huang TY, DerMardirossian C, and Bokoch 

GM 2006). It is possible that the effect of inhibiting JNK and p38 is decreased during 

FSS, because of enhanced activation of SSH due to increased F-actin induced by the FSS, 

accompanied by SSH-induced LIMK inactivation and cofilin activation.  

 Since the cofilin mutants and stress kinase inhibitors disrupt FSS-induced actin 

realignment, they were used to determine how FSS-induced actin realignment affects 

barrier integrity. Cells expressing either S3A or S3D show numerous gaps and breaks in 

VE-cadherin or β-catenin staining at cell-cell junctions which were noticeably larger than 

GFP-vinc only cells, as do cells treated with stress kinase inhibitors. These results 
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suggest that proper cofilin regulation and actin realignment are required to maintain and 

enhance cell-cell junctions during FSS, which is important for maintaining vascular 

barrier integrity. These results agree with published data showing that FSS decreases 

endothelial barrier permeability, preventing the transport of unwanted molecules across 

the endothelial layer (DePaola N et al. 2001, Seebach J et al. 2000).  

 Although we were unable to determine the link between cofilin and JNK or p38, 

it is clear that proper cofilin regulation, JNK activity, and p38 activity are required to 

maintain and enhance endothelial cell junctions. It is reasonable to hypothesize that the 

central link is the actin cytoskeleton. Improper realignment of the actin cytoskeleton 

during FSS caused either by mutated cofilin or stress kinase inhibitors results in 

decreased barrier integrity. Actin associates with adherens junctions via β-catenin, which 

associates with the cytoplasmic domain of VE-cadherin (Tharakan B et al. 2012). 

Therefore disrupting actin realignment during FSS has severe physiological outcomes in 

preventing FSS-induced barrier integrity, which would allow improper transport across 

the endothelial layer. These results emphasize the importance of FSS-induced actin 

realignment and maintenance of barrier integrity. Further support for the actin 

cytoskeleton in maintaining endothelial cell-cell junctions, was reported by Furman C et 

al. (2007), where they showed that enabled/vasodilator-stimulated phosphoprotein 

(Ena/VASP) protein activity is required for normal stress fiber accumulation and cell-cell 

junction integrity (Furman C et al. 2007).  

 In summary, this work documents that FSS mediates changes in cofilin 

phosphorylation. FSS-induced increased p-cofilin in the nucleus is likely due to the need 
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for actin function in the nucleus for elongation of the nucleus in the direction of FSS. 

pLIMK1/2 also increased in the nucleus after FSS exposure suggesting cofilin 

phosphorylation in the nucleus. Phosphorylation in the nucleus likely blocks export and 

could be a mechanism to retain cofilin in the nucleus. It is also clear that JNK activity 

induces cofilin phosphorylation in the nucleus, but this affect does not seem to be due to 

phosphorylation of LIMK1/2 or SSH, which did not change with SP600125 treatment. 

This suggests that JNK in some way enhances cofilin phosphorylation, but not through 

directly altering LIMK or SSH activity. Cofilin mutants were used to mimic specific 

states of cofilin phosphorylation, resulting in decreased correct actin realignment, 

regardless of whether there was a high level of inactive or of active cofilin. The cofilin 

mutants and stress kinase inhibitors decrease barrier integrity, illustrating the importance 

of correct actin realignment in endothelial barrier integrity during FSS.  

 It is becoming clearer that endothelial cells of an artery are constantly exposed to 

mechanical signals from the shear stress of blood flow. As our understanding of this 

process continues to expand, a role for shear stress in atherosclerosis is being discovered. 

For reasons which are still being elucidated, elevated shear stress helps to protect against 

the development of atherosclerosis. Atherosclerosis, as an inflammatory disease, averts 

most traditional anti-inflammatory mechanisms controlling the development of arterial 

lesions and plaques. Elevated shear stress has been shown to be anti-inflammatory in the 

vasculature protecting against the development of atherosclerosis by promoting an intact 

endothelium. An intact endothelium has anti-inflammatory qualities preventing 

unwarranted inflammation, whereas “leaky” endothelium is primed for inflammation 
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secreting pro-inflammatory molecules (4-8). The work done within this chapter 

demonstrates that through the action of cofilin, FSS-mediated actin realignment is 

required for maintaining an intact endothelium which is necessary to keep the vasculature 

in an anti-inflammatory state.  
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3.6: Figures 

 

Figure 3.3: FFS-induced changes in cofilin phosphorylation 

Confluent monolayers of BAOECs were exposed to 15 dynes/cm2 FSS for 15 and 

30min. BAOECs were labeled with antibodies against p-cofilin (top panel) or 

total cofilin (bottom panel; Santa Cruz Biotechnology). Gain intensity was set just 

below saturating levels for the static p-cofilin and total cofilin separately and 

those settings were used to image the remaining slides within the replicate for 

each protein. Image analysis was performed as described in the methods. Images 

shown are representative of at least three replicates. Scale bars=10 mm. (Slee JB 

and Lowe-Krentz LJ. 2013) 
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Figure 3.4: The effect of cofilin activity on FSS-induced actin realignment  

BAOECs were electroporated with 20 mg/ml of either S3A or S3D cofilin 

constructs in combination with GFP-vinc as a fluorescent marker of transfection 

efficiency as described in the methods. BAOECs expressing the mutant constructs 

were exposed to 15 dynes/cm2 FSS for 15, 30, and 60min and labeled for actin 

stress fibers using TRITC-phalloidin. The images shown are representative of 10 

repeats. A: Top panel, BAOECs expressing GFP-vinc alone showing FSS-induced 

actin realignment. Middle panel, BAOECs expressing S3A cofilin showing 

impaired actin realignment during FSS. Bottom panel, BAOECs expressing S3D 

cofilin showing impaired actin realignment during FSS. Scale bars=10 mm. B,C: 

BAOECs were electroporated with GFP-vinc, S3A cofilin, or S3D cofilin as 

indicated. Whole cell lysates harvested 24–48 h post-transfection were 

immunoblotted with anti-p-cofilin (B) or anti-total cofilin (C) antibodies. 

Corresponding secondary antibody only controls (2 Ab only) were also performed 

for both p-cofilin (B) and total cofilin (C). Molecular weights of the bands were 

calculated based on Rf values created from the markers are indicated on the left. 

(Slee JB and Lowe-Krentz LJ. 2013) 
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Figure 3.5: The roles of JNK and p38 in FSS-induced cofilin phosphorylation  

Confluent monolayers of BAOECs were treated with SP600125 (JNK inhibitor) or 

SB203580 (p38 inhibitor) for 1 h prior to FSS exposure. Following inhibitor 

incubation, BAOECs were exposed to 15 dynes/cm2 FSS for 15 and 30 min and 

labeled with antibodies against p-cofilin. Image analysis was performed as 

described in Materials and Methods Section. The images shown are 

representative of at least three replicates. Top panel, uninhibited BAOECs. 

Middle panel, SP600125-treated BAOECs. Bottom panel, SB203580-treated 

BAOECs. Scale bars=10 mm. (Slee JB and Lowe-Krentz LJ. 2013) 
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Figure 3.6: FFS-induced changes in LIMK phosphorylation 

Confluent monolayers of BAOECs were exposed to 15 dynes/cm2 FSS for 15 and 

30 min and labeled with antibodies against pLIMK1/2 (threonine-508/505; A) or 

pLIMK1L (serine-323; B). Image analysis was performed as described in 

Materials and Methods Section. The images shown are representative of at least 

four replicates. A: Top panel, uninhibited BAOECs. Bottom panel, SP600125-

treated BAOECs. B: Uninhibited BAOECs. Scale bars=10 mm. (Slee JB and 

Lowe-Krentz LJ. 2013) 
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Figure 3.7: FSS-induced changes in SSH phosphorylation  

Confluent monolayers of BAOECs were exposed to 15 dynes/cm2 FSS for 15 and 

30 min and labeled with antibodies against pSSH (serine 978). Image analysis 

was performed as described in Materials and Methods Section. The images shown 

are representative of at least three repeats. A: SP600126-treated BAOECs. B: 

SB203580-treated BAOECs. Scale bars=10 mm. (Slee JB and Lowe-Krentz LJ. 

2013) 
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Figure 3.8: The role of cofilin in FSS-induced barrier staining 

BAOECs were electroporated with 20 mg/ml of either S3A or S3D cofilin 

constructs in combination with GFP-vinc as a fluorescent marker of transfection 

efficiency as described in Materials and Methods Section. BAOECs expressing 

the mutant constructs were exposed to 15 dynes/cm2 FSS for 15 and 30min and 

labeled using antibodies against VE-cadherin (A) or β-catenin (B). The images 

shown are representative of three repeats. In both A and B, the top panel images 

are expressing GFP-vinc alone, the middle panel images are BAOECs expressing 

S3A and GFP-Vinc, and the bottom panel images are BAOECs expressing S3D 

and GFP-vinc. The three left columns are magnified 2X the original. The 

rightmost column is magnified 4X the original and highlights the boxed area in 

the column immediately to the left. Arrows point to small breaks in staining. 

Arrowheads point to large gaps in staining. Scale bars=10 mm. (Slee JB and 

Lowe-Krentz LJ. 2013) 
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Figure 3.9: The role of JNK and p38 activity in FSS-induced barrier staining 

Confluent monolayers of BAOECs were treated with SP600125 (JNK inhibitor) or 

SB203580 (p38 inhibitor) for 1 h prior to FSS exposure. Following inhibitor 

incubation, BAOECs were exposed to 15 dynes/cm2 FSS for 15 and 30 min and 

labeled with antibodies for VE-cadherin (A) or β-catenin (B). The images shown 

are representative of the trends which have been identified through at least two 

repeats. In both A and B, the top panel images are expressing GFP-vinc alone, 

the middle panel images are BAOECs expressing S3A and GFP-vinc, and the 

bottom panel images are BAOECs expressing S3D and GFP-vinc. The three left 

columns are magnified 2X the original. The rightmost column is magnified 4X the 

original and highlights the boxed area in the column immediately to the left. 

Arrows point to small breaks in staining. Arrowheads point to large gaps in 

staining. Scale bars=10 mm. (Slee JB and Lowe-Krentz LJ. 2013) 
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Chapter 4: Heparin blocks TNF-induced stress responses in vascular endothelium 
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4.1: Introduction 

 The endothelium serves an important role in maintaining the integrity of the 

vascular system. The endothelium of healthy vasculature is non-thromogenic and anti-

inflammatory preventing coagulation and inflammation. Any type of damage to this 

endothelial layer causes local inflammatory and mitogenic changes in an attempt to repair 

the wound. These changes cause the endothelial cells to become proliferative to heal the 

wound in the endothelial layer (Ross R 1999). If the damage is not properly repaired 

continued inflammation occurs resulting in increased connective tissue, VSMC 

proliferation, and eventual atherosclerotic plaque development. The changes noted above 

in the endothelial layer also result in the cells becoming “sticky” promoting clotting and 

the recruitment of inflammatory mediators and immune cells (Spronk H, van der Voort 

D, and ten Cate H 2004).  

Endothelial cells lining all blood vessels play an important role during systemic 

inflammation because of their position and immediate exposure to inflammatory 

mediators (Zhao B et al 2003). The two major inflammatory mediators (cytokines) that 

are elevated during systemic inflammation are Interleukin-1β (IL-1β) and TNFα (Zhao B 

et al 2003). Studies have documented that endothelial cells respond to various external 

stimuli, in part by altering gene expression for cytokines, adhesion molecules, pro-

coagulation factors, and other proteins (Zhao B et al 2003). Therefore, the response 

elicited by endothelial cells to IL-1β and TNFα treatment will likely provide necessary 

information that may help to explain some of the dysfunction that occurs (Zhao B et al 

2003).  
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 Stress-activated protein kinase (SAPK) enzymes are activated in response to 

various stressors such as cytokines and inflammatory agents. Activation of JNK occurs in 

response to select cytokines (TNFα and IL-1β), various diseases, heat, UV light, 

hyperosmolarity (reviewed in Bogoyevitch M and Kobe B 2006). The best characterized 

responses to JNK activation are changes in transcription occurring as the result of JNK 

phosphorylation of transcription factors including c-jun, ATF-2, Elk-1 and heat shock 

factor 1 (reviewed in Bogoyevitch M and Kobe B 2006). JNK has also been shown to be 

important in the cytoplasm, having established roles in epithelial and endothelial cell 

migration and wound repair (David L et al. 2007, Shen J and DiCorleto P 2008, Volin M 

et al. 2010, and Zhang L et al. 2005).  Some of the substrates of JNK have known links to 

the actin cytoskeleton, suggesting that JNK may be involved, at least in part, in the 

regulation of the actin. It has also been shown by members of our lab that JNK associates 

with the actin cytoskeleton and is important for actin remodeling in vascular endothelial 

cells (Hamel M et al. 2006, Mengistu M et al. 2011, and reviewed in Mengistu M, Slee 

JB, and Lowe-Krentz LJ 2012). 

 The p38 family is a second major stress kinase family important in the vasculature 

system. Inflammatory signals, including TNFα, result in the activation of p38 enzymes 

(reviewed in Cuadrado A and Nebreda A 2010).  Like JNK, p38 activity is involved in 

TNFα, VEGF, and hypoxia-induced microfilament remodeling (Kayyali US et al. 2002, 

Kiemer A et al. 2002, and Liao W, Feng L, Zheng J, DB C 2010).  Related to Chaper 1, 

shear stress activates p38 to help facilitate FSS-induced actin cytoskeletal remodeling 

(Azuma N et al. 2001, Wang J et al. 2005, Mengistu M et al. 2011, and reviewed in 
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Mengistu M, Slee JB, and Lowe-Krentz LJ 2012).  p38 also has well-established 

transcription factor targets such as ATF (reviewed in Cuadrado A and Nebreda A 2010). 

The p38 enzymes also phosphorylate and activate other kinases including MAPKAP-2, 

MSK-1, and MNK1 (Cuadrado A and Nebreda A 2010).  p38 also has indirect roles in 

the cytoplasm through MAPKAP-2. p38 activity results in phosphorylation of the Arp 2/3 

complex protein p16-Arc (Singh S et al. 2003), HSP27 (An SS et al. 2005 and McMullen 

ME et al. 2005), LIMK (Côté MC et a. 2010 and Kobayashi M et al. 2006), and capZIP 

(Eyers CE et al. 2005).  Active p38 in shear-stressed endothelial cells grown on collagen 

has been found in focal adhesions (Hamel M et al. 2006 and Orr AW et al. 2005) and is 

associated with integrins in cells grown on collagen and laminin (Wang J et al. 2005).  

Many of the p38 targets have the ability to modulate the actin cytoskeleton, linking stress 

activity to cytoskeletal changes.    

 Given the well established role for SAPKs in mediating vascular endothelial cell 

stress responses, much research has been focused on finding inhibitors of JNK and p38. 

Since both JNK and p38 are heavily involved in the inflammatory process, a number of 

well established anti-inflammatory treatments have been shown to affect the JNK and/or 

p38 pathways. Two of the better characterized anti-inflammatory treatments that decrease 

JNK activity include curcumin and aspirin (Cho J-W et al. 2005 and Jiang G et al. 2003). 

The same is true for the immunosuppresent FK506 which blocks both p38 and JNK 

activation (Kaminska B 2005). Glucocorticoids are natural inhibitors of inflammation and 

stress signaling, which can decrease SAPKs through the synthesis of MKP-1 (Kassel O et 

al. 2001 and Lasa M et al. 2002). Although effective at reducing inflammation and stress 
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kinase activity, glucocorticoids have many systemic effects which make them unlikely 

candidates for long-term treatment (Rhen T and Cidlowski J 2005).  Whereas small 

molecule inhibitors are more specific than glucocorticoids they still target systemic 

SAPKs as well.  

 As discussed in Chapter 1, heparin exhibits anti-inflammatory properties that 

could be of promise for potential therapy (for review see Slee JB, Pugh R, and Lowe-

Krentz 2012). Data collected in the Lowe-Krentz lab indicate that endothelial cell 

signaling through stress/inflammatory pathways is altered by heparin treatment. We have 

shown that treatment of vascular endothelial cells with heparin results in decreased p38 

activation and decreased p38 target phosphorylation out to 15 min (Hamel M diss 2001 

and Kanyi D diss 2006).  The JNK pathway is also affected by heparin treatment. Data 

suggest that heparin and anti-heparin receptor antibody treatment of endothelial cells 

results in less JNK activation after treatment with TNFα, and c-jun transcription factor 

phosphorylation is also decreased (Hamel M diss 2001 and Kanyi D diss 2006).  As is the 

case with vascular smooth muscle cells, the activation of Hsp27 is also decreased and 

heparin treatment of vascular endothelial cells results in MKP-1 synthesis (Hamel M diss 

2001 and Kanyi D diss 2006). 

 The experiments in this chapter were designed to help complete the story initiated 

by Daniela Kanyi and Marianne Hamel. The purpose of these experiments was to 

elucidate a physiological endpoint for stress responses in endothelial cells. To do so, I 

investigated the role of heparin in attenuating TNFα-induced stress kinase activity and 

actin stress fiber formation. Data collected within this dissertation align well with the 
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previously collected data. Taken together, the collection of data document that heparin 

alters signal transduction to the actin cytoskeleton through JNK and p38, and further, that 

such heparin effects on SAPK activity are dependent on heparin binding to a cell surface 

receptor as shown for Erk effects in VSMCs (Savage JM et al. 2001).  

 

4.2: Methods 

4.2.1: Cell Culture  

 BAOECs were maintained in Cell Applications media and cultured on glass 

coverslips as described in Chapter 2 for immunofluorescent staining. Cells were seeded at 

a density that would allow them to be between 50-70% confluent to mimic “wounded” 

cells in the vasculature.  

4.2.2: TNFα and Heparin Treatment 

 BAOECs were treated with 50 ng/ml TNFα for 120 min to analyze changes in 

actin stress fibers and for 10 min to analyze changes in stress kinase (pJNK and pp38) 

activity. Some cells were pretreated with 200 µg/ml heparin 20 min prior to TNFα 

stimulation to determine heparin’s affect on these outcomes. Control cells were left 

untreated and other cells were treated with heparin for 20 min.  

4.2.3: Immunofluorescence Staining 

 Primary antibodies against pJNK (Santa Cruz) and pp38 (Cell Signaling), were 

used as described in Chapter 2. Sample preparation for immunofluorescence staining is 

described in the Chapter 2, using 4% PFA and 0.3% Triton. AlexaFlour488®-phalloidin 



 

 

75 

 

was used to detect actin stress fibers and was included with secondary antibody 

incubation.  

4.2.4: Fluorescent Microscopy 

 Fluorescent microscopy was performed as described in Chapter 2.  

 

4.3: Results 

 As shown in Figure 4.1, 50 ng/ml TNFα causes significantly increased stress 

fibers and nuclear stress kinase activity in BAOECs. Controls cells exhibit very few 

stress fibers and a 20 min heparin (200 µg/ml) treatment seems to reduce their levels even 

further (Figure 4.1A). A 50 ng/ml TNFα treatment for 120 min significantly increased 

actin stress fiber intensity and number, which is significantly attenuated by a 20 min 

heparin pretreatment (Figure 4.1A). The 20 min heparin pretreatment reduces stress fiber 

intensity and number to a level comparable to untreated control cells (Figure 4.1A). 

These results suggest that heparin represses TNFα-induced stress fiber formation in 

vascular endothelial cells.  

 Shorter treatments of TNFα were necessary to identify visible changes in nuclear 

stress kinase activity (pJNK and pp38). As shown in Figure 4.1B, BAOECs have a basal 

level of nuclear stress kinase activity, which is reduced by a 20 min heparin treatment. 

Following a brief 10 min TNFα (50 ng/ml) treatment, both pJNK and pp38 in the nucleus 

are significantly increased compared to untreated control (Figure 4.1B). Nuclear p38 

activity increases more than nuclear JNK activity at this treatment time of TNFα, 

however pJNK increases have been noted after 120 min TNFα treatment (data not 
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shown). As was the case for stress fiber induction, a 20 min pretreatment with heparin 

markedly reduces both pJNK and pp38 relative to TNFα-treated cells (Figure 4.1B). The 

cells treated with heparin prior to TNFα stimulation exhibit nuclear pJNK and pp38 

levels comparable to control cells. These data suggest that heparin attenuates TNFα-

induced nuclear stress kinase activity.  

 

4.4: Discussion 

 The actin cytoskeleton reorganizes in response to extracellular conditions.  TNFα-

induced actin polymerization involves p38 (Kiemer A et al. 2002) which is required for 

hypoxia-induced actin redistribution to stress fibers (Kayyali US et al. 2002). p38 and 

JNK are also involved in smooth muscle cell actin expression and remodeling (Tock J et 

al. 2003 and Wang J et al. 2005).  Finally, the addition of growth factors to endothelial 

cells causes both cytoskeletal rearrangement and the activation of SAPK pathway 

constituents (Xia Y et al. 2000).   

  Focal adhesions link the internal cytoskeleton to the extracellular matrix.  

Signaling through integrins from the extracellular matrix outside causes the 

rearrangement of the cytoskeletal architecture (Applin AE et al. 1998).  Stress-activated 

protein kinases have been shown to be activated in response to signaling through the 

focal adhesions (Oktay M et al. 1999).  In endothelial cells, stress fibers align parallel to 

the direction of blood flow; and the ends of stress fibers become associated with focal 

adhesions during flow-induced reorganization (Girard PR and Nerem RM 1995).  When 

endothelial cells are subjected to shear stress, actin fibers become realigned in a manner 
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which depends on p38 (Azuma N et al. 2001 and Wang J et al. 2005) and JNK (Mengistu 

M et al. 2011).  Adhesion-induced focal adhesion kinase (FAK) activation causes the 

activation of JNK and p38 (Almeida E et al. 2000, Jo H et al. 1997, and Li S et al. 1997). 

 As discussed in Chapter 1, heparin has been shown to decrease inflammation, and 

research from our laboratory and others indicates that heparin causes decreases in 

vascular smooth muscle cell ERK activation through binding to a receptor.  Our original 

identification of the heparin receptor was in endothelial cells, suggesting that vascular 

endothelium could be a target for the anti-inflammatory nature of heparin.  Therefore, I 

examined the possibility that heparin would induce decreases in endothelial stress kinase 

activity and thereby alter stress kinase-based cytoskeletal rearrangements.  Heparin 

treatment of endothelial cells did result in blocking TNF-α induced stress fiber changes 

(Figure 4.1A).  This is consistent with heparin having anti-inflammatory effects beyond 

those of interfering directly with selectin-dependent cell adhesion in the vasculature.  

