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Abstract

If one wishes to understand the ecological role, range, habitat preferences, selective 

pressures, reproduction, response to climate change, and the potential for survival under 

climactic change, range expansion and range contraction for species and populations of 

bryophytes, an understanding of their survival of the desiccated state, is essential. In order to 

further our understanding of desiccation tolerance in mosses, three projects were undertaken. The 

first of these investigated the nature of desiccation tolerance in mosses, specifically if desiccation 

tolerance can be induced; thereby providing a desiccation tolerant phenotype in a moss species 

generally considered desiccation sensitive (Physcomitrella patens, the model organism for 

mosses). This hypothesis supposes the traditional dogmatic assumption that mosses can be 

cleanly divided into two categories (desiccation tolerant or desiccation sensitive) is wrong. The 

second project expanded upon the first by investigating if a hardened desiccation tolerant 

phenotype is retained for a time following the cessation of stimuli (using P. patens as a study 

system). The third project was designed to disentangle the interacting factors of ecotypic 

variation in Bryum argenteum (both in mean trait values as well as phenotypic plasticity), rate of 

desiccation (time allotted for the induction of desiccation tolerance), and life history phase (five 

categories considered).   

Inducible desiccation tolerance exists in mosses and the examined ―desiccation sensitive‖ 

species can survive desiccation if given proper stimuli, refuting the conventional dogma of 

desiccation tolerance existing as a binary state of tolerant or sensitive. Hardening toward 

desiccation tolerance was shown for P. patens, attenuating within eight days. All factors 

examined within the third study (rate of drying, phase, and ecotype) proved to significantly 
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impact desiccation tolerance. Adult shoots and bulbils (lateral dispersal agents across a local 

landscape, vegetative propagules) were found to display a desiccation tolerant phenotype with 

either rapid or no required induction for all ecotypes examined. Juvenile and intermediate shoots 

displayed an inducibly desiccation tolerant phenotype in response to the rate of drying applied 

(longer times resulting in greater health upon rehydration), with variation in response detected 

between ecotypes examined. For some juvenile and shoot ecotypes a rather low inducible 

capacity was shown requiring long rates of drying to achieve a high degree of desiccation 

tolerance, other ecotypes however displayed either a strong inducible response requiring only a 

short rate of drying for induction. The protonemal phase (responsible for lateral growth across 

the substrate, and giving rise to shoots) showed a pattern similar to juveniles, but more 

pronounced with more damage apparent with rapid dries. Some protonemal ecotypes did not 

appear to respond to slower dries, apparently lacking an inducibly desiccation tolerant 

phenotype, while some ecotypes (typically from the Southwestern United States of America; CA, 

NM, NV) showed a high potential for rapid induction of a desiccation tolerant phenotype. These 

results are interesting as they show a wider breadth of capacity for desiccation tolerance in 

regards to desiccation tolerance as well as a varying capacity for the phenotypic plasticity in 

response to slow drying rates for induction. 
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Chapter One: Introduction and Background 

Information Concerning Desiccation Tolerance 

in Mosses 
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Organismal Information 

The two species examined, Physcomitrella patens (Hedw.) and Bryum argenteum 

(Hedw.), serve as representative organisms near the terminal ends of a hypothesized gradient from 

desiccation sensitive to desiccation tolerant, and, as such, make excellent bookends (as study-

species) for this project. Physcomitrella patens is a desiccation sensitive moss (Koster 2010) with 

a range restricted to mesic habitats. Bryum argenteum on the other hand has one of the widest 

distributions worldwide of any moss with specimens found on all continents and habitats ranging 

from mesic to xeric (Flora of North America Editorial Committee 2014).  

Mechanistic Basis of Desiccation Tolerance 

As a general rule when bryophytes are desiccated beyond their capacity to tolerate (i.e., <1 

h), vital physiological recovery processes are negatively impacted, such as microtubule 

disassembly and reassembly (Pressel & Duckett 2010). In addition, when exposed to rapid drying 

(RD), plants exhibit chlorosis, delayed regeneration, reduced fitness, and damaged shoot apices 

(Schonbeck & Bewley1981a, b; Barker et al 2005; Stark et al. 2011). For some species however 

desiccation poses a much smaller threat, and individuals such as Syntrichia ruralis can survive 

multiple decades equilibrated to single digit humidities (Stark et al. 2016). The fact that mosses 

can survive such extreme physiological stresses and the mechanistic factors that underlie this 

survival are fascinating. 

There is a large body of evidence suggesting that abcisic acid (ABA) is the signaling 

molecule most directly responsible for the control and regulation of the inducible aspect of a 

desiccation tolerant phenotype. Abcisic acid is known to generate a desiccation tolerant 

phenotype when exogenously added to a desiccation sensitive moss, and serves as a signaling 

molecule for many stress responses in vascular plants. Phenotypic desiccation tolerance induction 
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by ABA has been shown for the spp. Funaria hygrometrica at a conc. of 10 μM (Werner et al. 

1991) and by for P. patens at a conc. of 100 μM (Oldenhof et al. 2006). Werner et al. (1991) 

furthermore showed that this induction of a desiccation tolerant phenotype required protein 

synthesis by applying ABA in conjunction with cyclohexamide (a protein synthesis inhibitor), 

which resulted in the loss of the desiccation tolerant phenotype. The timing of ABA activity in 

relation to a cycle of desiccation-rehydration was further refined by Beckett (2001). Becket gave 

samples of Atrichum androgynum ABA, but only provided cyclohexamide for a portion of the 

drying-rehydration cycle. Cyclohexamide was applied during the drying to desiccation (occurred 

over 3 days), during the desiccated state, and during rehydration, as well as stages in combination. 

He found no inhibition of the desiccation tolerant phenotype was detectable when cyclohexamide 

was added during desiccation or rehydration, showing that protein synthesis during these stages is 

not needed to achieve desiccation tolerance. Cyclohexamide added during the drydown however 

resulted in death, showing protein synthesis during the drying period is essential for desiccation 

tolerance, and most likely similar timing for ABA synthesis is required in nature. Furthermore 

these results show, in inducibly desiccation tolerant mosses at least, that protection plays the 

lion’s share of responsibility for desiccation tolerance, with repair aspects not needed for 

desiccation tolerance (note this does not prove that repair aspects have no beneficial effects, just 

that they are not essential for desiccation tolerance. 

These findings oppose the constitutive theory of desiccation tolerance in mosses and 

observations by other researchers in the field (Bewley 1973; Oliver & Bewley 1984). Both 

Beckett (2001), as well as Werner (1991) theorized that the different results that they observed are 

due to differences in experimental technique. Namely they believe that the source material used in 

most experiments on desiccation tolerance use field collected mosses, and therefore is already in 
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an induced state. Secondly they thought that the rates of drying applied for a ―slow dry‖ are too 

rapid (usually 0.5-3 hours) for significant protein synthesis to occur. 

Addition of ABA to mosses has been studied using both microarrays (Cuming et al. 2007), 

as well as proteomics (Wang et al. 2009; Cui et al. 2012; Cruz de Carvalho et al. 2014), and 

microscopic observation of cytoskeletal responses (Pressel et al. 2006; Proctor et al. 2007). For 

the most part these studies uncovered synonymous findings. A down regulation of many genes 

associated with both metabolic functions and photosynthesis was observed (a notable exception 

was upregulation of enzymes and pathways related to sucrose formation). Downregulation was 

seen for cytoskeletal proteins (confirmed by microscopic observation of cytoskeletal disassembly 

during desiccation). Upregulation was observed for late embryogenesis abundant proteins (LEA 

proteins), heat shock proteins (HSP), dehydrins, and compounds associated with the scavenging 

of free radicals. 

The down regulation of metabolic compounds would function to lower the risk of high 

energy compounds (associated with mitochondria and chloroplasts) forming free radicals by 

lowering the total number of precursor compounds present in the cell during desiccation. Down 

regulation of cytoskeletal proteins and the associated dis-assembly of much of the cytoskeleton is 

though to aid in withstanding the shifts in cell volume (and plasmolysis) that occur with drying 

(Pressel 2006). Upregulation of sucrose metabolism and formation would aid in the vitrification 

of the cytoplasm leading to bioglass formation, which acts as a molecular shield preventing 

membrane-membrane and protein-protein interactions as well as filling hydrogen bonding 

requirements by locking a monolayer of water to organelles and proteins (Crowe et al. 1992, 

Smirnoff 1992). Late embryogenesis abundant proteins and dehydrins play numerous roles in 

preventing protein aggregation, and the stabilization of hydrophobic regions of membranes and 
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proteins (Tunnacliffe & Wise 2007). Heat shock proteins play roles both in the preventing of 

protein mis-folding and the protein aggregation this leads to, as well as tagging damaged proteins 

for destruction (Bakau & Horwich 1998).  

In addition to exogenous ABA leading to an inducibly desiccation tolerant phenotype, the 

act of slow drying itself has been shown to lead to an increase in ABA levels in mosses. The 

formation of ABA in conjunction with the studies described earlier shows a link between a slow 

rate of water loss, the formation of a signaling molecule in response to water loss, and the 

formation of a desiccation tolerant phenotype in response to the signaling molecule generated by 

a slow dry.  

Methodological Developments 

The most commonly used method for drying mosses is to equilibrate them to an 

atmosphere of a specific relative humidity generated in the head space above a saturated salt 

solution. The use of a saturated salt solution to generate a controlled relative humidity is a well-

established method that produces accurate results, somewhat modulated by the temperature at 

which the solution is stored (Greenspan 1976). This method however can be problematic, 

depending upon application, as it fundamentally links the rate of water loss to equilibrating 

relative humidity established by the salt solution, and the two cannot be independently 

manipulated. This leads to a situation where a saturated salt solution of potassium acetate 

(equilibrating relative humidity of 23%), for example, will always result in a more rapid drying 

rate than a solution of sodium chloride (equilibrating relative humidity of 75%).  

To give us more flexibility for experimental design when working with equilibrating 

relative humidities, we implemented a system utilizing a hydrated artificial substrate in an 

enclosed space. The artificial substrate consisted of filter paper which is hydrated with a pre-
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determined amount of water, and placed within a petri dish. This petri dish is placed within a 

relative humidity cabinet set to 50% relative humidity that is itself located within an 

environmental control room also set to 50% relative humidity for redundancy.  As liquid 

evaporates from the filter paper the relative humidity within the Petri dish rapidly rises to 99%. 

Moist air in the petri dish slowly leaks out over time, being replenished with water from the filter 

paper until the source is exhausted at which point the Petri dish equilibrates to the relative 

humidity inside the chamber (usually 50% in this body of work). The volume of water added to 

the petri dish therefore controls the time a moss placed within the dish will spend in a sub-turgor 

state (at approx. 99% relative humidity), where we hypothesize physiological adaptations 

allowing survival of desiccating conditions occur. 

Response Variables Used Across This Work 

Chlorophyll Fluorescence 

Chlorophyll fluorescence provides values directly related to the integrity of photosystem II 

and, by implication, provides information on downstream activities such as electron transport rate 

and the degree of non-photochemical quenching occurring (i.e., emission of energy as heat or 

fluorescence). This is achieved by the relativistic measurement of functional photosystem II 

molecules in relation to background fluorescent compounds. Fv/Fm represents the efficiency of 

excitation capture by open PSII reaction centers, indicating ΦPSII and of photosynthetic 

performance (Genty et al. 1989; Maxwell & Johnson 2000). Fm represents the maximal 

fluorescence value achievable with all PSII reaction centers closed and all non-photochemical 

quenching parameters at minimum, and in stressed organisms shows a highly significant 

interaction with desiccation intensity (Kooten & Snel 1990; Pressel et al. 2009; Proctor 2012; 

Stark et al. 2013).  ΦPSII is a measure of the quantum yield of electron flow through PSII in vivo. 
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ΦPSII therefore shows proportion of absorbed light used to drive photochemistry indicating overall 

photosynthetic rate and the relative rate of carbon fixation (Krall & Edwards 1992; Maxwell & 

Johnson 2000). 

Regenerative Metrics 

Regenerative metrics, shoot and protonemal regrowth, were used to determine if a stressed 

sample will be capable of producing new tissue within the observed timeframe (10 days). 

Secondly, if the organism is capable of regeneration, this will determine how many days it takes 

for regeneration to occur when the sample is re-hydrated. Regrowth makes an excellent response 

variable when feasible as it guarantees the tissue has survived desiccation. 

Chlorophyllous Tissue Retention 

Chlorophyllous tissue retention describes the amount of chlorophyll that is retained in 

shoots. Tissue retention was measured seven days post-rehydration from a desiccation event. 

Leaves were visually assessed and broken into three broad categories depending on color: green; 

semi-green; or dead (brown/white). Numbers of observed leaf categories per shoot were divided 

by the total number of leaves on the shoot and recorded as a percentage to account for shoots with 

different numbers of leaves. 
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Chapter Two: Rate of Drying Determines Extent 

of Desiccation Tolerance in Physcomitrella 

patens 
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Abstract 

 The effect of differential drying rates on desiccation tolerance in Physcomitrella patens is 

examined. In order to provide more evidence as to the status of desiccation tolerance in P. patens 

a system was designed which allowed control of the rate of water loss within a specific relative 

humidity. An artificial substrate consisting of layers of wetted filter paper to slow the drying 

process to as long as 284 hours, a significant increase over the commonly used method of 

exposure (saturated salt solution). By slowing the rate of drying, survival rates and chlorophyll 

fluorescence parameters improved, and tissue regeneration time was faster. These results indicate 

a trend where the capacity for desiccation tolerance increases with slower drying, and reveal a 

much stronger capacity for desiccation tolerance in P. patens than was previously known. 

 

This first chapter, ―Rate of Drying Determines Extent of Desiccation Tolerance in 

Physcomitrella patens”, was published in the journal Functional Plant Biology in 2014. 

Introduction 

 A plant may be considered desiccation tolerant (DT) if it can tolerate equilibrium at water 

potentials less than about –100 MPa (50% RH) (Koster et al. 2010). At present most bryophytes 

are considered constitutively desiccation tolerant (CDT) with a handful of inducibly desiccation 

tolerant (IDT) species reported (Cruz de Carvalho et al. 2011, 2012; Proctor et al. 2007a; Pressel 

& Duckett 2010). This study is concerned with the manifestation of IDT by which a desiccation 

sensitive (DS) species can exhibit a desiccation tolerant (DT) phenotype given appropriate 

stimuli, using Physcomitrella patens (the model organism for bryophytes) as our subject. The 

implication is that for IDT species, a slow drying rate (SD) is needed to induce protective 

mechanisms against desiccation and/or facilitate repair during subsequent rehydration.  
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Status of P. patens is In Question 

 Physcomitrella patens has traditionally been considered a DS, although drought tolerant 

moss (Koster et al. 2010). Recent reports however indicate P. patens may achieve a measure of 

DT if dried slowly (Wang et al. 2009). At present the status of the organism is unknown as 

methods employed by both camps failed to fully resolve the question. In the study supporting P. 

patens as DT, equilibrating humidity was not stated, confusing the degree to which drying was 

achieved (Wang et al. 2009). Equilibrating to an unspecified relative humidity (RH) adds a great 

deal of variability into the study, dependent upon local atmospheric conditions. The second and 

much larger concern is the method used to determine water loss, namely fresh weight divided by 

equilibrated weight. This technique is problematic in studies on mosses which retain a significant 

portion of water external to the organism between its leaves (Koster et al. 2010). This extra mass, 

when counted as part of the fresh weight, will artificially inflate water loss calculations. 