Heparin treatment also caused decreases in JNK and p38 activity at shorter TNFα 

treatment times (Figure 4.1B). This suggests that heparin has potential as an anti-

inflammatory molecule to reverse the damage to the endothelial layer caused by 

excessive TNFα-induced inflammation in atherosclerotic vasculature. Combining my 

data with the work performed by Marianne Hamel and Daniela Kanyi showed that not 

only does heparin attenuate TNFα-induced stress fibers and nuclear stress kinase activity; 

it also has inhibitory roles on TNFα-induced c-jun transcription factory phosphorylation, 

Hsp27 activation, and Erk activation through the action of MKP-1. Given that heparin 

induces nuclear stress kinase activity changes, this presents the possibility that heparin 
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could also be inducing transcriptional changes. The culmination of this work will be a 

publication furthering our understanding of heparin as an anti-inflammatory molecule in 

vascular endothelium. 
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4.5: Figure 

 

Figure 4.1: Heparin attenuates TNFα-induced stress fibers and nuclear stress 

kinase activity 

(A) BAOECs stained for actin stress fibers with AlexaFluor®488-Phalloidin. 

Cells were treated with 50 ng/ml TNFα for 120 min with or without a 20 min 

heparin pretreatment. (B) BAOECs stained for stress kinases pJNK (top panel) or 

pp38 (bottom panel). Cells were treated with 50 ng/ml TNFα for 10 min with or 

without a 20 min heparin pretreatment. For comparison, untreated control cells 

and cells treated with 20 min of heparin were included. Cells in both (A) and (B) 

were fixed with 4% PFA and permeabilized with 0.3% Triton. Images are 

representative of three experiments. Scale bars = 10 µm. 
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Chapter 5: Identification of the heparin receptor: building the case for TMEM184A 
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5.1: Introduction 

It has been well established that many cells including vascular cells, such as 

endothelial and smooth muscle, bind and internalize heparin (egs. Bârzu T et al. 1985 and 

Castellot JJ et al. 1985) and have well-established responses to heparin (egs. Reilly CF et 

al. 1989, Fasciano S et al. 2005, Vadivello PK et al. 1997, and Blaukovitch CI et al. 

2010). The same is true for cells that are not known to be heparin sensitive or possess 

known heparin signaling pathways, such as HeLa cells, which have been shown to 

internalize heparin which has been reported to end up in the nucleus (Busch SJ et al. 

1992). The fact that cells bind/internalize heparin but are not heparin sensitive raises the 

possibility that most or all cells bind/internalize heparin but lack the downstream 

signaling molecules involved in transducing the signal. This suggests that most or all 

cells have a receptor for heparin, but may or may not be sensitive to heparin.  

Along with tagged heparin uptake, it has also been widely documented in the 

literature and by previous members of the Lowe-Krentz laboratory that heparin mediates 

a portion of its effects through a cell surface receptor, suggesting that a putative heparin 

receptor exists on the surface of vascular smooth muscle cells (Savage JM et al. 2001 and 

Castellot JJ et al. 1984) and vascular endothelial cells (Patton WA et al. 1995 and Barzu 

T et al. 1986). It has also been documented by previous members of our lab that 

treatments with monoclonal antibodies that block heparin binding to endothelial cells also 

mimic the effects of heparin in vascular smooth muscle cells (Blaukovitch CI et al. 2010 

and Savage JM et al. 2001) and vascular endothelial cells (Patton WA et al. 1995). The 

results from studies using the monoclonal antibodies against the heparin receptor are the 
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most convincing results suggesting that heparin acts via a receptor. Using the monoclonal 

antibodies in place of heparin in cell proliferation or stress assays removes any potential 

for heparin to act via electrostatic interactions or based solely on sequestering growth 

factor and cytokines. However, it is clear that heparin does also act via electrostatic 

interactions and sequestrations of certain molecules; therefore, heparin may act through 

multiple ways to influence cell behavior (Ali S et al. 2003; Ranjbaran H et al. 2006; 

Hatakeyama M et al. 2004, Blaukovitch CI et al. 2010, Savage JM et al. 2001, Patton WA 

et al. 1995, and reviewed in: Slee JB, Pugh R, Lowe-Krentz LJ. 2012). 

Given the complexity of regulation that heparin and heparin-like molecules have 

over proliferation of vascular cells, the fact that heparin-induced decreases in ERK 

activity are effective whether growth factors are inducing the activity or phorbol esters 

are employed (Mishra-Gorur K and Castellot JJ 1999, Ottlinger ME, Pukac LA, and 

Karnovsky MJ 1993, Pukac LA et al. 1997), and the fact that antibodies to a putative 

heparin receptor are equally functional (Savage JM et al. 2001, Blaukovitch CI et al. 

2010), it is unlikely that these anti-proliferative affects are due to heparin-like molecules 

blocking growth factor binding. This presents a situation in which heparin could be acting 

through a receptor to mediate its downstream signaling. Heparin is a very negatively 

charged molecule and is considerably larger than most biological molecules, making it 

virtually impossible for simple diffusion across the membrane. The size and highly 

charged nature of heparin chains makes receptor-mediated endocytosis the most likely 

mechanism for transport across the membrane.  
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Although it is well-documented that the heparin receptor exists, there has not been 

published evidence reporting the isolation and characterization of the receptor. Therefore 

our lab set out to identify a receptor for heparin. Unpublished data collected by Raymond 

Pugh Ph.D. for his doctoral dissertation suggest that he was able to isolate and purify the 

heparin receptor from BAOECs using the monoclonal anti-heparin receptor antibodies 

(Pugh R. Diss 2010). Through a collaboration with Walter Patton Ph.D. (Lebanon Valley 

College, former Lowe-Krentz lab member), Pugh was able to obtain a limited amount of 

protein sequence data. To obtain this sequence data, ladder sequencing of the receptor 

was performed using MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization – Time 

of Flight) Mass Spectrometry. This technique has been outlined in the literature, 

demonstrating the use of carboxypeptidase Y to generate C-terminal cleavage products 

(ladders) of a peptide (or peptides) followed by MALDI-TOF analysis to first identify 

peptides  (Patton WA 2004). Briefly, the receptor protein was cleaved first with trypsin or 

chymotrypsin to generate short peptides, followed by carboxypeptidase Y digestion, 

producing the amino acids or ladders. The mass lost from each cleavage corresponds to a 

specific amino acid, which allows for the sequencing of peptide fragments. Bioinformatic 

searches can then used to find sequence similarities to known proteins/genes.  

This technique yielded several hits to Transmembrane Protein 184A 

(TMEM184A), which is an uncharacterized transmembrane protein. These results 

suggest but do not confirm that Raymond Pugh had isolated and purified what could be 

the putative heparin receptor.  Having identified TMEM184A as a potential heparin 

receptor presents the opportunity for further research aimed at validating TMEM184A as 
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the heparin receptor. Also, given the fact that TMEM184A is still largely 

uncharacterized, the opportunity exists to explore its sub-cellular distribution  and 

conservation across cell types. Virtually any findings regarding TMEM184A 

conservation, localization, and function are novel and important. Therefore, concurrent 

with linking TMEM184A function to the heparin receptor, work aimed at characterizing 

TMEM184A was also completed.  

 The sequencing of the human and other genomes has identified a host of genes 

with unknown functions. TMEM184A or sexually dimorphic expressed in male gonads 

(Sdmg1) is one protein identified through genome sequencing which still does not have a 

clearly defined function. TMEM184A is predicted to be a multi-pass transmembrane 

protein and contains a potential C-terminal dileucine targeting motif for 

endosome/lysosome targeting (Best D et al. 2008 and Bonifacino JS and Traub LM 

2003). A few studies document roles in germ cell sex differentiation (Best D et al. 2008), 

membrane trafficking in SK11 Sertoli cells, and expression in secretory exocrine cells 

(Best D and Adams IR 2009). Other than these published reports, there is very little 

information about TMEM184 expression patterns in other cell types or evidence for a 

specific function of TMEM184A.  

 In SK11 Sertoli cells, TMEM184A is localized to endosomes and knock down 

leads to defects in membrane trafficking (Best D et al. 2008). TMEM184A was found to 

co-localize with two distinct endosomal populations in SK11 Sertoli cells: vesicle-

associated membrane protein (VAMP)-7-containing perinuclear endosomes, and 

VAMP3/8-containing peripheral endosomes (Best D et al. 2008). It has also been shown 
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in pancreatic acinar cells that TMEM184A co-localizes with VAMP2 in secretory 

granules (Best D and Adams IR 2009). VAMPs (synaptobrevins) are a family of SNARE 

(soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) proteins 

anchored in the membrane by a carboxy-terminal transmembrane domain and involved in 

membrane transport primarily by mediating vesicle fusion (Chen YA and Scheller RH 

2001, Reinhard J and Scheller SH 2006, Fasshauer D et al. 1998, and Laage R et al. 

2000). It has been suggested that TMEM184A could facilitate intra-lumenal cargo 

interaction with lipid microdomains or cytosolic membrane trafficking proteins (Best D 

et al. 2008).  

 Caveolae (lipid rafts) are non-clathrin-coated invaginations of the plasma 

membrane and are present in most mammalian cell types and particularly prominent in 

endothelial cells (Sowa G 2012). Caveolins act as scaffolds in caveolae which 

concentrate numerous receptors and signaling molecules involved in transport and signal 

transduction (Parton and Simmons 2007, Patel HH, Murray F, and Insel PA 2008, and 

Rath G, Dessy C, and Feron O 2009). Caveolin-1 (cav-1) is expressed in most cell types 

and is essential for caveolae formation (Sowa G 2012). Lipid rafts containing cav-1 are 

important in vascular endothelial cells, where they have been linked to the regulation of 

eNOS (endothelial nitric oxide synthase) which is involved in the control of vascular 

reactivity and inflammation (Chidlow JH and Sessa WC 2010 and Rath G, Dessy C, and 

Feron O 2009).  

TMEM184A may have a functional role in vascular cells, given the large amount 

of intracellular transport these cells perform. In fact, all cells transport proteins to and 
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from the plasma membrane and would likely have this protein if it is involved in vesicle 

trafficking. Therefore, I aimed to determine the presence of TMEM184A in vascular cells 

and a range of other cell types and to begin elucidation of the function of TMEM184A in 

these cells. To our knowledge, this is the first report documenting the presence of 

TMEM184A in a broad range of cells types. Using western blotting and 

immunofluorescent microscopy, we have identified TMEM184A as more widely 

expressed than previously thought, where it co-localizes with VAMP-1, 2, and/or 3, cav-

1, and eNOS. Given these findings, it is likely that TMEM184A is conserved across 

many cell types where it may play a role in membrane trafficking and/or signal 

transduction. 

 The goals of this chapter were to confirm the identification of the heparin receptor 

and to characterize TMEM184A as the probable receptor for heparin. The first aim of this 

chapter was to characterize TMEM184A in vascular cells (BAOECs, BAOSMCs, and 

RAOSMCs) as well as two cell lines (CHOs and MDCKs) and a fourth primary cell type 

MEFs. The second aim was to functionally identify TMEM184A as the heparin receptor 

using immunoprecipitations and siRNA/shRNA-mediated knockdown of TMEM184A 

coupled to functional assays. It is important to note that although these experiments were 

treated independently, they overlap signficantly. The results from characterizing 

TMEM184A in different cell types support the notion that TMEM184A functions as a 

receptor for heparin. The siRNA/shRNA experiments do not in any way conflict with 

data characterizing TMEM184A in the cells investigated. Therefore, this collection of 
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seemingly independent studies is actually quite interrelated and helps to further our 

understanding of TMEM184A as a receptor for heparin.  

The portions of this work relating to the presence of TMEM184A in BAOECs, 

BAOSMCs, RAOSMCs, CHOs, MDCKs, and MEFs and co-localization with VAMP, 

cav-1, and eNOS has been submitted to FEBS Letters Open Access for publication. Data 

collected with the HeLa cell line was not submitted for publication with the other cell 

lines. 

 

5.2: Methods 

5.2.1: Cell Culture 

BAOECs, BAOSMCs, RAOSMCS, CHOs, MEFs, MDCKs, and HeLas were 

maintained and cultured on glass coverslips as described in Chapter 2 for 

immunofluorescent staining.  

5.2.2: Immunofluorescence Staining 

 Primary antibodies against TMEM184A-NTD, TMEM184A-INT, VAMP1/2/3, 

cav-1 (Santa Cruz Biotechnology, Santa Cruz, CA), and TMEM184A-CTD (ProSci Inc. 

Poway, CA) were used as described in Chapter 2.   

The TMEM184A-NTD primary antibody is specific for a stretch of amino acids 

(11-63) near the N-terminus of human TMEM184A. The TMEM184A-CTD primary 

antibody specific for the C-terminal region was developed against a 16 amino acid region 

near the C-terminus of TMEM184A. The TMEM184A-INT primary antibody specific for 

an internal region of TMEM184A is developed for 20 amino acids between 250 and 300. 
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This is not meant to imply an intracellular region of TMEM184A, rather a stretch of 

amino acids in the middle of the protein.  

5.2.3: TMEM184A siRNA Electroporation Protocol  

 A7r5s were the cells used for electroporation with TMEM184A siRNA. A single 

100 mm plate of cells was trypsinized and pelleted. The cell pellet was resuspended in 1X 

PBS and pelleted again. The cell pellet was resuspended in 1 ml of HeBS electroporation 

buffer and divided into the following three samples (335 μl each): 

1. Negative control – not electroporated 

2. Control siRNA – electroporated with 5 μM control siRNA (in some cases FITC-

siRNA) 

3. TMEM184A siRNA – electroporated with 5 μM TMEM184A siRNA 

Cells were electroporated using the BioRad electroporator with the HeLa protocol 

modified to 170 V. After electroporation, the three samples were divided equally onto 

coverslips in 6 well culture dishes, providing a 6 well dish for each condition (negative 

control, control siRNA, and TMEM184A siRNA). Cells were fed supplemented media 

the next day to remove any HeBS electroporation buffer and were allowed to proliferate 

for approximately 72 hours prior to experimentation.  

5.2.4: Heparin Assay in TMEM184A siRNA-treated Cells 

 Within each of the three groups described in the previous section, two coverslips 

served as controls, two were treated with PDGF for 15 min, and two were treated with 

200 μg/ml heparin for 20 min prior to PDGF treatment for 15 min. One control coverslip 

from each treatment was fixed with 4.0% PFA, but not permeabilized, and stained for 
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TMEM184A-INT and pERK (Santa Cruz Biotech) to visualize surface staining on the 

confocal microscope. One PDGF 15min and Heparin 20 min/PDGF 15min set was 

TMEM184A-INT and pElk-1 (Santa Cruz Biotech). The three remaining coverslips 

(control, PDGF 15 min, and Heparin 20 min/PDGF 15 min) were stained for 

TMEM184A-INT and pElk-1. Antibody treatment was described in Chapter 2.  

5.2.5: TMEM184A shRNA Electroporation Protocol 

 A7r5s were electroporated with 20 µg/ml plasmids containing sequences for 

expression of short hairpin RNA (shRNA) as described above for TMEM184A siRNA. 

Four plasmids bearing four different shRNA sequences and a GFP tag were obtained 

from Origene along with a GFP-tagged scrambled non-specific control shRNA plasmid. 

Initially all four TMEM184A shRNA constructs were tested for transfection and 

knockdown efficiencies by looking for GFP expression and decreased TMEM184A 

expression/staining. Once a strong decrease in TMEM184A was evident, the two shRNA 

constructs that consistently provided the most significant knockdown were chosen for 

further study.  

5.2.6: Fluorescent Heparin Uptake 

 BAOECs, BAOSMCs, MDCKs, and MEFs were treated with 100 µg/ml 

Rhodamine-conjugated heparin (Creative PEG Works, Winston-Salem, NC) for 1, 5, and 

7 min. After Rhodamine-heparin incubation, cells were fixed with 4% PFA but not 

permeabilized, as described in Chapter 2. Cells were not permeabilized, because doing so 

results in some of the Rhodamine-heparin leaking out of cells.  
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5.2.7: GFP-tagged TMEM184A (GFP-TMEM184A) co-localization with 

Rhodamine-Heparin 

 A7r5s were transfected with 20 µg/ml GFP-TMEM184A using the 

electroporation settings used for siRNA/shRNA described above. After 24-48 hr, cells 

were treated with 100 µg/ml Rhodamine-heparin for 1-10 min and fixed with 4% PFA 

without permeabilzation to allow for better retention of Rhodamine-heparin. Slides were 

processed for confocal microscopy as described in Chapter 2.  

5.2.8: Fluorescent Microscopy 

 Fluorescent microscopy was used to determine whole cell expression levels of 

TMEM184A, relative knockdown of TMEM184A in siRNA/shRNA-treated cells, and 

the PDGF/Heparin-induced responses in pERK and pElk-1 levels. Performed as 

described in Chapter 2.   

5.2.9: Confocal Microscopy 

 Confocal microscopy was used to visualize sub-cellular structure, localization of 

TMEM184A and co-localization with VAMP1/2/3, caveolin-1, or eNOS, surface staining 

of TMEM184A, GFP-TMEM184A, and Rhodamine-heparin uptake. Performed as 

described in Chapter 2.  

5.2.10: SDS-PAGE and Western Blotting 

 Confluent BAOECs, BAOSMCs, CHOs, MDCKs, and MEFs were harvested, and 

a Western Blot was performed as described in Chapter 2. Primary antibodies described in 

the immunofluorescence microscopy section of this chapter were used for Western 
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Blotting. Blots were developed using ExtraAvidin™ alkaline phosphatase, BCIP, and 

NBT or the ECL system as described in Chapter 2.  

5.2.11: Heparin Receptor Immunoprecipitation  

 Confluent 150 mm dishes of BAOECs and BAOSMCs were harvested in 

radioimmunoprecipitation (RIPA) buffer (150 mM NaCl, 10µM Tris pH 7.2, 0.1% SDS, 

0.1% Triton-X-100, and 0.5% deoxycholate) (Sigma), supplemented with two protease 

inhibitor cocktails (Sigma, P8340 and P2714) used at the manufacturer’s recommended 

concentrations. Briefly, 150 mm dishes were rinsed with cold PBS twice and incubated 

with 1 ml of RIPA buffer for 30 min at 4 ºC with rocking. Following this incubation, 

cells were scraped off the plates and placed in a microcentrifuge tube and centrifuged for 

10 min at 10,000 xg. The supernatant was mixed with 2 µg/ml of anti-heparin receptor 

monoclonal antibodies and incubated overnight at 4 ºC on a rocker. After antibody 

incubation, 75 µl of equilibrated EZview red protein G affinity gel beads (Sigma) were 

added and incubated overnight at 4 ºC on a rocker. After bead incubation, the beads were 

rinsed with RIPA buffer three times and protein was isolated by boiling the beads in SDS 

sample buffer for 5 min. Western Blots were performed as described above with 

antibodies specific for TMEM184A-NTD. 
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5.3: Results 

5.3.1: TMEM184A is detectable in vascular cells by Western Blotting and IF 

microscopy 

 To determine if TMEM184A is present in vascular endothelial and smooth 

muscle cells, whole cell western blots were carried out for BAOECs and BAOSMCs. As 

shown in Figure 5.1A, distinct bands are present in the predicted molecular weight range 

of TMEM184A that are absent from secondary antibody only controls. The doublet bands 

could be due to post translational modifications (glycosylation) which have been 

suggested in other reports (Best D et al. 2008). These results suggest that TMEM184A is 

present in vascular cells at levels high enough to be detected by Western Blotting.  

To gain a better understanding of TMEM184A sub-cellular localization, 

BAOECs, BAOSMCs, and RAOSMCs were stained with three separate TMEM184A 

primary antibodies described in the methods section. As shown in Figure 5.1B, 

TMEM184A is detectable by confocal microscopy in the three vascular cell types 

investigated, and each of the three antibodies recognizes a specific subset of 

TMEM184A. The N-Terminal antibody highlights TMEM184A peri-nuclear staining in 

vascular endothelial and smooth muscle cells (Figure 5.1B – NTD). The C-Terminal 

antibody detects TMEM184A that is localized to cytoplasmic vesicles and a subset 

associated with the membrane (Figure 5.1B – CTD). Although the peri-nuclear staining is 

not completely clear, the CTD detection is more intense in peri-nuclear regions agreeing 

with the data from the NTD detection showing peri-nuclear staining. The internal 

TMEM184A antibody recognizes a mixture of both NTD and CTD staining, showing 
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both peri-nuclear staining and a small amount of cytoplasmic staining (Figure 5.1B – 

INT), further indicative of peri-nuclear localization of TMEM184A. To ensure that this 

staining pattern was not a bovine cell type specific phenomenon, rat primary cells 

(RAOSMCs) were also examined and show the same patterns as the bovine cells. Since 

TMEM184A is predicted to be a transmembrane protein, we investigated whether it was 

detectable on the surface of vascular cells. As shown in Figure 5.1B, cells that were fixed 

with 4% PFA and not permeabilized show specific staining patterns on the surface of 

cells, suggesting that TMEM184A does, in fact, localize to the membrane (Figure 5.1B – 

right column). These results confirm that TMEM184A is not just limited to germ cells 

and secretory exocrine cells as previously published.  

I hypothesize that each antibody recognizes a slightly different sub-cellular 

location of TMEM184A due to antigen accessibility in the different locations. 

TMEM184A is predicted to be a multi-pass transmembrane protein therefore certain 

regions of the protein may not be easily accessible for antibody recognition under these 

fixation conditions. Given these results, it is clear that TMEM184A is localized to peri-

nuclear and cytoplasmic regions of vascular cells as well as at the cell surface. These data 

agree with published evidence documenting peri-nuclear localization of TMEM184A in 

SK11 sertoli cells lines (Best D et al. 2008) and extend known locations to the cell 

surface.  

5.3.2: TMEM184A is expressed in a variety of cells 

 Having identified TMEM184A in vascular cells, we hypothesized that this protein 

may be expressed in a wider range of cell types than germ cells and certain secretory 
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exocrine cells (Best D et al. 2008 and Best D and Adams IR 2009), given published data 

suggesting a role for TMEM184A in membrane transport. Therefore, Western Blot 

analysis was performed to determine if TMEM184A was expressed in CHO, MEF, and 

MDCK cells. As shown in Figure 5.2A, specific proteins are seen in the predicted 

molecular weight region of TMEM184A that are absent from secondary antibody only 

controls, suggesting that TMEM184A is also present in cells outside of the vascular 

system.  