 The most important concern in papers supporting P. patens as a DS organism is the use of 

saturated salt solutions to control drying rate. Contained atmospheric RH (via saturated salt 

solutions) has long been used as a surrogate for desiccation rate, with faster rates obtained at 

lower RHs and slower rates at higher RHs (Proctor et al. 2007b). Most studies enlisting salt 

solutions achieved a RD on the order of 30 minutes to two hours, and a SD ranging three to six 

hours (Bewley 1995). Desiccation rates, however, can be much slower in nature than the SD 

generated by salt solutions, dependent upon colony size, shoot architecture, and local atmospheric 

conditions (Rice et al. 2011). Furthermore salt solutions render impossible a SD and RD at the 

same RH. One study which assessed the influence of rate of desiccation at a single RH (55%) 

upon recovery found significant differences in the 3 rates employed (6.0, 1.5, & 0.6 h) (Penny & 

Bayfield 1982). As rate of desiccation can be critical to generate an IDT response, drying times 
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experienced in the wild for a species should be taken into account when designing an experiment 

to determine DT status. We therefore set out to control for both the rate of desiccation and the 

final equilibrating relative humidity (RH) within one experimental technique. 

Advantages of An Inducible Desiccation Tolerance System 

 Induction of DT in P. patens provides a new opportunity to study the response to 

desiccation using the model bryophyte organism as a study system. To successfully uncover a 

transcriptomic or proteomic response to environmental stimuli requires variation in response 

between experimental and control samples, which was previously thought to be impossible, as P. 

patens was viewed as not possessing a desiccation tolerant phenotype. Desiccation sensitive 

species are problematic in that they apparently lack a capacity to survive desiccation and would 

lack a detectable response for mitigating damage, allowing survival. Constitutively desiccation 

tolerant species are also problematic, as they are always in a state of readiness and therefore may 

not have a detectable response to desiccation beyond baseline levels. With an ability to 

manipulate an IDT system in P. patens, it should be possible to tease apart differences in the 

induced and hydrated state, thus aiding in novel gene discovery related to DT. 

Hypothesis 

 Our experiment addresses the following hypothesis: P. patens possesses an IDT response, 

and damage upon rehydration is related to the prior rate of desiccation, with longer drying times 

mitigating chlorophyllous tissue loss, increasing photosynthetic capacity (due to reduced 

photosystem II damage), and improving the ability to initiate development of new protonema and 

shoots upon replanting. 

Methods 

Cultivation Methods  
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The Gransden strain of P. patens was provided by Scott Schutte (formerly of Southern 

Illinois Univ., Dept. of Biology). Plants were cultured using the technique of Horsley et al. 

(2011), and watered every 48 h with a 30% Hoaglands nutrient solution. After 4-6 weeks of 

cultivation shoots were extracted for experimentation (similar size and age shoots were used 

throughout). Plants were grown in a plant growth chamber (Percival model E30B, Boone, Iowa, 

USA) set to a 12 h photoperiod (20°C lighted, 8°C darkened), ~65% RH, 55μmol m
−2

s
−1

photosynthetically active radiation (PAR).

Method of Drying 

All shoot manipulations were carried out in a walk-in environmental control chamber 

(R.W. Smith & Co.) set to constant temperature, relative humidity (RH) and light (20°C, 50% 

RH, 2-4 µmol γ m
-2

 sec
-1

). Sheets of #1 Whatman filter paper (Whatman international LTD,

Maidstone, England) were fitted to the inner dimensions of a 35 mm Petri dish (to serve as an 

artificial substrate) and equilibrated to 50% RH. One sheet of filter paper was added for every 100 

µL of water used per treatment (two sheets for 200 µL, four for 400 µL, etc.). One hour before 

adding shoots to the petri dishes a 1000uL Gilson pipette (Gilson Inc., Wisconsin, USA) was used 

to add water to the filter paper. This provided a range of drying times dependent upon the initial 

amount of water added to the filter paper, 0 µL (less than 6 h to dry), 200 µL (65 h to dry), 400 

µL (118 h to dry), and 1200 µL (284 h to dry). Measured drying times were validated and 

calibrated by including an ibutton inside a number of petri dishes and tracking the loss of 

humidity over time across a range of water volumes added to filter paper (Fig. 1). 

Five replicates of 15 shoot clusters were prepared for each treatment. Surface free water 

was removed by blotting shoot clusters on Whatman No. 1 filter paper, while under observation 

with a dissecting microscope to allow visual confirmation of free water removal while also 
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ensuring shoots retained full turgor (otherwise stress will be imposed by the blotting process 

itself). Shoot clusters were transferred to lidded Petri dishes, and placed in a benchtop RH 

chamber (Totech Super Dry) set to 50% RH which itself was inside a walk-in environmental 

control room set to 50% RH, 20°C, thus reducing potential humidity fluctuations (which would 

alter the rate of water loss) during the experiment. 

Petri dishes were weighed (Sartorius BP 211D balance, sensitivity of 0.00001g) at 

intervals ≤ 8 h over a period of 12 d to determine when water loss had ceased for each replicate 

(indicating equilibration to environmental RH). When no further water loss was detected, we 

allowed an additional 24 h of exposure to ensure equilibration before rehydration. Half the 

samples were further equilibrated to 30% RH inside a sealed container above a CaCl saturated salt 

solution for an additional 24 h, to examine the influence of a more intense desiccating event. 

Samples were re-hydrated immediately at the end of their final 24 h drying event (all treatments 

spent the same amount of time equilibrated to 50% RH but took increasing lengths of time to 

reach that point). Rehydration was conducted upon a saturated chemical wipe to allow slower 

rehydration than direct immersion in water. 

Methodology Validation 

Validation of methodology was tested by determining water content for samples treated in 

the same manner as our experimental samples. Sample weight was recorded after equilibration to 

both 50 (Totech Super Dry chamber) and 30%RH (CaCl salt solution chamber), followed by 

drying in an oven at 70 °C for 48 h to remove residual water. Samples were then re-weighed to 

determine the dry weight, and water content ([equilibrated weight-dry weight]/dry weight). At 

50% RH our samples reached 12.52% water content with a standard deviation of ±3.3% and a 
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standard error of ±0.6%. At 30% RH our samples reached 7.94% water content with a standard 

deviation of ±0.49% and a standard error of ±0.16%. 

In a second experiment the RH inside lidded (400, 800, 1200 μL) and unlidded (RD, 0 μL) 

Petri dishes was measured using iButtons (Maxim, San Jose, California, USA). RH was measured 

every 10 min, n = four) on separate sets of non-experimental shoots carried out in the same 

desiccation cabinet used in experimental samples, set to 50% RH which ranged from 45–55% RH 

during the observation period. 

Chlorophyll Fluorescence  

Five replicates were prepared just prior to beginning fluorescence measurements to serve 

as an un-dried control. The moss shoots and their associated chemical wipes were placed inside of 

a Hansatech fluorescence clip (Norfolk, England) to dark adapt the shoots. Terminal ends of the 

chemical wipe were in contact with water to provide hydration at all times via capillary action. 

Measurements of Fv/Fm, Fm, and quantum efficiency of photosystem II (Φ PS II yield) were 

determined multiple times over a 24 h period with a Hansatech fluorescence monitoring system 

(FMS2, Norfolk, England). Fv/Fm was measured for dark adapted samples using the saturation 

pulse method (Bilger et al. 1995). Quantum efficiency of PSII ([Fm’/Fs]/Fm’) was determined as 

described in Genty et al. (1989).  

Regeneration  

Following fluorescence measurements shoots were planted in 95 Petri dishes (4 shoots per 

dish) for estimation of tissue survival and to determine time required for shoot and protonemal 

emergence (regeneration). After planting shoots were inspected daily with a dissecting 

microscope (60×) for 21 d, recording new protonema or shoots. Seven days post planting the 

number of undamaged, partially damaged, and dead leaves on each shoot was visually assessed 
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with a dissecting microscope. Similar methods have been used in our laboratory to judge 

organismal health in mosses exposed to thermal, and desiccation stress as well as age-dependent 

effects upon regeneration (Stark et al. 2007, 2009, 2013). 

Statistics 

Values recorded at the final time-point of experimental treatments and controls were 

compared by analysis of variance (ANOVA) and means were compared by a post-hoc pairwise 

Tukey analysis in SPSS 20 for Windows (IBM, Armonk, NY). One way ANOVAs were 

performed individually upon our measured variables Fv/Fm, Fm, Φ PS II, Leaf health, and 

regrowth times for all treatments and controls (Table 2). 

Results 

Relative Humidity Inside Petri Dish 

Shoots experienced high humidity levels (~95% RH) over periods of time increasing with 

the amount of water used (<3 h for 0 μL H2O, ~125 h for 400 μL H2O, ~175 h for 800 μL H2O, 

and ~200 h for 1200 μL H2O). Once the RH inside the Petri dish dropped below 90–95%, shoots 

desiccated within 20 h. The declining slope of RH within the Petri dish was similar across 

treatments (although with shifted initiation time for the descent portion of the slope). Although 

the ambient RH outside of the Petri dishes was 45–55%, the RH inside the dishes declined to 51-

54% in all treatments (Fig. 1). 

Leaf Damage and Survival 

As drying time is extended, leaf damage attenuates (Tables 1, 2; Fig. 2), with leaf damage 

ranging from 100% for a rapid dry to 47% (± 4.1%) at 284 h (slowest dry) when equilibrated to 

50% RH. Over 50% of leaves at the longest drying time appeared healthy one week after planting. 

Increasing length of drying was positively associated with a greater percentage of chlorophyllous 
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tissue following desiccation and negatively associated with dead/brown tissue (Tables 1, 2; Fig. 

2). No shoots rapidly dried to either 30 or 50% RH were capable of surviving desiccation. 

Intermediate drying times showed partial survival dependent upon length of drying time, with 

tissue health increasing in conjunction with drying time. All plants allowed to slowly dry to 

equilibrium were shown to have some degree of tissue survival (Table 1). 

Regeneration of Protonema and Shoots 

 The number of days required for emergence of protonema and shoots was inversely 

related to the rate of drying in all experimental treatments (Tables 1, 2; Fig. 2). Shorter drying 

times increased time to emergence as well as leading to a lower percentage of plants producing 

protonema and shoots. Undried controls, however, required longer for the production of 

protonema and shoots than experimental samples, most likely due to apical inhibition of bud 

formation as the plant was essentially undamaged in most cases. No shoots or protonema were 

produced by any rapidly dried samples over the course of the experiment. 

Chlorophyll Fluorescence 

 Initial fluorescence values (30 m) were similar among treatments; however, samples 

rapidly diverged during a 24-h period (Table 2; Fig. 3). Rapidly dried samples showed a steep 

decline in values, while slower drying rates showed increased performance over the next 24 

hours.  

 Fv/Fm values (Table 2; Fig. 3 A, B) for all treatments showed recovery of photosynthetic 

capacity following rehydration, with a positive correlation between time to desiccation and higher 

Fv/Fm values, indicating greater health. Rapidly dried samples suffered extensive damage and 

showed no recovery over the 24-h period. Plants subjected to a 284 h drying time performed 

better while 65 h and 116 h samples showed intermediate performance upon rehydration. Fm 
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values (Table 2; Fig. 3 C, D) also showed a strong correlation with drying time. Similar to our 

Fv/Fm results the rapidly dried treatments dropped sharply after rehydration while the longest 

drying times showed a significant improvement compared to rapidly dried samples. ΦPSII values 

again showed a pattern similar to that of Fv/Fm and Fm, with longer drying times correlating 

with higher values (Table 2; Fig. 3 E, F). 

Discussion 

Measurements of Tissue Damage, Protonemal Emergence and Shoot Emergence  

 Chlorophyllous tissue damage, time until protonemal emergence, and time until shoot 

emergence all showed patterns indicating that slower rates of drying positively influenced 

organismal health (Table 1). Samples dried more slowly retained more chlorphyllous leaves and 

required shortened times until development of new tissue. These observations support our 

hypothesis that P. patens possesses an IDT response to drying, and that longer drying time 

positively influences organismal health following rehydration. 

Chlorophyll Fluorescence  

 Measuring chlorophyll fluorescence of stressed photosynthetic organisms gives insight 

into the state of Photosystem II (PSII). Reduced fluorescence values manifest quickly following 

stress, and indicate the extent to which PSII is using the energy absorbed by chlorophyll 

(Maxwell & Johnson 2000; Proctor 2012). In all measures of chlorophyll fluorescence, slower 

drying times were positively associated with values reflecting greater health. Fv/Fm and ΦPSII 

values (Table 2; Fig. 3) showed a pattern of increasing values over the 24-h observation period. 

When provided longer drying times, Fm values (Table 2; Fig. 3) showed higher values upon 

rehydration, as well as an ability to maintain higher Fm values over the 24-h observation period. 
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Observations of chlorophyll fluorescence therefore support P. patens as an IDT organism with its 

survival positively related to rate of drying. 

 Fv/Fm represents the efficiency of excitation capture by open PSII reaction centers, 

indicating ΦPSII and of photosynthetic performance with lower Fv/Fm values observed in response 

to stress (Genty et al. 1989; Maxwell & Johnson 2000). The close correlation between Fv/Fm, 

length of drying time, and ultimately tissue survival represents a strong argument that longer 

drying times lead to protection of PSII in a desiccated state.  

 Fm represents the maximal fluorescence value achievable with all PSII reaction centers 

closed and all non-photochemical quenching parameters at minimum, and in stressed organisms 

shows a highly significant interaction with desiccation intensity (Kooten & Snel 1990; Pressel et 

al. 2009; Proctor 2012; Stark et al. 2013). The value of Fm can vary between experiments and 

laboratories as it is an arbitrary value influenced by differences in tissue mass and fluorometer 

configuration. However Fm has been a reliable indicator of tissue survival in our laboratory and 

others, and may be more reliable than Fv/Fm when a large portion of the organism is undergoing 

cellular death, as a high Fv/Fm value can be observed when little photosynthetic tissue remains 

(Cruz de Carvalho et al. 2011; Pressel et al. 2009; Proctor 2012). Fm values of slowly dried 

samples in our experiment suggest that in addition to having a higher percentage of functional 

PSII reaction centers (Fv/Fm), a greater amount of the PSII structures are undamaged in gross 

terms. 