 Having documented that TMEM184A is expressed in CHO, MEF, and MDCK 

cells via Western Blotting, sub-cellular distribution was determined by IF microscopy. 

The staining pattern seen with the CHOs is peri-nuclear and cytoplasmic (Figure 5.2B – 

CHO), as with the vascular cells. The MEFs show the most similar staining patterns to 

the vascular cells having large amounts of peri-nuclear TMEM184A seen with all three 

antibodies (Figure 5.2B – MEF). MDCKs exhibited less well-defined peri-nuclear 

staining with all three antibodies and more well-defined membrane localization when 

stained with the NTD and Internal TMEM184A antibodies (Figure 5.2B – MDCK). The 

three different TMEM184A antibodies recognize slightly different sub-cellular 

localizations of the protein, which is consistent across all cell types investigated. 

Determining that peri-nuclear staining is detected across all cells investigated, suggests 

that TMEM184A could be serving similar purposes in multiple cell types as to what has 

been documented in the SK11 sertoli cell line (Best D et al. 2008). 
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5.3.3: TMEM184A co-localizes with VAMP  

 Because vascular cells serve as a highly selective barrier and perform large 

amounts of intracellular vesicle transport, we hypothesized that TMEM184A also plays a 

role in membrane transport universally. To examine this hypothesis, co-localization with 

an antibody that recognizes VAMP-1, 2, and 3 (VAMP) was investigated. The antibody 

used to detect VAMP was specific for isoforms 1, 2, and 3 of VAMP, because 

TMEM184A has been shown to co-localize with VAMP2 and 3 containing endosomes in 

SK11 Sertoli cells and pancreatic acinar cells (Best D et al. 2008 and Best D and Adams 

IR 2009). As shown in Figure 5.3A, vascular cells express a large amount of VAMP, 

which is diffuse through the cytoplasm with intense clusters in defined peri-nuclear 

regions where it co-localizes with TMEM184A. RAOSMCs and BAOECs show a large 

amount of co-localization at peri-nuclear regions (Figure 5.3A). These data are consistent 

with the results shown in germ cells and exocrine cells (Best D et al. 2008 and Best D 

and Adams IR 2009), suggesting that TMEM184A also functions in exocytosis and/or 

vesicular trafficking in vascular cells.  

 To determine if this co-localization with VAMP was conserved across multiple 

cells lines, similar experiments were carried out in CHO, MEF, and MDCK cells. The 

staining in the MEF cells most closely resembles the data from the vascular cells showing 

TMEM184A co-localization with VAMP at peri-nuclear regions (Figure 5.3B – MEF), 

again suggesting a role in membrane transport. The data from the CHO and MDCK cells 

are slightly different from vascular cells and MEF cells. As shown in Figure 5.3B, the 

staining pattern in CHO cells indicates that TMEM184A and VAMP co-localize at 
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defined membrane patches and around cytoplasmic vesicles more so than in peri-nuclear 

regions. The CTD antibody was used to detect TMEM184A in the CHO cell line because 

the NTD antibody gave diffuse staining without specific localization. The MDCK cell 

line showed the least amount of TMEM184A co-localization with VAMP, but still 

exhibited a small amount of co-localization at membrane regions (Figure 5.3B – MDCK).  

Taken together, these results suggest that TMEM184A may play a role in 

membrane trafficking in all cells investigated, highlighting the importance of this protein. 

Given the conservation of TMEM184A expression and similarities in staining patterns 

and co-localization with VAMP to previously published work (Best D et al. 2008 and 

Best D and Adams IR 2009), it is likely that TMEM184A is involved in membrane 

transport in a variety of cell types.  

5.3.4: TMEM184A co-localizes with CAV-1 and eNOS in vascular cells 

 Cav-1 is considered to be a cell signaling hub and has been linked to the 

regulation of vesicle transport in most cells and especially cells of the vasculature 

(Chidlow JH and Sessa WC 2010).  Based on the importance of cav-1 in vascular cells, 

we investigated the hypothesis that TMEM184A co-localizes with cav-1. As shown in 

Figure 5.4A, cav-1 staining is localized primarily to patches of membrane, where a subset 

co-localizes with TMEM184A staining, further suggesting that TMEM184A is playing a 

role in membrane transport and potentially in cell signaling mediated through lipid rafts. 

The other three cell types investigated, CHO, MDCK, and MEF cells express cav-1 to 

lesser degrees than vascular smooth muscle and endothelial cells (Figure 5.4B). These 

cells exhibit co-localization with cav-1 at membrane patches, even though they express 
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lower levels of cav-1 (Figure 5B). The co-localization in all three cell lines occurs 

primarily at membrane patches of some but not all cells, typically on the exterior of 

clusters of cells (Figure 5.4B). These data suggest that TMEM184A is localized to cav-1-

containing lipid rafts where it may influence lipid raft-based cell signaling events and/or 

in vesicle trafficking. 

 Given that TMEM184A and cav-1 co-localize in vascular cells, we hypothesized 

that TMEM184A would also co-localize with eNOS given its prominent role in 

mediating signaling events downstream of lipid rafts in vascular cells. As shown in 

Figure 5.5, TMEM184A-INT co-localizes with eNOS in the characteristic peri-nuclear 

regions in the three vascular cells investigated. These data raise the possibility that 

TMEM184A could be an important player in mediating lipid raft signal transduction 

through its co-localization with cav-1 and eNOS, two of the more well-defined lipid raft 

molecules. Suggested cav-1 interaction sequences are common among many 

transmembrane proteins and appear to be found in putative transmembrane segments of 

TMEM184A. These segments may or may not be critical for cav-1 interactions with other 

proteins but if they are, it appears that TMEM184A has these sequences available for 

interaction with cav-1 (Byrne DP, Dart C, and Rigden DJ 2012). Despite the probability 

of interaction, immunoprecipitation with TMEM184A-NTD did not appear to pull down 

cav-1 along with the TMEM184A (data not shown). 

5.3.5:TMEM184A is present in HeLa cells 

 In addition to the cells reported above, the presence of TMEM184A in HeLa cells 

was investigated. HeLa cells have a significant amount of TMEM184A as determined by 
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IF microscopy (Figure 5.6). TMEM184A staining in HeLa cells is similar to the staining 

seen in the other cell lines investigated. TMEM184A is concentrated in peri-nuclear 

regions, with faint localization throughout the cytoplasm (Figure 5.6). Specific detection 

of TMEM184A was also seen on the surface of cells that were fixed with 4% PFA but 

not permeabilized (Figure 5.6). It is expected that TMEM184A would co-localize with 

VAMP in the peri-nuclear region given that in all cells tested this was the case (Figure 

5.3). The presence of TMEM184A suggests that HeLa cells could internalize heparin. 

HeLa cells have been previously shown to internalize FITC-heparin which ultimately 

ends up in the nucleus (Busch SJ et al. 1992). Therefore expression of TMEM184A 

correlates with previously published reports documenting heparin internalization in HeLa 

cells.   

5.3.6: All Cells Investigated Internalize Rhodamine-Heparin 

To investigate whether a heparin binding protein exists on most cells, despite the 

lack of evidence for heparin signaling, Rhodamine-heparin uptake assays were performed 

in BAOECs, BAOSMCs, MDCKs, and MEFs. As shown in Figure 5.7, all cells 

investigated internalize Rhodamine-heparin to varying degrees. Control cells were not 

treated with Rhodamine-heparin and exhibit a small amount of auto-fluorescence seen in 

most cultured cells (Figure 5.7). In general, the trend seen in Rhodamine-heparin uptake 

is that more heparin is internalized by cells up to 7 min, as shown by increased puncta 

and overall cytoplasmic staining (Figure 5.7), where it leveled off and remained relatively 

unchanged (data not shown). Beyond 7 min, it was difficult to determine new 

Rhodamine-heparin uptake versus old Rhodamine-heparin recycling/degradation. 
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Therefore timing was kept fairly short to ensure that most new Rhodamine-heparin 

uptake was observed. These results suggest that cells which have been shown to possess 

TMEM184A (Figures 5.1 and 5.2) functioning in vesicle trafficking and cell signaling 

(Figures 5.3, 5.4, and 5.5) also internalize heparin. These results support our hypothesis 

that TMEM184A is a receptor for heparin, because TMEM184A expression and labeled 

heparin uptake occur in the same cells.   

5.3.7: Immunoprecipitation of the Heparin Receptor Detects TMEM184A 

 To determine if the heparin receptor could be immunoprecipitated from BAOECs, 

the monoclonal antibodies against the heparin receptor were used to IP the heparin 

receptor and were then Western Blotted with the TMEM184A-NTD and CTD antibodies. 

The data suggest that TMEM184A was specifically detected when the heparin receptor 

antibodies were used. The results of the IP are oriented so that the antibodies listed at the 

top are the Western Blot antibodies and the antibodies below them (shown on an angle) 

are the IP antibodies. As shown in the far right two columns of Figure 5.8, VE-cadherin 

was used as an IP control demonstrating that the IP process was successful. There is a 

distinct band at ~140 kDa in the VE-cadherin IP and VE-cadherin Western Blot lane 

(second from right) that is absent from the goat secondary antibody only control (far 

right) lane, suggesting that VE-cadherin immunoprecipitation was successful. This result 

confirms that the conditions used to immunoprecipiate VE-cadherin were sufficient to see 

a specific band on the Western Blot. Unfortunately, since the same antibody was used at 

the IP and Western Blot antibody, there is detection of the heavy and light (not shown) 

chains of the antibody as seen in the two far right lanes of Figure 5.8. Given that VE-
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cadherin is a high molecular weight protein, these bands do not interfere with the specific 

banding of VE-cadherin. Bead only IP controls were performed and do not result in any 

protein when either of the TMEM184A polyclonal antibodies were used (data not 

shown).  

 Two separate monoclonal antibodies against the heparin receptor were used 

(12B1 and 18E9), both of which have been shown to be successful in mimicking the 

effects of heparin and blocking radiolabelled heparin binding (Savage JM et al. 2001 and 

Patton WA et al. 1995). As shown in Figure 5.8 (left two columns), when 12B1 and 18E9 

are used to IP the heparin receptor from BAOECs, specific bands are seen around the 

predicted molecular weight region (~52 kDa) which are absent from secondary antibody 

only controls (2 Ab only – TMEM184A (Rabbit) lane), when the IP products were 

probed with commercial antibodies against TMEM184A-NTD and CTD. The intensity of 

the signal vary depending on which TMEM184A antibody was used, likely based on the 

specificity of the antibody under these conditions. The two polyclonal TMEM184A or 

secondary antibodies recognize a protein complex in the 52 kDa region of the VE-

cadherin IP control (left lanes of two left columns). This detection may be TMEM184A 

specifically, since VE-cadherin has well-defined links to actin, which could theoretically 

be involved in TMEM184A movement throughout the cytoplasm. However, it is clear 

that the monoclonal heparin receptor antibodies pulldown a protein which is then 

subsequently recognized by the TMEM184A antibodies, suggesting that TMEM184A 

could be the heparin receptor or, at the very least, complex with a protein that the 

monoclonal antibodies recognize.  
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 Similar experiments were carried out with the BAOSMCs. In these experiments, 

insulin receptor substrate-1 (IRS-1) was used as a control in place of VE-cadherin.  In 

these experiments, the control (IRS-1) IP antibody and the Western Blot antibodies were 

both rabbit, so the heavy and light chains of the antibody were detected in the control 

lanes (Figure 5.8B – left lanes of each column). However, the heparin receptor 

monoclonal antibodies are of mouse origin, so the protein seen in the 18B6 and 18H6 

lanes is due to specific interaction with the IP product (Figure 5.9 – right two lanes of 

each column), suggesting that TMEM184A recognizes the protein that is pulled down by 

the heparin receptor antibodies. The secondary only control lanes show the antibody 

heavy chain, the IRS-1 lane, and a slight non-specific band in the 18B6 lane, suggesting 

that some of the detection may be due to non-specific secondary antibody recognition 

(Figure 5.8B – far left column). Although there is a small amount of non-specific 

interaction, the specific detection is considerably more intesnse, suggesting that 

TMEM184A antibodies recognize immunoprecipitated heparin receptor.  

5.3.8: GFP-Tagged TMEM184A co-localizes with Rhodamine-heparin 

 To further suggest that specific detection of TMEM184A is obtained through 

antibody staining and that TMEM184A is a receptor for heparin, GFP-TMEM184A was 

transfected into A7r5s and imaged in fixed cells. As shown in Figure 5.9A, GFP-

TMEM184A localizes predominantly to two domains in A7r5s. GFP-TMEM184A 

clusters intensely at peri-nuclear regions and membrane patches (Figure 5.9A). These 

locations agree with the patterns seen with antibody staining (Figure 5.1), strengthening 

the conclusions drawn from the antibody staining experiments. In order to support the 
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hypothesis that TMEM184A is a receptor for heparin, cells expressing GFP-TMEM184A 

were treated with Rhodamine-heparin. Extensive co-localization was evident between 

GFP-TMEM184A and Rhodamine-heparin at puncta throughout the cytoplasm (Figure 

5.9B). Co-localization is shown in A7r5s treated with Rhodamine-heparin up to 5 min in 

Figure 5.9B, however similar co-localization can be seen up to at least 10 min and 

potentially even longer, though longer times have not been investigated (data not shown). 

It also appears that cells which have internalized Rhodamin-heparin exhibit less 

characteristic surface staining, suggesting that TMEM184A on the surface was 

internalized with the labeled heparin (Figure 5.9B). A7r5s expressing GFP-TMEM184A 

but not treated with Rhodamine-heparin were used as control and showed insignificant 

levels of red autofluorescence (data not shown). Taken together, these results confirm the 

sub-cellular localization of TMEM184A in vascular smooth muscle cells and also 

provide another line of evidence supporting TMEM184A as a receptor for heparin.  

5.3.9: siRNA-mediated knockdown of TMEM184A decreases heparin sensitivity in 

A7r5s 

 To further the IP data and the co-localization work showing that GFP-tagged 

TMEM84A co-localizes with Rhodamine-heparin, siRNA specific for rat TMEM184A 

was obtained from Santa Cruz Biotechnology. Following the electroporation protocol 

described in the methods section of this chapter, transfection efficiencies of ~75% were 

consistently obtained in the A7r5 cell line (Figure 5.10A). As shown in Figure 5.10A, 

most cells exhibit fairly low levels of FITC-tagged scrambled control siRNA, suggesting 

that the electroporation protocol results in siRNA uptake by the cells. Even with the low 
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level of siRNA uptake, there does seem to be a significant effect on TMEM184A 

expression. As shown in Figure 5.10B, surface staining of TMEM184A is significantly 

decreased in TMEM184A siRNA-transfected cells relative to scrambled control siRNA-

transfected cells. These data suggest that the TMEM184A siRNA decreases the amount 

of TMEM184A on the surface of cells, presumably decreasing a cell’s ability to bind and 

internalize heparin. 

 In agreement with the surface decreases in TMEM184A siRNA-transfected cells, 

the internal staining of TMEM184A also seems to decrease relative to control siRNA-

transfected cells that have been fixed and permeabilized (Figure 5.10 and 5.11). Because 

knockdown varied from experiment to experiment, knockdown levels are shown for each 

experimental sample along with staining for pERK or pElk-1. As shown in Figure 5.11A, 

TMEM184A staining is significantly reduced in TMEM184A siRNA-transfected cells 

relative to the same treatment in control siRNA-transfected cells. Control siRNA-

transfected cells show a strong PDGF-induced increase in pElk-1 relative to control, 

which is robustly attenuated by a 20 min heparin pretreatment prior to the 15 min PDGF 

treatment.  (Figure 5.11A – Control siRNA rows). PDGF induces a similar response in 

the TMEM184A siRNA-transfected cells, inducing a modest increase in pElk-1 staining 

intensity (Figure 5.11A – TMEM184A siRNA rows). When TMEM184A levels are 

decreased due to siRNA transfection, the heparin-induced attenuation of PDGF-induced 

pElk-1 staining intensity is lost (Figure 5.11A – TMEM184A siRNA rows). Stated 

differently, when TMEM184A levels are decreased, the cells are no longer as sensitive to 

heparin. These results suggest that TMEM184A is involved in mediating the heparin 
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responses in vascular smooth muscle cells potentially by serving as a receptor for 

heparin.  

 In similar experiments, the effect of TMEM184A knockdown on PDGF-induced 

and heparin attenuation of ERK was investigated. Due to the experimental design and the 

need for unpermeabilized surface only staining controls (Figure 5.10), there are not 

untreated controls for the pERK studies (Figure 5.11B). PDGF-induced ERK activity at 

15 min is high, a finding which has been noted elsewhere (Gilotti AC diss. 2000 and 

Savage JM et al. 2001) As shown in Figure 5.11B (Control siRNA rows), a 20 min 

heparin treatment prior to a 15 min PDGF stimulation, greatly reduces active ERK in 

both the cytoplasm and the nucleus. The effect of heparin is again decreased in cells 

which have been transfected with TMEM184A siRNA (Figure 5.11B – TMEM184A 

siRNA rows), suggesting that TMEM184A is needed for cells to be heparin sensitive. 

Taken together, the data indicate that decreasing TMEM184A expression results in 

decreased heparin sensitivity. In and of itself, these data do not prove that TMEM184A is 

a receptor for heparin; but it does indicate that TMEM184A is involved in mediating 

heparin responses, presumably by acting as a receptor for heparin.  

To ensure that the electroporation/transfection process did not significantly affect 

protein expression in A7r5s; scrambled Control siRNA-treated cells were also compared 

to cells which were not electroporated/transfected. These “untransfected” cells showed 

the same results as the control siRNA. The control siRNA had no effect on TMEM184A, 

pERK, or pElk-1 overall expression or localization relative to untransfected cells.  
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5.3.10: shRNA-mediated knockdown of TMEM184A in A7r5s 

 As shown in Figure 5.12, A7r5s were effectively electroporated with GFP-tagged 

control shRNA constructs and TMEM184A-specific shRNA constructs (shRNA-B and 

C). In cells which expressed the GFP-tagged constructs, there was a significant reduction 

in TMEM184A-NTD staining on the surface of A7r5s that were not permeabilized, 

suggesting that the shRNA significantly decreased TMEM184A on the surface of cells 

(Figure 5.12). Although significant knock down was determined for surface 

TMEM184A, the differential levels of internal TMEM184A were not as great as the 

surface knock down.  

 

5.4: Discussion 

 TMEM184A is a largely uncharacterized protein, identified through genome 

sequencing, which was thought to be limited in its expression to the germ line and 

exocrine cells, based on previous investigations (Best D et al. 2008 and Best D and 

Adams IR 2009). In order to gain a better understanding of TMEM184A and to 

potentially find a cell line in which I could overexpress TMEM184A, I sought to further 

characterize TMEM184A in a variety of cell types. I have shown that TMEM184A is 

present in vascular cells and a variety of primary and cloned cell lines, suggesting that it 

is expressed in a wider range of cells. In an attempt to examine TMEM184A function in 

vascular cells, co-localization with VAMP, cav-1, and eNOS was performed. 

TMEM184A co-localizes at peri-nuclear regions with VAMP, suggesting emerging roles 

in vesicle transport modulation in these cells types which is consistent with previous 
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findings in exocrine cells (Best D and Adams IR 2009). I also determined that 

TMEM184A is present at cav-1-enriched lipid rafts, presenting the possibility that 

TMEM184A may be involved in cell signaling events mediated by lipid rafts. In the case 

of vascular endothelial lipid rafts, cav-1 is an important player in eNOS-mediated 

signaling events, and given TMEM184A presence, it may play a role in these signaling 

events as well. To this end, TMEM184A was also determined to co-localize with eNOS 

in vascular smooth muscle and endothelial cells.  

 The fact that TMEM184A co-localizes with both eNOS and cav-1 is not 

surprising given that eNOS and cav-1 physically interact via the scaffolding domain of 

cav-1 (Garcia-Cardena G et al. 1997 and Ju H et al. 1997). In this context cav-1 has been 

shown to have an inhibitory role in preventing NO release because cav-1 negatively 

regulates eNOS (Michel JB et al. 1997 and Bucci M et al. 2000). There have also been a 

large number of other proteins which have been established to localize to endothelial cell 

caveolae. These include receptor tyrosine kinases, G-protein coupled receptors and their 

subunits, TGFβ receptors, and calcium channels (reviewed in: Sowa G 2012). This 

suggests that TMEM184A, if proven to be the heparin receptor, could preferentially 

localize to caveolae in order to participate in the signaling hub located at caveolae lipid 

rafts. TMEM184A co-localization with eNOS further suggests that it utilizes the caveolae 

network. The co-localization of TMEM184A and VAMP is likely due to VAMP serving 

as a vesicle marker to assist in determining the final destination of the vesicle.  

Although physical interactions were not determined within the context of this 

dissertation, co-localization analysis suggests that TMEM184A could physically interact 
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with VAMP, cav-1, and/or eNOS or that they could be held in close proximity by a 

common protein complex. Suggested cav-1 interaction sequences are common among 

many transmembrane proteins and appear to be found in putative transmembrane 

segments of TMEM184A. These segments may or may not be critical for cav-1 

interactions with other proteins but if they are, it appears that TMEM184A has these 

sequences available for interaction with cav-1 (Byrne DP, Dart C, and Rigden DJ 2012). 

Despite the probability of interaction, immunoprecipitation of TMEM184A-NTD did not 

appear to pull down cav-1 (data not shown). 

To gain an understanding of whether TMEM184A localizes to the membrane for 

a period of time, cells were fixed with 4% PFA but not permeabilized with Triton-X-100. 

Admittedly, this method of looking at cell surface staining is imperfect, because cells are 

permeabilized slightly in the process, even though the PFA did not contain methanol. In 

most cases, an antibody for a cytoplasmic protein was included in the cell surface 

staining experiments, to show that the cells were not permeabilized enough for significant 

cytoplasmic staining. In a large percentage of the experiments, staining of the 

cytoplasmic protein was faint and altered from its traditional staining pattern, providing 

convincing evidence that the cells were not permeabilized significantly (data not shown). 