 ΦPSII is a measure of the quantum yield of electron flow through PSII in vivo. ΦPSII 

therefore shows proportion of absorbed light used to drive photochemistry indicating overall 

photosynthetic rate and the relative rate of carbon fixation (Krall & Edwards 1992; Maxwell & 

Johnson 2000). The ΦPSII of the samples in our experiment showed retention of near normal rates 
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in P. patens when desiccated slowly, supporting our hypothesis that slow drying allows for 

protection of the photosynthetic apparatus. 

Conclusions 

 For over a decade P. patens has been a focus of non-vascular plant research, resulting 

from the ease with which homologous recombination can be performed, in conjunction with 

sequencing of the P. patens genome (Quatrano et al. 2007; Schaefer & Zyrd 1997). Until recently 

it was thought DT could not be achieved in P. patens without abscisic acid supplementation; 

reports indicated the organism perished if exposed to desiccating conditions (Frank et al. 2005; 

Oldenhof et al. 2006; Saavedra et al. 2006; Cumming et al. 2007). Our findings suggest that rate 

of drying is an extremely important variable in the degree of damage P. patens experiences. These 

findings likely carry ecological importance, most obvious of which is that estimations of habitat 

range for IDT mosses may be much wider than previously thought, as our recent findings suggest 

(Cruz de Carvalho et al. 2011; Stark et al. 2013). 

Whether the manifestation of DT presented in this paper is due to the induction of gene 

expression in P. patens during a SD event; or if P. patens is simply more capable of handling a 

SD than a RD due to the SD being a more forgiving stress allowing constitutively expressed 

repair mechanisms to confer survival is in need of further investigation. Essentially either method 

would be illuminating as one would allow for novel gene discovery opportunities and the other 

would suggest that P. patens is using a similar survival strategy as the desert adapted moss, 

Syntrichia ruralis, only calibrated for the SD it would experience in its more mesic environment 

(Oliver & Bewley 1984). Recent discoveries however suggest gene induction is the likely 

explanation: firstly, exogenous ABA can induce a DT pathway in P. patens and secondly, 
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concentrations of ABA and LEA proteins increase in P. patens in response to dehydration (Cui et 

al. 2012; Shinde et al. 2012; Yotsui et al. 2013).  
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Chapter Three: Hardening and De-hardening to 

Desiccation Tolerance in Physcomitrella patens 
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Abstract 

 Until recently, the moss Physcomitrella patens (Hedw.) Bruch & Schimp. was thought to 

be desiccation sensitive. Recent research suggests that P. patens can survive and recover from 

slowly applied desiccation. In this study, we examine induction of physiological hardening by a 

slow-dry pre-treatment of P. patens leading to increased survival of a subsequent rapidly applied 

desiccation. We also examined the length of time hardening is retained when P. patens is 

rehydrated, i.e., how long until de-hardening occurs. By applying a slow-dry pre-treatment before 

a rapid-dry treatment, survival rates, chlorophyll fluorescence values, chlorophyllous leaf 

retention ratios, and protonemal and shoot emergence rates all improved compared to non-

hardened samples (given the same treatment otherwise). Hardening was retained for up to 8 d 

depending upon the variable used to assess health. These results indicate that the capacity for 

desiccation tolerance (DT) in P. patens increases in response to bouts of low water potential.  

Introduction 

 Our understanding of water relationships and desiccation tolerance (DT) in the moss clade 

is currently under re-evaluation, shifting from considering mosses as either strictly tolerant or 

sensitive, to a gradient, partially modulated by environmental stimuli. This environmental 

stimulation leads to hardening as seen in seasonal hardening (influenced by weather and climate 

conditions), increasing from a minimum in spring to a maximum in summer (Richardson 1981; 

Dilks & Proctor 1976a). A plant is considered DT if it survives equilibrium at water potentials of 

< -100MPa (50% relative humidity, RH). For the moss Physcomitrella patens, this equates to 

12.5% water content on a dry weight basis (Koster et al. 2010; Greenwood & Stark 2014). 

Physcomitrella patens was thought to be desiccation-sensitive (Frank et al. 2005; Cui et al. 2010), 

however, recent research has shown it to survive and recover from slowly applied desiccation 
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(Greenwood & Stark 2014). These findings suggest that P. patens has the capacity to be induced 

to exhibit DT by a slow-dry event. We examined retention of DT in P. patens after cessation of 

hardening stimuli. Although P. patens is often used as a model organism for research on plant 

evolution, development, and physiology (Quatrano 2007), until recently exogenously applied 

abcisic acid (ABA) prior to desiccation was thought essential to survive desiccation (Khandelwal 

et al. 2010).  

We address three predictions centered on P. patens possessing a capacity to harden to DT, 

and when hardened will retain the ability to tolerate a rapid drying event (<30 min). First, a slow-

dry pre-treatment will protect against a subsequent rapid-dry (by mitigating chlorophyll loss, 

improving chlorophyll fluorescence values, and reducing time until protonemal and shoot 

emergence), compared to specimens that do not experience a hardening slow-dry pre-treatment. 

Second, hardening will diminish as the hydration interval increases (de-hardening). Third, the 

length of time the hardening stimulus is applied will influence the strength of hardening and the 

time required to de-harden. By testing a slow-dry pre-treatment followed by a rapid-dry treatment 

compared with un-hardened samples given a rapid dry, we determine if P. patens displays a DT 

response. 

Methods 

Cultivation 

If moss samples are directly collected from the field to test DT, the experiences accrued by 

each plant under field conditions can result in differential health, as well as differential hardening 

(i.e., reflect differential histories of water stress; Stark et al. 2014). The genetic makeup of field 

collected plants also varies, whereas laboratory-cultivated samples are genetically identical due to 

clonal propagation. For these reasons, we chose to use the Gransden strain of P. patens (provided 
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by Scott Schutte, Southern Illinois University, Dept. of Biology), cultured in the laboratory to 

remove field effects (Bopp & Werner 1993; Stark et al. 2014). 

We cultivated plants using techniques from Greenwood & Stark (2014, also second 

chapter of this dissertation). Cultures were watered every 48 h with 30% Hoaglands nutrient 

solution (Hoagland & Arnon 1950). After 8-12 weeks of cultivation, we extracted shoots for 

experimentation. 

Drying 

We controlled rate of drying using techniques from Greenwood & Stark (2014), i.e., using 

wetted filter paper as an artificial substrate where volume of water pipetted is proportional to 

drying time; plants were equilibrated to 50% RH inside a desiccation cabinet at 20°C. Treatments 

consisted of an un-dried control, a rapid-dry control (<30 min), and a 4 d slow-dry (time from full 

turgor to equilibrium with 50% RH) or an 8 d slow-dry. Initial treatments were followed by a 1, 4, 

8, or 12 d rehydration period (de-hardening) and ending with a rapid-dry treatment. As an 

additional control, un-dried plants were subjected to hydration times (1, 4, 8, 12 d) followed by a 

rapid-dry or no drying. Ten shoots were used for each of five replicates per treatment for a total of 

100 sample units. 

After the slow-dry pre-treatment, we transferred shoots to new Petri dishes containing 

autoclaved field-collected hydrated sand for rehydration. Prior to rapid-dry treatments, we 

removed any shoots or protonemata generated during the slow-dry pre-treatment or rehydrated de-

hardening period to avoid conflation of results. For the subsequent rapid-dry, we again rinsed 

shoots, and placed them in un-lidded Petri dishes containing filter paper but with no water added, 

allowing a rapid-dry. We used unstressed hydrated controls (i.e., sample units not receiving a 

slow-dry) from our stock cultures. Controls were rinsed and blotted as described above, and 



 
  

25 

 

immediately transferred to Petri dishes containing sand. We used these unstressed shoots to 

control for the effects of transferring materials between different containers and substrates. 

Chlorophyll Fluorescence  

 Prior to measurement, we transferred shoots to new dishes containing sand saturated with 

water for 24 h to rehydrate. All samples were transferred into a leaf clip and dark-adapted for 30 

m before taking measurements. Reduced fluorescence values manifest quickly after stress events 

and indicate the extent to which photosystem II (PSII) is using energy absorbed by chlorophyll, 

with low utilization efficiency indicating damage (Maxwell & Johnson 2000; Proctor 2012). We 

took measurements (following Genty et al. 1989) of dark-adapted fluorescence (Fv/Fm), non-

photochemical quenching (NPQ), and the quantum efficiency of PSII (efficiency of PSII electron 

transport; ɸPSII). Fv/Fm represents the efficiency of excitation capture by open PSII reaction 

centers, indicating ΦPSII and of photosynthetic performance (Genty et al. 1989; Maxwell & 

Johnson 2000). ΦPSII is a measure of the quantum yield of electron flow through PSII in vivo. 

ΦPSII therefore shows proportion of absorbed light used to drive photochemistry indicating overall 

photosynthetic rate and the relative rate of carbon fixation (Krall & Edwards 1992; Maxwell & 

Johnson 2000). 

Regeneration  

 Immediately following fluorescence measurements, we selected three shoots at random 

and placed them on hydrated sand in Petri dishes to determine chlorophyllous tissue retention, and 

to determine time required for shoot and protonemal emergence. We inspected these shoots over 

ten days using a stereomicroscope, recording emergence of protonema and shoots and noting how 

many days were required in that particular sample for emergence. At seven days after placement 

on sand, we counted the number of undamaged (green tissue), partially damaged (partially green 
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tissue turning brown), and dead (brown, no obvious green tissue) leaves on each shoot to 

determine chlorophyllous leaf retention. Leaf counts were converted to a percentage to account 

for different numbers of leaves on individual samples. 

Data Analysis 

 We compared experimental treatments to controls by analysis of variance (ANOVA), and 

compared means by a post-hoc pairwise Tukey test. We used one way ANOVAs individually to 

assess measured variables: Fv/Fm, ΦPSII, NPQ, leaf health, and regrowth times for all treatments 

and controls. Homogeneous subsets established by a Tukey test signified statistically similar 

response variables with an α of 0.05. 

 We conducted a Kaplan-Meier analysis at a 95% confidence interval upon the protonemal 

and shoot regeneration rates to predict emergence rates. We censored (recorded as 10 days) 

samples that did not produce shoots or protonema over the course of observation, resulting in a 

maximum predicted estimation of ten days. All statistical analyses were executed in SPSS 20 

(IBM, Armonk, NY). 

 Results  

Chlorophyll Fluorescence 

 Fluorescence parameters were significantly closer in value to unstressed controls when a 

slow-dry pre-treatment preceded a rapid-dry treatment (Fig. 4, 5, 6; homogeneous subsets 

established at an α of 0.05); however, with increasing time spent rehydrated (de-hardening period) 

after a slow-dry pre-treatment, fluorescence values decreased. At the longest de-hardening time, 

there was no significant difference among samples that spent 12 d hydrated (de-hardening) before 

a rapid-dry across any of the pre-treatment exposures, indicating the protective effects of the pre-

treatment had been lost by 12 days. In all other cases, unhardened samples given a rapid-dry led 
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to fluorescence values significantly lower than hardened treatments. In all cases but one, the 

unstressed controls had higher fluorescence values (Fig. 4, 5, 6; homogeneous subsets α of 0.05) 

and these values tended to be significantly higher compared to other treatments. NPQ showed 

some differences in trends, with detectable hardening lasting shorter for NPQ compared to other 

fluorescence values. The 4 d slow-dry pre-treatment appeared to assist with retention of higher 

NPQ values when accompanied by a de-hardening period <8 d (Fig. 6; homogeneous subsets α of 

0.05).  

Chlorophyllous Tissue Retention 

 Chlorophyllous tissue retention significantly increased when given a slow-dry pre-

treatment prior to a rapid-dry (Fig. 7; homogeneous subsets established at an α of 0.05), with both 

the 4 d and 8 d slow-dry pre-treatments resulting in more green and semi-green leaf tissue (Fig. 7; 

A homogeneous subsets α of 0.05). A rapid-dry treatment without a slow-dry pre-treatment led to 

significant loss of green leaves (Fig. 7; B-D homogeneous subsets α of 0.05). As de-hardening 

periods increased there was a significant reduction of green leaves as well as semi-green leaves 

compared to samples with shorter de-hardening periods. Beyond an 8 d de-hardening period a 

rapid-dry resulted in nearly all leaves dying.  

Time Until Shoot and Protonemal Emergence 

  In general, we observed that the slow-dry pre-treatment increased the likelihood of shoot 

and protonemal emergence when applied before a rapid-dry treatment (Fig. 8, 9; homogeneous 

subsets α of 0.05). As the rehydrated (de-hardening) period lengthened, shoot and protonemal 

emergence decreased to near zero following a rapid-dry treatment, regardless of the prior slow-

dry pre-treatment. For example, after an 8 d de-hardening period, slow-dry pre-treatment did not 

result in new shoots or protonema production of samples that received a rapid-dry treatment.    
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Discussion 

Does P. patens Exhibit Inducible Desiccation Tolerance? 

Revisiting our original three hypotheses: first hardening exists in P. patens reducing 

damage caused by a rapid-dry, second hardening is a transient event, and third a longer slow-dry 

pre-treatment will result in more intense and longer lasting hardening). First, the evidence 

strongly supports the ability of P. patens to harden to DT given the wide disparity in performance 

between samples hardened by a slow-dry before exposure to a rapid-dry and those not hardened 

before a rapid-dry. Secondly the data support a transient nature for hardening with all metrics 

used to assess health returning to control values after 12 d spent in a hydrated state. Our third 

hypothesis, however, was not supported, as our 8 d slow-dry performed worse than or equal to a 4 

d slow-dry in terms of hardening intensity and duration. 

 Physcomitrella patens exhibits patterns indicating inducible hardening to DT (by a prior 

slow-dry pre-treatment); fluorescence, chlorophyllous tissue retention, and new tissue emergence 

were improved by a slow-dry pre-treatment prior to a subsequent rapid-dry. With increased time 

spent hydrated (de-hardening) after slow-dry pre-treatment, response values decreased, displaying 

reduced health and a transient hardened phenotype. Fluorescence parameters were largely similar 

between the 4 d and 8 d slow-dry pre-treatment across hardening periods. However the 4 d slow-

dry pre-treatments showed slightly higher green leaf percentages compared to the 8 d slow-dry 

pre-treatments. As for shoot and protonemal emergence, both slow-dry pre-treatments resulted in 

greater emergence after a rapid-dry treatment compared to after a rapid-dry treatment with no 

prior slow-dry pre-treatment.  

Response to Treatments 
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Time spent hydrated (de-hardening) after the initial slow-dry pre-treatments led to 

attenuated DT. A slow-dry pre-treatment did protect against a future rapid-dry treatment. The 

protection was strongest after a 1 d hydration period, declining at 4 d, and by 8 d of a hydrated de-

hardening period there was little discernable difference between slow-dry pre-treated and the 

samples not pre-treated with a slow-dry. The protection was essentially eliminated after a 12 d 

hydration for all parameters measured; experimental samples were statistically indistinguishable 

from rapid-dry control samples.  

We found a strong relationship between slow-dry pre-treatment and fluorescence 

parameters that indicated hardening. Fluorescence parameters, such as ΦPSII, for slow-dry pre-

treated samples exposed to rapid-dry treatment presented higher values compared to control 

samples, indicating a DT response. We also observed a decline in fluorescence parameters with 

lengthened hydration (de-hardening) after the slow dry pre-treatment, indicating decreased 

protection.  

As expected, chlorophyllous tissue retention decreased as de-hardening interval increased. 

Hardened shoots retain a high degree of chlorophyllous tissue when subjected to a rapid-dry after 

a 1 d de-hardening period (with longer de-hardenings resulting in progressively worse 

performance). These results suggest that when severely damaged, P. patens will prioritize new 

shoot and protonemal development instead of chlorophyllous tissue retention.  

Time until emergence of protonema and shoots was strongly improved by a slow-dry pre-

treatment; indicative of hardening (Fig. 5, 6). Un-hardened control samples showed increased 

damage when given a rapid-dry treatment, providing evidence that the slow-dry pre-treatment 

contributed to DT. Our control rapid-dry samples lacked protonemal emergence. The heightened 

regenerative ability following a rapid-dry that a slow-dry pre-treatment imparts may be the most 
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important aspect for survival. Without hardening P. patens shows virtually no shoot or 

protonemal regrowth, with only one shoot producing protonema out of 225 examined (samples 

not pre-treated with a slow-dry before a rapid-dry Fig. 5, 6). This is in sharp contrast to hardened 

samples given 4 d or fewer to de-harden which displayed protonemal emergence rates between 

20-80% of the time depending on treatment combinations (Fig. 5, 6). When viewed in the context 

of a colony where shoots exist as clones in clumps of hundreds or thousands, such patterns would 

improve survival odds, as shoots in the center experience longer slow-dry periods. 

Addressing the 4 d Slow-dry Outperforming the 8 d Slow-dry 

Surprisingly, our 4 d slow-dry treatment performed better than or equal to the 8 d slow-dry 

period in terms of hardening intensity and duration. Further investigation is necessary to elucidate 

why this occurred, but one explanation may be the exhaustion of carbohydrate reserves over the 8 

d slow-dry period. Mosses likely expend a large amount of energy preparing for the desiccated 

state, and more during the respiratory burst to fuel damage repair that occurs during rehydration 

(Krochko et al. 1979). Carbohydrate exhaustion is a leading hypothesis explaining why repeated 

short intensity rainfalls can kill desert-adapted mosses, because the short photosynthetic window 

before the organism again desiccates would not allow attainment of a positive carbon balance 

(Coe et al. 2012).  As P. patens is considerably more desiccation sensitive then desert-adapted 

mosses, we would expect it to have lower carbohydrate reserves, and therefore be more 

vulnerable to carbohydrate exhaustion. An alternative explanation is that by 4 d of slow drying 

the maximal capacity for hardening (In response to a single exposure) had been reached. 

Conclusions 

Ecological Implications 
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 Our findings indicate that hardening is an important variable for survival of a rapid-dry 

event in P. patens. Interestingly, the de-hardening time we observed (~8 d) in the laboratory for P. 

patens closely matches the de-hardening time frame of the field-collected desert moss Crossidium 

crassinerve (7 d; Stark et al. 2014), and may be a common length for de-hardening in mosses. 

These patterns further support a gradient of desiccation tolerance in mosses, as postulated by 

Pressel et al. (2006) & Wood (2007). This gradient spans from very sensitive species (requiring a 

long time frame for induction, such as P. patens), to extremely hardy species which can only be 

damaged with very rapid drying events to near 0% RH (e.g., Syntrichia ruralis). 
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Chapter Four: Effects of Rate of Drying, Life 

History Phase, and Ecotype on the Ability of the 

Moss Bryum argenteum to Survive Desiccation 

Events 
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Abstract 

Desiccation stress is frequently experienced by the moss Bryum argenteum and can 

influence survival, propagation and niche selection. We investigated effects of rate of drying 

(RoD), life history phase, and ecotype on desiccation tolerance (DT). Using chlorophyll 

fluorescence as a survival index, we determined how our parameters influence desiccation 

tolerance for the following factors; five life history stages, 13 sampling locations or ecotypes, and 

five levels of drying time. We observed significant main effects from both factors and 

interactions. Rate of drying and phase significantly affected DT.  The reaction norms of DT 

displayed by the 13 ecotypes showed a substantial degree of variation in phenotypic plasticity, 

particularly in protonemal and juvenile phases. We observed differences in survival response and 

chlorophyll fluorescence between rapid and slow drying events in juveniles. These same drying 

applications did not produce as large of a response for adult shoots (which consistently displayed 

already high values). However, we did observe differences in the magnitude of phenotypic 

plasticity in response to RoD treatments between ecotypes, particularly in juveniles, and 

protonema. Some juvenile and protonemal ecotypes, such as those from the southwest United 

States, possessed higher innate tolerance to rapid drying, and greater resilience compared to 

ecotypes sourced from mesic localities in the United States (particularly samples CA1, NM, 

CIMA, and VF).  Taken as a whole these results show a complex nuanced response to desiccation 

with ecotypes displaying a range of responses to desiccation reflecting both inherently different 

capacities for desiccation as well as variation in capacity for phenotypic plasticity. 

Introduction 

There are two factors required for understanding and predicting survival of an organism in 

response to desiccation, its capacity for desiccation tolerance and the capacity to improve its 
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desiccation tolerance in response to environmental cues or past experience.  The first of these is 

the inherent capacity of the organism to express a level of desiccation tolerance that is unaffected 

by external conditions or previous environmental exposure to drying.  The second factor, 

phenotypic plasticity, is the degree to which an organism can increase DT in response to 

environmental cues or previous exposure to drying. The capacity for phenotypic plasticity itself is 

known to undergo ontogenic shifts as plants develop such that the plasticty may only be 

observable for specific periods (Mediavilla & Escudero, 2004). 

 Although phenotypic plasticity is the major means by which plants cope with 

environmental pressures a phenotypically plastic response for the trait of desiccation tolerance 

would not be free of cost (Valladares 2007). Generation of desiccation tolerant phenotypes would 

require the associated maintenance and production costs associated with the protein and sucrose 

formation believed necessary to develop a desiccation tolerant phenotype (DeWitt et al. 1998). In 

addition it is likely that the sensory apparatus to receive the information about a drying 

environment is not cost free, and should the organism fail to produce a desiccation tolerant 

phenotype within the necessary timeframe of a desiccating event mortal injury would most likely 

result (DeWitt et al. 1998). Phenotypic plasticity should be favored in response to either shifting 

environmental pressures at a locality, or in organisms which may be deposited into a variable 

location (such as seen for spore rain). In variable environments therefore a plastic response should 

be favored as the costs associated with producing the phenotype should be proportional to the rate 

at which the appropriate environments are encountered (Pigliucci 2005). 

  Bryophytes possess a remarkable capacity to survive extremely low water potentials, an 

ability known as desiccation tolerance (DT). Desiccation tolerance is the ability of an organism to 

equilibrate to 50% relative humidity (RH, i.e., < —100 megapascals) and resume normal function 
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when rehydrated (Wood 2007). Mosses occur in all ecosystems of the world (except marine), 

from equatorial jungles to temperate forests to deserts and even Antarctica. Mosses can withstand 

extreme environmental stress, surviving temperatures and water content levels lethal to most 

eukaryotic organisms. All mosses are poikilohydric and their water content changes with relative 

humidity. Some species can survive up to 120°C for 30 minutes (Stark & McLetchie 2009), 

thousands of years beneath glacial ice sheets (La Farge et al 2013; Roads et al. 2014), fully 

submerged in water (the genus Fontinalis; de Carvalaho et al. 2011) and decades of continuous 

desiccation at room temperature (Stark et al. 2016).  

Mosses are important for the many beneficial roles they play in ecosystems such as 

functioning as ecosystem engineers, nutrient cycling, colonizing disturbed habitats, increasing soil 

stability, and aiding establishment of seed plants (Belnap 2006; Chaudhary et al. 2009). Given 

these remarkable abilities, we may learn much about how organisms survive stressful conditions 

by studying mosses and also why mosses occur where they do in the environment.  

The altered rainfall and temperature patterns forecast in models of anthropogenic climate 

change could have disastrous effects for mosses and destabilize ecosystems dependent upon 

mosses (Intergovernmental Panel on Climate Change 2014). Understanding the degree of DT 

possessed by both xeric and mesic ecotypes could be critical for predicting future survival of 

individual populations as well as the future of ecosystems reliant upon their presence (i.e., effects 

on ecosystem function; nutrient cycling, soil stability). In general, SD results in a greater survival 

after a desiccation-rehydration cycle (Bewley 1995; de Carvallho et al. 2011), while RD leads to 

chlorosis and damaged photosynthetic machinery (Schonbeck & Bewley 1981a; Stark et al. 

2013). An understanding of how mosses (an essential component of many mature biological soil 

crusts) respond to and tolerate desiccation will help guide rehabilitation and restoration practices 
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in advance of predicted climate change.  Understanding these dynamics will assist land managers 

and restoration practitioners in developing appropriate survey techniques for identifying 

vulnerable populations and developing strategies for conserving vulnerable populations, as well 

as matching at risk populations to appropriate habitats. With this study we illuminate aspects of 

the relationships between ecotypic variation, life history phase, and rate of drying (RoD) upon DT 

in the species Bryum argenteum. The methods and design displayed in this paper will also provide 

a roadmap for determining the physiological response to desiccation for populations of other 

mosses as well. 

As non-climate related anthropogenic effects (e.g., habitat destruction and fragmentation) 

are already threatening many populations, predicting how mosses will respond to global climate 

change may be essential for conservation efforts to effectively predict and protect at risk 

populations and species (Tuba et al. 2011). One could imagine two scenarios with different 

outcomes with respect to the effect changing climate will have on moss distributions, and species 

survival. In the first, a species is ―pre-adapted‖ (phenotypically plastic for desiccation tolerance). 

In this case one expects a relatively minor effect on moss cover, with many populations surviving 

climate change. A second scenario where ecotypes are highly adapted to their local environment 

and possess low phenotypic plasticity, in which case mesic ecotypes will be more sensitive to 

desiccation and many populations could perish if their locality sees reduced rainfall.  

 Phenotypic plasticity has been demonstrated to exist in B. argenteum previously for 

thermal tolerance across ecotypes and may reasonably expected for other physiological traits (He 

et al. 2016). Inducible phenotypic plasticity for desiccation tolerance (if present) may be key for 

survival and evolutionary adaption therefore to the new habitats and climactic regimes associated 

with the effects of anthropogenic climate change. A capacity for plasticity in response to 
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environmental signals resulting in increased desiccation tolerance would allow a wider range of 

genotypes to survive the altered habitats, preserving genetic variation (Matesanz et al. 2010). This 

persistence would permit time for either a return to climactic norms (if they are relatively short 

lasting), or for the development of mutations and selection of more desiccation resistant forms (if 

effects are longer lasting). The buffered protection from environmental selection (preservation of 

genetic diversity) would allow for genetic assimilation of traits related to desiccation tolerance 

over the long term if conditions persist (and or gene flow from more mesic habitats is relatively 

low) resulting in an overall more constitutive nature to desiccation tolerance in xeric mosses 

(Ghalambor et al. 2007; Matesanz et al. 2010; Pigliucci 2005; Shaw & Etterson 2012). 

Recent research has demonstrated that DT in mosses is a variable and plastic trait for at 

least some species. For example, Physcomitrella patens, which is generally recognized as 

desiccation sensitive (DS), can withstand desiccation if a slow RoD is applied (Greenwood & 

Stark 2014). In many mosses, DT likely functions as an inducible trait, using environmental cues 

and water loss to drive the production of the stress hormone abscisic acid (ABA). Exogenous 

ABA induces DT in DS species, and ABA is produced during osmotic stress, suggesting it could 

have a role in DT within natural systems (Beckett 2001; Cruz de Carvalho et al. 2014; Wang et al. 

2009; Werner 1991).  

As spores of mosses have high dispersal capacity yet lack a method to control the location 

of deposition it has long been suggested that mosses act in accordance with the Baas Becking 

hypothesis "Everything is everywhere, but the environment selects" (Baas-Becking 1934). This 

agrees with studies of the genetic structure of moss populations, which have shown high genetic 

diversity (Shotnicki et al. 1998). An alternative explanation is that high levels of phenotypic 

plasticity formed by a long history of variable selective pressures in diverse environments over 
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multiple generations, rendering environmental selection and ecotypic variation to a specific 

habitat a moot point (Pigliucci 2001). Aspects supporting high phenotypic plasticity include the 

wide range of habitats used by B. argenteum and its cosmopolitan distribution (Shaw 1989).  

During development, mosses may transition from an inducible form of DT, requiring a 

slow dry (SD) to achieve protection to a constitutive form (experiences a RD with minimal to no 

damage) or reducing the time required for inducible DT (Stark et al. 2016; Stark & Brinda 2015). 

Evolution selects for phenotypic traits in a population that improve the odds of survival and 

reproduction across life phases while minimizing expenditures. DT likely has energy costs to 

maintain, therefore, it is expected that DT is regulated over development to reduce energy 

expenditure while maximizing fitness (Stearns 1989). Factors that guide the development of traits 

are efficient utilization of limited energy resources, habitat or ecosystem conditions, genetic 

inheritance from ancestors, ability to deal with stress at various life history phases, or a 

combination of these factors. We expect that organisms invest greater energy toward DT in 

habitats subjected to desiccation (e.g., higher DT ability in organisms from xeric habitats 

compared to mesic habitats). However if rates of gene flow with organisms from mesic habitats is 

high this may not hold true. 

 Over the life cycle of an organism, the relative importance of abiotic (e.g., desiccation, 

intense light, heat etc.) and biotic (e.g., intra and interspecific competition) factors can shift. For 

example, juvenile shoots likely prioritize vertical growth to maximize energy gathering ability 

(e.g., shade competition), similar to vascular plants allocating energy between defense, 

reproduction, and growth over development (Bazzaz et al. 1987). Resource allocation shifts occur 

in sporophytes of Aloina ambigua which switch from inducibly DT to constitutively DT as they 
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develop (Stark & Brinda 2015).  Bryum argenteum shoots may therefore transition as well, with 

established adults prioritizing DT. 

  For this study, we examined possible relationships between five different life history 

phases (similar to vegetation phenotypic phases) with five rates of drying (rate of drying 

influences length of time that is required for an organism to reach a desiccated state, or low 

internal water content) on 13 ecotypes of B. argenteum. Bryum argenteum makes an excellent 

study system due to its cosmopolitan distribution across arid, mesic, and urban settings. Life 

phases included bulbils, protonema and juvenile, intermediate and adult shoots. Rate of drying 

included five rates of drying to an equilibrating relative humidity of 50%. By examining a range 

of drying times (i.e., time spent at sub-turgor prior to desiccation), we could determine not just if 

a tissue is DT or not, but the time required for inducible DT to manifest.  