In agreement with these results, the staining pattern of TMEM184A was altered in a way 

which no longer showed peri-nuclear staining, suggesting that the cells were not 

appreciably permeabilized. Secondary antibody only controls were also done to confirm 

that the TMEM184A surface staining was specific. Despite the imperfections in the 

technique, it was the only technique readily available to look at cell surface staining, and 
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did provide a consistent representation of TMEM184A on the cell surface. These data 

suggest that TMEM184A does remain on the cell surface for a period of time as well as 

localizing to peri-nuclear regions, again supporting the hypothesis that TMEM184A 

could function as a receptor for heparin. 

 It has also been shown that cells which possess TMEM184A also internalize 

labeled heparin. Unfortunately, the Rhodamine-heparin uptake assays require cells to not 

be permeabilized making co-localization studies of Rhodamine-heparin and native 

TMEM184A virtually impossible. Co-localization of surface TMEM184A (staining in 

unpermeabilized cells) and Rhodamine-heparin can be done, but typically does not yield 

appreciable co-localization likely due to washing off of Rhodamine-heparin from surface 

interactions during rinsing and fixation. This hypothesis is supported by the fact that most 

Rhodamine-heparin is seen in small to large puncta in the cytoplasm and does not 

resemble surface staining seen with TMEM184A. Comparing TMEM184A staining seen 

in Figure 5.1B and 5.2B with Rhodamine-heparin uptake in Figure 5.7, there is potential 

that TMEM184A and Rhodamine-heparin would co-localize in the cells investigated. The 

clearest example of this is the MEF cell line which noticeably exhibits Rhodamine-

heparin signal near nuclei, which is where TMEM184A-NTD is predominantly localized. 

Although not entirely convincing, these data support and do not disprove TMEM184A as 

the heparin receptor. Due to the above experimental limitations of staining for 

TMEM184A and looking for co-localization with Rhodamine-heparin, a GFP-tagged 

construct was obtained for these experiments. Although, it is debatable whether or not the 
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GFP tag will disrupt the orientation of TMEM184A in the membrane, it can still be used 

to determine sub-cellular localization and co-localization with Rhodamine-heparin.  

 GFP-TMEM184A is expressed at fairly high levels in A7r5s where it localizes to 

peri-nuclear regions and membrane patches (Figure 5.9A). Given that the TMEM184A 

antibodies were polyclonal antibodies which have the potential to detect proteins of 

similar sequence to TMEM184A, it was determined that exogenous expression of 

TMEM184A would only strengthen the conclusions drawn from antibody staining. The 

GFP-TMEM184A was found at intense peri-nuclear regions with virtually no staining in 

what appears to be the nuclei, something that was occasionally an artifact seen with 

antibody staining. GFP-TMEM184A also localized to patches at the membrane, further 

supporting the role of TMEM184A as a transmembrane protein, which could be 

accessible on the surface of the cells for heparin binding. Cells expressing GFP-

TMEM184A were also treated with Rhodamine-heparin to investigate if the two co-

localize. Internalized Rhodamine-heparin in A7r5s typically occurs as intense puncta 

throughout the cytoplasm, presumably representing internalized vesicles. Co-localization 

between GFP-TMEM184A and Rhodamine-heparin is evident in most cells as far out in 

time as I’ve investigated. The co-localization experiments provide yet another line of 

evidence that TMEM184A functions as a receptor for heparin. However, it is possible 

that TMEM184A is involved in intracellular transport and that is why co-localization is 

seen. Albeit plausible, considering all of the data indicating that TMEM184A functions 

as a receptor for heparin, it seems more likely that TMEM184A is functioning as a 

receptor for heparin.  
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 To initially characterize TMEM184A as the heparin receptor, 

immunoprecipitations were performed using the lab’s monoclonal heparin receptor 

antibodies, which mimic the effects of heparin and block radiolabelled heparin binding 

(Savage JM et al. 2001, Patton WA et al. 1995). Under the IP conditions described in the 

methods section of this chapter, the monoclonal antibodies were able to IP a protein 

which was recognized by the TMEM184A antibodies in both BAOECs and BAOSMCs. 

These data suggest that either TMEM184A is the heparin receptor or that TMEM184A 

interacts with a protein that is the heparin receptor. Although the IP data suggest that 

TMEM184A recognizes immunoprecipitated heparin receptor, the controls for these 

experiments are not as clean as desired. This is likely due to a variety of factors including 

the polyclonal nature of the TMEM184A antibodies and a small degree of non-specific 

secondary antibody interaction.  Taking into consideration the mass spec data collected 

by Raymond Pugh, there is fairly convincing evidence that TMEM184A is the heparin 

receptor. Raymond’s data showed that he was able to isolate protein using the same 

monoclonal antibodies for sequence analysis, demonstrating that the isolated protein 

shared significant sequence similarity with TMEM184A. Combining the proteomic data 

with the IP data discussed in this chapter, provides convincing evidence that TMEM184A 

is the heparin receptor or at least part of a heparin receptor complex. However, other 

members of the Lowe-Krentz have documented that other proteins do not co-IP with the 

heparin receptor (Patton WA et al. 1995 and Savage JM et al. 2001).  

In order to further suggest that TMEM184A is the heparin receptor, functional 

assays need to be completed. To do this, there are two options. The first option is to 
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exogenously over-express TMEM184A in cells which do not possess or possess 

significantly less TMEM184A and determine increased heparin sensitivity. The second 

option is to knock down the levels of endogenous TMEM184A using siRNA or shRNA 

in a cell line known to possess TMEM814A and determine sensitivity to heparin. I have 

decided that the first option (exogenous over-expression) is not a feasible route to provide 

a functional link between heparin sensitivity and TMEM184A. This conclusion is based 

on the fact that all cells that have been investigated possess TMEM184A at high levels 

and bind/internalize labeled heparin, even though the cells have not been documented in 

the literature to be heparin sensitive. These facts suggest that all cells have TMEM184A 

and/or a receptor for heparin allowing them to internalize labeled heparin but lack the 

downstream signaling components necessary for heparin signaling to occur. Therefore 

my hypothesis is that over-expressing exogenous TMEM184A in these cells which 

already have the protein will not make them heparin sensitive in any way that has been 

documented or can be measured experimentally. However, the GFP-tagged TMEM184A 

did partly fulfill this line of evidence detailed above.  

 Again, the second method to functionally link TMEM184A to heparin sensitivity 

is to knock down TMEM184A using siRNA or shRNA and look for altered heparin 

sensitivity. It is my belief that this is the most effective way to link TMEM184A to 

heparin sensitivity, given the issues discussed with exogenous over-expression. The data 

collected using targeted siRNA suggests that a modest decrease of TMEM184A has been 

consistently achieved in the A7r5 cell line. The decrease in TMEM184A staining is very 

modest, but is sufficient to alter the cells’ response to heparin as shown by pERK and 
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pElk-1 staining. Under normal conditions, both pERK and pElk-1 are strongly induced by 

15 min of PDGF stimulation and a 20 min pre-treatment of heparin is sufficient to 

decrease this response by about half. When TMEM184A siRNA is incorporated and the 

cells have been verified to show moderately decreased TMEM184A staining, the cells are 

less responsive to heparin pre-treatment. In siRNA-treated cells, the heparin-induced 

decreases are absent or significantly less than seen with control cells. The degree to 

which cells lose their heparin sensitivity is in line with the efficacy of TMEM184A 

knockdown. These data suggest that TMEM184A functionally acts as a receptor for 

heparin, because when TMEM184A levels are even moderately decreased, heparin 

sensitivity is decreased. 

 The trends seen in the siRNA experiments agree with the hypothesis that 

TMEM184A is a receptor for heparin. However, I believe that only modest decreases are 

going to be obtainable using siRNA, due to the fact that the cells need to be exposed to 

siRNA for a minimum of 72 hours to even see a decrease in TMEM184A staining. It is 

likely that during this long time frame, the siRNA is degraded and loses its potency.  

Since TMEM184A is a membrane protein, presumably with fairly slow turnover, long 

exposure to siRNA is required to achieve any decreases in TMEM184A levels. For these 

reasons and to obtain better knockdown of TMEM184A, shRNA constructs were 

obtained. The shRNA constructs should be more effective over longer periods of time in 

knocking down TMEM184A protein levels, allowing a more clear interpretation of lost 

heparin sensitivity in cells expressing less TMEM184A.  
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 In an attempt to achieve better knock down of TMEM184A in the A7r5 cell line 

and to support the siRNA data, shRNA constructs specific for TMEM184A were 

obtained. The results from these experiments suggest that two of the five constructs 

(shRNA-B and C) were significantly better at decreasing the level of TMEM184A on the 

surface of cells. However, only surface TMEM184A was significantly reduced by the 

shRNA constructs. Internal staining for TMEM184A was only marginally decreased by 

the specific shRNA compared to untransfected cells or control shRNA transfected cells. 

This along with the GFP-TMEM184A localization primarily to the membrane suggests 

that newly synthesized TMEM184A is transported to the membrane and remains there. 

Both shRNA and siRNA decrease the amount of newly synthesized protein which would 

likely be the TMEM184A associated with the membrane. Since both silencing 

mechanisms only decrease internal staining modestly, this suggests that TMEM184A is 

not readily recycled, although the mechanism and meaning behind this lack of recycling 

is unclear. In the future these shRNA construct can be used to create stable cell lines 

which constitutively express decreased TMEM184A. This could potentially increase the 

success of long-term decreases in TMEM184A which may be necessary to decrease both 

surface and internal levels.  

The fact that GFP-tagged TMEM184A co-localizes with Rhodamine-heparin and 

the TMEM184A siRNA data do not prove that TMEM184A functions as a receptor for 

heparin, rather they suggest that TMEM184A is involved in mediating heparin signaling. 

The culmination of work completed by Raymond Pugh, using protein biochemistry and 

mass spec analysis suggested that TMEM184A shared significant sequence similarity to 
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the protein isolated using monoclonal antibodies against the heparin receptor. Combining 

Raymond’s data with the IP data, co-localization data, and the siRNA data strongly 

supports the hypothesis that TMEM184A does, in fact, function as a receptor for heparin. 
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5.5: Figures 

 
 

Figure 5.1: TMEM184A is expressed in vascular endothelial and smooth muscle 

cells 

(A) Whole cell lysates were harvested in sample buffer, immunoblotted for 

TMEM184A-NTD, compared to corresponding secondary antibody only controls, 

and migration of colored molecular weight markers. Blots were developed using 

ECL reagents. (B) Cells were fixed and permeabilized with ice cold methanol (left 

three columns) and treated with antibodies specific for TMEM184A-NTD, CTD, 

or INT to determine sub-cellular localization. Cells in the far right column were 

fixed with 4% PFA without permeabilization to see mostly cell surface staining 

with the TMEM184A-NTD antibody. Images are representative of a least three 

repeats. Scale bars = 10 µm. 
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Figure 5.2: TMEM184A is expressed in CHO, MDCK, and MEF cells 

(A) Whole cell lysates were harvested in sample buffer, immunoblotted for 

TMEM184A-NTD, compared to corresponding secondary antibody only controls, 

and migration of molecular weight markers. Blots were developed using ECL 

reagents. (B) Cells were fixed and permeabilized with 4% PFA and 0.3% Triton 

and treated with antibodies specific for TMEM184A-NTD, CTD, or INT to 

determine sub-cellular localization. Images are representative of a least three 

repeats. Scale bars = 10 µm. 
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Figure 5.3: TMEM184A co-localizes with VAMP 

(A) RAOSMCs and BAOECs were fixed and permeabilized with ice cold methanol 

and (B) CHOs, MDCKs, and MEFs were fixed and permeabilized with 4% PFA 

and 0.3% Triton. Cells were treated with antibodies specific for TMEM184A-NTD 

or CTD (Red) and VAMP1-3 (Green). Far right column is magnified 4X the 

original boxed area in the panel immediately to the left. Images are 

representative of a least three repeats. Scale bars = 10 µm. 
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Figure 5.4: TMEM184A co-localizes with caveolin-1 

(A) RAOSMCs and BAOECs (B) CHOs, MDCKs, and MEFs were fixed and 

permeabilized with 4% PFA and 0.3% Triton. Cells were treated with antibodies 

specific for TMEM184A-INT (Red) and cav-1 (Green). Far right column is 

magnified 4X the original boxed area in the panel immediately to the left. Images 

are representative of a least three repeats. Scale bars = 10 µm. 
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Figure 5.5: TMEM184A co-localizes with eNOS in vascular cells 

BAOECs, BAOSMCs, and RAOSMCs were fixed and permeabilized with 4% PFA 

and 0.3% Triton. Cells were treated with antibodies specific for TMEM184A-INT 

(Red) and eNOS (Green). Far right column is magnified 4X the original boxed 

area in the panel immediately to the left. Images are representative of a least 

three repeats. Scale bars = 10 µm. 
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Figure 5.6: HeLa cells express TMEM184A 

HeLa cells were fixed with 4% PFA or fixed with 4% PFA and permeabilized with 

0.3% Triton as described in Chapter 2. Cells were labeled with antibodies 

specific for TMEM184A-NTD. Column 1 and 4 are magnified 2X the original 

immediately to the left. Images are representative of two repeats. Scale bars = 10 

µm. 
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Figure 5.7: All cells investigated internalize Rhodamine-heparin 

BAOECs, BAOSMCs, MDCKs, and MEFs were treated with 100 µg/ml 

Rhodamine-Heparin for 1, 5, and 7 min, following which they were fixed with 4% 

PFA and not permeabilized. Control cells are untreated and represent low levels 

of autoflourescence. BAOECs, BAOSMCs, and MDCKs were imaged at 63X 

whereas the MEFs were imaged at 40X. Images are representative of two repeats. 

Scale bars = 10 µm. 
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Figure 5.8: Immunoprecipitation of the heparin receptor detects TMEM184A 

150 mm dishes of (A) BAOECs and (B) BAOSMCs were harvested for 

immunoprecipitation as described in methods section. Cell lysates were incubated 

with (A) VE-cadherin or (B) IRS-1 antibodies as IP controls or monoclonal 

antibodies developed against the heparin receptor ((A) 12B1 and 18E9 or (B) 

18B6 and 18H6) and purified using EZview affinity beads. The antibodies listed 

at the top are the antibodies used for the Western Blot, while the antibodies 

(shown on an angle) below that are the antibodies used for the IP. The VE-

cadherin antibody is goat, the IRS-1 antibody is rabbit, and the heparin receptor 

antibodies are mouse monoclonals. One-fourth of the final sample was run on a 

single lane of an SDS-PAGE. Blots were developed using ExtraAvidin™ alkaline 

phosphatase, BCIP, and NBT, and converted to grayscale for post-hoc analysis.  
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Figure 5.9: GFP-Tagged TMEM184A co-localization with Rhodamine-Heparin  

(A) A7r5s were electroporated with 20 µg/ml of GFP-TMEM184A and allowed to 

proliferate for 48 hr, following which they were fixed with 4% PFA and not 

permeabilized. Right column is magnified 2X the original boxed area on the left. 

(B) A7r5s electroporated with GFP-TMEM184A as in (A) were treated with 100 

µg/ml Rhodamine-Heparin for the times indicated, following which they were 

fixed with 4% PFA and not permeabilized. All images are magnified 2X the 

original for clarity. Images are representative of two repeats. Scale bars = 10 

µm. 
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Figure 5.10: Validation of FITC-Control siRNA uptake and decreased 

TMEM184A surface staining in cells exposed to TMEM184A siRNA  

A7r5s were electroporated with 20 µg/ml FITC-control siRNA as described in the 

methods section (A). A7r5s were electroporated with untagged control siRNA or 

TMEM184A siRNA and cells were fixed with 4% PFA but not permeabilized and 

stained for TMEM184A-INT on the surface of cells (B). Images are representative 

of two repeats. Scale bars = 10 µm. 
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Figure 5.11: siRNA-mediated knockdown of TMEM184A in A7r5s 

A7r5s were electroporated with control siRNA or TMEM184A siRNA as 

described in the methods section. Cells were fixed with 4% PFA and 

permeabilized with 0.3% Triton and stained for pElk-1 (A) and pERK (B) along 

with TMEM184A to judge knock down efficacy. Images are representative of 

three repeats. Scale bars = 10 µm. 
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Figure 5.12: shRNA-mediated knockdown of TMEM184A in A7r5s 

A7r5s were electroporated with 20 µg/ml of GFP-tagged constructs containing 

shRNA expression sequences (scrambled control shRNA, shRNA-B, or shRNA-C) 

and allowed to proliferate for 72 hr or 96 hr. Cells were fixed with 4% PFA but 

not permeabilized and stained for TMEM184A-NTD (red) mostly on the cell 

surface. Untransfected control cells were included for comparison. Images are 

representative of three repeats for 72 hr and one repeat for 96 hr. Scale bars = 10 

µm 
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Chapter 6: Heparin regulates specific genes in vascular smooth muscle cells 
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6.1: Introduction 

 Most smooth muscle cells in the adult vascular system are in a quiescent state, 

typically arrested in the G0 or G1 phases of the cell cycle. As mentioned previously, 

smooth muscle cells in atherosclerotic vasculature exit their quiescent state and enter a 

proliferative state. Progression through the cell cycle is driven primarily by the 

interaction of cyclin-dependent kinases (CDKs) and their regulatory subunits, the cyclins. 

Cyclin-CDK complexes induce the activation of transcription factors, ultimately resulting 

in progression through the cell cycle, cell growth, and cell proliferation (Fouty BW et al. 

2001). Looking specifically at the G1-S transition, important cyclin-CDK complexes 

include cyclin D-CDK4/6 and cyclin E-CDK2, which are involved in phosphorylating 

and inactivating the Rb (retinoblastoma) protein, an inhibitor of E2F (Yu L et al. 2006 

and Fouty BW et al. 2001). Once phosphorylated Rb dissociates from E2F, allowing E2F 

to carry out its function of inducing transcription of genes responsible for cell 

proliferation (Figure 6.1) (Yu L et al. 2006 and Fouty BW et al. 2001). 

There are multiple levels of regulation over the cell cycle, including the 

expression of phase-specific cyclins, which are degraded when no longer necessary. An 

additional level of regulation is a class of negative regulators of cyclin-CDK complexes, 

CDK inhibitors (CDKIs), which inhibit the phosphorylation of specific cyclin-CDK 

complexes (Yu L et al. 2006 and Fouty BW et al. 2001). By inhibiting cyclin-CDK 

complexes, CDKIs can be considered anti-proliferative, because they block progression 

through the cell cycle. CDKIs are broken into two families, the INK4 family (p15, p16, 

p18, p19) and the Cip/Kip family (p21, p27, and p57) (Yu L et al. 2006). The INK4 
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family of CDKIs is known to inhibit cyclin D-CDK4/6 complexes, while the Cip/Kip 

family of CDKIs is known to inhibit cyclin E-CDK2 and cyclin D-CDK4/6 complexes 

(Yu L et al. 2006). Regardless of cyclin-CDK complex inhibited, both families block the 

phosphorylation of Rb, maintaining E2F bound Rb, and preventing cell cycle progression 

and subsequent growth and proliferation (Figure 6.1) (Yu L et al. 2006 and Fouty BW et 

al. 2001).  

Figure 6.1: Regulation of the G1 to S cell cycle transition  

(Adapted from Yu L et al. 2006) 

 

 

 As discussed previously, heparin has been shown to have anti-inflammatory 

characteristics in cells of the vasculature. In VSMCs, heparin exerts an anti-proliferative 

effect via at least two mechanisms. The two primary mechanisms include the regulation 

of MAPK cascade intermediates (Yu L et al. 2006), which are involved in cell growth 

and proliferation and by imposing a cell cycle block at the G1 phase through up-

regulation or down regulation of specific genes and proteins necessary for the transition 

from the G1 to S phase (Reilly CF et al. 1989, Fasciano S et al. 2005, Vadiveloo, PK et al. 

1997). This cell cycle block can be at least partially explained by an increase in heparin-
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induced MKP-1 increase resulting in less active ERK and decreased cell proliferation 

(Blaukovitch CI et al. 2010 and Dickinson RJ and Keyse SM 2006).  Along with 

inducing MKP-1 protein synthesis, heparin also down-regulates Raf activity, a kinase 

upstream of ERK, by inhibiting its phosphorylation (Pukac LA et al. 1997, Dhillon AS et 

al. 2007, and Slee JB, Pugh R, Lowe-Krentz LJ 2012). Along with regulation of MAPK 

kinase cascade intermediates, it has been reported that heparin treatment causes rapid 

down-regulation of mRNA levels of genes involved in the regulation of cell proliferation, 

including c-fos, c-jun, myb, and myc, again decreasing cellular proliferation in VSMCs 

(Mishra-Gorur K and Castellot JJ, 1999). The second mechanism through which heparin 

exerts its anti-proliferative effects in VSMCs is by imposing a cell cycle block at the G1 

phase (Fasciano S et al. 2005, Vadiveloo PK et al. 1997, Reilly CF et al. 1989). Most 

smooth muscle cells in the adult vascular system are in a quiescent state, typically 

arrested in the G0 or G1 phases of the cell cycle. VSMCs in atherosclerotic plaques are 

highly proliferative and migratory, accounting for large portion of the plaque mass (Ross 

R 1993 and Ross R 1999).  

Research has shown that heparin strongly down-regulates the levels of cyclin D1 

mRNA and protein, cdk2 mRNA, and cdc2 protein to achieve this cell cycle block 

(Vadiveloo PK et al. 1997). One CDKI up-regulated by heparin treatment is p27
kip1

. This 

accumulated p27
kip1

 protein level prevents the activation of Cdk2, blocking S phase entry 

(Fasciano S et al. 2005, Yu L et al. 2006, and Fouty BW et al. 2001). Fasciano S and 

colleagues (2005) noted that heparin treatment did not affect p27
kip1

 mRNA levels at 12 

and 18 hr of treatment, suggesting that heparin is mediating this affect post-
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transcriptionally by stabilizing p27
kip1

 protein. The post-transcriptional regulation of 

p27
kip1

 raises the possibility that heparin could be regulating other genes in this manner 

rather than solely regulating gene expression.  