This study asks if DT in B. argenteum, is completely constitutive or if DT in this species 

falls along an inducible gradient of DT. We hypothesized that all life phases (protonema, juvenile 

shoots, adult shoots, and propaguliferous bulbils) types would perform best with longer drying 

periods, and that the effect of a slow vs. rapid dry will be more prominent in juvenile tissues and 

protonemata. We applied these factors to specimens obtained from thirteen different source 

populations (ecotypes), and sought to address to what degree ecotypes deviate in their capacity to 

tolerate desiccation and how this may influences survival in different environments. We 

hypothesized that evolutionary history influenced ecotypic variation, so that samples from arid 

regions (U.S. Southwest) will display greater DT and a shorter time required to induce DT 

compared to populations from mesic habitats (U.S. Northwest and Mid-Atlantic states).  We also 

hypothesized that protonema and juvenile forms would be most susceptible to desiccation, 

requiring longer timeframes for effective inducible DT compared to mature forms, which would 
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indicate these phases are more vulnerable and less resilient to changes in environmental 

conditions. 

Methods 

 Bryum argenteum has one of the widest distributions of any plant and is found on all 

continents and in diverse habitats: hot and cold deserts, temperate and polar climates, and urban 

settings (Flora of North America Editorial Committee 2014). Sexually dioecious, it is capable of 

short or long distance dispersal via sexually generated spores, as well as clonal dispersal over 

short distances via bulbils.  

Sample Collection 

 Specimens were gathered from herbarium collections (collected between 1999 and 2009) 

from a range of North American (U.S.) habitats showing varied seasonal and yearly temperature 

and precipitation. Localities include Arizona (2 locations; male and female, ♂/♀), California (3 

locations; ♂/♀), Kentucky (2 locations; ♂/♀), Nevada (1 location; ♀ only), New Mexico (1 

location; ♀ only), Massachusetts (2 locations; (♂/♀), and Oregon (2 locations; ♂/♀) (appendix 

1). Specimens were originally collected and stored dry in herbarium cabinets at low humidity and 

low light. 

Selection of Material and Cultivation 

 Wet-dry cycles experienced under field conditions combined with differential levels of 

resources and pre-existing injury and disease make assessment of DT or inducibly-DT status 

difficult due to hardening (Stark et al. 2014). Induction of a hardening response has been observed 

in gametophytes of Crossidium crassinerve, protonema of Funaria hygrometrica (Werner et al. 

1991), and even in gametophytic tissue of some aquatic mosses (Cruz de Carvalho 2014). For 
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these reasons, we used lab cultivated samples grown under common growth conditions to assess 

DT and to avoid variation due to unknown field hardening effects. 

 Moss shoots were isolated by subculturing and cultivated following Greenwood & Stark 

(2014, also second chapter of this dissertation) to remove habitat-acquired acclimation. In this 

study we tested for DT capacity in three major phenological classes: 1) bulbils, propagules 

specialized for roles as agents of dispersal; 2) protonemata, which provide lateral expansion of 

moss colonies through and on surface soil; and 3) shoots, the major photosynthetic structures and 

bulk of gametophytic tissue. Shoots were additionally divided into three developmental classes 

based on height (<3 mm, juvenile; 3 —5 mm, intermediate; and >5 mm, adult).  

  Protonemata required unique cultivation as they adhere to substrate, making isolation 

difficult without destroying tissue. Protonemata, therefore, were cultivated in a liquid media of 

30% Hoagland’s solution (Hoagland & Arnon 1950). To develop stock cultures, test tubes (16 × 

100 mm) were inoculated with a single leaf from stock cultures. Protonemata were grown at 24°C 

with constant light (59 µmol m
-2

 s
-1

 PAR, photosynthetically active radiation). Tubes were sealed 

with parafilm and inverted twice daily to increase gas exchange. Bulbils were collected from 

shoots of stock cultures growing in sand substrate.  

Sample Material Preparation 

 For each ecotype, from randomly selected stock cultures grown on sterile sand, shoots 

were selected when they reached target lengths (juvenile, <3 mm; intermediate, 3-5 mm; and 

mature, >5 mm), with five shoots used per sample unit. For protonema, material was collected 

from liquid stock to produce all sample units. Due to the small size of individual bulbils, 50 

bulbils collected from sand substrate stock cultures were used per sample unit. All tissue material 

was blotted between two sheets of Whatman #1 filter paper to remove excess surface water before 
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placing the tissue on top of an artificial substrate. These were placed within a 35-mm diameter 

Petri dishes pre-treated with RoD manipulation treatments.  

Stress Application  

 Rate of drying (RoD) was controlled for by adding specific volumes of sterilized water to 

an artificial substrate following Greenwood & Stark (2014, also second chapter of this 

dissertation) before the addition of tissue to the substrate. Specific volumes of water were 

dispensed with a 100 µL pipette. Volumes for RoD included: 0 µL with no lid (< 20 m), 0 µL 

lidded (< 30 m), 12.5 µL lidded (1 h), 25 µL lidded (4 h), and 50 µL lidded (11 h), times listed 

indicate time until leaf curling (~86% RH equilibration) when metabolic activity ceases. 

Controlled RoD were carried out in a benchtop relative humidity chamber (Totech Super Dry, 

Totech, Tokyo, Japan) set to 50% relative humidity, The chamber was located inside of an 

environmental control room (R.W. Smith and Co., San Diego, CA, USA) set to 20°C and 50% 

RH. Samples were stored for 24 h at 50% RH after equilibration to ensure all material was dried 

to equilibrium. Verification of dry material follows procedures in Greenwood & Stark (2014). 

Unstressed shoots with no prior drying events, obtained from the existing stock cultures served as 

controls. All treatment combinations, ecotype × life phase × RoD, were replicated five times. 

Chlorophyll Fluorescence as a Measure of Stress 

 After samples were dry (and equilibrated) for 24 h, they were rehydrated for 24 h, 

transferred to leaf clips, and dark-adapted for 30 m. For shoot phases, all five shoots within the 

sample unit were used. For protonemata, enough material from within the sample unit was used to 

cover the base of the leaf clip. For bulbils, 50 were used per sample unit. Since chlorophyll 

fluorescence is a ratio, the amount of tissue does not necessarily affect readings but enough 

material is required to reach a minimum initial fluorescence signal.  
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Status of dark-adapted (Fv/Fm) fluorescence, non-photochemical quenching (NPQ) and 

quantum efficiency of photosystem II (ɸPSII) were determined with a fluorescence monitoring 

system (FMS2, Hansatech) using the saturation pulse method (Schreiber et al. 1995). Fv/Fm is the 

maximum quantum efficiency of PSII under dark-adapted conditions. Non-photochemical 

quenching is a method to dissipate excess excitation energy as heat, and a decrease in NPQ can 

indicate tissue damage. ɸPSII is the quantum efficiency of PSII electron transport in the light 

(Genty et al. 1989), with lower levels resulting from stress or damage.  

Data Analysis 

All 13 ecotypes, five life phases, and six rates of drying including controls resulted in a 13 

× 5 × 6 treatment design, or 390 total potential treatment combinations, N = five per treatment, 

totaling 1,950 individual sample units. All fluorescence parameters were analyzed for significance 

of main treatments and all two-way and three-way treatment interactions using analysis of 

variance (ANOVA) in SPSS v.20 (IBM corp., Armonk, NY, USA), with life history phase, 

ecotype, and RoD set as fixed factors. For significant effects, post hoc Tukey tests were applied to 

determine homogeneous subsets within main treatments and all significant two-way interactions.  

Results 

All three main treatments, as well as all two-way and three-way interactions between 

treatments were significant for all fluorescence parameters. Significance of interactions varied 

within and between RoD treatments but results and trends were relatively consistent between 

fluorescence parameters. RoD appeared to have the most effect on fluorescence parameters, 

followed by life phase and ecotype (Fig. 10 A - D). For specific results per fluorescence 

parameter, see supplemental figures 10 – 12, and reaction norms on figures 13-17.  
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 Rate of drying contributed strongly to the variability of fluorescence parameters within 

phases. There was a clear trend (Fig. 10 A, B), and across ecotypes (Fig 13-17; Supp. Fig. 10 - 

12), that lengthened RoD increased fluorescence. Mostly, this increase was between a rapid dry 

and a 1 or 4 h drying time, indicating that after a 1 or 4 h drying time for most ecotypes, 

increasing drying time does not necessarily continue to significantly increase fluorescence, 

although this was variable within ecotype (Fig. 13-17; Supp. Fig.1-3). With increased drying 

times there was less difference across life phases (Fig. 10 A; reduced slope angle). The youngest 

shoots required 11 h to reach control values with but intermediate and mature shoots for many 

ecotypes demonstrated a strong response over a shorter drying time (Fig 10-17; Supp. Fig. 1-3). 

However, within the time frames examined by this study, protonemal values did not reach 

controls values and only achieved low mean values after an 11 h drying time. For example, Fv/Fm 

reached mean 0.368 (±0.025 s.e.) after 11 h. Overall, there was a strong trend toward greater 

recovery after rehydration with a longer RoD for most ecotypes within life phases. 

 Generally for all life phases, fluorescence parameters improved with slower drying rates 

(Fig 10 A). Significance between life phases varied within and between ecotype, although most of 

the variability appears to be contained within the protonema and juvenile shoots across RoD 

treatments (Fig. 10 -14; Supp. Fig. 1-3). Protonema performed the poorest in response to 

desiccation stress , i.e., the lowest Fv/Fm performance (mean ± standard error; 0.355 ±0.01), 

compared to shoots and bulbils (Fig. 10 C; Supp. Fig. 1). Protonema tended to remain vulnerable 

to damage across the RoD treatments (Fig. 10 A), except for three instances with ecotypes from 

the Southwest US (NM, CIMA, CA1, VF; Fig. 13; Supp. Fig. 1). As shoots increase in age, mean 

fluorescence across all treatments and ecotypes increased: juveniles (0.635 ±0.009); intermediates 

(0.697 ±.007); adults (0.702 ±.006). Bulbils display the greatest healthy retention regardless of 
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RoD (0.728 ±.003) (Fig. 10 C, Supp. Fig. 1) and tended to display the highest resistance to an 

extreme RD (Fig. 10 A, Fig. 17, Supp. Fig. 1). Mean values of all phases responded positively to 

longer drying times showing increased values approaching or equal to control values. 

Ecotype, grouped into four significantly homogeneous subsets (Fig. 10 D), with most of 

the signal driving these groups derived from the protonemal and juvenile shoot phases (Fig. 13, 

14; Supp. Fig 1). Variation diminished with development in shoot tissues with mature shoots from 

all ecotypes displaying a high tolerance for desiccation (Fig. 16). Likewise bulbils also showed 

very low ecotypic variation and an extreme capacity for desiccation tolerance across not showing 

variation for phenotypic plasticity in response to RoD (Fig. 17). 

Reaction norms (ecotype by environment) for tissues showed both some overall 

similarities, as well as capacities unique to a subsets of ecotypes. First for all ecotypes examined 

bulbils displayed a remarkably flat response to the RoD applied, displaying the high importance 

of desiccation tolerance to this phase (Fig. 17). For adult shoots many ecotypes performed well at 

all drying rates; however AZ1, MA2, KY2, when dried more rapidly than 1h performed far below 

most other ecotypes, if given an induction of 1h or more they performed near the other ecotypes 

(Fig. 16). With intermediate shoots most ecotypes required 1h for induction of a DT phenotype. 

Intermediate shoots from ecotypes of NM, CA2 had high values after only 30 minutes of 

induction, while conversely AZ1 was worse than all other ecotypes with lower values at most 

RoD and requiring a 4h induction time before intermediate shoots showed values close to other 

ecotypes given a similar drying regime (Fig. 15). Juvenile shoots required a longer RoD to induce 

DT than other shoots on average with most ecotypes requiring 1 or more hours. Juvenile shoots of 

the AZ1 ecotype were again much less tolerant of desiccation than other ecotypes requiring 4 

hours to induce a DT phenotype and displaying values consistently lower than all other ecotypes 
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at times below this (Fig. 14). Protonemal forms were the least likely to show a DT reponse of any 

kind in reponse to RoD, with only a handful showing signs of induction. Protonemal ecotypes of 

CIMA, VF, NM and CA1 were the exceptions with all showing induction after 11h of drying, 

with NM and VF having reached control values. Protonema from NM showed a more rapid 

response than other ecotypes with strong induction achieved with only a 1 hour slow dry, and 

control values reached by 4h (Fig. 13). 

Discussion 

The constitutive nature of DT in B. argenteum can and should be doubted if the organism 

is considered across all life phases.  Although adults and bulbils would appear constitutively DT 

(CDT), as they show little damage from RD, juveniles and protonema display an inducible DT 

phenotype. Gao et al. (2015) found that the rehydration transcriptomes from adults of B. 

argenteum exposed to a RD to 20% relative humidity resulted in significant differences between 

the rehydration and pre-desiccation transcriptomes, suggesting similar conclusions. Up-regulation 

of stress response genes in response to drying provides a mechanism of DT involving transcript 

up-regulation in addition to the constitutive description of desiccation tolerance in Syntrichia 

ruralis, which produces and sequesters messenger ribonucleoprotein particles at all times 

regardless of stress conditions (Oliver & Bewley 1984).  Although adults of B. argenteum may be 

considered constitutively DT, at least a part of their physiological response should be considered 

inducibly DT based upon transcriptomics (Gao et al. 2016) and fluorescence data presented here.   

 Among the ecotypes examined, significant differences were observed in DT response. 

However, this effect was mostly restricted to protonemal and juvenile phases. This variation in 

DT could be, in fact, an adaptive response to high dispersal capacity. With spore production 

ranging from 100 million to tens of billions per square meter of moss cover annually and any 



47 

spore potentially traversing hundreds to thousands of kilometers before settling (Miles & Longton 

1992), it would be beneficial to possess a highly plastic capacity for inducible DT or DT across 

vulnerable life history phases, assuming costs for maintaining a rapid inducible DT response are 

low, and or only expressed in the appropriate environments (Pigliucci 2005). 

The tissues examined showed a wider degree of responses than expected, but all tissues 

responded in a manner logically consistent with their roles in the organism. Protonema are most 

sensitive, but this may be mitigated in nature as the intrinsic properties of soil results in slower 

drying rates than tissues above ground can expect, providing a longer drying period, and thus 

more time for induction. Bulbils will lack the protective functions of colonial patch dynamics 

once separated (Zotz et al. 2000), which acts to slow the water loss across cushions of moss. It is 

logical that bulbils would display a constitutive DT response, as any dispersal agent functioning 

in a xeric habitat should be under strong selection for DT. Patch establishment and expanding 

regions of growth are likely sensitive to environmental conditions so that establishment and 

expansion only occur in wet seasons or favorable years. During other periods, the colony may 

experience high losses of protonemal and juvenile tissue. Taken together, these observations 

suggest that new growth under xeric conditions is limited by the ability of protonema and juvenile 

shoots to survive drying. 

The reaction norms displayed by the 13 ecotypes showed a substantial degree of variation 

in phenotypic plasticity, centered around protonemal and juvenile phases. The variation at 

protonemal and juvenile shoot stages likely reflects increased competition during colony 

initiation, and along the expanding edge of established colonies. In mesic habitats energy 

expenditure toward a desiccation tolerant phenotype would provide little advantage, but the more 

rapid establishment of a colony, and more rapid transition from a juvenile to an adult phase due to 
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rapid growth would prove more advantageous. In habitats more likely to experience rapid and 

extreme drying events any advantage gained from rapid growth at the cost of desiccation 

tolerance would be easily offset by the occurrence of a single unexpected rapid drying event, 

favoring a rapidly inducible phenotypic plasticity as seen in some ecotypes. 

 Our results suggest that adults and established colonies are resistant to the effects of 

altered rainfall pattern that are expected in many areas due to global climate change due to their 

high capacity for DT with short drying times. However, over longer time frames and under 

current climate change estimates, the establishment rates of new colonies in xeric habitats are 

expected to decrease in locations becoming hotter and or drier due to climate change. Shifts to 

more xeric habitats would negatively impact protonema and juveniles, resulting in higher 

mortality rates (IPCC 2014). If the rate of successful colony establishment falls beneath the rate at 

which mature colonies are lost, the cumulative effects would result in either expatriation from 

localities transitioning to more xeric habitats or a strong selective pressure resulting in increased 

tolerance across many populations. Genetic diversity in response to desiccation tolerance we have 

shown for this species, as well as diversity in the capacity for plasticity of reponse suggest B. 

argenteum may have the variation needed for selective pressures to result in more tolerant 

phenotypes and or a more quickly initiated and stronger plastic response (Carlson et al. 2014). 

 The findings also provide an experimental outline for land managers to locate and assess 

vulnerable moss communities by defining methods to determine the susceptibility of ecotypes to 

altered rainfall patterns across life phases. Non-climate related anthropogenic effects (e.g., habitat 

destruction and fragmentation) are already damaging many moss populations furthering their need 

for protection.  Predicting how mosses will respond to global climate change by assessing 

vulnerability of communities is an important step in estimating overall ecosystem health and 
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function and assist land managers in identifying and reducing negative consequences of 

disturbance and climate change, by choosing ecotypes for cultivation and transplantation that 

show a high capacity for desiccation tolerance in protonema and juvenile shoots when raised in 

culture. 

 Other direct applications of this research could be used in rehabilitation of disturbed 

dryland soils or restoring biological soil crusts in xeric habitats.  Mosses are cultivated easily in 

the lab (e.g., Greenwood & Stark 2014; Antoninka et al. 2015), although field studies in the US 

are limited. Several studies from dryland systems in China suggest mosses can be used as a 

component for soil stabilization and possibly restoration (e.g., Bu et al. 2013). Few studies have 

used moss in restoration applications in the US (e.g., Chiquoine et al. 2016) and no studies to the 

authors’ knowledge as of the writing of this article have incorporated laboratory cultivated mosses 

in field studies or restoration efforts. To increase successful incorporation of mosses into field 

applications, we suggest the following three strategies to improve outplanting attempts. First, we 

recommend cultivation to continue until shoots and colonies are fully mature before outplanting; 

second, harden samples with a slow drying event before outplanting to increase DT; and third, 

limit outplanting to cooler, wetter seasons, as this allows an entire season for new growth and 

adaptation to the local climate before desiccation stresses are encountered.  

 Salvaged biocrust has been effective in restoring habitats suffering from anthropogenic 

damage, but is limited to localities where there was foresight to collect and store material before 

construction (Chiquioine et al. 2016). Greenhouse cultivation has produced a six-fold increase in 

four months of biocrust containing moss (Antoninka et al. 2015) providing a valuable tool for 

outplanting. However, restoration efforts whenever possible should collect specimens from the 

local area for greenhouse cultivation to maximize the odds of choosing locally adaptive forms 
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(assuming the habitat for transplantation into is stable). Local specimens we believe will have 

decreased protonemal and juvenile mortality upon reintroduction to the wild. If using local 

materials is not possible, then the use of ecotypes from similar habitats should be considered 

when available.  

 Further we would recommend that future studies upon the use of mosses toward habitat 

restoration of drylands consider the desiccation tolerance capacity of individual ecotypes used for 

cultivation and later re-introduction. If a restoration effort simply chooses the most rapidly 

growing ecotype it may find that this advantage in growth rates comes at an unacceptably high 

cost when field mortality rates are measured. Instead a simple pilot study before the main effort of 

cultivation is begun should be employed to select for a balance of growth rate and desiccation 

tolerance leading to more successful re-introduction rates over the long term. 

Conclusion 

 This study presents a pattern of ecotypic reaction norms to desiccation along a 

developmental trajectory. The use of two tissues with specialized adaptive roles (i.e., bulbils, 

protonema), as well as shoots during multiple developmental phases, presents a look at how an 

entire life cycle responds to desiccation. By applying five rates of drying, we examined not just 

whether the organism is desiccation tolerant, but also how different life history phases and tissue 

types prioritize rapid to slow induction times to achieve DT. We observed a gradient of responses, 

thereby allowing predictions of how organisms may respond to future desiccation challenges 

across life history phases under a variety of scenarios. An extrapolation of these findings would 

suggest that we should expect few short-term effects (due to high DT of adult shoots), but 

significant adverse long-term effects on colony establishment (due to low tolerance of protonema 

and juvenile shoots). If these trends hold true for mosses in generatl species with reduced 
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dispersal capacity in stressed habitats it could prove disastrous. In the future, we hope results from 

this study will contribute to other disciplines, including ecological restoration and land 

management. 

The overall plasticity shown for B. argentum is encouraging and displays a greater deal of 

variation than expected (especially given only 13 ecotypes were examined). The plastic variation 

in response, current large species distribution (both geographic as well as habitat variety), ease of 

long distance dispersal (via spores) and short distance dispersal (spores and bulbils) suggests that 

the species may be better poised to respond to climate change than most (Kopp & Matuszewski 

2014). This does however also cause this author to suspect that these benefits will also give the 

species a strong advantage against other species in colonizing new habitats formed by climate 

change, potentially allowing it to outcompete more narrowly restricted (both in terms of 

geographic range and suitable habitats) species of mosses. A quickly dispersing species such as B. 

argenteum could rapidly fill new niches as they appear acting as a highly invasive organism and 

excluding more slowly dispersing species by occupying these niches, further accelerating species 

loss of more vulnerable species as they are outcompeted.  



 
  

52 

 

Chapter Five: Dissertation Conclusions 
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Dissertation Conclusions 

For Physcomitrella patens, time spent at sub-turgor led to an increased capacity for 

desiccation tolerance, displaying increased health by maintaining improved values for 

fluorescence and regrowth (see Tables 1-2; Figs. 2-3).  This evidence strongly supports the 

conceptual position of desiccation tolerance existing as a gradient, and that the time spent at sub-

turgor has a strong influence on the capacity for desiccation tolerance. It also suggests that 

desiccation tolerance may be more widespread than believed. If a species that is considered to be 

among the most desiccation sensitive can survive desiccation, it is likely that other ―desiccation 

sensitive‖ species may display a pattern of desiccation tolerance if provided a slower drying time. 

The ability to harden to desiccation stress was shown in P. patens when a slow-dry pre-

treatment resulted in significantly improved survival following a subsequent rapid-dry compared 

to a rapid-dry without a slow-dry pre-treatment. The slow-dry pre-treatment improved values for 

chlorophyll fluorescence (Figs. 4-6), chlorophyll retention (Fig. 7), emergence rates for 

protonema (Fig. 9) and shoots (Fig. 8), as well as reduced emergence time (Figs. 8, 9). When 

hardened samples were given a hydration period (de-hardening) before rapid drying, desiccation 

tolerance diminished (Figs. 8, 9). As the de-hardening period extended, values indicative of health 

decreased, and by day eight samples were indistinguishable from rapid-dry (no pre-treatment) 

control samples (Figs. 8, 9). 

The effects of rate of drying, life history phase, and ecotype upon Byrum argenteum’s 

ability to survive desiccation, were all found to significantly influence desiccation tolerance. 

However not all factors equally affected desiccation and survival (Figs. 10-12). Life phase and 

rate of drying produced much stronger effects than were elicited by ecotype (Figs. 10-12). The 

variation observed in ecotypes was mostly restricted to the protonemal and juvenile phases (Figs. 
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10-17; Supp. Figs. 1-3). In intermediate and mature shoots as well as bulbils there were little 

differences across ecotypes. As expected lengthened rate of drying resulted in greater health 

(Figs. 10-17). The effect seen across life phases is logically consistent with the life phase roles in 

the organism (Figs10-17). Protonema are responsible for lateral expansion through the soil and 

should be somewhat temporally buffered against rapid humidity fluctuations. Experimentally, 

protonema are the most sensitive life phase examined. Juvenile shoots are likewise very sensitive, 

and I expect samples are prioritizing growth over desiccation tolerance. Intermediate and mature 

shoots are both hardy as would be expected of nearly fully developed samples. Bulbils, which act 

as vegetative dispersal structures, are extremely hardy, displaying a constitutive strategy of 

desiccation tolerance which would be extremely valuable for a structure required to traverse a 

harsh xeric environment. 

 The results presented over these three chapters strongly support the hypothesis that an 

inducible physiological response to low osmotic pressure is capable of increasing survival during 

desiccation showing desiccation tolerance in some species to be a phenotypically plastic response. 

This capacity for desiccation tolerance is modulated by the rate of drying, ecotype, life history 

phase, and tissue type. Desiccation tolerance can be enhanced across the organism in response to 

previous environmental exposure to low water content. Ecological environmental interactions of 

future experiments involving bryophytes will be easier to interpret and explain using these results. 

 I do however fear that some species (those similar to B. argentum in population size, 

dispersal capacity and a wide habitat preference), with a high capacity for dispersal are poised to 

act as invasive species in the event of climate change. A world-wide spore rain combined with an  

ability to succeed in many habitat types, combined with rapid environmental shifts could prove 
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disastrous. Without a concerted effort to identify at risk populations and transport them to newly 

forming habitats many species and a large portion of biodiversity in ecotypes will be lost. 

Implications and Significance of This Work 

Our understanding of how water relationships impact desiccation tolerance in the moss 

clade is undergoing re-evaluation, and this work helps to re-define the properties of desiccation 

tolerance within the mosses. The traditional view considers mosses as existing in one of two 

discrete non-overlapping categories: desiccation tolerant, and, therefore, able to survive 

desiccation with minimal damage; or desiccation sensitive, for which desiccating conditions are 

lethal. The alternative view, which this research supports, considers desiccation tolerant and 

desiccation sensitive status not as discrete categories but descriptors of two ends of a gradient 

with many levels of desiccation hardiness between these two extremes. This work has shown 

species to have different inherent capabilities for desiccation tolerance that is modulated by  

environmental factors, with time spent at sub-turgor, ecotypic variation, current life history phase, 

tissue type, and (we expect) a host of other environmental factors (temperature, rain frequency, 

solar irradiation, etc.) interacting to determine desiccation tolerance. 

Previous work has established that desiccation tolerance could be achieved in desiccation 

sensitive mosses through the addition of abscisic acid addition, and that slowly dried mosses 

produce abscisic acid. With this work a link has been made between the act of slow drying 

leading directly to a phenotype that can survive desiccation, the implicit assumption being that 

abscisic acid is produced during this slow dry in sufficient quantities to generate a desiccation 

tolerant phenotype (chapter 2). This work also gives empirical evidence showing that the dogma 

of desiccation tolerance or desiccation sensitive is not conclusive and there is a grey transition 

zone between these two concepts. 



 
  

56 

 

In chapter three it was shown that hardening from a desiccation sensitive to a desiccation 

tolerant phenotype can be induced by a slow dry. This allows a temporal separation between 

exposure and phenotypic induction and allows for the possibility that periodic drying or partial 

drying will result in hardier mosses under field conditions and a wider habitat range. This finding 

also re-enforces the importance of hardening for environmental restoration projects, suggesting 

that mosses when given a hardening exposure will have better survival odds than un-hardened 

when transplanted back into the field. 

As chapters two and three showed errors in the dogmatic representation of the desiccation 

sensitive or desiccation tolerant dogma was flawed by showing  the generation of a desiccation 

tolerant phenotype in a ―desiccation sensitive‖ species chapter four does by highlighting the 

desiccation sensitive aspects of a moss considered to be constitutively desiccation tolerant. Both 

protonemal and juvenile shoots were shown to be desiccation sensitive or inducible desiccation 

tolerant, but not desiccation tolerant at all rates of drying. The degree of desiccation sensitivity 

displayed was found to be ameliorated by slower drying rates and therefore displayed a 

phenotypically plastic inducible response to a slow drying rate that allowed survival. 

In addition to further challenging the accepted dogma of desiccation tolerance chapter four 

serves to provide a look in to desiccation tolerance over the course of an organisms life cycle 

(protonema, three shoot phases, and bulbils). We uncovered significant differences in response in 

every stage examined showing a considerable (and unexpected) ontogenetic plasticity for 

desiccation tolerance with some forms being very resistant to induction ( at the time frames 

examined), protonema and other, while bulbils displayed a near perfect constitutive desiccation 

tolerance response. Ecotypic variation was also examined in chapter four, across 13 ecotypes 
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from the continental United States of America. A surprisingly variable capacity in phenotypic 

plasticity was found (especially for the protonemal and juvenile shoot phases).  

Taken together the factors uncovered over the body of this dissertation stands as a strong 

reason to question much of what we currently believe in the nature of desiccation tolerance within 

mosses and the methodology commonly used to asses desiccation tolerance of mosses.  With this 

in mind the work not only offers critiques of the current methods to study desiccation tolerance in 

bryophytes, but also offers guidelines by which future efforts may be improved. 

The major criticisms of the current common methods used to study desiccation tolerance 

can be summarized in three statements. First, the drying regimes used are for the most part 

performed far too quickly, especially for species currently categorized as desiccation sensitive. 

Second, the near exclusive use of adult shoots in determining the desiccation tolerance status for a 

species ignores the complexity present across an organism’s life cycle. Third, the use of field 

collected specimens for determination of desiccation tolerance ignores the effects of field 

hardening. Fourth, using collections from a single location (one ecotype) to determine the 

desiccation tolerance capacity for an entire species ignores the variation found within individuals 

of the species.  

Solving these concerns should be a relatively straight forward prospect, but will require 

overcoming significant institutional inertia. First, to solve the concerns over drying rate two parts 

of the traditional method should be amended. Salt solutions have long been used to control 

equilibrating relative humidity, however this intrinsically links drying rate to humidity. The 

solution would be either to adopt a saturated artificial substrate as used across chapters 2-4 of this 

work, or using a series of saturated salt solutions in a step-down method to control drying rate. 

The second part of amending drying rates will consist of choosing drying rates that reflect what 
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the particular species under study can be expected to receive in its normal range and act as natural 

upper and lower bounds to define the slow and rapid drying rates chosen.  