MKP-1 activity has been shown by our lab to be up-regulated by heparin 

treatment leading to decreased ERK activity and thereby decreased cell proliferation 

(Blaukovitch CI et al. 2010). Additional unpublished data from our lab suggests that 

MKP-1 gene transcription occurs in response to heparin treatment. Treatment of smooth 

muscle cells with actinomyosin D and /or doxorubicin both of which block transcription, 

block MKP-1 synthesis. Other unpublished data suggest that blocking translation blocks 

the heparin-induced MKP-1 increase. These observations suggest that both transcription 

and translation are necessary to get the increase in MKP-1 in response to heparin 

treatment, but do not rule out transcript stability or sequestration. Therefore, the targeted 

RT-PCR, PCR arrays, and microarray analyses all included MKP-1 to determine if 

heparin up-regulated DUSP1/MKP-1 gene expression 

Although much of the literature focuses on exogenous heparin treatment for 

therapeutic benefit, endogenous heparan sulfates also possess anti-proliferative properties 

in VSMCs. Along with exogenous heparin; certain endogenous heparan sulfates are anti-

proliferative. Both endogenous perlecan and syndecan-1 inhibit VSMC proliferation 

(Kinsella MG et al. 2003 and Fukai N et al. 2009), and perlecan has been shown to 

sequester FGF2 from binding to its receptor (Tran PK et al. 2004). The anti-proliferative 

effects of heparin/heparin sulfates are summarized in Figure 6.2 (reviewed in: Slee JB, 

Pugh R, and Lowe-Krentz LJ 2012). 
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Figure 6.2:  Data from the literature indicate that exogenous heparin and 

endogenous heparan sulfates are anti-proliferative in VSMCs 

(Adapted from: Slee JB, Pugh R, Lowe-Krentz LJ 2012) 

 

 Given the trend for potential heparin-induced gene expression changes, I aimed to 

investigate global gene expression (microarray), pathway specific gene expression (PCR 

arrays) and targeted gene expression (RT-PCR). Using these three techniques, I have 

identified many genes which are regulated by heparin, expanded our understanding of 

heparin-induced MKP-1 activity, and determined that two CDKI genes are not regulated 

by heparin treatment. The PCR arrays and targeted RT-PCR analyses also served to 

validate three genes from the microarray. 
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6.2: Methods 

6.2.1: Cell Culture 

A7r5s and RAOSMCs were used for gene expression analyses. For RT-PCR, 

PCR Arrays, and microarray analysis cells were grown to approximately 70-80% 

confluency, to ensure that cells were still in a proliferative state. In some experiments 

cells were synchronized via serum starvation for 2 days prior to experimentation. In these 

cases, cells were rinsed with EDTA prior to serum starvation to remove any remaining 

serum from the culture medium and fresh serum-free media was added. 

6.2.2: Heparin Treatment for PCR Arrays 

 100 mm dishes of proliferative A7r5s (not synchronized via starvation) were used 

as starting material for PCR array analysis. Cells were treated with 200 µg/ml heparin for 

a single time point of 30 min and harvested according to the RNA isolation protocol 

outlined in Appendix I.  

6.2.3: Heparin and Serum Treatment for Short-Term RT-PCR 

100 mm dishes of A7r5s were synchronized via starvation for 2 – 3 days and used 

as starting material for RT-PCR analysis. Cells were treated with 200 μg/ml heparin for 

20 min prior to 10% serum addition. Serum incubation varied from 10, 15, 20, and 30 

min durations to optimize serum induction. RNA was isolated using the isolation protocol 

outlined in Appendix I.   

6.2.4: Heparin Treatment for Long-Term Microarray Analysis 

 100 mm dishes of RAOSMCs were used as starting material for microarray 

analysis. RAOSMCs were kept in fully supplemented MEM media to allow for 
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microarray analysis of the effects of heparin in proliferative cells. Once the cells reached 

~70-80% confluency, cells were treated with 200 μg/ml heparin for 24 hr and RNA was 

isolated using the protocol outlined in Appendix I.  

6.2.5: SDS-PAGE and Western Blotting 

In many cases, a Western Blot experiment was run in parallel to gene expression 

analysis to ensure the cells were heparin sensitive. In these instances, the experimental 

design was identical up to isolation of total RNA or protein. If the cells demonstrated 

heparin sensitivity, as indicated by heparin-induced decreases in pERK band intensity 

relative to control and serum only bands, then the experiment was allowed to proceed. 

SDS-PAGE and Western blotting were performed as described in Chapter 2 using the 

alkaline phosphatase detection method.  

6.2.6: RNA Isolation and Processing 

 The methodology for RNA isolation, reverse transcription, RNA quality control, 

RT-PCR experimental set-up, cycling conditions, and PCR array analysis are described in 

Appendix I.  In all cases (RT-PCR analysis, PCR arrays, and microarray) RNA was 

isolated from 100 mm dishes of A7r5s or RAOSMCs using the Qiagen RNeasy total 

RNA isolation kit with the optional on-column DNase digestion according to the 

manufacturer’s recommended protocol. For the RT-PCR and microarray analysis, reverse 

transcription was carried out using Invitrogen’s SuperScript III First-Strand Synthesis 

Super Mix according to Invitrogen’s recommended protocol. For PCR arrays, reverse 

transcription was done using SABiosciences reverse transcription reagents according to 

their protocol.  
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6.2.7: RT-PCR Data Analysis (2
-ΔΔCT

) 

 RT-PCR data was analyzed using fold change relative to GAPDH control. To 

calculated fold change: First calculate ΔCT from raw CT within a time point and replicate 

(CT DUSP1 – CT GAPDH). Average ΔCT value of control (DUSP1) across replicates, then 

calculate ΔΔCT using this average control ΔCT of DUSP1 (ΔCT DUSP1 EXPERIMENTAL – ΔCT 

DUSP1 CONTROL). Use this value to calculate fold change (2
-ΔΔCT

). Fold change values were 

averaged and statistics were run across triplicates.  

6.2.8: Microarray Analysis 

 Total RNA was isolated from RAOSMCs and quality was determined as 

described in Appendix I. Once total RNA was determined to be of high quality and yield, 

it was sent to Genome Explorations (Memphis, TN), an authorized service provider of 

Affymetrix microarrays. The Affymetrix GeneChip® Rat Gene 1.0 ST Array was used to 

determine heparin-induced gene expression in proliferative RAOSMCs treated with 

heparin for 24 hr relative to untreated control. Additional quality control measures were 

completed by Genome Explorations prior to RNA amplification, tagging, and 

hybridization.  Genome Explorations performed all data analysis and provided a data 

package including significant gene changes, clusters of regulated genes, regulated 

pathways, as well as all of the raw data.  
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6.3: Results 

6.3.1: PCR Array data suggests that only a few of the selected genes are regulated 

by heparin 

All genes investigated in the PCR arrays are listed in Appendices II and III. Two 

separate PCR arrays were performed, one representing genes from the MAPK signaling 

cascade (Figure 6.3) and one representing genes from the epidermal growth factor (EGF) 

and platelet-derived growth factor (PDGF) signaling cascades (Figure 6.4). The PCR 

arrays were formatted for gene expression analysis in 96 well plates. Necessary controls 

account for six of those wells, leaving 90 genes for analysis. Since two PCR arrays were 

used, this allowed for the analysis of 180 genes that were picked based largely on known 

heparin signaling pathways. The results of both microarrays seem to suggest that heparin 

treatment for 30 min does not regulate a significant number of genes, since only 8 of the 

180 (~4.4%) genes tested were heparin sensitive. These genes include MAPK10 (JNK3) 

– increased 2.07 and 1.63 fold, KCNH8 – decreased 2.54 fold, PDGFRA – decreased 

5.94 fold, EGF – decreased 2.54 fold (Figure 6.1), MAP4K1 (kinase upstream of ERK) – 

increased 2.31 fold, MAPK13 (p38Δ) – increased 3.61 fold, CDKN1C (p57
kip2

) – 

increased 2.29 fold, and MAPK8ip2 (JIP1) – increased 3.07 fold (Figures 6.3 and 6.4).  

More importantly than what the PCR array data showed as regulated by heparin 

was what they showed that was not regulated by heparin. These two arrays were chosen 

because they contained a number of cell cycle regulatory proteins. The data suggest that 

very few of the cell cycle regulatory proteins (cyclins, CDKs, and CDKIs) were regulated 

by heparin under these conditions. These results suggest that at shorter time points (less 
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than 30 min), heparin does not regulate mRNA level changes but possibly protein 

stability as seen with p27
kip1

 (Fasciano S et al. 2005). 

6.3.2: PCR Array data and targeted RT-PCR data suggest that heparin does not 

regulate MKP-1 by control of mRNA levels 

 Of particular interest in the EGF/PDGF PCR array was the DUSP1 gene, which 

codes for MKP-1 protein. In fact, this array was chosen because it included DUSP1. As 

previously discussed, MKP-1 activity is up-regulated in response to heparin treatment 

and other data collected from the lab suggest that MKP-1 mRNA levels would be a good 

candidate to be regulated by heparin. However, the DUSP1 PCR array sample showed an 

insignificant fold change (-1.25) relative to untreated control, suggesting that DUSP1 

mRNA level is not regulated by heparin. To further investigate and to validate the PCR 

array data, targeted gene expression analyses were performed for DUSP1 using Qiagen’s 

SYBR green chemistry and RotorGene RT-PCR equipment. Two representative graphs 

are shown in Figure 6.5. The results consistently suggest that DUSP1 mRNA level is not 

regulated by heparin, as shown by fold change values which are not significantly 

different from control nor significantly different among or within treatment groups. 

Taken together, these data suggest that DUSP1 gene expression is not regulated by 

heparin and it is likely the case that heparin regulates DUSP1 protein stability as seen 

with other heparin-sensitive proteins (Fasciano S et al. 2005). Considering previous data 

collected by other lab members, it appears that continued MKP-1 synthesis and protein 

stability are required for heparin-induced MKP1-1 activity, but increased DUSP1 

expression is not required.  
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6.3.3: Microarray data agrees with PCR Array and targeted RT-PCR analyses of 

DUSP1, CDKN1B (p27
kip1

), and CDKN1C (p57
kip2

) 

 The microarray data obtained from Genome Explorations support the data 

collected from the PCR arrays and targeted RT-PCR analyses on DUSP1 and CDKN1B. 

The targeted RT-PCR analyses of CDKN1B consistently resulted in fold change values 

less than 1.5 fold across 10, 20, and 30 min of heparin treatment, suggesting that 

CDKN1B gene expression is not regulated by heparin, agreeing with previously 

published reports (Fasciano S et al. 2005). The CT values from the microarray for 

CDKN1B were 11.43 vs. 11.27 (control vs. heparin) suggesting an extremely small fold 

change value (which is not reported by Genome Explorations due to this fact). The 

targeted RT-PCR data for DUSP1 is shown in Figure 6.5, which is similar to the data 

obtained from the microarray (control: 12.95 vs. heparin 13.15), further suggesting that 

DUSP1 mRNA is not regulated by heparin.  

 A third gene was investigated to validate the PCR array and microarray data. 

CDKN1C (p57
kip1

) was shown to be significantly increased by 2.29 fold in the MAPK 

PCR array but was not included in the EGF/PDGF PCR array. Therefore, targeted RT-

PCR was performed with primers specific for CDKN1C. The results obtained from these 

studies consistently yielded fold change values less than 1.5 fold, which was considered 

to be a non-significant fold increase (data not shown). The experiment was carried out as 

done for DUSP1 (results shown in Figure 6.5) and resulted in the similar non-significant 

fold change values within experimental groups. The CT values from the microarray 
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(control: 8.57 vs. heparin: 8.61) agree with the data collected from the RT-PCR analyses, 

suggesting that CKDN1C mRNA levels are not regulated by heparin treatment.  

It is important to note that there was an experimental difference in the microarray 

compared to the PCR arrays and RT-PCR analyses. The microarray was performed in 

proliferative RAOSMCs treated with 200 µg/ml heparin for 24 hr. The PCR arrays were 

performed in proliferative A7r5s treated with 200 µg/ml heparin for 30 min. In the 

targeted RT-PCR analyses, A7r5s were treated with the same concentration of heparin for 

20 min in cells synchronized by starvation and serum stimulated for times less than 30 

min. The experiments were carried out in this was for multiple reasons. First, the PCR 

arrays and RT-PCR analyses were carried out first, leading me to believe that shorter 

time points may not be sufficient to see significant gene expression changes, given that 

very few genes changed. Second, I wanted to keep the PCR arrays and microarray as 

simple as possible to avoid inclusion of variables that could confound post-hoc data 

analysis. Third, I switched from the A7r5 cloned rat line to primary RAOSMCs to avoid 

any issues stemming from using a cloned line for gene expression work.  

 Regardless of the differences in experimental design, all three techniques yielded 

similar results. Heparin does not regulate DUSP1, CDKN1B, or CDKN1C mRNA levels. 

The data from the microarray showed that mRNA levels of these three genes did not 

significantly change in heparin-treated cells (CT values: DUSP1 – control: 12.95 vs. 

heparin: 13.15, CDKN1B – control: 11.43 vs. heparin: 11.27, and CDKN1C – control: 

8.57 vs. heparin: 8.61). Taken together, the data suggest that heparin does not regulate the 

mRNA levels of these genes, but instead could regulate protein stability, protein turnover, 
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or translation. It is likely that heparin regulates the stability of these transcripts or 

proteins via a similar mechanism which was shown for p27
kip1

 (CDKN1B) (Fasciano S et 

al. 2005).  

6.3.4: Microarray data suggest heparin up-regulates gene expression 

Given the colossal nature of the microarray data, all of the raw data cannot be 

included in this dissertation. Instead, I’ve organized the data in a few logical ways. First, 

I’ve included flow charts highlighting pathways that were regulated (Figure 6.6 A, B, and 

C). Second, I’ve listed all of the pathways that contained at least 2 genes that were 

significantly regulated (Table 6.1). Lastly, I’ve listed all genes with a fold change of ≥ 

1.5 which have also been identified by Genome Explorations as significant fold change 

values (Table 6.2). Having the data organized in these ways should provide an overview 

of heparin-induced gene expression changes at the pathway level and provide detailed 

analysis of selected individual genes within those pathways. This should provide a broad 

view of heparin-induced gene expression changes and leave room for discussion of select 

heparin-sensitive genes.  

 As shown in Figure 6.6, I’ve highlighted what Genome Explorations called 

biological processes (A), molecular functions (B), and cellular components (C) that were 

regulated by heparin. Only a small subset of the significantly regulated pathways are 

highlighted within each grouping. Within Biological processes, 10 genes were regulated 

that are involved in blood circulation, three of which are involved in blood vessel 

remodeling (Figure 6.6A). The largest grouping of regulated genes was in the cell surface 

receptor signaling family, in which 29 genes were regulated (Figure 6.6A). Interestingly, 
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the last group within biological processes contained three genes that were responsive to 

laminar fluid shear stress, helping to connect my fluid shear stress project with heparin 

regulation. As shown in Figure 6.6B, a small subset of molecular functions were 

regulated by heparin and included receptor serine/threonine kinase binding and 

endopeptidase inhibitor activity. This section seems to suggest that only a small number 

of peptidase inhibitors were regulated by heparin and this is in fact not true. There were a 

large number of peptidases and peptidase inhibitors that were significantly regulated by 

heparin. Lastly, as shown in Figure 6.6C, a small subset of cellular components were 

regulated and they include proteinacaeous extracellular matrix (ECM) components and 

integrin complexes. Having the data organized in this way highlights three pathways that 

were significantly regulated by heparin. These three, however, only represent a small 

fraction of the pathways that were identified as significantly responsive to a 24 hr heparin 

treatment.  

 To dig deeper into the data, all signaling pathways/clusters with 2 or more genes 

that were heparin responsive are listed in Table 6.1. The pathway with the largest number 

of regulated genes (16) was the integrin family of cell surface interactions. This is 

followed by a variety of receptor mediated signaling pathways with 12 genes each (S1PI, 

PDGFR-beta, EGF receptor, and the LKB1-AMPK signaling pathways. These are only 

four of about 70 or so pathways that were identified as having significant heparin 

regulated gene expression occurring within their intermediates. There is also a variety of 

other pathways that are significantly regulated by heparin that bear mentioning. These 

include EGF receptor internalization and downstream signaling, protein inhibitor up-
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regulation, proteoglycan signaling, TGFBR, and cell surface interactions with the vessel 

wall. This way of analyzing the data goes slighter deeper, still does not get us to specific 

genes, but suggests that heparin is involved in the regulation of many pathways and 

genes. 

 To further explore the microarray data, all genes which exhibited a fold change of 

≥ 1.5 are shown in Table 6.2. Genome Explorations uses algorithms to predict fold 

changes above 1.0 to be significant, so I took it a step further and set the cut-off for 

significance to be a fold change of 1.5. This however does not imply that these fold 

changes are biologically scientific, nor are they statistically significant. These fold 

changes appear to be significant within this microarray data set, as defined by Genome 

Explorations. Performing the analysis in this way provides a list of about 80 genes that 

are heparin sensitive. Included in this set are four separate serine or cysteine peptidase 

inhibitors, integrin alpha 7, oxidized low density lipoprotein (lectin-like) receptor 1, and 

guanylate cyclase 1 soluble beta 3. There were two genes that were most strongly 

induced by heparin treatment; these were the regulator of G-protein signaling 4 and 

asporin, fold change of 3.039 and 3.853 respectively.  

 Also consistent with the data obtained from the PCR arrays, the majority of gene 

expression altered by heparin was through up-regulation instead of down-regulation. 

Using ≥ 1.5 fold change as the cut-off, only one gene was significantly down-regulated 

by heparin treatment for 24 hr. Given the trend of heparin significantly up-regulating 

genes, the genes that were down-regulated by heparin were omitted from the data set and 

will not be discussed in this dissertation. It is also true that none of these down-regulated 
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proteins have established or related signaling pathways which have been linked to 

heparin signaling.  Taken together, the gene expression analysis data suggest that heparin 

regulates quite a large number of genes mostly through up-regulation and that heparin 

may also regulate protein stability of certain proteins involved in heparin signaling.  

 

6.4: Discussion 

 Although the microarray was performed last chronologically in this dissertation, 

the PCR array data and targeted RT-PCR data can be used to validate the microarray. The 

MAPK and EGF/PDGF PCR arrays were performed to gather preliminary data to ensure 

that pursuing heparin-induced gene expression changes were worthwhile. These arrays 

provided evidence of enough gene regulation to suggest that further analysis was 

necessary. Although an educated guess was made that the MAPK and EGF/PDGF arrays 

would produce the largest number of regulated genes, this was in fact not the case. These 

arrays produced only 8 genes that were significantly altered by a 30 min heparin 

treatment. However, these arrays did investigate three genes of interest for this 

dissertation. As mentioned in the results section, these genes were DUSP1 (MKP-1), 

CDKN1B (p27
kip1

), and CDKN1C (p57
kip2

), all of which were good candidates for 

heparin regulation.  

MKP-1 activity has been shown by our lab to be up-regulated by heparin 

treatment leading to decreased ERK activity and thereby decreased cell proliferation 

(Blaukovitch CI et al. 2010). Additional unpublished evidence from our lab suggested 

that MKP-1 gene transcription was occurring in response to heparin treatment, but could 
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not rule out transcript stability or sequestration. As discussed previously, these 

unpublished data included the observation that actinomyosin D and doxorubicin 

(chemicals which block transcription) block DUSP1 synthesis and the observation that 

blocking translation also blocks the heparin-induced MKP-1 increase. These observations 

along with the fact that MKP-1 has a very short half-life suggest that both transcription 

and translation are necessary to get the increase in MKP-1 in response to heparin 

treatment, but do not rule out transcript stability or sequestration. 

The collection of MKP-1 data from this dissertation strongly support a model 

where DUSP1/MKP-1 mRNA is not regulated by heparin. The lack of heparin-induced 

changes in mRNA levels were consistently shown across three different methods of 

assaying heparin-induced gene expression changes. The DUSP1/MKP-1 mRNA data 

collected herein; do not disagree with the unpublished data collected by other lab 

members, rather suggest that continued basal DUSP1 gene expression and some level of 

protein stabilization is required for the heparin-induced MKP-1 activity increases.  

 CDKN1B (p27
kip1

) was investigated as a gene for potential heparin regulation 

because it has been documented to be regulated by heparin. Previous reports have shown 

that heparin regulates p27
kip1

 transcript stability beyond 18 hr of heparin treatment 

(Fasciano S et al. 2005). However, I initially hypothesized that 18 hr of heparin treatment 

would be too long and immediate gene changes would be missed. The rationale behind 

this hypothesis is based on unpublished data showing that heparin-induced decreases in 

pERK and increases in MKP-1 can be seen as early as 10 min. These observations 

suggest that the signaling intermediates downstream of heparin react very quickly to 
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heparin treatment. Therefore, early mRNA level changes induced by heparin were 

investigated for CDKN1B. 

 Although built upon sound science, the original hypothesis was not supported.  

Rather the data indicate that changes in transcription for these genes are not induced by 

heparin.  All three methods of assaying gene expression performed in this dissertation 

failed to show significant heparin-induced changes in CDKN1B gene expression.  

Regardless of whether cells were synchronized via starvation, were proliferative, treated 

with heparin for ≤ 30 min, or treated with heparin for 24 hr, no changes were observed. 

These findings do not conflict with the published report or the unpublished observations 

listed above. Rather it supports the case for CDKN1B to be regulated primarily by 

transcript accessibility over long-term heparin treatment (Fasciano S et al. 2005). The 

data showing that CDKN1B gene expression is not changed by 30 min or less of heparin 

treatment, suggests that if CDKN1B is involved in heparin-induced anti-proliferative 

effects in VSMCs it is through a mechanism enhancing the usage of existing transcript or 

protein stability. 

 The preliminary PCR arrays provided a second CDKI of potential interest for 

heparin regulation, CDKN1C (p57
kip2

), a member of the same family as CDKN1B 

(p27
kip1

), although no published evidence links CDKN1C and heparin signaling. This 

provided a candidate anti-proliferative gene whose transcription might be quickly 

increased by short-term heparin treatment, which could help to explain the fast heparin-

induced alterations in pERK and MKP-1. Therefore, CDKN1C was selected for further 

analysis via targeted RT-PCRs. However, this hypothesis was not supported, because the 
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data collected from the targeted RT-PCRs and the microarray failed to show any heparin-

induced changes in CDKN1C mRNA levels. It is possible that the observed differences in 

CDKN1C gene expression across analysis methods could be attributed to the 

experimental differences discussed in the results section. However, this is likely not the 

case, because the PCR arrays were performed on proliferative VSMCs as was the 

microarray, albeit at different heparin treatment times. If CDKN1C was truly regulated 

by heparin in proliferative cells, it would have come up by 24 hr of heparin treatment, 

because the anti-proliferative effects of heparin are sustained for much longer durations 

than 24 hr. Taken together, the gene expression analyses for CDKN1C suggest that the 

transcription of this gene is not regulated by heparin. 