Second to uncover the importance of life cycle stage in determination of desiccation 

tolerance status one should cultivate materials under laboratory conditions to gather enough 

material at all life cycle stages for examination. This suggestion would have the added side 

benefit of controlling for our third concern that of field hardened specimens used in testing. 

Cultivation adds considerable time input for studies to measure and test mosses, however the 

accurate determination of results should be valued as more important than expediency.  

Fourth, the testing of multiple ecotypes for any species considered is necessary to 

confidently begin to quantify the capacity of a species. The importance of this is highlighted in 

the fourth chapter of this work. In only 13 ecotypes examined in chapter four we observed a wide 

display of phenotypic plasticity for the trait. If for this study we had restricted ourselves to only a 

single ecotype we could have concluded that the species possessed either a nearly constitutively 

desiccation tolerant phenotype, or in choosing another ecotype concluded that the species lacked a 

desiccation tolerant phenotype whatsoever in the protonemal or juvenile shoot phases.  Obviously 

either of these conclusions would have been erroneous, and serve to highlight the potential pitfalls 

from making species descriptions from single ecotype observations.  

 Global climate change can be expected to lead to dynamic shifts in population structures 

as regions of earth transition to alternative climate regimes. This work increases our 

understanding of many factors (inducible desiccation tolerance, hardening, ecotypic and tissue 

variation in desiccation tolerance), enhancing our ability to make reasonable predictions for how 

organisms will respond to climate change. Another essential aspect for predicting of survival in a 

changing climate depends upon knowing if a species has sufficient genetic variation for selection 
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to act upon (Ghalambor et al. 2007; Matesanz et al. 2010; Shaw & Etterson 2012). Highly 

variable species will possess a greater range of traits for selection to act upon, increasing the 

likelihood that some will be sufficiently adaptive in the new climates allowing survival. If current 

variation is not present at high levels an alternative method to overcome selective pressures and 

survive climate change would be high levels of phenotypic plasticity for desiccation tolerance, 

effectively acting as a buffer against selection and allowing a wider range of the existing 

genotypes to persist until sexual recombination can provide a more competitive combinations of 

alleles and chromosomes (Ghalambor et al. 2007; Matesanz et al. 2010; Shaw & Etterson 2012). 

Although this work has uncovered a great deal of variation in desiccation tolerance and 

phenotypic plasticity for this trait (for some ecotypes) this could be counter balanced by the low 

rates of sexual reproduction and low occurrence of male sex expression in xeric habitats. The 

effects of clonal propagation combined with a strong selective pressure for desiccation tolerant 

phenotypes will likely lead to a loss of genetic variability over the short term in xeric habitats as 

hardier forms expand into locations previously occupied by less desiccation tolerant forms. The 

wide cosmopolitan distribution of Bryum argentum, as well as its high capacity for long distance 

spore dispersal, should, over longer time frames re-introduce genetic variation to xeric habitats. 

However many other xeric species with restricted and or patchy distribution combined with 

potentially lower capacity for spore dispersal would have a less optimistic long term outlook as 

they would not have a large source of genetic material preserved in other habitats to re-introduce 

into the xeric localities. 

Future Goals 

The most obvious extension of this work that I feel is most ripe for future research 

concerns the inherent differential capacity for desiccation tolerance of male and female mosses 
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and would in effect be an extension of the third chapter. Females are known to greatly outnumber 

males in xeric habitats, although the reasons have never been fully explained. One pattern I 

noticed (although statistically untenable due to the design parameters of the third chapter) was 

that males tended to have more desiccation sensitive protonemal tissue than females. At the time 

of this writing I am currently (as part of another project) gaining access to a large number of 

ecotypes (of B. argenteum) from across the continental united states. With this increased sample 

size I may be able to determine if the patterns I saw in my work hold true across a larger sample 

set. 
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Appendix

Bryum argenteum Ecotypes 

AZ Male and Female 

Pima County, Santa Rita Mts, Madera Canyon, Arizona. near Santa Rita Lodge, Stark and 

Castetter 17 March 2008. 

CA Male and Female 

Fresno County, Sierra Nevada Mts, San Joaquin River Gorge, California, Stark s.n., 2008. 

KY Male and Female 

Fayette County, Lexington, Kentucky, campus of University of Kentucky, asphalt 

between greenhouses, Stark and McLetchie s.n., 12 October 2007. 

MA Male and Female 

Suffolk County, Urban parking lot in Boston, Massachusetts, Duncan Souza s.n., 2008. 

NM Female 

Sandoval County, Sandia Mts, Las Huertas Campground, New Mexico, near latrine, Stark 

and Castetter s.n., 7 April 2009, elev. 7700 ft, 35° 14.127 N  106° 24.779 W. 

OR Male and Female 

Multnomah County, Portland, OR, sidewalk along the Willamette River, Oregon,  Stark 

and Eppley s.n., 15 May 2009. 

CA Female 

San Bernardino County, Cima Dome, California, Stark s.n., 8 January 2009. 

NV Female 

Clark County, Valley of Fire State Park, Nevada, Stark and Bonine NV-3100, 1999. 

s.n. = sans number (no collection number)
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Tables

Table 1. Leaf Damage and Regeneration of Physcomitrella patens Exposed to Four Rates of 

Drying and two Relative Humidities. 

Leaf damage and regeneration time in shoots of Physcomitrella patens exposed to four rates of 

drying and two equilibrating relative humidities (RH). N.A = not applicable as no regeneration 

occurred. 

Treatment Day 7 Green 

Leaves (%) 

Day 7 Partially 

Green Leaves 

(%) 

Day 7 

Dead/Brown 

Leaves (%) 

Days to 

first 

Protonema 

Days to 

first Shoot 

Unstressed 

Control 

83.1 ± 2.4 11.3 ± 1.2 5.6 ± 0.9 7.5 ± 0.3 9.2 ± 0.5 

284 h to 50% 

RH 

52.9 ± 4.1 18.2 ± 3.5 28.9 ± 6.6 4.2 ± 0.2 4.8 ± 0.3 

116 h to 50% 

RH 

22.1 ± 7.6 22.7 ± 5.4 55.2 ±4.1 4.8 ± 0.4 6 ± 0.44 

65 h to 50% RH 18.2 ± 8.6 13 ± 2.8 68.8 ± 3.3 5.7 ± 0.5 7.4 ± 0.5 

RD to 50% RH 0 0 100 N.A. N.A. 

284 h to 30% 

RH 

41.1 ± 4.3 30.0 ± 2.1 29.0 ± 3.3 4.6 ± 0.2 5.9 ± 0.4 

116 h to 30% 

RH 

13.9 ± 2.7 24.1 ± 2.8 62.0 ±3.7 5.1± 0.4 6.0 ± 0.5 

65 h to 30% RH 2.3 ± 0.9 11.5 ± 1.9 86.2 ± 3.2 7.2 ± 0.5 10.2 ± 0.7 

RD to 30% RH 0 0 100 N.A. N.A. 
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Table 2. Single Factor ANOVA for Fluorescence and Re-growth of Physcomitrella patens. 

Single factor ANOVA with a post hoc Tukey test for experimental treatments. N value = 5 for 

fluorescence comparisons (Fv/Fm, Fm, ΦPSII), and N = 74 for regrowth comparisons (green 

Leaves, partially green leaves, dead/brown leaves). 

 50% RH 24 h post rehydration Fv/Fm 30% RH 24 h post rehydration Fv/Fm 

 

Rapid 

Dry    

Rapid 

Dry    

Control 

1.5x10
-

11
 Control   1x10

-12
 Control   

65 h 9.5x10
-8

 0.00005 65 h  3x10
-7

 2x10
-9

 65 h  

116 h 1.2x10
-9

 0.022 0.087 116 h 2x10
-10

 

0.00000

05 0.001 116 h 

284 h 

3.8x10
-

10
 0.116 0.016 0.923 8x10

-12
 0.0018 

0.00000

5 0.1 

 50% RH 24 h post rehydration PSII 30% RH 24 h post rehydration PSII 

 

Rapid 

Dry    

Rapid 

Dry    

Control 1x10
-12

 Control   1x10
-12

 Control   

65 h 3x10
-8

 3x10
-8

 65 h  .0004 3x10
-11

 65 h  

116 h 2x10
-10

 0.00001 0.24 116 h 1x10
-8

 8x10
-8

 0.0002 116 h 

284 h 2x10
-11

 0.001 .0004 0.4399 1x10
-9

 

0.00000

1 0.00001 0.641 

 50% RH 24 h post rehydration Fm 30% RH 24 h post rehydration Fm 

 

Rapid 

Dry    

Rapid 

Dry    

Control 

4.8x10
-

12
 Control 

 
 4x10

-12
 Control   

65 h 0.658 2x10
-11

 65 h  0.954 8x10
-12

 65 h  

116 h 0.011 4.2x10
-10

 0.168 116 h 0.18 5x10
-11

 0.477 116 h 

284 h .00005 1.4x10
-8

 0.001 0.178 0.004 7x10
-10

 0.015 0.355 

 50% RH 7 d post planting green leaves 30% RH 7 d post planting green leaves 

 

Rapid 

Dry    

Rapid 

Dry    
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Control 4.9x10
-13

 Control 
 

 4.9x10
-13

 Control   

65 h 0.01025 

4.9x10
-

13
 65 h  0.986 

4.9x10
-

13
 65 h  

116 h 0.00104 

4.9x10
-

13
 0.9688 116 h 0.021 

4.9x10
-

13
 0.0864 116 h 

284 h 4.9x10
-13

 

4.9x10
-

13
 4.9x10

-13
 

4.9x10
-

13
 4.9x10

-13
 

4.9x10
-

13
 

4.9x10
-

13
 

4.9x10
-

13
 

 

50% RH 7 d post planting partially 

green leaves 

30% RH 7 d post planting partially 

green leaves 

 

Rapid 

Dry    

Rapid 

Dry    

Control 1.7x10
-7

 Control   

0.00000

28 Control   

65 h 

0.00007

2 0.73895 65 h  

0.00093

98 0.6972 65 h  

116 h 9.6x10
-13

 0.23038 0.00924 116 h 6x10
-13

 0.04364 0.00052 116 h 

284 h 5x10
-13

 0.03538 0.00051 0.93493 4.9x10
-13

 5x10
-13

 

4.9x10
-

13
 

1.8 x10
-

5
 

 

50% RH 7 d post planting dead/brown 

leaves 

30% RH 7 d post planting dead/brown 

leaves 

 

Rapid 

Dry    

Rapid 

Dry    

Control 4.9x10
-13

 Control 
 

 4.9x10
-13

 Control   

65 h 5.5x10
-9

 

4.9x10
-

13
 65 h  0.98275 

4.9x10
-

13
 65 h  

116 h 4.9x10
-13

 

4.9x10
-

13
 0.03111 116 h 6.2x10

-9
 

4.9x10
-

13
 1.3x10

-7
 116 h 

284 h 4.9x10
-13

 8.7x10
-9

 3.9x10
-8

 0.01659 4.9x10
-13

 

4.6x10
-

10
 

4.9x10
-

13
 

0.00000

4 

 

50% RH days until protonemal 

emergence 

30% RH days until protonemal 

emergence 

 Control   Control   

65 h 0.00041 65 h  0.92025 65 h  

116 h 4.1x10
-7

 0.48131 116 h 0.0000056 0.00031 116 h 

284 h 2.4x10
-11

 0.021335 0.492066 1.3x10
-8

 0.0000026 0.72621 

 

50% RH 7 d post planting dead/brown 

leaves 

30% RH 7 d post planting dead/brown 

leaves 

 Control   Control   
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65 h 0.00584 65 h  0.51 65 h  

116 h 0.0000023 0.29062 116 h 0.000044 0.0000018 116 h 

284 h 1.8x10-12 0.00062 .16079 0.0000054 2.5x10
-7

 0.99844 
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Figures 

 

Figure 1. Drying Curve Plotting Water Content Against Relative Humidity and Time.  

Drying curve showing the relationship between water content of the mosses and relative humidity 

inside the petri dish and how both of these factors were dependent upon the amount of water 

initially added to the filter paper with the petri dishes. 
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Figure 2. Representative Shoots of Physcomitrella patens Seven days Post Rehydration.  

Representative shoots of Physcomitrella patens Seven days post rehydration for the 4 treatments; 

A = rapid dry, B= 65 h dry, C = 116 h dry, D = 284 h dry.  
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Figure 3. Chlorophyll Fluorescence Parameters Over a 24-h Period Following Re-hydration of 

Physcomitrella patens. 

Chlorophyll fluorescence parameters over a 24-h period following re-hydration of Physcomitrella 

patens. 
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Figure 4. Physcomitrella patens Fv/Fm Values 24-h Post Re-hydration Showing Hardening and 

De-hardening. 

Physcomitrella patens Fv/Fm values 24-h post re-hydration, with treatments consisting of a rapid-

dry, a 4 or 8 day slow-dry pre-treatment to harden samples, or unstressed all followed by either 

direct measurement (A) or a 1 (B), 4 (C), 8 (D), or 12 (E) day hydrated de-hardening period 

followed by a rapid-dry. Values show a protective effect conferred by the initial slow dry 

(hardening period) lasting 8 d (B,C,D) with protective effects not detectable by 12 d (E). N=15 for 

all treatments, H=hydrated ,RD=rapid-drying event (<30 m), SD=slow-drying event (4 d or 8 d). 
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Figure 5. Physcomitrella patens ΦPSII Values 24-h Post Re-hydration Showing Hardening and 

De-hardening. 

Physcomitrella patens ΦPSII values 24 h postrehydration, with treatments consisting of a rapid-

dry, a 4 or 8 day slow-dry pre-treatment to harden samples, or unstressed controls all followed by 

either direct measurement (A) or a 1 (B), 4 (C), 8 (D), or 12 (E) day hydrated de-hardening period 

followed by a rapid-dry. Values show a protective effect conferred by the initial slow-dry 

(hardening period) lasting 8 d (B,C,D) with protective effects not detectable by 12 d (E). N=15 for 

all treatments,  H=hydrated, RD=rapid-drying event (<30 min), SD=slow-drying event (4 d or 8 

d).  
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Figure 6. Physcomitrella patens NPQ Values 24-h Post Re-hydration Showing Hardening and 

De-hardening. 

Physcomitrella patens NPQ (non-photochemical quenching) values 24-h postrehydration, with 

treatments consisting of a rapid-dry, a 4 or 8 day slow-dry pre-treatment to harden samples, or 

unstressed controls all followed by either direct measurement (A) or a 1 (B), 4 (C), 8 (D), or 12 

(E) day hydrated de-hardening period followed by a rapid-dry. Values show a protective effect

conferred by the initial slow-dry (hardening period) lasting 8 d (B,C,D) with protective effects not

detectable by 12 d (E). N=15 for all treatments, H=hydrated; RD=rapid-drying event (<30 min),

SD=slow-drying event (4 d or 8 d).
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Figure 7. Physcomitrella patens Leaf Damage by Treatment Observed Seven Days Post Re-

hydration. 