  The microarray data for DUSP1 and CDKN1B agree with the PCR array and 

targeted RT-PCR data and the microarray data for CDKN1C agree with the RT-PCR 

data. The CKDN1C PCR array data point was determined to be an outlier and not 

representative of heparin regulation. These findings strengthen the conclusion that 

heparin does not significantly regulate these three genes in VSMCs. A current model 

which is in line with the data suggests that heparin regulates transcript and protein 

stability to facilitate, at least in part, its anti-proliferative affects in VSMCs.  This has 

been shown to be the case for CDKN1B (Fasciano S et al. 2005) and is likely the case for 

DUSP1 and CDKN1C.  Another possibility is that heparin could regulate transcript usage 

as well, which could also explain the results showing a lack of heparin-induced mRNA 

level changes.  
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 The genes from the microarray analysis can be broken into four major categories 

of cell surface receptor signaling, peptidase activity, integrin complexes and signaling, 

and responses to fluid shear stress. Of particular interest to this dissertation are the 

responses to fluid shear stress and the regulation of cell surface receptor signaling. The 

response to laminar shear stress is interesting because it ties Chapter 3 into this chapter. 

Chapter 3 dealt with the atheroprotective nature of FSS in the vasculature, establishing a 

role for cofilin and actin realignment in endothelial barrier maintenance. The microarray 

identified that gene responses to laminar shear stress were also regulated by heparin, 

suggesting that the FSS experiments should be completed in the presence and absence of 

heparin to further determine their combined atheroprotective roles. This idea is being 

explored by Sara Lynn Nicole Farwell, who is interested in studying cellular responses to 

heparin and cytokines under physiologically relevant FSS conditions. This is an exciting 

area to explore, because the two fields have yet to be explored jointly and will 

undoubtedly yield promising data.  

 As mentioned, another interesting finding from the microarray was that heparin 

regulates a large amount of cell surface receptor signaling. The role of heparin in cell 

surface receptor signaling has been established for many receptors and signaling 

cascades, but the microarray provided many novel pathways that have not been studied in 

the context of heparin. As a preamble to this discussion, it is unknown as to whether 

heparin would exert its affects on these pathways through binding to a receptor altering 

downstream signaling cascade or if it would be due to growth factor sequestration or 

receptor binding enhancement. Both models have been demonstrated for various 
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signaling systems and are extensively documented in the literature (for review see Slee 

JB, Pugh R, and Lowe-Krentz LJ 2012).  

 The signaling molecule that is the highest interest to the work done in the lab is 

guanylate cyclase 1, soluble, beta 3 gene (GUCY1B3) which was up-regulated 1.714 fold 

by heparin treatment for 24 hr. GUCY1B3 is the beta subunit of soluble guanylate 

cyclase (sGC) which catalyzes the conversion of GTP to the second messenger cyclic 

GMP (cGMP), and functions as the main receptor for nitric oxide (NO). It has been 

shown that heparin signaling in VSMCs depends on cGMP and PKG (Gilotti AC diss 

2000 and Chapter 7). The finding that heparin up-regulates GUCY1B3 raises the 

possibility of a feed forward loop in which heparin increases cGMP to in turn increase 

PKG, thus strengthening the heparin responses in these cells. These data further support 

the conclusions drawn in Chapter 7, showing that PKG is involved in heparin signaling. 

The role of cGMP and PKG in heparin signaling will be discussed further in Chapter 7, 

however the finding that heparin increased GUCY1B3 is a biologically relevant finding 

of the microarray, raising the possibility of a feed forward signaling mechanism. 

 Another interesting finding is that the regulator of G-protein signaling 4 (RGS4) 

was increased 3.039 fold by heparin treatment for 24 hr in RAOSMCs. RGS4 is a 

member of a protein family which accelerates GTP hydrolysis by the alpha subunit of 

heterotrimeric G-proteins, thereby inactivating the G-protein and rapidly switching off 

GPCR signaling pathways (Gu S et al. 2009). Although not heavily cited in the literature, 

RGS4 is most well known for its role in endothelial cells where it has been shown that 

RGS4 over-expression antagonizes vascular endothelial growth factor (VEGF) 
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stimulation of DNA synthesis, ERK1/2 activation, and p38 MAPK activation, suggesting 

that RGS4 inhibits cell proliferation, migration, and invasion in endothelial cells (Albig 

AR and Schiemann WP 2005). While, it was initially thought that RGS4 was not 

expressed in cultured smooth muscle cells (Wieland T and Mittmann C 2003); it has 

since been shown to be expressed in VSMCs where it is involved in sphingosine-1-

phosphate (S1P) signaling (Hendriks-Balk MC et al. 2008). Although further work is 

necessary to validate the RGS4 microarray data, it is an exciting possibility for being 

involved in heparin signaling because RGS4 has been shown to inhibit cell proliferation 

by antagonizing VEGF-stimulated cell proliferation and ERK activation in endothelial 

cells. If the same is true in VSMCs in response to heparin, this could provide another 

downstream target of heparin that leads to decreased cell proliferation by modulating 

DNA synthesis and ERK activity. Given that RGS4 is regulated by heparin, it is not 

surprising, that the S1P signaling pathway was a pathway with 12 genes which were 

regulated by heparin treatment for 24 hr.  

 Another interesting gene that was regulated by heparin and has interesting 

physiological implications for atherosclerosis was oxidized low density lipoprotein 

(lectin-like) receptor 1 (LOX-1), showing a fold change of 1.773 relative to untreated 

control. LOX-1 is a receptor which belongs to the C-type lectin superfamily that serves as 

the receptor for oxidized low-density lipoproteins (Mehta JL et al. 2006 and Li DY et al. 

2002). LOX-1 has been extensively shown to be up-regulated in advanced atherosclerotic 

arteries and its inhibition has been associated with attenuation of the atherosclerotic 

process (Mehta JL et al. 2006 and Li DY et al. 2002). LOX-1 is thought to serve as a 
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central hub in atherosclerosis serving as the initial player in promoting endothelial cell 

dysfunction and apoptosis (Ulrich-Merzenich G and Zeitler H 2013, Li DY et al. 2002, 

and Mehta JL et al. 2006). LOX-1 expression has been shown to be regulated by a variety 

of factors such as cytokines and shear stress which are involved in atherosclerosis (Mehta 

JL et al. 2006), further suggesting the central role of LOX-1 in the progression of 

atherosclerosis. Aside from its known roles in endothelial cells, LOX-1 has also been 

shown to be involved in the proliferation, migration, and apoptosis of smooth muscle 

cells as well as other events critical to the pathogenesis of atherosclerosis (reviewed in: 

Xu S et al. 2012). Because LOX-1 has been linked to the development of atherosclerosis, 

it is interesting that heparin treatment would cause a moderate fold increase, given that 

LOX-1 inhibition has been strongly linked to protection against atherosclerosis. Clearly 

at this point, the mechanism behind heparin-induced LOX-1 expression is unknown, but 

this presents an exciting gene to explore given its role in atherosclerosis and recent 

excitement about finding drugs which could potentially inhibit LOX-1. 

 Not surprisingly, the integrin family was the pathway with the largest number of 

regulated genes (16 genes total). Of these 16 genes, 3 of them were regulated at a level 

greater than 1.5 fold, including integrin alpha 4 (1.612), integrin alpha 7 (1.699), and 

integrin beta-like 1 (2.049). As mentioned previously, two of the major hallmarks of 

atherosclerosis are vascular smooth muscle cell proliferation and migration to the site of 

injury. Both of which are strongly inhibited by heparin treatment (reviewed in: Slee JB, 

Pugh R, and Lowe-Krentz LJ 2012). Therefore it is logical that heparin would up-

regulate certain genes that are involved in cell migration, such as the integrin family. 
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Integrin alpha 4 has been shown to associate with paxillin (Han J et al. 2001) which 

serves as a docking protein to recruit signaling molecules to focal adhesions (Schaller 

MD 2001). Paxillin also provides a link between integrins and the actin cytoskeleton, to 

facilitate cell spreading and motility (Schaller MD 2001). It has also been shown that 

inhibition of integrin alpha 4 association with paxillin inhibits integrin alpha 4-dependent 

cell proliferation (Liu S et al. 2002). Integrin beta-like 1 has also been associated with 

cell adhesion, proliferation, and migration (Humphries JD, Byron A, and Humphries MJ 

2006). Lastly, integrin alpha 7 serves as the receptor for laminin in skeletal, heart, and 

smooth muscle cells and is involved in cell migration through the p130(CAS)/Crk protein 

complex (Mielenz D et al. 2001). Assuming the increased mRNA of these integrin 

components would equate to increased protein expression, it is clear that they could be 

involved in mediating heparin’s affects on cell adhesion, proliferation, and migration.   

 Eluding to the notion that heparin may regulate protein stability and/or 

degradation, a large number of peptidase inhibitors were upregulated by a 24 hr heparin 

treatment. The following peptidase inhibitors were upregulated: serine (or cysteine) 

peptidase inhibitor clade A (1.528), serine (or cysteine) peptidase inhibitor clade B 

member 2 (1.603), serine (or cysteine) peptidase inhibitor clade A member 3N (1.685), 

serine (or cysteine) peptidase inhibitor clade B member 7 (1.702), serine (or cysteine) 

peptidase inhibitor clade A (1.791), and peptidase inhibitor 15 (2.163). Serine (or 

cysteine) peptidase inhibitors are often referred to as Serpins (Serine Protease Inhibitors) 

for short. Common Serpins include antithrombin (AT), heparin cofactor II (HCII), anti-

trypsin, and protein C inhibitor (PCI) (Rein CM, Desai UR, and Church FC 2011). The 
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entire Serpin family share poor sequence homology but share a highly conserved core 

structure that is essential for their function as protease inhibitors, allowing for significant 

overlapping mechanisms of inhibition (Huntington JA 2011). The activity of most 

Serpins relies on glycoasminoglycans (GAGs), such as heparin or heparan sulfates, to 

reach physiological relevant rates of inhibition (Rein CM, Desai UR, and Church FC 

2011 and Huntington JA 2011). The GAGs act as a bridge between the Serpin and the 

protease, allowing for faster complex formation, thereby strengthening the rate of 

inhibition (Rein CM, Desai UR, and Church FC 2011 and Huntington JA 2011). Perhaps 

the best characterized example of herpain interacting with a Serpin is AT. Heparin 

facilitates the interaction of AT with thrombin, inhibiting thrombin and subsequent 

thrombus formation (Huntington JA 2011). Therefore, it comes as no surprise that 

heparin treatment increased the mRNA level of various Serpins, due to their essential 

interaction with GAGs which is virtually required for inhibition of their target. 

 Lastly, a number of transcription factors were upregulated in response to 24 hr of 

heparin treatment. Most notably, these include the activating protein-1 (AP-1) 

transcription factor network, specifically fos-related antigen-1 and 2 (Fra1 and Fra2). AP-

1 is an early response heterodimeric transcription factor composed of proteins belonging 

to the c-Fos, c-Jun, activating transcription factor (ATF), and jun dimerization protein 

(JDP) families (Karin M, Liu Zg, and Zandi E 1997). AP-1 is involved in cell 

proliferation, transformation, apoptosis, and inflammation (Shaulian E and Karin M. 

2002 and Schonthaler HB, Guinea-Viniegra J, and Wagner EF 2011), suggesting that 

heparin could alter AP-1-induced gene expression to facilitate long term changes in 
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vascular smooth muscle cell physiology. Although further work is needed to validate the 

role of AP-1 in heparin signaling, it is an interesting avenue to explore in the future, 

because it could be the start of differentiation-related gene expression.   

The collection of gene expression analyses performed within this chapter suggest 

that not only is heparin capable of regulating transcript and protein stability, but also 

regulating gene expression of a moderate number of genes. Of all genes tested, only 100 

or so genes were significantly regulated by heparin, suggesting that heparin’s affects are 

mediated by a small number of signaling molecules and pathways. The pathways 

represented overlap considerably with a single regulated gene being involved in multiple 

pathways, serving as cross-talk points between them. Another interesting conclusion that 

can be drawn from the data is that heparin seems to preferentially up-regulate gene 

expression rather than down-regulate it. Of the 100 or so genes that are significantly 

regulated by heparin, approximately 80 of them are up-regulated and only 20 of them are 

down-regulated, many of which are down-regulated at very small non-significant fold 

changes. Given the relatively small number of heparin-sensitive genes, there are a 

number of opportunities for future endeavors into further or understanding of non-

traditional heparin signaling in vascular smooth muscle cells.  
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6.5: Figures 

 
Figure 6.3: MAPK PCR array data highlights 

Graph highlighting fold changes that were determined to be significant by 

SABiosciences analysis software. Gene falling with a range of ± 2 were 

highlighted in red (fold increase) or green (fold decrease). 
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Figure 6.4: EGF/PDGF PCR array data highlights  

Graph highlighting fold changes that were determined to be significant by 

SABiosciences analysis software. Gene falling with a range of ± 2 were 

highlighted in red (fold increase) or green (fold decrease). 
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Figure 6.5: Short-term heparin treatment does not alter MKP-1 mRNA levels 

(A)  and (B) show two representative repeats of at least five experiments of 

targeted MKP-1 gene expression changes induced by heparin. Fold change was 

calculated relative to GAPH control. (A) Control cells were untreated, H20 was a 

20 min heparin treatment without serum, S15 was a 15 min serum treatment, 

HS15 was a 20 min heparin treatment prior to a 15 min serum treatment, and 

HS30 was a 20 min heparin treatment prior to a 30 min serum treatment. (B) The 

same experimental design as (A), but 20 and 30 min serum treatments were used. 

C = control, H = heparin, S = serum, HS = heparin + serum, # = duration of 

serum treatment in min. 
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Figure 6.6: Flow chart diagramming pathways with a significant number of 

heparin regulated genes (either fold increase or fold decrease) 

(A) Flow chart illustrating biological processes with a significant number of 

heparin regulated genes. 
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(B) Flow chart illustrating molecular functions with a significant number of 

heparin regulated genes 
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(C) Flow chart illustrating cellular components with a significant number of 

heparin regulated genes. 
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Pathway Number of Genes 

Integrin family cell surface interactions 16 

Beta1 integrin cell surface interactions 16 

S1P1 pathway 12 

PDGFR-beta signaling pathway 12 

EGF receptor (ErbB1) signaling pathway 12 

LKB1 signaling events 13 

IL3-mediated signaling events 13 

Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling 12 

Glypican pathway 13 

ErbB1 downstream signaling 12 

Thrombin/protease-activated receptor (PAR) pathway 12 

Internalization of ErbB1 12 

Glypican 1 network 12 

Class I PI3K signaling events mediated by Akt 12 

Signaling events mediated by VEGFR1 and VEGFR2 12 

Signal Transduction 13 

Arf6 trafficking events 12 

PAR1-mediated thrombin signaling events 12 

Nectin adhesion pathway 12 

Insulin Pathway 12 

Signaling events mediated by Hepatocyte Growth Factor Receptor (c-Met) 12 

Plasma membrane estrogen receptor signaling 12 

PDGF receptor signaling network 12 

IGF1 pathway 12 

EGFR-dependent Endothelin signaling events 12 

GMCSF-mediated signaling events 12 

Arf6 downstream pathway 12 

mTOR signaling pathway 12 

IFN-gamma pathway 12 

Arf6 signaling events 12 

Alpha9 beta1 integrin signaling events 13 

Signaling events mediated by focal adhesion kinase 12 

VEGF and VEGFR signaling network 13 

Proteoglycan syndecan-mediated signaling events 13 

Syndecan-1-mediated signaling events 12 

IL5-mediated signaling events 12 

Class I PI3K signaling events 12 

Sphingosine 1-phosphate (S1P) pathway 12 
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Endothelins 12 

ErbB receptor signaling network 12 

TRAIL signaling pathway 12 

A third proteolytic cleavage releases NICD 2 

GPCR ligand binding 6 

Integrin-linked kinase signaling 8 

BMP receptor signaling 5 

HIF-1-alpha transcription factor network 3 

Class A/1 (Rhodopsin-like receptors) 5 

AP-1 transcription factor network 7 

Signaling by TGF beta 2 

Hypoxic and oxygen homeostasis regulation of HIF-1-alpha 3 

Innate Immune System 4 

Signaling by Notch 2 

Immune System 6 

Hemostasis 5 

CDC42 signaling events 7 

RXR and RAR heterodimerization with other nuclear receptor 2 

Regulation of CDC42 activity 7 

Signaling by GPCR 7 

Alpha4 beta1 integrin signaling events 2 

TGFBR 3 

Retinoic acid receptors-mediated signaling 2 

ALK1 signaling events 4 

ALK1 pathway 4 

Peptide ligand-binding receptors 3 

NOTCH 2 

Validated targets of C-MYC transcriptional repression 2 

Cell surface interactions at the vascular wall 2 

Integrin cell surface interactions 2 

Notch signaling pathway 2 

Notch-mediated HES/HEY network 2 

Signaling events mediated by HDAC Class I 2 

G alpha (q) signalling events 2 

Validated transcriptional targets of AP1 family members Fra1 and Fra2 2 

 

Table 6.1: Microarray results organized by number of genes regulated by heparin 

broken down by signaling pathway 
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Gene Description Gene Symbol Fold Change 

mannan-binding lectin serine peptidase 1  Masp1 1.505 

naked cuticle homolog 2 (Drosophila)  Nkd2 1.506 

fibronectin type III domain containing 1  Fndc1 1.507 

thioredoxin interacting protein  Txnip 1.509 

thyroid hormone receptor beta  Thrb 1.512 

transient receptor potential cation channel, subfamily V, member 2  Trpv2 1.516 

potassium channel, subfamily K, member 2  Kcnk2 1.516 

cysteine dioxygenase, type I  Cdo1 1.516 

vasoactive intestinal peptide receptor 2  Vipr2 1.518 

similar to leucine zipper protein 2  RGD1563838 1.519 

epoxide hydrolase 1, microsomal  Ephx1 1.521 

semaphorin 3D  Sema3d 1.521 

ciliary neurotrophic factor  Cntf 1.521 

guanine deaminase  Gda 1.522 

estrogen receptor 1  Esr1 1.526 

serine (or cysteine) peptidase inhibitor, clade A Serpina9 1.528 

dystrophia myotonica-protein kinase  Dmpk 1.530 

LIM and senescent cell antigen like domains 2  Lims2 1.533 

pentraxin related gene  Ptx3 1.534 

gastrin releasing peptide receptor  Grpr 1.535 

transmembrane protein 204  Tmem204 1.538 

signal peptide, CUB domain, EGF-like 3  Scube3 1.538 

proprotein convertase subtilisin/kexin type 5  Pcsk5 1.538 

LIM and cysteine-rich domains 1  Lmcd1 1.539 

sarcoglycan, gamma (dystrophin-associated glycoprotein)  Sgcg 1.554 

myozenin 2  Myoz2 1.562 

olfactory receptor 325  Olr325 1.568 

solute carrier family 35, member F1  Slc35f1 1.585 

chemokine (C-C motif) receptor-like 1  Ccrl1 1.591 

ADAM metallopeptidase with thrombospondin type 1 motif, 5  Adamts5 1.592 

inositol polyphosphate-4-phosphatase, type II  Inpp4b 1.594 

matrix Gla protein  Mgp 1.595 

serine (or cysteine) peptidase inhibitor, clade B, member 2  Serpinb2 1.603 

integrin, alpha 4  Itga4 1.612 

decorin  Dcn 1.617 

5-hydroxytryptamine (serotonin) receptor 1F  Htr1f 1.641 

family with sequence similarity 38, member B  Fam38b 1.644 
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amine oxidase, copper containing 3 (vascular adhesion protein 1)  Aoc3 1.677 

serine (or cysteine) peptidase inhibitor, clade A, member 3N  Serpina3n 1.685 

microfibrillar-associated protein 4  Mfap4 1.687 

chondroitin sulfate N-acetylgalactosaminyltransferase 1  Csgalnact1 1.691 

family with sequence similarity 5, member B  Fam5b 1.691 

transglutaminase 2, C polypeptide  Tgm2 1.697 

integrin, alpha 7  Itga7 1.699 

Notch homolog 3 (Drosophila)  Notch3 1.699 

presenilin 2  Psen2 1.702 

serine (or cysteine) peptidase inhibitor, clade B, member 7  Serpinb7 1.713 

guanylate cyclase 1, soluble, beta 3  Gucy1b3 1.714 

olfactomedin-like 2B  Olfml2b 1.721 

transmembrane 7 superfamily member 2  Tm7sf2 1.744 

oxidized low density lipoprotein (lectin-like) receptor 1  Olr1 1.773 

ceruloplasmin  Cp 1.776 

serine (or cysteine) peptidase inhibitor, clade A Serpina9 1.791 

sprouty homolog 1, antagonist of FGF signaling (Drosophila)  Spry1 1.794 

similar to transmembrane protein 2  RGD1305254 1.799 

selenoprotein P, plasma, 1  Sepp1 1.848 

carboxypeptidase X (M14 family), member 2  Cpxm2 1.875 

CD180 molecule  Cd180 1.887 

bone morphogenetic protein 6  Bmp6 1.889 

mast cell protease 1  Mcpt1 1.905 

similar to C21ORF7  LOC304131 1.920 

WAP four-disulfide core domain 1  Wfdc1 1.922 

similar to ABI gene family, member 3 (NESH) binding protein  RGD1562717 1.937 

calsequestrin 2 (cardiac muscle)  Casq2 1.979 

integrin, beta-like 1  Itgbl1 2.049 

phospholamban  Pln 2.062 

Fraser syndrome 1 homolog (human)  Fras1 2.112 

tumor necrosis factor (ligand) superfamily, member 18  Tnfsf18 2.114 

peptidase inhibitor 15  Pi15 2.163 

elastin  Eln 2.253 

fin bud initiation factor homolog (zebrafish)  Fibin 2.296 

sodium channel, voltage-gated, type VII, alpha  Scn7a 2.370 

slit homolog 3 (Drosophila)  Slit3 2.505 

myosin, heavy chain 2, skeletal muscle, adult  Myh2 2.556 

aldo-keto reductase family 1, member C14  Akr1c14 2.594 
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bone morphogenetic protein 3  Bmp3 2.717 

myosin, heavy polypeptide 1, skeletal muscle, adult  Myh1 2.742 

fibromodulin  Fmod 2.789 

osteomodulin  Omd 2.871 

regulator of G-protein signaling 4  Rgs4 3.039 

asporin  Aspn 3.853 

 

Table 6.2: Microarray results showing genes with a fold change ≥ 1.5  
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Chapter 7: Heparin responses in vascular smooth muscle cells involve PKG 
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7.1: Introduction 

 Following injury to an artery, VSMC migration from the tunica intima into the 

vessel lumen is a hallmark in the development of atherosclerosis. Heparin is a potential 

molecule for the short-term treatment of atherosclerosis. It was initially shown that 

heparin suppresses VSMC growth more than 30 years ago (Clowes AW and Karnovsky 

MJ 1977); yet the mechanism by which heparin inhibits VSMC proliferation remains 

unclear. Heparin has been documented to block PKC-dependent c-fos induction and ERK 

activation in response to a variety of treatments in sub-cultured VSMCs (Castellot JJ et 

al. 1989, Ottlinger ME, Pukac LA, and Karnovsky MJ 1993).  As discussed in detail in 

Chapters 1 and 6, heparin treatment causes decreased CDK2 activity by stabilizing 

p27
kip1 

(Fasciano S et al. 2005). Some of the anti-proliferative affects of heparin can be 

attributed to growth factor sequestration; however, sequestration cannot explain all of the 

effects of heparin on VSMCs (Reilly CF et al. 1989, Pukac LA et al. 1997, Savage JM et 

al. 2001, Blaukovitch CI et al. 2010). 