Physcomitrella patens leaf damage by treatment observed seven days post rehydration, control 

values are shown in A, with treatments consisting of a 4/8 day slow-dry hardening period 

followed by a 1/4/8 (B, C, D) day hydrated de-hardening period. Protective effects were observed 

after a 1 d de-hardening period (B) but were lost by 4 d (C).  N=45 for all treatments, H=hydrated; 

RD=rapid-dry event (<30 min), SD=slow-drying event (4 d or 8 d). 
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Figure 8. Physcomitrella patens Shoot Emergence Over 10 Days Following Re-hydration. 

Physcomitrella patens shoot emergence over 10 days following rehydration, control values are 

shown in A,  with treatments consisting of a 4/8 day slow-dry hardening period followed by a 

1/4/8 (B, C, D) day hydrated de-hardening period. Protective effects were observed after a 1 d de-

hardening period (B) but were diminished in a 4 d de-hardening period (C) and lost entirely for 

samples with an 8 d de-hardening period (D). N=45 for all treatments, H=hydrated, RD=rapid-dry 

event (<30 min), SD=slow-dry event (4 d or 8 d).  
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Figure 9. Physcomitrella patens Protonemal Emergence Over 10 Days Following Re-hydration. 

Physcomitrella patens protonemal emergence over 10 days following rehydration, control values 

are shown in A,  with treatments consisting of a 4/8 day slow-dry hardening period followed by a 

1/4/8 (B, C, D) day hydrated de-hardening period. Protective effects were observed after a 1 d de-

hardening period (B) but were lost by 4 d (C) for samples with an 8 d hardening period, and lost 

entirely with an 8 d de-hardening period (D). N=45 for all treatments, H=hydrated, RD=rapid-dry 

event (<30 min), SD=slow-dry event (4 d or 8 d). 
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Figure 10. Bryum argenteum Fv/Fm Response Variables. 

Panel of images showing Bryum argenteum Fv/Fm response variables for the treatment 

combinations indicated, lowercase letters designate homogeneous subsets within each sub-graph, 

error bars represent one standard error, and lowercase letters represent homogeneous subsets 

established at an α of 0.05. A The effect RoD has upon the five life history phases with ecotypes 

combined (n = 65), B the effect of RoD with all life phases and ecotypes combined (n = 325), C 

the effect of life history phase with RoD treatments and ecotypes combined (n = 390), D The 

effect of ecotype with all life phases and RoD treatments combined (n = 150).  
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Figure 11. Bryum argenteum ɸPSII Response variables. 

Panel of images showing Bryum argenteum ɸPSII response variables for the treatment 

combinations indicated; lowercase letters designate homogeneous subsets within each sub-graph, 

error bars represent one standard error, and lowercase letters represent homogeneous subsets 

established at an α of 0.05. A The effect RoD has upon the five life history phases with ecotypes 

combined (n = 65), B the effect of RoD with all life phases and ecotypes combined (n = 325), C 

the effect of life history phase with RoD treatments and ecotypes combined (n = 390), D The 

effect of ecotype with all life phases and RoD treatments combined (n = 150).  
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 Figure 12. Bryum argenteum NPQ Response Variables. 

Panel of images showing Bryum argenteum NPQ response variables for the treatment 

combinations indicated, lowercase letters designate homogeneous subsets within each sub-graph, 

error bars represent standard error, and lowercase letters represent homogeneous subsets 

established at an α of 0.05. A The effect RoD has upon the five life history phases with ecotypes 

combined (n = 65), B the effect of RoD all other factors combined (n = 325), C the effect of life 

history phase (n = 390), D The effect of ecotype all other factors combined (n = 150. 
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Figure 13. Reaction Norms for Protonema From 13 Ecotypes Exposed to Five Rates of Drying. 

Reaction norms for protonema from 13 ecotypes exposed to five rates of drying.  
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Figure 14. Reaction Norms for Juvenile Shoots From 13 Ecotypes Exposed to Five Rates of Drying. 

Reaction norms for juvenile shoots from 13 ecotypes exposed to five rates of drying. 
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Figure 15. Reaction Norms for Intermediate Shoots From 13 Ecotypes Exposed to Five Rates of Drying. 

Reaction norms for intermediate shoots from 13 ecotypes exposed to five rates of drying. 
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Figure 16. Reaction Norms for Adult Shoots From 13 Ecotypes Exposed to Five Rates of Drying. 

Reaction norms for adult shoots from 13 ecotypes exposed to five rates of drying. 
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Figure 17. Reaction Norms for Bulbils From 13 Ecotypes Exposed to Five Rates of Drying. 

Reaction norms for bulbils from 13 ecotypes exposed to five rates of drying.
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Supplemental Materials 
Supplemental Table 1. Kaplan Meier Estimations for Protonema and Shoots of Physcomitrella 

patens, and Chlorophyllous Leaf Percentages. 

Kaplan Meier estimations are presented for both protonema and shoots of Physcomitrella patens, 

as well as percentages of leaves that fall into green, partially green, and dead leaves. N=45 for all 

treatments, H=hydrated, RD=rapid-dry event (<30 min), SD=slow-dry event (4 d or 8 d) 

Treatment 

Kaplan Meier Estimations 
Chllorophyllous Tissue Retention 

Regrowth 

Protonema Shoots Green leaves Partially green Dead leaves 

Mean 
Std. 

Error 
Mean 

Std. 

Error 
Mean 

Std. 

Error 
Mean 

Std. 

Error 
Mean 

Std. 

Error 

RD control 10.00 0.00 9.87 0.08 0.00 0.00 0.02 0.01 0.98 0.01 

4d SD control 5.13 0.28 5.36 0.32 0.57 0.03 0.22 0.01 0.21 0.02 

8d SD 

Control 
4.80 0.28 4.04 0.22 0.56 0.03 0.31 0.03 0.13 0.02 

Control No 

Stress 
6.09 0.36 5.60 0.30 0.70 0.02 0.19 0.02 0.10 0.02 

1d H + RD 9.98 0.02 10.00 0.00 0.00 0.00 0.02 0.01 0.98 0.01 

4d SD + 1d H 

+ RD 
6.24 0.30 7.96 0.27 0.25 0.04 0.20 0.02 0.55 0.04 

8d SD + 1d H 

+ RD 
8.33 0.34 8.76 0.34 0.12 0.03 0.10 0.02 0.78 0.04 

1d H Control 3.96 0.28 3.84 0.30 0.68 0.02 0.23 0.02 0.09 0.01 

4d H + RD 10.00 0.00 10.00 0.00 0.00 0.00 0.01 0.00 0.99 0.00 

4d SD + 4d H 

+ RD 
9.64 0.12 9.67 0.17 0.02 0.01 0.06 0.02 0.92 0.03 

8d SD + 4d H 

+ RD 
9.22 0.28 10.00 0.00 0.02 0.00 0.02 0.01 0.96 0.01 

4d H control 2.87 0.19 3.07 0.26 0.59 0.03 0.36 0.03 0.04 0.01 

8d H + RD 

control 
10.00 0.00 10.00 0.00 0.00 0.00 0.04 0.01 0.96 0.01 

4d SD + 8d H 

+ RD 
10.00 0.00 10.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

8d SD + 8d H 

+ RD 
10.00 0.00 10.00 0.00 0.02 0.02 0.05 0.01 0.95 0.01 

8d H control 3.87 0.18 4.44 0.34 0.68 0.03 0.27 0.03 0.05 0.01 

12d H + RD 

control 
10.00 0.00 10.00 0.00 0.00 0.00 0.02 0.01 0.98 0.01 

4d SD + 12d 

H +RD 
10.00 0.00 10.00 0.00 0.00 0.00 0.02 0.01 0.98 0.01 

8d SD + 12d 

H + RD 
10.00 0.00 10.00 0.00 0.00 0.00 0.01 0.01 0.99 0.01 
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12d H control 3.98 0.37 3.60 0.26 0.77 0.02 0.16 0.02 0.06 0.01 
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Supplemental Table 2. Tests of Between Subjects Effects in Bryum argenteum 

 Tests of between subjects effects for the three examined treatment variables in Bryum argenteum. Significance was determined 

against an α of 0.05. 

Tests of Between-Subjects Effects 

Source 
Dependent 

Variable 

Type III 

Sum of 

Squares 

df 
Mean 

Square 
F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Power 

Corrected 

Model 

FvFm 68.730a 389 0.177 34.723 0 0.896 13507.253 1 

ɸPSII 79.756c 389 0.205 33.959 0 0.894 13210.071 1 

NPQ 20.281d 389 0.052 2.887 0 0.419 1122.989 1 

Intercept 

FvFm 742.814 1 742.814 145983.004 0 0.989 145983.004 1 

ɸPSII 591.642 1 591.642 97994.429 0 0.984 97994.429 1 

NPQ 41.775 1 41.775 2313.083 0 0.597 2313.083 1 

Phase 

FvFm 35.51 4 8.877 1744.644 0 0.817 6978.575 1 

ɸPSII 38.653 4 9.663 1600.549 0 0.804 6402.196 1 

NPQ 1.017 4 0.254 14.074 0 0.035 56.296 1 

RoD 

FvFm 13.476 5 2.695 529.683 0 0.629 2648.414 1 

ɸPSII 17.135 5 3.427 567.613 0 0.645 2838.064 1 

NPQ 0.67 5 0.134 7.422 0 0.023 37.111 0.999 

Ecotype 

FvFm 1.08 12 0.09 17.685 0 0.12 212.225 1 

ɸPSII 1.504 12 0.125 20.754 0 0.138 249.053 1 

NPQ 2.705 12 0.225 12.481 0 0.088 149.778 1 

Phase * 

RoD 

FvFm 7.455 20 0.373 73.253 0 0.484 1465.058 1 

ɸPSII 9.693 20 0.485 80.27 0 0.507 1605.399 1 

NPQ 0.805 20 0.04 2.228 0.001 0.028 44.553 0.995 

Phase * 

Ecotype 

FvFm 2.774 48 0.058 11.356 0 0.259 545.092 1 

ɸPSII 3.326 48 0.069 11.477 0 0.261 550.881 1 

NPQ 6.182 48 0.129 7.132 0 0.18 342.324 1 

RoD * 

Ecotype 

FvFm 2.504 60 0.042 8.203 0 0.24 492.166 1 

ɸPSII 2.924 60 0.049 8.072 0 0.237 484.297 1 

NPQ 2.56 60 0.043 2.362 0 0.083 141.738 1 
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a R Squared = .896 (Adjusted R Squared = .871) 

b R Squared = .871 (Adjusted R Squared = .838) 

c R Squared = .894 (Adjusted R Squared = .868) 

d R Squared = .419 (Adjusted R Squared = .274) 

e Computed using alpha = .05 

Phase * 

RoD * 

Ecotype 

FvFm 5.932 240 0.025 4.857 0 0.428 1165.724 1 

ɸPSII 6.522 240 0.027 4.501 0 0.409 1080.182 1 

NPQ 6.343 240 0.026 1.463 0 0.184 351.189 1 

Error 

FvFm 7.938 1560 0.005 

ɸPSII 9.419 1560 0.006 

NPQ 28.174 1560 0.018 

Total 

FvFm 819.482 1950 

ɸPSII 680.817 1950 

NPQ 90.23 1950 

Corrected 

Total 

FvFm 76.668 1949 

ɸPSII 89.174 1949 

NPQ 48.455 1949 
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Supplemental Table 3. Multivariate Tests for Three Treatments in Bryum argenteum 

Multivariate tests for the three examined treatment variables in Bryum argenteum. Significance was determined against an α of 0.05. 

Multivariate Tests
a

Effect Value F 
Hypothesis 

df 
Error df Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Power
d

Intercept 
Pillai's 

Trace 
.991 40859.19

b
4.000 1557 .000 .991 163436.778 1.000 

Phase 
Pillai's 

Trace 
.847 104.76 16.000 6240 .000 .212 1676.268 1.000 

RoD 
Pillai's 

Trace 
.695 65.65 20.000 6240. .000 .174 1312.991 1.000 

Ecotype 
Pillai's 

Trace 
.297 10.44 48.000 6240 .000 .074 501.204 1.000 

Phase* 

RoD 

Pillai's 

Trace 
.607 13.94 80.000 6240 .000 .152 1115.804 1.000 

Phase* 

Ecotype 

Pillai's 

Trace 
.608 5.82 192.000 6240 .000 .152 1118.590 1.000 

RoD* 

Ecotype 

Pillai's 

Trace 
.456 3.34 240.000 6240 .000 .114 803.371 1.000 

Phase* 

RoD* 

Ecotype 

Pillai's 

Trace 
1.000 2.16 960.000 6240 .000 .250 2079.289 1.000 

a. Design: Intercept + Phase + RoD + Ecotype + Phase * RoD + Phase * Ecotype + RoD * Ecotype + Phase * RoD *

Ecotype

b. Exact statistic

c. The statistic is an upper bound on F that yields a lower bound on the significance level.

d. Computed using alpha = 0.05
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Supplemental Figure 1. Box and Whisker Plots for Effects of Individual Treatment Combinations Upon Fv/Fm  in Bryum argenteum. 

Box and whisker plots displaying the effect of individual treatment combinations upon Bryum argenteum for Fv/Fm. Columns 

represent the six RoD, rows represent the 13 ecotypes. Within each plot, values and homogeneous subsets for the five phases are 

shown in accordance with their respective columns (RoD), and row (ecotype). Whiskers represent 5
th

 —95
th

 percentile, while the box 

itself represents the 25
th

 —75
th

 percentiles, lowercase letters represent homogeneous subsets established at an α of 0.05.  



93 



 

94 

 

 

 



 

95 

 

 

 



 

96 

 

 

Supplemental Figure 2. Box and Whisker Plots for Effects of Individual Treatment Combinations Upon ɸPSII  in Bryum argenteum. 

Box and whisker plots displayng the effect of individual treatment combinations upon Bryum argenteum for ɸPSII. Columns represent 

the six RoD, rows represent the 13 ecotypes. Within each plot, values and homogeneous subsets for the five phases are shown in 

accordance with their respective columns (RoD), and row (ecotype). Whiskers represent 5
th

 —95
th

 percentile, while the box itself 

represents the 25
th

 —75
th

 percentiles, lowercase letters represent homogeneous subsets established at an α of 0.05.  
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Supplemental Figure 3. Box and Whisker Plots for Effects of Individual Treatment Combinations Upon NPQ in Bryum argenteum. 

Box and whisker plots displayng the effect of individual treatment combinations upon Bryum argenteum for NPQ (non-photochemical 

quenching). Columns represent the six RoD, rows represent the 13 ecotypes. Within each plot, values and homogeneous subsets for 

the five phases are shown in accordance with their respective columns (RoD), and row (ecotype). Whiskers represent 5
th

 —95
th

 

percentile, while the box itself represents the 25
th

 —75
th

 percentiles, lowercase letters represent homogeneous subsets established at an 

α of 0.05. 
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