  VSMCs specifically bind and endocytose heparin (Castellot JJ et al. 1985).  This 

specific binding activity, in combination with heparin’s effects on cell signaling 

pathways, supports a model whereby heparin binds to cell surface proteins and initiates 

its own signaling pathways. This notion is supported by the fact that monoclonal 

antibodies which recognize a single heparin-binding cell surface protein specifically 

inhibit heparin binding to cells in vitro and act as agonists of heparin, mimicking both 

heparin’s effects on cell signaling and its anti-proliferative effects on cultured VSMCs 

(Patton WA et al. 1995, Savage JM et al. 2001, and Blaukovitch CI et al. 2010). 
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 MAPK activity is regulated by the reversible phosphorylation of specific tyrosine 

and threonine residues, and active ERK accumulation in the nucleus is critical in cell 

cycle progression through G1 (Brunet A et al. 1999) where the sustained ERK activity 

results in Elk-1 phosphorylation (Shin HS et al. 2003).  DUSPs play important roles in 

ERK inactivation, and MKP-1 localizes to the nucleus (Rohan PJ et al. 1993) where it is 

able to regulate ERK signaling in VSMCs.  Loss of active ERK in the nucleus results in 

decreased Elk-1 activity (Shin HS et al. 2003).  Data from our laboratory demonstrate 

that heparin and anti-heparin receptor antibodies increase MKP-1 protein levels in 

VSMCs, mediating, at least in part heparin-induced ERK activity decreases (Blaukovitch 

CI et al. 2010).  However, the signaling intermediates between heparin’s interaction with 

its receptor and induction of MKP-1 expression remain unknown.  One possibility is 

suggested by studies of insulin signaling (Begum N et al. 1998 and Jacob A et al. 2002).  

These studies report the expression of MKP-1 in VSMCs in response to insulin and IGF; 

where insulin and IGF induce the expression of iNOS, eventually increasing the levels of 

cGMP in response to the NO activation of sGC.   The increase in cGMP levels was 

shown to be sufficient to induce MKP-1 expression and attenuate ERK activity.  

Similarly, leptin treatment induces decreased VSMC proliferation, and this depends on 

iNOS induction (Rodríguez A et al. 2010).  As well as in heparin treated cells, p27
kip1

 is 

induced in response to cGMP rises and PKG activity in VSMCs (Sato J et al. 2000). 

 Another agent that elevates cGMP in VSMCs is ANF or ANP.  Upon ligand 

binding, the ANP receptor activates an intracellular guanylate cyclase thereby increasing 

cGMP levels.  Both ANP and cGMP have been shown to decrease the proliferation of 
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VSMCs (Baldini PM et al. 2002 and Tantini B et al. 2005).  Increased cGMP induces 

MKP-1 expression in smooth muscle, mesangial and endothelial cells through PKG 

(Sugimoto T et al. 1996, Baldini PM et al. 2002, Jacob A et al. 2002, and Furst R et al. 

2005).  The increased MKP-1 expression decreases ERK activation, and provides a 

mechanism for the anti-proliferative activity of ANP in VSMC (Sugimoto T et al. 1996, 

Baldini PM et al. 2002, and Tantini B et al. 2005). ANP treatment, like heparin treatment, 

induces increases in p27
kip1

 levels (Hannken T et al. 2001). 

 Heparin and cGMP affect VSMCs similarly.  First, both inhibit growth of VSMCs 

late in the G1 phase of the cell cycle.  Second, the proximity of the endothelium to 

VSMCs in vivo provides a source for both endogenous heparin and cGMP-elevating 

agents such as NO.  Endogenous heparin from endothelial cells could maintain 

quiescence in VSMCs (Castellot JJ et al. 1981).  Third, in reducing VSMC growth, both 

cGMP and heparin cause an inactivation of ERK due, at least in part, to the induction of 

MKP-1 (Baldini PM et al. 2002 and Blaukovitch CI et al. 2010). Because of the 

similarities in the way that heparin, ANP, and NO-induced cGMP increases affect 

VSMCs, the lab hypothesized that heparin’s cellular effects are mediated through the 

second messenger cGMP target, PKG.  Consistent with this idea is evidence that 

reductions in cGMP signaling occur with neointimal proliferation and vascular 

dysfunction in late-stage atherosclerosis (Melichar VO et al. 2004).  Also consistent with 

this hypothesis is the fact that expression of constitutively active PKG inhibits VSMC 

proliferation in response to high glucose (Wang S and Li Y 2009).   
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Previously collected data from the lab suggest that cGMP mimics heparin and 

PKG inhibition blocks heparin-induced decreases in VSMC DNA synthesis shown by 

BrdU incorporation (Gilotti AC diss 2000). The heparin-induced inhibition of DNA 

synthesis was shown to be dependent on PKG and the role of PKA was ruled out using 

inhibitors of PKA (Gilotti AC diss 2000). Heparin signaling normally results in decreased 

ERK activity, but when PKG is inhibited using chemical inhibitors, this affect is 

significantly decreased (Gilotti AC diss 2000 and Miller EA unpublished data). It was 

also established that heparin decreases Elk-1 activity along with decreasing ERK activity, 

and that inhibiting PKG disrupts these decreases (Nimlamool WN unpublished data). 

Concurrent with the requirement for PKG in mediating heparin signaling, heparin 

treatment in VSMCs results in increases in cGMP concentration (Gilotti AC diss 2000). 

As discussed previously, some of the anti-proliferative action of heparin is mediated 

through MKP-1, which was shown to be dependent upon cGMP and MKP-1 activity 

(Gilotti AC diss 2000). The missing piece of experimental evidence from this work was 

definitive evidence showing that reducing PKG levels resulted in altered heparin 

signaling. To accomplish this, I set out to utilize targeted PKG siRNA and functionally 

link decreased PKG to decreased heparin sensitivity in A7r5 VSMCs. Taken together 

with my contribution to the project, we have shown PKG activity is required for heparin-

induced decreases in VSMC ERK activity, Elk-1 phosphorylation, and VSMC 

proliferation. The culmination of this work has been submitted to J. Cell Phsyiol and is 

pending their initial review. 
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7.2: Methods 

7.2.1: Cell Culture 

A7r5s were cultured as described in Chapter 2. 

7.2.2: PKG siRNA Transfection 

 PKG siRNA transfection was carried out as described Chapter 5 for TMEM184A 

siRNA.  

7.2.3: Heparin Assay in PKG siRNA Transfected Cells 

 The heparin assay was performed as done in Chapter 5. 

7.2.4: Immunofluorescence Staining 

 Primary antibodies against pERK, PKGα and β (Santa Cruz Biotechnology), and 

pElk-1 (Cell Signaling, Boston, MA) were used as described in Chapter 2.   

7.2.5: Fluorescence Microscopy 

 Fluorescent microscopy was used to determine whole cell expression levels of 

PKG, relative knockdown of PKG in siRNA/shRNA-treated cells, and the 

PDGF/Heparin-induced responses in pERK and pElk-1 levels. Performed as described in 

Chapter 2.   

7.2.6: SDS-PAGE and Western Blotting 

 Performed as described in Chapter 2.  

7.3: Results 

Because the timing of PKG inhibitors in these assays was very specific, we 

confirmed the importance of PKG activity in heparin effects on ERK phosphorylation in 

cells where PKG levels were significantly decreased through the use of siRNA. Recall 
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from Chapter 5 that control experiments were carried out with FITC-control siRNA in 

A7r5s showing that the majority of cells took up the siRNA (Figure 4.10). PKG 

knockdown efficiency varied between experiments from occasionally greater than 90% 

knockdown to about 50% decrease in staining in A7r5 cells treated with siRNA 

compared to scrambled control. Cells allowed to recover in starvation media exhibited 

insignificant knockdown of PKG (data not shown). Therefore, cells were treated with 

control siRNA or PKG siRNA and were cultured in regular growth media for 72 hr and 

then treated with heparin for 20 min followed by PDGF for 15 min. Controls with PDGF 

or no treatment were compared. The presence of PKG, pERK and pElk-1 was determined 

by immunofluorescent staining (Figure 7.1A and 7.1B). Despite incomplete knockdown, 

it is clear that heparin-induced decreases in pERK and pElk-1 staining were very limited 

in PKG siRNA treated cells compared to cells with scrambled siRNA. Western Blots 

confirm that heparin treatment does not have much effect on ERK activation in cells 

where PKG levels have been significantly decreased (Figure 7.1C). 

 

7.4: Discussion 

The proliferation of VSMCs in healthy vessels is carefully regulated, and heparin 

has been shown to block a number of important signaling events in VSMCs (i.e. Ottlinger 

ME et al. 1993 and Pukac LA et al. 1997). Data showing that antibodies to a heparin 

receptor mimic the effects of heparin strongly suggesting that heparin is acting through a 

receptor protein to mediate a portion of its effects (Savage JM et al. 2001). Heparin 

binding to its receptor protein would presumably trigger an intracellular signal 
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transduction cascade likely involved in heparin-induced decreases in PDGF-stimulated 

BrdU incorporation and deactivation of ERK MAPK activity (Savage JM et al. 2001), 

expression of MKP-1 (Blaukovitch CI et al. 2010), and decreased Elk-1 phosphorylation 

in VSMCs.  In fact, the changes in Elk-1 phosphorylation are consistent with reports that 

Elk-1 phosphorylation results in changes in gene expression.  Obvious mechanisms for 

heparin-induced PKG-mediated modulation of VSMC proliferation involve 

phosphorylation of transcription factors (reviewed in Pilz RB and Broderick KE 2005) 

and reported for Elk-1 (Choi CS et al. 2010). Previous results from the lab coupled to my 

experimental data provide evidence for the involvement of PKG in downstream events of 

heparin receptor activation.  Heparin has previously been demonstrated to have an anti-

proliferative effect on VSMCs in rats and in an endothelial/VSMC co-culture system, but 

while NO production in the heparin-treated rats played a role in the response; it did not 

appear to be involved in heparin-induced decreases in VSMC proliferation (Horstman D 

et al. 2002).   

NO is a cell permeable activator of soluble guanylyl cyclase.  Treatment of cells 

with synthetic NO donors or activators of NO synthase causes a rapid increase in 

intracellular concentrations of cGMP, while particulate guanylyl cyclases often result in 

limited cGMP increases (Su J et al. 2005).  In addition, production of cGMP at the 

membrane does not produce cGMP increases throughout the cell (Nausch LW et al. 

2008), consistent with the idea that robust increases in cGMP may not be necessary for 

phsyiological reponses. Rather, limited localized signaling might lead to physiological 

results without significant increases in total cGMP levels due to location specific smaller 
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increases in cGMP.  ANP treatment of VSMCs does limit their proliferation (Baldini PM 

et al. 2002), and the limited increase in cGMP induced by heparin seems to be an 

important mechanism by which heparin interaction with the receptor induces changes in 

VSMC signaling and proliferation.  

One possible mechanism whereby heparin could affect VSMCs while inducing 

modest elevations of cGMP levels is through localization in caveolae. As mentioned 

previously, caveolae serve as signaling hubs in most cells, especially cells of the 

vasculature. The expression of caveolin has been reported to be affected by heparin and 

caveolin expression has been linked to VSMC growth (Peterson TE et al. 1999). Heparin 

receptor localization to caveolae could also explain other heparin effects which have been 

shown to be associated with caveolae function (Liu YT, Song L, and Templeton DM 

2007).   If the heparin receptor is localized in caveolae, binding could result in localized 

signaling through PKG by activating a NOS protein in VSMC (Cheah LS et al. 2002) or 

caveolae might modulate PKG activity adjacent to the caveolae. Characterization of 

TMEM184A as a receptor for heparin supports the notion that the receptor co-localizes 

with caveolin-1 at membrane patches (Figure 4.4). Signaling through cGMP and PKG is 

further supported by the fact that TMEM184A also co-localizes with eNOS in vascular 

cells (Figure 4.5). The functional data presented in Chapter 4, strongly suggest that 

TMEM184A is a receptor for heparin, demonstrating that at least a subset of the heparin 

receptor localizes to cav-1-containing caveolae to mediate the proposed signaling events 

outlined above. 
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Whatever the mechanism and down-stream signaling from PKG, our data suggest 

that heparin treatment causes the elevation of cGMP levels and indicate a role for PKG in 

heparin-induced decreased VSMC proliferation.  My contribution to this project 

specifically demonstrated that PKG knockdown caused reduced heparin sensitivity in 

VSMCs as assayed by PDGF-induced changes in pERK and pElk-1. When PKG is 

significantly decreased by siRNA, cells not longer exhibit heparin-induced decreases in 

PDGF stimulated pERK and pElk-1. The culmination of this work suggests a mechanism 

whereby heparin binds to this cell surface protein activating a guanylyl cyclase causing a 

rapid elevation of cGMP, in turn, activating PKG.  This idea is supported by 1) the rapid 

elevation of intracellular cGMP in heparin-treated cells, 2) the sensitivity of the heparin 

effects to PKG inhibitors, and 3) the sensitivity to partial knock down of PKG protein.  
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7.5: Figure 
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Figure 7.1: Knockdown of PKG decreases heparin effects on ERK activity and 

pElk 

A7r5 cells were electroporated with siRNA designed to knock down PKG in rat 

cells or scrambled RNA, and the cells were allowed to proliferate in growth 

media for 72 h with feeding at 24 h. At 72 h, cells were untreated, treated with 

PDGF for 15 min or heparin for 20 min before PDGF was added for 15 min. 

Panel (A) illustrates the pElk levels (pictures A-F). Staining for PKG is illustrated 

in the same cells in pictures G-L. Scrambled siRNA (A,B,C,G,H,I) as compared to 

PKG siRNA (D,E,F,J,K,L) is shown for cells not stimulated (A,D,G,J), PDGF 

treated cells (B,E,H,K) and heparin plus PDGF (C,F,I,L). Panel (B) illustrates an 

experiment where pERK was monitored (A’-F’) PKG staining for these cell 

samples is shown in pictures G’-L’. The treatment pattern is identical to that for 

panel A. These experiments are representative of two similar experiments each. 

Panel (C) illustrates Western Blots of A7r5 cells treated to knock down 

PKG for 72 h as above and analyzed by blotting for pERK and PKG levels. Lanes 

1-3 illustrate cells treated with scrambled siRNA and 4-6 represent cells treated 

with PKG siRNA. Lanes 1 and 4 illustrate cells harvested without further 

treatment, lanes 2 and 5 cells treated with PDGF for 15 min and lanes 3 and 6 

are cells treated with heparin and PDGF as above. Blots were developed using 

ECL reagents. Images are representative of a least three experiments. Scale bars 

= 30 µm. 
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Chapter 8: Conclusions and future directions 
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 It is clear that cardiovascular diseases, including atherosclerosis and its 

complications, are the leading causes of death in many societies. The alarming increase in 

cardiovascular disease-related deaths correlates with the increasing percentage of the 

population classified as obese. Although cardiovascular disease and obesity are largely 

preventable through lifestyle modification, no decrease in their occurrence is foreseeable 

in the near future. Therefore, great interest in science and medicine has been focused on 

understanding the development of atherosclerosis and on potential mechanisms to slow or 

reverse the atherosclerotic process.  

 Atherosclerosis is an inflammatory disease which occurs in response to injury to 

the arterial wall, resulting in endothelial cell dysfunction, VSMC proliferation, and 

migration to the site of injury (Ross R 1999 and Rudijanto A 2007). This injury leads to 

endothelial cell dysfunction causing excessive, chronic inflammation and phenotypic 

changes in the endothelial cell layer. The endothelium loses its anticoagulant nature 

becoming pro-coagulant. This pro-coagulant nature causes the release of inflammatory 

cytokines, platelet activation, and the release of PDGF triggering the surrounding 

VSMCs to become proliferative (Ross R 1993 and Ross R 1999). Although not 

completely understood at this time, the inflammatory response is largely mediated by IL-

1β and TNFα (Kishikawa H, Shimokama T, and Watanabe T 1993, Rus HG, Niculescu F, 

and Vlaicu R 1991, Moyer CF et al. 1991, and Galea J et al. 1996), and the immune 

response is predominantly mediated by the upregulation of adhesion molecules (i.e. 

ICAM and VCAM) (Viemann D et al. 2006). This recruitment of macrophages and 

lymphocytes causes the release of additional inflammatory molecules including 
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hydrolytic enzymes, cytokines, chemokines, and growth factors leading to more wall 

damage and the development of a fibrous plaque (Ross R 1993 and Ross R 1999).  

 Two major hallmarks of atherosclerosis include endothelial cell dysfunction and 

smooth muscle cell proliferation induced through the uncontrolled inflammatory 

response. Therefore the goal of this dissertation was to further our understanding of the 

development of atherosclerosis and potential ways to attenuate this excessive 

inflammation. These goals included the anti-inflammatory nature of shear stress in the 

vasculature and the potential use of heparin as a short-term anti-inflammatory treatment 

or the possibility of activating the heparin signaling pathway without heparin for the 

long-term treatment of vascular disease. To accomplish these goals, the role of shear 

stress in maintaining barrier integrity in vascular endothelium was determined to involve 

cofilin, a cell surface protein was identified as a receptor for heparin, and the signaling 

pathway from that receptor to MKP-1 was elucidated. Along with identifying this 

signaling pathway, heparin-induced gene expression changes were investigated in 

vascular smooth muscle cells. Lastly, it was shown that heparin exerts its anti-

inflammatory effect by attenuating TNFα responses in vascular endothelial cells.  

 It has been well established that shear stress plays a crucial role in maintaining 

vascular homeostasis and promoting the anti-coagulant and anti-inflammatory 

(atheroprotective) environment found in healthy vasculature (and reviewed in: Mengistu 

M, Slee JB, and Lowe-Krentz LJ 2012 and Hahn C and Schwartz MA). Regions of the 

vasculature that are exposed to laminar shear stress are considered atheroprotective 

whereas regions exposed to disrupted shear stress are pro-coagulant and pro-
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inflammatory (atheroprone). However the exact mechanism underlying how this 

mechanical stress affects vascular physiology remains unclear. Previous work performed 

in the lab documented that atheroprotective levels of shear stress induce whole cell, 

nuclei, and actin microfilament realignment in the direction of shear stress, suggesting 

that this alignment was in some way beneficial (Mengistu M et al. 2011 and reviewed in: 

Mengistu M, Slee JB, and Lowe-Krentz LJ 2012). This alignment in the direction of 

shear stress is also found in vivo further supporting the hypothesis that this alignment is 

in some way atheroprotective (reviewed in: Mengistu M, Slee JB, and Lowe-Krentz LJ 

2012). Hamel M et al. (2006) also determined that stress kinase (JNK and p38) activity 

was required for this shear stress-induced actin realignment, further supporting the 

observation that active JNK and p38 associate with the actin cytoskeleton.  

 To further understand the role of shear stress as an anti-inflammatory mediator, I 

investigated the role that cofilin played in the process of shear stress-induced actin 

realignment. Cofilin, a prominent actin depolymerizing protein, is involved in regulating 

actin dynamics by binding actin filaments and facilitating their breakdown. Shear stress 

was shown to induce p-cofilin localization to the nucleus without significantly altering 

total cofilin levels in a confluent monolayer of vascular endothelial cells (Slee JB and 

Lowe-Krentz 2013). The change in cofilin activity and localization were also dependent, 

in part, upon stress kinases JNK and p38, although they were not directly involved in 

cofilin phosphorylation (Slee JB and Lowe-Krentz 2013). It has been shown that shear 

stress induces endothelial barrier tightening, creating an effective barrier in the vascular 

system (DePaola N et al. 2001 and Seebach J et al. 2000). I have shown that cofilin 
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activity is required for this shear stress-induced barrier tightening through its regulation 

of actin realignment (Slee JB and Lowe-Krentz 2013). 

Endothelial cells with improperly regulated cofilin fail to exhibit traditional actin 

realignment ultimately leading to gaps and breaks in cell-cell junctions (Slee JB and 

Lowe-Krentz 2013). These findings demonstrate that cofilin-mediated actin realignment 

is necessary for maintaining endothelial barrier integrity during shear stress, which 

furthers our understanding of how shear stress is atheroprotective. Cofilin in combination 

with JNK and p38 are activated in response to atheroprotective shear stress to facilitate 

actin realignment in the direction of shear stress which facilitates cell-cell junction 

tightening and increased barrier integrity. This is one way in which healthy endothelial 

cell physiology is promoted in order to prevent “leaky” endothelium which is associated 

with the development of atherosclerosis by the recruitment of immune cells and the 

release of inflammatory mediators. Given that this atheroprotective shear stress is not 

found in all regions of the vascular system, it is important to understand the underlying 

mechanisms involved in mediating the downstream effects. The results from this work 

suggest that actin realignment is mis-regulated in atheroprone shear stress regions.  

 An interesting future aspect to the shear stress work is in the field of implantable 

devices and stents. In the case of vascular stents, two major problems arise after 

implantation. Short-term failure can be caused by the inability of endothelial cells to 

grow on the stent and form the necessary anti-inflammatory layer. Long-term failure is 

often attributed to failure to endothelialize the stent and calcification of the stent leading 

to increased inflammatory signaling resulting in plaque formation in the stent (reviewed 
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in: Mengistu M, Slee JB, and Lowe-Krentz LJ 2012). The findings from my work mimics 

the implantation of stents. In this system, static cells are exposed to a surge of shear 

stress, similar to the surge of blood when a stent is implanted. Also understanding how 

shear stress relates to the atheroprotective nature of the vasculature by promoting a strong 

endothelial barrier, sheds light onto mechanisms of how to create this atheroprotective 

physiology in stents. Increasing our knowledge of how cells respond to this initial shear 

stress could potentially increase vascular stent success. To further explore ways to 

prevent calcification of vascular stents and promote the development of an 

atheroprotective stent environment I will be exploring the molecule CD47 in my post-

doctoral position at Children’s Hospital of Philadelphia. Initial studies show that CD47 

greatly reduces calcification and increases long-term success of implantation (Finley MJ 

et al. 2012).  

 A second way to potentially combat inflammation in the vascular system is to 

utilize the molecule heparin. Heparin has been repeatedly shown to possess anti-

proliferative and anti-inflammatory qualities that make it an excellent possibility for 

treatment of vascular disease. However future work aimed at reducing the somewhat 

severe side effects before it could be used medicinally as a long-term therapy. The anti-

proliferative effects of heparin have been linked to the regulation of MAPK cascade 

intermediates and to regulation of the cell cycle. Both serve to slow cell proliferation, 

which would be beneficial in atherosclerosis where one of the hallmarks is unwanted 

VSMC proliferation. The anti-inflammatory nature of heparin is starting to gain traction 

in the literature and includes the inhibition of complement activation, adhesion 
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molecules, and NFκB signaling (reviewed in: Mengistu M, Slee JB, and Lowe-Krentz LJ 

2012). In my opinion, one of the best ways to further our understanding of heparin is to 

identify a protein which serves as a receptor. Evidence from our lab suggests that heparin 

exerts a portion of its effects through a receptor. Identification of a receptor for heparin 

opens up many options for harnessing the anti-proliferative and anti-inflammatory 

qualities of heparin without the side effects associated with long-term heparin treatment. 

Knowing the receptor would allow for the design of receptor agonists which could, in 

theory, mimic the effects of heparin in the vasculature. 

 The data presented herein, combined with previously collected work by Raymond 

Pugh, strongly suggest that TMEM184A functions as a receptor for heparin. Data 

supporting this conclusion include mass spectrometry sequence analysis, 

immunoprecipitation, and siRNA knockdown coupled to functional assays. Along with 

the data demonstrating a role for TMEM184A as a receptor for heparin, descriptive 

experiments were performed to further our understanding of TMEM184A. TMEM184A 

was found to localize to peri-nuclear and membrane regions, where it co-localizes with 

VAMP, cav-1, and eNOS. A GFP-tagged version of TMEM184A was also used to 

demonstrate that it co-localizes with Rhodamine-tagged heparin in vascular smooth 

muscle cells. All of which indirectly support TMEM184A as a receptor for heparin. The 

functional data showing that TMEM184A knock down decreases heparin’s effects on 

established targets indicates that TMEM184A could be a receptor for heparin.  

 Although some of the effects of heparin are due to sequestration of growth factor 

and other signaling molecules, identification of a receptor for heparin provides crucial 
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information for furthering our understanding of the mechanisms for heparin. We have 

published evidence and data presented in this dissertation that indicate signaling from a 

receptor is mediated through cGMP and PKG. Initially, work done by Albert Gilotti 

suggested that the cGMP/PKG pathway was involved in heparin signaling (Gilotti A diss 

2000), which was strengthened by various members of the lab. My contribution to the 

project showed that specific knock down of PKG reduced heparin’s effects on published 

pathways. Although not definitively investigated in this dissertation, the possible 

involvement of eNOS in this pathway exists. Not only does eNOS typically play a role in 

increasing cGMP it was also determined that internalized TMEM184A co-localizes with 

eNOS in vascular endothelial and smooth muscle cells. The involvement of eNOS in 

mediating heparin signaling is currently being investigated by members of the lab. 

Preliminary results suggest that eNOS may be involved in heparin signaling (Swanson K 

and Li Y unpublished data), although considerable more work is needed to confirm these 

data. 

 In separate but related experiments, it was determined that heparin attenuates 

TNFα-induced inflammation in vascular endothelial cells. Initial work bone by Marianne 

Hamel and Daniela Kanyi showed that heparin treatment decreased TNFα-induced JNK 

and p38 activity and decreased their target activation (Hamel M diss 2001 and Kanyi D 

diss 2006). It was determined that these effects were also seen when anti-heparin receptor 

antibodies were used in place of heparin, indicating that heparin is acting through a 

receptor. To complete this story, I have shown that TNFα strongly induces actin stress 

fibers in sub-confluent endothelial cells and that this response is significantly attenuated 
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by heparin pretreatment. These data suggest that heparin possess anti-inflammatory 

qualities capable of reversing TNFα inflammation, which is mediated through receptor 

binding.  

 To further our understanding of the mechanisms behind heparin, heparin-induced 

mRNA changes were investigated. The culmination of these studies suggests that heparin 

regulates a large number of genes that are related to cell proliferation, migration, 

inflammatory signaling, and GAG-dependent Serpins. Some of the genes that were 

shown to be significantly altered by heparin treatment were in pathways that I would 

expect to be regulated by heparin. GUCY1B3 is the gene of highest priority for 

immediate investigation, because it further supports involvement of cGMP and PKG in 

heparin signaling. This presents a possible feed forward loop in which the signal initiated 

by heparin binding to its receptor could be amplified by increasing GUCY1B3 and cell 

sensitivity to heparin. Another gene upregulated by heparin treatment suitable for 

immediate investigation includes RGS4, which has been shown to antagonize VEGF 

stimulation of DNA synthesis, ERK1/2 activation, and p38 MAPK activation. 

Essentially, RGS4 performs much of the same functions of heparin in vascular cells. A 

final interesting point worth noting is that heparin preferentially upregulates more genes 

than it down-regulates. In fact, hardly any down-regulated genes reach a fold change of 

1.5, suggesting that heparin does not have many inhibitory roles on gene expression.  

The common thread among all of the data in this dissertation is inflammation and 

proliferation associated with atheroslcerosis and ways to prevent them. Shear stress is an 

important player in maintaining the anti-inflammatory and anti-coagulant atmosphere 
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necessary for healthy vasculature. Heparin is in a unique position to as an anti-

inflammatory and anti-proliferative molecule in the vascular system. To mediate at least a 

portion of these effects, it seems that heparin binds to TMEM184A (heparin receptor) to 

facilitate an intracellular signaling cascade. One of those cascades involves signaling 

through cGMP, PKG, and presumably eNOS in VSMCs. A second of those cascades 

culminates in JNK and p38 activity to reduce inflammatory signaling in vascular 

endothelial cells, although the upstream signaling molecules are unknown at this point. 

Although it cannot be associated with receptor binding, heparin regulates a large number 

of genes in VSMCs related to proliferation, migration, inflammation, and transcription, 

suggesting that the study of heparin is only in its infancy. 
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Appendix I: RNA Isolation and Processing Methods 

 

RNA Isolation 

 In all cases (RT-PCR analysis, PCR arrays, and microarray) RNA was isolated 

from 100 mm dishes of A7r5s or RAOSMCs using the Qiagen RNeasy total RNA 

isolation kit with the optional on-column DNase digestion. Briefly, cells were harvested 

in 600 μl of buffer RLT to which 600 μl of 70% ethanol was added. 700 μl of this 

solution was then added to an RNeasy spin column and centrifuged for 15 sec at ≥ 10,000 

rpm. The flow through was discarded and the column was rinsed with 350 μl of buffer 

RW1 and centrifuged for 15 sec at ≥ 10,000 rpm. Following the centrifugation, the on-

column DNase digestion was performed by adding 10 μl of DNase I stock to 70 μl of 

buffer RDD and adding this entire solution to the membrane of the RNeasy spin column 

for 15 mins at room temperature. Following DNase digestion, 350 μl of buffer RW1 was 

added to the column and centrifuged for 15 sec at ≥ 10,000 rpm. The flow-through was 

discarded and 500 μl of buffer RPE was added to the column and centrifuged for 15 sec 

at ≥ 10,000 rpm. The flow-through was again discarded and 500 μl of buffer RPE was 

added to the column and centrifuged for 2 min at ≥ 10,000 rpm to dry the membrane. The 

RNeasy spin column was then placed in a new 2 ml collection tube and centrifuged for 1 

min at ≥ 10,000 rpm to eliminate any remaining buffer RPE. The RNeasy spin column 

was then placed in a 1.5 ml microcentrifuge tube with the cap cut off. To elute RNA, 50 

μl of provided RNase-free water was added direction to the RNeasy spin column 

membrane for at least 1 min and centrifuged for 1 min at ≥ 10,000 rpm.  
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RNA Quality Control 

 To ensure that high quality total RNA was isolated, a nanodrop measurement was 

obtained for all RNA samples and an agarose gel was run. For RNA to pass the nanodrop 

measurement, the sample needed to have an A260/280nm ratio of ~2.0 ± 1.5 and a 

concentration of ≥ 100 ng/ml. All samples also needed to show intact and robust 

ribosomal RNA bands on a 1% agarose gel run in 1% TAE buffer. Briefly, samples RNA 

samples were mixed with loading dye (50:50) and loaded onto the 1% agarose gel. Gels 

were run for ~30 mins at 70 volts, stained using ethidium bromide, and imaged using a 

photodyne imager with ethidium bromide filter. High quality RNA samples were kept at  

-20 ºC until used for the reverse transcription reaction. For the microarray analysis, 

additional quality control measures were performed by the company. 

Reverse Transcription Protocol 

 Reverse transcription was carried out using Invitrogen’s SuperScript III First-

Strand Synthesis Super Mix reagents. According to the manufacturer’s instructions, the 

following were combined in a microcentrifuge tube on ice: 

Table AI.1: Reverse Transcription Reaction Step 1 

Component Amount 

Up to 5 μg total RNA n μl 

50 mM Oligo dT Primer 1 μl 

Annealing Buffer 1 μl 

RNase/DNase-Free Water To 8 μl (if necessary) 

Note: Since Oligo dT primers were used, only mRNA was reverse transcribed to 

cDNA, eliminating any other RNA species from analysis. 
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The above mixture was incubated in a heat block set to 65 ºC for 5 mins and then 

immediately placed on ice for 1 min and then briefly centrifuged to collect the contents. 

The following were then added to the tube on ice: 

Table AI.2: Reverse Transcription Reaction Step 2 

Component Amount 

2X First-Strand Reaction Mix 10 μl 

Superscript III/RNaseOUT Enzyme Mix 2 μl 

 

The sample was then briefly vortexed to mix, centrifuged to collect the contents, and 

incubated in a heat block set to 50 ºC for 50 mins. Following the 50 min incubation, the 

reaction was terminated by placing the tubes in a heat block set to 85 ºC for 5 min. cDNA 

samples were stored at -20 ºC. 

RT-PCR Method 

 Qiagen’s RotorGene RT-PCR equipment and kits were used for RT-PCR 

analysis. The Qiagen RotorGene RT-PCR reaction relies on SYBR green chemistry as a 

way to quantitate relative levels of cDNA in a reaction mixture. The reaction mixture was 

set up as follows: 

Table AI.3: RT-PCR Reaction Set-up 

Component Volume/Reaction Final Concentration 

2X SYBR Green Master Mix 12.5 μl 1X 

10X Quantitect Primer 

(GAPDH, DUSP1) 

2.5 μl 1X 

Template cDNA 2 μl (20ng)* ≤ 100 ng/ml 

RNase-free Water 8 μl -------- 

Total Reaction Volume 25 μl ------- 

*For reverse transcription reaction, 200 ng of RNA was converted to cDNA. Resulting 

solution is 200 ng/ 20 μl which is 10 ng/ml. For RT-PCR reaction, 2 μl of this solution 

was used to reach a concentration of 20 ng for the reaction.  
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The RotorGene was programmed with the following cycling conditions: 

Table AI.4: RotorGene Cycling Conditions 

Step Time Temperature (ºC) Comments 

PCR Initial Activation 5 min 95 Activates Polymerase 

Two-Step Cycling  

Denaturation 5 sec 95 --- 

Combined Annealing and 

Extension 

10 sec 60 Perform fluorescence 

data collection 

# of Cycles 40 --- Depends on amount 

of template cDNA 

 

SABiosciences PCR Array Analysis 

SABiosciences RT
2
 Profiler PCR arrays (Qiagen) (Rat MAPK PCR Array and 

EGF/PDGF PCR Array) were used for PCR Array analysis. Total RNA was isolated from 

A7r5s and quality was determined as described above. First strand cDNA synthesis was 

carried out using SABiosciences RT2 First Strand Kit (Qiagen). The reverse transcription 

reaction was performed as follows. The genomic DNA elimination mixture was prepared 

in a sterile PCR tube for each sample, according to the following table. 

Table AI.5: SABiosciences RT
2
 Genomic DNA Elimination Reaction Mix 

Component Volume/Concentration 

Total RNA 25.0 ng to 5.0 µg 

GE (5X gDNA elimination buffer) 2.0 µl 

diH20 10 µl 

 

The contents were mixed and briefly centrifuged and incubated for 5 mins at 42 ºC. 

Following incubation the tubes were chilled on ice for at least 1 min. The RT cocktail 

was prepared while the tube incubated on ice, according to the following table. 
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Table AI.6: SABiosciences RT Reaction Mix 

Component 1 Reaction 

(µl) 

2 Reactions 

(µl) 

3 Reactions 

(µl) 

BC3 - 5X RT Buffer 3 4 8 16 

P2 – Primer and External Control 

Mix 

1 2 4 

RE3 – RT Enzyme Mix 3 3 6 12 

Water 3 6 12 

Final Volume 10 20 30 

 

Once the above two mixes were prepared, 10 µl of RT Cocktail was added to each 10 µl 

Genomic DNA Elimination Mixture. The solutions were mixed gently with a pipettor and 

incubated for 15 min and then the reaction was immediately terminated by heating to 95 

ºC for 5 min. 91 µl of water was added to each 20 µl cDNA synthesis reaction and mixed 

well. The cDNA was kept on ice until ready to use or stored at -20 ºC overnight.  

 The PCR Array was carried out using the following mix: 

Table AI.7: SABiosciences PCR Reaction Mix 

Component Volume (µl) 

RT
2
 SYBR Green qPCR Mastermix 12.5 

ddH20 10.5 

Template cDNA (up to 250 ng) 1.0 

Gene-Specific PCR Primer Pair Stock 1.0 

Total Volume 25.0 

 

The qPCR reaction was carried out using a two-step cycling program and an Applied 

Biosystems 7300 Real-Time PCR System. 
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Table AI.8 SABioscience PCR Array Cycling Parameters 

Step Time Temperature (ºC) Comments 

PCR Initial Activation 10 min 95 Activates Polymerase 

Two-Step Cycling  

Denaturation 15 sec 95 --- 

Combined Annealing 

and Extension 

60 sec 60 Perform fluorescence 

data collection 

# of Cycles 40 --- Depends on amount 

of template cDNA 

 

Data analysis was performed using SABioscience’s online program. Raw data are 

converted to fold change relative to their controls 

It is important to note that this methodology was only used for the SABiosciences 

PCR Arrays. Qiagen RotorGene reagents were used for the targeted RT-PCR analyses. 
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Appendix II: MAPK PCR Array Genes 
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Appendix III: EGF/PDGF PCR Array Genes 
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Appendix IV: Microarray Results showing genes with significant fold changes 

 

Gene Description Gene Symbol 

Fold Change                               

(HEP24 vs 

CON024) 

neuritin Nrn1 0.332 

carbonic anhydrase 3  Car3  0.361 

calmegin  Clgn  0.400 

SMAD family member 9  Smad9  0.421 

inhibitor of DNA binding 1  Id1  0.444 

solute carrier family 9 (sodium/hydrogen exchanger), member 2  Slc9a2  0.486 

inhibitor of DNA binding 2  Id2  0.548 

lectin, galactoside-binding, soluble, 3  Lgals3  0.561 

Ral GEF with PH domain and SH3 binding motif 2  Ralgps2  0.583 

paired related homeobox 2  Prrx2  0.584 

microsomal glutathione S-transferase 2  Mgst2  0.591 

EGL nine homolog 3 (C. elegans)  Egln3  0.592 

purinergic receptor P2Y, G-protein coupled, 1  P2ry1  0.596 

small proline-rich protein 1A-like  Sprr1al  0.602 

PTPRF interacting protein, binding protein 2 (liprin beta 2)  Ppfibp2  0.611 

SMAD family member 6  Smad6  0.612 

ATP-binding cassette, sub-family A (ABC1), member 1  Abca1  0.614 

neuropilin (NRP) and tolloid (TLL)-like 2  Neto2  0.615 

neuropeptide Y  Npy  0.627 

serine incorporator 2  Serinc2  0.630 

shroom family member 1  Shroom1  0.635 

atonal homolog 8 (Drosophila)  Atoh8  0.639 

interferon regulatory factor 8  Irf8  0.640 

similar to RalA binding protein 1  LOC304239  0.644 

olfactory receptor 920  Olr920  0.645 

partner and localizer of BRCA2  Palb2  0.650 

SMAD family member 7  Smad7  0.656 

similar to 4833420G17Rik protein  RGD1306227  0.659 

protein phosphatase 2 (formerly 2A), regulatory subunit B, beta isoform  Ppp2r2b  0.664 

mannan-binding lectin serine peptidase 1  Masp1  1.505 

naked cuticle homolog 2 (Drosophila)  Nkd2  1.506 

fibronectin type III domain containing 1  Fndc1  1.507 

thioredoxin interacting protein  Txnip  1.509 

thyroid hormone receptor beta  Thrb  1.512 

transient receptor potential cation channel, subfamily V, member 2  Trpv2  1.516 

potassium channel, subfamily K, member 2  Kcnk2  1.516 

cysteine dioxygenase, type I  Cdo1  1.516 

vasoactive intestinal peptide receptor 2  Vipr2  1.518 

similar to leucine zipper protein 2  RGD1563838  1.519 

epoxide hydrolase 1, microsomal  Ephx1  1.521 

sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3D  Sema3d  1.521 
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ciliary neurotrophic factor  Cntf  1.521 

guanine deaminase  Gda  1.522 

estrogen receptor 1  Esr1  1.526 

serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 9  Serpina9  1.528 

dystrophia myotonica-protein kinase  Dmpk  1.530 

LIM and senescent cell antigen like domains 2  Lims2  1.533 

pentraxin related gene  Ptx3  1.534 

gastrin releasing peptide receptor  Grpr  1.535 

transmembrane protein 204  Tmem204  1.538 

signal peptide, CUB domain, EGF-like 3  Scube3  1.538 

proprotein convertase subtilisin/kexin type 5  Pcsk5  1.538 

LIM and cysteine-rich domains 1  Lmcd1  1.539 

sarcoglycan, gamma (dystrophin-associated glycoprotein)  Sgcg  1.554 

myozenin 2  Myoz2  1.562 

olfactory receptor 325  Olr325  1.568 

solute carrier family 35, member F1  Slc35f1  1.585 

chemokine (C-C motif) receptor-like 1  Ccrl1  1.591 

ADAM metallopeptidase with thrombospondin type 1 motif, 5  Adamts5  1.592 

inositol polyphosphate-4-phosphatase, type II  Inpp4b  1.594 

matrix Gla protein  Mgp  1.595 

serine (or cysteine) peptidase inhibitor, clade B, member 2  Serpinb2  1.603 

integrin, alpha 4  Itga4  1.612 

decorin  Dcn  1.617 

5-hydroxytryptamine (serotonin) receptor 1F  Htr1f  1.641 

family with sequence similarity 38, member B  Fam38b  1.644 

amine oxidase, copper containing 3 (vascular adhesion protein 1)  Aoc3  1.677 

serine (or cysteine) peptidase inhibitor, clade A, member 3N  Serpina3n  1.685 

microfibrillar-associated protein 4  Mfap4  1.687 

chondroitin sulfate N-acetylgalactosaminyltransferase 1  Csgalnact1  1.691 

family with sequence similarity 5, member B  Fam5b  1.691 

transglutaminase 2, C polypeptide  Tgm2  1.697 

integrin, alpha 7  Itga7  1.699 

Notch homolog 3 (Drosophila)  Notch3  1.699 

presenilin 2  Psen2  1.702 

serine (or cysteine) peptidase inhibitor, clade B, member 7  Serpinb7  1.713 

guanylate cyclase 1, soluble, beta 3  Gucy1b3  1.714 

olfactomedin-like 2B  Olfml2b  1.721 

transmembrane 7 superfamily member 2  Tm7sf2  1.744 

oxidized low density lipoprotein (lectin-like) receptor 1  Olr1  1.773 

ceruloplasmin  Cp  1.776 

serine (or cysteine) peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 9  Serpina9  1.791 

sprouty homolog 1, antagonist of FGF signaling (Drosophila)  Spry1  1.794 

similar to transmembrane protein 2  RGD1305254  1.799 

selenoprotein P, plasma, 1  Sepp1  1.848 

carboxypeptidase X (M14 family), member 2  Cpxm2  1.875 

CD180 molecule  Cd180  1.887 
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bone morphogenetic protein 6  Bmp6  1.889 

mast cell protease 1  Mcpt1  1.905 

similar to C21ORF7  LOC304131  1.920 

WAP four-disulfide core domain 1  Wfdc1  1.922 

similar to ABI gene family, member 3 (NESH) binding protein  RGD1562717  1.937 

calsequestrin 2 (cardiac muscle)  Casq2  1.979 

integrin, beta-like 1  Itgbl1  2.049 

phospholamban  Pln  2.062 

Fraser syndrome 1 homolog (human)  Fras1  2.112 

tumor necrosis factor (ligand) superfamily, member 18  Tnfsf18  2.114 

peptidase inhibitor 15  Pi15  2.163 

elastin  Eln  2.253 

fin bud initiation factor homolog (zebrafish)  Fibin  2.296 

sodium channel, voltage-gated, type VII, alpha  Scn7a  2.370 

slit homolog 3 (Drosophila)  Slit3  2.505 

myosin, heavy chain 2, skeletal muscle, adult  Myh2  2.556 

aldo-keto reductase family 1, member C14  Akr1c14  2.594 

bone morphogenetic protein 3  Bmp3  2.717 

myosin, heavy polypeptide 1, skeletal muscle, adult  Myh1  2.742 

fibromodulin  Fmod  2.789 

osteomodulin  Omd  2.871 

regulator of G-protein signaling 4  Rgs4  3.039 

asporin  Aspn  3.853 
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